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Praise for An Introduction to R for Spatial
Analysis and Mapping 2e

‘There’s no better text for showing students and data analysts how to use
R for spatial analysis, mapping and reproducible research. If you want to
learn how to make sense of geographic data and would like the tools to
do it, this is your guide.’

Richard Harris, University of Bristol

‘The future of GIS is open-source! An Introduction to R for Spatial
Analysis and Mapping is an ideal introduction to spatial data analysis
and mapping using the powerful open-source language R. Assuming no
prior knowledge, Brunsdon and Comber get the reader up to speed
quickly with clear writing, excellent pedagogic material and a keen
sense of geographic applications. The second edition is timely and fresh.
This book should be required reading for every Geography and GIS
student, as well as faculty and professionals.’

Harvey Miller, The Ohio State University

‘While there are many books that provide an introduction to R, this is
one of the few that provides both a general and an application-specific
(spatial analysis) introduction and is therefore far more useful and
accessible. Written by two experts in the field, it covers both the theory
and practice of spatial statistical analysis and will be an important
addition to the bookshelves of researchers whose spatial analysis needs
have outgrown currently available GIS software.’

Jennifer Miller, University of Texas at Austin

‘Students and other life-long learners need flexible skills to add value to



spatial data. This comprehensive, accessible and thoughtful book
unlocks the spatial data value chain. It provides an essential guide to the
R spatial analysis ecosystem. This excellent state-of-the-art treatment
will be widely used in student classes, continuing professional
development and self-tuition.’

Paul Longley, University College London

‘In this second edition, the authors have once again captured the state of
the art in one of the most widely used approaches to spatial analysis.
Spanning from the absolute beginner to more advanced concepts and
underpinned by a strong “learn by doing” ethos, this book is ideally
suited for both students and teachers of spatial analysis using R.’

Jonny Huck, The University of Manchester

‘A timely update to the de facto reference and textbook for anyone ‒
geographer, planner, or (geo)data scientist ‒ needing to undertake
mapping and spatial analysis in R. Complete with self-tests and valuable
insights into the transition from sp to sf, this book will help you to
develop your ability to write flexible, powerful, and fast geospatial code
in R.’

Jonathan Reades, King’s College London

‘Brunsdon and Comber’s 2nd edition of their acclaimed text book is
updated with the key developments in spatial analysis and mapping in R
and maintains the pedagogic style that made the original volume such an
indispensable resource for teaching and research.’

Scott Orford, Cardiff University
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1 Introduction

1.1 Introduction to the Second Edition
Since the first edition of this book was drafted and subsequently published,
there have been a number of developments in the handling of data and spatial
data in R. The use of R has exploded, and it is now a common tool taught at
undergraduate and postgraduate level in many courses. This is due to a
number of interrelated factors. Perhaps the most critical of these from a
scientific point of view is that R is free and open source, which means that
the code and functions used to manipulate data are transparent and can be
integrated by the user, rather than being simply presented as black boxes as is
common in many commercial software packages. Additionally, R is
underpinned by a core statistical functionality that provides the basis for
rigorous analysis and confident package development. Finally, R provides a
dynamic analysis environment in which new packages are constantly
developed, refined and updated.

One such set of developments is at the heart of the second edition of this
book: the emergence of tidy and lazy data formats and structures for spatial
and non-spatial data, to improve data manipulations, data wrangling and data
handling supporting cleaner data science. The most notable example of this is
the tidyverse, which is a collection of R packages designed for data science
(https://www.tidyverse.org). These provide a suite of tools for data analysis,
linkage and data visualisation, but also augmented data formats such as the
tibble and language extending operations using a piping syntax. Similar
developments have also occurred in mapping, spatial data and spatial data
analysis in R, such as the tmap package for thematic mapping (Tennekes,
2015) and the sf package that includes both new data structures and tools for
handling spatial data (Pebesma et al., 2016).

In the same way that the first edition of this book, written in 2013, reflected
our practice and how we worked with spatial data in R at that time, so the
second edition reflects our current practice and the techniques we now use. In
2013, spatial data analysis was undertaken using data in the sp format, as

https://www.tidyverse.org


defined in the sp package, and using tools drawn from a range of packages
underpinned by the sp data format such as rgdal and maptools. The first
edition had a strong focus on the GISTools package (Brunsdon and Chen,
2014) which wrapped many functions from other packages with an sp
underpinning. Now we work mainly with spatial data in sf format (described
more fully in Chapter 3). At the time of writing, the R spatial community is in
a period of transition from sp to sf formats and so both are introduced and
discussed in this second edition. Many packages with spatial operations and
functions for spatial analyses have not yet been updated to work with sf. For
these reasons, this edition will, where possible, describe the manipulation and
analysis of spatial data using sf format and functions but will switch between
(and convert data between) sp and sf formats as needed. The focus is no
longer primarily on GISTools, but this package still provides some analytical
short-cuts and functionality and will be used if appropriate.

R is dynamic – things do not stay the same, and this is part of its attraction
and to be celebrated. New tools, packages and functions are constantly being
produced, and they are updated to improve and develop them. In most cases
this is not problematic as the update almost always extends the functionality
of the package without affecting the original code. However, in a few
instances, specific packages are completely rewritten without backward
compatibility. If this happens then the R code that previously worked may not
work with the new package as the functions may take different parameters,
arguments and critical data formats. However, there is usually a period of
transition over some package versions before the code stops working
altogether. So occasionally a completely new paradigm is introduced, and
this has been the case recently for spatial data in R with the release of the sf
package (Pebesma et al., 2016) and the tidyverse. The second edition reflects
these developments and updates.

1.2 Objectives of this Book
This book assumes no prior knowledge of either R or spatial analysis and
mapping. It provides an introduction to the use of R and the increasing
number of tools that can be used for explicitly spatial analyses,
geocomputation and the statistical analysis of geographical information. The
text draws from a number of open source, user-contributed libraries or



‘packages’ that support mapping and cartographic outputs arising from both
raster and vector analyses. The book implicitly focuses on vector GIS as
other texts cover raster with classic geostatistics (e.g. Bivand et al., 2013),
although rasters are implicitly included in some of the exercises, for example
the outputs of density surfaces and some of the geographically weighted
analyses as described in later chapters.

The original rationale for producing the first edition of this book in 2013
related to a number of factors. First, the increasing use of R as an analytical
tool across a range of different scientific disciplines is evident. Second, there
are an increasing number of data capture devices that are GPS-enabled:
smartphones, tablets, cameras, etc. This has resulted in more and more data
(both formal and informal) having location attached to them. Third, there is
therefore an associated increase in demand for explicitly spatial analyses of
such data, in order to exploit the richness of analysis that location affords.
Finally, at the time of writing, there are no books on the market that have a
specific focus on spatial analysis and mapping of such data in R that do not
require any prior knowledge of GIS, spatial analysis or geocomputation. One
of the few textbooks on using R for the analysis of spatial data is Bivand et
al. (2013), although this is aimed at advanced users. These have not changed.
If anything, the number of R users has increased, and of those more and more
are increasingly working with spatial data. This is reflected in the number of
online tools, functions and tutorials (greatly supported by the functionality of
RMarkdown) and the continued development of packages (existing and new)
and data formats supporting spatial data analysis. As introduced earlier, an
excellent example of the latter is the Simple Features format in the sf
package. For these reasons, what we have sought to do is to write a book with
a geographical focus and (hopefully) user friendliness and that reflects the
latest developments in spatial analyses and mapping in R.

As you work through this book you will learn a number of techniques for
using R directly to carry out spatial data analysis, visualisation and
manipulation. Although here we focus mostly on vector data (some raster
analysis is demonstrated) and on social and economic applications, and the
packages that this book uses have been chosen as being the most appropriate
for analysing these kinds of data, R also presents opportunities for the
analysis of many other kinds of spatial data – for example, relating to climate



and landscape processes. While some of libraries and packages covered in
this book may also be useful in the analysis of the physical geographical and
environmental data, there will no doubt be other packages that may also play
an important role – for example, the PBSMapping package, developed by the
Pacific Biological Station in Nanaimo, British Columbia, Canada, offers a
number of functions that may be useful for the analysis of biogeographical
data.

1.3 Spatial Data Analysis in R
In recent years large amounts of spatial data have become widely available.
For example, there are many governmental open data initiatives that make
census data, crime data and various other data relating to social and economic
processes freely available. However, there is still a need to flexibly analyse,
visualise and model data of these kinds in order to understand the underlying
patterns and processes that the data describe. While there are many packages
and software available that are capable of analysing spatial data, in many
situations standard statistical modelling approaches are not appropriate: data
observations may not be independent or the relationship between variables
may vary across geographical space. For this reason many standard statistical
packages provide only inadequate tools for analysis as they cannot account
for the complexities of spatial processes and spatial data.

Similarly, although standard GIS packages and software provide tools for the
visualisation of spatial data, their analytical capabilities are relatively limited,
inflexible and cannot represent the state of the art. On the other hand, many R
packages are created by experts and innovators in the field of spatial data
analysis and visualisation, and as R is, in fact, a programming language it is a
natural testing ground for newly developed approaches. Thus R provides
arguably the best environment for spatial data analysis and manipulation. One
of the key differences between a standard GIS and R is that many people
view GIS as a tool to handle very large geographical databases rather than for
more sophisticated modelling and analysis, and this is reflected in the
evolution of GIS software, although R is catching up in its ability to easily
handle very large datasets. We do not regard R as competing with GIS, rather
we see the two kinds of software as having complementary functionality.



1.4 Chapters and Learning arcs
The broad-level content and topics covered by the chapters have not changed.
Nor have the associated learning arcs. The revisions for the second edition
have focused on updates to visualisation and mapping tools through the
ggplot2 and tmap packages and to spatial data structures through sf.

The chapters build in the complexity of the analyses they develop, and by
working through the illustrative code examples you will develop skills to
create your own routines, functions and programs. The book includes a mix
of embedded exercises, where the code is provided for you to work through
with extensive explanations, and self-test questions, which require you to
develop an answer yourself. All chapters have self-test questions. In some
cases these are included in an explicitly named section, and in others they are
embedded in the rest of the text. The final section in each chapter provides
model answers to the self-test questions. Thus in contrast to the exercises,
where the code is provided in the text for you to work through (i.e. for you to
enter and run yourself), the self-test questions are tasks for you to complete,
mostly requiring you to write R code yourself, with answers provided in the
last section of each chapter. The idea of these questions is to give you some
experience with working with different kinds of data structures, functions and
operations in R. There is a strong emphasis on solving problems, rather than
simply working through the code. In this way, snippets of code are included
in each chapter describing commands for data manipulation and analysis and
to exemplify specific functionality. It is expected that you will run the R code
yourself in each chapter. This can be typed directly into the R console or may
be written directly into a script or document as described below. It is also
possible to access the code in each chapter from the book’s website (again
see below). The reasons for running the code yourself are so that you get used
to using the R console and to help your understanding of the code’s
functionality.

In various places information boxes are included to develop a deeper
understanding of functions and alternative approaches for achieving the same
ends.

The book is aimed at both second- and third-year undergraduate and



postgraduate students. Chapters 6–8 go into much more detail about specific
types of spatial analysis and are extensively supported by references from the
scientific literature in a way that the earlier chapters are not. For these reasons
Chapters 2–5 might be considered as introductory and Chapters 6–8 might be
considered as advanced. Thus the earlier chapters are suitable for an
Introduction to R module (Chapters 2–4) or for an Introduction to Mapping
in R module, and the later ones for a module covering more Advanced
Techniques (Chapters 6–9). The book could also be used as the basis for a
Geographical Programming module, drawing from different chapters,
especially Chapters 4 and 9, depending on the experience and technical
capabilities of the student group.

The formal learning objectives of this book are:

to apply appropriate data types, arrays, control structures, functions and
packages within R code
to introduce geographical analysis and spatial data handling in R
to develop programming skills in the R language with particular
reference to current geocomputational research and applications
to exemplify the principles of algorithm and function construction in R
to design and construct basic graphical algorithms for the analysis and
visualisation of spatial information

In terms of learning arcs, each chapter introduces a topic, has example code
to run and self-test questions to work through. In a similar way, earlier
chapters provide the foundations for later ones. The dependencies and
prerequisites for each chapter are listed in Table 1.1, and you should note that
these are inherited (i.e. if Chapter 4 is a prerequisite then the prerequisites for
Chapter 4 also are relevant).

1.5 Specific Changes to the Second Edition
In Chapter 2 the main changes were to introduce the ggplot2 package
alongside the basic plot operation. The code for some figures, maps and plots
is shown for both approaches. The other change was to remove the use of
deprecated maptools functions for reading and writing spatial data and to
replace these with readOGR and writeOGR functions from the rgdal package



and the st_read function in sf. The self-test questions in each chapter reflect
these changes.

Table 1.1

Chapter 3 covers the basics of handling spatial data. This chapter now has a
focus on operations on sf objects and tools and a much reduced focus on sp
formats and the GISTools package, although it still draws from some of the
functionality of packages based on sp. The data manipulations now
incorporate operations on both sp and sf objects, bridging between the two
data formats. In a similar way, the GISTools mapping functions have been
replaced by code using the tmap package, and again many simple plot
routines have been replaced with ggplot2 operations.

Chapter 4 has a few small changes relating to some data table manipulations
using the functions in the dplyr package and demonstrates the use of apply
functions as an alternative to potentially slower (but perhaps more
transparent) for loop operations.

Chapter 5 goes into sf operations in much more detail and ubiquitously uses
tmap. The detailed walk-through coding exercises mix sp and sf formats,
using sf where possible, but where we think there is a distinct advantage to
using sp then this has been presented.

Chapters 6–9 have been revised much less than the earlier chapters, although
a new example has been added to Chapter 9 to reflect changes in web API
support in R. This is because they are focused on more advanced topics, the



nuts and bolts of which have not changed much. However, where appropriate
the plotting and mapping routines have been updated to use tmap and ggplot2
packages.

Chapter 10, the epilogue, evaluates our 2013 thoughts about the direction of
travel in this area and considers the main developments from where we are
now in 2018, including the extensions to R, improvements under the bonnet
and the coexistence of R with other software arising from the tidyverse,
piping syntax, sf formats, Rcpp, the ubiquity of RStudio as the choice of R
interface and tools such as RMarkdown. An example of the latter is that the
first edition of this book was written in Sweave and the second edition
entirely in RMarkdown.

1.6 The R Project for Statistical Computing
R was developed from the S language which was originally conceived at the
Lucent Technologies (formerly AT&T) Bell Laboratories in the 1970s and
1980s. Douglas Martin at the company StatSci developed S into the enhanced
commercial product known as S+ in the late 1980s and early 1990s (Krause
and Olson, 1997). R was initially developed by Robert Gentleman and Ross
Ihaka of the Department of Statistics at the University of Auckland. It is
becoming widely used in many areas of scientific activity and quantitative
research, partly because it is available free in source code form and also
because of its extensive functionality, through the continually growing
number of contributions of code and functions, in the form of R packages,
which when installed can be called as libraries. The background to R, along
with documentation and information about packages as well as the
contributors, can be found at the R Project website http://www.r-project.org.

1.7 Obtaining and Running the R Software
We assume that most readers will be using the RStudio interface to R. You
should download the latest version of R and then RStudio in order to run the
code provided in this book. At the time of writing, the latest version of R is
version 3.4.3 and you should ensure you have at least this version. There are
32-bit and 64-bit versions available, and we assume you have the 64-bit

http://www.r-project.org


version. The simplest way to get R installed on your computer is to go the
download pages on the R website – a quick search for ‘download R’ should
take you there, but if not you could try:

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/
http://cran.r-project.org/bin/linux/

for Windows, Mac and Linux, respectively. The Windows and Mac versions
come with installer packages and are easy to install, while the Linux binaries
require use of a command terminal.

RStudio can be downloaded from
https://www.rstudio.com/products/rstudio/download/ and the free version of
RStudio Desktop is more than sufficient for this book. RStudio allows you to
organise your work into projects, to use RMarkdown to create documents and
webpages, to link to your GitHub site and much more. It can be customised
for your preferred arrangement of the different panes.

You may have to set a mirror site from which the installation files will be
downloaded to your computer. Generally you should pick one that is near to
you. Once you have installed the software you can run it. On a Windows
computer, an R icon is typically installed on the desktop; on a Mac, R can be
found in the Applications folder. Macs and Windows have slightly different
interfaces, but the protocols and processes for an R session on either platform
are similar.

The base installation includes many functions and commands. However,
more often we are interested in using some particular functionality, encoded
into packages contributed by the R developer community. Installing packages
for the first time can be done at the command line in the R console using the
install.packages command, as in the example below to install the GISTools
library, or via the R menu items.

install.packages("tmap", dependencies = T)

In Windows, the menu for this can be accessed by Packages > Load

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/
http://cran.r-project.org/bin/linux/
https://www.rstudio.com/products/rstudio/download/


Packages and on a Mac via Packages and Data > Package Installer. In
either case, the first time you install packages you may have to set a mirror
site, from which to download the packages. Once the package has been
installed then the library can be called as below.

library(tmap)

Further descriptions of packages, their installation and their data structures
are given in later chapters. There are literally thousands of packages that have
been contributed to the R project by various researchers and organisations.
These can be located by name at http://cran.r-
project.org/web/packages/available_packages_by_name.html if you know the
package you wish to use. It is also possible to search the CRAN website to
find packages to perform particular tasks at http://www.r-
project.org/search.html. Additionally, many packages include user guides in
the form of a PDF document describing the package and listed at the top of
the index page of the help files for the package. The most commonly used
packages in this book are listed in Table 1.2.

When you install these packages it is strongly suggested you also install the
dependencies – other packages required by the one that is being installed – by
either checking the box in the menu or including depend=TRUE in the
command line as below:

install.packages("GISTools", dep = TRUE)

Packages are occasionally completely rewritten, and this can impact on code
functionality. Since we started writing the revision for this edition of the
book, the read and write functions for spatial data in the maptools package
(readShape Poly, writePolyShape, etc.) have deprecated. For instance:

Table 1.2

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://www.r-project.org/search.html


library(maptools)

?readShapePoly



If you examine the help files for these functions you will see that they contain
a warning and suggest other functions that should be used instead. The book
website will always contain working code snippets for each chapter to
overcome any problems caused by function deprecation.

Such changes are only a minor inconvenience and are part of the nature of a
dynamic development environment provided by R in which to do research:
such changes are inevitable as packages finesse, improve and standardise.

1.8 The R Interface
We expect that most readers of this book and most users of R will be using
the RStudio interface to R, although users can of course still use just R.
RStudio provides a good interface to the different things that R users will
want to know about the R sessions via the four panes: the console where code
is entered; the file that is being edited; variables in the working environments;
files in the project file space; plot windows, help pages, as well as font type
and size, pane colour, etc. Users can set up their personal preferences for how
they like their RStudio interface. Similar to straight R, there are few pull-
down menus in R, and therefore you will type command lines in what is
termed a command line interface. Like all command line interfaces, the
learning curve is steep but the interaction with the software is more detailed,
which allows greater flexibility and precision in the specification of
commands.

As you work though the book, the expectation is that you will run all the code
that you come across. We cannot emphasise enough the importance of
learning by doing – the best way to learn how to write R code is to write and
enter it. Some of the code might look a bit intimidating when first viewed,
especially in later chapters. However, the only really effective way to
understand it is to give it a try.

Beyond this there are further choices to be made. Command lines can be
entered in two forms: directly into the R console window or as a series of
commands into a script window. We strongly advise that all code should be
written in scripts (script files have a .R extension) and then run from the
script. RStudio includes its own editor (similar to Notepad in Windows or



TextEdit on a Mac). Scripts are useful if you wish to automate data analysis,
and have the advantage of keeping a saved record of the relevant R
programming language commands that you use in a given piece of analysis.
These can be re-executed, referred to or modified at a later date. For this
reason, you should get into the habit of constructing scripts for all your
analyses. Since being able to edit functions is extremely useful, both the MS
Windows and Mac OSX versions of R have built-in text editors. In RStudio
you should go to File > New File. In R, to start the Windows editor with a
blank document, go to File > New Script, and to open an existing script, File
> Open Script. To start the Mac editor, use the menu option File > New
Document to open a new document and File > Open Document to open an
existing file.

Once code is written into these files, they can be saved for future use; rather
than copy and pasting each line of code, both R and RStudio have their own
short-cuts. Lines of code can be run directly by placing the cursor on the
relevant line (or highlighting a block) and then using Ctrl-R (Windows) or
Cmd-Return (Mac). RStudio also has a number of other keyboard short-cuts
for running code, auto-filling when you are typing, assignment, etc. Further
tips are described at http://r4ds.had.co.nz/workflow-basics.html.

It is also good practice to set the working directory at the beginning of your R
session. This can be done via the menu in RStudio: Session > Set Working
Directory > …. In Windows R select File > Change dir…, and in Mac R
select Misc > Set Working Directory. This points the R session to the folder
you choose and will ensure that any files you wish to read, write or save are
placed in this directory.

Scripts can be saved by selecting File > Save As which will prompt you to
enter a name for the R script you have just created. Chose a name (e.g. test.R)
and select save. It is good practice to use the file extension .R.

1.9 Other Resources and Accompanying Website
There are many freely available resources for R users. In order to get some
practice with R we strongly suggest that you download the ‘Owen Guide’
(entitled The R Guide) and work through this up to and including Section 5. It

http://r4ds.had.co.nz/workflow-basics.html


can be accessed via http://cran.r-project.org/doc/contrib/Owen-
TheRGuide.pdf. It does not require any additional libraries or data and
provides a gentle introduction to R and its syntax.

There are many guides to the R software available on the internet. In
particular, you may find some of the following links useful:

http://www.r-bloggers.com
http://stackoverflow.com/ and specifically
http://stackoverflow.com/questions/tagged/r

The contemporary nature of R means that much of the R development for
processing geographical information is chronicled on social media sites (you
can search for information on services such as Twitter, for example #rstats)
and blogs (such as the R-bloggers site listed above), rather than standard
textbooks. In addition to the above resources, there is a website that
accompanies this book:https://study.sagepub.com/Brunsdon2e. This site
contains all of the code, scripts, exercises and self-test questions included in
each chapter, and these are available to download. The scripts for each
chapter allow the reader to copy and paste the code into the R console or into
their own script. At the time of writing, all of the code in the book is correct.
However, R and its packages are occasionally updated. In most cases this is
not problematic as the update almost always extends the functionality of the
package without affecting the original code. However, in a few instances,
specific packages are completely rewritten without backward compatibility.
If this happens the code on the accompanying website will be updated
accordingly. You are therefore advised to check the website regularly for
archival components and links to new resources.
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2 Data and Plots

2.1 Introduction
This chapter introduces some of the different data types and data structures
that are commonly used in R and how to visualise them. As you work
through this book, you will gain experience in using and manipulating these
individually and within blocks of code. It sequentially builds on the ideas that
are introduced, for example developing your own functions, and tests this
knowledge through self-test exercises. As you progress, the exercises will
place more emphasis on solving problems, using the different data structures
needed, rather than simply working through the example code. As you work
though the code, you should use the help available to explore the different
functions that are called in the code snippets, such as max, sqrt and length.

This chapter covers a lot of ground – it will:

Review basic commands in R
Introduce variables and assignment
Introduce data types and classes
Describe how to test for and manipulate data types
Introduce and compare data frames and tibbles
Introduce basic plot commands
Describe how to read, write, load and save different data types

Chapter 1 introduced R, the reasons for using it in spatial analysis and
mapping, and described how to install it. It also directed you to some of the
many resources and introductory exercises for undertaking basic operations
in R. Specifically it advised that you should work through the ‘Owen Guide’
(entitled The R Guide) up to the end of Section 5. This can be accessed via
https://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf. This chapter
assumes that you have worked your way through this – it does not take long
and provides critical introductory knowledge for the more specialised
materials that will be covered in the rest of this book.

https://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf


2.2 The Basic Ingredients of R: Variables and
Assignment
The R interface can be used as a sort of calculator, returning the results of
simple mathematical operations such as (−5 + −4). However, it is normally
convenient to assign values to variables. The form for doing this is:

R_object <- value

The arrow performs the assignments and is referred to as gets. So in this case
you would say R_object gets value. It is possible to use an equals sign instead
of gets, but this only performs a soft assignment (the difference between the
arrow and the equals sign relates to how R how stores the R_object). The
objects and variables that are created can then be manipulated or subject to
further operations.

# examples of simple assignment

x <- 5

y <- 4

# the variables can be used in other operations

x+y

[1] 9

# including defining new variables

z <- x + y

z

[1] 9

# which can then be passed to other functions

sqrt(z)

[1] 3

I



The snippet of code above is the first that you have come across in this book. There will be
further snippets throughout each chapter. Two key points. First, you are strongly advised to
enter and run the code at the R prompt yourself. Our very strong advice is that you write the
code into a script or document using the in-built text editor in RStudio. For example, for
each chapter you might start a new RStudio session or project and open a new .R file. This
script can be used to save the code snippets you enter and to include your comments and
annotations. The reasons for doing this are so that you get used to using the R console, and
running the code will help your understanding of the code’s functionality. Lines of code can
be run directly by placing the cursor on the line of code (or highlighting a block of code)
and then using Ctrl-R (Windows) or Cmd-Return (Mac). Keeping copies of your code in
this way will help you keep a record of it and will allow you to go back and edit it at a later
date. Second, we would like to emphasise the importance of learning by doing and getting
your hands dirty. Some of the code might look a bit fearsome when first viewed, especially
in later chapters, but the only really effective way to understand it is to give it a try.
Remember that the code and chapter summaries are available on the book’s website
https://study.sagepub.com/Brunsdon2e so that you can copy and paste these into the R
console or your own script. A final point is that in the code, any comments are prefixed by #
and are ignored by R when entered into the console.

The basic assignment type in R is to a vector of values. Vectors can have
single values as in x, y and z above, or multiple values. Note the use of
c(4.3,7.1, …) in the code below, where the c instructs R to combine or
concatenate multiple values:

# example of vector assignment

tree.heights <- c(4.3,7.1,6.3,5.2,3.2,2.1)

tree.heights

[1] 4.3 7.1 6.3 5.2 3.2 2.1

Remember that UPPER and lower case matters to R. So tree.heights,
Tree.Heights and TREE.HEIGHTS will be treated as referring to different
variables by R. Make sure you type in upper and lower case exactly as it is
written, otherwise you are likely to get an error.

In the example above, a vector of values has been assigned to the variable
tree.heights. It is possible to apply a single assignment to the entire vector, as
in the code below that returns tree.heights squared. Note how the operation
returns the square of each element in the vector.

tree.heights∗∗2

https://study.sagepub.com/Brunsdon2e


[1] 18.49 50.41 39.69 27.04 10.24 4.41

Other operations or functions can then be applied to these vectors variables:

sum(tree.heights)

[1] 28.2

mean(tree.heights)

[1] 4.7

And, if needed, the results can be assigned to yet further variables:

max.height <- max(tree.heights) max.height

[1] 7.1

One of the advantages of vectors and other structures with multiple data
elements is that they can be subsetted. Individual elements or subsets of
elements can be extracted and manipulated:

tree.heights

[1] 4.3 7.1 6.3 5.2 3.2 2.1

tree.heights[1] # first element

[1] 4.3

tree.heights[1:3] # a subset of elements 1 to 3

[1] 4.3 7.1 6.3

sqrt(tree.heights[1:3]) #square roots of the subset

[1] 2.073644 2.664583 2.509980

tree.heights[c(5,3,2)] # a subset of elements 5,3,2: note the ordering

[1] 3.2 6.3 7.1

In the above examples the numeric values were assigned. However, character
or logical values can be also assigned as in the code below. This starts to hint



at the idea of different classes and types of variables which are described in
more detail in the next sections.

# examples of character variable assignment

name <- "Lex Comber"

name

[1] "Lex Comber"

# these can be assigned to a vector of character variables

cities <- c("Leicester","Newcastle","London","Leeds","Exeter")

cities

[1] "Leicester" "Newcastle" "London" "Leeds"

[5] "Exeter"

length(cities)

[1] 5

# an example of a logical variable

northern <- c(FALSE, TRUE, FALSE, TRUE, FALSE)

northern

[1] FALSE TRUE FALSE TRUE FALSE

# this can be used to subset other variables

cities[northern]

[1] "Newcastle" "Leeds"

2.3 Data Types and Data Classes
This section introduces data classes and data types to a sufficient depth for
readers of this book. However, more formal descriptions of basic classes for
R data objects can be found in the R Manual on the CRAN website at
http://stat.ethz.ch/R-manual/R-devel/library/methods/html/BasicClasses.html.

http://stat.ethz.ch/R-manual/R-devel/library/methods/html/BasicClasses.html


2.3.1 Data Types in R
Data in R can be considered as being organised into a hierarchy of data types
which can then be used to hold data values in different structures. Each of the
types is associated with a test and a conversion function. The basic or core
data types and associated tests and conversions are shown in Table 2.1.

You should note from the table that each type has an associated test in the
form is.xyz, which will return TRUE or FALSE, and a conversion in the form
as.xyz. Most of the exercises, methods, tools, functions and analyses in this
book work with only a small subset of these data types: character, numeric
and logical. These data types can be used to populate different data structures
or classes, including vectors, matrices, data frames, lists and factors. The data
types are described in more detail below. In each case the objects created by
the different classes, conversion functions or tests are illustrated.

Table 2.1

2.3.1.1 Characters
Character variables contain text. By default the function character creates a
vector of whatever length is specified. Each element in the vector is equal to
"", an empty character element in the variable. The function as.character tries
to convert its argument to character type, removing any attributes including,
for example, vector element names. The function is.character tests whether



the arguments passed to it are of character type and returns TRUE or FALSE
depending on whether its argument is of character type or not. Consider the
following examples of these functions and the results when they are applied
to different inputs:

character(8)

[1] "" "" "" "" "" "" "" ""

# conversion

as.character("8")

[1] "8"

# tests

is.character(8)

[1] FALSE

is.character("8")

[1] TRUE

2.3.1.2 Numeric
Numeric data variables are used to hold numbers. The function numeric is
used to create a vector of the specified length with each element equal to 0.
The function as.numeric tries to convert (coerce) its argument to numeric
type. It is identical to as.double and to as.real. The function is.numeric tests
whether the arguments passed to it are of numeric type and returns TRUE or
FALSE depending on whether its argument is of numeric type or not. Notice
how the last test in the code below returns FALSE because not all of the
elements are numeric.

numeric(8)

[1] 0 0 0 0 0 0 0 0

# conversions

as.numeric(c("1980","−8","Geography"))



[1] 1980 −8 NA

as.numeric(c(FALSE,TRUE))

[1] 0 1

# tests

is.numeric(c(8, 8))

[1] TRUE

is.numeric(c(8, 8, 8, "8"))

[1] FALSE

2.3.1.3 Logical
The function logical creates a logical vector of the specified length and by
default each element of the vector is set to equal FALSE. The function
as.logical attempts to convert its argument to be of logical type. It removes
any attributes including, for example, vector element names. A range of
character strings c("T", "TRUE", "True", "true"), as well any number not
equal to zero, are regarded as TRUE. Similarly, c("F", "FALSE", "False",
"false") and zero are regarded as FALSE. All others are regarded as NA. The
function is.logical returns TRUE or FALSE depending on whether the
argument passed to it is of logical type or not.

logical(7)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE

# conversion

as.logical(c(7,5,0,−4,5))

[1] TRUE TRUE FALSE TRUE TRUE

# TRUE and FALSE can be converted to 1 and 0

as.logical(c(7,5,0,−4,5)) ∗ 1

[1] 1 1 0 1 1

as.logical(c(7,5,0,−4,5)) + 0



[1] 1 1 0 1 1

# different ways to declare TRUE and FALSE

as.logical(c("True","T","FALSE","Raspberry","9","0", 0))

[1] TRUE TRUE FALSE NA NA NA NA

Logical vectors are very useful for indexing and subsetting data, including
spatial data, to select the data that satisfy some criteria. For example, consider
the following:

data <- c(3, 6, 9, 99, 54, 32, −102)

# a logical test

index <- (data > 10)

index

[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE

# used to subset data

data[index]

[1] 99 54 32

sum(data)

[1] 101

sum(data[index])

[1] 185

2.3.2 Data Classes in R
The different data types can be used to populate different data structures or
classes. This section will describe and illustrate vectors, matrices, data
frames, lists and factors, data classes that are commonly used in spatial data
analysis.

2.3.2.1 Vectors



All of the commands in R in Section 2.3.1 produced vectors. Vectors are the
most commonly used data structure and the standard one-dimensional R
variable. You will have noticed that when you specified character or logical,
etc., a vector of a given length was produced. An alternative approach is to
use the function vector, which produces a vector of the length and type or
mode specified. The default is logical, and when you assign values to vectors
R will seek to convert them to whichever vector mode is most convenient.
Recall that the test is.vector returns TRUE if its argument is a vector of the
specified class or mode with no attributes other than names, returning FALSE
otherwise, and that the function as.vector seeks to convert its argument into a
vector of whatever mode is specified.

# defining vectors

vector(mode = "numeric", length = 8)

[1] 0 0 0 0 0 0 0 0

vector(length = 8)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

# testing and conversion

tmp <- data.frame(a=10:15, b=15:20)

is.vector(tmp)

[1] FALSE

as.vector(tmp)

a b

1 10 15

2 11 16

3 12 17

4 13 18

5 14 19

6 15 20



2.3.2.2 Matrices
The function matrix creates a matrix from the data and parameters that are
passed to it. This must include parameters for the number of columns and
rows in the matrix. The function as.matrix attempts to turn its argument into a
matrix, and again the test is.matrix tests to see whether its argument is a
matrix.

# defining matrices

matrix(ncol = 2, nrow = 0)

[,1] [,2]

matrix(1:6)

  [,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

[5,] 5

[6,] 6

matrix(1:6, ncol = 2)

# conversion and test

as.matrix(6:3)

[,1]



is.matrix(as.matrix(6:3))

[1] TRUE

Matrix rows and columns can be named – note the use of byrow=TRUE in
the following.

flow <- matrix(c(2000, 1243, 543, 1243, 212, 545,

654, 168, 109), c(3,3), byrow=TRUE)

# Rows and columns can have names, not just 1,2,3,…

colnames(flow) <- c("Leeds", "Maynooth", "Elsewhere")

rownames(flow) <- c("Leeds", "Maynooth", "Elsewhere")

# examine the matrix

flow

# and functions exist to summarise

outflows <- rowSums(flow)

outflows

Leeds Maynooth Elsewhere

3786 2000 931

However, if the data class is not a matrix then just use names, rather than



rownames or colnames.

z <- c(6,7,8)

names(z) <- c("Newcastle","London","Manchester")

z

Newcastle London Manchester

      6     7      8

R has many additional tools for manipulating matrices and performing matrix
algebra functions that are not described here. However, as spatial scientists
we are often interested in analysing data that have a matrix-like form, as in a
data table. For example, in an analysis of spatial data in vector format, the
rows in the attribute table represent specific features (such as polygons) and
the columns hold information about the attributes of those features.
Alternatively, in a raster analysis environment, the rows and columns may
represent specific latitudes and longitudes, or northings and eastings, or raster
cells. Methods for analysing data in matrix-like structures will be covered in
more detail in later chapters as spatial data objects (Chapter 3) and spatial
analyses (Chapter 5) are introduced.

I

You will have noticed in the code snippets that a number of new functions are introduced,
For example, early in this chapter, the function sum was used. R includes a number of
functions that can be used to generate descriptive statistics such as sum and max. You
should explore these as they occur in the text to develop your knowledge of and familiarity
with R. Further useful examples are in the code below and throughout this book. You could
even store them in your own R script. R includes extensive help files which can be used to
explore how different functions can be used, frequently with example snippets of code. An
illustration of how to find out more about the sum function and some further summary
functions is provided in the code below.

?sum

help(sum)

# Create a variable to pass to other summary functions

x <− matrix(c(3,6,8,8,6,1,−1,6,7),c(3,3),byrow=TRUE)



# Sum over rows

rowSums(x)

# Sum over columns

colSums(x)

# Calculate column means

colMeans(x)

# Apply function over rows (1) or columns (2) of x

apply(x,1,max)

# Logical operations to select matrix elements

x[,c(TRUE,FALSE,TRUE)]

# Add up all of the elements in x

sum(x)

# Pick out the leading diagonal

diag(x)

# Matrix inverse

solve(x)

# Tool to handle rounding

zapsmall(x %∗% solve(x))

2.3.2.3 Factors
The function factor creates a vector with specific categories, defined in the
levels parameter. The ordering of factor variables can be specified and an
ordered function also exists. The functions as.factor and as.ordered are the
coercion functions. The test is.factor returns TRUE or FALSE depending on
whether its argument is of type factor or not, and is.ordered returns TRUE
when its argument is an ordered factor and FALSE otherwise.

# a vector assignment



house.type <- c("Bungalow", "Flat", "Flat", "Detached", "Flat", "Terrace", "Terrace")

# a factor assignment

house.type <- factor(c("Bungalow", "Flat", "Flat", "Detached", "Flat", "Terrace",
"Terrace"),

levels=c("Bungalow","Flat","Detached","Semi","Terrace"))

house.type

[1] Bungalow Flat Flat Detached Flat Terrace

[7] Terrace

Levels: Bungalow Flat Detached Semi Terrace

# table can be used to summarise

table(house.type)

house.type

Bungalow Flat Detached Semi  Terrace

1   3    1   0      2

# levels controls what can be assigned

house.type <- factor(c("People Carrier", "Flat", "Flat", "Hatchback", "Flat", "Terrace",
"Terrace"),

levels=c("Bungalow","Flat","Detached","Semi","Terrace"))

house.type

[1] <NA> Flat Flat <NA> Flat Terrace Terrace

Levels: Bungalow Flat Detached Semi Terrace

Factors are useful for categorical or classified data – that is, data values that
must fall into one of a number of predefined classes. It is obvious to see how
this might be relevant to geographical analysis, where many features
represented in spatial data are labelled using one of a set of discrete classes.

2.3.2.4 Ordering
There is no concept of ordering in factors. However, this can be imposed by



using the ordered function. Ordering allows inferences about preference or
hierarchy to be made (lower–higher, better–worse, etc.) and this can be used
in data selection or indexing (as above) or in the interpretation of derived
analyses.

income <-factor(c("High", "High", "Low", "Low", "Low", "Medium", "Low", "Medium"),
levels=c("Low", "Medium", "High"))

income > "Low"

[1] NA NA NA NA NA NA NA NA

# levels in ordered defines a relative order

income <-ordered(c("High", "High", "Low", "Low", "Low", "Medium", "Low",
"Medium"), levels=c("Low", "Medium", "High"))

income > "Low"

[1] TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE

Thus we can see that ordering is implicit in the way that the levels are
specified and allows other, ordering-related functions to be applied to the
data.

The functions sort and table are new functions. In the above code relating to
factors, the function table was used to generate a tabulation of the data in
house.type. It provides a count of the occurrence of each level in house.type.
The command sort orders a vector or factor. You should use the help in R to
explore how these functions work and try them with your own variables. For
example:

sort(income)

2.3.2.5 Lists
The character, numeric and logical data types and the associated data classes
described above all contain elements that must all be of the same basic type.
Lists do not have this requirement. Lists have slots for collections of different
elements. A list allows you to gather a variety of different data types together



in a single data structure and the nth element of a list is denoted by double
square brackets.

tmp.list <- list("Lex Comber",c(2015, 2018),

"Lecturer", matrix(c(6,3,1,2), c(2,2)))

tmp.list

[[1]]

[1] "Lex Comber"

[[2]]

[1] 2015 2018

[[3]]

[1] "Lecturer"

[[4]]

  [,1] [,2]

[1,] 6 1

[2,] 3 2

# elements of the list can be selected

tmp.list[[4]]

  [,1] [,2]

[1,] 6 1

[2,] 3 2

From the above it is evident that the function list returns a list structure
composed of its arguments. Each value can be tagged depending on how the
argument was specified. The conversion function as.list attempts to coerce its
argument to a list. It turns a factor into a list of one-element factors and drops
attributes that are not specified. The test is.list returns TRUE if and only if its
argument is a list. These are best explored through some examples; note that
list items can be given names.



employee <- list(name="Lex Comber", start.year = 2015, position="Professor")

employee

$name

[1] "Lex Comber"

$start.year

[1] 2015

$position

[1] "Professor"

Lists can be joined together with append:

append(tmp.list, list(c(7,6,9,1)))

and lapply applies a function to each element of a list:

# lapply with different functions

lapply(tmp.list[[2]], is.numeric)

lapply(tmp.list, length)

Note that the length of a matrix, even when held in a list, is the total number
of elements.

2.3.2.6 Defining Your Own Classes
In R it is possible to define your own data type and to associate it with
specific behaviours, such as its own way of printing, drawing. For example,
you will notice in later chapters that the plot function is used to draw maps
for spatial data objects as well as conventional graphs. Suppose we create a
list containing some employee information.

employee <- list(name="Lex Comber", start.year = 2015,



position="Professor")

This can be assigned to a new class, called staff in this case (it could be any
name, but meaningful ones help).

class(employee) <- "staff"

Then we can define how R treats that class in the form <existing function>.
<class> – for example, how it is printed. Note how the existing function for
printing is modified by the new class definition:

print.staff <- function(x) {

cat("Name: ",x$name,"\n")

cat("Start Year: ",x$start.year,"\n")

cat("Job Title: ",x$position,"\n")}

# an example of the print class

print(employee)

Name: Lex Comber

Start Year: 2015

Job Title: Professor

You can see that R knows to use a different print function if the argument is
not a variable of class staff. You could modify how your R environment
treats existing classes in the same way, but do this with caution. You can also
undo the class assigned by using unclass, and the print.staff function can be
removed permanently by using rm(print.staff):

print(unclass(employee))

$name

[1] "Lex Comber"

$start.year

[1] 2015



$position

[1] "Professor"

2.3.2.7 Classes in Lists
Variables can be assigned to new or user-defined class objects. The example
below defines a function to create a new staff object.

new.staff <- function(name,year,post) {

result <- list(name=name, start.year=year, position=post)

class(result) <- "staff"

return(result)}

A list can then be defined, which is populated using that function as in the
code below (note that functions will be dealt with more formally in later
chapters).

leeds.uni <- vector(mode=’list’,3)

# assign values to elements in the list

leeds.uni[[1]] <- new.staff("Heppenstall, Alison", 2017,"Professor")

leeds.uni[[2]] <- new.staff("Comber, Lex", 2015,"Professor")

leeds.uni[[3]] <- new.staff("Langlands, Alan", 2014,"VC")

And the list can be examined by entering:

leeds.uni

2.3.2.8 data.frame versus tibble
Data of different types and classes are often held in tabular format. The 
data.frame and tibble classes of the data table are described in this section.

Generally, in data tables, each of the records (rows) relates to some kind of



real-world feature (a person, a transaction, a date, etc.) and the columns
represent some attribute associated with that feature. In R data can be in a
matrix, but matrices can only hold one type of data (e.g. integer, logical and
character). However, data.frame and tibble class objects can hold different
data types in different columns (or fields). This section introduces these (in
fact, the tibble class includes data.frame) because they are used to hold
attributes of spatial objects (points, lines, areas, pixels) in the R spatial data
formats sf and sp, as introduced in detail in Chapter 3. Thus in spatial data
tables, each record typically represents some real-world geographical feature
(a place, a route, a region, etc.) and the fields describe variables or attributes
associated with that feature (population, length, area, etc.).

The data.frame class in R is composed of a series of vectors of equal length,
which together form a two-dimensional data structure. Each vector records
values for a particular theme or attribute. Typically these form the columns in
a data frame, and the name of each vector provides the column name or
header. They are ordered such that the nth element in each vector describes a
property for the nth record (row) representing the nth feature. The data.frame
class is the most commonly used method for storing data in R.

A data frame can be created using the data.frame() function:

df <- data.frame(dist = seq(0,400, 100), city = c("Leeds", "Nottingham", "Leicester",
"Durham", "Newcastle"))

str(df)

’data.frame’: 5 obs. of 2 variables:

$ dist: num 0 100 200 300 400

$ city: Factor w/ 5 levels "Durham","Leeds",..: 2 5 3 1 4

The data.frame() function by default encodes character strings into factors.
To see this enter:

df$city

To overcome this the df object can be refined using stringsAsFactors =



FALSE:

df <- data.frame(dist = seq(0,400, 100),

city = c("Leeds", "Nottingham", "Leicester", "Durham", "Newcastle"), stringsAsFactors =
FALSE)

str(df)

’data.frame’: 5 obs. of 2 variables:

$ dist: num 0 100 200 300 400

$ city: chr "Leeds" "Nottingham" "Leicester" "Durham" …

The tibble class is a reworking of the data.frame class that seeks to retain the
operational advantages of data frames and eliminate aspects that have proven
to be less effective. Enter the code below to create tb:

tb <- tibble(dist = seq(0,400, 100),

city = c("Leeds", "Nottingham", "Leicester", "Durham", "Newcastle"))

Probably the biggest criticism of data.frame is the partial matching behaviour. Enter the
following code:

df$ci

[1] "Leeds" "Nottingham" "Leicester" "Durham"

[5] "Newcastle"

tb$ci

NULL

Although there is no variable called ci, the partial matching in the data.frame
means that the city variable is returned. This is a bit worrying!

A further problem is what gets returned when a data table is subsetted. A
tibble always returns a tibble, whereas a data frame may return a vector or a
data frame, depending on the dimensions of the result. For example, compare
the outputs of the following code:



# 1 column

df[,2]

tb[,2]

class(df[,2])

class(tb[,2])

# 2 columns

df[,1:2]

tb[,1:2]

class(df[,1:2])

class(tb[,1:2])

Note that a tibble is a data frame, but tibbles seek to be lazy by not changing
variable names or types or do partial matching. And they are surly because
they complain more. This forces cleaner coding by identifying problems
earlier in the data analysis cycle.

Finally, the print method for tibble returns the first 10 records by default,
whereas for data.frame the head() function is frequently used to display just
the first 6 records. The tibble class also includes a description of the class of
each field (column) when it is printed.

It is possible to convert between tibbles and data frames using the following
functions:

data.frame(tb)

as_tibble(df)

The following functions work with both tibbles and data frames:

names()

colnames()



rownames()

length() # length of the underlying list

ncol()

nrow()

They can be subsetted in the same way as a matrix, using the [row, column]
notation as above, and they can both be combined using cbind() and rbind().

cbind(df, Pop = c(700,250,230,150,1200))

cbind(tb, Pop = c(700,250,230,150,1200))

You could explore the tibble vignette by entering:

vignette("tibble")

2.3.3 Self-Test Questions



In the next pages there are a number of self-test questions. In contrast to the
previous sections where the code is provided in the text for you to work
through (i.e. you enter and run it yourself), the self-test questions are tasks for
you to complete, mostly requiring you to write R code. Answers to them are
provided in Section 2.7. The self-test questions relate to the main data types
that have been introduced: factors, matrices, lists (named and unnamed) and
classes.

2.3.3.1 Factors
Recall from the descriptions above that factors are used to represent
categorical data – where a small number of categories are used to represent
some characteristic in a variable. For example, the colour of a particular
model of car sold by a showroom in a week can be represented using factors:

colours <- factor(c("red","blue","red","white", "silver","red","white","silver",
"red","red","white","silver","silver"), levels=c("red","blue","white","silver","black"))

Since the only colours this car comes in are red, blue, white, silver and black,
these are the only levels in the factor.

Self-Test Question 1. Suppose you were to enter:

colours[4] <- "orange"

colours

What would you expect to happen? Why?

Next, use the table function to see how many of each colour were sold. First
reassign the colours (as you may have altered this variable in the previous
self-test question):

colours <- factor(c("red","blue","red","white", "silver","red","white","silver",
"red","red","white","silver","silver"), levels=c("red","blue","white","silver","black"))

table(colours)



colours

red blue white silver black

5   1    3    4    0

Note that the result of the table function is just a standard vector, but that
each of its elements is named – the names in this case are the levels in the
factor. Now suppose you had simply recorded the colours as a character
variable, in colours2 as below, and then computed the table:

colours2 <-c("red","blue","red","white", "silver","red","white","silver",
"red","red","white","silver")

# Now, make the table

table(colours2)

colours2

blue red silver white

  1  5    3    3

Self-Test Question 2. What two differences do you notice between the
results of the two table expressions?

Now suppose we also record the type of car – it comes in saloon, convertible
and hatchback. This can be specified by another factor variable called
car.type:

car.type <- factor(c("saloon","saloon","hatchback",
"saloon","convertible","hatchback","convertible", "saloon","hatchback","saloon","saloon",
"saloon","hatchback"), levels=c("saloon","hatchback","convertible"))

The table function can also work with two arguments:

table(car.type, colours)



This gives a two-way table of counts – that is, counts of red hatchbacks,
silver saloons and so on. Note that the output this time is a matrix. For now
enter the code below to save the table into a variable called crosstab to be
used later on:

crosstab <- table(car.type,colours)

Self-Test Question 3. What is the difference between table(car.type, colours)
and table(colours,car.type)?

Finally in this section, ordered factors will be considered. Suppose a third
variable about the cars is the engine size, and that the three sizes are 1.1 litre,
1.3 litre and 1.6 litre. Again, this is stored in a variable, but this time the sizes
are ordered. Enter:

engine <- ordered(c("1.1litre","1.3litre","1.1litre", "1.3litre","1.6litre","1.3litre","1.6litre",
"1.1litre","1.3litre","1.1litre", "1.1litre", "1.3litre","1.3litre"),
levels=c("1.1litre","1.3litre","1.6litre"))

Recall that with ordered variables, it is possible to use comparison operators
> (greater than), < (less than), >= (greater than or equal to) and <= (less than
or equal to). For example:

engine > "1.1litre"

[1] FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE

[10] FALSE FALSE TRUE TRUE

Self-Test Question 4. Using the engine, car.type and colours variables, write
expressions to give the following:



The colours of all cars with engines with capacity greater than 1.1 litres.
The counts of types (hatchback etc.) of all cars with capacity below 1.6
litres.
The counts of colours of all hatchbacks with capacity greater than or
equal to 1.3 litre.

2.3.3.2 Matrices
In the previous section you created a matrix called crosstab. A number of
functions can be applied to matrices:

dim(crosstab) # Matrix dimensions

[1] 3 5

rowSums(crosstab) # Row sums

saloon hatchback convertible

    7   4   2

colnames(crosstab) # Column names

[1] "red" "blue" "white" "silver" "black"

Another important tool for matrices is the apply function. To recap, this
applies a function to either the rows or columns of a matrix, giving a single-
dimensional list as a result. A simple example finds the largest value in each
row:

apply(crosstab,1,max)

   saloon hatchback convertible

   2   3   1

In this case, the function max is applied to each row of crosstab. The 1 as the
second argument specifies that the function will be applied row by row. If it
were 2 then the function would be column by column:



apply(crosstab,2,max)

red blue white silver black

3  1  2  2  0

A useful function is which.max. Given a list of numbers, it returns the index
of the largest one. For example:

example <- c(1.4,2.6,1.1,1.5,1.2)

which.max(example)

[1] 2

In this case, the second element is the largest.

Self-Test Question 5. What happens if there is more than one number taking
the largest value in a list? Use either the help facility or experimentation to
find out.

Self-Test Question 6. The function which.max can be used in conjunction
with apply. Write an expression to find the index of the largest value in each
row of crosstab.

The function levels returns the levels of a variable of type factor in character
form. For example:

levels(engine)

[1] "1.1litre" "1.3litre" "1.6litre"

The order they are returned in is the one specified in the original factor
assignment and the same order as row or column names produced by the
table function. This means that levels can be used in conjunction with
which.max when applied to matrices to obtain the row or column names
instead of an index number:

levels(colours)[which.max(crosstab[,1])]



[1] "blue"

Alternatively, the same effect can be achieved by the following:

colnames(crosstab)[which.max(crosstab[,1])]

[1] "blue"

You should unpick these last two lines of code to make sure you understand
what each element is doing.

colnames(crosstab)

[1] "red" "blue" "white" "silver" "black"

crosstab[,1]

saloon hatchback convertible

  2    3   0

which.max(crosstab[,1])

hatchback

2

More generally, a function could be written to apply this operation to any
variable with names:

# Defines the function

which.max.name <- function(x) {

return(names(x)[which.max(x)])}

# Next, give the variable ’example’ names for the values

names(example) <- c("Bradford","Leeds","York", "Harrogate","Thirsk")

example



which.max.name(example)

[1] "Leeds"

Self-Test Question 7. The function which.max.name could be applied (using
apply) to a table or matrix to find the name of the row or column with the
largest value. If the crosstab table is considered a table of car sales, write an
apply expression to determine the best-selling colour for each car type and
the best-selling car type in each colour.

Note that in the last code snippet, a function was defined called
which.max.name. You have been using functions, but these have all been
existing ones as defined in R until now. Functions will be thoroughly dealt
with in Chapter 4, but you should note two things about them at this point.
First is the form:

function name <- function(function inputs) {

variable <- function

actions return(variable)

}

Second are the syntactic elements of the curly brackets { } that bound the
code, and the return() function that defines the value to be returned.

2.3.3.3 Lists
From the text in this chapter, recall that lists can be named and unnamed.
Here we will only consider the named kind. Lists may be created by the list
function in the form:

var <- list(name1=value1, name2=value2, …)

Self-Test Question 8. Suppose you wanted to store both the row- and
column-wise apply results (from Question 7) in a list called most.popular
with two named elements called colour (containing the most popular colour
for each car type) and type (containing the most popular car type for each



colour). Write an R expression that assigns the best-selling colour and car
types to a list.

2.3.3.4 Classes
The objective of this task is to create a class based on the list created in the
previous section. The class will consist of a list of most popular colours and
car types, together with a third element containing the total number of cars
sold (called total). Call this class sales.data. A function to create a variable of
this class, given colours and car.type, is as follows:

new.sales.data <- function(colours, car.type) {

xtab <- table(car.type,colours)

result <- list(colour=apply(xtab,1,which.max.name), type=apply(xtab,2,which.max.name),
total=sum(xtab))

class(result) <- "sales.data"

return(result)}

This can be used to create a sales.data object which has the colours and
car.type variables assigned to it via the function:

this.week <- new.sales.data(colours,car.type)

this.week

$colour

saloon hatchback convertible

"red"  "red"   "white"

$type

red  blue  white silver  black

"hatchback" "saloon" "saloon" "saloon" "saloon"

$total

[1] 13



attr(,"class")

[1] "sales.data"

In the above code, a new variable called this.week, of class sales.data, is
created. Following the ideas set out in the previous section, it is now possible
to create a print function for variables of class sales.data. This can be done by
writing a function called print.sales.data that takes an input or argument of
the sales.data class.

Self-Test Question 9. Write a print function for variables of class sales.data.
This is a difficult problem and should be tackled by those with previous
programming experience. Others can try this now but should return to it after
the functions have been formally introduced in Chapter 4.

2.4 Plots
There are a number of plot routines and packages in R. In this section some
basic plot types will be introduced, followed by some more advanced plotting
commands and functions. The aim of this section to give you an
understanding of how the basic plot types can be used as building blocks in
more advanced plotting routines that are called in later chapters to display the
results of spatial analysis.

2.4.1 Basic Plot Tools
The most basic plot is the scatter plot. Figure 2.1 was created from the
function rnorm which generates a set of random numbers. Note that each
running of the code will generate a slightly different plot as different random
numbers are generated.

x1 <- rnorm(100)

y1 <- rnorm(100)

plot(x1,y1)

The generic plot function creates a graph of the two variables, plotting them



on the x-axis and the y-axis. The default settings for the plot function produce
a scatter plot and you should note that by default the axes are labelled with
expressions passed to the plot function. Many parameters can be set for plot
either by defining the plot environment (described later) or when the plot is
called. For example, the option col specifies the plot colour and pch the plot
character:

plot(x1,y1,pch=16, col=’red’)

Other options include different types of plot: type = ’l’ produces a line plot of
the two variables, and again the col option can be used to specify the line
colour and the option lwd specifies the plot line width. You should run the
code below to produce different line plots:

Figure 2.1 A basic scatter plot

x2 <- seq(0,2∗pi,len=100)

y2 <- sin(x2)

plot(x2,y2,type=’l’)

plot(x2,y2,type=’l’, lwd=3, col=’darkgreen’)

You should examine the help for the plot command (reminder: type ?plot at
the R prompt) and explore different plot types that are available. Having



called a new plot as in the above examples, other data can be plotted using
other commands: points, lines, polygons, etc. You will see that plot by
default assumes the plot type is point unless otherwise specified. For
example, in Figure 2.2 the line data described by x2 and y2 are plotted, after
which the points described by x2 and y2r are added to the plot.

plot(x2,y2,type=’l’, col=’darkgreen’, lwd=3, ylim=c(−1.2,1.2))

y2r <- y2 + rnorm(100,0,0.1)

points(x2,y2r, pch=16, col=’darkred’)

In the above code, the rnorm function creates a vector of small values which
are added to y2 to create y2r. The function points adds points to an existing
plot. Many other options for plots can be applied here. For example, note the
ylim option. This sets the limits of the y-axis, while xlim does the same for
the x-axis. You should apply the commands below to the plot data.

y4 <- cos(x2)

plot(x2, y2, type=’l’, lwd=3, col=’darkgreen’)

lines(x2, y4, lwd=3, lty=2, col=’darkblue’)

Notice that, similar to points, the function lines adds lines to an existing plot,
and note the lty option as well. This specifies the type of line (dotted, simple,
etc.).

Figure 2.2 A line plot with points added
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You should examine the different plot types and parameters in par. Enter ?par for the help
page to see the full list of different plot parameters. One of these, mfrow, is used below to
set a combined plot of one row and two columns. This needs to be reset or the rest of your
plots will continue to be printed in this way. To do this enter:

par(mfrow = c(1,2))

plot(x2, y2, type=’l’, lwd=3, col=’darkgreen’)

plot(x2, y2, type=’l’, col=’darkgreen’, lwd=3, ylim=c(−1.2,1.2))

points(x2, y2r, pch=16, col=’darkred’)

par(mfrow = c(1,1))

The last line of code resets par.

The function polygon adds a polygon to an existing plot. The option col sets
the polygon fill colour. By default a black border is drawn; however,
including the parameter border = NA would result in no border being drawn.
In Figure 2.3 two different plots of the same data illustrate the application of
these parameters.

Figure 2.3 Points with polygons added



x2 <- seq(0,2∗pi,len=100)

y2 <- sin(x2)

y4 <- cos(x2)

# specify the plot layout and order

par(mfrow = c(1,2))

# plot #1

plot(y2,y4)

polygon(y2,y4,col=’lightgreen’)

# plot #2: this time with ’asp’ to set the aspect ratio of the axes

plot(y2,y4, asp=1, type=’n’)

polygon(y2,y4,col=’lightgreen’)

In the second plot, the parameter asp fixes the aspect ratio, in this case to 1 so
that the x and y scales are the same, and type = ’n’ draws the plot axes to
correct scale (i.e. of the y2 and y4 data) but adds no lines or points.

So far the plot commands have been used to plot pairs of x and y coordinates
in different ways: points, lines and polygons (this may suggest different
vector types in a GIS for some readers). We can extend these to start to
consider geographical coordinates more explicitly with some geographical
data. You will need to install the GISTools package, which may involve
setting a mirror site as described in Chapter 1. The first time you use any
package in R it needs to be downloaded before it is installed.



install.packages("GISTools", depend = T)

Then you can call the package in the R console:

library(GISTools)

You will then see some messages when you load the package, letting you
know that the packages that GISTools makes use of have also been loaded
automatically. You only need to install a package onto your computer the
first time you use it. Once it is installed it can simply be called. That is, there
is no need to download it again, you can simply enter library(package).

Figure 2.4 Appling County plotted from coordinate pairs

The code below loads a number of datasets with the data(georgia) command.
It then selects the first element from the georgia.polys dataset and assigns it
to a variable called appling. This contains the coordinates of the outline of
Appling County in Georgia. It then plots this to generate Figure 2.4.

# library(GISTools)

data(georgia)

# select the first element

appling <- georgia.polys[[1]]



# set the plot extent

plot(appling, asp=1, type=’n’, xlab="Easting", ylab="Northing")

# plot the selected features with hatching

polygon(appling, density=14, angle=135)

There are a number of things to note in this bit of code.

1. The call data(georgia) loads three datasets: georgia, georgia2 and
georgia.polys.

2. The first element of georgia.polys contains the coordinates for the
outline of Appling County.

3. Polygons do not have to be regular; they can, as in this example, be
geographical zones. The code assigns the coordinates to a variable called
appling and this is a two-column matrix.

4. Thus, with an x and y pairing, the following plot commands all work
with data in this format: plot, lines, polygon, points.

5. As before, the plot command in the code below has the type = ’n’
parameter, and asp = 1 fixes the aspect ratio. The result is that that the x
and y scales are the same but the command adds no lines or points.

The wider point being demonstrated here is how routines for plotting spatial
data that we will use subsequently are underpinned by these kinds of data
structures and core plotting routines. The code above illustrates the engines
of, for example, the mapping and visualisation packages tmap and ggplot.

2.4.2 Plot Colours
Plot colours can be specified names or as red, green and blue (RGB) values.
The former can be listed by entering the following:

colours()

RGB colours are composed of three values in the ranges 0 to 1. Having run
the code above, you should have a variable called appling in your workspace.
Now try entering the code below:



plot(appling, asp=1, type=’n’, xlab="Easting", ylab="Northing")

polygon(appling, col=rgb(0,0.5,0.7))

A fourth parameter can be added to rgb to indicate transparency as in the
code below, where the range is from 0 (invisible) to 1 (opaque).

polygon(appling, col=rgb(0,0.5,0.7,0.4))

Text can also be added to the plot and its placement in the plot window
specified. The cex parameter (for character expansion) determines the size of
text. Note that parameters like col also work with text and that HTML colours
also work (such as "B3B333"). The code below generates two plots. The first
plots a set of random points and then plots appling with a transparency
shading over the top (Figure 2.5).

# set the plot extent

plot(appling, asp=1, type=’n’, xlab="Easting", ylab="Northing")

# plot the points

points(x = runif(500,126,132)∗10000, y = runif(500,103,108)∗10000, pch=16, col=’red’)

# plot the polygon with a transparency factor

polygon(appling, col=rgb(0,0.5,0.7,0.4))

The second plots appling, but with some descriptive text (Figure 2.6).

plot(appling, asp=1, type=’n’, xlab="Easting", ylab="Northing")

polygon(appling, col="#B3B333")

# add text, specifying its placement, colour and size

text(1287000,1053000,"Appling County",cex=1.5)

text(1287000,1049000,"Georgia",col=’darkred’)

Figure 2.5 Appling County with transparency



Figure 2.6 Appling County with text
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In the above code, the coordinates for the text placement need to be specified. The function
locator is very useful in this context: it can be used to determine locations in the plot
window. Enter locator() at the R prompt, and then left-click in the plot window at various
locations. When you right-click, the coordinates of these locations are returned to the R
console window.

Figure 2.7 Plotting rectangles



Other plot tools include rect, which draws rectangles. This is useful for
placing map legends as your analyses develop. The following code produces
the plot in Figure 2.7.

plot(c(−1.5,1.5),c(−1.5,1.5),asp=1, type=’n’)

# plot the green/blue rectangle

rect(−0.5,−0.5,0.5,0.5, border=NA, col=rgb(0,0.5,0.5,0.7))

# then the second one

rect(0,0,1,1, col=rgb(1,0.5,0.5,0.7))

The command image plots tabular and raster data as shown in Figure 2.8. It
has default colour schemes, but other colour palettes exist. This book strongly
recommends the use of the RColorBrewer package, which is described in
more detail in Chapter 3, but an example of its application is given below:

Figure 2.8 Plotting raster data



# load some grid data

data(meuse.grid)

# define a SpatialPixelsDataFrame from the data

mat = SpatialPixelsDataFrame(points = meuse.grid[c("x", "y")], data = meuse.grid)

# set some plot parameters (1 row, 2 columns)

par(mfrow = c(1,2))

# set the plot margins

par(mar = c(0,0,0,0))

# plot the points using the default shading

image(mat, "dist")

# load the package

library(RColorBrewer)

# select and examine a colour palette with 7 classes

greenpal <- brewer.pal(7,’Greens’)

# and now use this to plot the data

image(mat, "dist", col=greenpal)

# reset par



par(mfrow = c(1,1))

You should note that par(mfrow = c(1,2)) results in one row and two columns
and that it is reset in the last line of code.
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The command contour(mat, "dist") will generate a contour plot of the matrix above. You
should examine the help for contour; a nice example of its use can be found in code in the
help page for the volcano dataset that comes with R. Enter the following in the R console:

?volcano

2.5 Another Plot Option: ggplot

2.5.1 Introduction to ggplot
A suite of tools and functions for plotting are available via the ggplot2
package which is included as part of the tidyverse
(https://www.tidyverse.org). The ggplot2 package applies principles
described in The Grammar of Graphics (Wilkinson, 2005) (hence the gg in
the name of the package) which conceptualises graphics and plots in terms of
their theoretical components. The approach is to handle each element of the
graphic separately in a series of layers, and in so doing to control each part of
the plot. This is different from the basic plot functions used above which
apply specific plotting functions based on the type or class of data that were
passed to them.

The ggplot2 package can be installed by installing the whole tidyverse:

install.packages("tidyverse", dep = T)

Or it can be installed on its own:

install.packages("ggplot2", dep = T)

And then loaded into the workspace:

https://www.tidyverse.org


library(ggplot2)

Figure 2.9 A simple qplot plot

The plots above can be re-created using either the qplot or ggplot functions in
the ggplot2 package. The function qplot() is used to produce quick, simple
plots in a similar way to the plot function. It takes x and y and a data
argument for a data frame containing x and y. Figure 2.9 re-creates Figure
2.2. Notice how the elements in theme are used to control the display.

qplot(x2,y2r,col=I(’darkred’), ylim=c(−1.2, 1.2)) +

geom_line(aes(x2,y2), col=I("darkgreen"), size = I(1.5)) +
theme(axis.text=element_text(size=20),

     axis.title=element_text(size=20,face="bold"))

Notice how the plot type is first specified (in this case qplot()) and then
subsequent lines include instructions for what to plot and how to plot it. Here
geom_line() was specified followed by some style instructions.

Try adding:

theme_bw()



or:

theme_dark()

to the above. Remember that you need to include a + for each additional
element in ggplot.

To reproduce the Appling plots, the variable appling has to be converted from
a matrix to a data frame whose elements need to be labelled:

appling <- data.frame(appling)

colnames(appling) <- c("X", "Y")

Then qplot can be called as in Figure 2.10 to re-create Figure 2.5 defined
above in stages.

# create the first plot with qplot

p1 <- qplot(X, Y, data = appling, geom = "polygon", asp = 1, colour = I("black"),

fill=I(rgb(0,0.5,0.7,0.4))) + theme(axis.text=element_text(size=12),
axis.title=element_text(size=20))

# create a data.frame to hold the points

df <- data.frame(x = runif(500,126,132)∗10000, y = runif(500,103,108)∗10000)

# now use ggplot to construct the layers of the plot

p2 <- ggplot(appling, aes(x = X, y= Y)) + geom_polygon(fill = I(rgb(0,0.5,0.7,0.4))) +
geom_point(data = df, aes(x, y),col=I(’red’)) + coord_fixed() +
theme(axis.text=element_text(size=12),

axis.title=element_text(size=20))

# finally combine these in a single plot

# using the grid.arrange function

# NB you may have to install the gridExtra package

library(gridExtra)



grid.arrange(p1, p2, ncol = 2)

The result is shown in Figure 2.10, the right-hand part of which re-creates
Figure 2.5.

Notice a number of things. First, the structural differences in the way the
graphic is called, including the specification of the type with the geom
parameter (compared to the geom_line parameter earlier). Second, the
assignment of the plot objects to variables p1 and p2. Third, the use of the
grid.arrange() function in the gridExtra package that allows two graphics to
be included in the plot window. Finally, you will have to install the gridExtra
package before the first time you use it:

install.packages("gridExtra", dep = T)

Figure 2.10 A simple qplot plot of a polygon

2.5.2 Different ggplot Types
This section briefly introduces different kinds of plots using ggplot for
different kinds of variables, including scatter plots, histograms and boxplots.
In subsequent chapters, different flavours and types of ggplot will be
illustrated. But this is a vast package and involves a bit of a learning curve at
first. To fully understand all that it can do is beyond the scope of this
subsection in this chapter, but there is plenty of help and advice on the
internet. You could explore some of this yourself by following some of the
links at http://ggplot2.tidyverse.org.

http://ggplot2.tidyverse.org


The basic call to ggplot is complemented by an aesthetic prefixed by geom_
and has the following syntax:

ggplot(data = <data frame>, aes(x,y,colour)) +  geom_XYZ()

To illustrate the different plotting options, we need to create some data and
some categorical variables. The code below extracts the data frame from
georgia and converts it to a tibble. This is like the attribute table of a
shapefile. Note that ggplot will work with any type of data frame.

# data.frame

df <- data.frame(georgia)

# tibble

tb <- as.tibble(df)

Enter the code below to see the first 10 records:

tb

You can see that this has attributes for the counties of Georgia, and a number
of variables are included. Next, the code below creates an indicator for
rural/not-rural, which we set to values using the levels function. Note the use
of the + 0 to convert the TRUE and FALSE values to 1s and 0s:

tb$rural <- as.factor((tb$PctRural > 50) + 0)

levels(tb$rural) <- list("Non-Rural" = 0, "Rural"=1)

Then we create an income category variable around the interquartile range of
the MedInc variable (median county income). There are fancier ways to do it,
but the code below is tractable:

tb$IncClass <- rep("Average", nrow(tb))

tb$IncClass[tb$MedInc >= 41204] = "Rich"



tb$IncClass[tb$MedInc <= 29773] = "Poor"

The distributions can be checked if you wanted using the table() function:

table(tb$IncClass)

Scatter plots can be used to show two variables together. The data pairs in tb
should be examined. For example, consider PctBach and PctEld, representing
the percentages of the county populations with bachelor’s degrees and who
are elderly (whatever that means).

ggplot(data = tb, mapping=aes(x=PctBach, y=PctEld)) + geom_point()

The plot can be enhanced by passing a grouping variable to the colour
parameter in aes:

ggplot(data = tb, mapping=aes(x=PctBach, y=PctEld, colour=rural)) + geom_point()

Now modify the code above to group by the IncClass variable created earlier.
What happens? What do you see? Does this make sense? Are there any
trends? It could tentatively be said that the poor areas are more elderly and
have fewer people with bachelor’s degrees. This might be confirmed by
adding a trend line:

ggplot(data = tb, mapping = aes(x = PctBach, y = PctEld)) +

geom_point() + geom_smooth(method = "lm")

Also note that style templates can be added and colours changed. Putting this
all together generates Figure 2.11:

ggplot(data = tb, mapping = aes(x = PctBach, y = PctEld)) + geom_point() +

geom_smooth(method = "lm", col = "red", fill = "lightsalmon") + theme_bw() +

xlab("% of population with bachelor degree") + ylab("% of population that are elderly")



You can explore other styles by trying the ones listed under the help for
theme_bw.

Figure 2.11 A ggplot scatter plot

Next, histograms can be used to examine the distributions of income across
the 159 counties of Georgia:

ggplot(tb, aes(x=MedInc)) +

geom_histogram(, binwidth = 5000, colour = "red", fill = "grey")

The axes can be labelled, the theme set and title included as with the above
examples, by including additional elements in the plot. Probability densities
can also be plotted as follows, generating Figure 2.12:

ggplot(tb, aes(x=MedInc)) + geom_histogram(aes(y=..density..),

binwidth=5000,colour="white") + geom_density(alpha=.4, fill="darksalmon") +

# Ignore NA values for mean

geom_vline(aes(xintercept=median(MedInc, na.rm=T)), color="orangered1",



linetype="dashed", size=1)

Figure 2.12 A ggplot density histogram

Multiple plots can be generated using the facet() options in ggplot. These
create separate plots for each group. Here the PctBach variable is plotted and
median incomes compared:

ggplot(tb, aes(x=PctBach, fill=IncClass)) +

 geom_histogram(color="grey30",

binwidth = 1) + scale_fill_manual("Income Class",

values = c("orange", "palegoldenrod","firebrick3")) +

facet_grid(IncClass~.) +

xlab("% Bachelor degrees") +

ggtitle("Bachelors degree % in different income classes")

Another way of examining distributions is through boxplots. Boxplots display
the distribution of a continuous variable and can be broken down by a
categorical variable. A basic boxplot can be generated with the geom_boxplot



aesthetic:

gplot(tb, aes(x = "",PctBach)) +  geom_boxplot()

Figure 2.13 A ggplot boxplot with groups

This can be extended with some grouping, as before, and to compare more
than one treatment as in Figure 2.13:

ggplot(tb, aes(IncClass, PctBach, fill = factor(rural))) +  geom_boxplot() +

 scale_fill_manual(name = "Rural",

     values = c("orange", "firebrick3"),

     labels = c("Non-Rural"="Not Rural","Rural"="Rural")) +

xlab("Income Class") + ylab("% Bachelors")

This is only scratching the surface of the capability of ggplot. Additional
refinements will be demonstrated throughout this book.

2.6 Reading, Writing, Loading and Saving Data



There are a number of ways of getting data in and out of R, and three
methods for reading and writing different formats are briefly considered here:
text files, R data files and spatial data.

2.6.1 Text Files
Consider the appling data variable above. This is a matrix variable,
containing two columns and 125 rows. You can examine the data using dim
and head:

# display the first six rows

head(appling)

# display the variable dimensions

dim(appling)

You will note that the data fields (columns) are not named; however, these
can be assigned.

colnames(appling) <- c("X", "Y")

The data can be written into a comma-separated variable file using the
command write.csv and then read back into a different variable, as follows:

write.csv(appling, file = "test.csv")

This writes a .csv file into the current working directory. You check where
this is by using the getwd() function. You can set the working directory either
though the setwd() function or through the menu (Session > Set Working
Directory). If you open it using a text editor or spreadsheet software, you
will see that it has three columns: X and Y as expected plus the index for
each record. This is because the default for write.csv includes the default
row.names = TRUE. Again examine the help file for this function.

write.csv(appling, file = "test.csv", row.names = F)



R also allows you to read .csv files using the read.csv function. Read the file
you have created into a variable:

tmp.appling <- read.csv(file = "test.csv")

Notice that in this case what is read from the .csv file is assigned to the
variable tmp.appling. Try reading this file without assignment. The default
for read.csv is that the file has a header (i.e. the first row contains the names
of the columns) and that the separator between values in any record is a
comma. However, these can be changed depending on the nature of the file
you are seeking to load into R. A number of different types of files can be
read into R. You should examine the help files for reading data in different
formats. Enter ??read to see some of these listed. You will note that read.table
and write.table require more parameters to be specified than read.csv and
write.csv.

2.6.2 R Data Files
It is possible to save variables that are in your workspace to a designated file.
This can be loaded at the start of your next session. For example, if you have
been running the code as introduced in this chapter you should have a number
of variables, from x at the start to engine and colours and the appling data
above.

You can save this workspace using the drop-down menus in the RStudio
interface or using the save function. The RStudio menu route saves
everything that is present in your workspace, as listed by ls(), while the save
command allows you to specify what variables you wish to save.

# this will save everything in the workspace

save(list = ls(), file = "MyData.RData")

# this will save just appling

save(list = "appling", file = "MyData.RData")

# this will save appling and georgia.polys



save(list = c("appling", "georgia.polys"), file = "MyData.RData")

You should note that the .RData file binary format is very efficient at storing
data: the Appling .csv file used 4kb of memory, while the .RData file used
only 2kb. Similarly, .RData files can be loaded into R using the menu in the
R interface or within the R console by writing:

load("MyData.RData")

This will load the variables in the .RData file into the R console.

2.6.3 Spatial Data Files
It is appropriate to briefly consider how to get spatial data in and out of R, but
note that this is covered in more detail in Chapter 3.

The rgdal package includes two generic functions for reading and writing all
kinds of spatial data: readOGR() and writeOGR(). Load the rgdal package:

library(rgdal)

The georgia object in sp format can be written to a shapefile using the
writeOGR() function as follows:

writeOGR(obj=georgia, dsn=".", layer="georgia", driver="ESRI Shapefile",
overwrite_layer=T)

It can be read back into R using the readOGR() function:

new.georgia <- readOGR("georgia.shp")

Spatial data can be also be read in and written out using the sf functions
st_read() and st_write(). For example, to read in and write out the georgia.shp
shapefile that was created above (and to overwrite g2) the following code can
be used. You will need to install and load the sf package:



install.packages("sf", dep = T)

library(sf)

setwd("/MyPath/MyFolder")

g2 <- st_read("georgia.shp")

st_write(g2, "georgia.shp", delete_layer = T)

2.7 Answers to Self-Test Questions
Q1: orange is not one of the factor’s levels, so the result is an NA.

colours[4] <- "orange"

colours

Levels: red blue white silver black

Q2: There is no count for black in the character version – table does not
know that this value exists, since there is no levels information. Also the
order of colours is alphabetical in the character version. In the factor version,
the order is based on that specified in the factor function.

Q3: The first variable is tabulated along the rows, the second along the
columns.

Q4: Find the colours of all cars with engines with capacity greater than 1.1
litres:

# Undo the colour[4] <- ’orange’ line used above

colours <- factor(c("red","blue","red","white", " silver","red","white","silver",

"red","red","white","silver"),

levels=c("red","blue","white","silver","black"))

colours[engine > "1.1litre"]



[1] blue white <NA> red white red silver <NA>

Levels: red blue white silver black

Counts of types of all cars with capacity below 1.6 litres:

table(car.type[engine < "1.6litre"])

saloon hatchback convertible

7   4   0

Counts of colours of all hatchbacks with capacity greater than or equal to 1.3
litres:

table(colours[(engine >= "1.3litre") & (car.type == "hatchback")])

 red blue white silver black

2  0  0  0  0

Q5: The index returned corresponds to the first number taking the largest
value.

Q6: An expression to find the index of the largest value in each row of
crosstab using which.max and apply:

apply(crosstab,1,which.max)

  saloon hatchback convertible

  1   1   3

Q7: Use apply functions to return the best-selling colour and car type:

apply(crosstab,1,which.max.name)

  saloon hatchback convertible

  "red" "red"  "white"

apply(crosstab,2,which.max.name)



red  blue  white  silver  black

15 "hatchback" "saloon" "saloon" "saloon" "saloon"

Q8: An R expression that assigns the best-selling colour and car types to a
list:

most.popular <- list(colour=apply(crosstab,1,which.max.name),

type=apply(crosstab,2,which.max.name))

most.popular

$colour

saloon hatchback convertible

"red"  "red"  "white"

$type

red  blue  white  silver  black

15 "hatchback" "saloon" "saloon" "saloon" "saloon"

Q9: A print function for variables of class data.frame:

print.sales.data <- function(x) {

 cat("Weekly Sales Data:\n")

cat("Most popular colour:\n")

 for (i in 1:length(x$colour)) {

cat(sprintf("%12s:%12s\n",names(x$colour)[i],x$colour[i]))}

cat("Most popular type:\n")

for (i in 1:length(x$type)) {

  cat(sprintf("%12s:%12s\n",names(x$type)[i],x$type[i]))} cat("Total Sold = ",x$total)

}

this.week

Weekly Sales Data:



Most popular colour:

  saloon:   red

 hatchback:   red

 convertible:  white

 Most popular type:

   red:  hatchback

blue:  saloon

   white:  saloon

   silver:  saloon

   black:  saloon

 Total Sold = 13

Although the above is one possible solution to the question, it is not unique.
You may decide to create a very different looking print.sales.data function.
Note also that although until now we have concentrated only on print
functions for different classes, it is possible to create class-specific versions
of any function.

Reference
Wilkinson, L. (2005) The Grammar of Graphics. New York: Springer.



3 Basics of Handling Spatial Data In R

3.1 Overview
The aim of this chapter is to provide an introduction to the mapping and
geographical data handling capabilities of R. It explicitly focuses on
developing the building blocks for the spatial data analyses in later chapters.
These extend the mapping functionality that was briefly introduced in the
previous chapter and will be extended further in Chapter 5. It includes an
introduction to the sp and sf packages and the R spatial data formats they
support, and the tmap package. This chapter describes methods for moving
between the sp and sf formats and for producing choropleth maps – from
basic to quite advanced outputs – and introduces some methods for
generating descriptive statistics. These skills are fundamental to the analyses
that will be developed later in the book. This chapter will:

Introduce the sp and sf R spatial data formats and describe how to use
them
Describe how to compile maps based on multiple layers using both basic
plot functions and the tmap package
Describe how to set different plot parameters and shading schemes
Describe how to develop basic descriptive statistical analyses of spatial
data

3.1.1 Spatial Data
Data are often held in data tables or databases – a bit like a spreadsheet. The
rows represent some real-world feature (a person, a transaction, a date, etc.)
and the columns represent some attribute associated with that feature. Rows
in databases may be referred to as records and columns as fields. There are
some cases where the features can be either a record or a field – for example,
a date could belong to a list of daily supermarket transactions (as a record) or
be an attribute associated with an event at a location (as a field). For the
purposes of much of the practical work in this chapter data will be



conceptualised in this way.

In R there are many data formats and packages for handling and manipulating
them. For example, the tibble format defined within the dplyr package as part
of the tidyverse is starting to supersede data frames (in fact it includes the
data.frame class). This is part of a concerted activity by many package
development teams to provide tidy and lazy data formats and processes for
data science, mapping and spatial data analysis. Some of the background to
this activity can be found on the webpage for tidyverse
(https://www.tidyverse.org), which is a collection of R packages designed for
data science.

The preceding description of data, with records (rows) and fields (columns),
can be extended to spatial data in which each record typically represents
some real-world geographical feature – a place, a route, a region, etc. – and
individuals fields provide a measurement or attribute associated with that
feature. In geographical data, features are typically represented as points,
lines or areas.

Why spatial data? Nearly all data are spatial – they are collected somewhere.
If and when a third edition of this book is written in the future, we expect to
extend this argument to the spatio-temporal domain in which all data are
spatio-temporal – they are collected somewhere and at some time.

3.1.2 Installing and Loading Packages
The previous chapter included a number of basic analytical and graphical
techniques using R. However, few of these were particularly geographical. A
number of packages are available in R that allow sophisticated visualisation,
manipulation and analysis of spatial data. Some of this functionality will be
demonstrated in this chapter in conjunction with some mapping tools and
specific data types to create different examples of mapping in R. Remember
that a package in R is a set of pre-written functions (and possibly data items
as well) that are not available when you initially start R running, but can be
loaded from the R library at the command line. To illustrate these techniques,
the chapter starts by developing some elementary maps, building to more
sophisticated mapping.

https://www.tidyverse.org


This chapter uses a number of packages: raster, OpenStreetMap,
RgoogleMaps, grid, rgdal, tidyverse, reshape2, ggmosaic, GISTools, sf and
tmap. You will have to install them before you use them for the first time.
You will have installed the GISTools and sf packages using the
install.packages() function if you worked through Chapter 2. Once you have
downloaded and installed a package, you can simply load the package when
you use R subsequently.

The is.element query combined with the installed.packages() function can be
used to check whether a package is installed.

is.element("sf", installed.packages())

If FALSE is returned then you need to install the package as above:

install.packages("sf", dep = TRUE)

Note the dep = TRUE parameter. This tells R to load the package with its
dependencies (i.e. other packages that it depends on). Then the package can
be loaded:

library(sf)

It is possible to inspect the functionality and tools available in sf or any other
package by examining the documentation.

help(sf)

# or

?sf

This provides the general description of the package. At the bottom of the
help window, there is a hyperlink to the index which, if you click on it, will
open a page with a list of all the tools available in the package. The CRAN
website also has full documentation for each package – for sf see
http://cran.r-project.org/web/packages/sf/index.html.

http://cran.r-project.org/web/packages/sf/index.html


3.2 Introduction to sp and sf: The sf Revolution
As described in Chapter 1, the first edition of this book focused on the sp
format for spatial data in R. This format is defined in the sp package. It
provides an organised set of spatial data classes, providing a unified way of
moving from one package to another, taking advantage of the different tools
and the functions they include. However, R is dynamic and sometimes a new
paradigm is introduced; this has been the case recently for spatial data in R,
with the release of the sf package by Pebesma et al. (2016).

In this chapter, both the sp and sf formats are introduced. The manipulation
and analysis of spatial data use, where possible, the sf format and associated
tools. However, some packages and operations for spatial analyses have not
yet been updated to work with sf. For example, at the time of writing, many
of the functions in spdep, such as those for cluster analysis using Moran’s I
(see Anselin, 1995) and the G-statistic (described in Ord and Getis, 1995),
only work with sp format spatial data. For these reasons, this chapter (and
others throughout the book) will, where possible, describe the manipulation
and analysis of spatial data using sf format and functions but will switch
between (and convert data between) sp and sf formats as needed.

3.2.1 sp data format
The sp package defines a number of classes (or sp objects) for handling
points, lines and areas, as summarised in Table 3.1. The sp data formats
underpin many of the packages that you will use directly or indirectly (i.e.
they are loaded by other packages): they have dependencies on sp. An
example is the GISTools package by Brunsdon and Chen (2014) which has
dependencies on maptools, sp, rgeos and other packages. If you install and
load GISTools you will see these packages being loaded.

Table 3.1



Pebesma et al. (2016).

3.2.1.1 Spatial data in GISTools
GISTools, similar to many other R packages, comes with a number of
embedded datasets that can be loaded from the command line after the
package is installed. Two datasets will be used in this chapter, to illustrate
spatial data manipulation, mapping and analysis in both sf and sp. These are
polygon and line data for New Haven, Connecticut and the counties in the
state of Georgia, both in the USA. The New Haven data include crime
statistics, roads, census blocks (including demographic information), railway
lines and place names. The Georgia data include outlines of the counties in
Georgia with a number of attributes relating to the 1990 census including
population (TotPop90), the percentage of the population that are rural
(PctRural), that have a college degree (PctBach), that are elderly (PctEld),
that are foreign born (PctFB), that are classed as being in poverty (PctPov),
that are black (PctBlack) and the median income of the county (MedInc). The
two datasets are shown in Figure 3.1.

Figure 3.1 The New Haven census blocks with roads in blue, and the
counties in the state of Georgia shaded by median income



Having installed GISTools, you can load the newhaven data or georgia data
using the data() function. Load the newhaven data and then examine what is
loaded and the types (or classes) of data that are loaded:

data(newhaven)

ls()

[1] "blocks" "breach" "burgres.f" "burgres.n"

[5] "famdisp" "places" "roads" "tracts"

class(breach)

[1] "SpatialPoints"

attr(,"package")

[1] "sp"

class(blocks)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

The breach data are of the SpatialPoints class and simply describe locations,
with no attributes. The blocks data, on the other hand, are of the
SpatialPolygonsDataFrame class as they include some census variables



associated with each census block. Thus spatial data with attributes defined in
this way in sp hold their attributes in the data frame, and you can see this by
looking at the first few lines of the blocks data frame using the head function:

head(data.frame(blocks))

Note that the data frame of sp objects can also be accessed using the @data
parameter of the blocks data frame using the head function:

head(blocks@data)

Both of these code snippets print the first six lines of attributes associated
with the census blocks data. A formal consideration of spatial attributes and
how to analyse and map them is given later in this chapter.

The census blocks in New Haven can be plotted using the R plot function:

plot(blocks)

The default plot function for the sp class of objects can be used to generate
maps, and this was the focus of the first edition of this book using the
GISTools packages. It described how different plot commands could be
combined to created plot layers. For example, to draw a map of the roads in
red, with the blocks in black (the plot default colour) as in Figure 3.2, the
code below could be entered:

par(mar = c(0,0,0,0))

plot(roads, col="red")

plot(blocks, add = T)

3.2.2 sf Data Format
Recently a new class of R spatial objects has been defined and released as a
package called sf, which stands for ‘simple features’ (Pebesma et al., 2016).



It seeks to encode spatial data in a way that conforms to a formal standard
(ISO 19125-1:2004). This emphasises the spatial geometry of objects, the
way that objects are stored in databases. In brief, the aim of the team
developing sf (actually many of them are the same people who developed sp,
so they do know what they are doing!) is to provide a format for spatial data.
An overview of the evolution of spatial data in R can be found at
https://edzer.github.io/UseR2017/.

Figure 3.2 The New Haven census blocks and road data

The idea is that a feature is a thing, or an object in the real world, such as a
building or a tree. As is the case with objects, they often consist of other
objects such that a set of features can form a single feature. Features have a

https://edzer.github.io/UseR2017/


geometry describing where on Earth they are located, and they have
attributes, which describe other properties. There are many sf object types,
but the key ones (which are similar to lines, points and areas) are listed in
Table 3.2 (taken from the sf vignette). This has a much stronger theoretical
structure, with for example multipoint features being composed of point
features etc. Only the more common types of geometries defined within sf are
described in Table 3.2; other geometries exist but are much rarer.

Table 3.2https://r-spatial.github.io/sf/articles/sf1.html

Ultimately, sf formats will completely replace sp, and packages that use sp
(such as GWmodel for geographically weighted regression) will all have to
be updated to use sf at some point, but that is a few years away.

The sf package has a number of vignettes or tutorials that you could explore.
These include an overview of the format, reading and writing from and to sf
formats including conversions to and from sp and sf, and some illustrations of
how sf objects can be manipulated. The code below will create a new
window with a list of sf vignettes:

library(sf)

https://r-spatial.github.io/sf/articles/sf1.html


vignette(package = "sf")

And then to display a specific vignette topic, this can be called using the
vignette function:

vignette("sf1", package = "sf")

I

Vignettes are an important part of R packages. They provide explanations of the package
functionality additional to those found in the example code at the end of a help page. They
can be accessed using the vignette function or through the R help. The sf1 vignette could
also be accessed via the package help index: enter help(sf), navigate to the index through
the link at the bottom of the overview page and then click on the User guides, package
vignettes and other documentation link.

3.2.2.1 sf spatial data
The sp objects loaded by the GISTools data packages georgia and newhaven
can be converted to sf. The fundamental function for converting to sf is
st_as_sf(). In the code below it is used to convert the georgia sp object to sf:

# load the georgia data

data(georgia)

# conversion to sf

georgia_sf = st_as_sf(georgia)

class(georgia_sf)

[1] "sf"    "data.frame"

You can examine the contents of georgia_sf by entering the following at the
console:

georgia_sf

Notice how when georgia_sf is called the spatial information and the first 10



records of the attribute table are printed to the screen, rather than the entire
object as with sp. For comparison you could enter:

georgia

The plot function is also different: it will create maps of sf objects, and if the
sf object has attributes it will shade the first few of these:

# all attributes

plot(georgia_sf)

# selected attribute

plot(georgia_sf[, 6])

# selected attributes

plot(georgia_sf[,c(4,5)])

Finally, note that sf objects have a data frame. You could compare the data
frames of sp and sf objects:

## sp SpatialPolygonDataFrame object

head(data.frame(georgia))

## sf polygon object

head(data.frame(georgia_sf))

Note that the data frames of the sf objects have geometry attributes.

We can also convert to sp by using the as function:

g2 <- as(georgia_sf, "Spatial")

class(g2)

[1] "SpatialPolygonsDataFrame"

attr(,"package")



[1] "sp"

This automatically recognises the georgia_sf is a multipolygon object in sf
and converts it to a SpatialPolygonsDataFrame object in sp. You could try a
similar set of operations with the roads layer loaded earlier to demonstrate
this:

roads_sf <- st_as_sf(roads)

class(roads_sf)

r2 <- as(roads_sf, "Spatial")

class(r2)

3.3 Reading and Writing Spatial Data
Very often we have data that are in a particular format such as shapefile
format. R has the ability to read and write data from and to many different
spatial data formats using functions in the rgdal and sf packages – we will
consider them both here.

3.3.1 Reading to and Writing from sp Format
As was briefly described in Chapter 2, the rgdal package includes two generic
functions for reading and writing all kinds of spatial data: readOGR() and
writeOGR(). Load the rgdal package:

library(rgdal)

As a reminder, the georgia object in sp format can be written to a shapefile
using the writeOGR() function as follows:

writeOGR(obj=georgia, dsn=".", layer="georgia", driver="ESRI Shapefile",
overwrite_layer=T)

You will see that a shapefile has been written into your current working



directory, overwriting any previous instance of georgia.shp, with its
associated supporting files (.dbf etc.) that can be recognised by other
applications (QGIS etc.). Similarly, this can be read into R and assigned to a
variable using the readOGR function:

new.georgia <- readOGR("georgia.shp")

If you enter:

class(new.georgia)

you will see that the class of the new.georgia object is sp. You should
examine the writeOGR and readOGR functions in the rgdal package.

R is also able to read and write other proprietary spatial data formats using a
number of packages, which you should be able to find through a search of the
R help system or via an internet search engine. The rgdal package is the R
version of the Geospatial Data Abstraction Library. It includes a number of
methods for reading and writing spatial objects, including to and from
SpatialXDataFrame objects. The full syntax can be important – the code
below overwrites any existing similarly named file:

writeOGR(new.georgia, dsn = ".", layer = "georgia", driver="ESRI Shapefile",
overwrite_layer = T)

The dsn parameter is important here: for shapefiles it determines the folder
the files are written to. In the above example it was set to "." which places the
files in the current working directory.

You could specify a file path here. For a PC it might be something like
D:\MyDocuments\MyProject\DataFiles; for a Mac,
/Users/lex/my_docs/project.

The setwd() and getwd() functions can be used in determining and setting the
file path. You may want to set the file path and then use the dsn setting as
above:



setwd("/Users/lex/my_docs/project")

writeOGR(new.georgia, dsn = ".", layer = "georgia", driver="ESRI Shapefile",
overwrite_layer = T)

Or you could use the getwd() function, save the results to a variable and pass
this to writeOGR:

td <- getwd()

writeOGR(new.georgia, dsn = td, layer = "georgia", driver="ESRI Shapefile",
overwrite_layer = T)

You should also examine the functions for reading and writing raster layers
in rgdal, which are readGDAL and writeGDAL. These read and write
functions in rgdal are incredibly powerful and can read/write almost any
spatial data format.

3.3.2 Reading to and Writing from sf Format
Spatial data can be also be read in and written out using the sf functions
st_read() and st_write(). For example, to read in the georgia.shp shapefile
that was created above (and to overwrite g2) the following code can be used:

setwd("/MyPath/MyFolder")

g2 <- st_read("georgia.shp")

The working directory needs to be set to ensure that st_read looks in the right
place to read the file from. Here a single argument is used to find both the
data source and the layer. This works when the data source contains a single
layer.

To write a simple features object to a file needs at least two arguments, the
object and a filename. As before, this will not work if the georgia.shp file
exists in the working directory, so the delete_layer = T parameter needs to be
specified.



st_write(g2, "georgia.shp", delete_layer = T)

The filename is taken as the data source name. The default for the layer name
is the basename (filename without path) of the data source name. For this,
st_write needs to guess the driver. The above command, for instance, is
equivalent to:

st_write(g2, dsn = "georgia.shp", layer = "georgia.shp", driver = "ESRI Shapefile",
delete_layer = T)

Typical users will use a filename with path for filename, or first set R’s
working directory with setwd() and use filename without path.

Note that the output driver is guessed from the data source name, from either
its extension (.shp: ESRI Shapefile), or its prefix (PG:: PostgreSQL).

The list of extensions with corresponding driver (short driver name) can be
found in the sf2 vignette. You will also note that there are a number of
functions that can be used to read, write and convert. You can examine this:

vignette("sf2", package = "sf")

3.4 Mapping: An Introduction To tmap

3.4.1 Introduction
The first parts of this chapter have outlined basic commands for plotting data
and for producing maps and graphics using R. These were based on the plot
functions associated with sp objects. This section will now concentrate on
developing and expanding these basic techniques using the functions in the
tmap package. It will introduce some new plot parameters and will show how
to extract and download Google Maps and to use OpenStreetMap data as
background context and to create interactive (at least zoomable) maps in
tmap. As you develop more sophisticated analyses in later sections you may
wish to return to some of the examples used in this section. It will develop



mapping of vector spatial data (points, lines and areas) and will also
introduce some new R commands and techniques to help put all of this
together.

The tmap mapping package (Tennekes, 2015) focuses on mapping the spatial
distribution of thematic data attributes. It can take sp and sf objects. It has a
similar grammar to plotting with ggplot in that it seeks to handle each
element of the map separately in a series of layers, and in so doing seeks to
exercise control over each element. This is different from the basic plot
functions used above to map sp and sf data.

In this section the workings of tmap will be introduced, and then in later
sections on mapping attributes this will be expanded and refined to impose
different mapping styles and embellishments. To begin with, you will need
some predetermined data, and the code in this section will use the georgia
and georgia_sf objects that were created earlier. As ever, you may wish to
think about creating a script and a workspace folder in which you can store
any results you generate. As a reminder, you can clear your workspace to
remove all the variables and datasets you have created and opened using the
previous code and commands. This can be done via the menu in RStudio via
Session > Clear Workspace, or via the console by entering:

rm(list=ls())

3.4.2 A quick tmap
The qtm() function can be used to compose a quick map. The code below
loads the georgia data, recreates georgia_sf and generates a quick tmap using
qtm. First load the data:

data(georgia)

Check that the data have loaded correctly using ls(). There should be three
Georgia datasets: georgia, georgia2 and georgia.polys. Then create the sf
object georgia_sf as before:



georgia_sf <- st_as_sf(georgia)

Finally load tmap and create a quick map as in Figure 3.3:

library(tmap)

qtm(georgia, fill = "red", style = "natural")

Figure 3.3 The map of Georgia generated by qtm()

Note the use of the style parameter. This is a shortcut to a predefined style
within the tmap package, in this case named tm_style. These styles can be
called in abbreviated form using qtm. You should explore the qtm function
through the help.



The fill parameter can be used to specify a colour as above, or a variable to
be mapped. The code below generates Figure 3.4, which shows the
distribution of the MedInc variable:

qtm(georgia_sf, fill="MedInc", text="Name", text.size=0.5, format="World_wide",
style="classic",

text.root=5, fill.title="Median Income")

Figure 3.4 Counties in the state of Georgia shaded by median income

3.4.3 Full tmap
The process of making maps using tmap is one in which a series of layers are
added to the map. First the tm_shape() is specified, followed by a tmap
aesthetic function that specifies what is to be plotted. This can be illustrated



by running the code snippets below and inspecting the results. You should
see how the tmap functions are added as a series of layers to the map in a
similar way to ggplot. Before this an outline of Georgia is created using the
st_union() function in sf. An alternative for sp is the gUnaryUnion() function
in the rgeos package loaded with GISTools. The manipulation of spatial data
using overlay, union and intersection functions is covered in more depth in
Chapter 5.

# do a merge

g <- st_union(georgia_sf)

# for sp

# g <- gUnaryUnion(georgia, id = NULL)

# plot the spatial layers

tm_shape(georgia_sf) + tm_fill("tomato")

Add the county borders:

tm_shape(georgia_sf) + tm_fill("tomato") +

tm_borders(lty = "dashed", col = "gold")

Add some styling:

tm_shape(georgia_sf) + tm_fill("tomato") +

tm_borders(lty = "dashed", col = "gold") +

tm_style("natural", bg.color = "grey90")

Include the outline, noting the second call to tm_shape to plot the second
spatial object g:

tm_shape(georgia_sf) +

tm_fill("tomato") +

tm_borders(lty = "dashed", col = "gold") +



tm_style("natural", bg.color = "grey90") +

# now add the outline

     tm_shape(g) +

tm_borders(lwd = 2)

And finally putting it all together to create Figure 3.5:

tm_shape(georgia_sf) + tm_fill("tomato") +

tm_borders(lty = "dashed", col = "gold") +

tm_style("natural", bg.color = "grey90") +

# now add the outline

     tm_shape(g) + tm_borders(lwd = 2) +

     tm_layout(title = "The State of Georgia", title.size = 1, title.position = c(0.55,
"top"))

So what you can see in the above code are two sets of tmap plot commands:
the first set plots the georgia_sf dataset, specifying a dashed gold line to show
the county boundaries, a tomato (red) fill colour for the state and a map
background colour of light grey. The second set adds the outline created by
the union operation with a thicker line width before the title is added.

Figure 3.5 Counties in the state of Georgia



It is also possible to plot multiple different maps from different datasets
together, but this requires a bit more control over the tmap parameters. The
code below assigns each map to variables t1 and t2, and then a second set of
functions is used to manipulate these in a plot window. Note that georgia2 is
in sp format and has a different map projection than georgia. For this reason,
the aspect of the second plot is specified for the second plot in the code
below. The value was determined through trial and error. You will need to
install and load the grid package.

# 1st plot of georgia

t1 <- tm_shape(georgia_sf) +

         tm_fill("coral") + tm_borders() +



tm_layout(bg.color = "grey85")

# 2nd plot of georgia2

t2 <- tm_shape(georgia2) +

tm_fill("orange") +

tm_borders() +

# the asp parameter controls aspect

# this makes the 2nd plot align

tm_layout(asp = 0.86,bg.color = "grey95")

Now you can specify the layout of the combined map plot as in Figure 3.6:

library(grid)

# open a new plot page

grid.newpage()

# set up the layout

pushViewport(viewport(layout=grid.layout(1,2)))

# plot using the print command

print(t1, vp=viewport(layout.pos.col = 1, height = 5))

print(t2, vp=viewport(layout.pos.col = 2, height = 5))

Figure 3.6 Examples of the use of tmap to generate multiple maps in the
same plot window



Thus different plot parameters can be used for different subsets of the data
such that they are plotted in ways that are different from the default.
Sometimes we would like to label the features in our maps. Have a look at
the names of the counties in the georgia_sf dataset. These are held in the 13th
attribute column, and names(georgia_sf) will return a list of the names of all
attributes:

data.frame(georgia_sf)[,13]

It would be useful to display these on the map, and this can be done using the
tm_text function in the maptools package that is loaded with tmap. The result
is shown in Figure 3.7.

tm_shape(georgia_sf) +

     tm_fill("white") +

     tm_borders() +

     tm_text("Name", size = 0.3) +

     tm_layout(frame = FALSE)

And we can subset the data as with the sp format. The code below subsets the
counties of Jefferson, Jenkins, Johnson, Washington, Glascock, Emanuel,



Candler, Bulloch, Screven, Richmond and Burke:

# the county indices below were extracted from the data.frame

index <- c(81, 82, 83, 150, 62, 53, 21, 16, 124, 121, 17)

georgia_sf.sub <- georgia_sf[index,]

The notation for subsetting is the same as for sp objects, and enables
individual areas or polygons to be selected from spatial datasets using the
bracket notation as used in matrices, data frames and vectors. The subset can
be plotted to generate Figure 3.8 using the code below.

tm_shape(georgia_sf.sub) +

     tm_fill("gold1") +

tm_borders("grey") +

tm_text("Name", size = 1) +

     # add the outline

tm_shape(g) +

tm_borders(lwd = 2) +

# specify some layout parameters

tm_layout(frame = FALSE, title = "A subset of Georgia",

title.size = 1.5, title.position = c(0., "bottom"))

Finally, we can bring together the different spatial data that have been created
in a single map as in Figure 3.9 using the code below. You should note how
the different tm_shape, tm_fill etc. functions are used to set up each layer of
the map and that tmap determines the map extent from the layers:

# the 1st layer

tm_shape(georgia_sf) +

tm_fill("white") +

tm_borders("grey", lwd = 0.5) +



     # the 2nd layer

tm_shape(g) +

tm_borders(lwd = 2) +

# the 3rd layer

tm_shape(georgia_sf.sub) +

     tm_fill("lightblue") + tm_borders() +

# specify some layout parameters

     tm_layout(frame = T, title = "Georgia with a subset of counties", title.size = 1,
title.position = c(0.02, "bottom"))

Figure 3.7 Adding text to map objects with tmap



Figure 3.8 A subset of the counties in the state of Georgia



3.4.4 Adding Context
In some situations a map with background context may be more informative.
There are a number of options for doing this, including OpenStreetMap,1
Google Maps and Leaflet. This requires some additional packages to be
downloaded and installed in R. If you have not done so already, install the
OpenStreetMap package and load it into R:

1 At the time of writing, there can be some compatibility issues with the rJava
package required by OpenStreetMap. These relate to the use of 32-bit and 64-
bit programs, especially on Windows PCs. If you experience problems
installing OpenStreetMap, then it is suggested that you use the 32-bit version
of R, which is also installed as part of R for Windows.

install.packages(c("OpenStreetMap"),depend=T)

library(OpenStreetMap)



Figure 3.9 The result of the code for plotting a spatial object and a spatial
subset

If using OpenStreetMap, the approach is to define the area of interest, to
download and plot the map tile from OpenStreetMap and then to plot your
data over the tiles. In this case the background map area is defined by the
spatial extent of the Georgia subset created above which is used determine
the tiles to download from OpenStreetMap. The results of the code below are
shown in Figure 3.10. Note the use of the spTransform function in the rgdal
package in the last line of the code. This transforms the geographical
projection of the georgia.sub data to the same projection as the
OpenStreetMap data layer. Here it is easier to work with sp objects.

# define upper left, lower right corners



georgia.sub <- georgia[index,]

ul <- as.vector(cbind(bbox(georgia.sub)[2,2], bbox(georgia.sub)[1,1]))

lr <- as.vector(cbind(bbox(georgia.sub)[2,1], bbox(georgia.sub)[1,2]))

# download the map tile

MyMap <- openmap(ul,lr)

# now plot the layer and the backdrop

par(mar = c(0,0,0,0))

plot(MyMap, removeMargin=FALSE)

plot(spTransform(georgia.sub, osm()), add = TRUE, lwd = 2)

Google Maps can also be downloaded and used as context. Again, this
package should be installed if you have not done so already.

Figure 3.10 A subset of Georgia with an OpenStreetMap backdrop



install.packages(c("RgoogleMaps"),depend=T)

Then the area for the background map data is defined to identify the tiles to
be downloaded from Google Maps. Some of the plotting commands are
specific to the packages installed – note the first step to convert the subset to
PolySet format using the SpatialPolygons2PolySet function in maptools
(loaded with GISTools) and the last line that defines a polygon plot over
Google Maps:

# load the package

library(RgoogleMaps)

# convert the subset

shp <- SpatialPolygons2PolySet(georgia.sub)

# determine the extent of the subset

bb <- qbbox(lat = shp[,"Y"], lon = shp[,"X"])

# download map data and store it

MyMap <- GetMap.bbox(bb$lonR, bb$latR, destfile = "DC.jpg")

# now plot the layer and the backdrop

par(mar = c(0,0,0,0)) PlotPolysOnStaticMap(MyMap, shp, lwd=2,

col = rgb(0.25,0.25,0.25,0.025), add = F)

It is also possible to use the tmap package for context using Leaflet. Leaflet is
an open source JavaScript library used to build interactive web mapping
applications (see https://rstudio.github.io/leaflet/) and is embedded within the
tmap package. It is useful if you want to embed interactive maps in an html
file (e.g. by using RMarkdown). The code below maps georgia.sub with an
interactive Leaflet backdrop as in Figure 3.11. Note that the interactive mode
is set through the tmap_mode function, which in this case has been set to
’view’, which requires an internet connection, with the alternative being
’plot’.

tmap_mode(’view’)

https://rstudio.github.io/leaflet/


tmap mode set to interactive viewing

tm_shape(georgia_sf.sub) + tm_polygons(col = "#C6DBEF80" )

Finally, remember to reset the tmap_mode to plot:

tmap_mode("plot")

Figure 3.11 An interactive map of the Georgia subset with
Leaflet/OpenStreetMap backdrop

3.4.5 Saving Your Map
Having created a map in a window on the screen, you may now want to save
the map for either printing, or incorporating in a document. There are a
number of ways that this can be done. The simplest in RStudio is to click on
the Export icon in the plot pane for saving options (in R, right-click with the
mouse on the map window), select Copy to Clipboard, and then paste it into
a word-processing document (e.g. one being created in either OpenOffice or



MS Windows). Another is to use Save as Image to save the map as an image
file, with a name that you give it. However, it is also possible to save images
by using the R commands that were used to create the map. This takes more
initial effort, but has the advantage that it is possible to make minor edits and
changes (such as altering the position of the scale, or drawing the census
block boundaries in a different colour) and to easily rerun the code to re-
create the image file. There are a number of formats for saving maps, such as
PDF, PNG and TIFF.

One way to create a file of commands is to edit a text file with a name ending
in .R – note the capital letter. In RStudio, open a new document by selecting
File > New File > R script. Then type in the following:

# load package and data

library(GISTools)

data(newhaven)

proj4string(roads) <- proj4string(blocks)

# plot spatial data

tm_shape(blocks) + tm_borders() +

     tm_shape(roads) +  tm_lines(col = "red") +

     # embellish the map

tm_scale_bar(width = 0.22) + tm_compass(position = c(0.8, 0.07)) +

tm_layout(frame = F, title = "New Haven, CT", title.size = 1.5,

title.position = c(0.55, "top"), legend.outside = T)

Save the file as newhavenmap.R in your working directory.

I

When you start an R session you should set the working directory to be the folder that you
wish to use to write and read data to and from, to store your command files, such as the
newhavenmap.R file, and any workspace files or .RData files that you save. In RStudio this
is Session > Set Working Directory > .... In R in Windows it is File > Change dir... and
on a Mac it is Misc > Set Working Directory.



Now go back to the R command line and enter:

source("newhavenmap.R")

and your map will be redrawn. The file contains all of the commands to draw
the map, and ‘sourcing’ it makes R run through these in sequence. Suppose
you now wish to redraw the map, but with the roads drawn in blue, rather
than red. In the file editor, go to the tm_lines command, and edit the line to
become:

tm_lines(col = "blue") +

and save the file again. Re-entering source("newhavenmap.R") now draws
the map, but with the roads drawn in blue. Another parameter sometimes
used in map drawing is the line width parameter, lwd. This time, edit the
tm_borders command in the file to become:

tm_borders(lwd = 3) +

and re-enter the source command. The map is redrawn with thicker
boundaries around the census blocks. The col and lwd parameters can of
course be used in combination. Edit the file again, so that the second line
becomes:

tm_lines(col = "blue", lwd = 2) +

and source the file again. This time the roads are thicker and drawn in blue.

Another advantage of saving command files, as noted earlier, is that it is
possible to place the graphics created into various graphics file formats. To
create a PDF, for example, the command:

pdf(file=’map.pdf’)

can be placed before the first line containing a tm_shape command in the
newhavenmap.R file. This tells R that after this command, any graphics will



not be drawn on the screen, but instead are written to the file map.pdf (or
whatever name you choose for the file). When you have written all of the
commands you need to create your map, then insert the following at the end
of the tmap commands:

dev.off()

This is short for device off, and tells R to close the PDF file, and go back to
drawing graphics in windows on the screen in the future. To test this out,
insert a new first line at the beginning of newhavenmap.R and a new last line
at the end. Then re-source the file. This time no new graphics are drawn, but
you have now created a set of commands to write the graphic into a PDF file
called map.pdf. This file will be created in the folder in which you are
working. To check that this has worked, open your working directory folder
in Windows Explorer, Mac Finder, etc., and there should be a file called
map.pdf. Click on it and whatever PDF reader you use should open, and your
map should be displayed as a PDF file. This file can be incorporated into
presentations, word-processing documents and so on. A similar command,
for producing PNG files, is:

png(file=’map.png’)

which writes all subsequent R graphics into a PNG file, until a dev.off() is
issued. To test this, replace the first line of newhavenmap.R with the above
command, and re-source it from the R command line. A new file will appear
in the folder called map.png which may be incorporated into documents as
with the PDF file.

Of course you do not need to load a .R file to do this! You can place the
opening and closing commands around the mapping code.

There are a number of commonly used functions for writing maps out to
PDF, PNG, TIFF, etc., files:

pdf()

png()



tiff()

Examine the help for these.

The key thing you need to know is that these functions all open a file. The
open file needs to be closed using dev.off() after the map has been written to
it. So the syntax is:

pdf(file = "MyPlot.pdf", other setting)

<tmap code>

dev.off()

You can write a .png file for the map using the code below. Note that you
may want to set the working directory that you write to using the setwd()
function. To illustrate this the code below creates some points for the
georgia_sf polygon centroids, sets the working directory and then creates a
map:

pts_sf <- st_centroid(georgia_sf)

setwd(’~/Desktop/’)

# open the file

png(filename = "Figure1.png", w = 5, h = 7, units = "in", res = 150)

# make the map

tm_shape(georgia_sf) + tm_fill("olivedrab4") + tm_borders("grey", lwd = 1) +

# the points layer

tm_shape(pts_sf) +

tm_bubbles("PctBlack", title.size = "% Black", col = "gold")+ tm_format_NLD()

# close the png file

dev.off()

3.5 Mapping Spatial Data Attributes



3.5.1 Introduction
This section describes some approaches for displaying and mapping spatial
data attributes. Some of these ideas and commands have already been used in
the preceding illustrations, but this section provides a more formal and
comprehensive description.

All of the maps that you have generated thus far have simply displayed data
(e.g. the roads in New Haven and the counties in Georgia). This is fine if the
aim is simply to map the locations of different features. However, we are
often interested in identifying and analysing the properties or attributes
associated with different spatial features. The New Haven and Georgia
datasets introduced above both contain areas or regions within them. In the
case of the New Haven one these are the census reporting areas (census
blocks or tracts), and in Georgia the counties within the state. These areas
have attributes from the population census for each spatial unit. These
attributes are held in the data frame of the spatial object. For example, in the
code above you examined the data frame of the Georgia dataset and listed the
attributes of individual objects within the dataset. Figure 3.1 actually maps
the median income of each county in Georgia, although this code was not
shown.

3.5.2 Attributes and Data Frames
The attributes associated with individual features (lines, points, areas in
vector data and cell values in raster data) provide the basis for spatial
analyses and geographical investigation. Before examining attributes directly,
it is important to reconsider the data structures that are commonly used to
hold and manipulate spatial data in R.

Clear your workspace and load the New Haven data, convert to sf format and
then examine the blocks, breach and tracts data:

# clear workspace

rm(list = ls())



# load & list the data

data(newhaven)

ls()

# convert to sf

blocks_sf <- st_as_sf(blocks)

breach_sf <- st_as_sf(breach)

tracts_sf <- st_as_sf(tracts)

# have a look at the attributes and object class

summary(blocks_sf)

class(blocks_sf)

summary(breach_sf)

class(breach_sf)

summary(tracts_sf)

class(tracts_sf)

You should notice a number of things from these summaries:

Each of the datasets is spatial: blocks_sf and tracts_sf are POLYGON sf
objects and breach is a POINT object.
They all have data frames attached to them that contain attributes whose
values are summarised by the summary function.
breach_sf only has geometry attributes – it has no thematic attributes, it
just records locations.

The data frame of these spatial objects can be accessed in order to examine,
manipulate or classify the attribute data. Each row in the data frame contains
attribute values associated with one of the spatial objects, the individual
polygons for example in blocks_sf, and each column describes the values
associated with a particular attribute for all of the objects. Accessing the data
frame allows you to read, alter or compute new attributes. Entering:

data.frame(blocks_sf)



would print all of the attribute information for each census block in New
Haven to the R console window, until the print limit was reached, while:

head(data.frame(blocks_sf))

prints out the first six rows. The attributes can be individually identified using
their names. To see the list of column names enter:

colnames(data.frame(blocks_sf))

# or

names(blocks_sf)

Note that for sp objects, an alternative is to use @data to access the data
frame of the SpatialPolygonsDataFrame objects, as well as the above code:

colnames(blocks@data)

head(blocks@data)

One of the data attributes or variables is called P_VACANT and describes the
percentage of households that are unoccupied (i.e. vacant) in each of the
blocks. To access the variable itself, enter:

data.frame(blocks_sf$P_VACANT)

The $ operator works as it would on a standard data frame to access
individual variables (columns) in the data frame. For the data frames of
spatial objects a shorthand exists to access this variable. Enter:

blocks$P_VACANT

A third option is to attach the data frame. Enter:

attach(data.frame(blocks_sf))



All of the attribute variables now appear as ordinary R variables. For
example, to draw a histogram of the percentage vacant housing for each
block, enter:

hist(P_VACANT)

Finally, it is good practice to detach any objects that have been attached after
you have finished using them. It is possible to attach many data frames
simultaneously, but this can lead to problems if you are not careful. To detach
the data frame you attached earlier, enter:

detach(data.frame(blocks_sf))

You can try a similar set of commands with the tracts data, but the breaches
data has no attributes: it simply records the locations of breaches of the peace.
As with any point data, the breaches of the peace data can be used to create a
heat map raster dataset.

# use kde.points to create a kernel density surface

breach.dens = st_as_sf(kde.points(breach,lims=tracts))

summary(breach.dens)

breach.dens is a raster/pixels dataset, and its attributes are held in a data
frame which can be examined:

breach.dens

Notice that this has the kernel density estimation and geometry attributes that
describe the X and Y locations, and you can plot the breach.dens object:

plot(breach.dens)

Also note that you can remove the st_as_sf function from the kde.points
command to generate a SpatialPixelsDataFrame object, part of the sp family
of spatial objects. This can be plotted with the image function.



A final key point about attributes is that you can create and assign new
attributes to the spatial object, for both sf and sp. For example, the code
below creates a normally distributed random value for each of the 129 areas
in the blocks_sf object. Note the use of the $ to do this:

blocks_sf$RandVar <- rnorm(nrow(blocks_sf))

Of course it is more than likely that you will want to assign a new value to a
spatial object that arises from the result of some kind of analysis, data join,
etc. It is very easy to link new data attributes to spatial objects in this way.

3.5.3 Mapping Polygons and Attributes
A choropleth is a thematic map in which areas are shaded in proportion to
their attributes. The tmap package includes a number of ways of generating
choropleth maps. Enter:

tmap_mode(’plot’)

tm_shape(blocks_sf) +

     tm_polygons("P_OWNEROCC")

This produces a map of the census block in New Haven, shaded by the
proportions of vacant properties. The tm_polygons element automatically
includes a legend to allow the map to be interpreted, in this case the levels of
vacancy associated with each of the different shade colours.

There are a couple of things to note about the use of tmap. First, tmap_mode
was set to plot to generate a standard choropleth suitable for including in a
report rather than an interactive map for use in a webpage, for example.
Recall that the Leaflet mapping above used the interactive view (i.e.
tmap_mode was set to ’view’). Second, in a similar way to the ggplot
operations in Chapter 2, the tmap package constructs maps by combining
different map elements. In this case blocks_sf was passed to the tm_shape
function and then the tm_polygons function was used to specify the variable
to be mapped, in this case P_OWNEROCC.



You should note that it is also possible to pass sp format spatial objects to
tmap. Try replacing tm_shape(blocks_sf) with tm_shape(blocks) in the code
above and below. Also note that in this case the variable P_OWNEROCC
was mapped using five classes of equal interval. Try repeating the tmap code
above using a different variable such as P_VACANT. What happens? You
will see that tmap automatically determines the number of classes to be
included and the class intervals or breaks. Finally, a colour shading scheme is
automatically allocated to the map and the legend is included in the map. All
of these, and many of the other default mapping settings that tmap uses, can
be controlled and modified.

For example, to control the class intervals, the breaks parameter can be
specified:

tm_shape(blocks_sf) + tm_polygons("P_OWNEROCC", breaks=seq(0, 100, by=25))

This can be done in many different ways:

tm_shape(blocks_sf) + tm_polygons("P_OWNEROCC", breaks=c(10, 40, 60, 90))

The legend placement and title can be modified. The tm_layout function is
very useful here:

tm_shape(blocks_sf) + tm_polygons("P_OWNEROCC", title = "Owner Occ") +
tm_layout(legend.title.size = 1,

legend.text.size = 1,

legend.position = c(0.1, 0.1))

You could also try legend.position = c("centre","bottom")). Further
documentation on tm_layout can be found at
https://www.rdocumentation.org/packages/tmap/versions/1.11/topics/tm_layout

It is also possible to alter the colours used in a shading scheme. The default
colour scheme uses increasing intensities of yellow to red. Graduated lists of
colours like this are generated using the RColorBrewer package, which is
automatically loaded with both tmap and GISTools. This package makes use

https://www.rdocumentation.org/packages/tmap/versions/1.11/topics/tm_layout


of a set of colour palettes designed by Cynthia Brewer, intended to optimise
the perceptual difference between each shade in the palette, so that visually
each shading colour is distinct. The palettes available in this package are
displayed with the command:

display.brewer.all()

This displays the various colour palettes and their names in a plot window.
To generate a list of colours from one of these palettes, for example, enter the
following:

brewer.pal(5,’Blues’)

[1] "#EFF3FF" "#BDD7E7" "#6BAED6" "#3182BD" "#08519C"

This is a list of colour codes used by R to specify the palette. The brewer.pal
arguments specify that a five-stage palette based on shades of blue is
required. The output of brewer.pal can be fed into tmap to give alternative
colours in shading schemes. For example, enter the code below and a
choropleth map shaded in red is displayed with its legend. The palette
argument in tm_polygons specifies the new colours in the shading scheme.

tm_shape(blocks_sf) +

tm_polygons("P_OWNEROCC", title = "Owner Occ", palette = "Reds") +
tm_layout(legend.title.size = 1)

Note that the same map would be produced if the tm_fill function were used
instead of tm_polygons; however, without a tm_borders function, the census
block outlines are not plotted. Try entering:

tm_shape(blocks_sf) +

tm_fill("P_OWNEROCC", title = "Owner Occ", palette = "Blues") +
tm_layout(legend.title.size = 1)

Figure 3.12 Different choropleth maps of owner-occupied properties in New
Haven using different shades and class intervals



A final adjustment is to change the way the class interval boundaries are
computed. As a default, they are based on equal-sized intervals of the
attribute being mapped, but different palette styles are available. Have a look
at the help for tm_polygons and you will see that a number of different
plotting styles are available. You should explore these. The class intervals
can be changed to quantiles or any other range of intervals using the breaks
parameter. For example, the code below produces three maps in Figure 3.12
with equal intervals (left), with intervals based on k-means (middle) and with
quantiles (right), using the quantileCuts function in GISTools, and using the
pushViewport function in the grid package as before to plot multiple maps
together.

# with equal intervals: the tmap default

p1 <- tm_shape(blocks_sf) +

tm_polygons("P_OWNEROCC", title = "Owner Occ", palette = "Blues") +
tm_layout(legend.title.size = 0.7)

# with style = kmeans

p2 <- tm_shape(blocks_sf) +

   tm_polygons("P_OWNEROCC", title = "Owner Occ", palette = "Oranges", style =
"kmeans") +

tm_layout(legend.title.size = 0.7)

# with quantiles

p3 <- tm_shape(blocks_sf) +

    tm_polygons("P_OWNEROCC", title = "Owner Occ", palette = "Greens", breaks
= c(0, round(quantileCuts(blocks$P_OWNEROCC, 6), 1))) + tm_layout(legend.title.size
= 0.7)



# Multiple plots using the grid package

library(grid)

grid.newpage()

# set up the layout

pushViewport(viewport(layout=grid.layout(1,3)))

# plot using the print command

print(p1, vp=viewport(layout.pos.col = 1, height = 5))

print(p2, vp=viewport(layout.pos.col = 2, height = 5))

print(p3, vp=viewport(layout.pos.col = 3, height = 5))

It is also possible to display a histogram of the distribution of the variable or
attribute being mapped using the legend.hist parameter. This is very useful
for choropleth mapping as it gives a distribution of the attributes being
examined. Bringing this all together allows you to create a map with a
number of refinements as in Figure 3.13. Note, for example, the minus sign
before the palette parameter to reverse the palette order and the various
parameters passed to the tm_layout function.

tm_shape(blocks_sf) +

tm_polygons("P_OWNEROCC", title = "Owner Occ", palette = "-GnBu",     
breaks = c(0, round(quantileCuts(blocks$P_OWNEROCC, 6), 1)), legend.hist = T) +

tm_scale_bar(width = 0.22) +      tm_compass(position = c(0.8, 0.07)) +
tm_layout(frame = F, title = "New Haven",

title.size = 2, title.position = c(0.55, "top"), legend.hist.size = 0.5)

Figure 3.13 An illustration of the various options for mapping with tmap



It is possible to compute certain derived attribute values on the fly in tmap.
The code below first assigns a projection to the tracts_sf layer from the
blocks_sf layer, then plots population density using the convert2density
parameter applied to the POP1990 attribute.

# add a projection to tracts data and convert tracts data to sf

proj4string(tracts) <- proj4string(blocks)

tracts_sf <- st_as_sf(tracts)

tracts_sf <- st_transform(tracts_sf, "+proj=longlat +ellps=WGS84")

# plot

tm_shape(blocks_sf) + tm_fill(col="POP1990", convert2density=TRUE,

     style="kmeans", title=expression("Population (per " ∗ km^2 ∗ ")"),
legend.hist=F, id="name") + tm_borders("grey25", alpha=.5) +



# add tracts context

tm_shape(tracts_sf) + tm_borders("grey40", lwd=2) +

tm_format_NLD(bg.color="white", frame = FALSE, legend.hist.bg.color="grey90")

The convert2density function automatically converts the projection units (in
this case degrees of latitude and longitude) to a projection in metres and then
determines areal density in square kilometres. You can check this by creating
your own population density values, and examining the explanations of how
the functions operate in the help pages for the functions used, such as st_area.

Compare the population density summary with the legend of the figure
created using the code above:

# add an area in km^2 to blocks

blocks_sf$area = st_area(blocks_sf) / (1000∗1000)

# calculate population density manually

summary(blocks_sf$POP1990/blocks_sf$area)

A final consideration is the ability of tmap to map multiple attributes in the
same operation. The code below plots two attributes in the same call (Figure
3.14):

tm_shape(blocks_sf) + tm_fill(c("P_RENTROCC", "P_BLACK")) +

tm_borders() + tm_layout( legend.format = list(digits = 0), legend.position = c("left",
"bottom"), legend.text.size = 0.5,

    legend.title.size = 0.8)

In summary, the tm_fill and tm_polygons functions in the tmap package
generate choropleth maps of attributes held in spatial polygons data frame
(sp) or simple feature (sf) data objects. They automatically shade the
variables using equal intervals. The intervals and the palettes can both be
adjusted. It is instructive to examine the plotting functions and the way they
operate. Enter:



Figure 3.14 tmap choropleth maps of census blocks in New Haven showing
the percentage of houses rented and occupied (P_RENTROCC) and the
percentage of the population recorded as black (P_BLACK)

tm_polygons

The function code detail is displayed in the R console window. You will see
that it takes a number of arguments and a number of default parameters. In
addition to using the R help system to understand functions, examining
functions in this way can also provide you with insight into their operation.

3.5.4 Mapping Points and Attributes
Point data can be mapped in R, as well as polygons and lines. The newhaven
data include locations of reports of ‘breaches of the peace’. These events are
essentially public disorder incidents, on many occasions requiring police
intervention. The data are stored in a variable called breach, which was
converted to sf format above. Plotting this variable works in the same way as
plotting polygons or lines, using the tm_shape function:

tm_shape(blocks_sf) +

     tm_polygons("white") +

    tm_shape(breach_sf) +



tm_dots(size = 0.5, shape = 19, col = "red", alpha = 1)

This plots the locations of each of the breach of peace incidents with a
symbol above the blocks_sf layer using the tm_dots function. This can take a
number of parameters, including those to control the point size, colour and
shape. The shape is drawn from the core R pch (plot character) argument.
You should examine the help for pch and for points to see the different
symbols (or shapes in the language of tmap) that can be used.

If you have very dense point data then one point may obscure another.
Adding some transparency to the points can help visualise dense point data.
The alpha parameter can be used to add a transparency term to the colour.
Try adjusting the code above to change the transparency and the plot
character. For example:

tm_shape(breach_sf) +

tm_dots(size = 0.5, shape = 19, col = "red", alpha = 0.5)

I

Transparency can also be added to shading colours manually. Remember that the full set of
predefined and named colours available in R can be listed by entering colours(). Also you
can list the colour in the RColorBrewer palettes. To see the palettes enter
display.brewer.all() and to list colours in an individual palette enter brewer.pal(5, "Reds").
Any of these can be used in the call above. Additionally, a transparency term can be added
to colour and palettes using the add.alpha function in the GISTools package. For 50%
transparency enter add.alpha(brewer.pal(5, "Reds"), 0.5).

Commonly, point data come in a tabular format rather than as an R spatial
object (i.e. of class sp or sf format), with attributes that include the latitude
and longitude or easting and northing of the individual data points. One such
dataset is the quakes dataset included as part of R. It provides the locations of
1000 seismic events (earthquakes) near Fiji. To load and examine the data
enter:

# load the data

data(quakes)



# look at the first 6 records

head(quakes)

You will see that the data come with a number of attributes: lat, long, depth,
mag and stations. Here you will use the lat and long attributes to create a
spatial points dataset in sf format with the attributes included. Creating spatial
data from scratch in sf is a bit convoluted, so perhaps the easiest way is to
create an sp object and convert it. This is done in the code below:

# define the coordinates

coords.tmp <- cbind(quakes$long, quakes$lat)

# create the SpatialPointsDataFrame

quakes.sp <- SpatialPointsDataFrame(coords.tmp, data = data.frame(quakes),

proj4string = CRS("+proj=longlat "))

# convert to sf

quakes_sf <- st_as_sf(quakes.sp)

The result can be mapped as shown in Figure 3.15, which shows the spatial
context of the data in the Pacific Ocean, to the north of New Zealand.

Figure 3.15 A plot of the Fiji earthquake data



# map the quakes

tm_shape(quakes_sf) +

tm_dots(size = 0.5, alpha = 0.3)

The last bit of code nicely illustrates how to create a spatial dataset in sp or sf
format in R. Essentially the sequence is:

define the coordinates for the spatial object



assign these to an sp class of object as in Table 3.1
then, if required, convert the sp object to sf

You should examine the help for these classes of objects. In brief, points just
need coordinate pairs, but polygons and lines need lists of coordinates for
each object.

help("SpatialPoints-class")

help("sf")

You will have noticed that the quakes dataset has an attribute describing the
depth of each earthquake. We can visualise the depths in a number of ways –
for example, by plotting all the data points, but specifying the size of each
data point to be proportional to the depth attribute, or by using choropleth
mapping as above with tmap. These are shown in the code blocks below and
in the results are in Figure 3.16. As a reminder, when you run this code and
the other code in this book, you should try manipulating and changing the
parameters that are used to explore different mapping approaches. The code
below uses different plot character sizes and colours to indicate the
magnitude of the variable being considered:

library(grid)

# by size

p1 <- tm_shape(quakes_sf)+

tm_bubbles("depth", scale = 1, shape = 19, alpha = 0.3, title.size="Quake Depths")

# by colour

p2 <- tm_shape(quakes_sf)+

    tm_dots("depth", shape = 19, alpha = 0.5, size = 0.6, palette = "PuBuGn",

title="Quake Depths")

# multiple plots using the grid package

grid.newpage()

# set up the layout



pushViewport(viewport(layout=grid.layout(1,2)))

# plot using the print command

print(p1, vp=viewport(layout.pos.col = 1, height = 5))

print(p2, vp=viewport(layout.pos.col = 2, height = 5))

It also possible to select specific data subsets to plot. The code below just
maps earthquakes that have a magnitude greater than 5.5:

# create the index

index <- quakes_sf$mag > 5.5

summary(index)

# select the subset assign to tmp

tmp <- quakes_sf[index,]

# plot the subset

tm_shape(tmp) +

     tm_dots(col=brewer.pal(5, "Reds")[4], shape=19, alpha=0.5, size = 1) +

tm_layout(title="Quakes > 5.5", title.position = c("centre", "top"))

Figure 3.16 Plotting points with plot size (left) and plot colour (right) related
to the attribute value.



I

The code used above includes logical operators and illustrates how they can be used to
select elements that satisfy some condition. These can be used singularly or in combination
to select in the following way:

data <- c(3, 6, 9, 99, 54, 32, −102)

index <- (data == 32 | data <= 6) data[index]

These operations are described in greater detail in Chapter 4.

Finally it is possible to use the PlotOnStaticMap function from the Rgoogle
Maps package to plot the earthquake locations with some context from
Google Maps. This is similar to Figure 3.10, which mapped a subset of
Georgia counties against an OpenStreetMap backdrop. This time, points
rather than polygons are being mapped and different Google Maps backdrops
are being used as context: standard in Figure 3.17 and satellite imagery in
Figure 3.18. The code for Figure 3.17 is as follows:

library(RgoogleMaps)

# define Lat and Lon



Lat <- as.vector(quakes$lat)

Long <- as.vector(quakes$long)

# get the map tiles

# you will need to be online

MyMap <- MapBackground(lat=Lat, lon=Long)

# define a size vector

tmp <- 1+(quakes$mag − min(quakes$mag))/max(quakes$mag)

PlotOnStaticMap(MyMap,Lat,Long,cex=tmp,pch=1,col=’#FB6A4A30’)

And here is the code for Figure 3.18:

MyMap <- MapBackground(lat=Lat, lon=Long, zoom = 10, maptype = "satellite")

PlotOnStaticMap(MyMap,Lat,Long,cex=tmp,pch=1, col=’#FB6A4A50’)

Figure 3.17 Plotting points with a standard Google Maps context



3.5.5 Mapping Lines and Attributes
This section considers line data spatial objects. These can be defined in a
number of ways and typically describe different network features such as
roads. The first step in the code below assigns a coordinate system to roads
and then selects a subset. This involves defining a polygon to clip the road
data to, and converting and the datasets to sf objects.

Figure 3.18 Plotting points with Google Maps satellite image context

data(newhaven)

proj4string(roads) <- proj4string(blocks)

# 1. create a clip area

xmin <- bbox(roads)[1,1]

ymin <- bbox(roads)[2,1]

xmax <- xmin + diff(bbox(roads)[1,]) / 2

ymax <- ymin + diff(bbox(roads)[2,]) / 2



xx = as.vector(c(xmin, xmin, xmax, xmax, xmin))

yy = as.vector(c(ymin, ymax, ymax, ymin, ymin))

# 2. create a spatial polygon from this

crds <- cbind(xx,yy)

Pl <- Polygon(crds)

ID <- "clip"

Pls <- Polygons(list(Pl), ID=ID)

SPls <- SpatialPolygons(list(Pls))

df <- data.frame(value=1, row.names=ID)

clip.bb <- SpatialPolygonsDataFrame(SPls, df)

proj4string(clip.bb) <- proj4string(blocks)

# 3. convert to sf

# convert the data to sf

clip_sf <- st_as_sf(clip.bb)

roads_sf <- st_as_sf(roads)

# 4. clip out the roads and the data frame

roads_tmp <- st_intersection(st_cast(clip_sf), roads_sf)

Note that the last line generates a warning. This is because the st_intersection
function operates on geometries as well as geometry attributes under the
assumption that they are the same. You can avoid this either by replacing the
last line with:

st_intersection(st_geometry(st_cast(clip_sf)), st_geometry(roads_sf))

or by making the assumption that the attribute is constant throughout the
geometry explicitly before the intersection as follows:

st_agr(x) = "constant"

st_agr(y) = "constant"



where x is assigned st_cast(clip_sf) and y assigned roads_sf.

Having prepared the roads data subset in this way, a number of methods for
mapping spatial lines can be illustrated. These include maps based on classes
and continuous variables or attributes contained in the data frame. As before
we can start with a straightforward map which is then embellished in
different ways: shading by road type (the AV_LEGEND attribute) and line
thickness defined by road segment length (the attribute LENGTH_MI). The
maps are shown in Figure 3.19; note the different ways that the legend titles
are specified.

Figure 3.19 A subset of the New Haven roads data, plotted in different ways:
simple, shaded using an attribute, and line width based on an attribute

3.5.6 Mapping Raster Attributes
Earlier in this chapter a SpatialPixelsDataFrame object was created using a
kernel density function. In this section the Meuse dataset, included as part of
the sp package, will be used to illustrate how raster attributes can be mapped
in sf.

Load the meuse.grid dataset and examine its properties using the class and
summary functions.

# you may have to install the raster package

# install.packages("raster", dep = T)

library(raster)



data(meuse.grid)

class(meuse.grid)

summary(meuse.grid)

You should notice that meuse.grid is a data.frame object and that it has seven
attributes including an easting (x) and a northing (y). These are described in
the meuse.grid help pages (enter ?meuse.grid). The spatial properties of the
dataset can be examined by plotting the easting and northing attributes:

plot(meuse.grid$x, meuse.grid$y, asp = 1)

And it can be converted to a SpatialPixelsDataFrame object as described in
the help page for SpatialPixelsDataFrame and then to raster format. Note that,
at the time of writing, the sf package does not have raster functionality.
However, the raster package by Hijmans and van Etten (2014) handles
gridded raster data excellently.

meuse.sp = SpatialPixelsDataFrame(points = meuse.grid[c("x", "y")], data = meuse.grid,
proj4string = CRS("+init=epsg:28992"))

meuse.r <- as(meuse.sp, "RasterStack")

To explore the data, you could try the simple plot and spplot functions as in
the code below. For the sf object it plots all of the attributes, and for the sp
object it plots the specified layer of the meuse grid:

plot(meuse.r)

plot(meuse.sp[,5])

spplot(meuse.sp[, 3:4])

image(meuse.sp[, "dist"], col = rainbow(7))

spplot(meuse.sp, c("part.a", "part.b", "soil", "ffreq"),

col.regions=topo.colors(20))

However, it is possible to exercise more control over the mapping of the



attributes held in the data frame of the sf object using the functionality of
tmap. Some examples of tmap mapping routines with tm_raster and different
shading schemes are shown in Figures 3.20 and 3.21 with an interactive map
context.

# set the tmap mode to plot

tmap_mode(’plot’)

# map dist and ffreq attributes

tm_shape(meuse.r) +

tm_raster(col = c("dist", "ffreq"), title = c("Distance","Flood Freq"), palette = "Reds",
style = c("kmeans", "cat"))

# set the tmap mode to view

tmap_mode(’view’)

# map the dist attribute

tm_shape(meuse.r) +

tm_raster(col = "dist", title = "Distance", breaks = c(seq(0,1,0.2))) +

tm_layout(legend.format = list(digits = 1))

Figure 3.20 Maps of the Meuse raster data



You could also experiment with some of the refinements as with the
tm_polygons examples above. For example:

tm_shape(meuse.r) +

     tm_raster(col="soil", title="Soil", palette="Spectral", style="cat") +
     tm_scale_bar(width = 0.3) + tm_compass(position = c(0.74, 0.05)) +
tm_layout(frame = F, title = "Meuse flood plain", title.size = 2, title.position = c("0.2",
"top"), legend.hist.size = 0.5)

3.6 Simple Descriptive Statistical Analyses
The final section of this chapter before the self-test questions describes how
to develop some basic descriptive statistical analyses of attributes held in R
data.frame objects. These are intended to provide an introduction to methods
for analysing the properties of spatial data attributes which will be extended
in more formal treatments of statistical and spatial analyses in later chapters.
This section first describes approaches for examining the properties of data
variables using histograms and boxplots, and then extends this to consider
some simple ways of analysing data variables in relation to each other using
scatter plots and simple regressions, before showing how mosaic plots can be
used to visualise relationships between variables. Importantly, a number of



standard plotting routines with their ggplot versions are introduced. You
should load the tidyverse package which includes ggplot2, and the reshape2
package which includes some data manipulation functions:

Figure 3.21 Dynamic maps of the Meuse raster data with a Leaflet backdrop

install.packages("tidyverse", dep = T)

install.packages("reshape2", dep = T)

3.6.1 Histograms and Boxplots
There are number of ways of generating simple summaries of any variable.
The function table can be used to summarise the counts of categorical or



discrete data, summary and fivenum provide summaries of continuous
variables, and histograms and boxplots can provide visual summaries. You
should make sure the New Haven data are loaded from the GISTools package
and then use these functions to explore the P_VACANT variables in blocks.

For example, typing summary(blocks$P_VACANT) or
fivenum(blocks$P_VACANT) will produce other summaries of the
distribution of the variable. R has some in-built functions for generating
histograms and boxplots with the hist and boxplot functions. However, as
described in Chapter 2, the ggplot2 package also includes functions for these
visual data summaries. Code for both standard R and ggplot operations is
provided in the snippets below; note the adjustment to the histogram bin sizes
and the plot labels.

data(newhaven)

# the tidyverse package loads the ggplot2 package

library(tidyverse)

# standard approach with hist

hist(blocks$P_VACANT, breaks = 40, col = "cyan", border = "salmon",

main = "The distribution of vacant property percentages",

xlab = "percentage vacant", xlim = c(0,40))

# ggplot approach

ggplot(blocks@data, aes(P_VACANT)) +

geom_histogram(col = "salmon", fill = "cyan", bins = 40) + xlab("percentage vacant") +
labs(title = "The distribution of vacant property percentages")

A further way of providing visual descriptive summaries of variables is to use
box-and-whisker plots via the boxplot function in R and the geom_boxplot
function in ggplot2. These can summarise a single variable or multiple
variables together. Here we will focus on the geom_boxplot function in the
ggplot2 package. In order to illustrate this the blocks dataset can be split into
high- and low-vacancy areas based on whether the proportion of properties
vacant is greater than 10%. Setting the vac attribute as a factor is important
for both approaches. and the melt function in the reshape2 package is critical



for many ggplot operations. You should examine the result of running
melt(blocks@data). The geom_boxplot functions can be used to visualise the
differences between these two subsets in terms of the distribution of owner
occupancy and the proportion of different ethnic groups, as in Figure 3.22.
First pre-process the data:

library(reshape2)

# a logical test

index <- blocks$P_VACANT > 10

# assigned to 2 high, 1 low

blocks$vac <- index + 1

blocks$vac <- factor(blocks$vac, labels = c("Low", "High"))

Then apply the geom_boxplot function:

library(ggplot2)

ggplot(melt(blocks@data[, c("P_OWNEROCC", "P_WHITE", "P_BLACK", "vac")]),

aes(variable, value)) + geom_boxplot() + facet_wrap(~vac)

Figure 3.22 Box-and-whisker plot examples



The boxplot can be enhanced in many ways in ggplot. Some parameters are
used below. You may wish to search for examples of different themes and
ways of manipulating boxplots.

ggplot(melt(blocks@data[, c("P_OWNEROCC", "P_WHITE", "P_BLACK", "vac")]),

aes(variable, value)) +

geom_boxplot(colour = "yellow", fill = "wheat", alpha = 0.7) + facet_wrap(~vac) +

xlab("") + ylab("Percentage") + theme_dark() +

ggtitle("Boxplot of High and Low property vacancies")

3.6.2 Scatter Plots and Regressions
The differences in the two subgroups suggest that there may be some
statistical association between the amount of vacant properties and the
proportions of different ethnic groups, typically due to well-known socio-
economic inequalities and power imbalances. First, we can plot the data to
see if we can visually identify any trends:



plot(blocks$P_VACANT/100, blocks$P_WHITE/100)

plot(blocks$P_VACANT/100, blocks$P_BLACK/100)

The scatter plots suggest that there may be a negative relationship between
the proportion of white people in a census block and the proportion of vacant
properties and that there may be a positive association with the proportion of
black people. It is difficult to be confident in these statements, but they can
be examined more formally by using simple regression models as estimated
by the lm function and then plotting the coefficient estimates or slopes.

# assign some variables

p.vac <- blocks$P_VACANT/100

p.w <- blocks$P_WHITE/100

<- blocks$P_BLACK/100

# bind these together

df <- data.frame(p.vac, p.w, p.b)

# fit regressions

mod.1 <- lm(p.vac ~ p.w, data = df)

mod.2 <- lm(p.vac ~ p.b, data = df)

I

The function lm is used in R to fit regression models (lm stands for ‘linear model’). The
models to be fitted are specified in a special notation in R. Effectively a model description
is an R variable of its own. Although we do not go into detail about the modelling language
in this book, more can be found in, for example, de Vries and Meys (2012: Chapter 15); for
now, it is sufficient to know that the R notation y ~ x suggests the basic regression model y
= ax + b. The notation is sufficiently rich to allow the specification of a very broad set of
linear models.

The two models above can be interpreted as follows: mod.1 describes the
extent to which changes in p.vac are associated with changes in p.w; mod.2
describes the extent to which changes in p.vac are associated with changes in
p.b. The coefficients can be inspected, and it is evident that the proportion of
white people is a weak negative predictor of the proportion of vacant



properties in a census block and that the proportion of black people is a weak
positive predictor. Specifically, the model suggests relationships that indicate
that the amount of vacant properties in a census block decreases by 1% for
each 3.5% increase in the proportion of white people and that it increases by
1% for each 3.7% increase in the proportion of black people in the census
block. However, the model fits are poor (examine the R-squared values), and
when a multivariate analysis model is computed neither are found to be
significant predictors of vacant properties. The models can be examined
using the summary command:

summary(mod.1)

Call:

lm(formula = p.vac ~ p.w, data = df)

15 Residuals:

   Min  1Q Median  3Q  Max

−0.11747 −0.03729 −0.01199 0.01714 0.28271

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.11747 0.01092 10.755 <2e−16 ∗∗∗

p.w  −0.03548 0.01723 −2.059 0.0415 ∗

---

Signif. codes:

0 ’∗∗∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.06195 on 127 degrees of freedom

Multiple R-squared: 0.03231, Adjusted R-squared: 0.02469

F-statistic: 4.24 on 1 and 127 DF, p-value: 0.04152

# not run below

# summary(mod.2)

# summary(lm(p.vac ~ p.w + p.b, data = df))



The trends can be plotted with the data as in Figure 3.23.

p1 <- ggplot(df,aes(p.vac, p.w))+

    #stat_summary(fun.data=mean_cl_normal) +

geom_smooth(method=’lm’) + geom_point() +

xlab("Proportion of Vacant Properties") + ylab("Proporion White") +

labs(title="Regression of Vacant Properties against Proportion White")

p2 <- ggplot(df,aes(p.vac, p.b))+

#stat_summary(fun.data=mean_cl_normal) +

geom_smooth(method=’lm’) + geom_point() +

xlab("Proportion of Vacant Properties") + ylab("Proporion Black") +

labs(title="Regression of Vacant Properties against Proportion Black")

grid.newpage()

# set up the layout

pushViewport(viewport(layout=grid.layout(2,1)))

# plot using the print command

print(p1, vp=viewport(layout.pos.row = 1, height = 5))

print(p2, vp=viewport(layout.pos.row = 2, height = 5))

Figure 3.23 Plotting regression coefficient slopes



3.6.3 Mosaic Plots
For data where there is some kind of true or false statement, mosaic plots can
be used to generate a powerful visualisation of the statistical properties and
relationships between variables. What they seek to do is to compare
crosstabulations of counts (hence the need for true or false statements)
against a model where proportionally equal counts are expected, in this case
of vacant housing across ethnic groups.

First install the ggmosaic package:

# install the package



install.packages("ggmosaic", dep = T)

Then prepare the data using the melt function from the reshape2 package:

# create the dataset

pops <- data.frame(blocks[,14:18]) ∗ data.frame(blocks)[,11]

pops <- as.matrix(pops/100)

colnames(pops) <- c("White", "Black", "Ameri", "Asian", "Other")

# a true / false for vacant properties

vac.10 <- (blocks$P_VACANT > 10)

# create a crosstabulation

mat.tab <- xtabs(pops ~vac.10)

# melt the data

df <- melt(mat.tab)

Finally, create the mosaic plot, as in Figure 3.24, using the stat_mosaic
function in the ggmosaic extension to the ggplot2 package.

# load the packages

library(ggmosaic)

# call ggplot and stat_mosaic

ggplot(data = df) +

stat_mosaic(aes(weight = value, x = product(Var2), fill=factor(vac.10)), na.rm=TRUE)
+

theme(axis.text.x=element_text(angle=−90, hjust= .1)) + labs(y=’Proportion of Vacant
Properties’, x = ’Ethnic group’,

title="Mosaic Plot of Vacant Properties with ethnicity") + guides(fill=guide_legend(title =
"> 10 percent", reverse = TRUE))

It has the usual ggplot feel. It shows that the census blocks with vacancy
levels higher than 10% are not evenly distributed among different ethnic
groups: the tiles in the mosaic plot have areas proportional to the counts (in



this case the number of people affected).

However, the stat_mosaic plot does not quite have information about
residuals and whether differences are significant, as does the mosaicplot
function in the graphics package. This can be used using the code below to
create Figure 3.25:

# standard mosaic plot

ttext = sprintf("Mosaic Plot of Vacant Properties  with ethnicity")

mosaicplot(t(mat.tab),xlab=’’,

ylab=’Vacant Properties > 10 percent’, main=ttext,shade=TRUE,las=3,cex=0.8)

Figure 3.24 An example of a ggmosaic mosaic plot

Figure 3.25 An example of a standard ‘graphics‘ mosaic plot with residuals



Figure 3.25 contains much more information. Its shading shows which
groups are under- or overrepresented, when compared against a model of
expected equality. The blue tiles show combinations of property vacancy and
ethnicity that are higher than would be expected, with the tiles shaded deep
blue corresponding to combinations whose residuals are greater than +4,
when compared to the model, indicating a much greater frequency in those
cells than would be found if the model of equality were true. The tiles shaded
deep red correspond to the residuals less than –4, indicating much lower
frequencies than would be expected. Thus the white ethnic group is
significantly more strongly associated with areas where vacant properties
make up less than 10%, and the other ethnic groups are significantly more
strongly associated with areas where vacant properties make up more than
10%, than would be expected in a model of equal distribution.

3.7 Self-Test Questions
This chapter has introduced a number of commands and functions for
mapping spatial data and visualising spatial data attributes. The questions in



this section present a series of tasks for you to complete that build on the
methods illustrated in the preceding sections. The answers at the end of the
chapter present snippets of code that will complete the tasks, but, as ever, you
may find that your code differs from the answers provided. This is to be
expected and is not something that should concern you as there are usually
many ways to achieve the same objectives.

The tasks seek to extend the mapping skills that you have acquired through
this chapter (as a reminder, the expectation is that you run the code embedded
in the text throughout the book) and in places greater detail and explanation
of the specific techniques are given. Four general areas are covered:

Plots and maps: working with map data
Misrepresentation of continuous variables: using different cut functions
for choropleth mapping
Selecting data: creating variables and subsetting data using logical
statements
Re-projections: transforming data using spTransform

Self-Test Question 1. Plots and maps: working with map data

Your task is to write code that will produce a map of the counties in Georgia,
shaded in a colour scheme of your choice but using 10 classes describing the
distribution of median income in thousands of dollars (this is described by the
MedInc attribute in the data frame). The maps should include a scale bar and
a legend, and the code should write the map to a TIFF file, with a resolution
of 300 dots per inch and a map size of 7 × 7 inches.

# Hints

display.brewer.all() # to show the Brewer palettes

breaks        # to specify class breaks OR

style        # in the tm_fill / tm_polygons help

# Tools

library(ggplot2) # for the mapping tools

data(georgia)     # the Georgia data in the GISTools package



st_as_sf(georgia) # to convert the data to sf format

tm_layout      # takes many parameters, e.g. legend.position

Self-Test Question 2. Misrepresentation of continuous variables: using
different breaks for choropleth mapping

It is well known that it is very easy to lie with maps (see Monmonier, 1996).
One of the very commonly used tricks for misrepresenting the spatial
distribution of phenomena relates to the inappropriate categorisation of
continuous variables. Your aim in this exercise is to produce three maps that
represent the same feature, and in so doing you will investigate the impact of
different functions for grouping the continuous variable in the choropleth
maps.

Write code that will create three maps, in the same window, of the numbers
of houses in the New Haven census blocks. This is described by the
HSE_UNITS variable. Apply different functions to divide the HSE_UNITS
variable in the blocks dataset into five classes in different ways based on
quantiles, absolute ranges, and standard deviations. You need not add
legends, scale bars, etc., but should include map titles.

# Hints

p1 <- tm_shape(...) # assign the plots to a variable

pushViewport          # from the grid package, used earlier...

viewport       # ...to plot multiple tmaps

?quantileCuts    # quantiles, ranges std.dev...

?rangeCuts      # ... from GISTools package

?sdCuts

breaks        # to specify breaks in tm_polygon

tmap_mode(’plot’) # to specify a map view

# Tools

library(tmap)       # for the mapping tools

library(grid)       # for plotting the maps together



data(newhaven)   # to load the New Haven data

Self-Test Question 3. Selecting data: creating variables and subsetting
data using logical statements

In the previous sections on mapping polygon attributes and mapping lines,
different methods for selecting or subsetting the spatial data were introduced.
These applied an overlay of spatial data using st_intersection in the st
package to select roads within the extent of an st polygon object, and logical
operators were used to select earthquake locations that satisfied specific
criteria. Additionally, logical operators were introduced in the previous
chapter. When applied to a variable they return true or false statements or
more correctly logical data types. In this exercise, the objective is to create a
secondary attribute and then to use a logical statement to select data objects
when applied to the attribute you create.

A company wishes to market a product to the population in rural areas. The
company has a model that says that they will sell one unit of their product for
every 20 people in rural areas who are visited by one of their sales team, and
they would like to know which counties have a rural population density of
more than 20 people per square kilometre. Using the Georgia data, you
should develop some code that selects counties based on a rural population
density measure. You will need to calculate for each county some kind of
rural population density score and map the counties in Georgia that have a
score of greater than 20 rural people per square kilometre.

# Hints

library(GISTools) # for the mapping tools

data(georgia)   # use georgia2 as it has a geographical projection

help("!") # to examine logic operators

as.numeric # use to coerce new attributes you create to numeric format

# e.g. georgia.sf$NewVariable <- as.numeric(1:159)

# Tools

st_area # a function in the st package



Self-Test Question 4. Re-projections: transforming data using
spTransform and st_transform

Spatial data come with projections, which define an underlying geodetic
model over which the spatial data are projected. Different spatial datasets
need to be aligned over the same projection for the spatial features they
describe to be compared and analysed together. National grid projections
typically represent the world as a flat surface and allow distance and area
calculations to be made, which cannot be so easily done using models that
use degrees and minutes. World geodetic systems such as WGS84 provide a
standard reference system. For example, in the previous question you worked
with the georgia2 dataset which is projected in metres, whereas georgia is
projected in degrees in WGS84. And, when you plotted the Georgia subset
with an OpenStreetMap backdrop, a transform operation was used to convert
the data to the projection used in OpenStreetMap plotting. A range of
different projections are described in formats for different packages and
software on the Spatial Reference website (http://www.spatialreference.org).
A typical re-projection would be something like:

# Using spTransform in sp

new.spatial.data <- spTransform(old.spatial.data, new.Projection)

# Using st_transform in sf

new.spatial.data.sf <- st_transform(old.spatial.data.sf, new.Projection)

You should note that the data need to have a projection in order to be
transformed. Projections can be assigned if you know what the projection is.
Recall the code from earlier in this chapter using the Fiji earthquake data
which assigned a projection to the coordinates:

library(GISTools)

library(rgdal)

library(sf)

data(quakes)

coords.tmp <- cbind(quakes$long, quakes$lat)

http://www.spatialreference.org)


# create the SpatialPointsDataFrame

quakes.sp <- SpatialPointsDataFrame(coords.tmp, data = data.frame(quakes),

proj4string = CRS("+proj=longlat "))

You can examine the projection properties of the SpatialPointsDataFrame
and sf objects after the latter is created, by entering:

summary(quakes.spdf)

quakes_sf <- st_as_sf(quakes.sp)head(quakes.sf)

If the proj4string properties of sp and sf objects are empty, these can be
populated if you know the spatial reference system and then the data can be
transformed.

The objective of this exercise is to re-project the New Haven blocks and
breach datasets from their original reference system to WGS84, using both
the st_transform function in sf and the spTransform function in rgdal, and
then to plot these transformed data on an OpenStreetMap backdrop. You may
find it useful to use a transparency term in your colours.

These datasets have a local projections system, using the State Plane
Coordinate System for Connecticut, in US survey feet. You should transform
the breaches of the peace and the census blocks data to latitude and longitude
by assigning a projection using the CRS function in the sp package and st_crs
function in the sf package. Then the spTransform and st_transform functions
can be applied. Having transformed the datasets, you should map the
locations of the breaches of peace and the census blocks with an
OpenStreetMap backdrop. You could use the OpenStreetMap tools directly
and/or the Leaflet embedded in the tmap tools when tmap_mode is set to
’view’.

3.8 Answers to Self-Test Questions
Q1: Plots and maps: working with map data. Your map should look
something like Figure 3.26.



# load the data and the packages

library(GISTools)

library(sf)

library(tmap)

data(georgia)

# set the tmap plot type

tmap_mode(’plot’)

# convert to sf format

georgia_sf = st_as_sf(georgia)

# create the variable

georgia_sf$MedInc = georgia_sf$MedInc / 1000

# open the tiff file and give it a name

tiff("my_map.tiff")

# start the tmap commands

tm_shape(georgia_sf) + tm_polygons("MedInc", title = "Median Income", palette =
"GnBu",           style = "equal", n = 10) +

tm_layout(legend.title.size = 1, legend.format = list(digits = 0), legend.position = c(0.2,
"top")) +

tm_legend(legend.outside=TRUE)

# close the tiff file

dev.off()

Figure 3.26 The map produced by the code for Q1



Q2: Misrepresentation of continuous variables – using different breaks for
choropleth mapping. Your map should look something like Figure 3.27.

# load packages and data

library(tmap)

library(GISTools)

library(sf)

library(grid)

data(newhaven)

# convert data to sf format

blocks_sf = st_as_sf(blocks)

# 1. Initial Investigation

# You could start by having a look at the data



attach(data.frame(blocks_sf))

hist(HSE_UNITS, breaks = 20)

# You should notice that it has a normal distribution

# but with some large outliers

# Then examine different cut schemes

quantileCuts(HSE_UNITS, 6)

rangeCuts(HSE_UNITS, 6)

sdCuts(HSE_UNITS, 6)

# detach the data frame

detach(data.frame(blocks_sf))

# 2. Do the task

# a) mapping classes defined by quantiles

# define some breaks

br <- c(0, round(quantileCuts(blocks_sf$HSE_UNITS, 6),0))

# you could examine br

p1 <- tm_shape(blocks_sf) + tm_polygons("HSE_UNITS", title="Quantiles",

   palette="Reds", breaks=br)

# b) mapping classes defined by absolute ranges

# define some breaks

br <- c(0, round(rangeCuts(blocks$HSE_UNITS, 6),0))

# you could examine br

p2 <- tm_shape(blocks_sf) + tm_polygons("HSE_UNITS", title="Ranges",
palette="Reds", breaks=br)

# c) mapping classes defined by standard deviations

br <- c(0, round(sdCuts(blocks$HSE_UNITS, 6),0))

# you could examine br

p3 <- tm_shape(blocks_sf) + tm_polygons("HSE_UNITS", title="Std Dev",



palette="Reds", breaks=br)

# open a new plot page

grid.newpage()

# set up the layout

pushViewport(viewport(layout=grid.layout(1,3)))

# plot using the print command

print(p1, vp=viewport(layout.pos.col = 1, height = 5))

print(p2, vp=viewport(layout.pos.col = 2, height = 5))

print(p3, vp=viewport(layout.pos.col = 3, height = 5))

Figure 3.27 The map produced by the code for Q2

Q3: Selecting data: creating variables and subsetting data using logical
statements. The code is below and your map should look something like
Figure 3.28.

library(GISTools)

library(sf)

data(georgia)

# convert data to sf format

georgia_sf = st_as_sf(georgia2)

# calculate rural population

georgia_sf$rur.pop <- as.numeric(georgia_sf$PctRural



 ∗ georgia_sf$TotPop90 / 100)

# calculate county areas in km^2

georgia_sf$areas <- as.numeric(st_area(georgia_sf)

/ (1000∗ 1000))

# calculate rural density

georgia_sf$rur.pop.den <- as.numeric(georgia_sf$rur.pop

/ georgia_sf$areas)

# select counties with density > 20

georgia_sf$rur.pop.den <- (georgia_sf$rur.pop.den > 20)

# map them

tm_shape(georgia_sf) + tm_polygons("rur.pop.den",

palette=c("chartreuse4","darkgoldenrod3"),

title=expression("Pop >20 (per " ∗ km^2 ∗ ")"), auto.palette.mapping = F)

Figure 3.28 The map produced by the code for Q3



Q4: Transforming data. Your map should look something like Figure 3.29 or
Figure 3.30, depending on which way you did it! First you will need to
transform the data:

library(GISTools) # for the mapping tools

library(sf) # for the mapping tools

library(rgdal)   # this has the spatial reference tools

library(tmap)

library(OpenStreetMap)

data(newhaven)



# Define a new projection

newProj <- CRS("+proj=longlat +ellps=WGS84")

# Transform blocks and breach

# 1. using spTransform

breach2 <- spTransform(breach, newProj)

blocks2 <- spTransform(blocks, newProj)

# 2. using st_transform

breach_sf <- st_as_sf(breach)

blocks_sf <- st_as_sf(blocks)

breach_sf <- st_transform(breach_sf, "+proj=longlat +ellps=WGS84")

blocks_sf <- st_transform(blocks_sf, "+proj=longlat +ellps=WGS84")

Then the transformed data can be mapped using Leaflet in the tmap package:

# set the mode

tmap_mode(’view’)

# plot the blocks

tm_shape(blocks_sf) + tm_borders() +

# and then plot the breaches

tm_shape(breach_sf) +

     tm_dots(shape=1, size=0.1, border.col = NULL, col = "red", alpha = 0.5)

It can also be mapped using the OpenStreetMap package. For this you need
to extract the map tiles using the bounding box of the transformed data:

ul <- as.vector(cbind(bbox(blocks2)[2,2], bbox(blocks2)[1,1]))

lr <- as.vector(cbind(bbox(blocks2)[2,1], bbox(blocks2)[1,2]))

# download the map tile

MyMap <- openmap(ul,lr)



# now plot the layer and the backdrop

par(mar = c(0,0,0,0))

plot(MyMap, removeMargin=FALSE)

# notice how the data need to be transformed

# to the internal OpenStreetMap projection

plot(spTransform(blocks2, osm()), add = TRUE, lwd = 1)

plot(spTransform(breach2, osm()), add = T, pch = 19, col = "#DE2D2650")

Figure 3.29 The tmap map produced by the code for Q4

Figure 3.30 The OpenStreetMap map produced by the code for Q4



References
Anselin, L. (1995) Local indicators of spatial association – Lisa.

Geographical Analysis, 27(2): 93–115.

Brunsdon, C. and Chen, H. (2014) GISTools: Some further GIS capabilities
for R. R Package Version 0.7-4. http://cran.r-
project.org/package=GISTools.

de Vries, A. and Meys, J. (2012) R for Dummies. Chichester: John Wiley &

http://cran.r-project.org/package=GISTools


Sons.

Hijmans, R.J. and van Etten, J. (2014) Raster: Geographic data analysis and
modeling. R Package Version 2.6-7. http://cran.r-
project.org/package=raster.

Monmonier, M. (1996) How to Lie with Maps, 2nd edition. Chicago:
University of Chicago Press.

Ord, J.K. and Getis, A. (1995) Local spatial autocorrelation statistics:
Distributional issues and an application. Geographical Analysis, 27(4):
286–306.

Pebesma, E., Bivand, R., Cook, I., Keitt, T., Sumner, M., Lovelace, R.,
Wickham, H., Ooms, J. and Racine, E. (2016) sf: Simple features for R. R
Package Version 0.6-3. http://cran.r-project.org/package=sf.

Tennekes, M. (2015) tmap: Thematic maps. R Package Version 1.
http://cran.r-project.org/package=tmap.

http://cran.r-project.org/package=raster
http://cran.r-project.org/package=sf
http://cran.r-project.org/package=tmap


4 Scripting and Writing Functions in R

4.1 Overview
As you have been working through the code and exercises in this book you
have applied a number of different tools and techniques for extracting,
displaying and analysing data. In places you have used some quite advanced
snippets of code. However, this has all been done in a step-by-step manner,
with each line of code being run individually, and the occasional function has
been applied individually to a specific dataset or attribute. Quite often in
spatial analysis, we would like to do the same thing repeatedly, but adjusting
some of the parameters on each iteration – for example, applying the same
algorithm to different data, different attributes, or using different thresholds.
The aim of this chapter is to introduce some basic programming principles
and routines that will allow you to do many things repeatedly in a single
block of code. This is the basics of writing computer programs. This chapter
will:

Describe how to combine commands into loops
Describe how to control loops using if, else, repeat, etc.
Describe logical operators to index and control
Describe how to create functions, test them and to make them universal
Explain how to automate short tasks in R
Introduce the apply family of operations and how they can be used to
apply functions to different data structures
Introduce dplyr functions for data table manipulations and operations

4.2 Introduction
In spatial data analysis and mapping, we frequently want to apply the same
set of commands over and over again, to cycle through data or lists of data
and do things to data depending on whether some condition is met or not, and
so on. These types of repeated actions are supported by functions, loops and
conditional statements. A few simple examples serve to illustrate how R



programming combines these ideas through functions with conditional
commands, loops and variables.

For example, consider the following variable tree.heights:

tree.heights <- c(4.3,7.1,6.3,5.2,3.2)

We may wish to print out the first element of this variable if it has a value
less than 6: this is a conditional command as the operation (in this case to
print something) is carried out conditionally (i.e. if the condition is met).

tree.heights

[1] 4.3 7.1 6.3 5.2 3.2

if (tree.heights[1] < 6) { cat(’Tree is small\n’) } else

{ cat(’Tree is large\n’)}

Tree is small

Alternatively, we may wish to examine all of the elements in the variable
tree.heights and, depending on whether each individual value meets the
condition, perform the same operation. We can carry out operations
repeatedly using a loop structure as follows. Notice the construction of the for
loop in the form:

for(variable in sequence) R expression

This is illustrated in the code below:

for (i in 1:3) {

if (tree.heights[i] < 6) { cat(’Tree’,i,’ is small\n’) }

else { cat(’Tree’,i,’ is large\n’)} }

Tree 1 is small

Tree 2 is large



Tree 3 is large

A third situation is where we wish to perform the same set of operations,
group of conditional or looped commands over and over again, perhaps to
different data. We can do this by grouping code and defining our own
functions.

assess.tree.height <- function(tree.list, thresh)

{ for (i in 1:length(tree.list))

{ if(tree.list[i] < thresh) {cat(’Tree’,i, ’ is small\n’)}

else { cat(’Tree’,i,’ is large\n’)}

}

}

assess.tree.height(tree.heights, 6)

Tree 1 is small

Tree 2 is large

Tree 3 is large

Tree 4 is small

Tree 5 is small

tree.heights2 <- c(8,4.5,6.7,2,4)

assess.tree.height(tree.heights2, 4.5) Tree 1 is large

Tree 2 is large

Tree 3 is large

Tree 4 is small

Tree 5 is small

Notice how the code in the function assess.tree.height above modifies the
original loop: rather than for(i in 1:3) it now uses the length of the variable
1:length(tree.list) to determine how many times to loop through the data.
Also a variable thresh was used for whatever threshold the user wishes to



specify.

The sections in this chapter develop more detailed ideas around functions,
loops and conditional statements and the testing and debugging of functions
in order to support automated analyses in R.

4.3 Building Blocks for Programs
In the examples above, a number of programming concepts were introduced.
Before we start to develop these more formally into functions it is important
to explain these ingredients in a bit more detail.

4.3.1 Conditional Statements
Conditional statements test to see whether some condition is TRUE or
FALSE, and if the answer is TRUE some specific actions are undertaken.
Conditional statements are composed of if and else.

The if statement is followed by a condition, an expression that is evaluated,
and then a consequent to be executed if the condition is TRUE. The format of
an if statement is:

if – condition – consequent

Actually this could be read as ‘if the condition is true then the consequent
is…’. The components of a conditional statement are:

the condition, an R expression that is either TRUE or FALSE
the consequent, any valid R statement which is only executed if the
condition is TRUE

For example, consider the simple case below where the value of x is changed
and the same condition is applied. The results are different because of the
different values assigned to x: in the first case a statement is printed to the
console, in the second it is not.



x <- −7

if (x < 0) cat("x is negative")

x is negative

x <- 8

if (x < 0) cat("x is negative")

Frequently if statements also have an alternative consequent that is executed
when the condition is FALSE. Thus the format of the conditional statement is
expanded to:

if – condition-– consequent– else – alternative

Again, this could be read as ‘if the condition is true then do the consequent;
or, if the condition is not true then do the alternative’. The components of a
conditional statement that includes an alternative are:

the condition, an R expression that is either TRUE or FALSE
the consequent and alternative, which can be any valid R statements
the consequent is executed if the condition is TRUE
the alternative is executed if the condition is FALSE

The example is expanded below to accommodate the alternative:

x <- −7

if (x < 0) cat("x is negative") else cat("x is positive")

x is negative

x <- 8

if (x < 0) cat("x is negative") else cat("x is positive")

x is positive

The condition statement is composed of one or more logical operators and in
R these are defined in Table 4.1. In addition, R contains a number of logical



functions which can also be used to evaluate conditions. A sample of these is
listed in Table 4.2 but many others exist.

Table 4.1

Table 4.2

There are quite a few more is-type functions (i.e. logical evaluation
functions) that return TRUE or FALSE statements that can be used to
develop conditional tests. To explore these enter:

??is.

The examples below illustrate how the logical tests all and any may be
incorporated into conditional statements:

x <- c(1,3,6,8,9,5)

if (all(x > 0)) cat("All numbers are positive")

All numbers are positive



x <- c(1,3,6,−8,9,5)

if (any(x > 0)) cat("Some numbers are positive")

Some numbers are positive

any(x==0)

[1] FALSE

4.3.2 Code Blocks
Frequently we wish to execute a group of consequent statements together if,
for example, some condition is TRUE. Groups of statements are called code
blocks and in R are contained by { and }. The examples below show how
code blocks can be used if a condition is TRUE to execute consequent
statements and can be expanded to execute alternative statements if the
condition is FALSE.

x <- c(1,3,6,8,9,5)

if (all(x > 0)) {

cat("All numbers are positive\n")

total <- sum(x)

cat("Their sum is ",total) }

All numbers are positive

Their sum is 32

The curly brackets are used to group the consequent statements: that is, they
contain all of the actions to be performed if the condition is met (i.e. is
TRUE) and all of the alternative actions if the condition is not met (i.e. is
FALSE):

if condition { consequents } else { alternatives }

These are illustrated in the code below:



x <- c(1,3,6,8,9,−5)

if (all(x > 0)) {

cat("All numbers are positive\n")

total <- sum(x)

cat("Their sum is ",total) } else {

cat("Not all numbers are positive\n")

cat("This is probably an error as numbers are rainfall levels") }

Not all numbers are positive

This is probably an error as numbers are rainfall levels

4.3.3 Functions
The introductory section above included a function called assess.tree.height.
The format of a function is:

function name <- function(argument list) { R expression }

The R expression is usually a code block and in R the code is contained by
curly brackets or braces: { and }. Wrapping the code into a function allows it
to be used without having to retype the code each time you wish to use it.
Instead, once the function has been defined and compiled, it can be called
repeatedly and with different arguments or parameters. Notice in the function
below that there are a number of sets of containing brackets { } that are
variously related to the condition, the consequent and the alternative.

mean.rainfall <- function(rf)

{ if (all(rf> 0))          #open Function

{ mean.value <- mean(rf)     #open Consequent

  cat("The mean is ",mean.value)

} else          #close Consequent



{ cat("Warning: Not all values are positive\n") #open Alternative

}            #close Alternative

}             #close Function

mean.rainfall( c(8.5,9.3,6.5,9.3,9.4))

The mean is 8.6

More commonly, functions are defined that do something to the input
specified in the argument list and return the result, either to a variable or to
the console window, rather than just printing something out. This is done
using return() within the function. Its format is return(R expression).
Essentially what this does if it is used in a function is to make R expression
the value of the function. In the following code the mean.rainfall2 function
now returns the mean of the data passed to it, and this is assigned to another
variable:

mean.rainfall2 <- function(rf) {

if ( all(rf > 0)) {

return( mean(rf))} else {

return(NA)}

}

mr <- mean.rainfall2(c(8.5,9.3,6.5,9.3,9.4))

mr

[1] 8.6

I

Notice that the code blocks used in the functions contained within the curly brackets or
braces { and } are indented. There are a number of commonly accepted protocols for doing
this but no unique one. The aim is to make the code and the nesting of sub-clauses indicated
by { and } clear. In the code for mean.rainfall above, { is used before the first line of the
code block, whereas for mean.rainfall.2 the { is positioned immediately after the function
declaration.

It is possible to declare variables inside functions, and you should note that



these are distinct from external variables with the same name. Consider the
internal variable rf in the mean.rainfall2 function above. Because this is a
variable that is internal to the function, it only exists within the function and
will not alter any external variable of the same name. This is illustrated in the
code below.

rf <- "Tuesday"

mean.rainfall2(c(8.5,9.3,6.5,9.3,9.4))

[1] 8.6

rf

[1] "Tuesday"

4.3.4 Loops and Repetition
Very often, we would like to run a code block a certain number of times, for
example for each record in a data frame or a spatial data frame. This is done
using for loops. The format of a loop is:

for( ’loop variable’ in ’list of values’ ) do R expression

Again, typically code blocks are used, as in the following example of a for
loop:

for (i in 1 :5) {

i.cubed <- i ∗ i ∗ i

cat("The cube of",i,"is ",i.cubed,"\n")}

The cube of 1 is 1

The cube of 2 is 8

The cube of 3 is 27

The cube of 4 is 64

The cube of 5 is 125



When working with a data frame and other tabular-like data structures, it is
common to want to perform a series of R expressions on each row, on each
column or on each data element. In a for loop the list of values can be a
simple sequence of 1 to n (1:n), where n is related to the number of rows or
columns in a dataset or the length of the input variable as in the
assess.tree.height function above.

However, there are many other situations when a different list of values is
required. The function seq is a very useful helper function that generates
number sequences. It has the following formats:

seq(from, to, by = step value)

or

seq(from, to, length = sequence length)

In the example below, it is used to generate a sequence of 0 to 1 in steps of
0.25:

for (val in seq(0,1,by=0.25)) {

   val.squared <- val ∗ val

cat("The square of",val,"is ",val.squared,"\n")}

The square of 0 is 0

The square of 0.25 is 0.0625

The square of 0.5 is 0.25

The square of 0.75 is 0.5625

The square of 1 is 1

Conditional loops are very useful when you wish to run a code block until a
certain condition is met. In R these can be specified using the repeat and
break functions. Here is an example:



i <- 1; n <- 654

repeat{

 i.squared <- i ∗ i

if (i.squared > n) break

i <- i + 1}

cat("The first square number exceeding",n, "is ",i.squared,"\n")

The first square number exceeding 654 is 676

Finally, it is possible to include loops in functions as in the following
example with a conditional loop:

first.bigger.square <- function(n) {

i <- 1

repeat{

i.squared <- i ∗ i

if (i.squared > n) break

i <- i + 1 }

return(i.squared)}

first.bigger.square(76987)

[1] 77284

4.3.5 Debugging
As you develop your code and compile it into functions, especially initially,
you will probably encounter a few teething problems: hardly any function of
reasonable size works first time! There are two general kinds of problem:

The function crashes (i.e. it throws up an error)
The function does not crash, but returns the wrong answer



Usually the second kind of error is the worst. Debugging is the process of
finding the problems in the function. A typical approach to debugging is to
‘step’ through the function line by line and in so doing find out where a crash
occurs, if one does. You should then check the values of variables to see if
they have the values they are supposed to. R has tools to help with this.

To debug a function:

Enter debug(function name)
Then call the function

For example, enter:

debug(mean.rainfall2)

Then just use the function you are trying to debug and R goes into ‘debug
mode’:

mean.rainfall2(c(8.5,9.3,6.5,9.3,9.4))

[1] 8.6

You will notice that the prompt becomes Browse[2]> and the line of the
function about to be executed is listed. You should note a number of features
associated with debug:

Entering a return executes it, and debug goes to next line
Typing in a variable lists the value of that variable
R can ‘see’ variables that are specific to the function
Typing in any other command executes that command

When you enter c the return runs to the end of a loop/function/block. Typing
in Q exits the function. To return to normal enter undebug(function name)
and note that if there are no bugs, entering c has the same effect as undebug.

A final comment is that learning to write functions and programming is a bit
like learning to drive: you may pass the test, but you will become a good
driver by spending time behind the wheel. Similarly, the best way to learn to



write functions is to practise, and the more you practise the better you will get
at programming. You should try to set yourself various function writing tasks
and examine the functions that are introduced throughout this book. Most of
the commands that you use in R are functions that can themselves be
examined: entering them without any brackets afterwards will reveal the
blocks of code they use. Have a look at the ifelse function by entering at the
R prompt:

ifelse

This allows you to examine the code blocks, the control, etc., in existing
functions.

4.4 Writing Functions

4.4.1 Introduction
In this section you will gain some initial experience in writing functions that
can be used in R, using a number of coding illustrations. You should enter the
code blocks for these, compile them and then run them with some data to
build up your experience. Unless you already have experience in writing
code, this will be your first experience of programming. This section contains
a series of specific tasks for you to complete in the form of self-test
questions. The answers to the questions are provided in the final section of
the chapter.

In the preceding section, the basic idea of writing functions was described.
You can write functions directly by entering them at the R command line:

cube.root <- function(x) {

  result <- x ^ (1/3)

  return(result)}

cube.root(27)

[1] 3



Note that ^ means ‘raise to the power’, and recall that a number to the power
of one-third is its cube root. The cube root of 27 is 3, since 27 = 3 × 3 × 3,
hence the answer printed out for cube.root(27). However, entering functions
from the command line is not always very convenient:

If you make a typing error in an early line of the definition, it is not
possible to go back and correct it
You would have to type in the definition every time you used R

A more sensible approach is to type the function definition into a text file. If
you write this definition into a file – calling it, say, functions.R – then you
can load this file when you run R, without having to type in the whole
definition. Assuming you have set R to work in the directory where you have
saved this file, just enter:

source("functions.R")

This has the same effect of entering the entire function at the command line.
In fact any R commands in a file (not just function definitions) will be
executed when the source function is used. Also, because the function
definition is edited in a file, it is always possible to return to any typing errors
and correct them – and if a function contains an error, it is easy to correct this
and just redefine the function by re-entering the command above. Using an
editor for writing and saving R code was introduced in previous chapters.

Open a new R script or editing window. In it, enter in the code for the
program:

cube.root <- function(x) {

result <- x ^ (1/3)

return(result)}

Then use Save As to save the file as functions.R in the directory you are
working in. In R you can now use source as described:

source(’functions.R’)



cube.root(343)

cube.root(99)

Note that you can type in several function definitions in the same file. For
example, underneath the code for the cube.root function, you should define a
function to compute the area of a circle. Enter:

circle.area <- function(r) {

result <- pi ∗ r ^ 2

return(result)}

If you save the file and enter source(’functions.R’) again then the function
circle.area will be defined as well as cube.root. Enter:

source(’functions.R’)

cube.root(343)

circle.area(10)

4.4.2 Data Checking
One issue when writing functions is making sure that the data that have been
given to the function are the right kind. For example, what happens when you
try to compute the cube root of a negative number?

cube.root(−343)

[1] NaN

That probably was not the answer you wanted. NaN stands for ‘not a
number’, and is the value returned when a mathematical expression is
numerically indeterminate. In this case, this is actually due to a shortcoming
with the ^ operator in R, which only works for positive base values. In fact
−7 is a perfectly valid cube root of −343, since (−7) × (−7) × (−7) = −343. In
fact we can state a conditional rule:



If x ≥ 0: calculate the cube root of x normally
Otherwise: use cube.root(-x)

That is, for cube roots of negative numbers, work out the cube root of the
positive number, then change it to negative. This can be dealt with in an R
function by using an if statement:

cube.root <- function(x) {

  if (x >= 0) {

result <- x ^ (1/3) } else {

result <- -(-x) ^ (1/3) }

return(result)}

Now you should go back to the text editor and modify the code in functions.R
to reflect this. You can do this by modifying the original cube.root function.
You can now save this edited file, and use source to reload the updated
function definition. The function should work with both positive and negative
values.

cube.root(3)

[1] 1.44225

cube.root(−3)

[1] −1.44225

Next, try debugging the function – since it is working properly, you will not
(hopefully!) find any errors, but this will demonstrate the debug facility.
Enter:

debug(cube.root)

at the R command line (not in the file editor!). This tells R that you want to
run cube.root in debug mode. Next, enter:



cube.root(−50)

at the R command line and see how repeatedly pressing the return key steps
you through the function. Note particularly what happens at the if statement.

At any stage in the process you can type an R expression to check its value.
When you get to the if statement enter:

x > 0

at the command line and press Return to see whether it is true or false.
Checking the value of expressions at various points when stepping through
the code is a good way of identifying potential bugs or glitches in your code.
Try running through the code for a few other cube root calculations, by
replacing −50 above with different numbers, to get used to using the
debugging facility. When you are finished, enter:

undebug(cube.root)

at the R command line. This tells R that you are ready to return cube.root to
running in normal mode. For further details about the debugger, at the
command line enter:

help(debug)

4.4.3 More Data Checking
In the last section, you saw how it was possible to check for negative values
in the cube.root function. However, other things can go wrong. For example,
try entering:

cube.root(’Leeds’)

This will cause an error to occur and to be printed out by R. This is not
surprising because cube roots only make sense for numbers, not character



variables. However, it might be helpful if the cube root function could spot
this and print a warning explaining the problem, rather than just crashing with
a fairly obscure error message such as the one above, as it does at the
moment. Again, this can be dealt with using an if statement. The strategy to
handle this is:

If x is numerical: compute its cube root
If x is not numerical: print a warning message explaining the problem

Checking whether a variable is numerical can be done using the is.numeric
function:

is.numeric(77)

is.numeric("Lex")

is.numeric("77")

v <- "Two Sevens Clash"

is.numeric(v)

The function could be rewritten to make use of is.numeric in the following
way:

cube.root <- function(x) {

if (is.numeric(x)) {

if (x >= 0) { result <- x^(1/3) }

  else { result <- -(-x)^(1/3) }

  return(result) }

else {

  cat("WARNING: Input must be numerical, not character\n")

return(NA)}

}

Note that here there is an if statement inside another if statement – this is an



example of a nested code block. Note also that when no proper result is
defined, it is possible to return the value NA instead of a number (NA stands
for ‘not available’). Finally, recall that the \n in the cat statement tells R to
add a carriage return (new line) when printing out the warning. Try updating
your cube root function in the editor with this latest definition, and then try
using it (in particular with character variables) and stepping through it using
debug.

An alternative way of dealing with cube roots of negative numbers is to use
the R functions sign and abs. The function sign(x) returns a value of 1 if x is
positive, −1 if it is negative, and 0 if it is zero. The function abs(x) returns the
absolute value of x without the sign, so for example abs(−7) is 7, and abs(5)
is 5. This means that you can specify the core statement in the cube root
function without using an if statement to test for negative values, as:

result <- sign(x)∗abs(x)^(1/3)

This will work for both positive and negative values of x.

Self-Test Question 1. Define a new function cube.root.2 that uses this
way of computing cube roots – and also include a test to make sure x is
a numerical variable, and print out a warning message if it is not.

4.4.4 Loops Revisited
In this section you will revisit the idea of looping in function definitions.
There are two main kinds of loops in R: deterministic and conditional loops.
The former are executed a fixed number of times, specified at the beginning
of the loop. The latter are executed until a specific condition is met.

4.4.4.1 Conditional Loops
A very old example of a conditional loop is Euclid’s algorithm. This is a
method for finding the greatest common divisor (GCD) of a pair of numbers.
The GCD of a pair of numbers is the largest number that divides exactly (i.e.
with remainder zero) into each number in the pair. The algorithm is set out



below:

1. Take a pair of numbers a and b – let the dividend be max(a, b), and the
divisor be min(a, b).

2. Let the remainder be the arithmetic remainder when the dividend is
divided by the divisor.

3. Replace the dividend with the divisor.
4. Replace the divisor with the remainder.
5. If the remainder is not equal to zero, repeat from step 2 to here.
6. Once the remainder is zero, the GCD is the dividend.

Without considering in depth the reasons why this algorithm works, it should
be clear that it makes use of a conditional loop. The test to see whether
further looping is required in step 5 above. It should also be clear that the
divisor, dividend and remainder are all variables. Given these observations,
we can turn Euclid’s algorithm into an R function:

gcd <- function(a,b)

{

  divisor <- min(a,b)

  dividend <- max(a,b)

  repeat

{ remainder <- dividend %% divisor

    dividend <- divisor

divisor <- remainder

if (remainder == 0) break

}

return(dividend)

}

The one unfamiliar thing here is the %% symbol. This is just the remainder
operator – the value of x %% y is the remainder when x is divided by y.



Using the editor, create a definition of this function, and read it into R. You
can put the definition into functions.R. Once the function is defined, it may
be tested:

gcd(6,15)

gcd(25,75)

gcd(31,33)

Self-Test Question 2. Try to match up the lines in the function
definition with the lines in the description of Euclid’s algorithm. You
may also find it useful to step through an example of gcd in debug
mode.

4.4.4.2 Deterministic Loops
As described in earlier sections, the form of a deterministic loop is:

for (<VAR > in <Item1 > :<Item2 >)

{

... code in loop ...

   }

where <VAR> refers to the looping variable. It is common practice to refer to
<VAR> in the code in the loop. <Item1> and <Item2> refer to the range of
values over which <VAR> loops. For example, a function to print the cube
roots of numbers from 1 to n takes the form:

cube.root.table <- function(n)

{

for (x in 1 :n)

{

cat("The cube root of ",x," is", cube.root(x),"\n")



}

}

Self-Test Question 3. Write a function to compute and print out
GCD(x,60) for x in the range 1 to n. When this is done, write another
function to compute and print out GCD(x,y) for x in the range 1 to n1
and y in the range 1 to n2. In this exercise you will need to nest one
deterministic loop inside another one.
Self-Test Question 4. Modify the cube.root.table function so that the
loop variable runs from 0.5 in steps of 0.5 to n. The key to this is
provided in the descriptions of loops in the sections above.

4.4.5 Further Activity
You will notice that in the previous example the output is rather messy, with
the cube roots printing to several decimal places – it might look neater if you
could print to fixed number of decimal places. In the function cube.root.table
replace the cat line with:

cat(sprintf("The cube root of %4.0f is %8.4f \n",x, cube.root(x)))

Then enter help(sprintf) and try to work out what is happening in the code
above.

Self-Test Question 5. Create a for loop that cycles through each county
/ row in the data frame of the georgia2 dataset in the GISTools package
and creates a list of the adjacent counties. The code to do this for a
single county, Appling, is as follows:

library(GISTools)

library(sf)

data(georgia)

# create an empty list for the results

adj.list <- list()



# convert georgia to sf

georgia_sf <- st_as_sf(georgia2)

# extract a single county

county.i <- georgia_sf[1,]

# determine the adjacent counties

# the [−1] removes Appling form its own list

adj.i <- unlist(st_intersects(county.i, georgia_sf))[−1]

# extract their names

adj.names.i <- georgia2$Name[adj.i]

# add to the list

adj.list[[1]] <- adj.i

# name the list elements

names(adj.list[[1]]) <- adj.names.i

This creates a list with a single element, with the names of the counties
adjacent to Appling and an index or reference to their location within the
georgia2 dataset.

adj.list

[[1]]

  Bacon Jeff Davis Pierce Tattnall Toombs

    3     80  113  132 138

Wayne

151

Note that once lists are defined as in adj.list in the code above, elements can
be added:

# in sequence

adj.list[[2]] <- sample(1:100, 3)



# or not!

i = 4

adj.list[[i]] <- c("Chris", "and", "Lex")

# have a look!

adj.list

Self-Test Question 6. Take the loop you created in Question 5 and
create a function that returns a list of the indices of adjacent polygons
for each polygon in any polygon dataset in sf or sp format. Hint: you
will need to do any conversions to sf and define the list to be returned
inside the function.

4.5 Spatial Data Structures
This section unpicks some of the detail of spatial data structures in R as a
precursor to manipulating and interrogating spatial data with functions. It
examines their coordinate encoding and briefly revisits their attribute/variable
structures.

To begin with, you will load the GISTools package and the georgia data.
However, before doing this and running the code below, you need to check
that you are in the correct working directory. You should already be in the
habit of doing this at the start of every R session. Also, if this is not a fresh R
session then you should clear the workspace of any variables and functions
you have created. This can be done by entering:

rm(list = ls())

Then load the GISTools package and the Georgia datasets:

library(GISTools)

data(georgia)

One of the variables is called georgia.polys. There are two ways to confirm



this. One way is to type ls() into R. This function tells R to list out all
currently defined variables:

ls()

The other way of checking that georgia.polys now exists is just to type it into
R and see it printed out.

georgia.polys

What is actually printed out has been excluded here, as it would go on for
pages and pages. However, the content of the variable will now be explained.
georgia.polys is a variable of type list, with 159 items in the list. Each item is
a matrix of k rows and 2 columns. The two columns correspond to x and y
coordinates describing a polygon made from k points. Each polygon
corresponds to one of the 159 counties that make up the state of Georgia in
the USA. To check this quickly, enter:

class(georgia.polys)

[1] "list"

head(georgia.polys[[1]])



Each of the list elements, containing the bounding coordinates of each of the
counties in Georgia, can be plotted. Enter the code below to produce Figure
4.1.

Figure 4.1 A simple plot of Appling County and two adjacent counties

# plot Appling

plot(georgia.polys[[1]],asp=1,type=’l’,    xlab = "Easting", ylab = "Northing")

# plot adjacent county outlines

points(georgia.polys[[3]],asp=1,type=’l’, col = "red")

points(georgia.polys[[151]],asp=1,type=’l’, col = "blue", lty = 2)

Notice the use of the plot and points functions as were introduced in Chapter
2.

Figure 4.1 will not win any prizes for cartography – but it should be
recognisable as Appling County, as featured in earlier chapters. However, it
highlights that spatial data objects in R have coordinates whether defined in
the sp and sf packages. The code below extracts the coordinates for the first
polygon in the georgia2 dataset, a SpatialPolygonsDataFrame object that has
the same coordinates as georgia.polys. These are the same as the above.

head(georgia2@polygons[[1]]@Polygons[[1]]@coords)

head(georgia2@data[, 13:14])



If georgia2 is converted to sf format the coordinates are also evident:

g <- st_as_sf(georgia2)

head(g[,13:14])

So we can see that both sp and sf objects explicitly hold the spatial attributes
and the thematic and variable attributes of spatial objects.

4.6 apply Functions
The final sections of this chapter describe a number of different functions that
can make programming easier by offering a number of different ways of
interrogating, manipulating and summarising spatial data, either by their
variable attributes or by their spatial properties. This section examines the
apply family of functions that come with the base installation of R.

Like other programming languages, R includes a group of functions which
are generally termed apply functions. These can be used to apply the same set
of operations over each element in a data object (row, column, list element).
They take some input data and a function as inputs. Here we will briefly
explore three of the most commonly used apply functions: apply, lapply and
mapply.

Load the newhaven data and examine the blocks object. It contains a number
of variables describing the percentage of different ethnicities living in each
census block:

library(GISTools)

data(newhaven)

## the @data route

head(blocks@data[, 14:17])

## the data frame route

head(data.frame(blocks[, 14:17]))



A basic illustration of apply that returns the percentage value of the largest
group in each block is as follows:

apply(blocks@data[,14:17], 1, max)

Have a look at the help for apply. The code above passes the 14th to 17th
columns of the blocks data frame to apply, the 1 is passed to the MARGIN
parameter to indicate that apply will operate over each row, and the function
that is applied is max. Compare the result when the MARGIN parameter is
set to be columns:

apply(blocks@data[,14:17], 2, max)

The code above returns the largest percentage of each ethnic group in any
census block.

Now suppose we wanted to determine which ethnicity formed the largest
group in each block. One way would be to create a for loop. Another would
be to define a function and use apply.

# set up vector to hold result

result.vector <- vector()

for (i in 1:nrow(blocks@data)){

# for each row determine which column has the max value

result.i <- which.max(data.frame(blocks[i,14:17]))

# put into the result vector

result.vector <- append(result.vector, result.i)

}

This can also be determined using apply as in the code below and the two
results compared:

res.vec <-apply(data.frame(blocks[,14:17]), 1, which.max)



# compare the two results

identical(as.vector(res.vec), as.vector(result.vector))

Why use apply? Loops are tractable but slow! Typically apply functions are
much quicker than loops, as is clear if the timings are compared. In many
cases this will not matter, but it will when you have large data or heavy
computations and processing. You may have to define your own functions
and in some cases manipulate the data that are passed to apply, but they are a
very useful family of functions.

# Loop

t1 <- Sys.time()

result.vector <- vector()

for (i in 1:nrow(blocks@data)){

result.i <- which.max(data.frame(blocks[i,14:17]))

result.vector <- append(result.vector, result.i)

}

Sys.time() - t1

# Apply

t1 <- Sys.time()

res.vec <-apply(data.frame(blocks[,14:17]), 1, which.max)

Sys.time() - t1

The second example uses mapply to plot the coordinates of each element of
the georgia.polys list. Here a plot extent has to be defined, and then each
polygon is plotted in turn (actually this is what plotting routines for sf and sp
objects do). One way to do this is as follows:

plot(bbox(georgia2)[1,], bbox(georgia2)[2,], asp = 1,

type=’n’,xlab=’’,ylab=’’,xaxt=’n’,yaxt=’n’,bty=’n’)

for (i in 1:length(georgia.polys)){



  points(georgia.polys[[i]], type=’l’)

# small delay so that you can see the plotting

Sys.sleep(0.05)

}

Another would be use to mapply:

plot(bbox(georgia2) [1,], bbox(georgia2) [2,], asp = 1,

type=’n’,xlab=’’,ylab=’’,xaxt=’n’,yaxt=’n’,bty=’n’)

invisible(mapply(polygon,georgia.polys))

The for loop below returns two objects: count.vec, a vector of the number of
counties within 50 km of each of the 159 counties in the georgia2 dataset;
and a list object with 159 elements of the names of these.

# convert Georgia2 to sf

georgia_sf <- st_as_sf(georgia2)

# create a distance matrix

dMat <- as.matrix(dist(coordinates(georgia2)))

dim(dMat)

# create an empty vector

count.vec <- vector()

# create an empty list

names.list <- list()

# for each county...

for( i in 1:nrow(georgia_sf)) {

  # which counties are within 50km

vec.i <- which(dMat[i,] <= 50000)

# add to the vector



count.vec <- append(count.vec, length(vec.i))

  # find their names

names.i <- georgia_sf$Name[vec.i]

# add to the list

names.list[[i]] <- names.i

}

# have a look!

count.vec

names.list

You could of course use lapply to investigate the list you have just created.
Notice how this does not require a MARGIN to be specified as does apply.
Rather it just requires a function to be applied to each element in a list:

lapply(names.list, length)

Self-Test Question 7. Recode the for loop above into two functions to
be applied to the distance matrix, dMat, and called in a similar way to
the following:

count.vec <- apply(dMat,1.my.func1)

names.list <- apply(dMat,1.my.func2)

4.7 Manipulating Data with dplyr
A second set of very useful tools in the context of programming is provided
by the data table operations within the dplyr package, included within the
tidyverse. These can be used with tabular data, including the data frames
containing the attributes of spatial data. To start you should clear your R
workspace and install and load the tidyverse package and explore the
introduction vignette. Recall that vignettes were introduced in Chapter 3.



vignette("dplyr", package = "dplyr")

For the dplyr vignettes you will also have to install the nycflights13 package
that contains some example data describing flights and airlines, and note that
the default data table format for the tidyverse is tibble.

install.packages("nycflights13")

library("nycflights13")

class(flights)

flights

You can examine the other datasets included in this package as well:

data(package = "nycflights13")

You should explore the different functions for summarising and filtering
individual data tables. The important ones are summarised in Table 4.3.

Table 4.3dplyr

Then you should explore the two-table vignette.



vignette("two-table", package = "dplyr")

Again, you should work through the various join and summary operations in
the two-table vignette. The first command is to select variables from flights to
create flight2.

flights2 <- flights %>% select(year:day,hour,origin,dest,tailnum,carrier)

You will note that the vignette uses the piping syntax. The %>% command
pipes the flights dataset to the select function, specifying the columns of data
to be selected. The result is assigned to flights2. A non-piped version would
be:

flights2 <- select(flights, year:day,hour,origin,dest,tailnum,carrier)

The dplyr package contains a number of methods for summarising and
joining tables, including different _join functions: inner_join, left_join,
right_join, full_join, semi_join and anti_join. You should familiarise yourself
with how these different join functions operate and how they relate to the two
data table inputs they take.

Self-Test Question 8. The code below creates flights2, a tibble data
table in dplyr with variables of the destination (dest), the number of
flights in 2013 (count) and the latitude and longitude of the origin
(OrLat and OrLon) in the New York area.

library(nycflights13)

library(tidyverse)

# select the variables

flights2 <- flights %>% select(origin, dest)

# remove Alaska and Hawaii

flights2 <- flights2[-grep("ANC", flights2$dest),]

flights2 <- flights2[-grep("HNL", flights2$dest),]



# group by destination

flights2 <- group_by(flights2, dest)

flights2 <- summarize(flights2, count = n())

# assign Lat and Lon for Origin

flights2$OrLat <- 40.6925

flights2$OrLon <- −74.16867

# have a look!

flights2

# A tibble: 103 x 4

# ... with 93 more rows

Your task is to join the flights2 data table to the airports dataset and
determine the latitude and longitude of the destinations. A secondary task, if



you wish, is to then map the flights using the gcIntermediate function in the
geosphere package and the datasets in the maps package (both of which you
may need to install).

Some hints about the mapping are provided in the code below. This example
plots two locations and then uses the gcIntermediate function in geosphere to
plot a path between them.

library(maps)

library(geosphere)

# origin and destination examples

dest.eg <- matrix(c(77.1025, 28.7041), ncol = 2)

origin.eg <- matrix(c(−74.16867, 40.6925), ncol = 2)

# map the world from the maps package data

map("world", fill=TRUE, col="white", bg="lightblue")

# plot the points

points(dest.eg, col="red", pch=16, cex = 2)

points(origin.eg, col = "cyan", pch = 16, cex = 2)

# add the route

for (i in 1:nrow(dest.eg)) {

lines(gcIntermediate(dest.eg[i,], origin.eg[i,], n=50,

breakAtDateLine=FALSE, addStartEnd=FALSE,

     sp=FALSE, sepNA), lwd = 2, lty = 2)

}

You may wish to explore the use of other basemaps from the maps package:

map("usa", fill=TRUE, col="white", bg="lightblue")

4.8 Answers to Self-Test Questions



Q1: A new cube root function:

cube.root.2 <- function(x)

{ if (is.numeric(x))

{ result <- sign(x)∗abs(x)^(1/3)

return(result)

} else

{ cat("WARNING: Input must be numerical, not character\n")

return(NA) }

}

Q2: Match up the lines in the gcd function to the lines in the description
of Euclid’s algorithm:

gcd <- function(a,b)

{

   divisor <- min(a,b) # line 1

dividend <- max(a,b) # line 1

repeat #line 5

    { remainder <- dividend %% divisor #line 2

    dividend <- divisor # line 3

divisor <- remainder # line 4

if (remainder == 0) break #line 6

   }

  return(dividend)

}

Q3: (i) Write a function to compute and print out gcd(x,60):



gcd.60 <- function(a)

 {

  for(i in 1:a)

{ divisor <- min(i,60)

    dividend <- max(i,60)

repeat

{ remainder <- dividend %% divisor

       dividend <- divisor

divisor <- remainder

if (remainder == 0) break

}

cat(dividend, "\n")

}

 }

Alternatively you could nest the predefined gcd function inside the modified
one:

gcd.60 <- function(a)

{ for(i in 1:a)

  { dividend <- gcd(i,60)

cat(i,":", dividend, "\n")

}

}

(ii) Write a function to compute and print out gcd(x,y):

gcd.all <- function(x,y)

 { for(n1 in 1:



x) { for (n2 in 1:y)

{ dividend <- gcd(n1, n2)

cat("when x is",n1,"& y is",n2,"dividend =",dividend,"\n")

}

}

}

Q4: Modify cube.root.table to run from 0.5 to n in steps of 0.5. The
obvious solution to this is:

cube.root.table <- function(n)

 { for (x in seq(0.5, n, by = 0.5))

{ cat("The cube root of ",x," is",

     sign(x)∗abs(x)^(1/3),"\n")}

}

However, this will not work when negative values are passed to it: seq cannot
create the array. The function can be modified to accommodate sequences
running from 0.5 to both negative and positive values of n:

cube.root.table <- function(n)

 { if (n < 0 ) by.val = 0.5

if (n < 0 ) by.val =−0.5

for (x in seq(0.5, n, by = by.val))

{ cat("The cube root of ",x," is",

sign(x)∗abs(x)^(1/3),"\n") }

}

Q5: Create a for loop that cycles through each county/row in the data
frame of the georgia2 dataset and creates a list of the adjacent counties.
You were given the code for a single county – this needs to be put into a



loop, replacing the 1 with i or similar.

# create an empty list for the results

adj.list <- list()

# convert georgia to sf

georgia_sf <- st_as_sf(georgia2)

for (i in 1:nrow(georgia_sf)) {

 # extract a single county

county.i <- georgia_sf[i,]

# determine the adjacent counties

# the [−1] removes Appling form its own list

adj.i <- unlist(st_intersects(county.i, georgia_sf))[−1]

# extract their names

adj.names.i <- georgia2$Name[adj.i]

# add to the list

adj.list[[i]] <- adj.i

# name the list elements

names(adj.list[[i]]) <- adj.names.i

}

Q6: Create a function that returns a list of the indices of adjacent
polygons for each polygon in any polygon dataset in sf or sp format.

return.adj <- function(sf.data){

# convert to sf regardless!

 sf.data <- st_as_sf(sf.data)

adj.list <- list()

for (i in 1:nrow(sf.data)) {



# extract a single county

poly.i <- sf.data[i,]

# determine the adjacent counties

  adj.i <- unlist(st_intersects(poly.i, sf.data))[−1]

# add to the list

adj.list[[i]] <- adj.i

  }

return(adj.list)

}

# test it!

return.adj(georgia_sf)

return.adj(blocks)

Q7: Recode the for loop into two functions replicating the functionality
of the loop:

# number of counties within 50km

my.func1 <- function(x){

vec.i <- which(x <= 50000)[−i]

return(length(vec.i))

}

# their names

my.func2 <- function(x){

 vec.i <- which(x <= 50000)

 names.i <- georgia_sf$Name[vec.i]

 return(names.i)

}

count.vec <- apply(dMat,1, my.func1)



names.list <- apply(dMat,1, my.func2)

Q8: Join the flights2 data table to the airports dataset and determine the
latitude and longitude of the destinations. Then map the flights using the
gcIntermediate function in the geosphere package and the datasets in the
maps package.

# Part 1: the join

flights2 <- flights2 %>% left_join(airports, c("dest" = "faa"))

flights2 <- flights2 %>% select(count,dest,OrLat,OrLon, DestLat=lat,DestLon=lon)

# get rid of any NAs

flights2 <- flights2[!is.na(flights2$DestLat),] flights2

# Part 2: the plot

# Using standard plots

dest.eg <- matrix(c(flights2$DestLon, flights2$DestLat), ncol = 2)

origin.eg <- matrix(c(flights2$OrLon, flights2$OrLat), ncol = 2)

map("usa", fill=TRUE, col="white", bg="lightblue")

points(dest.eg, col="red", pch=16, cex = 1)

points(origin.eg, col = "cyan", pch = 16, cex = 1) for (i in 1:nrow(dest.eg)) {

lines(gcIntermediate(dest.eg[i,], origin.eg[i,], n=50,

breakAtDateLine=FALSE,

addStartEnd=FALSE, sp=FALSE, sepNA))

}

# using ggplot

all_states <- map_data("state")

dest.eg <- data.frame(DestLon = flights2$DestLon, DestLat = flights2$DestLat)

origin.eg <- data.frame(OrLon = flights2$OrLon, OrLat = flights2$OrLat)

library(GISTools)

# Figure 2 using ggplot



# create the main plot

mp <- ggplot() +

  geom_polygon( data=all_states,

aes(x=long, y=lat, group = group), colour="white", fill="grey20") + coord_fixed() +

 geom_point(aes(x = dest.eg$DestLon, y = dest.eg$DestLat), color="#FB6A4A", size=2)
+

  theme(axis.title.x=element_blank(), axis.text.x=element_blank(),

axis.ticks.x=element_blank(), axis.title.y=element_blank(),

    axis.text.y=element_blank(), axis.ticks.y=element_blank())

# create some transparent shading

cols=add.alpha(colorRampPalette(brewer.pal(9,"Reds"))(nrow(flights2)), 0.7)

# loop through the destinations

for (i in 1:nrow(flights2)) {

# line thickness related flights

 lwd.i = 1+ (flights2$count[i]/max(flights2$count))

# a sequence of colours

cols.i = cols[i]

# create a dataset

link <- as.data.frame(gcIntermediate(dest.eg[i,], origin.eg[i,],

n=50, breakAtDateLine=FALSE, addStartEnd=FALSE, sp=FALSE, sepNA))

names(link) <- c("lon", "lat")

mp <- mp + geom_line(data=link, aes(x=lon, y=lat),

       color= cols.i, size = lwd.i)

}

# plot!

mp



5 Using R as a Gis

5.1 Introduction
In GIS and spatial analysis, we are often interested in finding out how the
information contained in one spatial dataset relates to that contained in
another. The kinds of questions we may be interested in include:

How does X interact with Y?
How many X are there in different locations of Y?
How does the incidence of X relate to the rate of Y?
How many of X are found within a certain distance of Y?
How does process X vary with Y spatially?

X and Y may be diseases, crimes, pollution events, attributed census areas,
environmental factors, deprivation indices or any other geographical process
or phenomenon that you are interested in understanding. Answering such
questions using a spatial analysis frequently requires some initial data pre-
processing and manipulation. This might be to ensure that different data have
the same spatial extent, describe processes in a consistent way (e.g. to
compare land cover types from different classifications), are summarised over
the same spatial framework (e.g. census reporting areas), are of the same
format (raster, vector, etc.) and are projected in the same way (the latter was
introduced in Chapter 3).

This chapter uses worked examples to illustrate a number of fundamental and
commonly applied spatial operations on spatial datasets. Many of these form
the basis of most GIS software. The datasets may be ones you have read into
R from shapefiles or ones that you have created in the course of your
analysis. Essentially, the operations illustrate different methods for extracting
information from one spatial dataset based on the spatial extent of another.
Many of these are what are frequently referred to as overlay operations in
GIS software such as ArcGIS or QGIS, but here are extended to include a
number of other types of data manipulation. The sections below describe the
following operations:



Intersections and clipping one dataset to the extent of another
Creating buffers around features
Merging the features in a spatial dataset
Point-in-polygon and area calculations
Creating distance attributes
Combining spatial data and attributes
Converting between raster and vector

As you work through the example code in this chapter a number of self-test
questions are introduced. Some of these go into much greater detail and
complexity than in earlier chapters and come with extensive direction for you
to work through and follow.

The chapter draws on functionality from a number of packages that have
been introduced in earlier chapters (sf, sp, maptools, GISTools, tidyverse,
rgeos, etc.) for performing overlay and other spatial operations on spatial
datasets which create new data, information or attributes. In many cases, it is
up to the analyst (you!) to decide which operations to undertake and in what
order for a particular analysis and, depending on your objectives, a given
operation may be considered as a pre-processing step or as an analytical one.
For example, calculating distances, areas, or point-in-polygon counts prior to
a statistical test may be pre-processing steps prior to the actual data analysis
or used as the actual analysis itself. The key feature of these operations is that
they create new data or information. Similarly, this chapter will use both sf
and sp data formats as needed, both of which have their own set of functions
linking to rgeos. As a reminder, sf data formats are relatively new and have
strong links to dplyr (part of the tidyverse package). This chapter will
highlight operations in both, and where we think there is a distinct advantage
to one approach this will be presented.

It is important to recall that there are conversion functions for moving
between sf and sp formats:

library(sf)

library(GISTools) # a wrapper for sp, rgeos, etc.

# load some data



data(georgia)

class(georgia)

# convert to sf

georgia_sf <- st_as_sf(georgia)

class(georgia_sf)

# convert back to sp

georgia_v2 <- as(georgia_sf, "Spatial")

class(georgia_v2)



5.2 Spatial Intersection and Clip Operations
The GISTools package comes with datasets describing tornadoes in the USA.
Load the package and these data into a new R session.

library(GISTools)

data(tornados)

You will see that four sp datasets are now loaded: torn, torn2, us_states and
us_states2. The torn and torn2 data describe the locations of tornadoes
recorded between 1950 and 2004, and the us_states and us_states2 datasets
are spatial data describing the states of the USA. Two of these are in WGS84
projections (torn and us_states) and two are projected in a GRS80 datum
(torn2 and us_states2). We can plot these and examine the data as in Figure
5.1.

library(tmap)

library(sf)

# convert to sf objects

torn_sf <- st_as_sf(torn)

us_states_sf <- st_as_sf(us_states)

# plot extent and grey background

tm_shape(us_states_sf) +tm_polygons("grey90") +

# add the torn points

tm_shape(torn_sf) +

tm_dots(col = "#FB6A4A", size = 0.04, shape = 1, alpha = 0.5) +

# map the state borders

tm_shape(us_states_sf) +tm_borders(col = "black") +

tm_layout(frame = F)



Figure 5.1 The tornado data

Note that the sp plotting code takes a very similar form:

plot(us_states, col = "grey90")

plot(torn, add = T, pch = 1, col = "#FB6A4A4C", cex = 0.4)

plot(us_states, add = T)

Remember that you can examine the attributes of a variable using the
summary() function. For sp objects this also includes a summary of the object
projection. This can be seen using the st_geometry function in sf:

summary(torn)

summary(torn_sf)

st_geometry(torn_sf)

Now, consider the situation where the aim was to analyse the incidence of
tornadoes in a particular area: we do not want to analyse all of the tornado
data but only those records that describe events in our study area – the area
we are interested in. The code below selects a group of US states, in this case
Texas, New Mexico, Oklahoma and Arkansas – note the use of the OR
logical operator | to make the selection.



index <- us_states$STATE_NAME == "Texas" |

us_states$STATE_NAME == "New Mexico" |

us_states$STATE_NAME == "Oklahoma" |

us_states$STATE_NAME == "Arkansas"

AoI <- us_states[index,]

# OR....

AoI_sf <- us_states_sf[index,]

This can be plotted using the usual commands as in the code below. You can
see that the plot extent is defined by the spatial extent of area of interest
(called AoI_sf) and that all of the tornadoes within that extent are displayed.

tm_shape(AoI_sf) +

tm_borders(col = "black") +

tm_layout(frame = F) +

# add the torn points

tm_shape(torn_sf) +tm_dots(col = "#FB6A4A", size = 0.2, shape = 1, alpha = 0.5)

# OR in sp

plot(AoI)

plot(torn, add = T, pch = 1, col = "#FB6A4A4C")

There are a number of ways of clipping spatial data in R. The simplest of
these is to use the spatial extent of one as an index to subset another. (Note
that this can be done using sp objects as well.)

torn_clip_sf <- torn_sf[AoI_sf,]

This simply clips out the data from torn_sf that is within the spatial extent of
AoI_sf. You can check this:

tm_shape(torn_clip_sf) +



tm_dots(col = "#FB6A4A", size = 0.2, shape = 1, alpha = 0.5) +

 tm_shape(AoI_sf) +

tm_borders()

However, such clip (or crop) operations simply subset data based on their
spatial extents. There may be occasions when you wish to combine the
attributes of difference datasets based on the spatial intersection. The
gIntersection function in rgeos or the st_intersection in sf allows us to do this
as shown in the code below. The results are mapped in Figure 5.2.

AoI_torn_sf <- st_intersection(AoI_sf, torn_sf)

tm_shape(AoI_sf) + tm_borders(col = "black") + tm_layout(frame = F) +

# add the torn points

tm_shape(AoI_torn_sf) +

tm_dots(col = "#FB6A4A", size = 0.2, shape = 1, alpha = 0.5)

Figure 5.2 The tornado data in the defined area of interest

The st_intersection operation creates an sf dataset of the locations of the



tornadoes within the area of interest. The gIntersection function does the
same thing:

AoI.torn <- gIntersection(AoI, torn, byid = TRUE)

plot(AoI)

plot(AoI.torn, add = T, pch = 1, col = "#FB6A4A4C")

If you examine the data created by the intersection, you will notice that each
of the intersecting points has the full attribution from input datasets. You can
examine the attributes of the AoI_torn_sf data and the AoI.torn data by
entering:

head(data.frame(AoI_torn_sf))

head(data.frame(AoI.torn))

Once extracted, the subset can be written out for use elsewhere as described
in Chapters 2 and 3. You should examine the help for both st_intersection
and gIntersection to see how they work. You should particularly note that
both functions operate on any pair of spatial objects provided they are
projected using the same datum (in this case WGS84). In order to perform
spatial operations you may need to re-project your data to the same datum
using spTransform or st_transform as described in Chapter 3.

5.3 Buffers
In many situations, we are interested in events or features that occur near to
our area of interest as well as those within it. Environmental events such as
tornadoes, for example, do not stop at state lines or other administrative
boundaries. Similarly, if we were studying crime locations or spatial access to
facilities such as shops or health services, we would want to know about
locations near to the study area border. Buffer operations provide a
convenient way of doing this, and buffers can be created in R using the
gBuffer function in rgeos or the st_buffer function in sf.

Continuing with the example above, we might be interested in extracting the



tornadoes occurring in Texas and those within 25 km of the state border.
Thus the objective is to create a 25 km buffer around the state of Texas and to
use that to select from the tornado dataset. Both buffer functions allow us to
do that, and require a distance for the buffer to be specified in terms of the
units used in the projection. However, in order to do this, a different
projection is required as distances are difficult to determine directly from
projections in degrees (essentially, the relationship between planar distance
measures such as metres and kilometres to degrees varies with latitude). And
the buffer will return an error message if you try to buffer a non-projected
spatial dataset. Therefore, the code below uses the projected US data,
us_states2, and the resultant buffer is shown in Figure 5.3.

# select an area of interest and apply a buffer

# in rgeos

AoI <- us_states2[us_states2$STATE_NAME == "Texas",]

AoI.buf <- gBuffer(AoI, width = 25000)

# in sf

us_states2_sf <- st_as_sf(us_states2)

AoI_sf <- st_as_sf(us_states2_sf[us_states2_sf$STATE_NAME == "Texas",])

AoI_buf_sf <- st_buffer(AoI_sf, dist = 25000)

# map the buffer and the original area

# sp format

par(mar=c(0,0,0,0))

plot(AoI.buf)

plot(AoI, add = T, border = "blue")

# tmap: commented out!

# tm_shape(AoI_buf_sf) + tm_borders("black") +

# tm_shape(AoI_sf) + tm_borders("blue") +

# tm_layout(frame = F)



Figure 5.3 Texas with a 25 km buffer

The buffered object, shown in Figure 5.3, or objects can be used as input to
clip or intersection operations as above, for example to extract data within a
certain distance of an object. You should also examine the impact on the
output of other parameters in both buffer functions that control how line
segments are created, the geometry of the buffer, join styles, etc. Note that
any sp or sf objects can be used as an input to gBuffer and st_intersection
functions, respectively: try applying them to the breach dataset that is put into
working memory when the newhaven data are loaded.

There are number of options for defining how the buffer is created. If you
enter the code below, using IDs, then buffers are created around each of the
counties within the georgia2 dataset:



data(georgia)

georgia2_sf <- st_as_sf(georgia2)

# apply a buffer to each object

# sf

buf_t_sf <- st_buffer(georgia2_sf, 5000)

# rgeos

buf.t <- gBuffer(georgia2, width = 5000, byid = T, id = georgia2$Name)

# now plot the data

# sf

tm_shape(buf_t_sf) +tm_borders() +tm_shape(georgia2) +tm_borders(col = "blue")
+tm_layout(frame = F)

# rgeos

plot(buf.t)

plot(georgia2, add = T, border = "blue")

The IDs of the resulting buffer datasets relate to each of the input features,
which in the above code has been specified to be the county names. This can
be checked by examining how the buffer object has been named using
names(buf.t). If you are not convinced that the indexing has been preserved
then you can compare the output with a familiar subset, Appling County:

plot(buf.t[1,])

plot(georgia2[1,], add = T, col = "blue")

5.4 Merging Spatial Features
In the intersection example above, four US states were selected and used to
define the area of interest over which the tornado data were extracted. An
attribute describing in which state each tornado occurred was added to the
data frame of the intersected object. In other instances we may wish to
consider the area as a single object and to merge the features within it. This



can be done using the gUnaryUnion function in the rgeos package which was
used in Chapter 3, and also the st_union and st_combine functions in the sf
package, to create an outline of the state of Georgia from its constituent
counties. In the code below the US states are merged into a single object and
then plotted over the original data as shown in Figure 5.4. Note the use of the
st_sf function to convert the sfc output of the st_union function to sf class
before passing to the tmap functions.

Figure 5.4 The outline of the merged US states created by gUnaryUnion,
with the original state outlines in green

library(tmap)

### with rgeos and sp commented out

# AoI.merge <- gUnaryUnion(us_states)

# plot(us_states, border = "darkgreen", lty = 3)

# plot(AoI.merge, add = T, lwd = 1.5)

### with sf and tmap

us_states_sf <- st_as_sf(us_states)

AoI.merge_sf <- st_sf(st_union(us_states_sf))

tm_shape(us_states_sf) + tm_borders(col = "darkgreen", lty = 3)
+tm_shape(AoI.merge_sf) + tm_borders(lwd = 1.5, col = "black") +tm_layout(frame = F)



The union operations merge spatial object sub-geometries. Once the merged
objects have been created they can be used as inputs into the intersection and
buffering procedures above in order to select data for analysis, as well as the
analysis operations described below. The merged objects can also be used in
a cartographic context to provide a border to the study area being considered.

5.5 Point-in-Polygon and Area Calculations

5.5.1 Point-in-Polygon
It is often useful to count the number of points falling within different zones
in a polygon dataset. This can be done using the poly.counts function in the
GISTools package, which extends the gContains function in rgeos, or using a
similar method with the st_contains function in sf.

I

Remember that you can examine how a function works by entering it into the console
without the brackets – try entering poly.counts at the console.

The code below assigns a list of counts of the number of tornadoes that occur
inside each US state to the variable torn.count and prints the first six of these
to the console using the head function:

torn.count <- poly.counts(torn, us_states)

head(torn.count)

1  2 3  4  5  6

79 341 87 1121 1445 549

The numbers along the top are the ‘names’ of the elements in the variable
tmp, which in this case are the polygon ID numbers of the us_states variable.
The values are the counts of the points in the corresponding polygons. You
can check this by entering:

names(torn.count)



5.5.2 Area Calculations
Another useful operation is to be able calculate polygon areas. The gArea and
st_area functions in rgeos and sf do this. To check the projection, and
therefore the map units, of an sp class object (including SpatialPolygons,
SpatialPoints, etc.), use the proj4string function, and for sf objects use the
st_crs function:

proj4string(us_states2)

st_crs(us_states2_sf)

This declares the projection to be in metres. To see the areas in square metres
of each US state, enter:

poly.areas(us_states2)

st_area(us_states2_sf)

These are not particularly useful, and more realistic measures are to report
areas in hectares or square kilometres:

# hectares

poly.areas(us_states2) / (100 ∗ 100)

st_area(us_states2_sf) / (100 ∗ 100)

# square kilometres

poly.areas(us_states2) / (1000 ∗ 1000)

st_area(us_states2_sf) / (1000 ∗ 1000)

Self-Test Question 1. Create the code to produce maps of the densities of
breaches of the peace in each census block in New Haven in breaches per
square kilometre. For the analysis you will need to use the breach point data
and the census blocks in the newhaven dataset and undertake a point-in-
polygon operation, apply an area function and undertake a conversion to



square kilometres. The maps should be produced using the tm_shape and
tm_fill functions in the tmap package. The New Haven data are included in
the GISTools package:

data(newhaven)

Reminder: As with all self-test questions, worked answers are provided in the
final section of the chapter.

You should note that the New Haven dataset is projected in feet. One way is
to leave the data in feet, calculate densities in squares miles and convert to
square kilometres, apply the ft2miles function to the results of the area
calculation, and as areas are in squared units, you will need to apply it twice,
noting that there are approximately 2.58999 square kilometres in each square
mile. The code below calculates the area in square kilometres of each block:

ft2miles(ft2miles(gArea(blocks, byid = T))) ∗ 2.58999

5.5.3 Point and Areas Analysis Exercise
An important advantage of using R to handle spatial data is that it is very
easy to incorporate your data into statistical analysis and graphics routines.
For example, in the New Haven blocks data frame, there is a variable called
P_OWNEROCC which states the percentage of owner-occupied housing in
each census block. It may be of interest to see how this relates to the breach
of peace densities calculated in Self-Test Question 1. A useful statistic is the
correlation coefficient generated by the cor function which causes the
correlation to be printed out:

data(newhaven)

blocks$densities=poly.counts(breach,blocks)/ ft2miles(ft2miles(poly.areas(blocks)))

cor(blocks$P_OWNEROCC,blocks$densities)

[1] −0.2038463



In this case the two variables have a correlation of around −0.2, a weak
negative relationship, suggesting that, in general, places with a higher
proportion of owner-occupied homes tend to see fewer breaches of peace. It
is also possible to plot the relationship between the quantities:

ggplot(blocks@data, aes(P_OWNEROCC,densities))+ geom_point()
+geom_smooth(method = "lm")

A more detailed approach might be to model the number of breaches of
peace. Typically, these are relatively rare, and a Poisson distribution might be
an appropriate model. A possible model might then be:

breaches ~ Poisson(AREA ∗ exp(a + b ∗ P_OWNEROCC))

where AREA is the area of a block, P_OWNEROCC is the percentage of
owner occupiers in the block, and a and b are coefficients to be estimated, a
being the intercept term. The AREA variable plays the role of an offset – a
variable that always has a coefficient of 1. The idea here is that even if
breaches of peace were uniformly distributed, the number of incidents in a
given census block would be proportional to the AREA of that block. In fact,
we can rewrite the model such that the offset term is the log of the area:

breaches ~ Poisson(exp(a + b ∗ P_OWNEROCC+log(AREA)))

Seeing the model written this way makes it clear that the offset term has a
coefficient that must always be equal to 1. The model can be fitted in R using
the following code:

# load and attach the data

data(newhaven)

attach(data.frame(blocks))

# calculate the breaches of the peace in each block

n.breaches = poly.counts(breach,blocks)

area = ft2miles(ft2miles(poly.areas(blocks)))



# fit the model

model1=glm(n.breaches~P_OWNEROCC,offset=log(area),family=poisson)

# detach the data

detach(data.frame(blocks))

The first two lines compute the counts, storing them in n.breaches, and the
areas, storing them in area. The next line fits the Poisson model. glm stands
for ‘generalised linear model’, and extends the standard lm routine to fit
models such as Poisson regression. As a reminder, further information about
linear models and the R modelling language was provided in one of the
information boxes in Chapter 3 and an example of its use was given. The
family=poisson option specifies that a Poisson model is to be fitted here. The
offset option specifies the offset term, and the first argument specifies the
actual model to be fitted. The model- fitting results are stored in the variable
model1. Having created the model in this way, entering:

model1

returns a brief summary of the fitted model. In particular, it can be seen that
the estimated coefficients are a = 3.02 and b = −0.0310.

A more detailed view can be obtained using:

summary(model1)

Now, among other things, the standard errors and Wald statistics for a and b
are now shown. The Wald Z-statistics are similar to t-statistics in ordinary
least squares regression, and may be tested against the normal distribution.
The results in Table 5.1 summarise the information, showing that both a and
b are significant, and that therefore there is a statistically significant
relationship between owner occupation and breach of peace incidents.

Table 5.1



It is also possible to extract diagnostic information from fitted models. For
example, the rstandard function extracts the standardised residuals from a
model. Whereas residuals are the difference between the observed value (i.e.
in the data) and the value when estimated using the model, standardised
residuals are rescaled to have a variance of 1. If the model being fitted is
correct, then these residuals should be independent, have a mean of 0, a
variance of 1 and an approximately normal distribution. One useful
diagnostic is to map these values. The code below computes them and stores
them in a variable called s.resids:

s.resids = rstandard(model1)

Now to plot the map it will be more useful to specify a shading scheme
directly using the shading command:

resid.shades = shading(c(−2,2),c("red","grey","blue"))

This specifies that the map will have three class intervals: below −2, between
−2 and 2, and above 2. These are useful intervals, given that the residuals
should be normally distributed, and these values are the approximate two-
tailed 5% points of this distribution. Residuals within these points will be
shaded grey, large negative residuals will be red, and large positive ones will
be blue:

par(mar=c(0,0,0,0))

choropleth(blocks,s.resids,resid.shades)

Figure 5.5 The distribution of the model1 residuals, describing the
relationship between breaches of the peace and owner occupancy



From Figure 5.5 it can be seen that in fact there is notably more variation
than one might expect (there are 21 blocks shaded blue or red, about 16% of
the total, when around 5% would appear based on the model’s assumptions),
and also that the shaded blocks seem to cluster together. This last observation
casts doubt on the assumption of independence, suggesting instead that some
degree of spatial correlation is present. One possible reason for this is that
further variables may need to be added to the model, to explain this extra
variability and spatial clustering among the residuals.

It is possible to extend this analysis by considering P_VACANT, the
percentage of vacant properties in each census block, as well as
P_OWNEROCC. This is done by extending model1 and entering:



Figure 5.6 The distribution of the model2 residuals, describing the
relationship between breaches of the peace with owner occupancy and vacant
properties

attach(data.frame(blocks))

n.breaches = poly.counts(breach,blocks)

area = ft2miles(ft2miles(poly.areas(blocks)))

model2=glm(n.breaches~P_OWNEROCC+P_VACANT,

offset=log(area),family=poisson)

s.resids.2 = rstandard(model2)



detach(data.frame(blocks))

This sets up a new model, with a further term for the percentage of vacant
housing in each block, and stores it in model2. Entering summary(model2)
shows that the new predictor variable is significantly related to breaches of
the peace, with a positive relationship. Finally, it is possible to map the
standardised residuals for the new model reusing the shading scheme defined
above:

s.resids.2 = rstandard(model2)

par(mar=c(0,0,0,0))

choropleth(blocks,s.resids.2,resid.shades)

This time, Figure 5.6 shows that there are fewer red- and blue-shaded census
blocks, although perhaps still more than we might expect, and there is still
some evidence of spatial clustering. Adding the extra variable has improved
things to some extent, but perhaps there is more investigative research to be
done. A more comprehensive treatment of spatial analysis of spatial data
attributes is given in Chapter 7.

Self-Test Question 2. The above code uses the choropleth function in
GISTools to produce a map of outlying residuals. Create a similar-looking
map but using the tm_shape function of the tmap package. You may find it
useful to unpick the choropleth function, to think about passing a user-
defined palette to tm_polygons, to assign s.resids.2 as a blocks variable,
and/or to pass a set of break values.

5.6 Creating Distance Attributes
Distance is fundamental to spatial analysis. For example, we may wish to
analyse the number of locations (health facilities, schools, etc.) within a
certain distance of the features we are considering. In the exercise below,
distance measures are used to evaluate differences in accessibility for
different social groups, as recorded in census areas. Such approaches form
the basis of supply and demand modelling and provide inputs into location–
allocation models.



Distance could be approximated using a series of buffers created at specific
distance intervals around our features (whether point or polygons). These
could be used to determine the number of features or locations that are within
different distance ranges, as specified by the buffers using the poly.counts
function above. However, distances can also be measured directly and there a
number of functions available in R to do this.

First, the most commonly used function is dist. This calculates the Euclidean
distance between points in n-dimensional feature space. The example below,
developed from the help for dist, shows how it is used to calculate the
distances between five records (rows) in a feature space of 20 hypothetical
variables.

x <- matrix(rnorm(100), nrow = 5)

colnames(x) <- paste0("Var", 1:20)

dist(x)

as.matrix(dist(x))

If your data are projected (in metres, feet, etc.) then dist can also be used to
calculate the Euclidean distance between pairs of coordinates.

as.matrix(dist(coordinates(blocks))) # in feet

as.matrix(dist(coordinates(georgia2))) # in metres

When determining geographical distances, it is important that you consider
the projection properties of your data: if the data are projected using degrees
(i.e. in latitude and longitude) then this needs to be considered in any
calculation of distance. The gDistance function in rgeos calculates the
Cartesian minimum (straight-line) distance between two spatial datasets of
class sp projected in planar coordinates. Try entering:

# this will not work

gDistance(georgia[1,], georgia[2,])

# this will!



gDistance(georgia2[1,], georgia2[2,])

The st_distance function in sf is similar but is also able to calculate great
circle distances for projected points.

# convert to sf

georgia2_sf <- st_as_sf(georgia2)

georgia_sf <- st_as_sf(georgia)

st_distance(georgia2_sf[1,], georgia2_sf[2,])

st_distance(georgia_sf[1,], georgia_sf[2,])

# with points

sp <- st_as_sf(SpatialPoints(coordinates(georgia)))st_distance(sp[1,], sp[1:3,])

The distance functions return a to–from matrix of the distances between each
pair of locations. These could describe distances between any objects, and
such approaches underpin supply and demand modelling and accessibility
analyses.

For example, the code below uses gDistance to calculate the distances
between the centroids of the newhaven blocks data and the places locations.
The latter are simply random locations, but could represent any kind of
facility or supply feature, and the centroids of the census blocks in New
Haven represent demand locations. In the first few lines of code, the
projections of the two variables are set to be the same, before SpatialPoints is
used to extract the geometric centroids of the census block areas and the
distance between places and cents are calculated:

data(newhaven)

proj4string(places) <- CRS(proj4string(blocks))

cents <- SpatialPoints(coordinates(blocks),

proj4string = CRS(proj4string(blocks)))

# note the use of the ft2miles function to convert to miles

distances <- ft2miles(gDistance(places, cents, byid = T))



You can examine the result in relation to the inputs to gDistance and you will
see that the distances variable is a matrix of distances (in miles) from each of
the 129 census block centroids to each of the nine locations described in the
places variable.

head(round(distances, 3))

It is possible to use the census block polygons in the above gDistance
calculation, and the distances returned will be to the nearest point of the
census area. Using the census area centroid provides a more representative
measure of the average distance experienced by people living in that area.

A related function is the gWithinDistance function, which tests whether each
to–from distance pair is less than a specified threshold. It returns a matrix of
TRUE and FALSE describing whether the distances between the elements of
the two sp dataset elements are less than or equal to the specified distance or
not. In the example below the distance specified is 1.2 miles.

distances <- gWithinDistance(places, cents,  byid = T, dist = miles2ft(1.2))

You should note that the distance functions work with whatever distance
units are specified in the projections of the spatial features. This means the
inputs need to have the same units. Also remember that the newhaven data
are projected in feet, hence the use of the miles2ft and ft2miles functions.

5.6.1 Distance Analysis/Accessibility Exercise
The use of distance measures in conjunction with census data is particularly
useful for analysing access to the supply of some facility or service for
different social groups. The code below replicates the analysis developed by
Comber et al. (2008), examining access to green spaces for different social
groups. In this exercise a hypothetical example is used: we wish to examine
the equity of access to the locations recorded in the places variable (supply)
for different ethnic groups as recorded in the blocks dataset (demand), on the
basis that we expect everyone to be within 1 mile of a facility. We will use



the census data to approximate the number of people with and without access
of less than 1 mile to the set of hypothetical facilities.

First, the distances variable is recalculated in case it was overwritten in the
gWithinDistance example above. Then the minimum distance to a supply
facility is determined for each census area using the apply function. Finally, a
logical statement is used to generate a TRUE or FALSE statement for each
block:

distances <- ft2miles(gDistance(places, cents, byid = T))

min.dist <- as.vector(apply(distances,1, min))

blocks$access <- min.dist < 1

# and this can be mapped

#qtm(blocks, "access")

The populations of each ethnic group in each census block can be extracted
from the blocks dataset:

# extract the ethnicity data from the blocks variable

ethnicity <- as.matrix(data.frame(blocks[,14:18])/100)

ethnicity <- apply(ethnicity, 2, function(x) (x ∗ blocks$POP1990))

ethnicity <- matrix(as.integer(ethnicity), ncol = 5)

colnames(ethnicity) <- c("White", "Black", "Native American", "Asian", "Other")

And then a crosstabulation is used to bring together the access data and the
populations:

# use xtabs to generate a crosstabulation

mat.access.tab = xtabs(ethnicity~blocks$access)

# then transposes the data

data.set = as.data.frame(mat.access.tab)

#sets the column names



colnames(data.set) = c("Access","Ethnicity", "Freq")

You should examine the data.set variable. This summarises all of the factors
being considered: access, ethnicity and the counts associated with all factor
combinations. If we make an assumption that there is an interaction between
ethnicity and access, then this can be tested for using a generalised regression
model with a Poisson distribution using the glm function:

modelethnic = glm(Freq~Access∗Ethnicity, data=data.set,family=poisson)

# the full model can be printed to the console

# summary(modelethnic)

The model coefficient estimates show that there is significantly less access
for some groups than would be expected under a model of equal access when
compared to the largest ethnic group, White, which was listed first in the
data.set variable, and significantly greater access for the Other ethnic group.
Examine the model coefficient estimates, paying particular attention to the
AccessTRUE: coefficients:

summary(modelethnic)$coef

Then assign these to the a variable:

mod.coefs = summary(modelethnic)$coef

By subtracting 1 from the coefficients and converting them to percentages, it
is possible to attach some likelihoods to the access for different groups when
compared to the White ethnic group. Again, you should examine the terms in
the model outputs prefixed by AccessTRUE:, as below:

tab <- 100∗(exp(mod.coefs[,1]) − 1)

tab <- tab[7:10]

names(tab) <- colnames(ethnicity)[2:5]

round(tab, 1)



      Black Native American Asian

−35.1    −11.7 −29.8

Other

256.3

The results in tab tell us that some ethnic groups have significantly less
access to the hypothetical supply facilities than the White ethnic group (as
recorded in the census): Black 35% less, Native American 12% less
(although this is not significant), and Asian 30% less. The Other ethnic group
has 256% more access than the White ethnic group.

It is possible to visualise the variations in access for different groups using a
mosaic plot. Mosaic plots show the counts (i.e. population) as well as the
residuals associated with the interaction between groups and their access, the
full details of which were given in Chapter 3.

mosaicplot(t(mat.access.tab),xlab=’’,ylab=’Access to Supply’, main="Mosaic Plot of
Access",shade=TRUE,las=3,cex=0.8)

Self-Test Question 3. In working through the exercise above you have
developed a number of statistical techniques. In answering this self-test
question you will explore the impact of using census data summarised over
different areal units in your analysis. Specifically, you will develop and
compare the results of two statistical models using different census areas in
the newhaven datasets: blocks and tracts. You will analyse the relationship
between residential property occupation and burglaries. You will need to
work through the code below before the tasks associated with this questions
are posited. To see the relationship between the census tracts and the census
blocks, enter:

plot(blocks,border=’red’)

plot(tracts,lwd=2,add=TRUE)

You can see that the census blocks are nested within the tracts.

The analysis described below develops a statistical model to describe the



relationship between residential property occupation and burglary using two
of the New Haven crime variables related to residential burglaries. These are
both point objects, called burgres.f and burgres.n: the former is a list of
burglaries where entry was forced into the property, and the latter is a list of
burglaries where entry was not forced, suggesting that the property was left
insecure, perhaps by leaving a door or window open. The burglaries data
cover the six-month period between 1 August 2007 and 31 January 2008.

The questions you will consider are:

Do both kinds of residential burglary occur in the same places – that is,
if a place is a high-risk area for non-forced entry, does it imply that it is
also a high-risk for forced entry?
How does this relationship vary over different census units?

To investigate these, you should use a bivariate regression model that
attempts to predict the density of forced burglaries from the density of non-
forced ones. The indicators needed for this are the rates of burglary given the
number of properties at risk. You should use the variable OCCUPIED,
present in both the census blocks data frame and the census tracts data frame,
to estimate the number of properties at risk. If we were to compute rates per
1000 households, this would be: 1000∗(number of burglaries in
block)/OCCUPIED, and since this is over a six-month period, doubling this
quantity gives the number of burglaries per 1000 households per year.
However, entering:

blocks$OCCUPIED

shows that some blocks have no occupied housing, so the above rate cannot
be defined. To overcome this problem you should select the subset of the
blocks with more than zero occupied dwellings. For polygon spatial objects,
each individual polygon can be treated like a row in a data frame for the
purposes of subset selection. Thus, to select only the blocks where the
variable OCCUPIED is greater than zero, enter:

blocks2 = blocks[blocks$OCCUPIED > 0,]



We can now compute the burglary rates for forced and non-forced entries by
first counting the burglaries in each block in blocks2 using the poly.counts
function, dividing these numbers by the OCCUPIED counts and then
multiplying by 2000 to get yearly rates per 1000 households. However,
before we do this, you should remember that you need the OCCUPIED
attribute from blocks2 and not blocks. Attach the blocks2 data and then
calculate the two rate variables:

attach(data.frame(blocks2))

forced.rate = 2000∗poly.counts(burgres.f,blocks2)/OCCUPIED

notforced.rate = 2000∗poly.counts(burgres.n,blocks2)/OCCUPIED

detach(data.frame(blocks2))

You should have two rates stored in forced.rate and notforced.rate. A first
attempt at modelling the relationship between the two rates could be via
simple bivariate regression, ignoring any spatial dependencies in the error
term. This is done using the lm function, which creates a simple regression
model, model1:

model1 = lm(forced.rate~notforced.rate)

To examine the regression coefficients, enter:

summary(model1)

coef(model1)

The key things to note here are that forced.rate is related to notforced.rate by
the formula:

expected(forced.rate) = a + b × (notforced.rate)

where a is the intercept term and b is the slope or coefficient for the predictor
variable. If the coefficient for notforced.rate is statistically different from
zero, indicated in the summary of the model, then there is evidence that the



two rates are related. One possible explanation is that if burglars are active in
an area, they will only use force to enter dwellings when it is necessary,
making use of an insecure window or door if they spot the opportunity. Thus
in areas where burglars are active, both kinds of burglary could potentially
occur. However, in areas where burglars are less active it is less likely for
either kind of burglary to occur.

Having outlined the approach, your specific tasks in this question are:

To determine the coefficients a and b in the formula above for two
different analyses using the blocks and tracts datasets
To comment on the difference between the analyses using different areal
units

5.7 Combining Spatial Datasets and their Attributes
The point-in-polygon calculation using poly.counts generates counts of the
points falling in each polygon. A common situation in spatial analysis is the
need to combine (overlay) different polygon features that describe the spatial
distribution of different variables, attributes or processes that are of interest.
The problem is that the data may have different underlying area geographies.
In fact, it is commonly the case that different agencies, institutions and
government departments use different geographical areas, and even where
they do not, geographical areas frequently change over time. In these
situations, we can use the intersection functions (gIntersection in rgeos or
st_intersection in sf) to identify the area of intersection between different
spatial datasets. With some manipulation it is possible to determine the
proportions of the objects in dataset X that fall into each of the polygons of
dataset Y. This section uses a worked example to illustrate how this can be
done in R. In the subsequent self-test question you will develop a function to
do this.

The key thing to note with all spatial operations, whether using sp and sf
datasets, is that the input data need to have the same projections. You can
examine their projection attributes with proj4string in sp and st_crs in sf to
check whether they need to be transformed, using spTransform (sp) or
st_transform (sf) functions to put the data into the same projection.



The stages in this analysis are as follows:

1. Create a zone dataset for which the number of houses in each zone will
be calculated. The New Haven tracts data include the variable
HSE_UNITS, describing the number of residential properties in each
census tract. In this case the zones are hypothetical, but could perhaps be
zones used by the emergency services for planning purposes and
resource allocation.

2. Do an overlay of the new zones and the original areas. The key here is to
make sure that both the layers have an identifier that allows the
proportions of each original area in each zone to be calculated. This will
then be used to allocate houses based on the proportion of each
intersecting area in each zone.

First, you should make sure you have the tmap and sf packages loaded. Then
create the zones, number them with an ID and plot these on a map with the
tracts data. This is easily done by defining a grid and then converting this to a
SpatialPolygonsDataFrame object. Enter:

library(GISTools)

library(sf)

## linking to GEOS 3.6.1, GDAL 2.1.3, proj.4.4.9.3

library(tmap)

data(newhaven)

## define sample grid in polygons

bb <- bbox(tracts)

grd <- GridTopology(cellcentre.offset=c(bb[1,1]−200,bb[2,1]−200),

cellsize=c(10000,10000), cells.dim = c(5,5))

int.layer <- SpatialPolygonsDataFrame( as.SpatialPolygons.GridTopology(grd), data =
data.frame(c(1:25)), match.ID = FALSE)

ct <- proj4string(blocks)

proj4string(int.layer) <- ct

proj4string(tracts) <- ct



names(int.layer) <- "ID"

You can examine the intersection layer:

plot(int.layer)

Next, you should undertake an intersection of the zone and area layers.
Projections can be checked using proj4string(int.layer) and proj4string
(tracts). These have the same projections, so they can be intersected. The
code below converts them to sf format and then uses st_intersection:

int.layer_sf <- st_as_sf(int.layer)

tracts_sf <- st_as_sf(tracts)

int.res_sf <- st_intersection(int.layer_sf, tracts_sf)

You can examine the intersected data, the original data and the zones in the
same plot window, as in Figure 5.7. Remember that the grid.arrange function
in the gridExtra package allows multiple graphics to be included in the plot.

# plot and label the zones

p1 <- tm_shape(int.layer_sf) + tm_borders(lty = 2) +tm_layout(frame = F) +

tm_text("ID", size = 0.7) +

# plot the tracts

tm_shape(tracts_sf) + tm_borders(col = "red", lwd = 2)

# plot the intersection, scaled by int.later_sf

p2 <- tm_shape(int.layer_sf) + tm_borders(col="white") +tm_shape(int.res_sf) +
tm_polygons("HSE_UNITS", palette = blues9) +tm_layout(frame = F, legend.show = F)

library(grid)

grid.newpage()

pushViewport(viewport(layout=grid.layout(1,2)))

print(p1, vp=viewport(layout.pos.col = 1))

print(p2, vp=viewport(layout.pos.col = 2))



As in the gIntersection operation described in earlier sections, you can
examine the result of the intersection:

head(int.res_sf)

You will see that the data frame of the intersected object contains composites
of the inputs. These links can be used to create attributes for the intersection
output data.

Figure 5.7 The zones and census tracts data before and after intersection

Recall the need to have an identifier for both the zone and area layers. The ID
variable of the intersection output, int.res_sf, lists the ID variable of the two
input layers, the ID variable of int.layer_sf and the T009075H_I variable of
tracts.sf. In this case, we wish to summarise the HSE_UNITS of tracts_sf
over the zones of int.layer_sf. Here the functionality of dplyr single-table
operations that were introduced in Chapter 4 can be useful. However, first we
need to work out what proportion of the original tracts areas intersect with
each zone, and we can weight the HSE_UNITS variable appropriately to
proportionally allocate the counts of houses to the zones. Knowing the unique
identifiers of each polygon in both of the intersected layers is critical for
working out proportions.

# generate area and proportions



int.areas <- st_area(int.res_sf)

tract.areas <- st_area(tracts_sf)

# match tract area to the new layer

index <- match(int.res_sf$T009075H_I, tracts$T009075H_I)

tract.areas <- tract.areas[index]

tract.prop <- as.vector(int.areas)/as.vector(tract.areas)

The tract.prop object can be used to create a variable in the data frame of the
new layer, using the index variable which indicates in which of the original
tract areas each intersected area belongs. (Note that you could examine index
to see this.)

int.res_sf$houses <- tracts$HSE_UNITS[index] ∗ tract.prop

And this can be summarised using the functionality in dplyr and linked back
to the original int.layer_sf:

library(tidyverse)

houses <- summarise(group_by(int.res_sf, ID), count = sum(houses))

# create an empty vector

int.layer_sf$houses <- 0

# and populate this using houses$ID as the index

int.layer_sf$houses[houses$ID] <- houses$count

The results can be plotted as in Figure 5.8 and checked against the original
inputs in Figure 5.7.

tm_shape(int.layer_sf) +tm_polygons("houses", palette = "Greens", style = "kmeans", title
= "No. of houses") +

tm_layout(frame = F, legend.position = c(1,0.5)) +

tm_shape(tracts_sf) + tm_borders(col = "black")



Figure 5.8 The zones shaded by the number of households after intersection
with the census tracts

Self-Test Question 4. Write a function that will return an intersected dataset,
with an attribute of counts of some variable (houses, population, etc.) as held
in another sf format dataset. Base your function on the code used in the
illustrated example above. Compile it such that the function returns the
portion of the variable (typically this should be a count) covered by each
zone. For example, it should be able to intersect the int.layer_sf layer with the
blocks_sf layer and return an sf dataset with an attribute of the number of
people, as described in the POP1990 variable of blocks, covered by each
zone. You should remember that many spatial functions require their inputs
to have the same projections. The int.layer_sf defined above and the tracts
originally had no projections. You may find it useful to check and/or align



the input layers – for example, the int.layer defined above and the blocks data
in the following way using the rgdal or sf packages:

## in rgdal

library(rgdal)

ct <- proj4string(blocks)

proj4string(int.layer) <- CRS(ct)

blocks <- spTransform(blocks, CRS(proj4string(int.layer)))

## in sf

library(sf)

ct <- st_crs(blocks_sf)

st_crs(int.layer_sf) <- (ct)

blocks_sf <- st_transform(blocks_sf, st_crs(int.layer_sf))

Your function will have to take identifier variables for the layer and the
intersect layer as inputs, and you will find it useful in your code to assign
these to new ID variables in each layer. For example, your function could
require the following parameters when compiled, setting some default values:

# define the function

area_intersect_func <- function(int.sf = int.layer.sf, layer.sf = blocks.sf, int.ID <- "ID",

 layer.ID <- "T009075H_I", target <- "POP1990"){

 ...

 ...

 }

Also, extracting values from data in sf format can be tricky. A couple of
possible ways are:

# directly from the data frame



as.vector(data.frame(int.res_sf[,"T009075H_I"])[,1])
as.vector(unlist(select(as.data.frame(int.res_sf), T009075H_I)))

# set the geometry to null and then extract

st_geometry(int.res_sf) <- NULL

int.res_sf[,"T009075H_I"]

# using select from dplyr

as.vector(unlist(select(as.data.frame(int.res_sf), T009075H_I)))

5.8 Converting Between Raster and Vector
Very often we would like to move or convert our data between vector and
raster environments. In fact the very persistence of these dichotomous data
structures, with separate raster and vector functions and analyses in many
commercial GIS software programs, is one of the long-standing legacies in
GIS.

This section briefly describes methods for converting data between raster and
vector structures. There are three reasons for this brief treatment. First, many
packages define their own data structures. For example, the functions in the
PBSmapping package require a PolySet object to be passed to them. This
means that conversion between one class of raster objects and, for example,
the sp class of SpatialPolygons will require different code. Second, the
separation between raster and vector analysis environments is no longer
strictly needed, especially if you are developing your spatial analyses using
R, with the easy ability for users to compile their own functions and to create
their own analysis tools. Third, advanced raster mapping and analysis is
extensively covered in other books (see, for example, Bivand et al., 2013).

The sections below describe methods for converting the sp class of objects
(SpatialPoints, SpatialLines and SpatialPolygons, etc.) and the sf class of
objects (see the first sf vignette) as well as to and from the RasterLayer class
of objects as defined in the raster package, created by Hijmans and van Etten
(2014). They also describe how to convert between sp classes, for example to
and from SpatialPixels and SpatialGrid sp objects.



5.8.1 Vector to Raster
In this section simple approaches for converting are illustrated using datasets
in the tornados package that you have already encountered. We shall examine
techniques for converting the sp class of objects to the raster class,
considering in turn points, lines and areas.

Unfortunately, at the time of writing there is no parallel operation for
converting from sf formats to raster formats. If you have data in sf format,
you could convert to an sp format before converting to raster format as
described earlier:

# convert to sf sp

sp <- as(sf, "Spatial")

# do the conversions...as below

You will need to load the data and the packages – you may need to install the
raster package using the install.packages function if this is the first time that
you have used it.

5.8.1.1 Converting Points to Raster
First, convert from sp to raster formats. The torn2 is a Spatial
PointsDataFrame object:

library(GISTools)

library(raster)

data(tornados)

class(torn2)

Then create a raster and use the rasterize function to convert the data. Note
the need for a function to be specified to determine how the point dataset are
summarised over the raster grid and, if the data have attributes, which
attribute is to be summarised:



# rasterize a point attribute

r <- raster(nrow = 180 , ncols = 360, ext = extent(us_states2))

r <- rasterize(torn2, r, field = "INJ", fun=sum)

# rasterize count of point dataset

r <- raster(nrow = 180 , ncols = 360, ext = extent(us_states2))

r <- rasterize(as(torn2, "SpatialPoints"), r, fun=sum)

The resultant raster has cells describing different tornado densities that can be
mapped as in Figure 5.9:

# set the plot extent by specify the plot colour ’white’

tm_shape(us_states2)+tm_borders("white")+

 tm_shape(r) +

tm_raster(title = "Injured", n= 7) +tm_shape(us_states2) +

tm_borders() +

tm_layout(legend.position = c("left", "bottom"))

Figure 5.9 Converting points to raster format



5.8.1.2 Converting Lines to Raster
For illustrative purposes the code below creates a SpatialLinesDataFrame
object of the outline of the polygons with an attribute based on the area of the
state.

# Lines

us_outline <- as(us_states2 , "SpatialLinesDataFrame")

r <- raster(nrow = 180 , ncols = 360, ext = extent(us_states2))

r <- rasterize(us_outline , r, "AREA")

This takes a bit longer to run but again the results can be mapped and this
time with the shading indicating area (Figure 5.10):

tm_shape(r) +

tm_raster(title = "State Area", palette = "YlGn") +tm_style("albatross") +

tm_layout(legend.position = c("left", "bottom"))

Figure 5.10 Converting lines to raster format



5.8.1.3 Converting Polygons or Areas to Raster
Finally, polygons can easily be converted to a RasterLayer object using tools
in the raster package and plotted as in Figure 5.11. In this case the 1997
population for each state is used to generate raster cell or pixel values.

# Polygons

r <- raster(nrow = 180 , ncols = 360, ext = extent(us_states2))

r <- rasterize(us_states2, r, "POP1997")

tm_shape(r) +tm_raster(title = "Population", n=7, style="kmeans", palette="OrRd")
+tm_layout(legend.outside = T,

legend.outside.position = c("left"), frame = F)

It is instructive to examine the outputs of these processes. Enter:

r

This summarises the characteristics of the raster object, including the
resolution, dimensions and extent. The data values of r can be accessed using
the getValues function:

unique(getValues(r))

It is possible to specify particular dimensions for the raster grid cells, rather
than just dividing the dataset’s extent by ncol and nrow in the raster function.
The code below is a bit convoluted, but cleanly allocates the values to raster
grid cells of a specified size, allocating cell values from a polygon variable to
the raster cells.

Figure 5.11 Converting polygons to raster format



# specify a cell size in the projection units

d <- 50000

dim.x <- d

dim.y <- d

bb <- bbox(us_states2)

# work out the number of cells needed

cells.x <- (bb[1,2]−bb[1,1]) / dim.x

cells.y <- (bb[2,2]−bb[2,1]) / dim.y

round.vals <- function(x){

if(as.integer(x) < x) {

x <- as.integer(x) + 1

} else {x <- as.integer(x)

}}

# the cells cover the data completely

cells.x <- round.vals(cells.x)

cells.y <- round.vals(cells.y)

# specify the raster extent

ext <- extent(c(bb[1,1], bb[1,1]+(cells.x∗d),

bb[2,1],bb[2,1]+(cells.y∗d)))



# now run the raster conversion

r <- raster(ncol = cells.x,nrow =cells.y)

extent(r) <- ext

r <- rasterize(us_states2, r, "POP1997")

# and map

tm_shape(r) +

tm_raster(col = "layer", title = "Populations", palette = "Spectral", style = "kmeans") +

tm_layout(frame = F, legend.show = T, legend.position = c("left","bottom"))

5.8.2 Converting to sp raster classes
You may have noticed that the sp package also has two data classes that are
able to represent raster data, or data located on a regular grid. These are
SpatialPixelsDataFrame and SpatialGridDataFrame. It is possible to convert
the rasters to these. First, create a spatially coarser raster layer of US states
similar to the above.

r <- raster(nrow = 60 , ncols = 120, ext = extent(us_states2))

r <- rasterize(us_states2 , r, "BLACK")

Then the as function can be used to coerce this to SpatialPixelsDataFrame
and SpatialGridDataFrame objects, which can also be mapped using the
image, plot and tm_raster commands in the usual way:

g <- as(r, ’SpatialGridDataFrame’)

p <- as(r, ’SpatialPixelsDataFrame’)

# image(g, col = topo.colors(51))

You can examine the data values held in the data frame by entering:

head(data.frame(g))



head(data.frame(p))

The data can also be manipulated to select certain features, in this case
selecting the states with populations greater than 10 million people. The code
below assigns NA values to the data points that fail this test and plots the data
as in Figure 5.12.

# set up and create the raster

r <- raster(nrow = 60 , ncols = 120, ext = extent(us_states2))

r <- rasterize(us_states2 , r, "POP1997")

r2 <- r

# subset the data

r2[r < 10000000] <- NA

g <- as(r2, ’SpatialGridDataFrame’)

p <- as(r2, ’SpatialPixelsDataFrame’)

# not run

# image(g, bg = "grey90")

tm_shape(r2) +

tm_raster(col = "layer", title = "Pop", palette = "Reds", style = "cat") +

tm_layout(frame = F, legend.show = T, legend.position = c("left","bottom")) +

tm_shape(us_states2) + tm_borders()

Figure 5.12 Selecting data in a raster object



5.8.2.1 Raster to Vector
The raster package contains a number of functions for converting from vector
to raster formats. These include rasterToPolygons which converts to a
SpatialPolygonsDataFrame object, and rasterToPoints which converts to a
matrix object. Both are illustrated in the code below and the results shown in
Figure 5.13. Notice how the original raster imposes a grid structure on the
polygons that are created. In this case the default mapping options with plot
are easier than using the options in the tmap or ggplot2 packages.

Figure 5.13 Converting from rasters to polygons and points, with the original
polygon data in red



# load the data and convert to raster

data(newhaven)

# set up the raster, r

r <- raster(nrow = 60 , ncols = 60, ext = extent(tracts))

# convert polygons to raster

r <- rasterize(tracts , r, "VACANT")

poly1 <- rasterToPolygons(r, dissolve = T)

# convert to points



points1 <- rasterToPoints(r)

# plot the points, rasterised polygons & original polygons

par(mar=c(0,0,0,0))

plot(points1, col = "grey", axes = FALSE, xaxt=’n’, ann=FALSE, asp= 1)

plot(poly1, lwd = 1.5, add = T)

plot(tracts, border = "red", add = T)

However, regarding tmap … it can be done!

# first convert the point matrix to sp format

points1.sp <- SpatialPointsDataFrame(points1[,1:2], data = data.frame(points1[,3]))

# then pplot

tm_shape(poly1) + tm_borders(col = "black") +tm_shape(tracts) + tm_borders(col =
"red") +tm_shape(points1.sp) + tm_dots(col = "grey", shape = 1) +tm_layout(frame = F)

5.9 Introduction to Raster Analysis
This section provides the briefest of overviews of how raster data may be
manipulated and overlaid in R in a similar way to a standard GUI GIS such as
QGIS. This section will cover the reclassification of raster data as a precursor
to some basic methods for performing what is sometimes referred to as map
algebra, using a raster calculator or raster overlay. As a reminder, many
packages include user guides in the form of a PDF document describing the
package. This is listed at the top of the package index page. The raster
package includes example code for the creation of raster data and different
types of multi-layered raster composites. These will not be covered in this
section. Rather, the coded examples illustrate some basic methods for
manipulating and analysing raster layers in a similar way to what is often
referred to as sieve mapping, multi-criteria evaluation or multi-criteria
analysis. In these, different layers are combined to identify locations that
have specific combinations of properties, such as height above sea level >
200 m AND soil_type is ‘good’.

Raster analysis requires that the different input data have a number of



characteristics in common: typically they should cover the same spatial
extent, have the same spatial resolution (grid or cell size), and, as with data
for any spatial analysis, they should have the same projection or coordinate
system. The data layers used in the example code in this section all have
these properties. When you come to develop your own analyses, you may
have to perform some manipulation of the data prior to analysis to ensure that
your data also have these properties.

5.9.1 Raster Data Preparation
The Meuse data in the sp package will be used to illustrate the functions
below. You could read in your raster data using the readGDAL function in
the rgdal package, which provides an excellent R interface into the Geospatial
Data Abstraction Library (GDAL). This has been described as the ‘swiss
army knife for spatial data’ (https://cran.r-
project.org/web/packages/sf/vignettes/sf2.html) as it is able to read or write
vector and raster data of all file formats. You can inspect the properties and
attributes of the Meuse data by examining the associated help files ?
meuse.grid.

library(GISTools)

library(raster)

library(sp)

# load the meuse.grid data

data(meuse.grid)

# create a SpatialPixels DF object

coordinates(meuse.grid) <- ~x+y

proj4string(meuse.grid) <- CRS("+init=epsg:28992")

meuse.grid <- as(meuse.grid, "SpatialPixelsDataFrame")

# create 3 raster layers

r1 <- raster(meuse.grid, layer = 3) #dist

r2 <- raster(meuse.grid, layer = 4) #soil

https://cran.r-project.org/web/packages/sf/vignettes/sf2.html


r3 <- raster(meuse.grid, layer = 5) #ffreq

The code above loads the meuse.grid data, converts it to a
SpatialPixelsDataFrame format and then creates three separate raster layers in
the raster format. These three layers will form the basis of the analyses in this
section. You could visually inspect their attributes by using some simple
image commands:

# set the plot parameters for 3 rows

par(mfrow = c(1,3))

image(r1, asp = 1)

image(r2, asp = 1)

image(r3, asp = 1)

# reset par

par(mfrow = c(1,1))

5.9.2 Raster Reclassification
Raster analyses frequently employ simple numerical and mathematical
operations. In essence, they allow you to add, multiply, subtract, etc., raster
data layers, and these operations are performed on a cell-by-cell basis. So for
an addition this might be in the form:

Raster_Result <- Raster.Layer.1 + Raster.Layer.2

Remembering that raster data are numerical, if the Raster.Layer.1 and
Raster.Layer.2 data both contained the values 1, 2 and 3, it would be difficult
to know the origin, for example, of a value of 3 in the Raster_Result output.
Specifically, if the r2 and r3 layers created above are considered, these both
contain values in the range 1–3 describing soil types and flooding frequency,
respectively (as described in the help for the meuse.grid data). Therefore we
may wish to reclassify them in some way to understand the results of any
combination or overlay operation.



Figure 5.14 The result of a simple raster overlay

It is possible to reclassify raster data in a number of ways. First, the raster
data values can be manipulated using simple mathematical operations. These
produce raster outputs describing the mathematical combination of the input
raster layers. The code below multiplies one of the layers by 10. This means
that the result combining both raster data layers using the add (+) function



contains a fixed set of values (in this case 9) which are tractable to the
combinations of inputs used. A value of 32 would indicate values of 3 in r3 (a
flooding frequency of ‘one in 50 years’) and 2 in r2 (a soil type of
‘Rd90C/VII’, whatever that is). The results of this simple overlay are shown
in Figure 5.14 and in the table of values printed.

Raster_Result <- r2 + (r3 ∗ 10)

table(getValues(Raster_Result))

11  12 13  21  22  23  31  32  33

535 242  2 736 450 149 394 392 203

tm_shape(Raster_Result) + tm_raster(col = "layer", title = "Values", palette = "Spectral",
style = "cat") +

tm_layout(frame = F)

Figure 5.15 A raster overlay using a combinatorial AND



A second approach to reclassifying raster data is to employ logical operations
on the data layers prior to combining them. These return TRUE or FALSE
for each raster grid cell, depending on whether it satisfies the logical
condition. The resultant layers can then be combined in mathematical
operations as above. For example, consider the analysis that wanted to
identify the locations in the Meuse data that satisfied the following
conditions:

Are greater than half of the rescaled distance away from the Meuse
River



Have a soil class of 1, that is calcareous weakly developed meadow
soils, light sandy clay
Have a flooding frequency class of 3, namely once in a 50-year period

The following logical operations can be used to do this:

r1a <- r1 > 0.5

r2a <- r2 >= 2

r3a <- r3 < 3

These can then be combined using specific mathematical operations,
depending on the analysis. For example, a simple suitability multi-criteria
evaluation, where all the conditions have to be true and where a crisp,
Boolean output is required, would be coded using the multiplication function
as follows, with the result shown in Figure 5.15:

Raster_Result <- r1a ∗ r2a ∗ r3a

table(getValues(Raster_Result))

0  1

2924 179

tm_shape(Raster_Result) +

tm_raster(title = "Values", style = "cat") +tm_style("cobalt")

This is equivalent to a combinatorial AND operation, also known as an
intersection. Alternatively, the analysis may be interested in identifying
where any of the conditions are true, a combinatorial OR also known as a
union, with a different result as shown in Figure 5.16:

Raster_Result <- r1a + r2a + r3a

table(getValues(Raster_Result))

0   1   2  3

386 1526 1012 179



# plot the result and add a legend

tm_shape(Raster_Result) + tm_raster(title ="Conditions", style = "cat"), palette =
"Spectral")

#tm_layout(frame = F, bg.color = "grey85")

tm_style_col_blind()

Figure 5.16 A raster overlay using a combinatorial OR

5.9.3 Other Raster Calculations



The above examples illustrated code to reclassify raster layers and then
combined them using simple mathematical operations. You should note that
it is possible to apply any kind of mathematical function to a raster layer. For
example:

Raster_Result <- sin(r3) + sqrt(r1)

Raster_Result <- ((r1 ∗ 1000 ) / log(r3) ) ∗ r2

tmap_mode(’view’)

tm_shape(Raster_Result) + tm_raster(col = "layer", title = "Value")

tmap_mode("plot")

which produces Figure 5.17.

Figure 5.17 A raster generated from a number of mathematical operations

A number of other operations are possible using different functions included
in the raster package. They are not given a full treatment here, but are
introduced such that the interested reader can explore them in more detail.

The calc function performs a computation over a single raster layer, in a
similar manner to the mathematical operations in the preceding text. The
advantage of the calc function is that it should be faster when computing



more complex operations over large raster datasets.

my.func <- function(x) {log(x)}

Raster_Result <- calc(r3, my.func)

# this is equivalent to

Raster_Result <- calc(r3, log)

The overlay function provides an alternative to the mathematical operations
illustrated in the reclassification examples above for combining multiple
raster layers. The advantage of the overlay function, again, is that it is more
efficient for performing computations over large raster objects.

Raster_Result <- overlay(r2,r3,

fun = function(x, y) {return(x + (y ∗ 10))} )

# alternatively using a stack

my.stack <- stack(r2, r3)

Raster_Result <- overlay(my.stack, fun = function(x, y) (x + (y ∗ 10)) )

There are a number of distance functions for computing distances to specific
features. The distanceFromPoints function calculates the distance between a
set of points to all cells in a raster surface and produces a distance or cost
surface as in Figure 5.18.

# load meuse and convert to points

data(meuse)

coordinates(meuse) <- ~x+y

# select a point layer

soil.1 <- meuse[meuse$soil == 1,]

# create an empty raster layer

# this is based on the extent of meuse

r <- raster(meuse.grid)



dist <- distanceFromPoints(r, soil.1)

plot(dist,asp = 1, xlab=’’,ylab=’’,xaxt=’n’,yaxt=’n’,bty=’n’, axes =F)

plot(soil.1, add = T)

# the tmap version but this is not as nice as plot

# tm_shape(dist) + tm_raster(palette = rev(terrain.colors(10)),

#   title = "Distance", style = "kmeans") +

#  tm_layout(frame = F, legend.outside = T)

Figure 5.18 A raster analysis of distance to points

You are encouraged to explore the raster package (and indeed the sp package)
in more detail if you are specifically interested in raster-based analyses. There
are a number of other distance functions, functions for computing over
neighbourhoods (focal functions), accessing raster cell values and assessing
spatial configurations of raster layers.

5.10 Answers to Self-Test Questions
Q1: Produce maps of the densities of breaches of the peace in each census
block in New Haven in breaches per square kilometre. First, using sf formats:

# convert to sf

breach_sf <- st_as_sf(breach)



blocks_sf <- st_as_sf(blocks)

# point in polygon

b.count <- rowSums(st_contains(blocks_sf,breach_sf,sparse = F))

# area calculation

b.area <- ft2miles(ft2miles(st_area(blocks_sf))) ∗ 2.58999

# combine and assign to the blocks data

blocks_sf$b.p.sqkm <- as.vector(b.count/b.area)

# map

tm_shape(blocks_sf) +

tm_polygons("b.p.sqkm", style = "kmeans", title ="")

Second, using sp formats:

# point in polygon

b.count <- poly.counts(breach, blocks)

# area calculation

b.area <- ft2miles(ft2miles(gArea(blocks, byid = T))) ∗ 2.58999

# combine and assign to the blocks data

blocks$b.p.sqkm <- b.count/b.area

tm_shape(blocks) + tm_polygons("b.p.sqkm", style = "kmeans", title ="")

Q2: Produce a map of the outlying residuals using tm_shape functions etc.
from the tmap package.

blocks$s.resids.2 <- s.resids.2

tm_shape(blocks) +

tm_polygons("s.resids.2", breaks = c(−8,−2,2,8), auto.palette.mapping = F,

palette = resid.shades$cols)

Q3: Determine the coefficients a and b for two different analyses using



blocks and tracts data and comment on the difference between the analyses
using different areal units. First, calculate the coefficients for the analysis
using census blocks:

# Analysis with blocks

blocks2 = blocks[blocks$OCCUPIED > 0,]

attach(data.frame(blocks2))

forced.rate = 2000∗poly.counts(burgres.f,blocks2)/OCCUPIED

notforced.rate = 2000∗poly.counts(burgres.n,blocks2)/OCCUPIED

model1 = lm(forced.rate~notforced.rate)

coef(model1)

(Intercept) notforced.rate

5.4667222   0.3789628

detach(data.frame(blocks2))

The results can be printed out:

# from the model

coef(model1)

# or in a formatted statement

cat("expected(forced rate)=",coef(model1)[1], "+",

coef(model1)[2], "∗ (not forced rate)")

Now calculate the coefficients using census tracts:

# analysis with tracts

tracts2 = tracts[tracts$OCCUPIED > 0,]

# align the projections



ct <- proj4string(burgres.f)

proj4string(tracts2) <- CRS(ct)

# now do the analysis

attach(data.frame(tracts2))

forced.rate = 2000∗poly.counts(burgres.f,tracts2)/OCCUPIED

notforced.rate = 2000∗poly.counts(burgres.n,tracts2)/OCCUPIED

model2=lm(forced.rate~notforced.rate)detach(data.frame(tracts2))

Again the results can be printed out:

# from the model

coef(model2)

# or in a formatted statement

cat("expected(forced rate) = ",coef(model2)[1], "+",

coef(model2)[2], "∗ (not forced rate)")

These two analyses show that, in this case, there are only small differences
between the coefficients arising from analyses using different areal units.
Print out both results:

cat("expected(forced rate) = ",coef(model1)[1], "+", coef(model1)[2], "∗ (not forced rate)")

cat("expected(forced rate) = ",coef(model2)[1], "+", coef(model2)[2], "∗ (not forced rate)")

expected(forced rate) = 5.466722 + 0.3789628 ∗ (not forced rate)

expected(forced rate) = 5.243477 + 0.4132951 ∗ (not forced rate)

This analysis tests what is referred to as the modifiable areal unit problem,
first identified in the 1930s, and extensively research by Stan Openshaw in
the 1970s and beyond – see Openshaw (1984) for a comprehensive review.
Variability in analyses can arise when data are summarised over different
spatial units and the importance of the modifiable areal unit problem cannot
be overstated as a critical consideration in spatial analysis.



Q4: Write a function that will return an intersected dataset, with an attribute
of counts of some variable (houses, population, etc.) as held in another sf
format dataset.

int.count.function <- function(

int_sf, layer_sf, int.ID, layer.ID, target.var) {

# Use the IDs to assign ID variables to both inputs

# this makes the processing easier later on

int_sf$IntID <- as.vector(data.frame(int_sf[, int.ID])[,1])

layer_sf$LayerID <- as.vector(data.frame(layer_sf[, layer.ID])[,1])

# do the same for the target.var

layer_sf$target.var<-as.vector(data.frame(layer_sf[,target.var])[,1])

# check projections

if(st_crs(int_sf) != st_crs(layer_sf))

print("Check Projections!!!")

# do intersection

int.res_sf <- st_intersection(int_sf, layer_sf)

# generate area and proportions

int.areas <- st_area(int.res_sf)

layer.areas <- st_area(layer_sf)

# match tract area to the new layer

v1 <- as.vector(data.frame(int.res_sf$LayerID)[,1])

v2 <- as.vector(data.frame(layer_sf$LayerID)[,1])

index <- match(v1, v2)

layer.areas <- layer.areas[index]

layer.prop <- as.vector(int.areas/as.vector(layer.areas))

# create a variable of intersected values

int.res_sf$NewVar <-



as.vector(data.frame(layer_sf$target.var)[,1][index]) ∗ layer.prop

summarise this and link back to the int.layer_sf

# NewVar <- summarise(group_by(int.res_sf, IntID), count = sum(NewVar))

# create an empty vector

int.layer_sf$NewVar <- 0

# and populate this using ID as the index

int.layer_sf$NewVar[NewVar$IntID] <- NewVar$count

return(int.layer_sf)

}

You can test this:

# convert blocks to sf

blocks_sf <- st_as_sf(blocks)

# run the function

test.res <- int.count.function(

int_sf <- int.layer_sf,

layer_sf <- blocks_sf,

int.ID <- "ID",

layer.ID <- "NEWH075H_I",

target.var <- "POP1990")

plot(test.res[,"NewVar"])
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6 Point Pattern Analysis Using R

6.1 Introduction
In this and the next chapter, some key ideas of spatial statistics will be
outlined, together with examples of statistical analysis based on these ideas,
via R. The two main areas of spatial statistics that are covered are those
relating to point patterns (this chapter) and spatially referenced attributes
(next chapter). One of the characteristics of R, as open source software, is
that R packages are contributed by a variety of authors, each using their own
individual styles of programming. In particular, for point pattern analysis the
spatstat package is often used, while for spatially referenced attributed, spdep
is favoured. One the one hand spdep handles spatial data in the same way as
sp, maptools and GISTools, while on the other hand spatstat does not. Also,
for certain specific tasks, other packages may be called upon whose mode of
working differs from either of these packages. While this may seem a
daunting prospect, the aim of these two chapters is to introduce the key ideas
of spatial statistics, as well as providing guidance in the choice of packages,
and help in converting data formats. Fortunately, although some packages use
different data formats, conversion is generally straightforward, and examples
will appear throughout the chapters, whenever necessary.

6.2 What Is Special About Spatial?
In one sense, the motivations for statistical analysis of spatial data are the
same as those for non-spatial data:

To explore and visualise the data
To create and calibrate models of the process generating the data
To test hypotheses related to the processes generating the data

However, a number of these requirements are strongly influenced by the
nature of spatial data. The study of mapping and cartography may be
regarded as an entire subject area within the discipline of information



visualisation, which focuses exclusively on geographical information. In
addition, the kinds of hypotheses one might associate with spatial data are
quite distinctive – for example, focusing on the detection and location of
spatial clusters of events, or on whether two kinds of event (say, two different
types of crime) have the same spatial distribution. Similarly, models that are
appropriate for spatial data are distinctive, in that they often have to allow for
spatial autocorrelation in their random component – for example, a regression
model generally includes a random error term, but if the data are spatially
referenced, one might expect nearby errors to be correlated. This differs from
a ‘standard’ regression model where each error term is considered to apply
independently, regardless of location. In the remainder of this section, point
patterns (one of two key types of spatial data considered in this book) will be
considered. First, these will be described.

6.2.1 Point Patterns
Point patterns are collections of geographical points assumed to have been
generated by a random process. In this case, the focus of inference and
modelling is on model(s) of the random processes and their comparison.
Typically, a point dataset consists of a set of observed (x, y) coordinates, say
{(x1, y1), (x2, y2), …, (xn, yn)}, where n is the number of observations. As an
alternative notation, each point could be denoted by a vector xi, where xi =
(xi, yi). Using the data formats used in sp, maptools and so on, these data
could be represented as SpatialPoints or SpatialPointsDataFrame objects.
Since these data are seen as random, many models are concerned with the
probability densities of the random points, ν(xi).

Another area of interest is the interrelation between the points. One way of
thinking about this is to consider the probability density of one point xi

conditional on the remaining points . In
some situations xi is independent of the other points. However, for other
processes this is not the case. For example, if xi is the location of the reported
address for a contagious disease, then it is more likely to occur near one of
the points in the dataset (due to the nature of contagion), and therefore not



independent of the values of .

Also important is the idea of a marked process. Here, random sets of points
drawn from a number of different populations are superimposed (e.g.
household burglaries using force and household burglaries not using force)
and the relationship between the different sets is considered. The term
‘marked’ is used here as the dataset can be viewed as a set of points where
each point is tagged (or marked) with its parent population. Using the data
formats used by sp, a marked process could be represented as a spatial points
data frame – although the spatstat package uses a different format.

6.3 Techniques for Point Patterns Using R
Having outlined the two main data types that will be considered, and the
kinds of model that may be applied, in this section more specific techniques
will be discussed, with examples of how they may be carried out using R. In
this section, we will focus on random point patterns.

6.3.1 Kernel Density Estimates
The simplest way to consider random two-dimensional point patterns is to
assume that each random location xi is drawn independently from an
unknown distribution with probability density function f(xi). This function
maps a location (represented as a two-dimensional vector) onto a probability
density. If we think of locations in space as a very fine pixel grid, and assume
a value of probability density is assigned to each pixel, then summing the
pixels making up an arbitrary region on the map gives the probability that an
event occurs in that area. It is generally more practical to assume an unknown
f, rather than, say, a Gaussian distribution, since geographical patterns often
take on fairly arbitrary shapes – for example, when applying the technique to
patterns of public disorder, areas of raised risk will occur in a number of
locations around a city, rather than a simplistic radial ‘bell curve’ centred on
the city’s mid-point.

A common technique used to estimate f(xi) is the kernel density estimate



(KDE: Silverman, 1986). KDEs operate by averaging a series of small
‘bumps’ (probability distributions in two dimensions, in fact) centred on each
observed point. This is illustrated in Figure 6.1. In algebraic terms, the
approximation to f(x), for an arbitrary location x = (x, y), is given by

(6.1)

Each of the ‘bumps’ (central panel in Figure 6.1) map onto the kernel

function  in equation (6.1) and the entire equation
describes the ‘bump averaging’ process, leading to the estimate of probability
density in the right-hand panel. Note that there are also parameters hx and hy
(frequently referred to as the bandwidths) in the x and y directions; their
dimension is length, and they represent the radii of the bumps in each
direction. Varying hx and hy alters the shape of the estimated probability
density surface – in brief, low values of hx and hy lead to very ‘spiky’
distribution estimates, and very high values, possibly larger than the span of
the xi locations, tend to ‘flatten’ the estimate so it appears to resemble the k-
function itself; effectively this gives a superposition of nearly identical k-
functions with relatively small perturbations in their centre points.

Figure 6.1 Kernel density estimation: initial points (left); bump centred on
each point (centre); average of bumps giving estimate of probability density
(right)

This effect of varying hx and hy is shown in Figure 6.2. Typically hx and hy
take similar values. If one of these values is very different in magnitude than
the other, kernels elongated in either the x or y direction result. Although this
may be useful when there are strong directional effects, we will focus on the



situation where values are similar for the examples discussed here. To
illustrate the results of varying the bandwidths, the same set of points used in
Figure 6.1 is used to provide KDEs with three different values of hx and hy:
on the left, they both take a very low value, giving a large number of peaks;
in the centre, there are two peaks; and on the right, only one.

Figure 6.2 Kernel density estimation bandwidths: hx and hy too low (left); hx
and hy appropriate (centre); hx and hy too high (right)

An obvious problem is that of choosing appropriate hx and hy given a dataset
{xi}. There are a number of formulae to provide ‘automatic’ choices, as well
as some more sophisticated algorithms. Here, a simple rule is used, as
proposed by Bowman and Azzalini (1997) and Scott (1992):

(6.2)

where σx is the standard deviation of the xi. A similar formula exists for hy,
replacing σx with σy, the standard deviation of the yi. The central KDE in
Figure 6.2 is based on choosing hx and hy using this method.

6.3.2 Kernel Density Estimation Using R
Here, the breaches of the peace (public disturbances) in New Haven,
Connecticut are used as an example; recall that this is provided in the
GISTools package, here loaded using data(newhaven). As an initial
inspection of the data, look at the locations of breaches of the peace. These
can be viewed on an interactive map using the tmap package in view mode.
The following code loads the New Haven data and tmap, sets R in view mode
and produces a map showing the US Census block boundaries and the
locations of breach of the peace, on a backdrop of a CartoDB map, provided



your computer is linked to the internet. The two layers can be interactively
switched on or off, and the backdrop can be changed. Here, we will generally
use the default backdrop as it is monochrome, and the information to be
mapped will be in colour. The initial map window is seen in Figure 6.3.

# Load GISTools (for the data) and tmap (for the mapping)

require(GISTools)

require(tmap)

# Get the data

data(newhaven)

# look at it

# select ’view’ mode

tmap_mode(’view’)

# Create the map of blocks and incidents

tm_shape(blocks) + tm_borders() + tm_shape(breach) + tm_dots(col=’navyblue’)

Figure 6.3 Web view mode of tmap

There are a number of packages in R that provide code for computing KDEs.
Here, the tmap and tmaptools libraries provide some very useful tools. The



function to compute kernel density estimation is map_smooth from
tmaptools. This estimates the value of the density over a grid of points, and
returns the result as a list – a raster object – referred to as X$raster (where X
is the value returned from map_smooth), a contour object (X$iso) and a
polygon object (X$polygon). The first of these is a raster grid of values for
the KDEs, and the second and third relate to contour lines associated with the
KDE; iso provides a set of lines (the contour lines) which may be plotted.
Similarly, the polygons item provides a solid list of polygons that may be
plotted (as filled polygons). map_smooth takes several arguments (most
notably the set of points to use for the KDE) but also a number of optional
arguments. Two key ones here are the bandwidth and the cover. The
bandwidth is a vector of length 2 containing hx and hy, and the cover is a
geographical object whose outline forms the boundary of the locations where
the KDE is estimated. Both of these have defaults: the default bandwidth is 

 times the shortest side of the bounding box of the points, and the default
cover is the bounding box of the points. However, as discussed earlier, more
appropriate hx and hy values may be found using (6.2). This is not provided
as part of smooth_map, but a function is easily written. The division of the
result by 1000 is because the projected data are measured in metres, but
smooth_map expects bandwidths in kilometres.

Figure 6.4 KDE map for breaches of the peace



# Function to choose bandwidth according to Bowman and Azzalini / Scott’s rule

# for use with smooth_map in tmaptools

choose_bw <- function(spdf) {

X <- coordinates(spdf)

sigma <- c(sd(X[,1]),sd(X[,2])) ∗ (2 / (3 ∗ nrow(X))) ^ (1/6)

return(sigma/1000)

}

Now the code to carry out the KDE and plot the results may be used. Here the
raster version of the result is used, and plotted on a web mapping backdrop
(Figure 6.4).

library(tmaptools)

tmap_mode(’view’)

breach_dens <- smooth_map(breach,cover=blocks, bandwidth = choose_bw(breach))

tm_shape(breach_dens$raster) + tm_raster()

The ‘count’ caption here indicates that the probability densities have been
rescaled to represent intensities – by multiplying the KDE by the number of
cases. With this scale, the quantity being mapped is the expected number of
cases per unit area in the amount of time of the study period.

It is also possible to use the other forms of result (polygons or isolines) to
plot the KDE outcomes. In the following code, isolines are produced, again
with a backdrop of a web map (see Figure 6.5).

Figure 6.5 KDE map for breaches of the peace – isoline version



tmap_mode(’view’)

tm_shape(blocks)+ tm_borders(alpha=0.5) + tm_shape(breach_dens$iso) +
tm_lines(col=’darkred’,lwd=2)

Here, a backdrop of block boundaries has also been added to emphasise the
limits of the data collection region. In this and the previous map, it is
important to be aware of the boundaries of the data sampling region. Low
probability densities outside this region are quite likely due to no data being
collected there – not necessarily low incident risk!

Self-Test Question 1. As a further exercise, create the polygons version
of the KDE map in the plot mode of tmap – the tm_fill() function will
shade the polygons. As there will be no backdrop map, roads and blocks
should be added to the map to provide context. Also, add a map scale.

I

As well as estimating the probability density function f(x, y), kernel density estimation also
provides a helpful visual tool for displaying point data. Although plotting point data directly
can show all of the information in a small dataset, if the dataset is larger it is hard to
discriminate between relative densities of points: essentially, when points are very closely
packed, the map symbols begin to overprint and exact numbers are hard to determine; this is
illustrated in Figure 6.6. On the left is a plot of locations. The points plotted are drawn from
a two-dimensional Gaussian distribution, and their relative density increases towards the



centre. However, except for a penumbral region, the intensity of the dot pattern appears to
have roughly fixed density. As the KDE estimates relative density, this problem is
addressed – as may be seen in the KDE plot in Figure 6.6 (right).

Figure 6.6 The overplotting problem: point plot (left) and KDE plot (right)

6.4 Further Uses of Kernel Density Estimation
KDEs are also useful for comparative purposes. In the newhaven dataset
there are also data relating to burglaries from residential properties. These are
divided into two classes: burglaries involving forced entry, and burglaries
that do not. It may be of interest to compare the spatial distributions of the
two groups. In the newhaven dataset, burgres.f is a SpatialPoints object with
points for the occurrence of forced entry residential burglaries, and burgres.n
is a SpatialPoints object with points for non-forced entries. Based on the
recommendation to compare patterns in data using small multiples of
graphical panels (Tufte, 1990), KDE maps for forced and non-forced
burglaries may be shown side by side. This is achieved using the R code
below, which carries out the following operations:

Specify a set of levels for the intensity contours. To allow comparison
the same levels will be used on both maps
Compute the KDEs. Here the contours are specified for the iso and
polygons results
Draw each of the two maps and store in variables dn and df. Here the
polygon format is used
Use tmap_arrange to draw the two maps in ‘small multiples’ format



The result is seen in Figure 6.7. Although there are some similarities in the
two patterns – likely due to the underlying pattern of housing – it may be
seen that for the non-forced entries there are two peaks of roughly equal
intensity (Beaver Hills/Edgewood in the west and Fair Haven in the east),
while for forced entries the peaks are in similar positions but the stronger
peak is to the west, near Edgewood. More generally, there tend to be more
forced incidents than non-forced.

# R Kernel Density comparison - first make sure the New Haven data are available

require(GISTools)

data(newhaven)

tmap_mode(’plot’)

# Create the KDEs for the two datasets:

contours <- seq(0,1.4,by=0.2)

brn_dens <- smooth_map(burgres.n,cover=blocks, breaks=contours, style=’fixed’,
bandwidth = choose_bw(burgres.n))

brf_dens <- smooth_map(burgres.f,cover=blocks, breaks=contours, style=’fixed’,
bandwidth = choose_bw(burgres.f))

# Create the maps and store them in variables

dn <- tm_shape(blocks) + tm_borders() + tm_shape(brn_dens$polygons) +
tm_fill(alpha=0.8) + tm_layout(title="Non-Forced Burglaries")

df <- tm_shape(blocks) + tm_borders() + tm_shape(brf_dens$polygons) +
tm_fill(alpha=0.8) + tm_layout(title="Forced Burglaries")

tmap_arrange(dn,df)

Figure 6.7 KDE maps to compare forced and non-forced burglary patterns



6.4.1 Hexagonal Binning Using R
An alternative visualisation tool for geographical point datasets with larger
numbers of points is hexagonal binning. In this approach, a regular lattice of
small hexagonal cells is overlaid on the point pattern, and the number of
points in each cell is counted. The cells are then shaded according to the
counts. This method also overcomes the overplotting problem. However,
hexagonal binning is not directly available in GISTools, and it is necessary to
use another package. One possibility is the fMultivar package. This provides
a routine for hexagonal binning called hexBinning, which takes a two-column
matrix of coordinates and provides an object representing the hexagonal grid
and the counts of points in each hexagonal cell. Note that this function does
not work directly with sp-type spatial data objects. This is mainly because it
is designed to apply hexagonal binning to any kind of data (e.g. scatter plot
points where the x and y variables are not geographical coordinates).
However, it is perfectly acceptable to subject geographical points to this kind
of analysis.



First, make sure that the fMultivar package is installed in R. If not, enter:

install.packages("fMultivar",depend=TRUE)

A complication here is that the result of the hexBinning function is not a
Spatial-PolygonsDataFrame object and not immediately compatible with
tmap and other spatial tools in R. To allow for this, a new function
hexbin_map is written. This takes a SpatialPointsDataFrame object as input,
and returns a SpatialPolygonsDataFrame object consisting of the hexagons in
which one or more points occur, together with a data frame with a column z
containing the count of points. The code works as follows:

Extract coordinates from the SpatialPointsDataFrame object
Run hexBinning on these
Construct hexagonal polygon coordinates
Loop through each polygon; construct these according to sp data
structures
Copy the map projection information from the SpatialPointsDataFrame
object
Add the count information giving a SpatialPolygonsDataFrame object

The code is below:

hexbin_map <- function(spdf, ...) {

hbins <- fMultivar::hexBinning(coordinates(spdf),...)

# Hex binning code block

# Set up the hexagons to plot, as polygons

u <- c(1, 0, −1, −1, 0, 1)

u <- u ∗ min(diff(unique(sort(hbins$x))))

v <- c(1,2,1,−1,−2,−1)

v <- v ∗ min(diff(unique(sort(hbins$y))))/3

# Construct each polygon in the sp model

hexes_list <- vector(length(hbins$x),mode=’list’)



for (i in 1:length(hbins$x)) {

pol <- Polygon(cbind(u + hbins$x[i], v + hbins$y[i]),hole=FALSE)

hexes_list[[i]] <- Polygons(list(pol),i) }

# Build the spatial polygons data frame

hex_cover_sp <\SpatialPolygons(hexes_list,proj4string=CRS(proj4string(spdf)))

hex_cover <- SpatialPolygonsDataFrame(hex_cover_sp,
data.frame(z=hbins$z),match.ID=FALSE)

# Return the result

return(hex_cover)

}

I

Note the reference to fMultivar::hexBinning in the code. This tells R to use the function
hexBinning from the package fMultivar without actually loading the package using library.
It is useful if it is the only thing used from that package, as it avoids having to load
everything else in the package.

It is now possible to create hex binned maps via this function. Here a view
mode map is the map of hex binned breach data (Figure 6.8).

tmap_mode(’view’)

breach_hex <- hexbin_map(breach,bins=20)

tm_shape(breach_hex) + tm_fill(col=’z’,title=’Count’,alpha=0.7)

Figure 6.8 Hexagonal binning of residential burglaries



As an alternative graphical representation, it is also possible to draw
hexagons whose area is proportional to the point count. This is done by
creating a variable with which to multiply the relative polygon coordinates
(this relates to the square root of the count in each polygon, since it is areas
of the hexagons that should reflect the counts). This is all achieved via a
modification of the previous hexbin_map function, called hexprop_map,
listed below.

hexprop_map <- function(spdf, ...) {

hbins <- fMultivar::hexBinning(coordinates(spdf),...)

# Hex binning code block

# Set up the hexagons to plot, as polygons

u <- c(1, 0, −1, −1, 0, 1)

u <- u ∗ min(diff(unique(sort(hbins$x))))

v <- c(1,2,1,−1,−2,−1)

v <- v ∗ min(diff(unique(sort(hbins$y))))/3

scaler <- sqrt(hbins$z/max(hbins$z))

# Construct each polygon in the sp model

hexes_list <- vector(length(hbins$x),mode=’list’)

for (i in 1:length(hbins$x)) {



pol <- Polygon(cbind(u∗scaler[i] + hbins$x[i], v∗scaler[i] + hbins$y[i]),hole=FALSE)

hexes_list[[i]] <- Polygons(list(pol),i) }

# Build the spatial polygons data frame

hex_cover_sp <- SpatialPolygons(hexes_list,proj4string=CRS(proj4string(spdf)))

hex_cover <- SpatialPolygonsDataFrame(hex_cover_sp,
data.frame(z=hbins$z),match.ID=FALSE)

# Return the result

return(hex_cover)

}

It is now possible to create a proportional hex binning map – here in plot
mode in Figure 6.9.

tmap_mode(’plot’)

breach_prop <- hexprop_map(breach,bins=20)

tm_shape(blocks) + tm_borders(col=’grey’) +

tm_shape(breach_prop) +tm_fill(col=’indianred’,alpha=0.7) +

tm_layout("Breach of Peace Incidents",title.position=c(’left’,’bottom’))

Figure 6.9 Hexagonal binning of residential burglaries



6.5 Second-Order Analysis of Point Patterns
In this section an alternative approach to point patterns will be considered.
Whereas KDEs assume that the spatial distributions for a set of points are
independent but have a varying intensity, the second-order methods
considered in this section assume that marginal distributions of points have a
fixed intensity, but that the joint distribution of all points is such that
individual distributions of points are not independent.1 This process describes
situations in which the occurrences of events are related in some way – for
example, if a disease is contagious, the reporting of an incidence in one place
might well be accompanied by other reports nearby. The K-function (Ripley,
1981) is a very useful tool for describing processes of this kind. The K-
function is a function of distance, defined by

1 A further stage in complication would be the situation where individual



distributions are not independent, but also the marginal distributions vary in
intensity – however, this will not be considered here.

K(d) = λ−1E(Nd) (6.3)

where Nd is the number of events xi within a distance d of a randomly chosen

event from all recorded events , and λ is the intensity of the
process, measured in events per unit area. Consider the situation where the
distributions of xi are independent, and the marginal densities are uniform –
often termed a Poisson process, or complete spatial randomness (CSR). In
this situation one would expect the number of events within a distance d of a
randomly chosen event to be the intensity λ multiplied by the area of a circle
of radius d, so that

(6.4)

The situation in equation (6.4) can be thought of as a benchmark to assess the
clustering of other processes. For a given distance d, the function value
KCSR(d) gives an indication of the expected number of events found around a
randomly chosen event, under the assumption of a uniform density with each
observation being distributed independently of the others. Thus for a process
having a k-function k(d), if k(d) > KCSR(d), this suggests that there is an
excess of nearby points – or, to put it another way, there is clustering at the
spatial scale associated with the distance d. Similarly, if K(d) < KCSR(d), this
suggests spatial dispersion at this scale – the presence of one point suggests
other points are less likely to appear nearby than for a Poisson process.

The consideration of spatial scale is important (many processes exhibit spatial
clustering at some scales, and dispersion at others) so that the quantity K(d) −
KCSR(d) may change sign with different values of d. For example, the process
illustrated in Figure 6.10 shows clustering at low values of d – for small
distances (such as d2 in the figure) there is an excess of points near to other
points compared to CSR, but for intermediate distances (such as d1 in the



figure) there is an undercount of points.

Figure 6.10 A spatial process with both clustering and dispersion

When working with a sample of data points {xi}, the K-function for the
underlying distribution will not usually be known. In this case, an estimate
must be made using the sample. If dij is the distance between xi and xj then
an estimate of K(d) is given by

(6.5)

where  is an estimate of the intensity given by

(6.6)



|A| being the area of a study region defined by a polygon A. Also I(·) is an
indicator function taking the value 1 if the logical expression in the brackets
is true, and 0 otherwise. To consider whether this sample comes from a
clustered or dispersed process, it is helpful to compare  to KCSR(d).

Statistical inference is important here. Even if the dataset had been generated
by a CSR process, an estimate of the K-function would be subject to
sampling variation, and could not be expected to match KCSR(d) perfectly.
Thus, it is necessary to test whether the sampled  is sufficiently unusual

with respect to the distribution of  estimates one might expect to see under
CSR to provide evidence that the generating process for the sample is not
CSR. The idea is illustrated in Figure 6.11. Here, 100 K-function estimates
(based on equation (6.5)) from random CSR samples of 100 points (the same
number of points as in Figure 6.10) are superimposed, together with the
estimate from the point set shown in Figure 6.10. From this it can be seen that
the estimate from the clustered sample is quite different from the range of
estimates expected from CSR.

Figure 6.11 Sample K-functions under CSR



Another aspect of sampling inference for K-functions is the dependency of 
 on the shape of the study area. The theoretical form KCSR(d) = λπd2 is

based on an assumption of points occurring in an infinite two-dimensional
plane. The fact that a ‘real-world’ sample will be taken from a finite study
area (denoted here by A) will lead to further deviation of sample-based
estimates of  from the theoretical form. This can also be seen in Figure
6.11 – although for the lower values of d the CSR estimated K-function
curves resemble the quadratic shape expected: the curves ‘flatten out’ for
higher values of d. This is due to the fact that for larger values of d, points
will only be observed in the intersection of a circle of radius d around a
random xi and the study area A. This will result in fewer points being
observed than the theoretical K-function would predict. This effect continues,
and when d is sufficiently large any circle centred on one of the points will
encompass the entirety of A. At this point, any further increase in d will result
in no change in the number of points contained in the circle – this provides an
explanation of the flattening-out effect seen in the figure.

Above, the idea is to consider a CSR process constrained to the study area.
However, another viewpoint is that the study area defines a subset of all
points generated on the full two-dimensional plane. To estimate the K-
function for the full-plane process some allowance for edge effects on the



study area needs to be made. Ripley (1976) proposed the following
modification to equation (6.5):

(6.7)

where wij is the area of intersection between a circle centred at xi passing
through xj and the study area A. Inference about the estimated K-function can

then be carried out using the approach used above, but with  based on
equation (6.7).

I

For the data in the example, points were generated with A as the rectangle having lower left
corner (−1, −1) and upper right corner (1, 1). In practice A may have a more complex shape
(a polygon outline of a county, for example); for this reason, assessing the sampling
variability of the K-function under sampling must often be achieved via simulation, as seen
in Figure 6.11.

6.5.1 Using the K-Function in R
In R, a useful package for computing estimated K-functions (as well as other
spatial statistical procedures) is spatstat. This is capable of carrying out the
kind of simulation illustrated earlier in this section.

The K-function estimation as defined above may be estimated in the spatstat
package using the Kest function. Here the locations of bramble canes
(Hutchings, 1979; Diggle, 1983) are analysed, having been obtained as a
dataset supplied with spatstat via the data(bramblecanes) command. They are
plotted in Figure 6.12. Different symbols represent different ages of canes –
although initially we will just consider the point pattern for all canes.

Figure 6.12 Bramble cane locations



# K-function code block

# Load the spatstat package

require(spatstat)

# Obtain the bramble cane data

data(bramblecanes)

plot(bramblecanes)

Next, the Kest function is used to obtain an estimate for the K-function of the
spatial process underlying the distribution of the bramble canes. The
correction=’border’ argument requests that an edge-corrected estimate (as in
equation (6.7)) be used.

kf <- Kest(bramblecanes,correction=’border’)

# Plot it



plot(kf)

Figure 6.13 Ripley’s K-function plot

The result of plotting the K-function as shown in Figure 6.13 compares the
estimated function (labelled ) to the theoretical function under CSR

(labelled ). It may be seen that the data appear to be clustered (generally
the empirical K-function is greater than that for CSR, suggesting that more
points occur close together than would be expected under CSR). However,
this perhaps needs a more rigorous investigation, allowing for sampling
variation via simulation as set out above.

This simulation approach is sometimes referred to as envelope analysis, the
envelope being the highest and lowest values of  for a value of d. Thus
the function for this is called envelope. This takes a ppp object and a further
function as an argument. The function here is Kest – there are other functions



also used to describe spatial distributions which will be discussed later, which
envelope can use, but for now we focus on Kest. The envelope object may
also be plotted, as shown in the following code which results in Figure 6.14:

# Code block to produce k-function with envelope

# Envelope function

kf.env <- envelope(bramblecanes,Kest,correction="border")

# Plot it

plot(kf.env)

Figure 6.14 K-function with envelope

From this it can be seen that the estimated K-function for the sample takes on
a higher value than the envelope of simulated K-functions for CSR until d
becomes quite large, suggesting strong evidence that the locations of bramble



canes do indeed exhibit clustering. However, it can reasonably be argued that
comparing an estimated  and an envelope of randomly sampled estimates
under CSR is not a formal significance test. In particular, since the sample
curve is compared to the envelope for several d values, multiple significance
testing problems may occur. These are well explained by Bland and Altman
(1995) – in short, when carrying out several tests, the chance of obtaining a
false positive result in any test is raised. If the intention is to evaluate a null
hypothesis of CSR, then a single number measuring departure of  from
KCSR(d), rather than the K-function, may be more appropriate – so that a
single test can be applied. One such number is the maximum absolute
deviation (MAD: Ripley, 1977, 1981). This is the absolute value of the
largest discrepancy between the two functions:

(6.8)

In R, we enter:

mad.test(bramblecanes,Kest,verbose=FALSE)

Maximum absolute deviation test of CSR

Monte Carlo test based on 99 simulations

Summary function: K(r)

Reference function: theoretical

Alternative: two.sided

Interval of distance values: [0, 0.25] units (one unit = 9 metres)

Test statistic: Maximum absolute deviation

Deviation = observed minus theoretical

data: bramblecanes

mad = 0.016159, rank = 1, p-value = 0.01

In this case it can be seen that the null hypotheses of CSR can be rejected at



the 1% level. An alternative test is advocated by Loosmore and Ford (2006)
where the test statistic is

(6.9)

in which  is the average value of  over the simulations, the dk are
a sequence of sample distances ranging from dmin to d max, and δk = dk+1 −
dk. Essentially this attempts to measure the sum of the squared distance
between the functions, rather than the maximum distance. This is
implemented by spatstat via the dclf.test function, which works similarly to
mad.test:

dclf.test(bramblecanes,Kest,verbose=FALSE)

Diggle-Cressie-Loosmore-Ford test of CSR

Monte Carlo test based on 99 simulations

Summary function: K(r)

Reference function: theoretical

Alternative: two.sided

Interval of distance values: [0, 0.25] units (one unit = 9 metres)

Test statistic: Integral of squared absolute deviation

Deviation = observed minus theoretical

data: bramblecanes

u = 3.3372e−05, rank = 1, p-value = 0.01

Again, results suggest rejecting the null hypothesis of CSR – see the reported
p-value.

6.5.2 The L-function
An alternative to the K-function for identifying clustering in spatial processes



is the L-function. This is defined in terms of the K-function

(6.10)

Although just a simple transformation of the K-function, its utility lies in the
fact that under CSR, L(d) = d; that is, the L-function is linear, having a slope
of 1 and passing through the origin. Visually identifying this in a plot of
estimated L-functions is generally easier than identifying a quadratic
function, and therefore L-function estimates are arguably a better visual tool.
The Lest function provides a sample estimate of the L-function (by applying
the transform in (6.10) to ) which can be used in place of Kest. As an
example, recall that the envelope function could take alternatives to K-
functions to create the envelope plot: in the following code, an envelope plot
using L-functions for the bramble cane data is created (see Figure 6.15):

# Code block to produce k-function with envelope

# Envelope function

lf.env <- envelope(bramblecanes,Lest,correction="border")

# Plot it

plot(lf.env)

Similarly, it is possible to apply MAD tests or Loosmore and Ford tests using
L instead of K. Again mad.test and dclf.test allow an alternative to K-
functions to be specified. Indeed, Besag (1977) recommends using L-
functions in place of K-functions in this kind of test. As an example, the
following code applies the MAD test to the bramble cane data using the L-
function.

mad.test(bramblecanes,Lest,verbose=FALSE)

Maximum absolute deviation test of CSR

Monte Carlo test based on 99 simulations



Summary function: L(r)

Reference function: theoretical

Alternative: two.sided

Interval of distance values: [0, 0.25] units (one unit = 9 metres)

Test statistic: Maximum absolute deviation

Deviation = observed minus theoretical

data: bramblecanes

mad = 0.017759, rank = 1, p-value = 0.01

Figure 6.15 L-function with envelope

6.5.3 The G-Function



Yet another function used to describe the clustering in point patterns is the G-
function. This is the cumulative distribution of the nearest neighbour distance
for a randomly selected xi. Thus, given a distance d, G(d) is the probability
that the nearest neighbour distance for a randomly chosen sample point is less
than or equal to d. Again, this can be estimated using spatstat, using the
function Gest. As in the case of Lest and Kest, the functions envelope,
mad.test and dclf.test may be used with Gest. Here, again with the bramble
cane data, a G-function envelope is plotted:

# Code block to produce G-function with envelope

# Envelope function

gf.env <- envelope(bramblecanes,Gest,correction="border")

# Plot it

plot(gf.env)

Figure 6.16 G-function with envelope



The estimate of the G-function for the sample is based on the empirical
proportion of nearest neighbour distances less than d, for several values of d.
In this case the envelope is the range of estimates for given d values, for
samples generated under CSR. Theoretically, the expected G-function for
CSR is

G(d) = 1 − exp(−λπd) (6.11)

This is also plotted in Figure 6.16, as Gtheo.

I

One complication is that spatstat stores spatial information in a different way than sp,
GISTools and related packages, as noted earlier. This is not a major hurdle, but it does mean
that objects of types such as Spatial-PointsDataFrame must be converted to spatstat’s ppp



format. This is a compendium format containing both a set of points and a polygon
describing the study area A, and can be created from a SpatialPoints or
SpatialPointsDataFrame object combined with a Spatial-Polygons or
SpatialPolygonsDataFrame object. This is achieved via the as and as.ppt functions from the
maptools package.

require(maptools)

require(spatstat)

# Bramblecanes is a dataset in ppp format from spatstat

data(bramblecanes)

# Convert the data to SpatialPoints, and plot them

bc.spformat <- as(bramblecanes,"SpatialPoints")

plot(bc.spformat)

# It is also possible to extract the study polygon

# referred to as a window in spatstat terminology

# Here it is just a rectangle...

bc.win <- as(bramblecanes$win,"SpatialPolygons")

plot(bc.win,add=TRUE)

It is also possible to convert objects in the other direction, via the as.ppp function. This
takes two arguments, the coordinates of the SpatialPoints or SpatialPointsDataFrame object
(extracted using the coordinates function), and an owin object created from a
SpatialPolygons or SpatialPolygonsDataFrame via as.win. owin objects are single polygons
used by spatstat to denote study areas, and are a component of ppp objects. In the following
example, the burgres.n point dataset from GISTools is converted to ppp format and a G-
function is computed and plotted.

require(maptools)

require(spatstat)

# Bramblecanes is a dataset in ppp format from spatstat

# convert burgres.n to a ppp object br.n.ppp <- as.ppp(coordinates(burgres.n),
W=as.owin(gUnaryUnion(blocks)))

br.n.gf <- Gest(br.n.ppp)

plot(br.n.gf)



6.6 Looking At Marked Point Patterns
A further advancement of the analysis of patterns of points of a single type is
the consideration of marked point patterns. Here, several kinds of points are
considered in a dataset, instead of only a single kind. For example, in the
newhaven dataset there are point data for several kinds of crime. The term
‘marked’ is used as each point is thought of as being tagged (or marked) with
a specific type. As with the analysis of single kinds of points (or ‘unmarked’
points), the points are still treated as random two-dimensional quantities. It is
also possible to apply tests and analyses to each individual kind of point – for
example, testing each mark type against a null hypothesis of CSR, or
computing the K-function for that mark type. However, it is also possible to
examine the relationships between the point patterns of different mark types.
For example, it may be of interest to determine whether forced entry
residential burglaries occur closer to non-forced-entry burglaries than one
might expect if the two sets of patterns occurred independently.

One method of investigating this kind of relationship is the cross-K-function
between marks of type i and j. This is defined as

Kij (d) = λj−1E(Ndij) (6.12)

where Ndij is the number of events xk of type j within a distance d of a

randomly chosen event from all recorded events  of type i, and
λj is the intensity of the process marked j – measured in events per unit area
(Lotwick and Silverman, 1982). If the process for points with mark j is CSR,
then Kij(d) = λjπd2. A similar simulation-based approach to that set out for K,
L and G in earlier sections may be used to investigate Kij(d) and compare it to
a hypothesised sample estimate of Kij(d) under CSR.

The empirical estimate of Kij(d) is obtained in a similar way to that in
equation (6.5):



(6.13)

where k indexes all of the i-marked points and l indexes all of the j-marked
processes, and ni and nj are the respective numbers of points marked i and j.
A correction (of the form in equation (6.7)) may also be applied. There is also
a cross-L-function, Lij (d), which relates to the cross-K-function in the same
way that the standard K-function relates to the standard L-function.

6.6.1 Cross-L-Function Analysis in R
There is a function in spatstat called Kcross to compute cross-K-functions,
and a corresponding function called Lcross for cross-L-functions. These take
a ppp object and values for i and j as the key arguments. Since i and j refer to
mark types, it is also necessary to identify the marks for each point in a ppp
object. This can be done via the marks function. For example, for the
bramblecanes object, the points are marked in relation to the age of the cane
(see Hutchings, 1979) with three levels of age (labelled as 0, 1 and 2 in
increasing order). Note that the marks are factors. These may be listed by
entering:

marks(bramblecanes)



Levels: 0 1 2

I

It is also possible to assign values to marks of a ppp object using the expression:

marks(x) <- ...

where ... is any valid R expression creating a factor variable with the same length of number
elements as there are points in the ppp object x. This is useful if converting a



SpatialPointsDataFrame object into a ppp object representing a marked process.

As an example here, we compute and plot the cross-L-function for levels 0
and 1 of the bramblecanes object (the resultant plot is shown in Figure 6.17):

cl.bramble <- Lcross(bramblecanes,i=0,j=1,correction=’border’)

plot(cl.bramble)

Figure 6.17 Cross-L-function for levels 0 and 1 of the bramble cane data

The envelope function may also be used (Figure 6.18):

clenv.bramble <- envelope(bramblecanes,Lcross,i=0,j=1,correction=’border’)

plot(clenv.bramble)

Figure 6.18 Cross-L-function envelope for levels 0 and 1 of the bramble cane



data

Thus, it would seem that there is a tendency for more young (level 1) bramble
canes to occur close to very young (level 0) canes. This can be formally
tested, as both mad.test and dclf.test can be used with Kcross and Lcross.
Here the use of Lcross with dclf.test is demonstrated:

dclf.test(bramblecanes,Lcross,i=0,j=1,correction=’border’,verbose=FALSE)

Diggle-Cressie-Loosmore-Ford test of CSR

Monte Carlo test based on 99 simulations

Summary function: L["0", "1"](r)

Reference function: theoretical

Alternative: two.sided

Interval of distance values: [0, 0.25] units (one unit = 9 metres)



Test statistic: Integral of squared absolute deviation

Deviation = observed minus theoretical

data: bramblecanes

u = 4.3982e−05, rank = 1, p-value = 0.01

6.7 Interpolation of Point Patterns with Continuous
Attributes
The previous section can be thought of as outlining methods for analysing
point patterns with categorical-level attributes. An alternative issue is the
analysis of point patterns in which the points have continuous (or
measurement scale) attributes, such as height above sea level, soil
conductivity or house price. A typical problem here is interpolation: given a

sample of measurements – say,  at locations  –
the goal is to estimate the value of z at some new point x. Possible methods
for doing this can be based on fairly simple algorithms, or on more
sophisticated spatial statistical models. Here, three key measures will be
covered:

Nearest neighbour interpolation
Inverse distance weighting
Kriging

6.7.1 Nearest Neighbour Interpolation
The first of these, nearest neighbour interpolation, is the simplest
conceptually, and can be stated as below:

Find i such that |xi − x| is minimised
The estimate of z is zi

In other words, to estimate z at x, use the value of zi at the observation point
closest to x. Since the set of closest points to xi for each i form the set of
Thiessen (Voronoi) polygons for the set of points, an obvious way to



represent the estimates is as a set of Thiessen (Voronoi) polygons
corresponding to the xi points, with respective attributes of zi. In rgeos there
is no direct function to create Voronoi polygons, but Carson Farmer2 has
made some code available to do this, providing a function called
voronoipolygons. This has been slightly modified by the authors, and is listed
below. Note that the modified version of the code takes the points from a
spatial points data frame as the basis for the Voronoi polygons on a spatial
points data frame, and carries across the attributes of the points to become
attributes of the corresponding Voronoi polygons. Thus, in effect, if the z
value of interest is an attribute in the input spatial points data frame then the
nearest neighbour interpolation is implicitly carried out when using this
function.

2 http://www.carsonfarmer.com/2009/09/voronoi-polygons-with-r/

The function makes use of Voronoi computation tools carried out in another
package called deldir – however, this package does not make use of Spatial∗
object types, and therefore this function provides a ‘front end’ to allow its
integration with the geographical information handling tools in rgeos, sp and
maptools. Do not be too concerned if you find the code difficult to interpret –
at this stage it is sufficient to understand that it serves to provide a spatial
data manipulation function that is otherwise not available.

#

# Original code from Carson Farmer

# http://www.carsonfarmer.com/2009/09/voronoi-polygons-with-r/

# Subject to minor stylistic modifications

#

require(deldir)

require(sp)

# Modified Carson Farmer code

voronoipolygons = function(layer) {

crds <- layer@coords

http://www.carsonfarmer.com/2009/09/voronoi-polygons-with-r/
http://www.carsonfarmer.com/2009/09/voronoi-polygons-with-r/


z <- deldir(crds[,1], crds[,2])

w <- tile.list(z)

polys <- vector(mode=’list’, length=length(w))

for (i in seq(along=polys)) {

pcrds <- cbind(w[[i]]$x, w[[i]]$y)

pcrds <- rbind(pcrds, pcrds[1,])

polys[[i]] <- Polygons(list(Polygon(pcrds)), ID=as.character(i))

}

SP <- SpatialPolygons(polys)

voronoi <- SpatialPolygonsDataFrame(SP,

data=data.frame(x=crds[,1], y=crds[,2], layer@data,

row.names=sapply(slot(SP, ’polygons’),

function(x) slot(x, ’ID’))))

proj4string(voronoi) <- CRS(proj4string(layer))

return(voronoi)

}

6.7.2 A Look at the Data
Having defined this function, the next stage is to use it on a test dataset. One
such dataset is provided in the gstat package. This package provides tools for
a number of approaches to spatial interpolation – including the other two
listed in this chapter. Of interest here is a data frame called fulmar. Details of
the dataset may be obtained by entering ?fulmar once the package gstat has
been loaded. The data are based on airborne counts of the sea bird Fulmaris
glacialis during August and September of 1998 and 1999, over the Dutch part
of the North Sea. The counts are taken along transects corresponding to flight
paths of the observation aircraft, and are transformed to densities by dividing
counts by the area of observation, 0.5 km2.

In this and the following sections you will analyse the data described above.



First, however, these data should be read into R, and converted into a
Spatial∗ object. The first thing you will need to do is enter the code to define
the function voronoipolygons as listed above. The next few lines of code will
read in the data (stored in the data frame fulmar) and then convert them into a
spatial points data frame. Note that the fulmar sighting density is stored in
column fulmar in the data frame fulmar – the location is specified in columns
x and y. The point object is next converted into a Voronoi spatial points data
frame to provide nearest neighbour interpolations. Having created both the
point and Voronoi polygon objects, the code below then plots these (see
Figure 6.19):

library(gstat)

library(tmap)

data(fulmar)

fulmar.spdf <- SpatialPointsDataFrame(cbind(fulmar$x,fulmar$y),

fulmar)

fulmar.spdf <- fulmar.spdf[fulmar.spdf$year==1999,]

proj4string(fulmar.spdf) <- CRS("+init=epsg:32631")

fulmar.voro <- voronoipolygons(fulmar.spdf)

tmap_mode(’plot’)

fpt <- tm_shape(fulmar.spdf) + tm_dots(size=0.1)

fvr <- tm_shape(fulmar.voro) + tm_borders()

tmap_arrange(fpt,fvr)

Figure 6.19 Fulmar sighting transects: (left) points; (right) Voronoi diagram



The paths of the transects become clear when the data are plotted. For the
most part they are linear, although one path follows the Dutch coast. Towards
the south-west, north–south-oriented paths are crossed by other zig-zag paths
providing a fairly comprehensive coverage. Further north, coverage is
sparser. In terms of the Voronoi diagrams, one notable artefact is that the
areas of the polygons vary with the density of the points (when the points are
internal) – and that edge points have polygons of infinite area (here trimmed
to an enclosing rectangle). These are typical features of Voronoi polygons,
but they can give rather strange characteristics to spatial interpolation. To see
this, a choropleth map of the nearest neighbour densities is created in Figure
6.20. In this case, the break points at densities of 5, 15, 25 and 35 birds per
square kilometre are used. The map is specified to be in view mode. Note that



although the outline of the Voronoi polygons forms a perfect rectangle in the
UTM zone 31 projection, working with the projection used by the web
backdrop (‘web Mercator’) will slightly distort this.

library(GISTools)

tmap_mode(’view’)

sh <- shading(breaks=c(5,15,25,35), cols=brewer.pal(5,’Purples’))

tm_shape(fulmar.voro) + tm_fill(col=’fulmar’,style=’fixed’,breaks=c(0,5,15,25,35),
alpha=0.6,title=’Fulmar Density’)

Figure 6.20 Nearest neighbour estimate of fulmar density

Again, some of the rather strange characteristics of the Voronoi polygon
representation are apparent. In particular, the very large polygons on the
edges somewhat dominate the interpolations visually, and the irregular
shapes of the polygons lead to a fairly confusing visualisation. Although this
approach is sometimes used as a ‘quick and dirty’ estimation tool (possibly as
inputs to numerical models or indicators), the visual approach here does
demonstrate some of the stranger characteristics of the approach. While it is
possible to detect an increased density towards the north-east of the study
area, it is harder to identify any subtler patterns due to the distorting effect of
the variety of polygon shapes and sizes. Arguably the most problematic
aspect of this approach is that the interpolated surfaces are discontinuous, and
in particular that the discontinuities are an artefact of the locations of the



samples. For this reason, methods such as the two others covered here are
preferred.

6.7.3 Inverse Distance Weighting
In the inverse distance weighting (IDW) approach to interpolation, to
estimate the value of z at location x a weighted mean of nearby observations
is taken, rather than relying on a single nearest neighbour. To accommodate
the idea that observations of z at points closer to x should be given more
importance in the interpolation, greater weight is given to these points – in
particular, if wi is the weight given to zi, then the estimate of z at location x is

(6.14)

where

(6.15)

and α ≥ 0. Typically α = 1 or α = 2, giving an inverse or inverse square
relationship.

I

There are some interesting relationships between IDW and other methods. If α = 0 then wi =
1 for all i, and z is just the mean of all the zi regardless of location. Also note that the ratio
of wi to wk, where k is the index of the closest observation to x, is

(6.16)

and so if α → ∞ then the weighting is dominated by wk, and the estimate of z tends to the



nearest neighbour estimate.

If the value of x coincides with one of the xi values then there is a problem
with the weighting, as wi is infinite. However, the IDW estimate is then
defined to be the value of zi. If a number (say, k) of distinct observations are
all taken at the same location, so that xi1 = xi2 = … = xik, then the estimate is
the mean of zi1, zi2, …, zik.

I

The definition of IDW when x coincides with data point xi is understood by noting that the
IDW can be written as

(6.17)

and if the numerator and denominator are multiplied by  then

(6.18)

and in the limiting case where di → 0 this expression is just zi as in the definition above.
Also note that in the case where there are coincident locations, so that di1 = di2 = … = dik =
d, say, then by multiplying denominator and numerator by d we have

(6.19)

and again, as d → 0 the limit is the mean of zi1, zi2, …, zik.

6.7.4 Computing IDW with the gstat Package
There are a number of ways to compute IDW interpolation. Here, the gstat
package will be considered. This package is also useful for kriging, the third
approach to spatial interpolation covered here (Section 6.8). Thus knowledge
of this package is helpful for both methods. Here, the package is
demonstrated using the fulmar data used earlier. The following code carries



out the IDW interpolation, and plots the interpolated surface. First, you will
need a set of sample points at which the IDW estimates are computed. The
function spsample in the package maptools creates a sample grid.

Given a spatial polygons data frame and a number of points, if the argument
type=’regular’ is provided, it will generate a spatial polygons data frame with
a regular grid of points covering the polygon. The density of the grid is such
that the number of grid points is as close as possible to the number provided.3
Here a grid with around 6000 points is created. Since the previous object
fulmar.voro has a rectangular footprint, this causes the creation of a
rectangular grid.

3 It is not always possible to find a grid with exactly the right number of
points.

After this, the IDW estimate is created using the idw function. This requires
the model to be specified (here the formula fulmar ~ 1 implies that we are
performing a simple interpolation) – the xi locations are in fulmar.spdf and
the points at which estimates are made are supplied in s.grid. The parameter
idp (interpolation distance parameter) is just the value of α in the IDW – here
set to 1.

library(maptools) # Required package

library(GISTools) # Required package

library(gstat) # Set up the gstat package

# Define a sample grid then use it as a set of points

# to estimate fulmar density via IDW, with alpha=1

s.grid <- spsample(fulmar.voro,type=’regular’,n=6000)

idw.est <- gstat::idw(fulmar~1,fulmar.spdf, newdata=s.grid,idp=1.0)

I

You may wonder why the idw function is referred to as gstat::idw. Recall from earlier that ::
allows a function to be called without loading its package. However, here it is helpful
because an earlier package you loaded (spatstat) also has a function called idw. This tells R
you want to use the function in gstat. If you do not have spatstat loaded but gstat is, then



this notation is not needed – simply idw will do. However, if you are still in the same
session where spatstat was used, it is difficult to guarantee which version of the function
would be called. Using gstat::idw removes the ambiguity.

The object idw.est is a spatial points data frame containing the IDW estimates
at each of the sample points (actually a rectangular grid) in a variable called
var1.pred. It is possible to view this directly by choosing point colour to
represent the values of var1.pred (Figure 6.21).

tmap_mode(’view’)

tm_shape(idw.est) + tm_dots(col=’var1.pred’,border.col=NA,alpha=0.7)

Figure 6.21 Inverse distance weighting estimate of fulmar density

However, when this image is zoomed into, the individual points become
visible – possibly a more visually appealing map could be achieved by
plotting either contours or a raster overlay. The latter will be dealt with first.
To do this, the spatial points data frame should be converted to a spatial
pixels data frame – this is similar to a raster coverage, but if there are any
pixels that are not in the rectangular bounding box of the coverage region,
they are not stored. The conversion is carried out below, with the map shown
in Figure 6.22.

tmap_mode(’view’)

idw.grid <- SpatialPixelsDataFrame(idw.est,data.frame(idw.est))



tm_shape(idw.grid) + tm_raster(col=’var1.pred’,title=’Fulmar’)

Figure 6.22 Inverse distance weighting estimate of fulmar density (raster
view)

It is also possible to depict this as a filled contour plot. To do this, first the
contour lines must be derived from the raster data. To do this, the raster
package will be used. Although it works fine for mapping, the spatial pixels
data frame is not a data type used by this package. However, it can be
converted into a standard raster object. When this is done, the
rasterToContour function may be used to extract a set of contour lines in a
spatial lines data frame object:

require(raster)

levs <- c(0,2,4,6,8,Inf)

idw.raster <- raster(idw.grid,layer=’var1.pred’)

idw.contour <- rasterToContour(idw.raster,levels=levs)

The object idw.contour could be used to draw contour lines on the map – this
can be used directly (Figure 6.23):

tmap_mode(’view’)

tm_shape(idw.contour) + tm_iso()



Figure 6.23 Inverse distance weighting estimate of fulmar density (contour
view)

Alternatively, this information could be depicted as a level plot or a filled
contour plot. This may be achieved by converting the contour lines into a
spatial polygons data frame where each polygon is a region between
consecutive contour lines. Next, this is shown as a choropleth map. The
conversion is currently done in tmap using a private function – that is, it is
not exported, and so not usually visible. This function is called
tmaptools:::lines2polygons – the use of ::: here is similar to that of ::
discussed earlier, but implies that the function is one not exported from the
library. Apart from using this notation, it is never visible. It should perhaps
come with a warning – functions of this sort are usually intended for internal
working in the package, and are not necessarily part of the interface. Thus, in
a future version of tmaptools, if a different way to achieve some of the
exported functionality of the package were implemented without this
function, it could disappear. However, at the time of writing it does still work
with version 1.2 of tmaptools – and is used to create Figure 6.24.

tmap_mode(’view’)

idw.levels <- tmaptools:::lines2polygons(fulmar.voro,
idw.contour,rst=idw.raster,lvls=levs)

tm_shape(idw.levels) + tm_fill(col=’level’)



Figure 6.24 Inverse distance weighting estimate of fulmar density (level plot
view)

Having explored various ways of mapping the interpolated surface, an
alternative interpolation with α = 2 may be created using the same approach.
The spatial points data frame IDW is stored in idw.est2, converted to a spatial
pixels data frame and mapped using the code here (see Figure 6.25):

idw.est2 <- gstat::idw(fulmar~1,fulmar.spdf, newdata=s.grid,idp=2.0)

idw.grid2 <- SpatialPixelsDataFrame(idw.est2,data.frame(idw.est2))

tmap_mode(’view’)

tm_shape(idw.grid2) + tm_raster(col=’var1.pred’,title=’Fulmar’,breaks=levs)

Figure 6.25 Inverse distance weighting estimate of fulmar density (α = 2)



Next, the two interpolations are compared. Here this will be done in plot
mode.

tmap_mode(’plot’)

idw1 <- tm_shape(idw.grid) + tm_raster(col=’var1.pred’,title=’Alpha = 1’,breaks=levs)

idw2 <- tm_shape(idw.grid2) + tm_raster(col=’var1.pred’,title=’Alpha = 2’,breaks=levs)

tmap_arrange(idw1,idw2)

Figure 6.26 shows that with α = 2 the interpolated values are more inclined to
take higher values. To investigate this further, the two interpolated fields can
be visualised as surfaces. As tmap does not offer this possibility, here the
standard graphics routine persp is used. First, the next few lines of code
extract the unique x and y locations from idw.est, and then format var1.pred
into a matrix, predmat.

# Extract the distinct x and y coordinates of the grid

# Extract the predicted values and form into a matrix

# of gridded values

ux <- unique(coordinates(idw.est)[,1])

uy <- unique(coordinates(idw.est)[,2])



predmat <- matrix(idw.est$var1.pred,length(ux),length(uy))

Next, the same is done for idw.est2.

predmat2 <- matrix(idw.est2$var1.pred,length(ux),length(uy))

Figure 6.26 Inverse distance weighting estimate of fulmar density
(comparison)

It is now possible to visualise the two interpolations as perspective plots
(Figure 6.27).

par(mfrow=c(1,2),mar=c(0,0,2,0))



persp(predmat,box=FALSE)

persp(predmat2,box=FALSE)

Figure 6.27 Three-dimensional plots of IDW: (left) α = 1; (right) α = 2)

Although the shapes are similar, it is certainly the case that when α = 2 the
surface is slightly more ‘spiky’, with high-level observations standing out
from their surroundings in needle-like protrusions.

6.8 The Kriging Approach
The maps of fulmar density produced by the IDW approach appear to be
more satisfactory than those produced by nearest neighbour interpolation, at
least in that they do consist of flat regions with a set of arbitrary linear
discontinuities. However, one fact to note is that IDW interpolation always
passes exactly through uniquely located measurement points. If the data are
the result of very reliable measurement, and the underlying process is largely
deterministic, this is fine. However, if the process is subject to random errors
in measurement or sampling, or the underlying process is stochastic, there
will be a degree of random variability in the observed zi values – essentially,
zi could be thought of as an expected ‘true’ value plus some random noise –

so that , where  is a random quantity with mean 0, and
T(xi) is a trend component. In these circumstances it is more useful to
estimate the T(xi) than zi. Unfortunately, IDW interpolation does not do this.
The problem here is that since this method passes through zi it is interpolating
the noise in the data as well as the trend. This is illustrated particularly well



with perspective plots in Figure 6.27. The spikes seen in the IDW surfaces for
both α = 1 and α = 2 are a consequence of forcing the surface to go through
random noise.

If multiple observations are taken at location xi then the interpolated value
here is the mean of the observed z values, which is a creditable estimator of
T(xi), but in most circumstances only a single observation occurs at each
point, and some alternative approach to interpolation should be considered.
One possibility here is the use of kriging (Matheron, 1963). The theory
behind this approach is relatively complex (see, for example, Cressie 1993),
but a brief outline will be given here. For another practical overview of the
method, see Brunsdon (2009).

6.8.1 A Brief Introduction to Kriging
In kriging, the observed quantity zi is modelled to be the outcome of a
random process:

zi = f (xi) + υ(xi) + εi (6.20)

where f(xi) is a deterministic trend function, υ(xi) is a random function and εi
is a random error of observation. The deterministic trend function is typical
of the sorts of function often encountered in regression models – for example,
a planar or quadratic function of x – or often just a constant mean value
function. εi is a random variate, associated with the measurement or sampling
error at the point xi. εi is assumed to have a Gaussian distribution with mean
0 and variance σ2. This is sometimes called the ‘nugget’ effect – kriging was
initially applied in the area of mining and used to estimate mineral
concentration. However, although this was modelled as a continuous
quantity, in reality minerals such as gold occur in small nuggets – and
exploratory mining samples taken at certain locations would be subject to
highly localised variability, depending on whether or not a nugget was
discovered. This effect may well be apparent in the fulmar sighting data – an
observatory flight at the right time and place may spot a flock of birds,
whereas one with a marginally different flight path, or slightly earlier or later,



may miss this.

The final term is the random function υ(x). This is perhaps the most complex
to explain. If you would like to gain some further insight into this concept,
read the next section. If, however, you are happy to take the kriging approach
on trust, you can skip this section.

6.8.2 Random Functions
Here, rather than a single random number, the entire function is random.

A simple example of a random function might be f (x) = a + bx, where a and
b are random numbers (say, independent Gaussian with mean 0 and variances

, ). Since these functions are straight lines, one can think of υ(x) as a
straight line with a random slope and intercept. For any given value of x, one
could ask what the expected value of υ(x) is, and also what its variance is.

It is possible to derive the mean value of υ(x) for any value of x by noting that

E(υ(x)) = E(a) + E(b)x  (6.21)

and that since E(a) = E(b) = 0, E(υ(x)) = 0. This implies that if a sample of
several random straight lines were generated in this way, taking their average
value would give something close to zero, regardless of x. However, although
the average value of υ(x) may be close to zero, how might its variance change
with x? Since a and b are independent,

(6.22)

Thus, variance of the expected value of υ(x) increases with large absolute
values of x.

Finally, suppose the function was evaluated at two values of x, say x1 and x2.
Then some similar, but more complex, working shows that the correlation



between υ(x1) and υ(x2) is

(6.23)

The idea here is that it is possible to define a correlation function that is
related to the initial random function. It is possible, in some cases, to reverse
this notion, and to define a random function in terms of the bivariate
correlation function. This idea is central to kriging and geostatistics. In this
case, however, a number of extensions to the above idea are applied:

The function is defined for a vector x rather than a scalar x
Stationarity: The correlation function depends only in terms of the
distance between two vectors: say, ρ(|x1 − x2|) = ρ(d) for some
correlation function ρ
Typically the relationship is defined in terms of the variogram: γ(d) = 2σ
2(1 − ρ(d))
The function υ(x) is not specified directly, but deduced by ‘working
backwards’ from γ(d) and some observed data

The last modification is really just convention – most practitioners of kriging
specify the relationship between points in this way, rather than as a
correlation or covariance. If the process is stationary, then

(6.24)

and this can be empirically estimated from data by taking average values of
the squared difference of υ(x1) and υ(x2) where the distance between x1 and
x2 falls into a specified band.

Not all functional forms are valid semivariograms; however, a number of
functions that are valid are well known, such as those shown in Table 6.1.

In all of these functions, the degree of correlation between υ(x1) and υ(x2) is



assumed to reduce as distance increases. a and b are parameters respectively
controlling the scale of variance and the extent to which nearby observations
are correlated. For the Matérn semivariogram, κ is an additional shape
parameter, and Kκ(·) is a modified Bessel function of order κ. If  this is
equivalent to an exponential semivariogram, and as κ → ∞ it approaches a
Gaussian semivariogram.

Table 6.1

6.8.3 Estimating the Semivariogram
As suggested earlier, equation (6.24) can be used as a way of estimating the
semivariogram. Essentially all pairwise point distances are grouped into
bands, and the average squared difference between υ(x1) and υ(x2) is
computed for each band. Then, for one of the semivariogram functions listed
above (or possibly another), a semivariogram curve is fitted – this involves
finding the values of a and b that best fit the banded average squared
differences described above. Note that for the Matérn case, κ is sampled at a
small number of values, rather than finding a precise optimal value.

Once this is done, although υ(x) has not been explicitly calibrated, an
estimate of γ(d) is now available. In the R package gstat the semivariogram
estimation procedure is carried out with the variogram function. The
boundaries argument specifies the distance bands to work with. Here it is
used with the fulmar data, and the boundaries are in steps of 5 km up to 250
km. The result of this is stored in evgm. Following the calibration of the
estimated semivariogram evgm, by grouped averaging as described above, a
semivariogram curve is fitted – in this case a Matérn curve. The kind of curve



to fit is specified in the vgm function. The parameters are, in order, an
estimate of a, a specification of the kind of semivariogram (Mat is Matérn,
Exp is exponential, Gau is Gaussian and Sph is spherical), b and κ. Note that
the values provided here are initial guesses – the fit.variogram function takes
this specification and the evgm and calibrates the parameters to get a best-fit
semivariogram. The result is then plotted using the plot function (see Figure
6.28).

require(gstat)

evgm <- variogram(fulmar~1,fulmar.spdf,

boundaries=seq(0,250000,l=51))

fvgm <- fit.variogram(evgm,vgm(3,"Mat",100000,1))

plot(evgm,model=fvgm)

Figure 6.28 Kriging semivariogram

Once a semivariogram has been fitted it can be used to carry out the
interpolation. The fit.variogram function estimates the ‘nugget’ variance



discussed earlier, as well as the semivariogram parameters. Once this is done,
it is possible to carry out the interpolation – essentially, if a set of zi values is
available at locations xi for i = 1,…, n and an estimate of γ(d) is available,
then f(x) and υ(x) can be estimated for arbitrary x locations. Until this point,
the estimation of the trend f(x) has not been considered, but it is possible to
estimate this (using more conventional regression approaches), or, if the trend
is just a constant value µ, say, then the calibration of this value, and the
estimation of µ + υ(x) (essentially the interpolated value), can be carried out
simultaneously using a technique termed ordinary kriging (see Wackernagel,
2003: 31, for example).

Operationally the interpolations are achieved by taking a weighted

combination of the zi values, . In matrix form, if wi is the weight

applied to zi,  is an estimate of µ, dij is the distance between xi and xj, and
di is the distance between sample location xi and x, an arbitrary location at
which it is desired to carry out the interpolation, then

(6.25)

However, users of gstat do not need to implement this explicitly, as it is made
available via the krige function. This works in much the same way as the idw
function, although the semivariogram model must also be supplied. This is
carried out below, followed by a drawing of the fulmar density surface in the
same way as before. An added bonus of kriging is that it is possible to obtain
variances of the interpolated estimates as well as the estimate itself – these
are derived from the statistical model and stored in var1.var, alongside
var1.est. They are useful, as they give an indication of the reliability of the
estimates. Below, both the interpolated values and their variances are
computed and shown in raster plots (Figure 6.29).

Figure 6.29 Kriging estimates of fulmar density (left), and associated



variance (right)

krig.est <- krige(fulmar~1,fulmar.spdf,newdata=s.grid,model=fvgm)

krig.grid <- SpatialPixelsDataFrame(krig.est,krig.est@data)

krig.map.est <- tm_shape(krig.grid) + 
tm_raster(col=’var1.pred’,breaks=levs,title=’Fulmar Density’,palette=’Reds’) + 
tm_layout(legend.bg.color=’white’,legend.frame = TRUE)

var.levs <- c(0,3,6,9,12,Inf)

krig.map.var <- tm_shape(krig.grid) + 
tm_raster(col=’var1.var’,breaks=var.levs,title=’Estimate Variance’,palette=’Reds’) + 
tm_layout(legend.bg.color=’white’,legend.frame = TRUE)

tmap_arrange(krig.map.est,krig.map.var)



The plots show the interpolation and the variance. Note that on the variance
map, levels are lowest (and hence reliability is highest) near to the transect
flight paths – generally speaking, interpolations are at their most reliable
when they are close to the observation locations.

Finally, a perspective plot shows that although the interpolated surface is still
fairly rough, some of the ‘spikiness’ of the IDW surface has been removed,
as the surface is not forced to pass through all of the zi (see Figure 6.30).

par ( mfrow=c(1,1)) # reset plotting to make plot fill the entire window

predmat3 <- matrix(krig.est$var1.pred,length(ux),length(uy))

persp(predmat3,box=FALSE)

Figure 6.30 Three-dimensional plot of kriging-based interpolation

Self-Test Question 2. Try fitting an exponential variogram to the fulmar



data, and creating the surface plot and maps. You may want to look at
the help for fit.variogram to find out how to specify alternative
variogram models.

6.9 Concluding Remarks
In this chapter, a number of techniques for analysing random patterns of two-
dimensional points (with associated measurements in the case of
interpolation) have been outlined. The key areas are first-order approaches
(where the probability density function for the process is assumed to vary,
and an attempt is made to estimate it) and second-order approaches (where
the dependency between the spatial distributions of points is considered – this
includes K-functions and related topics, as well as kriging). Although the
chapter does not cover all possible aspects of this, it should provide an
overview. As a further exercise, the reader may wish to investigate, for
example, H-functions (Hansen et al., 1999) and their implementation in
spatstat, or universal kriging (Wackernagel, 2003) where the deterministic
trend function is assumed to be something more complex than a constant, as
in ordinary kriging.

Figure 6.31 KDE map for breaches of the peace, for Self-Test Question 1



6.10 Answers to Self-Test Questions
Q1: The suggested map (Figure 6.31) could be achieved with the
following code. The title=’Intensity’ option in tm_fill() changes the
label on the legend to a more informative one than the default provides.

tmap_mode(’plot’)

tm_shape(breach_dens$polygons) +tm_fill(title=’Intensity \n(Incidents per square Km.)’)
+tm_shape(blocks) + tm_borders() +tm_shape(roads) + tm_lines(lwd=0.5,col=’brown’)
+tm_scale_bar(position=c("right","top"))



Q2: The exponential variogram model is specified using the "Exp"
argument in fit.variogram – the code to produce the variogram is given
below, and the result is shown in Figure 6.32. Following this, the same
procedures for producing a perspective plot or contour maps used in the
above example may also be applied here.

evgm <- variogram(fulmar~1,fulmar.spdf, boundaries=seq(0,250000,l=51))

fvgm <- fit.variogram(evgm,vgm(3,"Exp",100000,1))

plot(evgm,model=fvgm)

Figure 6.32 Kriging semivariogram (exponential model)

References
Besag, J. (1977) Discussion of Dr. Ripley’s paper. Journal of the Royal

Statistical Society, Series B, 39: 193–195.

Bland, J.M. and Altman, D.G. (1995) Multiple significance tests: The



Bonferroni method. British Medical Journal, 310: 170.

Bowman, A. and Azzalini, A. (1997) Applied Smoothing Techniques for
Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford:
Oxford University Press.

Brunsdon, C. (2009) Geostatistical analysis of lidar data. In G. Heritage and
A. Large (eds), Laser Scanning for the Environmental Sciences.
Chichester: Wiley-Blackwell.

Cressie, N. (1993) Statistics for Spatial Data. New York: John Wiley & Sons.

Diggle, P.J. (1983) Statistical Analysis of Spatial Point Patterns. London:
Academic Press.

Hansen, M.B., Baddeley, A.J. and Gill, R.D. (1999) First contact
distributions for spatial patterns: Regularity and estimation. Advances in
Applied Probability, 31: 15–33.

Hutchings, M.J. (1979) Standing crop and pattern in pure stands of
Mercurialis perennis and Rubus fruticosus in mixed deciduous woodland.
Oikos, 31: 351–357.

Loosmore, N.B. and Ford, E.D. (2006) Statistical inference using the G or K
point pattern spatial statistics. Ecology, 87(8): 1925–1931.

Lotwick, H.W. and Silverman, B.W. (1982) Methods for analysing spatial
processes of several types of points. Journal of the Royal Statistical
Society, Series B, 44(3): 406–413.



Matheron, G. (1963) Principles of geostatistics. Economic Geology, 58:
1246–1266.

Ripley, B.D. (1976) The second-order analysis of stationary point processes.
Journal of Applied Probability, 13: 255–266.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of
the Royal Statistical Society, Series B, 39: 172–212.

Ripley, B.D. (1981) Spatial Statistics. New York: John Wiley & Sons.

Scott, D. (1992) Multivariate Density Estimation: Theory, Practice, and
Visualization. New York: John Wiley & Sons.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis.
London: Chapman & Hall.

Tufte, E.R. (1990) Envisioning Information. Cheshire, CT: Graphics Press.

Wackernagel, H. (2003) Multivariate Geostatistics. Berlin: Springer.



7 Spatial Attribute Analysis with R

7.1 Introduction
Spatially referenced observations are a kind of data that is very similar to an

ordinary dataset, for example a set of observations1 . The
only difference is that each observation is associated with some form of
spatial reference – typically a point or a polygon. Unlike the processes
modelled in point pattern analysis, the polygons or points are considered as

fixed, non-random entities. Here, the observations  are the
random quantities. In one kind of frequently used model, the probability
distributions of the zi depend on their spatial references, and some other
parameters, which may need to be estimated from the data. For example, if
each observation zi is referenced by a spatial location (xi, yi) then it may be
modelled by a normal distribution with variance σ2 and mean a + bxi + cyi;
thus the distribution of zi depends on the spatial location and the parameters
a, b, c and σ. A model of this kind is useful for modelling broad geographical
trends – for example, whether house prices to the east of a state in the USA
tend to be lower or higher than those to the west. This situation might be the
case if the state is on the coast, and housing closer to the coast generally
fetches a higher price.

1 Here we use z for the data values, as x and y are sometimes used to denote
location.

An alternative approach is to model the correlation between observations zi
and zj as dependent on their spatial references. For example, the variables 

 may have a multivariate normal distribution whose
variance–covariance matrix (giving the covariances between each pair of z
variables) depends on the distances between points {(x1, y1), …, (xn, yn)}.
Alternatively, if the observations are associated with polygons rather than



points (e.g. this would be the case if the zi were unemployment rates for
counties, with county boundaries expressed as polygons) then correlations or
covariances could be a function of the adjacency matrix of the polygons, a 0–
1 matrix indicating whether each polygon pair share any common boundary.
This can be the case where processes can be thought of as random (unlike the
fixed pattern due to proximity to the coast in the last example) but still
exhibiting spatial patterns – for example, the measurement of crop yields,
where groups of nearby fields may exhibit similar values due to shared soil
characteristics.

7.2 The Pennsylvania Lung Cancer Data
In this section, the dataset that will be used in the first set of examples will be
introduced. This is a set of county-level lung cancer counts for 2002. The
counts are stratified by ethnicity (with rather broad categories ‘white’ and
‘other’), gender and age (‘under 40’, ‘40 to 59’, ‘60 to 69’ and ‘over 70’). In
addition, a table of proportion of smokers per county is provided. Population
data were obtained from the 2000 decennial census, and lung cancer and
smoking data were obtained from the Pennsylvania Department of Health
website.2 All of these data are provided by the SpatialEpi package – so it will
be necessary to install the package and its dependencies before trying the
code segments in this chapter. To do this from the command line in R, ensure
your computer is connected to the internet, and that you have appropriate
permissions, and then enter:

2 http://www.dsf.health.state.pa.us/

install.packages(’SpatialEpi’, depend=TRUE)

In conjunction with tmap, it is then possible to use this dataset – which is
stored in an object called pennLC. This is a list with a number of
components:

geo A table of county IDs, with longitudes and latitudes of the
geographical centroid of each county
data A table of county IDs, number of cases, population subdivided by

http://www.dsf.health.state.pa.us/


race, gender and age
smoking A table of county IDs and proportion of smokers
spatial.polygon A SpatialPolygons object giving the boundaries of each
county in latitude and longitude (geographical coordinates)

Using the packages tmap and tmaptools, for example, standard methods may
be used to produce a choropleth map of smoking uptake in Pennsylvania. In
the code below (all making use of techniques from earlier chapters), the map
of Pennsylvania is transformed from geographical coordinates to UTM
projection3 for zone 17. Note that this has European Petroleum Survey Group
(EPSG) reference number4 3724, as is used in the set_projection function.
These are then used to create a choropleth map as seen in Figure 7.1. Note
that this is produced on a notional window of 11 cm × 6 cm – you may have
to resize the window or set par(mar=c(0,0,0,0)) to ensure the legend is
visible.

3 http://www.history.noaa.gov/stories_tales/geod1.html

4 http://www.epsg.org

# Make sure the necessary packages have been loaded

library(tmap)

library(tmaptools)

library(SpatialEpi)

# Read in the Pennsylvania lung cancer data

data(pennLC)

# Extract the SpatialPolygon info

penn.state.latlong <- pennLC$spatial.polygon

# Convert to UTM zone 17N

penn.state.utm <- set_projection(penn.state.latlong, 3724)

if ("sf" %in% class(penn.state.latlong))

penn.state.utm <- as(penn.state.utm, "Spatial")

http://www.history.noaa.gov/stories_tales/geod1.html
http://www.epsg.org


# Obtain the smoking rates

penn.state.utm$smk <- pennLC$smoking$smoking ∗ 100

# Draw a choropleth map of the smoking rates

tm_shape(penn.state.utm) + tm_polygons(col=’smk’,title= ’% of Popn.’)

Figure 7.1 Smoking uptake (Pennsylvania)

This produces a basic choropleth map of smoking rates in Pennsylvania.
From this, it may be seen that these tend to show some degree of spatial
clustering – counties having higher rates of uptake are generally near to other
counties with higher rates of uptake, and similarly for lower rates of uptake.
This is quite a common occurrence – and this kind of spatial clustering will
be seen in the coming sections, for smoking rates, patterns in death rates, and
in the classes used in the stratification of the population.

7.3 A Visual Exploration of Autocorrelation
An important descriptive statistic for spatially referenced attribute data – and,
in particular, measurement scale data – is spatial autocorrelation. In Figure
7.1 it was seen that counties in Pennsylvania tended to have similar smoking
uptake rates to their neighbours. This is a way in which spatial attribute data
are sometimes different from other data, and it suggests that models used for
other data are not always appropriate. In particular, many statistical tests and



models are based on the assumption that each observation in a set of
measurements is distributed independently of the others – so that in a set of

observations , each zi is modelled as being drawn from,
say, a Gaussian distribution, with probability density

(7.1)

where µ and σ are respectively the population mean and standard deviation of
the distribution of the data. However, the distribution itself is not a key issue
here. More important is the assumption that for each zi the distribution is

independent of the other observations , so
that the joint distribution is

(7.2)

where z denotes the vector . The reason why this common
assumption is important here is that it is frequently untrue for spatial data.
Figure 7.1 suggests that it is unlikely that, say, two observations zi and zj are
independent, if i and j index adjacent counties in Pennsylvania. It seems that
a more realistic model would allow for some degree of correlation between
nearby observations. Correlation of this kind is referred to as spatial
autocorrelation. There are a number of ways in which spatial autocorrelation
can be modelled, but in this section visual exploration will be considered.

We begin by scrutinising the claim that the image in Figure 7.1 really does
demonstrate correlation. This can be done via significance testing in later
sections, but here some useful visual approaches will be outlined. The first of
these is to compare the pattern seen in the map to a set of random patterns,
where the observed smoking rates are assigned randomly to counties. Here,
six maps are drawn, one based on the actual data and the rest created using
random permutations. These are drawn in a 2 × 3 rectangular grid



arrangement. For the random part of this, the sample function is used. Given
a single argument, which is a vector, this function returns a random
permutation of that argument. Thus, sample(penn.state.utm$smk) will
permute the smoking uptakes among the counties. This produces five
alternative allocations of rates in addition to the actual one. The
sample(c(’smk’,’smk_rand1’,… ,’smk_rand5’)) expression in the following
code block scrambles the six variable names, and these in turn are given to
the tm_polygons function in that scrambled order. Not only are five of the six
maps based on random permutations, but also the position in the figure of the
actual data map is chosen at random. The idea of this second randomisation is
that not even the coder will know which of the six maps represents the true
data. If on inspection there is one clearly different pattern – and it appears
obvious which of the maps this is – then there is strong visual evidence of
autocorrelation.

# Set up a set of five ’fake’ smoking update rates as well as the real one

# Create new columns in penn.state.utm for randomised data

# Here the seed 4676 is used. Use a different one to get an unknown outcome.

set.seed(4676)

penn.state.utm$smk_rand1 <- sample(penn.state.utm$smk)

penn.state.utm$smk_rand2 <- sample(penn.state.utm$smk)

penn.state.utm$smk_rand3 <- sample(penn.state.utm$smk)

penn.state.utm$smk_rand4 <- sample(penn.state.utm$smk)

penn.state.utm$smk_rand5 <- sample(penn.state.utm$smk)

# Scramble the variables used in terms of plotting order

vars <- sample(c(’smk’,’smk_rand1’,’smk_rand2’,’smk_rand3’,’smk_rand4’,’smk_rand5’))

# Which one will be the real data?

# Don’t look at this variable before you see the maps!

real.data.i <- which(vars == ’smk’)

# Draw the scrambled map grid

tm_shape(penn.state.utm) + tm_polygons(col=vars,legend.show=FALSE) +



tm_layout(title= 1: 6, title.position= c("right","top"))

Having drawn these maps (see Figure 7.2), an informal self-test is to reveal
which map is the real data:

real.data.i

[1] 5

Figure 7.2 Randomisation of smoking uptake rates

One point worth making is that the ‘random’ maps do show some groups of
similar neighbours – commonly this is the case: the human eye tends to settle
on regularities in maps, giving a tendency to identify clusters, even when the
data are generated by a process without spatial clustering. This is why
procedures such as the previous one are necessary, to make visual cluster
identification more robust. This approach is a variant on that due to Wickham
et al. (2010).

7.3.1 Neighbours and Lagged Mean Plots
An alternative visual approach is to compare the value in each county with
the average value for its neighbours. This can be achieved via the lag.listw
function in the spdep library. This library provides a number of tools for
handling data with spatial referencing, particularly data that are attributes of
SpatialPolygons such as the Pennsylvania data here. A lagged mean plot can
be generated if we have a list of which counties each county has as
neighbours. Neighbours can be defined in several ways, but a common



definition is that a pair of counties (or other polygons in different examples)
which share some part of their boundaries are neighbours. If this is the
queen’s case definition, then even a pair of counties meeting at a single
corner point are considered neighbours. The more restrictive rook’s case
requires that the common boundary must be a linear feature. This is
illustrated in Figure 7.3. Neighbour lists of either case can be extracted using
the poly2nb function in spdep. These are stored in an nb object – basically a
list of neighbouring polygons for each polygon.

require(spdep)

penn.state.nb <- poly2nb(penn.state.utm)

penn.state.nb

Neighbour list object:

Number of regions: 67

Number of nonzero links: 346

Percentage nonzero weights: 7.70773

Average number of links: 5.164179

As seen in the block above, printing out an nb object lists various
characteristics, such as the average number of neighbours each polygon has –
in this case 5.164. Note that in the default situation, Queen’s case neighbours
are computed. To compute the Rook’s case, the optional argument
queen=FALSE is added to poly2nb.

It is also possible to plot an nb object – this represents neighbours as a
network (see Figure 7.4). First, it is turned into a SpatiaLinesDataFrame
object by nb2lines, a function in spdep. The lines join the centroids of the
polygons regarded as neighbours, and may be plotted as a map. The centroid
locations are provided by the coordinates function. One further thing to note
is that by default, nb2lines sets the projection of the result to NA. This is
overwritten using the current.projection option in set_projection, so the result
is EPSG 3724, the correct UTM projection here.

Figure 7.3 Rook’s case and queen’s case neighbours: zones 1 and 2 are



neighbours only under queen’s case; zone pairs 1,3 and 2,3 are neighbours
under both cases

# Create a SpatialLinesDataFrame showing the Queen’s case contiguities

penn.state.net <- nb2lines(penn.state.nb,coords=coordinates(penn.state.utm))

# Default projection is NA, can change this as below

penn.state.net <- set_projection(penn.state.net,current.projection = 3724)

# Draw the projections

tm_shape(penn.state.utm) + tm_borders(col=’lightgrey’) +

 tm_shape(penn.state.net) + tm_lines(col=’red’)

Finally, the plots are also useful to compare the rook’s case to the queen’s
case neighbourhoods (see Figure 7.5):



# Calculate the Rook’s case neighbours

penn.state.nb2 <- poly2nb(penn.state.utm, queen=FALSE)

# Convert this to a SpatialLinesDataFrame

penn.state.net2 <- nb2lines(penn.state.nb2, coords=coordinates(penn.state.utm))

# Update projection

penn.state.net2 <- set_projection(penn.state.net2, current.projection = 3724)

# Plot the counties in background, then the two networks to compare:

tm_shape(penn.state.utm) + tm_borders(col=’lightgrey’) +  tm_shape(penn.state.net) +
tm_lines(col=’blue’, lwd = 2) +  tm_shape(penn.state.net2) + tm_lines(col=’yellow’)

Figure 7.4 Depiction of neighbouring counties of Penn State as a network
(queen’s case)

Here the queen’s case only neighbours are apparent (these are the blue links
on the network) – there are eight of these. For now, we will work with rook’s
case neighbours.

Figure 7.5 Comparison of neighbouring counties of Penn State (rook’s vs.
queen’s case)



The next stage is to consider the lagged mean plot. As discussed above, this
is a plot of the value of zi for each polygon i against the mean of the z values
for the neighbours of polygon i. If δi is the set of indices of the neighbours of
polygon i, and |δi| is the number of elements in this set, then this mean

(denoted by ) is defined by

(7.3)

Thus, the lagged mean is a weighted combination of values of the
neighbours. In this case, the weights are the same within each neighbour list,
but in some cases they may differ (e.g. if weighting were inversely related to
distance between polygon centres).

In spdep another kind of object – the listw object – is used to store a list of
neighbours, together with their weights. A listw object can be created from an
nb object using the nb2listw function in spdep:

# Convert the neighbour list to a listw object - use Rook’s case...

penn.state.lw <- nb2listw(penn.state.nb2)



penn.state.lw

Characteristics of weights list object:

Neighbour list object:

Number of regions: 67

Number of nonzero links: 330

Percentage nonzero weights: 7.351303

Average number of links: 4.925373

Weights style: W

Weights constants summary:

 n nn S0  S1  S2

W 67 4489 67 28.73789 274.6157

As a default, this function creates weights as given in equation (7.3) – this is
the Weights style: W in the printout above. Other possible approaches to
weights are possible – use ?nb2listw if you wish to investigate this further.

Having obtained a listw object, the function lag.listw computes a spatially

lagged mean (i.e. a vector of  values) – here, these are calculated and then
mapped (see Figure 7.6):

penn.state.utm$smk.lagged.means <- lag.listw(penn.state.lw,penn.state.utm$smk)
tm_shape(penn.state.utm) + tm_polygons(col= ’smk.lagged.means’,title= ’% of Popn.’) +

tm_layout(legend.bg.color = "white")

Figure 7.6 Lagged means of smoking uptake rates



Finally, a lagged mean plot is produced – as described, this is a scatter plot of

zi against . Here the line x = y is added to the plot as a point of reference.
The idea is that when nearby polygons tend to have similar zi values, there
should be a linear trend in the plots. However, if each zi is independent, then 

 will be uncorrelated to zi and the plots will show no pattern. Below, code
is given to produce the plot shown in Figure 7.7:

with(data.frame(penn.state.utm), {

plot(smk,smk.lagged.means, asp= 1, xlim=range(smk), ylim=range(smk))

abline(a= 0, b= 1)

abline(v=mean(smk), lty= 2)

abline(h=mean(smk.lagged.means), lty= 2)

})

The abline(a=0,b=1) command adds the line x = y to the plot. The two
following abline commands add dotted horizontal and vertical lines through
the mean values of the variables. The fact that more points lie in the bottom
left and upper right quadrants created by the two lines suggests that there is

some degree of positive association between zi and ; this means generally



that when zi is above average, so is , and when one is below average, so is
the other.

Note that this procedure is also termed a Moran plot or Moran scatter plot
(see Anselin, 1995, 1996). In fact there is a function that combines the above
steps, and adds some functionality, called moran.plot. However, working
through the steps is helpful in demonstrating the ways in which spdep
handles neighbour-based data. Below, the moran.plot approach is
demonstrated. The output may be seen in Figure 7.8.

moran.plot(penn.state.utm$smk,penn.state.lw)

Figure 7.7 Lagged mean plot for smoking uptake



In addition to the code earlier, this approach also identifies points with a high
influence in providing a best-fit line to the plot (see, for example, Belsley et
al., 1980; Cook and Weisberg, 1982).

Self-Test Question 1. One further modification of this approach is
based on the observation that although the permutation approach does
simulate no spatial influence on correlation, observations are in fact
correlated – since the randomised data are a permutation of the actual
data, the fact that zi gets assigned one particular value implies that no
other variables can take this value.5 An alternative simulation would
assign values to counties based on sampling with replacement. In this
case we are no longer conditioning on the exact set of observed uptake
rates, but on an empirical estimate of the cumulative distribution
function of the data, assuming that observations are independent.
Modify the above code to carry out this alternative approach. Hint: use
the help facility to find the optional arguments to the sample function.

5 Unless there are repeated values in the data, but even then a similar
argument applies.

Figure 7.8 Lagged mean plot for smoking uptake – alternative method



7.4 Moran’s I: An Index of Autocorrelation
In this section, the exploratory approaches of Section 7.3 will be taken a step
further. As stated earlier, autocorrelation is the tendency of zi values of
nearby polygons to be related. Rather like the Pearson correlation coefficient,
which measures the dependency between a pair of variables, there are also
coefficients (or indices) to measure autocorrelation. One that is very
commonly used is Moran’s I coefficient (Moran, 1950), defined by

(7.4)



where wij is the (i, j)th element of a weights matrix W, specifying the degree
of dependency between polygons i and j. As before, this could be a neighbour
indicator, so that wij = 1 if polygons i and j are neighbours and wij = 0
otherwise, or the rows of the matrix could be standardised to sum to 1, in

which case Wz is the vector of lagged means  as defined in Section 7.3.

I

You may have noticed that the matrix W contains the same information as the listw objects
discussed earlier. This is certainly true, but the latter stores information in quite a different,
and usually more compact, way. The listw object notes, for each polygon, a list of its
neighbours and their associated weights. For the polygon’s non-neighbours, nothing needs
to be stored. On the other hand, the matrix W has n × n elements. Each row of W contains
information for all n polygons – although for many of them, wij = 0. Computation using the
matrix form in R is generally less efficient – for example, although Wz is the vector of
spatially lagged means, computing it directly as W %∗% z would result in several numbers
being multiplied by zero, and these resultant zeros being added up. If there are a lot of
polygons, and typically they have, say, four or five neighbours, then the matrix format
would also have a much higher storage overhead – and much of this would be filled with
zeros.

Given the computational advantages of listw, why consider matrices? There are two
important reasons. First, when considering the algebraic properties of quantities like
Moran’s I, matrix expressions are easy to manipulate. Second, although it is mostly the case
that the listw form is more compact, it does store two items of data for every neighbour –
the index of the neighbouring polygon, and the associated weight. Thus, if neighbours were
defined in a very permissive way, so that W had few zero elements, the storage overheads
might exceed that for standard matrices. A matrix with no zeros requires n2 items of
information, but the listw form requires 2n2. In this situation, calculations would also take
longer. This is also true when the result of a computation has few zeros even if the supplied
input does, as is the case in matrix inversion, for example.

It is also worth noting that, if W is standardised so that its rows sum to 1,
then . In this case, equation (7.4) simplifies to

(7.5)

where ; that is, qi is zi recentred around the mean value of z. If
the vector of qi values is written as q, then equation (7.5) may be written in



vector–matrix form as

(7.6)

It may be checked that if the qi are plotted in a lagged mean plot – as in
Figure 7.8 or 7.7 – and a regression line is fitted, then I is the slope of this
line. This helps to interpret the coefficient. Larger values of I suggest that
there is a stronger relationship between nearby zi values. Furthermore, I may
be negative in some circumstances – suggesting that there can be a degree of
inverse correlation between nearby zi values, giving a checkerboard pattern
on the map. For example, a company may choose to site a chain of stores to
be spread evenly across the state, so that occurrence of a store in one county
may imply that there is no store in a neighbouring county.

7.4.1 Moran’s I in R
The package spdep provides functions to evaluate Moran’s I for a given
dataset and W matrix. As noted in the earlier information box, it is sometimes
more effective to store the W matrix in listw form – and this is done for the
computation of Moran’s I here. The function used to compute Moran’s I is
called moran.test – and can be used as below:

moran.test(penn.state.utm$smk,penn.state.lw)

Moran I test under randomisation

data: penn.state.utm$smk

weights: penn.state.lw

Moran I statistic standard deviate = 5.4175, p-value = 3.022e−08

alternative hypothesis: greater

sample estimates:

Moran I statistic   Expectation   Variance



0.404431265   −0.015151515   0.005998405

The above code supplies more than the actual Moran’s I estimate itself – but
for now note that the value is about 0.404 for the Penn State smoking uptake
data.

This is fine, but one problem is deciding whether the above value of I is
sufficiently high to suggest that an autocorrelated process model is a
plausible alternative to an assumption that the smoking uptake rates are
independent. There are two issues here:

1. Is this value of I a relatively large level on an absolute scale?
2. How likely is the observed I value, or a larger value, to be observed if

the rates were independent?

The first of these is a benchmarking problem. Like correlation, Moran’s I is a
dimensionless property – so that, for example, with a given set of polygons
and associated W matrix, area-normalised rates of rainfall would have the
same Moran’s I regardless of whether rainfall was measured in millimetres or
inches. However, while correlation is always restricted to lie within the range
[−1, 1] – making, say, a value of 0.8 reasonably easy to interpret – the range
of Moran’s I varies with the W matrix. The maximum and minimum values
of I are shown (de Jong et al., 1984) to be the maximum and minimum values
of the eigenvalues (Marcus and Minc, 1988) of (W + WT)/2.6 For the W
matrix here, I can range between −0.579 and 1.020. Thus on an absolute scale
the reported value suggests a reasonable degree of spatial autocorrelation.

6 Don’t worry too much if you don’t know what an eigenvalue or eigenvector
is – but if curious, see Marcus and Minc (1988).

An R function to find the maximum and minimum I values from a listw
object is defined below. listw2mat converts a listw function to a matrix.

moran.range <- function(lw) {

 wmat <- listw2mat(lw)

return(range(eigen((wmat + t(wmat))/ 2)$values))



}

moran.range(penn.state.lw)

However, the null hypothesis statement of ‘no spatial autocorrelation’ is quite
broad, and two more specific hypotheses will be considered here. The first is
the assumption that each zi is drawn from an independent Gaussian
distribution, with mean µ and variance σ. Under this assumption, it can be
shown that I is approximately normally distributed with mean E(I) = −1/(n
−1). The variance of this distribution is quite complex – readers interested in
seeing the formula could consult, for example, Fotheringham et al. (2000). If
the variance is denoted Vnorm(I) then the test statistic is

(7.7)

This will be approximately normally distributed with mean 0 and variance 1,
so that p-values may be obtained by comparison with the standard normal
distribution.

The other form of the test is a more formal working of the randomisation idea
set out in Section 7.3. In this case, no assumption is made about the
distribution of the zi, but it is assumed that any permutation of the zi against
the polygons is equally likely. Thus, the null hypothesis is still one of ‘no
spatial pattern’, but it is conditional on the observed data. Under this
hypothesis, it is also possible to compute the mean and variance of I. As
before, the expected value of I is E(I) = −1/(n − 1), and the formula for the
variance is different from that for the normality assumption, but also complex
– again the formula is given in Fotheringham et al. (2000). If this variance is
denoted by Vrand(I) then the test statistic is

(7.8)

In this case, the distribution of the text statistic in expression (7.8) is also



close to the normal distribution – and the quantity in this expression can also
be compared to the normal distribution with mean 0 and variance 1, to obtain
p-values. Both kinds of test are available in R via the moran.test function
shown earlier. As noted earlier, as well as the Moran’s I statistic itself, this
function prints out some further information. In particular, looking again at
this output, it can be seen that the expectation, variance and test statistic for
the Moran’s I statistic is output (the test statistic is labelled ‘Moran I statistic
standard deviate’), as well as the associated p-value. As a default, the output
refers to the randomised hypotheses – that is, Vrand(I) is used. Thus, looking
at the output from moran.test(penn.state.utm$smk,penn.state.lw) again, it can
be seen that there is strong evidence to reject the randomisation null
hypothesis in favour of an alternative hypothesis of I > 0 for the smoking
uptake rates.

The argument randomisation allows the normal distribution assumption, and
hence Vnorm(I), to be used instead:

moran.test(penn.state.utm$smk,penn.state.lw,randomisation=FALSE)

  Moran I test under normality

data: penn.state.utm$smk

weights: penn.state.lw

Moran I statistic standard deviate = 5.4492, p-value = 2.53e−08

alternative hypothesis: greater

sample estimates:

Moran I statistic   Expectation   Variance

 0.404431265  −0.015151515  0.005928887

From this, it can be seen that there is also strong evidence to reject the null
hypothesis of the zi being independently normally distributed, again in favour
of an alternative that I > 0.

7.4.2 A Simulation-Based Approach



The previous tests approximate the test statistic by a normal distribution with
mean 0 and variance 1. However, this distribution is asymptotic – that is, as n
increases, the actual distribution of the test statistic gets closer to the normal
distribution. The rate at which this happens is affected by the arrangement of
the polygons – essentially, in some cases, the value of n for which a normal
approximation is reasonable is lower than for others (Cliff and Ord, 1973,
1981).

For this reason, it may be reasonable to employ a simulation-based approach
here, instead of using a theoretical, but approximate, approach. In this
approach – which applies to the permutation-based hypothesis – a number of
random permutations (say 10,000) of the data are drawn and assigned to
polygons, using the sample function in R, as in Section 7.3. For each
randomly drawn permutation, Moran’s I is computed. This provides a
simulated sample of draws of Moran’s I from the randomisation null
hypothesis. The true Moran’s I is then computed from the data. If the null
hypothesis is true, then the probability of drawing the observed data is the
same as any other permutation of the zi among the polygons. Thus, if m is
just the number of simulated Moran’s I values exceeding the observed one,
and M is the total number of simulations, then the probability of getting the
observed Moran’s I or a greater one is

(7.9)

This methodology is due to Hope (1968). The function moran.mc in spdep
allows this to be computed:

moran.mc(penn.state.utm$smk,penn.state.lw,10000 )

  Monte-Carlo simulation of Moran I

data: penn.state.utm$smk

weights: penn.state.lw

number of simulations + 1: 10001

statistic = 0.40443, observed rank = 10001, p-value = 9.999e−05



alternative hypothesis: greater

Note that the third argument provides the number of simulations. Once again,
there is evidence to reject the null hypothesis that any permutation of the zi is
equally likely in favour of the alternative that I > 0.

7.5 Spatial Autoregression
Moran’s I, discussed in the previous section, can be thought of as a measure
of spatial autocorrelation. However, up to this point no consideration has
been given to a model of a spatially autocorrelated process. In this section,
two spatial models will be considered – these are termed spatial
autoregressive models. Essentially, they regress the zi value for any given
polygon on values of zj for neighbouring polygons. The two models that will
be considered are the simultaneous autoregressive (SAR) and conditional
autoregressive (CAR) models. In each case, the models can also be thought
of as multivariate distributions for z, with the variance–covariance matrix
being dependent on the W matrix considered earlier.

The SAR model may be specified as

(7.10)

where  has a Gaussian distribution with mean 0 and variance σi
2 (often σi2

= σ2 for all i, so that the variance of  is constant across zones), E(zi) = µ
and biji are constants, with bii = 0 and usually bij = 0 if polygon i is not
adjacent to polygon j; thus, one possibility is that bij is λwij. Here, λ is a
parameter specifying the degree of spatial dependence. When λ = 0 there is
no dependence; when it is positive, positive autocorrelation exists; and when
it is negative, negative correlation exists. µ is an overall level constant (as it
is in a standard normal distribution model). If the rows of W are normalised
to sum to 1, then the deviation from µ for zi is dependent on the deviation
from µ for the zj values for its neighbours.



The CAR model is specified by

(7.11)

where, in addition to the above definitions, N(·,·) denotes a normal

distribution with the usual mean and variance parameters,  is the
conditional variance of zi given {zj : j ≠ i} and cij are constants such that cii =
0 and, as with bij in the SAR model, typically cij = 0 if polygon i is not
adjacent to polygon j. Again, a common model is to set cij = λwij. µ and λ
have similar interpretations to the SAR model. A detailed discussion in
Cressie (1991) refers to the matrices B = [bij] and C = [cij] as ‘spatial
dependence’ matrices. Note that this model can be expressed as a multivariate
normal distribution in z as

(7.12)

where 1 is a column vector of 1s (of size n) and T is a diagonal matrix
composed of the τi (see, for example, Besag, 1974). Note that this suggests
that the matrix (I − C)−1T must be symmetrical (as well as positive definite).
If the W matrix is row-normalised, and the cij = λwij model is used, then this

implies that τi must be proportional to .

7.6 Calibrating Spatial Regression Models in R
The SAR model may be calibrated using the spautolm function from spdep.
This uses the notation also used in the lm function – and related functions –
to specify models. In the next section, the SAR and CAR models will be
expanded to consider further predictor variables, rather than just
neighbouring values of zi. However, for now the basic model may be
specified by using the notation for a linear model with just a constant term for
the mean of the predicted variable – this is µ in equation (7.11) or (7.10).



This is simply Var.Name ~ 1, with Var.Name replaced with the actual
variable name of interest (e.g. penn.state.utm$smk in the smoking rate
examples used in previous sections).7 A further parameter, family, specifies
whether a SAR or a CAR model is fitted. The function returns a regression
model object – among other things, this allows the values of coefficients,
fitted values and so on to be extracted. An example of use is as follows:

7 Or use smk and supply penn.state.utm as the data parameter.

sar.res <- spautolm (smk~ 1, listw=penn.state.lw, data=penn.state.utm)

sar.res

Call:

spautolm(formula = smk ~ 1, data = penn.state.utm, listw = penn.state.lw)

Coefficients:

(Intercept)  lambda

23.7689073  0.6179367

Log likelihood: −142.8993

From this it can be seen that λ = 0.618 and µ = 23.769, to 3 decimal places.
While the estimate for µ is easily interpretable, deciding where the reported
level of λ is of importance is harder. One possibility is to find the standard
error of λ – this is reported as the lambda.se component of the spatial
autoregression object:

sar.res$lambda.se

[1] 0.1130417

An approximate 5% confidence interval can be found in the standard way –
by finding a band given by the estimate of λ plus or minus twice the standard
error:

sar.res$lambda + c(−2,2)∗sar.res$lambda.se

[1] 0.3918532 0.8440201



As before, this suggests that a null hypothesis of λ = 0 is highly unlikely.

I

It is also possible to calibrate CAR models in the same way, and similarly obtain an
approximate confidence interval for λ. This is achieved – in our example – via the family
parameter in spautolm:

car.res <- spautolm(smk~1,listw=penn.state.lw, family=’CAR’,data=penn.state.utm)

car.res

However, at the time of writing, the help document for this function points out:

the function does not (yet) prevent asymmetric spatial weights being used with ‘CAR’
family models. It appears that both numerical issues (convergence in particular) and
uncertainties about the exact spatial weights matrix used make it difficult to reproduce ...
results.

Experimentation with the above code suggests similar convergence issues occur here, hence
attention will be focused on SAR models for the R examples.

7.6.1 Models with Predictors: A Bivariate Example
Both the CAR and SAR models can be modified to include predictor
variables as well as incorporate autocorrelationeffects. This is achieved by
replacing a constant µ by an observation specific µi for each zi, where µi is
some function of a predictor variable (say, Pi). If the relationship between µi
and Pi is linear, we can write, for the SAR case,

(7.13)

where a0 and a1 are effectively intercept and slope terms in a regression
model. The key difference between this kind of model and a standard
ordinary least squares (OLS) model is that for the OLS case the zi values are
assumed to be independent, whereas, here, nearby zj values influence zi as
well as the predictor variable.



Calibrating models such as that in equation (7.13) in R is straightforward, and
involves including predictor variables in the model argument for spautolm. In
the following example, a new data item, the per-county lung cancer rate for
Penn State in 2002, is computed and used as the zi variable. This time the role
of the smoking uptake variable is changed to that of the predictor variable, Pi.
This is achieved via a two-stage process:

1. Compute the per-county lung cancer rates.
2. Compute the regression model.

For stage 1, the plyr package is used to manipulate the data. Recall that
pennLC is a list, and one of the elements (called data) is a data frame giving
the counts of population, and lung cancer incidence, for each county in Penn
State subdivided by race (‘white’ or ‘other’), gender (‘male’ or ‘female’), and
age (‘under 40’, ‘40 to 59’, ‘60 to 69’, and ‘over 70’). The format of the data
frame uses a county column and three substrata columns – together
specifying a combination of county, age, gender and ethnicity.8 Two further
columns then specify the count of cases for that county–substrata
combination, and also the overall population for the same county substrata
combination:

8 We would prefer to use the term ‘ethnicity’ – unfortunately the supplied
data use ‘race’.

head(pennLC$data)

  county cases population race gender  age

1 adams  0  1492 o  f Under.40

2 adams  0  365 o  f 40.59

3 adams  1   68 o  f 60.69

4 adams  0   73 o  f  70+

5 adams  0  23351 w  f Under.40

6 adams  5  12136 w  f 40.59

For example, it may be seen that Adams County has 0 incidents of lung



cancer for non-white9 females under 40 out of a total population of 1492
female non-white people under 40 in Adams County. Using the plyr package
(Wickham, 2011), it is possible to create a data frame showing the total
number of cases over all combinations of age, ethnicity and gender for each
county:

9 Here ‘o’ denotes ‘other’ – that is, ‘non-white’.

require(plyr)

totcases <- ddply(pennLC$data,c("county"),numcolwise(sum))

I

plyr is a very powerful package very much worth reading more about (see Wickham, 2011).
It applies a split–apply–combine approach to data manipulation. A number of functions are
supplied to apply this approach for various formats of variable. Here, ddply is used. A
dataset is supplied (pennLC$data) and one of the factor (or character) column names is
given (county) in this example. The data frame is split into a list of smaller data frames, one
for each value of the county variable. Next, a function is applied to each of these data
frames, giving a list of transformed data frames – quite often the new data frame is a smaller
one, often having only one row consisting of summary statistics (or sums or counts) for
some selected rows of the data frames arising from the split. Finally, the list of transformed
data frames is combined by row-wise stacking to create a new data frame. Hence split–
apply–combine.

In the code above, the function applied to a subset data frame for each county
is created via numcolwise(sum). This transforms the basic sum function,
which applies to vectors, to a new function which sums all numeric columns
in a data frame, yielding a one-row data frame with sums of numeric
columns. Here these columns are the number of incidents of lung cancer, and
the population. After applying this function to each subset of the data, the
countywise totals for lung cancer incidents and populations are recombined
to give a data frame with county name, county total lung cancer cases and
county total population – in the data frame totcases:

head(totcases)



I

The expression numcolwise(sum) may look a little strange. numcol-wise is a function, but,
unusually, it takes another function as its input, and returns yet another function as output.
The input function is assumed to apply to standard R numerical vectors – it is modified by
numcolwise to produce a new function that applies the input function to data frames on a
row-by-row basis, and returns a single-row data frame of the results. Note that since in this
example sum is the input function, it is only valid for numerical data columns. The
numcolwise column allows for this, and the modified function only returns entries in the
output data frame for numerical columns. Although it would not make much sense in this
example, functions like mean and median could also be used as inputs to numcolwise – or
indeed user-defined numeric functions.

In the example the output function is then fed into ddply to provide the apply stage function
in the split–apply–combine procedure.

Having created a data frame of county-based lung cancer incident and
population counts, the cancer rates per 10,000 population are computed.
These are added as a new column to the totcases data frame:

totcases <- transform(totcases, rate= 10000∗cases/population)

Thus, totcases now has three columns, and is ready to provide input to the
regression model – below this variable is inspected (using head) and a
boxplot drawn in Figure 7.9:

head(totcases)

county cases population rate



Cancer Rate (Cases per 10,000 Popn.)

# Check the distribution of rates

boxplot(totcases$rate, horizontal=TRUE,

xlab=’Cancer Rate (Cases per 10,000 Popn.)’)

Figure 7.9 Boxplot of cancer rates (Penn State, 2002)

It is now possible to calibrate the spatial regression model. As stated earlier,
the zi variable here is related to the cancer rate, and the predictor is smoking
uptake. Note that in this case an additional weighting variable is added, based
on the population variable, and also that zi is actually the square root of the
cancer rate. This allows for the fact that the random variable here is actually
the count of cancer cases – and that this is possibly a Poisson distributed
variable – since the square root transform can stabilise variance of Poisson
count data (Bartlett, 1936). Since the square root rate is essentially

(7.14)

and population is assumed to be a fixed quantity, the numerator above will
have an approximately fixed variance and be reasonably approximated by a



normal distribution. Dividing this by the square root of population then
makes the variance inversely proportional to the population. Hence,
weighting by population is also appropriate here. Taking these facts into
account, the SAR model may be calibrated and assessed:

sar.mod <- spautolm (rate~sqrt(penn.state.utm$smk), listw=penn.state.lw,
weight=population, data=totcases)

summary(sar.mod)

Call:

spautolm(formula = rate ~ sqrt(penn.state.utm$smk), data = totcases,

   listw = penn.state.lw, weights = population)

Residuals:

Min     1Q Median  3Q  Max

−5.45183 −1.10235 −0.31549 0.59901 5.00115

Coefficients:

Estimate Std.   Error z value

(Intercept)           −0.35263 2.26795 −0.1555

sqrt(penn.state.utm$smk)  1.80976 0.46064 3.9288

Pr(>|z|)

(Intercept)      0.8764

sqrt(penn.state.utm$smk) 8.537e−05

Lambda: 0.38063 LR test value: 6.3123 p-value: 0.01199

Numerical Hessian standard error of lambda: 0.13984

Log likelihood: −123.3056

ML residual variance (sigma squared): 209030, (sigma: 457.19)

Number of observations: 67

Number of parameters estimated: 4

AIC: 254.61



The ‘coefficients’ section in the output may be interpreted in a similar way to
a standard regression model. From this it can be seen that the rate of smoking
does influence the rate of occurrence of lung cancer – or at least that there is
evidence to reject a null hypothesis that it does not affect cancer rates, with p
= 8.54 × 10−5. The ‘lambda’ section provides a p-value for the null
hypothesis that λ = 0: that is, that there is a degree of spatial autocorrelation
in the cancer rates. Here, p = 0.012, so that at the 5% level there is evidence
to reject the null hypothesis, although the strength of evidence just falls short
of the 1% level.

Thus, the analysis here suggests that smoking is linked to lung cancer, but
that lung cancer rates are spatially autocorrelated. This is possibly because
other factors that influence lung cancer (possibly age, or risk associated with
occupation) are geographically clustered. Since these factors are not included
in the model, information about their spatial arrangement might be inferred
via nearby occurrence of lung cancer.

7.6.2 Further Issues
The above analysis gave a reasonable insight into the occurrence of lung
cancer in Pennsylvania as a spatial process. However, a number of
approximations were made. A more exact model could have been achieved if
a direct Poisson model had been used, rather than using an approximation via
square roots. Indeed, if an independent zi model were required, where the zi
were case counts, then a straightforward Poisson regression via glm could
have achieved this. However, a Poisson model with an autocorrelated error
term is less straightforward. One approach might be to use a Bayesian
Markov chain Monte Carlo (MCMC) approach for this kind of model (for an
example, see Wolpert and Ickstadt, 1998). In R, this type of approach can be
achieved using the RJags10 or RStan package.11

10 http://cran.r-project.org/web/packages/rjags/index.html

11 http://mc-stan.org/users/interfaces/rstan

7.6.3 Troubleshooting Spatial Regression

http://cran.r-project.org/web/packages/rjags/index.html
http://mc-stan.org/users/interfaces/rstan


In this section, a set of the issues with spatial models based on W matrices
will be explored. These issues are identified in Wall (2004). The issues
identify certain strange characteristics in some spatial models – and possibly
interactive exploration via R is an important way of identifying whether these
issues affect a particular study. For this exercise you will look at the
Columbus crime data supplied with the spdep package.12 Typing in the
following will load the shapefile of neighbourhoods in Columbus, Ohio, and
create a map (Figure 7.10). Note that the mapping command might issue a
warning as columbus does not have a defined map projection. This is not a
problem if the shapefile is only considered in isolation – if it is to be
combined with other sources of geographical information, this could be more
problematic.

12 http://www.rri.wvu.edu/WebBook/LeSage/spatial/anselin.html

Figure 7.10 Shapefile of neighbourhoods in Columbus, Ohio, with labels

columbus <- readShapePoly(system.file("etc/shapes/columbus.shp",package= "spdep")
[1])

# Create a plot of columbus and add labels for each of the zones

http://www.rri.wvu.edu/WebBook/LeSage/spatial/anselin.html


tm_shape(columbus) + tm_polygons(col=’wheat’) +

tm_text(text=’POLYID’, size= 0.7)

This dataset has been used in a number of studies. For each neighbourhood, a
number of attributes are provided, including ‘average house price’, ‘burglary
rate’ and ‘average income’. However, here these will not be considered, as
the focus will be on the correlation structure implied by the W matrix. Here, a
queen’s case matrix is extracted from the data. Adjacency plays an important
role in SAR models. Recall that there are also several options in terms of
specifying the definition of polygon adjacency – in particular, the rook’s case
and queen’s case. Both of these can be computed from columbus, which is a
SpatialPolygonsDataFrame object.

# Extract a ’queen’s case’ adjacency object and print it out

col.queen.nb <- poly2nb(columbus, queen=TRUE)

col.queen.nb

Neighbour list object:

Number of regions: 49

Number of nonzero links: 236

Percentage nonzero weights: 9.829238

Average number of links: 4.816327

# Extract a ’rook’s case’ adjacency object and print it out

col.rook.nb <- poly2nb(columbus, queen=FALSE)

col.rook.nb

Neighbour list object:

Number of regions: 49

Number of nonzero links: 200

Percentage nonzero weights: 8.329863

Average number of links: 4.081633

The two variables col.queen.nb and col.rook.nb respectively contain the



adjacency information for the queen’s and rook’s case adjacency. It can be
seen that the queen’s case has 36 more adjacencies than the rook’s case.

Wall (2004) and others demonstrate that for the SAR model with a constant σ
2 term

(7.15)

provided (I − λW) is invertible. Thus, as stated before, the SAR model is
essentially a regression model with non-independent error terms, unless λ =
0, in which case it is equivalent to a model with independent observations.
The variance–covariance matrix is therefore a function of the variables W, σ
2 and λ. Without loss of generality, we can assume that T is scaled so that σ 2
= 1. Then, for any given definition of adjacency for the study area, it is
possible to investigate the correlation structure for various values of λ. In R,
the following code defines a function to compute a variance–covariance
matrix from λ and W. Here, the adjacency object is used (rather than
supplying a W matrix), but this contains the same information.

covmat <- function(lambda,adj) {

 solve(tcrossprod(diag(length(adj)) − lambda∗ listw2mat(nb2listw(adj))))

}

The tcrossprod function takes a matrix X and returns XXT. The function
solve finds the inverse of a matrix. This can also be used as the basis for
finding the correlation matrix (rather than the variance–covariance matrix).

cormat <- function(lambda,adj) {

 cov2cor(covmat(lambda,adj))

}

We can now examine the relationship between, say, the correlation between
zones 41 and 47, and λ – the plot created is shown in Figure 7.11.



# Create a range of valid lambda values

lambda.range <- seq(−1.3,0.99, l= 101)

# Create an array to store the corresponding correlations

cor. 41.47 <- lambda.range∗ 0

# ... store them

for (i in 1: 101) cor. 41.47[i] <- cormat(lambda.range[i],col.rook.nb)[41,47]

# ... plot the relationship

plot(lambda.range,cor. 41.47, type=’l’)

This seems reasonable – larger values of λ lead to higher correlation between
the zones, λ = 0 implies no correlation, and the sign of λ implies the sign of
the correlation. However, now consider the same curve, but between zones
40 and 41 (see Figure 7.12).

# First, add the line from the previous figure for reference

plot(lambda.range,cor. 41.47, type=’l’, xlab=expression(lambda), ylab= ’Correlation’,
lty= 2)

# Now compute the correlation between zones 40 and 41.

cor. 40.41 <- lambda.range∗ 0

for (i in 1: 101) cor. 40.41[i] <- cormat(lambda.range[i],col.rook.nb)[40,41]

# ... and add these to the plot

lines(lambda.range,cor. 40.41)

Figure 7.11 Relationship between λ and the correlation between zones 41
and 47



Here, something strange is happening. When λ drops below around −0.5 the
correlation between zones 40 and 41 begins to increase, and at around −0.7 it
becomes positive again. This is somewhat counter-intuitive, particularly as λ
is often referred to as an indicator of spatial association. For example, Ord
(1975) states that wij ‘represents the degree of possible interaction of location
j on location i’. Although initially for positive λ the correlation between
zones 40 and 41 is less than that for zones 41 and 47, when λ exceeds around
0.5 the situation is reversed (although this is a less pronounced effect than the
sign change noted earlier). A useful diagnostic plot is a parametric curve of
the two correlations, with parameter λ (see Figure 7.13):

# First, plot the empty canvas (type=’n’)

plot(c(−1,1), c(−1,1), type= ’n’, xlim= c(−1, 1), ylim= c(−1,1), xlab= ’Corr1’, ylab=
’Corr2’)



# Then the quadrants

rect(−1.2, −1.2,1.2, 1.2, col= ’pink’, border=NA)

rect(−1.2, −1.2,0, 0, col= ’lightyellow’, border=NA)

rect(0, 0, 1.2,1.2, col= ’lightyellow’, border=NA)

# Then the x=y reference line

abline(a=0, b=1, lty=3)

# Then the curve

lines(cor. 40.41,cor. 41.47)

Figure 7.12 Relationship between λ and the correlation between zones 41
and 47

We term this a Battenberg13 plot. Tracing along this line from top right



shows the relationship between the two correlations as λ decreases from its
maximum value. The dotted line is the x = y reference point – whenever the
curve crosses this, the values of the two correlations change order. Perhaps
the key feature is that the curve ‘doubles back’ on itself – so that for some
ranges of λ one of the correlations increases while the other decreases. The
quadrants are also important – if a curve enters one of the pink quadrants this
suggests that one of the correlations is positive, while the other is negative.
Again, this is perhaps counter-intuitive, given the interpretation of λ as a
measure of spatial association. Note in this case that after the ‘doubling back’
of the curve it does enter the pink quadrant.

13 https://www.thespruceeats.com/best-british-battenberg-cake-recipe-434905

Figure 7.13 Parametric plot of correlations between two polygon pairs
(40,41) and (41,47)

https://www.thespruceeats.com/best-british-battenberg-cake-recipe-434905


A selection of 100 random pairs of correlations (chosen so that each pair has
one zone in common) can be drawn (see Figure 7.14). This seems to suggest
that ‘doubling back’ and curves going inside the pink quadrants are not
uncommon problems. In addition, for positive λ values, there is a fair deal of
variation in the values of correlation for given λ values. In addition, the
variability is not consistent, so that the order of values of correlation changes
frequently.

# First, plot the empty canvas (type=’n)

plot(c(−1,1), c(−1, 1), type= ’n’, xlim= c(−1,1), ylim= c(−1, 1), xlab= ’Corr1’, ylab=
’Corr2’)

# Then the quadrants

rect(−1.2, −1.2,1.2, 1.2, col= ’pink’, border=NA)

rect(−1.2, −1.2,0, 0, col= ’lightyellow’, border=NA)

rect(0, 0, 1.2,1.2, col= ’lightyellow’, border=NA)

# Then the x=y reference line

abline(a= 0, b= 1, lty= 3)

# Then the curves

# First, set a seed for reproducibility

set.seed(310712)

for (i in 1: 100) {

r1 <- sample(1:length(col.rook.nb), 1)

r2 <- sample(col.rook.nb[[r1]], 2)

cor.ij1 <- lambda.range∗ 0

cor.ij2 <- lambda.range∗ 0

for (k in 1: 101)

cor.ij1[k] <- cormat(lambda.range[k],col.rook.nb)[r1,r2[1]]

for (k in 1: 101)

cor.ij2[k] <- cormat(lambda.range[k],col.rook.nb)[r1,r2[2]]



lines(cor.ij1,cor.ij2)

}

Figure 7.14 Parametric plots of 100 sampled correlations

This shows a pattern very similar to those seen in Wall (2004). Essentially,
for negative λ values, some correlations become positive while others remain
negative. The ordering can also change as λ changes, as noted earlier, so that
some adjacent zones are more correlated than others for certain λ values, but
this situation can alter. Finally, some adjacent zone pairs experience a sign
change for negative values of λ, while others do not. The aim of this section
has been in part to highlight the issues identified by Wall, but also to suggest
some visual techniques in R that could be used to explore these – and identify
situations in which the counter-intuitive behaviour seen here may be
occurring. As a general rule, the authors have found this not to happen a great



deal when working with zones based on a regular grid, but that the problems
seen here occur quite often for irregular lattices. This provides empirical
back-up to the more theoretical arguments of Besag and Kooperberg (1995)
for CAR models.

7.7 Answer to Self-Test Question
Q1: The following code will apply the modified approach asked for in
the question:

# Set up a set of five ’fake’ smoking update rates as well as the real one

# Create new columns in penn.state.utm for randomised data

# Here the seed 4676 is used. Use a different one to get an unknown outcome.

set.seed(4676)

penn.state.utm$smk_rand1 <- sample(penn.state.utm$smk, replace=TRUE)

penn.state.utm$smk_rand2 <- sample(penn.state.utm$smk, replace=TRUE)

penn.state.utm$smk_rand3 <- sample(penn.state.utm$smk, replace=TRUE)

penn.state.utm$smk_rand4 <- sample(penn.state.utm$smk, replace=TRUE)

penn.state.utm$smk_rand5 <- sample(penn.state.utm$smk, replace=TRUE)

# Scramble the variables used in terms of plotting order

vars <- sample(c(’smk’,’smk_rand1’,’smk_rand2’,’smk_rand3’,’smk_rand4’,’smk_rand5’))

# Which one will be the real data?

# Don’t look at this variable before you see the maps!

real.data.i <- which(vars == ’smk’)

# Draw the scrambled map grid

tm_shape(penn.state.utm) +

 tm_polygons(col=vars, legend.show=FALSE, breaks=c(18,20,22,24,26,28)) +  
tm_layout(title= 1: 6, title.position= c("right","top"))

The only difference between this and the previous code block is the inclusion



of the optional parameter replace=TRUE in the sample function – which tells
the function to return n random samples from the list of smoking take-up
rates with replacement. Also the breaks are now explicitly specified – these
would always be the same for a permutation since the default break-choosing
algorithm depends on the range of the values – but for a sample with
replacement these may change as the largest and smallest values in the
dataset may not be chosen. This is essentially the technique to simulate the
drawing of random samples used by Efron (1979) to carry out the bootstrap
approach to non-parametric estimations of standard error. Thus, here it is
referred to as ‘bootstrap randomisation’.

Figure 7.15 Bootstrap randomisation of smoking uptake rates

The multiple map drawing algorithm in tmap decides automatically on the
layout, depending on the shape of the window it is drawing into (Figure
7.15). Thus, you may get the layout as ‘long and thin’ (i.e. 2 columns and 3
rows) rather than ‘short and wide’ (3 rows and 2 columns).
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8 Localised Spatial Analysis

8.1 Introduction
In the previous chapters, a number of models of spatial processes have been
used to analyse data. One characteristic of many of the models used was an
assumption of homogeneity in the way that spatial data interacted. For
example, K-functions and related ideas model the interdependence between
points, in terms of the distance between them – K-functions model the
number of points one might encounter at a radius r from a particular point.
However, a general assumption is that these relations depend only on relative
distance. Thus, the expected number of points within a circle of radius r
centred around a point at location x will depend only on the value of r and
not on x. Similarly, in the SAR models considered in the previous chapter,
the coefficient λ specified the degree to which an attribute at polygon i
depended on the values of nearby polygons. However, λ takes the same value
for all polygons – suggesting again that the degree of spatial interdependency
is the same regardless of location.

This has an effect on the kind of hypothesis testing that may take place. For
example, in the previous chapter, the hypothesis that λ = 0 was tested – and in
the examples given it was rejected at the 5% level. This tells us that there is
spatial dependency in the process under investigation (in the example, rates
of smoking) – but of itself it supplies no inference as to where high or low
levels occur geographically, or whether the dependency occurs in some
regions but not in others.1 In this chapter, a number of approaches that
attempt to highlight geographical variation in spatial processes will be
introduced. Two key ideas here are index decomposition, in which indices
such as Moran’s I are decomposed according to the contribution of data from
each locality to identify local effects, and moving window approaches, where
data will be analysed in a moving circular window, to identify variation in
relationships within the data over space.

1 Indeed, adopting this model requires a prior assumption of homogeneity in
spatial dependency.



8.2 Setting Up the Data Used in this Chapter
The main dataset used in this chapter will be the North Carolina sudden
infant death syndrome (SIDS) data, appearing in Getis and Ord (1992). The
data are supplied with the spdep package.2 The package supplies this as a
shapefile, and read_shape from tmaptools is used to read it in. Initially, the
shapefile is supplied in geographical (i.e. latitude and longitude) coordinates
– although this information is not supplied with the shapefile and is specified
(as EPSG:4326) in the current.projection argument. However, some of the
examples in this chapter will require distances between county centroids, and
so a projected coordinate system should be used. Here the geodetic
parameters with ID 2264 from the European Petroleum Survey Group are
used – using miles as the units of distance. The code to carry out this
operation follows. The map (in projected coordinates) is shown in Figure 8.1.

2 Here we do not need to load the package, just determine the location of the
data file via system.file.

# Load tmap, tmaptools packages

require(tmap)

require(tmaptools)

# read in the shapefile for North Carolina SIDS (it’s in epsg:4326)

nc.sids <- read_shape(system.file("shapes/sids.shp",  package= "spData")[1],
current.projection= 4326)

# Transform to EPSG 2264 - and units in miles. We need the full proj4 string here to specify
units

nc.sids.p <- set_projection(nc.sids, "+init=epsg:2264 +units=mi")

# Plot North Carolina

tm_shape(nc.sids.p,unit= ’miles’) + tm_borders() + tm_scale_bar(position = c("left",
"bottom"))

Figure 8.1 North Carolina SIDS Data, County Map



8.3 Local Indicators of Spatial Association
Recalling that the purpose of this chapter is to consider localised forms of
spatial data analysis, Anselin (1995) proposed the idea of local indicators of
spatial association (LISAs). He states two requirements for a LISA:

The LISA for each observation gives an indication of the extent of
significant spatial clustering of similar values around that observation
The sum (or mean) of LISAs for all observations is proportional to a
global indicator of spatial association

It should be possible to apply a statistical test to the LISA for each
observation, and thus test whether the local contribution to clustering around
observation i is significantly different from zero. This provides a framework
for identifying localities where there is a significant degree of spatial
clustering (or repulsion). A good initial example of a LISA may be derived
from the Moran’s I index. Recall that this is defined by

(8.1)

where zi is a measurement associated with polygon i, and wij is a binary
indicator as to whether polygons i and j are neighbours taking the value 0 if
they are not, and the value  if they are, with |δi| being the number of
polygon neighbours that polygon i has. This expression can be written as



(8.2)

where

(8.3)

Noting that  does not depend on i, so that for
a given set of zi it may be regarded as a constant, we have

(8.4)

so that Ii is a LISA. As previously, writing , so that the qi are
mean centred values, we can write

(8.5)

so that Ii is the product of qi and the mean of the qj values for the neighbours
of polygon i. If both qi and the average value of qj for polygon i’s neighbours
are all above average, this quantity will be large, indicating a cluster of
above- average values focused on polygon i. This is also the case if polygon i
and its neighbours all have values below average. Thus, it can be seen that Ii
is a local measure of clustering (either above or below the average value).

Also, if the signs of qi and  differ, and Ii is a large negative value,
this suggests that a local ‘repulsion’ effect may be occurring, where
neighbouring values take opposite extremes. Finally, if the magnitude of Ii is
not particularly large (for either positive or negative values) this suggests that
there is little evidence for either clustering or repulsion.



For each Ii, a significance test may be carried out against a hypothesis of no
spatial association. Anselin (1995) provides formulae for the sampling mean
and variance of Ii given a randomisation hypothesis as discussed in the
previous chapter (essentially this assumes that any permutation of zi values
among polygons is equally likely), and from these, the quantity

(8.6)

may be used as a test statistic. The R function localmoran in spdep computes
Ii values, given a set of zi values and a listw object providing neighbour
weighting information for the polygons associated with the zi. This function
returns a matrix of values whose columns are:

1. The local Moran’s I statistic, Ii
2. E(Ii) under the randomisation hypothesis
3. Var(Ii) under the randomisation hypothesis
4. The test statistic from equation (8.6)
5. The p-value of the above statistic, assuming an approximate normal

distribution

The following code computes the rates of SIDS for 1979 per 1000 births,
then computes the local Moran’s I and then produces a map (Figure 8.2) –
here the basic Ii values are plotted. Note that tmap detects that the local
Moran’s I has negative and positive values, and chooses a colour shading
scheme centred on zero with different hues for positive and negative values.
Unfortunately the hues are red and green, which are unhelpful for red–green
colour-blind people, hence the tm_style_col_blind() operation at the end to
alter this. Finally, the legend.format parameter supplies a list of formatting
parameters. The flag="+" argument requires positive values to be preceded
with a plus sign. This is mainly an aesthetic consideration as it then balances
well with the minus sign for negative values on the legend.

require(spdep)



# Compute the listw object for the North Carolina polygons

# Make sure nc.sids.p is in SpatialPolygonsDataFrame format

if ("sf" %in% class(nc.sids.p))

nc.sids.p <- as(nc.sids.p, "Spatial")

nc.lw <- nb2listw(poly2nb(nc.sids.p))

# Compute the SIDS rates (per 1000 births) for 1979

nc.sids.p$sidspm79 <- 1000∗nc.sids.p$SID79/nc.sids.p$BIR79

# Compute the local Moran’s I

nc.sids.p$lI <- localmoran(nc.sids.p$sidspm79,nc.lw)[, 1]tm_shape(nc.sids.p,unit=
’miles’) + tm_polygons(col= ’lI’,title= "Local Moran’s I",legend.format=list(flag= "+")) +
tm_style(’col_blind’) + tm_scale_bar(width= 0.15) +

tm_layout(legend.position = c("left", "bottom"), legend.text.size= 0.4)

Figure 8.2 Standardised local Moran’s I

The map shows there is some evidence for both positive and negative Ii
values. However, it is useful to consider the p-values for each of these values,
as considered above. These are mapped below. In this case a manual shading
scheme (i.e. one in which the shading interval breaks are specified directly) is
used, based on conventional ‘critical’ p-values. The code below produces this
(see Figure 8.3). Also, here the palette has been selected manually, via the
palette parameter. The minus sign in front of Greens signifies that the palette
is used in reverse order (higher numbers are lighter) to reflect the fact that
lower p-values are more important. Finally, to contrast with the Greens
palette, borders are specified to be black.



# Create the local p-values

nc.sids.p$pval <- localmoran(nc.sids.p$sidspm79,nc.lw)[, 5]

# Draw the map

tm_shape(nc.sids.p,unit= ’miles’) +

tm_polygons(col= ’pval’ , title= "p-value" , breaks= c(0, 0.01, 0.05, 0.10, 1),   
border.col = "black",palette = "−Greens") +

tm_scale_bar(width=0.15) +

tm_layout(legend.position = c("left", "bottom"))

Figure 8.3 Local Moran’s I p-values

From the resultant map, a number of places can be seen where the p-value is
notably low (e.g. Washington) – suggesting the possibility of a cluster of
either high or low values. Inspecting the actual rate for Washington (which is
zero) suggests there may be a cluster of very low rates here. Another region
where the p-value is low is Scotland County – although in this case the rate is
very high, suggesting a cluster of higher values here.

Self-Test Question 1. Verify the significance figures above by selecting and
listing the counties for which p < 0.05.

8.4 Further Issues with the Above Analysis
The above analysis shows a way in which notable counties – or possibly
clusters of neighbouring counties (in terms of their SIDS rates) – can be
identified via mapping the p-values of local Moran’s I statistics. However,



there are two notable difficulties with using this approach in an unmodified
form. These are:

Multiple hypothesis testing
Assuming that the Ii are normally distributed

Although these can be thought of as specific issues for this particular study,
many are relevant in the general case. It is therefore useful to consider them
in turn.

8.4.1 Multiple Hypothesis Testing
In the previous study, there were 100 counties. Using the categories of
shading for the map in Figure 8.3 it may be seen that seven counties have p ≤
0.05. However, if it is proposed to carry out testing at the 5% level, and if the
null hypothesis is true, then the probability of obtaining a false positive result
(i.e. a significant value of Ii when in fact the null hypothesis – of
randomisation – is true) is 0.05. Thus, even if no spatial process is occurring,
we can expect to obtain 100 × 0.05 = 5 counties flagged as ‘significant’.
Thus, even when no effect is present, this approach can generate several false
positives. One way this could be dealt with is by comparing the number of
significant results observed in the data to the binomial distribution – but
ultimately this loses sight of the main objective of the local Moran’s I
approach, since it then just provides a ‘whole-study-area’ test of whether a
spatial process occurs, rather than considering specific localities. If that is all
that is required, there is no advantage in the suggested approach over a test
based on the standard Moran’s I.

However, the advertised advantage of a LISA-based approach is its ability to
identify where clustering is occurring, not just whether it occurs. The
problem happens because often the method is required to answer both of
these questions. If the ‘false positive rate’ – that is, the probability of
detecting a significant Ii if the null hypothesis were true – were zero, then any
significant Ii would imply with certainty that clustering does occur. But the
false positive rate is not zero – and given that inconvenient fact, one useful
approach is to determine the probability of falsely stating that clustering
exists on the basis of finding one or more significant Ii values. The individual



p-values, and associated tests, apply to individual counties. Assuming the
tests are applied independently, and each has a false positive probability p,
then the probability of not getting a false positive is 1 − p for each county. If
there are n counties, then the probability of getting no false positives is (1 −
p)n, and therefore the probability of getting one or more false positives when
looking at all counties, denoted by p∗, is the complement of this, so that

(8.7)

Thus, the p∗-value can be regarded as a p-value for the ensemble of tests on
each county – and as a false positive rate for a general test of a ‘no clustering’
null hypothesis. A further simplification may be made by noting that for
small p,

 p ∗ ≈ np (8.8)

Now, if it were desired to find the individual county p-value required to give
a specified overall p∗-value, equation (8.7) could be rearranged to give

(8.9)

or, using the approximation above,

(8.10)

Here, n = 100 and so if a p∗-value of 0.05 is required, R can be used as a desk
calculator to obtain the countywise p:

1 − (1 − 0.05) ^(1/100)

[1] 0.0005128014



Thus, to make the overall chance of falsely rejecting the null hypothesis of no
clustering anywhere equal to 0.05, individual counties should be tested
against a p-value of around approximately 5.00 × 10–4. The approach using
the approximation in equations (8.8) and (8.10) is known as the Bonferroni p-
value adjustment (see, for example, Šidák, 1967). In R, instead of the
‘desktop calculator’ approach set out above, the function p.adjust may be
used. This takes a slightly different approach – instead of adjusting the
threshold for countywise p-values to be significant, it adjusts the p-values
themselves, so they may be compared to the critical value of p∗ required.
Thus to apply the test above, using p.adjust(pvals,method=’bonferroni’) on a
set of countywise p-values returns a set of adjusted countywise p-values that
may be compared against the critical value for p∗. Using this approach,
anomalous localities can be identified, but the overall probability of any false
positives is controlled. For example, comparing adjusted county p-values
against 0.05 will provide a test where the overall chance of erroneously
rejecting the overall hypothesis of no spatial pattern is 0.05.

This idea may now be used to provide a map of adjusted local Moran’s I p-
values for the SIDS data analysed earlier (see Figure 8.4).

# Create the adjusted p-value

nc.sids.p$pval_bonf <- p.adjust(nc.sids.p$pval, method= ’bonferroni’)

# Draw the map

tm_shape(nc.sids.p, unit= ’miles’) +

tm_polygons(col= ’pval_bonf’, title= "p-value", breaks= c(0, 0.01, 0.05, 0.10,
1),border.col = "black", palette = "−BuGn") +

 tm_scale_bar(width=0.15) +

tm_layout(legend.position = c("left", "bottom"))

This reveals that there is in fact a significant pattern (some counties are still
significant even after p-values are adjusted), and that it is the pattern around
Washington County that contributes notably to the departure from an aspatial
process. Interestingly, it is a group of very low rates that is detected here.

Figure 8.4 Local Moran’s I Bonferroni adjusted p-values



I

A slightly different approach to explaining the idea of p∗ is to note that the probability of
erroneously rejecting a null hypothesis of no spatial association is equivalent to the
probability of erroneously rejecting the smallest p-value of all of the counties. Assuming the
same threshold is applied to all tests, if the smallest p-value falls below this threshold, this is
equivalent to the event that at least one county is erroneously flagged as significant. Noting
that typically one is testing with a one-tailed (upper-tail) alternative hypothesis, so that large
Ii values relate to small p-values, an alternative way to compute adjusted p-values is to
compare local standardised Moran’s I against the distribution of the largest of n standard
normal variates.
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9 R and Internet Data

9.1 Introduction
While the last few chapters have focused on spatial data analysis, and
particularly on statistical approaches, this chapter considers another important
aspect of working with spatial data, that of obtaining it from the internet.
There are a number of ways that R can access internet data. Had this chapter
been written some time ago, much emphasis would have been placed on web
scraping, where output intended to create human-readable material (such as
HTML files) is ‘mined’ using a computer program to extract relevant
information. For example, the underlying HTML for webpages containing
weather forecasts or share prices would be downloaded as they would for a
web browser, but then the content would be scanned for patterns in their
content that contained the information of interest – such as a formatted table
with share prices or a table of forecasted maximum and minimum daily
temperatures. Although this is still possible in some cases, the situation has
perhaps bifurcated – some institutions have taken on board calls for open
data, and provided application program interfaces (APIs) where direct
requests may be made for data in machine-readable form, and others, perhaps
initially unaware that data they published could be ‘scraped’ in this way and
used in bulk, have adopted more complex practices in website provision so
that a basic ‘scraping’ approach is no longer possible.

For the situations in which an API is used, R provides generic tools for
working with APIs, and also a large number of packages intended to work
directly with specific data providers, such as Google. In addition to this, web
scraping can also be achieved, and in some cases data files may be directly
accessed over the web. The latter is perhaps the simplest option, when
available. However, it is perhaps necessary to add a note of caution here. One
issue with data from the internet is that data providers may occasionally
change the format of API requests, or filenames, or of the dataset itself. Some
providers also supply real-time (or near-real-time) data on a rolling basis, so
older files disappear after some time period. Thus an approach that works at
one point in time is not guaranteed to work indefinitely. In general, the



problem is not irreparable – usually a reorganisation of the website has meant
that some files are differently named, or the API has been modified, and
existing code can be modified and become usable once more. However, for
this reason it is important to have an understanding of the general principles
involved in producing R code for accessing the data, rather than regarding
code snippets as mystical incantations that can make certain items of data
magically appear. The other consequence of this changeability leads the
authors to issue a warning – what has just been said about changes in format
means that although the examples given here work at the time of writing, we
cannot guarantee that they will work indefinitely without modification.

9.2 Direct Access to Data
Let us begin with the situation in which data may be directly downloaded
from the internet. R can deal with this in a number of ways. If the dataset on
the internet is simply a text file, then the URL can sometimes be substituted
for a filename with a number of commands. This works with read.csv and
read.table, for example. A simple demonstration is provided here, via a
Princeton University website, recording birth rates, an index of social setting
and an index of family planning effort for a number of countries.1 Here the
data are read from the remote URL using read.table into a data frame called
fpe:

1 See http://data.princeton.edu/R/readingData.html

fpe <- read.table("http://data.princeton.edu/wws509/datasets/effort.dat")

head(fpe)

http://data.princeton.edu/R/readingData.html
http://data.princeton.edu/wws509/datasets/effort.dat


It is then possible to analyse these data in the same way as any other data –
here a scatter plot matrix of the variables is drawn (see Figure 9.1) to
investigate relationships between the three variables. The
panel=panel.smooth option causes a loess smooth (Cleveland, 1979) to be
added to each scatter plot.

pairs(fpe,panel=panel.smooth)

Figure 9.1 Scatter plot matrix of Princeton data



This approach can also be used to access code over the internet, via the
source command. An example of this is found on the Bioconductor project2 –
on their website they describe themselves thus: ‘Bioconductor is an open
source, open development software project to provide tools for the analysis
and comprehension of high-throughput genomic data. It is based primarily on
the R programming language.’ They provide a number of R packages,
including a basic collection and a number of further optional packages.
Although their aim is to develop code for a relatively specific area of
application, some of these packages are of more general use – for example,
the Rgraphviz library for visualising graphs, as an alternative to the iGraph
package. To install the base Bioconductor package collection (for R version
3.0.1 and later) enter:



2 http://www.bioconductor.org

source("http://bioconductor.org/biocLite.R")

biocLite()

Then, to install Rgraphviz, enter:

source("http://bioconductor.org/biocLite.R")

biocLite("Rgraphviz")

This runs some code located on the Bioconductor website to install the
packages. Note also that this is not running a remote process. The remote
code is read into R on the user’s machine, and then executed on that machine.
Although the intention here is to focus on running the remote code, rather
than on the use of Rgraphviz, a brief example follows. This uses the state.x77
data frame, supplied with the datasets package. This contains a number of
variables recorded for each US state:

Population estimate as of 1 July 1975 (Population)
Income per capita, 1974 (Income)
Illiteracy, 1970, as a percentage of population (Illiteracy)
Life expectancy in years, 1969–1971 (Life Exp)
Murder and non-negligent manslaughter rate per 100,000 population,
1976 (Murder)
Percentage high-school graduates, 1970 (HS Grad)
Mean number of days with minimum temperature below freezing, 1931–
1960, in capital or large city (Frost)
Land area in square miles (Area)

The correlations between each of these variables are computed, and the
variable pairs whose absolute correlation exceeds 0.5 are noted. A graph is
then created whose edges correspond to these pairs. Next, the graph is
‘configured’ – essentially, locations for the nodes are specified, in a layout
designed to limit the number of edge crossings. Finally, it is drawn.3 The
code below executes this procedure, and results in the graph seen in Figure

http://www.bioconductor.org
http://bioconductor.org/biocLite.R
http://bioconductor.org/biocLite.R


9.2.

3 As stated earlier, the aim here is not to provide a detailed tutorial on
Rgraphviz, but the code block is commented, and further details are available
at
http://www.bioconductor.org/packages/2.12/bioc/vignettes/Rgraphviz/inst/doc/Rgraphviz.pdf

Figure 9.2 Illustration of Rgraphviz

# The following two packages are required:

require(Rgraphviz)

require(datasets)

# Load the state.x77 data

data(state)

# Which ones are ’connected’ - i.e. abs correlation above 0.5

http://www.bioconductor.org/packages/2.12/bioc/vignettes/Rgraphviz/inst/doc/Rgraphviz.pdf


connected <- abs(cor(state.x77)) > 0.5

# Create the graph - node names are the column names

conn <- graphNEL(colnames(state.x77))

# Populate with edges - join variables that are TRUE in ’connected’

for (i in colnames(connected)) {

for (j in colnames(connected)) {

if (i < j) {

if (connected[i,j]) {

conn <- addEdge(i,j,conn, 1)}}}}

# Create a layout for the graph

conn <- layoutGraph(conn)

# Specify some drawing parameters

attrs <- list(node=list(shape="ellipse",             fixedsize=FALSE,
fontsize= 12))

# Plot the graph

plot(conn, attrs=attrs)

As can be seen, the population and area variables do not connect strongly
with other variables (it is of note that these depend directly on the size of the
state, while the others are state averages or per capita rates). Illiteracy is
connected to the greatest number of other variables.

9.3 Using Rcurl

The package RCurl 4 provides quite a lot of extra functionality for accessing
data from the web. Essentially, it provides a set of tools to allow R to act as a
web client. This is done by providing a number of helper functions. Perhaps
the most basic is getURL: given a URL (including secure HTTPS and a
number of other protocols, such as FTPS), this function returns the
information located at the URL. In some cases this might be the content of an
HTML file specifying a webpage (which might possibly be used for web



scraping), while in others it may be plain text (e.g. the content of a CSV file).
The latter situation will be considered here. The file 1871702.csv is located
on the UK government’s server and contains the 2010 English Index of
Multiple Deprivation (IMD) scores5 in CSV format. This index combines
measures of deprivation via a number of different dimensions (see
Department for Communities and Local Government, 2012, for example),
and the CSV file contains deprivation scores and ranks for each dimension, as
well as an overall score6 and rank for each Lower Super Output Area (LSOA)
in England – there are 32,482 LSOAs in all. It also provides a look-up from
LSOAs to larger areal units (such as Government Office Regions, GORs).

4 See http://www.omegahat.org/RCurl/ for full details.

5 Contains public sector information licensed under the Open Government
Licence v2.0.

6 Higher scores imply a greater degree of deprivation.

The full URL for this file appears in the code below. As can be seen, this
URL uses the HTTPS protocol. The getURL function is used to read the
contents of the file into temp. The getURL function always returns the
information of the URL into a single-character variable – including control
characters such as carriage returns. The information is not particularly helpful
in this form. The content is in fact a CSV file, and a command such as
read.csv would ideally be used to read this content into a data frame.
Fortunately, R offers this possibility, via the textConnection function. Given
a character argument (such as that returned by getURL), this function creates
a connection – a kind of pseudofile that can be read by a function usually
requiring a filename as input. The content of the pseudofile is just the
character content of the argument to textConnection. Thus, by storing the
information obtained from getURL in a temporary variable, and then using
this variable as input to textConnection and finally inputting this to read.csv,
the file may be read into a data frame. This is set out below:

library(RCurl) # Load RCurl

# Get the content of the URL and store it into ’temp’

http://www.omegahat.org/RCurl/


stem <- ’https://www.gov.uk/government/uploads/system/uploads’

file1 <- ’/attachment_data/file/15240/1871702.csv’

temp <- getURL(paste0(stem,file1))

# Use textConnection to read the content of temp

# as though it were a CSV file

imd <- read.csv(textConnection(temp))

# Check - this gives the first 10 column names of the data frame

head(colnames(imd), n= 10)

[1] "LSOA.CODE"

[2] "PRE.2009.LA.CODE"

[3] "PRE.2009.LA.NAME"

[4] "POST.2009.LA.CODE"

[5] "POST.2009.LA.NAME"

[6] "GOR.CODE"

[7] "GOR.NAME"

[8] "IMD.SCORE"

[9] "RANK.OF.IMD.SCORE..where.1.is.most.deprived."

[10] "INCOME.SCORE"

MS Windows users should ignore the line:

temp <- getURL(paste0(stem,file1))

and replace:

imd <- read.csv(textConnection(temp))

with:

imd <- read.csv(paste0(stem,file1))

https://www.gov.uk/government/uploads/system/uploads


If a number of CSV files are going to be read in this way (i.e. via a URL
using the HTTPS protocol) it may be helpful to define a function
read.csv.https to do this in a single command:

read.csv.https <- function(url) {

temp <- getURL(url)

return(read.csv(textConnection(temp)))

}

This function is then used in the following code block to create a boxplot of
the IMD for each GOR in England. The result is reproduced in Figure 9.3.

# Download the csv data and put them into ’imd2’

imd2 <- read.csv.https(paste0(stem,file1))

# Modify the margins around the plot, to fit the GOR

# names into the left-hand margin

par(mar=c(5,12,4,2) + 0.1)

# Create the boxplot. The ’las’ parameter specifies y-axis

# labelling is horizontal, x-axis is vertical

boxplot(IMD.SCORE~GOR.NAME, data=imd, horizontal=TRUE, las= 2)

Figure 9.3 Boxplot of IMDs by Government Office Regions



The boxplots show patterns varying across England – the lowest median
levels of the IMD are in the East of England and South-East GORs, although
London has a higher level. The North-East has the highest median level.
However, the East of England actually has the highest IMD for an individual
LSOA, and it can also be seen that some GORs have a more prominent upper
tail than others, suggesting that some parts of England are more prone to
small ‘pockets of deprivation’ than others. The variation in distribution shape
across the UK also suggests that geographically weighted summary statistics
may be a useful exploratory tool here.

9.4 Working with Apis
As well as providing ‘raw’ text files, many websites provide ‘bespoke’ data
in response to requests – for example, all of the detached houses for sale in a
given locality, or all of the crimes occurring in a given rectangular region.
Obtaining data often takes the form of a client request, followed by a server
response. The requests specify the information to be returned – for example,



a location which is the centre of an area for crimes to be returned. It is often
possible to specify these requests as part of a URL. The protocol for these
specifications is essentially the API. For example, the police.uk website
allows requests of the form:

http://data.police.uk/

where the items in angle brackets are replaced by actual values – such as:

http://data.police.uk/

Note that the lines are not broken in practice – this was done here just to fit
the URLs on the page. These return all crimes in a 1 mile radius of the
specified latitude and longitude, for the month specified by <date>. It can
therefore be seen that the requests consist of a number of named arguments
(here, lat, lng and date).

It is quite possible to construct requests as above, and simply use getURL to
retrieve the results. However, it is also possible to use getForm which accepts
the named parameters in the same format as named parameters in R. For
example:

crimes.buf <- getForm( "http://data.police.uk/", lat=53.401422, lng=−2.965075,
date="2016−04")

Although functionally identical, this format is easier to read – a useful
characteristic when revisiting old code. Note, however, that as with getURL,
the information returned is not quite ready to be used. As before, it is
returned as a single character string, although this time the data are in
JavaScript Object Notation (JSON) format, rather than CSV. JSON is a more
sophisticated format, allowing lists with named elements, arrays, and other
forms of data to be represented. In particular, it allows lists within lists, and
so on, to be represented. The crime data here are returned in this format. The
data item that the JSON format character string represents consists of a list of
items, one for each crime. Each item is itself a list, which contains at least the
following items:

http://data.police.uk/
http://data.police.uk/
http://data.police.uk/


Crime category (category)
Unique crime identifier (persistent_id)
Month of the crime (month)
A list item (location) containing the approximate crime latitude
(latitude), approximate crime longitude (longitude), and street details
(street), the latter itself a list including an ID number for the street (id)
and a street name (name) specifying a degree of uncertainty (e.g. ‘On or
near Florizel Street’)
Α location type (location_type), either ‘Force’ or ‘BTP’ (British
Transport Police)

In fact some further items are present, but we will focus on the ones listed, as
they supply location, date and crime type.

To convert the variable crimes.buf from a single character into a usable R
object, the function fromJSON in the package jsonlite will be used.

require(jsonlite)

crimes <- fromJSON(crimes.buf)

The variable crimes is now an R list object, whose items meet the description
above. To check this, enter:

crimes[[1]]

$category

[1] "anti-social-behaviour"

$location_type[1] "Force"

$location

$location$latitude

[1] "53.390927"

$location$street

$location$street$id

[1] 908665



$location$street$name

[1] "On or near Geraint Street"

$location$longitude

[1] "−2.964659"

$context[1] ""

$outcome_status

NULL

$persistent_id

[1] "69db2c85a755b3ed67e6fa3649fbc6e82e612d33f0a846964e911a6d773f41a1"

$id

[1] 48497941

$location_subtype

[1] ""

$month

[1] "2016−04"

This is the first item describing a crime, in a list of all crimes within a 1 mile
radius of the location 53.401422°N, 2.965075°W, in April 2016. This is a
helpful object format for storing complex information – for example, the
street name and ID are in a list within a list within a list. However, most data
analysis in R uses the more familiar vector, matrix and data frame formats.

The next step is to extract the relevant information from crimes. This is a
two-stage process:

1. Create a function to extract the information needed from an individual
list item.

2. Use sapply to apply the function to each item in the list, and recombine
the results into an array.

The method is illustrated below – here the function getLonLat extracts
longitude and latitude.



getLonLat <- function(x) as.numeric(c(x$location$longitude,         
x$location$latitude))

crimes.loc <- t(sapply(crimes,getLonLat))

head(crimes.loc)

The as.numeric function is used, since the latitude and longitude are stored as
characters. Note that the sapply function returns the listwise results as one
column per item, whereas data frames and matrices are usually formatted as
one row per item. Thus the t function is applied, which transposes rows and
columns.

Next, some of the attribute data for each of the crimes is extracted. This is
done in the same way:

getAttr <- function(x) c(

x$category, x$location$street$name, x$location_type)

crimes.attr <- as.data.frame(t(sapply(crimes,getAttr)))

colnames(crimes.attr) <- c("category","street","location_type")

head(crimes.attr)

    category

1 anti-social-behaviour

2 anti-social-behaviour

3 anti-social-behaviour

4 anti-social-behaviour



5 anti-social-behaviour

6 anti-social-behaviour

 street

1 On or near Geraint Street

2 On or near Further/higher Educational Building

3 On or near Greenheys Road

4 On or near Ivatt Way

5 On or near Back Lime Street

6 On or near Botanic Place

 location_type

1 Force

2 Force

3 Force

4 Force

5 Force

6 Force

Here, the matrix created is converted to a data frame (with as.data.frame).
Inspecting the top of the data frame created, it may be seen that the crimes are
located in Liverpool, UK, and that the BTP crimes are generally associated
with railway stations (such as Liverpool Central). Although the crimes have a
spatial identifier, in this case they are not associated with streets. Finally, the
location and attribute information can be combined to provide a
SpatialPointsDataFrame:

library(sp)

crimes.pts <- SpatialPointsDataFrame(crimes.loc,crimes.attr)

# Specify the projection - in this case just geographical coordinates

proj4string(crimes.pts) <- CRS("+proj=longlat")

# Note that ’head’ doesn’t work on SpatialPointsDataFrames



crimes.pts[ 1: 6,]

 street

1 On or near Geraint Street

2 On or near Further/higher Educational Building

3 On or near Greenheys Road

4 On or near Ivatt Way

5 On or near Back Lime Street

6 On or near Botanic Place

 location_type

1 Force

2 Force

3 Force

4 Force

5 Force

6 Force

It is also possible to create further SpatialPointsDataFrames by taking subsets
of the data. The following creates a set with incidents of anti-social behaviour
only:

asb.pts <- crimes.pts[crimes.pts$category=="anti-social-behaviour",]

This creates a set with criminal damage and arson cases:



cda.pts <- crimes.pts[crimes.pts$category=="criminal-damage-arson",]

These data will be revisited, but for now a plot contrasting the locations of
anti-social behaviour against criminal damage and arson crimes can be
created. First, the two SpatialPolygonsDataFrames are joined together (using
rbind) and then the category column is converted from factor to character.
This stops tmap from producing a key with all possible category types when
only two are examined here. The result is shown in Figure 9.4.

Figure 9.4 Locations of anti-social behaviour and criminal damage/arson
incidents

One thing to note here is that although the locations are stored as latitude and
longitude, so that directly plotting coordinates as x and y locations would give



a distorted map, the plot method recognises this (from the proj4string) and
corrects for this. As can be seen, both sets of points lie within a circle;
however, without this correction they would appear to lie within an ellipse.

This dataset is also one that can usefully be viewed on a zoomable map
(although be aware that the locations are not exact, so that zooming too
closely may lead to incorrectly located crimes (Singleton and Brunsdon,
2014)). R code to achieve this is given below, resulting in a zoomable map as
seen in Figure 9.5.

tmap_mode(’view’)

tm_shape(asb_cda.pts) + tm_dots(col=’category’, title=’Crime Type’,

labels=c("Antisocial Behaviour","Criminal Damage"),

palette=c(’indianred’,’dodgerblue’), size=0.02)

Figure 9.5 Liverpool crime map (web version)

9.5 Creating a Statistical ‘Mashup’



In this section another API will be accessed, and the information obtained
from it will be used in conjunction with the police.uk API. The new API is
provided by Nestoria7 and supplies lists of housing properties that are
currently for sale. The API can be accessed via getForm in much the same
way as the police.uk site.8 Among other things, this supplies the asking price,
latitude and longitude of properties. In the example below, a sample of 50
three-bedroom terraced houses is retrieved, and decoded from JSON form
into an R object:

7 www.nestoria.co.uk

8 When using this API, follow the guidelines at
http://www.nestoria.co.uk/help/api

terr3bed.buf <- getForm("https://api.nestoria.co.uk/api",

action=’search_listings’,

place_name=’liverpool’,

encoding=’json’,

listing_type=’buy’,

number_of_results=50,

bedroom_min=3, bedroom_max=3,

keywords=’terrace’)

Warning in testCurlOptionsInFormParameters(.params): Found

possible curl options in form parameters: encoding

terr3bed <- fromJSON(terr3bed.buf)

The warning appears because the keyword encoding is also used by the
getForm function directly, as well as a keyword in the Nestoria API.
However, in this case it is interpreted as a Nestoria keyword, which is
required in the example, therefore the warning may be ignored.

The results are now stored as a list in terr3bed$response$listings. Inside each
item in the list, a number of other items are stored. Among those of interest

http://www.nestoria.co.uk
http://www.nestoria.co.uk/help/api
https://api.nestoria.co.uk/api


here are price, longitude and latitude (further details of the keywords in the
API and the returned information can be found at
http://www.nestoria.co.uk/help/api). The following code extracts these and
stores them in a data frame:

getHouseAttr <- function(x) {

 as.numeric(c(x$price/ 1000,x$longitude,x$latitude))

}

terr3bed.attr <- as.data.frame(t(sapply(terr3bed$response$listings,

getHouseAttr)))

colnames(terr3bed.attr) <- c("price","longitude","latitude") head(terr3bed.attr)

  price longitude latitude

1 100.00 −2.928117 53.46545

2  85.00 −2.949700 53.40997

3 120.00 −2.953319 53.41240

4 209.95 −2.985383 53.38715

5 170.00 −2.954813 53.37964

6 315.00 −2.916008 53.36753

Note that prices are divided by 1000 – this is just to return simpler numbers
for formatting. Next, these data are combined with police.uk data.
Essentially, the aim here is to provide a further data item to terr3bed.attr – a
count of the number of household burglaries occurring within a 1 mile radius
of each house during April 2016. This gives a measure of the frequency of
burglaries that occur close to each house. This rate will then be compared to
the price of each house. By restricting the study to three-bedroom terraced
houses, it is hoped that much of the price variation attributed to the
characteristics of the house itself will be controlled.

The code to create this extra variable is shown below:

# Create an extra column to contain burglary rates

http://www.nestoria.co.uk/help/api


terr3bed.attr <- transform(terr3bed.attr, burgs= 0)

# For each house in the data frame

for (i in 1: 50) {

# Firstly obtain crimes in a 1-mile radius of the house’s

# latitude and longitude and decode it from JSON form

crimes.near <- getForm("http://data.police.uk/",

lat=terr3bed.attr$latitude[i],

lng=terr3bed.attr$longitude[i],

date="2016−04")

crimes.near <- fromJSON(crimes.near)

 crimes.near <- as.data.frame(t(sapply(crimes.near,getAttr)))

# Then from the ’category’ column count the number of burglaries

# and assign it to the ’burgs’ column

terr3bed.attr$burgs[i] <- sum(crimes.near[, 1] == ’burglary’)

# Pause before running next API request - to avoid overloading

# the server

Sys.sleep(0.7)

# Note this stage may cause the code to take a minute or two to run

}

Essentially this code makes a call to the police.uk API for each entry in the
house price data frame. Once it has run, the relationship between price and
burglary rate may be plotted as a scatter plot. As one or two house prices are
very high, a log scale is used for the y-axis (the house price axis). The
following code produces Figure 9.6:

library(ggplot2)

ggplot(terr3bed.attr,aes(x=burgs, y=price)) + geom_point() +

geom_smooth(span= 1) +

http://data.police.uk/


labs(x=’Burglaries in a 1-Mile Radius’,

y=’House Price (1000s Pounds)’)

A scatter plot of house price against nearby burglary count is created (via
geom_point) and then a smooth line (with error bands) is added via
geom_smooth. This suggests that there is some relationship – possibly a drop
in price in the range of about 30–60 burglaries in the 1 mile radius. However,
the graph demonstrates there are some outliers9 – and it should be noted that
this is a relatively small sample.

9 Although the smoothing technique used (loess) does take outliers into
account.

Figure 9.6 Scatter plot of burglary rate against house price

One final issue to be aware of with the Nestoria API is that it operates in real
time – so that a request returns a list of houses that are currently on the
market. This implies that running the code above at a future point may well
not return the same results as listed here, since different data will be returned.
It is suggested also that runs of the analysis in the future should use a more
recent month for recorded crimes than April 2016.



9.6 Using Specific Packages
Although it is possible to access many APIs using the RCurl package as a
toolkit, there are a number of R packages that are designed to access specific
APIs, such as Google Maps, Twitter or Eurostat. Here we focus on Eurostat,
via the R eurostat package (Lahti et al., 2017). This package provides a set of
tools for accessing and manipulating the data from the Eurostat open data
service. It essentially provides a ‘shell’ around the API for this service, so
that data are accessed via higher level R functions.

Here the dataset tgs00026 is downloaded and read into R. This dataset is the
disposable income of private households by NUTS2 regions.

I

From the Eurostat website (http://ec.europa.eu/eurostat/en/web/products-datasets/-
/TGS00026): ‘The disposable income of private households is the balance of primary
income (operating surplus/mixed income plus compensation of employees plus property
income received minus property income paid) and the redistribution of income in cash.’

The code to download this is given below. The time_format option specifies
that time is stored in character format.

library(eurostat)

tgs00026 <- get_eurostat("tgs00026", time_format = "raw")

head(tgs00026)

# A tibble: 6 x 5

http://ec.europa.eu/eurostat/en/web/products-datasets/-/TGS00026


Also, rather than the absolute income, here we will focus attention on the
change in household income between 2005 (pre-recession) and 2010,
expressed as a percentage of 2005 household income. To do this, two subsets
of the data are taken, for the years 2005 and 2010, in data frames called
tgs00026_05 and tgs00026_10. The percentage change is computed and
added as a new column in the 2010 data frame.

tgs00026_05 <- tgs00026[tgs00026$time==’2005’,]

tgs00026_10 <- tgs00026[tgs00026$time==’2010’,]

tgs00026_10$delta <-

100∗(tgs00026_10$values − tgs00026_05$values)/tgs00026_05$values

The geo column provides the NUTS2 code for each area. Next, the country
code is extracted from this. As the NUTS2 code is a factor, this is converted
to character mode, and the first two letters are extracted – these signify the
country level.

tgs00026_10$country <- substr(as.character(tgs00026_10$geo),1,2)

Figure 9.7 Boxplots of disposable income change, 2005–2010, by country
(Eurostat data)

With these data, it is possible (via ggplot) to create boxplots of NUTS2
region household income change by country. The code below produces



Figure 9.7.

ggplot(tgs00026_ 10,aes(x=country, y=delta)) + geom_boxplot() +

labs(x="Country", y="% Change in Household\n Income 2005−2010")

A problem with this is that because the boxplots are ordered alphabetically by
country code, the diagram is fairly difficult to read. A more helpful ordering
might be based on the order of the median income change of NUTS2 region
by country. However, ggplot orders categorical variables by the order of the
factor levels that are specified if the variables are of type factor – and by
default these are alphabetical. The forcats library provides some helpful tools
for working with factors – in particular, it offers an option to reorder them
according to some user-defined criterion, with the fct_reorder function. Given
a factor variable, an associated variable and a summery function, it computes
the summary function on a level-by-level basis and then reorders the levels in
accordance with these summary values. With the following code a similar
boxplot is achieved, but ordered by median NUTS2 level (see Figure 9.8).

library(forcats)

tgs00026_10$country <-fct_reorder(tgs00026_10$country,tgs00026_10$delta,median)

ggplot(tgs00026_10,aes(x=country,y=delta)) + geom_boxplot() +

labs(x="Country", y="% Change in Household\n Income 2005−2010")

Figure 9.8 Median ordered boxplots of disposable income change, 2005–
2010, by country



There are a number of interesting patterns in these data – here we will focus
on the fact that Spain (ES) has one of the most negative levels of change of
household income. A useful function in the eurostat package is the ability to
make SpatialPolygonsDataFrame objects from ordinary data frames, based on
the region codes. This is achieved with the function merge_eurostat_geodata.

An example is given here. First, the subset of tgs00026_10 for Spain
(country==’ES’) is selected, and then merge_eurostat_geodata is used to
create the SpatialPolygonsDataFrame (you should check whether the eurostat
package is installed). All of the options for the function can be seen by
entering ?merge_eurostat_geodata, but one notable argument is geocolumn,
stating which column in the data frame specifies the geography. The
all_regions option specifies whether to provide non-specified regions with
NA values or simply remove them from the SpatialPolygonsDataFrame. The
code below creates the map in Figure 9.9.

library(eurostat)

tmap_mode(’plot’)

tgs_es <- tgs00026_10[tgs00026_10$country==’ES’,]

tgs_map <- merge_eurostat_geodata(data = tgs_es, geocolumn = "geo",
        resolution = "1", output_class = "spdf", all_regions = FALSE)

tm_shape(tgs_map) + tm_polygons(col=’delta’, title="Change (%)") +

tm_style(’col_blind’) + tm_credits("(C) EuroGeographics for the administrative



boundaries")

This makes it clear that there are strong regional patterns in the change in
household income – with negative changes to the south and east of the
mainland and in Gran Canaria, and most strongly in the Balearic Islands.

To focus on the mainland, it is possible to filter out Gran Canaria and the
Balearics by noting that their NUTS2 IDs are ES70 and ES53. The code to do
this follows, giving rise to Figure 9.10.

Figure 9.9 Household income change (%), Spain, 2005–2010

tmap_mode(’plot’)

tgs_mlmap <- tgs_map[!(tgs_map$NUTS_ID %in% c("ES70","ES53")),]
tm_shape(tgs_mlmap) + tm_polygons(col=’delta’, title="Change (%)") +

tm_style(’col_blind’) + tm_layout(legend.position=c("right","bottom")) +



tm_credits("(C) EuroGeographics for the administrative boundaries")

Figure 9.10 Household income change (%), mainland Spain, 2005–2010

9.7 Web Scraping
The final aspect of web-based information gathering to be covered here is
web scraping. As mentioned earlier, this is perhaps the oldest approach to
obtaining information from the web, and involves directly reading
information from HTML code used to create human-readable content. This
process is the successor to early techniques to extract information from
Teletext pages through USB TV tuners for computers.10 The arrival of APIs
means that this technique has been less frequently used in recent years, but it
is still needed occasionally. The method used for web scraping in R typically
involves techniques for text pattern searching and pattern extraction, mostly
achieved through the use of regular expressions (see Aho, 1990, for
example). Regular expressions are a way of specifying patterns to search for



in character data. The very simplest expression is just a direct string – for
example, the pattern ’chris’ simply specifies the five letters c, h, r, i and s
appearing in sequence in a string. Thus, the string ’chris brunsdon’ would
match this expression, since it has these five letters appearing in sequence.
However, the string ’lex comber’ would not prove a match. It should also be
noted that ’Chris Brunsdon’ does not match, because regular expressions
discriminate between upper- and lower-case characters.

10 See http://nxtvepg.sourceforge.net/man-ttx_grab.html, for example.

If one wanted to find strings that contain either ’Chris’ or ’chris’, one
possible regular expression might be ’[Cc]hris’ – a sequence of characters
inside square brackets will match a stream with any of these characters where
the square-bracketed list occurs. Any number of characters may lie within the
square brackets. Sequences may also be specified: for example, ’[0−9]’
matches any single numeric digit. Some postfix modifiers may be used: a
character or pattern followed by ’+’ means that pattern may be repeated one
or more times – thus ’ [0−9]+ ’ matches a whole number preceded and
succeeded by a space (note that spaces are also matched). A number of other
modifiers and pattern specifiers exist. Some notable ones are listed here:

’∗’: A pattern preceding this symbol may be repeated zero or more times
– for example, ’Chris[0−9]∗’ matches ’Chris’, ’Chris1’, ’Chris2013’ and
so on, since the pattern preceding the ’∗’ is ’[0−9]’
’?’: A pattern preceding this symbol may be repeated zero times or once
– for example, ’-?[0−9]+’ matches a positive or negative whole number,
since the ’?’ is preceded by ’-’
’.’: This pattern matches any character – for example, ’#.∗’ would match
a Twitter hashtag, since this is a hash character followed by any
combination of characters
’^’: This pattern matches the beginning of a line – for example, ’^[0−9]’
matches a line starting with a numeric character
’$’: This pattern matches the end of the line – for example, ’!$’ matches
a line ending with an exclamation mark
’\’: If this symbol is placed in front of one of the special symbols it
implies the special symbol should be matched literally rather than take
on its special meaning – for example, ’\.doc’ matches ’.doc’, the ‘dot’

http://nxtvepg.sourceforge.net/man-ttx_grab.html


being taken literally rather than matching any character

The above list is a very brief overview of a fairly involved topic. A
comprehensive treatment is given in Friedl (2002).

These patterns may be used in R via a number of related functions. The
function grepl takes two arguments: the first is a pattern, and the second is an
array of one or more character variables. It returns TRUE for each character
value that matches the pattern, and FALSE for each one that does not:

grepl(’Chris[0−9]∗’,c(’Chris’,’Lex’,’Chris1999’,’Chris Brunsdon’))

[1] TRUE FALSE TRUE TRUE

Also, the grep function returns the indices of the items in the list that match:

grep(’Chris[0−9]∗’,c(’Chris’,’Lex’,’Chris1999’,’Chris Brunsdon’))

[1] 1 3 4

Finally, grep with the value=TRUE option returns the actual matching
character strings:

grep(’Chris[0−9]∗’,c(’Chris’,’Lex’,’Chris1999’,’Chris Brunsdon’),

value=TRUE)

[1] "Chris" "Chris1999" "Chris Brunsdon"

These functions are the key tools in R for finding the lines in the HTML code
that contain the information of interest when web scraping. This is best
illustrated with a practical example.

9.7.1 Scraping Train Times

The Accessible UK Train Timetables website11 provides a simple interface to
UK train timetable information. This is an unofficial site, but acknowledges
National Rail Enquiries for allowing the site to use information from the



official site.12 The main advantage of the unofficial site here is that it
provides a very simple query system. For example,
http://traintimes.org.uk/durham/leicester/00:00/monday returns a webpage
listing train times for journeys from Durham to Leicester after midnight on
the Monday following the date of the request.

11 http://traintimes.org.uk

12 http://www.nationalrail.co.uk

Suppose it is desired to extract the departure and arrival times from this web-
page. The HTML content of the webpage can be read into a character array
(one element of the array being one line of the HTML file) using readLines.

web.buf <- readLines( "https://traintimes.org.uk/durham/leicester/00:00/monday")

If you are curious you might type in web.buf to see what the HTML looks
like. Next, grep can be used to select the lines in the HTML corresponding to
the train departure and arrival times. These all emphasise the times of interest
with the <strong> HTML tag, and then take the form dd:dd - dd:dd where
each dd is a two-digit number (e.g. 04:59 − 08:23), and an appropriate regular
expression is ’strong.∗[0−2][0−9]:[0−5][0−9].∗[0−2][0−9]:[0−5][0−9]’ – this
accounts for the fact that the first digit of the hour must be 0, 1 or 2, and the
first digit of the minute cannot exceed 5.

times <- grep("strong.∗[0−2][0−9]:[0−5][0−9].∗[0−2][0−9]:[0−5][0−9]",

web.buf,value=TRUE)

Again, typing in times will verify that the lines of interest have been selected.
The previous stages have selected the lines actually containing the
information of interest. The next stage is to extract the specific information
required.

Each line has two times, with the pattern ’[0−2][0−9]:[0−5][0−9]’. A
companion function to grep is gregexpr – this returns a list giving the
locations in the input strings where the part of the string actually matching

http://traintimes.org.uk/durham/leicester/00:00/monday
http://traintimes.org.uk
http://www.nationalrail.co.uk
https://traintimes.org.uk/durham/leicester/00:00/monday


the pattern begins. It also supplies information about the length of the pattern
match. If the pattern occurs more than once, a vector of locations is given:

locs <- gregexpr("[0−2][0−9]:[0−5][0−9]",times)

# Show the match information for times[1]

locs[[1]]

[1] 46 60

attr(,"match.length")

[1] 5 5

attr(,"useBytes")

[1] TRUE

Thus, for the strings selected in times there are two matches, one for the
departure time and one for the arrival time. If x is the location of the time
within the string, then characters x to x + 1 supply the hours, and characters x
+ 3 and x + 4 supply the minutes. In the final section of code these pieces of
information are extracted, and converted into numerical values. Finally, a
new column is added to the data frame which is the duration of the journey in
decimal hours:

timedata <- matrix(0,length(locs), 4)

ptr <- 1

for (loc in locs) {

timedata[ptr, 1] <- as.numeric(substr(times[ptr],loc[1],loc[1]+1))

timedata[ptr, 2] <- as.numeric(substr(times[ptr],loc[1]+3,loc[1]+4))

timedata[ptr, 3] <- as.numeric(substr(times[ptr],loc[2],loc[2]+1))

timedata[ptr, 4] <- as.numeric(substr(times[ptr],loc[2]+3,loc[2]+4))

ptr <- ptr + 1

}

colnames(timedata) <- c(’h1’,’m1’,’h2’,’m2’)



timedata <- transform(timedata, duration = h2 + m2/60 − h1 − m1/60 )

timedata

Although this is a fairly basic example, it provides an indication of the
approach used to extract information from ‘raw’ HTML data. However, it is
important to realise that if the design of the webpage is changed, it may be
necessary to revisit any web-scraping code, since the patterns specifying the
data of interest may need to be altered. This would be the case, for example,
if the website in the example altered the format for displaying times from
dd:dd to dddd (i.e. 0823 instead of 08:23).
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10 Epilogue

10.1 The Future of R as a Tool For Geocomputation
Considering the future of R is not an easy task – it is an already complex
language, with what some may argue is an even more complex collection of
libraries, covering a wide range of techniques and application areas, many of
which extend beyond the original purpose of R as a programming language
and interactive environment for statistical data analysis. The existence of this
book – much of which is about using R as a tool for manipulating
geographical information and the production of maps – is evidence of this. If
the authors had considered the future of R at the point of its first public
release in 1995, we admit it would be highly unlikely that we could have
predicted the current situation. Indeed, now the book is in its second edition,
we are in a position to reflect on notable changes that have occurred even in
the time period between the two editions.

In the first edition we identified three aspects of potential future trajectories
for R:

Extensions of R as a language
Improvements ‘under the bonnet’
Coexistence with other software

We still argue that this is a helpful categorisation, although with the benefit of
hindsight, we may update or revise some of our original opinions as to what
these pathways may contain.

10.2 Extensions of R As a Language
Almost certainly this is the category that has seen most development in recent
years, mainly due to the development of dplyr and related packages –
colloquially referred to as the ‘Hadleyverse’ due to the input of Hadley
Wickham. More formally, the idea is based on the notion of a ‘tidyverse’



(Wickham and Grolemund, 2016), broadly described as ‘an opinionated
collection of R packages designed for data science. All packages share an
underlying philosophy and common APIs.’

Essentially, data are generally stored in such a way that columns represent
key-value collections – for example, for monthly rainfall data, one row would
represent one month’s rainfall figure, with a year-and-month value in one
column and the rainfall value in another. Note that there could be multiple
keys (e.g. year in one column, and month in an adjacent column, and possibly
a location in a third column) and multiple values (e.g. total rainfall and
average temperature for that month). This differs, for example, from a
situation where rainfall is stored in a matrix, with rows as years, and columns
as months.

The ‘tidy data’ idea is essentially to create operators that take key-value data
frames and return other key-value data frames. These operators can do things
like filter the data (e.g. remove observations after a certain year) or
summarise it (e.g. compute yearly total rainfall). In both of those examples,
the output data could be represented in key-value format. For the summarised
data, the keys would be modified (i.e. only the year column would remain) as
well as the values (these would now be yearly sums, grouped by years).

This approach lends itself well to a fluent or method chaining style of
programming where operations on the data frame can be thought of as similar
to a pipeline, where data frames are passed through a series of operators in
order to carry out the data processing. The final result is then fed into some
kind of analysis or visualisation method which terminates the pipeline. The
pipelining operator is %>% so that, for example, to compute yearly mean
rainfall for all observations in years 2010 and later, when rainfall is in the
data frame rainfall_data, one could write:

rainfall_data %>% filter(year >= 2010) %>%

group_by(year) %>% summarise(mean_rainfall=mean(rainfall)) ->

yearly_data

and then carry out visualisation techniques (possibly via ggplot) on



yearly_data. Whereas a full discussion of this style of coding is beyond the
scope of this book, it can be seen how this pipeline style can make data
manipulation code easy to follow. More formally, a pipeline operator applies
the right-hand argument (a function) to the left-hand argument (a key-value
data frame). Thus:

f(x,y,z,...)

and:

x %>% f(y,z,...)

are equivalent. In the special case where function f has only one argument:

f(x)

is equivalent to:

x %>% f

Functions can be thought of as internal (key value to key value), initiators
(anything to key value) or terminators (key value to anything). The idea is
that a pipeline is an initiator, one or more internal functions, and finally a
terminator. An initiator might, for example, take a filename and read in the
file returning a key-value data frame, the internal functions transform this in
some way, and the terminator will create a graphic or possibly the output of
some kind of statistical analysis.

This approach separates data cleaning, data selection and other kinds of pre-
processing from analysis or visualisation – and also offers a consistent and
extendable model for data transformation. To create new internal functions, a
certain set of conventions must be followed, but if this is done, then one can
be sure they may be generally used in this framework.

It could be argued that this approach has effectively extended the language.
The syntax and coding style used here are quite different from standard (or



base) R. At least one colleague of the authors has commented that they do not
really recognise this as R! Second, the uptake of this approach is significant,
both for carrying out ‘real-world’ analyses and as a teaching tool for data
science. Thus, the impact of the approach is strong.

In terms of the future, at the time of writing, although not all kinds of data
analysis or manipulation are well addressed by the ‘tidyverse’, the list is
growing. Perhaps of most relevence to this book, the sf package (Pebesma,
2016) allows users to handle spatial objects in this way. Although, as of now,
not all spatial analysis or manipulations have been adapted to work with these
kind of objects, work is certainly progressing. For example, tmap will now
work with ‘traditional’ R spatial objects, such as spatial polygons data
frames, as well as sf objects.

Thus, at least outwardly, the appearance of R and the way it is used could
well change notably in the coming years.

10.3 Improvements ‘Under the Bonnet’
‘Tidyverse’-style changes have a very visible and user-facing influence on R
– adding to the R language will change the way coders interact with R as a
tool. However, another aspect of R that undergoes change is its internal
design. The most obvious kind of ‘invisible’ change is when internal
algorithms or memory management are made more efficient. The only
difference in user experience is that issuing the same commands leads to a
faster result or more effective memory usage by the R process. Although on
release 3.4.3 at the time of writing, some notable changes in memory
management occurred in release 3.0.0, speeding up several operations. As
incremental version upgrades have occurred, other gradual improvements
have taken place. For example, as part of the numerical processing software
embedded in R, the system-level LAPACK library is used. As this is
improved, updated versions are incorporated into R.

The ‘tidyverse’ has some influence here as well. Among other things, a new
set of routines for reading in files (such as read_csv) are provided – these
perform similar tasks to exiting routines (such as read.csv) but do so
considerably faster. Although it has been some time since the ‘quantum leap’



in speed due to version 3.0.0 happened, incremental changes are ongoing, and
are likely to continue to do so.

10.4 Coexistence with Other Software
A final area where R is currently extending, and we feel will continue to
extend, is its ability to work with other software. This can occur in a number
of ways. In terms of big data, one path forward might be to manipulate and
summarise very large datasets using some other software best suited to that
task and pass on the pre-processed data to R. The Rcpp package facilitates
such an approach; it provides a framework for creating functions in C++ (a
compiled language that has interfaces to a number of alternative data-
processing tools) and creating an interface to R, so that the C++ functions can
be called directly from R, and can act as a bridge. Of course, C++ is also a
powerful tool in itself, and, since it is compiled, can also offer more rapid
execution of algorithms that are prohibitively slow in R.

A further example is RStudio. This is an integrated development environment
for R that runs on Windows, Mac or Linux computers with a number of user-
friendly features. It provides a graphical front end for R and includes a
console, a scripting window, a graphics window, and an R workspace
window. Some of its key features are a colour-coded text editor (also present
on the Mac R package), an integrated help and graphics and an interactive
debugger. It also has tools that aid the development of packages. Once
installed, it has the same functionality as R, uses exactly the same code and
draws from the packages installed in normal R libraries. It provides a
standard interface to R (i.e. the Windows, Linux and Mac versions are the
same), and many users find this environment easier for developing their code,
especially users who are new to R. Since the first edition of this book, its
functionality has grown massively. It now offers the facility to create
reproducible documents (documents that contain the code used to carry out
any data analysis they report) through the Sweave, knitr and Rmarkdown
packages. These allow R to be embedded in LaTEX or Markdown – both are
tools for creating documents. The code is executed, and the output
automatically included. When the files are compiled in RStudio (or R) all the
outputs of the data analysis such as the code itself, any maps, tables or graphs
are created on the fly and inserted into the final document.



Sweave, knitr and Rmarkdown come with the standard R installation and are
described in full at http://www.stat.uni-muenchen.de/~leisch/Sweave/. The
first two both compile .Rnw scripts (Rmarkdown compiles .Rmd scripts) and
generate LaTEX files that can be directly converted to PDF files in RStudio.
In fact, this book, including all the code snippets, examples, exercises and
figures, was created and compiled in Rmarkdown. Embedding the code in the
document in this way has a number of advantages. First, it supports dynamic
data analysis, allowing analyses to be updated automatically if the data or the
analysis change. Second, it provides a transparent and reproducible research
environment: rather than inserting a graph or table from Excel, for example,
the Sweave document contains the R code necessary to generate each figure
or table, allowing for reproducible research. At the time of writing,
reproducibility in research is seen as an important issue, and so tools of this
kind are also likely to become important.

A further way in which RStudio enables linkages with other software tools is
through the use of HTML widgets – essentially interactive tools written for
web browsers that allow users to interact with data. For example, these are
used in tmap when tmap_mode is set to ’view’ – where access to the Leaflet
JavaScript map viewing library is exploited.

As a final example, the shiny framework and package provide a tool for
creating interactive webpages using R.1 To do this, shiny defines reactive
expressions – chunks of R code that are linked to the values of sliders,
buttons and other widgets, so that they are re-evaluated whenever the user
interacts – these in turn are connected to output widgets such as graph panels,
so that graphical and textual outputs and so on may be interactively linked. It
has two components: a user interface definition (defining buttons, sliders and
so on) and a ‘server’ definition that specifies the actions associated with these
components of the interface. In terms of spatial data analysis, shiny offers the
opportunity to generate interactive web mapping using R, without any
knowledge of HTML, style sheets or JavaScript. However, it is sufficiently
flexible that it may be augmented with HTML to modify the default styles of
the interface or functionality. This may now be combined with many HTML
widget packages, so that Leaflet maps, plotly graphics and many other
interactive data visualisation tools can be incorporated, and used in
combination. We expect the range of widgets to increase notably over time.

http://www.stat.uni-muenchen.de/~leisch/Sweave/


Since HTML widgets were launched there are 93 R packages providing links
to different types of widget.

1 http://shiny.rstudio.com

10.5 Finally…

If you have worked through this book, you are now proficient in the use
of R for the analysis and visualisation of spatial data. The discussion in
this chapter will allow you to extend and develop your R-based projects
and applications, hopefully acting as a springboard for further
exploration and development. Perhaps one of the best ways to further
your understanding of R is to explore possibilities such as these. The
discussion may also help you to form an impression of how R as a tool
for spatial data analysis will develop in the coming years. We hope that
you will enjoy doing this as much as we have enjoyed exploring these
possibilities in order to produce this book, and that some of you will
play a major role in the future of R.
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