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Preface to the Dover Edition

This edition, apart from minor corrections, is identical with the fourth
printing of the book originally published by Blaisdell Publishing
Company (later: Xerox College).

In the fifteen years since the preparation of the original manuseript
the field of interpolation and approximation has flourished greatly.
Perhaps several dozens of subtopies hardly mentioned in this book have
been developed to the point where cach is now a separate discipline in
its own right.

Granted a copious reservoir of animal energy, it might indeed have
been possible to update the present work so as to take notice of some
of the significant recent achievements. But I think that the present work,
limited as it is, has a scope and a point of view which remain of
importance.

For the reader who wishes to pursue some of the recent developments,
I append here a list of books which cover a wide variety of topics.

Ahlberg, J. H., Nilson, E. N, and Walsh, J. L., The Theory of Splines
and Their Applications, Academic Press, N.Y., 1967.

Bézier, P., Numerical Control: Math. and Applications, Wiley & Sons,
N.Y., 1972.

Butzer, P. L., and Nessel, R. J., Fourier Analysis and Approximation,
Birkhatuser Verlag, Basel, 1971.

Cheney, E. W., Introduction to Approximation Theory, McGraw-Hill,
N.Y., 1966.

Davis, P. J.,and Rabinowitz, P., Numerical Integration, Academic Press,
N.Y., 1975.

Forest, A. R, ““On Coons’ and Other Methods for the Representation
of Curved Surfaces,’”’” Computer Graphics and Image Processing, Vol.
1, 1972, pp. 341-359.

Freud, G., Orthogonal Polynomials, Pergamon Press, Oxford, 1971.

Goldstein, A. A., Constructive Real Analysis, Harper & Row, N.Y., 1967.

Karlin, S, and Studden, W., Tschebyscheff Systems with Applications in
Analysis and Statistics, Interscience, 1966.
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Winston, N.Y., 1966.
Luke, Y. L., The Special Functions and Their Approximation, Academic
Press, N.Y., 1969.
Meinardus, G., Approximation of Functions: Theory and Numerical
Methods, Springer, N.Y., 1967.
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Foreword

During the past few decades, the subject of interpolation and approximation
has not been overly popular in American universities. Neglected in favor of
more abstract theories, it has been taught only where some staff member has
actively engaged in research in the field. This has resulted in a scarcity of
English language books at the intermediate level. Since the development of
high speed computing machinery, the flame of interest in interpolation and
approximation has burned brighter, and the realization that portions of the
theory are best presented through functional analysis has added additional
fuel to the flame. It has been my intention, therefore, to prepare a book
which would be at the level of students who have had some real variable,
some complex variable, some linear algebra, and, perhaps, a bit of integration
theory. The book would merge, insofar as possible, the real and the complex,
the concrete and the abstract, and would provide a place for general results
of these previous courses to find application and to pass in review.

A one semester course can be based on Chapters 2, 3, 4, 6, 7, and 8. The
problems, on the whole, are simple, and are intended to secure the material
presented rather than to extend the coverage of the book. The illustrative
examples are an integral part of the text, but a number of them lack complete
details and can be used as additional problems.

The fields of interpolation and approximation have been cultivated for
centuries. The amount of information available is truly staggering. Take,
for instance, the subject of orthogonal polynomials. A bibliography prepared
in the late 1930’s contains several hundred pages of references, and the topic
continues to grow. I have had to anthologize. I have sought breadth rather
than depth, and have tried to display a variety of analytical techniques. To
some extent, I have been guided by what I consider ‘‘useful.” Accordingly,
I have developed neither the calculus of finite differences, nor L” spaces
(p # 2, o0), nor approximation on infinite sets, for in my work with computa-
tion, I have rarely dealt with these things. On the other hand, I am aware
that utility cannot be made into a principle of selection for a mathematics
book. It comes down to this: I have included the topics that have caught my
imagination. I hope that the selection will introduce the student to some of
the best and encourage the scholar to seek the rest.

A word is in order on the portions of the book that are devoted to functional
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viii FOREWORD

analysis. This subject is generally presented with spectral theory as its
culmination. Here, the elementary geometric portions are developed for
ultimate application to approximation theory. This is by no means new. In
1930, Dunham Jackson ended his book on the theory of approximation
with a chapter on the geometry of function space, and over the years, more
and more emphasis has been given to functional analysis. At its best,
functional analysis unifies many seemingly diverse situations in a wonderful
way and is a genuine principle of research. At its worst, it is a scintillating
wrapper that provides attractive packages, and camouflages with glamorous
language the fact that their content may be small or may have been originally
obtained in the drab workshops of hard analysis. Perhaps functional analysis
is analogous to Cartesian geometry which put an end to the synthetic
drudgery of Apollonius though the major theorems on conics are Greek.
Though the welding of functional analysis to conventional analysis has
produced an imperfect seam that is visible in practically every chapter of
this book, I believe that functional analysis is a good way to present many
of the topics, and that it can and should be introduced at an early stage of a
student’s career.

This book derives from several teaching experiences. In the Spring of
1957 and again in the Spring of 1959, I presented a series of lectures on
approximation theory to the members of training programs in Numerical
Analysis that were held at the National Bureau of Standards in Washington,
D.C. under the sponsorship of the National Science Foundation. In 1959, I
gave a course in interpolation and approximation at the Harvard Summer
School, and have given shorter courses in special computer programs at
Wayne University and the University of Pennsylvania. Out of these varied
experiences and out of a day to day exposure to live computation in the
Applied Mathematics Division of the National Bureau of Standards, the
plan of the present book emerged. The liberal policy of the National Bureau
of Standards, encouraging study, research, and writing has enabled me to
carry this plan to fruition. The following chapters were prepared at the
Bureau: 5, and 9-14.

My debt to various works is clear, but I must single out Gontcharoff,
Natanson, Szeg6, and Walsh for special mention. My debt to my teachers
should be made more explicit. My concern with these matters extends back
to dissertation days when Ralph P. Boas interested me in interpolatory
function theory. The lectures of Stefan Bergman opened my eyes to the
beauty of orthogonal functions and the kernel function. The lectures and
subsequent work with J. L. Walsh deepened my interest in problems in the
complex plane. I had the pleasure of knowing and working with Michael
Fekete in the last years of his life. A wonderful man of that wonderful school
of Hungarian mathematicians, his single-minded insistence on simplicity and
elegance made an immediate impression on me.

To discharge my debt to my colleagues, I must thank Dr. Oved Shisha
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for his kind attentions to this book. I have profited greatly from many
discussions with him and from his detailed criticism of the manuseript.

From students (may their number increase) I have learned that though
mathematics proceeds from false starts and bungling, it is presented back-
wards, as a fait accompli. This may provide clean copy and heighten the
dramatic effect, but it taxes the understanding. There are many places in
this book where the masters of analysis work their magic. How did they
happen to get such and such an idea? This question has been asked me over
and over by students just beyond the advanced calculus stage. It can rarely
be answered, but one should say: tackle the problem yourself and you may
learn. The road to understanding is rough; to smooth it too much denies the
reality of creative genius.

Thanks go to Ellen Rigby who helped me with the figures and to Richard
Strafella for various tasks with the manusecript. These were done as part of
their Antioch College plan of quarters devoted to work.

PuiLip J. Davis
Washington, D.C.
Fall, 1961
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CHAPTER 1

Introduction

This chapter contains material from algebra and analysis that will be of
use in the later portions of the book. It is presented here for ready refer-
ence and for review. The reader is assumed to be familiar with some of the
theorems. Other theorems may be less familiar and their proofs have been
given. Though L? spaces are mentioned in Theorem 1.4.0, they do not re-
appear until Chapter VII, and only the elementary portions of measure
and integration theory are used.

1.1 Determinants. Let v, designate the n-tuple of numbers (a;;, a;,,

., @;,). For a constant «, we shall mean by av, the n-tuple (aa;, aa, . . .,
oa;,), while by v, + v,, we shall mean the n-tuple (a;; + a;;, @5 + @jq, . . .,
a;, + a;,). The letters e,, ..., e, will designate the unit n-tuples (1,0, 0,
...,0),(0,1,0,...,0),...,(0,0,0,...,1). The function of the n? vari-
ables a;; (1,7 = 1,2, ..., n), known as the determinant of those quantities,
is generally written

In &y " O,
U1 G "°° Gy

D=| - | = layl = Doyvg,...,v,).  (LLI1)
Bp1 Qpg “ " Qpy

The determinant is completely characterized by the following three proper-
ties

(a) Dy, vy, 05...,0,) = D(vy,05,...,0;,+0;,...,7,)
(¢ #% j) (Invariance).

(b) D(vy,vg ..., a;,...,0,) =aD®,v,,...,0,...,0,) (1.12)
(Homogeneity).

(¢) Dley, e, -.-,e,) =1 (Normalization).

The whole of determinant theory can be built up from this starting point
and is related to the theory of the volume of an n-dimensional parallelo-
tope.
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Given an » by » matrix 4 = (a,;), the determinant associated with this
matrix is designated by |4| or det 4. If from the array 4 we delete the ith
row and the jth column, a certain (» — 1) by (= — 1) submatrix 4;; will
remain. The determinant associated with this submatrix is known as the
minor of the element a,;. The quantity (—1)™/ [4,,| is the cofactor of a,.
For the cofactor we write 4,*. The following rules of computation for
determinants are fundamental.

(a) |4]| = 4’|, A" = transpose of 4 = (a;;).
(b) If two rows (or columns) of 4 are interchanged,
producing a matrix 4,, then |[4| = —|4,|.
(¢) If two rows (or columns) of A4 are identical, then |4| = 0.
(d) If a row (or column), v, of A4 is replaced by kv
producing a matrix 4,, then |4,| = k |4].
(e) If a scalar multiple kv, of the sth row (or column)
is added to the jth row (or column) v;, (¢ % j) and (1.1.3)
the matrix 4, results, then |4| = |4,].
(f) A determinant may be evaluated in terms of cofactors:

n
4] = 3 a;4,* 1<j<n
i=1

n
=3adt  1<is<n
fos

The expansion (f) is of considerable utility for it reduces an n X n deter-
minant to a sum of n determinants of order » — 1. Coupled with the ele-
mentary equation |ay,| = a,,, it contains within it a recursive definition of
a determinant. The complete expansion of a determinant in terms of the
matrix elements is less useful theoretically and hardly at all numerically.

1.2 Solution of Linear Systems of Equations. Consider the system

of n linear equations in % unknowns z,, «,, . . ., r,
n
zaiixi = bz (1’ = l’ 2’ LECIEN) n)- (1.2.1)
i=1

THEOREM 1.2.1 (Cramer’s Rule). If |4| = |a| # 0, then (1.2.1) possesses
a unique solution given by

n
z Air*bi
z. — i=1

r=12...,mn (1.2.2)
’ 4]

THEOREM 1.2.2 (The Alternative Theorem). The homogeneous system

a;x; =0 :=12,...,n) (1.2.3)
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possesses a non-trivial solution (i.e., a solution other than %, = xy =+-+ =
z, = 0) if and only if |A| = 0. If for a fired A = (a,;) there are solutions
to the mon-homogeneous system (1.2.1) for every selection of the quantities b,,
then |A| 5= 0 and the homogeneous system has only the trivial solution.

1.3 Linear Vector Spaces. It will be useful to formulate many ques-
tions of interpolation and approximation theory within an abstract frame-
work. The notion of a linear vector space over a field F is therefore a basic
one.

DeriNITION 1.3.1. A linear vector space (or a linear space) X is a set of
elements (or vectors) z, y, ..., for which two types of operation are possible.
Any two elements z, y € X determine a unique element x + y € X as their
sum. Each element x € X and each scalar « of a given field F determine a
unique element ax € X as a scalar product. Vector sums and scalar prod-
ucts are required to obey the following laws.

(0) z+y=y+az
b) z+(@y+2)=(@+y) +z
(¢) There exists a unique element 0 € X such that
xr+ 0= xforall ze X.
(d) To each x€X there exists a unique inverse —z such
that z + (—z) = 0. (1.3.1)
(e) offzr) = (af)xforalla, e F,recX.
() oz +y) = ax + ay.
@) (x+ = azx + pa.
(h) 1l(z) ==

Conditions (a)-(d) are frequently summed up by saying that the elements
of X form an Abelian group under addition. The element O is called the
2ero vector.

In this book, the underlying field F of scalars will be either (1) the field
of real numbers, or (2) the field of complex numbers. We can, therefore,
speak either of a real or a complex linear vector space.

DermviTION 1.3.2.  An expression of the form

oy + dpy + 000+ a,x,; o, € FoxeX

is called a linear combination of the z’s.

DeriNiTION 1.3.3. A finite set of vectors zy, . . ., x, is linearly dependent
if we can find constants (i.e., scalars) o, o, . . . , «,, not all zero such that

o, % + oy + + -+ + a,x, = 0. If such is not the case, the vectors are
called sndependent.
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DErFinNITION 1.3.4. Let n be a positive integer. Suppose that we can find
n vectors x,, ¥y, . . ., %, € X which are independent while every n 4 1 vec-
tors are dependent. Then X is said to be a linear space of dimension n.
If no such n exists, then X is called an infinite dimensional space.

DEerinITION 1.3.5. A set of elements xy, 2,, . . ., is said to be a basis for

X if the z; are independent and if every x € X can be expressed (uniquely)
as a linear combination of the z;.

THEOREM 1.3.1. X has finite dimension n if and only if it has a basis of n
elements. If X has dimension n any n independent elements constitute a basts.

Ex. 1. The Real, n-dimensional, Cartesian Space R,. This consists of vectors

x which are n-tuples of real numbers: x = (x,, x5, . . ., z,). Lety = (Y, ¥p, - - -, Yn)
be a second vector. (x and y are considered equal if and only if z; =y,,7 =
1, 2,...,n.) Vector addition is defined by
T+y =@ +YpTt Yoo Tn + Yn)

Scalar multiplication is defined by ox = (az;, ax,, ..., ax,). We set 0 =
(0,0,...,0)and —xr = (—2;, —, ..., —x,). Thenvectors,e, = (1,0,...,0),
e =(0,1,...,0),...,e, =(0,0,...,1), known as unit vectors, are independ-
ent.

Ex. 2. The Complex, n-dimensional, Cartesian Space C,. This consists of n-

tuples of complex numbers: (2, 2, . . . , 2,). The laws of combination are as in
Ex. 1.

Ex. 3. Linear Spaces of Functions. In this example, a function, considered
as a whole, is thought of as constituting an element of a space. Let S designate
a point set lying on the real axis. Consider the totality of real-valued functions

with domain S. Call this totality T'. For f, g € T, define their sum f + g by means
of

(f + 9)@) = flx) + g(x),z€S. (1.3.2)
Define a scalar product by means of
(af)(x) = af(z), z€S. (1.3.3)

Let the zero vector be the function of T that vanishes identically. Let —f desig-
nate the function defined by

(=N=) = —flx),z€S. (1.3.4)
With these definitions, 7' is a linear vector space. If S contains more than a

finite number of points, T is of infinite dimension.

1.4 The Hierarchy of Functions. Our dealings will be almost ex-
clusively with functions of a single real or complex variable. We shall work
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with finite intervals in the real case and bounded sets in the complex case.
The deeper analytical properties of interpolation and approximation depend
to a great extent on what may be called ‘“‘the degree of smoothness” of the
function approximated. In order of increasing smoothness, we shall deal
with: L? functions, bounded functions, continuous functions, functions sat-
isfying a Lipschitz condition, differentiable functions, n-times differentiable
functions, infinitely differentiable functions, analytic functions, entire func-
tions, polynomials of restricted degree, constants. It will become apparent
in subsequent chapters that the processes of interpolation and approxima-
tion become stronger when applied to functions further down this list. We
shall now define these classes of functions and recall some basic facts about
them.

DerFiniTION 1.4.0. Let p > 0. The class of functions f(x) which are
measurable and for which | f(z)|? is integrable over [a, b] is known as L?[a, b].
If p =1, the class is designated by L[a, b].

TueoreM 1.4.0. (a) L?[a,b) is a linear space. (b) If fe Lla,b], then
b

f =0 and J'f(x)dx = 0 imply f = 0 almost everywhere. (¢) If f e Lla,b],
a

then g(x) = ~rnf(:c) dx is continuous. (d) If —oo <a <b< oo, then
f€L%a,bl,p a< p, implies f € L?'[a, b). (e) If f € L*[a, b] with p = 1, we can
b

find an absolutely continuous function g(x) such that J' |f(x) —g(x)|Pdx < ¢
for arbitrary ¢ > 0. e

For these results, the reader is referred to standard texts on integration
theory.

Let S denote a point set in R, or in the complex plane and P a point in
that set. Though Definitions 1.4.1-1.9.1 are meaningful for complex valued
functions of a real variable, we shall generally deal with real valued func-
tions whenever S is in R,

DEFINITION 1.4.1. A function f is bounded on § if there exists a constant
M such that
|f(P)] < M for all PeS. (1.4.1)

If no such constant exists, the function is said to be unbounded on S. The
class of functions which are bounded on S will be designated by B(S). B(S)
is a lincar space.

Ex. 1. The function y = sin 2 is bounded on — 0 <z < .

Ex.2. The Gamma functiony = I'(z)is unbounded on the interval0 <z <1,
and on the interval 1 <z < .
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Ex. 3. If [a,b] is a finite interval, f € B[a, b] and measurable there implies
fe L?a,b] forallp > 0.

DerFiNiTION 1.4.2. Let the function f be defined on the set S. It is con-
tinuous at a point Py of S if

lim f(P,) = f(Py) (14.2)

whenever P, — P,, P, € 8. If f is defined on an interval [a, b] and is con-
tinuous at x, € [a, b], then given an ¢ > 0, we can find a d such that

[f@) — f(@m) <& (1.4.3)

for all | — xo| < d in [a, b]. The § will depend upon f, xy, and &. The class
of functions continuous on I: [a, b] will be designated by C[a, b]. It is a
linear space.

It may occur that for a given f and & we can find a d for which (1.4.3)
holds independently of x,. This leads to the notion of uniform continuity.

DErFiNiTION 1.4.3. A function f is uniformly continuous over a set S if
given an ¢ > 0, we can find a d such that

[f(zy) — f(=)] < (1.4.4)

for all |x; — z,| < §; 2, x, € S.
In one important case, the notions of continuity and uniform continuity
coincide:

TueorREM 1.4.1. A function which is continuous on a compact (i.e., closed
and bounded) point set is uniformly continuous there.

Ex. 1. The function 4(x) = || is continuous on —0 <z < oo.

Ex. 2. The function f(x) = (1 4 €'/#)7! is discontinuous at x = 0 however
f(0) may be defined, for lim+f(x) = 0 while lirg_ f(x) = 1. It is continuous else-
where. &0 =

1
Ex. 3. The function f(z) = o is continuous on the open interval (0, }) but

is not uniformly continuous there.

1
Ex. 4. The function f(z) = - is uniformly continuous over the whole
line —0 < x < oo, for we have

1 1 B |2 — 2 < Ity — 24 (lzy] + l2,l)

T+ T4+z2| L+l +x) 0 V(a1 + a5

| _1 fs] + 2ol
T+ 22 2" (L1 o)l + 250

Inasmuch as
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Thus, |f () —f(x)] < e whenever [z, — ;] <e.
THEOREM 1.4.2 (First Mean Value Theorem for Integrals).
Let f, g € C [a, b]. Suppose moreover that ¢ > O there. Then,
[[rowe s =10 o) as (1.45)
for some & with a < & < b. The theorem is also true if g € L[a, b], ¢ = 0 a.e.
It is occasionally useful to have information about the best ¢ which goes

with a given 4 in the definition of uniform continuity.

DErFINITION 1.4.4. Let f(x) be defined on an interval I. Set
w(d; f) = w(b) = sup |f(z;) — f ()l (1.4.6)

where the sup is taken over all pairs x,, z, € I for which |, — x,| < §. The
function w(d) (which depends on f) is called the modulus of continuity of f
on I.

Ex. 5. f(x) =221 =(0,1), w(d) = 26 — 62
1
Ex. 6. f(x) = o I =(0,1), wd) = +oo.
1
Ex. 7. f(x) = sing—c , I =(0,1), wd) =2.

THEOREM 1.4.3. Let f(z) € Cla,b]. The modulus of continuity has the
following properties

w(0) =0 (1.4.7)
If 0 < 6, < 0, then w(d;) < w(d,) (Monotonicity) (1.4.8)
w(dy + 8;) < w(d,) + w(0,) (Subadditivity) (1.4.9)

w(nd) < nw(d). (1.4.10)

Moreover, w(d) € C[0, b — a].

Proof: (1.4.7) is obvious. Since |z, — x,| < ¢, implies |z, — x,| < J,, the
corresponding sup cannot decrease, and (1.4.8) follows. To prove (1.4.9), ob-
serve that if 0 <z, — z; < §,, then |f(z;) — f(,)] < w(d;) < w(d;) + w(dy).
On the other hand, if §, <z, — z, < 6, + 0,, then z, + 6, < x, and
2, — (@, + 6;) < 6,. But,

[f(zy) — f(@)] < |f(=y) — flmy + 0 + [f(my + 6,) — f(2,)]
< w(dy) + w(ry — (2, + 6,)) < w(d,) + w(az)'
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Therefore, w(d; + d,) = 0<a s;lgo e [f(z) — f@)] < w(dy) + w(dy).
=% =41 =% 2

(1.4.10) follows immediately from (1.4.9) by induction. From (1.4.8 and 9),

0 <w(d+ 6,) — w(d) < w(d,). Now, by Theorem 14.1, hm w(d,) =0

and hence w is continuous at d.
1.5 Functions Satisfying a Lipschitz Condition

DerintTION 1.5.1. Let f(z) be defined on an interval I and suppose we
can find two positive constants M and « such that

[f(2) — flx)] < M |2y — x,|* for all z,, z, € 1. (1.5.1)

Then f is said to satisfy a Lipschitz Condition of order «. The class of such
functions will be designated by Lip «. When it is useful to put the constant
M in evidence, one writes Lip ;7 a.

TuEOREM 1.5.1. Lip « is a linear space. If f € Lip « on I, then f is con-
tinuous; indeed, uniformly continuous on I. If feLip a with a > 1 then
f = constant. If f € Lip «, tt may fail to be differentiable, but if it possesses a
dertvative satisfying | f'(x)] < M then f €Lip,, 1. If « < B then Lip « = Lip .
The conditions f € Lip p, « and w(d) < M 6* are equivalent.

d
Ex. 1. Let 0 <a <1. Let >0,k > 0. Then %[(x-i-h)“—x“]:

af[(x + h)* ! — 2%1] < 0. Therefore (x + h)* — z* is decreasing for all z > 0
and hence (x + h)* — z* < h*. This means that #*€ Lip « on any positive
interval.

1.6 Differentiable Functions

DerFiNITION 1.6.1. Let f(x) be defined on an interval I. It is said to be
differentiable at a point x, € I if the following limit exists

lim f @) — f(x)
z—zy T — T,

= f'(x,). (1.6.1)

If z, is an end point of I then the limit in (1.6.1) is replaced by an appro-
priate one-sided limit. The function f(z) is differentiable on I if it is differ-
entiable at each point of I.

Ex. 1. A(x) = |z| is differentiable at all x # 0. At x = 0 it possesses right

- . . Afx) — A(0)
and left hand derivatives lim , lim ———— .
z—0t 0~ x —0
0 =z<0_ . , . .
Ex.2. S(z) = 1 >0 is discontinuous at * = 0 and is not differentiable

there. Elsewhere it is differentiable.



Sec. 1.6 DIFFERENTIABLE FUNCTIONS 9

Ex. 3. f(x) = 2}. Though continuous at x = 0, f (z) fails to be differentiable
there. It is sometimes convenient to write f’(0) = + .

For differentiable functions, we have Rolle’s Theorem and the Mean Value
Theorem :

THEOREM 1.6.1 (Rolle). Let f(x) € Cla, b] and be differentiable at each point
of (a,b). If f(a) = f(b) then there is a point x = & with a < & < b for which
f&=0.

THEOREM 1.6.2. Let f(x) € Cla, b] be differentiable at each point of (a, b).
Then we can find a & with a < & << b such that

f®) = f(a) + (b — a)f'(£). (1.6.2)

If f is differentiable at each point of I, its derivative f'(z) may exhibit a
wide variety of smoothness properties. A particularly noteworthy case is
where f'(z) is itself continuous on I. The class of functions that have a
continuous derivative on [a, b] is designated by C'[a, b]. More generally,

DeFintTION 1.6.2. If f(2) is » times differentiable on [a, b] and if f(")(x)
is itself continuous on [a, b], we shall write f(z) € C"[a, b].
C"[a, b] is a linear space of functions.

xk >0

Ex. 4. Let f&x) = 0 z <0

Then, feC*1 on —w <z < o. But f¢ C¥ on any interval containing the
origin.

Ex. 5. Let f(x) = |z|t. Then feC? but f ¢ C3 on any interval containing
the origin.

For functions having higher derivatives we have the following generalized
Rolle’s Theorem.

TurorEM 1.6.3. Let n > 2. Suppose that f € Cla, b] and let f"1(x) exist
at each point of (a,d). Suppose that f(x,) = f(x,) = = f(x,) =0 for
a <z, <xy <<z, <b. Then there is a point &, x, < & < x, such that
4(n-1) .

J () = 0.

Proof: We give the proof for » = 3. The general case is similar. Let
flx) = f(xy) = f(x;) = 0. Since f is differentiable in z;, < x < 23, we can
find &, and &, such that x;, < & < x, < &, < x; and f'(§,) = 0, f'(&3) = 0.
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Since f” also exists, a second application of Rolle’s Theorem yields a &,
£ < & < & with f@(&) = 0.

Taylor’s Theorem with the exact remainder and the various expressions
for the remainder involving higher derivatives constitute generalizations
of the Mean Value Theorem.

THEOREM 1.6.4. Let f(z) € C"*'[a, b] and let x, € [a, b]. Then for all
f "( o)

a <z <b, f(x) =f(x) + [ @o)x — 7) + (@ — o) +
(n) 1 [*
R ACLOYPRPRR L,f‘"m(txx —ira (63

THEOREM 1.6.5. Let f(x) € C"[a, b] and let f**V(x) exist in (@, b). Then
there is a & with @ < & << b such that

10 =@ +£@6 —a) + 20 —ap g

)@ (n+1)
f (b —a)* + f (&) (b — a)™t1. (1.6.4)
(n + 1)!
A form of the remainder theorem (sometimes referred to as Young’s form)
is useful on occasion.

THEOREM 1.6.6. Let f(x) be n + 1 times differentiable at x = x,. Then,

(n)
F(@) = fla) + @)@ — z0) + -+ +% (& — zg)"

(x — my)"™*

+ mEL [f‘”“’(x ) + &(@)]  (1.6.5)
where a:llg:lo g(x) = 0.
Proof: Set
RE@) = f(@) — @) — e — ) — -+ — EZIL iy
Then (1.6.5) is equivalent to showing that lim —_(x) = 0. By differ-
entiating, we find that 7= (& — )"

R(z,) = R'(%y) = -+ - = R"(x,) = 0. (1.6.6)
Let ¢ > 0. The functions
P(z) = R(x) + e(x — )™, Q(z) = R(z) — e(x — z)"1 (1.6.7)
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aren + 1 times differentiable at = z,. Moreover, P*)(x,) = 0, @) (zy) = 0,
k=0,1,...,n, while P+ (g) = g(n + 1)! > 0,

QU (xy) = —(n 4+ 1)! & <O.

This implies that P(x) increases monotonically in some interval (zy, z, + d)
while @(x) decreases monotonically in (x,, x, + 0). Therefore, for = in
(%o, 2o + 0),

R(z) + e(x — x)"1 > 0

R(z) — e(x — )"t < 0.

Therefore,
R(z)
—e< m < &. (1.6.8)

. . . N . R(x) -

Since ¢ is arbitrary, (1.6.8) implies that lim ————— =0. A similar
R(a:) Ty (x — xo)
argument shows that zl_ién_ (—)n“ = 0, and the proof is complete.
o (T — X,
1.7 Infinitely Differentiable Functions
DerFintTION 1.7.1.  If f(2) € C"[a, b] for n =0, 1,2, ..., then f is called

infinitely differentiable in [a, b]). We shall write C*[a, b] for the class of such
functions.

Ex. 1. f(x) = 22 is infinitely differentiable on — 0 <z < .

Ex. 2. f(@x) = is infinitely differentiable on —0 <z < .

1
1 + x2

X, cosnr | X X .
Ex. 3. f(x) = Z —ogm 18 infinitely differentiable on — o <z < . For
n=1 "

L |
since |cos nz| < 1 and z “ogn <@ the original series converges absolutely and
n=1" © »

uniformly. Since moreover, for any integer p > 0 z < o, the differen-
n=1

nlogn
tiated series of all orders converge uniformly and hence represent the respective
derivatives of f ().

The functions of class C*[a, b] form a linear space.
If f € C*[a, b] and z, € [a, b] we may form the Taylor expansion

f(")(xo)
@

n

f@y~ 2 — zg)". (1.7.1)
k=0

For a given x this series may or may not converge. If it converges, it may
or may not converge to f(x). The famous function that displays this
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behavior is
2

f@)=e*", z#£0; f(0)=0. (1.7.2)
This funection is in C®(— o0, o) and
fM0)=0 n=012.... (1.7.3)

With z, = 0, (1.7.1) converges to 0 for every x. There are an infinity of
functions of class C* for which (1.7,3) holds. If (1.7.1) converges to f(z) over
an interval, we are led to the notion of an analytic function.

1.8 Functions Analytic on the Line

DeFINITION 1.8.1. Let f(x) be defined on [a, b] and assume that at each
point z, € [a, b] there is a power series expression of f(x) valid in some
interval:

(@) = ag + ay(x — o) + ay(x — x)* + -+, |x — Z| < p(xo). (1.8.1)
Then f(z) is said to be analytic on the interval. We write f(z) € 4[a, b].
Ex. 1. f@) =[@)(x — D] tedlsl —6),0 <e <1 —e.
x
Ex. 2. f(x) =f et dt is analytic over the entire line — o <z < o.

0

Ex. 3. A(x) = |#| is not analytic over an interval containing x = 0 in its
interior. But it is “‘piece-wise’’ analytic.

THEOREM 1.8.1. Ala, b) is a linear space. If f(x) € Ala, b] then
[(x) e C*[a,b].

The constants a,, of (1.8.1) are

1
a, = —'f‘”’(xo) n=20,1,.... (1.8.2)
n!
It does not follow conversely that if fe C®[a, d] then fe Ala, b]. This
is demonstrated by the example (1.7.2). Another example is f(z) = E %
k=1 n

which, as we have seen, is infinitely differentiable on — o0 < z << o0 and of
period 2. The ideas of Theorem 12.3.2 will show that f(x) ¢ A[—m, o).

1.9 Functions Analytic in a Region
DEFinITION 1.9.1. Let R be a region of the complex plane and let f(2) be

a single valued function of the complex variable z defined in R. If z, € R, f(z)
is said to be analytic at z, (or regular at z,) if it has a representation of
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the form
@

F2) =2 a,(z —z)" (1.9.1)

n=0
valid in some neighborhood of z,: |z — zy| < p(z,). If 2y = oo, we require an
expansion of the form
oK
fz) = annz‘", lz| > p. (1.9.2)
P
A function is analytic (or regular) in R if it is analytic at each point of R.
We shall write A(R) for the class of such functions. A(R) is a linear space.

1
Ex. 1. The function f(z) = ——; is analytic in any region not containing
. . 1 + 22
the points z = +i.
z 2
Ex. 2. The function f(z) =f ¢! dt is analytic in any region not containing
z = oo. 0

Ex. 3. A branch of the function f(z) = (z(z — 1))} may be selected that is
regular in any rectangle 0 <e¢ <z <1 —¢, —R <y < R.

The relationship between functions analytic on a line and functions ana-
lytic in a region is given by the following theorem.

THEOREM 1.9.1. Let f(x) € Ala, b]. Then we can find a region R containing
[a, b] into which f(x) can be continued analytically such that f(z) € A(R).
Proof: For each point z, € [a, b] there is a quantity p(x,) and an expansion

flx) = i a,(x — xzp)" valid in |z — x| < p(2y). (1.9.3)

n=0

When z is replaced by z = « + 1y, (1.9.3) defines an analytic continuation
of f(x) into the circle |z — zy| < p(x,). Let x, run through the interval
[a, b]. The circles |z — xy| < p(x,) cover [a, b]. Let R be the union of these
circles. R is an open set and is arcwise connected. For if p, ¢ € R, join p
to 2, and ¢ to z,, the centers of their respective circles. Then the arc px,z,q
lies in R. R is therefore a region and f(z) can be continued analytically into
it.

Figure 1.9.1.
Cauchy’s Theorem is a basic tool in complex analysis.
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THEOREM 1.9.2. Let R be a simply connected region and let f(z) € A(R).
Let z, lie in R and suppose that C is a simple, closed, rectifiable curve which
lies in R and which goes around z, in the positive sense. Then

n! [ /@)
(M) (z0) = ——dz. 1.9.4
f T 2mi (z — z)"H! ‘ ( )
Whenever the Cauchy integral formula is employed, it will be understood
that C satisfies the above conditions.
Analytic functions may be completely characterized by the growth of
their derivatives, and this provides a second approach independent of power
series.

TaeorEM 1.9.3 (Pringsheim). Let f(x) € C®[a, b]. A necessary and suffi-
cient condition that f € Ala, b] is that there exist a constant r > 0 such that

|f™ () <r*n! a <z <b, n=0,1,.. . (1.9.5)

Proof: Sufficiency. Let x, be a fixed point in [a, b] and suppose that
(1.9.5) holds. By Theorem 1.6.5 we have for z € [a, b],

”2‘ f “"( ) v ()

f(x) (® — )" + &=z (1.9.6)

This holds for all #, and & = &(n, ) is between z and z,. In view of (1.9.5),

J™(E)
7l

<t e — zy|",

(x — mo)"

1
so that if |x — 24| < -, the remainder in (1.9.6) will converge to 0. The
r

function f possesses a power series expansion valid in a neighborhood of z,.
This means that fe A[a, b]. Necessity. If fe A[a,b], then by Theorem
1.9.1, we can find a simply connected region R containing [a, b] in which
[ is analytic. Let C be a curve surrounding [a, b] and lying in R. Then, for
z, € [a, b], we have from (1.9.4),
o [ 1S
(n) <— | ———ds. 1.9.7
@l < 27 fc |z — x| "2 ° (1:9)
If L(C) denotes the length of C and 6 is the minimum distance from C to
[a, 8], then
max |f(2)| L(C)m!  prp
If(")( )l_%naT—W, anSb (19.8)
where M is a constant independent of ». It is now clear that we can find an
r that makes (1.9.5) true.
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Ex. 4. Suppose fe€ A[ —1,1]. It is impossible to have f"(0) = (n!)2. For
then, (n!)2 < r"n!,n =0, 1,.... But, by Stirling’s Theorem, V! - o so that
we cannot find such an r.

On the other hand, if f is analytic only in the semi-open interval 0 < z <1
but is in C®[0, 1], we may very well have f(™(0) = (n!)%. A theorem to this
effect is developed in Chapter V.

Of great importance is the class of functions that are analytic in a circle
C,: |z| < r. Here we have the fundamental theorem of Cauchy-Hadamard.

THeOREM 1.9.4. Let f(2) € A(C,) but ¢ A(C,.) if r' > r. This holds if and
only if

1/n

f™(0)

— (1.9.9)

_1 P T
r~1 = lim su
n— p

THEOREM 1.9.5 (Maximum Principle). Let f(z) be analytic +n a region R
and not be constant there. Let z, lie in R. Then in any neighborhood of z, there
extsts a point z, where |f(z,)| > |f(zo)|. If f(24) # O, then in any neighborhood
of z, there is a point z, where | f(z5)] < |f(2o)]-

1.10 Entire Functions
DEerFiniTION 1.10.1. A function f (z) is called entire if it has a representation

of the form

Y
fz) =D az* valid for |2| < 0. (1.10.1)
£=0
We shall designate this class of functions by E. E is a linear space.
Ex. 1. Some examples of entire functions are

sin z z 1 .
—, 2¢,| € dt, — , the Bessel function J,(z).
z 0 I'(z)

@

TuroreM 1.10.1.  The function f(z) = Y a2 is entire if and only if

lim |a, V" = 0. (1.10.2)
n—

Proof: This follows from (1.9.9).

1.11 Polynomials

DeriniTION 1.11.1. By a polynomial of degree n is meant a function of the

form
Pa(2) =a2z" + a1+ +a, aFO0. (1.11.1)
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The class of polynomials of degree < n will be designated by £,.

One might distinguish between the classes of polynomials with real co-
efficients and with complex coefficients. It will usually be clear from the
context which class we are dealing with and separate notations will not be
introduced.

2, is a linear space.

The following basic facts about polynomials should be recalled.

THEOREM 1.11.1 (Fundamental Theorem of Algebra). If n > 1, a poly-
nomial of degree n possesses a complex root.

THEOREM 1.11.2 (Factorization Theorem). If p,(z) is a polynomial of
degree n then we may find n complex numbers z,, 2, . . . , z,, such that
Pn(2) = agz" + a2" ' + -+ +a,
=agz —2)z — 2} (2 —2,) (@ F#0).

The quantities z;, need not be distinct. If there are r < n distinet roots

23,29, ..., 2, then for appropriate positive integers «;, a, ..., «,, satis-
fying o0; + g + ** * + a, = n, we have
Pal) = aglz — 2))1(z — 2)" -+ (2 — 2. (1.11.2)

The «; are uniquely determined and the zero z; is known as an «,-fold
zero. We have

Pa(z) = p,/(z) =+ =p V) =0, pz)#£0. (1.11.3)

Conversely, these derivative conditions imply the above factorization.

TueoreM 1.11.3 (Uniqueness). If f(z) € P, and f vanishes at more than
n distinct voints then it vanishes identically.
Proof: Let the degree of f be k& < n. By Theorem 1.11.2,

fR)=aglz —2) -+ (2 — 7).

By hypothesis, we can find a point z* 7 2, z,, . . ., 2, such that f(z*) = 0.
Then, 0 = ay(z* — 24) -+ - (2* — z;) so that ay = 0. This implies that
f(2)=0.

1.12 Linear Functionals and the Algebraic Conjugate Space. In
many problems, we must associate a number with a function extracted from
a given class of functions. For instance, to each function f(z) that has a
continuous derivative on [a, b], we may want to associate the number

b
f (1 + [f'(x)1?)} dz. To each function f(z,y) that is twice continuously
a

differentiable over a closed bounded region B, we may have to form the
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of\2 of\? .
number B + F» drdy or even more simply, f(z,, y,) where
z Y
B

(%, Yo) € B. Such an association is known as a functional. An important
restriction is that the association behave linearly, and this leads to the
following definition.

DerFiniTion 1.12.1. Let X be a linear vector space and to each z let
there be associated a unique real (or complex) number designated by L(x).
If for x, y € X and for all real (or complex) a, 8 we have

Liox + By) = «L(z) + L), (1.12.1)

then L is called a linear functional over X.

Ex. 1. X = C[a, b]. The elements of X are functions f(x).
3

b
L(f) =f f@)dx or L(f) =fx2f(x)d:c.

a

a+b
Ex. 2. X = C%a,b). L(f) = f"(a) + f'(b) —f( 5 )

b n
Ex.3. X = A[a, b]. L(f) =J f@)de — Xaf(x,),a <z, <b.
a 1=1

Ex. 4. X = A(R) where R is a region of the complex plane. Let C be a
rectifiable curve lying in R.

L(f) =f f(z) dz.
c

Ex. 5. X =R,.x = (2,%,...,%,). Let a,, ..., a, be fixed constants and

set
n

L) = axz,

i1
Interpolation theory is concerned with reconstructing functions on the
basis of certain functional information assumed known. In many cases, the
functionals are linear.
Functionals can be added to one another and scalar products can be
formed. If, for instance, f € C'[a, b] and

a+b)

b
Ll(f)=faf(x)dx and Lz(f)=f'( 3

we can identify the functional

L(f) = f ') dx + 7 (“ : b)

with the expression aL; + BL,. L is itself a linear functional. These observa-
tions form the basis for the following definition.
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DerinrrioN 1.12.2. Let X be a given linear space and let L, and L, be
two linear functionals defined on X. The sum of L; and L, and the scalar
product of « and L, are defined by

(@) (L + Ly)(x) = Ly(w) + Ly(x), zx€ X

(1.12.2)
(b) (aLy)(x) = aL,().

It is a simple matter to show that the set of all linear functionals defined
on X combined by the above rules constitute a second linear space.

DeriniTION 1.12.3. Let X be a given linear space. The set of linear
functionals defined on X and combined by (1.12.2) forms a linear space
called the algebraic conjugate space of X and denoted by X*.

X*, then, has elements that are linear functionals. We can speak of
linear combinations, linear independence, dimension, bases, etc., for linear
functionals.

Ex. 6. X = Cla,b]. Let 2,2, ..., x, be n distinct points lying in [a, b].
Let Ly(f) = f(x) for fe X. Then L,, L, . .., L, are independent in X*. For
otherwise, for constants a,, . . ., a, not all zero, a,L; + ayLy + -+ +a,L, =0
(the 0 functional). Thus, for all f € C[a, b], a,f () + aof (xg) + - -+ + apf(x,) = 0.
This is impossible. For if a, # 0, we may find a continuous function for which
f(@y) =1, f(x;) = 0,¢ #* k. This leads to the contradiction a, = 0.

Ex. 7. X = 2, ,la,b]. The above n functionals are linearly dependent. This
is a consequence of the Lagrange interpolation formula in Chapter II.

THEOREM 1.12.1. If X has dimension n then X* has dimension n also.

Proof: Let z,, %,, . . ., %, be a basis (n independent elements). Then for
any z€ X, x = a2, + a2, + - -+ + a,x, in a unique way. Therefore,
L(z) = a,L(x,) + - - - + a,L(x,). For any x € X set

Ly(x) = a,
Ly(x) = a,

(1.12.3)
L,(x) =a,.

L, are linear functionals defined on X. They are independent, for, if not,
we would have 8,L, + BoLy + - - + B,L, = 0 with some §; # 0. Then,

BiLy(x;) + BoLolx;) + -+ + B;L;(x;) + « - - + B,L,(x;) = O(z;) = 0.
life=j

But L(x;) = 0,; = so that we obtain §; = 0, a contradiction.
0if ¢ #j
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This shows that the dimension of X* is at least n. We next show it is at
most n.
Suppose we have n + 1 functionals, Ly, L,, . . ., L, ;. Consider the n 4- 1
n-tuples
[Ly(zy), Lz,), . . ., Li(z,)], 1=1,2,...,n+ 1.

Since R, (or C,) is of dimension n, these n-tuples cannot be independent.
Hence we can find numbers «,, . . ., a,,, not all zero such that

al[Ll(xl)’ ceey Ll(xn)] + ttt + an+l[Ln+l(x1)) ceey Ln+l(xn)]
=0=1[0,0,...,0]
Therefore

(Ly + -+ + oy lya)x) =0, for ¢=1,2,...,n
By taking linear combinations,
(yLy + + -+ a1 Ly y)(x) =0 for zeX.

Therefore L,, ..., L, , must be dependent and the dimension of X* is at
most, and hence, precisely n.

This theorem tells us that over a space X of dimension n any linear
functional can be expressed as a linear combination of » fixed independent
linear functionals.

1.13 Some Assorted Facts. Two special conformal maps.

A.
w =}z + z7Y). (1.13.1)

Set w = u + iv and z = pe®®. The exterior of the unit circle, 2| > 1, is
mapped conformally onto the w-plane with the interval —1 <u <1 de-
leted. The image of the point (p cos 0, p sin 8) is the point

(bp + p) cos 0, 4(p — p) sin ).
The circle |z2| = p > 1 maps onto the ellipse
u=23p+ pteosh,v=14p— pYsin0,0 <0 <2z (1.13.2)

y

= U

w-plane z-plane

Figure 1.13.1.
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DErmviTION 1.13.1.  The ellipse (1.13.2) will be designated by &,, (p > 1).
The semi-axes of &, are, respectively

= + —1
Hptp _1) (1.13.3)
b=1(p—p™)
and hence
p = a + b = sum of semi-axes of &,. (1.13.4)

The foci of é”p are at w = +1 so that é’p, p > 1, forms a confocal family
of ellipses. The image of the unit circle under (1.13.1) is the interval
—1 < u <1 traced from 1 to —1, thence back to 1.

When z is solved for w, we obtain

z=w+ Juw? — 1. (1.13.5)

For values of z outside the unit circle, that branch of the root must be
taken which leads to z(o0) = co.

‘/
—

Figure 1.13.2 The Family &, of Confocal Ellipses.

B.
z = cos w = cos (4 + tv) = cos u cosh v — ¢ sin  sinh v. (1.13.6)

Let R be the rectangle in the w plane with vertices at w = o1, ot + =,
—ot + 7, —ot. R is mapped onto the ellipse &,, p = ¢°, with the two in-
tervals [1, @], [—a, —1], @ = cosh o, deleted. As a point w traces out the
vertical sides of R, the image point z traces each of these two intervals
twice.
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w-plane

gl oi+4w
@ 1 i
®

r

z-plane

o ©

@ @o’i-l-r

—oai

Figure 1.13.3.

Zorn’s Lemma. Today, a mathematics book without this lemma would
be like an 18th century gentleman without his sword.

DeriniTION 1.13.2. A partial ordering of a set X is a binary relation
between elements designated by ‘ <’ and such that
r <y y<z implies x <z (1.13.7)
z <z (1.13.8)
r<y, y<z implies x = y.
If in addition for any z, y € X it is true that either
r<y or y<ux, (1.13.9)

the set is called fotally ordered (or, simply ordered).
If A is a subset of a partially ordered set, and if an element z satisfies

x <z forall ze A, (1.13.10)

then z is called an upper bound for 4.
If z is an element of a partially ordered set X such that no element z € X,
x #£ z satisfies
2 < (1.13.11)

then z is called a maximal element of X.
TaEOREM 1.13.1 (ZorN’S LEMMA). Let X be a partially ordered set and
suppose that every totally ordered subset of X has an upper bound in X. Then

X has a maximal element.

Zorn’s Lemma is known to be equivalent to the Axiom of Choice.
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NOTES ON CHAPTER I

1.1 Determinant theory developed from the point of view of n-dimen-
sional volume can be found in Schreier and Sperner [1], Chapter II.

1.4 For a discussion of when a function w(d) can be a modulus of con-
tinuity see Tieman [1], p. 109.

1.7 For more on infinitely differentiable functions, see Boas [4], pp.
150-156.

1.10 An up-to-date account of the theory of entire functions is given in
Boas [3].

1.12 For the algebraic conjugate space, see, e.g., Taylor [3], pp. 34-35.

1.13 Zorn’s Lemma is discussed in Halmos [2], p. 62.

PROBLEMS
1. For what values of @ and b are the curves y = az® bounded on [0, 1]?

2. For what values of a and b are the curves y = 5——— bounded on
[—1,1]? z%2 +ax + b

1 1
3. Show that Z sin z and z sin Z (properly defined at x = 0) are continuous

over any finite interval.
4. Show that y = €% is uniformly continuous over the infinite interval

0 <z < .

5. Let f € C[a, b]. Use the first mean value theorem to show that

b b 2 b
lim f [ () |sin nz| dx = lim j f(x) |cos nx| dx = - f f(x) dx. (Fejér).
n—o Jjq n—>wo Jq ™ Ja

6. Compute w(f; d) for f(x) =sinzon —0 <z < .

7. Compute w(f; d) for f(x) =22 — 3z +lon —1 <z < 1.

8. Let f (x) € C'[a, b] and let f’(x) be increasing and positive. Find w(d).

9. Let f(z) be analytic in |z| < 1. Show that w(f;d) < Md for some M.
Generalize.

10. Let f(z) be periodic and integrable. Define the moving average of f by
means of

1 (zth
hiw =5 f LS

Prove: 1. f,(x) is periodic.
2. If f () € C™ then f),(x) € C*H1.
3. w(fy; 0) < w(f; 6) and hence f), is ““smoother” than f.
4. If f is sufficiently smooth, (f,(x)) = (f")s-
11. Let f(z), g(x) € Lip « on [a, b]. Then the same is true of f(x) g(x).
12. Does z* log z, « > 0, satisfy a Lipschitz condition on [0, 1]?
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13. If
f(z) € C¥a, b],
then
(@ = b)f'(x) =f(a) —fd) + 30 — )Y (&) — $a — )3 (&)

forxe (a,b),a <& <z, <& <b.

14. Use the last result to show that
2M,

J"Il < T + %Mzh
where M; = max |f%(z)] and h = b — a. (Hadamard)
a<z<b
fl@+h) —2f(x) +flz —h)

12

Riemann derivative at x. Use Theorem 1.6.6 to show that if f”(x) exists then the
above limit exists and equals it. Show, however, that there are many functions
that do not have a second derivative at x but have a second Riemann derivative.

16. Let f € C'[a, b] and let f”(x) exist at each point of (a, b). Suppose f(a) =
f(@) =0 and f(b) = 0. Then there is a point & a < & < b with f/(§) = 0.
Generalize to functions having higher order zeros at k points.

17. If lim f(x) =a and lim f”(x) = 0 prove that lim f(x) = 0 and

r— r— —> @

lim f"(x) = 0.
T—>

18. Let f(x), g(x) EC®[a, bl anda <xy < b. If f(M(2g) = 0,2 =0,1,2,...,
n

15. If }lim exists, f(x) is said to have a second
—0

d
then%(f(x)g(x))ho =0,n=0,1,....

L @ e
19. If 3 a,z", > b,z" are analyticin [2| < 1,s0is Y ab,z"
n=0 n=0 n=0

20. Use Theorem 1.9.3 to show that «# is in A[a, b] for any 0 <a <b < .

21. Show directly that ¢ satisfies the conditions of Theorem 1.9.3 on [0, 1].
z

22. Make use of Theorem 1.10.1 to show that f(z) = f et dt is entire.

0

23. If f(z) is entire and satisfies | f(z)| > m |2|” for all |2| > r, then f is a poly-
nomial and its degree is at least n.

24. Let f € 2, and suppose that f(a) = f'(a) = 0,f(b) =0b # a. Thenf = 0.
In general, if f € 2, and has roots of total multiplicity > n, then f = 0.

25. Prove that 2% can coincide with a polynomial at only a finite number of
points. Is this true when z is replaced by 2?

26. Let fe A(— o, w)and f*)(x) > 0k = 0, 1, . ... Then f(x) cannot coincide
with a polynomial infinitely often. Generalize.

27. If f(x) is a polynomial, then lim f(®(z) = 0 for all z. Is the converse true?

n—»

28. The spaces C"[a, b], C®[a, b], A[a, b], A(R), E are all infinite dimensional.

29. 2, defined on [a, b] has dimension n + 1. What about £, defined on a set
S consisting of k points?

30. Let A4, designate the set of functions that are analytic in |2| < 7 but in no
disc |z| <7’ with 7" > 7. Is 4, a linear space?

31. Let N be the space of all functions that are analytic in |z| < R and have
|2|] = R as a natural boundary. Is N a linear space?



CHAPTER II

Interpolation

2.1 Polynomial Interpolation. This whole book can be regarded as a
theme and variation on two theorems: an interpolation theorem of great
antiquity and Weierstrass’ approximation theorem of 1885. The simple
theorem of polynomial interpolation upon which much practical numerical
analysis rests says, in effect, that a straight line can be passed through two
points, a parabola through three, a cubic through four, and so on.

Figure 2.1.1.
Polynomial Interpolation.

THEOREM 2.1.1.  Given n + 1 distinct (real or complex) points zy, 24, . . . , 2,

and n + 1 (real or complex) values wy, wy, . .., w,. There exists a unique
polynomial p,(2) € P, for which
P,a(2,) = w; t=0,1,...,n (2.1.1)
Proof: Set up a polynomial ay + a2 + * -+ + a,2" with » 4+ 1 undeter-
mined coefficients a;. The conditions (2.1.1) lead to the system of n + 1
linear equations in the a,:

ay+az;,+ - +az"=w,; t=0,...,n (2.1.2)

The determinant of the system is the Vandermonde determinant formed
24
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from z,, ..., 2,:
1 zg 2zp---2"
1 2z, 2200 2,"
Vizgy 2y, - -y 2,) =1. . . . (2.1.3)
1 2z, z2%-:--27"

n n

To evaluate V, we may proceed as follows. Consider the function

1 2z 2"
Viz) = V(zgy 21, + - - »2-1,2) = | . . . (2.1.4)
1 zn—l . z:—l
1 z 2"
V(z) is obviously in &£,. Furthermore it vanishes at z,,2,,...,2,_,, for

inserting these values in place of z yields two identical rows in the deter-
minant. Thus,

V(zgy 20y -+ »2p_1,2) = Az — 29)(z2 — 21) * - * (2 — 2,,_,) (2.1.5)

where 4 depends only on 2, 24, . . ., z,_;. To evaluate 4, expand the deter-
minant in (2.1.4) by minors of its last row. We then see that the coefficient
of 2" is V(zy, . . ., 2,_,). Thus, we have

V(zg) 295 - -+ 2p-1,2) = V(zgs . - ., 2o 1)z — 2)(2 — 29) * - * (2 — 2,_;) (2.1.6)

and hence we have the recursion formula

Vg 215« o5 251, 2,) = Vizgy o+ o 20 a2 — 2002, — 29) * * * (2, — 251)-
(2.1.7)
Since V(z, 2,) = 2z, — 2y, we have from (2.1.7),
V(2 21, 22) = (21 — 20)(22 — 20)(22 — 21)
and by multiple applications of (2.1.7),
n
V(zgy 215 - - - 5 2,) = 1 (2; — 2;). (2.1.8)
i>j
By assumption, the points zy,z,, ..., 2, are distinct. Therefore V £ 0.
There is consequently a unique solution to the system (2.1.2).
Here is a second proof that contains a useful line of reasoning. Consider
the system (2.1.2). If, when the right-hand side is 0 (w; = 0), the system
possesses only the trivial zero solution, Theorem 1.2.2 tells us that its

determinant does not vanish. Hence for an arbitrary right-hand side there is
one and only one solution. Now a zero right-hand side to (2.1.2) means that
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P,(2z) vanishes at » 4 1 distinct points. By Theorem 1.11.3, @, =0, k =
0,1,...,n The homogeneous equation possesses only the trivial solution
and the rest follows.

2.2 The General Problem of Finite Interpolation. In Theorem
2.1.1 we have reconstructed a polynomial € &, on the basis of n + 1
values. Can we do it on the basis of n + 1 arbitrary pieces of linear infor-
mation? Can we do it for functions other than polynomials? These questions
lead to the following general problem.

Let X be a linear space of dimension » and let L,, L,, . .., L, be n given
linear functionals defined on X. For a given set of values w,, w,, . .., w,,
can we find an element of X, say x, such that

Lyx) = w, 1=1,2,...,n? (2.2.1)

The answer is yes if the L, are independent in X*.

Lemma 2.2.1. Let X have dimension n. If x,, . . ., x, are independent in
Xand L,, ..., L, are independent tn X* then

[Ly(z;)] # 0. (2.2.2)

Conversely, f either x,,...,z, or Ly, ..., L, are independent and (2.2.2)

holds then the other set 18 also independent.
Proof: Suppose that |L,(z;)| = 0. Then also | L(x,)| = 0.
The system
ayLy(2y) + aglo(x,) + - - - + @, Ly(@) =0

a,Ly(x,) + ayLly(x,) + -+ + a,L,(x,) =0

would have a nontrivial solution a,, ..., a
Then,

n*

(@ Ly +ayLy + -+ +a,L)(z;)=0 1=1,2,...,n.
Since z,, . . ., z, form a basis for X,
(@1Ly + asLy + -+ + a,L,)(x) =0 zeX

and hence a,L, + -+ +a,L, = 0.
Therefore, L,, . . ., L, are dependent contrary to our assumption.
To show the converse, we may trace the argument backwards.

THEOREM 2.2.2. Let a linear space X have dimension n and let Ly, L,, . . .,
L, be n elements of X*. The interpolation problem (2.2.1) possesses a solution
for arbitrary values wy, wy, . . ., w, tf and only if the L; are independent in
X*. The solution will be unigue.
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Proof: In this generality, the theorem is nothing but a rewording of
Theorem 1.2.2. If the L, are independent and if z,, . . ., z, are independent,
then [L,(z;)| # 0 by Lemma 2.2.1. Hence the system

L(ayxy, + agzy + *++ + a,x,) = w; i=1,2,...,n
or
ayLy(®)) + agLy(xy) + - - + a,Ly(x,) = w, (2.2.3)
n
possesses a solution ay, ..., a, and the element Y a; solves the inter-
i=1

polation problem. Conversely, if the problem (2.2.1) has a solution for
arbitrary w;,, then (2.2.3) has a solution for arbitrary w,. By Theorem 1.2.2,
this implies that |L,(z;)| # O and hence by Lemma 2.2.1, the L; are inde-
pendent.

The determinant |L;(z,)| is a generalized Gram determinant (cf. Chapter
8.7) and its nonvanishing is synonomous with the possibility of solution of
the interpolation problem. We may speak of independent systems of func-
tionals as having the “interpolation property.” In the next section, we shall
study some spaces and functionals for which the interpolation problem can
be solved. But before passing to it, we should rid ourselves of the naive hope
that an interpolation problem can always be solved providing the number of
parameters equals the number of conditions.

Ex. 1. Let X designate the set of functions of the form ay + a,x? defined on
[ —1, 1]. X hasdimension 2. If L,(f) = f(z;) and Ly(f) = f(zy), —1 <z, 2y <1,
then the generalized Gram determinant for the independent elements 1, z? is

1 2,2
= (xg — 21)(2g + 7).

2
1z,

This vanishes if #;, = x, or x; = —=x,. In these cases L, and L, are not independ-
ent. The first case would be excluded trivially, but the second tellsus that we
cannot force the even functions a, + a,22 to take on arbitrary values at distinct
points.

Ex. 2. The strength of Theorem 2.1.1 is brought out by noting that it cannot
be extended as it stands to polynomial interpolation in several variables. Let
the powers in two real variables be listed as follows: py(z, y) = 1, p,(x, y) =z,

DoY) =Y, Pa(@, y) = 22, py(, y) = 2y, Ps(@, y) = %, pe(xy) =23, ... . Tt is
not always possible, having been given n arbitrary distinct points (z;, ¥,), to
find a linear combination of p, ..., p,_; that takes on preassigned values at

these points.

2.3 Systems Possessing the Interpolation Property. Many spaces
of functions and related systems of independent functionals are known and
have been studied in detail. We shall list some of the more common ones.
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Ex. 1. (Interpolation at discrete points)
X =2, Lo(f) =f(zo)’ Ll(f) =f(z1)’ e Ln(f) =f(zn)'

We assume that z; # z;, ¢ # j.

Ex. 2. (Taylor interpolation)
X =Pn Lo(f) = f(zg)s Ly(f) = f(zg)s - - > Ln(f) =F™(z).

Ex. 3. (Abel-Gontscharoff Interpolation)
X = ‘?n' Lo(f) =f(zo)’ Ll(f) =f'(z1)’ Lz(f) =f”(22), sy Ln(f) =f(”)(zn)‘

Ex. 4. (Lidstone Interpolation)
X =Popr Lylf) =F(zo)s Lo(f) =f ()
L3(f) = [f"(zg)s La(f) = f"(z)

L2n+1(f) =f(2")(zo), LG+2(f) =f(2”)(z1)» (zg # 2z)-

Ex. 5. (Simple Hermite or Osculatory Interpolation)
X =P Li(f) =F(21), Lo(f) =[f(z)
Ly(f) =f(ze)s Ly(f) = f(zp)

LG—l(f) =f(Z”), LG(f) =f/(zn)) (zi :# Z‘.",'I: 9&.7)-

Ex. 6. (Full Hermite Interpolation)
X = 25. To avoid indexing difficulties, we list the functional information
employed without using the symbol L.

f(zo)’f/(zo), LR ,f(mo)(zo)
(20 f(z1)s - -5 fOM(zy)

f @), f(zn)s - ooy f)(2y)
(2 #2pp N =mg +my + -+ + my, + n).
Ex. 7. (Generalized Taylor Interpolation)

X consists of the linear combinations of the n + 1 linearly independent functions
@o(2), 91(2), - . ., @,(2) that are analytic at z,.
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Lo(f) =f(zo)» Ll(f) =f’(zo), cees

‘ Lo(f) =1 (z).
e (zg)| # 0.

Ex. 8. (Trigonometric Interpolation)
A linear combination of 1, cos z, . . . , cos nz, sin z, sin 2z, . . ., sin nz is known
as a trigonometric polynomial of degree < n. The corresponding linear space will
be designated by 7. It has dimension 2n + 1.

X = ‘7-73' Lo(f) =f(xo)’ Ll(f) =f(x1)’ L) L2n(f) _—'f(xzn),

- < xy < Ty <t < Ty, <

Ex. 9. (Fourier Series)

X =T, Lylf) =j f(x)coskxdx,k =0,1,...,n.
Ly _4(f) =j f@)sinkxdx,k =1,2,...,n.

Before demonstrating that these functionals are independent over the
respective spaces, a few remarks are in order. Ex. 1 is, of course, Theorem
2.1.1. Exs. 1, 2, 5 are special cases of Ex. 6. Ex. 2 is a special case of Ex. 7
if we select @,(z) = 2*. Ex. 9 is not generally thought of as an interpolation
process since the usual interpolatory processes make use of point data. But
it—and indeed all orthogonal expansions—fit into the present pattern, and
so we have listed it here.

The most direct way to show that the interpolation problem formed from
these examples has a solution is to exhibit the solution explicitly. For some
of the examples, we shall do this in subsequent sections. But it suffices to
show that the generalized Gram determinant does not vanish, (2.2.2), or
to apply the Alternative Theorem 1.2.2 directly.

Ex. 6. We shall show that if p € ) and satisfies

P(zg) = 0, p'(29) = 0, ..., pM(2z5) =0
P(z) =0,p(z) =0,...,p™(z) =0

. . (2.3.1)
p(zn) =0, p,(zn) =0,..., pm"(zn) =0

where N = mgy + my + -+ + m, + n, then p must vanish identically. By the
Factorization Theorem, if p satisfies all conditions of (2.3.1) with the exception
of the last, i.e., p™s(2z,) = 0, then we must have

p2) = A@)z — 2g)™0F (2 — )™t (2 — 2, )tz — 2,)"n,

A(2) = polynomial.
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By examining the degree of this product, it appears that 4 = constant. Since,
moreover,

p(m")(zn) = A(m,)! (2, — zo)m°+1 R G zn_l)m"'l+] =0

and z; # z;, ¢ #j, we have 4 = 0 and therefore p = 0. The homogeneous
interpolation problem has the zero solution only and hence the nonhomogeneous
problem possesses a unique solution.

Ex. 3. The generalized Gram determinant is

2...,1
1 zy 24 E

0 1 22 -- 'nz;“l

=112 -n! #£0.
0O 0 O0---n!
Ex. 4. Let pe Py,,,. If p?)(zg) = 0 for j = 0,1, ...,n, then by Theorem
1.6.4, p(2) =a,(z — 2¢) + az(z — 2)% + ** + Agay(2 — 29)?. If now,

P37 (z;) = 0 then ag,,, = 0and p'®)(z;) =0,j =n — 1,n —2,..., 0 implies,
by recurrence, that the remaining coefficients are 0. The homogeneous problem
possesses the 0 solution only, and so the nonhomogeneous problem has a solution
and it is unique.

As far as Ex. 7 is concerned, no proof is required, for condition (2.2.2)
has been built into the hypothesis. In this example, the crucial determinant
reduces to the Wronskian of the functions ¢, ..., ¢, and we postulate
that it does not vanish at z,.

Ex. 8. The crucial determinant here is

1 cosz, sinx, cos2r, sin2xr, --- cosnr, sinnx,
1 cosx;, sinz, cos2x; sin2x --- cosnr, sinnz,

G = | ol (23.9)
1 cos xy, sinz,, cos2x,, sin 2r,, - cosnz,, sinn,,

To evaluate G' we reduce its elements to complex form. Multiply the 3rd, 5th, . ..
columns by ¢ and add them respectively to the 2nd, 4th, . . . columns. We obtain

G = |1 €% sinw; €22 sin2z; ... "% sinngx,|.

Multiply the 3rd, 5th, ... columns by —2¢ and to them add the 2nd, 4th, ...
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columns respectively:
(—20)"G = |1 eiTy =T @2iT; o —20r; . .. gniz; o —nizy|,

Interchange the columns:

(_l)n(n+1)( —20)"G = |e—m':c,~ e—(n=1)ix; . .. ] ... p(n-1)iz; gniz;|
Multiply the jth row by "%, = 0, ..., 2n:
eni(@o+ 2+ o +:rz,.)( _1)n(n+l)( —20nG = |1 €i%; ¢2i%; . . . eZm'z,-l'

The determinant in the last line is a Vandermonde. Hence from (2.1.8),

2n
e”i(zo+zl+ +:c2,,)( _l)n(n+l)( —2i)"G = H (ei:c, _ eix,,)_
i>k

In view of the conditions on the z;, el o ¢, j % k, and so @ # 0.

Ex. 9. In view of the orthogonality of the sines and cosines (Chap. 8.3,
Ex. 3), the crucial determinant has positive quantities on the main diagonal
and 0’s elsewhere and hence does not vanish.

2.4 Unisolvence. Let the functions fy(x), fy(%), ..., f.(x) be defined
on an interval I. Given n distinct points ,, . . ., z, € I and n values w,, . . .
w,,, we will be able to solve uniquely the interpolation problem

>

n
dafilz)=w; j=12,...,n (2.4.1)
i=0
if and only if
[ fi(=)] # 0. (2.4.2)
DEFINITION 2.4.1. A system of n functions f,, . . ., f, defined on a point

set S is called unisolvent on S if (2.4.2) holds for every selection of n distinet
points lying in S.

Pointwise interpolation can always be carried out uniquely with a uni-
solvent system.

It follows that f}, . . ., f, is unisolvent on § if and only if the only linear
combination of the f’s that vanishes on n distinct points of § vanishes
identically.

Ex. 1. The system 1, 22 is unisolvent on [0, 1] but not on [ -1, 1].
Ex. 2. The system 1, z, 2%, ..., " is unisolvent over any interval [a, b].

Ex. 3. Suppose that w(z) does not vanish on [a, b]. Then

w(x), zw(x), r2w(z), . . . , T"W(T)
is unisolvent on [a, b].
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Ex. 4. The system of complex powers 1, z, 2%, ..., 2" is unisolvent over any
region.

Ex. 5. The trigonometric system
1, cos x, cos 2z, . . . , COS N, sin z, sin 2z, . . . , sin nx
is unisolvent on —7 <z < .

Ex. 6. Let a; be distinct values not in [a, b]. Then the system

1 1 1

z+a ' z+a’ < zta,

is unisolvent in [a, b]. For we shall prove in Chap. 11.3 that

1

x; + a;

n n
= H (z; — z)(a; — ay) H (x; + a;).

i>F 1,7=1

As far as functions of one variable are concerned, unisolvent systems are
reasonably plentiful. In several dimensions, the situation is vastly different.
We have already had a hint of this in 2.2, Ex. 2 where we noticed that the
fundamental theorem of polynomial interpolation does not go over directly
to several variables.

TureorEM 2.4.1 (Haar). Let S be a point set in a Euclidean space of n-
dimension, R,, n > 2. Suppose that S contains an inferior point p. Let
Sisfor o ooy fn (n > 1) be defined on S and continuous in a neighborhood of p.
Then this set of functions cannot be unisolvent on S.

Proof: Let U be a ball with center at p and contained in § and sufficiently
small so that the f; are continuous in U. Select » distinct points p,, p,, . . . ,
p, € U. We may assume that | f,(p,)| # 0, for otherwise the system is surely
not unisolvent. Hold the points pg, py, . . . , p, fixed. Now move the points
p, and p, continuously through U in such a manner that the positions of p,
and p, are interchanged. Since U has dimension >2, it is clear that this can
be carried out in such a manner that p, and p, coincide neither with one
another nor with the remaining points. In this way we induce an inter-
change of two columns of the determinant | f;(p;)|. Its sign therefore changes.
Since the functions are continuous, there must be some intermediate posi-
tion of p, and p, for which the value of the determinant is zero.

In order to carry out this argument, it is not necessary to have an interior
point. It suffices if the set S contains a ‘‘ramification point;” that is to say,
a point p at which three arcs meet. Then by a process of “train switching”
we may carry out the same argument. It is surprising that unisolvence has
this topological aspect.
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p;
P2
P )
Pj
Figure 2.4.1.

2.5 Representation Theorems: The Lagrange Formula. Let z,
2y, . .. » 2, be distinct and introduce the following polynomials of degree n:

(z—2)(z —2) " (2 =2 )z — 2y - (2 — 2,)
(B — 2o)(2e — 21) " " (B — Zc) (B — Za) * 7 ¢ (2 — 2,) ’

E=0,1,...,n (25.1)

L(z) =

It is clear that

0ifk#j
L(z;) = 04y = lifk—j (2.5.2)
For given values wy, w,, . . . , w,, the polynomial
n
Pa(?) =k§owklk(z) (2.5.3)
isin £, and takes on these values at the points z;:
Pa(2) = w, k=0,1,...,n. (2.5.4)

Formula (2.5.3) is the Lagrange Interpolation Formula. Since the interpola-
tion problem (2.5.4) has a unique solution, all other representations of the
solution must, upon rearrangement of terms, coincide with the Lagrange
polynomial.

An alternate form is useful. Introduce

w(@) = (2 — 2}z — 1) -+ (2 — 2,). (2.5.5)
Then,

w(z) = (2, — 20}z — 21) " * (5, — 5y) (2, — Zepy) (7 — 2,) (2.5.6)

and hence from (2.5.1),
w(z)
L) = ———— . 2.5.7
) @57
The formula (2.5.3) becomes
5 w(z)

pn(z) = z wk

2 —(z ) (2.5.8)
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The polynomials I,(z) are called the fundamental polynomials for point-
wise interpolation.

The numbers w; are frequently the values of some function f(z) at the
points z;: w;, = f(z;). The polynomial p,(z) given by (2.5.8) and formed

with these w’s coincides with the function f(z) at the points 2y, z,,. . ., z,.
That is, if
@ =3 flae) =3 fa) —20 2.59)
z) = z z) = z TS 9.
P T S S T e e )
then
Palze) = f(22) k=01,...,n (2.5.10)
DerFinTION 2.5.1. We shall designate the unique polynomial of class
&, that coincides with f at 2, . . . , z, by p,(f; 2).
Suppose that g(z) € &,. Then ¢ is uniquely determined by the n + 1
values ¢(z;), 1 = 0, . . ., n. Hence we must have
P4(q; 2) = q(2). (2.5.11)

Now take g(z) = (z — u)’, j =0, 1, ..., n and regard « as an independent
variable. From (2.5.11) and (2.5.9),

n
(z—w)f =3 (2, — w)l(z) i=01,...,n (2.5.12)
k=0
holding identically in z and u.
By selecting # = z we obtain
n

Liz) =1 (2.5.13)
k=0
> (2 — 2)L(z) =0, j=12...,n
k=0

The n + 1 identities (2.5.13) are the Cauchy relations for the fundamental
polynomials 7,(z).

The importance of the fundamental polynomials lies in the identity (2.5.2)
and the resulting simple explicit solution (2.5.9) of the interpolation prob-
lem. If we set

Lo(f) =f (), Ln(f) =F (21, - -+, Lo(f) = F(z,),
then (2.5.2) can be written as
L) =9, (2.5.14)
In anticipation of certain geometric developments in Chapter VIII, we will say
that the polynomials I;(z) and the functionals L, are biorthonormal. For a
given set of independent functionals, we can always find a related biortho-

normal set of polynomials. Indeed, we have the following generalization of
Lagrange’s formula.
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THEOREM 2.5.1. Let X be a linear space of dimension n. Let Ly, Ly, . . .,
L, be n independent functionals in X*. Then, there are determined uniquely n

independent elements of X, x,*, x,*, . . ., x,*, such that
Lyx*) = 6, (2.5.15)
For any x € X we have
n
=7 L(@)z* (2.5.16)
i=1
For every choice of w,, . . . , w,, the element
n
r = wa* (2.5.17)
im1

18 the unique solution of the interpolation problem
Lyx) = w, i=1,2,...,n (2.5.18)

Proof: Let x,,...,x, be a basis for X. By Lemma 2.2.1, |L,(z;)| # 0.
If we set * = a,x, + -+ + a;,x,, then this determinant condition guar-
antees that the system (2 5.15) can be solved for a;, to produce a set of
elements x,*, . .., z,*. By Theorem 2.2.2, the solution to the interpolation
problem (2.5.15) is unique, for each j, and by Lemma 2.2.1, the z,* are
independent.

Denote y = 2 L(x)x*. Then L,(y) = 2 Ly(z)L,(x*). Hence, by (2.5.15),

Lily) = Ly(=), ] =12,...,n. Again, smce interpolation with the n con-
ditions L, is unique, y = « and this establishes (2.5.16). Equation (2.5.18)
is established similarly.

In this theorem and throughout the remainder of the book an asterisk
(*) will be applied to the symbol of an element whenever the element is one
of a biorthonormal or an orthonormal set. (Cf. Def. 8.3.1.) An asterisk on the
symbol of a space will be used to denote the conjugate space. (Cf. Def. 1.12.3.)

The solution to the interpolation problem (2.5.18) can be given in deter-
minantal form.

THEOREM 2.5.2. Let the hypotheses of Theorem 2.5.1 hold and let z,, . . .,

z, be a basis for X. If w,, . . ., w, are arbitrary numbers then the element
0 x, 2, 0z,
wy  Ly(xy)  Ly(xy) - - - Ly(x,)
1
—— : : : 2.5.19
=T . , . @5.19)
wn Ln(xl) Ln(x2) e Ln(xn)

satisfies Ly(x) = w;,1=1,2,...,n.
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Proof: 1t is clear that z is a linear combination of z,, . . ., z,, and hence
is in X. Furthermore, we have

0 Lj=x,) Ljxs) - - - Lyx,)
wy  Ly(xy) Ly(as) - - - Ly(,)

Lj(x) = —

Q-
g .

, Lyxy) Ljzs) - Lyz,)|

wy, Ln(xl) Ln(xZ) e Ln(xn)

Expand this determinant by minors of the 1st column. The minor of each
nonzero element, with the exception of w;, is 0, for it contains two identical
rows. The cofactor of w; is —G. Hence, L(x) = w,,j =1,2,...,n.

Ex. 1. (Taylor Interpolation)
zn
The polynomials = 0,1,..., and the functionals L,(f) =f(0),n =

0, 1,..., are biorthonormal.

Figure 2.5.1 Osculatory Interpolation at Two Points
1
1+ 22
p(+) =f(+1),  P(+1) =f'(+])

p)=¢—1  fl@) =

p(=1)=f(=1), p'(=1)=f"(—D).
Ex. 2. (Osculatory Interpolation)
w(z)

Set w(z) = (z =)z —z) @~z hia) =
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w”(z
The polynomials [l — —,(—k) (z — zk)} 12(2), (2 — 2,)l,2(2) of degree 2n — 1 and
the functionals w(ze)

Li(f) =f(2k), Mi(f) = f'(2)s k=12 ...,n

are biorthonormal.
The resulting expansion of type (2.5.17) is, therefore,

< w”(z) <

Pon1(2) = 2 wy [1 ——— (2 —2) | L2 + D w2z — 2)h2(2),  (2.5.20)
E=1 w'(2) E=1

and produces the unique element of 2,, , which solves the “osculatory” inter-

polation problem

plzg) = wy
E=1,2...,n (2.5.21)
P'(Z) = wy

Ex. 3. (Two Point Taylor Interpolation)
Let a and b be distinct points. The polynomial

4
n-1p (z — b)k n—14 (z — a)k
Pona(2) = (z —a)" > —"—k'—— + (2 — ) Z—"k'— (2.5.22)
k=0 : =0 :
d¥ 2
a4 B[ IO
dz*| (z — )" |;-a
(2.5.23)
dk z
5, _ B[S0
d* —ar ],
is the unique solution in 2,,_, of the interpolation problem
Pan1(@) = f (@), Ppp_y(@) = f(a), ..., p5"R(a) = f*D(a)
(2.5.24)

Pan_1(8) = F (), Php_y(®) = f/(b), ..., PIIY(B) = fr-D(b).

Ex. 4. Exs. 1, 2, 3 are, of course, special cases of the general Hermite inter-
polation problem. (Cf. Ex. 6, 2.3.) Let 2y, 2y, . . . , 2, be ndistinct points, &y, . . ., &,
n

be n integers >1 and N =« + ay + * -+ + a, — L. Set w(z) =H(z — 2%

and v=1
! (z —2)f=% d@—E-D(z — )% 2.5.25
w(2) = w(z) % 7% —k—-1) w(z) ez, (2.5.25)
n n n
PVE) = D rilig(e) + 2 ra@) + o+ 2 TV 1(2) (2.5.26)
t=1 i=1 t=1

is the unique member of 2y for which

PN(Z) =1 D'NE) =15 rp%l—l)(zl) = 7.(10:1—1)

(2.5.27)

pN(zn) = "'mp/N(zn) = 7n/’ ey pSovc,.—l)(z”) = 7:,%—1)~
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Ex. 5. Given the 2n + 1 points

—r S Zy <Xy < < Ty, <

2n 2n
Construct the functions t;(x) = H sin }(z — xk)/H sin §(x; — ), j =0,
k=0 k=0

k+#j k#j
, 2n. If Li(f) = f(x;), then ¢; and L; are biorthonormal.
Each function ¢(x) is a linear combination of 1, cos z, . . ., cos nz, sinz, . . .,

sin nx and hence is an element of ..
To show this, observe that the numerator of ¢; is the product of 2n factors of
the form sin }(x — z;) = ae*®2 4 Be~ /2 for appropriate constants o and f.
n

The product is therefore of the form z c,e’*®, and is a combination of the
required form. The function k=-n

2n
T(x) = 2 wit(x) (2.5.28)

k=0
is therefore an element of » and is the unique solution of the interpolation
problem T(z;) = wy, k = 0,1, ..., 2n. Formula (2.5.28) is known as the Gauss

formula of trigonometric interpolation.

Ex. 6. Givenn + 1 distinct points

0<zy <z <-°* <z, <= Set
n
Cix) = 1__[ (cos x — cos ) H (cos x; — cos xz). (2.5.29)
k=0
Ic#j k#j

Then C; is a cosine polynomial of order <n (i.e., a function of the form
n

z a,, cos kx) for which Cj(x;) = d;. Givenn + 1 distinet values wy, wy, . . ., wy
k=0
there is a unique cosine polynomial of order <n, C(z), for which C(x;) = wy, k = 0,
1,...,n. Itis

n

Cx) = 3 wOi®). (2.5.30)

Ex. 7. Given n distinct points 0 <z; < :-+ <z, <= Set

n n
S;(@) =sinz [] (cosx — cosx;) [T] (cosx; — cosz,).  (2.5.31)
k=1 =
k#i %

Then S(x) is a sine polynomial of order <n for which S;(x;) = 0. Given n

distinct values w;, w,, ..., w,, there is a unique sine polynomial of order
<n, S(x), for which S(z;) = w, and it is

S(x) = z WS (). (2.5.32)
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Ex. 8. Let 2y,2,...,2, be n + 1 distinct real (or complex) points. Let
Wg, Wy, - - . , Wy, be a second such set of m + 1 points. Set

P(z) = (2 _zo)"'(z - 2p),
Qw) = (w —wg) * ** (w — wyy),
Pj(z) = P(2)/(z — z;),
Qulw) = Qw)/(w — w).

The (m + 1)(n + 1) polynomials

P;(2)@(w)
Lik(z, w) P32 @u ) (2.5.33)
satisfy
ljlc(zr, ws) = ‘sjr‘sks‘ (2.5.34)
Hence
PEw) = 3 > pidilz, w) (2.5.35)
j=0k=0

is a polynomial of degree <mn which satisfies the (m + 1)(n + 1) interpolation
conditions
j=0,1,...,n
(25 W) = u; 2.5.36)
Erwd =Hie ) oL m. (

Formula (2.5.35) may be regarded as the generalization of the Lagrange formula
to two dimensions. Extensions to any number of variables will follow in a similar
fashion. It shows that by taking a sufficiently large number of powers of several
variables polynomial interpolation can be achieved.

2.6 Representation Theorems: The Newton Formula. The La-
grange formula (2.5.3) or (2.5.17) has one drawback. If we desire to pass
from a space of dimension 7 to a space of one higher dimension, we must
determine an entirely new set of elements y,*, yo*, ..., y,,,* that are not
related in a simple fashion to the old set z,*, z,*, . . ., z,*. A representation
of Newton gets around this difficulty by taking linear combinations of both
the basis elements xz,, z,, ..., and the prescribed functionals L,, L, . ...
We shall first study this representation in the case of polynomial interpola-
tion.

Let 2y, ..., 2, be n + 1 distinet points and form the » + 1 independent
Newton polynomials

z—2zp (2—2)z—21),..., (2 — 2z —21) """ (2 — 2,_1).
For given values wy, w,, . . . , w, there is a unique member of &, for which
p(z;) =w;,1=0,1,...,n. Let us see if we can represent it in the form

P(2) = ag + ay(z — 2g) + gz — 2p)(z — 2y) + * -
+ an(z - ZO)(Z - zl) v (2 - zn—l)' (261)
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To determine the constants a,, set z =z, z =z,,..., successively, and
solve the resulting linear equations:

a, = w,
w; — W,
al = —
21— %
1 Wy — Wy W, — Wy
ay = — . (2.6.2)
Zg—21\23— % 21— %
Note that for a fixed set of points z,,...,z,, each a; is a certain linear

combination of the w;,, and that, furthermore, a, involves only w, and z,; a,
involves only wy, w,, 2, 2;; @5 involves only wg, wy, ws, 2, 2;, 29, €tC.

DEeFiniTION 2.6.1. The constant a; is called the divided difference of the
Jth order of wy, w,, . . ., w; with respect to zg, zy, . . ., z;. It is designated by

a; = [wy, wy, . . ., w;]. (2.6.3)

A compact formula for a; can be found by comparing (2.6.1) with the
Lagrange formula (2.5.8) with which it must coincide. The coefficient of z"
n wk

in (2.6.1) is a,. The coefficient of z" in (2.5.8) is seen to be > —— . There-
fore, K=o w'(z;)
[ 1= 3 & (26.9)
a, = [wy, wy, ..., = .6.
n W, Wy w, o wr(zk)

where w(z) = w,(2) = (2 — zo)(z — 2,) - - (z — z,). Thus, again, from (2.6.4),

Ay = W,
Wo W,

+

29— 21 23— %

a, =

Wo W, Wy

(2o — 21)(29 — 22) + (21 — 2o)(21 — 25) + (22 — 20)(22 — 21)

a2 = (2.6.5)

If the w; are taken as the value of a function f at z,: f(z;) = w,, then we
may combine (2.6.1) and (2.6.3) to obtain

M=

Pa(f32) = 2 [f(20): f(21)s - - s f 2Nz — 20)(2 — 21) =+ (2 — 21).  (2.6.6)

k=0

w_4(2) = 1.
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This form of the interpolating polynomial is the finite Newton series for a
function f (2).
With 2y, 2, . . ., 2, fixed, introduce the linear functionals

Lo(f) = f(z)

_ £ (z0) + f(z1) (2.6.7)

20— 23 23— %

Ly(f)

according to the scheme in (2.6.5). Then (2.6.6) becomes

n
Palf32) = 2 Li(flwe (). (2.6.8)
k=0
Since w;(z) e #, if 0 <j <n — 1 it follows that w,(2) = p,(w;(z);2) and
hence n
w;(2) = D Li(w;(2))w,_4(2) (2.6.9)
k=0
By setting j = 0,1,2, ..., in (2.6.9) successively we obtain
L (w;_y(2)) = Oy (2.6.10)

Comparing the biorthogonality relationships (2.6.10) and (2.5.14) our in-
troductory remarks become clear. Whereas w,(z) depends only on the points
Zgs « « s % L(2) = I, ,(2) depends upon all the points zg, ..., 2, ...,2, In
the Lagrange representation, we add an additional point and increase the
degree of the interpolating polynomial at the cost of changing all the funda-
mental polynomials. In the Newton representation, this can be accomplished
by adding one more term. The Newton representation has a permanence prop-
erty, and this is characteristic of Fourier series and other orthogonal and
biorthogonal expansions. (See 8.5.) The price that is paid for the convenience
of the permanence property is that the multipliers of the individual poly-
nomials are no longer simple values at a point, but certain linear com-
binations of these values.

This type of biorthonormality and permanence can be obtained in a
general setting.

THEOREM 2.6.1 (Biorthonormality Theorem or Generalized Newton Rep-
resentation). Let X be a linear space of infinite dimension. Let x,, z,, . . . .
be a sequence of elements of X such that for each n, z,, . . ., x, are independent,
Suppose, further, that Ly, Lo, . . ., is a sequence of linear functionals in X*
such that for each n, the n X n determinant

[Ly()I7 ;-1 # 0. (2.6.11)
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Then there is determined uniquely two triangular systems of constants a,
b,; with a; = 0 such that if

L* = ay, L, z* =,
Lo* = ag Ly + agsL, z* = byz) + 2, (2.6.12)
Ly* = ag Ly + asaly + agsly  23* = b312) + byats + 3

we have
Li*(xj*) = 61‘1, 1’)] = 1, 2’ crt. (2613)

Proof: We want L *(x,*) = 1. Therefore, a,,L,(x,) =1 or
a1y = (Ly(z,)) # 0.

The denominator does not vanish by (2.6.11). We shall now carry out an
inductive proof. Assume that we have already determined

ay, 1
Q21 Q22 by 1
a’nl anz e ann bnl bnz e bn,n—l 1

with @,,a4, - - - @,, 7% 0 and such that

LXx*) =06, ¢j=12,...,n (2.6.14)

We will show that we can obtain first b, 1,0, 9, - - - 5 bpiy 0 1, and from

a knowledge of these values can then obtain @, 1, @ni1,9 - -5 @pia,nia
with @, .., # 0 and such that

L*(x*) =0y, ,j=12,...,n+ L (2.6.15)

The conditions included in (2.6.15) that are not already contained in
(2.6.14) are
L*ax¥, ,)=0 2=1,2,...,n and

Lr o (z*) =0 i=1,2,...,m,

L (k) = 1. (2.6.16)
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The first n equations in (2.6.16) yield the system
bniaaln* (@) + by o la™(@) + ¢ 0 0+ by WLy * (@) = —Ly* (@)

bn+l,1Ln*(xl) + bn+1,2Ln*(x2) + e + bn-H,nLn*(xn) = _Ln*(xn+l)'

This system has a unique solution providing |L*(z;)I?;_, # 0. But from

Problem 19, Chapter II,

a;; 0 e 0
a21 Qg2 0

LX) =| ° B R P Z(CA
Ap1 Qpe °° " Gy,

=anQge Ay, lLi(xj)l?,j=1 # 0.

Having determined the b’s, or equivalently x;, ;, consider the second group
of n 4 1 equations in (2.6.16). This yields

an+1,1L1(x1*) + e + a’n+1,n+1Ln+1(x1*) =0

iy 1 Ln(@,*) + 000+ Gy pa L (®,%) =0

an+1,1L1(x:+1) + e+ a’n+1,n+an+l(x:+l) =1

This system has a unique solution providing that
ILi(xj*)I?,;—:ll # 0.

But, again by Problem 19,

1 0 e 0

by 1 e 0

|Li(xj*)|:",;‘r=11 : ILi(xj)I?,;;ll

bn+l ,1 bn+2 ,1

= |Ly(@;)|% 21 # 0.
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Furthermore, @, 511 = G11@92 * * * Gpp | Ly(@,)7 51 /1Ly(%,)7 72, # 0. We ob-
serve finally that at no stage is there any arbitrariness in our determination
of the constants and hence the solution is unique.

CoRrOLLARY 2.6.2. Let X, designate the subspace of X spanned by x,, . . .,
z, (i.e., the set of all linear combinations a,x, 4 * - - + a,x,). If x € X, then

x=2":L*(x)x*

Proof: Ify_zL* x,* then L*(y) = zL*x)L*( *) = L*(z) by

(2.6.13). Since xl, ...,z, are independent, 1t follows "from (2.6.12) that
2%, ..., x,* are independent Hence from (2.6.13) and Lemma 2.2.1 it
follows that L,, ..., L, and consequently L,*, ..., L, * are independent.
In view of this, L*(y —x) =0,j=1,2,...,n implies y = .

For a given z € X, the formal series

x~ Y LX@x)x,* (2.6.17)
¥=1

is a biorthogonal expansion of the element z. In particular cases, the relation
of the series to # has been the object of vast investigations.

It will help to grasp the difference between the biorthonormality of
Lagrange type (2.5.15) and that of Newton type (2.6.15) if each is expressed
in the language of matrices. Let G designate the matrix (L;(x;)). Let 4
designate the matrix (a;;) where the a;; are the quantities appearing in the
proof of Theorem 2.5.1. I is the unit matrlx. Then, (2.5.15) may be expressed
as

G4' =1, A’ = transpose of 4. (2.6.18)

On the other hand, if 4 and B designate the lower triangular matrices taken
from the coefficient scheme of (2.6.12) then

AGB = 1. (2.6.19)

Note that (2.6.19) is equivalent to
G = A"YB') (2.6.20)
Now, A1 is a lower triangular matrix with non-zero elements on its-princi-

pal diagonal and (B’)~! is an upper triangular matrix with 1’s on its princi-
pal diagonal. (2.6.20) has a matrix formulation. A matrix G = (g,;) is said to be

911 912 )
921 g2z
vanishes. If G is regularly arranged, then it can be expressed as the prod-

uct of a lower triangular matrix by an upper triangular matrix with 1’s
on its principal diagonal. This is known as an LU-decomposition of G.

regularly arranged if none of its principal minors (i.e., J11
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The result of biorthogonalization can be expressed by means of deter-
minants.

TuEOREM 2.6.3. With the notation of the previous theorem, let

Gr = ILz(xj)I::,j=l .

Then,
Ly(xy) Ly(zg) -+ Ly(=)
1
¥ = ——
J Gj—l
Lj-—l(xl) Lj—-l(x2) L,_l(x])
Zy Zg Z;
(2.6.21)
Ly(%y) Ly(z,) L(xy)
1
L*=_—
G;
Ll(xj—-l) L2(xj—l) e Lj(xj—l)
L, L, . L
Proof: Expand these determinants according to the minors of the last
row. We see that z;* is a linear combination of x,, z,,..., 2, and L* is a
linear combination of Ly, L, . . ., L;. Moreover the coefficient of z; in z;*

is 1. Fix a j > 1. We shall show that L*(x*) = 0 for ¢ < j. It suffices to
show that L,(z;*) = 0 for 7 < j. But

Ly(x,) Ly(xg) - Ll(xj)
L) = o —o
! Lj—l(xl) Lj—l(xZ) e Lj—l(xj)
L,(z,) Lyxy) -+ L)

inasmuch as two rows are identical. Similarly, we can show that for fixed
t > 1, L*(@;*) = 0 for j < ¢. It remains to show that L*(x,*) = 1. Since
¥ = ;@ + by + - - 4+ b, 1%, 1 + ;, it suffices to show that L*(x,) =
1. Now, from the second equation of (2.6.21), L*(z,) = G,/G; = 1. The above
biorthogonal representation is unique and the theorem follows.

We now give some examples of biorthogonal systems of the Newton
type.
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Ex. 1. (Newton Polynomials). X is the space of all polynomials in z,

< Ly(f) = f(zo)s La(f) = f(21)s - - -5

x =lx, =225 =2% ..

where z; are distinct points. Then,

1 P 202 . z")—l
1Lz zn? e 271
. . . . r—1
G =\ ) . =TI @ —=2) (2.6.22)
: i>j
2 -
Loz, 2, z:_{
1 ozg oz, z{)“
. 1
z¥ = —
G . i1
Fie Fi-2 -2
1 2 22 2i-1
This is a polynomial g(z) of degree j — 1 inz. Now q(zy) = gq(z,) = *+ = gq(2;_y) = 0

inasmuch as two rows are identical. Hence x,;* = (2 — 2o)(z2 — 23) - * - (2 — 2;_,),
Corresponding to L,;* we have the divided differences of f at the points zy, 2y, . . . .
Formula (2.6.21) yields the representation

a, = [f(zo)’f(zl)x IR ’f(zn)]
1 1
EN 2
zg_l z;"‘l
f(zg) flz)

for divided differences.

Ex. 2 (Abel-Gontscharoff Polynomials).
biorthogonalizing the powers 1,z, 22, ..

1 1 1 1
Zp zg z Zy
(2.6.23)
Zn1 237t 7t zn1
f(z,) zy" 2" z,"

These polynomials, @,(2), arise from
., against the functionals Ly(f) =

F(z¢)s Ly(f) = f'(21)s Lo(f) = f'(2p)5 - - . . We have

1 zy 292

0 1 2

0O 0 2
G, =

0 0

r—1
-2
(r — 1)2]

(r — 1) — 2)2573

(r — 1)!

=128 (r —1)! (2.6.24)
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1 0
EN 1
2,2 2z,
1
L.*(f) =
" Gria
2l (n — l)ep-2
S(z) Sz
1 oz 2,2
0 1 22
110 0 2
Qn(z) = 'G—”
1 z 22
Thus, in particular, we have
Qolz) =1
Ql(z) =z —2

THE NEWTON FORMULA

(n — 1)

0

F V(2 y) f™(z,)

n
20
n—1
nzj

n(n — 1)z5~2

zﬂ

Qo(z) = 2% — 22;2 + 2(22, — 2,).

47

B f(n) (2n)
I !

(2.6.25)

(2.6.26)

(2.6.27)

The polynomials @,(z) are the Abel-Gontscharoff polynomials. A more tractable
representation can be found for @,(z) in terms of iterated integration. Consider

the n-fold iterated integral

z 2 2" z(n=1)
T,(2) = n!f dz’f dz”f dz" - - j
2 31 23 Zn-1

dz™,n > 1.

(2.6.28)

It is clear that T', is a polynomial of degree n with leading coefficient 1. Further-
more, T',(29) = 0, and by successive differentiation,

T,(z) =0,...,

T(z,)
r!

TP

n! ’

=0 for r >n.

Thus, the biorthogonality conditions hold for T, and hence T, = Q,.

Ex. 3 (Bernoulli Polynomials).

that f(0) # 0. By Leibnitz’ rule

d'l %
7= (f @) = kgo (Z) sheszfmh(z),

Let f(2) be analytic at z = 0 and assume

(2.6.29)
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Hence,

% (fEe)| =3 (Z) skf»=4(0) (2.6.30)

z=

is a polynomial of degree n in s. In particular, select f(z) =

1 a function

et —
that is analytic in |z| < 27 and f(0) # 0. Hence, we may write
2e5% 1 2es2 \(m © 1
— — n — — B n 2.6.31
e —1 ,Son! (e‘ - 1)0 z ,,go n! n(s)2 ( )

for certain polynomials B,(s) of degree n. (2.6.31) is valid for |z| < 2 and can
be shown to hold uniformly in s and z provided s is confined to a closed bounded
region and z to a closed subset of |z| < 2. The polynomials B,(z) are the Bernoulli
Polynomials. The generating function (2.6.31) provides a convenient way to
define them. For a general f (z), the resulting polynomials p,(s) defined by

f(@)est = Zo:on(s)z” (2.6.32)

are known as Appel Polynomials.

Differentiating (2.6.31) j times with respect to s we obtain
2it1gsz @ B(j)(s)z”
— = —L—, |7 < 2n (2.6.33)
e —1 = n!

Set s = 0, 1 in (2.6.33), and subtract,

— () _ R
zm(ez 1) B % BYW) - BY©)

et — 1 n!

, |z|<21r,j=0,l,...

n=0
By the uniqueness theorem for power series we must have

B4 (1) — BY (0 ) ) .
”‘((j)+ 1)"“( )1 while B9(1) — BY0) =0, r #j + 1. (2.6.34)

We see now that the polynomials By(z), B,(2), . . . , and the functionals
Lo(f) =f(0), Ly(f) = f(1) — f(0),

S =10

f () = f(0)
2! T

Ly(f) = a1

Ly(f)
form a biorthogonal set.
Ex. 4 (Orthogonal Polynomials). Though these polynomials will be treated

in detail in Chapter X, it is interesting to note how they fit in with Theorem
2.6.1 and Corollary 2.6.2. Let X = C[a, b]. Let w(x) be a fixed positive weight
b

function for which the integrals | w(z)z" dx,n = 0, 1, 2, ..., all exist. Introduce
a
b
the functionals L,(f) =f w(x)z™f (x) dz,n = 0, 1, 2, . ... These are the weighted
a

moments of f. It will then be possible to biorthonormalize the powers 1, z, 22, . . .,
against these functionals. (In Chapter VIII it will be shown that the
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determinant condition for this is fulfilled.) We then obtain a’s and b’s such that

b
L,*(f) =j WE) (Ao + GZ + ** * + Gp2")f () do (2.6.35)

a
Dp(®) = bpg + bpy@ + *+ + bpp_y@™t + 27
L,*(pj(x)) = 0p;-
A glance at the determinants (2.6.21) shows that the a’s and 0’s in (2.6.35) are
proportional. Indeed, since L (x7) = bw(x)x"x" dx = L,(«%), the minors corre-
sponding to elements x; and L; are eqrxal. After accounting for the factors @, _,

and @, in front of these determinants, we find

b G”_
L,*(f) =f w(x) . L pa(@) f () da. (2.6.36)
a n

* Gn—l
Pa*(x) = G—Pn(w) (2.6.37)
n
we shall have

Gi—l Gn
1 L.*p,) =6
N G, "Gn-l n*(@;) ni
b G G;
=1 wz),/ 21 o (@) /’—_l i(x) dx
J; G, n G, ;)
b

=f w(x)p, *(x)p;*(x) dx. (2.6.38)

If we now set

The pelynomials p,* are called orthonormal over [a, b] with respect to the weight
w(x). They are determined up to a factor of 1. (2.6.21) and (2.6.37) now give
us the following determinant representation for the orthonormal polynomials

(L, 1) (Lz) -+ (1,27
(, 1) (z, x) e (x, ™)
pa*) = O, . . (2.6.39)
(x”_l’ 1) (xn—l’ z) - (x”_lr ")
1 z c. "
b
where (¥, x9) =f w(x)xtt de
a
and Cp = (GG, )~ H

with @, = @, 2|2,
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2.7 Successive Differences

DEeriniTION 2.7.1. Let there be given a sequence of values y,, y;, .. ..
The differences of adjacent values are designated by
Ay =Yeo1 — Yo £ =0,1,"-". (2.7.1)

Higher differences are defined similarly

A%y = AAyp) = Ayrs — By = a2 — Yerr) — W1 — o). (2.7.2)
In general,

Ay, = A(AMy) = AMypyy — A"y,
We define A%, = y,.

THEOREM 2.7.1. We have

A%y =y,

Alyy = Y1 — Y

A’ =t — 2pir + Ui

A%, = Yrss — Y2 + Y1 — Y

In general,

!
Ay, = 2 (—1)"-'( )ym (") =2 . @2y

r rl(n —r)!

Proof: Formula (2.7.4) holds trivially for » = 0, and this begins an in-
ductive proof. Assume (2.7.4) true for n. Then,

Amtly, = A(A™y,) = (2 (—=1) "_'( )yk+r)
= E (_l)”_r(:) Aypsr = Z (_l)"_'(:f) (Yes14r — Yrsr)

r=0 r=0

1

3
+

(=11 '(r " )yk+r 2(—1)”_'( )?/k+r

(_1)n+1—ryk+r|:(r ;n_ l) + (:)] + (:)yk+n+l - (‘—1)"(3)%

1
=S i (1),

r=0 r

r=1

3 S
+ 1Ms

Thus, if the formula is true for #, it must be true for » + 1, and the induc-
tion is complete.
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CoRrROLLARY 2.7.2. For k = 0 we have

Aty = Z ( —1)”"( ) (2.7.5)

In the case of interpolation at abscissas 2, 2,, . . . , that are spaced evenly:
2g=a,z,=a+h,z,=a+2h,...,2,=a+ nh, (2.7.6)

the divided differences may be given an elegant expression in terms of
successive differences. If w(z) = (z — 2¢)(z — z,) - * * (z — 2,), then

w(z) = (2, — 2002, — 21) * ** (7, — Z1) (3 — Zpqa) * 0 (3 — 2,)-
Since z; — z; = (¢ — j)h,

w'(z,) = (kh)(k — DA - - - (R)(—R)(—2R) - - - (—(n — k)h)
= ! (n — k)! (—1)"*. 2.7.7)

Therefore from (2.6.4),

& Yk
= [Wo Y- Yl = Z 7

¥=0w'(z,)
_ 7 (_l)n—kyk B N ( )
_kgom n| h" 2(_1 k k
An
IR Zﬂ- 2.7.8)

We can therefore prove the following theorem.

THEOREM 2.7.3. Let p(z) be the unique polynomial of P, that takes on the

valuesyo,yl,...,y”atthen—klpoint.sa at+h,...,a+ nh. Then
()_y.,—}-—(z—a)—}-m(z——a)(z——a——k)-{-
+ — ! A"yz —a)z—a—h) -+ (z—a— (n— 1)h). (2.7.9)

nl h?
If p,(f; 2) interpolates to f at a,a + h, . .., a + nh then

palfs ) = fla) + L2 f‘ (= @) + 57 AY@) = — @)z — @ — )+ -

+ Arf(a)(z —a)z —a — h) - - (z —a — (n — 1)R). (2.7.10)

n! k7
We have written

Af(@) =f(a + k) — f(a)
A*(a) = f(a + 2k) — 2f(a + k) + f(a), ete. (2.7.11)
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Formulas (2.7.9) and (2.7.10) are known as Newton’s forward difference

Sformulas.
If f (x) is defined at @, @ + h,a + 2h, . . ., the formal series
© k.
f@)y~3 A @) e —a— Ry —a— (b— k) (27.12)

K=o k!R*
is called a Newton series for f.

Ex. 1. Iff(x) = x", then Af (x) = nha"® ! + - - .. The first difference is there-
fore a polynomial of degree n — 1. Similarly, we find A"2" = n! k" and AP2" = 0
for p > n.

}«h:x. 2. If f(x) = e then Af(x) = (e® — 1)e°®. Tterating this, A"f(z) =
(e?® — 1)ne%.

Ex. 3. If f(z) € Z, then the series (2.7.12) converges to f(z). From Ex. 1,
the series reduces to a sum of n + 1 terms and, by Theorem 2.7.3, is that member
of #, which interpolates to f at @,a + h, ..., a + nh. By uniqueness, it must
coincide with f.

Ex. 4. On the other hand, the function f(x) = sin nx has zeros at 0, +1,
+2,...,s0 that witha = 0, h = 1, A¥f(0) = 0. The series (2.7.12) is identically
zero and does not represent f (x) over any interval. An entire function may still
not be sufficiently restricted in its behavior to be represented by its Newton
series.

NOTES ON CHAPTER II

2.1 The discussion of polynomial interpolation in Chapters IT and III can
be amplified by related material in any text on numerical analysis. Mention
should be made also of the numerous practical articles of H. E. Salzer
related to interpolation.

2.3 Abel-Gontscharoff Interpolation: J. M. Whittaker [1], p. 38; V. L.
Gontscharoff [1], pp. 84-86. Lidstone Interpolation: D. V. Widder [3],
R. P. Boas, Jr. [2]. Hermite’s Interpolation: A. A. Markoff [1]; Gontscharoff
[1], p. 64. Hermite’s formulas are rediscovered and republished every few
years. Generalized Taylor Interpolation: D. V. Widder [1], [2], I. M. Sheffer
[1]. Trigonometric Interpolation, A. Zygmund [1], Vol. IL.

2.4 For additional examples of unisolvent systems, see Pélya and Szegé
[1], vol. II, pp. 45-52. Further theory is presented in Achieser [1], p. 67
et seq. and in Motzkin [1]. References to recent work related to Haar’s
Theorem can be found in Buck [2].

2.5-2.6 General formulae of Lagrange and Newton type have been given
implicitly and explicitly by many authors. For instance, see the articles
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by Widder and Sheffer cited in 2.3. Also: W. E. Milne [1]. H. B. Curry [1]
develops these notions and contains some further references.

Bernoulli Polynomials: N. E. Nérlund [1].

Appel Polynomials: Boas and Buck [1], E. D. Rainville [1].

2.7 For the algebraic side of differences, consult books on difference
calculus such as Fort [1]. There are extensive studies of the convergence of
interpolation series some of which are found in books: Nérlund [1], Whit-
taker [1]. A. O. Gelfand [1] has a noteworthy treatment of Newton series
and allied questions. See also Buck [1].

PROBLEMS
1. If V(x,, xy, . . . , x,) designates the Vandermonde determinant, show that
V(1,2,3,...,n) =112131-- - (n — 1)1

2. Can a parabola p be found for which p(0), p”(0), »"(0) have preassigned
1
values? For which f p(z) dx, p(0), p’(0) have preassigned values?
-1

3. Construct a polynomial in 23 for which p(0) = 1, p(1) = 3,p'(—1) = 4,
p”(0) = 0. Is the answer unique?

4. Three points lie on a nonvertical line. What happens when you try to fit
a parabola to them? A cubic? Formulate a general statement. A+ Br

5. Show that we can not always find a function of the form f(z) =
that passes through three points with distinct abscissas.

6. Is it possible to fit a curve of the form f(z) = 4 + Be® to the data
F0) =0,f(1) = 1,£(2) = §?

7. X consists of all functions of the form ag + a;z + agy + asx? + a2y + asy?
defined on —1 <z <1, —1 <y < 1. Find a basis for X*.

1 4+ Cx

8. Let X =2, considered on 0 <z <1. Let 0 <2y <--: <2, <1
Z;
Prove that L;(f) =f f@)de,j =0,1,...,n, are independent over X *.
0 A + Bx + Ox? )
9. Select the constants A4, ..., E so that agrees with the

1 + Dz + Ex?
Maclaurin series expansion of e% as far as z%. How close is the resulting rational
function to e® over the interval |z| < 3 ?
A + Bz

10. If R(x) = T30z’ can the interpolation problem R(0) = f(0), R’(0) =
f(0), R”(0) = f”(0) always be solved? What about a similar problem for rational
functions of higher degree? The resulting rational functions are called the Padé
Approximants to f (x).

11. Let zg,%;,...,2, be fixed. Let p(x) =ay + ayx + - - - + a,xz" and
p(x;) =y;. Given an ¢ > 0, we can find a d such that |y;| < & implies [a;] < e.

12. Discuss the possibility of trigonometric interpolation with Taylor con-
ditions.

13. Discuss the possibility of osculatory trigonometric interpolation.

14. Let T(x) = ay + aycosx + bysinx + - - - + a, cosnx + b, sinnx. Con-
sider e"*T(x) = P,,(e**) and show that the number of real roots modulo 27 of
T'(x), each root counted with its multiplicity, is < 2n.
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15. If ay + a,cosx + -+ - + a, cos nx vanishes at n + 1 points,
0<oy <z <, <,
it vanishes identically.
16. If by sinz + - - - + b, sin nx vanishes at n points, 0 <z, <--- <z, <m,
it vanishes identically.
17. Let sy, sy, . . . , 8, be distinct. Then the set %1%, . . . , e is unisolvent over
any interval.
18. Show that p,(x"tl;x) = 2™l — (x — zg)(x — 2,) - -+ (¥ — x,).
n
19. Let G(xy,...,z,) = (Lix;)). Set y, = Zakixi and T = (a;). Then,
i=1
Gy« oo s Yn) = G2y, ..., 2,)T", T = transpose of T. Prove a corresponding

result for a linear transformation of the L’s.
20. In Theorem 2.5.1, determine the z,* explicitly in terms of determinants.
21. Prove the following ‘‘dual” of Theorem 2.5.1. Let X be a linear space of

dimension n and let x,, x,, . . ., ¥, be n independent elements. Then, there are

determined uniquely n independent elements of X*, L;*, ..., L, *, such that

L*z,) = b -

22. ’Showz:;ha,t if the abscissas x, # x,, then L, *(f) = xzf(wl)_aM a)

L) =12

— f(z)
X =2,

nd
Lo =7

are biorthonormal to the functions 1, z. Interpret in
2

(—1)?sinz

23. The functions . and the functionals

L,(f) =f(nm) n =0, £1, £2,...,
are biorthonormal. The infinite expansion of form (2.6.17) is

-
. (—1)%f (nar)
f(2) ~sin znsz_w s
It is called the Cardinal Series for f.

24. Biorthogonalize 1, z, 2, . . ., against

1 2
Lo(f) =Lf(x) dx, Ly(f) =Lf(x) dz, . ...

Compute the first three polynomials.
25. Let | Ly(x;)|?;_, # 0. Then there is a permutation of the elements

=

’

Tys Tgy o oo s Tyt XYy Tg'y o oy Ty

such that |Ly(z;)|¥;_; # 0,k =1,2,...,n. (Cf. the hypotheses of Theorem
2.6.1.)
26. Compute the first four Bernoulli polynomials from (2.6.30) or (2.6.31).
1
27. Calculate the nth divided difference for f(z) = 7

28. Prove that f(n) = z (:) AKf(0).

=0
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29. Express x2, 23, 2* as linear combinations of 1, z, z(x — 1), z(x — 1)(x — 2),
z(x — 1)z — 2)(x — 3).
30. Verify the formal Newton Series
(e —1)2
2—!z(z_l)+...’
1 1 2 2(z — 1)
i Twontwoywe=2 "

e’ ~1 + (e — 1)z +

31. Verify the formal Newton series

log 2 (log 3 — 21log 2)
g' z(z_1)+g3—'gz

log I'(1 + 2) ~ 2

(e = 1) —2) + -
(Hermite).



CHAPTER III

Remainder Theory

The results of the previous chapter are purely algebraic. They relate to
the possibility of carrying out interpolatory processes. But once these proc-
esses have been carried out, how good are the approximations that result?
Remainder theory deals with this question and is consequently of great
importance to numerical analysis as well as to various parts of pure analysis.

3.1 The Cauchy Remainder for Polynomial Interpolation
THEOREM 3.1.1. Let f(x) € C"[a, b] and suppose that f"+V(x) exists at each

point of (a, b).
Iffa<zy <z, <:--<x, <b,then

L E—mE ) @)
S @) — paf5 ) = T F0E) (311
where min (x, g, 2y, . . ., 2,) < & < max (z, 2y, T, . . . , &,). The point &
depends upon x, g, %, . . . , %, and f.
Proof: Since p,(f; ;) = f(x;), the function f(z) — p,(f; ) vanishes at
T=12y,=2,,...,¢ =72, Letx be fixed and # zy, z,,...,x,. Set

K(x) _ f(x) _ pn(.f; I)

= 3.1.2
U PR e, Sy P 8.1.2)

and consider the following function of ¢:
W(t) =f(t) — pa(f5t) — (t — @o)(t — 21) - -+ (t — 2)K(2). (3.1.3)

The function W(f) vanishes at t = xy, t = x,,...,¢t = z,. In addition, in
virtue of (3.1.2), it vanishes at the additional point ¢ = z. By the general-
ized Rolle’s Theorem 1.6.3, the function W™+ () must vanish at a point

& with min (z, z,, . . ., z,) < & < max (z, z,, . . . , ,). But from (3.1.3)
WD (e) = S0 — (n+ 1)! K(z)
so that
0 = WmD(g) = f(g) — (n 4- 1) K(x) (3.1.4)
and therefore
1
K@) = oy /"0 (3.1.5)

56
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Inserting this in (3.1.2) we obtain (3.1.1). If x = z,, (3.1.1) holds trivially
with any &.

CoroLLARY 3.1.2. (Error in Linear Interpolation). Let f(x) € C'[a, b]
and suppose that f"(x) exists at each point of (a,bd). Then, for a <x < b,

b— =z x — (x — a)(x — b)

a "
fl@) — (mf(a) o af(b)) = /f"®), a<§<b.
(3.1.6)

In most instances, the value of £ is not known exactly, and the following
estimate becomes of importance.

CoroLLARY 3.1.3. Let

R, (f; %) = f(2) — pa([; ®). (3.1.7)
Then if f(x) € C"+1[a, b],
” |z — 2| |z — 24| - - - |2 — =,
|R.(f;2)] < {Jé’?s"b Fm0() } 2 = +11)1 (3.1.8)

Ex. 1. A value for arcsin (.5335) is obtained by interpolating linearly between
the values for x = .5330 and x = .5340. Estimate the error committed. We have
(arcsin z)” = z(1 — 22)~% and (arcsin x)" = (1 + 222)(1 — «2)~%. Since the 3rd
derivative is positive over .533 < z < .534, the maximum value of the 2nd
derivative occurs at x = .534. From (3.1.8),

534 (.0005)2

< 1.2 x 107"
(1 — (534)y)F 2

|By| <

A direct computation shows that the true error is 1.101 x 10~7.

This example points out the following facts. In order to use the estimate
(3.1.8) in practical work, it is necessary to have an expression for a higher
derivative of the function interpolated, and it is necessary to obtain an
upper bound for the value of this high derivative over a certain interval.
This might be a formidable task even for quite elementary functions. Think
of obtaining the 8th derivative of arcsin z or, worse still, of

(1 + (= + 2 + (= + 3)hH!

There are several ways in which this difficulty can be overcome. This
applies not only to the error estimate for interpolation, but to all error
estimates of mean value type, i.e., those involving higher derivatives. If
we are working with a tabulated function, we can estimate derivatives
by means of differences. The justification for this procedure is found in
Corollary 3.4.4. Secondly, if we are working with analytic functions and if we
are in a position to obtain an upper bound for the values of the function in
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the complex plane, then we can use (1.9.8) to estimate the derivative. This
process is summed up by the following result.

COROLLARY 3.1.4. Let f(x) € A(R) where R is a region that contains [a, b].
Let C be a closed curve that contains [a, b] in its interior and set L(C) =
length of C, Mo = max |f ()], 6 = minimum distance from C to [a, b]. Then,

LIC)M,,
[B(f; o) = |f (@) — pulf52)| < Ty |2 — ol l& — 24| -+ - |& — |-
(3.1.9)
Ex. 2. Letf(z) =[e*"* — 133.[a,0] =[—1,1],n = 4,2 = —1, 2, = —},

%, = 0,23 = }, 7, = 1. Estimate the error committed at = } by interpolation
at these points. Now f (2) is analytic in |z| < 2, and

|f@)] = e =13
< (] + DE = (R0 4 1
= (2" V"4 4 1)h
IfC: |zl =p, 1 <p <2,

Mo = max|f()] < (¢ + 1} <28 L(O) = 2m,
ZE

and 6 =p — 1. Writep = 2 — &. Then

L(C)M¢  (2a)(2 — €)2%
270mt2 = 2x(1 — )8

Since (3.1.9) is valid for any 0 < ¢ < 2, we may select ¢ = 0, leading to
[Ra(fs D] < 22D DD @) ~ .11

3.2 Convex Functions. Here we make a different sort of application
of the remainder theorem.

DerFiNiTION 3.2.1. Let f(x) be defined on [a, b]. Then f is said to be
convex on this interval if an arbitrary chord joining two points of the curve
is never below the curve.

f(z)
‘Pl( j ;'L)

a EA z2 T3 b

Figure 3.2.1.
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Ex. 1. The parabola y = z2 is convex on any interval [a, b].

This definition can be recast in the language of interpolation. Let a <
z, <2y <23 <b and let p,(f;x) be that element of £, which coincides
with f at x, and x; then

F(@) — pa(fi20) <O, 2 <y < 2. (8.2.1)

TureoreM 3.2.1. Let f"(x) exist on (a,b). Then f(x) is convex in every
closed subinterval if and only if f"(x) > 0 on (a, b).

Proof: By (3.1.6),
F(@2) — pa(f5 20) = $za — 2))(2 — 2)f"(§), 2 < & < 1,

Since (x, — 2,)(x; — 23) < 0, f"(x) = 0 implies that the left hand side is
nonpositive and hence f is convex.

Suppose, conversely that f is convex but that f"(z) = k << 0 for some
a < z < b. Then, by definition of the second derivative,

i fE D —fE
r—ot h
lim f’(x—_)f(x) - k.
r—ot —h

Hence, lim feth—f—h =2k

h—0+ 3
Since k < 0, for sufficiently small A, say for 0 <<k < h;, we must have
fl@+h) —f(x— k) < kb, k, <O.
hy , , hy klhlz
Hence, [f'(x +h) — fl(x— k)] dh < Ichdh:T.
0 0
Therefore f@+ k) — 2f(x) + f(x — hy) <O.

This tells us that the chord extended from # — %, to  + %, lies below the
curve at z and this contradicts the assumption of convexity.

If f lacks a second derivative, we can at least say that second differences
are nonnegative.

THEOREM 3.2.2. Let f(x) be convex in [a,b].
If a <zy<zy+ h <xy+ 2k <D,
then
A% (xg) = f(zo + 2k) — 2f (g + k) + f(xo) = 0. 3:2.2)

Proof: This inequality asserts that the midpoint of any chord lies above
or on the curve.
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3.3 Best Real Error Estimates; The Tschebyscheff Polynomials.
The error estimate (3.1.8) for polynomial interpolation splits into two
parts. The first part, max, |f*+V ()|, depends upon the function inter-

polated, but is independent of the manner in which the interpolation is

1
carried out. The second part, m |z — 2| | — 24| - - * |& — =], is in-
dependent of the function, but depends upon the points. The estimate
(3.1.8) was obtained by replacing [f+1(§)| by max, | f™+U(z)|. This was a

pure expedient, and in many cases, of course, the error predicted by (3.1.8)
will be far greater than the actual error.

But since the first part is, so to speak, beyond our control, let us look at
the second part. A small error estimate will also result from a small second
part. Consider the quantity Jmax [ — 2}z — 2y) - - - (x — 2,)|. It de-
pends upon zy, x4, . .., ,, and this leads us to the following important
and interesting question: how can we select points %y, zy, . . ., 2, in [a, b]
so that the maximum is as small as possible? As far as the estimate (3.1.8)
is concerned, this selection of points will be the best possible selection.
Indeed, it turns out that this choice of points is a happy choice as far as a
number of questions in interpolation theory are concerned. The answer to
the problem just posed is given by the zeros of the Tschebyscheff Poly-
nomials, and we now turn to their theory.

In deMoivre’s formula (cos 6 + ¢ sin 6)" = cos nf + ¢ sin nf, set cos 0 = z.

If0 <0 <, sinf =41 — 2% > 0. Then,

cos nf + isin n = (x + V1 — z?)".
If we expand this expression by the Binomial Theorem, and take the real
parts of the resulting equation, we obtain

cos n(arccos x) = cos nf = z2" + (g)x”‘z(xz -1

1+ (:)x"—-i(xz —1)24.... (331)
Thus, cos nf is a certain polynomial of degree  in cos 6.

DEerFintTION 3.3.1. The Tschebyscheff polynomial of degree n is defined
by
T, (x) = cos (n arccos ) = z" + (;)x”-z(xz —1)+---(n=0,1,...).
(3.3.2)
There are a number of distinct families (in fact, infinitely many) of poly-

nomials that go by the name of “Tschebyscheff Polynomials.” The poly-
nomials defined by (3.3.2) are the Tschebyscheff Polynomials, par excellence.
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When we have occasion to deal with other types of Tschebyscheff Poly-
nomials, we shall include some qualifying expression.

It is easy to compute the first few Tschebyscheff polynomials explicitly
using (3.3.2). We find

Tox) =1

Tizx) =2

Ty(x) = 22% — 1

Ty(x) = 42® — 32 (3.3.3)

Ty(x) = 8t — 8x% + 1
Ty(x) = 162% — 2023 + 5z
To(x) = 3225 — 4824 1 1822 — 1

The Tschebyscheff polynomials satisfy a three term recurrence relation.

TueEorREM 3.3.1.

T,,,(x) =22T () — T, ,(x) n=1,2,.... (3.3.4)
Proof:
cos (n + 1) = cos nf cos O — sin nf sin 6
cos (n — 1) = cos nf cos 6 + sin nf sin §
Adding and rearranging,

cos (n + 1) = 2 cos nf cos § — cos (n — 1)0

Now set cos § = z, cos nf = T ,(z), and (3.3.4) is obtained.

COROLLARY 3.3.2.
T,.(x) = 2" 1a™ 4 terms of lower degree. (3.3.5)

THEOREM 3.3.3. T, (x) has simple zeros at the n points

2k — 1
x, = cos

T k=12, ...,n (3.3.6)
On the closed interval —1 < x <1, T, (x) has extreme values at the n + 1
points
2k
z' =cos—m k=0,1,...,n (3.3.7)
2n

where it assumes the alternating values (—1)~.

2k — 1 2k — 1
Proof: T, (x;) = cos (n arc cos (cos 3 n)) = cos ( ) 7r) =0,
n

k=1,2,...,n Now

T, (x) = ——— sin (n arc cos z). (3.3.8)

n
V1 — 22
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2k —1 )
Hence, T,'(z,) = " sin( 77') # 0 and the zeros must be
V1 — a2 2

simple. Moreover,

., km\t
T, (x,)=mnll — cos?—) sin (kw) =0
n

fork=1,2,...,n — 1. Now,
, km
T ,.(x,') = cos |n arc cos cos: = cos (km) = (—1)~.
This is valid for k= 0,1, ...,n Butfor —1 <z <1,
T ,.(x) = cos (n arc cos x)

and hence |7,(x)| < 1. This shows that the points x;’ are extreme points.
It is easily shown that z, are the only extreme points in —1 <z < 1.

Derivrion  3.3.2. T (x) = T (x).

9n-1
Note that 7' (x) = z" + terms of lower degree.

THEOREM 3.3.4 (Tschebyscheff). Let 5’” designate the class of all poly-
nomials of degree n with leading coefficient 1. Then, for any p € 2.,

max |T,(2)] < max [p(a)l.

—1<z<1

n+1

. . 1
Proof: On —1 <z <1, |T,| assumes its maximum value, pr=t

km
times at the points z;' = cos (—) k=0,1,...,n
n

ference Q(x) = T ,(x) — p(z). Clearly Q(z) € 2, _,. Now

’ ’ ’ (_l)k ’
Q) = Tolwe) = p@) = o — P@), k=0,1,...,n

1
These quantities are alternatively 4+ and — inasmuch as |p(z,')] < — P
Therefore, there are n + 1 points where @(x) takes values with alternating
signs. Q(x) therefore has n zeros. Since @ € &, _,, it must vanish identically.

Thus, p(x) = T ,(2). This yields

1
= _max |T,(2)| = max [p()l <

271 —l<z<1

n—1

Py

This is a contradiction.
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To(I)
Ti(z)
Ta(z) Ts(z)
Ti(x) Ts(x)
Figure 3.3.1 The Tschebyscheff Polynomials.
CoROLLARY 3.3.5. _rlnsa;stx” +axt 4 -4 a,| > =g

(
COROLLARY 3.3.6. Jax, |agz™ + a2t 4 - - + a,| = |ay|

22”—1

63

b—a)"
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b+a b—
2

Proof: Make the transformation z = 2y converting [a, b]
into [—1, 1].

When polynomial interpolation is carried out on the zeros of T,,,(x):
Ty, Xy, - - ., T, then T, () = (x — 2y) - * * (x — 2,) and we have

R, (f;7) = (T":l),f‘"“’ &, —l<é<l, (3.3.9)

and

[B,( fo@), —1 <z <1. (3.3.10)

1
fio)l < P T D) _max |

3.4 Divided Differences and Mean Values. We begin with a formal
identity for the remainder in polynomial interpolation.

THEOREM 3.4.1.
B(f;2) =f(2) — pu(f;2)
=[f),f(zg), ..., f)] (2 — 2)(z — 2,) -+ (2 — 2,,). (3.4.1)
Proof: According to (2.6.23),

1 1 1 1 1 I
z 2o v 2z, z 2 2,
22 zoz e z”z
(@Sl f)] =] s
Fid zon co z”n P zo” . Zn”
f) fzo) -+ f)] |entr Bt ... a1
(3.4.2)

Note that the denominator D is in &, ,,, and that it vanishes for z,, z,, . . .,
2, (identical columns). Hence we have

| T |
% vz,

D = (=" —2)(z — 21) * * (2 — 2,)

n ... n
e 2,

It follows from this and by expanding the numerator of (3.4.2) in minors of
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the first column that the function

Q) = [f(2), f(z0), - - - . [(2))(z — 20z — 21) =+ * (2 — 2,)
equals f(z) + ¢(z), where q(z) € #,. Moreover, ®(z,) =0 ¢ =0,1,...,n.
Hence —q(z;) = f(z,). By the uniqueness of interpolation, ¢(z) = —p,(f; z)
and (3.4.1) follows.

CorOLLARY 3.4.2. Let f(x) € C [a, b] and suppose that f"tV(x) exists at
each point of (a,b). If a < xy < x, < --- <z, <b, and x € [a, b], then

_f(n+1)(4:)
where min (z, z,, . . ., z,) < & < max (z, z,, . . ., z,).

Proof: Combine Theorem 3.4.1 with Theorem 3.1.1.

Divided differences may be regarded as generalizations of derivatives.
More precisely,

CoROLLARY 3.4.3. Let f(x) € C*tY[a, b). Then of x €[a, b),

(n41)
Jim  [f@),f (@), . . .. flwa)] = {n — (1?

. §
1=0,12,...,n

(3.4.4)

In the case of equally spaced points, we obtain a mean value theorem for
successive differences. Let zy=a, 2, =a + h,...,z, = a + nh. Then,

An
from (2.7.8), [f(@),f(x1), ..., f(x,)]= 'f (%) .

Combining this with
Corollary 3.4.2 leads to aige c OTTRE W

CoROLLARY 3.4.4. Let f(x) € Cla, b] and suppose that f™(x) exists at each
point of (a, b); then

ATf (o) = hPf(E) g < E<z, Form=1, (3.4.5)

this is the simple mean value theorem.

Ex. 1. Tables of functions frequently list the first few differences. Suppose
that f has been tabulated at an interval of » and suppose that we obtain the
value of f at a point  between successive abscissas a and a + & by linear inter-
polation. By Cor. 3.1.2, the error committed, R,, is

(x —a)x —a —

h)
2 &), a<é&é<a+h

1
By (3.4.5) A% (a) = h%"(£) so that if “h is sufficiently small” f(£) ~ 33 A% ().
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B2
Since max |(x —a)(x —a — h)| = —, it follows that
a<zr<a+h 4

Byl < 31A%(a)l.
This leads to a rule of thumb long employed by computers: the error in linear
interpolation does not exceed } of the 2nd difference.

3.5 Interpolation at Coincident Points. In formulating the funda-
mental problem of polynomial interpolation, we have assumed that the
interpolating points are distinct. With a proper convention as to what in-
terpolation at coincident points means, this restriction can be overcome.
The convention arises from considerations of the following sort. Suppose
we interpolate to f(z) at the distinct points 2y, 2, . . . , ,. Then,

pu(f;2) = E [f(xo), f(@1), - - -, fl@R)]@ — 29) * + + (& — ). (3.5.1)

If we make z,,...,z, ‘“coincide” at z, by allowing z,,,, ..., z, — ,,
then, by (3.4.4), the limiting expression on the right hand side will be

2 f9(xo)
2

ko k!

Palf32) = (x — 2p)*. (3.5.2).
The interpolation polynomial approaches the truncated Taylor expansion
for f(x) at x,. This is an interpolation in which the values f(z,), . . . , f™(z,)
have been prescribed. This provides an interpretation for interpolation at
n + 1 coincident points.

In an analogous way, the following convention is introduced. Suppose
that among the n +- 1 points 2y, z,, . . ., z, only j + 1 of them, zy, ,, . . . , z;,
are distinct. Suppose that in the list of points x, occurs n, times, ..., z;
occurs n; times so that ny, + n; 4 -+ 4+ n; = n + 1. Then, by interpola-
tion to f(x) at x, ,, . . . , z, we shall understand the determination of the
unique polynomial of degree < =, p,(x), for which

Pa(@e) = [ (@), Py’ () = (o), - - -, PO V(2g) = fMo~D(z,)
(3.5.3)

Pa@) = f(2;), P,/ (@) =f'()), ..., P Va;) = f D (w

This is a problem of Hermite interpolation and the existence and uniqueness
of this polynomial is guaranteed by Ex. 4, Ch. 2.5.

To justify this convention from the point of view of a limiting process,
in the way in which (3.5.2) was derived from (3.5.1), we should have to
study the limiting expressions of the divided differences when each of several
groups of arguments approach distinct limits. This would lead to the notion
of generalized divided differences and is a topic that will not be pursued in
this book.
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Having identified “coincident point” interpolation with Hermite inter-
polation, we point out that a remainder formula analogous to (3.1.1) is
easily obtained.

THEOREM 3.5.1. Let 2y, 2y, . . . , %, be n + 1 distinct points in [a, b]. Let
Tgs Ny, . .o, N, ben + 1 integers > 0. Let N = (ng+ ny + -+ + n,) + n.
Designate by Hy(f; x) the unique element of Py, for which

HYP(f;2) =f%@) k=0,1,...,n, 1=0,1,...,n (3.54)
Let f(x) € C[a, b] and suppose that fN +1)(x) exists in (a, b); then
(N +1)
f(x) _ HN(f; x) ={1VT(1£)2 (x _ xo)”"“(x _ xl)nﬁ-l PP (17 _ xn)nn+l

(3.5.5)
where min (x, 2y, . .., ,) < & < max (z, %, . . . , T,)-

Proof: Consider (f(x) — Hy(f; x))/(x — zo)™0* - - - (x — x,)**! and pro-
ceed as in the proof of Theorem 3.1.1.

3.6 Analytic Functions: Remainder for Polynomial Interpolation.
Let f(z) be analytic in a closed simply connected region R. Let C be a
simple, closed, rectifiable curve that lies in R and contains the distinct
points 2y, 2,, . . . , z, in its interior. Consider the integral

1 /@ . (3.6.1)

T omiJoe—z)z— ) (2 —2,)

The integrand is analytic or has simple poles at zy, zy, . . . , z,. Hence, by
the residue theorem,

S flz)
= 3.6.2
kzo (2 — 20) " * (B — 231} (Br — 1) * 7 " (B — 24) ( )
Compare this with (2.6.4), (2.5.6) and obtain
[z f(z1), - - [z = 1. (3.6.3)

By the same token,

J@®)
[f(z)’f(zo), . e vf(zn 2mf (t — Z)(t — 20), . (t — z”) dt, zE R.
(3.6.4)

From (3.4.1),
R.(f;2) =f(z) — pu(f;2)
=[f(2) f(20)s - - - s [ (2)Mz — 29}z — 21) = = (2 — 2,,)

(z—2z)z—2) - (z2—2,) Syt
2mi c(t—2)(t—zp) - (t—2,)
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We have therefore proved
THEOREM 3.6.1 (Hermite). Under the above regularity conditions,

1 [ (z—z)z—2) - (z—2z,)f(t)dt

Tl —m) i —a 0D
COROLLARY 3.6.2.
_ L[ w) — wp)
Palf;2) ot Jo WO —2) f(ode (3.6.6)
where w(z) = (z — zo)(z —2) (2 —z,).
Proof: f(z) = — . tf( ) dt. Subtract (3.6.5) from this.

CoROLLARY 3.6.3. Formula (3.6.6) has meaning of the points 2y, 2,, . . . , 2,
are not distinct and yields the polynomial that interpolates to f in the generalized
sense explained in 3.5.

Proof: We shall give only a brief indication of how this goes. For sim-
plicity, suppose that z, and z, are coincident and the other z’s are distinct.
Then, w(z) = (z — 2)%(z — 25) - * * (2 — 2,,) and so, w(zy) =0, w'(z,) = 0.
From (3.6.6),

1 w(t) f ()

T Jow — e @I

pn(f zo) =

and

1 (2 w(t)—w<z)) UL,
pn(f,zo)—g—,i_{ca( (t—2) Jyegy w(®)

_fo

2m t—z)2

= f'(z)-

Now p,(f;2;) t=2,...,n is easily computed to be f(z;) and therefore
P, f; 2) takes on interpolatory values as required.

CoROLLARY 3.6.4. If f is analytic at z, then

1
2 ,z, z“__z [f (o), f(21), « + «» f20)] = Ef(”)(zo) (3.6.7)
1 [z 1, o
Proof: In the limit, I becomes 2mfc (@ — 2™ = f™(z,). This is

the complex analog of (3.4.4).
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Ex. 1. The limiting form of (3.6.5) as 2,,...,2, — 2, is the Taylor Series
with the exact complex remainder

k) _ n+1
f()—Zf((")(z—zo) if(z zo) mdt

Ct*Zo t —2z

Cl Cz

Figure 3.6.1.

A moment’s consideration of the residue theorem should convince the
reader of the validity of the following generalization of formulas (3.6.5) and
(3.6.6). Let C consist of a finite number of mutually exterior curves C, . . .,
C,. Let f,(2) be a single valued analytic functioninandon C;7 =1,2,...,r
The functions f; need not be analytic continuations of one another. The
total configuration of functions f,(z) will be designated by f(z), and f will
be thought of as a certain analytic configuration. If, now, each of the points
2g, . - -, 2, is contained in the interior of some C;, and if interpolation to
f(z) is carried out at these points, then formulas (3.6.3), (3.6.5), and (3.6.6)
are still valid.

Ex. 2. Formula (3.6.5) provides a complex analog of the estimate (3.1.8).
If §; = minimum distance from z; to C and 6 = minimum distance from z to C
then,

LIC)Mqlz — 2| |z — 2| - - - |2 — 2]
R, (f; < .
|Balfs )| < 27 309 0y - - - O,

3.7 Peano’s Theorem and Its Consequences. If we examine, once
again, the Cauchy remainder for polynomial interpolation (3.1.1), we may
note the prominent role played by the portion f("+1)(§). If, for instance,
fe Z,, then f»t) = 0, and the remainder vanishes identically as it should.
For a fixed z, we may consider the remainder R,(f;z) = f(x) — p,(f; %)
as a linear functional which operates on f and which annihilates all elements
of Z2,. Peano gbserved that if a linear functional has this property, then it
must also have a simple representation in terms of f(n+1),

Without striving for full generality, consider functions of class C"t![a, b],
and let linear functionals of the following type be defined over this class.
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b
L(f) = f [04(2) (@) + (@) (@) + * + + ap(a) @) de

Jo, N i
+ 2 bf (@) + 2 baf () + -+ .]; benf (). (3.7.1)

The functions a,(z) are assumed to be piecewise continuous over [a, b]
and the points z;; to lie in [a, b].

TaEOREM 3.7.1 (Peano). Let L(p) =0 for all pe P,. Then, for all
f e Crta, b],
b
1) = [ Fomor a (312)
where ‘
1
K(t) = — Lyl(x — )] (3.7.3)
and
x—t) = (x—)" x>t
( ( ) (3.7.4)
(x—t)t =0 x<t.
The notation L,[(x — t)7,] means that the functional L is applied to (x — t)

considered as a function of x.

Proof: Taylor’s Theorem with the exact remainder tells us that

f@) =fla) + @)z —a) +

AL —or

+= f f() (@ — i d

1 [°
We may evidently write the last term as = f [ () (e — 1)y dt. Now
n:Ja

apply L to both sides of this expansion and recall that L vanishes for all
elements of &,. This yields

1 b
L(f) = ;LJ‘ Fer0(t) (@ — £)% dt. (3.7.5)
. a
Since we have assumed a form (3.7.1) for L, we are working under hy-

potheses which allow an interchange of the functional L with the integral in
(3.7.5). Hence,

1 b
L=~ fa FEOGL (@ — %] dt. (3.7.6)

The function K(f) is called the Peano Kernel associated with the func-
tional L.
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CoroLLARY 3.7.2. If, in addition to the above hypotheses, the kernel K(t)
does not change its sign on [a, b] then for all f € C"*'[a, b],

()
RS

Proof: From (3.7.2) and (1.4.5),

L(f) L(z™t), a<&<b (3.7.7)

L(f) = (&) f bK(t) dt a<é<b (3.7.8)

Insert f = 2™+! in (3.7.8) and obtain
b
Li™1) = (n + 1)! f K(t)dt (3.7.9)
a
Combining these yields (3.7.7).

A functional that satisfies the conditions K(¢) > 0 (or K(f) < 0) on [a, b]
is known as a positive (or negative) functional of order n. Many of the error
functionals that occur in numerical analysis are of this type.

Ex. 1. Kowalewski’s Exact Remainder for Polynomial Interpolation. Let

Z, Xgy .+ - » %, be fixed in [a,b]. Let L(f) = R,(f;2) =f(x) — i J (@) ().
(See (2.5.9)). k=0
Then,

nK(t) = Ly(x — t)* = (x — )% — Y (23, — )% 4 ()
k=0

= Dllx — % — (7 — )% ().
k=0

The last equality follows from (2.5.13). We now put this in a more convenient
form. For fixed k we have by (3.7.4),

b
f[(x — )% — (z — O 1fHD(0) de

z z
=f @ — 0" — (@ — O"1f () de +f (z — O t(e) dt.
a £

Hence,

b
n!j K(¢) ftbye) de

T, n n z
=f o) 3 [ — o — (2 — " )(@) dt + 3 lk(x)f (@ — O)nfetbo) de.
a k=0 k=0 L%

The inner sum in the second integral may be transformed by (2.5.13):

n

Dl — " — (1, — () = (& — O — 3 (@, — 1) ().
k=0 k=0
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n
Since Y (z;, — 1)"y(®) = pu((x — t)?;2) = (x — ¢)*, the inner sum vanishes
£=0
identically. Thus, finally,

1 n z
L(f) =f @) — pa(fs2) =— Zlk(w)f (@ — Orfnthe) de, feC™a, b].
k=0 2 (3.7.10)

Ex. 2. (Integral remainder for linear interpolation.) The case n = 1, z, = a,
x —a
b—a

z—b
z, = b is particularly noteworthy. Then fy4(z) = p— {i(x) = . From

(3.7.10),

x

—b r —a
f@) = ——5f@ - — 1)

a
_z=b [ D i b ] N
b —a a(t_a)f(t) P+ z(t~b)f(t)dt. (3.7.11)

Introduce the following function defined over the square ¢ <z <b,a <t <b

(¢ —a)@ —b) ¢ <a
b—a
Gz, t) = 3.7.12
@ (x —a)it —b) ( )
T b-a =
Then we may write (3.7.11) in the form
b
R,(f; x) =f Gz, t)f” (t) dt (3.7.13)
a

The function G(x, t) is, for fixed x, the Peano kernel for R,(f).
Let h(x) € C[a, b] and H” (x) = h(x). Set

b
d(x) = f Gz, t)h(t) dt. (3.7.14)
a
Then, by (3.7.13),
¢(x) = H(x) — p,(H;x) sothat ¢"(x) = H"(x) = h(x).
Furthermore, ¢(a) = R, (H;a) =0, ¢(b) = R, (H;b) =0.
Therefore the integral (3.7.14) solves the differential problem
¢'@) =h
$(a) = $(b) = 0.
The function G(z, t) is known as the Green’s function for the differential system
(3.7.15). These remarks indicate the close relationship between Peano’s kernels
and Green’s functions, and hence between interpolation theory and the theory

of linear differential equations. Unfortunately, we shall not be able to pursue
this relationship.

(3.7.15)

Ex.3. Letx, =2y + h, x, =2y + 2h, x3 =2y + 3h and set
L(f) = —f (o) + 3f(x1) — 3f (%) + f(w5) = AY (o).
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L annihilates all elements of #,. Hence, n = 2 and
! 2
K(t) = % L — ).

If we write this out explicity we find

2K(t) = (g —t)2 —3(xy — )2 + 3(x; — )2 =(t —xg)%, <t <=z
= (xg — )% — 3(x, — t)2 xz <t <z (3.7.16)
=(x3—t)2 Ty St <2

The kernel K(t) consists of 3 parabolic arches and is of class C'[x,, #3]. Thus, for
f € 03[‘”0» xs],

z,
L(f) = A3 (x) =f 'K(t)f’”(t) dt. (3.7.17)
Zo
Note that K(t) > 0. We may apply (3.7.7) yielding

ARG
31

A% (x) = A¥(x3) = RYF(E). Cf. (3.4.5).

Similar formulas hold for differences of all orders.

0 1 2 3
Figure 3.7.1 Peano Kernel for 3rd Difference, z, =0, h = 1.

Ex. 4. The Trapezoidal Rule and the Euler-MacLaurin Summation Formula.
Let

b b—a
L(f) =ff(-’¢) dx —T[f(a) + f()] (3.7.18)

b
be the error in estimating the definite int,egralf f(x) dx by the trapezoidal rule
a

b — a)lf(a) + f(b)]. The rule is exact for linear functions, and, in particular,
for constants. If we select » = 0, we have

1 for z >t
(x — )% =8, ¢) =

0 for z <t.
Then

b

Ly(S(z, ) =f S(z, t) de — 3

b—a

[(S(a, ) + S(b, )]

b b—a
o dz*_2-[0+1]=%(a+b)~t, t > a.
¢
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Therefore
b
L(f) = ——f (t — ¥a + b)) f()dt. (3.7.19)
Consider, next, the extended trapezoidal rule,
b a[f()
L(f) =ff |:— +fla +0) +fla + 20) + -
a n 2

1
+f@+ (n — 1)o) +J%] o ==(b—a). (3720)
An expression analogous to (3.7.19) is most conveniently obtained by adding
expressions of this form for each subinterval.
a+(k+1)0
L(f) = Z ¢ —(@+k+hoNf@d.  (37.21)

a+ko

In particular,if weselecta = 0,b =n, o = 1,thenoverk <t <k +1,t —k —}
becomes ¢ — [t] — 4, where [f] is the largest integer contained in ¢, and we
rewrite (3.7.21) as

f(
ff(x)d ””() CLFO) 4+ F1) 4+ F )]

=fo (5] — ¢t + 3 f @) de. (3.7.22)

This is the simplest version of the Euler-MacLaurin summation formula.

Ex. 5. Remainder in Simpson’s Rule. Let

+1
L(f) = lf(x)dx —3f(=1) = 3f(0) —4f(1). L(p) =0 if pePs

K()

Figure 3.7.2 Kernel for Simpson’s Rule.
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Applying (3.7.3) we find 6K(t) = L{(x — t)3] or,

K@) = —&(1 — )33t + 1) 0<t<l1

(3.7.23)
K@) = K(—t) “1<t<0

Note that K(t) < 0 so that Corollary 3.7.2 is applicable:

f“)(f) _4. B f“)(f)
4 \"15) 7 90 °

1
L(f) = Z‘!f“’(ﬁ)L(x‘) =

This leads to the following error for Simpson’s rule:

f(4)( £)
90

1
f 1f(ac)olac =3f(—1) + $£(0) + 3f (1) — ,—l<&E<. (3.7.24)

3.8 . Interpolation in Linear Spaces; General Remainder Theorem.
We cannot say too much in the general case, for the underlying structure
is too meagre. But it is instructive to derive what result we can, and this
will round off the formal algebraic work of 2.5, 2.6.

Given an element z in a linear space X, we interpolate to by an appro-
priate linear combination of x,,...,x,, ax, + ---+ a,x,, such that
Loz, + - +ax,)=L(x) t=1,2,...,n. Let

rp=x— (a2, + -+ a,x,).

Then, Lzp) =0 1=1,2,...,n

TueOREM 3.8.1.  Under the assumption that |L(x;)| 7~ 0, we have

x x, “ e z,
Ly(z,) Ly(xs) -+ Ly(z,)
Lix) Lyx) -+ Ly(=,) . ' '
== N : .| @8y
L@ Lym) - Lyay| Lol Dam) oo Lol

Proof: It is clear by expanding the numerator of (3.8.1) by the minors
of its first row that the right hand side of (3.8.1) is a linear combination of
%, %, ...,%, and that the coefficient of x is precisely 1. Applying L; to
the right hand side (which we may do by letting it operate on each element
of the first row), we see that this row is identical with the (¢ + 1)st row and
hence Lyzg) =0, ¢ = 1,2, ..., n. Thus, the expression (3.8.1) has all the
properties the remainder element x5 should have.

NOTES ON CHAPTER III

3.2 Hardy, Littlewood, and Pélya [1], pp. 70-756. R. P. Boas, Jr. [4]
pp. 142-150.
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3.3 The Tschebyscheff polynomials are everywhere dense in the liter-
ature of numerical analysis, approximation theory, and special function
theory. The National Bureau of Standards, Table of Chebyshev Polynomials
[1] has an introduction by C. Lanczos that summarizes the properties of
these famous polynomials and indicates their use in numerical analysis.

3.6 J. L. Walsh [2] p. 50. For coincident points of interpolation, p. 53.

3.7 G. Peano [1], [2]. In recent years, Arthur Sard has called attention
to the utility of Peano’s Theorem. A. Sard [1], [2]. Kowalewski’s Remainder:
G. Kowalewski [1] pp. 21-24. For some of the kernels see Sard [1], Milne
[1], Kuntzmann [1] pp. 44-49, 152-157.

3.8 See references to 2.5, 2.6.

PROBLEMS

1. Log,o 12.7 has been computed by looking up log;, 12 and log;, 13 and
interpolating linearly between these values. Show that the error incurred is
<.004.

2. Formulate rules of thumb for the accuracy of quadratic, cubic, and
quartic interpolation on equidistant points. 01

3. A polynomial of degree n, p,(x), coincides with e at the points s
n—1mn

e How large shall n be taken so as to insure that |e* — p,(z)] < 10-¢
n
over 0 <zx <17
4. Let f(z) = e, 2; =

{6 ,i=0,1,...,10. Estimate Ryo(f; &)-

5. Same problem with f(2) = V9 + v/z.

6. Write explicitly the remainder for simple osculatory interpolation at the
n + 1 points %y, &y, . . . , x,. If f(2r+2(z) > 0, the interpolant never exceeds the
function over the range of interest.

7. If p > 1,y = x? is convex on [0, a] for any a > 0.

8. A monotone increasing function of a convex function is itself convex.

True or false?

4
9. Find necessary and sufficient conditions on the a’s in order that z a,x"
be convex on —1 <z < 1. n=0

10. Tn(Ty(@) = Tp(Tp(x) = T pp(x).
In particular,
T,(22% — 1) = 2T,%=x) — 1.

11. T (@) Tp(x) = 3T ppyn(®@) + Tpppn(®)].

12. Prove the identities f’.”o(x) dx = Ty(x), f’.”l(x) dz = }Ty(x),

1 Tn+1(x) Tn—l(x)
fT”(x) dx = é(n—-l-l - ﬁ) n > 1.



PROBLEMS

1 1
13. f7(0) —E[f(h) —f(=h)] =L1f“”(x)K(w) dz 0 <h <1

(@ + h)?
- A<z <
m h<xz<0
K(z) = (x — h)?
< <
w 0<x<h
0 otherwise

14. Derive this formula directly by integration by parts.
1

15. Show that f(—1) = f(0) — f(0) + 4f7(0) +f T (@) K(¢) dt
-1

—31 —¢t)? 0<t<l1
where K() =
-1+ —-1<t<0

1
16. Show that —}f(—1) — $/(0) + }f (1) — f(}) = f fO@)K(2) de
-1

(1 4+ 2)? -l1<z<0
where K(x) = {$(1 + 2z + 32%) 0<z<}
31 — x)? t<z<1

17. Find the Peano kernel for A%f (xy), h = 1.
18. Derive the following formula of Euler-MacLaurin type

b
ff(x) da = }(b — a)(f(a) + f(B) + &b — a)¥(f(a) — (b))
b
+ %f (x — a)¥(x — b)Y @ (z) dz.

19. Study the continuity class of K(t) for various functionals.

77



CHAPTER IV

Convergence Theorems for Interpolatory
Processes

4.1 Approximation by Means of Interpolation. Suppose that we
have been given certain information about a function. Perhaps we know
its values, or the values of its derivatives at certain points. Perhaps we
know its moments. How can we use this information to construct other
functions that will approximate it? This is the practical problem of numeri-
cal analysis. Theoretical analysis can go beyond. Having been given an
infinite number of facts about our function, how can we reconstruct the
function completely? Borrowing some terms from harmonic analysis, we
may say that the process of extracting functional information constitutes
an analysis of the function, while the process of reconstructing the function
from given functional information is a synthests of the function.

One of the most surprising facts in the theory of interpolation and ap-
proximation is that the simplest and most natural approach to synthesis
leads to failure, or rather, to an impossibility. Given a function of class
C[a, b], what is more natural than to think that if a sequence of polynomials
P,.(f; ) is set up that duplicates the function at » + 1 points of the inter-
val, then as n — oo, p,(f; x) will converge to f(z)? Yet, this may not be
the case. One of the first indications of this came around the turn of the
century when Méray and later Runge, investigated interpolation to certain

meromorphic functions. Runge looked at the function f(x) = nd

1+ 22 3
found the following to be true: if p,(f; ) interpolates to f at » 4+ 1 equi-
distant points of the interval || < 5, p, converges to f only in the interval
|2] < 3.63 - - - and diverges outside this interval. Although f is analytic on
the whole real axis, its singularities at 4¢ induce, so to speak, this diver-
gence. In 1912, Bernstein proved that equidistant interpolation over |z| <1
to the function y = |z| diverges for 0 < |z| < 1.

These results relate to equidistant points of interpolation. The possibility
was still open that a more felicitous choice of points would give rise to a
convergent interpolation process. Some indications of this are contained in
(3.3.10) where interpolation on the zeros of the Tschebyscheff polynomials
minimizes certain error estimates. The hopes for this idea vanished when
Bernstein and Faber simultaneously discovered in 1914 that if any triangular
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system of interpolation points is prescribed in advance, we can construct
a continuous function for which the interpolation process carried out on
these points cannot converge uniformly to this function. Even the Tscheby-
scheff zeros as interpolation points fare badly, for in 1937, Marcinkiewicz
gave an example of a continuous function for which interpolation at these
zeros diverges at every point of (—1, 1).

Yet, the damage is not as great as one might think and can be repaired
in several ways. The first is to change the way the interpolation is carried
out by not insisting that for » 4+ 1 points a polynomial of class &£, be
employed. Fejér proved a remarkable theorem showing hov- an interpola-
tion process with controlled derivative values can converge properly for all
continuous functions. The second way is not to insist on working with the
class of continuous functions, but to assume some smoothness properties.
The Tschebyscheff zeros (and the zeros of other orthogonal polynomials)
actually are a remarkable system of interpolating points. Bernstein showed
in 1916 that if f is a continuous function for which ‘l’i_% w(d; f) log 6 = 0,

interpolation at these points produces a properly convergent sequence of
polynomials. If interpolation is carried out on bounded sets, it suffices to
assume that our functions are analytic in certain regions. If interpolation is
carried out on unbounded sets, say the integers, then for convergence, we
shall have to assume that our functions are entire and of severely restricted
growth. Thus, if we are to have convergence, there must be a subtle inter-
play between the distribution of points of interpolation and the smoothness
or growth properties of the interpolated function. Though much is known
about this interplay, we shall be able to develop in this chapter only a few
of its broader features.

4.2 Triangular Interpolation Schemes. We first describe an inter-
polation scheme of great generality. Let there be given a triangular sequence
of real or complex points

%00
T: 24 21

220 221 Zp (4.2.1)

Suppose that a function f(z) has been defined on a region containing the
points of T', and let p,(f; z) be that element of &, for which

s 20) = f(2, 1=0,1,...,n
2a(f ) = f(2n2) (4.2.2)
n=0,1,....

In other words, p,(f; z) interpolates to f at the points of the (n + 1)st row
of T'. The numbers in the rows of 7' may or may not be distinct. If they are
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not distinet, then the interpolation polynomial is to be formed in accord-
ance with the convention explained in 3.5.
We now ask the question, does

lim p,(f;2) = f(2)? (423)

In such generality, the answer is a resounding no, but the problem is to
delineate those circumstances under which the answer is yes.

In many cases of interest, the matrix T’ degenerates by having its elements
not depend upon the row, but only upon the column. In such a case, we can
drop the double indexing, and write the scheme as follows

%o
8: zyp 2
2o 2, 2 (4.2.4)

For a scheme of this type, we have

Pulf3 ?) =éo[f<zo>,f<zl>, S @NE =) (& — ) (42.5)

and so the existence of nlin°1° Po(f;2) is identical with the convergence of
the tnterpolation series

f(2) ~§o[f (o), f(z1), - f (@2 — 20) - (2 — 7). (42.6)

In order to appreciate the kinds of things that may occur with triangular
interpolation schemes, we shall consider a few examples.
1
- = n+1
interpolated function is f(x) = xsin;: which is continuous in —0 <z < o.

Ex. 1. A scheme S is used with 2y = 1,2, =4,...,2, ++-. The

Since f(z;) = 0, the interpolation polynomials p,(f; x) are all identically zero.
The sequence p,(f; ) converges, but not to f.

Ex. 2. On the other hand if f € #,, then no matter how the matrix 7T is
constituted, we shall always have p,,(f; 2) = f(2) for m > n. Hence convergence
takes place to the proper value. In other words, if the class of interpolated
functions is sufficiently small (the class of all polynomials) a triangular scheme
is always convergent.

Ex. 3. A degenerate case of S is where all the points have a common value
z,. By our convention, the interpolating polynomials are the partial sums of the
f(")(z o)

Taylor expansion of f: f(zy) + f'(2¢)(z — 2¢) + -+ + o

(2 — zy)". We have

convergence to f (z) if and only if f is analytic at z; and the convergence holds



Sec. 4.3 A CONVERGENCE THEOREM 8l

throughout the largest circle |z — zy| < p in which f (2) is analytic. On the other
hand, if f is merely of class C®, we may have divergence or convergence to a
wrong value.

Ex. 4. For 2., . . . , 2, select the (n + 1)st roots of 1. Call them w;. Choose
1 1

f(z) = rt Then, p,(f;z) = 2" inasmuch as w;* = o = f(2,;). Notice that
)

Pa(f; ) converges to 0 in |z| < 1, diverges for |z| > 1. The sequence converges

tofonlyatz =1.

Ex. 5. A scheme S is used with 2y = 0,2, = 1,2, = 2,.... Select f(z) =
(1 + 0)% for a fixed o, with 0 # —1. It is easily verified through (2.7.10) that

z(z—l)+”‘+U”z(z.—l)~'(z—n+l).
2! n!

Palf;2) =1 + oz + o*

The convergence of the scheme is equivalent to the convergence of the series

<  #z—=1)---(z—-n+1) - . .
z " oy . For fixed z, this is the power series expansion
n=0 N
of (1 + o)* about ¢ = 0. Now if z % 0,1, 2, ..., (1 + 0)? is analytic in |o] <1
and has a singularity at ¢ = —1. The series, and therefore p,,(f; 2), is convergent

for |6| < 1 and divergent for |o| > 1.

4.3 A Convergence Theorem for Bounded Triangular Schemes.
If the points of interpolation are all confined to a bounded region of the
plane and if the function we are interpolating is analytic in a sufficiently
large region, then we shall have uniform convergence in a sub-region. This
theorem is of interest in itself and also because it illustrates the use of the
complex remainder (3.6.5) in estimating errors. This is a technique that can
be put to practical use in numerical analysis.

THEOREM 4.3.1. Let R, S, and T be bounded simply connected regions,
R < S < T, whose boundaries are Cp, Cg, and Cqp, respectively. Cp is a
simple, closed, rectifiable curve, and Cg and Cy are assumed to be disjoint.

Let 6 = minimum distance from Cyp to Cp, A = maximum distance from

A
Cg to Cg, and assume that 3 <1l
Let the points of a triangular system lie tn R and let f(2) be analytic in and
on Cp. Then p,(f; z) converges to f uniformly in S.
Proof: From (3.6.5),
f(z) - pn(f; Z) = Rn(f; 2)

_ L (Z - zno)(z - znl) ttt (Z - znn)f(t) dt
T 2midep (E— 2ot — 2p0) t (E— 26— 2)

(4.3.1)
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Hence,

1 [’ Iz — z”ol M IZ - znnl lf(t)l ds (43.2)

(B (f;2)] < 5= .
" Cr |t—Z”0|"‘|t—Z”n”t—Z|

For z, e Rand ze Cg, |z — 23| < A. For z; e Rand t e Cp, |t — 2,| > 0.
If we set M = max [f(¢)|, ¢ = min |t — 2|, then,

teCrp teCr
z€8
1 [ A M ML(Cy) (A)"“
R . — — s =——"|— 9.
R,(f32)] < QWLT R T B =g ) o 433

where L(Cp) = length of C,. This estimate holds uniformly for zeS.

A
Since 3 <1, "lmcxo R, (f;2) = 0 uniformly in S.

<,

Figure 4.3.1.

Ex. 1. Let the points of the interpolation scheme all lie on the real segment
I =[—a,a). Select a § > 2a and let T be the set of points whose distance
from I is <é. If f(z) € A(T'), the interpolatory scheme converges uniformly to
f on I. This is independent of the distribution of the interpolating points.

Figure 4.3.2.
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4.4 Lemniscates and Interpolation. More penetrating theorems can
be obtained by postulating a more regular distribution of the points in the
triangular scheme. An examination of equations (4.3.2) and (4.3.3) reveals
that the asymptotic behavior of the expression

|(Z - zno)(z - znl) te (Z - znn)lll(”+l)

contains the key to convergence. We will therefore investigate convergence
under the hypothesis that the following limit exists on certain sets of the
complex plane:

Hm |z — 2p0)(z — Zpy) * + - (2 — 2 )V = 0(2). (441

n—» 0

Here are some examples of triangular distributions of points with this
property.

Ex. 1. Let all the points z,; consist of a single point z,. Then o(z) = |z — 2.

Ex. 2. Letz,g, 24, - - - » 2y, be the n + 1 zeros of the (n 4 1)st Tschebyscheff
polynomia,l. Tpia(2). Then, (2 — 2,0)(z — 241) = * * (2 = 2pp) = T'py,(2) (Def. 3.3.2).
Let z = pe®, w = }(z 4+ z71) = }(pe®® + p~le~%). Then,

To(w) = }(p"e™ + p~me™"0), (4.4.2)

This may be proved by induction. It is true for n = 0 by (3.3.3). Assume it
is true for 0, 1, 2, . . . , n. By (3.3.4),

TMl(w) — (Peio + P—le—iO)i(pnez’no + P—'ne—inﬂ)
— %(pn—lei("—l)o + P—n+le—i(ﬂ—l)0)

- %(pn+le(n+1)i0 + p—(n+1)e—(ﬂ+l)i0).

This proves the identity for n + 1.

From (4.4.2)
ReTy(w) = 3" +¢7) c.os it (4.4.3)
ImT,(w) = }(p® — p~") sin nb
and so
|Tp(w)| =3 + 2 cos 2n6 + p~2m}, (4.4.4)
Therefore, for w on &, (cf. Def. (1.13.1)) we have
lim |7, (w)|¥" = p, uniformly. (4.4.5)
n— o0
~ 1
Since T', = P T,,
o(z) = lim |T,(2)|¥" =p[2,2€ €, (4.4.8)
n—

Ex. 3. Asimilarlimit holds on £, for the Legendre polynomials (cf. Theorem
12.4.5).
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Ex. 4. The points z,g, ..., 2,, are evenly distributed on [—1, 1]: 2z, =
2k
-1 + p Here we have

1/(n+1)

0n(2) =|(2 —2,0) * * * (2 — 2py)[UR+D) =

2
(z+l)(z+l—;)~~(z+l—2)
2 z+1 0\ /z+1 1 2+ 1 n\|/et+tD

AN R 2 n

1 L z+1 k X .
Therefore log }0,,(2) = Z log — —|. By the definition of the inte-
n + 1,5, 2 n
1 z +1 +1
gral, lim log 4o,(2) =f log — t‘dt = QJ' log |2 — u| du — log 2.
n— 0 2 -1

+1
Hence, for all z outside [ —1, 1], o(z) = exp %f log |z — u| du.
-1
Ex. 5. A wide generalization of Ex. 1 is contained in the next theorem.

THEOREM 4.4.1. Let 2,,2,, ..., be a sequence that has k limit points {,,
Ly, - - -, L approached cyclically. That is,

,}B}}o Zun = b

nh_’,lelo Zugrz = o
(4.4.7)

nll,r{}o Zo ke = G
Then
o(z) = lim |(z —2z)) -z — 2" = = {) - e — LIIM* (44.8)
uniformly on any set S that is bounded and such that
gnesf|z‘—t|>6>0 1=1,2,....

Proof: We begin with the following observation which is really a slight
modification of the ‘““consistency of Ceséro summability.”

Let ¢,(z) be a sequence of functions defined on a point set S and which
converges uniformly on S to a function ¢(z). Assume that ¢,.(z) and $(2)
are all bounded on 8. Then, the sequence of arithmetic means

(1/n)[$1(2) + -+ + $4(2)]

also converges uniformly to ¢(z) on S. For, given an £ > 0, we can find an
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m = m(e) such that |$(z) — ¢,(z)| < ¢ for all z € S and all » > m. Now, for
n =>m,

D&) = (@) + -+ + $,2] — 462
— (A + -+ bl + T (a0 $)
o (a0 — BN — (i)

Let M,, = max (|$(z)| + - - - + |$n(2)]), M = max |$(z)|. Hence,

n—m

M M
D) <=2+ (mﬂm+%7,m&

n n-—m

Keep m fixed and let n — co. We obtain, for n sufficiently large, i.e., for

(v 2 mox( 2. 25))
n > max{ — ,——J |,
e £

ID2)| <e+e+e=3s ze€4.

This inequality implies the uniform convergence stated.

We now turn to the proof of the theorem.
Let ¢,(2) =log|z — 2. For ze8,log|z —2)| =logd,i=1,2,.... In
view of the cyclic limit conditions, the z; are bounded. Since S is bounded,
log|lz—2] < Bforze8,+=1,2,.... Thus, ¢,(2) are uniformly bounded
in S; that is, we can find an M such that |¢,(2)] < M,z€8,t=1,2,....

The function log |z — {;| is also bounded in § since the {; are limit points
of the z, and the latter are bounded away from S.

Let N =nk + p, 0 <p < k and consider » and p as functions of N.
Then

1

Il/N____
Ni=1

I M=

?Si(z)

log |(z —2) -+ - (z — 2y)

n1nt n

n—1 1 P
’Zo i + 00+ n jzo Piesr + ¥ ;jgl P s+

=] s
S| -

(If p = 0, the last sum is taken to be 0.) In view of (4.4.7), ’{i_z’x%oqﬂ,,,ﬁ_,. =

logle—¢) i=1,2,...,k uniformly on S. Hence, their mean values
1nz1

-> &,%+; also approach this limit uniformly. Furthermore,

7 =0

pM kM

1 2 1 &
;jgl Prers S;LEI [Bnies] <= < —-




86 CONVERGENCE THEOREMS FOR INTERPOLATORY PROCESSES Ch. IV

Asn— o0, — 2 &,.c; approaches 0 umformly in S Since, finally, hm % =
1
7 Ve have 1\}“20 logl(z —z) (g — 2y == 2 log |z — {;| uniformly

in S. The proof is completed by exponentlatlon.

Actually, (4.4.8) holds uniformly on any set S that is bounded and such
thatitr}gflgi—tl>6>0, t=1,...,k%

Motivated by (4.4.8), we shall next study the loci given by

|(z — 2,0z — 2p) * * * (2 — #,)| = constant.

DEriniTION 4.4.1. Let 2,, ..., 2, be n complex numbers not necessarily
distinet. For r > 0, the set of points satisfying

Iz —2)(z —2) "+ (2 — 2,)| = 7" (4.4.9)

is called a lemniscate and will be designated by I',. The points z, are called
the foci of the lemniscate and r its radius. The set of points satisfying the
inequality

[(z — 2}z —29) -+ (2 — 2,)| < 7" (4.4.10)

will be designated by Z,.
With z; fixed and r varying, we may speak of a family of confocal lemni-
scates. Note that if r; < r, then &, < &, .

Ex. 6. k =1.|z —z| =r is a family of concentric circles centered at z,.

Ex. 7. Let k = 2 and z,, 2, be distinct. Then, |z — 2| |z — 2,| = #? is the
locus of points which move in such a way that the product of their distances
to z; and to z, is constant. If 0 < r < } |2, — 2,|, then the locus consists of two
mutually exterior ovals, one surrounding z, and the other z,. These are the
Ovals of Cassini. When r = } |z, — 2|, we obtain the Lemniscate of Bernoulls,
a figure 8 with a double point at }(z; + 2,). When r > } |z, — 2,|, the locus
consists of one closed contour containing z, and z, in its interior.

Figure 4.4.1 Confocal Lemniscates with Two Foci.
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The behavior of confocal families of lemniscates follows the pattern of
Example 7. If z,, . . ., 2, are n distinct points and if r is sufficiently small,
the locus I', consists of n closed contours surrounding precisely one of the
foci. As r increases, the contours increase in size until two or more of them
touch and then coalesce, reducing the number of contours. This coales-
cence continues until for sufficiently large r there is but one contour sur-
rounding all the foci. As r — o0, the single contour becomes more and more
circular in its shape. If the z, are not all distinct, this picture can be modified
in an appropriate way.

N

Figure 4.4.2 Confocal Lemniscates with 3 Foci
|z — 1)(z — 23)| = r3.

We shall now sketch the proofs of these facts. Consider the set Z,. It is
nonempty, for it contains the foci z,, . . ., z,. It is open, for suppose z € Z,.
That is, |z — 2y| - * - |2 — 2,| < r™. By the continuity of the absolute value,
this inequality must hold in a neighborhood of z. &Z, is bounded. For let a
circle €, contain the foci. Draw a second circle C,, concentric with C,, and
such that the difference of the radii of C, and C; is greater than r. For any

point z exterior to C,, |z — z;| > r. Hence |[¢ — 2| - - |z — z,| > r™. There-
fore no point exterior to C, can be in &Z,.
Let A, designate the set of points for which |z — 2| -+ |z — z,| > r™

Again, by continuity, if z € A,, there is a whole neighborhood of z in A,.
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Hence every point of A, is an exterior point of .#,. The exterior of %, is
precisely A,. For suppose z is in the exterior of .Z, and that

[z —21) -+~ (2 — z,)| = |pR)| = 1™
Since p(z) # 0, there is a whole neighborhood N of z whose closure lies in
the exterior of ., and in which p(z) has no zero. By the Maximum Principle

(Theorem 1.9.5) p(z) cannot have a maximum or a minimum in the interior
of N. Therefore there is a point 2z’ on the boundary of N at which

P < Ip(2)| =r".
This means that 2z’ € #, and this is a contradiction since z’ is exterior to
Z,. It follows that if |z — 2| - - - |z — 2,| = 7™, z cannot be exterior to .Z,.
Thus, finally, A, is the complete exterior of %, and I', is its complete
boundary.

Since Z, is an open set, it consists of a certain number (finite or infinite)
of connected components. Each component must contain at least one of
the points z,. For, suppose C is a component which does not. On the bound-
ary of C we have |p(z)| = r, and by assumption, p(z) does not vanish in C.
Hence, by the Maximum Principle, both the maximum and the minimum
of |p(z)| in C, the closure of C, occur on the boundary of C. This means that
max |p(2)] = lgleicn |p(z)] = r. Therefore |p(z)| is constant over C and this

implies that p(z) is constant over C. This is impossible. Thus, each of the
connected components of £, must contain at least one of the points 2, in
its interior, and so there are at most » such components.

Each of the components of %, must be simply connected. For, let C be
a component and let I' be a simple closed curve lying in C. On I" we have
|p(z)| < r. Hence by the Maximum Principle, we have |p(z)| < r throughout
the interior of I'. Thus, the whole interior of I' belongs to Z,. It follows
that C must be simply connected. For suppose not. Then there would be a
point a interior to I' with a € &, and a ¢ C. Let I be the closure of the
interior of I". Then 4 = I U C is a connected set that is in £, and contains
C properly. This is impossible since C is a maximal connected subset. .2,
therefore consists of a number (not exceeding ») of simply connected regions
and the boundary of ., consists of a number of contours each of which is
the complete boundary of a simply connected region.

n

At a point of I', where the derivative of J] (z — 2;) does not vanish,
i=1
one can show, using the implicit function theorem for analytic functions,
that the lemniscate is an analytic curve.
What is the situation when 7 is sufficiently small? Assume that the points
2y, ...,%, are distinct. For r sufficiently small, the n circles |z — z,| < r
have no common points. Then if p < 7, .?p must be contained in the union

n
of these circles. For otherwise, |z — z;| > r and hence [ |z — ;| =" > p".
i=1
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Moreover, since the points z, are interior to the components of % »» 1t follows
that &, consists of exactly n components with precisely one component
lying in each one of these circles. The lemniscate I', consists of precisely n
ovals, one in each circle.

What happens when r is sufficiently large? Let a circle C of diameter D
contain all the points z,. If z is in C then |z — 2;| < D so that

n
ITle — 2 < D~
ic1

Therefore C is contained in any ., with p > D. Since we know that each
component of #, must contain at least one of the z, in it, it follows that
&, must consist of a single region containing this circle. The corresponding
lemniscate I', consists of a single contour.

As r becomes very large, so also must |z|. With z far removed from z,,
the points z; may be regarded as a single iterated point and the lemniscate
is “almost” a circle.

The multiple points of lemniscates occur at the solutions of p’'(z) = 0,

n
p(z) =[] (z — 2;). But it would take us out of our way to discuss the
i=1

interesting geometrical facts related to them.

LemMA 4.4.2. Let ¢,(2), d(z) be functions of a complex variable and sup-
pose that
lim [,(2)[Y" = |$(2)] (4.4.11)

on a set S and uniformly on a subset ' < S. Let {a,} be a sequence of complex
numbers for which

Jim sup la, )™ = 1/r, 0<r< oco. (4.4.12)

Then the series Zanzﬁn(z) converges at all points of S where |p(z)| < r and

diverges at all pomts of 8 where |$(z)| > r. It converges uniformly at all points
of 8" where |(z)] < s < r.

Proof: Given a z€8 N {z: |¢(z)| < r}. For all n sufficiently large, we
have from (4.4.11), |¢,(2)|Y/" < ¢ for some 0 < 7’ << r. Select an r” with
r" < r” < r. Then for all » sufficiently large, we have from (4.4.12),

1
Ianlll'l < 7/ °

Thus,

<

Ian¢n(z)| < ('—/r) .

r
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Our infinite series is majorized by a convergent geometric series and must
itself be convergent.
If

zeS8 N {z:|(z)] <s}, s <,

then the estimate |$,(z)|'/* < r’, s < r’ < r holds uniformly in this set and
the same reasoning allows us to conclude uniform convergence there.

Let z € S be such that |¢(z)| > r. Then for all » sufficiently large and for
some r’ > r, |$,(z)|*'" > r’. Select an r” with ' > " > r. Since

lim sup |a,|'" = !
n— o n r ’

. . 1
we can find a sequence of integers n,, n,, . . . — o0, with |a, | > — . Hence
r

’

r'

(@, B0, (2)] 2(—;) for all k sufficiently large. Since #'/r" > 1, the general
r

term of the series does not approach 0 and the series is divergent.

Ex. 8. Let ¢,(z) = 2% Then lim |¢,(z)[}/* = |2| for all |2| < o and the limit
n— o

l 0
is uniform on any set. If lim sup |a,|!/* = o we have convergence of Y, a,z" for
n—» n=0

|2| < r and divergence for |2| > 7. Our lemma is therefore a simple modification
of the Cauchy-Hadamard Theorem for the radius of convergence of a power
series (Theorem 1.9.4).

Ex. 9. ¢,(2) = T,(2) = the nth Tschebyscheff polynomial. From (4.4.5),
1
|$(2)] = lim |T,(2)|'/* = pforzon &,. If lim sup [a,|!/" =~,1< 7 <o, we con-
n—o © n—o r
clude that the series z a,T,(2) converges in the interior of &,, diverges in its
n=0
exterior and converges uniformly if any &,, 7" < r. In the case of expansions

in Tschebyscheff polynomials, we have confocal ellipses of convergence as the
analog of circles of convergence for power series.

Ex. 10. Expansions in Legendre polynomials have ellipses of convergence.
Cf. Theorem 12.4.7.

THEOREM 4.4.3. Let &, designate the lemniscate interior

Iz — L)z — L) =+~ (2 — LIl < p".

Let 25,2, ...,lie in &, and approach (i, ..., 5, cyclically; ie., (4.4.7)
holds. Let f(z) be analytic in &L, but not in any L, with py > p. If £,
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consists of several mutually exterior regions, then f(z) 1s assumed to be a general
analytic configuration (cf. 3.6). If

Palfi2) =g+ ay(z — 2)) + -+ @2 — 2)(z — 7)) (2 — 2, )

(4.4.13)
tnterpolates to f at z,, . . . , z,, we have

s “ns

lim p(f;2) =f() z€2, (4.4.14)

and uniformly in any closed set lying in & ,. Exterior to &, the limit does
not exist. More precisely, we have

| f(2) —pu(f;2)] < M(p'[p)* for zeZ,, p' <p. (44.15)
Furthermore

Jlim sup @, = (4.4.16)

© |~

Proof: A closed set S lying in %, must also lie in some £, with p’ < p.
Hence (4.4.15) implies (4.4.14), uniformly in S. We therefore prove (4.4.15).
Select a p’ sufficiently close to p so that all the points z,, z,, .. ., lie in & ..
Select p” with p’ < p” < p. T, consists of one or at most a finite number
of mutually exterior curves which may, possibly, meet at a finite number
of points. From the remarks at the end of 3.6, we have

(2 —z)z —2)) =+ (z — 2,) f () dt

1
f@) —pulf32) = 5— e =) =2 (4.4.17)

For z e I, we have by (4.4.8),
Jim (= z) e = )Y = e — L) e = L=

uniformly. ence, for some p” with p’ < p” < p”, and for n sufficiently
large, we have

[z — 2g)(z — 2y) * - (2 — 2,)| < (p")"H, zel,. (4.4.18)

By the Maximum Principle, this inequality holds throughout & ,.
Similarly we have

lim |(t - 2g) - - * (£ — 2,)|Y Y = p”, tel .
Pyt 0. n P P

n

uniformly. Hence, for some p'Y with p” < p!¥ < p”, and n sufficiently large,

It —2g) s+ (t —2z)] = (pM)™,  tel,. (4.4.19)
We now use (4.4.18) and (4.4.19) to estimate (4.4.17):

l "\n41 t d
| £(z) — palf3 2)] s-z—f (’—’W) |7 ()] ds cZ,.
7 Jry \p

|t —2| ° g

(4.4.20)
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Let L(T',.) = length of T',., m = max|f(f)|, 6 = minimum distance from
telp”
T, to I',. and we have

17@) — pulfi o)) < L) (ﬂ)"+ls M(ﬂ')" (4.4.21)
27 0 p‘v )

for an appropriate constant M independent of n.
Consider next the number y defined by

1
i Un _
7}1{130 sup |a,|'" = P (4.4.22)

We shall prove 4 = p and establish (4.4.16). Suppose, first, that u < p.
By the above work, 7}1{130 Pa(f;2) exists in &£,. But by Lemma 4.4.2 and

Theorem 4.4.1, this limit does not exist at a point z exterior to %, and
distinct from {,, . . ., {,. Hence, at a pointz (# ,, .. ., {;) belonging to &,
but exterior to .#,, the limit both exists and does not exist. This is im-
possible. Suppose, secondly, that u4 > p. By Lemma 4.4.2, p (f;2) con-
verges uniformly in closed subregions of ., to a function that is analytic.
This is impossible, since by hypothesis %, is the largest lemniscate of
analyticity. Hence u = p. This establishes (4.4.16) and the fact that we have
divergence exterior to &,

This theorem has a long history, going back, in various amounts of
generality, about a century. In the form stated, it is due to Walsh. More
general assumptions as to the “‘strength’ of the limit points can and have
been made.

Interpolation processes may be found that yield expansions of analytic
functions in quite general regions. We shall, however, approach such ap-
proximations by other methods.

Ex. 11. Let zy, =0,2p,,; =1 n =0,1,.... Then k=2 and { =0,
{, = 1. Define f(z) as 0 in a neighborhood of {; and 1 in a neighborhood of f,.
We then have

Pon1(f32) = ag + a1z + agz(z — 1) + az2?(z — 1)
+ a422(z — 1)2 = azn—lzn(z — l)n—l
Pan(fs 2) = Pon_1(f52) + agu2™(z — 1)™.
In view of (2.6.6), (3.6.1), (3.6.3), we have

1 dz 1 dz
Gon1 = o Joamz — 1p % T o Jo iz — 1)

where C is any contour containing {, in its interior and {, in its exterior. Hence,
1 a1 (1 12— 2
Qon—1 = T— 1 Zonilon = (=D
(n — 1) dz"1\2"/|,_, n—1

1 dnf 1 a1
o = o), T Y nohE

n
ag = 0.
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The interpolation series is therefore
0+2+2(z—1) —22%2 — 1) — 322z — 1)2 + 623z — 1)2 4 - - -.
In view of the fact that lim sup |a,|V" = 2 = 1/}, the series converges in the
n— 0

interior of the leminiscate |z(z — 1)| = } and diverges in its exterior. The sum
of the series is 0 in the left lobe and 1 in the right lobe.

The fairly ‘“arbitrary’”” shape of lemniscates displayed in Figure 4.4.2
leads one to suspect that quite general curves can be approximated by
them. This is indeed the case.

DErINITION 4.4.2. Let E be a closed, bounded, and nonempty set in
the complex plane. By the closed p neighborhood of E, E(p), is meant the set
of all points whose distance from E is < p. That is,

E(p) = UE {fz: Iz — w| < p}-

THEOREM 4.4.4. Let E be a closed and bounded set in the complex
plane. For any p > 0, we can find a lemniscate I' such that I' = E(p)
— E and each component of E is separated from the exterior component
of the complement of E(p) by a component of T'.

This theorem (which we shall not use in the sequel and whose proof we
shall not give) goes back to Hilbert, and early proofs make use of potential
theory. In the generality stated, the theorem is due to Fekete. His methods
are somewhat more elementary. This theorem can be made the basis of
interpolation processes that yield expansions in general regions.

NOTES ON CHAPTER 1V

4244 Walsh[2], Chap. III, IV. Gontscharoff[1], Chap. V. For the
“‘strength’’ of limit points, see Korovkin[1]. Fekete’s proof will be found
in Fekete[1].

PROBLEMS

1. Cosh z is approximated by a cubic polynomial found by interpolating at
the points +3}, +4:. Estimate the error over the unit circle.

2. Let z,; be the n + lst roots of unity. Compute o(z). (Cf. (4.4.1))

3. Sketch the family I', whose foci are at +1, +3.

4. Expand (1 + u)? and set 4 = 22 — 1 to obtain

22 —1 l"_11-3-5~~~(2n—3) 2 _ oy
T e e e, & T

(%t =1+

Show that the series converges to z in the right open lobe of [22 — 1| = 1 and
to —z in the left open lobe. What are the interpolation properties of the series?

5. Following Ex. 11, let 23, = 0, 23,47 = 1, 23,4+, = —1. Define f(z)as —1,0, 1
in the neighborhood of —1, 0, 1 respectively. Discuss.
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6. Interpret the mode of interpolation and the statement of Theorem 4.4.3
when 2, 2, . . . , consists of the k points {;, {,, . . ., {; repeated cyclically.
7. Discuss the convergence of series of the form

ag +ay(z — 1) +ay(z —1)(22 — 1) +ag(z —1)(2z2 —1)(3z2 — 1) +---.
8. Let m(z) map a simply connected region B conformally onto the unit

L
circle. Discuss the convergence of series of the form z a,(m(z))".
n=0



CHAPTER V

Some Problems of Infinite Interpolation

5.1 Characteristics of Such Problems. In Chapters 2 and 3, we
considered interpolation problems with a finite number of conditions. In
Chapter 4, we allowed the number of conditions to grow and, under certain
favorable circumstances, we obtained solutions in the form of infinite series
of polynomials. Not all problems involving an infinity of interpolating con-
ditions can be treated in this manner, and the present chapter explores
several alternate approaches.

In passing from a problem with a finite number of conditions to one with
an infinity of conditions, analytic as well as algebraic difficulties arise to
complicate the situation. If we look for a solution within a given class of
functions, we may be unsuccessful, or we may be too successful, for the
solution may not be unique. The following examples illustrate these possi-
bilities.

Ex. 1. Find a function analytic in |z| <r, for which f™(0) = (n))2 n =
0,1,.... We must have
<] <]

1
f(z) ="§0 oy (n!)Zen ="=0 n!zn.

This series has a zero radius of convergence and so the problem has no solution.
From (1.9.9), the interpolation problem f(™(0) = a, has a solution analytic in

1 1
|2| < if and only if lim sup - |a,|V/® < —. If it has a solution, the solution is
. n—wo N re
unique.

Ex. 2. Given a set of points 0 <, <z, <--+ <1 with lim z, =1 and
n— 0
a set of values y,, ¥y, . . ., find a function of class C[0, 1] for which f(z;) = y,.

It should be clear that a necessary and sufficient condition that this interpolation
problem have a solution is that lim y, exists. Assuming this, we may then
n—

solve the problem in an infinity of ways.

Ex. 3. Find a function of class C[0, 1] for which

1
fx”f(x)dx=n,n=0,l,....
0

95
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By Theorem 1.4.2,
max |f(z)] .
_ |£(&) <

0<z<1

1 1
Lw"f(w)dw‘=’f($)fox”dx‘ i e

1
The sequence of moments f 2"f (x) dx therefore approaches 0 as a limit and the
0

interpolation problem has no solution.

5.2 Guichard’s Theorem. A natural generalization of the funda-
mental theorem for polynomial interpolation (Theorem 2.1.1) is the following
theorem of Guichard.

THEOREM 5.2.1. Let 2y, 2y, . . . , be a sequence of distinct complex numbers
such that ,,lin}o 2, = 0. Let wy, w,, . .., be a completely arbitrary sequence of

complex values. Then there exists an entire function f (z) such that
f(z,) = w, n=0,1,.... (5.2.1)

We shall give two proofs of this theorem. The first is function-theoretic
in nature and is based upon theorems of Weierstrass and Mittag-Leffler
that have an interpolatory character. We shall state these theorems, but
refer to standard texts on complex variable for their proofs.

THEOREM 5.2.2 (The Weierstrass Product Theorem). Letz, =0, z,, ...,
be a sequence of distinct complex numbers for which ”lirgo 2, = oo. Let

Ng, By, « - . , be a sequence of integers > 1. Then, for an appropriate selection
of integers py, the product

d FA 2 1/z\ 1 /2 \Px\ 77
f(Z)=zolE(l—Z,) [exp (z—k+§(;;)++;;(z—) )] (5.2.2)

converges for |z| << co to an entire function that has a zero of order n, at z,,
k=0,1,....

TueoreEm 5.2.3 (Mittag-Leffler’s Partial Fraction Theorem). Let z,,

2, ..., be a sequence of distinct points, and let lim z,= co. For 1 =
n— o
0,1,..., let ay, @y, . . ., Gy, be given complex numbers. Then there exists

a meromorphic function having at each z; a principal part

ai,n ;2 . ai,n, 593
(z—2) (z—2)° + + —(z ) (5.2.3)

and analytic everywhere else.
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Proof of Theorem 5.2.1: By Theorem 5.2.2, construct a function g(z) that
is entire and has simple zeros at z;: g(2;) = 0 and ¢'(z;) 20,7 =0,1,2---.
By Theorem 5.2.3, construct a meromorphic function A(z) whose principal

part at z; is and which is analytic everywhere else. Then the

w;
9'(2)(z — z,)
function f(z) = g(2)h(z) solves the interpolation problem, for the zeros of g
cancel the poles of & so that f is an entire function. Moreover, in a neighbor-

hood of z = 2, we have

f(2) = g(2)h(z) = [¢'(z)(z — 2;) + higher powers of (z — 2,)]

o=z + )]
* o= T

where 7(z) is analytic in a neighborhood of z,. Hence f(z;) = w; as required.

5.3 A Second Approach: Infinite Systems of Linear Equations in
Infinitely Many Unknowns. A simple-minded approach to the problem
in Theorem 5.2.1 is the following. We are looking for an entire function

f(2)=ay+az+ ag®+--- (5.3.1)
for which
f(zl) = wi’ 1: = 1, 2, e oo (5.3.2)

Regard the a’s of (5.3.1) as unknowns and determine them so that the
conditions (5.3.2) hold. These conditions lead to

Qo + @2y + A2,% + 00 = wy
@y + @12y + A2, 4 ¢ 00 = w,

@ + @y23 + a2 + = wy (5.3.3)

an infinite system of linear equations in the unknowns a,, a,, . . . . Assum-
ing, for the moment, that we have succeeded in producing numbers a,,
a,, . . ., which make the left hand of (5.3.3) converge to the right hand, it
follows from the properties of power series that the series (5.3.1) converges
absolutely for |z| < |2,|, for |2] < |2,|, ete. Since limz, = oo, f(2) will be
entire and f(z;) = w;. The matter therefore hinges upon our ability to solve
the system (5.3.3). It should be clear that infinite problems of linear inter-
polation theory can always be reduced to such systems.

Questions relating to the existence and uniqueness of solutions of finite
systems of linear equations have been completely resolved. Not so for
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infinite systems. While much is known, much remains unknown. There is
no all-encompassing theory, but rather many different theories that have
their origins in the variety of assumptions that can be made about the
growth properties of the coefficients and of the solution. We shall prove a
theorem of Pdlya which gives a sufficient condition for the existence of a
solution of an infinite system. Pélya’s Theorem is interesting because it has
numerous applications to interpolation problems, and also because it is one
of the few theorems about infinite systems in which nothing is assumed
about the right-hand side.

THEOREM 5.3.1 (P6lya). Let there be given an infinite set of linear equations
in infinitely many unknowns x,, x,, . . . :

A%y + Gy + 0t = b,

A%y + Ggpy + * -+ = b,
: ) (5.3.4)

No assumptions are made about the b’s, but as far as the a’s are concerned we
assume

(A) Let ¢ =0 and n > 1 be arbitrary integers. From the infinite array of
coefficients

Bg+1g42. ..

(5.3.5)

a’n,q+1 an,q+2 “oe

we may select n columns such that the determinant formed by these columns

does not vanish.
(B) Forj=2,3,..., we have

lim 2=k _ ¢ (5.3.6)
koo gy

Under assumptions (A) and (B), we may find a solution z; to (5.3.4) with all
the infinite series absolutely convergent.

A solution will be constructed in a ‘“blockwise” fashion. This will require
a preliminary description and a lemma. The first block of unknowns will be
(53.7)

Ty gy ooy X

The second block will be
Tot1> Toppzs -+ - > Tgpe (5.3.8)
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In general, the nth block of unknowns will be
z,

TS ST (56.3.9)

The numbers g, are certain integers satisfying 1 < ¢, < g, <---, and will
be specified precisely in the proof below.
The first block of unknowns will be assumed to satisfy

Ay + Gypy + 0+ 8y X, = by (5.3.10)
The second block will be assumed to satisfy
al,ql+lxal+l + a'l,al+2xal+2 + e + al,qzxaz =0
Oy g1l T Qg po¥oie T 70t Gy 0%,
= by — (@n®) + Aoy + - + @y, 7,) (53.11)

By adding (5.3.10) to (5.3.11), we see that the first two blocks satisfy

an® + 0+ 6y g%, = b,
(5.3.12)
an®y + -+ a7, = by
In general, the nth block will be assumed to satisfy
) 0, 1 +1%q,_+1 + -+ 2,0, %, = 0
(5.3.13)
@10, +1%q,_ +1 + -+ @y1,0,%a, = 0
0, 1+1%q,_+1 + e+ 4y 0, %a,

=b,— (@pp% +ay o2+ +a z, )=2b,

Nln_1"dn_y

By addition, the first » blocks of unknowns will satisfy the n conditions

@y + Gty + 000+ a4y, T, =5
(5.3.14)

@y + pyty - +a, 2, = b,

But, in order to provide absolute convergence, we need more. We shall
require that (5.3.13) be solved subject to the condition that the terms of
the first n — 1 of its left-hand members be uniformly small in absolute
value.
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LeEmMA 53.2. Let n and q be positive integers. Let b be arbitrary and
& > 0. Under conditions (A) and (B) of Theorem 5.3.1, we can find an integer

¢ > q and values x,,, ., . .., %, such that
@ g+1%er1 T Wrgia®es + 0+ %y =0
(5.3.15)
Bp1,0+1%t1 T Cp1gr9qiz + 0+ By %y =0
Bpt1Ter1r  + Opgro¥ers + 700+ ATy =D
and such that
@1 g1Toral  + o By gmel <€
(5.3.16)
Ia'n-l,a+1xo+l| + -+ Ian—l,q’x ’I <e
Proof: Let ¢, ...,t, be n independent variables. In view of condition
(A), we can select n integers ky, ky, . . ., k, With ¢ < k) <k, < -+ <k, in
such a fashion that the determinant of the system
Oy gy, + Orp, Ty, + 0 F Ay Ty, = 4
(5.3.17)
Qo Tpy + O Ty, + 000+ Qe X, = 1,

does not vanish. The 2’s may therefore be solved as certain linear combina-
tions of the #’s. Hence, for the ¢’s sufficiently small, the 2’s will also be small.
More than this, we may find a é > 0 such that || <6, ¢ =1,2,...,n
implies

€

3 ji=L2,...,n (53.18)

@2, | + || + -0 + lag 2 | <

Now in view of condition (B), we can determine an integer ¢’ > k, such
that

a..
8] { =% | < min (§, ¢/2) forj=1,2,...,n — L (5.3.19)
nqg’
Now, set , =0 if g<k<q and k£k, k,,...,k, Determine Ty
Ty, - - -, %, from the system (5.3.17) wherein we have set
baﬁa’
h=—% =12...,n-1 (5.3.20)

ng’

t, =0.

n
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In view of (5.3.19) and (5.3.20), we have |¢;,| < dforj = 1,2, ..., nand hence
(5.3.18) holds. If we set

b [ €
Ty =—— then |a; x| = | =<8 < 3
ng’ na’
by (5.3.19).
Finally,
@;j,0+1%¢+1 + @; o+2%q+2 + @5 %y
= @y Ty, + g Ty, + 00 Ay T+ Gy P t,—t;=0
id
i=L2,...,n—1
and
@y o1%et1 T Cp gio¥ore T 000t Cpgy = Qg B + Bp Tp, + 70
b
+a'nk,,xk,,+anq’—=tn+b=b
a,,
Thus, if z,,,,...,z, have been selected in the above manner, all the

required conditions are fulfilled.

Proof of Theorem 5.3.1: We begin by dividing the unknowns into blocks
in an inductive fashion. In view of condition (A), the sequence a,;, @;,, - - - ,
must contain infinitely many nonzero elements. Determine ¢, such that
@y, # 0. Now set 2, =0, 2, =0, ...,2,_, =0, 2, = b/a),. Conditions
(5.3.10) imposed on the first block are satisfied. Suppose now that we have
obtained integers

Q<gp<--<g,,andvaluesz,...,z, |

where n > 2. We take the next step as follows. Use Lemma 5.3.2 with
qg=0¢,, b=0>," (Cf. (5.3.13)) and determine ¢’ = ¢, and the values of
the nth block of unknowns, Ty 410+ -+ > Ty, SO that (5.3.15) is satisfied and
so that
1 .
Iaio,._ﬁlxa,._ﬁll + e+ lafqnanl < o l1<j<n (5.3.21)

1
ie., (6.3.16) with ¢ = T Note that b,” involves only the values z,, ...,
z, , so that this step may be taken. This completes the inductive defini-
tion. '

In view of (5.3.13), it is easy to see that z,, x,, . . ., satisfy the original
system (5.3.4)—at least in a blockwise fashion. Let j be fixed, i.e., consider
a fixed row. As soon as n > j, (5.3.21) holds, and this tells us that the jth
row must be absolutely convergent. From (5.3.14), we see that when n > j,

the jth row has partial sums a;2, + * - + a;, z, = b;, for the infinite
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o
sequence of indices g,, ¢,,y, . ... Since Y a,zx, converges, it follows that
k=1

@
> a;,x, = b;. This completes the proof.
k=1

It should be emphasized that nothing has been said about the uniqueness
of the solution. Quite the contrary. Under these conditions, there must be
an infinity of solutions. (See Prob. 7.)

5.4 Applications of Pélya’s Theorem. Theorem 5.3.1 will now be
applied to give a proof of a theorem similar to Theorem 5.2.1.

THEOREM 5.4.1. Let 2y, 25, . .., sabisfy 0 < |2,] < |zo] < -+ ,nlirg |z, =
p < o0. To each point z; associate a nonnegative integer m; and m, + 1
arbitrary values w2, wp?, ..., w;™. Then we can find a function f(z) that is
analytic in |z| < p and satisfies the interpolation conditions:

f@)=wl f'(z)) =w?, ..., f™)() =w™ j=12,.... (541)

@
Proof: Assuming we have f(z) = > a,2*, with a, to be determined, we
have for s > 1, =

Ce
@) = 3 akle —1) - (b — s + . (5.42)
k=0
The conditions (5.4.1) therefore lead to the infinite system
ay + 2,0, + 2%, + 283 + - = w,°
a, + 2z,a, + 3z,2a5 + - - = w,!
2a, + 62,05 + - - = w,?
(5.4.3)
(m,)! U, + 0= wy™
@y + 258y + 2,%05 + 2,35 + ¢ 00 = w0

a, + 22, + 32,%a5 + ¢ - - = wy!

Now condition (B), (5.3.6) is satisfied. For if the jth row refers to an sth
derivative at z,, s > 1, we have from (5.4.2)
af—l,k+1=znk(k—1)"‘(k—3+2)= %p =0
@ 1 ke —1) - (k—s+1) Ek—s+1 '
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However, if the jth row relates to a value of f at a point, then the condition
[z,-1] < |2, assures that the limit of a;_, ,/a, , is zero. Consider the coeffi-
cients arising from the system (5.4.3). We shall prove that the determinant
formed from the first » rows and any » adjacent columns cannot vanish.
This will tell us that condition (A) is fulfilled. These determinants may be
thought of as generalized Vandermonde determinants. To avoid losing the
thread of the argument in a welter of indices, look at the specific case n =
4, my = 2. The 4 X 4 determinant formed from the first 4 rows and 4
adjacent columns is

2, k1 +e &+8
> kek1 (k + L)z* (k 4 2)2k+1 (k + 3)zk+2
ke — D=2 (k4 DkF1 (B + 2)(k + 1)2* (b + 3)(k + 2)5+!
zzk 2720+1 272c+2 z’2‘+3

(5.4.4)

Form the related system of linear homogeneous equations in 4 unknowns
V..., Uyt
' ! 2fvy + 21, 4 2E 2y 4 3y, =0
k2E 1o, 4 (B + Dzfv, + (k + 2)2F 1o, + (B + 3)2F 20, =0
k(k — 1)2E %0, 4 (b 4 1)kt v, (5.4.5)
+ (k4 2)(k + )z*vy + (b + 3)(k + 2)2E 10, = 0
25¥0, + 210y 4 2kt 20, 4 2E+Sy, =0

If D = 0, then by Theorem 1.2.2, we can find v,, . . . , 94, not all zero, satis-
fying (5.4.5). With these values, form the polynomial

P(2) = 032" + 02"t 4 0t 4 vt

P is of degree < k + 3 and does not vanish identically. It has a k-fold zero
at z = 0 and in view of (5.4.5), a 3-fold zero at 2, and a zero at z,. That is,
it has zeros of total multiplicity & + 4. This is impossible, and hence D %
0. (Cf. the argument used in 2.3, Ex. 6.)

We now employ Theorem 5.3.1 and obtain values a, a,, . . ., for which
(543) holds, all series being absolutely convergent. Since, in particular,

2 a, |z|* < oo, f(2) = E a,2* is convergent in |2| < p and the formal work
k=0
of (5 4.3) is valid.

Can one construct an analytic function whose derivatives at a point
have been prescribed in advance? Ex. 1 of 5.1 shows that this is not always
possible if the point is interior to the region of analyticity. But, by moving
the point to the boundary of this region, it becomes possible.
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THEOREM 5.4.2 (Borel). Given an arbitrary sequence of real numbers

Mg, My, . . ., we can find a function whick is analytic in (—1, 1) and for which

xllm fPNz)=m, n=01,.... (5.4.6)

Proof: Write, tentatively, f z a,x" f'(x) = D na,z"!, etc. On the
=0

ne
basis of these assumed expansions, set up the following infinite system of
linear equations for a,, a,, . . . .

G+ a+ay+ o =my
a, + 2a, + 3a3 + - =m, (5.4.7)
2a, + 6ag + - -+ = m,

A typical column of coefficients of this system is 1, &, k(k — 1), k(k — 1) X
(k — 2), ..., so that condition (B) of Theorem 5.3.1 is immediate. Consider,
next, any n X n determinant formed from the first n rows of the coefficient
matrix of (5.4.7). By the addition of appropriate linear combinations of
the rows, it may be converted into a determinant whose typical column is
1,k, ..., k™" This is a Vandermonde and does not vanish. Condition (A)
of Theorem 5.3.1 is satisfied, and we can find numbers a,, a,, . . . , for which
all the series in (5 4.7) converge to the right-hand side.

Form f(z) = Za z". By the first equation of (5.4.7), f(x) is analytic in
|| < 1. By Abel’ Theorem (see e.g., Titchmarsh, [1] p. 229) llm 1 f(x) = my.

Moreover, f'(x) = Zna 2", |z| < 1. In view of the second equation of

(5.4.7) and Abel’s Theorem, hm \ f'(x) = m,. In this way, we can establish
that (5.4.6) holds generally.

NOTES ON CHAPTER V

5.3-5.4 G. Pdlya [1]. R. G. Cooke [1]. Theorems 5.4.1 and 5.4.2 have
attracted wide attention and many proofs and generalizations can be found.
See, e.g., Pélya [2], Ritt [1], Franklin [1].

PROBLEMS
1. Given 0 <z, <z, <--+ <1, lim x, = 1. Find necessary and sufficient
n—wo
conditions on a, in order that the problem f(x,) =a, n =1,2,..., have a

solution f () that is differentiable in 0 < < 1.
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2. Construct a function f(x) that satisfies
@y =fx+1), 0<zx<owo fn)=InN), n=12,....,

is convex for 0 < x < oo, but is not I'(z).

3. The function f(z) = e/(=+9) _ 1 has an infinity of zeros in |2] < 1. Does
this contradict the uniqueness principle for analytic functions?

4. Prove the following generalization of the Lagrange interpolation formula.

Let 2z, 2, . . ., (#0) be distinct points with lim z, = . Let w(z) be an entire
function with simple zeros at zg, 2y, . .. . If "
’ ©,
¥=0 | zxw'(2¢)
then

et aw(z)
kgo w'(2g)(z — %)

converges absolutely and uniformly in every |z| < R to an entire function f (z)
for which f(z;) = a3, k =0,1,....

5. Specialize the result of the previous exercise by writing w(z) = sin z and
obtain a theorem for the cardinal series.

6. Let M(r) be an arbitrary positive function 0 < r < «. We can find an
entire function f(z) such that Jmex |f@re®)| = M(r),0 <7 < . In other

words, we can find an entire function whose growth is uniformly arbitrarily

) 2 \}e
rapid. Hint: write f(z) = ay + Eak (;) and select a; and A, sufficiently large.
(Poincaré.) k=1

-
7. Let the system E ajr, =bj,j =1,2,. .., satisfy (A) and (B) of Theorem
k=1
5.3.1. For any m > 0, show that we may obtain a solution with xz,, x,, .. ., ,,
prescribed arbitrarily, and hence there is an infinity of solutions.
@
8. Suppose that f(z) = Za”z” converges at z = 1. Show that f(l) =1,
n=0
. 2 - 0 is impossible. Hence in Th
f 3 =f 3] = =f nrl) T = 0 is impossible. Hence in Theorem

5.3.1 condition (A) cannot itself guarantee the existence of a solution.
9. Let mg, my, ..., be an arbitrary sequence of real numbers. Show there
exists a function f of class C°[ —1, 1] for whichf®(0) =m, =n =0,1,....
10. Let z, be distinct complex numbers with '}m}n z, = o. If ¢, is completely

arbitrary, we can find an entire function f(z) such that
Zn41

fz)dz =¢, n=01....

2n

11. Use a theorem on infinite interpolation to construct a function that is
analytic in |z] < 1 and has |z| = 1 as a natural boundary.
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12. Let x;, x,, . . ., be distinct real numbers that satisfy lim z, = . If
n—w

Mg, My, . . ., are completely arbitrary real numbers, we can find g, u,, ...,

e
such that Zuixi” =m, n =0,1,..., each series converging absolutely.
1=1

(R. P. Boas, Jr.)
13. The problems of Theorems 5.4.1 and 5.4.2 have an infinity of solutions.

14. There is no entire function that satisfies
f)y =1, f(=1) =0, f2DO) =0 n =0,1,....

15. Construct a function of class C® that satisfies the conditions of Prob. 14.



CHAPTER VI

Uniform Approximation

6.1 The Weierstrass Approximation Theorem. We come now to
the 2nd fundamental theorem of this book, the Weierstrass approximation
theorem of 1885.

flx)+e
P, (2)
f(z)

flz)—¢€

Figure 6.1.1.

THEOREM 6.1.1. Let f(x) € Cla, b). Given an ¢ > 0 we can find a polynomial
Pa(x) (of sufficiently high degree) for which

If(@) — (@)l <& a<a<b (6.1.1)

Weierstrass’ theorem asserts the possibility of uniform approximation by
polynomials to continuous functions over a closed interval.

It is instructive to contrast this theorem with Taylor’s theorem for ana-
lytic functions for the two are often confounded. Suppose that f(z) is ana-

lytic in the circle || < R. Then we have f(z) = > a,2%, convergent uniformly
¥=0

in |z| < R. Hence it is clear that given an &£ > 0, we can take sufficiently
n
many terms of this power series and arrive at a polynomial p,(z) = > a,2*
k=0
for which |f(z) — p,(2)] < € for |2] < R. A fortiori, on the real segment
—R <2 < R we have |f(x) — p,(x)| < e. But for functions that are not
analytic, there is no expansion in power series. Yet Weierstrass’ theorem

assures us we can approximate uniformly functions which are merely con-

tinuous. Given a sequence ¢, &, .. . — 0, we can find polynomials
pnl(x) = Qgy, + Ay p, T +oc 4+ anlnlxnl

pnz(x) = a0n2 + alnzx + e+ anznzxnz (612)

107
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for which |f(2) — p, ()] <&, —R <z <R, k=1,2,.... Consequently
klirrcxo P, (*) = f(2) uniformly in —R <z < R.

From approximations, it is simple enough to go to expansions, for we can
write the ‘‘collapsing” series

J(@) = Py (@) + (Pn,(¥) — Dy (%)) + (Pny(¥) — Dy, (®) + -+ (6.1.3)

which, evidently, converges to f(z) uniformly on —R <z < R. Thus,
briefly, an analytic function can be expanded in a uniformly convergent
power series, and a continuous but nonanalytic function can be expanded
in a uniformly convergent series of general polynomials, with no possibility
of rearranging its terms so as to produce a convergent power series.

6.2 The Bernstein Polynomials. There are many proofs of the
Weierstrass theorem, and we shall present S. Bernstein’s proof. While it
is not the simplest conceptually, it is easily the most elegant.

DEriniTION 6.2.1. Let f(x) be defined on [0, 1]. The nth (» > 1) Bern-
stein polynomial for f(z) is given by

L k\ (n
B,(f; x) = kgof (;) (k)x"(l — x)"k, (6.2.1)
Notice that
B,(f;0) =f(0) B,(f;1)=f(1) (6.2.2)

It is clear that B, € &,. In certain cases, it may degenerate and become
a polynomial of degree lower than n.

THEOREM 6.2.1.

B,(f;x) = ZA‘f () (6.2.3)

=0

where the differences have been computed from the functional values at
o/n, 1n, ..., (n — 1)/n, n/n.

n

Proof: B,(f; x) = g ( (k)x"(l—x)"—"

)
( ) (lc) ( k) (—1)yn—k—dgn—k—i
N éo :g: f (S) (Z) (n J— k)( —1)n—k—ign—i,

3
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Rearranging the summation, we obtain

n t t (-k-) (n) (n _ k) - o= > (n) t (k) (t) B
‘g"xkgof = AV AP Ll k_eg;xt t kgof AV LGl i
= S t ny ¢
3 ago(})e
The last equality follows from (2.7.5).

Ex. 1. If fe #, then A'¥ (0) =0 for ¢t > m. (6.2.3) then implies that
B,(f;x) e 2, for all n.

Ex. 2. Useful identities may be derived by applying (6.2.3) to the functions
1, z, 22. For f(z) = 1, we have A% (0) = 1, A'f(0) = 0, A%f(0) = 0, etc. Hence

n

B,(1;2) = > (:)x"(l — )k =1, (6.2.4)

This, of course, is the binomial expansion for 1* = (z + (1 — z))".

1
Ex. 3. For f(z) ==z, we have AY(0) =0, Alf(0) =—, A%(0) =0,....
Hence, "

B ik" t1 —aypt = ("o = (6.2.5
,,(x,x)—k=0n k k(1 — z) =11 x = .2.5)
Ex. 4. For f(z) = x?, we have

A% (0) =0 Al(]=l A20=E A% (0) =0,....
F0) =0, AF(0) ==, A¥(©) ==, A¥(©) =0,

r (kN [n 1/n 2 (n
B,(x2; x) =k§0(;) (k)x"(l — )"k = F(l)x + 5(2):1:2. (6.2.6)

Ex. 5. B,(e*%;z) = (we*™ 4+ (1 — z))".

Hence

THEOREM 6.2.2 (Bernstein). Let f(x) be bounded on [0, 1]. Then
lim B(f;2) =@ (8.2.7)
at any point z € [0, 1] at which f is continuous. If f € C[0, 1), the limit (6.2.7)
holds uniformly in [0, 1].

Proof: A. Note the identity

S (k- nz)’(;:)x"(l — z)"* = na(l — 2). (6.2.8)
k=0
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To prove this, expand this sum into
> kz(”)xk(l — )"t — 2na ¥ k(n\’x"(l — )k
¥=o \k =0 \k)
+ nix? E ( ):v"(l — x)nk,

and combine this with identities (6.2.4), (6.2.5), and (6.2.6).
B. For a given 6 > 0 and for 0 <z < 1, we have

n 1
(1l — )" < — 6.2.9
|k/nzz|>6(k) ( ) 4nd?’ ( )
This notation means that we sum over those values of k =0,1,...,n
k k
for which |- — z| > 4. To prove (6.2.9), note that |- — x| > J implies
n n

NUE N
— |- - . Hence
62 \n -

1 k 2 (n,
|k/n§;|zo(k)xk(l - <3_ 'Ic/nzx|>d(— N ) (Ic)xk(l -

k n wp _ NE(l —2) _l_
('— )(k)xk(l_x) =t ST

uM:

1
6
The last inequality follows since z(1 — z) < } for all 2.

n

C. Wehavel = > (Z)x"(l — z)"* from (6.2.4). Hence,

k=0
2= 3 f(z) (:)x"(l — Z)nk
k=0
so that

f(@) = B,(f;2) = éo {f(x) —f(%)}(:)xk(l e
- Ik/n—zzl<d {f(x) _f(:f,)}(:)xk(l — z)nk
+ o2l =) () o

The function f(x) is assumed bounded in [0, 1]. Hence for some M > 0,
|f(x)] < M and for any two values «, B €[0, 1], | f(x) — f(B)] < 2M. Let
z be a point of continuity of f. Given an ¢ > 0, we can find a J such that
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| f(x) — f(y)| < € whenever |y — x| << 8. Thus, using these estimates and

using this 4 in (6.2.9), we have
fi@) —f(g)l(:)xka — )

[f(z) — Bu(fso)l < 3
sa-s(3 ()0 -

|kin—z| <8

kin=z|>6
<e (n)x"(l —z)rt oM > (n)x"(l — z)n*k
\kin—2| <6 k \k/n—z|>6 k
= (n 2M M
1 — gyt 4 7 -
=¢ ;go(k) AUy Sk T

From this inequality, we see that |f(x) — B,(f; z)| < 2¢ for n sufficiently
large. Since ¢ is arbitrary, (6.2.7) follows.

Suppose now that fe C[0, 1]; then f is uniformly continuous there.
Given an ¢ > 0, we can find a d such that |f(x) — f(y)| < ¢ for all z,y in
[0, 1] satisfying | — y| < 6. The above inequality holds independently of
the z selected and the convergence to f(x) is uniform in [0, 1]. We express
this as a corollary.

CoroLLARY 6.2.3. If f(x) e C[0, 1], then given an ¢ > 0, we have for
all sufficiently large n,

[f(x) — B,(f;2) <& 0<z<I. (6.2.10)

Bernstein’s Theorem not only proves the existence of polynomials of
uniform approximation, but provides a simple explicit representation for
them.

The results for [0, 1] are easily transferred to [a, b] by means of the linear
transformation

r- (6.2.11)

b—a
that converts [a, b] into [0, 1].

CoroLLARY 6.2.4 (Theorem 6.1.1). Let f(x) € Cla, b]. Then given ¢ > 0,
we can find a polynomial p(x) such that |f(x) — p(x)| < & for a <z <b.
Proof: Consider ¢g(y) = f(a + (b — a)y). g € C[0, 1]. Hence given an ¢ > 0
we can find a polynomial r(y) such that |g(y) —r(y)| <e 0 <y <1.

Set p(x) = r(z —
follows. -

a) , which is a polynomial in z, and the required inequality
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6.3 Simultaneous Approximation of Functions and Derivatives.
In contrast to other modes of approximation—in particular to Tscheby-
scheff or best uniform approximation which will be studied subsequently—
the Bernstein polynomials yield smooth approximants. If the approximated
function is differentiable, not only do we have B, (f;z)— f(x) but
B,'(f; ) —> f'(x). A corresponding statement is true for higher derivatives.
The Bernstein polynomials therefore provide simultaneous approximation of
the function and its derivatives.

In order to make the force of this result felt, we call attention to the
following examples from real and complex analysis.

Ex. 1. Uniform approximation does not automatically carry with it approxi-
1 1
mation of the derivatives. Consider f,(x) = - sin nz on [0, 27]. Since | f,,(x)| < o

the sequence f,, converges to 0 uniformly on [0, 2r]. On the other hand, f,"(x) =
cos nx, so that f,” does not approach 0’ = 0.

This phenomenon may be present in sequences of polynomials. Let
Sl =% T, (x), Cf. (3.3.2). Since |T,(x)] <1 on [—1,1], it follows that
fa—>0 uniformly there. Now, f,’(z) = (1 — «?)~ sin (n arc cos «), and if we
set x, = cos — o , then f,'(z,) = csc 2% The sequence of derivatives of f,

cannot approach any function of C[—1, 1] uniformly.

Ex. 2. Uniform approximation of analytic functions by analytic functions is
totally different. Let R be a region bounded by a simple closed curve C. Let f ()
and p(z) be two functions analytic in R and on C. Suppose that | f(2) — p(z)| < &
on C. By the Maximum Principle, this inequality, and hence uniform approxi-
mation, persists throughout R. Moreover, by Cauchy’s Inequality (1.9.8) we
have

n! L(C)

[f™() — p"™(z)| < W ¢ (6.3.1)

for z confined to a point set S in R the distance of whose points from C is no
less than 6. For fixed S and n, allow ¢ — 0 and (6.3.1) tells us that the nth de-
rivative of the approximant is also a uniform approximation to the nth derivative
of the approximee. In the complex analytic case, uniform approximation over
regions carries with it the simultaneous uniform approximation, in the above
sense, of all the derivatives.

LeMMA 6.3.1. Let p > 0 be an integer. Then

( + (n+ ) 2 Avf ( ) (':)x'(l —z)"t  (6.32)
=0

BP) (f; ) =
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Proof: Apply Leibnitz’ formula
P
(w)®» = 3 (;’) wDp(p—3) (6.3.3)

j=0
to (6.2.1) and obtain

)(n+p) i( )(x")u)[ (L —a)m+2=4]o=h. (6.3.4)

Now, we have (z¥)) = k! 2*~7/(k — j)!, k — j >0 and

n+p
BYL(fiz) = 2 f(n -

[(1 — g)yn+P=F)2=9) = (—1)P=i(n + p — k)!
X(1 —2)*ti*(n + 5 — k), k—j <n.
Therefore (6.3.4) becomes
Bitplp(f; x) =

ntp P k ) (n + p)! (p) o
—1)? 7xk—) _ ﬂ+]'—k'

Icg j=0 f(n +p/ (k—)(n+5—kN\j (=1 (1 —=)

K (6.3.5)

0<k—
If weset k—j=t k=1t-+j, we see that 0 <t <=n, j=0,1,...,p,
corresponds to the range of the sum in (6.3.5). We may write (6.3.5) as

<n

IR sy s
B f,x)—(n+p)!t§0 T ’go( 1) f~ 5 (6.3.6)

(6.3.2) now follows from (2.7.4).

TuEOREM 6.3.2. Let f(x) € C?[0, 1]. Then
nlll;rql) BP(f; x) = fPx) uniformly on [0, 1]. (6.3.7)
¢

n+p)=<n+p)”

t
<é§, < ﬂ ,t=0,1,...,n Hence from Lemma 6.3.1,
n+p

Proof: By (3.4.5) we have A”f( fP&,) for some &,

14
satisfying T
n

( P 2 n—
B(P) f; x) = _(—) f(l’)(s )( ) t(l — x) t.
It follows that

n! (n 4 p)? NAYLWw net
o Drhlfi) = zof( ’(;,)(t)”“"”’

Sl Qe o

t=0

(6.3.8)
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t t
Since <-< +p,t=0, 1,...,n, it follows from the bounds on
n+p n n+t+p
t t4+p t p
E, that | &, — - | < — = .
t o n+p n+p n+p

From the uniform continuity of f(P)(z), given an ¢ > 0, we can find an
ngsuch that for all n > nyand all ¢, | fP(&,) — f'P)(¢/n)] < . Asin the proof of
Theorem 6.2.2, the second sum in (6.3.8) is less than ¢ in absolute value for

_nl(n+ p)?
n >mny and for all x €[0, 1]. Furthermore, lim ————— =1, and by
s (0 + p)
Theorem 6.2.2, the first sum approaches f(®(z) uniformly. The theorem
follows from this.

More general results may be established on the assumption that f'®)(z)

exists at individual points of the interval.

THEOREM 6.3.3. Let p be a fixed integer with 0 < p < n. If

m< fP)<M, 0<z<]1 (6.3.9)
then
P
m < " BP(fiz) <M,0<z<l.  (63.10)

nn—1)---(n—p+1)
For p = 0, the multiplier of B{P) is to be interpreted as 1. If
P n

fP) =0, 0 <z<1 (6.3.11)
then
BP(f;z) 20, 0 <z <1 (6.3.12)

If f(x) s nondecreasing on 0 < x < 1, then B,(f; x) ts nondecreasing there.
If f(x) is convex on 0 < x < 1 then B,(f; x) is convex there.

Proof: From (6.3.2) and (6.2.3) we have forp =1,2,...,n,

" t\(fn—0p
BP(fiz)=nn — 1)+ (n—p+1) 2 A’ |- ;) — 2,
t=0 n
(6.3.13)
By the extended mean value theorem, Cor. 3.4.4,

t 1 t t
wr(l) ~ Lrmes Les<t2

For p = 0, this equality obviously holds with &, = ¢/n. Hence,
n?
Can—1)(n—p+1)

=S o (" Y “’)x'(l — )",
=0 t

In view of (6.3.9) and the fact that 21 — z)*?-* > 0 on [0, 1], it follows

BP)(f; x)
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that
n—p/n n—p _
m=m3, (" p)x‘(l —)"Pt<Q <M D (” ; p)x‘(l —a) =M.
t=0

{=0 ¢
This demonstrates (6.3.10). (6.3.11) follows by setting m = 0.

If f (x) is nondecreasing, Af(¢/n) > 0 and hence from (6.3.13) with p = 1,
B,’(f;2) >0 on [0,1] and this implies that B, (f;x) is nondecreasing.
Finally, if f is convex, then by (3.2.2), A%f(¢{/n) > 0. From (6.3.13) with
p =2, this implies that B,”(f;z) > 0. By Theorem 3.2.1, this, in turn,
implies that B, is convex in every closed subinterval of (0, 1). Since B,
is continuous, it is convex in [0, 1].

TaEOREM 6.3.4. Let f(x) be convex in [0,1). Then, for n =2,3,...,
B, ,(fix) = B,(f;2), 0<z<1. (6.3.14)

If f € C[0, 1], the strict inequality holds unless f is linear in each of the intervals
[‘7—_1 J ],j =1,2,...,n — 1. In this case, B,_,(f; x) = B,(f; ).

n—1 n—1
Proof: In (6.2.1) set t = =

and obtain

(1 — 2)™(B,1(f; 2) — B,(f; x))
WA 20
=:z:( )03 A

n—1

k=1 ( ) (n)tk —f(0) — f(V)i" = X c,f¥, where

k k=1

T w— 15?(;—1); — ) {%f(n - 1)

o l_ kf(f, : :)— k(nrf_ k)f(:—z)} (6.3.15)

Now kol < I_c , and since fis convex, the bracketed quantity in
n— n
(6.3.15) is > 0 by Definition 3.2.1. Therefore 2 ckt" > 0 and (6.3.14) follows.

J— 1 J
n—1"n—
and hence B,_, = B,. Conversely, if B, ; = B,, then all the ¢, are 0, and
since f € C[0, 1] and is convex, (6.3.15) implies that f is linear in each inter-
val.

If f is linear in each of the intervals [ l]’ then all the c; are 0
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The geometric interpretation of these theorems is this. The Bernstein
approximant of a continuous function lies between the extreme values of
the function itself, and its higher derivatives are bounded by (6.3.10).
Monotonic and convex functions yield monotonic and convex approximants
respectively. In a word—and this is reflected in Figure 6.3.1—the Bernstein
approximants mimic the behavior of the function to a remarkable degree.

There is a price that must be paid for these beautiful approximation
properties: the convergence of the Bernstein polynomials is very slow.

z(l —x
Ex. 3. From (6.2.6) we have B,(z%;z) — 2% = % . The convergence

is like 1/n.

It is far slower than what can be achieved by other means. If f is bounded,
then at a point where f”(x) exists and does not vanish, B, ( f; x) converges to
f (x) precisely like C/n. (See Theorem 6.3.6.) This fact seems to have precluded
any numerical application of Bernstein polynomials from having been made.
Perhaps they will find application when the properties of the approximant in
the large are of more importance than the closeness of the approximation.

1+

0 1

Figure 6.3.1 Illustrating the Approximation Properties of the
Bernstein Polynomials of a Concave Function.

By(f; %) = 3(x —2?)

By(fiz) =3z — 3% + $ a3 — ot

Bio(f; @) = 3¢ — 3023 + 10504 — 18925 + 21028 — 16027 + 90a® — 352° + 6210,
The graph of f is polygonal and joins (0,0), (.2,.6), (.6,.8), (.9,.7), (1,0).
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LEMMA 6.3.5. There is a constant ¢ independent of n such that for all x
[0, 1],

n c
(1 — 2)"F < — 6.3.16)
k/n —gl:zn—% (k) ( ) n¥ (
Proof : Consider the sums
8, (x) = ﬁ (* — nx)"'(;:)x"(l — z)nk (6.3.17)
k=0

We have already established by (6.2.4), (6.2.5), and (6.2.8), that Sy(x) =1,
Sy(x) = 0, Sy(x) = na(l — z). Differentiating (6.3.17) we have

S, (x) = i (n) (k — nx)™ ¥ (1 — z)"*-1[—mnz(l — z) + (k — nx)?]

¥=o\k
— —mnS,_(z) + Smn®@ (6.3.18)
z(1 — x)
Hence,
8,ia(@) = 2(1 — 2)[8,, (@) + mnS,,_,(z)]. (6.3.19)

We may conclude from this recurrence that each sum S,,(x) is a polynomial
in « and n. In particular, Sy is of 1st, S, is of 2nd, S; is of 2nd, and Sy is of
3rd degree in n. Hence, for some constant c, [Sg(z)| < cn® for z in [0, 1].

k — 6
%2]’
n’

k
Inasmuch as | = — z | > n~% implies
n

n

n— _l__ S — n — n—k
.k/,._xz.z,.-i(k)xk(l -t s — AL "x)s(k)xk(l @)

= n18(z) <

3wl«»' o

THEOREM 6.3.6 (Voronovsky). Let f(z) be bounded in [0,1] and let z,
be a point of [0, 1] at which f"(x,) exists. Then,

Jim n[B,(f; zo) — f(e)] = 32o(1 — zo) /" (%o)- (6.3.20)

Proof: From Theorem 1.6.6 we have

[@) — 2

2
f(x) = fx) + f'(x)(x — x) + B + s(x)(x — x,)?

k
where lim s(x) = 0. Set 2 = — .
r—x, n

A s raft o) L e o o
(6.3.21)
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Multiply both sides of (6.3.21) by(;:

to k = n. In view of identities (6.2.4-6), we obtain

1 — ) f” LR\ (k\
B(fia) =Sz + L2 3 () (E o (e s
(6.3.22)

)xo"(l — %)"* and sum from k=0

Designate the third term in (6.3.22) by S. Let ¢ > 0 be given. We can find

1
n sufficiently large that |t — x| < — implies [s(z)] < e. Hence,
?

Wt
k\|[(k 2(n
GG == (et =
+
|kin —z,| >n-t

)
8 p—
n
Thus,

< (k 2(n
S| <& 2 (- - xo) ( )xo"(l — x4+ M
k=0 \N k

where M = sup s(z)(x — z,)%. By (6.2.8) and Lemma 6.3.5,

0<r<1

18] <

|kjn—zgl<n~}

(6.3.23)
2
(I_C - xo) (n) To (1 — )" ",
n k

n
( )xo"(l — z)"
tk/n—zolzn‘} k

|8 <
It follows from (6.3.22) that
MC

T

n2
(6.3.24)

1 —
LB, 2) — f (a) — T

= |nS| < exo(1 — o) +

Since ¢ is arbitrary, (6.3.20) follows.
6.4 Approximation by Interpolation: Fejér’s Proof.

THEOREM 6.4.1. Let z,, x,, ..., , be the zeros of the Tschebyscheff poly-
17) . Let f(x) e C[—1,1] and suppose that

nomial Tn(x),(x, = cos —

H,,_,(f; x) is that element of P,,_, for which
Hy,  (f;2) = f()
Hy, 1(f52) =0

Then, nlmuxo H,, \(f; ) = f(x) untformly in [—1, 1].

} E=1,2,...,n (6.4.1)

Proof: We are confronted here with a problem of Hermite interpolation.
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As already observed in (2.5.20), the general solution is given by

n
Hy, (f; 2) Z z) + 2 v, By(x (6.4.2)
where k=1
wll(x )
4@ =|1——"E@— ]l 2
() [ ) @~ B[
By (z) = (x — 2, )| 2(x)
w(z)
@)= —F———— wx)=(x —x) - (x — 2,). (6.4.3)
k w (xk)(x _ xk) ( ) ( 1 n
In the present construction, we select y,' =0, k=1,...,n, so that
our interpolation polynomial reduces to

Hy, (f; ) =lé 1f (@) Ai(). (6.4.4)

We next compute L(z), w'(z), w,"(x). Now

w(z) = ¢, T ,(x) = c, cos (n arc cos x), ¢, =

gr1’
and hence,
w'(x) nsin (n arc cos z)
= —, and
Cn V1 — a
w"(x) [a: sin (narccosz) n(l — a?)} cos (n arc cos a:)]
=n — .
Cn (1 — a2)F (1 —a22)?

Atz = =, cos (narc cosz) = 0, and sin (n arc cos x) = sin ((k — })m) = (—1)*-L.

wz,) (=1 w'(x,) na(—1)F1

Therefore,

Cn \/l—xkz, Cn _(l_xkz)%’
(=Y — 22 T (2) w” (%) _ 1 —am
W = T & T
w'(xy) 1 —ax, T 22)(1 — z7)
Ak(x) - [l N W’(xk) == xk)] lkZ(x) 11— xlcz ”2(’: - xk)z
= (1 ( Tn(x) )2
= ( —_ xxk) n(T——xk) .

Formula (6.4.4) can be rewritten as

——) 2 f(@)A,(2) (6.4.5)
xk k=1

H,, ,(f; 2) z flx)(l — xxk)( Py

where

Ay(x) = (1 — xxk)(ﬂ)—)z. (6.4.6)

n(r — x,)
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Observe that since |z,| <1, 4,(x) >0 for —1 <z < 1. Observe further
that
H, ,(1;z)= 2 A,(x) (6.4.7)
is that unique polynomial P,,_,(x), of degree < 2n — 1, for which
PZn—l(xk)= 1» Pé”_l(xk)=0, k= 1,2,...,n

The polynomial 1 fits these requirements and hence
Hy, y(1;7) = Z Ayx) = 1. (6.4.8)

After these algebraic preliminaries we can turn to the proof of conver-

gence. Since > A,(x) = 1, it follows that f(z) = > f(x)A4,(z), so that
k=1 k=1

@) — Haypo(f3 2) =él(f(x) — f@) )

and

£ @) — Hayprf3 2)] skélf(x) — f(@)] 4Ayle). (6.4.9)

Since f(x) € C[—1, 1], it is uniformly continuous there. This means that if
€ > 0 is given, we can find a 6 > 0 such that

|z, — x,| < 6 implies |f(x,) — f(x,)] <& —1 <2, 2, <1. (6.4.10)

For a given z in [—1, 1], split the indices ¥ =1,2,...,n into two sets:
I: |x — 2, < 6. II: |z — x| = 0. Then,

|f (@) — Hoypea(f3 2)] < kgl If () — f (@] Ay(x) +k§1|f (@) — f ()| Ay()-

We now estimate each of these sums. In view of (6.4.10) and (6.4.8),

n

kZI [f (@) — f(2)] Aplx) < 8%141;(’7) <e 2 Ay(x) = e.

Consider next 4,(z) for |t — z,| >4, —1 <z < 1.

Ay(x) = (1 — 2=,) [M] 2.

n(x — x;)

2
Now, 0 <1 —azx, <2, |T,(z)] <1, |x — x| > 0. Hence A4, (x) gnz—oz.

Since f € C[—1, 1], it is bounded on [—1, 1] by some constant M :
f@)| <M, -1 <z<1
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Thus, |/ (@) — f(z)] <2M,

2 4M » aM
kgllf(x) xk)l Ak(x) = E 2M - 26 < a5 nzéz z 1= ;ﬁ .

aM
Combining these estimates, |f(z) — H,, (f;2)] < ¢+ Pyl Having been

M
given an ¢, 0 is determined. Select n so large that — < & Thus, for »

né?
sufficiently large and for all —1 <2 <1, |f(z) — H,,_,(f; x)| < 2e.

6.5 Simultaneous Interpolation and Approximation. Iff e ([a, b],
it may be approximated uniformly by a polynomial. We know also that we
may interpolate to f at a set of points in [a, b]. Can these processes be

combined ? Given n points z,, Z,, . . . , , in [a, b] and given &£ > 0, can we
find a polynomial p(x) such that |f(x) — p(x)| < &, x €[a, b], and p(z,) =
f(x),1=1,2,...,n? Such approximations may be very desirable.

f@) +e

f(=@)

(@) -

Figure 6.5.1.

THEOREM 6.5.1 (Walsh). Let S be a closed bounded point set in the complex
plane. Let z,, . . . , z, be n distinct points of S. Suppose that f(z) is defined on
S and s uniformly approximable by polynomials there. Then it is uniformly
approximable by polynomials p that satisfy the auxiliary conditions

pz) =fz), i=12,...,n
Proof: Given an ¢ > 0, select a polynomial p(z) such that
If(2) —p(2)| <& 2€8.
Set,
qM—ZUm— (2 (2)
w(z)
(2 — 2w’ ()

w(z) = H (z — 2)- (6.5.2)

L(z) =
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Then ¢(z) is the unique element of 2, _, with ¢(z,) = f(z,) — p(z), k =
1,2,...,n Now

n,}%x lg(z)] < 2 | f(z) — p(2)] nzlggx [h(z)| < eM
k=1

where n
M = 3 max |L(2). (6.5.3)
¥=1 28

Note that M depends only upon S and z,, . . ., z,. Set

P1(2) = p(2) + q(2). (6.5.4)
Then
2z =p(z) +az) =f(), k=12,...,n
Moreover,

If(2) — 2a(2)] < |f(2) — p(2)| + lg(2)] <&+ Me, z€S8.

This inequality proves the theorem.

Ex.1. By Weierstrass’ Theorem, any f (x) € C[a, b] is uniformly approximable
by polynomials. Hence the answer to the question in the introductory para-
graph of 6.5 is “‘yes.”

Ex. 2. Let f(z) be analytic in |z| < R. Since f(z) may be expanded in a
power series which is uniformly convergent there, it is uniformly approximable
there by polynomials. Let z,, . . ., 2, be distinct points in |2| < R. Then we can
find a polynomial p(z) with |f(2) — p(2)] < ¢, l2| < R and p(2) =f(z), k =
1,2,...,n.

6.6 Generalizations of the Weierstrass Theorem. The Weierstrass
Theorem has been generalized in many different directions. We shall meet
some of the results in Chapter XI where closure and completeness are
studied. Here, we shall look at generalizations to functions of N real vari-
ables. If a real function of N real variables is continuous on a closed bounded
set of Ry, it may be approximated uniformly by polynomials in the N
variables. There are many proofs of this fact. One proof—an extension of
Theorem 6.2.2—makes use of generalized Bernstein polynomials: if f(z,
Zy, . . ., Zy) is continuous on the hypercube C: 0 <x; <1,5=1,2,..., N,
then the generalized Bernstein polynomial

jal W (n,\ [(n n
B(fitny ... zg)= 3 o0 > (1)( 2)(~)
B=0  ky=0 \k/ \ky ky

ky, k k
x f (_1 =, _N)xlkl(l — )R g RN (] — )k,
Ny My ny

(6.6.1)

converges uniformly in C to f as m}n n; — 0.
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In order to provide an alternate approach, and to present a result with a
more contemporary flavor, we shall prove the Stone-Weierstrass Theorem
and derive the N-dimensional Weierstrass Theorem as a consequence.
Stone’s Theorem was inspired, in part, by an elementary proof of Weier-
strass’ Theorem given by Lebesgue in 1908.

We shall limit our discussion to real functions that are defined on a
finite interval I of R,: —o0 < a; <x; <b; < co. We designate points of
I by P, Q, etc.

LEmMA 6.6.1. Let F be a family of functions that are real and continuous
on I and such that
f1,f2 € F implies max [ f,, f,] € F and min [f,, f,] € F. (6.6.2)

In order for a function f that is continuous on I to be uniformly approximable
by members of F, it is necessary and sufficient that for any two points P, and
P, of I and for any € > 0, there be a function t(P) € F such that

If(P) —HP) <e t=1,2. (6.6.3)
Proof: If uniform approximation is possible, then given & > 0 we can
find a ¢{(P) € F such that
If(P)—P)| <e Pel

and so (6.6.3) follows trivially.

Conversely, suppose that (6.6.3) holds. Select a fixed @ €I and a fixed
€ > 0. Then, for any point R, we can find a function ¢(P)(= ¢ P; @, R, ¢))
such that |f(Q) — Q)| < € and |f(R) — #{(R)| < e. In particular,

#(R) < f(R) + &. (6.6.4)

By continuity of ¢ and f, this inequality must persist in a certain neighbor-
hood Ny of R. As R runs over all the points of I, the corresponding neigh-
borhoods must cover I. Hence by the Heine-Borel Theorem, we can find a
finite number of them N Ry N Ry - N R, that cover I. The corresponding
functions {(P; @, R,) satisfy

{P;Q, R)<f(P)+¢ PeN, 1i=12 ...,k (6.6.5)
Define

(P Q) = min {{P; @, By, (P; Q, Ry), ..., U(P; Q, By} (6.6.6)
By (6.6.2), iterated, t~ € F' and by (6.6.5),
(P, Q) <f(P)+e Pel (6.6.7)
Again, for each 7 we have

If(Q) —tQ; @, R)| < e
HQ; @, B,) > f(Q) — e (6.6.8)

so that
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It follows from (6.6.6) that

(Q; Q) > f(Q) — e (6.6.9)
By continuity, (6.6.9) must persist in a neighborhood O of @:
t=(P; Q) > f(P) —e. (6.6.10)
Now let @ run over I. These neighborhoods cover I, and we may find a
finite number of them O,, 0,, ..., O, corresponding to @, ..., @, that
cover I. Since
t~(P; Q) >f(P)y—e, PeO, i=12,...,r, (6.6.11)
and since the O; cover I, for every P € I, the inequality
(P Q) >f(P)—¢ (6.6.12)
must hold for some ¢.
If we set
s(P) = max {t=(P, @), ..., t~(P, @)} (6.6.13)

then by what we have just said,
8(P) > f(P) — e, forall Pel. (6.6.14)

On the other hand, by (6.6.7), t~(P; @) < f(P) + ¢, P eI for all Q. Hence,
$(P) < f(P) + &, P e I. Combining this with (6.6.14),

|[f(Py—s(P)| <e Pel (6.6.15)
Finally, by (6.6.2) iterated, s(P) € F.

Ex. 1. Let Ibe —0 <a <z <b < o and F be the set of all piecewise
linear functions defined on I. It is easy to verify that F satisfies (6.6.2). Condi-
tion (6.6.3) can be satisfied with ¢ = 0 by means of a linear function. Conclusion:
Every continuous function can be approximated uniformly on I by continuous
piecewise linear functions.

DEerFINITION 6.6.1. Let F be a family of real valued functions. By the
lattice hull L of F is meant the intersection of all families of functions that
contain F and contain the functions max (f;, f;) and min (f}, f;) whenever
they contain f; and f,.

Note that F < L. If all the functions of F are continuous, then the
functions of L must also be continuous.

DEFINITION 6.6.2. An algebra &7 of real valued continuous functions
defined on I is a set of such functions that possesses the following property.
fi,fa€ A, creal, impliesf, + f,e A, c¢f, € A, fifr€ H. (6.6.16)

Note that (6.6.16) implies that any polynomial in f; with real coefficients
and of the form a,f, + a,f,®2 + +++ + a,fi" € .
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LEMMA 6.6.2. Let o be an algebra of continuous real valued functions
defined on I. Let L designate its lattice hull. Then, the elements of L are uni-
Sformly approximable by elements of .

Proof: Designate by & the set of functions that are uniformly approxi-
mable by elements of 7. We shall show: (1) & isan algebra and (2)if fe #
then [f| € &.

Since we have

max (fy, fo) = 3[(fi + fo) + [fL — fell

min (fy, f) = (/i + /) — /i = Lfel);

it follows from (1) and (2) that if f,, f, € & then max (f,f,) € %, and
min (f,, f,) € Z. Since obviously & < %, it will follow from Definitior:
6.6.1 that L = Z. This will establish the lemma.

As far as (1) is concerned, we need only imitate the familiar proofs of
the elementary theorems on limits of sums and products. To prove (2),
observe that since the elements of .o/ are continuous on I, they are bounded
there. Since an f € 4 is uniformly approximable by elements of .27, it, too,
must be bounded there. Set M = i’u? |f(P)|. By Theorem 6.5.1, let P(t)

€

(6.6.17)

be a polynomial with P(0) = 0 and with |P{t) — ||| < & for |t| < M. Since
the values of f lie in [—M, M], we have |P(f) — |f]| < &. But from (1)
and the remark following Definition 6.6.2, P(f) € #. Hence we can find a
g € & such that | P(f) — g| < e. Combining these inequalities,| Ifl —g] < 2¢
on I. Therefore |f| € Z.

THEOREM 6.6.3 (Stone-Weierstrass). Let o/ be an algebra of real valued
continuous functions defined on I. In order that an arbitrary continuous real
valued function f be uniformly approximable on I by elements of o, it is
necessary and sufficient that for any two points P,, P, € I, and any ¢ > 0, we
can find a g € o such that |f(P,) — g(P,)] <& ¢=1,2.

Proof: If f is uniformly approximable on I by elements in &7, then this
condition obviously holds. Suppose, conversely, that the condition holds.
Let L(&7) denote the lattice hull of &/ and let f be continuous on I.
For any two points P, P, €1, and any ¢ > 0, we can find a g € &/ (and a
fortiori € L(&7)) such that | f(P,) — g(P,)| <&, =1, 2. Hence, by Lemma
6.6.1 with F = L(%7), we can approximate f uniformly on I by elements of
L(&7). On the other hand, the elements of L(&/) can, by Lemma 6.6.2,
be uniformly approximated by the elements of &7 itself. Combining these
two approximations, we can approximate f by elements of .o7.

COROLLARY 6.6.4. Let f(x,,...,xy) be real and continuous on I. Then
it can be approximated uniformly on I by polynomials in x,, Ty, . . ., Ty.

Proof: For the algebra o/ take the set of polynomials in zy, z,, . .., Zy.
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Let P;: (2P, 2, ..., 2), s = 1, 2, be distinct points and consider
P
g(@y, g, . . ., xy) = f(P) + M E (x; — D)@ — ().
(2) _ ()2i=
El("' =) (6.6.18)
Thisis a polynomial in z,, . . . , xy and g(P;) = f(P,), ¢ = 1, 2. The conditions

of Theorem 6.6.3 are satisfied with ¢ = 0.

NOTES ON CHAPTER VI

6.2-6.3 Bernstein polynomials are described in Gontscharoff [1], Natan-
son [1], pp. 1-7, 174-182. Lorentz [l] is a penetrating study of these
interesting polynomials and includes a discussion of their behavior in the
complex plane, applications to moment problems, and generalizations.

For Theorem 6.3.4 and for applications of the Bernstein polynomials to
variation reducing approximations, see Schoenberg [1].

For a deeper study of the rate of convergence of the Fejér scheme in
Theorem 6.4.1, see Shisha et al. [1].

An interesting and unifying approach to Theorems 6.2.2, 6.4.1, and 12.2.8
(Bernstein and Fejér) is provided by the theory of positive linear functionals
as developed by Korovkin in [2].

6.5 Walsh [2], p. 310.

6.6 The Stone-Weierstrass theorem can be found in McShane and Botts
[1], Dieudonné [1], pp. 131-134. Dunford and Schwartz [1], pp. 272, 383-
385. The chapter by Stone in Buck [6] is highly recommended.

PROBLEMS
1. Let f (x) € CYa, b]. If p(z) is a polynomial that approximates f’ to within
x

e on [a, b] then q(x) = p(x) dz + f(a) is a polynomial that approximates f to
a
within (b — a)e on [a, b]. Extend to higher derivatives.

2. Let f(x) € C®[a, b]. Show (without using Bernstein polynomials) that we
can find a sequence of polynomlals Pn(x) such that hm p(’)(x) = fU)(z) uni-
formly on[a,b] j =0,1,

3. Let p(x) = (k)x"(l —x)*» % 0 <x <1. Prove that the maximum
k k . .
value occurs at x = —. If —— z as n — ©, P, ~) is asymptotically equal to

(2ma(l —z))"t. " "
4. Bernstein polynomials over the interval [a, b] may be defined by

k
B,(f,a, b;x) = Zf(a+ h)( )(x—a"(b—x)""‘ h=b—a.

Prove a theorem analogous to Theorem 6.2.2.
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5. Compare By(Va; }) with V.
6. Let S(x) = |22 — 1|,0 <2 < 1. Compute By(S(x); x), B4(S(x); ). Show

1 1 [2n
that B,, (S(x); 5) = W(n ) and study the rapidity of the approach to 0 of

S(3) — Bya(S(@); 3)-
7. Let f(x) =0 for 0 <z <},f(x) =2 —} for } <z < 1. Show that
By,(f; ) has nth order contact with f at both 0 and 1.
8. Verify Voronovsky’s Theorem for f () = e® by a direct computation.
9. Obtain an explicit expression for B,(z%; z) and show directly that
lim n[B,(z3; z) — 23] = 32%(1 — x).
n— oo
10. Let f(x) € Cla, b]. It is uniformly approximable on [a, b] by polynomials
with rational coefficients.
11. If f(x) € Cla, b], uniform approximation by polynomials with integer
coefficients is not necessarily possible.
12. Prove Ex. 1, 6.6 directly.



CHAPTER VII

Best Approximation

7.1 What is Best Approximation? In Chapter VI, we have studied
several situations in which functions can be approximated arbitrarily closely
by polynomials. It goes without saying that in order to achieve more and
more accuracy in the approximations, the approximants will (in general)
have to be of higher and higher degree. But it is of considerable importance
both for theory as well as for numerical practice to accomplish as much as
possible with polynomials of a fixed degree. For instance, how well can the
function z* be approximated over 0 < z < 1 by a straight line? In order to
answer such a question, the notion of closeness of approximation must be
defined. Frequently, we measure the closeness of approximation over the
interval by taking the maximum deviation between the function and its
approximant. At other times, we may wish to use alternate definitions.
The maximum deviation considered over a finite set of points, or the integral
of the square of the deviations are frequently employed.

Once a criterion of closeness of approximation has been decided upon,
we may begin to answer specific questions. We may, for instance, look into
the problem of whether, among the elements of &, there is one whose
closeness to a given function f(x) is not exceeded by any other element of
P,. If there is, it is known as a best approxzimation to f(x). Change the
criterion of closeness of approximation and the best approximation will
change.

Ex. 1. Approximate y = x4 over [0, 1] by a straight line /(x) so that

1
(a) f (x* — U(z))2 dz = minimum
0

(b) Ll(x" — lx))2dx + L l(d/dx(x“ — I(x)))2 dx = minimum
(€) max |]2* — l(z)| = minimum
The answers are given by
(a) fz) = 2 — %
(b) Uo) = §o — 33
©lx) =z — 3V2 =2 — .236....
128
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Z

Figure 7.1.1 Least Square and Best Uniform Linear
Approximations to z* on [0, 1].

The major investigations in the theory of best approximation concern
themselves with (a) Under what circumstances is there a best approxima-
tion? If it exists, is it unique? (b) How can best approximations be charac-
terized analytically or geometrically? (c) How can the best approximants
be computed numerically ? (d) What are the asymptotic properties of best
approximation? We shall prove theorems in all these categories.

It would be good to have an abstract mathematical structure to describe
properties of best approximation independently of the specific criterion of
closeness of approximation. Such a structure is furnished by the theory
of Normed Linear Spaces, and it is to this theory that we now turn.

7.2 Normed Linear Spaces
DErFiniTiON 7.2.1. A linear space X is called a normed linear space if for

each element x of the space there is defined a real number designated by |z|
with the following properties:

(a) llz]] > O (positivity)
(b) [|z|| = 0 if and only if x = 0 (definiteness) 791
(c) llex|| = || [|z|| for every scalar « (homogeneity) (721

(d) llz +yll <=zl + llyll (triangle inequality)

The quantity ||z|| is known as the norm of z.
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DEFINITION 7.2.2. A metric space is a collection of elements and a mea-
sure of distance d(x, y) defined for every ordered pair of elements. The
function d(z, y) is assumed to satisfy

(a) d(z,y) >0

(b) d(x,y)=0ifandonlyifz =y
() d(z,y) = d(y, )

(d) diz,y) + dly, 2) > d(=, 2).

Note that the concept of a metric space is the more primitive one since
a normed linear space is a metric space under the definition

d(xz, y) = llz — yl. (7.2.3)

It is easily verified that (7.2.1) and (7.2.3) imply (7.2.2).
As an easy consequence of the norm postulates we have

(1.2.2)

[zl — lyll| <z~ wl, (7.2.4)
for [|lz]| = lz —y + yll <z —yl + lyl.
Therefore |lz]| — [yl < llz — yl.
Similarly |yl — =] < lly — =] = llz — ¥l

and (7.2.4) follows.
The following examples of normed linear spaces find frequent applica-
tion.

Ex. 1. Therealline —w <z < oo with |jz|| = |2|.

Ex.2. Thereal n-dimensional Cartesian space R, of elements
T = (X, Tgs - - - 5 Tp)
with the definition ||z|| = (z,% + %, + - -+ + ,%)}. This is known as the “square

norm.”

Ex. 3. R, or C, with the definition ||z|| = (|z,|” + - -+ + |z,|?)V/?, p > 1.
This is known as the “p norm.” Properties (7.2.1)(a)-(c) are easy to verify.
Property (d) is the Minkowski Inequality and takes a number of steps to reach.

Lemma 7.2.1. Ifz,y >0,a,b >0anda + b =1 then
2%° < ax + by. (7.2.5)
Equality holds if and only if x = y.
Proof: Let t > 1, m < 1. Let f(t) = t™.
From Theorem 1.6.2,
JO=rM+ -0 1<é<t
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Hence t™ = 1 + (¢t — 1)ymé&™-1,
Since £™1 < 1,
tm <1 4 m(t —1). (7.2.6)

Assume, for the moment that x >y > 0. Set ¢t = z/y > 1, m = a, so that
1 — m = b. Then, from (7.2.6),

(@/y)* <1+ alzly — 1)
or
Yyt <y 4 alx —y) =ar + (1 — a)y.
Hence
2%® < ax + by.
If 0 < x <y, we may interchange the roles of @ and b and arrive at the
same inequality. If z = y, 2%® = 2*t® = x = ax + bz.

Lemma 7.2.2 (Holder’s Inequality). Let z, and y, be complex. If p > 1,
and 1/p + 1/g =1,

n l/p/ n 1/g
< (Z lxkl”) (Z lykl") . (7.2.7)
k=1 k=1

n

TYx
=1
Note that 1/p, 1/g > 0.

. ¢ 3 I:rkl . lyqu
Proof: From Lemma 7.2.1, with z = LY =

n

n 2

z || 2 Lyl
E=1
a=1/p,b=1—1/p = 1/q, we have

'llxklp e bequ < l/p l kl l/ lykl . (728)
Z |2 |” z ly:l® Z || Z Y5l
k=1 k=1 k=1

n
Summing (7.2.8) from k£ = 1 to k = n, and multiplying by ( > lxk[”)

q
X (Z lyk|q\) we obtain
o 7 7 lp /1 n 1/q
PYLAAES (Zmp’) (k§l|yk|«) . (7.2.9)

Since

n
2 B
r=1

n (7.2.7) we must have

n
< Y |z, (7.2.7) follows. For equality, in (7.2.8) and hence
E=1

? a
|| - J‘?/kl E=1,2...,n

n
Z [ |? Z lyil®
F=1 =1

ie.,
|z,|? = constant |y,|9, k=1,2,...,n (7.2.10)
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n n
Moreover, Dy | < 3wl
F=1 F=1
unless
Ty, = |2.e®, 6 = constant, k=1,2,...,n. (7.2.11)

Hence (7.2.10) and (7.2.11) together are necessary and sufficient for equality
in (7.2.7).

THEOREM 7.2.3 (Minkowski’s Inequality). If p > 1,

1/p 1/p

2 1/p n n
{.lexz + yi"’} < (,lexil”) + (.leyil”) (7.2.12)
or, in the notation of Ex. 3., |z + y| < |zl + llyll-

Proof: If p =1, (7.2.12) reduces to the triangle inequality. If p > 1,

n n
Z lz; + y;|? = Z lz; + gl lz; + y:|*!
i=1

i=1

<

M=

n
]lxil lz; + ¥, P! + .Ellyil [z, + y,|771
iz

By Lemma 7.2.2,
< n 1p [ n 12
3l b+ vt < (B hede) " ( Se + i)
i=1 ) =
Z lp [ n 1/q
= (zlxtlp) (lei+yi|p) .
i=1 i=1
imi 3 < 1/p [ 7 1/q
simitaty, 3t o+ 0l <( Stn) (S + i)
i=1 i=1 =1

n 1/q
Combining these inequalities and dividing by( S, + yi|") we obtain
(7.2.12). i=1

Suppose that p > 1. If there is equality in (7.2.12), we must have

n n 1/p/ n 1/q
S led 1o+ yd7t = ( s lxilv) ( 3 o+ y|)

i=1 i=1 i=

e (7.2.13)

n n 1/p [ 7
S twdte + e =( k)" ( 2o+
i=1 i=1 i=1
and
n n n
2 [z, + gl 1o, + |77 = lexil fx, + ¥,/ + le?/il lo; + g, |71 (7.2.14)
i=1 i= =
By the remark following Lemma 7.2.2, (7.2.13) implies that
|2,|? = ¢y |z, + gul? l9:l? = e 2, + 9% 1=1,2,...,n
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Assuming that neither the z; nor the y, are all zero,
|2;| = constant |y,|, 1 =1,2,...,n.

Since |a + B| < || 4 |f] unless « and § have the same direction, we con-
clude from (7.2.14) that

z, = |z e, y, = |y e, i=1,2,...,n.
Hence,
x,=cy;, =12, ...,n, (7.2.15)

with ¢ > 0.

Ex. 4. The same linear space as in Ex. 2, with the definition ||z| = |ax ;]

<j<n
This is known as the uniform norm. It is also called the p = o norm in virtue
of the identity Lim (|z;|? + |2y|? + - - - + |x,|”)Y? = max |x;|. (Prove.) One
p—© 1<j<n
sometimes expresses this as lim ||z|, = ||z| »-
pP—>©

Ex. 5. If {x,;} and {y;} are two sequences of real or complex numbers such

[=e]
that Z |z;|? < oo,
i=1

[+ o)
S |yl < o, p > 1, then
i=1

i=
L) 1/p e 1/p © 1/p

{Z lo; + ?/i]”} < (Z |“‘i|”) + (z |yi|p) . (7.2.16)
i1 i=1 i=1

0
This implies that the set of all infinite sequences {z;} with Z |z;|? < oo and

i=1
addition and scalar multiplication defined analogously to Ex. 1, 1.3, form a
o 1/p
linear space with || {z,}|| = (z lxili’) . This space is called the ¢? space.
i=1

Ex. 6. Let B[a, b] be the set of all bounded functions defined in [a, b]. Define
Ifl = sup |f(@)]

asr<h

Then we have a normed linear space. To prove (7.2.1)(d), observe that

If @) < sup |f(2)l, lg(x)| < sup |g()|-

Hence,
[f(@) + g(=)] < [f@)] + lg(x)] <sup|f(x)] + sup lg()l.

Since this is true for all z, it follows that

sup | f(x) + g(x)| < sup |f(2)| + sup |g(x)].

Ex. 7. C[a, b] with the definition |f|| = rgai(b |f(x)| is a normed linear
aszr=<
space.

Ex. 8. Let R be a region of the complex plane. The set of functions analytic
in R and bounded there forms a linear space B(R). It may be normed by defining
11 = sup 17 @,
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Ex. 9. Let w(z) €([a, b] and w(x) > 0. We may norm C[a, b] by defining
b ¥
Ifl = (f w(x) f2(x) dx) (weighted square norm).
a

Ex. 10. L7[a,b] (Cf. Def. 1.4.0) is a normed linear space for p > 1. We
b 1/p
define | f|| = (f | f(x)|? dx) . The triangle inequality is the Minkowski in-
a

equality for integrals.

b 1/p b 1/p b 1/p
(f If (@) + g(x)l”dl‘) < (f If(x)l”dx) + (f Ig(x)l”dw) . (7.217)

For p > 1 this may be defined from the Holder inequality for integrals. This
states that if f € L?[a, b] and g € L9a, b], 1/p + 1/g =1, p > 1, then fg € L{a, b]

and
b 1p [ (b 1/q
< (f If(x)l”dx) (j lg(x)|? dx) . (7.2.18)

The proof runs parallel to that of Lemma 7.2.2. The particular case, p = 2,

b } /(b +
< (f If(x)lzdm) (f ]g(x)lzdx) (7.2.19)

is the very important Schwarz inequality.

b
f S (x)g(x) de

b
ff (x)g(x) dx

Ex. 11. Leta <z, <zy <... <w, <b. The linear space #, , may be
normed as follows
ol = Joex [p(;)l-

7.3 Convex Sets.

DerFmviTiON 7.3.1. Let X be a linear space. If x, and z, are two distinct
elements of X, the set of all elements of the form

x=1tx, + (1 —t)xy,, 0<t <1 (7.3.1)

is called the line segment joining x, and x,.
DerFiNmTION 7.3.2. Let X be a linear space. A subset C' of X is called
convezx if C contains all the elements on the line segment joining any two

of its elements. That is, if x,, z, € C then so does tz; + (1 — #)x,, 0 <t < 1.

Ex. 1. In R, a line segment, the quadrant > 0,y > 0, the interior of an
ellipse are all convex sets. (Proofs?)

Ex. 2. The set of all polynomials with nonnegative coefficients is convex.

Ex. 3. Let X be a normed linear space. The ball |z]] < is convex. For
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suppose ||z|| <7, ||yl <7,and 0 <t < 1. Then
ltw + (1 — oyl <lelfl=ll + 11 —ellly] <tr + (1 —t)r =1

Hence tx + (1 — t)y belongs to the set.

Figure 7.3.1 A Convex Set. Figure 7.3.2 The Convex Hull.

Figure 7.3.3.

DEriniTION 7.3.3. The convex hull of a given set S is the intersection of
all convex sets containing S.

Ex. 4. The convex hull of the point set } < 2% + y2 < 1,y > 0 is the semi-
circle 22 + y2 <1,y > 0.

Ex. 5. The convex hull of the points P,, P,, ..., P, lying in a plane may
be “found” by driving nails in at P; and wrapping a string around the con-
figuration.

An elegant example of a normed linear space is furnished by the Minkowsk:
plane. Let there be given in the z, y plane a bounded, convex set S with
boundary C. We will suppose it contains the origin in its interior and that it
is symmetric with respect to the origin; i.e., if (x, y) € 8 then (—z, —y) € S.
If P = (x, y) is a point other than the origin, the directed line extending
from (0,0) to (x,y) can be shown to intersect C in precisely one point

(=, y').
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Define

VAT
It should be clear that the points of the plane interior to €' have norm < 1,
those exterior to € have norm > 1, while those on C have norm = 1.

1Pl = ll(= »)ll = > 10,0) = 0. (7.3.2)

THEOREM 7.3.1. R, normed by (7.3.2) is a normed linear space.

Proof: The requirements for a norm are (7.2.1)(a)-(d). The first three
are easy to check. The triangle inequality requires some ingenuity. We
wish to show that ||P, + P,| < | Py|| + || P,]. If either | Py =0 or
|| Pyl = 0, the inequality is trivial. Assume that neither is 0 and set

[Poll + [ Poll =t
We can then write || P,]| = 68, || P, = (1 — 6)t for some 0 < 6 < 1.

2
(1 — oy

-é—l = 0) are located on C. By the
P

P
convexity of the closure of S, the point 0(-0—;)-}— ) M _ze)tz

By homogeneity, ”

This tells us that the two points

7 (Py + P,) is also in the closure of S and hence

1
(P + Py

1
t = IP + P <1

Therefore,
1Py + Pl < 1Pyl + || Pol-
The same definition can be introduced in spaces of higher dimension.

C is called the gauge curve of the normed plane.

Ex. 6. If C is the unit circle, then ||P|| = (x? + y2)?}, and we have the
Euclidean norm.
Ex. 7. IfC is the square with sidesz = +1,y = +1, then
I Pll = max (||, [y]).
Ex. 8. Cis the square with sides # =y = +1. Then ||P|| = |z| + lyl.
7.4 The Fundamental Problem of Linear Approximation. Let X

be a normed linear space. Select » linearly independent elements z,, . . . , z,,.
Let y be an additional element. We wish to approximate y by an appropriate
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linear combination of the z,,...,x, The closeness of two elements will
be defined as the norm of their difference. We therefore would like to make
ly — (@yx, + ayxy + - - - + a,z,)| as small as possible. The element

y— (@, + -+ a’nxn)

is called the error or discrepancy.

DErFINITION 7.4.1. A best approximation to y by linear combinations of

Zy, ..., %, is an element a,x, + - - - + a,z, for which
ly — (@@ + - +a2)ll <y — (by2y + -+ + bz,
for every choice of constants b, ..., b,,.

A best approximation solves the problem of minimizing the error norm.

Ex. 1. Let X be C[0, 1] normed by | f|| = [Jmax, |f(x)|. Take n =1, z, as
sz<

the function 1, and y the function e®. A best approximation to e* by constants
is the constant a that minimizes oma,x |e* — a|. The (unique) solution is a =
<z<1

4(e + 1) and the error norm is (e — 1).

1 ]
Ex. 2. Let X be ([0, 1] normed by || f| = (f Vi dx) . Take n = 1, z; the
0
function 1, and y the function e*. A best approximation to e* by constants is
1 ¥
the constant @ which minimizes (j (e* — a)? dx) . The (unique) solution is
0

given by e — 1 and the error norm is (§(4¢ — €2 — 3))%.

Ex. 3. Let X be Ry normed by |z|| = Joax |z,|. Take n = 2,2, = (1,0, 0),
==
2y = (0,1, 0)and y = (3, 5, 2). The minimum error norm is 2 and can be achieved

with any coefficients a,, a,, for which [3 — a,| < 2, |5 — ay] < 2. Though there
is a best approximation, it is not unique.

Ex. 4. Let X = 2, normed by | f|| =1f(0)] + |f(1)|. What constant is a
best approximant to the polynomial z? We have ||z — a| =la| + |1 — al.
Hence, as a varies, the minimum value is 1 and is assumed for every 0 < a < 1.

The problem of finding best approximations can be pictured geometri-
cally. The set of all linear combinations a,z, + - - - + a,x, form a linear
subspace of dimension n. We can picture this as a plane. The element y will
not, in general, lie in this plane, and we would like to locate the point of
the plane closest to y.

THEOREM 7.4.1. Given y and n linearly independent elements x,, . . . , x
The problem of finding n(xlin ly — (@yzy + - - - + a,z,)| has a solution.

n*
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Proof: Consider the error norm

d(ay, 8y, . -, @,) = |y — (@2 + a2 + - +az,)| (T4])

as a function of the n real or complex variables a,, . .., a,. This function
is continuous in the variables a;, for, the difference

(@), ay, ..., a,) —d(ay, ay, . ..,a,)
= | ly — (@ /2y + <+ + @,z ) — ly — (@32, + -+ - + a,2,) |
< e, — a)zy + -+ - + (a, — @)z,
<lay —afllzll + - - + la, — a,] [z, (7.4.2)

le— error

Er

best approximation to y

Figure 7.4.1.

The first inequality follows from (7.2.4) and the second from (7.2.1) (d), (c).
Since the z’s are fixed, (7.4.2) implies that the difference of the d’s must be
small if the difference of the a’s is small. In a similar way, the function

@y, ... a,) = lagzy + -+ + a,z,] (1.43)
is a continuous function of the a’s.
Let 8 designate the spherical surface
S jay|? + ag)? + - + a,|? =1 (7.44)

in R, (or C,). S is closed and bounded and hence A must take on a minimum
value m > 0 there. The possibility m = 0 is ruled out for we should have
for some nonidentically vanishing a,, |a,z, + - -+ + a,2,|| = 0. This im-
plies that a2, + - -+ + a,z, = 0 and contradicts the assumption that the
#’s are linearly independent. Now, writing r for (|a,|2 + a2 + - - - + |a,|?)},

hay,...,a,) =T

a a,
—,+ -+ 2L,
r r

(1.4.5)

so that
h(ay, . ..,a,) =>mr. (7.4.6)
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Moreover,

d= |y — (@, + -+ + a,x,)]| = ez, + - + a2, || — |yl
>mr — |y|. (7.4.7)

This inequality means that if we select coefficients that are very large, d
must be very large for it increases without limit as r — co. This in turn
means that in looking for a minimum value for d, we can confine our atten-
tions to a certain sphere in the a-space. More precisely, set

1
p=infda,...,a,) and R = +”—m+"y". (1.4.8)
If |)|2 + - - - + |&,|® > R?, (7.4.7) implies
d>mR— |yl =1+ p> p. (7.4.9)
Hence
infd(ay, ..., a,) = infda, . .., a,) (7.4.10)

where I refers to the whole space of the a’s and II to the portion |a,|? 4
+ |a@,|? < R2. Since d is continuous, the value of the right hand of (7.4.10)
is assumed in |a,|? 4 - - - + |a,|? < R? and this completes the proof.

CorOLLARY 7.4.2. Let f(x) € Cla, b] and n be a fixed integer. The problem
of finding mm Jnax, |f (@) — (@g + ax + - - - + a,z")| has a solution. As

we shall pro've subsequently, the solution is unique. It is called the Tschebyscheff
approximation of degree < n to f(x). We shall designate it by T, (f; ).

CoroLLARY 7.4.3. Let f(x) € Cla, b] and n be a fixed integer. Let p > 1.
b

The problem ofﬁndinga znina j |f (@) — (@g + @& + - - - + a,x")|? dx has a
00150000 J g

solution. Such a solution yields a best approximation to f(x) in the sense of
least pth powers. We need only assume that f € L*[a, b].

COROLLARY 7.4.4. Let B be a bounded region in the complex z plane. Let
f(2) be analytic in B and remain continuous in B, the closure of B. The prob-

lem of finding mln max If(2) — (@g + a2 + -+ - + a,2")| has a solution.

This polynomml wzll be proven unique in Theorem 7.5.6 and will be designated
by T,(f(2); 2)-

CorROLLARY 7.4.5. Let x,, ...,z be k + 1 distinct points Let kb >n. The

problem of determining mm OmaJx If () — (ag + ax; + - - - + a,z™)| has
a solution. "7
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CoroLLARY 7.4.6. Let z,, ...,z be k+ 1 distinct points, k >n. The
3

min Z (f(x;) — (ag + ayz; + - - - + a,x,")® pos-

0020 =)

sesses a solution. This is the common problem of least squares data fitting by
polynomials.

problem of determining .

CoroLLARY 7.4.7. Let values a,;, y; be given for 1 <i <p, 1 <j <n,
p > n. The problem of finding n;in 08X ly; — (@u%; + s+ + + + a1,
has a solution. L

This is the “solution” of an over-determined system of linear equations,
accepting as the answer those values that render minimum the maximum
of the individual discrepancies. Other norms may be used. The most fre-
quently used norm is the square norm.

CoroLLARY 7.4.8. Let O [—m, w] designate the linear space of functions
which are continuous on [—m, w] and are periodic: f(m) = f(—m). Then,
there is a trigonometric polynomvial of order < n,

n n
T, (x) = 3 a cos kx + > by sin kx
£=0 E=1
for which _max [f(x) — T,(x)| s mintmum.
DEriniTION 7.4.2. For a given y; z,, ..., x, set
min gy — (@2 + - + a2 = By 7y, -, 2,) = By(y). (1411)
E,(y) is the measure of best approximation that can be achieved when y is
approximated by linear combinations of the z’s. Geometrically, it may be

thought of as the distance from y to the subspace spanned by x,, . . ., Z,.
Evidently we have

E\(y) = Ex(y) = Eyly) =+ (7.4.12)
This is true since linear combinations of z,, z,, . . ., 2; are also linear com-
binations of x,, z,, . . . , %y, Ty

7.5 Uniqueness of Best Approximation. We have observed that
under the hypothesis of Theorem 7.4.1 there is always one best approximant.

But there may be more than one. In fact, the best approximants form a
convex set.

THEOREM 7.5.1. Let S designate the set of best approximants to y in the
situation of Theorem 7.4.1. Then S is convex.
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Proof: Let z and w be two best approximants to y. Then, ||y — z|| =
E (), ly — w| = E,(y). Suppose that « >0, § >0 and o + § = 1. Then
ly — oz — pw|| = flaly — 2) + fly — w)| <o« ly — =] + By — v

= («+ P)E,(y) = E,(y)-

But ox 4+ fw is also a linear combination of x,, %,,...,x, and hence
ox + fw must also be a best approximant.

CoroLLARY 7.5.2. The set of best approximants consists either of ome
element or of infinitely many elements.

Proof : For if it contains two distinct elements, it must contain the whole
line of elements joining the two.

Ex. 1. In Ex. 3, 7.4, the totality of best approximations is given by
|8 —ayl <2,|5 —ay| < 2. The points (a,, ap) lie in a square, a convex figure.

A fairly extensive sufficient condition can be given which assures the
uniqueness of the best approximation.

DEerFINITION 7.5.1. A normed linear space X is called strictly convex if
lzl <7, |yl <rimply ||z + y|| < 2r unless z = y.

Ex. 2. The space C, of complex sequences x = (2, . . . , &,) wWith

n 1/p
B (_E mv) P>,
i=1

is strictly convex. For if

] <r iyl <r and |z +yl| =2r,

then

2r =z +yl| <= + llyll < 2.
Therefore,

lz + 9yl ==l + llyll-
Hence
=l =yl =r.

By (7.2.15),

Zily; =A>0 1 =1,2,...,n.
Since ||z| = |ly|l, A =1, and so z = y.

Ex. 3. The normed linear spaces ¢? and LP”[a, b], 1 <p < oo, are strictly
convex.

Ex. 4. The space C[ —1, 1] with || f|| = max |f(2)| is not strictly convex.
_1<z<

For if f(@) =1 —a% g(x) =1 — % |f] = gl = 1,11 + gl =2 but

S (@) £ g(x).



142 BEST APPROXIMATION Ch. VII

Ex. 5. R, with ||(z,, z,)]] = max (|z,], |x,|) is not strictly convex for

(1, 0) + (L D =L, O + (L, DY

THEOREM 7.5.3. In a normed linear space X with a strictly convex norm,
the problem of best approximation (posed in Theorem 7.4.1) has a unique
solution.

Proof: Suppose there are two distinct best approximants to y, u, and u,.
Then ||y — u,|| = |ly — %]l = E,(y). Now y — %, and y — u, are also dis-
tinct. Hence by strict convexity,

Iy — ) + (v — wa)l| < 2E,(y).

This is equivalent to ||y — §(u, + %,)|| < E,(y). But this would mean that
the element (%, + u,), which is also a linear combination of x,, ..., z,,
is closer to y than the minimum possible distance. This is a contradiction.

COROLLARY 7.5.4. Best approximation in the spaces L?[a, b], {*, 1 < p < o0
s untque.

The important case of best uniform approximation is, unfortunately, not
covered by the general result of Theorem 7.5.3 and must be trcated by its
own methods.

We begin by establishing a geometric lemma whose utility will become
clear during the course of the proof of Theorem 7.5.6.

Figure 7.5.1.
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Lemma 7.5.5. Let M and ¢ < M[2 be fixed. Designate by I the set of
potnts |z — nM| < ne and by II the set of points common to |z| < M and
e — M| < & 8Setp(n) = max |2y — 25|. Then, forany 0 < n < %, p(n) < M.

161,

z9€ll

The same conclusion obviously holds if the whole figure is rotated about 0.

M—¢
M+ ¢
common point and appear as drawn in the figure. If § = < TOM, then

. The sets I and II have no

Proof: Since ¢ < M2, n <} <

sin0=:—ﬂ€l<%.Hence0<0<ﬂ/6.

A moment’s consideration leads one to the conclusion that p = PP’
Hence,
p(n) = (M2 + 92M? — 2M?y cos 0') + 7

3
where 8’ = <x POM. Since ' < 0 < 7/6, —cos ' < — - Hence,

plm) < M((1 + 72 — V3t + pj2).

Let f(n) = (1 4+ 9 — \/577)* + n/2. Then f() = 1 if and only if # = 0 or
n = 4V3 — 1) = .976. Furthermore, f(}) = (3 — }V3)} + 1 = 87 < 1.
Therefore when 0 < 9 < .976, f(n) < 1. Consequently p(n) < M for
0<n<i

THEOREM 7.5.6 (Tonelli). Let S be a closed and bounded set in the complex
plane that contains more than n + 1 points. Let f(z) be continuous on S and
set

M = min max |f(z) — p()|- (7.5.1)

Let p,(z) be any polynomial that realizes this extreme value and set

"(2) = f () — po(2)- (7.6.2)
Then,
A. The number of distinct points of S at which |r(z)| takes on its maximum
value s greater than n + 1.
B. There is a unique solution to the problem (7.5.1).
Proof : There is first the trivial case in which M = 0. Then

max |f(z) — pa(z)l = 0
so that

throughout S. This implies A. Since a minimizing polynomial must agree
with f in more than »n 4 1 points, it is uniquely determined for it is in &£,.
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Assume next that M > 0. We first show that A implies B. Suppose that
D 4, € P, are two distinet polynomials for which

max |f(z) — p,(2)] = max |f(z) — ¢.(2)| = M.
Now, max |f(z) — $(pa(z) + ga(2)l
<max }[f(2) — pa(2)| + max 3 [f(2) — gu(2)| = M/2 + M2 = M.
Since 4(p, + ¢,) € 2,, the definition of M implies that
max [f(2) — §(pa(2) + ¢.(N] = M. (7.6.3)

This means that 4(p, + ¢,) is a minimizing polynomial.
Let 2’ be a point of § for which the maximum in (7.5.3) is achieved.
Then

M = 1f() — 3(Paz") + €N < HFE) = pal)] + 3 () — 2.
<M24+ M]2=M.
This implies that

If(2) — $(®a2") + €D =} f(Z) — 2] + 3 f () — ¢z
and /@) = p) = M and |f() — 0,6)| = M.
Since, moreover, |a + b| = |a| + |b] implies that arg a = arg b (or ab = 0),
it follows that
f@) = pu(') = f(2) — u(z') or pu(') — ¢a(2") = 0.

According to A, there are at least » 4 2 distinet points of type 2’. Since
Pp — qn € P, it follows that p, = q,.

To prove A, suppose the contrary, that |r(z)] = M only at 2y, 2, .. ., 2,
and m < .i + 1. Let ¢(2) be an element of £, for which

q(z;) = r(z;) 1=12,...,m
We will show that for sufficiently small #,
max [r(z) — ng(z)] < M. (7.5.4)
Thus,
max |f(z) — pu(z) — ng(2)| < M. (7.5.5)

Since p, + ng € &, this would contradict the definition of M in (7.5.1).
To prove (7.5.4),
(a) Select ¢ < M/2.
(b) In view of the uniform continuity of » and ¢ over S, determine ¢ so
that
[7(z1) — r(za)| < & lg(21) — q(ze)| < € (7.5.6)
for |2y — 25| < 0,2y,2,€8.
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(c) Let O, designate the set of points of S lying in at least one of the

ircl
circles |z — 2| < & k=12,...,m

Let Ty =8 — C5. Then § = C; U T
(d) Let M; = max Ir(z)]. (If T is empty, set M; = 0. Similarly below.)
2%

In view of the fact that |r(z)] = M only at z, .. ., z,,, we have M, < M.
(e) Set max |g(z)] = @ and select an #:
0< i (l M- M")
m —).

n < n| 3, 20

Then,
max [r(z) — ng(e)| < max |r@] + » max la=)l
M- M, M+ M
< M, + Q= 4; S < M. (7.5.7)

Now for C;. Let O, designate the set of points common to S and to
|z — 2| < 6.
m
Then, C;5 = | C,. If z € C,, then |r(z)| < M = |r(z,)|, and by (b)
k=1
Ir(z) — r(z)| < &< MJ2.
Thus, the values of r(z) lie in a region II, as explained in the lemma. If
z€C,, then by (b), |g(z) — q(z,)] < €; but since g(z,) = r(z,), we have
|ng(z) — nr(z,)| < ne. Thus, for z € C,, the values of #g(z) lie in a region I,.
Under the assumption on 7,
Ir(2) — mg(a)| < pln) = max oy — 2| < M.
15k
z €l
This conclusion is independent of k¥ and hence

max |r(z) — na(z)| < M. (7.5.8)
o

Combining (7.5.8) with (7.5.7) we obtain (7.5.4). This completes the proof
of the Theorem. For further elaboration of a similar argument carried out
in the real domain, see the proof of Theorem 7.6.2.

We remark that if S contains n + 1 points, then M = 0 and B holds but
not A. If S contains fewer than n 4+ 1 points, M = 0 and the solution is
not unique.

Ex. 6. Let S be a closed bounded point set in the complex plane containing
more than n — 1 points. The problem of finding
min max |2" — (@, 2" + a, 2" % + - - - + ay)] (7.5.9)
a; zeS

has a unique solution. The total expression above is a polynomial of degree n
with leading coefficient 1 whose maximum modulus over S is minimum. We
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will designate it by T,(S;z). We note that it is frequently called the T'scheby-
scheff polynomial of degree n for S. This adds greatly to the ambiguity of the
expression ‘“Tschebyscheff polynomial.”

Ex. 7. Let S consist of n distinct points 2,, . . ., z,. Then

To(S;2) = (2 —2))(z —25) *** (2 — 2).
Ex.8. LetS:[—1,1]. Then T,(S; z) = T',(z) (Cf. Def. 3.3.2).

Ex. 9. If O designates the unit circle, T,(C; z) = 2". We shall prove that if

Pn(2) = 2" + ay2™ ! + - - - + a, £ 2", then max |Pa(2)] > 1. Consider
z€
(2) a Ay,
n
90 === =1+t

The function ¢(z) is analytic in the closed exterior of C (including o), and
g(0) = 1. By the Maximum Principle, since ¢ is not a constant,

max [g(2)] > |g()] = 1.

Therefore, max |p,(z)] = max |27 |q(z)| > 1.
lz| =1 |lz] =1

7.6 Best Uniform (Tschebyscheff) Approximation of Continuous
Functions. Let f e Cla,b]. We know by Theorem 7.5.6 that the problem

of finding min max, |f(x) — p(x)| has a unique solution. Designate the solu-

tion by p,(x) and set E (f) = Jax |f(z) — p,(2)]. (The polynomial p,(x)
is frequently called the T'schebyscheff approximation of degree < n to f(x).)

THEOREM 7.6.1. If f e Cla, b], then
Eff) 2 Ey(f) =+ and lim E,(f) =0. (7.6.1)

Proof: We have already noted the monotonicity in (7.4.12).

Let € > 0 be given. By Weierstrass’ theorem we can find a polynomial of
degree m, q,,(x), such that |f(x) — ¢,,(z)] <&, @ <x <b. Hence,

E,(f) = max |f(z) — pm(@)] < max |f(z) — qn(®)] <e.
Thus, E,(f) < ¢ for all n > m, establishing the second assertion.

We shall now characterize the behavior of the best uniform approxi-
mants. An examination of the cases n = 0 and n = 1 will provide insight
to the general theorem and will help us to understand a simple, but fussy,
proof.

Let f(x) € Cla, b]. We are interested in solving the problem of finding
mcin Jax, |f(x) — c|. A glance at Figure 7.6.1 leads us to the following
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answer. Let m = min f(x), M = max f(x). Then the minimizing constant
. a<z<b a<z<b’
is

c=3}(m+ M) (7.6.2)
and
Ey(f) = }(M — m). (7.6.3)
c
. 3m+M) I
o /\l/ b
m m
Figure 7.6.1.
(M —m)

&(z)

Figure 7.6.2.

Figure 7.6.3.

Notice that when the error curve g(z) = f(x) — ¢ is drawn, the value +E,
is assumed by it at least fwice: once with a plus sign and once with a minus
sign. Suppose next that p,(x) = a, + a,x solves the problem of finding

gei;’;l Jnax, |f(x) — p(x)]. Consider the error curve g(x) = f(x) — py(x). Set

E, = Jnax, | f(x) — py(x)|. Since |e(z)| is in C[a, b], this maximum is assumned
at least once. If it were taken on only once (Fig. 7.6.3) then by the addition

of an appropriate constant to p,(x) we could lower E,. This would contradict
the definition of E,.
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Suppose E, is taken on only two times. It must be taken on with opposite
signs, otherwise we can argue as above and lower E,. But even if it were
taken on with opposite signs, we could subtract from &(z), and hence from
the original p,(x), an appropriate linear function which would have the
effect of reducing the size of the maximum values without raising other
values in excess of this. This is more or less evident geometrically (look at
the dashed line in Fig. 7.6.4), but we can formalize the argument in this
way.

Figure 7.6.4.

Let &(z,) = +E, and ¢(x,) = —E,. By continuity, we can find two closed
intervals, I, containing z,, and I, containing z, such that &(x) > E,/2 in I,
and &(x) < —E,/2 in I,. I, and I, are disjoint, for &(x) is of opposite sign in
them. Pick a point x, between z, and x,, but exterior to these intervals,
and let {(z) be a fixed linear function that passes through z,, is positive in
I,, and negative in I,. (Fig. 7.6.5)

A

I(x)

Figure 7.6.5.

Let J designate the closure of the set [a, b] — I, — I,, and write E,’ =
max |e(x)]. We can obviously arrange matters so that J does not contain

z, or z,. Since the maximum of |¢(z)| is assumed only at 2, and x, we have
E," < E,. Finally, select a quantity  that satisfies

0 <7< (B — B2 max, £(z)]. (1.6.4)
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The claim is now made that
max /() — py(a) — nf(@)] = max, le(x) — nf(a)| < By, (76.5)
and this contradicts the definition of E,. To show this: on I,, by (7.6.4)
{z)E,—E)) E,
0 { _— < — .
< née) < 2 max_ |{(z)| = 2 <@
a<z<b
Hence &(x) > nf(x) and
le(z) — nl@)| = e(z) — nl(a)
< E, —min nf(x) = E, — something positive < E,.
1

A similar argument holds for I,. Now for J. Using (7.6.4),
max |e(x) — 7f{x)] < max |&(z)] + 7 max /()|

max 142 (&, — By)
max |£(x)| 2
a<zr<b

< E, + <E/'+E, —E/’=E,.
Therefore (7.6.5) holds.

It follows that there must be at least three points z; < x, < 2, where
&(z;) = +E,. The error must alternate in signs at these three points: E,,
—E,,E,or —E,, E,, —E,. For one alternation has already been established,
and if we had, say, E,, —E,, —E,, the same argument could be used to
show that E, could be lowered.

THEOREM 7.6.2 (The Tschebyscheff Equioscillation Theorem).

Let f(x) € Cla, b] and p(x) be the best uniform approximant to f of degree n.
LetE, = Jnax, |f(x) — p(x)| and e(x) = f(x) — p(x). There are at least n + 2
points a g?cl_< Xy < 0 < Xy < b where () assumes the values +E, and
with alternating signs:

z;) = +E =1,2,..., 2
&(x;) = +E, @ n + (1.6.6)
e(x,) = —e(x;y,) t=1,2,...,n 4+ 1.

Proof: Select an ¢ so small that |z, — x,| < ¢ implies
&) — e(@a)| < E,[2.

This is possible by the uniform continuity of e(x). Divide [a, b] into
consecutive closed intervals of width < e. Call the intervals on which
|e(x)| assumes its maximum value I, I,, ..., I,. Since ¢(x) can vary at
most E,/2 in any of these intervals, we must have

ex) > E, 2 or ex)<—E,2

there. Let u,, . .., %, (= 1) be the sign of &(x) over these intervals. We
must prove that in this sequence there are at least » + 1 changes of sign.
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We do this by showing that if there were fewer than » + 1 changes, we
could find a polynomial whose E,, is less than that of p(x).

If all the w’s were the same, by adding an appropriate constant to p(x)
we could get a better approximation. Suppose then, we go through the
intervals I,,...,I,, and group them into consecutive groups where the
u’s have the same sign:

Ist group IM I3, ..., 1Y First sign
2nd group IO JUnD o JU2)  Second sign
First sign
kth group I(jk—1+l), e, T0R)
(Here we have written I'V = I, ..., 100 =1, ete.)

This scheme displays ¥ — 1 changes of sign so let us assume that
k—1<n+1 or k<n+ 2.

Consider the intervals I/1), Jti1+1) These intervals cannot be adjacent
for g(x) is 0 in neither and yet it has opposite signs there. Hence (with an
obvious notation) we can find an z,:

I1U) < z, < Jtir+1)

Similarly, It < g, < [U2tD)

JUk-1 < x,, < JUr-1+1)

Form the polynomial g(x) = (;, — x)(x, — )+ + * (%p_y — X).
Since we have assumed k < n + 2, it follows that £t — 1 <n, so that
q(z) € #,. q(x) vanishes only at z;. Since the x, are between the intervals

I,,...,1,,q must have constant sign over each of these intervals.
1st group 2nd group 3rd group oo
oy T2 z3
Figure 7.6.6.
Over the first group of intervals g(x) = (x; — ) * -+ (x,_, — ) is positive,

for all factors are positive. Over the second group g(z) is negative, for all
but the first factor are positive, etc. By selecting u = +1 appropriately,
ug(z) will coincide with &(z) in sign over all the intervals I, ..., I,.



Sec. 7.6 TSCHEBYSCHEFF APPROXIMATION 151

We now claim that for # sufficiently small, p(z) + nug(x) will be a better
approximant to f than p is. This would be a contradiction. Let J be the
closure of [a@,b] — I, — I, —---—I,,. Write E,/ = max |e(z)|. Since the
maxima of |¢(x)| are assumed only on the I’s we have E,’ < E,. Select an
7 that satisfies

0<n<(E,—E))2 max lg() (7.6.7)

The rest of the argument parallels exactly the discussion following (7.6.5).

In one case it is possible to give an explicit construction of the best
uniform approximant.

CorOLLARY 7.6.3. Let f(x) € C? [a, b] and let f"(x) > O there. If ay + a,x
18 the best uniform linear approximant to f, then

_f(®) —fla)
17 b—a
a0 = 1@ + ey LA TA2 L .
where c is the unique solution of f'(c) = f_(b; :{z (@) .
f(b f(b) — fa) .

Proof : One solution to the equation f’(c) is guaranteed by

T b—a
the mean value theorem. Since f” > 0, f’ is increasing, and hence this
solution is unique.

Now set &x) = f(x) — (ay + ayx).
By our theorem, there are at least 3 distinct points x;, < x, < x, where
&(x) reaches its maximum absolute value. One point, z,, is interior to the
interval and hence &'(x,) = 0. Since &'(z) = f'(x) — a,, ¢ is also strictly
increasing. The other two extreme points of &(x) must therefore be at @ and
b. Now with z, = a, , = ¢, z; = b, it follows that

fla) — (ag + @8) = —(f(c) — (@ + a,c)) = f(B) — (ay + a,b)
and
g(c) =f(c) —a; =0.

These conditions, rearranged, lead to (7.6.8).

The best uniform (Tschebyscheff) approximant is completely character-
ized by the property of equioscillation at n + 2 points. This property is
frequently the basis of numerical schemes for computing the approximant.

THEOREM 7.6.4. Let f(x) € C[a, b]. Given a q(x) € P, with
max |f(z) — g(a)| = 6.

a<zr<b
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Let there be n + 2 points a < xy < 2y < *++ < ¥, < b such that
f(xz)_q(xz)=:|:6’ i=172)-",n+2,

tn an alternating fashion. Then,
8 =E,(f) (7.6.9)

and q is the best uniform approximant to f in P,.

Proof: By definition, E,(f) < 6. Assume E (f) < d. Let p(x) be the best
uniform approximant. Then

q(x;) — plx;) = q(x;) — f(=,) — (p(x;) — f(=x))
Since max |f(z) — p(@)| = E,(f) <9, then writing 7, = p(z,) — f(;), we

have || < 6, q(z;) — p(x;) = +6 — 7, The function ¢(x) — p(z)e £,
and has n + 2 points of alternation. It therefore has » + 1 zeros and
consequently must be identically zero by Theorem 1.11.3. Conclusion:

q(x) = p(x).

-+.0006

£ (z)

+1

|
——

—.0006

Figure 7.6.7 Tschebyscheff’s Equioscillation Theorem.

The best uniform approximant to cos g x over [—1, 1] out of Py is

p(x) = 0.9994032 — 1.22279672% 4 0.223990324.
&(x) = cos g x — p(x) assumes its extreme values at 5 + 2 points and with

alternating sign.

7.7 Best Approximation by Nonlinear Families. The situation
here is more complicated than in the case of linear families. A few examples
will suffice to show what can happen.
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Ex. 1. Consider the problem min lrimicz |0 — e2#|. By selecting a very large
a <z

and negative, the maximum can be made as small as desired. The problem is,
so to speak, solved by a = — oo.

Ex. 2. Consider the problem mm omax, |3 — 29°|. For any value a,
<z

0ensy 13—« -

Thus, while no proper value solves the first problem, any value at all solves
the second.

One of the most familiar nonlinear families is fortunate enough to contain
best uniform approximations.

THEOREM 7.7.1. Let f(x) € Cla, b] and let m and n be fixed integers > 0.

n n—-1 . o
The problem of finding mm Jnax, f(x) — b%xm + Z lxm_l + + Z
solution. A +oot

has a

Proof : There is some redundancy in the coefficients of the rational funec-
tion. We can adjust them so that by + 8,2+ -+ +b,2=1. As the b’s
vary, we will certainly obtain some polynomials that do not vanish in [a, b].
If we set

A = inf max
a;b;a<z<b

fla) —

aoxn+...l
bgx™ 4 - -+

then 0 < A < oo. By the definition of A, we can find a sequence of rational
functions

Ay(x)

Bd®) = By M Z a2, By(z) = 2 bPgm=i
so that if
then A, = max, |f(z) — By(@)l, (1.7.1)
fm A=A

The coefficients b;.") are bounded due to the normalizing condition. The
coefficients a{f’ are also bounded. This can be seen as follows. From (7.7.1),

—Ay < f(x) — RBylz) < A
Hence
IR(@)] <A, + max, If@)] < (11.2)

for some constant M. This means that

[4x(@)] < M |By(x)|. (7.7.3)
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Since the b;") are bounded, the polynomials B,(x) are bounded on [a, b],
and therefore 4,(x) are bounded. Now if a family of polynomials of bounded
degrees are bounded, then its coefficients are bounded. (See Problem 40.)

Consider the points P.: (aff,a®, ..., a®, b, 6P, . .. bF) in the
space R, . ... They lie in a bounded portion of that space. Hence, we may
select a subsequence P, that converges to a point

’__ ’ ’ ’ ’ ’ ’
P =(a),0a,,...,a,,0y,b,...,b,).

Consider the rational functions corresponding to this subsequence, and
reindex the subsequence so that we have

,gin;a§k)=ai' i=0,1,...,n
’ELH.}O bH = b,/ j=0,1,...,m. (7.7.4)
Form
Ry = B T aT A da) (1.1.5)
byx™ + b/z™ 1 4 -+ 4+ b, ’ o
If we can show that
Max, |f(z) — R'(x)] = A (7.7.6)

then R’ will be a best approximant and our proof is complete.

R', being rational, can have at most a finite number of infinities. Let
D(x) be the denominator of R’(x) and select an z in [a, b] such that D(x) % 0.
At such a point we must have ’cllngo R,(x) = R'(x). Since

R'(z) = f(z) + By(2) — f(z) + E'(x) — Ry(®),
IB@) < If@) + [f@) — Ry@)| + |B(2) — Ba)l;
hence
|R ()] < J23%, If @ + A + & & —0.

Setting u = sup A,, and allowing k& — oo,
P)
|B' ()] < max |f()] + g (7.1.7)

The bound (7.7.7) holds uniformly for any z in [a, b] for which D(z) # 0.
This, in turn, means that R’(x) cannot have any infinities on [a, b], for if it
did, there would be values of z in a neighborhood of the infinity where the
bound would be exceeded.

Let x be any point of [a, b]. Suppose first that D(z) 7 0. Then for k =
1,2,...,

/(@) — B'(@)] < |f(@) — Ry@)| + |Ryz) — B'(@)
<Ay + n, where 7, —0.

Thus,
|f(x) — R'(x)] <A. (7.1.8)
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Suppose that D(z) = 0. Then we may find a sequence of points of [a, b], z,,
Z,, , such that z; — z, D(z;) # 0. Thenby (7.7.8), |f(z;) — R'(z;)| < A,
1= l 2 ., and by continuity, |f(z) — R'(z)| < A We have therefore
shown that |f(x) — R'(z)| < A throughout [a, b]. By the definition of A,
this implies (7.7.6).

NOTES ON CHAPTER VII

Works on functional analysis that have been found useful include Banach
[1], Riesz-Sz. Nagy [1], Ljusternik and Sobolew [1], Kolmogorov and Fomin
[1], Taylor [3], Dunford and Schwartz [1], Zaanen [1].

7.2 The convexity of 27, r > 1, can be used to prove (7.2.5). See Boas
[4], p. 148.

7.3 Eggleston [1] is a fine presentation of the theory of convex bodies.

7.4 Achieser [1].

7.5 For further results on uniqueness, see Hirschfeld [1], [2]. An exten-
sion of Theorem 7.5.6 to rational functions can be found in Walsh [2],
p. 363.

7.6 de la Vallée Poussin [1], Natanson [1]. The numerical side of best
uniform approximation by polynomials and rationals had to wait for the
development of electronic computing equipment. For part of the vast litera-
ture that has developed around this problem, see Remez [1], Stiefel [1],
Maehly and Witzgall [1], [2], Murnaghan and Wrench [1], [2]. Ward [1]
expounds the problem from the point of view of linear programming.

For a more abstract approach to problems of Tschebyscheff type see
Rivlin and Shapiro [1].

7.7 Approximation by nonlinear families is currently under investiga-
tion. See Motzkin [1], Rice [1], [2], [3]. See also Young [1].

PROBLEMS

1. Let n be fixed. S consists of the 2" n-tuples 4, B, ..., whose elements
are either 0 or 1. If we set d(4, B) = the number of places in which 4 and B
differ, then S becomes a metric space. This is the Hamming distance.

2. Let S be a collection of sets 4, B, ..., each of which contains a finite
number of objects. If we set d(4, B) = number of objects in (4 U B) — (4 N B)
then S is a metric space. This is the Silverman distance.

3. Is the following a norm in R,: ||(z, ¥)|| = max (3 |x| + 2|y, 2 [z] + 3|y|)?

n—1
4. In R,, define ||(ay, . . ., a,)]| = max | > a,,,2*|. Is this a norm?
0<z<1 |k=0

5. Does the following expression define a norm in C![a, b]:

151 = mex (|f@]. |/ @]
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6. Show that R, can be normed as follows: Let w,, w,, ..., w, be a fixed
sequence of positive constants. Set ||z|| = 08X w; |5
<j<n

7. Prove that the postulate (7.2.1)(a) follows from (7.2.1)(c) and (7.2.1)(d).
8. Describe the gauge curve that gives rise to the norm ||(z, y)|| = 3 || + 2|y
in R,
+1

9. In the space C[—1, 1], is the norm | f]| =j | f ()| dex strictly convex?
1

x2 2

10. Let the ellipse o + Tl 1 act as the gauge curve for a Minkowski plane.

Find the equation of the “Minkowski circle’’ of radius » and center (x, ¥)-

11. Let C be a Minkowski gauge curve no part of which is a line segment.
Prove that the resulting norm is strictly convex.

12. If X is strictly convex, then ||z|| = |ly| = r, # # y implies

Itz + (1 — o)yl <r for 0 <t < 1.

Geometrically, the surface ||z|| = r does not contain a line segment.
13. If a linear space X satisfies (7.2.1)(a), (c¢), (d) but if ||z]| = 0 does not

necessarily mean that £ = 0, then X is called a seminormed space. Show that
b

Ca, b] with || f]|2 =f | f(z)|? dz is & seminormed space.

14. Prove that Theorem 7.4.1 holds in a seminormed linear space. Formulate
several concrete examples.

15. Let X be a linear space and let % be a family of linear functionals taken
from X*. Show that ||z|| = sup |L(x)| defines a seminorm on X. When is it a
norm? Lez

16. Show that the fundamental theorem 7.4.1 holds if the a; are allowed to
vary only over a preassigned closed set.

17. Interpret Holder’s inequality (7.2.7) for p = 1 in the light of Ex. 4, 7.2.

18. Prove Young’s criterion: Let y be a fixed element of a normed linear
space and let the variable element x be a function of n real or complex param-
eters a,,...,a, defined for |a;] < ®: z =x(ay,...,a,). Suppose that (a)
[lz(ay, - - - 5 ap)]l is & continuous function of its parameters (b) ||z(ay, . . ., a,)|| < M
implies there is an N such that |a;] <N ¢ =1,2,...,n. Then the problem
n:in ly — x(ay, ..., a,)|| has a solution.

i

19. Show that Young’s criterion is not necessary for the existence of mini-
mizing parameters.

20. Solve the problem max [e* — axz — b| = minimum.

0<z<1
1

21. Solve the problemf |e“’ - al dx = minimum.
0

22. Solve the problem min max |2* — ax|. Is the solution unique?
a 051511
23. The problem of finding min| |z — cz?| dx does not have a unique solu-
tion. ¢ J-1
24. Let #, be normed by |p| = |p(0)] + |p(1)|] + |p(2)]. Determine the best

approximation to 22 by a constant.
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25. Referring to Figure 7.6.7, compare the accuracy of the best uniform
approximant to cos g x with that of the Taylor approximant.

26. Let f(x) =0, —1 <z <0,f(x) =1,0 <z < 1. Compute

in a3 —g(x)|.
a(x)égl—l.ll —{nsz‘{sl |f(x) 9 )l
27. Given n points in the plane P;: (x;, y;)% = 1, 2, ..., n. Pyis one additional
point. Show that there exists a straight line through P,:y = ayx + a; such
that max ly; — (agr; + a;)] = minimum. Generalize.
sStsn
28. Given n points in the plane Py, ..., P,. Let d(P;, ¢) designate the per-

pendicular distance from P; to a straight line /. Show that there is a line £ such
that max d(P;, {) = minimum.
1<i<n

29. Let f(x) € C[a, b] and consist of two linear portions. Determine the best
uniform linear approximant to f (x) over [a, b]. Interpret geometrically.

30. Let Bl[a, b] designate the space of functions that are bounded over [a, b].
The problem of finding min max |f(z) — p(z)| has a solution, but it is not

. . PeEP, a<z=<b

necessarily unique.

31. Discuss the problem of minimizing in<a,x<l |l —f (x)|, where the approxi-

—l<z<

+1
mants f satisfy f € C[ —1, 1] a,ndf f(x)dx = 0.
-1

32. Let f(x) € C¥a, b] and be concave. P is a variable point on the curve and
T'(x) is linear between (a, f(a)) and P, and between P and (b, f(b)). Show that
b

there is a position of P that minimizes| f(x) — 7T'(x) dx. Interpret the position
geometrically. a

33. Characterize S in Theorem 7.5.1 as the intersection of two convex sets.

34. The best uniform approximation to V1 + 2 on [0, 1] by a linear function
is .955 + .414 x.

35. Derive the approximation Va? + y% ~ .955x + .4l4y = >y > 0, and
determine the error incurred.

36. Find the best uniform approximation to V1 + x3 by a straight line over
[0, 1].

37. Let w(z), f(x) € C[ —1, 1]. Prove there is one and only one polynomial in
2, for which max w(z) | f(z) — p(z)| = minimum.

=1z

38. Let p(x) = 2¥ + a;z*! + -+ - + a,. If T is the lemniscate |p(z)| = a, the
Tschebyscheff polynomial of degree nk for T is [p(2)]".

39. Discuss the problem of finding mibn Jmax, |2 — a sin ba|.

ab 0<z<

40. A family of polynomials of bounded Eegree whose values on [a, b] are
bounded must have bounded coefficients.



CHAPTER VIII

Least Square Approximation

8.1 Inner Product Spaces. We come now to the approximation proc-
ess most commonly employed and most highly developed: least squares.
An abstract vantage point from which it is convenient to survey the common
features of various least square approximations is provided by the theory of
tnner product spaces. If the subjects of algebra, geometry, and analysis can
be said to have a ‘““center of gravity,” it surely lies in this theory.

DEFiNITION 8.1.1. A real linear space X with elements 2 will be called
an inner product space, if there has been defined for each two elements
x,, ¥, a real number designated by (x,, z,) with the following properties

(a) (%) + @y, 23) = (21, 73) + (X, 73) (Linearity)
(b) (21, @) = (x,, 7,) (Symmetry) 8.1.1)
() (azy, 2,) = a(xy, 2,), « real (Homogeneity) =

(d) (z,2) >0, (x,2)=0ifand only ifx =0 (Positivity)

The quantity (x,, ,) is called the inner product of x, and z,.

A similar definition can be made for complex linear spaces. The inner
product (2,, ,) will be a complex number and (8.1.1)(b) must be replaced
by the condition

(b") (x4, %y) = (5, ;) (Hermitian Symmetry) (8.1.1)
The bar in the above line designates the complex conjugate.
Ex. 1. X =R, 2 =(2,%p--.,%),Y = (Y1, Yp» + + - » Yn)- Lot w, be n fixed

n
positive numbers. Define (z,y) = > w,xy;.
i=1

Ex. 2. X is the complex Euclidean space, C, with elements

x = (x,, Ty, . . . , Tp), T; COmplex.
n
Define @ y) = 2 way;
i=1

158
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Ex.3. X =C[a,b]. If x = f(t),y = g(¢), we define

b
(x,y) =(f.9) =f f(t)g(t) de.

Ex. 4. Let B designate a bounded two dimensional region. Let X designate
the space of functions f (z, y) that are continuous in the closure of B. w(z, y)is

a fixed positive continuous weight function. (f, g) =J:[f (z, y)g(x, y)w(z, y) dx dy.
B

Ex. 5. Let B be a bounded simply connected region of the complex plane
with a simple, rectifiable boundary C. Let X be the complex linear space com-
posed of all functions analytic in B and continuous in B U C. The line integral

f> 9 =j f(z)%)- ds, ds? = dx? + dy?, is an inner product for X.
C

b
Ex. 6. Let X = L?%a,b], and write (f, g) =f f(x)g(x) dz. (Cf. 7.2, Ex. 10,
with p = 2.) a

Note several simple consequences of (8.1.1). From (¢}, (0, z) = 0. From (c)

and (b'), (x;, ax,) = &(x,, x,). From (a) and (b) or (b'), (x,, z, + x3) =
(xl’ xz) + (xl’ 273).

TueoreM 8.1.1 (The Schwarz Inequality).
In an inner product space,

(1, 2)[? < (21, 21 )(@s, T5). (8.1.2)

The equality sign holds if and only if x, and x, are dependent.

Proof: If z, = 0, the theorem reduces to the trivial inequality 0 < O0.
Assume then that z, 72 0. Let A be an arbitrary complex number. We have
from (8.1.1)(d),

(@1 + Azy, 7, + Axy) = 0.

This is equivalent to
(21, 2;) + Ay, 1) + j(9’1» z,) + Az(xz, x,) = 0.
This is true, in particular, for the number

A= — (@, 25)/ (%2, Zp)-
Hence,
(X1, T)(Tg, 1) %y, %) (T, Ty)

(2 2) = (%9, %5) B (%9, x5)

+ —(xl’(xz)(xz);xl) * (wg, ) = 0.
Loy Xy
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Then, (2q, 1) — ———(xl’ 7o) (@2 1) >0.
(g, 25)
Therefore )
(g, ) (Xg) 1) < (24, 1) (@, Ta),
or by (8.1.1)(b"), [(z, 20)|2 < (24, 1) (% Ta)-

Suppose that equality holds. The case z, = 0 is trivial, so take x, # 0.
By the above work we have

(T, + Ay, 1 + Axy) =0 with A= —(xy, 2,)/(%y, %,).

(%1, %)
Hence by (8.1.1)(d), z; + Az, =0 and 7, = —— 2,
(24, )
Conversely if x; = ax,, then |(z;, 2,)|2 = |a|? (T, Z5)2 = (21, 2,)(%, Z5).
TueoreM 8.1.2. If X is an inner product space, the equation

Iz = V(z, x) (8.1.3)

defines a norm in X, and X becomes a normed linear space.

Proof: The quantity 4 (x_,;) satisfies the requirements for a norm given
in (7.2.1). The only requirement that is not immediately evident is the
triangle inequality

e+ gl <=l + llyll- (8.1.4)
This is equivalent to

Iz + I < lz* + 2 |l=]| |yl + Iyl

or @+yz+y <@2)+ 2V VYY) + ).
Since @+yz+y=(@2)+ Y2+ @y + ),
we must show (z,y) + (y,2) < 2\/(?;)\/(;1/,7

But (@, y) + (o) <@ 9| + |y 2)] < 2| y)

Hence, it suffices to show |(z, )| < V(z, x)\/(y,—y) But this is precisely
the Schwarz Inequality.

In view of Theorem 8.1.2, we can make every inner product space into a
normed linear space in a natural and automatic way.

Ex. 7. For ¢2, the Schwarz inequality (8.1.2) coincides with the Hoélder
inequality for infinite sequences. (Cf. (7.2.7) with p = 2.) The triangle inequality
(8.1.4) coincides with the Minkowski inequality (7.2.16).

Ex. 8. A similar observation holds for L2[a, b].
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THEOREM 8.1.3 (The Parallelogram Theorem). For any elements x and y
in an inner product space X we have

e+ yll* + fle — yl* = 2 [=* + 2 |y|*. (8.1.5)

Proof: Replace the norms by inner products and expand.

8.2 Angle Geometry for Inner Product Spaces. For two nonzero
elements in a real inner product space, we have, from (8.1.2),

(271, xz)

ol ol —

There is consequently a unique value of 6 in the range 0 < 6 < = that
satisfies cos = M .
(AW EA

DEerinrTION 8.2.1. The angle 0 between elements z;, x, in a real inner
product space is defined by

cosf = 1T o g (8.2.1)

The justification of this definition lies in the fact that it extends the usual
formulas of Euclidean geometry.

Ex. 1. Let X = R3. For two elements x = (z;, 7y, %3), ¥ = (Y1, Y2 ¥3), USE
3

the inner product (z, y) = z z;y;. This leads to the norm (or distance from the
1=1

origin) ||z||2 = x,2 + 2,2 + 3% Then

1Yy + Toys + T3ys

cosf = .
(@% + 22 + 223 (y,2 + yo? + ya?)t

This is familiar from analytic geometry.
In the case of a complex inner product space, the definition

_ = )l
=l llyl

is frequently employed, though this is not completely satisfactory. (See
Problem 13.)

Two special cases are particularly noteworthy.
A. 0§ =0. In this case, cos§ =1 and |[(z,y)| = ||z| |yl]. According to
Theorem 8.1.1, the elements z, and z, are dependent: ax, = fr,. We may
say that z, and x, are parallel.

<m (8.2.2)
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B. 0 = 7/2. In this case, the elements are perpendicular or orthogonal. Since
cos 0 = 0, |(z, y)l/llz|l lly] = 0, and this implies that (z,y) = 0. We some-
times write x | y to express orthogonality and make the following definition.

DEerFiNiTION 8.2.2. 2 | yif and only if (z,y) = 0.

Ex. 2. 0 is the only self orthogonal element.

Ex.3. = 1 yimpliesy 1 x.

Ex. 4. y 1L 2,2y, ...,%, implics y 1 ajx; + apxy + *** + a,T,.

Ex. 5. Pythagoras’ Theorem. z |_ y implies

lz + yll* = ll=l?® + llyll®
Ex. 6. The Law of Cosines. In a real inner product space,

lz + ylI* = ll=l® + llyll* + 2 l|=]| llyll cos 6.

The inner product has a geometric interpretation as a projection. This is
suggested by the accompanying two dimensional figure.

n

A2 s

Figure 8.2.1.

Let , and x, be nonzero elements. Select a scalar 4 so that Az, is the projec-
tion of 2, on z,. Then

Ary | ) — Ay,
This means

(Azy, , — Axy) = 0.

Therefore A(xy, z,) — AL (25, 2,) = 0 and A = (21, =) . This means that if
zy # 0, Zg, Ty
projection of z, on z, = (xl,_xg) Z,. (8.2.3)
(g, @)

This equation serves to define projection in the abstract case.
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When the element z, has unit length: ||z,||2 = (2, 2,) = 1, then
projection of x; on x, = (;, Z,)x,. (8.2.4)
8.3 Orthonormal Systems

DEerFinITION 8.3.1. A set S of elements of an inner product space is called
orthonormal if

0 z+#£y
(x,y) = z,y€l. (8.3.1)
1 2=y
If we have merely
(z,y) =0 for z+#y, (8.3.2)
the set is called orthogonal.
n
Ex.1. In R, with (z,y) = 2 x,y;, the unit vectors
i=1

(1,0,...,0),(0,1,0,...,0),...,(0,0,...,1)

form an orthonormal set.

Ex. 2. Let the n x n matrix @ be orthogonal, i.e., QQ° = I where @’ is the
transpose of @ and I is the unit matrix. The rows (or columns) of @ form an
orthonormal set in the space of Ex. 1.

-

Ex. 3. In C[—=,n] or L —n, =], with (f,9) =| f(®)g(x) dx, the functions
(2#)‘*, ¥ cos z, =% sin z, =% cos 2z, #»% sin 2z,..., form an ortho-
normal set.

1 f(@)g(x) d

v = the polynomials (n)-iTo,
-1 V1l —x

Ex. 4. In(C[-1,1] with (f,g) =

(;—r) T,x),n =1,2,...,T,(x) = cos (n arc cos x), form an orthonormal set.

These are the Tschebyscheff Polynomials (cf. Def. 3.3.1).

+1
Ex. 5. In C[—1,1] or L¥ —1,1], with (f,g) =f V1 — 2% (x)g(x) dx the
-1

sin[(m + 1) arc cos x
functions U, (x) = It )_ ]m =0,1,2,..., form an orthogonal
set. For V1 — a?

n.

H

T - _
f VI — 22 U (2)U,(z) dz =f sin (m + 1)0sin (n + 1)0do "
-1 0 ,m = n.

iy o
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2
The functions A/ - U,(x) are orthonormal. Actually, U, (x) is a polynomial of
m
degree m in [ —1, 1]; for, cos n@ = T,(cos 6). Now
sin (n + 1) = sin n6 cos 6 + cos nf sin 6 = sinnb cos 6 + T,(cos 0) sin 6.

Hence,
sin (n + 1)0  sinnf
sin 6 " sin6

cos 0 + T,(cos 0).

sin (n + 1)0
n 6
are the T'schebyscheff polynomials of the second kind.

By induction, therefore, is a polynomial of degree n in cos 6. U,,(x)

b
Ex. 6. InC[a,b]with(f,g) =f A(z) f (x)g(x) dz, (A(x) € C[a, bl and > 0), the
a
eigenfunctions of the self-adjoint differential problem

{y” + AA(z)y =0
y(a) =y(d) =0
corresponding to distinct eigenvalues are orthogonal.

Let y; and y; be two solutions of this problem corresponding to distinct values

Aj, Ap. Then

d
(e — A)A@)Y(@)y;(x) = yu" — yey;” = d—x[yjyk' — Yiy;'l
b
Hence, (4, — l;)j Ay @) dx = [y — vyl = 0.
a

THEOREM 8.3.1 (Pythagorean Theorem). Ifx,, ..., x, are orthogonal then
oy + 2 + 0+ 2,12 = [zl + N2ell® + -+ - + g% (8.3.3)
Proof: The cross terms in the expanded inner product vanish.

THEOREM 8.3.2. Any finite set of nonzero orthogonal elements x,, z,, . . . ,
z, is linearly tndependent.

Proof: Suppose a,z, + a,x, + - -+ + a,x, = 0 where the a’s are not all 0.
Then,
0= (0, z) == (ayz; + -+ * + a,zx,, 1) = a,(z,, z,).
This implies that ¢, = 0, k = 1,2, ..., n, a contradiction.

The previous theorem has a partial converse which is of great impor-
tance. An independent set, of course, is not necessarily orthogonal, but it
can be orthogonalized. That is, we can find linear combinations which are
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orthogonal. From among the many proofs, we select one that leads to the
Gram-Schmidt orthonormalizing process.

THEOREM 8.3.3. Let zy, x,, . . ., be a finite or infinite sequence of elements
such that any finite number of elements x,, x,, . . . , x, are linearly independ-
ent. Then, we can find constants

an
Ay Gy

Q3 QA3 Qg

such that the elements
* _
T = Ay
Ty* = gy + AT,

Ty* = ag @y + g%y + ag37,

(8.3.4)
are orthonormal:
(x* 2;*) = 0y ,j=1,2,.... (8.3.5)
Proof: Set, recursively,
yp =, and x* =y /||yl
Y = T, — (T, ,¥)2*  and 2% = y,f||y.l
(8.3.6)

n
Ynt1 = Zpt1 —kZ @1 ¥ * and  afy = Yot/ [Ynill
=1

It is clear from the structure of this recursion that y,,,, and hence, x, ), is
a linear combination of z,, %,, ..., %,,,. ||y;| cannot vanish inasmuch as
this would imply that y; = 0. But y, = x; + “lower” z’s, and this would
contradict the assumption that the z’s are independent. The z,* are normal:

Y Y 1
o, o) = (—,———) =L e =1
@520 =\ ) ~ e ¥ ¥
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Finally we must prove that x},, (or y,,,) is orthogonal to «*, «¥_,,...,
z,*. A simple computation verifies that (y,, ,*) = 0. Assume that for

t < n,j < 1 we have proved (y,, ,*) = 0. Then for j < n,
n
1 %*) = (@p1a —kZ (@nt1> T2, 7;%)

n
= (Tpyy T;* Z (xm b T @ ¥, z%)
= (Tps1, %) — (Xpp1, 7,%) =

CoROLLARY 8.3.4. The “‘leading coefficients” a;; are positive.

For a;; = (ly:l).

CoROLLARY 8.3.5. We can find constants

bll
b21 b22
631 b32 633

with b,; > 0
such that
z, = by, *
Ty = by * + bypty*
xn = bnlxl* + bn2x2* + e + bnnxn*
1
Proof: z = —x,* so that b, = —
an an
—0n 1
Z, = z, + — x,*
) 22
a
— _ %n 2% 4 —
A22l1y 22
—a 1
so that by = —2, by =—.

(8.3.7)
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It is clear that we may proceed step by step in this way, since a; > 0,

1
j=1,2,.... Note that b,; = — = ||ly,|| > 0.

CorROLLARY 8.3.6. z,* | z,2,* | 2, ...,2,*% | =, ,.
Proof: x;, = byxy* + bpx,* + -+ - 4 byx,* so that
k E
(x,*, 7)) = (zn*, > bk,a:i*) =Y bylx,* z*) =0 if k<n.
i=1 i=1

Note: In the subsequent portions of this book, we shall use the asterisk *
on symbols of elements to designate orthonormal elements, and on symbols
of spaces to designate conjugate spaces.

The following observation should be made. If z,, . . ., z, and 2,*, . . ., z,*
are related by (8.3.4), and we require that the latter are orthonormal and
a, >0, k=1,2,...,n, then the constants a,; are determined uniquely.
(Prove!) The Gram-Schmidt process is merely one scheme for determining
them.

On the other hand, if we allow

T = @y + e + 0+ Ty, k=1,2,...,n,

then there is much more freedom in the choice of the constants o;;. When-
ever we speak of orthogonalizing a sequence of elements z,, ..., z,, the
reader should decide whether the statements made hold for the triangular
schenie (8.3.4) only, or whether they are valid for the more general scheme.

Ex. 7. The powers 1, z, %, . . ., are independent in C[a, b]. For, if
ag + ayx + ¢+ axz" =0, a<zxz<b,
thena; = 0,7 =0,1,...,n. If w(z) is a fixed positive, integrable function de-
fined on [a, b] then the integral ,
(f, 9) =L w(z) f (x)g(x) dz (8.3.8)

forms an inner product in C[a, b]. The powers may therefore be orthogonalized
with respect to this inner product and we obtain a set of polynomials

Pa*(x) = by + - -+, n=012..., k, >0
which are orthonormal in the sense that

b
f WE)Pm* (@) * (X} dx = Oy, mymn=0,1,.... (8.3.9)

a

In the case of a semi-infinite or an infinite interval [a, b], we must assume

b
that the weight factor w(x) is such that the int,egralsf w(x)xde,n =0, 1,...,
all exist. e
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The following special selections of [a, b] and w(x) have been studied exten-
sively, and the resulting orthonormal polynomials constitute the ‘‘classical”
orthonormal polynomials.

l.a=-1 b=1 wkx)=1 Legendre Polynomials
2.a=-1 b=1 wx)=(1 —=zt Tschebyscheff Polynomials
(of the First Kind)
3.a=-1 b=1 wz =1 -z Tschebyscheff Polynomials
of the Second Kind.
4.a=-1 b=1 wx =1 -z + 2
o, f > —1 Jacobi Polynomials
5.a =0 b= wx)=2z%%ae>—1, Laguerre Polynomials
6.a = —0 b= wkx)= e Hermite Polynomials

Ex. 8. We compute the first 3 Legendre polynomials using the scheme of
Theorem 8.3.3.

+1 \} _
% =1l,xy, =t,xg =22, y, =1, lly1|[=(f ldt)=\/2.

. 1 : (t l) 1 (t l) 1 +1d 0
¥ =—=. =t — |t —=)—=. s =) =—= tdt =
Y R val v ve]  vala

+1 1 2 % 2 _ 3 1
llysll = (j_l (tz - g)dt) kT V10  xg* = i \/10(;2 - 5)

Though the Gram-Schmidt process may be employed, the Legendre polynomials
of higher degree are more expeditiously computed via recurrence. (See Chapter
X.)

Ex. 9. Leta <z <z <--: <zpy; <bben + 1 distinct points and w,,
Wg, + + . s Wy, be n 4 1 positive weights. The expression
n+1
(f9) = 21 wif (@)9(x) (8.3.10)
i=

is an inner product for #, (but not for #,,m > n, or for C[a, b]). We may
therefore orthonormalize the powers and arrive at a set of polynomials

Po*(x)s Pr*(x), . . ., PR *()
for which
n+1
S wpHapsle) =6, 0 <i,j <n. (8.3.11)
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These orthonormal polynomials are important in least square approximations
on discrete sets of points.

Ex. 10. Consider the situation of Ex. 5 of 8.1. The complex powers 1, z,
22,..., are independent elements of X. Hence, they may be orthonormalized

with respect to the inner product (f, g) =f f (Z)Fz) ds to arrive at a set of
c

polynomials py*(z), p;*(2), . . ., for which
fp,,*(z)pm*(z) ds = Opp 0 <m,n < oo.
c

8.4 Fourier (or Orthogonal) Expansions

DEerFInNITION 8.4.1. Let z,*, z,*, ..., be a finite or infinite sequence of

o0
orthonormal elements. Let y be an arbitrary element. The series >, (y, x,*)x,*
n=1

is the Fourier series for y. (If the sequence is finite we use a finite sum.) The
constants (y, ,*) are known as the Fourier coefficients of y.
One frequently writes

Ms

1(‘% z,*)2,* (8.4.1)

:’/N

n

to indicate that the right-hand sum is associated in a formal way with the
left-hand side. The relation between an element and its Fourier series has
been the object of vast investigations and theories.

In view of (8.2.4) we may write (8.4.1) in the form

y ~ 2 (Projection of y on z,*) (8.4.2)
n=1

and hence the Fourier series of an element is merely the sum of the projec-
tions of the element on a system of orthonormal elements.
If 2, 2y, . .., # 0 are orthogonal, but not necessarily normal, then

z* = /|7, E=1,2 ..., (8.4.3)

are orthonormal so that (8.4.1) becomes

y~3 (y % ) 3 B, (8.4.4)

2\ Tl el S ) "

Again, by (8.2.3) this may be interpreted as

0
y ~ > (Projection of y on x,,). (8.4.5)

n=1
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3
Ex. 1. In R3 with (z,y) = z x,y;, select
i=1

n* =(1,0,0), x,* =(0,1,0), x3* =(0,0,1).

For a given y = (a, b, c) we have (y, z,*) = a, (y, £,*) = b, (y, x3*) = ¢. The
summation (a, b, ¢) = a(1, 0, 0) + b(0, 1, 0) + ¢(0, 0, 1) is the Fourier expansion
of y.

Ex. 2. TakeC[ —m, n] or L¥ —=, »] with (f, g) =f f(x)g(x) dz. Orthonormal

system: (217)“*, (17)'% sin z, (w)‘* cos x, (m)~¥sin 2z, .. ..

% < . L[
f(x) ~3 + E ay cos kx + by sin kx, a, =- f(x) cos kx dx
k=1 TJ—m

l ™
b, = ~j f(x) sin kx dx. (8.4.6)
m™ -
This is the Fourier Series.
1 fla)g(x) de
-1 V1 — 22

T _% b _%
(my T (), (5) Ty (), (é) Ty@), ...,

ag & 2 [+ f(x)Th(x) dx
~ D T, (2), == k.l iy
f@ ~5 + Zale), e = | e

Ex.3. C[—-1,1].(f,9) = . Orthonormal system

(8.4.7)

This is the Tschebyscheff-Fourier Series.

In the simple case of finite dimensional spaces, the Fourier expansion of
an element coincides with the element. More precisely, the following theorem
holds.

THEOREM 8.4.1. Let z,, ..., z, be independent and let x,* be the x’s ortho-
normalized. If w = ayx; + - -+ + a,x,, then
n
w= (w, g¥)z,*. (8.4.8)
E=1

Proof: From Corollary 8.3.5, we have,
w = @y (0112,*) + ay(byy* + bpe®p*) + ¢ 00 + Ay (b * + -0 + b,,7,¥)

= ;% * + cx* + ¢ - + .zt
Now, forl <k <mn,
(w, T*) = (e@* + + -+ + ¢, 2%, 2,%)
= cl(xl*v xk*) + -+ ck(xk*, xk*) + o+ cn(x”*, xk*) = Cyp,

and (8.4.8) follows.
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Ex. 4. If p,*(x) = z ki, ky, # 0, are polynomials that are orthonormal
=0

with respect to the lrmer product (f, g) then

n
p@) = 2 (P, PP @) (8.4.9)
for all p e 2,.
Ex. 5. Letx,...,z,(# 0) be an orthogonal set in R, or C,. Any element
in the space is equal to the sum of its projections on zy, . . . , 2.

8.5 Minimum Properties of Fourier Expansions. Truncated Four-
ier expansions have the following minimum property.

THEOREM 8.5.1. Let z,*, z,*, ..., be an orthonormal system and let y be
arbitrary. Then,

N N
y—2 y,z*zr| < H y—az* (8.5.1)
i=1 i=1
for any selection of constants a, a,, . . ., ay.

Proof:

N 2 N N
“ Yy — Zlaixi* = (I’/ - Z az*y — Elaixi*)
i= i=1 i=

laid:‘(xi*’ ©*)

=(y,y) — Za (@*y) — Zay,

= 'T,'Mz

N N
—'2 a’z(xi*’ ?/ z d y’ *) +El |ai|2
i=1 1=

=

_"_Mz

+ 2 @ )y, z*) — 2, (x* y)y, *)

M=

N
v, 9) — Z 0, 2 + 3 o, — (3 2

Since the first two terms of the last member are independent of the a’s, it

N
Yy — Z az*

i=1

a, = (y, z,*) 1=12,...,N; (8.5.2)

is clear that the minimum of is achieved when and only

when

i.e., when the a’s are the Fourier coefficients of y.
Least square problems of numerical analysis can be formulated in terms

N
y “.2 ax;
i=1

e.g., Ex. 3.) The next corollary gives the solution to such problems.

in an appropriate inner product space. (Cf.,

of finding n}lin
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CoroLLARY 8.5.2. Let z,,...,xy be an independent set of elements. The
problem of finding that linear combination of x,...,zy which minimizes
N ~
“ y — > ax, || is solved by > (y, x,*)x;*.
i=1 i=1

The x;*’s are orthonormalized z’s. The solution is unique. This tells us that
every least square problem is solved by an appropriate truncated Fourier
series.

v

Yy _Z .z,
i=1

2

2 N
= Iyl = 31 =)

CoRrRoLLARY 8.5.3. min
al

Proof: Insert a, = (y, #,*) in the last equality of the proof of Theorem
8.5.1.

Since this minimum value is > 0 we have

CoroLLARY 8.5.4 (Bessel Inequality). If x;* are orthonormal, then

N

gll(y, z*)|2 < |lyl (8.5.3)

CorOLLARY 8.5.5. If z* are an infinite sequence of orthonormal elements
then

I’ 8

Iy, z.H)? < |yl (8.5.4)

i=1
CoroLLARY 8.5.6. If a;* are an infinite sequence of orthonormal elements

then
lim (y,x,*) =0 (8.5.5)

71— 00

i.e., the Fourier coefficients of any element approach zero.

CoroLLARY 8.5.7 (Minimum Property of Orthogonal Elements). Let x,,
Zy, . . ., &, be independent. Let x,*, x,*, ..., x * be the x,’s orthonormalized
according to the triangular scheme of Theorem 8.3.3. Then, for all selections of
constants a,, . . ., a,_;, we have

2z *
lyall = || == || < llawwy + agey + -« - + @y g + 2,

nn

The notation of (8.3.6) is employed.
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Proof: By Corollary 8.5.2, the problem
min “xn - (blxl + -+ bn—lxn—l)"

bi

n—1
is solved by > (x,, 2,*)x,*. But from (8.3.6) this is precisely z, — y,.
k=1

Least square approximations (i.e., best approximations in an inner prod-
uct space) of an element y by a combination of given independent elements
%y, Ty, . . ., T, can be expressed in several ways: (1) as a linear combination
ax, + -+ a,x, of the given elements, (2) as a linear conibination
by&,* + - -+ + b,zx,* of the orthonormalized z’s. Although (1) may be more
convenient, (2) possesses the advantage of permanance. That is to say,
suppose we add an additional element z,,, to our list and ask for best
approximations to y by linear combinations of z,, ..., z,, x,,,. Expressed
in form (1), the answer will be some a,’z, 4+ - -+ + a,'x, + a, . ,7,,, where
the a,”’s may bear no simple relation to the a,. Expressed in form (2), the
answer retains the first # coefficients and merely adds one more:

by + bpxy* + v b by

Ex. 1. If feC[—m, =] or even of L* —m, n], then

n— o

lim f f(x)sin nx dx = limf f(x) cosnxdx = 0.
4 n—>o J g

This is Riemann’s Theorem and is a consequence of Corollary 8.5.5. It holds
under more general circumstances than demonstrated here.

Ex. 2. Let p,*(x) be the Legendre polynomials. If

+1
feC[—1,1] then lim f f@)p*(x)dx = 0.
n—o J_4
Ex. 3. If fe L%a,b], the problem of finding
b n 2

minj (f(x) — z aix") dx

2 Ja 1=0
has a unique solution.

Ex. 4. Solve the problem

+1
rr‘llinj~ . (e® — ag — ayx — ayx®)?d.
s J-

Use the Legendre polynomials

¥ = \/;’ Z* = \/g% xy* = %’\/-1_0.(.’[2 - %)'
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The Fourier coefficients of e® are
+1 _
by =f \/%e” dr = \/%(e — el
-1
+1 _
b = \/%xe“ dx = \/%(23‘1),
-1

+1 3V10 [2¢ — 14¢-1
f 3V10(@? — })er da — __4_0 (%)

b,

The minimizing polynomial is therefore

90 (2¢ — 14¢71
p() = 3 —el) + 37l + 16(%)@2 -%

=15 — Telr? + 3elz + 327! — Ze.

~ .537x% + 1.104x + .996.

081 & —p(z)

;/\\ |
/

\_/+1

—.08~
Figure 8.5.1 Error in Least Square Approximation of e¢* by a Parabola.

Ex. 5. Let p,(x) = ky,2"™ + - - - be the Legendre polynomials. Then,
(@) 2dx = Ll < +l(x” + ax™ ! + -+ 4+ a,)?dx  (8.5.6)
1\ kan (2n)! (2n + 1)1 ™ ! " -

for all selections of a’s. (Use Theorem 10.3.5 and Theorem 10.3.4 for the equality.)

Ex. 6. Let T,(x) = 2" 12" + - - -be the Tschebyscheff polynomial of the
first kind. Then,

+1 2 +1 (.n n—1 2
1 J’ (Tn()) ™ f @ 4 @@ 4 aa)t (8.5.7)

dx = <
22n—2 -1 \/1 _ x2 922n-1 1 \/l — a2

for all selections of a’s. Here n > 1.

Ex. 7. Lanczos Economization.
If — ao + Zaka(x) is the Tschebyscheff Fourier series of a continuous f(x)
(cf. 8. 4 7), then the partial sum —2 + z a, T\(x) solves the problem of finding

=1
H;lnf ( flx) — z bkx") (1 — 22~} dz. But this partial sum is very nearly the
i J—1 k=0
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. For suppose that we write

solution to the problem nzm {na,\: fx) — E byt
\ <z<1

flx) = 3 + a,Ty(x) + - + a,T,(x) + an+1 ,H_l(x) plus a remainder which

,

a,
we neglect. Then, f(x) — (—0 + a,Ty(x) + -+ + anTn(x)) =a,,1 Ty (). Since

2
@y 1Ty 1() has n + 2 equal maxima and minima alternating in sign, Theorem
7.6.4 tells us that the contents of the parenthesis is the best uniform approx-
imation to f(x) from £,. For this reason, the partial Tschebyscheff-Fourier
series are sometimes used as a starting point in determining best uniform
approximations.

If f is a polynomial, its Tschebyscheff-Fourier expansion can be obtained by
using the table, given in the Appendix, of powers as combinations of Tscheby-
scheff polynomials.

JOC TR R

Ex. 7A. Economize f(x) =1 + 3 4 ? + Y +- g - E on the interval

[ —1, 1] allowing a tolerance of ¢ = .05. We have,

Sz =T0+%T1 + 3§ 4Ty + Ty) + ;- 3BT, + Ty)
L 38Ty + 4T, + T,) + %~ 1-1-6(10T + 5T + T5)
= ‘ll‘%%T + 96T + 120T2 + 96T3 + T Ty + 96T5

Since |T,(x)] = |cos (n arc cos z)| < 1, we can delete the last two terms and
we incur an error of at most ;35 + g% < .05. Hence

180T0 + §8T) + 6Ty + 3575
is in Z3 and approximates f (z) to within .05 on [ —1, 1].

L
Ex. 7B. The Tschebyscheff-Fourier coefficients of cos < are

T
- cos ) cos (n arc cos x)
- dx
wJ_1 V1 — z?
1 J‘ﬂ - (—1)*2J 5 ([2) n =2k
=- | cos|=cosy|cosnydy =
mJo (2 ) 0 n =2k +1

where J,(z) is the Bessel Function of order n. (See, for instance, G. N. Watson
T
[1] p. 21.) Hence, 0051—,:)- ~Jo(m[2) — 2J4(m[2)Ty() + 2J4(m[2)Ty(x) — - - . The

partial sum of order 4 is = 0.9993966 — 1.2227432z2 + 0.2239366x%, and this
may be compared with the best uniform approximation given in Fig. 7.6.7.

8.6 The Normal Equations

THEOREM 8.6.1. Let x,, z,, . .., x, be independent elements and let x*,
%, ..., z,* be the x’s orthonormalized. Then, for any element y,

(y -, xk*)xk*) 1 x*
k=1 /
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Proof:
n
( z yv xk xk*’ xi )

= (y, xj*) — 2 (4, 7% (¥, xj*) = (y, xj*) — (¥ xj*) =0.

-~
i M=
-

COROLLARY 8.6.2. y minus its best approximation by linear combinations
of x, ..., x, is orthogonal to each x;.

I
: y-best approx.

Figure 8.6.1

In geometric language, we speak of the set of all possible linear com-
binations a,z, + ayr, + -« -+ a,x, as constituting a linear manifold. A linear
manifold is a natural generalization of the notion of a plane through the
origin, and this corollary states that the shortest distance from a fixed
element to a point of a linear manifold is the length of an element perpendic-
ular to the manifold. (See also Def. 9.4.1.)

THEOREM 8.6.3. Let a,x, + ayx, + + -+ + a,x, be the best approximation
to y from among the linear combinations of x,, . . . , x, (assumed independent).
Then, the coefficients a; are the solution of the following system of equations.

ay(2y, 1) + ag(xg, ;) + * -+ + a,(x,, ;) = (y, 7;)

(8.6.1)
a’l(xl’ xn) + az(xz’ xn) +oe an(xn? xn) = (:’/’ xn)'
These equations are known as the normal equations.
Proof: By the previous corollary, (y — a,z; — - -+ — a,,, ;) = 0. When

expanded, this is the jth equation of system (8.6.1).
8.7 Gram Matrices and Determinants

DeriniTION 8.7.1. Given a sequence of elements z,,,,...,%, in an
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inner product space. The n X n matrix

(xl’ xl) (xlv xz): L] (xl’ I")
G = (=, ;) = : : (8.7.1)

(xn’ xl) (xn’ xz)’ AR ] (I”, xn)
is known as the Gram matriz of z,, xz, ..., x,. Its determinant

g =9, ...,2,) = |(x; 2;)| = |(2;, ;)| (8.7.2)
is known as the Gram determinant of the elements.

The Gram matrix is the transpose of the coefficient matrix of the normal
equations. It is also the matrix of the bilinear form

(@y2; + @gy + * @@, bymy + bypy + 00+ b,2,) = 3 abi(x;, 7).

1,7=1
(8.7.3)
Notice that g(x,, . .., z,) is a symmetric function of its arguments. For,
consider g(zy, .. ., %;, ..., %;, ..., x,) and suppose that x; and z; have been
interchanged yielding g(x,,...,x; ..., 2, ...,2,). In the determinant

expression for the latter, interchange the ith and jth columns and the ith
and jth rows and obtain the determinant for the former.

Lemma 8.7.1. Let y, = Ea,, z, t=1,2,...,n Let A designate the

matriz (a;;) and A be its conjuqate transpose (@;;). Then

Gy, Yo - -+, Yp) = AG(2y, 2o, . . ., 2 )A (8.7.4)
and
g(ylv ) yn) = |det Al2 g(xb cee xn’) (87'5)
Proof:

(@ y) @y 0 (%1 Ya)

(Z", yl) (xn’ yz) e (17", yn)

(%, 2y) (@, 25) ¢ (2, 2,) | |Gy Ggy - Gy

S0

(xm z,) (I”, Zy) v (T xn) Gy, Gy

= Gz, 2y, . . ., x,,)/f.

nn



178 LEAST SQUARE APPROXIMATION Ch. VIII

Furthermore,
ay Gyt Gy, || (@ Y) (@Y (2, 9)
anl a’n2 e a'nn (xn’ yl) (xn’ yz) et (xn’ yn)

Wy Wy o (YY)
— . . = G(yl, Ceey y”)

Y 1) W ¥2) * (Yn Yn)

Combining these two equations we obtain the first identity of the lemma.

The second comes from taking determinants and observing that || = |_A—|
As a special case,

9(012y, 0%s, - - ., 0,%,) = |04 |Ga|? -+ * |0, | g(my, 2, - . ., 7). (8.7.6)
THEOREM 8.7.2. Letx,,...,x, # 0. Then,
0 < 9@, o, - - -, 2,) < |22 Nl2all® - - [l24]1% (8.7.7)

The lower extreme g = 0 occurs if and only if the elements x; are dependent.
The upper extreme occurs if and only if the elements are orthogonal.
If the elements have been normalized: ||x;|| = 1, then we have

0<g<l. (8.7.8)

Proof: Suppose first that the z’s are dependent. Then, we can find con-
stants @,,...,a, not all zero such that a,z, + ayx, + -+ + a,z, = 0.
Suppose that a; 5= 0, and consider the transformation

Y11=

Yjm1 =%

Y; =01 + @y + - +ax, =0 (8.7.9)
Yin = Zi1

Yn = Ty
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Since (ij yi) = (0, yz) =0, g(?/p BN ?/n) = 0.

Now
1 0 «+-0Q --- 0
0 1 0 0
|4] =
a, a, - a a,
0 0 «++ 0 -~ 1

Expanding this according to minors of the jth row, we find

Al =04+0+-++a;-14+0+---+0=a;#0.

It follows from Lemma 8.7.1 that g(x, z,, . . ., 2,) = 0.
Next, suppose that the z’s are independent. Then by Theorem 8.3.3 we
can find constants a,; such that the elements

0¥ =T + Gy + 0 ATy, 4y >0

are orthonormal. By our lemma,

1 =10, = glz,*, 2%, ..., 2, %) = g(2,, 2, . . ., x,) |4]?
where
a; 0 -+ 0
Ay @p -+ 0
4] = . s | = AQgp By
a’nl “nz ann
Hence,
( ) ! ! ! 0 (8.7.10)
9@y, Xy, o, X)) = —g >0. .
! * a,® ay? a,,’

Hence g = 0 occurs when and only when the z’s are dependent.
We show next that

1
ot < llaell?. (8.7.11)
Kk
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k-1
T — ,zl (@, % )2 *
i=

2
< ||z [|% (from Theorem

1
From (8.3.6), —; = [y[* =
e
8.5.1 with a; = 0).
If the x, are orthogonal, then G is a matrix with [,]|2 on the diagonal

and O’s elsewhere. In this case, g(xy, z,, ..., Z,) = ||lz,]|% lzg)|% - - - [|o,||2

Suppose, conversely, g(x,, Ty, . . ., z,) = [|2,]|% [|7]|2 - - - ||z, |2 We have from
1 1 1

(8.7.10) g(zy, . . ., &,) = — -+ - — . Now since —; < [z, it follows that
1 an Anp Ayere

llyll? = = lz 2, & =1,2,...,n But from (8.3.6) and Corollary 8.5.3,

kk k—1 k-1
lyell2 = llofi2 — Z [y, x;*)|> Hence 2 [(@y, x*)|2 =0 for k=1,
i=1 i=1

2, ..., n. This implies the orthogonality of the vectors z,, z,, . . . , z,,.

CoroLLarY 8.7.3 (Hadamard’s Determinant Inequality). Let D = (a;;)
be an n X n matrixz with complex elements. Then,

n
| D2 Skl:fl(laml2 + ltel® + -+ + |ag,l?). (8.7.12)
If the elements a; satisfy lay;| < M, 4,5 =1,2,...,n, then
|D| < Mrn2, (8.7.13)
Proof: Let z, designate the vector (a,;, a,, . . ., a,,). Use the Hermitian

n
inner product (z;, ;) =kz @yl in C,.
=1

If D designates the conjugate transpose of D, |a;,|, then

5]

Ay Gz " Q|| A Gy nl

]

A1 Az ° " Qgu |Gy Qoo n2

DD =

Apy Bpg 0 Ay A1y Qgp " Ay

= |(x;, 7;)| = (@1, Tg, - . ., @) < ||21? ]| - - - [l ]|
n n ——
Now ||z,]2 = > audy = O layl® And, since, |D| = |D|, (8.7.12) follows. If
k=1 E=1
layl < M, then |a,|? + |al? + - - - + |ay,|* < nM?, so that | D2 < n"M?".

Ex. 1. (Gram’s Criterion). Let f;(t) €Cla,b]¢ =1, 2, ..., n. These functions
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are linearly independent if and only if the Gram determinant

J;bfi(t)fj(t) dt] > 0.
A similar result holds for f,(t) € L[a, b].
THEOREM 8.7.4. Let z, z,, . . . , x, be independent. If
6= U}liln ly — (@) + apzy + -+ + a2, , (8.7.14)

then,
62 — g(xl7 xz’ R xn’ y)

(8.7.15)
g(xh x27 ] Z”)

Proof: Let the minimizing element a,z, + a,r, + - - - + a,z, be called s.
Then

B=ly—slP=@F—s8y—8=UH—%y) —(H—s3)
By Theorem 8.6.1, (y — s, s) = 0 so that

=y -8y =uy — 6y
and

(s, 9) = (y,y) — & (8.7.16)

Write the normal equations in the following form and append to them the
expanded version of (8.7.16):

ay(2y, ;) + Qp(Tg, 7)) + * ¢ F BY(Xp, XY) — (y,z) =0

(8.7.17,
al(xn? xl) + a'z(xw x2) + e + an(xn’ xn) - (y9 x”) =0
(@, Y) + ax(@yy) + 0+ an(wn, y) + [ — (¥, 9] =0

If we introduce a dummy value a, , = 1 as a coefficient of the elements
of the last column, then (8.7.17) becomes a system of » + 1 homogeneous
linear equation in n + 1 variables a,,...,a,, a,,, (= 1), which possesses
a nontrivial solution. The determinant of this system must therefore vanish:

(X1, 2) (2o 21) (%, 7)) O0—(y,2y)

= 0.
(xl’ xn) (332, xn) o (xn’ xn) 0— (y? xn)
@y) @y -0 @py) F—(yy)
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Therefore
(T, 1) (20, ) (xp, z) O
(2, ;) (0, 2,) (,, x,) O
(@ny) (% 9) (zny) 0
(xy, 1) (g, 1)
(@1 2,) (22, 2,)
(1, y) (%2 )
and
0%g(xy, Ty, . . ., X,) = G(Ty, Ty, . . ., X,

(xn’ xl)

(@5, %)

(%n y)

)

Ch. VIII

(y’ xl)

(y, ®)
)

THEOREM 8.7.5. Let z,,...,x, be independent. The solution s to the

minimum problem

ts given by
(2, )
§ = —
(xl’ x’n)
L3

min |ly — (@z + -+ + a,2,)|

(xzv xl)

(xz? xn)

Ty

(xn’ 171)

(%0, @)

T,

The remainder or error, y — s, is given by

y—s=

r,

(1, 2)

(xl’ xn)

(25, 2,)

(xz? xn)

Ty

(x”, xl)

(xn’ xn)

4

(yv xl)

(y, x,)
0

(y’ xl)

(y’ xn)

= g(xy, ...

—g(xy, ...

, Zy)-

(8.7.18)
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Proof: From the normal equations (8.6.1) and Cramer’s rule (1.2.2) we

Sec. 8.7
have
(y, 1)
(yv xz)
a, =
(v, =,)

(22, 24)

(g, T,)

(xZ’ xn)

(@, )

(xn’ xz)

(xn’ xn)

= g(xy, ..., x,), (8.7.20)

with similar formulas for the other a’s. If we expand the determinant in
(8.7.18) according to the minors of the last row we obtain expressions for
the coefficients of the 2’s which coincide with those just mentioned.

Since

(21, 2y)

(xl’ xn)

Ty

(295 2y)

(x2? xn)

Ty

(xn’ xl)

(xn’ xn)

x

n

adding (8.7.18) to (8.7.21) yields (8.7.19).

CoROLLARY 8.7.6. Let the elements z,, x,, . .

0

=9y, ..., 2,), (8.7.21)

0

y

., be lUinearly independent

and be orthonormalized according to the Gram-Schmidt scheme yielding x,*,

Z,*, . Then,
(2y, 2,)
1
x *=
" \/g(xl, Ty )Xy, ., 2,) ( )
Ty Xy
T
n>1,

o* =,/ \/9(_931)

The “leading coefficient” in x,.*, a,,,, ts given by

_ g(xy, ..., x,_,)

nn 9@y, ..., x,)

(x2’ xl) (xn’ xl)

(272, xn—l) o (xn’ xn—l)
Ty Ty
(8.7.22)
n> 1. (8.7.23)
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Proof : Consider the minimum problem
“}lin Iz, — (@ + -+ + ap 12, )l
According to Corollary 8.5.7, the solution is given by
z,*

— =z, — (o, + - +a,,47,,), a,,>0. (8.7.24)

nn

According to (8.7.19),

T, — (@) + 0+ @y Zpy)

(24, 7y) (G299 2) IR € SPE2)) (T, 1)
= . . =gy, oo, T y)
@ Tpy) (X, Tpy) c 0 (Tpons Tp) (T Tpy) (8.7.25)
Ty Lo e Tp-1 Ly
1 z,* .
From Corollary 8.5.7, — = o[ =min lz, — (@2, + -+ + a, 12, )|,
n nn ’ Xyy oo, X
and from Theorem 8.7.4, this minimum = A/g(l—") . Hence (8.7.22)
follows from (8.7.24) and (8.7.23). 9(@1, - - o Ta)
Ex. 2. The Legendre polynomials are given by
1 1 2 0
* =—=, ) = —= s
Po*@) =750 ) VaVE|[l =
2 0 %
") =———[0 § 0
P () = —F——— s e s o
? \/g‘ \/13335
1 = 2

8.8 Further Properties of the Gram Determinant

THEOREM 8.8.1.  The Gram determinant g(x,, %,, . . . , x,,) has the following
properties.
(a) g vs a symmetric function of its arguments.
(b) g(xy, ..., 02, ...,2,) =|o|2g(xy, - .., T,)
(©) gy, ..., 2+ 02y, ..., ) =gy, ..., %,), jFk
(d) g¥z + 2", 2, . .., z,) < g¥x/, 2y, ..., ,)

+ g}z, 7, -, 2,)

(e gl@y, ..., 2,) <g@),...,2)9Fp1s---,2,), 1 <p<m |

L (8.8.1)
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Equality in (e) holds if and only if
(r,2;)=0 1 <i<p, p+1<j<n
(Compare Theorem 13.1.2.)

Proof: Statements (a) and (b) have already been proved. (c). Write the
left hand member of (8.8.1)(c) as a determinant of inner products. Expand
the inner products in the jth row and use the elementary properties of
determinants. Then expand the inner products in the jth column and do
likewise. (d). We may assume that a,, ..., z, are independent. Otherwise
both members of (8.8.1) (d) vanish and the inequality holds trivially. Ortho-
normalize x,, . . ., z, and call the orthonormal vectors x,*, . .., z,*. Then,
from Theorem 8.5.1 and (8.7.15),

P + 2", 2, ..., 7,)
gy, ..., 2,)

n
' + %" —kiz(xl’ + z,", ¥ ) *

n n
xy’ —kzz(xx', n¥)2* + 2, —kzz(xl”, x* )z, *

n n
<||=' — 2 (@, X || + || 2" — 2 ()", 2, *)a*
k=2 k=2
_ 9*(%'» Ty, - - -5 Ty) g%(xl”, Tgy o o v s Tp)
Py, ..., 2,) gi(zy, ..., )

Multiplying this inequality by the denominator, we arrive at (d).
(e) Let k satisfy 1 < k& << p. Then, since there is more competition on the
left-hand side,

nlin e — (@r@ir + -+ - + @,z )2 < “}}n 2, — Brpa®rat - - - + byz,)l2
tl tl

Similarly,

min 2, — (Cpiappn + == + cu@® < ll2,]12

Therefore by Theorem 8.7.4,

9@, Trey1) Tppo - - -5 T)  G(Tp Tppys - - -, Tp) (8.8.2)
g(xk+1’ cee %) !I(xk+1, e xp)
and
g(x,, L P x") < g(x,,) (883)

(/[ NPTR )|
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In particular, writingk =1,k =2,...,p — 1in (8.8.2) we have

g(xy, ..., 2,) <g(x,, e 2N
g(xg, ..., 2,) ~ g(@g, ..., T,)
g(xz’ ] xn) < 9(‘”2» cee ’xp)
Loy ..., %) g(xg ...,
g( 3 ) n) g( 3 p) L (884)
9@, ..., T,)
I 0 T e,
(@ prys -5 T,) ? J
Multiplying these inequalities together,
g(xy, ..., x,)
—_— " < (zy, ... T,
I @pirs - - -5 Ty) ! ?
or
gy, ..., x,) < gy, ..o, 29T, - Ty)- (8.8.5)

Now, equality in (8.8.5) can hold if and only if it holds in each of the relations
(8.8.4); i.e., if and only if
ntin "xp - (cp+lxp+l + et + Cnxn)llz = "xpllz (886)

and

n}in 2, — (@rs1Zrsr + « - + @22 = “}}n A A L
£l i

k=12...,p—1. (88.7)
Now, by Corollary 8.5.3, (8.8.6) holds if and only if
(xy,2)=0 j=p+1,...,n
Now (8.8.7) with £ = p — 1 reads

min o,y — (0,2, + -+ + a,2,)|t = min [z,, — bz,
t) »

By the same principle, this holds if and only if x, , | %,,;, 5, ...,2%,.
Considering k = p — 2, p — 3, ..., 1 successively, we arrive at the stated
orthogonality conditions.

The Gram determinant has a very striking geometrical interpretation.
Let there be given n vectors in R, :x, = (3, 3, . . . , %;,). These vectors
are the edges of a certain n-dimensional parallelotope (the generalization

of a parallelogram) whose volume will be designated by V = V(x,, x,, .. ., x,).



Sec. 8.8 FURTHER PROPERTIES OF THE GRAM DETERMINANT 187

It can be shown that

T T "0 Ty,

Tor Tog " Xgy

V = absolute value of | ~ ) . (8.8.8)
Tp1 Zpa Tpn
N ~
\\\\ : \\\
S | ~a
# D 2
Z2 !

Figure 8.8.1 Parallelotope in Rj.

(Though elementary, the derivation of this formula is far from trivial. An
axiomatic derivation can be found in Schreier and Sperner [1] Ch. IIL.)
Multiply the determinant in (8.8.8) by its transpose and obtain

(T 21) (@, %) -0 (24, 2,)
Ve = =g(xy,...,x,). (8.8.9)
(xn’ xl) (xn’ x2) e (xn’ xn)
Hence,
Vi, ...,2,)=Vg@, 2 ...,%,). (8.8.10)

A derivation of (8.8.8) can be given via Theorem 8.7.4 if we assume by
way of analogy to the situation in 2 and 3 dimensions that the volume of
the parallelotope can be found by multiplying altitudes. That is, assume

V(zy, @y, . . ., 2,) = 2|l dizy; 2,) d(xg; @y, ) - (X3 %y, Tgy .. ., Z,y)
(8.8.11)
where d(z;; 2,, 2,, . . ., %;_,) designates the distance from z, to the linear
manifold spanned by z,, ..., z, ;. Since
d(x;; 2y, g, - - ., T;y) = M , (8.8.12)
g(@y, Tgy - . o, Xy y)
(s, %) 9(21, %y, 25) (21, Tgy - - - » X,)
V2= gla,) ——2 2 ?... I t =gy, ..., T,)
9(x)  g(x1, 7o) g(@y, Ty, - - -, Tpy)

(8.8.13)
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8.9 Closure and Its Consequences

DEerinITION 8.9.1. A finite or infinite system of elements, x,, z,, - - - ,ina
normed linear space X is called closed if every element x € X can be
approximated arbitrarily closely by finite linear combinations of the ;.

That is, given € X and € > 0, we can find constants a,, . . ., a, such that
l# — (a)2y + axry + - -+ + a,2,)| <e. (8.9.1)
Ex. 1. Any set of n independent vectors x,, ..., z, in R, or C, is closed.
In this case, the approximation can be made perfect (Theorem 1.3.1). But one
can also argue as follows. Since z; are independent, g(z,, . . ., z,) > 0. If
Z; = (Xg1) Tigs + - - > Tin)s
then
T T || % T
9@y, oo 2y) =] - . . - | >0
Tp1 Zpn [ | Z1n =0 Tpp

and therefore |z;;| # 0. Given any y, the system a,x; + ayty + -+ + @z, =¥y
may be solved for the a;.

Ex. 2. Let X be C[a, b] with || f] = max, |f(x)|. The powers 1, x, 22, ...,
a<z<

are closed in X. This is a reformulation of the Weierstrass Theorem 6.1.1.

b
Ex. 3. Let X be C[a, b] with | f||2 =j | f(x)|2 dz. The powers 1, z, z2, . . .,
are closed in X. @

b
Ex. 4. Let X be L[a, b] with | f| =f | f(x)] d=. The powers 1,z, 22, ...,

a
are closed in X. This is a generalization of the Weierstrass Theorem.
According to Theorem 1.4.0(e), given an ¢ > 0, we can find an absolutely
b

continuous function g(z) such that | |f(x) — g(z)] dr < ¢/2. Since g is continuous
a

&€
we can find a polynomial p such that |g(x) — p(x)] < m ,a <z <band
» —

hence,f lg(x) — p(x)| dxr < &/2. Therefore by (7.2.17)

a

b
f [f (@) — g(@) + g(x) — p@)|de < &f2 + &2 =&.

Ex. 5. Let X be the set of analytic functions that are continuous in |2| < 1.
Set
[/l = max |f(2)].

lz2l<1
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The powers z, 22, 23, . . ., are not closed in X. If they were, given an ¢ > 0 we
could find constants a,, . . ., a, such that

max |1 — (@2 + ap2? + - -+ + a,2")| <e.

lzl<1

Setting z = 0, we would have, in particular, 1 < e.

Before studying the implications of closure, it will be important to recall
a number of topological concepts. Let X be a metric space with a distance
function d(z, y). (Definition 7.2.2.) If z, € X, the set U(z,, r) consisting of
all elements x € X for which d(x, z,) < r is called an open ball. An element x
of a subset S is called an snterior element of S if there is an » > 0 such that
U(z,r) < 8. In a metric space and hence in a normed linear space, the
notion of convergence can be defined:

DErINITION 8.9.2. A sequence of elements {z,} of a metric space is said
to converge to an element z € X if

lim d(z, z,) = 0. (8.9.2)

n— o0

In a normed linear space, (8.9.2) is equivalent to
lim ||z —z,| =0. (8.9.2")
n— o

A convergent sequence cannot converge to two different elements; for
suppose lmulo d(x, z,) = 0 and '}malo d(y, z,) = 0. By (7.2.2)(d), 0 <d(z,y) <

d(z, z,) + d(y, z,). Allowing n — 00, we obtain d(z, y) = 0 and hence z = y.
We may speak of z as the limit of the sequence {z,} and write
7!1{1010 z, = 2. (8.9.3)
Convergence of type (8.9.2') is sometimes called convergence in norm or,
if the norm happens to be given by an integral expression, convergence in
the mean. In the case of normed linear spaces of functions, this serves to
distinguish it from other types of convergence (pointwise, uniform, ete.).
One must always make this distinction, for a sequence in a normed linear
space of functions may converge in norm without converging in the point-
wise sense.

) +1 n 3
Ex.6. Let X beC[—1,1]with | f|? =J;1 (f (x))2dz. Let f,(x) = [m} .
Then,

. +1 n 2 .
10 — full2 = hll_'_—mx—zdx=;;arctann - 0.

However, f,(0) - .
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Let X be a metric space and § € X. The closure S of § is defined as the
set of all limits of convergent sequences of S. Obviously S < 8. If § = 3,
S is called closed. A set S is dense in X if § = X. X is separable if there is
in it a countable dense set.

If lim 2, = «, then from d(z,, z,) < d(z, z,) + d(z, z,) it follows that

n— oo
we can make d(z,,, z,) < ¢ for all m, n > N(¢). But as in the case of the
metric space of rational numbers (with d(z, y) = | — y|), the converse is
not true. It is important to distinguish those spaces in which it is true.

DerFINITION 8.9.3. A sequence of elements of X, {x,} is called a Cauchy
sequence, if for every € > 0, there is an integer N(¢) such that d(z,,, z,) < ¢
for all m, n > N(¢). A space X is called complete if every Cauchy sequence
has a limit in X.

Specifically, if X is a complete normed linear space, and if for any & > 0,
we can find N(¢) such that

[€n — 2.l <& m,n = N(e), (8.9.4)
then there is an « € X such that
”ILIIOXO |z — 2, =o0. (8.9.5)
A complete normed linear space is often called a Banach Space.

Ex. 7. The complex Euclidian space C, is complete and hence is a Banach
Space. Let z,, = (xg”‘), x;”‘),. . xﬁl"‘)). If {z,} is a Cauchy sequence, then

n
z |x§.’”) — xf.”)lz <e for m,p > Ne).
i=1

Hence, for any particular s, ]xf.’") - xﬁ”)|2 < ¢ for m,p = N(e). Thus, for each
%, xﬁ."‘) is a Cauchy sequence and has a limit z,;: lim [z; — xi."‘)l = 0. If we set
m—» o

n
T = (®,...,%,) then |z — z,||2 = z lz; — 2{™|2 < ¢? for m > N'(e).

=1

Ex. 8. Let C[a, b] be normed by || f|| = max, | f (x)|. This space is complete.
aszr=<
For if rga)éb | fm(®) — fr(®)] <& m,n > N(c) then the sequence f,(x) is uni-
asrs
formly convergent on [a, b]. Hence there is a function f(z) € C[a, b] for which

If@) —fa@)| <&,0a <x <b,n = N'(e),

and this implies that f, converges to f in the norm considered.

b
Ex. 9. On the other hand, if X is C[a, b] normed by || f|2 =f | f ()2 dz,
a

then X is not complete. This can be shown by exhibiting a Cauchy sequence in
X which does not converge to an element of X.
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For simplicity take a = —1,b = 1 and let f,(x) be the continuous function
1
-1 1 <zx< —-
n
1 1
= —-<z< -,
Su®@) nx - =r< o
1
1 - <z < 1
n

Let f (x) be the discontinuous function

-1 -1<z<0.
1 0<z<1

f(x)={

Now
0

I/ @) = fa@|? =f

1/n 2
(=1 — nx)2dx +f (1 —nx)2der =—.
In 0 3n

And therefore lim | f — f,||2 = 0. f,, converges (in norm) to f and is a fortiori
n—» oo

a Cauchy sequence. But it cannot converge in norm to a continuous function
g(x), for

If =gl =If =fa +fu =gl U =Sall + g —fal-

If therefore ||g — f,]| — 0 and || f — f,|| — 0, then allowing » — o, we obtain

0 1
If —gll =o0. Thus,J (1 + g(x))?dz =0 andf (g(xz) — 1)2dx = 0.
-1 0
This means that g(x) = —1 for —1 <2 <0Oand g(x) =1for 0 <z < 1.

We now come to the fundamental theorem of orthonormal (Fourier)
expansions.

THEOREM 8.9.1. Let x,*, z,*, ..., be a sequence of orthonormal elements
in an tnner product space X. The sequence may consist of only a finite number

of elements. Appropriate changes are then to be made below. Consider the
Sfollowing seven statements.

(A) The x.* are closed in X.
(B) The Fourier series of any element y € X converges in norm to y; t.e.,

lim
n—

n
y = 2 0 nut || =0 (8.9.6)

(C) Parseval’s identity holds. That is, for any y € X,

Y

w2 = (. ) = 2 |y, ,*)|% (8.9.7)

n=1
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(C") The extended Parseval identity holds. That is, for any x, y € X,

@

(x,y) = 1(ac, z,*)(x,*, ). (8.9.8)

n=

(D) There is no strictly larger orthonormal system containing x*, x,*, . . ..
(B) The elements x,*, x,*, . .., have the completeness property. That is,

yeXand (y,2,*)=0,k=1,2,...,impliesy = 0.
(F) An element of X is determined uniquely by its Fourier coefficients. That
18, 1f (w,*) = (y, z,*)k=1,2,..., thenw =1y.
Then
A>B—C—C —>D-—E-F (8.9.9)

If X is a complete inner produce space, D — C and all seven statements are
equivalent:
Ac>B->C—oCoD—E-TF (8.9.10)

We have used “—” to mean ‘“‘implies” and “«>” to mean ‘“implies and is
implied by.”

Proof: Assume A. Now

n
y —kZl(y, ¥ )T *

n
<l|y —kzlakxk* by (8.5.1).

By A, the last expression can be made < &. If B holds, we can approximate
any element y by its Fourier segments; hence x,* is closed. Thus A« B.
By orthogonality,

n

z— 3 (@ nf ety — 3 @ ant) = @) — 3 @ )@t o).
=1

k=1

By the Schwarz inequality,

n

(Z, :’/) - z (xv xk*)(xk*’ y) ‘ <

n
T — 2 (x, m,*)x, *
k=1

n
¥y — 2 (¥ gt)z*
k=1

If B holds, then the right-hand members both approach zero and hence
B—C.

By selecting x = y in C’ it is clear that C holds. Hence C' — C.

By Corollary 8.5.3,

n
0< H y —kEI(y, T, *)a, >

2 n
= Isl* = 3 I =)

Hence C — B, and thus A«> B« C—C'.
Assume A and suppose that x;*, z,*, .. ., w, (w 7% z,;*), is also an ortho-
normal system. This augmented system is also closed in X. Since A —C’,
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we have both ©
ol = 3 10 2 + (1, ),

0
fleofl® =k21l(w, z*)[?

Hence (w, w) = 0 and this is a contradiction since |w|| = 1. This means
that A — D.

Suppose there is a y € X, y # 0 such that (y,z,*) =0, k=1,2,....
Then, z,*, z,*, ..., y/|ly|| would be an orthonormal system strictly larger
than z;*, z,*, . ... Thus, D < E.

Suppose (w, ,*) = (y, ,*) k=1,2,.... Then (w—y, 2,*) =0 k=

1,2,.... Assuming E, w — y = 0. Therefore E — F.

If E were false, we could find a 2540 with (z,x,*) =04k =1,2,....
For any y, (y,2,*) = (y + 2, 2*) k=1,2,.... So y and y + z would be
two distinct elements with the same Fourier coefficients. F would then be
false. Therefore F — E. This completes the chain of implications (8.9.9).

Assume that X is complete. We will show that F — B and this will estab-
lish the implications (8.9.10). Let w € X and consider the elements

n
8, = 2 (w, Z*)a>. (8.9.11)
k=1
For n > m, ”
we have s, —s,, = Y (w,x,*)x,* so that
k=m+1
n
sy —smll2="3 l(w, 2*)|2 (8.9.12)
k=m+1

]

By (8.5.3), > |(w, *)|2 < oo. Therefore given an ¢, we can find an N(e)
¥=1
n

such that > |(w, 2,*)|2 < & for all m, n = N(¢). Thus {s,} is a Cauchy
+1

k=m
sequence, and by the assumed completeness of X converges to an element
seX:
"11{130 ls —s,ll =0. (8.9.13)

Let v be fixed and n > ». Then
(.g — Sp» xv*) = (8’ xv*) - (8”, xv*) = (s, xv*) - (w’ xv*)'
By the Schwarz inequality,
|('g’ xv*) - (w’ xv*)l = I(S — Sp» x’v*)l < "8 - 8”" "xv*" = “3 - 8”".
In view of (8.9.13), we find that

(8, 2% = (w,2,*) v=12,....
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By F, this implies that s = w, so that (8.9.13) reads

lim =0.
n—
But this is precisely B.
We remark in passing that Parseval’s identity is a generalization of the
Theorem of Pythagoras 8.3.1.

The completeness property in (E) may be defined for any set of elements:

n
w — 3 (w, 7t
k=1

DEFiNiTION 8.9.4. A set of elements S in an inner product space X is

complete if
(y,2) =0 forallzelS (8.9.14)
implies y = 0.

As we have seen, in a complete inner product space, completeness and
closure are equivalent concepts and some authors use these words with inter-
changed meaning. In Chapter XI, the notion of complete sequence is ex-
tended to normed linear spaces and the relation between closure and
completeness is probed further.

b
Ex. 10. Let X be C[a, b] with (f, g) =j f(x)g(x) dx. Given an f € C[a, b], and
a
e > 0, we can find constants a; such that

[f(x) —(ag + oy + -+ + az™)| < e a <z <b
By integration,
b
f (f(x) — (ag + -+ + ag™)tdx < e3(b — a).
a
It follows that the powers 1, z, 22, . . ., are closed in X. All statements (A)-(F)

now follow with the elements z,* interpreted as certain modified Legendre
polynomials. In particular, if f € C[a, b] and if

b
ff(x)x”dx=0 n=2012..., then f(x) =0.
a

Ex. 11. If X is L%a, b] with the same inner product then the same con-
clusion holds (See Theorems 11.2.1 and 9.2.2).

Ex. 12. Fourier expansions of continuous functions in terms of Jacobi
polynomials converge in norm. b
Parseval’s identity holds for such expansions. If w(z) = 0 and| w(z) dr <

a
then these results may be extended to the class L2%[a, b; w] of measurable
b

functions f for which f w(x) |fl2dx < .

a

THEOREM 8.9.2 (Riesz). Let X be a complete inner product space and let
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a, be constants such that z lax|2 < 0. Let {,*} be a complete orthonormal
sequence. Then there is a y € X such that
o =a, k=12, .... (8.9.15)

Proof: Consider the elements s, = z ¥,
Now s, — 8,2 = z [a,c[2 In vnew of E la,|2 < oo, {s,} is a Cauchy
k

=m+

sequence, and thereis a y such that llm ly — 8,," =0. With k fixed and n > £,

ly — sull = lly — sall l2*l = 1y — 80 ¥ = [y, %) — -
Allowing n — o0, we obtain (8.9.15).
8.10 Further Geometrical Properties of Complete Inner Product
Spaces. We have seen in Theorem 8.5.1 that there is a minimum dis-
tance from a given element to a linear manifold. How can this be extended

to more general subsets? Theorem 8.10.1 provides a sufficient condition
of great importance.

TueoreM 8.10.1. Let X be a complete inner product space. Let M be a
closed (3.e., topologically), convex, and nonempty subset of X. Let y € X and set

d = inf ly — . (8.10.1)

Then there is a unique xy in M such that
ly — zoll = d. (8.10.2)

Figure 8.10.1.

Proof: By (8.10.1) we can find a sequence of elements z, in M such that

lim |y — | = d. (8.10.3)
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The parallelogram theorem (Theorem 8.1.3) tells us that

€y — 2,2 = 2 12, — Yl + 2 |z, — Yl — |12y — 2, — ]2
=2z, — 9l + 2z, — yl* — 4y — $(@, + z,)]*

M is convex; hence }(x,, + z,) isin M and |ly — }(=,, + z,)||> = d2 There-
fore,
om — zall? < 2 Mly — 2,/12 + 2 |y — 2,]* — 442

In view of (8.10.3), ||z,, — 2,/ — 0 as m, n — co. This means that {z,}
is a Cauchy sequence. Since X is complete, there is an z, in X such that
|, — ®oll — 0. Since M is closed, z, is in M. Now

ly — 2ol <lly — .l + Nz, — 2ol >d + 0 =d.

On the other hand, from (8.10.1), |ly — z,|| = d. Therefore |y — z,| =d.
Suppose we have z, and z, with |y — x| = ||y — x,|| = d. Since M is
convex, }(x, + z,) is in M. Hence,

@ < lly — 3 + )l = Ity — 3= + by — o
d d
<tly— ol +3ly—ml=5+;5=d

Therefore |y — (xy + 2,)|| = d. By the parallelogram law,

2o — 212 = 2 ly — %ll* + 2 |y — 2| — 4 |y — $(=0 + )|
= 2d2 + 2d? — 4d? = 0.

Therefore z, = =,.

Ex. 1. In the plane, let M designate a nonempty, closed, convex set of
points. If P is a point not contained in M, there is a unique segment of minimum
length connecting P and M.

THEOREM 8.10.2. Let X be a complete inner product space and let M be a
closed linear subspace that is not the whole of X. Then there exists a nonzero
elementzL M, i.e., (z,y) =0 forally e M.

Proof: Let w ¢ M. Set d = ;gnfl lw — y||. By Theorem 8.10.1, we can find
a yo in M with |w — yo| =d. Let 2z =w — y,. Now z 7% 0, otherwise
w =y, € M. Since M is linear, y, + Cy is in M for all ye M and all C.
Hence,d < [|lw — yo — Cy|| = ||z — Cy||. Then, ||z — Cy||2 — |z]|2 > 0. This
means that |C|? ||lyl|2 — C(y,2) — C(z,y) = 0. In particular, select C =
0(2, y) where ¢ is real.
Then,

(z, 9)I2 {e® [lyl|> — 20} =0 forall o.
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But for ¢ > 0 and sufficiently small, o2 |y||2 — 20 is negative. Hence
(2,y) =0.

CorROLLARY 8.10.3. The minimal element extending from a given element
to a closed linear subspace 1s perpendicular to the subspace.

Here is a second application of Theorem 8.10.1 more directly related to
questions of approximation theory.

THEOREM 8.10.4. Let M designate the set of polynomials of degree < n
that are convex on [a, b]. Let f(x) € L¥a, b]. Then the problem

b
min [If — pll, 11 =L || de, (8.10.4)

possesses a unique solution.

Proof: A polynomial p(x) is convex on [a, b] if and only if p”(x) > 0 there.
If p and ¢ are convex on [a, b], then ¢p(x) 4 (1 — t)g(x) is also convex on
[@, 8] for 0 < ¢ < 1, inasmuch as #p” + (1 — t)g” > 0. The set M is there-
fore convex.

We show next that M is a closed subset of L*[a, b]. Let p,(x) € M con-

b
verge to f(z) € L¥a, b]; i.e., let lenglo f | f(z) — pu(x)|2dz = 0. Let g(x) be
the best approximation to f(z) in &, (Cf. Cor. 8.5.2). Then,

b b
0 <[ 1@ — g ds <[ 1@ — pioas.
a a
b
Allowing &k — oo we have| |f(x) — q(x)|2dx =0, so that f(x) = g(x) is
in Z,. a
Let Py*(z), Py*(z), ..., P,*x) designate the orthonormal polynomials
for [a, b]. Then,

f(x) - pk(x) = aOk'Po*(x) + e + ankPn*(x)’ k = l’ 29 LR

for some constants a;;, and hence,

b n
[1re - noe s = 3 ot o

Thus, lim a,, =0, ¢+=0,1,...,n.
k—o

n
Now |f(2) — p(z)] <2 layl |P;*(z)|; hence over any bounded region in the
i=0

complex plane p,(z) — f(z) uniformly. Hence p,"(z) — f"(z) uniformly there
and since p,"(x) >0 on [a, b], it follows that f”(x) > O there. Thus M is
closed. The Theorem now follows by an application of Theorem 8.10.1.
We refer to Theorem 9.2.2 for the completeness of L¥[a, b].
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NOTES ON CHAPTER VIII

General works that have been found useful include Halmos [1] and Aron-
szajn [1]. Also the references cited in Chapter 7.

8.1 TFor spaces that do not satisfy the positivity requirement (8.1.1)(d),
see Synge [1], Part III.

8.2 The Euclidean geometry of n dimensions is developed in Sommerville
[1].

8.5 For additional examples of Tschebyscheff expansions, see Murnaghan
and Wrench [2], Clenshaw [1]. Davis and Rabinowitz [2] presents an ex-
tensive survey of the applications of least square methods to numerical
analysis.

8.7-8.8 Kowalewski [2] pp. 223-229. Gantmacher [1], Vol. I. Kaczmarz
and Steinhaus [1] pp. 73-78, Szegd [1] pp. 23-27. ’

8.9-8.10 Banach [1] Chap. IV, Kaczmarcz and Steinhaus [1], Chap. II.
Further discussion of Theorem 8.9.1 is in Olmstead [1].

PROBLEMS

T

1
1. If —0 < 4,4 < o, then lim — cos Ax cos ux dx = 0, A # u. What
P 2T .

is the value of the limit for A = u?

2. If X is a real inner product space ||z + y|| = ||z — y| if and only if
(z,y) = 0. What if X is a complex inner product space?

3. In a real inner product space ||z| = ||y| implies that

Give a geometric interpretation.

4. If X is a real inner product space, (z, y) = 0 if and only if |laz + y|| > ||y|
for all real a.

5. If x; and z, are orthonormal, then x; + z, and x; — x, are orthogonal.
Geometrical interpretation?

6. Let ||| =1, =1,2,...,n. ||lz; — ;]| = 1,7 # j. Determine the angle
between z; and z;. Interpretation in R, and Rj3?

7. Prove that an inner product space is strictly convex.

8. In a real inner product space (z,y) = }{||z + y||2 — ||z — y||?]. In a com-
plex inner product space, Re (r,y) =}z + ¥||2 — |l —y||?] Im(z,y) =
—HJliz + y]* — iz — y]2.

9. Give an example of a normed linear space in which the parallelogram
theorem fails.

10. In C'{a, b] define

b
M9 =j f(x)g’ (x) d

b
@2 (e =f ')y’ (x) dz + f(a)g(a).
a
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Which of these is an inner product?
11. Let X be a real Minkowski plane with points P. It is an inner product

space if and only if the locus || P|| = 1 is an ellipse.
1 pn
12. Estimatej T from above by the Schwarz inequality. Estimate from
0

below and above by using the mean value theorem for integrals. Compare with
the exact answer for n = 6.

13. In the case of a complex inner product space two definitions of angle are
E Do gy - B D)
=l My Il Tyl
if and only if (z, y) = 0, but the law of cosines does not hold. According to (2),
the reverse is true.

14. Let X be an inner product space and zy, . . . , x, be n independent elements.
Introduce Ly(x) = (x, 2;) and use the LU decomposition of ((z;, x;)) (2.6.19) to
derive the orthonormalized x,*, z,*, . . ., z,*.

15. Let n > 2. “Solve” the overdetermined system of real equations in z, y

possible: (1) cos ¢ = . According to (1), ¢ = n/2

@z + by = ¢

a,x + by = ¢y
n
by minimizing E (c; —ax — by
=1

16. Find the least square polynomial approximations of degrees 0, 2, and 4
to |z| over [ —1, 1].

17. Approximate z2 in L2[0, 1] by a combination of 1, z. By a combination
of z19, 2101, Compare the answers.

18. In an inner product space, minimize

ley —|® + llzg — @l|® + -+ - + [lzn — 2|

where z is a linear combination of zy, . . . , z,,. Interpret geometrically.

19. Show that the value of y that minimizes the sum of the squares of the

n _ 2 n n
“relative errors,” 3, [a, y:| Jisy = >a2/ Xa;
j=1 Y j=1 7=1

20. Let a triangle T have sides a, b, c. If P is a point in the plane, denote by
x, Y, 2, the distance from P to the sides. What position of P minimizesx + y + 2?

21. With the notation of Problem 20, show that there is a point Py, such that

4
b

Qly

z
=3 This is known as the Lemoine Point of the triangle. Show that this
point minimizes z2 4 y2 + z2. Hint: Use the Lagrange identity

(@? + b2 + c®)(x? + y? + 22) = (ax + by + cz)?
+ (ay — bx)? + (bz — cy)? + (cx — az)2.

22. In R,, |y — Ax||? is minimized for z = z, if and only if A’Ax, = A’y.
23. Given 0 <) <@y <-+- <2, <1; filx) =1,0 <z <25 frlx) =0,
2, <z <1; k=1,2,...,n. Compute G(fy, fg, - - - »fn)-
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24. If z; are normal: ||z;]| = 1, prove that the sequence u, = g(z,, %y, . - . , %)
is nonincreasing.

25. Let the matrix G(x,, %y, . .., x,) have rank r. Then r of the elements
Zy, . . -, Z, are linearly independent and n — r elements are linear combinations
of these.

26. Prove that Hadamard’s determinant inequality is an equality if and only
if the rows or columns of D are orthogonal.

27. Prove that the n-dimensional volume, V,, of the regular n-simplex of
side 1 (generalization to n dimensions of the equilateral triangle) is given by

1 n+1
V"=;M/ 2n

28. Let X be an inner product space and z;, . . . , Z, be n independent elements.
Then, g(y, xy, . . . , ,) = |(y, 2)|? for all y, and where z depends only on 2, . . . , z,,
if and only if the dimension of X < n + 1. The z is unique. If the dimension of
X <n 4+ 1,2 = 0. The element z is known as the Grassman outer product of

Ty e ooy Xpe
29. Use the result of the last problem to generalize the formula of analytic
geometry for the distance from a point to a line. In R, ,,, let ,, ..., x, be
independent. Then, the distance d from y to the hyperplane spanned by z,, . . ., z,
, 2
is given by d = % . Check the case n = 2.

30. Suppose there is a real valued function of n elements of an inner product
space V(zy, %y, . . . , T,) such that (1) V(zy, ..., x,) = |z [|2o]| - - - |2,]| when-
ever x,, ..., %, are orthogonal. (2) V(x,, ..., % ..., Tpp. .., 2,) = V(xp, ...,
X; + O%py ..., Ty, . - ., T,) for all constants ¢ and all j, k (j # k). Prove that
Vg, .. 2,) =gz, - oo b 2p)-

31. Give a geometric interpretation of Hadamard’s Inequality and of in-
equality (8.8.1)(e).

32. Let g(x) € C?[0, 1] and suppose that g”(x) < 0 at some point x € [0, 1].
Suppose that a polynomial p(z) is such that |g(x) — p(z)] < e for 0 <z < 1.
For ¢ sufficiently small, there is a point 7 in [0, 1] where p”(n) < 0.

33. What is the implication of the previous exercise about the possibility of
uniform convex polynomial approximations?

34. Let &2, designate a normed linear space of polynomials of degree < n. If
px(z) is a sequence of elements of 2, for which ||p|| — 0, then p;(z) — 0 uniformly
on any bounded set.

35. If X satisfies all conditions for an inner product space, except that
(x, ) = 0 does not necessarily imply x = 0, X is called an indefinite inner
product space. Give examples of such a space. How much of the present chapter
is valid for such spaces?



CHAPTER IX

Hilbert Space

9.1 Introduction. Hilbert space is the natural generalization to an
infinite number of dimensions of the real or complex Euclidean spaces R,
and C,. There are many advantages to be gained from working in a Hilbert
space. In the first place, our spatial intuition acquired in 1, 2, and 3 dimen-
sions carries over to some extent, and theorems and processes can be ‘“‘seen’
geometrically as well as analytically. In the second place, the norm in the
space is associated with a quadratic expression, so that the processes of
minimization lead to linear problems. Finally, all (separable) Hilbert spaces
are abstractly equivalent to one another. This means that the theorems
established have wide application.

DerFiNtiioN 9.1.1. A complete inner product space will be called a
Hilbert space, H, if the following additional requirements are fulfilled

(a) H is infinite dimensional; that is, given any integer n, we
can find » independent elements. (9.1.1)
(b) There is a closed (or complete) sequence of elements in H.

We have already observed in Chapter VIII that inner product spaces have a
good bit of geometry associated with them. The requirement that H be
complete means that all the conditions A—F of Theorem 8.9.1 are equivalent.

Condition (9.1.1)(a) provides H with more dimensions than any R, while
condition (b) restricts the number of dimensions to being countably infinite.
These conditions are largely a matter of convenience, and the practice of
authors with respect to them varies.

A Hilbert space is, at the very first level, a linear space. This linear space
may be either real or complex. Accordingly, the Hilbert Space is spoken of
as real or complex.

If X is an inner product space and the sequence x,, z,, . . . , is complete,
we can find a subsequence ; , @, . . . (possibly finite) that is both complete
and independent. For, beginning with the first nonzero element, inspect
the sequence and strike out the first element that depends upon the previous
elements. Inspect the subsequence that remains and do the same. Proceeding
in this way we obtain a subsequence z; , z; , . . ., of independent elements.
Moreover, any element z, struck from the list is a linear combination of a
certain number of elements of the subsequence: z, = ayz;, + - + a,%; .

201
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Figure 9.1.1 The Hierarchy of Linear Spaces.

Hence, (y, ;) =0, t=12,..., implies (y,x;) =0, ¢t=1,2,.... This
means that the subsequence is itself complete.

If X is an infinite dimensional complete inner product space, a finite
sequence z,, ..., z, cannot be complete. For, otherwise we may suppose
it to be independent, as above, and orthonormalize it to obtain a complete
orthonormal sequence z.*, . . ., z *. In view of (8.9.6), any element y equals

n
> (y, z,*)x,* so that there cannot be n + 1 independent elements.
=1

In view of this discussion and Theorem 8.3.3, condition (9.1.1) may be
replaced by
There is a complete orthonormal infinite

sequence of elements in H. (9.1.2)
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Recall that a metric space S is separable if there is a denumerable dense
set of elements. Condition (9.1.1)(b) implies that H is separable. For let
{z;*} be a complete orthonormal sequence. The finite linear combinations
of the z;* with rational (real or complex) coefficients is a denumerable set.
Given y € H and & > 0, then by Theorem 8.9.1(B), for sufficiently large n,

n
Hy — 3 (4, x*)x* || < /2. If rationals 7, are selected so that

n
kgllrk — (¥, m¥)|? < €*/4,

then
n n 2
2 (Y a)m* — 2 nat || < 4.
k=1 k=1
n
Hence ||y — 3 ra,* || < e. This approximant to y is one of the denumerable
k=1

set.

Hilbert spaces as defined here are sometimes called separable Hilbert
spaces, but we shall omit the qualifying term.
The following lemma is of occasional use.

Lemma 9.1.1. Let x,*,...,2,* be n orthonormal elements tn a Hilbert
space. We can augment these elements by x|, % o, . .., such that x,*, z,*, . ..
is complete and orthonormal.

>

Proof: The Hilbert space has a complete sequence y,, y,, . ... The se-
quence z.*,...,2,* ¥, Yy ..., is obviously complete (since (y,y,) =0,
t=1,2,..., already implies y = 0). By the process described above, we
can extract a subsequence that is complete and independent. The subse-
quence will begin with z;*, ..., x * since these elements are independent.
Orthonormalizing this subsequence, we obtain z,*, . . ., z,* over again, plus

additional elements that we call ¥, ,, «* ., ....

9.2 Three Hilbert Spaces. There are many known examples of Hil-
bert spaces, but we limit our presentation to three.

I
THEOREM 9.2.1. The set of all infinite sequences {a;} for which
_flla,.r-' < oo, (9.2.1)
augmented by the usual deﬁnitio;; for addition and scalar products and by
(a,b) = Za, s oa={a;}, b={b;}, (9.2.2)

as the definition of an inner product, constitutes a Hilbert space.



204 HILBERT SPACE Ch. IX

It is called the sequential Hilbert space and is designated by £2.

Proof: We have already observed in Ex. 5, 7.2, that £2 is a normed linear
space. For any two elements a, b of £2, we have by (7.2.9)

n - n 3/ n 3
Z lad,| < (Z I“ilz) (Z |bi|2) .
=1 1=1 =1

@ -— Ll p—
Hence, Y |ab;] < oo and > a.b; converges. The expression (a, b) is therefore
i=1 i1

defined for all @, b €£2, and it is now a trivial computation to show that it
satisfies the requirements (8.1.1) (a)-(d) for an inner product.

We prove next that the space is complete. Let a'™ = {a{™} be a Cauchy
sequence. That is, let

@
i (m) _ gMf|2 — i (m) _ ,m)2 — 9.
m’lyl‘I_I}w lla a™| m'I}‘r_r’lwigl | a2 = 0. (9.2.3)

For each fixed subscript i, then, we have lim |a{™ — a{™| = 0. Each of
mn—

the sequences a{V, a(?, . . . , is therefore a Cauchy sequence of real or com-

plex numbers, and by the completeness of these spaces, possesses a limit:

lim ¢ =aqa;, i=1,2,3---. (9.2.4)

m—> o

For each integer k, set

o2 = sup [al™ — a2, (9.2.5)
mn>k
By (9.2.3), we have
klinelo 0, =0. (9.2.6)

Now for N arbitrary and for all m > n, we have
N @
> ja™ — a2 < 3 |a™ — a2 = [a™ — a™|2 < 0,2 (9.2.7)
i=1 i=1

In (9.2.7) keep N and n fixed and let m — co. Since we are dealing with a
finite sum, we have

N
zl|a‘ — a2 < 0,2 (9.2.8)
1=
By Minkowski’s inequality,
N 3 X 3
(S (S5
i=1 i=1

< [la™]| + o,
This is true for all N. Keeping = fixed, allow N — co and obtain

N 3
la; — a§">|2) (9.2.9)
=1

]

w 3
(2 Iaflz) < |a™| + o, (9.2.10)

i=1

This shows us that the sequence {a;} is an element of £2.
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We next show that
nligxo la —a™| =0 (9.2.11)
where a = {a,}.
In (9.2.8) allow N — co. This yields

M8

la; — a{™|? < o,*.
i1

In view of (9.2.6), (9.2.11) follows. The Cauchy sequence a!™ approaches
the element a as a limit.

The unit elements u; = (1,0, ...), v, =(0,1,0,...),...,areindepend-
ent and orthonormal. They are complete, for if @ = (a,, a@,, . . . ) €£2, then
a,=(a,u;)=0,7=1,2,...,impliesa = 0.

II

The second Hilbert space is L%[a, b], consisting of all functions defined
on [a,b] which are measurable and for which |f(x)|? is integrable. The
inner product is defined by

b P
(f,9) = f f(z)g(z) dz (9.2.12)
and the norm by
b
1= .5 = [ 1@ (9.2.13)

We may consider functions that are real valued or that are complex
valued. This leads to two separate spaces, but the proofs are the same for
each.

It should be recalled that two functions differing only on a set of zero
measure have the same Lebesgue integral. Hence, according to (9.2.13), there
are functions not identically zero with zero norm. In order to avoid this
difficulty, we treat as identical any two functions whose values differ on a
set of zero measure at most. This means that the elements of our space
should not be the functions themselves but equivalence classes of functions.
To set up the work in this form is a nicety, and we shall not insist upon it.

THEOREM 9.2.2. L?a, b] with inner product (9.2.12) and the identification
of functions discussed above is a Hilbert space.

Proof: We have seen (Ex. 10, 7.2) that L?[a, b] is a normed linear space
and that the inner product expression (9.2.12) has meaning for f, g € L?a, b].
By Theorem 1.4.0, and simple properties of the integral, L?[a, b] is an inner
product space as well.

We next show that L?a, b] is complete. That is, we show that every
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Cauchy sequence converges to an element of the space. In symbols,
b
i 140 — @R ds = lim Ifa~f1r=0 @210
implies the existence of an f(x) € L*a, b] for which
b
i (V@) — gt e = lim 1~ g2 =0, @219)
a

In view of (9.2.14), we can find a strictly increasing sequence of positive
integers 7y, n,, . . ., such that

1
e = Frpll <o k=12 (9.2.16)

If g is an arbitrary function of L?[a, b], then by the Schwarz inequality,
b

01100 = 1,1 22 < U0 1y = oy, < ) 27 Honce,
a

© b
kglf 9@ | [ (@) — fo,, @) dx < llgl 3+t + )= lgll. (9.2.17)

Thus, interchanging summation and integration,
b ©
[[10@131u0) = fop 0 82 < 01 <
a =

This tells us that
Ig(x)IkZlIf,.,‘(x) — o (@) < (9.2.18)

]
almost everywhere on [a, b], and hence that | Ju®) — [, (@)] < o0 al-
k=1

most everywhere. This last statement is true because if the series diverged
on a set of positive measure, we could take a test function g that was non-
zero on this set, and obtain a contradiction to (9.2.18).

e
Now > ( fnk“(x) — fn(®)) must also converge almost everywhere. Its
k=1

partial sums are f, () — f, (z). Hence, for an appropriate function f(x)
defined almost everywhere,

lim f, (z) = f(2). (9.2.19)

k—

We next show that f(x) € L¥a, b]. In view of (9.2.19), for fixed j, we have
;almost everywhere lenelo [fna(@) — fa,(@)|2 = | f (%) — [y (%)|2. Hence by Fatou’s
emma,

[11@ = puoreas <tipint (1,0 — fo o . @220
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Now

"fn,‘ _fni" < “fni _.fn“l“ + "fnj+l _fnj”" + -+ “f”k_1 _fnk"
1 1 1
<5 + > 4= 5
Hence,

1 N
1fre = Fo,1* < Jaims» S0 that lim inf A |foy(®) — foj(@)2 dz < < o0.

922i—-2

b
This means that f [f (@) — fo(®@)|2dz < oo, so that f — f, € L*a, b]. Since

a
f= (f—fn:) +f,,’_, and each of these is in L?a, b], their sum, f, must be
in L¥a, b]. From (9.2.20) and the last inequality for the lim inf,

Jim [f = £, =o.

Now ||f = full < If — fy,| + Ifn; — full. The first term on the right can
be made arbitrarily small, as we have seen. The second can also be made
arbitrarily small in virtue of (9.2.14). Hence (9.2.15) follows.

To wind up the proof of the theorem, we must show that L¥a, b] is infinite
dimensional and contains a complete (or closed) sequence. The functions
1, z, 2%, . .., are in L¥a, b] and are independent. Moreover, they are com-
plete. This will be established in Theorem 11.2.1.

The proof of completeness is capable of wide generalization. In the first
b
place, completeness holds with the norm, |f||? = f |f@)|?dz, p >1.

a
Secondly, positive weighting functions may be used. For p = 2, each weight
leads to a corresponding Hilbert space.

111

The third Hilbert space to be studied here is comprised of certain single
valued analytic functions. It has a totally different flavor from the two
previous spaces for the reason that convergence in norm now implies uni-
form convergence. A certain part of the discussion that follows could have
been abridged by employing the Lebesgue integral, but it is of some interest
to see the theory built up with only the Riemann integral.

Let B designate a fixed region (open connected set) lying in the complex
z plane. It is clear (intuitively at least for simple regions, and we shall not
pursue the topological question furthert) that we can find a sequence of

closed bounded regions B,, B,, . .., with the following properties
(a) B, is contained in B, n=12,....
(b) B, is contained in the interior of B, ,,, n=12....

(c¢) The sequence B, exhausts B in the sense that any point of B (with
the exception of z = oo, if it lies in B) ultimately belongs to some
B, and hence to all subsequent B’s.

1 See Walsh, [1], p. 10.
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Figure 9.2.1.

If S in any closed bounded set in B then § is contained in B, for all n
sufficiently large. For suppose not. Then we shall be able to find a point
z, in S but not in By, 2, in § but not in B,, . . . . The points z,, 2,, . . . have a
limit point z* 5% co which is in 8. Now z* lies in some B,, by hypothesis (c)
and hence is interior to B,,,, by (b). A whole neighborhood of z* therefore
lies in B, ,,, and this means that an infinity of points of the sequence
2y, 29 ..., liein B, . Let ¢ (> m + 1) be such that z, € B,,,,. Thenz e B,.
This is a contradiction.

We shall deal with functions w(z) defined on B and possessing Riemann
integrals over B,, n =1, 2, ..., for all sequences B,.

If hm fjw(z) dx dy exists for all sequences B, and its value is inde-
pendent of the particular sequence B, assumed to satisfy (a)-(c), we shall
write

J]w(z) dedy = n]u:?o jfw(z) dz dy. (9.2.21)
B B,
If w(z) >0, and if for some sequence B, we set I, =fjw(z) dx dy, then

B, < B, ., implies that I, is nondecreasing. Hence, nlinclo I, exists (or is
+ c0). Suppose that '}m:o I, =1 < . Let D, be a second sequence satis-
fying (a)—(c). A fixed D, is contained in some B, for k sufficiently large.
Hence

fjw(z) dx dy Sffw(z) dedy <1. (9.2.22)
D, B,
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Thus nlmalo ffw(z) dedy=0L <1.

We may reverse the roles of the D’s and the B’s and obtain I < L.
Hence I = L, and this tells us that the limit is independent of the particular
selection of regions B,.

DerintTION 9.2.1. Let B be a region. The set of functions f(z) which
are single valued and analytic in B and for which

ﬂlf (2))*dzdy < oo. (9.2.23)
B

will be designated by L?(B).

Ex. 1. If B is bounded and f(z) remains analytic or even continuous in the
closure of B then f € L%B).

Lemma 9.2.3. If f(z) and g(z) € L¥B) then the linear combination af (z) +
bg(z) € L¥(B) for all complex constants a, b. L¥* B) 1s therefore a linear space.

Proof: First of all, the combination af(z) + bg(z) is single valued and
analytic in B. Now,

laf (2) + bg(aI? + laf (2) — bg(@)[* = 2Alal? £ (DI + [B]? Ig(2)13.
Hence |af (2) + bg(2)l* < 2((al? |f (2)[? + [b]? |g(=)[?). Therefore

J f laf (2) + by de dy < 2 Jal? f j @I de dy + 2 (b2 f 19(:)?] de dy.
B, B, B,

Allowing n — oo, the last two integrals possess finite limits by hypothesis.

Therefore ”anolo ff[af (2) + bg(2)|? dx dy exists and is <<oo.

Lemma 9.2.4. If f and g € L¥(B) then J fq dx dy exists.

Proof: The following is an algebraic identity:

7 =51+ g+ 51+ gl — = 1 = L g

This expresses the function f§ as a linear combination of nonnegative
functions.
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Integrating over B,

1 |
[[razay =3 [[ir+ g azay +.5 [[1r-+ istdeay
B’l B’l B’l
. |
-2 [ dedy 1 [[ig aeas
B, B

Since f and g are in L?(B), the previous lemma tells us that both f + g and
f + ig are in L% B). The limits of each of the four integrals on the right,
as n — oo exist independently of the sequence B, and are <<oco. This must
also be true of the integral on the left.

Lemma 9.2.5. For f, g € L*(B), write
£ 9 =f f§dxz dy. (9.2.24)
B

The expression (f,g) ts an inner product for L*B). With it, L*B) is an
inner product space and therefore a normed linear space wherein

12 = j \f12 d d. 9.2.25)
B

Proof: Since (f + g)h = fh + gh, (of)§ = a(f§), f§ = gf, the algebraic

properties required of an inner product are evident by integrating over B,

and passing to the limit. If (f, f) ff|f|2 dxdy =0, t;henJ‘J‘Ifl2 dxdy =

0 for all . Since |f|? is continuous over B,, it follows that f (z) =O0on B,
and hence throughout B.

LemMmA 9.2.6. Let C, designate the closed circle |z — zo| < r. Suppose that
f () is analytic in C,. If

fRY=@ay+ a,(z — z) + ay(z — 22 + . . ., (9.2.26)
then
,2n+2

f IfR)Pdzdy = m E la* (9.2.27)

Proof: The series (9.2.26) converges uniformly and absolutely in C,. For
this reason,

ﬂ;; |zdxdy_ﬂ( e — 70) )(Zam(z—zo) )dxdy

=mz oamdn.[{(z — 29)™(Z — Z)" dx dy.
= o4
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Set z — 2z, = pe®®. Then
2m r
J](z — 29)™Z — Zo)" dz dy =f dee“"‘"ﬁ"f ptntldp,
0 0

kd
r2(n+1)

If m # n, the inner integral vanishes. When m = n, we have =
n

pente
Thus, f If(2)2dedy = = z l@,|?
c

n + 1
7'2""'2

n+1

@ ]
THEOREM 9.2.7. Let f(2) = 2, a,(z — z)" Then 8 = = . |a,|? <
n=0 n=0

if and only if f € L¥(C,). If f € LX(C,) then S = | f]%.

Proof: Assume S < oo. Then, for some constant M,

ren+2

n+1

la,|? <M,n=0,1,....

Hence,
Ia ll/n < Mllzn(n + 1)1/2n
n ro.yl/n

If p designates the radius of convergence of Y a,(z — z,)", then
n=0
1 1
— =lim sup |,/ <-.
p n— o r

Thus, p = r and therefore f(2) is analytic in |z — 24| < r. Select an r’ with
0<r <r. If C,is |2 — 2| <7, then by Lemma 9.2.6,

ﬂlf (@) dedy == Z Ianl2

)2ﬂ+2

<8 < o0

Therefore }unr Jfl f(2)|2dx dy < oo and therefore f € L*(C,).

C,
Suppose, conversely, that f € L*C,). Then, for any ', 0 < r' <, f(2) is
analytic in the closed circle |z — zo| < 7’. Hence by the lemma,

ﬂlf(Z)Iz dedy = Z Ia,.l2

)2"+2

= 8(r') < o0.

Moreover, 7!1_21_ S(r') exists and equals || f||2 (< ). For any N,

w2| N

(T )2'l+2

< 8(r').

Allowing r' — r—,

m Zl nlz 1 < If1%
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This estimate is independent of N. Allowing N — oo, we obtain
S <|fI?< o0,
Since 8(r') < S, by allowing » — r~ we have || f |2 < 8 and therefore § =

112

Lemma 9.2.8. Let f(z) € L% B). Let r(z,) be the distance from a fixed point
2o € B to the boundary of B. Then,

e < I

(zo)

(9.2.28)

Proof: Let 0 < ' < r(zy). Then the circle C,.: |z — z,| < r’ is contained
in B. This implies thatffl f@)2dzdy < f |f(2)|2dz dy = | f||® But from

(9.2.27), ignoring all but the first term,
nlfeol = m o < [[IseN dsay < 1112
Cor

Then,

2
reor < LLE.

This is true for all 0 < 7' < r and hence (9.2.28) follows.

LemMma 9.2.9. L% B) is a complete inner product space.

Proof: Let {f,(z)} be a Cauchy sequence of functions in L*(B). Given an
g, we can find an N(¢) such that

[ fm(2) — fal@)l <& m,n = N(e). (9.2.29)

We wish to show the existence of an analytic function f(z) which is in L* B)
and for which ’}m}o [[f(2) — f.(2)]| = 0. Select a fixed B,. On B, we have from

the previous Lemma,

Ifn =1l

[fm(2) = [ < ———— ) (9.2.30)
If p(> 0) designates the minimum distance from B, to the boundary of B,

then we have uniformly in B,,

[fm() — fol2)] < "f"'" pf ol (9.2.31)

In view of (9.2.31) and (9.2.29), {f,.(2)} is a Cauchy sequence of functions
with respect to the norm |¢| = max |$(z)|. (Cf. Ex. 8, 7.2.) The sequence
'k

therefore converges uniformly in B, to a function f(z) which must be
analytic in the interior of B,. Since B, is arbitrary, f(z) must be analytic
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in the whole of B. Now, for n and k fixed, llm ffl fm(2) — fa(2)|? dx dy =
f | f(z) — f.(2)|* dx dy. This is true because of the uniform convergence of

f tofonB For m, n > N(¢) we have for all %,

j j nle) — fu) ddy < f nle) — fule)]? der dy < .
‘Be B

Allowing m — oo,

[Jirer—serazay < e
By
This statement is independent of k; hence
Jim, [ [1r0 - sy <o
By

This implies that f(z) — f,(z) is in L¥ B). Since f,(2) is in L* B), their sum
f(z) is in L*B). Sincefflf(z) — [a(2)|2dxdy < €% for n > N(g), we have

convergence in norm to f(z).

Having established that L% B) is a complete inner product space, it re-
mains only to show that L?(B) is infinite dimensional, that it contains a
closed sequence of elements, and we will have proved that L?(B) is a Hilbert
space. As with L?[a, b], we could refer to Theorem 11.4.8 telling us that
the complex powers are closed in L% B) for certain types of region B. How-
ever, we shall prove a stronger result by means of the Fréchet-Riesz repre-
sentation theorem whose proof will be given shortly.

TuroreM 9.2.10. L% B) contains a complete sequence of functions. If B is
bounded, or can be mapped 1-1 conformally onto a bounded region, then
L3(B) ts a Hilbert space.

Proof: Let t be a fixed point of B. As is shown in 9.3, Ex. 4, L, (f) =

f™@), n=0,1,2,..., are bounded linear functionals over L2(B). By
Theorem 9.3.3, there exists, for each n, an element g¢,(z) € L%(B) such that

L,(f)=(f9.) =f"(@®), feL¥B). (9.2.32)
If now (f,9,) =0, n=0,1,..., then f(™() =0, n = 0,1, ..., and this

implies that f = 0. Therefore g, is a complete sequence of functions.

If B is bounded, then 1, 2, 22, ..., are independent and are all in L2(B).
Hence L% B) is infinite dimensional. If B can be mapped 1-1 conformally
onto a bounded region D, then we can find an infinite sequence of



214 HILBERT SPACE Ch. IX
independent functions in L?(B) by a change of variable. For, let D lie in the w
plane, w = u + v, and suppose that

w = M(2), z=ux + 1y € B, (9.2.33)

maps B 1-1 conformally onto D. Let D, be a sequence for D satisfying
(a)—(c). Let B, be the images of D, under the inverse map of (9.2.33). The
B, will be a sequence for B satisfying (a)—(c), If f (w) € L* D), we have

o o
f f ) du do = f f D" Y| g, 023
o, %, o o

oxr Oy

But by the Cauchy-Riemann equations,
ou Ov Ou ov

o= oy oy o=

so that
ou Ou
a a_y ouy ou\ |ou ou |2
_ (P, (Owy_|ow  BwfP_ o o,
w o QJ+@)ax@@ M)
oz By

Thus, the rule for the transformation of our double integral under the
conformal map is

[[irreauas = [[irotenerepaa. g2
D, B,
The functions f(w) =1, w, w? ..., are clearly in L% D). It follows from

(9.2.35), by allowing n — oo, that their “images,”
(M@)"M'(z) n=0,1,...,

will be an infinite independent set of functions in L?(B).

9.3 Bounded Linear Functionals in Normed Linear Spaces and in
Hilbert Spaces. We may distinguish two types of linear functionals de-
fined on normed linear spaces: the bounded and the unbounded.

DEerFINtTION 9.3.1. Let L be a linear functional defined over the elements
of a normed linear space X. L is said to be bounded if there exists a constant
M such that

| L(x)| < M ||=||, for all z € X. (9.3.1)

If no such constant exists, the functional is called unbounded.
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b
Ex. 1. Let X =0Ola,b), [f] = max |f()] Let L(f) =j w(w)f (z) dz for
a fixed w(z) € C[a, b). Then, a<z<b s

b b
| L(f)| SJ; |wix)| atgg)ﬁ(b |f(@)] de < l|f||fa |w(z)| daz.

b
Inequality (9.3.1) is satisfied with M =f |w(z)| dz and L is bounded.
a

Ex. 2. Let
b
X =Cla, 8], | fII? =f (f (x))* d.

Let L(f) = f(x,) where a < x4 <b. L is unbounded. For we may construct a
sequence of functions f,(z),n =1, 2, ..., with f,(z,) = 1 and

b
f (fa(x))2dx = ¢,2 — 0.
a

This can be done in many ways. Now if L were bounded we should have
1= |L(fn)| < Me,,
and this is impossible.

Ex. 3. Let X be an inner product space and z, be a fixed element. Then
L(x) = (x, x,) is a linear functional defined on X. It is bounded, for

|L()] = (@ zo)| < ll| l|oll-

Ex. 4. Let n be a fixed integer > 0. If ¢ is a fixed point in a region B, then
the functional

L(f) = f™(e)
is bounded over L%(B).
Proof : Since ¢ is an interior point, we can find a circle C,: |z - t| < r contained
in B. Since

0
z —

@) =3 —
n=0 .

(z —o"

in C,, then by (9.2.27),

ﬂ% OO s _ If @2 dzdy < ||| @2 dz dy.
AZon(n + 1) =
C, B
For a particular n,

,,.lf(n)(t)lz

S ﬂlf @2 dedy = |12,
B

Therefore

v
L] = 11e] === =



216 HILBERT SPACE Ch. IX

Some authors use the term ‘linear functional’’ to mean a bounded linear
functional. But in interpolation theory, the same formal functional may be
bounded or unbounded depending upon what space it is considered in, and
it is therefore better to stress the fact of boundedness whenever it occurs.

DEeFINITION 9.3.2. Let F be a functional defined over a normed linear
space. F is said to be continuous if

z, —x implies F(x,) — F(z).

THEOREM 9.3.1. A linear functional L defined on a normed linear space X
s bounded if and only if it is continuous.

Proof: Let L be bounded. Then |L(z)] < M |x| for all x € X. If now
|z, — z|| — O, then |L(z,) — L(z)| = |L(z, — x)| < M |z, — z|. Therefore
|L(z,) — L(@)| —O0.

Conversely, suppose that L is continuous and unbounded. Then we can

find a sequence of elements z, such that |L(z,)] > = |z,|. Set y, = lT” i
1 L Tn

Then |ly,|| = - . Hence ||y, — 0| = 0. Now |L(y,)| = l?x )“ > 1. Since L
n ﬂ

is continuous, L(y,) — L(0) = 0, and this is a contradiction.

A norm may be associated with each bounded linear functional. Let I
designate the set of values M for which condition (9.3.1) holds. Let M’ be
the inf of the set I. We can find M,, M,, ..., I such that M, — M'. We
have |L(z)] < M, |z| for all z and for n =1,2,.... Keep z fixed and
allow n — oo. Then, |L(z)| < M’ ||z||. This is true for all x. Therefore (9.3.1)
holds with M = M’, and the set I has a minimum.

DerFiniTION 9.3.3. Let L be a bounded linear functional defined on a
normed linear space X. Then | L| is defined as the minimum value M for
which (9.3.1) holds. We have, obviously,

[L(z)] < | LI} fl, reX, (9.3.2)
and for every ¢ > 0, we can find an zy € X for which
| L(zo)| > (I LIl — &) [loll- (9.3.3)
An alternate formula for || L| is given by

IL(@)]
L= 3.
L1 b SR (9.3.4)

L(z
For, |L(z)| < |L|| ||=| so that I———)I < || L]] and hence supI @)

lll [l

< |IL].
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On the other hand, given an ¢ > 0 there is an z, with (9.3.3) holding. There-
IL(-T)I | ()|

H i = Tzal > || L|| — &. These two inequalities imply (9.3.4).
Ty

fore su

n

Ex. 5. X =0[a,b), |f]| = Jax, |f(@)]. Let L(f) Eakf(xk) where a <

IA

@ < b. Then, |L(f)| E|ak| | f(xk)| < |l E|ak| This implies that [L||

=
-

Z|ak| On the other hand, construct an f(x) € C[a, b] such that |f(z)| <

Il

a <z <b, and f(z;) =sgnay, k =1,2,...,n. Then, | f| =1 and |L(f)|

n n n
> lax| < I1Z|l | fll. This implies that | L] > 3 |a|. Therefore | L] = . |a;|.
E=1 E=1 F=1

b
Ex. 6. X =C[a,b], | fl| = max |f(z)|. Let L(f) =f [ (x)w(x) de where
a<z<b a

w(x) is a fixed function of C[a, b]. A similar argument shows that
b
1L =f |w(z)| da.
a

THEOREM 9.3.2. The set of all bounded linear functionals defined over a
normed linear space X is a linear space. Introducing the quantity |L| by
(9.3.4) makes this linear space into a normed linear space.

Proof: Let L, and L, be bounded linear functionals over X. Then, for any
ze X,
[(@Ly + apLo)(@)] = |ayLy(2) + apLy(2)| < lag] [ Lyl |2l + laql | Le] |2
= (la)| [ Ly]| + lag| | Lel)) li]l-

This implies that a,L, + a,L, is a bounded linear functional.
Let L 3£ 0. Then there is a y % 0 such that L(y) # 0. Hence |L| =

Lz Ly
l " " ) > ﬁ > 0. Therefore | L|| = 0 if and only if L = 0. Secondly,
x Yy
jaZ(z) \L(2) .
laz = sup 2N _ jo) sup N _ o) 1) Finaty,
E 2P el
L)+ L@l (L@, |L)
12, + Lyl = sup 2@+ Lo M Wl ),
P el P el TR el

The postulates for a norm are therefore satisfied.

DErFINITION 9.3.4. The normed linear space of bounded linear functionals
defined on a given normed linear space X by means of (9.3.4) is known as
the normed conjugate space of X and is designated by X*.
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In a complete inner product space, bounded linear functionals possess a
particularly simple representation.

THEOREM 9.3.3 (Fréchet-Riesz). If L is a bounded linear functional over a
complete inner product space X, then there exists a unique element xy,e X

such that
L(x) = (z, z,), zeX. (9.3.5)

Proof: Let M designate the set of elements x such that L(z) = 0. M is
clearly a linear space. Moreover, it is closed. For suppose that x, € M and
[z, — z|| — 0. Since L is bounded,

Lz — z,)| < |L] |z — z,]| 0.

Therefore L(x) — L(z,) — 0. But L(z,) = 0. Hence L(z) = 0 and z € M.
Now there are two possibilities. (a) M is the whole space. In this case

L = 0 and we may take z, = 0. (b) M is not the whole space. In this case,

by Theorem 8.10.2, we can find an element y, % 0 which is 1L M. If we set

Ty = ———
lyoll2

then we can show that

(z, 2o) = (x, M) = L(z), zeX. (9.3.7)
(Yo Yo)

Now (9.3.7) is equivalent to
L()(y0, yo) = L(yo)(=, Yo)- (9.3.8)

Consider the elements L(z)y, — L(yo)z, * € X. These elements are in M,
for L(L(x)y, — L(yo)x) = L(x)L(y,) — L(ye)L(x) = 0. Hence y, is L to these
elements. This means that (L(x)y, — L(yo)x, yo) = O and this is precisely
(9.3.8).

The z, is unique, for if

L(z) = (, zy) = (x, 2,), zeX,

then (x, 29 — ;) =0, rze X.

If we select * = 2y — z,, this implies that [z, — 2,/|2 =0 and hence
xy = x,.

DErFiNviTION 9.3.5. The element z, is known as the representer of the
linear functional L.

CoroLLARY 9.3.4. Let L be a bounded linear functional over a complete
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tnner product space. Let x, be its representer. Then,

1Ll = llzoll 9.3.9)
and
[L(zg)] = L] |2oll- (9.3.10)

Proof: L(z) = (x, xo). Hence |L(z)| < |(z, xo)] < ||zol [lz]]. This implies
L L
that | L|| < . But | L] = s2p| @I L@l _ 1@ ) There

lel = Teol el
fore L] > la| and hence |L| = [z]. Finally, |L(@o) = (zo, zo) =

llzol® = LY f1oll-

Ex. 7. In L%a,b], every bounded linear functional has the form

b
L(f) =f S (=)g(x) dx

with g(x) € L¥a, b]. In L2(B) such a functional has the form L(f) = J‘ff(z)g—]_(z_) dx dy
b
where g(z) € L%(B). Moreover, || L|? =f (g(x))? dx orf l9(2)|? dz dy.
a
B

The representer of a functional has a simple formula in terms of a com-
plete orthonormal sequence.

THEOREM 9.3.5. Let H be a Hilbert space and x.*, z,*, . . . , be a complete
orthonormal sequence of elements. If L is a bounded linear functional on H
then L(x) = (z, y) where y has the Fourier expression

@
Yy~ Y L(z*)x*. (9.3.11)
Moreover © k=1
L(z) = 3 (2, 7;*) L{zy*), reH (9.3.12)
and k=1 w
IZ|12 =kZIIL(x,,*)l‘-'. (9.3.13)

Proof: Let y be the representer of L. Then

e
&

Yy~ Z (y, z*)m* = Z (¥, y)m* =
k=1 k=1
By (8.9.8),
L(z) = (z,9) = E (@ M) (@t y) = zl"" %) L(*).

Finally, | L||* = ||l By (8.9.7),

Iyl2 = 3, )2 = 3 | Lia*)[2.
k=1 k=1
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L
LEMMA 9.3.6 (Abel-Dini). Let w, > 0 and let > w, = co. Then if W, =

wytwy et w, w1
L (9.3.14)
n=1 W” o ’ e
while
S Mo (9.3.15)
n=1 an e
Proof: W, increases to + co.
Wni1 Wnio Woip  Wapr+ "+ Wyyy
=+t =+ "+ >
Wn+1 Wn+2 Wn+p Wﬂ+9
_Wn+p_Wn=l_ W,
Wn+p Wn+p

For every fixed =, this last fraction approaches 1. Hence, from some p on,
the partial sums exceed, say, . The tails of a convergent series cannot all
exceed a fixed amount, and hence (9.3.14) diverges. We have

y 1 1 1 1
z ( B _) W, Wy
n=2 Wn—l Wn Wl WN
Therefore the series

2 < n _ Wn—l
"Zz (Wn—l Wn) ”22 Wn IW

is convergent. Thus,

and a fortiori

1W2

Lemma 9.3.7 (Landau). Let {a,} be a fized sequence of complex numbers

and suppose that Y a,b, converges for all sequences {b,} for which
n=1

e

2 1b,[* < co.
n=1

Then,
> la,|? < oo.
n=1
° —
Proof: Suppose that E |a,|2 = . Set b, = a" . Then by

lay[2 + - - - + la,[?
(93 15) with w, = |a,|2, Z|b |2 < 0o0. On the other hand, by (9.3.14),
E a,b, = oo, and this contra,dlcts the hypothesis.

n=1
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TueorEM 9.3.8. Let H be a Hilbert space and {z,*} a complete ortho-
normal sequence. Let L be a linear functional defined on H and suppose that
for all x € H we have

L(x) = z z, 2, *) L(x,*). (9-3.16)

Then L is bounded on H and
[IL)? =kzl|L(xk*)|2. (9.3.17)
Proof: By Theorems 8.9.1(C) and 8.9.2, the set of all sequences b, =
(x, ,*), x € H, is identical to the set of all sequences {b,} for which
e
2 [byl? < co.
k=1
By Lemma 9.3.7,
0
2 [LzM)E < oo
k=1

Applying the Schwarz inequality to (9.3.16),
L < 31w 2 3 1L = 1ot 3 L
L is therefore bounded, and (9.3.17) follows from (9.3.13).
For examples illustrating this theorem, see Corollary 12.5.5.

THEOREM 9.3.9. Let H be a Hilbert space . Let H* be its normed conjugate
space. Then H* can be made into a Hilbert space in such a way that H and
H* are essentially the same. More precisely, we can find a one to one corre-
spondence (<) between H and H* such that

(a) z, <> L,, x, <> L, implies a,x, + a,x, <> a,L, + a,L,
(b) x <> L implies ||z|| = | L].
(c) An inner product can be introduced in H* by writing
(Ly, Ly) = (2,, 2,) where z, <> Ly, x5 <> L,. (9.3.18)
(d) The norm arising from this inner product coincides
with the original norm in H* (i.e L] = l @ )I)
Proof: Let {x,*} be a complete orthonormal system in H. Let L € H*.
By Theorem 9.3.3, we have L(y) = (y, w) for a unique w € H and for all
y € H. The quantities (w, z;*) are the Fourier coefficients of w and hence,

flw]|? = Z| (w, z *)|2< co. The quantities (z,*, w) = (w, x;*) satisfy the
same mequa,hty Z|(x ,w)|?< o and hence by Theorems 8.9.2 and

8.9.1(F), they are the Fourier coefficients of a unique element € H which
will be designated by @. Note that |@] = |w|.
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Make the correspondence L «— @. This correspondence is one to one be-
tween the whole of H and the whole of H*. For, each L € H* determines a
w € H and each w determines a @. If L, — w, and L, — w, then L, 5~ L,
implies w, 5 w,. For we can find an « € H such that L,(x) 7 Ly(x). There-
fore 0 3£ Ly(x) — Ly(x) = (%, wy) — (%, wy). Hence w; 7 w,. Now w; 7 w,.
For otherwise, (w;, 2;*) = (w,, 2,*), ¢ = 1,2, . ... Then (w,, 2,*) = (w,, z,*),
t=1,2,..., implying w, = w,.

Conversely, let v € H. Consider ¢ as above and define L by means of
L(x) = (x, 7). By the above, the element % corresponds to L. But ¥ = v.
Thus v corresponds to some L in H*.

(a) Let z; <> Ly, 2y <> L,. Then,

Ll(x) = (x’ 17_1), Lz(x) = (x’ 5;)

so that
(@, Ly + apLo)(@) = a;Ly(%) + aply(r) = (2, 8%, + A7,).
Now 0,2, + ayT, = G, T, + A,%s.
Hence (@, Ly + a,Ly)(x) = (2, a2, + ay7,)
and therefore a Ly + a,Ly <> a,x, + ayx,.

(b) If we L then L(z) = (x, w). Hence by (9.3.9), |L|| = ||@| = |lw].
(c¢) The inner product properties of (L,, L,) follow from those in H:

(Ly + Ly, Ls) = (2, + 2, T5) = (2, T5) + (g, T5) = (L, Lg) + (Ly, Ly).
(Ly, Lp) = (%1, @) = (2, 1) = (Lo, Ly).
(aLy, Ly) = (outy, Zp) = o(y, Zp) = at(Ly, Ly).
(Ly, Ly) = (2, 2,) = ||2,]|2 >0 and =0 if and only if z, =0,
hence if and only if L, = 0.
() (L, L)} = (z, )} = ||z = |Z|. Since L(y) = (3, %), y € H, | L| = |Z|.
Hence | L|| = (L, L)}
Thus, H* is an inner product space. To show completeness we need to
prove that |L,, — L,|| <&, m,n > N, implies the existence of an L with

\L —L,}| —-0. Let L,«> =z, Then |z, —z,|=|L,— L,|| <& for
m,n > N, Thus, {z,} is a Cauchy sequence in H. Hence there is an
z: |l —z,|| >0.If x <> L then |L — L,| = ||+ — z,|| — 0.

Finally, there is a complete orthonormal sequence in H*. For if {,*} is
complete and orthonormal in H and z,*«> L * then {L *} is complete and
orthonormal in H*. H* is therefore a Hilbert space.

In virtue of (9.3.18), the spaces H and H* are known as isomorphic and
isometric.

DEerFiniTION 9.3.6. Let X be an inner product space. Y is an arbitrary
subset of X. The set of elements z that are orthogonal to all elements of ¥
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is known as the orthogonal complement of Y and is designated by YL. In
symbols: (z,y) =0 forallze YL andallye Y.

Ex. 8. In R,, the orthogonal complement of the x axis is the y axis.
Ex. 9. Orthogonal complements are closed sets.
The following decomposition theorem holds.

THEOREM 9.3.10. Let X be a complete inner product space. Let M be a
closed linear subspace and M= its orthogonal complement. Then any x € X
may be written uniquely as

x=m 4+ mt (9.3.19)
where me M and m+e ML,

Proof: We show first that M is complete. If {m,} is a Cauchy sequence of
elements of M, then by the completeness of X there is an element x € X
such that kllr{.xo & — m,| = 0. But, by the closure of M, x must be in M.

Hence every Cauchy sequence of elements of M has a limit in M.

Let x € X be a fixed element and consider (m, x) as m varies over M. By
Theorem 9.3.3, there is an m, € M such that (m, m,) = (m, z) for all m € M.
Write

x =my; + (x — m,y). (9.3.20)

Nowifm' e M, (x — my, m') = (x, m') — (m;, m’) = 0. Hencex — m; e M-,
The decomposition is unique. For suppose m, + m;+ = m, + m,L1. Then
my — my = my- — m; L. But m; — m, € M and my~ — m;+ € M. Now the
only element simultaneously in M and M+ is 0 and hence m; = m,, m; - =
myt.
DerFiniTiOoN 9.3.7. The unique element m determined from x is called
the projection of x on M : m = proj(z).

Lemma 9.3.11. If X s a separable metric space and S is an arbitrary
subset of X, S is also separable.

Proof: Let {z,} be a sequence of elements that is dense in X. The set of
points x of X satisfying d(z, z,) << r is a ball of radius r centered at z,.
Designate it by U(x,, r) and consider all the balls U(x,, r) where r runs
through all the positive rational numbers. These form a denumerable set
and hence can be listed as a sequence Uy, U,, . . ..

If = is an arbitrary element of X, and if V(x, p) is any ball with center at
z, then we can find an m such that x € U,, = V(x, p). For select an x; with
d(z, z;) < p/2 and a rational p, with d(z, x;) < p, < p/2. If z€ U(x;, py),
then d(z, z;) < p;. But d(z, 2) < d(z, z;) 4 d(z;, ) < p/2 + p/2 = p and
hence z € V(z, p).
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Now consider the members of the sequence U,, U,, . <., that have points
in common with S. These are also denumerable, and hence can be listed in
a sequence. Call them 7'y, T, . . ..

For each & select a y, € T, N S. The sequence {y,} is dense in S. For let
ze S and & > 0 be given. As we have seen, we can find a U,, such that
zeU, and U, < V(z, ¢). U, contains a point of § and is therefore a T,.
T, contains y,, and hence d(y,, z) < e.

TueorEM 9.3.12. Let H be a Hilbert space and {x,*} be an orthonormal
sequence that is not complete. Then we can find a sequence of elements {y,*}
(finite or infinite) such that {x,*} and {y,*} together form a complete ortho-
normal set (cf. Lemma 9.1.1).

Proof: Designate by M the closed linear subspace generated by z,*,
2%, .. .. That is, M consists of all finite linear combinations of z,* plus
the limits of sequences of such combinations. ML is the orthogonal com-
plement of M. Since H is separable (cf. 9.1), Lemma 9.3.11 tells us that M+
is also separable. Let {z,} be a sequence of elements of ML that is dense in
ML, Go through the sequence z,, 2y, . . . , and strike out any element that is
dependent on its predecessors. Call the independent sequence that remains
{ys}- Orthonormalize this sequence to yield {y,*}.

If ze M+, and if ¢ > 0 is given, we can find a linear combination z ay*

k=1
such that ||z — E ay.* || < e For, we can find a k such that |2 — z,|| < e.
k=1
Now z, is either a y; or a linear combination of y,, y,, . . . , and hence a linear

combination of y,*, y,*, .. ..

Since y,* € ML, (z;*, y,*) = 0 and hence the combined set {z;*}, {y,*} is

orthonormal. This combined set is closed in H. For let x € H. By Theorem

9.3.10 we can write x = m + m'. Now by the definition of M, for appro-

m— i by, *
k=1

priate constants b, < ¢/2. Furthermore, as we have just

g
seen, for appropriate constants b,’, ” mt — > b/y* | < &/2. Hence
=1

) q
T — Z byy* — Z by yi*
k=1 k=1

This completes the proof.

THEOREM 9.3.13. Let H and K be two Hilbert spaces (either both real or
both complex). Then H and K are isomorphic and isometric. That is, we can
find a one to one mapping T of H onto K such that for all constants «, §

T(xx, + fzy) = aT(2)) + BT(%), =z, %€ H (9.3.21)
and such that
(T(zy), T(3)) = (%1, ). (9.3.22)
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Proof: It suffices to take K as £2 (real or complex as the case may be).
For since isomorphisms and isometries are obviously transitive, the general
case can be proved by going through £2 as an intermediate space.

Let xz,*, z,*, ..., be a complete orthonormal sequence in H. For any
x € H, the sequence of constants a, = (z,z,*), k=1,2,..., is in £2 by
(8.9.7). Define T by T(x) = {a,}. Conversely, by Theorem 8.9.2, to any
sequence {a,} € £2, there is a unique element x € H such that T'(x) = {a,}.

The linearity of T is obvious. Property (9.3.22) follows from (8.9.8).

9.4 Linear Varieties and Hyperplanes; Interpolation and Approx-
imation in Hilbert Space

DEeFiniTioN 9.4.1. Let z,,..., z, be n independent elements of a
linear space. The set of all linear combinations

n
Ty + > az; (9.4.1)
i=1
is known as a linear variety of dimension n.

DEeriniTION 9.4.2. Let z;, 2,,...,2, be n independent elements of an
inner product space and let ¢y, ¢y, . . ., ¢, be n given constants. The set of
elements y that simultaneously satisfy the n equations

(y,z) =c, 1=1,2,...,n, (9.4.2)
is known as a hyperplane of co-dimension n.

Ex. 1. Linear varieties and hyperplanes are convex sets.

If z,,...,z, are orthonormalized to produce z.*,...,z,* then by
Corollary 8.3.5, we can write the variety in the form

n
Ty + X azx* (9.4.3)
i=1
and the hyperplane in the form
(y,z,*) =d,, 1=12,...,n \9.4.4)

In an inner product space of finite dimension n, the concepts of linear variety
and hyperplane are equivalent. More precisely, a linear variety of dimension p,
1 < p < n, is a hyperplane of co-dimension n — p and vice versa. For let

?
y =z + D ax* be a variety V of dimension p. Then (y, z,*) = (%), ;*)
=1

1=

fork=p+1,p+4+2,...,nand hence y lies on a hyperplane of co-dimen-

sion n — p. Conversely, let y satisfy (y, ,*) = (zg, 2,*), k=p + 1,...,n.
n

Since any element z has the expansion z = > (z, 2,*)z,*, we have y =
£

P n ? =1
Z (y, 7 *)m* + E (%o, ¥}, * = 29 + z [(y, 2x*) — (2o, 7*)]z,*. Hence y
k=1 k=p+1 k=1
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lies on V. In the same way we can show that every hyperplane of co-dimen-
sion p is a linear variety of dimension n — p.

We begin with the problem of finite interpolation. This is essentially an
instance of Theorem 2.2.2.

THEOREM 9.4.1. Let X be an inner product space. Let x,, ..., x, be n
independent elements. Then given any set of n constants c,, .. .,c,, we can
find an element y such that

(¥, 2;) =c;, 1=1,2,...,n. (9.4.5)

Proof: We can find a solution among the linear combinations of the ;.
Set y = a,x, + -+ - + a,z,. Then (9.4.5) becomes

ay (@, ;) + 00+ ay(z,, x) = ¢y t=1,2,...,n  (94.6)

The system (9.4.6) has determinant g(z,, . .., z,) 7 0 in view of the inde-
pendence of the x,. Hence there is a solution for any assignment of ¢’s.

When we consider an interpolation problem with infinitely many con-
ditions, the situation is not so simple.

Ex. 2. In thesequential Hilbert space ¢2, let z; = (1,0,0,...), z, = (0, 1,0,
0,...),..., and consider the problem

Wz) =1, i=12,.... (9.4.7)

These conditions obviously require a solution of the form y = (1, 1, 1,...). But

this element is not in the Hilbert space.

THEOREM 9.4.2. Let {x,} be an infinile sequence of independent elements
of a Hilbert space H and let constants {c,} be given. A necessary and sufficient
condition that there exist an element y € H such that

(y, ;) = c; 1=1,2,..., (9.4.8)
is that ® ‘
2 lal? < oo (9.4.9)
k=1
where a, = 51/\/9(5'31)»
(1, 27) (%2, 21) (T )
_ 1
a, =
Vg(xl’ vy xn—l)g(xl’ v ’xn) (xl, .’t”_l) (xz, xn_l) e (xnv xn—l)
c-1 é2 én

n>1. (9.4.10)
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If there is a solution, it is unique if and only if {x;} is complete (or closed)
i H.

Proof: Orthonormalize the z, using Theorem 8.3.3 and obtain z,*. In
view of (8.7.22), the conditions (9.4.8) imply

Y, 2,*) = a; i=1,2,.... (9.4.11)

Conversely, it is easily shown through (8.3.7), that (9.4.11) implies (9.4.8).
Now if there is a y € H satisfying (9.4.11), then by Corollary 8.5.4, (9.4.9)
follows. Conversely, if (9.4.9) holds, then by Theorem 8.9.2, there is an
element y for which (9.4.11) and hence (9.4.8) holds.

Suppose that (y,, z,) = ¢; = (Y5, %;). Then (y; — y,, ) =0,0=1,2,....
If {x;} is complete then y, — y, = 0 and y; = y,. If {z,} is incomplete, then
we can find an element z % 0 such that (z,z;) =0, 4 =1,2,.... Hence,
(y, ;) = ¢; = (y + z, ;) so that the solution to (9.4.8) is not unique.

+1
Ex. 3. Under what circumstances can we have flx)x®dx =c,, n =0,
-1
1,..., for f€ L% —1, 1]? This is the moment problem for the space L% —1, 1].
Let p,*(x) = any + @, + * -+ + a,,2" be the Legendre polynomials. Then the
moment conditions above are totally equivalent to
+1
f@)p,*(x) dx = apece + An1Cy + 0+ AppCye
-1
Hence, the necessary and sufficient condition is that
(=]
E |anoco +aye + 0+ armcnlz < .
n=0
Since the powers are complete in L2[ —1, 1] (Theorem 11.2.1), there can be at
most one solution.

Let X be an inner product space and z,, ..., 2, be n independent ele-
ments. Let S be the linear subspace spanned by the x’s. That is, S consists
of all linear combinations y = a,x, + a,z, + - - + a,x,, or alternatively,
of all combinations y = ax* + -+ + a,z,* where the x,* are the z;
orthonormalized (in any way). Take an element z € X which is not per-
pendicular to all the z;*, and let V consist of all the elements y € S for
which (y,2) = 1. V is a linear variety of dimension < n — 1. For suppose
that (z,*,2) £ 0. If y = ay2,* + + - - + a,2,* and (y, z) = 1, then

al(xl*’ 2) + e + a’n(xn*’ Z) =1
and so
(x,*, 2)
(xl*) Z)

z* ( (2%, 2)
(=

(171*, Z) (xl*v 2)

z* + xn*) .
(9.4.12)

y= x1*+x2*)+--'+a"(—
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(z;*, 2)
(xl*’ Z)
2, ..., n are easily seen to be independent. Hence (9.4.12) is of form (9.4.1)
and the elements of V lie on the variety (9.4.12). Conversely, all the ele-
ments of this variety are in S and satisfy (y, z) = 1. Hence they belong to V.

It is desired to find the element of V closest to the origin. That is, select
y € V such that ||y|| = minimum.

Since z,*, ..., z,* are independent, the elements — ¥4z 1=

THEOREM 9.4.3. The unique solution to the above problem is given by
n n
=2 (z xM)e*] 3 |(z 2¥)2. (9.4.13)
i=1 i=1
The minimal distance is given by

n
lylz =1/ le(z, z*)|2. (9.4.14)

i=

n
Proof: Set X |(z, x*)|2 = s # 0, and write a; = (z’ ) -+ b, where the
=1

b, are now to be determined. Now, 1 = (y,2) =1 + Zb (z;*, 2), so that

zb(x,, z) = 0. But

o= 31 = 3 (B0 10 (522 1 5)

s l n 1 n — n
=—2 - Z {; x*, 2) 4 - z bi(z, x*) + E |b¢|2
S 8 =1 81=1 i=1
1 n
=- E [6;]2.
S i=1

The selection leading to the minimum [y||? is uniquely given by b, =0
1

and the minimum value is - .
s

We turn to a second problem of approximation under side conditions.

Let x;, x,,...,z, be n independent elements and d;,...,d, be n given
constants.
Find
min [lz — y|| (9.4.15)
subject to
(y,z)=d, 1=12,...,n (9.4.16)

Geometrically speaking, find the shortest distance from the element z to
the hyperplane (9.4.16).
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If we set w = x — y, our problem becomes that of finding

min ||| (9.4.17)
subject to
wx)=c,= (@ a)—d, i=12...,n (9.4.18)
If the z’s are orthonormalized (by Theorem 8.3.3) yielding x,*, z,*, . . . , =, *,
then (9.4.18) is totally equivalent to
(w, z.*) = a; (9.4.19)

where a, are given by (9.4.10).

THEOREM 9.4.4. Let H be a Hilbert space. Then

n
w=> az* (9.4.20)
i=1
solves the problem (9.4.17), (9.4.18). Moreover,
n
min [[w|? = |a,|% (9.4.21)
w i=1

Proof: The z* may be augmented yielding a complete orthonormal
sequence for H (Lemma 9.1.1). Then, for any element w € H,

Il = 3 6o, 2%

Any element w that satisfies (9.4.19) must therefore satisfy

||wu2—2|a 1+ Z |(w, z*)|2.

i=n+1
This expression is minimized if (w, z*) =0fori =n + 1,2 4+ 2,..., and
we are led to (9.4.20).

CoROLLARY 9.4.5. In a Hilbert space let x, ;é 0. The problem of finding

min |lw| subject to (w, x,) = d, is solved by w = z,. Furthermore,

Jl2 2 1II2
CA
min [lw| =-—
llzy
COROLLARY 9.4.6. The equation of any hyperplane of co-dimension 1 can
be written in the ‘‘normal” form
(y,a*)=4d (9.4.22)
where x* i3 an appropriate element of unit length and d is the distance from
the origin to the hyperplane.

DErintTION 9.4.3. The portion of a Hilbert space common to the hyper-
plane P:(x,z;)=c¢; t+ =1,2,...,n and to the ball ||| <r is called a
hypercircle, C,.
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As before, orthonormalize z;, . . ., z, by the Gram-Schmidt process, and
complete the sequence of orthonormal elements yielding x,*, z,*, . ... The
conditions (z, z;) = c, are equivalent to (z, z,*) =a,,¢ = 1,2, ..., n, where
the a, are given by (9.4.10). Hence, any element x of the hyperpla,ne can be
written as x —Eakxk* + 2 (2, @, %), * —w+ z (x, z,*)x,*. The last

k=1

k=n+1 k=n+1 ©

equality follows from (9.4.20). Now, |z||? = ||w||2+ 2 |(x, z,*)|2 If

zeC,, 12 > |z||* > |w||% The element w is determined solely by z; and ¢,,
i1 =1,2,...,n, and is independent of r. If r < ||w||, the hypercircle con-
tains no elements.

TuEOREM 9.4.7 (The Hypercircle Inequality). Let w be the element of
the hyperplane P nearest to the origin. Then, for any x € C, and any bounded
linear functional L we have

|L(z) — Lw)[* < (r* — Jlw]?) 3 IIL(xk*)I2~ (9.4.23)

=n+
If h is the representer of L, this may be written as
[L(z) — Lw)? < (r* — wl?) (1A]* — z [ Lz, *)[?). (9.4.24)

Moreover, if |w| < r, there is an element in C, for which this inequality
becomes an equality.

Y
Proof: From the above remarks, + — w = > (x,x,*)x,* and hence by
@ k=n+1
(9.3.12), L(x — w) = > (x, %*)L(z,*). By the Schwarz inequality and
k=n+1 )
(8.9.7), |L(x — w)|® < |lx — w||2 D [L(x*)[% Since x — w L w,
k=n+1
le — wl® = llz]* — Jwl|® <r* — Jw|?

@

L

Combmmg, we obtain (9.4.23). By (9.3.5), > |L(z*)|2= > @ b)) =
k=n+1 k=n+

E |(h, x,*)|2 — z [(z*, h)|2. Again by (8.9.7) and (9.3.5), this is ||A|2 —

z | L(z,*)|2, giving us (9.4.24).

k=1

Assume now that ||w| < r. We shall exhibit an element in C, for which
L

the inequality (9.4.23) becomes an equality. Let z = > L(z*)x*. If
k=n+1
2=0, L(x*) =0, k =n+1,.... In this case, the element z, = w is in
C, and equality in (9.4.23) holds trivially.
If 2 £ 0, set
zo=w + Az (9.4.25)
where

1Al = (r2 — Jlw|»}/]2]. (9.4.26)
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Now (zg, 2*) = (w, 2*) =@, t =1, 2,...,n, and so zy € P. Moreover,
floll2 = llw||? + |A]? ||z]|? = r?, so that x, € C,. Furthermore,

| L(zo — w)] = 4] |L(z)| = Ill z [ Lz *)* = [A] ]12]®

=n+1

® 3
= (r* — Jw|?)} |2l = IIWIlz)%( 2 IL(xk*)lz)-
+1

k=n
Thus, equality holds in (9.4.23) for x = x,.
It should be remarked that the element z has the alternate representation

z b,z ¥ =h — E L(z,*)x,*; (9.4.27)

for it is readily verified that the Fourier coefficients (with respect to z,*)
of z and of the middle member of (9.4.27) are identical.

The hypercircle inequality may be used to obtain bounds for L(x) having
been given certain information about x. This is illustrated by the following
example.

3
Ex. 4. Estimatej z(t) dt on the basis of the following information:

zt)e LA —1,1],  Ja@)| <7, (9.4.28)(a)

and

1 1
f z(t)dt =1, f t2x(t)dt = 1. (9.4.28)(b)

-1 -1

The relevant hyperplane is (x(t), z;(t)) = 1,7 = 1, 2, where z,(¢) =1 and
Zo(¢) = t2. Orthonormalizing we obtain

2*0) =3ve,  z*) = —}V10 + 3VI0 2
The hyperplane equations can be written as

(@(), 7, *¢) = 3v2 = a,, (@(2), z*(t) = 3V10 = ay.
Therefore,

w=w(t) = 3vV2)3V2) + }VI0(—}V10 + V102 = §(52 — 1),

and
lwl? = ay® + a,® = 3.
Now,
r —
L(z,*) =J Wed =3V,
-3
3 — — _
L(z,*) =f (—1v10 + #V1042) dt = -2V,
-3
and h

3
L(w) =f 3562 — 1) dt = —J5.
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By inspection, h = h{t) =1 for —} <t <} and A(t) = 0 elsewhere. Hence,
|2(@®)| = 1. Inequality (9.4.24) becomes

3 2
(f x(2) dt + 110) <@ -3)1 — % — &%) = 2% (2 —3).  (9.4.29)
-3
We may express this as

3
% —¢ sf %x(t) dt < —%& +e (9.4.30)
withe = V gﬂs Vr2 — 3. Inequality (9.4.30) holds for all functions z(t) satisfying
the hypercircle conditions (9.4.28)(a), (b). Moreover, since one equality in
(9.4.30) occurs for some element in the hypercircle, the midpoint of the range,

— %> can be taken as a ‘“best” value off x(¢) dt relative to the information
available. -

NOTES ON CHAPTER IX

See the references on normed linear spaces and Hilbert spaces listed under
Chapters VII and VIII.

9.2 For interchange of summation and integration and Fatou’s lemma
used in the proof of Theorem 9.2.2, see, e.g., Rudin [1], pp. 209-217. The
Hilbert space L*(B) can be found in Bergman [2], Chapter I, Behnke and
Sommer [1], pp. 256-282, Nehari [1], pp. 239-260. Related Hilbert spaces
formed by using line integrals as inner products are described in Walsh [2],
Chapter 6. Bergman and Schiffer [1] discuss Hilbert spaces of solutions of
elliptic partial differential equations.

9.4 For interpolation problems in L2(B) see Bergman [2], pp. 47-49,
Walsh and Davis [1]. The hypercircle inequality (Th. 9.4.7) is given in
Synge [1], Chapter 2, and in Golomb and Weinberger [1], p. 133, where
many applications to numerical analysis will be found.

PROBLEMS
1. Let w; > 0 and let £,2 designate the set of all sequences {a;} such that
L L
> w;ai® < . Set (a,b) = X w,a;b;. Then ¢,2 is a Hilbert space.
i=1 i=1

2. Prove that all sequences of the form (a,, 0, ay, 0, a3, 0, . . .) with
@

2 lail? <

i=1
constitute a sub-Hilbert space of £2. Generalize.

3. Let M be a linear subspace of a Hilbert space H. Show by an example that
there may be a sequence x,*, z,*, . . ., of orthonormal elements that are complete
for M but not for H.

4. If C is the unit circle, there are functions that are analytic in C but are
not in L?C). z

5. If f is in L%(B), is f* in L%(B)? Isf f(2) dz in L%(B)?

6. Let B be a finite region and 2y, 2, . . ., 2, be n fixed points in B. Let H
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designate the set of all functions f (2) in L%(B) for whichf(z;) = 0,k =1,2,...,n.
Show that H is a sub-Hilbert space of L%(B). Generalize.

7. If C is the unit circle, ind min ff|l — zf (2)|2 d= dy.
feL¥C)
C

8. If X = (C[a, b] with ||f] = Joax, |f @)], are either F(f) =f f3(=) dz or
F(f) = f4x) — f4=,), a < x;, 2, < b continuous functionals?

9. X =C[0, 1] with || f| =f1|f(x)| dx. Let F(f) =f1f2(x) dx. Show that F
is not a continuous functional. ° °

3

10. In L2 —1, 1], set L,(f) = %LJ‘ f(x)dx, 0 <k < 1. Compute || L,|| and
study ’{1_133 - Zall- —h

11. X is a real normed linear space. If L is an additive and continuous
functional, it must be homogeneous and hence is a bounded linear functional.

12. Let X be a finite dimensional normed linear space. Then any linear
functional L is bounded on X.

13. A linear transformation of one Hilbert space into another is a mapping
T for which T(a,x; + ayry) = a,T(x,) + ayT(x,). A linear transformation U is
called dsometric if |U(x)|| = ||z| for all x € H. Prove that if U is isometric,
(Uz, Uy) = (z, y) and hence an isometry sends orthogonal systems into orthogo-
nal systems.

14. If U is an isometry that maps H onto (the whole of) itself, then {U(z,)}
is complete if and only if {z,} is complete.

15. Let {x,*} and {y,*} be two complete orthonormal systems for a Hilbert

-] -]
space H. The transformation U( 2 aixi‘) = 2 a;y;* is isometric.
i=1 i=1

16. Exhibit the isomorphism and isometry of R, and R,*.

17. If X is an inner product space of infinite dimension, a hyperplane in X
is also of infinite dimension.

18. Formulate an interpolation problem in Hilbert space that has infinitely
many conditions and has infinitely many independent solutions.

19. Discuss the interpolation problem (y,z,) =1, (y,%;) =0,k =2,3,...,
in a Hilbert space.

20. Formulate Theorem 9.4.2 as a theorem about a system of infinitely many
linear equations in infinitely many unknowns.

21. In ¢2, what are necessary and sufficient conditions that the elements
Zy = (a3, 0,0,...), 2y = (ag, gy, 0,0, . ..), x5 = (a3, A32, 33, 0, 0, . . .) be inde-
pendent? Be complete? Orthogonalize them.

22. Discuss the solution of the system

z, =a,
—% + 2y =0y

— %+ 73 =ag

from the point of view of Theorem 9.4.2.



CHAPTER X

Orthogonal Polynomials

10.1 General Properties of Real Orthogonal Polynomials. Let

[a, b] be a finite or infinite interval and let w(x) be a positive weight function
b

defined there. We assume that the integrals f w@)z"de, n=20,1,...,
all exist. Employ an inner product o
b
(f9)=1.1) =f w(z)f (z)g(x) dx (10.1.1)
a
and orthonormalize (by means of Theorem 8.3.3) the sequence of powers
1, z, 22, ..., with respect to this inner product. Designate the polynomials
obtained by
pXx)=kazx"+ -+, k,>0. (10.1.2)

Polynomials that are merely orthogonal without being necessarily normal
will be designated by p, throughout this chapter.
Observe that if p € &#,_, then

(p, p,) = 0. (10.1.3)

This follows from Corollary 8.3.5 and the definition of orthogonality.

Though determinant expressions for orthogonal polynomials can be ob-
tained from Corollary 8.7.6, they appear to be of limited importance. The
following theorem, however, is of great utility.

TuEOREM 10.1.1. Real orthonormal polynomials satisfy a three term re-
currence relationship.
p.* () = (@, 2 + b )pE_1(x) —c,p¥ o) n=23,.... (10.14)

The following form is particularly convenient for niachine computation

P, =0
Py = 1
. s (10.1.5)
Do 1(®) = 2p,X(@) — (2p,*, P, *)P,*(@) — (P, P,)DE_,(2)
n=20,1,2 ...
P*@) = (@)D Pa)E n=0,1,2,...|

234
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Proof: 1t is clear that p,*(x) (defined by (10.1.5)) is a polynomial of degree
n and is normal. We shall prove by induction that they are orthogonal.

Assume that we have proved (p,* p;*) =0 for j=0,1,...,m — 1 and
for m=0,1,...,n. We wish to show that (p}, ,,p,*) =0 for j =0,
1,..., n Now,

(Pri1 P%) = (@p,* — (@p,*, p,*)p,* — (P, PIPE_1. D*)
= (@p,*, p;*) — (@p,* P M)(P,* P*) — (Do PPE_L, D).

Also (xp,*, p;*) = (p,*, xp;*) as can be seen by referring to (10.1.1). For
j=0,1,2,...,n — 2 we have by our induction hypothesis

(pn*’ pj*) = 0) (p:—lv pj*) = Oa (pn*’ pr*) = 0

since xp;* is a polynomial of degree <n — 1. Hence (p,,, p;*) = 0 for
ij=0,1,2,...,n —2 Forj=n —1 we have

(Pni1> PE-1) = (@p,*, PF_1) — 0 — (P, P - 1.

Now, (zp,, p¥_,) = (p,, zp¥_,). By the recurrence,
xpr_y = P, + oPF_y + Bor_o-

HEDCG, (pm xp:—l) = (pn’ P + ap:—l + ﬁp:—2) = (pn’ pn) by our induction
hypothesis. Hence (zp,*, p¥*_,) = (p,, p,)? and therefore (Pny1 PE_1) =0.
Finally, (p,.,, p.*) = (xp,*, p,*) — (zp,*, p,*) — 0 = 0. In this way, the
induction is carried to » + 1. Equation (10.1.4) follows from (10.1.5).
Further identification of the coefficients of the recursion is often useful.

TaeorEM 10.1.2. Let p *(x) = k,x" + s,x"71 4 - - - be orthonormal poly-
nomials. Then the coefficients in the recurrence

P* = (@, + b,)pk_, — ¢, pf (10.1.4)
are given by
a" = kn y bn = an(s_" — 8”“1)
kﬂ*I kn kn—l
. ok n=23,.... (10.1.6)
¢, = a, kn—z — I: n—2
n—1 n—1

Proof : The first two identities are obtained by inserting k" 4 s, 214 - - -
into (10.1.4) and comparing the coefficients of ” and «”~1. The third identity
can be proved in this way:

0= (pn*’p:—2) = (anxp:—l + bnp:—l - cnp:—Z’ p:—‘.’)

= an(xp:—l? p:—2) — Cpe
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But
(xp¥_ 1, PR _2) = (Pr_1, 2P} _3) = (DR_1s k”_zx”‘l)
k,_ k k_o
=222 k2 =222 (o, pE ) =
kn—l n—1 n—1 kn—l n—1 n—1 kn—l

The formula for c,, is now apparent.

THEOREM 10.1.3. The zeros of real orthogonal polynomials are real, simple,
and are located in the interior of [a, b].
Proof: Let n (= 1) be fixed. If p,(x) were of constant sign in [a, b], say
b
positive, then f w(x)p,(x) dr = (p,, py) > 0. But this contradicts orthog-
a

onality. Hence p,(x,) = 0 for some =z, € (a,b). Suppose that there is a
Pr(*)

zero at x, which is multiple. Then ( ; would be a polynomial of degree

Z
2
n — 2. Hence o=( (z), Ent®) 2) - (1( Pr(®) )) >0 and this is
(x — ) (& — 2y)
impossible. Therefore every zero is simple. Suppose now that p,(z) has j
Zeros ,, &y, - . . , &; and no others lying in (a, b). Then,

Pa@) (X — 2) (X — 25) - (2 — ;) = P,_j(x)(x — 2y)H 2 — )%+ - (x — z,)?

where P,_; is a polynomial of degree n — j that does not change sign in
(@, b). Hence, (p,(x), (x — ;) - - - (2 — x;)) = (P,_;, (x — 2,)% - - (x — 2;)?).
The right-hand side cannot vanish. But the left vanishes if j < %, so that
j > mn. But j > n is impossible, and therefore j = n.

TuEOREM 10.1.4. Let f(x) € Cla, b]; then the Fourier segment

2 (fs pet)pet (@)
k=0
must coincide with f(x) in at least n + 1 points of (a, b).
Proof: Let R, (x) = f(x) Z (f, 2*)p*(x). Then from Theorem 8.6.1
k=
we know that (R, (z), p*(z)) = 0 k=0,1, , n. In particular,
(Rn(x)’ Po*) = O = (Rn(x)’ l)

Hence R, (z) must vanish somewhere in (a, b). Suppose now that it changes
sign at @ <, < ¥, < +** < x; < b and at no other points of (a, b). Then,
R, () is of constant and alternating sign in the segments

(a7 xl)’ (xb x2), ttts (xjy b)y

and this is true of the polynomial ( — z,) - - - (x — z,). Thus, the product
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R, (x)(x — x,) - - - (# — ;) has constant sign in (a, b) and
(Bp(@)(x —2y) ** (2 — ), 1) =(R,(2), (& — x) * - - (& — x}))

cannot vanish. But by orthogonality it must vanish for j <n. Hence
Jj > n and the theorem follows.

n=0,1pt. / n =12 pts.

(a) (b)
\\.
N—
n =2,3 pts,
(e)
Figure 10.1.1 Coincidence of a Function and its Fourier
Approximants.

DerinrTIiON 10.1.1. Let p,*(x), n =0, 1, ..., be a system of real ortho-
normal polynomials. The symmetric function

n
K,(x, y) =kzopk*(x)1>k*(?/) (10.1.7)
is called the kernel polynomial of order n of the orthonormal system.
The kernel polynomial has the following reproducing property.

TrEOREM 10.1.5. For any polynomial Pe &£,
(P(x), Ky, y))p = P(y). (10.1.8)
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Conversely, if K(z, y) is a polynomial of degree n at most in x and in y and if

(P(x), K(=, y)), = P(y) (10.1.9)
holds for all P(x) € P, then K(z,y) = K (2, y).

The subscript z is placed outside the inner product to indicate the integra-
tion variable.

n
Proof: P(x) = Y (P, p,*)p.*(z) by Theorem 8.4.1. Hence,
£=0

n

(P, Kol = (3 (P o, Sprnew)

= 3 (Patpat et pate) = 3 (P.2M0) = PO

m,k=0

Suppose now, that (P(z), K(z, y)), = P(y) for all P € Z,. Select P(x) =
K, (x,w). Then, (K,(z, w), K(z,y)),= K,(y,w). But, also, in view of
(10.1.8), (K, (x. w), K(=z, y)), = (K(z, y), K (v, w)), = K(w, y). Hence,

K,(y,w)=K,(w,y) = K(w, y).
An alternate expression may be given for the kernel polynomial.
THEOREM 10.1.6 (Christoffel-Darboux). Let p,*(x) = k2" + -+, n=

0,1, ..., be real orthonormal polynomials. Then,

k, p} (@)p,*@) — p.* @)Dk 1Y)
kn+1 xr—y

K, (z,y) = kgo pX@)p*y) = (10.1.10)

Proof: Designate the right-hand member of (10.1.10) by K(z, y). Consider
y fixed. Then the numerator of K is a polynomial of degree <n + 1 in 2.
Moreover it vanishes when x = y and hence is divisible by x — y. Thus,
K(z, y) is a polynomial of degree <n in both z and y. We shall show that
if p(x)e 2,, (p(x), K(x,y)), = py) and hence by the previous theorem
we will have K(x, y) = K, (x, y). Now,

(pla), K, 1)), = ”l([p:“(x)p,,*( ) — Pt @PE )] ’%y”)
n+ ‘x

n Pria(®) — p,’:‘+1(y))

*
+ s p(y) (:v,. @), == — ” ]
kn ( * Pn*(?/) _ pn*(x))
+ o p\ PR (@), —— — ” -
Observe that = (=) — ply) and 2aM®) — Pa*) are polynomials of degree

x—y z—y
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<n — 1l in x (or equal 0 if » = 0). Hence by orthogonality, the first and
third of the inner products on the right hand vanish. Then,

k * _ m¥*
(p(x), K(x, y)), = - p(y) (p”*(x), ZM) .

k1 z—y
But,
k, py(@) — o5 1Y) k |:Z’/"+1 — a™t! i|
—n_ =k, 4o
ki T —y z—y
= k2" + - -+ = p,*(x) + polynomial of lower degree.
Hence

K (pn,, (), PAa®) — pZ“(x)) -1
rT—Yy z

kn+l

and the theorem follows.

CoroLLARY 10.1.7.
k,
k

Proof: Allow y —z in 10.1.10 and evaluate the right-hand limit by
de 'Hospital’s rule.

2 (@) = 7 (pEa(@pa @) — P @PEa@) (10.111)

n+1

10.2 Complex Orthogonal Polynomials. Let C be a rectifiable
curve or arc lying in the plane of the complex variable z = x + ¢y. Consider
the linear space of all polynomials with complex coefficients and for z on C.
The complex powers 1, z,22% ..., are independent elements, for if we had
ay+ a2+ a2+ -4+ a,2"=0 on C it would follow from the funda-
mental theorem of algebra that ¢y, = @, = - - - = a,, = 0. In this space,

(f,9) =Lf (2)9(2) ds (10.2.1)

forms an inner product (f |f(2)|2ds = 0 implies f(z) = 0) . Hence, by
c

Theorem 8.3.3 we may orthogonalize the powers and arrive at a set of
polynomials
p¥R)=Fkp2z"+-+ ; k, >0, n=0,1,..., (10.2.2)

that are orthonormal:

f PP *(2) ds = O, (10.2.3)
(o}

The p,*(z) are known as the complex orthonormal polynomials corresponding
to C. If w(z) is a positive function of the complex variable z defined on C,
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then, with appropriate integrability conditions,

(f,9) =fcf(z>3(z_>w<z) ds (10.2.4)

also constitutes an inner product and gives rise to a set of orthonormal
polynomials. The polynomials arising from (10.2.3) or (10.2.4) are associated
with the name of G. Szego who first studied their properties extensively.

Complex orthogonal polynomials may also be constructed with double
integrals. Let B designate a bounded region (open connected set) lying in
the complex plane. If we introduce the inner product

f.g) = f f £ (©0(2) der dy (10.2.5)
B
or
(fr9) = f f [ @gEnlz) de dy (10.2.6)
B

for a suitable positive weight function w(z), then sets of orthonormal poly-
nomials can be generated. These orthogonal polynomials are associated
with the names of T. Carleman and S. Bergman. (Cf. 9.2, III.)

1
Ex.1. The powers ——2",n =0, 1, 2, ..., are orthonormal on |z| =7
For V Qmrentl

1 1 — 1 — 1 (2
2" 2mds = ————— 22Mmds = — eilm-n0 4o
fln —r V22l V/2ppmtl Zry(mntl) flzl = 2m J:)

=0ifm #nand lifm =n.

n +1 27
Ex. 2. The powers /—”—H, n=20,1,2,..., are orthonormal over the
region |z| < r. T

Ex. 3. The Tschebyscheff polynomials of the first kind, 7', (w), are orthogonal
on every ellipse &, (see 1.13) with respect to the weight function |1 — w?l-4,
That is,

T T,
Ipn =f M [dw| =0, m #n; |dw| =ds, (10.2.7)
& |1 — w?

= element of arc in the w-plane.

Proof : Let,
w =3}z + 21, z=pe?
then by (4.4.2)
T, (w) = %(Pneino + P—ne—ins)_
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Now
[22 =1
dwldz = }(1 — z72) so that [dw| = e |dz|

and
1]22 — 1|
Lt L
-t~ o

l2|

Hence, by transforming to the z plane,

Fmn =3 E

1 (Pmeimﬂ + P—me—imﬂ)(pne—inﬂ + p—neinﬂ)
f |dz|
lzl=p
1 [%

0

Ex. 4. The Tschebyscheff Polynomials of the Second Kind

Pp*(z) = 2A/ ntl (P22 — pm2=2~4 U, (2),
m
U,z) = (1 — 22y tsin[(n + 1) arc cos z],

are orthonormal over the ellipse &, with respect to the inner product

(fr9) = ﬂ [ (@)g(z) do dy.
S

241

(Pmeimo + P—me—imﬂ)(Pne—iM + P—nez’nO) d9 =0 when m #n.

(10.2.8)

Proof: Under the conformal map z =cosw,z =x + oy, w = u + @, the
interior of the rectangle R with vertices at o7, 6¢ + 7, —o¢ + =, —ot is mapped
onto the ellipse &," consisting of the interior of &, with the two segments

[—a, —1],[1, a] deleted. Now, U,(z) = (1 — z2)~}sin[(n + 1)w] and

gle
&

dz |?
dedy = dudv:’d— dwdv = |1 — 22| du dv.
w

u
e
o

ely

Hence,

I, =fom<z)W) da dy = H Un(2)Un(2) dz dy
& &

=J]sin (m + l)wsin (n + 1)w du dv.
R
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With p =m + 1,r =n + 1, and since
sin p(u + %) = sin pu cosh pv + ¢ cos pu sinh pv,

o

(o] m
I,., =f cosh pv cosh rv dvf sin pu sin ru du +f sinh pv sinh rv dv

-0 0 -0

™ o ™
X f cos pu cos ru du + if sinh pv cosh rv dvj cos pu sin ru du —
0 -0 0

o ks
zf cosh pv sinh rv va~ sin pu cos ru du
-0 0

Now sinh pv cosh rv and cosh pv sinh rv are odd functions of v. Their integral
over [ —o, o] therefore vanishes. Furthermore,

™ ™ 0, r #r
f sin pu sin ru du =f cos pu cos ru du = 5
0 0 - p=r
2
Hence, I,, , = 0 for m # n. Now

o

° T
1,,= gf cosh? pv + sinh? pvdv = éf cosh 2pv dv =

7 sinh 2po
o o 2p

™
But p = e°. Hence, I, , = 4_jD (p2P — p27),

Ex. 5. Let S designate the square with sides z = +1,y = £1, and write

(f, 9 =Lf(z)g(_z) ds.

The following polynomials are orthonormal with respect to this inner product.

so(z) = .35355

8,(2) = .30619z

5y(2) = .258772%

s3(z) = .2134823

s4(2) = .1869724 L+ .14957
ss(2) = .1581125 + .18070z
sg(z) = .133962% + .2004922
sp(2) = 1137227 + .2090523

sg(z) = .0965628 1 2062724 — .00666

Though in isolated cases there are recurrence formulas relating successive
complex orthogonal polynomials, there does not appear to be a general
theorem of this sort. The identity used in the real case to establish the
recurrence: (xp,*, p,*) = (p,*, p,*) does not carry over to the complex
case where the inner product is Hermitian.
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Theorem 10.1.3 tells us the location of the zeros of real orthogonal poly-
nomials. L. Fejér found a remarkably simple proof of a theorem that covers
a wide variety of cases, both real and complex.

Lemma 10.2.1 (Fejér’s Principle). Let S designate a closed bounded convex
set lying in the complex plane. z, is a point exterior to S. Then we may find a
point 2z’ such that

e — 2" < |z — 2| forallze S. (10.2.9)

Figure 10.2.1.

Proof: We can find a line £ that separates z, and S, i.e., z, and S lie on
opposite sides of £. This geometrically evident fact can be established easily
by the methods of the theory of convex bodies, but we shall not do so
here (Cf. Prob. 23). Drop a perpendicular from z, to £ and call its foot 2’.
Then if z is any point on the “S side of Z,” it is no trouble to show that
|z — 2’| < |z — 2,|. In particular, (10.2.9) follows.

DEerintTION 10.2.1. Let S be a set of points lying in the complex plane
and F a family of functions of a complex variable defined on S. For each
f € F let there be defined a real, nonnegative quantity designated by || fl
satisfying the following property: for distinct f and g, the condition

|f(2)] < |g(2)] whenever g(z) % 0
and (10.2.10)
|f )| = |g(z)| whenever g(z) = 0
implies
A< gl (10.2.11)

The quantity || f|| will be known as a Fejér or monotonic norm for F. (It
should be distinguished from the norms in a normed linear space.)

Here are some examples of monotonic norms. In each case F is the class
of polynomials z* + a,2"! + - - - 4 a, with a; complex.
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Ex. 6. Let S be a closed bounded point set. If finite, it should contain at
least n points. ||| f|| = max |f @)
z

Ex. 7. Let S be a rectifiable curve or arc.
Wi =[jrepa.  p>o
Ex. 8. Let S be a closed bounded region.

Il = f f f@Pdedy, p>o.
S

Ex. 9. Let S be a rectifiable arc,

Wil =[dora, >0
S

In EX. 6, there must be at least one point in § where |f| < |g|, for otherwise
|f] = |g] = 0 throughout S and this is impossible since S has at least n points.
In the other examples, | f| < |g| certainly implies || f]| < ||g]l. But since | f| < |g]|
in at least one point, the monotonic character of the integrals tells us that the
inequality may be strengthened to ||| < [|gl-

THEOREM 10.2.2 (Fejér’s Convex Hull Theorem). Let F designate the
family of polynomials z" + a;z" ! + -+ + a, with a; complex. Let || || be
a monotonic norm on F relative to a point set S. Let the problem

min le® + az™t + «++ + a,| (10.2.12)

be solved by a polynomial p(z). Then the zeros of p(z) all lie in the closure of
the convex hull of S. (Def. 7.3.3).

Proof: Let p(z) = (z — 2,) * - - (2 — 2,). Assume that a typical root, z,,
lies exterior to the closure of the convex hull of 8. This closure is also convex.
By Fejér’s principle, we can find a 2’ such that

|z — 2'| <z — 2 for all z € S.
Hence, if we set

qz) = (2 — ')z —2) (2 — 2,) (F p(2)), (10.2.13)
we have for z in S,
lg(2)] < |p(2)| whenever p(z) 0
and (10.2.14)
lg(2)| = |p(z)| whenever p(z) = 0.

Hence, ||glll < [l2|[, so that p could not possibly have been a minimal
polynomial as asserted. Therefore z; must be in the closure of the convex
hull of S.
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CoroLLARY 10.2.3. The zeros of complex orthogonal polynomials lie in
the closure of the convex hull of the point sets over which the integration is
performed. If the point set lies on the real axis and is contained in [a, b], the
orthogonal polynomials have real coefficients and the zeros lie in [a, b).

Proof: Cor. 8.5.7, Ex. 7, 8 of 10.2 with p = 2, and Theorem 10.2.2.

In contradistinction to the real case, no assertion can be made about the
simplicity of the roots; indeed, z" are orthogonal over circles |z| = r, but
have an n-fold zero at z = 0.

The kernel polynomials of a real or complex system of orthogonal poly-
nomials solve an important extremal problem. (Cf. Theorem 9.4.3.)

THEOREM 10.2.3. Let z, be an arbitrary point in the complex plane and
p(z) an arbitrary element of P,. The problem of finding

' max |p(z)| (10.2.15)
subject to
Izl =1 (10.2.16)
1s solved by

e®K (2, z,)

q(z) = (10.2.17)
V K, (2, 29)
where K (2, z,) 18 the kernel polynomial
K (2, 2) =k20pk*(z)pk*(zo) (10.2.18)

and 6,0 < 0 < 2, is arbitrary. The mazimum value of (10.2.15) is V' K (20> %0)-

Proof: Let {p,*} be the orthonormal polynomials appropriate to the norm
n
| II. Then an arbitrary p € &, can be written as p(z) = > a,p,*(z) with
n k=0
Iz = X |a?, (Theorem 8.4.1). Hence
k=0

[p(z)I* =

n 2 n n
2 up*(z) | < 2 a2 Y |pe*(z) 12
¥=0 i=o0 = ¥=o

n

Hence |p(z)[2 < D |p:*(zo)|2 = K, (2o, %) Whenever ||p|| = 1. On the other
¥=0

hand, ¢(2) € £, and

gl = (e“’K”(z, z) €°K,(z,2,) )
VK (7, 29) ’ VK (20, 29)

1 n
K %0+ 2) j,go(pk*(z)p ¥ (20)s P¥(2)P5*(20))

l n

" K, (00 %) kgopk*(zo)m =1.
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Furthermore,

1g(29)] = V K ,(2¢, 29)-

Ex. 10. Let £, be an inner product space of real or complex polynomials
of degree < n. If z, is an arbitrary point in the complex plane, then L(f) = f(z,)
is a bounded linear functional over 2, and || L||? = K, (2, z,).

10.3 The Special Function Theory of the Jacobi Polynomials.
There is an extensive literature that contains many identities and inter-
relationships between the real orthogonal polynomials generated by simple
weighting functions. We shall content ourselves with presenting the most
important identities for the class of polynomials known as the Jacobi
polynomials.

For simplicity, the fundamental interval is selected as [—1, +1]. The
relevant weight function is

wz) =1 —2)(1+ 2P, «>—1, > —1. (10.3.1)

If the exponents are between —1 and 0, then the weight has a singularity
at the corresponding end point, but possesses a finite integral. Indeed,

+1 MNae 4+ 1B+ 1)

1 —2)*(l +a)fde=20+F+1 "~ = 7 (103.2

j -1 ( MNae+ 8 +2) ( )

This is readily established by setting ¢ = }(1 4 z) and using the standard
integral for the beta function.

The orthonormal polynomials that result from orthonormalizing 1, z,

1
22, ..., with respect to the inner product (f,g) =f [ @)g(x)w(x) dx by

means of the Gram-Schmidt process are called the Jacob: polynomials, and
will be designated by p{*#(x).

The following special selections of « and f# carry special names.

a = 0, f = 0: Legendre polynomials

o = —4%, f = —4: Tschebyscheff polynomials (of the first kind).

o« = %, B = }: Tschebyscheff polynomials of the second kind.

« = f3: Ultraspherical polynomials.

We shall also employ orthogonal Jacobi polynomials, P*#(x), that have
been standardized by requiring that

In 4+ a+1)

(o, 8) —
Po) I'm + Yl +1)°

(10.3.3)

TrEOREM 10.3.1 (Rodrigues’ Formula).

(="

2"n!

PeP(z) = (1 —2)"%(1 + 2)~F % {(1 — 2)"+2(1 + 2)"*F).  (10.3.4)
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Py
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Figure 10.3.1 The Legendre Polynomials.

Proof: Consider first the expression

Qu(@) = (1 — )1 + x)‘ﬂ% {1 — 2" +(1 + 2" 7). (10.3.5)
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By Leibnitz’ Formula, we have,
n
Qulz) = (1 — 2)~*(1 + x>"’.20(?)(—1>f(n o — 1)
i=

Xm+a—j+ D1 -2t im+Bn+p—1)---
X (n+ B —n+j 1)1+ aythont

M=

Cy—Wm+@m+a—n-~m+a—j+n

j=0

X1 =2y i+ fn+ =1+ B+ + 1A +2)

i(n)(—l)" 'm+a+1) T'n+g+1)
=o\j Fn+a—j+)IB+j+1)

(1 — 2)" (1 + )7

(10.3.6)

It is clear from this that @, () is a polynomial of degree n. Note also that
dx’ [( — z)"*%(1 + 2)"*#] vanishes at +1 and —1if0 <j < n.

We now show that @, is orthogonal to all polynomials in &,_; and hence

is, up to a constant, equal to P*f)(z).
Let s(x) be such a polynomial. Then,

+1
I= f (1 — 21 + 2)/Q, (=) s(x) d

+1 dn
f {1 — &)1 + @)} s(a) da
Integrating by parts,

dn—l
dzm1 U

I=

1 —2)"**(1 + =

+1 dnr-1 + +8
7+ o n
—f T {(1 — 2)"+*(1 + 2)*tP}s' (x) d.
The first term vanishes. Integrate by parts » times.
+1
1=04yf (1 — 2)" (1 + 2)" 5™ (z) dx = 0
-1

inasmuch as s(z) € Z,_; and s™(z) = 0. We can therefore write P,(z) =
C(n + o« + 1)

Qu(@). From (10.3.6), Q1) = (—1)"—-——

(=1"
T opon

2%, and hence from

(10.3.3),
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CoroLLARY 10.3.2.

f T(n + o+ 1) T(n+8+1)
0j T +oa—j+D(n—TE+j+1)

<)
(3G T )

where we extend the binomial symbol (Z) to noninteger values in an obvious way.

PP

s

J

CoroLLARY 10.3.3.
PEP(—z) = (—=1)"P(a).
Fn+p+1)

@B 1y — (v
B =0 e

TueorEM 10.3.4. P®P(x) = K, 2" + 8,z + -

where
K, — _(2” Tt ﬁ) (10.3.7)
2n n
and
S, = °‘;’3(2" tath- 1) ) (10.3.8)
2n n—1

Proof: We begin by establishing two identities for binomial coefficients.
For |z| < 1 we have

(422 = 3 (Por, 1+ = i:o(;)x'"

n=0
o < 6 nt+m
5= 3 ()0
_SaS(P\ °
n§=:ox }ZO(J) (n —-7)
Therefore

= (p + "). (10.3.9)
0 n

=

Furthermore, p(1 + z)?! = x"‘l. Hence,

(p _1ld pio
j;(})(n_j)—;%(l—}-x)‘f

o5 o (.0

n=0 j=1 \J
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Therefore

n l d”
2 ( )(nij) ol 7 L+ e

=0
n n—1
R
z=0
= p(” to- 1). (10.3.10)
n—1

To prove the theorem, we use Corollary 10.3.2. Notice that
(x — 1)”‘5(:23 + 1)1 = [xn—i — (n _j)xn—i—l + - '][x’ +jxj‘1 + -]
=z" + (2 —n)2" 1 - -

It is now clear that

(1)) e

T i=o0
The last equality follows from (10.3.9).
In the same way,

ong — 2"("47“)("+ﬁ)(21—n)

=206 A 0T)6E)

227
—2(n + )(2” +n“flﬁ_l) (2" +:+ﬁ)
a«— ,3)(2” Tt 1). (103.12)

THEOREM 10.3.5.
1

f (1 — 2)*(1 + zf (PP (x))? da
-1

_ 204641 Tn+a+ )I'n+ g +1)
_(2n+a+ﬁ+1)I‘(n+l)P(n+a+ﬁ+1)

Proof: Write (I — 2)(1 + z)® = w(x) and P& = P,
I =f1 w(z)[ P ,(x)]? dx =f1 w(z) P, (x) P, (x) dx.
-1 -1

Now, P, (x) = K,2" + polynomial of lower degree; hence,

1 1
_ wa.  (=DrK, [*dr it nib
I=K, f_lw(x)P”(x)x dx = T %{(1 — z)"%(1 + x)+F} da.
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Integrate by parts n times and obtain
K [+
1= f (1 — )™*1 + 2)"+f da.
2" J1
By (10.3.2) we have
K Fn+a+ 1HI'n+ g+ 1)

] = =2 . 92ntotfil

2n T@n +a+ B +2)

>

and the theorem follows.

CoROLLARY 10.3.6. The orthonormal Jacobi polynomials are given by

@B () = {(2"‘ +a+ B+ )T+ DI+ a4+ §+1) 3
Pn - 9x+p+1 I‘(n Tt I)I‘(n T ﬁ )

P&P)(z).

(10.3.13)

CoROLLARY 10.3.7. The kernel polynomial of the orthonormal system has
the following expression:

n
K, (2, y) = Zop}“'ﬁ (@)p5™P(y)
fen
__1 K, PeA@PFAy) — PEO@PEAY)
"Pn"2 Kn+1 r—y

B n+INTn+a+p+2)
T2 F@nta+ f+ AT+ o+ DD+ B+ 1)

PR PrPty) — PP Prfiy)
rT—Y

Proof: This is an application of (10.1.7), (10.3.7), (10.3.13), and Theorem
10.3.5.

TueorEM 10.3.8. The Jacobi polynomials P&P(x) satisfy the following
second order linear differential equation.

=2 +[(B—a)—(a+F+2)02ly +n(n+a+pf+1y=0
(10.3.14)
Proof: Note that for any gq,

d
T (=21 + 2] = (1 — 21 + =)
X (1= %9 + {(f — @) — (« + B+ 2}g]. (10.3.15)
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a\ N
U/ \V

Figure 10.3.2 The Kernel Polynomial for « = f = 0.

Koy, 0) = — — {429x° — 69324 + 31522 — 35)

Hence we may write the differential equation (10.3.14) in the alternate form

d
(I —2)~ 1+ x)"’d—x (1 — 21 + 2)f+ly' 1= —n(n + « + B + 1)y.
(10.3.16)

Let y = P&P(x), w(x) = (1 — 2)*(1 + )’ and ¢(z) € #,_;. We shall show
that the expression occurring on the left side of (10.3.16) is orthogonal to
g(z). Hence the left-hand side must coincide with y apart from a constant
multiplier. Now,

+1
1 =f . w(z)(l — 2)7%(1 + x)“ﬁ% (1 — 2**1 (1 + 2 1y lg(x) d=

+1 d
= f_@ [(1 — 21 + 2+ ly'lg(a) dz

Integrate by parts,
I= —f — 2)*tY1 + x)ftly'q da. (10.3.17)

Integrate by parts once again,
+1gq
1 =f —[(1 — 2)* Y1 + z)P+1q'ly da.
—1dzx
Now from (10.3.15) we observe that

;;[(1 — 21 + 2 g1 = (1 — 2)*(1 + 2’p(x) where p(z)e Z,_,.
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+1

Hence 1 =f (1 — 2)*(1 + )P PP)(z)p(x) dx = 0.
-1

Thus, certainly,
(1 — 2%y + {( — «) — x(e + B + 2)}y’ = cy for some constant c.

To determine ¢, set P™P(x) =y = K,a" + ---. Then dealing only with
the highest powers, —n(n — 1)K 2" — n(a + 8 + 2)K 2" = cK x". Hence
¢ = —n(n + a + B + 1) as required.

THEOREM 10.3.9. The Jacobi polynomials P{F)(z) satisfy the following
three-term linear recurrence relation

P;a,ﬂ)(x) - (Anx + B”)Psftﬁl)(x) - CnPS;a'—ﬁZ)(x) (10'3'18)
where
Crn+a+pf—12n+ a+ p)
4 — 10.3.19
n 2n(n + a + ) ( )
—e2n+a+p—1)

_ 10.3.20

"2+ a+ B)2n 4« + f—2) ( )

o _(rta—No+p—1)@n+atp) (10.3.21)

" ant+at B2t at+f—2)

Proof: We combine (10.1.6), (10.3.7), (10.3.8), and (10.3.13). If p{*f)(zx) =
2, PP (x), then

K K, (S S Ao K, K
A = n , B — n (On  Pn-1 ), — (_n_—g) ntn—2 .
"TK "TK (K K Cn 1) K

n—1

n—1 n—1 n n—1

The expressions above result from this.

THEOREM 10.3.10. In a neighborhood of w = 0, we have

9a+ph

(x, ﬁ)
ngop R(l —w+ R)*(1 4+ w+ R)ﬂ ’

(10.3.22)

R = +\/l — 2zw + w?.
The multivalued functions are taken positive for w = 0.

Proof: Cauchy’s Theorem tells us that for analytic functions,

f(n)(z = _n_' f®

el e (10.3.23)

where C is a closed curve containing z in its interior.
Consider the function (1 — 2)**%(1 4 2)"*+#. In a simply connected region
that does not contain +1 in its interior, it is possible to define a single valued
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analytic branch. Hence,

dn (L — "1 4 ¢)"*P

et (1 — 2" (1 + 2)"*F = f t— z)n+1
where C is a closed curve that contains z in its interior, but does not contain

either z = 1 or z = —1. From Rodrigues’ formula (10.3.4),

(=1)" = (l —2)7%1 4+ 2) A1 — "1 4 o tP
ol %m (t — z)»t2

1 f (1 —-t)“(l +t)ﬁ(t2—1)” di
Tomle\l =2/ \1 +2/ 2t —2)) t =2~
The points z = 41 are excluded from consideration here.
In this integral, make the change of variable

dt

Pﬁf"m(z) — dt

-1 1 1 S
—_—; t=—(1—41— 2wz + w?). (10.3.24)
2t —2) w w
Write
1 -
=—(1—R) where R=V1— 2w+ wt (10.3.25)
w

Now ¢t — z = jw(22 — 1) + - - - and so a neighborhood of ¢ = z is mapped
conformally onto a neighborhood of w = 0.

a1 dR dR  w—
Z_- (R 1— w—) and —=2"%" (103.26)

dw  w? dw dw R
8o that
dt t—=z
dw  Rw
Moreover,
1+t 14 1/w— Rjw 2
1+2 1+2 T 14w+ R
and
1—t 1—1/w+ Rlw 2
1—2z l1—2 " 1—w+ R’
Hence,

o+ 3 dw

2m Ll (I —w+ Bl 4+ w+ R)ﬂw”"'lR .
C, is the image of C' under the conformal transformation and is a closed

curve containing the origin w = 0 in its interior.
Applying Cauchy’s formula in the w-plane, we see that

1 d 2<Z+ﬂ
nldw Rl — w + R)*(1 + w + R)P lw=o
Now, considered as a function of w, R-1(1 —w + R)~%1 + w4+ R)~# is

P{0) =

P B2y =
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analytic in a neighborhood of the origin, and we have (10.3.22). Forz = 41,
the identity can be verified directly.

NOTES ON CHAPTER X

General references on orthogonal polynomials include Szego [1], Tricomi
[1], Sansone [1], Jackson [2], Alexits [1]. The bibliography referred to in
the Foreword is the publication of Shohat, Hille, and Walsh [1].

10.1 For an analog of Theorem 10.1.4 for trigonometric Fourier series,
see Tricomi [1] pp. 76-76. A converse of Theorem 10.1.1 was found by
Favard and independently by Natanson. See Favard [1]. Also relevant is
Dickinson, Pollak, and Wannier [1].

10.2 Ex. 3., Walsh [2] Chap. VI. Ex. 4., Nehari [1]. Ex. 5.: these and more
extensive values were computed on the IBM 704 at the National Bureau of
Standards. For Fejér’s Principle see Fejér [1].

PROBLEMS

1. The powers 2™ cannot be orthogonal on [—1, 1] with respect to any
weight function w(x).
2. Let w(—2x) = w(x) and suppose that p,(x) are orthogonal with respect to
+1
f9) = S (@)g(x)w(z) dz. Then p,(—2z) = (—1)"pu().
1

3. How do orthogonal polynomials change when the interval [ —1,1] is
shifted linearly to [a, b] and the weight function changed correspondingly?

4. Let po(2) = 1, pu(2) = 2"z —zy) n =1,2,....Prove that form # n,
2)pa(z) ds
f p"l':)p—';(l)z = 0 on all circles C: |2| = R > |z,|-
— %o

5. Let [a,;] < 1. Prove that the functions

(L= af® 1
A =y gy

— 2\} _ e (z —
ra(2) = (l lanl ) (2 —a) (2 = any) n=23...,

2r ) (I —a)(l — G32) - (1 — age)

are orthonormal in the sense thatf 7m(2) 7,(2) ds = 8, , (Takenaka ,Walsh).
|lz| =1

6. Let p,*(x) be orthonormal with respect to the inner product (f,g) =
f f@)g(x)w(x) dz. If K,(x, y) is the kernel polynomial, and if x; < a, the poly-
ngmials K,(xy, x) are orthogonal with respect to the inner product (f,g) =
f f@g@w)z — z,) dz.

7 Let p,*(x) be orthonormal with respect to the inner product (f,g) =

f [ (@)g(z)w(z) dz, w(x) > 0. Prove that z (pr*(x)2 = o for —1 <z < 1.
-1 k=0
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Check this divergence directly for the Legendre polynomials at x = 0.
8. Using polynomials of degree 1 and [|f]]| = max |f@)], prove that if C is
2€

the circle of smallest radius that contains a closed bounded set B, then the
center of C lies in the convex hull of B.
9. In the previous problem, give an example to show that the center of C
may fall on the boundary of the convex hull of B.
10. Check explicitly for n = 1, 2, 3, 4 that the polynomials orthonormal over
the square have their zeros in the square. (Cf. 10.2, Ex. 5.)

11. Prove that /21~3~5~~~(n—l)

P,(0) = 0,no0dd, and that P,(0) = (—1)" m , M even.
P, (x) are the Legendre polynomials with normalization (10.3.3).

. ok 41 +1 .

12. The polynomial p(z) = E P,(x) satisfies zip(x)de =1 for
. ¥=o 2 -
j=01...,n.

: o4+ 1) .

113. Show that 1ihe polynomial p(x) =j§0(—1) Ww P,,(x) satisfies
f p(x) de = l,f pE)ide =0 j=1,2,...,2M.

-1 -1

14. Let the n zeros of P(‘;‘,'ﬁ) be z,,...,%,. Then =, + xy + -+ + 2, =
n(g — «)
2n +a + B8 ’

15. Verify (10.3.22) directly for z = £1.
+1

16. Show that in #£,[—1, 1] with (f,g) = f(x)g(x) dx, L(p) = p’(xy) is &
1

bounded linear functional, and compute its norm. Generalize.
17. If

- @
f2) = X a,Ty), |z] <1 with > lax] < oo,
k=0 k=0

then
z © fa —a
f f(t)dt = const + > (Ll—k“) Tilz), |z| <1
-1 k=1 2k

18. The expansion of f(x) in Tschebyscheff polynomials of the first kind is
identical to the development of f (cos 6) in a cosine series.

T 4 16
19. Arccosx ~= — = Ty(x) — — Ty(x) — - - -.
2 7 97

20. ~ V2} — pPTy) + p*Ta(@) — -], p=Vv2 -1

1+ a2

21. If curves C and D are related by the transformation w = az + b, what
is the relationship between the orthonormal polynomials over C and those over
D? What if the inner product is an area integral?

22. How do the symmetries of a curve influence the structure of its orthogonal
polynomials (see Ex. 5, 10.2)?

23. Let S be a closed, bounded, convex set in the plane. Let 2, be a point
exterior to S. Show: 1. The problem of finding r:;gl |21 — 2| has a unique solu-

tion, z’. 2. At 2’ draw the line ¢ perpendicular to the segment z,z’. Then S lies
on one side of ¢. 3. The point 2’ satisfies the condition (10.2.9) (O. Shisha).



CHAPTER XI

The Theory of Closure and Completeness

11.1 The Fundamental Theorem of Closure and Completeness.
Theorem 8.9.1 related the concepts of closure and completeness for inner
product spaces. In the present section, we shall do this for normed linear
spaces.

DeFiniTION 11.1.1. The sequence of elements {z,} is complete in a
normed linear space X if L(z,) =0, k =1,2,..., L e X*, implies L = 0.
X* is the normed conjugate space of X.

(In an inner product space, there are now two definitions of complete
sequences, Definition 8.9.4 and Definition 11.1.1. If the space is complete,
these definitions are equivalent.)

Closed

Complete

A subspace is closed if it

A space is complete if every

Space contains all its limit points. Cauchy sequence has a limit
in the space.
A sequence is closed if A sequence {z,} is complete
every element of the space if L(x,) =0,n=0,1,...,
can be approximated ar- L e X*, implies L = 0.
Sequence

bitrarily closely by finite
linear combinations of the
elements of the sequence.

The fundamental theorem is that closure and completeness are equivalent
concepts. This emerges as a consequence of the Hahn-Banach Extension
Theorem, and it is to this that we now turn.

DEeriniTION 11.1.2. Let X be a linear space and Y a linear subspace.
Let L be a linear functional defined on Y. A linear functional L, is called
an extension of L to X if L,(x) is defined for all z € X and if L,(x) = L(z)
forzxe Y.

257
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Ex. 1. X is the space of all functions defined on [a, b]. Let ¥ be the subspace
Cla, b]. Let a <x; <b and set L(f) = lim f(x). Let Ly(f) = f(x;). Then L,
is an extension of L from Y to X. =

THEOREM 11.1.1. Let X be a real normed linear space and Y a linear
subspace. (Y # X). Let p(x) be a real valued functional defined on the elements
of X and possessing the following normlike properties

p(x) = 0; reX
plx+y) <p)+ply); =zyeX (11.1.1)
p(Ax) = Ap(x); zeX, 2=0.
Let L be a real linear functional defined on Y that satisfies
L(z) < p(x), ze?. (11.1.2)

Then L can be extended to be a linear functional L, defined on X and such
that
Ly(z) < p(=), zeX. (11.1.3)

Proof: 1. Select an 2y € X but ¢ Y. Take z, y € Y. Then
L(y) — L(z) = L{y — 2) <ply — ).
Now p(y — ) < p(y + 2o) + p(—=2 — ) so that
—p(—z — %) — L(x) < ply + %) — L(y); =z,yel.
Think of y as fixed in Y and z as varying in Y. Then the last inequality
shows that —p(—x — x,) — L(x) is bounded above. Similarly, for varying
¥, p(y + o) — L(y) is bounded below. If we set

= SUIP, [—p(—2 — 2) — L(z)]

7y = Inf [p(y + zo) — L(y)]

then we must have —oo <7, <r, < 0. Select a number r such that
ry < r <7, Then,

—p(—x — ) — L(x) <7 < py + 2,) — L(y) (11.1.4)

forany z,ye Y.

2. Consider the linear subspace Y consisting of all elements y of the
form y = x 4+ Az, x € Y. Each element in Y, has a unique representation
in this form. For suppose, y € ¥y, and y = z, + A,y = 2, + Ayzy. Then
x, — 23 = (A} — Ay)zy. If A, 5~ A, then x, would be a linear combination of
z,, z, and hence in Y. This contradicts our selection of z,. Therefore 1, = 1,
and hence also x, = z,.

Define L, on Y, by means of

Ly(y) = L(@) + r.
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Now if y€ ¥, A =0 and hence L,(y) = L(y), y € Y. Since L is linear, it
follows easily that L, is linear.
We wish to prove next that

Lyy) <ply) forall yel, (11.1.5)

Decompose y into the form y = z, + Az,. We need only deal with the case
when A £ 0. From (11.1.4) we have

Xy £ zy y
"’(—7—%) —L(T) =r S”(Tf’%) _L(T)'

1
Now if 1> 0, p(%1 + xo) = ip(xl + Az,) and the second inequality re-
duces to

1 1
r< 11’(“1 + Axg) — iL(xn)

or
Ly(y) = L(z,)) + Ar < p(x; + Ax).

If 2 < 0, the first inequality may be employed :

—p(—% — xo) = %p(tzz1 + Az,); hence, p(x, + Azg) — L(z,) > Ar and the
conclusion is as before.

3. Consider, finally, all the linear functionals that extend L to some
linear subspace containing Y and which satisfy the condition (11.1.5). A
partial ordering L' < L” is defined amongst these functionals by agreeing
that L' < L" means that L” is an extension of L’. With this ordering,
every totally ordered subset is seen to have an upper bound, i.e., the func-
tional which is defined over the union of the domains of definition of the
individual functionals and which takes on the values assigned by them.
Zorn’s Lemma (Theorem 1.13.1) tells us that there exists a maximal exten-
sion L,. This linear functional is defined over the entire space X, for if not,
it could have been further extended by the process described under 2.

If the space X is separable, the use of Zorn’s Lemma (and hence the
axiom of choice) can be avoided.

A functional p(z) satisfying 11.1.1 is known as a convex functional.

THEOREM 11.1.2 (Hahn-Banach). Let X be a real normed linear space
and Y a subspace. Let L be defined on Y and have norm |L|y there. Then
there is a linear functional L, which extends L to X and such that |L,|| x =

(7412

Proof : Set p(xz) = ||L||y |z||. The functional p(x) is readily seen to fulfill
the requirements (11.1.1). Therefore, by the previous theorem, we may
extend L to L, so that

Li(=) < ILllp l=ll, zeX.
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Since also
—Ly(z) = Li(—2) < | L]y |—=l = L]y [,
it follows that
[Ly(2)| < 1Ly fl=]-

Hence,
| Ly ()|
up —— < |L
SR ey = I
so that
1L < L]y
L L L
But |L||y = supl (@) =s ()] < L) = ||Ly|| x and therefore
zev 2] ze¥ |zl zex ||zl

1Ly < [Ly]lx- Thus, finally | Ly]x = L] -

This extension theorem also holds in complex normed linear spaces. To
establish this, we make use of a simple device which associates a unique
real normed linear space X to each complex normed linear space X. In
this way, the burden of the proof is thrown back to the real situation.

DErFiniTION 11.1.3. Let X be a complex normed linear space. The space
X will consist of the same elements as X. Addition in X 5 will be identical
with addition in X. If @ is real and x € X5 then ax will be the element
(@ + 10)x = ax of X. ||z|| in X5 will equal ||z|| in X. If L is a bounded (and
complex) linear functional defined on X, then by Ly we shall mean the real
valued functional defined on X by means of

Lg(x) = Real part of L(x). (11.1.6)

The z in the left-hand member is considered to lie in X5 while in the
right it is considered to lie in X.

Lemma 11.1.3. If L is a bounded linear functional on X, then Ly is a
bounded linear functional on X g.

Proof: Let x,y € Xy and a, b be real.

Lg(ax + by) = Re L(ax + by)
= Re {aL(z) + bL(y)} = a Re L(x) + b Re L(y)
= aLg(x) + bLg(y).

Therefore Ly, is linear on X . Also
|Lg()| = |Re L(z)| < |L(z)| < L] ll=lx = | LIl |l x, (11.1.7)
Therefore Ly, is bounded on X, and |Lg| < || L.
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Lemma 11.1.4. If L is a linear functional on X then
L(x) = Lg(x) — iLg(iz). (11.1.8)
Conversely if A is a linear functional on X g, then the equation
L(z) = A(x) — iA(iz) (11.1.9)

defines a linear functional on X.

Proof: If L(x) = Re L(z) + ¢ Im L(x), x € X, then
L(iz) = Re L(iz) + 1 Im L(ix)
=1 Re L(z) — Im L(z).
Therefore Im L(z) = —Re L(tx) = — Lp(izx), so (11.1.8) follows. Conversely,
given z, y € X, from (11.1.9) we see that
Lz + y) = Alx 4 y) — iA(ix + 1y)
= A@) + Aly) — iAG2) — iA(iy)
= L(z) + L(y).
Moreover, if a is real,
L(az) = A(ax) — tA(tazx)
= al\(z) — iaA(ix) = aL(x).
Finally, L(iz) = A(iz) — iA(—=)
= i[A(x) — iA(iz)] = iL(x).

Thus, L is linear over X.

THEOREM 11.1.5 (Bohnenblust-Sobezyk-Suchomlinoff). Let X be a com-
plex normed linear space and Y a subspace. Let L be a complex linear functional
defined on Y and have norm |L| y there. Then there is a linear functional
L, that extends L to X and such that | L,||x = || L] ¢.

Proof: Write L(x) = Lg(x) + 1Ly (x), x€ Y where Ly and L; are real
valued. By Lemma 11.1.3, Ly is a bounded real valued linear functional
defined on Y, the real normed linear space associated with Y. Extend Ly
to Xp by Theorem 11.1.2, and obtain a real, bounded, linear functional
L, p for which L, p() = Lg(x), x € Y and for which |L, gl = || Lgl-
Define

Ly(x) = L, g(x) — tL, plix). (11.1.10)

By Lemma 11.1.4, L, is a linear functional defined on the whole of X. It is
an extension of L. For let x € Y. Then, by (11.1.8) (taking the X as the
present Y),

L(x) = Lg(x) — tLg(iz) = L, g(x) — 1L, g(ix) = Ly(z).
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We must finally prove that ||L,|| = ||L||. Since L, is an extension of L, it
is clear that ||L| < [|L,|. On the other hand, suppose that L,(z) = re®,
z € X. Then,

|Ly(2)] = r = Re Ly(e ) = Ly ple~*z) < | Ly gl lle =]

= | Ly gl llzll = ILgl Nl < L] lI=].
The last inequality was observed after (11.1.7). Therefore, for all z € X,
| Ly(2)]
";“ < | L|l, so that ||Ly|| < [IL]|. Thus, || L]l = [L|l.

THEOREM 11.1.6. Let X be a normed linear space and Y a linear subspace.
Let x, € X, but 2, ¢ Y and suppose that d = mf ly — x|l > 0. Then we can

find a bounded linear functional, L, on X such that

Liz) =0 zeY
Lizy) = 1 (11.1.11)
L] = d-.

Proof: As in Theorem 11.1.1, let Y, be the linear subspace of elements
of the form = + Az, x € Y. This decomposition is unique. Construct an L
over Y, as follows:

Liy) = A for y =z + Jx, (11.1.12)

In particular, L(z) = 0 whenever x € Y, and L(x)) = L(0 4+ 1 z,) = 1.
Now

L)l _ 14 _ 1Al _ 1 _ 1
Iyl Iyl =+ Azl ; t o 2 — (_ ;)
Since—%e Y, ||z — (—-;) >d.
Hence
Ity = sup lﬁ <1

On the other hand, we can find a sequence of elements {x”} € Y such that
”linclo llz, — 2| = d. Now z, — xy € Y so that

[L{zx, — zo)l < L]y, 2, — oll-
But L(z,) =0, =1,2,..., and L(z,) = 1.
Hence, 1 < | Llg, 2, — 2oll,
so that 1< []Lllyo d
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1
Therefore || L]y, > y and we must have
1
1By, = -

We now apply Theorem 11.1.5 to extend L from Y, to X with preservation
of norm.

TueEOrEM 11.1.7 (Banach). Let X be a normed linear space (real or com-
plex). A sequence of elements {z,} is closed if and only if it is complete.
Proof: Suppose {z,} is closed. Let L € X* and suppose that L(z,) =0

k=1,2,.... Given any z € X, we may approximate x arbitrarily closely
by finite combinations of z,: ||z — a,z, — ayr, — - - - — a,x,| < & for some
coefficients a,. Then,

|L(=)| = |z — ayz, — - - - — a,z,)|

< Mz — a@y — - -+ — a,z,|| < L] &

Allow & — 0 and obtain L(z) = 0. Since z is arbitrary, L = 0.

Conversely, suppose that L(z,) =0, k= 1,2, ..., implies L = 0. Let «,
be an element of X and let Y be the linear subspace comprised of all finite
linear combinations of z,, z,, . . . . We wish to proved = 114211; llzg — yll = 0.

Suppose the contrary. Then by the previous theorem, we can find an L
such that L(y) =0, ye Y and L(z,) = 1. In particular, L(x,) =0, k =
1, 2,.... But by completeness, this implies L = 0 and contradicts L(x,)
=1

Ex. 2. Let X be a complete inner product space. Any L € X* has the repre-
sentation L(x) = (x, ,) for some xy € X. Hence, the definition of completeness
of {x;}is that (z;,*) =0,k = 1,2,..., implies x = 0. In this case, the present
theorem gives us the equivalence of 4 and E of Theorem 8.9.1.

Ex. 3. Select X = Cla,b), |fll = max |f (®)|. By Weierstrass’ Theorem,

asz<
the powers 1,x, 22, ..., are closed. For a given g(x) € C the linear functional
b b
L(f) = f J(x)g(x) drisin X*. Hencef z"g(x) dr = 0,n =0,1,2,..., implies
a a
glx) = 0.

Ex. 4. Let {r;} be the set of all rational numbers lying in @ <x < b. Let

S;() be the step function defined by
Six) =1 a<x<r;
Six) =0 ry <x <b.

Then the system {S;(x)} is closed in L?[a, b].
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b
Proof: Let f(x)€ L¥a,b]. Suppose thatf f@)Sixyde =0,¢ =1,2,....
a
Ti
Using the definition of S,-,f f(@x)dxz = 0,7 =1,2,...,and hence the function
a

¢
F(t) = f f(x) dz is zero at the rational points. But F(t) € C[a, b] and hence
a

F(t) = 0. It follows that f(x) = 0 almost everywhere. The system {S;(z)} is
accordingly complete and hence, closed.

Ex. 5. Let D be a bounded multiply connected region and let 4(D) be the
normed linear space of functions that are analytic in D and continuous in D
plus its boundary. || f|| = mag: |f (2)]. The sequence of functions 1, 2, 2%, . . ., is

2€

not closed in A (D). For if the sequence were closed, it would be complete. Now
let z4 be a point in one of the “holes” of D. Consider the linear functional L(f) =

1
2—@[ f(2) dz, where C is a contour lying in D and containing 2, in its interior.
C

L is bounded over A(D) and L(2") =0,n = 0,1,.... Therefore L =0 by

completeness, but

is in A(D) and L(
contradiction.

) = 1. Hence we have a

z — 2,

Though completeness and closure are equivalent, it is convenient to
employ both terms so that attention may be called to the appropriate
defining property.

The property of closure is transitive.

TueorREM 11.1.8 (Lauricella). Let X be a normed linear space and let {x,}
be a closed system. Then a second system {y,} is closed in X if and only if it
is closed in {z,}. By this we mean that each x, can be approximated arbitrarily
closely by linear combinations of the y,,.

Proof: The necessity is trivial. To prove sufficiency, let € X and pre-
scribe ¢ > 0. Since {x,} is closed we may find constants a,, ..., ay such
that [z — a,2, — - -+ — ayzy|| < ¢/2. We may obviously assume that each
a; # 0, otherwise we simply ignore that coefficient. Since {y,} is closed in
{x;}, we may find constants b, by, . .., by, ¢ =1,2,..., N such that

£

llz; — by — by — = -+ — biN;yN;" < SN 2l 2] t=1,2,...,N.

If we set w; = a,(byyy + by + -+ biyyn), 1=12,..., N,

1=1,2,...,N.

€
then, la, — w;ll < N’
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Now, by the triangle inequality,

e — wy —w, — - —w,|
=z —a, — - —ayry —w —wy — — wy + @z + -+ ayzyll
Sz —az — - —ayay| + llazy, —wyll + -+ + llayzy — wyll
€ £
<-+N_——_=c¢
2 + 2N
In this way, we approximate z to within & by w; + « -+ + w,, which is a

combination of the y’s.

11.2 Completeness of the Powers and Trigonometric Systems for
L¥a,b]

TueorEM 11.2.1. The powers 1,z, 22, ..., are complete over L?[a,b].
Proof: Let f(x) € L*a, b] and assume that
b
fx"f(x)dx:O n=0,1,2,....
a
Set
z
F(z) =ff(t) dt. (11.2.1)
a

Then F(z) € C[a, b]. In particular F(a) = 0, F(b) = 0. Integrating by parts,

0 =fbx”f (x) dxz = 2" F(x) b— n f bx”“F(z) dz.

b
It follows that f 2" F(x)de =0 n=1,2,....

a
Now by Ex. 3, Section 11.1, the powers are complete for Cla, b] with || f || =
max |f(z)|, and this implies that F(z) = 0. Therefore f(x) = 0 almost

a<z<b
everywhere.

CoroLLARY 11.2.2. The sequence of orthonormal polynomials on [a, b],
p¥x) =k 2"+ -+, k, > 0, has all the properties A-F of Theorem 8.9.1
Jor f € L¥a, b).

A corresponding theorem for the trigononometric functions can be de-
rived from the powers by a change of variable, but we prefer the following
proof which makes use of an interesting analytic device.
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Lemma 11.2.3.  Let f(x) € C[—m, m] and suppose that

f" f(x) cosnxdx =0 n=0,1..., (11.2.2)
and !

f@)sinnzdx =0 n=12,.... (11.2.3)

Then f(x) = 0.

Proof: If T ,(x) is an arbitrary trigonometric polynomial, it follows from
(11.2.2) and (11.2.3) that ! f(x)T () dz = 0. Assume that f(z) = 0. Then

there is a point x, interior to [—m, 7] at which f(x,) = 0. For the sake of
argument, assume that f(x,) = m > 0. Then by continuity, we can find an
interval I: zg — 0 <z < x, + 0 contained in (—r, 7) throughout which
f(x) = m/2. Construct the trigonometric function

Hx) =1 — cos & + cos (x — z,). (11.2.4)

For 2y — 6 <z <y + 0, cos (x — x,) > cos § and therefore ¢(x) > 1. For
x = x5 4 0, t(x) = 1. Elsewhere in [—m, 7], —1 < cos (x — z,) << cos § so
that

—cos § < i(z) <1 and therefore [i(z)| < 1.

Now consider the trigonometric polynomial of order n, T, (x) = [t(x)]™
It is clear that
T,x) >1 forl;: zg—0<z<z)+0
T x)y=1 for 2=z 4+ 6
|T,(x)] <1 for I,: the remaining portions of [—, ].
But

o=[ terwan=[ s@r@is+| s@rwe
80 thatf = —| . Now
Ut

I
bounded as n—»%o Since #(x) > 1 on I,, t(x)zz 1 + ¢ on, say,

f(x)T () dx gf |f(x)| d= and is therefore
I, I

I;: 4 < 9
3..1:0—5 gx_x0+§.
Therefore, T, (z) = [¢(z)]* > (1 + &)" on I3 and

ff x)dx>—f T(x)dx> (14 &)

This is a contradiction since| — + oo whllef is bounded. The assumption
I, I,
that f(x) £ 0 cannot be maintained.
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THEOREM 11.2.4. The system of functions cos nx, n =0, 1,..., sin nz,

n=12,...,1is complete in L} —m, 7).

Proof: Let f(x) € L¥{—m, w]. We shall show that the conditions (11.2.2)
and (11.2.3) imply f(z) = 0 almost everywhere. This will imply complete-
ness for L} —, =] by Ex. 2 of Section 11.1. The function

Fa)=| fuyar (11.2.5)

is in O[—m, 7] and F(—m) =0, F(m) = 0. The last follows from (11.2.2)
with n = 0. If T(x) designates an arbitrary trigonometric polynomial,

f " f(@)T(x) dv = 0. But

’ —f" F(z)T'(z) da.

-7

f " f@)T(@) dr = F@)T(@)

Hencef F(x)T'(x)dz = 0 for all derivatives 7" of trigonometric poly-

nomials.
In particular, f F(x) ST g —0 m= 1,2, .... Consider now
— cos nx
1 m
G)= Fx) —c, c= 5 f F(z) dx. (11.2.6)
mTJ—n

Then it is easily verified that

” sin nx n=12,...,
f_"G’(x) cosmxdx =0 m=0,1,2,....

By Lemma 11.2.3, G(z) = 0. Therefore F(x) = c. But F(n) =0, so that

F(x) = 0. Accordingly f(x) = 0 almost everywhere.

CororLLArRY 11.2.5. The sequence of sines and cosines satisfies all the
conditions A-F of Theorem 8.9.1 for f e L} —m, w). In particular, we have
the Parseval identity

1 ” ©
g f_ [f (@) dzx = 3a,® + ”2_:1 (@, + b,2)
’ i (11.2.7)
a, = z f f(z) cos nx dz, b, = 1 J f(2) sin nzx dz.
mJ—7 mTJ—n

11.3 The Miintz Closure Theorem. Suppose that one has been given
a sequence of powers {z?+}. Under what circumstances can continuous func-
tions or functions in L? be approximated by linear combinations of these
powers? Miintz gave an extensive discussion of this problem and used a
method that is a beautiful application of Theorem 8.7.4.
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Lemma 11.3.1 (Cauchy). If
1 1 1
a, + by ay; + by a, +b,
= ) (11.3.1)
1 1 1
an+bl a’n+b2 an+bn
then
H (a; — aj)(bi - bj)
D, =1 (11.3.2)

T1 (@ + b))
,j=1

Proof: Regard the a;’s and the b,’s as 2n independent variables and think

of D, as expanded and put over a common denominator. This common
n

denominator is T] (a, + b,). Each individual term is of degree —1 so that
i=1
D, is of degree ]—n The common denominator has n* factors and hence is
of degree n2. It follows that the numerator must be a polynomial of degree
n? — n in the a’s and b’s.
Note that if @, = a;, the ith row and the jth row of D, will be identical,
and D, = 0. A similar observation holds if b, = b,. It follows that the

n n
numerator must contain a factor of the form [J (a; — a;) TT (6; — b,).
i>j i>j

—1
Each product here contains 1 +2 + --- 4 (n — 1) = n(nT) factors so

that the complete product contains n(n — 1) factors. The degree is there-

fore correct and we must have
n
) .(ai - aj)(bi - bj)
7>
D,=c¢,~—;
.Hl(ai + bj)

)

(11.3.3)

where ¢, is a constant independent of the a’s and b’s. We shall show that
c,=1.

1 1
a, + b, a, +b,
Note that a,D, =
aﬂ an
a’n + bl an + bn
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Therefore,
1 1
a, + b, a, +b,
a},l—lanuoa”D” - .
1 1
n—1 + b n—1 + bn
1 1
Also
1 1
.. 0
a, + b, a +b,_
}ll—l>neo ali—lpcoa”D” - *
1 1
0
n—1 + bl n—1 + b
1 1
so that
D
lim lim 222n
— 0 a,,—»oo n—1
But from (11.3.3),
n-—1 n-—1
anDn _ ﬁ_ a, ;"[-'[=1(an - aj)_;'l;[l (bn - by)

=D

n n—1
D”—l Ont ]._.[ (an + bJ)I-_[] (bn + a:r')
j=1 ji=

it follows that
c”

"_1

n—1

a,D
lim lim =
n > © Gp—> 0 D

Cn—1

Therefore, ¢, = c,,_

Lemma 11.3.2. Let p; # p;. Then, assuming p,, ¢ > —1,

THE MUNTZ CLOSURE THEOREM

n—1’
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(11.3.4)

(11.3.5)

(11.3.6)

(11.3.7)

(11.3.8)

.- It is easily verified that ¢, = 1. Hence ¢, = 1.

0% = mmf |x“-—alx”l—a2x"=—-~~-—ax"n|2dx
n 2
i — 4
II{ ? }.
2q+ls=1 p;+a+1
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g(x9, xP1, P2, . . ., xPn)

lProof: From Thleorem 8.74, 6 = g(x?, x?x, .., aPn) Now (2%, zf) =
f 2% dx = ————— . Therefore
0 a+pg+1
1 1

p+p+1 a P+ p,+1

gxr, ..., xP) =
1 1
pn+pl+l pn+pn+l
n n
= H(Pi — D) 1_[ (p; +p; + D)
1>] 1,j=1
A similar expression is found for g(z?, z?, . . ., 2%»). We then have
g(x?, 2P, . . ., xPn)
g(xP, . .., zPr)

(@ — P)Hg — P2)* - (g — p,)°
(@+p+1g+p.+1) - (g+p,+1) (g+g+1)py+14+9) - - (P +149)
__! {r_le—»p
20+ lici (g +p, + 1)

THeorEM 11.3.3 (Miintz). Let {x®} be a given infinite set of distinct
powers with p > —3%. In order that this system be closed in L*(0, 1) it is neces-
sary and sufficient that the exponents {p} contains a sequence {p;} such that
either

@
lm p; = —4, ‘El(p,- +4) = oo, (11.3.9)
<
or
lim p;=p, —}<p<o, (11.3.10)
or
© ]
lim p, = oo, p; #0, > — = oo. (11.3.11)
b

i=1D;

Proof: Note that the condition p > —} insures that x? € L0, 1). The
powers 1, z, 22, . . ., are closed in L*0, 1) by Theorem 11.2.1. Hence, {x"’}
will be closed in L?(0, 1) if and only if each power 29, ¢=0,1,..., is
approximable. This follows from Theorem 11.1.8. Thus, for each g, we must
be able to find a sequence p,, p,, . . . , such that

1
lim minf |a? — a,2%1 — ayxPr — - - - — a,xPPdx = 0.
n— a; 0
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Referring to Lemma 11.3.2, for each ¢ we must be able to find a sequence

{p,} such that
fim TT(—2=2) —o (11.3.12)
e i\p g+ 1) o

Sufficiency. Suppose that {p} has a finite limit point p with p = —}. Now
lim P9 _ P4
mep+g¢+1 ptg+1

Since p > —3 and ¢ > 0, it is easily verified that —1 < .

o p+qg+1
Given an &> 0, we have for 7 >n, Piq ' < 1 — &. Hence,
(11.3.12) holds. p;+q+1

Suppose we can select a sequence {p,} with (11.3.9) holding. Write

. . _ . p;+ 3%
Since ‘an; p; = —3, we have, ultimately, 0 < ‘IT% < 1. Therefore,

(11.3.13)

P+ 3
o<l ———<1
9+13
and the numerator of the right hand of (11.3.14) remains bounded. More-

over, since f P+ 1)
i<1q+1%

(11.3.12) is therefore fulfilled.
Finally, suppose we can select a sequence with (11.3.11) holding. Write

lﬁl(u)2 = ﬁ(l ~ 1)2 ﬁ(l + %;)2. (11.3.15)

i=i\p; +qg+1 i=1 P/ i=1 i

= oo, the denominator diverges to + cot. Condition

In view of the hypothesis, the numerator converges to 0 while the denom-
inator diverges to + co. Hence criterion (11.3.12) is fulfilled.

Necessity. Suppose that the set of exponents {p} contains no sequence {p,}
fulfilling either (11.3.9, 10, or 11). Then {p} must be either

L

(A) a sequence {p,} with lim p, = —}, > (p; + }) < 0, or
1— i=1

31
(B) a sequence {p,} with lim p, = 0, 2 — < 0, or
11—+ i=1 p‘

(C) a sequence {p,} which can be split into two sub-sequences {r}, {s;},
one of type (A) and one of type (B).

1 See, e.g., K. Knopp [1], p. 219.
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In case (A), refer to (11.3.14). Select a g # p,, Py, - . . . The numerator
converges to zero if and only if one factor vanishes. This is impossible and
hence the numerator has a positive limit. Similarly, the denominator con-
verges to a positive limit. This means that (11.3.12) does not hold and z?
cannot be approximated arbitrarily closely by x?1, %2, . . ..

In case (B), refer to (11.3.15). If ¢ # p,, p,, - . ., then the numerator and
the denominator of its right hand side converge to a nonzero value. Again,
arbitrarily close approximation of z? is impossible. @ r,—gq YV

In case (C), select 71y T oo} 81, 8g, - ... Set (i—)=a,

B ()2 qF T, T 1> S2 zl:!r,~+q+l
H(M) = b, where, as we know from the discussion, 0 < a < o0;
i=1\s; +q+1 - .
0 < b < co. Then, H(—u) — ab. Again, (11.3.12) does not hold.

p;+q+1

=1

THEOREM 11.3.4 (Miintz). Let {p} be a sequence of distinct nonnegative
numbers. In order that {x*} be closed in C[0, 1] it is sufficient that

One of the p’s 1s 0 and {p} contains a sequence {p;}

1
for which lim p, = 0 and D — = oo, (11.3.16)
e i=1P;
p;#0

or that
One of the p’s is 0 and {p} contains a sequence {p,}

Sor whickilirg p,=p 0<p< oo (11.3.17)
Proof: Let n > 0, p; > 0, then
c z N a,ptP-1
" — z a‘x”f =n f (tn—l — z a;p; ) dt‘
t=1 0 i=1 n
1 N g.ptPi-1
< ”f - 3 (11.3.18)
0 =1 N
1 N gptPi-t|z \b
< n(f g1 — E‘L dt) .
Y i=1

131 & 1
If (11.3.16) holds, p, — 1 — o0, and 52— < zp—l = oo0. The set of
p; i T
functions x?1—1, 221 . . . is therefore closed in L*0, 1]. By the inequality
N
(11.3.18), for n — 1 =0,1,2,..., max [z" — Zaix”f can be made
0<z<1 i=1
arbitrarily small by appropriate selection of a, The set x%1, x%2, ..., is
therefore closed in z, 2, .... By adjoining 1, the augmented set will be
closed in 1, z, 22, . . . and hence in C[O0, 1].

Suppose next that (11.3.17) holds and that p > }. According to Theorem
11.3.3, {#7-1} will be closed in L?[0, 1] and the remainder of the proof is as
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above. If, however, p < }, select a constant ¢ > 0 such that c¢p; > 3, ulti-
mately. Then, {x°?{} is closed in C[0, 1]. Take an f(x) € C[0, 1] and let
g(x) = f(z°). For appropriate constants a,.

n
mox, 1@ — Sagen| <o
sr= i=1
Setting 2’ = z°,
n
’ _ Ip
omex, |f@) — 3 aa™

11.4 Closure Theorems for Classes of Analytic Functions

LeEMMA 11.4.1. Let C be a rectifiable arc (with end points a and b included)
of length L. Let f (z) be defined on C, be continuous, and have w(d) as its modulus

of continuity. Let zy = a, 2y, . . ., 2, = b be points of C taken in order along
C. Suppose that |z — z;| < 6 for z in the arc z2,,,, t=0,1,...,n —1.
Then,
n—1
i f f@)dz — 3 f)zm — 2) | < w(d)L. (11.4.1)
c i=0
n—1 n—1 z; .,
proof: | [ 108 "3 e = 20| = |8, [0 s

n=1 (*z;4,
<3 | T —reds.
1=0Jz;
Along C from z; to z,,,, we have |z — z,| <  so that |f(2) — f(2;)] < w(9).

Hence, E fl@) —flz)lds < E w(0 f2i+lds = w(d)L.

DEeriniTION 11.4.1. A Jordan curve in the plane is a homeomorphic image
of a circle. That is, it is a point set whose points (z, y) can be represented
parametrically x = f(0), y = g(6) where (a) f and g are continuous and
periodic functions of period 27 and (b) f(0,) = f(0,), 9(0,) = 9(0,) implies

1
that — (6, — 0,) = integer.
2m
In the work that follows, some facts about Jordan curves will be used

without proof.

THEOREM 11.4.2 (Runge). Let C be a Jordan curve and let f (z) be analytic
in the interior of and on C. Given ¢ > 0, we may find a rational function R(z)
whose poles lie exterior to C and such that

[f(z) — R(x)| < ¢ (11.4.2)
for z inside and on C.
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Proof: We may find a contour C’ consisting of a finite number of analytic
arcs which contains C in its interior and inside and on which f(z) is still

t
analytic. For z inside and on C, f(2) = 2— f(—) dt. For arbitrary ¢,
1
—f(t t)(t, —
and g, L0 T ) —f) S 0 o that
thh—2z ty—z2 t, — 2 (t; — 2)(¢, — 2)
f) S| [If(tl) —f)l | 1fC 18y — tzl]
h—z fp—z| Ity — 2| lty — 2| [ty — 2|
C' ot
G
C
l
(a)
Figure 11.4.1. Figure 11.4.2.

Now let ¢, and ¢, lie on €’ and |f, — t,| < 8. Furthermore, set w(d) = the
modulus of continuity of f on C', M = max |f(z)], and p = minimum dis-

tance from C to C'. Then, for z in and on C and ¢ on (',

ft) Sl

h—2 ty—z

w(d) Mé
—+—-
PP

f(@)

Therefore for ¢ on C', ;

is uniformly continuous for z in and on C: It

has a modulus of continuity €(d) independent of z.
Given an ¢ > 0. Let L’ be the length of C’. Determine § so small that

Q(d) < 2me/L'. Determine sufficiently many points £o, ¢, ..., ¢, = t; on C’
so that |t — ¢ <d,tett, ,,i=0,1,...,n— 1. By Lemma 11.4.1,
f@®)de 1 "SH () Q@)L
ﬁ o -t——_z — % zot (tz+1 )| < T < ¢. The rational func-

Z f(t )(t1+l )

tion R(z) = 2711, .
i=

fulfills the requirements of the theorem.
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THEOREM 11.4.3 (Runge). Let C be a Jordan curve and let A(C) designate
the linear space of functions that are analytic inside and on C. Then the powers
1,2,22 ..., are closed in A(C).

Proof: We shall show first that if ¢ is a fixed point exterior to C, the

particular function can be uniformly approximated inside and on C.

There are two cases to consider. (A) The point ¢ lies so far from C that a
line £ can be drawn separating ¢ and C. (B) No such line can be drawn. In
case A, it is clear that we can draw a circle G that contains C in its interior
and such that ¢ separates ¢ from G.

(B)
Figure 11.4.3.

Let z, be the center of G. Then we have,

L _ 1 L 27% (11.4.3)

t—z t—z  (t — 2z)?

z2— 2

This series converges uniformly in z for < p< 1. All points z in

— 2
G and hence inside and on C satisfy this inequality. The convergence is there-
fore uniform inside and on C. If & > 0 is prescribed, we need only take

sufficiently many terms of (11.4.3) and arrive at a polynomial z which

uniformly inside and on C.

approximates ;

A simple modification of the expansion (11.4.3) allows us to conclude as

c
much for the particular functions m " n=1,2, ..., and hence for
z

any polynomial in ;

In case B, we proceed as follows: Since C is bounded, we can go out far
enough and find a point #* that can be separated from C by a line £. Join ¢
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and £* by a curve L lying exterior to C. Let d be the minimum distance from

L to C. Select a sequence of points on L, t = {, t;, ..., ty = t*, such that
by — 8l <d,i=0,...,N —1. Now
1 1 t— 1t t—t,)?
- _ 1 ( )® (11.4.4)
t—z bt —z (t,—2)2 (4, —2)®
- . t—4
This series converges uniformly and absolutely for ; < r < 1; hence,
1 — 2

in the exterior of every circle |z — ¢,| > - |t — #,|. Since |t —¢,| < d, the
r

series converges uniformly inside and on C. If ¢ > 0 is prescribed, we can
therefore find an integer N, such that

=)
— Py |——
t—2z N\ — 2

where P, designates an appropriate polynomial of degree N, :
N, pprop 1

1 M4
P =y k|
M (tl — Z) kgo (tl — Z)k

A
r"z)k by a polynomial in

< %} ,zinside and on €,  (11.4.5)

By a similar argument, we can approximate

. Combining

1
P uniformly inside and on C up to an error of W—f-f‘l)

1
these individual approximations, we arrive at a polynomial PN’( )
such that by —2

o) -l
Nltl—-z N’tz—z

<N’ z inside and on C. (11.4.6)

We can therefore set up a chain of approximations,

1 1
P —P
wl=) — Pl | <

Once we have arrived at ¢, = t*, we use case A to change to an approxima-
tion in powers of z:

1
PN,,(t —z) — P(z)

The grand combination of these inequalities leads to

€ z inside and on C,
2N’ k=12,...,N—1.

(11.4.7)

€
< 3 z inside and on C.

1
— — P@3)

pp— <e, z inside and on C (11.4.8)

for an appropriate polynomial P(z).
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The theorem is now completed by using Theorem 11.4.2. Let f(z) be

analytic inside and on C. Then we can find points ¢, . . . , £, exterior to C
and constants a,, . . . , a,, such that
M
a, € ..
fz) — <-, z inside and on C. (11.4.9)
k=12 — 8| 2

But for each k, we can find a polynomial Py, (2), of appropriate degree
M,, such that

A

gi, zinsideandon C, k=1,2,..., M.

— Pu@) =5y

z2— 1

(11.4.10)
By combining these inequalities we obtain a polynomial P(z) for which
|f(z) — P(2)] <e, z inside and on C.

Theorem 11.4.3 can be extended. It is sufficient to assume only that f(z)
is analytic inside C and continuous inside and on C. The proof of this exten-
sion depends upon a continuity theorem for mapping functions. We cannot
go into this matter in detail. It must suffice to present the leading ideas.

Let B be a simply connected region whose boundary is a Jordan curve.
A sequence of bounded simply connected regions B, will be said to con-
verge to B from the outside if

(A) Each B, contains B (the closure of B).

(B) B, contains B, ;.

(C) The set B, N\ B, N - - - contains no point exterior to B.
For each B, we can find such a convergent sequence. Let z = 0 be interior
to B. Map B, conformally onto the unit circle [w| < 1 by means of ¢,(z).
B is mapped by #(z). These mapping functions are fixed by requiring that
#,(0) = $(0) = 0; ¢,/(0) > 0, $(0) > 0. Map B, onto B by means of w =
Ma(2); Mn(0) = 0, m,/(0) > 0.

TuEOREM 11.4.4. With the above notation,
Jim 4,(2) = ()

lim m =z
Jim m,(2)

(11.4.11)

the limits holding uniformly in B.
For a proof of this theorem, the reader is referred to Walsh [1], p. 32.

DEriniTION 11.4.2. Let C be a Jordan curve lying in the z-plane. W(C)
will designate the normed linear space of functions that are analytic in C
and continuous inside and on C. The norm is defined by

I I} = max [f(2)]. (11.4.12)
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THEOREM 11.4.5 (Walsh). The powers 1,z,22%, ..., are closed in W(C).

Proof: Let C be the boundary of the finite region B. Let B, be a sequence
of simply connected regions that converge to B from the outside. Let f(z)
be analytic in B and continuous in B. Then f(m,(z)) will be analytic in B.
Given an &, we can by Theorem 11.4.4 select an » such that

€
If(mp2)) —fl@l <5, z€ B.
By Theorem 11.4.3, we can find a polynomial P(z) such that
€
[f(m,(2)) — P(z)| < 30 € B.

Combining these two inequalities yields the required approximation.

Uniform approximation in the complex plane by polynomials has one
feature that distinguishes it sharply from the real case. If a sequence of
analytic functions converges uniformly in a region, the limit of the sequence
is analytic. Thus, in regions, at least, only analytic functions can be approxi-
mated uniformly by polynomials. However, this does not rule out the possi-
bility of more general functions being approximated uniformly on sets that
lack interior points. Nor does it rule out the possibility of several distinct
analytic functions (noncontinuable one to the other) from being simul-
taneously approximated over mutually exterior regions.

A half century of work on the problem of uniform approximation in the
complex plane by such mathematicians as Runge, Walsh, Lavrentieff,
Keldysch, and Mergelyan has led to the following definitive theorems.

DErFiNITION 11.4.2. A closed set S in the plane will be said to separate
the plane if the complement of § is not connected.

(1) (B)
Figure 11.4.4.

THEOREM 11.4.6. Let S be a closed bounded set that does not separate the
plane. Let f(z) be continuous on S and be analytic at interior points of S.
Then f (z) may be uniformly approximated on S by polynomials.
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We formulate a converse as a separate theorem.

THEOREM 11.4.7. Let S be a closed bounded set. If every function f(z) that
s continuous on S and analytic at its interior points can be approxvmated
uniformly on S by polynomials, then S does not separate the plane.

Ex. 1. Let By, By, ..., B, be n mutually exterior bounded regions, with
contours Cy, ..., C, as boundaries. If f; is analytic in B, and continuous in
T?k, k =1,2,...,n, then even though the functions f, may have nothing to do

with one another (i.e., are not analytic continuations of one another) we can
find a sequence of polynomials that converges uniformly to f; in B; simul-
taneously fork =1,2,...,n.

Ex. 2 (Walsh). Let C be a Jordan arc. If f(z) is continuous on C then it can
be approximated uniformly by polynomials in z. When C is a segment of the
real axis then this reduces to Weierstrass’ theorem.

We terminate this section with a discussion of the closure of the powers
1,2, 2% ..., in the Hilbert space L% B). Here again, the nature of the region
B plays a crucial role.

A bounded region B of the complex plane whose boundary C is a Jordan
curve has the following property: the complement of B U C is a single
simply connected region whose boundary is exactly C. The class of regions
with this property is more extensive than the regions bounded by Jordan
curves. For such regions B, the powers are closed in L2(B).

Ex. 3. Bisthedisc|z| <1 with 0 <z < 1 excluded. B does not have this
property, for the complement of B U C is |z| > 1 whose boundary [z| =1 is
only a part of C.

TureoreM 11.4.8 (Carleman-Farrell). Let B be a bounded simply connected
region with boundary C. It is assumed that the complement of B U C is a
single region whose boundary is exactly C. Then, the set of functions {z"},
n=0,1,...1ts closed in L* B).

Proof: As in Theorem 11.4.5, the proof depends upon the continuity of
mapping functions.

Let B, be a sequence of regions bounded by Jordan curves which con-
verge to B from the outside. Let w = m,(z) map B, conformally on B,
m,(0) = 0, m,'(0) > 0. We assume that z = 0 is interior to B. (For the
possibility of this type of convergence and for the uniform continuity of
the mapping functions, (11.4.11), the reader is referred to Walsh [1], p. 35.)

Let f(z) € L*(B). Consider the composite function

[a(z) = f(m,(2))m,’(2). (11.4.13)
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fna(2) is analytic throughout the interior of B,. We shall show first that
nlixg .[flf(z) — [a(@)|2dxdy = 0. (11.4.14)
B

Let B’ designate any closed Jordan region contained in the interior of B.
Then,

i [1r = fapasay = i f - ppdin s f i 1= fpdsdy. (1419

Now m,(z) —z, m,'(z) — 1 uniformly on B’. Hence, f,(z) — f () uniformly
on B’ and this implies thatfflf — fol?dx dy — 0. Now, since [f — f,|2 <
2|12+ 21505

ff |f — fol2dzdy <2 ff |f|12dxdy + 2 ff |fal2dxdy. (11.4.16)
B-B B-p BB

Given an ¢ > 0, since fe L* B), we may select a closed set G = B such

thatff[f |2 dx dy —ff|f |2dx dy < ¢/6. If B’ is now chosen so that G < B’

we have 2 f |f lzdxdy < ¢/2. Now,

f f a2 de dy = j f | a2 [my ()] de dy = f f \f )2 dd,
B-B’ B-B’ Sp

where S, is the image of B — B’ under w = m,(z) and where d4,, is the
area element in the w variable. Now, by the continuity of the mapping
function, for sufficiently large », S, lies in B — B’ and hence, as we have
just seen,

2 ﬂ |fal2dz dy < /2. (11.4.17)

Combining these inequalities leads to (11.4.14).
Since f,(z) is analytic throughout B,, it is analytic in B, ,. Hence by
Theorem 11.4.3, we can find a polynomial p(z) such that

[fal2) —p(2)] <&, zeB,,, (11.4.18)
and therefore

g |fal2) — p(2)|2dzx dy < ﬂ |fal2) — P(2)[2 d dy

< 82 -area of B, ,, < &% area of B,,

(11.4.19)
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By combining (11.4.14) and (11.4.19), we can find a polynomial p(z) such
thatfﬁ f(z) — p(z)|2dx dy is arbitrarily small. The powers are therefore
B

closed in L?(B).

CoroLLARY 11.4.9. If B is a region as tndicated, then orthonormal poly-
nomials, k,z" + - -+, k, > 0, in L%(B) possess the properties A-F of Theorem
8.9.1.

11.5 Closure Theorems for Normed Linear Spaces. One closed
system may be used to generate other closed systems.

THEOREM 11.5.1. Let X be a Banach space (i.e., a complete normed linear
space). Let {x,} be a sequence that is closed in X and such that

lim sup ||z, V" =0, 0 <0< . (11.5.1)

n—
Let {z,} be a sequence of distinct complex numbers such that
0< |z, <p<o™ (11.5.2)
Then the sequence of elements

@
Yn= D2 %, n=12..., (11.5.3)
18 closed in X. k=1

Proof: By equation (11.5.3) we mean, of course, that

m
Jim iy, —kglz""xk =0, n=12,...
L
To show that the series Y z*x, converges to an element y (we omit the sub-
k=1

scripts), consider the sequence of elements

P
Yy = 2k, (11.5.4)
Now, k=1
q
D
k=p+1

-
In view of (11.5.1), the radius of convergence of the power series Y ||| 2*
¥=1

"y(?’+4) — y(?) “ ==

q
< D el 2% (11.5.5)
k=p+1

is 071, so that for z in the range |z| < p, this series is convergent. For a given
€ > 0, we can find N so large that forallp > N andallg > 1,

q
2 el 124 < e

k=p+1



282 THE THEORY OF CLOSURE AND COMPLETENESS Ch. XI
The same holds for [jy*+? — y(®||. The sequence {y'”} is therefore a Cauchy
sequence. Since X is a complete space, there is a y such that
Jim |y —y®| = 0.
Let L € X*, then |L(y) — L(y™)] < |Z] |y — y|. Hence,
L(y,) =k§0L(xk)zn", n=12....

Consider now the power series f(z) = > L(x,)z*. We have
k=0

[ L(z )| < ILI| [l

Therefore, by (11.5.1), f(2) is analytic in |z| < ¢~1. Suppose that L(y,) = 0,
n=1,2,...; then f(z,) = 0. Therefore the zeros of f(z) have a limit point
interior to |z| << o~1. By the uniqueness theorem for analytic functions,
f(2) = 0. This implies that L(z,) =0, » =1,2,.... Since {z,} is assumed
complete, it follows that L = 0. Thus, the only solution of L(y,) =0,
k=1,2,...,is L = 0. By Theorem 11.1.7, {y,} is closed in X.

CoroLLARY 11.5.2 (Szész). Let F(z) = ZCkz", ¢, real, be a ﬁxed ‘power

series and let r > 0 be its radius of convergence Assume thatz — =
n=1

where k, < ky < - -+ is the sequence of all those integers > 1 for which ck #0.
If now {t,} is a sequence of distinct real numbers satisfying

o<t <n<r, (11.5.6)
then the sequence of functions

fo@)=Fta), n=12,..., (11.5.7)

1s complete in L*0, 1). If ¢, 7% 0, it is also complete in C(0, 1).
Proof: Set z, = c¢,x". Theorems 11.3.3 and 11.3.4 imply that {c,2"} is
closed in L*0, 1] and in C[0, 1]. Now, [l¢,2"[c(0.1) = l¢,| and |lc, 2|l 120.1; =

lcnl . .
——2 . Hence, lim sup |[c,z"|V" = lim sup |c,|V" = 1/r. The corollar
o m sup lleaz™| ”wpl al / y

now follows.

Ex. 1. Let F(z) = (1 + 2)® where s is real and # 0,1, 2,.... Under these
conditions, none of the Maclaurin coefficients of F(z) vanishes, and r = 1. Let
{t,} be a sequence of points satisfying |t,| <1 —e,n = 0,1,....Then, (1 + t,z)*

is complete in L0, 1] and in C[0, 1].

A sequence that is ‘“‘sufficiently close” to a complete sequence is itself
complete. We present two theorems to this effect.
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TueorEM 11.5.3 (Birkhoff). Let H be a Hilbert space and {x,*} be a
complete orthonormal system. Let {y,*} be a second orthonormal system. If

lz* — y,*|* < oo, (11.5.8)
1

iMs

then {y,*} is also complete.

Proof: (1) If for some N > 0,

L
D = — X2 < 1, (11.5.9)
NT1
then the system x*, x,*, ..., xy*, ¥ .1, Y% 4o, - - -, is complete in H. For,
suppose there were an element w £ 0 orthogonal to all these. Then
@ (=] @
lwl2= 3w, M2 = 3 |wzNE= 3 |wz*—y**
k=1 E=N+1 E=N+1
@ e
< 3 lwlitllzt — gkl = w2 T lla* — X2 < o],
E=N+1 E=N+1

a contradiction. o
(2) Suppose for some N, > ||lx* — y,*[|? < 1. Set
NT1

4
Z=x*— > (X y*y* k=12,...,N.
j=N+1
Then the system, 2,2, . .., 2y, YN 11> YN 42 - - - » is complete in H. For let

w be orthogonal to these elements. Then

0= (w’ zk) = (w) xk* - 2 (xk*v yy*) yj*)

j=N+1
‘w0
= (wv xk*) - Z (xk*’ yy*) (w’ yf*) = (wv xk*)'
j=N+1

Therefore (w, 2,*) =0,k =1,2,..., N. By part (1), w = 0.
L
To prove the theorem, select N so large that > |lz,* — y,*[|2 < 1. Let S
N¥1

designate the orthogonal complement of {y% ,,, ¥% .0, - . .}, i.e., the set of all
elements orthogonal to these elements. For j > N 4+ 1,and for1 <k < N,

@
(2 45*) = (3%, y;*) — E (@*, ¥,")Y,* ¥*) = (@5 y,*) — (8%, y;%) = 0.
p=N+1
Hence z;,2,,...,2y € 8. Since 2, . . ., 2y, Y% 11, - - - , is complete, S cannot
contain elements other than linear combinations of 2, ..., zy. Thus, S is

a finite dimensional space of dimension < N. Note further that the elements
y1*, yo*, . .., yy* arein S. Since they are orthonormal, they are independent
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and hence span S. The elements z,. 2, . . ., z are therefore linear combina-
tions of y*, y.*, ..., yy*. If, therefore, (w, y,*) =0,k=1,2,..., it
follows that w1 2,25, ..., 2y, Y% 41, . . ., and hence w = 0.

THEOREM 11.5.4 (Paley-Wiener-Boas). Let X be a normed linear space
and suppose that {x,} is closed in X. If {y,} is a sequence such that for some
number A, 0 < A << 1, and for all finite sequences of constants a,, ay, . . . , @,
we have

<i , (11.5.10)

n
Z @ (T, — Y)
k=1

then {y,} is also closed in X.

Proof: Let X; be the subspace of X spanned by {x,}. That is, X, consists
n
of all finite linear combinations > a,x,. Let L € X* with L(y,) =0, k =
=1
1,2,.... We shall estimate the norm of L on X;.

[H(Zee) | = | =]
3o

Hence, over X;, the norm of L does not exceed A|| L] .
By Theorem 11.1.5, we may extend L to the whole of X without increas-
ing the norm. Call the extension F':

< |IL|

n
2 e — Yi)

< AlL|

F(x,) = L(x,), k=1,2,..., (11.5.11)
IF)l = L],
Now, since {z,} is complete, F(z,) — L(z,) =0, k=1, 2, ..., implies that

F = L. Therefore |L| = | F| = || L]y, < A|L|. Since 0 < l < 1, this im-
plies that L = 0. Therefore {y,,} is complete and closed in X.

CoroLLARY 11.5.5. Let H be a Hilbert space and let {x,*} be a complete
orthonormal sequence. Let {y,} be any sequence such that

n
Z (T * — Yy)
k=1

for every sequence {a,} of complex members. Then {y,} is also complete. In
particular, (11.5.12) holds if

‘< A}nj la 2. 0<d<1 (11.5.12)
k=1

glllxk* —glP=A<1l (11.5.13)

2
so that (11.5.12) implies (11.5.10). Note that

n
Proof: > |2 =
F=1

n
Z ax,*
¥=1
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under the assumption (11.5.13),

n

Z (@ — )

k=1

n

<A (élmkp)*

CoroLLARY 11.5.6 (Schifke). If (11.5.10) holds with 0 < A < %, then {y,}
is closed if and only if {x,} is closed.

so that (11.5.12) holds with A} replacing A.

Proof: We need only show that {y,} closed implies {x,} closed. From

n
kglakxk E Y Z WXy (|-

‘kl

Combining this once again with

(11.5.10) and the triangle inequality, <A

n n
el <] S0

(11.5.10), we have

Hence,

(11.5.14)

N T

A
Now if 0 < A1 < } then 0 < 3 <1, and (11.5.14) implies by Theorem
11.5.4 that {z,} is closed. B

Ex. 2 (Duffin-Eachus). Let L¥ —u, =] designate the space of complex valued
functions of a real variable which are measurable on [ —, #] and for which

f.f) = f@)f@) de < . Let {A,},n =0, £1, £2,..., be a sequence of

complex numbers such that
log 2

|4, —n| <o < =.22--,m =0, £1, £2,....  (11.5.15)

Then the sequence of “nonharmonic” oscillations {e!*»%}i s complete in L2[ —, =].

Proof : For simplicity of notation, think of the integers n =0, +1, +2,...,
as indexed Iy, I,, . . . , and designate 4; by 4,. 14, — I,] <o,n =1,2,.... As
i,z

_2_} is a complete orthonormal set for

Uy

L% —#, 7). Furthermore, if f € L% —, ], then

one can verify using Theorem 11.2.4, {

» }
Jlif ()| = (f_ fecif (x)lzdx) < ||f|l.

In Corollary 11.5.5, set
1 . eilkx
xk* = —— ellkx, Y = —=.

Vor Vor
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Then
1
— x ¥ = —=¢li® (i —TT _ 1),
Y 3 vz, ( )
For arbitrary constants a,, . .., a,,
n L0 el 2 4i(}, — I
ap (Y — *) re—
121 b * 121 Vo 2mj=1 !
© ] el © ] etlx®
= —al D apti(A, — L) — | < =127 D a4 —I)’—:
}zl Jt ; KR * \/217 z 1J! kz ek * Ven
L) o _j/ n 3
= Z - L)y —= i Z (Z|ak|2uk —Iklz’)
j=1J! j=17' \k=1

i n '
5?2 (Zlakiz) (e —n(}gllakl*).

]1.7'

2
,e°" — 1 < 1, and condition (11.5.12) is fulfilled.

Ex. 3. Let {h,*(z)} be complete and orthonormal for L¥B). If f,(z) € L*B)

]
and if 2 f |ha*(2) — fr(@)|2dzdy < 1, then {f,}is complete in L¥*B). In par-
Vo + 1 + l

— fa(?) dx dy <1 implies

ticular, if B is the unit circle, z ff
that {f,} is complete.

NOTES ON CHAPTER XI

11.1 Davis and Fan [1] has a generalization of Theorem 11.1.7.

11.2-11.3 Kaczmarz and Steinhaus [1], Natanson [1].

11.4 Walsh [2], Chapter I. Behnke and Sommer [1], pp. 244-249. For
a proof of Theorems 11.4.6, 11.4.7 see Walsh [2], pp. 367-371.

11.6 For Theorem 11.5.1 Kaczmarz and Steinhaus [1], p. 145, Davis
and Fan [1]. Theorem 11.5.3 is due to G. D. Birkhoff. The present formula-
tion and proof is due to G. Birkhoff and G.-C. Rota [1]. For Theorem 11.5.4,
R. P. Boas [1], Davis and Fan [1]. For additional references to this type of
result see Buck [3], pp. 349-350.

PROBLEMS
1. If {x,} is complete in X and if x; = ay;y,

Ty = ¥y + GpY2

then {y,} is complete in X.
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2. In ¢% z; = (ay;,0,0,0,...)
Ty = (@gy, @99, 0,0,0,...)

x3 = (a3, agy 233, 0, 0,0, .. .)

If a;; > 0, prove that {z;} is closed.
3. If a sequence {z,} is complete for a space X, it is complete for every
subspace.

1
4. Let w(x) € C[0, 1] and 1::(—95) > ¢ > 0 there. The set {w(x)f,(x)} is closed in

L0, 1] if and only if {f,(z)} is.

5. Discuss the second Riemann derivative (Prob. 15, Ch. 1) as an extension
(in the sense of linear functionals) of the ordinary second derivative.

6. If p(x) is a convex functional defined on a linear space X, the set of elements
x defined by p(x) < c is convex.

7. If C is a convex set in a linear space X, a boundary point of C may be
defined as a point x for which we can find two line segments x,z and xx, such
that all the interior points of x,x are in C while none of the interior points of
xx, are in C. Prove that the boundary of p(z) < ¢ is given by p(z) = c.

8. Let X be a normed linear space and Y a linear subspace. Let zy € X but
¢ Y. A necessary and sufficient condition that ,1,25 ly — =zl <d is that if

1
LeX*and L(xy) =1, L(y) =0,y€ Y, then | L|| > 7

9. Give a second proof of this theorem in a Hilbert space.
10. The interval [a, b] is divided into n equal parts at a =2y <z, <---
<z, =b. A function f(z) is in C[a, b], is linear between the z; and z,,,, and
f(z;) =y; = rational. The set of all such f’s,n =1, 2, ..., is denumerable and
closed in C[a, b].

x
11. Let T,(x) = o 0 <z <r;T(x) =1,r <z < 1. If r, is the sequence of
rationals lying in 0 <2 <1, is {T', (x)} closed in L*[0, 1]?

12. Two solutions in L2%[0, 1] to the moment problem

1
ff(alc)alc"=m,l n=01...,
0

must be equal almost everywhere.
13. S consists of a finite or infinite set of disjoint closed intervals in [0, 1].
Prove that S is uniquely determined by its moments

m, =fx"dx, n=20,12....
S

14. Remove one term from the trigonometric set of Theorem 11.2.4. The
resulting set is not complete in L% —m, 7].
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15. Let 0 <a <. Set f(x) = —1for —7 —a <2 < —m + a, f(x) = 0 for
—r4+a<zx<m—a,f(x) =1forr —a <z <z + a. Show that

w+a :
f () sinnz o

Cmea cos nx

Hence, show that 1,sinz, cosz, ..., is not complete in L2, d] with ¢ < —m,
d > 7.
16. Consider the space of complex valued functions of a real variable x that

are measurable on [ —, 7] and for whichf |f(@)|2dx < co. Prove that the set
-7

of functions {¢"*}n = 0, +1, +2, ..., is complete in this space.

17. Let H, be the n X n matrix whose ¢, jth element is - - .

' ] o - —1pp  *+i—1
Hilbert matrix.) Show that det H,, = Losl @ 1) Obtain an asymp-
totic expression for det H, as n — o and compare with the exact value when
n = 4.

18. Let a;, b; be distinet and set

(The

A@) = (@ — a)(z — ap) -+ (@ — ap),
Blz) = (@ — bz —by) - (& — by,
A@)
4@ = e —ap’
B i(x) Bie)

T B —b)’

If C designates the matrix ( ) , then C~1 = (c;;) where

a; —b;

c;; = (a; — b;)A;(b;)B;(ay).

)it P — 1)t P 1)

19. If H,! —s,,, then s,, =¢(+ 1') - (n -'i-z 1)'.:n +J" 1) .
(Cf. Prob. 17’) J — [(7‘ - l)' (j - 1)‘] (n - /L)‘ (n _j)'

20. Is the set of functions z, x*, x%, ..., closed in C[0, 1]?

21. The set of functions 219'°, z19°+1, 2102 g closed in L2[0, 1].

22. Let p, be the nth prime number. Then z?1, P2, . . ., is closed in L?[0, 1].

23. Does the Miintz theorem hold as stated for an arbitrary interval [a, b]?

1

24. Formulate a theorem as to when| f (x)e*ndx =0,n =0,1,..., implies

f@) =o. 0

1
25. If fe L?0, 1] and m, =f f(z)x" dz, then {m,} € ¢2. However, the con-
verse doesn’t necessarily hold. v

1 1 1
26. The sequence s rl'zr2sg3 is complete in L2[0, 1].
27. If 0 < a < b, the sequence 1, log (x + 1), log (x + 2), ..., is complete in

L%a, b].
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28. The sequence f,(2) =nz® n =1,2,..., converges to 0 uniformly on

every closed subset of |2| < 1, but lim [ﬂ Fa(2)|? # 0.
n—

lz| <1
29. Let A(C) be the space of functions that are analytic in C: |z| <1 and
continuous in |z| <1 with | f|| = n}ax | f(2)]. If one of the powers is omitted
from the sequence {z"},n =0, 1, , the resulting sequence is not c