
Next → (https://devblogs.nvidia.com/parallelforall/thinking-parallel-part-i-
collision-detection-gpu/)

← Previous (https://devblogs.nvidia.com/parallelforall/how-implement-

performance-metrics-cuda-fortran/)

Search DevZone

Developer Programs (https://developer.nvidia.com/registered-developer-programs)

DEVELOPER CENTERS(HTTP://DEVELOPER.NVIDIA.COM) TECHNOLOGIES(HTTPS://DEVELOPER.NVIDIA.COM/TECHNOLOGIES)

TOOLS(HTTPS://DEVELOPER.NVIDIA.COM/TOOLS) RESOURCES(HTTPS://DEVELOPER.NVIDIA.COM/SUGGESTED-READING)

COMMUNITY(HTTPS://DEVELOPER.NVIDIA.COM/)

Share:

How to Implement Performance Metrics in CUDA C/C++
Posted on November 7, 2012 (https://devblogs.nvidia.com/parallelforall/how-implement-performance-metrics-cuda-cc/) by Mark Harris

(https://devblogs.nvidia.com/parallelforall/author/mharris/) 1 Comment (https://devblogs.nvidia.com/parallelforall/how-implement-performance-

metrics-cuda-cc/#comments)

Tagged CUDA C/C++ (https://devblogs.nvidia.com/parallelforall/tag/cuda-cc/), Performance

(https://devblogs.nvidia.com/parallelforall/tag/performance/), Profiling (https://devblogs.nvidia.com/parallelforall/tag/profiling/)

In the first post of this series (http://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/) we looked at the basic elements of CUDA C/C++

by examining a CUDA C/C++ implementation of SAXPY (http://devblogs.nvidia.com/parallelforall/six-ways-saxpy/). In this second post we discuss how to

analyze the performance of this and other CUDA C/C++ codes. We will rely on these performance measurement techniques in future posts where

performance optimization will be increasingly important.

CUDA performance measurement is most commonly done from host code, and can be implemented using either CPU timers or CUDA-specific timers. Before

we jump into these performance measurement techniques, we need to discuss how to synchronize execution between the host and device.

Host-Device Synchronization

Let’s take a look at the data transfers and kernel launch of the SAXPY host code from the previous post (http://devblogs.nvidia.com/parallelforall/easy-

introduction-cuda-c-and-c/):

cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);

cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

The data transfers between the host and device using cudaMemcpy (http://docs.nvidia.com/cuda/cuda-runtime-

api/index.html#group__CUDART__MEMORY_1g48efa06b81cc031b2aa6fdc2e9930741)() are synchronous (or blocking) transfers. Synchronous data

transfers do not begin until all previously issued CUDA calls have completed, and subsequent CUDA calls cannot begin until the synchronous transfer has

completed. Therefore the saxpy kernel launch on the third line will not issue until the transfer from y to d_y on the second line has completed. Kernel

launches, on the other hand, are asynchronous. Once the kernel is launched on the third line, control returns immediately to the CPU and does not wait for

the kernel to complete. While this might seem to set up a race condition for the device-to-host data transfer in the last line, the blocking nature of the

data transfer ensures that the kernel completes before the transfer begins.

Timing Kernel Execution with CPU Timers

https://devblogs.nvidia.com/parallelforall/thinking-parallel-part-i-collision-detection-gpu/
https://devblogs.nvidia.com/parallelforall/how-implement-performance-metrics-cuda-fortran/
http://developer.nvidia.com/
https://developer.nvidia.com/registered-developer-programs
http://developer.nvidia.com/
https://developer.nvidia.com/technologies
https://developer.nvidia.com/tools
https://developer.nvidia.com/suggested-reading
https://developer.nvidia.com/
https://devblogs.nvidia.com/parallelforall/how-implement-performance-metrics-cuda-cc/
https://devblogs.nvidia.com/parallelforall/author/mharris/
https://devblogs.nvidia.com/parallelforall/tag/cuda-cc/
https://devblogs.nvidia.com/parallelforall/tag/performance/
https://devblogs.nvidia.com/parallelforall/tag/profiling/
http://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
http://devblogs.nvidia.com/parallelforall/six-ways-saxpy/
http://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1g48efa06b81cc031b2aa6fdc2e9930741

Now let’s take a look at how to time the kernel execution using a CPU timer.

cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

t1 = myCPUTimer();

saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);

cudaDeviceSynchronize();

t2 = myCPUTimer();

cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

In addition to the two calls to the generic host time-stamp function myCPUTimer(), we use the explicit synchronization barrier cudaDeviceSynchronize

(http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__DEVICE_1g32bdc6229081137acd3cba5da2897779)() to block CPU

execution until all previously issued commands on the device have completed. Without this barrier, this code would measure the kernel launch time and not

the kernel execution time.

Timing using CUDA Events

A problem with using host-device synchronization points, such as cudaDeviceSynchronize (http://docs.nvidia.com/cuda/cuda-runtime-

api/index.html#group__CUDART__DEVICE_1g32bdc6229081137acd3cba5da2897779)(), is that they stall the GPU pipeline. For this reason, CUDA offers a

relatively light-weight alternative to CPU timers via the CUDA event API (http://docs.nvidia.com/cuda/cuda-runtime-

api/index.html#group__CUDART__EVENT). The CUDA event API includes calls to create (http://docs.nvidia.com/cuda/cuda-runtime-

api/index.html#group__CUDART__EVENT_1g320ab51604f3a7a082795202e7eaf774) and destroy (http://docs.nvidia.com/cuda/cuda-runtime-

api/index.html#group__CUDART__EVENT_1gff983c870090fcdeec2e948659375079)events, record (http://docs.nvidia.com/cuda/cuda-runtime-

api/index.html#group__CUDART__EVENT_1ge31b1b1558db52579c9e23c5782af93e) events, and compute the elapsed time in milliseconds

(http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1g14c387cc57ce2e328f6669854e6020a5) between two recorded

events.

CUDA events make use of the concept of CUDA streams (http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__STREAM). A CUDA

stream is simply a sequence of operations that are performed in order on the device. Operations in different streams can be interleaved and in some cases

overlapped—a property that can be used to hide data transfers between the host and the device (http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#asynchronous-concurrent-execution) (we will discuss this in detail later (http://devblogs.nvidia.com/parallelforall/how-overlap-data-

transfers-cuda-cc/)). Up to now, all operations on the GPU have occurred in the default stream, or stream 0 (also called the “Null Stream”).

In the following listing we apply CUDA events to our SAXPY code.

cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

cudaEventRecord(start);

saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);

cudaEventRecord(stop);

cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

cudaEventSynchronize(stop);

float milliseconds = 0;

cudaEventElapsedTime(&milliseconds, start, stop);

CUDA events are of type cudaEvent_t (http://docs.nvidia.com/cuda/cuda-runtime-

api/index.html#group__CUDART__TYPES_1gea2f543a9fc0e52fe4ae712920fd1247) and are created and destroyed with cudaEventCreate

(http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1g320ab51604f3a7a082795202e7eaf774)() and

cudaEventDestroy (http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1gff983c870090fcdeec2e948659375079)

(). In the above code cudaEventRecord (http://docs.nvidia.com/cuda/cuda-runtime-

api/index.html#group__CUDART__EVENT_1ge31b1b1558db52579c9e23c5782af93e)() places the start and stop events into the default stream, stream 0.

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__DEVICE_1g32bdc6229081137acd3cba5da2897779
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__DEVICE_1g32bdc6229081137acd3cba5da2897779
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1g320ab51604f3a7a082795202e7eaf774
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1gff983c870090fcdeec2e948659375079
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1ge31b1b1558db52579c9e23c5782af93e
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1g14c387cc57ce2e328f6669854e6020a5
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__STREAM
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-execution
http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__TYPES_1gea2f543a9fc0e52fe4ae712920fd1247
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1g320ab51604f3a7a082795202e7eaf774
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1gff983c870090fcdeec2e948659375079
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1ge31b1b1558db52579c9e23c5782af93e

The device will record a time stamp for the event when it reaches that event in the stream. The function cudaEventSynchronize

(http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1g08241bcf5c5cb686b1882a8492f1e2d9)() blocks CPU

execution until the specified event is recorded. The cudaEventElapsedTime (http://docs.nvidia.com/cuda/cuda-runtime-

api/index.html#group__CUDART__EVENT_1g14c387cc57ce2e328f6669854e6020a5)() function returns in the first argument the number of milliseconds

time elapsed between the recording of start and stop. This value has a resolution of approximately one half microsecond.

Memory Bandwidth

Now that we have a means of accurately timing kernel execution, we will use it to calculate bandwidth. When evaluating bandwidth efficiency, we use both

the theoretical peak bandwidth and the observed or effective memory bandwidth.

THEORETICAL BANDWIDTH

Theoretical bandwidth can be calculated using hardware specifications available in the product literature. For example, the NVIDIA Tesla M2050 GPU uses

DDR (double data rate) RAM with a memory clock rate of 1,546 MHz and a 384-bit wide memory interface. Using these data items, the peak theoretical

memory bandwidth of the NVIDIA Tesla M2050 is 148 GB/sec, as computed in the following.

BW = 1546 * 10 * (384/8) * 2 / 10 = 148 GB/s

In this calculation, we convert the memory clock rate to Hz, multiply it by the interface width (divided by 8, to convert bits to bytes) and multiply by 2 due

to the double data rate. Finally, we divide by 10 to convert the result to GB/s.

EFFECTIVE BANDWIDTH

We calculate effective bandwidth by timing specific program activities and by knowing how our program accesses data. We use the following equation.

BW = (R + W) / (t * 10)

Here, BW is the effective bandwidth in units of GB/s, R is the number of bytes read per kernel, W is the number of bytes written per kernel, and t

is the elapsed time given in seconds. We can modify our SAXPY example to calculate the effective bandwidth. The complete code follows.

#include

__global__

void saxpy(int n, float a, float *x, float *y)

{

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

int main(void)

{

 int N = 20 * (1 << 20);

 float *x, *y, *d_x, *d_y;

 x = (float*)malloc(N*sizeof(float));

 y = (float*)malloc(N*sizeof(float));

 cudaMalloc(&d_x, N*sizeof(float));

 cudaMalloc(&d_y, N*sizeof(float));

 for (int i = 0; i < N; i++) {

 x[i] = 1.0f;

 y[i] = 2.0f;

 }

 cudaEvent_t start, stop;

 cudaEventCreate(&start);

 cudaEventCreate(&stop);

 cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

 cudaEventRecord(start);

In the bandwidth calculation, N*4 is the number of bytes transferred per array read or write, and the factor of three represents the reading of x and the

reading and writing of y. The elapsed time is stored in the variable milliseconds to make units clear. Note that in addition to adding the functionality

needed for the bandwidth calculation, we have also changed the array size and the thread-block size. Compiling and running this code on a Tesla M2050 we

Theoretical
6 9

9

Effective B B
9

Effective B B

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1g08241bcf5c5cb686b1882a8492f1e2d9
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT_1g14c387cc57ce2e328f6669854e6020a5

1 comment Comments
Parallel Forall Community
Login

Disqus

Share:

have:

$./saxpy

Max error: 0.000000

Effective Bandwidth (GB/s): 110.374872

Measuring Computational Throughput

We just demonstrated how to measure bandwidth, which is a measure of data throughput. Another metric very important to performance is computational

throughput. A common measure of computational throughput is GFLOP/s, which stands for “Giga-FLoating-point OPerations per second”, where Giga is

that prefix for 10 . For our SAXPY computation, measuring effective throughput is simple: each SAXPY element does a multiply-add operation, which is

typically measured as two FLOPs, so we have

 = 2N / (t * 10)

N is the number of elements in our SAXPY operation, and t is the elapsed time in seconds. Like theoretical peak bandwidth, theoretical peak GFLOP/s can

be gleaned from the product literature (but calculating it can be a bit tricky because it is very architecture-dependent). For example, the Tesla M2050 GPU

has a theoretical peak single-precision floating point throughput of 1030 GFLOP/s, and a theoretical peak double-precision throughput of 515 GFLOP/s.

SAXPY reads 12 bytes per element computed, but performs only a single multiply-add instruction (2 FLOPs), so it’s pretty clear that it will be bandwidth

bound, and so in this case (in fact in many cases), bandwidth is the most important metric to measure and optimize. In more sophisticated computations,

measuring performance at the level of FLOPs can be very difficult. Therefore it’s more common to use profiling tools to get an idea of whether

computational throughput is a bottleneck. Applications often provide throughput metrics that are problem-specific (rather than architecture specific) and

therefore more useful to the user. For example, “Billion Interactions per Second” for astronomical n-body problems, or “nanoseconds per day” for molecular

dynamic simulations.

Summary

This post described how to time kernel execution using the CUDA event API. CUDA events use the GPU timer and therefore avoid the problems associated

with host-device synchronization. We presented the effective bandwidth and computational throughput performance metrics, and we implemented

effective bandwidth in the SAXPY kernel. A large percentage of kernels are memory bandwidth bound, so calculation of the effective bandwidth is a good

first step in performance optimization. In a future post we will discuss how to determine which factor—bandwidth, instructions, or latency—is the limiting

factor in performance.

CUDA events can also be used to determine the data transfer rate between host and device, by recording events on either side of the cudaMemcpy() calls.

If you run the code from this post on a smaller GPU, you may get an error message regarding insufficient device memory unless you reduce the array sizes.

In fact, our example code so far has not bothered to check for run-time errors. In the next post (http://devblogs.nvidia.com/parallelforall/how-query-

device-properties-and-handle-errors-cuda-cc/), we will learn how to perform error handling in CUDA C/C++ and how to query the present devices to

determine their available resources, so that we can write much more robust code.

∥∀

9

GFLOP/s Effective
9

About Mark Harris

Mark is Chief Technologist for GPU Computing Software at NVIDIA. Mark has fifteen years of experience developing software for GPUs,

ranging from graphics and games, to physically-based simulation, to parallel algorithms and high-performance computing. Mark has been

using GPUs for general-purpose computing since before they even supported floating point arithmetic. While a Ph.D. student at UNC he

recognized this nascent trend and coined a name for it: GPGPU (General-Purpose computing on Graphics Processing Units), and started

GPGPU.org to provide a forum for those working in the field to share and discuss their work.

Follow @harrism on Twitter (https://twitter.com/intent/user?screen_name=harrism)

View all posts by Mark Harris → (https://devblogs.nvidia.com/parallelforall/author/mharris/)

http://devblogs.nvidia.com/parallelforall/how-query-device-properties-and-handle-errors-cuda-cc/
https://twitter.com/intent/user?screen_name=harrism
https://devblogs.nvidia.com/parallelforall/author/mharris/

