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ABSTRACT
In a sensor network there are many paths between a source and
a destination. An efficient method to explore and navigate in the
‘path space’ can help many important routing primitives, in partic-
ular, multipath routing and resilient routing (when nodes or links
can fail unexpectedly) as considered in this paper. Both problems
are challenging for a general graph setting, especially if each node
cannot afford to have the global knowledge. In this paper we use a
geometric approach to allow efficient exploration of the path space
with very little overhead. We are motivated by the recent devel-
opment on regulating a sensor network geometry using conformal
mapping [44, 45], in which any sensor network can be embedded
to be circular (and any possible hole is made circular as well) and
greedy routing guarantees delivery. In this paper we explore the
freedom of a Möbius transformation inherent to this conformal
mapping. By applying a Möbius transformation we can get an alter-
native embedding with the same property such that greedy routing
generates a different path. We present distributed algorithms using
local information and limited global information (the positions and
sizes of the holes) to generate disjoint multi-paths for a given source
destination pair or switch to a different path ‘on the fly’ when trans-
mission failure is encountered. The overhead of applying a Möbius
transformation simply boils down to four parameters that could be
carried by a packet or determined at need at the source. Demon-
strated by simulation results, this method compares favorably in
terms of performance and cost metrics with centralized solutions
of using flow algorithms or random walk based decentralized solu-
tions in generating alternative paths.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network proto-
cols—Routing protocols; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problems—Ge-
ometrical problems and computations

General Terms
Algorithms, Design, Theory
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1. INTRODUCTION
Scalable routing on a sensor network has been an active research

topic for the past ten years. The major challenge comes from the
fundamental resource limitation of sensor nodes, in terms of stor-
age size and communication bandwidth. The solution that requires
a node to acquire the entire network topology does not scale well.
In the past few years there have been a number of innovative pro-
posals on scalable routing schemes where each node only keeps lo-
cal information and a routing path can be discovered by iteratively
applying greedy routing decisions. Such work has mainly focused
on issues such as guaranteed delivery and low path stretch, and has
been relatively successful in that regard.

In this paper we move on and focus on more advanced commu-
nication primitives, in particular, routing schemes that exploit the
existence of multiple paths in a sensor network. Between a source
and a destination there can be multiple different paths. A single
path from source to destination may give limited throughput due
to bandwidth constraints, hop length, wireless interference or other
transmission failures. If there is a lot of data to be delivered, it is
natural to consider using multiple disjoint paths1 such that different
data segments can be simultaneously delivered to the destination.
With multipath routing one obtains higher throughput and lower
delay. Such multipath routing can also be used to enhance data se-
curity. For example, sensor data can be encoded such that different
codewords are sent along different paths. Therefore a single com-
promised node stays on at most one path and with its captured data
segments it is unlikely to reconstruct the original data.

Exploring the space of routing paths between two nodes is also
helpful for fast recovery from link or node failures. In a large wire-
less network, there are network changes of different scales. At the
node level, wireless links have high link quality variation. Nodes
may fail. Interference with other nodes could also be unpredictable,
e.g., as in the hidden terminal problem. At a large scale, commu-
nication links in a region can be temporarily disabled by jamming
attacks, either imposed by malicious parties [53], or as a result of
co-located multiple benign wireless networks interfering with each
other. For example, experiments have shown that 802.15.4 sen-
sor network interferes with existing WiFi network resulting in 54%
packet loss [31]. In case of a transmission failure, it would be good

1In this paper we focus on node disjoint paths as wireless com-
munication is by nature broadcast. Two paths that share the same
intermediate nodes may experience inter-path interference where
the common node is the bottleneck.
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Figure 1. Consider some part of the network experiencing heavy
inference (or jamming attacks), shown as the dark colored circles.
Links inside these ‘failure’ regions have much higher loss rate. A
route that hits a small failure region might be able to get around by
performing some random walks in the neighborhood, as in the case
of path γ1. A route that hits a large failure region has difficulty
recovering from it – as simple random walk is likely to wander
around for a long time, as shown by the path γ2. In this case a path
that makes big de-tours would perform much better, as shown by
the path γ3.

to quickly discover an alternative path to the destination. A single
isolated link failure can possibly be bypassed by local random de-
touring attempts. A large scale node or link failure, in particular
one with strong spatial correlations and a geometric pattern, would
need some non-trivial exploration of the path space – by making
possibly a big de-tour from the planned path. See Figure 1 for an
example. To allow such robustness and quick response to network
conditions, routing schemes that find a single path are not enough
and it is important to understand the ‘space’ of paths and efficiently
navigate within this space.

Finding multiple routings in a network is a challenging problem
for a large scale network, in particular if a node does not have the
entire topology. On the theoretical side, one can run a flow algo-
rithm to find a maximum number of node disjoint paths between
source and destination. But the flow algorithm requires centralized
knowledge and also has a high computational cost of O(n3) if the
network size is n. Even if one can afford to pre-compute multi-
ple routing paths, storing these paths at the sensor nodes will be,
storage-wise, too overwhelming, which makes the centralized al-
gorithms scale poorly with the size of the network. In literatures
on mobile ad hoc networks, there have been a number of heuristic
proposals to find multiple paths but the theoretical understanding
of these schemes rarely exists. If one wants to use multiple paths
to recover from en-route node or link failure, there is not much
understanding (globally) on where the second path is going to be.

Our Approach. In this paper we approach the problem from a
geometric angle. Since nodes are typically densely deployed in a
geometric domain, the network topology is not like a general graph.
We explore different embeddings of the network such that by con-
trolling a constant number of parameters we can quickly switch
between different network embeddings such that greedy routing in
such embeddings generates different routing paths. Thus one can
easily come up with multiple node disjoint paths, or even switch to
an alternative path in the middle of a routing process, by sponta-
neously changing to a different embedding.

We are motivated by our recent development of conformal map-
ping of a sensor network [44, 45]. We first compute an embedding
of a sensor network such that all the holes are deformed to be circu-
lar. We name this embedding to be a circular domain. On a circu-
lar domain, greedy routing that always delivers the message to the
node closer to the destination using the new coordinates guarantees
message delivery. However, the embedding as a circular domain is
not unique, and all such embeddings differ by Möbius transforma-
tions, which maps a complex plane to itself and can be represented

by

f(z) =
az + b

cz + d
,

where z is a complex variable and a, b, c, d are four complex num-
bers satisfying ad−bc = 1. A Möbius transformation always maps
circles to circles. Thus applying a Möbius transformation on a cir-
cular domain essentially ‘re-arranges’ the positions and the sizes of
the circular holes and the new embedding remains to be a circular
domain. Therefore there are actually infinitely many circular do-
mains on each of which greedy routing guarantees delivery. The
previous work as in [44, 45] only considered one such circular do-
main by fixing one hole to be at the center of the network. In this
paper we investigate all possible circular domain embeddings and
the applications to multipath routing in a sensor network.

The main difficulty for efficient and scalable routing in a sen-
sor network is due to lack of the global knowledge. Embedding
the network as a circular domain makes that difficulty go away in
some sense. Our routing scheme avoids the requirement for the
global network topology, while the geometric information we need
— the locations and shapes of the holes and the boundary – are typ-
ically of a constant size and usually remain stable. With a circular
domain one can predict where the path is (subject to the assumption
that the sensor nodes are sufficient dense so that the continuous path
is a good approximation of the discrete path by greedy routing) and
by applying a Möbius transformation we know what a path we will
get and how different it is from the previous one. Since a Möbius
transformation only uses four parameters, we can attach the cur-
rent Möbius transformation at the packet such that by applying the
Möbius transformation a node can compute its coordinates under
the transformation on the spot to generate the greedy path under
the new embedding. In case of a link failure on the current greedy
path, a node can generate a new Möbius transformation and switch
to a different path immediately. The new Möbius transformation is
simply attached to the packet.

Using a circular domain representation gives us the following
advantages that will be proved in the continuous case and evaluated
by simulations for the discrete network setting:

• By using different Möbius transformations one generates mul-
tiple paths to the destination that are disjoint except at the
source and the destination. We present algorithms for net-
works with or without holes.

• In case of node failures, we present an algorithm that identi-
fies a different path to the destination. The second path takes
a big circular arc type of de-tour that is likely to jump over
correlated failure regions.

In the following we first quickly review prior work on multi-
path routing. We present the theoretical proofs of our method and
present simulation results afterwards.

2. RELATED WORK
In this section we quickly review prior work on three relevant

topics: multipath routing both in theory and in practice; some of
them focus on how to recover from node or link failures; and pre-
vious greedy routing schemes.

Multipath routing. Multipath routing has been investigated ex-
tensively in computer networking in order to improve routing ro-
bustness [4, 9], achieve better load balancing [11, 50, 54], reduce
network congestion, reduce end-to-end delay [57] and increase net-
work throughput [18,52]. Between a pair of source and destination,



multipath routing looks for multiple paths that are sufficiently dif-
ferent from each other such that node or link failures will not de-
stroy all of them. One formulation is to look for k node disjoint or
edge disjoint paths, which can be computed by flow algorithm [8].
But this is a centralized algorithm and would require the knowl-
edge of the entire network [17]. Distributed algorithms only exist
for special case of k = 2. In [37] two colored trees were con-
structed for routing such that the paths in the two trees are link or
node disjoint. Relaxation of the node/edge disjointness of the mul-
tiple paths leads to the approach of braided multipath [14] in which
the multiple paths are only partially disjoint.

In a mobile ad hoc network, multipath routing has also been de-
veloped to enhance the performance of on-demand routing proto-
cols such as AODV [1, 6, 25, 29, 40] or DSR [28, 32, 47] as the
network topology undergoes constant changes. Prior work in this
direction uses extensive message exchange or flooding to discover
alternative paths to bypass a broken link. A major problem of these
schemes is that they suffer from high recovery delay from node or
link failures, which severely affects the performance of end-to-end
QoS measurements in the transport or application layer.

Fast recovery from failures. Recently there has been a num-
ber of interesting work that studies the problem of fast recovery
from link or node failures, even for a centralized situation. When
a link or node fails, the goal is to quickly discover an alternative
path with nearly no delay, such that the current traffic is not in-
terrupted. For the intra-domain routing protocols on the Internet,
the recent IP fast re-routing (IPFRR) schemes (Loop-free alternate
(LFA) [3], O2 [41,42,46], DIV-R [39], MARA [34] and protection
routing [24]) aim to ensure fast re-covergence when node failures
are detected. In general this family of work would like to find an
alternative next hop when the intended next hop is not reachable.
Depending on the detailed implementations, the design often suf-
fers from one or more of the following problems: having possible
transient loops, the requirement for a lower bound on node degree,
computational intractability (e.g., verifying whether a graph has a
protection routing or not turns out to be NP-hard [24]).

Our work is motivated by routing with multiple metrics as intro-
duced in the path splicing idea [30], which is proposed for increas-
ing routing reliability on the Internet. Given a weighted graph, one
perturbs the weights of the edges and computes a shortest path tree
on each node. These multiple shortest path trees are used in com-
bination to generate a routing path in case of in-transit link fail-
ures. Traffic in the network can freely switch between different
shortest path trees, which results in a large number of routing paths
(these paths are the braided multi-paths). The overhead of switch-
ing between different trees is done by just changing a few bits in the
packet header. This supports fast recovery from link or node fail-
ure and ensures low end-to-end delay. However, this is mainly for
interdomain routing on the Internet. The computation of the multi-
ple shortest path trees is too costly for a large scale sensor network.
For sensor network setting we need to have a low cost method to
generate multiple metrics with great flexibility and path diversity.

Greedy routing. Our technique uses greedy routing on different
network embeddings, or different metric spaces. Each of the em-
beddings has the property that all the holes are circular – thus de-
livering the message towards the neighbor closest to the destination
can always get to the destination2 [44]. In the past few years vari-
ous greedy routing schemes have been proposed by using a proper
embedding of the graphs [2, 12, 16, 23, 26, 35, 38, 44, 45, 55]. Most

2This is subject to a small caveat that in certain cases routing on an
‘edge’ might be needed.

of these work only focus on finding a single route to the destina-
tion [2, 12, 16, 23, 26, 35, 38, 44, 45]. In this paper, we are dealing
with a more sophisticated situation – multipath routing in a vulner-
able sensor network. Zeng et al. [55] considered embedding the
sensor network in the hyperbolic covering space such that a net-
work is mapped to multiple copies glued to each other properly;
greedy routing to the image of the destination in different copies
will lead to homotopy different paths (i.e., these paths get around
the network holes in different ways). In some sense this is also a
type of multipath routing except that the multiple paths are required
to be homotopy different and are not necessarily node disjoint. For
the same homotopy type only one path is generated by the greedy
algorithm. In our work, even for the same path homotopy type we
want to get multiple node disjoint paths. We also handle dynam-
ically appearing ‘holes’ or link failure regions, while the previous
work in [55] assumes all the holes are given and the embedding is
computed with respect to that.

For greedy routing using virtual coordinates, typically a location
service is available to translate node ID to the virtual coordinates.
We assume the same setting for this paper.

3. ALGORITHMS
Our routing algorithm tries to find various embeddings, or map-

pings from the original sensor network to a circle domain, in which
all holes are of a circular shape and greedy routing can guaran-
tee delivery. Such mappings are conformal (angle preserving) and
computed by Ricci flow. Then Möbius transformations could help
us to find more embeddings, or controllable multiple metrics.

We first review our previous work [44] of deforming a sensor
network shape to make all boundaries circular in section 3.1. Then
we describe Möbius transformations applied on such a circular do-
main. The algorithms for generating multiple node disjoint paths
and for loop-free fast recovery from node failure are presented in
section 3.3 and section 3.4 respectively.

3.1 Embedding into Circular Domains with
Ricci Flow

Conformal Mapping. In the continuous setting for Riemannian
surfaces, let (S1, g1) and (S2, g2) be two surfaces with Riemannian
metrics g1, g2. A mapping ϕ : S1 → S2 is called a conformal
mapping (angle preserving mapping), if the intersection angle of
any two curves is preserved.

A planar domain D of connectivity m is called a circular do-
main, if all its m boundaries are circles. It is known from confor-
mal geometry that any genus zero multiply connected planar do-
main can be mapped to a circular domain by conformal mappings.
Such a mapping is not unique: all such mappings differ by Möbius
transformations [10, 36].

To compute the conformal mapping from a surface to a circular
domain, one can use Ricci flow as introduced in [19, 44]. In the
case of sensor network setting, we will use the discrete version,
which represents a domain by a discrete triangulation. We first give
some references on how to obtain such a triangulation from a sensor
network setting and then move on to the algorithm description of
the discrete Ricci flow.

Sensor Network Triangulation. To apply discrete Ricci flow we
require a triangulation of a planar domain. There have been quite a
number of prior results on extracting a triangulation from the sen-
sor network communication graph. We quickly go through such
results. Karp et al. [20], Bose et al. [5], Gao et al. [15], and
Li et al. [27] proposed distributed, localized methods to extract
a planar graph from a unit disk graph. Such a planar graph can



be considered as a triangulation of the planar domain where non-
triangular faces are considered as network holes. Sarkar et al. [44]
extended the algorithm in [15] for the case of a quasi-unit disk
graph and also showed that sufficiently big holes are indeed cap-
tured as real holes in the triangulation. Funke et al. [13] worked
on the case when node locations are not available and proposed a
triangulation method for a quasi-unit disk graph.

For a general case when no unit disk graph or quasi-unit disk
graph assumptions are available, the algorithms in Cross Link De-
tection Protocol proposed by Kim et al. [21, 22] produce a planar
graph. Zhang et al. [56] proposed to use matching to eliminate
crossing edges and produce a planar graph. This algorithm also
does not require node locations.

In fact, to run Ricci flow algorithm and find the circular domain
embedding, one does not require the triangulation must be a sub-
graph of the communication graph. The triangulation can be a vir-
tual graph of the underlying domain as long as the sensor nodes
jointly maintain it. In other words, each wireless node takes in
charge of a group of virtual vertices of the triangulation and carries
out the computation for these virtual nodes. The position of a wire-
less node can be made identical to any node it is in charge. This
idea of ‘virtualization’ allows the method to be extended to a gen-
eral setting when the wireless node is relatively powerful and the
distribution is sparse (as a natural consequence since fewer nodes
can sufficiently monitor the domain). Therefore the triangulation
can be any proper triangulation of the underlying geometric do-
main, for example by standard meshing techniques such as Delau-
nay refinement methods [43, 48]. In the following discussion we
assume that a proper triangulation is obtained and we focus on the
embedding of the network from now on.

Discrete Ricci Flow. In the following we explain Ricci flow in the
discrete setting for a triangulation of a domain with m holes. The
triangulation is denoted by Σ with vertex set V , edge set E and
face set F .

In the discrete setting we define a Riemannian metric by using
the edge lengths on Σ:

l : E → R+,

such that for a triangle face fijk with vertices vi, vj , vk, the edge
lengths satisfy the triangle inequality:

lij + ljk > lki, ∀i, j, k.

The lengths of the edges of the triangulation determine the cor-
ner angles of the triangles. For a triangle fijk with edge lengths
{lij , ljk, lki}, and the angles opposite to these edges {θijk , θjki , θkij }
respectively, we have the following equations by cosine law:

l2ij = l2jk + l2ki − 2ljklki cos θ
ij
k . (1)

Now we can define the discrete Gaussian curvature at a vertex vi as
the angle deficit:

Ki =

{
2π −

∑
fijk∈F θjki , vi is an interior vertex;

π −
∑

fijk∈F θjki , vi is at boundary.
(2)

where θjki represents the corner angle at vertex vi in the triangle
fijk. In other words, the curvature at a vertex v is the difference
of 2π or π and the total corner angles at v, for an interior vertex or
a vertex on a hole boundary respectively. The curvature is 0 when
it is locally flat (for interior vertices) or locally a straight line (for
boundary vertices).

Ricci flow uses the circle packing metric in the discrete case,
proposed by [49,51], to approximate the conformal deformation of

i

j k
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Figure 2. The circle packing metric.

metrics. See Figure 2. Each vertex vi has a circle with radius γi.
On each edge eij , ϕij is defined as the intersection angle of the two
circles at vi and vj . The pair of vertex radii and intersection angles
at the edges on a mesh Σ, (Γ,Φ), is called a circle packing metric
of Σ. Two circle packing metrics (Γ1,Φ1) and (Γ2,Φ2) on Σ are
conformal equivalent, if Φ1 ≡ Φ2. Therefore, a conformal defor-
mation of a circle packing metric only modifies the vertex radii γi’s
and maintains the intersection angles ϕij’s to be constant.

For a given mesh, the circle packing metric (Γ,Φ) and the edge
lengths can be converted to each other by cosine law as below:

l2ij = γ2
i + γ2

j + 2γiγj cosϕij . (3)

Thus given a circle packing metric, we can calculate the edge lengths
of the triangulation Σ and then the embedding in the plane realizing
the given curvatures.

Let ui to be log γi for each vertex. The discrete Ricci flow is
defined as the following differential equation:

dui(t)

dt
= (K̄i −Ki), (4)

where Ki is the current curvature at vertex i and K̄i is the target
curvature at i. Define an energy function

f(u) =

∫ u

u0

n∑
i=1

(K̄i −Ki)dui, (5)

as the Ricci energy, where u0 is an arbitrary initial metric. It has
been proved by Chow and Luo [7] that the discrete Ricci flow will
converge to a unique minimum of the Ricci energy. The conver-
gence rate of the discrete Ricci flow using Equation 4 is shown to
be exponentially fast, i.e.,

|K̄i −Ki(t)| < c1e
−c2t, (6)

where c1, c2 are two positive constants.
The Ricci flow algorithm is naturally an iterative algorithm with

all vertices adjusting local metrics and local curvatures. All the
radii at the vertices are initialized to be 1/2. That is, the circles at
adjacent vertices of Σ are kept to be tangent to each other. We set
the target curvature to be 0 at all interior vertices. That is, the net-
work should be embedded to be flat in the domain. We set the target
curvature at a boundary vertex to be −2π/k, if the boundary of the
hole has a total number of k vertices. That is, the boundary circle
should be perfectly circular. We apply the Ricci flow algorithm by
changing the circle packing metric, ui, by δ(K̄i − Ki), where δ
is a constant parameter as the step size. The algorithm stops when
the current curvature is within an error bound of ε from the target
curvature.



Since the curvature error decreases exponentially fast, the num-
ber of steps in the Ricci flow algorithm is in O( log(1/ε)

δ
), where δ

is the step size in the Ricci flow algorithm. The total number of
messages is thus in O(n log(1/ε)

δ
), if the algorithm is running on a

network of n vertices.

3.2 Möbius Transformations
Möbius transformations are rational functions defined on the com-

plex plane C. The general form of a Möbius transformation is

f(z) =
az + b

cz + d
.

Here a, b, c, d ∈ C and satisfy ad − bc ̸= 0. If c ̸= 0 we can ex-
tend this mapping to the Riemann Sphere (or the extended complex
plane, i.e., with a point of infinity) Ĉ = C ∪ {∞} by specifying
f(−d/c) = ∞ and f(∞) = a/c. In the case when c = 0, we
specify f(∞) = ∞.

Here are the important properties of Möbius transformations:

1. Möbius transformations are all the bijective holomorphic (dif-
ferentiable in the complex sense) mappings from Ĉ to it-
self. This also implies that they are conformal, or angle-
preserving.

2. Möbius transformations carry circles and lines (which can
be regarded as circles passing through ∞, point of infinity) to
circles and lines. Thus, giving a circular domain, any Möbius
transformation will map it to another circular domain.

3. To every Möbius transformation one can associate a matrix

Mf =

[
a b
c d

]
.

Any other matrix which is a (nonzero) scalar multiple of this
matrix represents the same Möbius transformation. Compo-
sition of two Möbius transformations is equivalent to matrix
multiplication, i.e., Mf◦g = Mf ·Mg .

4. Given distinct z1, z2, z3 ∈ Ĉ and distinct w1, w2, w3 ∈ Ĉ,
there is a unique Möbius transformation f satisfying f(zi) =
wi , i = 1, 2, 3. In other words, as there are unique cir-
cles C1 and C2, defined by z1, z2, z3 and w1, w2, w3 respec-
tively, the transformation f maps the circle C1 to C2 and
is unique. Determining f explicitly is equivalent to finding
determinants of four 3× 3 matrices.

It should be noted that there is a natural way to identify the real
plane R2 with the complex plane C, so for our purposes we can
assume that nodes are in the complex plane.

3.3 Multipath Routing
In this section we describe how to generate multiple paths from

a given source node s to a given target node t. We will give dif-
ferent embeddings of the domain in such a way that the route used
by greedy routing in one embedding is likely to be different from
the one used by greedy routing in any other embedding, and these
routes are ‘well spaced’, a notion we will make precise soon. The
algorithm we will present generates paths that are provable to be
disjoint in the continuous case. In the discrete setting, we evaluate
the performance by simulations.

We first present the algorithm for a network without holes. Then
we discuss how to find disjoint paths in a network with holes.

−1 = fj(s)

1 = fj(t)

0

0

f−1
j+1([−1, 1])

f−1
j ([−1, 1])

fj fj+1−d
2

d
2 −1 = fj+1(s)

0
1 = fj+1(t)

Figure 3. The multiple paths on the domain D (in the middle) are
the greedy paths under transformations fj . The figure shows two
transformations fj and fj+1 respectively.

θfθi t

γ1

γ2

s

Figure 4. For two curves γ1 and γ2 from s to t, the initial di-
rectional spread is shown as θi and the final directional spread is
shown as θf .

3.3.1 Network Without Holes
Without loss of generality we can assume that the outer boundary

is a circle, and that the coordinates of source s are (−d/2, 0) while
those of destination t are (d/2, 0), so that the line segment joining
s to t is horizontal and of length d. This can easily be achieved by
a rotation and translation. We denote the domain by D.

Consider a continuous domain D we can easily generate many
disjoint paths – by essentially applying a different Möbius transfor-
mation each time. The greedy path under a Möbius transformation
turns out to be a circular arc connecting s and t in the original do-
main D. See Figure 3. In the discrete case when the domain D
is represented by a triangulation, the routing paths are found by
using greedy routing in different embeddings, after proper Möbius
transformations. We remark that potentially one can design greedy
routing to follow any curve, i.e., as in the idea of routing along a
curve [33]. But in general routing on a curve does not have any
guarantee on the delivery. In our case, as we actually perform
greedy routing in another circular domain after a proper Möbius
transformation, this immediately shows a proof that such a route is
guaranteed to reach the destination.

In a continuous domain D, obviously all such circular arcs are
disjoint except at source and destination. In the discrete case the
greedy paths are guided by the circular arcs but can definitely de-
viate from them due to discrete node distribution. Since typically
sensor networks have upper bounded density, a major constraint on
the number of node disjoint paths between s and t is due to the
degree at s and t. A reasonable heuristic to minimize overlaps of
multiple paths is to design paths that are evenly spread out at s and
t. We use this heuristic to design our paths in the discrete setting.

Given two curves γ1 and γ2 joining s to t, we can define ini-
tial and final directional spread between γ1 and γ2 to be the angle
between the tangent vectors of γ1 and γ2 at s and t respectively.
We denote these by di(γ1, γ2) and df (γ1, γ2) respectively. See
Figure 4 for an example. In the following we use Möbius transfor-
mations to generate circular arcs connecting s and t such that their
directional spread at source and destination are as evenly spread as
possible.

For a given k ≥ 1, let θ = π
2k

and define θj = π
2
(1− j−1

k
) for

1 ≤ j ≤ 2k+1. Also, let αj = d/2 tan θj/2 for 1 ≤ j ≤ 2k+1.
We next define a Möbius transformation fj(z) for 1 ≤ j ≤

2k + 1 by

fj(z) =
zd− idαj

z(−2iαj) + d2/2
.



Theorem 3.1. fj has the following properties:

1. fj(s) = −1, ∀1 ≤ j ≤ 2k + 1.

2. fj(t) = 1, ∀1 ≤ j ≤ 2k + 1.

3. Let γj = f−1
j ([−1, 1]). Then γj is a curve joining s to t.

Moreover, it is the arc of the unique circle passing through s
and t, such that the tangent vectors at s and t both make an
angle of θj with the x-axis.

4. di(γj , γj+1) = df (γj , γj+1) = θ, ∀1 ≤ j ≤ 2k + 1.

PROOF. (1) and (2) are trivial.
To prove (3) we use the property that Möbius transformations

map circles to circles. Note that the point (0, αj) is represented by
the complex number z = iαj . One can check that fj(iαj) = 0.
Since −1, 0 and 1 lie on a line, it means that s, (0, αj) and t lie
on a circle. Therefore f−1

j ([−1, 1]) is an arc of the circle passing
through these three points. One has to now verify that the tangent
to this (unique) circle at s and t makes an angle of θj with the
horizontal axis.

(4) follows from (3) and the fact that θj−1 − θj = θ. �

What the above calculations mean is that if we define a new em-
bedding of the domain D by mapping a point z ∈ D to fj(z) ∈
fj(D), then the source maps to −1 and the target maps to 1. In this
new embedding, the shortest path from source to target is simply
the straight line from −1 to 1. Following this path for some j is
equivalent to following the arc of the unique circle passing through
s and t whose tangents at s and t make an angle of θj with the hor-
izontal axis. Any two such arcs have an initial and final directional
spread of at least θ = π

2k
. Hence we have generated 2k + 1 node

disjoint θ spread paths from s to t. See Figure 3 for an example.
All such paths lie in the circle with the line segment st as its

diameter. We can also consider the case θj = π
2
(1 + j−1

k
) to get

2k− 2 more node disjoint paths, with an angle spread of θ, getting
4k − 1 in total. For example if k = 3, we can get a total of 11
paths, such that the directional difference is at least π

6
.

We remark that the above results hold only for source s and tar-
get t pairs for which the circle with line segment st as diameter,
denoted as Cst, is contained inside the domain (i.e., in the interior
of the outer circle C). When this is not the case, the paths will
‘hit’ the outer boundary circle. Such paths will merge as they fol-
low along the outer boundary and are hence not disjoint. However,
this is actually a case that will be handled by the algorithm in the
following section as the outer boundary is also a topological hole.

The above analysis is done in the continuous setting. We will
present the multiple path routing results in a discrete setting by
simulations.

3.3.2 Network With Holes
Consider a circular domain D with k holes (including the outer

hole, which can be regarded as a circle centered at ∞). In this
case, finding disjoint paths is more complicated. This is precisely
because if two paths both hit the same hole, they will start to follow
the boundary of the hole and converge. This will create a long
shared sub-path on that boundary. Therefore we would need to find
paths such that either (i) they do not hit the same hole, or, (ii) when
two paths hit the same hole, they hit the top and bottom of the
circular hole respectively so they follow the upper boundary and
lower boundary and do not converge. Take a look at Figure 5. For
each hole Ci in the domain, we take three circular arcs through s
and t, the one that is tangent to Ci internally (i.e., including Ci); the
one that goes through the center of Ci; and the one that is tangent to

t

s

s

θ+i

θ−i
θi

θi

θ+i

θ−i
γ−
i

γi

Ci γ+
i

Figure 5. For a pair of source and destination, each hole Ci will
produce two intervals θ+i and θ−i such that any two paths falling in
the same interval will hit the hole and share some segments of the
boundary. Thus any set of disjoint paths can only select one path
inside each interval.

Ci externally (i.e., excluding Ci). These three paths are denoted as
γ+
i , γi, γ−

i , respectively. Now, any two circular arcs through s and
t that fall in between γi and γ+

i (or γi and γ−
i ) will definitely merge

on the boundary of Ci. Thus we can only allow one path selected
within each angular range bounded by [γ+

i , γi], and [γi, γ
−
i ]. In the

following we present an algorithm that finds a maximum number
of hole touching paths satisfying the above constraints.

Given a source s and a destination t, we can first assume without
loss of generality that the x coordinate of t is larger than that of s
and that there does not exist a circle which passes through s and
t which is tangent to more than one of the holes. For a hole Ci

with center ci, there are three arcs of relevance: γi, γ+
i and γ−

i , as
defined earlier. Let θi,θ+i and θ−i denote the angles that the initial
tangent vectors to γi, γ+

i and γ−
i make with the horizontal axis.

Note that the convention is that all of them are contained in the
interval [−π, π].

Now we define the following angular intervals {Ti}2mi=1, two for
each of the m holes: T2h−1 = [θ−i , θi] and T2h = [θi, θ

+
i ] (1 ≤

h ≤ m). For the outer hole, arc γi is simply the straight line joining
s to t; while arcs γ+

i and γ−
i are contained in circles that pass

through s and t and are tangent to the outer boundary at the top and
bottom.

Now any two circular arcs joining s to t, both of whose initial
directions lie in the same interval T2h−1 or T2h, will both traverse
either the upper or the lower boundary of the hole Ci, and hence
cannot be disjoint. We want to find the maximum number of arcs,
all of which pass through s and t, and touch at least one hole.

Since all the Ti’s lie in [−π, π], we can think of them as subsets
of the unit circle S1. We can angularly sort the endpoints, to ob-
tain a sequence s1, s2, ..., s4k where each si is an endpoint of Tj

for some j. If some interval [si, si+1] is not contained in any Tj ,
we are free to use it as there are no constraints associated to such
an interval. Assume that we have collapsed all the [si, si+1] that
are not contained in any Tj , and now we are left with a sequence
s1, s2, ..., sl.

Now we want to find a maximum number of intervals such that
any two intervals cannot be part of the same Ti for any i. That is,
each interval in the solution can be used to generate one circular arc
and all such circular arcs do not intersect with each other except at
s or t.

The above problem has an optimal solution using a greedy al-
gorithm that we now describe. Each interval Ai = [si, si+1] now
is contained in (covered by) some Tj’s. We obtain a solution Qi

as follows. Qi starts with a seed interval Ai. Move clockwise on
the circle until the first interval [sj1 , sj1+1] which is not covered
by any Tj that covers Ai. When this happens, include Aj1 in the
solution Qi and proceed greedily until we cannot include any more



intervals to Qi.
After this process, we have l solutions Q1, Q2, ..., Ql. We choose

the one with a maximum number of intervals. This solution is op-
timal.

Theorem 3.2. The number of intervals in the solution chosen above
(i.e., the best amongst the {Qi}li=1) is equal to the number of in-
tervals chosen in the optimal solution.

PROOF. Pick any interval that the optimal solution chose, say
Aj1 . Consider what the greedy algorithm performed in Qj1 . Let
the next interval chosen by the greedy algorithm be Gj2 while the
one chosen by the optimal be Oj2 . Assume they are different (if
they are the same the argument proceeds). If there does not exist j
such that Gj2 and Oj2 are both contained in Tj , then adding the in-
terval Gj2 to the optimal solution increases the number of intervals
in the optimal, which is a contradiction. So assume Tj contains
both Gj2 and Oj2 . Therefore by the end of Tj we have not done
any worse than the optimal, as both have added one interval each.
The argument now proceeds in a similar fashion. Gj3 and Oj3

would both have to be contained in some Tj again, by the end of
which we are again no worse than the optimal and so forth. Induc-
tively we can show that our solution is no worse than the optimal
and thus must be optimal. �

Using this greedy method we can thus find a maximum number
of node disjoint paths in the domain all of which pass through a
hole. We can use results of the previous section to generate node
disjoint θ spread paths in the intervals [si, si+1] which were not
covered by any Tj . Thus putting together, we can find a maximum
number of disjoint paths that do touch some hole and depending
on the spread we can find disjoint paths that do not touch any hole
using previous results.

To summarize, our multipath algorithm will generate k disjoint
paths in a network with and without holes by applying different
Möbius transformations, with provable results for the continuous
case. When the nodes have high density, the greedy paths in the
discrete case will better approximate the circular arcs. When the
node density drops, the multiple paths may overlap in the middle.
We evaluate in the simulation section the dependency of the perfor-
mance on the network density.

3.4 Recovery From Failure
In this section we describe how to deal with en-route node fail-

ures or link failures. Recall that our embedding produces a circular
domain that guarantees delivery when links are assumed to be re-
liable. When a link may fail, greedy routing no longer guarantees
delivery. For example, a node may discover that all the neighbors
that are closer to the destination are not reachable. In this case we
aim to find an alternative path. The freedom of applying Möbius
transformations on a circular domain provides great flexibility for
this task.

Assume s is the source node that wants to transmit a package to
t (s, t ∈ D). Let the degree of s be ν. Furthermore, assume that s
has sorted its neighbors in increasing order of their distances from
t such that

||p1t|| ≤ ... ≤ ||pkt|| ≤ ||st|| ≤ ||pk+1t|| ≤ ... ≤ ||pνt||.

||uv|| is the Euclidean distance between u, v. If the link between
s and any of the {pi}ki=1 is functional, s routes the message to
that neighbor just as in greedy routing. Assume that the only links
available to s are those in {pi}νi=k+1. Then s picks a functional
link from this set, say the link to p = pk+1. Now the idea is to
find a Möbius transformation such that in the new embedding, p is

closer to t than s, so that greedy routing would then continue by
using p as the next hop. The details are presented below.

As soon as node s finds that greedy routing can no longer con-
tinue, it does the following:

1. It finds the coordinates of a neighbor p. Assume that s knows
the coordinates of p and the destination t.

2. s finds a Möbius transformation that maps s to −1, p to 0
and t to 1. The explicit formula for f is

f(z) =
z(s− t) + p(t− s)

z(2p− (t+ s))− p(t+ s) + 2st
.

3. s then sends the package to p along with the information
about this Möbius transformation. p calculates new coor-
dinates for all of its neighbors and for t.

4. Greedy routing then continues (since now f(p) is clearly
closer to f(t) than f(s)), until we get stuck at another node.
When this happens, we repeat the entire process, i.e., find
another Möbius transformation and compose it with the pre-
vious one.

As will be shown later in the simulation section, our failure re-
covery mechanism is compared with random walk – simply pick
a random ‘live’ link until greedy routing can be performed again.
Basically our scheme makes big jumps and chooses a vastly differ-
ent alternative path while random walk can only make local adjust-
ments. This benefit of using long de-tours is significant for failures
that exhibit spatial patterns.

4. SIMULATIONS
In the experiments, we perform greedy routing with Möbius trans-

formations to achieve multipath routing and link failure recovery.
Our simulations are performed on unit disk graph topologies po-
tentially with holes inside, and in the following are our key obser-
vations:

Multipath routing: By using Ricci flow with different Möbius trans-
formations, we can generate a substantial fraction of node
disjoint paths. With reasonable sensor density (average de-
gree around 20), the average number of disjoint paths we find
using our algorithm is consistently more than 70% of the in-
put parameter m (the desired number of disjoint paths). We
can consistently find two node disjoint paths even in very
sparse networks. We also observed that when the network is
sparse, the bottleneck for finding node disjoint paths is often
near the source and destinations.

Recovering route from link failures: Under a spatial failure model
in which the nodes in a geometric failure region have a much
higher failure rate, our method of using greedy routing on the
virtual coordinates in a circular domain with Möbius trans-
formations as the recovery scheme performs consistently bet-
ter than all other methods (on virtual or original coordinates,
using random walk as the recovery scheme). The advantage
of using Möbius transformations rather than random walk as
a recovery scheme diminishes when the failure pattern is no
longer spatially correlated.

4.1 Multipath Routing
After we generate the sensor network G = (V,E), we randomly

choose two vertices s and t from V as the source and the desti-
nation. We then calculate the maximum number of node-disjoint



κ(s, t) m Disjoint paths generated Approximation factor

6 3 2 67.7%5 4

8
3 3

62.5%5 4
7 5

11
5 4

72.7%9 7
11 8

Table 1. Results of different sources and destinations in a uniform
distributed graph with average edge links 20.

paths between s and t, called the vertex connectivity κ(s, t), as a
reference for comparison, using the centralized maximum flow al-
gorithm [8]. To test our multipath routing algorithm, we generate
m (no larger than κ(s, t)) paths from the source to the destina-
tion, and count how many of them are node-disjoint. We also try
different m parameters to further observe the performance of the
algorithm.

Figure 6 shows the proposed routing scheme on a sensor net-
work with 1000 vertices and 10006 links. We first apply Ricci flow
to embed the network into a circular domain where each node is
given a virtual coordinate. We use our multipath routing algorithm
to seek m1 = 3, and m2 = 5 paths from s (in yellow) to t (in red)
respectively (in this graph κ(s, t) = 6). Those paths are not nec-
essarily node-disjoint, and all the shared nodes/edges are marked
in purple in the figure. We also show the paths on the original net-
work, and a different circular domain obtained by a Möbius trans-
formation as well. In each of the three embeddings, the paths with
the same color and number are identical. We can see that in dif-
ferent circular domains, the greedy paths, or the straight lines from
s to t are also different, which demonstrates that Möbius transfor-
mations together with greedy routing give us flexibility in choosing
multiple paths.

More results are shown in Table 1. From the table we can see
two facts. First, as a distributed algorithm, the Möbius transfor-
mation method gives us a good approximation of the number of
node-disjoint paths in a dense graph. Second, the number of dis-
joint paths we can get is usually smaller than m, or equivalently,
some paths we generate share common nodes or edges. This is due
to the discrete nature of graphs. From s, we can only send packets
to its neighbors, which is a restriction in choosing the first few hops
of the transmission; the hops near t suffer from the similar problem.
But in the middle segments, the paths generally follow the shape of
a circle arc connecting s and t, which is desired. When the network
becomes denser, the situation becomes more similar to that of the
continuous case.

To further explore the differences between the discrete and con-
tinuous settings, we also simulate under different graphs. In graphs
with different densities (with uniform sensor distribution), we ran-
domly pick 10 pairs of sources and destinations, give the different
inputs m as 3, 5 and 7, and calculate the average numbers of dis-
joint output paths we get. The results are shown in Table 2. From
the table, we observe that the algorithm performs better in a denser
graph with more links. This is reasonable since the gap between
the discrete and continuous settings is smaller with a denser sensor
distribution. Moreover, when the input m is smaller, the algorithm
gives better approximation. This is simply because given a smaller
input, the arcs span further away with each other (this result does
not conflict with Table 1 where κ(s, t) is known). We also notice

Nodes Average Input m Average output paths
mlink number

1000 20.00
3 83.3%
5 79.0%
7 71.4%

600 12.02
3 76.7%
5 64.0%
7 51.4%

400 5.62
3 63.3%
5 46.0%
7 35.7%

Table 2. Results of graphs with different sensor densities.

that when m exceeds the average node degree, the percentage drops
drastically, where the input – the number of disjoint paths we are
trying to find – often exceeds the optimal value.

When the sensor distribution is non-uniform, the bottleneck of
the performance lies in the sparse regions, especially when those
regions cover the neighborhood of the source or the destination.

Figure 7 shows the result of a network region with holes. Some
paths go along the inner boundary, but the heavy load along the
boundaries is avoided.

4.2 Routing with link failures
In sensor networks, links are likely to fail, especially in an ad-

versarial environment. Since greedy routing requires that for each
step, there exists one link leading to a node closer to the destina-
tion, the performance of greedy routing will drop quickly when a
link failure happens. What is more, link failures often have a prop-
erty of spatial locality, which means that a group of nearby links are
likely to fail at the same time. Therefore, when greedy routing hits
this region, the message may ‘get trapped in the mud’. We use the
freedom of Möbius transformations to recover from this situation.

Based on the above observations, we adopt the setting of clus-
tered random link failures. We first test a simple setting in which
there is a region with arbitrary size and shape. All the links within
this region have a link failure rate p, while all the links outside
the region or crossing the boundary of the region will not fail. A
message following greedy routing in the circular domain may not
have guaranteed delivery as the link to the next hop can suddenly
fail. Our strategy is to adopt a different Möbius transformation. We
compare it with another simple strategy that recovers from failure
by performing a random walk. Although random walk is simple, it
is time-consuming for the routing path to jump out of a large link
failure region, due to its locality and randomness. In our following
experiment, we will compare greedy routing with Möbius transfor-
mations with other greedy routing techniques, in terms of routing
delivery rate and routing path length. The experiment network size
is 1000 nodes with a varying number of links. The link failure
region is a rectangle lying in the network.

In the experiments, we compared the following methods:

Greedy routing on the original coordinates: Simple greedy rout-
ing on the original coordinates, which fails to route to the
destination easily due to link failures. We call this method
Greedy in short.

Greedy routing on the virtual coordinates: Greedily route to the
destination using coordinates computed by Ricci Flow. We
call this method Ricci in short.

Greedy routing on the original coordinates with random walk:



Figure 6. Multipath Routing Algorithm. Left column: original network; middle column: network applying ricci flow; right column: network
applying ricci flow and a Möbius transformation (zoomed in). First row: m = 3; second row: m = 5.

Route based on the original coordinate set and perform ran-
dom walk to recover from failure. We call this method Gree-
dyRnd in short.

Greedy routing on the virtual coordinates with random walk:
Greedily route using virtual coordinates and perform random
walk to recover from link failures. We call this method Ric-
ciRnd in short.

Greedy routing with Möbius transformations: Our method per-
forms greedy routing based on the virtual coordinates in a cir-
cular domain. If the route gets stuck in the middle due to link
failures, it performs a Möbius transformation to get a new
path towards the destination. We call this method Möbius in
short.

Various parameters will affect the success rate of routing. In
our experiment, we focus on the average degree of the network,
the link failure rate and the TTL (time-to-live) of the packet. If
the connectivity of networks becomes better as the average degree
increases, routing will be easier for all methods. Obviously a higher
link failure rate will make all methods suffer. We also include a
TTL with each packet to stop a packet from roaming aimlessly in
the network, in particular in the random walk method.

Routing result and analysis. In Figure 8, 9 and 10, we show the
message delivery rates by varying the network density, the TTL
and the link failure rate respectively. In all settings, we can see
our method has a significantly higher delivery rate than the other
methods, which shows that by using a new Möbius transformation,
we can effectively find an appropriate path which leads the route
out of the failure region. In general the performance of different

p1 p2 Möbius Ricci RicciRand Greedy GreedyRand
0.3 0.0 0.962 0.573 0.779 0.021 0.028
0.6 0.0 0.912 0.402 0.651 0.014 0.016
0.6 0.3 0.738 0.207 0.472 0.003 0.009
0.9 0.0 0.823 0.271 0.511 0.008 0.013
0.9 0.3 0.632 0.148 0.335 0.002 0.006
0.9 0.6 0.472 0.037 0.193 0.001 0.004
0.6 0.6 0.587 0.094 0.263 0.002 0.004
0.3 0.3 0.802 0.254 0.513 0.007 0.011
0.3 0.6 0.591 0.119 0.285 0.002 0.005
0.3 0.9 0.224 0.017 0.104 0.001 0.002
0.6 0.9 0.152 0.011 0.063 0.001 0.002

Table 3. Comparison of different p1 and p2 settings.

methods, in decreasing order, follows the trend of Möbius > Ric-
ciRnd > Ricci ≫ GreedyRnd ≃ Greedy. Greedy routing using
the original coordinates nearly does not work, no matter whether it
is augmented with random walk or not.

Figure 8 shows the performance of all methods on networks of
different node average degrees. The performance of all methods
deteriorates when the network becomes sparse. Still our method
is the leader. Note that in all cases we must first make sure that
the network is connected and has a triangulation for computing the
virtual embedding as a circular domain.

Figure 9 shows the importance to choose an appropriate TTL. As
TTL grows, the delivery rate of our routing method grows rapidly
and then stays close to 1, while the other methods do not exhibit
a growing trend with TTL. This shows that the Möbius transfor-



Figure 7. Multipath Routing Algorithm in a region with holes.
Up: original network; bottom: network applying ricci flow. Here
κ(s, t) = 9.

mation scheme does recover from link failures and makes progress
towards the destination, while the other methods still get stuck in
the middle. Figure 11 shows the distribution of path length un-
der different methods. Indeed our method gradually delivers more
messages when TTL is increased.

Another potential factor affecting the routing performance is the
distribution of link failure rates. We test the situation where links
lying inside and outside the failure regions have failure rates p1
and p2, respectively. We evaluate the performance by varying the
difference between p1 and p2. From the simulation results shown
in Table 3, we can see that our method consistently outperforms
the other methods in different settings. When p1 and p2 are getting
close, RicciRnd starts to catch up. In these experiments we also
vary the shape and positions of failure regions. While the exact
values may vary, the trend is clear: our method makes progress
towards the destination despite the existence of high link failure
rate, and is unlikely to get stuck in the middle; making long de-
tours is generally better than taking local random walks.

Figure 8. Routing delivery rate versus average degree (TTL = 500;
link failure rate = 0.8). Möbius is our method. Greedy and Ricci
are greedy routings on the original and Ricci Flow coordinates re-
spectively. GreedyRand and RicciRand are greedy routings on
the original and Ricci Flow coordinates with random walk respec-
tively.

Figure 9. Routing delivery rate versus TTL (time-to-live) of pack-
ets (AvgDegree = 10; link failure rate = 0.8).

5. CONCLUSIONS
In this paper we presented a method that uses circular domain

embeddings and Möbius transformations to switch between them
for multipath routing and improving routing resilience. This shows
the power of a geometric transformation that regulates a network
shape — difficult routing problems due to lack of global knowledge
can benefit significantly from such transformations. We expect to
extend the intuition to more problems on distributed network set-
ting in the future.

Our multipath routing algorithm in the discrete case uses a heuris-
tic method that maximizes the angular spread of the paths at source
and destination. It would be a very interesting problem to ex-
ploit the freedom of using such routing scheme to improve network
throughput, or optimize energy usage, etc.

We would also like to mention that the paper borrows heavily in-
tuitions that arise from the continuous domain. Our provable results
are in the continuous case and the performance of the algorithm in
the discrete case is only evaluated by simulations. The problem



Figure 10. Routing delivery rate versus link failure rate (AvgDe-
gree = 10; TTL = 500).

Figure 11. Distribution of routing path lengthes (AvgDegree = 10;
TTL = 500; link failure rate = 0.8).

of addressing the gap between the continuous space and a discrete
graph, theoretically, is yet an open problem. It would be an inter-
esting and challenging problem to come up with a suitable discrete
model and derive minimum density bound. We leave this for future
work.
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