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Abstract
Traffic congestion, volumes, origins, destinations, routes,

and other road-network performance metrics are typically
collected through survey data or via static sensors such as
traffic cameras and loop detectors. This information is of-
ten out-of-date, difficult to collect and aggregate, difficult to
analyze and quantify, or all of the above. In this paper we
conduct a case study that demonstrates that it is possible to
accurately infer traffic volume through data collected from a
roving sensor network of taxi probes that log their locations
and speeds at regular intervals. Our model and inference pro-
cedures can be used to analyze traffic patterns and conditions
from historical data, as well as to infer current patterns and
conditions from data collected in real-time. As such, our
techniques provide a powerful new sensor network approach
for traffic visualization, analysis, and urban planning.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous

General Terms
Algorithms, Experimentation

Keywords
Sensor network, prediction, estimation, traffic, GPS, Taxi,

Inductor loop detector

1 Introduction
Understanding traffic conditions and patterns, such as ori-

gins and destinations or trips, car routes, and traffic volume
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and congestion are critical for urban planning. Traffic infor-
mation is collected today through manually conducted sur-
veys (for origins, destinations, routes), or using static sen-
sors such as traffic cameras and loop detectors1 (for volume,
congestion). However, survey data is often incomplete, in-
accurate, and out-of-date, and static sensor data is incom-
plete and often difficult to analyze and aggregate, especially
in real-time.

In this paper we consider a third source of data: a vehicu-
lar sensor network that consists of a roving fleet of dynamic
sensor “probes”. Commercial vehicles are often outfitted
with GPS devices that log their locations and speeds at regu-
lar intervals, as increasingly are federal, state, and municipal
vehicles. These vehicles form as a mobile sensor network,
providing real-time information on the state of the road net-
work.

In a large-scale study conducted in the country of Singa-
pore, we collected the travel data (including GPS, speed, and
car status) from a fleet of 16,000 taxis for the month of Au-
gust 2010, representing approximately 500 million individ-
ual data points. The taxis transmit the data using a cellular
network. Thus, their data can be used in a real-time mode or
in a historical mode. We provide intuition as to why a ve-
hicular network consisting of taxis is well suited to the prob-
lem of describing traffic patterns: we demonstrate empiri-
cally and theoretically that taxis, no matter what their initial
locations, tend to rapidly “spread out” within their allowed
regions, thus providing good and consistent “coverage” of
the road network, by showing that they move in a random
walk across the city-state. We show how taxi volume data
can be used to automatically determine distributions of ori-
gins and destinations. The taxi origin and destination study
is a first step towards using dynamic probes for automati-
cally estimating automatically detailed urban-scale mobility
patterns.

This work builds on prior studies on traffic to estimate
traffic volume and speed [9], and mobility to measure the
origins, destinations, and trajectories of trips [17].

1Loop detectors are inductive loops installed in the road network, typi-
cally at intersections. They can detect metal and thus and count vehicles.



The state of the art in estimating traffic uses static sensors
such as loop detectors or traffic cameras [3]. The static sen-
sors are installed at fixed points and provide traffic estimates
at that single location. They require significant effort to de-
ploy and maintain and fail to capture traffic flow and trajec-
tory information. Some recent studies have began to inves-
tigate the use of GPS devices as dynamic traffic probes for
inferring traffic volume using existing mathematical models
[11, 16], or they estimate traffic speed from GPS [24, 23] or
from special-purpose static sensors [1, 2].

Measuring mobility patterns is more challenging than
measuring traffic volume. The state-of-the-art methodology
for recording the origins and destinations (OD) of trips is a
manually-conducted survey [10, 22, 4, 5]. OD surveys in-
clude household, workplace, or roadside surveys and aim to
identify where people start and end their trips. There are
many shortcomings with this method. The surveys measure
the average rather than actual travel behavior, they cover
only a small subset of trips, and given the manual nature
of the method, the information (e.g. travel time) is poorly
estimated by the interviewee. More recently, estimating ori-
gin and destination has also been done using the observed
link flow information [8, 12, 7, 6, 15, 13, 14]. However, the
results of this method depends on an underlying model of
traffic and the number of link flow measurement locations.
Surveys have also been used to estimate route choices, al-
though the results are not reliable due to the complexity and
scale of the route selection problem in a dense network of
roads. Truck fleets have been used to identify truck routes
using loop detector counts [21]. To our knowledge there are
no known studies on mobility details such as origin, destina-
tion, and routes using dynamic sensors.

The rest of this paper is organized as follows. Section 2.1
presents our method and data for inferring origins and desti-
nations using dynamic probes installed in taxis. Section 2.4
provides an intuition for why taxis make for good dynamic
probes, by showing that have a rapidly mixing property. Sec-
tion 2.5 considers the dependency between the size of the
taxi sensor network and its ability to provide road coverage
and accurate traffic volume predictions. Section 3 describes
several traffic applications for taxi networks, including traffic
volume (i.e. congestion) analysis and visualization, hotspot
analysis and visualization, and overall trip origins and desti-
nations analysis and visualization.

2 Modeling and Predicting Traffic with Taxi
Probes

Our hypothesis in this paper is that a small number of dy-
namic probes2 are sufficient to characterize overall traffic at
a city scale. Two natural questions arise: (1) How well does
the data from a dynamic sensor network of taxis represent
overall traffic? (2a) If it is representative, how much data is
needed to infer a good model for traffic? and (2b) If it is not
representative, is the bias consistent and correctable?

Our approach to these questions uses a sensor network
with two types of sensor data: static and dynamic. Static
sensors are placed at fixed locations to collect information

2In this paper we use taxis, probes, and dynamic sensor network inter-
changeably.

about traffic as it passes by, for example loop detectors or
traffic cameras. Dynamic sensors are attached to the vehi-
cles themselves and collect information about individual ve-
hicles as they move. Note that with this setup, the dynamic
data is strictly richer than the static data in the sense that the
static data can be inferred from the dynamic data, but not
vice versa. Why? Suppose that every vehicle was outfitted
with a dynamic sensor and every intersection was outfitted
with a static sensor. The static sensors are effectively collect-
ing macro-level data, such as the number of vehicles passing
through a given intersection during a given time interval, and
this information can be inferred from the micro-level data
collected by the dynamic vehicle sensors, for example by
simply counting the number of such vehicles whose sensed
routes pass through the given intersection during the given
time interval. However, the micro-level dynamic data can-
not be inferred from the static sensor data, unless individual
vehicles can be identified.

Now suppose that we did not have every vehicle outfit-
ted with a dynamic sensor, but we did have a perfect random
sample of such vehicles so outfitted. Then the static data
inferred from the dynamic data would not be correct in ab-
solute terms, but it would be correct in relative terms. In
other words, if 1/3 of the vehicles (chosen uniformly at ran-
dom) were equipped with dynamic sensors, then the static
traffic data inferred should be 1/3 of the actual data collected
from the static sensors. The distribution of traffic should be
correct.

This observation provides a mechanism for quantitatively
testing how representative is the probe data: Given any set of
static sensor measurements, infer those measurements from
the dynamic probe data and compare the results in relative
terms, e.g., by comparing the corresponding traffic distribu-
tions and/or traffic volumes. If the probe data is representa-
tive, these distributions and/or volumes should match; if not,
then one can quantify the mismatch, identify specific areas
of match and mismatch, correct for consistent biases, and so
on. Note that one would naturally suspect that probe data is
not generally representative of all traffic: for example taxis
do not ply the same routes as trucks. But we can qualify and
quantify this mismatch.

There may be areas of the city where the taxi data is quite
representative, for example, in the downtown area. Here we
can use the taxi data to quantify the amount of taxi data
needed to infer good models of traffic: one can sub-sample
the taxi data and see how the inferred models of traffic de-
grade vs. the gold-standard static sensor data.

2.1 Experimental Testbed: Taxis and Loop
Detectors

We use two sources of sensor data: taxi data from a large
fleet of taxis in Singapore, and loop detector data for the en-
tire road network in Singapore. The loop detector data is
used as ground truth for traffic volume. Our study uses four
weeks of data (August 2010) from 16,000 taxis in Singapore
which amounts to approximately 500 million data points
(31GB). Each taxi record contains the car id, the driver id,
the time stamp, the latitude, the longitude, and status of op-
eration (represented by one of the following four attributes:



Figure 1. Distribution for Aug 1 and Aug 2 over selected 16 road segments. The x-axis includes 16 segments, one per
road. Each of these 16 segments includes 96 points, one for each 15 minute time slot during a 24 hour day. The y-axis
shows the fraction of traffic at that location and time. The two curves are not well matched, although we notice that
within every hour time slot the offsets seem consistent.

free, person on board, busy, on break). Records are logged
at interval between 30 seconds and 2 minutes, depending on
network connectivity. Our study also uses the the loop count
data we obtained from Land Transportation Authority (LTA)
in Singapore for about 12,000 loop detectors in about 1,000
intersections in Singapore for the same period of time, Au-
gust 2010. Each loop detector record gives the number of
cars that pass over each loop detector during a 15-minute
time slot. There are 2,688 time-slots for the first four weeks
of August 2010. We used these time slots for our studies and
map all taxi and loop detector data in these slots.

Processing the taxi data to get the taxi counts for the cor-
responding time windows for the loop detector data required
several steps. First, the data is mapped to a time series of
GPS points for each car. Next, we match the time series of
GPS points to a sequence of road segments in the road net-
work of Singapore. To overcome the noise and sparsity of
the taxi GPS data, we used a map matching method based on
the Viterbi algorithm [19]. Third, we count the number of
taxis on road segments where loop detectors exist. From this
process, we get the taxi counts for each location in the road,
which is regarded as the sampled count for the probe traffic.
The loop count serves as the ground truth for general traffic.
Finally, we smoothed the count data by sliding averages over
a sequence of time slots ordered in time3.

Figure 1 shows the taxi and loop detector count data for
16 Singapore road segments we selected randomly. Note that
the taxi distribution (in red) tends to overestimate the loop
distribution (in blue) during much of the day, and that the

3The window size of sliding averages was determined as the minimum
value that makes the aggregate number of data points over the window is at
least 100.

overestimation varies. During the morning rush hour, the taxi
and loop distribution values are nearly identical. Thus, while
there exists a bias, this bias certainly changes throughout the
day, though it appears relatively consistent across days.

2.2 Using Taxi Probes to Infer General Traffic
We employ machine learning, and in particular, a cross-

validation study, to determine the simplest corrective model
for inferring vehicle distribution as detected by loop sensors
from vehicle distribution as detected by taxi sensors. We
extend this result with a cross-validation study that shows
that general traffic volume can also be inferred from the taxi
data. Figure 2 shows the results of learning the corrective
coefficients for taxi data and demonstrates that taxi data can
indeed be used to predict general traffic. Our analysis shows
that the best model for accurately inferring traffic distribution
and volume uses (1) the hour of the day and (2) whether the
day is a workday or non-workday.

Let R be the set of roads in our study. We selected
the 1000 road segments from the Singapore road net-
work whose lanes are equipped with loop detectors: R =
{r1,r2, · · · ,r1000}. For road r and time slot t we normalize
the traffic value relative to the overall traffic, to determine
the fraction of traffic at that location at that time. Specif-
ically, if tr and lr are the vectors representing the taxi and
loop detector counts for each 15 minute time slot for road r
and t̃r and l̃r are the corresponding distribution of taxis and
loop detector counts4, then

t̃r =
tr

∑
1000
i=1 ti

, l̃r =
lr

∑
1000
i=1 li

(1)

4Since we use 4 weeks of data, the length of tr and lr is 2688.



(a) Distribution from loop detector data (blue), taxi data (yellow), and after applying the regression for taxi data (red). The probability is found
using (1). The x-axis represents the day of the month (in this case week 4 of August 2010). Each day is further divided into 96 15-minute
intervals. The y-axis shows the distribution for each give day and 15 minute slot. The ground truth provided by loop detectors is shown in blue.
The original taxi data is shown in yellow. The taxi data processed according to the learned parameters is shown in red. Notice that the red
curve is a very good match to the blue curve. The large variation between loop detector data and taxi data is removed after applying the logistic
regression.

(b) Count from loop detector data (blue), taxi data (green), and after applying the regression for taxi data (red). Whereas logistic regression
was used for regression of distributions, linear regression was naturally used for count regression. Notice the red and blue curves are well
matched.

Figure 2. Result of regression

Our goals are (1) to examine if t̃r can be used to infer l̃r
and (2) to determine how well we can predict l̃r from t̃r. To
infer the relationship between l̃r and t̃r, we used a logistic
regression model as follows:

l̃r =
1

1+ e−(β0+β1 t̃r)
,

where β0 and β1 are the two regression parameters we learn.
We find the best categorization of time slots for learning

β0 and β1 that result in the best prediction of l̃r, using the
day-of-week and time-of-day categorization.

The intuition behind this is from the observation of the
traffic distribution pattern. We saw significant periodic pat-
tern based on day and week. Specifically, our day-of-week
categories include “Each Day of Week”, “Workday/Non-
workday”, and “All Days together”, where non-workday
means Saturday, Sunday or holiday. Our time-of-day cat-
egory varies from 15 minutes to 24 hours. For example,
Workday/Non-workday as day-of-week category and 2 hours
as time-of-day category results in 2×12= 24 pairs of regres-
sion parameters.

We divided the 4 weeks (Aug 01- Aug 28) data into four
one-week testing sets and four associated three-week train-
ing sets. We learn the regression parameters using the train-
ing set and apply the parameters to the left-out test set to find
the test error. Figure 3 shows the leave-one-out cross valida-
tion training and testing RMSE errors after performing logis-
tic regression for a road segment. As expected, the training
error decreases when we use more complex models; it de-
creases as the number of time-of-day slots increase, and as
the number of day-of-week slots increase. However, the test-

ing error does not always decrease as the model complexity
increases (generally known as over-fitting). Figure 3 shows
that the best test error was achieved using Workday/Non-
Workday with 15 minute slots, though substantially similar
results were achieved with slots as long as 1 hour. Figure 2(a)
shows that using taxi data and the Workday/Non-workday 1
hour time model we can predict the general traffic distribu-
tion with high accuracy.

A similar analysis was done to infer traffic volume, repre-
sented as counts, from the dynamic probes using linear re-
gression. The best test error was achieved for the model
Workday/Non-workday and 1 hour time slot, Figure 2(b),
showing that using taxi data and the Workday/Non-Workday
1 hour time model we can predict general traffic counts with
high accuracy.

Let us call RMSE as absolute RMSE and define the rel-
ative RMSE as the coefficient of variation of the RMSE as
follows: relative RMSE = absolute RMSE

mean of loop detector distribution . To see
how representative the taxi data is for the general traffic in
Singapore, we computed the relative RMSE for all 1,000
road segments and observed that the relative RMSE is less
than 10% for vast majority (80.3%) of the road segments.

2.3 Generalization
Whereas travel time data for each road segment can be

observed by taxis, the volume data is only available for the
locations where loop detectors exist. In this section we de-
scribe how to estimate volume for every road segment. We
develop a computational approach to estimating the volume
for locations where the loop sensor (hence loop data) is not
available. We estimate the traffic volume using the predicted
loop count learned in Section 2.2.



Figure 3. Training(left plot) and test(right plot) RMSE
for probability of a road. The x-axis represents the time
window considered. The y-axis represents the RMSE. We
can observe that the training error decreases as the model
gets more complex, but the test error shows over-fitting
effect. The best category for this road is Workday/Non-
workday and 15minutes.

Let O be the set of all roads with associated loop detec-
tors. Suppose road i does not have an associated loop de-
tector (i /∈ O). Our goal is to estimate the volume for road i
using the real-time volume data from all the roads with as-
sociated loop sensors O and taxi sensor information for the
road set O∪ {i}. Intuitively, we will estimate the volume
of road i by the weighted average of inferred volume using
the method given in Section 2.2 applied to other roads with
loop detectors, where the weight is defined by the similarity
between road i and a road j in O.

We quantify the similarity between roads i and j by sev-
eral measures:
• measure 1: m1(i, j) = 1

d(i, j) , where d(i, j) is the Eu-
clidean distance between road i and road j

• measure 2: m2(i, j) = 1
a(i, j) , where a(i, j) is the angular

difference between the orientation of road i and that of
road j

• measure 3: m3(i, j) = 1
l(i, j) , where l(i, j) is the differ-

ence between number of lanes of road i and that of road
j

• measure 4: m4(i, j) = 1
t(i, j) , where t(i, j) is the differ-

ence between taxi count for road i and that of road j
Each of these four measures is an inversely proportional re-
lation. Measures 1, 2, and 3 are static. The information
depends on neither time nor traffic conditions. Measure 4
captures the dynamic real-time information observed by taxi
probes.

We define an aggregated similarity measure using the four
measures. For a pair of roads i and j, (i, j), the aggregate
similarity measure is given as follows:

s(i, j) = m1(i, j)u1 ×m2(i, j)u2 ×m3(i, j)u3 ×m4(i, j)u4 (2)

where uk is the indicator for whether measure mk should be
considered for deciding the aggregate similarity.

uk =

{
1 if measure mk should be considered
0 otherwise

We choose the best uk empirically.

Algorithm 1: Estimate-Volume
Data: v( j): inferred loop count for road j where loop

detector exists;
vt(i): taxi count data for road i;
euclidean distance between all pairs of roads;
angular difference of orientation between all

pairs of roads;
difference in number of lanes between all pairs

of roads;
difference in taxi count for all pairs of roads;
uk: the indicators for each similarity measure;

Result: ṽ(i): estimated relative volume for road i
without loop detector

1 O = a set of all roads where loop detectors exist ;
2 for j ∈ O do
3 Find m1(i, j), m2(i, j), m3(i, j), and m4(i, j) ;
4 s(i, j) =

m1(i, j)u1 ×m2(i, j)u2 ×m3(i, j)u3 ×m4(i, j)u4 ;
5 wi( j) = s(i, j)

∑∀k∈O s(i,k) ,∀ j ∈ O
6 end
7 ṽ(i) = (vt(i))∑∀ j∈O wi( j) v( j)

vt ( j) ;

Algorithm 1 describes the method for real-time estima-
tion of traffic volume ṽ(i) for road i /∈ O, using the real-time
loop count estimation from all roads in O. Our algorithm
estimates the volume by the weighted average of the avail-
able inferred loop detector counts for all the roads in O. The
weight assigned to each loop detector on road j for the esti-
mation of volume for road i, wi( j), is defined as the normal-
ized aggregate similarity measure for all the road segments
in O as follows:

wi( j) =
s(i, j)

∑∀k∈O s(i,k)
,∃ j ∈ O (3)

The estimation of volume for i, ṽ(i), is calculated as the
weighted average of the other inferred loop counts using the
weight wi( j),∀ j ∈ O as follows:

ṽ(i) = (vt(i)) ∑
∀ j∈O,vt ( j)6=0

wi( j)
v( j)
vt( j)

(4)

where v( j) is the observed loop count of road j divided by
the number of lanes of road j.

We evaluate performance using our data (Section 2.1)
with a leave-one-out cross-validation approach. We selected
1,000 locations with loop detector data as the test set, O.
We use each road segment i ∈ O as a test case. For each i
we define Oi = O \ i to contain all the road segments with
loops. We use the loop counts on i as ground truth to quan-
tify our estimates. The data consists of loop detector data
for August 2010 and taxi data for the same period, where the
loop counts and taxi speeds are collected for each 15-minute
time slot. Thus, we have the loop counts and taxi speeds for
1,000 locations with 31 days× 96 slots per day = 2,976 data



(a) Volume for four randomly selected roads for a test set of 1000 roads. The
estimated volume (x-axis) is strongly linearly correlated with the real volume
(y-axis), and the slope is very close to 1.

(b) (left) Correlation coefficient between estimated volume and real volume.
The correlation coefficient is high around 0.9 (right). ‘Gradient’ is the slope
of minimum-squared-error fit between real loop counts and the estimated
loop counts. Most of the roads lie in the range of 0.7 ∼ 1.3. Thus, the
gradient error is mostly in the 30% range. As such, the estimated volume
approximates well the real volume.

Figure 4. Volume estimation quality

points. Using these data, we ran Algorithms 1 for 1,000 test
cases.

Fig. 4 shows the quality of volume estimation. The esti-
mated volume and the real volume have a high linear corre-
lation, and the slope of the linear relationship is highly con-
centrated around one.
2.4 Taxi Distributions Are Rapidly Converg-

ing
Our thesis is that no matter where an individual taxi is

located, or where it starts its day, its location will rapidly
become indistinguishable from the overall taxi distribution.
The reason for this is the stochastic nature of a taxi’s
passengers—unlike a mail delivery truck that likely follows
a fixed route, a taxi will randomly visit locations based on
the random nature of the passengers’ destinations.

In effect, one can view a taxi’s movement as a random
walk, with transitions between regions governed by the con-
ditional probabilities of passenger movements from origins
to destinations. Although the driver does maintain full con-
trol of the taxi’s location when there are no passengers on

board, we show empirically that taxi distributions tend to
converge regardless of the taxis’ initial locations. Thus, the
locations of the taxis can be viewed as having been randomly
drawn from the overall taxi distribution at any point in time.
As such, they are well suited to the problem at hand: Re-
gardless of the initial locations of the dynamic taxi probes,
we can expect them to quickly spread, providing good cov-
erage in all regions.

The RMMC assumption is backed by the data analysis
from a fleet of 16,000 taxis in Singapore. We do not know
if the assumption holds for other urban environments. We
believe that for cities where the number of taxis and the fre-
quency of trips are high enough relative to the area of the city,
we will observe the RMMC assumption. However, more re-
search and experimental studies are needed to verify the gen-
erality of the RMMC assumption.

In the remainder of this section, we analyse taxi move-
ment over 27 regions (see Section 2.4.1, less one outlier re-
gion) at 15 minute intervals. The transition probabilities are
empirically derived from the taxi data.

2.4.1 Partitioning of Singapore into Traffic Zones
To make the analysis more tractable, we partitioned the

area of Singapore into a number of regions. This was done
in a completely data-driven fashion, by applying the stan-
dard K-means clustering on a subset of the origins and des-
tinations extracted from the taxi data. (198721 origins and
destinations from trips of 500 taxis over the first week were
used for the K means clustering.) The K-means clustering al-
gorithm iteratively assigns each origin or destination to one
of K centroids to which the origin or destination is closest
(as measured by Euclidean distance), and then adjusts each
of the K centroids to the means of the origins and destina-
tions assigned to it. This results in a partition of the data
space into Voronoi regions, each represented by one of the K
means or centroids.

In choosing the value of K, we followed [18] in the use of
a criterion, comprised of a linear combination of the distor-
tion (or encoding error) and regularization term:

N

∑
i=1

(~xi−~cENCODE(~xi))
2 +2λK logN

where N is the number of origins and destinations,~xi are the
GPS locations of the origins and destinations,~cENCODE(~xi) is
the nearest centroid to~xi, and λ is the regularization factor. In
this above criteria, the distortion ∑

N
i=1(~xi−~cENCODE(~xi))

2 is
the sum of Euclidean distances of each origin or destination
from its nearest centroid, and 2λK logN is the regularization
term. The “optimal” K∗ is chosen to minimize this criteria.

For our analysis, we have chosen λ = 35, which results in
K∗ = 28. Although the “optimal” K is sensitive to the choice
of λ, we believe that our choice is validated for the following
reasons:

1. By visually examining the graph of distortion against
K, we find an “elbow” at around 15≤ K ≤ 35;

2. There happens to be 28 postal districts in Singapore
[20];



Figure 5. Voronoi regions of Singapore, extracted
through K means clustering on origins and destinations
of taxi trips. A total of 27 regions are shown in this map,
with one outlier region excluded. The highlighted 6 re-
gions will be discussed in detail in Section 3.3.2.

3. The resultant Voronoi regions appear to correspond to
semantically significant areas in Singapore

We also verified that observations presented in this paper
are robust to a wide range of K = 15, . . . ,35.

Figure 5 shows the Voronoi regions extracted through K
means clustering (27 regions are shown, with an outlier re-
gion excluded). Each dot in the plot represents a single origin
or destination of a taxi trip, and is color-coded to represent
the region to which it belongs. Hence, each region is repre-
sented by a continuous patch of color-coded dots. Although
no additional map information was used in the creation of
the plot, the map of Singapore clearly emerges from the data,
with the empty patches corresponding to inaccessible areas
(e.g. reservoirs or forests). We observe that semantically sig-
nificant regions such as the Airport in the East, the Central
Business District and Orchard regions in the South; Tuas in
the West, and Woodlands in the North, are also visible.
2.4.2 Taxis Are Rapidly Mixing

To quantify the rate of convergence, we compute the max-
imum difference (i.e. the L∞ distance5) between any initial
taxi distribution and the observed overall taxi distribution af-
ter 15 minutes, 30 mintues, and 1 to 8 hours, when following
the empirical transition probabilities. In effect, this is equiv-
alent to the following: (1) consider a single taxi located at
any initial position, (2) compute the probabilities that this
taxi will be located at any given position after a set period
of “mixing”, and (3) compare this distribution to the over-
all taxi distribution at that time. Note that we consider the
worst-case possible initial conditions (and thus our results
apply to any initial taxi distribution or individual taxi loca-
tion).

Let ~πt = (π1,π2, . . . ,πr)
T be the overall taxi distribution

at time t, and ~x = (x1,x2, . . . ,xr)
T be any initial distribution

of taxis, where r is the number of regions used for analysis.
Let A∗u→v be the transition probabilities matrix from time u

5A low L∞ distance indicates that the L1 and L2 distances must necessar-
ily be low as well.

to v. Note that the transition probabilities matrix is estimated
using taxi data and that we do not make any Markovian as-
sumptions in its construction.

Hence,~πT
t =~πT

0 A∗0→t is the overall distribution at time t.
The time-t distribution obtained from an initial distribution
of~x is~xT A∗0→t .

We now present an upper bound on the L∞ distance be-
tween any initial taxi distribution and the observed overall
taxi distribution after a given time t.

Claim: ||~xT A∗0→t −~πT
t ||∞ ≤ maxi, j ||(~ei −~e j)A∗0→t ||∞,

where~ei is the standard basis vector (0, . . . ,0,1,0, . . . ,0), and
|| · ||∞ is the L∞ norm, returning the maximum absolute ele-
ment of a vector.

Proof: Let [~y]k denote the k element of any given vector
~y. Note that~x = ∑i xi~ei, so:
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Similarly, we can show for~πT
t =~πT

0 A∗0→t :
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Thus:
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T A∗0→t
]

k |

=⇒ ||~xT A∗0→t −~πT
t ||∞ ≤max

i, j
||(~ei−~e j)

T A∗0→t ||∞ �

Note the above upper bound maxi, j ||(~ei −~e j)
T A∗0→t ||∞

holds for any initial distributions ~x and ~π0. In other words,
any two intial distribution will converge to within a L∞ dis-
tance of maxi, j ||(~ei −~e j)

T A∗0→t ||∞ of each other within t



time-steps. Hence, to show that the taxi distributions con-
verge regardless of initial locations, we need to show that
this upper bound decreases quickly as t increases.

This upper bound has a very natural interpretation. The
distribution ~eT

i A∗0→t is obtained when a subset of taxis con-
centrated in a single region is tracked for t time-steps. This
initial configuration is arguably the worst case scenario,
which we intuitively expect to take the longest time to con-
verge. The upper bound is thus a measure of the worst case
scenario, where two extreme initial distributions are allowed
to converge over t time-steps.

Figure 6. Upper bound on L∞ distance between distri-
butions of taxis with different initial distributions, after
a given period of time. Within a short amount of time,
low upper bounds on the L∞ distances are attained, indi-
cating that the taxi distributions have converged, so the
taxi probes provide good coverage regardless of the ini-
tial distribution.

Figure 6 shows the results of our analysis for workdays
and non-workdays. Each curve represents a different time
period such as “6 hours” (red curve with crosses); this cor-
responds to the amount of time any initial taxi distribution
(or individual taxi) is allowed to “randomly walk” before its
posterior distribution is compared to the overall taxi distribu-
tion. The y-axis gives the upper bound on the L∞ distance be-
tween the “random-walked” taxi distribution and the empiri-
cal overall taxi distribution. For instance, at 09:30 on a work-

day, the upper bound on the L∞ distance after two hours of
“random-walks” is approximately 0.25, indicating that start-
ing from 07:30, any two initial taxi distributions will come
within an L∞ distance of 0.25 of each other by 09:30.6 Note
that the convergence rate is considerably worse in the early
morning hours, as there is far less taxi traffic in the middle of
the night. As can be seen, we have fairly rapid convergence
during most all waking hours.

In our analysis, these upper bounds represent extreme,
worst-case scenarios: the taxis are concentrated in a single
region, thus providing little coverage of the country. The
low upper bound values demonstrate that any initial distribu-
tion of taxis will quickly disperse over the country to provide
coverage on all regions.

We next show empirically that accuracy estimates of the
general traffic volumes are possible using only small number
of probes.

2.5 How Many Taxis Sensors Are Needed?
Since taxi sensor data can be used to infer general traffic

volume, we conclude that a taxi sensor network is a good
proxy for general traffic and would like to know how many
nodes are needed to infer traffic within some desired accu-
racy. There are several attributes that trade-off (1) the num-
ber of nodes; (2) the amount of time the nodes roam to col-
lect historical data; (3) the fraction of roads the nodes cover,
and (4) the accuracy of the general traffic prediction from
the taxi sensor network nodes. In this section we show that
a relatively small number of taxis is sufficient to get good
road coverage, and that if the taxis roam for a relatively small
amount of time, general traffic can be inferred with high ac-
curacy as measured by RMSE.
2.5.1 Coverage vs. Number of Taxis

Section 2.4 shows that taxis travel randomly and therefore
they cover Singapore broadly. In this section we quantify
this property of taxi movement by investigating the fraction
of road segments they cover. We measure coverage as the
fraction of roads that were driven on at least k times7 by any
taxi. We examined the coverage for different time windows
and different k, using sets of taxis of size N that were ran-
domly selected using the following procedure. We generate
a random permutation of 16,000 taxis and use the first N taxis
from the permutation sequence.

Figure 7 was drawn for a single permutation of 16,000
taxis. The plots show the fraction of the 1,000 road segments
driven on least 30 times during 2 different time windows.
The number of taxis used for the coverage is given by x-
axis. Different curves correspond to different times of day, as
denoted in the legend. The time window is 15 minutes (left)
and 1 hour (right). For workday coverage during 15 minutes
(left plot), we conclude that 700 taxis are enough to cover
70% of the roads for most of the day’s 1-hour time windows
except those in the middle of the night when the number of
vehicles on the road is sparse. Figure 8 shows cumulative
histograms of 300 random permutations. The steep slopes

6These values are the average, over all work or non-work days, of the
worst-case, over all initial taxi distributions, for the time period of interest.

7k is a parameter we choose to support the methodology of inferring
general traffic from the taxi counts.



Figure 7. Coverage according to the number of probes.
The Left and right plots show what fraction of roads are
covered 30 times during 15 minutes and 1 hour respec-
tively (y-axis) as the number of probes grows (x-axis).
Color encodes the time of day for the coverage measure-
ment.

indicate that the coverage result is not very different from
one permutation sequence to another. From the right plot,
we can see that 2000 taxis are enough to cover 90 % of the
total loop detector locations during 08:00 ∼ 08:15 on all the
workdays.

Figure 8. Cumulative histogram of coverage by 30 sam-
ples for 300 random permutations for 8am. The steep
slope of each line means that the variation from one ran-
dom order selection of 16000 taxis are not very different
from the others. Thus, we don’t need to worry too much
about which set of taxis we should choose

2.5.2 RMSE vs. Number of Taxis
Next, we consider how many taxis are needed in order

to estimate traffic on the Singapore road network within a
desired RMSE. We use as base case for traffic estimation the
RMSE derived in Figure 2(a) using the entire fleet of 16,000
taxi probes and ask, how much will the RMSE degrade if we
use a subset of size given by parameter k of the the probes
selected randomly. The RMSE decreases as the number of
taxi probes increases. However, the RMSE bottoms out at
a certain point so that increasing number of probes has no
effect on improving the RMSE value.

Let RMSET denote the RMSE achievable with our entire
fleet of 16,000 dynamic probes and let nλ(c) be defined as the
minimum number of taxis that can be used to infer general
traffic with RMSE at most (1+λ)RMSET for a given traffic
model c. Figure 9 shows a cumulative histogram of nλ(c) for
various λ values where c is the model workday/non-workday
with a 1 hour time slot. The y-axis of both plots represents
the fraction of road segments among the total 1,000 road seg-

Figure 9. The dependence of the RMSE for inferred traf-
fic volumes on the number of dynamic probes used. Cu-
mulative histogram of nλ(c) Each curve in the plot cor-
responds to a different λ. The x-axis plots the error tol-
erance, and the y-axis plots the percentage of roads With
2000 probes and 10% additional error over RMSET (the
orange curve), we can predict the traffic volumes for 65%
of the roads

ments. The left plot is drawn over # probes for various λ, and
the right one is drawn over λ for various # taxis. In Figure 9
the increase in percentage is steep from 0 to 1000, which
shows that increasing the number of probes from 0 to 1,000
improves estimation. Given 2,000 probes we can estimate
the general traffic counts as given by the loop detectors for
65% of the road network with precision at least 1.1RMSET .

3 City-scale Applications
The data collected from the roving sensor network of taxis

can be analyzed to extract global trends about the environ-
ment, for example the location of hot spots. Sections 2.2,
2.4, and 2.5 provide a method for inferring traffic volumes
from taxi probes, and an analysis of how many devices are
needed to achieve the inference within some desired error
limits. Many interesting traffic and mobility analyses can
be performed using dynamic probes. In this section we give
three examples of traffic analyses using dynamic probes: es-
timating taxi volume, estimating hotspots, and estimating the
distribution of origins and destinations for taxis, which point
to future directions and opportunities for using taxi probes to
understand urban-scale mobility.

3.1 Volume
Figure 10 shows a snapshot of taxi volume for different

hours of day on August 2nd (Monday) 2010 for Singapore.
The volume is defined as the number of taxis observed in the
square block over a given time and is plotted for a regional
block size of 400meters × 400meters and a time size of 2
hours. Color also encodes a qualitative measure of volume
according the the color wavelength, with red denoting the
highest volume and blue denoting the lowest volume. Each
bar height measure the volume. While the volume distribu-
tion across the country changes according to different times
of day, some parts of the country retain the largest fraction of
the traffic volume. We discuss this phenomenon in the next



(a) 3∼5 am (b) 5∼7 am (c) 8∼10 am

(d) 1∼3 pm (e) 5∼7 pm (f) 9∼11 pm

Figure 10. Snapshots of traffic volume measured by taxi probes for August 2nd 2010 (Monday) plotted on the map of
Singapore. Bar height and color combine to encode traffic volumes. Note the large variation in volumes in different
regions of the city.

section.

3.2 Hotspots
The red bars in Figure 10 visually indicate traffic hotspots.

Some regions of the country remain hotspots regardless of
the time of day (e.g. the Changi airport). Other regions (e.g.
Orchard Rd) are hotspots during certain time periods. Fig-
ure 11(a) shows the top 9 hotspots, while Figure 11(b) shows
the traffic variation during the day at each of these 9 hotspots
(each location plotted as its own curve). We can observe dif-
ferent detailed volume variation over a day for those hotspots
in Figure 11(b).

Hotspots such as A in Figure 11(a) show excess traffic
volume in the early morning, and Hotspots such as F show
excess volume during the morning rush hour. B shows ex-
cess traffic both in the morning and evening rush hours. C
(airport) show all-time high volume. Hotspots such as D, E
and much of northern area show that the traffic volume is rel-
atively higher in the evening and early morning than morning
rush hour.

3.3 Origins / Destinations
The streaming nature of the information from the taxi

probes enable the aggregation of higher-order information
for mobility analysis, for example where do trips originate
and end and which trajectories were followed. In this sec-
tion we give results on how dynamic probes can be used to
analyze origins and destinations. In our future work we will
describe how we can use dynamic probes to infer general
traffic mobility patterns.

3.3.1 Number of Taxi Trips
A total of approximately 12 million trips were extracted

from the taxi data, and the average number of trips starting
(origins) and ending (destinations) at different times-of-day
are shown in Figure 12, together with the number of taxis
plying the road.

The number of taxis decreases from 8pm to a daily low
at 5am, before dramatically increasing through the morning
rush hours until 10am. The supply of taxis on the roads then
remains nearly constant until the 8pm in the evening. The
slight dip in taxi numbers at 5pm is possibly due to taxi shift
changes.

The pattern for the demand of taxis (as represented by the
number of origins / destinations) is similar to that of the sup-
ply of taxis, where fewer trips are taken between 8pm to 5am,
before again increasing until 10am. On workdays, however,
the peak demand is experienced at 9am. Even though the de-
mand decreases after 9am, taxi drivers have started their own
working hours, and continue to ply the roads, resulting in an
over-supply during this period.
3.3.2 Distribution of Origins and Destinations

Each origin and destination from all 12 million trips were
classified as belonging to one of the 28 regions. For each
fifteen minute block starting from midnight on workdays,
we calculated the empirical distributions of the origins and
destinations over the 28 regions. This procedure was also
repeated for trips on non-workdays. In total, 384 empirical
distributions were obtained (one distribution for origins on
workdays, origins on non-workdays, destinations on work-
days, and destinations on non-workdays for each of the 96
fifteen minute blocks in a day).



(a) Hotspots with different daily volume patterns

(b) Volume variation of hotspots over time

Figure 11. Hotspots according to time of day. The la-
bels on the left map show the locations of the hotdpots.
The curves show volume vs time of day for each of the 9
identified hot spots.

(a) Workdays

(b) Non-workdays

Figure 12. Number of taxis and trips (in terms of ori-
gins and destinations) at different times of days, on both
workdays and non-workdays.

The randomness of each of these distributions were mea-
sured using perplexity.

DEFINITION 1. Perplexity for a distribution p is defined as

2H(p) = 2−∑z p(z) log2 p(z)

where H(p) =−∑z p(z) log2 p(z) is the entropy of the distri-
bution.
The perplexity has a natural interpretation for the OD dis-
tributions: if a trip has equal probability of starting in any
region, then the perplexity of the empirical distributions of
origins is exactly equal to 28, the number of regions. On
the other extreme, if all trips begin in the same region, then
the perplexity is equal to 1. A distribution with a perplex-
ity value of X is as random as a uniform distribution over X
regions.

Figure 13. Perplexities of empirical distributions of ori-
gins and destinations

The lines marked with an ‘O’ in Figure 13 show the per-
plexities of the empirical distributions of origins and desti-
nations at different times during workdays. The peak in the
perplexities of origins is found at the morning rush hours as
passengers leave their homes across Singapore. The distri-
bution of origins stabilizes in the afternoon, before undergo-
ing a drop from 10pm to a trough at 3am. During this pe-
riod, trips largely originate from a small number of regions
near the city centre that are dominated by offices and popu-
lar shopping malls, indicating that passengers are reversing
their morning trips and heading home.

Conversely, a trough in the perplexities of destinations oc-
curs at the morning rush hours, when passengers are trav-
eling to the small number of city regions. Throughout the
rest of the day, the perplexity increases as passengers travel
to more diverse regions. Between 8pm - 12pm, perplexity
of destinations reaches its nightly peak as passengers head
to their homes in a large number of residential regions. A
second trough occurs at 6am – this phenomenon will be ex-
plained below.

Similar patterns can be seen on non-workdays as well, as
shown by the lines marked with an ‘X’ in Figure 13. In con-
trast to workdays, however, perplexities on non-workdays
tend to be higher, indicating that the population’s movements
are less synchronized. Furthermore, the trough in perplexi-
ties of destinations, has shifted from 9:45am on workdays to
12:15pm on non-workdays. This suggests that a shift in the
behavior of Singapore residents has occurred between work-
days and non-workdays.

Perplexities are coarse-grained summary statistics that do
not fully capture the richness of behavior encoded in the full



distributions. To better understand the evolution of OD dis-
tributions across time, we examined the probabilities of ori-
gins and destinations occurring in each region.

We have highlighted 6 regions of interest for discussion,
5 of which fall within or near the city center. The labels
we have used for naming the regions are purely descriptive,
and do not necessarily correspond to any official naming or
demarcations. Nevertheless, a Singapore resident should be
able to readily identify the regions and common activities
associated with them.

The 6 regions of interest (as indicated by the correspond-
ing bright colors in Figure 5) are:

1. Airport (Black): The easternmost region of Singapore
holds Changi Airport, by far the most important civilian air-
port.

2. Geylang (Red): Although a largely residential area,
Geylang is also well- known for some of its nocturnal activ-
ities.

3. Orchard (Green): Singapore’s famous shopping strip,
but also houses a substantial number of offices.

4. CBD (Blue): The Central Business District is domi-
nated by high-rise offices, but also caters to party-goers with
its pubs and clubs.

5. Fort Canning (Magenta): Some of Singapore’s most
popular clubs are found here. Being adjacent to Orchard and
CBD, there are also shopping malls and offices in the area as
well.

6. Rochor (Cyan): At the fringes of the city area, Rochor
is home to a few high-rise offices and shopping malls.

Figure 14 shows the probabilities of trips originating and
terminating in the 28 Voronoi regions. The 6 regions of in-
terest are highlighted while the remaining 22 (mainly resi-
dential) regions are faded into the background. We discuss
some of the patterns that emerge from these plots.

The city regions (CBD, Orchard, Fort Canning, and to a
smaller extent, Rochor and Geylang) are the most popular
regions for taxi trips to begin and end at most times of the
days. The prominence of CBD as a destination from 8am to
10am reflects the arrival of people at their offices. As the day
wears on, the CBD is then overtaken by other city areas such
as Orchard and Fort Canning, where more leisure activities
can be found.

One exception to the dominance of the city regions is the
morning hours from 6am to 8am. During this time, one is
more likely to find trips originating from residential areas
as people leave their homes to begin their day. Conversely,
the popularity of city regions as origins increases during the
evening, since taxi passengers are now leaving the city for
home. The same effect is observed with the destination prob-
abilities when the city regions become unpopular after 8pm.

Another pattern that can be clearly seen from Figure 14
is the popularity of the Airport region as a destination in the
early morning hours. We hypothesize that a large number
of flights are scheduled to leave Singapore in the morning.
This is further compounded by the lack of public trains in
the early hours, leaving taxis as the major means of public
transportation for air travelers. This spike in the popularity of
the Airport region also accounts for the trough in perplexities
of destinations at 6am seen in Figure 13.

(a) Workdays

(b) Non-workdays

Figure 14. Probabilities of empirical distributions of ori-
gins and destinations. Taxi trips’ origins and destinations
are mostly concentrated in the city regions, except for the
morning rush hours where origins are dominated by res-
idential regions. The airport is also a popular destination
in the early morning hours.

The patterns on non-workdays (Figure 14(b)) are similar
to the patterns on workdays (Figure 14(a)). A notable ex-
ception is the CBD, whose popularity as a destination drops
drastically due to fewer people returning to offices on non-
workdays.

On the other hand, during the late night hours 3am -
5am on non-workdays, trips are likely to originate from the
Fort Canning region. This is likely to be due to the pres-
ence of nightspots that are typically frequented only on non-
workdays when one does not have to report to work early the
next morning.

3.3.3 O-D Relationship
In addition to studying origins and destinations sepa-

rately, we also investigated the relationship between the two.



Specifically, we examined if the knowledge of a trip’s origin
could provide us with information about its destination, and
vice versa. Such questions would be of particular interest
to taxi drivers, whose expectations of their next task could
be altered according to the location where the passenger is
picked up. OD transitions are also important for transport
planners as a first step towards understanding the load on the
traffic network.

In Figure 15, we compare the perplexities of origins
and destinations with the conditional perplexities of origins
given destinations and of destinations given origins respec-
tively.
DEFINITION 2. The conditional perplexity of origins given
destinations is defined as 2H(O|D), where H(O|D) =
−∑o ∑d p(o,d) log2 p(o|d) is the conditional entropy of ori-
gins given destinations.
The conditional perplexity of destinations given origins is
similarly defined.

The conditional perplexity of origins given destinations is
the randomness or uncertainty about origins that remains af-
ter the destination has been made known. Thus, if the origins
and destinations were independent, then we gain no infor-
mation about origins through the knowledge of destinations,
and the conditional perplexity is equals to the perplexity it-
self. Such a situation may arise if all trips converged on a
single region (so the destination provides no additional in-
formation about the origin), or if all trips originated from the
same region (so the origin provides no additional informa-
tion about the destination). On the other hand, if the two are
perfectly correlated, then knowledge of destinations leaves
no uncertainty about the origins, so the conditional perplex-
ity is 1. The difference between the perplexities and the con-
ditional perplexities quantifies the information that one pro-
vides about the other.

As Figure 15 shows, knowledge about destinations re-
duces the perplexities of origins by 3.5-9.5 regions on work-
days and 2.5-8.5 regions on non-workdays. Knowledge
about origins reduces the perplexities of destinations by 4.5-
11 regions on workdays and 4-8.5 regions on non-workdays.
The differences between perplexities and conditional per-
plexities are, however, not uniform across different times-
of-day and workday / non-workday. Figure 16 shows the
variation of the ratios of perplexities to conditional perplexi-
ties across the day.

The mutual information I(O;D) = H(O)− H(O|D) =
H(D)−H(D|O) is a symmetric measure of dependence be-
tween the origins and destinations. The ratio between the
perplexities and conditional perplexities works out to be ex-
actly 2I(O;D), which is shown in Figure 16. We see that mu-
tual information tends to be higher in the day than at night.
Furthermore, a spike between 7am to 8am, followed by a de-
pression at 10am, is observed on weekdays. To explain these
observations, we examined the proportion of intra-regional
trips, i.e. trips which originated and terminated within the
same region.

As shown in Figure 17, the proportion of intra-regional
trips is correlated with the mutual information between ori-
gins and destinations. At 7am-8am on workdays, many taxi
trips are made within the regions around the perimeter of

(a) Workdays

(b) Non-workdays

Figure 15. Conditional perplexities of origins given desti-
nations, and vice versa.

Singapore. We believe that this is caused by people traveling
to work locations near their homes, and hence knowledge of
the trip origin provides useful information on the probably
nearby destination. This behavior is then overtaken by the
movement of office workers into the city regions at 10am;
since all trips likely end in the city, the knowledge of the
trip’s origin provides little additional information.

The proportion of intra-regional trips increases after 10am
as people do not move far from their workplace. This allows
us to again make better guesses about the destination if the
origin is known. After work, however, trips are taken out of
the city into the residential areas; since all trips likely origi-
nated from then city, the knowledge of the trip’s destination
provides little additional information. The low proportion of

Figure 16. Mutual information between origins and des-
tinations. A clear spike occurs between 7am to 8am on
workdays, caused by an increase in the probability of
intra-regional trips (see Figure 17).



Figure 17. Probabilities of a trip originating and termi-
nating within the same region, at different times of day,
on both workdays and non-workdays. The spike between
7am to 8am on workdays corresponds to the increased
mutual information between origins and destinations at
the same time.

intra-regional trips (and low mutual information) then per-
sists until the next morning.

Similar patterns are observed on non-workdays as peo-
ple make short intra- regional trips in the day but disperse at
night. The spike and depression are not as prominent, how-
ever, since there is less work-related movement.
4 Conclusion

In this paper we have shown that a vehicular taxi network
can be used to infer traffic patterns such as congestion pat-
terns, traffic hotspots, and historical traffic volumes. Because
the movement patterns of taxis is similar to a random walk,
a fleet of taxis can cover a city-scale road network quickly.
Using data from a study conducted in Singapore, we show
that a relatively small number of taxis (700) is needed to
cover about 70% of the road network in order to provide
sufficiently accurate traffic models. Traffic, as measured by
taxis, provides a biased representation of general traffic in
city-scale road networks. However, our case study shows
this bias is consistent and we can learn the corrective pa-
rameters. Thus, we conclude that taxi probes can be used
to provide accurate traffic forecasting using historical data
from their past drives, and real-time traffic snapshots from
their current drives.

The results in this paper are based on a case study done
with a taxi network in Singapore. However, we believe that
the nature of the results is general and applicable to other
cities around the world where urban planners could turn taxis
into a vehicular sensor network that will be able to capture
data to characterize historical and real-time traffic patterns.
5 Acknowledgements

This research is funded by the Singapore-MIT Alliance
for Research and Technology (The Future of Urban Mobility
project), the NSF (grant numbers CPS-0931550, 0735953),
and the ONR (grant numbers N00014-09-1-105, N00014-
09-1- 1031). We are grateful for this support. We thank
Land Transportation Authority (LTA) of Singapore for pro-
viding us with the inductor loop detector data, and we thank
the anonymous Taxi company for providing us with the taxi
data.

6 References
[1] Highway performance monitoring system, federal highway admin-

istration, http://www.fhwa.dot.gov/policyinformation/hpms.
cfm.

[2] National average speed database, INRIX, www.inrix.com.
[3] Traffic detector handbook: Third edition, fhwa-hrt-06-108, octo-

ber 2006, http://www.fhwa.dot.gov/publications/research/
operations/its/06108/index.cfm.

[4] The 1995 national personal transportation survey (NPTS), http://
npts.ornl.gov/npts/1995/Doc/publications.shtml. 1995.

[5] the new 2000 national household travel survey (NHTS), http://
www.bts.gov/programs/national_household_travel_survey/.
2000.

[6] S. Baek, H. Kim, and Y. Lim. Multiple-Vehicle Origin–Destination
matrix estimation from traffic counts using genetic algorithm. Journal
of Transportation Engineering, 130(3):339–347, May 2004.

[7] M. Bierlaire and F. Crittin. An efficient algorithm for Real-Time es-
timation and prediction of dynamic OD tables. Operations Research,
52(1), Jan. 2004.

[8] E. Cascetta and S. Nguyen. A unified framework for estimating or up-
dating origin/destination matrices from traffic counts. Transportation
Research Part B: Methodological, 22(6):437–455, Dec. 1988.

[9] T. L. David Schrank and S. Turner. TTI’s 2010 urban mobility report,
texas transportation institute, the texas a&m university system, http:
//mobility.tamu.edu. 2010.

[10] J. de Dios Ortzar and L. G. Willumsen. Modelling transport, third
edition. John Wiley & Sons, 2001.
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