
Prius: Generic Hybrid Trace Compression for
Wireless Sensor Networks

Vinaitheerthan Sundaram
Purdue University

West Lafayette, IN, USA

vsundar@purdue.edu

Patrick Eugster
Purdue University

West Lafayette, IN, USA

peugster@purdue.edu

Xiangyu Zhang
Purdue University

West Lafayette, IN, USA

xyzhang@purdue.edu

Abstract
Several diagnostic tracing techniques (e.g., event, power,

and control-flow tracing) have been proposed for run-time
debugging and postmortem analysis of wireless sensor net-
works (WSNs). Traces generated by such techniques can be-
come large, defying the harsh resource constraints of WSNs.
Compression is a straightforward candidate to reduce trace
sizes, yet is challenged by the same resource constraints. Es-
tablished trace compression algorithms perform unsatisfac-
torily under these constraints.

We propose Prius, a novel hybrid (offline/online) trace
compression technique that enables application of estab-
lished trace compression algorithms for WSNs and achieves
high compression rates and significant energy savings. We
have implemented such hybrid versions of two established
compression techniques for TinyOS and evaluated them on
various applications. Prius respects the resource constraints
of WSNs (5% average program memory overhead) whilst
reducing energy consumption on average by 46% and 49%
compared to straightforward online adaptations of estab-
lished compression algorithms and the state-of-the-art trace-
specific compression algorithm respectively.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debug-

ging—Tracing, Debugging aids

General Terms
Design, Measurement, Performance, Reliability

Keywords
Compression, Tracing, Sensor Networks

1 Introduction
Wireless Sensor Networks (WSNs) are being increasingly

deployed in various scientific as well as industrial domains
to understand the micro-behavior of physical phenomena. A

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SenSys’12, November 6–9, 2012, Toronto, ON, Canada.
Copyright c© 2012 ACM 978-1-4503-1169-4 ...$10.00

few prominent deployments include habitat monitoring [43],
volcano monitoring [47], precision agriculture [22], per-
mafrost monitoring [14], and micro-climate monitoring [5].
1.1 Deployment Failures

WSNs are highly susceptible to deployment failures as
they are deployed in situ in austere environments such as
volcanoes [47] or mountains [14]. Unexpected failures have
been observed in many deployments despite thorough in-lab
testing prior to deployment [6, 22, 43, 47, 18]. Even well-
tested protocols have exhibited failures in the field [47, 22].

Consider as an example the PermaSense deployment [14]
that monitors permafrost in the Swiss Alps. The deployment
experienced severe performance degradation after running
for 6 months (March 2009). Extensive resets of nodes, up to
40 resets per node per day, were observed for 3 months [18].
The cause of the bug was a lookup task whose running time
increased with the lifetime of the network, which after sev-
eral months of deployment became large enough to cause
node resets. The diagnosis took months and several expen-
sive trips to the mountain top.
1.2 Trace Based Debugging

To cope with deployment failures, several run-time diag-
nostic tracing techniques have been recently proposed for
WSNs that enable postmortem diagnosis [41, 19, 37, 21, 20].
These techniques propose efficient recording of different
types of traces such as function call traces [21, 36], control-
flow traces [41, 37], event traces [19], and power traces [20].
The traces generated by these techniques can provide insight
into the execution at the time of failure and thus aid diagno-
sis. For the Permafrost deployment failure, the control-flow
or function call trace would have shown the continuous exe-
cution of the lookup task, hinting to the problem.
1.3 Tracing Overhead

The amount of trace information generated and collected
by such approaches for diagnosis, however, increases rapidly
with the number of components or events traced in the appli-
cation [37, 41]. Large traces in the order of KBs put pressure
on the storage as well as on the radio and consequently, the
energy required to manage them.

Consider the case of the TinyTracer, a control-flow
tracer [41, 42]. Figure 1 shows the energy overhead of un-
compressed tracing of the main component of TinyOS appli-
cations as well as all components including the system com-
ponents such as LEDs, sensor, radio, timer used by those

0

50

100

150

oscil count lrx surge sense blink

En
er
gy
 O
ve
rh
ea
d
 % Main component traced

All components traced

Figure 1. Energy overhead of uncompressed tracing. The
y-axis shows energy overhead in % compared to the base-
line case, in which no tracing is performed (i.e., energy
consumption for the same application without tracing).

applications for a 30 minute run (Section 4.3 describes the
benchmark applications in detail). Note that many WSN
faults reside in system components or the interactions be-
tween the main components and system components, de-
manding tracing into several components [19, 18, 37, 48, 41].
The energy overhead for uncompressed tracing ranges from
3% (blink main component) to 135% (oscil all compo-
nents) of the energy used to run the application for 30 min-
utes without tracing. This represents a significant overhead,
which may hamper the feasibility of tracing.

1.4 Trace Compression Challenges
To mitigate the overhead of tracing, a natural approach is

to compress traces. The extreme resource constraints inher-
ent to WSNs, however, pose novel challenges for compres-
sion. Established compression algorithms [35, 46, 29] are
either inapplicable or have to be adapted to satisfy the limits
on memory and CPU resources. Adaptations of such estab-
lished algorithms still perform poorly for WSN traces due to
inherently small input buffers, which are only a few hundred
bytes in WSNs, leading to few opportunities for learning the
repeating patterns and replacing them.

The reasons for inherently small input buffers in WSNs
are twofold. First, since traces are constantly generated
with the execution, they have to be buffered in RAM before
compression – otherwise, computation-intensive compres-
sion may interfere with trace generation. After compressing
a trace buffer, the compressed output has to be buffered in
RAM as storage into non-volatile flash or transmission on
the radio is slow. Due to the differences in execution speed
between trace generation, compression, and transmission/s-
torage, multiple buffers are needed. The small RAM (4KB
to 10KB) and the requirement for multiple buffers limits the
size of the individual trace buffers to a few hundred bytes.
Second, reliable delivery of large buffers over an unreliable
wireless multi-hop network in WSNs is expensive [34].

Existing WSN data compression algorithms such as
SLZW [34] or PINCO [2] also achieve relatively poor per-
formance as they can not exploit the rich repetitions in traces
as compression is performed independently on small buffers
as explained earlier. (We quantify the poor performance of
these compression algorithms in Section 2.) Poor perfor-
mance of established compression algorithms explains why

existing WSN tracing approaches either use simple, ad hoc
techniques [41], or do not compress at all [19, 37, 21].

1.5 Hybrid Trace Compression
This paper proposes Prius (named after the Toyota Prius

hybrid car), a novel hybrid (offline/online) approach to com-
press WSN traces generated by various tracing frameworks.
Prius relies on the following key observations:

• WSN computations exhibit a high degree of repetition
in short time.

• The repetitive patterns in WSN computations evolve
only little over time.

• WSN nodes use Harvard architecture and thus have sep-
arate program memory (EEPROM) and data memory
(SRAM). While the latter memory is extremely scarce
the former memory has more generous constraints and
is rarely a bottleneck.

The key idea of Prius is thus to capture the repetitive
patterns of WSNs that occur in the traces using an offline
training and include those patterns in the program mem-
ory using specially adapted data structures. The compres-
sion algorithm then uses these patterns to perform online
compression. While rather intuitive, our approach is based
on a careful balance, which our evaluation validates. While
program memory can accommodate more patterns than data
memory and thus potentially improve compression ratio, ac-
cessing such memory is typically 1.5× more costly than ac-
cessing data memory in both ATMEL’s AVR [15] and TI’s
MSP430 [30] architectures. The use of specialized data
structures can counter-balance this increase by simplifying
lookups considerably, but this does not support addition of
patterns at runtime; such missing patterns may reduce com-
pression performance. As we show, the energy savings ob-
tained through higher compression rates outweigh the ad-
ditional CPU costs. Furthermore, missing patterns are rare
since WSN executions are repetitive and do not evolve much.
More substantial changes in execution patterns arising from
reprogramming a WSN can be handled by uploading a new
set of patterns for the latest version of the software.

Our approach has several advantages. (1) By identifying
patterns offline, the online phase is saved from doing heavy-
duty mining. (2) Compression ratio is significantly improved
by retaining the state information (dictionary) across small
input buffers, which implies energy savings in transmission
and storage of traces. (3) By storing patterns in the program
memory — besides allowing more patterns to be stored —
the precious RAM can be conserved for other components.
(Moreover, flash storage technology used in program mem-
ory has improved more significantly in past years in terms of
density and price than the SRAM technology used in data
memory.) (4) The use of specific data structures reduces
lookup time and saves space in storing the patterns. (5) Last
but not least, our approach allows a wide range of established
compression algorithms to be applied in the WSN context.

1.6 Contributions
In addition to pinpointing the reasons for poor perfor-

mance of established compression algorithms on traces, the
contributions of this paper are the following:

• We propose a novel hybrid (offline/online) trace com-
pression technique that enables established compres-
sion algorithms to be applied in the WSN context.

• We describe two realizations of it by “hybridizing” the
popular FCM and SLZW compression algorithms re-
spectively, and present their implementations.

• We show that our hybrid approach respects the resource
constraints of WSNs (5% average program memory
overhead) whilst reducing energy consumption on av-
erage by 46% and 49% compared to straightforward
online adaptations of established algorithms and state-
of-the-art trace compression algorithm respectively. We
also show preliminary results with sensor data, illustrat-
ing the potential of our techniques beyond traces.

1.7 Roadmap
Section 2 details challenges for compression in WSNs

and motivates our approach. Section 3 presents our hybrid
trace compression technique, and its realization in two com-
pression techniques; Section 3.5 discusses their implemen-
tations in TinyOS. Section 4 illustrates performance bene-
fits of our approach through empirical evaluation. Section 5
discusses various issues and Section 6 contrasts with related
work. Section 7 draws conclusions.

2 WSN Opportunities and Challenges
In this section, we first present a brief overview of estab-

lished compression algorithms and analyze the opportunities
and challenges for trace compression in WSNs, motivating
the design of our solution presented in Section 3.

0

15

30

45

60

75

90

105

120

135

Main All Main All Main All Main All Main All Main All

oscil count lrx surge sense blink

C
o
m
p
re
ss
io
n
 R
at
io
 %

FCM offline FCM online LZW offline LZW online

Figure 2. A comparison of online and offline compres-
sion ratios for FCM and LZW compression algorithms
applied to control-flow traces generated by TinyOS ap-
plications. Smaller compression ratios are better.

2.1 Compression Algorithms
We present an overview of three of the most widely used

(trace) compression approaches, namely prediction-based,
grammar-based, and dictionary-based compression.

Prediction-based compression uses value predictors to
compress a stream of values [7]. Only one or a few bits are
needed to represent a value if the value can be correctly pre-
dicted. Otherwise, the original value is retained in the com-
pressed stream. The prediction is based on the context table,
which is updated as input is scanned. Finite context methods
(FCM) [35] is a highly effective value prediction technique

used for trace compression, which we describe in more detail
shortly when applying our technique to it.

Dictionary-based compression algorithms build a dictio-
nary of repetitive patterns by scanning the input values and
compress the input by replacing the patterns with the indices
to the dictionary. Named after its inventors Lempel, Ziv, and
Welch, the LZW [46] algorithm is a well-known variant of
the popular LZ family of text compression algorithms and is
at the core of the Unix compress utility.

Grammar-based compression algorithms infer a grammar
from the input text and produce that grammar as the com-
pressed output [29, 24]. It has been shown that they are less
effective than value prediction algorithms in trace compres-
sion [7]. Therefore, we focus on the two former families.
2.2 Offline vs. Online Compression

To understand how well the targeted traces can be com-
pressed with standard compression techniques, we collected
30 minutes of control-flow traces for various TinyOS appli-
cations (see benchmarks in Section 4.3). We compressed
these traces offline on a desktop using both FCM, which we
implemented in Python, and Unix’s compress implementa-
tion of LZW. We refer to these as FCM offline and LZW
offline respectively. Note that offline compression uses the
whole 30 minute trace as input and stores very large dictio-
naries/tables of patterns as it is running on a desktop.

Online compression, which is compressing traces as they
are generated on the WSN nodes using straightforward adap-
tation of FCM and LZW, was done for comparison with of-
fline compression. We implemented FCM in nesC respect-
ing the resource constraints of WSNs and incorporated it into
TinyOS applications, so the traces can be compressed online.
For LZW, we used SLZW, an LZW implementation in nesC
proposed by Sadler et al [34]. We collected the compressed
traces for all the benchmarks. We refer to these as FCM
online and LZW online. In contrast to offline compression,
online compression uses small input buffers (192 bytes per
buffer) and has limited dictionary/table storage as it runs on
resource-constrained WSN nodes.

Figure 2 shows the compression ratio using FCM and
LZW both offline and online compression for different
TinyOS applications in our benchmark suite. From this fig-
ure we see that LZW offline can compress the trace down to
6.9%-22.72% of the original size, which represents a 4.4× to
14.5× reduction in size. Similarly, FCM offline can reduce
the size from 6.69% to 37.77% of the original size, which
represents 2.6× to 14.9× reduction in size. It is clear that
the traces are well compressible, yielding an opportunity to
save a considerable amount of energy.

The standard compression algorithms, however, do not
work well for trace compression in WSNs if they are adapted
straightforwardly. From Figure 2, we see that the compres-
sion ratio using LZW online is from 33.3% to 117% and for
FCM online is from 10.5% to 70.5%. The compressed out-
put can be larger than the input when the prediction is poor as
encoding misprediction uses more bits than the original entry
itself. We observe that there is a good scope for improvement
for online compression (0.9× to 14× for LZW and 0.2× to
2.2× for FCM). For example, in the case of tracing all com-
ponents in oscil, LZW offline can compress the trace 10.1×

more than LZW online and FCM offline can compress the
trace 3.2× more than FCM online.

In summary, high compressibility of traces is an opportu-
nity. However, applying established compression algorithms
like LZW and FCM straightforwardly in WSNs results in
a poor compression ratio. As explained in Section 1.4, the
reason for poor performance is due to small input buffers
and independence of compressed outputs, which allows in-
dependent decompression at the base station. Based on these
observations, we present a novel generic hybrid trace com-
pression approach in the following section.

3 Prius: Hybrid Trace Compression
While the key idea underlying our approach is intuitive,

its effective realization is less trivial. In this section, we first
outline challenges in “hybridizing” a compression technique,
before presenting the high-level design of our approach with
respect to an abstract compression algorithm. Then we il-
lustrate the intricacies of hybridization with respect to a spe-
cific compression algorithm by presenting the hybridization
of FCM and LZW. Finally, we discuss our implementation
details.
3.1 Hybridization Challenges

WSN computation is repetitive; it’s repetitive nature can
be effectively captured offline and the captured information
can be used during the online compression of traces. Based
on this observation, it is possible to design a hybrid com-
pression that mines the patterns offline and stores them in
the data memory. However, such an approach cannot im-
prove compression ratio significantly because not many pat-
terns can be stored in the limited data memory. Moreover,
the space occupied by the patterns cannot be used by other
components for the lifetime of the WSN application. Even
when the program memory is used to store patterns, it is
important to store them efficiently such that lookup is fast.
Since the number of patterns in the program memory stored
can be large, sequential scanning of all the patterns in the
program memory to find a pattern is CPU-intensive and may
undermine the energy savings obtained by better compres-
sion. Therefore, hybridization has to be carefully done.
3.2 High-level Design

The high-level design of our approach is explained with
respect to an abstract compression algorithm, denoted as A.
First, we develop two modified parts of the original compres-
sion algorithm A, namely Aminer and Acompressor. Given an
uncompressed trace, the algorithm Aminer outputs the internal
data structure that is used for compression to a file in addi-
tion to compressing the input like the original algorithm A.
Depending on the compression algorithm, the internal data
structure could either be a table or a dictionary.An efficient
data structure is designed such that it exploits the static na-
ture of the patterns stored to reduce access time and/or stor-
age space. A data structure generator would take the output
of algorithm Aminer and produce an encoding of the designed
data structure in a header file. The algorithm Acompressor is
the version of algorithm A adapted to run on motes. Algo-
rithm Acompressor includes the header file as well as an in-
terface with the designed data structure instead of the one
used in algorithm A. The algorithm Acompressor is lightweight

because it doesn’t need to identify, update or store patterns.
Figure 3 presents our design as a workflow diagram.

WSN
application
(simulation/

testbed)

Aminer

Raw
trace

Data
structure
generator

Dictionary

Build process
(e.g., nesC
compiler)

Data
structure
in header

file

Acompressor

WSN
application

Figure 3. Prius workflow.

3.3 FCM
Next we outline the FCM compression algorithm through

an example and then present the steps to hybridize it, includ-
ing the choice of an efficient data structure.

3.3.1 Description
FCM (Finite Context Methods) is a highly effective value

prediction technique [7] that can be used for compression.
A value is predicted based on a fixed number of preceding
values, called the context. The number of preceding values,
i.e., the size of the context, is configurable, and is added to
the algorithm name. For example, if the context consists in
3 preceding values, the predictor is called FCM-3. A lookup
table is maintained to store predictions corresponding to a
limited number of context patterns encountered in the past.

Algorithm 1 Finite Context Machine (FCM-n) algorithm. Takes as input
a string of N characters and returns a compressed string as out put. Assumes
the presence of a table that stores the context and its corresponding predic-
tion. Procedure PREDICT looks up the given context in the table. Procedure
LEFTSHIFT left shifts the contents of the context once and appends the new
input character. Procedure UPDATETABLE adds the context if it doesn’t
exist and otherwise corrects the prediction. Procedures APPENDCTXT, AP-
PENDBYTE, APPENDBIT append the second argument to the first argument.

1: for i← 0 to n do
2: APPENDCTXT (context, input[i])
3: APPENDBIT (out put, 0)
4: APPENDBYTE (out put, input[i])
5: end for
6: for i← n+1 to N do
7: if PREDICT (context)=input[i] then
8: APPENDBIT (out put, 1)
9: else

10: APPENDBIT (out put, 0)
11: APPENDBYTE (out put, input[i])
12: UPDATETABLE (context, input[i]) {Omit in hybrid}
13: end if
14: LEFTSHIFT (context, input[i])
15: end for

Given a value i to compress, its context is used to find the
prediction from the table. If i matches the prediction, a ’1’
bit is inserted to the compressed stream to indicate prediction
success. If i does not match the prediction or the context does
not exist in the lookup table, a ’0’ bit followed by i is added
to the compressed stream and the lookup table is updated to
reflect the new prediction. Decompression is straightforward
when a lookup table is maintained. If the bit read is ’0’, the
value is read from the input. Otherwise, the value is identi-

Table 1. FCM-3 example. Bits are represented with
overbar. The input characters are 8 bits long.

Input ABCDECDECDECDE

Output 0̄A 0̄B 0̄C 0̄D 0̄E 0̄C 0̄D 0̄E 1̄ 1̄ 1̄ 1̄ 1̄ 1̄

FCM Table
ABC→ D BCD→ E CDE→C
DEC→ D ECD→ E

fied from the lookup table. The FCM compression algorithm
is shown in Algorithm 1 and an example is shown in Table 1.
3.3.2 Hybridization

The hybridization of FCM involves designing an efficient
data structure for the dictionary to be stored in the program
memory and creating a hybrid version of the FCM algorithm
shown above which accesses the table efficiently. The latter
is simpler for FCM as the only change needed to Algorithm 1
is to omit line 12, which updates the dictionary. However, the
procedure PREDICT has to be rewritten to access the table
from the program memory.

The FCM table consists of entries with n-character con-
texts and their predictions. The table can be represented us-
ing a simple array or a hash table. An array is efficient for
small tables as scanning the array may be quicker than calcu-
lating hash functions with complex mathematical operators.
Furthermore, an array uses less space. However, a hash table
is preferable for larger tables (100s of entries) as the lookup
cost quickly adds up. Our evaluation considers both array-
based and hash table-based implementations.

We observe that the keys are static. Therefore, we can
build a hash table without collision. In other words, we can
use perfect hashing [10], which is a double hashing tech-
nique that avoids collisions. However, implementing perfect
hashing for WSNs is quite challenging.
3.3.3 Perfect Hashing for WSNs

We describe how we have adapted a well-known open-
source implementation of perfect hashing library, GNU’s
gperf, for WSNs. For a given set of strings, GNU’s gperf
produces a hash function and hash table, in the form of C or
C++ code. The main challenge is that the input character set
for gperf can only be alphanumeric characters. The naı̈ve
approach of converting the integer ASCII value (e.g. 143)
to a string (e.g. ’143’) was expensive due to CPU intensive
division and mod operations. Another approach is to store
every ASCII value of a byte in the form of a string, which is
expensive in terms of space. We converted the integer into
string in hexadecimal representation (e.g. ’8f’), which uses
only shift operations and a lookup of each nibble. This en-
abled perfect hashing with gperf for WSNs.
3.4 LZW

Next we outline the LZW compression algorithm through
an example and then present the steps to hybridize it, includ-
ing the choice of an efficient data structure.
3.4.1 Description

LZW [46] is a dictionary-based compression algorithm
which builds a dictionary of repetitive patterns while scan-
ning the input. The patterns found in the input are replaced
(encoded) with indices to the dictionary. Since a pattern can

Table 2. LZW example. The input characters are 8 bits
long. The output characters are 9-bits.

Input ABCDECDECDECEF
Output 65 66 67 68 69 258 260 259 67 69 70

LZW
Dictionary

AB→ 256 BC→ 257 CD→ 258 DE→ 259
EC→ 260 CDE→ 261 ECD→ 262 DEC→ 263
CE→ 264 EF → 265

be the prefix of other patterns, the pattern search continues
until the longest pattern is found before encoding . New pat-
terns are added to the dictionary. The LZW compression al-
gorithm is shown in Algorithm 2 and an example is shown in
Table 2. Decompression proceeds similar to the compression
algorithm by maintaining a dictionary.

Algorithm 2 LZW algorithm. It takes a string of length N characters,
input, and returns a compressed string in out put. It assumes the presence
of a dictionary that stores the pattern and its corresponding encoding. The
dictionary is initially empty. Procedure LOOKUPDICTIONARY looks up the
given context in the dictionary. Procedure ADDTODICTIONARY adds the
pattern with a new encoding for that pattern. Procedure ENCODE returns the
encoding of that pattern from the dictionary. Procedure APPEND appends
the second argument to the first argument.

1: pattern← input[0]
2: for i← 1 to N do
3: newPattern← APPEND (pattern, input[i])
4: if LOOKUPDICTIONARY (newPattern) 6= nil then
5: pattern← newPattern
6: else
7: APPEND (out put, ENCODE (pattern))
8: ADDTODICTIONARY (dictionary,newPattern)

{Omit in hybrid}
9: pattern← input[i]

10: end if
11: end for
12: APPEND (out put, ENCODE (pat))

Implementing the LZW algorithm in WSNs is not
straightforward – especially maintaining a dictionary and
looking up arbitrarily long patterns. SLZW [34] is an effi-
cient implementation of the LZW algorithm with an array-
based data structure. Each entry in the array is a tuple
(value, next, miss), in which, value stores the input char-
acter, next stores the pointer to the next entry in a pattern
and miss refers to a new entry to further look for a matching
pattern when the current pattern does not match. The dictio-
nary initially contains 256 entries with each entry’s value
corresponding to its index and the next and miss pointers
are initialized to 0.

Figure 4(a) shows an example of the array-based data
structure for dictionary in Table 2. To illustrate the data
structure, consider the patterns “AB” to “CE” found in the
LZW dictionary in Table 2. To store “AB”, an entry 256 is
created with value “B” and a link is created from entry 65
to entry 256 by storing 256 in the next pointer of entry 65.
While other patterns until “CE” are stored in a similar way,
storing “CE” requires miss pointer. To store “CE”, an entry
264 is created with value “E”. Since the next pointer in en-

256: B 0 0

257: C 0 0

258: D 261 264

259: E 263 0

260: C 262 265

261: E 0 0

262: D 0 0

263: C 0 0

264: E 0 0

265: F 0 0

65:

66:

67:

68:

69:

A 256 0

B 257 0

C 258 0

D 259 0

E 260 0

0: 0 0

255: 0 0

...

...

next miss next missvalue value

“CE”

“EF”

“CDE”

“ECD”

“DEC”

(a) Array data structure

0, 1 root offset

2 number of children

3, 4 node value representing “CDE”

5 number of children

6, 7 node value representing “CD”

8 edge value to first child “E”

9, 10 offset to child node “CDE” (5-3=2)

11 number of children

12, 13 node value representing “CE”

14 number of children

15, 16 node value of root “C”

17 edge value to first child “D”

18, 19 offset to child node “CD” (14-9=5)

20 edge value of second child “E”

21, 22 offset to child node “CE” (14-3=11)

14

0

261

1

258

69

3

0

264

2

67

68

9

69

3

offset

#children

node value
edge value

0

65 66 67 68 69

A B D EC

256 257 258 264 259 260 265

B C D E E C F

261 262 263

E C D

edge value

offset

(b) Trie data structure with compact encoding

Figure 4. Comparison of data structures used in LZW online and hybrid algorithms. Storage of some patterns is shown
with arrows for clarity in Figure (a). Memory layout of the subtree rooted at node 67 is shown with shaded boxes along
with the memory addresses on the left and encoding explanation on the right in Figure (b).

try 67, entry 258, is used to store “CD”, the entry 264 has
to be stored in the miss pointer of entry 258, thus creating
a link between entry 67 and entry 264. To look up “CE”,
three lookups are needed. First, entry 67 is looked up. Since
the value “C” matches, the next pointer, which is entry 258,
is followed. Since the value of entry 258 is “D”, the miss
pointer, which is entry 264, is followed. Since the value of
entry 264 is “E”, the lookup correctly returns 264.

The key advantage of this data structure is that it allows
to store partial matches succinctly as well as quickly de-
termine if a longer patterns exists in the dictionary. LZW
always looks for longer pattern by appending to the exist-
ing pattern in the dictionary. Suppose the pattern “CD” is
matched, checking whether the pattern “CDE” is present will
start looking for the presence of “E” directly from the entry
258, corresponding to “CD” instead of checking from entry
67 corresponding to “C”, the beginning of the pattern.

3.4.2 Hybridization
The hybridization of LZW involves designing an efficient

data structure for the dictionary to be stored in the program
memory and creating a hybrid version of LZW algorithm
shown above which accesses the table efficiently. The latter
is simpler for LZW as the only change needed to Algorithm 2
is to omit line 8, which adds to the dictionary. However, the
procedure LOOKUPDICTIONARY has to be rewritten to ac-
cess the table from the program memory.

While the data structure described above for SLZW is
quite efficient for online compression, it has a number of
drawbacks when used for hybrid compression. First, since
the patterns are known, the next and miss pointers storing
0 are unnecessary as no more patterns would to be stored.
Second, when several patterns have common prefixes, the
lookup cost of a pattern grows with the number of succes-
sors, which are patterns that have same common prefix but
different current entries. For example, the patterns “CA”,
“CB”, “CC” are successors of pattern “C”. The lookup func-
tion has to iterate over the successors one at a time. Even
if these are stored in some (ascending) order, binary search
cannot be performed as they are stored as a linked list. We
design an efficient data structure overcoming these issues.

3.4.3 Compact Tries
A prefix tree, or trie, is an ordered tree data structure that

is used to store an associative array. A trie data structure for
the dictionary used in the example is shown in Figure 4(b).
The edges in the trie represent the input characters and the
nodes represent the encoded dictionary values.

We observe that the LZW dictionary is static and exploit
it for better performance as follows. First, since successors
are known beforehand, only pointers to those successors are
stored at any given node, thus avoiding miss pointers or
next pointer with null values used in the array-based data
structure described earlier. Second, we store the successor
edges in ascending order to enable faster lookups using bi-
nary search. Finally, the trie can be compactly encoded (or
tightly packed) in the memory. Such compact tries allow
faster lookup of successors than array-based data structures
by doing binary search on the children at a given node. Bi-
nary search is possible because the children can be stored at
fixed offsets from each other allowing random access.

There are several ways to tightly pack a read-only trie in
memory and we use one such efficient encoding presented
by Germann et al. [12]. In this encoding the trie is repre-
sented bottom-up. Each node stores the number of children
(1 byte), the node value (2 bytes), and then for each child, the
edge value (1 byte) and the offset to that child. A complete
memory layout of the encoding of subtree rooted at node 67
(“C”) is shown in Figure 4(b). The beginning of each node
is shown with a pattern filled box for clarity.
3.5 Implementation

We implemented the offline compression algorithms pre-
sented above in Python and C. For the online and hybrid
versions of the algorithms, we used nesC version 1.3.2 and
TinyOS 1.x. While implemented for TinyOS 1.x, our ap-
proach is OS agnostic and can be easily adapted to other
WSN OSs including Contiki or SOS.
3.5.1 FCM

We implemented the offline version of FCM, in python
and the online version of FCM, in nesC. We imple-
mented hybrid versions of FCM, FCMminer in Python and
FCMcompressor in nesC. We also implemented two variations
of FCMcompressor, namely, Hybrid simple and Prius that use

simple and efficient data structures to represent the table in
program memory respectively. FCMminer dumps the dictio-
nary in a header file which is then converted into efficient
data structure by a script such that Prius could use it. Hybrid
simple simply uses the dumped header file as is.
3.5.2 LZW

We downloaded the SLZW code from [33]. SLZW has a
mini-cache to reduce compression size further. We left the
mini-cache on and allowed the input to expand. We used the
SLZW code as is for the online version.

We implemented hybrid versions of SLZW similar to
FCM. We modified SLZW code to create SLZWminer, which
does not use mini-cache, and dumps the dictionary to a file.
Similarly, we created SLZWcompressor, that uses the dictio-
nary from the file instead of creating its own dictionary. We
implemented two variations of SLZWcompressor, analogous to
FCMcompressor, namely, Hybrid simple and Prius.

4 Evaluation
Our evaluation demonstrates how our generic hybrid trace

compression technique Prius enables the use of various well-
known compression techniques in the WSN context. In par-
ticular we substantiate our previous claims, namely, (1) hy-
bridization using program memory is effective and (2) effi-
cient data structures are useful and in some cases mandatory
for improving the effectiveness of hybridization.
4.1 Overview

We evaluated the previously outlined hybridized versions
of the established dictionary-based compression algorithms
FCM and SLZW in nesC for TinyOS. For each of these al-
gorithms, we evaluated two variations of hybrid versions,
namely, Hybrid simple and Prius that respectively use simple
and efficient data structures to represent the dictionary/table
in program memory respectively. For comparison, we imple-
mented online (Online) and offline (Offline) versions of these
algorithms if the implementations are not publicly available.

Prius can be applied to different types of runtime traces.
We used the diagnostic concurrent interprocedural control-
flow trace produced by the state-of-the-art tracing solution,
TinyTracer [41, 42] that is publicly available and can record
traces generated by multiple system components. TinyTracer
includes a simple trace compression algorithm (TinyTracer),
which is based on two simple techniques: (1) mining the top
two frequent patterns of size up to 26 bytes offline and using
those for online compression; (2) using run-length encod-
ing. We compared Prius to TinyTracer quantitatively in this
section and qualitatively in Section 6. For validity, we eval-
uated our compression techniques for other traces includ-
ing another state-of-the-art tracing solution, LIS [37] and a
real sensor dataset from environmental monitoring deploy-
ment [16]. Since Online algorithms gain with larger input
buffers, we also evaluated large buffer effect.

We use four metrics – smaller values are always better:

(1) Compression ratio – quantifies the reduction in the trace
size. It is defined as the ratio between compressed and
uncompressed sizes and is represented as a percentage.

(2) Energy overhead – quantifies the increase in the amount
of energy required to trace an application. It is defined

as the additional energy required to trace an application
and is represented as a percentage of energy consumed
by the base application without tracing.

(3) Program memory overhead – quantifies the additional
program memory required to hold the table of patterns
mined offline. It is represented as a percentage of pro-
gram memory required by the application with com-
pression turned off.

(4) Data memory overhead – quantifies the additional
RAM used.

Our main results show that Prius achieves high compres-
sion rate (up to 68% for FCM and 86% for LZW) and signif-
icant energy savings (up to 68% for FCM and up to 90% for
LZW) compared to straightforward adaptations of compres-
sion algorithms. Similarly, Prius achieves high compression
rate (up to 72% for FCM and 77% for LZW) and signifi-
cant energy savings (up to 96% for FCM and 70% for LZW)
compared to TinyTracer, the state-of-the-art WSN trace com-
pression technique. The energy savings from writing less
bytes to flash thus outweighs the overhead of running the
compression algorithm or accessing program memory.

The program memory overhead due to storing the dictio-
nary/table is modest (up to 24% for FCM, 20% for LZW).
The data memory overhead is due to memory buffers used
to store the inputs, compressed outputs, and the dictionary to
store patterns. The buffers for storing inputs and compressed
outputs are the same for both hybrid and online (Online)
compression techniques. However, the dictionary or table in
the online algorithms (2KB for SLZW and 0.5KB for FCM)
use precious RAM, whereas, Prius (all hybrid) doesn’t incur
this overhead and thus we don’t discuss this metric further.
4.2 Evaluation Methodology

We used TOSSIM for the reported results due to the dif-
ficulty of performing energy measurements directly on the
hardware and problems with emulators. Avrora has well-
known problems in flash energy estimation. ATEMU [31]
emulations showed to be problematic when accessing pro-
gram memory for large programs and no support is available.

We implemented hybrid versions of both the FCM and
SLZW algorithms in nesC for TinyOS 1.x and integrated
it with TinyTracer so our compression implementation is
used to compress traces instead of the default compression
in TinyTracer. We collected the uncompressed trace for 15
minutes by simulating each of the benchmarks in TOSSIM
for a simple 4-node network. The trace is stored in the flash
at the end of the simulation. This raw trace was used to get
Offline results and for mining the patterns for hybrid versions.
For mining patterns, we used the first half of these traces.
To get the compressed results for Online, TinyTracer, Hybrid
simple and Prius, we simulated the application for 15 min-
utes using TOSSIM for a 4-node network in grid topology.
Since the benchmark application repeats every few seconds,
15 minutes are representative of the long-time behavior for
the application.

We used PowerTossim [38] to measure the energy con-
sumption of the simulation. Since TOSSIM doesn’t distin-
guish between program memory and data memory, the en-
ergy overhead in accessing program memory is measured as

follows. Every program memory access requires 1.5 CPU
cycle whereas access to data memory takes 1 CPU cycle in
ATMEL AVR architectures. Therefore, we instrumented the
code to count the number of memory accesses to the table in
program memory. We incremented the CPU cycle count by
0.5 times the number of memory accesses in PowerTossim
results. The traces are obtained from the flash file. We used
a trace parser that measures the size of the traces.
4.3 Benchmark Suite

For our evaluation, we chose as benchmarks five default
TinyOS 1.x applications that are widely studied by others [9,
37, 41], as well as a large TinyOS application, LRX, which is
a module for reliable transfer of large data developed as part
of the Golden Gate Bridge monitoring project and is one of
the largest nesC components (∼ 1300 lines of nesC code)
in TinyOS 1.x. We used SingleHopTest to drive the LRX
module. These six benchmarks are described in Table 3.

TinyTracer [41] allows tracing multiple nesC components
at the same time and can handle high throughput trace gen-
eration. To study the effect of compression on larger traces,
we traced all the nesC components included in an applica-
tion and these include the main component (e.g., SurgeM for
Surge) as well as the system components such as LEDs (e.g.,
LedsC), sensor (e.g., PhotoTempM), radio (e.g., AMStandard
or MultihopEngineM), and timer (e.g., TimerM). For every
benchmark, we traced all the components starting with one
component and gradually adding additional components un-
til all components are traced. Table 3 shows the system com-
ponents used by each benchmark. The order in which the
components were included in the simulation is the follow-
ing: main, LEDs, sensor, radio or network layer, and lastly
timer. For example, ’surge-1c’ in the results means just the
main component is being traced whereas ’surge-3c’ means
that the main, LED, and sensor components are being traced.
4.4 FCM

Figures 5, 6, and 7 respectively show the compression ra-
tio, energy overhead and program memory overhead for vari-
ous online (Online), hybrid (TinyTracer, Hybrid simple, Prius)
and offline (Offline) versions of FCM compression algorithm
applied to control-flow traces generated by TinyTracer for
TinyOS applications in our benchmark suite.
4.4.1 Effect of Program Memory

We first observe from Figure 5 that both Hybrid simple
and Prius compress the input very well compared to Online,
showing that hybridization pays off. The improvement in
compression ratio for Prius over Online ranges from 18%
(lrx-2c) to 68% (count-4c) and the average improvement
over all benchmarks is 45%. In other words, the traces pro-
duced by Online are 22% to 215% (average 102%) bigger
than the traces produced by Prius for the benchmarks. Hy-
brid simple also shows similar improvement of compression
ratio over Online. This is due to the many patterns that can
be stored in the dictionary or table in the program memory
as opposed to data memory used by Online algorithms.

Similarly, the improvement in the compression ratio for
Prius over TinyTracer is on average 31% and up to 72%
(surge-5c). In other words, the size of the trace gener-
ated by TinyTracer is on average 66% larger and up to 252%

(surge-5c) larger. When tracing only one or fewer com-
ponent(s), for benchmarks like blink or surge, TinyTracer
generates up to 17% (surge-1c) smaller traces than Prius
because the trace consists mostly of top two frequent pat-
terns used by TinyTracer. However, as the number compo-
nents traced increase, many patterns appear in the trace mak-
ing TinyTracer’s compression largely ineffective. Thus, this
result substantiates the claim that many patterns need to be
stored to get effective compression and since data memory is
precious, program memory needs to be used.

The improvement in compression ratio translates to con-
siderable energy savings for Prius as shown in Figure 6. The
reduction in energy overhead due to Prius over Online ranges
from 17% (sense-1c) to 68% (oscil-5c) and the average
is 46%. Similarly, the reduction in energy overhead due to
Prius over TinyTracer is up to 96% (surge-1c) and the aver-
age is 49%. The average reduction in energy overhead due to
Prius over Online and TinyTracer increases to 56% and 59%
respectively when all components are traced. The reason for
energy savings is that smaller traces result in fewer writes
to flash storage and since energy required to write to flash
is orders of magnitude more than CPU, saving flash writes
conserve energy significantly.

The cost of hybrid approaches is in the program mem-
ory overhead, which is shown in Figure 7. The increase in
program memory due to Prius over Online ranges from 0.8%
(surge-1c) to 32% (lrx-4c) and the average increase over
Online across all benchmarks is about 6%. Similarly, the
increase in program memory due to Prius over TinyTracer
ranges from 0.7% to 32% and the average is 5%. We observe
that Hybrid simple does not incur much overhead with aver-
age only 0.2% and maximum of 7%. We think the reduction
in compiler inlining has compensated the increase due to the
dictionary. However, the cost of lost inlining is insignificant
as can be seen from the energy overhead results.

We observe that the compression ratio obtained by hy-
brid techniques Prius and Hybrid simple is close to the Of-
fline compression ratio as most of the patterns used by Of-
fline are known to hybrid techniques as well. It is interesting
to note that for some benchmarks (e.g., surge), hybrid ver-
sions have slightly better compression ratio than Offline. This
is because the offline algorithm takes some time to learn the
patterns from the input and therefore, first several entries in
the input are not compressed. In contrast, Prius and Hybrid
simple start compressing from the first input character.
4.4.2 Effect of Perfect Hashing

While Hybrid simple compresses traces as well as Prius,
Prius saves energy over Hybrid simple because perfect hash-
ing reduces lookup time considerably. The energy overhead
reduction of Prius over Hybrid simple is on average 30% and
up to 78% (lrx-4c). Hybrid simple is competitive (∼10%)
when only one or few components are traced as the num-
ber of patterns in such cases is small. For one benchmark
(sense-1c), Hybrid simple even reduces energy overhead
over Prius by 12%. When the number of components traced
and thus the number of patterns increases though, the effi-
cient datastructure in Prius clearly reduces energy overhead.

The average reduction in energy overhead due to Hybrid
simple over Online is only 17% despite much higher com-

Table 3. The TinyOS 1.x applications in our benchmarks suite. C LOC is the lines of C code generated by nesC compiler.
TinyOS application Alias Description Period (s) C LOC System components used
Blink blink Toggle the LEDS 1 2061 LEDs, timer
Sense sense Samples sensors and displays it on LEDS 0.5 3730 LEDs, sensor, timer
Oscilloscope oscil Data collection with high sensing rate 0.125 5956 LEDs, sensor, UART, timer
Surge surge Data collection with medium sensing rate 2 11358 LEDs, sensor, radio, timer
CntToLedsAndRfm count A counter that broadcasts and displays count 0.25 8241 LEDs, sensor, radio, timer
LRX lrx Reliable large data transfer application 2 10015 LEDs, radio, timer

5

15

25

35

45

55

65

oscil‐1c oscil‐2c oscil‐3c oscil‐4c oscil‐5c

Co
m
p
re
ss
io
n
 R
at
io
 %

Online TinyTracer
Hybrid simple Prius
Offline

(a) oscil

0

20

40

60

80

count‐1c count‐2c count‐3c count‐4c count‐5c
C
o
m
p
re
ss
io
n
 R
a
ti
o
 %

Online TinyTracer
Hybrid simple Prius
Offline

(b) count

0

20

40

60

80

100

lrx‐1c lrx‐2c lrx‐3c lrx‐4c

C
o
m
p
re
ss
io
n
 R
at
io
 %

Online TinyTracer
Hybrid simple Prius
Offline

(c) lrx

0

10

20

30

40

50

60

70

surge‐1c surge‐2c surge‐3c surge‐4c surge‐5c

C
o
m
p
re
ss
io
n
 R
a
ti
o
 %

Online TinyTracer

Hybrid simple Prius

Offline

(d) surge

0

20

40

60

80

100

120

sense‐1c sense‐2c sense‐3c sense‐4c

C
o
m
p
re
ss
io
n
 R
at
io
 %

Online TinyTracer

Hybrid simple Prius

Offline

(e) sense

5

15

25

35

45

55

blink‐1c blink‐2c blink‐3c

C
o
m
p
re
ss
io
n
 R
at
io
 %

Online TinyTracer

Hybrid simple Prius

Offline

(f) blink

Figure 5. Compression ratio for various online, hybrid and offline versions of FCM compression algorithms applied to
control-flow traces generated by TinyOS applications. The smaller the compression ratio, the better the compression is.

0

50

100

150

oscil‐1c oscil‐2c oscil‐3c oscil‐4c oscil‐5c

En
e
rg
y
O
ve
rh
e
ad

 %

Uncompressed

Online

TinyTracer

Hybrid simple

Prius

(a) oscil

0

10

20

30

40

50

count‐1c count‐2c count‐3c count‐4c count‐5c

E
n
e
rg
y
 O
v
e
rh
e
a
d
 %

Uncompressed

Online

TinyTracer

Hybrid simple

Prius

(b) count

0

20

40

60

80

100

lrx‐1c lrx‐2c lrx‐3c lrx‐4c

En
e
rg
y
O
ve
rh
ea
d
 %

Uncompressed

Online

TinyTracer

Hybrid simple

Prius

(c) lrx

0

9

18

27

36

surge‐1c surge‐2c surge‐3c surge‐4c surge‐5c

E
n
e
rg
y
 O
v
e
rh
e
a
d
 %

Uncompressed

Online

TinyTracer
Hybrid simple

Prius

(d) surge

0

20

40

60

80

sense‐1c sense‐2c sense‐3c sense‐4c

En
er
gy
 O
ve
h
ea
d
 %

Uncompressed

Online

TinyTracer

Hybrid simple

Prius

(e) sense

0

10

20

30

40

50

blink‐1c blink‐2c blink‐3c

En
er
gy
 O
ve
rh
ea
d
 %

Uncompressed

Online

TinyTracer

Hybrid simple

Prius

(f) blink

Figure 6. Energy overhead for various online and hybrid versions of FCM compression algorithms applied to control-
flow traces generated by TinyOS applications.

pression achieved by Hybrid simple. The reason is that se-
quential scanning of a program memory table can be very
CPU-intensive for large tables. For example, benchmark
lrx-4c is a degenerative case for Hybrid simple because the
energy overhead was larger than the energy overhead of un-
compressed tracing. lrx-4c is the most complex benchmark

in our suite and has a large number of patterns. However,
even when lrx-4c is regarded as an outlier and omitted, the
average reduction in energy overhead of Prius over Hybrid
simple is 27%. Thus, we see that efficient data structures are
very helpful for effective hybridization and in fact, manda-
tory for cases like lrx-4c.

94

98

102

106

oscil‐1c oscil‐2c oscil‐3c oscil‐4c oscil‐5c

Co
d
e
M
em

o
ry
 %

Online TinyTracer

Hybrid Simple Prius

(a) oscil

96

98

100

102

104

106

count‐1c count‐2c count‐3c count‐4c count‐5c

C
o
d
e
 M

e
m
o
ry
 %

Online TinyTracer

Hybrid Simple Prius

(b) count

90

100

110

120

130

140

lrx‐1c lrx‐2c lrx‐3c lrx‐4c

C
o
d
e
M
em

o
ry
 %

Online TinyTracer

Hybrid Simple Prius

(c) lrx

94

97

100

103

106

109

surge‐1c surge‐2c surge‐3c surge‐4c surge‐5c

C
o
d
e
 M

e
m
o
ry
 %

Online TinyTracer

Hybrid Simple Prius

(d) surge

90

95

100

105

110

115

120

sense‐1c sense‐2c sense‐3c sense‐4c

C
o
d
e
M
em

o
ry
 %

Online

TinyTracer

Hybrid Simple

Prius

(e) sense

94

97

100

103

106

blink‐1c blink‐2c blink‐3c

Co
d
e
M
em

o
ry
 %

Online TinyTracer

Hybrid Simple Prius

(f) blink

Figure 7. Program memory overhead for various online and hybrid versions of FCM compression algorithms applied
to control-flow trace generated by TinyOS applications.

4.5 LZW
Since the results for the LZW compression algorithm fol-

low the same trend as FCM and in the interest of space, we
show the results for all benchmarks in the case when all the
application components are traced. Figure 8 shows the com-
pression ratio, energy overhead and program memory over-
head for various online (Online), hybrid (TinyTracer, Hybrid
simple, Prius) and offline (Offline) versions of the SLZW
compression algorithm applied to control-flow trace gener-
ated by TinyOS applications in our benchmark suite. In
LZW, the input could expand if there are not enough rep-
etitions and this happened for a few benchmarks for Online.

4.5.1 Effect of Program Memory
The improvement in compression ratio for Prius over On-

line ranges from 74% (lrx-4c) to 86% (count-5c) and the
average improvement over all benchmarks when all com-
ponents are traced is 81%. The reason for this improve-
ment is the limited dictionary size in the Online algorithm.
This improvement in compression ratio translates to consid-
erable energy savings ranging from 82% (lrx-4c) to 90%
(count-5c) and the average energy savings is about 85%
over all the benchmarks. Hybrid simple showed similar com-
pression ratio (average of 81%) and energy savings (aver-
age of 80%). The improvement in compression ratio for
Prius over TinyTracer ranges from 72% (lrx-4c) to 77%
(surge-5c) and the average is 75% over all benchmarks.
This improvement in compression ratio translates to consid-
erable energy savings ranging from 55% (lrx-4c) to 70%
(surge-5c) and the average is 64%.

The program memory overhead for Prius over Online for
all the benchmarks ranges from 0.3% (blink-3c) to 26%
(oscil-5c) and the average is 13%. For Hybrid simple, it
ranges from 10% (surge-5c) to 29% (oscil-5c) and the
average is 19%. Similarly, the average program memory
overhead for Prius over TinyTracer is 11%. Thus, the pro-
gram memory increase is modest.

4.5.2 Effect of Compact Tries
Prius saves energy and program memory overhead when

compared to Hybrid simple as expected. The energy savings
for Prius over Hybrid simple over all benchmarks when all
components are traced ranges from 4% to 33% and the aver-
age is 24%. The average program memory savings for Prius
over Hybrid simple ranges from 2% to 10% and the average
is 5%. Savings are limited due to the fact that Hybrid simple
already uses an efficient data structure unlike FCM, which
uses a naı̈ve datastructure based on a simple array. If a naı̈ve
array is used in SLZW, significant savings can be obtained as
it is expensive to find longest matches in an array of patterns.

4.6 Effect of Larger Input Buffers
We have set the input buffer size to be 192 bytes in the

results discussed so far. We recall that three input buffers
are needed for tracing and compression. Two buffers are re-
quired to store the trace as it is generated. When one buffer is
full, the other buffer stores the trace generated and the filled
buffer is compressed. A third buffer is used to store the com-
pressed output before it can be stored in the flash/sent on the
radio. The RAM size and the need for three buffers forces
each individual buffer size to be only few hundred bytes. In
this section, we show that even if the size of input buffer is
doubled, the conclusions still hold.

We study the effect of input buffer sizes of 288 and 384
bytes. As noted above, the total increase in RAM require-
ments will be thrice the input buffer size. When the input
buffer size is increased, the online compression algorithm
will perform better as larger inputs provide more chance to
identify and replace patterns in the buffer. However, it will
not affect hybrid algorithms that much. Therefore, we com-
pared Online with two larger input buffers (Online 288 and
Online 384) against Prius with 192 bytes. We used FCM and
the results are shown in Figure 11 and Figure 10.

We observe that the increase in buffer size from 288
(Online 288) to 384 (Online 384) bytes improves the com-

0

25

50

75

100

125

oscil‐5c count‐5c lrx‐4c surge‐5c sense‐4c blink‐3c

C
o
m
p
re
ss
io
n
 R
a
ti
o
 %

Online TinyTracer Hybrid Simple Prius

(a) Compression tatio

0

50

100

150

200

oscil‐5c count‐5c lrx‐4c surge‐5c sense‐4c blink‐3c

E
n
e
rg
y
 O
v
e
rh
e
a
d
 %

Uncompressed Online TinyTracer Hybrid Simple Prius

(b) Energy overhead

90

100

110

120

130

oscil‐5c count‐5c lrx‐4c blink‐3c sense‐4c surge‐5c

C
o
d
e
 M

e
m
o
ry

%

Online TinyTracer Hybrid Simple Prius

(c) Code memory

Figure 8. Compression ratio, energy overhead and program memory overhead of LZW compression algorithms applied
to control-flow trace generated by TinyOS applications.

0

20

40

60

80

100

Main All Main All Main All

count lrx surge

S
e
n
d
 E
n
e
rg
y
 S
a
v
in
g
s
%

Online Hybrid simple Prius

Figure 9. Energy savings for transmit-
ting FCM compressed traces.

0

20

40

60

80

100

Main All Main All Main All Main All Main All Main All

Oscil Count LRX Surge Sense Blink

E
n
e
rg
y
 O
v
e
rh
e
a
d

% Online 288

Online 384

Prius 192

Figure 10. Energy overhead for traces
compressed in large buffer.

0

20

40

60

80

100

Main All Main All Main All Main All Main All Main All

Oscil Count LRX Surge Sense Blink

C
o
m
p
re
s
s
io
n
 R
a
ti
o
 %

Online 288

Online 384

Prius 192

Figure 11. Compression ratio for
traces compressed in large buffer.

pression ratio up to 25% and energy overhead up to 20%. Ex-
cept for blink-All, the improvement in compression ratio
due to Prius over Online 288 ranges from 18% to 76% and the
reduction in energy overhead ranges from 23% to 78%. Sim-
ilarly, except for a few benchmarks (blink, sense-Main,
lrx-Main), the improvement in compression ratio due to
Prius over Online 384 ranges from 3.16% to 72.21% and the
reduction in energy consumption ranges from 9% to 75%.

Online performed better on benchmarks with few patterns.
For those benchmarks, the improvement in compression ratio
due to Online 384 over Prius ranges from 5% (lrx-Main) to
28% (blink-All) and reduction in energy overhead ranges
from 12% (blink-Main) to 24% (sense-Main).

From these results, we conclude that while increased in-
put buffer sizes help Online, Prius performs much better than
Online 384 in many cases even with 192 bytes input buffer.
4.7 Radio Transmission Energy

Next we study the overhead of sending traces over the
radio as opposed to writing to flash. We show that hybrid
compression algorithms save more transmission energy than
online compression algorithms.

We estimate the crucial energy overhead, which is the en-
ergy used by the radio for transmitting traces from a node
instead of the total radio energy. By excluding the energy
overhead required to obtain a radio channel, which varies
depending on the network traffic and environment or the en-
ergy spent by the packet in the network stack, we can have a
fair comparison between the two compression algorithms.

We used the power logs generated by PowerTOSSIM to
estimate the transmission energy overhead. More precisely,
we found the time intervals when the radio is in transmitting
state and used the energy model for mica2 motes available in
PowerTOSSIM for determining the current consumption.

Figure 9 shows the savings obtained by compression in
the transmission energy overhead due to tracing. Each bar

represents the percentage of energy savings over uncom-
pressed tracing energy. In the interest of space, we only show
for two configurations of benchmarks that use radio.

We first observe that the savings from any compression
ranges from 7% to 81%. The average savings due to Online
is 29% and due to Prius or Hybrid simple is 43.5%. Next,
we note that the savings due to hybrid compression Prius
and Hybrid simple over online compression Online is 2.77%
(lrx-1c) to 43.5% (count-5c) and the average is 19.8%.
The Prius and Hybrid simple have same energy savings be-
cause they compress the trace equally well and the CPU en-
ergy overhead is not included in this metric. We note that
the energy savings shown are for a single node and the sav-
ings add up at every hop if the trace is transmitted over a
multi-hop path to the base station.
4.8 Genericity

To assert the benefits of our techniques beyond control-
flow tracing, we applied them on different kinds of traces and
sensor data. Since we are interested in compression ratio, we
simulated online and hybrid algorithms on PC as follows.
We implemented both the Online and Hybrid compression al-
gorithms as well as a small input simulator (SIS) in Python.
SIS splits the input trace into multiple small files of 192 bytes
(last file may be less than 192) and feed these to compression
algorithms and combines the compressed output to form the
final compressed file. It uncompresses the final compressed
file output to verify the result. We used the first half of the
trace to mine patterns offline for hybrid algorithms.
4.8.1 LIS

Log Instrumentation Specification (LIS) [37] is a runtime
logging framework designed specifically for WSN debug-
ging. It provides a language and runtime to gather runtime
information efficiently by using local namespaces and bit-
aligned logging. LIS has built-in support to capture the func-
tion call as well as intraprocedural control-flow paths.

20

40

60

80

100

120

Main All Main All Main All Main All Main All Main All

blink oscil surge count lrx sense

Co
m
pr
es
si
on

 R
at
io
 %

FCM Online FCM Hybrid LZW Online LZW Hybrid

(a) LIS traces

45

55

65

75

85

blink oscil surge count sense

C
o
m
p
re
ss
io
n
 R
a
ti
o
 %

Online Hybrid

(b) Event traces

35

45

55

65

75

85

95

ambient
temperature

surface
temperature

solar radiation humidity

C
o
m
p
re
ss
io
n
 R
a
ti
o
 %

PM Online PM Hybrid

PDG Online PDG Hybrid

(c) Sensor data set

Figure 12. Compression ratio for LIS and event traces as well as sensor data from glacier monitoring deployment.

We ported LIS to work on TinyOS 1.x and modified it
to write the trace into flash. We used ATEMU emulator to
collect the uncompressed function call and intraprocedural
control-flow traces. We used SIS to compress the traces us-
ing both FCM and LZW algorithms. Due to space, we show
the results only for one component and all components cases.

The compression ratio results are shown for hybrid
(Hybrid) and online (Online) algorithms as shown in Fig-
ure 12(a). We observe that Hybrid approach improves the
compression ratio significantly. For FCM, the improvement
in compression ratio due to Hybrid over Online ranges from
48.17% (lrx-Main) to 64.15% (sense-All) and the aver-
age is 54.74%. Similarly, for LZW, the improvement ranges
from 20.64% (blink-Main) to 76.48% (sense-All) and the
average is 50.14%. Based on our earlier results, we conclude
that the low compression ratio reduces the energy overhead
due to tracing significantly.
4.8.2 Event Traces

Event traces have been used for WSN debugging [19].
We manually instrumented code to record events such as the
ones used in Dustminer [19]. An event contains a timestamp,
event id, and parameters. Unlike control-flow traces event
traces have data values and the timestamps associated with
the events, which reduce the opportunities for compression.

We recorded asynchronous events, timer events, message
events and any important events inside tasks by manually in-
strumenting the code for 15 minute runs of all benchmarks
except lrx, which is too big to manually instrument. We com-
pressed the trace using SIS and LZW algorithm to get the
compression ratio, which is shown in Figure 12(b). We ob-
serve that the improvement in compression ratio due to Hy-
brid over Online ranges from 6% to 21% and the average is
13%. While the improvement is modest, such improvement
is obtained for highly varying data.
4.8.3 Sensor Data Compression

In addition to execution traces, Prius can be applied to
other kinds of data such as sensor data. Our initial resuts are
encouraging. Often times, the sensor data can be compressed
well using lossy domain specific techniques such as averag-
ing or discarding values within thresholds. We observe that
Prius complements these techniques and can be applied if the
sensor data does not evolve significantly

We used two sensor data sets collected from two glacier
monitoring deployments, namely, Plaine Morte glacier (PM)
and Patouilee des glacier (PDG) using SensorScope in
2007/08 by Ingelrest et al. [16]. Both data sets contained
data from 4 sensors, namely, ambient temperature, surface

temperature, solar radiation, humidity. PM deployment had
13 locations while PDG deployment had 9 locations.

We compressed all four sensor data using SIS and com-
puted the average compression ratio across locations for each
sensor. We used LZW algorithm as FCM is not very effective
for data compression. The results in Figure 12(c) show that
except for PDG surface temperature, Hybrid compresses the
sensor data very well. The improvement in compression ratio
due to Hybrid over Online for solar radiation is 40% (PDG)
and 47% (PM), for ambient temperature is 30% (PDG) and
44% (PM), for humidity is 18% (PDG) and 20% (PM), and
for surface temperature it is 6% (PM) and -7% (PDG). For
PDG surface temperature, Hybrid reduces the compression
ratio, which could be due to anomalous data.

5 Discussion
Trace Divergence: If the trace generated is not present in the

program memory table, then no compression happens and
it is encoded as misprediction, which usually costs more
bits than the entry itself. As our results show, mispredic-
tions are rare. However, when the trace significantly di-
verges from the table in program memory and compres-
sion ratio falls below a threshold, a small footprint online
compression techniques such as SLZW can act as a second
layer compression.

Spatial Correlation: Our approach currently does not ex-
ploit the significant spatial correlation present in the net-
work as most nodes do similar tasks in a WSN. Pioneering
techniques [32, 11] exploit such correlations to further im-
prove compression ratio.

Network Effect: When the traces are transmitted on the ra-
dio, the local energy savings due to compression multi-
plies with every hop between the node and the base sta-
tion. Since the reliability of a multi-hop network decreases
significantly with the number of hops, retransmissions are
not uncommon. By sending compressed data, the number
of packets transmitted including retransmissions can be re-
duced significantly resulting in huge energy gains and less
network congestion, as also noted by Sadler et al. [34].

6 Related Work
Several trace compression techniques have been studied

in software engineering literature. The main ones include the
value prediction algorithms (VPC) [7, 8] such as FCM-based
ones [35] [13]. Grammar-based text compression such as
Sequitur [29] has been used successfully for compressing
traces [24]. The widely used Unix utility programs gzip

(LZ77) and compress (LZW) have also been used for trace
compression. However, these techniques are inapplicable for
WSNs due to extreme resource constraints. Our hybrid ap-
proach enables the use of these techniques for WSNs.

Offline compression algorithms — algorithms that pro-
duce compressed output only after seeing the complete input
— such as the ones proposed by Apostolico and Lonardi [1]
and by Larsson and Moffat [23] explore how to reduce the
compression ratio by compressing the whole file instead of
using online techniques such as SLZW [34]. In contrast, our
technique does not perform offline compression but uses an
offline phase to mine the patterns and compress them dur-
ing an online phase. Offline compression is not applicable to
traces because traces are generated with program execution
and are not known beforehand.

Specialized compression algorithms have been similarly
proposed for different scenarios in the context of embedded
systems. One group [4, 40] of work focused on energy as
a metric for compression and profiled various off-the-shelf
algorithms. In contrast, our work proposes a novel hybrid
compression technique that exploits program memory size.
Another body of research focused on adapting standard com-
pression algorithms such as LZW to resource-constrained
embedded devices [25, 27]. However, these techniques are
targeted at devices which still have much more memory than
sensor nodes and do not have an offline phase to exploit pro-
gram memory. One piece of work that comes close to our
approach is by Netto et al. [28]. The authors use profiling for
code compression. The similarity between that approach and
ours is the use of a static dictionary. Unlike our work, Netto
et al. however target code compression and do not make
use of program memory to store large numbers of patterns as
Prius does. Moreover, our work is generic and can be applied
to any dictionary-based approach. Code compression has
been studied in WSNs [45] to reduce reprogramming cost.
Such techniques aid Prius as they reduce the impact of large
dictionaries in the program memory on reprogramming cost.

Several algorithms have been proposed in the context
of WSNs for sensor data compression. Early pioneering
work [32, 11] in this area exploited the high spatial correla-
tion in dense networks. There have been several approaches
that use in-network data aggregation [17, 2, 3]. These efforts
are orthogonal to our work as our work exploits temporal
correlation in traces; we could make further use of such ap-
proaches for spatial correlation.

Sadler et al. [34] proposed SLZW, a generic data com-
pression algorithm — an adaptation of LZW to sensor nodes
— and novel ideas to handle resource constraints such as
mini-cache and data transforms. SLZW can handle varying
data well. However, when applied to traces, it fails to capital-
ize on the rich amount of repetition; the major reason for this
is the limited memory buffer. Furthermore, SLZW has high
RAM requirements, e.g., in addition to input buffers 2KB
of RAM is required to store the dictionary. Our approach is
designed specifically to exploit many such repetitions.

We earlier proposed TinyTracer [41], an interprocedural
control-flow tracing of concurrent events and a simple trace
compression approach. The only commonality between our
approach and TinyTracer is the idea of mining patterns of-

fline and using them for online compression. However, there
are three major differences between the two works, which
leads to significant benefits of our approach as demonstrated
in Section 4. (1) We use program memory to store patterns
mined offline as opposed to TinyTracer [41], which stores
only two patterns in the data memory. (2) Determining the
set of patterns that yields minimal compression size when
patterns overlap is shown to be NP-complete [39]. Unlike the
ad hoc heuristic of using the top two patterns [41], our ap-
proach uses the table mined by established algorithms (e.g.,
LZW, FCM), which is more effective for trace compression
as shown by our results. (3) Our approach uses efficient
data structures suited for the compression technique (FCM,
LZW) to conserve energy, while TinyTracer [41] does not use
efficient data structures and performs naı̈ve pattern matching.

7 Conclusions
We exploited the fact that WSN computations are highly

repetitive and do not evolve much over time to propose a
novel generic hybrid trace compression technique, called
Prius that is suitable for WSNs. Our technique relies on us-
ing an offline training phase to learn repeating patterns and
use it to drive the online compression. While intuitive, ef-
fective realization of it require using program memory to
store the mined patterns as well as efficient data structures
for faster inexpensive lookups. Our results show that Prius
yield significant energy savings over straightforward adapta-
tions of established compression techniques as well as state-
of-the-art trace compression technique.

As a future work, we are investigating techniques that can
slightly adapt the patterns mined offline to cope with any
significant changes at run-time. More specifically, the idea
is that the compression algorithm in the online phase dynam-
ically triggers a pattern adaptation engine if the compression
ratio drops below a given threshold.

8 Acknowledgement
This research is supported, in part, by the National Sci-

ence Foundation (NSF) under grant 0834529. Any opinions,
findings, conclusions, or recommendations in this paper are
those of the authors and do not necessarily reflect the views
of NSF.

9 References
[1] A. Apostolico and S. Lonardi. Off-line compression by greedy textual

substitution. In Proceedings of the IEEE, 88 (11), 2000.
[2] T. Arici, B. Gedik, Y. Altunbasak, and L. Liu. Pinco: A pipelined

in-network compression scheme for data collection in wireless sen-
sor networks. In 12th IEEE International Conference on Computer
Communications and Networks (ICCCN ’03), 2003.

[3] S. J. Baek, G. D. Veciana, and X. Su. Minimizing energy consumption
in large-scale sensor networks through distributed data compression
and hierarchical aggregation. In IEEE Journal on Selected Areas in
Communications, 22 (6), 2006.

[4] K. Barr and K. Asanović. Energy aware lossless data compression. In
ACM Trans. Comput. Syst, 24 (3), 2006.

[5] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli. The hitch-
hiker’s guide to successful wireless sensor network deployments. In
6th ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys ’08), 2008.

[6] J. Beutel, K. Römer, M. Ringwald, and M. Woehrle. Deployment
techniques for wireless sensor networks. In Sensor Networks: Where
Theory Meets Practice, Springer, 2009.

[7] M. Burtscher. VPC3: A fast and effective trace-compression algo-
rithm. In SIGMETRICS Perform. Eval. Rev., 32 (1), 2004.

[8] M. Burtscher and M. Jeeradit. Compressing extended program traces
using value predictors. In 12th International Conference on Parallel
Architectures and Compilation Techniques (PACT ’03), 2003.

[9] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr. Efficient
memory safety for TinyOS. In 5th ACM International Conference on
Embedded Networked Sensor Systems (SenSys ’07), 2007.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms, 3rd Edition. In The MIT Press, 2009.

[11] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heide-
mann. An evaluation of multi-resolution storage for sensor networks.
In 1st ACM International Conference on Embedded Networked Sensor
Systems (SenSys ’03), 2003.

[12] U. Germann, E. Joanis, and S. Larkin. Tightly packed tries: How to fit
large models into memory, and make them load fast, too. In Proceed-
ings of the Workshop on Software Engineering, Testing, and Quality
Assurance for Natural Language Processing (SETQA-NLP ’09), 2009.

[13] B. Goeman, H. Vandierendonck, and K. de Bosschere. Differential
FCM: increasing value prediction accuracy by improving table us-
age efficiency. In 7th International Symposium on High-Performance
Computer Architecture (HPCA ’01), 2001.

[14] A. Hasler, I. Talzi, J. Beutel, C. Tschudin, and S. Gruber. Wireless
sensor networks in Permafrost research - concept, requirements, im-
plementation and challenges. In 9th International Conference on Per-
mafrost (NICOP ’08), 2008.

[15] M. Horton, D. Culler, K. S. J. Pister, J. Hill, R. Szewczyk, and A. Woo.
Mica: The commercialization of microsensor motes. In http://
www.sensormag.com/, 2002.

[16] F. Ingelrest, G. Barrenetxea, G. Schaefer, and M. Vetterli, and
O. Couach and M. Parlange SensorScope: Application-specific sensor
network for environmental monitoring. In ACM Trans. Sen. Netw., 06
(02), 2002.

[17] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva. Directed diffusion for wireless sensor networking. In
IEEE/ACM Trans. Netw., 11 (1), 2003.

[18] M. Keller, J. Beutel, A. Meier, R. Lim, and L. Thiele. Learning from
sensor network data. In 7th ACM Conference on Embedded Networked
Sensor Systems (SenSys ’09), 2009.

[19] M. M. H. Khan, H. Le, H. Ahmadi, T. Abdelzaher, and J. Han. Dust-
miner: Troubleshooting interactive complexity bugs in sensor net-
works. In 6th ACM Conference on Embedded Networked Sensor Sys-
tems (SenSys ’08), 2008.

[20] M. M. H. Khan, H. K. Le, M. LeMay, P. Moinzadeh, L. Wang,
Y. Yang, D. K. Noh, T. Abdelzaher, C. A. Gunter, J. Han, and X. Jin.
Diagnostic powertracing for sensor node failure analysis. In 9th
ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN ’10), 2010.

[21] V. Krunic, E. Trumpler, and R. Han. NodeMD: Diagnosing node-
level faults in remote wireless sensor systems. In 5th International
Conference on Mobile Systems, Applications and Services (MobiSys
’07), 2007.

[22] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes:
Experiences from a pilot sensor network deployment in precision agri-
culture. In 20th International Conference on Parallel and Distributed
Processing (IPDPS ’06), 2006.

[23] N. Larsson and A. Moffat. Off-line dictionary-based compression. In
Proceedings of the IEEE, 88 (11), 2000.

[24] J. R. Larus. Whole program paths. In ACM SIGPLAN 1999 Confer-
ence on Programming Language Design and Implementation (PLDI
’99), 1999.

[25] H. Lekatsas, J. Henkel, and V. Jakkula. Design of an one-cycle decom-
pression hardware for performance increase in embedded systems. In
39th Annual Design Automation Conference (DAC ’02), 2002.

[26] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
scalable simulation of entire TinyOS applications. In 1st ACM Inter-
national Conference on Embedded Networked Sensor Systems (SenSys
’03), 2003.

[27] C. H. Lin, Y. Xie, and W. Wolf. LZW-based code compression for
VLIW embedded systems. In IEEE Conference on Design, Automa-
tion and Test in Europe (DATE ’04), 2004.

[28] E. Netto, R. Azevedo, P. Centoducatte, and G. Araujo. Mixed stat-
ic/dynamic profiling for dictionary based code compression. In IEEE
International Symposium on System-on-Chip, 2003.

[29] C. G. Nevill-Manning and I. H. Witten. Compression and explanation
using hierarchical grammars. In The Computer Journal, 40 (2 and 3),
1997.

[30] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low
power wireless research. In 4th International Symposium on Informa-
tion Processing in Sensor Networks (IPSN ’05), 2005.

[31] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras. ATEMU:
A fine-grained sensor network simulator. In 1st Annual IEEE Com-
munications Society Conference on Sensor, Mesh and Ad Hoc Com-
munications and Networks (SECON ’04), 2004.

[32] S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed compres-
sion in a dense microsensor network. In IEEE Signal Processing Mag-
azine, 19 (2), 2002.

[33] C. Sadler. SLZW implementation. https://sites.google.com/
site/cmsadler/, 2007.

[34] C. M. Sadler and M. Martonosi. Data compression algorithms for
energy-constrained devices in delay tolerant networks. In 4th ACM
International Conference on Embedded Networked Sensor Systems
(SenSys ’06), 2006.

[35] Y. Sazeides and J. E. Smith. The predictability of data values. In
30th Annual ACM/IEEE International Symposium on Microarchitec-
ture (MICRO ’97), 1997.

[36] R. Shea, M. Srivastava, and Y. Cho. Optimizing bandwidth of call
traces for wireless embedded systems. In IEEE Embedded Systems
Letters, 1 (1), 2009.

[37] R. Shea, M. Srivastava, and Y. Cho. Scoped identifiers for efficient
bit aligned logging. In Design, Automation Test in Europe Conference
Exhibition (DATE ’10), 2010.

[38] V. Shnayder, M. Hempstead, B. R. Chen, G. W. Allen, and M. Welsh.
Simulating the power consumption of large-scale sensor network ap-
plications. In 2nd ACM International Conference on Embedded Net-
worked Sensor Systems (SenSys ’04), 2004.

[39] J. A. Storer and T. G. Szymanski. Data compression via textural sub-
stitution. In J. ACM, 29 (4), 1982.

[40] C. Strydis and G. N. Gaydadjiev. Profiling of lossless-compression
algorithms for a novel biomedical-implant architecture. In 6th
IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS ’08), 2008.

[41] V. Sundaram, P. Eugster, and X. Zhang. Efficient diagnostic tracing
for wireless sensor networks. In ACM Conference on Embedded Net-
worked Sensor Systems (SenSys ’10), 2010.

[42] V. Sundaram, P. Eugster, and X. Zhang. Demo abstract: Diagnostic
tracing of wireless sensor networks with TinyTracer. In 10th Inter-
national conference on Information Processing in Sensor Networks
(IPSN ’11), 2011.

[43] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler.
An analysis of a large scale habitat monitoring application. In 2nd
ACM Conference on Embedded Networked Sensor Systems (SenSys
’04), 2004.

[44] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable sensor net-
work simulation with precise timing. In 4th Fourth International Sym-
posium on Information Processing in Sensor Networks (IPSN ’05),
2005.

[45] N. Tsiftes, A. Dunkels, T. Voigt. Efficient sensor network reprogram-
ming through comparison of executable modules. In 5th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON ’08), 2008.

[46] T. A. Welch. Technique for high-performance data compression. In
IEEE Computer, 17 (6), 1984.

[47] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fi-
delity and yield in a volcano monitoring sensor network. In 7th Sym-
posium on Operating Systems Design and Implementation (OSDI ’06),
2006.

[48] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant: A
comprehensive source-level debugger for wireless sensor networks. In
5th ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys ’07), 2007.

