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Preface 

There are several good current probability books- Billingsley (1995), Durrett 
(1991), Port (1994), Fristedt and Gray (1997), and I still have great affection 
for the books I was weaned on- Breiman (1992), Chung (1974), Feller (1968, 
1971) and even Loeve (1977). The books by Neveu (1965, 1975) are educational 
and models of good organization. So why publish another? Many of the exist­
ing books are encyclopedic in scope and seem intended as reference works, with 
navigation problems for the beginner. Some neglect to teach any measure theory, 
assuming students have already learned all the foundations elsewhere. Most are 
written by mathematicians and have the built in bias that the reader is assumed to 
be a mathematician who is coming to the material for its beauty. Most books do 
not clearly indicate a one-semester syllabus which will offer the essentials. 

I and my students have consequently found difficulties using currently avail­
able probability texts. There is a large market for measure theoretic probability by 
students whose primary focus is not mathematics for its own sake. Rather, such 
students are motivated by examples and problems in statistics, engineering, biol­
ogy and finance to study probability with the expectation that it will be useful to 
them in their research work. Sometimes it is not clear where their work will take 
them, but it is obvious they need a deep understanding of advanced probability in 
order to read the literature, understand current methodology, and prove that the 
new technique or method they are dreaming up is superior to standard practice. 

So the clientele for an advanced or measure theoretic probability course that is 
primarily motivated by applications outnumbers the clientele deeply embedded in 
pure mathematics. Thus, I have tried to show links to statistics and operations re­
search. The pace is quick and disciplined. The course is designed for one semester 
with an overstuffed curriculum that leaves little time for interesting excursions or 



xiv Preface 

personal favorites. A successful book needs to cover the basics clearly. Equally 
important, the exposition must be efficient, allowing for time to cover the next 
important topic. 

Chapters 1, 2 and 3 cover enough measure theory to give a student access to 
advanced material. Independence is covered carefully in Chapter 4 and expecta­
tion and Lebesgue integration in Chapter 5. There is some attention to comparing 
the Lebesgue vs the Riemann integral, which is usually an area that concerns stu­
dents. Chapter 6 surveys and compares different modes of convergence and must 
be carefully studied since limit theorems are a central topic in classical probability 
and form the core results. This chapter naturally leads into laws of large numbers 
(Chapter 7), convergence in distribution, and the central limit theorem (Chapters 8 
and 9). Chapter 10 offers a careful discussion of conditional expectation and mar­
tingales, including a short survey of the relevance of martingales to mathematical 
finance. 

Suggested syllabi: If you have one semester, you have the following options: 
You could cover Chapters 1-8 plus 9, or Chapters 1-8 plus 10. You would have 
to move along at unacceptable speed to cover both Chapters 9 and 10. If you have 
two quarters, do Chapters 1-10. If you have two semesters, you could do Chapters 
1-10, and then do the random walk Chapter 7 and the Brownian Motion Chapter 
6 from Resnick (1992), or continue with stochastic calculus from one of many 
fine sources. 

Exercises are included and students should be encouraged or even forced to do 
many of them. 

Harry is on vacation. 

Acknowledgements. Cornell University continues to provide a fine, stimulating 
environment. NSF and NSA have provided research support which, among other 
things, provides good computing equipment. I am pleased that AMS-'JBXand 
LATEX merged into AMS-LATEX, which is a marvelous tool for writers. Rachel, 
who has grown into a terrific adult, no longer needs to share her mechanical pen­
cils with me. Nathan has stopped attacking my manuscripts with a hole puncher 
and gives ample evidence of the fine adult be will soon be. Minna is the ideal 
companion on the random path of life. Ann Kostant of Birkhauser continues to be 
a pleasure to deal with. 

Sidney I. Resnick 
School of Operations Research and Industrial Engineering 
Cornell University 
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1 
Sets and Events 

1.1 Introduction 

The core classical theorems in probability and statistics are the following: 

• The law of large numbers (LLN): Suppose {Xn. n ::::: 1} are independent, 
identically distributed (iid) random variables with common mean E (X n) = 
J1.. The LLN says the sample average is approximately equal to the mean, 
so that 

An immediate concern is what does the convergence arrow"~" mean? 
This result has far-reaching consequences since, if 

X· _ { 1, if event A occurs, 
1 - 0, otherwise 

then the average L:7=t X; In is the relative frequency of occurrence of A in 
n repetitions of the experiment and J1. = P(A). The LLN justifies the fre­
quency interpretation of probabilities and much statistical estimation theory 
where it underlies the notion of consistency of an estimator. 

• Central limit theorem (CLT): The central limit theorem assures us that sam­
ple averages when centered and scaled to have mean 0 and variance 1 have 
a distribution that is approximately normal. If {X n, n ::::: 1} are iid with 
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common mean E(Xn) = Jl and variance Var(Xn) = a 2, then 

[ L~- X; - nJ.l ] lx e- u2;z 
p '-1 .jii .::: x .... N(x) := ~ du. 

a n -oo v2rr 

This result is arguably the most important and most frequently applied re­
sult of probability and statistics. How is this result and its variants proved? 

• Martingale convergence theorems and optional stopping: A martingale is 
a stochastic process {Xn, n 2: 0} used to model a fair sequence of gam­
bles (or, as we say today, investments). The conditional expectation of your 
wealth Xn+l after the next gamble or investment given the past equals the 
current wealth X n. The martingale results on convergence and optimal stop­
ping underlie the modern theory of stochastic processes and are essential 
tools in application areas such as mathematical finance. What are the basic 
results and why do they have such far reaching applicability? 

Historical references to the CLT and LLN can be found in such texts as Breiman 
(1968), Chapter I; Feller, volume I (1968) (see the background on coin tossing and 
the de Moivre-Laplace CLT); Billingsley (1995), Chapter 1; Port (1994), Chapter 
17. 

1.2 Basic Set Theory 

Here we review some basic set theory which is necessary before we can proceed 
to carve a path through classical probability theory. We start by listing some basic 
notation. 

• Q: An abstract set representing the sample space of some experiment. The 
points of Q correspond to the outcomes of an experiment (possibly only a 
thought experiment) that we want to consider. 

• 'P(Q): The power set of n, that is, the set of all subsets of Q. 

• Subsets A , B, . . . of Q which will usually be written with roman letters 
at the beginning of the alphabet. Most (but maybe not all) subsets will be 
thought of as events, that is, collections of simple events (points of Q). 

The necessity of restricting the class of subsets which will have probabili­
ties assigned to them to something perhaps smaller than 'P(Q) is one of the 
sophistications of modern probability which separates it from a treatment 
of discrete sample spaces. 

• Collections of subsets A, B, ... which will usually be written by calligraphic 
letters from the beginning of the alphabet. 

• An individual element of Q: w e Q. 
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• The empty set 0, not to be confused with the Greek letter¢. 

P(Q) has the structure of a Boolean algebra. This is an abstract way of saying that 
the usual set operations perform in the usual way. We will proceed using naive set 
theory rather than by axioms. The set operations which you should know and will 
be commonly used are listed next. These are often used to manipulate sets in a 
way that parallels the construction of complex events from simple ones. 

1. Complementation: The complement of a subset A c Q is 

Ac :={w:w¢A}. 

2. Intersection over arbitrary index sets: Suppose T is some index set and for 
each t e T we are given A1 c Q . We define 

n A, := {w: we A1, V t e T}. 
reT 

The collection ofsubsets {A1, t e T} is pairwise disjoint if whenever t, t' e 
T, butt :ft t', we have 

A1 nA,, = 0. 

A synonym for pairwise disjoint is mutually disjoint. Notation: When we 
have a small number of subsets, perhaps two, we write for the intersection 
of subsets A and B 

AB =AnB, 

using a "multiplication" notation as shorthand. 

3. Union over arbitrary index sets: As above, let T be an index set and suppose 
A 1 c Q . Define the union as 

UAr := {w: we A, , for some t e T}. 
lET 

When sets At. Az, .. . are mutually disjoint, we sometimes write 

At +Az + .. . 

or even L:f:t A; to indicate Uf:t A;, the union of mutually disjoint sets. 

4. Set difference Given two sets A, B, the part that is in A but not in B is 

A \B :=ABc. 

This is most often used when B C A; that is, when AB =B. 

5. Symmetric difference: If A , Bare two subsets, the points that are in one but 
not in both are called the symmetric difference 

A !::. B = (A \B) U (B \A). 
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You may wonder why we are interested in arbitrary index sets. Sometimes the 
natural indexing of sets can be rather exotic. Here is one example. Consider the 
space USC+([O, oo)), the space of non-negative upper semi-continuous functions 
with domain [0, oo). For f e USC+([O, oo)), define the hypograph hypo(/) by 

hypo(/)= {(s,x): 0::: x::: f(s)}, 

so that hypo(/) is the portion of the plane between the horizontal axis and the 
graph of f. Thus we have a family of sets indexed by the upper semi-continuous 
functions, which is a somewhat more exotic index set than the usual subsets of 
the integers or real line. 

The previous list described common ways of constructing new sets from old. 
Now we list ways sets can be compared. Here are some simple relations between 
sets. 

1. Containment: A is a subset of B, written A c B orB :J A, iff AB =A or 
equivalently iff w E A implies w e B. 

2. Equality: Two subsets A, B are equal, written A = B, iff A c B and 
B c A. This means w e A iff w e B. 

Example 1.2.1 Here are two simple examples of set equality on the real line for 
you to verify. 

(i) U~1 [0, nj(n + 1)) = [0, 1). 

(ii) n~l (0, 1/n) = 0. 0 

Here are some straightforward properties of set containment that are easy to 
verify: 

A cA, 
A c B and B c C implies A c C, 
A C C and B C C implies A U B c C, 
A :J C and B :J C implies AB :J C, 
A C B iff Be C A c 

Here is a list of simple connections between the set operations: 

1. Complementation: 

2. Commutativity of set union and intersection: 

AUB=BUA, AnB=BnA. 
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Note as a consequence of the definitions, we have 

AUA =A, 
AU0=A, 
AUQ=Q, 
A UAC = Q , 

AnA= A, 
An0=0 

An!'2=A , 
A nAc = 0. 

3. Associativity of union and intersection: 

(A U B) U C = A U (B U C), (A n B) n C = A n (B n C). 

4. De Morgan's laws, a relation between union, intersection and complemen­
tation: Suppose as usual that T is an index set and A1 c Q . Then we have 

<U A,)c = n<A~) . <n Ar)c = U<A~) . 
reT reT reT reT 

The two De Morgan's laws given are equivalent. 

5. Distributivity laws providing connections between union and intersection: 

Bn (uAr) 
reT 

= U<BAr) . 
reT 

BU (nAr) 
reT 

= n(BUAr). 
reT 

1.2.1 Indicator functions 

There is a very nice and useful duality between sets and functions which empha­
sizes the algebraic properties of sets. It has a powerful expression when we see 
later that taking the expectation of a random variable is theoretically equivalent to 
computing the probability of an event. If A C Q , we define the indicator function 
of A as 

lA(W) = 11, 

0, 
ifw E A , 

if wE A c. 

This definition quickly yields the simple properties: 

lA:::; lB iff A C B, 

and 
lAc= 1-lA. 

Note here that we use the convention that for two functions f, g with domain Q 
and range IR, we have 

f ::: g iff f(w) ::: g(w) for all we Q 

and 
f = g if f ::: g and g ::: f. 
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1.3 Limits of Sets 

The definition of convergence concepts for random variables rests on manipula­
tions of sequences of events which require limits of sets. Let An c Q . We define 

00 00 

00 

supAk := UAk 
k:!n k=n 

liminfAn = U n Ak, n-+00 
n=l k=n 

00 00 

lim sup An= n U Ak. 
n-+oo n=l k=n 

The limit of a sequence of sets is defined as follows: If for some sequence { Bn} of 
subsets 

limsupBn = liminfBn = B, 
n-+oo n-+oo 

then B is called the limit of Bn and we write limn-+oo Bn = B or Bn --+ B. It will 
be demonstrated soon that 

lim inf An = lim ( inf Ak) 
n-+00 n-+oo k:!n 

and 

limsupAn = lim (supAk). 
n-+oo n-+oo k:!n 

To make sure you understand the definitions, you should check the following 
example as an exercise. 

Example 1.3.1 Check 

lim inf[O, nj(n + 1)) =lim sup[O, nj(n + 1)) = [0, 1). 0 
n-+00 n-+oo 

We can now give an interpretation of lim infn-+oo An and lim supn-+oo An. 

Lemma 1.3.1 Let {An} be a sequence of subsets of Q. 

(a) For lim sup we have the interpretation 

lim sup An= lw: f: 1An(w) = ooJ 
n-+00 n=l 

= {w : wE Ank• k = 1, 2 ... } 

for some subsequence nk depending on w. Consequently, we write 

limsupAn =[An i.o.] 
n-+00 
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where i.o. stands for infinitely often. 
(b) For lim inf we have the interpretation 

lim inf An ={w : w E An for all n except a finite number} 
n-HXJ 

={w : L lA~ (w) < oo} 
n 

={w: wE An, 'Vn;::: no(w)}. 

Proof. (a) If 
00 00 

wE lim sup An= n U Ak, 
n->oo n=l k=n 

then for every n, w E Uk::;:nAk and so for all n, there exists some kn ;::: n such that 
wE Akn' and therefore 

which implies 

thus 

Conversely, if 

00 

L lAj(w) ::': L lAkn (w) = 00, 
j=l n 

wE lw: f lAn(w) = ooJ; 
n=l 

00 

lim sup An C {w: L lA/W) = oo}. 
n->oo j=l 

00 

wE {w: L lAi(w) = oo}, 
j=l 

then there exists kn ---. oo such that w E Akn, and therefore for allti, w E U j::;:nA j 
so that w E lim supn->oo An. By defininition 

00 

{w : L lA/W) = oo} C lim sup An. 
j=l n-+oo 

This proves the set inclusion in both directions and shows equality. 
The proof of (b) is similar. 0 

The properties of lim sup and lim inf are analogous to what we expect with real 
numbers. The link is through the indicator functions and will be made explicit 
shortly. Here are two simple connections: 

1. The relationship between lim sup and lim inf is 

lim inf An C lim sup An 
n->oo n->00 
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since 

{w: wE An, for all n ;::: no(w)} C {w: wE An infinitely often} 

=lim sup An. 
n~oo 

2. Connections via de Morgan's laws: 

(liminfAn)c = limsupA~ 
n~oo n~oo 

since applying de Morgan's laws twice yields 

=lim sup A~. 
n~oo 

For a sequence of random variables IXn, n :::: 0}, suppose we need to show 
X n ~ X o almost surely. As we will see, this means that we need to show 

P{w: lim Xn(w) = Xo(w)} = 1. 
n~oo 

We will show later that a criterion for this is that for all £ > 0 

P{[IXn- Xol > s] i.o.} = 0. 

That is, with An = [IXn- Xol > s], we need to check 

P (limsupAn) = 0. 
n~oo 

1.4 Monotone Sequences 

A sequence of sets {An} is monotone non-decreasing if A 1 C Az C · · · . The 
sequence {An} is monotone non-increasing if A1 :J Az :J A3 ···.To indicate a 
monotone sequence we will use the notation An /' or An t for non-decreasing 
sets and An "\. or An .J, for non-increasing sets. For a monotone sequence of sets, 
the limit always exists. 

Proposition 1.4.1 Suppose {An} is a monotone sequence of subsets. 

(1) If An /', then limn~oo An = U~1 An. 
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(2) If An \o then limn-+oo An = n~1An. 

Consequently, since for any sequences Bm we have 

it follows that 

liminfBn = lim (inf Bk), 
n-+oo n-+oo k;::n 

lim sup Bn = lim (sup Bk) . 
n-+oo n-+oo k;::n 

Proof. (1) We need to show 

00 

liminfAn =lim sup An= U An. 
n-+oo n-+00 n=l 

Since A j c A j+l> 

and therefore 

Likewise 

lim sup An 
n-+00 

Thus equality prevails and 

= liminfAn 
n-+oo 

(from (1.1)) 

C limsupAn. 
n-+oo 

lim sup An C U Ak C lim sup An; 
n-+oo k?:l n-+oo 

therefore 
00 

lim sup An= U Ak. 
n-+00 k=l 

This coupled with (1.1) yields (1 ). 
The proof of (2) is similar. 

(1.1) 

0 
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Example 1.4.1 As an easy exercise, check that you believe that 

lim [0, 1- 1/n] = [0, 1) 
n-+oo 

lim [0, 1- 1/n) = [0, 1) 
n-+00 

lim [0, 1 + 1/n] = [0, 1] 
n-+oo 

lim [0, 1 + 1/n) = [0, 1]. 
n-+00 0 

Here are relations that provide additional parallels between sets and functions 
and further illustrate the algebraic properties of sets. As usual let {An} be a se­
quence of subsets of n. 

1. We have 

2. The following inequality holds: 

lunAn ::S L lAn 
n 

and if the sequence {A;} is mutually disjoint, then equality holds. 

3. We have 

4. Symmetric difference satisfies the relation 

lA~B = lA + ls (mod 2) . 

Note (3) follows from (1) since 

and from (1) this is 
inf 1supk Ak. 
n;::l ~n 

Again using (1) we get 

inf sup lAk = lim sup lAn , 
n;::l k;::n n-+oo 

from the definition of the lim sup of a sequence of numbers. 
To prove (1), we must prove two functions are equal. But 1 inf An (w) = 1 iff 

n>k 

w E infn;::k An = n~k An iff w E An for all n 2: k iff lAn (w) ;;;, 1 for all n 2: k 
iff infn;::k IAn (w) = 1. 0 
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1.5 Set Operations and Closure 

In order to think about what it means for a class to be closed under certain set 
operations, let us first consider some typical set operations. Suppose C C 'P(Q) 
is a collection of subsets of Q. 

(1) Arbitrary union: Let T be any arbitrary index set and assume for each 
t e T that A1 e C. The word arbitrary here reminds us that T is not nec­
essarily finite, countable or a subset of the real line. The arbitrary union 
is 

(2) Countable union: Let An. n > 1 be any sequence of subsets in C. The 
countable union is 

(3) Finite union: Let A1, ... , An be any finite collection of subsets in C. The 
finite union is 

(4) Arbitrary intersection: As in (1) the arbitrary intersection is 

(5) Countable intersection: As in (2), the countable intersection is 

00 

nAj. 
j=l 

(6) Finite intersection: As in (3), the finite intersection is 

n 

nAj. 
j=l 

(7) Complementation: If A e C, then A c is the set of points not in A. 

(8) Monotone limits: If {An} is a monotone sequence of sets inC, the monotone 
limit 

lim An 
n-+oo 

is U~1 A j in case {An} is non-decreasing and is n~1 A j if {An} is non­
increasing. 
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Definition 1.5.1 (Closure.) Let C be a collection of subsets of n. C is closed 
under one of the set operations 1-8 listed above if the set obtained by performing 
the set operation on sets inC yields a set in C. 

For example, C is closed under (3) if for any finite collection At, ... , An of 
setsinC,U}=tAi eC. 

Example 1.5.1 1. Suppose n = IR, and 

C = finite intervals 

= {(a,b], -oo <a~ b < oo}. 

C is not closed under finite unions since (1, 2] U (36, 37] is not a finite 
interval. Cis closed under finite intersections since (a, b] n (c, d] = (a v 
c, dAb]. Here we use the notationavb = max{a, b} and aAb =min{ a, b}. 

2. Suppose n = lR and C consists of the open subsets of JR. Then C is not 
closed under complementation since the complement of an open set is not 
open. 

Why do we need the notion of closure? A probability model has an event space. 
This is the class of subsets of n to which we know how to assign probabilities. 
In general, we cannot assign probabilities to all subsets, so we need to distinguish 
a class of subsets that have assigned probabilities. The subsets of this class are 
called events. We combine and manipulate events to make more complex events 
via set operations. We need to be sure we can still assign probabilities to the re­
sults of the set operations. We do this by postulating that allowable set operations 
applied to events yield events; that is, we require that certain set operations do not 
carry events outside the event space. This is the idea behind closure. 

Definition 1.5.2 Afield is a non-empty class of subsets of n closed under finite 
union, finite intersection and complements. A synonym for field is algebra. 

A minimal set of postulates for A to be a field is 

(i) n eA. 

(ii) A e A implies A c e A. 

(iii) A, Be A implies AU BE A. 

Note if At, Az, A3 e A, then from (iii) 

At U Az U A3 = (At U Az) U A3 e A 
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and similarly if A1, ... , An E A, then U7=1A; E A. Also if A; E A, i = 
1, ... , n, then n7=1A; e A since 

A; E A implies Af E A (from (ii)) 
n 

A~ eA 
I implies UAfeA (from (iii)) 

i=l 

n (uAfr E A UAf implies (from (ii)) 
i=l 1=1 

and finally 

(VAfr =0A• 
by de Morgan's laws so A is closed under finite intersections. 

Definition 1.5.3 A a-field B is a non-empty class of subsets of Q closed under 
countable union, countable intersection and complements. A synonym for a-field 
is a -algebra. 

A mimimal set of postulates forB to be a a-field is 

(i) Q E B. 

(ii) B e B implies Be e B. 

(iii) B; e B, i ~ 1 implies U~1 B; E B. 

As in the case ofthe postulates for a field, if B; E B, fori ~ 1, then n~1 B; e B. 
In probability theory, the event space is a a-field. This allows us enough flexi­

bility constructing new-events from old ones (closure) but not so much flexibility 
that we have trouble assigning probabilities to the elements of the a-field. 

1.5.1 Examples 

The definitions are amplified by some examples of fields and a-fields. 

(1) The power set. Let B = P(Q), the power set of Q so that P(Q) is the 
class of all subsets of Q. This is obviously a a-field since it satisfies all closure 
postulates. 

(2) The trivial a-field. Let B = {0, Q}. This is also a a-field since it is easy to 
verify the postulates hold. 

(3) The countable/co-countable a-field. Let Q = 1., and 

B ={A c I.: A is countable} U {A C lR: Ac is countable}, 

so B consists of the subsets of lR that are either countable or have countable com­
plements. B is a a-field since 
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(i) Q e B (since nc = 0 is countable). 

(ii) A e B implies Ac e B. 

(iii) A; e B implies n~1 A; E B. 

To check this last statement, there are 2 cases. Either 

(a) at least one A; is countable so that n~1A; is countable and hence in B, or 

(b) no A; is countable, which means Af is countable for every i. So U~1Af is 
countable and therefore 

00 00 

<U<Af))c = n A; E B. 
i=l i=l 

Note two points for this example: 

• If A = ( -oo, 0], then A c = (0, oo) and neither A nor A c is countable 
which means A ¢ B. SoB # 'P(Q). 

• B is not closed under arbitrary unions. For example, for each t :::; 0, the 
singleton set {t} e B, since it is countable. But A = U1:::;o{t} = ( -oo, 0] ¢ 
B. 

(4) A field that is not a a-field. Let n = (0, 1] and suppose A consists of 
the empty set 0 and all finite unions of disjoint intervals of the form (a, a'], 0 :::; 
a :::; a' :::; 1. A typical set in A is of the form U7':1 (a;, a;J where the intervals are 
disjoint. We assert that A is a field. To see this, observe the following. 

(i) Q = (0, 1] eA. 

(ii) A is closed under complements: For example, consider the union repre­
sented by dark lines 

(--....I!!!!!!!!!!!!!!!!!!!!!L--1!!!!!!!!!!!!!!!!!!!!!~ 

0 1 

FIGURE 1.1 

which has complement. 

~!!!!!!!!~-~!!!!!!!!!!!!!!!!L---J 

0 1 

FIGURE 1.2 

which is a disjoint union. 
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(iii) A is closed under finite intersections. (By the de Morgan laws, verifica­
tion of this assertion is equivalent to showing closure under finite unions.) 
Closure under finite intersections is true because 

(a , a'] n (b, b'] = (a v b, a' 1\ b']. 

Note that A is NOT a a-field. The set 

1 1 1 1 1 1 
(O, 2] u ( 2 + 22 ' 2 + 22 + 23] 

111111111 
u ( 2 + 22 + 23 + 24 ' 2 + 22 + 23 + 24 + 25 ] u .. . 

is a countable union of members of A but is not in A. 0 

1.6 The a-field Generated by a Given Class C 

It is a sad fact that a-fields cannot always be constructed by a countable set of 
operations on simple sets. Sometimes only abstraction works. The exception to 
the sad fact is if Q is finite, in which case construction and enumeration work. 
However, in general, the motto of the budding measure theorist is "induction no,t 
construction". 

We now discuss how to guarantee a desired a-field exists. 
Let 0 be one of the 8 set operations listed starting on page 11. For example, 0 

could be "countable union". Let {C1, t e T} be an indexed family of subsets such 
that for each t, C1 is closed under 0 . Then 

c = n c, is closed under 0 . 
reT 

(1.2) 

(This is NOT true for Urer C, .) Observe that the intersection can be with respect 
to an arbitrary index set. This will be used when we discuss the minimal a-field 
generated by a class. 

Here is a sample verification of (1.2) when 0 is countable union: Suppose for 
i 2: 1 that B; E C. Then for any i ;::: 1, B; E C, for all t E T. Due to the fact that 
C1 is closed under 0, we conclude U~1 B; e C, for all t e r . Since U~1 B; e C, 
for all t , U~1 B; e nrerC, . Thus nrerCr is closed under 0. 

Applying the principle in (1.2) using the set operations of complementation and 
countable union, we get the following result. 

Corollary 1.6.1 The intersection of a -fields is a u -field. 

Definition 1.6.1 Let C be a collection of subsets of Q . The a -field generated by 
C, denoted a(C), is a a-field satisfying 

(a) a(C) :) C 
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(b) If !3' is some other a-field containing C, then !3' :::> a(C). 

Another name for a(C) is the minimal a-field over C. Part (b) of the definition 
makes the name minimal apt. 

The next result shows why a a-field containing a given class exists. 

Proposition 1.6.1 Given a class C of subsets of Q, there is a unique minimal 
a -field containing C. 

Proof. Let 
~ = {!3 : I3 is a a-field, I3 :::> C} 

be the set of all a-fields containing C. Then~# 0 since P(Q) E ~.Let 

Since each class I3 e ~ is a a-field, so is J3'a by Corollary 1.6.1. Since I3 e ~ 
implies I3 :::> C, we have f3IJ :::>C. We claim J3'a = a(C). We checked J3tt :::> C and, 
for minimality, note that if !3' is a a-field such that !3' :::> C, then !3' e ~and hence 
J3!l C !3'. D 

Note this is abstract and completely non-constructive. If Q is finite, we can 
construct a(C) but otherwise explicit construction is usually hopeless. 

In a probability model, we start with C, a restricted class of sets to which we 
know how to assign probabilities. For example, if Q = (0, 1], we could take 

C ={(a, b], 0 ~a ~ b ~ 1} 

and 
P((a, b]) = b- a. 

Manipulations involving a countable collection of set operations may take us out­
side C but not outside a (C). Measure theory stresses that if we know how to assign 
probabilities to C, we know (in principle) how to assign probabilities to a(C). 

1. 7 Borel Sets on the Real Line 

Suppose Q = lR and let 

C ={(a, b], -oo ~a ~ b < oo}. 

Define 
I3(1R.) := a(C) 

and call I3(lR) the Borel subsets of JR.. Thus the Borel subsets of lR are elements of 
the a-field generated by intervals that are open on the left and closed on the right. 
A fact which is dull to prove, but which you nonetheless need to know, is that 
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there are many equivalent ways of generating the Borel sets and the following are 
all valid descriptions of Borel sets: 

B(IR) = a((a, b), -oo ~a ~ b ~ oo) 

=a([a,b), -oo <a~ b ~ oo) 

=a([a, b], -oo <a~ b < oo) 

=a((-oo, x],x E IR) 

=a (open subsets of IR). 

Thus we can generate the Borel sets with any kind of interval: open, closed, semi­
open, finite, semi-infinite, etc. 

Here is a sample proof for two of the equivalences. Let 

co= {(a, b), -00 ~a~ b ~ oo} 

be the open intervals and let 

c<J ={(a, b], -00 ~a~ b < oo} 

be the semi-open intervals open on the left. We will show 

a(CO) = a(C<l). 

Observe (a, b)= U~1 (a,b -1/n]. Now (a,b -1/n] E c<l C a(C<l), for 
all n implies U~1 (a, b- 1/n] E a(C<l). So (a, b) E a(C<l) which implies that 
co c a (C< 1). Now a (C<l) is a a -field containing co and hence contains the 
minimal a-field over co, that is, a(CO) c a(C<l). 

Conversely, (a, b] = n~1 (a, b + 1/n). Now (a, b + 1/n) E co C a(CO) 
so that n~1 (a, b + 1/n) E a(CO) which implies (a, b] E a(CO) and hence 
c<J c a(C<>). This implies a(C<l) c a(C<>). 

From the two inclusions, we conclude 

as desired. 
Here is a sample proof of the fact that 

B(IR) = a(open sets in IR). 

We need the result from real analysis that if 0 C lR is open, 0 = U~1 lj, where 
I j are open, disjoint intervals. This makes it relatively easy to show that 

a( open sets) = a(Co). 

If 0 is an open set, then we can write 
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We have Ij E co c a(CO) so that 0 = UJ=1Ij E a(CO) and hence any open 

set belongs to a(CO), which implies that 

a( open sets) c a(C<>) . 

Conversely, co is contained in the class of open sets and therefore a (CO) c 
a( open sets). 

Remark. If IE is a metric space, it is usual to define 8(1E), the a-field on IE, to be 
the a-field generated by the open subsets of IE. Then 8(1E), is called the Borel 
a-field. Examples of metric spaces IE that are useful to consider are 

• JR., the real numbers, 

• JR.d, d-dimensional Euclidean space, 

• !R.00, sequence space; that is, the space of all real sequences. 

• C[O, oo), the space of continuous functions on [0, oo). 

1.8 Comparing Borel Sets 

We have seen that the Borel subsets of JR. is the a-field generated by the intervals 
of JR.. A natural definition of Borel sets on (0, 1 ], denoted 8( (0, 1]) is to take 
C (0, 1] to be the subintervals of (0, 1] and to define 

8((0, 1]) := a(C(O, 1]). 

If a Borel set A E 8(1R) has the property A C (0, 1], we would hope A E 

8((0, 1]). The next result assures us this is true. 

Theorem 1.8.1 Let no c n. 
(1) If 8 is a a-field of subsets of n, then 8o := {A no : A E 8} is a a­

field of subsets of no. (Notation: 8o =: 8 n no. We hope to verify 8( (0, 1]) = 
8(1R) n (0, 1 ].) 

(2) Suppose C is a class of subsets of n and 8 = a (C). Set 

C n no=: Co= {A no: A e C}. 

Then 

a(Co) = a(C) n no 

In symbols (2) can be expressed as 

a(C n no)= a(C) n no 
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so that specializing to the Borel sets on the real line we get 

B(O, 1] = B(lR) n (0, 1]. 

Proof. (1) We proceed in a series of steps to verify the postulates defining a a­

field. 

(i) First, observe that no e Bo since nno = no and n E B. 

(ii) Next, we have that if B = A no e Bo, then 

no\ B =no\ A no= no(n \A) e Bo 

since n \A e B. 

(iii) Finally, if for n :::: 1 we have Bn = An no, and An e B, then 

()() ()() ()() u Bn = u Anno= (U An) n no e Bo 
n=l n=l n=l 

since Un An e B. 

(2) Now we show a(Co) = a(C) n no. We do this in two steps. 
Step 1: We have that 

Co:= C n no c a(C) n no 

and since (i) assures us that a(C) n no is a a-field, it contains the minimal a-field 
generated by Co, and thus we conclude that 

a(Co) c a(C) n no. 

Step 2: We show the reverse inclusion. Define 

g :={A c n: Ano e a(Co)}. 

We hope to show g :::> a(C). 
First of all, g :::> C, since if A e C then A no e Co c a(Co). Secondly, observe 

that g is a a-field since 

(i) neg since nno =no e a(Co)). 

(ii) If A e g then A c = n \ A and we have 

Ac n no= (n\A)no = no\Ano. 

Since A e Q, we have Ano e a(Co) which implies no\ A no e a(Co), so 
we conclude A c e g. 
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(iii) If An E g, for n 2:: 1, then 

00 00 

<U An) n flo= u An flo. 
n=l n=l 

Since Anrlo E a(Co), it is also true that U~1Anrlo E a(Co) and thus 
U~1An E g. 

So g is a a-field and g ::) C and therefore g ::) a (C). From the definition of g, 
if A E a(C), then A E g and so Arlo E a(Co). This means 

a(C) n flo c a(Co) 

as required. 

Corollary 1.8.1 lfrlo E a(C), then 

a(Co) =(A :A C flo, A E a(C)}. 

Proof. We have that 

iH2o E a(C). 

a(Co) =a(C) n flo= (Arlo: A E a(C)} 

=(B : B E a(C), B C flo} 

This shows how Borel sets on (0, 1] compare with those on JR. 

1. 9 Exercises 

D 

D 

1. Suppose Q = {0, 1} and C = {(0}}. Enumerate~. the class of all a-fields 
containing C. 

2. Suppose Q = (0, 1, 2} and C = ( (0} }. Enumerate~. the class of all a-fields 
containing C and give a (C). 

3. Let An. A, Bn, B be subsets of Q. Show 

lim sup An U Bn = lim sup An U lim sup Bn. 
n-..oo n-..oo n-..oo 

If An --+ A and Bn --+ B, is it true that 

An U Bn --+ A U B, An n Bn --+ A n B? 



4. Suppose 
m 

An={-: mEN}, n EN, 
n 

where N are non-negative integers. What is 

lim inf An and lim sup An? 
n-+oo n-+oo 

5. Let fn, f be real functions on Q. Show 
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00 00 00 1 
{w: fn(w) fr f(w)} = u n u {w: lfn(w)- f(w)i ~ ;/ 

k=l N=ln=N 

6. Suppose On > 0, bn > 1 and 

lim On = 0, lim bn = 1. 
n-+00 n-+00 

Define 
An = {x : On ::;:: X < bn}. 

Find 
lim sup An and lim inf An. 
n-+oo n-+00 

7. Let 
I= {(x,y): ixi:::: 1, IYI:::: 1} 

be the square with sides of length 2. Let In be the square pinned at (0, 0) 
rotated through an angle 2rrn9. Describe lim supn-+oo In and lim infn-+oo In 
when 

(a) B = 1/8, 

(b) B is rational. 

(c) B is irrational. (Hint: A theorem of Weyl asserts that {e2"inB, n ~ 1} 
is dense in the unit circle when B is irrational.) 

8. Let 

and define 

What is 

9. Check that 

B c n, c c n 

if n is odd, 
if n is even. 

lim inf An and lim sup An? 
n-+oo n-+00 

Ab..B = Ac b..Bc. 
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10. Check that 

iff 

pointwise. 

11. Let 0 ~ an < oo be a sequence of numbers. Prove that 

sup[O, an) = [0, sup an) 
n~J n~J 

n n 
sup[O, --1 ¥= [O,sup--]. 
n~J n + 1 n~J n + 1 

12. Let 0 = {1, 2, 3, 4, 5, 6} and let C = {{2, 4}, {6}}. What is the field gener­
ated by C and what is the a-field? 

13. Suppose 0 = UrerCr. where Cs n C, = 0 for all s, t E T and s ¥= t . 
Suppose F is a a-field on fi = {C,, t E T}. Show 

U ...... ...... 
F := {A = C1 : A E F} 

c,eA 

is a a-field and show that 

! :'A~--+ U c, 
c,eA 

is a 1-1 mapping from F to F. 

14. Suppose that An are fields satisfying An C An+I· Show that UnAn is a 
field. (But see also the next problem.) 

15. Check that the union of a countable collection of a-fields Bi, j ::: I need 
not be a a-field even if Bj c Bj+J. Is a countable union of a-fields whether 
monotone or not a field? 

Hint: Try setting 0 equal to the set of positive integers and let C i be all 
subsets of {1, . . . , j} and Bj = a(Cj) . 

If B;, i = 1, 2 are two a -fields, 81 U 82 need not be a field. 

16. Suppose A is a class of subsets of 0 such that 

• OeA 

• A E A implies A c E A. 

• A is closed under finite disjoint unions. 
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Show A does not have to be a field. 

Hint: Try Q = {1, 2, 3, 4} and let A be the field generated by two point 
subsets of n. 

17. Prove 

liminfAn={w: lim 1A.(w)=1}. 
n--+oo n--+00 

18. Suppose A is a class of sets containing Q and satisfying 

A, B e A implies A \ B = ABc e A. 

Show A is a field. 

19. For sets A, B show 

and 

20. Suppose C is a non-empty class of subsets of n. Let A(C) be the minimal 
field over C. Show that A( C) consists of sets of the form 

m n; unA;j. 
i=lj=l 

where for each i, j either A;j e C or Afj E C and where the m sets 

n;~ 1 A;j, 1 ::: i ::: m, are disjoint. Thus, we can explicitly represent the 
sets in A( C) even though this is impossible for the a-field over C. 

21. Suppose A is a field and suppose also that A has the property that it is 
closed under countable disjoint unions. Show A is a a-field. 

22. Let Q be a non-empty set and let C be all one point subsets. Show that 

a(C) ={A C Q: A is countable} UtA c Q: Ac is countable}. 

23. (a) Suppose on lR that tn ! t. Show 

(-00, tn]! (-00, t]. 

(b) Suppose 

tn t t, ln < t. 

Show 
( -00, tn] t ( -00, t). 
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24. Let Q = N, the integers. Define 

A= {A C N: A or Ac is finite.} 

Show A is a field, but not a a-field. 

25. Suppose Q = {ei2rrll, 0 ~ () < 1} is the unit circle. Let A be the collection 
of arcs on the unit circle with rational endpoints. Show A is a field but not 
a a-field. 

26. (a) Suppose Cis a finite partition of Q; that is 

k 

c ={At •... ' Ak}. Q =LA;, A;Aj = 0, i =I= j. 
i=t 

Show that the minimal algebra (synonym: field) A(C) generated by Cis the 
class of unions of subfamilies of C; that is 

A(C) = {UJ A j : I C {1, . .. , k}}. 

(This includes the empty set.) 

(b) What is the a-field generated by the partition At •... , An? 

(c) If At, A2, ... is a countable partition of n, what is the induced a-field? 

(d) If A is a field of subsets of n, we say A e A is an atom of A; if A =I= 0 
and if 0 =I= B c A and B e A, then B = A . (So A cannot be split into 
smaller sets that are nonempty and still in A.) Example: If Q = lR and A 
is the field generated by intervals with integer endpoints of the form (a, b] 
(a, bare integers) what are the atoms? 

As a converse to (a), prove that if A is a finite field of subsets of Q, then the 
atoms of A constitute a finite partition of Q that generates A. 

27. Show that 8(lR) is countably generated; that is, show the Borel sets are 
generated by a countable class C. 

28. Show that the periodic sets of lR form a a-field; that is, let 8 be the class 
of sets A with the property that x e A implies x ± n e A for all natural 
numbers n. Then show 8 is a a-field. 

29. Suppose C is a class of subsets of lR with the property that A e C implies 
Ac is a countable union of elements of C. For instance, the finite intervals 
in lR have this property. 

Show that a (C) is the smallest class containing C which is closed under the 
formation of countable unions and intersections. 

30. Let 8; be a-fields of subsets of Q fori = 1, 2. Show that the a-field 8t v 82 
defined to be the smallest a-field containing both 8t and 82 is generated 
by sets of the form Bt n B2 where B; e 8; fori= 1, 2. 
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31. Suppose n is uncountable and let g be the a-field consisting of sets A such 
that either A is countable or A c is countable. Show g is NOT countably 
generated. (Hint: If 9 were countably generated, it would be generated by 
a countable collection of one point sets. ) 

In fact, if g is the a-field of subsets of n consisting of the countable and 
co-countable sets, g is countably generated iff Q is countable. 

32. Suppose B1, B2 are a -fields of subsets of n such that B1 c Bz and B2 is 
countably generated. Show by example that it is not necessarily true that B1 
is countably generated. 

3 3. The extended real line. Let i = lR U {-oo} U { oo} be the extended or 
closed real line with the points -oo and oo added. The Borel sets B(JR) 
is the a-field generated by the sets [-oo,x],x E JR, where [-oo,x] = 
{ -oo}U( -oo, x] . Show B(JR) is also generated by the following collections 
of sets: 

(i) [ -00, X), X E JR, 

(ii) (x, oo], x E JR, 

(ii) all finite intervals and { -oo} and { oo} . 

Now think of i = [ -oo, oo] as homeomorphic in the topological sense to 
[ -1, 1] under the transformation 

X 
X t-+ --

1-lxl 

from [ -1, 1] to [ -oo, oo]. (This transformation is designed to stretch the 
finite interval onto the infinite interval.) Consider the usual topology on 
[ -1, 1] and map it onto a topology on [ -oo, oo] . This defines a collection 
of open sets on [ -oo, oo] and these open sets can be used to generate a 
Borel a-field. How does this a-field compare with B(JR) described above? 

34. Suppose B is a a-field of subsets of n and suppose A ¢ B. Show that 
a(B U {A}), the smallest a-field containing both Band A consists of sets 
of the form 

ABu ACB', B, B' E B . 

35. A a-field cannot be countably infinite. Its cardinality is either finite or at 
least that of the continuum. 

36. Let n = {f, a, n, g}, and C = {{f, a, n}, {a, n}}. Find a(C). 

37. Suppose n = Z, the natural numbers. Define for integer k 

kZ = {kz : z E Z}. 

Find B(C) when C is 
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(i) {3Z}. 

(ii) {3Z, 4Z}. 

(iii) {3Z, 4Z, 5Z}. 

(iv) {3Z, 4Z, 5Z, 6Z}. 

38. Let n = IR00 , the space of all sequences of the fonn 

(**) 

where Xi e R Let a be a pennutation of 1, . .. , n; that is, a is a 1-1 and 
onto map of {1, ... , n} ~--+ {1, . . . , n}. If w is the sequence defined in(**), 
define a w to be the new sequence 

( ) IXu(j)• 
aw j = 

Xj, 

if j ~ n, 

if j > n. 

A finite permutation is of the fonn a for some n; that is, it juggles a finite 
initial segment of all positive integers. A set A c Q is permutable if 

A= a A:= {aw: wE A} 

for all finite pennutations a . 

( i) Let Bn , n 2: 1 be a sequence of subsets of R Show that 

and 

n 

{w = (xi, xz , . . . ) : L Xi E Bn i.o. } 
i=l 

n 

{w = (XJ,X2, .. . ) : V Xi E Bn i.o.} 
i=l 

are pennutable. 

(ii) Show the pennutable sets fonn a a-field. 

39. For a subset A C N of non-negative integers, write card(A) for the number 
of elements in A. A set A C N has asymptotic density d if 

lim card(A n {1, 2, . . . , n}) =d. 
n-+oo n 

Let A be the collection of subsets that have an asymptotic density. Is A a 
field? Is it a a-field? 

Hint: A is closed under complements, proper differences and finite disjoint 
unions but is not closed under fonnation of countable disjoint unions or 
finite unions that are not disjoint. 
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40. Show that B( (0, 1 ]) is generated by the following countable collection: For 
an integer r, 

{[kr-n, (k + 1)r-n), 0 ~ k < rn, n = 1, 2, .. . . }. 

41. A monotone class M is a non-empty collection of subsets of 0 closed 
under monotone limits; that is, if An /'and An E M, then limn--+oo An = 
UnAn E M and if An ~ and An E M, then limn-->00 An = nnAn E M . 
Show that a a-field is a field that is also a monotone class and conversely, 
a field that is a monotone class is a a-field. 

42. Assume Pis a rr-system (that is, Pis closed under finite intersections) and 
M is a monotone class. (Cf. Exercise 41.) Show P C M does not imply 
a(P) c M . 

43. Symmetric differences. For subsets A, B, C, D show 

and hence 

(a) (At.B)t.C = At.(Bt.C), 

(b) (At.B)t.(Bt.C) = (At.C) , 

(c) (At.B)t.(Ct.D) = (At.C)t.(Bt.D), 

(d) At.B = C iff A= Bt.C, 

(e) At.B = Ct.D iff At.C = Bt.D. 

44. Let A be a field of subsets of 0 and define 

A= {A c n: 3An E A and An~ A} . 

Show A c A and A is a field. 
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2 
Probability Spaces 

This chapter discusses the basic properties of probability spaces, and in particular, 
probability measures. It also introduces the important ideas of set induction. 

2.1 Basic Definitions and Properties 

A probability space is a triple (Q, B, P) where 

• Q is the sample space corresponding to outcomes of some (perhaps hypo­
thetical) experiment. 

• B is the a-algebra of subsets of Q. These subsets are called events. 

• P is a probability measure; that is, P is a function with domain B and range 
[0, 1] such that 

(i) P(A) ~ 0 for all A e B. 

(ii) Pis a-additive: If {An. n ~ 1} are events in B that are disjoint, then 

00 00 

P(U An) = L P(An). 
n=l n=l 

(iii) P(Q) = 1. 

Here are some simple consequences of the definition of a probability measure 
P. 
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1. We have 
P(A') = 1- P(A) 

since from (iii) 

1 = P(Q) = P(A U A')= P(A) + P(A'), 

the last step following from (ii). 

2. We have 
P(0) = 0 

since P(0) = P(Q') = 1 - P(Q) = 1 - 1. 

3. For events A, B we have 

To see this note 

and therefore 

P(A U B)= PA + PB- P(AB). 

P(A) =P(AB') + P(AB) 

P(B) =P(BA') + P(AB) 

P(A U B) =P(AB' U BA' U AB) 

=P(AB') + P(BA') + P(AB) 

=P(A) - P(AB) + P(B) - P(AB) + P(AB) 

=P(A) + P(B) - P(AB). 

4. The inclusion-exclusion formula: If A 1, ... , An are events, then 

n n 

P(UAj) = LP(Aj)- L P(A;Aj) 
j=l j=l l~i<j~n 

+ L P(A;AjAk)- ... 

(2.1) 

(2.2) 

We may prove (2.2) by induction using (2.1) for n = 2. The terms on the 
right side of (2.2) alternate in sign and give inequalities called Bonferroni 
inequalities when we neglect remainders. Here are two examples: 

P (QAJ) ~ tPAJ 

P (Q AJ)?: ~PAJ- 19J;;~, P(A;AJ). 
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5. The monotonicity property: The measure P is non-decreasing: For events 
A,B 

If A C B then P(A) ,:::: P(B), 

since 

P(B) = P(A) + P(B \A) ::: P(A). 

6. Subadditivity: The measure Pis a-subadditive: For events An, n ::: 1, 

To verify this we write 

00 

UAn =A1 +A~Az+A3A~A2+ ... , 
n=l 

and since P is a-additive, 

00 

P(U An) =P(AI) + P(A~Az) + P(A3A~Az) + · · · 
n=l 

,::::P(AI) + P(A2) + P(A3) + · · · 

by the non-decreasing property of P. 

7. Continuity: The measure P is continuous for monotone sequences in the 
sense that 

(i) If An t A, where An E B, then P(An) t P(A). 

(ii) If An .J, A, where An E B, then P(An) .J, P(A). 

To prove (i), assume 

A 1 c Az c A3 c · · · c An c · · · 

and define 

Then {B;} is a disjoint sequence of events and 

n 00 

UB; =An, UB; =UA; =A. 
i=l i=l i 
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By a -additivity 

oo oo n 

P(A) =P(UB;) = LP(B;) = n~~ t LP(B;) 
i=I i=I i=I 

n 

= lim t P(U B;) = lim t P(An). 
n-+oo n-+oo 

i=I 

To prove (ii}, note if An .J.. A, then A~ t Ac and by part (i) 

P(A~) = 1- P(An) t P(Ac) = 1- P(A) 

so that PAn .J.. PA. 0 

8. More continuity and Fatou's lemma: Suppose An E B, for n 2: 1. 

(i) Fatou Lemma: We have the following inequalities 

P(liminfAn) ~ liminfP(An) 
n-+oo n-+oo 

~ lim sup P(An) ~ P(limsupAn). 
n-+00 n-+oo 

(ii) If An -+ A, then P(An) -+ P(A). 

Proof of 8. (ii) follows from (i) since, if An -+ A, then 

limsupAn = liminfAn =A. 
n-+oo n-+oo 

Suppose (i) is true. Then we get 

P(A) = P(lim inf An) ~ lim inf P(An) 
n-+oo n-+oo 

~ limsupP(An) ~ P(limsupAn) = P(A), 
n-+oo n-+oo 

so equality pertains throughout. 

Now consider the proof of (i): We have 

P(liminfAn) =P( lim t <n Ak)) 
n-+00 n-+oo 

k~n 

= lim t P<n Ak) 
n-+oo 

k~n 

(from the monotone continuity property 7) 

~lim inf P(An) 
n-+oo 
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P(limsupAn) = P( lim t <U Ak)) 
n-H>O n-+00 k?!_n 

= lim t P(U Ak) 
n-+00 

k?!_n 

(from continuity property 7) 

:::: lim sup P(An). 
n-+00 

completing the proof. D 

Example 2.1.1 Let Q = IR, and suppose P is a probability measure on JR. Define 
F(x) by 

F(x) = P((-oo,x]), x e JR. 

Then 

(i) F is right continuous, 

(ii) F is monotone non-decreasing, 

(iii) F has limits at ±oo 

F(oo) := lim F(x) = 1 
xtoo 

F(-oo) := lim F(x) = 0. 
x.j.-oo 

(2.3) 

Definition 2.1.1 A function F : lR ~ [0, 1] satisfying (i), (ii), (iii) is called a 
(probability) distribution function. We abbreviate distribution function by df. 

Thus, starting from P, we get F from (2.3). In practice we need to go in the 
other direction: we start with a known df and wish to construct a probability space 
(Q , B, P) such that (2.3) holds. See Section 2.5. 

Proof of (i), (ii), (iii). For (ii), note that if x < y, then 

(-oo,x] c (-oo,y] 

so by monotonicity of P 

F(x) = P((-oo,x]):::; P((-oo,y]):::; F(y). 
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Now consider (iii). We have 

F(oo) = lim F(xn) 
Xntoo 

(for any sequence Xn t oo) 

= lim t P((-OO,Xn]) 
Xntoo 

= P( lim t ( -oo, Xn]) 
Xntoo 

(from property 7) 

=P(U(-oo,xn]) = P((-oo, oo)) 
n 

= P(IR) = P(Q) = 1. 

Likewise, 

F(-oo) = lim F(Xn) = lim -1. P((-OO, Xn]) 
Xni-oo Xni-oo 

=P( lim (-OO,Xn]) 
Xni-oo 

(from property 7) 

=P<n<-oo.xnD = P(eJ) = o. 
n 

For the proof of (i), we may show F is right continuous as follows: Let Xn -1. x . 
We need to prove F(xn) -1. F(x) . This is immediate from the continuity property 
7 of P and 

(-OO,Xn] -1. (-oo, x] . 0 

Example 2.1.2 (Coincidences) The inclusion·exclusion formula (2.2) can be 
used to compute the probability of a coincidence. Suppose the integers 1, 2, . . . , n 
are randomly permuted. What is the probability that there is an integer left un· 
changed by the permutation? 

To formalize the question, we construct a probability space. Let Q be the set of 
all permutations of 1, 2, ... , n so that 

Q ={(XI, . .. , Xn) : Xi E {1, .. . , n}; i = 1, . .. , n ; Xi :;f Xj }. 

Thus Q is the set of outcomes from the experiment of sampling n times without 
replacement from the population 1, . .. , n. We let B = P(Q) be the power set of 
Q and define for (XI. . . . , Xn) E Q 

and forB E B 

1 
P((xl> ... , Xn)) = - , 

n! 

1 0 

P(B) =-#elements m B. 
n! 

Fori = 1, . . . , n, let A; be the set of all elements of Q with i in the ith spot. 
Thus, for instance, 

AI ={(1, Xz, .. . , Xn): (1, xz, . . . , Xn) E Q}, 

Az ={(XI,2, ... ,Xn): (XI.2 , .. . ,Xn) E Q}. 
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and so on. We need to compute P(U?=1A;). From the inclusion-exclusion formula 
(2.2) we have 

n n 

P(UA;) = LP(A;)- L P(A;Aj) + 
i=l i=l l::,i<j::,n 

To compute P(A; ), we fix integer i in the ith spot and count the number of 
ways to distribute n- 1 objects inn- 1 spots, which is (n- 1)! and then divide 
by n!. To compute P(A;Aj) we fix i and j and count the number of ways to 
distribute n - 2 integers into n - 2 spots, and so on. Thus 

P(lJA;) =n (n -1)! _ (n) (n- 2)! + (n) (n- 3)! _ ... (-1)n2_ 
i=l n! 2 n! 3 n! n! 

1 1 n 1 
=1 - 2! + 3!- ... (-1) n!" 

Taking into account the expansion of ,r for x = -1 we see that for large n, the 
probability of a coincidence is approximately 

n 

P(U A;)~ 1- e-1 ~ 0.632. 
i=l 

2.2 More on Closure 

0 

A a-field is a collection of subsets of n satisfying certain closure properties, 
namely closure under complementation and countable union. We will have need 
of collections of sets satisfying different closure axioms. We define a structure g 
to be a collection of subsets of Q satisfying certain specified closure axioms. Here 
are some other structures. Some have been discussed, some will be discussed and 
some are listed but will not be discussed or used here. 

• field 

• a-field 

• semialgebra 

• semiring 

• ring 

• a-ring 

• monotone class (closed under monotone limits) 
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• ]"(-system (P is a ]"(-system, if it is closed under finite intersections: A, B E 

P implies A n B E P ). 

• >..-system (synonyms: a-additive class, Dynkin class); this will be used ex­
tensively as the basis of our most widely used induction technique. 

Fix a structure in mind. Call itS. As with a-algebras, we can make the follow­
ing definition. 

Definition 2.2.1 The minimal structure S generated by a class C is a non-empty 
structure satisfying 

(i) s :> c, 

(ii) If S' is some other structure containing C, then S' :> S. 

Denote the minimal structure by S(C). 

Proposition 2.2.1 The minimal structure S exists and is unique. 

As we did with generating a minimal a-field, let 

~ = {g : g is a structure , g :> C} 

and 

2.2.1 Dynkin's theorem 

Dynkin's theorem is a remarkably flexible device for performing set inductions 
which is ideally suited to probability theory. 

A class of subsets .C of Q is a called a >..-system if it satisfies either the new 
postulates >..1, >..2, AJ or the old postulates>..~,>..;,>..) given in the following table. 

>..-system postulates 
old new 

>..; Qe.C At Qe.C 
>..; A, B E .C, A C B ~ B \ A E .C >..2 A E .C ~AcE .C 
>..' 3 An t, An E .C ~ UnAn E .C AJ n =f. m, AnAm = 0, 

An E .C ~ UnAn E .C. 

The old postulates are equivalent to the new ones. Here we only check that 
old implies new. Suppose >..;, >..;, >..) are true. Then .l..t is true. Since Q E .C, if 
A E .C, then A C Q and by>..;, Q \A = Ac E .C, which shows that >..2 is true. If 
A, B E .C are disjoint, we show that A U B E .C. Now Q \ A E .C and B C Q \ A 
(since (J) E B implies (J) fl. A which means (J) E Ac = Q \A) so by>..; we have 
(Q \A)\ B = AcBc E .C and by >..2 we have (AcBc)c =AU BE .C which is 
AJ for finitely many sets. Now if A j E .Care mutually disjoint for j = 1, 2, ... , 
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define Bn = U}=tAi . Then Bn e £by the prior argument for 2 sets and by >..3 
we have UnBn = limn-+oo t Bn E £ . Since UnBn = UnAn we have UnAn E £ 
which is AJ. 0 

Remark. It is clear that a a-field is always a >..-system since the new postulates 
obviously hold. 

Recall that a rr -system is a class of sets closed under finite intersections; that 
is, 'Pis a rr-system if whenever A, B e 'P we have AB e 'P. 

We are now in a position to state Dynkin's theorem. 

Theorem 2.2.2 (Dynkin's theorem) (a) lf'P is a rr-system and£ is a >..-system 
such that P c £, then a ('P) C £. 

(b) lf'P is a rr-system 

a('P) = £('P), 

that is, the minimal a-field over P equals the minimal >..-system over P. 

Note (b) follows from (a). To see this assume (a) is true. Since 'P c C('P), we 
have from (a) that a('P) c C('P). On the other hand, a('P), being a a-field, is a 
>..-system containing P and hence contains the minimal >..-system over 'P, so that 
a ('P) ::> £('P). 

Before the proof of (a), here is a significant application of Dynkin's theorem. 

Proposition 2.2.3 Let Pt. Pz be two probability measures on (Q, 8). The class 

£ :={A e 8: Pt(A) = Pz(A)} 

is a >..-system. 

Proof of Proposition 2.2.3. We show the new postulates hold: 

(J..t) n E £since Pt(fl) = Pz(n) = 1. 

(J..z) A e £implies Ace£, since A E £means Pt(A) = Pz(A), from which 

(J..3) If {A i} is a mutually disjoint sequence of events in £ , then P1 (A i) = 
Pz (A i) for all j, and hence 

P1(UAj) = LPt(Aj) = L:Pz(Aj) = Pz<UAj) 
j j j j 

so that 

0 
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Corollary 2.2.1 If Pt. P2 are two probability measures on (Q, B) and ifP is a 
;r-system such that 

'v'A e P: Pt(A) = P2(A), 

then 
'v'B e a(P): Pt(B) = P2(B). 

Proof of Corollary 2.2.1. We have 

C ={A e B: Pt(A) = P2(A)} 

is a A-system. But C :::> P and hence by Dynkin's theorem C :::> a(P). 0 

Corollary 2.2.2 Let n = JR. Let Pt, P2 be two probability measures on (JR., B(IR.)) 
such that their distribution functions are equal: 

'v'x E JR.: Ft(X) = Pt((-oo,x)) = F2(x) = P2((-oo,x]). 

Then 

on B(IR.). 

So a probability measure on JR. is uniquely determined by its distribution func­
tion. 

Proof of Corollary 2.2.2. Let 

P = {(-oo,x]: x e JR.}. 

Then P is a ;r -system since 

(-oo,x) n (-oo,y] = (-oo,x Ay) E P. 

Furthermore a (P) = B(IR.) since the Borel sets can be generated by the semi­
infinite intervals (see Section 1.7). SoFt (x) = F2(x) for all x e JR., means Pt = 
P2 on P and hence Pt = P2 on a(P) = B(IR.). 0 

2.2.2 Proof of Dynkin 's theorem 

Recall that we only need to prove: If Pis a ;r-system and Cis a A-system then 
P C C implies a (P) C C. 

We begin by proving the following proposition. 

Proposition 2.2.4 If a class C is both a ;r -system and a A-system, then it is a 
a-field. 

Proof of Proposition 2.2.4. First we show C is a field: We check the field postu­
lates. 
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(i) Q E C since C is a A.-system. 

(ii) A e C implies A c e C since C is a A.-system. 

(iii) If A i e C, for j = 1, ... , n, then nJ=l A i e C since Cis an-system. 

Knowing that Cis a field, in order to show that it is a a-field we need to show 
that if A i e C, for j 2: 1, then Uf=1A i E C. Since 

oo n 

UA· =lim t UA-
1 n-+oo 1 

j=l j=l 

and Uj =I A i e C (since Cis a field) it suffices to show C is closed under monotone 
non-decreasing limits. This follows from the old postulate>..;. 0 

We can now prove Dynkin's theorem. 

Proof of Dynkin's Theorem 2.2.2. It suffices to show .C('P) is a 1r -system since 
.C('P) is both a n-system and a A.-system, and thus by Proposition 2.2.4 also a 
a-field. This means that 

.c :::> .C('P) :::> 'P. 

Since .C('P) is a a-field containing 'P, 

.C('P) :::> a ('P) 

from which 

.C :::> .C('P) :::> a('P), 

and therefore we get the desired conclusion that 

.C :::> a('P). 

We now concentrate on showing that .C('P) is an-system. Fix a set A e a('P) 
and relative to this A, define 

gA ={BE a('P): AB E .C('P)}. 

We proceed in a series of steps. 

[A) If A e .C('P), we claim that gA is a A.-system. 

To prove [A) we check the new A.-system postulates. 

(i) We have 
n egA 

since An = A e .C('P) by assumption. 
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(ii) Suppose B E QA. We have that Be A =A\ AB. But B E QA means 
AB E .C('P) and since by assumption A E .C(P), we have A\ AB = 
Be A E .C(P) since A.-systems are closed under proper differences. 
Since Be A E .C(P), it follows that Be E QA by definition. 

(iii) Suppose {B j} is a mutually disjoint sequence and B j E 9A· Then 

00 00 

A n ( U B j) = U AB j 
j=l j=l 

is a disjoint union of sets in .C(P), and hence in .C(P). 

[B] Next, we claim that if A E P, then .C(P) C QA. 

To prove this claim, observe that since A E P C .C(P), we have from [A] 
that QA is a A.-system. 

ForB E P, we have AB E P since by assumption A E P and Pis a 
rr-system. So if B E P, then AB E P c .C(P) implies B E QA; that is 

(2.4) 

Since QA is a A.-system, 9A ::> .C(P). 

[B'] We may rephrase [B] using the definition of QA to get the following state­
ment. If A E P, and B E .C(P), then AB E .C(P). (So we are making 
progress toward our goal of showing .C(P) is a rr -system.) 

[C] We now claim that if A E £(P), then C(P) C QA · 

To prove [C]: If B E P and A E .C(P), then from [B'] (interchange the 
roles of the sets A and B) we have AB E .C(P). So when A E .C(P), 

From [A], 9A is a A.-system so .C(P) C QA. 

[C'] To finish, we rephrase [C]: If A E .C(P), then for any B E .C(P), B E QA. 
This says that 

ABE .C(P) 

as desired. 0 

2.3 Two Constructions 

Here we give two simple examples of how to construct probability spaces. These 
examples will be familiar from earlier probability studies and from Example 2.1.2, 
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but can now be viewed from a more mature perspective. The task of constructing 
more general probability models will be considered in the next Section 2.4 

(i) Discrete models: Suppose n = {w1, w2, ... } is countable. For each i, asso­
ciate to wi the number Pi where 

00 

Vi 2:: 1, Pi 2:: 0 and LPi = 1. 
i=l 

Define 13 = P(Q), and for A e 13, set 

P(A) = L Pi· 
w;EA 

Then we have the following properties of P: 

(i) P(A) 2:: 0 for all A E 13. 

(ii) P(Q) = L~l Pi = 1. 

(iii) P is a-additive: If A j, j 2:: 1 are mutually disjoint subsets, then 

00 

P<U A j) = L Pi = L L Pi 
j=l w;EUjAj j w;EAj 

= LP(Aj). 

Note this last step is justified because the series, being positive, can be 
added in any order. 

This gives the general construction of probabilities when n is countable. Next 
comes a time honored specific example of countable state space model. 

(ii) Coin tossing N times: What is an appropriate probability space for the ex­
periment "toss a weighted coin N times"? Set 

Q = {0, 1}N ={(WI. ... ,WN): Wi = 0 or 1}. 

For p 2:: 0, q 2:: 0, p + q = 1, define 

Construct a probability measure P as in (i) above: Let 13 = P(n) and for A c n 
define 

P(A) = LPw· 
we A 
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As in (i) above, this gives a probability model provided Lwen Pw = 1. Note the 
product form 

so 

N n w· 1-w· 
P(WJ, . .. ,WN) = p 'q I 

i=l 

n 

L PwJ , ... ,WN = L npw;ql-w; 
WJ, . .. ,WN WJ, .•. ,WN i=l 

0 

2.4 Constructions of Probability Spaces 

The previous section described how to construct a probability space when the 
sample space Q is countable. A more complex case but very useful in applications 
is when Q is uncountable, for example, when n = JR., JR.k, 1R.00 , and so on. For 
these and similar cases, how do we construct a probability space which will have 
given desirable properties? For instance, consider the following questions. 

(i) Given a distribution function F(x), let Q = JR.. How do we construct a 
probability measure P on B(lR.) such that the distribution function corre­
sponding to P is F: 

P((-oo,x]) = F(x). 

(ii) How do you construct a probability space containing an iid sequence of 
random variables or a sequence of random variables with given finite di­
mensional distributions. 

A simple case of this question: How do we build a model of an infinite 
sequence of coin tosses so we can answer questions such as: 

(a) What is the probability that heads occurs infinitely often in an infinite 
sequence of coin tosses; that is, how do we compute 

P[ heads occurs i.o. ]? 

(b) How do we compute the probability that ultimately the excess of 
heads over tails is at least 17? 

(c) In a gambling game where a coin is tossed repeatedly and a heads 
results in a gain of one dollar and a tail results in a loss of one dollar, 
what is the probability that starting with a fortune of x, ruin eventually 
occurs; that is, eventually my stake is wiped out? 
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For these and similar questions, we need uncountable spaces. For the coin toss­
ing problems we need the sample space 

Q ={0, 1}N 

={(WJ, wz, ... ) : Wj E {0, 1}, i ~ 1}. 

2.4.1 General Construction of a Probability Model 

The general method is to start with a sample space Q and a restricted, simple class 
of subsets S of Q to which the assignment of probabilities is obvious or natural. 
Then this assignment of probabilities is extended to a(S). For example, ifQ =JR., 
the real line, and we are given a distribution function F, we could take S to be 

S ={(a, b]: -oo =::a =:: b =:: oo} 

and then define P on S to be 

P((a, b]) = F(b) - F(a). 

The problem is to extend the definition of P from S to B(JR.), the Borel sets. 
For what follows, recall the notational convention that I:7=t A; means a dis­

joint union; that is, that At, ... , An are mutually disjoint and 

The following definitions help clarify language and proceedings. Given two 
structures gt, g2 of subsets of Q such that gt C g2 and two set functions 

P; : Q; ...... [0, 1 ], i = 1, 2, 

we say P2 is an extension of Pt (or Pt extends to P2) if P2 restricted to gt equals 
Pt. This is written 

P2lg1 = Pt 

and means P2(At) = Pt (At) for all At e Qt. A set function P with structure g 
as domain and range [0, 1 ], 

P:Q ...... [0,1], 

is additive iffor any n ~ 1 and any disjoint At. ... , An e g such that I:7=t A; e 
Qwe have 

n n 

P<:LA;) = LP(A;). (2.5) 
i=t i=t 

Call P a -additive if the index n can be replaced by oo; that is, (2.5) holds for 
mutually disjoint {An, n ~ 1} with A j e Q, j ::: 1 and L~t A j e g. 

We now define a primitive structure called a semialgebra. 



44 2. Probability Spaces 

Definition 2.4.1 A class S of subsets of Q is a semialgebra if the following pos­
tulates hold: 

(i) 0, Q E S. 

(ii) Sis a rr-system; that is, it is closed under finite intersections. 

(iii) If A E S, then there exist some finite nand disjoint sets Ct. ... , Cn, with 
each Ci E S such that A c = L7=1 Ci. 

The plan is to start with a probability measure on the primitive structure S, 
show there is a unique extension to A(S), the algebra (field) generated by S 
(first extension theorem) and then show there is a unique extension from A(S) 
to a(A(S)) = a(S), the a-field generated by S (second extension theorem). 

Before proceeding, here are standard examples of semialgebras. 

Examples: 

(a) Let Q = JR, and suppose S1 consists of intervals including 0, the empty 
set: 

S1 ={(a, b]: -oo.::: a ,::: b,::: oo}. 

If h , [z E S1. then h [z is an interval and in S1 and if I E St, then I c is a 
union of disjoint intervals. 

(b) Let 

0 
I 

1 

FIGURE 2.1 Intervals 

Q = JRk ={(XI, ... , Xk): Xi E JR, i = 1, ... , k} 

Sk = all rectangles (including 0, the empty set). 

Note that we call A a rectangle if it is of the form 

A=hX···Xh 

where Ij E S1 is an interval, j = 1, . . . , k as in item (a) above. Obviously 
0, Q are rectangles and intersections of rectangles are rectangles. When 
k = 2 and A is a rectangle, the picture of A c appears in Figure 2.2, showing 
A c can be written as a disjoint union of rectangles. 
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FIGURE 2.2 Rectangles 

For general k, let 

so that 

k 

A= It X . .. X h.= n{(XJ, . . . ,Xk) : xi E /i} 
i=l 

Since Ii E S1. we have I{= I!+![', where 1;, I;' ESt are intervals. 

Consider 

'D := {Ut X •.. X uk : Ua = Ia or/~ or I; , ct = 1, ... ' k}. 

When Ua =I a. ct = 1, . .. 'k, then Ut X •.• X uk =A. So 

U1 X· ·· XUke'D 

Not all Ua=la. a=l , .. . ,k 

This shows that sk is a semialgebra. 0 

Starting with a semialgebra S, we first discuss the structure of A(S), the small­
est algebra or field containing S. 

Lemma 2.4.1 (The field generated by a semialgebra) Suppose S is a semial­
gebra of subsets of Q.. Then 

A(S) ={LSi : I finite, {Si. i E I} disjoint, si E S}, (2.6) 
iEI 

is the family of all sums of finite families of mutually disjoint subsets of Q. in S. 

Proof. Let A be the collection on the right side of (2.6). It is clear that A :J S (take 
I to be a singleton set) and we claim A is a field. We check the field postulates in 
Definition 1.5.2, Chapter 1 on page 12: 
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(i) Q e A since Q e S. 

(iii) If Lie/ Si and LjeJ Sj are two members of A, then 

(Lsi) n (L:si) = L SiS} E A 
ie/ jeJ (i, j)e/xJ 

since {SiS], (i, j) E I x J} is a finite, disjoint collection of members of the 
1r-system S. 

(ii) To check closure under complementation, let Lie/ Si E A and observe 

( L:si)c = nsr 
ie/ ie/ 

But from the axioms defining a semialgebra, Si e S implies 

Sf= L:sij 
jeJ; 

for a finite index set Ji and disjoint sets {Sij, j E J;} in S. Now observe 
that nieiSf E A by the previously proven (iii). 

So A is a field, A :J Sand hence A :J A(S). Since also 

LSi E A implies LSi e A(S), 
ie/ ie/ 

we get A C A(S) and thus, as desired, A= A(S). 

It is now relatively easy to extend a probability measure from S to A(S). 

0 

Theorem 2.4.1 (First Extension Theorem) Suppose S is a semia/gebra of sub­
sets ofQ and P: S t-+ [0, 1) is a-additive on Sand satisfies P(Q) = 1. There is 
a unique extension P' of P to A(S), defined by 

P'<L:Si) = LP(Si), (2.7) 
ie/ ie/ 

which is a probability measure on A(S); that is P' (Q) = 1 and P' is a -additive 
on A(S). 

Proof. We must first check that (2. 7) defines P' unambiguously and to do this, 
suppose A e A(S) has two distinct representations 

A= L:si = L:sj. 
ie/ jeJ 
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We need to verify that 

LP(S;) = LP(Sj) (2.8) 
ie/ jeJ 

so that P' has a unique value at A. Confirming (2.8) is easy since S; c A and 
therefore 

L P(S;) = L P(S;A) = L P(S; n L Sj) 
ie/ ie/ ie/ jeJ 

= LP(LS;Sj) 
ie/ jeJ 

and using the fact that S; = LjeJ S;Sj E Sand P is additive on S, we get the 
above equal to 

= LLP(S;Sj) = LLP(S;Sj). 
ie/ jeJ jeJ ie/ 

Reversing the logic, this equals 

as required. 
Now we check that P' is a-additive on A(S). Thus suppose fori ~ 1, 

A; = L Sij E A(S), S;j E S, 
jEJi 

and {A;, i ~ 1} are mutually disjoint and 

00 

A= LA; E A(S). 
i=l 

Since A e A(S), A also has a representation 

A= L sk. sk e s, k e K, 
keK 

where K is a finite index set. From the definition of P', we have 

P'(A) = L P(Sk). 
keK 

Write 
00 00 

sk = skA = L:skA; = L L sksij· 
i=l i=l jEJi 



48 2. Probability Spaces 

Now SkSij e Sand I:~1 LjeJ; SkSij = Sk e S, and since Pis a-additive on 
S, we have 

00 00 

L P(Sk) = L L L P(SkSij) = L L L P(SkSij ). 
keK keK i=l jeJ; i=l jeJ; keK 

Again observe 
L sksij = AS;i = S;i e s 
keK 

and by additivity of P on S 

and continuing in the same way, we get this equal to 

00 00 

= LP(LSij) = LP'(A;) 
i=l jeJ; i=l 

as desired. 
Finally, it is clear that P has a unique extension from S to A(S), since if P{ 

and P2 are two additive extensions, then for any 

A= LS; e A(S) 
ie/ 

we have 
p; (A) = L P(S;) = P2(A). 

ie/ 
0 

Now we know how to extend a probability measure from S to A(S). The next 
step is to extend the probability measure from the algebra to the a-algebra. 

Theorem 2.4.2 (Second Extension Theorem) A probability measure P defined 
on a field A of subsets has a unique extension to a probability measure on a (A), 
the a -field generated by A 

Combining the First and Second Extension Theorems 2.4.1 and 2.4.2 yields the 
final result. 

Theorem 2.4.3 (Combo Extension Theorem) SupposeS is a semialgebra of sub­
sets of Q and that P is a a -additive set function mappingS into [0, 1] such that 
P(Q) = 1. There is a unique probability measure on a(S) that extends P. 

The ease with which this result can be applied depends largely on how easily 
one can check that a set function P defined on Sis a-additive (as opposed to just 
being additive). Sometimes some sort of compactness argument is needed. 

The proof of the Second Extension Theorem 2.4.2 is somewhat longer than the 
proof of the First Extension Theorem and is deferred to the next Subsection 2.4.2. 
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2.4.2 Proof of the Second Extension Theorem 

We now prove the Second Extension Theorem. We start with a field A and a 
probability measure P on A so that P(Q) = 1, and for all A E A, P(A) ~ 0 and 
for {A;} disjoint, A; E A, :[~1 A; E A, we have P(:[~1 A;) = :[~1 P(A; ). 

The proof is broken into 3 parts. In Part I, we extend P to a set function n on 
a class g :::) A. In Part II we extend n to a set function n* on a class D :::) a(A) 
and in Part III we restrict n * to a (A) yielding the desired extension. 

PART I. We begin by defining the class g: 

00 

g :={ U A j : A j e A} 
j=l 

={ lim t Sn : Sn E A, Sn C Sn+l. 'v'n}. 
n~oo 

So g is the class of unions of countable collections of sets in A, or equivalently, 
since A is a field, g is the class of non-decreasing limits of elements of A. 

We also define a set function n : g t-+ [0, 1] via the following definition: If 
G = limn~oo t Sn E g, where Sn E A, define 

n(G) = lim t P(Bn). 
n~oo 

(2.9) 

Since Pis a-additive on A, Pis monotone on A, so the monotone convergence 
indicated in (2.9) is justified. Call the sequence {Sn} the approximating sequence 
to G. To verify that n is well defined, we need to check that if G has two approx­
imating sequences {Sn} and {S~}, 

G = lim t Sn = lim t S~ 
n~oo n~oo 

then 
lim t P(Sn) = lim t P(B~). 
n~oo n~oo 

This is verified in the next lemma whose proof is typical of this sort of uniqueness 
proof in that some sort of merging of two approximating sequences takes place. 

Lemma 2.4.2 If {Bn} and {B~} are two non-decreasing sequences of sets in A 
and 

00 00 

Usn c Us~. 
n=l n=l 

then 
lim t P(Sn) ~ lim t P(S~) . 
n~oo n~oo 

Proof. For fixed m 

(2.10) 
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Since also 
BmB~ c B~ 

and P is continuous with respect to monotonely converging sequences as a con­
sequence of being a-additive (see Item 7 on page 31), we have 

lim t P(B~) :::: lim t P(BmB~) = P(Bm), 
n-+oo n-+00 

where the last equality results from (2.10) and P being continuous. The inequality 
holds for all m, so we conclude that 

lim t P(B~) :::: lim t P(Bm) 
n ..... oo m ..... oo 

as desired. 

Now we list some properties of nand 9: 

Property 1. We have 

and forGE g 

0 E g, 
neg, 

n(0) = o, 

n<n> = 1, 

o ~ n(G) ~ 1. 

More generally, we have A C g and 

niA=P; 

that is, n(A) = P(A), for A EA. 

0 

(2.11) 

The first statements are clear since, for example, if we set Bn = n for all 
n, then 

A~ Bn = Q t Q, 

and 
n(n) = lim t P(Q) = 1 

n ..... oo 

and a similar argument holds for 0. The statement (2.11) follows from 0 ~ 
P(Bn) ~ 1 for approximating sets {Bn} in A. To show n(A) = P(A) for 
An e A, take the approximating sequence to be identically equal to A. 

Property 2. If G; e g fori= 1, 2 then 

GtUG2eg, GtnG2eg, 

and 

n(Gt u Gz) + n(Gt n Gz) = n(Gt) + n(Gz). (2.12) 
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This implies n is additive on g, 
To see this, pick approximating sets Bnt. Bn2 E A such that Bni t G; for 
i = 1, 2 as n ~ oo and then, since A is a field, it follows that 

A 3 Bnt U Bn2 t Gt U Gz, 

A 3 Bnt nBnz t Gt nGz, 

showing that Gt U Gz and Gt n Gz are in Q. Further 

P(Bnt U Bnz) + P(Bnt n Bnz) = P(Bnt) + P(Bnz), (2.13) 

from (2.1) on page 30. If we let n ~ oo in (2.13), we get (2.12). 

Property 3. n is monotone on Q: If G; e Q, i = 1, 2 and Gt c Gz, then 
n(Gt) ~ n(Gz). This follows directly from Lemma 2.4.2. 

Property 4. If Gn E g and Gn t G, then G E g and 

n(G) = lim n(Gn). 
n-+oo 

So g is closed under non-decreasing limits and n is sequentially mono­
lonely continuous. Combining this with Property 2, we get that if 
{A; , i ::: 1} is a disjoint sequence of sets in Q, L:~1 A; E Q and 

00 n n 

n<"' A;) =n( lim t "'A;)= lim t n<"' A;) ~ n-+00 ~ n-+oo ~ 
i=l i=l i=l 

n 00 

= lim t "'n(A;) = "'P(A;). 
n-+oo ~ ~ 

i=l i=l 

Son is a-additive on Q. 

For each n, Gn has an approximating sequence Bm,n E A such that 

lim t Bm,n = Gn . 
m-+oo 

(2.14) 

Define Dm = u:=l Bm,n. Since A is closed under finite unions, Dm E A. 
We show 

lim t Dm = G, 
m-+00 

(2.15) 

and if (2.15) is true, then G has a monotone approximating sequence of sets 
in A. and hence G E Q. 

To show (2.15), we first verify {Dm} is monotone: 

m m 

Dm = U Bm,n C U Bm+l,n 
n=l n=l 
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(from (2.14)) 

m+l 

C U Bm+l,n = Dm+l· 
n=l 

Now we show {Dm} has the correct limit. If n < m, we have from the 
definition of Dm and (2.14) 

m m 

Bm ,n C Dm = UBm ,j C UGj =Gm; 
j=l j=l 

that is, 

(2.16) 

Taking limits on m, we have for any n ::: 1, 

Gn = lim t Bm,n C lim t Dm C lim t Gm = G 
m-+oo m-+oo m-+00 

and now taking limits on n yields 

G = lim t Gn C lim t Dm C lim t Gm = G 
n-+oo m-+oo m-+oo 

(2.17) 

which shows Dm t G and proves G e g. Furthermore, from the definition 
of n, we know n(G) = limm ..... oo t n(Dm). 

It remains to show n(Gn) t n(G). From Property 2, all sets appearing in 
(2.16) are in g and from monotonicity property 3, we get 

Let m ~ 00 and since Gn = limm-+oo t Bm,n we get 

which is true for all n. Thus letting n ~ oo gives 

lim t n(Gn) :::;: lim TI(Dm):::;: lim t TI(Gm), 
n-+oo m-+oo m-+00 

and therefore 

lim t TI(Gn) = lim TI(Dm). 
n-+oo m-+00 

The desired result follows from recalling 

lim TI(Dm) = TI(G). 
m-+00 
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This extends P on A to a a-additive set function non g. D 

PART 2. We next extend n to a set function n* on the power set 'P(Q) and 

finally show the restriction of n• to a certain subclass V of 'P(Q) can yield the 

desired extension of P. 
We define n* : 'P(Q) ~--+ [0, 1] by 

VA E 'P(Q) : n*(A) = inf{n(G): A C G E Q}, (2.18) 

so n*(A) is the least upper bound of values of non sets G E g containing A. 
We now consider properties of n*: 

Property 1. We have on g: 

n*lg = n 
and 0 ~ n*(A) ~ 1 for any A E 'P(Q). 

It is clear that if A E g, then 

A E {G :A C G E 9} 

and hence the infimum in (2.18) is achieved at A. 

In particular, from (2.19) we get 

n*(n) = n(n) = 1, n*(0) = n(0) = o. 

Property 2. We have for At. Az E 'P(Q) 

(2.19) 

n*(At u Az) + n*(At n Az) ~ n*(At) + n*(Az) (2.20) 

and taking At =A, Az = Ac in (2.20) we get 

1 = n*(Q) ~ n*(A) + n*(Ac), (2.21) 

where we used the fact that n*(Q) = 1. 

To verify (2.20), fix t: > 0 and find G; E g such that G; :::> A;, and for 
i = 1, 2, 

* € n (A;)+ 2 ::::: n(G;). 

Adding over i = 1, 2 yields 

n*(At) + n*(Az) + t: ::::: n(Gt) + n(Gz). 

By Property 2 for n (see (2.12)), the right side equals 

= n(Gt u Gz) + n(Gt n Gz). 

Since Gt UGz :::>At UAz, Gt nGz :::>At nAz, we get from the definition 
of n* that the above is bounded below by 

::::: n *(At u Az) + n*(At n Az) . 
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Property 3. n* is monotone on P(Q). This follows from the fact that n is mono­
tone on Q. 

Property 4. n* is sequentially monotone continuous on P(Q) in the sense that 
if An t A, then n*(An) t n*(A). 

To prove this, fix € > 0. for each n 2: 1, find Gn e 9 such that Gn :::> An 
and 

(2.22) 

Define G~ = U~=1 Gm. Since 9 is closed under finite unions, G~ e 9 and 
{G~} is obviously non-decreasing. We claim for all n 2: 1, 

n 

n*(An) +E L2-i 2: n(G~). (2.23) 
i=l 

We prove the claim by induction. For n = 1, the claim follows from (2.22) 
and the fact that c; = G I· Make the induction hypothesis that (2.23) holds 
for n and we verify (2.23) for n + 1. We have 

An C Gn C G~ and An CAn+ I C Gn+I 

and therefore An C G~ and An C Gn+I• so 

An C G~ n Gn+I e Q. 

Thus 

n(G~+I) =n(G~ u Gn+t> 

=n(G~) + n(Gn+t)- n(G~ n Gn+I) 

(2.24) 

from (2.12) for n on 9 and using the induction hypothesis, (2.22) and the 
monotonicity of n*' we get the upper bound 

~ ( n*(An) + € ~ 2-i) + ( n*(An+I) + 2:) 

- n*(An) 

n+I 
=€ L 2-i + n*(An+I) 

i=l 

which is (2.23) with n replaced by n + 1. 

Let n ~ oo in (2.23). Recalling n* is monotone on P(Q), n is monotone 
on 9 and 9 is closed under non-decreasing limits, we get 

00 

lim t n*(An) +€ 2: lim t n(G~) = n<U G',.). 
n-+oo n-+oo 

j=l 
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Since 
00 

A = lim tAn C U G'1· E 9, 
n-+oo 

j=l 

we conclude 
lim t n*(An) :::: n*(A). 

n-+00 

For a reverse inequality, note that monotonicity gives 

and thus 
lim t n*(An) :;: n*(A). 

n-+oo 0 

PART 3. We now retract n• to a certain subclass Vof'P(Q) and show n*lv is 
the desired extension. 

We define 
V := {D E 'P(Q) : n*(D) + n*(Dc) = 1.} 

Lemma 2.4.3 The class V has the following properties: 

1. V is a a-field. 

2. n* lv is a probability measure on (Q, V). 

Proof. We first show V is a field. Obviously Q E V since n*(Q) = 1 and 
n*(0) = 0. To see Vis closed under complementation is easy: If D E V, then 

and the same holds for De. 
Next, we show V is closed under finite unions and finite intersections. If D1, Dz E 

V, then from (2.20) 

n*(Dt u Dz) + n*(Dt n Dz) :::n*(Dt) + n*(Dz) (2.25) 

n*((Dt u Dzn + n*((Dt n Dz)c) :::n*(D~) + n*(D~). (2.26) 

Add the two inequalities (2.25) and (2.26) to get 

n*(Dt u Dz)+n*((Dt u Dzn 

+ n*(Dt n Dz) + n*((Dt n Dz)c) :;: 2 (2.27) 

where we used D; E V, i = 1, 2 on the right side. From (2.21), the left side of 
(2.27) is:::: 2, so equality prevails in (2.27). Again using (2.21), we see 

n*(Dt u Dz) + n*((Dt u Dz{) =1 

n*(Dt n Dz) + n*((Dt n Dzn =1. 
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Thus Dt UD2, Dt nD2 E V and Vis a field. Also, equality must prevail in (2.25) 
and (2.26) (else it would fail in (2.27)). This shows that n* is finitely additive on 
v. 

Now it remains to show that Vis a a-field and n* is a-additive on V. Since V 
is a field, to show it is a a-field, it suffices by Exercise 41 of Chapter 1 to show 
that V is a monotone class. Since V is closed under complementation, it is enough 
to show that Dn E V, Dn t D implies D E V. However, Dn t D implies, since 
n* is monotone and sequentially monotone continuous, that 

00 

lim t n*(Dn) = n*<U Dn) = n*(D). 
n-+00 

n=I 

Also, for any m ::: 1, 

00 00 

n*«U Dnn = n*<n D~) ~ n*<D~) 
n=I n=l 

and therefore, from (2.21) 
00 00 

1 ~ n*<U Dn) + n*((U Dn)c) ~ lim n*(Dn) + n*(D~) (2.28) 
n-+oo 

n=I n=l 

and letting m ~ oo, we get using Dn E V 

1 ~ lim n*(Dn) + lim n*(D~) 
n-+oo m-+oo 

= lim (n*(Dn) + n*(D~)) = 1, 
n-+00 

and so equality prevails in (2.28). Thus, Dn t D and Dn E V imply D E V and 
V is both an algebra and a monotone class and hence is a a -algebra. 

Finally, we show n*lv is a-additive. If {Dn} is a sequence of disjoint sets in 
V, then because n* is continuous with respect to non-decreasing sequences and 
Vis a field 

oo n 

n*<"' D;) =n*< lim ""D;) ~ n-+oo~ 
i=l i=l 

n 

= lim n*("' D;) 
n-+00 ~ 

i=l 

and because n* is finitely additive on V, this is 

n oo 

= lim ""n*(D;) = ""n*(D;), 
n-+oo~ ~ 

i=l i=l 

as desired. 
Since Vis a a-field and V ~ A, V ~ a(A). The restriction n*lu<A> is the 

desired extension of P on A to a probability measure on a(A). The extension 
from A to a (A) must be unique because of Corollary 2.2.1 to Dynkin 's theorem. 

0 
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2.5 Measure Constructions 

In this section we give two related constructions of probability spaces. The first 
discussion shows how to construct Lebesgue measure on (0, 1] and the second 
shows how to construct a probability on lR with given distribution function F. 

2.5.1 Lebesgue Measure on (0, 1] 

Suppose 

Q =(0, 1], 

B = 8((0, 1]), 

S ={(a, b] : 0.::; a .::; b.::; 1}. 

Define on S the function ). : S ~ [0, 1] by 

).(0) = 0, ).(a , b] = b- a. 

With a view to applying Extension Theorem 2.4.3, note that ).(A) ::: 0. To show 
that). has unique extension we need to show that). is a-additive. 

We first show that). is finitely additive on S . Let (a, b] e Sand suppose 

k 

(a,b] = U<a;,bi], 
i=l 

where the intervals on the right side are disjoint. Assuming the intervals have been 
indexed conveniently, we have 

a1 =a, bk = b, b; = a;+l• i = 1, ... , k- 1. 

a 

FIGURE 2.3 Abutting Intervals 

Then ).(a, b] = b- a and 

k k 

I><a;, bi] = L (b; - ai) 
i=l i=l 

b 

= b1 - a1 + b2 - a2 + · · · + bk - ak 

= bk - a1 = b - a. 

This shows ). is finitely additive. 
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We now show A. is a-additive. Care must be taken since this involves an infinite 
number of sets and in fact a compactness argument is employed to cope with the 
infinities. 

Let 

00 

(a, b] = U<a;, b;] 
i=1 

and we first prove that 

00 

b- a::: L(b;- aj). (2.29) 
i=1 

Pick £ < b - a and observe 

00 ( £ 
(a+£, b] C U a;, b; + i). 

i=1 2 
(2.30) 

The set on the left side of (2.30) is compact and the right side of (2.30) gives an 
open cover, so that by compactness, there is a finite subcover. Thus there exists 
some integer N such that 

It suffices to prove 

N £ 

[a+£,b]cU(a;,b;+ 1 ). 
i=1 2 

N £ 

b - a - £ =:: L ( b; - a; + 2i ) 

1 

since then we would have 

(2.31) 

(2.32) 

N £ oo 

b - a - £ ::: L ( b; - a; + 2i ) =:: L (b; -a;) + £; (2.33) 
1 1 

that is, 

00 

b-a::: L(b; -a;)+2£. 
1 

Since £ can be arbitrarily small 

as desired. 

00 

b - a ::: L (b; - a;) 
1 

(2.34) 
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Rephrasing relations (2.31) and (2.32) slightly, we need to prove that 

implies 

N 

[a , b] c U<a;, b;) 
1 

N 

b- a::=: L(b;- a;) . 
1 

(2.35) 

(2.36) 

We prove this by induction. First note that the assertion that (2.35) implies 
(2.36) is true for N = 1. Now we make the induction hypothesis that whenever 
relation (2.35) holds for N - 1, it follows that relation (2.36) holds for N - 1. We 
now must show that (2.35) implies (2.36) for N. 

Suppose aN = vf a;, and 

(2.37) 

with similar argument if (2.37) fails. Suppose relation (2.35) holds. We consider 
two cases: 

a b 

FIGURE 2.4 Case 1 

a b 

FIGURE 2.5 Case 2 

CASE 1: Suppose ON ::=:a Then 

N 

b- a::=: bN- aN::=: L(b;- a;). 
1 

CASE 2: Suppose aN >a. Then if (2.35) holds 

N-1 

[a,aN]C U<a;,b;) 
1 

so by the induction hypothesis 

N - 1 

aN- a::=: L(b;- a;) 
i=1 
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so 

b -a =b -ON +ON -a 
N-I 

:::;b-aN+ L (b;- a;) 
i=l 

N-I 

:::;bN -aN+ L(b; -a;) 
i=I 

N 

= L(b; -a;) 
i=I 

which is relation (2.36). This verifies (2.29). 
We now obtain a reverse inequality complementary to (2.29). We claim that if 

(a, b] = L:~1 (a;, b; ], then for every n, 

n n 

J.((a, b]) = b- a~ L J.((a;, b;]) = L(b;- a;). (2.38) 
i=I i=I 

This is easily verified since we know >. is finitely additive on S. For any n, 
U7=I (a;, b;] is a finite union of disjoint intervals and so is 

n m 

(a, b] \ U<a;, b;] =: U lj. 
i=l j=l 

So by finite additivity 

n m 

>.((a, b]) =>-(U(a;, b;] U U Ij), 
i=l j=I 

which by finite additivity is 

n m 

= 2:>-((a;,b;]) + 2:>-(/j) 
i=I j=I 

n 

~ 2:>-((a;,b;]). 
i=l 

Let n ~ oo to achieve 

00 

J.((a,b]) ~ 2:>-((a;,b;]). 
i=l 

This plus (2.29) shows>. is a-additive on S . 0 
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2.5.2 Construction of a Probability Measure on lR with Given 
Distribution Function F (x) 

Given Lebesgue measure>.. constructed in Section 2.5.1 and a distribution func­
tion F(x), we construct a probability measure on JR., PF, such that 

PF((-oo,x]) = F(x). 

Define the left continuous inverse of F as 

and define 

F ..... (y) = inf{s: F(s):::: y}, 0 < y :s 1 

F(x) 

r(y) 

FIGURE2.6 

A(y) := {s: F(s):::: y}. 

Here are the important properties of A (y). 

(2.39) 

X 

(a) The set A(y) is closed. If sn E A(y), and sn .J.. s, then by right continuity 

y :S F(sn) .J.. F(s), 

so F(s) :::: y and s E A(y). If Sn t sand Sn E A(y), then 

y :S F(sn) t F(s-) :S F(s) 

andy :s F(s) implies s e A(y). 

(b) Since A (y) closed, 
infA{y) E A(y); 

that is, 

(c) Consequently, 
F ..... (y) >tiff y > F(t) 

or equivalently 
F.,_(y) :S t iffy :S F(t). 



62 2. Probability Spaces 

The last property is proved as follows. If t < r- (y) = inf A (y ), then t ~ 
A(y), so that F(t) < y. Conversely, if F-(y) ~ t, then t E A(y) and F(t) :::: y. 

Now define for A C I. 

~F(A) = {x E (0, 1): F-(x) E A}. 

If A is a Borel subset of 1., then ~F (A) is a Borel subset of (0, 1 ]. 

Lemma 2.5.1 If A E 8(1.), then ~F(A) E 8((0, 1]). 

Proof. Define 

g ={A C I.: ~F(A) E 8((0, 1))}. 

g contains finite intervals of the form (a, b) C I. since from Property (c) of p-

~F((a, b]) = {x e (0, 1]: F-(x) e (a, b]} 

= {x E (0, 1]: a < F-(x) ~ b} 

={x E (0, 1): F(a) < x ~ F(b)} 

= (F(a), F(b)] E 8((0, 1]). 

Also g is a a-field since we easily verify the a-field postulates: 

(i) We have 
Reg 

since ~F (1.) = (0, 1 ]. 

(ii) We have that A e g implies A c e g since 

~F(Ac) = {x E (0, 1) : F-(x) E Ac} 

= {x E (0, 1]: F-(x) E A}c = (~F(AW. 
(iii) g is closed under countable unions since if An e g, then 

~F<UAn) = u~F(An) 
n n 

and therefore 

So g contains intervals and g is a a-field and therefore 

g :) 8( intervals) = 8(1.). 

We now can make our definition of PF. We define 

PF(A) = ).(~F(A)), 

0 

where ).. is Lebesgue measure on (0, 1 ]. It is easy to check that PF is a probability 
measure. To compute its distribution function and check that it is F, note that 

PF(-oo,x] = )..(~F(-oo,x]) = )..{y e (0, 1]: F-(y) ~ x} 

= )..{y E (0, 1): y ~ F(x)} 

= A.((O, F(x)]} = F(x). 0 
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2.6 Exercises 

1. Let Q be a non-empty set. Let Fo be the collection of all subsets such that 
either A or A c is finite. 

(a) Show that Fo is a field. 

Define for E e Fo the set function P by 

P(E) = { 0, if E is finite, 
1, if Ec is finite . 

(b) If Q is countably infinite, show Pis finitely additive but not a-additive. 

(c) If Q is uncountable, show Pis a-additive on Fo. 

2. Let A be the smallest field over the rr -system P. Use the inclusion-exclusion 
formula (2.2) to show that probability measures agreeing on P must agree 
also on A. 

Hint: Use Exercise 20 of Chapter 1. 

3. Let (Q, B, P) be a probability space. Show for events Bi c Ai the follow­
ing generalization of subadditivity: 

P(UiAi)- P(Ui Bi) ~ L(P(Ai)- P(Bi)) . 
i 

4. Review Exercise 34 in Chapter 1 to see how to extend a a-field. Suppose P 
is a probability measure on a a-field Band suppose A ¢ B. Let 

Bt = a(B, A) 

and show that P has an extension to a probability measure P1 on 8 1• (Do 
this without appealing directly to the Combo Extension Theorem 2.4.3.) 

5. Let P be a probability measure on B(l~). For any B e B(IR) and any E > 0, 
there exists a finite union of intervals A such that 

P(A!:::.B) <E. 

Hint: Define 

Q : = {B e B(IR) : 'VE > 0, there exists a finite union of intervals 

A€ such that P(A!:::.B) < E} . 

6. Say events A 1, Az, . . . are almost disjoint if 

P(Ai nAj) = 0, i # j . 

Show for such events 
00 00 

P<UAj) = LP(Aj)· 
j=l j=l 
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7. Coupon collecting. Suppose there are N different types of coupons avail­
able when buying cereal; each box contains one coupon and the collector 
is seeking to collect one of each in order to win a prize. After buying n 
boxes, what is the probability Pn that the collector has at least one of each 
type? (Consider sampling with replacement from a population of N dis­
tinct elements. The sample size is n > N. Use inclusion-exclusion formula 
(2.2).) 

8. We know that P1 = P2 on B if P1 = P2 on C, provided that C generates B 
and is a rr -system. Show this last property cannot be omitted. For example, 
consider Q = {a, b, c, d} with 

and 

Set 

1 
P1({a}) = P1({d}) = P2({b}) = P2({c}) = 6 

1 
P1 ({b}) = P1 ({c}) = P2({a}) = P2({d}) = 3· 

C = {{a, b} , {d, c}, {a, c}, {b, d}} . 

9. Background: Call two sets A1. A2 E B equivalent if P(A1.6.A2) = 0. For 
a set A E B, define the equivalence class 

A#= {B E B: P(B.6.A) = 0}. 

This decomposes B into equivalences classes. Write 

In practice we drop #s; that is identify the equivalence classes with the 
members. 

An atom in a probability space (Q, B, P) is defined as (the equivalence 
class ot) a set A E B such that P(A) > 0, and if B C A and B E B, then 
P(B) = 0, or P(A \B) = 0. Furthermore the probability space is called 
non-atomic if there are no atoms; that is, A E Band P(A) > 0 imply that 
there exists aBE B such that B C A and 0 < P(B) < P(A). 

(a) If Q = R, and Pis determined by a distribution function F(x), show 
that the atoms are {x: F(x)- F(x-) > 0}. 

(b) If (Q, B, P) = ((0, 1], 8((0, 1]), A.), where>.. is Lebesgue measure, 
then the probability space is non-atomic. 

(c) Show that two distinct atoms have intersection which is the empty set. 
(The sets A, B are distinct means P(A.6.B) > 0. The exercise then 
requires showing P(AB.6.1ZJ) = 0.) 
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(d) A probability space contains at most countably many atoms. (Hint: 
What is the maximum number of atoms that the space can contain 
that have probability at least 1/n?) 

(e) If a probability space (Q, B, P) contains no atoms, then for every 
a e (0, 1] there exists at least one set A e B such that P(A) = a. 
(One way of doing this uses Zorn's lemma.) 

(f) For every probability space (Q, B, P) and any E > 0, there exists 
a finite partition of Q by B sets, each of whose elements either has 
probability ::::: E or is an atom with probability > E. 

(g) Metric space: On the set of equivalence classes, define 

d(A1, A~)= P(Att.Az) 

where Ai e Af fori = 1, 2. Show dis a metric on the set of equiva­
lence classes. Verify 

IP(At)- P(Az)l ::::: P(Att.Az) 

so that p# is uniformly continuous on the set of equivalence classes. 
Pis a-additive is equivalent to 

B 3 An ,j, 0 implies d(A!, 0#)--+ 0. 

10. Two events A, B on the probability space {Q, B, P) are equivalent (see 
Exercise 9) if 

P(A n B) = P(A) v P(B) . 

11. Suppose {Bn, n ::: 1} are events with P(Bn) = 1 for all n. Show 

12. Suppose Cis a class of subsets of Q and suppose B C Q satisfies B e a (C). 
Show that there exists a countable class CB c C such that B e a(CB). 

Hint: Define 

g := {B C Q: 3 countable CB C C such that B E a(CB)}. 

Show that g is a a-field that contains C. 

13. If {Bk} are events such that 

n 

LP(Bk) > n -1, 
k=l 

then 
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14. IfF is a distribution function, then F has at most countably many discon­
tinuities. 

15. If S1 and Sz are two semialgebras of subsets of Q, show that the class 

is again a semialgebra of subsets of Q. The field (a-field) generated by 
S1S2 is identical with that generated by S1 U Sz. 

16. Suppose B is a a-field of subsets of Q and suppose Q : B ~ [0, 1] is a set 
function satisfying 

(a) Q is finitely additive on B. 

(b) 0,::: Q(A) ,::: 1 for all A e Band Q(Q) = 1. 

(c) If A; E Bare disjoint and L~I A; = Q, then L:~1 Q(A;) = 1. 

Show Q is a probability measure; that is, show Q is a-additive. 

17. For a distribution function F(x) , define 

Ft-(y) =inf{t: F(t) ~ y} 

F/-(y) =inf{t : F(t) > y} . 

We know F1-(y) is left-continuous. Show Fr-(y) is right continuous and 
show 

where, as usual, A. is Lebesgue measure. Does it matter which inverse we 
use? 

18. Let A, B, C be disjoint events in a probability space with 

P(A) = .6, P(B) = .3, P(C) = .1. 

Calculate the probabilities of every event in a(A, B, C). 

19. Completion. Let (Q, B, P) be a probability space. Call a set N null if 
N e Band P(N) = 0. Call a set B C Q negligible if there exists a null 
set N such that B C N. Notice that for B to be negligible, it is not required 
that B be measurable. Denote the set of all negligible subsets by N. Call B 
complete (with respect to P) if every negligible set is null. 

What if B is not complete? Define 

B* := {AU M : A e B, M EN}. 

(a) Show B* is a a-field. 
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(b) If A; e Band M; eN fori= 1, 2 and 

At U Mt = Az U Mz, 

then P(At) = P(Az). 

(c) Define P* : B* t-+ [0, 1] by 

P*(A U M) = P(A), A e B, MeN. 

Show P* is an extension of P to B*. 

(d) If B c nand A; e B, i = 1, 2andAt c B c Az and P(Az \At)= 
0, then show B e B*. 

(e) Show B* is complete. Thus every a-field has a completion. 

(t) Suppose n = JR and B = B(JR). Let Pk ?:: 0, Lk Pk = 1. Let {ak} be 
any sequence in JR. Define P by 

P({ak}) =Pt. P(A) = L Pt. A E B. 
OkEA 

What is the completion of B? 

(g) Say that the probability space (Q, B, P) has a complete extension 
(Q, Bt. Pt) if B C Bt and PtiB = P. The previous problem (c) 
showed that every probability space has a complete extension. How­
ever, this extension may not be unique. Suppose that (Q, Bz, Pz) is 
a second complete extension of (Q, B, P). Show Pt and P2 may not 
agree on Bt n Bz. (It should be enough to suppose Q has a small 
number of points.) 

(h) Is there a minimal extension? 

20. In (0, 1], let B be the class of sets that either (a) are of the first category 
or (b) have complement of the first category. Show that B is a a-field. For 
A e B, define P(A) to be 0 in case (a) and 1 in case (b). Is P a-additive? 

21. Let .A be a field of subsets of Q and let Jl be a finitely additive probability 
measure on .A. (This requires J-L(Q) = 1.) 

If .An e A and An .!. 0, is it the case that J-L(An) .!. 0? (Hint: Review 
Problem 2.6.1 with An = {n, n + 1, ... }.) 

22. Suppose F (x) is a continuous distribution function on JR. Show F is uni­
formly continuous. 

23. Multidimensional distribution functions. For a, b, x e B(JRk) write 
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a ::: b iff ai ::: bi, i = 1, ... , k; 

( -oo, x) = {u e B(!Rk) : u ::: x} 

(a, b)= {u e B(!Rk) :a < u::: b}. 

Let P be a probability measure on B(JRk) and define for x e JRk 

F(x) = P((-oo, x]). 

Let Sk be the semialgebra of k-dimensional rectangles in JRk. 

(a) If a ::: b, show the rectangle It := (a, b) can be written as 

It =(-oo, b)\ (<-oo, (a1, bz, ... , bk)]U 

(-oo, (bt. az, ... , bk)] U · · · u (-oo, (b1, bz, ... , ak)J) 

(2.40) 

where the union is indexed by the vertices of the rectangle other than 
b. 

(b) Show 

(c) Check that {(-oo, x], x e JRk} is a rr-system. 

(d) Show P is determined by F (x), x e JRk. 

(e) Show F satisfies the following properties: 

(1) If Xi -. oo, i = 1, ... , k, then F(x) -. 1. 
(2) If for some i e {1, ... , k} Xi -. -oo, then F(x) -. 0. 

(3) For Sk 3 It = (a, b), use the inclusion-exclusion formula (2.2) to 
show 

P(lk) = !::.~tF. 
The symbol on the right is explained as follows. Let V be the vertices 
of It so that 

V = {(XI, ... , Xi) : Xi = Oj Or bi, i = 1, ... , k} . 

Define for x e V 

sgn(x) = 

Then 

1+1, 
-1, 

if card{i :Xi = ai} is even. 

if card{i :Xi = ai} is odd. 

!::.hF = L sgn(x)F(x). 
xeV 



(t) Show F is continuous from above: 

lim F(x) = F(a). 
a=:;x.J.,a 
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(g) Call F : JR.k ...-. [0, 1] a multivariate distribution function if properties 
(1), (2) hold as well as F is continuous from above and D.1tF ::: 
0. Show any multivariate distribution function determines a unique 
probability measure P on (IRk, B(JRk)). (Use the extension theorem.) 

24. Suppose .A2 is the uniform distribution on the unit square [0, 1 f defined by 
its distribution function 

(a) Prove that .A2 assigns 0 probability to the boundary of [0, 1j2. 

(b) Calculate 
2 2 

A2{(0t. 82) E [0, 1) : Ot 1\82 > 3}. 

(c) Calculate 

25. In the game of bridge 52 distinguishable cards constituting 4 equal suits are 
distributed at random among 4 players. What is the probability that at least 
one player has a complete suit? 

26. If A 1, . .. , An are events, define 

and so on. 

n 

St = LP(A;) 
i=l 

s2 = L P(A;Aj) 

S3 = L P(A;AjAk) 
l!::i<j<k=:;n 

(a) Show the probability (1 ~ m ~ n) 

n 

p(m) = P[L 1A; = m] 
i=l 
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of exactly m of the events occurring is 

p(m) =Sm- (m: 1)sm+I + (m: 2)sm+2 

- + · · · ± (:)sn. (2.41) 

Verify that the inclusion-exclusion formula (2.2) is a special case of 
(2.41). 

(b) Referring to Example 2.1.2, compute the probability of exactly m co­
incidences. 

27. Regular measures. Consider the probability space (IRk, B(JRk), P). A Borel 
set A is regular if 

P(A) = inf{P(G) : G :::> A, G open,} 

and 

P(A) =sup{P(F): F C A, F closed.} 

P is regular if all Borel sets are regular. Define C to be the collection of 
regular sets. 

(a) Show JRk e C, I2J e C. 

(b) Show C is closed under complements and countable unions. 

(c) Let :F (JR.k) be the closed subsets of JR.k. Show 

:F(IRk) c C. 

(d) Show B(JRk) c C; that is, show regularity. 

(e) For any Borel set A 

P(A) = sup{P(K) : K c A, K compact.} 
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3 
Random Variables, Elements, 
and Measurable Maps 

In this chapter, we will precisely define a random variable. A random variable is 
a real valued function with domain Q which has an extra property called measur­
ability that allows us to make probability statements about the random variables. 

Random variables are convenient tools that allow us to focus on properties of 
interest about the experiment being modelled. The Q may be rich but we may 
want to focus on one part of the description. For example, suppose 

n = {0, 1}n 

= {(wt. ... , Wn): w; = 0 or 1, i = 1, ... , n}. 

We may imagine this as the sample space for n repeated trials where the outcome 
is 1 (success) or 0 (failure) at each trial. One example of a random variable that 
summarizes information and allows us to focus on an aspect of the experiment of 
interest is the total number of successes 

X((Wt. .. .. , Wn)) =WI+···+ Wn. 

We now proceed to the general discussion. 

3.1 Inverse Maps 

Suppose Q and Q' are two sets. Frequently Q' = JR.. Suppose 

x:n~n', 
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meaning X is a function with domain Q and range Q'. Then X determines a 
function 

x-1 : P(n') t-+ P(n) 

defined by 

x-1(A') ={wE Q: X(w) E A'} 

for A' c Q'. x-1 preserves complementation, union and intersections as the 
followingproperties show. For A' C Q', A; C Q', and Tan arbitrary index set, 
the following are true. 

(i) We have 

(ii) Set inverses preserve complements: 

x-1(A'c) = (X-1(A'))c 

so that 

(iii) Set inverses preserve unions and intersections: 

x-1<UA;) = ux-l(A;), 
teT reT 

and 
x-l(n A;)= n x-l(A;). 

teT tET 

Q' 

FIGURE 3.1 Inverses 

Here is a sample proof of these properties. We verify (ii). We have w e 
x-1(A'c) iff X(w) E (A')c iff X(w) ¢A' iff w ¢ x-1(A') iff wE (X-1(A'))c. 

Notation: If C' c 'P(Q') is a class of subsets of Q', define 

x-1<C') := {X-1(C'): c' e C'J . 

0 
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Proposition 3.1.1 If B' is a a-field of subsets ofrl.', then x-1(8') is a a-field of 
subsets of n. 

Proof. We verify the postulates for a a-field. 

(i) Since Q' E B', we have 

by Property (i) of the inverse map. 

(ii) If A' E B', then (A')C E B', and so if x-1(A') E x-1(8'), we have 

where we used Property (ii) of the inverse map. 

(iii) If x-1 (B~) E x-1(8'), then 

ux-1 (B~) = x-1<U B~) E x-1(8') 
n n 

since UB~ E B'. 
n 

A related but slightly deeper result comes next. 

Proposition 3.1.2 If C' is a class of subsets of fl.' then 

0 

that is, the inverse image of the a -field generated by C' in fl.' is the same as the 
a -field generated in n by the inverse images. 

Proof. From the previous Proposition 3.1.1, x-1(a(C')) is a a-field, and 

since a(C') :::> C' and hence by minimality 

Conversely, define 

F' := {B' E P(Q'): x-1(B') E a(X-1(C1}}}. 

Then F' is a a-field since 

(i) fl.' E .F',sinceX-1(9.') = Q E a(X-1(C')). 
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(ii) A' e :F' implies (A')C e :F' since 

x-1(A'c) = (X-1(A'))c E a(X-1(C')) 

if x-1(A1) E a(X-1(C')). 

(iii) B~ e :F' implies UnB~ e :F' since 

x-1 (UnB~) = UnX-1 (B~) e a(X-1(C')) 

ifX- 1 (B~) E a(X-1(C')). 

By definition 

Also 

C' cF' 

since x-1(C') c a(X-1(C')). Since :F' is a a-field, 

a(C') c F' 

and thus by (3.1) and (3.2) 

x-1(a(C')) c x-1(F') c a(X-1(C')). 

This suffices. 

3.2 Measurable Maps, Random Elements, Induced 
Probability Measures 

(3.1) 

(3.2) 

0 

A pair (Q, B) consisting of a set and a a-field of subsets is called a measurable 
space. (It is ready to have a measure assigned to it.) If (Q, B) and (Q', B') are 
two measurable spaces, then a map 

X:Q~Q' 

is called measurable if 
x-1(B') c B. 

X is also called a random element of Q'. We will use the notation that 

X e B/B' 

or 
X: (Q, B) t-+ (Q', B'). 
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A special case occurs when (Q', B') = (R, B(IR)). In this case, X is called a 
random variable. 

Let (Q, B, P) be a probability space and suppose 

X : (Q, B)~ (Q', B' ) 

is measurable. Define for A' c Q' 

[X E A']:= x-1(A 1) = {w: X(w) E A'}. 

Define the set function P o x-t on B' by 

Po x-t is a probability on (Q', B') called the induced probability or the distri­
bution of X. To verify it is a probability measure on B', we note 

(a) Po x-1(Q') = P(Q) = 1. 

(b) P oX-1(A')::: 0, for all A' E B'. 

(c) If {A~, n ::: 1} are disjoint, 

Po x-1 <UA~) =P<Ux-1 (A~)) 
n n 

= L P(X-1 (A~)) 
n 

since {X-1 (A~)}n:;:t are disjoint in B. 

Usually we write 

Po x-1(A') = P[X E A' ]. 

If X is a random variable then P o x-t is the measure induced on lR by the 
distribution function 

Po x-1(-oo, x] = P[X::: x]. 

Thus when X is a random element of B', we can make probability statements 
about X, since x-t (B') E B and the probability measure P knows how to assign 

probabilities to elements of B. The concept of measurability is logically necessary 
in order to be able to assign probabilities to sets determined by random elements. 

Example. Consider the experiment of tossing two dice and let 

Q={(i, j): 1 :Si, j :::6}. 
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Define 
x : n ~ {2, 3, ... , 12} =: n' 

by 
X((i, j)) = i + j. 

Then 
x-I({4}) =(X= 4] = {(1, 3), (3, 1), (2, 2)} c n 

and 
x-I({2, 3}) =(X E {2, 3}] = {(1, 1), (1, 2), (2, 1)}. 

The distribution of X is the probability measure on Q' specified by 

For example, 

and so on. 

P oX-I({i}) = P(X = i], i e Q' . 

1 
P[X =2] =-

36 
2 

P(X=3]=-
36 
3 

P[X =4) =-, 
36 

0 

The definition of measurability makes it seem like we have to check x-I (A') e 
B for every A' e B'; that is 

x-I(B') c B. 

In fact, it usually suffices to check that x-I is well behaved on a smaller class 
than B'. 

Proposition 3.2.1 (fest for measurability) Suppose 

x:n~n' 

where (Q, B), and (Q', B') are two measurable spaces. Suppose C' generates B'; 
that is 

B' = a(C'). 

Then X is measurable iff 
x-I(C') C B. 

Remark. We do not have to check that 

x-I(a(C')) C B, 

which is what using the definition would require. 
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Corollary 3.2.1 (Special case of random variables) The real valued function 

is a random variable iff 

x-1((-oo, A])= [X~ A] E 8, VA E R. 

Proof of Proposition 3.2.1. If 

x-1(C') c 8, 

then by minimality 

However, we get 

which is the definition of measurability. 0 

Proof of Corollary 3.2.1. This follows directly from 

a((-oo, A], A e R) = 8(R). 
0 

3.2.1 Composition 

Verification that a map is measurable is sometimes made easy by decomposing the 
map into the composition of two (or more) maps. If each map in the composition 
is measurable, then the composition is measurable. 

Proposition 3.2.2 (Composition) Let X 1, X 2 be two measurable maps 

X1 : (Qt. 81) ...-. (Q2, 82), 

X 2 : (Q2, 82) ...-. (QJ, 83) 

where (Q;, 8;), i = 1, 2, 3 are measurable spaces. Define 

by 

Then 
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FIGURE3.2 

Proof. It is elementary to check that 

(Xz oXt)-1 = X}1(X21(·)) 

as maps from 'P(!23) ~ 'P(Qt). The reason is that for any B3 c !23 

(Xz o Xt)-1(BJ) = {wt : Xz o Xt (wt) e B3} 

={wt: Xt(wt) e X21(B3)} 

= {wt : w1 e X}1(X21(BJ)}} . 

If B3 e lh then 

as required. 

3.2.2 Random Elements of Metric Spaces 

0 

The most common use of the name random elements is when the range is a metric 
space. 

Let (S, d) be a metric space with metric d so that d : S x S ~ I+ satisfies 

(i) d(x , y) ~ 0, for x, yeS. 

(ii) d(x, y) = 0 iff x = y , for any x, yeS. 

(iii) d(x , y) =d(y,x), foranyx,y e S. 

(iv) d(x , z)::::; d(x , y) +d(y,z), foranyx,y,z e S. 

Let 0 be the class of open subsets of S. Define the Borel a-fieldS to be the 
smallest a -field generated by the open sets 

S = a(O). 
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If 
X : (Q, B) ._.. (S, S); 

that is, X e B/S, then call X a random element of S. Here are some noteworthy 
examples of random elements. 

1. SupposeS= Rand d(x, y) = lx- yl . Then a random element X of Sis 
called a random variable. 

2. Suppose S = JRk and 

k 

d(x, y) = L lx;- y;l2• 

I 

Then a random element X of S is called a random vector. We write X = 
(XI. ... , Xk). 

3. Suppose S = IR00 , and the metric d is defined by 

Then a random element X of S is called a random sequence. We write 
X=(Xt,Xz, ... ). 

4. Let S = C[O, oo) be the set of all real valued continuous functions with 
domain [0, oo). Define 

llx(·)- yOIIm = sup lx(t)- y(t)l 
O::;:t::;:m 

and 

d(x , y) = f: Tm ( llx- Yllm ) . 
m=l 1 + llx- yllm 

A random element X of Sis called a random (continuous) function. 

5. Let (IE, £) be a measurable space where IE is a nice metric space and £ are 
the Borel sets, that is the sets in the a-field generated by the open sets. Let 
S = M +(IE) be the set of all measures on (IE, £) which satisfy the property 
that if f1. e M+(IE), then f1.(K) < oo if K is a compact subset of IE. Such 
measures which are finite on compacta are called Radon measures. There 
is a standard metric for S called the vague metric. A random element X of 
Sis called a random measure. 

A special case is where M +(IE) is cut down to the space M p(IE) of non­
negative integer valued measures. In this case the random element X is 
called a stochastic point process. 
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3.2.3 Measurability and Continuity 

The idea of distance (measured by a metric) leads naturally to the notion of conti­
nuity. A method, which is frequently easy for showing a function from one metric 
space to another is measurable, is to show the function is continuous. 

Proposition 3.2.3 Suppose (S;, di), i = 1, 2 are two metric spaces. Let the Borel 
a-fields (generated by open sets) be S;, i = 1, 2. If 

X: St ~ S2 

is continuous, then X is measurable: 

Proof. Let 0; be the class of open subsets of S;, i = 1, 2. If X is continuous, 
then inverse images of open sets are open, which means that 

So X E St!S2 by Proposition 3.2.1. 

Corollary 3.2.2 IfX = (Xt. ... , Xk) is a random vector, and 

g: IRk~--+ JR., g E B(IR.k)/B(IR), 

0 

then from Proposition 3.2.2, g(X) is a random variable. In particular, if g is con­
tinuous, then g is measurable and the result holds. 

Some examples of the sort of g's to which this result could apply: 

k 

g(xt, ... , Xk) = L x;, (component sum) 
i=l 

k 

= L x; I k, (component average) 
1 

k 

= V x;, (component extreme) 
i=l 

k 

= n X;, (component product) 
i=l 

k 

-"' 2 - L...,xi' 
i=l 

(component sum of squares). 

Another interesting example of g is the projection map 

g = 7rj : JR.k !--+ JR. 
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defined by 
1l';(x., ... ,Xk) =x;. 

Then 1l'; is continuous and if X= (X1, ... , Xk) is a random vector, Jr;(X) =X; 
is a random variable fori = 1, ... , k. 

This observation leads in a simple way to an important fact about random vec­
tors: A random vector is nothing more than a vector of random variables. 

Proposition 3.2.4 X = (X., ... , Xk) is a random vector, that is a measurable 
map from (Q, 13) ~ (lRk ,B(JRk)), iff X; is a random variable for each i = 
1, ... 'k. 

Proof. If X is a random vector, then X; = 1l'; o X is measurable since it is the 
composition of two measurable functions X and the continuous function 1r;. 

The converse is easily proved if we know that 

13(1Rk) = a(O) = a(RECTS) 

where RECTS is the class of open rectangles. We assume this fact is at our dis­
posal. Suppose X1, ... , Xk are random variables. Write 

B =It X ••• X lk 

for a rectangle whose sides are the intervals ft, ... , ft. Then 

k 

x-1(B) = nx;-1(/;). 
i=1 

Since X; is a random variable, Xj 1 (/;) e 13, so x-1 (B) e 13 and 

x-1( RECTS) c 13 

so x-1 is measurable. D 

The corresponding basic fact about random sequences, stated next, is proved in 
an analogous manner to the proof of the basic fact about random vectors. It says 
that X is a random sequence iff each component is a random variable. 

Proposition 3.2.5 X = (X 1, X z, ... ) is a random sequence iff for each i = 
1, 2, ... the ith component X; is a random variable. Furthermore, X is a random 
sequence iff (X 1, ... , X k) is a random vector, for any k. 

3.2.4 Measurability and Limits 

Limits applied to sequences of measurable functions are measurable. 

Proposition 3.2.6 Let X., Xz, ... be random variables defined on (Q, 13). Then 

(i) VnXn and 1\nXn are random variables. 
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(ii) lim infn-+oo X n and lim supn-+oo X n are random variables. 

(iii) lflimn-+oo Xn(w) exists for all w, then limn-+oo Xn is a random variable. 

( iv) The set on which {X n } has a limit is measurable; that is 

{w: limXn(w) exists} E /3. 

Proof. (i) We have 

[v Xn :S x] = n[Xn :S x] E /3, 
n n 

since for each n, 
[Xn :S x] E /3. 

Similarly 

[/\Xn > x] = n[Xn > x] E /3. 
n n 

This suffices by Corollary 3.2.1. 
(ii) We have that 

lim infXn =sup inf Xk. 
n-+oo n=:::I k=:::n 

By (i) infk::::n Xk is a random variable and hence so is supn>I (infk::::n Xk) . 
(iii) If limn-+oo X n (w) exists for all w, then -

lim Xn(w) = limsupXn(w) 
n-+oo n-+00 

is a random variable by (ii). 
(iv) Let Q be the set of all rational real numbers so that Q is countable. We have 

{w : limXn(w) exists }c = {w : liminfXn(w) < limsupXn(w)} 

= U [liminfXn::::: r < limsupXn] 
rEQ n-+00 n-+oo 

= U [liminfXn :S r] n [limsupXn::::: r]c E 13 
rEQ n-+oo n-+00 

since 
[liminfXn::::: r] E 13 

n-+00 

and 
[limsupXn::::: r] E /3. 

n-+00 
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3.3 a-Fields Generated by Maps 

Let X: (Q, !3) ~ (lR, B(IR)) be a random variable. The a-algebra generated by 
X, denoted u(X), is defined as 

a(X) = x-1(!3(1R)) . (3.3) 

Another equivalent description of a (X) is 

a(X) ={[X E A], A e B(IR)}. 

This is the a-algebra generated by information about X, which is a way of isolat­
ing that information in the probability space that pertains to X. More generally, 
suppose 

X: (Q, !3) ~ (Q', !3'). 

Then we define 

a(X) = x-1(!3'). (3.4) 

If :F C l3 is a sub -a-field of !3, we say X is measurable with respect to :F, written 
X E :F, if a(X) C :F. 

If for each t in some index set T 

then we denote by 

x,: (Q, !3) ~ (Q', !3') , 

a(X,, t e T) = v a(X,) 
teT 

the smallest a-algebra containing all a(X,). 

Extreme example: Let X (w) = 17 for all w. Then 

a(X) ={[X E B], B E B(IR)} 

= a(0, Q) = {0, Q}. 

Less extreme example: Suppose X = 1A for some A e B. Note X has range 
{0, 1}. Then 

and therefore 

To verify this last assertion, call 
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and 

a(X) = LHS. 

Then RHS is a a-field and is certainly contained in LHS. We need to show that 
for any B E B(lR), 

[lA E B] E RHS . 

There are four cases to consider: (i) 1 E B, 0 ¢ B; (ii) 1 E B, 0 E B; (iii) 0 E B, 
1 ¢ B; (iv) 0 ¢ B, 1 ¢B. For example, in case (i) we find 

[lA E B] =A 

and the other cases are handled similarly. 

Useful example: Simple function. A random variable is simple if it has a finite 
range. Suppose the range of X is {at, ... , ak}, where the a's are distinct. Then 
define 

A;:= x-1({a;}) =[X= a;]. 

Then {A;, i = 1, .. . , k} partitions Q, meaning 

k 

A; nAj = 0, i # j, LA;= n. 
i=l 

We may represent X as 

and 

k 

X= Lai1A;• 
i=l 

a(X) = a(At. ... , Ak) =\?:A; : I c {1, ... , k}J. 
IE/ 

In stochastic process theory, we frequently keep track of potential information 
that can be revealed to us by observing the evolution of a stochastic process by 
an increasing family of a-fields. If {Xn. n ~ 1} is a (discrete time) stochastic 
process, we may define 

Bn := a(Xt, ... , Xn), n ~ 1. 

Thus, Bn C Bn+I and we think of Bn as the information potentially available at 
time n. This is a way of cataloguing what information is contained in the prob­
ability model. Properties of the stochastic process are sometimes expressed in 
terms of {Bn , n ~ 1}. For instance, one formulation of the Markov property is 
that the conditional distribution of X n+l given Bn is the same as the conditional 
distribution of Xn+l given Xn . (See Chapter 10.) 

We end this chapter with the following comment on the a-field generated by a 
random variable. 
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Proposition 3.3.1 Suppose X is a random variable and C is a class of subsets of 
JR. such that 

a(C) = B(JR.). 

Then 

a(X) = a([X E B), B E C). 

Proof. We have 

a([X E B), BE C)= a(X-1(B), BE C) 

A special case of this result is 

= a(X-1(C)) = x-1(a(C)) 

= x-1(B(lR.)) = a(X). 

a(X) = a([X ~A], A E JR.). 

3.4 Exercises 

1. In the measurable space (Q, B), show A e B iff 1A E B. 

0 

2. Let (Q, B, P) = ((0, 1], B((O, 1]), A) where A is Lebesgue measure. De­
fine 

Xt(w) =0, Yw E Q, 

X2(W) = 1{1/2)(W), 

X3(W) = 1Q(W) 

where Q c (0, 1] are the rational numbers in (0, 1]. Note 

and give 
a(X;), i = 1, 2, 3. 

3. Suppose 
f : JR.k ~ JR., and f E B(JR.k)/B(JR.). 

Let X 1 •• .• , Xk be random variables on (Q , B). Then 

4. Suppose X : Q ~ JR. has a countable range 1?, Show X E B I B(JR.) iff 

x-1({x}) E B, Yx E R. 
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5. If 
F(x) = P[X ~ x) 

is continuous in x, show that Y = F(X) is measurable and that Y has a 
uniform distribution 

P[Y~y]=y, O~y~l. 

6. If X is a random variable satisfying P[IXI < oo] = 1, then show that for 
any € > 0, there exists a bounded random variable Y such that 

P[X # Y) < €. 

(A random variable Y is bounded if for all w 

IY(w)l ~ K 

for some constant K independent of w.) 

7. If X is a random variable, so is lXI . The converse may be false. 

8. Let X and Y be random variables and let A E !3. Prove that the function 

is a random variable. 

Z(w) = IX(w), 
y (w)' 

ifweA, 
if wE Ac 

9. Suppose that {Bn, n 2::: 1} is a countable partition of Q and define T3 = 
a(Bn , n 2::: 1). Show a function X : Q ~-+ (-oo, oo] is !3-measurable iff X 
is of the form 

00 

X= .L:c;1si' 
i=l 

for constants {c; }. (What is !3?) 

10. Circular Lebesgue measure. Define C := {e2n"i& : 0 e (0, 1]} to be the 
unit circle in the complex plane. Define 

T: (0, 1) ~-+ C, T(B) = e21ri8 • 

Specify a a-field T3(C)) of subsets of C by 

T3(C) :={A C C : r-1(A) E !3((0, 1)). 

(Why is this a a-field?) Define a probability measure JL on T3(C) by JL = 
).. o r-1 and call this measure JL circular Lebesgue measure. 

(a) Identify the complex plane with JR2• Show 

B(C) = T3(1R2) n c. 
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(b) Show that B(C) is generated by arcs of C. 

(c) Show Jl is invariant with respect to rotations. This means, if Seo 
C ~ C via 

then Jl = Jl o Si;/. 
(d) If you did not define Jl as the induced image of Lebesgue measure on 

the unit interval, how could you define it by means of the extension 
theorems? 

11. Let (Q, B, P) be ([0, 1], 8([0, 1]), >..) where >.. is Lebesgue measure on 
[0, 1]. Define the process {X1, 0 ~ t ~ 1} by 

X1(w) = 10, 

1, 

if t =ft w, 

if t = w. 

Show that each X1 is a random variable. What is the a-field generated by 
{X1, 0 ~ t ~ 1}? 

12. Show that a monotone real function is measurable. 

13. (a) If X is a random variable, then a(X) is a countably generated a-field. 

(b) Conversely, if B is any countably generated a -field, show 

B = a(X) 

for some random variable X. 

14. A real function f on the line is upper semi-continuous (usc) at x, if, for 
each E, there is a 8 such that lx - yl < 8 implies that 

f(y) < f(x) +E. 

Check that if f is everywhere usc, then it is measurable. (Hint: What kind 
of set is {x : f (x) < t} ?) 

15. Suppose -00 < a ~ b < oo. Show that the indicator function l(a ,bJ(x) 
can be approximated by bounded and continuous functions; that is, show 
that there exist a sequence of continuous functions 0 ~ fn ~ 1 such that 
fn ~ 1(a,b) pointwise. 

Hint: Approximate the rectangle of height 1 and base (a, b] by a trapezoid 
of height 1 with base (a, b + n-1] whose top line extends from a+ n-1 to 
b. 

16. Suppose B is a a-field of subsets of!R. Show B(IR) c B iff every real valued 
continuous function is measurable with respect to B and therefore B(IR) is 
the smallest a-field with respect to which all the continuous functions are 
measurable. 
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17. Functions are often defined in pieces (for example, let f (x) be x 3 or x-1 as 
x ~ 0 or x < 0), and the following shows that the function is measurable 
if the pieces are. 

Consider measurable spaces (Q, B) and (Q', B') and a map T : Q t--+> Q'. 
Let At. Az, ... be a countable covering of Q by B sets. Consider the a­
field Bn = {A : A C An, A E B} in An and the restriction Tn ofT to An. 
Show that Tis measurable B!B' iff Tn is measurable Bn!B' for each n. 

18. Coupling. If X andY are random variables on (Q, B), show 

sup IP[X e A]- P[Y e A]l ~ P[X # Y]. 
AEB 

19. Suppose T : (Qt. Bt) t--+> (Qz, Bz) is a measurable mapping and X is a 
random variable on !'21 . Show X e a(T) iff there is a random variable Y 
on (Qz, Bz) such that 

X(wt) = Y(T(wi)), 'v'w1 E !:'21 . 

20. Suppose {X, , t ~ 0} is a continuous time stochastic process on the proba­
bility space (Q, B, P) whose paths are continuous. We can understand this 
to mean that for each t ~ 0, X, : Q t--+> lR is a random variable and, for 
each w e Q, the function t t--+> X 1(w) is continuous; that is a member of 
C[O, oo). Let r : Q t--+> [0, oo) be a random variable and define the process 
stopped at r as the function X, : Q t--+> [0, oo) defined by 

X,(w) := Xr(w)(w), wE Q. 

Prove X, is a random variable. 

21. Dyadic expansions and Lebesgue measure. Let§= {0, 1} and 

§ 00 = {(Xt. Xz, ... ) :Xi E §, i = 1, 2, ... } 

be sequences consisting of O's and 1 's. Define B(§) = P(§) and define 
B(§00 ) to be the smallest a-field of subsets of § 00 containing all sets of the 
form 

fork = 1, 2, .. . and it. iz, . . . , ik some string of O's and 1 's. 

For x e [0, 1], let 
X = (dk(X) , k ~ 1) 

be the non-terminating dyadic expansion (dk(O) = 0 and dk(X) = 0 
or 1.) Define U : [0, 1] t--+> §00 by 

U(x) = (dt(x),d2(x), .. . ). 
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Define V: § 00 ~ [0, 1] by (x = Ut. iz, ... )) 

Loo in 
V(x) = -. 2n 

n=l 

Show U e 8([0, 1])/8(§00) and V e 8(§00)/8([0, 1]). 

22. Suppose {Xn. n ~ 1} are random variables on the probability space (Q, 8, P) 

and define the induced random walk by 

Let 

n 

So = 0, Sn = L Xi, n ~ 1. 
i=l 

T := inf{n > 0 : Sn > 0} 

be the first upgoing ladder time. Prove T is a random variable. Assume we 

know T(w) < 00 for all (J) E n. Prove ST is a random variable. 

23. Suppose {X 1, .. . , X n} are random variables on the probability space (Q, 8, P) 
such that 

P[ Ties]:= P{ U [Xi= Xj]} = 0. 
if.j 

l~i.j~n 

Define the relative rank Rn of Xn among {Xt. ... , Xn} to be 

R = I L7=1 1[X;2:Xn] 
n 17, 

on [Ties ]c, 

on [Ties]. 

Prove Rn is a random variable. 

24. Suppose (SI. Sl) is a measurable space and suppose T : S1 ~ Sz is a 
mapping into another space Sz. For an index set r, suppose 

hy : Sz ~JR., y e r 

and define 
g:=a(hy,yEf) 

to be the a-field of subsets of Sz generated by the real valued family 

{hy, y E f}, that is, generated by {hy1(B), y e f, B e 8(lR.)}. Show 

T e Sl!g iff hy oTis a random variable on (S1, S1). 

25. Egorov's theorem: Suppose Xn, X are real valued random variables de­

fined on the probability space (Q, 8, P). Suppose for all w e A e 8, we 

have Xn(w) __. X(w). Show for every E > 0, there exists a set Af such that 

P(Af) < E and 

sup JX(w)- Xn(w)J __. 0 (n __. oo). 
wEA\A, 
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Thus, convergence is uniform off a small set. 

Hints: 

(a) Define 

B~k> = [v IX(w)- Xi(w)l] n A. 
1~n 

(b) Show B~k) .l, 0 as n ___. oo. 

(c) There exists {nk} such that P(B~!)) < E/2k. 

(d) Set B = UkB~!) so that P(B) <E. 

26. Review Exercise 12 of Chapter 2. Suppose C is a class of subsets of Q such 
that, for a real function X defined on Q, we have X e B(C). Show there 
exists a countable subclass C* C C such that X is measurable C*. 
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4 
Independence 

Independence is a basic property of events and random variables in a probabil­
ity model. Its intuitive appeal stems from the easily envisioned property that the 
occurrence or non-occurrence of an event has no effect on our estimate of the 
probability that an independent event will or will not occur. Despite the intuitive 
appeal, it is important to recognize that independence is a technical concept with 
a technical definition which must be checked with respect to a specific probability 
model. There are examples of dependent events which intuition insists must be in­
dependent, and examples of events which intuition insists cannot be independent 
but still satisfy the definition. One really must check the technical definition to be 
sure. 

4.1 Basic Definitions 

We give a series of definitions of independence in increasingly sophisticated cir­
cumstances. 

Definition 4.1.1 (Independence for two events) Suppose (Q, B, P) is a fixed 
probability space. Events A, B e B are independent if 

P(AB) = P(A)P(B). 

Definition 4.1.2 (Independence of a finite number of events) The events 
A lt ... , An (n ::: 2) are independent if 

P(nA;) = n P(A;), for all finite I c {1, ... , n}. (4.1) 
ie/ ie/ 
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(Note that (4.1) represents 

equations.) 

Equation (4.1) can be rephrased as follows: The events At. ... , An are inde­
pendent if 

n 

P(Bt n B2 · · · n Bn) = n P(B;) (4.2) 
i=l 

where for each i = 1, ... , n, 

B; equals A; or Q. 

Definition 4.1.3 (Independent classes) Let C; c B, i = 1, ... , n. The classes 
C; are independent, iffor any choice At. ... , An. with A; e C;, i = 1, ... , n, we 
have the events At •... , An independent events (according to Definition 4.1.2). 

Here is a basic criterion for proving independence of a-fields. 

Theorem 4.1.1 (Basic Criterion) If for each i = 1, ... , n, C; is a non-empty 
class of events satisfying 

1. C; is a rr-system, 

2. C;, i = 1, ... , n are independent, 

then 
a(Ct) •... , a(Cn) 

are independent. 

Proof. We begin by proving the result for n = 2. Fix A2 e C2. Let 

.C ={A e B: P(AA2) = P(A)P(A2)}. 

Then we claim that .C is a A-system. We verify the postulates. 

(a) We have Q e .C since 

P(!2A2) = P(A2) = P(Q)P(A2). 

(b) If A e .C, then Ace .C since 

P(Ac A2) = P((Q \ A)A2) = P(A2 \ AA2) 

= P(A2) - P(AA2) = P(A2) - P(A)P(A2) 

= P(A2)(1- P(A)) = P(Ac)P(A2). 
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(c) If Bn E .Care disjoint (n ::: 1), then :L~1 Bn e .C since 

00 00 00 

P((U Bn)Az) = P(U BnAz) = L P(BnAz) 
n=l n=l n=l 

00 00 

= L P(Bn)P(Az) = P(U Bn)P(Az). 
n=l n=l 

Also C :::> Ct. so .C :::> a(Ct) by Dynkin's theorem 2.2.2 in Chapter 2. Thus 
a(Ct). Cz are independent. 

Now extend this argument to show a(Ct), a(Cz) are independent. Also, we 
may use induction to extend the argument for n = 2 to general n. D 

We next define independence of an arbitrary collection of classes of events. 

Definition 4.1.4 (Arbitrary number of independent classes) Let T be an arbi­
trary index set. The classes C,, t e T are independent families if for each finite 
/,I c T, C1, t e I is independent. 

Corollary 4.1.1 If {C1 , t e T} are non-empty rr-systems that are independent, 
then {a(C1), t e T} are independent. 

The proof follows from the Basic Criterion Theorem 4.1.1. 

4.2 Independent Random Variables 

We now tum to the definition of independent random variables and some criteria 
for independence of random variables. 

Definition 4.2.1 (Independent random variables) {X1, t e T} is an indepen­
dent family of random variables if {a(X1), t e T} are independent a-fields. 

The random variables are independent if their induced a-fields are independent. 
The information provided by any individual random variable should not affect 
behavior of other random variables in the family. Since 

we have 1A1 , ••• , lAn independent iff At, . .. , An are independent. 
We now give a criterion for independence of random variables in terms of dis­

tribution functions. For a family of random variables {X1, t e T} indexed by a 
set T, the finite dimensional distribution functions are the family of multivariate 
distribution functions 

FJ(X1, t E J) = P(X1 S:. x1, t E J] (4.3) 

for all finite subsets J c T. 
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Theorem 4.2.1 (Factorization Criterion) A family of random variables 
{X 1 , t E T} indexed by a set T, is independent iff for all finite J C T 

F1(x1, t E J) = n P[X1 ~ xt), "'x1 E JR. 
tel 

(4.4) 

Proof. Because of Definition 4.1.4, it suffices to show for a finite index set J that 
{X1 , t E J} is independent iff (4.4) holds. Define 

C1 = {(X1 ~ x], x E JR}. 

Then 

(i) C1 is a rr-system since 

and 

(ii) a(C1) = a(X1) . 

Now (4.4) says {C1, t E J} is an independent family and therefore by the Basic 
Criterion 4.1.1, {a(C1) = a(X1 ), t E J} are independent. D 

Corollary 4.2.1 The finite collection of random variables X 1, . . . , X k is inde­
pendent iff 

k 

P[X1 :::: Xt. 0 0 0 'Xk :::: Xk] = n P[X; :::: x;] , 
i=1 

for all x; E JR, i = 1, . .. , k. 

For the next result, we define a random variable to be discrete if it has a count­
able range. 

Corollary 4.2.2 The discrete random variables X 1, . .. , X k with countable range 
n are independent iff 

k 

P[X; =x;,i = 1, ... ,k] = n P[X; =x;], (4.5) 
i=1 

for all x; En, i = 1, ... , k. 

Proof. If X., . .. , Xn is an independent family, then a(X;), i = 1, ... , k is inde­
pendent. Since 

[X; = x;] E a(X;) 

we have [X; = x;] , i = 1, . .. , k are independent events and (4.5) follows. 
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Conversely, suppose (4.5) holds. Define z::: x to mean z; ::: x;, i = 1, ... , k. 
Then 

P[X;::;x;,i=1, ... ,k]= L P(X;=z;,i=1, ... ,k] 
z<x 

Z;E'R 
i=l, ... ,k 

k 

= L n P(X; = z;] 
z::::x i=l 

Z;E'R 
i=l, ... ,k 

k 

= I: I: P(xl =ztlO P(x; =zd 
Z2:5X2, ..• ,Zk:5XkZJ:5XJ i=2 
z;e'R,i=2, ... ,k z1 e'R 

k 

= L P[Xt ::: xt] n P[X; = z;] 
Z2:5X2•··· ,Zk:5Xk i=2 
Z;E'R,i =2, ... ,k 

n 

= ... = n P[X; ::: xi]. 
i=l 

4.3 Two Examples of Independence 

This section provides two interesting examples of unexpected independence: 

• Ranks and records. 

• Dyadic expansions of uniform random numbers. 

4.3.1 Records, Ranks, Renyi Theorem 

0 

Let {Xn, n 2:: 1} be iid with common continuous distribution function F(x). The 
continuity ofF implies 

so that if we define 

then 

P[X; = Xj] = 0, 

[Ties]= U[X; = Xj]. 
i#j 

P[ Ties]= 0. 

Call X n a record of the sequence if 

n-l 

Xn > V X;, 
i=l 

(4.6) 
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and define 

An = [Xn is a record]. 

A result due to Renyi says that the events {A j, j :::: 1} are independent and 

P(Aj)=1/j, j::::2. 

This is a special case of a result about relative ranks. 
Let Rn be the relative rank of Xn among Xt. ... , Xn where 

So 

n 

Rn = L 1[Xj::;:Xn] · 
j=l 

Rn = 1 iff Xn is a record, 

= 2 iff Xn is the second largest of Xt, .. . , Xn, 

and so on. 

Theorem 4.3.1 (Renyi Theorem) Assume {X n, n :::: 1} are iid with common, 
continuous distribution function F (x ). 

(a) The sequence of random variables { Rn, n :::: 1} is independent and 

1 
P[Rn = k] = -, 

n 

fork= 1, . . . ,n. 
(b) The sequence of events {An, n :::: 1} is independent and 

1 
P(An) = - . 

n 

Proof. (b) comes from (a) since An = [Rn = 1]. 
(a) These are n! orderings of X 1 , . . • , X n . (For a given w, one such ordering is 

Xt(w) < · · · < Xn(w) . Another possible ordering is Xz(w) < ... < Xn(w) < 
X 1 (w ), and so on.) By symmetry, since X 1, . .. , Xn are identically distributed and 
independent, all possible orderings have the same probability ~, so for example, 

1 
P[Xz < X3 < · · · < Xn < Xt] = -. 

n! 

Each realization of R1, • •• , Rn uniquely determines an ordering: For example, 
if n = 3, suppose R1 (w) = 1, Rz(w) = 1, and R3(w) = 1. This tells us that 

X1(w) < Xz(w) < X3(w), 

and if R1 (w) = 1, Rz(w) = 2, and R3(w) = 3, then this tells us 

X3(w) < Xz(w) < X1 (w). 
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Each realization of R 1, . .. , Rn has the same probability as a particular order­
ing of X t. . .. , X n. Hence 

for r; e {1 , . .. , i}, i = 1, .. . , n. 
Note that 

P[Rn = rn] = 
TJ , ·· · ,rn-l 

1 
= L n! · 

TJ , ... ,rn-1 

Since r; ranges over i values, the number of terms in the sum is 

Thus 

Therefore 

1 · 2 · 3 · . .. · n - 1 = (n - 1)!. 

(n- 1)! 1 
P[Rn = rn] = = -, n = 1, 2, . ... 

n! n 

1 
= rt. ... , Rn = rn] = -

n! 
= P[Rt = rt] · · · P[Rn = rn]· 

0 

Postscript: If {Xn , n ~ 1} is iid with common continuous distribution F(x), 
why is the probability of ties zero? We have 

P[ Ties]= P<U[X; = Xj]) 
i#j 

and by subadditivity, this probability is bounded above by 

Thus it suffices to show that 

LP[X; =Xj]· 
i#j 

Note the set containment: For every n, 
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By monotonicity and subadditivity 

Loo k-1 k k-1 k 
P[-- <X1 <- -- <Xz < -] 2n - 2n ' 2n - 2n 

k=-00 

00 
( k 1 k ) 2 

" P[--=- < x1 < -1 ~ 2n - 2n 
k=-00 

(4.7) = 

Write 

F[a, b] = F(b)- F(a) 

and the above ( 4. 7) is equal to 

k-1 k ~ k-1 k 
:::: -~~oo F ( 2fl' 2n] k~oo F ( 2fl' 2n ] 

k -1 k 
:::: -oo~~~oo F( 2!'' 2n]. 1 

k -1 k = max F(--,- ]. 
-oo<k<oo 2n 2n 

Since F is continuous on IR, because F is a also a probability distribution, F is 
uniformly continuous on R (See Exercise 22 in Chapter 2.) Thus given any s > 0, 
for n ::: no(s) and all k, we have 

k-1 k k k-1 
F(-- -] = F(-)- F(--) < s. 2n '2n 2n 2n -

Thus for any s > 0, 

(4.8) 

and since s is arbitrary, the probability in ( 4.8) must be 0. 

4.3.2 Dyadic Expansions of Uniform Random Numbers 

Here we consider 
(Q, B, P) = ((0, 1], B((O, 1]), >.), 

where A is Lebesgue measure. We write w E (0, 1] using its dyadic expansion 

00 dn(w) 
w = L ~ = .d1 (w)dz(w)d3(w) · · · , 

n=l 
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where each dn(w) is either 0 or 1. 
We write 1 as 

00 1/2 
0.11111· · · = ""'2-n = = 1, 

~ 1-1/2 

and if a number such as ! has two possible expansions, we agree to use the non­
terminating one. Thus, even though 1/2 has two expansions 

and 

1 00 1 
2 = L 2n = .01111 · .. ' 

n=2 

1 1 
- =- +0+0+ ... = .1000··· 
2 2 

by our convention, we use the first expansion. 

Fact 1. Each dn is a random variable. Since dn is discrete with possible values 
0, 1, it suffices to check 

[dn = 0] E 8((0, 1]), [dn = 1] E 8((0, 1]), 

for any n 2: 1. In fact, since [ dn = 0] = [ dn = 1 ]c, it suffices to check [ dn = 1] e 
8((0, 1]). 

To verify this, we start gently by considering a relatively easy case as a warm­
up. For n = 1, 

1 
[dt = 1) = (.1000 · · · , .1111· · ·) = (2, 1) E 8((0, 1]). 

The left endpoint is open because of the convention that we take the non-terminat­
ing expansion. Note P[dt = 1] = P[dt = 0] = 1/2. 

After understanding this warmup, we proceed to the general case. For any 
n;:::2 

[dn = 1] 

= u 
(4.9) 

= disjoint union of2n-l intervals e 8((0, 1]). 

For example 
1 1 3 

[ d2 = 1] = (-' -] u (- ' 1]. 
4 2 4 
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Fact 2. We may also use (4.9) to compute the mass function of dn. We have 

P[dn = 1] 

= L: 
(UJ,U2·····"n-J)E(0,1)n-l 

n-1 oo n-1 1 
=2n-1{" u~ + "Ti _" u~ + -} 

~21 ~ ~21 2n 
1=1 1=n 1=1 

=2n-1{ f: ~} = ~-
i=n+l 2 2 

The factor 2n-1 results from the number of intervals whose length we must sum. 
We thus conclude that 

1 
P[dn =OJ= P[dn = 1] = -. 

2 
(4.10) 

Fact 3. The sequence {dn, n ;::: 1} is iid. The previous fact proved in (4.10) that 
{dn} is identically distributed and thus we only have to prove {dn} is independent. 
For this, it suffices to pick n ;::: 1 and prove { dt. ... , dn} is independent. 

For (u1, ... , Un) E {0, 1}n, we have 
n 

n[d; = u;] = (.UtUz ... Un000 ... , .UtU2 ••• Un111 ••. ); 

i=1 

Again, the left end of the interval is open due to our convention decreeing that we 
take non-terminating expansions when a number has two expansions. Since the 
probability of an interval is its length, we get 

n n u · oo 1 n u· 
P(n[d; = U; 1) = L 2; + L 2i - L 2; 

i=1 i=1 i=n+1 i=l 

2-(n+1) 1 
=-1-! zn 

n 

= n P[d; =u;] 
i=1 

where the last step used (4.10). So the joint mass function of d1, ... , dn factors 
into a product of individual mass functions and we have proved independence of 
the finite collection, and hence of {dn, n ;::: 1}. 

4.4 More on Independence: Groupings 

It is possible to group independent events or random variables according to dis­
joint subsets of the index set to achieve independent groupings. This is a useful 
property of independence. 
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Lemma 4.4.1 (Grouping Lemma) Let {8, t E T} be an independent family of 
a-fields. LetS be an index set and suppose for s E S that T5 C T and {T5 , s E S} 
is pairwise disjoint. Now define 

Then 

8r, = V8,. 
tETs 

{8r,. s e S} 

is an independent family of a -fields. 

Remember that Vrer,8r is the smallest a-field containing all the 8(s. 
Before discussing the proof, we consider two examples. For these and other 

purposes, it is convenient to write 

when X and Y are independent random variables. Similarly, we write 81 JL 82 
when the two a-fields 81 and 82 are independent. 

(a) Let {Xn, n ~ 1} be independent random variables. Then 

a(Xj, j:::; n) JL a(Xj, j > n), 

n n+k 

LX; JL LX;, 
i=l i=n+l 

n n+k vx; JL v Xj. 
i=l j=n+l 

(b) Let {An} be independent events. Then U~=l Aj and U~N+l Aj are inde­
pendent. 

Proof. Without loss of generality we may suppose S is finite. Define 

Cr, := { n Ba : Ba E 8a, K C T5 , K is finite.} 
aeK 

Then Cr, is a 1r-system for each s, and {Cr,, s E S} are independent classes. So 
by the Basic Criterion 4.1.1 we are done, provided you believe 

a(Cr.) = 8r,. 

Certainly it is the case that 

Cr, c 8r, 

and hence 

a(Crs> C 8r,. 
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Also, 

Cr. :::> Ba, 'Ia E Ts 

(we can take K ={a}) and hence 

a(Cr.) :::> Ba. 'Ia E T5 • 

It follows that 

and hence 

a(Cr.) :::>a ( U Ba) = : V Ba. 
aeTs aeTs 

4.5 Independence, Zero-One Laws, Borel-Cantelli 
Lemma 

0 

There are several common zero-one laws which identify the possible range of a 
random variable to be trivial. There are also several zero-one laws which provide 
the basis for all proofs of almost sure convergence. We take these up in turn. 

4.5.1 Borel-Cantelli Lemma 

The Borel-Cantelli Lemma is very simple but still is the basic tool for proving 
almost sure convergence. 

Proposition 4.5.1 (Borei-Cantelli Lemma.) Let {An} be any events. If 

LP(An) < 00, 
n 

then 
P([An i.o. ]) = P(limsupAn) = 0. 

n->00 

Proof. We have 

P([An i.o. ]) = P( lim U A j) 
n->oo 

ji!_n 

= lim P ( U A j) (continuity of P) 
n->00 

ji!_n 

00 

:::; lim sup L P (A j) ( subadditivity ) 
n->oo j=n 

=0, 

since Ln P(An) < oo implies Lf=n P(A j) ~ 0, as n ~ oo. 0 
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Example 4.5.1 Suppose {Xn, n 2:: 1} are Bernoulli random variables with 

P[Xn = 1] = Pn = 1- P[Xn = 0]. 

Note we have not supposed {Xn} independent and certainly not identically dis­
tributed. We assert that 

if 

P[ lim Xn = 0] = 1, 
n-H>O 

LPn < 00. 
n 

To verify that (4.12) is sufficient for (4.11), observe that if 

LPn = LP[Xn = 1] < 00, 
n n 

then by the Borei-Cantelli Lemma 

P([Xn = 1] i.o.) = 0. 

Taking complements, we find 

1 = P(Iimsup[Xn = 1]c) = P(liminf[Xn = 0]) = 1. 
n-oo n-oo 

(4.11) 

(4.12) 

Since with probability 1, the two valued functions {Xn} are zero from some point 
on, with probability 1 the variables must converge to zero. D 

4.5.2 Borel Zero-One Law 

The Borel-Cantelli Lemma does not require independence. The next result does. 

Proposition 4.5.2 (Borel Zero-One Law) If {An} is a sequence of independent 
events, then 

P([An i.o.]) = ,O, 
1, 

iff Ln P(An) < 00, 

iff Ln P(An) = 00. 

Proof. From the Borel-Cantelli Lemma, if 

then 
P([An i.o. ]) = 0. 
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Conversely, suppose Ln P(An) = oo. Then 

P([An i.o. ]) = P(lim sup An) 
n-+oo 

= 1- P(liminfA~) 
n-+oo 

= 1 - P( lim n Ak) 
n-+oo 

k~n 

= 1- lim P(nAk) 
n-+oo 

k~n 

m 

= 1 - lim P( lim .J, n Ak} 
n-+00 m-+oo 

k=n 
m 

= 1- lim lim P<nAD 
n-+oom-+oo 

k=n 
m 

= 1- lim lim 0<1- P(Ak)), 
n-+oom-+oo 

k=n 

where the last equality resulted from independence. It suffices to show 

m 

lim lim 0<1- P(Ak)) = 0. 
n-+OOm-+00 

k=n 

To prove (4.13), we use the inequality 

1- X Se-x, 0 < x < 1. 

To verify (4.14), note for 0 < x < 1 that 

oo xn 
-log(l-x) = L- ~x 

n=l n 

so exponentiating both sides yields 

or 

Now for (4.13). We have 

m 

Jim n(1- P(Ak)) 
m-+oo 

k=n 

1 
-->~ 
1-x-

< 

= 

m 
lim n e-P(Ak) 

m-+oo 
k=n 

lim e- L:k'=n P<Ak) 
m-+00 

(4.13) 

(4.14) 



4.5 Independence, Zero-One Laws, Borei-Cantelli Lemma 105 

since Ln P(An) = oo. This is true for all n, and so 

m 

lim lim n(1- P(Ak)) = 0. 
n-+oom-+oo 

k=n 0 

Example 4.5.1 (continued) Suppose {Xn. n ~ 1} are independent in addition to 
being Bernoulli, with 

Then we assert that 

P(Xn-+ 0] = 1 iff LPk < 00. 
n 

To verify this assertion, we merely need to observe that 

P{[Xn = 1] i.o.} = 0 

iff 
LP(Xn = 1] = LPn < 00. 

n n 

Example 4.5.2 (Behavior of exponential random variables) We assume that 
{En, n ~ 1} are iid unit exponential random variables; that is, 

P[En>X]=e-x, X>O. 

Then 

P[lim sup En/ log n = 1] = 1. (4.15) 
n-+oo 

This result is sometimes considered surprising. There is a (mistaken) tendency 
to think of iid sequences as somehow roughly constant, and therefore the division 
by logn should send the ratio to 0. However, every so often, the sequence {En} 
spits out a large value and the growth of these large values approximately matches 
that of {logn, n ~ 1}. 

To prove (4.15), we need the following simple fact: If {Bk} are any events 
satisfying P(Bk) = 1, then P(nk Bk) = 1. See Exercise 11 of Chapter 2. 

Proof of (4.15). For any w e Q, 

means 

. En(w) 
hmsup-- = 1 
n-+00 logn 

(a) 'Ve > 0, ~gi~> ::; 1 + e, for all large n, 
and 
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(b) Vs > 0, ~oi~> > 1- s, for infinitely many n. 

Note (a) says that for any s, there is no subsequential limit bigger than 1 +sand 
(b) says that for any s, there is always some subsequential limit bounded below 
by 1- s. 

We have the following set equality: Let Sk .J.. 0 and observe 

[ . En ) hmsup-- = 1 
n-+00 logn 

=n{liminf[En :;:1+sk]}nn{[1En >1-sk]i.o.} (4.16) 
k n-+oo logn k ogn 

To prove that the event on the left side of (4.16) has probability 1, it suffices to 
prove every braced event on the right side of (4.16) has probability 1. For fixed k 

""' En ""' L... P[- > 1- Sk] = L... P[En > (1- Sk) logn] 
n logn n 

= I:exp{-(1-Ek)logn} 
n 

1 
= L nl - £k = oo. 

n 

So the Borel Zero-One Law 4.5.2 implies 

Likewise 

so 

P { [ ~ > 1 - Ek] i.o. } = 1. 
logn 

""' En ""' L... P[-- > 1 + sk] = L... exp{-(1 + Sk) logn} 
n logn n 

1 
= L nl+£k < oo, 

n 

P (lim sup [ En > 1 + Sk]) = 0 
n-+oo logn 

implies 

P {liminf[~ =:: 1 + Sk]} = 1- P {lim sup [ En :;: 1 + sk]c} = 1. 
n-+00 logn n-+00 logn 

0 
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4.5.3 Kolmogorov Zero-One Law 

Let {X n} be a sequence of random variables and define 

:F~ = a(Xn+l• Xn+2• . .. ), n = 1, 2, .... 

The tail a-field Tis defined as 

T=n:F~= lim ,l.a(Xn.Xn+J. ... ). 
n-+00 

n 

These are events which depend on the tail of the {X n } sequence. If A e T, we 
will call A a tail event and similarly a random variable measurable with respect 
to T is called a tail random variable. 

We now give some examples of tail events and random variables. 

1. Observe that 
00 

{w : LXn(w) converges} E T. 
n=l 

To see this note that, for any m, the sum 2:~1 Xn(w) converges if and only 
if I::m Xn(w) converges. So 

00 

[LX n converges ] = [ L X n converges ] e :F~. 
n n=m+l 

This holds for all m and after intersecting over m. 

2. Wehave 

limsupXn E T, 
n-+oo 

{w : lim Xn(w) exists} E T. 
n-+oo 

This is true since the lim sup of the sequence {X t. X 2, ... } is the same as 
the lim sup of the sequence {X m , X m+l , ... } for all m. 

3. Let Sn = X 1 + · · · + X n. Then 

{w: lim Sn(w) =0} eT 
n-+oo n 

since for any m, 

ll·m Sn(w) __ 1. L7=1X;(w) 1. L7=m+1X;(w) 
Im = Im ' 

n-+oo n n-+oo n n-+oo n 

and so for any m, 
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Call a a-field, all of whose events have probability 0 or 1 almost trivial. One 
example of an almost trivial a-field is the a-field {0, Q}. Kolmogorov 's Zero-One 
Law characterizes tail events and random variables of independent sequences as 
almost trivial. 

Theorem 4.5.3 (Kolmogorov Zero-One Law) If (Xn} are independent random 
variables with tail a-field T, then A E T implies P(A) = 0 or 1 so that the tail 
a-field Tis almost trivial. 

Before proving Theorem 4.5.3, we consider some implications. To help us do 
this, we need the following lemma which provides further information on almost 
trivial a-fields. 

Lemma 4.5.1 (Almost trivial a-fields) Let g be an almost trivial a -field and let 
X be a random variable measurable with respect to g. Then there exists c such 
that P[X = c] = 1. 

Proof of Lemma 4.5.1. Let 

F(x) = P[X:::;: x]. 

Then F is non-decreasing and since [X:::;: x] e a(X) C g, 

F(x) = 0 or 1 

for each x e JR. Let 
c = sup{x : F(x) = 0}. 

The distribution function must have a jump of size 1 at c and thus 

P[X = c] = 1. 
0 

With this in mind, we can consider some consequences of the Kolmogorov 
Zero-One Law. 

Corollary 4.5.1 (Corollaries of the Kolmogorov Zero-One Law) Let {X n} be in­
dependent random variables. Then the following are true. 

(a) The event 

has probability 0 or 1. 

(b) The random variables limsupn-+ooXn and liminfn-+ooXn are constant 
with probability 1. 

(c) The event 
{w: Sn(a>)/n ~ 0} 

has probability 0 or 1. 
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We now commence the proof of Theorem 4.5.3. 

Proof of the Kolmogorov Zero-One Law. Suppose A e T. We show A is inde­
pendent of itself so that 

P(A) = P(A n A)= P(A)P(A) 

and thus P(A) = (P(A))2• Therefore P(A) = 0 or 1. 
To show A is independent of itself, we define 

n 

Fn = a(XJ, . . . , Xn) = Va(Xj), 
j=l 

so that Fn t and 

00 00 

Foo = a(XJ, X2, ... ) = V a(Xj) = V Fn. 
j=l n=l 

Note that 

Now for all n, we have 

A eF~, 

so since Fn 1_ F~, we have 

for all n, and therefore 

Let cl ={A}, and c2 = UnFn . Then ci is a rr-system, i = 1, 2, cl II c2 and 
therefore the Basic Criterion 4.1.1 implies -

a(CJ) = {cf>, n, A, Ac} and a(C2) = V Fn = Foo 
n 

are independent. Now 

and 

A e V Fn =Foo 
n 

by (4.17). Thus A is independent of A. 0 
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4.6 Exercises 

1. Let B1, ... , Bn be independent events. Show 

n n 

P(UB;) = 1-n(l- P(B;)). 
i=l i=l 

2. What is the minimum number of points a sample space must contain in 
order that there exist n independent events B1, .. . , Bn, none of which has 
probability zero or one? 

3. If {An. n ~ 1} is an independent sequence of events, show 

00 00 P(n An)= n P(An). 
n=l n=l 

4. Suppose (Q, B, P) is the uniform probability space; that is, ([0, 1], B, >..) 
where >.. is the uniform probability distribution. Define 

X(w) = w. 

(a) Does there exist a bounded random variable that is both independent of 
X and not constant almost surely? 

(b) Define Y = X(1 -X). Construct a random variable Z which is not 
almost surely constant and such that Z and Y are independent. 

5. Suppose X is a random variable. 

(a) X is independent of itself if and only if there is some constant c such that 
P[X = c] = 1. 

(b) If there exists a measurable 

g : (lR, B(lR)) .-.. (lR, B(lR)) , 

such that X and g(X) are independent, then prove there exists c E lR such 
that 

P[g(X) = c] = 1. 

6. Let {Xt. k ~ 1} be iid random variables with common continuous distribu­
tion F . Let rr: be a permutation of 1, ... , n. Show 

where 4 means the two vectors have the same joint distribution. 

7. If A , B, C are independent events, show directly that both A U B and A \ B 
are independent of C . 
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8. If X and Y are independent random variables and f, g are measurable and 
real valued, why are f(X) and g(Y) independent? (No calculation is nec­
essary.) 

9. Suppose {An} are independent events satisfying P(An) < 1, for all n. Show 

00 

P(U An) = 1 iff P(An i.o.) = 1. 
n=l 

Give an example to show that the condition P(An) < 1 cannot be dropped. 

10. Suppose {Xn. n :::: 1} are independent random variables. Show 

P[supXn < oo] = 1 
n 

iff 
L P[Xn > M] < 00, for some M. 

n 

11. Use the Borel-Cantelli Lemma to prove that given any sequence of random 
variables {Xn. n :::: 1} whose range is the real line, there exist constants 
Cn -+ oo such that 

P[ lim Xn = 0] = 1. 
n-+00 Cn 

Give a careful description of how you choose Cn. 

12. For use with the Borel Zero-One Law, the following is useful: Suppose 
we have two non-negative sequences {an} and {bn} satisfying an "' bn as 
n -+ oo; that is, 

Show 

I . an 
lm - = 1. 

n-+oo bn 

Lan < 00 iff Lbn < 00. 
n n 

13. Let {Xn. n :::: 1} be iid with P[X1 = 1] = p = 1- P[X1 = 0]. What is 
the probability that the pattern 1,0,1 appears infinitely often? 

Hint: Let 
Ak = [Xk = 1, Xk+l = 0, Xk+2 = 1] 

and consider A1, A4, A7, .... 

14. In a sequence of independent Bernoulli random variables {Xn, n :::: 1} with 

P[Xn = 1] = p = 1- P[Xn = 0], 

let An be the event that a run of n consecutive 1 's occurs between the 2n 
and 2n+1st trial. If p :::: 1/2, then there is probability 1 that infinitely many 
An occur. 
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Hint: Prove something like 

P(An) ~ 1- (1- pn)2n 12n > 1- e-<2Pt f2n. 

15. (a) A finite family Bi, i e I of a-algebras is independent iff for every 
choice of non-negative 8i-measurable random variable Yi, i e I, we have 

E(nYi) = n E(Yi). 
ie/ ie/ 

(One direction is immediate. For the opposite direction, prove the result 
first for positive simple functions and then extend.) 

(b) If {B,, t e T} is an arbitrary independent family of a-algebras in 
(Q, B, P), the family {B;, t e T} is again independent if B, :::> B;, (t e T). 
Deduce from this that {f1(X1), t e T} is a family of independent random 
variables ifthe family {X,, t e T} is independent and the f, are measurable. 
In order for the family {X,, t e T} of random variables to be independent, 
it is necessary and sufficient that 

E (I) [j(Xj)) =I) E (/j(Xj)) 

for every finite family { fi, j e J} of bounded measurable functions. 

16. The probability of convergence of a sequence of independent random vari­
ables is equal to 0 or 1. If the sequence {Xn} is iid, and not constant with 
probability 1, then 

P[Xn converges] = 0. 

17. Review Example 4.5.2 

(a) Suppose {Xn, n 2:: 1} are iid random variables and suppose {an} is a 
sequence of constants. Show 

P{[Xn > an] i.o. } = 1°' 1, 

iff Ln P[Xt > an] < 00, 

iff Ln P[X1 > an) = 00. 

(b) Suppose {Xn, n ~ 1} are iid N(0,1) random variables. Show 

. IXnl ~ 
P[hm sup r.:::::= = v 2) = 1. 

n-+oo -ylogn 

Hint: Review, or look up Mill's Ratio which says 

lim P[Xn > x] = 1, 
x-+oo n(x)/x 

where n(x) is the standard normal density. 
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(c) Suppose {Xn. n 2:: 1} are iid and Poisson distributed with parameter 
A. Prove 

and therefore 

An An 
-e->.. < P[XI > n] < -, ' - - - ' n. n. 

. Xn 
P[hm sup = 1] = 1. 

n~oo lognjlog(logn) 

18. If the event A is independent of the rr -system P and A e a (P), then P (A) 
is either 0 or 1. 

19. Give a simple example to show that 2 random variables may be independent 
according to one probability measure but dependent with respect to another. 

20. Counterexamples and examples: 

a) Let n = {1, 2, 3, 4} with each point carrying probability 114. Let A1 = 
{1, 2}, A2 = {1, 3}, A3 = {1, 4}. Then any two of A1, A2, A3 are inde­
pendent, but A 1 , A 2, A 3 are not independent. 

b) Let {Ai, 1 :::: i :::: 5} be a measurable partition of Q such that P(AI) = 
P(A2) = P(A3) = 15/64, P(A4) = 1/64, P(As) = 18/64. Define 
B = A1 U A4, C = A2 U A4, D = A3 U A4. Check that 

P(BCD) = P(B)P(C)P(D) 

but that B, C, D are not independent. 

c) Let X 1, X 2 be independent random variables each assuming only the 
values + 1 and -1 with probability 1/2. Are X 1, X 2. X 1 X 2 pairwise inde­
pendent? Are X 1, X 2, X 1 X 2 an independent collection? 

21. Suppose {An} is a sequence of events. 

(a) If P(An) -+ 1 as n -+ oo, prove there exists a subsequence {nk} tend­
ing to infinity such that P(nkAnk) > 0. (Hint: Use Borel-Cantelli.) 

(b) Show the following is false: Given € > 0 such that P(An) 2:: €, it 
follows that there exists a subsequence { nk} tending to infinity such 
that P(nkAnk) > 0. 

22. Suppose {An} are independent events such that 

00 

L (P(An) 1\ (1- P(An))) = 00. 

n=l 

Show P is non-atomic. 

23. Suppose {An} are events. 
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(a) If for each k 
oo n-1 

LP(Anl n Aj) = 00, 

n=k i=k 

show 
P(lim sup An) = 1. 

n_.oo 

(b) What is the relevance to the Borel Zero-One Law? 

(c) Is it enough to assume 

oo n-1 

L P(Anl n Aj) = oo? 
n=l i=l 

(d) Show 
P(limsupAn) = 1 

n_.oo 

iff 
00 

LP(AAn) = 00 

n=l 

for all events A such that P(A) > 0. 

24. If P(An) ~ € > 0, for all large n, then P(An i.o. ) ~ €. 

25. Use Renyi's theorem to prove that if {Xn, n ~ 1} is iid with common con­
tinuous distribution 

n 
P{[Xn = V Xi] i.o.} = 1. 

i=l 

26. (Barndorff-Nielsen) Suppose {En} is a sequence of events such that 

lim P(En) = 0, "P(EnE~+I) < oo. n_.oo ~ 
n 

Prove 
P(En i.o.) = 0. 

Hint: Decompose Uj=nEj form > n. 

27. If {Xn, n ~ 1} are independent random variables, show that the radius of 
convergence of the power series ,E~1 Xnzn is a constant (possibly infinite) 
with probability one. 

Hint: The radius of convergence of ,E~ 1 CnZn is given by 

R-1 = limsuplcnl 1/n . 
n_.oo 
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28. Show {Xn, n :::: 1} are independent if 

are independent for each n :::: 2. 

29. Let 

Q = { 1, ... , r} n = { (Xt, ... , Xn) : x; E { 1, ... , r}, i = 1, .. . , n} 

and assume an assignment of probabilities such that each point of Q is 
equally likely. Define the coordinate random variables 

X;((Xt. ·· ·•Xn))=x;, 1=1, ... ,n. 

Prove that the random variables X 1, ... , X n are independent. 

30. Refer to Subsection 4.3.2. 

(a) Define 

A = {[d2n = 0] i.o. }, B = {[d2n+l = 1] i.o. }. 

Show A 1._ B. 

(b) Define 

ln(w) :=length of the run ofO's starting at dn(w), 

= lk 2:: 1, if dn(w) = 0, ... , dn+k-1 (w) = 0, dn+k(w) = 1, 

0, if dn(w) = 1. 

Show 

( 1 )k+l 
P[ln = k] = Z , P[ln 2:: r] = (~)'. (4.18) 

(c) Show Wn = 0], n 2:: 1} are independent events. 

(d) Show P{[ln = 0] i.o.} = 1. (Use the Borel Zero-One Law.) 

(e) The events {[In = 1 ], n :::: 1} are not independent but the events 
{[/2n = 1], n ::::: 1} are, and therefore prove 

P{[/2n = 1] i.o. } = 1 

so that 

P{[ln = 1] i.o. } = 1. 
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(f) Let log2 n be the logarithm to the base 2 of n. Show 

P[limsup ~ ~ 1] = 1. 
n-+oo log2 n 

Hint: Show 

LP[In > (1+t:)log2 n] < oo 
n 

and use Borel-Cantelli. Then replace t: by t:k ..t. 0. 

(g) Show 

P[limsup~ ~ 1] = 1. 
n-+oo log2 n 

Combine this with (4.19). 

(4.19) 

Hint: Set rn = [log2 n] and define nk by n1 = 1, n2 = 1+rt, ... , nk+l = 
nk + rnk so that nk+l- nk = rnk· Then 

[Ink ~ rnk] E B(d;, nk ~ i < nk+I) 

and hence {[Ink ~ rnd. k ~ 1} are independent events. Use the Borel 
Zero-One Law to show 

and hence 
P{[ln ~ rn] i.o. } = 1. 

31. Suppose {Bn, n ~ 1} is a sequence of events such that for some o > 0 

P(Bn) ~ o > 0, 

for all n ~ 1. Show lim supn-+oo Bn =/; 0. Use this to help show with 
minimum calculation that in an infinite sequence of independent Bernoulli 
trials, there is an infinite number of successes with probability one. 

32. The Renyi representation. Suppose £1, ... , En are iid exponentially dis­
tributed random variables with parameter A > 0 so that 

P[£1 ~ x] = 1-e->..x, x > 0. 

Let 

Et,n ~ E2,n ~ · · · ~ En,n 

be the order statistics. Prove the n spacings 

Et,n. E2,n- Et,n. · · ·, En,n- En-l,n 

are independent exponentially distributed random variables where Ek+l,n­
Ek,n has parameter (n - k)>... Intuitively, this results from the forgetfulness 
property of the exponential distribution. 
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5 
Integration and Expectation 

One of the more fundamental concepts of probability theory and mathematical 
statistics is the expectation of a random variable. The expectation represents a 
central value of the random variable and has a measure theory counterpart in the 
theory of integration. 

5.1 Preparation for Integration 

5.1.1 Simple Functions 

Many integration results are proved by first showing they hold true for simple 
functions and then extending the result to more general functions. Recall that a 
function on the probability space (Q, B, P) 

x: n r-+ JR. 

is simple if it has a finite range. Henceforth, assume that a simple function is 
BjB(lR.) measurable. Such a function can always be written in the form 

k 

X(w) = I:a;1A;(w), 
i=l 

where a; E JR. and A; E Band A1, ... , Ak are disjoint and L~=l A; = Q. 

Recall 

a(X) = a(A;,i = 1, ... ,k) = lwA;: I C {1, ... ,k}J. 
IE/ 
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Let £ be the set of all simple functions on Q. We have the following important 
properties of £. 

1. £ is a vector space. This means the following two properties hold. 

(a) If X= L~=l a; 1A; E £, then aX= L~=l a a; 1A; E £ . 

(b) If X= E~=I a;1A; andY= Er=I bj1Bi and X, Y e £,then 

X+ Y = 2)a; + bj)1A;nBi 
i,j 

and {A;B j• 1 ::: i ::: k, 1 ::: j ::: m} is a partition of n. So X +Y e £ . 

2. If X, Y e £,then XY e £since 

XY = L:a;bj1A;nBr 
i,j 

3. If X, Y e £,then X v Y, X 1\ Y e £,since, for instance, 

XVY = L:a; V bj1A;Bi' 
i,j 

5.1.2 Measurability and Simple Functions 

The following result shows that any measurable function can be approximated by 
a simple function. It is the reason why it is often the case that an integration result 
about random varables is proven first for simple functions. 

Theorem 5.1.1 (Measurability Theorem) Suppose X(w) ~ 0, for all w. Then 
X e B I B(lR) iff there exist simple functions X n E £ and 

0::: Xn t X. 

Proof. If Xn E £, then Xn E B/B(lR), and if X = limn--.oo t Xn, then X E 

BjB(lR) since taking limits preserves measurability. 
Conversely, suppose 0::: X E B/B(lR). Define 

Because X e BjB(lR), it follows that Xn E £.Also Xn ::: Xn+l and if X(w) < 
oo, then for all large enough n 

1 
IX(w)- Xn(w)l::: 2n ~ 0. 

If X(w) = oo, then Xn(w) = n ~ oo. 0 



5.2 Expectation and Integration 119 

Note if 

then 

M :=sup IX(w)l < oo, 
wen 

sup IX(w)- Xn(w)i -+ 0. 
wen 

5.2 Expectation and Integration 

This section takes up the definition of expectation, or in measure theory terms, the 
Lebesgue-Stieltjes integral. Suppose (Q, B, P) is a probability space and 

X : (Q, B)~ (i, B(i)) 

where i = [ -oo, oo] so X might have ±oo in its range. We will define the 
expectation of X, written E(X) or 

In XdP 

or 

In X(w)P(dw), 

as the Lebesgue-Stieltjes integral of X with respect to P. We will do this in stages, 
the first stage being to define the integral for simple functions. 

5.2.1 Expectation of Simple Functions 

Suppose X is a simple random variable of the form 

n 

X= L:a;1Ap 
i=l 

where la;l < oo, and I:7=l A; = n. Define for X e £the expectation as 

k 

E(X) = j XdP =: L:a;P(A;). 
i=l 

(5.1) 

Note this definition coincides with your knowledge of discrete probability from 
more elementary courses. For a simple function (which includes all random vari­
ables on finite probabilty spaces) the expectation is computed by taking a possible 
value, multiplying by the probability of the possible value and then summing over 
all possible values. 

We now discuss the properties arising from this definition (5.1). 
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1. We have that 
£(1) = 1, and E(lA) = P(A). 

This follows since 1 = 1n so £(1) = P(Q) = 1 and 

so 
E(lA) = 1P(A) + OP(Ac). 

2. If X ~ 0 and X e £ then E (X) ~ 0. 

To verify this, note that if X ~ 0, then 

k 

X= I:a;1A;• and a;~ 0, 
i=l 

and therefore E(X) = L~=l a;P(A;) ~ 0. 

3. The expectation operator E is linear in the sense that if X, Y e £,then 

E(aX + f3Y) = aE(X) + f3E(Y) 

for a, f3 e lit 

To check this, suppose 

and then 

so that 

k 

X= I:a;1Ap 
i=l 

m 

y = Lbj1Bj' 
j=l 

aX+ f3Y = L(aa; + /3bj)1A;Bi' 
i,j 

E(aX + f3Y) = L(aa; + /3bj)P(A;Bj) 
i,j 

= I:aa;P(A;Bj) + Lf3bjP(A;Bj) 
i,j i,j 

k m m k 

=a La; LP(A;Bj) + f3Lbi LP(A;Bj) 
i=l j=l j=1 i=l 

k m 

=a I:a;P(A;) + f3 LbjP(Bj) 
i=l j=l 

=aE(X) + f3E(Y) . 
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4. The expectation operator E is monotone on £ in the sense that if X ::;: Y 
and X, Y E £,then E(X)::;: E(Y). 

To prove this, we observe that we have Y - X ~ 0 and Y - X e £. So 
E (Y - X) ~ 0 from property 2, and thus 

E(Y) = E(Y- X+ X)= E(Y- X)+ E(X) ~EX 

since E(Y- X) ~ 0. 

5. If Xn. X E £and either Xn t X or Xn ..!. X, then 

E(Xn) t E(X) or E(Xn) ..!. E(X). 

Suppose Xn E £ , and Xn ..!. 0. We prove E(Xn) ..!. 0. As a consequence 
of being simple, X 1 has a finite range. We may suppose without loss of 
generality that 

supXt(w) = K < 00. 
wen 

Since {X n} is non-increasing, we get that 

0::;: Xn ::;: K 

for all n. Thus for any E > 0, 

0 =::Xn = Xn l[Xn>€] + Xn l[Xn~€] 

:;:Kl[Xn>€] + El[Xn~€], 
and therefore by the monotonicity property 4, 

0::;: E(Xn)::;: KP[Xn > E] + EP[Xn ::;: E] 

::;:KP[Xn > E]+E. 

Since X n ..!. 0, we have, as n ~ oo, 

[Xn >E) ,I. 0, 

and by continuity of P 
P[Xn > E]..!. 0. 

limsupE(Xn)::;: E. 
n--+00 

Since E is arbitrary, E(Xn) ..!. 0. 

If X n ..!. X, then X n - X ..!. 0, so 

E(Xn)- E(X) = E(Xn- X)..!. 0 

from the previous step. 

If X n t X, then X - X n ..!. 0 and 

E(X)- E(Xn) = E(X- Xn)..!. 0. 
0 
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5.2.2 Extension of the Definition 

We now extend the definition of the integral beyond simple functions. The pro­
gram is to define expectation for all positive random variables and then for all 
integrable random variables. The term integrable will be explained later. 

It is convenient and useful to assume our random variables take values in the 
extended real line i ( cf. Exercise 33). In stochastic modeling, for instance, we 
often deal with waiting times for an event to happen or return times to a state or 
set. If the event never occurs, it is natural to say the waiting time is infinite. If the 
process never returns to a state or set, it is natural to say the return time is infinite. 

Let £+ be the non-negative valued simple functions, and define 

£~:={X?=: 0: X: (Q, B)~--+ (i, B(i))} 

to be non-negative, measurable functions with domain Q. If X e t+ and 
P[X = oo] > 0, define E(X) = oo. 

Otherwise by the measurability theorem (Theorem 5.1.1, page 118), we may 
find X n e £+, such that 

0:::;: Xn t X. 

We call {X n} the approximating sequence to X. The sequence { E (X n)} is non­
decreasing by monotonicity of expectations applied to£+ · Since limits of mono­
tone sequences always exist, we conclude that limn-+oo E (X n) exists. We define 

E(X) := lim E(Xn). 
n-+oo 

(5.2) 

This extends expectation from £ to f+. 
The next result discusses this definition further. 

Proposition 5.2.1 (Well definition) E is well defined on f+, since if X n e £+ 
and Ym E £+and Xn t X, Ym t X, then 

lim E(Xn) = lim E(Ym). 
n-+oo n-+oo 

Proof. Because of the symmetric roles of X n and Y m, it suffices to prove the 
following assertion. If Xn. Ym e £+and both sequences {Xn} and {Ym} are non­
decreasing, then the assumption 

lim t Xn :::;: lim t Ym 
n-+00 m-+oo 

(5.3) 

implies 

lim t E(Xn):::;: lim t E(Ym). 
n-+oo m-+oo 

(5.4) 

To prove (5.4), note that as m ~ oo 
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since 

So from monotonicity of expectations on £+, 

E(Xn) = lim t E(Xn 1\ Ym)::::: lim E(Ym). 
m-+oo m-+oo 

This is true for all n, so let n --. oo to obtain 

lim t E(Xn) :::=: lim t E(Yn). 
n-+oo n-+oo 

This proves (5.4). D 

5.2.3 Basic Properties of Expectation 

We now list some properties of the expectation operator applied to random vari­
ables in t+. 

1. We have 
0::::: E(X)::::: oo, 

and if X, Yet+ and X::::: Y, then E(X)::::: E(Y). 

The proof is contained in (5.4). 

2. E is linear: For a > 0 and {J > 0, 

E(aX + {JY) = aE(X) + {JE(Y). 

To check this, suppose Xn t X, Yn t Y and Xn. Yn e £+. For c > 0 

E(cX) = lim E(cXn) 
n->oo 

= lim cE(Xn) (linearity on£+) 
n-+oo 

=cE(X). 

We also have 

E(X + Y) = lim E(Xn + Yn) 
n-+oo 

= lim (E(Xn) + E(Yn)) (linearity on£+) 
n-+00 

=E(X) + E(Y). 

3. Monotone Convergence Theorem (MCT). If 

(5.5) 



124 5. Integration and Expectation 

then 
E(Xn) t E(X), 

or equivalently, 

E (lim t Xn) = lim t E(Xn). 
n-+oo n-+00 

We now focus on proving this version of the Monotone Convergence Theorem, 
which allows the interchange of limits and expectations. 

Proof ofMCT. Suppose we are given Xn, X e £~satisfying (5.5). We may find 
simple functions y~n> e £+, to act as approximations to Xn such that 

y~n) t Xn, m __. 00. 

We need to find a sequence of simple functions { Z m} approximating X 

Zm tX, 

which can be expressed in terms of the approximations to {Xn }. So define 

Z - vy(n) m- m· 
n::;m 

Note that {Zm} is non-decreasing since 

Z < V y(n) ( since y<n) < y<n> ) 
m- m+l m - m+l 

n::;m 

:S v y~n~l = Zm+l· 
n::;m+l 

Next observe that for n :::: m, 

(A) y:(n) < V . y:<i> = Z . m - 1::;m m m• 

(B) Zm :S Vj::;mXi =Xm, 

since y~> :::: X j, which is monotone in j and so 

(C) Y~n) :S Zm :S Xm. 

By taking limits on m in (C), we conclude that for all n 

Xn = lim y~n) :S lim Zm :S lim Xm. 
m-+00 m-+00 m-+00 

So 

X= lim Xn :S lim Zm :S lim Xm =X. 
n-+00 m-+oo m-+oo 

Therefore 
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(D) X= limn-+oo Xn = limm-+oo Zm 
and it follows that { Z m} is a simple function approximation to X. 

(E) Now because expectation is monotone onE, 

E(Xn) = lim t E(Y~n)) 
m-+00 

:5 lim t E(Zm) 
m-+oo 

:5 lim t E(Xm) m-+00 

(expectation definition) 

(from (C)) 

(from (C)). 

However Z m e E+ and { Z m} is a simple function approximation to X. Therefore, 
we get from the definition of expectation on£+ and (D) 

E(X) = E( lim t Zm) = lim t E(Zm). m-+oo m-+oo 

So (E) implies for all n that 

E(Xn)::: E(X)::: lim t E(Xm), 
m-+oo 

and taking the limit on n 

lim E(Xn)::: E(X)::: lim E(Xm), 
n-+oo m-+oo 

hence the desired equality follows. 0 

We now further extend the definition of E(X) beyond£+. For a random vari­
able X, define 

Thus 

Therefore 

and 

and 

x+ = x v o. x- = <-X) v o. 

x+ =X, if X 2: 0 (and then x- = 0), 

x- = -X, if X ::: 0 (and then x+ = 0). 

x± ::: o, 

lXI =X+ +X-

X e B/B(IR) iff both x± e B/B(IR). 

(5.6) 

Call X quasi-integrable if at least one of E (X+), E (X-) is finite. In this case, 
define 
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If E(X+) and E(X-) are both finite, call X integrable. This is the case iff EIXI < 
oo. The set of integrable random variables is denoted by L 1 or L 1 (P) if the prob­
ability measure needs to be emphasized. So 

L1(P) ={random variables X : EIXI < oo}. 

If E(X+) < oo but E(X-) = oo then E(X) = -oo. If E(X+) = oo but 
E(X-) < oo, then E(X) = oo. If E(X+) = oo and Ex-= oo, then E(X) does 
not exist. 

Example 5.2.1 (Heavy Tails) We will see that when the distribution function of 
a random variable X has a density I (x ), the expectation, provided it exists, can 
be computed by the familiar formula 

If 

E(X) =I xl(x)dx. 

l(x) = ~x-2, 
0, 

ifx > 1, 

otherwise, 

then E (X) exists and E (X) = oo. 
On the other hand, if 

then 

if lxl > 1, 
otherwise, 

and E (X) does not exist. The same conclusion would hold if I were the Cauchy 
density 

1 
l(x) = rr(l + xZ), x e JR. 

0 

We now list some properties of the expectation operator E. 

1. If X is integrable, then P[X = ±oo] = 0. 

For example, if P[X = oo] > 0, then E (X+) = oo and X is not integrable. 

2. If E (X) exists, 
E(cX) = cE(X). 

If either 
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or 

then X + Y is quasi-integrable and 

E(X + Y) = E(X) + E(Y). 

We verify additivity when X, Y E LJ. Observe that 

IX+ Yl e£~. 

and since 
IX+ Yl::: lXI + IYI, 

we have from monotonicity of expectation on t+ that 

EIX + Yl::: E(IXI + IYI) = EIXI + EIYI < oo, 

the last equality following from linearity on t+. Hence X + Y e L I· 
Next, we have 

so 

LHS := (X+ Y)+ + x- + y- =(X+ Y)- + x+ + y+ = : RHS. 

The advantage of this over (5.7) is that both LHS and RHS are sums of positive 
random variables. Since expectation is linear on t+, we have 

E( LHS) = E(X + Y)+ + E(X-) + E(Y-) 

= E( RHS) = E(X + Y)- + E(X+) + E(Y+) . 

Rearranging we get 

or equivalently, 

E(X + Y) = E(X) + E(Y). 
0 

3. If X::: 0, then E(X)::: 0 since X= x+. If X, Y E L1, and X :S Y, then 

E(X) :S E(Y). 

This is readily seen. We have E(Y- X) ::: 0 since Y- X ::: 0, and thus by 
property (2) from this list, 

E(Y- X) = E(Y)- E(X) ::: 0. 
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4. Suppose {Xn} is a sequence of random variables such that Xn e Lt for 
some n. If either 

Xn tX 

or 
Xn .!,X, 

then according to the type of monotonicity 

E(Xn) t E(X) 

or 
E(Xn) .!, E(X). 

To see this in the case Xn t X, note x; .!, x- so E(X-) < oo. Then 

0:::; x: = Xn + x;:::; Xn +X} t X+ X}. 

From the MCf given in equation (5.5) 

0:::; E(Xn +X}) t E(X +X}). 

From property 2 we have 

E(Xn +X})= E(Xn) + E(X}). 

Since E(X-) < oo and E(X!) < oo, we also have 

E(X +X})= E(X) + E(X}), 

and thus 
lim E(Xn) = E(X). 

n-+oo 

If Xn .!, X, proceed similarly by considering -Xn +X{. 

5. Modulus Inequality. If X e Lt. 

iE(X)i:::: E(IXI). 

This has an easy proof. We have 

6. Variance and Covariance. Suppose X2 E L 1. which we write as X e Lz. 
Recall that we define 

Var(X) :=£(X - E (X) )2, 
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and because of linearity of expectation, this is equal to 

For random variables X, Y E L2, write 

Cov(X, Y) =E ((X- E(X))(Y- E(Y))), 

and again because of linearity of expectation, this is equal to 

=E(XY)- E(X)E(Y). 

Note that if X= Y, then Cov(X, Y) = Var(X). We will prove in Example 
5.9.2 that if X II Y and X, Y e L2, then E(XY) = E(X)E(Y) and 
consequently Cov(X, Y) = 0. 

The covariance is a bilinear function in the sense that if X 1 , .. . , X k and 
Yt, ... , Y1 are L2 random variables, then for constants at. ... , ak. and 
bt. 0 0 0 'bl 

k I k I 

Cov(La;X;, LbjYj) = L I:a;bjCov(X;, Yj). (5.8) 
i=l j=l i=l j=l 

This also follows from linearity of expectations as follows. Without loss of 
generality, we may suppose that E (X;) = E (Yj) = 0 for i = 1, ... , k, j = 
1, ... , I. Then 

Cov(ta;X;, t.bjYj) =E (ta;X; t,bjYj) 
k I 

= L La;bjE(X;Yj) 
i=l j=I 

k I 

= LLa;bjCov(X;, Yj). 
i=l j=l 

A special case of this formula is used for computing the variance of a sum 
of L2 random variables Xt. ... , Xn. We have 

n n n n n 

Var(LX;) = Cov(LX;, LXi) = LLCov(X;,Xj). 
i=l i=l j=l i=l j=l 

Split the index set 

{(i, j): 1 s_ i, j s_ n} = {(i, i): 1 s_ i s_ n} U {(i, j): i # j}, 
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and we get 

n n 

Var(LX;) = I:cov(X;,X;) + 2 L Cov(X;,Xj) 
i=l i=l l~i<j~n 

n 

= L Var(X;) + 2 L Cov(X;, X j ). (5.9) 
i=l l~i<j~n 

If Cov(X;, X j) = 0 for i "# j, that is, if X 1, ... , X n are uncorrelated, then 

n n 

Var(LX;) = l:Var(X;). 
i=l i=l 

In particular, this is true when X 1 , ... , X n are independent. 

7. Markov Inequality. Suppose X e Lt. For any .A> 0 

This proof is also simple. Note 

Take expectations through the inequalities. 

8. Chebychev Inequality. We have 

P[IX- E(X)i:::: .A]:::; Var(X)/.A2, 

assuming EIXI < oo and Var(X) < oo. 

This follows from the Markov Inequality. We have 

P[IX- E(X)i:::: .A] = P[IX- E(X)I2 :::: .>..2] 

:::; .A - 2E(X- E(X))2, 

where the last inequality is an application of the Markov Inequality. 

(5.10) 

9. Weak Law Large Numbers (WLLN). This is one way to express the fact 
that the sample average of an iid sequence approximates the mean. Let 
{X n, n :::: 1} be iid with finite mean and variance and suppose E (X n) = JJ. 
and Var(Xn) = a 2 < oo. Then for any € > 0, 

n 

lim P[ln-1 "'\'X;- JJ.I > E] = 0. 
n-+oo L....J 

i=l 
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To see this, just use Chebychev and (5.10): 

P[ n-1 tx;- J.t > E] ~ E-2var (E?~t X;) 
E?=t Var(X;) nVar(X;) = = --=-~ n2E2 n2E2 

= (12 (~) ~ 0. 
E2 n 0 

5.3 Limits and Integrals 

This section presents a sequence of results which describe how expectation and 
limits interact. Under certain circumstances we are allowed to interchange expec­
tation and limits. In this section we will learn when this is safe. 

Theorem 5.3.1 (Monotone Convergence Theorem (MCT)) If 

0 ~ Xn t X 

then 
0 ~ E(Xn) t E(X). 

This was proved in the previous subsection 5.2.3. See 3 page 123. 

Corollary 5.3.1 (Series Version ofMCT) If ~i ~ 0 are non-negative random 
variables for n ~ 1, then 

00 00 

E(L~j) = LE(~j), 
j=l j=l 

so that the expectation and infinite sum can be interchanged. 

To see this, just write 

n 

= lim t £(" ~j) n_.oo ~ 
j=l 

(MCT) 

n 

= lim t "E(~j) n_.oo ~ 
j=l 

00 

= LE(~j). 
j=l 0 
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Theorem 5.3.2 (Fatou Lemma) If X n ~ 0, then 

£(lim infXn) ::::: lim inf E(Xn). 
n-+oo n-+00 

More generally, if there exists Z e Lt and Xn ~ Z, then 

E(liminfXn)::::: liminfE(Xn). 
n-+oo n-+oo 

Proof of Fatou. If X n ~ 0, then 

E (lim infXn) = E (.~~ t (6 x,)) n-+00 

= n~~ t E (3xk) (from MCI' 5.3.1) 

::::: lim inf E(Xn). 
n-+oo 

For the case where we assume X n ~ Z, we have X n - Z ~ 0 and 

E (liminf(Xn- Z))::::: liminfE(Xn- Z) 
n-+00 n-+oo 

so 
E(liminfXn)- E(Z)::::: liminfE(Xn)- E(Z). 

n-+oo n-+oo 

The result follows by cancelling E(Z) from both sides of the last relation. 0 

Corollary 5.3.2 (More Fatou) If Xn ::::: Z where Z e Lt, then 

E(limsupXn) ~ limsupE(Xn). 
n-+oo n-+oo 

Proof. This follows quickly from the previous Fatou Lemma 5.3.2. If Xn ::::: Z, 

then -Xn ~ -Z e L., and the Fatou Lemma 5.3.2 gives 

E(liminf(-Xn))::::: liminf£(-Xn), 
n-+00 n-+oo 

so that 
£(-liminf(-Xn)) ~ -liminf(-EXn). 

n-+oo n-+oo 

The proof is completed by using the relation 

- lim inf- = lim sup . 
0 

Canonical Example. This example is typical of what can go wrong when limits 
and integrals are interchanged without any dominating condition. Usually some­
thing very nasty happens on a small set and the degree of nastiness overpowers 
the degree of smallness. 
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Let 
(Q, B, P) = ([0, 1], 8((0, 1]), .l.) 

where, as usual, ). is Lebesgue measure. Define 

Xn = n21(0.1/n)· 

For any we (0, 1], 

so 

However 

so 

and 

1(0,1/n)(w) --+ 0, 

Xn--+ 0. 

1 
E(Xn) = n2 · - = n--+ oo, 

n 

E(liminfXn) = 0 < liminf(EXn) = oo 
n-+00 n-+oo 

E(limsupXn) = 0, limsupE(Xn) = 00. 
n-+00 n-+oo 

So the second part of the Fatou Lemma given in Corollary 5.3.2 fails. So obviously 
we cannot hope for Corollary 5.3.2 to hold without any restriction. 0 

Theorem 5.3.3 (Dominated Convergence Theorem (DCT)) If 

Xn--+ X, 

and there exists a dominating random variable Z E L 1 such that 

IXnl ~z. 

then 
E(Xn)--+ E(X) and EIXn- XI--+ 0. 

Proof of DCT. This is an easy consequence of the Fatou Lemma. We have 

-Z ::5 Xn ::5 Z 

and - Z e L 1 as well as Z e L 1· So both parts of Fatou 's lemma apply: 

E(X) =E(liminfXn) 
n-+oo 

:::;lim inf E(Xn) 
n-+oo 

:::;limsupE(Xn) 
n-+oo 

~E(lim supXn) 
n-+oo 

=E(X). 

(Fatou Lemma 5.3.2) 

(since inf < sup) 

(Corollary 5.3.2) 

Thus all inequalities are equality. The rest follows from IX n - X I ::::; 2Z. o 
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5.4 Indefinite Integrals 

Indefinite integrals allow for integration over only part of the Q-space. They are 
simply defined in terms of indicator functions. 

Definition 5.4.1 If X E L 1, we define 

i XdP := E(X1A) 

and call fA XdP the integral of X over A. Call X the integrand. 

Suppose X 2::: 0. For positive integrands, the integral has the following proper­
ties: 

(1) We have 

0~ £xdP~E(X). 

This is a direct consequence of the monotonicity property of expectations. 

(2) We have 

iff 
P(A n [X > 0]) = 0. 

This proof of this important result is assigned in Exercise 6 at the end of the 
chapter. 

(3) If {An. n 2::: 1} is a sequence of disjoint events 

1 XdP= f { XdP. 
UnAn n=l }An 

(5.11) 

To prove (5.11), observe 

1 XdP =E(X1u.A.) 
u.A. 

n=l 
00 

= (LE(X1A.) (from Corollary 5.3.1) 
n=l 

=I:, { XdP. 
n=l }A. 

D 
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(4) If 

then 

(5) Suppose X e L 1 and {An} is a monotone sequence of events. If 

An/' A, 

then 
{ XdP /' { XdP 

}A. }A 
while if 

then 
{ XdP '\i { XdP. 

}A. }A 

Property ( 4) is proved using the monotonicity property of expectations and 
Property (5) is a direct consequence of the MCT 5.3.1. D 

5.5 The Transformation Theorem and Densities 

Suppose we are given two measurable spaces (Q, 13) and (Q', 13'), and 

T: (Q, 13) ~ (Q' , 13') 

is a measurable map. Pis a probability measure on 13. Define P' := Po r-1 to 
be the probability measure on 13' given by 

P'(A') = P(T-1(A')), A' e 13' . 

Theorem 5.5.1 (Transformation Theorem) Suppose 

X' : (Q', 13') ~ (IR, 13(1R)) 

is a random variable with domain Q'. (Then X' o T : Q ~ lR is also a random 
variable by composition.) 

(i) If X' :::: 0, then 

{ X'(T(w))P(dw) = { X'(w')P'(dw'), 
ln ln' 

where P' =Po r-1. Equation (5.12) can also be expressed as 

E(X' o T) = E'(X'), 

(5.12) 

(5.13) 
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where E' is the expectation operator computed with respect toP'. 
(ii) We have 

X' e L 1 (P') iff X' o T e L 1 (P) 

in which case 

{ X'(T(w))P(dw) = { X'(w')P'(dw'). (5.14) 
Jr-1(A') }A' 

Proof. (i) Typical of many integration proofs, we proceed in a series of steps, 
starting with X as an indicator function, proceeding to X as a simple function and 
concluding with X being general. 

(a) Suppose 

X'= 1A'• A' e B'. 

Note 

X'(T(w)) = 1A'(T(w)) = 1r-IA'(w), 

so 

L X'(T(w))P(dw) = Leftsideof(5.12) 

(b) Let X' be simple: 

= L 1A'(T(w))P(dw) 

= L 1r-l(A')(w)P(dw) 

= P(T- 1 (A')) = P' (A') 

= { 1A'(w)P'(dw') Jn, 
= Right side (5.12). 

k 

X'= I:a;1Aj 
i=l 
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so that 

k 

{ X'(Tw)P(dw) = { L:a;tA;(T(w))P(dw) 
Jn ln i=t 

k 

= L:a; i 1r-I<A;l(w)P(dw) 
i=l Q 

k 

= L:a;P(T-1(A;)) 
i=l 

k 

= L:a;P'(A;) 
i=l 

(c) Let X' ~ 0 be measurable. There exists a sequence of simple functions 
{X~}, such that 

X~ tX'. 
Then it is also true that 

and 

X~ oTt X' o T 

Left side (5.12) = L X'(Tw)P(dw) 

= lim t { X~(Tw)P(dw) 
n-+00 ln 

= lim t f X~(w')P'(dw') 
n-+00 Jn, 

= { X' (w')P' (dw') Jn, 

(MCT) 

(from Step (b)) 

(from MCT). 

The proof of (ii) is similar. To get (5.14) we replace X' in (5.12) by X'lA'· 0 

5.5.1 Expectation is Always an Integral on JR. 

Let X be a random variable on the probability space (Q, B, P). Recall that the 
distribution of X is the measure 

F:=Pox-1 

on (IR, B(IR)) defined by (A e B(IR)): 

F(A) = P oX-\A) = P[X E A]. 
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The distribution function of X is 

F(x) := F((-oo,x]) = P[X::: x]. 

Note that the letter "F" is used in two ways. Usually, there will be no confusion. 
Here is an excellent example of the use of the Transformation Theorem which 

allows us to compute the abstract integral 

as 

E(X) =In XdP 

E(X) = l xF(dx), 

which is an integral on JR. 

Corollary 5.5.1 (i) If X is an integrable random variable with distribution F, 
then 

E(X) = l xF(dx). 

(ii) Suppose 
X: (Q, B).-.. (lE, £) 

is a random element oflE with distribution F = Po x-I and suppose 

is a non-negative measurable function. The expectation of g(X) is 

E(g(X)) = { g(X(w))P(dw) = 1 g(x)F(dx). 
Jn xelE 

Proof. (i) For ease of applying the Transformation Theorem, we make the follow­
ing notational identifications: 

X: (Q, B) .-.(JR., B(lR)), 

X': (Q', B') = (1., B(lR)) ~-+(1., B(lR)), 

X'(x) =x, 

T=X 

P' =P oX-1 =:F. 

According to the conclusion of the Transformation Theorem, we get the equation 

{ X'(T(w))P(dw) = { X'(w')P'(dw') 
ln ln' 

and with the identifications listed above, the equation becomes 

fo X(w)P(dw) = l xF(dx). 
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(ii) We proceed in stages using the usual progression: start with an indicator 
function, proceed to simple functions and graduate to general non-negative func­
tions. Here are the stages in more detail. 

(a) If A e £and g(x) = lA (x), then (i) is true. This follows from F = Pox-1• 

(b) Check (i) holds for g simple. 

(c) Finish with an application of the MCf. 0 

The concluding message: Instead of computing expectations on the abstract 
space n, you can always compute them on IR using F, the distribution of X. 

5.5.2 Densities 

Let X: (Q, !3) ~ (IRk, l3(JRk)) be a random vector on (Q, !3, P) with distribution 
F. We say X or F is absolutely continuous (AC) if there exists a non-negative 
function 

such that 

F(A) = L f(x)dx, 

where dx stands for Lebesgue measure and the integral is a Lebesgue-Stieltjes 
integral. 

Proposition S.S.l Let g : (IRk, l3(JRk)) ~ (IR+, B(IR+)) be a non-negative mea­
surable function. Suppose X is a random vector with distribution F. IfF is AC 
with density f, we have for the expectation of g(X) 

Eg(X) = { g(x)f(x)dx. h.tk 
Proof. Repeat (a), (b), (c) of the proof of Corollary 5.5.1 (ii) for the case where 
there is a density. o 

5.6 The Riemann vs Lebesgue Integral 

Every probability student is first taught to compute expectations using densities 
and Riemann integrals. How does this the Riemann integral compare with the 
Lebesgue integral? 

Suppose (-oo < a < b < oo) and let f be real valued on (a, b). Generally 
speaking, iff is Riemann integrable on (a, b), then f is Lebesgue integrable on 
(a, b] and the two integrals are equal. The precise statement is next. 

Theorem 5.6.1 (Riemann and Lebesgue) Suppose f: (a, b)~ lR and 
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(a) f is B((a, b])/B(IR) measurable, 

(b) f is Riemann-integrable on (a, b]. 

Let), be Lebesgue measure on (a, b]. Then 

(i) f E Lt([a, b], A). In fact f is bounded. 

(ii) The Riemann integral off equals the Lebesgue integral. 

Proof. If f is Riemann integrable, then from analysis we know that f is bounded 
on (a, b] (and also continuous almost everywhere on (a, b]). For an interval I, 
define 

ru> =sup f(x), r<n = inf f(x). 
xel xe/ 

Chop up (a, b] into n subintervals I?), ... , I~n) where 

Define 

b-a = (a, a+--], 
n 

b-a 2(b-a) = (a + --,a + ], 
n n 

a-b 
= (b- -,b]. 

n 

n 

fn(X) = L rut>)llcn)(X), 
j=l J 

n 

f_,(x) = L rut>)llcn)(X) 
j=l J 

so that f,, f are simple (and hence measurable) and .=....n 

Define 

un = { f,(x))..(dx) = t rut>))..(lt>> 
~a.~ j=l 

~ = r f_,(x))..(dx) = t rut>))..(lt)> 
J(a,b] j=l 

(5.15) 
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where >..(It>)= (b- a)jn. Let 

I= lb f(x)dx 

be the Riemann integral of f. I has upper Riemann approximating sum an and 
lower Riemann approximating sum ~. Since f is Riemann-integrable, given E, 

there exists no= no( E) such that n ::::no implies 

(5.16) 

Because of (5.15) and monotonicity of expectations 

and from (5.16) 

so 

/-E :S { fd>..:;:f+E; 
J(a,b] 

that is, 

I { fdJ.- /I::: E. 
J(a,b] 

This completes the proof. 0 

We need the next lemma in order to discuss the subsequent example. 

Lemma 5.6.1 (Integral Comparison Lemma) Suppose X and X' are random 
variables on the probability space (Q, !3, P) and suppose X E L 1· 

(a)lf 

P[X =X']= 1, 

then 

X' E L1 and E(X) = E(X'). 

(b) We have 

P[X =X']= 1 

iff 

i XdP = i X'dP, 'v'A E !3. 

The condition "for all A E T3" can be replaced by "for all A E P" where P is a 
1r-system generating !3. 
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Proof. Part (a) basically follows from Exercise 6. Here, we restrict ourselves to 
commenting on why if X e Lt and P[X =X'] = 1, it follows that X' e Lt. 
Write N =[X =f. X'] so that P(N) = 0 and then 

E(IX'J) = E(IXI1uxi=IX'IJ> + E(IX'I1N) 

:::: E (lXI) + 0 < oo, 

where we have applied Exercise 6. A modification of this argument shows E (X) = 
E(X'). 

Now consider (b) which uses the following result also following from Exercise 
6: 

If X::::. 0, then E(X) = 0 implies P[X = 0] = 1, (5.17) 

or equivalently 

if X::::. 0, then P[X > 0] > 0 implies E(X) > 0. (5.18) 

Suppose for all A e B that 

L XdP = L X'dP. 

To get a contradiction suppose P[X =f. X'] > 0. So either P[X > X'] > 0 or 
P[X <X'] > 0. If P[X > X'] > 0, then set A = [X > X'] and (X -X')1A ::::. 0, 
and P[(X- X')1A > 0] ::::. P(A) > 0. So from (5.18) we have 

E((X- X')1A) > 0; 

that is, 

a contradiction. So P(A) = 0. 
Conversely, if P[X =X']= 1, then set N =[X =f. X'] and for any A e B 

{ XdP = { XdP + { XdP 
)A )AnN )AnNe 

=0+ { X'dP = { X'dP, 
)AnN< )A 

with the 0 resulting from Exercise 6. 0 

Example 5.6.1 For this example we set Q = [0, 1 ], and P = >.. = Lebesgue 
measure. Let X (s) = 1Q (s) where Q are the rational real numbers. Note that 

J...(Q) = J...(UreQ{r}) = L A({r}) = 0 
reQ 
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so that 

>..([X= 0]) = 1 = >..([0, 1] \ Q). 

Therefore from the Integral Comparison Lemma 10.1 E(X) = £(0) = 0 since 
>..[X = 0] = 1. Note also that X is not Riemann-integrable, since for every n, 

n j-1 j 1 n 1 n I:xv(-, -]- = 2:1·- =- = 1 
1 n nn 1 n n 

n j-1 j 1 n 1 
I:x"<-. -1- = I:o·- =0 

1 n nn 1 n 

and thus the upper and lower Riemann approximating sums do not converge to 
each other. We conclude that the Riemann integral does not exist but the Lebesgue 
integral does and is equal to 0. 

For a function to be Riemann-integrable, it is necessary and sufficient that the 
function be bounded and continuous almost everywhere. However, 

{we [0, 1]: 1Q(·) is discontinuous at w} ={we [0, 1]} = [0, 1] 

and thus 

>..{w: 1Q(·) is continuous at w} = 0. 
0 

5.7 Product Spaces 

This section shows how to build independence into a model and is also important 
for understanding concepts such as Markov dependence. 

Let n1, Qz be two sets. Define the product space 

n1 x Qz = {(wt.wz): w; e Q;,i = 1,2} 

and define the coordinate or projection maps by (i = 1, 2) 

so that 

If A C n1 x Qz define 

Aw1 = {wz: (w1, wz) E A} C Q2 

AW2 = {w1 : (w1, wz) E A} C Q1 · 

Aw; is called the section of A at w;. 
Here are some basic properties of set sections. 
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(ii) If, for an index set T, we have Aa c Qt x n2, for all a e T , then 

<UAa)w1 = U<Aa)wp (nAa)w1 = n<Aa)w1 • 

a a a a 

Now suppose we have a function X with domain nt X n2 and range equal to 
some set S. It does no harm to think of S as a metric space. Define the section of 
the function X as 

so 
Xw1 : n2 ~--+ S. 

We think of Wt as fixed and the section is a function of varying wz. Call X w1 the 
section of X at Wt. 

Basic properties of sections of functions are the following: 

(i) (lA)cut = 1Aw1 

(ii) If S = JRk for some k ::::; 1 and if fori = 1, 2 we have 

X; : n1 x n2 ~--+ s, 

then 

(iii) Suppose s is a metric space, X n : nt X n2 1-+ s and limn-+00 X n exists. 
Then 

A rectangle in nl X n2 is a subset of nl X n2 of the form At X A2 where 
A; c n; , for i = 1, 2. We call A 1 and A 2 the sides of the rectangle. The rectangle 
is empty if at least one of the sides is empty. 

Suppose (Q;, 8;) are two measurable spaces (i = 1, 2). A rectangle is called 
measurable if it is of the form At x A 2 where A; e B;, for i = 1, 2. 

An important fact: The class of measurable rectangles is a semi-algebra which 
we call RECT. To verify this, we need to check the postulates defining a semi­
algebra. (See definition 2.4.1, page 44.) 

(i) 0, Q e RECT 

(ii) RECT is a rr-class: If At x A2, A; x A2 eRECT, then (At x A2) n (A; x 
A2) = AtA; x A2A2 E RECT. 
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(iii) RECf is closed under complementation. Suppose A x Az e RECf. Then 

nt X nz \At X Az =(Qt \At) X Az +At X (Qz \ Az) 

+A~ x Az· 

We now define a a-field on nt x nz to be the smallest a-field containing RECT. 
We denote this a-field Bt x Bz and call it the product a-field. Thus 

Bt x Bz :=a( RECf ). (5.19) 

Note if nt = nz = JR., this defines 

Bt x Bz = a(At x Az :A; e B(lR), i = 1, 2). 

There are other ways of generating the product a-field on JR2• If c<l is the class of 
semi-open intervals (open on the left, closed on the right), an induction argument 
gives 

Bt X Bz = a({it X /z : lj E c<l, j = 1, 2}). 

Lemma 5.7.1 (Sectioning Sets) Sections of measurable sets are measurable. If 
A E Bt X Bz, then for all Wt E n}, 

Aw1 E Bz. 

Proof. We proceed by set induction. Define 

If A E RECf and A= At x Az where A; E B;, then 

{ Az E Bz, 
= fZl, 

Thus Aw1 E Cw1 , implying that 

RECT c Cw1• 

Also Cw1 is a >..-system. In order to verify this, we check the >..-system postu­
lates. 

(i) We have 

since Qt x Qz E RECf. 

(ii) If A E Cw1 then A c E Cw1 since (A c)w1 = (Aw1 )c and A E Cw1 implies 
Aw1 E Bz and hence (Aw1 )c E Bz. This necessitates (A c)w1 E Cw1• 
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c) If An E Cwp for n 2: 1 with {An} disjoint, then (An)w1 E 82 implies 
Ln(An)w1 E 82. But 

00 00 

L(An)w1 = (LAn)w1 E 82 
n=l n=l 

and hence 

Now we know that Cw1 is a .A-system. Further we know that 

which implies by Dynkin's theorem 2.2.2 that 

There is a companion result to Lemma 5.7.1 about sections of measurable func­
tions. 

Corollary 5. 7.1 Sections of measurable functions are measurable. That is, if 

then 

Proof. Since X is 81 x 82/ S measurable, we have for A e S that 

and hence by the previous results 

However 

(X-1(A))w1 ={w2 : X(wt, W2) E A} 

={W2 : Xw1 (w2) E A}= (Xw1)-1(A), 

which says Xw1 is 82/S measurable. 0 
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5.8 Probability Measures on Product Spaces 

We now consider how to construct probability measures on the product space 
(Qt x !lz, Bt x Bz). In particular, we will see how to construct independent 
random variables. 

Transition Functions. Call a function 

a transition function if 

(i) for each Wt, K(wt. ·)is a probability measure on Bz, and 

(ii) for each Az e Bz, K(·, Az) is Bt/8([0, 1]) measurable. 

Transition functions are used to define discrete time Markov processes where 
K (cut. Az) represents the conditional probability that, starting from Wt, the next 
movement of the system results in a state in Az. Here our interest in transi­
tion functions comes from the connection with measures on product spaces and 
Fubini's theorem. 

Theorem 5.8.1 Let Pt be a probability measure on Bt, and suppose 

K : !lt x Bz ~ [0, 1] 

is a transition function. Then K and Pt. uniquely determine a probability on 
Bt x Bz via the formula 

P(At x Az) = { K (cut. Az)Pt (dwt), (5.20) 
}AI 

fora// At x Az E RECT. 

The measure P given in (5.20) is specified on the semialgebra RECT and we 
need to verify that the conditions of the Combo Extension Theorem 2.4.3 on 
page 48 are applicable so that P can be extended to a(RECT) = Bt x Bz. 

We verify that Pis a-additive on RECT and apply the Combo Extension The­
orem 2.4.3. Let 

{A(n) x A(n) n > 1} 
t 2 ' -

be disjoint elements of RECT whose union is in RECT. We show 

00 00 

P(L A~n) X A~n)) = L P(A~n) X A~n>). 
n=t n=t 

Note if Ln A~n) x A~n) =At x Az, then 

1A 1 (wt)1A2 (wz) = \1A1 xA2(Wt. wz) = L 1 A\"'xA~nJ(WJ, wz) 
n 

= L1Atn)(Wt)lA<nJ(lUz). 
n 1 2 
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Now making use of the series form of the monotone convergence theorem we 
have the following string of equalities: 

P(At x A2) = { 1A1 (wt)K(wt, A2)P1(dwt) 
ln1 

= { [ { 1A 1(WI)lA 2 (W2)K(wi,dW2)]Pt(dwt) 
ln1 ln2 

= { [ { L)A<n>(wt)lA<n>(W2)K(wt,dW2)]Pt(dwt) lnl lnz n I 2 

= { L) { lA<nJ(WI)lA<n>(W2)K(wt.dW2)]Pt(dwt) 
~I n ~2 I 2 

= L { lA(nJ(Wt)[ { 1A<nJ(W2)K(Wt,dW2)]Pt(dwt) 
n lnl I ln2 2 

= L { lA<n>(wt)K(Wt,A~n))Pt(dwt) 
n lnl I 

= L 1 K (WI, An))Pt (dwt) 
n A\n) 

= L P(A~n) X Ain)). 
n 0 

Special case. Suppose for some probability measure P2 on 82 that K (wt. A2) = 
P2 (A 2 ) . Then the probability measure P, defined in the previous result on Bt x Bz 
is 

P(At x A2) = Pt(At)Pz(Az) . 

We denote this P by Pt x Pz and call P product measure. Define u-fields in 
nt x n2 by 

B'f = {At x nz :At e 8t} 

~ = {Qt X A2 : A2 E 82}. 

With respect to the product measure P = Pt x P2, we have l3lj JL ~ since 

P(At x n2 n n1 x A2) = P(At x A2) = P1 (At)P2(A2) 

= P(At x n2)P(nt x A2). 

Suppose X ; : (Q;, 8;) ~--+ (IR, 8(1R)) is a random variable on n; fori= 1, 2. 
Define on S'2t X n2 the new functions 
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With respect toP = Pt x P2, the variables Xf and X~ are independent since 

P[Xf::; x, X~:=: y] = Pt x P2({(w1, w2): Xt (wt) ::; x, X2(W2) :=: y}) 

= Pt x P2({w1: Xt(wt)::::: x} x {W2: X2(W2)::::: y}) 

= Pt({Xt(wt)::::: x})P2({W2: X2(W2)::::: y}) 

= P({(wt. W2): Xf(wt. W2)::::: x}) 

P({(wt, W2): X~(wt. W2) ::; y}) 

= P[Xf ::: X ]P[X~ ::: y ]. 

The point of these remarks is that independence is automatically built into the 
model by construction when using product measure. Quantities depending on dis­
joint components can be asserted to be independent without proof. We can extend 
these constructions from two factors to d 2: 2 factors and define product measure 
Pt x · · · x Pd. Having independence built into the model is a big economy since 
otherwise a large number of conditions (of order 2d) would have to be checked. 
See Definition 4.1.2 on page 91 and the following discussion. 

5.9 Fubini's theorem 

Fubini's theorem is a basic result which allows interchange of the order of inte­
gration in multiple integrals. We first present a somewhat more general and ba­
sic result that uses transition kernels. We continue to work on the product space 
<n• x n2. 81 x 82). 

Theorem 5.9.1 Let Pt be a probability measure on (Qt. Bt) and suppose K 
n. X 82 1-+ [0, 1) is a transition kernel. Define p on (Qt X n2. 8t X 82) by 

Assume 
x : <n• x n2. 81 x B2) ~--+ (IR, 8(IR)) 

and furthermore suppose X 2: 0 (X is integrable). Then 

has the properties 

(a) Y is well defined. 

(b) Y E 8t. 

(c) Y:::O (YELt(Pt)), 

(5.21) 
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and furthermore 

Proof. For fixed Wt. we have Xw1 (CV2) is 82-measurable soY is well defined. It 
is not hard to show that Y is 81 measurable and we skip this and we proceed to 
show (5.22) under the assumption X ::::: 0. Define 

and 

We begin by supposing 

where 

Then 

and 

A1 x A2 E RECf. 

LHS = { dP = P(A1 x A2) 
JA1xA2 

RHS = { [ { K(wt.dlV2)1A 1 (wl)lA2 (CV2)]PI(dwt) 
ln1 ln2 

= { K (wt. A2)P1 (dwt) = P(At x A2). 
)A! 

So (5.22) holds for indicators of measurable rectangles. Let 

C =(A e 81 x 82: (5.22) holds for X= lA}, 

and we know RECf C C. 
We claim that C is a >..-system. We check the postulates. 
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(ii) If A e C then for X= lAc, we have LHS = P(Ac) = 1- P(A) so that 

LHS = 1-I I K(w~. dwz)1A.,1 (wz)PI(dwi) 

= I I K(w~. dwz)(l- 1A.,1 (wz))P1 (dw1) 

= I I K(wi,dwz)l<A.,1>'(wz)PI(dwz) 

= I I K(wi. dwz)lw>.,1 (wz)PI(dwz) 

= RHS. 

SoAcec. 

(iii) If An e C, and {An, n ~ 1} are disjoint events, then 

{ 1L~JAndP = P(LAn) = LP(An) 
Jn1xn2 n n 

= L I I K (WI. dwz)l(An).,1 (wz)PI (dw1) 
n 

because An e C; applying monotone convergence we get 

SO LnAn E C. 

=I I K(wb dwz)l(UnAn).,1 (wz)PI (dw1) 

= RHS, 

We have thus verified that Cis a A.-system. Furthermore, 

C ::> RECf, 

which implies 
C ::> u( RECf) = 81 x Bz. 

We may therefore conclude that for any A e 81 x Bz, if X = lA then (5.22) holds 
for this X . 

Now express (5.22) as LHS(X) =RHS(X). Both LHS(X) and RHS(X) are 
linear in X so (5.22) holds for simple functions of the form 

k 

X= La;lA;• A; E 81 x Bz. 
i=l 
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For arbitrary X 2: 0, there exists a sequence of simple X n, such that X n t X. We 
have 

LHS (Xn) = RHS (Xn), 

and by monotone convergence 

LHS (Xn) t LHS (X) . 

Also, we get for RHS, by applying monotone convergence twice, that 

lim t 
n~oo 

RHS (Xn) = lim t { { K(wt. da>z)(Xn)w1 (Wz)]Pt (dwt) 
n~oo Jn1 Jfr2 

= [ [lim t [ K(a>z,dwz)(Xn)w1(Wz)]Pt(dwt) ln1 n~oo ln2 
=1 [1 lim (Xn)w1(Wz)K(wt,da>z)]Pt(dwt) 

nl 0.2 n~oo 

=1 [1 K(wt,dwz)Xw1(a>z)]Pt(dwt) 
n1 n2 

= RHS (X). 0 

We can now give the result, calledFubini's theorem, which justifies interchange 
of the order of integration. 

Theorem 5.9.2 (Fubini Theorem) Let P = Pt x Pz be product measure. If X is 
Bt x Bz measurable and is either non-negative or integrable with respect to P, 
then 

Proof. Let K(wt,Az) = Pz(Az). Then Pt and K determine P = P1 x Pz on 
Bt x Bz and 

Also let 

[ [1 K(wJ, da>z)Xw1 (wz)]Pt (dwt) 
ln1 n2 

= [ [1 Pz(da>z)Xw1 (a>z)]Pt (dwt). 
ln1 n2 

be a transition function with 

K: nz x Bt ~ [0, 1]. 
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Then K and Pz also determine P = P1 x Pz and 

f XdP = f [ f K(wz, dwdXw2 (wi)]Pz(dwz) 
ln! x0.2 lo.2 ln! 

= { [ { PI(dwl)XW2(wt)]Pz(dwz). 
ln2 ln1 o 

We now give some simple examples of the use of Fubini's theorem. 

Example 5.9.1 (Occupation times) Let {X(t, w), t e [0, 1]} be a continuous 
time stochastic process indexed by [0, 1] on the probability space (Q, B, P) sat­
isfying 

(a) The process X ( ·) has state space lit 

(b) The process X is two-dimensional measurable; that is, 

X : ([0, 1] X Q, B([O, 1]) X B) 1-+ B(IR) 

so that for A e B(IR) 

x-1(A) = {(t, w): X(t, w) E A} E B([O, 1]) x B. 

Fix a set A e B(IR). We ask for the occupation time of X in A during times t e A, 
for A e B([O, 1 ]). Since A e B(IR), 

1A : (IR, B(IR)) ~--+ ({0, 1}, {0, {0, 1}, {0}, {1}}) 

is measurable and therefore 

1A(X(s,w)): ([0, 1] X n,B([O, 1]) X B) 1-+ ({0, 1},B({O, 1})). 

Define the random measure 

x(A, w) := i lA(X(s, w))ds 

and call it the occupation time in A during times t eA. 
We have 

which by Fubini's theorem is the same as 

= L [In 1A(X(s, w))dP] ds 

= L P[X(s) e A]ds. 

Thus expected occupation times can be computed by integrating the probability 
the process is in the set. D 
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Example 5.9.2 Let X; ::: 0, i = 1, 2 be two independent random variables. Then 

To prove this using Fubini's theorem 5.9.2, let X= (Xt, X2), and let g(xt. x2) = 
XtX2. Note p 0 x-t = Ft X F2 where F; is the distribution of X;. This follows 
since 

Po x-t(At x A2) = P[(Xt, X2) EAt x A2) 

= P[Xt EAt, X2 E A2) 

= P[Xt E At]P[X2 E A2) 

= Ft (At)F2(A2) 

= Ft x F2(At x A2). 

SoP o x-1 and Ft x F2 agree on RECT and hence on a(RECT) = Bt x B2. 
From Corollary 5.5.1 we have 

EXtX2 = Eg(X) = { g(x)P o x-t(dx) 
fa~ 

= f gd(Ft x F2) 
fa~ 

= L+ x2[j XtFt(dxt)]F2(dx2) (Fubini) 

= E(Xt) j x2F2(dx2) = E(Xt)E(Xz). 

0 

Example 5.9.3 (Convolution) Suppose X t, X 2 are two independent random vari­
ables with distributions Ft, Fz. The distribution function of the random variable 
X t + X 2 is given by the convolution Ft * Fz of the distribution functions. For 
xelR 

P[Xt + X2 ~ x] =: Ft * F2(x) = L Ft (x- u)F2(du) = L F2(x- u)Ft (du). 

To see this, proceed as in the previous example. Let X = (X t, X 2) which has 
distribution Ft x F2 and set 

From Corollary 5.5.1 
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Iterating the multiple integral a Ia Fubini, we have 

= L [L 1((u . v)eJR2 :u+v~x) (XI, Xz)FI (dXI)] Fz(dxz) 

= L [L 1(velR:v~x-x2 ) (XI)FI (dxi)] Fz(dxz) 

= L FI (x - xz)Fz(dxz). 

5.10 Exercises 

0 

1. Consider the triangle with vertices ( -1, 0), (1, 0), (0, 1) and suppose (X 1. X z) 
is a random vector uniformly distributed on this triangle. Compute 
£(XI +Xz). 

2. Argue without a computation that if X e Lz and c e JR., then Var(c) = 0 
and Var(X +c)= Var(X). 

3. Refer to Renyi's theorem 4.3.1 in Chapter 4. Let 

L1 := inf{j ~ 2: Xj is a record.} 

Check E (L I) = oo. 

4. Let (X, Y) be uniformly distributed on the discrete points ( -1, 0), (1 , 0), 
(0, 1), (0, -1). Verify X, Yare not independent but E(XY) = E(X)E(Y). 

5. (a) IfF is a continuous distribution function, prove that 

f F(x)F(dx) = ~-
JJR 2 

Thus show that if X 1, X 2 are iid with common distribution F, then 

1 
P[XI~Xz]="2 

and E(F(XI)) = 1/2. (One solution method relies on Fubini's theo­
rem.) 

(b) If F is not continuous 

1 1 
E(F(XI)) =- + -2 L (P[XI = a])2 , 

2 a 

where the sum is over the atoms ofF. 
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(c) If X, Yare random variables with distribution functions F(x), G(x) 
which have no common discontinuities, then 

E(F(Y)) + E(G(X)) = 1. 

Interpret the sum of expectations on the left as a probability. 

(d) Even if F and G have common jumps, if X JL Y then 

E(F(Y)) + E(G(X)) = 1 + P[X = Y). 

6. Suppose X E L 1 and A and An are events. 

(a) Show 

{ XdP~O. 
}[IXI>n) 

(b) Show that if P(An) ~ 0, then 

Hint: Decompose 

{ XdP~O. 
}An 

{ IXIdP = { IXIdP + { iXidP 
}An }An[IXI~M) }An[IXI>M] 

for large M . 

(c) Show i IXIdP = 0 iff P(A n [lXI > 0]) = 0. 

(d) If X E L2, show Var(X) = 0 implies P[X = E(X)] = 1 so that X is 
equal to a constant with probability 1. 

(e) Suppose that (Q, 8, P) is a probability space and A; E 8, i = 1, 2. 
Define the distance d : 8 x 8 ~--+ I. by 

Check the following continuity result: If An, A e 8 and 

then 
{ XdP~ { XdP 

jAn }A 
so that the map 

A~--+ i XdP 

is continuous. 
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7. Suppose Xn, n :::: 1 and X are uniformly bounded random variables; i.e. 
there exists a constant K such that 

IXnl V lXI::: K. 

If Xn --+X as n --+ oo, show by means of dominated convergence that 

EIXn- XI-+ 0. 

8. Suppose X, Xn. n > 1 are random variables on the space (Q, B, P) and 
assume 

sup IXn(w)l < oo; 
wen 
n;:::l 

that is, the sequence {Xn} is uniformly bounded. 

(a) Show that if in addition 

sup IX(w)- Xn(w)l --+ 0, n --+ oo, 
wen 

then E(Xn)--+ E(X). 

(b) Use Egorov's theorem (Exercise 25, page 89 of Chapter 3) to prove: 
If {Xn} is uniformly bounded and Xn --+ X, then E(Xn) --+ E(X). 
(Obviously, this follows from dominated convergence as in Exercise 7 
above; the point is to use Egorov's theorem and not dominated con­
vergence.) 

9. Use Fubini's theorem to show for a distribution function F(x) 

L (F(x +a)- F(x))dx =a, 

where "dx" can be interpreted as Lebesgue measure. 

10. For X :::: 0, let 

Show 

00 k 
X~="' -2 11k-I <X< k) + 001[X=oo]· L.., n Y- 211" 

k=I 

E(X~) ! E(X). 

11. If X, Y are independent random variables and E(X) exists, then for all 
B e B(IR), we have 

{ XdP = E(X)P[Y e B]. 
}[feB] 
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12. Suppose X is an uncountable set and let B be the a-field of countable and 
co-countable (complements are countable) sets. Show that the diagonal 

DIAG := {(x, x): x eX}¢. B x B 

is not in the product a-field. However, every section of DIAG is measur­
able. (Although sections of measurable sets are measurable, the converse is 
thus not true.) 

Hints: 

• Show that 

B x B = a({{x} x X, X x {x},x eX}), 

so that the product a-field is generated by horizontal and vertical 
lines. 

• Review Exercise 12 in Chapter 2. 

• Proceed by contradiction. Suppose DIAG e B x B. Then there exists 
countable S c X such that 

DIAG e a({{x} x X, X x {x},x e S}) =:g. 

• Define 
P := {{s}, s E S, Sc} 

and observe this is a partition of X and that 

{A1 x Az : A; e P; i = 1, 2} 

is a partition of X x X and that 

g = a(A1 x Az : A; e P, i = 1, 2). 

Show elements of g can be written as unions of sets A j x Ak. 

• Show it is impossible for DIAG e g. 

13. Suppose the probability space is the Lebesgue interval 

and define 

(Q = [0, 1], B([O, 1]), I.) 

n 
Xn = --1(0 !)· logn •n 

Show X n --+ 0 and E (X n) --+ 0 even though the condition of domination 
in the Dominated Convergence Theorem fails. 
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14. Suppose X .1. Y and h : JR2 ~-+ [0, oo) is measurable. Define 

g(x) = E(h(x, Y)) 

and show 
E(g(X)) = E(h(X, Y)). 

15. Suppose X is a non-negative random variable satisfying 

P[O:SX<oo]=l. 

Show 

(a) n~~nE (~1[X>n]) = 0, 

(b) n~~n-1 E (~1(X>n-1]) = 0. 

16. (a) Suppose -oo < a ::: b < oo. Show that the indicator function 1(a,bJ(X) 
can be approximated by bounded and continuous functions; that is, show 
that there exist a sequence of continuous functions 0 ::: In ::: 1 such that 
In ~ 1(a,b) pointwise. 

Hint: Approximate the rectangle of height 1 and base (a, b 1 by a trapezoid 
of height 1 with base (a, b + n-1 1 whose top line extends from a+ n-1 to 
b. 
(b) Show that two random variables X 1 and X 2 are independent iff for every 
pair ft, h of non-negative continuous functions, we have 

(c) Suppose for each n, that the pair ~n and Tln are independent random 
variables and that pointwise 

~n ~ ~00• Tln ~ Tloo · 

Show that the pair ~00 and 1Joo are independent so that independence is 
preserved by taking limits. 

17. Integration by parts. Suppose F and G are two distribution functions with 
no common points of discontinuity in an interval (a, b1. Show 

1. G(x)F(dx) 
(a,b) 

= F(b)G(b)- F(a)G(a) -1. F(x)G(dx). 
(a,b) 

The formula can fail if F and G have common discontinuities. If F and G 
are absolutely continuous with densities I and g, try to prove the formula 
by differentiating with respect to the upper limit of integration. (Why can 
you differentiate?) 
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18. Suppose (Q, 8, P) = ((0, 1], 8((0, 1]), A) where A is Lebesgue measure 
on (0, 1]. Let A x A be product measure on (0, 1] x (0, 1]. Suppose that 
A c (0, 1] x (0, 1] is a rectangle whose sides are NOT parallel to the axes. 
Show that 

A x A(A) = area of A. 

19. Define (Sl;, 8;, JL;}, fori = 1, 2 as follows: Let Ill be Lebesgue measure 
and /l2 counting measure so that /l2 (A) is the number of elements of A. Let 

Define 

(a) Compute 

and 

Sl1 =(0, 1), 81 = Borel subsets of (0, 1), 

Sl2 =(0, 1), 82 = All subsets of (0, 1). 

f(x,y) = 11, 
0, 

ifx = y, 

otherwise. 

{ [ { f(x,y)JL2(dy)]JLI(dx) Jn1 lnz 

(b) Are the two integrals equal? Are the measures a-finite? 

20. For a random variable X with distribution F, define the moment generating 
function 1/J(A) by 

(a) Prove that 

1/J(A) = L e>..x F(dx). 

Let 
A = {A E R : 1/J(A) < oo} 

and set 
A00 =sup A. 

(b) Prove for A in the interior of A that 1/J(A) > 0 and that 1/J(A) is contin­
uous on the interior of A. (This requires use of the dominated convergence 
theorem.) 

(c) Give an example where (i) A00 E A and (ii) A00 '1. A. (Something like 
gamma distributions should suffice to yield the needed examples.) 

Define the measure FJ.. by 

FJ..(l) = ~ ;~) F(dx), A EA. 
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(d) IfF has a density f , verify F>.. has a density />... What is />..? (Note that 
the family{/>..,). E A} is an exponential family of densities.) 

(e) IfF(/)= 0, show F>..(/) = 0 as well for I a finite interval and). EA. 

21. Suppose {pt, k ::! 0} is a probability mass function on {0, 1, .. . } and define 
the generating function 

00 

P(s) = LPki, 0 ~ s ~ 1. 
k=O 

Prove using dominated convergence that 

that is, prove differentiation and summation can be interchanged. 

22. (a) For X , a positive random variable, use Fubini's theorem applied to 
a-finite measures to prove 

£(X)= { P[X > t]dt. 
J[O,oo) 

(b) Check also that for any a > 0, 

E(Xa) =a { xa-l P[X > x]dx . 
J[O,oo) 

(c) If X ::;: 0 is a random variable such that for some 8 > 0 and 0 < f3 < 1 

P[X > n8] ~ (const)f3n , 

then E(Xa) < oo, for a > 0. 

(d) If X::! 0 is a random variable such that for some 8 > 0, E(X8) < oo, 
then 

lim x8 P[X > x] = 0. 
X-+00 

(e) Suppose X ::! 0 has a heavy-tailed distribution given by 

P[X > x] = const , x::! 17. 
xlogx 

Show £(X)= oo but yet xP[X > x]-+ 0 as x-+ oo. 

(f) If E (X2) < oo, then for any 11 > 0 

lim xP[IXI > TJJX] = 0. 
X-+00 
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23. Verify that the product a-algebra is the smallest a-algebra making the co­
ordinate mappings rr1, 1r2 measurable. 

24. Suppose X 1, X 2 are iid random variables with common N (0, 1) distribu­
tion. Define 

Use Fubini's theorem to verify that 

Note that as n -+ oo, 

E(Yn) = 0. 

Xt 
Yn-+ Y := --

IX21 
and that the expectation of Y does not exist, so this is one case where ran­
dom variables converge but means do not. 

25. In cases where expectations are not guaranteed to exist, the following is a 
proposal for defining a central value. Suppose F (x) is a strictly increasing 
and continuous distribution function. For example F could be the standard 
normal distribution function. Define 

by 

g:IR~(-1,1) 

1 
g(x) = 2(F(x)- 2). 

For a random variable X, define¢: lR ~ (-1, 1) by 

t/J(y) = E(g(X- y)). (*) 

The central value of X with respect tog, denoted y(X), is defined as the 
solution of 

t/J(y) = 0. 

(a) Show ¢ ( y) is a continuous function of y. 

(b) Show 

lim t/J(y) = -1, 
y-+00 

lim t/J(y) = 1. 
y-+-00 

(c) Show t/J(y) is non-increasing. 

(d) Show y(X), the solution of 

t/J(y)=O 
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is unique. 

Show y(X) has some of the properties of expectation, namely the follow­
ing. 

(e) For any c E lR 
y(X +c) = y(X) +c. 

(f) Now suppose gin(*) is g : lR r-+ ( -rr /2, rr /2) defined by 

g(x) := arctan(x), 

so that g(-x) = -g(x). Show 

y(-X) = -y(X). 

26. Suppose {Xn, n ~ 1} is a sequence of(not necessarily independent) Bernoulli 
random variables with 

P[Xn = 1] = Pn = 1- P[Xn = 0]. 

Show that 1::~1 Pn < oo implies 1::~1 E(Xn) < oo and therefore that 
P[Xn ~ 0] = 1. (Compare with Example 4.5.1 in Chapter 4.) 

27. Rapid variation. A distribution tail1- F(x) is called rapidly varying if 

hm = . 1-F(tx) 100, if0<x<1, 
Hoo 1- F(t) 0, ifx > 1. 

Verify that if F is normal or gamma, then the distribution tail is rapidly 
varying. 

If X ~ 0 is a random variable with distribution tail which is rapidly varying, 
then X possesses all positive moments: for any m > 0 we have E (Xm) < 
00. 

28. Let {Xn, n ~ 1} be a sequence of random variables. Show 

iff there exists a random variable 0 ~ Y E L 1 such that 

P[IXnl ~ Y] = 1, "'n ~ 1. 

29. Suppose X n is a sequence of random variables such that 

3 1 
P[Xn = ±n] = - 2 , 

2n 
1 

P[Xn = 0] = 1- 2· 
n 

Show that using Borel-Cantelli that P[limn ..... oo Xn = 0] = 1. Compute 
lim E(Xn). Is it 0? Is the Lebesgue Dominated Convergence Theorem ap-

n ..... oo 
plicable? Why or why not? 
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30. Pratt's lemma. The following variant of dominated convergence and Fatou 
is useful: Let Xn. Yn, X, Y be random variables on the probability space 
(Q, B, P) such that 

(i) 0 ~ Xn ~ Yn, 

(ii) Xn -+ X, Yn -+ Y, 

(iii) E(Yn)-+ E(Y), EY < oo. 

Prove E(Xn) -+ E(X). Show the Dominated Convergence Theorem fol­
lows. 

31. If X is a random variable, call m a median of X if 

1 
"2 ~ P[X ~ m], 

(a) Show the median always exists. 

(b) Is the median always unique? 

1 
P[X < m] > -. - - 2 

(c) If I is a closed interval such that P[X E I] ~ 1/2, show m e I. 

(d) When the variance exists, show 

lm- E(X)I ~ j2Var(X). 

(e) If m is a median of X e L 1 show 

E (IX- ml) ~ E (IX- al), Va e R 

Thus the median minimizes L 1 prediction. 

(f) If X e L2, show that for J.J. = E(X) 

E (IX- J.J.1 2) ~ E (IX- a1 2), Va e JR. 

Thus the mean minimizes L 2 prediction. 

(g) Suppose Xt. X2, ... , Xn. Xn+1 are L2 random variables. Find the 
best linear predictor C based on X 1, ... , X n of X n+ 1; that is, find 
the linear function L:7=1 a; X; such that 

is minimized. 

32. (a) Suppose X has possible values ±1, ±2 and that X assumed each of 
these 4 values with equal probability 1/4. Define Y = X 2. Despite this 
functional relationship, show X and Y are uncorrelated; that is, show 

Cov(X, Y) = 0. 
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(b) Suppose U, V have zero mean and the same variance. Check that X = 
U + V and Y = U - V are uncorrelated. 

(c) Toss two dice. Let X be the sum of the faces andY be the difference. 
Are X, Y independent? Are they uncorrelated? 

33. Suppose X, Yare two L2 random variables such that (X, Y) and (-X, Y) 
have the same joint distributions. Show that X and Y are uncorrelated. 

34. Suppose {Xn, n::: 1} are iid with E(Xn) = 0, Var(Xn) = 1. Compute 

where Sn = X1 + ... + Xn. 

35. Suppose X, Y E LJ . 

(a) Show 

E(Y)- E(X) = L (P[X < x :s Y]- P[Y < x :s X])dx. 

(b) The expected length of the random interval (X, Y] is the integral with 
respect to x of P[x E (X, Y]], the probability the random interval 
covers x. 

36. Beppo Levi Theorem. Suppose for n ::: 1 that Xn E L1 are random vari­
ables such that 

sup E(Xn) < oo. 
n:::I 

Show that if Xn t X, then X E L1 and 

E(Xn) --. E(X). 

37. Mean Approximation Lemma. Suppose that X E L1 (Q, 8, P). For any 
E > 0, there exists an integrable simple random variable XE such that 

Hint: Consider x+ and x- separately. 

Furthermore, if A is a field such that a(A) = 8, then XE can be taken to 
be of the form 

k 

XE = LCilA;. 
i=l 

where Ai E A fori = 1, ... , k. Hint: Review Exercise 5 from Chapter 2. 

38. Use the Fatou Lemma to show the following: If 0 S Xn --. X and 
supn E(Xn) = K < oo, then E(X) :S K and X E LJ. 



166 5. Integration and Expectation 

39. A Poisson process {N(A, w), A e B(R2) on R2 with mean measure J1. is 
defined to have the following properties: 

(a) J1. is a measure such that if A is a bounded measurable set, JJ.(A) < oo. 

(b) For any set A e B(R2), the random variable N(A) is Poisson dis­
tributed with parameter JJ.(A): 

P[N(A) = k] = k! ' I e-p(AJ /l(A)k 

0, 

if JJ.(A) < oo, 
if JJ.(A) = oo. 

(c) For A1, A2, . .. , Ak disjoint regions, the counting random variables 
N(AI), ... , N(Ak) are independent. 

Define for a point process the Laplace functional L as follows: L maps 
non-negative measurable functions f : R2 ~--+ [0, oo) into [0, oo) via the 
formula 

L(f) :=E(exp{- f f(x)N(dx)}) 
)R2 

= { exp{- f f(x)N(dx, w)}P(dw). 
ln JR2 

Show for the Poisson process above that 

L(f) = e- fR2(1-e-f<xJ)!l(dx). 

Hint: Start with f an indicator function and remember how to compute 
the generating function or Laplace transform of a Poisson random vari­
able. Then go from indicator variables to simple variables to general non­
negative f via monotone convergence. 

40. (a) Suppose 11 is a N(JJ.,a 2) random variable satisfying E(exp{q}) = 1. 
Show J1. = -a2 /2. 

(b) Suppose(~. q) are jointly normal. If e~ and ei'J are uncorrelated, then so 
are~ and IJ . 
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6 
Convergence Concepts 

Much of classical probability theory and its applications to statistics concerns 
limit theorems; that is, the asymptotic behavior of a sequence of random vari­
ables. The sequence could consist of sample averages, cumulative sums, extremes, 
sample quantiles, sample correlations, and so on. Whereas probability theory dis­
cusses limit theorems, the theory of statistics is concerned with large sample prop­
erties of statistics, where a statistic is just a function of the sample. 

There are several different notions of convergence and these are discussed next 
in some detail. 

6.1 Almost Sure Convergence 

Suppose we are given a probability space (Q, B, P). We say that a statement 
about random elements holds almost surely (abbreviated a.s.) if there exists an 
event N e B with P(N) = 0 such that the statement holds if w e Nc. Synonyms 
for almost surely include almost everywhere (abbreviated a.e.), almost certainly 
(abbreviated a.c.). Alternatively, we may say that the statement holds for a.a. 
(almost all) w. The set N appearing in the definition is sometimes called the ex­
ception set. 

Here are several examples of statements that hold a.s.: 

• Let X, X' be two random variables. Then X = X' a.s. means 

P[X =X']= 1; 
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that is, there exists an event N E B, such that P(N) = 0 and if w E Nc, 
then X(w) = X'(w). 

• X =:: X' a.s. means there exists an event N E B, such that P(N) = 0 and if 
wE Nc then 

X(w) =:: X'(w). 

• If {Xn} is a sequence of random variables, then limn ..... ooXn exists a.s. 
means there exists an event N E B, such that P(N) = 0 and if w E Nc 
then 

lim Xn(w) 
n-+00 

exists. It also means that for a.a. w, 

limsupXn(w) = liminfXn(w). 
n-+00 n-+00 

We will write limn-+oo Xn =X a.s. or Xn --+ X a.s. or Xn ~-X. 

• If {X n} is a sequence of random variables, then Ln X n converges a.s. means 
there exists an event N E B, such that P(N) = 0, and w E Nc implies 
Ln Xn(w) converges. 

Most probabilistic properties of random variables are invariant under the rela­
tion almost sure equality. For example, if X = X' a.s. then X E L 1 iff X' E L 1 

and in this case E (X) = E (X' ). 
Here is an example of a sequence of random variables that converges a.s. but 

does not converge everywhere. For this example, the exception set N is non­
empty. 

Example 6.1.1 We suppose the probability space is the Lebesgue unit interval: 
([0, 1], B([O, 1]), A.) where>.. is Lebesgue measure. Define 

Xn(s) = { n, 
0, 

We claim that for this example 

ifO::: s::: ~. 
if~ < s ::: 1. 

Xn--+ 0 a.s. 

since if N = {0}, then s E Nc implies Xn(s) --+ 0. It is not true for this example 
that Xn(s) --+ 0 for all s E [0, 1], since Xn(O) = n --+ 00. 0 

Here is another elementary example of almost sure convergence. This one is 
taken from extreme value theory. 

Proposition 6.1.1 Let {Xn} be iid random variables with common distribution 
function F(x). Assume that F(x) < 1, for all x . Set 

n 

Mn=VX; . 
1 
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Then 
Mn too a.s. 

Proof. Recall 

P[Mn::: x] = P[X1::: x, ... , Xn ::: x] 
n 

= n P[X; ::: x] = r(x) . 
i=l 

We must prove that there exists NEB, such that P(N) = 0 and, for wE Nc, we 
have that 

lim Mn(w) = oo; 
n-+00 

that is, for all j, there exists no(w, j) such that if n ::;: no(w, j), then Mn (w) ::;: j. 
Note 

L P[Mn ::: j] = L r(j) < 00 
n n 

since F (j) < 1. So the Borel-Cantelli Lemma implies 

P([Mn ::: j] i.o.) = P(lim sup[Mn ::: j]) = 0 
n-+oo 

and if 
Nj = limsup[Mn ::: j] 

n-+oo 

we have P(Nj) = 0. Note 

N1~ =lim inf[Mn > j], 
n-+oo 

so for wE Nj, we get Mn(w) > j for all large n. 
LetN = UjNi so 

P(N)::: L P(Nj) = 0. 
j 

If w E Nc, we have the property that for any j, Mn(w) > j for all sufficiently 
large n. 0 

6.2 Convergence in Probability 

Suppose Xn, n ::;: 1 and X are random variables. Then {Xn} converges in proba­

bility (i.p.) to X, written Xn ~ X, if for any € > 0 

lim P[IXn- Xi > €] = 0. 
n-+oo 

Almost sure convergence of {Xn} demands that for a.a. w, Xn(w)- X(w) gets 
small and stays small. Convergence i.p. is weaker and merely requires that the 
probability of the difference X n (w) - X (w) being non-trivial becomes small. 

It is possible for a sequence to converge in probability but not almost surely. 
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Example 6.2.1 Here is an example of a sequence which converges i.p. to 0 but 
does not converge a.s. to 0. Let (Q , B, P) = ([0, 1], 8([0, 1]), A) where A is 
Lebesgue measure and define {X n} as follows: 

and so on. 

X1 = 1[0,1)• 

x2 = 1 10.~ 1 • 

X4 = 110.ll' 

For any we [0, 1], Xn(w) fr 0 since Xn(w) = 1 for infinitely many values of 
p 

n. However Xn ~ 0. D 

We next see that a.s. convergence implies convergence i.p. The previous Exam­
ple 6.2.1 showed the converse false in general. 

Theorem 6.2.1 (Convergence a.s. implies convergence i.p.) Suppose that 
{Xn , n ::: 1, X} are random variables on a probability space (Q, B, P). If 

then 

Xn ~X, a.s ., 

p 
Xn~X. 

Proof. If X n ~ X a.s. then for any E, 

0 = P([IXn- XI > E] i.o.) 

= P(limsup[IXn -XI> E]) 
n-+00 

= lim P(U£1Xn -XI> E]) 
N-+oo n~N 

::: lim P[IXn- XI > E]. 
n-+oo D 

Remark. The definition of convergence i.p. and convergence a.s. can be read­
ily extended to random elements of metric spaces. If {Xn, n ::: 1, X} are ran­
dom elements of a metric spaceS with metric d, then Xn ~ X a.s. means that 

p p 
d(Xn. X)~ 0 a.s. and Xn ~X means d(Xn. X)~ 0. 

6.2.1 Statistical Terminology 

In statistical estimation theory, almost sure and in probability convergence have 
analogues as strong or weak consistency. 

Given a family of probability models (Q , B, Pe), 0 E 9). Suppose the statis­
tician gets to observe random variables X 1, . . . , X n defined on n and based on 
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these observations must decide which is the correct model; that is, which is the 
correct value of(}. Statistical estimation means: select the correct model. 

For example, suppose S1 = lR00 , B = B(lR00 ). Let w = (x1, xz, ... ) and 
define Xn(w) = Xn. For each(} E IR, let Pe be product measure on lR00 which 
makes {Xn, n ~ 1} iid with common N(O, 1) distribution. Based on observing 
X 1, ... , X n, one estimates (} with an appropriate function of the observations 

On = On(Xt. ... , Xn). 

On(X1, ... , Xn) is called a statistic and is also an estimator. When one actually 
does the experiment and observes, 

then O(x1, ... • xn) is called the estimate. So the estimator is a random element 
while the estimate is a number or maybe a vector if(} is multidimensional. 

In this example, the usual choice of estimator is On = 2:7 = 1 X; In. The estima­
tor On is weakly consistent if for all (} E 8 

Pe[IOn- 01 > E]-+ 0, n-+ oo; 

that is, 
A p8 

On -+ 0. 

This indicates that no matter what the true parameter is or to put it another way, no 
matter what the true (but unknown) state of nature is, 0 does a good job estimating 
the true parameter. On is strongly consistent if for all(} E e, On -+ (}, Pe-a.s. 
This is obviously stronger than weak consistency. 

6.3 Connections Between a.s. and i.p. Convergence 

Here we discuss the basic relations between convergence in probability and almost 
sure convergence. These relations have certain ramifications such as extension of 
the dominated convergence principle to convergence in probability. 

Theorem 6.3.1 (Relations between i.p. and a.s. convergence) Suppose that 
{Xn, X, n ~ 1} are real-valued random variables. 

(a) Cauchy criterion: {X n} converges in probability iff {X n} is Cauchy in prob­
ability. Cauchy in probability means 

p 
Xn -Xm-+ 0, asn,m-+ 00. 

or more precisely, given any E > 0, 8 > 0, there exists no = no(E, 8) such 
that for all r, s ~ no we have 

P[IXr- Xsl > E] < 8. (6.1) 
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(b) Xn ~ X iff each subsequence {Xntl contains a further subsequence 
{X nk(iJ} which converges almost surely to X. 

Proof. (i) We first show that if Xn ~X then {Xn} is Cauchy i.p. For any E > 0, 

€ € 
[IXr- Xsl >E) C [IXr- XI > 2) U [IXs- XI > 2). (6.2) 

To see this, take complements of both sides and it is clear that if 

E E 
IX,- XI ::: 2 and IXs- XI ::: 2' 

then by the triangle inequality 

IXr- Xsl::; E. 

Thus, taking probabilities and using subadditivity, we get from (6.2) 

E E 
P[IXr- Xsl >E)::; P[IXr- XI> 2J + P[IXs- XI> 2). 

If 

for n 2:; no(E, 0), then 

for r, s 2:: no. 

0 
P[IXn- XI >E)::; 2 

P[IXr -Xsl > t:] :58 

(ii) Next, we prove the following assertion: If {Xn} is Cauchy i.p., then there ex­
ists a subsequence {X n i} such that {X n i} converges almost surely. Call the almost 
sure limit X. Then it is also true that also 

p 
Xn~X. 

To prove the assertion, define a sequence n i by n 1 = 1 and 

ni = inf{N > nj-1: P[IXr -X5 I > 2-i] < Ti forallr,s 2:: N}. 

(In the definition (6.1) of what it means for a sequence to be Cauchy i.p., we let 
€ = 8 = 2-i .) Note, by construction n i > n j-1 so that n i ~ oo. Consequently, 
we have 

and thus 
00 

LP[IXni+l -Xnil > 2-j] < 00. 

j=1 
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The Borel-Cantelli Lemma implies 

P(N) := P{limsup[IXni+l -Xnil > 2-j]} = 0. 
j-+00 

(6.3) 

for all large j and thus {X n i ( w)} is a Cauchy sequence of real numbers. The 
Cauchy property follows since (6.3) implies for large l that 

L IXni+l (w)- Xn/W)I :S L2-j = 2 · 2-1, 

j~ j~ 

and therefore for any k > I large, we get 

IXnk(w)- Xnl(w)l::: L IXnj+l (w)- Xnj(w)l::: 2. T 1• 
j~l 

Completeness of the real line implies 

exists; that is 

_lim Xni(w) 
J-+00 

w e Nc implies _lim X n i (w) exists. 
J-+00 

This means that {X n i} converges a.s. and we call the limit X . 
p 

To show X n --+ X note 

E E 
P[IXn- XI> E] :S P[IXn- Xnjl > 2] + P[IXnj- XI> 2]. 

Given any TJ, pick n j and n so large that the Cauchy i.p. property guarantees 

E 1/ 
P[IXn -Xnil > 2] < 2· 

S. X a.s. X . 1· X P X mce n i --+ tmp tes n i --+ , 

f TJ 
P[IXni -XI> 2] < 2 

for large n j. This finishes the proof of part (a). 

We now focus on the proof of (b): Suppose Xn .!:. X. Pick any subsequence 

{Xnd· Then it is also true that Xnk .!:. X . From (ii) above, there exists a further 
subsequence {X nkci)} converging a.s. 

Conversely: Suppose every subsequence has a further subsequence converging 

alomst surely to X. To show Xn .!:. X, we suppose this fails and get a contradic-
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tion. If {Xn} fails to converge in probability, there exists a subsequence {Xnk} and 
a 8 > 0 and E > 0 such that 

But every subsequence, such as {Xnk} is assumed to have a further subsequence 
{X nk(iJ} which converges a.s. and hence i.p. But 

contradicts convergence i.p. 0 

This result relates convergence in probability to point wise convergence and 
thus allows easy connections to continuous maps. 

Corollary 6.3.1 (i) If Xn ~· X and 

g:IR~JR. 

is continuous, then 
g(Xn) ~· g(X). 

(ii) If Xn ~X and 

is continuous, then 
p 

g(Xn) --+ g(X). 

Thus, taking a continuous function of a sequence of random variables which con­
verges either almost surely or in probability, preserves the convergence. 

Proof. (i) There exists a null event N E B with P(N) = 0, such that if w E Nc, 
then 

Xn(w)--+ X(w) 

in JR., and hence by continuity, if w E Nc, then 

g(Xn(w))--+ g(X(w)). 

This is almost sure convergence of {g(Xn)}. 
(ii) Let {g(X nk)} be some subsequence of {g(X n)}. It suffices to find an a.s. con­

vergence subsequence {g(Xnk(i))}. But we know {Xnk} has some a.s. convergent 

subsequence {Xnk1iJ} such that Xnk!iJ --+X almost surely. Thus g(Xnk!i>) ~· g(X) 
which finishes the proof. 0 

Thus we see that if Xn ~ X, it is also true that 

x; ~ X 2 , and arctanXn ~ arctanX 
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and so on. 
Now for the promised connection with Dominated Convergence: The statement 

of the Dominated Convergence Theorem holds without change when almost sure 
convergence is replaced by convergence i.p. 

Corollary 6.3.2 (Lebesgue Dominated Convergence) If Xn 2:. X and if there 
exists a dominating random variable ; e L 1 such that 

then 

E(Xn)-+ E(X). 

Proof. It suffices to show every convergent subsequence of E (X n) converges to 
E(X). 

Suppose E (X nk) converges. Then since convergence in probability is assumed, 

{Xnk} contains an a.s. convergent subsequence {Xnk(i)} such that Xnw> ~- X. The 
Lebesgue Dominated Convergence Theorem implies 

So E(Xnk)-+ E(X) . 

We now list several easy results related to convergence in probability. 

p p 
(1) If Xn -+X and Yn -+ Y then 

p 
Xn + Yn -+ X + Y. 

To see this, just note 

E E 
[I(Xn + Yn)- (X+ Y)l > E] C [IXn- Xi > 2] U [IYn- Yl > 2]. 

Take probabilities, use subadditivity and let n -+ oo. 

(2) A multiplicative counterpart to (1): If Xn 2:. X and Yn 2:. Y, then 

p 
XnYn-+ XY. 

0 

To see this, observe that given a subsequence {nk}, it suffices to find a fur­
ther subsequence {nk(i)} C {nk} such that 

Since Xnk 2:. X, there exists a subsequence {n~} c {nk} such that 

X a.s. X 
nA. -+ . 
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Since Yn ~ Y, given the subsequence {nA:}, there exists a further subse­
quence {nk(i)} C {nA:} such that 

and hence, since the product of two convergent sequences is convergent, we 
have 

x, y, ~·xY. 
nk(i) nk<i> 

Thus every subsequence of {XnYn} has an a.s. convergent subsequence. 

(3) This item is a reminder that Chebychev's inequality implies the Weak Law 
of Large Numbers (WLLN): If {Xn. n 2: 1} are iid with EXn = ll and 
Var(Xn) = cr 2, then 

n 

LX;/n ~ ll· 
i=l 

(4) Bernstein's version of the Weierstrass Approximation Theorem. Let f 
[0, 1] ~---+ JR. be continuous and define the Bernstein polynomial of degree n 
by 

O~x~l. 

Then 
Bn(X)--+ f(x) 

uniformly for x E [0, 1]. The proof of pointwise convergence is easy using 
the WLLN: Let OJ, 8z, ... , On be iid Bernoulli random variables with 

P[o; = 1] =X = 1- P[o; = 0]. 

Define Sn = L:?=t 8; so that Sn has a binomial distribution with success 
probability p = x and 

E(Sn) = nx, Var(Sn) = nx(1- x) ~ n. 

Since f is continuous on [0, 1 ], f is bounded. Thus, since 

Sn P 

from the WLLN, we get 

---+X, 
n 

Sn P 
f(-) --+ f(x) 

n 
by continuity of f and by dominated convergence, we get 

Sn 
Ef(-)--+ f(x). 

n 
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But 

Sn ~ k (n) k n k Ef(-)=~f(-) X (1-x)- =Bn(X). 
n k=O nk 

We now show convergence is uniform. Since f is continuous on [0, 1 ], f 
is uniformly continuous, so define the modulus of continuity as 

w(8) = sup lf(x)- f(y)l, 
lx-yl::;8 

O~x .y~l 

and uniform continuity means 

Define 

Now we write 

lim w(8) = 0 . 
.stO 

11/11 = sup{lf(x)l: 0 ~ x ~ 1}. 

sup IBn(X)- f(x)l =sup IE(f(Sn )) - f(x)l 
O~x~l x n 

~ supE(If(Sn)- f(x)l) 
x n 

~ s~p{E(I/(:)- f(x)ll[l~-xl~f]) 

+ s~p£(1/(~n)- f(x)l1[1~-xl>f))} 
Sn 

~w(E)P[ ]+211/llsupP[I- -xl > E] 
x n 

Var(§a.) 
~w(E)+211fllsup 2n 

X E 

211/11 nx(1- x) 
~ w(E) + - 2- sup 2 

E x n 

211/111 1 
=w(E) + --- ·­

E2 4 n 

( by Chebychev ) 

where we have used 

So we conclude 

1 
sup x(1-x) = -. 

O~x~l 4 

1 
sup IBn(x)- f(x)l = w(E) + (const) · -, 

O~x~l n 
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and therefore 

lim sup sup IBn(x)- f(x)l::: w(E). 
n--.oo 0:9:51 

Since w (E) --+ 0 as E --+ 0, the proof is complete. 

6.4 Quantile Estimation 

0 

A significant statistical application of convergence in probability is to quantile 
estimation. 

Let F be a distribution function. For 0 < p < 1, the pth order quantile of 
F is F+-(p) . IfF is unknown, we may wish to estimate a quantile. Statistical 
tests, reliability standards, insurance premia, dam construction are all based on 
estimated quantiles. How can one estimate F+-(p) based on a random sample? 

One non-parametric method uses order statistics. Let X 1, • • • , X n be a random 
sample from F; that is, X 1, .. . , X n are iid with common distribution function F. 
The order statistics of the sample are 

x(n) < x(n) < . .. < x(n) 
1-2- -n • 

so that X~n) is the minimum of the sample and X~n) is the maximum. Define the 
empirical cumulative distribution function (edt) by 

which is the percentage of the sample whose value is no greater than x. Note that 
if we think of success at the jth trial as the random variable Xj having a value 
::: x , then 

nFn(x) =#successes inn trials 

is a binomial random variable with success probability F(x) . So 

E(nFn(X)) = nF(x), Var(nFn(x)) = nF(x)(1- F(x)) 

and the WLLN implies 
p 

Fn(x)--+ F(x) 

for each x. In fact, much more is true as we will see when we study the Glivenko­
Cantelli Lemma in the next chapter. 
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Thus, Fn approximates or estimates F and we hope Fn~ estimates F~. But 
since Fn only jumps at the order statistics, we have 

Fn~(p) = inf{y : Fn(y) ~ p} 

= inf{XJn) : Fn(XJn)) ~ p} 

= inf{XJn) : ~ ~ p} 

= inf{XJn) : j ~ np} 

x<n) 
= rnpl' 

where fnpl is the first integer~ np. We will try X~~~l as the quantile estimator. 

Theorem 6.4.1 Suppose F is strictly increasing at F ~ (p) which means that for 
all E > 0 

Then we have X~~~l is a weakly consistent quantile estimator, 

X (n) p F~( ) 
rnpl ~ p. 

Proof. We begin with a reminder that 

We must prove for all E > 0, 

which is equivalent to showing that for all E > 0, 

P[X}~~l > F~(p) + E] ~ 0, 

P[X~~~l ~ F~(p)- E] ~ 0. 

From (6.5), this in tum is equivalent to showing that for all E > 0: 

1- P[X~~~l ~ F~(p) +E)= 1- P[nFn(F~(p) +E) ~ fnpl) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

= P[nFn(F~(p) +E) < fnpl] ~ 0 (6.9) 

and 

(6.10) 
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For (6.10) we have 

P[Fn(F-(p)- €) ~ fnpl] 
n 

= P[Fn(F-(p)- €)- F(F-(p)- €) ~ fnpl - F(F-(p)- €)], 
n 

(6.11) 

where we centered the random variable on the left to have zero mean. Now 
¥ ~ p and by the WLLN 

Also by ( 6.4 ), there exists ~ > 0 such that 

For all large n, 
fnpl +- ~ 
-n- - F(F (p)- €) ~ 2' > 0. 

So the probability in (6.11) is bounded above by 

Similarly, we can show the convergence in (6.9). 0 

6.5 L P Convergence 

In this section we examine a form of convergence and a notion of distance that is 
widely used in statistics and time series analysis. It is based on the L p metric. 

Recall the notation X e L p which means E (IXIP) < oo. For random variables 
X, Y e L P• we define the L p metric for p ~ 1 by 

This indeed defines a metric but proving this is not completely trivial. (The trian­
gle inequality is the Minkowski Inequality.) This metric is norm induced because 

is a norm on the space L P. 

A sequence {Xn} of random variables converges in L p to X, written 

L 
Xn4X, 
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if 

asn-+ oo. 
The most important case is when p = 2, in which case L 2 is a Hilbert space 

with the inner product of X, Y defined by the covariance of X, Y. Here are two 
simple examples which use the L 2 metric. 

1. Define {X n} to be a (2nd order, weakly, covariance) stationary process if 
EXn =: m independent of nand 

Corr(Xn , Xn+k) = p(k) 

for all n. No distributional structure is specified. The best linear predictor 
of X n+l based on X t. . . . , X n is the linear combination of X t. . . . , X n 
which achieves minimum mean square error (MSE). Call this predictor 
.-.. .-. • ~ n 
Xn+l · Then Xn+l IS of the form Xn+l = 2:1 a;X; and a1, . . . ,an are 
chosen so that 

n 
..- 2 ~ 2 E(Xn+t-Xn+I) = min E(L;a;X;-Xn+t). 

Cl'i· · ·· .an . 
1=1 

2. Suppose {X n} is an iid sequence of random variables with E (X n) = J1. and 
Var(Xn) = a 2• Then 

since 

Sn 2 1 2 
E(-;;-J.L) =n2 E(Sn-nJ1.) 

1 = 2Var(Sn) 
n 
na2 

= -2 -+0. 
n 

Here are some basic facts about L P convergence. 

0 

L 
(i) L p convergence implies convergence in probability: For p > 0, if Xn 4 X 

p 
then Xn-+ X. 

This follows readily from Chebychev's inequality, 

(6.12) 
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(ii) Convergence in probability does not imply L p convergence. What can go 
wrong is that the nth function in the sequence can be huge on a very small 
set. 

Here is a simple example. Let the probability space be ([0, 1], 8([0, 1]), A) 
where A is Lebesgue measure and set 

Then 

P[IXnl > €] = P((o, ~)) = ~ ~ 0 

but 

(iii) L P convergence does not imply almost sure convergence as shown by the 
following simple example. Consider the functions {Xn} defined on ([0, 1], 
8([0, 1 ]), A) where A is Lebesgue measure. 

Xt = 1 10.~ 1 , 

X3 = 1 10.~ 1 , 

Xs = 1 1 ~. 11 • 

x2 = 1[!.11 

X4 = 11, 21 J•J 

X6 = 1[0.!J 

and so on. Note that for any p > 0, 

1 1 
E(iXtiP) =z• E(iX2iP) = z' 

1 1 
E(iX3iP) =3· ... , E(IX6iP) = 4· 

So E(iXniP) ~ 0 and 
L 

Xn 4o. 

Observe that {Xn} does not converge almost surely to 0. 0 

Deeper and more useful connections between modes of convergence depend on 
the notion of uniform integrability (ui) which is discussed next. 

6.5.1 Uniform Integrability 

Uniform integrability is a property of a family of random variables which says 
that the first absolute moments are uniformly bounded and the distribution tails 
of the random variables in the family converge to 0 at a uniform rate. We give the 
formal definition. 
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Definition. A family {X1, t E T} of L1 random variables indexed by T is uni­
formly integrable (abbreviated ui) if 

sup£ (1Xti1[1X,I>a)) =sup r IXrldP ~ 0 
lET lET J[IX1 I>a) 

as a ~ oo; that is, 

{ IXtldP ~ 0 
)[IX,I>a] 

as a ~ oo, uniformly in t E T. 
We next give some simple criteria for various families to be uniformly inte­

grable. 

(1) If T = {1} consists of one element, then 

as a consequence of X 1 E L 1 and Exercise 6 of Chapter 5. 

(2) Dominated families. If there exists a dominating random variable Y E L 1, 

such that 

for all t E T, then {X1} is ui. To see this we merely need to observe that 

sup { IX,IdP ~ { IYI ~ 0, a~ oo. 
tET j[IX,I>a] j[IYI>a) 

(3) Finite families. Suppose X; E Lt. fori= 1, ... , n. Then the finite family 
{X 1, X z, ... , X n} is ui. This follows quickly from the finite family being 
dominated by an integrable random variable, 

n 

IX; I~ L IXjl E L1 
i=1 

and then applying (2). 

(4) More domination. Suppose for each t E T that X 1 E L1 and Y1 E L1 and 

Then if {Y1} is ui so is {X1} ui. 

This is an easy consequence of the definition. 
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(5) Crystal Ball Condition. For p > 0, the family {IXniP} is ui, if 

sup£ (IXnlp+&) < 00, 
n 

for some o > 0. 

(6.13) 

For example, suppose {Xn} is a sequence of random variables satisfying 
E(Xn) = 0, and Var(Xn) = 1 for all n. Then {Xn} is ui. 

To verify sufficiency of the crystal ball condition, write 

asa ~ oo. 0 

We now characterize uniform integrability in terms of uniform absolute conti­
nuity and uniform boundedness of the first absolute moments. 

Theorem 6.5.1 Let {X1 , t e T} beL 1 random variables. This family is ui iff 

(A) Uniform absolute continuity: For all E > 0, there exists~ =~(E), such that 

and 

VA E 13 : sup { IX11dP < E if P(A) < ~. 
reT JA 

(B) Uniform bounded first absolute moments: 

supE(IXrl) < oo. 
reT 

Proof. Suppose {X1} is ui. For any X e L 1 and a > 0 

iiXIdP = { IXIdP + { IXIdP 
}A(IXI9] }A[IXI>a] 

< aP(A) + { IXIdP. 
}[IXI>a] 
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So 

sup ( IXtldP:::::; aP(A) + supl IX1IdP. 
lET JA tET IX,I>a 

Insert A = 0 and we get (B). To get (A) pick "a" so large that 

If 

then 

which is (A). 

1 € 
sup IX1IdP::: -. 
lET [IX1 1>a) 2 

E/2 
P(A):::- = ;, 

a 

1 € € 
sup IX1idP::::::- + -2 = E 
lET A 2 

Conversely: Suppose (A) and (B) hold. Chebychev's inequality implies 

supP[IX1I >a]::: supE(IX1I)/a = const/a 
lET lET 

from (B). Now we apply (A): Given E > 0, there exists ; such that whenever 
P(A) < ; , we have i IX1idP < E 

for all t e T. Pick "a" large enough so that P[IXtl > a] < ; , for all t. Then for 
all t we get 

{ iXtldP < E, 
J(IX,I>a] 

which is the ui property. 

Example 6.5.1 Let {X n} be a sequence of random variables with 

P[Xn = 0] = p, P[Xn = n] = q, p + q = 1. 

Find a value of p = Pn so that 

and thus 

SinceXn 2::0, 

1 = E(Xn) = 0 · p + nq 

1 
q= -. n 

1 
p = 1--. 

n 

supE(IXnD = 1 
n~l 

0 
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but the family in not ui since 

This entails 

{ IXnidP = !1' 
luxnJ>a] 0, 

if a~ n, 

if a> n. 

sup { IXnldP = 1. 
n;::l luxnl>a) 

6.5.2 Interlude: A Review of Inequalities 

0 

We pause in our discussion of L P convergence and uniform integrability to discuss 
some standard moment inequalities. We take these up in turn. 

1. Schwartz Inequality: Suppose we have two random variables X, Y e Lz. 
Then 

To prove this, note for any t e lR that 

0 ~ E(X- tY)2 = E(X2)- 2tE(XY) + t 2E(Y2) (6.14) 

= : q(t) 

and that q(·) is differentiable 

q'(t) = -2E(XY) + 2tE(Y2). 

Set q'(t) = 0 and solve to get 

t = E(XY)/EY2• 

Substitute this value oft into (6.14) which yields 

Multiply through by E (Y2) . 0 

A minor modification of this procedure shows when equality holds. This is 
discussed in Problem 9 of Section 6. 7 

2. Holder's inequality: Suppose p, q satisfy 

and that 

1 1 
p > 1, q > 1, - + - = 1 

p q 
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Then 

In terms of norms this says 

Note Schwartz's inequality is the special case p = q = 2. 

The proof of Holder's inequality is a convexity argument. First note that 
if E(IXIP) = 0, then X = 0 a.s .. Thus, E(IXYI) = 0 and the asserted 
inequality holds. Similarly if E(IYiq) = 0. So suppose the right side of 
Holder's inequality is strictly positive. (This will allow us at the end of the 
prooftodivideby IIXIIpiiYIIq·) 
Observe for a > 0, b > 0 there exist s, t e lR such that 

(6.15) 

Since exp{x} is convex on lR and p-1 + q-1 = 1, we have by convexity 

or from the definition of s, t 

Now replace a by IXI/IIXIIp and b by IYI/IIYIIq to get 

IXYI < _1 ( lXI )P _1 ( IYI )q 
IIXIIpiiYIIq - P IIXIIp + q IIYIIq 

and so, after taking expectations, we get 

E(IXYI) _1 _ 1 

IIXIIpiiYIIq :; P +q = 1. 
0 

3. Minkowski Inequality: For 1 ~ p < oo, assume X, Y e L p· Then X+ Y e 
Lp and 

To see why L P is closed under addition, note 

If p = 1, Minkowski's inequality is obvious from the ordinary triangle 
inequality. So assume 1 < p < oo and choose q conjugate to p so that 
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p -l + q -l = 1 and thus p - 1 = p j q. Now we apply Holder's inequality. 
We have 

IIX + Yll~ =E(IX +YIP)= E (IX+ YIIX + Ylpfq) 

~E (IXIIX + Ylpfq) + E (IYIIX + Ylpfq) 

and applying Holder's inequality, we get the bound 

~(IIXIIpiiiX + YIP1qllq + IIYIIpiiiX + Ylp/qllq 

=(IIXIIp + IIYIIp)IIIX + Ylp!qllq 

=(IIXIIp + IIYIIp) (EIX + YIP)q 

=(IIXIIp + IIYiip)IIX + Yll~!q 

=(IIXIIp + IIYIIp)IIX + nr1. 

-I 

Assuming the last factor is non-zero, we may divide through to get the 
result. If the last factor equals zero, both sides of the inequality are zero. 0 

4. Jensen's inequality: Suppose u : IR ~--+ IRis convex and E(IXI) < oo and 
E(lu(X)I) < oo. Then 

E(u(X)) ~ u(E(X)). 

This is more general than the variance inequality Var(X) ~ 0 implying 
E (X2) ~ (E X)2 which is the special case of Jensen's inequality for u (x) = 
x2. 

If u is concave, the inequality reverses. 

For the proof of Jensen's inequality, note that u convex means for each 
~ e IR, there exists a supporting line L through ( ~, u ( ~)) such that graph of 
u is above the line. So 

u(x) ~ line L thru (~, u(~)) 

and therefore, parameterizing the line, we have 

u(x) ~ u(n + A(x- ~) 

where A is the slope of L. Let ~ = E (X). Then for all x 

u(x) ~ u(E(X)) + A(X- E(X)). 

(Note A depends on ~ = E (X) but does not depend on x .) Now let x = X 
and we get 

u(X) ~ u(E(X)) + A(X- E(X)). 

Taking expectations 

Eu(X) ~ u(E(X)) + AE(X- EX)= u(E(X)). o 
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Example 6.5.2 (An application of Holder's Inequality) Let 0 < a < f3 and set 

Then 

Set 

fJ 
r =- > 1, 

a 
fJ S=--. 

{3-a 

1 1 a {3-a fJ 
-+-=-+--=-=1. 
r s fJ fJ fJ 

With these definitions, we have by Holder's inequality that 

that is, 

so that 

and 

IIXIIa ::: IIXIIp. 

We conclude that X E L p implies X E La, provided a < {3. Furthermore 

IIXII, = (EIX1'> 11' 

is non-decreasing in t. 
Also if 

and p' < p, then 

6.6 More on L P Convergence 

This section utilizes the definitions and basic properties of L P convergence, uni­
form integrability and the inequalities discussed in the previous section. We begin 
with some relatively easy implications of L p convergence. We work up to an 
answer to the question: If random variables converge, when do their moments 
converge? 

Assume the random variables {X, Xn, n ~ 1} are all defined on (Q, B, P). 
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1. A form of Scheffe 's lemma: We have the following equivalence for L 1 con­
vergence: As n -+ oo 

iff 

sup I { XndP- { XdPI-+ 0. 
AeB )A )A 

(6.16) 

Note that if we replace A by Q in (6.16) that we get 

IE(Xn) - E(X)I ~ EIXn- XI-+ 0 

so that first moments converge. This, of course, also follows by the modulus 
inequality. 

To verify (6.16), suppose first that Xn ~ X. Then we have 

sup I { XndP- { XdPI 
A )A )A 

=sup I r (Xn- X)dPI 
A )A 

~ sup [ IXn - XldP 
A )A 

~I IXn -XIdP 

=E(IXn -XI)-+ 0. 

For the converse, suppose (6.16) holds. Then 

2. If 

then 

EiXn-XI= { (Xn-X)dP+ { (X-Xn)dP 
lrxn>X] lrxn!:X] 

= (frXn>X] Xn -lXn>X] X) 

+ ( { X- { Xn) 
lrxn!:X) lrxn!:X] 

~2supl { Xn- {XI . 
A )A )A 

L 
Xn4X 

0 
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or equivalently 

For this verification, write 

X=Xn+X-Xn 

and Minkowski's inequality implies 

liXIip ::: liXn lip+ liX- Xn lip · 

Interchange the roles of X n and X in ( 6.17) to get 

liXn lip ::: liXIip + liX- Xn lip · 

So combining (6.17)and (6.18) we get 

lliXnllp -IIXIIpl::: IIX -Xnllp ~ 0, 

as was to be proved. 

(6.17) 

(6.18) 

(6.19) 

0 

Towards a resolution of the problem of when moments of a sequence of random 
variables converge, we present the following result which deals with the case 
p=l. 

Theorem 6.6.1 Suppose for n 2: 1 that Xn e Lt. The following statements are 
equivalent: 

(a) {X n } is L 1-convergent. 

(b) {X n} is L 1-cauchy; that is, 

asn,m ~ oo. 

(c) {Xn} is uniformly integrable and {Xn} converges in probability. 

So if X n ~· X or X n .!:. X and {X n} is ui, then the first moments converge: 

IE(Xn)- E(X)I ::: E(IXn- XI)~ 0. 

Later, we will see that convergence i.p. of {Xn} can be replaced by convergence 
in distribution to X . 

Proof. (a)~(b): L 1 convergence implies Cauchy convergence because of the tri­
angle inequality. 

(b)~(c): Given (b) we first show that {Xn} is ui. Given € > 0, there exists N€ 
such that if m, n ::: N€ then 

J IXn- XmldP < E/2. (6.20) 
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To show {Xn} is ui, we use Theorem 6.5.1. For any A E B 

i IXnldP::: i IXn -XN. +XN.IdP 

::: iiXN.IdP+ fiXn-XN.IdP. 

For any n ::: Nf 

that is, 

sup { IXnldP::: { iXN.IdP + €/2. 
n'?;N• }A }A 

and thus 

sup { IXnldP::: sup { IXmldP + €/2. 
n }A m~N.}A 

If A = n, we conclude 

supE(IXnD::: sup EOXmD +€/2 < oo. 
n m~N. 

Furthermore, since finite families of L1 rv's are ui, {Xm, m ::: Nf} is ui and given 
€ > 0, there exists 8 > 0 such that if P(A) < 8, then 

sup { IXmldP < €/2 
m~N. }A 

so we may conclude that whenever P(A) < 8, 

Hence {X n} is ui. 

sup { IXnl::: €/2 + €/2 = € . 
n JA 

To finish the proof that (b) implies (c), we need to check that {Xn} converges 
in probability. But 

so {Xn} is Cauchy i.p. and hence convergent in probability. 

(c)~(a): If Xn ~ X, then there exists a subsequence {nk} such that 

X a.s. X 
nk ~ ' 
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and so by Fatou's lemma 

since {Xn} is ui. So X E L 1· Also, for any € > 0 

f IXn- XldP:;: { IXn- XldP + { IXnldP 
luxn-XI:SE) luxn-XI>E) 

+ { IXIdP 
J[IXn-XI>E) 

:;: € +A +B. 

SinceXn ~X, 
P[IXn -XI> €] ~ 0 

and hence B ~ 0 as n ~ oo by Exercise 6 of Chapter 5. 
To verify A ~ 0, note that since {Xnl is ui, given € > 0, there exists 8 > 0 

such that 

sup11XkldP < € 
k~1 A 

if P(A) < 8. Choose n so large that 

P[IXn -XI> €] < 8 

and then A < €. 0 

Example. Suppose X1 and Xz are iid N(O, 1) random variables and define Y = 
Xt!IXzl. The variable Y has a Cauchy distribution with density 

1 
f(y) = rr(1 + y2)' y E R 

Define 

Then 
Yn ~ Y 

but {Yn} is NOT ui, since E(Yn) = 0 but E(IYD = oo. If {Ynl were ui, then by 
Theorem 6.6.1 we would have 

E(Yn) ~ E(Y) 

but the expectation of Y does not exist. 
We give more detail about why E (Yn) = 0. Let F1 = Fz be standard normal 

distributions. Then 

E(Yn) =If 1 x1 F1 x Fz(dx1, dx2). 
JR2 n- + lx2l 



194 6. Convergence Concepts 

Note that the integrand is in L 1 (FI x F2) since 

If wl n-l: lx211 Fl X F2(dXJ, dx2) ~ n If JR21xiiF1 X F2(dX], dx2) 

=nE(IX11). 

Thus, from Fubini's theorem 

E(Xn) = { 1 
1 [ { X!Ft(dxi)] F2(dx2) = 0, 

JJR n- + lx2l JJR 
since the inner integral is zero. 

We give the extension of Theorem 6.6.1 to higher moments. 

Theorem 6.6.2 Suppose p ;::: 1 and X n E L p· The following are equivalent. 

(a) {X n} is L p convergent. 

(b) {X n} is L ;-cauchy; that is 

as n,m-+ oo. 

(c) {IXn iP} is uniformly integrable and {Xn} is convergentin probability. 

0 

Note that this Theorem states that L P is a complete metric space; that is, every 
Cauchy sequence has a limit. 

Proof. The proof is similar to that of Theorem 6.6.1 and is given briefly. 
(a)-+ (b): Minkowski's inequality means IIXIIp is a norm satisfying the triangle 

inequality so 

asn,m-+ oo. 
(b)-+(c): If {Xn} is Lp Cauchy, then it is Cauchy in probability (see (6.12)) 

so there exists X such that Xn ~ X. To show uniform integrability we verify 
the conditions of Theorem 6.5.1. Note by (6.19) (with Xm replacing X), we have 
{ IIX n II P, n ;::: 1} is a Cauchy sequence of real numbers and hence convergent. So 
supn IIXn lip < oo. This also implies that X, the limit in probability of Xn, is in 
L P by Fatou. To finish, note we have 

L IXniPdP ~ L IXn -Xm +XmiPdP 

and applying the 2P inequality of Exercise 3 we get the bound 

~2P L IXn -XmiPdP+2P L IXmiPdP 

~2PIIXn -Xmll~ +2P L IXmiPdP. 
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Given E > 0, there exists mo such that n 2: mo implies 

Since X mo E L P• we have 2P JA IX mo iP d P --. 0 as P (A) --. 0 (see Exercise 6 of 
Chapter 5). The uniform integrability follows. 

(c)-.(a): As in Theorem 6.6.1, since {Xn} is convergent in probability, there 
exists X such that along some subsequence Xnk ~·X. Since {IX niP} is ui 

00 

E(IXIP) ~ liminfE(IXnkiP) ~ V E(IXniP) < oo, 
k-+oo n=l 

so X e L p· One may now finish the proof in a manner wholly analogous to the 
proof of Theorem 6.6.1. D 

6. 7 Exercises 

1. (a) Let {Xn} be a monotone sequence of random variables. If 

then 

(Think subsequences.) 

p 
Xn--. X 

X a.s. X n __. • 

(b) Let {X n} be any sequence of random variables. Show that 

iff 

Xn~· x 

p 
sup IXk- Xi--. 0. 
k?!n 

(c) Points are chosen at random on the circumference of the unit circle. Yn 
is the arc length of the largest arc not containing any points when n points 
are ~hosen. Show Yn --. 0 a.s. 

(d) Let {Xn} be iid with common distribution F(x) which satisfies F(xo) = 
1, F(x) < 1 for x < xo with xo < oo. Prove 

max{Xt , . . . , Xn} t xo 

almost surely. 
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2. Let {Xn} be iid, EXn = f:J-, Var(Xn) = a 2• Set X= L:7=l X;/n . Show 

3. Suppose X ::: 0 and Y ::: 0 are random variables and that p ::: 0. 

(a) Prove 

(b) If p > 1, the factor 2P may be replaced by 2P-1. 

(c) IfO::; p::; 1, the factor 2P may be replaced by 1. 

4. Let {Xn. n 2: 1} be iid, EXn = 0, EX~ = a 2• Let an E lR for n 2: 1. Set 
Sn = L:7=1 aiXi. Prove {Sn} is L2-convergent iff L:~1 af < oo. 

5. Suppose {Xn} is iid. Show {n-1Sn , n::: 1} is ui provided Xi e Lt. 

6. Let {Xn} be ui and let X E L1 . Show {Xn -X} is ui. 

7. Let Xn be N(O, a;). When is {Xn} ui? 

8. Suppose {X n} and {Yn} are two families of ui random variables defined on 
the same probability space. Is {Xn + Yn} ui? 

9. When is there equality in the Schwartz Inequality? (Examine the derivation 
of the Schwartz Inequality.) 

10. Suppose {X n} is a sequence for which there exists an increasing function 
f: [0, oo) r-+ [0, oo) such that f(x)jx--+ oo asx--+ oo and 

Show {Xn} is ui. 

sup£ (/(IXnD) < oo. 
n~l 

Specialize to the case where f(x) = xP for p > 1 or f(x) = x(Iogx)+. 

11. Suppose {Xn, n::: 1} are iid and non-negative and define Mn = v7=1Xi . 

(a) Check that 
P[Mn > x]::; nP[Xt > x]. 

(b) If E(Xf) < oo, then Mnfn 11P.!: 0. 

(c) If in addition to being iid, the sequence {Xn} is non-negative, show 

Mn/n.!: OiffnP[X1 > n]--+ O,asn--+ oo. 
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(d) Review the definition of rapid variation in Exercise 27 of Chapter 5. 
Prove there exists a sequence b(n) ~ oo such that 

p 
Mn/b(n) ~ 1, n ~ 00, 

iff 1 - F(x) := P[X 1 > x] is rapidly varying at oo. In this case, we 
may take 

b(n) = (-1-) ~ (n) 
1- F 

to be the 1 - * quantile of F. 

(e) Now suppose {Xn} is an arbitrary sequence of non-negative random 
variables. Show that 

n 

E(Mn1[M.~oJ) ~ L E(Xk1[Xk?:oJ). 
k=l 

If in addition, {Xn} is ui, show E(Mn)fn ~ 0. 

12. Let {Xn} be a sequence of random variables. 

p 
(a) If Xn ~ 0, then for any p > 0 

IXniP ~ O 
1 + IXniP 

and 

p 
(b) If for some p > 0 (6.21) holds, then Xn ~ 0. 

(c) Suppose p > 0. Show Xn ~ 0 iff (6.22). 

(6.21) 

(6.22) 

13. Suppose {Xn. n 2: 1} are identically distributed with finite variance. Show 
that 

nP[IXll 2: E.Jii"] ~ 0 

and 
V?=,IX;I p 0 

..;n ~ . 

14. Suppose {Xk} are independent with 

2 1 1 
P[Xk = k ] = k2 P[Xk = -1] = 1 - k2 . 

Show E?=l X; ~ -oo almost surely as n ~ oo. 
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p 
15. Suppose Xn 2:: 0 for n 2:: 0 and Xn --+ Xo and also E(Xn) --+ E(Xo). 

Show Xn--+ Xo in L1. (Hint: Try considering (Xo- Xn)+.) 

16. For any sequence of random variables {Xn} set Sn = I:7=1 X;. 

(a) Show Xn ~· 0 implies Snfn ~· 0. 

L L 
(b) Show Xn 4 0 implies Sn/n 4 0 for any p 2:: 1. 

(c) Show Xn ~ 0 does NOT imply Sn/n ~ 0. (Try Xn = 2n with proba­
bility n - 1 and = 0 with probability 1 - n - 1. Alternatively look at functions 
on [0, 1] which are indicators of [i/n, (i + 1)/n].) 

(d) Show Sn/n ~ 0 implies Xn/n ~ 0. 

17. In a discrete probability space, convergence in probability is equivalent to 
almost sure convergence. 

18. Suppose {Xn} is an uncorrelated sequence, meaning 

Cov(X;, Xj) = 0, i =F j. 

If there exists a constant c > 0 such that Var(X n) :S c for all n 2:: 1, then 
for any a > 1/2 we have 

p p 
19. If 0 :S Xn :S Yn and Yn --+ 0, check Xn --+ 0. 

20. Suppose £(X2) = 1 and E(IXI) 2:: a > 0. Prove for 0 :S .A :S 1 that 

21. Recall the notation d(A, B)= P(Ab.B) for events A, B. Prove 

22. Suppose {Xn , n 2:: 1} are independent non-negative random variables satis­
fying 

E(Xn) = /ln , Var(Xn) =a;. 
Define for n 2:: 1, Sn = 2::7=1 X; and suppose 2::~1 11-n = oo and a; :S 

p 
C/ln forsomec > Oandalln.ShowSn/E(Sn)--+ 1. 
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23. A classical transform result says the following: Suppose Un ~ 0 and Un -. 

u as n -. oo. For 0 < s < 1, define the generating function 

00 

U(s) = :~::::Unsn. 
n=O 

Show that 
lim(l- s)U(s) = u 
S-+1 

by the following relatively painless method which uses convergence in 
probability: Let T (s) be a geometric random variable satisfying 

P[T(s) = n] = (1- s)sn. 

Then T(s) ~ oo. What is E(ur(s))? 

24. Recall a random vector (Xn, Yn) (that is, a random element of JR2) con­
verges in probability to a limit random vector (X, Y) if 

p 
d((Xn, Yn), (X, Y)) -. 0 

where d is the Euclidean metric on JR2. 

(a) Prove 

(6.23) 

iff 
p p 

X n __. X and Yn __. Y. 

(b) Iff : JR2 ..... JRd is continuous (d ~ 1), (6.23) implies 

p 
/(Xn, Yn)-. /(X, Y). 

(c) If (6.23) holds, then 

25. For random variables X, Y define 

p(X, Y) = inf{8 > 0: P[IX- Yi ~ 8) ::::: 8}. 

(a) Show p(X, Y) = 0 iff P[X = Y] = 1. Form equivalence classes of 
random variables which are equal almost surely and show that p is a 
metric on the space of such equivalence classes. 

(b) This metric metrizes convergence in probability: 

Xn ~X iff p(Xn, X)-. 0. 
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(c) The metric is complete: Every Cauchy sequence is convergent. 

(d) It is impossible to metrize almost sure convergence. 

26. Let the probability space be the Lebesgue interval; that is, the unit interval 
with Lebesgue measure. 

(a) Define 
n 

Xn = -1 -leo n-t>, n ~ 3. 
ogn · 

Then {Xn} is ui, E(Xn)-. 0 but there is no integrable Y which dom­

inates {Xnl· 

(b) Define 

Xn = nlco.n-1)- nlcn-t ,2n-l)· 

Then {Xn} is not ui but Xn 2:. 0 and E(Xn)-. 0. 

27. Let X be a random variable in L1 and consider the map 

x : [1, oo] 1-4 [0, oo] 

defined by x(p) = IIXIIp· Let 

Po:= sup{p ~ 1: IIXIIp < oo}. 

Show x is continuous on [1, po). Furthermore on [1, po) the continuous 
function p 1-4 log IIXIIp is convex. 

28. Suppose u is a continuous and increasing mapping of [0, oo] onto [0, oo]. 
Let u <-- be its inverse function. Define for x ~ 0 

U(x) =fox u(s)ds, V(x) =fox u<-(s)ds. 

Show 
xy:::: U(x) + V(y), x, y E [0, oo]. 

(Draw some pictures.) 

Hence, for two random variables X, Y on the same probability space, XY 
is integrable if U(IXI) E L1 and V(IYI) E L1. 

Specialize to the case where u(x) = xP-1, for p > 1. 

29. Suppose the probability space is ((0, 1], B((O, 1]), A) where A is Lebesgue 
measure. Define the interval 

where 2P + q = n is the decomposition of n such that p and q are integers 

satisfying p ~ 0, 0 :::: q < 2P. Show lAn 2:. 0 but that 

lim sup lAn = 1, 
n->oo 

lim inf lAn = 0. 
n->oo 



6. 7 Exercises 201 

30. The space L00 : For a random variable X define 

IIXIIoo = sup{x : P[IXI > x] > 0}. 

Let L 00 be the set of all random variables X for which IIXIIoo < oo. 

(a) Show that for a random variable X and 1 < p < q < oo 

0 ~ IIXIIt ~ IIXIIp ~ IIXIIq ~ IIXIIoo · 

(b) For 1 < p < q < oo, show 

L 00 CLqCLpCLI. 

(c) Show Holder's inequality holds in the form 

E(IXYI):;: IIXIIt IIYIIoo· 

(d) Show Minkowski's inequality holds in the form 

IIX + Ylloo ~ IIXIIoo + IIYIIoo· 

31. Recall the definition of median from Exercise 31 of Chapter 5. 

(a) Let {X n, n :::: 1} be a sequence of random variables such that there exists 
a sequence of constants {en} with the property that 

p 
Xn -Cn _. 0. 

If m(Xn) is a median of Xn, show 

and Cn - m(Xn) _. 0. 

(b) If there exists a random variable X with a unique median such that 
p 

Xn _.X, then m(Xn) _. m(X). 

32. For a random variable X, let y(X) be the central value defined in Exercise 
25 of Chapter 5. For a sequence of random variables {Xn , n :::: 0}, suppose 
there exist a sequence of constants { Cn} such that X n - Cn _. X o almost 
surely. Show limn--.oo Xn - y(Xn) exists and is finite almost surely, where 
y(Xn) is the unique root of the equation E(arctan(X - y) = 0. Show 
limn--.oo(Cn - y(Xn)) exists and is finite. 

33. Suppose {Xn ,k· 1 ~ k ~ n, n :::: 1} is a triangular array of non-negative 
random variables. For n :::: 1, set 

n 

Sn = LXn,;, 
i=l 

n 

Mn = V Xn ,i· 
i=l 

Show that Mn ~ 0 implies Sn/n ~ 0. 
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7 
Laws of Large Numbers and Sums 
of Independent Random Variables 

This chapter deals with the behavior of sums of independent random variables and 
with averages of independent random variables. There are various results that say 
that averages of independent (and approximately independent) random variable!; 
are approximated by some population quantity such as the mean. Our goal is to 
understand these results in detail. 

We begin with some remarks on truncation. 

7.1 Truncation and Equivalence 

We will see that it is easier to deal with random variables that are uniformly 
bounded or that have moments. Many techniques rely on these desirable prop­
erties being present. If these properties are not present, a technique called trunca­
tion can induce their presence but then a comparison must be made between the 
original random variables and the truncated ones. For instance, we often want to 
compare 

{Xn} with {Xnl[IXnl=::nJ} 

where the second sequence is considered the truncated version of the first. 
The following is a useful concept, expecially for problems needing almost sure 

convergence. 

Definition. Two sequences {Xn} and {X~} are tail equivalent if 

L P[Xn f. X~) < 00. (7.1) 
n 
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When two sequences are tail equivalent, their sums behave asymptotically the 
same as shown next. 

Proposition 7.1.1 (Equivalence) Suppose the two sequences {Xn} and {X~} are 
tail equivalent. Then 

(1) Ln(Xn- X~) converges a.s. 

(2) The two series Ln X n and Ln X~ converge a.s. together or diverge a.s. 
together; that is 

LX n converges a.s. iff LX~ converges a.s. 
n n 

(3) If there exists a sequence {an} such that an t oo and if there exists a random 
variable X such that 

then also 

2. txj ~- x. 
On j=l 

Proof. From the Borel-Cantelli Lemma, we have that (7.1) implies 

P([Xn #X~] i.o.) = 0, 

or equivalently 
P(lim inflXn =X~])= 1. 

n ..... oo 

So for w E liminfn ..... 00 [Xn = X~] we have that Xn(w) = X~(w) from some 
index onwards, say for n ~ N(w). This proves (1). 

For (2) note 
00 00 

L Xn(w) = L X~(w). 
n=N n=N 

For (3) we need only observe that 

_!._ t(Xj- Xj) ~- 0. 
On j=l 0 

7.2 A General Weak Law of Large Numbers 

Recall that the weak law of large numbers refers to averages of random variables 
converging in the sense of convergence in probability. We first present a fairly 
general but easily proved result. Before proving the result, we look at several 
special cases. 
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Theorem 7.2.1 (General weak law of large numbers) Suppose {Xn, n ::: 1} are 
independent random variables and define Sn = LJ=l Xj. If 

(i) 

(ii) 

then if we define 

we get 

n 

L P[IXjl > n]--+ 0, 
j=l 
1 n 

2 L EXJ1[1Xji:Sn] --+ 0, 
n j=l 

n 

an= LE (Xj1[1Xil:::nJ), 
j=l 

(7.2) 

(7.3) 

(7.4) 

One of the virtues of this result is that no assumptions about moments need to 
be made. Also, although this result is presented as conditions which are sufficient 
for (7.4), the conditions are in fact necessary as well. We will only prove suffi­
ciency, but first we discuss the specialization of this result to the iid case under 
progressively weaker conditions. 

SPECIAL CASES: 

(a) WLLN with variances. Suppose {Xn. n ::: 1} are iid with E(Xn) = J.1. and 
E (X~) < oo. Then as n --+ oo, 

1 p 
-Sn --+ JJ.. 
n 

The proof is simple since Chebychev's inequality makes it easy to verify (7.2) and 
(7.3). For instance (7.2) becomes 

nP[IXtl > n] =:: nE(Xt)2 jn2 --+ 0 

and (7.3) becomes 

1 2 1 2 
2n£(Xt1[1Xd<nj) =:: -E(X1)--+ 0. n - n 

Finally, we observe, as n --+ oo 

(b) Khintchin's WLLN under the first moment hypothesis. Suppose that 
{Xn, n::: 1} are iid with E(IXtD < oo and E(Xn) = J.J. . (No assumption is made 
about variances.) Then 
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To prove this by means of Theorem 7.2.1, we show that (7.2) and (7.3) hold. 
For (7 .3) observe that 

since E (IX tl> < oo. 

nP[IXtl > n] =£(n1[1XJi>nJ) 

~£(1Xtl1(1x1 1>n))-+ 0, 

Next for (7.3), we use a divide and conquer argument. We have for any f > 0 

1 2 1( 2 2 ) -;;EXt1[1Xd:::n] ~-;; £(X11[1Xii:::€Jii)) + £(Xt1[€Jii:::IXil:5n)) 

E2n 1 
~--;;- + -;;E(n1Xti1[€Jii:::IX!I:::n)) 

~ E2 + £(1Xti1€Jii:::1Xi1) 

-+ E2, 

as n-+ oo, since E(IXtl> < oo. So applying Theorem 7.2.1 we conclude 

Since 

Sn- n£(Xtl[lx11<n)) ~ O. 
n 

lnE(Xtl(lx11<n]) I 
n - - E(Xt) ~ E(IXti1[1XIi>nJ)-+ 0, 

the result follows. 

(c) Feller's WLLN without a first moment assumption: Suppose that 
{Xn, n 2: 1} are iid with 

lim xP[IXtl >x]=O. 
X--+00 

(7.5) 

Then 

The converse is true although we will not prove it. Note that this result makes no 
assumption about a finite first moment. 

As before, we show (7.2) and (7.3) hold. The condition (7.2) becomes in the iid 
case nP[IX11 > n]-+ 0 which is covered by (7.5). To show (7.3) holds, we need 
to write it in terms of 

r(x) := xP[IXtl > x]. 
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Let P [X 1 :::: x] = F (x) and because of the iid assumption (7 .3) becomes 

~ { 1Xt12l(lx1l!:n]dP = ~ { x 2F(dx) 
n Jo n J(x:lxl!:n} 

= ~ 1 <llxl 2sds)F(dx) 
n lxl!:n s=O 

=~in 2s[1 F(dx)]ds (by Fubini) 
n s=O s<lxl!:n 

lion =- 2s(P[1Xtl > s]- P[IXtl > n])ds 
n o 
lion lion =- 2-r(s)ds-- 2sdsP[IXtl > n] 
n o n o 

21on =- -r(s)ds-nP[IXtl>n]~O 
n o '-...--' 

r(n) 

since if -r (s) ~ 0 so does its average. 

Proof of Theorem 7 .2.1. Define 

Then 

So 

and therefore 

n 

X~j = Xjl[IXjl!:n] and S~ = LX~j· 
j=l 

n n 

L P[X~j # Xj] = L P[IXjl > n] ~ 0. 
j=l j=l 

P[ISn- S~i > €]:::: P[Sn # S~] 

:::: P{U[x~j ::p Xj]} 
j=l 

n 

:::: LP[X~j #Xj] ~ 0 
j=l 

0 

(7.6) 

The variance of a random variable is always bounded above by the second mo­
ment about 0 since 
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So by Chebychev's inequality 

P[~S~- ES~ I> E)~ Var(S~) 
n n2E2 

1 ~ I 2 
~ 22 L....E(Xn) 

n E j=l 

1 n 

= 22 LE (xy1[1Xji:Snl) ~ 0 
n E j=l 

where that convergence is due to (7.3). 
Note On= ES~ = Lj=1 EXj1[1Xji:Sn]• and thus 

S~- On P O 
.....:.:....--~ 0 

n 
(7.7) 

We therefore get 
Sn - On Sn - s~ s~ - On p 0 
---= + ~ 

n n n 
where the first difference goes to zero because of (7.6) and the second difference 
goes to zero because of (7.7). 0 

Example: Let F be a symmetric distribution on lR and suppose 

e 
1 - F(x) = 2x 1 , x ~ e 

ogx 

Suppose {X n, n ~ 1} is an iid sequence of random variables with common distri­
bution function F. Note that 

roo e e roo dy 
EX+ = le 2x logx dx = 2 J1 y = oo. 

so because the distribution is symmetric 

and E (X) does not exist. However, 

e e 
r(x) =xP[IXII > x] =x · -- = -- ~ 0 

x logx logx 

and On = 0 because F is symmetric, so 

Sn ~ O. 
n 

Thus, without a mean existing, the WLLN still holds. When we consider the 
strong law of large numbers, we will see that a.s. convergence fails. 0 
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7.3 Almost Sure Convergence of Sums of 
Independent Random Variables 

This section considers the basic facts about when sums of independent random 
variables converge. We begin with an inequality about tail probabilities of maxima 
of sums. 

Proposition 7.3.1 (Skorohod's inequality) Suppose {Xn, n ~ 1} is an indepen­
dent sequence of random variables and suppose a > 0 is fixed. For n ~ 1, define 
Sn = L:?=t X;, and set 

c :=sup P[ISN- Sjl >a]. 
j~N 

Also, suppose c < 1. Then 

1 
P[sup ISil > 2a]:::: --P[ISNI >a]. 

j~N 1- c 
(7.8) 

There are several similar inequalities which bound the tail probabilities of the 
maximum of the partial sums, the most famous of which is Kolmogorov's inequal­
ity. One advantage of Skorohod's inequality is that it does not require moment 
assumptions. 

Note that in the iid case, the constant c somewhat simplifies since we can ex­
press it as 

c = V P[ISil >a]= V P[ISN- Sil >a] 
j~N j~N 

due to the fact that 
d 

(Xt. . .. ,XN) = (XN, ... , Xt). 

This means that the sums of the variables written in reverse order (SN - Sj, j = 
N- 1, N- 2, ... , 1) have the same distribution as (St. ... , SN ). 

Proof of Proposition 7 .3.1. Define 

J := inf{j: lSi I> 2a}, 

with the convention that infl2l = oo. Note that 
N 

[sup lSi I> 2a] = [J:::: N] = L[J = j], 
j~N j=l 

where the last union is a union of disjoint sets. Now we write 

P[ISNI >a] ~ P[ISNI >a, J:::: N] 
N 

= LP[ISNI > a,J = j] 
j=l 
N 

~ LP[ISN-Sjl=::a,J=j]. (7.9) 
j=l 
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To justify this last step, suppose 

ISN(w)- Sj(w)l::: a, and J(w) = j 

so that ISj(w)l > 2a. If it were the case that ISN(w)l :::a, then it would follow 
that ISN(w) -Sj(w)l > a which is impossible, so ISN(w)l > a. We have checked 
that 

[ISN- Sjl::: a, J = j] c [ISNI >a, J = j] 
which justifies (7 .9). Thus, 

N 

P[ISNI >a]:=: L P[ISN- Sjl::: a, J = j]. 
j=l 

It is also true that 

and 

Since 

N 

SN- Sj = L Xj E B(Xj+l· ... ,XN) 
i=j+l 

[J = j] =[sup IS; I::: 2a, ISjl > 2a] E B(Xt ... Xj). 
i<j 

we have 
N 

P[ISN I > a] :=: L P[ISN - Sj I ::: a ]P[J = j] 
j=l 

N 

:=: L(l- c)P[J = j] (from the definition of c) 
j=l 

= (1 - c)P[J ::: N] 

= (1- c)P[sup ISjl > 2a]. 
j5N 0 

Based on Skorohod's inequality, we may now present a rather remarkable result 
due to Levy which shows the equivalence of convergence in probability to almost 
sure convergence for sums of independent random variables. 

Reminder: If {~n} is a monotone sequence of random variables, then 

p 
~n ~ ~ 

implies (and hence is equivalent to) 

l: a.s. l: 
'in~<;· 
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Theorem 7.3.2 (Uvy's theorem) If {Xn. n :::: 1} is an independent sequence of 
random variables, 

LX n converges i.p. iff LX n converges a.s. 
n n 

This means that if Sn = L:?=t X;, then the following are equivalent: 

1. { Sn} is Cauchy in probability. 

2. {Sn} converges in probability. 

3. {Sn} converges almost surely. 

4. {Sn} is almost surely Cauchy. 

Proof. Assume { Sn} is convergent in probability, so that { Sn} is Cauchy in proba­
bility. We show { Sn} is almost surely convergent by showing { Sn} is almost surely 
Cauchy. To show that {Sn} is almost surely Cauchy, we need to show 

~N = sup ISm - Sn I --+ 0 a.s., 
m,n?;N 

as N --+ oo. But {~N. N :::: 1} is a decreasing sequence so from the reminder it 

suffices to show ~N ..!:. 0 as N --+ oo. Since 

~N = sup ISm - SN + SN - Sn I 
m,n?;N 

it suffices to show that 

~ sup ISm- SNI +sup ISn- SNI 
m?;N n?;N 

=2 sup ISn- SNI 
n?;N 

=2sup ISN+j- SNI. 
j?;O 

(7.10) 

For any € > 0, and 0 < ~ < ! , the assumption that { Sn} is cauchy i.p. implies 
that there exists N£ ,o such that 

(7.11) 

if m, m' :=::: N£,o• and hence 

(7.12) 
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if N ::: Nf,8· 
Now write 

= lim P[ sup ISN+j- SNI > E]. 
N'-+oo N'?.j:::.O 

Now we seek to apply Skorohod's inequality. Let x; = XN+i and 

j j 

sj = L:x; = L:xN+i = sN+j- sN. 
i=l i=l 

With this notation we have 

P[ sup ISN+j- SNI > E] 
N'?.j?.O 

from the choice of 8. Note that from (7.11) 

Since 8 can be chosen arbitrarily small, this proves the result. 0 

Levy's theorem gives us an easy proof of the Kolmogorov convergence crite­
rion which provides the easiest method of testing when a series of independent 
random variables with finite variances converges; namely by checking conver­
gence of the sum of the variances. 

Theorem 7.3.3 (Kolmogorov Convergence Criterion) Suppose {Xn, n ::: 1} is 
a sequence of independent random variables. If 

then 
00 

00 

L Var(Xj) < oo, 
j=l 

L (X j - E (X j)) converges almost surely. 
j=l 
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Proof. Without loss of generality, we may suppose for convenience that E (Xi) = 
0. The sum of the variances then becomes 

00 

LEX]< 00. 
j=l 

This implies that {Sn} is Lz Cauchy since (m < n) 
n 

IISn- Smll~ = Var(Sn- Sm) = L EXJ--+ 0, 
j=m+l 

as m, n--+ oo since Lj E(XJ) < oo. So {Sn}. being Lz-Cauchy, is also Cauchy 
in probability since 

n 

P[ISn- Sml > €] :S E-2Var(Sn- Sm) = E-2 L Var(Xj)--+ 0 
j=m 

as n, m --+ oo. By Levy's theorem {Sn} is almost surely convergent. D 

Remark. The series in Theorem 7.3.3 is Lz-convergent. Call the Lz limit 
L:j:1(Xj- E(Xj)). Because of Lz convergence, the first and second moments 
converge; that is, 

and 

tvar(Xj- E(Xj)) = Var (t(Xj- E(Xj))) --+ Var (t(Xj- E(Xj))) 
j=! j=l j=l 

so we may conclude 

E (~(Xj- EXj)) = 0, 

Var (t, (Xi - E(X i))) = t. Var(X i - E(Xj )). 

7.4 Strong Laws of Large Numbers 

This section considers the problem of when sums of independent random vari­
ables properly scaled and centered converge almost surely. We will prove that 
sample averages converge to mathematical expectations when the sequence is iid 
and a mean exists. 

We begin with a number theory result which is traditionally used in the devel­
opment of the theory. 
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Lemma 7.4.1 (Kronecker's lemma) Suppose we have two sequences {xk} and 
{an} such that Xk E R. and 0 < an t oo. If 

then 

oox L ....!:.. converges, 
k=1 Ok 

n 

lim a;1 ""Xk = 0. 
n-+oo ~ 

k=1 

Proof. Let rn = L~n+1 Xk/ak so that rn -+ 0 as n -+ oo. Given € > 0, there 
exists No= No(t:) such that for n ~No, we have lrnl!:: €. Now 

so 

and 
n n 

Xn - = rn - 1- rn 
On 

I:>k = L(rk-1 - rk)ak 
k=1 k=1 

n-1 

= L(aj+1- Oj)rj + a1ro- anrn. 
j=1 

Then for n ~ No, 

1

'\"n I No-1( ) n-1 ( ) 
L.k=1 Xk !:: L aj+1- Oj lrjl + L Oj+1- Oj lrjl 

On j=1 On j=No On 

This shows the result. 

+ 1a1ro 1 + 1anrn I 

On On 
const t: 

= -- + -(0No+1 - ONo + 0No+2- ONo+l 
On On 

+ 0No+3- 0No+2 +· ·· +On - On-1) + rn 
t:(a -ON) 

!:: o(l) + n o + € 
On 

!:: 2t: + o(l) . 

The Kronecker lemma quickly gives the following strong law. 
0 

Corollary 7.4.1 Let {Xn. n ~ 1} be an independent sequence of random vari­
ables satisfying E (X~) < oo. Suppose we have a monotone sequence bn t oo. 
If 

"" Xk ~ Var(b) < oo, 
k k 
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then 
Sn- E(Sn) a.s . O 
----~. 

bn 

Proof. Because the sum of the variances is finite, the Kolmogorov convergence 
criterion yields 

'"'(Xn- E(Xn)) L.. converges a.s. 
n bn 

and the Kronecker Lemma implies 

n 

L(Xk- E(Xk))fbn ~ 0 
k=l 

almost surely. 0 

7.4.1 Two Examples 

This section discusses two interesting results that require knowledge of sums of 
independent random variables. The first shows that the number of records in an 
iid sequence grows logarithmically and the second discusses explosions in a pure 
birth process. 

Example 1: Record counts. Suppose {Xn. n :::: 1} is an iid sequence with com­
mon continuous distribution function F. Define 

N N 

/1-N = L 1[xi is a record 1 = L 1j 
j=l j=l 

where 

1 j = 1(xi is a record]" 

So JLN is the number of records in the first N observations. 

Proposition 7.4.1 (Logarithmic growth rate) The number of records in an iid 
sequence grows logarithmically and we have the almost sure limit 

I. Jl-N 1 Im --~ . 
N-+oo logN 

Proof of Proposition 7.4.1. We need the following fact taken from analysis: There 
is a constant c (Euler's constant) such that 

asn ~ oo. 

n 1 
log n - L -:- ~ c, 

j=l J 
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Recall that { 1 j, j ~ 1} are independent. The basic facts about { 1 j} are that 

1 1 
P[1j = 1] = -:, £(1j) = -;-, 

J J 
2 2 1 1 j-1 

Var(1j) = £(1j) - (E1j) =-:- "'72 = -.2-. 
J J J 

This implies that 

00 ( 1 ) 00 1 I:var -1 j. = L (I .)2 Var(1j) 
j=2 ogJ 2 ogJ 

Loo j-1 = <00 
2 j2(logj)2 

since by the integral test 

~ j-1 ~ j 
{;2 j2(log j)2 :::::: {;2 j2(log j)2 

00 1 

= t; j (log j)2 

roo dx 
:::::: le x(logx)2 

= rood; < 00. 
11 y 

The Kolmogorov convergence criterion implies that 

00 (1 · -£(1 ·)) 00 (1j- ~) L 1 . 1 = L .1 converges 
j=2 log J j=2 log 1 

and Kronecker's lemma yields 

"'n (1 · -1) "'n 1 "'n · -1 "'n · -1 
0 a.s . L..j=1 j - J L..j=1 j - L..j=1 J f.J.n - L..j=1 J 

+- = = logn logn logn 

Thus 

"'n ·-1 "'n ·-1 I 
..!!:.!!..._ - 1 = f.J.n - L..j=1 J + L..j=1 J - ogn ~ 0. 
~n ~n ~n 

This completes the derivation. D 

Example 2: Explosions in the Pure Birth Process. Next we present a stochastic 
processes example where convergence of a series of independent random vari­
ables is a crucial issue and where the necessary and sufficient criterion for con­
vergence can be decided on the basis of first principles. 
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Let {X j, j 2: 1} be non-negative independent random variables and suppose 

where An 2: 0, n 2: 1 are called the birth parameters. Define the birth time process 
Sn = L:?=1 X; and the population size process {X(t) , t 2: 0} of the pure birth 
process by 

1, if 0 :::: t < St. 

2, if S1 :::: t < Sz, 
X(t)= 3, ifSz::::t<S3,· 

Next define the event explosion by 

00 

[ explosion ] = (L:: X n < oo] 
n=1 

= [X(t) = oo for some finite t]. 

Here is the basic fact about the probability of explosion in the pure birth pro­
cess. 

Proposition 7.4.2 For the probability of explosion we have 

P[ explosion] = 11' 
0, 

if Ln ).;1 < 0, 

if Ln ).;1 = 00. 

Recall that we know that P[Ln Xn < oo] = 0 or 1 by the Kolmogorov Zero­
One Law. 

Proof. If Ln ).;1 < oo, then by the series version of the monotone convergence 
theorem 

00 00 00 

E(LXn) = LE(Xn) = LA;;-1 < oo, 
n=1 n=1 n=1 

and so P[2:~1 Xn < oo] = 1. (Otherwise, recall that E(Ln Xn) = oo.) 
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Conversely, suppose P[Ln Xn < oo] = 1. Then exp{- 1::~1 Xn} > 0 a.s., 
which implies that E(exp{- Ln Xn}) > 0. But 

00 

0 < E(e- L~t x.) = E(n e-x.) 
n=l 

N 

= E( lim n e-x.) 
N~ook=l 

= lim E (fi e-x.) (by Monotone Convergence) 
N~oo n=l 

N 

= lim n E(e-X") (by independence) 
N~oon=l 

Now 

E(exp{- LXnD > 0 iff -logE(e- LX")< oo 
n 

iff 'f-log(~)< oo 
n=l 1 +An 
00 

iff L log(l + A.;1) < oo. 
n=l 

. log(l + x) 
bm = 1, 
x~O X 

by L'Hopital's rule, we have 

and thus 
00 00 

Llog(l + A.;1) < oo iff I:>..;1 < oo. 
n=l n=l 0 
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7.5 The Strong Law of Large Numbers 
for liD Sequences 

This section proves that the sample mean is almost surely approximated by the 
mathematical expectation. We begin with a preparatory lemma. 

Lemma 7.5.1 Let {Xn, n 2:: 1} be an iid sequence of random variables. The fol­
lowing are equivalent: 

(a) EIXtl < oo. 

(b) limn-.00 I~ I = 0 almost surely. 

(c) For every E > 0 
00 

L P[IXtl 2:: En]< oo. 
n=I 

Proof. (a)# (c): Observe that: 

E(IXIi) = fooo P[IXIi 2:: x]dx 

oo 1n+I = L P[IXtl 2:: x]dx 
n=O n 
00 

2:: LP[IXtl 2:: n + 1] 
n=O 
00 

:::: L P[IXIi 2:: n]. 
n=O 

Thus E (IX 1D < oo iff I:~o P[IX tl 2:: n] < oo. Set Y = ~ and we get the 
following chain of equivalences: 

E(IXII) < oo iff E(IYI) < oo 

(c)# (b): Given E > 0, 

00 

iff L P[IYI 2:: n] < oo 
n=O 
00 

iff LP[1Xtl2:: En]< oo. 
n=O 

L P[IXtl 2:: En]= L P[IXnl 2:: En]< 00 
n n 

is equivalent, by the Borel zero-one law, to 

{ [ IXnl ] . } P -n- > E 1.0. = 0, 
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which is in turn equivalent to 

. IXnl 
hmsup-- ~ € 

n-Hx:> n 

almost surely. Since lim supn ..... oo ~ is a tail function, it is a.s. constant. If this 
constant is bounded by € for any € > 0, then 

. IXnl 
hmsup-- =0. 

n-+oo n 

This gives (b) and the converse is similar. 0 

We are now prepared to consider Kolmogorov's version of the strong law of 
large numbers (SLLN). 

Theorem 7.5.1 (Kolmogorov's SLLN) Let {Xn, n ::::: 1} be an iid sequence of 
random variables and set Sn = E?=t X;. There exists c e lR such that 

X- S I a.s. n= n n ..... c 

iff E(IXtl> < oo in which case c = E(Xt). 

Corollary 7.5.1 If {Xn} is iid, then 

and 

E(IXtl> < 00 implies Xn ~- Jl. = E(Xt) 

EXf < oo implies Sn :=.!. t(X;- X)2 ~- a 2 =: Var(Xt) · 
n I 

ProofofKolmogorov's SLLN (a) We show first that 

implies E (IX tl> < oo. We have 

n n 

Sn (n-1) Sn-1 =-- -- --
n n n -1 

~- c-c=O. 

Since 
X I a.s. O 

n n ..... , 
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Lemma 7.5.1 yields E(IXtD < oo. 
(b) Now we show that E(IXII) < oo implies Snfn ~· E(Xt). To do this, we 

use a truncation argument. Define 

Then 

LP[Xn #X~}= LP[IXnl > n} < 00 
n n 

(since EIXtl < oo) and hence {Xn} and {X~} are tail equivalent. Therefore by 
Proposition 7.1.1 

n 

Sn/n ~· E(Xt) iff S~/n = LX}/n ~· E(Xt). 
j=l 

So it suffices to consider the truncated sequence. 
Next observe that 

Is~- :(S~) - s~- :(Sn) I = nE(Xt)- LJ=~ E(Xtl(IXJI!:j]) 

= E(XI) _ t E(Xtl(lx11<j]) 

j=I n 

~o. 

This last step follows from the fact that 

and hence the Cesaro averages converge. We thus conclude that 

' "'n(X'. - E(X'-)) 
Sn - E(Xt) ~- 0 iff "--I 1 1 ~- 0. 
n n 

To prove the last statement, it is enough by Kronecker's lemma to prove 

X'. L Var( -f.) < oo. 
j } 
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However, 

Now 

X'. 1 E (X'. )2 

L:var(-!-) = L -=i"Var(Xj)::: L .{ 
j } j } j } 

00 1 
= L -=i"E<X?1[ix11 ~n) 

j=l} 

00 j 1 
= L L -=i"E(Xt1[k-l<IX!I~kJ) 

j=l k=l } 

00 00 1 
= L(L -=2)£(Xt1[k-l<IXJi~kJ). 

k=l j=k} 

1 fj 1 
-=2::: 2 dx, 
} j-l X 

and therefore 

00 1 00 fj 1 100 1 
"' - < "' -dx = -dx L..t •2 - L..t 2 2 
j=k } j=k j-l X k-l X 

1 2 
=--<-

k-1-k 

provided k ::: 2. So 

00001 002 
I:<I: -=2)E<Xf1 1k-t<IX!I~kJ)::: I: kE(IXtl2 1 1k-t<IXJI~kJ) 
k=2 j=k } k=2 

00 2 ::: L k. kE(IXtll[k-l<IX!I~kJ) 
k=2 

= 2E(IXtD < oo. 

7.5.1 Two Applications of the SLLN 

0 

Now we present two standard applications of the Kolmogorov SLLN to renewal 
theory and to the Glivenko-Cantelli Lemma. 

Renewal Theory. Suppose {Xn. n 2: 1} is an iid sequence of non-negative 
random variables. Assume E (X n) = f..£ and that 0 < f..£ < oo. Then 
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so that Sn ~- oo. Let So = 0 and define 

00 

N(t) := L 1[Sj:9)· 
j=O 

We call N(t) the number ofrenewals in [0, t]. Then 

[N(t):::; n] = [Sn > t] 

and 

(7.13) 

(7.14) 

Note that since we assume So = 0, we have N ( t) 2: 1. Also observe { N ( t), t 2: 0} 
is non-decreasing in t. We need to show N(t) --+ oo a.s. as t --+ oo and because 

of the monotonicity, it suffices to show N(t).!;. oo. Since for any m 

lim P[N(t):::; m] = lim P[Sm > t]--+ 0, 
t-+00 t-+00 

we get the desired result that N(t).!;. oo. Now define the sets 

Sn(w) 
At= {w: ----+ JL}, 

n 
Az = {w: N(t, w)--+ oo}, 

so that 
P(At) = P(Az) = 1. 

Then A := At n Az has P(A) = 1. For w E A, as t --+ oo 

SN(t .wj(W) 
--+ JL, 

N(t, w) 

and so 

as t --+ oo. From (7.14) 

and 

t SN(t)-t SN(t)-t N(t)- 1 

N(t) 2: N(t) = N(t) -1 . N(t) --+ JL. 1• 

so we conclude that t/N(t) ~- JL and thus N(t)/t--+ J.l-t. Thus the long run 
rate of renewals is JL -t. 0 
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Glivenk~antelli Theorem. The Glivenko-Cantelli theorem says that the em­
pirical distribution function is a uniform approximation for the true distribution 
function. 

Let {Xn. n ::: 1} be iid random variables with common distribution F. We 
imagine F is unknown and on the basis of a sample X1, ... , Xn we seek to esti­
mate F. The estimator will be the empirical distribution function (edt) defined by 

A 1 n 
Fn(X, w) =-L 1[Xj.9](W). 

n i=I 

By the SLLN we get that for each fixed x, Fn (x) ~ F (x) a.s. as n ~ oo. In fact 
the convergence is uniform in x. 

Theorem 7.5.2 (Giivenk~antelli Theorem) Define 

Dn :=sup IFn(X)- F(x)l. 
X 

Then 
Dn ~ Oa.s. 

asn ~ oo. 

Proof. Define 
Xv,k := F+-(v/ k), v = 1, ,.,, k, 

where F+-(x) = inf{u: F(u)::: x}. Recall 

F+-(u)::: t iffu::: F(t) 

and 

(7.15) 

(7.16) 

since for any f > 0 F(F+-(u)- f) < u. If xv,k ::: x < Xv+I ,k. then monotonicity 
implies 

and for such x 

Fn(Xv,k)- F(Xv+l ,k-)::: Fn(X)- F(x) 

::: Fn(Xv+I,k-)- F(Xv,k), (7.17) 

Since 
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we ·modify (7 .17) to get 

A 1 A 

Fn(Xvk)- F(xvk)- k :::;: Fn(X)- F(x) 

A 1 
:::;: Fn(Xv+I,k-)- F(Xv+I,k-) + k' (7.18) 

Therefore 

sup IFn(x)- F(x)l 
X€(Xvk ,Xv+l.k) 

A A 1 
:::;: (IFn(Xv,k) - F(Xv,k)l V IFn(Xv+l.k-)- F(Xv+I ,k-)1) + k' 

which is valid for v = 1, .. . , k- 1, and taking the supremum over v gives 

sup IFn(x)- F(x)l 
xe[xJk,xu) 

1 k A A 

:::: k + V IFn(Xv,k)- F(xv,k)l V IFn(Xv,k-)- F(xv,k-)1 
v=I 

=RHS. 

We now show that this inequality also holds for x < xu and x ::::: xu. If 
x :::::xu, then F(x) = Fn(x) = 1 so Fn(x)- F(x) = 0 and RHS is still an upper 
bound. If x <xu, either 

or 

(i) F(x) ::::: Fn(x) in which case 

IFn(X, w)- F(x)l = F(x)- Fn(X, w) 

:::: F(x):::: F(xu-) 

1 
<--k 

so RHS is still the correct upper bound, 

(ii) Fn (x) > F (x) in which case 

IFn(X, w)- F(x)l = Fn(X, w)- F(x) 

:::: Fn(xu-, w)- F(xi,k-) + F(xu-)- F(x) 

:::: IFn(xu-, w)- F(xi ,k-)1 + IF(xlk-)- F(x)l 

and since the last term is bounded by 1 I k we have the bound 

1 A 

:::: k + IFn(X}k-, w)- F(xlk-)1 

:::;:RHS. 
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We therefore conclude that 

Dn ::: RHS. 

The SLLN implies that there exist sets Av,k. and Av,k. such that 

P(Av,k) = P(Av,k) = 1, 

and such that 

and 
A 1 n 

Fn(Xv,k-) =;; L 1[Xj<Xv.k] ~ P[Xt < Xv,k] = F(Xv,k-) 
1 

provided we Avk and Avk respectively. Let 

Ak = n Av,k n n Av,k. 
v v 

so P(Ak) = 1. Then for w e Ak 

limsupDn(w)::: ~ . 
n->oo k 

lim Dn(w) = 0, 
n->00 

7.6 The Kolmogorov Three Series Theorem 

0 

The Kolmogorov three series theorem provides necessary and sufficient condi­
tions for a series of independent random variables to converge. The result is espe­
cially useful when the Kolmogorov convergence criterion may not be applicable, 
for example, when existence of variances is not guaranteed. 

Theorem 7.6.1 Let {Xn, n ::: 1} be an independent sequence of random vari­
ables. In order for Ln X n to converge a.s., it is necessary and sufficient that there 
exist c > 0 such that 

(i) Ln P[IXnl > c] < 00. 

(ii) Ln Var(Xn1[1Xnl=:cj) < 00. 

(iii) Ln E(Xn1[1Xnl=:cj) converges. 
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If Ln X n converges a.s., then (i), (ii), (iii) hold for any c > 0. Thus if the three 
series converge for one value of c > 0, they converge for all c > 0. 

In this section, we consider the proof of sufficiency and an example. The proof 
of necessity is given in Section 7.6.1. 

Proof of Sufficiency. Suppose the three series converge. Define 

Then 

_LP[X~ #Xn] = _LP[IXnl > c] < oo 
n n 

by (i) so {X~} and {Xn} are tail equivalent. Thus Ln Xn converges almost surely 
iff Ln X~ converges almost surely. 

From (ii) 

L:var(X~) < oo, 
n 

so by the Kolmogorov convergence criterion 

But (iii) implies 

L(Xj- E(Xj)) converges a.s. 
j 

L E (X~) converges 
n 

and thus Lj X} converges, as desired. 0 

Remark 7 .6.1 In the exercises there awaits an interesting fact for you to ver­
ify. When the independent random variables in the three series theorem are non­
negative, it is only necessary to check convergence of two series; the third series 
involving the truncated variances is redundant. 

Example. Heavy tailed time series models: It is increasingly common to en­
counter data sets which must be modeled by heavy-tailed times series. Many time 
series are defined by means of recursions; for example, pth order autoregressions 
are defined as 

p 

Xn = L¢;Xn-i + Zn, n = 0, 1, ... 
i=l 

(7.19) 

where {Zn} is an iid sequence. When does there exist a stationary process {Xn} 
satisfying (7.19)? It is usually possible to iterate the recursion and guess that the 
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solution is some infinite series. Provided the infinite series converges, it is rela­
tively simple to show that this infinite sum satisfies the recursion. For instance, 
(7.19) for the case p = 1 is (set <PI = </J) 

Xn =<fJXn-I + Zn = </J(</JXn-2 + Zn-I) + Zn 

=<fJ2Xn-2 + Zn +</Jln-I· 

Continuing the iteration backward we get 

m-1 

Xn =</JmXn-m + L <Pi Zn-i· 
i=O 

This leads to the suspicion that L:~o <Pi Zn-i is a solution to (7.19) when p = 
1. Of course, this depends on L:~o <Pi Zn-i being an almost surely convergent 
series. 

Showing the infinite sum converges can sometimes be tricky, especially when 
there is little information about existence of moments which is usually the case 
with heavy-tailed time series. Kolmogorov's three series theorem helps in this 
regard. 

Suppose a time series is defined by 

00 

Xn=LPjZn-j· n=O,l, ... (7.20) 
j=O 

where { Pn } is a sequence of real constants and { Z n} is an iid sequence with Pareto 
tails satisfying 

F(x) := P[IZ1I > x] ""kx-a, x--+ 00, (7.21) 

for some a > 0, and k > 0. (Tail conditions somewhat more general than (7.21) 
such as regular variation could easily be assumed at the expense of slightly ex­
tra labor in the verifications to follow.) A sufficient condition for existence of a 
process satisfying (7.20) is that 

00 

L IPjljl < 00, 
j=l 

almost surely. Condition (7.22) is often verified under the condition 

L I Pi l.s < 00, 0 < a < a 1\ 1, 
j 

(7.22) 

(7.23) 

(cf. Brockwell and Davis (1991)) especially when (7.21) is replaced by a condi­
tion of regular variation. 
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We now prove that (7.23) is sufficient for (7.22) and by Remark 7.6.1 we need 
to verify that (7.23) implies convergence of the two series 

00 00 

LP[IPjZjl > 1) = I:.F(1/IPjD < 00, (7.24) 
j=l j=l 
00 00 

LE(IPjZji1[1PiZil~lJ) =: L 1Pilm(1/1PiD < oo, (7.25) 
j=l j=l 

where 
m(t) := E(IZtl1[1zti9J)· 

Verifying (7.24) is relatively easy since, as j ~ oo, we have 

P[IPjZjl > 1) '""kiPila 

which is summable due to (7.23). To verify (7.25), we observe that by Fubini's 
theorem 

m(t) = {' xF(dx) = {' [lx du] F(dx) Jo lx=O u=O 

= 11 
[ f' F(dx)] du = f' F(u)du - tF(t) 

u=O lx=u Jo 
;::: lot F(u)du. 

From (7.21), given() > 0, there exists xo such that x 2: xo implies 

.F{x) ;::: (1 + ())kx-a =: k1x-a. 

Thus from (7 .26) 

1xo 1t 1' m(t);::: + ;:::c+kt u-adu, 
0 xo xo 

t 2: XQ. 

Now for a> 1, E(IZII) < oo so that 

L iPiim(c/IPiD:::: L IPjiE(IZtD < oo 
j j 

by (7.23). For a = 1, we find from (7.28) that 

m(t) :::: c' + kzlogt, t::: xo 

(7.26) 

(7.27) 

(7.28) 

for positive constants c', kz. Now choose 1J > 0 so small that 1 - 1J > 8, and for 
another constant c" > 0 

~ IPilm(c/IPiD:::: c" ~ IPil + kz ~ IPillog c:i,) 
1 1 1 

:::: c"L IPil +k3 L 1Pi11- 11 < oo 
j j 
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where we have used (7.23) and 

Finally for a < 1, t > xo 

so that 

L IPjlm(l/IPjD :S Cz L IPjl +k4 L IPjll+a-1 < oo 
j j j 

from (7.23). 0 

7.6.1 Necessity of the Kolmogorov Three Series Theorem 

We now examine a proof of the necessity of the Kolmogorov three series theo­
rem. Two lemmas pave the way. The first is a partial converse to the Kolmogorov 
convergence criterion. 

Lemma 7.6.1 Suppose {Xn, n ::: 1} are independent random variables which are 
uniformly bounded, so that for some a > 0 and all w e Q we have IX n (w) I ::: a. 
If"f:.n(Xn - E(Xn)) converges almost surely, then "'£~1 Var(Xn) < oo. 

Proof. Without loss of generality, we suppose E (X n) = 0 for all n and we prove 
the statement: If {Xn, n ::: 1} are independent, E(Xn) = 0, IXn I :Sa, then Ln Xn 
almost surely convergent implies Ln E (X;) < oo. 

We set Sn = "'£7=1 X;, n ::: 1 and begin by estimating Var(SN) = "'f:.f:1 E (X f) 
for a positive integer N. To help with this, fix a constant A > 0, and define the 
first passage time out of [-A, A] 

r := inf{n::: 1: ISnl >A}. 

Set r = oo on the set [v~1 1Sn I ::: A]. We then have 

N 

LE(XI) = E(S~) = £(S~1[r=:;NJ) + £(S~1[r>NJ) (7.29) 
i=1 

=I+ II. 

Note on r > N, we have vf:1IS; I ::: A, so that in particular, S~ ::: A 2. Hence, 

(7.30) 

For I we have 
N 

I= L E(S~l[r=j]). 
j=1 



For j < N 

Note 

while 

and thus 
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N 

E(S~l[T=j]) = E((Sj + L X;)2)1[T=j]). 
i=j+l 

j-1 

[r = j] = lV IS; I::: A, ISjl >A] E a(Xt. ... , Xj) 
i=1 

N 

L X; E a(Xj+t. ... ,XN), 
i=j+l 

N 

l[T=j) JL L X;. 
i=j+1 

Hence, for j < N, 

E(S~l[T=j]) = E((SJ + 2Sj t X;+ ( t X;)2)l[T=j)) 
i=j+1 i=j+1 

N 

= E(SJl[T=j]) + 2E(Sj1[T=jJ)E( L X;) 
i=j+1 

N 

+ E( L X;)2P[r = j] 
i=j+l 

N 

= E(SJl[T=j]) + 0 + E( L X;)2 P[r = j] 
i=j+l 

N 

::: E((ISj-11 + IXji)21[T=j]) + L E(X;)2P[r = j] 
i=j+1 

N 

_:::(A+a)2P[r=j]+ L E(X;)2P[r=j]. 
i=j+l 

Summarizing, we conclude for j < N that 

E(S~l[T=j])_:::((A+a)2 +_t E(X;)2)P[r=j], (7.31) 
1=]+1 
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and defining L~=N+t E(X;)2 = 0, we find that (7.31) holds for 1 ~ j ~ N. 
Adding over j yields 

I= E(S11[r:::NJ) ~ (o. +a)2 + tE(Xf))P[r ~ N] 

=(()..+cd+E(S1))P[T~N]. (7.32) 

Thus combining (7.30) and (7.32) 

N 

ECS1) = 'L,E<Xf) =I+ II 
i=l 

~ (o. + a)2 + ECS1)) P[r ~ N] +(A +a)2P[r > N] 

~(A+a)2 +ECS1)P[r ~N] 

and solving for E (S1) yields 

Let N-+ oo. We get 
oo (A+ a)2 
LE(Xf) ::S _ , 
i=l P[r- oo] 

which is helpful and gives the desired result only if P [ r = oo] > 0. However, 
note that we assume Ln X n is almost surely convergent, and hence for almost 
all w, we have {Sn(w), n :::: 1} is a bounded sequence of numbers. So VniSnl is 
almost surely a finite random variable, and there exists A > 0 such that 

00 

P[r = oo] = P[V ISnl ~A]> 0, 
n=l 

else P[v~1 1Sn I < oo] = 0, which is a contradiction. This completes the proof 
of the lemma. D 

Lemma 7.6.2 Suppose {Xn, n :::: 1} are independent random variables which are 
uniformly bounded in the sense that there exists a > 0 such that IXn(w)l ~ a 
for all n :::: 1 and w E n. Then Ln Xn convergent almost surely implies that 
Ln E (X n) converges. 

Proof. The proof uses a technique called symmetrization. Define an independent 
sequence {Yn, n :::: 1} which is independent of {Xn, n :::: 1} satisfying Yn 4 Xn. 
Let 
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Then {Zn. n 2:: 1} are independent random variables, E(Zn) = 0, and the distri­
bution of each Zn is symmetric which amounts to the statement that 

d 
Zn = -Zn. 

Further, 
Var(Zn) = Var(Xn) + Var(Yn) = 2Var(Xn) 

and IZnl ~ IXnl + IYnl ~ 2a. 

Since {X n, n 2:: 1} 4: {Yn, n 2:: 1} as random elements of IR00 , the convergence 
properties of the two sequences are identical and since Ln X n is assumed almost 
surely convergent, the same is true of Ln Yn. Hence also Ln Zn is almost surely 
convergent. Since {Zn} is also uniformly bounded, we conclude from Lemma 
7.6.1 that 

I:var(Zn) = L2Var(Xn) < oo. 
n n 

From the Kolmogorov convergence criterion we get Ln(Xn - E(Xn)) almost 
surely convergent. Since we also assume Ln X n is almost surely convergent, it 
can only be the case that Ln E (X n) converges. 0 

We now tum to the proof of necessity of the Kolmogorov three series theorem. 

Re-statement: Given independent random variables {Xn. n 2:: 1} such that 
Ln X n converges almost surely, it follows that the following three series converge 
for any c > 0: 

(i) Ln P(IXnl >c), 

(ii) Ln Var(Xn 1[1Xnl:::c]), 

(iii) Ln E(Xn1[1Xn!:5c]}. 

Proof of necessity. Since Ln X n converges almost surely, we have X n ~- 0 and 
thus 

P([IXnl >c) i.o.) = 0. 

By the Borel zero-one law, it follows that 

LP[IXnl >c)< 00. (7.33) 
n 

If (7.33) holds, then {Xn} and {Xn 1[iXnl:::cJ} are tail equivalent and one converges 
iff the other does. So we get that the uniformly bounded sequence {Xn1[1Xnl:::cJ} 
satisfies Ln Xn1[1Xnl:::c] converges almost surely. By Lemma 7.6.2, 
Ln £(Xn1[1Xnl:::cJ) (the series in (iii)) is convergent. Thus the infinite series of 
uniformly bounded summands 

L (Xn1[1Xnl:5c]- £(Xn1[1Xnl:5c])) 
n 
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is almost surely convergent and by Lemma 7.6.1 

I:var(Xn1[1Xnl=:cJ) < oo 
n 

which is (ii). 

7. 7 Exercises 

0 

1. Random signs. Does Ln 1/ n converge? Does Ln ( -1 )n 1/ n converge? Let 
{Xn} be iid with 

Does Ln Xn/n converge? 

1 
P[Xn = ±1] = 2· 

2. Let {Xn} be iid, EXn = J1. , Var(Xn) = a 2• Set X = E?=t X;/n. Show 
that 

1~ - 2 P 2 
- ~(X; - X) --+ a . 
n i=I 

3. Occupancy problems. Randomly distribute r balls in n boxes so that the 
sample space n consists of nr equally likely elements. Write 

n 

Nn = L 1[ith box is empty) 
i=l 

for the number of empty boxes. Check 

P[ith box is empty] = (1 - ~ )r 
n 

so that E(Nn) = n(l - n-1 )r. Check that as r /n --+ c 

E(Nn)/n--+ e-c 

N I p -c 
n n-+e . 

For the second result, compute Var(Nn) and show Var(Nn/n)--+ 0. 

(7.34) 

(7.35) 

4. Suppose g : [0, 1] ~ lR is measurable and Lebesgue integrable. Let 
fUn, n 2: 1} be iid uniform random variables and define X; = g(U;). In 
what sense does E?=t X; /n approximate Jd g(x)dx? (This offers a way to 
approximate the integral by Monte Carlo methods.) How would one guar­
antee a desired degree of precision? 
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5. (a) Let {Xn, n :::: 1} be iid, EXn = 0, EX~ = cr 2. Let On e lR for n :::: 1. 
Set Sn = L:?=t o;X; . Prove {Sn} is L2-convergent iff L:~1 of < oo. If 
L:~1 of < oo, then {Sn. n :::: 1} is almost surely convergent. 

(b) Suppose (Xn. n :::: 1} are arbitrary random variables such that Ln ±Xn 
converges almost surely for all choices ±1. Show Ln X~ < oo almost 
surely. (Hint: Consider Ln Bn(t)Xn(w) where the random variables 
{Bn. n :::: 1} are coin tossing or Bernoulli random variables. Apply Fubini 
on the space of (t, w).) 

(c) Suppose {Bn, n :::: 1} are iid with possible values {1, -1} and 

1 
P[Bn = ±1] = 2· 

Show for constants On that 

L OnBn converges iff La~ < oo. 
n n 

(d) Show Ln Bnn-8 converges a.s. iff 9 > 1/2. 

6. Suppose {Xk, k :::: 1} are independent random variables and suppose Xk 
has a gamma density !k (x) 

Give necessary and sufficient conditions for L:~1 Xk to converge almost 
surely. (Compare with the treatment of sums of exponentially distributed 
random variables.) 

7. Let {En} be events. 

(a) Verify 
n n 

L 1Ek = 1uz=JEk L lEk 
k=l k=l 

and then, using the Schwartz inequality, prove that 

P(Un E ) > (E(Lk=t1Ek))2 
k=t k - E(Lk=t1Ek)2 

(b) Deduce from this that if 

(i) Ln P(En) = 00, and 

(ii) there exists c > 0 such that for all m < n, we have 

then 
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(iii) P(limsupn-+ooEn) > 0. 

Thus, we get a partial converse to Borel-Cantelli: if (iii) fails, that is, if 
P(lim supn-+oo En) = 0, and (ii) holds, then (i) fails so that Ln P(En) < 
00. 

(c) Let {Yn, n ~ 1} be iid positive random variables with common distri­
bution function G and suppose {Xn, n ~ 1} is a sequence of iid positive 
random variables with common distribution F. Suppose {Xn} and {Yn} are 
independent. Prove using Borel-Cantelli that if for all E > 0 

100 G(dy) 
----<00, 

0 1- F(Ey) 

then as n -+ oo 
Yn 

n -+ 0, 
vi=IX; 

almost surely. Prove the converse using the converse to Borel-Cantelli proved 
in (b) above. 

8. The SLLN says that if {Xn, n ~ 1} are iid with EIXtl < oo, then 

Show also that 

Sn/n ~· E(Xt). 

L1 
Sn/n-+ E(Xt). 

(Think of uniform integrability.) 

9. Suppose {Xn} are iid, EIXtl < oo, EXt = 0 and suppose that {en} is a 
bounded sequence of real numbers. Prove 

(If necessary, examine the proof of the SLLN.) 

10. (a) Suppose that {Xn} are m-dependent in the sense that random variables 
more than m apart in the sequence are independent. More precisely, let 

and assume that ~: , ... , ~: are independent if k; -1 + m < j; for i = 
2, ... , I. (Independent random variables are 0-dependent.) Suppose that the 
{X n} have this property and are uniformly bounded and that EX n = 0. 
Show that n-1sn -+ 0 a.s. 

Hint: Consider the subsequences X;, X;+m+t, Xi+2(m+l)• ... for 1 :::: i :::: 
m+l. 
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(b) Suppose that {X n} are iid and each X; has finite range x1, . . . , Xf and 

P[Xt = x;] = p(x;), i = 1, ... , I. 

For Ut. ... , Uk, a k-tuple of the x;'s, let Nn(Ut, ... , Uk) be the frequency 
of the k-tuple in the first n + k - 1 trials; that is, the number of m such that 
1 ~ m ~nand 

Xm = Ut.. ·., Xm+k-1 = Uk. 

Show that with probability 1, all asymptotic relative frequencies are what 
they should be-that is, with probability 1, 

n-1 Nn(Ut. . .. , Uk) ~ p(ut) · · · p(uk) 

for every k and every k-tuple u1, . .. , Uk. 

11. Suppose {Xn, n 2: 1} are iid with a symmetric distribution. Then Ln Xn/n 
converges almost surely iff E (IX 1 I) < oo. 

12. Suppose {X n} is defined iteratively in the following way: Let X o have a uni­
form distribution on [0, 1] and for n ::: 1, Xn+l has a uniform distribution 
on [0, X n ]. Show that 

1 
-logXn converges a.s. 
n 

and find the almost sure limit. 

13. Use the three series theorem to derive necessary and sufficient conditions 
for Ln Xn to converge a.s. when {Xn} are independent and exponentially 
distributed. 

14. Suppose {Xn. n ::: 1} are independent, normally distributed with 

E(Xn) = f.l.n, Var(Xn) =a;. 
Show that Ln X n converges almost surely iff Ln f.J.n converges and 
Lna; < 00. 

15. Prove the three series theorem reduces to a two series theorem when the 
random variables are positive. If Vn 2: 0 are independent, then Ln Vn < oo 
a.s. iff for any c > 0, we have 

LP[Vn > c] < 00, 
n 

LE(Vn1[Vn:=:cJ) < 00. 
n 

16. If {Xn} are iid with EIXtl < oo, EXt # 0, show that 

vn IX·I 
ij~nl' ~· 0. 

(i) 

(ii) 
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17. Suppose {X n} are independent with 

Prove 

1 
P[Xk = -1] = 1- k2 . 

n 

lim "'Xk 
n ...... ooL 

i=l 

exists a.s. and find the limit. 

18. Supppse {Xn, n 2:: 1} are iid with E(Xn) = 0, and E(X;) = 1. Set Sn = 
I:?=t Xi . Show 

Sn --+ O 
n112 logn 

almost surely. 

19. Suppose {Xn. n 2:: 1} are non-negative independent random variables. Then 
Ln Xn < oo almost surely iff 

LE ( XnX) < oo 
n 1 + n 

iff 
LE(Xn 1\ 1) < oo. 

n 

20. Suppose {Xn, n 2:: 1} are independent random variables with E(Xn) = 0 
for all n. If 

L E (x;1[1X.J=:;l) + 1Xni1[1Xnl>l)) < oo, 
n 

then Ln X n converges almost surely. 

Hint: We have 

21. Suppose {Xn(O), n 2:: 1} are iid with common exponential distribution with 
meanO. Then 

n p 
LXi(O)jn--+ 0. 
i=l 

Show for any u : R+ ~-+ R+ which is bounded and continuous that 

u(y)e-nyO no-1dy --+ u(O). !ooo _1 (nyo-I)n-I 

o (n- 1)! 

Show this convergence is uniform on finite 0-intervals. (Compare this with 
the Bernstein polynomials of item 6.3 on page 176.) 
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22. The WLLN and inversion of Laplace transforms. Let X > 0 be a non­
negative random variable with distribution function F and Laplace trans­
form 

F().) = E(e->-X) = r e-Ax F(dx). 
J[O,oo) 

Show that F determines F using the weak law of large numbers and the 
following steps. 

(a) Show 

ff<k>p.) = { (-1)k/e->.x F(dx). 
J[O,oo) 

(b) Suppose {~n(8), n ~ 1} are iid non-negative random variables with 
a Poisson distribution, parameter 8 > 0. Use the weak law of large 
numbers to prove 

lim P[~ ~;(8)/n!:: x] = 11' 
n-+00 L...., 0 

i=l ' 

and therefore 

I. L n8 (n8)i 11, 1m e -- = 
n-+oo. j ' ! 0 

J;5nx ' 

ifx > 8, 

if X < 8, 

ifx > 8, 

if X < 8. 

(c) Conclude for any x ~ 0 which is a point of continuity ofF that 

~ (-1)i • A( ') 
L....t - .-, -n' F J (n) --+ F(x). 

j:::;nx 1 · 

23. Suppose {Xn , n ~ 1} are iid and uniformly distributed on (-1, 1). What is 
E (Xf)? Verify 

so that if we define 

then 

~ 2 p 1 
L....tX; /n--+ -
i=l 3 

n 

IIXnlln = (LXf) 112 , 
i=l 

IIXnlln/Jii ~ ff 
Now define then-dimensional annulus 

n ff llxlln [f 
Bn,8 := {x E lR : y 3 - 8 < Jn < y 3 + 8}. 



240 7. Laws of Large Numbers and Sums of Independent Random Variables 

Further define then-dimensional cube 
n 

In= (-1, 1)n := {x eRn: V lxd < 1}. 
i=l 

If An is n-dimensional Lebesgue measure, show that 

rnJ...n(Bn,o n In)~ 1. 

This gives the curious result that for large n, the cube is well approximated 
by the annulus. 

24. Relative stability of sums. Prove the following are equivalent for iid non­
negative random variables {Xn, n ~ 1}. 

(a) There exist constants an > 0 such that 
n 

a;;1 L:x; ~ 1. 
i=l 

(b) Asn ~ oo 

(c) We have 
I. £(Xt1[x1 ~xJ) 
lm = 00. 

x ..... oo xP[Xt > x] 

(d) We have that the function JJ.(X) := E(Xt1[x1 ~xJ) is slowly varying; 
that is, 

This is equivalent to 

lim JJ.(tx) = 1, 'Vx > 0. 
HOO JJ.(t) 

U(x) =fox P[Xt > s]ds 

being slowly varying. 

(e) In this case, show we may select an as follows. Set H (x) = xI U (x) 
and then set 

an= H~(n) 

where H~ is the inverse function of H satisfying H(H~(x)) ""x . 

(f) Now apply this to the St. Petersburg paradox. Let {X n, n ~ 1} be iid 
with 

P[Xt = 2*] = 2-*, k ~ 1. 

What is E(Xt)? Set Sn = L?=t X;. The goal is to show 

Sn ~ 1. 
(n logn)/ log2 

Proceed as follows: 
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i. Check P[X > 2n] = 2-n, n 2: 1. 

ii. Evaluate 

to get 

2" n 2i r P[Xt > s]ds = L r P[Xt > s]ds 
lo i=t J2H 

logx 
U(x)"" -. 

log2 
So H(x) = xjU(x) ""log2(x/ logx) and 

an "' (n log n)/ log 2. 

25. Formulate and prove a generalization of Theorem 7.2.1 applicable to tri­
angular arrays {Xn,k. 1 ~ k ::;: n; n 2: 1} where {Xn,k, 1 ~ k ::;: n} is 
independent and where n is replaced by a general sequence of constants 
{bnl· For iid random variables, the conditions should reduce to 

nP[IXn,tl > bn]--+ 0, 
n 2 
b2£(Xn,t1[1X •. i1:5bn))--+ 0. 

n 

If Sn = L:7=t Xn,i, the conclusion for the row iid case is 

Sn - nE (X n,tl[IXn.il:5bn)) P O 
----~...;.__-'-'-'-'-.:....--+ . 

bn 

Apply this to the St. Petersburg paradox of Problem 24. 

(7.36) 

(7.37) 

26. If {Xn, n 2: 1} is defined as in the St. Petersburg paradox of Problem 24, 
show almost surely that 

I. Xn 
tmsup = oo, 
n->oo n log2 n 

so that for the partial sums we also have almost surely 

I. Sn 
tmsup = oo. 
n->oo n log2 n 

Thus we have another example of a sequence converging in probability but 
not almost surely. 

27. More applications ofWLLN. 

(a) Suppose u(x, y) is continuous on the triangle 

TRI := {(x,y) :x 2: O,y 2: O,x + y = 1}. 

Show that uniformly on TRI 

" j k n! j k n-j-k 
L..Ju(-,-) ''k'( _ ·-k)'x y (1-x-y) -+u(x,y). nnJ .. n J . 
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(b) Suppose u : [0, oo) ~ lR is continuous with 

lim u(x) =: u(oo) 
x-.oo 

existing finite. Show u can be approximated uniformly by linear con­
binations of e"x. 

28. Suppose {Xn, n?: 1} are uncorrelated random variables satisfying 

E(Xn) = Jl, Var(Xn):::; C, Cov(X;,Xj) = 0, i # j. 

Show that as n ~ oo that I:?=t X; /n ~ Jl in probability and in L2. 

NowsupposeE(Xn) = OandE(X;Xj):::; p(i- j) fori> j andp(n) ~ 0 

as n ~ oo. Show I:?=l X;/n 2: 0. 
29. Suppose {Xn, n ?: 1} is iid with common distribution described as follows. 

Define 
1 

Pk = 2kk(k + 1)' 

and Po = 1 - I:~1 Pk· Suppose 

k?: 1, 

P[Xn = 2k- 1] = Pk· k ?: 1 

and P[Xn = -1] =PO· Observe that 

and that E(Xn) = 0. For Sn = E?=l X;, n?: 1, prove 

Sn 2: -1. 
n/ log2 n 

30. Classical coupon collecting. Suppose {Xk, k > 1} is iid and uniformly 
distributed on { 1, ... , n}. Define 

Tn = inf{m: {Xt. ... , Xm} = {1, ... , n}} 

to be the first time all values are sampled. 

The problem name stems from the game of collecting coupons. There are 
n different coupons and one samples with replacement repeatedly from the 
population {1, ... , n} until all coupons are collected. The random variable 
Tn is the number of samples necessary to obtain all coupons. 

Show 
Tn P 1 --~. 

nlogn 



7.7 Exercises 243 

Hints: Define 

to be the number of samples necessary to draw k different coupons. Verify 
that r1 (n) = 1 and { rk (n) - rk-1 (n), 2 ::: k ::: n} are independent and 
geometrically distributed. Verify that 

Check 

n 1 
E(Tn) = n L-:- ""'n logn, 

i=l l 

n 

Var(Tn)::: n2 Li-2• 

i=l 

Var(Tn/E(Tn)) ~ 0. 

31. Suppose {Xn. n 2: 1} are independent Poisson distributed random variables 
with E(Xn) =An· Suppose {Sn = 2:?=1 X;, n 2: 1} and that Ln An= 00. 

Show Sn/E(Sn) ~ 1 almost surely. 

32. Suppose {Xn,n 2: 1} are iid with P[X; > x] =e-x, x > 0. Show as 
n ~ oo 

n 

V X;jlogn ~ 1, 
i=l 

almost surely. Hint: You already know from Example 4.5.2 of Chapter 4 
that 

almost surely. 

1. Xn 
1msup-- = 1, 
n->-oo logn 

33. Suppose {X j, j 2: 1} are independent with 

Use the Kolmogorov convergence criterion to verify that if a > 1/2, then 
Ln Xn converges almost surely. Use the Kolmogorov three series theo­
rem to verify that a > 1/2 is necessary for convergence. Verify that 
LnE(IXnD < ooiffa > 1. 

34. Let {Nn. n 2: 1} be iid N(O, 1) random variables. Use the Kolmogorov 
convergence criterion to verify quickly that 2:~1 lf: sin(mrt) converges 
almost surely. 
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35. Suppose {Xn, n ::: 1} is iid and 

E(X:) < oo, E(X;) = oo. 

Show Snfn --+ -oo almost surely. (Try truncation of x; and use the clas­
sical SLLN.) 

36. Suppose {Xn. n ::: 1} is independent and Xk ::: 0. If for some 8 e (0, 1) 
there exists x such that for all k 

{ XkdP::;: 8E(Xk), 
J(Xpx) 

then almost sure convergence of Ln X n implies Ln E (X n) < oo as well. 

37. Use only the three series theorem to come up with a necessary and suffi­
cient condition for sums of independent exponentially distributed random 
variables to converge. 

38. Suppose {Xn. n ::: 1} are iid with 

1 
P[Xn = 0] = P[Xn = 2] = -. 

2 

Show 2::~1 Xn/3n converges almost surely. The limit has the Cantor dis­
tribution. 

39. If {An, n :::: 1} are independent events, show that 

1 n 1 n -L 1A; --L P(A;).!:. 0. 
n i=l n i=l 

40. Suppose {Xn, n :::: 1} are independent and set Sn = :L?=t X; . Then Snfn--+ 
0 almost surely iff the following two conditions hold: 

p 
(a) Sn/n--+ 0, 

(b) Szn 12n --+ 0 almost surely. 

41. Suppose {Xn, Yn, n ::: 1} are independent random variables such that Xn 4 
Yn for all n ::: 1. Suppose further that, for all n ::: 1, there is a constant K 
such that 

IXnl v IYnl::: K. 

Then Ln (X n - Yn) converges almost surely iff Ln Var(X n) < oo. 

42. Suppose {X n, n :::: 1} is an arbitrary sequence of random variables that have 
finite means and variances and satisfying 

(a) limn~oo E(Xn) = c, for some finite constant c, and 
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(b) L~=l Var(Xn) < oo. 

Show Xn ~ c almost surely. (Hint: Define ~n = Xn - E(Xn) and show 
Ln ~; < oo almost surely. Alternatively, try to proceed using Chebychev's 
inequality.) 

If (b) is replaced by the hypothesis Var(Xn) ~ 0, show Xn ..!: c. 

43. (a) Fix a real number p e (0, 1) and let {Bn, n 2:: 1} be iid Bernoulli random 
variables with 

P[Bn = 1] = p = 1- P[Bn = 0]. 

Define Y = L~t Bn 12n. Verify that the series converges. What is the 
range of Y? What is the mean and variance of Y? Let Q p be the distribution 
of Y. Where does Q P concentrate? 

Use the SLLN to show that if p # p', then Qp and Qp' are mutually 
singular; that is, there exists a set A such that Qp(A) = 1 and Qp'(A) = 0. 

(b) Let Fp(x) be the distribution function corresponding to Qp. Show Fp(x) 
is continuous and strictly increasing on [0, 1], Fp(O) = 0, Fp(l) = 1 and 
satisfies 

F (x) = I (1- p)Fp(2x), 
P 1 - p + pFp(2x - 1), 

ifO::::; x ::::; 1/2, 

if 1/2 ::::; X ::::; 1. 

44. Let {X n, n 2:: 1} be iid with values in the set S = { 1, ... , 17}. Define the 
(discrete) density 

fo(y) = P[Xt = y], yES. 

Let ft # fo be another probability mass function on S so that for y E S, 
we have F1 {y) ?:: 0 and LjeS ft (j) = 1. Set 

Z - nn ft(X;) 
n- , n?::l. 

i=t /o(X;) 

Prove that Zn ~· 0. (Consider Yn = logZn.) 

45. Suppose {X n, n ?:: 1} are iid random variables taking values in the alphabet 
S = { 1, ... , r} with positive probabilities Pt, ... , p,. Define 

Pn(ib ·.·,in)= P[Xt =it. ... , Xn =in], 

and set 
Xn(w) := Pn(Xl (w), ... , Xn(w)). 

Then Xn (w) is the probability that in a new sample of n observations, what 
is observed matches the original observations. Show that 

1 1 a.s. H ~ -- ogxn(w) ~ :=- L.-Pi logp;. 
n i=l 
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46. Suppose {Xn, n > 1} are iid with Cauchy density. Show that 
{Snfn, n :::: 1} does not converge almost surely but v?=1X;/n converges 
in distribution. To what? 
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8 
Convergence in Distribution 

This chapter discusses the basic notions of convergence in distribution. Given a 
sequence of random variables, when do their distributions converge in a useful 
way to a limit? 

In statisticians' language, given a random sample X 1 , ... , X n, the sample mean 
Xn is CAN; that is, consistent and asymptotically normal. This means that X has 
an approximately normal distribution as the sample size grows. What exactly does 
this mean? 

8.1 Basic Definitions 

Recall our notation that df stands for distribution function. For the time being, we 
will understand this to correspond to a probability measure on R. 

Recall that F is a df if 

(i) 0::: F(x) ::: 1; 

(ii) F is non-decreasing; 

(iii) F(x+) = F(x) Vx E R, where 

F(x+) = IimF(x +E); 
E>O 
~J,O 

that is, F is right continuous. 
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Also, remember the shorthand notation 

F(oo) : = lim F(y) 
ytoo 

F(-oo): = lim F(y) . 
y,j.oo 

F is a probability distribution function if 

F(-oo) = 0, F(+oo) = 1. 

In this case, F is proper or non-defective. 
If F(x) is a df, set 

C(F) = {x e lR: F is continuous atx}. 

A finite interval I with endpoints a < b is called an interval of continuity for F if 
both a, be C(F) . We know that 

(C(F))c = {x: F isdiscontinuousatx} 

is at most countable, since 

1 
An= {x: F({x}) = F(x)- F(x-) > -} 

n 

has at most n elements (otherwise (i) is violated) and therefore 

(C(F))c = U An 
n 

is at most countable. 
For an interval I = (a, b], we write, as usual, F(l) = F(b)- F(a). If a, be 

C(F), then F((a, b)) = F((a, b]). 

Lemma 8.1.1 A distribution function F (x) is determined on a dense set. Let D 
be dense in JR. Suppose F D ( ·) is defined on D and satisfies the following: 

(a) FvO is non-decreasing on D. 

(b) 0::: Fv(x) ::: 1,for all x e D. 

(c) limxeD,x-++ooFv(x) = 1, limxeD,x-+-ooFv(x) =0. 

Define for all x e lR 

F(x) := inf Fv(y) = lim Fv(y). 
}'>X }'~X 

yeD yeD 
(8.1) 

Then F is a right continuous probability df Thus, any two right continuous df's 
agreeing on a dense set will agree everywhere. 
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Remark 8.1.1 The proof of Lemma 8.1.1 below shows the following: We let 
g : lR r+ lR have the property that for all x E lR 

g(x+) = limg(y) 
yJ.x 

exists. Set h(x) = g(x+ ). Then h is right continuous. 

Proof of Lemma 8.1.1. We check that F, defined by (8.1 ), is right continuous. 
The plan is to fix x e lR and show that F is right continuous at x. Given t: > 0, 
there exists x' e D, x' > x such that 

F(x) + t: 2: FD(x'). 

From the definition of F, for y e (x, x'), 

FD(x') 2: F(y) 

so combining inequalities (8.2) and (8.3) yields 

F(x) + t: 2: F(y), 'r/y E (x, x'). 

Now F is monotone, so let y .j.. x to get 

F(x) + t:::: F(x+). 

This is true for all small t: > 0, so let t: .j.. 0 and we get 

F(x)::: F(x+). 

(8.2) 

(8.3) 

Since monotonicity ofF implies F(x+) 2: F(x), we get F(x) = F(x+) as 
desired. D 

Four definitions. We now consider four definitions related to weak conver­
gence of probability measures. Let fFn, n 2: 1} be probability distribution func­
tions and let F be a distribution function which is not necessarily proper. 

(1) Vague convergence. The sequence fFn} converges vaguely to F, written 

Fn ~ F, if for every finite interval of continuity I of F, we have 

Fn(l) ~ F(l). 

(See Chung (1968), Feller (1971).) 

(2) Proper convergence. The sequence fFn} converges properly to F, written 

Fn ~ F if Fn ~ F and F is a proper df; that is F (IR) = 1. (See Feller 
(1971).) 

(3) Weak convergence. The sequence { Fn} converges weakly to F, written Fn ~ 
F, if 

Fn(x) ~ F(x), 

for all x e C(F). (See Billingsley (1968, 1995).) 
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( 4) Complete convergence. The sequence fFn} converges completely to F, writ­
ten Fn ~ F, if Fn ~ F and F is proper. (See Loeve (1977).) 

Example. Define 

Then 

F2n(x) = F(x + 2n) ~ 1 

Fzn+l (x) = F(x- (2n + 1)) ~ 0. 

Thus { Fn (x)} does not converge for any x. Thus weak convergence fails. However, 
for any I = (a, b] 

F2n(a, b] = F2n(b)- F2n(a) ~ 1- 1 = 0 

Fzn+l (a, b] = F2n+I (b)- F2n+1 (a) ~ 0- 0 = 0. 

So Fn (/) ~ 0 and vague convergence holds: Fn ~ G where G {lR) = 0. So the 
limit is not proper. 

Theorem 8.1.1 (Equivalence of the Four Definitions) If F is proper, then the 
four definitions (1), (2), (3), (4) are equivalent. 

Proof. IfF is proper, then (1) and (2) are the same and also (3) and (4) are the 
same. 

We check that ( 4) implies (2). If 

Fn(x) ~ F(x), Vx E C(F), 

then 

Fn(a, b] = Fn(b)- Fn(a) ~ F(b)- F(a) = F(a, b] 

if (a , b] is an interval of continuity. 
Next we show (2) implies (4): Assume 

Fn(l) ~ F{l), 

for all intervals of continuity I. Let a, bE C(F). Then 

Fn(b)::: Fn(a, b] ~ F(a, b], 

so 

liminfFn(b)::: F(a,b] , Va < b,a E C(F). 
n-+oo 

Let a .!, -oo, a E C(F) to get 

liminfFn(b)::: F(b). 
n-+00 
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For the reverse inequality, suppose l < b < r, l, r e C(F), and l chosen so small 
and r chosen so large that 

F((l, rn <E. 

Then since Fn(l, r] ~ F(l, r], we have 

So given E > 0, there exists no= no( E) such that n ;:: no implies 

For n ;:: no, 

Fn(b) = Fn(b)- Fn(l) + Fn(l) 

= Fn(l, b)+ Fn(l) 

:;:: Fn(l, b)+ 2t:, 

since Fn(l) :;:: Fn((l, b)c). So 

limsupFn(b):;:: F(l, b)+ 2t: 
n-+oo 

:;:: F(b) + 2t:. 

Since E > 0 is arbitrary 

limsupFn(b):;:: F(b). 
n-+oo 0 

Notation: If {F, Fn. n ::: 1} are probability distributions, write Fn :::::> F to mean 
any of the equivalent notions given by (1}-(4).1f Xn is a random variable with dis­
tribution Fn and X is a random variable with distribution F, we write X n :::::> X to 
mean Fn :::::> F. This is read "X n converges in distribution to X" or" Fn converges 
weakly to F." Notice that unlike almost sure, in probability, or L P convergence, 
convergence in distribution says nothing about the behavior of the random vari­
ables themselves and only comments on the behavior of the distribution functions 
of the random variables. 

Example 8.1.1 Let N be anN (0, 1) random variable so that the distribution func­
tion is symmetric. Define for n ;:: 1 

Then Xn !f: N, so automatically 

Xn :::::>N. 

But of course {X n} neither converges almost surely nor in probability. 
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Remark 8.1.2 Weak limits are unique. If Fn ~ F, and also Fn ~ G, then 
F =G. There is a simple reason for this. The set (C(FW U (C(GW is countable 
so 

INT = C(F) n C(G) 

= JR. \ a countable set 

and hence is dense. For x e INT, 

Fn(X) ~ F(x), Fn(X) ~ G(x), 

so F(x) = G(x) for x E INT, and hence by Lemma 8.1.1, we have F =G. 

Here is a simple example of weak convergence. 

Example 8.1.2 Let {X n, n ~ 1} be iid with common unit exponential distribution 

P[Xn>X]=e-x, x>O. 

Mn -logn => Y, (8.4) 

where 
P[Y ~ x] = exp{-e-x}, x e JR.. 

To prove (8.4), note that for x e JR., 

n 

P[Mn -logn ~ x] = P(n[x;:::: X+ logn]) 
i=l 

= (1 _ e-<x+logn>t 

e-x n x = (1- -) ~ exp{-e- }. 
n 0 

8.2 Scheffe 's lemma 

Consider the following modes of convergence that are stronger than weak conver­
gence. 

(a) Fn(A) ~ F(A), VA e B(IR.). 

(b) sup IFn(A)- F(A)I ~ 0. 
AeB<lR> 

Definition (a) (and hence (b)) would rule out many circumstances we would 
like to fall under weak convergence. Two examples illustrate the point of this 
remark. 
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Example 8.2.1 (i). Suppose Fn puts mass ~ at points { ~, ~, ... , ~}. If 

F (x) = x, 0 ::: x ::: 1 

is the uniform distribution on [0, 1 ], then for x E (0, 1) 

[nx] 
Fn(X) =--+X= F(x). 

n 

Thus we have weak convergence Fn => F. However if Q is the set of rationals in 

[0, 1], 

Fn(Q) = 1, F(Q) = 0, 

so convergence in the sense of (a) fails even though it seems natural that the 

discrete uniform distribution should be converging to the continuous uniform dis­

tribution. 
(ii) DeMoivre-Laplace centra/limit theorem: This is a situation similar to what 

was observed in (a). Suppose {Xn, n ::: 1} are iid, with 

P[Xn = 1] = p = 1- P[Xn = 0]. 

Set Sn = I:?=t X;, which has a binomial distribution with parameters n, p. Then 
the DeMoivre-Laplace central limit theorem states that 

But if 

we have 

S -np lx 
P[ ~ ::: x]-+ N(x) = n(u)du 

npq -oo 

= --e-u 12du. lx 1 2 

-00 ,fbi 

k-np 
A={--: k::: O,n::: 0}, 

.jnpq 

S -np 
P[ ~ E A]= 1 # N(A) = 0. 

npq 

Weak convergence, because of its connection to continuous functions (see The­

orem 8.4.1) is more useful than the convergence notions (a) or (b). The conver­

gence definition (b) is called total variation convergence and has connections to 

density convergence through Scheffe's lemma. 

Lemma 8.2.1 (SchetTe's lemma) Suppose {F, Fn, n ::: 1} are probability distri­
butions with densities {f, fn, n::: 1}. Then 

sup IFn(B)- F(B)I = ~ J lfn(x)- f(x)ldx. (8.5) 
BeB(IR) 
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If fn(x) ~ f(x) almost everywhere (that is, for all x except a set of Lebesgue 
measure 0), then 

J lfn(X)- f(x)ldx ~ 0. 

and thus Fn ~ Fin total variation (and hence weakly). 

Remarks. 

• If Fn ~ F and Fn and F have densities fn, f, it does not necessarily 
follow that fn(X) ~ f(x). See Exercise 12. 

• Although Scheffe's lemma as presented above looks like it deals with den­
sities with respect to Lebesgue measure, in fact it works with densities with 
respect to any measure. This is a very useful observation and sometimes a 
density with respect to counting measure is employed to deal with conver­
gence of sums. See, for instance, Exercise 4. 

Proof of Scbeffe's lemma. Let B e B(JR). Then 

1- 1 = J <fn(X)- f(x))dx = 0, 

so 

0 = r (/n(X)- f(x))dx + r (/n(X)- f(x))dX, Js }sc 
which implies 

I r <fn(X)- f(x))dxl =I r <fn(X)- f(x))dxl. (8.6) Js lsc 
This leads to 

21Fn(B)- F(B)I = 211 <fn(X)- f(x))dxl 

= I { <fn(X)- f(x))dxl +I { <fn(X)- f(x))dxl Js lsc 
=:: { lfn(X)- f(x)ldx + { lfn(X)- f(x)ldx Js lsc 
= J lfn(X)- f(x)ldx. 

To summarize: 

sup IFn(B)- F(B)I =:: ~ J lfn(X)- f(x)ldx. 



8.2 Scheffe's lemma 255 

If we find some set B for which equality actually holds, then we will have 
shown (8.5). Set B = Un 2: f]. Then from (8.6) 

21Fn(B)- F(B)I =I { <fn(x)- f(x))dxl +I { <fn(X)- f(x))dxl, 
jB }Be 

and because the first integrand on the right is non-negative and the second is non­
positive, we have the equality 

= { lfn(x)- f(x)ldx + { lfn(x) - f(x)ldx 
jB }Be 

= J lfn(X)- f(x)ldx. 

So equality holds in (8.5). 
Now suppose fn(x) --+ f(x) almost everywhere. So f- fn --+ 0 a.e., and 

therefore (f- fn)+ --+ 0 almost everywhere. Also 

and f is integrable on lR with respect to Lebesgue measure. Since 

0 = J (f(x)- fn(x))dx = J (f(x)- fn(x))+dx- J (f(x)- fn(x))-dx, 

it follows that 

J lf(x)- fn(x)ldx = J (f(x)- fn(x))+ dx + J (f(x)- fn(x))- dx 

= 2 J (f(x)- fn(x))+ dx . 

Thus 

and 

a.e. and dominated convergence implies 

J lf(x)- fn(x)ldx --+ 0. 

8.2.1 Scheffe's lemma and Order Statistics 

0 

As an example of one use for Scheffe's lemma, we consider the following limit 
result for order statistics. 
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Proposition 8.2.1 Suppose {Un , n:::; 1} are iid U(O, 1) random variables so that 

P[Uj :::;x]=x, O:::;x:::: 1 

and suppose 

Uo ,n> :::: U(2,n) :::: · · · :::: U(n ,n) 

are the order statistics so that Uo ,n> = min{UI. ... , Un}, U(Z,n) is the second 
smallest and U(n ,n) is the largest. Assume k = k(n) is a function of n satisfying 
k(n) _... oo and k/n _... 0. as n _... oo. Let 

Then the density of ~n converges to a standard normal density and hence by 
Scheffe 's lemma 

asn _... oo. 

Proof. The distribution of U(k,n) can be obtained from a binomial probability 
since for 0 < x < 1, P[U(k,n) :::: x ] is the binomial probability of at least k 
successes in n trials when the success probability is x . Differentiating, we get the 
density fn(X) Of U(k,n) tO be 

• ( ) n! k-1(1 )n-k 0 <X< 1. 
Jn x = (k- 1)!(n- k)!x - x ' 

(This density can also be obtained directly by a multimomial argument where 
there are 3 cells with proabilities x , dx and (1 - x) and cell frequencies k - 1, 1 
and n - k.) Since 

/~(1-~)~"' .Jk, 
V n n n n 

as n _... oo, the convergence to types Theorem 8.7.1 discussed below assures us 
we can replace the square root in the expression for ~n by .Jk;n and thus we 
consider the density 

.Jk fn(.Jk X+~) . 
n n n 

By Stirling's formula (see Exercise 8 of Chapter 9), as n _... oo, 

n! Jn 
<k _ 1>,<n _ k)! .J21f(~)k-11\ 1 _ ~r-k+l/2 · 
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Neglecting the factorials in the expression for the density, we have two factors of 
the form 

Thus we get for the density of ~n. the following asymptotic expression 

_1_(1 + _:_l-1(1- X )n-k. 

$ -/k (n -k)j-/k 

It suffices to prove that 

or equivalently, 

X X x2 
(k- 1) log(1 + r,:) + (n - k) log(1- -/k) ~ -2 . (8.7) 

vk (n- k)/ k 

Observe that, for It I < 1, 

and therefore 

oo tn 
-log(1- t) = L -;• 

n=l 

r2 
o(t) :=1 - log(1- t)- <r + 2 >I 

00 ltl3 
<"" itln = -- < 21t13 
- L... 1-ltl- ' 

n=3 

if It I < 1/2. So the left side of (8.7) is of the form 

where 
X X 

o(1) = (k- 1)8( rr:) + (n - k)o( rr:) ~ o. 
vk (n- k)/vk 

Neglecting o(1), (8.7) simplifies to 

x x2 1 1 2 
--- -(1- -+ -n-) ~ -x /2. -lk 2 k k-1 

(8.8) 

0 
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8.3 The Baby Skorohod Theorem 

Skorohod's theorem is a conceptual aid which makes certain weak convergence 
results easy to prove by continuity arguments. The theorem is true in great gener­
ality. We only consider the result for real valued random variables and hence the 
name Baby Skorohod Theorem. 

We begin with a brief discussion of the relationship of almost sure convergence 
and weak convergence. 

Proposition 8.3.1 Suppose {X, Xn, n 2:: 1} are random variables. If 

X a.s.x 
n-+ ' 

then 
Xn =>X. 

Proof. Suppose X n ~ X and let F be the distribution function of X. Set 

so that P(N) = 0. For any h > 0 and x e C(F), we have the following set 
containments: 

c limsup[Xn ::: x] n Nc 
n-+oo 

and hence, taking probabilities 

F(x- h):::; P(lim inf[Xn ::: x]) 
n-+00 

::: liminfP[Xn::: x] 
n-+00 

(from Fatou's lemma) 

:::;limsupP[Xn :::x] 
n-+oo 

:::; P(lim sup[Xn ::: x]) (from Fatou's lemma) 
n-+oo 

::: F(x). 

Since x e C(F), let h .J.. 0 to get 

F(x):::; liminfFn(X):::; limsupFn(x):::; F(x). 
n-+00 n-+oo 0 

The converse if false: Recall Example 8.1.1. 
Despite the fact that convergence in distribution does not imply almost sure 

convergence, Skorohod's theorem provides a partial converse. 
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Theorem 8.3.2 (Baby Skorohod Theorem) Suppose {Xn, n ~ 0} are random 
variables defined on the probability space (Q, B, P) such that 

Then there exist random variables {X!, n ~ 0} defined on the Lebesgue proba­
bility space ([0, 1], 8([0, 1]), A = Lebesgue measure) such that for each fixed 
n ~ 0, 

and 
X# a.s. X# 

n-+ 0 

where a.s. means almost surely with respect to A. 

Note that Skorohod's theorem ignores dependencies in the original {Xn} se­
quence. It produces a sequence {X!} whose one dimensional distributions match 
those of the original sequence but makes no attempt to match the finite dimen­
sional distributions. 

The proof of Skorohod's theorem requires the following result. 

Lemma 8.3.1 Suppose Fn is the distribution function of X n so that Fn => Fo. If 

t e (0, 1) n C(F0-), 

then 
Fn<- (t) -+ F0<- (t). 

Proof of Lemma 8.3.1. Since C(Fo)c is at most countable, given E > 0, there 
exists x e C(Fo) such that 

From the definition of the inverse function, x < F0-(t) implies that Fo(x) < t. 
Also, x E C(Fo) implies Fn(x) -+ Fo(x). So for large n, we have Fn(x) < t. 
Again, using the definition of the inverse function, we get x :;: Fn+-(t). Thus 

for all large n and since E > 0 is arbitrary, we conclude 

(8.9) 

Note that we have not yet used the assumption that t is a continuity point of F0<­

and this is used for the reverse inequality. 
Whenever t' > t, we may find y e C(Fo) such that 

F0-(t') < y < F0-(t') +E. 
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This gives 
Fo(y)::: t' > t. 

Since y e C(Fo), Fn(Y) ~ Fo(y) and for large n, Fn(Y) ::: t, therefore y ::: 
Fn~(t), and thus 

F0~(t1 ) + € > y::: Fn~(t) 

for all large n. Moreover, since € > 0 is arbitrary, 

limsupFn~(t)::: F0~(t'). 
n--.oo 

Let t' ~ t and use continuity of F0~ at t to conclude that 

lim sup Fn+- (t) ::: F0+- (t) . (8.10) 
n--.oo 

The two inequalities (8.9) and (8.10) combine to yield the result. 0 

This lemma only guarantees convergence of Fn+- to F0+- at continuity points of 
the limit. However, convergence could take place on more points. For instance, if 
Fn = Fo for all n, Fn+- = F0~ and convergence would be everywhere. 

Lemma 8.3.1 allows a rapid proof of the Baby Skorohod theorem. 

Proof of the Baby Skorohod Theorem. On the sample space (0, 1 ], define the 
random variable U (t) = t so that U is uniformly distributed, since for 0 ::: x ::: 1 

A.[U::: x] = A.{t E (0, 1]: U(t)::: x} = A.[O,x] = x. 

For n ::: 0 define X! on [0, 1] by 

Then for y e JR. 

A.[X!::; y] = A.{t E (0, 1]: Fn+-(t)::; y} = A.{t E [0, 1]: t::; Fn(y)} = Fn(y). 

So we conclude that X! !!: X n, for each n ::: 0. 
Next, we write 

A.{t E (0, 1] :X!(t) fr X~(t)} 
= A.{t E (0, 1]: Fn+-(t) fr Fo+-(t)}, 

and using Lemma 8.3.1, this is bounded by 

::: A.{t e (0, 1] : F0+- is not continuous at t } 

=A.{ a countable set} = 0. 0 

The next corollary looks tame when restricted to JR., but its multidimensional 
generalizations have profound consequences. For a map h : JR. 1-+ JR., define 

Disc(h) = {x: h isnotcontinuousatx} = (C(h))c. 
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Corollary 8.3.1 (Continuous Mapping Theorem) Let {X n, n ?:: 0} be a se­
quence of random variables such that 

For n ?:: 0, assume Fn is the distribution function of X n· Let h : lR ~--+ lR satisfy 

P[Xo e Disc(h)] = 0. 

Then 
h(Xn) :::::? h(Xo), 

and if h is bounded, dominated convergence implies 

Eh(Xn) = J h(x)Fn(dx) ~ Eh(x) = J h(x)Fo(dx). 

Remark. Disc(h) is always measurable even if h is not. 
As a quick example, if Xn :::::? Xo, then x; ~ X5 which is checked by applying 

the continuous function (so Disc(h) is empty) h(x) = x 2• 

Proof. The proof of the corollary uses the Baby Skorohod Theorem which iden­

tifies new random variables X! 4 X n, n ?:: 0, with X! defined on [0, 1 ]. Also 
X!(t) ~ xg(t) for a.a. t. If xg(t) e C(h), then h(X!(t)) ~ h(Xg(t)). Thus, 

).{t e [0, 1] :h(X!(t)) ~ h(Xg(t))} 

?:: ).{t E [0, 1]: Xg(t) E (Disc(h))c} 

= P([Xo e Disc(h)n = 1. 

So h(X!) ~ h(Xg) almost surely with respect to)., and since almost sure con­
vergence implies convergence in distribution, we have 

h(Xn) 4 h(X!) :::::? h(Xg) 4 h(Xo) 

so that h(Xn) :::::? h(Xo). 

8.3.1 The Delta Method 

0 

The delta method allows us to take a basic convergence, for instance to a limiting 
normal distribution, and apply smooth functions and conclude that the functions 
are asymptotically normal as well. 

In statistical estimation we try to estimate a parameter () from a parameter set 
E> based on a random sample of size n with a statistic 

This means we have a family of probability models 

{(Q, 8, Pe), () E E>}, 
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and we are trying to choose the correct model. The estimator Tn is consistent if 

for every 0. The estimator Tn is CAN, or consistent and asymptotically normal, if 
for all(} E 8 

for some Un--+ oo. 
Suppose we have a CAN estimator of (}, but we need to estimate a smooth 

function g(O) . For example, in a family of exponential densities,(} may represent 
the mean but we are interested in the variance 02. We see from the delta method 
that g(Tn) is also CAN for g(O) . 

We illustrate the method using the central limit theorem (CLT) to be proved in 
the next chapter. Let {Xj, j ::: 1} be iid with E(Xn) = J.l. and Var(Xn) = u 2• 

From the CLT we get 
Sn -nJJ. 

r= => N(O, 1), 
Uyn 

where N (0, 1) is a normal random variable with mean 0 and variance 1. Equiva­
lently, we can express this in terms of i = E?=t X;/n as 

( i-JJ.) Jn -u- => N(O, 1). 

So i is consistent and an asymptotically normal estimator of J.l. . The delta method 
asserts that if g(x) has a non-zero derivative g'(JJ.) at J.l., then 

Jn (g(X)- g(JJ.)) => N(O, 1). 
ug'(JJ.) 

So g(X) is CAN for g(JJ.). 

(8.11) 

Remark. The proof does not depend on the limiting random variable being N (0, 1) 
and would work equally well if N(O, 1) were replaced by any random variable Y. 

Proof of (8.11 ). By the Baby Skorohod Theorem there exist random variables Z! 
and N# on the probability space ((0, 1), 8((0, 1)), A.) such that 

z! 4 Jn (X~ J.l.) , N# 4 N 

and 

Z! --+ N# a.s. (A.) . 

Define 
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so that X 4 X#. Then using the definition of derivative 

Jn (g(X)- g(f.l)) 4 Jn (g(f.l + u Z!l Jn)- g(f.l)) 
(1 g' (fJ.) (1 g' (fJ.) 

= g(f.l + u Z!/ Jn)- g(f.l) . _u_Z_!_ 

u Z!/ Jn ug'(f.l) 

a.s .(>.) '( ) u N# N# d N 
~8fJ.·--= =' 

(1 g' (fJ.) 

since u Z! 1 Jn -+ 0 almost surely. This completes the proof. 

Remark. Suppose {X n, n ~ 0} is a sequence of random variables such that 

Suppose further that 
h : lR to-+§, 

where§ is some nice metric space, for example,§= JR2. Then if 

P[Xo E Disc(h)] = 0, 

Skorohod's theorem suggests that it should be the case that 

h(Xn) => h(X) 

in § . But what does weak convergence in § mean? Read on. 

8.4 Weak Convergence Equivalences; 
Portmanteau Theorem 

0 

In this section we discuss several conditions which are equivalent to weak conver­
gence of probability distributions. Some of these are of theoretical use and some 
allow easy generalization of the notion of weak convergence to higher dimensions 
and even to function spaces. The definition of weak convergence of distribution 
functions on lR is notable for not allowing easy generalization to more sophis­
ticated spaces. The modem theory of weak convergence of stochastic processes 
rests on the equivalences to be discussed next. 

We nead the following definition. For A E B(IR), let 

o(A) = the boundary of A 

= A- \ A 0 = the closure of A minus the interior of A 

= {x : 3 Yn E A' Yn -+ X and 3 Zn E A c' Zn -+ X} 

= points reachable from both outside and inside A. 
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Theorem 8.4.1 (Portmanteau Theorem) Let fFn, n ~ 0} be a family of proper 
distributions. The following are equivalent. 

(1) Fn ::::} Fo. 

(2) For all f : lR ~--+ lR which are bounded and continuous, 

I fdFn--+ I fdFo. 

Equivalently, if Xn is a random variable with distribution Fn (n ~ 0), then 
for f bounded and continuous 

Ef(Xn)--+ Ef(Xo). 

(3) If A e B(IR) satisfies Fo(o(A)) = 0, then 

Fn(A) --+ Fo(A). 

Remarks. (i) Item (2) allows for the easy generalization of the notion of weak 
convergence of random elements {~n. n ~ 0} whose range § is a metric space. 
The definition is 

iff 
E(/(~n))--+ E(/(~o)) 

as n --+ oo for all test functions f : § 1-+ lR which are bounded and continuous. 
(The notion of continuity is natural since§ is a metric space.) 

(ii) The following clarification is necessary. Portmanteau is not the name of the 
inventor of this theorem. A portmanteau is a large leather suitcase that opens into 
two hinged compartments. Billingsley (1968) may be the first to call this result 
and its generalizations by the name portmanteau theorem. He dates the result back 
to 1940 and attributes it to Alexandrov. 

Proof. (1)--+ (2): This follows from Corollary 8.3.1 of the continuous mapping 
theorem. 

(1)--+ (3): Let f(x) = 1A(x). We claim that 

o(A) = Disc(1A). (8.12) 

To verify (8.12), we proceed with verifications of two set inclusions. 

(i) o(A) C Disc(lA). This is checked as follows. If x E o(A), then there exists 

So 

Yn E A, and Yn --+X, 

Zn E A c, and Zn --+ x. 

1 = 1A(yn)--+ 1, 0 = 1A(Zn)--+ 0 

implies x E Disc(1A ). 
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(ii) Disc(lA) c o(A) : This is verified as follows. Let x E Disc(lA). Then 
there exists Xn ~ x, such that 

Now there are two cases to consider. 

Case (i) 1A (x) = 1. Then there exists n' such that 1A (Xn' ) ~ 0. So for all 
large n', 1A(Xn') = 0 and Xn' E Ac. Thus Xn' E Ac, and Xn' ~ x. 
Also let Yn = x E A and then Yn ~ x, sox E i.l(A). 

Case (ii) 1A (x) = 0. This is handled similarly. 

GivenA E B(lR)suchthatFo(a(A)) = O,wehavethatFo({x: x E Disc(lA)} = 
0 and by the continuous mapping theorem 

f 1AdFn = Fn(A) ~ f 1AdFo = Fo(A). 

(3)~ (1): Letx E C(Fo). We must show Fn(x) ~ F(x). But if A= (-oo,x], 
then a(A) = {x} and Fo(a(A)) = 0 since Fo({x}) = 0 because x E C(Fo). So 

Fn(A) = Fn(x) ~ Fo(A) = Fo(x). 

(Recall, we are using both Fn and Fo in two ways, once as a measure and once as 
a distribution function.) 

(2) ~ (1). This is the last implication needed to show the equivalence of (1), 
(2) and (3). Let a, bE C(F). Given (2), we show Fn(a, b] ~ Fo(a , b]. 

Define the bounded continuous function gk whose graph is the trapezoid of 
height 1 obtained by taking a rectangle of height 1 with base [a, b] and extending 
the base symmetrically to [a- k-1, b + k-1 . Then gk -1.- 1[a,b] ask~ oo and for 
all k, 

Fn(a, b] = l1(a ,bJdFn ::; J gkdFn ~ J gkdFo 

as n ~ oo due to (2). Since gk ::; 1, and gk -1.- 1[a,b) we have 

j gkdFo -1.- Fo([a, b]) = Fo((a , b]). 

We conclude that 
limsupFn(a, b]::; Fo(a, b]. 

n-> 00 

Next, define new functions hk whose graphs are trapezoids of height 1 obtained 
by taking a rectangle of height 1 with base [a + k-1, b - k-1] and stretching the 
base symmetrically to obtain [a, b]. Then hk t 1(a,b) and 
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for all k. By monotone convergence 

I hkdFo t Fo((a , b))= Fo((a, b]) 

as k ~ oo, so that 
lim inf Fn((a, b]) 2:: Fo((a, b]). 
n..,.oo 

0 

Sometimes one of the characterizations of Theorem 8.4.1 is much easier to 
verify than the definition. 

Example 8.4.1 The discrete uniform distribution is close to the continuous 
uniform distribution. Suppose Fn has atoms at i In, 1 ~ i ~ n of size 1 In . Let 
Fo be the uniform distribution on (0, 1]; that is 

F (x) = x, 0 ~ x ~ 1. 

Then 
Fn => Fo. 

To verify this, it is easiest to proceed by showing that integrals of arbitrary 
bounded continuous test functions converge. Let f be real valued, bounded and 
continuous with domain (0, 1]. Observe that 

I n 1 
fdFn = L f(iln)-

i=1 n 

= Riemann approximating sum 

~ lot f(x)dx (n ~ oo) 

=I fdFo 

where Fo is the uniform distribution on (0, 1]. 0 

It is possible to restrict the test functions in the portmanteau theorem to be 
uniformly continuous and not just continuous. 

Corollary 8.4.1 Let {Fn , n 2:: 0} be a family of proper distributions. The follow­
ing are equivalent. 

(1) Fn => Fo. 

(2) For all f : R ~-+ R which are bounded and uniformly continuous, 

I fdFn ~I fdFo . 

Equivalently, if X n is a random variable with distribution Fn (n 2:: 0), then 
for f bounded and uniformly continuous 

Ef(Xn) ~ Ef(Xo) . 
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Proof. In the proof of (2) ~ (1) in the portmanteau theorem, the trapezoid func­
tions are each bounded, continuous, vanish off a compact set, and are hence uni­
formly continuous. This observation suffices. 0 

8.5 More Relations Among Modes of Convergence 

We summarize three relations among the modes of convergence in the next propo­
sition. 

Proposition 8.5.1 Let {X, Xn, n ::;:: 1} be random variables on the probability 
space (Q, !3, P). 

(i) If 

then 

(ii) If 

then 

All the converses are false. 

X a.s.x 
n ~ ' 

p 
Xn~X. 

p 
Xn~x. 

Xn :::}X. 

Proof. The statement (i) is just Theorem 6.2.1 of Chapter 6. To verify (ii), suppose 

X n ~ X and f is a bounded and continuous function. Then 

f(Xn) ~ f(X) 

by Corollary 6.3.1 of Chapter 6. Dominated convergence implies 

E(f(Xn)) ~ E(f(X)) 

(see Corollary 6.3.2 of Chapter 6) so 

by the portmanteau theorem. 0 

There is one special case where convergence in probability and convergence in 
distribution are the same. 
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Proposition 8.5.2 Suppose {Xn, n 2: 1} are random variables. If cis a constant 
such that 

then 

and conversely. 

p 
Xn--+- C, 

Proof. It is always true that convergence in probability implies convergence in 
distribution, so we focus on the converse. If 

then 

and 

10, 
P[Xn:=:x]-+- 1, 

p 
Xn--+- C 

ifx < c, 
if X> C, 

means P[IXn- cl > €]--+- 0 which happens iff 

P[Xn < c- €]--+- 0 and P[Xn < c + €]--+- 1. 

8.6 New Convergences from Old 

0 

We now present two results that express the following fact. If X n converges in 
distribution to X and Yn is close to X n, then Yn converges in distribution to X as 
well. 

Theorem 8.6.1 (Slutsky's theorem) Suppose {X, Xn, Yn. ~n. n 2: 1} are ran­
dom variables. 

(a) If Xn =>X, and 

then 

p 
Xn- Yn--+- 0, 

Yn =>X. 

(b) Equivalently, if Xn =>X, and ~n l: 0, then 

Xn +~n =>X. 

Proof. It suffices to prove (b). Let f be real valued, bounded and uniformly con­
tinuous. Define the modulus of continuity 

w~(f) = sup lf(x)- f(y)j . 
fx-yf::;:~ 
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Because f is uniformly continuous, 

w.s (f) ~ 0, 8 ~ 0. (8.13) 

From Corollary 8.4.1 if suffices to show Ef(Xn + ~n) ~ Ef(X). To do this, 
observe 

IEf(Xn + ~n)- Ef(X)I 

:5: IEf(Xn + ~n)- Ef(Xn)l + IEf(Xn)- Ef(X)I 

= Elf(Xn + ~n)- f(Xn)l1[1~ni:O:c5) + 2sup lf(x)IP[I~nl > 8] + o(1) 
X 

(since Xn =>X) 

= o(1) + w.s{f) + (const)P[I~n I > 8]. 

The last probability goes to 0 by assumption. Let 8 ~ 0 and use (8.13). D 

Slutsky's theorem is sometimes called the converging together lemma. Here 
is a generalization which is useful for truncation arguments and analyzing time 
series models. 

Theorem 8.6.2 (Second Converging Together Theorem) Let us suppose that 
{Xun. Xu, Yn, X; n :::: 1, u :::: 1} are random variables such that for each n, 
Yn, X un, u :::: 1 are defined on a common domain. Assume for each u, as n ~ oo, 

andasu ~ oo 
Xu =>X. 

Suppose further that for all € > 0, 

lim lim sup P[IXun - Yn I > €] = 0. 
U->-00 n->-00 

Then we have 
Yn =>X 

asn ~ oo. 

Proof. For any bounded, uniformly continuous function f, we must show 

lim Ef(Yn) = Ef(X). 
n->-00 

Without loss of generality, we may, for neatness sake, suppose that 

sup lf(x)l :S 1. 
xe!R 
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Now write 

so that 

IEf(Yn)- Ef(X)I ~ Elf(Yn)- f(Xun)l + Elf(Xun)- f(Xu)l 

+ Elf(Xu)- f(X)I 

limsupiE/(Yn)- Ef(X)I 
n-+oo 

~ lim limsup£1/(Yn)- f(Xun)l +0+0 
u-+oo n-+oo 

~ lim limsupEI/(Yn)- /(Xun)I1[1Yn-Xunl!:f) 
u-+oo n-+oo 

+ lim limsupEI/(Yn)- /(Xun)I1[1Yn-Xunl>f) 
u-+oo n-+oo 

~ sup{lf(x)- /(y)l : lx- Yl ~ €} 

+ lim limsupP[IYn -Xunl > €] 
u-+oo n-+oo 

--.o 
as€--. 0. 

8.6.1 Example: The Central Limit Theorem form-dependent 
random variables 

0 

This section discusses a significant application of the second converging together 
theorem which is often used in time series analysis. In the next chapter, we will 
state and prove the central limit theorem (CLT) for iid summands: Let {Xn, n :::: 1} 
be iid with J.L = E(Xt), a 2 = Var(Xt). Then with Sn = E7=t X;, we have partial 
sums being asymptotically normally distributed 

Sn- nJ.L _ Sn- E(Sn) N(O ) r.: - ::} , 1. 
av" y'Var(Sn) 

(8.14) 

In this section, based on (8.14), we will prove the CLT for stationary, m-dependent 
summands. 

Call a sequence {Xn, n =::: 1} strictly stationary if, for every k, the joint distri­
bution of 

(Xn+l• . . . , Xn+k) 

is independent of n for n = 0, 1, ... . Call the sequence m-dependent if for any 
integer t, the a-fields a(Xj . j ~ t) and a(Xj. j :::: t + m + 1) are independent. 
Thus, variables which are lagged sufficiently far apart are independent. 

The most common example of a stationary m-dependent sequence is the time 
series model called the moving average of order m which is defined as follows. 
Let { Z n} be iid and define for given constants Ct, . .. , Cm the process 

m 

Xr = ~::::cjZt-j• t = 0, 1, .... 
i=l 
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Theorem 8.6.3 (Hoeffding and Robbins) Suppose {Xn , n ~ 1} is a strictly sta­
tionary and m-dependent sequence with E (X 1) = 0 and 

Suppose 

Then 

and 

Cov(X1 , Xt+h) = E(X1Xt+h) = : y(h). 

m 

Vm := y(O) + 2 _Ey(j) # 0. 
j=l 

1 n 
r= _Ex;=> N(O, vm) . 

vn i=l 

where Xn = L.?=t X;/n . 

Proof. Part 1: Variance calculation. We have 

1 n 1 n n 
nVar(Xn) = -E(_EX;)2 = -E<_E_EX;X j ) 

n i=l n i=l j=I 

1 n n 

=- LLY(j -i) 
n i=l j=I 

1 = - I: (#(i, n = j - i = k)y(k) 
n lkl<n 

= L (n ~ lkl) y(k). 
lkl<n 

(8.15) 

(8.16) 

This last step is justified by noting that, for example when k > 0, i could be 
1, 2, .. . , n- k and j = k + i. Thus we conclude that 

- "' ( lkl) nVar(Xn) = ~ 1 - -;;- y(k). 
lkl<n 

Recall that y(l) = 0 if ill > m and as n ..,. oo 

nVar(Xn) _,. L y(k) = Vm. 

lki<OO 
(8.17) 

Part 2: The big block-little block method. Pick u > 2m and consider the fol­
lowing diagram. 
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1 .. 

1st 
little 
block -

u-m u .. 
1st 
big 

block 

Let 

.. 
2nd 
big 

block 

2nd 
little 
block -

2u-m 2u .. 

so that rjn ~ 1/u and define 

~1 = X1 + · · • +Xu-m• 

~2 = Xu+1 + · · · +X2u-m. 

(r-1)u 

rth 
big 

block 

~r = X(r-1)u+l + · · · +X ru-m 

ru-m ru n -­remainder 

which are the "big block" sums. Note by stationarity and m-dependence that 
~t. ... , ~' are iid because the little blocks have been removed. 

Define 

Note 

~1 + .. · +~r 
Xun: = Jn 

_ ~1 + ... +~r ~ 
- ~ y~· 

as n ~ oo. From the CLT for iid summands, as n ~ oo 

Var(~1) 
Xun => N(O, --)=:Xu. 

u 

Now observe, that as u ~ oo 

Var(~1) = Var<L:7.:;" X;) = (u- m)2 Var (E7.:;" X;) 
u u u u-m 

- u -m = (u- m)Var(Xu-m) · -­
u 

~ Vm ·1 = Vm, 
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from the variance calculation in Part 1. Thus, as u -+ oo, 

Var(~I) 
Xu= N(O, --)::::} N(O, Vm) =:X, 

u 

since a sequence of normal distributions converges weakly if their means (in this 
case, all zero) and variances converge. 

By the second converging together theorem, it remains to show that 

(8.18) 

Fori = 1, .. . , r - 1, let 

B; = {iu- m + 1, ... , iu} 

be the m integers in the ith little block, and let 

B, ={ru-m+ 1, . . . , n} 

be the integers in the last little block coupled with the remainder due to u not 
dividing n exactly. Then we have 

I L:?-1 X; I 1 "' "' "' Jn -Xun = Jn .~X;+·· · + . ~ X;+ ~X; 
1EB1 IEBr-i IEB, 

and all sums on the right side are independent by m-dependence. So 

(L~- X; ) 1 ( m n-ru+m+l ) 
Var '.Jn- - Xun =- (r -1)Var(LX;) + Var( L X;) . 

n n i=l i=l 

Note that 

h(n) : = n- ru + m + 1 = n- [~] u + m + 1 

n 
~ n - (- - 1)u + m + 1 

u 
=n-n+u+m+1=u+m+l. 

Thus for fixed u, as n -+ oo, 

1 (~ ) sup1<J'<u+m+l Var(L:{=l X;) 
-Var ~X; ~ - - -+ 0. 
n i=l n 

Also, since rjn-+ 1/u as n-+ oo 

- (r -1)Var(LX;) ,.._, -Var(LX;)-+ 0 1( m ) 1 m 

n i=l u i=l 
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as u ---+ oo and we have by Chebychev's inequality 

lim limsupP[I"£7nX; -Xunl > E] 
u--.oo n--.oo n 

I. I' 1 ("£7-t X; ) ~ 1m 1m sup 2 var -r.: - Xun 
u--.oo ,__. 00 E v n 

= lim (~var(~ X;)+ o) u--.oo u ~ 
i=l 

=0. 

This completes the proof. 0 

8. 7 The Convergence to Types Theorem 

Many convergence in distribution results in probability and statistics are of the 
following form: Given a sequence of random variables {~,, n 2:: 1} and a, > 0 
and b, E IR, we prove that 

~n- b, Y --- => ' a, 

where Y is a non-degenerate random variable; that is, Y is not a constant a.s. This 
allows us to write 

~n -b, 
P[ ~ x]::::::: P[Y ~ x] =: G(x), 

a, 

or by setting y = a,x + b, 

y-b 
P[~n ~ y]::::::: G(--" ). 

a, 

This allows us to approximate the distribution of ~n with a location-scale family. 
The question arises: In what sense, if any are the normalizing constants a, and 

b, unique? If we changed normalizations, could we get something significantly 
different? 

The answer is contained in the corwergence to types theorem. The normaliza­
tions are determined up to an asymptotic equivalence and the limit distribution is 
determined up to location and scale. 

Example. As a standard example, supppse {X,, n 2:: 1} are iid with E(X,) = f.1. 
and Var(X,) = a 2• The Central Limit Theorem states that for each x E lR 

S, - nJ.L lx e_"2 /2 
P[ r.: ~ x]---+ P[Y ~ x] = ~du 

a vn -oo v2rra 
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so that 
y- nJ.L 

P[Sn :;:y]:=::::N(~), 
avn 

where N (x) is the standard normal distribution function. 

Definition. Two distribution functions U (x) and V (x) are of the same type if there 
exist constants A > 0 and B E I. such that 

V(x) = U(Ax +B). 

In terms of random variables, if X has distribution U and Y has distribution V, 
then 

yg,X-B. 
A 

For example, we may speak of the normal type. If X o, 1 has N (0, 1, x) as its 

distribution and XJl,u has N(J.L, a 2) as its distribution, then XJl,u 4: aXo,I + J.L. 
Now we state the theorem developed by Gnedenko and Khintchin. 

Theorem 8.7.1 (Convergence to Types Theorem) We suppose U(x) and V(x) 
are two proper distributions, neither of which is concentrated at a point. Sup­
pose for n ~ 0 that X n are random variables with distribution function Fn and 
the U, V are random variables with distribution functions U (x), V (x ). We have 
constants On > 0, an > 0, bn E JR, f3n E R 

(a)If 

or equivalently 

then there exist constants A > 0, and B E I. such that as n ~ oo 

and 

an 
-~A> 0, 
On 

f3n- bn B 
~' On 

V(x) = U(Ax +B), 
dU-B 

V=--. 
A 

(8.20) 

(8.21) 

(8.22) 

(b) Conversely, if (8.21) holds, then either of the relations in (8.19) implies the 
other and (8.22) holds. 

Proof. (b) Suppose 
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and 

Then 
( an f3n- bn } 

Fn(CXnX + f3n) = Gn -X+ ( ) . 
On On 

Pickx such thatx E C(U(A ·+B)). 
Suppose x > 0. A similar argument works if x ~ 0. Given f > 0 for large n, 

we have 

CXn f3n- bn 
(A- €)X + B- f ~ -X+ ( ) ~ (A+ €)X + (B +f), 

On On 

so 

Therefore, for any z E C(U(·)) with z > (A+ f)x + (B +f). we have 

limsupFn(anX + f3n) ~ limsupGn(Z) = U(z). 

Thus 

Since f > 0 is arbitrary, 

limsupFn(anX + f3n) ~ inf U(z) = U(Ax +B) 
n->00 z>Ax+B 

by right continuity of U(-). Likewise, 

~liminfGn(Z) = U(z) 
n->00 

for any z < (A- f)x + B- f and z E C(U(·)). Since this is true for all f > 0, 

liminfFn(anx + f3n) ~ sup U(z) = U(Ax +B), 
n->oo z<Ax+B 

zeC(U(·)) 

since Ax+ B E C(U(·)). 
We now focus on the proof of part (a). Suppose 
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Recall from Lemma 8.3.1 that if G n ~ G, then also G :;- ~ G +-. Thus we have 

Since U (x) and V (x) do not concentrate at one point, we can find y1 < Y2 with 
y; e C(U+-) n C(V+-), fori = 1, 2, such that 

and 

Therefore, for i = 1, 2 we have 

(8.23) 

In (8.23) subtract the expressions with i = 1 from the ones with i = 2 to get 

Now divide the second convergence in the previous line into the first convergence. 
The result is 

Also from (8.23) 

Fn+-(yl)- bn -+U+-(yJ), 
an 

Fn-(yl)- f3n Fn-(Yt)- f3n ctn v-( )A _.:.:..__;;, _ __;;,_ · - --+ Yt , 
an Cln an 

so subtracting yields 

as desired. So (8.21) holds. By part (b) we get (8.22). 0 
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Remarks. 

(1) The theorem shows that when 

and U is non-constant, we can always center by choosing bn = Fn .... (yi) 
and we can always scale by choosing an = Fn+-(yz)- Fn .... (yJ) . Thus quan­
tiles can always be used to construct the centering and scaling necessary to 
produce convergence in distribution. 

(2) Consider the following example which shows the importance of assuming 
limits are non-degenerate in the convergence to types theorem. Let 

Then 

U(x) = 1°• 1, 

if t < C, 

if t ::::c. 

u-(t) = inf{y: U(y):::: t} = c, 1
-00, 

00, 

if t = 0, 

if 0 < t :::: 1, 

ift>l. 

8. 7.1 Application of Convergence to Types: Limit Distributions 
for Extremes 

A beautiful example of the use of the convergence to types theorem is the deriva­
tion of the extreme value distributions. These are the possible limit distributions 
of centered and scaled maxima of iid random variables. 

Here is the problem: Suppose {Xn , n :;:: 1} is an iid sequence of random vari­
ables with common distribution F. The extreme observation among the first n 
is 

n 

Mn :=VX; . 
i=l 

Theorem 8. 7.2 Suppose there exist normalizing constants an > 0 and bn e lR 
such that 

(8.24) 

where the limit distribution G is proper and non-degenerate. Then G is the type 
of one of the following extreme value distributions: 

(i) <l>a(X) = exp{-x-a}, x > 0, a> 0, 



8. 7 The Convergence to Types Theorem 279 

(ii) \lla(X) = { ~xp{-(x)a}, X< 0, 
X> 0, 

(iii) A(x) = exp{-e-x}, x E R 

a>O 

The statistical significance is the following. The types of the three extreme 
value distributions can be united as a one parameter family indexed by a shape 
parameter y e IR: 

Gy(x) = exp{-(1 + yx)-l/r}, 1 + yx > 0 

where we interpret the case of y = 0 as 

Go= exp{-e-x}, x e JR. 

Often in practical contexts the distribution F is unknown and we must estimate 
the distribution of Mn or a quantile of Mn. For instance, we may wish to design a 
dam so that in 10,000 years, the probability that water level will exceed the dam 
height is 0.001. If we assume F is unknown but satisfies (8.24) with some Gy as 
limit, then we may write 

and now we have a three parameter estimation problem since we must estimate 
y, an. bn. 

Proof. We proceed in a sequence of steps. 
Step (i). We claim that there exist two functions a(t) > 0 and {J(t), t > 0 such 

that for all t > 0, 

and also 

an 
---. a(t), bn - b[nt) __. fJ(t), 

a(nr) a(nr) 

G 1 (x) = G(a(t)x + fJ(t)). 

(8.25) 

(8.26) 

To see this, note that from (8.24), for every t > 0, we have on the one hand 

and on the other 

Thus G1 and G are of the same type and the convergence to types theorem is 
applicable. Applying it to (8.25) and (8.26) yields the claim. 
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Step (ii). We observe that the function a(t) and fJ(t) are Lebesgue measurable. 
For instance, to prove a(·) is measurable, it suffices (since limits of measurable 
functions are measurable) to show that the function 

is measurable for each n. Since an does not depend on t, the previous statement 
is true if the function 

t t-+ a(nt] 

is measurable. Since this function has a countable range {a j, j ::: 1} it suffices to 
show 

{t > 0: a(nt] =a j} 

is measurable. But this set equals 

which, being a union of intervals, is certainly a measurable set. 
Step (iii). Facts about the Hamel Equation. We need to use facts about possi­

ble solutions of functional equations called Hamel's equation and Cauchy's equa­
tion. If f (x), x > 0 is finite, measurable and real valued and satisfies the Cauchy 
equation 

f(x + y) = f(x) + f(y), x > O,y > 0, 

then f is necessarily of the form 

f(x) =ex, x > 0, 

for some c E JR. A variant of this is Hamel's equation. If cp(x), x > 0 is finite, 
measurable, real valued and satisfies Hamel's equation 

cp(xy) = ¢(x)¢(y), x > 0, y > 0, 

then ¢ is of the form 

for some p E JR. 
Step (iv). Another useful fact. IfF is a non-degenerate distribution function and 

F(ax +b)= F(cx +d) Vx E IR, 

for some a > 0, and c > 0, then a = c, and b = d. A proof of this is waiting for 
you in the exercises (Exercise 6). 
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Step (v). Now we claim that the functions a(·) and /3(·) satisfy (t > 0, s > 0) 

a(ts) = a(t)a(s), 

f3(ts) = a(t)f3(s) + f3(t) 

= a(s)f3(t) + f3(s), 

the last line following by symmetry. 
To verify these assertions we use 

G 1(x) = G(a(t)x + ,8(t)) 

to conclude that 

G(a(ts)x + ,8(ts)) = G 15 (x) = (G5 (x)) 1 

= (G(a(s)x + ,8(s)))1 

= G(a(t)[a(s)x + ,8(s)] + f3(t)) 

= G(a(t)a(s)x + a(t)f3(s) + f3(t)) . 

Now apply Step (iv). 

(8.27) 

(8.28) 

(8.29) 

Step (vi). Now we prove that there exists() e lR such that a(t) = t 9 . If() = 0, 
then f3(t) = c logt, for some c e JR. If() "# 0, then {3(t) = c(1- t9 ), for some 
c E lit 

Proof of (vi): Since a(·) satisfies the Hamel equation, a(t) = t 9 for some 
() e JR. If() = 0, then a(t) = 1 and f3(t) satisfies 

,8(ts) = {3(s) + f3(t). 

So exp{,B(·)} satisfies the Hamel equation which implies that 

exp{,8(t)} = tc, 

for some c e lR and thus {3(t) = clogt . 

If () "# 0, then 

f3(ts) = a(t),B(s) + ,8(t) = a(s)f3(t) + f3(s). 

Fix so "# 1 and we get 

a(t)f3(so) + ,8(t) = a(so)f3(t) + ,8(so), 

and solving for ,8(t) we get 

f3(t)(1 - a(so)) = ,8(so)(l - a(t)). 

Note that 1 - a(so) "# 0. Thus we conclude 

( ,8(so) ) 9 
f3(t) = (1 - a(t)) = : c(1- t ) . 

1 - a(so) 
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Step (vii). We conclude that either 

(a) G1(x)=G(x+clogt), (0=0), 

or 

Now we show that 0 = 0 corresponds to a limit distribution of type A (x ), that 
the case 0 > 0 corresponds to a limit distribution of type <l>a and that 0 < 0 
corresponds to \f1 a. 

Consider the case 0 = 0. Examine the equation in (a): For fixed x, the function 
G1 (x) is non-increasing in t. Soc < 0, since otherwise the right side of (a) would 
not be decreasing. If xo e lR such that G (xo) = 1, then 

1 = G1 (xo) = G(xo + clogt), Vt > 0, 

which implies 

G(y) = 1, Vy E IR, 

and this contradicts G non-degenerate. If xo e lR such that G(xo) = 0, then 

0 = G 1 (xo) = G(xo + clogt), Vt > 0, 

which implies 

G(x) = 0, Vx E IR, 

again giving a contradiction. We conclude 0 < G(y) < 1, for ally e JR. 
In (a), set x = 0 and set G (0) = e-K. Then 

e-tK = G(clogt). 

Set y = c logt, and we get 

G(y) = exp{-Keyfc} = exp{-e-<fcr-logK)} 

which is the type of A (x). The other cases 0 > 0 and 0 < 0 are handled similarly. 
0 

8.8 Exercises 

1. Let Sn have a binomial distribution with parameters nand 0 E [0, 1). What 
CLT does Sn satisfy? In statistical terms, 0 := Sn In is an estimator of 0 
and 

Sn- E(Sn) 

JVar(Sn) 
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g(9) = log (-9-) 1-9 
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is the log-odds ratio, we would use g(O) to estimate g(O). What CLT does 
g(B) satisfy? Use the delta method. 

2. Suppose {X n, n ;::: 1} is a sequence of random variables satisfying 

1 
P[Xn=n]=-, 

n 
1 

P[Xn = 0] = 1- - . 
n 

(a) Does {Xn} converge in probability? If so, to what? Why? 

(b) Does {Xn} converge in distribution? If so, to what? Why? 

(c) Suppose in addition that {Xn} is an independent sequence. Does {Xn} 
converge almost surely? What is 

lim sup X n and lim inf X n 
n ..... oo n ..... oo 

almost surely? Explain your answer. 

3. Suppose fUn, n 2: 1} are iid U(O, 1) random variables so that 

P[Uj ::;x]=x, O::;x::; 1. 

(a) Show nj=1 uyn converges almost surely. What is the limit? 

(b) Center and scale the sequence tnj=1 uJin, n ;::: 1} and show the 
resulting sequence converges in distribution to a non-degenerate limit. 
To which one? 

4. (a) Let {Xn , n 2: 0} be positive integer valued random variables. Prove 

Xn => Xo 

iff for every k ;::: 0 
P[Xn = k]--+ P[Xo = k]. 

(b) Let {Xn} be a sequence of random vectors on JRd such that Xn has a 
discrete distribution having only points with integer components as possible 
values. Let X be another such random vector. Show 

Xn =>X 
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iff 
L IP[Xn = x)- P[X = x)l ~ 0 

X 

as n ~ oo. (Use Scheffcrs lemma.) 

(c) For events {An, n ~ 0}, prove 

(d) Let Fn concentrate all mass at Xn for n ~ 0. Prove 

Fn::::} Fo iffxn ~ xo. 

(e) Let Xn = 1 - 1/n or 1 + 1/n each with probability 1/2 and suppose 
P[X = 1) = 1. Show Xn ::::} X but that the mass function fn(X) of Xn 
does not converge for any x. 

5. (a) If Un(x) , x E lR are non-decreasing functions for each n and un(X) ~ 
uo(x) and uoO is continuous, then for any -oo <a < b < oo 

sup lun(x)- uo(x)l ~ 0. 
xe(a ,b) 

Thus, convergence of monotone functions to a continuous limit implies lo­
cal uniform convergence. 

(b) Suppose Fn, n ::: 0 are proper df's and Fn ::::} Fo. If Fo is continuous, 
show 

sup IFn(x)- Fo(x)l ~ 0. 
xeiR. 

For instance, in the central limit theorem, where Fo is the normal distribu­
tion, convergence is always uniform. 

(c) Give a simple proof of the Glivenko-Cantelli lemma under the addi­
tional hypothesis that the underlying distribution is continuous. 

6. Let F be a non-degenerate df and suppose for a > 0, c > 0 and b e JR, 
d E JR, that for all x 

F(ax +b)= F(cx +d). 

Prove that a= c and b =d. Do this 2 ways: 

(i) Considering inverse functions. 

(ii) Showing it is enough to prove F(Ax +B) = F(x) for all x implies 
A = 1, and B = 17 (just kidding, B = 0). If T x = Ax + B then iterate the 
relation F(Tx)=F(x) again and again. 
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7. Let {Xn. n ~ 1} be iid with E(Xn) = JL, Var(Xn) = a 2 and suppose N is 
a N(O, 1) random variable. Show 

J;i(X~ - JL2) =? 2JLa N 

Jn(ei• -ell) =?a ell N . 

8. Suppose X 1, . . . , X n are iid exponentially distributed with mean 1. Let 

X1,n < · · · < Xn,n 

be the order statistics. Fix an integer I and show 

nX1,n =? Y1 

where Y1 has a gamma(/, 1) distribution. 

(a) 

(b) 

Try doing this (a) in a straightforward way by brute force and then (b) try 
using the Renyi representation for the spacings of order statistics from the 
exponential density. See Exercise 32 on page 116. 

9. Let {Xn , n ~ 0} be random variables. Show Xn =? Xo iff E(g(Xn)) ~ 
E(g(Xo)) for all continuous functions g with compact support. 

10. Let X and Y be independent Bernoulli random variables on a probability 

space (Q, B, P) with X~ Y and 

1 
P[X = 0] =- = P[X = 1]. 

2 

Let Xn = Y for n ~ 1. Show that 

Xn =?X 

but that Xn does NOT converge in probability to X. 

11. Levy metric. For two probability distributions F , G, define 

d(F, G) := inf{o > 0 : Vx E IR, F(x - o)- <5 ~ G(x) ~ F(x + <5) + <5}. 

Show this is a metric on the space of probability distribution functions 
which metrizes weak convergence; that is, Fn =? Fo iff d(Fn . Fo) ~ 0. 

12. Suppose Fn has density 

In (x) = 11 -cos 2mr x, 
0, 

ifO ~X~ 1, 

otherwise. 

Show that Fn converges weakly to the uniform distribution on [0, 1] but 
that the densities In do not converge. 
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13. Suppose {Nn. n :::: 0} is a sequence of normal random variables. Show 
Nn =>No iff 

E(Nn)--. E(No) and Var(Nn)--. Var(No). 

Derive a comparable result for (a) Poisson random variables; (b) exponen­
tial random variables. 

14. Consider the sphere in JRn of radius Jn and suppose Xn is uniformly dis­
tributed on the surface of this sphere. Show that the first component of Xn 
converges in distribution to a standard normal. Hint: If N; , i > 1 are iid 
N(O, 1) random variables, show 

15. (Weissman) Suppose Yn. n :::: 1 are random variables such that there exist 
On > 0, bn E JR. and 

P[Yn :S OnX + bn] __. G(x), 

non-degenerate, and for each t > 0 

P[Y[nt) :S OnX + bn] __. G,(x), 

non-degenerate. Then there exists a(t) > 0, /3(t) E lR such that 

G(x) = G1(a(t)x + a(t)) 

and a(t) = t8 • If() = 0, then f3(t) = c logt, and if() =1 0, then f3(t) = 
c(1- t 8 ). 

16. Suppose {Xn. n :::: 1} are iid non-negative random variables and set Mn = 
v?=1X;, n :::: 1. Show that there exists a sequence on > 0 such that (x > 0) 

lim P[Mn/On ::: x] = exp{-x-a}, x > 0, a > 0, 
n ..... oo 

iff the regular variation condition holds: 

I. P[Xt > tx] -a 
1m =X , 

HOO P[Xt > t] 
X> 0. 

In this case, what limit distribution exists for logMn? ForM;? 

Verify (8.30) for the Cauchy density and the Pareto distribution? 

(8.30) 

17. If {Xn} are iid U(O, 1) random variables, find a non-degenerate limit dis­
tribution for Mn = v?=1X; under suitable normalization. 
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18. Give an example of a sequence of discrete distributions that converge weakly 
to a limit distribution which possesses a density. 

19. (Second continuous mapping theorem) Suppose that Xn ::::} Xo and that 
for n ::: 0, Xn : lR 1-+ lR are measurable. Define 

E := {x: 3xn ~X butxn(Xn) fr xo(x)}. 

Suppose E is measurable and P[Xo E E] = 0. Show Xn(Xn)::::} xo(Xo). 

20. Suppose we have independent Bernoulli trials where the probability of suc­
cess in a trial is p. Let Vp be the geometrically distributed number of trials 
needed to get the first success so that 

P[vp ::: n] = (1 - p)n-I, n ::: 1. 

Show asp~ 0 
PVp::::} E, 

where E is a unit exponential random variable. 

21. Sampling with replacement. Let {Xn. n ::: 1} be iid and uniformly dis­
tributed on the set { 1, . . . , m} . In repeated sampling, let Vm be the time of 
the first coincidence; that is, the time when we first get a repeated outcome 

Vm := inf{n::: 2: Xn E {XJ, . .. , Xn-d}. 

Verify that 

P[ Vm > n] = n 1 - :.:=.._ · n ( · 1) 
i=2 m 

Show as m ~ oo that 
Vm/ J'iii::::} V 

where P[v > x] = exp{-x2j2}, x > 0. 

22. Sample median; more order statistics. Let U1, ... , Un be iid U (0, 1) ran­
dom variables and consider the order statistics U1,n ~ U2,n ~ · · · ~ Un,n · 
When n is odd, the middle order statistic is the sample median. Show that 

1 
2(Un+I,2n+I- 2).J2;; 

has a limit distribution. What is it? (Hint: Use Scheffe's lemma 8.2.1 page 
253.) 

23. Suppose {Xn. n::: 1} are iid random variables satisfying 

E(Xn) = IJ-, Var(Xn) = a 2. 

The central limit theorem is assumed known. Set Xn = I:?=l Xifn. Let 
N(O, 1) be a standard normal random variable. Prove 
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(i) Jn(i; - J.t. 2) ==? 2J.l.(T N (0, 1). 

(ii) Jn(eXn - eil) ==? eil N(O, 1). 

(iii) Jn(logXn -logJ.t.) ==? -/;N(O, 1), assuming J.l. '# 0. 

Now assume additionally that E (X1) < oo and prove 

(iv) Jn (tog(~ E?=t (X;- Xn)2) -loga2) ==? -:rJ E(X1)N(O, 1). 

(v) Define the sample variance 

2 1 ~ - 2 
Sn =- L...)X; -Xn). 

n i=l 

Show 

Jn</Si- a)=* 2~ j E(Xt)N(O, 1). 

What is a limit law for s;? 
24. Show that the normal type is closed under convolution. In other words, if 

Nt. N2 are two independent normally distributed random variables, show 
that Nt + N2 is also normally distributed. Prove a similar statement for the 
Poisson and Cauchy types. 

Is a similar statement true for the exponential type? 

25. (i) Suppose F is a distribution function and u is a bounded continuous func­
tion on lit Define the convolution transform as 

F * u(t) = L u(t- y)F(dy). 

Let {Fn. n ::: 0} be a sequence of probability distribution functions. Let 
C[-oo, oo] be the class of bounded, continuous functions on lR with finite 
limits existing at ±oo. Prove that Fn ==? Fo iff for each u e C[ -00, oo ], 
Un := Fn * u converges uniformly to a limit U. In this case, U = Fo * u. 

(ii) Suppose X is a random variable and set Fn(X) = P[Xjn ::5 x] . Prove 
Fn * u --+ u uniformly. 

(iii) Specialize (ii) to the case where F is the standard normal distribu­
tion and verify the approximation lemma: Given any € > 0 and any u e 
C[ -oo, oo ], there exists an infinitely differentiable v E C[ -oo, oo] such 
that 

sup lv(x)- u(x)l < € . 
xeiR 

(iv) Suppose that u(x , y) is a function on JR2 vanishing at the infinities. 
Then u can be approximated uniformly by finite linear combinations 
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Lk Ck8k(x)hk(Y} with infinitely differentiable gt, hk . (Hint: Use normal 
distributions.) 

(v) Suppose Fn is discrete with equal atoms at -n, 0, n. What is the vague 
limit of Fn as n -+ oo? What is the vague limit of Fn * Fn? 

(vi) Suppose Fn concentrates all mass at 1/n and u(x) = sin(x2). Then 
Fn * u converges pointwise but not uniformly. (Is u e C[ -oo, oo ]?) 

26. Suppose {X n, n ::: 1} are iid random variables with common distribution F 
and set Sn = E7=1 X;. Assume that there exist an > 0, bn E JR. such that 

where Y has a non-degenerate proper distribution. Use the convergence to 
types theorem to show that 

(Symmetrize to remove bn. You may want to first consider a2n!an.) 

27. Suppose {Xn, n ::: 1} are iid and non-negative random variables with com­
mon density I (x) satisfying 

>.. :=lim l(t) > 0. 
t.j.O 

Shown 1\7=1 X; has a limit distribution. (This is extreme value theory, but 
for minima not maxima.) 

28. Let x e (0, 1) have binary expansion 

Set 

00 d 
X= L:2:. 

n=l 

ln(X) = 12' 1, 

if dn = 0, 

if dn = 1. 

Then show J~ ln(x)dx = 1 so that In is a density. The sequence In only 
converges on a set of Lebesgue measure 0. If X n is a random variable with 
density In then Xn => U, where U is U(O, 1). 

29. Suppose {X1, t ::: 0} is a family of random variables parameterized by a 
continuous variable t and assume there exist normalizing constants a(t) > 
0, b(t) e JR. such that as t -+ oo 

x,- b(t) 
a(t) => Y, 
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where Y is non-degenerate. Show the normalizing functions can always 
be assumed continuous; that is, there exist continuous functions a(t) > 
0, f3(t) e lR such that 

Xt- {3(t) => Y', 
a(t) 

where Y' has a non-degenerate distribution. (Hint: The convergence to types 
theorem provides normalizing constants which can be smoothed by integra­
tion.) 

30. Suppose {Xn, n ;::: 1} are random variables and there exist normalizing 
constants On > 0, bn E lR such that 

Xn -bn y 
---=> ' 

On 

where Y is non-degenerate. Assume further that for 8 > 0 

sup£ n n < 00. (I X - b 12+.5) 
n~l On 

Show the mean and standard deviation can be used for centering and scal­
ing: 

Xn- E(Xn) Y' 
=> ' .jVar(Xn) 

where Y is non-degenerate. 

It is enough for moment generating functions to converge: 

E(eya;; 1<Xn-bn)) => E(eYY), 

for y E I, an open interval containing 0. 

31. If Xn => Xo and 
sup£(1Xnl2+8) < 00, 

n 

show that 
E(Xn)- E(Xo), Var(Xn)- Var(Xo). 

(Use Baby Skorohod and uniform integrability.) 

32. Given random variables {Xn} such that 0::: Xn ::: 1. Suppose for all x E 

(0, 1) 
P[Xn ::: x]- 1- p. 

Show X n => B where B is a Bernoulli random variable with success prob­
ability p. 

33. Verify that a continuous distribution function is always uniformly continu­
ous. 
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34. Suppose {En, n :::: 1} are iid unit exponential random variables. Recall from 
Example 8.1.2 that 

n 

V E; - log n => Y, 
i=l 

where Y has a Gumbel distribution. 

Let { Wn, n :::: 1} be iid Weibull random variables satisfying 

P[Wn > X] = e-xa' a > 0, X > 0. 

Use the delta method to derive a weak limit theorem for v7=l W;. (Hint: Ex­
press W; as a function of E; which then requires that vj=1 W; is a function 

of V7=1E;.) 

35. Suppose {Fn, n :::: 0} are probability distributions such that Fn => Fo. For 
t > 0, let u1(-) : lR ~---+ lR be an equicontinuous family of functions that are 
uniformly bounded; that is 

sup u1 (x) :S: M, 
t>O,xe!R 

for some constant M. Then show 

lim { Ur(x)Fn(dx) = { Ur(x)Fo(dx), 
n-+oo }IR }IR 

uniformly in t. 

36. Suppose Fn => Fo and g :::: 0 is continuous and satisfies fiR gdFn = 1 for 
all n :::: 0. Define the new measure Gn(A) = fA gdFn. Show Gn => Go. 
(You can either do this directly or use Scheffe's lemma.) 
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9 
Characteristic Functions and 
the Central Limit Theorem 

This chapter develops a transform method called characteristic functions for deal­
ing with sums of independent random variables. The basic problem is that the dis­
tribution of a sum of independent random variables is rather complex and hard to 
deal with. If Xt. Xz are independent random variables with distributions Ft. Fz, 
set 

g(u, v) = 1(-oo,rJ(U + v). 

Then using the transformation theorem and Fubini's theorem (Theorems 5.5.1 and 
5.9.2), we get fort E lR 

P[Xt + Xz::: t] = E(g(Xt. Xz)) 

(transformation theorem) 

= I I {(x,y)eJR2:x+y:St} Ft X Fz 

= f [j Ft (dx) ]Fz(dy) 
JIR {xelR:x:::;r-y} 

= l Ft(t- y)Fz(dy) 

=: Ft * Fz(t), 

(Fubini's theorem) 

where the last line defines the convolution between two distributions on the real 
line. Convolution is a fairly complex operation and somewhat difficult to deal 
with. Transform methods convert convolution of distributions into products of 
transforms and products are easier to handle than convolutions. 
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The next section reviews the relation between transforms and the central limit 
theorem. 

9.1 Review of Moment Generating Functions and the 
Central Limit Theorem 

The moment generating function (mgt) F(t) of a random variable X with distri­
bution F exists if 

F(t) := Ee1x = L e1x F(dx) < oo, Vt e I, 

where I is an interval containing 0 in its interior. The problem with using the 
mgf of a distribution is that it does not always exist. For instance, the mgf of the 
Cauchy distribution does not exist and in fact existence of the mgf is equivalent 
to the tail of the distribution of X being exponentially bounded: 

P[IXI > x] ~ Ke-cx, for some K > 0 and c > 0. 

(So what do we do if the mgf does not exist?) 
The mgf, if it exists, uniquely determines the distribution of X, and we hope 

that we can relate convergence in distribution to convergence of the transforms; 
that is, we hope X n =? X if 

where I is a neighborhood of 0. This allows us to think about the central limit 
theorem in terms of transforms as follows. 

Suppose {Xn, n 2::: 1} is an iid sequence ofrandom variables satisfying 

Suppose the mgf of X; exists. Then 

n 
=En etX;/Jn = (EetXt!Jnr 

i=l 

= (F<t!Jn>t 

and expanding in a Taylor series about 0, we get 
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where "junk" represents the remainder in the expansion which we will not worry 
about now. Hence, as n -+ oo, if we can neglect "junk" we get 

which is the mgf of a N (0, a 2) random variable. Thus we hope that 

Sn 2 Jn ~ N(O,a ). 

How do we justify all this rigorously? Here is the program. 

1. We first need to replace the mgf by the characteristic function ( chf) which 
is a more robust transform. It always exists and shares many of the algebraic 
advantages of the mgf. 

2. We need to examine the properties of chf and feel comfortable with this 
transform. 

3. We need to understand the connection between moments of the distribution 
and expansions of the chf. 

4. We need to prove uniqueness; that is that the chf uniquely determines the 
distribution. 

5. We need a test for weak convergence using chf's. This is called the conti­
nuity theorem. 

6. We need to prove the CLT for the iid case. 

7. We need to prove the CLT for independent, non-identically distributed ran­
dom variables. 

This is the program. Now for the details. 

9.2 Characteristic Functions: Definition and 
First Properties 

We begin with the definition. 

Definition 9.2.1 The characteristic function ( chf) of a random variable X with 
distribution F is the complex valued function of a real variable t defined by 

</>(t) := EeitX, t E R 

= E(cos(tX)) + iE(sin(tX)) 

= L cos(tx)F(dx) + i L sin(tx)F(dx) . 
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A big advantage of the chf as a transform is that it always exists: 

Note that 

IE(U + iV)i 2 = IE(U) + iE(V)i 2 = (EU)2 + (EV)2 

and applying the Schwartz Inequality we get that this is bounded above by 

~ E(U2) + E(V2) = E(U2 + V2) 

= EIU +iVI2• 

We now list some elementary properties of chf's. 

1. The chf ¢(t) is uniformly continuous on R For any t e !R, we have 

l¢(t +h)- ¢(t)l = IEei<t+h)X- EeitX I 

= IEeitX (eihX - 1)1 

~ EieihX -11 ~ 0 

as h .J.. 0 by the dominated convergence theorem. Note that the upper bound 
is independent oft which accounts for the uniform continuity. 

2. The chfsatisfies l¢(t)l ~ 1 and ¢(0) = 1. 

3. The effect on the chf of scaling and centering of the random variable is 
given by 

Eeit(aX+b) = ¢(at)eibt. 

4. Let {iJ(t) be the complex conjugate of ¢(t). Then 

5. We have that 

¢(-t) = {iJ(t) = Re(¢(t))- ilm(¢(t)) 

= chfof -X. 

Re(¢(t)) = j cos(tx)F(dx) 

is an even function, while 

lm(¢(t)) = j sin(tx)F(dx) 

is an odd function. 
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6. The chf t/J is real iff 
d 

X=-X 

iff F is a symmetric function. This follows since t/J is real iff t/J = ~ iff 
X and -X have the same chf. As we will see (anticipating the uniqueness 

theorem), this implies X 4 -X. 

7. If X; has chf t/J;, i = 1, 2 and X 1 and X 2 are independent, then the chf of 
X 1 + X 2 is the product t/J1 ( t )t/J2 ( t) since 

Eeit(X1+X2> = EeitX1eitX2 

= EeitX1EeitX2. 

Compare this with the definition of convolution at the beginning of the 
chapter. 

8. We generalize the previous property in a direction useful for the central 
limit theorem by noting that if XI> ... , Xn are iid with common chf t/J, then 

9.3 Expansions 

The CLT is dependent on good expansions of the chf t/J. These in tum depend on 
good expansions of eix so we first take this up. 

9.3.1 Expansion of eix 

Start with an integration by parts. For n ~ 0 we have the following identity: 

t eis(x- s)nds = xn+1 + _i- t (x- s)n+leisds. 
lo n + 1 n + 1 lo (9.1) 

For n = 0, (9.1) gives 

lo
x . eix _ 1 lox . 

e15ds = -.- = x + i (x- s)e15ds . 
0 l 0 

So we have 
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(from (9.1) with n = 1) 

(ix)2 i3 x3 i 1x . 
=1+ix+--+-[-+- (x-s)3e'5 ds] 

2 2 3 3 0 

where the last expression before the vertical dots comes from applying (9.1) with 
n = 2. In general, we get for n ::: 0 and x e IR, 

(9.2) 

Thus 

. n (ix)k lxln+l 
le'x ~ k! I::; -(n_+_1-)! (9.3) 

where we have used the fact that leix I = 1. Therefore we conclude that chopping 
the expansion of eix after a finite number of terms gives an error bounded by the 
modulus of the first neglected term. 

Now write (9.1) with n - 1 in place of nand transpose to get 

If we multiply through by (n~l)! and interchange left and right sides of the equa­
tion, we obtain 

-- (x- s)ne15ds = (x- s)n-1e'5ds- --. 
in+l lox . in lox . (ix)n 

n! o (n - 1)! o n! 

Substitute this in the right side of (9.2) and we get 

ix ~ lX l ( )n-1 isd lX 
n ( · )k ·n 1x ( · )n 

e -L..,--= x-s e s---
k=O k! (n - 1)! 0 n! ' 

and thus 

ix n (ix)k lxln lxln 21xln le -~-1<-+-=-. 
L.., k' - n' n' n' k=O • • • • 

(9.4) 

Combining (9.3) and (9.4) gives 

ix n (ix)k lxln+l 21xln 
le - ~k!l::; (n+1)! "--;;!· (9.5) 
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Note that the first term in the minimum gives a better estimate for small x, while 
the second term gives a better estimate for large x. 

Now suppose that X is a random variable whose first n absolute moments are 

finite: 
E(IXI) < oo, ... , E(!X!n) < oo. 

Then 

and applying (9.5) with x replaced by tX, we get 

n (it)k ( !tX!n+l 2!tX!n) 
l<t><t)- L -, E(Xk)! ~ E '1\ -,- . 

k=O k. (n + 1). n. 
(9.6) 

Next, suppose all moments exist and that for all t E lR 

lim ltlnE(IXIn) =O. 
n-+oo n! 

(9.7) 

In (9.6), let n ~ oo to get 

A sufficient condition for (9.7) is 

(9.8) 

which holds if 
\ll(t) = Ee1x < oo, Yt E IR; 

that is, if the mgf exists on all of JR. (To check this last statement, note that if 
Ee1X < oo for all t, we have 

£elt11XI = E(eltiX l[X>OJ) + E(e-lt iX l[X<OJ) 

~ \ll(ltl) + \11(-ltl) < 00. 

This verifies the assertion.) 
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Example 9.3.1 Let X be a random variable with N(O, 1) distribution. For any 
t E R, 

Ee'x = e'" --du ioo e-u2;2 

-00 ../2i 
= -- exp{--(u2 - 2tu + t2)}du e' 12 ioo 1 1 2 

-00 ../2i 2 

(from completing the square) 

r2;2 e d ioo -!<u-t)2 

=e u 
-00 ../2i 

2 ~00 2 = e' 12 n(t, 1, u)du = e' 12. 
-00 

Here, n(t, 1, u) represents the normal density with meant and variance 1 which 
integrates to 1. Thus we conclude that for all t E R 

Ee'x < oo. 

We may therefore expand the mgf as well as e'2 12 to get 

that is, 

Equating coefficients yields that the 

E(X2n) e)n 
coefficient of t2n = = -2-

(2n)! n! 

So we conclude that 

Thus, since 
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we get 

(9.9) 

This shows one way of computing the chf of the N(O, 1) distribution. 

Note that the chf of the normal density has the property that the chf and the 
density are the same, apart from multiplicative constants. This is a useful and 
unusual feature. 

9.4 Moments and Derivatives 

When the kth absolute moment of a random variable exists, it can be computed 
by taking k-fold derivatives of the chf. 

Suppose X is a random variable with finite first absolute moment; that is, 
E(IXD < oo. Then 

.;._'f' ___ -'-'f'-'--- E(iXe11x) = E "'(t +h)_ "'(t) . (ei(t+h)X _ eitX _ ihX eitX) 

h h 

- E (it X {eihX - 1 - ihX}) 
- h 0 

Apply (9.4) with n = 1 to get 

eihX 1 ihX 
leitXI I - h- I ::S 21XI E Lt . 

Since by (9.3) or (9.5) we have 

eihX -1- ihX h2X 2 X 2 

I h I ::s 2h = hT--+ o 

as h .J.. 0, we get by dominated convergence that 

~irJ ( q,(t + h~- q,(t) - E(iXeitX)) 

= E (lim eitX (ihX - 1 - ihX )) 
h~O h 

=0. 
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Thus 

¢'(t) = E(iXeitX). (9.10) 

In general, we have that if E(IXIk) < oo, 

¢(k)(t) = E ((iXleitX), Vt E I. (9.11) 

and hence 

9.5 Two Big Theorems: Uniqueness and Continuity 

We seek to prove the central limit theorem. Our program for doing this is to show 
that the chf of centered and scaled sums of independent random variables con­
verges as the sample size increases to the chf of the N (0, 1) distribution which we 
know from Example 9.3.1 is exp{-t2 /2}. To make this method work, we need to 
know that the chf uniquely determines the distribution and that when chf's of dis­
tributions converge, their distributions converge weakly. The goal of this section 
is to prove these two facts. 

Theorem 9.5.1 (Uniqueness Theorem) The chf of a probability distribution 
uniquely determines the probability distribution. 

Proof. We use the fact that the chf and density of the normal distribution are the 
same apart from multiplicative constants. 

Let X be a random variable with distribution F and chf ¢. We show that ¢ 
determines F. For any distribution G with chf y and any real () E JR., we have by 
applying Fubini 's theorem the Parseval relation 

f e-iBy¢(y)G(dy) = f e-iBy[l eiyx F(dx)]G(dy) 
JJR J yeJR xeJR 

=I I JR2 eiy(x-9) F(dx)G(dy) 

= 1 [ { ei<x-B)YG(dy)]F(dx) (9.12) 
xeJR }yeJR 

= 1 y(x - O)F(dx) . (9.13) 
xeJR 

Now let N have a N (0, 1) distribution with density n (x) so that aN has a normal 
density with variance a 2• Replace G(dy) by this normal density u-1n(a-1y) . 
Mter changing variables on the left side and taking account of the form of the 
normal chf y given by (9.9) on the right side, we get 

{ e-iBuy¢(ay)n(y)dy = 1 e-u2(z-B)212F(dz) . (9.14) 
JJR zeJR 
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Now, integrate both sides of (9.14) over(} from -oo to x to get 

t { e-iOuy¢(ay)n(y)dyd9 = t 1 e-u2(z-0)2/2F(dz)d9, 
Jo=-oo JR Jo=-oo zeR 

and using Fubini's theorem to reverse the order of integration on the right side 
yields 

In the inner integral on the right side, make the change of variable s = (} - z to 
get 

Divide through by ,Jiiia-1. Let a ---+ oo. Given the chf ¢,we find 

lim ~ r r e-iOuy¢(ay)n(y)dyd(} 
u->oo v 2rr lo=-oo JR 

= lim P[a-1 N +X:::: x] = F(x), Vx e C(F), (9.15) 
U->00 

by Slutsky's theorem 8.6.1 of Chapter 8. So for any x e C(F), ¢determines F(x) 
which is sufficient for proving the result. D 

A quick corollary gives Fourier inversion. 

Corollary 9.5.1 Suppose F is a probability distribution with an integrable chf ¢; 
that is, 1¢1 E L1 so that L l¢(t)ldt < 00. 

Then F has a bounded continuous density f given by 

/(X)=- e-IYX¢(y)dy. 1 1m . 
2rr R 

Proof. Examine (9.15). Note 

P[a-1 N +X::; x] =: Fu(x) 
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has a density fu since a-1 N has a density. From the left side of (9.15), 

Note that 

and as a~ oo 

fu(B) = ~ { e-iOyt/J(y)n(a- 1y)dy 
v2Jr )~, 

=- e-' YtfJ(y)e-u Y dy. 1 i ·o -2 2;z 
2Jr I. 

So by dominated convergence, fu (B) ~ f(B) . Furthermore, for any finite inter­
val I 

sup fu(B) ~ -21 { lt/J(y)le- u-lyl;zdy 
Bel 7r }~, 

~ _.!.._ { lt/J(y)ldy < 00. 
2Jr )~, 

So as a ~ oo, we have by Slutsky's theorem 8.6.1 and bounded convergence 

F(l)= lim P[a-1N+Xel]= lim [fu(O)dO=[f(O)dO. 
U-+00 U-+00 I I 

Thus f is the density of F . 0 

We now state and prove the continuity theorem which allows the conclusion 
of weak convergence of probability distributions from pointwise convergence of 
their chf's. 

Theorem 9.5.2 (Continuity Theorem) (i) Easy part: We let {Xn, n ~ 1} be a 
sequence of random variables with X n having distribution Fn and chf tPn· If as 
n ~ oo we have 

then 

t/Jn(t) ~ t/Jo(t), 'r/t E JR. 

(ii) Deeper part: Suppose 

(a) limn-+oo t/Jn(t) exists for all t. Call the limit t/J00 (t). 

(b) t/J00 (t) is continuous at 0. 
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Then for some distribution function F 00, 

Fn::} Foo 

and t/>00 is the chf of F00• If t/>00 (0) = 1, then F00 is proper. 

Proof of the easy part (i). If X n =? X o, then by the continuous mapping theorem, 
we have eitXn =? eitXo and since leitXn I :;: 1, we have by dominated convergence 
that 

t/>n(t) = EeitXn -+ EeitXo = t/>o(t) . 
0 

The proof of the harder part (ii) is given in the next section. 
We close this section with some simple but illustrative examples of the use of 

the continuity theorem where we make use of the harder half to prove conver­
gence. 

Example 9.5.1 (WLLN) Suppose {Xn, n :::: 1} is iid with common chf t/>(t) and 
assume E(IXID < oo and E(XI) = f.J. . Then 

p 
Snfn-+ f.J.. 

Since convergence in probability to a constant is equivalent to weak conver­
gence to the constant, it suffices to show the chf of Sn In converges to the chf of 
f.J., namely eiJI.t . We have 

(9.16) 

The last equality needs justification, but suppose for the moment it is true; this 
would lead to 

as desired. 
To justify the representation in (9.16), note from (9.6) with n = 1 that 

t t (t2 IX1I2 t ) It/>(;;) -1- i;;JJ.I:;: E 2;;z- A 2;;1XII , 

so it suffices to show that 

(9.17) 

Bring the factor n inside the expectation. On the one hand 
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and on the other 

as n --+ oo. So by dominated convergence, (9.17) follows as desired. 0 

Example 9.5.2 (Poisson approximation to the binomial) Suppose 
the random variable Sn has binomial mass function so that 

P[Sn = k] = G)lo- p)n-k, k = 0, .. . , n. 

If p = p(n) --+ 0 as n --+ oo in such a way that np--+ ). > 0, then 

Sn => PO(A.) 

where the limit is a Poisson random variable with parameter A.. 

To verify this, we first calculate the chf of PO(A.). We have 

00 -'A).k 
Eeit(PO('A)) = Leitk_e __ 

k=O k! 
00 

= e-'A L().eitl/k! = e-'Ae'Ae;, 
k=O 

_ 'A(e;'-1) -e . 

Recall we can represent a binomial random variable as a sum of iid Bernoulli 
random variables ;1. .. . , ;n where P[;l = 1] = p = 1- P[;l = 0]. So 

EeitSn =(Eeit~~r = (1 - p+eitp)n 

( np(eit 1))n 
=(1 + p(eit -1)r = 1 + n-

--+e'A<ei' -I> . 

The limit is the chf of PO().) just computed. 0 

The final example is a more sophisticated version of Example 9.5.2. In queue­
ing theory, this example is often used to justify an assumption about traffic inputs 
being a Poisson process. 

Example 9.5.3 Suppose we have a doubly indexed array of random variables 
such that for each n = 1, 2, ... , {;n ,k· k 2: 1} is a sequence of independent (but 
not necessarily identically distributed) Bernoulli random variables satisfying 

P[;n,k = 1] = Pk(n) = 1- P[;n,k = 0], (9.18) 
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V Pk(n) = : 8(n) -+ 0, n -+ oo, 
l~k~n 

n n 

(9.19) 

LPk(n) = E(L~n.k)-+ A. E (0, oo), n-+ oo. (9.20) 
k=l k=l 

Then 
n 

L ~n .k => PO(A.). 
k=l 

The proof is left to Exercise 13. 

9.6 The Selection Theorem, Tightness, and 
Prohorov'stheorem 

This section collects several important results on subsequential convergence of 
probability distributions and culminates with the rest of the proof of the continuity 
theorem. 

9.6.1 The Selection Theorem 

We seek to show that every infinite family of distributions contains a weakly con­
vergent subseqence. We begin with a lemma. 

Lemma 9.6.1 (Diagonalization) Given a sequence {a j , j ::: 1} of distinct real 
numbers and a family {unO. n ::: 1} of real functions from JR. r+ JR. there exists 
a subsequence {unk ( ·)} converging at each a j for every j . (Note that ±oo is an 
acceptable limit.) 

Proof. The proof uses a diagonalization argument. 
There exists a subsequence {nk} such that {unk(al)} converges. We call this 

{ui1>(·), k::: 1} so that {uk1>(al) , k::: 1} converges. 

Now there exists a subsequence kj such that {uk1>(a2) , j ::: 1} converges. Call 
I 

this subfamily of functions { u j2> ( ·), j ::: 1} so that 

are both convergent. 
Now continue by induction: Construct a subsequence {ujn> (-) , j ::: 1} for each 

n, which converges at an and is a subsequence of previous sequences so that 
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converges fori = 1, ... , n. Now consider the diagonal sequence of functions 

For any ai 
{u~n) (ai ), n ::::: i} C {uj) (ai ), j ::::: i} 

where the sequence on the right is convergent so 

lim u~n)(ai) exists 
n-+oo 

fori= 1, 2, .... 

Remark. If lunOI ~ M for all n, then 

lim lu(n)(ai)l ~ M. 
n-+oo n 

0 

Lemma 9.6.2 If D = {ai} is a countable dense subset of'R. and if {Fn} are df's 
such that 

lim Fn(ai) exists 
n-+oo 

for all i, then define 

This determines a df F 00 on R and 

Proof. Extend F00 toR by right continuity: Define for any x, 

This makes F00 right continuous and monotone. Let x e C(F00). Since D is 
dense, there exist ai, a; e D such that 

ai t X, a; .J, X, 

and for every k and i 

Take the limit on k: 

F00 (ai) ~ liminfFk{x) ~ limsupFk(X) ~ F(a;). 
k-+oo k-+oo 

Let ai t x and a; ..!.. x and use the fact that x e C(F00 ) to get 

F00 (x) ~ liminfFk(X) ~ limsupFk(X) ~ F(x). 
k-+00 k-+00 

We are now in a position to state and prove the Selection Theorem. 

0 
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Theorem 9.6.1 (Selection Theorem) Any sequence of probability distributions 
fFn} contains a weakly convergent subsequence (but the limit may be defective). 

Proof. Let D = {a;} be countable and dense in JR. There exists a subsequence 
fFnk} such that 

lim Fnk (a j) 
k-+00 

exists for all j . Hence fFnk} converges weakly from Lemma 9.6.2. 0 

9.6.2 Tightness, Relative Compactness, and Prohorov's theorem 

How can we guarantee that subsequential limits of a sequence of distributions will 
be non-defective? 

Example. Let Xn = n. If Fn is the df of Xn, then Xn -+ oo and so Fn(x) -+ 0 
for all x. 

Probability mass escapes to infinity. Tightness is a concept designed to prevent 
this. Let n be a family of non-defective probability df's. 

Definition. n is a relatively compact family of distributions if every sequence 
of df's in n has a subsequence weakly converging to a proper limit; that is, if 
fFn} C n, there exists {nk} and a proper df Fo such that Fnk ==? Fo. 

Definition. n is tight, if for all € > 0, there exists a compact set K C lR such that 

F(K) > 1- €, \:IF en; 

or equivalently, if for all € > 0, there exists a finite interval I such that 

or equivalently, if for all € > 0, there exists Mf such that 

Most of the mass is contained in a big interval for all the distributions. This pre­
vents mass from slip sliding away to one of the infinities. 

Random variables {Xn} whose df's {Fn} are tight are called stochastically 
bounded. This means, for every € > 0, there exists Mf such that 

sup P[IXnl > Mf] < €. 
n 

Prohorov's theorem shows the equivalence of relative compactness and tight­
ness. 

Theorem 9.6.2 (Prohorov's theorem) The family n of probability distributions 
is relatively compact iff n is tight. 
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Proof. Suppose n is tight. Let {Fn} c n. By the selection theorem 9.6.1, for 
some nk, we have Fnk ~ Foo. We must show F00 is proper. Given E > 0, there 
exists M such that 

supFn([-M, M]c) <E. 
n 

Pick M' > M such that M' e C(F00). Then 

E > 1- Fn(M') + Fn(-M') ~ 1- Foo(M') + F00 (-M'). 

So F00 ([-M', M')c) < E, and therefore F00 ([-M', M')) > 1- E. Since this is 
true for all E, we have F00 (1R) = 1. 

Conversely, if n is not tight, then there exists E > 0, such that for all M, there 
exists F e n such that F ([-M, M)) ~ 1 - E. So there exist { Fn} c n with 
the property that Fn ([ -n, n]) ~ 1 - E. There exists a convergent subsequence nk 

such that Fnk ~ F00• For any a, bE C(F00), 

[a, b) c [-n,n] 

for large n, and so 

So F00 (1R) ~ 1- E and F00 is not proper son is not relatively compact. 0 

Here are common criteria for tightness: Let {X n} be random variables with df's 
{Fn}. 

1. If there exists r > 0 such that 

limsupE(IXnl') < oo 
n-.oo 

then {Fn} is tight by Chebychev's inequality. 

2. If {Xn} and {Yn} are two stochastically bounded sequences, then {Xn + Yn} 
is stochastically bounded. This follows from the inequality 

P[IXn + Ynl > M) ~ P[IXnl > M/2] + P[IYnl > M/2]. 

3. If Fn concentrates on [a, b) for all n, then {Fn} is tight. So for example, 
if Un are identically distributed uniform random variables on (0, 1), then 
{cnUn} is stochastically bounded if ten} is bounded. 

4. If Xn 4 anNn + Jl.n, where Nn are identically distributed N(O, 1) random 
variables, then {X n} is stochastically bounded if {an} and {J.J.n} are bounded. 
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9.6.3 Proof of the Continuity Theorem 

Before proving the rest of the continuity theorem, we discuss a method which 
relates distribution tails and chf's. 

Lemma 9.6.3 IfF is a distribution with chf ¢, then there exists a E (0, oo) such 
that for all x > 0 

-1 

F([-x,xn:::: ax fox (1-Reif>(t))dt. 

Proof. Since 

Re if>(t) = £: costyF(dy) , 

we have 

X r-1 
(1- Re if>(t))dt =X r-1 100 (1- costy)F(dy)dt 

lo lo -oo 

which by Fubini is 

-Xi: [f (1- costy)dt] F(dy) 

1oo ( sinx-ly) = x -oo x-1 - y F(dy) 

100 
( sinx-1y) = 1 - _1 F(dy). 

-oo X y 

Since the integrand is non-negative, this is greater than 

where 

{ (1- sin~;Iy) F(dy) 
}lyl>x X Y 

:::: a-1F([-x,xn, 

_ 1 . f smx y 
a = m 1- . ( 

. -1 ) 

lx- 1yl2:1 x-Iy 0 

This is what is needed to proceed with the deferred proof of the continuity 
theorem. 

Proof of the Continuity Theorem. Suppose for all t E IR, we have if>n(t) -
if>00 (t) where ¢00 is continuous at 0. Then we assert {Fn} is tight. To understand 
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why tightness is present, assume M > 0 and apply Lemma 9.6.3: 

M-1 

limsupFn([-M, Mn::;:: lim sup aM { (1- Re <f>n(t))dt. 
n-+oo n-+oo Jo 

Now <f>n(t) --+ <f>00 (t) implies that 

Re <f>n (t) --+ Re ¢00 (t), 1 - Re <f>n (t) --+ 1 - Re ¢00 (t), 

and since 1 - ¢n is bounded, so is Re (1 - ¢n) = (1 - Re ¢n). By dominated 
convergence, 

M-1 

limsupFn([-M, Mn :S: aM { (1- Re </>00 (t))dt. 
n-+00 lo 

Since ¢00 is continuous at 0, lim,.....o</>00 (t) = </>00 (0) = limn-+oo<f>n(O) = 1 as 
t -+ 0. So 1 - Re </>00 (t) --+ 0 as t --+ 0, and thus for given f > 0 and M 
sufficiently large, we have 

M-1 M-1 

aM 1 (1 - Re ¢00 (t))dt :S: aM 1 fdt = a€. 

Hence fFn} is tight. Since fFn} is tight, any two convergent subsequences of {Fn} 
must converge to the same limit, because if 

Fn' => F, and Fn" => G, 

then F and G are proper. So by part (i) of the continuity theorem already proved, 

<f>n' --+ </> F = </>oo 

and 
<f>n" --+ </>G = ¢oo' 

and hence <f>F = <f>G· By the Uniqueness Theorem 9.5.1, F = G. Thus any two 
convergent subsequences converge to the same limit and hence {Fn} converges to 
a limit whose chf is ¢00 . 0 

9.7 The Classical CLT for iid Random Variables 

We now tum to the proof of the CLT for sums of iid random variables. If {X n} are 
iid random variables with finite mean E(Xn) = J1. and variance Var(Xn) = a 2, 

we will show that as n --+ oo 

""n X· - nu 
.L.i=l ,Jn .- => N(O, 1). 

a n 

The method will be to show that the chf of the left side converges to the standard 
normal chf e-12 12. 

We begin with a lemma which allows us to compare products. 
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Lemma 9.7.1 (Product Comparison) Fori = 1, . .. , n, suppose that a; E C, 
b; E C, with Ia; I ~ 1 and lb; I ~ 1. Then 

n n n 
Ina;- nbd::::: L:ia; -b;l. 
i=I i=I i=I 

Proof. For n = 2, we merely have to write 

Finish by taking absolute values and using the fact that the moduli of a; and b; 
are bounded by 1. For general n, use induction. 0 

Theorem 9.7.1 (CLT for iid random variables) Let {Xn , n :::: 1} be iid random 
variables with E(Xn) = Jl and Var(Xn) = a 2. Suppose N is a random variable 
with N(O, 1) distribution. If Sn = Xt + · · · + Xn , then 

Sn- nJL 
aJn ~ N . 

Proof. Without loss of generality let E(Xn) = 0, E(X~) = 1, (otherwise prove 
the result for 

and 

Let 

Then 

X · - II 

X':=-'-"" 
I (1 

E(Xj) = 0, E(Xj)2 = 1.) 

</Jn(t) = (EeitXIf..fo)n = </Jn(tj.J,i) . 

Since the first two moments exist, we use (9.6) and expand¢: 

( t ) itE(Xt) i2t 2E(X1)2 t2 
<P r= = 1 + r= + 2 + o(-) 

.yn .yn n n 

r2 t2 
= 1 + 0- 2n + o(-;;-) (9.21) 

where 

We claim that 

no(t2/n)::::: E c~~: 1\ itXt12)--. 0, n--. oo. (9.22) 
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To see this, observe that on the one hand 

and 
ltXtl3 I X 12 ltXt13 0 --1\t 1 x<--~ 
.jii3! - .jii3! ' 

as n ~ oo. So by dominated convergence 

( ltXtl3 2) 
E Jii3! 1\ ltXtl ~ 0. 

Now 

(where we have applied the product comparison Lemma 9.7.1) 

Since 

the chf of the N (0, 1) distribution, the result follows. 0 

9.8 The Lindeberg-Feller CLT 

We now generalize the CLT for iid summands given in Section 9. 7 to the case 
where the summands are independent but not identically distributed. 

Let {Xn, n 2:: 1} be independent (but not necessarily identically distributed) and 
suppose Xk has distribution Fk and chf ¢k. and that E(Xk) = 0, Var(Xk) = af. 
Define 

n 

s; = af +· ·· +a;= Var(LXi) . 
i=l 

We say that {Xk} satisfies the Lindeberg condition if for all t > 0 as n ~ oo 
we have 

(9.23) 



9.8 The Lindeberg-Feller CLT 315 

Remarks. 

• The Lindeberg condition (9.23) says for each k, most of the mass of Xk 
is centered in an interval about the mean ( = 0) and this interval is small 
relative to Sn. 

• The Lindeberg condition (9.23) implies 

(9.24) 

To see this, note that 

So for any t > 0, 

To finish the proof, let t ,!, 0. 0 

• Condition (9.24) implies 

(9.25) 

by Chebychev's inequality. This condition (9.25) is called uniform asymp­
totic negligibility (UAN). It is typical in central limit theorems that the 
VAN condition holds so that no one summand dominates but each sumand 
contributes a small amount to the total. 

We now state and prove the sufficiency part of the Lindeberg-Feller central 
limit theorem. 

Theorem 9.8.1 (Lindeberg-Feller CLT) With the notation given at the begin­
ning of this section, The Lindeberg condition (9.23) implies 

Sn - => N(O, 1), 
Sn 

where N (0, 1) is a normal random variable with mean 0 and variance 1. 



316 9. Characteristic Functions and the Central Limit Theorem 

Although we shall not prove it, the converse is true in the following sense. If 

(i) vz=1af;s;--+ Oand 

(ii) Sn/.fo =::} N(O , 1), 

then the Lindeberg condition (9.23) holds. 

Proof. We proceed in a series of steps. 
(1) We begin with a preliminary result. Suppose {Yn, n ::::; 1} is an iid se­

quence of random variables with common distribution F and chf if> . Let N be 
independent of {Yk} and assume N is Poisson distributed with parameter c. De­
fine Xn = L:?=t Y; . We compute the chf of XN as follows: FortE R, 

00 

E(eitXN) = LE(eitxN 1(N=kJ) 
k=O 
00 

= LE(eitxt1[N=kJ). 
k=O 

and since N is independent of {Yk}, this equals 

00 

= LE(eitx*)P[N = k) 
k=O 
oo e-cck 

= L:4>k<t>-
k=0 k! 

= e-cectf>(t) = ec{tf>{t)-1) . 

We may also conclude that 
ec{tf>{t)-1) 

must be a chf. 
(2) To show Sn/Sn =::} N(O, 1), we need to show that the chf of Sn/Sn satisfies 

n 

if>Snfsn(t) = n if>k(t/sn)--+ e-t2f2 = chfof N(O, 1). (9.26) 
k=l 

This follows from the continuity theorem 9.5.2. We claim that (9.26) holds if 

n 

L (if>k(t/sn)- 1) + t 2 /2--+ 0 (9.27) 
k=l 

because 

n n 4 

1 exp{L(if>k(t/sn)- 1)}-n 4>k(t/sn)l--+ o. (9.28) 
k=l k=l 



9.8 The Lindeberg-Feller CLT 317 

Thus, assuming (9.28) is true, it will suffice to prove (9.27). 
Here is the verification of (9.28). Recall that exp{¢k(t/sn)- 1} is a chf from 

step (1) and hence bounded in modulus by 1. Then 

n n 

= n e¢k(tfsn)-1- n ¢k(tfsn) ' 

k=l k=l 

and applying the product comparison lemma 9.7.1, we have the bound 

n 
::S L le¢k(tfsn)-1- ¢k(t/Sn)l 

k=l 
n 

= L le¢k(t/sn)-l- 1- (¢k(t/sn) -1)1. 
k=l 

Note that for z e C, 

oo zk oo lzl2 
lez- 1- zl =I L 11 :=:: L lzlk = --

k=Z k. k=2 1 -lzl 

:=:: 21zl2, if lzl :=:: ~· 

:=:: 81zl, if lzl :=:: ~ < ~· (9.29) 

Now for fixed t e JR., we apply (9.6) with n = 1 to get the inequalities 

t2 
1¢k(t/sn) -11 :=::2s2af (9.30) 

n 

t2 n a2 
<- v -1· (9.31) 
- 2 k=l sn 

Recall (9.24). We conclude from (9.31) that given 8 > 0, if n is sufficiently large, 
then fork= 1, ... , n 

(9.32) 

n n 

I exp{L(¢k(t/sn)- 1)}- n ¢k(t/sn)l 

k=l k=l 
n n 

:=:: L lez* -1- Zkl :=:: l)lzkl 
k=l k=l 
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for n large, because v;:=11zk I ~ 8/2 for n large, and applying (9.30), we get the 
bound 

and since 8 is arbitrary, we have (9.28) as desired. Thus it suffices to prove (9.27). 
(3) We now concentrate on proving (9.27). Write 

n 

I)t>k(tfsn)- 1) + t2 /2 
k=l 

~ ( itX js t 1 it 2 2) =~E e k n-1-i-Xk--(-)Xk . 
k=l Sn 2 Sn 

Let 0 represent what is inside the expectation on the previous line. We get the 
decomposition 

n 

= L {E(•)l[IXkl/sn:::f) + £(·)11Xkl/sn>fJ} 
k=l 

=I +II. 

We now show I and I I are small. For I we have using (9.6) with n = 2: 

where we used the fact that 
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Now we show why I I is small. We have 

(from (9.6) with n = 2) 

by the Lindeberg condition (9.23). This completes the proof of (9.27) and hence 
the theorem is proved. 0 

We next present a sufficient condition for the Lindeberg condition (9.23) called 
the Liapunov condition which is relatively easy to verify. 

Corollary 9.8.1 (Liapunov Condition) Let {Xk, k 2: 1} be an independent se­
quence of random variables satisfying E(Xk) = 0, Var(Xk) = uf < oo, s; = 
Lk=l uf. /!for some 8 > 0 

then the Lindeberg condition (9.23) holds and hence the CLT. 

Remark. A useful special case of the Liapunov condition is when 8 = 1: 

Proof. We have 

0 
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Example: Record counts are asymptotically normal. We now to examine the 
weak limit behavior of the record count process. Suppose {Xn, n ::=:: 1} is an iid 
sequence of random variables with common continuous distribution F, and define 

n 

h = 1[Xk is a record)• f.ln = L 1k. 
i=l 

So f.ln is the number of records among X 1, ... , X n. We know from Chapter 8 that 
asn ~ oo 

Here we will prove 

To check this, recall 

Thus 

So 

Now 

and therefore 

f.ln a.s. 1 --~. 
logn 

f.ln -logn 
~ ::::}N(0,1). 
ylU~n 

1 1 
Var(h) = k- k2 . 

Lk=l El1k- £(1k)l3 < Lk=l 0 + ~) 
sg - (log n )3/2 

logn 0 
(logn)3/2 ~ . 
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So the Liapunov condition is valid and thus 

J.ln- E(J..tn) => N(O, 1). 
JVar(J..tn) 

Note 
Jvar(J..tn) "' sn "' jlog n 

and 
E(J..tn) -logn _ Lk=tl-logn "'_Y_--+ 0 

jlog n - Jlog n Jlog n ' 

where y is Euler's constant. So by the convergence to types theorem 

J.ln -logn JiOiii" => N(O, 1). 
D 

9. 9 Exercises 

1. Triangular arrays. Suppose for each n, that {Xk.n. 1 :::: k :::: n} are inde­
pendent and define Sn = Lk=l xk.n· Assume E(Xk.n) = 0 and Var(Sn) = 
1,and 

n 

LE (1Xk,nl21(1xk.nl>t])--+ 0 
k=l 

as n --+ oo for every t > 0. Adapt the proof of the sufficiency part of the 
Lindeberg-Feller CLT to show Sn => N(O, 1). 

2. Let {Xn, n ~ 0} be a sequence of random variables. 

(a) Suppose {Xn. n ~ 0} are Poisson distributed random variables so that 
for n ~ 0 there exist constants An and 

e-An)...k 
P[Xn=k]=--n, k~O. 

k! 

Compute the characteristic function and give necessary and sufficient con­
ditions for 

Xn => Xo. 

(b) Suppose the {Xn} are each normally distributed and 

E(Xn) = J.ln E R, Var(Xn) =a;. 

Give necessary and sufficient conditions for 

Xn => Xo. 
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3. Let {Xt. k ~ 1} be independent with the range of Xk equal to {±1, ±k} 
and 

1 1 
P[Xk = ±1] = 2(1- k2 ), 

1 
P[Xk = ±k] = 2k2 • 

By simple truncation, prove that Sn I Jn behaves asymptotically in the same 
way as if Xk = ±1 with probability 1/2. Thus the distribution of Sn/Jn 
tends to N(O, 1) but 

Var(Sn/Jn)--+ 2. 

4. Let {Uk} be an independent sequence of random variables with Uk uni­
formly distributed on [ -ak, ak]· 

(a) Show that if there exists M > 0 such that lakl .:5 M but Lk af = oo, 
then the Lindeberg condition and thus the CLT holds. 

(b) If Lk af < oo, then the Lindeberg condition does not hold. 

5. Suppose Xn and Yn are independent for each nand 

Prove using characteristic functions that 

Xn + Yn => Xo +Yo. 

6. (a) Suppose Xn has a uniform distribution on ( -n, n). Find the chf of Xn. 

(b) Show limn--..clO <Pn ( t) exists. 

(c) Is there a proper, non-degenerate random variable Xo such that 

Xn => Xo? 

Why or why not? What does this say about the continuity theorem for char­
acteristic functions? 

7. Suppose {Xn, n:::: 1} are iid with common density 

(a) Check that E(XI) = 0 but E(X;) = oo. 

(b) Despite the alarming news in (a), we still have 

r:::r:::::= => N (0, 1). 
v" •ve;n 

Hint: Define 



9.9 Exercises 323 

and check Liapunov's condition for {Yn} for 8 = 1. Then show 

L P[Xn #- Yn] < oo. 
n 

(c) It turns out that for iid random variables {Xn} with E(Xn) = 0, the 
necessary and sufficient condition for the CLT is that 

where 

lim U(tx) = 1, 
HOO U(t) 

U(t) := E(Xi1[1Xi1:9])· 

Check this condition for the example in part (a). 

8. Probabilistic proof of Stirling's formula. Suppose {Xn} are iid, Poisson 
distributed random variables with parameter 1 and as usual suppose Sn = 
L7=I X;. Prove the following: 

(a) E -- =e L -- -=---[(Sn- n)-] -n n (n- k) nk nn+lf2e-n 

.jn k=O .jn k! n! 

(b) (S~n)- ~ N-, 

where N is a N(0,1) random variable. 

(c) Show 

9. (a) Suppose X is exponentially distributed with density 

f(x) =e-x, x > 0. 

What is the chf of X? Is the function 

1 

1 +it 

a chf? If so, of what random variable? 

(b) Let X 1 be Bernoulli random variable with possible values ± 1 with prob­
ability 1/2 each. What is the chf of X 1? 
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(c) Is (cost)17 a chf? Of what random variable? 

(d) Is I cos t I a chf? (Try differentiating twice.) 

(e) Is I cost 12 a chf? 

The modulus of a chf need not be a chf but the modulus square is a chf. 

(f) Prove that if X is a random variable with E(IXI) < oo and with chf ¢, 
then 

L 2 ioo 1-Re¢(t) 
lxiF(dx) = - 2 dt. 

lR 7r 0 t 

10. Suppose Ys is Poisson distributed with parameters so that 

sk 
P[Ys =k)=e-s k!' 

Compute the chf of Y5 • Prove 

Ys -s 
Js :::} N, 

where N is aN (0, 1) random variable. 

11. If {Xn,n::: 1} is iid with E(Xn) = 0 and Var(Xn) = 1, then Sn/Jn:::} 
N (0, 1). Show this cannot be strengthened to Sn I Jn converges in proba-

bility. (If Sn/Jn ~X, then S2n!.fin ~X. Subtract.) 

12. Suppose {Xn, n ::: 1} are independent and symmetric random variables so 
that 

If for every t > 0, as n -+ oo 

n 

L P[IXkl >tan]-+ 0 
k=I 

n 

a;;2 L E (Xf1[1Xkl9an)) -+ 1, 
k=l 

where an > 0, then show 

Snfan:::} N(O, 1). 

Here Sn = L:?=t X;. 

Hint: Try truncating at level ant: Set 

Xj = Xj1[1Xil9an)· 

ConsiderS~ and show it is enough for S~fan:::} N(O, 1). 



9.9 Exercises 325 

13. Prove the law of rare events stated in Example 9.5.3. 

14. Assume ¢(t) is a chf and G is the distribution of a positive random variable 
Y . Show all of the following are chf's and interpret probabilistically: 

(a) Jd ¢(ut)du, 

(b) J000 ¢(ut)e- "du, 

(c) fooo e-ltiuG(du), 

(d) J0
00 ¢(ut)G(du) . 

(For example, if X has chf ¢and U is uniform on (0, 1) and independent 
of X, what is the chf of XU?) 

15. (i) Suppose {En , n .:=:: 1} are iid unit exponential random variables so that 
P(Et > x] = e-x, x > 0. Show <L.7=t £; - n)j Jn is asymptotically 
normal. 

(ii) Now suppose X 1 is a random variable with gamma density 

Use characteristic functions to show that 

(X1 - t)/J'i ~ N 

where N is a N(O, 1) random variable. 

(iii) Show total variation convergence of the distribution of (X1 - t)j..[i to 
the distribution of N : 

X1 - t 
sup IP[---;:; e B] - P[N e B]l ~ 0 

BeB(IR) ...;t 

as a ~ oo. (Hint: Use Scheffe; approximate r(t) via Stirling's formula. 

16. (a) Suppose X andY are iid N(O, 1) random variables. Show 

(b) Conversely: Suppose X andY are independent with common distribu­
tion function F(x) having mean zero and variance 1, and suppose further 
that 

X+Y 4x4Y. 
,fi 

Show that both X andY have a N(O, 1) distribution. (Use the central limit 
theorem.) 
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17. (a) Give an example of a random variable Y such that E (Y) = 0 and 

for all8 > 0. (This means finding a probability density.) 

(b) Suppose {Yn, n ::: 1} are iid with EYt = 0, and EYf = a 2 < oo. 
Suppose the common distribution is the distribution found in (a). Show that 
Lindeberg's condition holds but Liapunov's condition fails. 

18. Use the central limit theorem to evaluate 

Hint: consider P[Sn < x] where Sn is a sum of n iid unit exponentially 
distributed random variables. 

19. Suppose {en, n ::: 1} are independent exponentially distributed random 
variables with E(en) = J.Ln· If 

n 

I. v J.l.i 0 lm Ln = , n-+oo . · 
i=l j=l J.L J 

then 

20. Use the method of the selection theorem to prove the Arzela-Ascoli theo­
rem: Let {un(x), n ::: 1} be an equicontinuous sequence of real valued func­
tions defined on IR, which is uniformly bounded; that is, supn,x iun (x) I ~ 1. 
Then there exists a subsequence fun'} which is converging locally uni­
formly to continuous limit u. 

21. (a) Suppose {FA, A e A} is a family of probability distributions and suppose 
the chf of FA is tPA· If {</JA , A E A} is equicontinuous, then {FA, A E A} is 
tight. 

(b) If {Fn , n ::: 0} is a sequence of probability distributions such that 
Fn => Fo, then the corresponding chf's are equicontinuous. By the Arzela­
Ascoli theorem , uniformly bounded equicontinuous functions converge lo­
cally uniformly. Thus weak convergence of fFn} means the chf's converge 
locally uniformly. 

22. A continuous function which is a pointwise limit of chf's is a chf. (Use the 
continuity theorem.) 
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23. A complex valued function t/>(·) of a real variable is called non-negative 
definite if for every choice of integer n and reals It, .. . , tn and complex 
numbers c1 , ... , Cn, we have 

n 

L t/>(tr - fs)CrCs :=:: 0. 
r,s=l 

Show that every chf is non-negative definite. 

24. (a) Suppose K 0 is a complex valued function on the integers such that 
L~-oo IK(n)l < oo. Define 

1 00 

/(A)=- L e-in'-K(n) 
2rr n=-oo 

(9.33) 

and show that 

K(h) = r: eihx f(x)dx, h = 0, ±1, ±2,. . .. (9.34) 

(b) Let {{Xn, n = 0, ±1, ±2, .. . } be a zero mean weakly stationary pro­
cess. This means E (X m) = 0 for all m and 

is independent of m. The function y is called the autocovariance (act) func­
tion of the process {X n} . 

Prove the following: An absolutely summable complex valued function 
y ( ·) defined on the integers is the autocovariance function of a weakly sta­
tionary process iff 

1 00 . 

/('A)= 2rr L e-m'-y(n) 2: 0, for all)... e [-rr, rr], 
n=-oo 

in which case 

y(h) = r: eihx f(x)dx. 

(Soy(·) is a chf.) 

Hint: If y ( ·) is an acf, check that 

N 

/N(A) = 2: N L e-ir'-y(r- s)eisl. :=:: 0 
r,s=l 

and /N(A) -+ /(A) as N -+ oo. Use (9.34). Conversely, if y(·) is abso­
lutely summable, use (9.34) to write y as a Fourier transform or chf of f . 
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Check that this makes y non-negative definite and thus there is a Gaussian 
process with this y as its acf. 

(c) Suppose 
q 

Xn = L &;Zn-i• 
i=O 

where {Zn} are iid N(O, 1) random variables. Compute y(h) and /(A). 

(d) Suppose {Xn} and {Yn} are two uncorrelated processes (which means 
E (X m Yn) = 0 for all m, n ), and that each has absolutely summable acfs. 
Compute y(h) and /(A) for {Xn + Ynl· 

25. Show the chf of the uniform density on (a, b) is 

eitb _ eita 

it(b-a)· 

If ¢(t) is the chf of the distribution F and ¢(t)(1- eith)/(ith) is integrable 
in t, show the inversion formula 

1 loo (1- e-ith) . h-1F(x,x+h]=-2 lj)(t) . e-11xdt. 
rc -oo zth 

Hint: Let U -h,O be the uniform distribution on ( -h, 0). What is the chf of 
F * U-h.o? The convolution has a density; what is it? Express this density 
using Fourier inversion (Corollary 9.5.1). 

26. Why does the Fourier inversion formula for densities (Corollary 9.5.1) not 
apply to the uniform density? 

27. Suppose for each n =::: 0 that l/Jn(t) is an integrable chf corresponding to a 
distribution Fn, which by Fourier inversion (Corollary 9.5.1) has a density 
fn. If as n ~ oo L: ll/Jn(t)- l/Jo(t)idt ~ 0, 

then show fn ~ fo uniformly. 

28. Show the chf of F(x) = 1 -e-x, x > 0 is 1/(1- it). If Et. £2 are iid 
with this distribution, then the symmetrized variable E 1 - E 2 has a bilateral 
exponential density. Show that the chf of £ 1 -£2 is 1/(1 + t 2). 

Consider the Cauchy density 

f(x) = ..!_ (-1- 2), X E JR. 
rc 1 +x 

Note that apart from a constant, f (x) is the same as the chf of the bilateral 
exponential density. Use this fact to show the chf of the Cauchy density 
is lj)(t) = e-ltl. Verify that the convolution of two Cauchy densities, is a 
density of the same type. 



9.9 Exercises 329 

29. Triangle density. (a) Suppose Ua,b is the uniform distribution on (a, b). 
The distribution U(-1 ,0) * U(o,t) has a density called the triangle density. 
Show the chf of the triangle density is 2(1 - cos t)/t2. Verify that this chf 
is integrable. 

Check that 
f(x) = (1- cosx)/(rrx2), x e JR. 

is a probability density. Hint: Use (a) and Fourier inversion to show 1 -lxl 
is a chf. Set x = 0. 

30. Suppose Ut. .. . , Un are iid U(O, 1) random variables. Use the uniqueness 
theorem to show that I:7=t U; has density 

1 n . (n) 
f(x) = 1 2:<-1)1 . (x- j)~, 

(n- 1). j=O J 
X> 0. 

31. Suppose F is a probability distribution with chf ¢(t). Prove for all a > 0 

loa 1 100 1- cos at . 
(F(x + u)- F(x- u))du =- 2 e-11x</J(t)dt, 

0 7r -oo t 

and 

1a 1" 100 1- cos ax ljJ(t)dt = 2 2 F(dx). 
0 -u -oo X 

32. Suppose X has chf 

3sint 3cost 
</J(t) = -3- - -2-, t # 0. 

t t 

(a) Why is X symmetric? 

(b) Why is the distribution of X absolutely continuous? 

(c) Why is P[IXI > 1] = 0? 

(d) Show E(X2n) = 3/(2n + 1)(2n + 3). (Try expanding rjJ(t).) 

33. The convergence to types theorem could be used to prove that if X n :::::} X 
and On ~ a and bn ~ b, then anXn + bn :::::} aX+ b. Prove this directly 
using chf's. 

34. Suppose {Xn. n ::=:: 1} are independent random variables and suppose Xn 
has a N (0, a;) distribution. Choose a; so that v7=1 alI s; fr 0. (Give an 
example of this.) Then 

d 
Snfsn = N(O, 1) 

and hence Sn/sn :::::} N(O, 1). Conclusion: sums of independent random 
variables can be asymptotically normal even if the Lindeberg condition 
fails. 
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35. Let {Xn. n 2: 1} be independent random variables satisfying the Lindeberg 
condition so that :E7=1 X; is asymptotically normal. As usual, set s; = 
Var<:E7=1 X;. Now define random variables {~n. n 2: 1} to be independent 
and independent of {Xn} so that the distribution of ~n is symmetric about 0 
with 

1 
P[~n = 0] =1 - 2• 

n 
1 -1 

P[l~nl > x] =--zx , x > 1. 
n 

Does the mean or variance of ~n exist? 

Prove t (X;+~;) => N(O, 1). 
i=1 Sn 

Thus asymptotic normality is possible even when neither a mean nor a sec­
ond moment exist. 

36. Suppose X is a random variable with the property that X is irrational with 
probability 1. (For instance, this holds if X has a continuous distribution 
function.) Let Fn be the distribution of nX - [nX], the fractional part of 
nX. Prove n-1 :E7=1 F; => U, the uniform distribution on [0, 1]. Hint: You 
will need the continuity theorem and the following fact: If 0 is irrational, 
then the sequence {nO- [nO], n 2: 1} is uniformly distributed modulo 1. A 
sequence {xn} is uniformly distributed if the sequence contains elements of 
[0, 1] such that 

1 n 
- LEx;O ~A(·), 
n i=1 

where A(·) is Lebesgue measure on [0, 1], and forB E 8([0, 1]), 

Ex(B) = 11, 

0, 

if X E B, 

ifxfjB. 

37. Between 1871 and 1900, 1,359,670 boys and 1,285,086 girls were born. Is 
this data consistent with the hypothesis that boys and girls are equally likely 
to be born? 

38. (a) If {Xn. n 2: 1} are independent and Xn has chf <Pn. then if :[~1 X; is 
convergent, n~1 </>n(t) is also convergent in the sense of infinite products. 

(b) Interpret and prove probabilistically the trigonometric identity 

sint noo 
-t- = cos(t/2n). 

n=1 

(Think of picking a number at random in (0, 1).) 
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39. Renewal theory. Suppose {Xn. n ::: 1} are iid non-negative random vari­
ables with common mean J..L and variance a2• Use the central limit theorem 
to derive an asymptotic normality result for 

N(t) = sup{n: Sn ::: t}, 

namely, 

40. Suppose X and Y are iid with mean 0 and variance 1. If 

X+Y JLX-Y, 

then both X and Y are N (0, 1). 

41. If tPk. k ::: 0 are chf's, then so is :E~o PktPk for any probability mass func­
tion {Pk· k ::: 0}. 

42. (a) For n E Z define 

1 . 
en (t) = J2iiemt, t E ( -rr, rr]. 

Show that fen. n = 0, ±1, ±2, .. . } are orthonormal; that is, show 

- e t= 1 17r iktd ,1, 
2rr -1r 0, 

if k = 0, 

if k ¥= 0. 

(b) Suppose X is integer valued with chf t/J. Show 

1 17r P[X = k] = -2 e-iktf/J(t)dt. 
1T -]f 

(c) If X1, ... , Xn are iid, integer valued, with common chf f/J(t), show 

43. Suppose {Xn, n ::: 1} are independent random variables, satisfying 

E(Xn) = 0, Var(Xn) =a; < 00. 

(a) Sn/Sn ~ N(O, 1), 

(b) Gn/Sn-+ P· 
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Prove Xnfsn => N(O, p2). (Hint: Assume as known a theorem of Cramer 
and Uvy which says that if X, Y are independent and the sum X + Y is 
normally distribute, then each of X andY is normally distributed.) 

44. Approximating roulette probabilities. The probability of winning $1 in 
roulette is 18/38 and the probability of losing $1 is thus 20/38. Let {X n, n ~ 
1} be the outcomes of successive plays; so each random variable has range 
±1 with probabilities 18/38, 20/38. Find an approximation by the central 
limit theorem for P[Sn ~ OJ, the probability that after n plays, the gambler 
is not worse off than when he/she started. 

45. Suppose f(x) is an even probability density so that f(x) = f(-x) . Define 

g(x) = Jx s s, I roo Md 

g(-x), 

Why is g a probability density? 

if X> 0, 

if X< 0. 

Iff has chf l/>(t), how can you express the chf of gin terms of 4>? 

46. Suppose {X n, n ~ 1} are independent gamma distributed random variables 
and that the shape parameter of Xn is an . Give conditions on {an} which 
guarantee that the Lindeberg condition satisfied. 
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10 
Martingales 

Martingales are a class of stochastic processes which has had profound influence 
on the development of probability and stochastic processes. There are few areas 
of the subject untouched by martingales. We will survey the theory and appli­
cations of discrete time martingales and end with some recent developments in 
mathematical finance. Here is what to expect in this chapter: 

• Absolute continuity and the Radon-Nikodym Theorem. 

• Conditional expectation. 

• Martingale definitions and elementary properties and examples. 

• Martingale stopping theorems and applications. 

• Martingale convergence theorems and applications. 

• The fundamental theorems of mathematical finance. 

10.1 Prelude to Conditional Expectation: The 
Radon-Nikodym Theorem 

We begin with absolute continuity and relate this to differentiation of measures. 
These concepts are necessary for a full appreciation of the mathematics of condi­
tional expectations. 

Let (Q, 13) be a measurable space. Let f..L and). be positive bounded measures 
on (Q, 13). We say that A. is absolutely continuous (AC) with respect to f..L, written 
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). < < J.t, if J.t(A) = 0 implies J...(A) = 0. We say that). concentrates on A e B 
if J...(A c) = 0. We say that ). and J.t are mutually singular, written ). .l JJ., if 
there exist events A, B e B, such that An B = 0 and). concentrates on A , J.t 
concentrates on B. 

Example. If U[o.l)• U[2,3) are uniform distributions on [0, 1], and [2, 3] respec­
tively, then U[O,l) .l U[2,3J· It is also true that U[O,l) .l Up,2J· 

Theorem 10.1.1 (Lebesgue Decomposition) Suppose that J.l and ). are positive 
bounded measures on (Q, B). 

(a) There exists a unique pair of positive, bounded measures ).0 , As on B such 
that 

where 

(b) There exists a non-negative B-measurable function X with 

I XdJ.t < 00 

such that 

A.a(E) = ~ XdJ.t , E e 8 . 

X is unique up to sets of J.t measure 0. 

We will not prove Theorem 10.1.1 but rather focus on the specialization known 
as the Radon-Nikodym theorem. 

Theorem 10.1.2 (Radon-Nikodym Theorem) Let (Q, B, P) be the probability 
space. Suppose vis a positive bounded measure and v << P. Then there exists 
an integrable random variable X e B, such that 

v(E) = L XdP, VEe B. 

X is a.s. unique (P) and is written 

We also write dv = XdP. 

dv 
X= dP. 

A nice proof of the Radon-Nikodym theorem is based on the following Hilbert 
space result (see, for example, Rudin (1966)). 
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Proposition 10.1.3 Let lHl be a Hilbert space. For x, y E lHl, denote the inner 
product by (x, y). If L : lHl ~ IR is a continuous linear functional on lHl, then 
there exists a unique y E lHl such that 

L(x) = (x, y), Vx E IH!. 

Proof. Case 1: If L(x) = 0, Vx, then we may take y = 0 and we are done. 
Case 2: Suppose L (x) ¢. 0 and assume, for simplicity that lHl is real and define 

M = {x E lHl: L(x) = 0}. 

L is linear so M is a subspace. L is continuous so M is closed. Since L is not iden­
tically 0, we have M # IH!. Thus there exists some z' ¢ M and by the projection 
theorem (Rudin (1966); Brockwell and Davis (1991)) 

where z1 E M and zz e M .l, the orthogonal complement of M, and zz # 0. Then 
there exists z e M .l, z # 0. Thus, it is also true that z ¢ M and hence L (z) # 0. 
Define 

L(z) 
y=--·Z, 

(z, z) 
(10.1) 

so that 

L(y) = L(z)2/(z, z). (10.2) 

Soy# 0, y e M.l and 

( L(z))2 (L(z))2 
(y,y) = - (z,z) = =L(y). 

(z, z) (z, z) 
(10.3) 

from (10.2). Now write 

( L(x) ) L(x) , , 
x = x- (y,y/ + (y,y/ =:x +x 

and note 

, L (x)L (y) 
L(x) = L(x)- = L(x)- L(x) = 0, 

(y, y) 

from (10.3). Sox' e M . Since y E M .l we have (x' , y) = 0, and therefore 

(x, y) = (x", y) = L(x) 

from the definition of x". Thus L (x) = (x, y) as required. 
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To show uniqueness of y: Suppose there exists y' and for all x 

L(x) = (x, y) = (x, y'). 

Then for all x 

(x, y - y') = 0, 

and so 

(y - y'' y - y') = 0. 

Thus y - y' = 0 and y = y'. 0 

Before the proof of the Radon-Nikodym theorem, we recall the Integral Com­
parison Lemma which is given in slightly expanded form as Lemma 10.1.1. This 
is needed for conditional expectations and martingales. 

Lemma 10.1.1 (Integral Comparison Lemma) Suppose (Q, B, P) is a proba­
bility space with g C B a sub a-field of B. Suppose X E {}, Y E {},and that X 
and Y are integrable. Then 

X = Y a.s. iff VA E {}, fA XdP =fA YdP. 
~ ~ 

~ ~ 

Proof of the Radon-Nikodym Theorem. Suppose v < < P and define 

Q(A) = v(A) 
v(Q) 

so Q is a probability measure and Q < < P. Set 

P*=P+Q, 
2 

which is also a probability measure. Then 

H := Lz(P*) = Lz(Q, B, P*) 

is a Hilbert space with inner product 

(Yt. Yz) = f YtYzdP*. 

Note that all elements of Lz(P*) = Lz(Q, B, P*) are B-measurable. On H, de­
fine the functional 

L(Y) =In YdQ, (10.4) 

sothatL: Lz(P*) ~--+- JRis 
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(a) linear, 

(b) bounded (and hence continuous). 

To check (b) we must show 

where 

However, 

IL(Y)I ~ (const)IIYIIz 

IIYII~ = (Y, Y) =In Y2dP*. 

IL(Y)I ~I IYidQ ~I IYidQ +I IYidP 

= 2 I IYidP* ~ 2(1 IYI 2dP*) 1/ 2 

(by, for instance, Example 6.5.2 on page 189) 

= 211YIIz. 

Now, L is continuous and linear on H = Lz(P*). Thus from Proposition 
10.1.3, there exists Z e Lz(P*) such that for allY e Lz(P*) 

L(Y) = (Y, Z) =I YZdP* 

=I ~YZdP +I ~YZdQ 
=I YdQ. 

Consequently, from the definition (10.4), for allY e Lz(P*) 

Pick any set A e Band substituting Y = lA in (10.5) gives 

I YdQ = Q(A) = i ZdP*. 

Then we get from (10.7) that 

Q(A) fA ZdP* fA ZdP* 
0<--= < =2 

- P*(A) P*(A) - Q(A)/2 ' 

(10.5) 

(10.6) 

(10.7) 
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where, to get the right inequality, we applied the fact that 2P* = P + Q ~ Q. 
Therefore, for all A e B 

0:::: L ZdP*:::: 2P*(A) 

that is, 

0:::: L ZdP*:::: L 2dP*. 

From the Integral Comparison Lemma 10.1.1 

0 :=:: Z :=:: 2, a.s.(P*). 

In (10.6) set Y = 1[Z=2J to get 

r (1- z;2)dQ = r ~dP, 
1[Z=2) 1(Z=2) 2 

that is, 
0 = P[Z = 2]. 

Since Q << P, we have 0 = Q[Z = 2) by the definition of absolute continuity 
and hence P*[Z = 2) = 0. So 0;::: Z < 2, a.s. (P*). 

In (10.6), set 

Y=(~Y1A, AeB. 

Then Y e L2(P*) and, in fact, 0 :=:: Y < 1 a.s. (P or Q or P*). From (10.6), 

Sum both sides over n = 0 to n = N to get 

N (z)j 
~ 2 dP. 
J=O 

(10.8) 

Note, as N ~ oo, 

1- (Z/2)N+l /' 1, a.s. P* 

and hence a.s. Q. If LHS refers to the left side of (10.8), then dominated conver­
gence implies 

LHS ~ L dQ = Q(A). 

If RHS refers to the right side of (10.8), then monotone convergence implies 

RHS /' { z 12 dP = { _z_dP. 
1 A 1 - Z /2 1 A 2 - Z 
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Set X = Z I (2 - Z) and for all A E B 

Q(A) = i XdP. 0 

In subsequent work we use the notation J.l.IA for the restriction of the measure J.1. 

to the set A. Next we extend the Radon-Nikodym theorem to the case of cr-finite 
measures. (Recall that a measure J.1. is cr-finite if the space Q can be decomposed 
Q = :L~1 Q; where on each piece Q;, J.1. is finite: J.l.(Q;) < oo. Lebesgue mea­
sure A on (R) is cr-finite since A((n, n + 1]) = 1 < oo and :L~1 (n, n + 1] =JR.) 

Corollary 10.1.1 If J.l., v are cr-finite measures on (Q, B), there exists a measur­
able X E B such that 

v(A) = i XdJ.l., 'v'A E B, 

iff 
v << J.l.. 

Proof. Write Q = :L~1 Q; where J.l.(Q;) < oo, and v(Q;) < oo, for all i. On 
Q;, J.1. and v are finite and if v < < J.l., then 

vln; << J.l.ln; 

on (Q;, Q; n B). Apply the Radon-Nikodym theorem to each Q; piece and put 
the pieces back together. 0 

The next corollary is important for the definition of conditional expectation. 

Corollary 10.1.2 Suppose Q and Pare probability measures on (Q, B) such that 
Q << P. Let g C B be a sub-cr-algebra. Let Qlg, Pig be the restrictions of Q 
and P tog, Then in (Q, g) 

Qlg <<Pig 

and 

ddQig is g-measurable. 
Pig 

Proof. Check the proof of the Radon-Nikodym theorem. In the construction, we 
deal with L2(Q, g, P*). 0 

10.2 Definition of Conditional Expectation 

This section develops the definition of conditional expectation with respect to a 
cr-field and explains why the definition makes sense. The mathematics depends 
on Radon-Nikodym differentiation. 

Suppose X E L 1 (Q, B, P) and let g c B be a sub-cr-field. Then there exists a 
random variable E (Xi g), called the conditional expectation of X with respect to 
g, such that 
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(i) E (Xi g) is g-measurable and integrable. 

(ii) For all G E g we have 

L XdP = L E(Xig)dP. 

To test that a random variable is the conditional expectation with respect to 
g, one has to check two conditions: (i) the measurability condition and (ii) the 
integral condition. 

There are (at least) two questions one can ask about this definition. 

(a) Why does this definition of conditional expectation make mathematical 
sense? 

(b) Why does this definition make intuitive sense? 

It is relatively easy to answer (a) given the development of Radon-Nikodym 
differentiation. Suppose initially that X ~ 0. Define 

v(A) = i XdP, A E !3. 

Then v is finite and v < < P. So 

vig <<Pig. 

From the Radon-Nikodym theorem, the derivative exists and we set 

E(Xig) = dvig 
dPig 

which by Corollary 10.1.2 is g-measurable, and so for all G E g 

r dvig 
vig(G) = v(G) = }G dPig dPig 

= { dvig dP since P =Pig on g 
}G dPig 

= L E(Xig)dP 

which is (ii) of the definition of conditional expectation. 
If X E L 1 is not necessarily non-negative, then 

satisfies (i) and (ii) in the definition. 0 
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Notes. 

(1) Definition of conditional probability: Given (Q, 8, P), a probability space, 
with g a sub-a-field of 8, define 

P(Ai9) = E(lAI9) , A E 8 . 

Thus P(AI9) is a random variable such that 

(a) P(AI9) is 9-measurable and integrable. 

(b) P(AI9) satisfies 

Ia P(Ai9)dP = P(A n G), 'IG e g. 

(2) Conditioning on random variables: Suppose {X1, t E T} is a family of ran­
dom variables defined on (Q, 8) and indexed by some index set T. Define 

g := a(X1, t E T) 

to be the a-field generated by the process {X1, t E T}. Then define 

E(XIX1, t E T) = E(X19). 

Note (1) continues the duality of probability and expectation but seems to place 
expectation in a somewhat more basic position, since conditional probability is 
defined in terms of conditional expectation. Note (2) saves us from having to 
make separate definitions for E(XIXI), E(XIX1, Xz), etc. 

We now show the definition makes some intuitive sense and begin with an 
example. 

Example 10.2.1 (Countable partitions) Let {An , n ~ 1} be a partition of Q so 
that A; n A j = 0, i # j' and Ln An = n. (See Exercise 26 of Chapter 1.) Define 

g = a(An , n ~ 1) 

so that 

g =\?:A;: J C {1, 2, . .. }J. 
IE] 

For X E L 1 (P), define 

EA.(X) = J XP(dwiAn) = i. XdP/PAn, 

if P(An) > 0 and EA.(X) = 17 if P(An) = 0. We claim 

00 

(a) E(XIQ) a,4. LEA.(X)1An 
n=l 
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and for any A e B 

00 

(b) P(AIQ) a,;4. L P(AIAn)lAn• 
n=l 

Proof of (a) and (b). We first check (a). Begin by observing 

00 

L EAn(X)lAn e Q. 
n=l 

Now pick A e g and it suffices to show for our proposed form of E(XIQ) that 

Since A e Q, A has the form A = LieJ A; for some J C {1, 2, ... }. Now we 
see if our proposed form of E (XIQ) satisfies (10.9). We have 

i~EAn(X)lAndP 

= !; r;; i; E An (X)lAndP (form of A) 

= LLEAn(X)P(A;An) 
n:;:l ieJ 

= LEA;(X) · P(A;) ({An} are disjoint) 
ieJ 

jA_XdP 
= L ' · P(A;) (definition of EA(X)) 

ieJ P(A;) 

= L { XdP = { XdP 
ieJ J A; }LieJ A; 

= i XdP. 

This proves (a). We get (b) from (a) by substituting X = 1 A • 0 

Interpretation: Consider an experiment with sample space n. Condition on the 
information that "some event in g occurs." Imagine that at a future time you will 
be told which set An the outcome (J) falls in (but you will not be told (J)). At 
time 0 

00 

LP(A1An)1An 
n=I 

is the best you can do to evaluate conditional probabilities. 



10.2 Definition of Conditional Expectation 343 

Example 10.2.2 (Discrete case) Let X be a discrete random variable with pos­
sible values XI, x2, .. . . Then for A E B 

P(AIX) = P(Aia(X)) 

= P(Aia([X =xi], i = 1, 2, ... )) 
00 

= L P(AIX = x;)1[X=x;] 
i=l 

where we applied Example 10.2.1(b). 

Note that if we attempted to develop conditioning by first starting with a def­
inition for discrete random variables X, how would we extend the definition to 
continuous X's? What would be P(AIX = x) if P(X = x) = 0 for all x? We 
could try to define 

but 

P(AIX =x) = limP(AIX E (x -h,x +h)) 
h~O 

(a) How do we know the limit exists for any x? 

(b) How do we know the limit exists for all x? 

The approach using Radon-Nikodym derivatives avoids many of these prob­
lems. 

Example 10.2.3 (Absolutely continuous case) Let Q = JR2 and suppose X and 
Y are random variables whose joint distribution is absolutely continuous with 
density f(x, y) so that for A E B(IR2) 

P[(X, Y) E A]= If A f(x, y)dxdy. 

What is P[Y E CIX] for C E B(IR)? We use g = a(X). Let 

l(x) := l f(x, t)dt 

be the marginal density of X and define and 

I fc f(X ,t)dt 

f/J(X) = l(x) ' 
17, 

We claim that 

ifl(x) > 0, 

if l(x) = 0. 

P[Y E CIX] = f/J(X). 
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First of all, note by Theorem 5.9.1 page 149 and composition (Proposition 3.2.2, 
page 77) that fc f (X, t )dt is CT (X)-measurable and hence¢ (X) is CT (X)-measurable. 
So it remains to show for any A e CT (X) that 

i l/>(X)dP = P([Y e C) n A). 

Since A e G(X), the form of A is A = [X e A] for some A e B(IR). By the 
Transformation Theorem 5.5.1, page 135, 

{ l/>(X)dP = { l/>(X)dP = { f/>(x)P[X e dx] 
}A lx-l(A) }A 

and because a density exists for the joint distribution of (X, Y), we get this equal 
to 

as required. 

= L f/>(x)(L f(x, t)dt)dx 

= f f/>(x)l(x)dx + f f/>(x)l(x)dx 
JAn{x:/(x)>O} JAn{x:/(x)=O} 

= f f/>(x)l(x)dx +0 J An{x:/ (x)>O} 

i fc f(x, t)dt = l(x)dx 
An{x:/(x)>O} I (x) 

= { ( { f(x, t)dt)dx 
JAn{x:/(x)>O} Jc 

= L (L f(x, t)dt)dx = P[X e A, Y e C) 

= P([Y E C]nA) 

10.3 Properties of Conditional Expectation 

0 

This section itemizes the basic properties of conditional expectation. Many of 
these parallel those of ordinary expectation. 

(1) Linearity. If X, Y e Lt and a, ,8 e IR, we have 
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To verify this, observe that the right side is 9-measurable and for A e 9 

i (aE(Xi9) + ,8E(Yi9))dP =a i E(Xi9)dP + ,8 i E(Yi9)dP 

=a iXdP+,B i YdP 

(from the definition of conditional expectation) 

= i (aX+ ,BY)dP. 

(2) If X E 9; X E Lt. then 

E (Xl9) a~. X. 

We prove this by merely noting that X is 9-measurable and 

i XdP = i XdP, 'VA e 9 . 

In particular, for a constant c, c is 9-measurable so 

E(ci9) a~. c. 

(3) We have 
E(XI{¢, Q}) = E(X) . 

The reason is that E(X) is measurable with respect to the a-field {0, Q} and for 
every A e {0, Q} (that is, A = 0 or A = Q) 

i E(X)dP = i XdP. 

(4) Monotonicity. If X::: 0, and X e Lt. then E(XI9) ::: 0 almost surely. The 
reason is that for all A e 9 

i E(Xl9)dP = i XdP:::; 0 = i OdP. 

The conclusion follows from Lemma 10.1.1. So if X, Y e Lt. and X:::: Y, then 

a.s. 
E(Xi9) :::: E(YI9). 

Thus conditional expectation is monotone. 

(5) Modulus inequality. If X e L 1 

IE<XI9)1:::: E(IXII9) 
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since 

IE(X)I9)1 = IE(X+19)- E(X-19)1 

::: E (X+ 19) + E (X-19) 

and using linearity, we get 

(6)Monotone convergence theorem. If X e L1, 0::: Xn t X, then 

E(Xnl9) t E(X19) 

almost surely. Note that {E(Xnl9)} is monotone by item (4). Set 

Z := lim t E(Xnl9) . 
n-.oo 

Then Z e 9 and for A e 9 

1 ZdP = 1lim t E(Xnl9)dP 
II. II. n--+00 

= lim 1 E(Xnl9)dP 
n-.oo II. 

(by the monotone convergence theorem for integrals) 

= lim 1 XndP. 
n--+00 II. 

Again applying the monotone convergence theorem for integrals yields 

= i XdP. 

Since Z e 9 and i ZdP = i XdP, VA E 9, 

we have by definition that Z = E (X19) which means 

E(X19) = lim t E(Xnl9). 
n-+oo 

(7) Monotone convergence implies the Fatou lemma. We have the conditional 
version of Fatou 's lemma: If 0 ::: X n e L 1. then 

E(liminfXnl9) :5 liminf£(Xnl9), 
n-.oo n--+00 
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while if Xn ~ Z E Lt. then 

E(limsupXnl9) =:::: limsup£(Xnl9). 
n-oo n-oo 

For the proof of these conditional Fatou statements we note that 

E (liminfXnl9) = E (lim 1\ XkiQ) 
n-oo n-oo k?:.n 

= n~DJo E (/\ Xk19) (monotone convergence) 
k?:.n 

~ liminf£(Xnl9) . 
n-oo 

(8) Fatou implies dominated convergence. We have the conditional version of 
the dominated convergence theorem: If X n E L 1, IX n I ~ Z E L 1 and X n ~ 
X00 , then 

E {lim Xn19) a~. lim E(Xnl9) . 
\n-oo n-oo 

(9) Product rule. Let X , Y be random variables satisfying X , YX E Lt. If 
Y e Q, then 

E(XYIQ) a~. YE(XIQ) . (10.10) 

Note the right side of (10.10) is Q-measurable. Suppose we know that for all 
A E Q that 

i YE(XIQ)dP = i XYdP. (10.11) 

Then 

i YE(XIQ)dP = i XYdP = i E(XYIQ)dP, 

and the result follows from Lemma 10.1.1. 
Thus we have to only show (10.11). Start by assuming Y = 16, l:!. E Q. Then 

An l:!. e g and 

1 YE(XIQ)dP = 1 E(XIQ)dP 
A An6 

=1 XdP 
An6 

= i XYdP. 
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So (10.11) holds for Y = 16 and hence (10.11) holds for 

k 

where 1:!.; E g. 

Y = L:c;16; 
i=l 

Now suppose X, Y are non-negative. There exist Yn t Y, and 

kn 

Y. "" (n) n = ~C; 16 rn) 

i=} I 

and 

i YnE(XIQ)dP = i XYndP. 

By monotone convergence, XYn /' XY, and 

YnE(Xi9) /' YE(XIQ). 

Letting n -+ oo in (10.12) and using monotone convergence yields 

i YE(Xi9)dP = i XYdP. 

(10.12) 

If X, Yare not necessarily non-negative, write X = ' x+- x-, Y = y+- y- . 

(10) Smoothing. If 

then for X E Lt 

E(E(Xi9z)i9t) = E(Xi9t) 

E(E(Xi9t)i9z) = E(X19t). 

Statement (10.14) follows from item (9) or item (2). 

(10.13) 

(10.14) 

For the verification of (10.13), let A E 9t · Then E(X19t) is 9t-measurable 
and 

i E(E(Xi9z)i9t)dP = i E(XI9z)dP (definition) 

= i XdP (since A E 9t c 9z) 

= i E(XI(}t)dP (by definition.) 

A special case: 91 = {0, Q}. Then E(XI{f2l, Q}) = E(X). So 

E(E(Xi9z)) = E(E(Xi9z)l{f2l, !2}) = E(XI{f2J, Q}) = E(X) . (10.15) 
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To understand why (10.13) and (10.14) are called the smoothing equalities, 
recall Example 10.2.1 where 9 = a(An, n 2::: 1) and {An, n 2::: 1} is a countable 
partition. Then 

00 

£(XIQ) = L£An(X)1An• 
n=l 

so that E(XIQ)(-) is constant on each set An . 

If Yl c 92 and both are generated by countable partitions { A~l), n 2::: 1} 
and {A~2), n 2::: 1}, then for any A~l), A~1 ) E 92, so there exists an index set 
J c {1, 2, . . . } and A~1 > = LjeJ A j2>. Thus, £(X19I) is constant on A~1 > but 

£(X192) may change values as w moves from one element of {A j2>, j e J} to 
another. Thus, as a function, £(X19I) is smoother than £(XI92). 

(11) Projections. Suppose 9 is a sub a-field of B. Let L2(Q) be the square 
integrable random variables which are (}-measurable. If X E L2(8), then E(XIQ) 
is the projection of X onto L2(Q), a subspace of L2(8). The projection of X onto 
L2(Q) is the unique element of L2(Q) achieving 

inf IIX- Zll2· 
ZEL2(g) 

It is computed by solving the prediction equations (Brockwell and Davis, 1991) 
for Z E L2(Q): 

(Y, X- Z) = 0, 'v'Y E L2(Q) . 

This says that 

f Y(X- Z)dP = 0, 'v'Y e L2(Q) . 

But trying a solution of Z = E (XIQ), we get 

f Y(X- Z)dP = E (Y(X- E(XIQ))) 

= E(YX)- E(YE(XIQ)) 

= E(YX)- E (E(YXIQ)) (since Y e 9) 

= E(YX)- E(YX) = 0. 

In time series analysis, E(XIQ) is the best predictor of X in L2(Q). It is not 
often used when g = a(XI, . .. , Xn) and X = Xn+l because of its lack of 
linearity and hence its computational difficulty. 

(12) Conditioning and independence. 

(a) If X E L 1. then we claim 

X JL 9 implies E(XIQ) =EX. (10.16) 

To check this note 
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(i) E(X) is measurable g. 
(ii) For A e g, i E(X)dP = E(X)P(A) 

and i XdP = E(XlA) = E(X)P(A) 

by independence. 

(b) Let tjJ : !Rj x JRk ~ lR be a bounded Borel function. Suppose also that 
X : Q ~ !Rj, Y : Q ~ JRk, X e g andY is independent of g. Define 

fcp(x) = E(tjJ(x, Y)). 

Then 

E(tjJ(X, Y)lg) = fcp(X). (10.17) 

Proof of(10.17). Case 1. Suppose tjJ = lJ, where J e B(!Rj x JRk). 
Case la. Suppose J = K x L, where K e B(!Rj), and L e B(JRk). Then 

E(tjJ(X, Y)lg) = P(X E K, Y E Llg), 

and because [X e K] e g, this is 

= l[xeKJP(Y E L lg). 

Since Y is independent of g, this is 

= l[XeKJP[Y E L] = fixxL (X). 

Case lb. Let 

C = {J e B(!Rj x IRk) : (10.17) holds for tjJ = lJ }. 

Then C :::> RECfS, the measurable rectangles, by Case la. We now show C is a 
>..-system; that is, 

(i) ]Ri+k e C, which follows since JRj+k e RECfS . 

(ii) J e C implies Jc e C, which follows since 

P((X, Y) E Fig)= 1- P((X, Y) E Jig) 
= 1- /I1 (X) = /I 1c(X). 

(iii) If An E C and An are disjoint, we may (but will not) show that Ln An E C. 
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Thus, Cis a >..-system, and C :::> RECfS. Since RECfS is a rr--class Dynkin's 
theorem implies that 

C :::>a( RECfS) = B(lRJ+k). 

Case 2. We observe that (10.17) holds for for 4> = L~=l c; 1J;. 

Case 3. We finish the argument with the usual induction. 0 

(13) The conditionalJensen's inequality. Let 4> be a convex function, X E Lt. 
and 4> (X) e L 1· Then almost surely 

l/>(E(XIQ)) ~ E(l/>(X)IQ). 

Proof of Jensen's inequality. Take the support line at xo; it must lie under the 
graph of 4> so that 

fj>(xo) + >..(xo)(x - xo) :S f/>(x) (10.18) 

where >..(xo) is the slope of the support line through (xo , fj>(xo)). Replace xo by 
E(XIQ) and x by X so that 

f/>(E(XIQ)) + >..(E(XIQ))(X- E(XIQ)) ~ l/>(X). (10.19) 

If there are no integrability problems (if!!!), we can take £(·19) on both sides of 
(10.19). This yields for LHS, the left side of (10.19), 

E(LHSIQ) = f/>(E(XIQ)) + E(>..(E(XIQ))(X- E(XIQ))IQ) 

= f/>(E(XIQ)) + >..(E(XIQ))E(X- E(XIQ))IQ) , 

and since E((X- E(XIQ))IQ) = 0, we have 

= f/>(E(XIQ)). 

For RHS, the right side of (10.19) we have 

E(RHSIQ) = E(fj>(X)IQ) 

and thus 

l/>(E(XIQ)) = E(LHSIQ) ~ E(RHSIQ) = E(l/>(X)IQ), 

which is the conditional Jensen inequality. 
Note that >..(x) can be taken to be the right hand derivative 

I. fj>(x +h)- fj>(x) 
tm---:----
h~O h 

and so by convexity is non-decreasing in x. If E(XIQ)(w) were bounded as w 
varies, then f/>(E(XIQ)) would be bounded and >..(E(XIQ)) would also be bounded 
and all terms in (10.19) would be integrable and the result would follow. 
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Now let 

and observe 

X' = X111E(Xi9)i:Snl 

E(X'IQ) = E(X111E(Xi9)i:snJIQ) 

= 111E(Xi9)i:SnJE(XIQ) 

is bounded, so the discussion of Jensen's inequality for the case of bounded con­
ditional expectation applies, and 

</>(E(X'IQ)) :::; E(</>(X')IQ) . 

Thus, as n -+ oo 

E(</>(X')IQ) = E (¢(X111E(Xi9)i:SnJ)IQ) 

Also, as n -+ oo, 

= E (¢(X)1[1E(Xi9)1:Snl + ¢(0)1[1E(Xi9)i>nJIQ) 

= 1[1E(Xi9)i:Sn]E(¢(X)IQ) + ¢(0)1[iE(Xi9)i>nl 

-+ E(</>(X)IQ) 

</>(E(X'IQ)) = ¢(111E(Xi9)1:snJE(XIQ)) 

-+ </>(E(XIQ)) 

since </> is continuous. 0 

(14) Conditional expectation is Lp norm reducing and hence continuous. For 
X e Lp, define IIXIIp = (EIXIP)11P and suppose p::::: 1. Then 

IIE(XIB)IIp:::: IIXIIp · 

L 
and conditional expectation is Lp continuous: If Xn 4 X00 , then 

L 
E(XniB) 4 E(XooiB). 

Proof of (10.20) and (10.21). The inequality (10.20) holds iff 

(EIE(XIB)IP)11P:::; (E(IXIP)) 11P, 

that is, 
E(IE(XIB)IP) :::; E(IXIP). 

From Jensen's inequality 

</>(E(XIB)) :::; E(</>(X)IB) 

(10.20) 

(10.21) 
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if</> is convex. Since <f>(x) = lxiP is convex for p ::: 1, we get 

EIE(X)iB)iP = E</>(E(XIB)) 

:;: E (E(</>(X)IB)) = E(</>(X)) 

= E(IXIP). 

To prove (10.21), observe that 

IIE(XniB)- E(XooiB)IIp = IIE((Xn- Xoo)iB)Iip 

::: IIXn- Xoollp ~ 0. 

where we have applied (10.20). 

10.4 Martingales 

0 

Suppose we are given integrable random variables {Xn. n ::: 0} and a-fields 
{Bn, n 2: 0} which are sub a-fields of B. Then {(Xn, Bn), n 2: 0} is a martin­
gale (mg) if 

(i) Information accumulates as time progresses in the sense that 

Bo c Bt c Bz c · · · c B. 

(ii) Xn is adapted in the sense that for each n, Xn E Bn; that is, Xn is Bn­
measurable. 

(iii) For 0 :;: m < n, 

If in (iii) equality is replaced by ::::; that is, things are getting better on the average: 

then {Xn} is called a submartingale (submg) while if things are getting worse on 
the average 

a.s. 
E(XniBm) ::; Xm. 

{Xn} is called a supermartingale (supermg). 
Here are some elementary remarks: 

(i) {X n} is martingale if it is both a sub and supermartingale. {X n} is a super­
martingale iff {-X n} is a submartingale. 

(ii) By Lemma 10.1.1, postulate (iii) holds iff 

i Xn = i Xm. VA E Bm. 

Similarly for the inequality versions of (iii). 
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(iii) Postulate (iii) could be replaced by 

E(Xn+tiBn) = Xn, Vn::: 0, (iii') 

by the smoothing equality. For example, assuming (iii') 

(iv) If {X n} is a martingale, then E (Xn) is constant. In the case of a submartin­
gale, the mean increases and for a supermartingale, the mean decreases. 

(v) If {(Xn, Bn), n =:: 0} is a (sub, super) martingale, then 

{Xn. a(Xo, ... , Xn), n =:: 0} 

is also a (sub, super) martingale. 

The reason for this is that since X n E Bn, 

a(Xo, ... , Xn) C Bn 

and by smoothing 

E(Xn+lia(Xo, ... , Xn)) = E (E(Xn+liBn)iXo, ... , Xn) 

= E(XniXo, ... , Xn) = Xn. 

Why do we need Bn? Why not just condition on a(Xo, ... , Xn)? Some­
times it is convenient to carry along auxiliary information. 

(vi) Martingale differences. Call {(dj, Bj). j ~ 0} a (sub, super) martingale 
difference sequence or a (sub, super) fair sequence if 

(i) For j ~ 0, Bj c Bj+l· 

(ii) For j ~ 0, dj E Lt. dj E Bj. 

(iii) For j ~ 0 

E(dj+IIBj) = 0, 

::: 0, 

::.: 0, 

(fair) 

(subfair) 

( superfair ). 

Here are the basic facts about martingale differences: 

(a) If {(dj. Bj). j =:: 0} is (sub, super) fair, then 

n 

{(Xn := Ldj,Bn).n ~ 0} 
j=O 

is a (sub, super) martingale. 
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(b) Suppose {(Xn. Bn). n ::: 0} is a (sub, super) martingale. Define 

do= Xo- E(Xo) , di =Xi- Xi-1• j ::: 1. 

Then { (dj, Bj ), j ::: 0) is a (sub, super) fair sequence. 

We now check facts (a) and (b). For (a), we have for instance in the case 
that { (dj, Bj ), j ::: 0} is assumed fair that 

which verifies the martingale property. 

For (b), observe that if {Xn} is a martingale, then 

E((Xj - Xj-1)1Bi-1) = E(XjiBi-1)- Xj-1 = Xj-1- Xi-1 = 0. 

(vii) Orthogonality of martingale differences. If {(Xn = 'Lj=odi , Bn). n ::: 0} 
is a martingale and E (dj) < oo, j ::: 0, then {d i} are orthogonal: 

Ed;dj = 0, i =f. j . 

This is an easy verification: If j > i, then 

E(d;dj) = E(E(d;diiB;)) 

= E(d;E(djiB;)) = 0. 

A consequence is that 

n n 

E(X~) = E(L,dj) + 2 L E(d;dj) = E(LdJ), 
j=1 O~i<j~n j=1 

which is non-decreasing. From this, it seems likely (and turns out to be true) 
that {X;} is a sub-martingale. 

Historical note: Volume 6 of the Oxford English Dictionary gives the follow­
ing entries for the term martingale and comments it is a word of obscure entymol­
ogy. 

• A strap or arrangement of straps fastened at one end to the noseband, bit or 
reins and at the other to the girth to prevent a horse from rearing or throwing 
back his head. 

• A rope for guying down the jib-boom to the dolphin-striker. 

• A system in gambling which consists in doubling the stake when losing in 
the hope of eventually recouping oneself. 
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10.5 Examples of Martingales 

Those most skilled in applying the economy and power of martingale theory in 
stochastic process modeling are those wizards able to find martingales in surpris­
ing circumstances. It is thus crucial for someone trying to master this subject to 
study as many examples as possible of where martingales arise. In this section, 
we list some of the common examples. 

(1) Martingales and smoothing. Suppose X e L1 and {Bn, n 2:: 0} is an in­
creasing family of sub a-fields of B. Define for n 2:: 0 

Xn := E(XIBn). 

Then 

is a martingale. 
Verification is easy: 

E(Xn+tiBn) = E(E(XiBn+t)IBn) 

= E(XIBn) (smoothing) 

=Xn. 

(2) Martingales's and sums of independent random variables. Suppose that 
{Zn, n 2:: 0} is an independent sequence of integrable random variables satisfying 
for n 2:: 0, E(Zn) = 0. Set Xo = 0, Xn = L:?=1 Z;, n 2:: 1, and Bn := 
a(Zo, ... , Zn) · Then {(Xn . Bn) . n 2:: 0} is a martingale since l<Zn . Bn), n 2:: 0} 
is a fair sequence. 

(3) New martingale's from old, transforms, discrete stochastic integration. Let 
{ ( d i , B i), j 2:: 0} be martingale differences. Let { U i } be predictable. This means 
that Uj is measurable with respect to the prior a-field; that is Uo e Bo and 

Ui e Bi-1• j 2:: 1. 

To avoid integrability problems, suppose Uj e L 00 which means that Uj is 
bounded. Then {(Ujdj, Bj), n 2:: 1} is still a fair sequence since 

E(UjdjiBj-1) = UjE(djiBj-1) 

= Uj ·0=0. 

(since Uj e Bj- 1) 

We conclude that { <L:j =O U j d j , Bn) , n 2:: 0} is a martingale. 

(10.22) 

In gambling models, dj might be ±1 and Uj is how much you gamble so that 
U j is a strategy based on previous gambles. In investment models, d j might be 
the change in price of a risky asset and Ui is the number of shares of the asset 
held by the investor. In stochastic integration, the djs are increments of Brownian 
motion. 

The notion of the martingale transform is formalized in the following simple 
result. 
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Lemma 10.5.1 Suppose {(Mn, Bn). n E N} is an adapted integrable sequence 
so that Mn E Bn. Define do = Mo, and dn = Mn - Mn-t. n 2: 1. Then 
{(Mn, Bn). n E N} is a martingale iff for every bounded predictable sequence 
fUn , n EN} we have 

N 

E(L Undn) = 0, "'N 2: 0. (10.23) 
n=O 

Proof. If {(Mn , Bn), n E N} is a martingale, then (10.23) follows from (10.22). 
Conversely, suppose (10.23) holds. For j 2: 0, let A e Bj and define Un = 0, n '# 
j + 1, and Uj+l = 1Ar Then {Un, n eN} is bounded and predictable, and hence 
from (10.23) we get 

N 

0 = E(L Undn) = E(Uj+ldj+t) = E(lAidj+t) 
n=l 

so that 

0 = { dj+tdP = { E(dj+lll3j)dP. 
)Aj )Ai 

Hence, from the Integral Comparison Lemma 10.1.1 we conclude that 
E(dj+lll3j) = 0 almost surely. So {(dn, Bn). n e N} is a martingale difference 
and the result follows. 0 

( 4) Generating functions, Laplace transforms, chf' s etc. Let { Z n , n 2: 1} be iid 
random variables. The construction we are about to describe works for a variety 
of transforms; for concreteness we suppose that Zn has range {0, 1, 2, ... } and 
we use the generating function as our typical transform. Define 

Bo = {0, Q}, Bn = a(Zt, ... , Zn), n 2: 1 

and let the generating function of the Z 's be 

</J(s) = Es11 , 0:::: s:::: 1. 

Define Mo = 1, fix s e (0, 1), set So = 0, Sn = E?=t Zi, n 2: 1 and 

5 Sn 

Mn = </Jn(s)' n 2:0. 

Then {(Mn, Bn), n 2: 0} is a martingale. This is a straightforward verification: 

E (s 5•+!il3n) = E (s1•+! s5• IBn) 

= ss• E ( sln+!il3n) 

= sSn E (sln+!) 

= s5•ljJ(s) . 

(independence) 
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So therefore 

( 
sSn+l ) sSn 

E cf>n+l(s) IBn = cf>n(s) 

which is equivalent to the assertion. 

(5) Method of centering by conditional means. Let {~n, n ~ 1} be an arbitrary 
sequence of L 1 random variables. Define 

Then 

is a fair sequence since 

So 
n 

Xo = 0, Xn = L (~i- E(~jiBj-t)) 
j=l 

is a martingale. 

(6) Connections with Markov chains. Suppose {Yn, n ~ 0} is a Markov Chain 
whose state space is the integers with transition probability matrix P = (Pii ). Let 
f be an eigenvector corresponding to eigenvalue .A.; that is, in matrix notation 

Pf = .A.f. 

In component form, this is 

LP;j/(j) = .A.f(i). 
j 

In terms of expectations, this is 

E(f(Yn+t)!Yn = i) = .A.f(i) 

or 
E(f(Yn+t)IYn) = .A.f(Yn) 

and by the Markov property this is 

So we conclude that 

{( f(Yn) ) } )!l,a(Yo, ... ,Yn) ,n~O 
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is a martingale. 
A special case is the simple branching process. Suppose {pk, k ::: 0} is the 

offspring distribution so that Pk represents the probability of k offspring per in­
dividual. Let m = Lk kpk be the mean number of offspring per individual. Let 
tz<n>(i), n ::: 0, i ::: 1} be an iid sequence whose common mass function is the 
offspring distribution {Pk} and define recursively Zo = 1 and 

Zn+I = lz<n>(1) + · · · + z<n>(Zn). 

0, 

if Zn > 0, 

if Zn = 0, 

which represents the number in the (n + 1)- generation. Then {Zn} is a Markov 
chain and 

p;,· := P(Zn+I = j!Zn = i] = 1°01.' 
p~'. 

J 

if i = 0, 

if i ::: 1, 

where for i ::: 1, pji is the jth component of the i-fold convolution of the se­
quence {Pn }. Note fori ::: 1 

while for i = 0, 

00 00 
"\' • "\' >t<i. • 
~PiJl = ~PJ J = tm, 
j=O }=I 

00 

L PiJ j = Poo · 0 + 0 = 0 = mi. 
j=O 

With I (j) = j we have PI = mI. This means that the process 

{(Zn/mn, a(Zo, ... , Zn)), n ::: 0} 

is a martingale. 

(10.24) 

(7) Likelihood ratios. Suppose {Yn. n ::: 0} are iid random variables and sup­
pose the true density of Y1 is lo· (The word "density" can be understood with 
respect to some fixed reference measure JJ..) Let ft be some other probability 
density. For simplicity suppose lo(y) > 0, for ally. Then for n ::: 0 

is a martingale since 

(( n7=o /t(Y;)) /I(Yn+I) ) 
E(Xn+IIYo, ... , Yn) = E D?=o lo(Y;) lo(Yn+I) !Yo,···, Yn 

( ft(Yn+I) ) =XnE I. IYo, ... ,Yn . 
,o(Yn+I) 
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By independence this becomes 

= XnE (/I (Yn+I)) = Xn I /I (y) fo(y)JJ.(dy) 
fo(Yn+I) fo(y) 

= Xn I ftdf.J. = Xn · 1 = Xn 

since /I is a density. 

10.6 Connections between Martingales and 
Submartingales 

This section describes some connections between martingales and submartingales 
by means of what is called the Doob decomposition and also some simple results 
arising from Jensen's inequality. 

10.6.1 Doob's Decomposition 

The Doob decomposition expresses a submartingale as the sum of a martingale 
and an increasing process. This latter phrase has a precise meaning. 

Definition. Given a process {Un, n ::: 0} and a-fields {Bn, n ::: 0}. We call 
{Un, n ::: 0} predictable if Uo e Bo, and for n ::: 0, we have 

Call a process {An, n ::: 0} an increasing process if {An} is predictable and almost 
surely 

Theorem 10.6.1 (Doob Decomposition) Any submartingale 

can be written in a unique way as the sum of a martingale 

and an increasing process {An, n ::: 0}; that is 

Xn = Mn +An, n::: 0. 
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Proof. (a) Existence of such a decomposition: Define 

dg=Xo, dJ=Xj-E(XjiBj-t), j~l 
n 

Mn:="'LdJ. 
j=O 

Then {Mn} is a martingale since {dJl is a fair sequence. Set An= Xn- Mn. Then 
Ao = Xo- Mo = Xo- Xo = 0, and 

An+t- An= Xn+l- Mn+l- Xn + Mn 

= Xn+t - Xn - (Mn+l - Mn) 

= Xn+t - Xn - d!+l 

= Xn+l- Xn- Xn+l + E(Xn+til3n) 

= E(Xn+til3n)- Xn ~ 0 

by the submartingale property. Since 

n n 

An+t = L(Aj+t-Aj) = L(E(Xj+til3j) -Xj) e Bn, 
j=O j=O 

this shows {An} is predictable and hence increasing. 
(b) Uniqueness of the decomposition: Suppose 

Xn = Mn +An, 

and that there is also another decomposition 

Xn = M~ +A~ 
where {M~} is a martingale and {A~} is an increasing process. Then 

and 
A~+l -A~ = Xn+t - Xn - (M~+l - M~). 

Because {A~} is predictable and {M~} is a martingale, 

A~+l- A~ = E(A~+l- A~ iBn)= E(Xn+til3n)- Xn- 0 

and 
An+t -An= E(An+t-Anil3n) = £(Xn+tll3n) -Xn. 

Thus, remembering Ao = A0 = 0, 

An= Ao +(At- Ao) +···+(An- An-t) 

= A0 +(A; - Ao) +···+(A~ - A~- 1 ) =A~, 
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therefore also 
Mn = Xn -An = Xn -A~ = M~ . D 

We now discuss some simple relations between martingales and submartingales 
which arise as applications of Jensen's inequality. 

Proposition 10.6.2 (Relations from Jensen) (a) Let 

{(Xn,Bn),n::: 0} 

be a martingale and suppose </> is a convex function satisfying 

E(i</>(Xn)D < oo. 

Then 

is a submartingale. 
(b) Let {(Xn , Bn), n ::: 0} be a submartingale and suppose</> is convex and 

non-decreasing and E (I</> (X n )I) < oo. Then 

is submartingale. 

Proof. If n < m and </> is non-decreasing and the process is a submartingale, then 

</>(Xn) ~</>(E(XmiBn)) 

~E(</>(Xm)IBn) 

( submartingale property) 

(Jensen). 

The case where the process is a martingale is easier. D 

Example 10.6.1 Let {(Xn, Bn), n ::: 0} be martingale. Suppose</> is one of the 
following functions: 

Then 

are all submartingales, provided they satisfy E( i</>(Xn)D < oo. 

Example 10.6.2 (Doob decomposition of x;) Let {(Xn, Bn) , n ::: 0} be a mar­
tingale and suppose E(X;) < oo. Then {(X;, Bn), n ::: 0} is a submartingale. 
What is its Doob decomposition? 

Recall 

n 

Mn = LdJ, 
j=O 
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from the previous construction in Theorem 10.6.1 and 

Aj =Xy-Mj, An+1-An =E(X~+IIBn)-x;. 

Write Xn = "Lj=odj (note the distinction between dj and dJ) and because {Xn} 
is a martingale, {dj} is fair, so that 

xy = (Xj-1 + dj)2 = xy_1 + 2Xj-1dj + dJ 

and 

E(XyiBj-1) = Xy_1 + 2Xj-1E(dj IBj-1) + E(dJIBi-d· 

Remembering E (d jIB j -1) = 0 yields 

An+1 -An =X~+ E(d;+11Bn)- X~= E(d;+11Bn) 

and 
n 

An= LE(dJIBj-1). 
j=1 

Therefore, the Doob Decomposition of the submartingale {X~} is 

n n 

X~= X~- LE(dJIBj-d + LE(dJIBj-d 
j=1 j=1 

= Mn +An. 

Note E(djiBj-1) is the conditional variance ofthe martingale increment. Also, 
if {dj} is an independent sequence, then 

and 
Var(Xn) = Var(An). 

10.7 Stopping Times 

Let N = {0, 1, 2, . .. }, N = {0, 1, 2, . .. , oo} and suppose Bn C Bn+1• n EN is 
an increasing family of a-fields. 

Definition. A mapping v : n ~ N is a stopping time if 

[v=n]EBn, 'VneN. 

To fix ideas, imagine a sequence of gambles. Then v is the rule for when to stop 
and Bn is the information accumulated up to time n. You decide whether or not to 
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stop after the nth gamble based on information available up to and including the 
nth gamble. 

Note v can be +oo. If v is a waiting time for an event and the event never 
happens, then it is natural to characterize the waiting time as infinite and hence 
v = 00. 

Define 

Boo= V Bn = a(Bn, n EN), 
nel\1 

so that B00 is the smallest a-field containing all Bn, n e N. Then 

[v = oo] = [v < oo]c = (u[v = n])c = n[v = n]c E B00 • 

neN nel\1 

Requiring 

[ v = n] E Bn, n E N 

implies 

[v=n]EBn. neN. 

Example: Hitting times. Let {(X n, Bn ), n e N} be any adapted process, meaning 
Bn C Bn+1 and Xn E Bn for all n EN. For A E B(IR), define 

v = inf{n E N: Xn E A}, 

with the convention that inf0 = oo. Then vis a stopping time since for n eN 

[v = n] = [Xo ~A, ... , Xn-1 ~A, Xn e A] E Bn. 

If v is a stopping time, define Bv, the a-field of information up to time vas 

Bv ={Be Boo: "'n EN, [v = nJ n Be Bn}. 

So Bv consists of all events that have the property that adding the information 
of when v occurred, places the intersection in the appropriate a-field. One can 
check that Bv is a a-field. By definition Bv C B00 • 
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BASIC FACTS: 

1. If v = k, v is a stopping time and Bv = Bk. 

2. If vis a stopping time and B E Bv, then B n [v = oo] E B00 , and hence 

B n [v = n] e Bn for n EN. To see this, note 

B n [v = oo] = B n [v < oo]c = B n (u[v = n])c = n B[v :;6 n]. 
neN neN 

Since B E Bv C B00 and [v :;6 n] = [v = n]c E Bn C B00 , we have 

B n [v = oo] E B00 • 

3. We have v E B00 , and v E Bv. 

4. vis a stopping time iff [v ~ n] E Bn, n EN iff [v > n] E Bn. n EN. 

We verify this as follows: Observe that 

[v~n]= U [v=j], 
0:5j:5n 

so 
[v = n] = [v ~ n]- [v ~ n- 1], 

and 
( v > n] = [ v ~ n ]c. 

5. If B E B00 , then B E Bv iff 

B n [v ~ n] E Bn, Vn EN. 

(Warning: If v is a stopping time, it is false in general that if B E Bv then 

B n [ v > n] E Bn.) 

6. If { Vk} are stopping times, then v k Vk and 1\k Vk are stopping times. 

This follows since 

(vkvk ~ n] = n(vk ~ n] E Bn, Vn EN 
k 

since [ Vk ~ n] E Bn for every k. Likewise 

[1\kVk > n] = n[vk > n] E Bn. 
k 

7. If { Vk} is a monotone family of stopping times, limk--+oo Vk is a stopping 

time, since the limit is v k Vk or 1\k Vk. 

8. If vi, i = 1, 2 are stopping times, so is Vt + vz . 
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Example. If v is a stopping time Vn = v 1\n is a stopping time (which is bounded), 
since both v and n are stopping times. 

We now list some facts concerning the comparison of two stopping times v and 
v'. 

1. Each of the events [ v < v'], [ v = v'], [ v :::: v'] belong to Bv and Bv'· 

2. If B e Bv, then 

B n [ v :::: v'] E Bv', B n [ v < v'] e Bv'. 

3. If v:::: v' on Q, then Bv c Bv'· 

To verify these facts, we first prove [v < v'] e Bv. We have that 

[v < v'] n [v = n] = [n < v'] n [v = n] e Bn. 

since [n < v'] E Bn and [v = n] E Bn. 
Next, we verify that [ v = v'] E Bv. We have that 

[v = v'] n [v = n] = [n = v'] n [v = n] e Bn 

and therefore [ v :::: v'] = [ v < v'] U [ v = v'] e Bv. The rest follows by symmetry 
or complementation. 

Now we prove 2. For any n 

B n [v:::: v'] n [v' = n] = (B n [v:::: n]) n [v' = n] e Bn, 

since B n [ v :::: n 1 E Bn and [ v' = n 1 E Bn. 
Proof of 3. This follows from the second assertion since [ v :::: v'] = Q. D 

10.8 Positive Super Martingales 

Suppose {(Xn, Bn), n 2::: 0} is a positive supermartingale so that Xn 2::: 0, Xn E Bn 
and E (X n+ tiBn) :::: X n. In this section we consider the following questions. 

1. When does limn-+oo X n exist? In what sense does convergence take place if 
some form of convergence holds? Since supermartingales tend to decrease, 
at least on the average, one expects that under reasonable conditions, super­
martingales bounded below by 0 should converge. 

2. Is fairness preserved under random stopping? If {Xn} is a martingale, we 
know that we have constant mean; that is E(Xn) = E(Xo). Is E(Xv) = 
E (X o) for some reasonable class of stopping times v? 
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When it holds, preservation of the mean under random stopping is quite useful. 
However, we can quickly see that preservation of the mean under random stopping 
does not always hold. Let {Xo = O, Xn = L:7=1 Yi , n :::: 1}. be the Bernoulli 
random walk so that {Yi , i :::: 1} are iid and 

Let 

1 
P[Yi = ±1] = - , i 2:: 1. 

2 

v = inf{n 2:: 1 : Xn = 1} 

be the first time the random walks hits 1. Standard Markov chain analysis (for 
example, see Resnick, 1992, Chapter 1) asserts that P[v < oo) = 1. But Xv = 1 
so that E(Xv) = 1 # E(Xo) = 0 and therefore E(Xv) # E(Xo). Thus, for 
random stopping to preserve the process mean, we need restrictions either on 
{Xn} or on v or both. 

1 0.8.1 Operations on Supermartingales 

We consider two transformations of supermartingales which yield supermartin­
gales. 

Proposition 10.8.1 (Pasting of supennartingales) Fori = 1, 2, let 

{(X~il , Bn),n 2:: 0} 

be positive supermartingales. Let v be a stopping time such that on [ v < oo 1 we 
have X~1>(w):::: X~2>(w). Define 

l x~l)(w), ifn < v(w) 
Xn(w) = (2) 

Xn (w), ifn 2:: v(w). 

Then {(Xn , Bn), n :::: 0} is a new positive supermartingale, called the pasted su­
permartingale. 

Remark. The idea is to construct something which tends to decrease. The seg­
ments before and after v tend to decrease. Moving from the first process to the 
second at time v causes a decrease as well. 

Proof. Write 

X - x<1>1 x<2>1 n - n (n<v) + n [n~v]· 

From this we conclude Xn E Bn. Also, since each {(X~i), Bn) , n :::: 0} is a super­
martingale, 

Xn 2:: E (x~~1 1Bn) 1[n<v) + E (x~~tiBn) 1[n~v) 
= E ( (X~~1 1[n<vJ + X~~1 1[n~vJ)IBn) . (10.25) 
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However, X~l) ::: X~2> on the set [ v = n] so 

x~~ll[n<v] + x~~ll[n~v] 
X <t> xo> <2> = n+Il[v>n+l] + n+ll[v=n+l] + xn+ll[n~v] 
X (l) (2) (2) 

::: n+Il[v>n+l] + xn+ll[v=n+l] + xn+Il[v~n] 
X (l) (2) = n+Il[v>n+l] + Xn+ll[v~n+l] 

= Xn+l· 

From (10.25) Xn ::: E(Xn+IIBn) which is the superrnartingale property. 0 

Our second operation is to freeze the superrnartingale after n steps. We show 
that if {Xn} is a superrnartingale (martingale), {X vAn} is still a superrnartingale 
(martingale). Note that 

Proposition 10.8.2 If {(Xn, Bn), n ::: 0} is a supermartingale (martingale), then 
{(XvAn• Bn), n ::: 0} is also a supermartingale (martingale). 

Proof. First of all, X vAn e Bn since 

Xv/\n = Xvl[n>v] + Xnl[v~n] 
n-l 

= LXjl[v=j] + Xnl[v~n] E Bn, 
j=O 

since Xn E Bn and l[v~n] E Bn-l · Also, if {(Xn, Bn), n E N} is a superrnartin­
gale, 

n-l 

E(Xv/\niBn-1) = LXjl[v=j] + l[v~njE(XniBn-1) 
j=O 

n-l 

:=: LXjl[v=j] + l[v~n]Xn-l 
j=O 

= Xvl[v<n) + Xn-tl[v~n) 
= Xv/\(n-l)· 

If {X n} is a martingale, equality prevails throughout, verifying the martingale 
property. 0 
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10.8.2 Upcrossings 

Let {xn, n 2::: 0} be a sequence of numbers in i = [ -oo, oo ]. Let -oo < a < 
b < oo. Define the crossing times of [a, b] by the sequence {xn} as 

VI = inf{n 2::: 0 : Xn ::: a} 

V2 = inf{n 2::: VI : Xn 2::: b} 

v3 = inf{n 2::: v2: Xn :::a} 

V4 = inf{n 2::: VJ : Xn 2::: b} 

and so on. It is useful and usual to adopt the convention that inff2l = oo. Define 

fJa,b = max{p : V2p < oo} 

(with the understanding that if Vk < oo for all k and we call f3a ,b = oo) the 
number of upcrossings of [a, b] by {xn}. 

Lemma 10.8.1 (Upcrossings and Convergence) The sequence {xn} is conver­
gent in i iff fJa,b < oo for all rational a < bin R 

Proof. If lim infn-+oo Xn < lim supn-+oo Xn, then there exist rational numbers a < 
b such that 

liminfxn <a< b < limsupxn. 
n-+oo n-+oo 

So Xn < a for infinitely many n, and Xn > b for infinitely many n, and therefore 
fJa,b = 00. 

Conversely, suppose for some rational a < b, we have fJa,b = oo. Then the 
sequence {xn} is below a infinitely often and above b infinitely often so that 

lim inf Xn ::: a, 
n-+00 

and thus {xn} does not converge. 

1 0.8.3 Roundedness Properties 

lim sup Xn 2:: b 
n-+oo 

0 

This section considers how to prove the following intuitive fact: A positive super­
martingale tends to decrease but must stay non-negative, so the process should be 
bounded. This fact will lead in the next subsection to convergence. 

Proposition 1 0.8.3 Let {(X n, Bn), n 2:: 0} be a positive supermartingale. We 
have that 

sup Xn < oo a.s. on [Xo < oo]. 
neN 

(10.26) 

P(V Xn 2::: aiBo) ::: a-I Xo A 1 (10.27) 
neN 

for all constants a > 0 or for all Bo-measurable positive random variables a. 
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Proof. Consider two supermartingales { (X~i), Bn), n ::: 0}, i = 1, 2, defined by 

X~l) = Xn, and X~2> =a. Define a stopping time 

Va = inf{n: Xn::: a}. 

Since 

x<l) > x(2) on [v < oo] 
Va - Va Q ' 

we may paste the two supermartingales together to get via the Pastings Proposi­
tion 10.8.1 that 

Yn = IXn, 
a, 

ifn < Va, 

if n ::: Va 

is a positive supermartingale. Since {(Yn, Bn), n ::: 0} is a supepnartingale, 

Yo::: E(YniBo), n::: 0. (10.28) 

But we also have 

(10.29) 

and 

Yo= Xo1[0<va) + a1[0=va] 

= Xo1[Xo<a) + a1[xo~a) = Xo 1\ a. 

From (10.28) 

Xo I\ a::: E(YniBo) 

::: E(a1[va~niBo) (from (10.29)) 

= aP[va ::: niBo]. 

Divide by a to get, as n -+ oo, 

P[va::: niBo]-+ P[va < ooiBo] = P[V Xn::: aiBo]::: a-1Xo 1\1. 

neN 

This is (10.27). To get (10.26), multiply (10.27) by l[Xo<oo] and integrate: 

E1[Xo<ooJP(V Xn ::: aiBo) = P[V Xn :::a, Xo < oo] 
n n 

Since 

and 

1[Xo<oo) (a-1Xo 1\ 1)-+ 0 

as a -+ oo, we apply dominated convergence to get 

P[V Xn = oo,Xo < oo] = 0. 
n 

This is (10.26). 0 



10.8 Positive Super Martingales 371 

10.8.4 Convergence of Positive Super Martingales 

Positive supermartingales tend to decrease but are bounded below and hence can 
be expected to converge. This subsection makes this precise. 

Given {Xn} define the upcrossing number f3a,b by 

that is, 

and so on, and 

Then 

f3a,b(w) = # upcrossings of (a, b] by {Xn (w) }; 

VJ (w) = inf{n =:: 0: Xn(w) ::Sa} 

1J2 (w) = inf{n =:: VJ (w) : X n (w) =:: b} 

v3(w) = inf{n =:: vz(w): Xn(w) ::Sa} 

f3a,b(w) = sup{p : vzp(w) < oo}. 

{w : lim Xn(w) exists}= n {w: f3a,b(w) < oo}. 
n-+00 

a<b 
a ,b rational 

So limn-+oo Xn exists a.s. iff f3a .b < oo a.s. for all rational a < b. To analyze 
when f3a ,b < oo, we need an inequality due to Dubins. 

Proposition 10.8.4 (Dubins' inequality) Let {(X n, Bn ), n =:: 0} be a positive su­
permartinga/e. Suppose 0 < a < b. Then 

(1) P(f3a,b =:: kiBo) ~ (~)k (a-1Xo 1\ 1), k =:: 1 

(2) f3a,b < oo almost surely. 

Proof. We again apply the Pasting Proposition 10.8.1 using the Vk 's. Start by 
considering the supermartingales 

X (l) = 1 
n - ' 

x<Z> = Xn 
n a 

and paste at v1• Note on [ VJ < oo ], 

Thus 

is a supermartingale. 

x<t> = 1 > x<2> 
VJ - - VJ' 

y~l)=l1, 
Xnfa, 

if n < Vt. 

if n =:: VJ 
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Now compare and paste X~3> = YAI> and X~4> = bla at the stopping time v2• 

On [vz < oo] 

so 

y<Z> -I YAI), if n < Vz 
n - b I a, if n 2:: vz 

1
1, if n < VI 

= X n I a, if VI :::: n < vz 
bla, if n 2:: vz 

is a supermartingale. Now compare yp> and ~ ~. On [ v3 < oo ], 

and so 
y(3> -I yp>, if n < v3 

n - (~) ~. ifn 2:: V3 

is a supermartingale. Continuing on in this manner we see that for any k, the 
following is a supermartingale: 

Note that 

Also 

Yn = 1, 
Xnla, 
bla, 
!!..!a. 
a a ' 

n·< VI 

VI :::: n < Vz 

vz::::n<VJ 

V3:::: n < V4 

(~)k-I ~' V2k-I :::: n < V2k 

( _ab}k' V2k:::: n. 

Xo Xo 
Yo= ll[O<vJ] + -1[v1=0) = 1/\ -. 

a a 

From the definition of supermartingales 

Yo 2:: E (Yn IBo); 

(10.30) 

(10.31) 

(10.32) 
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that is, from (10.30), (10.31) and (10.32) 

X (b)k 1 1\-! ~ ;; P[v2k :::::: n!Bo]. 

This translates to 

Let n ~ oo to get 

P[,Ba,b ~ k!Bo] = P[v2k < oo!Bo]:::::: (~t ( 1 1\ :o). 

Let k ~ oo and we see 

P[,Ba,b = oo!Bo] = lim (~)k (1 1\ Xo) = 0. 
k-+oo b a 

We conclude .Ba,b < oo almost surely and in fact E(,Ba ,b) < oo since 

oo a k 

E(,Ba,b) = L P[,Ba,b ~ k] :::S L (,;) < 00. 

k=O k 0 

Theorem 10.8.5 (Convergence Theorem) If {(Xn, Bn), n EN} is a positive su­
permartingale, then 

lim Xn =: X 00 exists almost surely 
n-+oo 

and 
E(XooiBn):::::: Xn, n EN 

so {(X n, Bn), n E N} is a positive supermartingale. 

Remark. The last statement says we can add a last variable which preserves the 

supermartingale property. This is the closure property to be discussed in the next 

subsection and is an essential concept for the stopping theorems. 

Proof. Since .Ba.b < oo a.s. for all rational a < b, limn-+oo X n exists almost surely 

by Lemma 10.8.1. To prove X 00 can be added to {Xn, n E N} while preserving 

the supermartingale property, observe for n ~ p that 

( monotonicity) 

:::::: X p ( supermartingale property). 

As n ~ oo, 1\m~nXm t X 00 , so by monotone convergence for conditional ex­

pectations, letting n ~ oo, we get E(X00 !Bp) ::::::X p· 0 
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10.8.5 Closure 

If {(Xn, Bn), n ~ 0} is positive martingale, then we know it is almost surely 
convergent. But when is it also the case that 

L, 
(a) Xn ~ X00 and 

(b) E(X00 1Bn) = Xn so that {(Xn. Bn). n EN} is a positive martingale? 

Even though it is true that Xn ~· X00 and E(XmiBn) = Xn. Vm > n, it is not 
necessarily the case that E(X00 1Bn) = Xn. Extra conditions are needed. 

Consider, for instance, the example of the simple branching process in Section 
10.5. (See also the fuller discussion in Subsection 10.9.2 on page 380 to come.) 
If {Zn, n ~ 0} is the process with Zo = 1 and Zn representing the number of 
particles in the nth generation and m = E ( Z 1) is the mean offspring number per 
individual, then {Zn/mn} is a non-negative martingale so the almost sure limit 
exists: Wn := Zn/mn ~· W. However, if m ::::: 1, then extinction is sure so 
W = 0 and we do not have E(WiBn) = Zn/mn. 

This leads us to the topic of martingale closure. 

Definition 10.8.1 (Closed Martingale) A martingale {(X n, Bn ), n E N} is closed 
(on the right) if there exists an integrable random variable X 00 E B00 such that 
for every n eN, 

(10.33) 

In this case {(Xn, Bn), n EN} is a martingale. 

In what follows, we write L t for the random variables ; e L p which are non­
negative. 

The next result gives a class of examples where closure can be assured. 

Proposition 10.8.6 Let p ~ 1, X E L t and define 

Xn := E(XiBn). n EN (10.34) 

and 

X00 := E(XiBoo). (10.35) 

Then X n ~ X 00 almost surely and in L p and 

{(Xn. Bn); n eN, (Xoo. Boo), (X, B)} (10.36) 

is a closed martingale. 

Remark 10.8.1 (i) For the martingale {(Xn. Bn). n e N} given in (10.34) and 
(10.35), it is also the case that 
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since by smoothing and (10.35) 

E(XooiBn) = E (E(XIBoo)IBn) = E(XIBn) 

almost surely. 
(ii) We can extend Proposition 10.8.6 to cases where the closing random vari­

able is not necessarily non-negative by writing X = x+ - x-. 

The proof of Proposition 10.8.6 is deferred until we state and discuss Corollary 
10.8.1. The proof of Corollary 10.8.1 assumes the validity of Proposition 10.8.6. 

Corollary 10.8.1 For p ~ 1, the class of L p convergent positive martingales is 
the class of the form 

{ ( E(XIBn}, Bn). n EN} 
with X E Lt. 
Proof of Corollary 10.8.1 If X E L t, apply Proposition 10.8.6 to get that 
{E(XIBn)} is Lp convergent. Conversely, suppose {Xn} is a positive martingale 
and L P convergent. For n < r, the martingale property asserts 

L 
Now X, 4 X00 as r --+ oo and E(·IBn) is continuous in the Lp-metric (see 
(10.21)). Thus as r --+ oo 

by continuity. Therefore Xn = E(X00 1Bn) as asserted. 0 

Proof of Proposition 10.8.6. We know {(EXIBn) , Bn), n E N} is a positive 
martingale and hence convergent by Theorem 10.8.5. Call the limit X~. Since 
E(XiBn) E Bn C Boo and E(XIBn) --+ X~, we have X~ E 8 00 • We consider 
two cases. 

CASE 1: Suppose temporarily that P[X :::: A]= 1 for some A < oo. We need 
to show that · 

Xoo := E(XiBoo) =X~. 

Since X :::: A, we have E (Xi Boo) :::: A and for all A E B, as n --+ oo 

i E(XIBn)dP--+ i X~dP, 

by the dominated convergence theorem. Fix m, and let A e Bm . For n > m, we 
have A E Bm C Bn and 

i E(XIBn)dP = i XdP 
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by the definition of conditional expectation. Since 

almost surely, and in L 1 we get 

Thus i X~dP= i XdP 

for all A E UmBm . 
Define 

mt(A) = i X~dP, m2(A) = i XdP. 

Then we have two positive measures m1 and m2 satisfying 

mt(A) = m2(A), VA E UBm . 
m 

But Um Bm is a rr-class, so Dynkin's theorem 2.2.2 implies that 

mt(A) = m2(A) VA E a(UBm) = 8 00 • 

m 

We conclude 

i X~dP = i XdP = i E(Xi800 )dP = i X 00dP 

and the Integral Comparison Lemma 10.1.1 implies X~ = £(XI.l300 ). 

L P convergence is immediate since E(XIBn) ~A , for all n, so that dominated 
convergence applies. 

CASE 2: Now we remove the assumption that X ~ A. Only assume that 0 ~ 
X e Lp, p::: 1. Write 

Since E(·IBn) is L p-norm reducing (see (10.20)) we have 

IIE(XIBn)- E(XIBoo)llp 

~ IIE((X 1\ A)l.l3n)- E((X 1\ A)l.l3oo)llp + IIE((X- A)+l.l3n)llp 

+ IIE(X- A)+IBoo)llp 

~ IIE(X 1\ AIBn)- E(X 1\ AIBoo)llp + 211(X- A)+ lip 

=I+ II. 
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Since 0 =:::: X 1\ >.. =:::: >.., I ~ 0 by Case 1. For II, note as >.. ~ oo 

and 

The dominated convergence theorem implies that II(X- >..)+lip~ 0 as>..~ oo. 
We may conclude that 

lim sup IIE(XiBn)- E(XiBoo>llp::::: 211(X- >..)+lip· 
n-+00 

The left side is independent of>.., so let >.. ~ oo to get 

lim sup IIE(XiBn)- E(XiBoo)llp = 0. 
n-+00 

Thus 

and 

E(XiBn) ~-X~ 

and therefore X~= E(XIB00 ). 

1 0.8.6 Stopping Supermartingales 

0 

What happens to the supermartingale property if deterministic indices are re­
placed by stopping times? 

Theorem 10.8.7 (Random Stopping) Suppose {(Xn, Bn), n e N} is a positive 
supermartingale and also suppose Xn ~- X00 • Let Vt. v2 be two stopping times. 
Then 

(10.37) 

Some SPECIAL CASES: 

(i) If v1 = 0, then v2 ;:: 0 and 

and 
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(ii) If v1 ::: v2 pointwise everywhere, then 

The proof of Theorem 10.8. 7 requires the following result. 

Lemma 10.8.2 If v is a stopping time and~ e L 1. then 

E(~IBv) = L£(~1Bn)1[v=n)· (10.38) 
neiil 

Proof of Lemma 10.8.2: The right side of (10.38) is Bv-measurable and for any 
A e Bv, 

r LE(~IBn)l[v=n]dP = L r E(~IBn)dP 
}A neiil neiiiJAn(v=n) 

(since An [v = n] e Bn) 

= :L r ~dP 
- JAn(v=n) neN 

Finish with an application of Integral Comparison Lemma 10.1.1 or an appeal to 
the definition of conditional expectation. D 

Proof of Theorem 10.8.7. Since Lemma 10.8.2 gives 

E(Xv2 1Bv1) = L E(XV21Bn)l[v1=n)• 
neiil 

for (10.37) it suffices to prove for n e N that 

Xn 2:: E(Xv2 1Bn) on [n::: v2]. (10.39) 

Set Yn =X V21\n· Then, first of all, { (Yn. Bn). n 2:: 0} is a positive supermartingale 
from Proposition 10.8.2 and secondly, from Theorem 10.8.5, it is almost surely 
convergent: 

Y. a.s. Y. X 
n __,. oo = V2" 

To verify the form ofthe limit, note that if v2(w) < oo, then for n large, we have 
n 1\ v2(w) = v2(w). On the other hand, if v2(w) = oo, then 

Yn(w) = Xn(w) __,. Xoo(w) = Xv2 (w). 

Observe also that for n e N, we get from Theorem 10.8.5 
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that is, 

X 112 An 2::: E(X112 1Bn). (10.40) 

On [ v2 2::: n] (10.40) says X n 2::: E (X 112 1Bn) as required. 0 

For martingales, we will see that it is useful to know when equality holds in 
Theorem 10.8.7. Unfortunately, this does not always hold and conditions must 
be present to guarantee preservation of the martingale property under random 
stopping. 

10.9 Examples 

We collect some examples in this section. 

10.9.1 Gambler's Ruin 

Suppose {Zn} are iid Bernoulli random variables satisfying 

and let 

1 
P[Z; = ±1] =-

2 

n 

Xo = jo, Xn = L Z; + jo, n 2::: 1 
i=l 

be the simple random walk starting from jo. Assume 0 ::: jo ::: N and we ask: 
starting from jo, will the random walk hit 0 or N first? 

Define 

v = inf{n: Xn = 0 or N}, 

[ruin] = [X v = 0], 

p = P[X11 = 0] = P[ ruin]. 

If random stopping preserves the martingale property (to be verified later), then 

and since 

we get 

and 

jo = E(Xo) = E(Xv) = 0 · P[X11 = 0] + N P[Xv = N] 

P[X11 =OJ= p, P[X 11 = N) = 1- p, 

jo = N(l- p) 

jo 
p = 1--. 

N 
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10.9.2 Branching Processes 

Let {Zn, n ::: 0} be a simple branching process with offspring distribution 
{Pk. k::: 0} so that {Zn} is a Markov chain with transition probabilities 

ifi:;::1, 

if i = 0, 

where {pji, j ::: 0} is the i-fold convolution of the sequence {p j, j ::: 0}. We can 
also represent { Z n} as 

(10.41) 

where {zU>(m), j ::: 0, m ::: 0} are iid with distribution {pk, k ::: 0}. Define the 
generating functions (0 :::: s :::: 1), 

00 

f(s) = LPki = E(sz1), 

k=O 

fn(s) = E(sz•), 

fo(s) = s , /1 = f 

so that from standard branching process theory 

fn+t(S) = fn<f(s)) = f<fn(s)) . 

Finally, set 

m = E(Zt) = /'(1). 

We claim that the following elementary facts are true ( cf. Resnick, 1992, Sec­
tion 1.4): 

(1) The extinction probability q := P[Zn ~ 0] = P[ extinction]= 
P {U~1 [Zn = Ol} satisfies f(s) =sand is the minimal solution in [0, 1]. 
If m > 1, then q < 1 while if m :::: 1, q = 1. 

(2) Suppose q < 1. Then either Zn ~ 0 or Zn ~ oo. We define the event 

[explosion]:= [Zn ~ oo] 

and we have 

1 = P[Zn ~ 0] + P[(Zn ~ oo] 

so that 
q = P[ extinction], 1 - q = P[ explosion]. 
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We now verify fact (2) using martingale arguments. For n 2:: 0, set Bn = 
u(Zo, ... , Zn). We begin by observing that {(q1n, Bn). n eN} is a positive mar­
tingale. We readily see this using (10.41) and (10.17): 

E(s1n+1 iBn) = E(s'Ef:~ zn(i)IBn) 

= ( Esz(nl(l) tn = f(s)Zn. 

Sets= q, and since f(q) = q, we get 

£ ( qln+IIBn) = qln • 

Since { (q1n, Bn), n e N} is a positive martingale, it converges by Theorem 10.8.5. 
So limn-oo q1n exists and therefore limn-oo Zn =: Z00 also exists. 

Let v = inf{n : Zn = 0}. Since limn-oo Zn =: Z00 , we also have ZvAn -+ Zv. 
From Proposition 10.8.2 {(q1vAn, Bn). n E N} is a positive martingale, which 
satisfies 

1 2:: qlvAn -+ qlv; 

and because a martingale has a constant mean, E(qlvl\n) = E(qZVAo) = E(qlo) = 
q. Applying dominated convergence 

q = E(qz"l\n)-+ E(qz"), 

that is, 

q = E(q1") = £(q1 ""1[v=ooJ) + E(q1 "1[v<ooJ). 

On [v < oo], Zv = 0 and recall q = P[v < oo] = P[extinction] so 

q = E(q1""1v=oo) +q, 

and therefore 

E (q1"" 1[v=ooJ) = 0. 

This implies that on [v = oo), q1 oc = 0, and thus Zoo = oo. So on [v = oo) = 
[non-extinction], Zoo = oo as claimed in fact (2). 

We next recall that {(Wn := ~. Bn). n eN} is a non-negative martingale. An 
almost sure limit exists, namely, 

TIT _ Zn a.s. W 
"'n- -+ . mn 

On the event [extinction], Zn -+ 0, so W(w) = 0 for w e [extinction]. Also 
E(W) ::: 1, since by Fatou's lemma 

E W) £(). . f Zn) 1. . f E(Zn) ( = 1mm - ::;: 1mm -- = 1. n ..... oo mn n ..... oo mn 



382 10. Martingales 

Consider the special case that q = 1. Then Zn -+ 0 almost surely and P[W = 
0] = 1. So {Wn := ~} is a positive martingale such that Wn -+ 0 = W. We 
have E(Wn) = 1, but E(W) = 0. So this martingale is NOT closable. There is 
no hope that 

Wn = E(WIBn) 

since W = 0. For later reference, note that in this case {Zn/mn, n ::=: 0} is NOT 
uniformly integrable since if it were, E(Zn/mn) = 1 would imply E(W) = 1, 
which is false. 

10.9.3 Some Differentiation Theory 

Recall the Lebesgue decomposition of two measures and the Radon-Nikodym 
theorem of Section 10.1. We are going to consider these results when the a-fields 
are allowed to vary. 

Suppose Q is a finite measure on B. Let the restriction of Q to a sub a-field g be 
denoted Qlg. Suppose we are given a family of a-fields Bn. n eN, B00 = VnBn 
and Bn C Bn+I· Write the Lebesgue decomposition of QIBn with respect to PIBn 
as 

QIBn = fndPIBn + QIBJ n Nn). n eN 
where P(Nn) = 0 for n eN. 

(10.42) 

Proposition 10.9.1 The family {(/n. Bn). n ::=: 0} is a positive supermartingale 
and fn ~· / 00 where / 00 is given by (10.42) with n = 00. 

The proof requires the following characterization of the density appearing in 
the Lebesgue decomposition. 

Lemma 10.9.1 Suppose Q is a finite measure on (Q, Q) whose Lebesgue decom­
position with respect to the probability measure P is 

Q(A) = i XdP + Q(A nN), A e Q, 

where P(N) = 0. Then X is determined up toP-sets of measure 0 as the largest 
Q-measurable function such that X d P ~ Q on Q. 

Proof or Lemma 10.9.1. We assume the Lebesgue decomposition is known. If Y 
is a non-negative Q-measurable and integrable function such that Y dP ~ Q on 
Q, then for any A e Q, 

{ YdP = { YdP ~ Q(ANc) 
}A jAN< 

= 1 XdP + Q(ANc N) 
AN< 

=1 XdP=1XdP. 
AN< A 
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Hence by the Integral Comparison Lemma 10.1.1, we have X ~ Y almost surely. 
0 

ProofofProposition 10.9.1. We have from (10.42) 

ln+IdPIBn+I + QIBn+I (· n Nn+I) = QIBn+I, 

so that 

ln+IdPIBn+I .::: QIBn+I' 

Hence for all A e Bn, we get, by the definition of conditional expectation, that 

L E<fn+IIBn)dP = L ln+ldP .=:: Q(A). 

So E<fn+IIBn) is a function in £1 (Bn) such that for all A E Bn 

L E<fn+IIBn)dP .=:: Q(A); 

that is, 
E<fn+IIBn)dPIBn .::: QIBn· 

Since In is the maximal Bn·measurable function with this property, we have 

which is the supermartingale property. It therefore follows that limn-+oo In exists 
almost surely. Call the limit I and we show I = loo· Since 

QIBoo ~ loodPIBoo• 

we have for all A E Bn, 

L E<fooiBn)dP = L loodP .=:: Q(A). 

Thus, since In is the maximal Bn·measurable function satisfying 

we have 
E(/ooiBn) .=:: In· 

Let n -+ oo and use Proposition 10.8.6 to get 

loo = E(/ooiBoo) = lim E(looiBn).::: lim In= f. n-+00 n-+00 

We conclude loo.::: f. Also, by Fatou's lemma, for all A e UnBn, 

{ ldP = { liminf lndP.::: liminf { lndP.::: Q(A). jA jA n-+oo n-+oo jA (10.43) 
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This statement may be extended to A e B00 by Dynkin's theorem (see, for ex­
ample Corollary 2.2.1 on page 38). Since f E B00 and / 00 is the maximal Boo­
measurable function satisfying (10.43), we get f ~ /00 • Therefore f = /00 • 0 

Proposition 10.9.2 Suppose QIB. << PIB. for all n e N; that is, there exists 
fn E L1 (Q, Bn, P) such that 

QIB. = fndPIB.· 

Then (a) the family {<fn, Bn), n E N} is positive martingale and (b) we have 
fn--+ j 00 almostsurelyandinL1 iffQIBoc << PlBoc· 

Proof. (a) Since QIB. << PIB. for all n eN, for any A e Bn 

QIB.(A) = i fndP = QlBn+l (A) 

= i fn+ldP = i E<fn+IlBn)dP, 

and therefore we have fn = E<fn+liBn) by Lemma 10.1.1. 
(b) Given fn --+ / 00 almost surely and in L1, we have by Corollary 10.8.1 that 

For all A e Bn and using the definition of conditional expectation and the martin­
gale property, we get 

So for A E UnBn 

i foodP = i E<fooiBn)dP = i fndP 

= QIB.(A) = Q(A). 

i foodP = Q(A). 

Extend this by Dynkin's theorem to A E B00 to get 

Q(A) = i foodP, 

that is, 
QIBoc << foodPIBoo· 

Conversely, suppose Q I Boo < < P IBoc . Then from the previous proposition 

~ a.s. ~ 
Jn --+ JOO· 
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Densities of QIBn converge and Scheffe's lemma 8.2.1 on page 253 implies L 1 

convergence: 

J lfn- fldP--+ 0. 

Note that Scheffe's lemma applies since each fn is a density with the same total 
mass 

In fndP = Q(w). 0 

Example 10.9.1 We give a special case of the previous Proposition 10.9.2. Sup­
posen= [0, 1), and Pis Lebesgue measure. Let 

{ k k+1 n } Bn =a [-, --), k = 0, 1, .. . , 2 - 1 , 2n 2n 

so that Bn t Boo = B([O, 1)). 
Let Q be a finite, positive measure on B([O, 1)). Then trivially 

Q IBn << PIBn• 

since if A e Bn and P(A) = 0, then A= 0 and Q(A) = 0. What is 

fn = dQIBn? 
dPIBn 

We claim 

zn-1 Q([jn' *)) 
fn(X) = "' . "+1 11; i+t)(x). 

i...J P([ I '-)) 2"· 2""" 
i=O iii• zn 

The reason is that for all j 

We also know 

that is, 

F a.s. F • 
Jn --+ JOO• 

Q(ln(x)) 
fn(X) = P(ln(X) --+ /oo(W) , 

where In (x) is the interval containing x and f 00 satisfies 

Q = foodP + Q(· n N00 ). 

Since Boo= B([O, 1)), we conclude that Q << P iff fn --+ f almost surely and 
in L1 where f satisfies dP fdQ = f. o 
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10.10 Martingale and Submartingale Convergence 

We have already seen some relations between martingales and submartingales, 
for instance Doob's decomposition. This section begins by discussing another 
relation between martingales and submartingales called the Krickeberg decompo­
sition. This decomposition is used to extend convergence properties of positive 
supermartingales to more general martingale structures. 

10.10.1 Krickeberg Decomposition 

Krickeberg's decomposition takes a submartingale and expresses it as the differ­
ence between a positive martingale and a positive supermartingale. 

Theorem 10.10.1 (Krickeberg Decomposition) If {(Xn. Bn). n :::: 0} is a sub­
martingale such that 

supE(X:) < oo, 
n 

then there exists a positive martingale {(Mn, Bn), n :::: 0} and a positive super­
martingale {(Yn, Bn), n 2:: 0} and 

Xn = Mn- Yn. 

Proof. If {Xn} is a submartingale, then also {X:} is a submartingale. (See Exam­
ple 10.6.1.) Additionally, {E(XtiBn), p :::: n} is monotone non-decreasing in p. 
To check this, note that by smoothing, 

E(X;+1 ll3n) = E(E(X;+1 ll3p)ll3n) 2:: E(XtlBn) 

where the last inequality follows from the submartingale property. Monotonicity 
in p implies 

exists. 
We claim that {(Mn, Bn), n 2:: 0} is a positive martingale. To see this, observe 

that 

(a) Mn E Bn, and Mn 2:: 0. 

(b) The expectation of Mn is finite and constant inn since 

E(Mn) = E( lim t E(X;ll3n)) 
p-+00 

= lim t £(£(X;Il3n)) 
p-+00 

= lim t Ex+ 
p-+00 p 

=sup Ex;< oo, 
p?:O 

(monotone convergence) 

since expectations of submartingales increase. Thus E(Mn) < oo. 



10.10 Martingale and Submartingale Convergence 387 

(c) The martingale property holds since 

E(Mn+IIBn) = E{ lim t E(XtiBn+I)iBn) 
p-+00 

= lim t E(E<XtiBn+I)iBn) (monotone convergence) 
p-+00 

= lim t E(XtiBn) = Mn· 
p-+00 

(smoothing) 

We now show that 

is a positive supermartingale. Obviously, Yn E Bn. Why is Yn 2: 0? Since Mn = 
limp-+oo t E(XtiBn). if we take p = n, we get 

Mn ::: E(X:IBn) = x: ::: x: - x; = Xn . 

To verify the supermartingale property note that 

E(Yn+IIBn) = E(Mn+IIBn)- E(Xn+tiBn) 

:5 Mn- Xn = Yn 

0 

10.10.2 Doob's (Sub)martingale Convergence Theorem 

K.rickeberg's decomposition leads to the Doob submartingale convergence theo­
rem. 

Theorem 10.10.2 (Submartingale Convergence) lf{(Xn. Bn). n ::: 0} is a (sub)-

martingale satisfying 
supE(X:) < oo, 
neN 

then there exists X 00 e L 1 such that 

X a.s.x 
n ~ oo· 

Remark. If {Xn} is a martingale 

supE(X:) < oo iff supE(IXnD < oo 
neN neN 

in which case the martingale is called L 1-bounded. To see this equivalence, ob­
serve that if {(Xn, Bn). n eN} is a martingale then 

E<IXnD = E(X:) + E(X;) = 2E(X:)- E(Xn) 

= 2£ x: -const. 
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Proof. From the Krickberg decomposition, there exist a positive martingale {Mn} 
and a positive supermartingale {Yn} such that 

From Theorem 10.8.5, the following are true: 

M a.s.M 
n ~ 00• 

y; a.s. y; 
n ~ oo 

so 

and M 00 and Y 00 are integrable. Hence M 00 and Y 00 are finite almost surely, 
X 00 =Moo- Y00 exists, and Xn ~ X 00• 0 

10.11 Regularity and Closure 

We begin this section with two reminders and a recalled fact. 
Reminder 1. (See Subsection 10.9.2.) Let {Zn} be a simple branching process 

with P( extinction)= 1 =: q. Then with Zo = 1, E(Z1) = m 

So the martingale { Wn} satisfies 

E(Wn) = 1 ~ £(0) = 0 

so { Wn} does NOT converge in L l· Also, there does NOT exist a random variable 
W00 such that Wn = E(W00 1Bn) and {Wn} is NOT uniformly integrable (ui). 

Reminder 2. Recall the definition of uniform integrability and its character­
izations from Subsection 6.5.1 of Chapter 6. A family of random variables 
(X, , t e I} is ui if X, e L 1 for all t e I and 

lim sup] IX1IdP = 0. 
b-+OO IE/ IXri>b 

Review Subsection 6.5.1 for full discussion and characterizations and also re­
view Theorem 6.6.1 on page 191 for the following FACT: If {Xn} converges a.s. 
and {X n} is ui, then {X n} converges in L 1· 

Here is an example relevant to our development. 

Proposition 10.11.1 Let X E L I· Let g vary over all sub u-ftelds of B. The family 
{E(XIQ) : g C B} is a uifamily of random variables. 
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Proof. For any g C B 

{ iE(XiQ)idP ~ { E(IXIIQ)dP 
j[IE(XIQJI>b] j(E(IX~~Q)>b] 

= { IXIdP (definition) 
JIE<IXil9>>bJ 

= { IXIdP 
J[E<IXIIQ)>b]n[IXI:::KJ 

+1 IXIdP 
[£0XIj9J>b]n[IXI>K] 

~ KP[E(IXIIQ) > b] + { IXIdP, 
J[IXI>K] 

and applying Markov's inequality yields a bound 

~ Kb E(E(IXII9>) + { iXidP 
hiXI>K] 

= Kb E(IXI) + { iXIdP; 
j(IXI>K] 

that is, 

limsupsup { IE(XiQ)IdP 
b-+oo g j[IE(XIQJI>b] 

::::lim sup (K E(iXi) + { IXIdP) 
b-+oo b )IXI>K 

= { IXIdP --+ 0 
)IXI>K 

asK--+ oo since X e L1. 0 

We now characterize ui martingales. Compare this result to Proposition 10.8.6 
on page 374. 

Proposition 10.11.2 (Uniformly Integrable Martingales) Suppose that 
{(Xn. Bn), n ~ 0} is a martingale. The following are equivalent: 

(a) {X n} is L 1-convergent. 

(b) {X n} is L 1-bounded and the almost sure limit is a closing random variable; 
that is, 

supE(IXnD < oo. 
n 

There exists a random variable X 00 such that Xn ~· X 00 (guaranteed by 
the Martingale Convergence Theorem 10.10.2) which satisfies 

Xn = E(XooiBn), "'n eN. 
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(c) The martingale is closed on the right; that is, there exists X e L 1 such that 

Xn = E(XIBn). Vn eN. 

(d) The sequence {X n} is ui. 

If any one of (a)-(d) is satisfied, the martingale is called regular or closable. 

Proof. (a)-+(b). If {Xn} is L1-convergent, limn-.oo E(IXnD exists, so {E(IXn I)} 
is bounded and thus supn E (IX n D < oo. Hence the martingale is L 1-bounded and 

by the martingale convergence theorem 10.10.2, Xn ~- X00 • Since conditional 
expectations preserve L 1 convergence (cf (10.21)) we have as a consequence of 

Xn !:J. X 00 that as j--+ 00 

Thus, X 00 is a closing random variable. 
(b)-+(c). We must find a closing random variable satisfying (c). The random 

variable X = X 00 serves the purpose and X 00 e L 1 since from (b) 

E(IXooD = E(liminfiXnD::: liminfE(IXnD::: supEOXnD < oo. 
n-+oo n-+oo neiiil 

(c)-+( d). The family {E(XIBn), n eN} is ui by Proposition 10.11.1. 
(d)-+(a). If {Xn} is ui, supn E(IXnD < oo by the characterization of uniform 

integrability, so {Xn} is L1-bounded and therefore Xn --+ Xoo a.s. by the mar­
tingale convergence theorem 10.10.2). But uniform integrability and almost sure 
convergence imply L 1 convergence. 0 

10.12 Regularity and Stopping 

We now discuss when a stopped martingale retains the martingale characteristics. 
We begin with a simple but important case. 

Theorem 10.12.1 Let {(Xn , Bn) , n ~ 0} be a regular martingale. 

(a) Ifv is a stopping time, then Xv E Lt. 

(b) If v1 and v2 are stopping times and Vt ::; v2, then 

is a two term martingale and 

therefore 
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For regular martingales, random stopping preserves fairness and for a stopping 
time v, we have E(Xv) = E(Xo) since we may take v = vz and Vt = 0. 

Proof. The martingale is assumed regular so that we can suppose 

where X n __. X 00 a.s. and in L l · Hence when v = oo, we may interpret X v = 
Xoo . 

For any stopping time v 

since by Lemma 10.8.2 

Since X 00 e Lt. 

ThusXv e Lt. 

E(XooiBv) = L E(XooiBn)l[v=n) 
ne N 

= L Xn1[v=n) = Xv. 
ne N 

EOXvD ~E(IE(XooiBv)l) ~ E(E(IXooDIBv} 

=E(IXooD < oo. 

If Vt ~ vz, then Bv1 C BV2 and 

E(XV21Bv1 ) = £(£(XooiBv2 )1Bv1 ) (by (10.44)) 

= E(XooiBv1 ) (smoothing) 

= X VJ. (by (10.44)). 

(10.44) 

0 

Remark. A criterion for regularity is L p-boundedness: If {(Xn, Bn) , n ~ 0} is a 
martingale and 

sup£(1XniP) < oo, p > 1, 
n 

then {Xn} is ui and hence regular. See (6.13) of Chapter 6 on page 184. The result 
is false for p = 1. Take the branching process { (Wn = Zn I mn, Bn), n e N}. Then 
supn E (I Wn I) = 1, but as noted in Reminder 1 of Section 10.11, { Wn} is NOT ui. 

Example 10.12.1 (An Lz·bounded martingale) An example of an Lz-bounded 
martingale can easily be constructed from the simple branching process martin­
gale Wn = Zn/mn with m > 1. Let 

00 00 

a 2 = Var(Zt) = Lk2pk- (~::)Pk)2 < oo . 
k=O k=O 
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The martingale {Wn} is L2 bounded and 

Wn ~ W, almost surely and in L1o 

(12 
and E(W) = 1, Var(W) = ::r=::· m -m 

Proof. Standard facts arising from solving difference equations (cf. Resnick (1994)) 
yield 

so 

and 

Form> 1 

(12 
EWi ~ 1+ 2 • 

m -m 

Thus, supn E(W;) < oo, so that {Wn} is L2 bounded and 

1 = E(Wn) ~ E(W), 

2 
2 2 (1 

E(Wn)~E(W)=1+ 2 , 
m -m 

and 

(12 
Var(W) = 2 • 

m -m 

10.13 Stopping Theorems 

0 

We now examine more flexible conditions for a stopped martingale to retain mar­
tingale characteristics. In order for this to be the case, either one must impose 
conditions on the sequence (such as the ui condition discussed in the last section) 
or on the stopping time or both. We begin with a reminder of Proposition 10.8.2 on 
page 368 which says that if {(Xn. Bn). n e .N} is a martingale and vis a stopping 
time, then {(X liM, Bn ), n E N} is still a martingale. 

With this reminder in mind, we call a stopping time v regular for the martingale 
{(Xn. Bn). n E N} if {(X liM• Bn). n ~ 0} is a regular martingale. The next result 
presents necessary and sufficient conditions for a stopping time to be regular. 
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Proposition 10.13.1 (Regularity) Let {(Xn, Bn), n e N} be a martingale and 
suppose v is a stopping time. Then vis regular for {Xn} iff the following three 
conditions hold. 

(i) X 00 := limn--.oo X n exists a.s. on [ v = oo] which means limn--.oo X vAn 
exists a.s. on Q. 

(ii) X v e L I· Note from (i) we know X v is defined a.s. on Q. 

(iii) X vAn= E(XviBn), n eN. 

Proof. Suppose vis regular. Then {(Yn =X vAn• Bn), n ~ 0} is a regular martin­
gale. Thus from Proposition 10.11.2 page 389 

(i) Yn--+ Y00 a.s. and in LI and on the set [v = oo], Yn =X vAn= Xn, and so 
limn--.ooXn exists a.s. on [v = oo]. 

(ii) Yoo eLI. But Yoo = Xv. 

(iii) We have E(Y00 1Bn) = Yn; that is, E(XviBn) =X vAn· 

Conversely, suppose (i), (ii) and (iii) from the statement of the proposition hold. 
From (i), we get X v is defined a.s. on Q. From (ii), we learn X v e L I and from 
(iii), we get that X v is a closing random variable for the martingale {X vAn}. So 
{X v/\n} is regular from Proposition 10.11.2. D 

Here are two circumstances which guarantee that v is regular. 

(i) If v ~ M a.s., then v is regular since 

{XvAn.n EN}= {Xo,XI.····Xv,Xv.···l 

is ui. To check uniform integrability, note that 

IX vAn I~ sup IXvAml = sup IXml ELI. 
m m:5:_M 

Recall from Subsection 6.5.1 that domination by an integrable random vari­
able is sufficient for uniform integrability. 

(ii) If {Xn} is regular, then any stopping time vis regular. (See Corollary 10.13.1 
below.) 

The relevance of Proposition 10.13.1 is shown in the next result which yields 
the same information as Theorem 10.12.1 but under somewhat weaker, more flex­
ible conditions. 

Theorem 10.13.2 If v is regular and VI ~ vz ~ v for stopping times VI and vz, 
then fori = 1, 2, X v; exists, X v; E L I and 

{(Xv1 , Bv1 ), (Xv2 , Bv2 )} 

is a two term martingale; that is, 
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Note the following conclusion from Theorem 10.13.2. Suppose v is regular, 
Vt = 0 and vz = v. Then 

E(XIIiBo) = Xo and £(XII)= E(Xo). 

Proof of Theorem 10.13.2. Let Yn = X II An. So { (Yn, Bn), n e N} is a regular 
martingale. For regular martingales, Theorem 10.12.1 implies whenever Vt :::;: vz 
that 

Corollary 10.13.1 (a) Suppose Vt and vz are stopping times and Vt :::;: vz. lfvz is 
regular for the martingale {(Xn, Bn), n;:: 0}, so is Vt. 

(b) If {(X n, Bn ), n :::: 0} is a regular martingale, every stopping time v is regu­
lar. 

Proof. (b) Set vz = oo. Then 

{XII2An} = {XooAn} = {Xn} 

is regular so vz is regular for {Xnl· If we assume (a) is true, we conclude vis also 
regular. 

(a) In the Theorem 10.13.2, put vz = v to get X 111 e Lt. It suffices to show 
{X 111 An} is ui. We have 

{ IXIIJAnldP = { IXIIJAnidP 
J(IXv1MI>b) J(IXv1 MI>b,llt~n) 

+ { IX111AnldP 
luxv11\ni>b,llt>nJ 

=A+B. 

Now for B we have 

B::::: { iXnidP::::: { IXnldP 
JliXnl>b,llt>n] JliXnl>b,llpnJ 

::::: [ IX112"nldPb~ooO, 
luxv21\ni>bJ 

since vz regular implies {X 1121\n} is ui. 
For the term A we have 

since X111 e Lt. 0 

Here is another characterization of a regular stopping time v. 



10.13 Stopping Theorems 395 

Theorem 10.13.3 In order for the stopping time v to be regular for the martin­
gale {(Xn. Bn). n 2:: 0}, it is necessary and sufficient that 

(a) { IXvldP < 00, 
J[v<oo] 

(10.45) 

and 

(b) {Xnl[v>n]• n EN} is ui. (10.46) 

Proof. Sufficiency: We show that (a) and (b) imply that {XvM} is ui and therefore 
that v is regular. To prove uniform integrability, note that 

f IXvt\nldP = f IXvldP + f IXnldP 
J[IXVAnl>b] J[v!Sn.IXvl>b] J[v>n.IXnl>b] 

:::; f IXvldP 
J[v<oo]n[IXvl>b] 

+ { IXnll[v>n]dP 
lux.ll[v>nJ>b] 

=A+B. 

For A we have that 

since Xvl[v<oo] E Lt by (a). ForB we have B ~ 0 as b ~ oo since {Xnl[v>n]l 
is assumed ui by assumption (b). 

Converse: Suppose vis regular. We show that (a) and (b) are necessary. 
Necessity of (a): 

since {X vAn} is ui. 

f IXvldP = lim t { IXvldP 
J[v<oo] n-+oo J[v::;:n] 

= lim t { IXvMidP 
n-+oo J[v!Sn] 

:::; supE(IXvMI) < oo 
n 

Necessity of (b): If v is regular, then 

and {X vAn} is ui implies that {Xn l[v>nJ} is ui since a smaller sequence is ui if a 
dominating one is ui. (See Subsection 6.5.1.) D 
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Remark 10.13.1 A sufficient condition for (10.45) is that {X n} be an L t·bounded 
martingale. To see this, recall that L t·bounded martingales converge almost surely 
so that 

X a.s. x 
n~ oo 

and X v is thus defined almost everywhere. We claim X v e Lt. and therefore 
Xv1[v<oo) e Lt. To verify the claim, observe that X vAn~- Xv, and so by Fatou's 
lemma 

E(IXvD = E( lim IXvl\nl).:::: liminfE(IXvl\nD· 
n-+oo n-+oo 

Also, 

since by Lemma 10.8.2 

E(XniBvl\n) = LE(XniBj)1[vl\n=i) 
jeN 

= LE(XniBj)1[vAn=il + LE(XniBj)1[vAn=iJ 
j>n 

(10.47) 

(10.48) 

and since [ v 1\ n = j) = 0 when j > n, on applying the martingale property to 
the first sum, we get 

= LXj1[vl\n=i) = Xvl\n• 
j~n 

as claimed in (10.48). Thus 

E(iXvl\nl>.:::; EiE(XniBvl\n)l 

.:::; E (E(IXniiBvl\n)) = E(IXnD· 

From (10.47) and (10.49) 

E(IXvD.:::; liminfE(IXvl\nD.:::; lim E(IXnD 
n-+oo n-+oo 

= supE(IXnD < oo. 
n 

(10.49) 

0 

Additional remark. If the martingale {X n} is non-negative, then it is automat­
ically Lt·bounded since supn E(IXnD = supn E(Xn) = E(Xo). Thus (10.45) 
holds. 

We now apply Theorem 10.13.3 to study the first escape times from a strip. 

Corollary 10.13.2 Let {(X n, Bn ), n :::: 0} be an L t·bounded martingale. 
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(a) For any level a > 0, the escape time Va := inf{n : IXn I > a} is regular. In 
particular, this holds if {X n} is a positive martingale. 

(b) For any b < 0 <a, the time Va,b = inf{n: Xn >a or Xn < b} is regular. 

Proof. (a) We apply Theorem 10.13.3. Since {Xn} is Lt-bounded (10.45) is im­
mediate from the previous remark. For (10.46) we need that {Xn1v>n} is ui but 
since 1Xn1v>nl ~a , uniform integrability is automatic. 

(b) We have 

Va,b ~ Vialvb = inf{n: IXnl > lal V lbl} 

and vlalvlbl is regular from part (a) so va,b, being dominated by a regular stopping 
time, is regular from Corollary 10.13.1. 0 

We end this section with an additional regularity criterion. 

Proposition 10.13.4 Suppose {(Xn, Bn), n 2: 0} is a martingale. Then 

is equivalent to 

(i) vis regular for {Xn} and 

(ii) Xn ~· 0 on [v = oo] 

(iii) { IXvldP < 00 and 
J[v<oo) 

(iv) { IXnldP-+ 0. 
J[v>nJ 

Proof. Assume (i) and (ii). Then {(XvAn,Bn),n eN} is a regular martingale, 
and hence X vAn -+ X v e L 1 almost surely and in L 1 and from (ii), X v = 0 on 
[v = oo]. Then 

oo > { IXvldP = { IXvldP 
Jo J[v<oo] 

since X v = 0 on [ v = oo ]. This is (iii). Also 

{ IXnldP = { IXvl\nldP-+ { IXvldP = 0 
J[v>nJ J[v>nJ J[v=oo) 

. X Lt X 'I smce vAn -+ v ental s 

Thus (i)+(ii) ~ (iii)+(iv). 
Given (iii) and (iv): Recall from Theorem 10.13.3 that vis regular for {Xn} iff 
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(a) ~v<oo) IXvldP < oo 

(b) {Xn1v>n} ui. 

If we show (iv) implies (b), then we get vis regular. Note (iv) implies 

L1 
~n := 1Xnl1[v>n] -+ 0. 

We show this implies { ~n} is ui. Observe 

Choose no so large that Vn>n0E(~n) < f (since E(~n)-+ 0, we can do this) and 
choose b so large that 

for a total bound of 2f. 
So we get (i). Since v is regular, X v is defined on Q and X v e L 1 (recall 

Theorem 10.13.2) and X vAn-+ Xv a.s. and in Lt. But, as before 

0 = lim E(~n) = lim { IXnldP 
n-+oo n-+oo J[v>n) 

= lim { IXvAnldP = { IXvldP. 
n-+OO J[v>n] J[v=oo) 

So Xvlv=oo = 0 almost surely; that is, Xn -+ 0 on [v = oo]. Hence (ii) holds. D 

10.14 Wald's Identity and Random Walks 

This section discusses a martingale approach to some facts about the random 
walk. Consider a sequence of iid random variables {Yn, n 2: 1} which are not 
almost surely constant and define the random walk {Xn, n 2: 0} by 

with associated a -fields 

n 

Xo = 0, Xn = LY;,n 2: 1, 
1 

Bo = {0, Q}, Bn = a(Yt. ... , Yn) = a(Xo, ... , Xn) . 

Define the cumulant generating function by 

f/>(u) = logE(exp{uYt}), u e JR. 

We recall the following facts about cumulant generating functions. 
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1. <P is convex. 

Let a e [0, 1]. Recall Holder's inequality from Subsection 6.5.2: If p > 0, 
q > 0, p-1 + q-1 = 1, then 

Set p = 1/a, and q = 1/(1- a) and we have 

<jJ(au1 + (1-a)uz) = logE(eau1Y1e(l-a)u2Y1) 

~log( E(e"JYJ)) a ( E(e"2Y1)) 1-a 

= a</J(ut) + (1 - a)</J(uz) . 

2. The set {u : </J(u) < oo} = : [¢ < oo) is an interval containing 0. (This 
interval might be [0, OJ = {0}, as would be the case if Yt were Cauchy 
distributed). 

If u1 < uz and </J(u;) < oo, i = 1, 2, then for 0 ~a ~ 1, 

So if u; e [¢ < oo), i = 1, 2, then 

[ut. uz} C [¢ < oo ]. 

Note ¢(0) = logE (e0Y1) = log 1 = 0. 

3. If the interior of [ <P < oo] is non-empty, <P is analytic there, hence infinitely 
differentiable there, and 

so 

¢' (0) = E (Yt) . 

One may also check that 

¢"(0) = Var(Yt) . 

4. On[¢< oo), <Pis strictly convex and <P' is strictly increasing. 
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10.14.1 The Basic Martingales 

Here is a basic connection between martingales and the random walk. 

Proposition 10.14.1 For any u e [</> < oo 1 define 

euXn 
Mn(u) = exp{uXn- n<J>(u)} = ( )n. 

E(e"Yl) 

Then {(Mn(u), Bn). n e N} is a positive martingale with E(Mn(u)) = 1. Also, 
Mn(u)--. 0 a.s. as n--. oo and hence {Mn(u)} is a non-regular martingale. 

Proof. The fact that {Mn(u)} is a martingale was discussed earlier. See item 4 of 
Section 10.5. 

Now we check that Mn(u) --. 0 almost surely as n --. oo. We have that 
u e [</> < oo] and 0 e [</> < oo] implies ~ e [</> < oo], and by strict con­
vexity 

(10.50) 

Also {Mn(~)} is a positive martingale and L1-bounded, so there exists a random 
variable Z such that 

and 

M,7(~) = exp{uXn- 2n</>(~)}--. Z2 < oo. 

Therefore 

Mn(u) = exp{uXn- n<J>(u)} 
u u = exp{uXn - 2n<J>(2) + n[2</>( 2)- </>(u)]} 

2 u 1 
= (X + o(1)) exp{n[2(</>( 2 ) - z<J>(u) )]} 

--.o 

since</>(~)- !<J>(u) < 0 from (10.50). 0 

MORE MARTINGALES. From Proposition 10.14.1 we can get many other mar­
tingales. Since </> is analytic on [ </> < oo ], it is also true that 

u ~--+ exp{ux- n<J>(u)} 

is analytic. We may expand in a power series to get 

oo uk 
exp{ux- n<J>(u)} = L-fk(n, x). 

k=O k! 
(10.51) 
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If we expand the left side of (10.51) as a power series in u, the coefficient of uk is 
fk (n, x) I k!. As an example of this procedure, we note the first few terms: 

and 

fo(n,x) = exp{ux- n<f>(u)Jiu=O = 1 
a 

ft(n,x) =au exp{ux -n<f>(u)Jiu=O 

= exp{ux- n<f>(u)}(x- n<f>'(u))iu=O 

= 1· (x -nEYt) 

az 
f2(n,x) = auz exp{ux -n<f>(u)Jiu=O 

= aau {eux-mp(u)(x- n<f>'(u))Jiu=O 

= eux-mp(u)(-n<f>"(u)) + 
eux-mp(u)(x- n<f>'(u))21u=0 

= (x- n£(Yt))2 - nVar(Yt). 

Each of these coefficients can be used to generate a martingale. 

Proposition 10.14.2 For each k 2: 1,{(/k(n, Xn), Bn), n :::: 0} is a martingale. 
In particular 

k = 1, 

k=2, 

are martingales. 

{(ft (n, Xn) = Xn- nE(Yt) = Xn- E(Xn), Bn), n eN} 

{((Xn- E(Xn))2 - Var(Xn). Bn), n eN} 

(lfVar(Yt) = a2 and E(Yt) = 0, then {X;- na2} is a martingale.) 

For the most important cases where k = 1 or k = 2, one can verify directly 
the martingale property (see Section 10.5). Thus we do not give a formal proof 
of the general result but only give the following heuristic derivation. From the 
martingale property of {Mn(u)} we have form < n 

that is, 

E (exp{uXn- n<f>(u)}IBm) = e"Xm-m4J(u) 

so that 
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Now differentiate inside E( IBm) k times and set u = 0. This needs justification 
which can be obtained from the Dominated Convergence Theorem. The differen­
tiation yields 

0 

10.14.2 Regular Stopping Times 

We will call the martingale {(Mn(u), Bn), n eN}, where 

Mn(u) = exp{uXn- ucf>(u)} = e"Xn j(Ee"Y' )n 

the exponential martingale. Recall from Proposition 10.14.1 that if u ::/; 0, and 
u e [4> < oo), then Mn(u) -.. 0, almost surely. Here is Wald's Identity for the 
exponential martingale. 

Proposition 10.14.3 (Wald Identity) Let u e [4> < oo] and suppose cf>'(u) ~ 0. 
Then for a > 0. 

v: = inf{n : Xn ~a} 

is regular for the martingale {(Mn(u), Bn), n e N}. Consequently, by Corollary 
10.13.1, any stopping time v ~ vj is regular and hence Wald's identity holds 

1 = E(Mo(u)) = E(Mv) 

= J exp{uXv- vcf>(u)}dP 

= { exp{uXv- vcf>(u)}dP. 
J[v<oo) 

Proof. Recall from Proposition 10.13.4, that for a stopping time v and a martin­
gale {~n} 

{ (i) v is regular for {~n} {:? { (iii) ftv<oo) l~v ldP < 00 

(ii) ~n _.. 0 on [v = oo) (iv) ftv>n] l~nldP _.. 0. 

Recall from Remark 10.13.1 that (iii) automatically holds when the martingale is 
L t·bounded which is implied by the martingale being positive. 

So we need check that 

{ Mn(u)dP = { euXn-mP<u>dP-.. 0. 
lrvt>n) lrvt>n) 

(10.52) 

For the proof of (10.52) we need the following random walk fact . Let {~;, i ~ 1} 
be iid, E (~;) ~ 0. Then 

n 

limsup L~i = +oo, 
n-+oo i=l 

(10.53) 
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and so if 
n 

v! := inf{n: L~i ~a}, 
i=l 

we have v! < oo a.s. and P[ v! > n] ~ 0. For the proof of (10.53), note that 
if E (~1) > 0, then almost surely, by the strong law of large numbers l:7=1 ~i "' 

nE (~;) ~ oo. If E (~;) = 0, the result is still true but one must use standard 
random walk theory as discussed in, for example, Chung (1974), Feller (1971), 
Resnick (1992). 

We now verify (10.52). We use a technique called exponential tilting. Suppose 
the step random variables Y; have distribution F. On a space (Q#, !3", p#), define 
{Yr, i ~ 1} to be iid with distribution p# defined by 

F#(dy) = euy-4J(u) F(dy). 

Note p# is a probability distribution since 

F#(R) = £ euy-4J(u) F(dy) = l e"YJ-4J(u)dP 

= Ee"Y1 je41<u> = 1. 

p# is sometimes called the Esscher transform of F. Also 

E#(Yf) = { yF#(dy) = f ye"Y-4J<u> F(dy) = m'(u) = q/(u) 
JR m(u) 

where m(u) = E(e"Y1 ), and by assumption 

E#(Yf) = t/J'(u) ~ 0. 

Note the joint distribution of Y~, .. . , Y: is 

n 
p#[Y~ E dyt. ... , Y: E dyn] = n euy;-4J(u) F(dy;) 

i=l 
n n 

= exp{u LYi- ntfJ(n)} n F(dy;). 
i=l i=l 

Now in order to verify (10.52), observe 

{ e"Xn-n4J(u)dP 
J[v;J>n] 

(10.54) 

= { . . exp{u tYi- nt/J(u)} fi F(dy;) 
}{(yJ,···•Yn):L,f=l y;<O,J=l, ... ,n} i=l i=l 

j 

= P#[LY;# <a, j = 1, ... , n] 
i=l 

# Y* 
= P [ Va 1 > n] ~ 0. 

(from (10.54)) 

0 
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Corollary 10.14.1 Let -b < 0 <a, u e [4> < oo] and 

Va,b = inf(n : Xn 2: a or Xn ::: -b). 

Then va ,b is regular for (Mn(u)} and thus satisfies Wa/d identity. 

Proof. Note Va ,b is not defined directly in terms of (Mn(u)} and therefore Corol­
lary 10.13.2 is not directly applicable. If «f>'(u) ::: 0, Proposition 10.14.3 applies, 
then v;i is regular for (Mn(u)}, and hence Va ,b ::: v;i is regular by Corollary 
10.13.1. If 1/>'(u) ::: 0, check the previous Proposition 10.14.3 to convince your­
self that 

v; := inf(n : Xn :::b) 

is regular and hence Va,b ::: v; is also regular . 0 

Example 10.14.1 (Skip free random walks) Suppose the step random variable 
Yt has range {1, 0, -1, -2, . . . } and that P[Yt = 1] > 0. Then the random walk 
(X n} with steps (Yj} is skip free positive since it cannot jump over states in the 
upward direction. 

Let a > 0 be an integer. Because (Xnl is skip free positive, 

X.;:= a on [vd' < oo]. 

Note 

«f>(u) =log (e" P[Yt = 1) + f:e-uj P(Yt =-j]) 
}=0 

so (0, oo) c [4> < oo) and «f>(oo) = oo. By convexity, there exists u* e [0, oo) 
such that 

inf «f>(u) = «f>(u*). 
ue[O,oo) 

On the interval [u*, oo), 4> increases continuously from the minimum «f>(u*) to 
oo. Thus for u ::: u*, we have 4>' (u) ::: 0. 

For u ::: u*, Wald's identity is 

1 = { exp{uXvt- v.i«f>(u)}dP 
J[vt <00) 

= { exp(ua- v.i«f>(u)}dP, 
Jlvt<oo) 

so that 

(10.55) 
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This holds for u E [4> < oo] and in particular it holds for u E [u*, oo). 
Consider the following cases. 
CASE (I) Suppose 4>'(0) = E(Yt) ~ 0. Then u* = 0 and since E(Yt) ~ 0 

implies v;i < oo almost surely, we have 

Setting A.= cp(u) gives 

E(e->..v;) = J e->..v; dP = e-c/> .... (A.)a. 

In this case, Wald's identity gives a formula for the Laplace transform of v;i. 
CASE (II) Suppose E(Yt) = 4>'(0) < 0. Since cp(O) = 0, convexity requires 

cp(u*) < 0 and there exists a unique uo > u* > 0 such that cp(uo) = 0. Thus if 
we substitute uo in (10.55) we get 

In this case, Wald's identity gives a formula for P[ v;i < oo ]. 

We now examine the following martingales: 

{Xn- nE(Yt). n ~ 0}, {(Xn- nE(Yt))2 - nVar(YI), n ~ 0}. 

Neither is regular but we can find regular stopping times. 

Proposition 10.14.4 Let v be a stopping time which satisifes E(v) < oo. Then 

(a) vis regular for {Xn- nE(Yt)} assuming E(IYll) < oo. 

(b) vis regular for {(Xn- n£(Yt))2 - nVar(Yt)} assuming E(Y[) < oo. 

From (a) we get 
E(Xv) = E(v)E(Yt). 

From (b) we get 
E(Xv- v£(Yt))2 = E(v)Var(Yt). 

0 

Proof. (a) Since {X n - nEYt} has mean 0, without loss of generality we can 
suppose E(Yt) = 0. If E(v) < oo, then P[v < oo] = 1 and so Xv11n ~ Xv. We 
show, in fact, this convergence is also L 1 and thus {X v11n} is a regular martingale 
and v is a regular stopping time. 

Note that 

ifv < n 

if v:::. n, 
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so that 

00 00 

IX vAn- X vi= I L Yjl[v:::j)l :S L IYjll[v:::;j) =: ~n+l· 
j=n+l j=n+l 

Note ~n+l :S ~1 and 

00 00 

£(~t) = E(L IYjll[v:::;j]) = L£1Yjll[v:::;j) 
j=1 j=1 

and because [ v ?::. j] e 8 j -1 we get by independence that this equals 

Now 

00 

= LE(IYtDP[v?::. j] = £(1Ytl)£(v) < oo. 
j=l 

00 

~n+1 = L IYjll[v:::;j) ~ 0 
j=n+l 

as n ~ oo, since the series is zero when n + 1 > v. Furthermore 

and so by the dominated convergence theorem 

which means 

(b) Now suppose E(Yt) = 0, E<Yf> < oo. We first check XvAn !:.$. X 11 • 

Note that l[v:::;m) E Bm-1 is predictable so that {Ymlv:::;m} is a fair (martingale 
difference) sequence and hence orthogonal. Also, 

00 00 

L E(Yml[v:::ml = L E(Y~)P[v?::. m] 
m=l m=l 

00 

= E(Yf) L P[v?::. m] = £(Yf)£(v} < oo. 
m=l 

As in (a), we get using orthogonality, that as n ~ oo 

00 00 

E(Xvl\n -Xv)2 = £( L Yjlv:::;j)2 = L £(Yjlv:::;j)2 ~ 0 
j=n+l j=n+l 
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· "'oo 2 L2 smce we already checked that L...m=l E(Ymlv:;::m) < 00. So X vAn--+ Xv. 
L , 

It follows that X~/\n 4 X~ . Furthermore 

since 

EIX~An - (v 1\ n)Var(YI)- (X~- vVar(YI))I 

::: E(IX~An- X~ I)+ E(lv 1\ n- vi)Var(YI) 

= o(l) + Var(YI)E(lv- nll[v>n]} 

::: o(l) + Var(YI)£(v1[v>nJ)--+ 0. 

Thus {X~An - (v 1\ n)VarYI} is regular by Proposition 10.11.2. 

10.14.3 Examples of Integrable Stopping Times 

0 

Proposition 10.14.4 has a hypothesis that the stopping time be integrable. In this 
subsection, we give sufficient conditions for first passage times and first escape 
times from strips to be integrable. 

Proposition 10.14.5 Consider the random walk with steps {Yj }. 
(i) If E (YI) > 0, then for a > 0 

v; = inf{n : Xn ~a} E L1. 

(ii) If E(YI) < 0, then forb> 0 

v; = inf{n: Xn::: -b} E L1 . 

(iii) If E (YI) =f:. 0, and Y1 e L 1, then 

Va,b = inf{n: Xn ~a or Xn ::: -b} E L1 . 

Proof. Observe that (i) implies (ii) since given (i), we can replace Y; by - Y; to 
get (ii). Also (i) and (ii) imply (iii) since 

It suffices to show (i) and we now suppose E(YI) > 0. Then 

is a zero mean martingale so 

0 = E(Xo)- OE(YI) = E(XV:/\n- (v: 1\ n)E(YI)) , 
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which translates to 

Since 

we get by the monotone convergence theorem 

E(v;:- 1\ n) ? E(v;:-). 

From (10.56), we need a bound on EXv: 1\n' 
We consider two cases: 

(10.56) 

CASE 1. Suppose that Yt is bounded above; that is, suppose there exists c and 
Yt ~ c with probability 1. On [ v;i < oo] we have X 4 _1 ~ a and Yv: ~ c so 
that 

and 

In any case 

Thus (10.56) and E(Yt) > 0 imply 

a+c 
E(Yt) :;: E(v: An)? E(v;:-), 

sov;i eL1. 
CASE 2. If Yt is not bounded above by c, we proceed as follows. Note as 

c t oo, Yt A c t Yt and !YI A cl ~ !Ytl E L I· By Dominated Convergence 
E (Y1 A c) ~ E (Yt) > 0. Thus, there exists c > 0 such that E (Yt A c) > 0. Then 
for n ::: 0 

n n 

X~c> := L(Y; A c)~ LY; =: Xn 
i=l i=l 

and 

v;:-<c> = inf{n : X~c> :;: a} :;: v;:- = inf{n : Xn :;: a}. 

From Case 1, v;i<c> E Lt, so v;i E Lt. 0 
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10.14.4 The Simple Random Walk 

Suppose {Yn, n ::: 1} are iid random variables with range {±1} and 

1 
P[Yt = ±1] = -. 

2 

Then E (Yt) = 0. As usual, define 

n 

Xo=O, Xn=LY;, n:::,1, 
i=l 

and think of Xn as your fortune after the nth gamble. For a positive integer a > 0, 
define 

v;i = inf{n : Xn =a}. 

Then P[ v,i < oo] = 1. This follows either from the standard random walk result 
(Resnick, 1994) 

lim sup X n = +oo, 
n-+oo 

or from the following argument. We have v,i < oo a.s. iff v{ < oo a.s. since 
if the random walk can reach state 1 in finite time, then it can start afresh and 
advance to state 2 with the same probability that governed its transition from 0 to 
1. Suppose 

p := P[v;i = oo]. 

Then 

1- p = P[v{ < oo] 

= P[v{ < oo, X1 = -1] + P[v{ < oo, X1 = 1] 
1 1 = -(1 - p)(1- p) +-
2 2 

since (1-p)(1- p) is the probability the random walk starts from -1, ultimately 
hits 0, and then starting from 0 ultimately hits 1. Therefore 

1 - p = ~(1 - p)2 + ~ 
2 2 

so 
2 - 2p = 2 - 2p + p2' 

and p2 = 0 which implies p = 0. Notice that even though P[v,i < oo] = 1, 
E(v,i) = oo since otherwise, by Wald's equation 

a contradiction. 0 
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GAMBLER's RUIN. Starting from 0, the gambling game ends when the ran­
dom walk hits either a or -b. From Theorem 10.13.3, Va ,b is regular since 

and 

1 IXva.bidP:::; (lal V ibi)P[va,b < oo] < 00, 
[va.b<OO) 

so that {Xn1[va.b>n]} is ui. 
Now regularity of the stopping time allows optimal stopping 

0 = E(Xo) = E(Xva.b) = -bP[vb" < vd"] + aP[vd" < vb"] 

= -bP[vb" < vd"] + a(1- P[vb" < vd"]). 

We solve for the probability to get 

P[vb" < vd"] = P[ hit - b before hit a]= ~b. a+ 
(10.57) 

We now compute the expected duration of the game E(va,b)· Continue to as­
sume P[Yt = ±1] =!·Recall {X~ -n, n 2: 0} is a martingale and E(X~ -n) = 
0. Also {(X~a.bM- (va,b 1\ n), Bn), n EN} is a zero mean martingale so that 

0 = E(X~a.bl\n- (Va,b 1\ n)); 

that is, 

Asn ~ oo, 
Va,b 1\ n t Va,b 

so the monotone convergence theorem implies that 

E(va,b 1\ n) t E(va,b). 

Also 

and 

X Va.bl\n ~ X Va.b 

implies by the dominated convergence theorem that 

E(X~a.bl\n) ~ E(X~a.b). 

(10.58) 
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From (10.58) and (10.57) 

E(va,b) = E(X~.) 

(so Va ,b E L 1 and is therefore regular by Proposition 10.14.4) 

= a2 P[X2 = a2] + b2 P[X2 = b2] Va .b Va.b 

2 a 2 a 
=a (1 - --) + b (--) 

a+b a+b 
b b2a 

=a2--+-­
a+b a+b 

ab(a +b) b = =a. 
a+b 

GAMBLER 'S RUIN IN THE ASYMMETRIC CASE. Suppose now that 

P(Yt = 1] = p, P[Yt = -1] = 1- p =: q 

for p :j:. ! and 0 < p < 1. Then for u E R, 

and from Corollary 10.14.1, va,b is regular for the martingale 

and Wald's identity becomes 

To get rid of the denominator, substitute u = logq Ipso that 

e" p + e -u q = g_ · p + E.. · q = q + p = 1. 
p q 

Then with e" = q I p we have 

1 = E(exp{uXv •. bl) = e"0 P[vd < vb'] + e-ub P[vb' < v:]. 

Solving we get 

0 

0 
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10.15 Reversed Martingales 

Suppose that {Bn, n ?: 0} is a decreasing family of a-fields; that is, Bn :::> Bn+I· 
Call {(X n, Bn), n ?: 0} a reversed martingale if X n E Bn and 

This says the index set has been reversed. For n ~ 0, set 

Then B~ c B~ if n < m < 0 and {(X~ . B~), n ~ 0} is a martingale with index set 
{ ... , -2, -1, 0} with time flowing as usual from left to right. Note this martingale 
is closed on the right by X0 and for n < 0 

E(XoiB~) =X~. 

So the martingale {(X~ . B~). n ~ 0} is ui and as we will see, this implies the 
original sequence is convergent a.s. and in L I· 

Example. Let {~k. k ?: 1} be iid, Lt random variables. For n ?: 1 define Sn = 
I:?=t ~i and Bn = a(Sn, Sn+t. .. . ). Hence Bn is a decreasing family. For 
1 ~ k ~ n, Bn = a(Sn. ~n+t. ~n+2• ... ). Furthermore, by symmetry 

Adding over k = 1, 2, .. . , n, we get 

and thus 

n 

Sn = E(SniBn) = LE(~kiBn) = nE(~tiBn), 
k=I 

Sn - = E(StiBn) 
n 

which is a reversed martingale sequence and thus uniformly integrable. From The­
orem 10.15.1 below, this sequence is almost surely convergent. The Kolmogorov 
0-1law gives limn->oo ~ is a constant, say c. But this means 

1 
c = -E(Sn) = E(~t) . 

n 

Thus, the Reversed Martingale Convergence Theorem 10.15.1 provides a very 
short proof of the strong law of large numbers. 

Here are the basic convergence properties of reversed martingales. 

Theorem 10.15.1 (Reversed Martingale Convergence Theorem) Suppose that 
{Bn. n ?: 0} is a decreasing family of a-fields and suppose 
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is a positive reversed martingale. Set 

(i) There exists X 00 e B00 and X n ~ X 00 . 

(ii) E(XniBoo) = X00 almost surely. 

(iii) {Xn} is ui and Xn !:J. X00 • 

Proof. Recall X~ =X -n• B~ = B-n• n :::: 0 defines a martingale on the index set 
{ ... , -2, -1, 0}. Define 

o~nb = # downcrossings of [a, b] by Xo, . . . , Xn 

= # upcrossings of [a, b] by Xn, Xn-t. ... , Xo 

= # upcrossings of [a, b] by X~n' X~n+l, ... , Xo 
(n) 

= Yab · 

Now apply Dubins' inequality 10.8.4 to the positive martingale X'_n, . .. , X0 to 
get for n 2::: 1, 

P[v(n) > kiB' ] = P[o(n) > kiB ] 
r a,b - -n a,b - n 

X' 
:::; (~)k( ;n 1\ 1) 

a k Xn 
=(-) (-/\1). 

b a 

Taking E(·IB00) on both sides yields 

P[o=.b 2::: kiBoo):::: <~lE((~n A l)IBoo)· 

Asn too, 

o~;> t oa,b = # downcrossings of [a, b] by {Xo, Xt • . .. }, 

and 

Thus oa,b < oo almost surely for all a < b and therefore limn-+oo Xn exists 
almost surely. Set X oo = lim supn_. 00 X n so that X 00 exists everywhere, and 
Xn ~ X 00 a.s. Since Xn E Bn. and {Bn} is decreasing, we have for n 2::: p that 
Xn e Bp so X00 e Bp for all p. Thus 

Xoo e nBp =Boo. 
p 
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Now for all n 2:: 0, Xn = E(XoiBn) so {Xn} is ui by Proposition 10.11.1. Uniform 
integrability and almost sure convergence imply L 1 convergence. (See Theorem 
6.6.1 on page 191. This gives (iii). 

Also we have 

(10.59) 

Now let n ~ oo and use the fact that X n ~ X 00 implies that the conditional 
expectations are L 1-convergent. We get from (10.59) 

for any n 2:: 0. This concludes the proof. 0 

These results are easily extended when we drop the assumption of positivity 
which was only assumed in order to be able to apply Dubins' inequality 10.8.4. 

Corollary 10.15.1 Suppose (Bn} is a decreasing family and X e L 1· Then 

almost surely and in L 1· (The result also holds if { Bn } is an increasing family. See 
Proposition 10.11.2.) 

Proof. Observe that if we define {Xn} by Xn := E(XIBn), then this sequence is 
a reversed martingale from smoothing. From the previous theorem, we know 

a.s. and in L 1. We must identify X 00 • From L 1 -convergence we have that for all 
A E 13, 

L E(Xi13n)dP ~ L X00dP. 

Thus for all A e Boo 

L E(XiBn)dP = L XdP (definition) 

= L E(Xi13oo)dP (definition) 

~ L X00dP 

So by the Integral Comparison Lemma 10.1.1 

Xoo = E(XiBoo). 

(from (10.60)). 

(10.60) 

0 
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Example 10.15.1 (Dubins and Freedman) Let {Xn} be some sequence of ran­
dom elements of a metric space(§, S) defined on the probability space (Q, B, P) 
and define 

Bn = a(Xn, Xn+b · · · ). 

Define the tail a-field 

Proposition 10.15.2 Tis a.s. trivial (that is, A E T implies P(A) = 0 or 1) iff 

VA e B: sup IP(AB)- P(A)P(B)I ~ 0. 
Bel3n 

Proof. ~ . If T is a.s. trivial, then 

P(AIBn) ~ P(AIBoo) = P(AIT) = P(AI{0, Q}) = P(A) (10.61) 

a.s. and in L 1· Therefore, 

sup IP(AB)- P(A)P(B)I = sup IE(P(ABIBn))- P(A)£(1B)i 
Bel3n Bel3n 

= sup IE (1B{P(AIBn)- P(A)})I 
Bel3n 

~ sup E IP(AIBn) - P(A)I ~ 0 
Bel3n 

from (10.61). 
+-.If A E T, then A E Bn and therefore 

P(A n A) = P(A)P(A) 

which yields P(A) = (P(A))2. 0 

Call a sequence {X n} of random elements of (§, S) mixing if there exists a 
probability measure F on S such that for all A e S 

P[Xn e A]~ F(A) 

and 

P([Xn e ·] n A) ~ F(·)P(A). 

So {Xn} possesses a form of asymptotic independence. 

Corollary 10.15.2 If the tail a-field T of {Xn} is a.s. trivial, and 

P[Xn e ·] ~ F(·), 

then {Xn} is mixing. 
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10.16 Fundamental Theorems of 
Mathematical Finance 

This section briefly shows the influence and prominence of martingale theory in 
mathematical finance. It is based on the seminal papers by Harrison and Pliska 
(1981), Harrison and Krebs (1979) and an account in the book by Lamberton and 
Lapeyre (1996). 

10.16.1 A Simple Market Model 

The probability setup is the following. We have a probability space (Q, B, P) 
where n is finite and B is the set of all subsets. We assume 

P({w}) > 0, Yw E Q. (10.62) 

We think of w as a state of nature and (10.62) corresponds to the idea that all 
investors agree on the possible states of nature but may not agree on probability 
forecasts. 

There is a finite time horizon 0, 1, ... , N and N is the terminal date for eco­
nomic activity under consideration. There is a family of a-fields Bo C 81 C 
· · · c BN = B. Securities are traded at times 0, 1, ... , Nand we think of Bn as 
the information available to the investor at time n. We assume Bo = {Q, 0}. 

Investors traded+ 1 assets (d :::: 1) and the price of the ith asset at time n is 

S~i) fori = 0, 1, ... , d. Assets labelled 1, ... , dare risky and their prices change 
randomly. The asset labelled 0 is a riskless asset with price at time n given by S~O), 
and we assume as a normalization S~O) = 1. The riskless asset may be thought 
of as a money market or savings account or as a bond growing deterministically. 
For instance, one model for {S~O), 0 ::: n ::: N} if there is a constant interest rate 
r, is S~0> = (1 + r)n. We assume each stochastic process {S~i)' 0 ::: n ::: N} 
is non-negative and adapted so that 0 :S S~i) E Bn for i = 0, ... , d. Assume 
S~O) > 0, n = 0, ... , N. We write 

{Sn = (S~0>, S~l), ... , S~d>), 0 :S n :S N} 

for the JRd+I.valued price process. 
Since the money market account is risk free, we often wish to judge the quality 

of our investments in terms of how they compare to the riskfree asset. We can 

apply the discount factor f3n = 1/ S~O) to our price process and get the discounted 
price process 

{Sn = Sn/S~0>, 0::: n::: N} 

which may be thought of as the original price process denominated in units of the 

current price of the riskless asset. Note that s~O) = 1. 
The change in the prices from period to period is given by the JRd+I.valued 

process 
do= So, dn = Sn- Sn-t. n = 1, ... , N 
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and the change in the discounted prices is 

do= So, dn = Sn- Sn-t. n = 1, ... , N. 

-(0) 
Notethatdn ::Oforn = 1, ... ,N. 

A TRADING STRATEGY is an JRd+1-valued stochastic process 

which is predictable, so that for each i = 0, ... , d, we have <P~i) E Bn-l for 
n>l. 

Note that since Q is finite, each random variable I<P~i) I, 0 ::; n ::: N, 0 ::: i ::: d 
is bounded. Think of the vector cPn as the number of shares of each asset held 
in the investors portfolio between times n - 1 and n based on information that 
was available up to time n - 1. At time n, when new prices Sn are announced, 
a repositioning of the investor's portfolio is enacted leading to a position where 
cPn+t shares of each asset are held. When the prices Sn are announced and just 
prior to the rebalancing of the portfolio, the value of the portfolio is 

d 

Vn(cP) = (c/Jn, Sn) = c/J~Sn = L, <P~i)S~il. 
i=O 

The discounted value process is 

To summarize: we start with value Vo(c/J) = (c/>0 , So). Now So is known so 
we can rebalance the portfolio with cp1. The current value ( <P1o So) persists un­
til prices St are announced. When this announcement is made, the value of the 
portfolio is Vt (c/J) = (c/>1, St). Then since St is known, we rebalance the port­
folio using 4>2 and the value is (c/>2, St) until S2 is announced when the value is 
(c/Jz, Sz) and so on. 

A trading strategy c/J is called self-financing if we have 

(10.63) 

This means that at time n, just after prices Sn are announced, the value of the 
portfolio is (c/Jn, Sn). Then using the new information of the current prices, the 
portfolio is rebalanced using cPn+l yielding new value (cPn+l• Sn). The equality 
in (10.63) means that the portfolio adjustment is done without infusing new capital 
into the portfolio and without consuming wealth from the portfolio. 

Here are some simple characterizations of when a strategy is self-financing. 

Lemma 10.16.1 If c/J is a trading strategy, then the following are equivalent: 

(i) c/J is self-financing. 
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(ii) For 1 ::::: n ::::: N 

n 

Vn(cf>) = Vo(cf>) + L(cf>j, dj). (10.64) 
j=l 

(iii) For 1 ::::: n ::::: N 

n 

Vn(cf>) = Vo(cf>) + L(cf>j,dj). (10.65) 
j=1 

Proof. Observe that the self-financing condition (10.63) is equivalent to 

(10.66) 

which says that for a self-financing strategy, changes in the value function are due 
to price moves. Summing (10.66) over j = 0, ... , n gives (10.64). Conversely, 
differencing (10.64) yields (10.66) and hence (10.63). Next, in (10.63) multiply 
through by the discount factor fJn to get ( cf>n, Sn) = ( cf>n+ 1, Sn) or 

Proceed as in (ii). D 

Note that since tij0> = 0, for j = 1, ... , N we can rewrite (10.65) as 

n d 

V n(cf>) = Vo(cf>) + L L <Pji>tij> (10.68) 
j=1 i=1 

showing that the discounted wealth at n from a self-financing strategy is only 
dependent on Vo(cf>) and f<Pji),i = 1, ... ,d; j = 1, ... ,n}. The next result 

shows that if a predictable process { <<P?>, <PY>, ... , <Pjd>), 1 ::::: j ::::: N} and an 
initial value Vo e Bo is given, one may always find a unique predictable process 

(0) . (0) (1) (d) . • 
{tPj , 0 ::S: J ::S: N} such that cf> = {(tPj , tPj , ... , tPj ), 0 ::::: J ::::: N} IS self-
financing. 

Lemma 10.16.2 Given { <t~J?>, t~Jj2>, •. • , t~Jjd>), 1 ::::: j ::::: N}, a predictable pro­
cess, and a non-negative random variable Vo e Bo, there exists a unique pre­
dictable process f<Pj0>, 0::::: j ::::: N} such that 

cf> = { (tPJO)' tPJl)' .. • 'tPJd>), 0 ::S: j ::S: N} 

is self-financing with initial value Vo. 
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Proof. Suppose (¢0, ... , ¢N) is a self-financing strategy and that Vo is the initial 
wealth. On the one hand, we have (10.68) with Vo replacing Vo(¢) and on the 
other hand, we have from the definition that 

d 

=<P~o> 1 + L <P~i)s~i>. (10.69) 
i=1 

Now equate (10.69) and (10.68) and solving for <P~O), we get 

n d d 

<P~o> =Vo + L L <PY>li)O- L <P~i)s~> 
j=1i=1 i=1 
n-1 d . d . . . 

=Vo +I: I: <P~i)lij> +I: <P~i> (<~>- s~~1)- s~>) 
j=1 i=1 i=1 
n-1 d d 

=VI + """" ,~,~i)(j~) + "",~,.(i)(-S(i) ) E B 
0 ~~'1"1 1 ~'f'n n-1 n-t. 

j=1 i=1 i=1 

. ,~,<i> B & • 1 d smce '~"n- 1 E n-110r l = , ... , . 
This shows how <P~O) is determined if the strategy is self-financing, but it also 

shows how to pick <P~O), given Vo and { ( <P~i), 1 ::: i ::: d), n = 1, ... , N} to make 
the strategy self-financing. D 

10.16.2 Admissible Strategies and Arbitrage 

There is nothing in our definitions that requires 4> ;::: 0. If <P~i) < 0 for some 
i = 0, 1, ... , d, then we are short I<P~i) I shares ofthe asset. We imagine borrowing 
I<P~i) I shares to produce capital to invest in the other hot assets. We want to restrict 
the risk inherent in short sales. 

We call 4> an admissible strategy if 4> is self-financing and 

Vn(t/>);::: 0, n = 0, ... , N. 

This is a kind of margin requirement which increases the likelihood of being able 
to pay back what was borrowed should it be necessary to do so at any time. Not 
only do we require that the initial value Vo(¢) be non-negative, but we require 
that the investor never be in a position of debt. 

In fair markets in economic equilibrium, we usually assume there are no arbi­
trage opportunities. An arbitrage strategy 4> is an admissible strategy satisfying 
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for some wo E n. Equivalently, we require 

Vo(</>) = 0 and E(VN(tP)) > 0. (10.70) 

Such arbitrage strategies, if they exist, represent riskless stategies which produce 
positive expected profit. No initial funds are required, the investor can never come 
out behind at time N, and yet the investor can under certain circumstances make a 
positive profit. Markets that contain arbitrage opportunities are not consistent with 
economic equilibrium. Markets without arbitrage opportunities are called viable. 

The next subsection characterizes markets without arbitrage opportunities. 

10.16.3 Arbitrage and Martingales 

There is a fundamental connection between absence of arbitrage opportunities 
and martingales. 

Recall the given probability measure is P. For another probability measure P*, 
we write P* = P if P « P* and P* « P so that P and P* have the same null 
sets. 

Theorem 10.16.1 The market is viable iff there exists a probability measure P* = 
P such that with respect toP*, {(Sn, Bn). 0 ~ n ~ N} is a P*-martingale. 

Remark. Since Sn is JRd+l_valued, what does it mean for this quantity to be a 
martingale? One simple explanation is to interpret the statement component-wise 

-(i) 
so that the theorem statement asserts that for each i = 0, ... , N, {(Sn , Bn). 0:::: 
n ~ N} is a P*-martingale. 

A measure P* which makes {(Sn, Bn), 0:::: n :::: N} a P*-martingale is called 
an equivalent martingale measure or a risk neutral measure. 

Proof. Suppose first that P* = P and {(Sn, Bn), 0:::: n:::: N} is a P*-martingale. 
Then {(dn, Bn), 0 ~ n ~ N} is a P*-martingale difference and thus 

From (10.65) we see that fVn(</>), 0:::: n:::: N} is a P*-martingale transform, and 
hence a martingale. Thus 

(10.71) 

Suppose now that an arbitrage strategy <P exists. Then by definition Vo( <P) = 0 
and from (10.71), we get E*(V N(tP)) = 0. Since <Pis admissible, VN(tP) ~ 0 
and this coupled with a zero E* -expectation means V N ( <P) = 0 P* -almost surely, 
and thus (since P* = P) alsoP-almost surely. Since P({w}) > 0 for all we n, 
we have no exception sets and hence V N ( <P) = 0. This contradicts the definition 
of an arbitrage strategy, and we thus conclude that they do not exist. 

We now consider the converse and for this we need the following lemma. 
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Lemma 10.16.3 Suppose there exists a self-financing strategy 4> which, while 
not necessarily admissible, nonetheless satisfies Vo(¢) = 0, VN(¢) ~ 0 and 
E (V N ( 4>)) > 0. Then there exists an arbitrage strategy and the market is not 
viable. 

Proof of Lemma 10.16.3. If Vn(¢) ~ 0, n = 0, . .. , N, then 4> is admissible and 
hence an arbitrage strategy. 

Otherwise, there exists 

no= sup{k : P[Vk(¢) < 0] > 0}, 

and since VN(¢) ~ 0 we have 1 ~no~ N- 1 and thus 

(a) P[Vn0 (¢) < 0] > 0, 

(b) Vn(¢) ~ 0, no< n ~ N . 

We now construct a new strategy 1/J = (1j.J0, .. . , 1/JN ). To do this define 

eo = (1, 0, ... , 0) E JRd+I. 

The definition of 1/J is 

if k ~no, 

if k >no. 

(10.72) 

(10.73) 

(10.74) 

We observe from its definition that 1/J is predictable, and in a series of steps we 
will show 

(i) 1/J is self-financing, 

(ii) 1/J is admissible, 

(iii) E(VN('I/J)) > 0, 

and hence 1/J is an arbitrage strategy and thus the market is not viable. 
We now take up (i), (ii) and (iii) in turn. 
STEP (I). To show 1/J is self-financing, we need to show 

(10.75) 

fork = 0, . .. , N- 1. First of all, fork+ 1 ~ no both sides of (10.75) are 0. Now 
consider the case k > no. We have 

(10.76) 
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and because </> is self-financing we get 

as required. 
The last case to consider is k = no. In this case (1/Jk, Sk) = 0 and we need to 

check that (1/Jk+l, Sk) = 0. This follows: 

and again using the fact that</> is self-financing this is 

since (</>no• Sn0 ) = Vn0 (</>). Thus 1/J is self-financing. 
STEP (II). Next we show 1/J is admissible. First of all, fork ~ no we have 

Vk('I/J) = 0 so we focus on k > no. For such k we have from (10.76) that 
Vk('I/J) ~ 0 since on [Vn0 (</>) < OJ the term Vn0 (</>)S!0> /S~~> < 0. This verifies 
the admissibility of 1/J. 

STEP (III). Now we finish the verification that 1/J is an arbitrage strategy. This 
follows directly from (10.76) with N substituted for k since VN('I/J) > 0 on 
[Vn0 ( </>) < 0]. So an arbitrage strategy exists and the market is not viable. 0 

We now return to the proof of the converse of Theorem 10.16.1. Suppose we 
have a viable market so no arbitrage strategies exist. We need to find an equivalent 
martingale measure. Begin by defining two sets of random variables 

r :={X : Q ~ R : X ~ 0, E (X) > 0} 

V :={VN(</>): Yo(</>)= 0, </>is self-financing and predictable}. 

Lemma 10.16.3 implies that r n V = 0. (Otherwise, there would be a strategy</> 
such that VN(</>) ~ 0, E(VN(</>)) > 0 and Vo(</> = 0 and Lemma 10.16.3 would 
imply the existence of an arbitrage strategy in violation of our assumption that the 
market is viable.) 
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We now think of r and V as subsets of the Euclidean space !Rn, the set of 
all functions with domain Q and range JR. (For example, if Q has m elements 
WJ, .•. , Wm, we can identify !Rn with !Rm .) The set Vis a vector space. To see 
this, suppose tjl(1) and tjl(2) are two self-financing predictable strategies such 
that VN(tP(i)) e V fori= 1, 2. For real numbers a, b we have 

and 
0 = aVo(<JI(1)) + bVo(<JI(2)) = Vo(atjl(1) + btjl(2)) 

and aVN(tP(1)) + bVN(tP(2)) is the value function corresponding to the self­
financing predictable strategy a¢(1) + btjl(2); this value function is 0 at time 0. 
Thus aVN(tP(1)) + bVN(¢(2)) E V. 

Next define 
/(:={X E r: L X(w) = 1} 

wen 

so that JC c r. Observe that JC is closed in the Euclidean space !Rn and is compact 
and convex. (If X, Y e JC, then we have LwaX(w)+(1-a)Y(w) = a+1-a = 1 
for 0 ~a ~ 1.) Furthermore, since V n r = 0, we have V n JC = 0. 

Now we apply the separating hyperplane theorem. There exists a linear function 
A : !Rn f-+ lR such that 

(i) A(X) > 0, for X e JC, 

(ii) A(X) = 0, for X e V. 

We represent the linear functional A as the vector 

A= (A(w),w e Q) 

and rewrite (i) and (ii) as 

(i') Lwen A(w)X(w) > 0, for X E JC, 

(ii') Lwen VN(<JI)(w) = 0, for VN(tP) E V, so that <Pis self-financing and 
predictable. 

From (i') we claim A(w) > 0 for all we Q. The reason for the claim, is that if 
A(wo) = 0 for some wo, then X= 1(wol satisfies LwenX(w) = 1 so X E JC but 

L A(w)X(w) = A(wo) = 0 
wen 

violates (i'). 
Define P* by 

P*(w)- A(w) 
- Lw'en A(w') . 
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Then P*(w) > 0 for all w so that P* = P. It remains to check that P* is that 
which we desire: an equivalent martingale measure. 

For any VN(¢) e V, (ii') gives 

L .X(w)VN(¢)(w) = 0, 
weQ 

so that, since Vo(¢) = 0, we get from (10.65) 

N 

E*(L(cPj• dj)) = 0, (10.77) 
j=l 

for any ¢which is predictable and self-financing. 

Now pick 1 ::: i ::: d and suppose (¢~i), 0 ::: n ::: N) is any predictable process. 
Using Lemma 10.16.2 with Vo = 0 we know there exists a predictable process 
( ¢~0>, 0 ::: n ::: N) such that 

¢# := { (¢~0>, 0, ... , 0, ¢~i), 0, ... , 0), 0 ::: n ::: N} 

is predictable and self-financing. So applying (10.77), we have 

N N d 

0 =E*(L<¢1, dj)) = E*(LL¢r>-aj>) 
j=l j=Il=I 

N 

=E*(E r~>Y>ti~i>). (10.78) 
j=I 

Since (10.78) holds for an arbitrary predictable process {¢ji), 0 ::: j ::: N}, we 

conclude from Lemma 10.5.1 that {(S~i), Bn), 0::: n::: N} is a P*-martingale. 0 

Corollary 10.16.1 Suppose the market is viable and P* is an equivalent martin­
gale measure making {(Sn, Bn), 0::: n ::: N} a P*-martingale. Then 

is a P* -martingale for any self-financing strategy ¢. 

Proof. If¢ is self-financing, then by (10.65) 

n 

Vn(¢) = Vo(¢) + L(cPj• dj) 
j=l 

so that { (V n ( ¢), Bn), 0 ::: n ::: N} is a P *-martingale transform and hence a 
martingale. 0 
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10.16.4 Complete Markets 

A contingent claim or European option of maturity N is a non-negative BN = 
B-measurable random variable X. We think of the contingent claim X paying 
X (w) 2:: 0 at time N if the state of nature is w. An investor may choose to buy or 
sell contingent claims. The seller has to pay the buyer of the option X (w) dollars 
at time N. In this section and the next we wlfl see how an investor who sells a 
contingent claim can perfectly protect himself or hedge his move by selling the 
option at the correct price. 

Some examples of contingent claims include the following. 

• European call with strike price K . A call on (for example) the first asset 
with strike price K is a contingent claim or random variable of the form 
X = (S~> - K)+ . If the market moves so that s~> > K, then the holder 
of the claim receives the difference. In reality, the call gives the holder the 
right (but not the obligation) to buy the asset at price K which can then be 
sold for profit (S~)- K)+. 

• European put with strike price K . A put on (for example) the first asset 
with strike price K is a contingent claim or random variable of the form 
X = (K- s~>)+. The buyer of the option makes a profit if s~> < K . 
The holder of the option has the right to sell the asset at price K even if the 
market price is lower. 

There are many other types of options, some with exotic names: Asian options, 
Russian options, American options and passport options are some examples. 

A contingent claim X is attainable if there exists an admissible strategy </J such 
that 

The market is complete if every contingent claim is attainable. Completeness will 
be shown to yield a simple theory of contingent claim pricing and hedging. 

Remark 10.16.1 Suppose the market is viable. Then if X is a contingent claim 
such that for a self-financing strategy cpwe have X= VN(</J), then <Pis admissible 
and hence X is attainable. 

In a viable market, if a contingent claim is attainable with a self-financing strat­
egy, this strategy is automatically admissible. To see this, suppose P* is an equiva­
lent martingale measure making { (Sn, Bn), 0 ;::: n ;::: N} a vector martingale. Then 
if <Pis self-financing, Lemma 10.16.1 implies that { (V n(</J ), Bn ), 0 ;::: n ;::: N} is 
a P* -martingale. By the martingale property 

However, 0 :::: X = V N ( <P) and hence V N ( <P) 2:: 0 so that V n ( </J) > 0 for 
0 :::: n :::: N, and hence <P is admissible. o 
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Theorem 10.16.2 Suppose the market is viable so an equivalent martingale mea­
sure P* exists. The market is also complete iff there is a unique equivalent mar­
tingale measure. 

Proof. Suppose the market is viable and complete. Given a contingent claim X, 
there is a strategy cJ> which realizes X in the sense that X= VN(c/>) . Thus we get 
by applying Lemma 10.16.1 that 

X VN(c/>) - ~ -
(0) = ~ = V N(cJ>) = Vo(c/>) + L.)¢j. dj) . 
SN SN j=1 

Suppose P!, Pi are two equivalent martingale measures. Then by Corollary 10.16.1 
{(V n(c/>), Bn), 0::::; n::::; N} is a P;"'-martingale (i = 1, 2). So 

Et(V N(c/>)) = E1(Vo(c/>)) = Vo(c/>), 

since Bo = {0, Q}. We conclude that 

Et<x;s<:>) = Ei<x;s<:>) 

for any non-negative X E BN . Let X = lAs<:> for arbitrary A E BN = Band we 
get 

Et(lA) = P!(A) = Pi(A) = Ei(lA), 

and thus P! = Pi and the equivalent martingale measures are equal. 
Conversely, suppose the market is viable but not complete. Then there exists 

a contingent claim 0 :::: X such that, for no admissible strategy c/>, is it true that 
X= VN(cJ>). 

Now we employ some elementary L 2-theory. Define 

N d 

1t := { Uo + L L ¢~i) d~i) : Uo E Bo, ¢~1 >, ... , ¢~d) are predictable.} 
n=l i=l 

By Lemma 10.16.2 there exists ¢~0>, 1 :::: n :::: N} such that 

cJ> := { (¢~0>, ... , ¢~d), 0 :::: n :::: N} 

is self-financing. Then with such {¢~0>}, since 'i/,.0) = 0, 1 :::: n :::: N, we have 

N d N 

"' "' (') -(i) "' -Uo+ ~~¢n' dn = Uo+ ~(c/>n,dn)· 
n=l i=l n=l 

Thus, X ;s<:> ¢ 1t since if it were, there would be a self-financing (and hence by 
Remark 10.16.1 also admissible) strategy such that 

N 
X "' - - VN(¢) 

(0) = Uo + ~(c/>n, dn) = V N(c/>) = ~· 
SN n=l SN 
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Since the market is viable, there exists an equivalent martingale measure P* . 
All random variables are bounded since n is finite. Now consider L2(P*) with 
inner product (X, Y) = E*(XY). Then 'H. is a subspace of L2(P*) since it is 

clearly a vector space and it is closed in L 2(P*). So 'H. =f. L2(P*) since X IS~) rt 
'H. means that there exists ; =f. 0 with ; e 'H. J., the orthogonal complement of 'H.. 
Define 

llsllv =sup ls(w)l 
wen 

and 

P**({w}) = ( 1 + ~~~~)v) P*({w}), 

and observe 

~ p**({w}) - 1 ~ ~(w) P*({w}) - 1 E*(s) -
~ - + ~" 211sllv - + 211sllv - 1, 
wen wen 

since we claim that E*(s) = 0. To check this last claim, note that 1 e 'H. and 
(1, s) = 0 (since s E 'H.J.) means £*(s1) = E*(s) = 0. Also observe that 

l211!uvl ~ ~· 
so that 

1+-;- >0. 
211sllv 

We conclude that P** is a probability measure and that P** = P* = P. Further­

more, for any predictable process { (¢~1 ), .. . , ¢~d)), 0 ~ n ~ N}, we may add the 

predictable component {¢~0), 0 ~ n ~ N} making the full family self-financing 
with Vo = 0. So 

n 

Vn(¢) = L(cf>n, dn) 
n=l 

and V N ( cl>) e 'H.. Since ; E 'H. J., we have 

0 = (V N(cf>), s) = E*(V N(cf>)s) = L VN(cf>)(w)s(w)P*({w}). 
wen 

Therefore, using the martingale property and orthogonality, 

E**V N(cf>) = ~ V N(cf>)(w) ( 1 + ~~~~)v) P*({w}) 

=E*V (c/>) + E* (V N(cf>)s) 
N 211sllv 

=0+0. 
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Since the predictable process is arbitrary, we apply Lemma 10.5.1 to conclude that 
{(Sn, Bn). 0 ::: n ::: N} is a P**-martingale. There is more than one equivalent 
martingale measure, a conclusion made possible by supposing the market was not 
complete. 0 

10.16.5 Option Pricing 

Suppose X is a contingent claim which is attainable by using admissible strategy 
¢ so that X = V N ( ¢). We call Vo ( ¢) the initial price of the contingent claim. 

If an investor sells a contingent claim X at time 0 and gains Vo(¢) dollars, 
the investor can invest the Vo(¢) dollars using strategy ¢so that at time N, the 
investor has V N ( ¢) = X dollars. So even if the investor has to pay to the buyer X 
dollars at time N, the investor is perfectly hedged. 

Can we determine Vo(¢) without knowing¢? Suppose P* is an equivalent 
martingale measure. Then we know {(V n(¢), Bn). 0::: n ::: N} is a P*-martingale 
so 

and 

So the price to be paid is E*(Xjs'J>). This does not require knowledge of¢, but 
merely knowledge of the contingent claim, the risk free asset and the equivalent 
martingale measure. 

Furthermore, by the martingale property, 

that is, 

This has the interpretation that if an investor sells the contingent claim at time n 
(with information Bn at his disposal), the appropriate sale price is Vn ( ¢) dollars 
because then there is a strategy ¢ which will make the Vn ( ¢) dollars grow to X 
dollars by time N and the investor is perfectly hedged. The price Vn ( ¢) can be 
determined as S~O) E*(X/S~)Il3n), so pricing at time n does not need knowledge 
of ¢ but only knowledge of the P*, X and the risk free asset. 

Is there more than one initial price that generates wealth X at time N? Put 
another way, is there more than one strategy ¢whose initial values Vo(¢) are 
different but each generates the contingent claim X? Essentially, the answer is 
negative, provided the market is viable and complete. See Exercise 56. 
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10.17 Exercises 

1. (a) If). and J.L are finite measures on (Q, B) and if J.L «).,then 

for any J.L-integrable function f. 
(b) If)., J.L and v are finite measures on (Q, B) such that v « J.L and J.L « )., 
then 

dv dv dJ.L 

d). = dJ.L d).' 

a.e. ).. 

(c) If J.L and v are finite measures which are equivalent in the sense that each 
is AC with respect to the other, then 

dv = (dJ.L)-l, 
dJ.L dv 

a.e. J.L, v. 

(d) If J.Lk> k = 1, 2, ... and J.L are finite measures on (Q, B) such that 

00 

L J.Lk(A) = J.L(A) 
i=l 

for all A e B, and if the J.Lk are AC with respect to a a-finite measure )., 
then J1. « ). and 

10 d L:7=1 J.Li dJ.L Im =-, 
n-+oo d). d). 

a.e. ).. 

Hints: (a) The equation holds for fan indicator function, hence when f is 
simple and therefore for all integrable f. (b) Apply (a) with f = dvfdJ.L. 

2. Let (Q, B, P) be a probability space and let~ be a positive random variable 
with£(~)= 1. Define P*(A) =fA ~dP. Show 

(a) E*(X) = E(X~) for any random variable X::: 0. 

(b) Prove for any X ::: 0 that 

for any random variables Y1, .. . , Yn. 
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3. If X E L 1, Y E L 00 , Q C B, then 

E(YE(XIQ)) = E(XE(YIQ)). 

4. Suppose Y E Lt and Xt. X2 are random vectors such that a(Y, X1) is 
independent of a(X2). Show almost surely 

(Hint: What is an expression for A E a (XI. X2) in terms of X1, X2? 

5. If {N(t), t :::: 0} is a homogeneous Poisson process with rate>.., what is 
E(N(s)IN(t)) forO:;: s < t. 

6. If U is U(O, 1) on (Q, B, P) define Y = U(1- U). For a positive random 
variable X, what is E(XIY). 

7. Suppose XI. X2 are iid unit exponential random variables. What is 

(a) E(Xt!Xt + X2)? 

(b) P[Xt < 31Xt +X2]? 

(c) E(XtlXt 1\ t)? 

(d) E(XtlXt Vt)? 

8. Suppose X, Y are random variables with finite second moments such that 
for some decreasing function f we have E(XIY) = /(Y). Show that 
Cov(X, Y) :: 0. 

9. Weak Lt convergence. We say Xn converges weakly in Lt to X iff for 
any bounded random variable Y, we have E(XnY) ~ E(XY). Show this 
implies E(Xnl9) converges weakly in Lt to E(XIQ) for any a-field Q c B. 

10. Let X be an integrable random variable defined on the space (Q, B, P) and 
suppose Q C B is a sub-a-field. Prove that on every non-null atom A of Q, 
the conditional expectation E (XIQ) is constant and 

E(XIQ)(w) = i XdP/P(A), wE A. 

Recall that A is a non-null atom of Q if P(A) > 0 and A contains no 
subsets belonging to Q other than 0 and Q. 

11. Let 4> : lR ~ JR. Let X, Y be independent random variables. For each x E lR 
define 

Q(x, A):= P[</J(x, Y) E A). 

Show 
P[</>(X, Y) E A IX)= Q(X, A) 
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almost surely. 

Now assume¢ is either bounded or non-negative. If h(x := E(¢(x, Y)), 
then 

E(¢(X, Y)IX) = h(X), 

almost surely. 

12. (a) For 0::: X E L 1 and g C B, show almost surely 

E(XIQ) = fooo P[X > tiQ]dt. 

(b) Show 
P[IXI::: tiQ]::: t-kE(IXIkjQ). 

13. If 81 C Bz c Band E (X2) < oo, then 

14. Let {Yn,n :=: 0} be iid, E(Yn) = 0, E(Y;) = a 2 < 00. Set Xo = 0 and 
show from first principles that 

is a martingale. 

n 

Xn = (LYk)2 - na2 

i=1 

15. Suppose {(Xn, Bn), n :=: 0} is a martingale which is predictable. Show 
Xn = Xo almost surely. 

16. Suppose {(Xn, Bn), n :=: 0} and {(Yn, Bn), n :=: 0} are submartingales. 
Show {(Xn v Yn, Bn), n :=: 0} is a submartingale and that 
{(Xn + Yn. Bn), n :=: 0} is as well. 

17. Polya urn. (a) An urn contains b black and r red balls. A ball is drawn at 
random. It is replaced and moreover c balls of the color drawn are added. 
Let Xo = bj(b + r) and let Xn be the proportion of black balls attained 
at stage n; that is, just after the nth draw and replacement. Show {X n} is a 
martingale. 

(b) For this Polya urn model, show X n converges to a limit almost surely 
and in L p for p :=: 1. 

18. Suppose (Q, B, P) = ([0, 1), B([O, 1)), A) wh~ A is Lebesgue measure. 
Let Bn = a([k2-n, (k + 1)2-n), 0 ::: k < 2n). Suppose f is a Lebesgue 
integrable function on [0, 1). 

(a) Verify that the conditional expectation E(fiBn) is a step function con­
verging in L 1 to f. Use this to show the Mean Approximation Lemma (see 
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Exercise 37 of Chapter 5): Iff > 0, there is a continuous function g defined 
on [0, 1) such that 

{ lf(x)- g(x)ldx <f. 
1(0,1) 

(b) Now suppose that f is Lipschitz continuous meaning for some K > 0 

1/(t)-/(s)I~Kit-sl, O~s<t<l. 

Define 

(/((k + 1)2-n)- f(k2-n)) 
fn(X) = 2_n 1(!kz-n,(k+1)2-n)](X), X E [0, 1) 

and show that { <fn, Bn), n :::: 0} is a martingale, that there is a limit f 00 

such that fn --+ f oo almost surely and in L 1, and 

/(b)- f(a) = 1b foo(s)ds , 0 ~a < b < 1. 

19. Supppose {(Xn, Bn), n :::: 0} is a martingale such that for all n :::: 0 we have 
Xn+liXn e L1. Prove E(Xn+I!Xn) = 1 and show for any n :::: 1 that 
X n+l I X n and X nIX n-1 are uncorrelated. 

20. (a) Suppose {Xn , n :::: 0} are non-negative random variables with the prop­
erty thatXn = 0 impliesXm = 0 for allm :::: n. DefineD= U~0[Xn = 0] 
and assume 

P[DIXo, ... , Xn]:::: <5(x) > 0 almost surely on [Xn :::: x]. 

Prove 
P{D U [lim Xn = oo]} = 1. 

n-+oo 

(b) For a simple branching process {Zn, n :::: 0} with offspring distribution 
{Pk} satisfying P1 < 1, show 

P[ lim Zn = 0 or oo] = 1. 
n-+oo 

21. Consider a Markov chain {Xn. n :::: 0} on the state space {0, ... , N} and 
having transition probabilities 

(N) ( · )j ( · )N-j 
Pii = j ~ 1- ~ 

Show {Xn} and 

{V. = Xn(N -Xn) n > O} 
n (1 - N-1 )n ' -

are martingales. 
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22. Consider a Markov chain {Xn, n ~ 0} on the state space {0, 1, ... } with 
transition probabilities 

e-iii 
Pii = -.1-, j ~ 0, i ~ 0 

1· 
and poo = 1. Show {Xn} is a martingale and that 

P(v~0Xn ~ xiXo = i)::: ijx. 

23. Consider a game of repeatedly tossing a fair coin where the result ~k at 
round k has P[~k = 1) = P[~k = -1) = 1/2. Suppose a player stakes 
one unit in the first round and doubles the stake each time he loses and 
returns to the unit stake each time he wins. Assume the player has unlimited 
funds. Let Xn be the players net gain after the nth round. Show {Xn} is a 
martingale. 

24. Suppose {(X n, Bn), n ~ 0} is a positive supermartingale and v is a stopping 
time satisfyingXv ~ Xv-l on (0 < v < oo). Show 

Mn := IX(v-l)An• 
0, 

if v ::: 1, 

ifv = 0 

is a new positve supermartingale. In particular, this applies to the stopping 
time Va = inf{n ~ 0 : Xn > a} and the induced sequence {Mn} satisfies 
0 :5 Mn :5 a. 

25. The Haar functions on (0, 1) are defined by 

Ht (t) ::1, H2(t) = 11, if 0 ::: t < 1/2, 

-1; if 1/2::: t < 1, 

H2n+1 (t) = -2nj2, if 2-<n+I) :5 t < 2-n, 1
2n/2 if 0 ::: t < 2-(n+l). 

0, otherwise, 

(j -1) 
H2n+j(t) =H2n+I(t- --), j = 1, ... ,2n. 2n 

Plot the first 5 functions. 

Let f be measurable with domain (0, 1) and satisfying J~ lf(s)lds. Define 

Ak :=lot f(t)Hk(t)dt. 

Let Z be a uniform random variable on [0, 1]. Show 
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almost surely and 

11 n 

lim 1/(s)- I>kHk(s)lds = 0. 
n--+oo 0 k=l 

Hints: Define Bn = u(H;(Z), i ::::: n), and show that E(f(Z)IBn) = 
Lk=l akHk(Z). Check that EH;(Z)Hk(Z) = 0 fori# k. 

26. Let {Yn} be random variables with E(IYnD < oo. Suppose for n ::: 0 

E(Yn+liYo, ... , Yn) =On+ bnYn, 

where bn # 0. Let 

and set 
Ln(y) = Zt(l2<· .. (/;(y) ... ) 

(functional composition). Show for any k that 

{(Xn = kLn<Yn), u(Yo, ... , Yn). n::: 0} 

is a martingale. 

Special cases include 

(a) The Polya urn. 

(b) The simple branching process. 

(c) Supppse Yo is uniformly distributed on [0, 1]; given Yn, we suppose 
Yn+l is uniform on [Yn. 1]. Then Xn = 2n(1- Yn) is a martingale. 

27. If v is a stopping time with respect to {Bn. n ::: 0}, show that a random 
variables is Bv-measurable iff s1[v=nl e Bn for n eN. 

28. Suppose that {Yn. n ::: 1} are independent, positive random variables with 
E(Yn) = 1. PutXn = 07=1 Y; . 

(a) Show {Xn} is an integrable martingale which converges a.s. to an inte­
grable X. 

(b) Suppose specifically that Yn assumes the values 1/2 and 3/2 with prob­
ability 1/2 each. Show that P[X = 0] = 1. This gives an example where 

E (Jjy•) ,< fl E(Y;), 

for independent, positive random variables. Show, however, that 

always holds. 
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29. If {Xn} is a martingale and it is bounded either above or below, then it is 
L 1-bounded. 

30. Let X n, n ::=: 0 be a Markov chain with countable state space which we can 
take to be the integers and transition matrix P = (p; j). A function </> on the 
state space is called excessive or superharmonic if 

</>(i) :::: L Pij</>(j) . 
j 

Show using martingale theory that </>(X n) converges with probability 1 if</> 
is bounded and excessive. Deduce from this that if the chain is irreducible 
and persistent, then </> must be constant. 

31. Use martingale theory to prove the Kolmogorov convergence criterion: Sup­
pose {Yn} is independent, EYn = 0, EYJ < 00. Then, if Lk EYf < oo, we 
have Lk Yk converges almost surely. Extend this result to the case where 
fYn} is a martingale difference sequence. 

32. Let {Zo = 1, Zt. Z2, ... } be a branching process with immigration. This 
process evolves in such a way that 

Zn+l = Z~l) + · · · + z~Zn) + ln+l 

where the {Z~i), i ::: 1} are iid discrete integer valued random variables, 
each with the offspring distribution {p j} and also independent of Z n. Also 
{I j , j ::: 1} are iid with an immigration distribution (concentrating on the 
non-negative integers) and In+l is independent of Zn for each n. Suppose 
E Z 1 = m > 1 and that E It = >.. > 0. 

(a) What is E(Zn+liZn)? 

(b) Use a martingale argument to prove that Z n I mn converges a.s. to a finite 
random variable. 

33. Let {Xn . n::: 1} be independent, EIXniP < oo for all n with p::: 1. Prove 
n 

f(n) = £1 L(X;- E(X;))IP 
i=1 

is non-decreasing inn. 

34. Let {Yj} be independent with 

2. 1 
P[Yj = 2 1] = -, 

2 
2. 1 

P[Yj = -2 1] = -. 
2 

Define Xo = 0, Xn = 2:7=1 Y;, n :;:: 1 and v = inf{n : Xn > 0}. Then vis 
not regular for {X n} even though 

£()v < 00, 0 .:S: () < 2, 

which implies Evn < oo for n::: 1. (Check that EXv = oo.) 
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35. Let {~n} be non-negative random variables satisfying 

where On 2: 0 are constants and Ln On < oo. Show ~n ~ ~ a.s. and ~ is 
finite a.s. 

36. Let v be a stopping time relative to the increasing sequence { Bn, n E N} of 
sub-a-fields of Bin the probability space (Q, B, P). For all n E N, denote 
by ¢(n), the smallest integer p such that [v = n) E Bp. Show that ¢(v) is 
a stopping time dominated by v. 

37. Let {Xn, n EN}, {~n. n E N}, and {Yn, n EN} be 3 adapted sequences of 
finite positive random variables defined on the same probability space such 
that 

This relation expresses the fact that {X n} is almost a supermartingale. Show 
that the limit limn__,. 00 Xn exists and is finite a.s. on the event 

A= [L~n < 00, LYn < oo]. 
n n 

(Hint: Consider the sequence fUn, n E N} defined by 

where 

X~ = Xn/(1 + ~1) · · · (1 + ~n-1), Y~ = Yn/(1 + ~1) · · · (1 + ~n-1), 

and also the stopping times 

Va = min{n: L Ym/(1 + ~1) ... (1 + ~m-d >a}. 
m:;:n 

Then observe that (a+ Uva/\n• n EN} is a finite positive supermartingale.) 

38. Suppose {~n. n 2: 0} is a sequence adapted to {Bn, n 2: 0}; that is, ~n E Bn. 
Suppose the crystal ball condition E (supn>O l~n I) < oo holds and that v is 
an almost surely finite stopping time. Define 

Show v* is an almost surely finite stopping time such that v* :::: v and that 
forany n 2: 0 

~n < E(~v·IBn), on [v* > n]. 
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39. Suppose {(Xn, Bn), n 2: 0} is a positive supermartingale and vis a stopping 
time. Define 

X~:= E(XvAniBn), n 2:0. 

Show {(X~, Bn), n 2: 0} is again a positive supermartingale. (Use the past­
ing lemma or proceed from first principles.) 

40. Let {Xn = I:?=t Y;, n 2: 0} be a sequence of partial sums of a sequence of 
mean 0 independent integrable random variables. Show that if the martin­
gale converges almost surely and if its limit is integrable, then the martin­
gale is regular. Thus for this particular type of martingale, L 1 -boundedness, 
supn E(IXnD < oo, implies regularity. 

(Hint: First show that E(X00 - XniBn) is constant if Bn = a(Yt, . .. , Yn) 
and X 00 = limn ..... oo Xn almost surely.) 

41. An integrable martingale {Xn, n 2: 0} cannot converge in Lt without also 
converging almost surely. On the other hand, an integrable martingale may 
converge in probability while being almost surely divergent. 

Let {Yn, n 2: 1} be a sequence of independent random variables each taking 
the values ±1 with probability 1/2. Let Bn = a(Yt. ... , Yn), n 2: 0 and let 
Bn E Bn be a sequence of events adapted to {Bn, n 2: 0} such that 

lim P(Bn) = 0 and P[limsupBn] = 1. 
n ..... oo n ..... oo 

Then the formulas 

define an integrable martingale such that 

lim P[Xn =OJ= 1, P[{Xn} converges]= 0. 
n ..... oo 

(Note that P[Xn+l =/:- OJ ~ (1/2)P[Xn =/:- OJ+ P(Bn) and that on the set 
[{Xn} converges], the limit limn ..... oo 1Bn exists.) 

42. Suppose {(Xn, Bn), n 2: 0} is an Lt-bounded martingale. If there exists 
an integrable random variable Y such that Xn ~ E(YIBn) then Xn ~ 

E (X 00 IBn) for all n 2: 0 where X 00 = limn ..... oo X n almost surely. 

43. (a) Suppose {~n. n 2: 0} are iid and g : lR ~ R+ satisfies E(g(~)) = 1. 
Show Xn := n7=0 g(~;) is a positive martingale converging to 0 provided 
P[g(~o) = 1) # 1. 

(b) Define {Xn} inductively as follows: Xo = 1 and Xn is uniformly dis­
tributed on (0, Xn-d for n 2: 1. Show {2n Xn, n 2: 0} is a martingale which 
is almost surely convergent to 0. 
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44. Consider a random walk on the integer lattice of the positive quadrant in 
two dimensions. If at any step the process is at (m, n), it moves at the next 
step to (m+ 1, n) or (m, n+ 1) with probability 1/2 each. Start the process at 
(0, 0). Let r be any curve connecting neighboring lattice points extending 
from they-axis to the x-axis in the first quadrant. Show E(Yt) = E(Y2), 
where Y1, Y2 denote the number of steps to the right and up respectively 
before hitting the boundary r. (Note (Yt, Y2) is the hitting point on the 
boundary.) 

45. (a) Suppose that E(IXI) < oo and E(IYI) < oo and that 
E(YIX) =X and E(XIY) = Y. Show X= Y almost surely. 

Hint: Consider 
{ (Y- X)dP. 

J[Y>c,X<c] 

(b) If the sequence {Xn, -oo < n < oo} is a martingale in both forward 
time and reverse time, then for any m -::/: n, we have Xn = Xm almost 
surely. 

46. Suppose {Bn, n 2:: 0} is a sequence of events with Bn E Bn. What is the 
Doob decomposition of Xn = L7=o IBn? 

47. U-statistics. Let {~n. n 2:: 1} be iid and suppose 4> : Rm ~ R is a symmetric 
function of m variables satisfying 

Define {Um,n• n 2:: m} by 

and set Bn := a(Um,n• j 2:: n}. 

Some special cases of interest are 

m = 1, <f>(x) = x, 

m = 2, <{>(Xt. X2) = (XI - X2) 2 /2. 

(a) Show {Um,n• n 2:: m} is a reversed martingale. 

(b) Prove 

almost surely and in L I · 

48. Let {(Xn, Bn), n 2:: 0} be a submartingale such that Vn>OXn < oo. If 
E (sup j dt) < oo, then{X n} is almost surely convergent. -
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49. Ballot problem. In voting, r votes are cast for the incumbent, s votes for 
the rival. Votes are cast successively in random order with s > r. The 
probability that the winner was ahead at every stage of the voting is (s -

r)/(s + r). 
More generally, suppose {X j, 1 :::; j :::; n} are non-negative integer valued, 

integrable and iid random variables. Set S j = L-{=1 X;. Then 

Hint: Look at Sn <nand consider {Sj/j}. 

50. Two genetics models. Let {Xn, n ::: 0} be a Markov chain on the state 
space {0, 1, ... , M} with transition matrix {p;j. 0 :::; i, j :::; M}. For the 
following two models, compute 

1/J; := P[ absorbtion at MJXo = i] 

and show 1/J; is the same for either model. 

(a) Wright model: 

( M) ( · )j ( · )M-j 
Pij = j ~ 1- ~ , 

fori= 0, ... , M; j = 0, ... , M. 

(b) Moran model: Define 

and set 

i(M- i) 
p;= M2 i =O, ... ,M 

Pij=p;, j=i-1,i+1,i:f=OorM, 

POj =8oj, PMj = 8Mj, 

Pij =0, otherwise. 

51. (a) Suppose {(Xn, Bn), n ::: 0} is a positive supermartingale and v is a 
stopping time. Show 

(b) Suppose Xn represents an insurance company's assets at the start of 
year n and suppose we have the recursion X n+l = X n + b - Yn, where 
b is a positive constant representing influx of premiums per year and Yn, 
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the claims in yearn, has N(JL, a 2) distribution where f.L <b. Assume that 
{Yn, n ~ 1} are iid and that Xo = 1. Define the event 

00 

[Ruin]= Urxn < 0]. 
n=l 

Show 
P[Ruin] ~ e-Z(b-J.L)/u2 • 

(Hint: Check that {exp{ -2(b - JL)a-2 Xn, n ~ 0} is a supermartingale. 
Save come computation by noting what is the moment generating function 
of a normal density.) 

52. Suppose Bn t !300 and fYn, n E N} is a sequence of random variables such 
that Yn -+ Y 00 • 

(a) If IYn I ~ Z E L 1, then show almost surely that 

(b) IfYn ~ Y00 , then in L1 

(c) Backwards analogue: Suppose now that Bn .j.. !3_00 and IYnl =::: Z E L1 
and Yn -+ Y -oo almost surely. Show 

almost surely. 

53. A potential is a non-negative supermartingale {(Xn. Bn). n ~ 0} such that 
E(Xn) -+ 0. Suppose the Doob decomposition (see Theorem 10.6.1) is 
Xn = Mn -An. Show 

54. Suppose f is a bounded continuous function on lR and X is a random vari­
able with distribution F. Assume for all x E lR 

f(x) = k. f(x + y)F(dy) = E(f(x +X)). 

Show using martingale theory that f (x + s) = f (x) for each s in the 
support of F. In particular, if F has a density bounded away from 0, then 
f is constant. (Hint: Let {X n} be iid with common distribuion F and define 
an appropriate martingale.) 
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55. Suppose {X j , j ~ 1} are iid with common distribution F and let Fn be the 
empirical distribution based on Xt. ... , Xn . Show 

Yn :=sup IFn(x)- F(x)l 
xe!R 

is a reversed submartingale. 

Hint: Consider first {Fn(x)- F(x), n ~ 1}, then take absolute values, and 
then take the supremum over a countable set.) 

56. Refer to Subsection 10.16.5. A price system is a mapping n from the set of 
all contingent claims X to [0, oo) such that 

n(X)=OiffX=O, VXeX, 

n(aX + bX') = an(X) + bn(X'), 

for all a ~ 0, b ~ 0, X, X' E X . The price system n is consistent with 
the market model if 

n(VN(¢)) = n(Vo(¢)), 

for all admissible strategies ¢ . 

(i) If P* is an equivalent martingale measure, show 

n(X) := E*(X/S<:\ "'X EX, 

defines a price system that is consistent. 

(ii) If n is a consistent price system, show that P* defined by 

is an equivalent martingale measure. 

(iii) If the market is complete, there is a unique initial price for a contingent 
claim. 
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