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Preface

There are several good current probability books — Billingsley (1995), Durrett
(1991), Port (1994), Fristedt and Gray (1997), and I still have great affection
for the books I was weaned on — Breiman (1992), Chung (1974), Feller (1968,
1971) and even Loéve (1977). The books by Neveu (1965, 1975) are educational
and models of good organization. So why publish another? Many of the exist-
ing books are encyclopedic in scope and seem intended as reference works, with
navigation problems for the beginner. Some neglect to teach any measure theory,
assuming students have already learned all the foundations elsewhere. Most are
written by mathematicians and have the built in bias that the reader is assumed to
be a mathematician who is coming to the material for its beauty. Most books do
not clearly indicate a one-semester syllabus which will offer the essentials.

I and my students have consequently found difficulties using currently avail-
able probability texts. There is a large market for measure theoretic probability by
students whose primary focus is not mathematics for its own sake. Rather, such
students are motivated by examples and problems in statistics, engineering, biol-
ogy and finance to study probability with the expectation that it will be useful to
them in their research work. Sometimes it is not clear where their work will take
them, but it is obvious they need a deep understanding of advanced probability in
order to read the literature, understand current methodology, and prove that the
new technique or method they are dreaming up is superior to standard practice.

So the clientele for an advanced or measure theoretic probability course that is
primarily motivated by applications outnumbers the clientele deeply embedded in
pure mathematics. Thus, I have tried to show links to statistics and operations re-
search. The pace is quick and disciplined. The course is designed for one semester
with an overstuffed curriculum that leaves little time for interesting excursions or
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personal favorites. A successful book needs to cover the basics clearly. Equally
important, the exposition must be efficient, allowing for time to cover the next
important topic.

Chapters 1, 2 and 3 cover enough measure theory to give a student access to
advanced material. Independence is covered carefully in Chapter 4 and expecta-
tion and Lebesgue integration in Chapter 5. There is some attention to comparing
the Lebesgue vs the Riemann integral, which is usually an area that concerns stu-
dents. Chapter 6 surveys and compares different modes of convergence and must
be carefully studied since limit theorems are a central topic in classical probability
and form the core results. This chapter naturally leads into laws of large numbers
(Chapter 7), convergence in distribution, and the central limit theorem (Chapters 8
and 9). Chapter 10 offers a careful discussion of conditional expectation and mar-
tingales, including a short survey of the relevance of martingales to mathematical
finance.

Suggested syllabi: If you have one semester, you have the following options:
You could cover Chapters 1-8 plus 9, or Chapters 1-8 plus 10. You would have
to move along at unacceptable speed to cover both Chapters 9 and 10. If you have
two quarters, do Chapters 1-10. If you have two semesters, you could do Chapters
1-10, and then do the random walk Chapter 7 and the Brownian Motion Chapter
6 from Resnick (1992), or continue with stochastic calculus from one of many
fine sources.

Exercises are included and students should be encouraged or even forced to do
many of them.

Harry is on vacation.

Acknowledgements. Cornell University continues to provide a fine, stimulating
environment. NSF and NSA have provided research support which, among other
things, provides good computing equipment. I am pleased that AMS-TEXand
LATEX merged into AMS-LATEX, which is a marvelous tool for writers. Rachel,
who has grown into a terrific adult, no longer needs to share her mechanical pen-
cils with me. Nathan has stopped attacking my manuscripts with a hole puncher
and gives ample evidence of the fine adult he will soon be. Minna is the ideal
companion on the random path of life. Ann Kostant of Birkhauser continues to be
a pleasure to deal with.

Sidney I. Resnick
School of Operations Research and Industrial Engineering
Cornell University



1

Sets and Events

1.1 Introduction

The core classical theorems in probability and statistics are the following:

o The law of large numbers (LLN): Suppose {X,,n > 1} are independent,

identically distributed (iid) random variables with common mean E (X,) =
w. The LLN says the sample average is approximately equal to the mean,

so that
1 n
- E X,' - U.
n 4
i=1

An immediate concern is what does the convergence arrow “—” mean?
This result has far-reaching consequences since, if

X = 1, ifevent A occurs,
! 0, otherwise

then the average Y ;_, X;/n is the relative frequency of occurrence of A in
n repetitions of the experiment and 4 = P(A). The LLN justifies the fre-
quency interpretation of probabilities and much statistical estimation theory
where it underlies the notion of consistency of an estimator.

Central limit theorem (CLT): The central limit theorem assures us that sam-
ple averages when centered and scaled to have mean 0 and variance 1 have
a distribution that is approximately normal. If {X,,n > 1} are iid with

S.I. Resnick, 4 Probability Path, Modern Birkhduser Classics, 1
DOI 10.1007/978-0-8176-8409-9_1, © Springer Science+Business Media New York 2014



2 1. Sets and Events

common mean E (X,) = u and variance Var(X,) = o2, then
"X — x U2
p [_Z_z—_l_'ﬂ < x] - N@) ;=f ¢ du.
Uﬁ —00 21

This result is arguably the most important and most frequently applied re-
sult of probability and statistics. How is this result and its variants proved?

e Martingale convergence theorems and optional stopping: A martingale is
a stochastic process {X,,n > 0} used to model a fair sequence of gam-
bles (or, as we say today, investments). The conditional expectation of your
wealth X, after the next gamble or investment given the past equals the
current wealth X,. The martingale results on convergence and optimal stop-
ping underlie the modern theory of stochastic processes and are essential
tools in application areas such as mathematical finance. What are the basic
results and why do they have such far reaching applicability?

Historical references to the CLT and LLN can be found in such texts as Breiman
(1968), Chapter I; Feller, volume I (1968) (see the background on coin tossing and
the de Moivre-Laplace CLT); Billingsley (1995), Chapter 1; Port (1994), Chapter
17.

1.2 Basic Set Theory

Here we review some basic set theory which is necessary before we can proceed
to carve a path through classical probability theory. We start by listing some basic
notation.

e : An abstract set representing the sample space of some experiment. The
points of 2 correspond to the outcomes of an experiment (possibly only a
thought experiment) that we want to consider.

e P(R2): The power set of €2, that is, the set of all subsets of .

e Subsets A, B, ... of  which will usually be written with roman letters
at the beginning of the alphabet. Most (but maybe not all) subsets will be
thought of as events, that is, collections of simple events (points of £2).

The necessity of restricting the class of subsets which will have probabili-
ties assigned to them to something perhaps smaller than P(S2) is one of the
sophistications of modern probability which separates it from a treatment
of discrete sample spaces.

o Collections of subsets A, B, ... which will usually be written by calligraphic
letters from the beginning of the alphabet.

o An individual element of Q: w € Q2.
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o The empty set @, not to be confused with the Greek letter ¢.

P(2) has the structure of a Boolean algebra. This is an abstract way of saying that
the usual set operations perform in the usual way. We will proceed using naive set
theory rather than by axioms. The set operations which you should know and will
be commonly used are listed next. These are often used to manipulate sets in a
way that parallels the construction of complex events from simple ones.

1. Complementation: The complement of a subset A C Q is

A ={w:w ¢ A}

2. Intersection over arbitrary index sets: Suppose T is some index set and for
eacht € T we are given A; C 2. We define

A :={w:weA, VYteT}

teT

The collection of subsets {A;, ¢t € T} is pairwise disjoint if whenever ¢, t' €
T,butt #t', we have

At ﬂA,f = ﬂ.

A synonym for pairwise disjoint is mutually disjoint. Notation: When we
have a small number of subsets, perhaps two, we write for the intersection
of subsets A and B

AB=ANB,

using a “multiplication” notation as shorthand.

3. Union over arbitrary index sets: As above, let T be an index set and suppose
A; C Q. Define the union as

| JAr:={w:weA,, forsome teT).
teT

When sets Ay, Az, ... are mutually disjoint, we sometimes write
Ar+Ar+...
oreven Y 2, A; to indicate U2, Ai, the union of mutually disjoint sets.
4. Set difference Given two sets A, B, the part that is in A but not in B is
A\ B := AB°.
This is most often used when B C A; that is, when AB = B.

5. Symmetric difference: If A, B are two subsets, the points that are in one but
not in both are called the symmetric difference

AAB=(A\B)U(B\A).
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You may wonder why we are interested in arbitrary index sets. Sometimes the
natural indexing of sets can be rather exotic. Here is one example. Consider the
space USC, ([0, 00)), the space of non-negative upper semi-continuous functions
with domain [0, 00). For f € USC, ([0, 00)), define the hypograph hypo( f) by

hypo(f) = {(s,x): 0 <x < f(s)},

so that hypo( f) is the portion of the plane between the horizontal axis and the
graph of f. Thus we have a family of sets indexed by the upper semi-continuous
functions, which is a somewhat more exotic index set than the usual subsets of
the integers or real line.

The previous list described common ways of constructing new sets from old.
Now we list ways sets can be compared. Here are some simple relations between
sets.

1. Containment: A is a subset of B, written A C Bor B D A, iff AB = A or
equivalently iff w € A implies w € B.

2. Equality: Two subsets A, B are equal, written A = B, iff A C B and
B Cc A. Thismeansw € A iff w € B.

Example 1.2.1 Here are two simple examples of set equality on the real line for
you to verify.

(i) U [0,n/(n + 1)) =[0,1).
(i) Mh=1(0,1/n) = 2. o
Here are some straightforward properties of set containment that are easy to

verify:

ACA,
ACBand B C CimpliesA CC,
AcCcCand B C CimpliesAUB CC,
A D Cand B D C implies AB O C,
A C Biff B¢ C A°

Here is a list of simple connections between the set operations:

1. Complementation:

(A=A, =Q, Q=0

2. Commutativity of set union and intersection:

AUB=BUA, ANB=BNA.
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Note as a consequence of the definitions, we have
AUA=A, ANA=A,
AUB=A, AN@G=90
AUQ=Q, ANQ=A,
AUA =Q, ANA°=0.
3. Associativity of union and intersection:
(AUB)UC=AUBUC), ANB)NC=AN(BNC).

4. De Morgan’s laws, a relation between union, intersection and complemen-
tation: Suppose as usual that T is an index set and A, C Q. Then we have

Jarr=Nwud, (4o =Ju.

teT teT teT teT

The two De Morgan’s laws given are equivalent.

5. Distributivity laws providing connections between union and intersection:

Bn(UA,) = |J®ay,

teT teT
BU (ﬂ A,) = [BUA).
teT teT

1.2.1 Indicator functions

There is a very nice and useful duality between sets and functions which empha-
sizes the algebraic properties of sets. It has a powerful expression when we see
later that taking the expectation of a random variable is theoretically equivalent to
computing the probability of an event. If A C 2, we define the indicator function
of A as

1, fweA,
MWO=10 ifweac.
This definition quickly yields the simple properties:
14 <1piff A C B,
and
lyc =1-14.

Note here that we use the convention that for two functions f, g with domain Q
and range R, we have

f <giff f(w) < g(w) forallw € Q

and
f=gif f<gandg<f.
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1.3 Limits of Sets

The definition of convergence concepts for random variables rests on manipula-
tions of sequences of events which require limits of sets. Let A, C 2. We define

nf Ay = ﬂA,,, sup Ag = UAk

k=n k=n k=n
llmmfA,, = U ﬂAky
n=1k=n
limsup A, = ﬂ U Ag.
n—00 n=1k=n

The limit of a sequence of sets is defined as follows: If for some sequence {B,} of
subsets
limsup B, = hm mf B, =B,

n—00

then B is called the limit of B, and we write lim,_,o, B, = B or B, — B. It will
be demonstrated soon that

liminfA, = lim (mf Ak>

n—00 n—>00 \ k>n

and

limsup A, = 1_11130 (supAk).

n—->oo an

To make sure you understand the definitions, you should check the following
example as an exercise.

Example 1.3.1 Check
lim inf[0, n/(n 4+ 1)) = limsup[0, n/(n + 1)) = [0, 1). m]
=00 n—00
We can now give an interpretation of lim inf,_, o A, and limsup,,_, o, A.

Lemma 1.3.1 Let {A,} be a sequence of subsets of 2.
(a) For lim sup we have the interpretation

[o o]
limsupA, = [w : ZlAn(w) = oo]
n=1

n—>00
={w:w€Ank,k=1,2...}

for some subsequence ny. depending on w. Consequently, we write

limsup A, = [A, io. ]

n—->oo
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where i.o. stands for infinitely often.
(b) For liminf we have the interpretation

liminfA, ={w : w € A, for all n except a finite number }
n—>0o0
={w: Z 1ac (w) < 00}
n
={w:w € A,,VYn > no(w)}.

Proof. (a) If
o0 0
w € limsup A, = ﬂ U Ag,

n=>00 n=1k=n

then for every n, w € Ug>nAg and so for all n, there exists some &, > n such that
w € Ag,, and therefore

Y 14;@) 2 ) 14y, (@) = o0,
j=1 n

which implies
[e.¢]
w € [a):ZlA"(a)) =oo];
n=1

o0

limsupA, C {w: Z lAJ.(w) = o0}

n—oo ]=1

thus

Conversely, if

weE{w: ZlAj(w) = 00},
—

then there exists k, — 0o such that w € Ay,, and therefore foralln, w € Uj>pA
so that € limsup,,_, o, An. By defininition

o0
{w: ZlAj(w) = 00} C limsup A,.
[o o]

j=1 -

This proves the set inclusion in both directions and shows equality.
The proof of (b) is similar. a

The properties of lim sup and lim inf are analogous to what we expect with real
numbers. The link is through the indicator functions and will be made explicit
shortly. Here are two simple connections:

1. The relationship between lim sup and lim inf is

liminf A, C limsup A,
n=>00 n—00
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since

{w:we Ay, foralln > np(w)} C {w: ® € A, infinitely often}

= limsup A,.
n—0oo

2. Connections via de Morgan’s laws:

(liminf A,)¢ = limsup A,
n—00 n—00

since applying de Morgan’s laws twice yields

(90+) -0l

n=1k>n n=1 \k>n

For a sequence of random variables {X,,n > 0}, suppose we need to show
Xn — Xo almost surely. As we will see, this means that we need to show

Plw: lim X,(0) = X¢(w)} = 1.
n—>0o0
We will show later that a criterion for this is that for all ¢ > 0
P{[IX» — Xo| > €] i.0.} = 0.

That is, with A, = [| X, — Xo| > €], we need to check

P (limsupA,,) =0.

n—0o

1.4 Monotone Sequences

A sequence of sets {A,} is monotone non-decreasing if Ay C Ay C ---. The
sequence {A,} is monotone non-increasing if Ay D A D Az ---. To indicate a
monotone sequence we will use the notation A, / or A, 1 for non-decreasing
sets and A, \, or A, | for non-increasing sets. For a monotone sequence of sets,
the limit always exists.

Proposition 1.4.1 Suppose {A,} is a monotone sequence of subsets.

(1) If Ay /', then limy00 Ap = U2 | Ap.
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(2) If An N\ then limy o0 Ay = N2 Ap.

Consequently, since for any sequences B,,, we have

inf By /', sup Bi \,
k>n

k>n

it follows that

liminf B, = lim (inf Bk) , limsupB, = lim (sup Bk).
n—

n—00 n—>00 \ k>n n—00 © \ k>n

Proof. (1) We need to show

[o.¢]
liminf A, = limsup Ay = | An

n—>0o0 n=1

Since Aj C Ajy,
ﬂ Ak = Anv
k>n
and therefore
o0 [o.¢]
liminf A, = U (ﬂ Ak> = JAn. (1.1)
n=1 an n=1
Likewise

limsupA, = ﬁ UA" C UAk

n—00 n=1k>n k>1

= lzlrggéfA,, (from (1.1))
C limsupA,.

n—oo

Thus equality prevails and

limsup A, C UAk C limsupA,;

n—->oo k>1 n—>0oo

therefore

o0
limsup A, = Ag.
n—»oop " kL___Jl
This coupled with (1.1) yields (1).
The proof of (2) is similar. a
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Example 1.4.1 As an easy exercise, check that you believe that
Jim [0,1~1/n]=10,1)
lim [0,1-1/m) =[0,1)
nl_n}ngo[o, 14+1/n]=10,1]

lim [0, 1+1/n) = [0, 1]. o

Here are relations that provide additional parallels between sets and functions
and further illustrate the algebraic properties of sets. As usual let {A,} be a se-
quence of subsets of €2.

1. We have
Linfysk An = ;2{ 145 lsup,siAn = SUP 14,.
bd n>k

2. The following inequality holds:
10,4, < Y_ 14,
n

and if the sequence {A;} is mutually disjoint, then equality holds.
3. We have

Liimsup,_, oo An = limsupla,, liiminfy_ oA, = liminfly,.
n—»00 R—00

4. Symmetric difference satisfies the relation
1aaB =14 + 15 (mod 2) .
Note (3) follows from (1) since

Ljim SUP,_yoc An = linf,,zl SUP>, Ak

and from (1) this is
28 Loy e

Again using (1) we get

inf sup 14, = limsup1ly,,,
n1g>p n—>00

from the definition of the lim sup of a sequence of numbers.

To prove (1), we must prove two functions are equal. But 1;,¢ A, (@) =1 iff
n>k

w € infy>k Ap = ook An iff € Ay foralln > kiff 14, (w) = 1foralln > k

iff inf,> 14, (@) = 1. 0
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1.5 Set Operations and Closure

In order to think about what it means for a class to be closed under certain set
operations, let us first consider some typical set operations. Suppose C C P(2)
is a collection of subsets of 2.

(1) Arbitrary union: Let T be any arbitrary index set and assume for each
t € T that A, € C. The word arbitrary here reminds us that T is not nec-
essarily finite, countable or a subset of the real line. The arbitrary union

1S
A

teT

(2) Countable union: Let A,,n > 1 be any sequence of subsets in C. The
countable union is

(3) Finite union: Let Ay, ..., A, be any finite collection of subsets in C. The
finite union is "
A
j=1

(4) Arbitrary intersection: As in (1) the arbitrary intersection is

A

teT

(5) Countable intersection: As in (2), the countable intersection is
o0
() Aj.
j=1

(6) Finite intersection: As in (3), the finite intersection is

(7) Complementation: If A € C, then A€ is the set of points not in A.

(8) Monotone limits: If {A,} is a monotone sequence of sets in C, the monotone
limit
lim A,
n—>00

is U‘J?‘_’__IA j in case {A,} is non-decreasing and is ﬂ‘]’.‘;lA j if {A,} is non-
increasing.
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Definition 1.5.1 (Closure.) Let C be a collection of subsets of Q. C is closed
under one of the set operations 1-8 listed above if the set obtained by performing
the set operation on sets in C yields a set in C.

For example, C is closed under (3) if for any finite collection Ay, ..., A, of
sets in C, U;'.=1A,- eC.

Example 1.5.1 1. Suppose Q2 =R, and

C = finite intervals
{(a,b],—00 <a < b < o0}.

C is not closed under finite unions since (1,2] U (36, 37] is not a finite
interval. C is closed under finite intersections since (a, b] N (¢,d] = (a vV
¢, d Ab). Here we use the notation a Vb = max{a, b} and a Ab = min{a, b}.

2. Suppose 2 = R and C consists of the open subsets of R. Then C is not
closed under complementation since the complement of an open set is not
open.

Why do we need the notion of closure? A probability model has an event space.
This is the class of subsets of € to which we know how to assign probabilities.
In general, we cannot assign probabilities to all subsets, so we need to distinguish
a class of subsets that have assigned probabilities. The subsets of this class are
called events. We combine and manipulate events to make more complex events
via set operations. We need to be sure we can still assign probabilities to the re-
sults of the set operations. We do this by postulating that allowable set operations
applied to events yield events; that is, we require that certain set operations do not
carry events outside the event space. This is the idea behind closure.

Definition 1.5.2 A field is a non-empty class of subsets of 2 closed under finite
union, finite intersection and complements. A synonym for field is algebra.

A minimal set of postulates for A4 to be a field is
(i) Qe A
(ii) A € Aimplies A € A.
(iii) A, B € Aimplies AU B € A.
Note if A1, A2, A3 € A, then from (iii)

AjUAUA3=(A1UA))UA3 e A
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and similarly if Ay,...,A, € A, then Ul_jA; € A Alsoif A; € A, i =
1,...,n,thenN;_, A; € Asince

Aie A implies Afe A (from (ii))
n
Afe A implies | JAfeA (from (iii))

i=1

n n ¢
JAf  implies (U A;-‘) eA  (from (i)
i:l l =1
and finally
n R |
(U Af) = m A;
1 1
by de Morgan’s laws so A is closed under finite intersections.

Definition 1.5.3 A o-field B is a non-empty class of subsets of €2 closed under
countable union, countable intersection and complements. A synonym for o-field
is o-algebra.

A mimimal set of postulates for B to be a o-field is
(i) QeB.
(ii) B € Bimplies B¢ € B.
(iii) B; € B,i > 1implies U2, B; € B.

As in the case of the postulates for a field, if B; € B, fori > 1, then ﬂ§1 B; € B.

In probability theory, the event space is a og-field. This allows us enough flexi-
bility constructing new-events from old ones (closure) but not so much flexibility
that we have trouble assigning probabilities to the elements of the o-field.

1.5.1 Examples
The definitions are amplified by some examples of fields and o-fields.

(1) The power set. Let B = P(S), the power set of Q so that P(S2) is the
class of all subsets of 2. This is obviously a o-field since it satisfies all closure
postulates.

(2) The trivial o-field. Let B = {@, Q}. This is also a o-field since it is easy to
verify the postulates hold.

(3) The countable/co-countable o -field. Let Q = R, and
B={A CR:Aiscountable } U{A C R: A€ is countable },

so B consists of the subsets of R that are either countable or have countable com-
plements. B is a o-field since
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(i) Q € B (since Q° = @ is countable).
(ii) A € Bimplies A€ € B.
(iii) A; € Bimplies N2, A; € B.
To check this last statement, there are 2 cases. Either
00

(a) at least one A; is countable so that N2, A; is countable and hence in B, or

(b) no A; is countable, which means A is countable for every i. So U2, Af is
countable and therefore

Uapr=Naies.
i=1 i=1

Note two points for this example:

o If A = (—00,0], then A° = (0, 00) and neither A nor A€ is countable
which means A ¢ B. So B # P(Q).

e B is not closed under arbitrary unions. For example, for each ¢t < 0, the
singleton set {t} € B, since it is countable. But A = U;<o{t} = (—00, 0] ¢
B.

(4) A field that is not a o-field. Let @ = (0, 1] and suppose .4 consists of
the empty set @ and all finite unions of disjoint intervals of the form (a,a’], 0 <
a < a’ < 1. Atypical set in A is of the form U, (a;, a;] where the intervals are
disjoint. We assert that A is a field. To see this, observe the following.

() Q=01 €A

(i) A is closed under complements: For example, consider the union repre-

sented by dark lines
(__—.g—=]
0 1

FIGURE 1.1

which has complement.

(— ee—
0 1

FIGURE 1.2

which is a disjoint union.
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(iii) A is closed under finite intersections. (By the de Morgan laws, verifica-
tion of this assertion is equivalent to showing closure under finite unions.)
Closure under finite intersections is true because

(@a,a'INb,b'1=(aVvb,a’ AD].

Note that A is NOT a o -field. The set
l 1 1

l 1 1
u( + = +23+24,2+22+23+24+ 5]u--~
is a countable union of members of A but is not in A. a

1.6 The o-field Generated by a Given Class C

It is a sad fact that o-fields cannot always be constructed by a countable set of
operations on simple sets. Sometimes only abstraction works. The exception to
the sad fact is if 2 is finite, in which case construction and enumeration work.
However, in general, the motto of the budding measure theorist is “induction not
construction”.

We now discuss how to guarantee a desired o-field exists.

Let O be one of the 8 set operations listed starting on page 11. For example, O
could be “countable union”. Let {C;, ¢ € T} be an indexed family of subsets such
that for each ¢, C, is closed under O. Then

C= ﬂ C; is closed under O. 1.2

teT

(This is NOT true for |, C:.) Observe that the intersection can be with respect
to an arbitrary index set. This will be used when we discuss the minimal o-field
generated by a class.

Here is a sample verification of (1.2) when O is countable union: Suppose for
i > 1that B; € C. Then foranyi > 1, B; € C, forall ¢ € T. Due to the fact that
C; is closed under O, we conclude U2, B; € C; for all ¢t € T. Since U2, B; € C;
for all ¢, U2, B; € NierCy. Thus NyerC; is closed under O.

Applying the principle in (1.2) using the set operations of complementation and
countable union, we get the following result.

Corollary 1.6.1 The intersection of o-fields is a o -field.

Definition 1.6.1 Let C be a collection of subsets of 2. The o-field generated by
C, denoted o (C), is a o-field satisfying

(@ o) >DC
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(b) If B’ is some other o-field containing C, then B' D o (C).

Another name for o (C) is the minimal o-field over C. Part (b) of the definition
makes the name minimal apt.
The next result shows why a o-field containing a given class exists.

Proposition 1.6.1 Given a class C of subsets of S, there is a unique minimal
o -field containing C.

Proof. Let
R ={B: Bisao-field, B D C}

be the set of all o-fields containing C. Then R # @ since P(2) € N. Let

w=ﬂa

Ber

Since each class B € R is a o-field, so is B* by Corollary 1.6.1. Since B € R
implies B O C, we have B* D C. We claim B® = o(C). We checked B* O C and,
for minimality, note that if B’ is a o-field such that B’ O C, then B’ € R and hence
B*cB. m]

Note this is abstract and completely non-constructive. If Q is finite, we can
construct o (C) but otherwise explicit construction is usually hopeless.

In a probability model, we start with C, a restricted class of sets to which we
know how to assign probabilities. For example, if Q = (0, 1], we could take

C={(@a,b],0<a<b<1)}

and
P((a,b]) =b—a.

Manipulations involving a countable collection of set operations may take us out-
side C but not outside o (C). Measure theory stresses that if we know how to assign
probabilities to C, we know (in principle) how to assign probabilities to o (C).

1.7 Borel Sets on the Real Line

Suppose 2 = R and let
C={(a,b],—-00<a<b< o}

Define
BR) :=0(C)

and call B(R) the Borel subsets of R. Thus the Borel subsets of R are elements of
the o -field generated by intervals that are open on the left and closed on the right.
A fact which is dull to prove, but which you nonetheless need to know, is that
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there are many equivalent ways of generating the Borel sets and the following are
all valid descriptions of Borel sets:

B(R) =o0((a,b),—0 <a <b < x)
=0o([a,b),—00 <a <b <)
=o([a,b],—00 <a <b <)
=0((—00,x],x € R)
= o (open subsets of R).

Thus we can generate the Borel sets with any kind of interval: open, closed, semi-
open, finite, semi-infinite, etc.
Here is a sample proof for two of the equivalences. Let

CV ={(@,b),~00 < a < b < o0}
be the open intervals and let
¢ ={(a,b],-00 <a <b < x)}
be the semi-open intervals open on the left. We will show
a () =a(cY.

Observe (a,b) = |Jse (a,b — 1/n]. Now (a,b —1/n] € ¢ c oY), for
all n implies | J% , (a, b — 1/n] € o(C)). So (a, b) € o(C'}) which implies that
¢V ¢ o(CY). Now o(C!) is a o-field containing C© and hence contains the
minimal o-field over CO, that is, o (C") C o(C')).

Conversely, (a,b] = N°2,(a,b+ 1/n). Now (a,b + 1/n) € CcO c a(CV)
so that N (a, b + 1/n) € o(CV) which implies (a,b] € o(C") and hence
c1 c o(CY). This implies o (C')) c o (CV).

From the two inclusions, we conclude

0v(c(]) =a(CV)

as desired.
Here is a sample proof of the fact that

B(R) = o (open sets in R).

We need the result from real analysis that if O C R is open, O = U?°=1 I;, where
I; are open, disjoint intervals. This makes it relatively easy to show that

o(opensets ) = o(C()).

If O is an open set, then we can write

o=|]1.

e

1

~.
Il
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We have I € CO c o(CY)sothat O = U?iﬂj € a(C") and hence any open
set belongs to o (C!)), which implies that

o(opensets) C o (CO).

Conversely, CY is contained in the class of open sets and therefore a(CO) ¢
o ( open sets ).

Remark. If E is a metric space, it is usual to define B(E), the o-field on E, to be
the o-field generated by the open subsets of E. Then B(E), is called the Borel
o -field. Examples of metric spaces E that are useful to consider are

e R, the real numbers,
e RY, d-dimensional Euclidean space,
o R%®, sequence space; that is, the space of all real sequences.

e C[0, 00), the space of continuous functions on [0, 00).

1.8 Comparing Borel Sets

We have seen that the Borel subsets of R is the o-field generated by the intervals
of R. A natural definition of Borel sets on (0, 1], denoted B((0, 1]) is to take
C(0, 1] to be the subintervals of (0, 1] and to define

B((0,1]) := 0(C(0, 1]).

If a Borel set A € B(R) has the property A C (0, 1], we would hope A €
B((0, 1]). The next result assures us this is true.

Theorem 1.8.1 Let Qp C Q2.

(1) If B is a o-field of subsets of ¢, then By := {AQ : A € B}isao-
field of subsets of Q. (Notation: By =: B N Q. We hope to verify B((0,1]) =
BR)N(0,1].)

(2) Suppose C is a class of subsets of 2 and B = o (C). Set

CNQ=:C={AQ: A €C}.
Then
o0(Cy) =a(C)N
in Qo.
In symbols (2) can be expressed as

o(CNQy =a(C)NR
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so that specializing to the Borel sets on the real line we get

B(0, 1] = BR) N (0, 1.

Proof. (1) We proceed in a series of steps to verify the postulates defining a o-
field.

(i) First, observe that ¢ € By since Q9 = Qp and R € B.
(ii) Next, we have that if B = AQq € By, then

Qo\B=Q0\AQ = Q(R2\ A) € By
since 2\ A € B.
(iii) Finally, if for n > 1 we have B, = A,Q, and A, € B, then

VES

since |J, An € B.

0
0=(UA,,)OQ()GBO

n=1

i CS

(2) Now we show o (Cp) = 0(C) N 0. We do this in two steps.
Step 1: We have that

Co:=CNQRCco(C)N

and since (i) assures us that o (C) N is a o-field, it contains the minimal o -field
generated by Cp, and thus we conclude that

o(Co) C a(C) N Q.
Step 2: We show the reverse inclusion. Define
G={ACQ:AQ € 0(Cv)}.

We hope to show G D o (C).
First of all, G O C, since if A € C then AQg € Cy C 0 (Cp). Secondly, observe
that G is a o-field since

(i) Q € G since QR = Qo € 0(Co)).
(ii) If A € G then A° = Q \ A and we have
AN Q= (R\A)Q0 = Qo\AQp.

Since A € G, we have AQ € o (Cp) which implies ¢ \ A2 € o(Cp), so
we conclude A€ € G.
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(iii) If A, € G, forn > 1, then
[o¢] o0
(U4 N0 = [ An0.
n=1 n=1

Since A,Qp € o(Cp), it is also true that U,";'":IA,,QO € 0(Cp) and thus
Ul An €G.

So G is a o-field and G D C and therefore G D o (C). From the definition of G,
if A € 0(C),then A € G and so ARy € o (Cp). This means

o(C)NQy C o(Co)

as required. O

Corollary 1.8.1 If Qo € o(C), then
o(C))={A:ACQAca)}
Proof. We have that

0(Co) =0 (C)NRQy={AR : A € 0(C)}
={B:B ea(C),B C Q)

if Q¢ € (). m}

This shows how Borel sets on (0, 1] compare with those on R.

1.9 Exercises

1. Suppose = {0, 1} and C = {{0}}. Enumerate R, the class of all o-fields
containing C.

2. Suppose 2 = {0, 1, 2} and C = {{0}}. Enumerate R, the class of all o -fields
containing C and give o (C).

3. Let A,, A, B,, B be subsets of 2. Show

limsup A, U B, = limsup A, U limsup B,,.

n—>o0 n—oo n—0o0

If A, - A and B, — B, is it true that

A,UB, > AUB, A,NB,—-> ANB?
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4. Suppose
A,,={%:meN}, neN,

where N are non-negative integers. What is

liminf A, and limsup A,?
n—>oo

5. Let fy, f be real functions on 2. Show
oo o0 o0 1
(@ fa@ A f@)=J ) Ulo: 1fa@ - @2 7).
k=1N=1n=N k

6. Suppose a, > 0, b, > 1 and

lim a, =0, lim b, =1.
n—>oo

n—00
Define
A, ={x:a, <x < by}
Find
limsup A, and liminf A,.
n—00 n—00
7. Let

I={Cy:IxI<1, |yl<1}
be the square with sides of length 2. Let I, be the square pinned at (0, 0)
rotated through an angle 2 nf. Describe limsup,,_, o, I and liminfy, _, o I
when
(@ 6 =1/8,
(b) 0 is rational.

(c) @ is irrational. (Hint: A theorem of Weyl asserts that {e27i"® n > 1}
is dense in the unit circle when 6 is irrational.)

8. Let
BcQ, CccQ
and define
A = B, ifnisodd,
"7 C, ifniseven.
What is

liminf A, and limsup A,?
n=>00 n—00

9. Check that
AAB = A°AB°.
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10.

11.

12.

13.

14.

15.

16.
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Check that
A, > A
iff
1 Ap > 1 A
pointwise.
Let 0 < a, < 0o be a sequence of numbers. Prove that

sup[0,a,) = [0, supay)

n>1 n>1

suO—— 0, su
n>11>[ n+] # [ n>11> +1

.

Let 2 ={1,2,3,4,5,6}and let C = {{2, 4}, {6}}. What is the field gener-
ated by C and what is the o-field?

Suppose Q@ = Uter Cy, where CsNCy =@foralls,t € T and s # ¢.
Suppose Fisao-fieldon Q = {C¢,t € T}. Show

F={A=|JC:4eF)
C‘EZ

is a o-field and show that

is a 1-1 mapping from FtoF.

Suppose that A, are fields satisfying A, C Ap+1. Show that U, A4, is a
field. (But see also the next problem.)

Check that the union of a countable collection of o-fields B;, j > 1 need
not be a o-field even if B; C Bj1. Is a countable union of o -fields whether
monotone or not a field?

Hint: Try setting Q equal to the set of positive integers and let C; be all
subsets of {1, ..., j} and Bj = o (C;).

If B;, i = 1,2 are two o-fields, B; U B, need not be a field.
Suppose A is a class of subsets of €2 such that

e Qe A
e A € Aimplies A€ € A.

e A is closed under finite disjoint unions.
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18.

19.

20.

21.

22.

23.
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Show A does not have to be a field.

Hint: Try Q = {1, 2, 3,4} and let A be the field generated by two point
subsets of Q.

Prove
liminfA, = {w: lim 14,(w) =1}.
n—oo n—oo
Suppose A is a class of sets containing 2 and satisfying
A,B e Aimplies A\ B = AB‘ € A.
Show A is a field.

For sets A, B show
laup =14 Vv 1p,
and

1anp =14 A 1.

Suppose C is a non-empty class of subsets of Q2. Let .A(C) be the minimal
field over C. Show that A(C) consists of sets of the form

m ni
SIRLE
i=1j=1

where for each i, j either A;; € C or Afj € C and where the m sets

ﬂ'j": 1Aij,1 < i < m, are disjoint. Thus, we can explicitly represent the
sets in .A(C) even though this is impossible for the o -field over C.

Suppose A is a field and suppose also that A has the property that it is
closed under countable disjoint unions. Show A is a o-field.

Let 2 be a non-empty set and let C be all one point subsets. Show that

o(C) ={A C Q: A is countable }U{A C Q: A€ is countable }.

(a) Suppose on R that ¢, | ¢. Show

(=00, ty] | (=00, t].

(b) Suppose
Mt t<t.
Show
(_oos tn] T (_007 t)'
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24,

25.

26.

27.

28.

29.

30.
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Let Q = N, the integers. Define
A ={A CN:Aor A€ s finite.}
Show A is a field, but not a o-field.

Suppose Q = {¢/2™,0 < 6 < 1} is the unit circle. Let .A be the collection
of arcs on the unit circle with rational endpoints. Show A is a field but not
a o-field.

(a) Suppose C is a finite partition of £2; that is

k
C={A1....A}, Q=) Ai, AAj=0,i# |

i=1

Show that the minimal algebra (synonym: field) .A(C) generated by C is the
class of unions of subfamilies of C; that is

AQC) ={UiAj: 1 C{1,...,k}).

(This includes the empty set.)
(b) What is the o-field generated by the partition Ay, ..., Ap?
(c)If A, Ay, ... is a countable partition of €2, what is the induced o-field?

(d) If A is a field of subsets of 2, we say A € Ais anatom of A;if A # 0
andif @ #2 B C A and B € A, then B = A. (So A cannot be split into
smaller sets that are nonempty and still in .A.) Example: If 2 = R and A
is the field generated by intervals with integer endpoints of the form (a, b]
(a, b are integers) what are the atoms?

As a converse to (a), prove that if A is a finite field of subsets of €, then the
atoms of A constitute a finite partition of 2 that generates A.

Show that B(R) is countably generated; that is, show the Borel sets are
generated by a countable class C.

Show that the periodic sets of R form a o-field; that is, let B be the class
of sets A with the property that x € A implies x & n € A for all natural
numbers n. Then show B is a o-field.

Suppose C is a class of subsets of R with the property that A € C implies
A€ is a countable union of elements of C. For instance, the finite intervals
in R have this property.

Show that o (C) is the smallest class containing C which is closed under the
formation of countable unions and intersections.

Let B; be o -fields of subsets of  for i = 1, 2. Show that the o -field B; V1B,
defined to be the smallest o-field containing both B; and B; is generated
by sets of the form By N B where B; € B; fori =1, 2.
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Suppose € is uncountable and let G be the o-field consisting of sets A such
that either A is countable or A€ is countable. Show G is NOT countably
generated. (Hint: If G were countably generated, it would be generated by
a countable collection of one point sets. )

In fact, if G is the o-field of subsets of 2 consisting of the countable and
co-countable sets, G is countably generated iff 2 is countable.

Suppose By, B; are o-fields of subsets of Q such that By C B, and B; is
countably generated. Show by example that it is not necessarily true that B3,
is countably generated.

The extended real line. Let R = R U { —00} U {oo} be the extended or
closed real line with the points —oo and oo added. The Borel sets B(R)
is the o-field generated by the sets [—00, x], x € R, where [—00, x] =
{—00}U(—00, x]. Show B(R) is also generated by the following collections
of sets:

() [-o0,x), x € R,
(i) (x, 0], x € R,
(i1) all finite intervals and {—o0} and {oc}.

Now think of R = [—o00, 00] as homeomorphic in the topological sense to
[—1, 1] under the transformation

X
1 —|x|

X =

from [—1, 1] to [—o00, 00]. (This transformation is designed to stretch the
finite interval onto the infinite interval.) Consider the usual topology on
[—1, 1] and map it onto a topology on [—00, oc]. This defines a collection
of open sets on [—00, 00] and these open sets can be used to generate a
Borel o-field. How does this o-field compare with B(R) described above?

Suppose B is a o-field of subsets of Q and suppose A ¢ B. Show that
o (B U {A}), the smallest o-field containing both B and A consists of sets
of the form

ABUA‘B’, B,B eB.

A o-field cannot be countably infinite. Its cardinality is either finite or at
least that of the continuum.

Let Q ={f,a,n, g}, and C = {{, a, n}, {a, n}}. Find o (C).
Suppose 2 = Z, the natural numbers. Define for integer k
kZ = {kz : z € Z}.

Find B(C) when C is
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M) {3z}.

(ii) {3Z,4Z}.

(iii) {3Z,4Z,5Z).
(iv) {3Z,4Z,5Z, 67}.

38. Let Q = R, the space of all sequences of the form

w=(x1,%,...) (**)
where x; € R. Let o be a permutation of 1, ..., n; that is, o is a 1-1 and
ontomap of {1, ...,n} — {1,..., n}. If w is the sequence defined in (**),

define o w to be the new sequence

(w); = {0 r=n
T kg, ifj>n

A finite permutation is of the form o for some n; that is, it juggles a finite

initial segment of all positive integers. A set A C 2 is permutable if
A=0cA ={ow:weA}

for all finite permutations o.

(i) Let By, n > 1 be a sequence of subsets of R. Show that
n
{w=(x1,x2,...): Zx,- € B,i.0.}
i=1

and

n
{w=(x1,x2,...): \/x,- € B,i.0.}
i=1

are permutable.

(ii) Show the permutable sets form a o -field.

39. For a subset A C N of non-negative integers, write card(A) for the number

of elements in A. A set A C N has asymptotic density d if
. card(AN{L,2,...,n}
lim

n—00 n

=d.

Let A be the collection of subsets that have an asymptotic density. Is A a
field? Is it a o-field?

Hint: A is closed under complements, proper differences and finite disjoint
unions but is not closed under formation of countable disjoint unions or
finite unions that are not disjoint.
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Show that B((0, 1)) is generated by the following countable collection: For
an integer r,

{[k"_", Gk+Dr™,0<k<r",n=1,2,....}.

A monotone class M is a non-empty collection of subsets of 2 closed
under monotone limits; that is, if A, / and A, € M, then lim,_,c0c Ay =
UnA, € Mandif A, \y and A, € M, then lim,_,oc A, = NpA, € M.
Show that a o-field is a field that is also a monotone class and conversely,
a field that is a monotone class is a o-field.

Assume P is a w-system (that is, P is closed under finite intersections) and
M is a monotone class. (Cf. Exercise 41.) Show P C M does not imply
o(P) c M.

Symmetric differences. For subsets A, B, C, D show
1aaB =14 +1p (mod?2),
and hence

(a) (AAB)AC = AA(BAC),
(b) (AAB)A(BAC) = (AAC),
(c) (AAB)A(CAD) = (AAC)A(BAD),
(d) AAB =C iff A = BAC,
() AAB=CAD iff AAC = BAD.
Let A be a field of subsets of 2 and define
A={ACQ:34, € Aand A, — A).

Show A C A and A is a field.
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Probability Spaces

This chapter discusses the basic properties of probability spaces, and in particular,
probability measures. It also introduces the important ideas of set induction.

2.1 Basic Definitions and Properties

A probability space is a triple (2, B, P) where

e  is the sample space corresponding to outcomes of some (perhaps hypo-
thetical) experiment.

e B is the o-algebra of subsets of 2. These subsets are called events.

e P is a probability measure; that is, P is a function with domain B and range
[0, 1] such that

(i) P(A) =0forall A € B.
(ii) P is o-additive: If {A,, n > 1} are events in B that are disjoint, then

o0 00
P(JAn =) P(An.
n=1

n=1
(i) P(Q) = 1.

Here are some simple consequences of the definition of a probability measure
P.

S.I. Resnick, 4 Probability Path, Modern Birkhduser Classics, 29
DOI 10.1007/978-0-8176-8409-9_2, © Springer Science+Business Media New York 2014
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1. We have

P(A°)=1-P(A)
since from (iii)
1=P(Q) = P(AUA®) = P(A) + P(A9),

the last step following from (ii).

. We have

P@)=0
since P@) = P(Q°)=1-P(Q) =1-1.

. For events A, B we have

P(AUB)=PA+ PB — P(AB). 2.1)
To see this note
P(A) =P(AB°) + P(AB)
P(B) =P(BA°) + P(AB)

and therefore

P(AUB) =P(AB°UBA°UAB)
=P(AB°) + P(BAS) + P(AB)
=P(A) — P(AB) + P(B) — P(AB) + P(AB)
=P(A) + P(B) — P(AB).

. The inclusion—exclusion formula: If A4, ..., A, are events, then

P Jap = Y P@Ap- Y PiA)
j=1 j=1

1<i<j<n

+ ). PAAAD -

1<i<j<k<n

(—D)"1P(A; -+ Ap). 22)

We may prove (2.2) by induction using (2.1) for n = 2. The terms on the
right side of (2.2) alternate in sign and give inequalities called Bonferroni
inequalities when we neglect remainders. Here are two examples:

P(OA,-)siPA,—

j=1 j=1

P("Aj)ziPAj— Y. PAA)).
j=1 j=1

j= 1<i<j<n
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5. The monotonicity property: The measure P is non-decreasing: For events
A,B

If A C B then P(A) < P(B),
since

P(B) = P(A)+ P(B\ A) > P(A).

6. Subadditivity: The measure P is o -subadditive: For events A,,n > 1,

o0 o0
P (U A,,) <> P(4).
n=1 n=1
To verify this we write
o0
(JAn = A1+ ASA2 + A3ASAS + -,
n=1
and since P is o -additive,

o0
P(|_J An) =P(A1) + P(A§A2) + P(A3A5A%) + - -

n=1

<P(A1) + P(A2) + P(A3) +---
by the non-decreasing property of P.

7. Continuity: The measure P is continuous for monotone sequences in the
sense that

(i) If A, 1 A, where A, € B, then P(A,) * P(A).
(ii) IfA, | A, where A, € B, then P(A,) | P(A).

To prove (i), assume
Ai1CACA3C---CA,C---
and define
By =A1,By=A2\A1,... ,By=As\Ap-y,....

Then {B;} is a disjoint sequence of events and

n

UBi = 4n

i=1 i

s

B =| Jai=A.
i
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By o-additivity

P@)=P(B) =) P(B)= lim +) P(8)
i i i=1

i=1 i=1

n
= lim 1 P(.L=J1 B;) = lim 1t P(Ap).

To prove (ii), note if A, | A, then A, + A€ and by part (i)
P(AS) =1—-P(Ap) + P(A°) =1- P(A)
so that PA, | PA.

8. More continuity and Fatou’s lemma: Suppose A, € B, forn > 1.

(i) Fatou Lemma: We have the following inequalities

P(liminfA,) < liminfP(A,)
n—>0o0 n—->0o0 :
< limsup P(A,;) < P(limsup Ap).
n—0o0 n—0o0

(i) If A, — A, then P(A,) = P(A).
Proof of 8. (ii) follows from (i) since, if A, — A, then

limsupA, =liminfA, = A.
n—00 n—00

Suppose (i) is true. Then we get
P(A) = P(liminfA,) < liminf P(A,)
n—o00 n—0o0
< limsup P(A,) < P(limsup A,) = P(A),

n—->oo n—>oo

so equality pertains throughout.

Now consider the proof of (i): We have

P(liminf A,) =P(lim 1 (7] A)

k>n
= lim ¢ P(kQ Ap)

(from the monotone continuity property 7)

<liminf P(A,)
n—>0o0
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since P(Ng>nAk) < P(Ay). Likewise

P(limsup A) = P(lim | (| J 40)

n—o0o k>n
= lim | P(kL>Jn Ap)

(from continuity property 7)

> limsup P(Ap),

n—oo
completing the proof. a

Example 2.1.1 Let Q@ = R, and suppose P is a probability measure on R. Define
F(x) by

F(x) = P((—00,x]), xe€R. (2.3)
Then
(i) F is right continuous,
(ii) F is monotone non-decreasing,
(iii) F has limits at +00

F(o0) :=lim F(x) =1
x1o00
F(-o0) := lim F(x)=0.
x}—00
Definition 2.1.1 A function F : R — [0, 1] satisfying (i), (ii), (iii) is called a
(probability) distribution function. We abbreviate distribution function by df.
Thus, starting from P, we get F from (2.3). In practice we need to go in the

other direction: we start with a known df and wish to construct a probability space
(2, B, P) such that (2.3) holds. See Section 2.5.

Proof of (i), (ii), (iii). For (ii), note that if x < y, then
(=00,x] C (-00,y]
so by monotonicity of P

F(x) = P((—00,x]) < P((—00,y]) < F(y).
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Now consider (iii). We have
F(o0) = Ii{n F(xp) (for any sequence x,, 1 00)
Xn 100
= lim 1 P((—00, X))
xp 100
=P(lim % (—o00,x,]) (from property 7)
Xpn 100
= P(| J(—00, x,]) = P((—00, 20))
n
=PR)=P(Q)=1.
Likewise,
F(=o0)= lim F(x,)= lim | P((—00,x,])
Xpd—00 Xpd—00
=P( lim (—o00,x,]) (from property 7)
Xnd—00

=P((")(—00, %)) = P(@) = 0.

For the proof of (i), we may show F is right continuous as follows: Let x,, | x.
We need to prove F(x,) | F(x). This is immediate from the continuity property
7 of P and

(—'00, x’l] l‘ (—Oo,x]. a

Example 2.1.2 (Coincidences) The inclusion-exclusion formula (2.2) can be
used to compute the probability of a coincidence. Suppose the integers 1, 2, ..., n
are randomly permuted. What is the probability that there is an integer left un-
changed by the permutation?

To formalize the question, we construct a probability space. Let €2 be the set of
all permutations of 1, 2, ..., n so that

Q={(x1,....xn) 1 x;i €{1,...,n}5i =1,...,nx; # xj}.

Thus 2 is the set of outcomes from the experiment of sampling n times without
replacement from the population 1, ..., n. We let B = P(Q) be the power set of
Q and define for (x1,...,x,) €

1
P((x1,...,%n)) = —,
n!
and for B € B )
P(B) = -’F#elements in B.

Fori =1,...,n,let A; be the set of all elements of 2 with i in the ith spot.
Thus, for instance,

Ay ={(1,x2,...,x1) : (1, x2,...,Xxp) € Q},
Ay ={(x1,2,...,%p) : (x1,2,...,%x,) € Q}.



2.2 More on Closure 35

and so on. We need to compute P (U;_, A;). From the inclusion-exclusion formula
(2.2) we have

P(Jan=)Y_P@n- Y P@AAp+ Y. P(AiAjAY)
i=1 i=1

1<i<j<n 1<i<j<k=n
— . (-D)"IP(A1A7. . Ap).
To compute P(A;), we fix integer i in the ith spot and count the number of
ways to distribute n — 1 objects in n — 1 spots, which is (n — 1)! and then divide

by n!. To compute P(A;A;) we fix i and j and count the number of ways to
distribute n — 2 integers into n — 2 spots, and so on. Thus

n — 1! —2)! —3)! 1
P(UA,-):n(n )—(")(n )+<")(n )—...(—1)"E

= n! 2 n! 3 n!
1 1 nl
Taking into account the expansion of €* for x = —1 we see that for large n, the

probability of a coincidence is approximately

n
P(U A)~1-e1 20632
i=1 O

2.2 More on Closure

A o-field is a collection of subsets of 2 satisfying certain closure properties,
namely closure under complementation and countable union. We will have need
of collections of sets satisfying different closure axioms. We define a structure G
to be a collection of subsets of 2 satisfying certain specified closure axioms. Here
are some other structures. Some have been discussed, some will be discussed and
some are listed but will not be discussed or used here.

o field

e o-field

e semialgebra
e semiring

e ring

e o-ring

o monotone class (closed under monotone limits)
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e m-system (P is a m-system, if it is closed under finite intersections: A, B €
P impliess ANB € P).

e A-system (synonyms: o-additive class, Dynkin class); this will be used ex-
tensively as the basis of our most widely used induction technique.

Fix a structure in mind. Call it S. As with o-algebras, we can make the follow-
ing definition.

Definition 2.2.1 The minimal structure S generated by a class C is a non-empty
structure satisfying

(i) $OC,
(ii) If S’ is some other structure containing C, then S’ O S.
Denote the minimal structure by S(C).

Proposition 2.2.1 The minimal structure S exists and is unique.

As we did with generating a minimal o -field, let
R = (G : G is astructure , G D C}

and
SC) = ngekg-

2.2.1 Dynkin’s theorem

Dynkin’s theorem is a remarkably flexible device for performing set inductions
which is ideally suited to probability theory.

A class of subsets £ of Q is a called a A-system if it satisfies either the new
postulates A1, A2, A3 or the old postulates A7, A5, A3 given in the following table.

A-system postulates
old [ new
)‘/1 Qel M| Qel
A, |AABeEL,ACB=>B\AeLl |A |AcL=AcL
Ay | Ant A e L= UyAp el A3 | n#Em,AA, =0,
Ap e L=>U,A, € L.

The old postulates are equivalent to the new ones. Here we only check that
old implies new. Suppose A, A, A3 are true. Then A; is true. Since Q € L, if
A€ L, then A C Qandby A}, Q\ A = A € L, which shows that A5 is true. If
A, B € L are disjoint, we show that AUB € L. Now Q\A e Land BC Q\ A
(since w € B implies w ¢ A which means w € A° = Q \ A) so by A, we have
(2\ A)\ B = A°B¢ € L and by A, we have (A°B€)° = AU B € L which is
A3 for finitely many sets. Now if A; € £ are mutually disjoint for j = 1,2, ...,
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define B, = U'}=1A j- Then B, € L by the prior argument for 2 sets and by A3
we have U, B, = lim,, 1 B, € L. Since U, B, = Up,A, we have UyA, € L
which is A3. o

Remark. It is clear that a o-field is always a A-system since the new postulates
obviously hold.

Recall that a w-system is a class of sets closed under finite intersections; that
is, P is a w-system if whenever A, B € P we have AB € P.

We are now in a position to state Dynkin’s theorem.

Theorem 2.2.2 (Dynkin’s theorem) (a) If P is a n-system and L is a A-system
such thatP C L, theno(P) C L.

(b) If P is a m-system
o(P) = L(P),
that is, the minimal o -field over P equals the minimal A-system over P.

Note (b) follows from (a). To see this assume (a) is true. Since P C L(P), we
have from (a) that o (P) C L(P). On the other hand, o (P), being a o-field, is a
A-system containing P and hence contains the minimal A-system over P, so that
o(P) O L(P).

Before the proof of (a), here is a significant application of Dynkin’s theorem.

Proposition 2.2.3 Let P;, P, be two probability measures on (2, B). The class
L:={A € B: Pi(A) = P,(A)}
is a A-system.
Proof of Proposition 2.2.3. We show the new postulates hold:
(A1) Q € Lsince P1(Q) = P2(Q) = 1.
(A2) A € Limplies A€ € L, since A € £ means P;(A) = P»(A), from which

Pi(A%) =1—- Pi(A) =1 - Py(A) = Py(A°).

(A3) If {Aj} is a mutually disjoint sequence of events in £, then Pi(A;) =
P,(Aj) for all j, and hence

P JAp =) Piap =) PAp =P J4)
J J J J

so that

UA]' eL.
J
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Corollary 2.2.1 If P1, P, are two probability measures on (2, B) and if P is a
7 -System such that
VAeP: Pi(A) =P (A),

then
VB eo(P): Pi(B)= PyB).

Proof of Corollary 2.2.1. We have
L={A e B: Pi(A) = P,(A)}
is a A-system. But £ O P and hence by Dynkin’s theorem £ D o (P). m]

Corollary 2.2.2 Let 2 = R. Let Py, P; be two probability measures on (R, B(R))
such that their distribution functions are equal:

VxeR: Fi(x) = Pi((-00,x]) = F2(x) = P2((-00, x]).

Then
P=pP
on B(R).

So a probability measure on R is uniquely determined by its distribution func-
tion.

Proof of Corollary 2.2.2. Let
P ={(—o0,x]:x € R}.
Then P is a 7-system since
(—00,x] N (—00,y] = (—00,x A y] € P.

Furthermore o (P) = B(R) since the Borel sets can be generated by the semi-
infinite intervals (see Section 1.7). So Fi(x) = F>(x) for all x € R, means P; =
P, on P and hence P; = P; on o (P) = B(R). O

2.2.2 Proof of Dynkin’s theorem

Recall that we only need to prove: If P is a wr-system and £ is a A-system then
P c Limplieso(P) C L.
We begin by proving the following proposition.

Proposition 2.2.4 If a class C is both a w-system and a A-system, then it is a
o-field.

Proof of Proposition 2.2.4. First we show C is a field: We check the field postu-
lates.
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(i) Q € Csince C is a A-system.
(ii) A e C implies A€ € C since C is a A-system.
(iii) If A; €C, for j =1,...,n,then ﬂ;f:lAj € C since C is a 7-system.

Knowing that C is a field, in order to show that it is a o-field we need to show
thatif Aj € C, for j > 1, then U?‘;IA,' € C. Since

s

n

J

and U;!:lA j € C (since C is a field) it suffices to show C is closed under monotone
non-decreasing limits. This follows from the old postulate A7. a

We can now prove Dynkin’s theorem.

Proof of Dynkin’s Theorem 2.2.2. It suffices to show L(P) is a -system since
L(P) is both a w-system and a A-system, and thus by Proposition 2.2.4 also a
o-field. This means that

LD>LP)DP.
Since L(P) is a o-field containing P,
LP)D>a(P)
from which
LD LMP)Da(P),
and therefore we get the desired conclusion that
L>Do(P).

We now concentrate on showing that L(P) is a w-system. Fix a set A € o (P)
and relative to this A, define

Ga={Be€o(P):AB € L(P)}.
We proceed in a series of steps.

[A] If A € L(P), we claim that G4 is a A-system.
To prove [A] we check the new A-system postulates.

(i) We have
Qega

since AQ2 = A € L(P) by assumption.
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(ii) Suppose B € G4. We have that B°A = A \ AB. But B € G4 means
AB € L(P) and since by assumption A € L(P), we have A \ AB =
B€A € L(P) since A-systems are closed under proper differences.
Since B€A € L(P), it follows that B¢ € G4 by definition.

(iii) Suppose {B;} is a mutually disjoint sequence and B; € Ga. Then

o0 (e 2]
andJBn=J4s;
j=1 j=1

is a disjoint union of sets in L(P), and hence in L(P).

[B] Next, we claim that if A € P, then L(P) C Ga.

To prove this claim, observe that since A € P C L(P), we have from [A]
that G4 is a A-system.

For B € P, we have AB € P since by assumption A € P and P is a
n-system. So if B € P, then AB € P C L(P) implies B € Ga; that is

P C Ga. 24)
Since G4 is a A-system, G4 D L(P).

[B'] We may rephrase [B] using the definition of G4 to get the following state-
ment. If A € P, and B € L(P), then AB € L(P). (So we are making
progress toward our goal of showing L(P) is a w-system.)

[C] We now claim that if A € L(P), then L(P) C Ga.

To prove [C): If B € P and A € L(P), then from [B'] (interchange the
roles of the sets A and B) we have AB € L(P). So when A € L(P),

P C Ga.
From [A], G4 is a A-system so L(P) C Ga.

[C'] To finish, we rephrase [C]: If A € L(P), then for any B € L(P), B € Ga.
This says that

AB € L(P)

as desired. ]

2.3 Two Constructions

Here we give two simple examples of how to construct probability spaces. These
examples will be familiar from earlier probability studies and from Example 2.1.2,
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but can now be viewed from a more mature perspective. The task of constructing
more general probability models will be considered in the next Section 2.4

(i) Discrete models: Suppose 2 = {w;, @, ...} is countable. For each i, asso-
ciate to w; the number p; where

o0
Vi>1, pi>0and ) pi=1.
i=1

Define B = P(R2), and for A € B, set

P@A)Y= ) pi.

wi€A
Then we have the following properties of P:
(i) P(A)>0forall A € B.
(i) PQ =Y, pi=1
(iii) P is o-additive: If Aj, j > 1 are mutually disjoint subsets, then

PJap= ) pm=)_.) b
j=1

wi€UjAj j wi€Aj

=) _P(A)).
i
Note this last step is justified because the series, being positive, can be

added in any order.

This gives the general construction of probabilities when €2 is countable. Next
comes a time honored specific example of countable state space model.

(ii) Coin tossing N times: What is an appropriate probability space for the ex-
periment “toss a weighted coin N times”? Set

Q={0,1" ={(1,...,0N8) : w; =00r1}.
Forp>0,9>0, p+q =1, define

N l
Plon...omy = pEi=t @1gN=Ziz10) = pHl's g#0's

Construct a probability measure P as in (i) above: Let B = P(2) and for A C Q
define

P(A) =) po.

wEA
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As in (i) above, this gives a probability model provided )", .q po = 1. Note the
product form

N
P@pom) = | | P*" ™

i=1

SO

> Poaw= ) HP“"q o

W1,y.ee yON W1yeee N i=
= Z ]_[P""fI"w’(Pq +pq)— =1
< HON-] i=

2.4 Constructions of Probability Spaces

The previous section described how to construct a probability space when the
sample space € is countable. A more complex case but very useful in applications
is when € is uncountable, for example, when Q = R, R*, R®, and so on. For
these and similar cases, how do we construct a probability space which will have
given desirable properties? For instance, consider the following questions.

(i) Given a distribution function F(x), let 2 = R. How do we construct a
probability measure P on B(R) such that the distribution function corre-
sponding to P is F:

P((—00, x]) = F(x).

(i) How do you construct a probability space containing an iid sequence of
random variables or a sequence of random variables with given finite di-
mensional distributions.

A simple case of this question: How do we build a model of an infinite
sequence of coin tosses so we can answer questions such as:

(a) What is the probability that heads occurs infinitely often in an infinite
sequence of coin tosses; that is, how do we compute

P[ heads occurs i.o. ]?

(b) How do we compute the probability that ultimately the excess of
heads over tails is at least 17?

(c) In a gambling game where a coin is tossed repeatedly and a heads
results in a gain of one dollar and a tail results in a loss of one dollar,
what is the probability that starting with a fortune of x, ruin eventually
occurs; that is, eventually my stake is wiped out?
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For these and similar questions, we need uncountable spaces. For the coin toss-
ing problems we need the sample space

Q =(0, yN
={(w17w27 ) ‘W € {09 1}1 i > 1}

2.4.1 General Construction of a Probability Model

The general method is to start with a sample space €2 and a restricted, simple class
of subsets S of 2 to which the assignment of probabilities is obvious or natural.
Then this assignment of probabilities is extended to o (S). For example, if @ = R,
the real line, and we are given a distribution function F, we could take S to be

S={(a,b]: -0 <a<b< o}
and then define P on S to be
P((a,b]) = F(b) — F(a).

The problem is to extend the definition of P from S to B(R), the Borel sets.
For what follows, recall the notational convention that E?:l A; means a dis-
joint union; that is, that A, ..., A, are mutually disjoint and

n n
ZA,' = UA,-.
i=1 i=1

The following definitions help clarify language and proceedings. Given two
structures Gy, G, of subsets of 2 such that G; C G and two set functions

P :Gim—[0,1], i=1,2,

we say P, is an extension of Py (or P; extends to P,) if P, restricted to G; equals
Py. This is written
Plg, =P

and means P2(A1) = P1(A;) for all A; € G;. A set function P with structure G
as domain and range [0, 1],
P:Gw—[0,1],

is additive if for any n > 1 and any disjoint Ay, ..., A, € G such that ELI A; €
G we have

n n
P()_A) =) P(A)). (2.5)
i=1 i=1
Call P o-additive if the index n can be replaced by oo; that is, (2.5) holds for

mutually disjoint {A,,n > 1} withAj € G, j > 1and Z;’il Ajeg.
We now define a primitive structure called a semialgebra.
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Definition 2.4.1 A class S of subsets of  is a semialgebra if the following pos-
tulates hold:

(i) 9,2 €S.
(ii) S is a w-system,; that is, it is closed under finite intersections.

(iii) If A € S, then there exist some finite n and disjoint sets Cq, ..., Cp, with
each C; € Ssuchthat A=Y 7_; C;.

The plan is to start with a probability measure on the primitive structure S,
show there is a unique extension to A(S), the algebra (field) generated by S
(first extension theorem) and then show there is a unique extension from .A(S)
to o (A(S)) = o (S), the o-field generated by S (second extension theorem).

Before proceeding, here are standard examples of semialgebras.

Examples:

(a) Let @ = R, and suppose S; consists of intervals including @, the empty
set:

S1={(a,b]: -0 <a<b<ox}

If I, I; € 84, then I1 15 is an interval and in Sy and if I € Sy, then I€ is a
union of disjoint intervals.

FIGURE 2.1 Intervals
(b) Let

Q=R ={(x1,...., 0) :x; eR,i=1,...,k)
Sk = all rectangles (including @, the empty set ).

Note that we call A a rectangle if it is of the form

A=L x---x Iy
where I; € Sy is aninterval, j = 1, ...,k as in item (a) above. Obviously
@, Q are rectangles and intersections of rectangles are rectangles. When

k = 2 and A is a rectangle, the picture of A€ appears in Figure 2.2, showing
A€ can be written as a disjoint union of rectangles.
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———————— R SRS OT

FIGURE 2.2 Rectangles

For general £, let

k
A=1 x---ka,=m((x1,...,xk):x,-GI,-}
i=1

so that

k c k
Af = (ﬂ{(xL ce Xg) X € Ii}) = U{(xl,...,xk) :x; € If).
i=1 i=1

Since I; € Sy, we have I€ = I/ + I/, where I/, I’ € S are intervals.
l l l l l

Consider
Di={Uy x--xUg:Uy=Iqor I orl,, «a =1,... k}.
WhenUy =1,, a=1,... ,k,thenU; x ... x Uy = A. So

A€ = Z Uy x -+ x Ug.

Uy x--xUpeD
Not all Ug=ly, a=1,...k

This shows that S is a semialgebra. a

Starting with a semialgebra S, we first discuss the structure of A(S), the small-
est algebra or field containing S.

Lemma 2.4.1 (The field generated by a semialgebra) Suppose S is a semial-
gebra of subsets of Q. Then

AS) =D _ S : I finite, {S;, i € I} disjoint, S; € S}, (2.6)
iel
is the family of all sums of finite families of mutually disjoint subsets of Q in S.
Proof. Let A be the collection on the right side of (2.6). It is clear that A D S (take

I to be a singleton set) and we claim A is a field. We check the field postulates in
Definition 1.5.2, Chapter 1 on page 12:
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(i) Qe Asince Q2 e S.

(iii) If )y Siand 3 S’ are two members of A, then

(Zs)N(s)= & ssjen

iel jel (i,j)el xJ

since {S; S;., (i, j) € I x J} is afinite, disjoint collection of members of the
mw-system S.

(i) To check closure under complementation, let }";, S; € A and observe
c
(Z s,-) =(s¢.
iel iel

But from the axioms defining a semialgebra, S; € S implies

for a finite index set J; and disjoint sets {Sij, j € Ji} in S. Now observe
that N;es S§ € A by the previously proven (iii).

So Ais afield, A D S and hence A D A(S). Since also

Y _Si € Aimplies Y S; € A(S),
iel iel
we get A C A(S) and thus, as desired, A = A(S). |

It is now relatively easy to extend a probability measure from S to A(S).

Theorem 2.4.1 (First Extension Theorem) Suppose S is a semialgebra of sub-
sets of Qand P : S — [0, 1] is o -additive on S and satisfies P(Q2) = 1. There is
a unique extension P’ of P to A(S), defined by

P'(Y_s)=Y P, @7
iel iel
which is a probability measure on A(S); that is P' () = 1 and P’ is o-additive
on A(S).

Proof. We must first check that (2.7) defines P’ unambiguously and to do this,
suppose A € A(S) has two distinct representations

A=) §i=) 5,

iel jeJ
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We need to verify that

Y PGS) =) PS) (2.8)

iel jeJ

so that P’ has a unique value at A. Confirming (2.8) is easy since S; C A and

therefore
ZP(S,-) =ZP(S,-A) = Z P(S; N Zs})

iel iel iel jeJ
/
=) _PQ_siS))
iel jeJ

and using the fact that §; = ) jeJ S,-S} € S and P is additive on S, we get the
above equal to

=YY PEiS) =) > P(SiS).
iel jeJ jeJ iel
Reversing the logic, this equals
=2 PS)
jeJ

as required.
Now we check that P’ is o-additive on .A(S). Thus suppose fori > 1,

A=) SjeAS), Sjes,
jedi

and {A;, i > 1} are mutually disjoint and
o0
A=) Ai € AS).
ot

Since A € A(S), A also has a representation

A=Zsk, Si€S, keK,
keK

where K is a finite index set. From the definition of P’, we have

P'(A) = Z P(Sp).

keK

Write

o0 o0
Sk = SkA = ZSkAi =YY SSij.

i=1 i=1 jeJ;
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Now SS;j € Sand 372, 3 ;e s, SkSij = Sk € S, and since P is o-additive on
S, we have

D PSO=) Y D P&Si=)_ ) PSS

keK keK i=1 jeJ; i=1 jeJ; keK

Again observe
ZSkS,'j =AS;j=S;j€S
keK

and by additivity of P on S

o 00
DY PSS =) Y PSi,

i=1 jeJ; keK i=1 jeJ;

and continuing in the same way, we get this equal to

o0 o0
=Y P()_Sij)=) P'A)
as desired.

Finally, it is clear that P has a unique extension from S to A(S), since if P|
and PZ’ are two additive extensions, then for any

A=) "5 € AWS)
iel
we have
P{(A) =) _P(Si) = Py(A).
iel
0
Now we know how to extend a probability measure from S to .A(S). The next
step is to extend the probability measure from the algebra to the o -algebra.

Theorem 2.4.2 (Second Extension Theorem) A probability measure P defined
on a field A of subsets has a unique extension to a probability measure on o (A),
the o -field generated by A.

Combining the First and Second Extension Theorems 2.4.1 and 2.4.2 yields the
final result.

Theorem 2.4.3 (Combo Extension Theorem) Suppose S is a semialgebra of sub-
sets of 2 and that P is a o-additive set function mapping S into [0, 1] such that
P(2) = 1. There is a unique probability measure on o (S) that extends P.

The ease with which this result can be applied depends largely on how easily
one can check that a set function P defined on S is o-additive (as opposed to just
being additive). Sometimes some sort of compactness argument is needed.

The proof of the Second Extension Theorem 2.4.2 is somewhat longer than the
proof of the First Extension Theorem and is deferred to the next Subsection 2.4.2.
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2.4.2  Proof of the Second Extension Theorem

We now prove the Second Extension Theorem. We start with a field 4 and a
probability measure P on A so that P(2) = 1, and for all A € A, P(A) > 0 and
for {A;} disjoint, A; € A, Y (2, A; € A, we have P(} 2, A)) = Y 2, P(A)).
The proof is broken into 3 parts. In Part I, we extend P to a set function IT on
aclass G O A. In Part II we extend IT to a set function I'T* on a class D D o (A)
and in Part III we restrict IT* to o (A) yielding the desired extension.
PART I. We begin by defining the class G:

g 3={LJAAj :Aj E.A}

j=1
={ lir{)lo 4 B,:B, €A, B, CBy+1, VYn}.
n—

So G is the class of unions of countable collections of sets in .4, or equivalently,
since A is a field, G is the class of non-decreasing limits of elements of A.

We also define a set function I1 : G — [0, 1] via the following definition: If
G =lim,_« 1 B, € G, where B, € A, define

M(G) = lim 1 P(By). (2.9)

Since P is o-additive on .4, P is monotone on 4, so the monotone convergence
indicated in (2.9) is justified. Call the sequence {B} the approximating sequence
to G. To verify that IT is well defined, we need to check that if G has two approx-
imating sequences {B,} and {B,},

G = lim 1 B, = lim 1 B,
n—-oo n—o0o0

then
lim 1 P(B,) = lim 1 P(B,).
n—0o0 n—0o0

This is verified in the next lemma whose proof is typical of this sort of uniqueness
proof in that some sort of merging of two approximating sequences takes place.

Lemma 2.4.2 If {B,} and {B,} are two non-decreasing sequences of sets in A

and
o0 o0
Os.c (.
n=1 n=1

then
lim 4 P(B,) < lim % P(B,’,).
n—0o0 n—o0

Proof. For fixed m

lim 1 BB, = By. (2.10)
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Since also

BnB, C B,

and P is continuous with respect to monotonely converging sequences as a con-
sequence of being o-additive (see Item 7 on page 31), we have

lim 4 P(B,) > lim t P(BnB,)= P(Bn),
n—->o00 n—00

where the last equality results from (2.10) and P being continuous. The inequality
holds for all m, so we conclude that

. ’ N
lim 1 P(B;) > lim 1 P(By)

as desired. O

Now we list some properties of IT and G:

Property 1. We have

peg, I@ =0,
Qeg, NW)=1,

andforG € G
0<TG) < 1. (.11)
More generally, we have A C G and
M4 =P;

that is, [T(A) = P(A), for A € A.

The first statements are clear since, for example, if we set B, = 2 for all
n, then
A3B, =Q1 Q,

and
Q) = ngngo 1+ PQ)=1

and a similar argument holds for @. The statement (2.11) follows from 0 <
P(B,) < 1 for approximating sets {B,} in A. To show I[1(A) = P(A) for
A, € A, take the approximating sequence to be identically equal to A.

Property 2. If G; € G fori = 1, 2 then

G1UG2e g, Gi1NG;€g,
and

I1(G1 VU G2) + I1(G1 N G2) = II(G1) + T1(G?). (2.12)
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This implies IT is additive on G.

To see this, pick approximating sets By, Bn2 € A such that B,; 1 G; for
i =1,2asn — 0o and then, since A is a field, it follows that

ABBnIUBnZTGIUGZ,
A3 By, N B2 + G1 NGy,

showing that G1 U G2 and G, N G are in G. Further
P(Bnl U BnZ) + P(Bnl N BnZ) = P(Bnl) + P(BnZ), (2-13)
from (2.1) on page 30. If we let n — oo in (2.13), we get (2.12).

Property 3. IT is monotone on G: If G; € G,i = 1,2 and G; C Gy, then
I1(G1) < 1(G37). This follows directly from Lemma 2.4.2.

Property 4. If G, € Gand G, 1 G,then G € G and
IM(G) = lim I1(G,).
n—0o0

So G is closed under non-decreasing limits and IT is sequentially mono-
tonely continuous. Combining this with Property 2, we get that if
{Ai,i > 1} is a disjoint sequence of sets in G, Y .o, A; € G and

M Ap =MClim 13" A0 = lim 1 1Y 49
i=1 i=1 i=1
=nl_i>lrolo 0 i I(A;) = iP(Ai)-
i=1 i=1

So I1 is o -additive on G.

For each n, G, has an approximating sequence B,, , € A such that
mleOO 4 By = Gp. (2.14)

Define Dy = UJ_; Bm,n- Since A is closed under finite unions, D, € A.
We show

lim 4 Dp =G, (2.15)
m-—00

and if (2.15) is true, then G has a monotone approximating sequence of sets
in A, and hence G € G.

To show (2.15), we first verify {D,,} is monotone:

m m
Dy, = U Bm,n - U Bm+1,n

n=1 n=1
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(from (2.14))

m+1
C Bm+1,n = Dm+1-
n=1

Now we show {D,,} has the correct limit. If n < m, we have from the
definition of Dy, and (2.14)

m m
Bnyn CDn=|JBmjc|JGj=Gm
j=1 j=1
that is,
Bun C Dy C Gp. (2.16)
Taking limits on m, we have for any n > 1,
Gy= lim *B,,C lim 4D, C lim 1G,=G
m—00 m—00 m—00
and now taking limits on n yields
G=lm tG,C lim 4D, C lim 1G,=G (2.17)
n—>oo m—0o0 m—00

which shows D,, 1 G and proves G € G. Furthermore, from the definition
of I1, we know I1(G) = limpy—oo 1 [1(Dp).

It remains to show I1(G,) 1 I1(G). From Property 2, all sets appearing in
(2.16) are in G and from monotonicity property 3, we get

N(Bm,n) < (D) < (G ).
Letm — oo and since G, = lim;y—00 1 Bm,n We get
[(Gp) < lim 4t I1(Dp) < lim 1 I1(Gm)
m-—0o0 m—00
which is true for all n. Thus letting n — 00 gives
lim 1 I1(Gp) < lim II(Dp) < lim 1 I1(Gp),
n—00 m—00 m—00

and therefore
lim 4 I1(Gp) = lim TI(Dy).
n—>oo m—00
The desired result follows from recalling

mli’moo (D) = I1(G).
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This extends P on A to a o-additive set function IT on G. 0O

PART 2. We next extend I to a set function IT* on the power set P(2) and
finally show the restriction of IT* to a certain subclass D of P(2) can yield the

desired extension of P.
We define IT* : P(Q) — [0, 1] by

VAeP(Q): I*A) =inf{I1(G): A CG eG}, (2.18)

so IT*(A) is the least upper bound of values of IT on sets G € G containing A.
We now consider properties of IT*:

Property 1. We have on G:
Mg=1 (2.19)

and 0 < IT*(A) < 1for any A € P(R).
It is clear that if A € G, then

Ac{G:ACGegG}

and hence the infimum in (2.18) is achieved at A.
In particular, from (2.19) we get

mQ)=Mn®R) =1, 0*@=IH@®) =0.

Property 2. We have for Ay, A2 € P(Q)

MM*(A; UA2) + IT*(A1 NA2) < TT*(A1) + [T*(A2) (2.20)
and taking A1 = A, A2 = A€ in (2.20) we get
1=M*(Q) < [M*(A) + [T*(A9), (2.21)

where we used the fact that [T*(Q2) = 1.

To verify (2.20), fix € > 0 and find G; € G such that G; O A;, and for
i=1,2,
€
m*(A;) + 72 [1(G:).

Adding over i = 1, 2 yields
M* (A1) + T*(A2) + € > T1(G1) + 1(G2).

By Property 2 for I (see (2.12)), the right side equals
=I1(G1 UG7) + 1(G1 NG?).

Since G1UG, D A1UA2,G1NG2 D A N A3, we get from the definition
of IT* that the above is bounded below by

> TT*(A1 U Az) + IT*(A; N A)).
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Property 3. IT* is monotone on P(£2). This follows from the fact that IT is mono-
tone on G.

Property 4. IT* is sequentially monotone continuous on P (<) in the sense that
if A, 1 A, then IT*(A4,) 1 IT*(A).
To prove this, fix € > 0. for eachn > 1, find G, € G such that G, D A,
and

IT*(An) + 26—,, > T1(G,). 2.22)

Define G, = U} _, G . Since G is closed under finite unions, G, € G and
{G} is obviously non-decreasing. We claim for all n > 1,

M*(An) +€ ) 27 > T1(G)). (2.23)

i=1

We prove the claim by induction. For n = 1, the claim follows from (2.22)
and the fact that G} = G1. Make the induction hypothesis that (2.23) holds
for n and we verify (2.23) for n + 1. We have

Ap CGnCGpand Ay C Apt1 C Grpa
and therefore A, C G, and A, C Gp41, SO
Ay CG.N Gyt €G. (2.24)
Thus

n(G:,.H) =H(G; U Gn+1)
=H(G;) + l-I(Gn+1) - H(G; n Gn+1)

from (2.12) for IT on G and using the induction hypothesis, (2.22) and the
monotonicity of IT*, we get the upper bound

= (n*(An) +€ Zn:z_i) + (n*(An-H) + Een_)

i=1
- IT*(An)
n+1
=€) 27 + M (Ans1)
i=1
which is (2.23) with n replaced by n + 1.

Let n — oo in (2.23). Recalling IT* is monotone on P(£2), I1 is monotone
on G and G is closed under non-decreasing limits, we get

o0
lim 4 TT*(4,) +€ > lim TU(G;)=1'I(UIG',-)-
]=
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Since

(o]

. !/
=t 11, (Joj e

j=1

we conclude
lim 1 [T*(A,) > IT*(A).
n—00

For a reverse inequality, note that monotonicity gives

IM*(A,) < TI*(4)

and thus

lim 4 IT*(A,) < IT*(A).
n—00 ]

PART 3. We now retract IT* to a certain subclass D of P(2) and show [T*|p is
the desired extension.
We define
D :={D € P(Q) : M*(D) + M*(D°) = 1.}

Lemma 2.4.3 The class D has the following properties:
1. Disao-field.
2. IT*|p is a probability measure on (2, D).

Proof. We first show D is a field. Obviously € D since [T*(2) = 1 and
[T*(@) = 0. To see D is closed under complementation is easy: If D € D, then

n*(D) + M*(D°) =1

and the same holds for D€.
Next, we show D is closed under finite unions and finite intersections. If D1, D; €
D, then from (2.20)

I1*(D1 U Dy) + IT*(D1 N Dy) <IT*(Dy) + IT*(D>) (2.25)
I*((D1 U Dy)°) + II*((D1 N D)) <IT*(DY) + IT*(D5). (2.26)

Add the two inequalities (2.25) and (2.26) to get

IT*(D1 U Dy)+IT*((D1 U D7)°)
+ [I*(D1 N D7) + IM*((D1 N Dy)) <2 (2.27)

where we used D; € D, i = 1, 2 on the right side. From (2.21), the left side of
(2.27) is > 2, so equality prevails in (2.27). Again using (2.21), we see

IT*(Dy U D2) + IT*((D1 U D2)) =1

IT*(D1 N Dy) + IT*((D1 N Dy)°) =1.
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Thus D1UD;, D1ND; € D and D is a field. Also, equality must prevail in (2.25)
and (2.26) (else it would fail in (2.27)). This shows that IT* is finitely additive on
D.

Now it remains to show that D is a o-field and IT* is o-additive on D. Since D
is a field, to show it is a o-field, it suffices by Exercise 41 of Chapter 1 to show
that D is a monotone class. Since D is closed under complementation, it is enough
to show that D, € D, D, 1 D implies D € D. However, D, 1 D implies, since
IT* is monotone and sequentially monotone continuous, that

Jim 4 IT*(Dy) = 1*(|_J Da) = (D).
n=1

Also, forany m > 1,

o0 o0
* (| Dw)¥) = I*((") DS) < (D)
n=1 n=1

and therefore, from (2.21)

(] 0
1< (| D) + (D)) < lim TI*(Da) + 1*(D;)  (2.29)
n=1 n=1
and letting m — oo, we get using D, € D
1< lim IM*(Dp) + lim M*(D§,)
n—00 m— 00
= lim (IT*(D,) + [T*(D§)) =1,
n—>00
and so equality prevails in (2.28). Thus, D, 1+ D and D, € D imply D € D and
D is both an algebra and a monotone class and hence is a o-algebra.
Finally, we show IT*|p is o-additive. If {D,} is a sequence of disjoint sets in

D, then because IT* is continuous with respect to non-decreasing sequences and
Dis afield

00 n
() Di) =M*(lim » " Dy)
i=1 i=1

n
— 1 * .
= lim 1"} D;)
i=1
and because IT* is finitely additive on D, this is

n 00
= lim ) MM*(D;) =) N*(Dy),
Jm, 2 2
as desired.

Since D is a o-field and D D A, D D o (A). The restriction IT*|;(4) is the
desired extension of P on A to a probability measure on o (A). The extension
from A to o (A) must be unique because of Corollary 2.2.1 to Dynkin’s theorem.

[m]
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2.5 Measure Constructions

In this section we give two related constructions of probability spaces. The first
discussion shows how to construct Lebesgue measure on (0, 1] and the second
shows how to construct a probability on R with given distribution function F.

2.5.1 Lebesgue Measure on (0, 1]
Suppose

2 =(0,1],
B = B((0, 1)),
S={(@a,b]:0<a<bs<l1}

Define on S the function A : S — [0, 1] by
A@) =0, Aa,b]=b-a.

With a view to applying Extension Theorem 2.4.3, note that A(A) > 0. To show
that A has unique extension we need to show that A is o-additive.
We first show that A is finitely additive on S. Let (a, b] € S and suppose

k
(@,b] = J@, bil,
i=1

where the intervals on the right side are disjoint. Assuming the intervals have been
indexed conveniently, we have

ai=a,by=b,bj=aj4+1,i=1,... ,k—1.

L X h'd 1 b ]
\ X X J ]
a bj=a, b;=a, ccc by
({ h |
\ ]
a b

FIGURE 2.3 Abutting Intervals
Then A(a,b] = b —a and

k k
Zl(a,‘, bi]= Z(bz’ - a;)
i=1 i=1

=bi—ai+by—ay+---+b—a
=by—a;=b—a.

This shows A is finitely additive.
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We now show A is o-additive. Care must be taken since this involves an infinite
number of sets and in fact a compactness argument is employed to cope with the
infinities.

Let

o0
(@,b] = | J@;, bi]

i=1

and we first prove that

[e,¢]
b-a<) (bi—a). (229)
i=1
Pick ¢ < b — a and observe
o £
[a+eblc| (a,-, bi + 7) . (2.30)
i=1

The set on the left side of (2.30) is compact and the right side of (2.30) gives an
open cover, so that by compactness, there is a finite subcover. Thus there exists
some integer N such that

N
£
[a+eblc | (a,-, bi + 5) . (2.31)
i=1
It suffices to prove
N £
b—a—egzlj(b,»—a,-+7) 2.32)
since then we would have
N e 00
b—a—esZ(b,-—a,-+§)sz(b,-—ai)+e; (2.33)
1 1
that is,
00
b—a<) (bi—a)+2e. (2.34)
1

Since ¢ can be arbitrarily small
00
b-a=< Z(bi - a;)
1

as desired.
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Rephrasing relations (2.31) and (2.32) slightly, we need to prove that
N
[a,b] | J (@i, bi) (2.35)
1
implies
N
b—a<) (bi—a) (2.36)
1

We prove this by induction. First note that the assertion that (2.35) implies
(2.36) is true for N = 1. Now we make the induction hypothesis that whenever
relation (2.35) holds for N — 1, it follows that relation (2.36) holds for N — 1. We
now must show that (2.35) implies (2.36) for N.

Suppose ay = Vf’a,-, and

ay <b <by, (2.37)

with similar argument if (2.37) fails. Suppose relation (2.35) holds. We consider
two cases:

ay a b by
FIGURE 2.4 Case 1

«  ay b by
FIGURE 2.5 Case 2

CASE 1: Suppose ay < a Then
N
b—a<by—-ay= Z(bi - a;).
1

CASE 2: Suppose ay > a. Then if (2.35) holds
N-1
[a,an] C | (@i, i)
1
so by the induction hypothesis

N-1
ay—a<) (bi—a)

i=1
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SO

b—a=b—ay+ay —a
N-1

<b-an + Z(bi —a;)
i=1
N-1
<by —ay + Y (bi —a)
i=1

N
= Z(bi —a)
i=1

which is relation (2.36). This verifies (2.29).
We now obtain a reverse inequality complementary to (2.29). We claim that if
(a,b] = ,921(“:‘» b;], then for every n,

M@ b)=b-az) @b =) bi—a) (238)
i=1 i=1

This is easily verified since we know A is finitely additive on S. For any n,
U?_, (a;, bi] is a finite union of disjoint intervals and so is

n m
(a,b]\ U(ai,bi] =: U Ij.
i=1 j=1
So by finite additivity

M(a, b)) =2 @i, bi]u | 1),
- —

i=1 j
which by finite additivity is
n m
=Y M@, b+ ) _Ad))
i=1 j=1
n
> > M@, bi).

i=1

Let n — 00 to achieve
o0
M(@, b)) = ) M(ai, bi).
i=1

This plus (2.29) shows A is o-additive on S. a
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2.5.2 Construction of a Probability Measure on R with Given
Distribution Function F (x)

Given Lebesgue measure A constructed in Section 2.5.1 and a distribution func-
tion F(x), we construct a probability measure on R, Pr, such that

Pr((—00, x]) = F(x).
Define the left continuous inverse of F as

F ()=inf(s: F(s)>y}, 0<y<1 (2.39)

1
]
1
1
-

F(y) x
FIGURE 2.6

\

and define
A(y) :={s: F(s) > y}.

Here are the important properties of A(y).
(a) The set A(y) is closed. If s, € A(y), and s, | s, then by right continuity
y < F(sp) | F(s),
so F(s) > yands € A(y).Ifs, 1 s and s, € A(y), then
Yy < F(sa) * F(s—) < F(s)
and y < F(s) implies s € A(y).

(b) Since A(y) closed,
infA(y) € A(y);

that is,
F(FT(y)>y.

(c) Consequently,
F<(y)>tiffy > F(t)

or equivalently
F<(y) <tiffy < F(t).
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The last property is proved as follows. If t < F*(y) = infA(y), then ¢ ¢
A(y), so that F(t) < y. Conversely, if F < (y) <t,thent € A(y) and F(t) > y.
Now define for A C R

EFr(A)={x € (0,1]: FT(x) € A}.
If A is a Borel subset of R, then £r(A) is a Borel subset of (0, 1].
Lemma 2.5.1 If A € B(R), then £r(A) € B((0, 1)).
Proof. Define
G ={ACR:&r(4) € B((0, 1]}
G contains finite intervals of the form (a, b] C R since from Property (c) of F*~
Er((a,b]) ={x € (0,1] : F* (x) € (a, b]}
={xe(0,1]:a < FT(x) <b}
={x € (0,1]: F(a) <x < F(b)}
=(F(a), F(b)] € B((0,1)).
Also G is a o -field since we easily verify the o-field postulates:

(i) We have
Reg

since &r (R) = (0, 1].
(ii)) We have that A € G implies A€ € G since
EF(A°) = {x € (0,1]: F* (x) € A%}
= {x € (0,1]: F(x) € A)* = (¢r(4))".

(iii) G is closed under countable unions since if A, € G, then

erdJAn =Jer(an)

UA,, eqg.

So G contains intervals and G is a o -field and therefore
G D B(intervals ) = B(R). O
We now can make our definition of Pr. We define
Pr(A) = A(§F(A)),
where A is Lebesgue measure on (0, 1]. It is easy to check that Pr is a probability
measure. To compute its distribution function and check that it is F, note that
Pp(=00,x] = A(§F(—00,x]) = My € (0,1] : F(y) < x}
=My € (0,1]: y < F(x)}
= A((0, F(x)]) = F(x). O

and therefore
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2.6 Exercises

1.

Let €2 be a non-empty set. Let Fq be the collection of all subsets such that
either A or A€ is finite.

(a) Show that Fy is a field.
Define for E € F the set function P by

0, if E is finite,

P(EY=1 1" ifECis finite.

(b) If Q is countably infinite, show P is finitely additive but not o -additive.
(c) If Q is uncountable, show P is o-additive on Fyg.
Let A be the smallest field over the 7 -system P. Use the inclusion-exclusion

formula (2.2) to show that probability measures agreeing on P must agree
also on A.

Hint: Use Exercise 20 of Chapter 1.

Let (2, B, P) be a probability space. Show for events B; C A; the follow-
ing generalization of subadditivity:

P(UiAi) — P(UiBi) < ) (P(Ai) — P(B))).

Review Exercise 34 in Chapter 1 to see how to extend a o-field. Suppose P
is a probability measure on a o-field B and suppose A ¢ B. Let

By = o(B, A)

and show that P has an extension to a probability measure P; on Bj. (Do
this without appealing directly to the Combo Extension Theorem 2.4.3.)

. Let P be a probability measure on B(R). For any B € B(R) and any € > 0,

there exists a finite union of intervals A such that
P(AAB) < e.
Hint: Define

G :={B € B(R) : Ve > 0, there exists a finite union of intervals
Ae such that P(AAB) < €}.

. Say events A1, Ay, ... are almost disjoint if

P(AiNAj) =0, i#].

Show for such events

(] o0
P(JAp =) P@).
j=1 j=1
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7. Coupon collecting. Suppose there are N different types of coupons avail-

able when buying cereal; each box contains one coupon and the collector
is seeking to collect one of each in order to win a prize. After buying n
boxes, what is the probability p, that the collector has at least one of each
type? (Consider sampling with replacement from a population of N dis-
tinct elements. The sample size isn > N. Use inclusion—exclusion formula

2.2).)

. We know that P, = P, on B if P; = P; on C, provided that C generates B

and is a w-system. Show this last property cannot be omitted. For example,
consider 2 = {a, b, ¢, d} with

1
Pi({a}) = P({d}) = P,({b}) = Pr({c})) = 3

and )
Pi({b}) = Pi({c}) = P,({a}) = Px({d}) = 3

Set
C = {{a, b}, {d,c}, {a,c}, {b,d}}.

. Background: Call two sets A1, A2 € B equivalent if P(A1AA3) = 0. For

aset A € B, define the equivalence class
A* = (B € B: P(BAA) =0}.
This decomposes B into equivalences classes. Write
P*(A*) = P(A), VA e A*.

In practice we drop #s; that is identify the equivalence classes with the
members.

An atom in a probability space (2, B, P) is defined as (the equivalence
class of) a set A € B such that P(A) > 0, and if B C A and B € B, then
P(B) =0, or P(A \ B) = 0. Furthermore the probability space is called
non-atomic if there are no atoms; that is, A € B and P(A) > 0 imply that
there exists a B € Bsuchthat B C Aand 0 < P(B) < P(A).

(a) If Q = R, and P is determined by a distribution function F (x), show
that the atoms are {x : F(x) — F(x—) > 0}.

(b) If (2, B, P) = ((0,1], B((0, 1]), 1), where A is Lebesgue measure,
then the probability space is non-atomic.

(c) Show that two distinct atoms have intersection which is the empty set.
(The sets A, B are distinct means P(AAB) > 0. The exercise then
requires showing P(ABA@) = 0.)
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(d) A probability space contains at most countably many atoms. (Hint:
What is the maximum number of atoms that the space can contain
that have probability at least 1/n?)

(e) If a probability space (2, B, P) contains no atoms, then for every
a € (0, 1] there exists at least one set A € B such that P(A) = a.
(One way of doing this uses Zorn’s lemma.)

(f) For every probability space (2, B, P) and any € > 0, there exists
a finite partition of Q2 by B sets, each of whose elements either has
probability < € or is an atom with probability > €.

(g) Metric space: On the set of equivalence classes, define
d(A}, A%) = P(A1047)

where A; € Af for i = 1, 2. Show d is a metric on the set of equiva-
lence classes. Verify

|P(A1) — P(A2)| = P(A10A2)

so that P* is uniformly continuous on the set of equivalence classes.
P is g-additive is equivalent to

B> A, | @ implies d(A*, 0*) — 0.

Two events A, B on the probability space (S2, B, P) are equivalent (see
Exercise 9) if
P(ANB) = P(A) Vv P(B).

Suppose {B,, n > 1} are events with P(B,) = 1 for all n. Show
o0
P(()Bn) =1.
n=1

Suppose C is a class of subsets of 2 and suppose B C 2 satisfies B € o(C).
Show that there exists a countable class Cg C C such that B € o (Cp).

Hint: Define
G := {B C Q: 3 countable Cg C C such that B € o(Cp)}.
Show that G is a o-field that contains C.

If { Bx} are events such that
n
Y PBY>n-1,
k=1

then .
P(ﬂ By) > 0.
k=1
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14.

15.

16.

17.

18.

19.
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If F is a distribution function, then F has at most countably many discon-
tinuities.

If S and S; are two semialgebras of subsets of $2, show that the class
81852 :={A1A2: A1 € S1,A2 € &)

is again a semialgebra of subsets of 2. The field (o-field) generated by
8183 is identical with that generated by S; U Ss.

Suppose B is a o-field of subsets of 2 and suppose Q : B+ [0, 1] is a set
function satisfying

(a) Q is finitely additive on B.
(b) 0<Q(A) <1forallA € Band Q(R2) =1.
(c) If A; € Bare disjointand Y ;0; A; = , then Y 2, Q(A;) = 1.

Show Q is a probability measure; that is, show Q is o-additive.
For a distribution function F (x), define

F~(y) =inf{t : F(t) > y)

F(y) =inf{t : F(t) > y}.

We know F;(y) is left-continuous. Show F,~(y) is right continuous and
show
Mu € (0,1]: F~(u) # F,"(w)} =0,

where, as usual, A is Lebesgue measure. Does it matter which inverse we
use?

Let A, B, C be disjoint events in a probability space with
PA)=.6, P(B)=.3, PC)=.1
Calculate the probabilities of every event in o (A, B, C).

Completion. Let (2, B, P) be a probability space. Call a set N null if
N € Band P(N) = 0. Call aset B C 2 negligible if there exists a null
set N such that B C N. Notice that for B to be negligible, it is not required
that B be measurable. Denote the set of all negligible subsets by NV. Call B
complete (with respect to P) if every negligible set is null.

What if B is not complete? Define
B*:={AUM:AeB,MecN)

(a) Show B* is a o-field.
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(b) If A; e Band M; € N fori =1,2and
AiUM; =AUM,,

then P(A1) = P(A3).
(c) Define P* : B* — [0, 1] by

P*(AUM)=P(A), AeB, MeN.

Show P* is an extension of P to B*.

(d) fBcQandA; € B,i=1,2and A C B C Az and P(A;\ Ay) =
0, then show B € B*.

(e) Show B* is complete. Thus every o-field has a completion.

(f) Suppose Q@ = R and B = B(R). Let px > 0, >, px = 1. Let {a;} be
any sequence in R. Define P by

P({ar}) = pr, P(A) = Z pr, A€B.

ax€A

What is the completion of B?

(g) Say that the probability space (S2, B, P) has a complete extension
(2, By, Py) if B C By and P1|g = P. The previous problem (c)
showed that every probability space has a complete extension. How-
ever, this extension may not be unique. Suppose that (2, By, P») is
a second complete extension of (2, B, P). Show P; and P, may not
agree on By N B,. (It should be enough to suppose 2 has a small
number of points.)

(h) Is there a minimal extension?
20. In (0, 1], let B be the class of sets that either (a) are of the first category

or (b) have complement of the first category. Show that B is a o -field. For
A € B, define P(A) to be 0 in case (a) and 1 in case (b). Is P o -additive?

21. Let A be a field of subsets of 2 and let i be a finitely additive probability
measure on A. (This requires u(2) = 1.)
If A, € Aand A, | @, is it the case that u(A,) | 0? (Hint: Review
Problem 2.6.1 with A, = {n,n+1,...}.)

22. Suppose F(x) is a continuous distribution function on R. Show F is uni-
formly continuous.

23. Multidimensional distribution functions. For a, b, x € B(R¥) write
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a<biffa; <b;, i=1,...,k;
(—oo,x]={ue B(R") :u<xj}
(a,b]={ueBR :a<u<b).
Let P be a probability measure on B(R¥) and define for x € R¥
F(x) = P((—o0, X]).
Let S be the semialgebra of k-dimensional rectangles in R¥.
(a) If a < b, show the rectangle I} := (a, b] can be written as
Ik =(—wv b] \ ((—m9 (a19 b2v ey bk)]U

(00, (b1, @2, ..., b)] U -+ - U (o0, (b1, by, .. .,ak)])

(2.40)
where the union is indexed by the vertices of the rectangle other than
b.
(b) Show

B(RF) = o ((—o0, x], x € R¥).

(c) Check that {(—oo, X], X € R¥} is a -system.
(d) Show P is determined by F (x), x € R*.
(e) Show F satisfies the following properties:
(D) Ifx; > o0,i =1,...,k, then F(x) = 1.
(2) If for some i € {1,...,k} x; & —oo, then F(x) — 0.
(3) For S > Iy = (a, b], use the inclusion-exclusion formula (2.2) to

show
P(Iy) = Ay, F.

The symbol on the right is explained as follows. Let ) be the vertices
of Iy so that
V= {(xl,...,x,-) X =a; orb,-, i= l,...,k}.

Define forx € V

+1, if card{i : x; = a;} is even.
sgn(x) = . . .
—1, ifcard{i : x; = a;} is odd.
Then

ApF = Z sgn(x) F (x).
xeV
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(f) Show F is continuous from above:

lim F(x) = F(a).

a<xla

(g) Call F : R¥ > [0, 1] a multivariate distribution function if properties
(1), (2) hold as well as F is continuous from above and A;, F >
0. Show any multivariate distribution function determines a unique
probability measure P on (R¥, B(R)). (Use the extension theorem.)

24. Suppose A is the uniform distribution on the unit square [0, 1]? defined by
its distribution function

22(10,61] x [0, 62]) = 6162, (61, 62) € [0, 1]
(a) Prove that A assigns 0 probability to the boundary of [0, 1]2.
(b) Calculate
2
A2{(61,62) € [0,1: 61 A6 > 3},
(c) Calculate

22{(61,62) € [0,1]>: 61 A 62 < x,6, A6 < y}.

25. In the game of bridge 52 distinguishable cards constituting 4 equal suits are
distributed at random among 4 players. What is the probability that at least
one player has a complete suit?

26. If Aq,..., A, are events, define
n
S1=)_P(A)
i=1
S2= Y P(AiA))

I<i<j<n

S3 = Z P(AiAAx)

1<i<j<kzn

and so on.

(a) Show the probability (1 < m < n)

p(m) = P[)_1a, = m]
i=1
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of exactly m of the events occurring is

m+1 m+2
p(m) =Sy — ( )Sm+1 + ( )Sm+2
m m

et (";)s,,. (2.41)

Verify that the inclusion-exclusion formula (2.2) is a special case of
(2.41).

(b) Referring to Example 2.1.2, compute the probability of exactly m co-
incidences.

27. Regular measures. Consider the probability space (Rk, B(R¥), P). A Borel
set A is regular if

P(A) =inf{P(G) : G D A, G open,}

and

P(A) =sup{P(F): F C A, F closed.}

P is regular if all Borel sets are regular. Define C to be the collection of
regular sets.

(a) ShowRFeC, 0B eC.
(b) Show C is closed under complements and countable unions.
(c) Let F(R¥) be the closed subsets of R¥. Show

FRM cc.

(d) Show B(R¥) C C; that is, show regularity.
(e) For any Borel set A

P(A) =sup{P(K): K C A, K compact.}
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Random Variables, Elements,
and Measurable Maps

In this chapter, we will precisely define a random variable. A random variable is
a real valued function with domain €2 which has an extra property called measur-
ability that allows us to make probability statements about the random variables.

Random variables are convenient tools that allow us to focus on properties of
interest about the experiment being modelled. The 2 may be rich but we may
want to focus on one part of the description. For example, suppose

Q={0,1)"

={(w1,...,w,,):w,-=00r1, i=1,...,n}.

We may imagine this as the sample space for n repeated trials where the outcome
is 1 (success) or 0 (failure) at each trial. One example of a random variable that
summarizes information and allows us to focus on an aspect of the experiment of
interest is the total number of successes

X((w1,...,00) =01+ -+ + wp.

We now proceed to the general discussion.

3.1 Inverse Maps

Suppose €2 and Q' are two sets. Frequently Q' = R. Suppose

X: Q- Q,

S.I. Resnick, 4 Probability Path, Modern Birkhduser Classics, 71
DOI 10.1007/978-0-8176-8409-9_3, © Springer Science+Business Media New York 2014
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meaning X is a function with domain 2 and range Q'. Then X determines a

function
X 1:P(Q) > PQ)

defined by
X 1A)={weQ: X)) e A')

for A’ C Q'. X~! preserves complementation, union and intersections as the
following properties show. For A’ C Q', A; C ', and T an arbitrary index set,
the following are true.

(i) We have
X'@=0 x1Q)=Q.

(ii) Set inverses preserve complements:
XA = @A)
so that
x @\ A)=\x1A).

(iii) Set inverses preserve unions and intersections:

x*Jan=Jx @),

teT teT
and
x (N ap=x"@A).
teT teT
QI
Q

>
>

Y

FIGURE 3.1 Inverses

Here is a sample proof of these properties. We verify (ii). We have w €
X 1A iff X(w) € (A iff X(w) ¢ A'iffw ¢ X~1(A") iff 0 € (X~1(AN)".

m}
Notation: If C' C P(R) is a class of subsets of Q’, define

X1 =x"ch:Cc e
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Proposition 3.1.1 If B' is a o-field of subsets of ¥/, then X~1(B') is a o-field of
subsets of Q.

Proof. We verify the postulates for a o-field.
(i) Since Q' € B, we have
X(@)=Qex'(B)
by Property (i) of the inverse map.
(i) If A’ € B/, then (A")° € B, and so if X~1(4’) € X~1(B8'), we have
X (@) = @A) e x71(B)
where we used Property (ii) of the inverse map.
(i) If X~1(B}) € X~1(B'), then
Ux@n=x"JB) ex'®)
n n

since UB,’, eB. m]
n

A related but slightly deeper result comes next.
Proposition 3.1.2 If C’ is a class of subsets of ' then
X o) =o@(CY,

that is, the inverse image of the o-field generated by C' in Q' is the same as the
o -field generated in Q2 by the inverse images.

Proof. From the previous Proposition 3.1.1, X (o (C")) is a o-field, and
X o) ox7'C),
since o (C") D C’ and hence by minimality
X Yo D>oX71(CY).
Conversely, define
F:={B' eP@): X '(B) ec(X71(C))}.
Then F' is a o -field since

() Q' € F,since X~1(Q) =Q e o (X~1(C).
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(ii) A’ € F' implies (A")° € F' since
XA =@ AN ecX(C))
if Xx~1(A") € o(X~1(C")).
(iii) B, € F' implies U, B, € F' since
X1 (UnBy) = U X"1(B)) e o (X71(C))
if X~1(B,) € o (X~1(C")).
By definition
X VF)ycox ().
Also
CcF
since X ~1(C’) C o(X~1(C)). Since F is a o-field,
olCYCF
and thus by (3.1) and (3.2)
X o) c X VF)cox (Y.

This suffices.

3.2 Measurable Maps, Random Elements, Induced

Probability Measures

(3.1)

(3.2)

A pair (2, B) consisting of a set and a o-field of subsets is called a measurable
space. (It is ready to have a measure assigned to it.) If (2, B) and (', B') are

two measurable spaces, then a map
X: Q-

is called measurable if
X 1B)cB.

X is also called a random element of Q'. We will use the notation that

X e B/B

or
X:(Q,B)~ (2, B8).



3.2 Measurable Maps, Random Elements, Induced Probability Measures 75

A special case occurs when (', B)) = (R, B(R)). In this case, X is called a
random variable.
Let (2, B, P) be a probability space and suppose

X:(Q,B - (Q,8)
is measurable. Define for A’ C Q'
XeAl=X"1A)={0: X() e A}
Define the set function P o X~! on B’ by
PoX1(A)=PX1(A)).

P o X1 is a probability on (', B’) called the induced probability or the distri-
bution of X. To verify it is a probability measure on B', we note

@ PoX 1 (Q)=P(Q) =1.
(b) PoXx1(A)>0,forallA’ € B'.
(c) If {A;, n > 1} are disjoint,

Pox~'((Jay =P Jx @A)
=) P(X7'(4))

=) PoXx7(4)

since {X~1(A/)}n>1 are disjoint in B.
Usually we write
PoX 1(A)=P[X € A].

If X is a random variable then P o X~! is the measure induced on R by the
distribution function

PoX (-00,x] = P[X <x].

Thus when X is a random element of B’, we can make probability statements
about X, since X ~1(B’) € B and the probability measure P knows how to assign
probabilities to elements of B. The concept of measurability is logically necessary
in order to be able to assign probabilities to sets determined by random elements.

Example. Consider the experiment of tossing two dice and let

Q={Gj):1=i,j =<6}
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Define
X: Q- {2,3,...,12) =@
by
X(G,jN=i+].
Then
X4 =X =4]={(1,3),(3,1),2, 2} Cc Q
and

x1(23) =X € {2,3)]= (1D, 1,2, 2 D).
The distribution of X is the probability measure on Q' specified by

PoXY((ip=P[X=i], ieQ.

For example,
PlX=2]= 1
T 36
2
P[X =3]=—
(X =3]=5
3
P = 4 =
and so on. m}

The definition of measurability makes it seem like we have to check X 14 e
B for every A’ € B'; that is
x~1B) cB.

In fact, it usually suffices to check that X1 is well behaved on a smaller class
than B'.

Proposition 3.2.1 (Test for measurability) Suppose
X: Q- Q

where (2, B), and (', B') are two measurable spaces. Suppose C' generates B';
that is
B =o(C).

Then X is measurable iff
x'¢hcB.

Remark. We do not have to check that
X(o(C)) B,

which is what using the definition would require.
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Corollary 3.2.1 (Special case of random variables) The real valued function
X: QR
is a random variable iff
X (00, A) =[X <A]eB, VieR.
Proof of Proposition 3.2.1. If
x(¢)cB,

then by minimality
oX 1) CB.

However, we get
X YoC)=x1B)=0x"1(C")) B,

which is the definition of measurability. ]
Proof of Corollary 3.2.1. This follows directly from

o((—00, 1], A € R) = B(R).

3.2.1 Composition

Verification that a map is measurable is sometimes made easy by decomposing the
map into the composition of two (or more) maps. If each map in the composition
is measurable, then the composition is measurable.

Proposition 3.2.2 (Composition) Let X, X, be two measurable maps

X1:(Q1,B1) — (22,8),
X2:(2,B) - (923,83)

where (i, B;), i = 1, 2, 3 are measurable spaces. Define
X20X1:Q1 Q3
by
X2 0 X1(01) = X2(X1(w1)), 1 € Q.

Then
X;0X, € By/Bs.
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X,0X,

FIGURE 3.2
Proof. It is elementary to check that

X20X) =X X31()
as maps from P(23) > P(21). The reason is that for any B3 C 23
(X2 0 X1)"'(B3) ={w1 : X2 0 X1(w1) € B3}
={w1 : X1(®1) € X3 (B3))
={w; : 01 € X7 (X5 (B))).
If B3 € Bs, then
(X20X1)"'(B3) = X7 (X5'(B3)) € By,
since XZ"1 (B3) € B;. Thus
X0 X71(B3) C By,

as required. 0O

3.2.2 Random Elements of Metric Spaces

The most common use of the name random elements is when the range is a metric
space.
Let (S, d) be a metric space with metricd so thatd : § x § — R satisfies

(i) d(x,y) >0, forx,ye€sS.
(ii) d(x,y) =0iffx =y, foranyx,ye€S.
(iii) d(x,y) =d(y,x), foranyx,ye€S.
(iv) d(x,2) <d(x,y)+d(y,z), foranyx,y,z€S.

Let O be the class of open subsets of S. Define the Borel o-field S to be the
smallest o-field generated by the open sets

S =0(0).
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If
X:(Q,B)— (S,S);

that is, X € B/S, then call X a random element of S. Here are some noteworthy
examples of random elements.

1. Suppose S = R and d(x, y) = |x — y|. Then a random element X of S is
called a random variable.

2. Suppose S = R¥ and

dix,y) =

k
Z lxi = yil.
1

Then a random element X of S is called a random vector. We write X =
X1,...,Xp).

3. Suppose S = R, and the metric d is defined by

00 | ST
d(x,)’)=22"‘(———21|x' ! )

=1 14+ Y% x — yil

Then a random element X of S is called a random sequence. We write
X=(WX1,X2...).

4. Let S = CJ0, oo) be the set of all real valued continuous functions with
domain [0, 00). Define

[1x() = yOllm = sup |x() — y(®)I

0<t<m

and

o0
_ m 11X =Yllm
dx,y)=) 2 (1+||x—yllm)'

m=1
A random element X of S is called a random (continuous) function.

5. Let (E, £) be a measurable space where E is a nice metric space and £ are
the Borel sets, that is the sets in the o-field generated by the open sets. Let
S = M, (E) be the set of all measures on (E, £) which satisfy the property
that if u € M4 (E), then u(K) < oo if K is a compact subset of E. Such
measures which are finite on compacta are called Radon measures. There
is a standard metric for S called the vague metric. A random element X of
S is called a random measure.

A special case is where M4 (E) is cut down to the space M p(E) of non-
negative integer valued measures. In this case the random element X is
called a stochastic point process.
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3.2.3 Measurability and Continuity

The idea of distance (measured by a metric) leads naturally to the notion of conti-
nuity. A method, which is frequently easy for showing a function from one metric
space to another is measurable, is to show the function is continuous.

Proposition 3.2.3 Suppose (S;, d;), i = 1, 2 are two metric spaces. Let the Borel
o -fields (generated by open sets) be S;, i = 1, 2. If

X: S] e Sz
is continuous, then X is measurable:
Xe 51 / Sz.

Proof. Let O; be the class of open subsets of S;, i = 1,2. If X is continuous,
then inverse images of open sets are open, which means that

X1 0) cO1Cca(O) =8
So X € &51/8; by Proposition 3.2.1. a
Corollary 3.2.2 If X = (X1, ... , X) is a random vector, and

g:R*— R, geBR")/BR)

then from Proposition 3.2.2, g(X) is a random variable. In particular, if g is con-
tinuous, then g is measurable and the result holds.

Some examples of the sort of g’s to which this result could apply:

k
gx1, .. Xk) = in, (component sum)
i_

|
_-

xi/k, (component average)

X

(component extreme)

...
Il
-

I
< "'M’*

xi, (component product)

..
|
-

i
—f~

(component sum of squares) .

...
I
-

I
M-
N

Another interesting example of g is the projection map

g=mj R > R
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defined by
(X1, -0y XE) = X

Then 7; is continuous and if X = (X1, ..., X%) is a random vector, 7; (X) = X;
is a random variable fori = 1,...,k.

This observation leads in a simple way to an important fact about random vec-
tors: A random vector is nothing more than a vector of random variables.

Proposition 3.2.4 X = (X3, ..., X¢) is a random vector, that is a measurable
map from (2, B) — (R, B(R*)), iff X;i is a random variable for each i =
1,...,k

Proof. If X is a random vector, then X; = m; o X is measurable since it is the
composition of two measurable functions X and the continuous function ;.
The converse is easily proved if we know that

BR*) = 0(0) = o(RECTS)

where RECTS is the class of open rectangles. We assume this fact is at our dis-
posal. Suppose X7, ..., Xi are random variables. Write

B=ILx...x1I

for a rectangle whose sides are the intervals I, ... , Ix. Then
k
X718y =Xy
i=1

Since X; is a random variable, X;” Y1) e B,so X"1(B) € B and
X~!(RECTS) c B

so X1 is measurable. O

The corresponding basic fact about random sequences, stated next, is proved in
an analogous manner to the proof of the basic fact about random vectors. It says
that X is a random sequence iff each component is a random variable.

Proposition 3.2.5 X = (X1, X>2,...) is a random sequence iff for each i =
1,2,... the ith component X; is a random variable. Furthermore, X is a random
sequence iff (X1, ... , Xk) is a random vector, for any k.

3.2.4 Measurability and Limits
Limits applied to sequences of measurable functions are measurable.
Proposition 3.2.6 Let X1, X>, ... be random variables defined on (2, B). Then

(i) VaX, and ApX, are random variables.
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(ii) liminf,_, 0 X, and limsup,,_, ., X, are random variables.
(iii) Iflim,—, oo Xp(w) exists for all w, then lim,_, o, X, is a random variable.
(iv) The set on which {X,} has a limit is measurable; that is

{w: lim X, (w) exists } € B.
Proof. (i) We have

[\/ Xn <x]=(\Xa <x] €B,
n n
since for each n,
[Xn <x] €B.

Similarly
[/\X,, >x]= ﬂ[X,, > x] € B.
n n

This suffices by Corollary 3.2.1.
(ii) We have that

liminf X,, = sup inf Xj.
n—»00 nx1kzn

By (i) infg>n Xk is a random variable and hence so is sup,,> (infe>n X&).
(iii) If limp, - oo X (w) exists for all w, then

lim X,(w) = limsup X, (w)
n—=00 n—00

is a random variable by (ii).
(iv) Let Q be the set of all rational real numbers so that Q is countable. We have

{w: lim X, (w) exists }° = {w : liminf X, (w) < lim sup X, (w)}

U [limian,, <r< limsupX,,]

reQ n=oo n—=00
C
= lim inf X, sr] limsupX, <r| €B

U [imistx <] [imsvp 32 <]
since

[liminfX, <r]eB

n—0oo
and

[limsup X, <r] e B.

n—0oo
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3.3 o-Fields Generated by Maps

Let X : (2, B) — (R, B(R)) be a random variable. The o -algebra generated by
X, denoted o (X), is defined as

o(X) = X" 1(BR)). (3.3)
Another equivalent description of o (X) is
o(X) ={[X € A], A € BR)}.

This is the o-algebra generated by information about X, which is a way of isolat-
ing that information in the probability space that pertains to X. More generally,
suppose

X:(Q,B)~ (2,B).

Then we define
o(X) = X"1(B). (34)

If 7 C Bisasub -o-field of B, we say X is measurable with respect to F, written
XeFifoX)CF
If for each ¢ in some index set T

XI : (Qv B) = (Q,, B,)v
then we denote by

oX; teT)= \/a(X,)

teT
the smallest o-algebra containing all o (X,).
Extreme example: Let X (w) = 17 for all w. Then
o(X) = {[X € B], B € BR)}
=0(@, Q) = {0, R}

Less extreme example: Suppose X = 14 for some A € B. Note X has range
{0, 1}. Then

x'qop =45, x'(1h=4
and therefore
o(X)=1{0,Q,A, A}
To verify this last assertion, call

{2,2,A,A°} = RHS
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and
o(X)= LHS.

Then RHS is a o-field and is certainly contained in LHS. We need to show that
for any B € B(R),

[14 € B] € RHS.
There are four cases to consider: (i) 1 € B,0 ¢ B; (ii) 1 € B, 0 € B; (iii) 0 € B,
1¢ B;(iv)0 ¢ B,1 ¢ B. For example, in case (i) we find

[lLaueB]l=A
and the other cases are handled similarly.

Useful example: Simple function. A random variable is simple if it has a finite
range. Suppose the range of X is {a1, ..., ax}, where the a’s are distinct. Then
define

Ai=X"1{a) = [X =a;).

Then {A;, i =1,..., k] partitions 2, meaning

k
AiNAj=0,i#j, Y Ai=Q.

i=1

We may represent X as

k
X = Za,-lA,.,
i=1

and

o(X)=0(A1,..., A)=1) Ai:IC{1,... ,k]}.
iel
In stochastic process theory, we frequently keep track of potential information
that can be revealed to us by observing the evolution of a stochastic process by
an increasing family of o-fields. If {X,,n > 1} is a (discrete time) stochastic
process, we may define

B, =0X1,...,Xn), n>1.

Thus, B, C B+ and we think of B, as the information potentially available at
time n. This is a way of cataloguing what information is contained in the prob-
ability model. Properties of the stochastic process are sometimes expressed in
terms of {88,,n > 1}. For instance, one formulation of the Markov property is
that the conditional distribution of X, given B, is the same as the conditional
distribution of X1 given X,. (See Chapter 10.)

We end this chapter with the following comment on the o-field generated by a
random variable.
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Proposition 3.3.1 Suppose X is a random variable and C is a class of subsets of
R such that
o(C) = BR).

Then
o(X)=0(X € B],Be().
Proof. We have
o([X e Bl,BeC)=0(X"'(B),BeC)
=o(X71C) =X (C))
= X"{BR)) = o (X).

A special case of this result is

o(X)=0(X <Al,A€R).

3.4 Exercises

1. In the measurable space (2, B), show A € Biff 14 € B.

2. Let (2,B,P) = ((O, 1], B((0, 1)), A) where A is Lebesgue measure. De-
fine

Xi1(w) =0, VYwe,

X2(w) = 1j1/2)(w),
X3(w) =1g(w)

where Q C (0, 1] are the rational numbers in (0, 1]. Note
PIX1=X2=X3=0]=1

and give
o(Xy), i=123

3. Suppose
f:R¥> R, and f € BR)/B(R).

Let X1, ..., X) be random variables on (2, B). Then

X1, ..., Xp) €eo(Xy, ..., Xi).

4. Suppose X : Q > R has a countable range R. Show X € B/B(R) iff
X'(xheB, VxeR.
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If
F(x) = P[X <x]

is continuous in x, show that Y = F(X) is measurable and that Y has a
uniform distribution

P[Y<y]l=y, 0=<y=<1l

If X is a random variable satisfying P[|X| < oo] = 1, then show that for
any € > 0, there exists a bounded random variable Y such that
PX #Y] <e.
(A random variable Y is bounded if for all
Y(w) <K
for some constant K independent of w.)
If X is a random variable, so is |X|. The converse may be false.

Let X and Y be random variables and let A € B. Prove that the function

_ )X (w), ifweA,

Z@ =1y, ifweA

is a random variable.

Suppose that {B,,n > 1} is a countable partition of 2 and define B =
o(B,,n > 1). Show a function X : Q > (—00, o0] is B-measurable iff X

is of the form o
X= Z cilp;,
i=1

for constants {c;}. (What is B?)

Circular Lebesgue measure. Define C := {e2™¢ : 6 € (0, 1]} to be the
unit circle in the complex plane. Define

T:(0,1]~C, T@®)=e*",
Specify a o-field B(C)) of subsets of C by
B(C) :={A c C : T"(A) € B((0, 1)).

(Why is this a o-field?) Define a probability measure 1 on B(C) by u =
A o T~1 and call this measure u circular Lebesgue measure.

(a) Identify the complex plane with R2. Show
B(C) = BR*>)NC.
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(b) Show that B(C) is generated by arcs of C.

(c) Show u is invariant with respect to rotations. This means, if Sp, :
C+ Cvia
Sgo(e27n'0) = 2mi(6+6)
thenu =po So_ol-
(d) If you did not define p as the induced image of Lebesgue measure on
the unit interval, how could you define it by means of the extension
theorems?

Let (2, B, P) be ([0, 1], B([0, 1]), A) where A is Lebesgue measure on
[0, 1]. Define the process {X;,0 <t < 1} by

0, ift#w,

Xi(@) = 1, ift=w

Show that each X, is a random variable. What is the o-field generated by
{X:,0<t<1p?

Show that a monotone real function is measurable.

(a) If X is a random variable, then o (X) is a countably generated o-field.
(b) Conversely, if B is any countably generated o-field, show

B=o0oX)
for some random variable X.

A real function f on the line is upper semi-continuous (usc) at x, if, for
each ¢, there is a § such that |x — y| < § implies that

f) < fx)+e

Check that if f is everywhere usc, then it is measurable. (Hint: What kind
of setis {x : f(x) <¢}?)

Suppose —00 < a < b < 00. Show that the indicator function 1(4,5)(x)
can be approximated by bounded and continuous functions; that is, show
that there exist a sequence of continuous functions 0 < f, < 1 such that
fn = 1(a,b) pointwise.

Hint: Approximate the rectangle of height 1 and base (a, b] by a trapezoid
of height 1 with base (a, b + n~!] whose top line extends froma + n~! to
b.

Suppose B s a o-field of subsets of R. Show B(R) C Biff every real valued
continuous function is measurable with respect to 3 and therefore B(R) is
the smallest o-field with respect to which all the continuous functions are
measurable.
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Functions are often defined in pieces (for example, let f(x) be x> or x 1 as

x > 0orx < 0), and the following shows that the function is measurable
if the pieces are.

Consider measurable spaces (2, B) and (', B')andamap T : Q > Q.
Let Ay, Az, ... be a countable covering of 2 by B sets. Consider the o-
field B, ={A: A C Ap, A € B} in A, and the restriction T, of T to A,.
Show that T is measurable B/B' iff T, is measurable B, /B’ for each n.

Coupling. If X and Y are random variables on (2, B), show

sup |[P[X € A] - P[Y € A]| < P[X #Y].
AeB

Suppose T : (1, B1) — (22, By) is a measurable mapping and X is a
random variable on 1. Show X € o(T) iff there is a random variable Y
on (22, B7) such that

X)) =YT(01)), Vw1 €.

Suppose {X;, ¢ > 0} is a continuous time stochastic process on the proba-
bility space (2, B, P) whose paths are continuous. We can understand this
to mean that for each ¢t > 0, X; : Q — R is a random variable and, for
each w € R, the function ¢t — X,(w) is continuous; that is a member of
C[0, 00). Let t : Q > [0, 00) be a random variable and define the process
stopped at T as the function X, : Q +— [0, 00) defined by

X (w) = X,(w)(w), w € Q.
Prove X, is a random variable.

Dyadic expansions and Lebesgue measure. Let S = {0, 1} and
S = {(x1,x2,...):x; €S,i=1,2,...}

be sequences consisting of 0’s and 1’s. Define B(S) = P(S) and define
B(S) to be the smallest o -field of subsets of S* containing all sets of the
form

{in} x {i2} x - -+ x {ix} x S%

fork=1,2,... and iy, iy,..., iy some string of 0’s and 1’s.

For x € [0, 1], let
x = (dk(x),k>1)

be the non-terminating dyadic expansion (dx(0) = 0 and dy(x) = 0
or 1.) Define U : [0, 1] > S*° by

Ux) = (d1(x),d2(x),...).
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Define V : S®° [0, 1] by (x = (i1, i2,...))

o0 i"
"
n=12

Vx) =

Show U € B([0, 1])/B(S®) and V € B(S®)/B([0, 1)).

Suppose {X,, n > 1} are random variables on the probability space (2, B, P)
and define the induced random walk by

n
So =0, S,,=ZX,—, n>1.
i=1

Let
t:=inf{n >0:8, >0}

be the first upgoing ladder time. Prove t is a random variable. Assume we
know 1(w) < oo for all w € Q. Prove S; is a random variable.

Suppose {X1, ..., X,} are random variables on the probability space (2, B, P)
such that
P[Ties]:=P{ |J Xi=X}}=0.
i#]
1<i,j<n

Define the relative rank R, of X,, among {X1,...,X,} tobe

R, = Y i=11x;>x, on][Ties],
B B2 on [ Ties ] .

Prove R, is a random variable.

Suppose (S1, S1) is a measurable space and suppose T : §; — Sz is a
mapping into another space S. For an index set I', suppose

h,:S$—R, yeTl

and define
G:=o(hy,yel)

to be the o-field of subsets of S, generated by the real valued family
{hy,y € T}, that is, generated by {h;l(B), y € I', B € B(R)}. Show
T € 51/G iff hy o T is a random variable on (S, S1).

Egorov’s theorem: Suppose X,, X are real valued random variables de-
fined on the probability space (2, B, P). Suppose for all v € A € B, we
have X, (w) = X (w). Show for every € > 0, there exists a set A, such that
P(A¢) < €and

sup |X (@) — Xp(@)] >0 (n— 00).
weA\A,
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Thus, convergence is uniform off a small set.
Hints:

(a) Define
B = [V X (@) - X; (w)|] NA.

i>n
(b) Show B,(,k) I Dasn — oo.
(c) There exists {n;} such that P(B") < ¢/2%.
(d) Set B = UyBW) so that P(B) <ce.

26. Review Exercise 12 of Chapter 2. Suppose C is a class of subsets of € such
that, for a real function X defined on 2, we have X € B(C). Show there
exists a countable subclass C* C C such that X is measurable C*.
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Independence

Independence is a basic property of events and random variables in a probabil-
ity model. Its intuitive appeal stems from the easily envisioned property that the
occurrence or non-occurrence of an event has no effect on our estimate of the
probability that an independent event will or will not occur. Despite the intuitive
appeal, it is important to recognize that independence is a technical concept with
a technical definition which must be checked with respect to a specific probability
model. There are examples of dependent events which intuition insists must be in-
dependent, and examples of events which intuition insists cannot be independent
but still satisfy the definition. One really must check the technical definition to be
sure.

4.1 Basic Definitions

We give a series of definitions of independence in increasingly sophisticated cir-
cumstances.

Definition 4.1.1 (Independence for two events) Suppose (2, B, P) is a fixed
probability space. Events A, B € B are independent if

P(AB) = P(A)P(B).

Definition 4.1.2 (Independence of a finite number of events) The events
A1, ..., A, (n = 2) are independent if

P(NAi) =[] P@n, forallfinite ] C{1,...,n}. 4.1)
iel iel
S.I. Resnick, 4 Probability Path, Modern Birkhduser Classics, 91
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(Note that (4.1) represents

n
Z(:):Z"—n—l
k=2

equations.)

Equation (4.1) can be rephrased as follows: The events Ay, ..., A, are inde-
pendent if
n
P(BiNBy---NBy) =[] P(B) 42)
i=1

where foreachi =1, ... ,n,
B; equals A; or Q.

Definition 4.1.3 (Independent classes) Let C; C B,i = 1, ..., n. The classes
C; are independent, if for any choice A1, ... , A, WithA; € Ci,i=1,... ,n,we
have the events A1, ... , A, independent events (according to Definition 4.1.2).

Here is a basic criterion for proving independence of o -fields.

Theorem 4.1.1 (Basic Criterion) If for each i = 1,...,n, C; is a non-empty
class of events satisfying

1. C; is a w-system,
2. Ci, i =1,...,n are independent,

then
a(C1),...,0(Cp)

are independent.
Proof. We begin by proving the result for n = 2. Fix A, € C,. Let
L={AeB:P(AA;) = P(A)P(A)}.
Then we claim that £ is a A-system. We verify the postulates.
(a) We have Q € L since
P(QA2) = P(A2) = P(Q)P(A2).

(b) If A € £, then A€ € L since

P(A°A2) P((2\ A)A2) = P(A2\ AAz)
P(A2) — P(AA2) = P(A2) — P(A)P(A2)

P(A2)(1 - P(A)) = P(A“)P(A2).
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(c) If B, € L are disjoint (n > 1), then Y 5o, B, € L since

[o.¢] [e.9] o0
P((|JBnA2) = P(JBuA2) =) P(B,A2)
n=1 n=1 n=1

o0 (e ¢]
Y P(BA)P(A2) = P(| ] B»)P(42).
n=1 n=1

Also £ D (4, s0 £ D o(C1) by Dynkin’s theorem 2.2.2 in Chapter 2. Thus
0(C1), C; are independent.

Now extend this argument to show o (C1), 0 (C2) are independent. Also, we
may use induction to extend the argument for n = 2 to general n. m]

We next define independence of an arbitrary collection of classes of events.

Definition 4.1.4 (Arbitrary number of independent classes) Let T be an arbi-
trary index set. The classes C;,t € T are independent families if for each finite
I,I cT,C,t €I is independent.

Corollary 4.1.1 If {C;,t € T} are non-empty m-systems that are independent,
then {o(C;),t € T} are independent.

The proof follows from the Basic Criterion Theorem 4.1.1.

4.2 Independent Random Variables

We now turn to the definition of independent random variables and some criteria
for independence of random variables.

Definition 4.2.1 (Independent random variables) {X;,¢ € T} is an indepen-
dent family of random variables if {o (X;), t € T} are independent o -fields.

The random variables are independent if their induced o -fields are independent.
The information provided by any individual random variable should not affect
behavior of other random variables in the family. Since

G(IA) = {¢1 QvA’AC},

we have 14,, ..., 14, independent iff A, ... , A, are independent.

We now give a criterion for independence of random variables in terms of dis-
tribution functions. For a family of random variables {X;,¢ € T} indexed by a
set T, the finite dimensional distribution functions are the family of multivariate
distribution functions

Fi(x,t€J)=P[X; <x;,t€J] 43)

for all finite subsets J C T.
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Theorem 4.2.1 (Factorization Criterion) A family of random variables
{X;,t € T} indexed by a set T, is independent iff for all finite J C T

Fy(xtel)=]]PX <x], VxeR. (4.4)

teJ

Proof. Because of Definition 4.1.4, it suffices to show for a finite index set J that
{X;,t € J} is independent iff (4.4) holds. Define

C={[X: <x],x eR}.
Then
(i) C; is a w-system since
[X: < x)([X: <y]=[X: sx A Y]
and
@ii) o (Cr) = o (Xy).

Now (4.4) says {C;,t € J} is an independent family and therefore by the Basic
Criterion 4.1.1, {0 (C;) = o(X,), t € J} are independent. m]

Corollary 4.2.1 The finite collection of random variables X1, ... , Xy is inde-
pendent iff

k
P[Xy < x1,..., Xk <x] =[] PIXi < xil,
i=1
forallx; eR,i=1,... k.

For the next result, we define a random variable to be discrete if it has a count-
able range.

Corollary 4.2.2 The discrete random variables X1, . .. , Xj with countable range
‘R are independent iff
k
PIX;=x,i=1,... k| =[]PlXi =x], (4.5)
i=1

forallx; e R,i=1,...,k

Proof. If X1, ... , X, is an independent family, then o (X;),i = 1, ..., k is inde-
pendent. Since
[Xi = xi] € 0(X)

we have [X; = x;],i =1, ..., k are independent events and (4.5) follows.
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Conversely, suppose (4.5) holds. Definez < xtomeanz; < x;,i =1,... ,k.
Then

PIX; <xi,i=1,... k]

Y PXi=zi,i=1,... .k

I
]
—
>
2
|
N

k
Y. ). PXi=nl[]PlXi =z])

225X2,...,Zk <Xk Z15X) i=2
zieR,i=2,....k z1eR

k
Y. Pxisxl[[PXi=2]
22X, 2k <Xk i=2
z,'GR,i=2,... ,k

n
- =[]PXi < x)
i=1

4.3 Two Examples of Independence

This section provides two interesting examples of unexpected independence:
o Ranks and records.

e Dyadic expansions of uniform random numbers.

4.3.1 Records, Ranks, Renyi Theorem

Let {X,,n > 1} be iid with common continuous distribution function F (x). The
continuity of F implies

P[X;=Xj]=0, (4.6)
so that if we define
[ Ties ] = | JIX: = X)),
i#j
then
P[ Ties ] = 0.

Call X, a record of the sequence if

n—1
X, > \/X,-,
i=1
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and define
A, =[Xpisarecord ].

A result due to Renyi says that the events {A j, j > 1} are independent and
PAp)=1/j, j=2

This is a special case of a result about relative ranks.
Let R, be the relative rank of X, among X, ... , X, where

n
R, = Z 1ix;>x,]-

j=1
So
R, = 1iff X, isarecord,
2 iff X, is the second largest of X3, ... , Xy,
and so on.

Theorem 4.3.1 (Renyi Theorem) Assume {X,,n > 1} are iid with common,
continuous distribution function F (x).
(a) The sequence of random variables {R,, n > 1} is independent and

1
PRy = k] = ~,

fork=1,...,n
(b) The sequence of events {A,, n > 1} is independent and

1
P(Ap) = P

Proof. (b) comes from (a) since A, = [R, = 1].
(a) These are n! orderings of X1, ... , X,,. (For a given w, one such ordering is
X1(w) < -+ < X,(w). Another possible ordering is X2 (w) < ... < Xp(w) <

X1 (w), and so on.) By symmetry, since X1, ... , X, are identically distributed and

independent, all possible orderings have the same probability %, so for example,

1
P[X2<X3<---<X,,<X1]=;.

Each realization of Ry, ... , R, uniquely determines an ordering: For example,
if n = 3, suppose R;(w) = 1, R2(w) = 1, and R3(w) = 1. This tells us that

X1(w) < X2(0) < X3(w),
and if Rj(w) = 1, Ra(w) = 2, and R3(w) = 3, then this tells us
X3(w) < Xa2(w) < X1(w).
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Each realization of Ry, ... , R, has the same probability as a particular order-
ing of X1, ..., X,. Hence

1
P[R1=r1,...,R,, =r,,]='-17,

forr; €{1,...,i},i=1,...,n.
Note that
P[R,=r] = ) P[Ri=ri,...,Re-1=rp_1,Ru=ry]
FlseeesTn—=1
. 1
Tyeee ,r,,_ln!

Since r; ranges over i values, the number of terms in the sum is
1-2.3....-n—=1=m-1.

Thus

Therefore

1
P[Rl = r1,...,R,, =r,,]=n—

= P[Ry=r]-P[Ry = ra]. .

Postscript: If {X,,n > 1} is iid with common continuous distribution F(x),
why is the probability of ties zero? We have

P[ Ties | = P(|_J[Xi = X;])
i#]

and by subadditivity, this probability is bounded above by

Y PlXi =X].
i#j

Thus it suffices to show that
P[X; =X3]=0.

Note the set containment: For every n,

k-1 k
Xi=X2)c I > <X, Xa< 2l

=-—00
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By monotonicity and subadditivity

al —1 k k-1 k
PlXi=X;] < k_Z P 1S5 50— <X2s 3]
=-00
i( 4)
= P[— <X15-—]) . 4.7
— 2 2n

Write
F[a,b] = F(b) — F(a)

and the above (4.7) is equal to

ad -1 &k k-1 &k
Z F( n 2n] F( n 2_n]
k=—-00

k— -
< — — —_—
S T ] ;WF( T

-1 %k
< F -1
- —oongc)ioo ( 2n 2"]
-1 %
= F , =]
—o0sk<00 ¢ o o

Since F is continuous on R, because F is a also a probability distribution, F is
uniformly continuous on R. (See Exercise 22 in Chapter 2.) Thus given any ¢ > 0,
for n > no(e) and all k, we have

k-1 k k-1
F(T 2n] (—) o ) =S¢
Thus for any ¢ > 0,
PX1=X2]<e, 4.8)

and since ¢ is arbitrary, the probability in (4.8) must be 0.

4.3.2 Dyadic Expansions of Uniform Random Numbers

Here we consider
(R, B, P) = ((0,1], B((0, 1]), ),

where A is Lebesgue measure. We write w € (0, 1] using its dyadic expansion
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where each d, (w) is either 0 or 1.
We write 1 as

% 1/2
. 11... = 27" = =1,
0.111 ; =17

and if a number such as % has two possible expansions, we agree to use the non-
terminating one. Thus, even though 1/2 has two expansions

1
Z?= 01111-

NI»—'

and

+0+4+0+-.-=.1000--- ,

1
2

N =

by our convention, we use the first expansion.

Fact 1. Each d, is a random variable. Since d, is discrete with possible values
0, 1, it suffices to check

[dn = 0] € B(©,1]), [dn = 1] € B((O, 1]),

for any n > 1. In fact, since [d, = 0] = [d, = 1], it suffices to check [d, = 1] €
B((0, 1]).

To verify this, we start gently by considering a relatively easy case as a warm-
up. Forn =1,

[di = 1] = (.1000.-- ,.1111...] = (%, 1] € B((0, 1]).

The left endpoint is open because of the convention that we take the non-terminat-
ing expansion. Note P[d; = 1] = P[d; =0] =1/2.

After understanding this warmup, we proceed to the general case. For any
n>2

(dn =1]

= U (U142 ... Up—11000. .., .uu3 ... up_11111- -]
(u1,42,...,un-1)€{0,1}7-1

4.9)

= disjoint union of 2" ! intervals € B((0, 1]).

For example

[d2=1]= (—i—, %] U (%, l].
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Fact 2. We may also use (4.9) to compute the mass function of d,. We have
Pld, =1]
= > P((uyuz...up—11000--- , uyuz...up—11111--.])

(u1,U2,0sUp-1)€{0,1)7~1
n—1 —i (S ll, 1
=2 {Z +ZZ -2ty
=n= 1{ Z .-_-1
2' 2

i=n+1

The factor 2"~ results from the number of intervals whose length we must sum.
We thus conclude that

o

Pldy = 0] = Pldy =1] = 5. (4.10)

Fact 3. The sequence {d,,n > 1} is iid. The previous fact proved in (4.10) that
{d,} is identically distributed and thus we only have to prove {d,} is independent.
For this, it suffices to pick n > 1 and prove {dj, ..., d,} is independent.

For (uy,...,un) € {0, 1}", we have

n
ﬂ[d,- =u;] = (uuz...u,000...,.ujuz...us111...].
Again, the left end of the interval is open due to our convention decreeing that we

take non-terminating expansions when a number has two expansions. Since the
probability of an interval is its length, we get

P((di = ui)) —Z"‘ + Z X;g-:
i=1 i= i=

_n+1
_2 (n+1) 1
= 1—% = T

= ﬁ Pld; = u;]
i=1

where the last step used (4.10). So the joint mass function of dy, . .., d, factors
into a product of individual mass functions and we have proved independence of
the finite collection, and hence of {d,,n > 1}.

4.4 More on Independence: Groupings

It is possible to group independent events or random variables according to dis-
joint subsets of the index set to achieve independent groupings. This is a useful
property of independence.
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Lemma 4.4.1 (Grouping Lemma) Let {B,,t € T} be an independent family of
o-fields. Let S be an index set and suppose for s € S that T; C T and {Ts, s € S}
is pairwise disjoint. Now define

BT, = VB{.

teTs

Then
{Br,,s € S}

is an independent family of o -fields.

Remember that VteT, B, is the smallest o -field containing all the B;’s.
Before discussing the proof, we consider two examples. For these and other
purposes, it is convenient to write

Xy

when X and Y are independent random variables. Similarly, we write By || B>
when the two o -fields By and B; are independent.

(a) Let {X,, n > 1} be independent random variables. Then

U(X],jfn) __"_ U(Xj’j>n)v
n n+k
Yh o1 S
n n+k
Vo 1V x;
i=1 j=n+1

b) Let {A,} be independent events. Then N Aiand | P A are inde-
P n=14j j=N+14]
pendent.

Proof. Without loss of generality we may suppose S is finite. Define

Cr, :={[) Ba : B € Bo, K C Ty, K is finite.}

aekK

Then C7, is a w-system for each s, and {C7,, s € S} are independent classes. So
by the Basic Criterion 4.1.1 we are done, provided you believe

o(Cr,) = Br,.
Certainly it is the case that
CT, C BT,
and hence

U(CT,) C BT, .
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Also,
Cr, DBy, VaeT;
(we can take K = {«}) and hence
o(Cr,) DBy, VaeTs.
It follows that
a(Cr,) > | Bas

a€eTg

and hence

olr,) Do (UB,,) =: \/ B,.

aeTs a€eTs m]

4.5 Independence, Zero-One Laws, Borel-Cantelli
Lemma

There are several common zero-one laws which identify the possible range of a
random variable to be trivial. There are also several zero-one laws which provide
the basis for all proofs of almost sure convergence. We take these up in turn.

4.5.1 Borel-Cantelli Lemma

The Borel-Cantelli Lemma is very simple but still is the basic tool for proving
almost sure convergence.

Proposition 4.5.1 (Borel-Cantelli Lemma.) Let {A,} be any events. If
> " P(4n) < o,
n

then
P([Ani.0. ]) = P(limsupA,) =0.

n—00
Proof. We have
P([Anio.]) = P(lim | JA))
J2n
= lim P( H Aj) (continuity of P)

(o]
< lim sup E P(Aj) (subadditivity )
n—>oo j=n

=0,
since ), P(An) < 00 implies Zﬁ" P(Aj) > 0,asn — oo. O
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Example 4.5.1 Suppose {X,,, n > 1} are Bernoulli random variables with
P[X, =1]=pn=1-P[X, =0].

Note we have not supposed {X,} independent and certainly not identically dis-
tributed. We assert that

P[lim X, =0] =1, @.11)
n—00
if
Y pn<oo. 4.12)
n

To verify that (4.12) is sufficient for (4.11), observe that if
Y pn=)_ PlX,=1] <o,
n n

then by the Borel-Cantelli Lemma
P([X, =1]io0.)=0.
Taking complements, we find

1= P(limsup[X, = 1]) = P(liminf[X, = 0]) = 1.

n—>00

Since with probability 1, the two valued functions {X,} are zero from some point
on, with probability 1 the variables must converge to zero. ]

4.5.2 Borel Zero-One Law
The Borel-Cantelli Lemma does not require independence. The next result does.

Proposition 4.5.2 (Borel Zero-One Law) If {A,} is a sequence of independent
events, then

0, wzn P(An) < wv
1, iff Y, P(Ap) = o0.

Proof. From the Borel-Cantelli Lemma, if

P(Anio]) =

Y P(An) <00,

then
P([A,io0.]) =0.
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Conversely, suppose ), P(A,) = 00. Then
P([Ani0.]) = P(limsup A,)
n—oo

=1- P(liminf A},)
n—->oo

_1 — ] [
-1 P (14D

k>n
—1— NI [4
=1- Jim P14
k>n

m
=1~ lim P(lim | () A})

n—>0o0
k=n

m
=1- lim lim P([") A}
k=n

n—00 m—00

n—00 m—00

m
=1- lim lim []a- P,
k=n
where the last equality resulted from independence. It suffices to show

m
lim mlewg(l — P(Ap) = 0. (4.13)

To prove (4.13), we use the inequality

X

l1-x<e™*, O0<x<l1. (4.14)

To verify (4.14), note for 0 < x < 1 that

n

X
—1og(1-x)=z7 >x
n=1

so exponentiating both sides yields

>t
1—-x "~
or
e*>1—x
Now for (4.13). We have
m m P
. _ . —P(A:
mlewH(l P(Ay) < mleookﬂe
= lim e Zk=n P40
m-—00

= e~ IRaPUAD — g~ _

L]
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since ), P(A,) = 0o. This is true for all n, and so

m
lim_ lim_ ]'[(1 — P(Ap) = 0.

k=n ]
Example 4.5.1 (continued) Suppose {X,, n > 1} are independent in addition to
being Bernoulli, with

P[Xk=1]= pr =1 - P[X;, = 0].
Then we assert that

P[X, > 0] =1iff ) px < 0.
n

To verify this assertion, we merely need to observe that

P{[X, =1]i0.} =0

ZP[X,,:]]:Zp,, < 00.

Example 4.5.2 (Behavior of exponential random variables) We assume that
{Ep,n > 1} are iid unit exponential random variables; that is,

P[E, >x]=e*, x>0.
Then

P[limsupE,/logn=1]=1. (4.15)
n—>oo

This result is sometimes considered surprising. There is a (mistaken) tendency
to think of iid sequences as somehow roughly constant, and therefore the division
by log n should send the ratio to 0. However, every so often, the sequence {E,}
spits out a large value and the growth of these large values approximately matches
that of {logn,n > 1}.

To prove (4.15), we need the following simple fact: If {Bx} are any events
satisfying P (Bx) = 1, then P(("); Bx) = 1. See Exercise 11 of Chapter 2.

Proof of (4.15). For any w € €,
I Ey(w)
imsup —— =1
n—0o00 logn

means

(2) Ve > 0, 529 < 1 4 ¢, for all large n,
and
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(b) Ve > 0, ET"oé";—z > 1 — ¢, for infinitely many n.
Note (a) says that for any ¢, there is no subsequential limit bigger than 1 + ¢ and
(b) says that for any &, there is always some subsequential limit bounded below
byl—e.

We have the following set equality: Let ¢ | 0 and observe

E,
limsup— =1
[ n—»oopl ogn ]

= ﬂ {l}lrg{gf[E < 1+ek]}ﬂﬂ [[— > 1 — gli.o. ] (4.16)

To prove that the event on the left side of (4.16) has probability 1, it suffices to
prove every braced event on the right side of (4.16) has probability 1. For fixed k

;P[E >1-g] = ;P[E,, > (1 — &) logn]

)" exp{—(1 — &) logn)

1
= ; nl‘é‘k =

So the Borel Zero-One Law 4.5.2 implies

P{[—Eﬁ— > 1—gio. } =1.
logn
Likewise

E,
E —>1 = E -
A P[logn > 1+ &) A exp{—(1 + &) logn}

Z :
= —_—< 0
- nltek ’

E
P (limsup [—" >14 ek]) =0
n—00 logn

SO

implies

E c
P [liminflii < l+£k]} =1- P{limsup[——"— < 1+ek] } =1.
n—oo | logn n—soo Llogn
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4.5.3 Kolmogorov Zero-One Law

Let {X,} be a sequence of random variables and define
f;,,=a(Xn+17Xn+2’---)a n=172’~- .
The tail o-field T is defined as
T= Of,’, = lim | 0(Xn, Xns1,...).

107

These are events which depend on the tail of the {X,} sequence. If A € T, we
will call A a tail event and similarly a random variable measurable with respect

to 7 is called a tail random variable.
We now give some examples of tail events and random variables.

1. Observe that o
{w: ZX n(w) converges } € 7.

n=1

To see this note that, for any m, the sum Z,f‘;l X, (w) converges if and only

if Y00 . Xu(w) converges. So

o0
[z X, converges | = [ Z Xn converges ] € F,,.
n

n=m+1
This holds for all m and after intersecting over m.

2. We have
limsup X, € 7,

n—0o0
liminfX, € 7,
n—>oo

{w: lim X,(w)exists} € T.
n—0o0

This is true since the lim sup of the sequence {Xj, X2, ...} is the same as

the lim sup of the sequence {X,,, X;n41, ... } for all m.
3. LetS, =X1+4+---+ X,. Then

L Sn(w)
w: lim ——
n—o0o n

=0}eT

since for any m,

tim 22 _ fi LinXi@ _ lim ZL_’"“M
h=00 n n—00 n n—->oo n
and so for any m,
1' Sn (w)
im

n-»0 n

€ F,,.
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Call a o-field, all of whose events have probability 0 or 1 almost trivial. One
example of an almost trivial o -field is the o-field {@, }. Kolmogorov’s Zero-One
Law characterizes tail events and random variables of independent sequences as
almost trivial.

Theorem 4.5.3 (Kolmogorov Zero-One Law) If {X,} are independent random
variables with tail o-field T, then A € T implies P(A) = 0 or 1 so that the tail
o-field T is almost trivial.

Before proving Theorem 4.5.3, we consider some implications. To help us do
this, we need the following lemma which provides further information on almost
trivial o -fields.

Lemma 4.5.1 (Almost trivial o-fields) Let G be an almost trivial o -field and let
X be a random variable measurable with respect to G. Then there exists ¢ such
that P[X =c]=1.

Proof of Lemma 4.5.1. Let
F(x) = P[X <x].
Then F is non-decreasing and since [X < x] € 0(X) C G,
F(x)=0o0r1

for each x € R. Let
¢ =sup{x : F(x) =0}.

The distribution function must have a jump of size 1 at ¢ and thus

P[X=c]=1. a

With this in mind, we can consider some consequences of the Kolmogorov
Zero-One Law.

Corollary 4.5.1 (Corollaries of the Kolmogorov Zero-One Law) Let {X,} be in-
dependent random variables. Then the following are true.

(a) The event
[Z X, converges]
n
has probability 0 or 1.

(b) The random variables limsup,_, ., X, and liminf,_,o X, are constant
with probability 1.

(c) The event
{w: Sp(w)/n — 0}

has probability 0 or 1.
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We now commence the proof of Theorem 4.5.3.

Proof of the Kolmogorov Zero-One Law. Suppose A € 7. We show A is inde-
pendent of itself so that

P(A) = P(ANA) = P(A)P(A)

and thus P(A) = (P(A))2. Therefore P(A) =0 or 1.
To show A is independent of itself, we define
n
Fa=oXn,.... Xn) = \[o (X)),
Y

J

so that 7, 4 and

00 00
w=0X1,X2,..)=\0X))=\/ Fu
j=1 n=1

Note that
AeT CF,=0Xnt1, Xn42,--.) Co(X1,X2,...) = Fo. 4.17)

Now for all n, we have

so since F,, || F,, we have

for all n, and therefore

A | U7

n

LetCy = {A}, and C; = U, Fn. Then C; is a m-system, i = 1,2,C; || C; and
therefore the Basic Criterion 4.1.1 implies

o(C) = {¢, 2, A, A%Yand 0 (Cr) = \/ Fr = Foo

are independent. Now
Aeo(Cy)

and
Ae\/Fn=Fu
n

by (4.17). Thus A is independent of A. O
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4.6 Exercises

1. Let By, ... , B, be independent events. Show

n n

P(JB)=1-[]a-P@)).

i=1 i=1

2. What is the minimum number of points a sample space must contain in
order that there exist n independent events By, ... , B, none of which has
probability zero or one?

3. If {A,, n > 1} is an independent sequence of events, show

P([) An) =[] P4n.
n=1 n=1

4. Suppose (£2, B, P) is the uniform probability space; that is, ([0, 1], B, 1)
where A is the uniform probability distribution. Define

X(w) =w.

(a) Does there exist a bounded random variable that is both independent of
X and not constant almost surely?

(b) Define Y = X(1 — X). Construct a random variable Z which is not
almost surely constant and such that Z and Y are independent.

5. Suppose X is a random variable.

(a) X is independent of itself if and only if there is some constant ¢ such that
P[X=c]=1.

(b) If there exists a measurable

g: (R,BR)) ~ (R, B(R)),

such that X and g(X) are independent, then prove there exists ¢ € R such
that
PlgX)=c]=1.

6. Let {Xk, k > 1} be iid random variables with common continuous distribu-
tion F. Let w be a permutation of 1, ... , n. Show

d
X1, .., Xn) = Xnyy -+ X))

d .. e e ..
where = means the two vectors have the same joint distribution.

7. If A, B, C are independent events, show directly that both AUB and A \ B
are independent of C.
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. If X and Y are independent random variables and f, g are measurable and

real valued, why are f(X) and g(Y) independent? (No calculation is nec-
essary.)

. Suppose {A,} are independent events satisfying P(A,) < 1, for all n. Show

P(|JA4n) =1iff P(4i0.) =1,

n=1
Give an example to show that the condition P(A,) < 1 cannot be dropped.

Suppose {X,, n > 1} are independent random variables. Show

P[supX, <oo] =1

ZP[X,, > M] < oo, for some M.
n

Use the Borel-Cantelli Lemma to prove that given any sequence of random
variables {X,,n > 1} whose range is the real line, there exist constants
¢p — 00 such that
X
P[lim — =0]=1.

n—>o00 ¢,
Give a careful description of how you choose c,.
For use with the Borel Zero-One Law, the following is useful: Suppose

we have two non-negative sequences {a,} and {b,} satisfying a, ~ b, as
n — 00; that is,

. n —
g = b
Show
Za,, < o iff Zb,, < 0.
n n
Let {X,,n > 1} be iid with P[X; = 1] = p = 1 — P[X; = 0]. What is

the probability that the pattern 1,0,1 appears infinitely often?

Hint: Let
A = [Xk =1, X1 = 0, Xp42 = 1]

and consider A1, A4, A7,....
In a sequence of independent Bernoulli random variables {X,, n > 1} with
PX,=1=p=1-P[X,=0],

let A, be the event that a run of n consecutive 1’s occurs between the 2"
and 2"*1st trial. If p > 1/2, then there is probability 1 that infinitely many
A, occur.
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15.

16.

17.

4. Independence

Hint: Prove something like

P(A)>1—(1=p"2/2 51— PV /21,

(a) A finite family B;,i € I of o-algebras is independent iff for every
choice of non-negative B;—measurable random variable Y;, i € I, we have

E([Tv) =[]Ea.

iel iel

(One direction is immediate. For the opposite direction, prove the result
first for positive simple functions and then extend.)

(b) If {B;,t € T} is an arbitrary independent family of o-algebras in
(R, B, P), the family {B;, t € T} is again independent if B; D B;, (t € T).
Deduce from this that { f;(X;),¢ € T} is a family of independent random
variables if the family {X;, ¢ € T} is independent and the f; are measurable.
In order for the family {X,, ¢ € T} of random variables to be independent,
it is necessary and sufficient that

E (]‘[ f;(Xj)) =T1E(fi&xp)
J J
for every finite family { f;, j € J} of bounded measurable functions.

The probability of convergence of a sequence of independent random vari-
ables is equal to O or 1. If the sequence {X} is iid, and not constant with
probability 1, then

P[X, converges ] = 0.

Review Example 4.5.2

(a) Suppose {X,,n > 1} are iid random variables and suppose {a,} is a
sequence of constants. Show

0, iff ), P[X1 > an] < oo,

P{[X, > ap]io.} = 1, iff Zn P[X; > ay] = oo.

(b) Suppose {X,, n > 1} are iid N(0,1) random variables. Show

X
P[lim sup [ Xl =v2]=1

n—>oo /logn

Hint: Review, or look up Mill’s Ratio which says

P[Xy >x]
xioo n(x)/_x -

where n(x) is the standard normal density.
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(c) Suppose {X,,n > 1} are iid and Poisson distributed with parameter
A. Prove

)‘n n
—e*<P[X;>2nl <=,
n! n!
and therefore
Xn
Pllimsup ——————— =1] = 1.
: ,,_,oop logn/log(log n) ]

18. If the event A is independent of the 7—system P and A € o (P), then P(A)
is either O or 1.

19. Give a simple example to show that 2 random variables may be independent
according to one probability measure but dependent with respect to another.
20. Counterexamples and examples:

a) Let Q@ = {1, 2, 3, 4} with each point carrying probability 1/4. Let A} =
{1,2}, A3 = (1,3}, A3 = {1,4}. Then any two of Ay, Ay, A3 are inde-
pendent, but A1, Az, A3 are not independent.

b) Let {A;, 1 <i < 5} be a measurable partition of 2 such that P(41) =
P(Az) = P(A3) = 15/64, P(As) = 1/64, P(As) = 18/64. Define
B =A1UA4, C =AU A4, D = A3 U Ay4. Check that

P(BCD) = P(B)P(C)P(D)

but that B, C, D are not independent.

c) Let Xy, X2 be independent random variables each assuming only the
values +1 and —1 with probability 1/2. Are X, X5, XX, pairwise inde-
pendent? Are X, X2, X1X> an independent collection?

21. Suppose {A,} is a sequence of events.

(a) If P(A,;) = 1asn — oo, prove there exists a subsequence {n;} tend-
ing to infinity such that P(NgAp,) > 0. (Hint: Use Borel-Cantelli.)

(b) Show the following is false: Given € > 0 such that P(A,) > e, it
follows that there exists a subsequence {n;} tending to infinity such
that P(NgAp,) > 0.

22. Suppose {A,} are independent events such that
o]
>~ (P \ (1= P(4n)) = o0.
n=1
Show P is non-atomic.

23. Suppose {A,} are events.
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24.
25.

26.

217.

4. Independence

(a) If for each k
o0 n—1
Y P(Anl[ ) AF) = o0,
n=k i=k

show
P(limsup A,) = 1.

n—>00
(b) Whatis tﬁe relevance to the Borel Zero-One Law?

(c) Is it enough to assume

00 n—1
Y P(4nl[) AF) = 00?
n=1 i=1

(d) Show
P(limsup A,) =1
n—->00
iff
o0
Y P(AAy) =0
n=1

for all events A such that P(A) > 0.
If P(A,) = € > 0, for all large n, then P(A,i.0.) > €.

Use Renyi’s theorem to prove that if {X,, n > 1} is iid with common con-
tinuous distribution

P{(X, =\/Xilio} =1.
i=l1

(Barndorff-Nielsen) Suppose {E,} is a sequence of events such that

lim P(Ex) =0, Zn:P(EnE;+1) < .

Prove
P(E,io0.) =0.

Hint: Decompose U;f‘=n Ejform > n.

If {X,,n > 1} are independent random variables, show that the radius of
convergence of the power series Y .o X»2" is a constant (possibly infinite)
with probability one.

Hint: The radius of convergence of ) _po; cn2" is given by

R™! = limsup |c,| /™.

n—>oo
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28. Show {X,, n > 1} are independent if
o(X1,..., Xn-1) || 0(Xn)
are independent for each n > 2.
29. Let
Q={1,...,r}"  ={(x1,....,xp):x;i€{l,...,r},i=1,...,n}

and assume an assignment of probabilities such that each point of 2 is
equally likely. Define the coordinate random variables

Xi((x1, .., xp))=xi, 1=1,...,n.
Prove that the random variables X1, ..., X, are independent.
30. Refer to Subsection 4.3.2.
(a) Define
A ={[d2, =0]i0.}, B ={[dan+1 =1]i0.}.

Show A l B.
(b) Define

I, (w) := length of the run of O’s starting at dj, (w),
_Jk=1, ifdp(@)=0,...,dpsk-1(0) = 0,dptr(w) = 1,
“ o, if dy (@) = 1.

Show
Pla=K= ()" Plhzr=(3).  @19)

(c) Show {[l, = 0], n > 1} are independent events.
(d) Show P{[l, = 0]i.o. } = 1. (Use the Borel Zero-One Law.)

(e) The events {[l, = 1],n > 1} are not independent but the events

{[l2n = 1], n = 1} are, and therefore prove
P{[lyp =1]i0.} =1

so that
P{[l, =1]i0.} =1.
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(f) Letlog, n be the logarithm to the base 2 of n. Show

P[lim sup -

n—00 ngn

<1]=1. (4.19)

Hint: Show
ZP[I,, > (1+e€)logyn] < oo
n

and use Borel-Cantelli. Then replace € by ¢ | 0.
(g) Show
P[lim sup

n—00 Og

Combine this with (4.19).

>1]=1.

Hint: Setr, = [log; n] and defineng byn; = 1,n2 = 14rq, ..., ng41 =

ng + rp, so that ng 1 — ng = ry,. Then
[lnk > rnk] € B(di,np <i < Nk+1)

and hence {[ln, > ry,], k > 1} are independent events. Use the Borel

Zero-One Law to show
P{[lp, = rp]i0. } =1

and hence
P{[ln = rp]io. } =1.

31. Suppose {Bp,n > 1} is a sequence of events such that for some § > 0
P(By)>6>0,

for all n > 1. Show limsup,_, ., B, # @. Use this to help show with

minimum calculation that in an infinite sequence of independent Bernoulli
trials, there is an infinite number of successes with probability one.

32. The Renyi representation. Suppose E1, ..., E, are iid exponentially dis-
tributed random variables with parameter A > 0 so that

P[E, 5x]=1—e_)‘x, x>0.

Let
El,n = E2,n <:---= En,n
be the order statistics. Prove the n spacings

El,n» E2,n - El,n, ceey En,n - En—l,n

are independent exponentially distributed random variables where Ex1 ,—
Ei n has parameter (n — k)A. Intuitively, this results from the forgetfulness
property of the exponential distribution.
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Integration and Expectation

One of the more fundamental concepts of probability theory and mathematical
statistics is the expectation of a random variable. The expectation represents a
central value of the random variable and has a measure theory counterpart in the
theory of integration.

5.1 Preparation for Integration

5.1.1 Simple Functions

Many integration results are proved by first showing they hold true for simple
functions and then extending the result to more general functions. Recall that a
function on the probability space (2, B, P)

X: QR

is simple if it has a finite range. Henceforth, assume that a simple function is
B/B(R) measurable. Such a function can always be written in the form

k
X =)_ails ),
i=1
where a; e Rand A; € Band Ay, ..., Ay are disjoint and ZLI A =Q.
Recall

o) =o(ii=1,....0={JAi:1cq, ... k}.
iel
S.I. Resnick, 4 Probability Path, Modern Birkhduser Classics, 117
DOI 10.1007/978-0-8176-8409-9_5, © Springer Science+Business Media New York 2014
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Let £ be the set of all simple functions on 2. We have the following important
properties of £.
1. & is a vector space. This means the following two properties hold.
(@) X =YY% a1y € £ thenaX = Y5 aai1y, € €.
) X =YF  ai1s,andY = Y7 b;lp and X,Y € £, then
X+Y =) (a+bplans
ij
and {A;Bj,1<i <k, 1 <j <m}isapartitionof Q.So X+Y € €.
2. If X,Y € &, then XY € £ since
XY = ZaibleiﬂBj'
ij

3.IfX,Ye€& thenX VY, XAY €&, since, for instance,

X\/Y = Za; VbleiB,--
ij

5.1.2 Measurability and Simple Functions

The following result shows that any measurable function can be approximated by
a simple function. It is the reason why it is often the case that an integration result
about random varables is proven first for simple functions.

Theorem 5.1.1 (Measurability Theorem) Suppose X (w) > 0, for all w. Then
X € B/B(R) iff there exist simple functions X, € € and

0<X,tX.

Proof. If X,, € £, then X,, € B/B(R), and if X = limy oo 1 X,, then X €
B/B(R) since taking limits preserves measurability.
Conversely, suppose 0 < X € B/B(R). Define

n2" k _ 1
X" :=I; ( 2 )ll*-z#SX<z‘n1+"1l"2"1'

Because X € B/B(R), it follows that X, € £. Also X, < X+ and if X (w) <
00, then for all large enough n

1
X (@) = Xp(@)| = 2 — 0.

If X (w) = o0, then X, (w) =n — o0. ]
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Note if
M := sup |X (w)| < 00,

WeN

then
sup |X (@) — X, (w)| — 0.
weN

5.2 Expectation and Integration

This section takes up the definition of expectation, or in measure theory terms, the
Lebesgue-Stieltjes integral. Suppose (2, B, P) is a probability space and

X:(2,B~ (R,BR)

where R = [-00, 00] so X might have o0 in its range. We will define the
expectation of X, written E (X) or
/ XdP
Q

f X(w)P(dw),
Q

or

as the Lebesgue-Stieltjes integral of X with respect to P. We will do this in stages,
the first stage being to define the integral for simple functions.

5.2.1 Expectation of Simple Functions

Suppose X is a simple random variable of the form

X = Zn:ail,qi,
i=1

where |a;| < 00, and Zf;l A; = Q. Define for X € & the expectation as

k
EX) = f XdP =:) a;P(A)). (5.1)

i=1

Note this definition coincides with your knowledge of discrete probability from
more elementary courses. For a simple function (which includes all random vari-
ables on finite probabilty spaces) the expectation is computed by taking a possible
value, multiplying by the probability of the possible value and then summing over
all possible values.

We now discuss the properties arising from this definition (5.1).
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1. We have that
E(1) =1, and E(14) = P(A).

This follows since 1 = 1g so E(1) = P(2) = 1 and
14=1-144+0- 14,

)
E(14) = 1P(A) + 0P (A°).

2. If X >0and X € £ then E(X) > 0.
To verify this, note that if X > 0, then

k
X=Zai1A,., anda; >0,
i=1

and therefore E (X) = Zf;l a;P(A;) > 0.
3. The expectation operator E is linear in the sense that if X, Y € £, then
E(@X + BY)=aEX)+ BE(Y)

fora, B € R.
To check this, suppose

k m
X=Za,~1A,., Y=ijlgj,
i=1 j=1

and then
aX + BY =) _(aa; + Bbj)1a;5;,
ij
so that

E(@X +BY) =) (aa; + Bbj)P(A;B))
ivj
=) aa;P(A;B; )+Zﬁb P(A;Bj)

ij
i
i=1
k

=a Z i P(A )+ﬂZb,P(3 )
j=
=aE(X) + BE(Y).

P(AB)+ﬁZb,ZP(A Bj)

j=1 i=1

v
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4. The expectation operator E is monotone on £ in the sense that if X < Y
and X,Y € £, then E(X) < E(Y).

To prove this, we observe that we have Y — X > 0andY — X € €. So
E(Y — X) > 0 from property 2, and thus

EY)=EY-X+X)=EY-X)+EX)>EX
since E(Y — X) > 0.
5. If Xp, X € € and either X, 4 X or X, | X, then
E(Xn) * E(X) or E(X,) | E(X).
Suppose X, € &£, and X, | 0. We prove E(X,) | 0. As a consequence
of being simple, X; has a finite range. We may suppose without loss of

generality that
sup Xj(w) = K < 00.

weR
Since {X,} is non-increasing, we get that

0<X,<K

for all n. Thus for any € > 0,
0 <Xpn = Xnlix,>e] + Xnlix, <]
<K1x,>e] + €11x,<e),
and therefore by the monotonicity property 4,
0 <E(Xp) <KP[X, > €]+ €P[X, <¢€]
<KP[X, > €] +e€.

Since X, | 0, we have, as n — o0,

[Xn > €]l 9,

and by continuity of P
P[X,>€]l0.
So E(X,) > E(Xp41) and

limsup E(X,) <e.

n—->oo
Since € is arbitrary, E(X,) | 0.
IfX,| X,thenX, — X ] 0,so0
EXp) —EX)=EX,—X)10
from the previous step.
IfX, 1+ X,then X — X, | 0and
EX)-EX,)=EX —-X,) 0.
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5.2.2 Extension of the Definition

We now extend the definition of the integral beyond simple functions. The pro-
gram is to define expectation for all positive random variables and then for all
integrable random variables. The term integrable will be explained later.

It is convenient and useful to assume our random variables take values in the
extended real line R (cf. Exercise 33). In stochastic modeling, for instance, we
often deal with waiting times for an event to happen or return times to a state or
set. If the event never occurs, it is natural to say the waiting time is infinite. If the
process never returns to a state or set, it is natural to say the return time is infinite.

Let £ be the non-negative valued simple functions, and define

£ :={X>0:X:(QB)~ (R BR)))

to be non-negative, measurable functions with domain Q. If X € &, and
P[X = o0] > 0, define E(X) = o0.
Otherwise by the measurability theorem (Theorem 5.1.1, page 118), we may
find X,, € &4, such that
0<X,tX.

We call {X,} the approximating sequence to X. The sequence {E(X},)} is non-
decreasing by monotonicity of expectations applied to £, . Since limits of mono-
tone sequences always exist, we conclude that lim,,_, oo E (X,,) exists. We define

EX) := lim E(X,). 5.2)
n—>0o0
This extends expectation from € to £5.
The next result discusses this definition further.

Proposition 5.2.1 (Well definition) E is well defined on £, since if X, € £
andY, € € and X, 1+ X, Y, 1+ X, then

lim E(X,) = lim E(Yp).
n—>0o0 n-—>00
Proof. Because of the symmetric roles of X, and Y,,, it suffices to prove the

following assertion. If X, Y,, € £+ and both sequences {X,} and {Y,,} are non-
decreasing, then the assumption

lim + X, < lim 1Y, (5.3)
n—00 m-—>00
implies
Jim 4 E(Xy) < lim 1 E(Ym). (5:4)

To prove (5.4), note that as m — 0
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since

lim Y, > lim X,, > X,.
m— 00 m—00

So from monotonicity of expectations on &,
EX,) = lim Y E(Xp AYyp) < lim E(Yy).
m—00 m—00
This is true for all n, so let n — 00 to obtain
lim 1 E(X,) < lim 1 E(Y,).
n—00 n—->oo

This proves (5.4). o

5.2.3 Basic Properties of Expectation

We now list some properties of the expectation operator applied to random vari-
ables in &,

1. We have
0<EX) < o0,

andif X,Y € £ and X <Y, then E(X) < E(Y).
The proof is contained in (5.4).

2. E is linear: Fora > 0 and 8 > 0,

E(aX + BY) =aE(X) + BE(Y).

To check this, suppose X, 1+ X, Y, 1Y and X,,, Y, € €. Forc > 0
E(cX) = lim E(cX,)
n—0o0

= nl_l’ngo cE(X,) (linearityon&,)
=cEX).

We also have

EX+Y)=lim EX,+Y,)
n—00
= lin;<> (E(Xn) + E(Yp)) (linearity on &)

n—>

EX)+ EY).

3. Monotone Convergence Theorem (MCT). If

0<X,1X, (5.5)
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then
EX») t E(X),

or equivalently,
E(lim 1X,)= lim 1 E(X,).
n—>00 n—>00
We now focus on proving this version of the Monotone Convergence Theorem,

which allows the interchange of limits and expectations.

Proof of MCT. Suppose we are given X,,, X € £, satisfying (5.5). We may find
simple functions Y e &+, to act as approximations to X, such that

Y™ 4 Xy, m— o0
We need to find a sequence of simple functions {Z,,} approximating X
Zm t X,

which can be expressed in terms of the approximations to {X},}. So define

Zm=\/YP.

n<m

Note that {Z,,} is non-decreasing since

Zn < \/ Y, (sincey® <y®))
n<m

n) _
S v Ym+1—Zm+1-

n<m+1
Next observe that forn < m,
A Y <Vm ¥ = Zm;
®) Zn < V<n Xj = Xm,

since Y,f,’ ) < X, which is monotone in j and so

© Yn' < Zn < Xm.
By taking limits on m in (C), we conclude that for all n

X, = lim Y < lim Z, < lim X,.
m-—>00 m-—>00 m-—00

So

X=1lmX, < lim Z, < lim X,, =X.
n—»00 m-—>00 m-—>00

Therefore
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(D) X =limyy00 Xp = limp00 Z
and it follows that {Z,,} is a simple function approximation to X.

(E) Now because expectation is monotone on £,
EX,) = limoo +E (Y,;")) (expectation definition)
m—
< lim ? E(Zp) (from (C))
m—>00
< lim t EXn) (from (C)) .
m—00
However Z,, € £, and {Z,,} is a simple function approximation to X. Therefore,
we get from the definition of expectation on £, and (D)
EX)=E(lim 1 Zy)= lim 1 E(Zp).
m—>00 m—00
So (E) implies for all n that
E(Xy) < E(X) < lim 1 E(Xp),
m—00
and taking the limit on n
lim E(X,) < E(X) < lim E(Xp),
n—>o0 m—00

hence the desired equality follows. a

We now further extend the definition of E (X) beyond 6'_+. For a random vari-
able X, define

Xt=Xv0, X =(-X)Vvo. (5.6)

Thus

Xt =X, ifX>0(andthen X~ =0),

X~ = -X, if X <0(and then X* = 0).
Therefore

X* >0,
and
X=Xt +Xx~

and

X € B/B(R) iff both X* € B/B(R).

Call X quasi-integrable if at least one of E(X™), E(X ™) is finite. In this case,
define

EX):=EX") -EX").
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If E(X*) and E (X ™) are both finite, call X integrable. This is the case iff E|X| <
00. The set of integrable random variables is denoted by L1 or L (P) if the prob-
ability measure needs to be emphasized. So

L1(P) = {random variables X : E|X| < 00}.

If E(XT) < oobut E(X~™) = oo then E(X) = —o0. If E(X*) = oo but
E(X™) < oo,then E(X) = 00. f E(X*) = oo and EX™ = oo, then E (X) does
not exist.

Example 5.2.1 (Heavy Tails) We will see that when the distribution function of
a random variable X has a density f(x), the expectation, provided it exists, can
be computed by the familiar formula

EX) = /xf(x)dx.

If
-2 .
x4, ifx>1,
X) =
f&) [0, otherwise,
then E (X) exists and E (X) = oo.
On the other hand, if
11,-2
ilxl ’ if IxI > 1,
X) =
f&) ’O, otherwise ,
then

EXH=EX") = o0,

and E (X) does not exist. The same conclusion would hold if f were the Cauchy
density

1
f(X)=m, x eR. a

We now list some properties of the expectation operator E.
1. If X is integrable, then P[X = fo00] = 0.

For example, if P[X = 00] > 0, then E(X*) = 00 and X is not integrable.

2. If E(X) exists,
E(cX) =cE(X).

If either

EXY) <ocand E(Y") < o0,



5.2 Expectation and Integration 127

or

E(X")<oocand E(Y™) < o0,
then X + Y is quasi-integrable and
EX+Y)=EX)+E(Y).

We verify additivity when X, Y € L;. Observe that
X +7Y| €&,

and since
IX+Y|<|X|+1Y],

we have from monotonicity of expectation on £, that
E|X+Y| < E(X|+]|Y]) = E|X| + E|Y| < oo,

the last equality following from linearity on £, . Hence X + Y € L.
Next, we have

X+ —X+Y) " =X+Y=X"—-X"+Y -Y", 5.7
SO
LHS =X+ VT +X +Y =X+Y)"+Xt+Y"t = RHS.

The advantage of this over (5.7) is that both LHS and RHS are sums of positive
random variables. Since expectation is linear on £, we have

E(LHS)=EX +Y)* + E(X")+ E(Y")
=E(RHS)=EX+Y) " +EX")+EXH).

Rearranging we get
EX+YV)'—EX+Y) " =EXY)-EX )+ EYH -E{Y),
or equivalently,

EX+Y)=EX)+ E(Y). 0

3. If X >0, then E(X) >0since X = Xt.IfX,Y € Ly, and X <Y, then
E(X) < E(Y).

This is readily seen. We have E(Y — X) > Osince Y — X > 0, and thus by
property (2) from this list,

EY-X)=EX)-EX)=>0.
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4. Suppose {X,} is a sequence of random variables such that X, € L; for

some n. If either
X, 1 X

or
X’l ‘L X?

then according to the type of monotonicity
E(Xyn) 1 E(X)

or
E(Xn) | E(X).

To see this in the case X, 1 X, note X, | X~ so E(X™) < 00. Then
0<Xf=X,+X; <X, +X{ t X+X].

From the MCT given in equation (5.5)
0<EWXn+X])TEX+X)).

From property 2 we have
E(Xn+ X]) = EXn) + EX]).

Since E(X™) < o0 and E(X;) < 00, we also have
EX+X])=EX)+EWX7),

and thus
lim E(X,) = E(X).
n—->oo

If X, | X, proceed similarly by considering —X» + X7 .
5. Modulus Inequality. If X € L,,

|EX)| < E(1X]).
This has an easy proof. We have
IEX)| =|EXT)—EX7)| < EX")+EX") = E(X)).

6. Variance and Covariance. Suppose X2 € L1, which we write as X € L,.
Recall that we define

Var(X) :=E(X — E(X))%,
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and because of linearity of expectation, this is equal to
2
=EX?) - (EX)".
For random variables X, Y € L), write
Cov(X,Y) =E (X - E(X))(Y — E(Y))),
and again because of linearity of expectation, this is equal to

=EXY)-EX)E(Y).

Note that if X =Y, then Cov(X, Y) = Var(X). We will prove in Example
592 thatif X || Y and X,Y € Ly, then E(XY) = E(X)E(Y) and
consequently Cov(X,Y) =

The covariance is a bilinear function in the sense that if Xi,..., X and

Y1,...,Y; are L, random variables, then for constants aq,...,ax, and
bi,....bh
k1
Cov( Za, ,,Zb Yj)=)Y_ Y aibjCov(Xi,¥}).  (5.8)
j=1 i=1 j=1

This also follows from linearity of expectations as follows. Without loss of
generality, we may suppose that E(X;) = E(Y;) =0fori=1,...,k, j =
., 1. Then

Cov(Za,X,,Zb iYj) =E ( a;X; Xl:bjyj)

j=1

a,-bjE(X,-Yj)

M- i

..
Il

A
~.
I

-

a,bjCov(X,-, Yj).

- - B

A special case of this formula is used for computing the variance of a sum
of L, random variables X1, ..., X,. We have

Var(ZX,) = Cov(ZX,, ZX,) = ZZCOV(X,,X ).

i=1 j=

Split the index set

{G, p:1=i,j<n}={G):1<i<n}U{G J):i#j},
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and we get

Var(z X)) = Z Cov(X;, X;) +2 Z Cov(X;, X )

=1 1<i<j<n

= Z Var(X;)+2 Y Cov(X;, X)). (5.9)

1<i<j<n

If Cov(X;, X;) = 0fori # j, thatis, if X1, ..., X, are uncorrelated, then

n n
Var(}_Xi) =) Var(X;). (5.10)
i=1 i=1
In particular, this is true when X1, ..., X, are independent.

. Markov Inequality. Suppose X € L. Forany A > 0

P[IX| > A] < AT'E(1X)).

This proof is also simple. Note

1X| 1X|
U loy = 57 Yoy = 5

Take expectations through the inequalities.
Chebychev Inequality. We have
P[IX — E(X)| > A] < Var(X)/A?,

assuming E|X| < oo and Var(X) < o0.

This follows from the Markov Inequality. We have

PIX — E(X)| > A] P(IX — EX)[? > A%

< VEX-EX)),
where the last inequality is an application of the Markov Inequality.

Weak Law Large Numbers (WLLN). This is one way to express the fact
that the sample average of an iid sequence approximates the mean. Let
{Xu, n > 1} be iid with finite mean and variance and suppose E (X,) = u
and Var(X,) = 02 < 00. Then for any € > 0,

n
lim Pln™' ) Xi—ul>e]=

i=1
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To see this, just use Chebychev and (5.10):

n n .
n-1 ZX,- —ul>e€] < € 2Var (#)
i=1

1 Var(X;) _ nVar(X;)
n2e? T n2e2

2
1
- Z(5)-o
€ n O

4

5.3 Limits and Integrals

This section presents a sequence of results which describe how expectation and
limits interact. Under certain circumstances we are allowed to interchange expec-
tation and limits. In this section we will learn when this is safe.

Theorem 5.3.1 (Monotone Convergence Theorem (MCT)) If
0<X,1X

then
0 < EXp) t E(X).

This was proved in the previous subsection 5.2.3. See 3 page 123.

Corollary 5.3.1 (Series Version of MCT) If £&; > 0 are non-negative random
variables for n > 1, then

E() &) =) EE)),
j=1 j=1

so that the expectation and infinite sum can be interchanged.

To see this, just write

n

E(ifi) =E(lim 3 &)

j=1

= lim tEQ_§)  (MCT)
j=1

= lim 1 ;E(sp

o0
=) E).
j=1
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Theorem 5.3.2 (Fatou Lemma) If X,, > 0, then
E(liminfX,) < liminf E (X,).
n—00 n—00
More generally, if there exists Z € Ly and X, > Z, then
E(liminf X,) < liminf E(X,).
n—>00 n—>00
Proof of Fatou. If X,, > 0, then

rumgery) = £(jn 1 (An))

k=n

o0
lim tE ( N Xk) (from MCT 5.3.1)

k=n

liminf E (X,).
n—00

IA

For the case where we assume X,, > Z, we have X, — Z > 0 and
E (lim inf(X, — Z)) < liminfE (X, — Z)
n—00 n—00
)
E(liminf X,) — E(Z) < liminf E(X,) — E(Z).
n—00 n—00
The result follows by cancelling E (Z) from both sides of the last relation. m]

Corollary 5.3.2 (More Fatou) If X, < Z where Z € L, then

E(limsup X,,) > limsup E(X},).
n—00 n—>00
Proof. This follows quickly from the previous Fatou Lemma 5.3.2. If X, < Z,
then — X, > —Z € L, and the Fatou Lemma 5.3.2 gives

E(liminf(—X,)) < liminf E(—X,),
n—->oo n—>0o

so that

E(—liminf(—X,)) > —liminf(—E X,).

n—00 n—00
The proof is completed by using the relation
—liminf — = limsup.

O
Canonical Example. This example is typical of what can go wrong when limits
and integrals are interchanged without any dominating condition. Usually some-

thing very nasty happens on a small set and the degree of nastiness overpowers
the degree of smallness.
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Let
(K, B, P) = ([0, 1], B([0, 1]), »)
where, as usual, A is Lebesgue measure. Define
n= nzl(O.l/n)-

For any w € [0, 1],
10,1/n) (@) = 0,

SO
X,—0
However 1
E(X,,)=n2-'—l =n— 00,

)

E(iminfX,) =0 < liminf(EX,) = o©

n—00 n—>00

and

E(limsupX,) =0, limsupE(X,) = oc.

n—0o0 n—->0o0
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So the second part of the Fatou Lemma given in Corollary 5.3.2 fails. So obviously

we cannot hope for Corollary 5.3.2 to hold without any restriction.

Theorem 5.3.3 (Dominated Convergence Theorem (DCT)) If
X, - X,

and there exists a dominating random variable Z € L1 such that
Xl < Z,

then
EX,) > E(X) and E|X, — X| = 0.

Proof of DCT. This is an easy consequence of the Fatou Lemma. We have
-Z<X,<2
and —Z € Lj as well as Z € L. So both parts of Fatou’s lemma apply:
E(X) =E(liminf X ;)
n—>oo
< 1},@. E‘,f EXp) (Fatou Lemma 5.3.2)

<limsup E(X,) (since inf < sup)
n—00
<E(limsup X,) (Corollary 5.3.2)
n—>00
=E(X).

Thus all inequalities are equality. The rest follows from | X, — X| < 2Z.

]
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5.4 Indefinite Integrals

Indefinite integrals allow for integration over only part of the Q2-space. They are
simply defined in terms of indicator functions.

Definition 5.4.1 If X € L, we define

/ XdP :=E(X1,4)
A

and call f, XdP the integral of X over A. Call X the integrand.

Suppose X > 0. For positive integrands, the integral has the following proper-
ties:

(1) We have
0< f XdP < E(X).
A

This is a direct consequence of the monotonicity property of expectations.

(2) We have
[ XdP =0
A

PAN[X > 0]) = 0.

iff

This proof of this important result is assigned in Exercise 6 at the end of the
chapter.

(3) If {A,, n > 1} is a sequence of disjoint events

00
XdP = XdP. 5.11
./u,,A,, ; An G110

To prove (5.11), observe

XdP =E(X1y,4,)
UnAn

[
=EQ_X1a,)

n=1

o0
=()_E(X14,)  (from Corollary 5.3.1)

n=1

00
=Y [ xar.
n=1Y4n a
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4 If
A1 C Az,
then
/ XdP < XdP.
Ay Aj

(5) Suppose X € L; and {A,} is a monotone sequence of events. If

Aﬂ / A’
then
/ XdP / / XdP
n A
while if
An N\ A,
then
/ XdP \ f XdP.
n A
Property (4) is proved using the monotonicity property of expectations and
Property (5) is a direct consequence of the MCT 5.3.1. |

5.5 The Transformation Theorem and Densities

Suppose we are given two measurable spaces (2, B) and (', B'), and
T:(Q,B - (Q,8)

is a measurable map. P is a probability measure on B. Define P’ := Po T ! to
be the probability measure on B’ given by

P'Ay=P(IT7'(4)), AeB.
Theorem 5.5.1 (Transformation Theorem) Suppose
X (2, 8)~ (R, BR))

is a random variable with domain Q'. (Then X' o T : Q — R is also a random
variable by composition.)
(i) If X' > 0, then

/X'(T(w))P(dw) =f X'(o')P'(do), (5.12)
Q 104

where P' = P o T 1. Equation (5.12) can also be expressed as

E(XX' oT)=E'(X"), (5.13)
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where E' is the expectation operator computed with respect to P’
(ii) We have

X €eLi(P)iff X'oT € L1(P)

in which case
/ X'(T (w))P(dw) =/ X' (@)P'(do). (5.14)
T-1(A") A’

Proof. (i) Typical of many integration proofs, we proceed in a series of steps,
starting with X as an indicator function, proceeding to X as a simple function and
concluding with X being general.

(a) Suppose
X =14, A eB.
Note
X'(T (@) = Lo(T@)) = 17-14(@),
o
fg X'(T(@))P(dw) = Left side of (5.12)
- fﬂ 14(T (@) P(dw)

=/;21T_1(A/)(w)P(dw)
=P(T"1(4)) = P'(A)
= / 14/ (@) P'(do')

QI
= Right side (5.12).

(b) Let X’ be simple:

k
’ E : ’
X = ailA;
i=1
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so that

k
f X (Tw)P(dw) = f Y " aj14/(T (@) P(dw)
Q =1 '

k
= Za; f 17-14) (@) P(dw)
i=1 Q

a/P(T1(A)))

a;P'(A})

..
Il
—

- i

k
=/ aj14/(0)P'(dw").
Qi !

i=

(c) Let X’ > 0 be measurable. There exists a sequence of simple functions
{X,}, such that
X, + X'
Then it is also true that
X, 0T+ X oT

and
Left side (5.12) =/ X' (Tw)P(dw)
Q
= lim 1 | X\ (Tw)P(dw) (MCT)
n—oo Q
= lim 1 | X,(o")P'(do) (from Step (b))
n—>o00 Q'
= / X'(@)P'(do) (from MCT).
QI

The proof of (ii) is similar. To get (5.14) we replace X’ in (5.12) by X'1,. O

5.5.1 Expectation is Always an Integral on R
Let X be a random variable on the probability space (§2, B, P). Recall that the

distribution of X is the measure

F:=Pox!
on (R, B(R)) defined by (A € B(R)):

F(A) = PoX1(A) = P[X € A).
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The distribution function of X is
F(x) := F((—00,x]) = P[X <x].

Note that the letter “F” is used in two ways. Usually, there will be no confusion.
Here is an excellent example of the use of the Transformation Theorem which
allows us to compute the abstract integral

EX) =fXdP
Q

as

EX) = f xF(dx),
R
which is an integral on R.

Corollary 5.5.1 (i) If X is an integrable random variable with distribution F,
then

E(X)=/xF(dx).
R

(ii) Suppose
X:(Q,B)— (&)

is a random element of E with distribution F = P o X~ and suppose
g: (]E’ 8) = (]R-H B(R+))

is a non-negative measurable function. The expectation of g(X) is
E(g(X)) = / 8X(w)P(dw) = _/ 8(x)F (dx).
Q x€E

Proof. (i) For ease of applying the Transformation Theorem, we make the follow-
ing notational identifications:

X:(Q,B) —~R, BR)),
X' :(Q,8) =R, BR)) ~ (R, BR)),
X'(x) =x,
T =X
P'=PoX'=F.
According to the conclusion of the Transformation Theorem, we get the equation

/X’(T(w))P(dw):/ X' ()P (do)
Q Q

and with the identifications listed above, the equation becomes

/X(w)P(dw) =/xF(dx).
Q R
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(ii) We proceed in stages using the usual progression: start with an indicator
function, proceed to simple functions and graduate to general non-negative func-
tions. Here are the stages in more detail.

(a) IfA € € and g(x) = 14(x), then (i) is true. This follows from F = PoX 1,
(b) Check (i) holds for g simple.
(c) Finish with an application of the MCT. a

The concluding message: Instead of computing expectations on the abstract
space £2, you can always compute them on R using F, the distribution of X

5.5.2 Densities

LetX : (R, B) — (R*, B(R¥)) be arandom vector on (2, B, P) with distribution
F. We say X or F is absolutely continuous (AC) if there exists a non-negative
function

f: @ BRY) > R+, BR+))

such that
F(A) = f f (x)dx,
A

where dx stands for Lebesgue measure and the integral is a Lebesgue-Stieltjes
integral.

Proposition 5.5.2 Let g : (R¥, B(R¥)) » (R4, BR4)) be a non-negative mea-
surable function. Suppose X is a random vector with distribution F. If F is AC
with density f, we have for the expectation of g(X)

Eg(X) = f () f (x)dx.
RK

Proof. Repeat (a), (b), (c) of the proof of Corollary 5.5.1 (ii) for the case where
there is a density. 0

5.6 The Riemann vs Lebesgue Integral

Every probability student is first taught to compute expectations using densities
and Riemann integrals. How does this the Riemann integral compare with the
Lebesgue integral?

Suppose (—o00 < @ < b < 00) and let f be real valued on (a, b]. Generally
speaking, if f is Riemann integrable on (a, b}, then f is Lebesgue integrable on
(a, b] and the two integrals are equal. The precise statement is next.

Theorem 5.6.1 (Riemann and Lebesgue) Suppose f : (a,b] — R and
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(a) f is B((a,b])/B(R) measurable,
(b) f is Riemann-integrable on (a, b).
Let X be Lebesgue measure on (a, b). Then
(i) f € Li([a,b], A). In fact f is bounded.

(ii) The Riemann integral of f equals the Lebesgue integral.

Proof. If f is Riemann integrable, then from analysis we know that f is bounded
on (a, b] (and also continuous almost everywhere on (a, b]). For an interval I,

define
fYI) =suwp f(x), fAI)=inf f(x).
xel xel

(n) (n)
L aees

Chop up (a, b] into n subintervals / ,In"~ where

b—a

11(") = (a,a+ ],

b— 2(b -
I = @428 442629,
n n

a-b>b

™ = k- ,b].

Define

™

®

-
I

J

Lo = 2 UILe
j=1

I_

n
I, m (),
=1 J

so that f,, [, are simple (and hence measurable) and

f,5f<fn
Define
Gy = Fa(OA(dx) = Z fV(I}"))A(I;"))
(@.b] j=1

g, = f f,0x@dx) =Y FAUMAP)
(a,b] j=1

(5.15)
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where A(I}")) = (b—a)/n. Let

b
I=/ fx)dx

be the Riemann integral of f. I has upper Riemann approximating sum &,, and
lower Riemann approximating sum g,,. Since f is Riemann-integrable, given ¢,
there exists ng = ng(€) such that n > ng implies

=& \/ I —g,l <e. (5.16)
Because of (5.15) and monotonicity of expectations
g,,=f fdr< fdr < fadA = Gy,
(a,b] (a,b] (a,b]

and from (5.16)

)
I—-€e< fdr <1 +e€;
(a,b]
that is,
| fdr—1| <e.
(a,b]
This completes the proof. a

We need the next lemma in order to discuss the subsequent example.

Lemma 5.6.1 (Integral Comparison Lemma) Suppose X and X' are random
variables on the probability space (2, B, P) and suppose X € L.

(@) If

PIX=X1=1,
then
X e€Lyand E(X) = E(X).
(b) We have
PIX=X1=1
iff

fXdP:/X'dP, VA € B.
A A

The condition “for all A € B” can be replaced by “for all A € P” where P is a
m-system generating B.
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Proof. Part (a) basically follows from Exercise 6. Here, we restrict ourselves to
commenting on why if X € L; and P[X = X'] = 1, it follows that X’ € L;.
Write N = [X # X'] so that P(N) = 0 and then

E(IX')) = E(IX|1x)=jxp + E(X'|1x)
<E(X])+0 < oo,

where we have applied Exercise 6. A modification of this argument shows E (X) =
EX').

Now consider (b) which uses the following result also following from Exercise
6:

If X > 0, then E(X) = 0 implies P[X =0] =1, 5.17)
or equivalently
if X > 0, then P[X > 0] > 0 implies E(X) > 0. (5.18)

Suppose for all A € B that

/XdP:/X'dP.
A A

To get a contradiction suppose P[X # X'] > 0. So either P[X > X'] > O or
P[X < X'1>0.If P[X > X'] > 0, thenset A = [X > X']and (X—X")14 > 0,
and P[(X — X')14 > 0] = P(A) > 0. So from (5.18) we have

E((X —X)14) > 0;

/X—/X'>O,
A A

a contradiction. So P(A) = 0.
Conversely, if P[X = X'] =1, thenset N = [X # X’] and for any A € B

/XdP = XdP+/ Xdp
A ANN ANNe¢

=0+ X'dP=/X'dP,
ANN¢ A

that is,

with the 0 resulting from Exercise 6. a

Example 5.6.1 For this example we set 2 = [0, 1], and P = A = Lebesgue
measure. Let X (s) = 1g(s) where @ are the rational real numbers. Note that

MQ) =AUreg{rh) =) _Adr) =0
reQ
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so that

AMIX =0) =1 =1(0,1]\ Q).

Therefore from the Integral Comparison Lemma 10.1 E(X) = E(0) = 0 since
A[X = 0] = 1. Note also that X is not Riemann-integrable, since for every n,

Lt~ 1o
ZXV == 1 - == =1
=l 1

and thus the upper and lower Riemann approximating sums do not converge to
each other. We conclude that the Riemann integral does not exist but the Lebesgue
integral does and is equal to 0.

For a function to be Riemann-integrable, it is necessary and sufficient that the
function be bounded and continuous almost everywhere. However,

{w € [0, 1] : 1g(") is discontinuous at w} = {w € [0, 1]} = [0, 1]
and thus

Mw : 1g(-) is continuous at w} =

5.7 Product Spaces

This section shows how to build independence into a model and is also important
for understanding concepts such as Markov dependence.
Let 21, 2, be two sets. Define the product space

Q1 x Q2 = {(w1,w2) 1 w; € Qi = 1,2}
and define the coordinate or projection maps by (i = 1, 2)
mi(w1, @2) = w;

so that
iU X Q- Q.

If A C Q1 x Q7 define
Apw, = [2:(01,w2) €A} CQ
sz = {w1:(w1,w2) € A} C Q.

A, is called the section of A at w;.
Here are some basic properties of set sections.
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(i) If A C Q) x 2, then (A, = (Ay,)".

(ii) If, for an index set T, we have A, C 21 x Q, foralla € T, then

U4 = Ao, (Ao = [ Aden-

Now suppose we have a function X with domain £; x £, and range equal to
some set S. It does no harm to think of S as a metric space. Define the section of
the function X as

le (w2) = X(wla (7))

SO
Xoy : Q22 S.

We think of w; as fixed and the section is a function of varying w,. Call X, the
section of X at w;.
Basic properties of sections of functions are the following:

() Aa)w;, =14,
(ii) If S = R¥ for some k > 1 and if for i = 1,2 we have
Xi: x-S,

then
X1+ X2, = X1 + (X2)w;-

(iii) Suppose S is a metric space, X, : Q1 x Q2 — § and lim,_, 0 X exists.
Then

lim (Xn)w, = lim (Xn)a,-
n—->oo n—>oo

A rectangle in Q1 x 2 is a subset of Q; x 2 of the form A; x A, where
A; C Q;, fori =1,2. We call A1 and A; the sides of the rectangle. The rectangle
is empty if at least one of the sides is empty.

Suppose (2, B;) are two measurable spaces (i = 1, 2). A rectangle is called
measurable if it is of the form A; x A, where A; € B, fori =1, 2.

An important fact: The class of measurable rectangles is a semi-algebra which
we call RECT. To verify this, we need to check the postulates defining a semi-
algebra. (See definition 2.4.1, page 44.)

(i) 8, Q € RECT

(ii) RECT s a w-class: If A; x A2, A} x A} € RECT, then (A1 x A2) N (A] x
A) = A1A] x A,A), € RECT.
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(iii) RECT is closed under complementation. Suppose A x A, € RECT. Then
Q1 x 2\ A1 x A2 =(Q21\ A1) X A2+ A1 x (22\ A2)
+ A{ x AS.

We now define a o-field on 21 x 2; to be the smallest o -field containing RECT.
We denote this o-field B x B; and call it the product o -field. Thus

By x By := o(RECT). (5.19)
Note if Q1 = Q5 = R, this defines
BixBy=0(A1 xA:A; € BR), i =1,2).

There are other ways of generating the product o-field on R2. If C{ is the class of
semi-open intervals (open on the left, closed on the right), an induction argument
gives

BixBy=o({lh xI:1; eCY, j=1,2)).

Lemma 5.7.1 (Sectioning Sets) Sections of measurable sets are measurable. If
A € By x By, then for all v, € Q,

Ay € By
Proof. We proceed by set induction. Define
Coy ={ACQ xQ: Ay € B}

If A€ RECTand A = A1 x A where A; € B;, then

Aw, = {w2: (01 X)) € Ay x Ap}
_ Az e By, ifw €Ay
- 2, ifw; ¢ Ay.

Thus A, € Cy,, implying that
RECT C Cy,.

Also C,, is a A-system. In order to verify this, we check the A-system postu-
lates.

(i) We have

since Q1 x Q7 € RECT.

(ii) If A € Cy, then A€ € C,, since (A€),, = (Ay,) and A € C,, implies
Aw, € B and hence (A,,)¢ € B;. This necessitates (A€)y, € Co,-
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c) If A, € Cy,, for n > 1 with {A,} disjoint, then (A,),, € B implies

Zn(An)wl € BZ' But

o0 o0
Y Ao = Q_ An)wy € B2
n=1 n=1

and hence

)
ZA,, € Cy,.
n=1

Now we know that C,, is a A-system. Further we know that
Cs; O RECT
which implies by Dynkin’s theorem 2.2.2 that
Co; D 0(RECT) = B x B,. m]

There is a companion result to Lemma 5.7.1 about sections of measurable func-
tions.

Corollary 5.7.1 Sections of measurable functions are measurable. That is, if
X:(Q1 xQ2,B xB) > (S,S)

then
X, € Ba.

Proof. Since X is B; x B2/S measurable, we have for A € S that
(@1, @2) : X(0,w2) € A} = X7(A) € By x By,
and hence by the previous results
XY (A))y, € Ba.
However

XY A))w ={w2 : X (@1, w2) € A)
={w2 : Xoy (@2) € A} = (X)) "1(A),

which says X, is B2/S measurable. O
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5.8 Probability Measures on Product Spaces

We now consider how to construct probability measures on the product space
(21 x Q, B1 x By). In particular, we will see how to construct independent
random variables.

Transition Functions. Call a function
K(w1,A2) : Q1 x Bo = [0,1]
a transition function if
(i) for each w1, K (w1, -) is a probability measure on B3, and
(ii) for each A, € B, K (-, A3) is B1/B([0, 1]) measurable.

Transition functions are used to define discrete time Markov processes where
K (w1, A2) represents the conditional probability that, starting from w;, the next
movement of the system results in a state in A,. Here our interest in transi-
tion functions comes from the connection with measures on product spaces and
Fubini’s theorem.

Theorem 5.8.1 Let P be a probability measure on By, and suppose
K:Q1 xBy [0,1]
is a transition function. Then K and Py, uniquely determine a probability on
B x B; via the formula
P(A; x A7) = /A K (@1, A2)Py(dan), (5.20)
1

forall Ay x A € RECT.

The measure P given in (5.20) is specified on the semialgebra RECT and we
need to verify that the conditions of the Combo Extension Theorem 2.4.3 on
page 48 are applicable so that P can be extended to o (RECT) = By x B;.

We verify that P is o-additive on RECT and apply the Combo Extension The-
orem 2.4.3. Let

(A" x A n > 1)

be disjoint elements of RECT whose union is in RECT. We show

00 00
PO AP x APy =) P@AP x AD).

n=1 n=1

Note if }_,, Ag") X A(z") = A1 x Ay, then

1A1 (wl)lAz (@2) =*1A1xAz (01, w2) = Z lA(l"’xA;") (w1, @)
n

= Z lA(ln)(wl)lA(zn) (w2).
n
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Now making use of the series form of the monotone convergence theorem we
have the following string of equalities:

P(A1 x A2) =/Q 14, (w1)K (w1, A2) P1(dwy)
1
=/ [/ 14, (01)14, (@)K (w1, dw2)] P (dw1)
Q Ja,

=/ [/ Y 1w (@)1, m (@)K (@1, dw)] Py (dewr)
QI ! 2

= [ T 1@tk @, dop)pr@an
Q7 J ! 2

=2 [ @[ 1p@iK . don)pi@on
n J 1 Q, 2

= / 1,m(@DK (@1, AP) Py )
n J 1

=2 /Am K (@1, AY) Py (dwy)
n 1

=Y P@A{ x aP).
n (]

Special case. Suppose for some probability measure P, on B; that K (w1, Az) =
P>(A>) . Then the probability measure P, defined in the previous result on By x B
is

P(A1 x A) = P1(A1)P2(A2).

We denote this P by P; x P, and call P product measure. Define o-fields in
Q7 x Q2 by

= {A1 X Q2:A1 € By}
{Q1 x Ay : Az € By}

3 A
|

With respect to the product measure P = P x P, we have BY || B since

P(A1 x Q2N Q x A2) =P(A1 x A2) = P1(A1)P2(A2)
_—_P(Al X Qz)P(Ql X Az).

Suppose X; : (2, B;) = (R, B(R)) is a random variable on ; fori = 1, 2.
Define on 21 x 2, the new functions

X (w1, 02) = X1(01), X301, 02) = X2(w2).
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With respect to P = P; x P, the variables X f and X g are independent since

PIX] <x,X} <y]= P1 x Py({(01, @2) : X1(@1) < x, X2(@2) < y})
= P1 x Py(for : X1(w1) < x} x {@2: X2(w2) < y})
= Pi({X1(@1) < x))P({w2 : Xa2(w2) < y})
= P({(01, w2) : X{(@1, @) <x})
P({(@1, w2) : X§(w1, @2) < y))
= P[x* < x)P[X% < y].

The point of these remarks is that independence is automatically built into the
model by construction when using product measure. Quantities depending on dis-
joint components can be asserted to be independent without proof. We can extend
these constructions from two factors to d > 2 factors and define product measure
Py x - -+ x Py. Having independence built into the model is a big economy since

otherwise a large number of conditions (of order 2¢) would have to be checked.
See Definition 4.1.2 on page 91 and the following discussion.

5.9 Fubini’s theorem

Fubini’s theorem is a basic result which allows interchange of the order of inte-
gration in multiple integrals. We first present a somewhat more general and ba-
sic result that uses transition kernels. We continue to work on the product space
(Q] X Qz, Bl X Bz).

Theorem 5.9.1 Let Py be a probability measure on (21, B1) and suppose K :
Q1 x By — [0, 1] is a transition kernel. Define P on (21 x 2, By x B;) by

P(A1 x A) = A K (w1, A2)P1(dw). (5.21)
1

Assume
X : (21 x 22, B1 x By) —» (R, B(R))

and furthermore suppose X > 0 (X is integrable). Then
Y(o1) = ./s‘z K(w1, dw2)X o, (w2)
2

has the properties
(a) Y is well defined.
(b) Y € B
() Y=0 (YeLi(P)),



150 S. Integration and Expectation

and furthermore

/ XdP = f Y(w)Pi(dw) = [ [ f K(w1,dwp) Xy, (w2)]P1(dw)).
Q1 xQ2 Qy Q JQ
(5.22)

Proof. For fixed w1, we have X, (w2) is B2-measurable so Y is well defined. It
is not hard to show that Y is 3; measurable and we skip this and we proceed to
show (5.22) under the assumption X > 0. Define

LHS :=f XdP
Q1 xS

and
RHS 2=/ Y(wl)Pl(dwl).
Q)
We begin by supposing
X =14,x4,
where
A; x Ay € RECT.
Then
LHS = dP = P(A1 x A2)
A1 xAz

and

RHS =/ [[| K(w1,dwn)ls(@1)14,(w2)]Pi(dewn)
Q JQ

= [ K@, 40Pidon) = Ps x 4.
Ay
So (5.22) holds for indicators of measurable rectangles. Let
C={A € B; x By : (5.22) holds for X = 14},

and we know RECT C C.
We claim that C is a A-system. We check the postulates.

(1) Q1 x Q2 € Csince ;1 x 2 € RECT.
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(ii) If A € C then for X = 1,4, we have LHS = P(A€) = 1 — P(A) so that
s = 1- [ [Ke@idoola, @)Piden)
= //K(wlv dan)(1 =14, (@2)) Pi(dwy)
= f/K(wL dw2)1(a,, ) (w2) Py(dw;)
= //K(wh dw)1(4¢),, (@2) Pr(dw)

= RHS.

So A€ e C.

(iii) If A, € C, and {A,, n > 1} are disjoint events, then

/9 lyw 4 dP=P()_ As) =) P(An)
1% n n

=¥ [ [ k@r.dovta,, @oPi@on
n
because A, € C; applying monotone convergence we get

=[/K(w1»dw2)zl(A")wl (@2) Py (dwr)

=//K(whdwz)l(u,,A,,),,,1 (@2) Py(dwy)
= RHS,

soY ,An €C.

We have thus verified that C is a A-system. Furthermore,
C O RECT,

which implies
C D o(RECT) = B; x B;.

We may therefore conclude that for any A € Bj x By, if X = 14 then (5.22) holds
for this X.

Now express (5.22) as LHS(X) =RHS(X). Both LHS(X) and RHS(X) are
linear in X so (5.22) holds for simple functions of the form

k
X = Za,—l,;,., A; € By x B,.

i=1
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For arbitrary X > 0, there exists a sequence of simple X, such that X, 1 X. We
have

LHS (X,) = RHS (X,),
and by monotone convergence
LHS (X,) 1+ LHS (X).

Also, we get for RHS, by applying monotone convergence twice, that
Jim 4 RS 06 = fim 1 [ [ Ko, don) Gl @211 1)

fg Llim, 1 | K(on.don) (Ko @2)]Pr(don)

n—>00

= / [ lm (Xp)e (@)K (@1, dw2)]Pi(dwr)
(o) an-»oo

- / [ f K (@1, o)X 0, (0] Py deor)
Q) JQ
= RHS (X). ]

We can now give the result, called Fubini’s theorem, which justifies interchange
of the order of integration.

Theorem 5.9.2 (Fubini Theorem) Let P = P, x P, be product measure. If X is
By x B measurable and is either non-negative or integrable with respect to P,
then

[ xar={ ([ Xo@iPdepidon
Q1 xQ Q) JQ
=/ [/ X, (1) P1(dw1)]P2(dw?).
QI

Proof. Let K (w1, A2) = P2(A3). Then P; and K determine P = P; x P, on
B; x B3 and

f XdP
Q1 x

f ([ K, dop)Xe,@)]Pydor)
Q) JQ

f [/ Py(dw2) X o, (2)] Py (dwy).
Q) V2
Also let
K(wn, A1) = Pi(4y)
be a transition function with

K : Q2 x By~ [0,1].
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Then K and P; also determine P = P; x P; and
/ XdP =f [/ K (@2, dw1) X oy (01)] P2 (d7)
Q1 xQ Q J

- / [ / Py(dw1) Xy (01)] Pa(dan).
Q I

We now give some simple examples of the use of Fubini’s theorem.

Example 5.9.1 (Occupation times) Let {X (¢, w),t € [0,1]} be a continuous
time stochastic process indexed by [0, 1] on the probability space (2, B, P) sat-
isfying

(a) The process X (-) has state space R.
(b) The process X is two-dimensional measurable; that is,
X : ([0,1] x R, B([0,1]) x B) — B(R)
so that for A € B(R)
X YA) = {(t,0) : X(t,w) € A} € B([0,1]) x B.

Fix aset A € B(R). We ask for the occupation time of X in A during times¢ € A,
for A € B([0, 1]). Since A € B(R),

1a : R, BR)) ~ ({0, 1}, {2, {0, 1}, {0}, {1}})
is measurable and therefore
1IA(X (s, w)) : ([0, 1] x 2, B([0, 1]) x B) = ({0, 1}, B({0, 1})) .
Define the random measure

x(A, w) :=/ 1A (X (s, w))ds
A

and call it the occupation time in A during times ¢ € A.

We have
EX(A,w)=/ [/ 1A(X(S,w))dS]dP,
QLJA

which by Fubini’s theorem is the same as

=f [/ lA(X(s,a)))dP] ds
ALJIQ
= / P[X(s) € Alds.

A

Thus expected occupation times can be computed by integrating the probability
the process is in the set. O
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Example 5.9.2 Let X; > 0,i = 1, 2 be two independent random variables. Then
E(X1X2) = E(X1)E(X?).

To prove this using Fubini’s theorem 5.9.2, let X = (X1, X), and let g(x1, x2) =
x1x2. Note P o X~1 = F; x F, where F; is the distribution of X;. This follows
since

PoX A1 xAy) = P[(X1,X2) € Ay x A7]
= P[X1€A1,X;€A)]
= P[X1 GA]]P[XzeAz]
= Fi1(A1)F2(A2)
= Fl X Fz(Al X Az).

So P o X~ and F; x F, agree on RECT and hence on 0 (RECT) = B; x B,.
From Corollary 5.5.1 we have

EX1X;=EgX) = f L 8®Po X~ 1(dx)
R+
=/ gd(F1 x F)
RL

= / x2[ [ x1F1(dx1)])F2(dx2) (Fubini)
Ry

= E(Xy) f x3Fa(dxz) = EXDE(Xy).
O

Example 5.9.3 (Convolution) Suppose X1, X are two independent random vari-
ables with distributions Fj, F>. The distribution function of the random variable
X1 + X is given by the convolution Fy x F; of the distribution functions. For
xeR

P[X1+ X2 <x]=: F1ixF(x) = / Fi(x —u)F2(du) = / F>(x — u)F1(du).
R R

To see this, proceed as in the previous example. Let X = (X1, X3) which has
distribution F; x F> and set

g(xl’x2) = l{(u'v)e]RZ;u-;-us_x}(xlyx2)7 (x1, x2) € RZ'

From Corollary 5.5.1

P[X1+ X2 <x]=EgX) = /};2 gd(F1 x F).
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Iterating the multiple integral a la Fubini, we have

=~/n; [/R Vv ertutosa 31, %20 F1 (dxl)] Fy(dxy)
=[ [/ 1[ue]R:vsx—x2](xl)Fl(dxl)] F>(dx,)
R L/R

=‘/‘;F1(x — x2)F2(dx3).

5.10 Exercises

1. Consider the triangle with vertices (—1, 0), (1, 0), (0, 1) and suppose (X1, X2)
is a random vector uniformly distributed on this triangle. Compute
EX1 + X2).

2. Argue without a computation that if X € L, and ¢ € R, then Var(c) = 0
and Var(X + ¢) = Var(X).

3. Refer to Renyi’s theorem 4.3.1 in Chapter 4. Let
Ly:=inf{j >2: X isarecord.}
Check E(L1) = 00.

4. Let (X,Y) be uniformly distributed on the discrete points (-1, 0), (1, 0),
(0, 1), (0, —1). Verify X, Y are not independent but E(XY) = E(X)E(Y).

5. (a) If F is a continuous distribution function, prove that
1
f F(x)F(dx) = =.
R 2
Thus show that if X1, X are iid with common distribution F, then
1
PlX1<Xa] =3

and E (F(X1)) = 1/2. (One solution method relies on Fubini’s theo-
rem.)

(b) If F is not continuous
11 2
E(F(X)) =5+ Z (P[X1 =a])’,

where the sum is over the atoms of F.
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(c) If X, Y are random variables with distribution functions F(x), G (x)
which have no common discontinuities, then

EFY)+EGX)=1.

Interpret the sum of expectations on the left as a probability.
(d) Evenif F and G have common jumps, if X || Y then

E(F(Y)+EG(X)) =1+ P[X =Y].

6. Suppose X € Ly and A and A, are events.
(a) Show

f XdP — 0.
(1X|>n]

(b) Show that if P(A,) — 0, then

XdP — 0.
Ap

Hint: Decompose

/ IX|dP = / 1X|dP + f 1X|dP
n An[lX|2M] An[IX|>M]

for large M.

(c) Show
/ |X|dP =0iff P(AN[|X]|>0])=0.
A

(d) If X € L, show Var(X) = 0 implies P[X = E(X)] = 1 so that X is

equal to a constant with probability 1.
(e) Suppose that (2, B, P) is a probability space and A; € B,i = 1,2.

Define the distance d : B x B — R by

d(A1, A2) = P(A10A).

Check the following continuity result: If A,, A € B and

d(An, A) > 0
then
/ XdP—)/XdP
n A
so that the map
A»—»/XdP
A

is continuous.
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Suppose X,, n > 1 and X are uniformly bounded random variables; i.e.
there exists a constant K such that

X1\ 1X] < K.
If X, > X asn — 0o, show by means of dominated convergence that

E\X,-X|—0.

Suppose X, X, n > 1 are random variables on the space (2, B, P) and
assume

sup | X, (w)| < oo;

WEN

n>1

that is, the sequence {X,} is uniformly bounded.

(a) Show that if in addition

sup |[X(w) — Xp(w)] > 0, n— oo,
weN

then E (X,) - EX).

(b) Use Egorov’s theorem (Exercise 25, page 89 of Chapter 3) to prove:
If {X,} is uniformly bounded and X,, — X, then E(X,) »> E(X).
(Obviously, this follows from dominated convergence as in Exercise 7
above; the point is to use Egorov’s theorem and not dominated con-
vergence.)

. Use Fubini’s theorem to show for a distribution function F (x)

/(F(x +a) — F(x))dx = a,
R

where “dx” can be interpreted as Lebesgue measure.

For X > 0, let
Xk
X, = Z 2—nl[Ir_2—,r15X<7k”] + 00l x=00)-
k=1
Show

EX;) | E(X).

If X,Y are independent random variables and E(X) exists, then for all
B € B(R), we have

/ XdP = E(X)P[Y € B].
[YeB]
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12. Suppose X is an uncountable set and let B be the o-field of countable and

co-countable (complements are countable) sets. Show that the diagonal
DIAG :={(x,x) : x e X} ¢ Bx B

is not in the product o-field. However, every section of DIAG is measur-
able. (Although sections of measurable sets are measurable, the converse is
thus not true.)

Hints:

e Show that
BxB=o({{x} x X, X x {x},x € X}),

so that the product o-field is generated by horizontal and vertical
lines.

e Review Exercise 12 in Chapter 2.

e Proceed by contradiction. Suppose DIAG € B x B. Then there exists
countable S C X such that

DIAG € a({{x} xX,X x{x},x € S}) =:G.

e Define
P := {{s},s € S, 5§}

and observe this is a partition of X and that
{AixA2:AjeP;i=1,2}
is a partition of X x X and that
G=0(A1xAy:AN;eP,i=1,2).

Show elements of G can be written as unions of sets Aj x Ay.
e Show it is impossible for DIAG € G.

13. Suppose the probability space is the Lebesgue interval

(£ =10,1}, B([0, 1], A)

and define
n

= logn

Xn 1

1)

Show X, — 0 and E(X,) — 0 even though the condition of domination
in the Dominated Convergence Theorem fails.
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Suppose X || Y and & : R? > [0, 00) is measurable. Define
g(x) = E(h(x,Y))

and show
E(g(X)) = E(h(X,Y)).

Suppose X is a non-negative random variable satisfying
P0<X <o0]=1
Show

. 1
(a) ngrrgonE (3(—1[)(>,,]) =0,

1
. -1 _
(b) nl_lzrgon E (}l[X>"—1]) =0.
(a) Suppose —00 < a < b < 00. Show that the indicator function 1(g,4)(x)
can be approximated by bounded and continuous functions; that is, show
that there exist a sequence of continuous functions 0 < f, < 1 such that
fn = 1(a,b) pointwise.

Hint: Approximate the rectangle of height 1 and base (a, b] by a trapezoid
of height 1 with base (a, b + n~1] whose top line extends froma +n~! to
b.

(b) Show that two random variables X; and X are independent iff for every
pair fi, f2 of non-negative continuous functions, we have

E(f1(X1) f2(X2)) = E f1(X1)E f2(X2).

(c) Suppose for each n, that the pair &, and 71, are independent random
variables and that pointwise

En = £, i = Noo-

Show that the pair £x and 7 are independent so that independence is
preserved by taking limits.

Integration by parts. Suppose F and G are two distribution functions with
no common points of discontinuity in an interval (a, b]. Show

G(x)F(dx)
(a,b]

= Fb)G(b) — F(a)G(a) — / F(x)G (dx).
(a,b)
The formula can fail if F and G have common discontinuities. If F and G
are absolutely continuous with densities f and g, try to prove the formula
by differentiating with respect to the upper limit of integration. (Why can
you differentiate?)
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Suppose (2, B, P) = ((0, 1], B((0, 1]), A) where A is Lebesgue measure
on (0, 1]. Let A x A be product measure on (0, 1] x (0, 1]. Suppose that
A C (0, 1] x (0, 1] is a rectangle whose sides are NOT parallel to the axes.
Show that

A X A(A) = area of A.

Define (2, B;, ui), fori = 1,2 as follows: Let u; be Lebesgue measure
and u counting measure so that ;2(A) is the number of elements of A. Let

Q1 =(0,1), B; = Borel subsets of (0, 1),
Q2 =(0,1), B, = Allsubsets of (0, 1).

Define
1, ifx=y,
fexy) = IO, otherwise.
(a) Compute
/ [ f f(x, y)ua(dy)]u1(dx)
Q JQ
and

f [/ fx, y)ui(dx)]uz(dy).
QI

(b) Are the two integrals equal? Are the measures o -finite?

For a random variable X with distribution F, define the moment generating
function ¢ (1) by
$@) = E).

(a) Prove that
o) = f e F(dx).
R
Let
A={AeR:¢p(}) < o0}
and set

Ao = sup A.

(b) Prove for A in the interior of A that (1) > 0 and that ¢ (1) is contin-
uous on the interior of A. (This requires use of the dominated convergence
theorem.)

(c) Give an example where (i) Aooc € A and (ii) Ao ¢ A. (Something like
gamma distributions should suffice to yield the needed examples.)

Define the measure Fj by

elx
FA(I) = f mF(dX), A€EA.
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(d) If F has a density f, verify F has a density fi. What is f,? (Note that
the family { fi, A € A} is an exponential family of densities.)

(e) If F(I) = 0, show F)(I) = 0 as well for I a finite interval and A € A.

21. Suppose {px, k > 0} is a probability mass function on {0, 1, ...} and define
the generating function

o0
P(s)=) ms*, 0=s<1.
k=0
Prove using dominated convergence that
d o™ k-1
—P(s) = -
—P() =) piks‘™!, 0s<s<1,
k=1
that is, prove differentiation and summation can be interchanged.
22. (a) For X, a positive random variable, use Fubini’s theorem applied to
o-finite measures to prove
EWX) =/ P[X > t]dt.
[0,00)

(b) Check also that for any o > 0,

E(X%) = a/ x*"1P[X > x]dx.
[0,00)

(¢) If X > Ois arandom variable such that forsome § > 0and0 < 8 < 1
P[X > nd] < (const)B",

then E(X¥) < oo, fora > 0.

(d) If X > 0 is a random variable such that for some § > 0, E (X?) < oo,
then
lim x}P[X > x]=0.
X—>00

(e) Suppose X > 0 has a heavy-tailed distribution given by

const
>17.

PIX > x]= xlogx’

Show E (X) = oo but yet xP[X > x] —» O asx — o00.
() If E(X?) < 00, then for any n > 0

lim xP[|X| > nvx] = 0.
X—=>00
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23.

24
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Verify that the product o-algebra is the smallest o-algebra making the co-
ordinate mappings 71, 72 measurable.

Suppose X, X> are iid random variables with common N (0, 1) distribu-
tion. Define

X
YVp=7—"—.
5 X2
Use Fubini’s theorem to verify that
E(,) =0.

Note that as n — o0, ¥
1
Y, Y :i=—
! |X2|

and that the expectation of Y does not exist, so this is one case where ran-
dom variables converge but means do not.

In cases where expectations are not guaranteed to exist, the following is a
proposal for defining a central value. Suppose F(x) is a strictly increasing
and continuous distribution function. For example F could be the standard
normal distribution function. Define

g: R (-1,1)
by
§0) = 2(F () - 3).
For a random variable X, define ¢ : R — (-1, 1) by
() =E(g(X ~y)). ™)

The central value of X with respect to g, denoted y (X), is defined as the
solution of

¢(y)=0.

(a) Show ¢ (y) is a continuous function of y.
(b) Show

lim ¢(y) = -1,
y—>00
y—>-—00
(c) Show ¢(y) is non-increasing.
(d) Show y (X), the solution of

o(y)=0
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is unique.
Show y (X) has some of the properties of expectation, namely the follow-
ing.

(e) Foranyc e R
YX +c)=yX) +c.

(f) Now suppose g in (*)is g : R = (—7/2, w/2) defined by
g(x) := arctan(x),
so that g(—x) = —g(x). Show
Y(=X) = -y (X).

26. Suppose {X,, n > 1} is a sequence of (not necessarily independent) Bernoulli
random variables with

P[X,=1]= pp=1—- P[X, =0].

Show that }"%°; p, < oo implies Y pe; E(X») < 00 and therefore that
P[X, — 0] = 1. (Compare with Example 4.5.1 in Chapter 4.)

27. Rapid variation. A distribution tail 1 — F(x) is called rapidly varying if

im 1- F(tx) _Joo, if0<x <1,
t»0 1—F(@) |0, ifx>1.
Verify that if F is normal or gamma, then the distribution tail is rapidly
varying.

If X > 0is a random variable with distribution tail which is rapidly varying,
then X possesses all positive moments: for any m > 0 we have E(X™) <
00.

28. Let {X,,n > 1} be a sequence of random variables. Show

o0
E (\/ |X,,|) <00
n=1
iff there exists a random variable 0 <Y € L such that

P[IX,| <Y]=1, Vn>1.

29. Suppose X, is a sequence of random variables such that

1

P[X, = +n’] = PX, =0]=1-—.

2n?’
Show that using Borel-Cantelli that P[lim,— 00 X, = 0] = 1. Compute
nl_x’ngo E(X,).Is it 0? Is the Lebesgue Dominated Convergence Theorem ap-
plicable? Why or why not?
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30. Pratt’s lemma. The following variant of dominated convergence and Fatou

is useful: Let X,,,Y,, X,Y be random variables on the probability space
(2, B, P) such that
H0=Xp <Y,
i) X, —> X, Y, -7,
(iii) E(Yy) > E(Y), EY < 0.

Prove E(X,) — E(X). Show the Dominated Convergence Theorem fol-
lows.

31. If X is a random variable, call m a median of X if

1
EsP[sz], P[X <m]>

N =

(a) Show the median always exists.

(b) Is the median always unique?

(c) If I is a closed interval such that P[X € I] > 1/2,showm € I.
(d) When the variance exists, show

Im — E(X)| < v/2Var(X).

(e) If m is amedian of X € L1 show
E(X-m)<E(X—al), VaeR.
Thus the median minimizes L prediction.
() If X € L,, show that for u = E(X)
E (|X —u|2) <E (|X —a|2), Va e R.

Thus the mean minimizes L prediction.

(g) Suppose X1,X2,...,Xpn, Xpn+1 are L, random variables. Find the
best linear predictor X,+1 based on X1, ..., X, of X,,41; that is, find
the linear function ) ;_; «; X; such that

E ((iaiXi - Xn+1)2)

is minimized.

32. (a) Suppose X has possible values +1, +2 and that X assumed each of

these 4 values with equal probability 1/4. Define Y = X2. Despite this
functional relationship, show X and Y are uncorrelated; that is, show

Cov(X,Y) =0.



33.

34.

35.

36.

37.

38.

5.10 Exercises 165

(b) Suppose U, V have zero mean and the same variance. Check that X =
U+ VandY =U — V are uncorrelated.

(c) Toss two dice. Let X be the sum of the faces and Y be the difference.
Are X, Y independent? Are they uncorrelated?

Suppose X, Y are two L, random variables such that (X, Y) and (—X, Y)
have the same joint distributions. Show that X and Y are uncorrelated.

Suppose {X,,, n > 1} are iid with E(X},,) = 0, Var(X,) = 1. Compute
Cov(Sp, Sm), n<m,
where S, = X1+ -+ X,,.
Suppose X, Y € L.
(a) Show

E(Y)—E(X):/(P[X <x<Y]-P[Y <x <X]dx.
R

(b) The expected length of the random interval (X, Y] is the integral with
respect to x of P[x € (X, Y]], the probability the random interval
covers x.

Beppo Levi Theorem. Suppose for n > 1 that X,, € L, are random vari-
ables such that
sup E(X,) < o0.

n>1

Show that if X,, 4 X, then X € L and

E(X,) - E(X).

Mean Approximation Lemma. Suppose that X € L (2, B, P). For any
€ > 0, there exists an integrable simple random variable X, such that

E(X - X¢|) <e.

Hint: Consider X and X~ separately.
Furthermore, if A is a field such that 0 (4) = B, then X, can be taken to

be of the form )
Xe = ZCiIA,w
i=1

where A; € Afori =1, ..., k. Hint: Review Exercise 5 from Chapter 2.

Use the Fatou Lemma to show the following: If 0 < X, — X and
sup, E(X,) = K < oo, then E(X) < K and X € L;.
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39. A Poisson process {N(A,w), A € B(R?) on R? with mean measure uis
defined to have the following properties:

(a) w is ameasure such that if A is a bounded measurable set, u(A) < oc.

(b) For any set A € B(R?), the random variable N (A) is Poisson dis-
tributed with parameter ©(A):

—HA) AN .
P[N(A) =k] = AL if p(A) < oo,
0, if p(A) = o0.
(c) For Ay, Ay, ..., A disjoint regions, the counting random variables

N(Aj), ..., N(Ag) are independent.

Define for a point process the Laplace functional L as follows: L maps
non-negative measurable functions f : R [0, 00) into [0, c0) via the
formula

L(f) :=E (expl— fR fWN@OD
=/ exp{—/ f(X)N (dx, w)}P(dw).
Q R2

Show for the Poisson process above that
L(f) = e~ Jre(1-e7 /x|

Hint: Start with f an indicator function and remember how to compute
the generating function or Laplace transform of a Poisson random vari-
able. Then go from indicator variables to simple variables to general non-
negative f via monotone convergence.

40. (a) Suppose 7 is a N (i, o) random variable satisfying E (exp{n}) = 1.
Show u = —a2/2.

(b) Suppose (&, n) are jointly normal. If e and e are uncorrelated, then so
are £ and 7.
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Convergence Concepts

Much of classical probability theory and its applications to statistics concerns
limit theorems; that is, the asymptotic behavior of a sequence of random vari-
ables. The sequence could consist of sample averages, cumulative sums, extremes,
sample quantiles, sample correlations, and so on. Whereas probability theory dis-
cusses limit theorems, the theory of statistics is concerned with large sample prop-
erties of statistics, where a statistic is just a function of the sample.

There are several different notions of convergence and these are discussed next
in some detail.

6.1 Almost Sure Convergence

Suppose we are given a probability space (2, B, P). We say that a statement
about random elements holds almost surely (abbreviated a.s.) if there exists an
event N € B with P(N) = 0 such that the statement holds if € N€. Synonyms
for almost surely include almost everywhere (abbreviated a.e.), almost certainly
(abbreviated a.c.). Alternatively, we may say that the statement holds for a.a.
(almost all) w. The set N appearing in the definition is sometimes called the ex-
ception set.
Here are several examples of statements that hold a.s.:

e Let X, X’ be two random variables. Then X = X’ a.s. means

PX=X1=1

S.I. Resnick, 4 Probability Path, Modern Birkhduser Classics, 167
DOI 10.1007/978-0-8176-8409-9_6, © Springer Science+Business Media New York 2014
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that is, there exists an event N € B, such that P(N) = 0 and if w € N¢,
then X (w) = X' (w).

e X < X’ a.s. means there exists an event N € B, such that P(N) = 0 and if
w € N€ then
X(w) < X' (w).

e If {X,} is a sequence of random variables, then lim,_,oc X, exists a.s.
means there exists an event N € B, such that P(N) = 0 and if v € N¢
then

lim X,(w)
n—00

exists. It also means that for a.a. w,

lim sup X, (w) = lim inf X, (w).
n—00 n—>00

We will write lim, .00 X, = X as.or X, > X as.or X, 'd

o If {X,}is asequence of random variables, then ), X, converges a.s. means
there exists an event N € B, such that P(N) = 0, and w € N€ implies
Y Xn(w) converges.

Most probabilistic properties of random variables are invariant under the rela-
tion almost sure equality. For example, if X = X’ as.then X € L; iff X' € L,
and in this case E (X) = E(X’).

Here is an example of a sequence of random variables that converges a.s. but
does not converge everywhere. For this example, the exception set N is non-
empty.

Example 6.1.1 We suppose the probability space is the Lebesgue unit interval:
([0, 1], B([O, 1]), A) where A is Lebesgue measure. Define

n, ifo<s< %,

0, ifi<s<l

Xn(s) = {
We claim that for this example

Xp = Oas.

since if N = {0}, then s € N°¢ implies X, (s) — 0. It is not true for this example
that X,,(s) — 0 for all s € [0, 1], since X,(0) =n — oo. ]

Here is another elementary example of almost sure convergence. This one is
taken from extreme value theory.

Proposition 6.1.1 Let {X,} be iid random variables with common distribution
function F (x). Assume that F (x) < 1, for all x. Set
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Then
M, 1 o a.s.

Proof. Recall
P[M, <x] = P[X1<x,...,X,<x]

[1Px: <x]=F"x).
i=1

We must prove that there exists N € B, such that P(N) = 0 and, for w € N€, we
have that
lim M, (w) = o0;
n—oo

that is, for all j, there exists no(w, j) such that if n > ng(w, j), then My (w) > j.
Note

Y PIM, <jl=) F'(j)<oo
n n
since F(j) < 1. So the Borel-Cantelli Lemma implies

P([M, < jlio.) = P(limsup[M, < j) =0

and if
Nj =limsup[M, < j]

n—->oo

we have P(N;) = 0. Note
T .
Nj = liminf[M, > j],
so forw € N;?, we get M, (w) > j for all large n.
Let N =J; N so
P(N) <) PWN)) =0.
J

If o € N€¢, we have the property that for any j, M,(w) > j for all sufficiently
large n. o

6.2 Convergence in Probability

Suppose X,,n > 1 and X are random variables. Then {X,} converges in proba-
bility (i.p.) to X, written X, £x ,ifforany e > 0

lim P[|X, — X| > €] =0.
n—00

Almost sure convergence of {X,} demands that for a.a. w, X,(w) — X () gets
small and stays small. Convergence i.p. is weaker and merely requires that the
probability of the difference X, (w) — X (w) being non-trivial becomes small.

It is possible for a sequence to converge in probability but not almost surely.
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Example 6.2.1 Here is an example of a sequence which converges i.p. to 0 but
does not converge as. to 0. Let (2, B, P) = ([0, 1], B([0, 1]), A) where A is
Lebesgue measure and define {X,} as follows:

X1 =1po,1),
Xo=lpy Xs=ly,
Xa=lpy Xs=lggy Xe=lgy

and so on.
For any w € [0, 1], X, (@) # 0 since X,(w) = 1 for infinitely many values of

P
n. However X, — 0. m]

We next see that a.s. convergence implies convergence i.p. The previous Exam-
ple 6.2.1 showed the converse false in general.

Theorem 6.2.1 (Convergence a.s. implies convergence i.p.) Suppose that
{Xn,n > 1, X} are random variables on a probability space (2, B, P). If

X, —> X, as,
then
x, 5 x.

Proof. If X, — X a.s. then for any ¢,

0= P([|Xn — X| > €]i.0.)
= P(limsup[|X, — X| > €])
n—oo

= Jlim P(J[1Xn - X| > €]
n>N

> lim P[|X, — X]| > €].
> lim P[|Xn —X| > ] -
Remark. The definition of convergence i.p. and convergence a.s. can be read-
ily extended to random elements of metric spaces. If {X,,n > 1, X} are ran-
dom elements of a metric space S with metric d, then X, — X a.s. means that

d(X,, X) — 0as. and X, > X means d(X,, X) 5 0.

6.2.1 Statistical Terminology

In statistical estimation theory, almost sure and in probability convergence have
analogues as strong or weak consistency.

Given a family of probability models (2, B, Ps), 6 € ©). Suppose the statis-
tician gets to observe random variables Xy, ... , X, defined on 2 and based on
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these observations must decide which is the correct model; that is, which is the
correct value of 8. Statistical estimation means: select the correct model.

For example, suppose 2 = R*®, B = B(R®). Let » = (x1,x2,...) and
define X, (w) = x,. For each 6 € R, let Py be product measure on R*® which
makes {X,,n > 1} iid with common N (0, 1) distribution. Based on observing
X1, ..., Xy, one estimates 6 with an appropriate function of the observations

bp =6 (X1,. .., Xp).

é,, (X1,...,Xp) is called a statistic and is also an estimator. When one actually
does the experiment and observes,

X1=X1,... ’Xn-_—xm

then é(xl, ... ,Xn) is called the estimate. So the estimator is a random element
while the estimate is a number or maybe a vector if 6 is multidimensional.
In this example, the usual choice of estimator is 6, = Y ;_; X;/n. The estima-

tor 6, is weakly consistent if for all 6 € ©
P9[|é,, —0]>€]—>0, n—> o0
that is,
~ P
bn = 6.
This indicates that no matter what the true parameter 1s or to put it another way, no
matter what the true (but unknown) state of nature is, 6 does a good job estimating

the true parameter. 6, is strongly consistent if for all 6 € ©, §, > 6, Py-as.
This is obviously stronger than weak consistency.

6.3 Connections Between a.s. and i.p. Convergence

Here we discuss the basic relations between convergence in probability and almost
sure convergence. These relations have certain ramifications such as extension of
the dominated convergence principle to convergence in probability.

Theorem 6.3.1 (Relations between i.p. and a.s. convergence)  Suppose that
{Xn, X, n > 1} are real-valued random variables.

(a) Cauchy criterion: {X,} converges in probability iff {X,} is Cauchy in prob-
ability. Cauchy in probability means

P
Xn—X,—>0,asn,m— oc.

or more precisely, given any € > 0,8 > 0, there exists no = ng(€, 8) such
that for all r, s > ng we have

P[IX, — Xs| > €] < 8. (6.1)
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(b) X, £ x iff each subsequence {Xy,} contains a further subsequence
{Xni)} which converges almost surely to X.

Proof. (i) We first show that if X, £ X then {Xn} is Cauchy i.p. For any € > 0,
(%, - Xol > ] C[X, —X|> SJUIX =X > 5] (62)
To see this, take complements of both sides and it is clear that if
X, —X| < 5 and |X, — X < 3
then by the triangle inequality
IXr — Xs| <e.

Thus, taking probabilities and using subadditivity, we get from (6.2)

PIX, - X,| > €] < PlIX, = X| > 5]+ P[IXs - X| > 5]

If
PllXn —X|>¢€] <

N[ o

for n > ng(e, 8), then
Pl X, — Xs| >€] <8

forr,s > ny.

(ii) Next, we prove the following assertion: If {X},} is Cauchy i.p., then there ex-
ists a subsequence {Xp; } such that {X, ;} converges almost surely. Call the almost
sure limit X. Then it is also true that also

X, 5 x.
To prove the assertion, define a sequence n by n; = 1 and
nj=inf(N > nj_y: P[|X, — X;| >277] <27/ forallr,s > N}).

(In the definition (6.1) of what it means for a sequence to be Cauchy i.p., we let
€ = § = 27/.) Note, by construction n; > n;_; so that nj — 00. Consequently,
we have

P[|Xp;,, — Xnjl > 277] <27,

and thus

o0
Y P[1Xnj,, — Xnjl > 277] < 0.
j=1



6.3 Connections Between a.s. and i.p. Convergence 173

The Borel-Cantelli Lemma implies

P(N) := P{limsup[|X;,, — Xn;| > 27/} =0.
J—=00
For w € N¥€,
| Xn 1 (@) — X, (@)] <27 (6.3)

for all large j and thus {X, j(w)} is a Cauchy sequence of real numbers. The
Cauchy property follows since (6.3) implies for large / that

> X @) = Xny@) < )27 =227,

j=l j=l
and therefore for any k > [ large, we get

X (@) = Xy (@)] <D | X (@) — X ()] <227,
izl

Completeness of the real line implies

lim X, (w)

]J—>00
exists; that is

w € N implies lim X, () exists.
J]—=>00
This means that {X,;} converges a.s. and we call the limit X.
To show X, £ X note
€ €
P[|Xp — X| > €] < P[|Xn — Xp;| > 71+ PliXn; — X| > ik

Given any 7, pick n; and n so large that the Cauchy i.p. property guarantees
€ n
P[|Xn — Xn;| > -2-] <3
Since X, %3 X implies X,,, > X,
€. 1
Pl Xn, —X|>=]1< =
[l nj | > 2] < 2

for large n ;. This finishes the proof of part (a).
We now focus on the proof of (b): Suppose X, £ X.Pick any subsequence

. P . .
{Xn,}. Then it is also true that X,,, — X. From (ii) above, there exists a further
subsequence {Xp,, } converging a.s.
Conversely: Suppose every subsequence has a further subsequence converging

alomst surely to X. To show X, Ex , we suppose this fails and get a contradic-
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tion. If {X,} fails to converge in probability, there exists a subsequence {X,, } and
ad > 0and € > O such that

P[|Xn, — X| > €] > 8.

But every subsequence, such as {X},} is assumed to have a further subsequence
{Xni,} which converges a.s. and hence i.p. But

P[|Xp, — X > €] 28

contradicts convergence i.p. o

This result relates convergence in probability to point wise convergence and
thus allows easy connections to continuous maps.

Corollary 6.3.1 (i) If X, => X and
g:R—»R
is continuous, then
.S.
g(Xn) = g(X).

(i) If X, 5> X and
g:R—»R

is continuous, then
P
g(Xpn) = g(X).

Thus, taking a continuous function of a sequence of random variables which con-
verges either almost surely or in probability, preserves the convergence.

Proof. (i) There exists a null event N € B with P(N) = 0, such that if w € N°,
then
Xn(w) = X(w)

in R, and hence by continuity, if w € N€, then
8(Xn(w)) - 8(X ().

This is almost sure convergence of {g(X,)}.
(ii) Let {g(X 5, )} be some subsequence of {g(X,)}. It suffices to find an a.s. con-
vergence subsequence {g(Xp,,)}. But we know {Xn,} has some a.s. convergent

subsequence {X,, } such that X, ;) — X almost surely. Thus g(Xp,;,) ey gX)
which finishes the proof. o

. P ..
Thus we see that if X,, — X, it is also true that

P P
Xﬁ = X2, and arctan X, —> arctan X
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and so on.

Now for the promised connection with Dominated Convergence: The statement
of the Dominated Convergence Theorem holds without change when almost sure
convergence is replaced by convergence i.p.

Corollary 6.3.2 (Lebesgue Dominated Convergence) If X, L X and if there
exists a dominating random variable & € L such that

anl s Ev
then
EX,) - EX).

Proof. It suffices to show every convergent subsequence of E (X,) converges to
E(X).
Suppose E(X,,) converges. Then since convergence in probability is assumed,

{Xn,} contains an a.s. convergent subsequence {Xp,,, } such that X, ., 23 X. The
Lebesgue Dominated Convergence Theorem implies

E(Xny;)) = EX).
So E(Xp,) = E(X). 0O

We now list several easy results related to convergence in probability.
(1) X, 5 X and ¥, 5 Y then
Xo+Yn > X+Y.
To see this, just note
(@ +Y¥n) = X + 1) > €] C [IXa = X > SJU[Ya = Y] > 5],

Take probabilities, use subadditivity and let n — o0.

(2) A multiplicative counterpart to (1): If X, £ X and Y, £ Y, then
XY, 5 xv.

To see this, observe that given a subsequence {n}, it suffices to find a fur-
ther subsequence {nk )} C {nk} such that

X 3 xy.

Rk(i)

Y"k(i)

. P .
Since X, — X, there exists a subsequence {n; } C {n} such that

X

a.s.
n' e d X
k
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. P . .
Since Y, — Y, given the subsequence {n;c}, there exists a further subse-
quence {n;c(i)} C {n;} such that

as. a.s.
Xy, =X, Yy =5Y
ki) ki)

and hence, since the product of two convergent sequences is convergent, we
have

a.s.

- XY.

’ ’
Mkiiy ™ Mkdi

Thus every subsequence of {X,Y,} has an a.s. convergent subsequence.

(3) This item is a reminder that Chebychev’s inequality implies the Weak Law
of Large Numbers (WLLN): If (X,,n > 1} are iid with EX, = u and
Var(X,) = o2, then

n
Y Xi/n 5 p.
i=1

(4) Bernstein’s version of the Weierstrass Approximation Theorem. Let f :
[0, 1] — R be continuous and define the Bernstein polynomial of degree n
by

Ba(¥) = f(f)(")x"u -x)"*, 0<x<1.
prer S k

Then
Bn(x) = f(x)

uniformly for x € [0, 1]. The proof of pointwise convergence is easy using
the WLLN: Let 81, 83, ... , 8, be iid Bernoulli random variables with

P[5 =1]=x=1- P[5 =0].

Define S, = Y ;_ 8 so that S, has a binomial distribution with success
probability p = x and

E(Sy) =nx, Var(Sy)=nx(1-x)<n.
Since f is continuous on [0, 1], f is bounded. Thus, since

Sn P
_
n

)

from the WLLN, we get
Sn. P
f(;") - f@x)

by continuity of f and by dominated convergence, we get

Sn
Ef(=5) = f&).
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But
Suy N K (M kg — eynk —
Ef(n)—kz=0 f(n)(k>x (1 =x)""" = Bp(x).

We now show convergence is uniform. Since f is continuous on [0, 1], f
is uniformly continuous, so define the modulus of continuity as

w@) = sup |[fx)— fOI

lx—y|<8
0<x,y<1

and uniform continuity means
li 8)=0.
b w(8)
Define
I fll =sup{l fG)|: 0 <x < 1}.

Now we write

Sn
sup |Bn(x) — f(x)| = sup IE(f(7)) - f(x)

0<x<1

Sn
< supE(lf(Tl‘) - f))
Sn
< sgp[E(lf(;) - f(x)|1[|§"ﬂ-—x|5€])
Sn
+ sng(If(;-) - f(x)|1[|§,fl—x|>€])]

Sn
<w(e)P[ ]+2||f||SI;PP[I—n~ —x| > €]

Var(3z)
<w(€) + 2| f|lsup 62” ( by Chebychev )
X

211fI  nx(1—x)
<
<w(e) + 2 sup >

_ 2Ifll1 1
=)+ € 4 n

where we have used )

sup x(1—x)=-.
0<x=<1 4

So we conclude

sup [Ba(®) — £ ()] = w(€) + (const) - %

0<x<1
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and therefore

limsup sup |Bn(x) — f(x)| < w(e).

n—o00 0<x<1

Since w(e) — 0 as € — 0, the proof is complete. m]

6.4 Quantile Estimation

A significant statistical application of convergence in probability is to quantile
estimation.

Let F be a distribution function. For 0 < p < 1, the pth order quantile of
F is F<(p). If F is unknown, we may wish to estimate a quantile. Statistical
tests, reliability standards, insurance premia, dam construction are all based on
estimated quantiles. How can one estimate F < (p) based on a random sample?

One non-parametric method uses order statistics. Let X1, ... , X, be a random
sample from F; thatis, X1, ... , X,, are iid with common distribution function F.
The order statistics of the sample are

(n) (n) (n)
xP<xP << xO,

so that X i") is the minimum of the sample and X ,(,”) is the maximum. Define the
empirical cumulative distribution function (cdf) by

1.
Fp(x) = ;l- Zl[stx]
1

which is the percentage of the sample whose value is no greater than x. Note that
if we think of success at the jth trial as the random variable X ; having a value
< x, then

nF,(x) = # successes in n trials

is a binomial random variable with success probability F(x). So
E(nFy(x)) =nF(x), Var(nFy(x))=nF(x)(1- F(x))

and the WLLN implies
Fa(x) 5> F(x)

for each x. In fact, much more is true as we will see when we study the Glivenko-
Cantelli Lemma in the next chapter.
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Thus, F, approximates or estimates F and we hope F,~ estimates F . But

since F, only jumps at the order statistics, we have
F,"(p) =inf{y : Fa(y) = p}
=inf(X}" : Fa(X]") 2 p)
=inf{Xj-") : i > p} ( since F,,(X(.")) = i)
n J n

=inf{Xj.") : j > np}

(n)

where [np] is the first integer > np. We will try X [np

1 as the quantile estimator.

Theorem 6.4.1 Suppose F is strictly increasing at F < (p) which means that for

alle >0
F(F (p)+€)>p, F(F“(p)—¢€)<p.

Then we have X mﬂ is a weakly consistent quantile estimator,

P

x™ 2 Fe(p).

[np]

Proof. We begin with a reminder that
XP <yiffnFy(y) > a.
We must prove for all € > 0,

PX{), = F(p)| > €] > 0,

which is equivalent to showing that for all € > 0,

PIX{), > F<(p)+€] -0,

PIX{), < F<(p) - €] > 0.
From (6.5), this in turn is equivalent to showing that for all € > 0:
1- P[X{; < F<(p) + €] = 1= P[rFy(F(p) +¢€) > [np]]
= P[nF,(F"(p) +¢€) < [np]] >0

and

P[nFy(F(p) —€) = [np]] - 0.

(6.4)

(6.5)

(6.6)

6.7)
(6.8)

(6.9)

(6.10)
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For (6.10) we have
PIF(F=(p) — ) 2 "2
= P[Fy(F“(p)—€)—F(F (p)—¢€) > I'nn_p"l — F(F*(p) —e)],

(6.11)

where we centered the random variable on the left to have zero mean. Now
[5P] _, p and by the WLLN

« « P
Fy(FT(p)—€)—F(F (p)—€) > 0.
Also by (6.4), there exists § > 0 such that
§:=p—-F(F“(p)—e¢)>0.

For all large n,

r"n—‘” _FF () -€ > —2— > 0.

So the probability in (6.11) is bounded above by
- - 8
Pl|[Fa(FT(p)—€) - F(F"(p)— o) = 5] - 0.

Similarly, we can show the convergence in (6.9). o

6.5 L, Convergence

In this section we examine a form of convergence and a notion of distance that is
widely used in statistics and time series analysis. It is based on the L , metric.

Recall the notation X € L , which means E (| X|P) < oc. For random variables
X,Y € L, we define the L , metric for p > 1 by

dX,Y) = (E|X - Y|P)V/>,

This indeed defines a metric but proving this is not completely trivial. (The trian-
gle inequality is the Minkowski Inequality.) This metric is norm induced because

IXlp := (E|X|P)/P

is a norm on the space L p.
A sequence {X,} of random variables converges in L  to X, written

L
X, 3 X,
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if
E(X,-XP)—>0

asn — 00.

The most important case is when p = 2, in which case L is a Hilbert space
with the inner product of X, Y defined by the covariance of X, Y. Here are two
simple examples which use the L, metric.

1. Define {X,} to be a (2nd order, weakly, covariance) stationary process if
E X, =: m independent of n and

Corr(Xpn, Xn+k) = p(k)

for all n. No distributional structure is specified. The best linear predictor

of X4+ based on Xj,..., X, is the linear combination of X4,...,X,
Wthh achleves minimum mean square error (MSE). Call this predictor
Xn+1. Then X,,+1 is of the form X,,+1 YleiX; and a1, ... ,ay are

chosen so that

n
EXpt1 = Xn41)? = min E(Y i Xi — Xp41)?
Q... 0p =1

2. Suppose {X,} is an iid sequence of random variables with E(X,) = u and
Var(X,) = o2. Then

n
X = ZX,'/" i% M,
1
since
S 1
E(= — )’ = —E(Sy —np)’
n n

—2Var(S,,)
2

Here are some basic facts about L , convergence.

L
(i) L p convergence implies convergence in probability: For p > 0, if X, <X
then X,, 5 X.
This follows readily from Chebychev’s inequality,

—XIP
P[|X, —X|>€] < 5‘-“’% - 0. (6.12)
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(if) Convergence in probability does not imply L , convergence. What can go
wrong is that the nth function in the sequence can be huge on a very small
set.

Here is a simple example. Let the probability space be ([0, 1], B([0, 1]), A)
where A is Lebesgue measure and set

Xp=2"14 1,
Then ) )
P[IX4] > €] = P((o, ;)) == >0
but

E(Xal?) =272 — .

(iii) L p convergence does not imply almost sure convergence as shown by the
following simple example. Consider the functions {X,} defined on ([0, 1],
B([0, 1]), A) where A is Lebesgue measure.

Xi=Toy X2=ly
X3=1
Xs=1

0.3
ERIL
and so on. Note that for any p > 0,

1 1

E(X3/P) =3,... ,E(1Xs|P) =

- N

w
N

So E(|X,|P) > 0 and
L
X, 0.

Observe that {X,} does not converge almost surely to 0. O

Deeper and more useful connections between modes of convergence depend on
the notion of uniform integrability (ui) which is discussed next.

6.5.1 Uniform Integrability

Uniform integrability is a property of a family of random variables which says
that the first absolute moments are uniformly bounded and the distribution tails
of the random variables in the family converge to 0 at a uniform rate. We give the
formal definition.
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Definition. A family {X,,t € T} of L1 random variables indexed by T is uni-
formly integrable (abbreviated ui) if

supE ([X,llnx,|>a]) = sup |X¢|dP — 0
teT teT J[|X;|>a]

as a — o0; that is,

/ |X¢|dP - 0
[1X;|>a]

asa — 0o, uniformlyint € T.
We next give some simple criteria for various families to be uniformly inte-
grable.

(1) If T = {1} consists of one element, then

/ |X1|dP — 0
[1X1|>a]

as a consequence of X € L1 and Exercise 6 of Chapter S.

(2) Dominated families. If there exists a dominating random variable Y € L1,
such that
|X:l <Y

for all¢ € T, then {X,} is ui. To see this we merely need to observe that

supf X,dP < f Y] >0, a— oo
teT J[|X;|>a] [IY|>a]

(3) Finite families. Suppose X; € L1, fori =1, ..., n. Then the finite family
{X1,X2,..., Xy} is ui. This follows quickly from the finite family being
dominated by an integrable random variable,

1Xi| < Xn:lle €L
i=1
and then applying (2).
(4) More domination. Suppose foreach ¢ € T that X; € L1 and Y; € L and
1X:| < |2l

Then if {Y;} is ui so is {X,} ui.

This is an easy consequence of the definition.
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(5) Crystal Ball Condition. For p > 0, the family {| X, |P} is ui, if

sup E (1X,|P?) < o0, (6.13)
n

for some & > 0.

For example, suppose {X,} is a sequence of random variables satisfying
E(X,) =0, and Var(X,,) = 1 for all n. Then {X,} is ui.

To verify sufficiency of the crystal ball condition, write

sup/ | Xn|PdP = sup/ | Xn|P - 1dP
n J(1XalP>a] n J[451>1)

= su |Xn|P-1dP
2 g™

| X |°
< Xn|P dpP
-— S';:p/l nl aa/p

<a~¥PsupE (|X,|P*?)
n

-0,

asa — o0. m]

We now characterize uniform integrability in terms of uniform absolute conti-
nuity and uniform boundedness of the first absolute moments.

Theorem 6.5.1 Let {X;,t € T} be L1 random variables. This family is ui iff

(A) Uniform absolute continuity: For all € > 0, there exists § = &(€), such that

VAeB: sup [ |X;dP <e€if P(A) <&,
teT JA

and
(B) Uniform bounded first absolute moments:

sup E (|X;]) < oo.

teT

Proof. Suppose {X,} is ui. Forany X € Ly anda > 0

/ |X|dP f |X|dP+/ |X|dP
A A[lX|=<a] AllX|>a]

aP(A) +/ |X|dP.
[1X]>a]

IA
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So

sup | |X(|dP <aP(A) +supf | X:|dP.
teT JA teT J|X;|>a

Insert A = 2 and we get (B). To get (A) pick “a” so large that

sup / IX,1dP < <.
teT J[1X,|>a] 2
If
€/2
P(A) < — =§,
a
then
€ €
su |XdP < =+ = =¢€
a1 =27 )
which is (A).

Conversely: Suppose (A) and (B) hold. Chebychev’s inequality implies

sup P[|X;| > a] < sup E(|X;|)/a = const/a
teT teT

from (B). Now we apply (A): Given € > 0, there exists £ such that whenever
P(A) < &, we have

f | X:|dP < €
A

for all ¢ € T. Pick “a” large enough so that P[|X;| > a] < &, for all ¢. Then for
all ¢ we get

/ |X¢|dP < €,
[1X|>a]

which is the ui property. O

Example 6.5.1 Let {X,} be a sequence of random variables with
P[X, =0]=p,P[Xp =n]=q, p+q=1
Find a value of p = p, so that
1=EX,)=0-p+ng

and thus

Since X, > 0,
supE(|1Xn]) =1

n>1
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but the family in not ui since

f X ap = b das=n
[|Xn|>a] 0, ifa>n.
This entails

sup/ | Xp|dP = 1.
n>1J[|Xn|>a] O

6.5.2 Interlude: A Review of Inequalities

We pause in our discussion of L , convergence and uniform integrability to discuss
some standard moment inequalities. We take these up in turn.

1. Schwartz Inequality: Suppose we have two random variables X,Y € L.

Then
|E(XY)| < E(IXY|) < VE(X?)E(Y?).

To prove this, note for any ¢ € R that

0 E(X —tY)? = E(X?) - 2#E(XY) +t?E(Y?) (6.14)

= :q@)

1A

and that g(-) is differentiable
q'(t) = =2E(XY) + 2tE(Y?).
Set ¢’ (¢) = 0 and solve to get
t = E(XY)/EY?.

Substitute this value of ¢ into (6.14) which yields

2, EXY) EXV\?
0<E(X?) 2E(Y2)E(XY)+<————E(Y2)) E?.

Multiply through by E (Y?). mi

A minor modification of this procedure shows when equality holds. This is
discussed in Problem 9 of Section 6.7

2. Holder’s inequality: Suppose p, g satisfy

1 1
p>1,4q>1 —+—-=1
p 9

and that
E(IX|P) <00, E(|Y|?) < 0.
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Then
|E(XY)| < E(IXY]) < (E|X|P)Y/P(E|Y|9)!/4,

In terms of norms this says
XYy < 1X1p 1Y llg-

Note Schwartz’s inequality is the special case p = g = 2.

The proof of Holder’s inequality is a convexity argument. First note that
if E(JX|P) = 0, then X = Oa.s.. Thus, E(JXY|) = 0 and the asserted
inequality holds. Similarly if E(|Y|?) = 0. So suppose the right side of
Haolder’s inequality is strictly positive. (This will allow us at the end of the
proof to divide by [ XI5 |Yll4.)

Observe fora > 0, b > 0 there exist s, t € R such that
a=exp{p~ls}), b=explg ). (6.15)

-1

Since exp{x} is convex on R and p~! + g~! = 1, we have by convexity

exp{p s +q 71t} < p~lexpls) +q !

expft},
or from the definition of s, ¢
ab < p~la? + ¢ 1p9.

Now replace a by |X|/||X||, and b by |Y|/|Y |4 to get

XYl _ _1( 1X| )” _1( Y )q
IX1p1Y llq X1 p 1Y llq

and so, after taking expectations, we get

EQXYD _ ooy

IX1pIYllg .

. Minkowski Inequality: For1 < p < 0o, assume X,Y € L,. ThenX+Y €
Lpand
IX+Ylp < 1Xlp + 1Y 1lp.

To see why L, is closed under addition, note

X +YI1P <20XIP vIYIP) <2(XIP + |Y|P) € L.

If p = 1, Minkowski’s inequality is obvious from the ordinary triangle
inequality. So assume 1 < p < 00 and choose g conjugate to p so that
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p~14+4¢7! =1and thus p — 1 = p/q. Now we apply Hélder’s inequality.
We have
[1X + Yllﬁ =E(X+YP)=E(X+Y|IX+ Ylp/")

<E (IXII1X +YIP/4) + E (|Y||X +Y|P/9)

and applying Holder’s inequality, we get the bound
<UXIpIIX + Y P4l + 1Y IpllIX + Y|P/,
=(IXllp + 1Y) IX + Y|P,

-1

=(1X1lp, + 1Y 1lp) (E1X +Y|P)?
=(IXllp + 1Y Ip)IX + Y5/
=(IX 1l + IV I )1X + Y157

Assuming the last factor is non-zero, we may divide through to get the
result. If the last factor equals zero, both sides of the inequality are zero. O

4. Jensen’s inequality: Suppose u : R — R is convex and E (|X|) < oo and
E (Ju(X)]) < oc. Then

Eu(X)) = u(E(X)).
This is more general than the variance inequality Var(X) > 0 implying
E(X?) > (EX)? which is the special case of Jensen’s inequality for u(x) =
2
x4,
If u is concave, the inequality reverses.

For the proof of Jensen’s inequality, note that ¥ convex means for each
& € R, there exists a supporting line L through (&, u(£¢)) such that graph of
u is above the line. So

u(x) > line L thru (&, u(&))
and therefore, parameterizing the line, we have
ux) =z u@)+irx-¥§)
where A is the slope of L. Let § = E(X). Then for all x
ux) = u(E(X)) + A(x — E(X)).

(Note A depends on § = E(X) but does not depend on x.) Now let x = X
and we get

u(X) = u(EX)) + AM(X - E(X)).
Taking expectations

Eu(X) > u(E(X)) + AE(X — EX) = u(E(X)). m]
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Example 6.5.2 (An application of Holder’s Inequality) Let0 < o < B and set

™

Then

i~
|
R

N =
+

Q|-
Il

B
=—==1.
B

™| R
™

Set
Z=|X" Y=1.

With these definitions, we have by Holder’s inequality that

E(ZY)) < (E1ZNY(EIY )5

that is,
E(X|®) < (EIXI™)YV1 = (E|X|P)*/#,
so that
(E|X|MV* < (E|X|P)VE,
and

IXlle < 11X1Ig-

We conclude that X € L g implies X € L, provided @ < $. Furthermore
X1l = (E1X|)*

is non-decreasing in ¢.

Also if
L
X, 3x
and p’ < p, then
Lpr
X,—> X

6.6 More on L, Convergence

This section utilizes the definitions and basic properties of L , convergence, uni-
form integrability and the inequalities discussed in the previous section. We begin
with some relatively easy implications of L, convergence. We work up to an
answer to the question: If random variables converge, when do their moments
converge?

Assume the random variables {X, X,,, n > 1} are all defined on (2, BB, P).
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1. A form of Scheffé’s lemma: We have the following equivalence for L con-
vergence: As n — 00
X, 5 x
iff

sup | | X,dP — / XdP|— 0. (6.16)
AeB JA A

Note that if we replace A by 2 in (6.16) that we get
|E(Xn) —E(X)| <E|X, — X[ —>0

so that first moments converge. This, of course, also follows by the modulus
inequality.

To verify (6.16), suppose first that X, 4x. Then we have
supl/X,,dP—/XdPI
A Ja A
= supl/(X,, - X)dP|
A Ja
< sup/ |X, — X|dP
A Ja

< le,, — X|dP
=E(X, — X]) > 0.

For the converse, suppose (6.16) holds. Then

EIX,,—XI:[ (X,,—X)dP-'l-/ X -X,)dP
[Xn>X] [Xn<X]

o o)
[Xn>X] [Xn>X]
(o ™)
[Xn<X] [Xn<X]
525up|fX,,—fX|.
A JA A

L
X, 3 X
then
E(X41P) - E(1X|P)
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or equivalently
IXnllp = 1X1p.

For this verification, write
X=Xp+X-X,

and Minkowski’s inequality implies

IXllp < IXnllp + 11X — Xnllp. (6.17)
Interchange the roles of X, and X in (6.17) to get

1 Xnllp < IXllp + 11X — Xnllp. (6.18)
So combining (6.17)and (6.18) we get

I Xallp = 1Xllpl < IX — Xnllp > O, (6.19)

as was to be proved. a

Towards a resolution of the problem of when moments of a sequence of random
variables converge, we present the following result which deals with the case

p=1

Theorem 6.6.1 Suppose for n > 1 that X,, € L. The following statements are
equivalent:

(a) {X,}is Ly-convergent.
(b) {X,}is Ly-cauchy; that is,
E|\Xp, — Xm| — 0,
asn,m — oo.
(c¢) {Xpn} is uniformly integrable and {X,} converges in probability.
Soif X, =5 X or X, n £ X and {X,} is ui, then the first moments converge:
|E(Xn) — E(X)| < E(|X» — X|) = 0.

Later, we will see that convergence i.p. of {X,} can be replaced by convergence
in distribution to X.

Proof. (a)—(b): L, convergence implies Cauchy convergence because of the tri-
angle inequality.

(b)—(c): Given (b) we first show that {X,} is ui. Given € > 0, there exists N
such that if m, n > N, then

/ | Xy — Xpn|dP < €/2. (6.20)
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To show {X} is ui, we use Theorem 6.5.1. For any A € B
[ ok < [ 10 = X+ X1
A A
< f IXNeldP+/|X,, - Xn_|dP.
A

For any n > N,

le,,ldPs/ | Xn |dP +€/2;
A A
that is,

sup f X |dP < f IXN,|dP + €/2.
A A

n>Ne

and thus

sup/ |Xn|dP < sup / |Xm|dP + €/2.
n JA A

m<N¢
If A = Q, we conclude

S E(IXal) < sup E(|Xpml) +€/2 < 00,
n

m<N,

Furthermore, since finite families of L1 rv’s are ui, {X,,, m < N¢} is ui and given
€ > 0, there exists § > 0 such that if P(A) < §, then

sup | Xm|dP < €/2
m<N¢JA

so we may conclude that whenever P(A) < 4,
sup/ |Xnl <€/2+€/2=¢€.
n Ja

Hence {X,} is ui.
To finish the proof that (b) implies (c), we need to check that {X,} converges
in probability. But
P[|Xp — Xm| > €] <E(|Xp — Xml|)/e > 0

so {X,} is Cauchy i.p. and hence convergent in probability.
(©)—(a): If X, Ex , then there exists a subsequence {n} such that

a.s.
Xn, = X,
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and so by Fatou’s lemma

E(X)) = E(liminf | X, |) < liminf E(1X,,|) < sup E(|X,]) < 00
ng— 00 ng—00 "

since {X,} isui. So X € L;. Also, forany e > 0

fIX,,—XIdPsf |X,,——X|dP+/ | Xn|dP
(1Xn—X|<e€] (1Xn—X|>€]

+ f |X|dP
[1Xn—X|>€]

<e+A+B.

Since X, f» X,
P[| X, —X|>€]—>0
and hence B — 0 as n — 0o by Exercise 6 of Chapter 5.

To verify A — 0, note that since {X,} is ui, given € > 0, there exists § > 0
such that

sup[ | Xk|dP < €
k>1JA

if P(A) < é. Choose n so large that
Pl X, —X|>¢€]<$
and then A < €. ]

Example. Suppose X7 and X are iid N (0, 1) random variables and define Y =
X1/|X3|. The variable Y has a Cauchy distribution with density

1
= —, eR.
fo <ty
Define
X
n= 1 .
.+ 1X2|
Then
Y, »>Y

but {Y,} is NOT ui, since E(Y,) = 0 but E(|Y|) = oc. If {Y,} were ui, then by
Theorem 6.6.1 we would have

E(Yn) = E(Y)

but the expectation of Y does not exist.
We give more detail about why E (Y,) = 0. Let F; = F; be standard normal
distributions. Then

X
E(Yy) =f/ ———F) x Fa(dx1, dxp).
R2 n~1 4+ |xg|
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Note that the integrand is in L1 (F; x F3) since
Il

Thus, from Fubini’s theorem

1
E(Xn)=/ _1—[/ xlFl(dxl)] Fa(dxz) =0,
R77 4 |x2| LR

since the inner integral is zero. O

Fi x F(dxy, dx2) Sn/fRz |x1|F1 x Fa(dx1, dx2)
=nE(|X1]).

X1
n~1+ x|

We give the extension of Theorem 6.6.1 to higher moments.
Theorem 6.6.2 Suppose p > 1and X, € L p. The following are equivalent.
(a) {Xn}isLp convergent.
(b) {Xn} is L p-cauchy; that is
1 Xn — Xmllp = O,
asn,m — oo.
(¢) {|Xn|P} is uniformly integrable and {X,} is convergent in probability.

Note that this Theorem states that L , is a complete metric space; that is, every
Cauchy sequence has a limit.

Proof. The proof is similar to that of Theorem 6.6.1 and is given briefly.
(a)— (b): Minkowski’s inequality means || X || , is a norm satisfying the triangle
inequality so
IXn — Xmllp < 1 Xn —Xllp + |1 X = Xmllp > 0
asn,m — 00.
(b)—(c): If {X,} is L, Cauchy, then it is Cauchy in probability (see (6.12))

so there exists X such that X, £ X. To show uniform integrability we verify
the conditions of Theorem 6.5.1. Note by (6.19) (with X,, replacing X), we have
{lXnllp, n = 1} is a Cauchy sequence of real numbers and hence convergent. So
sup,, || Xallp < oo. This also implies that X, the limit in probability of X, is in
L p by Fatou. To finish, note we have

[ abpap < [ 1Ko = X+ XnloaP
A A
and applying the 27 inequality of Exercise 3 we get the bound
52”/ | Xy — Xm|PdP + 2"/ | Xm|PdP
A A

<27 Xy — XnllZ+2° / XnlPdP.
A
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Given € > 0, there exists mq such that n > mg implies
f X, |PdP < S 4 2P / | Xmo|PdP.
A 2 A

Since Xp,, € L p, we have 27 fA |Xmo|PdP — 0as P(A) — 0 (see Exercise 6 of
Chapter 5). The uniform integrability follows.
(c)—(a): As in Theorem 6.6.1, since {X,} is convergent in probability, there

exists X such that along some subsequence X, 23 X. Since {IXn|P} is ui
o0
E(1X|P) < liminf E(\Xn[P) < \/ E(1X,|P) < o0,
k—00 n=1

so X € Lp. One may now finish the proof in a manner wholly analogous to the
proof of Theorem 6.6.1. O

6.7 Exercises

1. (a) Let {X,;} be a monotone sequence of random variables. If

X,—> X

then

as

X, > X.

(Think subsequences.)

(b) Let {X,,} be any sequence of random variables. Show that
X, 3 X
iff

sup | Xx — X| 5 0.

k>n

(c) Points are chosen at random on the circumference of the unit circle. Y,
is the arc length of the largest arc not containing any points when n points
are chosen. Show Y, — O as.

(d) Let {X,,} be iid with common distribution F (x) which satisfies F (xg) =
1, F(x) < 1forx < xo with xg < 00. Prove

max{X1,...,Xn} 1 x0

almost surely.
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10.

11.

6. Convergence Concepts

. Let {X,} be iid, EX, = p, Var(X,) = 62. Set X = ", X;/n. Show

1 _
- 3 i - X L

i=1

. Suppose X > 0 and Y > 0 are random variables and that p > 0.

(a) Prove
E((X +Y)P) <2P (E(XP) + E(YP)).

(b) If p > 1, the factor 27 may be replaced by 271,
(c) If 0 < p < 1, the factor 27 may be replaced by 1.

. Let {Xn,n > 1} be iid, EX, = 0, EX? = 02. Leta, € R forn > 1. Set

Sn = Y1 aiX;. Prove {S,} is La-convergent iff Y {2, a? < 00.

. Suppose {X,} is iid. Show {n71S,,n > 1} is ui provided X; € L.

. Let{X,}beuiandlet X € L. Show {X,, — X} is ui.

. Let X, be N(0, 5%). When is {X,} ui?

. Suppose {X,} and {Y,} are two families of ui random variables defined on

the same probability space. Is {X,, + Y, } ui?

. When is there equality in the Schwartz Inequality? (Examine the derivation

of the Schwartz Inequality.)

Suppose {X,} is a sequence for which there exists an increasing function
f : [0, 00) > [0, 0o) such that f(x)/x — 0o as x — oo and

sup E (f(I1Xn])) < oo.

n>1
Show {X,} is ui.
Specialize to the case where f(x) = x? for p > 1 or f(x) = x(logx)™.
Suppose {X,, n > 1} are iid and non-negative and define M, = v;’le i
(a) Check that
P[M, > x] <nP[X; > x].

(b) If E(XP) < 0o, then M, /n1/P 5 0,
(c) If in addition to being iid, the sequence {X,} is non-negative, show
My/n f» 0iff nP[X1 > n] - 0,as n - oo.
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(d) Review the definition of rapid variation in Exercise 27 of Chapter 5.
Prove there exists a sequence b(n) — oo such that

Mo/b(n) 51, n— oo,

iff 1 — F(x) := P[X; > x] is rapidly varying at oco. In this case, we

may take
1 \©
b(m) = (ﬁ) ()

tobe the 1 — % quantile of F.

(e) Now suppose {X,} is an arbitrary sequence of non-negative random
variables. Show that

n
E(Mylim,260) < ) E(Xilix,»s).
k=1

If in addition, {X,} is ui, show E(M,)/n — 0.

12. Let {X,} be a sequence of random variables.

(a) If X, f» 0, then forany p > 0

[ XplP P
1 6.21
T+ 1X,7 621
and
[XnlP )
(22 ) Lo, 2
(1+|x,.|v ~ (6.22)

(b) If for some p > 0 (6.21) holds, then X, —P> 0.
() Suppose p > 0. Show X, - 0 iff (6.22).

13. Suppose {X,, n > 1} are identically distributed with finite variance. Show
that
nP(|X1| > es/n] > 0

and "X
Xl P
i=1 1
——— > 0.
N
14. Suppose { X} are independent with
PIXe =K = = P[Xg=—1]=1--
[Xk = ]_Ei Xk =-1]= -

Show }_i_; X; & —oo almost surely as n — oco.
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15.

16.

17.

18.

19.

20.

21.

22.

6. Convergence Concepts

Suppose X, > 0 forn > 0 and X, f» Xo and also E(X,) > E(Xj).
Show X, — Xg in L. (Hint: Try considering (Xo — X,)*.)

For any sequence of random variables {X,} set S, = ) ;_, X;.

(a) Show X,, 3 0 implies S, /n 3 0.

(b) Show X, ]15 0 implies S, /n L—f 0 forany p > 1.

(c) Show X, £ 0 does NOT imply S, /n Lo (Try X, = 2" with proba-
bility n~! and = 0 with probability 1 —n~!. Alternatively look at functions

on [0, 1] which are indicators of [i/n, (i + 1)/n].)
(d) Show S,/n 5 0 implies X,/n 5 0.

In a discrete probability space, convergence in probability is equivalent to
almost sure convergence.

Suppose {X,} is an uncorrelated sequence, meaning
Cov(X;, Xj) =0, i#]j.

If there exists a constant ¢ > 0 such that Var(X,) < c for all n > 1, then
for any @ > 1/2 we have

?:1 Xi f‘_; 0
n¢ ’

If0<X,<Y,andY, —f» 0, check X, f» 0.

Suppose E(X?) = 1and E(|X|) > a > 0. Prove for 0 < A < 1 that

P[IX| = Aa] = (1 - A)%a”.
Recall the notation d(A, B) = P(AAB) for events A, B. Prove
d(An, A) - 0iff 14, 23 14.

Suppose {X,,, n > 1} are independent non-negative random variables satis-
fying

E(Xn) = ptn, Var(Xp) =o?.
Define forn > 1, S, = Y/, X; and suppose 3 o0 ; pu, = oo and 02 <
¢, for some ¢ > 0 and all n. Show S, /E(S,) —P> 1.
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23. A classical transform result says the following: Suppose u, > 0 and u, —
uasn — 00. For 0 < s < 1, define the generating function

U(s) = i Ups".

n=0

Show that
lirr}(l —-s)UGs)=u
s—

by the following relatively painless method which uses convergence in
probability: Let T (s) be a geometric random variable satisfying

P[T(s) =n]= (1 —s)s".
Then T(s) - 0o. What is E (u7s))?

24. Recall a random vector (X, Y,) (that is, a random element of Rz) con-
verges in probability to a limit random vector (X, Y) if

P
d((Xn,Yn), (X,Y)) >0
where d is the Euclidean metric on R?.

(a) Prove
Xn Yn) 5 (X,7) (6.23)
iff

X, 5 Xandv, 5 v.
(b) If f : R? > R4 is continuous (d > 1), (6.23) implies

fXn Yn) 5 FX, ).
(c) If (6.23) holds, then

Xn + Yo, XaYn) 5 (X +7, XY).
25. For random variables X, Y define
p(X,Y)=inf{§ >0: P[|X - Y| > §8] < é}.

(a) Show p(X,Y) = 0iff P[X = Y] = 1. Form equivalence classes of
random variables which are equal almost surely and show that p is a
metric on the space of such equivalence classes.

(b) This metric metrizes convergence in probability:
X, 5 X iff p(Xp, X) = 0.
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(c) The metric is complete: Every Cauchy sequence is convergent.
(d) It is impossible to metrize almost sure convergence.

26. Let the probability space be the Lebesgue interval; that is, the unit interval
with Lebesgue measure.

(a) Define
n
X, = @1(0,"—1), n>3.
Then {X,} is ui, E(X,) — O but there is no integrable Y which dom-
inates {X,}.

(b) Define
Xp =nlgp-1y = nl-1 9,1y,
Then {X,,} is not ui but X, - 0and E(X,) — 0.
27. Let X be a random variable in L; and consider the map
x ¢ [1, 00] — [0, o0]
defined by x (p) = |1 X||p. Let
po :=sup{p > 1:]X]|, < o0}.

Show x is continuous on [1, pg). Furthermore on [1, pg) the continuous
function p — log || X||, is convex.

28. Suppose u is a continuous and increasing mapping of [0, oo] onto [0, 00].
Let u* be its inverse function. Define for x > 0

Ux) = /x u(s)ds, V)= /x u*“(s)ds.
0 0
Show
xy<Ux)+V(), =x,yel0,00]

(Draw some pictures.)

Hence, for two random variables X, Y on the same probability space, XY
is integrable if U(|X|) € L1 and V(|Y|) € L.

Specialize to the case where u(x) = xP~1 for p>1

29. Suppose the probability space is ((0, 1], B((0, 1]), A) where A is Lebesgue
measure. Define the interval

Ap:=[277Pq,27P(q + 1)),

where 2P + q = n is the decomposition of # such that p and g are integers
satisfying p > 0,0 < g < 2P. Show 14, £ 0but that

limsuplas, =1, liminfly, =0.
n—00 n—00
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30. The space L «: For a random variable X define

| X loo = sup{x : P[|X| > x] > 0}.

Let L » be the set of all random variables X for which || X||cc < 00.

(a) Show that for a random variable X and 1 < p < g < 00
0 <Xl = lIXllp = IXllg < I X|loo-

(b) For1l < p < q < 00, show

LoCLyCLpCLy.
(c) Show Holder’s inequality holds in the form

E(XY]) < I XNI11Y loo-
(d) Show Minkowski’s inequality holds in the form

X + Yoo < 1Xlloo + 1Y lloo-

31. Recall the definition of median from Exercise 31 of Chapter 5.

201

(a) Let {X,, n > 1} be a sequence of random variables such that there exists

a sequence of constants {c,} with the property that
Xp—cn >0,
If m(X,) is a median of X,, show
Xy —m(Xy) 50

and ¢, — m(X,) = 0.

(b) If there exists a random variable X with a unique median such that

X, 5 X, then m(X,) » m(X).

32. For a random variable X, let ¥ (X) be the central value defined in Exercise
25 of Chapter 5. For a sequence of random variables {X,, n > 0}, suppose
there exist a sequence of constants {c,} such that X,, — ¢, — X/ almost
surely. Show lim,,_, o0 X, — ¥ (Xp) exists and is finite almost surely, where
y(Xp) is the unique root of the equation E(arctan(X — y) = 0. Show

lim,,_, o (cn — ¥ (X)) exists and is finite.

33. Suppose {X,k,1 < k < n,n > 1} is a triangular array of non-negative

random variables. For n > 1, set
n n
Sn=ZXn,iv Mn=vXn.i-

Show that M,, £ 0 implies S, /n £ 0.
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Laws of Large Numbers and Sums
of Independent Random Variables

This chapter deals with the behavior of sums of independent random variables and
with averages of independent random variables. There are various results that say
that averages of independent (and approximately independent) random variables
are approximated by some population quantity such as the mean. Our goal is to
understand these results in detail.

We begin with some remarks on truncation.

7.1 Truncation and Equivalence

We will see that it is easier to deal with random variables that are uniformly
bounded or that have moments. Many techniques rely on these desirable prop-
erties being present. If these properties are not present, a technique called trunca-
tion can induce their presence but then a comparison must be made between the
original random variables and the truncated ones. For instance, we often want to
compare

{Xn} with {an[IX,,Isn]}

where the second sequence is considered the truncated version of the first.
The following is a useful concept, expecially for problems needing almost sure
convergence.

Definition. Two sequences {X,} and {X,} are tail equivalent if

Y P[X, #X,] < . (7.1)

S.I. Resnick, 4 Probability Path, Modern Birkhduser Classics, 203
DOI 10.1007/978-0-8176-8409-9_7, © Springer Science+Business Media New York 2014



204 7. Laws of Large Numbers and Sums of Independent Random Variables
When two sequences are tail equivalent, their sums behave asymptotically the
same as shown next.

Proposition 7.1.1 (Equivalence) Suppose the two sequences {X,} and {X,} are
tail equivalent. Then

(1) X.,(Xn — X)) converges a.s.

(2) The two series ), X, and Y, X, converge a.s. together or diverge a.s.
together; that is

Z X, converges a.s. iff E X, converges a.s.
n n

(3) Ifthere exists a sequence {ay,} such that a, 1 00 and if there exists a random

variable X such that
1 n
=3 x; 5%,

then also

L Z X, 3 x.

an i J

Proof. From the Borel-Cantelli Lemma, we have that (7.1) implies
P([X, # X,]i0.) =0,

or equivalently
P(lirgioréf[X,, =X,])=1

So for w € liminf,o[X, = X,] we have that X,(w) = X, (w) from some
index onwards, say for n > N (w). This proves (1).

For (2) note
Y X)) =) Xy ().
n=N n=N

For (3) we need only observe that

1 4 a.s.
=) (xj-X)=o0.
an i

7.2 A General Weak Law of Large Numbers

Recall that the weak law of large numbers refers to averages of random variables
converging in the sense of convergence in probability. We first present a fairly
general but easily proved result. Before proving the result, we look at several
special cases.
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Theorem 7.2.1 (General weak law of large numbers) Suppose {X,,n > 1} are
independent random variables and define S, = 3"_; X . If

n
@) P[|X}] > n] > 0, (72)
j=1
.. 1 O 2
(i) 2 ;Eleux,qsn] - 0, (7.3)
then if we define
n
an = E (Xjl1x;ism)
j=1
we get
SL;ﬂ Lo (7.4)

One of the virtues of this result is that no assumptions about moments need to
be made. Also, although this result is presented as conditions which are sufficient
for (7.4), the conditions are in fact necessary as well. We will only prove suffi-
ciency, but first we discuss the specialization of this result to the iid case under
progressively weaker conditions.

SPECIAL CASES:
(a) WLLN with variances. Suppose {X,, n > 1} are iid with E(X,) = u and
E(Xﬁ) < 00. Thenasn — oo,

1

P
S, = u.
n

The proof is simple since Chebychev’s inequality makes it easy to verify (7.2) and
(7.3). For instance (7.2) becomes

nP[|X1| > n] < nEX1)*/n* > 0
and (7.3) becomes

1 1
n—an(Xfll,Xl,E,,]) < ;E(Xf) - 0.
Finally, we observe, as n — 00

a
—;:—'- = EX11)x,)<n) = E(X1) = 1.

(b) Khintchin’s WLLN under the first moment hypothesis. Suppose that
{Xn,n > 1} are iid with E(|X1]) < o0 and E(X,) = u. (No assumption is made
about variances.) Then

So/n S u.
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To prove this by means of Theorem 7.2.1, we show that (7.2) and (7.3) hold.
For (7.3) observe that

nP[|X1] > n] =E(nl[x,|>n))
<E(|1X111(x,5n)) — O,

since E (|X1]) < o0.
Next for (7.3), we use a divide and conquer argument. We have for any € > 0

lEle . EX*1 E(X*1
n 1 [|X1|5n]—n (X7 [IXllseﬁ])+ (X7 [eﬁslxllsn])

€n

1
< — + ~E@X1lle /a<ixy 1<)

<’ + E(X111¢ m<ix,)

—)EZ,

asn — 00, since E(|X;]) < 00. So applying Theorem 7.2.1 we conclude

Sn —nEXilixy<a) 2 o
n

Since
nEX11yx,1<n))

o - EXy)| < E(Xh1l1yxy>n) — O,

the result follows.

(c) Feller’s WLLN without a first moment assumption: Suppose that
{Xn,n > 1} are iid with

xl_l)rroloxP[lel > x]=0. (7.5)
Then

S P

— = E(algxysnp) = 0.

The converse is true although we will not prove it. Note that this result makes no
assumption about a finite first moment.

As before, we show (7.2) and (7.3) hold. The condition (7.2) becomes in the iid
case nP[|X1| > n] — 0 which is covered by (7.5). To show (7.3) holds, we need
to write it in terms of

T(x) := xP[|X1]| > x].
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Let P[X; < x] = F(x) and because of the iid assumption (7.3) becomes

1 1
—/ 1X11*1)x,1<md P =—f x*F (dx)
nJa n Jix:|x|<n}

|x|
= —1—/ (/ 2sds)F (dx)
n Jix|<n Js=0

= 1 /" 2s] F(dx)]ds (by Fubini)

n Js=0 s<|x|<n

1 n
= ;/0 25(P[|IX1] > s] — P[|1X1] > n])ds

1 [ 1/
= —/ 2t(s)ds — —/ 2sdsP[|X1]| > n]
0 nJo

n

2 n
= —/ 7(s)ds —nP[|X1| >n] >0
nJo —_———
t(n)
since if 7(s) — 0 so does its average. O

Proof of Theorem 7.2.1. Define

n
X;,j = Xf1[|Xi|5"] and S,’l = ZX;J,.
j=1

Then
n n
Y PLx;; # Xj]1= Y _P[Xj|>n] > 0.
j=1 j=1

So
P[|S, —S;ll > €] <P[S, # Srlx]
<P{{Jlx,; # X1}
j=1

n
< )P, #X;] =0
j=1

and therefore
i P
Sp—S, = 0. (7.6)

The variance of a random variable is always bounded above by the second mo-
ment about 0 since

Var(X) = E(X?) — (E(X))? < E(X?).
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So by Chebychev’s inequality

S, - ES,
n

Var(S))
>el<s—

1 < 5
< =52 EX,)
j=1

P[

1 n
=—52 E (Xfluxjunl) —0
=1

where that convergence is due to (7.3).
Note a, = ES,', = z?:l EX; 1[|Xj[5,,], and thus

S, —
2% Lo (1.7
n
We therefore get
Sn—an=Sn_S;l+S',l_an 50
n n n
where the first difference goes to zero because of (7.6) and the second difference
goes to zero because of (7.7). m]

Example: Let F be a symmetric distribution on R and suppose

e
2xlogx’

1-F(x)= xX>e

Suppose {X,, n > 1} is an iid sequence of random variables with common distri-
bution function F. Note that

o o0
EX+=f ¢ dx=5f Y _
e 2xlogx 2J)1 vy

so because the distribution is symmetric

EXH=EX ) =00

and E (X) does not exist. However,

e e
= e—— 0
xlogx logx

t(x) =xP[|X1| >x]=x -

and a, = 0 because F is symmetric, so

Thus, without a mean existing, the WLLN still holds. When we consider the
strong law of large numbers, we will see that a.s. convergence fails. O
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7.3 Almost Sure Convergence of Sums of
Independent Random Variables

This section considers the basic facts about when sums of independent random
variables converge. We begin with an inequality about tail probabilities of maxima
of sums.

Proposition 7.3.1 (Skorohod’s inequality) Suppose {X,,n > 1} is an indepen-
dent sequence of random variables and suppose o > Q is fixed. For n > 1, define
Sn = Y i1 Xi, and set

¢ := sup P[|Sy — Sj| > a].
jsN

Also, suppose ¢ < 1. Then
1
P[sup |Sj| > 2a] < ——P[|Sn| > «a]. (7.8)
jsN l-c

There are several similar inequalities which bound the tail probabilities of the
maximum of the partial sums, the most famous of which is Kolmogorov’s inequal-
ity. One advantage of Skorohod’s inequality is that it does not require moment
assumptions.

Note that in the iid case, the constant ¢ somewhat simplifies since we can ex-
press it as

c=\/ PUSjI >al=\/ P[ISy - Sj| > a]

j<N j<N
due to the fact that J
X1,...,XAN) =N, ..., X1).

This means that the sums of the variables written in reverse order (Sy — S, j =
N —1,N -2,...,1) have the same distribution as (S1, ..., Sy).

Proof of Proposition 7.3.1. Define
J :=inf{j : |S;| > 2a},
with the convention that inf @ = oo. Note that
N
[sup || > 20] = [J < N1 =} [ = j],
j=N j=1
where the last union is a union of disjoint sets. Now we write

P[ISv|>a] > P[ISy|>a,J <N]

N
= Y _P[ISy|>a,J =j]
=1

v

j=
N
Y P[ISy = Sjl < e, J = j]. (7.9)
j=1
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To justify this last step, suppose
ISN (@) — Sj(w)| <, and J () = j

so that |S;(w)| > 2a. If it were the case that |Sy (w)| < «, then it would follow
that |Sy (w) —Sj(w)| > a which is impossible, so |Sy (w)| > «. We have checked
that

ISy = Sjl < e, J = j] C[ISv]| > @, = j]
which justifies (7.9). Thus,

N
PISy| > @] = ) P[ISy — Sjl <@, J = j].

j=1

It is also true that

N
SN —=S§j= Z XjeBXjs,...,XN)

i=j+1
and
[J=jl= [§up|S,-| < 2a,|§;| > 2a] € B(X1...X)).

i<j

Since
B(Xj.H,... ,XN)lB(Xl...Xj)

we have

N

P[ISy| > ] = ) P[ISy — Sj| <]P[J = j]
j=1

N
> ) (1-c)P[J = j] (from the definition of c)
j=1

(1-c)P[J <N]
(1 =c)P[sup |S;| > 2a].
j<N

0O

Based on Skorohod’s inequality, we may now present a rather remarkable result
due to Lévy which shows the equivalence of convergence in probability to almost
sure convergence for sums of independent random variables.

Reminder: If {£,} is a monotone sequence of random variables, then

P
§n > §
implies (and hence is equivalent to)

as

n > .
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Theorem 7.3.2 (Lévy’s theorem) If {X,,n > 1} is an independent sequence of
random variables,

Z X, converges ip. iff Z X, converges a.s.
n n

This means that if S, = Y |_; Xi, then the following are equivalent:
1. {8y} is Cauchy in probability.
2. {S,} converges in probability.
3. {Sn} converges almost surely.
4. {Sn} is almost surely Cauchy.

Proof. Assume {S,} is convergent in probability, so that {S,} is Cauchy in proba-
bility. We show {S,} is almost surely convergent by showing {S,} is almost surely
Cauchy. To show that {S,} is almost surely Cauchy, we need to show

Ev = sup |Spm —Spl— Oas,
m,n>N
as N — oo. But {é&y, N > 1} is a decreasing sequence so from the reminder it
suffices to show &y f) 0as N — oo. Since
N = sup |Sm — SN+ SN — Sul
m,n>N

< sup |S; — S|+ sup |Sp — Sy

m>N n>N

=2sup |S, — Sn|

n>N
=2sup|Sn+j — SNl
j=0
it suffices to show that

sup|Sy+j — Sn| 5 0. (7.10)
j20

Foranye > 0,and 0 < § < %, the assumption that {S,} is cauchy i.p. implies
that there exists N¢ s such that

P[ISn — S| > %] <35 (7.11)
if m,m’ > N¢ 5, and hence

P[ISn+; — Sn| > %] <5, Vj>0, (1.12)



212 7. Laws of Large Numbers and Sums of Independent Random Variables

ifN 2 NG,(S'
Now write

P[sup|Sn4+j — Sn| > €] = P{ lim [ sup |Snyj—Sn| > €]}
j=0 N'-x N'>j20
= lim P[ sup |Sn4+j—Sn|> €]

N'—>00 N'>j>0

Now we seek to apply Skorohod’s inequality. Let X; = X 4; and

J J
S} = ZX,’ = ZXN.H = SN+j — SN.
i=1 i=1

With this notation we have

P[ sup |Sn+j—Sn|> €]
N'2j20

=P[ sup [S}| > €]
N'zj>0

= 1
P S, 1| > —€
B (1‘Vis~fP[IS’,—s;.|> %e]) [y > 5el

1
< ——:0<528
=1=3 =

from the choice of §. Note that from (7.11)

A

1 1
\/ PUSy = Sjl > Sel=\/ PlISy4n — Sn+jl > €] < 6.
v 2 V. 2

J=N Jj<N

Since & can be chosen arbitrarily small, this proves the result.

O

Lévy’s theorem gives us an easy proof of the Kolmogorov convergence crite-
rion which provides the easiest method of testing when a series of independent
random variables with finite variances converges; namely by checking conver-

gence of the sum of the variances.

Theorem 7.3.3 (Kolmogorov Convergence Criterion) Suppose {X,,n > 1} is

a sequence of independent random variables. If
]
Z Var(X ;) < oo,
j=1

then
o0

Z(X j — E(X})) converges almost surely.

j=1
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Proof. Without loss of generality, we may suppose for convenience that E(X ) =
0. The sum of the variances then becomes

00
Y EX} <.
j=1

This implies that {S,} is L, Cauchy since (m < n)

n
1S5 = Smll3 = Var(Su = Sw) = ) EX7 =0,
Jj=m+1

asm,n — oosince ) i E (Xf) < 0. So {S,}, being L,—Cauchy, is also Cauchy
in probability since

n
P[|Sy = Sn| > €] < €7 2Var(S, — Sp) = €72 )_ Var(X;) - 0

j=m
as n,m — oo. By Lévy’s theorem {S,} is almost surely convergent. O

Remark. The series in Theorem 7.3.3 is Lj-convergent. Call the L, limit
Z?‘;I(X j — E(Xj)). Because of L, convergence, the first and second moments
converge; that is,

0= E(Z(x,- —-EXj) > E (Z(Xj - EX,-))
Jj=1 Jj=1
and
EVar(Xj — E(X;)) = Var (Z(x,- - E(X,-))> — Var (Z(Xj - E(Xj)))
j=1 Jj=1 Jj=1

so we may conclude

E (Z(X,- - Ex,-)) =0,
1
Var (Z(X,- - E(Xj))) =

Jj=1

Var(X; — E(X})).

o0
j=1

7.4 Strong Laws of Large Numbers

This section considers the problem of when sums of independent random vari-
ables properly scaled and centered converge almost surely. We will prove that
sample averages converge to mathematical expectations when the sequence is iid
and a mean exists.

We begin with a number theory result which is traditionally used in the devel-
opment of the theory.



214 7. Laws of Large Numbers and Sums of Independent Random Variables

Lemma 7.4.1 (Kronecker’s lemma) Suppose we have two sequences {x;} and
{an} such that x; € R and 0 < a, 1 o0. If

o0

Xk
Z — converges,
k=1 Ak

hm a, 1Zxk =

Proof. Let r, = Z,‘:in +1%k/ak so that r, — 0 as n — o00. Given € > 0, there
exists Ng = Ny(€) such that for n > Ny, we have |r,| < €. Now

then

Xn
=Tn-1—"TIn
an
R{o)
Xp =an(rp-1—ry), n=1,
and

n n
Zxk = Z(’k—l = r)a
k=1 k=1

n-1
= Z(af‘*'l —aj)rj+airo — apry.
j=1
Then for n > Ny,
n
Zk:l Xk (aj+1 (a1+1
_— +
, - _ @pi=ap, Z @pmzap,,
I=1 -—N{)
airo Qnrn
+1 |+ | I
'l ’l

const €

= + —(ang+1 — ang + aNg+2 — ANp+1
an an
+ang+3 —ang+2+ -+ ap —an-1) +1n
e€(a, —a
<o(1) + £n =N |
n
< 2e +0(1).
This shows the result. O

The Kronecker lemma quickly gives the following strong law.

Corollary 7.4.1 Let {X,,n > 1} be an independent sequence of random vari-
ables satisfying E(X?2) < 0o. Suppose we have a monotone sequence b, 1 oc.

If
Z Var(z(-'ﬁ) < 00,
k bk
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then

Sp — E(Sp) as.
b— -> 0-

Proof. Because the sum of the variances is finite, the Kolmogorov convergence
criterion yields
Z Xn — E(Xn)
———— ] converges a.s.
n bn

and the Kronecker Lemma implies
n
Y Xk — E(X))/by — 0
k=1

almost surely. O

7.4.1 Two Examples

This section discusses two interesting results that require knowledge of sums of
independent random variables. The first shows that the number of records in an
iid sequence grows logarithmically and the second discusses explosions in a pure
birth process.

Example 1: Record counts. Suppose {X,,n > 1} is an iid sequence with com-
mon continuous distribution function F. Define

N N
KN = Z l[Xj isarecord] = Z 1;
j=1 j=1

where
1= 1[Xj is arecord |
So wy is the number of records in the first N observations.
Proposition 7.4.1 (Logarithmic growth rate) The number of records in an iid
sequence grows logarithmically and we have the almost sure limit
. KN
lim

-1
N-oo logN

Proof of Proposition 7.4.1. We need the following fact taken from analysis: There
is a constant c¢ (Euler’s constant) such that

n
1
logn — E - >,
=

asn — 0Q.
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Recall that {1j, j > 1} are independent. The basic facts about {1;} are that

1 1
Plj=1]=-, E1)=-,
! j O

1 1 j-1
Var(1)) = E(1j)% - (E1 )2-7_F___,’ —~.

This implies that

since by the integral test

Z i2(1 ZQZ i2(1 2
i J°og )t 3 (ogJ)
o~ 1

43 j(og j)?
N /‘°° dx
e x(logx)?

o
=/ d—'z<00
1y

The Kolmogorov convergence criterion implies that

X (1, —EQ; -5
Z (—-—’ 0 ( ! )) = Z __11 converges
i=2 ogJ j=2 o8]

and Kronecker’s lemma yields

0% Z;=1(1j -j™ _ Z’}:l 1; - Z'}=1 j™! _Hn— Z’}:l i

logn - logn - logn
Thus
Kn _P‘n_z'}=1j“1 +Z?=1f_1“1°g" 0
logn logn logn
This completes the derivation. m]

Example 2: Explosions in the Pure Birth Process. Next we present a stochastic
processes example where convergence of a series of independent random vari-
ables is a crucial issue and where the necessary and sufficient criterion for con-
vergence can be decided on the basis of first principles.
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Let {X;, j > 1} be non-negative independent random variables and suppose
P[X,>x]=e** x>0

where A, > 0,n > 1 are called the birth parameters. Define the birth time process

Sp = Z;’=1 X; and the population size process {X(¢),¢ > 0} of the pure birth
process by

, if0<t<$,
ifS1 <t <3S,
3, ifS<t<3$S;,°

!\)H

X(@) =

Next define the event explosion by

2]
[ explosion ] = [Z Xn < 0]
n=1

= [X(t) = oo for some finite ¢].

Here is the basic fact about the probability of explosion in the pure birth pro-
cess.

Proposition 7.4.2 For the probability of explosion we have

1, ifYy,At<o0,

P| explosion ]| = 0, T Al = oo,

Recall that we know that P[Y", X, < 0o] = 0 or 1 by the Kolmogorov Zero-
One Law.

Proof. If ", ;! < oo, then by the series version of the monotone convergence
theorem

00 o0 o0
EQ X =) EXn) =) 3'<oo,
n=1 n=1 n=1

and so P[Y 72, X < 00] = 1. (Otherwise, recall that E(}_, X») = 00.)
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Conversely, suppose P[Y_, X, < 00] = 1. Then exp{— Y no; X} > Oas.,
which implies that E (exp{— Y_, X»}) > 0. But

o]
0 < E(e”Zm1%n) = E([Te™*n)

n=1
N
=E(lim [[e™*)
k=1
N
= lim E l—[e"x" (by Monotone Convergence)
N—-oo =1
N
= lim nE (e~*")  (by independence)
I
N 00 N
_ —-x —AnX
_ngnool—ll /(; e *hpe dx

Now

Eexp(— Y Xn)) > Oiff —log E(e™Zn%1) < 00
n
= A
iff ’;_108(—1 +)~n> < 00

o0
iff ) log(1+1;") < 0.

n=1
If %0 log(1+ A;!) < oo, then log(1 + A; ') — 0 implies A, — 0. Since

xl0 b4

1,

by L’Hopital’s rule, we have
log(1+ A;l) ~ A;l asn — 00

and thus

o0 o0
Zlog(l =+ l;l) < oo iff Zx;l < 00.
n=1 n=1 0
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7.5 The Strong Law of Large Numbers
for IID Sequences

This section proves that the sample mean is almost surely approximated by the
mathematical expectation. We begin with a preparatory lemma.

Lemma 7.5.1 Let {X,,n > 1} be an iid sequence of random variables. The fol-
lowing are equivalent:

(a) E|X1]| < o0.
(b) lim,_, I)—;’ll = 0 almost surely.
(c) Foreverye >0
o0
Y P[IX1] > en] < 0.

n=1

Proof. (a) <+ (c): Observe that:

o0
E(|X1D=f0 P[|X1]| > x)dx
o) n+1
=Y / P[IX1] > x]dx
n=0vY"n

o0
> PlXilzn+1]

n=0

o0
<) PlXi| = n).
=0

Thus E(|X1]) < oo iff Y50, P[|X1] > n] < 00. Set Y = 1 and we get the
following chain of equivalences:

E(X;]) < 0iff E(IY]) < 00

o0
iff Y P[IY|>n] <oo

n=0

o0
iff Y P[1X1] > en] < oc.

n=0

(c) & (b): Given e > 0,
Y P[IX1] > en] =) P[|Xa| 2 en] < o0

is equivalent, by the Borel zero-one law, to

3| L P
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which is in turn equivalent to

I | Xl
im sup

n—>o00 N

<e€

almost surely. Since limsup,_, o, Enﬂ is a tail function, it is a.s. constant. If this
constant is bounded by € for any € > 0, then

Xl _
n

lim sup
n—>0oo

This gives (b) and the converse is similar. a

We are now prepared to consider Kolmogorov’s version of the strong law of
large numbers (SLLN).

Theorem 7.5.1 (Kolmogorov’s SLLN) Let {X,,n > 1} be an iid sequence of
random variables and set S, = ZLI Xi. There exists c € R such that

X, = Sn/n e
iff E(|X1]) < oo in which case ¢ = E (X}).
Corollary 7.5.1 If{X,} is iid, then

E(1X1]) < oo implies X, 3 u = E(X1)

and
1 1 < as
EX? < oo implies Sy := ~ Y (X - X)2 5 o2 =: Var(Xy).
1

Proof of Kolmogorov’s SLLN (a) We show first that

Sn as.
— S'c
n
implies E (]X1]|) < 0o. We have
{_n_ _ Sn - Sn—-l
n n

Since
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Lemma 7.5.1 yields E (|X;]) < o0.

(b) Now we show that E(|X1]) < oo implies S,/n =y E (X1). To do this, we
use a truncation argument. Define

X;, = Xnl|x,1<n), n =1
Then

Y P[Xy #£X,)=) P[Xal>n] <00

(since E|X1| < o0) and hence {X,} and {X}} are tail equivalent. Therefore by
Proposition 7.1.1

n
Sa/n 53 E(X1)iff Sp/n =) X/n S E(Xy).
j=1

So it suffices to consider the truncated sequence.
Next observe that

Sy —E(S;) _ Sy —E(S)
n n

nE(X1) = 35_1 EX11pxy <))
n

~\ E(X1 i
E(Xl)_z ( 1 gxll.s]])

j=1

- 0.
This last step follows from the fact that
|E(X1) — E(X11px,1<n)| £ E(X111x4)50)) = O,
and hence the Cesaro averages converge. We thus conclude that

n .y /
/ X' — EX)

n —E(X)) a.s.Oiff Zl J ( ])) a.s. 0.
n

n

To prove the last statement, it is enough by Kronecker’s lemma to prove

X'
Z Var(—,]) < 00.
7 J
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However,
(X' )2
ZVar(—’) = Z — Var(X)) < Z
X 1
= Z —EXH1px, <))
j=1 J
oo J 1
= Z Z —ZE(Xll[k 1<|X11<k])
i=1k=17
o0 o0 1
= O —Z)E(Xll[k 1<y |<k))-
k=1 j=k
Now

and therefore

1 2
= — < -
k—1"k
provided k > 2. So
x.2
Z(Z SEX pe-1<xi=h) < Y 7E(X1 P lge-1<13,150)
=2 j=k / k=2

2
< Z = kE (1X111jk-1<1x,12k))
k=2 k

=2E(|X1]) < o0.

7.5.1 Two Applications of the SLLN

Now we present two standard applications of the Kolmogorov SLLN to renewal
theory and to the Glivenko—Cantelli Lemma.

Renewal Theory. Suppose {X,,n > 1} is an iid sequence of non-negative

random variables. Assume E(X,) = u and that 0 < u < oo. Then
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so that S, 3 0. Let So = 0 and define
o0
N(@®) =Y s <.
r

We call N (¢) the number of renewals in [0, ¢]. Then

[N@) <n) =[S > 1] (7.13)
and

SN@)-1 St < Sn@)- (7.14)

Note that since we assume So = 0, we have N (¢) > 1. Also observe {N (¢),t > 0}
is non-decreasing in ¢. We need to show N (¢) — 00 a.s. as t — oo and because

e e . P .
of the monotonicity, it suffices to show N(¢) — 00. Since for any m

lim P[N(t) <m]= lim P[S, >t]—> 0,
=00 t—>o0

we get the desired result that N (¢) f» 00. Now define the sets

A ={w:

Sn(w)
- uh
n
Ay ={w:N(t,w) > o0},

so that
P(A1) =P(A2) =1.

Then A ;= A1NAzhas P(A)=1.Forwe A,ast - o0

SN (t,0) (@) N
N, w) H

and so
SN/N® S u,
ast — 00. From (7.14)

S
N@) ~— NQ@)

and

t SNw-1 _ SNw-1 N@) -1
Ne®) = N@) N@o-1 N@

u-1,

so we conclude that ¢t /N () ey w and thus N(t)/t — u~L. Thus the long run
rate of renewals is u~1. 0O
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Glivenko—Cantelli Theorem. The Glivenko—Cantelli theorem says that the em-
pirical distribution function is a uniform approximation for the true distribution
function.

Let {X,,n > 1} be iid random variables with common distribution F. We
imagine F is unknown and on the basis of a sample Xy, ..., X, we seek to esti-
mate F. The estimator will be the empirical distribution function (edf) defined by

a 1<
Fatx,0) = = 3 x5 (@).
j=1

By the SLLN we get that for each fixed x, F‘,, (x) > F(x) as.asn — 00. In fact
the convergence is uniform in x.

Theorem 7.5.2 (Glivenko—Cantelli Theorem) Define

Dy :=sup |Fy(x) — F(x)|.
X

Then
D, — Oa.s.

asn — oOQ.

Proof. Define
xok:=F“W/k), v=1,...,k,

where F < (x) = inf{u : F(u) > x}. Recall
F<(u) <tiffu < F(t) (7.15)

and
F(FT ) >u, F(F*“@)-)<u, (7.16)

since forany € > 0 F(F < (u) —€) < u.If xy ¢ < x < xy41.4, then monotonicity
implies

F(Xvx) < F(x) < F(xyp14=),  Fn(xy) < Fn(x) < Fp(xy41.4—),
and for such x
Fn(evi) = F(yp14-) < Fu(x) — F(x)
< Fp(xvs14=) — F(xu )- (7.17)

Since

1 1
F(xy416=) — F(xy,) < ": _r_2
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we modify (7.17) to get
A 1 A
Fn(Xy) = Fxy) — 7 = Fu(x) = F(x)
A 1
< Fa(xy+14—) — F(xv414—) + % (7.18)

Therefore

sup  |Fp(x) — F(x)|

x€[xvy Xu41k)
. . 1
< (IFa(xvk) = Fxo )| V |1 Fa(Xv41,6=) — F(xv+14-)1) + ;,
which is valid forv =1, ... , k — 1, and taking the supremum over v gives

sup  |Fn(x) — F(x)|

X€[x 1,k k)

1\ . .,
< 21 VIE00 = Fonol v IEnGos—) = F o)

v=1

= RHS.

We now show that this inequality also holds for x < xj4 and x > xg4. If
X > Xk.k, then F(x) = Fp(x) = 150 Fy (x) — F(x) = 0 and RHS is still an upper
bound. If x < x1, either

(i) F(x) > ﬁ,, (x) in which case
|En(x, @) = F(x)| = F(x) — Fa(x, »)

< F(x) < F(x1x-)

1
< =
"k

so RHS is still the correct upper bound,
or
(ii) Fn(x) > F(x) in which case
|Fa(x, 0) = F(x)| = Fn(x, ) — F(x)
< Fa(ryp—r ) = F(x14—) + F(x14—) — F(x)
< |Fa(r1k—, @) = F(x1e=)| + |F (x1e=) — F(x)|

and since the last term is bounded by 1/k we have the bound

1 A
< 3 + |Fa(X16—, @) — F(x1x—)|
< RHS.
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We therefore conclude that
D, < RHS.
The SLLN implies that there exist sets A, x, and 1~\u,k, such that
P(Avp) = P(Avi) =1,

and such that .
Fy(xyx) > F(xuk), n—> o0

and

A 1<&
Fn(xv4=) = ~ Z; 1ix; <x,u] = PIX1 <xv4] = F(xy k)
provided w € Ak and Ak respectively. Let
Ar={)Avk ﬂ n Av,
v v
so P(Ay) = 1. Then for w € Ay

lim sup Dy (w) <
n—>o0

x| =

Forw € (N Ak

lim D,(w) =0,
n—00

and P((, Ax) = 1.

7.6 The Kolmogorov Three Series Theorem

The Kolmogorov three series theorem provides necessary and sufficient condi-
tions for a series of independent random variables to converge. The result is espe-
cially useful when the Kolmogorov convergence criterion may not be applicable,

for example, when existence of variances is not guaranteed.

Theorem 7.6.1 Let {X,,n > 1} be an independent sequence of random vari-
ables. In order for ), X, to converge a.s., it is necessary and sufficient that there

exist ¢ > 0 such that
(i) Xp PlIXnl > c] < 0.
(ii) 3, Var(Xnljx,|<c)) < 0°.

(iii) Y, E(Xnl|x,|<c]) converges.
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If }~, X, converges a.s., then (i), (i), (iii) hold for any ¢ > 0. Thus if the three
series converge for one value of ¢ > 0, they converge for all ¢ > 0.

In this section, we consider the proof of sufficiency and an example. The proof
of necessity is given in Section 7.6.1.

Proof of Sufficiency. Suppose the three series converge. Define
X, = Xnljjx,i<c)-
Then

Y PIX, #Xa) =) P[Xal>c] < o0

by (i) so {X},} and {X,} are tail equivalent. Thus ), X, converges almost surely
iff }°,, X, converges almost surely.
From (ii)

ZVar(X:,) < o0,
n

so by the Kolmogorov convergence criterion

Z(X i—EX ;)) converges a.s.

j
But (iii) implies
Z E(X,) converges
n

and thus }°; X’; converges, as desired. m

Remark 7.6.1 In the exercises there awaits an interesting fact for you to ver-
ify. When the independent random variables in the three series theorem are non-
negative, it is only necessary to check convergence of two series; the third series
involving the truncated variances is redundant.

Example. Heavy tailed time series models: It is increasingly common to en-
counter data sets which must be modeled by heavy-tailed times series. Many time
series are defined by means of recursions; for example, pth order autoregressions
are defined as

p
Xn =Z¢an—i+Zm n=0a 1’~-' (7.19)
i=1

where {Z,} is an iid sequence. When does there exist a stationary process {X,}
satisfying (7.19)? It is usually possible to iterate the recursion and guess that the
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solution is some infinite series. Provided the infinite series converges, it is rela-
tively simple to show that this infinite sum satisfies the recursion. For instance,
(7.19) for the case p = 1is (set ¢1 = ¢@)

Xn =¢Xn—1 +Z,= ¢(¢Xn—2 +Zp1)+ 2y
=¢"Xn-2+Zn + $Zp-1.

Continuing the iteration backward we get
m-1
Xp = ¢an—m + Z ¢’ Zy-i.
=

This leads to the suspicion that Y 50, ¢°Z,—; is a solution to (7.19) when p =
1. Of course, this depends on Y ;o @' Z,—; being an almost surely convergent
series.

Showing the infinite sum converges can sometimes be tricky, especially when
there is little information about existence of moments which is usually the case
with heavy-tailed time series. Kolmogorov’s three series theorem helps in this
regard.

Suppose a time series is defined by

[¢2]
Xn=)Y pjZn-jy n=0,1,... (7.20)
j=0

where {p,} is a sequence of real constants and {Z,} is an iid sequence with Pareto
tails satisfying

F(x):= P[|Z1]| > x] ~kx™%, x — o0, (7.21)

for some @ > 0, and k > 0. (Tail conditions somewhat more general than (7.21)
such as regular variation could easily be assumed at the expense of slightly ex-
tra labor in the verifications to follow.) A sufficient condition for existence of a
process satisfying (7.20) is that

o0
Y 1pizjl < o0, (1.22)
j=1

almost surely. Condition (7.22) is often verified under the condition

Y i <00, 0<8<anl, (7.23)
J

(cf. Brockwell and Davis (1991)) especially when (7.21) is replaced by a condi-
tion of regular variation.
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We now prove that (7.23) is sufficient for (7.22) and by Remark 7.6.1 we need
to verify that (7.23) implies convergence of the two series

00 o0
Y PllpjZjl > 11=)_ F(/lp;l) < 0, (7.24)
j=1 j=1
o0 o0

E(1pjZ1osz;1<1) =2 ) lojIm(1/1pjl) < o0, (7.25)
j=1 j=1

where
m(®) := E(1Z1112y151))-
Verifying (7.24) is relatively easy since, as j — 00, we have

Pllp;Zj| > 1] ~ klpjl*
which is summable due to (7.23). To verify (7.25), we observe that by Fubini’s

theorem
t t X
m(t) = / xF(dx) =/ [/ du] F(dx)
0 x=0 LJu=0

t t t
= f [ / F(dx)] du = / Fuw)du —tF(t)
u=0 L/x=u 0

t
< / F(u)du. (7.26)
0
From (7.21), given 6 > 0, there exists xp such that x > x¢ implies
F(x) < A +0)kx™ =1 k1x™%. (7.27)
Thus from (7.26)
X0 t t
m(t) 5/ +/ 5c+k1/ u=%du, t>x. (7.28)
0 X0 X0

Now fora > 1, E(|Z1|) < o0 so that
> lojlm(c/Ipil) < Y o 1E(1Z11) < 00
J J

by (7.23). For @ = 1, we find from (7.28) that
m(t) <c’ +kylogt, t>xo

for positive constants c’, k>. Now choose n > 0 so small that 1 — > §, and for
another constant ¢” > 0

1
Y lojlmic/Ipil) < " Y Ipjl+k2 ) Ipjllog (—)
j ] ]

lojl
< C”ZIPJ'I +k3Z|p,-|1"’ <0
Jj Jj
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where we have used (7.23) and

x Mogx <x™ 11 x>x.

Finally fora < 1,¢ > x9
m(t) < cy + k!

so that

lejlm(l/lpjl) SCzZ]pj|+k4Z|pjll+a—l <o
j 7 -

from (7.23). o

7.6.1 Necessity of the Kolmogorov Three Series Theorem

We now examine a proof of the necessity of the Kolmogorov three series theo-
rem. Two lemmas pave the way. The first is a partial converse to the Kolmogorov
convergence criterion.

Lemma 7.6.1 Suppose {X,,n > 1} are independent random variables which are
uniformly bounded, so that for some a > 0 and all v € Q2 we have | X, (w)| < a.
If 3", (Xn — E(X,)) converges almost surely, then ZZ‘;I Var(X,) < oc.

Proof. Without loss of generality, we suppose E (X,) = 0 for all n and we prove
the statement: If {X,,, n > 1} are independent, E(X,) =0, | X,| < o, then ), X,
almost surely convergent implies ), E (X 3) < 00.

WesetS, = Y ;_; Xi, n > 1and begin by estimating Var(Sy) = Z,A_’__l EX ,.2)
for a positive integer N. To help with this, fix a constant A > 0, and define the
first passage time out of [—A, A]

t:=inf{n > 1:|S,| > A}
Set T = 00 on the set [V32,|Sy| < A]. We then have
N
Y EX}) = E(S}) = E(S§1je<n)) + E(S31[e>N)) (7.29)

i=1

=I+1I.
Note on T > N, we have va= 118i] < A, so that in particular, § 2 < A2. Hence,
II <A*P[t > N] < (A +@)*P[r > N]. (7.30)

For I we have

N
I=Y ES{lpe=j).
j=1
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Forj <N
N
ES{lie=ip = E(Sj + ) X))p=))).
i=j+1
Note
j-1
[r=i1=[\V IS <415jl > A€ o(Xy,.... X))
i=1
while
N
Z Xi eU(Xj-i—l"'-’XN)v
i=j+1
and thus

N
Ie=p L ) Xi.

i=j+1
Hence, for j < N,
N N
E(Sjlpe=j) =E ((512' +28; ) Xi+ () Xi)2)1[r=i])
i=j+1 i=j+1

N
= E(S31(=j)) + 2E(Sj1[e=DE( ) Xi)
i=j+1

N
+E()_ Xi)*P[r = j]
i=j+1

N
= ES =) +0+ EC Y, Xi)?P[r = j]

i=j+1
N
<E(USj1l +1XjD =) + Y EX)*P[r = j]
i=j+1
N
<(+a)?Plt=jl+ Y EWX)*P[r=j].
i=j+1

Summarizing, we conclude for j < N that

N
E(S;‘:,l[r=j]) < ((A +a)? 4+ Z E(Xi)z)P[T =jl
i=j+1

231

(7.31)
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and defining Z;N=N+1 E(X;)? = 0, we find that (7.31) holds for 1 < j < N.
Adding over j yields

N
I=ES}1pen)) < ((A +a)’ + ZE(X?))P[r <N]

i=1

= ((A +a)’ + E(S,zv))P[t <N]. (7.32)

Thus combining (7.30) and (7.32)

N
ES) =) EXH=I1+11

i=1
< ((x +a)?+ E(S,ZV)) P[t < N]+ (A + @)?P[r > N]
<(A +a)? + E(S3)P[r < N]
and solving for E (S,zv) yields

(A +a)?

E(SN) < P[_Ni

Let N — oo. We get

ZE(XZ) < (H“) iy

which is helpful and gives the desired result only if P[t = oo] > 0. However,
note that we assume ), X, is almost surely convergent, and hence for almost
all w, we have {S,(w), n > 1} is a bounded sequence of numbers. So V,|S,]| is
almost surely a finite random variable, and there exists A > 0 such that

Plx = o0] = P[\/ I5y] <] >

n=1

else P[V72,|S,| < 00] = 0, which is a contradiction. This completes the proof
of the lemma. O

Lemma 7.6.2 Suppose {X,,n > 1} are independent random variables which are
uniformly bounded in the sense that there exists o > 0 such that | X,(w)| < «
foralln > 1and w € Q. Then ), X, convergent almost surely implies that
Y . E(X») converges.

Proof. The proof uses a technique called symmetrization. Define an independent

sequence {Y,,n > 1} which is independent of {X,,n > 1} satisfying Y, 4 Xn.
Let
Zn=Xn_Yn, nzl
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Then {Z,, n > 1} are independent random variables, E(Z,) = 0, and the distri-
bution of each Z, is symmetric which amounts to the statement that

4

Z,=-2Z,.

Further,
Var(Z,) = Var(X,)) + Var(Y,) = 2Var(X,)

and |Z,| < |Xn| + |Yn| < 20

Since {X,,n > 1} 4 {Yn, n > 1} as random elements of R, the convergence
properties of the two sequences are identical and since ), X, is assumed almost
surely convergent, the same is true of ), Y,,. Hence also Y, Z, is almost surely

convergent. Since {Z,} is also uniformly bounded, we conclude from Lemma
7.6.1 that

Z Var(Z,) = Z 2Var(X,) < 00.

From the Kolmogorov convergence criterion we get >, (X, — E(X,)) almost
surely convergent. Since we also assume Y, X, is almost surely convergent, it
can only be the case that ), E(X,) converges. m|

We now turn to the proof of necessity of the Kolmogorov three series theorem.

Re-statement: Given independent random variables {X,,n > 1} such that
3", X, converges almost surely, it follows that the following three series converge
for any ¢ > 0:

@ X, PlIXnl > ¢},
(i) Y, Var(Xn1x,i<c)s
(i) X, E(Xnlgx,i<c)-
Proof of necessity. Since ), X, converges almost surely, we have X, % 0and

thus
P([|Xp| > c]i.0.)=0.

By the Borel zero-one law, it follows that

Y " P[IXa| > c] < oo. (7.33)

If (7.33) holds, then {X,} and {X51(1x,<c]} are tail equivalent and one converges
iff the other does. So we get that the uniformly bounded sequence {X,1(1x,|<c]}
satisfies ), Xnljx,|<c) converges almost surely. By Lemma 7.6.2,
Y -n E(Xn1{x,|<c)) (the series in (iii)) is convergent. Thus the infinite series of
uniformly bounded summands

Y (Xnlpx,i<a — EXnlyx,i<c))

n
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is almost surely convergent and by Lemma 7.6.1

Z Var(Xn1[1x,)<c) < 00
n

which s (ii). o

7.7 Exercises
1. Random signs. Does ), 1/n converge? Does Y, (—1)"1/n converge? Let
{X ) be iid with '

P[X, ==%1]=

N =

Does ), X»/n converge?

2. Let {X,)} be iid, EX, = pu, Var(X,) = 02. Set X = Yi—1Xi/n. Show
that

1¢ _
=Y @i - %) £ o2
i3

3. Occupancy problems. Randomly distribute r balls in n boxes so that the
sample space 2 consists of n” equally likely elements. Write

n
N, = Z 1[ith box is empty]
i=1

for the number of empty boxes. Check
. . 1,
P[ith box is empty] = (1 — ;)

so that E(N,) = n(1 —n~1y". Check that asr/n — ¢

EWNp)/n — e~ € (7.34)
No/n 5 e (7.35)

For the second result, compute Var(N,) and show Var(N,/n) — 0.

4. Suppose g : [0,1] — R is measurable and Lebesgue integrable. Let
{Un,n > 1} be iid uniform random variables and define X; = g(U;). In
what sense does ) ;_; X;/n approximate fol g(x)dx? (This offers a way to
approximate the integral by Monte Carlo methods.) How would one guar-
antee a desired degree of precision?
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5. (a) Let {X,,n > 1} be iid, EX, = 0, EX?> = 02. Leta, € Rforn > 1.
Set S, = Y i, aiX;. Prove {S,} is Ly-convergent iff ) o, ai2 < 00. If
:'21 a,.2 < 00, then {8y, n > 1} is almost surely convergent.
(b) Suppose {X,, n > 1} are arbitrary random variables such that ), +X,
converges almost surely for all choices +1. Show Y, X2 < oo almost
surely. (Hint: Consider ), B(¢)X,(w) where the random variables
{Bn,n > 1} are coin tossing or Bernoulli random variables. Apply Fubini
on the space of (¢, w).)

(c) Suppose {B,, n > 1} are iid with possible values {1, —1} and

1
P[Bn=d:1]= E.

Show for constants a, that

Za,,B,, converges iff Za,f < Q.
n n

(d) Show Y, B,n~% converges a.s. iff § > 1/2.

6. Suppose {Xi,k > 1} are independent random variables and suppose Xy
has a gamma density fi(x)

xVe—leg=x
T(w) '

Give necessary and sufficient conditions for Y _pc; Xi to converge almost
surely. (Compare with the treatment of sums of exponentially distributed
random variables.)

7. Let {E,} be events.
(a) Verify

fr(x) = x>0,y >0.

n n
Dl =1y,6 )16
k=1 k=1

and then, using the Schwartz inequality, prove that

(E (EZ=1 1Ek))2

P(U;_.E¢) > .
= E(¥iz1 152
(b) Deduce from this that if

(i) X, P(Ep) = o0, and
(ii) there exists ¢ > 0 such that for all m < n, we have

P(EmEp) < cP(Ep)P(En-m)

then
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(iii) P(limsup,_, o, En) > 0.

Thus, we get a partial converse to Borel-Cantelli: if (iii) fails, that is, if
P(limsup,_, o E,) = 0, and (ii) holds, then (i) fails so that ), P(E,) <
0.

(c) Let {Y,,n > 1} be iid positive random variables with common distri-
bution function G and suppose {X,,n > 1} is a sequence of iid positive
random variables with common distribution F. Suppose {X,} and {Y,} are
independent. Prove using Borel-Cantelli that if for all e > 0

/°° G(dy) <o
0o 1—F(ey) '

Yy

thenasn — o0

— 0,

V?=1Xi

almost surely. Prove the converse using the converse to Borel-Cantelli proved
in (b) above.

. The SLLN says that if {X,, n > 1} are iid with E|X;| < o0, then

Su/n S E(Xy).
Show also that

S./n 5 Exy).
(Think of uniform integrability.)

Suppose {X,} are iid, E|X1| < 00, EX; = 0 and suppose that {c,} is a
bounded sequence of real numbers. Prove

1 n
- ZC!'X]' — 0Oa.s.
Lt

(If necessary, examine the proof of the SLLN.)

(a) Suppose that {X,} are m-dependent in the sense that random variables
more than m apart in the sequence are independent. More precisely, let

Bf:B(Xj,...,Xk),

and assume that B, ..., B’;’ are independent if k;_y +m < j; fori =
2, ..., 1. (Independent random variables are 0-dependent.) Suppose that the
{Xn} have this property and are uniformly bounded and that EX, = 0.
Show that n~1S, — O a.s.

Hint: Consider the subsequences X;, X;ym+1, Xit20m+1), ... forl <i <
m+1.
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(b) Suppose that {X,} are iid and each X; has finite range xy, ..., x; and
P[X1=xi]=p(x,'), l=1,,l

For uy, ..., uk, a k-tuple of the x;’s, let N, (uy, ..., ux) be the frequency
of the k-tuple in the first n + k — 1 trials; that is, the number of m such that
1<m<nand

Xm =Uly.-. ,Xm+k—1 = Uk.

Show that with probability 1, all asymptotic relative frequencies are what
they should be—that is, with probability 1,

n N1, ..., uk) = plur) -+ pQuwk)
for every k and every k-tuple uy, .. ., ux.

Suppose {X,;, n > 1} are iid with a symmetric distribution. Then Zn Xn/n
converges almost surely iff E(|X1]) < oo.

Suppose {X,} is defined iteratively in the following way: Let X have a uni-
form distribution on [0, 1] and for n > 1, X, 41 has a uniform distribution
on [0, X,,]. Show that

1
- log X,, converges a.s.

and find the almost sure limit.

Use the three series theorem to derive necessary and sufficient conditions
for 3, X, to converge a.s. when {X,} are independent and exponentially
distributed.

Suppose {X,, n > 1} are independent, normally distributed with
E(Xp) = pn, Var(X,) =o}.

Show that ), X, converges almost surely iff ), u, converges and
Y, 02 < 0.

Prove the three series theorem reduces to a two series theorem when the
random variables are positive. If V,, > 0 are independent, then ), V,, < 00
a.s. iff for any ¢ > 0, we have

Y P[Va > c] < oo, (i)
Y E(Valjy,sq)) < oo. (i)

If {X,} are iid with E|X1| < o0, E X1 # 0, show that

VielXil as g
|
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17. Suppose {X,} are independent with

18.

19.

20.

21.

1 1
P[Xy = kz] = ﬁ, PXy=-1]=1- ﬁ
Prove
n
Jim, ) X

exists a.s. and find the limit.

Supppse {X,, n > 1} are iid with E(X,) = 0, and E(Xf) = 1. Set S, =
31 Xi. Show
Sn

—— =0
nl/2logn -

almost surely.

Suppose {X,, n > 1} are non-negative independent random variables. Then
2 n Xn < 00 almost surely iff

ZE( Xn )<oo
- 1+ X,

ZE(X,,/\I) < 00.

Suppose {X,,n > 1} are independent random variables with E(X,) = 0
for all n. If

Y E (X2 1gx,11 + Xal e, 17) < 00,
n
then ), X, converges almost surely.
Hint: We have

0=EXpn) = EXnlyx,<1) + EXnlyx,1>1))-

Suppose {X,(6), n > 1} are iid with common exponential distribution with
mean 6. Then

Y Xi@)/n Eo.
i=1

Show for any u : Ry — R which is bounded and continuous that

00 -1\yn-1
fo u(y)e ™% (—n(Xn?—_—i-)'—nO_ldy - u(®).

Show this convergence is uniform on finite 6-intervals. (Compare this with
the Bernstein polynomials of item 6.3 on page 176.)
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22. The WLLN and inversion of Laplace transforms. Let X > 0 be a non-
negative random variable with distribution function F and Laplace trans-
form

Fo)=EE™) = / e M F(dx).
[0,00)

Show that F determines F using the weak law of large numbers and the
following steps.

(a) Show
F®O@) = / (-1 yke™™ F(dx).
[0,00)

(b) Suppose {&,(6),n > 1} are iid non-negative random variables with
a Poisson distribution, parameter 6 > 0. Use the weak law of large
numbers to prove

1, ifx >4,

im P[g”:"w)/" sx]= [0, ifx <0,

and therefore

6)J i
lim Zene(n) =[1, ifx >0,

n—»ooj<"x ]' 0, ifx <86.

(c) Conclude for any x > 0 which is a point of continuity of F that

Z‘ (l,l'lnfﬁ”)(n) — F(x).

j<nx

23. Suppose {X,, n > 1} are iid and uniformly distributed on (-1, 1). What is
E(X?)? Verify

n

ZX,-Z/n £

i=1

(SR

so that if we define

n
IXnlle = Q_ XH2,
i=1

then
p /1

Now define the n-dimensional annulus

1 X 1
Bn.5:={XeR":\/;-—8< "\)l{' <\/;+8}.
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Further define the n-dimensional cube
n
ILi=1L1"={xeR":\/|nl <1).
i=1

If A, is n-dimensional Lebesgue measure, show that
2—"}."(8".8 n In) —> 1.

This gives the curious result that for large n, the cube is well approximated
by the annulus.

24. Relative stability of sums. Prove the following are equivalent for iid non-
negative random variables {X,,n > 1}.

(a) There exist constants a, > 0 such that

n
- P
a;! E Xi—> 1
i=1

(b) Asn — o0 .
VimXi £
i=1Xi
(c) We have
EX11x,<x) _

lim =00
x—00 xP[X; > x]
(d) We have that the function u(x) := E(X11[x,<x]) is slowly varying;
that is,

im 29 1 weso
t—o00 u(t)

This is equivalent to

Ukx) =/xP[X1 > slds
0

being slowly varying.
(e) In this case, show we may select a, as follows. Set H(x) = x/U(x)
and then set
ap, =H"(n)
where H < is the inverse function of H satisfying H (H < (x)) ~ x.
(f) Now apply this to the St. Petersburg paradox. Let {X,, n > 1} be iid
with
PX,=21=27%, k>1.
What is E (X1)? Set S, = Y _;—; Xi. The goal is to show
Sn P
—_— 1
(nlogn)/log2

Proceed as follows:
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i. Check P[X >2"]=2"", n>1.
ii. Evaluate

n n 2/
/ P[X; > slds = Z/ P[X; > s]ds
0 j=1 2j-1

to get
log x
Ux) ~ ——.
) log2

So H(x) =x/U(x) ~ log2(x/logx) and
ap ~ (nlogn)/log2.

Formulate and prove a generalization of Theorem 7.2.1 applicable to tri-
angular arrays {X,x,1 < k < n;n > 1} where {Xp 4,1 < k < n} is
independent and where n is replaced by a general sequence of constants
{b,}. For iid random variables, the conditions should reduce to

nP[|Xn1| > ba] = O, (7.36)
n
R E X111z > 0 (737)

If Sy = Y[ Xn,i, the conclusion for the row iid case is

Sn —nE(Xn11(x,.,1<b,) P
-

0.
bn
Apply this to the St. Petersburg paradox of Problem 24.

If {X,,n > 1} is defined as in the St. Petersburg paradox of Problem 24,
show almost surely that

. Xn
lim sup = 00,
n—oo nlogyn

so that for the partial sums we also have almost surely

. Sn
lim sup =00
n—oo nlogyn

Thus we have another example of a sequence converging in probability but
not almost surely.

More applications of WLLN.
(a) Suppose u(x, y) is continuous on the triangle
TRI:={(x,y): x>0,y >0,x+y =1}.
Show that uniformly on TRI

Lk M kA ik
2 DY A x =T sy,
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(b) Suppose u : [0, 00) > R is continuous with
lim u(x) =: u(00)
X—>00
existing finite. Show u can be approximated uniformly by linear con-
binations of e™*.

28. Suppose {X,, n > 1} are uncorrelated random variables satisfying
E(Xn) =M, Var(Xn) ch COV(XivXj)—_—Ov i #j'

Show that as n — oc that ZLI Xi/n — w in probability and in L.
Now suppose E(X,) = 0and E(X;X;) < p(i—j) fori > jand p(n) - 0
asn — 00. Show Y ;_; X;/n Lo

29. Suppose {X,, n > 1} is iid with common distribution described as follows.

Define
1

= T Ao k > 17
2kk(k + 1) -
and po =1—Y g, pk. Suppose

Pk

PXp=2-1]=p, k=1
and P[X, = —1] = po. Observe that
szpk-_—_Z(_————) = 1,
& o \k k+1
and that E(X,) =0.For S, = Y ;_, Xi, n > 1, prove

Sn P
n/log,n

30. Classical coupon collecting. Suppose {Xi, k > 1} is iid and uniformly
distributed on {1, ..., n}. Define

T, =inf{m : {X1,....,Xn}=1{1,...,n}}

to be the first time all values are sampled.

The problem name stems from the game of collecting coupons. There are
n different coupons and one samples with replacement repeatedly from the

population {1, ..., n} until all coupons are collected. The random variable
T, is the number of samples necessary to obtain all coupons.
Show
I, P
-1

nlogn
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Hints: Define
T (n) = inf{m : card{X1, ..., X} = k}

to be the number of samples necessary to draw k different coupons. Verify
that 1y (n) = 1 and {tx(n) — x—1(n),2 < k < n} are independent and
geometrically distributed. Verify that

n
1
E(T,) ="Z,T ~ nlogn,

i=1

n

Var(T,) < nzzz‘-z.

i=1

Check
Var(T,/E(T,)) — 0.

Suppose {X,, n > 1} are independent Poisson distributed random variables
with E(X,) = A,. Suppose {S, = Y ;_; Xi,n > 1} and that }_, A, = 0.
Show S,/E(S,) — 1 almost surely.

Suppose {X,,n > 1} are iid with P[X; > x] = e™*, x > 0. Show as
n— oo

n

\/X,-/logn -1,

i=1

almost surely. Hint: You already know from Example 4.5.2 of Chapter 4
that

. Xn
limsup — =1,
n—oo logn

almost surely.
Suppose {Xj, j > 1} are independent with

P[X,=n"%]=P[X,=-n"%= %

Use the Kolmogorov convergence criterion to verify that if « > 1/2, then
Y. Xn converges almost surely. Use the Kolmogorov three series theo-
rem to verify that @« > 1/2 is necessary for convergence. Verify that
Y E(Xn]) <ooiffa > 1.

Let {Ny,n > 1} be iid N(0, 1) random variables. Use the Kolmogorov
convergence criterion to verify quickly that Yoo, %’1 sin(nmt) converges
almost surely.
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. Suppose {X,,n > 1} is iid and
E(X]) <00, EX;)=o0.

Show S,/n — —o0 almost surely. (Try truncation of X, and use the clas-
sical SLLN.)

Suppose {X,,n > 1} is independent and X} > 0. If for some & € (0, 1)
there exists x such that for all &

/ XidP < $E(Xy),
[Xk>x]

then almost sure convergence of ), X, implies ), E(X,) < 0o as well.

Use only the three series theorem to come up with a necessary and suffi-
cient condition for sums of independent exponentially distributed random
variables to converge.

Suppose {X,, n > 1} are iid with

P[X, =0] = P[X, =2] = -:12

Show Y p2, X,/3" converges almost surely. The limit has the Cantor dis-
tribution.

If {A,, n > 1} are independent events, show that
1
=Y 1., ==Y Py So.
n i nia

Suppose {X,, n > 1} are independent and set S, = > ;_; X;. Then S, /n —
0 almost surely iff the following two conditions hold:

@) Sa/n >0,

(b) S2n/2" — 0 almost surely.
Suppose {X, Y, n > 1} are independent random variables such that X, 4
Y, for all n > 1. Suppose further that, for all n > 1, there is a constant K

such that
[Xnl Vv IYa| < K.

Then ", (X, — Y,) converges almost surely iff ), Var(X,) < oc.

Suppose {X,;, n > 1} is an arbitrary sequence of random variables that have
finite means and variances and satisfying

(a) limp—o0 E(X,) = c, for some finite constant ¢, and
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() Y n=q Var(X,) < oo.

Show X,, — c almost surely. (Hint: Define &, = X, — E(X},) and show
h £2? < 0o almost surely. Alternatively, try to proceed using Chebychev’s
inequality.)

If (b) is replaced by the hypothesis Var(X,) — 0, show X, £

(a) Fix areal number p € (0, 1) and let { B,,, n > 1} be iid Bernoulli random
variables with
P[B,=1]=p=1-P[B, =0].

Define Y = Y oo, B,/2". Verify that the series converges. What is the
range of Y'? What is the mean and variance of Y? Let Q , be the distribution
of Y. Where does Q, concentrate?

Use the SLLN to show that if p # p’, then Q, and Q,/ are mutually
singular; that is, there exists a set A such that 0 ,(A) = 1and Q 7(A) = 0.

(b) Let Fpp(x) be the distribution function corresponding to Q . Show Fp(x)
is continuous and strictly increasing on [0, 1], F,(0) = 0, F,(1) = 1 and
satisfies

(1 - p)Fp(2x), if0<x=<1/2

F =
P = b pF,@e-1), if12<x<1.

Let {X,,n > 1} be iid with values in the set S = {1, ..., 17}. Define the
(discrete) density
fo)=P[X1=y], yeS.

Let fi # fo be another probability mass function on § so that for y € §,
we have Fi(y) > 0and 3 ;s f1(j) = 1. Set

- fl(Xl)
Zn l_[ fO(Xz

Prove that Z,, =3 0. (Consider Y, = logZ,.)

Suppose {X, n > 1} are iid random variables taking values in the alphabet
§ = {1, ..., r} with positive probabilities p, ..., p,. Define
Palits .. in) = P[X1 = i1, ..., Xn = in],
and set
Xn(@) 1= pn(X1(®), . .., Xn(w)).

Then x,(w) is the probability that in a new sample of n observations, what
is observed matches the original observations. Show that

1 5. d
~—log Xa(w) = H := = 3 " pilog pi.

i=1
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46. Suppose {X,,n > 1} are iid with Cauchy density. Show that

{Sn/n,n > 1} does not converge almost surely but V_, X;/n converges
in distribution. To what?



8

Convergence in Distribution

This chapter discusses the basic notions of convergence in distribution. Given a
sequence of random variables, when do their distributions converge in a useful
way to a limit?

In statisticians’ language, given a random sample X7, ..., X, the sample mean
X, is CAN; that is, consistent and asymptotically normal. This means that X has
an approximately normal distribution as the sample size grows. What exactly does
this mean?

8.1 Basic Definitions

Recall our notation that df stands for distribution function. For the time being, we
will understand this to correspond to a probability measure on R.
Recall that F is a df if

@) 0=<Fx) =<1
(ii) F is non-decreasing;
(iii) F(x+) = F(x) Vx € R, where

F(x+) =lim F (x + ¢);
€>0
€l0
that is, F is right continuous.

S.I. Resnick, 4 Probability Path, Modern Birkhduser Classics, 247
DOI 10.1007/978-0-8176-8409-9_8, © Springer Science+Business Media New York 2014
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Also, remember the shorthand notation
F(o0) : = lim F(y)
ytoo

F(—00) : = lim F(y).
yloo

F is a probability distribution function if
F(—00) =0, F(4+o00) =1.

In this case, F is proper or non-defective.
If F(x) is a df, set

C(F) = {x € R : F is continuous at x}.

A finite interval I with endpoints a < b is called an interval of continuity for F if
both a, b € C(F). We know that

(C(F))¢ = {x : F is discontinuous at x}

is at most countable, since
1
Ap={x:F(x})=F@x) - F(x—) > ;}

has at most n elements (otherwise (i) is violated) and therefore

C@E)* =Jan

is at most countable.
For an interval I = (a, b], we write, as usual, F(I) = F(b) — F(a).Ifa,b €
C(F), then F ((a, b)) = F((a, b]).

Lemma 8.1.1 A distribution function F (x) is determined on a dense set. Let D
be dense in R. Suppose Fp(-) is defined on D and satisfies the following:

(a) Fp(-) is non-decreasing on D.
(b) 0 < Fp(x) <1, forallx € D.
(c) limyep x—»+00 Fp(x) =1, limgep x—-0o Fp(x) =0.

Define for all x € R

F(x) := ;ng Fp(y) = lim Fp(y). 8.1)
yeD y’eli)

Then F is a right continuous probability df. Thus, any two right continuous df’s
agreeing on a dense set will agree everywhere.
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Remark 8.1.1 The proof of Lemma 8.1.1 below shows the following: We let
g : R — R have the property that for all x € R

g(x+) = limg(y)
yix

exists. Set h(x) = g(x+). Then h is right continuous.

Proof of Lemma 8.1.1. We check that F, defined by (8.1), is right continuous.
The plan is to fix x € R and show that F is right continuous at x. Given € > 0,
there exists x’ € D, x’ > x such that

F(x) +€> Fp). 8.2)
From the definition of F, for y € (x, x'),
Fp(x') 2 F(y) (8.3)
so combining inequalities (8.2) and (8.3) yields
F(x)+€>F(y), VYye(x,x).
Now F is monotone, so let y | x to get
F(x)+€ > F(x+).
This is true for all small € > 0, so let € | 0 and we get
F(x) > F(x+).

Since monotonicity of F implies F(x+) > F(x), we get F(x) = F(x+) as
desired. O

Four definitions. We now consider four definitions related to weak conver-
gence of probability measures. Let {F,, n > 1} be probability distribution func-
tions and let F be a distribution function which is not necessarily proper.

(1) Vague convergence. The sequence {F,} converges vaguely to F, written
F, S F , if for every finite interval of continuity I of F, we have

F,(I) > F(I).
(See Chung (1968), Feller (1971).)

(2) Proper convergence. The sequence {F,} converges properly to F, written
F, -> Fif F, S FandFisa proper df; that is F(R) = 1. (See Feller
(1971).)

(3) Weak convergence. The sequence { Fy,} converges weakly to F, written F,, 5
F,if

Fy(x) = F(x),
for all x € C(F). (See Billingsley (1968, 1995).)
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(4) Complete convergence. The sequence {F, } converges completely to F, writ-
ten Fy — F,if F, —> F and F is proper. (See Loeve (1977).)

Example. Define
F,(x) := F(x + (—=1)"n).

Then

Fon(x) = F(x +2n) > 1
Fopti(x)=Fx—-2n+1)) > 0.

Thus {F}, (x)} does not converge for any x. Thus weak convergence fails. However,
for any I = (a, b]

Fy,(a,b] = Fpp(b) — Fop(a) > 1-1=0
Fant1(a, b] = Faut1(b) — Fopt1(@) > 0—-0=0.

So F,(I) — 0 and vague convergence holds: F, 5 G where G (R) = 0. So the
limit is not proper.

Theorem 8.1.1 (Equivalence of the Four Definitions) If F is proper, then the
four definitions (1), (2), (3), (4) are equivalent.

Proof. If F is proper, then (1) and (2) are the same and also (3) and (4) are the
same.
We check that (4) implies (2). If

F,(x) > F(x), VxeC(F),
then
F,(a,b] = Fy(b) — Fy(a) > F(b) — F(a) = F(a, b]

if (a, b] is an interval of continuity.
Next we show (2) implies (4): Assume

Fy(I) - F(I),
for all intervals of continuity /. Leta, b € C(F). Then
Fn(b) = Fn(a,b] > F(a, b],
)
léﬂioréfF,,(b) > F(a,b), Va <b,a eC(F).
Leta | —o00, a € C(F) to get

liminf F,,(b) > F(b).
n—>0o0
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For the reverse inequality, suppose ! < b < r, I,r € C(F), and / chosen so small
and r chosen so large that

F((,r]) <e.
Then since F,(I,r] = F(l,r], we have
Fa((, ) = F(, r]°).
So given € > 0, there exists ng = ng(€) such that n > ng implies
Fa({,r]°) < 2e.
For n > ny,

Fn(b) = Fy(b) — F,() + Fa(D)
= Fp(,b] + Fn (1)
S Fn(lv b] +2€1

since Fp(I) < Fu((, b]¢). So
limsup F,,(b) < F(l,b] + 2¢

n—>00

< F(b) + 2e.
Since € > 0 is arbitrary

limsup F,,(b) < F(b).

n—00 m}

Notation: If {F, F,,, n > 1} are probability distributions, write F, = F to mean
any of the equivalent notions given by (1)~4). If X, is a random variable with dis-
tribution F, and X is a random variable with distribution F, we write X, = X to
mean F, = F. This is read “X, converges in distribution to X” or “F, converges
weakly to F.” Notice that unlike almost sure, in probability, or L , convergence,
convergence in distribution says nothing about the behavior of the random vari-
ables themselves and only comments on the behavior of the distribution functions
of the random variables.

Example 8.1.1 Let N be an N (0, 1) random variable so that the distribution func-
tion is symmetric. Define forn > 1

X, =(=1)"N.
Then X, 4 N, so automatically
Xn=N.

But of course {X,} neither converges almost surely nor in probability.
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Remark 8.1.2 Weak limits are unique. If F, S F , and also F, 5 G, then
F = G. There is a simple reason for this. The set (C(F))¢ U (C(G))€ is countable
S0

INT =C(F)NC(G)
=R\ a countable set

and hence is dense. For x € INT,
Fp(x) > F(x), Fp(x) > G(x),
so F(x) = G(x) for x € INT, and hence by Lemma 8.1.1, we have F = G.
Here is a simple example of weak convergence.
Example 8.1.2 Let {X,, n > 1} be iid with common unit exponential distribution
P[X,>x]=e*, x>0.

Set M, = vi_, X; forn > 1. Then

M, —logn =7, 84

where
P[Y <x]=exp{—e*}, xeR.

To prove (8.4), note that for x € R,

n
P[M, —logn < x] = P([")[X; < x + logn])
i=1
= (1 _ e—(x+logn))"
e *
=(1- —;1—) — exp{—e*}).

8.2 Scheffé’s lemma

Consider the following modes of convergence that are stronger than weak conver-
gence.

(@) Fn(A) > F(A), VA € B(R).
(b) sup |Fn(A)— F(A)| - 0.
AeBR)

Definition (a) (and hence (b)) would rule out many circumstances we would
like to fall under weak convergence. Two examples illustrate the point of this
remark.
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Example 8.2.1 (i). Suppose F, puts mass % at points {%, %, v L IE

F(x)=x, 0<xx1

is the uniform distribution on [0, 1], then for x € (0, 1)

F,(x) = [—n;j-c—] - x = F(x).

Thus we have weak convergence F, = F. However if Q is the set of rationals in
[0,1],

Q=1 FQ=0,

so convergence in the sense of (a) fails even though it seems natural that the
discrete uniform distribution should be converging to the continuous uniform dis-
tribution.

(ii) DeMoivre-Laplace central limit theorem: This is a situation similar to what
was observed in (a). Suppose {X,,, n > 1} are iid, with

P[X,=1]=p=1-P[X,=0].
Set S, = Y ;_; Xi, which has a binomial distribution with parameters n, p. Then

the DeMoivre-Laplace central limit theorem states that

X

Sx]—»N(x)=f n(u)du

-0

Sn —np
v/npPq

P[

But if

we have
P[S,, —np
+/npq

Weak convergence, because of its connection to continuous functions (see The-
orem 8.4.1) is more useful than the convergence notions (a) or (b). The conver-
gence definition (b) is called total variation convergence and has connections to
density convergence through Scheffé’s lemma.

€A]l=1#N()=0.

Lemma 8.2.1 (Scheffé’s lemma) Suppose {F, F,,n > 1} are probability distri-
butions with densities { f, fo,n > 1}. Then

1
sup |Fa(B) ~ F(B)| = 3 / | fu®) = FOOldx. (8.5)
BeB(R)
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If fa(x) = f(x) almost everywhere (that is, for all x except a set of Lebesgue
measure 0), then

f ) = F@)ldx — 0.

and thus F, — F in total variation (and hence weakly).
Remarks.

e If F, 5> F and F, and F have densities fn, f, it does not necessarily
follow that f,(x) — f(x). See Exercise 12.

e Although Scheffé’s lemma as presented above looks like it deals with den-
sities with respect to Lebesgue measure, in fact it works with densities with
respect to any measure. This is a very useful observation and sometimes a
density with respect to counting measure is employed to deal with conver-
gence of sums. See, for instance, Exercise 4.

Proof of Scheffé’s lemma. Let B € B(R). Then

1-1= /(fn(x) — f(x))dx =0,

s
0= /B (fuX) = F))dx + /B a0~ f)x,
which implies
[ = fenaxi=1 [ (oo - fonds. o)
This leads to
21Fu(B) — FB) =21 [ (o) = Fexaxl
= fB (@) — fGNdx] + ] /B o) = f)dx]
< [[ 1500 - reolax + [ 10— feoas
= / [fn(x) — f(x)|dx.
To summarize:

1
sup|Fy(B) ~ F(B) < 3 f | ful®) = F0)ldx.
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If we find some set B for which equality actually holds, then we will have
shown (8.5). Set B = [f,, > f]. Then from (8.6)

2|Fy(B) — F(B)| = IfB(fn(X)—f(x))dXI+|/Bc(fn(x)—f(x))dXI,

and because the first integrand on the right is non-negative and the second is non-
positive, we have the equality

- fB |Fu) — FOO)Idx + /B 1)~ F 0l
- f |Fa0) — FCOI.
So equality holds in (8.5).

Now suppose fp(x) — f(x) almost everywhere. So f — f, — 0 a.e., and
therefore (f — f,)* — 0 almost everywhere. Also

(f=f </
and  is integrable on R with respect to Lebesgue measure. Since
0= [ - futondx = [(16) = facontax = [ (0 - fotana,
it follows that
[170)- sz = (76 = futonax + [ (0 = fute)
=2 [(f) - futsn*as.

Thus
(f-fmt<fel,
and

(f - fn)+ -0,

a.e. and dominated convergence implies

/ £ () = Fu(@)ldx — 0.

8.2.1 Scheffé’s lemma and Order Statistics

As an example of one use for Scheffé’s lemma, we consider the following limit
result for order statistics.
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Proposition 8.2.1 Suppose {Up, n > 1} are iid U (0, 1) random variables so that
PlUj<x]=x, 0=<x<1

and suppose
Uan 2Ugny <+ <Ugm,n

are the order statistics so that U1,y = min{Uy, ..., Uy,}, Uq,p) is the second
smallest and Uy ) is the largest. Assume k = k(n) is a function of n satisfying
k(n) > ocandk/n — 0.asn - oc. Let

Utr) =
b=
n(l=5)a

Then the density of &, converges to a standard normal density and hence by
Scheffé’s lemma

1 __22
sup |P[& eB]—/———e “Rau| - 0
BeB(R)I " B V2w I

asn — OQ.

Proof. The distribution of U,,) can be obtained from a binomial probability
since for 0 < x < 1, P[Uk,n) < x] is the binomial probability of at least k
successes in 7 trials when the success probability is x. Differentiating, we get the
density fn(x) of U,n) to be

— n! k-1 n—k
fn(x)—mx 1-x) , O0<x<l1.
(This density can also be obtained directly by a multimomial argument where
there are 3 cells with proabilities x, dx and (1 — x) and cell frequencies k — 1, 1
and n — k.) Since

as n — 00, the convergence to types Theorem 8.7.1 discussed below assures us
we can replace the square root in the expression for &, by +/k/n and thus we
consider the density

vk f

)
By Stirling’s formula (see Exercise 8 of Chapter 9), as n — 00,
n! Jn

k—Dn—k)! V2 () (1 - Ky R

n
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Neglecting the factorials in the expression for the density, we have two factors of
the form

(ﬁx_,.f)k—l(l _k_ ﬁx)"‘k
n n n n
— (k X )n—k
(n—ky/vk

k=1 X \k-1 n—k
- 14 — -
D+ -2
Thus we get for the density of &,, the following asymptotic expression

X k-1 x n—k
—(1 +—=) " 1-—7)"""
v2r vk (n—k)/Vk
It suffices to prove that
X \k-1 X n—k 2
1+ =) (1- ——=)"" > /2
U+ - aow
or equivalently,
2
x X x
k—1Dlog(l+ —=)+ (n —k)log(l - —m——=) - —. 8.7
Observe that, for |t| < 1,
o0 t"
—logl-0)=) —,
n
n=1
and therefore
£2
§():=|—log(l—1t)—(t + 5”

_ZH" _ﬂ" 21t 838

if |t| < 1/2. So the left side of (8.7) is of the form
x2 2

X
- _k
k=Dl = = =Bl e

1+0(1)

where

o(1) = (k — 1)5(%) +(n - k)S(

Neglecting o(1), (8.7) simplifies to

X
—_— 0
YN L

X x2 1 1
—_———01-- —x%/2.
W A A -
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8.3 The Baby Skorohod Theorem

Skorohod’s theorem is a conceptual aid which makes certain weak convergence
results easy to prove by continuity arguments. The theorem is true in great gener-
ality. We only consider the result for real valued random variables and hence the
name Baby Skorohod Theorem.

We begin with a brief discussion of the relationship of almost sure convergence
and weak convergence.

Proposition 8.3.1 Suppose {X, X,,, n > 1} are random variables. If
X, 3 x,

then
X, =X

Proof. Suppose X, 2% X and let F be the distribution function of X. Set
N =[X, - XY

so that P(N) = 0. For any # > 0 and x € C(F), we have the following set
containments:

NN[X <x-h]C lirgégf[X,, <x]NN°¢

C limsup[X, < x]NN°

n—>oo

C[X <x]NN€,
and hence, taking probabilities
F(x — h) < P(liminf[X, < x])
n—>oo
< lim io?,f P[X, < x] (from Fatou’s lemma)
< limsup P[X, < x]

n—>00

< P(limsup[X, < x]) (from Fatou’s lemma )
n—->oo

< F(x).
Since x € C(F), leth | 0to get

F(x) < liminf F,(x) < limsup F,(x) < F(x).
n—>00 n—»00 0O
The converse if false: Recall Example 8.1.1.
Despite the fact that convergence in distribution does not imply almost sure
convergence, Skorohod’s theorem provides a partial converse.
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Theorem 8.3.2 (Baby Skorohod Theorem) Suppose {X,,n > 0} are random
variables defined on the probability space (2, B, P) such that

X, = Xo.

Then there exist random variables {X*,n > 0} defined on the Lebesgue proba-
bility space ([0, 1], B([0, 1]), A = Lebesgue measure ) such that for each fixed
n=>0,

X, £ x*,

and
#a.s.

X, > X g
where a.s. means almost surely with respect to A.

Note that Skorohod’s theorem ignores dependencies in the original {X,} se-
quence. It produces a sequence {X] ,’f} whose one dimensional distributions match
those of the original sequence but makes no attempt to match the finite dimen-
sional distributions.

The proof of Skorohod’s theorem requires the following result.

Lemma 8.3.1 Suppose F, is the distribution function of X, so that F, = Fo. If
t€(0,1)NC(Fy),

then
F,=(t) - F5 ().

Proof of Lemma 8.3.1. Since C(Fp)© is at most countable, given € > 0, there
exists x € C(Fp) such that

Fy () —e <x <Fy ().

From the definition of the inverse function, x < F;~(¢) implies that Fo(x) < ¢.
Also, x € C(Fp) implies F,(x) — Fy(x). So for large n, we have Fy(x) < t.
Again, using the definition of the inverse function, we get x < F, (). Thus

Fy()—e<x<F @
for all large n and since € > 0 is arbitrary, we conclude

Fy@ < lilrrlng,,‘_(t). 8.9)

Note that we have not yet used the assumption that ¢ is a continuity point of F;~
and this is used for the reverse inequality.
Whenever t' > t, we may find y € C(Fp) such that

Fy )<y <Fy (@) +e.
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This gives
Fo(y) >t >t.

Since y € C(Fp), Fy(y) — Fo(y) and for large n, F,(y) > t, therefore y >
F, (), and thus
Fr()+e>y>F @)

for all large n. Moreover, since € > 0 is arbitrary,

limsup F,”(t) < Fy(¢').

n—-0o

Lett’ | t and use continuity of F;~ at ¢ to conclude that

limsup F,”(¢) < Fy™(1). (8.10)
n—->o0o
The two inequalities (8.9) and (8.10) combine to yield the result. o

This lemma only guarantees convergence of F,,~ to F;~ at continuity points of
the limit. However, convergence could take place on more points. For instance, if
F, =Foforalln, F,~ = FO“' and convergence would be everywhere.

Lemma 8.3.1 allows a rapid proof of the Baby Skorohod theorem.

Proof of the Baby Skorohod Theorem. On the sample space [0, 1], define the
random variable U (¢t) = ¢ so that U is uniformly distributed, since for 0 < x <1

AU <x] =AMt e[0,1]:U@t) < x} = A[0,x] = x.
For n > 0 define X* on [0, 1] by
Xt = F ).
Then fory e R
AMXE <yl=Mt€[0,1]: F,7(0) <y} =AMt €[0,1] : £ < Fa(y)} = Fu(y).

d
So we conclude that X ,’f = X, foreachn > 0.
Next, we write

At €[0,1] :X%@) A XB(0)
=AMt €[0,1]: F,7 (1) » Fg (1)},
and using Lemma 8.3.1, this is bounded by

< Aft €[0,1] : F; is not continuous at ¢ }
= M{ a countable set } = 0. o

The next corollary looks tame when restricted to R, but its multidimensional
generalizations have profound consequences. For amap 4 : R > R, define

Disc(h) = {x : h is not continuous at x } = (C(h))°.
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Corollary 8.3.1 (Continuous Mapping Theorem) Let {X,,n > 0} be a se-
quence of random variables such that

Xn = Xo.
For n > 0, assume F, is the distribution function of X,. Let h : R > R satisfy
P[Xy € Disc(h)] = 0.

Then
h(Xy) = h(Xo),

and if h is bounded, dominated convergence implies
Eh(X,) = /h(x)F,,(dx) — Fh(x) = /h(x)Fo(dx).

Remark. Disc(h) is always measurable even if 4 is not.
As a quick example, if X, = Xo, then X2 — X (2) which is checked by applying
the continuous function (so Disc(k) is empty) h(x) = x2.

Proof. The proof of the corollary uses the Baby Skorohod Theorem which iden-

tifies new random variables Xf,' 4 Xp,n > 0, with X ff defined on [0, 1]. Also
X%@) > X}(t) for a.a. t. If X3(t) € C(h), then h(X%(r)) > h(X{(r)). Thus,

Mt €[0,1] :h(XE @) - h(X3 1))}
> Mt € [0,1] : X3(2) € (Disc(h)))
= P([Xo € Disc(h)]) = 1.

So h(X ,'f) - h(X g) almost surely with respect to A, and since almost sure con-
vergence implies convergence in distribution, we have

h(Xn) £ h(X*) = h(x?) £ h(Xo)
so that h(X,) = h(Xp). m]

8.3.1 The Delta Method

The delta method allows us to take a basic convergence, for instance to a limiting
normal distribution, and apply smooth functions and conclude that the functions
are asymptotically normal as well.

In statistical estimation we try to estimate a parameter 6 from a parameter set
© based on a random sample of size n with a statistic

n=Ty(X1,...,Xn).
This means we have a family of probability models

{(Q,B, ), 0 € 6},
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and we are trying to choose the correct model. The estimator T}, is consistent if

T, B0,

for every 6. The estimator T, is CAN, or consistent and asymptotically normal, if
foralld € ©
nlirgo Pylon(T, —0) <x]=N(0,1,x),

for some 0, — 00.

Suppose we have a CAN estimator of 6, but we need to estimate a smooth
function g(6). For example, in a family of exponential densities, § may represent
the mean but we are interested in the variance 62. We see from the delta method
that g(T,) is also CAN for g().

We illustrate the method using the central limit theorem (CLT) to be proved in
the next chapter. Let {X;, j > 1} be iid with E(X,) = u and Var(X,) = o2,
From the CLT we get

Sp—nu

ovn

where N (0, 1) is a normal random variable with mean 0 and variance 1. Equiva-
lently, we can express this in terms of X = };_, Xi/n as

= N(©O,1),

ﬁ(’t“) = N(0,1).

So X is consistent and an asymptotically normal estimator of x. The delta method
asserts that if g(x) has a non-zero derivative g’(u) at u, then

g()’r)—gm))

= N(0,1). 8.11
n( og'(n) =500 @11)
So g(X) is CAN for g(u).

Remark. The proof does not depend on the limiting random variable being N (0, 1)
and would work equally well if N (0, 1) were replaced by any random variable Y.

Proof of (8.11). By the Baby Skorohod Theorem there exist random variables Z#
and N* on the probability space ((0, 1), B((0, 1)), 1) such that

Z,’fiﬁ(x_“>, N*EN

o

and
ZP 5 N as ().
Define

X*=p+ozt/vn,
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sothat X £ X*. Then using the definition of derivative

- Y _
n(zz(X) g(u))_i_ﬁ(g(u+al,,/~/ﬁ) g(u))

og'(un) og' (1)
_gutozZi/ym —gw) oz,
aZt/\n og'(p)
as.(A) , O'N# # d
. =N*LZN,
— 8 () g ()

since 0 Z#/./n — 0 almost surely. This completes the proof.

Remark. Suppose {X,, n > 0} is a sequence of random variables such that

Xn = Xo.

Suppose further that
h:ReS§,

where S is some nice metric space, for example, S = R2. Then if
P[Xq € Disc(h)] =0,
Skorohod’s theorem suggests that it should be the case that
h(Xn) = h(X)

in S. But what does weak convergence in S mean? Read on.

8.4 Weak Convergence Equivalences;
Portmanteau Theorem

263

In this section we discuss several conditions which are equivalent to weak conver-
gence of probability distributions. Some of these are of theoretical use and some
allow easy generalization of the notion of weak convergence to higher dimensions
and even to function spaces. The definition of weak convergence of distribution
functions on R is notable for not allowing easy generalization to more sophis-
ticated spaces. The modern theory of weak convergence of stochastic processes

rests on the equivalences to be discussed next.
We nead the following definition. For A € B(R), let
d(A) = the boundary of A
=A"\ A" = the closure of A minus the interior of A
={x:3y, €A, y, > xand 3z, € A®, z, - x}
= points reachable from both outside and inside A.
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Theorem 8.4.1 (Portmanteau Theorem) Let {F,,n > 0} be a family of proper
distributions. The following are equivalent.

(1) F, > Fo.

(2) Forall f : R — R which are bounded and continuous,

fma»fﬁm

Equivalently, if X, is a random variable with distribution F, (n > 0), then
for f bounded and continuous

Ef(Xn) = Ef(Xo).

(3) If A € B(R) satisfies Fy(3(A)) = 0, then
F,(A) = Fy(A).

Remarks. (i) Item (2) allows for the easy generalization of the notion of weak
convergence of random elements {£,,n > 0} whose range S is a metric space.
The definition is
&n = &o

iff

E(f (&) = E(f(0)
as n — oo for all test functions f : S > R which are bounded and continuous.
(The notion of continuity is natural since S is a metric space.)

(ii) The following clarification is necessary. Portmanteau is not the name of the
inventor of this theorem. A portmanteau is a large leather suitcase that opens into
two hinged compartments. Billingsley (1968) may be the first to call this result
and its generalizations by the name portmanteau theorem. He dates the result back
to 1940 and attributes it to Alexandrov.

Proof. (1) — (2): This follows from Corollary 8.3.1 of the continuous mapping
theorem.
(1) = (3): Let f(x) = 14(x). We claim that

9(A) = Disc(1,4). (8.12)
To verify (8.12), we proceed with verifications of two set inclusions.
(i) 3(A) C Disc(14). This is checked as follows. If x € 3(A), then there exists

yn €A, andy, — x,
zp € A, and z,, — x.

So
1=140n) > 1, 0=14(z,) >0

implies x € Disc(14).
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(ii) Disc(14) C 9(A): This is verified as follows. Let x € Disc(14). Then
there exists x, — x, such that

1a(xp) A 14(x).
Now there are two cases to consider.

Case (i) 14(x) = 1. Then there exists n’ such that 14(x,’) — 0. So for all
large n’, 14(xy’) = 0 and x,» € A°. Thus x,» € A€, and x,y — x.
Alsolet y, =x € A and then y, — x,sox € 9(A).

Case (ii) 14(x) = 0. This is handled similarly.

Given A € B(R) such that Fp(3(A)) = 0, we have that Fo({x : x € Disc(14)} =
0 and by the continuous mapping theorem

/lAdF,, = Fp(A) > [lAdFo = Fy(A).

(3) = (1): Letx € C(Fp). We must show F,,(x) = F(x).Butif A = (—o00, x],
then 3(A) = {x} and Fy(39(A)) = 0 since Fy({x}) = 0 because x € C(Fp). So

Fy(A) = Fp(x) = Fo(A) = Fo(x).

(Recall, we are using both F,, and Fy in two ways, once as a measure and once as
a distribution function.)

(2) — (1). This is the last implication needed to show the equivalence of (1),
(2) and (3). Let a, b € C(F). Given (2), we show Fy(a, b] - Fy(a, b).

Define the bounded continuous function gy whose graph is the trapezoid of
height 1 obtained by taking a rectangle of height 1 with base [a, b] and extending
the base symmetrically to [@ — k™!, b+ k™. Then gk | 1{a,5) as k — oo and for
all &,

F,,(a,b]:/l;l(a,b]dF,, S/gde,, - fgdeo

as n — o0 due to (2). Since gx < 1, and gk | 1[4,5) We have

/8deo  Fo([a, b)) = Fo((a, b]).

We conclude that
lim sup Fy(a, b] < Fy(a, b].
n—>0o0
Next, define new functions hx whose graphs are trapezoids of height 1 obtained
by taking a rectangle of height 1 with base [a + k™!, b — k~!] and stretching the
base symmetrically to obtain [a, b]. Then hy 1 1(4,5) and

Fu(a,b] > f hedF, — / hidFo,
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for all k. By monotone convergence
[ maFo t Futa.b) = Fotta, 5D

as k — 09, so that
liminf Fy((a, b)) = Fo((a, b). O

Sometimes one of the characterizations of Theorem 8.4.1 is much easier to
verify than the definition.

Example 8.4.1 The discrete uniform distribution is close to the continuous
uniform distribution. Suppose F, has atoms at i/n,1 < i < n of size 1/n. Let
Fy be the uniform distribution on [0, 1]; that is

Fx)=x, 0<x<l1.

Then
F, = Fy.

To verify this, it is easiest to proceed by showing that integrals of arbitrary
bounded continuous test functions converge. Let f be real valued, bounded and
continuous with domain [0, 1]. Observe that

n ) 1
f fdF, = ; farm=

= Riemann approximating sum

where Fy is the uniform distribution on [0, 1]. O

It is possible to restrict the test functions in the portmanteau theorem to be
uniformly continuous and not just continuous.

Corollary 8.4.1 Let {F,,n > 0} be a family of proper distributions. The follow-
ing are equivalent.

(1) Fy = F.

(2) Forall f : R +— R which are bounded and uniformly continuous,

fﬁ&»/ﬁm

Equivalently, if X,, is a random variable with distribution F, (n > 0), then
for f bounded and uniformly continuous

Ef(Xn) > Ef(Xo).
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Proof. In the proof of (2) — (1) in the portmanteau theorem, the trapezoid func-
tions are each bounded, continuous, vanish off a compact set, and are hence uni-
formly continuous. This observation suffices. o

8.5 More Relations Among Modes of Convergence

We summarize three relations among the modes of convergence in the next propo-
sition.

Proposition 8.5.1 Let {X, X,,,n > 1} be random variables on the probability
space (2, B, P).

() If
X, 5 X,
then
X, 5 x.
(i) If
P
Xn - Xs
then
X, =>X.

All the converses are false.

Proof. The statement (i) is just Theorem 6.2.1 of Chapter 6. To verify (ii), suppose
Xn £ Xand f is a bounded and continuous function. Then

fn) > Q)
by Corollary 6.3.1 of Chapter 6. Dominated convergence implies
E(f(Xn) > E(f(X))
(see Corollary 6.3.2 of Chapter 6) so
X=X

by the portmanteau theorem. m]

There is one special case where convergence in probability and convergence in
distribution are the same.
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Proposition 8.5.2 Suppose {X,,n > 1} are random variables. If c is a constant
such that

X, f» c,
then

Xn=>c

and conversely.

Proof. It is always true that convergence in probability implies convergence in
distribution, so we focus on the converse. If

Xn=>c
then
Pty s |0 HE<e
1, ifx>c,
and R
Xn—>c

means P[|X, — c¢| > €] = 0 which happens iff

P[Xp, <c—€]—>0and P[X, <c+e€]—> 1.

8.6 New Convergences from Old

We now present two results that express the following fact. If X, converges in
distribution to X and Y, is close to X,,, then Y, converges in distribution to X as
well.

Theorem 8.6.1 (Slutsky’s theorem) Suppose {X, X,,Yn,&s,n > 1} are ran-
dom variables.
(a) If X, = X, and

Xa-Y, 50,

then
Y, =2 X.

(b) Equivalently, if X = X, and & > 0, then
X, +£& = X.

Proof. It suffices to prove (b). Let f be real valued, bounded and uniformly con-
tinuous. Define the modulus of continuity

ws(f) = sup [f(x) = fOI.

x—yl<s
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Because f is uniformly continuous,
ws(f)—>0, §—0. (8.13)

From Corollary 8.4.1 if suffices to show Ef(X, + &) — Ef(X). To do this,
observe

|Ef(Xn + &) — Ef (X))
S |Ef(Xn +6n) — Ef(Xn)| + |Ef(Xn) — Ef(X)]
= E|f(Xn + &) — f(Xn)1jjg,1<5) + 2sup | f(X)|P[I&A| > 8] + 0(1)

(since X, = X)

= 0(1) + ws(f) + (const)P[|&,| > $].

The last probability goes to 0 by assumption. Let § — 0 and use (8.13). a

Slutsky’s theorem is sometimes called the converging together lemma. Here
is a generalization which is useful for truncation arguments and analyzing time
series models.

Theorem 8.6.2 (Second Converging Together Theorem) Let us suppose that
{Xun, Xu,Yn,X;n > 1,u > 1} are random variables such that for each n,
Yn, Xun, u = 1are defined on a common domain. Assume for each u, asn — o,

Xun = Xllv

and as u — 00
X, =>X.

Suppose further that for all € > 0,

lim limsup P[|Xyn — Yn| > €] =0.
U=0 pyoo

Then we have
Y,=>X

asn — OQ.

Proof. For any bounded, uniformly continuous function f, we must show
lim Ef(Y,) = Ef(X).
n—>o0
Without loss of generality, we may, for neatness sake, suppose that

sup|f(x)| < 1.
x€eR
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Now write

|Ef(Ya) = Ef(X)| < E|f(Yn) — f(Xun)| + E| f(Xun) — f(Xu)I
+ E|f(Xy) = f(X)]
so that

lim sup|E f (Y,) — Ef (X))
n—0o0

< lim limsup E|f(Yn) — f(Xun)| +0+0
U=>00 pooo

< lim limsup E|f(Yn) — f(Xun)|1[1¥,~Xunl<e€]
U=>00 poo0

+ lim llmSUpElf(Yn) - f(Xun)|1[|Yn—Xun|>€]
U=>0 p—oo

<sup{|f(x) = fO)|: |x —y| < €}
+ ull,"éo limsup P[|Y, — Xyn| > €]

n—>00

-0

ase = 0. (]

8.6.1 Example: The Central Limit Theorem for m-dependent
random variables

This section discusses a significant application of the second converging together
theorem which is often used in time series analysis. In the next chapter, we will
state and prove the central limit theorem (CLT) for iid summands: Let {X,, n > 1}
be iid with 4 = E(X1), 02 = Var(X1). Then with S, = Y"7_, X;, we have partial
sums being asymptotically normally distributed
Sn —nu _ Sn — E(Sn)
ovn  JVar(S,)
In this section, based on (8.14), we will prove the CLT for stationary, m-dependent
summands.
Call a sequence {X,, n > 1} strictly stationary if, for every k, the joint distri-
bution of

= N(@,1). (8.14)

(Xn+1, ey Xn+k)

is independent of n for n = 0, 1, .... Call the sequence m-dependent if for any
integer ¢, the o-fields 0 (X, j < t) and 0(X;, j > t + m + 1) are independent.
Thus, variables which are lagged sufficiently far apart are independent.

The most common example of a stationary m-dependent sequence is the time
series model called the moving average of order m which is defined as follows.
Let {Z,} be iid and define for given constants cy, ..., ¢,y the process

m
Xe=)Y cjZij, t=0,1,....

i=1
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Theorem 8.6.3 (Hoeffding and Robbins) Suppose {X,,, n > 1} is a strictly sta-
tionary and m-dependent sequence with E(X;) = 0 and

Cov(Xy, Xiun) = EXiXoan) = v (h).

Suppose
in = @) +23 () £0.
j=1
Then
1 &

7 ;X,- = N(0, vm), (8.15)

and
nVar(X,) = m, (8.16)

where X, = Y1 X;/n.

Proof. Part 1: Variance calculation. We have

nVar(X,) = %E(_anx,-)z = —E(ZZX,X,

i=1 j=
=—ZZY(]—1)

i=1 j=
== Z(#(i,j) cj—i=k)yk)
lkl<n
— |k
-3 ().
lk|<n n

This last step is justified by noting that, for example when & > 0, i could be
1,2,...,n—kand j = k + i. Thus we conclude that

nVar(X,) = Y (1 - '-—') y (k).
kl<n n

Recall that y(I) = 0if |/| > m andasn — o0

nVar(X,) > Y y(k) = vp. (8.17)

lk|<oo

Part 2: The big block-little block method. Pick u > 2m and consider the fol-
lowing diagram.
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1st 2nd
little little
block block
<> >
I T T 1 T 1 T |l
1 u-m u 2u-m 2u R (r-u ru-m ru
—> > > <>
1st 2nd rth remainder
big big big
block block block
Let

so that r/n — 1/u and define

=X1+--

* +Xu-—m,
&=

Xu+l +-- +X2u-m1

sr = X(r—l)u+l +--- 4+ Xru-—m

which are the “big block” sums. Note by stationarity and m-dependence that
&1, ..., & are iid because the little blocks have been removed
Define

sttt
Xun 1= N
__§1+"'+Er‘/z
_——ﬁ o
Note

as n = 00. From the CLT for iid summands, as n - o0

Xun = N(O, Var(g‘)

Now observe, that as u — 00

) =: Xy.
Var(g-'l) Var(Y ¥~ X

i=1 Xi) (u _m)ZVar ( u-—m Xx)
u u u Uu—m

-m
= (u — m)Var(Xy—pm) - ——

= Up - 1= Up,
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from the variance calculation in Part 1. Thus, as u — o0,

Var(§1)

Xy, =N(, )= NO,vn) =2 X
since a sequence of normal distributions converges weakly if their means (in this
case, all zero) and variances converge.

By the second converging together theorem, it remains to show that

| > =0 (8.18)

U=00 psoo
Fori=1,...,r —1,let
Bi={iu—m+1,...,iu}
be the m integers in the ith little block, and let
B, ={ru—-m+1,...,n}

be the integers in the last little block coupled with the remainder due to u not
dividing n exactly. Then we have

= ZX+ Y X+ )X

zeBl i€eB,_; i€B,

n
i=1 1

J’_l un

and all sums on the right side are independent by m-dependence. So
Var (—M - X ) = l ((r - l)Var(ZX ) + Var( _r§n+1X ))
N un " 2 i 2 i
Note that
h(n):=n—ru+m+1=n—[§]u+m+l

Sn—(%—l)u+m+l
=n—-n+u+m+l=u+m+1.

Thus for fixed u, as n — 00,

h(n) Supq < Var(3_, X;
—Var sz < Pisjsusmit Va2 iy l)—>0.

n

Also, sincer/n - 1/uasn - oo

((r - 1)Var(ZX,-)> ~ %Var(ZX,-) -0
i=1

i=1

S| =
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as u — oo and we have by Chebychev’s inequality

U Yiz1 Xi
ull)ngo llmsupP['T — Xun| > €]

n—->o0
ST 1 Z?:l Xi
< lim ll'fllsolép ;-Z-Var( N Xun)
l m
= lim (—Var(ZXi) +0>
u—->o0o \ u =
=0.
This completes the proof. ]

8.7 The Convergence to Types Theorem

Many convergence in distribution results in probability and statistics are of the
following form: Given a sequence of random variables {§,,n > 1} and a, > 0
and b, € R, we prove that

gn - bn

an

=Y,

where Y is a non-degenerate random variable; that is, Y is not a constant a.s. This
allows us to write

Q‘a__b" <x]®=P[Y <x]=:G(x),

Pl

or by setting y = anx + by

Plen <y~ G20,
an
This allows us to approximate the distribution of &, with a location—scale family.
The question arises: In what sense, if any are the normalizing constants a,, and
b, unique? If we changed normalizations, could we get something significantly
different?
The answer is contained in the convergence to types theorem. The normaliza-
tions are determined up to an asymptotic equivalence and the limit distribution is
determined up to location and scale.

Example. As a standard example, supppse {X,,n > 1} are iid with E(X,) = u
and Var(X,) = o2. The Central Limit Theorem states that for each x € R

2
Sp—nu f" e~u /2
P <x]—> P[Y <x]= du
[ o <x] [ ] T
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so that
y—nu

ovn

where N (x) is the standard normal distribution function.

P[S» < y] = N( ),

Definition. Two distribution functions U (x) and V (x) are of the same zype if there
exist constants A > 0 and B € R such that

V(x) =U(Ax + B).

In terms of random variables, if X has distribution U and Y has distribution V,
then
d X—-B
For example, we may speak of the normal type. If X¢ ; has N(0, 1,x) as its

distribution and X, 5 has N (u, 02) as its distribution, then X "o 4 0Xo1+ u.
Now we state the theorem developed by Gnedenko and Khintchin.

Theorem 8.7.1 (Convergence to Types Theorem) We suppose U(x) and V (x)
are two proper distributions, neither of which is concentrated at a point. Sup-
pose for n > 0 that X, are random variables with distribution function F, and
the U, V are random variables with distribution functions U (x), V (x). We have
constants a, > 0,0, > 0,b, €R, B, € R.

(a) If
Fn(@nx +bp) > Ux), Fy(onx + Ba) > V(x) (8.19)
or equivalently

Xn_bn=>U’ Xn=bn
an Oy

v, (8.20)

then there exist constants A > 0, and B € R such that asn — oo

I, aso, PP p (8.21)
an a,
and
-B
Vx)=Ux+B), V& ZZ'"' (822)

(b) Conversely, if (8.21) holds, then either of the relations in (8.19) implies the
other and (8.22) holds.

Proof. (b) Suppose

Gn(x) := Fy(anx + by) = U(x)
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and

Bn — bn

an

apfa, > A >0, — B.

Then

ﬁn - bn
an )

[0
Fu(anx + Bn) = Gn(a—"x +(
n

Pick x such that x e C(U(A - +B)).
Suppose x > 0. A similar argument works if x < 0. Given € > 0 for large n,
we have

(A—e)x+B—e§Z——"x+(ﬁn_b"

n n

)S(A+e€)x+(B+e),
SO

limsup Fy(apx + Br) < limsupG,((A + €)x + (B + ¢€)).
—>00

n—0o0 n

Therefore, for any z € C(U(-)) withz > (A + €)x + (B + €). we have

lim sup Fp, (anx + Bp) < limsup G,(z) = U(2).

n—>00 n—>00
Thus
lim sup F, (apx + < inf U(2).
n_>oop n(@n Pn) = z>(A+€)x+(B+e) @
2eC(U(-))

Since € > 0 is arbitrary,

limsup Fy(anx + Bn) < _inf U(z) = U(Ax + B)
z>Ax+B

n—o0
by right continuity of U (-). Likewise,
liminf Fy,(ayx + Bp) >1liminfG,((A —€)x + B —€)
n—>o00 n—>00

>1liminfG,(z) = U(2)
n—»oo

forany z < (A — €)x + B — € and z € C(U(-)). Since this is true for all € > 0,

liminf F(apx + Bn) = sup U(z) =U(Ax + B),
n->00 z<Ax+B
zeC(U()

since Ax + B € C(U(-)).
‘We now focus on the proof of part (a). Suppose

Fy(anx +by) = Ux), Fulanx + Bn) = V(x).
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Recall from Lemma 8.3.1 that if G, — G, then also G;~ = G *. Thus we have

DO, gy, yecws)
=Py, yecwo.

Since U (x) and V(x) do not concentrate at one point, we can find y; < y, with
yi €CU)YNC(VE), fori =1, 2, such that

—00 < U (y1) < U (y2) < 00,

and
—00 < V() < VT (y2) < o0.

Therefore, fori = 1, 2 we have

F,:_()’i)_bn . U‘_(}’i), F,:—()’i)"’ﬂn

Qn Qp

- V<) (8.23)

In (8.23) subtract the expressions with i = 1 from the ones with i = 2 to get

F,"(y2) = F,~(y1)
Qn
F,"(y2) = F,~ (1)

7]

-U(y2) -U"(n),

V<) - Vo).

Now divide the second convergence in the previous line into the first convergence.
The result is
o UG -U"00 _

=:A>0.
an V=(2)-V<=(n)
Also from (8.23)
F~ - b
T 01 = b U (),
an
Fn‘-(}’l) — B =Fn‘_(}’1) - Bn . ﬁ = V‘—(y )A
an oy an P
so subtracting yields
ﬂn -b

= > VoA -U“(n) =B,

Qn

as desired. So (8.21) holds. By part (b) we get (8.22). ]
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Remarks.
(1) The theorem shows that when

Xn - bn
an

=>U

and U is non-constant, we can always center by choosing b, = F,"(y1)
and we can always scale by choosing a, = F,” (y2) — F,” (y1). Thus quan-
tiles can always be used to construct the centering and scaling necessary to
produce convergence in distribution.

(2) Consider the following example which shows the importance of assuming
limits are non-degenerate in the convergence to types theorem. Let

Ulx) = 0, Tft<c,
1, ift>c.
Then
—-o00, ift=0,
UT@)=infly:U(y) >t} = {c, if0<t <1,
00, ift > 1.

8.7.1 Application of Convergence to Types: Limit Distributions
for Extremes

A beautiful example of the use of the convergence to types theorem is the deriva-
tion of the extreme value distributions. These are the possible limit distributions
of centered and scaled maxima of iid random variables.

Here is the problem: Suppose {X,, n > 1} is an iid sequence of random vari-
ables with common distribution F. The extreme observation among the first n
is

n
Mn = VX,'.
i=1

Theorem 8.7.2 Suppose there exist normalizing constants a, > 0 and b, € R
such that

M, —b
F"(anx + byp) = P[% <x] > G), (8.24)

n

where the limit distribution G is proper and non-degenerate. Then G is the type
of one of the following extreme value distributions:

(i) dy(x) =exp{—x7%}, x>0, a>0,
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.. _ ) exp{-(x)*}, x<0, a>0
(i) Wo(x) = 1 x>0,

(iii) A(x) =exp{—e™™}, xeR

The statistical significance is the following. The types of the three extreme
value distributions can be united as a one parameter family indexed by a shape
parameter y € R:

G,(x) =exp{-(1+yx)""}, 1+yx>0
where we interpret the case of y = 0 as
Go =exp{—e*}, xeR.

Often in practical contexts the distribution F is unknown and we must estimate
the distribution of M, or a quantile of M,. For instance, we may wish to design a
dam so that in 10,000 years, the probability that water level will exceed the dam
height is 0.001. If we assume F is unknown but satisfies (8.24) with some G, as
limit, then we may write

P[My < x]~ Gy (a; (x = bn)),
and now we have a three parameter estimation problem since we must estimate
¥> @n, ba.

Proof. We proceed in a sequence of steps.
Step (i). We claim that there exist two functions a(t) > 0 and B(¢), ¢t > 0 such
that forall¢ > 0,

M aq), b g, (8.25)

fnt) fne)

and also
G'(x) = G(a(t)x + B(1)). (8.26)
To see this, note that from (8.24), for every t > 0, we have on the one hand
FI"Yapuepx + buep) = G(x)
and on the other
F")(@yx +b,) = (F"(anx + b))"V" — G'(x).

Thus G' and G are of the same type and the convergence to types theorem is
applicable. Applying it to (8.25) and (8.26) yields the claim.
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Step (ii). We observe that the function «(#) and B(¢) are Lebesgue measurable.
For instance, to prove a(-) is measurable, it suffices (since limits of measurable
functions are measurable) to show that the function

Qan

fne)

t—

is measurable for each n. Since a, does not depend on ¢, the previous statement
is true if the function

t— a[nt)

is measurable. Since this function has a countable range {a;, j > 1} it suffices to
show

{t >0:ap) =aj}
is measurable. But this set equals

U [E’k+l)’

k:ax=a; n

which, being a union of intervals, is certainly a measurable set.

Step (iii). Facts about the Hamel Equation. We need to use facts about possi-
ble solutions of functional equations called Hamel’s equation and Cauchy’s equa-
tion. If f(x), x > 0 is finite, measurable and real valued and satisfies the Cauchy
equation

fx+y)=fx)+ fQ@), x>0,y>0,
then f is necessarily of the form
fx)=cx, x>0,

for some ¢ € R. A variant of this is Hamel’s equation. If ¢ (x),x > 0 is finite,
measurable, real valued and satisfies Hamel’s equation

d(xy) =¢(x)¢(y), x>0,y>0,

then ¢ is of the form
¢(x) = x°,

for some p € R.
Step (iv). Another useful fact. If F is a non-degenerate distribution function and

F(ax +b) = F(cx+d) Vx eR,

for some a > 0, and ¢ > 0, thena = ¢, and b = d. A proof of this is waiting for
you in the exercises (Exercise 6).
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Step (v). Now we claim that the functions a(-) and B(-) satisfy (¢ > 0, s > 0)

a(ts) = a(t)a(s), (8.27)
B(ts) = a(t)B(s) + B(t) (8.28)
= a(s)B(t) + B(s), (8.29)

the last line following by symmetry.
To verify these assertions we use

G'(x) = G(a(t)x + B(t))
to conclude that

G(a(ts)x + B(ts)) = G* (x) = (G* )
= (G(a(s)x + ()’
= G(a()[a(s)x + B(s)] + (1)
= G(a(t)a(s)x + a(®)B(s) + ().

Now apply Step (iv).

Step (vi). Now we prove that there exists € R such that a(t) = #.1f0 =0,
then B(t) = clogt, for some c € R. If 6 # 0, then B(¢t) = c(1 — 19), for some
ceR.

Proof of (vi): Since a(-) satisfies the Hamel equation, a(f) = t? for some
0 € R.If6 =0, then a(¢t) = 1 and B(¢) satisfies

B(ts) = B(s) + B(®).
So exp{B(-)} satisfies the Hamel equation which implies that
exp{B()} =1,

for some ¢ € R and thus B(t) = clogt.
If 6 # 0, then

B(ts) = a(®)B(s) + B(t) = a(s)B() + B(s).

Fix so # 1 and we get
a(t)B(so) + B(1) = a(so)B(t) + B(s0),
and solving for B(t) we get
B(®)(1 — a(so)) = B(so)(1 — a(t)).

Note that 1 — a(sg) # 0. Thus we conclude

B(t) = (1 As0) ) 1 = () =:c(1—19).
— a(so)
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Step (vii). We conclude that either
(@) G'(x)=G(x+clogt), (©=0),
or

b) G'x)=G®x+ca-1%), ©#£0).

Now we show that § = 0 corresponds to a limit distribution of type A (x), that
the case & > 0 corresponds to a limit distribution of type &, and that & < 0
corresponds to Wy

Consider the case § = 0. Examine the equation in (a): For fixed x, the function
G'(x) is non-increasing in ¢. So ¢ < 0, since otherwise the right side of (a) would
not be decreasing. If xo € R such that G(xp) = 1, then

1=G"(xo) = G(xo +clogt), ¥t>0,
which implies
G(y)=1, VyeR,
and this contradicts G non-degenerate. If xy € R such that G (xp) = 0, then
0= G'(x0) = G(xo +clogt), Vt>0,
which implies
G(x)=0, VxeR, -

again giving a contradiction. We conclude 0 < G(y) < 1, forall y € R.
In (a), set x = 0 and set G(0) = e™. Then

e = G(clogt).
Set y = clog¢, and we get
G(y) = exp{—xeY/c} = exp{_e—(lﬁ—logx)}

which is the type of A(x). The other cases § > 0 and # < 0 are handled similarly.
O

8.8 Exercises

1. Let S, have a binomial distribution with parameters n and 0 € [0, 1]. What
CLT does S, satisfy? In statistical terms, 8 := S,/n is an estimator of 6

and
Sn — E(Sn)

v/ Var(S,)
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is an approximate pivot for the parameter 6. If

0
8(6) = log (m)

is tpe log—odds ratio, we would use g(é) to estimate g(6). What CLT does
g(0) satisfy? Use the delta method.

2. Suppose {X,, n > 1} is a sequence of random variables satisfying

P[X, =n]=

1)

|-

1
P[X,=0]=1—--.

S

(a) Does {X,} converge in probability? If so, to what? Why?
(b) Does {X,} converge in distribution? If so, to what? Why?

(c) Suppose in addition that {X,} is an independent sequence. Does {X,}
converge almost surely? What is

limsup X, and liminf X,
n—00 R0

almost surely? Explain your answer.
3. Suppose {U,, n > 1} are iid U (0, 1) random variables so that
PlUj<x]=x, 0<x<1
(a) Show I'[']'-___l U}/ " converges almost surely. What is the limit?

(b) Center and scale the sequence {I'['}___l U}/ ".n > 1} and show the

resulting sequence converges in distribution to a non-degenerate limit.
To which one?

4. (a) Let {X,, n > 0} be positive integer valued random variables. Prove
Xn = XO

iff for every k > 0
P[X, =k] —» P[Xo =k].

(b) Let {X,} be a sequence of random vectors on R? such that X, has a
discrete distribution having only points with integer components as possible
values. Let X be another such random vector. Show

X, =X
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iff
Y IP[X, =x] - P[X=x]| > 0

as n — 00. (Use Scheffé’s lemma.)

(c) For events {A,, n > 0}, prove

14, = 14, iff P(A,) = P(Ao).

(d) Let F,, concentrate all mass at x, for n > 0. Prove

F, = Fyiff x, = xg.

(e) Let X, =1 —1/nor 1+ 1/n each with probability 1/2 and suppose
P[X = 1] = 1. Show X, = X but that the mass function f,(x) of X,
does not converge for any x.

(a) If un(x), x € R are non-decreasing functions for each n and u,(x) —
uo(x) and ug(-) is continuous, then for any —00 <a < b < 00

sup |up(x) —uo(x)| — 0.
x€la,b]

Thus, convergence of monotone functions to a continuous limit implies lo-
cal uniform convergence.

(b) Suppose F,,n > 0 are proper df’s and F, = Fy. If F is continuous,
show

sup | Fy (x) — Fo(x)| = 0.

xeR
For instance, in the central limit theorem, where Fg is the normal distribu-
tion, convergence is always uniform.

(c) Give a simple proof of the Glivenko—Cantelli lemma under the addi-
tional hypothesis that the underlying distribution is continuous.

. Let F be a non-degenerate df and suppose fora > 0,c > O and b € R,

d € R, that for all x
F(ax + b) = F(cx + d).

Prove that a = c and b = d. Do this 2 ways:
(i) Considering inverse functions.

(ii) Showing it is enough to prove F(Ax + B) = F(x) for all x implies
A =1,and B = 17 (just kidding, B = 0). If Tx = Ax + B then iterate the
relation F(Tx)=F(x) again and again.
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Let {X,,n > 1} be iid with E(X,) = u, Var(X,,) = o and suppose N is
a N(0, 1) random variable. Show

V(X — p?) = 2uoN ()
\/r_z(e’?" —e!) = oetN. (b)

. Suppose X1, ..., X, are iid exponentially distributed with mean 1. Let

Xin <+ <Xnn
be the order statistics. Fix an integer / and show
nX;, =Y

where Y] has a gamma (/, 1) distribution.

Try doing this (a) in a straightforward way by brute force and then (b) try
using the Renyi representation for the spacings of order statistics from the
exponential density. See Exercise 32 on page 116.

. Let {X,,n > 0} be random variables. Show X, = X iff E(g(X,)) —

E(g(Xy)) for all continuous functions g with compact support.
Let X and Y be independent Bernoulli random variables on a probability
space (2, B, P) with X £ Y and
1

P[X=O]=-2-=P[X=l].

Let X, =Y forn > 1. Show that
Xp =X

but that X, does NOT converge in probability to X.
Lévy metric. For two probability distributions F, G, define
d(F,G):=inf{§ >0:Vx eR, F(x —8) -8 <G(x) < F(x + ) + é}.

Show this is a metric on the space of probability distribution functions
which metrizes weak convergence; that is, F,, = Fy iff d(F,, Fop) — 0.

Suppose F,, has density

1—cos2nmx, if0<x<1,
fn(x)=

0, otherwise.

Show that F, converges weakly to the uniform distribution on [0, 1] but
that the densities f, do not converge.
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Suppose {N,,n > 0} is a sequence of normal random variables. Show
N, = Ny iff

E(Np) — E(No) and Var(N,) — Var(No).

Derive a comparable result for (a) Poisson random variables; (b) exponen-
tial random variables.

Consider the sphere in R” of radius 4/n and suppose X, is uniformly dis-
tributed on the surface of this sphere. Show that the first component of X,
converges in distribution to a standard normal. Hint: If N;,i > 1 are iid
N (0, 1) random variables, show

d n
Xy = (N1,...,Np) [TNIZ

(Weissman) Suppose Y,,n > 1 are random variables such that there exist
a, > 0,b, € R and

P[Yy < anx + by) > G(x),
non-degenerate, and for each ¢t > 0
P[Y{n] < anx + ba] = G, (x),
non-degenerate. Then there exists a(t) > 0, B(¢) € R such that
G(x) = Gy (a(t)x + a(t))

and a(t) = t9.If 6 = 0, then B(¢) = clogt, and if 6 # O, then B(t) =
c(1—1%).

Suppose {X,, n > 1} are iid non-negative random variables and set M,, =
Vi—1Xi,n > 1. Show that there exists a sequence a, > 0 such that (x > 0)

lingo P[My/a, < x]=exp{—x"%}, x>0, a >0,
n—

iff the regular variation condition holds:

P[X;>wx]

Jim PX; > 1] =x"% x>0 (8.30)

In this case, what limit distribution exists for log M, ? For M3?
Verify (8.30) for the Cauchy density and the Pareto distribution?

If {X,} are iid U (0, 1) random variables, find a non-degenerate limit dis-
tribution for M, = Vv;_, X; under suitable normalization.
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Give an example of a sequence of discrete distributions that converge weakly
to a limit distribution which possesses a density.

(Second continuous mapping theorem) Suppose that X,, = X¢ and that
forn > 0, x, : R > R are measurable. Define

E :={x : 3x, = x but x,(x,) 7~ xo(x)}.
Suppose E is measurable and P[Xo € E] = 0. Show x,(X,) = xo0(Xo).

Suppose we have independent Bernoulli trials where the probability of suc-
cess in a trial is p. Let vp be the geometrically distributed number of trials
needed to get the first success so that

Plv,2nl=(1-p" ! nx1l

Showas p — 0
pvp = E,
where E is a unit exponential random variable.

Sampling with replacement. Let {X,,n > 1} be iid and uniformly dis-
tributed on the set {1, ..., m}. In repeated sampling, let v, be the time of
the first coincidence; that is, the time when we first get a repeated outcome

v i=inf{n > 2: X, € {X1,..., Xn-1}}-

Verify that
n ;o 1
Plvy, >n] = 1_[(1 - l——-)
i=2 m
Show as m — oo that
Um//m = v

where P[v > x] = exp{—x2/2}, x> 0.

Sample median; more order statistics. Let Uy, ..., Uy, be iid U (0, 1) ran-
dom variables and consider the order statistics Uy, < Uz, < -+ < Uy .

When n is odd, the middle order statistic is the sample median. Show that

1
2(Unt12n41 — 5)@7

has a limit distribution. What is it? (Hint: Use Scheffé’s lemma 8.2.1 page
253)

Suppose {X,;, n > 1} are iid random variables satisfying
E(X,) =, Var(X,)=o’.

The central limit theorem is assumed known. Set X, = Y"_, Xi/n. Let
N(0, 1) be a standard normal random variable. Prove
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(i) VA(X? - u?) = 2uoN(,1).
(i) Vr(en — et) = e#N(0, 1).
(iii) v/7(log X, — logu) = LN (0, 1), assuming u # 0.

Now assume additionally that E (X ‘1‘) < 00 and prove

(V) 7 (log(% Y (X — X)?) - logaz) = L /EXHNO, D).

(v) Define the sample variance
2_ 1y v )2
Sp== (Xi—Xn).
i=1

Show .
ﬁ(/s—g— o) = EXDN(O,1).

What is a limit law for S2?

24. Show that the normal type is closed under convolution. In other words, if
Nj, N3 are two independent normally distributed random variables, show
that N1 + N is also normally distributed. Prove a similar statement for the
Poisson and Cauchy types.

Is a similar statement true for the exponential type?

25. (i) Suppose F is a distribution function and u is a bounded continuous func-
tion on R. Define the convolution transform as

Fxu(t) = / u(t — y)F(dy).
R

Let {F,,n > 0} be a sequence of probability distribution functions. Let
C[—00, o0] be the class of bounded, continuous functions on R with finite
limits existing at +00. Prove that F, = Fy iff for each u € C[—00, 00],
U, = F, * u converges uniformly to a limit U. In this case, U = Fo * u.

(ii) Suppose X is a random variable and set F,(x) = P[X/n < x]. Prove
F, % u — u uniformly.

(iii) Specialize (ii) to the case where F is the standard normal distribu-
tion and verify the approximation lemma: Given any € > 0 and any u €
C[—o00, 00], there exists an infinitely differentiable v € C[—00, 00] such
that

sup |v(x) —u(x)| <e.
x€R

(iv) Suppose that u(x, y) is a function on R? vanishing at the infinities.
Then u can be approximated uniformly by finite linear combinations
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Yk k8 (x)hi(y) with infinitely differentiable g, hx. (Hint: Use normal
distributions.)

(v) Suppose F,, is discrete with equal atoms at —n, 0, n. What is the vague
limit of F,, as n — 00? What is the vague limit of F, x F,,?

(vi) Suppose F, concentrates all mass at 1/n and u(x) = sin(x2). Then
F,, * u converges pointwise but not uniformly. (Is u € C[—00, 00]?)

Suppose {X,,, n > 1} are iid random variables with common distribution F
and set S, = Z?:l X;. Assume that there exist a, > 0, b, € R such that

a"—ISn_bn=>Y

where Y has a non-degenerate proper distribution. Use the convergence to
types theorem to show that

ap —> 00, ap/any1 — 1.
(Symmetrize to remove b,. You may want to first consider az, /an.)

Suppose {X,, n > 1} are iid and non-negative random variables with com-
mon density f(x) satisfying

A=l t 0.
,llrgf()>

Show n A\;_; X; has a limit distribution. (This is extreme value theory, but
for minima not maxima.)

Let x € (0, 1) have binary expansion
o0
dn
X = Z: 2_"
n=1

Set

2, ifd, =0,
IO =01 ey =1

Then show fol fn(x)dx = 1so that f, is a density. The sequence f, only

converges on a set of Lebesgue measure 0. If X, is a random variable with

density f, then X, = U, where U is U (0, 1).
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