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3    R E F R A C T I O N  
 
 When light travels from one medium to another, it may change direction.  This phenomenon 
– familiar whenever we see the “bent” shape of a straw poking out of a glass of water – is known as 
refraction.  (The light may also change its intensity at a boundary between media, which we’ll 
discuss soon.)  Refraction, like diffraction, is a consequence of the wave nature of light, and our 
analysis below applies also to waves in water, sound waves, etc. 
 
3.1  Snell’s Law 
 
 The basic setup for issues of refraction is shown in Figure 3.1:  A ray of light crosses the 
boundary between two media, with indices of refraction 1n  and 2n , making angles 1θ  and 2θ  with 
respect to the normal in each medium, respectively.  The question is: How are 1θ  and 2θ  related?  The 
answer is crucial to the propagation of light, and the design of lenses and other optical elements. 
 The answer, as we’ll derive, is that light obeys Snell’s Law: 
 1 1 2 2sin sinn nθ θ= . 
 There are several ways to derive this result.  We could directly examine the wave equations 
for electromagnetic fields and look for solutions consistent with the presence of a boundary between 
two media, but this would be both painful and un-illuminating.  There are simpler ways of thinking 
about light propagation; we’ll briefly mention one, and then more fully discuss another. 

 
Figure 3.1.  Refraction: The path taken by light traveling between two media bends at the 
interface; the relation between the angles 1θ  and 2θ  depends on the indices of refraction of 
the two materials, and is given by Snell’s Law. 

 
3.2  Huygen’s Principle 
 
 Several centuries ago, Huygens came up with an interesting way of thinking about 
propagating waves, realizing that: Each point in a propagating wave can be treated as a source 
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of spherical waves.  (This idea was later “fleshed out” by Fresnel and others.)  There’s nothing too 
shocking here – each point at a wave is, by definition, a point, and points generate spherical waves, 
as we noted in Section 1.1.  The “envelope” of the wavelets generated by all the points defines the 
shape of the wavefront as the wave progresses.  There are some conceptual difficulties inherent in 
Huygens idea which we won’t discuss.  Keep in mind that it’s just a “picture” that we employ to save 
us from having to solve the full wave equation.  Furthermore, it’s often painful to use Huygen’s 
principle to actually calculate anything quantitative.  It does, however, provide a means for deriving 
Snell’s Law, as described in last quarter’s textbook (A.P. French, Vibrations and Waves, p. 270-274).  
We won’t go into the derivation here, but will rather take a different, and more generally useful, 
approach. 
 
3.3  Fermat’s Principle 
 
3.3.1  Minimal time paths and Snell’s Law 
 
 Another “general” principle describing wave motion was put forth by Fermat.  It is 
sometimes stated as “light travels from one point to another along the path that takes the minimal 
amount of time.”  This isn’t quite correct – we’ll fix it in a few paragraphs – but it’s a good place to 
start.  We’ll also return to justifying Fermat’s principle shortly.  First, let’s use it to derive Snell’s 
Law. 
 
 Imagine you’re on a beach, and someone in the ocean is drowning.  You rush out to help, 
which requires both running on land and swimming in the water.  You can run faster than you can 
swim.  What path should you take?  With a bit of thought, you’ll realize that a straight line between 
you and the drowning person isn’t the best idea – rather, you should reduce the length of the swim 
to minimize the overall time to your target.  How much should you run and how much should you 
swim? 
 
 The same dilemma is encountered by our light beam, traveling from position A in a medium 
of index of refraction 1n  (your position on the beach, in the above analogy) to position B in a 
medium of 2n , (the swimmer’s position, in the water) in Figure 3.3.  The speed of light in medium 1 
is 1 1/v c n=  and in medium 2 is 2 2/v c n= .  Within each medium the light travels in a straight line – 
itself a consequence of Fermat’s principle, as you can convince yourself later.  There are many 
possible paths between A and B, as illustrated in the figure, that we can label based on the position 
x  at which they cross the interface.  One of these – let’s call it the one that goes through position 

0x  –  minimizes the total travel time.  What is this path?  (In other words, what is 0x ?) 
 
 The travel time in medium 1, 1t , is the distance traveled in medium 1 divided by the speed in 

medium 1:  2 21
1 1 1 1/ nd vt y

c
x== + ; similarly the travel time in medium 2 is 
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d v L x== + − .  (See Figure 3.3 for the geometry.)  The total travel time is 

therefore  
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To find the minimal time, we determine the x  for which 0dt
dx
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(To show that 0x is a minimum we should also examine the second derivative of t , but as we’ll see 
later it does not actually matter if 0x  is the site of a minimum or a maximum.  Furthermore, we can 
intuit from the form of ( )t x  that this extremum is, in fact, a minimum.) 
 Note from geometry that 
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Therefore the above condition becomes  

1 1 2 2sin sinn nθ θ= . 
We’ve shown that when the above condition is met, the travel time for light propagation is 
minimized.  This is Snell’s Law!  (And a valuable tool for saving drowning swimmers.) 
 

 
Figure 3.3.  Light traveling from point A in medium 1 to point B in medium 2 can take 
infinitely many possible paths consisting of line segments in each medium, four of which are 
illustrated here.  Each path crosses the interface at some position x , and hence makes some 
angles 1θ  and 2θ  with respect to the normal to the interface, as illustrated for one of the 
paths.  Fermat’s principle states that the actual path the light takes is that for which the total 
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travel time is minimal.  (Actually, Fermat’s principle states something slightly more subtle, as 
we’ll discuss shortly.)  Applying this principle, we can derive Snell’s Law. 

 
 We can also use Fermat’s principle to derive Snell’s Law of Reflection, which states that the 
reflected ray makes the same angle with the interface as the incident ray. 
 
3.3.2  Explaining Fermat’s Principle 
 
 Now let’s explain Fermat’s Principle.  Suppose light travels along many paths, all of which 
interfere with one another1.  Paths for which the phase difference is near zero will constructively 
interfere.  Consider the minimal time path.  As we saw in our derivation of Snell’s Law above, this is 
the path for which i in d∑  is minimal, where the sum runs over all the segments being considered 

(two segments in the above example) and id  is the length of segment i .  Recall from Section 1.2.1, 

though, that minimizing i in d∑  is the equivalent to minimizing the phase traversed by the wave 
along the path.   Therefore, the minimal time path is also the path of minimal phase, and is also the 
path of minimal i in d∑  – all these statements are equivalent.  This sum i in d∑  is more properly 

written as an integral, and is called the optical path length: ( )
B

A

OPL n x dx= ∫ . 

 Why should the path of minimal OPL be the path light takes?  Let’s call this path P.   By 

construction, ( )
" " P

d OPL
d s

 is zero, where “ s ” indicates any variable that characterizes the paths.  

Therefore nearby paths are similar in phase, and so constructively interfere.  Consider a path for 

which ( )
" "

d OPL
d s

 is not zero – moving to a slightly different path, the OPL can change appreciably, 

perhaps higher in one direction, lower in another, etc., and so we would not expect constructive 
interference. 
 You may be thinking: the minimal OPL path isn’t the only one for which we can guarantee 
constructive interference.  What about the maximal OPL path?  This too provides constructive 
interference.  And so the proper formulation of Fermat’s principle is that light travels along paths 
of extremal optical path length.  Typically these are minimal OPL paths, but in various geometries 
they can be maximal OPL paths as well. 
 As we’ll see in class, Fermat’s principle provides a simple way to think about mirages on hot 
desert roads. 
 
3.4  Total Internal Reflection 
 
 Let’s look more carefully at Snell’s Law.  What if 1 2n n> , and 1θ  is large, so that 

1
1

2

sin 1n
n

θ > ?  What 2θ  can satisfy Snell’s Law: 1 1 2 2sin sinn nθ θ= ?  None, since sin is bounded by 

                                                 
1 This can be seen as a restatement of Huygen’s Principle. 
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1± .  This means that there can be no wave transmitted to medium 2; the light from medium 1 is totally 
reflected at the interface, a condition known as total internal reflection. 
 Fiber optics, which underpin much of modern communication, work because of total 
internal reflection.  Consider a glass fiber ( 1.5n = ) surrounded by air ( 1.0n = ).  We want the light 
to travel down the fiber and not leak out into the air (Figure 3.4).  This is automatically taken care of 
by total internal reflection – note the higher index of refraction of the glass and the large incident 
angles of light traveling along the fiber (as long as the fiber is not severely bent).  In a fiber optic 
cable, light can propagate for kilometers with losses of a fraction of a percent!  Total internal 
reflection also has interesting applications in microscopy that we will discuss later. 

 
Figure 3.4.  A fiber optic cable.  Glass (gray) is surrounded by a material of lower index of 
refraction, e.g. air.  


