
Computers & Industrial Engineering 60 (2011) 505–510
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
Reversed fuzzy Petri nets and their application for fault diagnosis q

Hesuan Hu a,b,⇑, Zhiwu Li a, Abdulrahman Al-Ahmari b

a School of Electro-Mechanical Engineering, Xidian University, Xi’an, Shaanxi 710071, PR China
b Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 August 2008
Received in revised form 13 May 2010
Accepted 3 December 2010
Available online 5 January 2011

Keywords:
Manufacturing system
Fuzzy reasoning
Fault diagnosis
0360-8352/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.cie.2010.12.003

q This manuscript was processed by Area Editor Sa
⇑ Corresponding author at: School of Electro-Me

University, Xi’an, Shaanxi 710071, PR China.
E-mail address: huhesuan@gmail.com (H. Hu).
An alterative approach to the backward reasoning is presented. In classical reasoning, both users and
developers of many expert systems are dedicated to the forward reasoning. However, in many newly aris-
ing expert systems such as various diagnosis systems, the backward reasoning is of special interest and
often preferable. In this paper, the fuzzy Petri nets are used to analytically represent the knowledge of
fault diagnosis in manufacturing systems and an iterative algorithm based on max-algebra is used to
deduce the consequence–antecedent relationship between their manifestation and antecedent. Finally,
the legitimacy and efficiency of the proposed approach are proved and validated by an illustrative
example.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

As does human intelligence, artificial intelligence has many as-
pects. The most significant one is its ability to reason (Chen,
1988; Looney, 1988; Woods, 1986; Zadeh, 1988). The artificial
intelligence quest for reasoning systems has matured to the point
where computers can display expert behavior (Arnould & Tano,
1995; Chen, Ke, & Chang, 1990; Deng & Chang, 1990). To assist in
the construction of these expert systems, an increasing number of
researchers and practitioners realize that much knowledge in the
real world is fuzzy rather than precise (Cardoso, Valette, & Dubois,
1999; Chen, 2002; Lee, Liu, & Chiang, 2003; Yao, 1994). However,
many fuzzy reasoning cases that can be handled easily by humans
appear to be too difficult for computers. Therefore, there is an
increasing demand to improve the capabilities of computers to han-
dle fuzzy reasoning problems in the knowledge representation field
(Bugarin & Barro, 1994; Deng & Chang, 1990; Gao, Zhou, & Tang,
2004). In the context of fuzzy reasoning, the mechanism of both for-
ward and backward ones are explored, which are two fundamen-
tally different approaches to reasoning (Bugarin & Barro, 1994).
With forward reasoning, propositions are combined with rules to
deduce new propositions. Forward reasoning is of special interest
in situations where no specific goals are obtainable, where most
rules and the antecedent portion to be considered are well known.
However, in many cases useless propositions are also deduced,
leading such a method less prospective. As opposed to forward rea-
ll rights reserved.

tish Bukkapatnam.
chanical Engineering, Xidian
soning, backward reasoning works in a consequence-driven way
(Chen, 2000; Hu, Li, & Wang, 2003; Yuan, Shi, Liu, & Shang, 2008;
Zhang & Cui, 2008). Such an inference engine limits it only to taking
the information that might be helpful to meet the specified conse-
quence. Due to its specific approach, backward reasoning is prefer-
able since it is able to efficiently determine the values of the
unknown variables. To develop sufficiently precise notations so as
to implement the fuzzy reasoning automatically, many mathemat-
ical knowledge representation tools have been devised, such as the
fuzzy production rules, semantic networks, frames, and fuzzy Petri
nets. Among them, the fuzzy Petri nets are prospective for their
ability to describe clearly synchronization and concurrence. The
advantages that the fuzzy Petri nets over other tools are as follows.
First, fuzzy Petri nets are formal and general graphical model of
information flow in systems. Second, fuzzy Petri nets can be modi-
fied to fit any particular process. Third, fuzzy Petri nets can natu-
rally model logical and mathematical arrays such as addition,
subtraction, multiplication and division (Murata, 1989; Ribaric,
1988). Many approaches were proposed to extend Petri nets to fuz-
zy Petri nets. In Chen et al. (1990), Petri nets are initially modified to
be fuzzy Petri nets to model fuzzy reasoning with propositional lo-
gic. With a high level algorithm, the fuzzy Petri nets implement the
automated reasoning in a parallel way. Based on the method in
Chen et al. (1990), fuzzy Petri nets are improved in both represen-
tation and reasoning ability. They can determine the antecedent–
consequence relationship between one proposition and another.
Recently, the max-algebra is used to formally implement the fuzzy
reasoning automatically (Gao, Wu, & Zhou, 2000, 2003, 2004). Since
fuzzy Petri nets are forward-directed graphs with bars, arcs and ar-
rows, all the aforementioned methods are focused on the forward
reasoning. However, the backward reasoning remains unexplored

http://dx.doi.org/10.1016/j.cie.2010.12.003
mailto:huhesuan@gmail.com
http://dx.doi.org/10.1016/j.cie.2010.12.003
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

Fig. 2. A fuzzy Petri net example.

Fig. 3. The reversed fuzzy Petri nets.

506 H. Hu et al. / Computers & Industrial Engineering 60 (2011) 505–510
using Petri net theory. This paper, much inspired by the work in Gao
et al. (2000, 2003, 2004), aims to, propose the concept of reversed
Petri nets for fuzzy reasoning such that the backward reasoning
can be implemented automatically; present a max-algebra based
algorithm so that the backward reasoning can be efficiently imple-
mented; and illustrate an example to demonstrate their effective-
ness and efficiency. The organization of this paper is as follows.
Section 2 introduces basic notations on both Petri nets and fuzzy
Petri nets, and their similarity and difference. Section 3 presents a
formal backward reasoning algorithm based on fuzzy Petri nets.
Section 4 illustrates the proposed approach through a manufactur-
ing fault diagnosis expert system. Concluding remarks are given in
Section 5.
2. Petri nets and fuzzy petri nets

Petri nets are 3-tuple N = (P,T,F), where P and T are finite, non-
empty, and disjoint sets (Murata, 1989). P is the set of places and T
is the set of transitions. The flow relation between P and T is
denoted by F # (P � T) \ (T � P). The preset of a node x 2 P [T is
defined by �x = {y 2 P [T—(y,x) 2 F}. The postset of a node x 2 P [T
is defined by x� = {y 2 P [T—(x,y) 2 F}. The preset (postset) of a set
is defined by the union of the presets (postsets) of their elements.
A marking of N is a mapping M : P ! IN, where IN ¼
f0; 1; 2; . . .g. (N,M) is called a net system or a marked net. A tran-
sition t is said to be enabled if each of its input place p is marked
with at least w(p, t) tokens, where w(p, t) is the weight of arc from
p to t. M[ti means that transition t is enabled under M. After t fires
at M, a new marking M0 results. This is denoted as M[tiM0

. The set of
all markings reachable from a marking M0, in symbols R(N,M0), is
the smallest set in which M0 2 R(N,M0) and M

0 2 R(N,M0) if both
M 2 R(N,M0) and M0[tiM0

hold. For a Petri net with n places and
m transitions, its incidence matrix A is an n �m matrix of integers
and its typical entry is given by aij ¼ aþij � a�ij , where aþij ¼ wði; jÞ is
the weight of arc to place pi from its input transition tj and
a�ij ¼ wði; j) is the weight of arc from place pi to its output transition
tj. An example of Petri net is shown in Fig. 1a and b.

In Fig. 1, one can verify that P = {p1,p2}, T = {t1}, and F = {(p1, t1),
(t1,p1)}. Moreover, p�1 ¼ ft1g; t�1 ¼ fp2g; p�2 ¼ ;,

�p1 = ;, �t1 = p1, �p2 =
t1. The initial marking is M0 = [10]T under which t1 is enabled since
M(p1, t1) = 1 P w(p1, t1). After t1 fires, one token is removed from its
preceding place, i.e., p1, and deposited into its succeeding place, i.e.,
p2.

The fuzzy Petri nets are derived from Petri nets Gao et al., 2003.
Formally, a fuzzy Petri net can be defined as a 5-tuple FN =
(P,T,D,C,H,U), where P and T are finite, nonempty, and disjoint
sets. P = {p1,p2, . . .,pn} is the set of places or propositions. T =
{t1, t2, . . . ,tm} is a set of transitions or rules. D is an m � n input
matrix of rules, where D = {di�j}, and di�j 2 {0,1}, i={1,2, . . . ,n},
j={1,2, . . . ,m}. di�j = 0 if pi is not an input of tj, di�j=1 if pi is an input
of tj. C is an m � n output matrix of rules, where C={ci�j},
ci�j 2 {0,1}, i={1,2, . . . ,n},j={1,2, . . . ,m}. ci�j = 0 if pi is not an output
of tj, ci�j = 1 if pi is an output of tj. H = [h1,h2, . . . ,hn]T is an n-dimen-
sional vector corresponding to places in P, where hi 2 [0,1] means
the certainty factor (CF) of pi,i = {1,2, . . . ,n}. By H0 ¼ h0

1; h
0
2; . . . ;

�
h0

n�
T , we mean the initially obtainable CF corresponding to each

place pi. Take the fuzzy Petri net shown in Fig. 2a as instance,
H0 = [h1,0]T. U = diag[l1,l2, . . . ,lm]T is an m�m diagonal matrix
p1 p2t1 p1 p2t1

Fig. 1. A Petri net example.
such that li = [0,/] means the CF of ti, i = {1,2, . . . ,m}. Here, /
means an infinitely large number. Moreover, by q = [q1,q2, . . . ,qm]T,
we mean the minimum CF corresponding to places preceding tran-
sition ti, i 2 {1,2, . . . ,m}. For example, in Fig. 2a, we have q = [h1] for
transition t1. In a fuzzy Petri net, a transition is said to be enabled if
all of its input places are marked by a token with non-zero CF.

The major difference between Petri nets and fuzzy Petri nets are
their firing rules. Petri nets address the properties of conflict be-
cause the activation of a transition will remove tokens from its in-
put places while depositing one token into each of its output
places, as shown in Fig. 1a and b. In a fuzzy Petri net, also a transi-
tion can be enabled to fire. However, in logical implication, the to-
kens would remain at their original positions and their copies
would be sent to the output places. This logic is verified since in
reasoning the antecedent portion remains verified although its
consequence portion may already be proved. According to Chen
et al. (1990), Gao et al. (2000), the CF of the resultant tokens can
be calculated as Fig. 2b shows. The following definitions describe
some fundamental characteristics of fuzzy Petri nets.

Definition 1. Let N1 = (P1,T1,F1) and N2 = (P2,T2,F2) be two net
systems, respectively. N2 is the reversed net of N1 if F2 = {(x,y)—
(y,x) 2 F}. Normally, this relationship is denoted by N1 ¼ N�1

2 or
N2 ¼ N�1

1 . Obviously, the incident matrix of N1 is the negative
version of incident matrix of N2, i.e., A1 = �A2.
Definition 2. Let FN1 = (P1,T1,D1,C1,H1,U1) and FN2 = (P2,T2,D2,
C2,H2,U2) be two net systems, respectively. FN2 is the reversed
net of FN1 if P1 = P2, T1 = T2, D1 = C2, C1 = D2, H1 = H2, U1 ¼ U�1

2 .
Normally, this relationship is denoted by FN2 ¼ FN�1

1 or
FN1 ¼ FN�1

2 .
The reversed nets corresponding to ones shown in Fig. 2a and b

are illustrated in Fig. 3a and b, respectively.

Definition 3. Let pi0 and pin be two places. pin is immediately
reachable from pi0 if �pin ¼ pi0 . pin

is reachable from pi0
if $k 2

{0,1,2, . . . ,n � 1} such that any pikþ1
is immediately reachable from

pik
. Given p, its immediate reachable set, denoted by IRS(p), is all

the places that are immediately reachable from p. Its reachable set,
denoted by RS(p), is all the places that are reachable from p.
Definition 4. pj is an adjacent place of pi if they are the two input
places of a transition t. Moreover, the reachable set of pi is denoted
by AP(pi).
3. Backward reasoning using fuzzy petri nets

In Bugarin and Barro (1994), the fuzzy reasoning is distin-
guished into forward and the backward ones . The forward one is

H. Hu et al. / Computers & Industrial Engineering 60 (2011) 505–510 507
defined as what shown in Fig. 4a. This means that if ‘‘A implies B’’ is
verified, a sufficient condition for B to be true with a certainty fac-
tor hB is that A is true with a CF hA (Bugarin & Barro, 1994). Contrary
to the forward reasoning, backward reasoning aims to prove that B
is true with CF hB such that A is true with CF hA. The definition of
back reasoning is shown in Fig. 4b.

In Looney (1988), fuzzy Petri nets are initially used to model
knowledge representation in reasoning. Normally, propositions
are denoted by places while rules are mapped into transitions.
The token value in place pi 2 P is denoted by hi, where hi 2 [0,1].
Place pi means a proposition, and hi represents the CF. In Fig. 5a,
a fuzzy reasoning with four antecedent propositions and two con-
sequence propositions are shown.

In order to formally describe the forward reasoning process,
two operators derived from the max-algebra are introduced in
Gao et al. (2000, 2003, 2004). The first one is a. A a B ¼ C where
A, B, and C are all n�m-dimensional matrices with aij, bij, and cij

being their ith-row and jth-column entry, respectively, and cij = -
max{aij,bij}. The second one is �. A � B ¼ C where A, B and C are
Fig. 4. The fuzzy forward an

Fig. 5. Fuzzy Petri nets for forwa

Fig. 6. The reversed fuzzy Petri net a
all n �m-dimensional matrices with aij, bij, and cij being their ith-
row and jth-column entry, respectively, and cij = max{aik � bkj}
where k={1,2, . . . ,m}, i={1,2, . . . ,n}, j={1,2, . . . ,m}, respectively. The
forward reasoning process is formally defined as follows.
Hðkþ1Þ ¼HðkÞa½ðC�UÞ �qðkÞ�, where qðkÞ ¼ negfDT neg½HðkÞ�g.
Notice that the operator neg is initially defined in Tzafestas and
Caplovic (1997) whose representation can be described as follows.
Let x be an m-dimensional vector, neg(x) = 1m � x, where 1m = [11,
12, . . . ,1m]T, and x = [x1,x2, . . . ,xm]T. Finally, an iterative algorithm
is introduced to implement the forward reasoning automatically
(Gao et al., 2000). This iterative algorithm is initially proposed in
Gao et al. (2000) and further improved in Gao et al. (2003).

However, in many cases the fuzzy backward reasoning is pref-
erable. For example, in a medical diagnosis system, normally the
doctor knows the symptom first rather than the cause of disease.
Expert systems with backward reasoning may help them imple-
ment such a diagnosis. Fig. 5b demonstrates the fuzzy Petri net
model in which the CF of the consequence propositions are known
whereas the antecedent propositions are not verified. Obviously,
d backward reasoning.

rd and backward reasoning.

nd the resultant fuzzy Petri net.

Table 1
Places and their meanings.

Place Meaning CF

p1 Hardware fails 0
p2 Software fails 0
p3 Sensors are broken 0
p4 Measuring resolution decreases 0
p5 Control unit fails 0
p6 Servo system fails 0
p7 Machining resolution decreases 0.38
p8 Tools are broken 0.48
p9 System is open-loop controlled 0
p10 Machining interrupts 0.45

508 H. Hu et al. / Computers & Industrial Engineering 60 (2011) 505–510
Fig. 5b is only for forward reasoning. Reversing all arrows, which in
the theory of Petri nets, is to obtain the reversed fuzzy Petri net,
can do backward reasoning. The reversed net of Fig. 5b is shown
in Fig. 6a. Suppose that py is an immediate reachable place of px

and li is the transition between them. So, the CF of py is equal to
the one of px timed by the CF of ti, i.e., li. Correspondingly, in case
the CF of py is determined, the one of px is equal to the CF of py di-
vided by li. This is equivalent to say that the CF of px is equal to the
CF of py timed by 1/li. Analogously, after firing a set of fuzzy rules
in the reversed fuzzy Petri net, the iteration formula becomes
Hðkþ 1Þ ¼ HðkÞa½ðD� U�1Þ � qðkÞ�, where q(k) = neg{CT-

neg[H(k)]}. Notice that D, C and U are matrices corresponding to
Fig. 5b, which are called the original net of Fig. 6a. In Fig. 5b, let
H0 = [0,0,0,0,0.54,0.56]T, U = diag[0.6,0.7]T, then

H1 ¼

0
0
0
0

0:54
0:56

0
BBBBBBBB@

1
CCCCCCCCA

a

1 0
1 0
0 1
0 1
0 0
0 0

0
BBBBBBBB@

1
CCCCCCCCA
�

0:6 0
0 0:7

� ��1

�
0:54
0:56

� �
¼

0:9
0:9
0:8
0:8
0:56
0:54

0
BBBBBBBB@

1
CCCCCCCCA

The resultant fuzzy Petri net is obtained and shown in Fig. 6b,
with H1=[0.9,0.9,0.8,0.8,0.54,0.56]T. Based on the structure of re-
versed fuzzy Petri nets, the algorithm to implement the backward
reasoning is as follows. Step one, let k = 0; Step two, calculate the
new CF by Hðkþ 1Þ ¼ HðkÞa½ðD� U�1Þ � negfCT neg½HðkÞ�g�.
Notice that all the notations such as H, U, D, C are referred to
the original fuzzy Petri net rather than its reversed version; Step
three, k = k + 1, iterate Step two until H(k + 1) = H(k).

4. An illustrative example

The below example is taken from a practical manufacturing
fault diagnosis system. In fact, it is an electric equipment manufac-
turing system. Since we are only concerned about its fault diagno-
sis aspect, the detailed description of the entire system is omitted.
The production rules for such a system can be described as follows:

R1: IF hardware fails THEN measuring resolution decreases
(CF = 0.8).
R2: IF hardware fails THEN control unit fails (CF = 0.7).
Fig. 7. An illustra
R3: IF hardware fails AND software fails THEN servo system fails
(CF = 0.8).
R4: IF measuring resolution decreases THEN machining resolu-
tion decreases AND system is open-loop controlled (CF = 0.6).
R5: IF control unit fails THEN tools are broken (CF = 0.8).
R6: IF control unit fails THEN system is open-loop controlled
(CF = 0.9).
R7: IF servo system fails AND sensors are broken THEN system is
open-loop controlled (CF = 0.8).
R8: IF system is open-loop controlled THEN machining inter-
rupts (CF = 0.9).

In Fig. 7a, a fuzzy Petri net is used to describe such a set of rules.
Transitions t1–8 correspond to rules R1–8, respectively. Their CF are
{0.8,0.7,0.8,0.6,0.8,0.9,0.8,0.9}. The meanings of places are shown
in Table 1. We know only the CF of the fault phenomena that
are ‘‘machining resolution decreases’’, ‘‘tools are broken’’, and
‘‘machining interrupts’’, which correspond to p7, p9 and p10, respec-
tively. Numerically, we have h7 = 0.38, h9 = 0.48, and h10 = 0.45. Fur-
thermore, the unknown CF are denoted as zeros at the initial stage.
Obviously, the backward reasoning is necessary since the conse-
quence portion rather than the antecedent portion is known. The
both fuzzy Petri net and its reversed one are developed as shown
in Fig. 7.

In Section 1, we describe fuzzy Petri nets in a quite detailed
way. Through our description, one can easily understand the estab-
lishment process of the illustrative Petri net. For clarification, we
present the following sentences to facilitate the understanding.
tive example.

H. Hu et al. / Computers & Industrial Engineering 60 (2011) 505–510 509
From rules R1 and R2, we know that p4 and p5 are the immediate
reachable places of p1. As shown in Fig. 7a, p1 is introduced along
with p4 and p5. Two transitions, i.e., t1 and t2, are introduced be-
tween p1 and the latter two. From rule R3, we know that p6 is the
immediate reachable place of both p1 and p2. We can introduce
p2 and p6. t3 is introduced between p6 and p1 as well as p2. In the
same way, we can establish the other part of the entire Petri net.
The working mechanism of the established Petri net follows the
one we described in Section 3.

Once the fuzzy Petri net is established, one can easily obtain the
corresponding matrices. For clarity, we take the development of
the output matrix, i.e., C, as an example. It should be a 10 � 8 ma-
trix. Each element is denoted by cij, where i 2 {1,2, . . . ,10} and
j 2 {1,2, . . . ,8}. Since p1 is the output of t1, t2, and t3, one can verify
that c11 = 1, c12 = 1, and c13 = 1. Since p2, p3, and p4 are the output
of t3, t7, and t4, respectively, one can verify that c23 = 1, c37 = 1, and
c44 = 1. Similarly, we know that c55 = 1, c56 = 1, c67 = 1, and c98 = 1.
Any other cij is equal to zero since pi is not the output of tj.

From the definition of fuzzy Petri net and the structure of the
reversed fuzzy Petri net shown in Fig. 7b, we have H0 =
[0000000.380.4800.45]T,

D ¼

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

C ¼

1 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

U�1 = diag[0.8,0.7,0.8,0.6,0.8,0.9,0.8,0.9], and q0 = [0000.380.48
000.45]T. According to the backward reasoning algorithm, we have
Table 2
Immediate reachable and reachable sets for the net in Fig. 7.

pi IRS(pi) RS(pi)

p1 {p4,p5,p6} {p4–p10}
p2 {p6} {p6,p9,p10}
p3 {p9} {p9,p10}
p4 {p7,p9} {p7,p9}
p5 {p8,p9} {p8–p10}
p6 {p9} {p9,p10}
p7 ; ;
p8 ; ;
p9 {p10} {p10}
p10 ; ;

Table 3
Adjacent places for the net in Fig. 7.

pi pk APik

p1 p4 ;
p1 p5 ;
p1 p6 {p2}
p2 p6 {p1}
p3 p9 {p6}
p4 p7 ;
p4 p9 ;
p5 p8 ;
p5 p9 ;
p6 p9 {p3}
p9 p10 ;
H1 ¼

0

0

0

0

0

0

0:38

0:48

0

0:45

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

a

1 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

�

0:8 0 0 0 0 0 0 0

0 0:7 0 0 0 0 0 0

0 0 0:8 0 0 0 0 0

0 0 0 0:6 0 0 0 0

0 0 0 0 0:8 0 0 0

0 0 0 0 0 0:9 0 0

0 0 0 0 0 0 0:8 0

0 0 0 0 0 0 0 0:9

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

�1

�

0

0

0

0:38

0:48

0

0

0:45

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

T

¼

0

0

0

0

0:6

0

0:38

0:48

0:5

0:45

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

Similarly, we have H2 = [000.6250.630.60.6250.380.480.50.45]T,
H3 = [0.860.780.6250.630.60.6250.380.480.50.45]T, and H4 =
[0.860.780.6250.630.60.6250.380.480.50.45]T. Since H4 = H3,
the iteration terminates. Obviously, we can conclude that the hard-
ware, software and sensor errors cause the fault with their CF being
0.86, 0.78, and 0.625, respectively. This should help engineers
examine the fault causes in a correct order.

To the best of our knowledge, many existing approaches are on
the basis of reachable set of Fuzzy reasoning Petri nets. Such meth-
ods require the enumeration of all possible paths so that the cer-
tainty factors can be properly evaluated. For this problem, we
need to establish the one table for the immediate reachable set
and reachable set as well as one table for adjacent places.

From Tables 2 and 3, there are four paths from the four goal
places, i.e., p7 � p10, to the start place, i.e., p1. They are
p7 ! p4 ! p1; p8 ! p5 ! p1; p10 ! p9 ! p5 ! p1, and p10!
p9 ! p6 ! p1. We need to enumerate all these paths one by one
to obtain different values of CF of p1. From the first path, we know
that the CF of p4 is 0.38/0.6, i.e., 0.63. As consequence, the CF of p1 is
0.63/0.8, i.e., 0.79. In the similar way, we can check the other three
paths and obtain three different CF which are 0.86, 0.79, and 0.78.
Among them, the maximum one is 0.86 which corresponds to the
CF of p1. Similarly, we can obtain the CF of p2 and p3. They are 0.78
and 0.625, respectively.

Compared to our proposed method, the conventional method
can produce the same results; however, it requires the enumera-
tion of all potential paths from the goal places to the start ones.
In the worst case, their number can increase drastically with the
scale of the problems. Our method does not the enumeration of
all these paths, thus leading to a more efficient method.

510 H. Hu et al. / Computers & Industrial Engineering 60 (2011) 505–510
5. Concluding remarks

In this paper, a particular kind of Petri nets, namely fuzzy Petri
nets, is used to solve the backward reasoning problems arising in
many areas. A max-algebra and reversed Petri nets based algo-
rithm is proposed such that the reasoning process can be imple-
mented formally and automatically. The proposed algorithm
exploit the matrix similar to that used in the forward reasoning
since they are mutually inversed. Finally, a practical rule based
fault diagnosis in a manufacturing system is illustrated to demon-
strate the effectiveness and efficiency of our method. Further re-
search will focus on the following approaches. First, the weighted
fuzzy reasoning should be investigated. Second, an accurate and
effective index system is needed to evaluate and analysis the qual-
ity of resultant backward reasoning values. Third, combination
with neural nets and probabilistic Petri nets should be investigated
such that a more practical and sophisticated diagnostic expert sys-
tem can be developed.

References

Arnould, T., & Tano, S. (1995). Interval-valued fuzzy backward reasoning. IEEE
Transactions on Fuzzy Systems, 3(4), 425–437.

Bugarin, A. J., & Barro, S. (1994). Fuzzy reasoning supported by Petri nets. IEEE
Transactions on Fuzzy Systems, 2(2), 135–149.

Chen, S. M. (1988). A new approach to handling fuzzy decision making problem.
IEEE Transactions on System, Man, and Cybernetics, 18(6), 1012–1016.

Chen, S. M., Ke, J. S., & Chang, J. F. (1990). Knowledge representation using fuzzy
Petri nets. IEEE Transactions on Knowledge and Data Engineering, 2(3), 311–319.

Chen, S. M. (2002). Weighted fuzzy reasoning using weighted fuzzy Petri nets. IEEE
Transactions on Knowledge and Data Engineering, 14(2), 386–397.

Chen, S. M. (2000). Fuzzy backward reasoning using fuzzy Petri nets. IEEE
Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 30(6), 846–
856.
Cardoso, J., Valette, R., & Dubois, D. (1999). Possibilistic Petri nets. IEEE Transactions
on Systems, Man, and Cybernetics – Part B, 29(5), 573–582.

Deng, Y., & Chang, S. K. (1990). A G-net model for knowledge representation and
reasoning. IEEE Transactions on Knowledge and Data Engineering, 2(3), 295–310.

Gao, M. M., Zhou, M. C., Huang, X. G., & Wu, Z. M. (2003). Fuzzy reasoning Petri nets.
IEEE Transactions on Systems, Man, and Cybernetics – Part A, 33(3), 314–324.

Gao, M. M., Zhou, M. C., & Tang, Y. (2004). Intelligent decision making in
disassembly process based on fuzzy reasoning Petri nets. IEEE Transactions on
Systems, Man, and Cybernetics – Part B, 34(5), 2029–2034.

Gao, M. M., Wu, Z. M., & Zhou, M. C. (2000). A Petri net-based formal reasoning
algorithm for fuzzy production rule-based systems. In Proceedings of IEEE
international conference on systems, man, and cybernetics (Vol. 4, pp. 3093–3097).

Hu, C., Li, P., & Wang, H. (2003). Improved modeling algorithm of fuzzy petri net for
fuzzy reasoning. In Proceedings of the IEEE international conference on systems,
man and cybernetics (pp. 4992–4997).

Looney, C. G. (1988). Fuzzy Petri nets for rule based decision making. IEEE
Transactions on Systems, Man, and Cybernetics, 18(1), 178–183.

Lee, J., Liu, K. F. R., & Chiang, W. L. (2003). Modeling uncertainty reasoning with
possibilistic Petri nets. IEEE Transactions on Systems, Man, and Cybernetics – Part
B, 33(2), 214–224.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of
IEEE, 77(4), 480–541.

Ribaric, S. (1988). Knowledge representation scheme based on Petri net theory.
International Journal of Pattern Recognition and Artificial Intelligence, 2(4),
691–700.

Tzafestas, S. G., & Caplovic, F. (1997). Petri net-based approach to synthesis of
intelligent control systems for DEDS. In Computer-assisted management and
control of manufacturing systems (pp. 323–351). New York: Springer-Verlag.

Woods, W. A. (1986). Important issues in knowledge representation. Proceedings of
IEEE, 74(10), 1322–1334.

Yao, Y. (1994). A Petri net model for temporal knowledge representation and
reasoning. IEEE Transactions on Systems, Man, Cybernetics, 24(9), 1374–1382.

Yuan, J., Shi, H. B., Liu, C. & Shang, W. L. (2008). Backward concurrent reasoning
based on fuzzy petri nets. In Proceedings of IEEE international conference on fuzzy
systems (pp. 832–837).

Zadeh, L. A. (1988). Fuzzy logic. IEEE Computer Magazine, 21(4), 83–93.
Zhang, B. & Cui, S. (2008). A parallel backward reasoning study using fuzzy petri net.

In Proceedings of international conference on computer science and software
engineering (pp. 315–319).

	Reversed fuzzy Petri nets and their application for fault diagnosis
	Introduction
	Petri nets and fuzzy petri nets
	Backward reasoning using fuzzy petri nets
	An illustrative example
	Concluding remarks
	References

