#lB T b A

HWEMFBT)

Neural Network Design

This book provides a clear and detailed survey o of basic neurnl netwurk architectures and
learning rules. In it, the authors emph lysis of networks, methods
for training networks, and application of networks to practical engineering problems in
pattern recognition, signal p ing., and control systems.
Features:
+Extensive coverage of perinml.nrx learning, including the Widrow-Hoff rule, back

fom, and several ts of back ion {e.g., conj

F Pag ¥
L T ad N e

* Discussion of recurrent associative memury mtwurks (e.g., Hopfield network)
* Detailed ples and
* Associative and competitive networks (mcluding feature maps, learning vector quanti-
nﬂtm. and adaptive resonance theory) are explained using simple building blocks
*Neural N k Design Dy ions on bound-in disk using MATLAB 4.0 (student
and professional versions)

“] feel wery strongly that this is an excellent book. | have rarely reviewed
@ book that Is this well written. The illustrations and examples are superh, and
the demonstrations really support one's intultion and add greatiy o the lent.”

— Professor Stan Ahalt, Oluo State Liniversity

N3 17+ &% 7 -5 %5 www.china-pub.com |

|
-4 ERTAREEAENOS 100037
§¥ . B00B100280 (eyns (010} 68595250
| RN chisfedior @ hebook com
ol Mﬁxﬁmws
T 7871111108412 | ISBN 7-111-10841-8/TP
E GBDO::

- wE

IR
! o e

-

wed EF T e et

g T v LR - -

1 2) 48 1% 3T

(Z3ZhR)

#
ki

esign

&

¥

N grkb

H

&

3

%
4

i

Tk

Neural Net

!

&
i
H

E
S

w
i

S w n

2

%

%

%
i3

¥

Martin T. Hagan
(%) Howard B. Demuth #
Mark Beale

PR

ay M e o

e P

¥

k3
'@\
3
&%
N
3 .
L]
‘?3‘
H

b

¥ W e

ool R,

=
“mv
o
Wxa%%&
L

¥
¥
&
i

H
=
=
ol
H
%
=

% C@in
Co#

&

¥

Martin T. Hagan, Howard B. Demuth: Neural Network Design
Original copyright © 1996 by PWS Publishing Company. All rights reserved.
First published by PWS Publishing Company, a division of Thomson Learning, United

States of America.

Reprinted for People's Republic of China by Thomson Asia Pte Ltd and China Machine
Press and CITIC Publishing House under the authorization of Thomson Learning. No part of
this book may be reproduced in any form without the the prior written permissior of Thomson

Learning and China Machine Press.

A BRI X EHGRY ST MRE AR L B P E AR B AR, RE
HRE BT, ARLUEATARHRBRETAR.
FRELREA, BAR L

EBEWEIDS: B=E: 01-2001-5321

BMEEBKE (CIP) HiB

HERHRI (£) B (Hagan, M. T.) FF. - JbaT: SURTALHARH, 20028
(LR 1R)

F& X Neural Netwark Design

ISBN 7-111-10841-8

I.#fe OB W ATHECHSE - 41811 -3Hx V. TP183
WE R B EECIPRIEZ F (2002) 50631865

PLBE Tk BARAE (IR MR AR EA#22T EREE 100037)
WAL 8

EFLAF OB T DR - FreRmtRRTRES

2002 8 A% 1 BB 1 EIR

787mm x 1092mun 1/16 - 46E05K

EEL: 0 001-3 0007 |
EH: 69.007E *E

A4, mEERE, BRI, RE, hARMETHESE

Preface

This book gives an introduction to basic neural network architectures and
learning rules. Emphasis is placed on the mathematical analysis of these
networks, on methods of training them and on their application to practical
engineering problems in such areas as pattern recognition, signal process-
ing and control systems.

Every effort has been made to present material in a clear and consistent
manner so that it can be read and applied with ease. We have incleded
many solved problems to illustrate each tapic of discussion.

Since this is & book on the design of neural networks, our choice of topics
was guided by two principles. First, we wanted to present the most useful
and practical neural network architectures, learning rules and training
techniques. Second, we wanted the book te be complete in itself and to flow
easily from one chapter to the next. For this reason, various introductory
materials and chapters on applied mathematics are included just before
they are needed for a particular subject. In summary, we have chosen some
topics because of their practical importance in the application of neural
networks, and other topics because of their importance in explaining how
neural networks operate.

We have omitted many topies that might have been included. We have not,
for instance, made this book a catalog or compendium of all known neural
network architectures and learning rules, but have instead concentrated
on the fundamental concepts. Second, we have not discussed neural net-
work implemeniation technologies, such as VLSI, optical devices and par-
allel computers. Finally, we do not present the biological and psychological
foundations of neural networks in any depth. These are all important top-
ies, but we hope that we have done the reader a service by focusing on those
topics that we consider to be most useful in the design of neural networks
and by treating those topics in some depth.

This book has been organized for a one-semester introductory course in
neural networks at the senior or first-year graduate level. (It is also suit-
able for short courses, self-study and reference.} The reader is expected to
have some background in linear algebra, probability and differential equa-
tions.

Each chapter of the book ig divided into the following sections: Objectives,
Theory and Examples, Summary of Results, Solved Problems, Epilogue,

p-1

Preface

p.2

NES

Further Reading and Exzercises. The Theory and Examples section compris-
es the main body of each chapter. It includes the development of fundamen-
tal ideas as well as worked examples (indicated by the icon shown here in

the left margin}. The Summary of Results section provides a convenient

listing of important equations and concepts and facilitates the use of the
bock as an industrial reference, About a third of each chapter is devoted to
the Solved Problems section, which provides detailed examples for all key

concepts.

The following figure illustrates the dependencies among the chapters.

introduction

2
Architectures

lllustrative
Example

Perceptron
Learing Rule

Signal and
Weight Vector
Spaces

Linear
Transformations
for Neural
Networks

7 13
g Supervised |—pm! Associative
Hebb Learning
v 14
Competitive
Performance Learning
Surfaces
1
Grossberg 5
Peformance
Optimization
18
ART
10 >
Widrow-Hoff
17
Stability
11
Backpropagation
18
Hopfield
12
Variations on
Backpropagation 19
Epilogue

Chapters 1 through 6 cover basic concepts that are required for all of the
remaining chapters. Chapter 1 is an introduction to the text, with a brief
historieal background and some basic hiology, Chapter 2 describes the ba-
sic neural network architeciures. The notation that is introduced in this
chapter is used threughout the book. In Chapter 3 we present a simple pat-
tern recognition problem and show how it can be solved using three differ-
ent types of neural networks. These three networks are representative of
the types of networks that are presented in the remainder of the text. In
addition, the pattern recognition problem presented here provides a com-
mon thread of expertence throughout the hook.

Much of the focus of this bock will be on methods for training neural net-
works to perform various tasks. In Chapter 4 we introduce learning algo-
rithms and present the first practical algorithm: the perceptron learning
rule. The perceptron nelwork has fundamental limitations, but it is impor-
tant for historieal reasons and is also a useful tool for introducing kev con-
cepts that will be applied to more powerful networks in later chapters.

One of the main objectives of this book is to explain how neural networks

operate. For this reason we will weave together neural network topics with
important introductory material. For example, linear algebra, which is the
core of the mathematics required for understanding neural networks, is re-
viewed in Chapters 5 and 6. The concepts discussed in these chapters will
be used extensively throughout the remainder of the book.

Chapters 7 and 13-16 describe networks and learning rules that are heavi-
ly inspired by biology and psychology. They fall into two categories: assc-
ciative networks and competitive networks. Chapters 7 and 13 introduce
basic concepts, while Chapters 14-16 describe more advanced networks.

Chapters 8-12 develop a class of learning called performance learning, in
which a network is trained to optimize its performance. Chapters 8 and 9
introduce the basic coneepts of performance learning. Chapters 10-12 ap-
ply these concepts to feedforward neural networks of increasing power and
complexity.

Chapters 17 and 18 discuss recurrent networks. These networks, which
have feedback connections, are dynamical systems. Chapter 17 investi-
gates the stability of these systems. Chapter 18 presents the Hopfield net-
work, which has been one of the most influential recurrent networks.

In Chapter 19 we summarize the networks presented in this book and dis-
cuss their relationships to other networks that we do not cover. We also
point the reader to other sources for further study. If you want to know
“Where do I go frem here?” look to Chapter 19.

r3

Preface

Software

P4

»24+2
-

MATLARB is not essential for using this book. The computer exercises can
be performed with any available programming language, and the Neural
Network Design Demonstrations, while helpful, are not critical to under-
standing the material covered in this boek.

However, we have made use of the MATLAB software package to supple-
ment the texthook. This software is widely available and, because of its ma-
trix/vector notation and graphics, is a convenient environment in which to
experiment with neural networks. We use MATLAB in two different ways.
First, we have included a number of exercises for the reader to perform in
MATLAB. Many of the important features of neural networks become ap-
parent only for large-scale problems, which are computationally intensive
and not feasible for hand calculations. With MATLAB, neural network al-
gorithms can be quickly implemented, and large-scale problems can be
tested conveniently. These MATLAR exercises are identified by the icon
shown here to the left. (If MATLAB is not available, any other program-
ming language can be used to perform the exercises.)

The second way in which we use MATLAB is through the Neural Network
Design Demonstrations, which are on a disk included with this book, These
interactive demonstrations illustrate important concepts in each chapter.
After the software has been loaded into the MATLAB directory on your
computer, it can be invoked by typing nnd at the MATLAB prompt. All dem-
onstrations are easily accessible from a master menu. The icon shown here
to the left identifies references to these demonstrations in the text.

The demonstrations require MATLAB version 4.0 or later, or the student
edition of MATLAB version 4.0. In addition, a few of the demonstrations re-
quire The MathWorks’ Neura! Network Toolbox version 1.0 or later. See
Appendix C for specific information on using the demonstration software,

Ag an aid to instructors who are using this text, we have prepared a
companion set of overheads. Transparency masters (in Microsoft
Powerpoint format) for each chapter are available on the web at:
www,pws.com/pwsftp.html. A solutions manual is also available. Contact
PWS Publishing at (800) 347-7707 for more information.

Acknowledgments

Acknowledgments

We are deeply indebted to the reviewers who have given freely of their time
to read all or parts of the drafts of this book and to test various versions of
the software. In particular we are most grateful to Professor John Andreae,
University of Canterbury; Dan Foresee, AT&T, Dr. Carl Latino, Oklahoma
State University; Jack Hagan, MCI; Dr. Gerry Andeen, SRE; and Joan Mill-
er and Margie Jenks, University of ldaho. We also had constructive inputs
from our graduate students in ECEN 5713 at Oklahoma State University
and ENEL 621 at the University of Canterbury who read early drafts, test-
ed the software and provided helpful suggestions for improving the book.
We are also grateful to the anonymous reviewers who provided several use-
ful recommendations.

We wish to thank Dr. Peter Gough for inviting us 1o join the staff in the
Electrical and Electronic Engineering Department at the University of
Canterbury, Christchurch, New Zealand. Thanks also to Mike Surety for
his computer help and to the departmental staff for their assistance. A sab-
batical from Oklahoma State University and a year's leave from the Uuni-
versity of Idaho gave us the time to write this book. Thanks to Texas
Instruments, and in particular Bill Harland, for their support of our neural
network research. Thanks to The Mathworks for permission to use materi-
al from the Neural Network Toolbox.

We are grateful to Joan Pilgram for her encouragement and business ad-
vice, and to Mrs. Bernice Hewitt, Christchurch, for her good spirit and hes-

pitality.

Finally, we wish to express our appreciation to the staff at PWS Publishing
Company, especially Bill Barter, Pam Rockwell, Amy Mayfield, Ken Mor-
ten and Nathan Wilbur, Thanks to Vanessa Pineiro for the lovely cover art.

P-5

Contents

Preface
Introduction
Objectives 1-1
Hislory 1-2
Applications 1-5
Biological Inspiration 1-8
Further Reading 1-10
Neuron Model and Network Architectures
Obijectives 2-1
Theory and Examples 22
Notation 2-2
Neuron Model 2-2
Single-Input Neuron 2-2
Transfer Functions 2-3
Multipie-Input Neuron 2-7
Network Architectures 249
A Layer of Neurons 29
Multiple Layers of Neurons 2-10
Recurrent Networks 2-13
Summary of Results 2-16
Solved Problems 220
Epilogue 2-22

Exercises 2-23

ii

An Hlustrative Example

Objectives
Theory and Examples
Problem Staterment
Perceptron
Two-Input Case
Pattern Recognition Example
Hamming Network
Feedforward Layer
Recurrent Layer
Hopfield Network
Epilogue
Exercise

Perceptron Learning Rule

Objectives
Theory and Examples
Learning Rules
Perceptron Architecture
Single-Neuron Perceptron
Multiple-Neuron Perceptron
Perceptron Learning Rule
Test Problem
Constructing Leaming Rules
Unified Learning Rule
Training Multiple-Neuron Perceptrons
Proof of Convergance
Notation
Proof
Limitations
Summary of Results
Solved Probiems
Epilogue
Further Reading
Exercises

-

3-1
32

3-3
3-4
3-5
3-8
3-8
39
312
3-15
3-16

41
42
42
4-3
45
4-8
4-8
49
410
4-12
413
415
415
4-16
4-18
4-20
4-21
4-33
434
4-36

Signal and Weight Vector Spaces
~ Objectives 51

Theory and Examples 5-2

Linear Vector Spaces &2

Linear Independence 54

Spanning a Space 5-5

inner Product 5-6

Norm 5-7

Orthogonality 5-7

Gram-Schmidt Orthogonalization 5-8

Vector Expansions 59
Reciprocal Basis Vectors 5-10
Summary of Results 5-14
Solved Problems 517
Epilogue 5-26
Further Reading 5-27
Exercises 5-28

n Linear Transformations for Neural Networks

Objectives 6-1

Theory and Examples 6-2

Linear Transformations -2

Matrix Representations 6-3

Change of Basis €-6
Eigenvaives and Eigenvectors 6-10
Diagonalization 6-13
Summary of Results 6-15
Solved Problems 6-17
Epilogue . 6-28
Further Reading 6-29

Exercises 6-30

iti

iv

Supervised Hebbian Learning

Objectives
Theory and Examples
Linear Associator
The Hebb Rule
Performance Analysis
Pseudoinverse Rule
Application
Variations of Hebbian Leatning
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

7-1
7-2
7-3
7-4
7-5
7-7
7-10
7-12
7-14
7-16
7-29
7-30
7-31

Performance Surfaces and Optimum Points

Objectives
Theory and Examples
Taylor Series
Vector Case
Directional Derivatives
Minima
Necessary Conditions for Optimality
First-Order Conditions
Second-Order Conditions
Quadratic Functions
Eigensystem of the Hessian
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

8-1
B-2
B-2
8-4
8-5
87
8-9
8-10
8-11
8-12
8-13
8-20
8-22
8-34
8-35
8-36

Performance Optimization

Objectives
Theory and Examples
Steepest Descent
Stable Leaming Rates
Minimizing Along a Line
Newton’s Method
Conjugate Gradient
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

Widrow-Hoff Learning

Objectives
Theory and Examples
ADALINE Network
Single ADALINE
Mean Square Error
LMS Algerithm
Analysis of Convergence
Adaptive Filtering
Adaptive Noise Cancellation
Eche Cancellation
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

9-1
9-2
8-2

9-8

9-10
9-15
9-21
8-23
9-37
9-38
9-39

1041
10-2
10-2
10-3
10-4
10-7
10-9
10-13
10-15
10-21
10-22
10-24
10-40
10-41
10-42

| Backpropagation
y
Objectives 11-1

Theory and Examples 11-2
Multilayer Perceptrons 11-2
Pattern Classification 11-3
Function Approximation 11-4
The Backpropagation Algorithm 11-7
Performance Index 11-8
Chain Rule 11-8
Backpropagating the Sensitivities 11-11
Summary ' 11-13
Example 11-14
Using Backpropagation 11-17
Choice of Network Architecture 11-17
Convergence 11-19
Generalization 11-21
Summary of Results 11-24
Solved Problems 11-26
Epilogue 11-40
Further Reading 11-41
Exercises 11-43
12 Variations on Backpropagation
Objectives 12-1
Theory and Examples 12-2
Drawbacks of Backpropagation 12-3
Performance Surface Example 12-3
Convergence Example 12-7
Heuristic Modifications of Backpropagation 12-9
Momentum 129
Variable Learning Rate 12-12
Numerical Optimization Techniques 12-14
Conjugate Gradient 12-14
Levenberg-Marquardt Algorithm 12-19
Summary of Results 12-28
Solved Problems 12-32
Epilogue 12-46
Further Reading 12-47

Exercises 12-50

vi

Associative Learning

Objectives
Theory and Examples
Simple Associative Network
Unsupervised Hebb Rule
Hebb Rule with Decay
Simple Recognition Network
Instar Ruie
Kohonen Rule
Simple Recalt Network
Quistar Rule
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

Competitive Networks

Obijectives
Theory and Examples
Hamming Network
Layer 1
Layer 2
Competitive Layer
Competitive Learning
Problems with Competifive Layers
Competitive Layers in Biglogy
Self-Organizing Feature Maps
Improving Feature Maps
Learring Vector Quantization
LVQ Leaming
Improving LVQ Networks (£ VQ2)
Summary of Resulis
Solved Problems
Epilogue
Further Reading
Exercises

131
13-2
13-3
13-6
13-7
13-9
13-11
13-15
13-16
1317
13-21
13-23
13-34
13-35
13-37

14-1
14-2
14-3
14-3
14-4
14-5
147
14-9
14-10
14-12
1415
14-16
14-18
1421
14-22
14-24
14-37
14.38
14-39

vii

viil

Grossberg Network

Objectives
Theory and Examples
Biological Motivation: Vision
lllusions
Vision Normalization
Basic Nonlingar Model
Two-Layer Competitive Network
Layer 1
Layer 2
Choice of Transfer Function
Leaming Law
Relation to Kohonen Law
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

Adaptive Resonance Theory

Objectives
Theory and Examples
Overview of Adaptive Resonance
Layer 1
Steady State Analysis
Layer 2
Crienting Subsystem
Learning Law: L1-L.2
SubseVSuperset Dilemma
Learning Law
Learning Law: L2-L1
ART1 Algorithm Summary
Initiatization
Algortithm
Other ART Architectures
Summary of Results
Solved Problems
Epitogue
Further Reading
Exercises

151
15-2
15-3
15-4
15-8
15-9
15-12
15-13
15-17
15-20
15-22
15-24
15-26
15-30
15-42
15-43
15-45

16-1

16-2

16-2

16-4

16-6

16-10
16-13
16-17
16-17
16-18
16-20
16-21
16-21
16-21
16-23
16-25
16-30
16-45
16-46
16-48

Stability

Objectives
Theory and Examples
Recurrent Networks
Stability Concepts
Definitions
Lyapunov Stability Theorem
Pendulum Example
LaSalle's Invariance Theorem
Definitions
Theorem
Example
Comments
Summary of Results
Soived Problems
Epilogue
Further Reading
Exerciges

Hopfield Network

Objectives
Theory and Examples
Hopfield Model
Lyapunov Function
Invariant Sets
Example
Hopfield Attractors
Effect of Gain
Hopfield Design
Content-Addressable Memcry
Hehb Rule
Lyapunov Suriace
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

17-1
17-2
17-2
173
17-4
17-5
17-6
17-12
17-12
17-13
17-14
17-18
17-19
1721
17-28
17-29
17-30

18-1
18-2
18-3
18-5
18-7
18-7
18-11
i8-12
18-16
18-16
18-18
18-22
18-24
18-26
18-36
18-37
18-40

EEER

3

Epilogue

Objectives

Theory and Examples
Feedforward and Related Networks
Competitive Networks
Dynami¢ Associative Memory Networks
Classical Foundations of Neural Networks
Books and Journals

Epilogue

Further Reading

Appendices
Bibliography
Notation
Software

Index

19-1
19-2
19-2
19-8
18-9
19-10
19-10
19-13
19-14

1 Introduction

Objectives

Objectives 1-1
History 1-2
Applications 15
Biological Inspiration 1-8
Further Reading 1-10

Asyou read these words you are using a complex biological neural network,
You have a highly interconnected set of some 101! neurons to facilitate your
reading, breathing, motion and thinking. Bach of your biclogical neurons,
a rich assembly of tigsue and chemistry, has the complexity, if not the
speed, of a microprocessor. Some of your neural structure was with you at
birth. Other parts have been established by experience.

Scientists have only just begun to understand how biological neural net-
works operate. It is generally understood that all biological neural fune-
tions, including memory, are stored in the neurons and in the connections
between them. Learning is viewed as the establishment of new connections
between neurons or the modification of existing connections, This leads to
the following question: Although we have only a rudimentary understand-
ing of biological neural networks, is it possible to construct a small set of
simple artificial “neurons” and perhaps train them to serve a useful fune-
tion? The answer is “yes.” This book, then, is about artificial neural net-
works.

The nearons that we consider here are not hivlogical, They are extremely
simple abstractions of biological neurons, realized as elements in a pro-
gram or perhaps as circuits made of silicon. Networks of these artificial
neurcns do not have a fraction of the power of the human brain, but they
can be trained to perform useful functions. This book is about such neu-
rons, the networks that contain them and their training.

1 Introduction

History

The history of artificial neural networks is filled with colorful, creative in-
dividuals from many different fields, many of whom struggled for decades
to develop concepts that we now take for granted. This history has been
documented by various authors. One particularly interesting book is New-
racomputing: Foundations of Research by John Anderson and Edward
Rosenfeld. They have collected and edited a set of some 43 papers of special
historical interest. Each paper is preceded by an introduction that pute the
paper in historical perspective.

Histories of some of the main neural network contributors are included at
the beginning of various chapters throughout this text and will not be re-

peated here. However, it seems appropriate to give a brief overview, a sam-
ple of the major developments.

At least two ingredients are necessary for the advancement of a technology:
concept and implementation. First, one must have a concept, a way of
thinking about a topic, some view of it that gives a clarity not there before.
This may involve a simple idea, or it may be more specific and include a
mathematical description. To illustrate this point, consider the history of
the heart. It was thought to be, at various times, the center of the soul or a
source of heat. In the 17th century medical practitioners finally began to
view the heart as a pump, and they designed experiments to study its
pumping action. These experiments revolutionized our view of the circula-
tory system. Without the pump concept, an understanding of the heart was
out of grasp.

Concepts and their accompanying mathematics are not sufficient for a
technology to mature unless there is some way to implement the system.
For instance, the mathematics necessary for the reconstruction of images
from computer-aided tomography (CAT) scans was known many years be-
fore the availability of high-speed compuiers and efficient algorithms final-
ly made it practical to implement a useful CAT system.

The history of neural networks has progressed through both conceptual in-
novations and implementation developments. These advancements, how-
ever, seem to have occurred in fits and starts rather than by steady
evolution.

Some of the background work for the field of neural networks occurred in
the late 19th and early 20th centuries, This consisted primarily of interdis-
ciplinary work in physics, psychology and neurophysiology by such scien-
tists as Hermann von Helmholtz, Ernst Mach and Ivan Pavlov. This early
work emphasized general theories of learning, vision, conditioning, etc.,
and did not include specific mathematical models of neuron operation.

[R T

History

The modern view of neural networks began in the 1940s with the work of
Warren McCulloch and Walter Pitts [McPi43], who showed that networks
of artificial neurons could, in principle, compute any arithmetic or logical
function. Their work is often acknowledged as the origin of the neural net-
work field. :

MeCulloch and Pitts were followed by Denald Hebb [Hebb49], who pro-
posed that classical conditioning (as discovered by Pavlov) is present be-
cause of the properties of individual neurons. He proposed a mechanism for
learning in biological neurons (see Chapter 7).

The first practical application of artificial neural networks came in the late
1950s, with the invention of the perceptron network and associated learn-
ing rule by Frank Rosenblatt [Rose58)]. Rosenblatt and his colleagues built
a perceptren network and demonstrated its ability to perform pattern rec-
ognition. This early success generated a great deal of interest in neural net-
work research. Unfortunately, it was later shown that the basic perceptron
network could solve only a limited class of problems. (See Chapter 4 for
more on Rosenhlatt and the perceptron learning rule.)

At about the same time, Bernard Widrow and Ted Hoff [WiHo60] intro-
duced a new learning algorithm and used it to train adaptive linear neural
networks, which were similar in structure and capability to Rosenblatt’s
perceptron. The Widrow-Hoff learning rule is still in use today. {See Chap-
ter 10 for more on Widrow-Hoff learning.}

Urfortunately, both Rosenblatt’s and Widrow's networks suffered from the
same inherent limitations, which were widely publicized in a book by Mar-
vin Minsky and Seymour Papert [MiPa69]. Rosenblatt and Widrow were
aware of these limitations and proposed new networks that would over-
come them. However, they were not able to suceessfully modify their learn-
ing algorithms to {rain the more complex networks.

Many people, influenced by Minsky and Papert, believed that further re-
search on neural networks was a dead end. This, combined with the fact
that there were no powerful digital computers on which to experiment,
caused many researchers to leave the field. For a decade neural network
research was largely suspended.

Some important work, however, did continue during the 1970s. In 1972
Teuvo Kohonen {Koho72) and James Anderson [Ande72] independently
and separately developed new neural networks that could act as memories.
(See Chapters 13 and 14 for more on Kohonen networks.) Stephen Gross-
berg [Gros'76] was also very active during this period in the investigation
of self-organizing networks. (See Chapters 15 and 16.)

Interest in neural networks had faltered during the late 1960s because of
the lack of new ideas and powerful computers with which to experiment,
Puring the 1980s both of these impediments were overcome, and research
in neural networks increased dramatically. New personal computers and

13

1 Introduction

workstations, which rapidly grew in capability, became widely available.
In addition, important new concepts were introduced.

Two new concepts were most responsible for the rebirth of neural net-
works. The first was the use of statistical mechanics to explain the opera-
tion of a certain class of recurrent network, which could be used ag an
asseciative memory. This was described in a seminal paper by physicist
John Hopfield [HopfB82)]. (Chapters 17 and 18 discuss these Hopfield net-
works.)

The second key development of the 1980s was the backpropagation algo-
rithm for training multilayer perceptron networks, which was discovered
independently by several different researchers. The most influential publi-
cation of the backpropagation algorithm was by David Rumelhart and
James McClelland [RuMc86]. This algorithm was the answer to the criti-
ctsms Minsky and Papert had made in the 1960s, {See Chapters 11 and 12
for a development of the backpropagation algorithm.)

These new developments reinvigorated the field of neural networks, In the
last ten years, thousands of papers have been written, and neural networks
have found many applications. The field is buzzing with new theoretical
and practical work. As noted below, it is not clear where all of this will lead
us.

The brief historical account given above is not intended to identify all of the
major contributors, but is simply to give the reader some feel for how
knowledge in the neural network field has progressed. As one might note,
the progress has not always beer “slow but sure.” There have been periods
of dramatic progress and periods when relatively little has been accom-
plished.

Many of the advances in neural networks have had to do with new con-
cepts, such as innovative architectures and training rules. Just as impor-
tant has been the availability of powerful new computers on which to test
these new concepts,

Well, so much for the history of neural networks to this date. The real ques-
tion is, “What will happen in the next ten to twenty years?” Will neural net-
works take a permanent place as a mathematical/engineering tool, or will
they fade away as have so many promising technologies? At present, the
answer seems to be that neural networks will not only have their day hut
will have a permanent place, not as a solution te every problem, but as a
too] to be used in appropriate situations. In addition, remember that we
still know very little about how the brain works. The most important ad-
vances in neural networks almost certainly lie in the future,

Although it is difficult to predict the future suceess of neural networks, the
large number and wide variety of applications of this new technology are
very encouraging. The next section describes some of these applications.

—u - - ol A g e S M e e

Applications

Applicatiens

A recent newspaper article described the use of neural networks in litera-
ture research by Aston University. It stated that “the network can be
taught to recognize individual writing styles, and the researchers used it to
compare works attributed to Shakespeare and his contemporaries.” A pop-
ular science television program recently documented the use of neural net-
works by an Italian research institute to test the purity of olive oil. These
examples are indicative of the broad range of applications that can be found
for neural networks. The applications are expanding because neural net-
works are good at solving problems, not just in engineering, science and
mathematics, but in medicine, business, finance and literature as well.
Their application to a wide variety of problems in many fields makes them
very attractive. Also, faster computers and faster algorithms have made it
possible to use neural networks to solve complex industrial problems that
formerly required too much computation.

The following note and Table of Neural Network Applications are repro-
duced here from the Neural Network Toolbox for MATLAB with the per-
mission of the MathWorks, Inc.

The 1988 DARPA Neural Network Study (DARP88] lists various neural
network applications, beginning with the adaptive channel equalizer in
about 1984, This device, which is an outstanding commercial success, is a
single-neuren network used in long distance telephone systems to stabilize
voice signals. The DARPA report goes on to list other commercial applica-
tions, including a small word recognizer, a process monitor, a sonar classi-
fier and a risk analysis system.

Neural networks have been applied in many fields since the DARPA report
was written. A list of some applications mentioned in the literature follows.

Aerospace

High performance aircraft autopilote, flight path simulations,
aircrafl control systems, autopilot enhancements, aircraft com-
ponent simulations, aireraft component fault detectors

Auvtomotive
Automobile automatic guidance systems, warranty activity an-
alyzers

Banking

Check and other document readers, credit application evalua-
tors

L5

I Introduction

I1-6

Defense
Weapon steering, target tracking, object discrimination, facial
recognition, new kinds of sensors, sonar, radar and image sig-
nal processing including data compression, feature extraction
and noise suppression, signal/image identification

Electronics

Code sequence prediction, integrated cireuit chip layout, pro-
cess control, chip failure analysis, machine vision, voice syn-
thesis, nonlinear modeling

Ertertainment
Animation, special effects, market forecasting

Financial

Real estate appraisal, loan advisor, mortgage screening, corpo-
rate bond rating, credit line use analysis, portfolio trading pro-
gram, corporate financial analysis, currency price prediction

Insurance
Policy application evaluation, product optimization

Manufacturing

Manufacturing process control, product design and analysis,
process and machine diagnosis, real-time particle identifica-
tion, visual quality inspection systems, beer testing, welding
quality analysis, paper quality prediction, computer chip qual-
ity analysis, analysis of grinding operations, chemical product
design analysis, machine maintenance analysis, project bid-
ding, planning and management, dynamic modeling of chemi-
cal process systems

Medical

Breast cancer cell analysis, EEG and ECG analysis, prosthesis
design, optimization of transplant times, hospital expense re-
duction, hogpital quality improvement, emergency room test
advisement

Oill and Gas
Exploration

Applications

Robotics
Trajectory control, forklift robot, manipulator controllers, vi-
sion gystems

Speech
Speech recognition, speech compression, vowel classification,
text to speech synthesis

Securities

Market analysis, automatic bond rating, stock trading advisery
systems

Telecommunications

Image and data compression, automated information services,
real-time translation of spoken language, customer payment
processing systems

Transportation

Truck brake diagnosis systems, vehicle scheduling, routing
systems

Conclusion

The number of neural network applications, the money that has been in-
vested in neural network software and hardware, and the depth and
breadth of interest in these devices have been growing rapidly.

17

1 Introduction

Biological Inspiration

1-8

The artificial neural networks discussed in this text are only remotely re-
lated to their biological counterparts. In this section we will briefly describe
those characteristics of brain function that have inspired the development
of artificial neural networks.

The brain consists of a large number (approximately 101 of highly con-
nected elements (approximately 10* connections per element) called neu-
rons, For our purposes these neurons have three principal components: the
dendrites, the cell body and the axon. The dendrites are tree-like receptive
networks of nerve fihers that carry electrical signals into the cell body. The
cell body effectively sums and thresholds these incoming signals. The axon
is a single long fiber that earries the signal from the cell body cut to other
neurons, The point of contact between an axon of one cell and a dendrite of
another cell is called a synapse. It is the arrangement of neurons and the
strengths of the individual synapses, determined by a complex chemical
process, that establishes the function of the neural network. Figure 1.1 is
a simplified schematic diagram of two biological neurons,

Dendrites

Figure 1.1 Schematic Drawing of Biological Neurons

Some of the neural structure is defined at birth. Other parts are developed
through learning, as new counections are made and others waste away.
This development is most noticeable in the early stages of life. For example,

Biological Inspiration

it has been shown that if a young cat is denied use of one eye during a crit-
ical window of time, it will never develop normal vision in that eye.

Neural structures continue to change throughout life. These later changes
tend to consist mainly of strengthening or wezkening of synaptic junctions.
For instance, it is believed that new memories are formed by modification
of these synaptic strengths. Thus, the process of learning 2 new friend’s
face consists of altering various synapses.

Artificial neural networks do not approach the complexity of the brain.
There are, however, two key similarities between biolegical and artificial
neural networks. First, the building blocks of both networks are simple
computational devices (although artificial neurons are much simpler than
biological neurons) that are highly interconnected. Second, the connections
between neurons determine the function of the network. The primary ob-
Jjective of this book will be to determine the appropriate connections to solve
particular problems.

It is worth noting that even though biological neurons are very slow when
compared to electrical circuits (1073 s compared to 10~? s), the brain is able
to perform many tasks much faster than any conventional computer. This
is in part because of the massively parallel structure of biological neural
netwarks; all of the neurons are operating at the same time. Artificial neu-
ral networks share this parallel structure. Even though most artificial neu-
ral networks are currently implemented on conventional digital computers,
their parallel structure makes them ideally suited to implementation using
VLSI, optical devices and parallel processors.

In the following chapter we will introduce our basic artificial neuron and
will explain how we can combine such neurons to form networks. This will
provide a background for Chapter 3, where we take our first look at neural
networks in action.

i-9

1 Introduction

Further Reading

-1

{Ande72]

[AriRo88]

[DARP88]

(Gros786]

dJ. A, Anderson, “A simple neural network generating an in-
teractive memory,” Mathematical Biosciences, vol. 14, pp.
197-220, 1972.

Anderson proposed a “linear associator” model for associa-
tive memory. The model was trained, using a generaliza-
tion of the Hebb postulate, to learn an association between
input and output vectors. The physiological plausibility of
the network was emphasized. Kohenen published a closely
related paper at the same time {Koho72), although the two
researchers were working independently.

J. A. Anderson and E. Rosenfeld, Neurocomputing: Foun-
dations of Research, Cambridge, MA: MIT Press, 1989.

Neurocomputing is a fundamental reference book. It con-
tains over forty of the most important neurocomputing
writings. Each paper is accompanied by an introduction
that summarizes its results and gives a perspeetive on the
position of the paper in the history of the field.

DARPA Neural Network Study, Lexington, MA: MIT Lin-
coln Laboratory, 1988,

This study is a compendium of knowledge of neural net-
works as they were known to 1988, It presents the theoret-
ical foundations of neural networks and discusses their
current applications. It contains sections on associative
memories, recurrent networks, vision, speech recognition,
and robotics. Finally, it discusses simulation tocls and im-
plementation technology.

3. Grossberg, “Adaptive pattern classification and univer-
sal recoding: I. Parallel development and coding of neural
feature detectors,” Biological Cybernetics, Vol. 23, pp. 121-
134, 1976.

Grossberg describes a self-organizing neural network
based on the visual system. The network, which consists of
short-term and long-term memory mechanisms, is a contin-
ucus-time competitive network. It forms a besis for the
adaptive resonance theory (ART) networks.

[Gros80)

[Hebb 491

[Hopt82]

[Koho72]

{McPi43}

Further Reuding

8. Grossberg, “How dees the brain build a cognitive code?”
Psychological Review, Vol. 88, pp. 375407, 1980.

Grossberg's 1980 paper proposes neural structures and
mechanisms that can explain many physiological behav-
iors including spatial frequency adaptation, binocular ri-
valry, etc. His systems perform error correction by
themselves, without outside help.

D. 0. Hebb, The Organization of Behavior. New York:
Wiley, 1949,

The main premise of this seminal book is that behavior can
be explained by the action of neurons. In it, Hebb proposed
one of the first learning laws, which postulated a mecha-
nism for learning at the cellular level.

Hebb proposes that classical conditioning in biology is
present because of the properties of individual neurens.

J. J. Hopfield, “Neural networks and physical systems with
emergent collective computational abilities,” Proceedings
of the National Academy of Sciences, Vol. 79, pp. 2554~
2558, 1982,

Hopfield describes a content-addressable neural network.
He also presents a clear picture of how his neural network
operates, and of what it can de.

T. Kohonen, “Correlation matrix memories,” IEEE Trans-
actions on Computers, vol. 21, pp. 363-359, 1972.

Kohonen proposed a correlation matrix model for associa-
tive memory. The model was trained, using the outer prod-
uct rule (alse known as the Hebb rule), to learn an
agsociation between input and output vectors. The mathe-
matical structure of the network was emphasized. Ander-
son published a closely related paper at the same time
[AndeT72], although the two researchers were working inde-
pendently.

W. McCulloch and W. Pitts, “A logical calculus of the ideas
imrmanent in nerveous activity,” Bulletin of Mathematical
Biophysics., Vol. 5, pp. 115-133, 1943,

This article introduces the first mathematical model of a
neuron, in which a weighted sum of input signals is com-
pared to a threshold to determine whether or not the neu-
ron fires. This was the first attempt to describe what the
brain does, based on computing elements known at the

L1

1 Introduction

I-12

{MiPa68|

[Roseb8)

[RuMc86]

[WiHo50]

time. It shows that simple neural networks can compute
any arithmetie or logical function.

M. Minsky and 8. Papert, Perceptrons, Cambridge, MA:
MIT Press, 1968.

A landmark book that contains the first rigorous study de-
voted to determining what a perceptron network is capable
of learning, A formal treatment of the perceptren was need-
ed both to explain the perceptron’s limitations and to indi-
cate directions for overcoming them. Unfortunately, the
book pessimistically predicted that the limitations of per-
ceptrons indicated that the field of neural networks was a
dead end. Although this was not true it temporarily cooled
research and funding for research for several years.

F. Rosenblatt, “The perceptron: A probabilistic model for
information storage and organization in the brain,” Psycho-
logical Review, Vol. 65, pp. 386—408, 1958.

Rosenblatt presents the first practical artificial neural net-
work — the perceptron.

D. E. Rumelhart and J. .. McClelland, eds., Parallel Dis-
tributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1, Cambridge, MA: MIT Press, 1986,

One of the two key influences in the resurgence of interest
in the neural network field during the 1380s. Among other
topics, it presents the backpropagation algorithm for train-
ing multilayer networks,

B. Widrow and M. E. Hoff, “Adaptive switching cir-
cuits,”1960 IRE WESCON Convention Record, New York:
IRE Part 4, pp. 96104, 1960,

This seminal paper describes an adaptive perceptron-like
network that can learn quickly and accurately. The authors
assume that the system has inputs and a desired output
classification for each input, and that the system can calcu-
late the error between the actual and desired output. The
weights are adjusted, using a gradient descent method, so
as tominimize the mean square error. (Least Mean Square
error or LMS algorithm.)

This paper is reprinted in [AnRo88].

-=- S T T T

2 Neuron Model and Network
Architectures

Objectives

Objectives 241
Theory and Exampies 22
Notation 22
Nauron Model 2-2
Single-input Neuron 22
Transfer Functions 2-3
Multiple-Input Neuron 2.7
Network Architecturas 2-9
A Layer of Neurons 2-8
Muttiple Layers of Neurons 2-10
Recurrent Networks 2-13
Summary of Results 2-16
Soived Problems 2-2¢
Eptlogue 2-22
Exercises 2-23

In Chapter 1 we presented a simplified description of biclogical neurons
and neural networks. Now we will introduce our simplified mathematical
model of the neuron and will explain how these artificial neurons can be in-
terconnected to form a variety of network architectures. We will also illus-
trate the basic operation of these networks through some simple examples.
The concepte and notation introduced in this chapter will be used through-
out this book,

This chapter does not cover all of the architectures that will be used in this
book, but it does present the basic building blocks. More complex architec-
tures will be introduced and discussed as they are needed in later chapters.
Even so, alot of detail is presented here. Please note that it is not necessary
for the reader to memorize all of the material in this chapter on a first read-
ing. Instead, treat it as a sample to get you started and a resource to which
you can return.

21

LT S T N - . -

2 Neuron Model and Nefwork Archifectures

Theory and Examples

2.2

Notation

Neural networks are so new that standard mathematical notation and ar-
chitectural representations for them have not yet been firmly established.
In addition, papers and books on neural networks have come from many di-
verse fields, including engineering, physics, psychology and mathematics,
and many authors tend to use voeabulary peculiar to their specialty. As a
result, many books and papers in this field are difficult to read, and con-
cepts are made to seem more complex than they actually are. This is a
shame, as it has prevented the spread of important new ideas. It has also
led to more than one “reinvention of the wheel.”

In this book we have tried to use standard notation where possible, to be
clear and to keep matters simple without sacrificing rigor. In particular, we
have tried to define practical conventions and use them consistently.

Figures, mathematical equations and text discussing both figures and
mathematical equations will use the following netation:

Scalars — small italic letters: a,b,c
Vectors — small bold nonitalic letters: a,b,c
Matrices — capital BOLD nonitalic letters: A,B,C

Additional notation concerning the network architectures will he intro-
duced as you read this chapter. A complete list of the notation that we use
throughout the book is given in Appendix B, so you can look there if you
have a question.

Neuron Model

Weight

Bias

Net [nput
Transfer Function

Single-Input Neuron

A single-input neuron is shown in Figure 2.1. The scalar input p is multi-
plied by the scalar weight w to form wp , one of the terms that is sent to the
summer, The other input, 1, is multiplied by a bias & and then passed to
the summer. The summer output n, often referred to as the net input, goes
into a transfer function f, which produces the scalar neuron output a.
(Some authors use the term “activation function” rather than transfer func-
tion and “offset” rather than bias.)

If we relate this simple model back to the biological neuron that we dis-
cussed in Chapter 1, the weight w corresponds to the strength of & synapse,

Hard Limit

Neuron Model

the cell body is represented by the summation and the transfer function,
and the neuron output a represents the signal on the axon.

Inputs Generat Neuron

O

P.w$n’ma>
b

\n_._-f "ﬁ—-—-———-——fl
a=f(wp+b)

Figure 2.1 Single-Input Neuron
The neuron output is calculated as
ax= f(wp+b).
If, for instance, w = 3, p = 2 and & = -1.5, then
a=f(3(2) -15)= F(45)

The actual output depends on the particular transfer function that is cho-
sen. We will discuss transfer functions in the next section.

The bias is much like a weight, except that it has a constant input of 1.
However, if you do not want to have a bias in a particular neuron, it can be
omitted We will see examples of this in Chapters 3, 7 and 14.

Note that wand b are both adjustable scalar parameters of the neuron.
Typically the transfer function is chosen by the designer and then the pa-
rameters w and b will be adjusted by some learning rule go that the neu-
ron input/output relationship meets some specific goal {(see Chapter 4 for
an introduction to learning rules). As described in the following section, we
have different transfer functions for different purposes.

Transfer Functions

The transfer function in Figure 2.1 may be a linear or a nonlinear function
of n. A particular transfer function is chosen to satisfy some specification
of the problem that the neuron is attempting to solve.

A variety of transfer functions have been included in this book. Three of the
most commonly used functions are discussed below.

The kard limit éransfer function, shown on the left side of Figure 2.2, sets

Transfer Function the output of the neuren to 0 if the function argument is less than 0, or 1 if

2.3

2 Neuron Model and Network Architectures

its argument ig greater than or equal to 0. We will use this function to cre-
ate neurons that classify inputs into two distinct categories. It wiil be used

extensively in Chapter 4.
a a

+1 +l
— P

0 ~biw: 0 >

o T -1
a = hardlim{n) a = hardlim{wp+b)
Hard Limit Transfer Function Single-input hardlim Neuron

Figure 2.2 Hard Limit Transfer Function

The graph on the right side of Figure 2.2 illustrates the input/output char-
acteristic of a single-input neuron that uses a hard limit transfer function.
Here we can see the effect of the weight and the bias. Note that an icon for
the hard limit transfer function is shown between the two figures. Such
icons will replace the general f in network diagrams to show the particular
transfer function that is being used.

Linear The output of a linear transfer function is equal to its input;
Transfer Function
a=n, 2.1

as illustrated in Figure 2.3

Neurons with this transfer function are used in the ADALINE networks,
which are discussed in Chapter 10.

a = purelin(n} a = purelinfwp+b)

Linear Transfer Function Single-Input purelin Neuron

Figure 2.3 Linear Tranafer Function

The output (a) versus input (p) characteristic of & single-input linear neu-
ron with a bias is shown on the right of Figure 2.3.

24

Neuron Model

Log-Sigmoid The log-sigmoid transfer function is shown in Figure 2.4.
Transfer Function

a = logsig(n) a = logsig(wp + b}
Log-Sigmoid Transfer Function ~ Single-Input logsig Neuron

Figure 2.4 Log-Sigmeid Transfer Function

This transfer function takes the input (which may have any value between
plus and minus infinity) and squashes the output into the range 0 to 1, ac-

cording to the expression:

a=— 2.2)

-
l+e

The log-sigmoid transfer function is commonly used in multilayer networks
that are trained using the backpropagation algerithm, in part because this
function is differentiable {see Chapter 11).

Most of the transfer functions used in this book are summarized in Table
2.1, Of course, you can define other transfer functions in addition to those

shown iz Table 2.1 if you wish.

To experiment with a single-input neuron, use the Neural Network Design
Demonstration One-input Neuron nnd2n1.

2-5

2 Neuron Model and Network Archilectures

Name Input/Output Relation Icon lzdut];];j?)ﬁ
.. =0 n<0
Hard Limit i ‘
ard Limi sol n>0 II hardlim
. . . =-1 n<0 e
Symmetrical Hard L “ i
ymmetric imit s+l n>0 i hardlims
Linear g =n i‘ purelin
a=0 n<0
Saturating Linear a=n 0<nsgl |Z satlin
a=1 n>l
. =-1 n<-1
Symmetric Saturatin ¢
y Linear & a=n -1<ng1 ZI satlins
a=1 n>l
. . |
Log-Sigmoid a= ‘
g-Sig oo ZI logsig
Hyperbolic Tangent e .
Sigmeoid e ZI tansig
- . =0 n<
Positive Li ¢ ‘
ositive Linear sen 0<n ZI poslin
Competitive a = 1 neurcn with max n EI compet

a = 0 all other neurons

Table 2.1 Transfer Functions

Weight Matrix

{Neight Indices

Neuron Model

Multiple-Input Neuron

Typically, & neuron has more than one input. A neuron with R inputs is
shown in Figure 2.5. The individual inputs p,,p,.....p, are each weighted
by corresponding elements w, |,w, 2 W g o%the weight matrix W,

Inputs Multiple-input Neuron

NN

/Lt J
a=f(Wp+b)
Figure 2.5 Multiple-Input Neuron

The neuron has a bias &, which is summed with the weighted inputs to
form the net input »n:

R=W P W a0t AW apet b 2.3

This expression ¢an be written in matrix form:
n=Wpth, - (2.4
where the matrix W for the single neuron case has only one row.
Now the neurcn output can be written as
a=f{(Wp+bh). (2.5)

Fortunately, neural networks can often be described with matrices. This
kind of matrix expression will be used throughout the book. Don't be con-
cerned if you are rusty with matrix and vector operations. We will review
these topics in Chapters 5 and 6, and we will provide many exampies and
solved problems that will spell out the procedures,

We have adopted a particular convention in assigning the indices of the el-
ements of the weight matrix, The first index indicates the particular neu-
ron destination for that weight. The second index indicates the source of
the signal fed to the neuron. Thus, the indices in w, , say that this weight
represents the connection fo the first (and only) neuron from the secand
source. Of course, this convention is more useful if there is more than one
neuron, as will be the case later in this chapter.

2.7

2 Neuron Model and Network Architectures

Abbreviated Notation

We would like to draw networks with several neurons, each having several
inputs, Further, we would like to have more than one layer of neurons. You
can imagine how complex such a network might appear if all the lines were
drawn. It would take a Iot of ink, could hardly be read, and the mass of de-
tail might obscure the main features. Thus, we will use an abbreviated no-
tation. A multiple-input neuron using this notation is shown in Figure 2.6.

Input Multiple-Input Neuron

a=f(Wp+b)

Figure 2.6 Neuron with R Inputs, Abbreviated Notation

As shown in Figure 2.6, the input vector p is represented by the solid ver-
tical bar at the left. The dimensions of p are displayed below the variable

as Rx 1, indicating that the input is a single vector of R elements. These

inputs go to the weight matrix W, which has R columns but only one row
in this single neuron case. A congtant 1 enters the neuron as an input and

is multiplied by a scalar bias &. The net input to the transfer function f is

n, which is the sum of the bias » and the product Wp . The neuron’s output
4 is a scalar in this case, If we had more than one neuren, the network out-
put would be a vector.

The dimensions of the variables in these abbreviated notation figures will
always be included, so that you can tell immediately if we are talking about
a scalar, a vector or a matrix. You will not have to guess the kind of variahle
or its dimensions.

Note that the number of inputs to a network is set by the external specifi-
cations of the problem. If, for instance, you want to design a neural network
that is to predict kite-flying conditions and the inputs are air temperature,
wind velocity and humidity, then there would be three inputs to the net-
work.

To experiment with a two-input neuron, use the Neural Network Design
Demonstration Two-input Neuron (nnd2n2).

Networhk Architectures

Network Architectures

Commonly one neuron, even with many inputs, may not be sufficient. We
might need five or ten, operating in parallel, in what we will cal] a “layer.”
This concept of a layer is discussed below.

A Layer of Neurons

Layer A single-layer network of § neurons is shown in Figure 2.7. Note that each
of the R inputs is connected to each of the neurons and that the weight ma-
trix now has § rows.

Inputs Layer of § Neurons

a = f(Wp+b)

Figure 2.7 Layer of § Neurons

The layer includes the weight matrix, the summers, the bias vector b, the
transfer function boxes and the output vector a. Some authors refer to the
inputs as another layer, but we will not do that here,

Each element of the input vector p is connected to each neuron through the
weight matrix W. Each neuron has a bias b,, a summer, a transfer func-
tion f and an output ¢, . Taken together, the outputs form the output vector
a. '

It is common for the number of inputs to a layer to be different from the
number of neurons (ie., £25).

You might ask if all the neurons in a layer must have the same transfer
function. The answer is no; you can define a single (composite) layer of nen-
rons having different transfer funetions by eombining two of the networks

2.9

2 Neuron Model and Network Architectures

2-10

shown above in parallel. Both networks would have the same inputs, and
each network would create some of the outputs.

The input vector elements enter the network through the weight matrix
W
YW Wir

w= e ok 2.6)

We 1 Ws2- Wep

As noted previously, the row indices of the elements of matrix W indicate
the destination neuron associated with that weight, while the column indi-
ces indicate the source of the input for that weight. Thus, the indices in
w. , say that this weight represents the connection fo the third neuron
from the second source.

Fortunately, the S-neuron, R-input, one-layer network also can he drawnin
abbreviated notation, as shown in Figure 2.8.

Input Layer of § Neurons

R
./ \ J
a=f(Wp+h)

Figure 2.8 Layer of § Neurons, Abbreviated Notation

Here again, the symbols below the variables tell you that for this layer, p
is a vector of length R, W is an § x R matrix, and a and b are vectors of
length §. As defined previously, the layer includes the weight matrix, the
summation and multiplication operations, the bias vector b, the transfer
function boxes and the output vector.

Multiple Layers of Neurons

Now consider a network with several layers. Each layer has its own weight
matrix W, its own bias vector b, 2 net input vector n and an output vector
a, We need to introduce some additienal notation to distinguish between

these layers. We will use superscripts to identify the layers. Specifically, we

Layer Superseript

Inputs

Qutput Layer
Hidden Layers

Network Architectures

append the number of the layer as a superscript to the names for each of
these variables. Thus, the weight matrix for the first layer ig written asW ',
and the weight matrix for the second layer is written as W . This notation
is used in the three-layer network shown in Figure 2.9

First Layer Second Layer Third Layer

gl =1 (Wp+b') a? = £2(Weal 4 b) a? = 3(Wiaz+b?)
88 = 15 (WS 2 (WL L (Wip-+bi)+b2) +b3)

Figure 2.9 Three-Layer Network

As shown, there are R inputs, §' neurons in the first layer, $° neurons in
the second layer, ete. As noted, different layers can have different numbers
of neurons.

The outputs of layers one and two are the inputs for layers two and three.
Thus layer 2 can be viewed as a one-layer network with 8 = §] inputs,

§ = §* neurons, and an §' x§° weight matrix W' . The input to layer 2 is
a',and the output is .

A layer whose output is the network output is called an output layer. The
other layers are called hidden layers. The network shown above has an cut-
put layer (layer 3) and two hidden layers (layers 1 and 2).

The same three-layer network discussed previously also can be drawn us-
ing our abbreviated notation, as shown in Figure 2.10.

2-11

2 Neuron Model and Network Archilectures

2.12

First Layer Second Layer Third Layer

al =f'(Wip+bh\) a’=f2(W2a' +b) 23 =13(Wia2+b3)

2’ = 1 3(W!F2 (W2 1 (Wip+b1)+b2) +bY)
Figure 2.10 Three-Layer Network, Abbreviated Notation

Multilayer networks are more powerful than single-layer networks. For in-
stance, a two-layer network having a sigmoid first layer and a linear sec-
ond layer can be trained to approximate most functions arbitrarily well.
Single-layer networks cannot do this,

At this point the number of choices to be made in specifying a network may
look overwhelming, so let us consider this topic, The problem is not as bad
as it looks. First, recall that the number of inputs to the network and the
number of outputs from the network are defined by external problem spec-
ifications. So if there are four external variables to be used as inputs, there
are four inputs to the network. Similarly, if there are to be seven outputs
from the network, there must be seven neurons in the sutput layer. Finally,
the desired characteristics of the output signal also help to select the trans-
fer function for the output layer. If an output is to be either -1 or 1, then
a symmetrical hard limit transfer function should be used. Thus, the archi-
tecture of a single-layer network is almost completely determined by prob-
lem specifications, including the specific number of inputs and outputs and
the particular cutput signal characteristic.

Now, what if we have more than two layers? Here the external problem
does not tell you directly the number of neurons required in the hidden lay-
ers. In fact, there are few problems for which one can predict the optimal
number of neurons needed in a hidden layer. This problem is an active area
of research. We will develop some feeling on this matter as we proceed to
Chapter 11, Backpropagation.

As for the number of layers, most practical neural networks have just two
or three layers. Four or more layers are used rarely.

We should say something about the use of biases. One can choose neurens
with or without biases. The bias gives the network an extra variable, and
so you might expect that networks with biases would be more powerful

Delay

Integrator

Network Architectures

than those without, and that is true. Note, for instance, that a neuren with-
out a bias will always have a net input » of zero when the network inputs
p are zero. This may not be desirable and can be aveided by the use ofa
bias. The effect of the bias is discussed more fully in Chapters 3, 4 and 5.

In later chapters we will omit a bias in some examples or demonstrations.
In some cases this is done simply to reduce the number of network param-
eters, With just two variables, we can plot system convergence in a two-di-
mensional plane. Three or more variables are difficult to display.

Recurrent Networks

Before we discuss recurrent networks, we need to introduce some simple
building biocks. The first is the delay block, which is illustrated in Figure

2.11.

Delay
IO

u(l) ali)

s

a(0)
-/

aif) =ur-1)

Figure 2.11 Delay Block
The delay output a(¢) is computed from its input u (f) according to
aly =u{t-1). (2.7)

Thus the output is the input delayed by one time step. (This assumes that
time is updated in discrete steps and takes on only integer values.) Eq. {2.7)
requires that the output be initialized at time ¢ = 0. This initial condition
is indicated in Figure 2,11 by the arrow coming into the bottom of the delay

block.

Another related building block, which we will use for the continuous-time
recurrent networks in Chapters 15-18, is the integrator, which is shown in

Figure 2,12,

2-13

2 Neuron Model and Network Architectures

Integrator

N
u(r) a(r)

s

a0y
e/
alty= T)IL WD dt+a(l)

Figure 2.12 Integrator Block
The integrator output a () is computed from its input u (1} according to

a(r) = J;u(‘r}d'Ha(O). (2.8)

The initial condition 2 (0) isindicated by the arrow coming into the bottom
of the integrator block.

Recurrent Network We are now ready to introduce recurrent networks, A recurrent network is
a network with feedback; some of its outputs are connected to its inputs.
This is quite different from the networks that we have studied thus far,
which were strictly feedforward with no backward connections. One type of
discrete-time recurrent network is shown in Figure 2.13.

Initial
Condition Recurrent Layer
T

p

Sx1

—/

aM=p a(r+1) = satlins(Wa(s) +b)

Figure 2.13 Recurrent Network

2-14

Network Architeciures

In this particular network the vector p supplies the initial conditions (i.e.,
2(0) = p). Then future cutputs of the network are computed from previ-
ous outputs:

a{l} = satlins(Wa(0} +b),a(2) = satlins(Wa (1} +b),... ‘)
Recurrent networks are potentially more powerful than feedforward net- et

works and can exhibit temporal behavior. These types of networks are dis-
cussed in Chapters 3 and 15-18.

215

2 Neuron Model and Network Architectures

Summary of Results

Single-input Neuron

Inputs General Neuron

NS \

pwna
‘b

(N AN S
a=f(wp+b)

Multiple-Input Neuron

Inputs Multiple-input Neuron

a=f(Wp+b)

Input Multiple-Input Neuron

a = f(Wp+b)

2.16

Transfer Functions

Summary of Resulls

. MATLAB
Name Input/Qutput Relation Icon Function
a=0 »n<0
ard Limit | hardlim
H a=1 n20 _[
. .. = -1 0 .
Symmetrical Hard Limit ¢ "< :F | hardlims
a=+l nz0
Linear a=n 74] purelin
|
. a=0 n<0
‘ Saturating Linear a=n 0s5n<1 satlin
a = n>1
‘ Symmetric Saturatin a=-1 n<ol
e)
| y Linear ing a=n -1€ngl satlins
i a=1 n>l
1 _
Log-Sigmoid a= logsi
g-Sig — v gsig
bolic Tange " e e .
Hyper olic Tang nt €€ f tansig
Sigmoid e | |
. a=0 nrn<0 [~ /] .
Positive Linear oslin
: ne a=pr (0<n -’é‘ P
.. a = 1 newron with max n ral
Competitive compet
pe a = 0 all other neurons -(;‘ pe

217

2 Neuron Model and Network Architectures

Layer of Neurons

fnput Layer of § Neurons

Three Layers of Neurons

input First Layer Second Layer Third Layer

R Sxt st x1 2 a1 53

a =f1 {Wlp+b]) al= fZ(WEaI+b2) ai= f](w3a2+b3}
@ = £ (WEL(WH | (Wip+b)+b2) +19)

Delay

Delay
Y

uit) a(t)

"4

al0)
N/
ain =uwt-1}

2.18

Summary of Resulls

Integrator
Integrator
N
u(r alt}
a0y
e/
a(®) ={u(1) 4t + al0)
Recurrent Network
Initial
Condition Recurrent Layer
p
§x1
S
/

a{0)=p a(r+1) =satlins (Wa(r)+b)

How to Pick an Architecture
Problem specifications help define the network in the following ways:
1. Number of network inputs = humber of problem inputs
2. Number of neurons in putput layer = number of problem outputs

8. Output layer transfer function choice at least partly determined by
problem specification of the outputs

2.13

2 Neuron Mode! and Network Architectures

Solved Problems

220

ang =

w242

P21

P22

P23

The input to a single-input neuaron is 2.0, its weight is 2.3 and its
hias is -3.

i. What is the net input to the transfer function?
ii. What is the neuron output?
i. The net input is given by:
n=wp+h= (23 (2)+(-3) = 16
ii. The output cannot be determined because the transfer function is not
specified,
What is the output of the neuron of P2.,1 if it has the following
transfer functions?
i. Hard limit
ii. Linear
iii. Log-sigmoid
i. For the hard limit transfer function:
a = hardlim(1.6)= 1.0
ii. For the linear transfer function:
a = purelin(1.6)= 1.6
iil. For the log-sigmoid transfer function:

1
1+e

= 0.8320

a = logsig(1.6) = i

Verify this result using MATLAB and the function logsig, which is in the
MININNET directory (see Appendix.B).

Given a two-input neuron with the following parameters: » = 1.2,
W= [3 2] and p = [_5 GJ T, calculate the neuron output for the fol-
lowing transfer functions:

i. A symmetrical hard limit transfer function

ii. A saturating linear transfer function

P24

Solved Problems

iii. A hyperbolic tangent sigmoid (tansig) transfer function
First calculate the net input »:

n=Wp+b =3 2}["65]+ (12) = -18.

Now find the outputs for each of the transfer functions.

i.a = hardlims (-1.8)= -1

ii. a = sarlin (-1.8) = 0

ili. a = ransig (-1.8) = -0.9468

A single-layer neural network is to have six inputs and two out-
puts. The outputs are to be limited to and continuous over the

range 0 to 1. What can you tell about the network architecture?
Specifically:

i. How many neurons are required?

ii. What are the dimensions of the weight matrix?
iii. What kind of transfer functions could be used?
iv. Is a bias required?

The problem specifications allow you to say the following about the net-
work.

i. Two neurons, one for each output, are required.

ii. The weight matrix has two rows corresponding to the two neurons and
six columns corresponding to the six inputs. (The product Wp is a two-el-
ement vector.)

iii. Of the transfer functions we have discussed, the fogsig transfer func-
tion would be most appropriate.

iv. Not enough information is given to determine if a bias is required.

2-21

2 Neuron Model and Network Architectures

Epilogue

2-22

This chapter has introduced a simple artificial neuron and has illustrated
how different neural networks can be created by connecting groups of neu-
rons in various ways. One of the main objectives of this chapter has been to
introduce our basic notation. As the networks are discussed in more detail
in later chapters, you may wish to return to Chapter 2 to refresh your mem-
ory of the appropriate notation.

This chapter was not meant to be a complete presentation of the networks
we have discussed here. That will be done in the chapters that follow. We
will begin in Chapter 3, which will present a simple example that uses
some of the networks described in this chapter, and will give you an oppor-
tunity to see these networks in action. The networks demongtrated in
Chapter 3 are representative of the types of networks that are covered in
the remainder of this text.

Exercises
E21
E2.2
n2e2 ;
=4
E23
E24

The input to a single input neuron is 2.0, its weight is 1.3 and its biasis 3.0.
What possible kinds of transfer function, from Table 2.1, could this neuron
have, if its output is:

i 1.6
ii. 1.0
iii. 0.9963
iv. -1.0
Ceonsider a single-input neuren with a bias. We would like the output to be
-1 for inputs less than 3 and +1 for inputs greater than or equal to 3.
i. What kind of a transfer function is required?

ii. What bias would you suggest? Is vour bias in any way related to the
input weight? If yes, how?

iti. Summarize your network by naming the transfer function and stat-
ing the bias and the weight. Draw a diagram of the network. Verify
the network performance using MATLAB.

(Given a two-input neuron with the following weight matrix and input vec-
T
tor W = [3 2] andp = [_5 ﬂ ,we would like to have an output of 0.5. Do

you suppose that there is a combination of bias and transfer function that
might allow this?

i. Isthere a transfer function from Table 2.1 that will do the job if the
bias is zero?

ii. Is there a bias that will do the job if the linear transfer function is
used? If ves, what is it?

iii. Is there a bias that will do the job if a log-sigmoid transfer function
is used? Again, if yes, what is it?

iv. Is there a bias that will do the job if a’symmetrical hard limit trans-
fer function is used? Again, if yes, what is it?

A two-layer neural network is to have four inputs and six outputs. The
range of the outputs is to be coniinuous between 0 and 1. What can yeu tell
about the network architecture? Specifically:

223

2 Neuron Model and Network Architectures

i. How many neurons are required in each layer?

ji. What are the dimensions of the first-1ayer and second-layer weight
matrices?

iii. What kinds of transfer functions can be used in each layer?

iv. Are biases required in either layer?

2-24

3 An Dlustrative Example

Objectives

Objectives 3-1
Theory and Exampies 3-2
Problem Statement 32
Perceptron 3-3
Two-Input Case 3-4
Pattem Recognition Example 3-5
Hamming Network 3-8
Feadforward Layer 3-8
Recurrent Layer 39
Hopfield Network 312
Epilogue 3-15
Exercise 3-18

Think of this chapter as a preview of coming attractions. We will take a
simple pattern recognition problem and show how it can be solved using
three different neural network architectures. It will be an opportunity to
see how the architectures described in the previous chapter can be used to
solve a practical (although extremely oversimplified) problem. Do not ex-
pect to completely understand these three networks after reading this
chapter. We present them simply to give you a taste of what can be done
with neural networks, and to demonstrate that there are many different
types of networks that can be used to solve a given problem.

The three networks presented in this chapter are representative of the
types of networks discussed in the remaining chapters: feedforward net-
works (represented here by the perceptron}, competitive networks (repre-
sented here by the Hamming network) and recurrent associative memory
networks (represented here by the Hopfield network).

31

3 An Hlustrative Example

Theory and Examples

Problem Statement

32

A produce dealer has a warehouse that stores a variety of fruits and vege-
tables. When fruit is brought to the warehouse, various types of fruit may
be mixed together. The dealer wants a machine that will sort the fruit ac-
cording to type. There is a conveyer belt on which the fruit is loaded. This
conveyer pagses through a set of sensors, which measure three properties
of the fruit: shape, texture and weight. These sensors are somewhat primi-
tive. The shape sensor will output a 1 if the fruit is approximately round

and a -1 ifit is more elliptical. The texture sensor will output a 1 if the sur-
face of the fruit is smooth and & -1 if it is rough. The weight sensor will

output a 1 if the fruit is more than cne pound and a -1 if it is less than one

pound.,

The three sensor outputs will then be input to a neural network. The pur-
pose of the network is to decide which kind of fruit is on the conveyor, so

that the fruit can be directed to the correct storage bin. To make the prob-
lem even gimpier, let’s assume that there are only two kinds of fruit on the

conveyor: apples and oranges.

Neural

l_\ Network

() Q % Sensors @O Sorter

As each fruit passes through the sensors it can be represented by a three-
dimensional vectar, The first element of the vector will represent shape,
the second element will represent texture and the third element will repre-

sent weight:

Percepiron

shape
P = ttexture} - 3.1)
weight
Therefore, a prototype orange would be represented by
1
P = |- (3.2)
l'
and a prototype apple would be represented by
1
P = [1;- (3.3}

-1

The neural network will receive one three-dimensional input vector for
each fruit on the conveyer and must make a decigion as to whether the fruit

is an orange (p,) oranapple (p,) .

Now that we have defined this simple (trivial?) pattern recognition prob-
lem, let’s lock briefly at three different neural networks that could be used
to solve it. The simplicity of our problem will facilitate our understanding
of the operation of the networks,

Perceptron

The first network we will discuss is the perceptron. Figure 3.1 illustrates a
gingle-layer perceptron with a symmetric hard limit transfer function hard-
lims.

Inputs Sym. Hard Limit Layer
f N7 A

p a

R ks;n I3
a = hardlimsWp+b)

Figure 3.1 Single-Layer Perceptron

33

3 An Illlustrative Example

34

Two-Input Case

Before we use the perceptron to solve the orange and apple recognition
problem {which will require a three-input perceptron, i.e., R = 3),it is use-
ful to investigate the capabilities of a twe-input/single-neuron perceptron
(R = 2}, which can be easily analyzed graphicaliy. The two-input percep-
tron is shown in Figure 3.2

Inputs Two-Input Neuron

a = hardlims(Wp+b)

Figure 3.2 Two-Input/Single-Neuron Perceptron

Single-neuron perceptrons can classify input vectors intoe two categories.
For example, for a two-input perceptron, iff w, | = -1 and w, , = [then

a = hardlims(n) = hard!ims([_l ﬂp+b). (3.4)

Therefore, if the inner product of the weight matrix (a single row vector in
this case) with the input vector is greater than or equal to -5, the output

will be 1. If the inner product of the weight vector and the input is less than
-b, the output will be -1, This divides the input space into two parts. Fig-
ure 3.3 illustrates this for the case where b = —1. The blue line in the fig-
ure represents all points for which the net input » is equal to O:

n= ;_1]]p—l =40. (3.5)

Notice that this decision boundary will always be orthogonal te the weight
matrix, and the position of the boundary can be shifted by changing &. (In
the general case, W is a matrix consisting of a number of row vectors, each
of which will be used in an equation like Eq. (3.5). There will be one bound-
ary for each row of W. See Chapter 4 for more on this topic.) The shaded
region contains all input vectors for which the output of the network will
be 1. The output will be -1 for all other input vectors,

Perceptron

ﬂ>f]/ A<l
— 7,

-1

Figure 3.3 Perceptron Decision Boundary

The key property of the single-neuron perceptron, therefore, is that it can
separate input vectors into two categories. The decision boundary between
the categories is determined by the equation

Wp+h =0. (3.6)

Because the boundary must be linear, the single-layer perceptron can only
be used to recognize patterns that are linearly separable (can be separated
by a linear boundary). These concepts will be discussed in more detail in

Chapter 4.

Pattern Recognition Example

Now consider the apple and orange pattern recognition problem. Because
there are only two categories, we can use a single-neuron perceptron. The
vector inputs are three-dimensional (R = 3), therefore the perceptron

equation will be
- pl
a = hardlims| w, & w,) W, 3:] p; +b|. (3.1

14

We want to choose the biag 5 and the elements of the weight matrix so that
the perceptron will be able to distinguish between apples and oranges. For
example, we may want the cutput of the perceptron to be 1 when an apple
ig input and -1 when an orange is input. Using the concept illustrated in
Figure 3.3, let’s find a linear boundary that can separate oranges and ap-

3-8

3 An Ilustrative Example

ples. The two prototype vectors {recall Eq. (3.2) and Eq. (3.3)) are shown in
Figure 3.4. From this figure we can see that the linear boundary that di-
vides these two vectors symmetrically is the p,, p, plane.

Ps

Al

e 7

’//
i

I, (orange) B, (apple)

Figure 3.4 Prototype Vectors
The p,, p, plane, which will be our decision houndary, can be described by

the equation
p, =0, (3.8)
or
]
[g I g] p,| +0=0. (3.9
P ‘

Therefore the weight matrix and bias will be
W=lgrg,b=0. (3.10)

The weight matrix is orthogonal to the decision boundary and points to-
ward the region that contains the prototype pattern p, {apple) for which we
want the perceptron to produce an output of 1. The bias is 0 because the
decision boundary passes through the origin.

Now let’s test the operation of our perceptron pattern classifier. [t classifies
perfect apples and oranges correctly since

Perceptron

Orange;

1
a = hardlims [0 1 0] i +0 | = —1{orange), (3.11}

-1
Apple:

1
a = hardlims [0 1 0] 1|1+0 | = L{apple) . (3.12)

-1

But what happens if we put a not-so-perfect orange into the classifier? Let’s
say that an orange with an elliptical shape is passed through the sensors.
The input vector would then be

P=-1- (3.13)

The response of the network would be

a = hardlims [0 1 0:| -1/ +0 | = -1 {orange) . (3.14)
-1

In fact, any input vector that is closer to the orange prototype vector than
to the apple prototype vector (in Euclidean distance) will be classified as an
orange (and vice versa).

To experiment with the perceptron network and the apple/orange classifi-
cation problem, use the Neural Network Design Demonstration Perceptron

Ciassification (nnd3pc).

This example has demonstrated some of the features of the perceptron net-
work, but by no means have we exhausted our investigation of perceptrons.
This network, and variations on it, will be examined in Chapters 4 through
12. Let’s consider some of these future topies.

In the apple/orange example we were able to design a network graphically,
by choosing a decision boundary that clearly separated the patterns. What
about practical problems, with high dimensional input spaces? In Chapters
4,7, 10 and 11 we will introduce learning algerithms that can be used to
train networks to solve complex problems by using a set of examples of
proper network behavior.

37

3 An Hiustrative Example

The key characteristic of the single-layer perceptron is that it creates lin-
ear decision boundaries to separate categories of input vector. What if we
have categories that cannot be separated by linear boundaries? This ques-
tion will be addressed in Chapter 11, where we will intreduce the multilay-
er perceptron, The multilayer networks are able to solve classification
problems of arbitrary complexity. .

Hamming Network

3-8

The next network we will consider iz the Hamming network {Lipp87]. It
was designed explicitly to solve binary pattern recognition problems
{where each element of the input vector has only two pessible values — in
our example 1 or -1). This is an interesting network, because it uses both
feedforward and recurrent (feedback) layers, which were both described in
Chapter 2. Figure 3.5 shows the standard Hamming network. Note that
the number of neurons in the first layer is the same as the number of neu-
rons in the second layer.

The ohjective of the Hamming network is to decide which prototype vector
is closest to the input vector. This decision is indicated by the output of the
recurrent layer. There is one neuron in the recurrent layer for each proto-
type pattern. When the recurrent layer converges, there will be only one
neuren with nonzero output. This neuron indicates the prototype pattern
that is closest to the input vector, Now let’s investigate the two layers of the
Hamming network in detail.

Feedforward Layer Recurrent Layer
r N Al
né(f+1) axt+1) axt)
' Wi .Z sx1 D} i ?
xS .
Ay
- J o\ /

a! = purelin(Wtp +b?) a0)=al axt+1) = poslin(W2az(s))
Figure 3.5 Hamming Network

Feedforward Layer

The feedforward layer performs a correlation, or inner produet, between
each of the prototype patterns and the input pattern (as we will see in Eq.
(3.17)). In order for the feedforward layer to perform this correlation, the

Hamming Network

rows of the weight matrix in the feedforward layer, represented by the con-
nection matrix W, are set to the prototype patterns. For our apple and or-
ange example this would mean

.
wio P o) (3.15)
il 114

The feedforward layer uses a linear transfer function, and each element of
the bias vector is equal to R, where R is the number of elements in the in-
put vector. For our example the bias vector would be

b = ﬁ . (3.16)
3

With these choices for the weight matrix and bias vector, the output of the
feedforward layer is

H T +1
a' = Wp+p' = P p+H = [PPS) (3.17)
T k) T
P, P,p+3

Note that the outputs of the feedforward layer are equal to the inner prod-
ucts of each prototype pattern with the input, plus R . For two vectors of
equal length (norm), their inner product will be largest when the vectors
point in the same direction, and will be smallest when they point in oppo-
site directions. {We will discuss this concept in more depth in Chapters 5,
8 and 9.) By adding R to the inner product we guarantee that the outputs
of the feedforward layer can never be negative. This is required for proper
operation of the recurrent layer.

This network is called the Hamming network because the neuron in the
feedforward layer with the largest output will correspond to the prototype
pattern that is closest in Hamming distance to the input pattern. (The
Hamming distance between two vectors is equal to the number of elements
that are different. It is defined only for binary vectors.) We leave it to the
reader to show that the outputs of the feedforward layer are equal to 2R
minus twice the Hamming distances from the prototype patterns to the in-
put pattern.

Recurrent Layer

The recurrent layer of the Hamming network is what is known as a “com-
petitive” layer. The neurons in this layer are initialized with the outputs of
the feedforward layer, which indicate the correlation between the proto-
type patterns and the input vector. Then the neurons compete with each
other to determine a winner. After the competition, only one neuron will

39

3 An Nliusirative Example

3-10

have a nonzero output. The winning neuron indicates which category of in-
put was presented to the network (for our example the two categories are
apples and orgnges). The equations that describe the competition are:

22(0) = a' (Initial Condition), (3.18)
and
a’(r+1) = poslin(W3a2(n) . (3.19)

(Don't forget that the superscripts here indicate the layer number, not a
power of 2,) The poslin transfer function is linear for positive values and
zero for negative values, The weight matrix W2 has the form

W = {‘ —3}, (3.20)

where ¢ is some number less than 1/(5- 1), and § is the number of neu-
rons in the recurrent layer. {Can you show why £ must be less than
I7{§-1)7

An iteration of the recurrent layer proceeds as follows:

a (f) —ea: (1)
22(t+]) = poslin{[l “E]al(r)J = poslin{ | ' 2 . (3.21)
-¢ 1 a (1) ~sa (1)

Each element is reduced by the same fraction of the other. The larger ele-
ment will be reduced by less, and the smaller element will be reduced by
more, therefore the difference between large and small will be increased.
The effect of the recurrent layer is to zero out all neuron outputs, except the
one with the largest initial value (which corresponds to the prototype pat-
tern that is closest in Hamming distance to the input).

To tllustrate the operation of the Hamming network, consider again the ob-
long orange that we used to test the perceptron:

p = _,,l . (3.22}

The output of the feedforward layer will be

Hamming Network

-1
al = 1-1-1 il + 3 _ | (3+3)) _ 4, (3.23)
- L) [2
which wiil then become the initial condition for the recurrent layer.

The weight matrix for the recurrent layer will be given by Eq. (3.20) with
€ = 1/2 (any number less than 1 would work). The first iteration of the re-

current layer produces
puslin[I 05 4]
=05 1|2

a2(1) = poslin{W?a2{0)) = (3.24)
) [3] _ s
pos u{ OJ [O
The second iteration produces
poslin([! _'0‘5} H}
-05 1 |0
a2(2) = paslin(W2a2(1)) = (3.25)

2]

Since the outputs of successive iterations produce the same result, the net-
work has converged. Prototype pattern number one, the orange, is chosen
as the correct match, since neuron number one has the only nonzero out-
put. {Recall that the first element of a° was (p,p +3) .} This is the correct
choice, since the Hamming distance from the orange prototype to the input
pattern is 1, and the Hamming distance from the apple prototype to the in-
put pattern is 2.

To experiment with the Hamming network and the apple / orange classifica-
tion problem, use the Neural Network Design Demonstration Hamming
Classification (nnd3hamc).

There are a number of networks whose operation is based on the same prin-
ciples as the Hamming network; that is, where an inner product operation
(feedforward layer) is followed by a competitive dynamic layer. These com-
petitive networks will be discussed in Chapters 13 through 16. They are
self-organizing networks, which can learn to adjust their prototype vectors
based on the inputs that have been presented.

3-11

3 An Hlustrative Example

Hopfield Network

3-12

The final network we will discuss in this brief preview is the Hopfield net-
work. This is a recurrent network that is similar in some respects tothe re-
current layer of the Hamming network, but which can effectively perform
the operations of both layers of the Hamming network. A diagram of the
Hopfield network is shown in Figure 3.6. (This figure is actually a slight
variation of the standard Hopfield network. We use this variation because
it is somewhat simpler to describe and yet demonstrates the basie can-

cepts.}

The neurons in this network are initialized with the input vector, then the
network iterates until the output converges. When the network is eperat-
ing correctly, the resulting output should be one of the prototype vectors.
Therefore, whereas in the Hamming network the nonzero neuron indicates
which prototype pattern is chosen, the Hopfield network actually produces
the selected prototype pattern at its output.

fnitial
Condition Recurrent Layer

by
Sxi

—/

al0)=p a(r+1) = satlins (Wa(ir)+b)

Figure 3.6 Hopfield Network
The equations that describe the network operation are
a(0) = p (3.26)
and
a(r+1) = satlins{(Wa (1) +b), {3.27

where satlins is the transfer function thai is linear in the range [-1, 1] and
saturates at 1 for inputs greater than 1 and at -1 for inputs less than -1.

The design of the weight matrix and the bias vector for the Hopfield net-
work is a more complex procedure than it is for the Hamming network,

Hopfield Network

where the weights in the feedforward layer are the prototype patterns.
Hopfield design procedures will be discussed in detail in Chapter 18,

To illustrate the operation of the network, we have determined a weight
matrix and a bias vector that can solve our orange and apple pattern rec-
ognition problem. They are given in Eq. (3.28).

020 0 0.9
W=1lo0120b=1]0 (3.28)
0 0 02 -0.9

Although the procedure for computing the weights and biases for the
Hopfield network is beyond the scope of this chapter, we can say a few
things about why the parameters in Eq. (3.28} work for the apple and oz-

ange example.

We want the network output to converge to either the orange pattern, p,,
or the apple pattern, p,. In both patterns, the first element is 1, and the
third element is ~1. The difference between the patterns occurs in the sec-
ond element. Therefore, no matter what pattern is input to the network, we
want the first element of the output pattern to converge to 1, the third el-
ement to converge to -1, and the second element to go to either 1 or -1,
whichever is closer to the second element of the input vector.

The equations of eperation of the Hopfield network, using the parameters
given in Eq. (3.28), are

a, (t+1} = satlins (0.2a, (1} +09)

a,(t+ 1} = satlins{1.2a,(1))

ay {2+ 1) = satlins (0.2a,(£) - 0.9) (3.29)

Regardless of the initial values, a (0}, the first element will be increased
until it saturates at 1, and the third element will be decreased until it sat-
urates at 1. The second eilement is multiplied by a number larger than 1.
Therefore, if it is initially negative, it will eventually saturate at -1 ; if it is
initially positive it will saturate at 1.

(It should be noted that this is not the only (W, b) pair that could be used.
Youn might want to try some others. See if you can discover what makes
these work.)

Let’s again take our oblong orange to test the Hopfield network. The out-
puts of the Hopfield network for the first three iterations would be

3-13

3 An Hlustrative Example

3-14

-1 0.7 1 1
a(0)y=|_q|,a(l)=|_1],a(2) =|_1]|.a(3) =|_] (3.30)

-1 -1 -1 -1

The network has converged to the orange pattern, as did both the Hamming
network and the perceptron, although each network operated in a different.
way. The perceptron had a single output, which could take on values of -1
(erange) or 1 (apple). In the Hamming network the single nonzero neuron in-
dicated which prototype pattern had the closest match. If the first neuron
was nonzero, that indicated orange, and if the second neuron was nonzero,
that indicated apple. In the Hopfield network the prototype pattern itself
appears at the output of the network.

To experiment with the Hopfield network and the apple/ orange classifica-
tion problem, use the Neural Network Design Demonstration Hopfield Clas-
sification {nnd3hope).

As with the other networks demonstrated in this chapter, do not expect to
feel completely comfortable with the Hopfield network at this point. There
are a number of questions that we have not discussed. For example, “How
do we know that the network will eventually converge?” It is possible for
recurrent networks to oscillate or to have chaotic behavior, In addition, we
have not discussed general procedures for degigning the weight matrix and
the bias vector. These topies will be discussed in detail in Chapters 17 and
18,

Epilogue

Epilogue

The three networks that we have introduced in this chapter demonstrate
many of the characteristics that are found in the architectures which are
discussed throughout this book.

Feedforward networks, of which the perceptron is one example, are pre-
sented in Chapters 4, 7, 11 and 12. In these networks, the output is com-
puted directly from the input in one pass; no feedback is involved.
Feedforward networks are used for pattern recognition, as in the apple and
orange example, and also for function approximation (see Chapter 11).
Function approximation applications are found in such areas as adaptive
filtering (see Chapter 10) and automatic control.

Competitive networks, represented here by the Hamming network, are
characterized by two properties. First, they compute some measure of dis-
tance between stored prototype patterns and the input pattern. Second,
they perform a competition to determine which neuron represents the pro-
totype pattern closest to the input. In the competitive networks that are
discussed in Chapters 14-16, the prototype patterns are adjusted as new
inputs are applied to the network. These adaptive networks learn to cluster
the inputs into different categories.

Recurrent networks, like the Hopfield network, were originally inspired by
statistical mechanics. They have been used as associative memories, in
which stored data is recalled by association with input data, rather than by
an address. They have also been used to solve a variety of optimization
problems. We will discuss these recurrent networks in Chapters 17 and 18,

We hope this chapter has pigued your curiosity about the capabilities of
neural networks and has raised some questions. A few of the questions we
will answer in later chapters are:

1. How do we determine the weight matrix and bias for perceptron net-
works with many inputs, where it is impossible to visualize the deci-
sion boundary? (Chapters 4 and 10)

2. If the categories to be recognized are not linearly separable, can we ex-
tend the standard perceptron to solve the problem? (Chapters 11 and
12)

3. Can we learn the weights and biases of the Hamming network when we
don’t know the prototype patterns? (Chapters 14-16)

4. How do we determine the weight matrix and bias vector for the
Hopfield network? (Chapter 18)

5. How do we know that the Hopfield network will eventually converge?
(Chapters 17 and 18)

215

3 An RNiustrative Example

Exercise

E3.1 In this chapter we have designed three different neurai networks to distin-
guish between apples and oranges, based on three sensor measurements
(shape, texture and weight). Suppose that we want to distinguish between
bananas and pineapples:

p, = |-1| {Pineapple)
l
i. Design a perceptron to recognize these patterns,
ii. Des{gn a Hamming network to recognize these patterns.
jii. Design a Hopfield network to recognize these patterns.

iv. Test the operation of your networks by applying several different in-
put patterns. Discuss the advantages and disadvantages of each
network,

3-16

4 Perceptron Learning Rule

Objectives 4-1
Theory and Examples 4-2
Leamning Rutes 4-2
Perceptron Architecture 4-3
Single-Neuron Perceptron 4-5
Multiple-Neuron Perceptron 4-8
Perceptron Leaming Rule 4-8
Test Problem 49
Constructing Learning Rules 4-10
Unified Learning Rule 4-12
Training Multiple-Neuron Perceptrons 4-13
Proof of Convergence 415
Notation 4-15
Proof 4-16
Limitations 4-18
Summary of Results 4-20
Solved Problems 4-21
Epilogue 4-33
Further Reading 4-34
Exercises 4-36

Objectives

One of the questions we raised in Chapter 3 was: “How do we determine the
weight matrix and bias for perceptron networks with many inputs, where
it is impossible to visualize the decision boundaries?” In this chapter we
will describe an algorithm for training perceptron networks, so that they
can learn to solve clagsification problems. We will begin by explaining what
a learning rule is and will then develop the perceptron learning rule. We
will conclude by discussing the advantages and limitations of the single-
layer perceptron network. This discussion will lead us into future chapters.

41

£ Perceptron Learning Rule

Theory and Examples

In 1943, Warren McCulloch and Walter Pitts introduced one of the first ar-
tificial neurons [McPi43]. The main feature of their neuron model is that a
weighted sum of input signals is compared to a threshold to determine the
neuren output. When the sum is greater than or equal to the threshold, the
output is 1. When the sum is less than the threshold, the output is 0. They
went on to show that networks of these neurons could, in principle, com-
pute any arithmetic or logical function. Unlike biclogical networks, the pa-
rameters of their networks had to be designed, as no training method was
available. However, the perceived connection between biology and digital
computers generated a great deal of interest.

In the late 19505, Frank Rosenblatt and several other researchers devel-
oped a class of neural networks called perceptrons. The neurons in these
networks were similar to those of McCulloch and Pitts. Rosenblatt’s key
contribution was the introduction of a learning rule for training perceptron
networks to solve patbern recognition problems [Rose58)]. He proved that
his Jearning rule will always converge to the correct network weights, if
weights exist that solve the problem. Learning was simple and automatic.
Examples of proper behavior were presented to the network, which learned
from its mistakes. The perceptron could even learn when initialized with
random values for its weights and biases.

Unfortunately, the perceptron network is inherently limited. These limita-
tions were widely publicized in the book Perceptrons [MiPa69] by Marvin
Minsky and Seymour Papert. They demonstrated that the perceptron net-
works were incapable of implementing certain elementary functions. It
was not until the 1980s that these limitations were overcome with im-
proved (multilayer) perceptron networks and associated learning rules. We
will discuss these improvements in Chapters 11 and 12.

Today the perceptron is still viewed as an important network. It remains a
fast and reliable network for the class of preblems that it can solve. In ad-
dition, an understanding of the operations of the perceptron provides a
good basis for understanding more complex networks. Thus, the perceptron
network, and its agsociated learning rule, are well worth discussion here.

In the remainder of this chapter we will define what we mean by a learning
rule, explain the perceptron network and learning rule, and discuss the
limitations of the perceptron network.

Learning Rules

As we hegin our discussion of the perceptron learning rule, we want to dis-
Learning Rule cuss learning rules in general. By learning rule we mean a procedure for
modifying the weights and biases of a network. (This procedure may also

Supervised Learning
Training Set

Target

Reinforcement Learning

Unsupervised Learning

Perceptron Architecture

be referred to as a training algorithm.) The purpose of the learning rule is
to train the netwerk to perform some task. There are many types of neural
network learning rules. They fall into three broad categories: supervised
learning, unsupervised learning and reinforcement (or graded) learning.

In supervised learning, the learning rule is provided with a set of examples
(the training set) of proper network behavior:

{pl‘tlll * {pZ’t2} oy {pQ!tQ} 1] (41)

where p_ is an input to the network and t_ is the corresponding correct
(farget) output. As the inputs are applied to the network, the network cut-
puts are compared to the targets. The [earning rule is then used to adjust
the weights and biases of the network in order to move the network outputs
closer to the targets, The perceptron learning rule fafls in this supervised
learning category. We will also investigate supervised learning algorithms
in Chapters 7-12.

Reinforcement learning is similar to supervised learning, except that, in-
stead of being provided with the correct output for each network input, the
algorithm is only given a grade. The grade (or score) is a measure of the net-
work performance over some sequence of inputs. This type of learning is
currently much less common than supervised learning. It appears to be
most suited to control system applications (see [BaSu83], [WhSo92)).

In unsupervised learning, the weights and biases are modified in response
to network inputs only. There are no target outputs available. At first

glance this might seem to be impractical. How can you train a network if
you don’t know what it is supposed to do? Most of these algorithms perform

*some kind of clustering operation. They learn to categorize the input pat-

terns into a finite number of classes. This is especially useful in such appli-
cations as vector quantization, We will see in Chapters 13-16 that there
are a number of unsupervised learning algorithms.

Perceptron Architecture

Before we present the perceptron learning rule, let’s expand our investiga-
tion of the perceptron network, which we began in Chapter 3. The general
perceptron network is shown in Figure 4.1.

The output of the network is given by
a = hardiim (Wp +b) . {4.2)

(Note that in Chapter 3 we used the hardlims transfer function, instead of
hardlim. This does not affect the capabilities of the network. See Exercise

E4.6.)

4 Percepiron Learning Rule

Input Hard Limit Layer

a = hardlim(Wp+b)

Figure 4.1 Perceptron Network

It will be useful in our development of the perceptron learning rule to be
able to conveniently reference individual elements of the network output.
Let’s see how this can be done. First, consider the network weight matrix:

Wi Wra - Wig
W= |V W2 War) (4.3)
W1 We 2o WeR
We will define a vector composed of the elements of the ith row of W:
i
w w
i S (4.4)
Wik

Now we can partition the weight matrix:

w=[%]. {4.5)

This allows us to write the ith element of the network output vector as

a = hardlim(n}
i

—_— -

n=Wp+b

Decision Boundary

Perceptron Architecture

a; = hardlim(n) = hardiim (iwrp+bl.] . {4.6)

Recall that the hardlim transfer function (shown at left} is defined as:

a = hardlim{n) = { Lif n20 (4.7
0 otherwise.

Therefore, if the inner product of the ith row of the weight matrix with the
input vector is greater than or equal to —&,, the output will be 1, otherwise
the output will be 0. Thus each neuron in the network divides the input
space tnto two regions. It is useful to investigate the boundaries between
these regions. We will begin with the simple case of a single-neuron percep-
tron with two inputs.

Single-Neuron Perceptron

Let’s consider a two-input perceptron with one neuron, as shown in Figure
4.2

inputs Two-Input Neuron

S
a = hardlim (Wp+b}

Figure 4.2 Two-Input/Single-Output Perceptron
The output of this network is determined by
a = hardlim (n) = hardlim (Wp + b}
7 (4.8)
= hardlim (\W p+b) = hardlim(w, ,p,+w ,p,+5)

The decision boundary is determined by the input vectors for which the net
input n is zero:

n=,pr+b:w],]p,+w,_2p2+b=0. (4.9)
To make the example more concrete, let's assign the following values for

the weights and bias:

45

4 Perceptron Learning Rule

4-&

wo =1,w,=1,b=-1 (4.10}
The decision boundary is then
n = |“’TP+b=W|,1P:+W|,:P2+5=P|+Pz‘1 = 0. {4.11)

This defines a line in the input space. On one side of the line the network
output will be 0; on the line and on the other side of the line the output will
be 1. To draw the line, we can find the points where it intersects the p, and
p, axes. To find the p, intercept set p, = :

py=——=-—=1 ifp =0, (4.12)

To find the p, intercept, set p, = 0:
-2 o o g -0 (413)
p 1 = wlvl -] = pz = . .
The resulting decision boundary is illustrated in Figure 4.3.

To find out which side of the boundary corresponr.‘lsrto an output of 1, we
just need to test one point. For the inpui p = [2 g] , the network output
will be

a = hardlim | lwrp+b} = hardfim[[1 1:[]:j - 1] =1. (4.14)

Therefore, the network output will be 1 for the region above and to the right
of the decision boundary. This region is indicated by the shaded area in Fig-
ure 4.3.

Figure 4.3 Decision Boundary for Two-Input Perceptron

[y
"‘"[NI‘\.

v

Perceptron Architecture

We can also find the decision boundary graphically. The first step is to note
that the boundary is always orthogonal to ,w , as iliustrated in the adjacent
figures. The boundary is defined hy

Wp+b =0, (4.15)

For all points on the boundary, the inner product of the input vector with
the weight vector is the same. This implies that these input vectors will all
have the same projection onto the weight vector, so they must lie on a line
orthogonal to the weight vector. (These concepts will be covered in mere de-
tail in Chapter 5.) In addition, any vector in the shaded region of Figure 4.3
will have an inner product greater than —b, and vectors in the unshaded
region will have inner products less than —# . Therefore the weight vector
,w will always point toward the region where the neuron output is I.

After we have selected a weight vector with the correct angular orientation,
the bias value can be computed by selecting a point on the boundary and
satisfying Eq. (4.15).

Let’s apply some of these concepts to the design of a perceptron network to
implement a simple logic function: the AND gate. The input/target pairs for
the AND pate are

o= fou= [c=o] fo=[Jo=o] = =1}

The figure to the left illustrates the problem graphically. It displays the in-
put space, with each input vector labeled according to its target. The dark
circles @ indicate that the target is 1, and the light circles O indicate that
the target is 0.

The first step of the design is to select a decision boundary. We want to
have a line that separates the dark circles and the light circles. There are
an infinite number of solutions to this problem. It seems reasonable to
choose the line that falls “halfway” between the two categories of inputs, as
shown in the adjacent figure.

Next we want to choose a weight vector that is orthogonal to the decision
boundary. The weight vector can be any length, so there are infinite possi-
bilities. One choice is

w = H (4.16)

as dispiayed in the figure to the left.

47

4 Percepiron Learning Rule

Finally, we need to find {he bias, #. We can do this by picking a point on
the decision boundary and satisfying Eq. (4.15). If we use p = [1 5 (}] we
find

]
Wpeb=l 2][1{55}5:3%:0 = b=-3. (4.17)

We can now test the network on one of the input/target pairs. If we apply
p, tothe network, the output will be

]
[

hardlim (lillpr2 +b) = hardlim([2 2} H - 3] (4.18)

hardlim{-1} =0,

1]

which is equal to the target output z,. Verify for yourself that all inputs are
correctly classified.

To experiment with decision boundaries, use the Neural Network Design
Demonstration Decision Boundaries (nnd4db).

Multiple-Neuron Perceptron

Note that for perceptrons with multiple neurons, as in Figure 4.1, there
will be one decision boundary for each neuron. The decision boundary for
neurcn i will be defined by

,,wrp +h, = 0. 4.19)

A single-neuron perceptron can classify input vectors into two categories,
gince its output can be either 0 or 1. A multiple-neuron perceptron can clas-
sify inputs into many categories. Each category is represented by a differ-
ent output vector. Since each element of the output vector can be either 0
or 1, there are a total of 2° possible categories, where S is the number of
neurons.

Perceptron Learning Rule

Now that we have examined the performance of perceptron networks, we
are in a position to introduce the perceptron learning rule. This learning
rule is an example of supervised training, in which the learning rule is pro-
vided with a set of examples of proper network behavior:

{ppt). {ppty}, {PQJQ} » (4.20)

Y

4

Percepiron Learning Rule

where p ; 18 aninput to the network and t_ is the corresponding target out-
put. As each input is applied to the network, the network output is com-
pared to the target. The learning rule then adjusts the weights and biases
of the network in order to move the network output closer to the target.

Test Problem

In our presentation of the perceptron learning rule we will begin with a
simple test problem and will experiment with pessible rules to develop
some intuition about how the rule should work. The input/target pairs for
our test problem are

e e I N

The problem is displayed graphically in the adjacent figure, where the two
input vectors whose target is O are represented with a light circle O, and
the vector whose target is 1 is represented with a dark circle @. Thisis a
very simple problem, and we could almost obtain a solution by inspection.
This simplicity will help us gain some intuitive understanding of the basic
concepts of the perceptron learning rule.

The network for this problem should have two-inputs and one output. To
simplify our development of the learning rule, we will begin with a network
without a bias. The network will then have just two parameters, w, | and
W, as shown in Figure 4.4. ’

Inputs No-Bias Neuron

NN
P Wi " a
p

S/

a = hardlim(Wp)

Figure 4.4 Test Problem Network

By removing the bias we are left with a network whose decision houndary
must pass through the origin. We need to be sure that this network is still
able to solve the test problem. There must be an allowable decision bound-
ary that can separate the vectors p, and p, from the vector p, . The figure
to the left llustrates that there are inl:'le«e(fl an infinite number of such

boundaries.

49

4 Perceptron Learning Rule

The adjacent figure shows the weight vectors that correspond to the allow-
able decision boundaries. (Recall that the weight vector is orthogenal to the
decision boundary.} We would iike a learning rule that will find a weight
vector that points in one of these directions. Remember that the length of
the weight vector does not matter; only its direction is important.

Constructing Learning Rules

Tratning begins by assigning some initial values for the network parame-
ters. In this case we are training a two-input/single-cutput network with-
eut a bias, so we only have to initialize its two weights, Here we set the
elements of the weight vector, \w , to the following randomly generated val-
ues;

= [10-08 (4.21)

We will now begin presenting the input vectors to the network, We begin
with p,:

4
—] T = 3 1
a = hardlim{ w'p,) = hardhm\ [1,0 —0.8] u] (4.92)

a = hardlim (-0.6) = 0.

The network has not returned the correet value, The network output is 0,
while the target response, ¢, is L.

We can see what happened by looking at the adjacent diagram. The initial
weight vector results in a decision boundary that incorrectly classifies the
vector p, . We need to alter the weight vector so that it points more toward
P, . so that in the future it has a better chance of classifying it correctly.

One approach would be to set ;w equal to p, . This is simple and would en-
sure that p, was classified properly in the future. Unfortunately, it is easy
to construct a problem for which this rule cannot find a solution. The dia-
gram to the lower left shows a problem that cannot be solved with the
weight vector pointing directly at either of the twa class 1 vectors. If we ap-
plytherule \w = p every time one of these vectors is misclassified, the net-
work’s weights will simply oscillate back and forth and will never find a
solution.

Another possibility would be to add p, to ,w.Adding p, to ,w would make
,¥ point more in the direction of p, . Repeated presentations of p, would
cause the direction of \w to asymptotically approach the direction of p, .
This rule can be stated:

Ifr=1landa = O, then W = w' +p. {4.23)
])

Perceptron Learning Rule

Applying this rule to our test problem results in new values for ,w:

Iwnew: |W0M+P1 = 1.0 + 1 = 20:{ (4.24)
-0, 2 1.2

This operation is illustrated in the adjacent figure.

We now move on to the next input vector and will continue making changes
to the weights and cycling through the inputs until they are all classified
correctly.

The next input vector is p, . When it is presented to the network we find:

a= hardfim[lwrpz] = hard:‘:‘m([2_0 1_2] [_IH

2 (4.25)

= hardlim(04) =1,

The target ¢, associated with p, is 0 and the output a is 1. A class 0 vector
was misclassified as a 1.

Since we would now like to move the weight vector | w away from the input,
we can simply change the addition in Eq. (4.23) to subtraction:

w

Ifr = Oanda = I, then ,w*" = w"" - p. (4.26)

If we apply this to the test problem we find:

new ald 20 -1 3.0
W= w2 1201 , (4.27)
' R [1.2] L] [—o.s}

which is illustrated in the adjacent figure.

Now we present the third vector p,:

, T . 0
a = hardlim(W p,) = hardhm([3_0 _0_3:[LJ] (4.98)
= hardlim(0.8) = 1.
The current \w results in a decision boundary that misclasgifies tgj . This

is a situation for which we already have a rule, so ,w will be updated again,
according to Eq. (4.26):

W My {30{;}_{{1} _ Bj (4.29)

4-11

4 Percepiron Learning Rule

4.12

e diona sty o

The diagram to the left shows that the perceptron has finally learned to
classify the three vectors properly. If we present any of the input vectors to
the neuron, it will output the correct class for that input vector.

This brings us to our third and final rule: if it works, don’t fix if.
If: = a,then w"" = (4.30)

Here are the three rules, which cover all possible combinations of output
and target values:

Ifr=1anda=0,then W = Iwmﬂa.

ffr=0anda=1,then w" = w-p, (4.31)

td
Ift =a, then 1w“”= lwO .

Unified Learning Rule

The three rules in Eq. (4.31) can be rewritten as a single expression. First
we will define a new variable, the perceptron error ¢;

e=t-a, (4.32)

We can now rewrite the three rules of Eg. (4.31) as:

ffe=1,then w"" = w4p.

fe=-1,then W =]w°’M -p. (4.33)

id
If e =0, then W™ = \w"".

Looking carefully at the first two rules in Eq. (4.33) we can see that the sign
of p is the same as the sign on the error, . Furthermore, the absence of p
in the third rule corresponds to an e of 0. Thus, we can unify the three rules
into a single expression:

Rew i

o= Iw”-{»e]} = IWOM+ (1-a)p. (4.34)
This rule ¢an be extended to train the bias by noting that a bias is simply

& weight whose input is always 1. We can thus replace the input p in Eq.

(4.34) with the input to the bias, which is 1. The result is the perceptron

rule for a bias:

B = b e, (4.35)

Perceptron Rule

et

|

Perceptron Learning Rule

Training Multipie-Neuron Perceptrons

The perceptron rule, as given by Eq. (4.34) and Eq. (4.35), updates the
weight vector of a single neuron perceptron. We can generalize this rule for
the multiple-neuron perceptron of Figure 4.1 as follows. To update the ith
row of the weight matrix use:

= waep, (4.36)

To update the ith element of the bias vector use:

b = b s (4.87)

I I I3
The perceptron rule can be written conveniently in matrix notation:

“,new = wo.fd + epT’ (438)

and
b = b 4e. (4.39)

To test the perceptron learning rule, consider again the apple/orange ree-
ognition problem of Chapter 3. The input/output prototype vectors will he

r

1 1
P = L—l 4= [OJ P=1h= [1] ‘ (4.40)
-1 1

(Note that we are using 0 as the target output for the orange pattern, p,,
instead of -1, as was used in Chapter 3. This is because we are using the
hardtim transfer function, instead of hardiims.)

Typically the weights and biases are initialized to small random numbers.
Suppose that here we start with the initial weight matrix and bias:

W= [05-1-03,b =05, (4.41)
The first step is to apply the first input vector, p, , to the network:

l
hardlim (Wp, + b) = hardlim [0_5 | _0_5] ~1(+035
|

=
It

(4.42)

hardlim (2.5) = 1

4-13

4 Perceptron Learning Rule

414

Then we calculate the error:

e:tlva =0—1 =—-l.
The weight update is
W = W hep” = [o5 -1 0]+ (D [1 -1 -]
= [-os 003
The bias update is

" = 6" he = 05+ (-1) = -05.
This completes the first iteration.

The second iteration of the perceptron rule is:

1
a = hardlim (Wp,+b) = hardlim ([_0_5 0 0_5] 1]+ (=03

-1

= hardlim (-0.5) = 0

e=t-a=1-0=1
W =W rep” = [05005]+1[11-1] = [051 0]
" = b 4e = 0541 =05

The third iteration begins again with the first input vector:

1
a = hardlim (Wp, +b) = hardlim (0.5 1 -0.5]|-1| +05)

-1
= hardlim (0.5 = 1

e=t-a=0-1=-]

W = Whep” = 051208+ (-D]1 -1
= [-052 03]

(4.43)

(4.44)

{4.45)

{4.46)

(4.47)

{4.48)

(4.49)

(4.50)

(4.51)

{4.52)

Proof of Convergence

B = b he = 054+ (-1) = ~05. (4.53)

If you continue with the iterations you will find that both input vectors will
now be correctly classified. The algorithm has converged to z solution, Note
that the final decision boundary is not the same as the one we developed in
Chapter 3, although both boundaries correctly classify the two input vec-
tors.

To experiment with the perceptron learning rule, use the Neural Network
Design Demonstration Percepiron Ruie (nnddpr),

Proof of Convergence ,

Although the perceptron learning rule is simple, it is quite powerful. In
fact, it can be shown that the rule will always converge to weights that ac-
complish the desired classification (assuming that such weights exist). In
this section we will present a proof of convergence for the perceptron learn-
ing rule for the single-neuron perceptron shown in Figure 4.5.

lnputs Hard Limit Neuron

a= hardlim(wip+b)

Figure 4.5 Single-Neuron Perceptron
The output of this perceptron is obiained from
a = hardlim (W p+b) . (4.54)

The network is provided with the following examples of proper network be-
havior:

{prﬂ s {szﬂ, ooy {PQ f@] . (4.55)

where each target output, tes is either 0 or 1.

Notation

To conveniently present the proof we will first introduce some new nota-
tion. We will combine the weight matrix and the hiaz into a single vector:

4.15

4 Percepiron Learning Rule

4-16

b

We will also angment the input vectors with a 1, corresponding to the bias
input:

Z, = H‘ (4.57)
1

Now we can express the net input to the neuron as follows:
n= lep +b=xz. (4.58)

The perceptron learning rule for a single-neuron perceptron (Eq. (4.34) and
Eq. (4.35)) can now be written

X = x ez, {4.59)

The error ¢ can be either 1, -1 or 0. If ¢ = {}, then no change is made to
the weights. If ¢ = 1, then the input vector is added to the weight vector.
If ¢ = -1, then the negative of the input vector is added to the weight vec-
tor. If we count only those iterations for which the weight vector is changed,

the learning rule becomes
x{(kYy = x(k-1}+2{k-1), (4.60}
where z' (k- 1} is the appropriate member of the set -
{202y s 2 =2, -2 - -2} {4.61)

We will assume that a weight vector exists that can correctly categorize all
Q input vectors. This solution will be denoted x* . For this weight vector
we will assume that

¥z >8>0ifr =1, (4.62)
and
x*'z,<-8<0 if 1, = 0. (4.63)

Proof

We are now ready to begin the proof of the perceptron convergence theo-
rem. The objective of the proof is to find upper and lower bounds on the
length of the weight vector at each stage of the algorithm.

Proof of Convergence

Assume that the algorithm is initialized with the zero weight vector:

x(0) = 0.(This does not affect the generality of our argument.} Then, af-

fer & iterations (changes to the weight vector), we find from Eq. (4.60):
x(k) =2 () +2 () +---+2'(k-1). {4.64)

If we take the inner product of the solution weight vector with the weight
vector at iteration ;¢ we obtain

R (k) = X2 (0) +x 2 (1) + Xt T (k1) . (4.65)
From Eq. (4.61)-Eq. (4.63) we can show that
7 () 8. (4.66)
Therefore
X+ x (k) > k5. (4.67)
From the Cauchy-Schwartz inequality (see {Brogg1])
e "x k) < e’ (4.68)
where
ixi* = x'x. (4.69)

If we combine Eq. (4.67) and Eq. (4.68) we can put a lower bound on the
squared length of the weight vector at iteration £:

wl z 2
(x X(f)) 5 {ks)z . (4.70)
e x|

Next we want to find an upper bound for the length of the weight vector.
We begin by finding the change in the length at iteration k:

Ix(l 2

kol =" BHx®
= [x(t-1)+2(-D1 [xG-D +2G=-D] (41,
=x (k-1)x(k—1) +2x (k-7 (k-1
vz (k-2 (k-1)
Note that

417

4 Perceptron Learning Rule

4-18

x (k-1)z (k-1) <0, (4.72)

since the weights would not be updated uniess the previous input vector
had been misclassified. Now Eq. (4.71} can be simplified to

Ix (i e (k= 1>+ 2 (k- 1y, (4.73)
We can repeat this process for |x (k- 1) ||2 , Ix(k-2) II2 , etc., to obtain
Ix (01 <tz @17+ - + |1z (k- D). (4.74)
If 11 = max {|lz' (i) |}, this upper bound can be simplified to
Ix (k)1 < kM. (4.75)
We now have an upper bound (Eq. (4.75)) and a lower bound (Eq. {4.70)) on

the squared length of the weight vector at iteration & . If we combine the
two inequalities we find

2 2
K2 x (B[> ﬂ@? or k< “"":" . “4.78)
Ix*] 8

Because & has an upper bound, this means that the weights will only be
changed a finite number of times. Therefore, the perceptron learning rule
will converge in a finite number of iterations.

The maximum number of iterations {changes to the weight vector) is in-
versely related to the square of §. This parameter is a measure of how close
the solution decision boundary is to the input patterns. This means that if
the input classes are difficult to separate (are close to the decision bound-
ary) it will take many iterations for the algorithm to converge.

Note that there are only three key assumptions required for the proof:
1. A solution to the problem exists, so that Eq. (4.66) is satisfied.

2, The weights are only updated when the input vector is misclassified,
therefore Eq. (4.72) is satisfied.

3. Anupper bound, [1, exists for the length of the input vectors.

Because of the generality of the proof, there are many variations of the per-
ceptron learning rule that can also be shown to converge. (See Exercise
E4.9.)

Limitations

The perceptron learning rule is guaranteed to converge to a solution in a
finite number of steps, so long as a solution exists. This brings us to an im-

Linear Separability

Proof of Convergence

portant question, What problems can a perceptron solve? Recall that a sin-
gle-neuron perceptron is able to divide the input space into two regions.
The boundary between the regions is defined by the equation

Wp+b = 0. (4.77)

This is a linear boundary (hyperplane). The perceptron can be used to clas-
sify input vectors that can be separated by a linear boundary. We call such
vectors linearly separable. The logical AND gate example on page 4-7 illus-
trates a two-dimensional example of a linearly separable problem. The ap-
ple/orange recognition problem of Chapter 3 was a three-dimensional
example.

Unfortunately, many problems are not linearly separable, The classic ex-
ample is the XOR gate. The input/target pairs for the XOR gate are

et e e e

This problem is illustrated graphically on the left side of Figure 4.6, which
also shows two other linearly inseparable problems. Try drawing a straight
line between the vectors with targets of 1 and those with targets of 0 in any

of the diagrams of Figure 4.6.
o ®
o

Figure 4.6 Linearly Inseparable Problems

It was the inability of the basic perceptron to solve such simple problems
that led, in part, to a reduction in interest in neural network research dur-
ing the 1970s. Rosenblatt had investigated more complex netwaorks, which
he felt would overcome the limitations of the basic perceptron, but he was
never able to effectively extend the perceptron rule to such networks. In
Chapter 11 we will introduce multilayer perceptrons, which can solve arbi-
trary classification problems, and will describe the backpropagation algo-
rithm, which can be used to train them.

4-19

4 Perceptron Learning Rule

Summary of Results

Perceptron Architecture

Input Hard Limit Layer
N N

a = hardlim(Wp+b)

a = hardlim(Wp+h) W=

a; = hardlim(n) = hardlim(w p+5b)

Decision Boundary

[.wrp+bf. =0,

The decision boundary is always orthogonal to the weight vector.
Singie-layer perceptrons can only classify linearly separable vectors.

Perceptron Learning Rule
Wrew = W*"“d»epT
old

b =" +e

where e = t—-a.

4-20

Solved Problems

Solved Problems

P4.1 Solve the three simple classification problems shown in Figure
P4.1 by drawing a decision boundary. Find weight and bias values
that result in single-neuron perceptrons with the chosen decision

boundaries.

Figure P4.1 Simple Classification Problems
First we draw a line between each set of dark and light data points.

O \4 O
—O——t—0
(a) (b)

The next step is to find the weights and biases. The weight vectors must be
orthogonal to the decision beundaries, and pointing in the direction of
points to be classified as 1 (the dark points). The weight vecters can have
any length we like.

(a)

Here is one set of choices for the weight vectors:

@ w=[21] ® w =02, @ w =29

4-21

4 Perceptron Learning Rule

422

=242
ang =

P4.2

Now we find the bias values for each perceptron by picking a point on the
decision boundary and satisfying Eq. (4.15).

1wrp+b =0
T
b=—wp

This gives us the following three biases:

@b =-[21] [j = 0,5 = -[p 7 m =-2,©b=-]2 H =6

We can now check our solution against the ongmal points. Here we test the
first network on the input vector p = [2 2] .

1= hardlim(twrp+ b)

= kardfim[[_2 1] [—22] + 0}

hardlim (6)

We can use MATLAB to automate the testing process and to try new
points. Here the first network is used to classify a point that was not in the
original problem.

w={-2 1]; b = 0;
& = hardlim{w*[1;1]+b)
a -

0

Convert the classification problem defined below into an equiva-
lent problem definition consisting of inequalities constraining
weight and bias values.

=i e et} e [Smof e oo

Each target 7, indicates whether or not the net input in response to p, must
be less than 0 or greater than or equal to 0. For example, since ¢, is 1, we

Solved Problems

know that the net input corresponding to p, must be greater than or equal
10 0. Thus we get the following inequality:

Wp, +£20
0w1,1+2w1‘2+b20
2w1_2+b20.

Applying the same procedure to the input/target pairs for {p,. t;}, {ps, 13}
and {p, 1,} results in the following set of inequalities.

2wy ,+b20 (3)
wy+020 (i)
-2w ,+b< D (i)
2w1,1+b<0 (iv)

Solving a set of inequalities is more difficult than solving a set of equalities.
One added complexity is that there are often an infinite number of solu-
tions (just as there are often an infinite number of linear decision bound-
aries that can solve a linearly separable classification problem).

However, because of the simplicity of this problem, we can soive it by
graphing the solution spaces defined by the inequalities. Note that w, |
only appears in inequalities (if) and (iv), and w, , only appears in inequal-
ities (f) and (ii7). We can plot each pair of inequalities with two graphs.

Any weight and bias values that fall in both dark gray regions will solve
the classification problem.

Here is one such solution:

W:[_zg,] b =3,

4-23

4 Percepiron Learning Rule

P43 We have a classification problem with four classes of input vector.
The four classes are

e O e R
R e S LK

Design a perceptron network to solve this problem.

To sobve a problem with four classes of input vector we will need a percep-
tron with at least two neurons, gince an S-neuron perceptron can categorize
2" classes. The two-neuron perceptron is shown in Figure P4.2,

Input Hard Limit Layer

2
./ \ J
a = hardlim (Wp+b)

Figure P4.2 Two-Neuron Percepiron

Let's begin by displaying the input vectors, as in Figure P4.3. The light cir-
cles (O indicate class 1 vectors, the light squares [] indicate class 2 vectors,
the dark circles @ indicate class 3 vectors, and the dark squares [l indicate
class 4 vectors,

A two-neuron perceptron creates two decision boundaries. Therefore, to di-
vide the input space into the four eategories, we need to have one decision
boundary divide the four classes into two sets of two. The remaining bound-
ary must then isolate each class. Two such boundaries are illustrated in
Figure P4.4. We now know that our patterns are linearly separable.

4-24

Solved Problems

Figure P4.3 Input Vectors for Problem P4.3

|
® \— O
1
.3—\—0
i
2
B (W
s '+

Figure P4.4 Tentative Decision Boundaries for Problem P4.3

The weight vectors should be orthogonal to the decision boundaries and
should point toward the regions where the neuron outputs are 1. The next
step is to decide which side of each boundary should preduce a 1. One choice
is illustrated in Figure P4.5, where the shaded areas represent outputs of
1. The darkest shading indicates that both neuron outputs are 1. Note that
this solation corresponds to target values of

e R
o o e o

We can now select the weight vectors:

425

4 Perceptron Learning Rule

4-26

e e

Note that the lengths of the weight vectors is not important, only their di-
rections. They must be orthogonal to the decision boundaries. Now we can
calculate the bias by picking a point on a boundary and satisfying Eq.
(4.15):

by, = _1“"TP = '[—3 —-l] [0

-

Figure P4.5 Decision Regions for Problem P4.3

In matrix form we have

which completes our design.

P44 Solve the following classification problem with the perceptron
rule. Apply each input vector in order, for as many repetitions as
it takes to ensure that the problem is solved. Draw a graph of the
problem only after you have found a selution.

Solved Problems

= fpneo] e[t} e [oeof e[

Use the initial weights and bias;
W = [o g b{0) = 0.

We start by calculating the perceptron’s output a for the first input vector
P, , using the initial weights and bias.

hardlim (W (0)p, +&(0))

1~
1]

hardﬁm[o 0] EJ +0J = hardlim(0) = 1

The output a does not equal the target value 1, , s0 we use the perceptron
rule to find new weights and biases based on the error,

e=y~a=0-1=-1
W(l) = W(O) +ep; = [pg] + (D29 = [2-]
b(1) =b{(0) +e =04 (-1) = -1

We now apply the second input vector p,, using the updated weights and
biag.

a = hardlim(W (1)p,+b(1))

= hardfim[[_2 _ﬂ [12} - 1] = hardlim (1} = |

This time the output a is equal te the target ¢,. Application of the percep-
tron rule will not result in any changes.

W(2) = W(D)
B(2) = b(1)
We now apply the third input vector,

427

4 Percepiron Learning Rule

4-28

a = hardlim (W (2)p;+ b(2))
. 2y .
= hardlim| |— _ ~1| = hardlim{-1) = 0
ar am[[g ZJ[J) ardlin {-1)

The cutput in response to input vector p, is equal to the target t,, so there
will be no changes.

W(3) = W(2)
B(3) = b(2)

We now move on to the last input vector p, .

a = hardlim (W (3)p, +5(3))

= hardiim[[2 9] t“ - 1] = hardlim(-1) = 0

This time the output a does not equal the appropriate target ¢, . The per-
ceptron rule will result in a new set of values for W and b.

e=t,—a=1-0=1
W6 =W +epg = [2 9+ [1] = [5-]
b(4) =b(N+e=-1+1=10

We now must check the first vector p, again. This time the output o is
equal to the associated target ¢, .

hardlim (W (4)p, +b(4))

[~
1]

hardum[EX E] +0] = hardlim(-8) = 0

K

Therefore there are no changes.

W(5) = W(4)
B(5) = b(4)

The second presentation of p, results in an error and therefore a new set
of weight and bias values.

[T A

Solved Problems

a = hardlim{W (3)p,+ b(5))

= hard(im[[_3 _[] [12] + o] = hardlim(-1} = 0

Here are those new values:

e=rn~a=1-0=1
W(6) = W(3)vep; = [3-1]+ (D [1] = [29]
b{6) = b(5)+e=0+1=1].

Cycling through each input vector once more results in no errors.
a = hardlim (W (6) py + b (6)) = hardlim| [_3 _3] [‘j + 1] =0=1
a = hardlim (W (6)p, + b(6)) = hardlim| [2 _3] ‘IJ + 1] =1=1
i

a = hardlim(W (6) p. + b(6}) = hardlim [_2 _} j + 1] =0=1

-2

a = hardlim (W (6)p, + 6 (6}) = hardlim| [2 _3] I}HJ:zzrz

Therefore the algorithm has converged. The final solution is:

Wz[_g__g] b=1.

Now we can graph the training data and the decision boundary of the solu-
tion. The decigion boundary is given by

n=Wp+b=w p+w p+b=-2p-3p+1=10.
To find the p, intercept of the decision boundary, set p, = 0:

b 1 1 .
T e— = ——— = = f - 0.
P2 wia 33 rp

To find the p, intercept, set p, = 0:

b

LA
4 w2

ifpz':o‘

ol -

4-29

4 Pereepiron Learning Rule

P45

4-30

The resulting decision boundary is illustrated in Figure P4.6.

Figure P4.6 Decision Boundary for Problem P4.4

Note that the decision boundary falls across one of the training vectors.
This is acceptable, given the problem definition, since the hard limit func-
tion returns 1 when given an input of 0, and the target for the vector in
question ig indeed 1.

Consider again the four-class decision problem that we introduced

in Problem P4.3. Train a perceptron network to solve this problem
using the perceptron learning rule.

If we use the same target vectors that we introduced in Problem P4.3, the
training set will be:

e e g v e o
e G o G- o -]
B e e -)

Let's begin the algorithm with the following initial weights and biases:

W(0) = [‘ U},b({)} - H
01 I

a = hardlim (W (0)p, +b(0)) = hardlim {[{1) 0} ‘:::I ! m)) H ,
1

p——i

The first iteration is

Solved Problems

W(2) = W(l)+ep) = ﬁ -01 +[3][1 2 {01 _olJ

b(z) =b(l)+e= [0 +{0:’ =[.
o o

The third iteration is

-
a = hardlim (W (2)p, +b(2)} = hardiim (|I_01 '—01”:21] +E]) i PJ’

W(3) = W(2)+ep; = h _0] * [_IIJ 21 - [_12 —OJ ’

4-31

4 Percepiron Learning Rule

oo
0 1 1
Iterations four through eight produce no changes in the weights.
W(8) = W(7) = W(6) = W(5}) = W(4) =W(3)
b(8) = b(7} = b(6) = b(5) =b{4) =bi3)
The ninth iteration produces

a = hardlim (W (8)p, +b (8)) = hardlim {{_12 01] [i] + {FQ) = |:0:I,

W(9) = W(B) +ep, = {-12 01 +[01 [1 1] _ {—2 0} ,

b(9) = b(8y+e = m ! m) H'

At this point the algorithm has converged, since all input patterns will be
correctly classified. The final decision boundaries are displayed in Figure
P4.7, Compare this result with the network we designed in Problem P4.3.

Figure P4.7 Final Decision Boundaries for Problem P4.5

4-32

Epilogue

Epilogue

In this chapter we have introduced our first learning rule — the perceptren
learning rule. It iz a type of learning called supervised learning, in which
the learning rule is provided with a set of examples of proper network be-
havior. As each input is applied io the network, the learning rule adjusts
the network parameters so that the network cutput will move closer o the

target.

The perceptron learning rule is very simple, but it is also quite powerful,
We have shown thal the rule will always converge to a correct solution, if
such a solution exists. The weakness of the perceptron network lies not
with the learning rule, but with the structure of the network. The standard
perceptron is only able to classify vectors that are linearly separable, We
will see in Chapter 11 that the perceptron architecture can be generalized
to mutlilayer perceptrons, which can solve arbitrary classification prob-
lems. The backpropagation learning rule, which is introduced in Chapter
11, can be used to train these networks.

In Chapters 3 and 4 we have used many concepts from the field of linear
algebra, such as inner product, projection, distance (norm), ete. We will
find in later chapiers that a good foundation in lirear algebra is essential
to our understanding of all neural networks, In Chapters 5 and 6 we will
review some of the key concepts from linear algebra that will be most im-
pertant in our study of neural networks. Qur abjective will be to obtain a
fundamental understanding of how neural networks work.

4 Perceptron Learning Rule

Further Reading

[BaSu83)

[Brog91]

[McPi43]

[MiPa69]

[Roseb8]

A. Barto, B. Sutton and C. Anderson, “Neuren-like adap-
tive elements can solve difficult learning control problems,”
IEEE Transactions on Systems, Man and Cybernetics, Vol.
13, No. 5, pp. 834-846, 1983,

A classic paper in which a reinforcement learning algo-
rithm s used to train a neural network to balance an in-
verted pendulum.

W. L. Brogan, Modern Control Theory, 3rd Ed., Englewood
Cliffs, NJ: Prentice-Hall, 1991.

A well-written book on the subject of linear systems. The
first half of the book is devoted to linear algebra. It also has
good sections on the solution of linear differential equa-
tions and the stability of linear and nonlinear systems, It
has many worked problems.

W. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” Bulletin of Mathematical
RBiophysics, Vol. 5, pp. 115-133, 1943.

This article introduces the first mathematical model of a
neuron, in which a weighted sum of input signals is com-
pared to a threshold to determine whether or not the neu-
ron fires.

M. Minsky and S. Papert, Percepirons, Cambridge, MA:
MIT Press, 1969,

A lendmark book that contains the first rigorous study de-
voted to determining what a perceptron network is capakle
of learning. A formal treatment of the perceptron was need-
ed both to explain the perceptron’s limitations and to indi-
cate directions for overcoming them, Unfortunately, the
book pessimisticaily predicted that the limitations of per-
ceptrons indicated that the field of neural networks was a
dead end. Although this was not true, it temporarily cooled
research and funding for research for several years.

F. Rosenblatt, “The perceptron: A probabilistic model for
information storage and erganization in the brain,” Psycho-
logical Review, Vol. 65, pp. 386408, 1958,

This paper presents the first practical artificial neural net-
work — the perceptron.

Further Reading

[Rosebl] ¥. Rosenblatt, Principles of Neurodynemics, Washington
DC: Spartan Press, 1961,

One of the first hooks on neurccomputing.

[WhE092] D. White and D. Sofge (Eds.), Handbook of Intelligent Con-
trol, New York: Van Nostrand Reinhold, 1992.

Collection of articles describing current research and appli-
cations of neural networks and fuzzy logic to control sys-
tems.

4 Perceptron Learning Rule

Exercises
E4.1 Consider the classification problem defined below:
{p]= -1 by = l} {p2= 0,12= 1l {p3= 1 Ay = l} {p4= 1 ,f4=0}
1 o J -1 0
{ps = H, L= OJ .
l
i. Draw a diagram of the single-neuron perceptron you would use to
solve this problem. How many inputs are required?
ii. Draw a graph of the data points, labeled according to their targets.
Is this problem selvable with the network you defined in part (1)?
Why or why not?
E42 Consider the classification problem defined below.
CHNERL |
- -1 0 1
‘pyE St =1 B = ,tzzl = =0 P.= Jto=07.
L][JI 271, P303 4._04
i. Design a single-neuron perceptron to solve this problem. Design the
network graphically, by choosing weight vectors that are orthogonal
to the decision boundaries.
fi. Test your sclution with all four input vectors.
;:: iil. Classify the following input vectors with your solution. You can ei-
4 ther perform the calculations manually or with MATLARB.

] wef] el el

iv. Which of the vectors in part (iii) will always be classified the same
way, regardless of the solution values for W and »? Which may
vary depending on the solution? Why?

E4.3 Solve the classification problem in Exercise E4.2 by solving inequalities (as
in Problem P4.2), and repeat parts (ii) and {iii) with the new solution. {The
goluticn is more difficult than Problem P4.2, since you can’t isolate the
weights and biases in a pairwise manner,)

4-36

e st e b]

Exervises

FEd4.4 Sulve the classification problem in Exercise E4.2 by applying the percep-
tron rule to the following initial parameters, and repeat parts (i) and (iii)
with the new solution.

W) =[og & =0

E4.5 Prove mathematically (not graphically) that the following preblem is un-
solvable for a two-input/single-neuron perceptron.

SRR O S O H R O

(Hint: start by rewriting the input/target requirements as inequali- ;
ties that constrain the weight and bias values.) 4

E4.6 The symmetric hard Hmit function is sometimes used in perceptron net-
works, instead of the hard limit function. Target values are then taken

o = hardlims(n) from the set -1, 1] instead of [9, 1].

Il i. Write a simple expression that maps numbers in the ordered set [0,
T 1}into the ordered set {-1, 1]. Write the expression that performs

the inverse mapping.

L n=Wp+b ii. Censider two single-neuron perceptrons with the same weight and
bias values, The first network uses the hard limit function ([0, 1)
values), and the second network uses the symmetric hard limit
function. If the two networks are given the same input p, and up-
dated with the perceptron learning rule, will their weights continue
to have the same value?

iii. If the changes to the weights of the two neurons are different, how
do they differ? Why?

iv. Given initigl weight and bias values for a standard hard limit per-
ceptron, create a method for initializing a symmetric hard limit per-
ceptron so that the two neurons will always respond identically
when trained on identical data,

E4.7 The vectors in the ordered set defined below were obtained by measuring
the weight and ear lengths of toy rabbits and bears in the Fuzzy Wuzzy An-
imal Factory. The target values indicate whether the respective input vec-

J—zrz—L tor was taken from a rabbit {0} or a bear (1). The first element of the input
anga vector is the weight of the toy, and the second element is the ear length.

= {feol o [amof e [f= e

437

! 4

4 Perceptron Learning Rule

=t B o o] -

i. Use MATLAB to initialize and train a network to solve this “practi-
cal” problem.

ii. Use MATLAB to test the resulting weight and bias values against
the input vectors.

jiil. Alter the input vectors to ensure that the decision boundary of any
solution will not intersect one of the original input vectors (i.e., to
ensgure only robust solutions are found). Then retrain the network.

E4.8 Consider again the four-category classification problem described in Prob-
lems P4.3 and P4.5. Suppose that we change the input vector p, to

2
hr U |
i. 1s the problem still linearly separable? Demonstrate your answer
graphically.
2y ii. Use MATLAB and to initialize and train a network to solve this
4 problem, Explain your results,

ili. If p, is changed to
_ 12
Ps = [1‘5}

is the problem linearly separable?

iv. With the p, from (iii), use MATLAB to initiglize and train a net-
work to solve this preblem. Explain your results.

EA$ One variation of the perceptron learning rule is

REW ald

W =W +t:tepr

aew ald

b =b +ae

where ¢ is called the learning rate. Prove convergence of this algorithm.
Does the proof require a limit on the learning rate? Explain,

S Signal and Weight
Vector Spaces

Objectives 5-1
Theory and Examples 52
Linear Vector Spaces 5-2
Linear independence 5-4
Spanning a Space 55
inner Product 58
Norm 5-7
Crthogonality 5-7
Gram-Schmidt Orthogonalization 5-8
Vector Expansions 59
Reciprocal Basis Vectors 5-10
Summary of Resuits 5-14
Solved Problems 5-17
Epilogue 5-26
Further Reading 5-27
Exercises 5-28

Objectives

It is clear from Chapters 3 and 4 that it is very useful to think of the inputs
and outputs of a neural network, and the rows of a weight matrix, as vec-
tors. In this chapter we want to examine these vector spaces in detail and
to review those properties of vector spaces that are most helpful when an-
alyzing neural networks. We will begin with general definitions and then
apply these definitions to specific neural network problems. The concepts
that are discussed in this chapter and in Chapter 6 will be used extensively
thronghout the remaining chapters of this book. They are critical to our un-
derstanding of why neural networks work.

5.1

5 Signal and Weight Vector Spaces

Theory and Examples

5-2

Linear algebra is the core of the mathematics required for understanding
neural networks. In Chapters 3 and 4 we saw the utility of representing the
inputs and outputs of neural networks as vectors. In addition, we saw that
it is often useful to think of the rows of a weight matrix as vectors in the
same vector space as the input vectors.

Recall from Chapter 3 that in the Hamming network the rows of the weight
matrix of the feedforward layer were equal to the prototype vectors. In fact,
the purpose of the feedforward layer was to calculate the inner products be-
tween the prototype vectors and the input vector.

In the single neuron percepiron network we noted that the decision bound-
ary was always orthogonal to the weight matrix (a row vector).

In this chapter we want to review the basic concepts of vector spaces (e.g.,
inner products, orthogonality) in the context of neural networks. We will
begin with a general definition of vector spaces. Then we will present the
basic properties of vectors that are most useful for neural network applica-
tions.

One comment about notation before we hegin. All of the vectors we have
discussed so far have been ordered n-tuples {columns) of real numbers and
are represented by bold small letters, e.g,

x=[rx .z (5.1)

These are vectors in R”, the standard n-dimensional Euclidean space. In
this chapter we will also be talking about more general vector spaces than
%®". These more general vectors will be represented with a script typeface,
as in x. We will show in this chapter how these general vectors can often
be represented by columns of numbers.

Linear Vector Spaces

Vector Space

What do we mean by a vector space? We will begin with a very general def-
inition. While this definitionr may seem abstract, we will provide many con-
crete examples. By using a general definition we can solve a larger class of
problems, and we can impart a deeper understanding of the concepts.

Definition. A linear vector space, X, 1s a set of elements (vectors) defined
over a scalar field, F, that satisfies the following conditions:

1. Anoperation called vector addition is defined such thatif x € X (x is
anelementof X)and ye X, theny +ye X.

x2

1

Y

; A~
-
" =
~ > a<>k;

1

Linear Vector Spaces

2. x+y =y+x.
3. (A+yy+z =1+ (y+2).

4. There is a unique vector 0 € X, called the zerc vector, such that

x+0=x forall x e X.

5. For each vector 4 € X there is a unique vector in X, to be called —x ,
such that x + (-x) = 0.

6. An operation, called multiplication, iv defined such that for all scalars
ae F,andall vectors x € X, ax e X.

7. Forany x € X, 1x = x (forscalar 1).
8. Foranyiwoscalarsae Fand be F,andanyx € X, aibx) = (ab)x -
9. (a+b)x =ax +bx.

10, alx +¥) = ax +ay.

To illustrate these conditions, let’s investigate a few sample sets and deter-
mine whether or not they are vector ppaces, First consider the standard
two-dimensional Euclidean space, R, shown in the upper left figure. This
is clearly a vector space, and all ten conditions are satisfied for the stan-
dard definitions of vector addition and scalar multiplication.

What about subsets of %°? What subsets of ®” are also vector spaces {sub-
spaces)? Consider the boxed area (X) in the center left figure. Does it sat-
isfy all ten conditions? No, Clearly even condition 1 is not satisfied. The
vectors x and lg shown in the figure are in X, but +y is not. From this
example it is clear that no bounded sets can be vector spaces.

Are there any subsets of R’ that are vector spaces? Consider the line (X)
shown in the bottom left figure. (Assume that the line extends to infinity in
both directions.) Is this line a vector space? We leave it to you to show that
indeed all ten conditions are satisfied. Will any such infinite line satisfy the
ten conditions? Well, any line that passes through the origin will work. If
it does not pass through the origin then condition 4, for instance, would not
be satisfied.

In addition to the standard Euclidean spaces, there are other sets that also
satisfy the ten conditions of a vector space. Consider, for example, the set
P of all polynomials of degree less than or equal to 2. Two members of this
set would be

5 Signal and Weight Vector Spaces

K = 2+1+417
{6.2)
y = L+5¢,

If you are used to thinking of vectors only as columns of numbers, these
may seem to be strange vectors indeed. However, recall that to be a vector
space, a set need only satisfy the ten conditions we presented. Are these
conditions satisfied for the set P ? If we add two polynemials of degree less
than or equal to 2, the result will also be a polynomial of degree less than
or equal to 2. Therefore condition 1 is satisfied. We can also multiply a poly-
nomial by a scalar without changing the order of the polynomial. Therefore
condition 6 is satisfied. It is not difficult to show that all ten conditions are
satisfied, showing that P’ is a vector space.

f(t) Consider the set C\y |, of all continuous functions defined on the interval
[0, 1]. Two members of this set would be

X = sin (1)
t (56.3)

y = 6—21_

Another member of the set is shown in the figure to the left.

The sum of two continuous functions is also a continuous function, and a

scalar times a continuous function is a continuous function, The set C , |,

is also a vector space. This set is different than the other vector spaces we
have discussed, it is infinite dimensional. We will define what we mean by
dimension later in this chapter.

Linear independence

Now that we have defined what we mean by a vector space, we will inves-
tigate some of the properties of vectors. The first properties are linear de-
pendence and linear independence.

Consider n vectors {1 ,,%,,...,4,} . If there exist scalars a,, a,, ..., a,,
at least one of which is nonzero, such that

ax taX,+ - +ax, =0, (b.4}

then the {x,} are linearly dependent.

The converse statement would be: If a,x | + a,x, + - +a,%,, = { implies
Linear Independence that each a; = 0,then {x,} isaset o% linearly independent vectors.

Spanning a Space

Note that these definitions are equivalent to saying that if a set of vectors
is independent then no vector in the set can be written as a linear combi-
nation of the other vectors.

As an example of independence, consider the pattern recognition problem
of Chapter 3. The two prototype patterns (crange and apple) were given by:

1 1
Py = -1 P2= 1] (5.5)
-1 -1
Let a,p, +a,p, = 0, then
a +a, 0
-a;+a, | =0/ (5.6}
—a, + (~a,) 0

but this can only be true if a, = a, = 0. Therefore p, and p, are linearly
independent.

Consider vectors from the space P? of polynomials of degree less than or
equal to 2. Three vectors from this space would be

X =l +t+8, 8, = 24240, %, = 141, (5.7
Note thatif welet ¢, = 1,4, = -1 and a; = 1, then
3 X1+ a2+ 6,x, = 0. (5.8}

Therefore these three vectors are linearly dependent.

Spanning a Space

Basis Set

Next we want to define what we mean by the dimension (size) of a vector
space. To do 50 we must first define the concept of a spanning set.

Let X be a linear vector space and let {#,%,,...,%,} be asubset of gen-
eral vectors in X. This subset spans X if and only if for every vector x € X
there exist scalars x,, x,, ... , x, such that ¥ = x,u+ xpu,+ - +x,u,.In
other words, a subset spans a space if every vector in the space can be writ-
ten as a linear combination of the vectors in the subset.

The dimension of a vector space is determined by the minimum number of
vectors it takes to span the space. This leads to the definition of a basgis set.
A basis set for X is a set of linearly independent vectors that spans X. Any
basis set contains the minimum number of vectors required to span the

55

5 Signal and Weight Vector Spaces

56

space. The dimension of X is thevefore equal to the number of elements in
the basis set. Any vector space can have many basis sets, but each one must
contain the same number of elements. (See [Stra8(] for a proof of this fact.)

Take, for example, the linear vector space P2 One possible basis for this
space is

H—]:],u2=f,u3:f2. (59]
Clearly any polynomial of degree two or less can be created by taking a lin-
ear combination of these three vectors. Note, however, that any three inde-

pendent vectors from P? would form a basis for this space. One such
alternate basis is:

ulzl,u2=l+:,u3=1+r+r2. (5.10)

inner Product

Inner Product

From our brief encounter with neural networks in Chapters 3 and 4, it is
clear that the inner product is fundamental to the operation of many neural
networks. Here we will introduce a general definition for inner products
and then give several examples.

Any scalar function of x and y can be defined as an inner product, (x.y),
provided that the following properties are satisfied:

L Xy = {x).
2. (eay +by) = aly,) + b gy,
3. {x.x)20,where equality holds if and only if x is the zero vector.
The standard inner product for veciors in R" is
xTy = X F + XYyt t KLY, {5.11)
but this is not the only possible inner product. Consider again the set Cjy |,

of all continuous functions defined on the interval [0,.1]. Show that the fol-
lowing scalar function is an inner product (see Problem P5.6).

1
Gy =[xyt (5.12)
0

Norm

Norm

The next operation we need to define is the norm, which is based on the con-
cept of vector length.

Norm A scalar function [x| is called a norm if it satisfies the following properties:
1. Jxlz0.
2. |x| = 0 ifand enlyifx = 0.
3. |ax| = lalllx]| for scalara,
4. fx+yl<lxl+1sl.
There are many functions that would satisfy these conditions. One common
norm is based on the inner product:
142
Ixl = @a) ™ (5.13)
For Euclidean spaces, %", this yields the norm with which we are most fa-
miliar;
72
I = %)= el (5.14)
In neural network applications it is often useful to normalize the input vec-
tors. This means that |[p|j = 1 for each input vector.
Using the norm and the inner preduct we can generalize the concept of an-
Angle gle for vector spaces of dimension greater than two. The angle 8 between
two vectors x and y is defined by
cosg = LA (5.15)
e Il
Orthogonality
Now that we have defined the inner product operation, we can introduce
the important concept of orthogonality.
Orthogonality Two vectors x, § € X are said to be orthogonal if (x,) = 0.

Orthogonality is an important concept in neural networks. We will see in
Chapter 7 that when the prototype vectors of a pattern recognition problem
are orthogonal and normalized, a linear associator neural network can be
trained, using the Hebb rule, to achieve perfect recognition.

In addition to orthogonal vectors, we can also have orthogonal spaces. A
vector x ¢ X is orthogonal to a subspace X, if x is orthogonal to every vec-

5-7

5 Signal and Weight Vector Spaces

Projection

tor in X, . This is typically represented as x L X,. A subspace X, 1s orthog-
onal to a subspace X, if every vector in X, is orthogonal to every vector in
X, . This is represented by X, 1 X,.

The figure to the left illustrates the two orthogonal spaces that were used
in the perceptron gxample of Chapter 3. {See Figure 3.4.) The p,. p, plane
is a subspace of ", which is orthogonal to the p, axis (which is another
subspace of). The p,, p, plane was the decision boundary of a percep-
tron network. In Solved Problem P5.1 we will show that the perceptron de-
cision boundary will be a vector space whenever the bias value is zero.

Gram-Schmidt Orthogonalization

There is a relationship between orthogonality and independence. It is pos-
sibie to convert a set of independent vectors into a set of erthogonal vectors
that spana the same vector space. The standard procedure to 2ccomplish
this is called Gram-Schmidt orthogonalization.

Agsume that we have » independent vectors y,, y,, ... , ¥, . From these vec-
tors we want to obtain »n orthogonal vectors 7, ¢/,, ... , ¥, . The first orthog-
onal vector is chosen to be the first independent vector:

v, =y, (5.16)

To obtain the second orthogonal vector we use y,, but subtract off the por-
tion of y, that is in the direction of v, . This leads to the equation

v, = y,—av,, (5.17)

where ¢ is chosen so that v, i orthogonal to v, . This requires that

() = W) y,—av) = @ y)-a@,v) =0, (5.18)
ar
g2 (5.19)
(1}',7}])

Therefore to find the component of g, in the direction of #,, av,, we need
to find the inner product between the two vectors. We call av, the projec-
tion of i, on the vectorv,.

iIf we continue this process, the kth step will be

k-1

Ve =Yy D,

i=1

(‘U,-,y k)

i (5.20)
(v

—%era

Orthonormal

Vector Exponsions

’I‘oz illustrate this process, we consider the following independent vectors in

y, = H,yz - H (5.21)
1 2

The first orthogonal vector would be
v, sy = H : (5.22)

The second orthogonal vector is calculated as follows:

= [1[-116 = |08 (523
2] |0 1.2
See Figure 5.1 for a graphical representation of this process.

1 |

Y
Y2 ¥ :

va
142 1
th []H
21

Y.
av,

Figure 5.1 Gram-Schmidt Orthogonalization Example

We could convert v, and v, to a set of orthonormal (orthogonal and nor-
malized) veetors by dividing each vector by its norm,

To experiment with this orthogonalization process, use the Neural Network
Design Demonstration Gram-Schmigt (nnd5gs).

Vector Expansions

Note that we have been using a script font (x) to represent general vectors
and bold type (x) to represent vectors in %", which can be written as cal-
umns of numbers. In this section we will show that general vectors in finite

5-9

5 Signal and Weight Vector Spaces

Vector Expansion

5-10

dimensional vector spaces can also be written as columns of numbers and
therefore are in some ways equivalent to vectors in .

If a vector space X has a basis set {v,v,,...,7,} ,thenany y € X hasa
unique vector expansion.:

X = 3 X0, =XV +X,0,+ - +X0,. (5.24)
i=1

Therefore any vector in a finite dimensional vector space can be represent-
ed by a column of numbers:

= [y n . x) (5.25)

This x is a representation of the general vector x . Of course in order to in-
terpret the meaning of x we need to know the basis set. If the basis set
changes, x will change, even though it still represents the same general
vector x. We will discuss this in more detail in the next subsection,

If the vectors in the basis set are orthogonal ((# v 3 =0, iz)it is very
easy to compute the coefficients in the expansion. We simply take the inner
product of #; with both sides of Eq. (5.24):

W) = 0,3 x0) = Y x(0,0) = x,@0,9). (5.26)

i=t i=1

Therefore the coefficients of the expansion are given by

x = AL (5.27)
v,w)

When the vectors in the basis set are not orthogonal, the computation of the
coefficients in the vector expansion is more complex. This case is covered in
the following subsection.

Reciprocal Basis Vectors

If a vector expansion is required and the basis set is not orthogonal, the re-
ciprocal basis vectors are introduced. These are defined by the following
equations:

ray}=0 i#j
(6.28)

Reciprocal Basis Vectors

Vector Expansions

where the basis vectors are {2, 7,, ... ,#,} and the reciprocal basis vec-
fors are {r,r, ... ,r,}.

If the vectors have been represented by columns of numbers (through vec-
tor expansion), and the standard inner product is used

(rvy) = rv re (5.29

then Eq. (5.28) can be represented in matrix form as

R'B =1, (5.30)
where
B=lvv,..v (6.31)
R = [r, L, .. r;’- (5.32)
Therefore R can be found from
R -8B, (5.33)

and the reciprocal basis vectors can be obtained from the columns of R.
Now consider again the vector expansion
X=X +X0,0+ - +x0,. (6.34)
Taking the inner product of r; with both sides of Eq. (5,.34) we obtain
(r) = x(r g+ x50+ +x (r0,). {5.35)
By definition
Fwl=W)=--=(rr)=0
(5.36)
ro)=1.
Therefore the first coefficient of the expansion is
X = {NX), (5.3
and in general
x; = (). {5.38)

5-11

5 Signal and Weight Vector Spaces

Ag an example, congider the two basis vectors

i Vi - {2 1

el e

1 2

Suppose that we want to expand the vector

ol
¥ = 3J (5.40)

2

in terms of the two basis vectors. (We are using the superscript s to indi-
cate that these columns of numbers represent expansions of the vectors in

v, terms of the standard basis in R”, The elements of the standard basis are
indicated in the adjacent figure as the vectors s, and s,. We need to use
this explicit notation in this example because we will be expanding the vec-
tors in terms of two different basis sets.}

5

5

The first step in the vector expansion is to find the reciprocal basis vectors.

a0 2] 2 l
R =20 |33 =3 =3
Iz 12 1 2
33 3 3
Now we can find the coefficients in the expansion.
[
0
= [%_%}3 - 1
12
0
T s
xzzrzx =l:__,3l;§jl§ = l
: (5.42)
or, in matrix form,
21
v T s -1 s 3_5 0 _l
X =Rx =B = 3l =12 (5.43)
A2 3 1
33

So that

§-12

Vector Expansions

X =- %v, +1v,, (5.44)

as indicated in Figure 5.2.

'yi'f2

Figure 5.2 Vector Expansion

Note that we now have two different vector expansions for x, represented
by x* and x". In other words,

3 1
X = 0514»552 = —§v|+1v2. (5.45)
When we represent a general vector as a column of numbers we need to
know what basis set was used for the expansion. In this text, unless other-
wise stated, assume the standard basis set was used.

Eq. (5.43) shows the relationship between the two different representa-
tionsof 3, x° = B™'x’. This operation, called a change of basis, will become
very important in later chapters for the performance analysis of certain
neura! networks.

To experiment with the vector expansion process, use the Neural Network
Design Demonstration Reciprocal Basis (nnd5rb),

518

5 Signal and Weight Vector Spaces

Summary of Results

5-14

Linear Vector Spaces

Definition, A linear vector space, X, is a set of elements {vectors) defined
over a scalar field, F, that satisfies the following conditions;

1. An operation called vector addition is defined such that if x € X and
yeX, theny +ye X.

2. x+y=y+y.
3 K+yl+s=x+(y+32).

4. There is a unique vector ¢ e X, called the zero vector, such that
x+0=x forall y ¢ X.

5. For each vector x € X there is a unique vector in X, to be called —x ,
such that x + (-x) = 0.

6. An operation, called multiplication, is defined such that for all scalars
ae F,andall vectors x € X, ax € X.

7. Forany x € X, 1x = x {forscalar 1).

8. Foranytwoscalarsue Fandbe F,andanyy € X, a(bx) = (ab)x.
9. (a+b}x =ax +bx.

10. a(x +4) = ax +ay.

Linear Independence

Consider n vectors {x,,%,, .. ,%,} . If there exist n scalars a,,a,, ... ,q,_,
at least one of which is nonzero, such that

X ra, - ra X, =0,

then the {x,} arelinearly dependent.

— w e sk el SRR el fER b - ke

Summary of Results

Spanning a Space

Let X be a linear vector space and let {u,, «,,...,#,} be asubset of vec-
tors in X, This subset spans X if and only if for every vector x € X there ex-
ist scalars x|, x,, ..., x, suchthat x = x; 0, +xu, 4+ +x,3,,.

Inner Product

Any scalar function of ¥ and y can be defined as an inner produet, (x,4), pro-
vided that the following properties are satisfied.

L @&y =@x).

2‘ (76‘53'1 + b_‘fzJ = a({gl) +b(’t;_y2} .
3. (x.x)20, where equality holds if and only if x is the zero vector.

Norm
A scalar function ||x| is called a norm if it satisfies the following properties:

1. [xl=20.
2. lxl = 0 ifandenlyifx = 0.

Lo

. Naxl = lallt) for scalar a.
e+l <lxl + Nyl

e

Angle
The angle 8 between two vectors x and y is defined by

&)

AN

cosB =

Orthogonality
Two vectors %,y € X are said to be orthogonal if (x 4) = 0.

Gram-Schmidt Orthogonalization

Assume that we have n independent vectors i, 5, ... , ¥, . From these vec-
tors we will obtain n orthogonal vectors v, v,, ... , 7, .

v =y
k-1
@)
Ve = Yem E(;%—f)-v,.,

5-15

5 Signal and Weight Vector Spaces

5-16

where

(v.--_’;'k)vj
w,z)

1l

is the projection of y, on 7,.

Vector Expansions

n

K= DAy = X0 +5,04

i=1

For orthogonal vectors,
(@;X)
X i =
Reciprocal Basis Vectors
{rpv Jf} =10 P2
=1 i= j
x; = (rx).

To compute the reciprocal basis vectors:

B = [v] v, . V,J.
R = ["1 T, .. rn],
R =%
In matrix form:
x =B %

+xv,.

Solved Problems

Solved Problems

P5.1 Consider the single-neuron perceptron network shown in Figure
P35.1. Recall from Chapier 3 (see Eq. (3.6)) that the decision bound-
ary for this network is given by Wp + » = 0. Show that the decision

boundary is a vector space if b = 0.

Inputs Sym. Hard Limit Layer
r N7 N

P

1x1 1

G

N

a = hardlims(Wp +b)

Figure P5.1 Single-Neuron Perceptron

To be a vector space the boundary must satisfy the ten conditions given at
the beginning of this chapter. Condition 1 requires that when we add two
vectors together the sum remains in the vector space. Let p, and p, be two
vectors on the decision boundary. To be on the boundary they must satisfy

Wp, =0 Wp, = 0.
If we add these two equations together we find
w (p + pz) = 0.
Therefore the sum is alse on the decision boundary.

Conditions 2 and 3 are clearly satisfied. Condition 4 requires that the zero
vector be on the boundary. Since W0 = 0, the zero vector is on the decision
boundary. Condition 5 implies that if p is on the boundary, then —p must
also be on the boundary. If p is on the boundary, then

Wp = 0.
If we multiply both sides of this equation by -1 we find
W(-p) = 0.
Therefore condition 5 ig satisfied.

5-17

5 Signal and Weight Vector Spaces

Condition 6 will be satisfied if for any p on the houndary ap ig also on the
boundary. This can be shown in the same way as condition 5. Just multiply
both sides of the equation by a instead of by 1.

W{(ap) =0

Conditions 7 through 19 are clearly satisfied. Therefore the perceptron de-
cision boundary is a vector space.

P52 Show that the set ¥ of nonnegative (f (¢) 20) continuous functions
is not a vector space,

This set violates several of the conditions required of a vector space. For ex-
ample, there are no negative vectors, so condition 5 cannot be satisfied. Al-
8o, consider condition 6. The function f (1) = |4 is a member of ¥. Let

a = -2. Then

af (2) = -2]2] = 4«0,

Therefore af (1) isnot a member of ¥, and condition 6 is not satisfied.

P53 Which of the following sets of vectors are independeni? Find the
dimension of the vector space spanned by each set.

1 1 1

L1 0 2
1 1 1

il. sins cost 2ws(r+:1—r')

— et e
— o (S e
[

i. We can solve this problem several ways. First, let’s assume that the
vectors are dependent. Then we can write

1 1 i 0
a1 +a,l0] +a5)2; = |0} -
1 1 1 0

5-18

— e me e A cm R Ptk e e el

Solved Problems

Ifwe can solve for the coefficients and they are not all zero, then the vectors
are dependent. By inspection we can see thatif welet ¢, = 2, a, = -1 and
a, = -1, then the equation is satisfied. Therefore the vectors are depen-
dent.

Another approach, when we have n vectors in R, is to write the above
equation in matrix form;

111}[% 0
102]]a, = |0
S RUPA I

If the matrix in this equation has an inverse, then the solution will require
that all coefficients be zero; therefore the vectors are independent. If the
matrix is singular {thas no inverse), then a nonzero set of coefficients will
work, and the vectors are dependent. The test, then, is to create a matrix
using the vectors as columns. If the determinant of the matrix is zero (sin-
gular matrix), then the vectors are dependent; otherwise they are indepen- q
dent. Using the Laplace expansion [Brogd1] on the first column, the -~
determinant of this matrix is

111
102 =1
111

11
11

02
11

+ {-1} +1

112 2404220
02

Therefore the vectors are dependent.

The dimension of the space spanned by the vectors is two, since any two of
the vectors can be shown to be independent.

ii. By using some trigonometric identities we can write

b8 -1 . 1
CQs| 1+ = | = —sIns + —COst .

a0 n

Therefore the vectors are dependent. The dimension of the space spanned
by the vectors is two, since no linear combination of sinz and cost is iden-

tically zero.

iii. This is similar to part (i), except that the number of vectors is less than
the size of the vector space they are drawn from (three vectorsin |). In
this case the matrix made up of the vectors will not be square, so we will
ot be able to compute a determinant. However, we can use something
called the Gramian [Brog91), It is the determinant of a matrix whose i, j
element is the inner product of vector i and vectorj. The vectors are depen-
dent if and only if the Gramian is zero.

519

5 Signal and Weight Vector Spaces

5-20

P54

For our problem the Gramian would be

(xpx)) (%)%, (x;,%3)
G o= | (%%} (%,,%)) (X,,X,) |

(XX, (%5X;) (X3,X5)

where
1 1 1
1 0 2
X, = X, = X, = .
Tt 2T Tl
1 1 1
Therefore
435 '
G=|333]=4/3|+|?2[+537| =48-18-30 = 0.
<37 37 37 33

We can also show that these vectors are dependent by noting

il
21 - 1[9 -1
I
1

1

1
2
1
1 1

o o o O

The dimension of the space must therefore be less than 3. We can show that
x, and x, are independent, since

Therefore the dimension of the space is 2.

Recall from Chapters 3 and 4 that one-layer perceptrons can only
be used to recognize patterns that are linearly separable (can be
separated by a linear boundary — see Figure 3.3). If iwo patterns
are linearly separable, are they always linearly independent?

No, these are two unrelated concepts. Take the following simple example.
Consider the two input perceptron shown in Figure P5.2.

Solved Problems

Suppose that we want to separate the two vectors

4
Wp+b=0 :
b = [0.5 b, = [1.5}

o, 03 15

If we choose the weights and offsets tobe w,, = {, w; = 1 and b = -2,
then the decision boundary (Wp+b = 0)is slhown in the figure to the left.
P, Clearly these two vectors are linearly separable. However, they are not lin-

early independent since p, = 3p,.

Inputs Sym. Hard Limit Neuron

a = hardlims(Wp +b)

Figure P5.2 Two-Input Perceptron

P5.5 Using the following basis vectors, find an orthogonal set using
Gram-Schmidt orthogonalization,

I f 0
=l wm=lo] w%n=[
i 0 0

Step L.

5-21

5 Signal and Weight Vector Spaces

Step 2.
-
111
T 1 T[] [e
vi¥. 0y
Vo =¥ % = |0 -5 T O {1/ = -1/3
Wi m W lo sl [
1111
1
Step 3.
T T
Vi¥s %i¥s
“Ww=Hh-F"¥% "7 %
\'l"i \"2"2
o 0
TREIN [2/3 -1/3 1731
0 ol[! ol 273
vy = |1 - =11 - ~1/3
0 L 231173
Loy [2/3-1/3-173] |-173
1] 1/3

o Tzl [-1/3 0 |
= l|-|i3l- 1176 = |12
0 (173 [1/6 -1/2|

[

P56 Consider the vector space of all polynomials defined on the inter-
1

val [-1, 1]; Show that (v) = _[;c(:)y (1}dt is a valid inner product.
-1

An inner product must satisfy the following properties.
L @y =wx)

@) = fxOy wde = [y(nxmnd = g0
-1

-1

2. (ray +byy) = alxy)+b@E y,)

5-22

—— m - bt e e s e e

Solved Problems

1 !

' i
(ay, +bys) = [x0) (ay, () + by, (0} dt = a[20y, (D dr+b [x(Oy, (1) dt

-1 -1 -1

= a(X) + by,

3. (x.x) 20, where equality holds if and only if x is the zero vector.

1 1
xax)= ler){r dt= _[7(2(;) darz0
-1

-1
Equality holds here only if x () = 0 for -] <7< 1, which is the zero vector.
P5.7 Two vectors from the vector space described in the previous prob-

lem {polynomials defined on the interval {-1, 1)) arel +¢ and1-:.
Find an orthogonal set of vectors based on these two vectors.

Step 1.
V=Y = l +¢
Step 2.
o _(z’[s_%)
1= Y (v,,v,)‘
where
1 3 1
- = t) (3 (2).4
@5, = J;(l+1}(1—t)df—(t—§)_ -(3) (3)-3
' asnl 3 8
2 +
(vi.v1>=jl(1+n dr = ’ [g)—m) =3
Therefore
_ 4/3 13
v, = (l—x]—m(lﬂ) =5 2:.

5-23

5 Signal and Weight Vector Spaces

P58 Expand x = [5 9 9| " in terms of the following basis set.

[L

1 1
¥, = |1 v, = (2 vy =
1 3

The first step is to calculate the reciprocal basis vectors.

> b1
111 , 31 ? 23
B = o B =|_t_1+%
:3; 373 3
d21
33 3
Therefore taking the rows of B L
5/3 -1/3 -1/3
ro=(-1/3 ry = 1.1/3 r.=12/3|-
-1/3 2/3 -1/3

The coefficients in the expansion are calculated

o [s1-1]|°

X, =r0,x= |22 - =
P 37 3)|%
N 9
r_ [1:)._—6

A, =T,X = | & =1
2= b2 _333‘9
r —121:6_

n=rx= |t . =1,
3 3 333 9.
=

and the expansion is written

524

Solved Probiems

1

) , ,] 1
X =V HaV, a0y, = 41+ 13+ 13/,
l 3 2

We can represent the process in matrix form:

5 1
szB_x=______ =
3332 ;
Az 1
33 73

Recall that both x” and x are representations of the same vector, but are

expanded in terms of different basis sets. (It is assumed that x uses the
standard basis set, unless otherwise indicated.)

5-25

5 Signal and Weight Vector Spaces

Epilogue

5-26

This chapter has presented a few of the basic concepts of vector spaces, ma-
terial that iz critical to the understanding of how neural networks work.
This subject of vector spaces is very large, and we have made no attempt to
cover all its aspects. Instead, we have presented those concepts that we feel
are most relevant to neural networks. The topics covered here will be revis-
ited in almost every chapter that follows.

The next chapter will continue our investigation of the topics of linear al-
gebra most relevant to neural networks. There we will concentrate on lin-

ear transformations and matrices.

Further Reading

Further Reading

[Brog91]

[Stra76]

W. L. Brogan, Modern Control Theory, 3rd Ed., Englewood
Cliffs, NJ: Prentice-Hall, 1991.

This is a well-writien book on the subject of linear systems.
The first half of the book is devoted to linear algebra. It also
has good sections on the solution of linear differential equa-
tions and the stability of linear and nonlinear systems. It
has many worked problems.

G. Strang, Linear Algebre and lis Applications, New York:
Academic Press, 1980.

Strang has written a good basic text on linear algebra.
Many applications of linear algebra are integrated into the
text,

5-27

5 Signal and Weight Vector Spaces

Exercises

5.28

E51

E53

E54

E5S5

E5.6

Consider again the perceptron described in Problem P5.1. If 520, show
that the decision boundary is not a vector space.

What is the dimension of the vector space deseribed in Preblem P5.1?

Consider the set of all continuous functions that satisfy the condition
f{0) = 0. Show that this is a vector space.

Show that the set of 2 x 2 matrices is a vector space.

Which of the following sets of vectors are independent? Find the dimension
of the vector space spanned by each set. (Venfy your answers to parts (i)
and (iv} using the MATLAB function rank.)

1 1 1
Lo|2 0 2
3 1 1
fi. sins cos¢ cos (21)
i 1+1 1-¢
1 1 3
iv. 2 1] 4
2 0 4
1 1 3

Recall the apple and orange pattern recognition problem of Chapter 3. Find
the angles between each of the profotype patterns (orenge and apple) and
the test input pattern (eblong orange). Verify that the angles make intui-
tive sense.

1 I -1
P, = |-1|(arange) p; = | 1| {apple) pP= |
-1 -1 —i

Exercises

E5.7 Using the following basis vectors, find an orthogonat set using Gram-
Schmidt orthogonalization, {Check your answer using MATLAB.)

o |
™ Yi =10 Y2 = 1 ¥i= |1
— 0 0 |

E58 Consider the vector space of all piecewise continucus functions on the in-
terval [0, 1]. The set {f, f,. f;} , which is defined in Figure E15.1, con-
taing three vectors from this vector space.

i. Show that this set is linearly independent.

ii. Generate an orthogonal set using the Gram-Schmidt procedure. The
inner product is defined to be

1
(f) = [ftngodr.,
0

Al Jay Ho

) }
! i 1

I |)

l
- l &ah_____J 4 _LJ
_1 _l _]

Figure E15.1 Basis Set for Problem E5.8

Y

E59 Expand x = [1 2 2}7 in terms of the following basis set. (Verify your an-
swer using MATLAB.)

w242
" 1 1 !

F]

ES.10 Find the value of o that makes [x - a_lf“ a minimum. (Use || = (x ,.{)m.]

Show that for this value of a the vector z = x —ay is orthogonal to y and
that

3-29

5 Signal and Weight Vector Spaces

-yl +layl = Wl

(The vector ay is the projection of 3 on y.) Draw a diagram for the
case where x and are two-dimensional. Explain how this concept
is related to Gram-Schmidt orthogonslization.

5-30

0 Linear Transformations for
Neural Networks -

Objectives 6-1
Theory and Examples 6-2
Linear Transtormations 6-2
Matrix Representations 6-3
Change of Basis 6-6
Eigenvalues and Eigenvectors 6-10
Diagonaiization 6-13
Summary of Results 6-15
Solved Problems 6-17
Epilogue 6-28
Further Reading 6-29
Exercises 6-30

Objectives

This chapter will continue the work of Chapter 5 in laying out the mathe-
matical foundations for our analysis of neural networks. In Chapter 5§ we
reviewad vector spaces; in this chapter we investigate linear transforma-

tions as they apply to neural networks.

As we have seen in previous chapters, the multiplication of an input vector
by a weight matrix iz one of the key operations that is performed by neural
networks. This operation is an example of a linear transformation. We
want to investigate general linear transformations and determine their
fundamental characteristica. The concepts covered in this chapter, such as
eigenvalues, eigenvectors and change of basis, will be eritical to our under-
standing of such key neural network topics as performance learning (in-
cluding the Widrow-Hoff rule and backpropagation} and Hopfield network
convergence.

6-1

6 Linear Transformations for Neural Networks

Theory and Examples

6-2

Recall the Hopfield network that was discussed in Chapter 3. (See Figure
6.1.) The output of the network is updated synchronously according to the
equation

ai{t+1) = satlin(Wa(f) +b). (6.1)

Notice that at each iteration the output of the network is again multiplied
by the weight matrix W. What is the effect of this repeated operation? Can
we determine whether or not the output of ithe network will converge to
some steady state value, go to infinity, or oscillate? In this chapter we will
lay the foundation for answering these questions, along with many other
guestions about neural networks diseussed in this book.

Initial
Condition Recurrent Layer

5x1

a0y=p a(+1)=satlins{Wa(r)+b)

Figure 6.1 Hopfield Network

Linear Transformations

We begin with some general definitions.
Transformation A transformation consists of three parts:

1. asetofelements X = {x,}, called the domain,

2. asetofelements ¥ = {y}, called the range, and

3. arulerelatingeach 1, X toanelement y, e Y.

Linear Transformation

Ak | x

Matrix Representations

A transformation 4 is linear if:
1. forall x, 1, X, Alx,+x:) = A(xy) +A (1),
2. forallxeX,ae R, A(ax) = al (x}).

Consider, for example, the transformation cbtained by rotating vectors in
R” by an angle 8, as shown in the figure to the left. The next two figures
illustrate that property 1 is satisfied for rotation. They show that if you
want to rotate a sum of two vectors, you can rotate each vector first and
then sum them. The fourth figure illustrates property 2. If you want {o ro-
tate a scaled vector, you can rotate it first and then scale it. Therefore ro-
tation is a linear operation.

Matrix Representations

ti:

L&)

X

Al +13)

Aax)
=adlx) | ax

Alxh E

As we mentioned at the beginning of this chapter, mafrix muitiplication is
an example of a linear transformation. We can also show that any linear
transformation between two finite-dimensional vector spaces can be repre-
sented by a matrix (just as in the last chapter we showed that any general
vector in a finite-dimensional vector space can be represented by a column
of numbers}. To show this we will use most of the concepts covered in the
previous chapter.

Let {v,v,...,v,} beabasis for vector space X, and let {u, u,u%,}
be a basis for vector space ¥. This means that for any two vectors x € X
andye Y

X = Yxv andy = Y yu,. (6.2)
r=] =1

Let A be a linear transformation with domain X and range ¥ {4:X > ¥).
Then

Ax) =y {6.3)
can be written

ﬂ{ Z xjij = nyui' (6.4)

=1 =1
Since 2 is a linear operator, Eq. (6.4) can be written

Z xAw,) = Z yu,. {6.5)
i=1

i=1

6-3

6 Linear Transformations for Neural Networks

Since the vectors 4 (¢ ;) are elements of ¥, they can be written as linear
combinations of the bams vectors for ¥:

A) = zau .. (6.6)

(Note that the notation used for the coefficients of this expansion, a.
not chogen by accident.) If we substitute Eq. (6.6) into Eq. (6.5) we ojbta.m

DEEIN AN .7

The order of the summations can be reversed, to produce

m

Yu,y a,x; = Y oy (6.8)
i=1 j=1 i=1

This equation can be rearranged, to obtain

E u [Y a5] 6.9)

Recall that since the #; form a basis set they must be independent. This
means that each coefficient that multiplies u; in Eq. (6.9) must be identi-
cally zero (see Eq. (5.4)), therefore

E a,x; = y;. (6.10)

i=1

This is just matrix multiplication, as in

211 2y - @y,| 1% ¥
dy) Qg v Gy, | 152 = Y2 (6.11)
aml “mz aﬂlﬂ xﬂ y"‘

We can summarize these results: For any linear transformation between
two finite-dimensional vector spaces there is a matrix representation. When
we multiply the matrix times the vector expansion for the domain vector x,
we obiain the vector expansion for the transformed vector y.

Keep in mind that the matrix representation is not unique (just as the rep-
resentation of a general vector by a colurnn of numbers is not unique — see

54

b
-

+|

i A

cos(® Als)

A -sine)

cos(0) 6

]

Matrix Representations

Chapter b). If we change the basis set for the domain or for the range, the
matrix representation will also change. We will use this fact to our advan-
tage in later chapters.

As an example of a matrix representation, consider the rotation transfor-
mation. Let’s find a matrix representation for that transformation. The key
step is given in Eq. (6.6). We must transform each basis vector for the do-
main and then expand it in terms of the basis vectors of the range. In this
example the domain and the range are the same (X = ¥ = %), s0 to keep
things simple we will use the standard basis for both (x, = 7, = 5,), as
ghown in the adjacent figure.

The first step is to transform the first basis vector and expand the resulting
transformed vector in terms of the basis vectors. If we rotata s, counter-
clockwise by the angle 8 we obtain

?
Afs) = cos(O)s +siniB)s, = Y a,8; = a5 +a,,5,, (6.12)
i=1

as can be seen in the middie left figure. The two coefficients in this expan-
sion make up the first column of the matrix representation.

The next step is to transform the second basis vector. If we rotate 5, coun-
terclockwise by the angle 8 we obtain

?
A{sy) = -sin(B)s,+cos(0)s5, = Y 4,8, = a8, +a,,5;, (6.13)
=1

as can be seen in the lower left figure. From this expansion we obtain the
second column of the matrix representation. The complete matrix repre-
sentation s thus given by

A= {cos)] —Siﬂ(e}-l. (6.14)
sin (8) 605(9”

Verify for yourself that when you multiply a vector by the matrix of Eq.
(6.14), the vector is rotated by an angle 8.

In summary, to obtain the matrix representation of a transformation we
use Eq. (6.6). We transform each basis vector for the domain and expand it
in terms of the basis vectors of the range. The coefficients of each expansion
produce one column of the matrix.

To graphically investigate the process of creating a matrix representation,
use the Neural Network Design Demonstration Linear Transformations
(nnde1t).

6-5

6 Linear Transformations for Neural Networks

Change of Basis

We notice from the previous section that the matrix representation of a lin-
ear transformation is not unique. The representation will depend on what
basis sets are used for the domain and the range of the transformation. In
this section we will illustrate exactly how a matrix representation changes
as the basis sets are changed.

Consider a linear transformation 4:X - Y. Let {7,,7,, ...,7,} beabasis
for vector space X, and let {u,u,, ... ,u,} be abasis for vector space Y.
Therefore, any vector ¥ € X can be written

X=X xv, (6.15)
i=1
and any vector y € ¥ can be writien
Y= 2.“]“;- {6.16)
1=t

So if
Alx) =y (6.17)

the matrix representation will be

g - 2,140 »
Ay 8y - By | %y| L V|, (6.18)
aml amz A amr: an' ym
or
Ax = y. (6.19)

Now suppose that we use different bagis sets for X and ¥. Let
{ti £y ..., t,} bethe new basis for X, and let {w, w,, ..., w,} bathe
new basis for Y. With the new basis sets, the vector x € X is written

x =3t 6.20)
=1

and the vector y €Y is written

6-6

Change of Basis

y=Syw, 6.21)

Thig produces a new matrix representation:

ay @iy e &, |X) ¥
Gy @y - Ay [Xa| _ |V, (6.22)
a.ml a'm'Z a‘mn xln y'm
or
Ax =y. (6.23)

What is the relationship between A and A'? To find out, we need to find
the relationship between the two basis sets. First, since each ¢, is an ele-
ment of X, they can be expanded in terms of the original basis for X:

. n
t= 30, (6.24)
J=1

Next, gince each z; is an element of ¥, they can be expanded in terms of
the original basis for ¥:

i=1

Therefore, the basis vectors can be written as columns of numbers:

4, Wi
t = ‘?f W = “i?.: . (6.26)
t:n “":m'
Define a matrix whose columns are the t;:
B=[t,t,...t) 6.27)

Then we can write Eq. (6.20) in matrix form:

X=X\t +at+ Xt = B, (6.28)

6.7

6 Linear Transformations for Neural Netwarks

Change of Bagis

Similarity Transform

This equation demenstrates the relationships between the two different
representations for the vector 1. (Note that this is effectively the same as
Fq. (5.43). You may want to revisit our discussion of reciprocal basis vec-
tors in Chapter 5.)

Now define a matrix whose columns are the w;:
B, = [w, w, .. w,]. (6.29)

This allows us to write Eq. (6.21) in matrix form,

y=By, (8.30)

which then demonstrates the relationships between the two different rep-
resentations for the vector .

Now substitute Eq. (6.28) and Eq. (6.30) into Eq. (6.19):
ABx' =B y'. (6.31)
If we multiply both sides of this equation by B;l we obtain
[B,AB]xX =y (6.32)

A comparison of Eq. (6.32) and Eq. (6.23) yields the following operation for
a change of basis:

A = [B_AB] . (6.33)

This key result, which describes the relationship between any two matrix
representations of a given linear transformation, is called a similarity
transform [Brog91]. It will be of great use to us in later chapters. It turns
out that with the right choice of basis vectors we can obtain a matrix rep-
resentation that reveals the key characteristics of the linear transforma-
tion it represents. This will be discussed in the next section.

As an example of changing basis sets, let’s revisit the vector rotation exam-
ple of the previous section. In that section a matrix representation was de-
veloped using the standard basis set {5,.s,} . Now let’s find a new
representation using the basis {£,t,) , which is shown in the adjacent fig-
ure. (Note that in this example the same basis set is used for both the do-
main and the range.)

The first step is to expand ¢, and ¢, in terms of the standard basis set, as
in Eq. (6.24) and Eq. (6.25). By inspection of the adjacent figure we find:

t] = 5[+0552, (6.34)

et et e

Change of Basis

t, = -5 +5;. (8.35)

Therefore we can write

t, = L;J t, = H. (6.36)

Now we can form the matrix

B, = [tl tzJ = [0?5 ‘;J s 6.37)

and, because we are using the same basis set for both the domain and the
range of the transformation,

B =B, = {1 ‘IJ. (6.38)
05 1

We can now compute the new matrix representation from Eq. (6.33):

[B;IABI] - 273 2/3||{cos® —sin@|1 1 -1
-1/3 2/3)sin® cos0][0.5 1

1/35in0 + cosd -4/35in0

A!

it

(6.39)

il

gsine —1/3sin8 + cosO|

Take, for example, the case where 6 = 30°.

A = | 10330667 (6.40)
0.417 0.699

and

A= |08%6 051 (6.41)
05 0866

To check that these matrices are correct, let’s try a test vector

X = [l] , which corresponds to x' = H . (6.42)
0.5 0

6-9

6 Linear Transformations for Neural Networks

6-10

(Note that the vector represented by x and x' is ¢, a member of the second
basis set.) The transformed test vector would be

y= Ax = 0.866 0.5/ 1| _ |0.616 ‘ (6.43)
05 0.866]|0.5 1.933
which should correspond to
y = AX = 1.033 -0.667| 1) _ |1.033] (6.44)
0416 0.699 |0 0.416

How can we test to see if y' does correspond to y ? Both should be represen-
tations of the same vector, ¥, in terms of two different basis sets; y uses
the basis {s,5,} and y' uses the basis {¢,,,} . In Chapter 5 we used the
reciprocal basis vectors to transform from one representation to another
{see Eq. (5.43)). Using that concept we have

-1
y =By = |1 -1 |0616 _ [2/3 2/3//0616 _ [1033| (g5
05 1] (0933 -1/3 2/3|{0.933 0416
which verifies our previous result. The vectors are displayed in the figure

to the left. Verify graphically that the two representations, y and y', given
by Eq. (6.43) and Eq. (6.44), are reasonable.

Eigenvalues and Eigenvectors

Eigenvalues
Eigenvectors

In this final section we want to discuss two key properties of linear trans-
formations: eigenvalues and eigenvectors. Knowledge of these properties
will allow us to answer some key questions about neural network perfor-
mance, such as the question we posed at the beginning of this chapter, con-
cerning the stability of Hopfield networks.

Let's first define what we mean by eigenvalues and eigenvectors. Consider
a linear transformation 4:X — X. (The domain is the same as the range.)
Those vectors z € X that are not equal to zero and those scalars A that sat-
isfy

A(z) = iz {6.46)

are called eigenvectors (2) and eigenvalues (1), respectively. Notice that
the term eigenvector is a little misleading, since it is not really a vector but
a vector space, since if z satisfies Eq. (6.46), then az will also satisfy it.

Therefore an eigenvector of a given transformation represents a direction,
such that any vector in that direction, when transformed, will continue to
point in the same direction, but will be scaled by the eigenvalue. As an ex-

$a

5

Eigenvalues and Eigenvectors

ample, consider again the rotation example used in the previous sections.
Is there any vector that, when rotated by 30°, continues to point in the
same direction? No; this is a case where there are no real eigenvalues. (If
we allow complex scalars, then two eigenvalues exist, as we will see later.)

How can we compute the eigenvalues and eigenvectors? Suppose that a ba-
sis has been chosen for the n-dimensional vector space X . Then the matrix
representation for Eq. (6.46) can be written

AZ = Az, (647

or
[A-XI]z = 0. (6.48)

This means that the columns of [A —AI] are dependent, and therefore the
determinant of this matrix must be zero:

[[A-AI]] = 0. (6.49)

This determinant ig an nth-order polynomial. Therefore Eq. (6.49) always
has n roots, some of which may be complex and scme of which may be re-
peated,

As an example, let's revisit the rotation example. If we use the standard ba-
sis set, the matrix of the transformation is

A = cos8 —sind _ (6.50)
sin® cosb

We can then write Eq. (6.49) as

cosB-A —sin® || _ 0, (6.51)
sin@ cosB- A

or
AZ-2hcosB + ((cos8) " + (sinB) 2) = A -2hcos@+1 = 0. (652

The roots of this equation are
A, = cosB+jsin@ ‘A, = cosf - jsind. (6.53)
Therefore, as we predicted, this transformation has no real eigenvalues (if

sin@ # 0). This means that when any real vector is transformed, it will
point in & new direction.

6-11

6 Linear Transformations for Neural Networks

Consider another matrix:
A
+2

=
A= {'1 1]. (6.54)
0 -2

To find the eigenvalues we must solve

[‘1"‘ ! J =0, (6.55)
0 -2-A
or
A43h+2 = A1) (A+2) =0, (6.56)
and the eigenvalues are
A=~ A =2 (6.57)

To find the eigenvectors we must solve Eq. (6.48), which in this example be-

comes
[—l-l !]H 659
¢ -2-A 0

We will solve this equation twice, once using A, and once using }, . Begin-
ning with A, we have

Olzl= 0 LffZn _ |0 (6.59)
0-1 0 -1z 0

or
7y, = 0, noconstraint on z,,. (6.60)

Therefore the first eigenvector will be

Z, = L;J , (6.61)

or any scalar multiple. For the second eigenvector we use A, :

612

Diagonalization

Eigenvalues and Eigenvectors

{l 1:{22 - {l 1 [112 = J‘O}’ (6.62}
00 ooj 2yl 10

(6.63)

or
in T -
Therefore the second eigenvector will be

z, = H, (6.64)

or any scalar multiple.

Ta verify our results we consider the following:

e Bl e
el Bl e

To test your understanding of eigenuvectars, use the Neural Network Design
Demonstration Eigenvector Game (nnd6eg),

Diagonalization

Whenever we have n distinct eigenvalues we are guaranteed that we can
find n independent eigenvectors [Brog91). Therefore the eigenvectors
make up a basis set for the vector space of the transformation. Let’s find
the matrix of the previous transformation (Eq. (6.54)) using the eigenvec-
tors as the basis vectors. From Eq. (6.33) we have

A= (Blagy = (P -T 0 (6.67)
0-1]L0 -2[0- 0 -2
Note that this is a diagenal matrix, with the eigenvalues on the diagonal.
This is not a coincidence. Whenever we have distinct eigenvalues we can
diagonalize the matrix representation by using the eigenvectors as the ba-

sis vectors. This diagonalization process is summarized in the following.
Let

B = iz] z, .. :r,n] s {6.68)

613

6 Linear Transformafions for Neural Nelworks

6.14

where {z,z,,....2,} are the eigenvectors of a matrix A. Then

MO0
[BTAB] = 0% .. 0] (6.69)
¢ 0.2

"

where {1, A,,...,A} are the eigenvalues of the matrix A.

This result will be very helpful as we analyze the performance of several
neural networks in later chapters.

Summary of Resulifz

Summary of Results

Transformations
A transformation consists of three parts:

1. asetofelementsX = {x.}, called the domain,
2. asetofelements ¥ = {y,}, called the range, and
3. arule relating each 1, € X to anelement y, e Y.

Linear Transtormations
A transformation 4 is linear if:
L forallx,,x,e X, A(x,+x,) = A(x) +A K},
2. forallxe X,ae R, A{ax) = aA(x).

Matrix Representations

Let {7, 7, ...,7,} beabasiafor vector space X ,and let {u, %, ..., u,}
be a basis for vector space ¥. Let A be a linear transformation with domain
X andrange ¥:

Alx) =y.
The coefficients of the matrix representation are obtained from

A(w) = Y aum,.

i=1

Change of Basis

615

6 Linear Transformations for Neural Networks

Eigenvaiues and Eigenvectors
Az = Az

[[A-AT]| = 0
Diagonalization
B = [zl Z .. zj,

where {z,,z,,...,2) are the eigenvectors of a square matrix A,

A D0
[B~'AB] = 04,..0
00 ..4

n

6-16

- e cmee e P i s el o d B B 0

Solved Problems

Solved Problems

P6.1 Consider the single-layer network shown in Figure P6.1, which has
a linear transfer function. Is the transformation from the input
vector to the output vector a linear transformation?

Inputs Linear Layer

a = purelin(Wp+h)
Figure P6.1 Single-Neuron Perceptron
The network equation is

a=A(p) = Wp+bh.

In order for this transformation to be linear it must satisfy
L Afp+p) =A(p) +A(p),
2. Aap) = aA(D).
Let’s test condition 1 first.
Ap, +p,) = W(p, +p,) +b = Wp +Wp,+b.
Compare this with
Ap)+App,) = Wp,+b+Wp,+b = Wp, +Wp, +2b.

Clearly these two expressions will be equal only if b = 0. Therefore this
network performs a nonlinear transformation, even though it has a linear
transfer function. This particular type of nonlinearity is called an affine
transformation.

6-17

6 Linear Transformations for Neural Networks

P62 We discussed projections in Chapter 5. Is a projection a linear
transformation?

The projection of a vector x onto a vector 7 is computed as

x.v)
=4 =Xy,
y ()O w.v}v

where (x,7) is the inner product of x with #.

We need to check to see if this transformation satisfies the two conditions
for linearity. Let’s start with condition 1:

& +xX27) @2+ @P) K)) Wat)
(v.) @) wr) (@)

=A@ +A)

Ax, +xy) =

{Here we used linearity properties of inner products.) Checking condition 2:

(ax.7) alx.v)
a = g = g = ga
{ax) ©.2) w2 (x).

Therefore projection is a linear operation.

P6.3 Conslder the transformation A4 created by reflecting a vector x in
%’ about the line x, +x, = 0, as shown in Figure P6.2, Find the ma-
trix of this transformatmn relative to the standard basis in %’.

AR

Figure P6.2 Reflection Transformation
The key to finding the matrix of a transformation is given in Eq. (6.6):

6-18

i
-
¥
{r ﬂ{-‘l] =¥
53
Als}= -5

¥

Solved Problems

A@) = Yau,

i=1

We need to transform each basis vector of the domain and then expand the
result in terms of the basis vectors for the range. Each time we do the ex-
pansion we get one column of the matrix representation. In this case the
hasis set for both the domain and the range is {5, 5,} . Solet’s transform s,
first. If we reflect 5, about the line x, + x, = 0, we find

2
A(s) =55 = 3 a,8, = a5, +ay5, = 05+ (-1)5,

=1

(as shown in the top left figure), which gives us the first column of the ma-
trix. Next we transform s,

2
A(5) = =8, = Y Gy5, = a8 +ays; = (-1)s5+0s,

i=l

{as shown in the second figure on the left), which gives us the second col-
umn of the matrix. The final result is

!

T
Let’s test our result by transforming the vector x = [I 1] :

Ax = |0 - -l
-1 0]l -1
This is indeed the reflection of x about the line x, + x, = 0, as we can see
in Figure P6.3.

$
Alx}

Figure P6.3 Test of Reflection Operation

6-19

6 Linear Transformations for Neural Networks

L

ywd+ 2

ans =
4

i e—

P64

6-20

{Can you guess the eigenvalues and eigenvectors of this transformation?
Use the Neural Network Design Demonstration Linsar Transforrnations
(nnd81t) to investigate this graphically. Compute the eigenvalues and
eigenvectors, using the MATLAB function eig, and check your guess.}

Consider the space of complex numbers. Let this be the vector
space X, and let the basis for X be {1 +j1-j} . Let 4:X > X be the
conjugation operator (i.e., 2 (x) = x*).

i. Find the matrix of the transformation 2 relative to the basis
set given above.

ii. Find the eigenvalues and eigenvectors of the transforma-
tion.

jii. Find the matrix represeniation for 4 relative to the eigen-
vectors as the basis vectors.

i. To find the matrix of the transformation, transform each of the basis
vectors (by finding their conjugate); :

A =A0+)) = 1-j=v, = a,V +a,7, = 00+ 1v,,

A@y) =A(1-j) = 14j =2, = apv, +a,v, = 17,+00,.

This gives us the matrix representation

a=00,
14
H. To find the eigenvalues, we need to use Eq. (6.49):

[[A-AT)| = H‘l" 1}

2

=k-1=R-D(R+1)=0.

So the eigenvalues are: &, = 1, 2, = -1.To find the eigenvectors, use Eq.

(6.48):
(A-M]z = P l]zz H
1o o

For A = A, =1 this gives us

— - wan w4 e ik e 2

Solved Problems

SRR A

i < iy

or

Therefore the first eigenvector will be

]

or any scalar multiple. For the second eigenvector weuse A = A, =-1:

He- [l

L3 = —iy-

or

Therefore the second eigenvector is

or any scalar multiple.

Note that while these eigenvectors can be represented as columns of num-
bers, in reality they are complex numbers, For example:

g=lp+lv,= (1+))+(1-f) =2,
Zy=lo+ (CDwy = (1+)) - (1-)) = 2j.
Checking that these are indeed eigenvectors:
Az) = (D* =2 =0z,
Alzy) = (2)* = =2j = A2y
iii. To perform a change of basis we need to use Eq. (6.33):

A'= [B]'AB] = [B AB],

6-21

6 Linear Transformations for Neural Networks

6-22

P6.5

where

B=@JJ=BJ.

(We are using the same basis set for the range and the domain.) Therefore

we have
p= (05 0s]fot){r 1] _|to|_ MO
05-05]|10/|1-1 0- 02,
As expected from Eq. (6.69), we have diagonalized the matrix representa-
tion.

Diagonalize the following matrix:

A=Ej.

The first step is to find the eigenvalues:

2-4 -2
-1 3-4

so the eigenvalues are A, = 1, A, = 4. To find the eigenvectors,

[A-Allz = {2_1 _2} = H
-1 3-A 0

(A=A = = A2 -5h+d = (A-1)(A-2) = 0,

Fordi =4, =1
-2, . [1 2| {2l _ [0]
I = - ’
-1 2 -1 21z, |0
ar
Zy = 22y
Therefore the first eigenvector will be

P6.6

Solved Problems

or any scalar multiple.

Ford =24,=4
2 -2]11 _ {—2—] 2| _ H
-1-1 -1 -1z, 0

213 T g+

or

Therefore the second eigenvector will be

or any scalar multiple.

To diagonalize the matrix we use Eq, (6.69):
A = [B'AB),

where

Therefore we have

I

32 =2z 1] _frof MO
2131 o4 [o A
3

Consider a transformation 4:R° — R° whose matrix representation
relative to the standard basis sets is

A 310
001

Find the matrix for this transformation relative to the basis sets:

Gk)]

6-23

6 Linear Transformations for Neural Networks

6-24

A A

1 0] |3

The first step is to form the matrices

200
B, =10-1-2 B.ﬁ{] 0}

0-2
103
Now we use Eq. (6.33) to form the new matrix representation:

A'= [B'AB],

A'= 1.2l = .
100101 1 3

Q-2 -
103 22

10[3_”1200 612
2

Therefore this is the matrix of the transformation with respect to the basis
seta T and W.

P67 Considera transformation 2:%° — ®’. One basis set for %" is given
as V = {v,,v,}.

I. Find the matrix of the transformation 2 relative to the basis
set V if it is given that

A (v,) = v, +20,
A(yy) = v +7,

ii. Consider a new basis set W = {w, w,} . Find the mairix of
the transformation A relative to the basis set W ifit is given
that

wI = vl +v2‘

W2 = TJ] 'vz-

i. Each of the two equations gives us one column of the matrix, as defined
in Eq. (6.6). Therefore the matrix is

Solved Problems

b

il. We can represent the W basis vectors ag columns of numbers in terms

of the V basis vectors:
1 1
w, = W, = .
=i L

We can now form the basis matrix that we need to perform the similarity

transform:
B =|1].
1-1

The new matrix representation can then be obtained from Eq. (6.33):

A’ = [B]'AB,],

11 > 1
g 22ty 12 3

rohyeygp-go 11

272 272

P6.8 Consider the vector space P of all polynomials of degree less than
or equal to 2. One basis for this vector spaceis V = {1,1,¢'} . Con-
sider the differentiation transformation 2.

i. Find the matrix of this transformation relative to the basis
set V.

ii. Find the sigenvalues and eigenvectors of the transforma-
tion,
i. The first step is to transform each of the basis vectors:
D) =0 = (0)1+(0)t+(0)F,
D =1=(1)1+(Det+ (0):2,

D) =2t = (O)1+ (2e+ (0)F.

6-25

6 Linear Transformations for Neural Networks

6-26

The matrix of the transformation is then given by

010
D=p01.
000

ii, To find the eigenvalues we must solve

A1 0]
'[D-A]| = 2l = -2’ = 0.

1
0 A
0 0 -)\
Therefore all three eigenvalues are zero. To find the eigenvectors we need
to solve

A1 0 0
[D-Allz = [g -3 2(2=|p|.
00-y o
For 4 = 0 we have
0105 0
002||z,| = |0f-
ooo; [0
This means that
32=23=0.

Therefore we have a single eigenvector:

]
n
o 9 =

Therefore the only polynomial whose derivative is a scaled version of itself
is a constant (a zeroth-order polynomial).

L w4 it e

Solved Probiems

P69 Consider a transformation 2:8' - k. Two examples of trans-
formed vectors are given in Figure P6.4. Find the matrix represen-
tation of this transformation relative to the standard basis set.

Figure P6.4 Transformation for Problem P8.9

For this problem we do not know how the basis vectors are transformed, so
we cannot use Eq. (6.6) to find the matrix representation. However, we do
know how two vectors are transformed, and we do know how those vectors
can be represented in terms of the standard basis set. From Figure P6.4 we
can write the following equations:

B

We then put these two equations together to form

SR]
P I P

This is the matrix representation of the transformation with respect to the
standard basis set.

So that

) —

L e -
Lot N I) LN

A=

B —

This procedure is used in the Neural Network Design Demonstration Lingar
Transformations (nndé1t),

6.27

6 Linear Transformations for Neural Networks

Epilogue

6-28

In this chapter we have reviewed those properties of linear transforma-
tions and matrices that are most important to our study of neural net-
works, The concepts of eigenvalues, eigenvectors, change of basis
(similarity transformation) and diagonalization will be used again and
again throughout the remainder of this text. Without this linear algebra
background our study of neural networks could only be superficial,

In the next chapter we will use linear algebra to analyze the operation of
one of the first neural network training algorithms — the Hebb rule.

Further Reading

Further Reading

[Brogd1]

[Stra76)

W. L. Brogan, Modern Control Theory, 3rd Ed., Englewood
Cliffs, NJ: Prentice-Hall, 1991.

This is & well-written book on the subject of linear systems.
The first half of the book is devoted to linear algebra. It also
has good sections on the solution of linear differential equa-
tions and the stability of linear and nonlinear systems. It
has many worked problems.

G. Strang, Linear Algebra and Its Applications, New York:

. Academic Press, 1980.

Strang has written a good bagic text on linear elgebra.
Many applications of linear algebrs are integrated into the
text.

6-29

. - P e 4 mnd e B dar

6 Linear Transformations for Neural Networks

Exercises

E6.1 Is the operation of transposing a matrix a linear transformation?

E6.2 Consider again the neural network shown in Figure P6.1. Show that if the
bias vector b is equal to zero then the network performs a linear operation.

E6.3 Consider the linear transformation illustrated in Figure E6.1.

i. Find the matrix representation of this transformation relative to
the standard basis set.

ii. Find the matrix of this transformation relative to the basis set
{v,v,}.

Alw,)

Figure E6.1 Example Transformation for Exercise E6.3

E6.4 Consider the space of complex numbers. Let this be the vector space X , and
let the basis for X be {1+ j,1-j} . Let Z:X — X be the operation of multi-
plication by (1+ /) (e, A{x) = (1+)x).

i. Find the matrix of the transformation 4 relative to the basis set
given above,

il. Find the eigenvalues and eigenvectors of the {ransformation.

fii. Findthe matrix representation for A relative to the eigenvectors as
the basis vectors.
242

ans = iv. Clieck your answers to parts (ii) and (iii) using MATLAB.

E6.5

E6.6

E6.8

Exercises

Consider a transformation 4:P° — P’ , from the space of second-order poly-
nomials to the space of third-order polynomials, which is defined by the fol-
lowing:

2
X = ag+at+ay’,

A) = ag(t+ D) wa 1+ D) 4a,(r+1)°.
Find the matrix representatmr% of this transformation relative to the basis
sets v u{lrr} v’ = {141, 3}

Consider the space of functions of the form asin (¢ +¢) . One basis set for
this spaceis V = {sint, cost} . Consider the differentiation transformation

D,
i. Find the matrix of the transformation D relative to the basis set V.

ii. Find the eigenvalues and eigenvectors of the transformation. Show
the eigenvectors as columns of numbers and as functions of ¢.

fii. Find the matrix of the transformation relative to the eigenvectors as
basis vectors.

Consider the vector spaces P* and P’ of second-order and third-order poly-
nomlals Fmd the matrix representation of the integration transformation
I:P* 5 P° relative to the basis sets V> = {1,413,V = {1,151} .

A certain linear transformation 4:%° — ®° has a matrix representation
relative to the standard basis set of

by

Find the matrix vepresentation of this transformation relative to the new

' {1

We know that a certain linear transformation 2:R° - R has eigenvalues
and eigenvectors given by

6-31

6 Linear Transformations for Neural Networhs

vt wef] wen g

(The eigenvectors are represented relative to the atandard basis
get.)

i. Find the matrix representation of the transformation 2 relative to
the standard basis set.

ii. Find the matrix representation relative to the new basis
V= { ! s -1 } .
1 |1
E6.10 Consider the following basis set for R*:

r= o= {1111

(The basis vectors are represented relative to the standard basis set.)

1. Find the reciprocal basis vectors for this basis set.

il. Consider a transformation 4:%° - %’ The matrix representation
for 4 relative to the standard basis in %’ is

A= 01 .
-2-3
Find the expansion of Av, in terms of the basis set V. (Use the re-
ciprocal basis vectors.)

iii. Find the expansion of Av, in terms of the basis set V.

iv. Find the matrix representation for 4 relative to the basis V. (This
step should require no further computation.}

6-32

P WL 1 e Feh sl @ e G A Ol

7 Supervised Hebbian Learning

Objectives

Objectives
Theory and Examples
Linear Associator
The Hebb Rule
Performance Analysis
Pssudoinverse Rule
Application
Variations of Hebbian Leaming
Summary of Restits
Solved Problems
Epilogue
Further Reading
Exercises

7-1
7-2
7-3

7-5

7-7

7-10
7-12
7-14
7-16
7-29
7-30
7-3

The Hebb rule was one of the first neural network learning laws. It was
proposed by Donald Hebb in 1949 as a possible mechanism for synaptic
modification in the brain and since then has been used to train artificial

neural networks.

In this chapter we will use the linear algebra concepts of the previous two
chapters to explain why Hebbian learning works, We will also show how

the Hebb rule can be used to train neural networks for pattern recognition.

7-1

7 Supervised Hebbian Learning

Theory and Examples

-2

Hebh's Postulate

Donald O. Hebb was born in Chester, Nova Scotis, just after the turn of the
century. He originally planned to become a novelist, and obtained a degree
in English from Dalhousie University in Halifax in 1925. Since every first-
rate novelist needs to have a good understanding of human nature, he be-
gan to study Freud after graduation and became interested in psychology.
He then pursued a master's degree in psychology at McGill Univerzity,
where he wrote a thesis on Pavlovian conditioning. He received his Ph.D.
from Harvard in 1936, where his dissertation investigated the effects of
early experience on the vision of rats. Later he joined the Montreal Neuro-
logieal Institute, where he studied the extent of intellectual changes in
brain surgery patients, In 1942 he moved to the Yerkes Laboratories of Pri-
mate Biology in Florida, where he studied chimpanzee behavior.

In 1949 Hebb summarized his two decades of research in The Organization
of Behavior [Hebb49]. The main premise of this book was that behavior
could be explained by the action of neurons. This was in marked contrast
to the behaviorist school of psychology (with proponents such as B, F. Skin-
ner), which emphasized the correlation between stimulus and response
and discouraged the use of any physiological hypotheses. It was a confron-
tation between a top-down philosophy and a bottom-up philosophy. Hebb
stated his approach: “The method then calls for learning as much as one
can about what the parts of the brain do {primarily the physiologist’s field),
and relating the behavior as far as possible to this knowiedge {primarily for
the psychalogist); then seeing what further information is to be had about
how the total brain works, from the discrepancy between (1) actual behav-
ior and (2) the behavior that would be predicted from adding up what is
known about the action of the various parts.”

The most famous idea contained in The Organization of Behavior was the
postulate that came to be known as Hebbian learning:

“When an axon of cell A is near enough to excite a cell B and repeatedly or

persisiently takes part in firing it, some growth process or metabolic change
takes place in one or both eells such that A's efficiency, as one of the cells fir-
ing B, is increased.”

This postulate suggested a physical mechaniam for learning at the cellular
level, Although Hebb never claimed to have firm physiological evidence for
his theory, subsequent research has shown that some cells do exhibit Heb-
bian learning. Hebb's theories continue to influence current research in

neuroscience.

As with most historic ideas, Hebb’s postulate was not completely new, as
he himself emphasized. It had been foreshadowed by several others, includ-
ing Freud. Consider, for example, the following principle of association
stated by psychologist and philosopher William James in 1890; “When two

Linear Agsociator

brain processes are active together or in immediate succession, one of
them, on rececurring tends to propagate its excitement into the other.”

Linear Associator

Linear Associator

Associative Memory

Hebb's learning taw can be used in combination with a variety of neural
network architectures. We will use a very simple architecture for our initial
presentation of Hebbian learning. In this way we can concentrate on the
learning law rather than the architecture. The network we will use is the
{inear associator, which is shown in Figure 7.1. (This network was intro-
duced independently by James Anderson [Ande72] and Teuvo Kohonen
[(Koho721)

Inputs Linear Layer

a = purelin(Wp)

Figure 7.1 Linear Associator
The cutput vector a ig determined from the input vector p according to:
a= wp s (71)

or
R
a = Y wp;. (7.2)
i= 1
The linear associator is an example of a type of neural network called an

associative memory. The task of an associative memory is to learn Q pairs
of prototype input/output vectors:

{Pptl}) {pz;t:,}, van s {pQ’tQI ' (7.3)
In other words, if the network receives an input p = p_ then it should pro-
duceanoutputa =t ,for g = 1,2, ..., Q. In addition, if the input is

changed slightly (i.e.,qp = p,+8) then the output should only be changed
slightly (ie., a = ¢ +€).

73

7 Supervised Hebbian Learning

7-4

The Hebb Rule

The Hebb Rule

How can we interpret Hebb's postulate mathematically, so that we can use
it to train the weight matrix of the linear associator? First, let’s rephrase
the postulate: If two neurons on either side of a synapse are activated si-
multaneously, the strength of the synapse will increase. Notice from Eq.
(7.2) that the connection (synapse) between input p; and output g, is the
weight w, . Therefore Hebb's postulate would imply that ifa posmve p; pro-
duces a posm\re a; then w, should increase. This suggests that one math-
ematical interpretation of the postulate could be

wiev = widsa f {a) g4p,) (7.4)
where p, is the jth element of the gth input vector P,; 4, is the ith ele-
ment of the network output when the gth input vector is presented to the
network; and o is a positive constant, called the learning rate. This equa-
tion says that the change in the weight w;; 18 proportional to a product of
functions of the activities on either side of the synapse. For this chapter we
will simplify Eq. (7.4) to the following form

wiew = wild + g, (7.5)

3 "i‘p Iq”
Note that this expression actually extends Hebb’s postulate beyond its
strict interpretation. The change in the weight is proportional to a product
of the activity on either side of the synapse. Therefore, not only do we in-
trease the weight when both p, and 4, are positive, but we also increase the
weight when they are both negative, In addition, this implementation of
the Hebb rule will decrease the weight whenever p ; and a, have opposite
sign.
The Hebb rule defined in Eq. (7.5) is an unsupervised learning rule. It does
not require any information concerning the target output. In this chapter
we are interested in using the Hebb rule for supervised learning, in which
the target output is known for each input vector. (We will revisit the unsu-
pervised Hebb rule in Chapter 13.) For the supervised Hebb rule we substi-
tute the target output for the actual cutput. In this way, we are telling the
algorithm what the network should do, rather than what it is currently do-
ing. The resulting equation is

wiew = whid st p (7.6)
where 1., is the /th element of the gth target vector t,. (We have set the
1eammg rate o te one, for simplicity.)

Notice that Eq. (7.6) can be written in vector notation:

W = Wy p (1.7

The Hebb Rule

If we assume that the weight matrix is initialized to zero and then each of
the Q input/output pairs are applied once to Eq. (7.7), we can write

g
W=tp +t,p,+ -+ tgpg =y tqp:. (7.8)
g=1
This can be represented in matrix form:

F

T
P
T T
W=ttt P2 = TP, (7.9)
I_péj
where
T=[t,t,.. 10 P=[p, 0.0y (7.10)
Performance Analysis

Let’s analyze the performance of Hebbian learning for the linear associa-
tor. First consider the case where the p_ vectors are orthonormal (orthog-
onal and unit length). If p, is input to the network, then the network
output can be computed

o [
a=Wp = [z tquth = z t, {p:pk). (7.11)
g=1

g=1

Since the p, are crthonormal,

T
(PQP;,) =1 g =k

(7.12)
=0 g#k.
Therefore Eq, (7.11) can be rewritten
a=Wp =t. (7.13)

The output of the network is equal to the target output. This shows that, if
the input prototype vectors are orthonormal, the Hebb rule will produce the

correct output for each input.

75

7 Supervised Hebbian Learning

76

L
(ST

»|

But what about non-orthogonal prototype vectors? Let’s assume that each
p, vector is unit length, but that they are not orthogonal. Then Eq. (7.11)
becomes

Error

a=Wp =1+):*t? (p,p) (7.14)
qg#

Because the vectors are not orthogonal, the network will not produce the
correct output. The magnitude of the error will depend on the amount of
carrelation between the prototype input patterns.

As an example, suppose that the prototype input/output vectors are

0.3 0.5

0.5 1 0.5 1
po=| 0Lt = =% =, (ns)
"los| ! H Y U

0.5 05

(Check that the two input vectors are orthonormal.)
The weight matrix would be

-1 1J{0.5 05 ~05 05 [01-10

If we test this weight matrix on the two prototype inputs we find

0.5
wp, = |10 0 -1l-05) _ 1] (7.17)
01-1 0|05 -1
-0.5
and
0.5
Wp, = 100 -1f0s5) 1 . {7.18)
01-10(]|-0.5 1
1.5

Success!! The outputs of the network are equal to the targets,

+|

Pseudoinverse Rule

Now let’s revisit the apple and orange recognition problem deseribed in
Chapter 3. Recall that the prototype inputs were

1 1
p, = |-1| (orange) P, = | 1| (apple) . (7.19)

-1 -1

(Note that they are not orthogonal.) If we normalize these inputs and
choose as desired outputs -1 and 1, we obtain

0.5774 0.5774
P, = |-0.5774| t; = [1] =054 =[] (720
-0.5774 0.5774

Qur weight matrix becomes

r 0.5774 —0.5774 -0.5774
WoTP = [- . (7.21)
2 0.5774 0.5774 -0.5774J 011348 9

So, if we use our two prototype patterns,

05774
Wp, = [0 1.1548 0] |-0.5774| = [-0:6668] (7.22)
05774

0.5774
Wp, = [0 1.1548 0]} 0.5774 | = [0.6668] - (7.23)
-0.5774

The outputs are close, but do not quite match the target outputs.

Pseudoinverse Rule

When the prototype input patterns are not orthogonal, the Hebb rule pro-
duces some errors. There are several procedures that can be used to reduce
these errors. In this section we will discuss one of those procedures, the
pseudoinverse rule,

Recall that the task of the linear associator was to produce an outputof t
for an input of p » In other words,

Wp =t g=12...0. (7.24)

77

7 Supervised Hebbian Learning

If it is not possible to choose a weight matrix so that these equations are
exactly satisfied, then we want them to be approximately satisfied. One ap-
proach would be to choose the weight matrix to minimize the following per-
formance index:

0
Few) = 3 Jt,-wp". (7.26)

g=1

Ifthe prototype input vectors p, are orthonormal and we use the Hebb rule
to find W, then F(W) will be zero. When the input vectors are not orthogo-
nal and we use the Hebb rule, then F(W) will be not be zero, and it is not
clear that F{W) will be minimized. It turns out that the weight matrix that
will minimize F(W) is obtained by using the pseudoinverse matrix, which
we will define next.

First, let’s rewrite Eq. (7.24) in matrix form:

WP=T, (7.26)

where

T=[t,t,... 1P = [p, p, ... 05 (7.27)

Then Eq. {7.25) can be written

F(W) = |T-WPJ* = [E|’, {7.28)
where
E=T-WP, {7.29)
and
IE" = ¥ ¥e; - (7.30)
i

Note that F(W) can be made zero if we can solve Eq. (7.26), If the P matrix
has an inverse, the solution is

w=TP" . (7.31)

However, this is rarely possible. Normally the p , vectors (the columns of
P} will be independent, but R (the dimension of p,) will be larger than ¢

(the number of p, vectors). Therefore, P will not be a square matrix, and
no exact inverse will exist.

»|

Pgeudoinverse Rule

It has been shown [Albe72] that the weight matrix that minimizes Eq.
(7.25) i given by the pseudoinverse rule:

W = TP, (7.32)

where P is the Moore-Penrose pseudoinverse. The pseudoinverse of a real
meatrix P is the unique matrix that satisfies

PP'P = P,

P'PP' = P*, (7.3
PR = (P'P) . '
PP’ = (PP} .

When the number, R, of rows of P is greater than the number of columns,
(, of P, and the columns of P are independent, then the pseudoinverse can
be computed by

-1
P = ('Pp P, (7.34)
To teat the pseudoinverse rule (Eq. (7.32)), consider again the apple and or-

ange recognition problem. Recall that the input/output prototype vectors
are

1 |
P, = -1 ,l] = [—I] P,=1 1 ,t2 = [1] . (7.35)
-1 -1

(Note that we do not need to normalize the input vectors when using the
pseudoinverse rule.)

The weight matrix is calculated from Eq. (7.32):

W="TP = [*1 ﬂ 111, (7.36)
-1-1

where the pseudoinverse is computed from Eq. (7.34):

- -
13 |11 -1 0.25 05 -0.25

This produces the following weight matrix:

7-8

7 Supervised Hebbian Learning

u Autoassociative Memory

710

W=TP = |i__1 ” 0.25 -0.5 -0.25 = [0 1 (ﬂ. (7.38)
1025 05 0325

Let’s try this matrix on our two prototype patterns.

Wp, = [o10][—t] = [-1] (7.39)

Wo, =010 1] =[1 (7.40)

The network outputs exactly match the desired outputs. Compare this re-
sult with the performance of the Hebb rule. As you can see from Eq. (7.22)
and Eq. (7.23), the Hebbian outputs are only close, while the pseudoinverse
rule produces exact results,

Application

013

Pty puts Puts

Now let’s see how we might use the Hebb rule on a practical, although
greatly oversimplified, pattern recognition problem. For this problem we
will use a special type of associative memory — the autoassociative memeo-
rv. In an autoassociative memory the desired cutput vector is equal to the
input vector (i.e,, t, = p_). We will use an autoassociative memory to store
a set of patterns and then to recall these patterns, even when corrupted
patterns are provided as input.

The patterns we want to store are shown to the left. (Since we are designing
an autoassociative memeory, these patterns represent the input vectors and
the targets.) They represent the digits {0, 1, 2} displayed in a 6X5 grid, We
need to convert these digits to vectors, which witl become the prototype pat-
terns for our network. Each white square will be represented by a “-1”, and
each dark square will be represented by a “1”. Then, to create the input vee-
tors, we will scan each 6X5 grid one column at a time, For example, the first
prototype pattern will be

T
p.=[-11111-11-1-1-1—111-1...1-1]- (7.4

The vector p, corresponds to the digit “0”, p, to the digit “17, and p, to the
digit “2”. Using the Hehb rule, the weight matrix is computed

W = p.p| + PP + b5 (7.42)

Application

(Note that p, replaces t in Eq. (7.8}, since this is autoassociative memo-
ry.)

Because there are only two allowable values for the elements of the proto-
type vectors, we will modify the linear associator so that its output ele-
ments can only take on values of “-1” or “1”. We can do this by replacing
the linear transfer function with a symmetrical hard limit transfer func-
tion. The resulting network is displayed in Figure 7.2.

Inputs Sym. Hard Limit Layer

N7 A
1] D n a
RIS w 0x1 :{: 01
30x30
, 30, L 30)y

a = hardlims{Wp)

Figure 7.2 Autcassociative Network for Digit Recognition

Now let’s investigate the operation of this network. We will provide the net-
work with corrupted versions of the prototype patterns and then check the
network cutput. In the first test, which is shown in Figure 7.3, the network
is presented with a prototype pattern in which the lower half of the pattern
is vecluded. In each case the correct pattern is produced by the network.

-0 -1 2-2

Figure 7.3 Recovery of 50% Occluded Patterns

In the next test we remove even more of the prototype patterns. Figure 7.4
illustrates the result of removing the lower two-thirds of each pattern. In
this case only the digit “1” is recovered correctly. The other two patterns
produce results that do not correspond to any of the prototype patterns.
This is a common problem in associative memories. We would like to design
networks so that the number of such spurious patterns would be mini-
mized. We will come back to this topic again in Chapter 18, when we dis-
cuss recurrent asscciative memories.

711

7 Supervigsed Hebbian Learning

-3 2.9 B-F

Figure 7.4 Recovery of 67% Occluded Patterns

In our final test we will present the autoassociative network with noisy ver-
sions of the prototype pattern. To create the noigy patterns we will random-
ly change seven elements of each pattern. The results are shown in Figure
7.5. For these examples all of the patterns were correctly recovered.

Wl -3 -2

Figure 7.5 Recovery of Noisy Patterns

To experiment with thia type of pattern recognition problem, use the Neural
Network Design Demonstration Hebb Rule (nnd7hr).

Variations of Hebbian Learning

There have been a number of variations on the basic Hebb rule. In fact,
many of the learning laws that will be discussed in the remainder of this
text have some relationship to tha Hebb rule.

One of the problems of the Hebb rule is that it can lead to weight matrices
having very large elements if there are many prototype patterns in the
training set. Consider again the basic rule: _

wnew - “,o.‘d*: lql:l:- {7‘43)

A positive parameter o, called the learning rate, can be used to limit the
amount of increase in the weight matrix elements, if the learning rate is
less than one, as in:

old

W = W +atqp:. (7.44)

We can also add a decay term, so that the learning rule behaves like a
smoothing filter, remembering the most recent inputs more clearly:

W' = W mqu—yw"“‘ = (1 -7)W°“+atqp:, (7.45)

where v is a positive constant less than one, As ¥ approaches zero, the
learning law becomes the standard rule. As y approaches one, the learning

7-12

Variations of Hebbion Learning

law quickly forgets old inputs and remembers only the most recent pat-
terns. This keeps the weight matrix from growing without bound.

The idea of filtering the weight changes and of having an adjustable learn-
ing rate are important ones, and we will discuss them again in Chapter 10
and Chapters 12 — 16.

If we modify Eq. (7.44) by replacing the desired output with the difference
between the desired output and the actual output, we get another impor-
tant learning rule:

wnew _ “I'Ofd

+a(t,~8,)p, . (7.46)
This is sometimes known as the delta rule, since it uses the difference be-
tween desired and actual output. It is also known as the Widrow-Hoff algo-
rithm, after the researchers who introduced it. The delta rule adjusts the
weights s0 a8 to minimize the mean square error (see Chapter 10). For this
reason it will produce the same results as the pseudoinverse rule, which
minimizes the sum of squares of errors (see Eq. (7.25)). The advantage of
the delta rule is that it can update the weights after each new input pattern
is presented, whereas the pseudoinverse rule computes the weights in one
step, after all of the input/target pairs are known. This sequential updating
allows the delta rule to adapt to a changing envirenment. The delta rule
will be discussed in detail in Chapter 10.

The basic Hebb rule will be discussed again, in a different context, in Chap-
ter 13. In the present chapter we have used a supervised form of the Hebb
rule, We have assumed that the desired outputs of the network, t_, are
known, and can be used in the learning rule, In the unsupervisequebb
rule, which is discussed in Chapter 13, the actual network output is used
instead of the desired network output, as in:

“ +oa pl, (7.47)

wnew = w
where a, is the output of the network when p, is given as the input (see
also Eq. (7.5)). This unsupervised form of the Hebb rale, which does not re-
quire knowledge of the desired output, is actually a more direct interpreta-
tion of Hebb’s postulate than is the supervised form discussed in this
chapter.

7-13

7 Supervised Hebbian Learning

Summary of Results

Hebb’s Postulate

“When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some grawth process or metabalic change

takes place in one or both cells such that A’s efficiency, as one of the cells fir-
ing B, is increased.”

Linear Associator

Inputs Linear Layer

a = purelin (Wp)

The Hebb Rule

wnew = w;fd +f

i qipq_i

T T T

W=1tp +tp, + +t,Pg
b

P
T

W=t P

T

1§

TP

Pseudoinverse Rule

7-14

Summary of Resulls

When the number, R, of rows of P is greater than the number of columns,
0, of P and the columns of P are independent, then the pseudoinverse can
be computed by

P 'p P,

Variations of Hebbian Learning

Filtered Learning
{See Chapter 14)

new

W = (]—T)Wam+atqp:

(See Chafter 10}

al T
=W +a{tq~aq}pq

Delta Rule

w

Unsupervised Hebb
(See Chapter 13)

T

PREW otd
W =W +0oap,

7-16

Duong
Note
DELTA RULES ALSO KNOWN AS WIDROW HOFF

7 Supervised Hebbien Learning

Solved Problems

P71 Consider the linear associator shown in Figure P7.1.

lnputs Linear Layer

N (\

a = purelin{Wp}

Figure P7.1 Single-Neuron Perceptron
Let the input/output prototype vectors be

Use the Hebb rule to find the appropriate weight matrix for
this linear associator,

i

ii. Repeat part (i) using the pseudoinverse rule.

ili. Apply the input p, to the linear associator using the weight
maitrix of part (i), then using the weight matrix of part (ii).

i. The first step ig to create the P and T matrices of Eq. (7.10):

1 1

P=‘11, T=|11
I -1 -11
-1 -1

Then the weight matrix can be computed using Eq. (7.9):

716

Solved Problems

who el < |1ttt 12002
1111 -1~ 02-20
ii. For the pseudoinverse rule we use Eq. (7.32):

W =TP.

Since the number of rows of P, four, is greater than the number of columns
of P, two, and the columns of P are independent, then the pseudoinverse
can be computed by Eq. (7.34):

S e

¢ -1
l 11

pro| (111 -1[-11 1-11-1=(40]"1-11ﬂ1J
11 -I-t]1 -1 (11 -1-1] |04/ [t 1-1-1

~1-1

O 11
11 -1-1

1
4

ol —

R
i

@ e

= el —
AT

i

!
i

The weight matrix can now be computed:

A1
14

wF=TP+= 11
-11

Pl -] e
o] e)

p—

!
4
iii. We now test the two weight matrices.
1
whp, = |200 2] _ 4],
02-2 05)1 -4

-1

7-17

7 Supervised Hebbian Learning

7-18

Why didn’t the Hebb rule produce the correct results? Well. consider again
Eq. (7.11). Since p, and p, are orthogonal {check that they are) this equa-
tion can be written

whp| = t] (PTPJ »

but the p, vector is not normalized, so (prl] # | . Therefore the cutput of
the network will not be t, .

The pseudoinverse rule, on the other hand, is guaranteed to minimize

2
[l

Z ”tff - qu’
g=1
which in this case can be made equal to zero.

Consider the prototype patterns shown to the left.
i. Are these patierns orthogonal?

ii. Design an autoassociator for these patterns. Use the Hebh
rule.

jii. What response does the network give to the test input pat-
tern, p,, shown to the left?

i. The first thing we need to do is to convert the patterns into vectors.
Let’s assign any solid square the value 1 and any open square the value -1.
Then to convert from the two-dimensional pattern to a vector we will scan
the pattern column by column. {We could use rows if we wished.) The two
prototype vectors then become:

Bo=(lietiar- pe=finio

To test orthogonality we take the inner product of p, and p, :

Solved Problems

T
PP = {t1-11-1-1]

Therefore they are orthogonal. (Although they are not normalized since

T T
PP =P = 6.)

ii, We will use an autoassociator like the one in Figure 7.2, except that the
number of inputs and autputs to the network will be six. To find the weight
niatrix we use the Hebb rule:

T

W =TF,
where
o
11
P:T=‘ll
1 1
-11
._1_1_
Therefore the weight matrix is
[1 -] 2 620 -20]
11 g 2402102
W:TPT= -1i1 ll—ll—l~1:—202020_
1 1(|-11 111 -1 60 202¢0-2
-11 202020
-1 -1 (02020 2]

iii. To apply the test pattern to the network we convert it to a vector:

po=fiti11-1] -

7.19

7 Supervised Hebbian Learning

7-20

rM3

The network response is then

2 020 -20][1]
020 20-21
a = hardlims (Wp,) = hardlims 2020 2 01
020 2 021
=20 202 01
LL0-20-20 2]|-1
& o
6 1
2 1
a = hardlims = =p..
6 1 P
2 1
-6/ 1

Is this a satisfactory response? How would we want the network to respond
to this input pattern? The network should produce the prototype pattern
that is closest to the input pattern. In this case the test input pattern, p ,
has a Hamming distance of 1 from p,, and a distance of 2 from p, . There-
fore the network did produce the correct response, (See Chapter 3 for a dis-
cussion of Hamming distance.)

Note that in this example the prototype vectors were not normalized. This
did not cause the same problem with network performance that we saw in
Problem P7.1, because of the hardlims nonlinearity. It forces the network
output to be either 1 or -1. In fact, most of the interesting and useful prop-
erties of neural networks are due to the effects of nonlinearities.

Consider an autoassociation prablem in which there are three pro-
totype patterns (shown below as p, , p,, p,). Design autoassociative
networks to recognize these patterns, using both the Hebb rule
and the pseudoinverse rule, Check their performance on the test
pattern p, shown below.

Solved Problems

1] M1 -1 -1

1 1 1 1

-1 1 -1 -1

P =0-1 P; = -1 P,=11 P, = |-1
1 1 1 1

1 -1 .1 -1

L1 L] L1] [1]

-24+2

ans= | This problem is a little tedious to work out by hand, so let’s use MATLAB.
4 First we create the profotype vectors.

pi=[1 1 -1 -1 1 1 1]';

p2={ 1 4+ 1 -1 1 1 1]';
pa=[-1 1 -1 1 1t -1 1]
P=[p1 p2 p3];

Now we can compute the weight matrix using the Hebb rule,
wh=p*p';

To check the network we create the test vector.
pt=[-1 1 -1 -1 1 -1 1]';

The network response is then calculated.

ah=hardlims{wh*pt):

ah'
ans =
1 i -1 -1 1 -1 1

Notice that this reaponse does not match any of the prototype vectors. This
is not surpriging since the prototype patterns are not orthogonal. Let's try
the psendoinverse rule.

pseuziny (P'*P)*p';
wp=P*pseu;
ap=hardlims(wp*pt);
ap'

7-21

7 Supervised Hebbian Learning

ﬂnﬁ P74

41

7-22

P;

P:

|

Note that the network response is equal to p, . Is this the correct response?
As usual, we want the response to be the prototype pattern closest to the
input pattern. In this case p, is a Hamming distance of 2 from both p, and
p,, but only a distance of 1 from p, . Therefore the psendoinverse rule pro-
duces the correct response.

Try other test inputs to see if there are additional cases where the pseudo-
inverse rule produces better results than the Hebb rule.
Consider the three prototype patterns shown to the left.

i. Use the Hebb rule to design a perceptron network that will
recognize these three patterns.

ii. Find the response of the network to the pattern p, shown to
the left, Is the response correct?

i. We can convert the patterns to vectors, as we did in previous problems,
to obtain:

We now need to choose the desired output vectors for each prototype input
vector. Since there are three prototype vectors that we need to distinguish,
we will need two elements in the output vector. We can choose the three de-
sired outputs to be:

-1 -1 1
t, = t, = i, = .
(Note that this choice was arbitrary, Any distinct combination of 1 and -1

could have been chosen for each vector.)

The resulting network is shown in Figure P7.2,

Solved Problems

inputs Sym. Hard Limit Layer
N7 A

& = hardlims(Wp)

Figure P7.2 Perceptron Network for Problem P7.4
The next step is to determine the weight matrix using the Hebb rule.

Al -111

T -1-11 31 -1 =
W:TP:{III ol 1_11:[1331 : ﬂ

- ol I P I | B

ii. The response of the network to the test input pattern is caleulated as
follows.

1
hardlims (Wp,) = hardlims {_3 -1+ _1} -1
1

3]

-1
So the response of the network indicates that the test input pattern is clos-
est to p, . Is this correct? Yes, the Hamming distance to p, is 1, while the
distance to p, and p, is 3.

P7.5 Suppose that we have a linear autoassociator that has been de-
signed for ¢ orthogonal protoiype vectors of lengih R using the
Hebb rule. The vector elements are either 1 or-1.

i. Show that the (prototype patterns are eigenvectors of the
weight matrix.

7-23

7 Supervised Hebbian Learning

7-24

ii. What are the other (R ~ Q) eigenvectors of the weight ma-
trix?

i. Suppose the prototype vectors are:
pls pzs raw ‘pQ'

Since this is an autoassociator, these are both the input vectors and the de-
sired output vectors, Therefore

O A T

If we then use the Hebb rule to calculate the weight matrix we find

g
T T
W=TP = Y pp,,
g=1

from Eq. (7.8I)' Now, if we apply one of the prototype vectors as input to the
network we obtain

2 @
a=Wp, = [Y pqp:]pk = Y000y
g=1

g=1

Because the patterns are orthogonal, this reduces to

2= (P -
And since every element of p, must be either -1 or 1, we find that
a=pAR.
To summarize the results:
Wp, = Rpy,

which implies that p, is an eigenvector of W and R is the corresponding
eigenvalue. Each prototype vector is an eigenvector with the same eigen-
value.

ii. Note that the repeated eigenvalue R has a Q-dimensional eigenspace
associated with it: the subspace spanned by the Q prototype vectors. Now
consider the subspace that is orthogenal to this eigenspace. Every vector in
this subepace should be orthogonal to each prototype vector. The dimension
of the orthogonal subspace will be R - 0. Consider the following arbitrary
basis set for this orthogonal space:

Solved Problems

ZpZy - s Zp_ g
If we apply any one of these basis vectors to the network we obtain:

e) ¢

T T

a=Wz = (E PP, =3 P, (p,2) =0,
g=1 / g=1

since each z, is orthogonal to every p , - This implies that each z, is an
eigenvector of W with eigenvaiue 0.

To summarize, the weight matrix W has two eigenvalues, R and 0. This
means that any vector in the gpace spanned by the prototype vectors will
be amplified by R, whereas any vector that is orthogonal to the prototype
vectors will be set to 0. We will revisit this concept when we discuss the per-
formance of the Hopfield network in Chapter 18,

P7.6 The networks we have used so far in this chapter have not includ-
ed a bias vector. Consider the problem of designing a perceptron
network (Figure P7.3} to recognize the following patterns:

Inputs Sym. Hard Limit Layer
N7 N\

]
el
x2

a = hardlims(Wp +b)

Figure P7.3 Single-Neuron Perceptron
i. Why is a bias required to solve this problem?

fi. Use the pseudoinverse rule to design a network with bias to
solve this problem.

i. Recall from Chapters 3 and 4 that the decision boundary for the per-
ceptron network is the line defined by:

7-25

7 Supervised Hebbian Learning

B

7-26

Y

Wp+b =0.
If there is no bias, then # = 0 and the boundary is defined by:
Wp =0,

which is a line that must pass through the origin. Now consider the two
vectors, p, and p,, which are given in this problem. They are shown graph-
ically in tllle figure to the left, along with an arbitrary decision boundary
that passes through the origin. It is clear that no decision boundary that
passes through the origin could separate these two vectors. Therefore a
hias is required to solve this problem,

ii. To use the pseudoinverse rule (or the Hebb rule} when there is a bias
term, we should treat the bias as another weight, with an input of 1 (as is
shown in all of the network figures). We then augment the input vectors
with a 1 as the last element:

-]
I
=
L+
fl
— =2 2

Let’s choose the desired outputs to be
p=1 =1,

so that

12
P=12,T=[1]
11

We now form the pseudoinverse matrix:

P = Illii pa] _f3s] " [in] _ [os a5 2
221 221 |59 221 [05 05 -

11

The augmented weight matrix is then computed:

w00 bl

We can then pull out the standard weight matrix and bias:

Solved Problems

W=[14 b=3

The decigion boundary for this weight and bias is shown in the Figure P74,
This boundary does separate the two prototype vectors.

!

Wp+b=0

P

Figure P7.4 Decision Boundary for Solved Problem P7.6

P77 Inall of our pattern recognition examples thus far, we have repre-
sented patterns as vectors by using “1” and “-1” to represent dark
and light pixels (picture elements), respectively. What if we were
to use “1” and “0” instead? How should the Hebb rule be changed?

First, let’s introduce some notation to distinguish the two different repre-
sentations (usually referred to as the bipolar {-1, 1} representation and the
binary {0, 1} representation), The bipolar representation of the prototype

input/output vectors will be denoted .
Pt (Patids o Py tol 7

and the binary representation will be denoted
Pt Pt P pt,) .
The relationship between the two representations is given by:

] __l 1 - 1
pq'ipq"'il p, = 2p,-1,

where 1 is a vector of ones.

Next, we determine the form of the binary associative network, We will use
the network shown in Figure P7.5. It is different than the bipolar associa-
tive network, as shown in Figure 7.2, in two ways. First, it uses the hardiim
nonlinearity rather than hardlims, since the output should be either 0 or
1. Secondly, it uses a bias vector. It requires a bias vector because all binary
vectors will fall into one quadrant of the vector space, so a boundary that

27

7 Supervised Hebbian Learning

passes through the origin will not always be able to divide the patterns.
(See Problem P7.6.)

The next step is to determine the weight matrix and the bias vector for this
network. If we want the binary network of Figure P7.5 to have the same
effective response as a bipolar network (as in Figure 7.2), then the net in-
put, n, should be the same for both networks:

Wp'+b = Wp.

Inputs Hard Limit Layer

{3}

5x1
B \ 5
& = hardlim(Wp'+ b}

Figure P7.6 Binary Associative Network

This will guarantee that whenever the bipolar network produces a “1” the
binary network will produce a “1”, and whenever the bipolar network pro-
duces a “~1” the binary network will produce a “0”.

If we then substitute for p' as a function of p we find:

{Sp+41)+0 = Lwp s lwi o -
W(§p+21 +h = 2Wp+2w1+b—-Wp.

Therefore, to produce the same results as the bipolar network, we should
choose

W= 2W b =-W1,

where W is the bipolar weight matrix.

7-28

Epilogue

Epilogue

We had two main ohjectives for this chapter, First, we wanted to intreduce
one of the most influential neural network learning rules: the Hebb rule.
This was one of the first neural learning rules ever proposed, and yet it con-
tinues to influence even the most recent developmente in network learning
theory. Second, we wanted to show how the performance of this learning
riile could be explained using the linear algebra concepts discussed in the
two preceding chapters. This is one of the key objectives of this text. We
want to show how cerfain important mathematical concepts underhie the
operation of all artificial neural networks. We plan to continue to weave to-
gether the mathematical ideas with the neural network applications, and
hope in the process to increase our understanding of both.

We will again revisit the Hebb rule in Chapters 13 and 18. In Chapter 18
we will use the Hebb rule in the design of a recurrent associative memory
network — the Hopfield network.

The next two chapters introduce some mathematics that are critical to our
understandmg of the two learning laws covered in Chapters 10 and 11.
Those learning laws fall under a subheading called performance learning,
because they attempt to optimize the performance of the network. In order
to understand these performance learning laws, we need to introduce some
basic concepts in optimization. As with the material on the Hebb rule, our
understanding of these topics in optimization will be greatly aided by our
previous work in linear algebra.

729

7 Supervised Hebbian Learning

Further Reading

[Albe72]

[Ande72)

{Hebh49]

[Koho72]

7-30

A. Albert, Regression and the Moore-Fenrose Pseudoin-
verse, New York: Academic Press, 1972.

Albert’s text is the major reference for the theory and basic
properties of the pseudoinverse. Proofs are included for alt
major pseudoinverse theorems.

J. Anderson, “A simple neural network generating an inter-
active memory,” Mathematical Bivsciences, vol, 14, pp.
197-220, 1972,

Anderson proposed a “linear associator” model for associa-
tive memory. The model was trained, using & generaliza-
tion of the Hebb postulate, to learn an association between
input and output vectors. The physiolegical plansibility of
the network was emphasized. Kohonen published a closely
related paper at the same time [Koho72), although the two
researchers were working independently,

D. 0. Hebb, The Organization of Behavior, New York:
Wiley, 1949. :

The main premise of this seminal book is that behavior can
be explained by the action of neurons. In it, Hebb proposes
one of the first learning laws, which postulated a mecha-
nism for learning at the cellular level,

T. Kohoner, “Correlation matrix memories,” IEEE Trans-
actions on Computers, vol. 21, pp. 353-359, 1972.

Kohonen proposed a correlation matrix model for associa-
tive memory. The model was trained, using the outer prod-
uet rule (atso known as the Hebb rule), to learn an
association between input and output vectors. The mathe-
matical structure of the network was emphasized. Ander-
son published a closely related paper at the same time
[Ande72], although the two researchers were working inde-
pendently.

Exercises

Exercises

E] E E7.1 Consider the prototype patterns given to the left.
P D i Are p, and p, orthogonal?

it. Use the Hebb rule to design an antoassociator network for these

patterns.
- iii. Test the operation of the network using the test input pattern p,
D shown to the left. Does the network perform as you expected? Ex-
¢ plain.

E72 Repeat Ezercise E7.1 using the pseudoinverse rule.

E7.3 Use the Hebb rule to determine the weight matrix for a perceptron network

E E (shown in Figure E7.1) to recognize the patterns shown to the left.
™ P:
inputs Sym. Hard Limit Layer
N/ N
p D n a
6l w 1xf :I: iEs
1]
G '

a = hardlims(Wp)
Figure E7.1 Perceptron Network for Exercise E7.3

E7.4 In Problem P7.7 we demonstrated how networks can be trained using the
Hebb rule when the prototype vectors are given in binary (as opposed to bi-
polar) form. Repeat Exercise E7.1 using the binary representation for the
prototype vectors. Show that the response of this binary network is equiv-
alent to the response of the original bipolar network.

E7.5 Show that an autoassociator network will continue to perform if we zero
the diagonal elements of a weight matrix that has been determined by the
Hebb rule. In other words, suppose that the weight matrix is determined

from:
W=PP -gI,

731

7 Supervised Hebbian Learning

732

j———
w22

and =

where (is the number of prototype vectors, (Hint: show that the prototype
vectors continue to be eigenvectors of the new weight matrix.)

E7.6 We have three input/output prototype vector pairs:

e

i. Show that this problem cannot be solved unless the network uses a
bias.

it. Use the pseudoinverse rule to design a network for these prototype
vectors. Verify that the network correctly transforms the prototype
vectors,

E7.7 One question we might ask about the Hebb and pseudoinverse rules is:
How many prototype patterns can be stored in one weight matrix? Test this
experimentally using the digit recognition problem that was discussed on
page 7-10. Begin with the digits “0” and “1”, Add one digit at a time up to
“6”, and test how often the correct digit is reconstructed after randomly
changing 2, 4 and 6 pixels.

i. First use the Hebb rule to create the weight matrix for the digits “0”
and “1”. Then randomly change 2 pixels of each digit and apply the
noisy digits to the network Repeat this process 10 times, and record
the percentage of times in which the correct pattern (without noise)
is produced at the output of the network. Repeat as 4 and 6 pixels of
each digit are modified. The entire process is then repeated when
the digits “0”, “1” and “2” are used. This continues, one digit at a
time, until you test the network when all of the digits “0” through
“6” are used. When you have completed all of the tests, you will be
able to plot three curves showing percentage error versus number of
digits stored, one curve each for 2, 4 and 6 pixel errors.

ii. Repeat part (i) using the pseudoinverse rule, and compare the re-
sults of the two rules.

8 Performance Surfaces and
Optimum Points

Objectives

QObjectives 8-1
Theory and Examples 8-2
Taylor Series 8-2
Vector Case 8-4
Directional Derivatives 8-5
Minima 8-7
Necessary Conditions for Optimality 8-9
First-Order Conditions a 8-10
Second-Order Conditions 8-11
Quadratic Functions 8-12
Eigensystem of the Hessian 8-13
Summary of Results 8-20
Solved Problems 8-22
Epilogue 8-34
Further Reading 8-35
Exercises 8-36

This chapter lays the foundation for a type of neural network training tech-
nique called performance learning. There are several different clagses of
network learning laws, including associative learning {as in the Hebbian
learning of Chapter 7) and competitive learning (which we will discuss in
Chapter 14). Performance learning is another important class of learning
law, in which the network parameters are adjusted to optimize the perfor-
mance of the network. In the next two chapters we will lay the groundwork
for the development of performance learning, which will then be presented
in detail in Chapters 10-12. The main ohjective of the present chapter is to
investigate performance surfaces and to determine conditions for the exist-
ence of minima and maxima of the performance surface. Chapter 9 will fol-
low this up with a discussion of procedures to locate the minima or maxima.

8 Performance Surfaces and Optimum Points

Theory and Examples

There are several different learning laws that fall under the category of

Performance Learning performance learning. Two of these will be presented in this text. These
learning laws are distinguished by the fact that during training the net-
work parameters (weights and biases) are adjusted in an effort to optimize
the “performance” of the network,

There are two steps involved in this optimization process. The first step is
to define what we mean by “performance.” In other words, we must find a

Performance Index quantitative measure of network performance, called the performance in-
dex, which is small when the network performs well and large when the
neiwork performs poorly. In this chapter, and in Chapter 9, we will assume
that the performance index is given. In Chapters 10 and 11 we will discuss
the choice of performance index.

The second step of the optimization process is to search the parameter
space (adjust the network weights and biases) in order to reduce the per-
formance index. In this chapter we will investigate the characteristics of
performance surfaces and set some conditions that will guarantee that a
surface does have a minimum point {the optimum we are searching for),
Thus, in this chapter we will obtain some understanding of what perfor-
mance surfaces look like. Then, in Chapter 9 we will develop procedures for
locating the optimum points,

Taylor Series

Let us say that the performance index that we want to minimize is repre-
sented by F (x) , where x is the scalar parameter we are adjusting. We will
assume that the performance index is an analytic function, so that all of its
Taylor Series Expansion derivatives exist. Then it can be represented by its Taylor series expansion

: about some nominal point. *;
F(x) = F(x*) +—F (x)] {(x—x*)
dx x=x* ’

14 2
+=—F(x) (x—x*) + -
de?'

8.1

x=x*

14"

(x-x9)"+ -
n!dx"

+

F(x)

£r=x"

We will use the Taylor series expansion to approximate the performance
42 index, by limiting the expansion to a finite number of terms. For example,
=7 let

8.2

Taylor Series

F(x}) = cos{x). (8.2)

The Taylor series expansion for F(x) about the point x* = 0 is
F{x) = cos{x) = cos(() ~sin{0) (x-0) «%cos([]) {Jr—{])2

1. 3
+asm{0) {(x~0) " +-.- (8.3)

12
=1- x+-—x+

24
The zeroth-order approximation of F(x) (using only the zeroth power of x)
is
F(x)=Fy(x) =1, (8.4)

The second-order approximation is

F)=Fy(0) = 1-37. (8.5)

{Note that in this case the first-order approximation is the same as the ze-
roth-order approximation, since the first derivative is zero.)

The fourth-order approximation is

1 1 4
F(x)=F,(x} = |- 21 Yol (8.6)

A graph showing F(x) and these three approximations i shown in Figure
8.1

Figure 8,1 Cosine Function and Taylor Series Approximations

8 Performance Surfaces and Optimum Points

From the figure we can see that all three approximations are accurate if x
is very close to x* = 0.However, as r moves farther away from 1* only the
higher-order approximations are accurate. The second-order approxima-
tion is accurate over a wider range than the zeroth-order approximation,
and the fourth-order approximation is accurate over a wider range than the
second-order approximation. An investigation of Eq. {8.1) explaing this be-
havior. Each succeeding term in the series involves a higher power of
(x-x*} . As x gets closer to x*, these terms will become geometrically

smaller.

We will use the Taylor series approximations of the performance index to
investigate the shape of the performance index in the neighborhood of pos-
sible optimum points,

To experiment with Taylor series expansions of the cosine function, use the
Neural Network Design Demonstration Taylor Series (nnd8ts).

Vector Case

Of course the neural network performance index will not be a function of a

scalar x . It will be a function of all of the network parameters (weights and
biases), of which there may be a very large number. Therefore, we need to

extend the Taylor series expansion to functions of many variables. Consid-
er the following function of » variables:

F(x) = Flx;,xp .00 ,8,) . (8.7)
The Taylor series expansion for this function, about the point 1*, will be

- d d .
FOO = FON 4 F (| imx) g P WG)

d i o’ 2
+ e +5;F(x} Ix:x' {(x,-x%) +§EF(K) [x X {(r,—-x%) (8.8)

19’ " -
+§mp(x)’x=x'(xl—xl J (xz_xz }+"‘

This notation is a bit cumbersome. It is more convenient to write it in ma-
trix form, as in:

F(x) = F(x*) +VF(x) TL_X,(X—X*)
: i (8.9)
+~(x—x*)TV2F{x}| X=X 4
2 X=X

Gradient where VF (x) isthe gradient, and is defined as

8-4

Hessian

Directional Derivatives

7
J 0 J
VF(x) = [PN SF 0 a—aF(x)J , (8.10)
and V2F(x) is the Hessian, and is defined as:
s 3’ SN
—F{x) =—=—F(x) ... —=—F(x)
axf dx,dx, " dx,dx,
3* 3’ 3’ ‘
VEE) = [T 0 320 Y a1
)
3’ 3 3’
ax,,axlF(x) axnasz{x} ﬂF{x}

The gradient and the Hessian are very important to our understanding of
performance surfaces. In the next section we discuss the practical meaning
of these two concepts,

To experiment with Taylor series expansions of a function of two variables,
use the Neural Network Design Demonstration Vector Taylor Series
{rnd8ts2)

Directional Derivatives

Directional Derivative

The ith element of the gradient, dF (x) /3x,, is the first derivative of the
performance index F along the x; axis. The ith element of the diagonal of
the Hessian matrix, 3°F (x)/ Bxf , s the second derivative of the perfor-
mance index ¥ along the x; axis. What if we want to know the derivative
of the function in an arbitrary direction? We let p be & vector in the direc-
tion along which we wish to know the derivative. This directional derive-
tive can be computed from

T
“—‘Eﬁ"—’ . (8.12)

The second derivative along p can also be computed:

PVE(Mp. (8.13)
Ipl’

8 Performance Surfaces and Optimum Points

To illusirate these concepts, consider the function
3 2,2 '
F(x) = x/+2x;. (8.14)

Suppose that ye want to know the derivatirve of the function at the point
X = [0'5 0_5] in the direction p = [2 _ﬂ . First we evaluate the gradi-
ent at x*:

J

—F(x)
VF)| = a;, = [:xl} - [j (8.15)
x| N
asz(X) ‘o x"

4

K=X

The derivative in the direction p can then be computed:

-/
=

2 1] H
PVF(x) _ a_0_, (8.16)

lpll [_21]

Therefore the function has zero slope in the direction p from the point x*.
Why did this happen? What can we say about those directions that have
zero slope? If we consider the definition of directional derivative in Eq.
(8.12), we can see that the numerator is an inner product between the di-
rection vector and the gradient. Therefore any direction that is orthogonal
to the gradient will have zero slope.

l

Which direction has the greatest slope? The maximum slope will occur
when the inner product of the direction vector and the gradient is a maxi-
mum. This happens when the direction vector is the same as the gradient.
{Notice that the magnitude of the direction vector has no effeet, since we
normalize by its magnitude.) This effect i illustrated in Figure 8.2, which
shows a contour plot and a 3-D plot of F (x) . On the contour plot we see five
vectors starting from our nominal peint x* and pointing in different direc-
tions. At the end of each vector the first directional derivative is displayed.
The meaximum derivative occurs in the direction of the gradient. The zero
derivative is in the direction orthogonal to the gradient (tangent to the con-
tour line).

To experiment with directional derivatives, use the Neural Network Design
Demonstration Directional Derivatives (nndgdd).

&6

Minima

Figure 8.2 Quadratic Function and Directional Derivatives

Minima

Recall that the objective of performance learning will be to optimize the
network performance index. In this section we want to define what we
mean by an optimum point. We will assume that the optimum point is a
minimum of the performance index. The definitions can be easily modified
for maximization problems.

Strong Minimum Strong Minimum

The point x* is a strong minimum of F (x) if ascalar 8> 0 exists, such that
F(x*) < F(x* + Ax} for all Ax such that &> jAx{ >0.

In other words, if we move away from a strong minimnum a small distance
in any direction the function will increase.

Global Minimum Global Minimum .
The point x* is # nnique global minimuem of F (x) #f F(x*) < F(x* + Ax) for 8

all Ax#0.

For a simple sirong minimum, x* , the function may be smailer than F (x*)
at some points outside a small neighborhood of x* . Therefore this is some-
times called a local minimum. For a global minimum the function will be
larger than the minimum point at every other point in the parameter
space.

Weak Minimum Weak Minimum

The point x* is a weak minimum of F (x) if it is not a strong minimum, and a
scaler 3> (exists, such that F (x*) £ F(x* + Ax) for all Ax such that
§>jAxl>0,

87

8 Performance Surfaces and Optimum Points

8-8

22

ad 2
#

Contour Plot

Saddle Point

No matter which direction we move away from a weak minimurm, the fune-
tion cannect decrease, although there may be some directions in which the

function does not change,
As an example of local and global minimum points, consider the following
scalar function:

F(x) = 3x4—7x2—%x+6. 817

This function is displayed in Figure 8.3. Notice that it has two strong min-
imum points: at approximately -1.1 and 1.1. For both of these points the

function increases in a local neighborhood. The minimum at 1.1 is a global
minimum, since there is no other point for which the function is as small.

There is no weak minimum for this function. We will show a two-dimen-
sional example of a weak minimum later.

|| Fixi = 3:‘—?;2—%x+6 |

Voo
L Vi
2« Local Minimum

i

Global Minimom

E] El [] 1 2z

Figure 8.3 Scalar Example of Local and Global Minima

Now let’s consider some vector cases. First, consider the following function:

FX) = (x-x) " +8xx,—x +x,+3. (8.18)

In Figure 8.4 we have a contour plot (a series of curves along which the
function value remains constant) and a 3-D surface plot for this function
{for function values less than 12). We can see that the function has two
strong local minimum points: one at (-0.42, 0.42), and the other at (0.55,
-0.55). The global minimum point is at (0.55, -0.55).

There is also another interesting feature of this function at (-0.13, 0.13). It
is called a saddle point because of the shape of the surface in the neighbor-
hood of the point. It is characterized by the fact that along the line x, = -x,
the saddle point is a local maximum, but along a line orthogonal to tl'uat line
it is a local minimum. We will investigate this example in more detail in

Problems PR8.2 and P8.5.

Necegsary Conditions for Optimality

This function is used in the Neural Network Design Demonstration Vector
Taylor Series (nndsta2).

Figure 8.4 Vector Example of Minima and Saddle Point
A 2 As a fingl example, consider the function defined in Eq. (8.19):
2 2, 2
F(x) = (x/=15x,x, +2x3) 1) (8.19}

The contour and 3-I} plots of this function are given in Figure 8.5. Here we
can see that any peint along the line x, = 0 is a weak minimum,

2

.?2

Figure 8.5 Weak Minimum Example

Necessary Conditions for Optimality

Now that we have defined what we mean by an optimum {minimum) point,
let’s identify some conditions that would have to be satisfied by such a
point. We will again use the Taylor series expansion to derive these condi-
tions:

8-9

8 Performance Surfaces and Optimum Points

8-10

Stationary Points

F(x) = F(x* +Ax) = F(x%) +VF(x}T|x_x‘Ax
(8.20)
+1AxTV2F(x;| AXH
2 X=X

where

Ax = x—x%. (8.21)

First-Order Conditions

If Ax) is very small then the higher order terms in Eq. (8.20) will be neg-
ligible and we can approximate the function as

F(x* +Ax) = F (x*) + VF(x) Tx_fﬂ.x. (8.22)

The point x* is a candidate minimum point, which means that the function
should go up (or at least not go down) if Ax is not zero. For this to happen
the second term in Eg. (8.22) should not be negative. In other words

VF (x) T’::f"‘“ 20. (8.23)

However, if this term is positive,

VF(x) T| Ax>0, (8.24)
X=X
then this would imply that
F(x*-Ax) = F(x*) —VF(x)TL_x‘Ax < F(x*). (8.25)

But this is a contradiction, since x* should be a minimum peint. Therefore,
since Eq. (8.23) must be true, and Eq. (8.24) must be false, the only alter-
native must be that

VF(x)T‘x oAx=0. (8.26)

Since this must be true for any Ax, we have
VF(x) ‘ ,=0. (8.27
X=X
Therefore the gradient must be zero at a minimum point. This is a first-pr-

der, necessary (hut not sufficient) condition for x* to be a local minimum
point. Any points that satisfy Eq. (8.27) are called stationary points.

Positive Definite Matrix

Positive Semidefinite

Sufficient Condition

+2

-'le

Necessary Conditions for Optimality

Second-Order Conditions

Assume that we have a stationary point x* . Since the gradient of F (x) is
zero at all stationary points, the Taylor series expansion will be

Fix*+Ax) = F(x*) + %AxTVEF (X[Ax+oe (8.28)

As before, we will consider only those points in a small neighborhood of x*,
so that |Ax|| is small and F(x) can be approximated by the first two terms
in Eq. (8.28). Therefore a strong minimum will exist at x* if

AxTVQF{x)‘ Ax > 0. (8.29)
X=X

For this to be true for arbitrary Ax #90 requires that the Hessian matrix be
positive definite. (By definition, a matrix A is pesitive definite if

2’ Az >0 (8.30)

for any vector z # 0. It is positive semidefinite if

2 Az>0 (8.31)

for any vector z. We can check these conditions by testing the eigenvalues
of the matrix. If all eigenvalues are positive, then the matrix is positive def-
inite. If all eigenvalues are nonnegative, then the matrix is positive
semidefinite.)

A positive definite Hessian matrix is a second-order, sufficient condition
for a strong minimum to exist. It is not a necessary condition. A minimum
can still be strong if the second-order term of the Taylor series is zero, but
the third-order term 1is positive. Therefore the second-order, necessary con-
dition for a strong minimum is that the Hessian matrix be positive semi-
definite.

To illustrate these conditions, consider the following function of two vari-
ables;

F(x) = xi+x. (8.32)
First, we want to locate any stationary points, so we need to evaluate the
gradient:

-

3
VF(x) = || = 0. (8.33)

2x,

811

8 Performance Surfaces and Optimum Points

§-12

Therefore the only stationary point is the point x* = 0. We now need to
test the second-order condition, which requires the Hessian matrix:

l71 Zx? 0}

VIFEX)| _, = L = [0 OJ (8.34)
0 2

02

This matrix is positive semidefinite, which is a necessary condition for

x* = { to be a strong minimum point. We cannot guarantee from first-or-
der and second-order conditions that it is a minimum peint, but we have
not eliminated it as a possibility. Actually, even though the Hessian matrix
is only positive semidefinite, x* = 0 is a strong minimum point, but we
cannot prove it from the conditions we have discussed.

Just to summarize, the necessary conditions for x* to be a minimum,
strong or weak, of F(x) are:

VF =0 and V?F (x)| . positive semidefinite.
X=X X=X

The sufficient conditions for x* to be a strong minimum point of F (x} are:

VF(x)(, = 0 and VzFi'x}‘ . Positive definite.
X=X X=X

Quadratic Functions

Quadratic Function

We will find throughout this text that one type of performance index is uni-
versal ~ the quadratic function. This is true because there are many appli-
cations in which the quadratic function appears, but also because many
functions can be approximated by quadratic functions in small neighbor-
hoods, especially near local minimum points. For this reason we want to
spend a little time investigating the characteristics of the quadratic func-

tion.

The general form of a quadratic function is

F{x) = %XTAX + de +c, {8.35)

where the matrix A is symmetric. (If the matrix is not symmetric it can be
replaced by a symmetric matrix that produces the same F (x) . Try it}

To find the gradient for this function, we will use the following useful prop-
erties of the gradient:

V(h'x) = V(x'h) = h, (8.36)

where h is a constant vector, and

Quadratic Functions

VxTQx = Qx+ er = 2Qx (for symmetric Q). (8.37)
We can now compute the gradient of F{x) :
VF(x) = Ax+d, (8.38)
and in a similar way we can find the Hessian:
ViF(x) = A. (8.39

All higher derivatives of the quadratic function are zere. Therefore the firat
three terms of the Taylor series expansion {as in Eq. (8,20)) give an exact
representation of the function. We can #lse say that all analytie functions
behave like quadratics over a small neighborhood (i.e., when |Ax) is small).

Eigensystem of the Hessian

We now want to investigate the general shape of the quadratic function. It
turns out that we can tell & lot about the shape by looking at the eigenval-
ues and eigenvectors of the Hessian matrix. Consider a quadratic function
that has a stationary point at the origin, and whose value there is zero:

F(x) = %xTAx. (8.40)

The shape of this function ean be seen more clearly if we perform a change
of basis (see Chapter 6). We want to use the eigenvectors of the Hessian
matrix, A, as the new basis vectors. Since A is symmetric, its eigenvectors
will be mutually orthogonal. {See [Brog91].) This means that if we make up
a matrix with the eigenvectors as the columns, as in Eq. (6.68):

B = [z, Z ... zJ, (8.41)
the inverse of the matrix will be the same as the transpose:
B =B (842)

(This assumes that we have normalized the eigenvectors.)

If we now perform a change of basis, se that the eigenvectors are the basis
vectors (as in Eq. (6.69)), the new A matrix will be

A 0 .. 0
a=paB = |0 P 0oy, (8.43)
00 .4

813

8 Performance Surfaces and Optimum Points

&4

where the 1, are the eigenvalues of A . We can also write this equation as

A = BAB'. (8.44)

We will now use the concept of the directional derivative to explain the"
physical meaning of the eigenvalues and eigenvectors of A , and to explain
how they determine the shape of the surface of the quadratic function.

Recall from Eq. (8.13) that the second derivative of a function F(x) in the
direction of a vector p is given by

T, 3 T
pv ng)p _ B Af' (8.45)
ipll Ipl
Now define
p = Be, {8.46)

where ¢ is the representation of the vector p with respect to the eigenvec-
tors of A . (See Eq. (6.28) and the discussion that follows.) With this defini-
ticn, and Eq. (8.44), we can rewrite Eq. (8,45);

A
T T 7 T z ol
pAp=cB (BI\B)BC=CA0_J=| . (8.47)

2 T T T
il ¢ B Be cc . 2
;

=1

This result tells us several useful things. First, note that this second deriv-
ative is just a weighted average of the eigenvalues. Therefore it can never
be larger that the largest eigenvalue, or smaller than the smallest eigen-
value. In other words,

A <PAP (8.48)

Under what condition, if any, will this second derivative be equal to the
largest eigenvalue? What if we choose

P=2=z,,,; (8.49)

where z,, is the eigenvector associated with the largest eigenvalue, A ?
For this case the ¢ vector will be

T
c=Bp=B7,=[00..010.0d. (8.50)

+2

+|

Z,
(xlﬂll'l)

Quadratic Functions

where the one occurs only in the position that correspends to the largest
eigenvalue (i.e., c___ = 1). This is because the eigenvectors are orthonor-

mal.

max

If we now substitute z_, for p in Eq. (8.47) we obtain

Z 7";'3'2
A
zmax zmax a=1 - l (851)

bl 52

=1

So the maximum second derivative occurs in the direction of the eigenvec-
tor that corresponds to the largest eigenvalue. In fact, in each of the eigen-
vector directions the second derivatives will be equal to the corresponding
eigenvalue. In other directions the second derivative will be a weighted av-
erage of the eigenvalues. The eigenvalues are the second derivatives in the
directions of the eigenvectors.

The eigenvectors define a new coordinate system in which the quadratic
cross terms vanish., The eigenvectors are known as the principal axes of the
function contours. The figure to the left illustrates these concepts in two di-
mensions. This figure illustrates the case where the first eigenvalue is
smaller than the second eigenvalue. Therefore the minimum curvature
(second derivative) will aceur in the direction of the first eigenvector. This
means that we will cross contour lines more slowly in thig direetion. The
maximum curvature will oceur in the direction of the second eigenvector,
therefore we will cross contour lines more quickly in that direction.

One caveat about this figure: it is only valid when both eigenvalues have
the same sign, so that we have either a strong minimum or & strong maxi-
mum. For these cases the contour lines are always elliptical. We will pro-
vide examples later where the eigenvalues have opposite signs and where
one of the eigenvalues is zero.

For our first example, consider the following function:

Fx) = et = |20y, (8.52)
2 o2

The Hessian matrix and its eigenvalues and eigenvectors are

VIF (x) = F ”},1] =22 = H,?,z =2,1, = H (8.53)
02 b I

(Actually, any two independent vectors could be the eigenvectors in this
case. There is a repeated eigenvalue, and its eigenvector is the plane.)

815

8 Performance Surfaces and Optimum Points

Since all the eigenvalues are equal, the curvature should be the same in all
directions, and therefore the function should have circular contours. Figure
8.6 shows the contour and 3-D plots for this function, a circular hollow.

A

Figure 8.6 Circular Hollow

42 Let’s try an example with distinct eigenvalues. Consider the following qua-
X3 dratic function:
F(x) = x?+x!xz+x§ = %XTE jx (8.54)

The Hessian matrix and its eigenvalues and eigenvectors are

VIF(x) = {2 1},11 21,1z, = H,xz =3,z = H (8.55)
12 1 1

(As we discussed in Chapter 6, the eigenvectors are not unique, they can be
multiplied by any scalar.) In this case the maximum curvature is in the di-
rection of 2, so we should cross contour lines more quickly in that direction.
Figure 8.7 shows the contour and 3-D plots for this function, an elliptical

hollow.

8-16

Quadratic Functions

i,
iy
"\'-'\}\\\\\ \\\“

A) b
ey s b
.\ﬁ“\?,\

Figure 8.7 Elliptical Hollow

What happens when the eigenvalues have opposite signs? Consider the fol-
lowing function;

< 12 3 12 _171-05-15
F{x) = ~-x; 3k =35 = 3% LI.S _OJX. (8.56)

The Hessian matrix and its eigenvalues and eigenvectors are

R I T B I T W R e X7
-15-05 1 I

The first eigenvalue is positive, so there i3 positive curvature in the direc-
tion of z, . The second eigenvalue is negative, so there is negative curvature
in the direction of z,. Also, since the magnitude of the second eigenvalue ia
greater than the magnitude of the first eigenvalue, we will cross contour

lines faster in the direction of z,.

Figure 8.8 shows the contour and 3-D plots for this function, an elongated
saddle, Note that the stationary point,

x* = H (8.58)

is no longer a strong minimum point, since the Hessian matrix is not posi-
tive definite. Since the eigenvalues are of opposite sign, we know that the
Hessian is indefinite (see [Brog911). The stationary point is therefore a sad-
dle point. It is a minimum of the function along the first eigenvector {posi-
tive eigenvalue), but it is a maximum of the function along the second
eigenvector (negative eigenvaluel,

817

8 Performance Surfaces and Optimum Points

8-18

Figure 8.8 Elongated Saddle

As a final example, let's try a case where one of the eigenvalues is zero. An
example of this is given by the following function:

F(x) = %x?-xlxﬁ%x; = %"T[ll _ll}‘- {8.59)

The Hesgian matrix and its eigenvalues and eigenvectors are

VIF(x) = []1 —j,xl =2,z = H,kz =0,2,= H. (8.60)

The second eigenvalue is zero, s0 we would expect to have zero curvature
along z, . Figure 8.9 shows the contour and 3-D plots for this function, a
stationary valley. In this case the Hessian matrix is positive semidefinite,
and we have a weak minimum along the line

X, = Xy, (8.61)

corresponding to the second eigenvector.

For quadratic functions the Hessian matrix must be positive definite in or-
der for a strong minimum to exist. For higher-order functions it is possible
to have a strong minimum with a positive semidefinite Hessian matrix, as
we discussed previously in the section on minima.

Quadratic Functions

P
// / 1
l # - -
g
e <
s .
Ve T .
T //// ,’/
9 ’ T
LT e M '// H
P e . -
- P A
// . P
. s e
- - ,/,// R
P //’// -
Yy
. '/ ///
B Fand
y /1. P
. AL
E

Figure 8.9 Stationary Valley

To experiment with other quadratic funciions, use the Neural Network De-
sign Demonstration Quadratic Function (nnd8qf).

At this point we can summarize some characteristics of the quadratic func-
tion.

1. Ifthe eigenvalues of the Hessian matrix are all positive, the function
will have a single strong minimum.

2. If the eigenvalues are all negative, the function will have a single
strong maximum.

3. If some eigenvalues are positive and other eigenvalues are negative,
the function will have a single saddle point.

4. If the eigenvalues are all nonnegative, but some eigenvalues are zerq,
then the function will either have a weak minimum (as in Figure 8.9)
or will have no stationary point (see Solved Problem P8.7).

5. Ifthe eigenvalues are all nonpositive, but some eigenvalues are zero,
then the function will either have a weak maximum or will have no sta-

tionary point.

We should note that in this discussion we have assumed, for simplicity,
that the stationary point of the quadratic function was at the origin, and
that it had a zero value there. This requires that the terms d and ¢ in Eq.
{8.35) both be zero. If ¢ is nonzere then the function is simply increased in
magnitude by ¢ at every point. The shape of the contours do not change.
When d is nonzero, and A is invertible, the shape of the contours are not
changed, but the stationary point of the function moves to

X* = —Ad. (8.62)

If A is not invertible (has some zero eigenvalues) and ¢ is nonzero then
there could be no stationary peints (see Solved Problem P8.7).

8-19

8 Performance Surfaces and Optimum Poeinis

Summary of Results
Taylor Series
F(x) = F(x% +VF(x)Tj L (x-x%)
X=X
+%(¥—X*JTV2F(X}] L(X—x*) 4
X=X
Gradient

T
VF(x) = {iF(x} 3Ejl—i"(x) d F(x)}

ox,) ox,

Hessian Matrix

s 2’ 3’
LF(X) s—e—F(X) .. 2 _F(x)
ax} 0x, 0z, dx,dx,
az 82 32
Vo) = famg Y o E Y e,
3’ 3’ 3’
anax,ﬂx) axnaxf(") a__xiF(x)

Directional Derivatives

First Directional Derivative

p' VF(x)
{ipl}

Second Directional Derivative

P VIF(0)p
Iol?

§-20

Summary of Results

Minima
Strong Minimum

The point x* is a strong minimum of #{x) if a scalar & >0 exists, such that
F(x) <F(x+Ax) for all Ax suchthat § > JAx| > 0.

Global Minimum

The point x* is a unique global minimum of F (x) if F(x) < F(x+Ax) forall
Ax=0,

Weak Minimum

The point x* is a weak minimum of F (x) if i¢ is not s strong minimum, and a
scalar 3> 0 exists, such that F{x) € F(x + Ax) for all Ax such that
d>[Ax) > 0.

Necessary Conditions for Optimality
First-Order Condition

VF(x) [x s 0 (Stationary Points)

Second-Order Condition

ViF (x) | _ .20 (Positive Semidefinite Hessian Matrix)

Quadratic Functions

F(x) = %xTAx +d’x+¢

Gradient
VF(x) = Ax+d

Hessian
ViIF(x) = A

Directional Derivatives

821

[P,

8 Performance Surfaces and Optimum Points

Solved Problems

P81 In Figure 8.1 we illustrated 3 approximations to the cosine func-
tion about the point r* = 0.Repeat that procedure about the point
x*=n/2.

The function we want to approximate is
F(x) = cos{x).

The Taylor series expansion for # (x) about the point x* = n/2 is

P = ento = e) so() o5 Jou -
gonl 55

S R A T _Ejj_L(_f_t)s
= [I 2)+6'\x 7) 102t

The zeroth-order approximation of F(x} is
F(x)=Fy(x) = 0.

The first-order approximation is

F(x) =F, (x) = -(x—g) = g~x.

(Note that in this case the second-order approximation is the same as the
first-order approximation, since the second derivative is zero.)

The third-order approximation is

F(x)=Fy(x) = —|:x—g)+é(x‘gj3‘

A graph showing F(x) and these three approximations is shown in Figure
P8.1, Note that in this case the zeroth-order approximation is very poer,
while the first-order approximation is accurate over a reasonably wide
range. Compare this result with Figure 8.1. In that case we were expanding
about a local maximum peint, x* = 0, so the first derivative was zero.

Check the Taylor series expansions ai other points using the Neural Nei-
work Design Demonstration Taylor Series (nnd@te).

§8-22 -

Solved Problems

Figure P8.1 Cosine Approximation About x = /2

P8.2 Recall the function that is displayed in Figure 8.4, on page 8-9. We
know that this function has two strong minima. Find the second-
order Taylor series expansions for this function about the two min-

1ma.

The equation for this function is
Fi{x} = (Jr2~-,\c1)4 +8x 8, -x +x,+ 3,

To find the second-order Taylor series expansion, we need to find the gra-
dient and the Hessian for F(x} . For the gradient we have

d
—F(x) 3
VF(x) = ox, . -4 (x~x) +8x,-1 ’

3 -
aixf{") 4(x-x) +8x, +1

and the Hessian matrix is

3’ 3?
) mE
VIF(x) = :
3’ azF x)
—F (X} —F(x
0x,0x axi

12(x,-%)° =12(x,- %) +8

“2(x,~x) 48 12(x,-x)

828

8 Performanece Surfaces and Optimum Points

8-24

T
One strong minir;lum occurs at x' = [_0_42 0_42] , and the other at
X = [0‘ 55 05 5] . If we perform the second-order Taylor series expansion
of F(x) about these two points we obtain:

It

F'x) = F(x'Y +VF(x) | 1{x—x')+l{x—xl)TV2F{x)J (x-x)
X=X 2 X=X

4 T
J

2,03 +£i . |-042 J 842 —0.42 [x_ —042]
20 | 042]) |-042 842 0.42

If we simplify this expression we find

1 1 7/ 842 042
Fix) =449-|_3] X+zX X.
[-3.7128 3.7128]% 4 5 {-0-42 y 2J
Repeating this process for x° results in
2 1 r{14.71 -6.71
FR{x) = T4l = |11.781 ~(1.781]X +5X X.
(11781 -11.781 2 |-6.71 1471

The original function and the two approximations are plotted in the follow-
ing figures.

Check the Taylor series expansions at other points using the Neural Net-
work Design Demonstration Vector Taylor Series (nnd8ts2).

/o\

ﬁ\s

Q

'\

Figure P8.2 Function F (x) for Problem P8.2

Solved Problems

Figure P8.4 Function ¥ (x) for Problem P8.2

For the function F(x) given below, find the e?uation for the line
that is tangent to the contour line at x = [0 0] .

2 2,2
F(x) = (2+x) +5(1-x,-x3)

To sclve this problem we can use the directional derivative. What is the de-
rivative of F(x)} along a line that is tangent to a contour line? Since the
contour is a line along which the funetion does not change, the derivative
of F(x) should be zero in the direction of the contour. So we can get the
equation for the tangent to the contour line hy setting the directional deriv-
ative equal to zero.

Firgt we need to find the gradient:

8-25

8 Performance Surfaces and Optimum Poinis

2 2
VF(x) = 22+ x)} +10(1-x,-x3) (1) - -6+12x + 10x, /.
- 20x, + 20x,x, +20x,

10(1-x, - %)) (~2x,)

If we evaluate this at x* = [0 g] ’ , we obtain

4
VF(x*) = |79
N

Now recall that the equation for the derivative of F(x) in the direction of
a vector p is

p' VF(x)
ipl

Therefore if we want the equation for the line that passes through
I = J:O 0] and along which the derivative is zero, we can set the numer-
ator of the directional derivative in the direction of Ax to zero:

AXVF(x*) = 0,
whera Ax = x-x*. For this case we have
X -6 - 0,0rx, = 0.
0

This result is illustrated in Figure P8.5.

":" : ’{; s

i/
i

o

Figure P8.5 Plot of F{x) for Problem P8.3

8.26

Solved Problems

P84 Consider the following fourth-order polynomisl:
F(x) = x4-§x3—2x2+2x+4.

Find any stationary points and test them to see if they are minima.
To find the stationary points we set the derivative of F{x) to zero:

~d—F(x) = 4x3~2x2—4x+2 = 0.
dx

We can use MATLAB to find the roots of this polynomial;
coef=[4 -2 -4 2];
stapoints=roots(coef});
stapoints’
ans =
1.0000 -1.0000 0.5000

Now we need to check the second derivative at each of these points, The
second derivative of F (x) is

d 2
—2F(x} = 122" -4x-4,
dx

If we evaluate this at each of the gtationary points we find

2 2 ’
{-—‘%F(l) = 4), [—d—zF(-J} - 12), [-‘12.1-*(0.5) - _3),
dx dx dx

Therefore we should have strong Jocal minima at 1 and -1 (since the second
derivatives were positive), and a strong local maximum at 0.5 (since the
second derivative was negative). To find the global minimum we would
have to evaluate the function at the two local minima:

{(F{1) =4.333), (F(-1) = 1.667) .

Therefore the global minimum occurs at -1. But are we sure that this isa
global minimum? What happens to the function as x — s or x — — ?In
this case, because the highest power of x has a positive coefficient and is
an even power (x), the function goes to « at both limits. So we can safely
say that the global minimum occnrs at ~1, The function is plotted in Figure
P8.6.

8-27

8 Performance Surfaces and Optimum Points

&28

!

| |
o —

-2 -t a 1 H

Figure P8.6 Graph of F(x} for Problem P8.4

P85 Look back to the function of Problem P3.2. This function has three

stationary points:

= [04Y 2 loml s foss]
042 [0.13 -0.55
Test whether or not any of these points could be local minima,
From Problem P8.2 we know that the Hessian matrix for the function is

2 ?
VI (x) = 12 (xy~x)) -12(x,-x) " +8 .

S12(x-x) 48 1205, -x)?

To test the definiteness of this matrix we can check the eigenvalues. If the
eigenvalues are all positive, the Hessian is positive definite, which guaran-
tees a strong minimum. If the eigenvalues are nonnegative, the Hessian is
positive semidefinite, which is consistent with either a strong or a weak
minimum. If one eigenvalue is positive and the other eigenvalue is nega-
tive, the Hessian is indefinite, which would signal a saddle point.

If we evaluate the Hessian at x' , we find

Vir(x) < | 842 -042]
~0.42 842

The eigenvalues of this matrix are
hy =884, 4, = 80,

P8.6

Solved Problems

therefore x' must be a strong minimwm point.
If we evaluate the Hessian at x*, we find

7.13 0.87

The eigenvalues of this matrix are

A = -626, A, = 84,

therefore x* must be a saddie point. In one direction the curvature is neg-
ative, and in another direction the curvature is positive. The negative cur-
vature is in the direction of the first eigenvector, and the positive curvature
is in the direction of the second eigenvector. The eigenvectors are

ol

(Note that this is consistent with our previous discussion of thig funetion
on page 8-8.)

If we evaluate the Hessian at x_, we find

Vipd) = | 147 671
-6.71 147

The eigenvalues of this matrix are
A, = 2142, 4, = 80,

therefore x° must be a strong minimum point.

Cheek these results using the Neural Network Design Demonsiration Vector
Tayior Series (nndBts2).

Let’s apply the concepts in this chapter to a neural network prob-

lem. Consider the linear network shown in Figure P8.7. Suppose
that the desired inpuis/outputs for the network are

{(r =2, (1;=05)}, { (g =-1), (1,=00}.

Sketch the following performance index for this network:

F(x) = (f,~a, (%)) 7+ (t,-a,(x)) .

829

8 Performance Surfaces and Optimum Points

Input Linear Neuron

a = purelin(wp+b)

Figure P8.7 Linear Network for Problem P8.6

The parameters of this network are w and b, which make up the parame-
ter vector
x ="
b

We want to sketch the performance index F (x) . First we will show that
the performance index is a guadratic function. Then we will find the eigen-
vectors and eigenvalues of the Hessian matrix and use them to sketch the
contour plot of the function.

Begin by writing F(x) as an explicit function of the parameter vector x :
F(x) = ef +e§,
where
(e, =t;,-(wp, +B)), {e;=1—(wp,+b)).
This can be written in matrix form:
F(z) = ¢'e,

where

e=1- p']x=t—Gx.
le

The performance index can now be rewritten:

F(x) = [t-Gx] [t-Gx] = tt-2Gx+x G Gx.

Solved Problems

If we compare this with Eq. (8.35):

Fix) = %xTAx+ de+ c,

we can see that the performance index for this linear network is a quadrat-
ie function, with

c=t"t,d=-26"t,and A = 2GG.
The gradient of the quadratic function is given in Eq. (8.38):
VF(x) = Ax+4d = 26'Gx-2G t.

The stationary point (alse the center of the function contours) will occur
where the gradient is equal to zero:

o =-A"d = [676] ¢,

SR

x* = (GTG) 6"t = {5 IT[‘} = [‘“‘”J.
12 o5 loier

{Therefore the optimal network parameters are w = 0.167 and b = 0.167.)
The Hessian matrix of the quadratic function is given by Eq. (8.39):

For

we have

V2F(x) = A =2676 = (102
24

To sketch the contour plot we need the eigenvectors and eigenvalues of the
Hessian. Far this case we find

e o e o

Therefore we know that x* is a strong minimum. Also, since the first eigen-
value is larger than the second, we know that the contours will be elliptical
and that the long axis of the ellipses will be in the direction of the second

8-31

8 Performance Surfaces and Optimum Poinis

8-32

eigenvector. The contours will be centered at x* . This is demonstrated in
Figure P8 8.

i e A
; | e
L
R

Figure P8.8 Graph of Function for Problem P8.6

P8.7 There are quadratic functions that do not have stationary points.

This problem illustrates one such case. Consider the following
function:

_ 1.r11
F(x) = [1 _1]x+2x [1 Jx.

Sketch the contour plot of this function.

As with Problem P8.6, we need to find the eigenvalues and eigenvectors of
the Hessian matrix. By inspection of the quadratic function we see that the
Hessian matrix is

VIF(x) = A = B j (8.63)

The eigenvalues and eigenvectors are

o] -

Notice that the first eigenvalue is zero, so there is no curvature along the
first eigenvector. The second eigenvalue is positive, so there is positive cur-
vature along the second eigenvector. If we had no linear ternt in F (x) , the
plot of the function would show a stationary valley, as in Figure 8.9. In this
case we must find out if the linear term creates a slope in the direction of
the valley (the direction of the first eigenvector).

Solved Problems

The linear term is
F. (x) = [] _11 X.

From Eq. (8.36) we know that the gradient of this term is

which means that the linear term is increasing most rapidly in the direc-
tion of this gradient. Since the quadratic term has no curvature in this di-
rection, the overail function will have a linear slope in this direction.
Therefore F(x) will have positive curvature in the direction of the second
eipenvector and a linear slope in the direction of the first eigenvector, The
contour plot and the 3-D plot for this function are given in Figure P8.9.

2 T [T \ T \ i
\\ AR
| A
SR B A e
(AR
\ *'a::a":"':"':":: 3
—— Ill T
T _ ! i |\ ; A
\"-xh_q_‘_ ! 2,
R\\h&_—_ - / 1 -3 y
— ¢
-1
—

W
k-]
N

Figure P8.9 Falling Valley Function for Problem P8.7

Whenever any of the eigenvalues of the Hessian matrix are zero it is impos-
sible to solve for the stationary point of the quadratic function using 8

x*=-Ad,

since the Hessian matrix does not have an inverse. This lack of an inverse
could mean that we have a weak minimum point, as illustrated in Figure
8.9, or that there is no stationary point, as this example shows.

8.33

8 Performance Surfaces and Optimum Poinis

Epilogue

§-34

Performance learning is one of the most important classes of neural net-
work learning rules. With performance learning, network parameters are
adjusted to optimize network performance. In this chapter we have intro-
duced tools that we will need to understand performance learning rules. Af-
ter reading this chapter and solving the exercises, you should be able to:

i. Perform a Taylor series expansion and use it to approximate a func-
tion.
ii. Calculate a directional derivative,
fil. Find stationary points and test whether they could be minima.
iv. Sketch contour plots of quadratic functions.

We will be using these concepts in a number of succeeding chapters, includ-
ing the chapters on performance learning (9—12) and the chapters on recur-
rent networks (17-18). In the next chapter we will build on the concepts we
have covered here, to design algerithms that will optimize performance
functions. Then, in succeeding chapters, we will apply these algorithms to
the training of neural networks,

Further Reading

Further Reading

[Brog91]

[Gill81]

[Himm72]

(Scal85)

W. L. Brogan, Modern Control Theory, 3rd Ed., Englewood
Cliffs, NJ: Prentice-Hall, 1991.

This is a well-written book on the subject of linear systems.
The first half of the book is devoted to linear algebra. [t alse
has good sections on the selution of linear differential equa-
tions and the stability of linear and nonlinear systems. It
has many worked problems.

P. E. Gill, W. Murray, and M. H. Wright, Practical Optimi-
zation, New York: Academic Press, 1981.

As the title implies, this text emphasizes the practical im-
plementation of optimization algorithms. It provides moti-
vation for the optimization methods, as well as details of
implementation that affect algorithm performance.

D. M. Himmelblau, Applied Norlinear Programming, New
York: McGraw-Hill, 1972,

This is a comprehensive text on nonlinear eptimization. It
covers both constrained and unconstrained optimization
problems, The text is very complete, with many examples
worked out in detail.

L. E. Scales, Introduciion to Non-Linear Optimization,
New York: Springer-Verlag, 1985.

A very readable text describing the major optimization al-
gorithms, this text emphasizes methods of eptimization
rather than existence theorems and proofs of convergence,
Algorithms are presented with intuitive explanations,
along with illustrative figures and examples. Pseudo-code
is presented for most algorithms.

835

8 Performance Surfaces and Optimum Points

Exercises

F8.1 Constder the following scalar function:

i. Find the second-order Taylor series approximation for F(x) about
the point x = 0.5,

ji. Find the second-order Taylor series approximation for F (x) about
the point x = 1.1.

iii, Plot F(x) and the two approximations and discuss their accuracy.

E8.2 Consider the following function of two variables:

(2xf+2x§+:] =51, +10)

F(x) =
i. Find the second- orr.}pr Taylor series approximation for F(x) about
the point x = [g 0:’
ii. Find the stationary point for this approximation.

iii. Find the stationary point for F({x) . (Note that the exponent of F (x)
is simply a quadratic function.)

nd+ 2 - . . .
s e N iv. Explain the difference between the two stationary points. (Use

4 MATLAB to plot the two functions,)

E8.3 For the following functmns find the first and second dJrectlonal derivatives
from the point x = [1 1] in the direction p = [1 ﬂ .

2
i F(x) = i)f;l—ﬁ.vc,xz—x2
as 2 2
. F(x) = 5x]-6x,x,+5x; +4x +4x,
_ 92 2
ii. F(x) = ix' =2xx, +3x, 4 2x) - x,

iv. F(x) = -% (72" +12x,x, - 2x2)

8-36

Exercises

E8.4 For the following function,

F(x) =x4—%x2+l,

i. find the stationary points,

ji. test the stationary points to find minimum and maximum points,

—— and
e @421
lmz : ill. plot the function using MATLAB to verify your answers.
F4,5 Consider the following function of two variables:
F(x) = (x, +x2)4— 1250, + %, 42, + 1,
i. Verify that the function has three stationary points at
x' = [06504] .2 _ 10085 .3 _ |0.5655
~0.6504] 0.085 0.5655
ii. Test the stationary points to find any minima, maxima or saddle
points.

fli. Find the second-order Taylor series approximations for the function
e at each of the station ints.
e P
ans= | iv. Plot the function and the approximations using MATLAB.

4
E8.6 For the functions of Exercise E8.3:

i. find the stationary points,

ii. test the stationary points to find minima, maxima or saddle points,

iii. provide rough sketches of the contour plots, using the sigenvalues
- and eigenvectors of the Hessian matrices, and
ind 42
bj iv. plot the functions using MATLAB to verify your answers.

E8.7 Recall the function in Problem P8.7. For that function there was no station-
ary point. [t is possible to modify the function, by changing only the d vec-
tor, so that a stationary point will exist, Find a new nonzero d vector that
will creata a weak minimum.

8-37

9 Performance Optimization

Objectives

Objectives 9-1
Theory and Examples 9-2
Steepest Descent 9-2
Stable Leaming Rates 9-6
Minimizing Along a Line 9-8
Newton's Method 8-10
Conjugate Gradient 8-15
Summary of Resuits 9-21
Sclved Problems 9-23
Epilogue 9-37
Fuither Reading g-38
Exercises 8-39

We initiated our discussion of performance optimization in Chapier 8.
There we introduced the Taylor series expansion as a tool for analyzing the
performance surface, and then used it to determine conditions that must be
satisfied by optimum points. In this chapter we will again use the Taylor
series expansion, in this case to develop algorithms to locate the optimum
points. We will discuss three different categories of optimization algorithm;
steepest descent, Newton's method and conjugate gradient. In Chapters
10-12 we will apply all of these algorithms to the training of neural net-
works,

91

9 Performance Optimization

Theory and Examples

In the previous chapter we began our investigation of performance surfac-
es. Now we are in a pogition to develop algorithms to search the parameter
space and locate minimum points of the surface (find the optimum weights
and biases for a given neural network).

It is interesting to note that most of the algorithms presented in this chap-
ter were developed hundreds of years aga. The basic principles of optimiza-
tion were discovered during the 17th century, by such scientists and
mathematicians as Kepler, Fermat, Newton and Leibniz. From 1950 on,
these principles were rediscovered to be implemented on “high speed” (in
comparison to the pen and paper available to Newton) digital computers.
The success of these efforts stimulated significant research on new algo-
rithms, and the field of optimization theory became recognized as a major
branch of mathematics. Now neural network researchers have access to a
vast storehouse of optimization theory and practice that can be applied to
the training of neural networks. We have only begun to tap this rich re-
sgurce.

The objective of this chapter, then, is to develop algorithms to optimize a
performance index F (x) . For our purposes the word “optimize” will mean
to find the value of x that minimizes F (x) . All of the optimization alge-
rithins we will discuss are iterative. We begin from some initial guess, Xy
and then update cur guess in stages according to an equation of the form

Xepi = X+ 00D, (9.1}

ar

Ax, = (x,,,-X) = op, (9.2)
where the vector p, represents a search direction, and the positive scalar
¢, is the Jearning rate, which determines the length of the step.

The algorithms we will discuss in this chapter are distinguished by the
choice of the search direction, p,. We will discuss three different possibili-
ties. There are also a variety of ways to select the learning rate, o, , and we
will discuss several of these.

Steepest Descent

When we update our guess of the optimum (minimum) point using Eq.
(9.1), we would like to have the function decrease at each iteration. In other
words,

Fix,,,) <Fix). (8.3)

92

Descent Direction

Steepest Descent

Learning Rate

Steepest Descent

How can we choose a direction, p,, so that for sufficiently small learning
rate, ¢, , we will move “downhill” in this way? Consider the first-order Tay-
lor series expansion {see Eq. (8.9)) of F(x) about the old guess x,:

F(x,,) = F(x +A%) = F(x,) +gAx,, (9.4)

where g, is the gradient evaluated at the old guess x,:

g, =VF(x 9.5)

) Ix =X;)
For F(x,,,) tobelessthan F(x,) , the second term on the right-hand side
of Eq. {9.4) must be negative:
r T
g Ax, = o8, p, <0. (9.6}
We will select an @, that is small, but greater than zero. This implies:

g/ p,<0. 9.7

Any vector p, that satisfies this equation is called a descent direction. The
function must go down if we take a small enough step in this direction. This
brings up another question. What is the direction of steepest descent? (In
what direction will the function decrease most rapidly?) This will occur
when

g, P, (9.8)

is most negative. (We assume that the length of p, does not change, only
the direction.) This is an inner product between the gradient and the direc-
tion vector. It will be most negative when the direction vector is the nega-
tive of the gradient. (Review our discussion of directional derivatives on
page 8-6.) Therefore a vector that points in the steepest descent direction is

Py = & (9.9}
Using this in the iteration of Eq. (9.1) produces the method of steepest de-
scent:

Xy = X - 048, . {9.10)

For steepest descent there are two general methods for determining the
learning rate, o, . One approach is to minimize the performance index
F(x) with respect to o, at each iteration. In this case we are minimizing

along the line
X - 0,8, . (9.11)

93

9 Performance Optimization

Iy

EN

The other method for selecting @, is to use a fixed value (e.g., @, = 0.02),
or to use variable, but predetermined, values (e.g., a, = 1/&). We will dis-
cuss the choice of o, in more detail in the following examples.

Let's apply the steepest descent algorithm to the following function,
F(x) = xi+255, 9.12)

starting from the initial guess

X, =]iojl . (9.13)
0.5

The first step is to find the gradient:

¢

—F(x)
VF(x) = a;, - LE"'J . (9.14)
X,
gC;F(:;}J ;
If we evaluate the gradient at the initial guess we find
_ _ 11
2= VFO)|, = H (9.15)

Assume that we use a fixed learning rate of o = 0.01 . The first iteration of
the steepest descent algorithm would be

0. ! 0.49
X, = X,-0g, = -00 = . (9.16)
e {0.5} [25} [0.25}
The second iteration of steepest descent produces
X, = %, —ag, = 049 _01|0-98] _ (04802 9.17)
0.25 12.3 0.125

If we continue the iterations we obtain the trajectory illustrated in Figure
g.1.

Steepest Descent

Figure 9.1 Trajectory for Steepest Descent with o = 0.01

Note that the steepest descent trajectory, for small learning rate, follows a
path that is always orthogonal to the contour lines. This is because the gra-
dient is orthogonal to the contour lines. {See the discussion on page 8-6.)

How would a change in the learning rate change the performance of the al-
gorithm? If we increase the learning rate to o = 0.035, we obtain the tra-
Jjectory illustrated in Figure 0.2, Note that the trajectory now oscillates. If
we make the learning rate toc large the algorithm will become unstable;
the oscillations will increase instead of decaying.

05

o5

-1
1 L]] s 1

Figure 9.2 Trajectory for Steepest Descent with o = 0.035

We would like to make the learning rate large, since then we will be taking
large steps and would expect to converge faster. However, as we can see
from this example, if we make the learning rate too large the algorithm will
become unstable. Is there some way to prediet the maximum aHowable
learning rate? This is not possible for arbitrary functions, but for quadratic
functions we can set an upper limit.

9 Performance Optimization

9-6

Stable Learning Rates
Suppose that the performance index is 2 quadratic function:

F(x) = %xrAx +d'x+c. (9.18)

From Eq. (8.38) the gradient of the quadratic funection is
VFix) = Ax+d. (9.19)

Ifwe now insert this expression into our expression for the steepest descent
algorithm (assuming a constant learning rate), we obtain

Xeoy = X, -0 = X, -(Ax, +d) . (9.20)

or

X, = (I-cAlx, -ad. (9.21)

This is a linear dynamic system, which will be stable if the eigenvalues of
the matrix [I-oA] areless than one in magnitude (see [Brog91]). We can
express the eigenvalues of this matrix in terms of the eigenvalues of the
Hessian matrix A.Let {X, A, ... ,A} and {2,,z,,...,2 } betheeigen-
values and eigenvectors of the Hessian matrix. Then

(I-0Alz, = 2,- Az, = z,—ohz, = (1-0h)z,. (9.22)

Therefore the eigenvectors of [I-aA) are the same as the eigenvectors of
A, and the eigenvalues of [I-oA] are (I -aA) . Our condition for the
stability of the steepest descent algorithmn is then

|[(1-ad)|<1. (9.23)

Ifwe assume that the quadratic function has a strong minimum point, then
its eigenvalues must be positive numbers, Eq. (9.23) then reduces to

2
T {9.24)

o<

Since this must be true for all the eigenvalues of the Hessian matrix we
have

0< =, (9.95)

Max

The maximurmn stable learning rate is inversely proportional to the maxi-
mum curvature of the quadratic function, The curvature tells us how fast
the gradient is changing. If the gradient is changing too fast we may jump

+2

|

Steepest Descent

past the minimum point s¢ far that the gradient at the new location will be
larger in magnitude (but opposite direction} than the gradient at the old lo-

-cation. This will cause the steps to increase in size at each iteration.

Let's apply this result to our previous example. The Hesstan matrix for that
quadratic function is

A= {2 0} (9.26)
0 50

The eigenvalues and eigenvectors of A are

R

Therefore the maximum allowable learning rate is

2 2
@<= = %" 0.04 . (9.28)

Max

=

This result is illustrated experimentally in Figure 9.3, which shows the
steepest descent trajectories when the learning rate is just below
(e = 0.039 } and just above (¢t = (.041), the maximum stable value.

T]

Figure 9.3 Trajectories for o = 0.039 (left)and o = 0.041 (right).

This example has illustrated several points, The learning rate is limited by
the largest eigenvalue {second derivative) of the Hessian matrix. The algo-
rithm tends to converge most quickly in the direction of the eigenvector cor-
responding to this largest eigenvalue, and we don’t want to overshoot the

minimum peint by too far in that direction. (Note that in our examples the

initial step is almost parallel to the x, axis, which is z, .} However, the al-
gorithm will tend to converge most slowly in the direction of the eigenvec-

87

9 Performance Optimization

7

tor that corresponds to the smallest eigenvalue (z, for our example). In the
end it i the smaliest eigenvalue, in combination with the learning rate,
that determines how quickly the algorithm will converge. When there is a
great difference in magnitude between the largest and smallest eigenval-
ues, the steepest descent algorithm will converge slowly,

To experiment with steepest descent on this quadratic function, use the Neu-
ral Network Design Demonstration Steepest Descent for a Quadratic
{nnd9edq).

Minimizing Along a Line

Another approach for selecting the learning rate is to minimize the perfor-
mance index with respect to o, at each iteration. In other words, choose o,
to minimize

Fix, +o,p,) . {9.29)

To do this for arbitrary functions requires a line search, which we will dis-
cuss in Chapter 12. For quadratic functions it is possible to perform the lin-
ear minimization analytically. The derivative of Eq. {9.29) with respect to
, , for quadratic (x) , can be shown to be

d T T
EEIF (x,+o,p,) = VF(x) L(= xlp" + o, p, V2F (x) ‘x= nx (9.30)
If we set this derivative equal to zero and solve for @, . we obtain

VEx)'| _ p, r

X=X, P

e = -5, (9.31)
P VF (x) lx:x P; PeAP

where A, is the Hessian matrix evaluated at the old guess x, :
A =V (x) [(9.32)

(For quadratic functions the Hessian matrix is not a function of k.)

Let’s apply steepest descent with line minimization to the following qua-
dratic function:

F(x) = %xfﬁ jx (9.33)

starting from the initial guess

Steepest Desceni

X, = [0.8] : (9.34)
-0.25
The gradient of this function is
VE(x) = |07 J‘% . 9.35)
X+ 2x2;

The search direction for steepest descent is the negative of the gradient,
For the first iteration this will be

P =g = VF(O| = {_—16335]' (9.36)

From Eq. (9.31), the learning rate for the first iteration will be

135 0.3] [_—loﬂ

L= - 0413, (9.37)
A2 1][-135
-1.35 -03] L 2} L}J

The first step of steepest descent will then produce

X = Xy - 08y = | 08 [—0413)L3| = 10241 9.38)
-0.25 03] |-037

The first five iterations of the algorithm are illustrated in Figure 9.4.

Note that the successive steps of the algorithm are orthogonal, Why does
this happen? First, when we minimize along a line we will always stop at
a point that is tangent to a contour line. Then, since the gradient is orthog-
onal to the contour line, the next step, which is along the negative of the
gradient, will be orthogonal to the previous step.

We can show this analytically by using the chain rule on Eq. (8.30):

4

X, +0,p,]
x=x“|a’ak[k 1P

{9.39)

d d T
JaF Bt ap) = P () = VE) |

T T
= VF (%) | L Y

X=X

99

9 Performance Optimization

8-10

Therefore at the minimum point, where this derivative is zero, the gradient
is orthogonal to the previous search direction. Since the next search direc-
tion is the negative of this gradient, the consecutive search directions must
be orthogonal. (Note that this result implies that when minimizing in any
direction, the gradient at the minimum point will be orthogonal to the
search direction, even if we are not using steepest descent. We will use this
result in our discussion of conjugate directions.)

r
o5 |lr \\
‘ |/_-\ AN
: :’ :\\\\ \‘ \ A
nl\ \\ \ " \\ :1'%"' \\I y
! NN N y
S \,______'LA'__J—*"FF |
a5 \ /
N\
\ N |

Figure 9.4 Steepest Descent with Minimization Along a Line

To experiment with steepest descent with minimization along a line, use the
Neural Network Design Demonstration Method Comparison (nnd@uc).

Later in this chapter we will find that we can improve performance if we
adjust the search directions, so that instead of being orthogonal they are
conjugate. (We will define this term later.) If conjugate directions are used
the function can be exactly minimized in at most n steps, where # is the
dimension of x. (There are certain types of quadratic functions that are
minimized in one step by the steepest descent algorithm, Can you think of
such a function? How is its Hessian matrix characterized?)

Newton’s Method

The derivation of the steepest descent algorithm was based on the first-or-
der Taylor series expansion (Eq. (9.4)). Newton’s method is based on the
second-order Taylor series:

F(x,,) = F(x,+Ax,) =F(x) +g:Axk+%Ax:Akdxk. (9.40)

The principle behind Newton’s method is to locate the stationary point of

this quadratic approximation to F (x) . If we use Eq. (8.38) to take the gra-
dient of this quadratic function with respect to Ax, and set it equal to zero,
we find

Newion's Method

Newton's Method

gi+AAx = 0, (9.41)
Solving for Ax, produces
A%, = -A}'g,. 9.42)
Newton’s method is then defined:
Xeo1 = X~ Ap By (9.43)

To illustrate the operation of Newton's method, let's apply it to our previ-
ous example function of Eq. (9.12):

F(x) = x+25x., (9.44)

The gradient and Hessian matrices are

d

§;F(x) 2x
VE(x) = BI = [~ ‘J, ViIF(x) = E SOJ. (9.45)
- % 0
312F (x}
If we start from the same initial guess
x, = [0-5}. (9.46)
0.5

the first step of Newton's method would be

=i

U e

05 050 |25 0.5 [0.5 0
This method will always find the minimum of a quadratic function in one
step. This i because Newton's method is designed to approximate s fune-
tion as quadratic and then locate the stationary point of the quadratic ap-
proximation. If the original function is quadratic (with a strong minimum)
it will be minimized in one step. The trajectory of Newton’s method for this

problem is given in Figure 9.5.

If the function F(x) is not quadratic, then Newton’s method will not gen-
erally converge in one step. In fact, we cannot be sure that it will converge
at all, since this will depend on the function and the initjal guess,

911

9 Performance Optimization

812

Figure 9.5 Trajectory for Newton's Method
Recali the function given by Eq. (8.18);

F(X) = (xy-x) 483, 5,- 1, + 5,43, (9.48)

We know from Chapter 8 (see Problem P8.5) that this function has three
stationary points:

o (042 2 |-013] 3 _ 0SS (9.49)
0.42 0.13 —0.55
The first point is a strong local minimuin, the second point is a saddle point;
and the third point is a strong global minimum.

If we apply Newtop’s method to this probiem, starting from the initial
guess X, = [] 5 (ﬂ . our first iteration will be as shown in Figure 9.6. The
graph on the left-hand side of the figure is a contour plot of the original
function. On the right we see the quadratic approximation to the function
at the initial guess.

The function is not minimized in one step, which is not surprising since the
function is not quadratic. However, we do take a step toward the global
minimum, and if we continue for two more iterations the algorithm will
converge to within 0.01 of the global minimum. Newton's method converges
quickly in many applications because analytic functions can be accurately
approximated by quadratic functions in a small neighhorhood of a strong
minimum. So as we move closer to the minimum point, Newton's methed
will more accurately predict its location. In this case we can see that the
contour plot of the quadratic approximation is similar to the contour plet of
the original function near the initial guess.

Newton’s Method

1

|
|
K - -— . 1
2 R g F]

~-T

Figure 9.6 Ome Iteration of Newton's Method from x,, = [1_ 50

InFigure 9.7 We see one iteration of Newton’s method from the initial guess
X, = [_1 5 0] . In this case we are converging to the local minimum. Clear-
Iy Newton's method cannot distinguish between a local minimum and a glo-
bal minimum, since it approximates the function as a quadratic, and the
quadratic function can have only one minimum. Newton's method, like
steepest descent, relies on the local features of the surface {the first and
second derivatives). It carmot know the global character of the function.

H . 2 _

B — 0 2 "] 3 [v a

Figure 9.7 One Iteration of Newton’s Method from x,, = [_ 15 g] !

InFigure 9.8 we see one iteration of Newton's method from the initial guess
Xg = [0‘75 0.75] . Now we are converging toward the saddle point of the
function. Note that Newton's method locates the stationary point of the
quadratic approximation to the function at the current guess. It does not
distinguish between minima, maxima and saddle points. For this problem

9-1%

9 Performance Optimization

914

the quadratic approximation has a saddle point (indefinite Hessian ma-
trix), which is near the saddle point of the original function, If we continne
the iterations, the algorithm does converge to the saddle point of F(x)} .

-

2

)
R

Figure 9.8 One Iteration of Newton’s Method from x, = [0_75 0.-,-5] T

In each of the cases we have looked at so far the stationary point of the qua-
dratic approximation has been close to a correspornding stationary point of
F(x) . This is not always the case. In fact, Newton’s method can produce

very unpredictable results,

InFigure 9.9 we gee one iteration of Newton's method from the initial guess
X, = [1_ 15 0_75} . In this case the quadratic approximation predicts a sad-
dle point, however, the saddle peint is located very close to the local mini-
mum of F(x) . If we continue the iterations, the algorithm will converge to
the local minimum, Notice that the initial guess was actually farther away
from the local minimum than it was for the previous case, in which the al-
gorithm converged to the saddle point.

N\
l“

W

-1 L

al-
&

Figure 9.9 One Iteration of Newton’s Method from x, = [1‘ 15 0_75] i

Conjugate Gradient

To experiment with Newtor's method and steepest descent on this function,
use the Neural Network Design Demonstrations Newton's Method (nnd9na)

and Steepest Descent (nnd9ed).

This is a good place to summarize some of the properties of Newton’s meth-
od that we have observed.

While Newton’s method usually produces faster convergence than steepest
descent, the behavior of Newton's method can be quite complex. In addition
to the problem of convergence to saddle points (which is very unlikely with
steepest descent), it is possible for the algorithm to oscillate or diverge.
Steepest descent is guaranteed to converge, if the learning rate is not too
large or if we perform a linear minimization at each stage.

In Chapter 12 we will discuss a variation of Newton's method that is well
suited to neural network training. It eliminates the divergence problem by
using steepest descent steps whenever divergence begins to occur.

Another problem with Newton’s method is that it requires the computation
and storage of the Hessian matrix, as well as its inverse. If we compare
steepest descent, Eq. (9.10), with Newton’s method, Eq. (9.43), we see that
their search directions will be identical when

A=A =1 (9.50)

This observation has lead to a class of optimization algorithms know as
quasi-Newton or one-step-secant methods. These methods replace A,
with a positive definite matrix, H, ,which is updated at each iteration with-
out matrix inversion. The algorithma arg typically designed so that for qua-
dratic functions H, will converge to A~ . {The Hessian is constant for
quadratic functions,) See [Gill81], [Scal85] or [Batt92} for a discussion of
these methods.

Conjugate Gradient

Quadratic Termination Newton’s method has a property called quadratic termination, which
means that it minimizes a quadratic function exactly in a finite number of
iterations. Unfortunately, it requires calculation and storage of the second
derivatives. When the number of parameiers, n , is large, it may be imprac-
tical to compute all of the second derjvatives. (Note that the gradient has
n elements, while the Hessian has n” elements.) This is especially true
with neural networks, where practical applications can require several
hundred to many thousand weights. For these cases we would like to have
methods that require only first derivatives but still have quadratic termi-
nation.

Recall the performance of the steepest descent algorithm, with linear
searches at each iteration. The search directions al consecutive iterations
were orthogonal (see Figure 9.4). For quadratic functions with elliptical

9-156

9 Performance Optimization

9-16

Conjugate

contours this produces a zig-zag trajectory of short steps. Perhaps quadrat-
ic search directions are not the best choice. Is there a set of search direc-
tions that will guarantee guadratic termination? One possibility is
conjugate directions.

Suppose that we wish to locate the minimum of the following quadratic
function:

Fix) = %xrAx+drx+c. (9.51)

A set of vectors {p,} is mutually conjugate with respect to a positive defi-
nite Hessian matrix A if and only if

p:Ap} =0 k#j {9.52)

As with orthogonal vectors, there are an infinite number of mutually con-
Jugate sets of vectors that span a given n-dimensional space. One set of
conjugate vectors consisis of the eigenvectorsof A. Let {A,4,,...]}
and {z,,z,....2,} bethe eigenvalues and eigenvectors of the Hessian ma-
trix. To see that the eigenvectors are conjugate, replace p, with z, in Eq.
(9.52);

ZAz, = hzz, =0 k#j, (9.53)
where the last equality holds because the eigenvectors of a symmetric ma-
{rix are mutually orthogonal. Therefore the eigenvectors are both conju-
gate and orthogonal. (Can you find a quadratic function where ail
orthogonal veetors are also conjugate?)

It is not surprising that we can minimize a quadratic function exactly by
searching along the eigenvectors of the Hessian matrix, since they form the
principal axes of the function contours. (See the discussion on pages 8-13
through 8-19.} Unfortunately this is not of much practical help, since to
find the eigenvectors we must first find the Hessian matrix, We want to
find an algerithm that does not require the computation of second deriva-
tives.

It can be shown (see [Scal85] or [Gill81}]) that if we make a sequence of ex-
act linear searches along any set of conjugate directions {p, p,p,} ,
then the exact minimum of any quadratic function, with n parameters, will
be reached in at most » searches. The question is “How can we construct
these conjugate search directions?” First, we want to restate the conjugacy
condition, which is given in Eq. (9.52}, without use of the Hessian matrix.
Recall that for quadratic functions

VF(x) = Ax+d, {9.54)

Conjugate Gradient

VIF(x) = A. (9.55)

By combining these equations we find that the change in the gradient at
iteration £+ 1 is

Ag, =g, -8 = (Ax, +d) - (Ax, +d) = AAx,, {9.56)
where, from Eq. (9.2), we have
A, = (X%, ,-X) = o.P,, {9.57)
and «, is chosen to minimize 7 (x) in the direction p, .

We can now restate the conjugacy conditions (Eq. (9.52));

T T T)
0,p Ap; = Ax,Ap, = Ag;p, =0 k=) (9.58)

Note that we no longer need to know the Hessian matrix. We have restated
the conjugacy conditions in terms of the changes in the gradient at succes-
sive iterations of the algorithm. The search directions will be conjugate if
they are orthogonal to the changes in the gradient.

Note that the first search direction, p,, is arbitrary, and p, can be any vec-
tor that is erthogonal to Ag, . Therefore there are an infinite numher of sets
of conjugate vectors. It is common to begin the search in the steepest de-
scent direction;

Py = 8- {9.59)

Then, at each iteration we need to construct a vector p, that is orthogonal
to {Ag; Ag,...,Ag, ,}.Itisa procedure similar to Gram-Schmidt orthog-
onalization, which we discussed in Chapter 5. It can he simplified {see
[ScalB5]) to iterations of the form

p, = -&+Bp,_;- {9.60)

The scalars §, can be chosen by several different methods, which produce
equivalent results for quadratic functions, The most common choices (see
[ScalB5]) are

T
B, = ot (9.61)
Ag, .p,

due to Hestenes and Steifel,

817

9 Performance Optimization

a-18

Conjugate Gradient

N

T
B, = —oxBt 9.62)
Bi_ 1By

due to Fletcher and Reeves, and

T
B, = ‘A?gk—:l—gk (9.63)
818

due to Polak and Ribiére.

To summarize our discussion, the conjugate gradient method consists of
the following steps:

1. Select the first search direction Lo be the negative of the gradient, as in
Egq. (9.59),

2. Take a step according to Eq. (9.57), selecting the learning rate a, to
minimize the function along the search direction, We will discuss gen-
eral linear minimization techniques in Chapter 12. For quadratic func-
tions we can use Eq, (9.31).

3. Select the next search direction according to Eq. (9.60), using Eq.
(9.61), Eq. (9.62), or Eq. (9.63) to calculate P, .

4. Ifthe algorithm has not converged, return to step 2.

To illustrate the performance of the algorithm, recall the example we used
to demonstrate steepest descent with linear minimization:

Fx) = 7|2 1};, (9.64)
22
with initia] guess
0.8
= } (9.65)
n= Lo
The gradient of this function is
2x, +x,
VF(x) = . (9.66)
X, +2x,

As with steepest descent, the first search direction is the negative of the
gradient:

Conjugate Gradient

P =~ = VF®)|, = h}ﬂ (9.67)

From Eq. (9.31), the learning rate for the first iteration will be

1135 03] hﬂ
2 1|[-1.35
[-135 03] L 2] [-0.3}
The first step of conjugate gradient is therefore:
08 | . o ,ual-135 _ [024
X, = X, +0p, = +0.413 = , (9.69)
1T Ko Gk [-0.25} [-0.3] [4).37}

which is equivalent to the first siep of steepest descent with minimization
along a line.

Now we need to find the second search direction from Eq. (9.60). This re-
quires the gradient at x, :

g = VF)| = 21102/ [0-“ . (9.70)
X=X [12(|-037] |05
We can now find 3, :
g 011 -05] ﬁlj .
By =+ = = ?';?25 = 0.137, ©.71)
BB (13503 [103'35}

using the method of Fletcher and Reeves (Eq. (9.62)). The second search di-
rection is then computed from Eg. (9.60):

-0.11 -135 _ |-0.295
=—g + = +0.137 = . 9.72)
Br = 8+ Piko [05 J [-O.J [0.459J

From Eq. (9.31), the learning rate for the second iteration will be

919

9 Performance Optimization

920

02

[0.11 -0.5] { 00) 5995} .
= : = hs = 0807, (7Y

2 1][-0205] “

[0.295 0.459] L 2] { s 9]

The second step of conjugate gradient is therefore

X, = ¥, +0,p, = 024], o30[-0295] _ [of (9.74)
037 0459| |0

As predicted, the algorithm converges exactly to the minimum in two iter-
ations {since this is a two-dimensional quadratic function), as illustrated in
Figure 9.10. Compare this result with the steepest descent algorithm, as
shown in Figure 9.4. The conjugate gradient algorithm adjusts the second
search direction so that it will pass through the minimum of the function
(center of the function contours), instead of using an orthogonal search di-
rection, as in steepest descent.

N o ————

AN
. H\\ : fa\\ \ A
o i I'\ (\,\\ \\ \

y 5 \'X{ Yoo
\\\‘ \ ot
LN 8

\ \\\\\H_ B

‘.4_._..__ Dol

PFigure 9.10 Conjugate Gradient Algorithm

We will return to the conjugate gradient algorithm in Chapter 12. In that
chapter we will discuss how the algorithm should be adjusted for non-qua-
dratic functions.

To experiment with the conjugate gradient algorithm and compare it with
steepest descent, use the Neural Network Design Demonstration Method
Comparison (nnd@mc).

Summary of Results

Summary of Results

General Minimization Algorithm

Xew) T X TOP,
or

AX, = (X, =X} = 0Py

Steepest Descent Algorithm
Xep = X -0,8

Where g, =VF(x)]x %

Stable Learning Rate (¢, = a, constant)

Mix

{A; Ay A} Eigenvalues of Hessian matrix A

Learning Rate to Minimize Alongthe Line x,,, = x, +o,p,

T
_ 4y

- (For quadratic functions)
P, AP,

4

After Minimizing Along the Line x,,, = x, + o,p,

T
BiiPy = 0

Newton’s Method
Xyt = xk_Ak_lgk

Where A, =V2F(x) |x x

921

9 Performance Optimization

Conjugate Gradient Algorithm
Ax, = oupy

Learning rate o, is chosen to minimize along the line x,, | = X, +o,p, .

P =8
P, = B tBbe,
T T T
B, = Afk—lgk or B, = Tgkgk or B, = ‘ﬁ‘rgk—igk
Ag Py, 818 B 181

Where g, = VF(x) lox, and Ag, = g;,; &

822

Solved Problems

Solved Problems

P91 We want to find the minimum of the following function:

F(X) = 5x;—6x.3,+ 50 +4x, +4x,.

i. Sketch a contour plot of this function.

ii. Sketch the trajectory of the steepest descent algorithm on
the contour ;}lot of part (i) if the initial guess is
Xy = [_1 m2_5] . Asgume a very small learning rate is used.

iii. What is the maximum stable learning rate?

i. Tosketch the contour plot we first need to find the Hessian matrix. For
quadratic functions we can do this by putting the function into the stan-
dard form (see Eq. (8.35)):

_Llr T _ 1710 -6
Fix) = X Ax+d'x+c = > [—6 10}x+[4 4]x.

From Eq. (8.39) the Hessian matrix i3

VIF(x) = A = [10'6].
-6 10

The eigenvalues and eigenvectors of this matrix are

NV | _ (1
pton =l [1]

From the discussion on quadratic functions in Chapter 8 (see page 8-15) we
know that the function contours are elliptical. The maximum curvature of
F(x) isin the direction of z,, since A, is larger than A, and the minimum
curvature is in the direction of z, (the long axis of the ellipses).

Next we need to find the center of the contours {the stationary point). This
occurs when the gradient is equal to zero. From Eq. {8.38) we find

VF(x) = Ax+d = {10 _6]“{4 g]

-6 19 }:{

4

Therefore

923

9 Performance Optimization

9-24

oo 106 [_]
-6 10| |4 -1
The contours will be elliptical, centered at x*, with long axis in the direc-
tion of z, . The contour plot is shown in Figure P9.1.

ii. We know that the gradient is always orthogonal to the contour line,
therefore the steepest descent trajectory, if we take small enough steps,
will follow a path that is orthogonal to each contour line it intersects. We
can therefore trace the trajectory without performing any computations.
The result is shown in Figure P3.1.

Figure P9.1 Contour Plot and Steep. Desc. Trajectory for Problem P9.1

iii. From Eq. (9.25) we know that the maximum stable learning rate for a
quadratic function is determined by the maximum eigenvalue of the Hes-
sian matrix:

ot
)"M&'X .
The maximum eigenvalue for this problem is A, = 16, therefore for stabil-
ity
2

a<e = 0125,

This result is verified experimentally in Figure P9.2, which shows the
steepest descent trajectories when the learning rate is just below
(¢ = 0.12) and just above (o = 0.13) the maximum stable value.

Solved Problems

Figure P9.2 Trajectories for o = 0.12 (left) and o = 0.13 (right)

P9.2 Consider again the quadratic function of Problem P9.1. Take two
steps of the steepest descent algorithm, minimizing along a line at
each step. Use the following initial condition:

x=[o-2 -

In Problem P9.1 we found the gradient of the function to be

VF(x) = Ax+d = [10 ‘GJHH.
610 |4

If we evaluate this at x,, we find

. 10-6||0] |4 16
= VFix,)} = Ax,+d = + = .
o ’ ’ LS 10} L} LJ Lﬁ]

Therefore the first search direction is

_ . |-16
Po = 8o [mJ

To minimize along a line, for a quadratic function, we can use Eq. (9.31)

-16
BoPo _ [_“ﬂ[lfl -512

20 - =
PoAR, [16 16] 10 -6|[-16 8192
6 10/ 16

= 0.0625.

{10=

9-25

4 Performance Optimization

9-26

P93

Therefore the first iteration of steepest descent will be

R

To begin the second iteration we need to find the gradient at x, :

vy <amea- [0 4110]

Therefore we have reached a stationary point; the algorithm has con-
verged. From Problem P9.1 we know that x, is indeed the minimum point
of this quadratic function. The trajectory is shown in Figure P9.3.

|
v/
o

!
N

3 "]

-3
k]

Figure P9.3 Steepest Descent with Linear Minimization for Problem P9.2

This is an unusual case, where the steepest descent algorithm located the
minimum in one iteration. Notice that this occurred because the initial
guess was located in the direction of one of the eigenvectors of the Hessian
matrix, with respect to the minimum point. For those cases where every di-
rection is an eigenvector, the steepest descent algorithm will always locate
the minimum in one iteration. What would this imply about the eigenval-
ues of the Hessian matrix?

Recall Problem P8.8, in which we derived a performance index for
& linear neural network. The network, which is displayed again in
Figure P94, was to be trained for the following input/output pairs:

{(p;=2), (4, =08)}, {{p=-1), (1,=0)}

The performance index for the network was defined to be

Solved Problems

F(x) = (-a,(0) + (4,-a,(0),

which was displayed in Figure P8.8.

i. Use the steepest descent algorithm fo locate tl:n; optimal psa-
rameters for this network (recafll that x = [w b]), starting
from the initial guess x, = [] 1] . Use a learning rate of
o = 003,

ii. What is the maximum stable learning rate?

Input Linear Neuron

a = purelin(wp+b)

Figure P9.4 Linear Network for Problems P9.3 and P8.6

i. InProblem P8.6 we found that the performance index could be written
in quadratic form:

F(x) = %xrAx +d'x+c,

where

The gradient at x; is

827

9 Performance Optimization

& = VF(xy) = Ax,+d = {120 j m ‘ H _ [’;’J-

The first iteration of steepest descent will be

1 10 0.5
X, = X,-og, = |'[-005 = .
e H L] [0-75}

The second iteration will be

x, = x,—og, = | %5 [—00s[*5 = [0275]
0.75 3 0.6

The remaining iterations are displayed in F igur?g P9.5. The algorithm con-
verges to the minimum point x* = [0.167 0.16‘]’:| . Therefore the optimal
value for both the weight and the bias of this network is 0.167.

!

+

f \\ \“

-2
= -1 L 1 2

Figure P9.5 Steepest Descent Trajectory for Problem P9.3 with a = 0.05

Note that in order to train this network we needed to know all of the input/
output pairs, We then performed iterations of the steepest descent alge-
rithm until convergence was achieved. In Chapter 10 we will introduce an
adaptive algorithm, based on steepest descent, for training linear net-
works. With this adaptive algorithm the network parameters are updated
after each input/output pair is presented. We will show how this allows the
network to adapt to a changing environment.

il. The maximum eigenvalue of the Hessian matrix for this problem is
A, = 10.6 (see Problem P8.6), therefore for stability

2
0{<m = (.1887.

928

Solved Problems

P94 Consider the function

(x?—xl +2x§+4)

F(x) = e

Take one iteration of Newton’s method from the initial guess
%, = [1 2| . How close is this result to the minimum point of 7 (x) ?

Explain.
The first step is to find the gradient and the Hessian matrix. The gradient
is given by

d

—F(x) Ly .

e« | 2 eno vl
= 1)
asz (x))

and the Hessian matrix is given by

2 2
iIF(x] . aa F(x)
ax, X061,
VIF(x) = : :
] d
axzaxIF(x} ‘a"x“_ip(x}

euf—t.+2x§+4l 4xf—4x|+3 (2x, -1} (4x,)

(2x,-1) (4x,) 16x5+4

If we evaluate these at the initial guess we find
o
g =Vle)|x—x0= 0.163)(!(}‘5 ’ .
- -1.302x10 9

1 7
A, = VZF(x)| = 0.049X10ﬂ —0.130x10°|
X=X | 0.130x10° 1.107x10’

and

Therefore the first iteration of Newton’s method, from Eq. (9.43), will be

9-29

9 Performance Oplimization

1
0.049x10" ~0.130x10" | 0.163x10°) {0.971]
~0.130x10" 1.107x10’] o [-1.886

- 1
X, =X~A, g = [J“
-2 -1.302x10

How close is this to the true minimum point of F{x) ? First, note that the
exponent of F(x) is a quadratic function;

2 2 ir r 1.7z 0
— = = + = = 4_
X —Xx+2x+4 5% Ax+d x+c >X LJ :lx-l—[_] {ﬂx+

The minimum point of F (x) will be the same as the minimum peint of the

exponent, which is
-1
X*=—A-]d=—20 —l=0.5-
04 [0 0

Therefore Newton’s method has taken only a very small step toward the
true minimum point. This is because F(x) cannot be accurately a#)proxi-
mated by a quadratic function in the neighborhood of x,, = [] _2] .

For this problem Newton’s method will converge to the true minimum
point, but it will take many iterations. The trajectory for Newton's method
is illustrated in Figure P9.6.

T
/\ \‘\
5 /}

Figure P9.6 Newton’s Method Trajectory for Problem P9.4

. et & s drm Al s D AR - i B R Pl At e Ao el et O fa

Solved Problems

P95 Compare the performance of Newton's method and steepest de-
scent on the following function:

F(x) = %xr[_il “ll]x.

o-f]

Recall that this funetion is an example of a stationary valley (see Eq. (8.59)
and Figure 8.9). The gradient is

Start from the initial guess

VF(x) = Ax+d = ’:]l "1le

and the Hessian matrix is
veF(x) = A = | 71|,
-11
Newton’s method is given by
-
X = XA 8

Note, however, that we cannot actually perform this algorithm, because the
Hessian matrix is singular. We know from our discussion of this function
in Chapter 8 that this function does not have a strong minimum, but it does
have a weak minimum along the line x, = x,.

What about steepest descent? If we start from the initial guess, with learn-
ing rate o = 0.1, the first two iterations will be

N Rt
R L

9.31

© o ek e e - G e w mamead s A Rk e

9 Performance Optimization

The complete trajectory is shown in Figure P9.7. This is a case where the
steepest descent algorithm performs better than Newton’s method. Steep-
est descent converges to a minimum point (weak minimum), while New-
ton’s method fails to converge. In Chapter 12 we will discuss a technique
that combines steepest descent with Newton’s method, to evercome the
problem of singular (or almest singular) Hessian matrices.

N e

-

s N ’
s Ay
- P

Figure P9.7 Steepest Descent Trajectory for Problem P9.5 with o = 0.1

P96 Consider the following function:
Fix) = x?+ X x,— t?xi
i» Perform one ite];-ation of Newton’s method from the initial
guess x, = [1]] .

it. Find the second-order Taylor series expansion of F (x)
about x,. Is this quadratic function minimized at the point
x, found in part (i)? Explain.

i. The gradient of F(x} is

d

=—F (%) 2 2
VF(x) = B;‘, _ 3xl+x2—121|x2 ,

ZF(x) X, =250

ox,

and the Hessian matrix is

Solved Problems

6x, - 21’: 1-4xx,

ViF(x) =

1-4xx, —21?

If we evaluate these at the initial guess we find

8= VF(,_, = H,

_ _ 14 -
A, = V?F(x) |x=xu = L’ _}.
The first iteration of Newton’s method is then
-l
-1 | 4 -3 2 0.5882
X =X,-A = - = .
g e R

ii. From Eq. (9.40), the second-order Taylor series expansion of F(x)
about x,, is

F(x) = F(3g+Axg) = F (%) +g0A%, + %AngﬂAxo .

If we substitute the values for x,,, g, and A, we find

SRR o B A R

This can be reduced to

F(x)=-2+ [1 4]x+%xr[4 _3Jx.

This function has a stationary point at x, . The question is whether or not
the stationary pointis a strong minimum., This can be determined from the
eigenvalues of the Hessian matrix. If both eigenvalues are positive, it is a
strong minimum. If both eigenvalues are negative, it is a strong maximum.
If the two eigenvalues have opposite signs, it is a saddle point. In this case
the eigenvalues of A; are

L =524 and A, = -3.24.

9 Performance Optimization

Therefore the quadratic approximation to F(x) at x, is not minimized at
X, , since it is a saddle point. Figure P9.8 displays the contour plots of F (x)
and its quadratic approximation.

This sort of problem was also illustrated in Figure 9.8 and Figure 9.9. New-
ton's method does locate the stationary point of the quadratic approxima-
tion of the function at the current guess. It does not distinguish between
minima, maxima and saddle points.

T3 (77T

'/// MR
(fe

_ W,

Figure P9.8 One Iteration of Newton’s Method from x, = [I I} r

a

b

“b
.

Repeat Problem P9.3 (i) using the conjugate gradient algorithm.
Recall that the function to be minimized was

F(x) = 025+, 1]x+;xr[120 ﬂ

The gradient at x,, is

To minimize along a line, for a quadratic function, we can use Eq. (8.31);

Solved Problems

. [10 5:[{'10]
8Py _ -3 = 2125 _ 6006
BoAp, L1o-gJ[10 [0 1300

2 4| -5

Therefore the first iteration of conjugate gradient will be

X, = Xo+ Oy = H +0.0962{'_150] = [ggfj

0 =

Now we need te find the second search direction from Eq. (9.60). This re-
quires the gradient at x, :

g = VF(y| = (102][0038, -2 _ |05
x=% |2 4los19] |-1] [nis4

We can now find f,:

_0.577
ae [-10577 -3.846) [0 54]
ﬂ] = TDg[= . = liggs = 0.0133,
g 1
Bofo [10 5] [j

uging the method of Polak and Ribiére (Eq. (9.63)). (The other two methods
for computing $, will produce the same results for a quadratic function.
You may want to try them.) The second search direction: is then computed

from Eq. (9.60):

0577 -10| _ | 0.444
- —g +Bp, = +00m33|710 < .
P =~ Pk [1 154} [vs} [—1.220]

From Eq. (9.31), the learning rate for the second iteration will be

o
[-0.577 1.154]{0 }

a = L0 1664 5ege
L T
10 2| [0444

[0.444 —1.220] L 4] LZNJ

The second step of conjugate gradient is therefore

9 Performance Optimization

X, = x,+a,p, = |00, g2ggg| 0444} _ 101667
0519 1220 |0.1667)°

As expected, the minimum is reached in two iterations. The trajectory is il-

lustrated in Figure P9.9,
3--IIII -—7——-‘--- . —
AN ; N
' ‘ ' \X\\ \\
" ll' ll'|I I=II lul \ﬁ \III |'||I '
It l.\ \ \ b J| | \
\ \,\ .
1 \\ \\\ . }
4_“___\\ ,:izzzifiHAE

Figure P9.9 Conjugate Gradient Trajectory for Problem P9.7

P98 Show that conjugate vectors are independent.

Suppose that we have a set of vectors, {p,.p,, ... ,p,_,} , which are conju-
gate with respect to the Hessian matrix A . If these vectors are dependent,
then, from Eq. (5.4), it must be true that

a-1

zajp_, =0,

j=0

for some set of constants ag,a), ... ,a,_,,at least one of which is nonzero.
If we multiply both sides of this equation by p,tA we obtain

n—1 n-1
pIA Yap = Y ajp:Apj = akp:-Apk =0,
j=0 j=0
where the second equality comes from the definition of conjugate vectorsin
Eq. (9.52).If A is positive definite {(a unique strong minimum exists), then
P, Ap, must be strictly positive. This implies that ¢, must be zero for all
k. Therefore conjugate directions must be independent.

Epilogue

Epilogue

In this chapter we have introduced three different optimization algo-
rithms: steepest descent, Newton's method and conjugate gradient. The ba-
sis for these algorithms is the Taylor series expansion. Steepest descent is
derived by using a first-order expansion, whereas Newton’s method and
conjugate gradient are designed for second-order (quadratic) functions.

Steepest descent has the advantage that it is very simple, requiring calcu-
lation only of the gradient. It is also guaranteed to converge to a stationary
peint if the learning rate is small enough, The disadvantage of steepest de-
scent is that training times are generally longer than for other algorithms.
This is especially true when the eigenvalues of the Hessian matrix, for qua-
dratic functions, have a wide range of magnitudes.

Newton's method is generally much faster than steepest descent. For qua-
dratic functions it will locate a stationary point in one iteration. One disad-
vantage is that it requires caleulation and storage of the Hessian matrix,
as well as its inverse. In addition, the convergence properties of Newton's
method are quite complex. In Chapter 12 we will introduce a modification
of Newton’s method that overcomes some of the disadvantages of the stan-
dard algorithm.

The conjugate gradient algorithm is something of a compromise between
steepest descent and Newton's method. It will locate the minimum of a qua-
dratic function in & furite number of iterations, but it does not require cai-
culation and storage of the Hessian matrix. It is well suited to problems
with large numbers of parameters, where it is impractical to compute and
store the Hessian,

Inlater chapters we will apply each of these optimization algerithms to the
training of neural networks. In Chapter 10 we will demonstrate how an ap-
proximate steepest descent algorithm, Widrow-Hoff learning, can be used
to train linear networks, In Chapter 11 we generalize Widrow-Hoff learn-
ing to train multilayer networks, In Chapter 12 the conjugate gradient al-
gorithm, and a variation of Newton's method, are used to speed up the
training of multilayer networks.

8.37

9 Performance Optimization

Further Reading

8-38

[Batt92]

[Brog91)

[Gills1]

[Himm72]

[Scal85}

R. Battiti, “First and Second Order Methods for Learning:
Between Steepest Descent and Newton’s Method,” Neural
Computation, Vol. 4, No. 2, pp. 141-166, 1992,

This article reviews the latest developments in uncon-
strained optimization using first and second derivatives.
The techniques discussed are those that are most suitable
for neural network applications.

W. L. Brogan, Modern Control Theory, 3rd Ed., Englewood
Cliffs, NdJ: Prentice-Hall, 1991.

This is a well-written book on the subject of linear systems.
The first half of the book 15 devoted to linear algebra. It also
has good sections on the solution of linear differential equa-
tions and the stability of linear and nonlinear systems. It
hag many worked problems.

P. E. Gill, W. Murray and M, H. Wright, Practical Optimi-
zation, New York: Academic Press, 1981.

As the title implies, this text emphasizes the practical im-
plementation of optimization algerithms. It provides moti-
vation for the optimization methods, as well as details of
implementation that affect algorithm performance.

D. M. Himmelblau, Applied Nonlinear Programming, New
York: McGraw-Hill, 1572,

This is a comprehensive text on nonlinear optimization. It
covers both constrained and unconstrained optimization
problems, The text is very complete, with many examples
worked out in detail.

L. E. Scales, Introductior. to Non-Linear Optimization,
New York: Springer-Veriag, 1985,

A very readable text describing the major optimization al-
gorithms, this text emphasizes methods of optimization
rather than existence theorems and proofs of convergence.
Algorithms are presented with intuitive explanations,
along with illustrative figures and examples. Pseudo-code
is presented for most algorithms.

Exercises

Exercises

E9.1 InProblem P9.1 we found the maximum stable learning rate for the steep-
est descent algorithm when applied to a particular quadratic function. Will
the algorithm always diverge when a larger learning rate is used, or are
there any conditions for which the algorithm will still converge?

E9.2 We want to find the minimum of the following funetion:

F(x) = %XTB ”ﬂn [_1 —ﬂx.

i. Sketch a contour plot of this function.

ii. Sketch the trajectory of the steepest descent algor]irthm on the con-
tour plot of part (i), if the initial guessis x, = g o] . Assumea very
small learning rate is used.

iii. Perform two iterations of steepest descent with learning rate
o=01.

iv. What is the maximum stable learning rate?

v. What is the maximum stable learning rate for the initial guess giv-
en in part (i1)? (See Exercise E9.1.)

V242
ans J vi. Write a MATLAR M-file to implement the steepest descent algo-
4 rithm for this problem, and use it to check your answers to parts (i).
through (v).

E9.3 For the quadratic function
F(x) = x 4253,
i. PFind the minimum of the function along the line
x=|1+all.
1 -2

fi. Verify that the gradient of F (x} atthe minimum point from part (i)
is orthogonal to the line along which the minimization occurred.

9 Performance Optimization

E94 For the functions given in Exercise E8.3 perform two iterations of the
NPT steepest descent algo)rithm with linear minimization, starting from the ini-
= f tial guess x;, = [1 1] . Write MATLAB M-files to check your answer.
|
E9.5 Consider the following function
F(X) = [1+(x,+x,-5) 7 [1+ (3x,-2x,)])
i. Perform one 1terat110n of Newton's method, starting from the initial
guess X, = (10 1] -
T
il. Repeat part (i), starting from the initial guess x; = [2 2} .

iii. Find the minimum of the function, and compare with your results
from the previous two parts.

242
Ez " E96 Recall the function presented in Exercise E8.5. Write MATLAB M-files to
il implement the steepest descent algorithm and Newton’s method for that
function. Test the performance of the algorithms for various initial guesses.

E9.7 Repeat Exercise E9.4 using the conjugate gradient algorithm. Use each of
the three methods (Eq. (9.61)-Eq. (9.63)) at least once.

E98 Prove or disprove the following statement:

If p, is conjugate to P and p, is conjugate to p,,
then p, is conjugate to p,.

10 widrow-Hoff Learning

Objectives

Objectives 101
Theory and Examples 10-2
ADALINE Network 10-2
Single ADALINE 10-3
Mean Square Error 10-4
LMS Algorithm 10-7
Analysis of Convergence 10-9
Adaptive Fiitering 10-13
Adaptive Noise Cancellation 10-15
Echo Cancellation 10-21
Summary of Results 10-22
Solved Problems 10-24
Epilogue 10-40
Further Reading 10-41
Exercises 10-42

In the previous two chapters we laid the foundation for performance learn-
ing, in which a network is trained to optimize its performance. In this chap-
ter we apply the principles of performance learning to a single-layer linear
neural network.

Widrow-Hoff learning is an approximate steepest descent algorithm, in
which the performance index is mean square error. This algorithm is im-
portant to our discussion for two reasons. First, it is widely used today in
many signal processing applications, several of which we will discuss in
this chapter. In addition, it i the precursor to the backpropagation algo-
rithm for multilayer networks, which is presented in Chapter 11

101

10 Widrow-Hoff Learning

Theory and Examples

Bernard Widrow began working in neural networks in the iate 1950, at
about the same time that Frank Rosenblatt developed the perceptron
learning rule. In 1960 Widrow, and his graduate student Marcian Hoff, in-
troduced the ADALINE (ADAptive Linear NEuron) network, and a learn-
ing rule which they called the LMS (Least Mean Square) algorithin
[WiHo60],

Their ADALINE network is very similar to the perceptron, except that its
transfer function is linear, instead of hard-limiting, Both the ADALINE
and the perceptron suffer from the same inherent limitation: they can only
solve linearly separable problems (recali our discussion in Chapters 3 and
4). The LMS algorithm, however, is more powerful than the perceptron
learning rule. While the perceptron rule is guaranteed to converge to a so-
Iution that correctly categorizes the training patterns, the resulting net-
work can be sensitive to noise, since patterns often lie close to the decision
boundaries. The LMS algorithm minimizes mean square error, and there-
fore tries to move the decision boundaries as far from the training patterns
as possible.

The LMS algorithm has found many more practical uses than the percep-
tron learning rule. This is especially true in the area of digital signal pro-
cessing. For example, most long distance phone lines use ADALINE
networks for echo cancellation. We will discuss these applications in detail
later in the chapter.

Because of the great success of the LMS algorithm in signal processing ap-
plications, and because of the lack of success in adapting the algorithm to
multilayer networks, Widrow stopped work on neural networks in the early
1960s and began to work full time on adaptive signal processing. He re-
turned to the neural network field in the 1980s and began research on the
use of neural networks in adaptive control. using temporal hackpropaga-
tion, a descendant of his original LMS algorithm.

ADALINE Network

10-2

The ADALINE network is shown in Figure 10.1. Notice that it has the
same basic structure as the perceptron network we discussed in Chapter 4.
The only difference is that it has a linear transfer function.

ADALINE Network

nput Linear Neuron

X1
§

R
/. J

a = purelin(Wp+b)
Figure 10.1 ADALINE Network
The output of the network is given by
a = purelin{(Wp+b) = Wp+b. (10.1)

Recall from our discussion of the perceptron network that the ith element
of the network output vector can be written

a, = purelin(n) = purefin(l.wrp +h) = iwrp+bi, (102}

where w is made up of the elements of the ith row of W:

(10.3)

Single ADALINE

To simplify our discussion, let’s congider a single ADALINE with two in-
puts. The diagram for this network is shown in Figure 10.2.

The output of the network is given by

|

a = purelin{n) = pureﬁn{lwrp+b} = lwrp+b

(10.4)

T
¥ p+b= wl_]pl+w1’2p2+b.

10-3

10 Widrow-Hoff Learning

Inputs Two-Input Neuron

a = purelin(Wp+b)

Figure 10.2 Two-Input Linear Neuron

You may recall from Chapter 4 that the perceptron has a decision bound-
ary, which is determined by the input vectors for which the net input » is
zero. Now, does the ADALINE also have such a boundary? Clearly it does.
If we set # = 0 then]wrp + & = 0 specifies such a line, as shown in Figure
10.3.

a<l

Figure 10.3 Decision Boundary for Two-Input ADALINE

The neuron output is greater thar 0 in the gray area, In the white area the
output is less than zero. Now, what does this imply about the ADALINE?
It says that the ADALINE can be used to classify objects into two catego-
ries. However, it can do so only if the objects are linearly separable. Thus,
in this respect, the ADALINE hae the same limitation as the percepiron.

Mean Square Error

Now that we have examined the characteristics of the ADALINE network,
we are ready to begin our development of the LMS algorithin. As with the
perceptron rule, the LMS algorithm is an example of supervised training,
in which the learning rule is provided with a set of examples of proper
network behavior;

10-4

Mean Square Error

Mean Square Error

Dot (b s (Ppigh (10.5)

where p, is an input to the network, and t_ is the corresponding target
output. As each input is applied to the network, the network output is com-
pared to the target.

The LMS algorithm will adjust the weights and biases of the ADALINE in
order to minimize the mean square error, where the error is the difference
between the target output and the network output. In this section we want
to digcuss this performance index. We will consider first the single-neuron
case.

To simply our development, we will lump all of the parameters we are
adjusting, including the bias, into one vector:

x= |1, (10.6)
b

Similarly, we include the bias input “1” as a component of the input vector

PJ : {10.7)

L

Now the network output, which we usually write in the form
T
a= wptbh, (10.8)

can be written as
6=x1z. (10.9)

This allows us to conveniently write out an expression for the ADALINE
network mean square error:

Fix)= E[] =E[(1-a)°] = E[(t-xT2)"], (10.10)

where the expectation is taken over all sets of inputiarget pairs. (Here we
use E[] to denote expected value. We use a generalized definition of ex-

pectation, which becomes a time-average for deterministic signals. See
[WiSt85].} We can expand this expression as follows:

Fix)= E[r2—2txrz +xTzzrx]
) {10.11)
= E[/1-2xTE[1z} + xTE[z2 | x.

105

10 Widrow-Hoff Learning

This can be written in the following convenient form:
F(x) = c-2x"h+xRx, (10.12)
where
¢= E[f],h=E[r) andR = E[zZ'] . (10.13)

Here the vector h gives the cross-correlation between the input vector and

Correlation Matrix its associated target, while R is the input correlation matrix. The diagonal
elements of this matrix are equal to the mean square values of the ele-
ments of the input vectors.

Take a close look at Eq. (10.12), and compare it with the general form of the
quadratic function given in Eq. (8.35) and repeated here:

F(x) =c+ d'x+ %xTAx . {10.14)

We can see that the mean square error performance index for the ADA-
LINE network is a quadratic function, where

d = -2h and A = 2R. (10.15)

This is a very important result, because we know from Chapter 8 that the
characteristics of the quadratic function depend primarily on the Hessian
matrix A . For example, if the eigenvalues of the Hessian are all positive,
then the function will have one mnigue global minimum,

In this case the Hessian matrix is twice the correlation matrix R, and it
can be shown that all correlation matrices are either positive definite or
positive semidefinite, which means that they can never have negative
eigenvalues, We are left with two possibilities. If the correlation matrix has
only positive eigenvalues, the performance index will have one unique glo-
bal minimum (see Figure 8.7). If the correlation mairix has some zero
eigenvalues, the performance index will either have a weak minimum (see
Figure 8.9) or no minimum (see Problem P8.7), depending on the vector

d = -2h.

Now let’s locate the stationary point of the performance index. From our
previous discussion of quadratic functions we know that the gradient is

VF(x) = V(c+drx+%xTAx] =d+Ax = —2h+2Rx. (10.16)

The stationary peint of F (x) can be found by setting the gradient equal to
Zero:

-Zh+2Rx = 0. (10.17)

10-6

LMS Algorithm

Therefore, if the correlation matrix is positive definite there will be a
unique stationary point, which will be a strong minimum:

x* = R"'h. (10.18)

It is worth noting here that the existence of a unique solution depends only
on the correlation matrix R. Therefore the characteristics of the input vec-
tors determine whether or not a unique solution exists.

LMS Algorithm

Now that we have analyzed our performance index, the next step is to de-
sign an algorithm to locate the minimum point. If we could calculate the
statistical quantities h and R, we could find the minimum point directly
from Eq. (10.18). If we did not want to calculate the inverse of R, we could
use the steepest descent algorithm, with the gradient calculated from Eq.
(10.16). In general, however, it is not desirable or convenient to calculate h
and R. For this reason we will use an approximate steepest descent algo-
rithm, in which we use an estimated gradient.

The key insight of Widrow and Hoff was that they could estimate the mean
square error F(x) by
Fx) = 10 -a(®)’ =0, (10.19)

where the expectation of the squared error has been replaced by the
squared error at iteration k. Then, at each iteration we have a gradient es-
timate of the form:

$F(x) = Vel (k). {10.20)

The first R elements of Ve’ (k) are derivatives with respect to the network
weights, while the (& + 1} st element is the derivative with respect to the
bias. Thus we have

2 2O deky . . _
[Ve’ (B)]; = oy " e (b 3, for j=1,2,..,R, (10.21)
and
2
V¢ () = 28 = 20 iy %), (1022)

Now consider the partial derivative terms at the ends of these equations.
First evaluate the partial derivative of e (k) with respect to the weight. -
W

107

10 Widrow-Hoff Learning

10-8

de(ky _olt(k)-a(k)] . @ Wt
T = T = - (WP +0)]

L 1LJ

3 R
= 3 _[r(k) -{ 3w, P, () +bﬂ

) i=1

v

(10.23)

where p, (k) isthe ith element of the input vector at the kth iteration. This
simplifies to

o

e (ky _
o P, (k) . (10.24)

In a similar way we can obtain the final element of the gradient:

de(k) _ _; {10.25)

Note that p ; (k) and 1 are the elements of the input vector z, so the gra-
dient of the squared error at iteration & can be written

VF(x) = Vé' (k) = <2e ()2 (k) . (10.26)

Now we can see the heauty of approximating the mean square error by the
single error at iteration &, asin Eq. (10.19). Te calculate this approximate
gradient we need only multiply the error times the input.

This approximation to VF (x) can now be used in the steepest descent al-
gorithm. From Eq. (9.10} the steepest descent algorithm, with constant
learning rate, is

X = % OVFQ)| (10.27)

If we substitute VF (x) , from Eq. (10.26), for VF (x) we find

X, = X, +20e(k)z(k), {10.28)
or
W(k+1) = w(k) +2ae (k)yp(k), {10.29)
and
b{k+1) = b(k) +2ae (k). (10.30)

These last two equations make up the least mean square (LMS) algorithm.
This is alse referred to as the delta rule or the Widrow-Hoff learning algo-

rithm.

LM Algorithm

Analysis of Convergence

The preceding results can be modified to handle the case where we have
multiple outputs, and therefore mul{iple neurons, as in Figure 10.1. To up-
date the ith row of the weight matrix use

W(k+1) = w(k) +20e, () p) , {10.31)

where ¢, (k) is the ith element of the error at iteration & . To update the ith
element of the bias we use

bik+1) = b, (k) +20¢,(k) . (10.32)
The LMS algorithm can be written conveniently in matrix notation:
Wik+1) = Wk +20e()p (1), (10.33)
and
bik+1) =b{k) +20ek) . (10.34)

Note that the error e and the bias b are now vectors.

Analysis of Convergence

The stability of the steepest descent algorithm was investigated in Chapter
9. There we found that the maximum stable learning rate for quadratic
functionsis @ <2/, where X, isthe largest eigenvalue of the Hessian
matrix. Now we want to investigate the convergence of the LMS algorithm,
which is approximate steepest descent. We will find that the result is the

same.

Tobegin, note that in the LMS algorithm, Eq. (10.28), x, is a function only
ofz(k-1),2(k-2),...,2(0) . If we assume thet successive input vectors
are statistically independent, then x; is independent of z () . We willshow
in the following development that for stationary input processes meeting

this condition, the expected value of the weight vector will converge to

x* = R'h. (10.35)

This is the minimum mean square error {€ [ei} } solution, as we saw in
Eq. (10.18).

Recall the LMS algorithm (Eq. (10.28)):
X, = X, + 20 (k)7 (k) . (10.36)

Now take the expectation of both sides:
Elx,,,] = E[x,) +2aE[e(R)z (k)] . (10.37)

10-9

10 Widrow-Hoff Learning

10-10

Substitute 7 (k) ~x[z (k) for the error to give
E[x,,,) = E[x,] +2a{E[1(0z(K)) -EL(xz(k))z(k)]} . (10.38)
Finally, substitute z (£)x, for x,2 (k) and rearrange terms to give
Elx,,,) = E[x] +20{E[t2(b)] -E[(M2 ())x,]}. (10.39)

Since x, i8 independent of z (k) :

E(x,,,] = E[x] +20{b-RE[x,]}. (10.40)
This can be written as
E[x,,;] = I-2aR]E[x,] + 2ch. (10.41)

This dynamic system will be stable if all of the eigenvalues of [I-2aR)]
fall inside the unit circle (see [Brog91]). Recall from Chapter 9 that the
eigenvalues of [I-2aR] willbe 1 - 2a};, where the A, arethe eigenvalues
of R . Therefore, the system will be stable if

1-204,>~1. (10.42)

Since A, >0, 1-2aA, is always less than 1. The condition on stability is
therefore

a<t/A; foralli, (10.43)

or

O<u<l/A,,,. 110.44)

Note that this condition is equivalent to the condition we derived in Chap-
ter 9 for the steepest descent algorithm, although in that case we were us-
ing the eigenvalues of the Hessian matrix A . Now we are using the
eigenvalues of the input correlation matrix R. (Recall that A = 2R.)

If this condition on stability is satisfied, the steady state solution is
E[x,) = [I-20R] E[x,} +2ch, (10.45)

ar

Elx,] = R'h = x*. (10.46)

-— - W a e e UL v reamahe gl

Analysis of Convergence

Thus the LMS solution, obtained by applying one input vector at a time, is
the same as the minimum mean square error solution of Eq. (10.18).

To test the ADALINE network and the LMS algorithm consider again the
apple/orange recognition problem originelly discussed in Chapter 3. For
simplicity we will assume that the ADALINE network has a zero hias.

The LMS weight update algorithm of Eq. (10.29) will be used to calculate
the new weights at each step in the network training:

Wk+1) = W(k) +2ce(k)p (). (10.47)

First let’s compute the maximum stable learning rate o . We can get such
a value by finding the eigenvalues of the input correlation matrix. Recall
that the orange and apple vectors and their associated targets are

1 1
P = (-1 = [-1] p=| 1hh=f (10.48)
-1 -1

If we assume that the input vectors are generated randomly with equal
probability, we can compute the input correlation matrix;

. 1_.r 1 r
R=E[pp]= AP "'il’zpz
1 10-1

1
=%-1[1-1-1]+% ff11-1=101 of-
| -1 -10 1

(10.49)
The eigenvalues of R are
A =10 A=00, A;=20. (10.50}
Thus, the maximum stable learning rate is
A< = 2= 05. (10.51)

A 20
To be conservative we will pick & = 0.2. (Note that in practical applica-
tions it might not be practical to calculate R, and o« could be selected by
trial and error. Other techniques for choosing o are given in [WiSt85].)

We will start, arbitrarily, with all the weigbts set to zero, and then will ap-
ply inputs p,, p,, p,, P, etc., in that order, calculating the new weights
after each input is presented. (The presentation of the weights in alternat-

10-11

10 Widrow-Hoff Learning

106-12

ing order is not necessary. A random sequence would be fine.) Presenting
p, , the orange, and using its target of -1 we get

1
a(0)= W()p(0)= W(O)p=[poq|-1]=0, (10.52)
-1

and
e(0) = 1{0) -a (0= -a(0)=-1-0=-1. (10.53)
Now we can calculate the new weight matrix:

W(1) = W{(0) +20e(0)p' (0)

H
1 (10.54)

=looo +2002 (-1) 1| = 4 0404 -
: -1

According to plan, we will next present the apple, p,, and its target of 1.
|
a(D= W p(1)= W()p= [-04 04 04]| 1|=-04, (1055)
~1
and so the error is
e(l) =1(1)-a(=t,-a(l)= 1- (-04)= 14, (10.56)
Now we calculate the new weights:
W(2) = W(l) +2ae(D)p (1)

i (10.57)

= [040404)+2002 (19| 1| = [n.16 0.96 -0.16] -
-1

Next we present the orange again:

1
a(2)= W(2)p(2)= W(2)p,= [0.16 0.96 0.6} |-1|= 064. (10.58)
-1

Adaptive Filtering

The error is

e(2) = 1(2) ~a(2)= t,-a(2= -1~ (-064)= -036. (10.59)
The new weights are
W(3) = W(2) +20e(2)p (D) = 0016 11040 -0.0160]- 110.60)
If we continue this procedure, the algorithm converges to
W(=) =010 (10.61)

Compare this result with the result of the perceptron learning rule in
Chapter 4. You will notice that the ADALINE has produced the same deci-
sion boundary that we designed in Chapter 3 for the apple/orange problem.
This boundary falls halfiway between the two reference patterns. The per-
ceptron rule did not produce such a boundary. This is because the percep-
tron rule stops as soon as the patterns are correctly classified, even though
some patterns may be close to the boundaries. The LMS algorithm mini-
mizes the mean square error. Therefore it tries to move the decision bound-
aries as far from the reference patterns as possible.

Adaptive Filtering

Tapped Delay Line

As we mentioned at the beginning of this chapter, the ADALINE network
has the same major limitation ag the perceptron network; it can ouly solve
linearly separable problems. In spite of this, the ADALINE has been much
more widely used than the perceptron network. In fact, it is safe to say that
it is one of the most widely used neural networks in practical applications.
One of the major application areas of the ADALINE has been adaptive fil-
tering, where it is still used extensively. In this section we will demonstrate
an adaptive filtering example.

In order to use the ADALINE network as an adaptive filter, we need to in-
troduce a new building block, the tapped delay line. A tapped delay line
with ® outputs is shown in Figure 10.4.

The input signal enters from the left. At the output of the tapped delay line
we have an R -dimensional vector, consisting of the input signal at the cur-
rent time and at delays of from | to R — | time steps.

10-18

10 Widrowe-Hoff Learning

y&) o p pilk) = y(k)

—p palk)=y(k-1)

l ses Icl‘_T_IUI‘_.

T—IU

—p palk) = yk-R+ D)

Figure 10.4 Tapped Delay Line

If we combine a tapped delay line with an ADALINE network, we can cre-
Adaptive Filter ate an adaptive filter, as is shown in Figure 10.5. The output of the filter is

given by
R
a(k) = purelin(Wp+b) = Y w y(k-i+1) +b. (10.62)
=1
Inputs ADALINE
Y4 A

k)

—/ \ J

a(k) = purelin(Wp(k)+b)

Figure 10.5 Adaptive Filter ADALINE

10-14

I
—le-\.-

Adaptive Filtering

If you are familiar with digital signal processing, you will recognize the net-
work of Figure 10.5 as a finite impulse response (FIR) filter [WiSt85]. It is
beyond the scope of this text to review the field of digital signal processing,
but we can demonstrate the usefulness of this adaptive filter through a
simple, but practical, example,

Adaptive Noise Cancellation

An adaptive filter can be used in a variety of novel ways. In the following
example we will use it for noise cancellation. Take some time to look at this
example, for it is a little different from what you might expect. For in-
stance, the output “errer” that the network tries to minimize is sctually an
approximation to the signal we are trying to recover!

Let's suppose that a doctor, in trying to review the electroencephalogram
(EEG) of a distracted graduate student, finds that the signal he would like
to see has been contaminated by a 60-Hz noise source. He is examining the
patient on-line and wants to view the best signal that can be obtained. Fig-
ure 10.6 shows how an adaptive filter can be used to remove the contami-
nating signal.

EEG Signal Contaminated Restored Signal
{mndom} 5 I Signal)

"Emor

¥ [4]

Firtar

60-Hz Y
Neisa Source
Adagtive Filter Adiusts to Minimize Emor (and in doing
this removes 60-Hz noise from contaminated signal}

S e

<&
4

Figure 10.6 Noise Cancellation System

As shown, a sample of the original 60-Hz signal is fed to an adaptive filter,
whose elements are adjusted so as to minimize the “error” ¢ . The desired
output of the filter is the contaminated EEG signal . The adaptive filter
will do its best to reproduce this contaminated signal, but it only knows
about the original noise source, v. Thus, it can only reproduce the part of ¢
that is linearly correlated with v, which is m . In effect, the adaptive filter
will attempt to mimic the noise path filter, so that the output of the filter

10-15

10 Widrow-Hoff Learning

10-16

a will be cloge to the contaminating noise m . In this way the error ¢ will
be close to the original uncontaminated EEG signal s.

In this simple case of a single sine wave noise source, a neuron with two
weights and no bias is sufficient to implement the filter. The inputs to the
filter are the current and previous values of the noise source. Such a two-
input filter can attenuate and phase-shift the noise v in the desired way.
The filter is shown in Figure 10.7.

Inputs ADALINE
N/ B

\—/ J

alk) = wy, vik) + wy vk - 1)

Figure 10.7 Adaptive Filter for Noise Cancellation
We can apply the mathematical relationships developed in the previous
sections of this chapter to analyze this system, In order to do so, we will

first need to find the input correlation matrix R and the input/target cross-
correlation vector h:

R=[zz] and h = E{1z] . (10.63)

In our case the input vector is given by the current and previous values of
the noise source:

z(k) = [v (k)] (10.64)
y(k-1)

while the target is the sum of the current signal and filtered noise:
k) = s (k) +m(k) . (10.85)
Now expand the expressions for R and h to give

R=| EDV®] Ebv®vk-D]] (10.66)
Ev-1)vin] B0 (k-1

Adaptive Filtering

and

b [E(s (k) +m(R) v (B)]] (10.67)
EL(s () +m(k))v (k- 1]

To obtain specific values for these two quantities we must define the noise
signal v, the EEG signal 5 and the filtered noise m . For this exercise we
will assume: the EEG signal is a white (uncorrelated from one time step to
the next} random signal uniformly distributed between the values -0.2 and
+0.2, the noise source (60-Hz sine wave sampled at 180 Hz) is given by

vik) = L2 sm(z;fk) (10.68}

and the filtered noise that contaminates the EEG is the noise source atten-
uated by a factor of 10 and shifted in phase by ./2:

mik) = 0.12 sm(z—gk +’2‘) (10.69)

Now calculate the elements of the input correlation matrix R

EWV (] = 12): (s Z)) = 1205 =072, 070

3
EVik-D] = ED (B] = 072, (10.71)
3
1 2k C2m{k-1)
Elv(i)v(k-1)] =§E(l2sm)[1.2 smf)
ke (10.72)
= (1.2)30.5cos(33§) - 036
{where we have used some frigonometric identities).
Thus R is
—0 36 072

The terms of h can be found in a similar manner. We will consider the top
term in Fq. (10.87) first;

E({(stiy+m())v(B)] = Els(R)v(k)] +E[mB)v(K)]. (10.74)

1017

10 Widrow-Hoff Learning

10-18

Here the first term on the right is zero because (%) and v(k) areinde-
pendent and zero mean. The second term is also zero:

Elm{b)v(k)] = %i[mz SIn(%;E‘+g))(1zsln2;"‘) =0 (10.75)

Thus, the first element of h is zero.
Next consider the second element of h :

E[(s(R) +m(B)}v(k-1)] = E[s(k}v(k-1)}]
(10.76}

+Em{bvk-1)].

Ag with the first element of h, the first term on the right is zero because
s{k) and v(k-1) are independent and zero mean. The second term is
evaluated as follows:

3

i 2nk . w 2T (k-1))

Em®vik-1)] =3 ¥ | 012 sin| ==+ 1.2 sin==—~———~ .
3 ‘e ([3 2])[3)(10.77)

= -0.0624 .
Thus, h is
b = [0] (10.78)
-0.0624

The minimum mean square error solution for the weights is given by Eq.
(10.18}):

-1
x* = R“lh = 0.?2 -0‘36 0 = —0.0578 . (10.79)
-036 0.72]| |-0.0624 -0.1156

Now, what kind of error will we have at the minimum solution? To find this
error recall Eq. (10.12):
F(x) = c-2xXh+x Rx. {10.80)

We have just found x*, h and R, o we only need to find ¢:

¢ = E[F (D)1= E[(s(k) +m(R)°]
{10.81)

= E[sS ()] +2E[s (W) m (k)] +E[m° (8] .

Adaptive Filtering

The middle term is zero because s (k) and m (k) are independent and zero
mean. The first term, the expected value of the random signal, can be cal-
culated ag follows: .

0.2
o2
E(s (0] = 0—14 [£'ds = ﬂ&ﬁs}'m = 0.0133. (10.82)
-£2

The mean square value of the filtered noise is
2 1 ; n 2
Elm (k)] = 52 {0.12 sin(?+g)} = 0.0072, (10.83)
t=1

50 that
¢ = 0,0133 + 00072 = 0.0205. (10.84)

Substituting x* , h and R into Eq. (10.80), we find that the minimum mean
square error is

F(x*) = 00205 -2(0.0072) + 0.0072 = 0.0133. (10.85)

The minimum mean square error is the same as the mean square value of
the EEG signal. This is what we expected, since the “error” of this adaptive
noise canceller is in fact the reconstructed EEG signal.

Figure 10.8 illustrates the trajectory of the LMS algorithm in the weight
space with learning rate o = 0.1. The system weights w, and w| , in this
simulation were initialized arbitrarily to 0 and -2, respectively. You can
see from this figure that the LMS trajectory looks like a noisy version of
steepest descent.

NN
)]
N

Figure 10.8 LMS Trajectory for a = 0.1

10-19

10 Widrow-Hoff Learning

10-30

Note that the contours in this figure reflect the fact that the eigenvalues
and eigenvectors of the Hessian matrix (A = 2R) are

A = 216, z,= 1707 0 2072, = [TOTOT 0 (10.86)
0.7071 ~0.7071

(Refer back to our discussion in Chapter 8 on the eigensystem of the Hes-
sian matrix.)

If the learning rate is decreased, the LMS trajectory is smoother than that
shown in Figure 10.8, but the learning proceeds more slowly. If the learn-
ing rate is increased, the trajectory is more jagged and oscillatory. In fact,
as noted earlier in this chapter, if the learning rate is increased too much
the system does not converge at all. The maximum stable learning rate is
a<2/2.16 = (.526.

In order to judge the performance of our noise canceller, consider Figure
10.9. This figure illustrates how the filter adapts to cancel the noise. The
top graph shows the restored and original EEG signals. At first the re-
stored signal is a poor approximation of the original EEG signal. It takes
about 0.2 second (with & = 0.1) for the filter to adjust to give a reasonable
restored signal. The mean square difference between the original and re-
stored signal over the last half of the experiment was 0.002. This compares
favorably with the signal mean square value of 0.0133. The difference be-
tween the original and restored signal is shown in the lower graph.

2 Original and Asstorad EEG Signals

Y o5 04 0i5 B2 025 03 035 04 045 05

2 EEG Signal Minua Raatorad Signal

T
° “ I||UI‘|||VI|"'|I‘};."I V{\ V/\Jﬁw\mmu_/\j\/\,‘.w

A

|

A TTa05 G105 07 D0a5 03 036 0F 045 ob
Tima

Figure 10.9 Adaptive Filter Cancellation of Contaminating Noise

Adaptive Filtering

You might wonder why the error does not go to zero. This is because the
LMS algorithm is approximate steepest descent; it uses an estimate of the
gradient, not the true gradient, to update the weights. The estimate of the
gradient is a noisy version of the true gradient. This will cause the weights
to continue to change slightly, even after the mean square error is at the
minimum point. You can see this effect in Figure 10.8.

To experiment with the use of this adeptive noise cancellation fiiter, use the
Neural Network Design Demonstration Adaptive Noise Cancellation
{nnd10nc). A more complex noise source and actual EEG data are used in
the Demonstraiion Electroencephalogram Noise Canceliation (nnd10eeg).

Echo Cancellation

Another very important practical application of adaptive noise eancellation
is echo cancellation. Echoes are common in long distance telephone lines
because of impedance mismatch at the “hybrid” device that forms the junc-
tion between the long distance line and the customer’s local line. You may
have experienced this effect on international telephone calls.

Figure 10.10 illustrates how an adaptive noise cancellation filter can be
used to reduce these echoes [WiWi85)]. At the end of the long distance line
the incoming signal is sent to an adaptive filter, as well as to the hybrid de-
vice. The target output of the filter is the output of the hybrid. The filter
thus tries to cancel the part of the hybrid output that is correlated with the
input sighal — the echo,

Adaptive
Fitter

EJ

Trarsmissiont
Ling

+

Figure 10.10 Echo Cancellation System

10-21

10 Widrow-Hoff Leorning

Summary of Resuits

ADALINE

Input Linear Neuron

a = purelin(Wp+b)

Mean Square Error
F(x)=E[¢'] = E[(t-a)°] = E[(+-172)"]
F(x) =c-2xh+x'Rx,
c= E[f},h=E[t) andR = E{zz'}

Unique minimum, if it exists, is x* = R 'h.

Where x = I:l“] and z = Iﬂ
b

Wk+1) = Wk +20e(0)p (%)

LMS Algorithm

b(k+1) = b(k) +20e(k)

Convergence Point

-1
x*=R h

10-22

Summary of Resulls

Stable Learning Rate
Ocacl/h

. where & is the maximum eigenvalue of R

Tapped Delay Line

¥k} o— - pilk) = y(k)

D
D

@—) PRy = yk-R+1)
Adaptive Filter ADALINE
Inputs ADALINE

Ly pk)=y(k-1)

f N7 A

&)

atky = purelin(Wp(k) + b)

R
a(k) = pwrelin(Wp+b) = Y w, ylk-i+1) +b

=1

16023

10 Widrow-Hoff Learning

Solved Problems

P10.1 Consider the ADALINE filter in Figure P10.1.

Inputs ADALINE
r N7 N\

¥k

a(k) = purelin(Wp(k)+b)

Figure P10.1 ADALINE Filter
Suppose that

and the input sequence is
{r(£)} ={...,0,0,0,5-4,0,0,0,...}
where y(0) = 5, y(1) = -4, ete.
i. What is the filter output just priorto k = 0?
ii, What is the filter output from i =0 to k = 5?
iii. How long does y(0) contribute to the output?

i. Just prior to k = 0 three zeros have entered the filter, and the output is
Zero.

ii. At & = 0 the digit “5” has entered the filter, and it will be multiplied by
w, |, which has the value 2, so that 2 (0)= 10. This can be viewed as the
matrix operation:

1624

Solved Problems

y(0) 3
a(0) = Wp(0) = [“’1,1 W, o wm] y(-1}| = [2 -1 3] of = 10.
(-2) 0

Similarly, one can calculate the next outputs as

-4
a(l) = Wp(1) = 21 3| 5| =-13
0
0
a(2) = Wp(2) = [2-13][4 =19
5
0 0
a(3) =Wp3 =2 13| o= -12,2(4) =Wp(@ = [2_13[o|=0.
-4 0

All remaining outputs will be zero.

iii. The effects of y (0} last from & = 0 through & = 2, so it will have an
influence for three time intervals. This corresponds to the length of the im-
pulse response of this filter.

P10.2 Suppose that we wani to design an ADALINE network to distin-
guish between various categories of input vectors. Let us first try
the categories listed below:

Category: p, = [1 l]r andp, = [—ﬂr

T
CategoryIl: p, = [22} X

i. Can an ADALINE network be designed to make such a dis-
tinetion?

might be used?

Next consider a different set of categories.

ii. If the answer to part (i) is yes, what set of weights and bias 1 0

CategoryIIl: p, = [1 ﬂr and p, = [[- :[T

10-25

10 Widrow-Hoff Learning

T
Category IV: p, = [o -
jii. Can an ADALINE network be designed to make such a dis-
tinction?

iv. If the answer to part {iii) is yes, what set of weights and bias
might be used?

i. The input vectors are plotted in Figure P10.2.

o P

Figure P10.2 Input Vectors for Problem P10.1 (i)

The blue line in this figure is a decision boundary that separates the two
categories successfully. Since they are linearly separable, an ADALINE
network will do the job.

ii. The decision boundary passes through the points (3,0) and (0,3) . We
know these points to be the intercepts -b/w, |, and -b/w, , . Thus, a solu-
tion '

b=3,w,, =-l,w1‘2=—l,

is satisfactory. Note that if the output of the ADALINE is positive or zero
the input vector is classified as Category I, and if the output is negative the
input vector is classified as Category IL This solution also provides for er-
ror, since the decision boundary bisects the line between p, and p,.

fii. The input vecters to be distinguished are shown in Figure P10.3. The
vectors in the figure are not linearly separable, so an ADALINE network
cannot distinguish between them.

iv. As noted in part (iii), an ADALINE cannot do the job, so there are no
values for the weights and bias that are satisfactory.

10-26

Solved Problems

Figure P10.3 Input Vectors for Problem P10.1 (iii)

P10.3 Suppose that we have the following input/target pairs:

el e[et

These patierns occur with equal probahility, and they are used to
train an ADALINE network with no bias. What does the mean
square error performance surface look like?

First we need to calculate the various terms of the quadratic function. Re-
call from Eg. (10.11) that the performance index can be written as

F(x) = c-2x h+x Rx.
Therefore we need to calculate ¢, h and R.

The probability of each input occurring is 0.5, so the probability of each tar-
get is also 0.5. Thus, the expected value of the square of the targets is

¢ = E[f']= (1)°(05) + (-2 (05)=1.

In a similar way, the cross-correlation between the input and the target can
be caleulaied:

h = E[rz]= (0.5) (1) m +{05) (_1)[11]= H

Finally, the input correlation matrix R is

1327

10 Widrow-Hoff Learning

10-28

Elz2'] = p,p, (0.5) +p,p; (0.5)

oo [[o 0+ 2)o-1] - 19

Therefore the mean square error performance index is

R =

c-2%xh+x Rx

s dffo b df 15

2 2
1 —2w|,2+w]‘]+w|,2

F(x) =

The Hessian matrix of F{x) , which is equal to 2R, has both eigenvalues
at 2. Therefore the contours of the performance surface will be circular. To
find the center of the contours (the minimum point), we need to solve Eq.

(10.18):
= R'h < 10" [0 _ o
o1 |1 |1

Thus we have a minimum at w, | = 0, w, , = 1. The resulting mean
square error performance surface is shown in Figure P10.4.

7N\

Figure P10.4 Contour Plot of F{x) for Problem P10.3

Solved Problems

P10.4 Consider the system of Problem P10.3 again. Train the network us-

...... . 3 .

4

20 |
a<q

ing the LMS algorithm, with the initial guess set to zero and a
learning rate « = 0.25. Apply each reference pattern only once
during training. Draw the decision boundary at each stage.

Assume the input vector p, is presented first. The outpui:, error and new
weights are calculated as follows:

a(0) = pure!in[[[} d L‘H: 0,

e{0) =t(0)~a(0) =1-0=1,

W(l) = W(0) +2ae(0) p(0) = [00]"2(;1){”['] - E iﬂ

The decision boundary associated with these weights is shown to the left.
Now apply the second input vector:

a(l) = pure!in{B ;J [j}: 0,

e()) = 1(1)-a(l) =-1-0=-1,

W(2) = W(l) +2ae(l)p(l) = B %}2(}1](-1)[1 A=l

The decision boundary associated with these weights is shown to the left.
This boundary shows real promise. It is exactly halfway between the input
vectors. You might verify for yourself that each input vector, when applied,
yields its correct associated target. (What set of weights would be optimal
if the targets associated with the two input vectors were exchanged?)

P10.5 Now consider the convergence of the system of Problems P10.3 and

=2+2
ang =

P10.4. What is the maximum stable learning rate for the LMS algo-
rithm?

The LMS convergence is determined by the learning rate o , which should
not exceed the reciprocal of the largest eigenvalue of R . We can determine
this limit by finding these eigenvalues using MATLAB.

16-29

10 Widrow-Hoff Learning

Pl0.6

10-30

[V,D] = eig (R)
V=
1 0
0 1
D=
1 0
0 1

The diagonal terms of matrix D give the eigenvalues, 1 and 1, while the col-
umns of ¥ show the eigenvectors. Note, incidentally, that the eigenvectors
have the same direction as those shown in Figure P10.4.

The largest eigenvalue, 4, = 1, sets the upper limit on the learning rate
at

a<1/;\’max =1/1=1.

The suggested learning rate in the previous problem was 0.25, and vou
found {perhaps) that the LMS algorithm converged quickly, What do you
suppose happens when the learning rate is 1.0 or larger?

Consider the adaptive filter ADALINE shown in Figure P10.5. The
purpose of this filter is to predict the next value of the input signal
from the two previous values. Suppose that the input signalis a

stationary random process, with autocorrelation function given by

C,(n) = E[y(kyy(k+n)]
€,(0) =3,C,(1) =1, C, (D) = -1.

i. Sketoh the contour plot of the performance index (mean
BQUAre error),

fi. What is the maximum stable value of the learning rate (o)
for the LMS algorithm?

fii, Assume thata verysmall value is used for ¢ . Sketch the path
of the weights for theTLMS algorithm, starting with initial
guess W (0) = 'g.75 o . Explain your procedure for sketch-
ing the path.

Solved Problems

Inputs ADALINE

a(k) = wy, ¥k -1+ wy,yk-2)

Figure P10.5 Adaptive Predictor

i. Tosketch the contour plot we first need to find the performance index
and the eigenvalues and eigenvectors of the Hessian matrix, First note that
the input vector is given by

2(k) = p(k) = E(’“”].
{k-2)

Now consider the performance index. Recall from Eq. (10.12) that
F(x) = c-2xh+x Rx.

We can calculate the constants in the performance index as shown below:

¢= [(®)]= E[Y’ (})]= C,(0)= 3,

R=E[zzT]=EL y (k-1 y(k-ny{k-z)}
(k-1y(k=2) ¥ (k-2)

_ 16,0 ¢ {3 _:}
C,() €, |-13

h= B[y = £y W2 k=D G o
Wyk-2)] |c,@| |-1

The optimal weights are

10-31

10 Widrow-Hoff Learning
~1j_ (3/8 1/8|]-11_ |-1/2 .
-1 4/8 3/8]|-1 -1/2

VzF(x) =A=z2R= [6 _2:|.

-1
x* = R 'h= [3 _l]
-1 3

The Hessian matrix is

-2 6

Now we can get the eigenvalues:

6-4 - .2
-l = = A - 120+32= (A-8) (A-4).
[acua]=[04 2
Thus,
M=4, A=8.
Te find the eigenvectors we use
[A-aL¥ = 0.
FOI'?L]=4,
Gaee el
-2 2 -1
and for A, = 8,

-2 -2 -1
v, =0 Y, = .
B el
Therefore the contours of F(x) will be elliptical, with the long axis of each
ellipse elong the first eigenvector, since the first eigenvalue has the small-

est magnitude. The ellipses will be centered at x* . The contour plot is
shown in Figure P10.6.

10-32

Solved Problems

Figure P10.6 Error Contour for Problem P10.6

You might check your sketch by writing a MATLAB M-file to plot the con-
tours.

ii. The maximum stable learning rate is the reciprocal of the maximum
eigenvalue of R, which is the same s twice the reciprocal of the largest
eigenvalue of the Hessian matrix V'F(x) = A:

@ <2/h,,, = 2/8 = 0.25.

iii. The LMS algorithm is approximate ateepest descent, 8o the trajectory
for small learning rates will move perpendicular to the contour lines, as
shown in Figure P10.7.

Wiz o

Figure P10.7 LMS Weight Trajectory

10-38

10 Widrow-Hoff Learning

P10.7 The pilot of an airplane is talking intc a microphone in his cockpit.

The sound received by the air traffic controller in the tower is gar-
bled because the pilot’s voice signal has been contaminated by en-
gine noise that reaches his microphone. Can you suggest an
adaptive ADALINE filter that might help reduce the noise in the
signal received by the control tower? Explain your system,

The engine noise that has been inadvertently added to the microphone in-
put can be minimized by using the adaptive filtering system shown in Fig-
ure P10.8. A sample of the engine noise is supplied to an adaptive filter
through a microphone in the cockpit, The desired output of the filter is the
contaminated signal coming from the pilot’s microphone, The filter at-
tempts to reduce the “error” signal to a minimum. It can do this only by
subtracting the component of the contaminated signal that is linearly cor-
related with the engine noise (and presumably uncorrelated with the pilot’s
voice). The result is that a clear voice signal is sent to the control tower, in
spite of the fact that the engine noise got into the pilot’s microphone along
with his voice signal. (See [WiSt85] for discussion of similar noise cancella-
tion gystems.)

2 Contaminated Restored Signal
@ $ ' Signal e
-
Pilot Voice Error®
Signal
Adaptively Filterad
Contaminating Noise t¢ Cancel
Noisg Contamination
Moise Path
Filter

Y 1 | Adaptive ¢
Filter
Airplane Engine \
Noise Source

Figure P10.8 Filtering Engine Noise from Pilot’s Voice Signal

P10.8 This is a classification problem like that described in Problems

P4.3 and P4.5, except that here we will use an ADALINE network
and the LMS learning rule rather than the perceptron learning
rule, First we will describe the problem.

We have a classification problem with four classes of input vector.
The four classes are

Solved Problems

s e o -}
o et o3

Train an ADALINE network to solve this problem using the LMS
learning rule. Assume that each pattern occurs with probability
1/8, .

Let’s begin by displaying the input vectors, ag in Figure P10.9. The light
circles O indicate class 1 vectors, the light squares {] indicate class 2 vec-
tors, the dark circles @ indicate class 3 vectors, and the dark aquares Il
indicate class 4 vectors, These inpuat vectors can be plotted as shown in Fig-
ure P10.9,

i
e - ©
1
e ° L o
+— 1>
2
| o
m ¢+

Figure P10.9 Input Vectors for Problem P10.8

We will use target vectors similar to the ones we introduced in Problem
P4.3, except that we will replace any targets of 0 by targets of -1. (The per-
ceptron could ouly output 0 or 1.) Thus, the training set will be:

N R B S O
e () e [o[)
[(M= [[l

10.35

16 Widrow-Hoff Learning

Also, we will begin as in Problem P4.5 with the following initial weights

and biases:
W) = {1 "J,b(O} = H
01 1

Now we are almost ready to train an ADALINE network using the LMS
rule. We will use a learning rate of ¢ = 0.04 , and we will present the input
vectors in order according to their subscripts. The first iteration is

a(0) = purelin (W) p(0) +b(0)) = pureh‘n[{l O}H + HJ _ H
o1 |1 2

e(0) = t(0) -a(0) = [*IJ_H _ [—3}

-1 |2 -3

W(1) = W(0) +2ae(0)p (0)
) P 0} +2.(004) H (1] - [0.?6 -0.24]
01 -3 024 076

b(1} = b(0) +20e(0) = [1:[+2(0.04) {—3} - {0.?6}]
1 -3 076

The second iteration is

a{l) = purelin (W(1)p(1) +b(1})
- pure H,{[0.76 ~0.24 H . [0.76}] . [1 .04}
-0.24 0.76){2] (0.76 204

e(l) =t{ly-a(l) = [—4 _[1.04] - [-2_04}
-1 (204 -3.04

W(2) = W(1) +20e (1)p (1)

_ | 076 -024 L5 g4 {-2.04 [y 7] = | 03968 -05664
024 0.76 -3.04 ~0.4832 02736

10-36

P10.9

Solved Problems

b(2) =b(1)+20e(l) = [0‘76} +2(0.04) {‘2'04] - [&5963}
0.76 -3.04] [05168

If we continue until the weights converge we find

Wie) = | 0598800523y () - |00131)
0.1667 -0.6667 0.1667

The resulting decision boundaries are shown in Figure P10. 10. Compare
this result with the final decision boundaries ereated by the perceptron
learning rule in Problem P4.5 (Figure P4.7). The perceptron rule stops
training when all the patterns are classified correctly. The LMS algorithm
moves Lhe boundaries as far from the patterns as possible.

Figure P10.10 Final Decision Boundaries for Problem P10.8

Repeat the work of Widrow and Hoff on a pattern recognition
problem from their classic 1960 paper {WiHo80). They wanted to
design a recognition system that would classify the six patterns

TEE

Targets 60 0 -60

Figure P10.11 Patterns and Their Classification Targets

Patterns

10-37

10 Widrow-Hoff Learning

10-38

These patterns represent the letters T', G and F, in an original form
on the top and in a shifted form on the bottom. The targets for
these letters (in their original and shifted forms) are +80, 0 and -60,
respectively. (The values of 60, 0 and -60 were nice for use on the
face of a meter that Widrow and Hoff used to display their network
output.) The objective is to train a network so that it will classify
the six patterns into the appropriate T, G or F groups.

The blue squares in the letters will be assigned the value +1, and the white
squares will be assigned the value -1, First we convert each of the letters

into a single 16-element vector. We choose to do this by starting at the up-
per left corner, going down the left column, then going down the second col-
umn, ete. For example, the vector corresponding to the unshifted letter T is

T
Pr= 1ol =120 111111011111

We have such an input vector for each of the six letters.
The ADALINE network that we will use is shown in Figure P10.12.

input Linear Nevron

a = purelin(Wp+b)

Figure P10.12 Adaptive Pattern Classifier

{Widrow and Hoff built their own machine to realize this ADALINE, Ac-
cording to them, it was “about the size of a lunch pail.”)

Now we will present the six vectors to the network in a random sequence
and adjust the weights of the network after each presentation ugsing the
LMS algorithm with a learning rate of o = 0.03 . After each adjustment of
weights, all six vectors will be presenteqd to the network to generate their
outputs and corresponding errors. The sum of the squares of the errors will
be examined as a meagure of the quality of the network.

Figure P10.13 illustrates the convergence of the network. The network is
trained to recognize these six characters in about 60 presentations, or
roughly 10 for each of the possible input vectors,

Solved Problems

The resuits shown in Figure P10.13 are quite like those obtained and pub-
lished by Widrow and Hoff some 35 years ago. Widrow and Hoff did good
science. One can indeed duplicate their work, even decades later (without
a lunch pail).

e Conugena ol Smo

.51

L o N T L -
0 & W W N N A W % i

Figure P10.13 Error Convergence with Learning Rate of 0.03

To experiment with this character recognition problem, use the Neural Net-
work Design Demonstration Linear Fattem Classification (nnd10Lc). Notice
the sensitivity of the network to noise in the input paitern,

10-39

10 Widrow-Hoff Learning

Epilogue

10-40

In this chapter we have presented the ADALINE neural network and the
LMS learning rule. The ADALINE network is very similar to the percep-
tron network of Chapter 4, and it has the same fundamental limitation: it
can only classify linearly separable patterns. In spite of this limitation on
the network, the LMS algorithm is in fact more powerful than the percep-
tron learning rule. Because it minimizes mean square error, the algorithm
is able to create decision boundaries that are more robust to noise than
those of the perceptron learning rule,

The ADALINE network and the LMS algorithm have found many practical
applications, Even though they were first presented in the late 1950s, they
are still very much in use in adaptive filtering applications. Echo cancellers
using the LMS algorithm are currently employed on many long distance
telephone lines,

In addition to its importance as a practical sclution to many adaptive fil-
tering problems, the LMS algortthm is alse important becanse it is the fore-
runner of the backpropagation algorithm, which we will discuss in
Chapters 11 and 12. Like the LMS algorithm, backpropagation is an ap-
proximate steepest descent algorithm that minimizes mean square error.
The only difference between the two algorithms is in the manner in which
the derivatives are calculated. Backpropagation is a generalization of the
LMS algorithm that can be used for mnliilayer networks. These more com-
plex networks are rot limited to linearly separable problems. They can
solve arbitrary classification problems.

Further Reading

Further Reading

[AnRo89]

[StDo84]

[WiHo60]

[WiSt 85]

{WiWi 88]

J. A. Anderson, E. Rosenfeld, Neurocomputing: Founda-
tions of Research, Cambridge, MA: MIT Press, 1989,

Neurccomputing is a fundamental reference book. It con-
tains over forty of the most important neurocomputing
wrilings. Each paper is accompanied by an intreduction
that summarizes its results and gives a perspective on the
position of the paper in the history of the field.

W.D. Stanley, G. R. Dougherty, R. Dougherty, Digital Sig-
nal Processing, Reston VA: Reston, 1984

B. Widrow, M. E. Hoff, “Adaptive switching circuits,” 1960
IRE WESCON Convention Record, New York: IRE Part 4,
pp. 96104,

This seminal paper describes an adaptive perceptron-like
network that ean learn quickly and accurately. The anthors
assumed that the system had inputs, a desired output clas-
sification for each input, and that the system could calcu-
late the error between the actual and desired output. The
weights are adjusted, using a gradient descent method, so
a8 to minimize the mean square error. (Least mean square
error or LMS algorithm.)

This paper is reprinted in [AnRo88].

B. Widrow and S. D, Stearns, Adaptive Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1985.

This informative book describes the theory and application
of adaptive signal processing. The authors include a review
of the mathematical background that is needed, give de-
taila on their adaptive algorithms, and then discuss practi-
cal information about many applications,

B. Widrow and R. Winter, “Neural nets for adaptive filter-
ing and adaptive pattern recognition,” IEEE Computer
Magazine, March 1988, pp. 256-39.

This is a particularly readable paper that summarizes ap-
plications of adaptive multilayer neural networks. The net-
works are applied to system modeling, statistical
prediction, echo cancellation, inverse modeling and pattern
recognition.

10-41

10 Widrow-Hoff Learning

Exercises

E10.1 An adaptive filter ADALINE is shown in Figure E10.1. Suppose that the
weights of the network are given by

w=1,w,=-4,w;=2,
and the input to the filter is
{yk)} ={...,0,0,0,1,1,2,0,0, ...} .
Find the response {a(k}} of the filter.

tnputs ADALINE
N7 A

y(k)

./ \ J

a(k) = purelin(Wp(k) + b)

Figure E10.1 Adaptive Filter ADALINE for Exercise E10.1

E10.2 Ir Figure E10.2 two classes of patterns are given.

i. Use the LMS algorithm to train an ADALINE network to distin-
guish between class I and class I patterns (we want the network to
identify horizontal and vertical lines).

ii. Can you explain why the ADALINE network might have difficulty
with this problem?

= HA

Class I Class II

Figure E10.2 Pattern Classificatiop Problem for Exercise E10.2

10-42

w242

ans= |

w24l
ans =

.

E10.3

E10.4

El10.5

Exercises

Suppose that we have the following two reference patterns and their tar-

S O A

In Problem P10.3 these input vectors to an ADALINE were assumed to oc-
cur with equal probability. Now suppose that the probability of vector p,
is 0.75 and that the probability of vector p, is 0.25. Does this change of
probabilities change the mean square error surface? If yes, what does the
surface look like now? What is the maximum stable learning rate?

In this exercise we will modify the reference pattern p, from Problem

e P

i. Assume that the patterns accur with equal probability. Find the
mean square error and sketch the contour plot.

ii. Find the maximum stable learning rate.

fil. Write a MATLAB M-file to implement the LMS algorithm for this
problem. Take 40 steps of the algorithm for a stable learning rate.
Use the zero vector as the initial guess. Sketch the trajectory on the
contour plot.

iv. Take 40 steps of the algorithm after setting the initial values of both
parameters to 1, Sketch the final decision boundary.

v. Compare the final parameters from parts (iii} and (iv). Explain your
results,

We again use the reference patterns and targets from Problem P10.3, and
assume that they occur with equal probability. This time we want to train
an ADALINE network with a bias. We now have three parameters to find:

wy |, W, and b.
i. Find the mean square error and the maximum stable learning rate.

ii. Write a MATLAB M-file to implement the LMS algorithm for this
problem, Take 40 steps of the algorithm for a steble learning rate.
Use the zero vector as the initial guess. Sketch the final decision
boundary. ’

iii. Take 40 steps of the algorithm after setting the initial values of all
parameters to 1. Sketch the final decision boundary.

iv. Compare the final parameters and the decision boundaries from
parts (iii) and (iv). Explain your results.

10-43

10 Widrow-Hoff Learning

E10.6 Consider the adaptive predictor in Figure E10.3.

Inputs ADALINE

a(k) = w ¥k~ 1)+ wy(k-2)

Figure £10.3 Adaptive Predictor for Exercise E10.6

Assume that y (k) is a stationary process with autocorrelation function
€ (n} = E[y(k) (y(k+n})}].

i. Write an expression for the mean square errer in terms of € W{n) .

ii. Give a specific expression for the mean square error when
. [kn
y(b) = sm(—s—).

jii. Find the eigenvalues and eigenvectors of the Hessian matrix for the
mean square error. Locate the minimum peint, and sketch a rough
contour plot.

iv. Find the maximum stable learning rate for the LMS algorithm.

v. Take three steps of the LMS algorithm by hand, using a stable
learning rate. Use the zero vector as the initial guess.

- vi. Write a MATLAB M-file to implement the LMS algorithm for this
all problem. Take 40 steps of the algorithm for a stable learning rate
and sketch the trajectory on the contour plot. Use the zero vector as
the initial guess. Verify that the algorithm is converging to the op-
timal peint.

vii. Verify experimentally that the algorithm is unstable for learning
rates greater than that found in part (iv).

E10.7 Repest Problem P10.9, but use the numerals “1”, “2” and “4”, instead of the
letters “T”, “G” and “F”. Test the trained network on each reference pattern
and on noisy patterns. Discuss the sensitivity of the network. (Use the Neu-
ral Network Design Demonstration Linear Faitern Classification (nnd101¢).)

10.44

1 1 Backpropagation

Objectives 11-1
Theory and Examples 11-2
Multilayer Perceptrons 11-2
Pattern Classification 11-3

Function Approximation 11-4

The Backpropagation Algorithm 117

Performance Index 11-8

Chain Rule 11-9
Backpropagating the Sensitivities 11-11
Summary 11-13
Example 11-14
Using Backpropagation 11-17
Chuoice of Network Architecture 11-17
Convergence 11-18
Generalization 11-21
Summary of Results 11-24
Solvad Problems 11-26
Epilogue 11-40
Further Reading 11-41
Exercises 11-43

Objectives

In this chapter we continue cur discussion of performance learning, which
we began in Chapter 8, by presenting a generalization of the LMS algo-
rithm of Chapter 10. This generalization, called backpropagation, can be
used to train multilayer networks. As with the LMS learning law, back-
propagation is an approximate steepest descent algorithm, in which the
performance index is mean square error. The difference between the LMS
algorithm and backpropagation is only in the way in which the derivatives
are calculated. For a single-layer linear network the error is an explicit lin-
ear function of the network weights, and its derivatives with respect to the
weights can be easily computed. In multilayer networks with nonlinear
transfer functions, the relationship between the network weights and the
error is more complex, In order to calculate the derivatives, we need to use
the chain rule of calculus. In fact, this chapter is in large part a demonstra-
tion of how to use the chain rule.

11-1

11 Backpropagation

Theory and Examples

The perceptron learning rule of Frank Rosenblatt and the LMS algorithm
of Bernard Widrow and Marcian Hoff were designed to train single-layer
perceptron-like networks. As we have discussed in previous chapters, these
single-layer networks suffer from the disadvantage that they are only able
to solve linearly separable classification problems. Both Rosenblatt and
Widrow were aware of these limitations and proposed multilayer networks
that could overcome them, but they were not able to generalize their algo-
rithms to train these more powerful networks. :

Apparently the first description of an algorithm to train multilayer net-
works was contained in the thesis of Paul Werbos in 1974 [Werbo74]. This
thesis presented the algorithm in the context of general networks, with
neural networks as a special case, and was not disseminated in the neural
network community. It was not until the mid 1980s that the backpropaga-
tion algorithm was rediscovered and widely publicized. It was rediscovered
independently by David Rumethart, Geoffrey Hinton and Ronald Williams
[RuHi84], David Parker [Park85], and Yann Le Cun [LeCu85]. The algo-
rithm was popularized by its inclusion in the book Parallel Distributed Pro-
cessing [RuMcB6), which described the work of the Parallel Distributed
Processing Group led by psychologists David Rumelhart and James Me-
Clelland. The publication of this book spurred a torrent of research in neu-
ral networks. The multilayer perceptron, trained by the backpropagation
algorithm, is currently the most widely used neural network.

In this chapter we will first investigate the capabilities of multilayer net-
works and then present the backpropagation algorithm.

Mulitilayer Perceptrons

112

We first introduced the notation for multilayer networks in Chapter 2. For
ease of reference we have reproduced the diagram of the three-layer per-
ceptron in Figure 11.1. Note that we have simply cascaded three percep-
tron networks. The output of the first network is the input to the second
network, and the output of the second network is the input to the third net-
work. Each layer may have a different number of neurons, and even a dif-
ferent transfer function. Recall from Chapter 2 that we are using
superscripts to identify thsf layer number, Thus, the weight matrix for the
first layer js written as W' and the weight matrix for the second layer is
written W".

To identify the structure of a multilayer network, we will sometimes use
the following shorthand notation, where the aumher of inputs is followed
by the number of neurons in each layer:

R-§'-s°-5%. (1LD)

Multilayer Percepirons

Inputs First Layer Second Layer Third Layer

AN N L W

al=f1(Wip+h) a?=f2(Wzaal+b2) a8 =12 (Wial+by)
a1 =13 (Wi 2 (WL ' (Wip+b1)+b2)+b2)

Figure 11.1 Three-Layer Network

Let’s now investigate the capabilities of these multilayer perceptron net-
works. First we will look at the use of multilayer networks for pattern clas-
gification, and then we will discuss their application to function
approximation.

Pattern Classification

To illustrate the capabilities of the multilayer perceptron for pattern clas-
= sification, consider the classic exclusive-or (XOR) problem. The input/tar-
get pairs for the XOR gate are

R R L e R

This problem, which is iliustrated graphically in the figure to the left, was
used by Minsky and Papert in 1969 to demonstrate the limitations of the
single-layer perceptron. Because the two categories are not linearly sepa-
rable, a single-layer perceptron cannot perform the classification.

A two-layer network can solve the XOR problem. In fact, there are many
different multilayer solutions. One solution is to use two neurons in the
first layer to create two decigion boundaries. The first boundary separates
p, from the other patterns, and the second boundary separates p, . Then
the second layer is used to combine the two boundaries together using an

113

11 Backpropagation

11-4

AND operation. The decision beundaries for each first-layer neuron are
shown in Figure 11.2.

Layer 1/Neuron 1 Layer 1/Neuron 2

Figure 11.2 Decision Boundaries for XOR Network

The resulting two-layer, 2-2-1 network is shown in Figure 11.3. The overall
decision regions for this network are shown in the figure in the left margin.
The shaded region indicates those inputa that will produce a network out-
put of 1.

Inputs Individual Decisions AND Operation

CNC N Y

Figure 11.3 Two-Layer XOR Network

See Problems P11.1 and P11.2 for more on the use of multilayer networks
for pattern classification.

Function Approximation

Up to this point in the text we have viewed neural networks mainly in the
context of pattern classification. It is also instructive to view networks as
funetion approximators. In control systems, for example, the objective is to
find an appropriate feedback function that maps from measured outputsto
control inputs. In adaptive filtering (Chapter 10) the chjective is to find a
function that maps from delayed values of an input signal to an appropri-
ate output signal. The following example will lustrate the flexibility of the
multilayer perceptron for implementing functions,

—P}::n

Multilaver Percepirons

Consider the two-layer, 1-2-1 network shown in Figure 11.4, For this exam-
ple the transfer function for the first layer is log-sigmoid and the transfer
function for the second layer is linear. In other words,

1

1+¢

i = and f*(n) = . (11.2)

-

Input Log-Sigmoid Layer Linaar Layer
N/ '

ny a\,

LN

at = logalg(Wip+b) at = purelin(W2ai + b?)

Figure 11.4 Example Function Approximation Network

Suppose that the nominal values of the weights and biases for this network
are

wi =10, wy, = 10,5 = -10, b, = 10,

Wei=1,wl,=1,5 =0
The network response for these parameters is shown in Figure 11.5, which
plots the network output ¢~ as the input p is varied over therange {-2, 2] .

Notice that the response consists of two steps, one for each of the log-sig-
moid neurons in the first layer. By adjusting the network parameters we
can chenge the shape and location of each step, as we will see in the follow-
ing discussion.

The centers of the steps occur where the net input to & neuron in the first
layer is zero:

n:=w:']p+b:=0 = p=-—p=—==1, (11.3)

11-5

11 Backpropagation

11-§

(11.4)

The steepness of each step can be adjusted by changing the netwaork
weights.

e
al
"

Figure 11.6 Nominal Response of Network of Figure 11.4

Figure 11.6 illustrates the effects of parameter changes on the network re-
sponse. The blue curve is the nominal response. The other curves corre-
spond to the network response when one parameter at a time is varied over
the following ranges:

“1gw] €1, -1$w! <1, 0<b)€20,-1<b° <1, (11.5)
Pigure 11.6 (a) shows how the network biases in the first {hidden) layer can
be used to locate the pogition of the steps. Figure 11.6 (b) illustrates how
the weights determine the slope of the steps. The bias in the second (out-
put) layer shifts the entire network response up or down, as can be seen in
Figure 11.6 (d).

From this example we can see how flexible the multilayer network is. It
would appear that we could use such networks to approximate almost any
function, if we had g sufficient number of neurcns in the hidden layer. In
fact, it has been shown that two-layer networks, with sigmoeid transfer
functions in the hidden layer and linear transfer functions in the cutput
layer, can approximate virtually any function of interest to any degree of
accuracy, provided sufficiently many hidden units are available (see
[HoSt89]).

To experiment with the response of this two-layer network, use the Neural
Network Design Demonstration Network Function (md11n1),

The Backpropagation Algorithm

~
(=]
';
'b;.
:
L

() (d)

Figure 11.6 Effect of Parameter Changes on Network Response

Now that we have some idea of the power of multilayer perceptron net-
works for pattern recognition and function approximation, the next step is
to develop an algorithm to train such networks.

The Backpropagation Algorithm

It will simplify our development of the backpropagation algorithm if we use
the abbreviated notation for the multilayer network, which we introduced
in Chapter 2. The three-layer network in abbreviated notation is shown in

Figure 11.7.

As we discussed earlier, for multilayer networks the output of one layer be-
‘comes the input to the following layer. The equations that describe this op-

eration are
Ao W ™) form = 0,1, ,M-1, (1L6)

where M is the number of layers in the network. The neurons in the first
layer receive external inputs:

2 =p, (11.7)

which provides the starting point for Eq. (11.6). The outputs of the neurons
in tha last layer are considered the network outputs:

a=al (11.8)

117

11 Backpropagation

input First Layer Second Layer Third Layer

=f1(Wip+by) a2 =f2(Wal+b?) ar=[*(Wial+b3)
=3 (W 2(WF 1 {(Wip+b)+b2) +193)

Figure 11.7 Three-Layer Network, Abbreviated Notation

Pertormance Index

The backpropagation algorithm for multilayer networks is a generalization
of the LMS algorithm of Chapter 10, and both algorithms use the same per-
formance index: mean square error. The algorithm is provided with a set of
examples of proper network behavior:

{putd P2ty - (Ppty) . {11.9)
where p, is an input to the network, and t, is the corresponding target out-
put. As éach input is applied to the network the network output is com-

pared to the target. The algorithm should acbust the network parameters
in order to minimize the mean square error: ,

F(x)= E[&’] = E[(t-a)°] . {11.10)

where x is the vector of network weights and biases (as in Chapter 10). If
the network has multiple outputs this generalizes to

F(x)= Efe’e] = E[(t-0) (t-23)] . (11.11)
As with the LMS algorithmn, we will approximate the mean square error by
Fx = (¢ -a@) (1) -a(k) =¢ (Hek), (1112)

where the expectation of the squared error has been replaced by the
squared error at iteration &,

The steepest descent algorithm for the approximate mean square error is

11-8

-P|ruru

The Backpropagation Algorithm

W (k1) = Wl (k) - ai’f— (11.13)
w”

B+ 1) = B0 - 0 (11.14)
e

i

where ¢ is the learning rate.

So far, this development is identical to that for the LMS algorithm. Now we
come to the difficult part — the computation of the partial derivatives.

Chain Rule

For a single-layer linear network (the ADALINE) these partial derivatives
are conveniently computed using Eq. (10.33) and Eq. (10.34). For the mul-
tilayer network the error is not an explicit function of the weights in the
hidden layers, therefore these derivatives are not computed so easily.

Because the error is an indirect funetion of the weights in the hidden lay-
ers, we will use the chain rule of calculus to calculate the derivatives. To
review the chain rule, suppose that we have a function f that is an explicit
function only of the variable n . We want to take the derivative of f with
respect to a third variable w. The chain rule is then:

dlln) 4o i) (11.15)
For example, if
f(n) = ¢ and n = 2w, so that f(n(w)) = e, (11.18)
then
af (n(w)) _ df (n) dn{w}
o i = (YD) (11.17)

We will use this concept to find the derivatives in Eq. (11.13) and Eq.
{11.14):

ok _ o , (11.18)
aw,._j Bn,. aw'"

; n”
‘% - aa_i a: (11.19)

11-9

11 Backpropagation

11-10

The second term in each of these equations can be easily computed, since
the net input to layer m is an explicit function of the weights and bias in
that layer:

sn-l
RS AT i (11.20)
i=l
Therefore
on; I
LI A AR (11.21)
) o]
If we now define
s=d (11.22)
an;

(the sensitivity of ¥ to changes in the ith element of the net input at layer
m), then Eq. (11.18} and Eq. (11.19) can be simplified to

LR (11.23)
o
& a1
%

We can now express the approzimate steepest descent algorithm as

wi k1) = wl, (k) —asTal !, (11.25)
BT (k+1) = & (k) —as; . (11.26)
In matrix form this becomes:
Wkel) = W B -os" @, (11.27)
b (k+1) = b" (k) —us”, (11.28)

where

The Backpropagation Algorithm

oF
an*;'
oF
A (11.29)

wn
1]
|

g
3

oF
%,

(Note the close relationship between this algorithm and the LMS algorithm
of Eq. (10.33) and Eq. (10.34)).

Backpropagating the Sensitivities

It now remains for us to compute the sensitivities s” , which requires an-
other application of the chain rule, It is this process that gives us the term
backpropagation, because it describes a recurrence relationship in which
the sensitivity at layer m is computed from the sensitivity at layer m + 1.

To derive the recurrence relationship for the sensitivities, we will use the
following Jacobian matrix:

an.'lrul an;;HI a_";nH
oy any an;',,
™! a";ula”gul a"‘,z"ﬂ
L e or (11.50)
Bn;f: Bn;ff an::f
31:’,” an;' an:;

Next we want to find an expression for this matrix, Consider the i,; ele-
ment of the matrix:

11-11

11 Backpropagation

11-12

m+l m LD
m+l a[EW” ;+b] am
1=1 m+l aj
= W _—

m i am

j n; (11.31)
"+ a (H } m+i M, om
_wrj]fm =wj,jf(nj)s
anj
where
£h(n]y = afm—("L} (11.32)
"
F
Therefore the Jacobian matrix can be written
m-1
m Wt " (11.33)
anm
where
ity o 0
Fm(nm) - 0 f'm(n?) .. 0 (11.34)
| o 0 .. fm(n:_)J

We can now write out the recurrence relation for the sensitivity by using
the chain rule in matrix form:

m+ 14T
e
on" on” J on on

(11.35)

- FM(IIM) (W”'”) Tsmn _
Now we can see where the backpropagation algorithm derives its name.
The sensitivities are propagated backward through the network from the
last layer to the first layer:

MMl oo, (11.36)

The Backpropagation Algorithm

At this point it is worth emphasizing that the backpropagation algorithm
uses the same approximate steepest descent technique that we used in the
LMS algorithm. The only complication is that in order to compute the gra-
dient we need to first backpropagate the sensitivities. The beauty of back-
propagation is that we have a very efficient implementation of the chain
rule.

We still have one more step to make in order to complete the backpropaga-
tion algorithm. We need the starting point, s”, for the recurrence relation
of Eq. (11.35). This is obtained at the final layer:

s 2
2y (t,-a)
T & VT da.
B A [0 (2 N e WP YR S P
on, on, o, on;
Now, gince
a3 BfM (n{w) MM
o _ %4 2 M, (11.38)
an o) an"
we can write
e 2-a) . (11.39)
This can be expressed in matrix form as
¥ = 28" (t-a) . (11.40)

Summary

Let’s summarize the backpropagation algorithm. The first step is to prop-
agate the input forward through the network:

a’ = p, (11.41)
arn+l - fm+](wm+lam+bm+]) form = 0’ l, ,M—l, (1142)

a=a". (11.43)

The next step is to propagate the sensitivities backward through the net-
work:

M = 2™ -0, (11.44)

11.13

11 Backpropagation

m+l, T mel

= F @)Wy s" form=M-1,..,21. (11.45)

Finally, the weights and biages are updated using the approximate steep-
est descent rule;

Wik+1) = W ik) —as"@" "), (11.46)

b (k+1) = b7 (k) -as”. (11.47)

Example

To illustrate the backpropagation algorithm, let’s choose a network and ap-
5 ply it to a particular problem. To begin, we will use the 1-2-1 network that
we discussed earlier in this chapter. For convenience we have reproduced
the network in Figure 11.8.

Next we want to define a problem for the network to solve. Suppose that we
want to use the network to approximate the function

glp) = 1+sin(j{pj for -2 p<2, (11.48)
Tt? obtain our training set we will evaluate this function at several values
of p.
Input Log-Sigmoid Layer Linear Layer

7 al,

a! =logsig{Wip+b1) a? = purelin(Wial+b2)

Figure 11.8 Example Function Approximation Network

Before we begin the backpropagation algorithm we need to choose some ini-
tial values for the network weights and biases. Generally these are chosen
to be small random values. In the next chapter we will discuss some rea-
sons for this. For now let’s choose the values

I1-14

Example

W' = _0.27]’1,1 o = | 0% W - (0 = load.
(0) [—0-41 @ = | WO [0.09 -0.17], b (0 = [0.48]

The response of the network for these initial values is illustrated in Figure
11.9, along with the sine function we wish to approximate.

T Network Respome

— 5ine Wive

2| /——'—

Figure 11.9 Initial Network Response

Now we are ready to start the algorithm. For our initial input we will
choose p = 1:

aﬂ*_-p:l,

The output of the first layer is then

U Wb < i(—O.Tf -0.4s]=1 i(sz]
B EOvaen) = loastg o |0+ o)) T s
i

_ (e’ losnf
1 0.368

l+e

0354

The second layer output is

a = fl(w2gf +b2) = purelin ([0_09 _0‘17] [ggzéﬂ + [0_43]) = [0446]

The error would then be

1115

11 Backpropagalion

11-16

e=t- a-{1+sm[J} _d {l+sm()} 0.446 = 1.261.

The next stage of the algorithm is to backpropagate the sensitivities. Be-
fore we begin the backpropagatlon, retz:all that we will need the derivatives
of the transfer functions, f (n) and f (n). For the first layer

—H

fim = %(nle"')) tife"‘)z i [l_nle‘")(l:e"‘] = (=)@,

For the second layer we have
2 d
f(m) —a;{n) =1.

We can now perform the backpropagation. The starting point is found at
the second layer, using Eq. (11.44):

= 2F @) (t-a) = -2[,62(,3)] (1261) = -2[1] (1.261) = -2.522.

The first layer sensitivity is then computed by backpropagating the sensi-
tivity from the second layer, using Eq. (11.45):

1 1 =
J = Fl(nl) (WZ) Tsz - (1-a}}{a) 0 009] 9523
0 (f—a)(a)Hl?[]
_ [-0321y (0321) 0 0.09
I 0 (1-0.368) (0.353)} LmJ L2

_ [o218 o [[-022) _ [-00495]
| 0 023 0429] | 0.0997
The final stage of the algorithm is to update the weights. For simplicity, we

will use a learning rate ¢ = 0.1 . {In Chapter 12 the choice of learning rate
will be discussed in more detail.) From Eq. (11.46) and Eq. (11.47) we have

w (1) = W) -0’ () = [009 017 -0 [-2:522] [0.321 0.368]

= [0.471 -0.0772]

Using Backpropagaiion

b (1) = b7 (0) -5’ = [oag] -0.1[-2.522] = [0.732),

WD) = W0 _os @) = | 027 g |00e0|ry _ |-0:265)
o R 0.0997 il -0.420

b'(i) = b (0) —as' = ~0.48f _,;(-0.0495| _ 1-0475
~0.13 0.0997 —.140
This completes the first iteration of the backpropagation algorithm. We
next proceed to choose another input p and perform another iteration of
the algorithm. We continue to iterate until the difference between the net-
work response and the target function reaches some acceptable level. We
will discuss convergence criteria in more detail in Chapter 12.

To experiment with the backpropagation caleulation for this two-layer net-
work, use the Neural Network Design Demonstration Backpropagation Cal-
cuilation {nnd11be).

Using Backpropagation

In this section we will present some issues relating to the practical imple-
mentation of backpropagation. We will discusa the choice of network archi-
tecture, and problems with network convergence and generalization. {We
will discuss implementation issues again in Chapter 12, which investigates
procedures for improving the algorithm.)

Choice of Network Architecture

As we discussed earlier in this chapter, multilayer networks can be used to
approximate almost any function, if we have enough neurons in the hidden
layers. However, we cannot say, in general, how many layers or how many
neurons are necessary for adequate performance. In this section we want
to use a few examples to provide some insight into this problem.

2]

22
&

For our first example let's assume that we want to approximate the follow-
ing functions:

glp) = 1+ sin[%‘p) for -2< p<2, (11.49)

where i takes on the values 1, 2, 4 and 8. As | is increased, the function

becomes more complex, because we will have more periods of the sine wave

over the interval -2 < p < 2. It will be more difficult for a neural network

with a fixed number of neurons in the hidden layers to approximate g (p)

as ¢ is increased. m

11-17

11 Backpropagation

-
-b‘mm

11-18

For this first example we will use a 1-3-1 network, where the transfer fune-
tion for the first layer is log-sigmoid and the transfer function for the sec-
ond layer is linear. Recall from our example on page 11-5 that this type of
two-layer network can produce a response that is a sum of three log-sig-
moid functions {or as many log-sigmoids as there are neurons in the hidden
layer). Clearly there is a limit to how complex a function this network can
implement. Figure 11.10 illustrates the response of the network after it has
been trained to approximate g (p} for i = 1,2, 4, 8. The final network re-
sponses are shown by the blue lines.

(%]

i=2
2 //,_\
1 /'/
o\//
12 1 1] 1 2 12 1 0 1 2
: i=4 ? i=18
2/-\ /-\ 7?\ _/\ !
IRAVARV : v

Figure 11.10 Function Approximation Using a 1-3-1 Network

We can see that for ; = 4 the 1-3-1 network reaches its maximum capabil-
ity, When i > 4 the network is not capable of producing an accuraie approx-
imation of g (p) . In the bottom right graph of Figure 11.10 we can see how
the 1-3-1 network attempts to approximate g(p)} for i = §, The mean
square error between the network response and g (p) is minimized, but
the network response is only able to match a small part of the function,

In the next example we will approach the problem from a slightly different
perspective. This time we will pick one function g (p) and then use larger
and larger networks until we are able to accurately represent the function.
For g{p) we will use

glp) =1+ sin(%p) for -2<ps2, (11.50)

To approximate this function we will use two-layer networks, where the
transfer function for the first layer is log-sigmoid and the transfer function
for the second layer is linear (1-§ -1 networks). As we discussed earlier in

Using Backpropagation

this chapter, the response of this network is a superposition of §] sigmoid
functions.

Figure 11.11 illustrates the network response as the number of neurons in
the first layer (hidden layer}is increased. Unless there are at least five neu-
rons in the hidden layer the network cannot accurately represent g(p) .

’ 121 ’ 131 J
2 . 2 ‘:__
NAL AWA
ivmvATAEE U

VoV »
f T I
T T : 151

2 .i 2

. NP N

| f\ at 1' /\\ f’\\ ’\

YAV C;Lx/ YAV,
|

2 - 0 1 2

Figure 11.11 Effect of Increasing the Number of Hidden Neurons

To summarize these results, a 1-§' -1 network, with sigmoid neurons in the
hidden layer and linear neurons in the output layer, can produce a re-
sponse that is a superposition of §° sigmoid functions. If we want to ap-
proximate a function that has a large number of inflection points, we will
need to have a large number of neurons in the hidden layer.

Use the Neural Network Design Demonstration Function Approximation
{nnd111a) to develop more insight into the capability of u two-layer network.

Convergence

In the previous section we presented some examples in which the network
response did not give an accurate approximation to the desired function,
even though the backpropagation algorithm produced network parameters
that minimized mean square error. This occurred because the capabilities
of the network were inherently limited by the number of hidden neurons it
contained. In this section we will provide an example in which the network
is capable of approximating the function, but the learning algorithm does
not produce network parameters that produce an accurate approximation.
In the next chapter we will discuss this problem in more detail and explain
why it oceurs. For now we simply want to illustrate the problem.

11.18

11 Backpropagation

The function that we want the network to approximate is
7 g{p) = l+sin(np) for -2<p<2. (11.51)

To approximate this function we will use a 1-3-1 network, where the trans-
fer function for the first layer is log-sigmoid and the transfer function for
the second layer is linear.

Figure 11.12 illustrates a case where the learning algorithm converges to
a solution that minimizes mean square errgr. The thin blue lines represent
intermediate iterations, and the thick blue line represents the final solu-
tion, when the algorithm has converged. (The numbers next to each curve
indicate the sequence of iterations, where 0 represents the initial condition
and § represents the final solution. The numbers do not correspond to the
iteration number. There were many iterations for which no curve is repre-
sented. The numbers simply indicate an ordering.)

ar

Figure 11.12 Convergence to a Global Minimum

Figure 11.13 illustrates a case where the learning algerithm converges to
a solution that does not minimize mean square error. The thick blue kine

(marked with a 5) represents the network response at the final iteration.

The gradient of the mean square error is zero at the final iteration, there-
fore we have a local minima, but we know that a better solution exists, as
evidenced by Figure 11.12. The only difference between this result and the
regult shown in Figure 11.12 is the initial condition. From one initial con-
dition the algorithm converged to a global minimum point, while from an-
other initial condition the algorithm converged to a local minimum point.

11-20

+
-ﬁ‘-lmm

Using Backpropagation

Figure 11.13 Convergence to a Local Minimum

Note that this result could not have occurred with the LMS algorithm. The
mean square error performance index for the ADALINE network is a qua-
dratic function with a single minimum point (under most conditions).
Therefore the LMS algorithm is guaranteed to converge to the global min-
imum as long as the learning rate is small enough. The mean square error
for the multilayer network is generally much more complex and has many
local minima (as we will see in the next chapter). When the backpropaga-
tion algorithm converges we cannot be sure that we have an optimum so-
lution. It is best to try several different initial conditions in order to ensure
that an optimum sclution has been obtained.

Generalization

In most cases the multilayer network is trained with a finite number of ex-
amples of proper network behavior:

{p['t]}! [pzvt‘z] LIRRRSE] {pQ!tQ} * [:11'52)
This training set is normally representative of a much larger class of pos-

sivle input/output pairs. It is important that the network successfully gen-
eraiize what it has learned to the total population.

For example, suppose that the training set is obtained by sampling the fol-
lowing function:

gtp) = 1+sin Zp), 11.53)

at the points p = -2,-16,-12, ..., 1.6, 2. (There are a total of 11 input/tar-
get pairs.) In Figure 11.14 we see the response of & 1-2-1 network that has

11-21

11 Backpropagation

been trained on this data, The black line represents g (p) , the blue line
represents the network response, and the ‘+ symbols indicate the training
get.

Sp— R —

i
|
i

-2 - a 1 2

Figure 11.14 1-2-1 Network Approximation of g {p)

We can see that the network response is an accurate representation of
g(p) . If we were to find the response of the network at a value of p that
was not contained in the training set (e.g., p = -0.2), the network would
still produce an output close to g (p) . This network generalizes well.

Now consider Figure 11.15, which shows the response of a 1-8-1 network
that has been trained on the same data set, Note that the network response
accurately models g {p) at all of the training points. However, if we com-
pute the network response at a value of p not contained in the training set
(e.g., p = -0.2) the network might produce an output far from the true re-
gponse g (p) . This network does not generalize well.

o

|

1 L] 1 2

Figure 11.15 1-9-1 Network Approximation of z (p)

The 1-3-1 network has too much flexibility for this problem; it has a total
of 28 adjustable parameters (18 weights and 10 biases), and yet there are

11-32

Using Backpropagation

only 11 data points in the training set. The 1-2-1 network has only 7 pa-
rameters and is therefore much more restricted in the types of functions
that it can implement.

For a network to be able to generalize, it should have fewer parameters than

there are data points in the training set. In neural networks, as in all mod-
eling problems, we want to use the simplest network that can adequately

represent the training set. Don’t use a bigger network when a smaller net-
work will work (a concept often referred to as Ockham’s Razor).

An alternative to using the simplest network is to stop the training before
the network overfits. A reference to this procedure and other techniques to
improve generalization are given in Chapter 19.

To experiment with generalization in neural networks, use the Neural Net-
work Design Demonstration Generalization (nnd11gn).

11-23

11 Backpropagation

Summary of Results

Multilayer Network

input First Layer Second Layer Third Layer

al=f (Wip+b) a2 = £2(Weal +b?) @ =[2(Wiaz+b?)
@ = £3 (WL 2(Wof {(Wip+b1)+b?) +b3)

Backpropagation Aigorithm

Performance Index
F(x)= Ele’e] = E[(t-a) (t-a) |

Approximate Performance Index
Py =e (e = (tk) -a (k) (t(k) ~a(k))

Sensitivity

3
c
P
q

11-24

Summary of Resulls

Forward Propagation
a =p,

IIam|+1 - fm+1(wm+lam+bm+l) form=01,. ,M-1,

M
a=8 .

Backward Propagation
")

& = 2F 0" (t-1),

= F ey WY e form = M-1,..,21,

where

A0 T I

P =) 0 S0

0 0 G
- "
f ("‘;) =£‘£2L)-

"

Weight Update (Approximate Steepast Descent)
Wi+ D) = W) —as™ (0™),

b {k+1) = b (k) —as".

11-25

11 Backpropagation

Solved Problems
P111 Comsider the two classes of lgatterns thatare shown in Fi PilLl
{Z}lasa I represents vertical lines and Class II represents horizontal
ines.

) e
M) Classn

Figure P11.1 Pattern Classes for Problem P11.1
i. Are these categories linearly separable?
ii. Design amultilayer network to distinguish these categories,

1. Let’s begin by converting the patierns to vectors by scanning each 2X2
grid one column at a time, Each white square will be represented by a “-1”
and each blue square by a “1”, The vertical lines (Class I patterns) then be-
come

P = l and p, = [,
-1 1

-1 1

and the horizontal lines {(Class II patterns) become

! ~i

p; = _i andp4=

-1 1

In order for these categories to be linearly separable we must be able to
place a hyperplane between the two categories. This means there must be
a weight matrix W and a bias » such that

Wp,+6>0, Wp,+b>0, Wp, +5<0, Wp, +5<0.

These conditions can be converted to

11-26

Solved Problems

—_— —

[“’1,1 WiaWis WI,J 1 = [Wi,:“"l.z—wl,S“"l,a] >0,

-1
[“"’1,1"‘"’1,2""‘“1,3*“"1.4] >0,
[“"1.1"’*’1‘2"'“’1,3“"1,:;' <0,

['“’1.1 +“'|.2‘“’1.3+“’1.4] <0.

The first two conditions reduce to
Wi W oW g+ wy o and wy 4w W 4,
which are contradictory. The final two conditions reduce to

Wi tW 32w bWy and Wi ¥ W > W g,

which are also contradictory. Therefore there is no hyperplane that can
separate these two categories.

ii. There are many different multilayer networks that could solve this prob-
lem. We will design a network by first noting that for the Class I vectors

either the first two elements or the last two elemente will be “1”, The Class
ITvectors have alternating “1” and “-~1" patterns. This leads to the network

shown in Figure P11.2,

Inputs AND Operations OR Operation

Figure P11.2 Network to Categorize Horizontal and Vertical Lines

11-27

PR,

11 Backpropagation

The first neuron in the first layer tests the first two elements of the input
vector. If they are both “1” it outputs a “1”, otherwise it outputs a “-1”. The
second neuron in the first layer tests the last two elements of the input vec-
tor in the same way. Both of the neurons in the first layer perform AND op-
erations. The second layer of the network tests whether either of the
outpuis of the first layer are “1”, It performs an OR operation. In this way,
the network will output a “1” if either the first two elements or the last two
elements of the input vector are both “17,

P11.2 Figure P11.3 illustrates a classification problem, where Class I vec-
tors are represented by light circles, and Class Il vectors are rep-
resented by dark circles, These categories are not linearly
separable. Design a multilayer network to correctly classify these

categories,
o0 0 .0 o)
O ° o)
... 0 Oo OO ..
O Oo o e
- A

Figure P11.3 Classification Problem

We will solve this problem with a procedure that can be used for arbitrary

classification problems. It requires a three-layer network, with hard-limit-

ing neurons in each layer. In the first layer we create a set of linear decision

boundaries that separate every Class I vector from every Class II vector.

g or this problem we used 11 such boundaries. They are shown in Figure
11.4.

Figure P11.4 First Layer Decision Boundaries

Each row of the weight matrix in the first layer corresponds to one decision
boundary. The weight matrix and bias vector for the first layer are

121 (-1 1-1 1_1_111}

T
wh' = ,
I-1-1 1-1 1-1 1-111

11-28

Solved Problems

1. F
(b) = [L230505-1.75 225 ~3.25 3.75 6.25 -5.75 -4.75] :

(Review Chapters 3, 4 and 10 for procedures for calculating the appropriate
weight matrix and biag for a given decision boundary,) Now we can com-
bine the outputs of the 11 first layer neurons into groups with a second lay-
er of AND neurons, such as those we used in the first layer of the network
in Problem P11.1. The second layer weight matrix and bias are

1110000000 3
wio|ooootiooronl v |3l
00001001110 3
00000011101 -3

The four decision boundaries for the second layer are shown in Figure
P11.5. For example, the neuron 2 decision boundary is obtained by combin-
ing the boundsaries 5, 6,9 and 11 from layer 1. This can be seen by looking
atrow 2 of W,

Figure P11.5 Second Layer Decision Regions

In the third layer of the network we will combine {ogether the four decision
regions of the second iayer into one decision region using an OR operation,
just as in the 1ast layer of the network in Problem P11.1. The weight matrix
and bias for the third layer are

W= =3

The complete network is shown in Figure P11.6.

The procedure that we used to develop this network can be used to solve
classification problems with arbitrary decision boundaries as long as we
have enough neurons in the hidden layers. The idea is to use the first layer
to create a number of linear boundaries, which can be combined by using
AND neurons in the second leyer and OR neurons in the third layer. The
decision regions of the second layer are convex, but the final decision
boundaries created by the third layer can have arbitrary shapes,

11-29

11 Backpropagaiion

Input Initial Decisions AND Operations OR Operation

11

J J
a! = hardlims (Wip+bi) a? = hardlims(Wza! + b?) a’ = hardlims{Wia2+ b}

Figure P11.6 Network for Problem P11.2

The final network decision regions are given in Figure P11.7. Any vector in
the shaded areas will produce a network output of 1, which corresponds to
Class II. All other vectors will produce a network output of -1, which cor-
responds to Class L.

K

Figure P11.7 Final Decision Regions

Pi1.3 Show that a multilayer network with linear transfer functions is
equivalent to a single-layer linear network,

For a multilayer linear network the forward equations would be
a' = W1p+ b'
8’ = Wa'+b? = WWp+ (W' +b7],
2 = Waled’ = WWWpt [WWD + Wb +b7].

If we continue this process we can see that for an M-layer linear network,
the equivalent single-layer linear network would have the following weight
matrix and bias vector

11-36

Solved Problems

b= [W'W Wb+ WwHW T win e Y

P114 The purpose of this problem is to illustrate the use of the chain
rule. Consider the following dynamic system:

ylk+1) = fly(h)).
We want to choose the initial condition y (0) so that at some final

time t = K the system output y (X} will be as close as possible to
some target output . We will minimize the performance index

Fiy(@) = (t-y(K))*
using steepest descent, so we need the gradient

By FOO.

Find a procedure for computing this using the chain rule.

The gradient is

(K)]

Fiy o) =2 JCORNPYN (K)J[

9y (0) ETOM

ay (0) (0}
The key term is

557 ®)].

which cannot be computed directly, since y (X) is not an explicit function
of y (0) . Let’s define an intermediate term

_ ¢
rik) =Wy(k) .

Then we can use the chain rule:

i_ _ay(k+l) ay{k} =ay(k+l) i
o Y = m ey - e R

rik+1) =

From the system dynamics we know

dy(k+1) of(y(k) _
FE) 3 (&) = f(y(k).

Therefore the recursive equation for the computation of r (k) is m

11.31

11 Backpropagation

rk+ 1) = f(y(R))r (k).
This is initialized at k¥ = 0:

_ oy (D) _
r{y = 3—y(0) =1,

The total procedure for computing the gradient is then

r{0) =1,
rik+1) = f(y(k))yrky,fork=01..,K-1,

a = —
WFU(O)) = 2(t-y(K) [-r(K)] .

P115 Consider the two-layer network shown in Figure P11.8. The initial
weights and biases are set to

w 1,8 =1, w=-2,b =1,
An input/target pair is given to be

({p=1),{t=1)).

i. Find the squared error i{e:)2 as an explicit function of all
weights and biases.

ii. Using part (i) find 3(¢)”/ow' at the initial weights and bias-
es.,

ili,. Repeat part (ii) using backpropagation and compare results.

inputs Log-Sigmoid Layer Linear Layer
NN N

p.wf ?n"z,al'wz E n? a?
b b

L L.

al=logsig(w'p+b1) a2 = purelin(w2al+b?)

Figure P11.8 Two-Layer Network for Problem P11.5

i. The squared error is given by

11-32

Solved Problems

. 2
@' = =) = [t g ——— .
(1+exp(-(w'p+b))
ii. The derivative is

1

de { 2 i 1 1
2e— = 2edw exp(—(wp+b}) (-P)}
ow o' {l+exp{—(wl,r:v+bl)})2

To evaluate this at the initial weights and biases we find

l= 1 _ 1
‘ (L+exp(=(w'p+b)))y (Utep(-(1(1)+1}))

= (.8808

o =wa+b’ = (-2)0.8808+ 1 = -0.7616

e = (t-a) = (1- (-0.7616)) = 17616

2
a(—e)zh{wz ! | ,
(L+exp(—(wp+b)))

sexp(—(w'p+5')) (—p)}
= 2(1.7616) { (-2) ! 3
(1+exp (~(1(1) +1)))

- 3.5232(0.2707 L ;) = 0798,
(1289)

exp (-(1(1) +)} (-1} }

iii. To backpropagate the sengitivities we use Eq. {11.44) and Eq. (11.45):

s = 2F M) (t-2) = —2(1) (1= (~0.7616)) = -3.5232,
s = F@)y(Wwh's = [(1-a)] (-2)s°
= [0.8808 (1 0.3808)] (-2) (-3.5232) = 0.7398.
From Eq. (11.23) we can compute d(e) Lyaw':
e’
"

= s'a’ = s'p = (0.7398) (1) = 0.7398.

This ‘agrees with our result from part {ii).

11.33

11 Backpropageation

P11.6 Earlier in this chapter we showed that if the neuron transfer fune-

P11.7

11-34

tion is log-sigmoid,

a=f(n) = ——,

l+e"

then the derivative can be conveniently computed by

finy =a(l-a).

Find a convenient way to compute the derivative for the hyperbol-
ic tangent sigmoid:

a= f(n) = tansig(n) = -

Computing the derivative directly we find

dn dnl Sy, &+ "‘)2 € re
B Gl)2=1—(a)2‘
(" +eh

For the network shown in Figure P11.9 the initial weights and bi-
ases are chosen to be

w(0) =-1,5'(0) =1,w () =-2,60) = 1.
An input/target pair is given to be
((p=-1).(r=1)}.
Perform one iteration of backpropagation with o = 1.

Solved Problems

Inputs Tan-Sigmoid Layer Tan-Sigmoid Layer
NN N

0 W’ﬂ’d' wlnim
lb- Ib:

WG B G

al=tansig(wip+b1) al=tansig(w?al+h2)

Figure P11.9 Two-Layer Tan-Sigmoid Network
The first step is to propagate the input through the network,

n'=wpebd = (C)(-])+1=2

exp (n]) —exp (—nl) _ exp(2) —exp (-2} _ 0.964

| .1
=t = - -
a = tansig(n) exp(n) +exp(on) P2 +exp(-2)

nt = wa b = (-2) (0.964) + 1 = —0.928

o = tansiginly < ERUT) ZEXP () _ exp (-0908) - exp (0928)

exp {ﬂz) +exp {_nz} exp (“0.928) + exp (0-928)

= —-0.7297
e= (t-a°) = (1- (-0.7297)) = 1.7297
Now we backpropagate the sensitivities using Eq. (11.44} and Eq. (11.45).
§¢ = 2F@) (t-8) = 2[1-(a) 1 (e) = —2[1~ (-0.7297)] 1.7297

= _16175
s = Fa)y W) s = [1- (@) whs® = [1- (0964)7] (<2) (-1.6175)

= (L2283

Finglly, the weights and biases are updated using Eq. (11.46) and Eg.
(11,47}

11-35

11 Backpropagation

W(1) = w0 —as (@) = (<2) — L(~L6175) (0.964) = -0.4407,
W (1) = w' (0) —as (@) = (1) -1(02285) (-1) = 07715,
BH(1) = b (0) —as® = 1—1(~16175) = 2.6175,
bl (1) = b (0)-as' = 1-1(0.2285) = 0.7715.

P11.8 In Figure P11.10 we have a network that is a slight modification to
the standard two-layer feedforward network. It has a connection
from the input directly to the second layer. Derive the backpropa-
gation algorithm for this network.

Input Layer 1 Layer 2
r N0

Figure P11.10 Network with Bypass Connection

We begin with thé forward equations:
n = W1p+b],
2 =f'@) = t'Wp+bh,
n = W2a1+wz']p+b2,
o = f'm) = W' + W 'p+b),

The backpropagation equations for the sensitivities will not change from
those for a standard two-layer network. The sensitivities are the deriva-
tives of the squared error with respect to the net inputs; these derivatives
don’t change, since we are simply adding a term to the net input.

11.36

P119

Solved Problems

Next we need the elements of the gradient for the weight update equations.
For the standard weights and biases we have

A o o

— = — =5,4a

™ m m
ow; i on, awi,j

aF _ oF o

= —_— =5 .

T an ob

Therefore the update equations for W: ,b", W' and b’ do not change. We
do need an additional equation for W* h

. " 2 2
oF _ oF a”,' _szx a”;
— 27"

aw,.‘j.

— = =X

2,1 2 1
dw,; On, ow;,
To find the derivative on the right-hand side of this equation note that

R
2 21 2,1 2
n; = 2 w4+ Ew‘._jp}.+bi.

i=1 =1
Therefore
a"f oF 2
21T P and o = s
L Wi

The update eguations can thus be written in matrix form as:
W(k+1) = WK -as" (@™) ,m= 1,2,

Pk+ D) = b (k) -os",m=1,2.

Wl ke 1) = Wl -t = W) —asi(p) T

The main point of this problem is that the backpropagation concept can be
used on networks more general than the standard multilayer feedforward

network.

Find an algorithm, based on the backpropagation concept, that
can be used to update the weights w, and w, in the recurrent net-

work shown in Figure P11.11.

11-37

11 Backpropaguaiion

Inputs Linear Recurrent Layer

plk)

/L
alk+ 1) = purelin(w, p(ky+w,a(k))

Figure P11.11 Linear Recurrent Network

The first step is to define our performance index. As with the multilayer
networks, we will use squared error:

PO = ¢ -ah)’ = ().
For our weight updates we will use the steepest descent algorithm:

- _adf
Aw, = ua—w—_F(x].

These derivatives can be computed as follows:

aiwtp{X) = ai{f(k} —a{k})z = Z(I(k) _a(k)} {_aﬂ(k}})

W, aw,
Therefore, the key terms we need to compute are

da (k)
ow.

To corpute these terms we first need to write out the network equation:
a(k+1) = purelin(w,p(k) +wya(k)) = wp(k) +w,a(k).

Next we take the derivative of both sides of this equation with respect to

the network weights:
da(k+1) _ 3a (k)
T} = P(k) +W2 awl)
da(k+1) _ 3a (k)

awz a (k) + leaw—z .

11-38

P11.10

Solved Problems

* (Note that we had to take account of the fact that a (k) is itself a function

of w, and w, .} These two recursive equations are then used to compute the
derivatives needed for the steepest descent weight update. The equations
are initialized with

3a(0) _ 4 da(0) _
w0 aw, DO

since the initial condition is not & function of the weight.

Toillustrate the process, let’s say that a (0) = 0. The first network update
would be

a(l) = wp(0) +wya(0) = w,p(0).

The first derivatives would be computed:

da(l da {0 da(l da {0
o = PO 4w = @), B a0 1w, TR <0,
The first weight updates would be

Aw, = —wrm) - —a[zct(l) a(1)) {221 }]

Aw, = 2 () -a(1)) {-p(0)}
Aw, = “2a(t(1) -a (1)) {0} = 0.

This algorithm is a type of dynamic backpropagation, in which the gradient
is computed by means of a difference equation.

Show that backpropagation reduces to the LMS algorithm for a
single-layer linear network (ADALINE).

The sensitivity caleulation for a single-layer linear network would he:

s' = 2F'm") (t-a) = -21(t-a) = -2Ze,
The weight update (Eq. (11.46) and Eq. (11.47)) would be

W ikeD) = Wb -as’ @) = W (k) -a(-2e)p” = W' (k) + 20ep”
b (k+1) =b' (b)) ~as' = b' (k) -0(-2€) = b' (k) +20e.

This is identical to the LMS aigorithm of Chapter 10.

11-39

11 Backpropagation

Epilogue

11.40

In this chapter we have presented the multilayer perceptron network and
the backpropagation learning rule. The multilayer network is a powerful
extension of the single-layer perceptron network. Whereas the single-layer
network is only able to classify linearly separable patterns, the multilayer
network can be used for arbitrary classification problems. In addition, mul-
tilayer networks can be used as universal function approximators. It has
been shown that a two-layer network, with sigmoid-type transfer functions
in the hidden layer, can approximate any practical function, given enough
neurons in the hidden layer,

The backpropagation algorithm is an extension of the LMS algorithm that
can be used to train multilayer networks. Both LMS and backpropagation
are approximate steepest deacent algorithms that mintmize squared error.
The only difference between them isin the way in which the gradient is cal-
culated. The backpropagation algorithm uses the chain rule in order to
compute the derivatives of the squared error with respect to the weights
and biases in the hidden layers. It is called backpropagation because the
derivatives are computed first at the last layer of the network, and then
propagated backward through the network, using the chain rule, to com-
pute the derivatives in the hidden layers.

One of the major problems with backpropagation has been the long train-
ing times. It is not feasible {0 use the basic backpropagation algorithm on
practical problems, because it can take weeks to train a network, even on
a large computer. Since backpropagation was first popularized, there has
been considerable work on methods to aceelerate the convergence of the al-
gorithm. In Chapter 12 we will discuss the reasons for the slow conver-
gence of backpropagation and will present several techniques for
improving the performance of the algorithm.

Further Reading

Further Reading

[HoS3t89)

[LeCu85)

[Parkss)

(RuHi86]

[RuMe86]

[WerboT4)

K. M. Hornik, M. Stinchcombe and H, White, “Multilayer
feedforward networks are universal approximators,” Neu-
ral Networks, vol. 2, no. 5, pp. 359-366, 1989.

This paper proves that multilayer feedforward networks
with arbitrary squashing functions can approximate any
Borel integrable function from one finite dimensional space
to another finite dimensional space.

Y. Le Cun, “Une procedure d’apprentissage pour reseau a
seuil assymetrique,” Cognifiva, vol. 85, pp. 589-604, 1985,

Yann Le Cun discovered the backpropagation algorithm at
about the same time as Parker and Rumelhart, Hinten and
Williams. This paper describes his algorithm.

D. B. Parker, “Learning-logic: Casting the cortex of the hu.
man brain in gilicon,” Technical Report TR-47, Center for
Computational Research in Economics and Management
Science, MIT, Cambridge, MA, 1985.

Pavid Parker independently derived the backpropagation
algorithm at about the same time as Le Cun and Rumel-
hart, Hinton and Williams. This report describes his algo-
rithm.

D. E. Rumelhart, G. E. Hinton and R, J, Williams, “Learn-
ing representations by back-propagating errors.” Nature,
vol. 323, pp. 533-536, 1986.

This paper contains the most widely publicized description
of the backpropagation algorithm.

D. E. Rumelhart and J. L. McClelland, eds., Parallel Dis-
tributed Processing: Explorations in the Microsiruciure of
Cognition, vol. 1, Cambridge, MA:; MIT Press, 1986.

This book was one of the two key influences in the resur
gence of interest in the neural networks field during the
1980s. Among cther topics, it presents the backpropagation
algorithm for training multilayer neural networks.

P. J. Werbos, “Beyond regression: New fools for prediction
and analysis in the behavioral sciences,” Ph.D). Thesis,
Harvard University, Cambridge, MA, 1974,

This Ph.D. thesis contains what appears to be the first de-
scription of the backpropagation algorithm (although that

11-41

11 Backpropagation

1142

name is not used), The algorithm is described here in the
context of general networks, with neural networks as a spe-
cial case. Backpropagation did not become widely known
until # was rediscovered in the mid 1980s by Rumelhart,
Hinton and Williams [RuHi86], David Parker [Park85] and
Yann Le Cun [LeCu85].

Exercises

Exercises

E11.1 Design a multilayer network to perform the classification illustrated in
Figure E11.1. The network should output a 1 whenever the input vector is
in the shaded region (or on the boundary] and a -1 otherwise.

4 A

TR v

v 1
T T T

Figure E11.1 Pattern Classification Regions

E11.2 Find a single-layer network that has the same input/output characteristic
as the network in Figure E11.2.

tnputs Linear Layer 1 Linear Layer 2

Figure E11.2 Two-Layer Linear Network

E11.3 Choose the weights and biases for the 1-2-1 network shown in Figure 11.4
so that the network response passes through the points indicated by the

blue circles in Figure E11.3.

Use the Neural Network Design Demonstration Two-Layer Network Function
(nad11nt) to check your result.

1143

11 Backpropagation

1 -
) -1] 1

Figure E11.3 Function Approximation Exercise

Eil.4 Use the chain rule to find the derivative df/ow in the following cases:

i f(n) =sin(n), n{w) = W

fi. f(n) =tanh{n),n(w) = Sw.

fii, f(n) = exp(n),n{w) = cos(w).

t

iv. f(n) = logsig(n), niw) = exp(w).

E11.5 Repeat Problem P11.4 using the “backward” method described below.
In Problem P11.4. we had the dynamic system
ylk+1) = f{y{k)).

We had to choose the initial condition y (0) so that at some final time
k = K thesystem output y (K) would be as close as possible to some target
output ¢. We minimized the performance index

FOO) = (t-3(K)" = (k)
using steepest descent, so we needed the gradient

3y (O)F(}'(U]]

We developed a procedure for computing this gradient using the chain rule,
The procedure involved a recursive equation for the term

d

r(k) = 710

==y (k) ,

11-44

E1L6

E1L?

Exercises

which evolved forward in time. The gradient can also be computed in a dif-
ferent way by evolving the term

-9 2
(MH=W (K)

backward through time.

Consider again the backpropagation example that begins on page 11-14.

i. Find the squared error (¢)° as an explicit function of all weights
and biases.

ii. Using part (i), find 3(e)’/aw, , at the initial weights and biases.

iii. Compare the results of part (ii) with the backpropagation results de-
scribed in the text.

For the neitwork shown in Figure E11.4 the initial weights and biases are
chosen to be

wh() = 1,8 (0) =2, W' (0) =1,b°(0) =1.
The network transfer functions are
b 1
ffm=mrfm=,

and an input/target pair is given to be
((p=1).(r=1)).
Perform one iteration of backpropagation with o = 1.

Inputs Layer 1 Layer 2
NN 'SR

! B
1 1

N/ N N

al=f{wip+b) ar=fywial+h?)

Figure E11.4 Two-Layer Network for Exercise E11.7

11-45

11 Backpropagation

E11,8 For the network shown in Figure E11.5 the neuron transfer function ig

i = m?,
and an input/target pair is given to be

=T

Perform one iteration of backpropagation with ¢ = 1.

Inputs Layer 1

Figure E11.5 Single-Layer Network for Exercise £11.8

E11.9 The network shown in Figure E11.6 does not use cur standard neuron for-
mat. The network output uses a product of network inputs:

@ = WP, +W, P Pyt WPy +b.

Find alearning rule for w; , w, ,, w, and b using an approximate steepest
descent algorithm, as is used in backpropagation.

1146

Exercises

Input Cross-Product Neuren

r N{ A\
p ‘ { a
I 2x1 N T
2
—/ \ J

a=wp +w1,2p1p2+w2p2+b

Figure E11.6 Cross-Product Network

E11.10 In Figure E11.7 we have a two-layer network that has an additional con-
nection from the input directly to the second layer. Derive the backpropa-
gation algorithm for this network.

Inputs Layer 1 Layer 2

p/@tm)@a =

al =fiwip+i) a? =fi(wial+wd p+bi)

Figure E11.7 Two-Layer Network with Bypass Connection

E11.11 Write a MATLAB program to implement the backpropagation algorithm
for the 1-2-1 network shown in Figure 11.4. Choose the initial weights and
= biases to be random numbers uniformly distributed between -0.5 and 0.5

ey (using the MATLAB function rand), and train the network to approximate

ang =

4 the function

gip) = 1+Sin(gp) for 2<p<2.

Try several different values for the learning rate o, and use several differ-

12 Variations on
Backpropagation

Objectives 12-1
Theory and Examples 12-2
Drawbacks of Backpropagation 12-3
Perdormance Surface Example 12-3
Convergence Example 12-7
Heuristic Modifications to Backpropagation 12-9
Momentum 12-9
Variable | eaming Rate 12-12
Numerical Optimization Techniques 12-14
Conjugate Gradient 12-14
Levenberg-Marquardt Algorithm 12-19
Summary of Resuits 12.28
Solved Problems 12-32
Epilogue 12-46
Further Reading 12-47
Exercises 12-50

Objectives

The backpropagation algorithm introduced in Chapter 11 was & major
breakthrough in neural network research. However, the basic algorithm is
too slow for most practical applications. In this chapter we present several
variations of backpropagation that provide significant speedup and make
the algorithm more practical.

We will begin by using a function approximation example to illustrate why
the backpropagation algorithm is slow in converging. Then we will present
several modifications to the algorithm. Recall that backpropagation is an
approximate steepest descent algorithm. In Chapter 9 we saw that steepest
descent is the simplest, and often the slowest, minimization method. The
conjugate gradient algorithm and Newton's method generally provide fast-
er convergence. In this chapter we will explain how these faster procedures
can be used to speed up the convergence of backpropagation.

12.1

12 Variations on Backpropagation

Theory and Examples

12.2

SDBP

When the basic backpropagation algorithm is applied to a practical prob-
lem the training may take days or weeks of computer time, This has en-
couraged considerable research on methods to accelerate the convergence
of the algorithm,

The research on faster algorithms falls roughly into two categories. The
first category involves the development of heuristic techniques, which arise
out of a study of the distinctive performance of the standard backpropaga-
tion algorithm. These heuristic techniques include such ideas as varying
the learning rate, using momentum and rescaling variables (e.g.,
[VoMaB8], [Jacob88], [Toll90] and [Rilrd90]). In this chapter we will discuss
the use of momentum and variable learning rates.

Another category of research has focused on standard numerical optimiza-
tion techniques (e.g., [Shan90], [Barn$2], [Batt92] and [Char92]). As we
have discussed in Chapters 10 and 11, training feedforward neoral net-
works to minimize squared error is simply a numerical optimization prob-
lem. Because numerical optimization has been an important research
subject for 30 or 40 years (see Chapter 9), it seems reasonable to look for
fast training algorithms in the large number of existing numerieal optimi-
zation techniques. There is no need to “reinvent the wheel” unless absolute-
ly necessary. In this chapter we will present two existing numerical
optimization techniques that have been very successfully applied to the
training of multilayer perceptrons: the conjugate gradient algorithm and
the Levenberg-Marquardt algorithm (a variation of Newton's method).

We should emphasize that all of the algorithms that we will describe in this
chapter use the backpropagation procedure, in which derivatives are pro-
cessed from the last layer of the network to the first. For this reason they
could all be called “backpropagation” algorithms. The differences between
the algorithms occur in the way in which the resulting derivatives are used
to update the weights. In some ways it is unfortunate that the algorithm
we usually refer to as backpropagation is in fact a steepest descent algo-
rithm. In order to clarify our discussion, for the remainder of this chapter
we will refer to the basic backpropagation algorithm as steepest descent
backpropagation (SDBP),

In the next section we will use a simple example o explain why SDBP has
problems with convergence. Then, in the following sections, we will present
various procedures to improve the convergence of the algorithm,

Drawbacks of Backpropagation

Drawbacks of Backpropagation

Recall from Chapter 10 that the LMS algorithm is guaranteed to converge

to a solution that minimizes the mean squared error, so long as the learn-
ing rate is not too large. This is true because the mean squared error for a

gingle-layer linear network is a quadratic function. The quadratic function

has only a single stationary point. In addition, the Hessian matrix of a qua-
dratic function is constant, therefore the curvature of the function in a giv-
en direction does not change, and the function contours are elliptical.

SDBP is a generalization of the LMS algorithm. Like LMS, it is also an ap-
proximate steepest descent algorithm for minimizing the mean squared er-
ror. In fact, SDBP is equivalent to the LMS algorithm when used on a
single-layer linear network, (See Problem P11.10.) When applied to multi-
layer networks, however, the characteristics of SDBP are quite different.
This has te do with the differences between the mean squared error perfor-
mance surfaces of single-layer linear networks and multilayer nonlinear
networks. While the performance surface for a single-layer linear network
has a single minimum point and constant curvature, the performance sur-
face for a multilayer network may have many local minimum points, and
the curvature can vary widely in different regions of the parameter space.
This will become clear in the example that follows.

Performance Surface Example

To investigate the mean squared error performance surface for multilayer
networks we will employ a simple function approximation example. We
will use the 1-2-1 network shown in Figure 12.1, with log-sigmaid transfer
functions in both layers,

Input Log-Sigmoid Layer Log-Sigmoid Layer

a' = logsig(Wip+h') a2 = logsig(Wea + b2)

Figure 12.1 1-2-1 Function Approximation Network

In order to simplify our analysis, we will give the network a problem for
which we know the optimal solution, The function we will approximate is

12.3

12 Variations on Backpropagation

the response of the same 1-2-1 network, with the following values for the
weights and biases:

1

W:’lz I(},w;_] = IO,b]=—5,b;=5, (12.1)

= hw,=1,8" = (122)

The network response for thege parameters is shown in Figure 12.2, which
plots the network output 4" asthe input p is varied over the range [-2,2] .

b7y — R

L
a
w

Figure 12.2 Nominal Function

We want to train the network of Figure 12.1 to approximate the function
displayed in Figure 12.2, The approx:matlon will be exact when the net-
work parameters are set to the values given in Eq. (12.1) and Eq. (12.2).
This is, of course, a very contrived problem, but it is simple and it illus-
trates some important concepts.

Let’s now consider the performance index for our problem. We will assume
that the function is sampled at the values

p=-2,-19,-18,..,19,2, (12.3)

and that each occurs with equal probability. The performance index will be
the sum of the squared errors at these 41 points. {(We won’t bother to find
the mean squared error, which just requires dividing by 41.)

In order to be able to graph the performance index, we will vary only two
parameters at a time. Figure 12.3 illustrates the squared error when only
w1 , and w, , are being adjuated, while the other parameters are set to
their optimal values given in Eq. (12.1) and Eq. (12.2), Note that the mini-
murm error will be zero, and it will occur when “’:,1 = 10 and wi, =1,a8
indicated by the open blue circle in the figure.

13-4

Drawbacks of Backpropagation

There are several features to notice about this error surface. First, it is
clearly not a quadratic function. The curvature varies drastically over the
parameter space. For this reason it will be difficult to choose an appropri-
ate learning rate for the steepest deseent algorithm. In some regions the
surface is very flat, which would allow a large learning rate, while in other
regions the curvature is high, which would require a small learning rate.
(Refer to discussions in Chapters 9 and 10 on the choice of learning rate for
the steepest descent algorithm.)

It should be noted that the flat regions of the performance surface should
not be unexpected, given the sigmoid transfer functions used by the net-
work. The sigmoid is very flat for large inputs.

A second feature of this error surface is the existence of more than one local
minimum point. The global minimum point is located at w}_l = 10 and
wi , = 1, along the valley that runs parallel to the w;‘ , axis. However,
there is also a local minimum, which is located in the valley that runs par-
allel to the wi axis. (Thig local minimum is actually off the graph at

W:. ; = 0.88, w, | = 38.6.) In the next section we will investigate the per-
formance of backpropagation on this surface.

1 J'I ! II P I| \
i

iy Vi \H
” :i/// &&E:—:———;:

7, /’“:f—_—’
I - T

—

Figure 12.3 Squared Error Surface Versus “"1,1 and wi)

Figure 12.4 illustrates the squared error when w: , and b: are heing ad-
justed, while the other parameters are set to their optimal vallues. Note
that the minimum error will be zero, and it will occur when w, | = 10 and
b, = -5, as indicated by the open blue circle in the figure.

Again we find that the surface has a very contorted shape, steep in some

regions and very flat in others. Surely the standard steepest descent algo-
rithm will have some trouble with this surface. For example, if we have an
initial guessof w, | = 0,5, = -10, the gradient will be very close to zero,

125

12 Variations on Backpropagation

12-5

and the steepest descent algorithm would effectively stop, even thoughiit is
not close to a local minimum point.

Figure 12.4 Squared Error Surface Versus w:, , and b:

Figure 12.5 illustrates the squared error when b]l and b; are being adjust-
ed, while the other parameters are set, to their optimal values. The mini-
mum error is located at b, = -5 and b, = 5, as indicated by the open blue
circle in the figure.

This surface illustrates an important property of multilayer networks: they
have a symmetry to them. Here we see that there are twe local minimum
points and they both have the same value of squared error. The second so-
lution corresponds to the same network being turned upside down (i.e., the
top neuron in the first layer is exchanged with the bottom neuron). It is be-
cause of this characteristic of neural networks that we do not set the initial
weights and biases to zero. The symmetry causes zero {0 be a saddle point
of the performance surface.

This brief study of the performance surfaces for multilayer networks gives
us some hints as to how to set the initial guess for the SDBP algorithm.
First, we do not want to set the initial parameters to zero. This is because
the origin of the parameter space tends to be & saddle point for the perfor-
mance surface. Second, we do not want to set the initial parameters to large
values, This is because the performance surface tends to have very flat re-
gions as we move far away from the optimum point.

Typically we choose the initial weights and biases to be small random val-
ues, In this way we stay away from a possible saddle point at the origin
without moving out to the very flat regions of the performance surface. (An-
other procedure for chooging the initial parameters is described in
[NgWig0].) As we will see in the next section, it is also useful to try several
different initial guesses, in order to be sure that the algorithm convergesto
a global minimum point.

Drawbacks of Backpropogation

F oS : - - l 2
. N N

i ——, N . . A .

l'/',/ S N . e

Figure 125 Squared Error Surface Versus b, and by

Convergence Example

Now that we have examined the performance surface, let’s investigate the
performance of SDBP. For this section we will use a variation of the stan-
dard algorithm, called batching, in which the parameters are updated only
after the entire training set has been presented. The gradients calculated
at each training example are averaged together to produce a more accurate
estimate of the gradient. (If the training set is complete, i.e., covers all pos-
gible input/output pairs, then the gradient estimate will be exact.)

Batching

In Figure 12.6 we see twg trajectories of SDBP (batch mode) when oniy two
parameters, w, | and w; , are adjusted. For the initial condition labeled
“a” the algorithm does eventually converge to the optimal solution, but the
convergence is stow. The reason for the slow convergence is the change in
curvature of the surface over the path of the trajectory. After an initial
moderate slope, the trajectory passes over a very flat surface, until i falls
into a very gently sloping valley. If we were to increase the learning rate,
the algorithm would converge faster while passing over the initial flat sur-
face, but would become unstable when falling into the valley, as we will see
in a moment.

Trajectory “b” illustrates how the algorithm can converge to a local mini-
mum point. The trajectory is trapped in a valley and diverges from the op-
tiﬁnal solution. 2If allowed to continue the trajectory converges to

w) = 0.88, w; | = 38.6. The existence of multiple local minimum points
is typical of the performance surface of multilayer networks. For this rea-
son it is best to try several different initial guesses in order to ensure that
a global minimum has been obtained. (Some of the local minimum peints
may have the same value of squared error, as we saw in Figure 12.5, s0 we
would not expect the algorithm to converge to the same parameter values
for each initial guess. We just want to be sure that the same minimum er-
ror is obtained.)

12.7

12 Variations on Bockpropagation

12.8

Dlllhl —4‘..'

Figure 12.6 Two SDBP (Batch Mode) Trajectories

The progress of the algorithm can alse be seen in Figure 12.7, which shows
the squared error versus the iteration number. The curve on the left corre-
sponds to trajectory “a” and the curve on the right corresponds to trajectory
“b.” These curves are typical of SDBP, with long periods of little progress
and then short periods of rapid advance.

2 B

N
Il I N

10 10 10’ 10’ 10° 10

lteration Number tteration Number

(-]
e
-

Figure 12.7 Squared Error Convergence Patterns

We can see that the flat sections in Figure 12,7 correspond to times when
the algorithm is traversing a flat section of the performance surface, as
shown in Figure 12.6. During these periods we would like to increase the
learning rate, in order to speed up convergence. However, if we increase the
learning rate the algorithm will become unstable when it reaches steeper
portions of the performance surface.

This effect is illustrated in Figure 12.8. The trajectory shown here corre-

sponds to trajectory “a” in Figure 12.6, except that a Jarger learning rate

was used, The algorithm converges faster at first, but when the trajectory
reachea the narrow vailey that contains the minimum point the algorithm
begins to diverge. This suggesta that it would be useful to vary the learning
rate. We could increase the learning rate on flat surfaces and then decrease
the learning rate as the slope increased. The question is: “How wil! the al-

Heuristic Modifications of Backpropagation

gorithm know when it is an a flat surface?” We will discuss this in a later

section.
* | I"F'_Tl I

P | ! , |
1 | | .. .
' | || . y qu 3Bquared Error |

Wty

U _——— e
1¢ 10' il 10
Iteration Number

5 | [A A :_/,_.__ — - .__!

s 4 % [15
l
wl 1

Figure 12.8 Trajectory with Learning Rate Too Large

Another way to improve convergence would be to smooth cut the trajectory.
Note in Figure 12.8 that when the algorithm begins to diverge it is oscillat-
ing back and forth across a narrow valley. If we could filter the trajectory,
by averaging the updates to the parameters, this might smooth out the os-
cillations and produce a stable trajectery, We will discuss this procedure in
the next section.

To experiment with this backpropagation example, use the Neural Network
Design Demonstration Steepest Descent Backpropagation (nnd12sd).

Heuristic Modifications of Backpropagation

Now that we have investigated some of the drawbacks of backpropagation
(steepest descent), let’s consider some procedures for improving the algo-
rithm. In this section we will discuss two heuristic methods. In a later sec-
tion we will present two methods based on standard numerical optimiza-
tion algorithms.

Momentum

The first method we will discuss is the use of momentum. This is a medifi-
cation based on our ohservation in the last section that convergence might
be improved if we eould smooth out the oscillations in the trajectory. We
can do this with a low-pass filter.

Before we apply momentum to a neural network application, let’s investi-
gate a simple example to illustrate the smoothing effect. Consider the fol-
lowing first-order filter:

128

12 Variations on Backpropagation

12-10

y()y =y -1+ (1-wik),. (12.4)

where w (k) is the input to the filter, y {) is the output of the filter and y
is the momentum coefficient that must satisfy

0gy<l, (12.5)

The effect of this filter is shown in Figure 12.9, For these examples the in-
put to the filter was taken to be the sine wave:

wik) = 1+ sm(z;zk) (12.6)

and the momentum coefficient was set toy = 0.9 (left graph) and y = 0.98
(right graph). Here we can see that the oscillation of the filter output is less
than the oscillation in the filter input (as we would expect for a low-pass
filter). In addition, as 7y is increased the oscillation in the filter output is
reduced. Notice also that the average filter output is the same as the aver-
age filter input, although ag v is increased the filter output is slower to re-
gpond,

q I(n |Jr|]| (r\ (ﬂ\ |||1\ (ﬁ “\ ||ﬁ| ﬂ: ﬂ ||r|| {lﬂl ‘m i|f||| {1\ lf'| |"| ﬂ |“||| |’lIl |||| ||| ||“I |W|

=

e —
—E

— T i ——

[i

l
|

i \|] lJ

a)'y 0.9 b)y = 098

Figure 12.9 Smoothing Effect of Momentum

To summarize, the filter tends to reduce the amount of oscillation, while
still tracking the average value. Now let’s see how this works on the neural
network problem. First, recall that the parameter updates for SDBP (Eq.
(11.46) and Eq. (11.47)) are

m-1. T

AW" (k) = —as" (2") (12.7)

Ab" (k) = ~os”. {12.8)

Momentum

MOBP

Heuristic Modifications of Backpropagation

When the momentum filter ie added to the parameter changes, we obtain
the following equations for the momentum modification to backpropagea-

tion (MOBP):
AW™ () = YAW" (k=1) - (1=-p)as” (2", (12.9)

Ab™ (k) = yAb" (k-1) - (1-v}as". (12.10)

If we now apply these modified equations to the example in the preceding
section, we obtain the results shown in Figure 12.10. (For this example we
have used a batching form of MOBP, in which the parameters are updated
only after the entire training set has been presented. The gradients calcu-
lated at each training example are averaged together to produce a more ac-
curate estimate of the gradient.) This trajectory corresponds to the same
initial condition and learning rate shown in Figure 12.8, but with a mo-
mentum coefficient of y = 0.8. We can see that the algorithm is now stable.
By the use of momentum we have been able to use a larger learning rate,
while maintaining the stability of the algorithm. Another feature of mo-
mentum is that it tends to accelerate convergence when the trajectory is
moving in a consistent direction.

1.5

of

1¢° 10’ 10 1
lteration Number

Figure 12,10 Trajectory with Momentum

If you look carefuily at the trajectory in Figure 12.10, you can see why the
procedure is given the name momentum. It tends to make the trajectory
continue in the same direction. The larger the value of y, the more “mo-
mentum” the trajectory has.

To experiment with momentum, use the Neural Network Design Demonstra-
tion Momentum Backpropagation (nnd12mo).

21

12 Variations on Backpropagation

Variable Learning Rate

i2.12

VLBF

Variable Learning Rate

We auggested earlier in this chapter that we might be able to speed up con-
vergence if we increase the learning rate on flat surfaces and then decrease
the learning rate when the slope increases. In this section we want to ex-
plore this concept.

Recal! that the mean squared error performance surface for single-layer
linear networks is always a quadratic function, and the Hessian matrix is
therefore constant, The maximum stable learning rate for the steepest de-
scent algorithm is twe divided by the maximum eigenvalue of the Hessian
matrix. (See Eq. (9.25).)

As we have seen, the error surface for the multilayer netwerk is not a qua-
dratic function. The shape of the surface can be very different in different
regions of the parameter space. Perhaps we can speed up convergence by
adjusting the learning rate during the course of training. The trick will be
to determine when to change the learning rate and by how much.

There are many different approaches for varying the learning rate. We will
describe a very straightforward hatching procedure [VoMa88], where the

learning rate ig varied according to the performance of the algorithm. The
rules of the variable legrning rate backpropagation algorithm (VLBP) are:

1. Ifthe squared error (over the entire training set) increases by more
than some set percentage { (typically one to five percent) after a
weight update, then the weight update is discarded, the learning rate
is multiplied by some factor 0 < p < 1, and the momentum coefficient y
(if it i3 used) is set to zero.

2. Ifthe squared error decreases after a weight update, then the weight
update is accepted and the learning rate is multiplied by some factor
7> 1. If ¥ has been previously set to zero, it is reset to its original val-
ue.

3. I the squared error increases by less than {, then the weight update
18 accepted but the learning rate is unchanged. If ¥ has been previously
set {0 zero, it is reset to its original value.

(See Problem P12.3 for a numerical example of VLBP.)

To illustrate VLBP, let's apply it to the function approximation problem of
the previous section. Figure 12.11 displays the trajectory for the algorithm
using the same initial guess, initial learning rate and momentum coeffi-
cienf as was used in Figure 12.10. The new parameters were assigned the
values

n=105,p=07and{ = 4%. (12.11)

Heuristic Modifications of Backpropagation

Figure 12.11 Variabie Learning Rate Trajectory

Notice how the learning rate, and therefore the step size, tends o increase
when the trajectory is traveling in a straight line with constantly decreas-
ing error. This effect can also be seen in Figure 12.12, which shows the
squared error and the learning rate versus iteration number.

When the trajectory reaches a narrow valley, the learning rate is rapidly
decreased. Otherwise the trajectory would have become oscillatory, and the
error would have increased dramatically. For each potential step where the
error would have increased by more than 4% the learning rate is reduced
and the momentum is eliminated, which allows the trajectory to make the
quick turn to follow the valley toward the minimum point. The learning
rate then increases again, which accelerates the convergence. The learning
rate is reduced again when the trajectory overshoots the minimum point
when the algorithm has almost converged. This process is typical of a
VLBP trajectory.

\ Squared Error

18 Learning Rate

T

T

M
05 A 20
G J
10° 10" 1¢° 19 10° 10' 100 10°
Itaration Number Itaration Nurmber

Figure 12.12 Convergence Characteristics of Variable Learning Rate

There are many variations on this variable learning rate algorithm. Jacobs
[Jaco88] proposed the delta-bar-delta Jearning rule, in which each network
parameter (weight or bias) has itz own learning rate. The algorithm in-

creases the learning rate for a network parameter if the parameter change

12-13

12 Variations on Backpropagation

has been in the same direction for several iterations. If the direction of the
parameter change alternates, then the learning rate is reduced. The Se-
perSAB algorithm of Tollenaere [Toll90} is similar to the delta-bar-delta
rule, but it has more complex rules for adjusting the learning rates.

Another heuristic modification to SDBP is the Quickprop algorithm of
Fahlman [Fahl88]. It assumes that the error surface is parabolic and con-
cave upward around the minimum point and that the effect of each weight
can be considered independently. (References to other SDBP modifications
are given in Chapter 19.)

The heuristic modifications to SDBP can often provide much faster conver-
gence for some problems. However, there are two main drawbacks to these
methods. The first is that the modifications require that several parame-
ters be set (e.g.,, §, p and), while the only parameter required for SDBP
is the learning rate. Some of the more complex heuristic medifications can
have five or six parameters to be selected. Often the performance of the al-
gorithm is sensitive to changes in these parameters. The choice of param-
eters is also problem dependent. The second drawback to these
modifications to SDBP is that they can sometimes fail to converge on prob-
lems for which SDBP will eventually find a solution. Both of these draw-
backs tend to cecur more often when using the more complex algorithms.

To experiment with VLBP, use the Neural Network Design Demonstration
Variable Learning Rate Backpropagation (nnd12v1).

Numerical Optimization Techniques

Now that we have investigated some of the heuristic modifications to
SDBP, let’s consider those methods that are based on standard numerical
optimization techniques. We will investigate two techniques: conjugate
gradient and Levenberg-Marquardt, The conjugate gradient algorithm for
quadratic functions was presented in Chapter 9. We need to add two pro-
cedures to this algorithni in order to apply it to more general functions.

The second numerical optimization method we will discuss in this chapter
is the Levenberg-Marquardt algorithm, which is a medification to New-
ton’s method that is well-suited to neural network training.

Conjugate Gradient

In Chapter we presented three numerical optimization techniques: steep-
est descent, conjugate gradient and Newton’s method. Steepest descent is
the simplest algorithm, but is often slow in converging. Newton’s method
is much faster, but requires that the Hessian matrix and its inverse he cal-
culated. The conjugate gradient algorithm is something of a compromise; it
does not require the calculation of second derivatives, and yet it still has
the quadratic convergence property. (It converges to the minimum of a qua-
dratic function in a finite number of iterations.) In this section we will de-

i2-14

CGBP

Numerical Optimization Technigques

scribe how the conjugate gradient algorithm can be used to train
multilayer networks. We will call this algorithm conjugate gradient back-
propagation (CGRP).

Let’s begin by reviewing the conjugate gradient algorithm, For ease of ref-
erence, we will repeat the algorithm steps from Chapter 9 (page 9-18):

1. Select the first search direction p; to be the negative of the gradient,
ap in Eq, (9.59);

P, = & (12.12)

where

g=VF®| - (12.13)

2. Take a step according to Eq. (9.57), selecting the learning rate a, to
minimize the funetion along the search direction:

X = X HOLP, . (12.14)

3. Select the next gearch direction according to Eq. {9.60), using Eq.
(9.61), Eq. (9.62), or Eq. (9.63) to calculate §,:

p,=-g+Bp, |, (12.15)
with
A8, 8 28 Agy .8
Bl. - Tk—l h or Bk = - k Bk or ﬁk = Tk—l k . {12.16)
Agy_\Pi-y 818 818

4. Ifthe algorithm has not converged, continue from step 2.

This conjugate gradient algorithm cannot be applied directly to the neural
network training task, because the performance index is not quadratic.
This affects the algorithm in two ways. First, we will not be able to use Eq.
(9.31) to minimize the function along a line, as required in step 2. Second,
the exact minimum will not normally be reached in a finite number of
steps, and therefore the algorithm will need tobe reset after some set num-
ber of iterations.

Let’s address the linear search first. We need to have a general procedure
for locating the minimum of a function in a specified direction. This will in-
volve two steps: interval location and interval reduction. The purpose of the
interval location step is to find some inijtial interval that contains a lecal
minimum. The interval reduction step then reduces the size of the initial
interval until the minimum is located to the desired accuracy.

12-15

- mar v o, P S T A

12 Variations on Backpropagation

12-16

Interval Location

Interval Reduction

We will use a function comparison method {Scal85] to perform the interval
location step. This procedure is illustrated in Figure 12.13. We begin by
evaluating the performance index at an initial point, represented by a, in
the figure. This peint corresponds to the current values of the network
weights and biases. In other words, we are evaluating

F{x)) . (1217}

The next step is to evaluate the function at a second point, represented by
b, inthe figure, which is a distance ¢ from the initial point, along the first
search direction p,. In other words, we are evaluating

F(x,+Ep,) . (12.18)

Figure 12.13 Interval Location

We then continue to evaluate the performance index at new points &, suc-
cessively doubling the distance between points. This process stops when
the function increases between two consecutive evaluations. In Figure
12.13 this is represented byb, to b, . At this point we know that the mini-
mum i8 bracketed by the two points a; and b,. We cannot narrow the in-
terval any further, because the minimum may occur either in the interval
la,, b,] or in the interval [a., b,] . These two possibilities are illustrated in
Figure 12.14 (a).

Now that we have located an interval containing the minimum, the next

step in the linear search is inferval reduction. This will involve evaluating
the function at points inside the interval lag, b;], which was selected in the
interval location step. From Figure 12.14 we can see that we will need to

evaluate the function at two internal points (at least) in order to reduce the
size of the interval of uncertainty, Figure 12.14 (a) shows that one internal
function evaluation does not provide us with any information on the loca-
tion of the minimum. However, if we evaluate the function at two points ¢
and d, as in Figure 12.14 (b}, we can reduce the interval of uncertainty. If

Numerical Optimization Technigues

F(c) » F{d) , as shown in Figure 12,14 (b), then the minimum must oceur
in the interval |c, #]. Conversely, if F{¢) < F{d) , then the minimum must
occur in the interval |a, d}. {(Note that we are assuming that there is a sin-
gle minimum located in the initial interval. More about that later.)

L Fin 4 Ao

il

i
= |
| |

a ¢ B a ¢ d b

{a) Interval is not reduced. (b) Minimum must occur
between ¢ and b,

Figure 12.14 Reducing the Size of the Interval of Uncertainty

The procedure described above suggests a method for reducing the size of
the interval of uncertainty. We now need to decide how to determine the lo-
cations of the internal points ¢ and 4. There are several ways to do this
Golden Section Search (see [Scal85)). We will use a method called the Golden Section search,
which is designed to reduce the number of function evaluations required.
At each iteration one new function evaluation is required, For example, in
the case illustrated in Figure 12.14 (b) point a would be discarded and
point ¢ would become an outside point. Then & new point ¢ would be placed
between the original points ¢ and 4. The trick is to place the new point so
that the interval of uncertainty will be reduced as quickly as possible.

The algorithm for the Golden Section search is as follows [Scal85);
T = 0.618
Set r =a+(1-1) (b -a),F, =F(c).
d, = b~ (1-1) (b, -a) , F, = F{d,) .
Fork = 1,2, ... repeat
If F < F, then
Set a4, =450, =454, = ¢
Coor = &+ (1-T) (b -6,,)
Fy=F F =Flc,).

else

i12-17

12 Variations on Backpropagaiion

12-18

Set a,,,=cub,., =bic, =4
dpey = by~ (1= (b, ;)
F.=F;; F,=Fd,
end
enduntil &, , -4, , <10l
Where ro! is the accuracy tolerance set by the user.

(See Problem P12.4 for a numerical example of the interval location and in-
terval reducticn procedures.)

There is one more modification to the conjugate gradient algoerithm that
needs to be made before we apply it to neural network training. For qua-
dratic functions the algorithm will converge to the minimum in at most »
iterations, where n is the number of parameters being optimized. The
mean squared error performance index for maltilayer networks is not qua-
dratic, therefore the algorithm would not normally converge in » itera-
tions. The development of the conjugate gradient algorithm does not
indicate what search direction to use once a cycle of n iterations has been
completed. There have been many procedures suggested, but the simplest
method is to reset the search direction to the steepest descent direction
(negative of the gradient) after n iterations [Scal85]. We will use this meth-
od.

Let's now apply the conjugate gradient algorithm to the function approxi-
mation example that we have been using to demonstrate the other neural
network {raining algorithms. We will use the backpropagstion algorithm

to compute the gradient (using Eq. (11.23) and Eq. (11.24)) and the conju-
gate gradient algorithm to determine the weight updates. This is a batch

mode algorithm, as the gradient is computed after the entire training set

has been presented to the network.

Figure 12.15 shows the intermediate steps of the CGBP algorithm for the
first three iterations, The interval location process is illustrated by the
open blue circles; each one represents one evaluation of the function. The
final interval is indicated by the larger open black circles. The black dots in
Figure 12.15 indicate the location of the new interior points during the
Golden Section search, one for each iteration of the procedure. The final
point is indicated by a blue dot.

Figure 12.16 shows the total trajectory to convergence. Notice that the
CGBP algorithm converges in many fewer iterations than the other algo-
rithms that we have tested. This is a liftle deceiving, since each iteration
of CGBP requires more computations than the other methods; there are
many function evaluations involved in each iteration of CGBP. Even so,
CGBP has been shown to be one of the fastest batch training algorithms for
multilayer networks [Char$2].

Numerical Optimization Techniques

Wi

J

AN |

10 10’ 1
Iteration Number

Figure 12.16 Conjugate Gradient Trajectery

To experiment with CGBP, use the Neural Network Design Demonstrations
Conjugate Gradient Line Search (nnd121s) and Conjugate Gradient Backprop-
agation (nnd12cg).

Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is a variation of Newton’s method
that was designed for minimizing functions that are sums of squares of oth-
er nonlinear functions. This is very well suited to neural network training
where the performance index is the mean squared error.

Basic Algorithm

Let's begin by considering the form of Newton’s method where the perfor-
mance index is a sumn of squares. Recall from Chapter 9 that Newton’s
methed for optimizing a performance index F(x) is

12-19

12 Variations on Backpropagation

12-20

Jacobian Matrix

Xev1 = xk_Ak_lgk’ (12.19)
where A'k = VEF [x)]x =X and gk =VF (X) Ix =X,
If we assume that F(x} is a sum of squares function:
N
Fy = Tvim =v (v, (12.20)
then the jth element of the gradient would be

v
[VF(x)], = 9‘3(") - 22 v (x)-—(~3. (12.21)
f J

The gradient can therefore be written in matrix form:

VE(x) = 2 ()v(x), (12.22)
where
v, (x) v (x) v, (x) |
ox, dx, ' dr,
v, (x) ov,(x) v, (X)
¥ = Tox, Tox, U Tox | (12.29)
Ovy(X) dvy(X) dvy(x)
| 9% dx, T ox,
is the Jacobian matrix.

Next we want to find the Hessian matrix. The &, j element of the Hessian
matrix would be

2
3'F (x) {Bv , (%) ov, () 0 v‘.{x]}
2 =
(VPF(x)]y; = 3xpd, =2 2 o, 8.rj +y;(x Feor, .(12.24)

The Hessian matrix can then be expressed in matrix form:

VIF(x) = 2F (0] (x) +28(x), (12.25)

where

(Gauss-Newton

Levenberg-Marquardt

Numerical Optimization Technigques

¥
S(x) = Y v, (x) Vi, (x}. (12.26)

i=1
If we assume that S (x} is small, we can approximate the Hessian matrix
as
V2R (x) =2F (0 J(x) . (12.27)
If we then substitute Eq. (12.27) and Eq. (12.22) into Eq. (12.19), we obtain
the Gauss-Newton method:

Xpp1 = % {ZJT(Kk)J(Xk)I_IZJT{xk)v(xi}
{12.28}

= X~ [JT(X;JJ(xk)]-lJT(xk)v(xk) _

Note that the advantage of Gauss-Newton over the standard Newton's
method is that it does not require calculation of second derivatives,

One problem with the Gauss-Newton method is that the matrix H = J 1
may not be invertible. This can be overcome by using the following modifi-
cation to the approximate Hessian matrix:

G =H+pl, (12.29)

To see how this matrix can be made invertible, suppose that the eigenval-
ues and eigenvectors of H are {A,4,,...,A} and {z,,z,, ...,2,} . Then

Gz, = [H+uljz, = Hz, +pz, = Az, +pz, = (A +)z, (1230
Therefore the eigenvectors of G are the same ag the eigenvectors of H, and

the eigenvalues of G are (A, + 1) . G can be made positive definite by in-
creasing p until (A;+p) >0 for all i, and therefore the matrix will be in-

vertible.
This leads to the Levenberg-Marguardt algorithm [Scal85);

Xpyi = X [JT{xk)J(xk) + 1,11 -IJT(xk)v[xk) . (12.31)
or

ax, =~ (1T ()T)+ 0) T (v (xy (12:32)

This algorithm has the very useful feature that as p, is increased it ap-
proaches the steepest descent algorithm with small learning rate:

12-21

N

12 Variations on Backpropagation

12.22

1
X, ;xk—&.}r(xi)v(xk) = X“_Z_M;(VF{X) , for large i, (12.33)

k
while as y, is decreased to zero the algorithm becomes Gauss-Newton.

The algorithm begins with p, set to some small value (e.g.,, p, = 0.01).Ifa
step does not yield a smaller value for F(x) ,then the step is repeated with
1, multiplied by some factor 9> 1 (e.g.,® = 10). Eventually F (x) should
decrease, since we would be taking a small step in the direction of steepest
descent. If a step does produce a smaller value for F (x) , then y, isdivided
by ¥ for the next step, so that the algorithm will approach Gauss-Newton,
which should provide faster convergence. The algorithm provides a nice
compromise between the speed of Newton’s method and the guaranteed
convergence of steepest descent.

Now let’s see how we can apply the Levenberg-Marquardt algorithm to the
multilayer network training problem. The performance index for multilay-
er network training is the mean squared error (see Eq. (11.11)). If each tar-
get occurs with equal probability, the mean squared error is proportional
to the sum of squared errors over the (targets in the training set:

F{x)

¢
Z “q“aq) T(tq_a«r}
g=1

N (12.34)

¢ 7 e s 2 2
)} €€ = 22X (e, = PR
g=1

g=1;=1 i=1

where ¢, ; 18 the jth element of the error for the gth input/target pair.

Eq. (12.34) is equivalent to the performance index, Eq. (12.20), for which
Levenberg-Marquardt was designed. Therefore it shoald be & straightfor-
ward matter to adapt the algorithm for network training. It turns out that
this is true in concept, but it does require some care in working out the de-
tails.

Jacobian Calculation

The key step in the Levenberg-Marquardt algorithm is the computation of
the Jacobian matrix. To perform this computation we will use a variation
of the backpropagation algorithm. Recall that in the standard backpropa-
gation procedure we compute the derivatives of the squared errors, with re-
spect o the weights and biases of the network. To create the Jacobian
matrix we need to compute the derivatives of the errors, instead of the de-
rivatives of the squared errors.

Itis a simple matter conceptually to modify the backpropagation algorithm
to compute the elements of the Jacobian matrix. Unfortunately, although
the basic concept is simple, the details of the implementation can be a little

Numericol Optimization Technigues

tricky. For that reason you may want to skim through the rest of this sec-
tion on your first reading, in order to obtain an overview of the general flow
of the presentation, and return later to pick up the details. It may also be
helpful to review the development of the backpropagation algorithm in
Chapter 11 before proceeding.

Before we present the procedure for computing the Jacobian, let's take a
closer look at its form (Eq. (12.23)). Note that the error vector ia

Ve [oyvon) = eren g eir e |0 (1239
the parameter vector is
r_ N N T 1 1 12 M
X = [x, Xy o x"] = [wu Wig e W by by Wiy b.s"] , (12.36)

N=0xs"andn =8 R+1) +5° (8" + 1)+ +57(5" 4.

Therefore, if we make these subatitutions into Eq. (12.23), the Jacobian
matrix for multilayer network training can be written

rael_l oe, | de, , Oey,

1 1 L1 a1
ow y Ow , aws1lR ob,
Be“ de, | de, aezr,

1 T o Yy
dw, | dw, , Bw&_]'ﬂ b,

Jx) =1 ° : : : (12.37)
aes”‘l aes",l aes".l aes“‘l

] T o1 T
dwy | ow, , Bws,.k ob,
ae,_z ae]_z a"-’l.z E!.rel_2

1 TN N
dw; | Ow) , Eiwl‘_,“Jz ob,

The terms in this Jacobian matrix can be computed by a simple modifice-

tion to the backpropagation algorithm.

Standard backpropagation calculates terms like

oF(x) _ aeq q
- ox,

ax,

T
[

e e aae .

(12.38)

12-23

12 Variations on Backpropagation

Marquardt Sensitivity

12-24

For the elements of the Jacobian matrix that are needed for the Levenherg-
Marquardt algorithm we need to calculate terms like

dy, de,
Ul,, = o (12.39)
Recall from Eq. (11.18) in our derivation of backpropagation that

& » a m
9 T (12.40)

aw?}. on; ow,
where the first term on the right-hand side was defined as the sensitivity:
5 = B_f; . {12.41)

dn

The backpropagation process computed the sensitivities through a recur-

rence relationship from the last layer backward to the first layer. We can

uge the same concept to compute the terms needed for the Jacobian matrix
(Eq. (12.37)) if we define a new Marquardt sensitivity:

n O d
AL X § (12.42)
Coon, on,

where, from Eq. (12.35), & = (¢- 1)S¥ +&.

Now we can compute elements of the Jacobian by

d, 3 de, . o, .o . ..
(5. = é—h = ek,'n = bl —hd o G Xt o szhxajq],(12.43)
' X ow on; ow, . aw . '
0w Lq L) Ly
orif x, is a bias,
dv, de,, de, om. . o .
[J]hJ::f:_ii'_q.-:ik’_fx_iﬂ:Ei, x-‘ingi,h‘ (12.44)

b

The Marquardt sensitivities can be computed through the same recurrence
relations as the standard sensitivities (Eq. (11.35)) with one modification
at the final layer, which for standard backpropagation is computed with
Eqg. (11.40). For the Marquardt sensitivities at the final layer we have

Numerical Optimization Techniques

M M

M ov, _ dey . B(Ik,q—a*_q) _ dag ,
wh T M T M M - M
ang, O, dan, , o,

{12.45)
() fori=k

0 forizhk

Therefore when the input p_ has been applied to the network and the cor-
responding network output a has been computed, the Levenberg-Mar-
quardt backpropagation is uutlallzed with

§ =-F'aly, (12.46)
where I/ (™) is defined in Eq. (11.34). Each column of the matrix Qf
must be backpropagated through the network using Eq. (11.35) to produce
one row of the Jacobian matriz. The columns can also be backpropagated
together using

mat Tomeld

. = Fralhw™h s (12.47)

The total Marquardt sensitivity matrices for each layer are then created by
augmenting the matrices computed for each input:

§" = [S',“ ”[S

Note that for each input that is presented to the network we will beckprop-
agate 5" sensitivity vectors. This is because we are computing the deriva-
tives of each individual error, rather than the derivative of the sum of
Issﬂ‘uares of the errors. For every input applied to the network there will be

errors (one for each element of the network output). For each error
there will be one row of the Jacobian matrix.

”j . (12.48)

After the sensitivities have been backpropagated, the Jacobian matrix is
computed using Eq. (12.43) and Eq. (12.44). See Problem P12.5 for a nu-
merical illustration of the Jacobian computation.

The iterations of the Levenberg-Marquardt backprepagation algorithm
LMBP (LMBP) can be summarized as follows:

1. Present all inputs to the network and compute the corresponding net-
work outputs (using Eq. (11.41) and Eq. (11.42)) and the errors
e, =t a:’ . Compute the sum of squared errors over ail inputs, F(x},

12-25

12 Variations on Backprepagation

12.28

using Eq. (12.34).

2. Compute the Jacobian matrix, Eq. (12.37). Calculate the sengsitivities
with the recurrence relations Eq. (12.47), after initializing with Eq.
(12.46), Augment the individual matrices into the Marquardt sensitiv-
ities using Eq. (12.48). Compute the elements of the Jacobian matrix
with Eq. {12.43) and Eq. (12.44).

3. Solve Eq. (12.32) to obtain Ax, .

4. Recompute the sum of squared errors using x, + Ax, . If this new sum
of squares is smaller than that computed in step 1, tflen divide p by ¥,
let x,,, = x,+Ax, and go back to step 1, If the sum of squares is not
reduce:].l, then mulktiply { by 9 and go back to step 3.

The algorithm is assumed to have converged when the norm of the gradi-
ent, Eq. (12.22), is less than some predetermined value, or when the sum
of squares has been reduced to some error goal.

Toillustrate LMBP, let's apply it to the function approximation problem in-
troduced at the beginning of this chapter. We will begin by looking at the
bagic Levenberg-Marquardt step. Figure 12,17 illustrates the possible
steps the LMBP algorithm could take on the first iteration.

" -— —_ . 4
o ||!| '! |T | ‘| H

F

Figure 12.17 Levenherg-Marquardt Step

The black arrow represents the direction taken for small p, , which corre-
sponds to the Gauss-Newton direction. The blue arrow represents the di-
rection taken for large y , which corresponds to the steepest descent
direction. (This was the initial direction taken by all of the previous algo-
rithms discussed.) The blue curve represents the Levenberg-Marquardt
step for all intermediate values of y, . Note that as y, is increased the al-
gorithm moves toward a small step in the direction oi“ steepest descent.
This guarantees that the algorithm will always be able to reduce the sum
of squares at each iteration.

Numerical Optimization Technriques

Figure 12.18 shows the path of the LMBP trajectory to convergence, with
Hy = 001 and 3 = 5. Note that the algorithm converges in fewer itera-

tions than any of the methods we have discussed so far. Of course this al-
gorithm also requires more computation per iteration than any of the other
algorithms, since it involves a matrix inversion. Even given the large num-
ber of computations, however, the LMBP algorithm appears to be the fast-
est neural network training algorithm for moderate numbers of network

parameters [HaMe94),
| T I| | T
o [ll i | i ' \" 15
."l I || li | | || “-, ' Squared Error
10 Il i |I i
."I | III I' I| |1 \ 1)
;) I| | | ! Il\
SN \
wi:l ’{ 'l/ I', l' l'-, \
1 0.5
=4 G pm——— [
’ /\JI/ \:—LiE:_; 0 \
/ s ;jfﬂii 10° 10’ 10°
{ —— Iteration Numbar
\ I.l' F :
s-sL_— syt o 15

Figure 12.18 LMBP Trajectory

To experiment with the LMBP aigorithm, use the Neural Network Design

Demonstrations Marguardt Step (nnd12ms) and Marquardt Backpropagation
(nnd12nm}.

The key drawback of the LMBP algorithin is the storagerrequirement. The
algorithm must store the approximate Hessianmatrix J' J . Thisisannxn
matrix, where » is the number of parameters (weights and biases} in the

network. Recall that the other methods discussed need only store the gre-
dient, which is an n-dimensional vector. When the number of parameters

18 very large, it may be impractical to use the Levenberg-Marquardt alge-
rithm. (What constitutes “very large” depends on the available memory on
your computer, but typically a few thousand parameters is an upper limit.)

12-27

12 Variations on Backpropagation

Summary of Results

Heuristic Variations of Backpropagation

Batching

The parameters are updated only after the entire training set has been pre-
sented. The gradients calculated for each training example are averaged
together to produce a more accurate estimate of the gradient. (If the train.
ing set is complete, i.e., covers all possible input/output pairs, then the gra-
dient estimate will be exact.)

Backpropagation with Momentum (MOBP)

AW™ (k) = AW (k-1) - (1~ as™ (@™ ")

Ab™ (k) = YAb" (k- 1) - (1 -V ats™

Variable Learning Rate Backpropagation (VLBP)

1. Ifthe squared error (over the entire training set) increases by more
than some set percentage { (typically one to five percent) after a
weight update, then the weight update is discarded, the learning rate
is multiplied by some factor p < 1, and the momentum coefficient y (if
it is used) is set to zero.

2. Ifthe squared error decreases afler a weight update, then the weight
update is accepted and the learning rate is multiplied by some factor
M > 1. If y has been previously set to zero, it is reset to its original val-
ue.

3. Ifthe squared error increases by less than {, then the weight update
is arcepted but the learning rate and the momentum coefficient are un-

changed.

12-28

Summary of Results

Numerical Optimization Techniques

Conjugate Gradient
Interval Location
4 Fx)
Y 8
—\ "
\ 2
! x
a;—b, [o
2=y .
i
¢ ai b,
2 b;

Set ¢ =a+(1-1)(b-a),F. =Fl)}.
=b—(l-1)(b)-a),F,=F(d).

B
f

For k = 1,2, ... repeat
HF <F, then
Set g, =asb, =454, =¢
=@+ (1-10 b, -a,)

Fd = Fc; Fc = F(Ctﬂ)

ry
L
-

|

else
Set ay, = oiby = b, =4
dpor = by - (1-T (b, -a,,))
Fo=Fy Fy=Fld,)
end

enduntil ,, | -a,,, <tol

12-29

12 Variations on Backpropagation

Levenberg-Marquardt Backpropagation (LMBP)
ax, = -1 () d (x) + 01 T (1 v (xy)

T

¥ = [v] ¥y oee vﬁ] = [81‘1 ez_l E.S‘”,] 81_2 eS’“J

xT - [= |t 1
X; Xy o0 X, Wy W

W

1
s R

by ..

N=Ox$andn=58(R+1)+5(S'+1) +...

(B, , de,, dey, deyy |
1 T 1 r o
oW, ow,, aws,‘x b,
332,[a"z,l a“-’z,l ?fﬂ
1 TN 1
dw, | dw, , 8ws.‘R ob,
Jx) = : : : :
Be ae,,] 395_,,.] aeg,,,l
T 1
a“’l,] a“’],z aWS1IR ok,
dey, 0€ , de,, de,
ow) , owl, ow, ab
L] - S.R
d d 3 on; on -
U1, = Eif‘ = -e—‘:? ef;"x_n;i =5 xn—‘;: = xa”] for weight x,
1 aw(._j. anl_q Ehvu awf_j
v, de o on, on ”
31,, = é}.’! = 4 = e_*’fx_"‘-_m‘i = §ax—2 Dig 5 4 for bias x,
(ob; dn, Ob ab;
= A aekq T
Si..ﬁsé'_m‘ = —= (Marquardt Sensitivity) where # = (g~ l}S”+k
Niq Mg

12-30

§, = -F" @lh

—F(n)(w

g _..“sg]

sm = [gl

) 8,

m+l, Tomtl

1
b,ow, ..
o Wi

+SM(SM_I+1)

Summary of Resulis

Levenberg-Marquardt Iterations

. Present all inputs to the network and compute the corresponding net-
work outputs (using Eq. (11.41) and Eq. (11.42)} and the errors
e, =t~ ar. Compute the sum of squared errors over allinputs, F(x),

q
using Eq. (12.34).

. Compute the Jacobian matrix, Eq. (12.37). Calculate the sensitivities
with the recurrence relations Eq, (12.47), after initializing with Eq.
(12.46). Augment the individual matrices into the Marquardt sensitiv-
ities using Eq. (12.48), Compute the elements of the Jacobian matrix
with Eq. (12.43) and Eq. (12.44).

. Solve Eqg. (12.32) to chtain Ax, .

. Recompute the sum of squared errors using x, + Ax, . If this new sum
of squares is smaller than that computed in step 1, tflen divide p by &,
let x,,, = x, + Ax, and go back to step 1. If the sum of squares is not
reduce&, then multiply p by 4 and go back to step 3.

1231

12 Variations on Backpropagation

E Solved Problems

12-32

P121 We want to train the network shown in Figure P12.1 on the training

set
(py = 4 = [os] s (oy = [(=1
starting from the initial guess
w(l) =04, b(0) =0.15.

Demonstrate the effect of batching by computing the direction of
the initial step for SDBP with and without batching.

Input Log-Sigmoid Layer

pwna
‘b
1

a=logrig(wp+b)

Figure P12.1 Network for Problem P12.1

Let’s begin by computing the direction of the initial step if batching is not
used. In this case the first step is computed from the first input/target pair.
The forward and backpropagation steps are

1

1+exp (—(04(-3) +0.15)) 02592

a = logsig(wp+b) =
e=1t-a=05-02592 = 0.2408

s=-2f(n)e =-2a(1-a)e = -2 (0.2592) (1 -0.2592) 0.2408 = ~0.0925.

The direction of the initial step is the negative of the gradient. For the
weight this will be

—-sp = —(-0.0925) (-3) = -02774,
For the bias we have

s = —(~0.0925) = 0.0925.

Solved Problems

Therefore the direction of the initial step in the (w, b) plane would be

-0.2774
0.0925
Now let’s consider the initial direction for the batch mode algorithm. In this
case the gradient is found by adding together the individual gradients
found from the two sets of input/target pairs. For this we need to apply the

second input to the network and perform the ferward and backpropagation
ateps:

1
L+exp{(~(04(2) +0.15))

a = logsig{wp+b) = = 0.7211

e=1t-a=1-07211 = 0.2789

s=-2f(n)e = -2a(l-a)e = ~2{0.7211) (1-0.7211)0.2789 = —0.1122.

The direction of the step is the negative of the gradient. For the weight this
will be

—sp = - (01122} (2) = 0.2243.
For the bias we have
-5 = —(-0.1122) = 0.1122.
The partial gradient for the second input/target pair is therefore

0.2243

0.1122
If we now add the results from the two input/target pairs we find the direc-
tion of the first step of the batch mode SDBP to be

1{ -0.2774 _ |0.2243 } _ 1{-0.0531; _ }-0.0265

2\ {005 01122 2{ 02047 0.1023

The results are illustrated in Figure P12.2. The blue circle indicates the ini-
tial guess. The two blue arrows represent the directions of the partial gra-
dients for each of the two input/arget pairs, and the black arrow
represents the direction of the total gradient. The function that is plotted
is the sum of squared errors for the entire training set. Note that the indi-
vidual partial gradients can point in quite different directions than the true
gradient. However, on the average, over several iterations, the path will
generally follow the steepest descent trajectory.

12-33

12 Variations on Backpropagation

12-34

P11.2

The relative effectiveness of the batch mode over the incremental approach
depends very much on the particular problem. The incremental approach
requires less storage, and, if the inputs are presented randomly to the net-
work, the trajectory is stochastic, which makes the algorithm somewhat
less likely to be trapped in a local minimum. It may also take longer to con-
verge than the batch mode algorithm.

dr—m Ty T
‘\\\\‘\ v !
PR \\\ b
4 \ \.\3\ L :
N i
Vi e |
AUAE
b olv \ \,"-.\'W
i ".".""\:l“‘ -
|'\\ NN, i
. “\:\\' \
2 | \\\\\\\ "\
fovr \\\\\\\ N
PR : 5, |
; AR 1
Y Y AR R T i
-l 2 [+
L

Figure P12.2 Effect of Batching in Problem P12.1

In Chapter 9 we proved that the steepest descent algorithm, when
applied to a guadratic function, would be stable if the learning
rate was less than 2 divided by the maximum eigenvalue of the
Hessian matrix, Show that if a momentum term is added to the
steepest descent algorithm there will always be a momentum coef-
ficient that will make the algorithm stable, regardless of the learn-
ing rate, Follow the format of the proof on page 9-6.

The standard steepest descent algorithm is
Ax, = -aVF(x)) = -og,,
If we add momentum this becomes
Ax, = yax,_ - {l-y)og,.
Recall from Chapter 8 that the quadratic function has the form

1

T T
zx Ax+d x4+,

F{x} =

and the gradient of the quadratic function is
VF(x) = Ax+d.

Solved Problems

I we now insert this expression into our expression for the steepest descent
algorithm with momentum we obtain

Ax, = YAX, | - (1-Y)a(Ax +d).
Using the definition Ax, = x,,,-x, this can be rewritten
XX = Y(x,-%,_) - (1-7)a{Ax, +d)

or

X = [(1+T)]_ {]‘T)QA]xk“Txb;_ (I_Y)ad-

Now define a new vector

The momentum variation of steepest descent can then be written

X, = [0 ! :’ik"'{ 0 } = WK, +v.
A { {1+ I-(1-7)cA] -(I-v)yod

This is a linear dynamic system that will be stable if the eigenvalues of W
are Jess than one in magnitude. We will find the eigenvalues of W in stag-
es, First, rewrite W as

W= 0T where T = [(1+7)I- (1-7)aA].
- T
The eigenvalues and eigenvectors of W should satisfy
sz=lwzw’or 0 I||% =?‘.w I,)
- T
This means that
z, = A'z) and -7z} + Tz, = A"z, .
At this peint we will choose z2 to be an eigenvector of the matrix T, with

corresponding eigenvalue A'. (If this choice is not appropriate it will lead
to a contradiction.) Therefore the previous equations become

12-35

12 Variations on Backpropagation

12-36

z, = A'zy and -yz; + X'z, = 1"z;.
If we substitute the first equation into the second equation we find
—%z:+ Nz, = A"z, or [(A" - () +ylzy = 0.

Therefore for each eigenvalue %’ of T there will be two eigenvalues A" of
W that are roots of the quadratic equation
W 2 r W
Ay A A) +y=0.
From the quadratic formula we have

N V0 -dy
= —*—"-2— .
For the algorithm to be stable the magnitude of each eigenvalue must be

less than 1. We will show that there always exists some range of ¥ for
which this is true.

Note that if the eigenvalues A" are complex then their magnitude will be

»\.ﬁ:
i 2 2
v ,(7") - _
e = —Z*-*'T—«/:(-

(This is true only for real A'. We will show later that A" is real.) Since v is
between 0 and 1, the magnitude of the eigenvalue must be less than 1. [t
remains to show that there exists some range of ¥ for which all of the eigen-
values are complex.

In order for A" to be complex we must have

(?L')z-zhrcﬂ or]?L'l <2.07.

Let’s now consider the eigenvalues A" of T. These eigenvalues can be ex-
pressed in terms of the eigenvalues of A . Let {A,A,,... ,4,} and

{z,,2, ...,2,} betheeigenvalues and eigenvectors of the Hessian matrix.
Then

Tz

[

1+ I-(1-7)adlz, = (1+Y)z,- {1 -7)aAz

(L+y)z,- (I-podg, = {(1+7) - (1-y) oA}z, = Az,

Solved Problems

Therefore the eigenvectors of T are the same as the eigenvectorsof A, and
the eigenvalues of T are

A= {4+ -(1-y)ar}.
(Note that &, is real, since v, o and A, for symmetric A are real.) There-
fore, in order for A" to be complex we must have

‘ﬂ<2ﬁ or |(1+7) - (1—7)(1%[(2,.)?.

For v = { both sides of the inequality will equal 2, The function on the
right of the inequality, as a function of v, has a slope of L at y = 1. The
function on the left of the inequality has a slope of 1 + @A, . Since the eigen-
values of the Hessian will be positive real numbers if the function has a
strong minimum, and the learning rate is a positive number, this slope
must be greater than 1. This shows that the inequality will always hold for
¥ dose enough to 1.

To summarize the results, we have shown that if 4 momentum term is add-
ed to the steepest descent algorithm on a quadratic function, then there
will always be a momentum coefficient that will make the algorithm stable,
regardless of the learning rate. In addition we have shown that if y is close
enough to 1, then the magnitudes of the eigenvalues of W will be ./y. It
can be shown (see [Brog91]) that the magnitudes of the eigenvalues deter-
mine how fast the algorithm will converge. The smaller the magnitude, the
faster the convergence. As the magnitude approaches 1, the convergence
time increases.

We can demonstrate these results using the example on page 9-7. There we
showed thzat the steepest descent algorithm, when applied to the function
F{x) = x{+25x,, was unstable for a learning rate ¢ 2 04 . In Figure P12.3
we see the steepest descent trajectory (with momentum) with o = 0.041
and y = 0.2, Compare this trajectory with Figure 9.3, which uses the same
learning rate but no momentum.

12-37

12 Variations on Backpropagation

Figure P12.3 Trajectory for « = 0.041 and y = 0.2

P12.3 Execute three iterations of the variable learning rate algorithm on
the following function (from the Chapter 8 example on page 8-T):

F(x) = x+25%,
starting from the initial guess
0.5
X, = R
’ [0-5}

and use the following values for the algorithm parameters:
o=005,y=02,n=15p=0510(=5%.
The first step is to evaluate the function at the initial guess:

172 0 i 20] 05
F(x,} = zx X, = 2050, =63,
o) T3 0[0 SO} 0 2[05 DSJL 50 [0‘5}

The next step is to find the gradient:

d
=—F(x)

VF(x) = a;' - [Z'ﬂ.
9 r 5OI2J
dax,

If we evaluate the gradient at the initial guess we find:

12-38

Solved Problems

g = VF(M| _ = H

With the initial learning rate of o = 0.03, the tentative first step of the al-

gorithm is
—08¢005)| 1| = 004
0 5 | -1

-
X = x4, = |09 4 [004] [0s6]
os] | -1] [0S
To verify that this is a valid step we must test the value of the function at
this new point:

Y

Axy = YAx - {1-7)ag, = 0.2

=4

01 2 0|/046| _
X, = 2[0.4§ -0 [0 50] L}J = 6.4616.

This is less than F(x,} . Therefore this tentative step is accepted and the
learning rate is increased:

X =X = [Og‘j, F(x,) = 64616 and o = na = 1.5(0.05) = 0.075.

The tentative second step of the algorithm is

02 {‘Oﬂ—o.a (0.075) {0-92} = {“0-10232}

Ax| = yAX, - (1-7)og,

-0.0632| _ {0.3968
13 0.3

46|
-0.5
We evaluate the function at this point:

' 1 .7 e 1
Fx) = 3ix) { 0:”‘2 = 5(0.3968 0.8] F OJ [0'3968} = 16157,

t

2
050 050/ 08

Since this is more than 5% larger than F(x,) , we reject this step, reduce
the learning rate and set the momentum coeflicient to zero.

X, = X, F(x,) = F(x)) = 64616, & = po = 0.5(0.075) = 0.0375,7 = 0

12-39

12 Variations or Backpropagation

12-40

Now a new tentative step is computed (momentum is zero).

Ax, = -og, = -(00375) {0-92| - |700343
25 | 0.9375

X, - x,+Ax, = |046] , (00345 _ |0.4255
-05] | 09373 {04375

1 rlaol 1 2 0[042s5
Fixy) = z(x3) X3 = 5104255 0.437 =4
Y2 sl 2[0 3 SJ050 0.4375

This is less than F(x,) . Therefore this step is accepted, the momentum is
reset to its original value, and the learning rate is increased.

X, = X5, 7 =02, ¢ =nas= L5(0.0375) = 0.05625

This completes the third iteration.

P124 Recall the example from Chapter 9 that we used to demonstrate
the conjugate gradient algorithm (page 9-18):

-5

with initial guess

0.8
X, = .
° Lns}

Perform one iteration of the conjugate gradient algorithm. For the
linear minimization use interval location by function evaluation
and interval reduction by the Golden Section search.

The gradient of this function is
VF(x) = 2x +x, .
x, +2x,

As with steepest descent, the first search direction for the conjugate gradi-
ent algorithm is the negative of the gradient:

Solved Problems

Py = -8 = ~VF (%) T‘x:xo = [_ll}jj -

For the first iteration we need to minimize F(x) along the line

‘ 1.35
1= YT ko = ngs] * [-03}

The first step is interval location. Assume that the initial step size is
£ = (.075. Then the interval location would proceed as follows:

F(a,) = r” 0.8 U = 0.5025
025

b1=s=0.075,F(b1}=F[08 | 40075 135]:0.3721
0.5 03

[
{2l z) oo
Fﬂozs}m[HSU T

8 = 0.6, F(b) = F[08 1106 ‘1-35] = 0.1893.
-025 -0.3

Since the function increases between two consecutive evaluations we know
that the minimum must occur in the interval [0.15, 0.6] . This process isil-
lustrated by the open blue circles in Figure P12.4, and the final interval is
indicated by the large open black circles.

1l

b, = 2¢ = 0.15, F (b,)

b, = 48 = 03, F (b,)

by

The next step in the linear minimization ig interval reduction using the
Golden Section search. This proceeds as follows:

¢, = a +{1-1) (b,-a)) = 0.15+ (0.382) (0.6-0.15) = 03219,

d, = b,-{1-7) (b,-a)) = 06— (0.382) (0.6-0.15) = 0.4281,
F, = 02678, F, = 0.1893, F,_ = 0.1270, F, = 0.1085.

Since F_>F,, we have

12-41

12 Variations on Backpropagation

12-42

P125

ay=c¢, =03219, b, = b =06,¢, = d, = 0.4281
dy = by— (1-1) (by~a;) = 0.6- (0382) (0.6-03219) = 04938,
F,=F = 01270, F, = F, = 0.1085, F, = F(d,) = 0.1232.

This time F_<F, therefore
ay = a, = 03219, b, = d, = 04938, d, = ¢, = 0.4281,
¢y = ay+ (1-1) (by—a;) = 03219+ (0.382) (0.4938 - 0.3219} = 03876,
F,=F,=01232,F,=F = 01085, F_ = F(c,;) = 0.1004.
This routine continues until b, , - a, | <tol. The black dots in Figure
P12.4 indicate the location of the new interior points, one for each iteration

of the procedure. The final point is indicated by a blue dot. Compare this
result with the first iteration shown in Figure 9.10.

@,
-

g - —

- 05 [0s 1

Figure P12.4 Linear Minimization Example

To illustrate the computation of the Jacobian matrix for the Lev-

enberg-Marquardt method, consider using the network of Figure

P12.5 for function approximation. The network transfer functions
are chosen to be

Sl = iy =

Therefore their derivatives are

Al 2
fn)=2n,f (n) =1.
Assume that the training set consists of

Solved Problems

(=[] = [(my = 2] (o= [},
and that the parameters are initialized to

LT R)

Find the Jacobian matrix for the first step of the Levenberg-Mar-
guardt method.

Input Layer 1 Layer2
NN S

Wh ni a, Wi, nZ, &

ST LNy LI,

l_lT’lll 2
1 1

AN ——

ql =fl (wlp+bl) ail:f?(w!al+b2)

Figure P12.5 Two-Layer Network for LMBP Demonstration

The first step is to propagate the inputs through the network and compute
the errors.

ay = p; =]
= Whales' = [)[]+ (g = [- Fab = D=]
nf = Wzaiﬂlz = ([2] [1] +[1J) = [3]» ‘f = ﬁ(nf) = ([3]) = [3]
e, = (t,-a) = ([1]-[3]) = [-2]
ﬁ=h=@
= Weleb' = [J{+ [- {5 =Cah = @~ [
m = Wayeb” = ([+[1] = [)] 2 = Cea) = ([g]) = [y

o= (t-n) = ([-[g]) = [-]

12-43

12 Variations on Backpropagation

The next step is to initialize and backpropagate the Marguardt sensitivi-
ties using Eq. (12.46) and Eq. (12.47).

§i = -F () =[]

51+ K0S« o JEL0 = o] 0 - L
§ = -F @) =[]
S = Fap W) 'S = o2 | Y] =][] = [
§' = 88 = [0 o). 8= 3357 = [

We can now compute the Jacobian matrix using Eq. (12.43), Eq. (12.44) and

Eq. (12.37).
dv, dv; dv, I, dey | dey e, dey |
J(X) = Eﬁ é-xr; 8—13 E - awi,l ab: awi] abf
vy Ov Iy)| Bey g Dy Deyy Bey g
dx, dx, ox, dx, aw:,l %) awil &’
P, 3 de,, Onm o,
{J] 1,1 = a_xl = “"—'_ell'l = ‘—f—:"—lx# = SI,IX—-—‘—-niI'I = ;:.IXG?']
Uoow, dny Owg oy
=(-4){l)=H4
v, de,, e, on o,
[J]I.fa_] = s X af x =
%2 db, Ony, b ob,
b, e, i, L o, .
[Jl,;=2 — = —dx—2l = @ xbl o3 wa! = <1 (1) = -1
IER a”iL 3“*?,1 11 awil NEIN
v, de,, ., o, om,
0, = I L1, 11=“=*1

12-4¢

Solved Problems

|

dv, dey, a”: 7 -l aﬂi 1l ¢
(B}, =—F=—"X—-—"=3 —= =3, ., X4, , = {-8) (2} = -16
21 axl aﬂ]['2 aw][] 1,2 aw;] 1,2 1,2
1
o, Oe, e, Om, 4 Oy
[J] = = = s = — — = = —8
MU % aml, w7
v, de, a"‘? 7 -2 an 2 a2
{] o X-—2= =§ = =5 ,%a, = (-1)(4) = -4
2 axy anf 2 awil L2 E}wi] Lz
v, Oe de an’ o’
Bl,, = TZ = 1.22 - ;,2X 1,22 - Eizx 1,2:: - Ef,z 4
s b A, ob o’

Therefore the Jacobian matrix is

1245

- e Eme i

12 Variations on Backpropagation

Epilogue

12-46

One of the major problems with the basic backpropagation algorithm
(steepest descent backpropagation — SDBP) has been the long training
times. It is not feasible to use SDBP on practical problems, because it can
take weeks to train a network, even on a large computer. Since backprop-
agation was first popularized, there has been considerable work on meth-
ods to accelerate the convergence of the algorithm. In this chapter we have
discussed the reasons for the slow convergence of SDBP and have present-
ed several techniques for improving the performance of the algorithm.

The techniques for speeding up convergence have fallen into two main cat-
egories: heuristic methods and standard numerical optimization methods.
We have discussed two heuristic methods: momentum (MOBP) and vari-

able learning rate (VLBP). MOBP is simple to implement, can be used in

batch mode or incremental mode and is significantly faster than SDBP. It
does require the selection of the momentum coefficient, but v is limited to
the range [0, 1] and the algorithm is not extremely sensitive to this choice.

The VLBP algorithm is faster than MOBP but must be used in batch mode.
For this reason it requires more storage. VLBP also requires the selection
of a total of five parameters. The algorithm is reasonably robust, but the
choice of the parameters can affect the convergence speed and is problem
dependent.

We also presented two standard numerical optimization techniques: conju-
gate gradient {CGBP) and Levenberg-Marquardt (LMBP). CGBP is gener-
ally faster than VLBP. It is a batch mode algorithm, which requires a
linear search at each iteration, but its storage requirements are not signif-
icantly different than VLBP. There are many variations of the conjugate
gradient algorithm proposed for neural network applications. We have pre-
sented only one.

The LMBP algorithm is the fastest algorithm that we have tested for train-
ing multilayer networks of moderate size, even though it requires a mairix
inversion at each iteration. It requires that two parameters be selected, but
the algorithm does not appear to be sensitive to this selection. The main
drawback of LMBP is the storage requirement. The J'J matrix, which
must be inverted, is nx n, where n is the total number of weights and bi-
ases in the network. If the network has more than a few thousand param-
eters, the LMBP algorithm becomes impractical on current machines.

There are many other variations on backpropagation that have not been
discussed in this chapter. Some references to other techniques are given in
Chapter 19.

Further Reading

Fuyrther Reading

[Barn92}

{Batt92)]

[Char92]

[Fahl88]

{HaMe94]

E. Barnard, “Optimization for training neural nets,” IEEE
Trans. on Neural Networks, vol. 3, no. 2, pp. 232-240, 1992,

A number of optimization algorithms that have promise for
neural network training are discussed in this paper.

R. Battiti, “First- and second-order methods for learning:
Between steepest descent and Newton's method,” Neural
Computation, vol. 4, no. 2, pp. 141-166, 1992,

This paper is an excellent survey of the current optimiza-
tion algorithms that are suitable for neural network train-

ing.

C. Charalambous, “Conjugate gradient algerithm for effi-
cient training of artificial neural networks,” IEE Proceed-
ings, vol. 139, no. 3, pp. 301-310, 1992.

This paper explains how the conjugate gradient algorithm
can be used to train multilayer networks. Comparigons are
made to other training algorithms.

8. K. Fahlman, “Faster-learning variations on back-propa-
gation: An empirical study,” In D. Touretsky, G. Hinton &
T. Sejnowski, eds., Proceedings of the 1988 Connrectionist
Modelg Summer School, San Mateo, CA; Morgan Kauf-
mann, pp. 38-51, 1988,

The QuickProp algorithm, which is described in this paper,
iz one of the more popular heurisiic modifications to back-
propagation. It assumes that the error curve can be approx-
imated by a parabola, and that the effect of each weight can
be considered independently. QuickProp provides signifi-
cant speedup over standard backpropagation on many
problems.

M. T. Hagan and M. Menhaj, “Training feedforward net-
works with the Marquardt algorithm,” IEEE Transactions
on Neural Networks, vol. 5, no, 6, 1994.

This paper describes the use of the Levenberg-Marquardt
algorithm for training multilayer networks and compares
the performance of the algorithm with variable learning
rate backpropagation and conjugate gradient. The Leven-
berg-Marquardt algorithm is faster, but requires more
storage.

12-47

o

12 Variations on Backpropagation

1248

[Jaco88]

(NgWig0}

{Rilr90}

[Scal85]

R. A. Jacobs, “Increased rates of convergence through
learning rate adaptation,” Neural Networks, vol. 1, no. 4,
pp- 295-308, 1988.

This is another early paper discussing the use of variable
learning rate backpropagation. The procedure described
here is called the delta-bar-delta learning rule, in which
each network parameter has its own learning rate that var-
ies at each iteration,

D. Nguyen and B. Widrow, “Improving the learning speed
of 2-layer neural networks by choosing initial values of the
adaptive weights,” Proceedings of the IJCNN, vol. 3, pp.
21-28, July 1990.

This paper describes a procedure for setting the initial
wetghts and biases for the backpropagation algorithm. It
uses the shape of the sigmoid transfer function and the
range of the input variables to determine how large the
weights should be, and then uses the biases to center the
sigmoids in the operating region. The convergence of back-
propagation is improved significantly by this procedure.

A. K. Rigler, J. M. Irvine and T. P. Vog, “Rescaling of vari-
ables in back propagation learning,” Neural Networks, vol.
3, no. 5, pp. 561--573, 1990.

This paper notes that the derivative of a sigmoid function
is very small on the tails. This means that the elements of
the gradient associated with the first few layers will gener-
ally be smaller that those associated with the last layer.
The terms in the gradient are then scaled to equalize them.

L. E. Scales, Introduction to Non-Linear Optimization.
New York: Springer-Verlag, 1985.

Scales hes written a very readable text describing the ma-
Jor optimization algorithms. The book emphasizes methods
of optimization rather than existence theorems and proofs
of convergence. Algorithms are presented with intuitive ex-
planations, along with illustrative figures and examples.
Pseudocode is presented for most algorithms.

{Shan90]

[Toll90]

[VoMaR8]

Further Reading

D. F. Shanno, “Recent advances in numerieal techniques
for large-scale optimization,” Neural Networks for Control,
Miller, Sutton and Werbos, eds., Cambridge MA: MIT
Press, 1990,

This paper discusses some conjugate gradient and quasi-
Newton optimization algorithms that could be used for
neural network training,

T, Tollenaere, “SuperSAB: Fast adaptive back propagation
with good scaling properties,” Neural Networks, vol. 3, no.
5, pp. 561-573, 1990.

This paper presents a variable learning rate backpropaga-
tion algorithm in which different learning rates are used
for each weight.

T. P. Vogl, J. K. Mangis, A. K. Zigler, W. T. Zink and D. L.
Alkon, “Accelerating the convergence of the backpropaga-
tion method,” Biological Cybernetics., vol. 59, pp. 256-264,
Sept. 1988.

This was one of the first papers to introduce several heuris-
tic techniques for accelerating the convergence of back-
propagation. It included batching, momentum and variable
learning rate.

12-49

12 Variations on Bockpropagation

Exercises

Ei2.1

2+2
1 ang =

I

E12.2

Ei23

12-50

We want to {rain the network shown in Figure E12.1 on the training set

((py = [=2) (4, = [0g)» (P, = [(=[]

where each pair is equally iikely to occur.

Write a MATLAB M-file to create a contour plot for the mean squared error
performance index.

Input Log-Sigmoid Layer

, wna
|b
1

N

a = logsig(wp+b)

Figure E12.1 Network for Exercise E12.1

Demonstrate the effect of batching by computing the direction of the initial
step for SDBP with and without batehing for the problem described in Ex-
ercise £12.1, starting from the initial guess

wi0) =0,8(0) =05,

Recall the quadratic function used in Problem P9.1:

We want to use the steepest descent algorithm with momentum to mini-

mize thig funetion,

i. Suppose that the learning rate is « = 0.2, Find a value for the mo-
mentum coefficient y for which the algorithm will be stable, Use the
ideas presented in Problem P12.2.

ii. Suppose that the learning rate is « = 20. Find a value for the mo-
mentum coefficient y for which the algorithm will be stable.

]

2+2
ans =

Ei24

E12.5

E12.6

Exercises

fii. Writc a MATLAB program to plot the trajectories of the algorithm
for the o and y values of both part (i} and part (ii) on the contour
plot of F(x) , starting from the initial guess

", = H |

For the function of Exercise E12.3, perform three iterations of the variable
learning rate algorithm, with initial guess

-1
X, = .
‘ [_2.5}
Plot the algorithm trajectory on a contour plot of #(x) . Use the algorithm
parameters
a=04,y=01,1=15,p=05,{=5%.

For the function of Exercise E12.3, perform one iteration of the conjugate
gradient algorithm, with initial guess

', = H'

For the linear minimization use interval location by function evaluation
and interval reduction by the Golden Section search. Plot the path of the
search on a contour plot of F(x) .

We want to use the network of Figure E12.2 to approximate the function
gip) =1+ sin[gp] for -2<p<2,

The initial network parameters are chosen to be

Loy = 1027 bioy - 048] wrior = Toa —og], B3O = [oas).
WOy = "B = T [0.00 ~0.17), B°(®) = [0.ag]

To create the training set we sample the function g (p) atthe points p = 1
and p = 0. Find the Jacobian matrix for the first step of the LMBP algo-
rithm. (Some of the information you will need has been computed in the ex-

ample starting on page 11-14.)

12-51

12 Variations on Backpropagation

12-52

E127

E128

input Log-Sigmoid Layer Linear Layer

al = logsig{Wip+b') a? = purelin{Wzal +5?)
Figure E12.2 Network for Exercise E12.6

Show that for a linear network the LMBP algorithm will converge to an op-
timum solution in one iteration if p = 0.

In Exercise E11.11 you wrote a MATLARB program to implement the SDBP
algorithm for the 1-2-1 network shown in Figure E12.2, and trained the
network to approximate the function

glp) = l+sin(gp) for -2<p<2.

Repeat this exercise, modifying your program to use the training proce-
dures discussed in this chapter: batch mode SDBP, MOBF, VLBP, CGEP
and LMBP. Compare the convergence results of the various methods.

13 Associative Learning

Objectives 13-1

Theory and Examples 13-2

Simple Asscciative Network 13-3

Unsupervised Hebb Rule 13-5

Hebb Rule with Decay 13-7

Simple Recognition Network 13-4
instar Rule 13-11
Kohonen Rule 13-15
Simple Recall Network 13-16
Qutstar Rule 13-17
Summary of Results 13-21
Solved Problems 13-23
Epilogue 13-34
Further Reading 13-35
Exercises 13-37

Objectives

The neural networks we have discussed so far (in Chapters 4, 7, 10-12)
have all been trained in a supervised manner. Each network required a tar-
get signal to define correct network behavior,

In contrast, this chapter introduces a collection of simple rules that allow
unsuperviged learning. These rules give networks the ability to learn asso-
ciations between patterns that occur together frequently. Once learned, as-
sociations allow networks to perform useful tasks such as pattern
recognition and recall,

Deapite the simplicity of the rules in this chapter, they will form the foun-
dation for powerful networks in Chapters 14--16.

131

13 Associative Learning

Theory and Examples

13-2

Stimulus
Response

This chapter is all about associations: how associations can be represented
by a network, how a network can learn new associations.

What is an association? An association is any link between a system’s input
and output such that when a pattern A is presented to the system it will
respond with pattern B. When two patterns are linked by an association,
the input pattern is often referred to as the stimulus. Likewise, the output
pattern is referred to as the response.

Associations are so fundamental that they formed the foundation of the be-
haviorist school of psychology. This branch of psychology attempted to ex-
plain much of animal and human behavior by using associations and riles

for learning associations. (This approach has since been largely discredit-

ed.}

One of the earliest influences on the behaviorist school of psychology was
the clasgic experiment of Tvan Pavlov, in which he trained a dog to salivate
at the sound of a bell, by ringing the bell whenever food was presented. This
is an example of what is now called classical conditioning. B. F, Skinner
was one of the most influential proponents of the behaviorist school. His
classic experiment involved training a rat to press a bar in order to obtain
a food pellet. This is an example of instrumental conditioning.

It was to provide a biological explanation for some of this behavior that led
Donald Hebb to his postulate, previously quoted in Chapter 7 [Hebbd49]:

“When an axon of cell A is near enough to exeite a cell B and repeatedly or

Dpersistently takes part in firing it, some growth process or metabolic change
fakes place in one or both cells such that A’s efficiency, as one of the cells fir-
ing B, is increased.”

In Chapter 7 we analyzed the performance of a supervised learning rule
based on Hebb’s postulate. In this chapter we will discuss unsupervised
forms of Hebbian learning, as well as other related associative learning
rules.

A number of researchers have contributed to the development of associa-
tive learning. In particular, Tuevo Kohonen, James Anderson and Stephen
Grossberg have been very influential. Anderson and Kohonen indepen-
dently developed the linear associator network in the late 1960s and early
1970s ([Ande72], [Koho72]). Grossherg introduced nonlinear continucus-
time associative networks during the same time period (e.g., {Gross68]). All
of these researchers, in addition to many others, have continued the devel-
opment of associative learning up to the present time.

In this chapter we will discuss the elemental associative learning rules.
Then, in Chapters 14-16 we will present more complex networks that use

Simple Associative Network

associative learning as a primary component. Chapter 14 will describe Ko-
honen networks, and Chapters 15 and 16 will discuss Grossberg networks.

Simple Associative Network

Let’s take a look at the simplest network capable of implementing an asso-
ciation. An example is the single-input hard limit newron shown in Figure
13.1.

Inputs Hard Limit Neuron

a = hardlim (wp+5)

Figure 13.1 Single-Input Hard Limit Associator
The neuren's output a is determined from its input p according to
a = hardlim{wp +b) = hardlim(wp-0.5) . 13.1)

For simplicity, we will restrict the value of p to be either 0 or 1, indicating
whether a stimulus is absent or present. Note that a is limited to the same
values by the hard limit transfer function. It indicates the presence or ab-
sence of the network’s response,

- { 1, stmn.llus g = { 1, response (13.2)
0, no stimulus 0, no response

The presence of an association between the stimulus p= 1, and the re-
sponse a = 1 is dictated by the value of w. The network will respond to the
stimulug only if w is greater than —5 (in this case 0.5),

The learning rules discussed in this chapter are normally used in the
framework of a larger network, such as the competitive networks of Chap-
ters 14-16. In order to demonstrate the operation of the agsociative learn-
ing rules, without using complex networks, we will use simple networks

that have two types of inputs.

Unconditioned Stimulus One set of inputs will represent the unconditioned stimulus. This is analo-
gous to the food presented to the dog in Pavlov’s experiment. Another set
Conditioned Stimulus of inputs will represent the conditioned stimulus, This is analogous to the
bell in Pavlov’s experiment. Initially the dog salivates only when food is

13-3

13 Associative Learning

presented. This is an innate characteristic that does not have to be learned.
However, when the bell is repeatedly paired with the food, the dog is con-
ditioned to salivate at the sound of the bell, even when no food is present.

We will represent the unconditioned stimulus as p° and the conditioned
stimulus simply as p. For our purposes we will assume that the weights
associated with p? are fixed, but that the weights associated with p are ad-
justed according to the relevant learning rule.

-2 Figure 13.2 shows a network for recognizing bananas. The network has
beth an unconditioned stimulus (hanana shape) and a conditioned stimu-
lus (banana smell). We don't mean to imply here that smell is more condi-
tionable than sight. In our examptles in this chapter the choices of
conditioned and unconditioned stimuli are arbitrary and are used simply
Lo demonstrate the performance of the learning rules. We will use this net-
work te demonstrate the operation of the Hebb rule in the following section.

-v.x|.t;

Inputs Hard Limit Neuron

Sight of banana p

Smell of banana p

a = hardlim{(w'pd+wp+b)

Figure 13.2 Banana Associator

The definitions of the unconditioned and conditioned inputs for this net-

@ work are

0 { 1, shape detected { i, smell detected

b= = | 0, smell not detected (133)

Shape Smell 0, shape not detected

Network At this time we would like the network to associate the shape of a banana,
‘L but the not the smell, with a response indicating the fruit is0 a banana. The
problem is solved by assigning a value greater than -5 to w and assigning

Banana? a value less than - to w. The following values satisfy these requirements:

wo=1,w=0. (13.4)

The banana associator’s input/outpul function now simplifies to

13-4

Unsupervised Hebb Rule

a = hardlim(p® -0.5) . (13.5)

Thus, the network will only respond if a banana is sighted (po = 1), wheth-
er a banana is smelled (p = 1) ornot(p = 0).

We will use this network in later sections to illustrate the performance of
several associative learning rules,

Unsupervised Hebb Rule

For simple probiems it is not difficult to design a network with a fixed set
of agsaciations. On the other hand, a more useful network would be able to

learn associations.

When should an association be learned? It is generally accepted that both
animals and humans tend to associate things that occur simultaneously,
To paraphrase Hebb; if 2 banana smell stimulus oceurs simultaneously
with a banana concept response (activated by some other stimulus such as
the sight of a banana shape), the network should strengthen the connection
between them so that later it can activate its banana concept in response
to the banana smell alone.

The unsupervised Hebb rule does just that by increasing the weight w; be-
tween a neuron’s input p, and output a, in proportion to their product:

wy(q) = wy(g-1) +0e;(q)p;(9) . (13.6)

(See also Eq. {7.5).) The learning rate « dictates how many times a stimu-
Ius and response must occur together before an association is made. In the
network in Figure 13.2, an association will be made when w> -4 = 0.5,

sincs: then p = i will produce the response a = 1, regardless of the value

of p .

Note that Eq. (13.6) uses only signals available within the layer containing
the weights being updated. Rules that satisfy this condition are called local

Local Learning learning rules. This is in contrast to the backpropagation rule, for example,
in which the sensitivity must be propagated back from the final layer. The
rules introduced in this chapter will all be local learning rules.

The unsupervised Hebb rule can also be written in vector form:
W(ig) = Wig-1) +calg)p’(9). (13.7)

Ag with ali unsupervised rules, learning is performed in response to a se-
Training Sequence ries of inputs presented in time (the ¢raining sequence):

p(h.p(2},...,p(Q}. (13.8)

13-5

13 Associative Learning

(Note that we are using the notation p (¢) , instead of p_, in order to em-
phasize the time-sequence nature of the inputs.) At each’iteration, the out-
put a is caleulated in response to the input p , and then the weights W are
updated with the Hebb rule.

Let’s apply the unsupervised Hebb rule to the banana associator. The as-
sociator will start with the weight values determined in our previous exam-
Ple, so that it will initially respond to the sight, but nat the smell, of a
banana.

|

W= 1Lw(0) =0 , (139)

The assoctator will be repeatedly exposed to a banana. However, while the
network’s smell sensor will work reliably, the shape sensor will operate
only intermittently {on even time steps). Thus the training sequence will
coneist of repetitions of the following two sets of inputs:

(P =0,p(H =1} {p" D =1,p@ =1},... (1310

The first weight wo, representing the weight for the unconditioned atimu-
lus p”, will remain constant, while w wili be updated at each iteration, us-
ing the unsupervised Hebb rule with a learning rate of 1:

wig) =wig-1) +a(g}r(q). (13.11)
The output for the first iteration (¢ = 1)is
a(l) = hardh'm(wgpu(lj +w (0 p(1}-0.3) (13.12)
= hardlim(1-0+0-1-0.5) = 0 (noresponse) .

The smell alone did not generate a response. Without a response, the Hebb
rule does not alter w.

wil) =w({®+a(Dp(l) =04+0-1=0 (13.13)

In the second iteration, both the banana’s shape and smell are detected and
the network responds accordingly:

a(2) = hardlim(wp° (2) +w (1) p(2) —0.5) (13.14)

= hardlim(1-1+0-1-0.5) =1 (banana).

Because the smell stimulug and the response have occurred simultaneous-
ly, the Hebb rule increases the weight between them.

w(2) =w({+a(@p2) =0+1.1=1 {13.15)

13-6

Decay Rate

Unsupervised Hebb Rule

When the sight detector fails again, in the third iteration, the network re-
sponds anyway. It has made a useful association between the smell of a ba-

nana and its response,

a(3) = hardlim(w'p’ (3) +w(2) p(3) -0.5) (13.16)
= hardlim(1-0+]1-1-05) =1 {(banana)

w{d) = w(D+a(3p3) =1+1-1 =2 {13.17)

From now on, the network is capable of responding to bananas that are de-
tected either by sight or smell. Even if both detection systems suffer inter-
mittent faults, the network will be correct most of the time.

To experiment with the unsupervised Hebb rule, use the Neural Network De-
sign Demonstration Unsupervised Hebb Rule (nnd13uh),

We have seen that the unsupervised Hebb rule can learn useful associa-
tions. However, the Hebb rule, as defined in Eq. (13.6), has some practical
shorteomings. The first problem becomes evident if we continue to present
inputs and update w in the example above. The weight w will become ar-
bitrarily large. This is at odds with the biological systems that inspired the
Hebb rule. Synapses cannot grow without bound.

The second problem is that there is no mechanism for weights to decrease.
If the inputs or outputs of a Hebb network experience any noise, every
weight will grow (however slowly) until the network responds to any stim-

ulus.

Hebb Rule with Decay

One way to improve the Hebb rule is by adding a weight decay term (Eq.
(7.45)),

W(g-1) +aa(g)pT{g) -YW(g-1)

Wiq)
(13.18)

{(I-W{g-1) +oa()pT(q) .

where 7, the decay rate, is a positive constant less than one. As y approach-
es zero, the learning law becomes the standard rule. As v approaches one,
the learning law quickly forgets cld inputs and remembers only the most
recent patterns, This keeps the weight matrix from growing without
bound. (The idea of filtering the weight changes was also discussed in
Chapter 12, where we called it momentum.)

The maximum weight value w”‘“" is determined by y. This value is found
by settingboth 4, and p, toa value of 1 for all g (to maximize learning) in
the scalar version of Eg. (13 18) and solving for the steady state weight (i.e.
when both new and old weights are equal).

13-7

13 Agsociative Learning

=

wy= (1-Y)w,+0ap,

Wy = {(1-v) w,to (13.19)
R
n‘-j“?

Let’s examine the operation of the Hebb rule with decay on our previous ba-
nana associator problem. We will use a decay rate y of 0.1. The first itera-
tion, where only the smell stimulus is presented, is the same:

a{l) =0 (noresponse), w (1) =0. {13.200

The next iteration also produces identical results. Here both stimuli are
presented, and the network respoends to the shape. Coincidence of the smell
stimulus and response create a new association:

a(2) =1 ({(banam), w(2) =1. (13.21)

The results of the third iteration are not the same. The network has
learned to regpond to the smell, and the weight continues to increase. How-
ever, this time the weight increases by only (1.9, instead of 1.0.

w3} = w(2) +a(3)p(3-01w(2) = 1+1-1-01-1 = 1.9 (13.22)

The decay term limits the weight’s value, so that no matter how often the
association is reinforced, w will never increase beyond wi;" .

mex

=10 (13.23)

W N
if ¥ 01

The new rule also ensures that associations learned by the network will not

be artifacts of noise. Any small random increases will soon decay away.

Pigure 13.3 displays the response of the Hebb rule, with and without decay,
for the banana recognition example. Without decay, the weight continues
to inerease by the same amount each time the neuron is activated. When
decay is added, the weight exponentially approaches its maximum value

(wg = 10).

To experiment with the Hebb rule with decay, use the Neural Network De-
sign Demonstrations Hebb with Decawnndi3hd) and Effect of Decay Rate
(nnd13edr).

13-8

Simple Recognition Network

:m!——— —_— - — - - = m:— _— 1——~——~v——~w——-——————i
. o :
0- -
1 po
W N
1 . |
i I3 + 1
‘0 Hebb Rule {I Hebb with Decay
|
|
! .
o ' |
(] [T} 2 w0 r T o0 E.

q q
Figure 13.3 Response of the Hebb Rule, With and Without Decay

The Hebb rule with decay does solve the problem of large weights. Howev-
er, it does s0 at a price. The environment must be counted on to occasionally
present all stimuli that have associations. Without reinforcement, associa-
ticns will decay away.

To illustrate this fact, congider Eq. (13.18)if o, = 0:
wi(g) = (1-yw;(g-1) . (13.24)
If y = 0.1, this reduces to
wi(q) = (09 w;(g-1}. (13.25)
Therefore w,; will be decreased by 10% at each presentation for which

a, = 0. Any association that was previously learned will eventually be loat.
We will discuss a solution to this problem in a later section.

Simple Recognition Network

Instar

So far we have considered only associations between scalar inputs and out-
puts. We will now examine a neuron that has a vector input. (See Figure
13.4.} This neuron, which is sometimes referred to as an instar, is the sim-
plest network that is capable of pattern recognition, as we will demonstrate
shortly.

13-9

13 Associative Learning

13-10

Inputs Hard Limit Neuron

a = hardlim(Wp+b)

Figure 13.4 Instar

You will notice the similarities between the instar of Figure 13.4 and the
perceptron of Figure 4.2 (also the ADALINE of Figure 10.2 and the linear
associator of Figure 7.1). We give these networks different names, in part
for historical reasons (since they arose at different times and out of differ-
ent environments), and because they perform different funetions and are
analyzed in different ways. For example, we will not directly consider the
decision boundary of the instar, although this was an important concept for
the percepiron. Instead, we will analyze the ability of the instar to recog-
nize a pattern, as with the neurons in the first layer of the Hamming net-
work. {See page 3-9.)

The input/output expression for the instar is

a = hardlim (Wp +¥) = hardlim(,w'p+b} . (13.26)

The instar will be active whenever the inner product between the weight
vector (row of the weight matrix) and the input is greater than or equal to
—-b:

Wip2-b, (13.27)

From gur discussion of the Hamming network on page 3-8, we know that
for two vectors of constant length, the inner produet will be largest when
they point in the same direction. We can alao show this using Eq. {(5.15):

w7p = ||, wliplcosB 2 b, (13.28)

where 8 is the angle between the two vectors. Clearly the inner product is
maximized when the angle 6 is 0. If p and ,w have the same length
(Ipll = |, w), then the inner product will be iargest when p = |w.

Based on these arguments, the instar of Figure 13.4 will be active when p
is “close”to ,w . By setting the bias b appropriately, we can select how close
the input veetor must be to the weight vector in order to activate the instar.

Instar Rule

If we set
b= -|wipl, (13.29)

then the instar will only be active when p points in exzactly the same direc-
tion as ,w (8 = 0). Thus, we will have a neuron that recognizes only the

pattern w.

If we would like the instar to respond to any pattern near \w (6 small),
then we can increase b to some value larger than -, w||p| . The larger the
value of b, the more patterns there will be that can activate the instar, thus

making it the Jess discriminatory.

We should note that this analysis assumes that all input vectors have the
same length (norm). We will revisit the question of normalization in Chap-
fers 14-16.

We can now design a vector recognition network if we know which vector
we want to recognize. However, if the network is to learn a vector without
supervision, we need a new rule, since neither version of the Hebb rule pro-
duces normalized weighta.

Instar Rule

One problem of the Hebb rule with decay was that it required stimuli to be
repeated or agsociations would be lost. A better rule might allow weight de-
cay only when the instar is active (2 #0). Weight values would still be lim-
ited, but forgetting would be minimized. Consider again the original Hebb
rule:

wi(q) = wy(g-1) + oz (ghp,(q) - (13.30)

To get the benefits of weight decay, while limiting the forgetting problem,
a decay term can be added that is proportional to a,(q) :

W;j(q] = Wij (q_ l) +0a, (Q] PJ(‘?) —Ya; (q} wi‘;{‘I‘ 1) (13.31)

We can simplify Eq. (13.31) by setting ¥ equal to & (30 new weight values
are learned at the same rate old values decay) and gathering terms,

w;lq) = wy(g-1) +aa(q) (p;{g) -w,(g-1)) (13.82)
Instar Rule This equation, called the instar rule, can also be rewritten in vector form:
Wig) = w(g-1) +aa(q) (p(q} - w(g~1)). (13.33)

The performance of the instar rule can be hest understood if we consider
the case where the instar is active {a; = 1). Eq. (13.33) can then be written

18-11

13 Asgociative Learning

(g} = wig-1)+a(plg -wig-1))
(13.34)
= (1-oy wig-1} +ap(q) .
This operation is displayed graphically in Figure 13.5.

i

Mg
@ (g

wg-1)

Figure 13.5 Graphical Representation of the Instar Rule

When the instar is active, the weight vector is moved toward the input vec-
tor along a line between the old weight vector and the input vector. The dis-
tance the weight vector moves depends on the value of o.. When o = 0, the
new weight vector is equal to the cld weight vector (no movement). When
o = |, the new weight vector is equal to the input vector (maximum move-
ment). If & = 0.5, the new weight vector will be halfway between the old
weight vector and the input vector.

Ope useful feature of the instar rule is that if the input vectors are normal-
ized, then w will also be normalized once it has learned a particular vector
p . We have found a rule that not only minimizes forgetiing, but results in

normalized weight vectors, if the input vectérs are normalized.

- 2 Let’s apply the instar rule to the network in Figure 13.6. It has two inputs:
K3 one indicating whether a fruit has been visually identified as an orange
(unconditioned stimulus) and another consisting of the three measure-
ments taken of the fruit (conditioned stimulus).

The output of this network is
a = hardlim {wopo +Wp+b). (13.35)
The elements of input p will be constrained to +1 values, as defined in

Chapter 3 (Eq. {3.2)). This constraint ensures thnat p is anormalized vector
with a length of [p| = ./3. The definitions of p° and p are

Network

Orange?

13-12

Instar Rule

0 i orange detec i .fhape
p ’ ted wsually
{ 0. orange no I fexture| - (1336)
. gEn t detected
we Ighf

The bias & is -2, a value slightly more positive than —|p|° = ~3. (See Eq. l .3
(13.29)))

inputs Hard Limit Neuron
Sight of orange p°* qw°=1

Measured shape p,
Measured texture p,

Measured weight p,

a = hardlim(w'p0+ Wp+5b)

Figure 13.6 Orange Recognizer

We would like the network tohave 3 constant asgociation between the sight
of an orange and its response, so w will be set greater than —#. But ini-
tially, the network should not respond to any combination of fruit measure-
ments, so the measurement weights will start with values of 0.

w'=3, W)= w0 =g {13.37)

The measurement weights will be updated with the instar rule, using a
learning rate of ¢ = 1.

Wig) = wig-1) +a{q) (plg) -, wig-1)) (13.38)

The training sequence will consist of repeated presentations of an orange.
The measurements will be given every time. However, in order to demon-
strate the operation of the instar rule, we will assume that the visual sys-
tem only operates correctly on even time steps, due to a fault in its
construction.

[1
Ay =0p)y =1, 16" =1.p@ = |1|[.... (13.39)

-1 -1

Because W initially contains all zeros, the instar does not respond to the
measurements of an orange in the first iteration.

13-13

18 Associative Learning

13-14

a(1) = hardlim(w'p’ (1) + Wp (1) - 2)
1 (13.40)
a(l} = hardlim 3-0+[000] _1/-2=0 (noresponsc)
-1

kY

Since the neuron did not, respond, its weights ,w are not aitered by the in-
star rule,

W) = w0 +a(l) (p(1) - ,w(0) (13.41)
0 1| o] 1o
= o[+0 |-1|—[o[{= [0
0 - o) [0

However, the neuron does respond when the orange is identified visually,
in addition to being measured, in the second iteration.

a(2) = hardlim (w'p" (2) + Wp(2) -2) (13.42)

1
= hardlim| 31 + [0 0 g] _fl-21=1 (orange}
-1
The result is that the neuron learns to associate the orange's measurement

vector with its response. The weight vector | w becomes a copy of the orange
measurement vector.

W) = w()+al(2) (p(2)-,w(1)) (13.43)
0 1 0 1
= loj+ 1 (-1 -0l | = |1
0 -1 |0 -1

The network can now recognize the orange by its measurements. The neu-
ron responds in the third iteration, even though the visual detection system
failed again.

Instar Ruie

a(3) = hardlim (w'p’ (3) + Wp (3) - 2)
1 (13.44)
a(3) = hardlim| 3-0+ {1 _y _1]|-1|-2|=1 (orange)
-1

Having completely learned the measurements, the weights stop changing.
(A lower learning rate would have required more iterations.)

W(3) = w2} +a(3) (p(3) - w(2)) (13.45)

1 IREN
[+ -1 -1 = -1
1 -1 -] -t

It

The network has learned to recognize an orange by its measurements, even
when its visual detection system fails.

To experiment with the instar rule, use the Neural Network Design Demon-
strations Instar(nndt3is) and Graphical instar (nnd13g1is).

Kohonen Rule

At this point it is appropriate to introduce another associative learning
Kohenen Rule rule, which is related to the instar rule. It is the Kohonen rule:

Wig) =w(g-1) +a(p{g)~w(g-1)), forie X(g). (13.46)

Like the instar rute, the Kohonen rule allows the weights of a neuron to

learn an input vector and is therefore suitable for recognition applications.
Untlike the instar rule, learning is not proportional to the neuron’s cutput
a,(q) . Instead, learning occure when the neuron’s index / is 2 member of

the set X (g) .

If the instar rule is applied to a layer of neurons whose transfer function
only returns values of 0 or 1 (such as hardlim), then the Kohonen rule can
be made equivalent to the instar rule by defining X (¢) as the set of all i
such that a,{g) = 1. The advantage of the Kohonen rule is that it can also
be used with other definitions. It is useful for training networks such as the
self-organizing feature map, which will be introduced in Chapter 14.

13-15

13 Associalive Learning

13.16

Simple Recall Network

Qutstar

We have seen that the instar network (with a vector input and a scalar out-
put} can perform pattern recognition by associating a particular vector
stimulus with a response. The cutstar neiwork, shown in Figure 13.7, has
a scalar input and a vector output. It can perform pattern recall by associ-
ating a stimulus with a vector response.

The input-output expression for this network is
a = satlins (Wp) . (13.47)

The symmetric saturating function satlins was chosen because this net-
work will be used to recall a vector containing values of -1 or 1.

Symmetric Saturating
Input Linear Layer

-

a = satlins (Wp)

Figure 13.7 Qutstar Network

If we would like the network to associate a stimulus (an input of 1) with a
particular cutput vector a*, we can simply set W {which contains only a
single column vector) equal to a* . Then, if p is 1, the output will be a* :

a = satling (Wp) = satlins(a* 1} = a*. (13.48)

{This assumes that the elements of a* are less than or equal to 1 in mag-
nitude.)

Note that we have created a recall network by setting a column of the
weight matrix to the degired vector. Earlier we designed a recognition net-
work by setting a row of the weight matrix to the desired vector,

We can now design a network that can recall a known vector a*, but we
need alearning rule if the network is to learn a vector without supervision.
We will describe such a learning rule in the next section.

Outstar Rule

Outstar Rule

To derive the instar rule, forgetting was limited by making the weight de-
cay term of the Hebb rule proportional ta the output of the network, a,.
Conversely, to obtain the outstar learning rule, we make the weight decay
term proportional to the input of the network, p,:

wi(g) =w;(g- D +oa (Pp{@) -1p;(Pw;(g-1). (1349)

If we set the decay rate y equal to the learning rate a and eollect terms,
we get

Wi (q) = W;j{‘I" 1) +(I(a1- (Q) ‘W,-}-(Q* 1))?;{‘1) - (13.50)

The outstar rule has properties complimentary to the instar rule. Learning
occurs whenever p_is nonzero (instead of a,). When learning oceurs, col-
wmn w, moves toward the output vector.

Qutstar Rule As with the instar rule, the oufstar rule can be written in vector form:

w,(g) =w (g-1) +a{a(g)-w,(¢-1))p;(q), (13.51)
where w; is the jth column of the matrix W.
°2 To test the outstar rule we will train the network shown in Figure 13.8.
=
Symmetric Saturating
Inputs Linear Layer

N)
a, Recalled shape

= n
Measured shape ple wy = @ l

Measured texture p, & W), =1

g, Recalled texture

HQE_—}

Measured weight p?

: " a; Recalled weight
1
denti .
dentified Pineapple p o lZf_]
-
a = satlins (Wepd+ Wp)

Figure 13.8 Pineapple Recaller

13-17

13 Agsociative Learning

II Measure

Network

™

Measurements?

13.18

The outputs of the network are calculated as follows:

a= satlins(wupn-i-Wp] , (13.52)
where
oD 00} :
W =|g10- {13.63)
001,

The network’s two inputs provide it with measurements p0 taken on a fruit
(unconditioned stimulus), as well as a signal p indicating a pineapple has
been identified visually (conditioned stimulus).

shape , = { 1, if a pineapple can be seen (13.54)

P = |texture .
] 0, otherwise
weight

The network’s output is to reflect the measurements of the fruit currently
being examined, using whatever inputs are available.

The weight matrix for the unconditioned stimulus, WD, is set to the iden-
tity matrix, so that any set of measurements p (with $1 values) will be
copied to the output a. The weight matrix for the conditioned stimulus, W,
1s set to zero initially, so that a 1 on p will not generate a response. W will
be updated with the outstar rule using a learning rate of 1:

W, (q) =W, (g-1) + (a(g) -w, (g-D)p(q). (13.55)

The training sequence will consist of repeated presentations of the sight
and measurements of a pineapple. The pineapple measurements are

-1
ppmeapple = 1l - (1356)

|

However, due to a fault in the measuring system, measured values will
only be available on even iterations.

0 -1
P =il e =179 = 4L p @) =1{,... (135D
0 i

Outstar Rule

In the first iteration, the pineapple is seen, but the measurements are un-
available.

a(l) = satlins (Wp" (1) + Wp (1)), (13.58)
o lo 0 l‘
a(l) = satlins| [o| +!0i1 | = |01 (noresponse) (13.59)
o lo 0

The network sees the pineapple but cannot output proper measurements,
because it has not learned them and the measurement aystem is not work-
ing. The weights remain unchanged after being updated.

o |lo |o 0
w, (1) = w (0) + (a(t) —w,(0))p(1) = |o|+] |o]-lo| 1 = lo| (13.60)
o Lol |o 0

In the second iteration the pineapple is seen, and the measurements are
taken properly.

-1 G -i
a(2) = satling] |_j| + il | = |_j| (measurements given) {13.61)

1 0 1

The measurements are available, so the network outputs them correctly.
The weights are then updated as follows:

W, (2) = w (D) +(a(2)-w, (D} p(2)

of fl-1] fo]| [-1 (13.62)
= lof+ -1 -0 |1 = |-1)-
o \tt! |o 1

Since the sight of the pineapple and the measurements were both avail-
able, the network forms an association between them, The weight matrix
is now a copy of the measurements, so they can be recalied later.

I13-1%

P s o e A em ERr e A e el e

13 Associative Learning

13-20

In iteration three, measurements are unavailable once again, but the out-
put is

0 |-l -1
a(3) = satlins| |oj + |_1[} | = |_]| (measurements recalled). (13.63)
0 1 1

The network is now able to recall the measurements of the pineapple when
it sees it, even though the measurement system fails. From now on, the
weights will no longer change values unless a pineapple is seen with differ-
ent measurements.

W (3)

w, (2} +(a(2) -w, (2))p(2)

1l -] - -1 (13.64)
| =1 |-t 1 =]
1 1| {1 1

To experiment with the outstar rule with decay, use the Neural Network De-
sign Demonstration Quistar Rule (nnd130n).

In Chapter 16 we will investigate the ART netwaorks, which use both the
instar and the outstar rules.

Summary of Resulls

Summary of Results

Association

An association is a link between the inputs and outputs of a network so
that when a stimulus A is presented to the network, it will cutput a re-
sponse B.

Associative Learning Rules

Unsupervised Hebb Rule
W(g) = W(g-1) +aa(q)p"(q)
Hebb Rule with Decay
W(g) = (1-1)W(q-1} +oa(q)p’ (9}
Instar
inputs Hard Limit Neuron
a = hardlim(Wp+b)
a = hardlim ((wip +b)
The instar is activated for \w'p = | w|lpjcos®2-5,
where 0 is the angle between p and \w.
Instar Rule

M) = w(g-1) +as(q) (p(g) - w{g-1})

Wg) ={l-0)w(g-1} +aplq), ifle(q)=1)

13-21

—— wrn 1 M e 4 i ke &

13 Agsociative Learning

Pg)
“'\ - :W(QJ

wig-1)

 J

Graphical Representation of the Instar Rule (a,(¢) = 1)

Kohonen Rule
Mg =w(-D+ap(g)-w(g-1), forieX(q

Qutstar

Symmetric Saturating
Input Linsar Layer

Outstar Rule

w}(‘f) = wj(?‘ 1) +a(a(g) _Wj(Q' 1))Pj('?)

13-22

Solved Problems

Solved Problems

~2+2

1

P13.1 In Eq. (13.19) the maximum weight for the Hebb rule with decay
was calculated, assuming that p; and a; were 1 at every time step.
Calculate the maximum weight resultmg if p, and ¢, alternate to-
gether between values of 0 and 1.

We begin with the scalar version of the Hebb rule with decay:
w,’_j(q} = (I‘Y}W,-_,-(q— 1] +0lﬂ,-(¢1)P_,-(Q’) .

We can rewrite this expression twice using ¢ to index the weight values as
the weight is updated over two time steps.

wfj(q+l} = {I-T}w,‘j(q) +aa.‘(€)pj((f)
wylg+2) = (1-v}w;{g+ 1} +aa{g+1) p;{qg+1)

By substituting the first equation into the second, we get a single expres-
sion showing how w;; is updated over two time steps.

w;(g+2) = (1-9) ((1~Y)w,(q) +oa;(9) p; (@) +0a,(g+ D) p,(g+ 1)

At this point we can substitute values for p; and 4,. Because we are look-
mgforamaxlmumwexght we will set p, (q) and a, () to0,and pi{g+1)
and a,(g+1) to 1. This will mean that the Wexghtdecreases in the first
time step, and increases in the second, ensuring that w, (¢ +2) is the max-
imum of the two weights. If we solve for wy(g+2), we obtain

wi(g+2) = (1-9)w;(g) +a.

Assuming that w;; will eventually reach a steady state value, we can find
it by setting both w, (¢ +2) and w,(g) equal to w} 7 and solving

W,_,ar - (l —‘T) Zw;;a:"_a’
mex 1
W{-J- = 27_72 .

We can use MATLAB to make a plot of this relationship. The plot will show
learning rates and decay rates at intervals of 0.025.

Ir = 0:0.025:1;
dr = 0.025:0.025:1;

13-23

18 Associative Learning

Here are the commands for creating a mesh plot of the maximum weight,
as a function of the learning and decay rate values.

[LA,DR] = meshgrid(dr,ir);
M¥ = LR ./ (DR .* {2 - DR}};
mesh (DR, LR, MW} ;

The plot shows that w;, approaches infinity as the decay rate y becomes
small with respect to the learning rate o (see Figure P13.1},

W
\\“‘!&*}!33.\‘3?‘

B
)
E 104 \‘
e
E 54 ““‘\‘ ““‘ AR

‘\“‘ : L
““qg‘:“::‘:f‘:‘:“

!
Crmaons
eab ettt ania i

Learsing Rata

Decay Rate

Figure P13.1 Maximum Weight w;“

P13.2 Retrain the orange recognition network on page 13-13 using the in-
star rule with a learning rate of 0.4. Use the same training se-
quence. How many time steps are required for the network to
learn to recognize an orange by its measurements?

Here is the training sequence. It is to be repeated until the network can re-
spond to the orange measurements {p = [1 -1 _ﬂ }, even when the visual
detection system fails (pfj =0).

1] 1
Py =0,p(l) = _1| 2% = Lp@ = ([t -
-1 -1

13.24

Solved Problems

We will use MATLAB to make the calculations. These two lines of code set

1242 the weights to their initial values.
Tans =
oAl w0 = 3;

W= [000];

We can then simulate the first time step of the network.

pt = 0}

p =1t -1 -11;

a = hardlim(wO*p0+W*p-2)
a

0

The neuron does not yet recognize the orange, so its output is 0. The
weights do not change when updated with the instar rule.

W
L)

W+ 0.4%a%(p’-W)

0040
The neuron begins learning the measurements in the second iteration.

pO = 1;

p=1[1 -1 -1];

a = hardlim(wO*p0+W*p-2)
a-=

1

=
[l

W+ 0.4%a%(p’-W)
0.4000 -0.4000 -0.4000

But the association is still not strong enough for a response in the third it-

eration.
po = 0;
p=1(1 -1 -1];
a = hardlim(wO*pC+W*p-2)
a-s
0
W=W+ 0 4%a%(p’-W)
W=

0.4000 -0.4000 -0.4000

13-25

13 Associative Learning

13-26

P133

Here are the results of the fourth iteration:

a =
1

w =
0.8400 -0.6400 -0.6400
the fifth iteration:
a =
0
W=
0.6400 -0.6400 -0.8400
and the sixth iteration:
a =
1
W=

0.7840 -0.7840 -0,7840.

By the seventh iteration the network is able to recognize the orange by its
measurements alone.

po = 0;

p=1[1; -1; -1];

a = hardlim{w0*pO+W*p-2}

a -

W+ 0.4%a%(p’-W)

F E

0.8704 -0.8704 -0.8704

Due to the lower learning rate, the network had to experience the measure-
ments paired with its response three times (the even numbered iterationsz)
before it developed a strong association between them.

Both the recognition and recall networks used in this chapter’s ex-
amples could only learn a single vector. Draw the diagram and de-
termine the parameters of a network capable of recognizing and
responding to the following two vectors:

5 -3
Py =|-5 P, =] 5
5 5

Solved Problems

The network should only respond when an input vector is identi-
cal to one of these vectors.

We know the network must have three inputs, because it must recognize
three-element vectors. We also know that it will have two outputs, one out-
put for each response.

Such a network can be obtained by combining two instars into a single lay-
er, as in Figure P13.2.

Inputs Hard Limit Layer

a = hardlim (Wp+b}

Figure P13.2 Two-Vector Recognition Network

We now set the weights 'w of the first neuron equal to p, so that its net
input will be at a maximum when an input vector points in the same direc-
tion as p, . Likewise, we will set ,w to p, so that the second neuron is most
sensitive to vectors in the direction of p, .

Combining the weight vectors gives us the weight matrix

T T
wol ™| P 2{5 —55]'
o | LSS

(Note that this is the same manner in which we determined the weight ma-
trix for the first layer of the Hamming network. In fact, the first layer of
the Hamming network is a layer of instars. More about that in the next
chapter.)

The lengths of p, and p, are the same:

= J(5) 4+ (=5)7 4 (5)" = 5.

ledl = {p.

13-27

13 Associative Learning

13-28

in2e2
I]BI’\S:

P134

To ensure that only an exact match between an input vector and a stored
vector results in a response, both biases are set as follows (Eq. (13.29)):

2
b = b, = -Jp = 75.

We can use MATLAB to test that the network does indeed respond to p, .

w=1(5-55; -85 5];
b=1-75; -78];
pt = [5; -5} B];
a = hardlim{W*p1+h)
a =
’
Q

The first neuron responded, indicating that the input vector was p, . The
second neuron did not respond, because the input was not p, .

We can also check that the network does not respond to a third vector p,
that is not equal to either of the stored vectors.

p3 = [-5; 5; -5];
= hardlim{W*p3+b}
a:
0

0

Neitber neuron recognizes this new vector, 3o they both output 0.

A single instar is being used for pattern recognition. Its weights
and bias have the following values:

W:IWT:[1_1_1:| h=-2.

How close must an input vector (with a magnitude of ./3) be to the
weight vector for the neuron to output a 1? Find a vector that oc-
curs on the border between those vectors that are recognized and
those vectors that are not.

We begin by writing tbe expression for the neuron’s output.
g = hardlim (W p+b)

According to the def}irnition of hardlim, a will be 1 if and only if the inner
product between w' and p is greater than or equal to —b (Eq. (13.28)):

Solved Problems

wTp = | wjliplcos®2-5.

We can find the maximum angle between ,w and p that meets this condi-
tion by substituting for the norms and solving

(v3) (43} cos622
23 o
B <cos (5) = 48.19°,

To find a borderline vector with magnitude ./3, we need a vector p that
meets the following conditions:

2 2 2
”PI” = PPt = \/-3’:

T
Fp= w|p1+w2p2+w3p3—b = p|~p2~p3—2 = {,

Since we have three variables and only two constraints, we can set the
third variable p, to 0 and solve

Jriepep=3 = plepi=3,
Pi=P=P3=2 = pptpy=-2,
(Pr+p9)” = pr+py+2pp; = (-2)7 = 4,
342p,p=4 = p,p,=035,
py(py+py) = pi+p2p3 = p§+0.5 = py(-2) = 2p,.
After a little work we find that there are two possible values for p,:
p§+2p2+0.5 =0,

p, = - 11,05,

It turns out that if we pick p, to be one of these values, then p, will take
on the other value.

pytp, = —1205+p, = -2

Py = - 1505

13-29

13 Associative Learning

Therefore, the following vector p isjust the right distance from w to berec-
ognized.

0
P=[-1+./05
-1-J05

We can test it by presenting it to the network.

a = hardiim (W p +b)

0
a = hardlim [1 -1 ,1] —1+J(E -2
-1-J05

a = hardlim(() =1

The vector p does indeed result in a net input of 0 and is therefore on the
boundary of the instar’s active region.

P13.5 Consider the instar network shown in Figure P13.3. The training
sequence for this network will consist of the following inputs:

{p"m =0,p(l) = H} {p"{z) =1,p(2) = H}

These two sets of inputs are repeatedly presented to the network
until the weight mairix W converges.

i. Perform the first four iterations of the instar rule, with
learning rate o = 0.5. Assume thai the initial W matrix is set

to all zeros.

ii. Display the results of each iteration of the instar rule in
graphical form (as in Figure 13.5),

13-30

Solved Problems

Inputs Hard Limit Neuron

a= hardlim(wops + Wp +b)

Figure P13.3 Instar Network for Problem P13.5

i. Because W initially contains all zeros, the instar does not respond to
the measurements in the first iteration.

a(1) = hardlim (w’p" (1) + Wp (1) -2)
1) = hardlim| 3.0 “lia]=0
af{l) = har m{ +[00]{]:r]

The neuron did not respond. Therefore its weights ,w are not altered by the
instar rule.

i

() = w(0) +05a(D) (p(1) - w(0))

()

Because the unconditioned stimulus appears on the second iteration, the
ingtar does respond.

i

a(2) = hardlim (w’p" (2) + Wp(2) - 2)
. -1
2) = hardlim| 3 - | -2(=1
a(2) ar lm[+[00][J]

The neuron did respond, and its weights ,w are updated by the instar rule.

1331

13 Associative Learning

13-32

W(2) = w(l)+05a(2) (p(2) -,w (1))

0 +0_5(-1 _10] - |-05
0 1 il 0.5
On the third iteration, the unconditioned stimulus is not presented, and

the weights have not yet converged close enough to the input pattern.
Therefore, the instar does not respond.

a(3) = hardlim (w'p° (3) + Wp (3) -2)

a(3) = hardh'm{ 3.0+ [_0_5 0_5] H - 2} =0

Since the neuron did not respond, its weights are not updated.

W{3) = W(2) +03a(3) (p(3) -\ W(2))

-05], 0[-1, _|-05 J _|-0s

0.5 1 0.5 0.5
Because the unconditioned stimulus again appears on the fourth iteration,
the instar does respond.

a(4) = hardlim(w'p" (4) + Wp (4) - D)

3
; -1
a(4)=hardhm(3-1+__) -2,=1
[0 0] [J J
Since the instar was activated, its weights are updated.

Wi4) = w(3)+05a(4)(p(4) - w(3))

—0.5 +0.5(—1 - —05 } = "075

0.5 1 0.5 0.75
This completes the fourth iteration. If we continue this process, \w will
converge to p.

1l

Solved Problems

ii. Note that the weights are only updated (instar active) on iterations 2
and 4. Recal! from Eq. (13.34) that when the instar is active, the learning
rule can be written

(g = w(g-1)+a{pl{g)-w(g-1)) = (}-a),w(g-1) +ap(q) .

When the instar is active, the weight vector is moved toward the input vec-
tor along a line between the old weight vector and the input vector. Figure
P13.4 displays the movement of the weight vector for this problem. The
weights were updated on iterations 2 and 4. Because ¢ = (.5, whenever
the instar is active the weight vector moves halfway from its current posi-
tion toward the input vector.

(g} = (0.5),wig-1) + (0.5}p(q)

Figure P13.4 Instar Rule Example

13-33

13 Associative Learning

Epilogue

18-34

In this chapter we introduced some simple networks capable of forming
agsociations. We also developed and studied several learning rules that
allowed networks to create new associations. Each rule operated by
strengthening an agsociation between any stimulus and response that
occurred simultaneously.

The simple associative networks and leaming rules developed in this chap-
ter are useful in themselves, but they are also important building blocks for
more powerful networks. In this chapter we introduced two networks, and
associated learning rules, that will be fundamental for the development of
important networks in the next three chapters: the instar and the ouistar.
The instar is a network that is trained to recognize a pattern, The outstar
is a network that is trained to recall a pattern. We will use layers of instars
in Chapters 14 and 15 to perform pattern recognition. These networks are
very similar to the Hamming network of Chapter 3, whose first layer was,
in faet, a layer of instars. In Chapter 16 we will introduce a more complex
network, which combines both instars and outstars in order to produce sta-

ble learning,

Further Reading

Further Reading

[Ande72]

[Gros68]

[Gros82]

[Hebb49]

[Koho72}

J. Anderson, “A simple neural network generating an inter-
active memory,” Mathematical Biosciences, vol. 14, pp.
197-220, 1972,

Anderson has proposed a “linear associator” model for asso-
ciative memory. The model was trained, using a generali-
zation of the Hebb postulate, to learn an association
between input and output vectors. The physiological plau-
sibility of the network was emphasized. Kohonen published
aclosely related paper at the same time [Koho72], although
the two researchers were working independently.

S. Grossberg, “Some physiological and biochemical conse-
quences of psychological postulates,” Proceedings of the Na-
tional Academy of Sciences, vol, 60, pp. 758-765, 1968.

This article deseribes early mathematical models (nonlin-
ear differential equations) of associative learning. It syn-
thesizes psychological, mathematical and physiological
ideas.

S. Grossherg, Studies of Mind and Brain, Boston: D. Reidel
Publishing Co., 1982.

This book ig a collection of Stephen Grossberg papers from
the period 1968 through 1980. It covers many of the funda-
mental concepts which are used in later Grossberg net-
works, such as the Adaptive Resonance Theory networks.

D. 0. Hebb, The Organization of Behavior, New York:
Wiley, 1949,

The main premise of this seminal book was that behavior
could be explained by the action: of nevrens, In it, Hebb pro-
posed one of the first learning laws, which postulated a
mechanism for learning at the cellular level.

T. Kohonen, “Correlation matrix memories,” IEEE Trans-
actions on Computers, vol. 21, pp. 353-358, 1972.

Kohonen proposed a correlation matrix model for associa-
tive memory, The moedel was trained, using the cuter prod-
uet rule {(also known as the Hebb rule), to learn an
association between input and output vectors. The mathe-
matical structure of the network was emphasized. Ander-
son published a closely related paper at the same time
[Ande72], although the two researchers were working inde-

pendently.

1335

F

R

I3 Agsociative Learning

13-36

[Koho87]

[Leib90]

T. Kohonen, Self-Organization and Associative Memory,
2nd Ed., Berlin: Springer-Verlag, 1987.

This book introduces the Kohonen rule and several net-
works that use it. It provides & complete analysis of linear
associative models and gives many extensions and exam-
ples.

D. Lieberman, Learning, Behavior and Cognition, Bel-
mont, CA: Wadsworth, 1990.

Leiherman’s text forms an excellent introduction to behav-
iora] psychology. This field is of interest to anyone looking
to model human {or animal) learning with neural net-
works.

Exercises

Exercises

E131 The network shown in Figure E13.1 is to be trained using the Hebb rule
with decay, using a learning rate « of 0.3 and a decay rate y of 0.1.

Inputs Hard Limit Neuron

a = hardlim (wip® +wp +b)

Figure E13.1 Associative Network

i. If w isinitially set to 0, and w’ and b remain constant (with the val-
ues shown in Figure E13.1), how many consecutive presentations of
the following training sel are required before the neuron will re.
spond to the test set? Make a plot of w versus iteration number,

Training set: {p°=1,p=1} Testset: {p'=0,p=1}

il. Assume that w has an initial value of 1. How many consecutive pre-
gentations of the following training set are required before the neu-
ron will no longer be able to respond to the test set? Make a plot of
w versus iteration number.

Training set: {p’=0,p=0} Testset; {p"=0,p=1}

E132 For Exercige E13.1 part (i), use Eq. (13.19) to determine the steady state
value of w . Verify that this answer agrees with your plot from Exercise
E13.1 part (i).

E13.3 Repeat Exercise E13.1, but this time use the Hebb rule without decay
(y = 0).

E13.4 The following rule looks similar to the instar rule, but it behaves quite dif-
ferently:

1337

13 Associative Learning

old
Aw, = -0a,(p;+wy)
i. Determine the conditions under which the AW.-_,' is nonzero.

ii. What value does the weight approach when Aw;; is nonzero?

iii. Can you think of a use for this rule?

E13.5 The instar shown in Figure E13.2 is to be used to recognize a vector.

Inputs Hard Limit Neuron

a = kardlim(wip? + Wp +b)

Figure E13.2 Vector Recognizer

i. Train the network with the instar rule on the following training se-
quence. Apply the instar rule to the second input’s weights only
= {which should be initialized to zeros), using a learning rate of (.6.

';:5:2 The other weight and the bias are to remain constant at the values
I in the figure. (You may wish to use MATLAB to perform the calcu-
lations.)
{p°(1) =Lp(l) = {"'”‘ﬂ {p"u) =0,p(2) = 4“74}}
(.985 _0.985
0 s _ o174 } { 0, _[-0174 }
3) =1,p(3) = 4) =0,p(4) =
{P (3) p(3) [0.985] p 4 p _0.985}
o 01741 | o 0,174
(5)=Lp(5) = } { (6) =0,p(6) = }
{p P [0.985] ? d _osss}

ii. What were your final values for W?

iii. How do these final values compare with the vectors in the training
seguence?

13-38

Exercises

iv. What magnitude would you expect the weights to have afer train-
ing, if the network were trained for many more iterations of the
game training sequence?

El13.6 Consider the instar network shown in Figure E13.3. The training sequence
for this network will consist of the following inputs:

{Pu(l) =0,p(1) = [_ﬂ}, {pO(Z} =1,p{2} = LIIJ},

These two sets of inputs are repeatedly presented to the network until the
weight matrix W converges.

i. Perform the first eight iterations of the instar rule, with learning
rate o = 0.25. Assume that the initial W matrix is set to

W = [10].

ii. Display the results of each iteration of the instar rule in graphical
form (as in Figure 13.5).

inputs Hard Limit Neuron

a=hardlim(wopd + Wp+b)

Figure E13.3 Instar Network for Exercise E13.6
E13.7 Draw a diagram of a network capable of recognizing three different four-
element vectors (of #1 values) when given different stimuli {(of value 1},

i. How many inputs does your network have? How many outputs?
What transfer function did you use?

ii. Choose values for the network’s weights go that it can recognize
each of the following vectors:

13-3%

13 Associative Learning

E13.8

E13.9

13-40

—
|

—

—_—

p =
-1
jii. Choose an appropriate value for the biases. Explain your choice.
Test the network with one of the vectors above. Was its response
correct?

iv.

v, Test the network with the following vector.

Why did it respond the way it did?

This chapter included an example of a recognition network that initially
used a visual system to identify oranges. At first the network needed the
visual system to tell it when an orange was present, but eventually it
learned to recognize oranges from sensor measurements.

i. Let us replace the visual system with a person. Initially, the net-
work would depend on a person to tell it when an orange was
present. Would you consider the network to be learning in a super-
vised or unsupervised manner?

ii. In what ways would the input from a person resemble the targets
used to train supervised networks in earlier chapters?

iii. In what ways would it differ?

The network shown in Figure E13.4 is installed in an elevator used by
three senior executives in a plush high-security corporate building, It has
buttons marked ‘1’ through ‘4’ for four floors above the ground floor. When
an executive enters the elevator on the ground floor, it determines which
person it is with a retinal scan, and then uses the network to select the floor
where that person is most likely to go to. If the guess is incorrect, the per-
gon can push a different button at any time, but if the network is correct, it
will save an important executive the effort of pushing a button.

Push Scan

Network

vy

Floor?

Exercises

Input Sym. Hard Limit Layer

'S4 A
M
Floor Code 250
2
Retingl Scan P
3x1
3
1M
/S S

a = hardlims (Wop* +Wp +b)

Figure E13.4 Elevator Network

The network’s input/output function is

a = hardlims (W'p’ + Wp +b) .

The first input p“ provides the network with a fleor code, if a button has
been pushed.

p? = {'IJ (1st floor) pg = [IJ (2nd floor)

P = [‘l 1] Grd floor) py = H (4th floor)
If no button is pushed, then no code is given.
¢ _ 10
Py = u (no button pushed)

The first input is weighted with an identity matrix, and the biases are set
to -0.5, so that if a button is pushed the network will respond with its code.

r
Welbs [-0.5}

-0.3

The second input is always available. It consists of three elements that rep-
resent the three executives:

1341

M el ey e b T F

13 Agsociative Learning

1 0 0
p, = {0 (President}, p, = }| (Vice-President), p, = g (Chairman).
0 0 1

The network learns to recall the executives’ favorite floors by updating the
second set of weights using the outstar rule (using a learning rate of 0.6).
Initially those weights are set to zero:

000
W=1500-
000

w242

ans= N i. Use MATLAB to simulate the network for the following sequence of
4 events:

President pushes ‘4’, Viece-President pushes ‘%,
Chairman pushes ‘1, Vice-President pushes ‘3,
Chairmen pushes ‘2’, President pushes ‘4",

In other words, train the network on the following sequence:

1] 1] { i3 i] 1]
{P =pep=p1,{P =P, P=0,},{P =P.P=D:},

p =pop=p,0 (P =PpP =D} . {P =PpP =D} .

ii. What are the final weights?
iii. Now continue simulating the network on these evenis:

President does not push a button,
Vice-Pregident does not push a button,
Chairman does not push a button.

iv, Which floors did the network take each executive to?

v. If the executives were to push the following buttons many times,
what would you expect the resuiing weight matrix to look like?

President pushes ‘3,

Vice-President pushes 2,
Chairman pushes ‘4",

13-42

14 Competitive Networks

Objectives 1441
Theory and Examples 14-2
Hamming Network 14-3
Layer 1 14-3
Layer 2 14-4
Competitive Layer 14-5
Competitive Learning 14-7
Problems with Competitive Layers 149
Competitive Layers in Biology 14-10
Self-Organizing Feature Maps 14-12
Improving Feature Maps 14-15
Learning Vector Quantization 14-16
LVQ Learning 14-18
Improving LVQ Networks (LVQ2) 14-21
Summary of Results 14-22
Solved Problems 14-24
Epitogue 14-37
Further Reading 14-38
Exercises 14-39

Objectives

The Hamming network, introduced in Chapter 3, demonstrated one tech-
nique for using a neural network for pattern recognition. It required that
the prototype patterns be known beforehand and incorporated into the net-
work as rows of a weight matrix.

In this chapter we will discuss networks that are very similar in structure
and operation to the Hamming network. Unlike the Hamming network,
however, they use the associative learning rules of Chapter 13 to adaptive-
ly learn to classify patterns. Three such networks are introduced in this
chapter: the competitive network, the feature map and the learning vector
quantization (LVQ) network.

141

14 Competitive Networks

Theory and Examples

142

The Hamming network is one of the simplest examples of a competitive
network. The neurens in the output layer of the Hamming network com-
pete with each other to determine a winner. The winner indicates which
prototype pattern is most representative of the input pattern. The compe-
tition is implemented by lateral inhibition — a set of negative connections
between the neurons in the output layer. In this chapter we will illustrate
how this competition can be combined with the associative learning rules
of Chapter 13 to produce powerful self-organizing (unsupervised) net-
works.

As early as 1959, Frank Rosenblatt created a simple “spontanecus” classi-
fier, an unsupervised network based on the perceptron, which learned to
classify input vectors into two classes with roughly equal members.

In the late 1960s and early 1970s, Stephen Grossberg introduced many
competitive networks that used lateral inhibition to good effect. Some of
the useful behaviors he obtained were noise suppression, contrast-en-
hancement and vector normalization. His networks will be examined in
Chapters 15 and 16.

In 1973, Christoph von der Malsburg introduced a self-organizing learning
rule that allowed a network to classify inputs in such a way that neighbor-
ing neurons responded to similar inputs. The topology of his network mim-
icked, in some ways, the structures previously found in the visual cortex of
cats by David Hubel and Torten Wiesel. His learning rule generated a great
deal of interest, but it used a nonlocal caleulation to ensure that weights
were normalized. This made it less biologically plausible.

Grossberg extended von der Malsburg's work by rediscovering the istar
rule, examined in Chapter 13. (The instar rule had previously been intro-
duced by Nils Nilsson in his 1965 book Learning Machines.) Grossberg
showed that the instar rule removed the necessity of re-normalizing
weights, since weight vectors that learn to recognize normalized input vec-
tors will automatically be normalized themselves.

The work of Grossberg and von der Malsburg emphasizes the hiological
plausibility of their networks. Another influential researcher, Teuvo Ko-
honen, has also been a strong proponent of competitive networks, However,
his emphasis has been on engineering applications and efficient mathe-
matical descriptions of the networks. During the 1970s he developed a sim-
plified version of the instar rule and also, inspired by the work of von der
Malsburg and Grossberg, found an efficient way to incorporate topology
into a competitive network.

In this chapter we will concentrate on the Kohonen framework for compet-
itive networks, His models illustrate the major features of competitive net-

Hamming Network

works, and yet they are mathematieally more tractable than the Grossherg
networks. They provide a good introduction to competitive learning.

We will begin with the simple competitive network. Next we will present
the self-organizing feature map, which incorporates a network topology. Fi-
nally, we will discuss learning vector quantization, which incorporates
competition within a supervised learning framework.

Hamming Network

Since the competitive networks discussed in this chapter are closely related
to the Hamming network (shown in Figure 14.1}, it is worth reviewing the
key concepts of that network first.

Feedforward Layer Recurrent Layer
' N 7 A
‘ n¥i+1) ait+ 1} a¥yn
w2 531 —Z sxd D 5 I
Sx§
$
J A _/

al = purelin{Wip+b!) a0} =a a¥t+1)= poslin(Wzaz(s})

Figure 14.1 Hamming Network

The Hamming network consists of two layers. The first layer (which is a
layer of instars) performs a correlation between the input vector and the
prototype vectors. The second layer performs a competition to determine
which of the prototype vectors is closest to the input vector.

Layer 1

Recall from Chapter 13 (see page 13-9 and following) that a single instar is
able to recognize only one pattern. In order to allow multiple patterns to be
classified, we need to have multiple instars. This is accomplizhed in the

Hamming network.

Suppose that we want the network to recognize the following prototype vee-
tors:

{PiPy P} - (14.1)

14-3

14 Compelitive Networks

144

Then the weight matrix, W', and the bias vector, b! , for Layer 1 will be:

W Pl R
T T
wi= (™ o P b B (142
w7 Pé R

where each row of W! represents a prototype vector which we want to rec-
ognize, and each element of b! is set equal to the number of elements in

each input vector (R). (The number of neurons, §, is equal to the number

of prototype vectors which are to be recognized, 2.)

Thus, the output of the first layer is

PP+R
T
a' = Wip+b! = P;P+R| (14.3)

plp+R

Note that the outputs of Layer 1 are equal to the inner products of the pro-
totype vectors with the input, plus R. As we discussed in Chapter 3 (page
3-9), these inner products indicate how close each of the prototype patterns
is to the input vector. (This was also discussed in our presentation of the
instar on page 13-10.)

Layer 2

In the instar of Chapter 13, a Aardlim transfer function was used to decide
if the input vector was close enough to the prototype vector. In Layer 2 of
the Hamming network we have multiple instars, therefore we want to de-
cide which prototype vector is closest to the input. Instead of the Aardiim
transfer function, we will use a competitive layer to choose the closest pro-
totype.

Layer 2 is a competitive layer. The neurons in this layer are initialized with
the outputs of the feedforward layer, which indicate the correlation be-
tween the prototype patterns and the input vector, Then the neurons com-
pete with each other to determine a winner. After the competition, only one
neuron will have a nonzero output. The winning neuron indicates which
category of input was presented to the network (each prototype vector rep-
resents a category).

The first-layer cutput a' is used to initialize the second layer.

a’(0) = a' (14.4)

Lateral Inhibition

Winner-Take-All

Competitive Layer

Then the second-layer output is updated according to the following recur-
rence relation:

a (1+1) = poslin(W2a’' (1)) . (14.5)

The second-layer weights W? are set so that the diagonal elements are 1,
and the off-diagonal elements have a small negative value.

“’i={ Loifisi Ghere 0<ec—— (14.6)
-¢, otherwise §-1

This matrix produces laieral inhibition, in which the output of each neuron
has an inhibitory effect on all of the other neurons, To illugtrate this effect,
substitute weight values of 1 and —¢ for the appropriate elements of W2,
and rewrite Eq. (14.5) for a single neuron.

A(t+1) = pa.sfin[af{t) _szaf.(:)] 14.7

f#i

At each iteration, each neuron’s sutput will decrease in proportion to the
sum of the other neurons’ outpuis (with 2 minimum eutput of 0). The out-
put of the neuron with the largest initial condition will decrease more slow-
Iy than the outputs of the other neurons. Eveniually that neuron will be the
only one with a positive output. At this point the network has reached
steady state. The index of the second-layer neuron with a stable positive
output is the index of the prototype vector that best matched the input.

This is called a winner-take-all competition, since only one neuron will have
a nonzero output. In Chapter 15 we will discuss other types of competition,

You may wish to experiment with the Hamming network and the apple/or-
ange classification problem. The Neural Network Design Demonstration
Hamming Classification (nnd3haec) was previously introduced in Chapter 3.

Competitive Layer

Competition

The second-layer neurons in the Hamming network are said to be in com-
pefition because each neuron excites itself and inhihits all the other neu-

rons. To simplify our discussions in the remainder of this chapter, we will
define a transfer function that does the job of a recurrent competitive layer:

a = compet{n} . (14.8)

It works by finding the index i* of the neuron with the largest net input,
and setting its output to 1 (with ties going to the neuron with the lowest
index). All other outputs are set to 0,

145

14 Competitive Networks

14-6

Li=i* :
a; = { P ,where n, 2n,Vi,and #<iVn =n, (14.9)
0, i#* ! !

Replacing the recurrent layer of the Hamming network with a competitive
transfer function on the first layer will simplify our presentations in this
chapter. (We will study the competition process in more detail in Chapter
15.) A competitive layer iz displayed in Figure 14.2,

input Competitive Layer

'SRV \

R S
LV
a = compet(Wp)
Figure 14.2 Competitive Layer

As with the Hamming network, the prototype vectors are stored in the rows
of W. The net input n calculates the distance between the input vector p
and each prototype w (assuming vectors have normalized lengths of L).
The net input n,_of each neuron ;i is proportional to the angle 8, between
p and the prototype vector w:

(W7 wp chosﬁl
T| T, 2
n=Wp= | |p= WP o |LcosOy (14.10)
%7 P 1’ cosO,

The competitive transfer function assigns an output of 1 to the neuren
whose weight vector points in the direction closest to the input vector:

a = compet{Wp) . (14.11)

To experiment with the competitive network and the apple/ orange classifi-
cation problem, use the Neural Network Design Demonstration Competitive
Classification (nnd14cc),

Competitive Layer

Competitive Learning

We can now design a competitive network classifier by setting the rows of
W to the desired prototype vectors. However, we would like to have a
learning rule that could be used to train the weights in a competitive net-
work, without knowing the prototype vectors. One such learing rule isthe
instar rule from Chapter 13:

M(g) = wig-1)+aa(q) (p(9) - w(g-1). (14.12)
For the competitive network, a is only nonzero for the winning neuron
(i = i*). Therefore, we can get the same results using the Kohonen rule.

Wig = wig-1D+a(plg) ~wig-1))
14.13)

(1-a)w(g-1) +ap(q)

wig = wig-1) izt {14.14)
Thus, the row of the weight matrix that is closest to the input vector (or has
the largest inner product with the input vector) moves toward the input

vector. It moves along a line between the old row of the weight matrix and
the input vector, as shown in Figure 14.3.

i
} pig)
“‘\ . !w{q)

.W(q - 1)

¥

Figure 14.3 Graphical Representation of the Kohonen Rule

. Let’s use the six vectors in Figure 14.4 to demonstrate how a competitive
layer learns to classify vectors. Here are the six vectors:

-0.1961 0.1961 0.9806
= = p. = (14.15)
P [0.9306} P [0.9806] P [0.1961]
p.= |09806] o _[-0s812| | _|-08137
‘T longel] 08137 ¢ |-0.5812

14-7

— - o e e ikt Tt i h e - *

14 Competitive Networks

Figure 14.4 Sample Input Vectors

Our competitive network will have three neurons, and therefore it can clas-
sify vectors into three classes. Here are the “randomly” chosen normalized

initial weights:
T
W
w0 | o foromy 11000 w | A 416)
-0.7071 0.7071 0.0000 2
wl

The data vectors are shown at left, with the weight vectors displayed as ar-
rows. Let’s present the vector p, to the network:

N

0.7071 ~0.7071
[0.98{)6

a = compet (Wp,) = compet| | 07071 0.7071 0'1%1} (14.17)

10000 0.0000)
05547 | o
= compet| | 8321 | = |1|
-0.1961)) [0

The second neuron’s weight vector was closest to p,, so it won the compe-
tition (#* = 2)and output a 1. We now apply the Kohonen learning rule to

the winning neuron with a learning rate of o = 0.5.

2wmw - ZWOM-I-U.{IJZ—.‘,W‘JM] (1418}
2w _ |o70m +0'5[0.1961| _ |0.7071] _ |0.4516
0.7071 0.9806] [0.7071]) |0.8438

P3 The Kohonen rule moves ,w closer to p,, as can be seen in the diagram at

™ p, left. If we continue choosing input vectors at random and presenting them
to the network, then at each iteration the weight vector closest to the input
Po vector will move toward that vector. Eventually, each weight vector will

Ps

14-8

/£

/

[l

Competitive Layer

point at a different cluster of input vectors. Each weight vector becomes a
prototype for a different cluster.

This problem is simple enough that we can predict which weight veetor will
point at which cluster. The final weights will look something like those
shown in Figure 14.5.

Figure 14.5 Final Weights

Once the network has learned to cluster the input vectors, it will classify
new veetors accordingly.The diagram in the left margin uses shading to
show which region each neuron will respond to. The competitive layer as-
signs each input vector p to one of these classes by producing an output of
1 for the neuron whose weight vector is closest to p.

To experiment with the competitive learning use the Neural Network Design
Demonstration Competitive Learming (nnd14¢l).

Problems with Competitive Layers

Competitive layers make efficient adaptive classifiers, but they do suffer
from a few problems. The first problem is that the choice of learning rate
forces a trade-off between the speed of learning and the stability of the final
weight vectors. A learning rate near zero results in slow learning. Howev-
er, once a weight vector reaches the center of a cluster it will tend to stay

close to the center.

In contrast, a learning rate near 1.0 results in fast learning. However, once
the weight vector has reached a cluster, it will continue to oscillate as dif-
ferent vectors in the cluster are presented.

Sometimes this trade-off between fast learning and stability can be used to
adventage. Initial training can be done with a large learning rate for fast
learning. Then the learning rate can be decreased as training progresses,
to achieve stable prototype vectors. Unfortunately, this technique will not
work if the network needs to continuously adapt to new arrangements of

input vectors.

A more serious stability problem occurs when clusters are close together.
In certain cases, a weight vector forming a prototype of one cluster may “in-

149

14 Competitive Networks

vade” the territory of another weight vector. and therefore upset the cur-
rent classification scheme.

The series of four diagrams in Figure 14.6 illustrate this problem. Two in-
put vectors (shown with blue circles in diagram (a)) are presented several
times. The result is that the weight vectors representing the middle and
right clusters shift to the right. Eventually one of the right cluster vectors
is reclassified by the center weight vector. Further presentations move the
middle vector over to the right until it “loses” some of its vectors, which
then become part of the class associated with the left weight vector.

Figure 14.6 Example of Unstable Learning

A third problem with competitive learning is that occasionally & neuron’s
initial weight vector is located so far from any input vectors that it never
wins the competition, and therefore never learns. The result is a “dead”
neuron, which does nothing useful. For example, the downward-pointing
weight vector in the diagram to the left will never learn, regardless of the
order in which vectors ave presented. One solution to this problem consists
of adding a negative bias to the net input of each neuron and then decreas-
ing the bias each time the neuron wins. This will make it harder for a neu-
ron to win the competition if it has won often. This mechanism is
sometimes called a “conscience.” (See Exercise E14.4.)

Finally, a competitive layer always has as many classes as it has neurons.
This may not he acceptable for some applications, especially when the num-
ber of clusters is not known in advance. In addition, for competitive layers,
each class consists of a convex region of the input space. Competitive layers
cannot form classes with nonconvex regions or classes that are the union of
unconnected regions.

Some of the problems discussed in this section are solved by the feature
map and LVQ networks, which are introduced in later sections of this chap-
ter, and the ART networks, which are presented in Chapter 16.

Competitive Layers in Biology

ARBLH In previous chapters we have made no mention of how neurons are physi-
00000 cally organized within a layer (the topology of the network). In biological
20R00 neural networks, neurons are typically arranged in two-dimensional lay-
ers, in which they are densely interconnected through lateral feedback.
06066 The diagram to the left shows a layer of twenty-five neurons arranged in a

20080 two-dimensional grid.

14-10

neuron j

On-center/off-surround

Mexican-Hat Function

Competitive Layers in Biolugy

Often weights vary as a function of the distance between the neurons they
connect. For example, the weights for Layer 2 of the Hamming network are
asgigned as follows:

w.:{ Lifi=j (14.19)
v e ifie)

Eq. (14.20) assigns the same values as Eq. (14.19), but in terms of the dis-
tances d;; between neurons:

v = { Litd; =0 (14.20)
v -¢ fd, >0

Either Eq. (14.19} or Eq. (14.20) will assign the weight values shown in the
diagram at left, Each neuron i is labeled with the value of the weight w, s
which comes from it to the neuron marked ;.

The term on-center / off-surround is often used to describe such a connection
pattern between neurons. Each neuron reinforces itself (center), while in-
hibiting all other neurons (surround).

It turns out that this is a crude approximation of biological competitive lay-
ers. In biology, a neuron reinforces not only itself, but also those neurons
close to it. Typically, the transition from reinforcement to inhibition cccurs
smeothly as the distance between neurons increases.

Thig transition is illustrated on the left side of Figure 14.7. This is a func-
tion that relates the distance between neurons to the weight connecting
them. Those neurons that are close provide excitatory (reinforeing) connec-
tions, and the magnitude of the excitation decreases as the distance in-
creases. Beyond a certain distance, the neurons begin to have inhibitory
connections, and the inhibition increases as the distance increases. Be-
cause of its shape, the function is referred to as the Mexican-hat function.
On the right side of Figure 14,7 is a two-dimensional illustration of the
Mexican-hat (on-center/off-surround) function. Each neuron { is marked to
show the sign and relative sirength of its weight w; going to neuren ;.

neuroen

90006
Pe@eee
008980
e Pee09
< PeE0e

Figure 14.7 On-Center/Off-Surround Layer in Biology

14-11

14 Competitive Networks

Biological competitive systems, in addition to having a gradual transition
between excitatory and inhibitory regions of the on-center/off-surround
connection pattern, also have a weaker form of competition than the win-
ner-take-alt competition of the Hamming network. Instead of a single ac-
tive neuron (winner), biological networks generally have “bubbles” of
activity that are centered around the most active neuron. This is caused in
part by the form of the on-center/off-surround eonnectivity pattern and also
by nonlinear feedback connections. (See the discussion on contour enhance-
ment in Chapter 15.)

Self-Organizing Feature Maps

In order to emulate the activity bubbles of biological systems, without hav-
ing to implement the nonlinear on-center/off-surround feedback connec-
tions, Kohonen designed the following simplification. His self-organizing

SOFM feature map (SOFM) network first determines the winning neuron #* us-
ing the same procedure as the competitive layer, Next, the weight vectors
for all neurons within a certain neighborhood of the winning neuron are up-
dated using the Kohonen rule,

wig) = wig-1) +a(p(q) —w(g-1))
feN (d), (1421)
= (1-o) w{g-1) +ap(q) !

Neighborhood where the neighborhood N, (d) contains the indices for all of the neurons
that He within a radius ¢ of the winning neuron *;

NAd) = {j,d;sd}. (14.22)

When a vector p is presented, the weights of the winning neuron and its
neighbors will move toward p . The result is that, after many presenta-
tions, neighboring neurons will have learned vectors similar te each other.

o] To demonstrate the concept of a neighborhood, consider the two diagrams
shown in Figure 14.8. The left diagram illustrates a two-dimensional
neighborhood of radius 4 = 1 around neuron 13 . The right diagram shows
a neighborhood of radius d = 2.

The definition of these neighborhoods would be

+
»

E°S

N(l) = {8§12,13,14,18}, {14.23)

Na(2) = {3,7,8,9,11,12,13, 14, 15,17, 18, 19, 23} . {14.24)

14-12

Self-Organizing Feature Maps

)
®

0000
®000
® O 0L e o @
Ll G N
0000

Ni(D) N(2)

N

f
@ &= ¢
) @ @
P

e
22/

Figure 14.8 Neighborhoods

We should mention that the neurons in an SOFM do not have to be ar-
ranged in a two-dimensional pattern. It is possible to use a one-dimension-
al arrangement, or even three or more dimensions. For a one-dimensional
SOFM, a neuron will only have two neighbors within a radius of 1 (or a sin-
gle neighbor if the neuron is at the end of the line). It is also possible to de-
fine distance in different ways. For instance, Kohonen has suggested
rectangular and hexagonal neighborhoods for efficient implementation.
The performance of the network is not sensitive to the exact shape of the

neighborhoods.

Now let’s demonstrate the performance of an SOFM network. Figure 14.9
shows a feature map and the two-dimensional topology of its neurons.

input Feature Map Feature Map
N7 N IO
00000
00000
00000
000090
00000

Figure 14.9 Self-Organizing Feature Map

The disgram in the left margin shows the initial weight vectors for the fea-
ture map. Each three-element weight vector is represented by a dot on the
gphere. (The weights are normalized, therefore they will fall on the surface
of a sphere.) Dots of neighboring neurons are connected by lines go you can
see how the physical topology of the network is arranged in the input space.

14-13

14 Competitive Networks

14-M

The diagram to the left shows a square region on the surface of the sphere.
We will randomly pick vectors in this region and present them to the fea-
ture map.

Each time a vector is presented, the neuron with the closest weight vector
will win the competition. The winning neuron and its neighbors move their
weight vectors closer to the input vector (and therefore to each other). For
this example we are using & neighborhooed with a radius of 1.

The weight vectors have two tendencies: first, they spread out over the in-
put space as more vectors are presented; second, they move toward the
weight vectors of neighboring neurons. These two tendencies work together
to rearrange the neurons in the layer so that they evenly classify the input
space.

The series of diagrams in Figure 14.10 shows how the weights of the twen-
ty-five neurons spread out over the active input space and organize them-
selves to match its topology.

AT
// . \‘\
" L] ! . Y
e / o f A e N
! ! i |II | !
| hﬁ Iawe Biliee. BiNIne
S Y F T R [- .' '
O 71) Lﬁtl\fj Jo\ / \ LT
\\ /-" \\ / \ /,.r‘ //
\%__f___// S~ e \\h_,,,/

Figure 14,10 Self-Organization, 250 Iterations per Diagram

In this example, the input vectors were generated with equal probability
from any point in the input space. Therefore, the neurons classify roughly
equal areas of the input space.

Figure 14.11 provides more examples of input regions and the resulting
feature maps after self-organization.

Self-Organizing Feature Maps

Figure 14.11 Other Examples of Feature Map Training

Occasionally feature maps can fail to properly fit the topology of their input
space. This usually occurs when two parts of the net fit the topology of sep-
arate parts of the input space, but the net forms a twist between them. An

example is given in Figure 14.12.

Figure 14.12 Feature Map with a Twist

It is unlikely that this twist will ever be removed, because the two ends of
the net have formed stable classifications of different regions.

Improving Feature Maps

So far, we have described only the most basic algorithm for training feature
maps. Now let’s consider several techniques that can be used to speed up
the self-organizing process and to make it more reliable,

One method to improve the performance of the feature map is to vary the
size of the neighborhoods during training. Initially, the neighborhood size,
d,1s set large. As training progresses, 4 is gradually reduced, until it only
includes the winning neuron. This speeds up self-organizing and makes
twists in the map very unlikely.

The learning rate can also be varied over time. An initial rate of 1 allows
neurons to quickly learn presented vectors. During training, the learning
rate is decreased asympiotically toward 0, so that learning becomes stable.

14-15

14 Compeltifive Networks

(We discussed the use of this technigue for competitive layers earlier in the
chapter.)

Another alteration that speeds self-organization is to have the winning
neuron use a larger learning rate than the neighboring neurons.

Finally, both competitive layers and feature maps often use an alternative
expression for net input. Instead of using the inner product, they can di-
rectly compute the distance between the input vector and the prototype
vectors, The advantage of using the distance is that input vectors do not
need to be normalized. This alternative net input expression is introduced
in the next section on LVQ networks.

To experiment with feature maps use the Neural Network Design Demon-
strations 1-D Feature Maps (nnd14tat) and 2-D Featurs Maps (nnd141e2),

Learning Vector Quantization

i4-16

The final network we will introduce in this chapter is the learning vector
quantization (LVQ) network, which is shown in Figure 14.13. The LVQ net-
work is a hybrid network. It uses both unsupervised and supervised learn-
ing to form classifications.

In the LVQ network, each neuron in the first layer is assigned to a class,

with several neurons often assigned to the same class. Each class is then

assigned to one neuron in the second layer. The number of neurons in the
first layer, § , will therefore ajways be at least as large as the number of
neurons in the second layer, §°, and will usually be larger.

input Competitive |.ayer Linear Layer

r NT(N/ N\
a2
p n al n 2x1
Rx1 Wi sx1 C S“ﬂl Iwzl 2x1 7£
Sixk #xs
R 5i 2
W/ VAN J
Al = -llwi-pl a? =W:a!
a' = compet(n!)

Figure 14.13 LVQ Network

As with the competitive network, each neuron in the first layer of the LVQ
network learns a prototype vector, which allows it to classify a region of the
input space. However, instead of computing the proximity of the input and

Subclass

Legrning Vector Quantization

weight vectors by using the inner product, we will simulate the LVQ net-
works by calculating the distance directly. One advantage of calculating
the distance directly is that vectors need not be normalized. When the vec-
tors are normalized, the response of the network will be the same, whether
the inner product is used or the distance is directly calculated.

The net input of the first layer of the LVQ will be

n = |-, (14.25)
or, in vector form,
“1"1 ‘P"
n o= N:W'_*P“ . (14.26)
o' -]

The cutput of the first layer of the LVQ is
a = compet (nl} . (14.27)

Therefore the neuron whose weight vector is closest to the input vector will
output a 1, and the other neurons will output 0.

Thus far, the LVQ network behaves exactly like the competitive network
(at least for normalized vectors). There is a difference in interpretation,
however. In the competitive network, the neuron with the nonzero output
indicates which class the input vector belongs to. For the LVQ network, the
winning neuron indicates a subclass, rather than a class. There may be sev-
eral different neurons (subclasses) that make up each class.

The second layer of the LVQ networl&is used to combine subelasses into a
single class. This is done with the W™ matrix. 'I'hezcolumns of W repre-
sent subclasses, and the rows represent classes. W* has a single 1 in each
column, with the other elements set to zero. The row in which the 1 occurs
indicates which class the appropriate subclass belongs to.

(w; = 1) = subclass i is a part of class k (14.28)
The process of combining subclasses to form a class allows the LVQ net-
work to create complex class boundaries. A standard competitive layer has

the limitation that it can only create decision regions that are convex. The
LVQ network overcomes this limitation.

i14-17

14 Competitive Networks

14-18

LVQ Learning

The learning in the LYQ network combines competitive learning with su-
pervision. As with all supervised learning algorithma, it requires a set of
examples of proper network behavior:

{entih APy iyt {ppts)

Each target vector must contain only zeros, except for a single 1, The row
in which the 1 appears indicates the class to which the input vector be-
longs, For example, if we have a problem where we would like to classify a
particular three-element vector into the second of four classes, we can ex-
press this as

J1/2 {]i‘
pl = oL tl = 0 (14.29]

Before learning can occur, each neuron in &5 e first layer is assigned to an

output neuron, This generates the matrix W*. Typically, equal numbers of
hidden neurons are connected to each output neuron, so that each class can
be made up of the same number of convex regions. All elements of W™ are
get o zero, except for the following:

If hidden neuron | is to be assigned to class k, then set wi, =1. (14.30)

Once W’ is defined, it will never be altered. The hidden weights W' are
trained with a variation of the Kohonen rule.

The LVQ learning rule proceeds as follows. At each iteration, an input vec-
tor p is presented to the network, and the distance from p to each prote-

type vector is cemputed. The hidden neurpns compete, neuron * wina the
competltmn and the *th element ofa' isseito 1. Next, a' is multiplied

by W to get the final output a’, which also has only one nonzero element,

k*, indicating that p is being assigned to class k*.

The Kohoren rule is used to improve the hidden layer of the LVQ network
in tlwo ways. First, if p is classified correctly, then we move the weights
»% of the winning hidden neuron toward p.

W) = o (g1 rapg) - g-1)),ifd =1, = 1 (1431)

Second, if p was classified incorrectly, then we know that the wrong hid-
den neuron won the competition, and therefore we move its weights w
away from p.

Class 1

Class 2

Learning Vector Quantization

. 2
W) =W (g-1) —a(plg) - W (g-1)), i e, = 1#6, = 0 (14.32)

The result wiil be that each hidden neuron moves toward vectors that fall
into the class for which it forms a subelass and away from vectors that fall
into other classes.

Let's take a look at an exampie of LV training. We would like to train an
LVQ network to solve the following classification problem:

I 1 1 "
class 1:\p, = {'J,pz = H} , class 2:{p,1 = [J,m = ‘1:” . (14.33)

as illustrated by the figure in the left margin. We begin by assigning target
vectors to each input;

pefhef bl e
e[e[fll e

We now must choose how many subclasses will make up each of the two
classes. If we let each class be the union of two subclasses, we will end up
with four neurons in the hidden layer. The output layer weight matrix will
be

W= LI] 10 ﬂ | (14.36)

W’ connects hidden neurons 1 and 2 to output neuron 1. It connects hidden
neurons 3 and 4 to output neuron 2. Each class will be made up of two con-
vex regions.

The row vectorsin W' are initially set to random values. They can be seen
in the diagram at left. The weights belonging to the two hidden neurons
that define class 1 are marked with hollow circles. The weights defining
class 2 are marked with solid circles. The values for these weights are

w0 [osel L loswr i Joass gy,
0.840 | -0.249 0.094 0.954

At each iteration of the training process, we present an input vector, find

its response, and then adjust the weights. In this case we will begin by pre-
senting p,.

14-19

14 Competitive Networks

14.30

‘"1“’1'1’3”
Lw'-p]
a = compet{ni) = compet _Ez] Pall (14.38)
W - py
')
- 7
0543 0840) - [1 1] |)k
= compet ‘"[-0-969 -0249{-'1 [1 —IZT = compet| |21} | = {0
lo957 009"~ [1 -1 -1o% 1
R . 203/ |o
| ~Hoass 0954 ~[1 1]] |

The third hidden neuron has the closest weight vector to p, . In order to de-
termine which class this neuron belongs to, we multiply a* by w2,

0
a®= W' = 110010 0 (14.39)
oo11/[1l |1
0

'This cutput indicates that p, is a member of class 2. This is correct, so 3w]

is updated by moving it toward p, .

W (1) = 0 (0) +e(py-,w (0)) (14.40)

. [os97], 0‘5(1] _loggr J N 0.993]
0.094 -1 |oosd)) [-0453
The diagram on the left side of Figure 14.14 shows the weights after 3“"]

was updated on the first iteration. The diagram on the right side of Figure
14.14 shows the weights after the algorithm has converged.

The diagram on the right side of Figure 14.14 also indicates how the re-
gions of the input space will be classified. The regions that will be classified
as class 1 are shown in gray, and the regions that will be classified as class
2 are shown in blue.

LVQ2

Learning Vector Quantization

w w
1 yw! EESIENIRY | SR
pe ™ 1 4 op, pfe T,
F ol
5wl +- ni 3 ‘ﬁ
O W
2 o
Pio el P o e P
wl w!

Figure 14.14 After First and Many Iterations

Improving LVQ Networks {LVQ2)

The LVQ network described above works well for many problems, but it
does suffer from a couple of limitations. First, as with competitive layers,
occasionally a hidden neuron in an LVQ network can have initial weight
values that stop it from ever winning the competition. The result is a dead
neuron that never does anything useful. This problem is solved with the
use of a “conscience” mechanism, a technique discussed earlier for compet-
itive layers, and also presented in Exercizse E14.4.

Secondly, depending on how the initial weight vectors are arranged, a neu-
ron’s weight vector may have to travel through a region of a class that it
doesn’t represent, to get to a region that it does represent. Because the
weights of such a neuron will be repulsed by vectors in the region it must
cross, it may not be able to cross, and so it may never properly classify the
region it is being attracted to. This is usually solved by applying the follow-
ing modification to the Kohonen rule.

If the winning neuron in the hidden layer incorreetly classifies the current
input, we move its weight vector away from the input vector, as before.
However, we also adjust the weights of the closest neuron te the input vee-
tor that does classify it properly. The weights for this second neuron should
be moved toward the input vector.

When the network correctly classifies an input vector, the weights of only
one neuron are moved toward the input vector. However, if the input vector
is incorrectly classified, the weights of two neurons are updated, one weight
vector is moved away from the input vector, and the other one is moved to-
ward the input vector. The resulting algorithm is called LVG2.

To experiment with LVQ networks use the Neural Network Design Demon-
strations LVQ1 Networks (nnd141v1) and LVQ2 Networks (nud141v2).

14-21

14 Competitive Networks

Summary of Results

Competitive Layer

fnput Competitive Layer

R s
-/
a = compet (Wp)

Competitive Learning with the Kohonen Rule
#¥(@) = w(g-1) +a(plg) -,wig-1})) = (1-0) ,wig-1) +op(q)
p“’(‘?) =f-w{qu) iti*!
where /* is the winning neuron.

)
p(p

»q)

wg-1)

|}

14-22

Summary of Results

Self-Organizing Feature Map
Input Feature Map Feature Map

N N

OJOJOX OIS

OYOXCRONC

Oe0e®

@OoRe6

. 2 20686
a = compet(Wp)

Self-Organizing with the Kohonen Rule
wig) = w(g-1)+a(p(9 -w{g-1))
ie N (d)
= (l-a)w(g-1) +ap(q)
Ni(d) = {jd,<d}

LVQ Network
input Competitive Layer Linear Layer

n = -iL,w' -pil a? = Waa!
a! = compet (n!)

(wil = 1) => subclass ; is a part of class k

LVQ Network Learning with the Kohonen Rule

W@ = W g-Drap@- W @-1), e =g =)
W@ =W (- -op@ - w(g-1),ifap, = H#L, = 0

14-23

14 Competitive Networks

Solved Problems

P14.1 Figure P14.1 shows several clusters of normalized vectors.

class 1 /-;\‘\‘c|3552
A N

3

-}

"xh.___/'/ciass 3

Figure P14.1 Clusters of Input Vectors for Problem P14.1

class 4

Design the weights of the competitive network shown in Figure
P14.2, so that it classifies the vectors according to the classes indi-
cated in the diagram and with the minimum number of neurons.

Input Competitive Layer

a = compet(Wp)

Figure P14.2 Competitive Network for Problem P14.1

Redraw the diagram showing the weights you chose and the deci-
sion boundaries that separate the region of each class.

Since there are four classes to be defined, the competitive layer will need
four neurons. The weights of cach neuron act as prototypes for the class
that neuron represents. Therefore, for each neuron we will choose a proto-
type vector that appears to be approximately at the center of a cluster.

Classes 1, 2 and 3 each appear to be roughly centered at a multiple of 45°.
Given this, the following three vectors are normalized (as is required for
the competitive layer) and point in the proper directions.

14-24

Solved Problems

W= {»vﬁ}, w = [vﬁ}’ W= [1/&]
1 1742 : 1742 } -1/42

The center of the fourth cluster appears to be about twice as far from the
vertical axis as it is from the horizontal axis. The resulting normalized

weight vector is
W= 2745]
‘ L/JEJ

The weight matrix W for the competitive layer is gsimply the matrix of the
transposed prototype vectors:

MY
W= d = {1742 2]
M| 12 1242
-2/.45-1/.5

Bd

We get Figure P14.3 by drawing these weight vectors with arrows and bi-
secting the circle between each adjacent weight vector to get the class re-
gions.

class 1 _ class 2

class 3
Figure P14.3 Fina] Classifications for Problem P14.1

P14.2 Figure P14.4 shows three input vectors and three initial weighi
vectors for a three-neuron competitive layer. Here are the values
of the input vectors:

o [ﬁl]’pz) H’ps - [V,
0 1 1/42
The initial values of the three weight vectors are

14-25

14 Competitive Networks

s M e S
-1 175 2/.05
Calculate the resulting weights found after training the competi-
tive layer with the Kohonen rule and a learning rate o. of 0.5, on

the following series of inputs:

Pi>P2s P3Py P2 Py

Figure P14.4 Input Vectors and Initial Weights for Problem P14.2

First we combine the weight vectors into the weight matrix W.

0 -1
W=12//51/05
1743 2/.55
Then we present the first vector p, .
0 -1 0 0
a = compet (Wp,) = compet| |_2/./5 [/./5 m = compet| 10894) | = |1
175275 0447/ 19

The second neuron responded, since ,w was closest to p, . Therefore, we
will update ,w with the Kohonen rule.

W = o (p,- ™ = [V s H REZEIN {-0.947J
1/ Jg] 1/ JB 0224
The diagram at left shows that the new ,w moved closer to p, .

We will now repeat this process for p,.

14-26

Solved Problems

0 -1 -1 0
a = compet(Wp,) = compet] |-0.947 0.224 H = compet| 0224 [=, |0
—1/43 2745 0894]) I

The third neuron won, so its weights move closer to p,.
quew - jwafd ‘a {pz - 3woid) = —lfﬁ +05 {d| _ -1 /'\/5 = |:‘0224}
2/.J5 1| 12/.45 0.947

We now present p,.

.
0 -l
a = compet (Wp;) = compet| {0947 0.224 {Vﬁ]
0224 0.47) L1/ 42
—0.707 0
= compet| |_0512t | = {0
10512 1

The third neuron wins again.

W e, = [02%] 05 1742 _|-0224] | _ |0.2417
0.947 175 Losa7]] [os272

After presenting p, through p, again, neuron 2 will again win once and
neuron 3 twice. The final weights are

P -‘wp3 0 _1
W = |_p974 0.118
™ 0.414 08103
PiY

The final weights are alsa shown in the diagram at left.

Note that ,w has almost learned p, , and ,w is directly between p, and p,.
w The other weight vector, w, was never updated. The first neuron, which
never won the competition, is a dead neuron.

P14.3 Consider the configuration of input vectors and initial weighis
shown in Figure P14.5. Train a competitive network to cluster
these vectors using the Kohonen rule with learning rate o = 0.5.
Find graphically the position of the weights after all of the input

14-27

14 Compelitive Networks

vectors {in the order shown) have been presented once.
Py
2“’“-2 ' o 1W(0)

-

| L} |]

<

P:

Figure P14.5 Input Vectors and Initial Weights for Problem P14.3
This problem can be solved graphically, without any computations. The re-

sults are displayed in Figure P14.6.
iﬂt _
w0} . g ‘o 1W(0)
7 2“’(4) 1 -
aw(D)
; ;w(3) \
- : : b
P / P
. Aw(2)

Figure P14.6 Solution for Problem P14.3

The input vector p, is presented first. The weight vector ,w is closest to
P, , therefore neuron 1 wins the competition and ,w is moved halfway to
P, since ¢ = 0.5. Next, p, is presented, and again neuron 1 wins the com-

i4-28

Pl44

Solved Problems

petition and |w is moved halfway to p,. During these first two iterations,
,W is not changed.

On the third iteration, p, is presented. This time ,w wins the competition
and is moved halfway to p,. On the fourth iteration, p, is presented, and
neuron 2 again wins. The weight vector ,w is moved halfway to p,.

If we continue to train the netwark, neuron 1 will classify the input vectors
p, and p,, and neuron 2 will classify the input vectors p, and p,. If the
input vectors were presented in a different order, would the final classifi-
cation be different?

So far in this chapter we have only talked about feature maps
whose neurons are arranged in two dimensions. The feature map
shown in Figure P14.7 contains nine neurons arranged in one di-
mension.

Input Feature Map Feature Map
f N7) &)
®
@
@
®
@
@
@
@

4 = compet (Wp)

Figure P14.7 Nine-Neuron Feature Map

Given the following initial weights, draw a diagram of the weight
vectors, with lines connecting weight vectors of neighboring neu-
rons.

T
041045 041 0 0 0 -041-045-041
W=1041 0 -0410450-045 041 0 -041
082089 082 0.891 039 082 089 082

Train the feature map for one iteration, on the vector bolow, using

a learning rate of 0.1 and a neighborhood of radius 1. Redraw the
diagram for the new weight matrix.

14-29

14 Competitive Networks

1430

067
P = 1007
0.74

The feature map diagram for the initial weights is given in Figure P14.8.

TN
/f\”‘ I
N

IV
/

Figure P14.8 Original Feature Map
We start updating the network by presenting p to the network.

a = compet {Wp)

T
041045 041 0 0 0 —-0.41-045-041] 067
compet| 041 0 041 0450 -045 041 0 041 |0.07
0.82 0.89 0.2 0891 0.89 082 0.89 0.82 0.74J

T
nompef([0.91 096 0.85 0.70 0.74 0,63 0.36 0.36 0.3]]

1l

T
010000000

The second neurnn won the competition. Looking at the network diagram,
we see that the second neuron's neighbors, at a radius of 1, include neurons
1 and 3. We must update sach of these neurons’ weights with the Kohonen
rule,

Solved Problems

[0.41] 067l [041]] [0.43]
w(l) = w0 +alp— w(0)) = 041 +0.1} [0.07[- [041] [= (037
0.82] 0.74] (082 0.81]
[0.45] 067] [0as]| [047
(D) = ,w{0) +a(p-,w{(0)) =] o [+01] lpo7|-] 0 [|= |0.01
10.89) 10.74) [0.89 0.88]
0.41 067 | 041 0.43
W) = w(0) +a(p—w (D)) = |041]| +01] 007 —|-041] | = |-0.36
0.82 074] | 082 0.81

Figure P14.9 shows the feature map after the weights were updated.

N
SN
N

Figure P14.9 Feature Map after Update

P14.5 Given the LVQ network shown in Figure P14.10 and the weight val-
ues shown below, draw the regions of the input space that make up

each class.
0 0
11 16000
w={1 1|,%W=1l01000
A1 00111
1

1431

Solved Problems

P14.6 Design an LVQ network to solve the classification problem shown
in Figure P14.18. The vectors in the diagram are to be classified
into one of three classes, according to their color.

e o o

Figure P14.13 Classification Problem

When the design is complete, draw a diagram showing the region
for each class.

We will begin by noting that since LVQ networks calculate the distance be-
tween vectors directly, instead of using the inner product, they can classify
vectors that are not normalized, such as those above.

Next we will identify each color with a class:
¢ Class 1 will include all white dots.

¢ Class 2 will include all biack dots.

¢ Class 3 will include ail blue dots.

Now we can choose the dimensions of the LVQ network. Since there are
three classes, the network must have three neurons in its output layer.
There are nine subclasses (i.e., clusters). Therefore the hidden layer must
have nine neurons. This gives us the network shown in Figure P14.14.

input Competitive Layer Linear Layer

N1 N A
a2
p al al n: 3x1 I
2x1 w ox1 C 9x1’@ 3x1 %
9x2 ax9
2 g 3
/ \ AN -/
nl = -lw! - pit 22 = Waal
al = cmnpet(nl)

Figure P14.14 LVQ Network for Problem P14.6

1433

14 Campetitive Networks

14-34

We can now design the weight matrix W' of the first layer by setting each
row aqual to a transposed prototype vector for one cluster. Picking proto-
type vectors at the center of each cluster gives us the following values:

T
w' - -101-101-1 0 1)
111 000-1-1-1

Now each neuron in the first layer will respond to a different cluster.
Next we choose W so that each subelass is connected to the appropriate
class. To do this we use the following rule:

If subclass { is 1o be assigned ro class k, then set w:‘. =1.

For example, the first subclass is the top-left cluster in the vector diagram.
The vectors in this clpster are white, so they belong in the first class. There-
fore we should set w , to one.

Once we have done this for all nine subclasses we end up with these values;

100001010

2
W =l010010100-
001100001

We can test the network by presenting a vector to it. Here we caleulate the
output of the first layer for p = [q]

AT

-2 0

-1 0

] 1 -2 0
a =compet{n) = compet; | _;|]= (-
0 1

-J5 0

AP

L)) o

The network says that the vector we presented ig in the sixth subclass.
Let’s see what the second layer says.

Solved Problems

-
1

,, (to0001010
a=Wa =1010010100
001100001

o e D = o e S e O
¢
o

The second layer indicates that the vector is in class 1, as indeed it is. The
diagram of class regions and decision boundaries is shown in Figure
P14.15,

Figure Pi4.15 Class Regions and Decision Boundaries
P14.7 Competitive layers and feature maps require that input vectors be
normalized. But what if the available data is not normalized?

One way to handle such data is simply to normalize it before giving
it to the network, This has the disadvantage that the vector magni-
tude information, which may be important, is lost.

Another solution is to replace the inner product expression usual-
ly used to calculate net input,

a = compet(Wp),
with a direct caloulation of distance,

n, = ~|#-p| and a = compet(n),

i

as is done with the LVQ network. This works and saves the magni-
tude information

However, a third solution is to append a constant of 1 to each input
vector before normalizing it. Now the change in the added element
will preserve the vector magnitude information.

14-35

e A — [

14 Competitive Networks

Normalize the following vectors using this last method:

ok

First we add an extra element with value 1 to each vector.

1 0
pI1= l,p'2= l:pI3=
1 1

- o

Then we normalize each vector.
| (143
'y = 1/ 1N|[= (1743
W 4

T rO—

0
Py = 1/ [1f] = [1/42
Uil (1742

1
]

oo

!H
e
- u-
]
— 3

Now the third element of each vector contains magnitude information,
gince it is equal to the inverse of the magnitude of the original vectors.

14-38

Epilogue

Epilogue

In this chapter we have demonstrated how the asseciative instar learning
rule of Chapter 13 can be combined with competitive networks, similar to
the Hamming network of Chapter 3, to produce powerful self-organizing
networks. By combining competition with the instar rule, each of the pro-
totype vectors that are learned by the network become representative of a
particular class of input vector. Thus the competitive networks learn to di-
vide their input space inte distinct classes. Each clasg is represented by one
of the prototype vectors (rows of the weight matrix).

Three types of networks, all developed by Tuevo Kohonen, were discuased
in this chapter. The first is the standard competitive layer, {ts simple oper-
ation makes it a practical network for many problems.

The self-organizing feature map is very similar to the competitive layer,
but more closely models biological on-center/off-surround networks. The re-
sult is a network that not only learns to classify input vectors, but also
learns the topology of the input space.

The third network, the LVQ network, uses both unsupervised and super-
vised learning to recognize clusters. It uses a second layer to combine mul-
tiple convex regions into classes that can have any shape. LVQ networks
can even be trained to recognize classes made up of multiple unconnectad
regions.

Chapters 15 and 16 will build on the networks presented in this chapter.
For example, Chapter 15 will carry out a more detailed examination of lat-
eral inhibition, on-center/off-surround networks and the biology that in-
spired them. In Chapter 16 we digcuss a modification to the standard
competitive network (called adaptive resonance theory), which solves the
weight stability problem that we discussed in this chapter.

14 Competitive Networks

Further Reading

14-38

[FrSka1)

[Koho87)

[Hech90]

[RuMc86]

J. Freeman and D. Skapura, Neural Networks: Algorithms,
Applications, and Programming Techniques, Reading, MA:
Addison-Wesley, 1991,

This text contains code fragments for network algorithms,
making the details of the networks clear.

T. Kohonen, Self-Organization and Associative Memory,
2nd Ed., Berlin: Springer-Verlag, 1987.

Kohonen introduces the Kohonen rule and several net-
works that vse it. It provides a complete analysis of linear
associative models and gives many extensions and exam-
Ples.

R. Hecht-Nielser, Neurocomputing, Reading, MA; Addi-
son-Wesley, 1990.

This book contains a section on the history and mathemat-
ics of competitive learning, '

D. Rumelhart, . McClelland et al., Paraliel Distributed
Processing, vol. 1, Cambridge, MA: MIT Press, 1986.

Both volumes of this set are classics in neural network lit-
erature. The first volume contains a chapter describing
competitive layers and how they learn to detect features,

Exercises

Exercises
Ei4.1 Suppose that the weight matrix for layer 2 of the Hamming network is giv-
en by
]
42
“’2 = _§ 3 .
4
33
i
This matrix viclates Eq. (14.6), since
3.1 _1
=Ty

Give an example of an cutput from Layer 1 for which Layer 2 will fail to
operate correctly.

E14.2 Consider the input vectors and initial weights shown in Figure E14.1.

Figure E14.1 Cluster Data Vectors

I. Draw the diagram of a competitive network that could classify the
data above so that each of the three clusters of vectors would have
its own class.

ji. Train the network graphically (using the initial weights shown) by
presenting the labeled vectors in the following order:

PPy Py Dy

14-38

14 Competitive Networks

iii.

Recall that the competitive transfer function chooses the nenron
with the lowest index to win if more than one neuron hag the same
net input. The Kohonen rule is introduced graphically in Figure
14.3.

Redraw the diagram in Figure E14.1, showing your final weight vec-
tors and the decision boundaries between each region that repre-
sents a class.

E14.3 Train a competitive network using the following input patterns:

i

i,

e[el

Use the Kohonen learning law with o = 0.5, and train for one pass
through the input patterns. (Present each input once, in the order
given.) Display the results graphically. Assume the initial weight
matrix is

W:[ﬁ 0:!.
0 J2

After one pass through the input patterns, how are the patterns
clustered? (In other words, which patterns are grouped together in
the same clasg?) Would this change if the input patterns were pre-
sented in a different order? Explain.

Repeat part (i} using o = 0.25. How does this change affect the
training?

El44 Earlier in this chapter the term “conscience” was used to refer to a tech-
nique for avoiding the dead neuron problem plaguing competitive layers
and LVQ networks,

Neurons that are too far from input vectors to ever win the competition can
be given a chanee by using adaptive biases that get more negative each
time a neuron wins the competition. The result is that neurons that win
very often start to feel “guilty” until other neurons have a chance to win.

Figure E14.2 shows a competitive network with biases. A typical learning
rule for tha bias b, of neuron | is

14.40

D

{ 095" if i # i*

b7 _02,ifi=*

Exercises

Input Competitive Layer

o Ix? 3
 \ J
a = compet(Wp+h)

Figure E14.2 Competitive Layer with Biases

i. Examine the vectors in Figure E14.3. Is there any order in which
the vectors can be presented that will cause \w to win the competi-
tion and move closer to one of the vectors? (Note: assume that adap-
tive biases are not being used.)

Figure E14.3 Input Vectors and Dead Neuron

if. Given the input vectors and the initial weights and biases defined
below, calculate the weights (using the Kohonen rule} and the bias-
es (using the above bias rule). Repeat the sequence shown below un-
til neuron 1 wins the competition.

IS I 1) N § VAV
o[l 14

we [D] . [—Z/Jﬂ, " - [A/JE}
' -1)7* -1/.J5) Y25

Sequence of input vectors: p,, p,, P3: Py» Pa: Pys -

14-41

14 Competitive Networks

14-£2

E145

El4.6

iii. How many presentations occur before ,w wins the competition?

The net input expression for LVQ networks calculates the distance be-
tween the input and each weight vector directly, instead of using the inner
product. The result is that the LVQ network does not require rormalized
input vectors. This technique can also be used to allow a competitive layer
to classify nonnormalized vectors. Such a network is shown in Figure

Ei14.4.

input Competitive Layer

nt=-lw - pll
a' = compet(n')

Figure E14.4 Competitive Layer with Alternate Net Input Expression

Use this technique to train a two-neuron competitive layer on the (nonnor-
malized) vectors below, using a learning rate, «, of 0.5.

" H e [;’]*Pa - [:2]

Present the vectors in the following order:
PP Py P2y D5 Py -

Here are the initial weights of the network:

effrt

Show that the modified competitive network of Figure E14.4, which com-
putes distance directly, will produce the same results as the standard com-
petitive network, which uses the inner product, when the input vectors are
normalized.

a2+
ans =

Exercises

E14.7 We would like a classifier that divides the square region defined below into
gixteen classes of roughly equal size,

0<p €1,25p,53

i. Use MATLAB to randomly generate 200 vectorsin the region shown
above.

honen learning. Caleulate the net input by finding the distance be-
tween the input and weight vectors directly, as is done by the LVQ
network, so the vectors do not need to be normalized. Use the M-file
to train a competitive layer to classify the 200 vectors. Try different
learning rates and compare performance.

iii. Write a MATLAB M-file to implement a four-neuron by four-neuron
(two-dimensional) feature map. Use the feature map to classify the
same vectors. Use different learning rates and neighborhood sizes,
then compare performance.

ii. Write a MATLAB M-file to implement a competitive layer with Ko- .

El148 We would like a classifier that divides the interval of the input space de-
fined below into five classes.

0<p <1
i. Use MATLAB to randomly generate 100 values in the interval
shown above with a uniform distribution.
ii. Square each number so that the distribution is no longer uniform.

fii. Write a MATLAB M.-file to implement a competitive layer. Use the
M-file to train a five-neuron competitive layer on the squared values
until its weights are fairly stable.

iv. How are the weight values of the competitive layer distributed? Is
there some relationship between how the weights are distributed
and how the squared input values are distributed?

E14.9 An LVQ network has the following weights:

¢ 0
1 1o . {10000
Wo=11¢-W=|01100-
0 1 0001t
0 -1

i. How many classes does this LVQ network have? How many sub-

14-43

14 Competitive Networks

classes?

if. Draw a diagram showing the first-layer weight vectors and the de-
cision boundaries that separate the input space into subclasses.

jii. Label each subclass region to indicate which class it belongs to.

E14.10 We would like an LVQ network that classifies the following vectors accord-
ing to the classes indicated:

-1 i -1 1 1 -1 -1
elass L: 1| 1|, |-1i(.class 2: y[_1), [-1]. | 1][.class 3: {|_1|.| 1
-1 [-1 1 1 |1 -1 1
i. How many neurons are required in each layer of the LVQ network?
if. Define the weights for the first layer.
iii. Define the weights for the second layer.
fv. Teat your network for at least one vector from each class.

E14.11 We would like an LVQ network that classifies the following vectors accord-
ing to the classes indicated:

I

i. Could this classification problem be-solvedby a perceptron? Explain
YOur answer.

ii. How many neurons must be in each layer of an LV network that
can classify the above data, given that each class is made up of two
convex-shaped subclasses?

jfii. Define the second-layer weights for such a network.

iv. Initialize the first-layer weights of the network to all zeros and cal-
culate the changes made to the weights by the Kohonen rule (with
a learning rate o of 0.5) for the following series of vectors:

Pys Py P9y Pys Py

v. Draw a diagram showing the input vectors, the final weight vectors
and the decision boundaries botween the two classes.

14-44

15 Grossberg Network

Cbhjectives 1541

Theory and Examples 15-2

Biological Motivation: Vision 15-3

Hlusions 154

Vision Normalization 15-8

Basic Nonlinear Modal 15-8
Two-Layer Competitive Network 15-12
Layer 1 15-13
Layer 2 15-17
Choice of Transfer Function 15-20
Leaming Law 15-22
Relation to Kohonen Law 15-24
Summary of Results 15-26
Solved Problems 15-30
Epilogue 15-42
Further Reading 15-43
Exercises 15-45

Objectives

This chapter is a continuation of our discussion of associative and compet-
itive learning algorithms in Chapters 13 and 14. The Grossberg network
described in this chapter is a self-organizing continuous-time competitive
network. This will be the first time we have considered continuous-time re-
current networks, and we will introduce concepts here that will be further
explored in Chapters 17 and 18. This Grossberg network 15 also the foun-
dation for the adaptive resonance theory (ART) networks that we will
present in Chapter 16,

We will begin with 2 discussion of the biological motivation for the Gross-
berg network: the human visual system. Although we will not cover this
material in any depth, the Grogsberg networks are so heavily influenced by
biology that it is difficult to discuss his networks without putting them in
their biological context. It is also important to note that biclogy provided
the original inspirations for the field of artificial neural networks, and we
should continue to look for inspiration there, as scientists continue to de-
velop new understanding of brain function.

15-1

15 Grossberg Network

Theory and Examples

15-2

DPuring the late 1960s and the 1970s the number of researchers in the field
of neural networks dropped dramatically. There were, however, a number
of researchers who continued to work during this period, including Tuevo
Kohonen, James Anderson, Kunihiko Fukushima and Shun-ichi Amari,
among others. One of the most prolific was Stephen Grossherg,

Grossberg has been continuously active, and highly productive, in neural
network research since the early 1960s. His work is characterized by the
use of nenlinear mathematics to model specific functions of mind and
brain, and his volume of vutput has been consistent with the magnitude of
the task of understanding the brain. The topics of his papers have ranged
from such specific areas as how competitive networks can provide contrast
enhancement in vision, to such general subjects as a universal theory for
human memory.

In part because of the scale of his efforts, his work has a reputation for dif-
ficulty. Each new paper is built on a foundation of 30 years of previous re-
gults, and is therefore difficult to assess on its own merits. In addition, his
terminology is self-consistent, but not in standard use by other research-
ers. His work is also characterized by a high level of mathematical and neu-
rophysiological sophistication, He is ingpired by the interdisciplinary
research into brain function by Helmholtz, Maxwell and Mach, and he
brings this viewpoint to his work, His research lies at the intersection of
mathematics, psychology and neurophysiology. A lack of background in
these areas can make his work difficult to approach on a first reading.

This chapter will take a rudimentary look at one of the seminal networks
developed by Grossberg. In order to obtain the maximum understanding of
his ideas, we will begin with a brief introduction to the biological motiva-
tion for the network: the visual systern. Then we will present the mathe-
matical building block for many of Grossherg’s networks: the shunting
model. After understanding the funetion of this simple model, we will dem-
anstrate how it can be used to build a neural network for adaptive pattern
recognition, This network will then form the basis for the adaptive reso-
nance theory networks that are discussed in Chapter 16. By building up
graduelly to the more complex networks, we hope to make them more eas-
ily understandable.

There ig an important lesson we should take from the work described in
this chapter. Altheugh the origiual inspiration for the field of artificial neu-
ral networks came from biology, at times we forget to look back to biology
for new ideas. It will be the blending of biology, mathematics, paychology
and other disciplines that will provide the maximum growth in our under-
standing of neural networka,

Biological Motivation: Vision

Biological Motivation: Vision

The neural network described in this chapter was inspired by the develop-
mental physiology of the human visual system. In this section we want to
provide a briefintroduction to vision, so that the function of the network
will be more understandable.

In Figure 15.1 we have a schematic representation of the first stages of the
visnal system. Light passes through the cornea (the transparent front part
of the eye) and the lens, which bends the light to focus objects on the retina
{the interior layer of the external wall of the eye). It is after the light falls
on the retina that the immense job of translating this information into an
understandable image begins. As we will see later in this chapter, much of
what we “see” is not actually present in the image projected onto the retina.

Light

Opuie Nerve Fiber

Retina

Rods
Cones

Bipolar Cells

Figure 15.1 Eyeball and Retina

The retina is actually a part of the brain. It becomes separated from the
brain during fetal development, but remeins connected to it through the
optic nerve. The retina consists of three layers of nerve cells. The outer lay-
er consists of the photoreceptors (rods and cones}, which convert light into
electrical signals. The rods allow us to see in dim light, whereas the cones
allow us to see fine detail and color. For reasons not completely understood,
light must pass through the other two layers of the retina in order to stim-
ulate the rods and cones. As we will see later, this obstruction must be com-
pensated for in neural processing, in order to reconstruct recognizable
images.

The middle layer of the retina consists of three types of cells; bipolar cells,
horizontal cells and amacrine cells. Bipolar cells receive input from the re-
ceptors and feed into the third layer of the retina, containing the ganglion

15-3

15 Grossberg Network

15-4

Horizontal Cells
Amacrine Cells

Ganglion Cells

Visual Cortex

cells. Horizontal cells link the receptors and the bipolar cells, and amacrine
cells link bipolar cells with the ganglion cells.

The final layer of the retina contains the ganglion cells. The axons of the
ganglion cells pass across the surface of the retina and collect in a bundle
to form the optic nerve. It is interesting to note that each eye contains
roughly 125 miltion receptors, but only 1 million ganglion cells. Clearly
there is significant processing done in the retina to perform data reduction.

The axons of the ganglion cells, bundled into the optic nerve, connect to an
area of the brain called the lateral geniculate nucleus, as illustrated in Fig-
ure 15.2. From this point the fibers fan out into the primary visual cortex,

located at the back of the brain. The axons of the ganglion cells make syn-
apses with lateral geniculate cells, and the axons of the lateral geniculate

cells make synapses with cells in the visual cortex. The visual cortex is the
region of the brain devoted to visual function and consists of many layers

of cells,

Lateral
*" Primary Geneculate
Visual © Nuecleus

Figure 15.2 Visual Pathway

The connections along the visual pathway are far from random, The map-
ping from each layer to the next is highly organized. The axons from the
ganglion cells in a certain part of the retina go to cells in a particular part
of the lateral geniculate, which in turn go to a particular part of the visual
cortex. (This topographic mapping was one of the inspirations for the self-
organizing feature map described in Chapter 14.) In addition, as we can see
in Figure 15.2, each hemisphere of the brain receives input from both eyes,
since half of the optic nerve fibers cross and the other half stay unerossed.
It turns out that the left half of each visual field ends up in the right half
of the brain, and the right half of each visual field ends up in the left half
of the brain.

Iflusions

We now have some ides of the general structure of the visual pathway, but
how does it function? What is the purpose of the three layers of the retina?
What operations are performed by the lateral geniculate? Some hints to the

Optic Disk

Fovea

Biological Motivation: Vision

answers to these questions can be obtained by investigating visual illu-
sions.

Why are there so many visual {llusions? Mechanisms that overcome imper-
fections of the retinal uptake process imply illusions. Grossberg and others
have used the vast store of known illusions to probe adaptive perceptual
mechanisms [GrMi89). If we can develop mathematical models that pro-
duce the same illusions the biological system does, then we may have a
mechanism that describes how this part of the brain works. To help us un-
derstand why illusions exist, we will first consider some of the imperfec-

tions of the retinal uptake process.

Figure 15.3 is the view of the retina that an ophthalmoloegist has when
looking into the eye through the cornea. The large pale circle is the opfic
disk, where the optic nerve leaves the retina on its way to the lateral gen-
iculate. "This is also where arteries enter and veins leave the retina. The op-
tic disk causes a blind spot in our vision, as we will discuss in a moment.

The darker disk to the right of the optic disk is the fovea, which constitutes
the center of our field of vision. This is a region of the retina, about half a
millimeter in diameter, that contains only cones. Although cones are dis-

tributed throughout the retina, they are most densely packed in the fovea.
In addition, in this area of the retina the other layers are displaced to the
side, so that the cones lie at the front. The densely packed photoreceptors,
and the lack of obstruction, give us our best fine-detail vision at the fovea,
which aflows us to precisely focus the lens.

Optic Disk (Blind Spot)

Vein

Fovea

Figure 15.3 Back of the Eye (from [John01])

From Figure 15.3 we can see that there are a number of imperfections in
retinal uptake. First, there are no rods and cones in the optic disk, which
Jeaves a blind spot in our field of vision. We are not normally aware of the
blind spot because of processing done in the visual pathway, but we can
identify it with a simple test. Look at the blue circle on the left side of Fig-
ure 15.4, while covering your left eye. As you move your head closer to the
page, then farther away, you will notice a point (about nine inches away)

155

15 Grossberg Network

Emergent Segmentation

156

Featural Filling-in

at which the circle on the right will disappear from your field of vision. (You
are stilt looking at the circle on the left.) If you haven't tried this before, it
can be a little disconcerting. The interesting thing is that we don't see our
blind gpot as a black hole. Somehow our brains fill in the missing region.

Figure 15.4 Test for the Blind Spot

Other imperfections in the retinal uptake are the arteries and veins that
cross in front of the photoreceptors at the back of the retina, These obstruct
the rods and cones from receiving all of the light in the visual field. In ad-
dition, because the photorecepiors are at the back of the retina, light must
pass through the other two layers to reach them.

Figure 15.5 illustrates the effect of these imperfections. Here we see an
edge displayed on the retina. The drawing on the right illustrates the im-
age initialiy perceived by the photoreceptors. The regions covered by the
blind spot and the veins are not observed by the rods and cones. {The rea-
son we do not “see” the arteries, veins, ete., is that the vision pathway does
not respond to stabilized images. The eyeballs are constantly jerking, in
what are called saccadic movements, so that even fixed objects in our field
of vigion are moving relative to the eye. The veins are fixed relative to the
eyeball, so they fade frem our vision.)

- - N
| |

I| | Q '

= N

| Stabilized l |

 Reina /' L_ - f_}/,

i Images Fade
Figure 15.5 Perception of an Edge on the Retina (after [Gros90])

/Ed ge

Because we do not see edges as displayed on the right side of Figure 15.5,
the neural systems in our visual pathway must be performing some opera-
tion that compensates for the distortions and completes the image. Gross-
berg suggests [GrMi89] that there are two primary types of compensatory
processing involved. The first, which he calls emergent segmentation, com-
pletes missing houndaries, The second, which he calls featural filling-in,
fills in the color and brightness inside the resulting boundaries. These two
processes are illustrated in Figure 15.6. In the top figure we see an edge as
it is originally perceived by the rods and cones, with missing sections. In

Binlogical Motivation: Vision

the lower figure we see the completed edge, after the emergent segmenta-
tion and featural filling-in,

. . - . Before Processing

After Processing

Emergent Segmentation Featural Filling-in

Figure 156 Compensatory Processing (after [Gros90])

If the processing along the visual pathway is recreating missing parts of
the images we see, there must be times when it makes mistakes, since it
cannot know exactly those parts of a scene from which it receives no light.
These mistakes are illustrated by visual illusions. Consider, for example,
the two figures in the left margin. In the top figure you should be able to
see a bright white triangle lying on top of several other black objects. In
fact, no such triangle exists in the figure. It is purely a creation of the emer-
gent segmentation and featural filling-in process of your visual system.
The same is true of the bright white circle which appears to lie on top of the
lines in the lower-left figure.

The featural filling-in process is also demonstrated in Figure 15.7. This il-
lusion is called neon color spreading [vanT751. In the diagram on the right
you may be able to see light blue diamonds, or even wide light blue lines
criss-crossing the figure. In the diagram on the left you may be able to see
a light blue ring. The blue you see filling in the diamonds and the ring is
not a result of the color having been smeared during the printing process,
nor is it caused by the scattering of light. This effect does not appear on the
retina at all. It does not exist, except in your brain. (The perception of neon
color spreading can vary from individual to individual, and the strength of
the perception is dependent on the colors used. If you do not notice the ef-
fect in Figure 15.7, look at the cover of any issue of the journal Neural Net-
works, Pergamon Press.)

Later in this chapter we will discuss some neural network models that can
help to explain the processes that implement emergent segmentation, as
well as other visual phencmena.

157

15 Grossberg Network

Brightness Constancy

15-8

Brightness Contrast

Figure 15.7 Neon Color Spreading (Featural Filling In)

Vision Normalization

In addition to emergent segmentation and featural filling-in, there are two
other phenomena that give us an indication of what operations are being
performed in the early vision system: brightness constancy and brightness
contrast. The brightness constancy effect is evidenced by the test illustrat-
ed in Figure 15.8. In this test a suhject is shown a small grey disk inside a
darker grey annulus, which is iluminated by white light of a certain inten-
sity. The subject is asked to indicate the brightness of the central disk by
looking at a series of grey disks, separately illuminated, and selecting the
disk with the same brightness. Next, the brightness of the light illuminat-
ing the grey disk and dark annulus is increased, and the subject is again
asked to select the disk with the same brightness. This process is repeated
for several different levels of illumination. It turns out that in each case the
subject will choose the same disk as matching the original central disk.
Even though the total light entering the subject’s eye is 10 to 100 times
brighter, it is only the relative brightness that registers.

Variable
[1tumination Constant {llumination

O
\ O
—/Cm: @ x xx
o

Figure 15.8 Test of Brightness Constancy (after [Gros968])

Basic Nonlinear Model

Another phenomenon of the vision system, which is closely related to
brightness constancy, is brightness contrast, This effect is illustrated by
the two figures in the left margin. At the centers of the two figures we have
two small disks with equivalent grey scale. The small disk in the top figure
is surrounded by a darker annulus, while the small disk in the lower figure
is surrounded by a lighter annulus. Even though both digks have the same
grey scale, the one inside the darker annulus appears brighter. This is be-
cause cur vision syatem is sensitive to relative intensities. It would seem
that the total activity across the image is held constant.

The properties of brightness constancy and brightness contrast are very
important to our vision system, Since we see things in so many different
lighting conditions, if we were not able to compensate for the absolute in-
tensity of a scene, we would never learn to recognize things. Grossberg calls
this process of normalization “discounting the illuminant.”

In the rest of this chapter we want to present a neural netwerk architecture
that is consistent with the physical phenomena discussed in this section.

Basic Nonlinear Modael

Before we intreduce the Grossberg network, we will begin by looking at
some of the building blocks that make up the network. The first building

Leaky Integrator block is the “leaky” integrator, which is shown in Fignre 15.8. The basic
equation for this system is

e‘% = _n(t)+ p(0), (15.1)

Time Constant where € is the system time constant.

Leaky integrator
e N

+ # n
P I | “SI I’
. _J
Ednfdi=-n+p

Figure 15.9 Leaky Integrator
The response of the leaky integrator to an arbitrary input p(t) is

_ —i/E l -{t-1)/E _
i) = o n(0)+EJ’Oe Pt - 1)d. (15.2)

158

—— s e R TRCIT

13 Grossherg Network

15-10

Shunting Model

Excitatory

Inhibitory

For example, if the input p (¢) is constant and the initial condition n (0) is
zero, Eq. (15.2) will produce

-1/

A = p(l-€). (15.3)

A graph of this response, for p = 1 and & = 1,1is givenin Figure 15.10. The
response exponentially approaches a steady state value of 1.

fr——— - - —T—— -I
|

LELI. 1

Figure 15.10 Leaky Integrator Response

There are two important properties of the leaky integrator that we want to
note. First, because Eq. (15.1) is linear, if the input p is scaled, then the
response # (1) will be scaled by the same amount. For example, if the input
is doubled, then the response will also be doubled, but will maintain the
same shape. This is evident in Eq. (15.3). Second, the speed of response of
the leaky integrator is determined by the time constant £, When ¢ decreas-
es, the response becomes faster; when € increases, the response becomes
glower, (See Problem P15.1.)

To experiment with the leaky integrator, use the Neural Network Design
Demonstration Leaky integrator (nnd15141).

The leaky integrator forms the nucleus of one of Grossherg’s fundamental
neural models: the shunting model, which is shown in Figure 15.11. The
equation of operation of this network is

Q—Eg—) = —nty+ (B ~nD) p - (i) + b)) p, (15.4)
where p' is a nonnegative value representing the excitatory input o the

network (the input that causes the response to increase), and p is a non-

negative value representing the mhabttmy input (the input that causes the
response to decrease). The biases b* and » are nonnegative constants that
determine the upper and lower limits on the neuron response, as we will

explain next.

b+

n(f)

Basie Nonlinear Model

Input Basic Shunting Model

gdnfdt=-n+ (bt -)pt - (n+ b)p

Figure 15.11 Shunting Model

There are three terms on the right-hand side of Eq. (15.4). When the net
gign of these three terms is positive, n{f) will go up. When the net sign is
negative, »(f) will go down. To understand the performance of the network,
let’s investigate the three terms individually.

The first term, -a(1), is a linear decay term, which is also found in the leaky
integrator. 1t is negative whenever n(e) ig positive, and positive whenever
ni) is negative. The second term, (& - nu)) p+ prowdes nonlinear gain
control. This term w1lI be positive while r(:) islessthan b”, but will become
zero when n(t) = b . This effectively sets an upper limit on n(?) of b . The
third term, — (n() +5) p,also provides nonlinear gain control, It sets a
lower limit on s(¢) of -5,

Flgure 15.12 illustrates the performance of the shunting network when
' =1,5 =0ande = 1. In the left graph we see the network response
when the excltatoxy input p = } and the inhibitory input p’ = 0. For the
right graph p’=5and p = 0 Notice that even though the excitatory in-
put is increased by a factor of 5, the steady state network response is in-
creased by less than a factor of 2. If we were to continue {0 increase the
excitatory input, we would find that the steady state network response
would increase, but would always be less than b’

If we apply an inhibitory input to the shunting network, the steady state
network response will decrease, but will remain greater than -5 . To sum-
marize the operation of the shunting model, if (0} falls between 5 and
-4, then n(t) will remain between these limits, as shown in the figure in

the leﬁ. margin,

15.11

158 Grossberg Network

LR +
n (I) as I — osf|

0.28) o b2

Figure 15.12 Shunting Network Response

The shunting model will form the basis for the Grossberg competitive net-
work, which we will discuss in the next section, The nonlinear gain control
will be used to normalize input patterns and to maintain relative intensi-
ties over a wide range of total intensity.

To experiment with the shunting network, use the Neural Network Design
Demonstration Shunting Network (nnd15sn).

Two-Layer Competitive Network

We are now ready to present the Grossberg competitive network. This net-
work was inspired by the operation of the mammalian visual system, which
we discussed in the opening section of this chapter, (Grossberg was influ-
enced by the work of Chistoph von der Malsburg [vond 73], which was influ-
enced in turn by the Nobel-prize-winning experimental work of David
Hubel and Torsten Wiesel [HuWi62].) A block diagram of the network is
shown in Figure 15.13.

There are three components to the Grossberg network: Layer 1, Layer 2
and the adaptive weights. Layer 1 is a rough model of the operation of the
retina, while Layer 2 represents the visual cortex. These models do not ful-
1y explain the complexity of the human visual system, but they do illustrate
Short-Term Memory a number of its characteristics. The network includes short-term memory
Long-Term Memory (STM) and long-term memory (LTM) mechanisms, and performs adapta-
tion, filtering, normalization and contrast enhancement. In the following
subsections we will discuss the operation of each of the components of the

network.

As we analyze the various elements of the Grossberg network, you will no-
tice the similarity to the Kohonen competitive network of the previous
chapter.

15-12

Two-Layer Competitive Network

Layer 1 Layer 2
{Retina} {Visual Cortex)
O O
O O o
O KO
O o \JO
o {Adaptive Weighrs) O
./ -/
Nomalization Contrast
Enhancement

Figure 15.13 Grossberg Competitive Network

lLayer 1

Layer 1 of the Grossberg network receives external inputs and normalizes
the intensity of the input pattern. (Recall from Chapter 14 that the Ko-
honen network performs best when the input patterns are normalized. For
the Grossberg network the normalization is accomplished by the first layer
of the network.) A block diagram of this layer is given in Figure 15.14. Note
that it uses the shunting model, with the excitatory and inhibitory inputs
computed from the input vector p.

Input Layer 1
N7 N
+wl
Sixst
P al
a1 74
s W 5
Sxg
—/ \ _J

ednt/dt= -m + (B -) [*Wip - (' + B ["W1]p

Figure 15.14 Layer 1 of the Grossberg Network

1513

15 Grossberg Network

On-Center/Off-Surround

15-14

The equation of operation of Layer 1 is
dn]{t) 1 w1 gk 1 S T
e~ = - N+(b-n[Wlp-(n(v+b)[W]p. (155)

As we mentioned earlier, the parameter ¢ determines the speed of re-
sponse. 1t is chosen so that the neuron respenses will be much faster than
the changes in the adaptive weights, which we will discuss in a later sec-
Lion,

Eq. (15.5) is a shunting model with excitatory input ['w'] p. where

100
w010 (156)
00 -1

Therefore the excitatory input to neuron i is the ith element of the input
vector.

The inhibitory input to Layer 1 is [’WI] p., where

01 -1
W= |10 I a5

Thus the inhibitory input to neuron i is the sum of all elements of the input
vector, except the ith element.

The connection pattern defined by the matrices ‘W' and W' is called an
on-center/ off-surround pattern. This is because the excitatory input for
neuron i (which turns the nenron on) comes from the element of the input
vector centered at the same location (element i), while the inhibitory input
{which turns the neurcn off) comes from surrounding locations. This type
of connection pattern produces a normalization of the input pattern, as we
will show in the following discussion,

For simplicity, we will set the inhibitory bias b’ to zero, which sets the
lower limit of thf qhunting model to zero, and we will set all elements of the
excitatory bias ‘b to the same value, i.e.,

4+, 1 +, 1

B =", i=12..,§, (15.8)

8o that the upper limit for all neurons will be the same.

Two-Layer Competitive Network

To investigate the normalization effect of Layer 1, consider the response of
neuron i

dn’ .
E_’;,:‘) = —n:(f) + (& _nj(f)) p;.——n:(r}zpj_ (15.9)
j#i

In the steady state (dn !(:}/ dt = 0) we have
0=-n+ (b -n)p-nYp (15.10)
JEI
If we solve for the steady state neuron output n'1 we find
+b1
w28 (15.11)

SI
1+2‘p.J
j=1

We now define the relative intensity of input i to be

S!

N
hi=% where P = 2 P, (15.12)

i=1

Then the steady state neuron activity can be written

n = [”’"’ '3 (15.13)

1+PF

Therefore n: will be proportional to the relative intensity p, , regardless of
the magnitude of the total input P . In addition, the total neuron activity is
bounded:

5 5 o+l +, 1
b bP)__[bPJ+|
Iznfﬁ 2[—1+ij_ T+F b, (15.14)

j=1 i=1

The input vector is normalized so that the total activity is less than b,
while the relative intensities of the individual elements of the input vector
are maintained. Therefore, the outputs of Layer 1, n: , code the relative in-
put intensities, g, , rather than the instantaneous fluctuations in the total
input activity, P . This result is produced by the on-center/off-surround con-
nection pattern of the inputs and the nonlinear gain control of the shunting
model.

Note that Layer 1 of the Grossherg network explains the brightness con-
stancy and brightness contrast charsacteristics of the human visual system,

15.15

15 Grossberg Network

l'
22
F

16-16

which we discussed on page 15-8. The network is sensitive to the relative
intensities of an image, rather than absolute intensities. In addition, exper-
imental evidence has shown that the on-center/off-surround connection
pattern ig a characteriatic feature of the receptive fields of retinal ganglion
cells [Hube88). (The receptive field is an area of the retina in which the
photoreceptors feed into a given cell. The figure in the left margin iflus-
trates the on-center/off-surround receptive field of a typical retinal gangli-
on cell. A “+” indicates an excitatory region, and a “” indicates an
inhibitory region, It is a two-dimensional patiern, as opposed to the one-di-
mensional connections of Eq. {15.6) and Eq. (15.7).}

To illlg.aprate the performance of Layer 1, consider the case of two neurons,
with™»' = 1,¢e=01:

dn; (0 .

(0.) —— = -m()+ (1 —) py - nddp,, (15.15)

PG 1 (

O —— = -ny) + (1-m®) p = nD)p, . {15.16)
The response of this network, for two different input vectors, is shown in
Figure 15.15. For both input vectors, the second element is four times as
large as the first element, although the total intensity of the second input
vector is five times as large as that of the first input vector (50 vs. 10). From
Figure 15.15 we can see that the response of the network maintains the rel-
ative intens}ties of the inputs, while limiting the total response. The total
response (n, (1) + n,() } will always be less than 1.

; |
o4 I."rl _ 2 054| = 10
vl -l

| 1 !
LE] .ﬂl 025 n]

Figure 15.15 Layer 1 Response

To experiment with Layer 1 of the Grossberg network, use the Neural Net-
work Design Demonstration Grossberg Layer 1(nnd15gl1).

Short-Term Memory

Two-Layer Compeftitive Network

Layer 2

Layer 2 of the Grossberg network, which is a layer of continuous-time in-
stars, performs several functions. First, like Layer 1, it normalizes total ac-
tivity in the layer. Second, it contrast enhances its pattern, so that the
neuron that receives the largest input will dominate the response. (This is
closely related to the winner-take-all competition in the Hamming network
and the Kohonen network.) Finally, it operates as a short-term memory
(8TM) by storing the contrast-enhanced pattern.

Figure 15.16 is a diagram of Layer 2. As with Layer 1, the shunting mode!
forms the basis for Layer 2. The main difference between Layer 2 and Lay-
er 1 is that Layer 2 uses feedback connections. The feedback enables the
network to store a pattern, even after the input has been removed. The
feedback also performs the competition that causes the contrast enhance-
ment of the pattern. We will demonstrate these properties in the following

discussion.

Layer 2
4 A\
+ o+ .
W On-Center W
$xst WL
al +y + D2 12 a?
1/e. 2
§
+
5
+
w
Of Surround ik
52y 52
. >

edn?dt = - + (b2 - 0?) {[YW2]f2(n?) + W2a!]
- (02 + b)) [W?]f(n?)

Figure 15.16 Layer 2 of the Grossberg Network
The equation of operation of Layer 2 is

dnz(tj_ 2 +2 2 + 1 2 21
e = -r O+ (0 -0) { WL)+ W't (510
- (8 @+ b [W P’ (0)

15-17

15 Grossberg Network

15-18

I

|

Contrast Enhance

Thisgis a shuntin$ maodel with excitatory input { [+W2] f 2(::2(1)} + Wzal} .
where "W ='W provides on-center feedback connections, and w’ con-
sists of adaptive weights, analogous to the weights in the Kohonen net-
work. The rows of W, after training, will represent the prototype patterns.
The inhibitery input to the shunting model is ['W 1 m’@), where

W = ‘W' provides off-surround feedback connections.

To illustrate the performance of Layer 2, consider a two-neuron layer with

2. T
e=01,'b =1, pro |0 wro [GW) 108045 451
1 0 27 045 09

(%)

and

2
Fo = 2 (15.19)
1+ (n)

The equations of operation of the layer will be

(0.1) d”Tz'f’} = -nl+ (1=n@) LA + (W) a') (15.20)
R OYR AT

(0.1) %%Q = X+ (1-nX0) Ll + () 8] (15.21)
- 15O f im0y

Note the relationship between these equations and the Hamming and Ko-
honen networks. The inputs to Layer 2 are the inner products between the
prototype patterns (rows of the weight matrix W) and the output of Layer
1 (normalized input pattern). The largest inner product will correspond to
the prototype pattern closest to the input pattern. Layer 2 then performs a
competition between the neurons, which tends to contrast enhance the out-
put pattern — maintaining large outputs while attenuating small cutputs.
This contrast enhancement is generally milder than the winner-take-all
competition of the Hamming and Kohonen networks. In the Hamming and
Kohonen networks, the competition drives all but cne of the neuron out-
puts to zero. The exception is the one with the largest input. In the Gross-
berg network, the competition maintains large values and attenuates

Two-Layer Competitive Network

small values, but does not necessarily drive all small values to zero. The
amount of contrast enhancement is determined by the transfer function
f, as we will see in the next section.

Figure 15.17 i}lustrates the response of Layer 2 when the input vecter
a = go_z 0'31 {the steady state result obtained from our Layer 1 example)
is applied for 0.25 seconds and then removed.

1 T o 1

3T 2
(,w) a () i
— e =

075 -7
-

7 (lwz) Tal

[i

[~
sl

) Y 0f [T ot [

Figure 15.17 Layer 2 Response

There are two important characteristics of this response. Firat, even before
the input is removed, some contrast enhancement is performed. The inputs
to Layer 2 are

T
(W) a = 09 044 [gj = 0.54, (15.22)
2,71 0.2
(W) a = 10450 = 0.81. {15.23)
: (045 09] L}-SJ

Therefore the second neuron has 1.5 times as much input as the first neo-
ron. However, after 0.25 seconds the cutput of the second neuren is 6.34
times the output of the first neurcn. The contrast between high and low has
been increased dramatically.

The second characteristic of the response is that after the input has been
set to zero, the network further enhances the contrast and stores the pat-
tern, In Figure 15.17 we can see that after the input is removed (at 0.25
seconds) the cutput of the first neuron decays to zero, while the output of
the second neuron reaches a steady state value of 0.79. This output is
maintained, even after the input is removed. (Grossberg calls this behavior
reverberation [Gross76).) It is the nonlinear feedback that enables the net-

15-19

15 Grossberg Network

work to store the patten;, and t.hg on-center/off-surround connection pat-
tern {determined by "W~ and 'W") that causes the contrast enhancement.

As an aside, note that we have used the on-center/off-surround structure in
both layers of the Grossberg network. There are other connection patterns
that could be used for different applications. Recall, for instance, the emer-
gent segmentation problem discussed earlier in this chapter. A structure

Oriented Receptive Field that has been proposed to implement this mechanism is the oriented recep-
tive field [GrMi89], which is shown in the left margin, For this structure,
the “on” (excitatery) connections come from one side of the field (indicated

A by the blue region), and the “off” (inhibitory} connections come from the

other side of the field (indicated by the white region).

The operation of the oriented receptive field is illustrated in Figure 15,18.
When the field is aligned with an edge, the corresponding neuron is acti-

vated (large response). When the field is not aligned with an edge, then the
neuron is mactive (small response). This explains why we might perceive
an edge where none existg, as can be seen in the right-most receptive field
shown in Figure 15.18.

For a complete discussion of oriented receptive fields and how they can be
incorporated into a neural network architecture for preattentive vision, see
[GrMi89], This paper also discusses a mechanism for featural filling-in.

./

Inactive

Figure 15.18 Operation of Oriented Receptive Field

Choice of Transfer Function

The behavior of Layer £ of the Grossherg network depends very much on
#2(0) the transfer function f°(r). For example, suppose that an input has been
: applied for some length of time, so that the output has stabilized to the pat-
‘ m Il"h tern shown in the left margin. (Each point represents the output of an in-
i dividual neuron.) IE the input is then removed, Figure 15.1%9 demonstrates
how the choice of f7(n) will affect the steady state response of the network.
(See [Gross82])

15-20

Two-Layer Competitive Network

Stored Pattern
fin) n2(eo) Comments

Linear Perfect storage
of any pattern,
but amplifies
noise.

Slower than

Linear

Amplifies noise,
reduces contrast.

N
- -0 E

Faster than

Linear Winner—lakc-gl],
Suppresses noise,
quantizes total
activity.

Sigmoid Supresses
noise, contrast
enhances, not
quantized.

Figure 1519 Effect of Transfer Function f %) (after {Gross82])

If the transfer function is linear, the pattern is perfectly stored. Unfortu-
nately, the noise in the pattern will be amplified and stored as easily as the
significant inputs. £See Problem P15.8.} If the transfer function is slower-
than-linear (e.g, f'(") = 1-¢"), the steady state response is independent
of the initial conditions; all neurons that begin with nonzero values will
come to the same level in the steady state. All contrast is eliminated, and
noise is amplified.

Faster-than-linear transfer functions (e.g,, fz{n) = (m)") produce a win-
ner-take-all competition. Only those neurons with the largest initial values
are stored; all others are driven to zero. This minimizes the effect of noise,
but quantizes the response into an all-or-nothing signal (as in the Ham-
ming and Kohonen networks).

A sigmoid function is faster-than-linear for small signals, approximately
linear for intermediate signals and slower-than-linear for large signals.
When a sigmoid transfer function is used in Layer 2, the pattern is contrast
enhanced; larger values are amplified, and smalier values are attenuated.
All initial neuron outputs that are less than a certain level (cailed the
quenching threshald by Grossberg [Gros76]) decay to zero. This merges the
noise suppression of the faster-than-linear transfer functions with the per-
fect storage produced by linear transfer functions.

15-21

—"
tn

15 Grossberg Network

Long-Term Memory

15-22

To experiment with Layer 2 of the Grossberg network, use the Neurgl Nei-
work Design Demonstration Grossberg Layer 2 (nnd15g12).

Learning Law

The third componeny of the Grossberg network is the learning law for the
adaptive weights W* . Grossberg calls these adaptige weights the long-
term memory (LTM). This is because the rows of W~ will represent pat-
terns that have been stored and that the network will be able to recognize.
As in the Kohonen and Hamming networks, the stored pattern that is clos-
est to an input pattern will produce the largest output in Layer 2. In the
next subsection we will look more closely at the relationship between the
Grossberg network and the Kohonen network.

One learning law for W is given by

aw’ (1)
—— = o f- W, (B + 020} . (15.24)

The first term in the bracket on the right-hand side of Eq. (15.24) is a pas-
sive decay term, which we have seenin the Layer 1 and Layer 2 equations,
while the second term implements a Hebbian-type learning. Together,
these terms implement the Hebb rule with decay, which was discussed in
Chapter 13.

Recall from Chapter 13 that it is often useful to turn off learning {and for-
getting) when n () is not active. This can be accomplished by the following
learning law:

2
dw, {t
—m——w‘;r-'{) = an’({-w:;(r)+nj(f)} . (15.25)
or, in vector form,
2
4l .
[::r(ﬂ} - aﬂ:(t) {_ [i-wz(f)} +]ll(f}} . (15-26)

where J.wz(r) is a vector composed of the elements of the ith row of W’ (see
Fq. (4.4)).

TPe terms on the right-hand side of Eq. (15.25) are multiplied (g§ted) by
n,(7) , which allows learning (and forgetting) to occur only when n,(¢) is not
zero. This is the continuous-time implementation of the instar learning
rule, which we introduced in Chapter 13 (Eq. {13.32)). In the following sub-
section we will demonstrate the equivalence of Eq. (15.25) and Eq. (13.32).

-e..|.:a~

Two-Layer Competitive Nehwork

To illustrate the performance of the Grossberg learning law, consider a net-
work with two neurons in each layer. The weight update equations would

be

dwi (&)

S =) {- w0+ m) (15.27)
dwf;f“) = 1) {-w, 0+ O}, (15.28)
dwgf(f) = mi) {5 () +m O}, (15.29)
dwz’f(r) = a4~ wa A0 +ny(D} (15.30)

where the learning rate coefficient o has been set to 1. To simplify our ex-
ample, we will assume that two different input patterns are alternately
presented to the network for periods of 0.2 seconds at a time. We will alsp
assume that Layer 1 and Layer 2 converge very quickly, in comparison
with the convergence of the weights, so that the neuron outputs are effec-
tively constant over the 0.2 seconds. The Layer 1 and Layer 2 outputs for
the two different input patterns will be

for pattern 1: n' = |09 0= I) (15.31)
0.45 LO

for pattern 2: o' = |04 ,n2 = {0 . (15.32)
0.9 1

Pattern 1 is coded by the first neuron in Layer 2, and patiern 2 is coded by
the second neuron in Layer 2.

Figure 15.20 illustrates the response of the adaptive weights, beginning
with all weights set to zero. Note that the first row of the weight matrix
(wi (1 and wi ,(#})is only adjusted during those Periods when nf(r) is non-
zero, and that it converges to the corresponding n- pattern (n:(r) = 0.9 and
n;(r) = (.45). (The elements in the first row of the weight matrix are indi-
cated by the bluve lines in Figure 15.20.) Also, the second row of the weight
matrix (wi (1) and wi »(#) }is only adjusted during those periods when #,(1)
is nonzero, and it converges to the corresponding n' pattern (n,() = 0.45

15-23

16 Grossberg Network

and ny(5) = 0.9). (The elements in the second row of the weight matrix are
indicated by the black }ines in Figure 15.20.)

|
2 e
n 7 2
n'.rsl w[. I(’T(/ f/_Wj'I‘{:r)
) f f 2
05 ; wuz(;J
N
nzs-l,/ JIII / 2
/) "

/ i

[} o5 1 15 2 25 3

Figure 15.20 Response of the Adaptive Weights

To experiment with the adaptive weights, use the Neural Network Design
Demonstration. Adaptive Waights (nnd15aw).

Relation to Kohonen Law

15-24

In the previous section we indicated that the Grossberg learning law was a
continuous-time version of the instar learning law, which we discussed in
Chapter 13. Now we want to demonstrate this fact. We will also show that
the Grossberg network is, in its simplest form, a continuous-time versicn

of the Kohonen competitive network of Chapter 14.

To begin, let’s repeat the Grossherg learning law of Eq. (15.25):

diw
% = an' () {- [W©O] +n'®)} . (15.33)
If we approximate the derivative by
2 2 2
dlwi(n] wi+An-w ()
et Iy , {15.34)
then we can rewrite Eq. (15.33) as
We+A) = WO +e A {-we+n'e]. (15.35)

{Compare this equation with the instar rule that was presenied in Chapter
13 in Eq. (13.33).) If we rearrange terms, this can be reduced to

Relation to Kohonen Law

F+A) = {L-a(A)n () Wi +a(A)m®{n'®}. (15.36)

To simplify the analysis further, assume that a faster-than-linear transfer
function is used in Layer 2, so that only one neuron in that layer will have
a nonzero output; call it neuron i* . Then only row #* of the weight matrix

will be updated:
SHEHA) = {1-o} WO+ {a)n'Q), (15.37)

where o = o (AD) nl.z,(:}.

This is almost identical to the Kohonen rule for the competitive network
that we introduced in Chapter 14 in Eq. (14.13), The weight vector for the
winning neuron (with nonzero output) will be moved toward n', whichisa
normalized version of the current input pattern.

There are three major differences hetween the Grossherg network that we
have presented in this chapter and the basic Kohonen competitive network.
First, the Grossherg network is a continuous-time network (satisfies a set
of nonlinear differential equations). Second, Layer 1 of the Grossberg net-
work automatically normalizes the input vectors. Third, Layer 2 of the
Grossberg network can perform a “soft” competition, rather than the win-
ner-take-all competition of the Kohonen network. This soft competition al-
lows more than one neuron in Layer 2 to learn. This causes the Grossberg
network to operate as a feature map.

15-25

15 Grossberg Network

Summary of Results
Basic Nonlinear Model
Leaky Integrator
anit) _
E-—Zr— = —-n{)+ p(d)
Leaky integrator
r \
P + O ™ n '> n
\ _J
ednfdt=-n+p
Shunting Model
<20 = n)+ (6 -n) " - () +5) p

Input Basic Shunting Model

nit)

edn/dt= -rn+ (b* - n)pT - (n+ b)p"

15-26

Summary of Resolis

Two-Layer Competitive Network

Layer 1 Layer2
{Retina) { Visual Cortex)
Input 7N 7N
P o) {o
O O -
@) O
O w \JO
O {Adaptive Weights) \O
_/ ./
Normalization Contrast
Enhancement
Layer 1
Input
N N\
W
5lxs!
p al
Shx1 74
s W 5t
Sixs!
_/ \ J

gdnVidr= -n' + (*b! - n)[*Wip - ' + DY W p

!
Eﬁh;u(r) =-n'@+ (b -a'®) 'Wp- ' 0+ B (W]p

100 011
CUEE RN
00 1 110

On-Center Off-Surround

1527

15 Grossberg Nelwork

Steady State Neuron Activity
! *b‘PJ_ _p S
n, = (1+P p,, where p, = P and P = ‘le}.
1=
Layer 2
Layer 2
4 A\
+ o+
W2 On-Center Wi
8! AL TP
a +¢ + o, az
17g f?
$
+
R
+
b2
Off-Surround 'W"J
- $2x 5l y.
edn¥/dt = -2 + (b2 - 02) {[FWf () + W2a1)
- (@2 + D) ['W2]f2(m2)

2
B0 = 20+ C¥-nl) (WPl + Wha')

- (0% + 1) (W)

15-28

Choice of Transfer Function

Summary of Results

fHn} ni{es) Comments
Linear Perfect storage
of any pattern,
bat amplifies
noise.
Slower than
Linear Amplifies noise,
. | mm, [~
Eﬁ:;than Winner-take-all,
suppresses noise,
quantizes total
activity.
Sigmoid Supeesses
noise, contrast
. enhances, not
quantized.

Learning Law

a1 Wl
dt

= an(){- [W(O] +n'®}

(Continuous-Time Instar Learning)

1529

15 Grozsberg Network

Solved Problems

P15.1 Demonstrate the effect of the coefficient ¢ on the performance of

15-36

the leaky integrator, which is shown in Figure P15.1, with the input
p=1.

Leaky Integrator
4 A

+ e B I’

\ J
Ednidt=-n+p

P

Figure P15.1 Leaky Integrator
The equation of operation for the leaky integrator is

eé—z-?—} = —-n{) + p(1).

The solution to this differential equation, for an arbitrary input p (s , is
oL 1 —(t-T) /¢
i) = om0+ J‘n ¢ Pt —1)dr.
If p(r) = 1, the solution will be
_ tE ¢ -t
") = e n(0)+Ej;e .

We want to show how this response changes as a funetion of €. The re-
gponse will be

n = €m0+ (1= = & () - 1) +

This response begins at n(0), and then grows exponentially (or decays ex-
ponentially, depending on whether or not n(0} is greater than or less than
1), approaching the steady state response of niee} = 1. As £ is decreased,
the response becomes faster (since ¢~ decays more quickly), while the
steady state value remains constant, Figure P15.2 illustrates the responses
for e = 1,0.5,0.25, 0,125, with #(0) = 0. Notice that the steady state value
remains 1 for each case. Only the speed of response changes.

Solved Problems

Figure P15.2 Effect of £ on Leaky Integrator Response

P15.2 Again using the leaky integrator of Figure P15.1,set £ = 1 .

i. Find a difference equation approximation to the leaky inte-
grator differential equation by approximating the deriva-
tive using

9‘_n_(r_) _nlt+ A —n(1)
dr Af '

ii. Using A7 = 0.1, compare the response of this difference
equation with the response of the differential equation for
p{) = | and r{0) = 0, Compare the two over the range
D<t<l.

iii. Using the difference equation model for the leaky integra.
tor, show that the response is a weighted average of previ-
ous inputs.

i. If we make the approximation tv the derivative, we find

nalt + Ar) —n{t)
At -

—n(t}+ pli)
or
re+ AN = ni+ At {—a{)+ p(0} = (1-An a0+ (A p(n).
ii. If welet Ar = 0.1 we obtain the difference equation
alt+0.1) = 0.9n(n + 01 pi).

Ifwelet p(r) =t and ni0) = 0, then we can solve for # (1) :

15-31

15 Grossberg Network

n(0.1) = 0.9a(0) + 0.1 p(0) = ¢.1
n0.2) = 09a0.1) +0.1p(0.1) = 09(0.1) +0.1(1) = 0.19,
n(0.3) = 0.91(0.2) +0.1p(0.2) = 0.9(0.19) +0.1(1} = 0.271,
n(04) = 09n(0.3)+ 0.1p(0.3) = 0.9(0.271) +0.1(1) = 0.3439,
n(0.5) = 0.9n(0.4) + 0.1 p(0.4) = 0.9(0.3439) +0.1(1) = 0.4095,
0.6y = 0.4686, n(0.7) = 0.5217, n(0.3) = 0.5695,
n(0.9) = 0.6126, n(1.0) = 0.6513,
From Problem P15.1, the solution to the differential equation is
ne) = e 50+ (1-67%) = (1-¢7.

Figure P15.3 illustrates the relationship between the difference equation
solution and the differential equation solution. The black line represents
the differential equation solution, and the blue circles represent the differ-

ence equation solution. The two selutions are very close, and can be made
arbitrarily close by decreasing the interval Az,

1

T
oM

@
[/
g
¢ o
9/0 g

LE:

‘o [b ors

Figure P15.3 Comparison of Difference and Differential Equations

iii. Consider again the difference equation model of the leaky integrator,
which we developed in part (ii):

w4+ 01) = 0900 +0.1p(5).
If we start from a zero initial condition we find

#(0.1) = 0.9a(0) + 0.1 p(0) = 0.1p(0),

15-32

Solved Problems

(0.2} = 09n(0.1) + 0.1 p(0.1) = 0.9{0.1p(0}} +0C.1p(0.1) = 0.09p(0) + 0.1 (0.1)
(0.3} = 092(0.2) + 0.1p(0.2) = 0.081p(0) + 0.09p(0.1) + 0.1p(0.2)

n(k0.1) = 0.1 {(0.9) " p©) + (09 P01} + - + p((k-1)0.1)} .

Therefore the response of the leaky integrator is a weighted average of pre-
vious inputs, p(0), p@0.1), ... , p((k- 1) 0.1) . Note that the recent inputs con-
tribute more to the response than the early inputs.

P15.3 Find the response of the shunting network shown in Figure P15.4
fore= 1, =1,b =1,p =0, p = 10 and n(0) = 05.

input Basic Shunting Model

ednldt = ~n + (b7 - mypt - (n+ by

Figure P15.4 Shunting Network
The equation of operation of tha shunting network is

E‘iz.ﬁi) = —n@)+ (b -n) p" - (n)+b)p .
For the given parameter values this becomes
‘%’-) = —n{f)- (@ +1)10 = = 11a() - 10.

The solution to this equation is

15-33

15 Grossberg Network

15-34

n(g) = e““n(n)+f0e‘““’” (—t0) dr,
qar

f r
ny) = €05 +| —‘—GJ(l—e‘“).
¢

The response is plotted in Figure P15.5.

1

h i D) 25 aTs

Figure P15.5 Shunting Network Response

There are two things to note about this response. First, as with all shunting
networks, the response will never drop below -b", which in this caseis -1 .
As the inhibitory input p™ is increased, the steady state response will de-

crease, but it can never be less than -5 ™. The second characteristic of the

response is that the speed of the response will increase as the input is in-
creased. For instance, if the input were changed from p* = 10 to p” = 100,
the response would be

_-l0n _@J -0
) =e 0‘5+[01 (l-¢).

Since ¢ ' decays more rapidly than e™'", the response will be faster.

P15.4 Find the response of LaPrer 1 of the Grossberg network for the case
of two neyrons, with » = 1, ' = 0,¢ = | and input vector
p= [C 2 C] . Assume that the initial conditions are set to zero. Dem-
onstrate the effect of - on the response.

The Layer 1 differential equations for this case are

dn:(r)

= —m)+ (1=-m@) (€) =m}{(2¢) = - (1+3)mD)+c,

P15.5

Solved Problems

dny(r)

= = S+ (1= () (2¢) —m(0) (c) = - (1+3c) myft) +2c.

The solutions to these equations would be

a0 = e‘“‘3""n;(0)+j;e"”3"’ 9 dr,

ny(t) = e“'+3"‘n;(0)+J;e“1*“’ @ 2y

If the initial conditions are set to zero, these equations reduce to

n,() = [l{—kj(l-e

do-(25)a-

Note that the outputs of Layer 1 retain the same relative intensities as the
inputs; the output of neuron 2 is always twice the output of neuron 1, This
behavi]or is consistent with Eq. (15.13), In addition, the total cutput inten-
8ity (n,(r) + ny(1)) is never larger than 'b" = 1, as predicted in Eq. (15.14),

{t+3ch

),

—{F+ 3

).

As ¢ is increased, it has two effects on the response. First, the steady state
Vfl”.l??)ipcrease slightly. Second, the response becomes faster, since
e *?" decays more rapidly as ¢ increases.

Consider Layer 2 of the Grossberg network, Assume that the input
to Layer 2 is applied for some length of time and then removed (set
te zero).

i. Find a differential equation that describes the variation in
the total output of Layer 2,

2 i 2
N} = Z n(o),

t=1
after the input to Layer 2 has been removed.

fi. Find a differential equation that describes the variation in
the relative outputs of Layer 2,

m ()
Mo
after the input to Layer 2 has been removed.

2

Al =

15-35

15 Grossherg Network

15-36

i. The operation of Layer 2 is described by Eq. (15.17):

2
4 I:frm = -0+ (V-0’0 { [WILFR'0)+ Wa'}

~ (@O +) (W),
If the input is removed then W'a' is zero. For simplicity, we will set the

mhlbxtory bxas b’ to zero, and we will set all elements of the excitatory
bias *b” to '»°. The response of neuron { is then given by

d
’;“ B0+ (B -0 {(£E O} -n01 T £} .
k#i

This can be rearranged to produce

dn’(s)
g

s
- =m0+ (o) —n?(r){ p) fz(nf(t)}}'

k=1

if we then make the definition

S!
Foy = 3 £,

k=1
we can simplify the equation to

dn’(t)

e~ = - (1+ Py + 0 {0}

To get the total activity, sum this equation over i to produce

2
sd—‘\;r(f) = - (14 PN + 0 {F o)} .

This equation describes the variation in the total activity in Layer 2 over
time.

ii. The derivative of the relative activity is

2
d .2 d| % I d, 2 (®
4170 = w[-—} =LAty - N0 .
dt @i W)~ Wod [(N (r))]

If we then substitute our previous equations for these derivatives, we find

Solved Problems

e%m%n=7}[(1 + Pyl + '8 (£})
N

——9{1+ﬁmfmﬁfw%H]
N

Two terms on the right-hand side will cancel to preduce

8 AL 0] = N*z—t[{ b {f i) ———{ " {Fz(!)}}J

or

?ﬁmp%%tﬁgJ

d. 2
E—|A.{nHt = .
as) Mo L Fo N

We can put this in a more useful form if we expand the terms in the brack-
ets:

[F RN - 1 OF @)

F%%LﬁmJ
oy N F%Mm

1 (n KO0 Z nk{t) ; (:) E 4 (nk(t))nt(t)}

T PoNol kel ke
o (&2 a2
= FT(;;A(Q_{O -kgl "k(r) g (n;(!)) - (Rk(f})]] '
where
ﬁﬁm-fwm}
: n; (t)

Combining this expression with our previous equation, we obtain

$
egmim=ﬁ#ém[zﬁhnﬁmﬁn—ﬁm%m}.

k=]

This form of the differential equation describing the evolution of the rela-
tive outputs is very useful in demonstrating the characteristics of Layer 2,
as we will see in the next solved problem.

1537

15 Grossberg Network

P15.6 Suppose that the transfer function in Layer 2 of the Grossberg net-

15-38

work is linear.

i. Show that the relative outputs of Layer 2 will not change af-
ter the input has been removed.

ii. Under what conditions will the total output of Layer 2 decay
to zero after the input has been removed?

i. From Problem P15.5 we know that the relative outputs of Layer 2, after
the input has been removed, evolve according to

I

e5 7)) = *b?ﬁ?m{zﬁi(n[gz(nf(m—gz(nf(r})] :

k=1

If the transfer function for Layer 2, f 2{n) , is linear, then

fz{n) =cn.
Therefore
2
gz(n)r:&L):g:c.
n n

If we substitute this expression into our differential equation, we find

¢
eg}[ﬁf(r)] = +b2ﬁf(r}[AT [c—c]:] = 0.
k

=1
Therefore the relative outputs do not change.

ii. From Problem P15.5, the total output of Layer 2, after the input has
been removed, evolves according to

2
WO - (1P No+ IR} .

x

If fz(n) is linear, then

§ § &
F o = Z f2 (ni(t}] = z c nf{f) =c z nf(r) =c Nz(r).
k=1

k=1 k=1

Therefore the differential equation can be written

ed—"-ﬁ(') = - (e NON'O+E {c N O} = -{1-Vere NOING).

Solved Problems

To find the equilibrium solutions of this equation, we set the derivative to
Zero:

0=-{1-"bc+c NOING.
Therefore there are two equilibrium solutions:

Be-t
N = 0 or NO) = .

£

We want to know the conditions under which the total output will converge
to each of these possible solutions. Consider two cases:

1. 12%%
For this case, the derivative of the total output,

e% = _{1-"Be+c NOING),

will always be negative for positive N°(#). (Recall that the outputs of
Layer 2 are never negative.) Therefore, the total output will decay
to zero.

im N°()) = 0
=
9. 1<*be
(a) If W) > (+b2c -1) /; ¢, then tlz'ne derivative of the total output
will be negative until N°(H = ("b"c - 1) /¢, when the derivative will
be zero. Therefore,
(bc-1)
lim N = 1,
== C
®) If N(0) < (+b2c -1) /¢, then tzhe derivative of the total output
will be positive until N = ('b°c-1) /¢, when the derivative will
be zero. Therefore,

2

tim M) = ”’—";111

Therefore, if the &@gfer ﬁmctiog of Layer 2 is linear, the total output will
deegy to zero if127%"¢.If 1 < b ¢, then the total output will converge to
(¥ c-1)/¢. In any case, the relative outputs will remain constant.

15-39

15 Grossberg Network

As an example of these results, consider the following Layer 2 equations:

dnl(r)
dt

—nie)+ (L5 =2°(0) {(m®} -m0) {n0)}

dni(f}

= —niO+ (15-ny() {ny(0)} -0 {ny(0)} .

For this case, e = 1, 's’ = 1.5 and ¢ = |, therefore 1 < *b’c . The total out-
put will converge to

+.2
m Ny = L2eD _(U5-D 4

| =+ oo l

In Figure P15.6 we can see the response of Layer 2 for two different sets of

initial conditions:
nz(O) - 0.75 and nz(O) - 0.15)
05 0.1

As expected, the total output converges to 0.5 for both initial conditions. In
addition, since the relative values of the initial conditions are the same for
the two cases, the outputs converge to the same values in both cages.

i {

. N (r)
%)

ng(f}

L]

-

Figure P15.6 Response of Layer 2 for Linear f)

P157 Show that the continuous-time Hebb rule with decay, given by Eq.

15-40

(15.24), is equivalent to the discrete-time version given by Eq.
(13.18).

Solved Problems

The continuous-time Hebb rule with decay is

2
dw:f' 9 - w! O+ 8Om0} .

if we approximate the derivative by

dwi (1) Wit +AD-w, (0
dr At ’

the Hebb rule becomes
w: J(z +Af) = w: J{f} + oL {- wf_ j(t) + n?(f)n}(a‘)} .
This can be rearranged to obtain
2 2 2, 1
w”.(r + AN = [l —cAt] wi_j(t) + oAt {nl.{t)nj(f)} .

In vector form this would be

Wi+ A) = [1-o0A) WaD) + et {00 (n'()) .

If we compare this with Eq. (13.18),

Wig) = (1-NW(g-1) +oa(q)p (4),
we can see that they have the identical form.

15-41

15 Grossberg Network

Epilogue

15-42

The Grossberg network presented in this chapter was inspired hy the visu-
al system of higher vertebrates. To motivate the network, we presented a
brief description of the primary visual pathway. We also discussed some vi-
sual iilusions, which help us to understand the mechanisms underlying the
visual system.

The Grossberg netwerk is a two-layer, continuous-time competitive net-
work, which is very similar in structure and operation to the Kohonen com-
petitive network presented in Chapter 14, The first layer of the Grossberg
network normalizes the input pattern. It demonstrates how the visual sys-
tem can use on-center/off-surround connection patterns and a shunting
model to implement an automatic gain control, which normalizes total ac-
tivity.

The second layer of the Grossberg network performs a competition, which
contrast enhances the output pattern and stores it in short-term memory.
It uses nonlinear feedback and the on-center/off-surround connection pat-
tern to produce the competition and the storage. The choice of the transfer
function and the feedback connection pattern determines the degree of
competition (e.g., winner-take-all, mild contrast enhancement, or no
change in the pattern).

The adaptive weights in the Grossberg network use an instar learning rule,
which stores prototype patterns in long-term memory. When 2 winner-
take-all competition is performed in the second layer, this learning rule is
equivalent to the Kohonen learning rule used in Chapter 14,

As with the Kohonen network, one key problem of the Grossberg network
is the stability of learning; as more inputs are applied to the network, the
weight matrix may never converge. This problem was discussed extensive-
ly in Chapter 14. In Chapter 16 we will present a class of networks that is
designed to overcome this difficulty: the Adaptive Resonance Theory (ART}
neiworks. The ART networks are direct descendents of the Grossherg net-
work presented in this chapter,

Another problem with the Grossherg network, which we have not discussed
in this chapter, is the stability of the differential equations that implement
the network. In Layer 2, for example, we have a set of differential equations
with nonlinear feedback. Can we make some general statement about the
stability of such systems? Chapter 17 will present a comprehensive discus-
sion of this problem.

Further Reading

Further Reading

[GrMig9]

[Gros76}

[Gros82)

[Hube88]

[vanT75]

3. Grossberg, E. Mingolla and D. Todorovic, “A neural net-
work architecture for preattentive vision,” IEEE Transac-
tions on Biomedical Engineering, vol. 36, no. 1, pp. 65-84,
1989,

The ohjective of this paper is to develop a neural network
for general purpose preattentive vision. The network con-
sists of two main subsystems: a boundary contour system
and a feature contour system.

S. Grossherg, “Adaptive pattern classification and univer-
sal recoding: [. Parallel development and coding of neural
feature detectors,” Biological Cybernetics, vol. 23, pp. 121-
134, 1976.

Grossberg describes a continuous-time competitive net-
work, inspired by the developmental physiology of the visu-
al cortex. The structure of this network forms the
foundation for other important networks.

S. Grossberg, Studies of Mind and Brain, Boston: D. Reidel
Publishing Co., 1982,

This book is a collection of Stephen Grossberg papers from
the period 1968 through 1980. It covers many of the funda-
mental concepts that are used in later Grossbherg networks,
such as the adaptive resonance theory networks,

D.H. Hubel, Eye, Brain, and Vision, New York: Scientific
American Library, 1988.

David Hubel has been at the center of research in this area
for 30 years, and his book provides an excellent introduc-

tion te the human visual system. He explains the current

view of the visual system in a way that is easily accessible
to anyone with some scientific training.

H.F.J. M. van Tuijl, “A new visual illusion: Neonlike color
spreading and complementary color induction between
subjective contours,” Aeta Psychologica, vol. 39, pp. 441-
445, 1975.

This paper describes the original discovery of the illusion in
which crosses of certain colors, when placed inside Ehren-
stein figures, appear to spread into solid shapes.

15-43

wn

15 Grossbery Network

15-44

[vond73]

C. von der Malsburg, “Self-organization of orientation sen-
sttive cells in the striate cortex,” Kybernetic, vol. 14, pp. 85—
100, 1973.

Malsberg’s is one of the first papers to present a self-orga-
nizing feature map neural network. The network is a mode]
for the visual cortex of higher vertebrates. This paper influ-
enced the work of Kohonen and Grossherg on feature magps.

Exercises

Exercises
E15.1 Consider the leaky integrator shown in Figure E15.1.
i, Find theresponse n(r) ife =1,n(0) =1 and p(1} = 0.5.
fi. Find the response n(#) ife =1,n{(0) =1 and p{(1} = 2.
fil. Find the response n(f) ife = 4,2(0) =1 and p(1)} = 2.

,,?2 iv. Check your answers to the previous parts by writing a MATLAB
M-file to simulate the leaky integrator. Use the ode45 routine. Plot
the response for each case.

Leaky Integrator
4 A
+] n
p I | 1r‘el |I
U J
ednidt=-n+p
Figure E15.1 Leaky Integrator
E152 Consider the shunting network shown in Figure E15.2.
1. Find the response of the shunting network if ¢ = 2, b =3,b=1,
p =0,p =5andn0) =1.
il. Find the response of the shuntmg networkife = 2,b" = 3,0 =1,
p =0, p = 50 and n(0) =
i, Fmdt.heresponseoftheshuntmgnetworklfe =2, =3,b =1,
p =50,p =0andn@)=1.
:.12: i iv. Check your answers to the previous parts by writing a MATLAB
Lt M-file to simulate the ghunting network. Use the ¢ded45 routine.

Plot the response for each case.

v, Exzplain the differences in operation of the leaky integrator and the
shunting network.

1545

15 Grossberg Network

15-45

input Basic Shunting Model

(VAN J
ednidt = -r + (b - n)pt - (n+ by

Figure E15.2 Shunting Network

E15.3 Suppose that Layer 1 of the Grossberg network has two neurons, with
»' =05,¢=05 and input vector p = [2 ﬂ . Assume that the initial
conditions are set to zero.

i. Find the steady state response of Layer 1, using Eq. (15.13).
ii. Find the solution to the differential equation for Layer 1. Verify that

the steady state response agrees with your answer to part (i).
w242 L

ans= | iii. Check your answer by writing a MATLAB M-file to simulate Layer
< 1 of the Grossberg network. Use the ode45 routine. Plot the re-

gponse.

T
E154 Repeat Exercise £15.3 for input vector p = [20 10} .

E155 Find the differential equation that describes the variation in the total out-
put of Layer 1,

Sl

NG = 3 om0,

i=1

(Use the technique presented in Problem P15.5.)

le2+2
| ang = L

7

BEH

2+
ans =

2+2
ans =

EE

Exercizses

E15.6 Agsume that Layer 2 of the Grossberg network has two neurons, with
fmy=2n,e=1, W etand b = 0. The inputs have been applied for
some length of time, then removed.

i. What will be the steady state total output, lim Nz{r]?
1=y
ii. Repeat part (i) if 5 = 0.25.

iii. Check your answers to the previous parts by writing a MATLAB
M-file to simulate Layer 2 of the Grossberg network. Use the odes5
routine. Plot the responses for the following initial conditions:

n’(0) = H and n’0) = {0-2}
l 0.1

E15.7 Sgppcse that the transfer function for Layer 2 of the Grossberg network is
ffm) =cex(m’,ande=1, '8 = 1.

i. Using the results of Problem P15.5, show that, afier the inputs have
been removed, all of the relative outputs of Layer 2 will decay to ze-
ro, except the one with the largest initial condition (winner-take-all
competition).

ii. For what values of ¢ will the total output N’() have a nonzero sta-
ble point (steady state value)?

iii. If the cond%'tion of part (ii) is satisfied, what will be the steady state
value of ¥7(¢) ? Will this depend on the initial condition N°(0)?

iv. Check your answers to the previous parts by writing a MATLAB
Miﬁle and simulating the total response of Layer 2 for ¢ = 4 and
N = 3.

E158 Simulate the response of the adaptive weights for the Grogsberg network.
Assume that the cecefficient £ is 1. Assume that two different input pat-
terns are alternately presented to the network for perieds of 0.2 seconds at
a time. Also, assume that Layer 1 and Layer 2 converge very quickly, in
comparison with the convergence of the weights, so that the neuron out-
puts are effectively constant over the 0.2 seconds. The Layer 2 and Layer 1
outputs for the two different input patterns will be:

for pattern 1: n' = |% , n=|! .
0.2 0

for pattern 2: n' = |% ,112 = |9,
0.5 1

1547

15 Groseberg Network

E159 Repeat Exercise E15.8, but use the Hebb rule with decay, Eq. (15.24), in-
stead of the instar learning of Eq. (15.25). Explain the differences between
the two responses.

15-48

16 Adaptive Resonance Theory

Objectives 16-1
Theory and Examples 16-2
Overview of Adaptive Resonance 16-2
Layer 1 16-4
Steady State Analysis 16-6
Layer 2 18-10
Orienting Subsystem 16-13
Leaming Law: L1-L2 16-17
Subset/Superset Dilemma 16-17
Leaming Law 16-18
Learning Law: L2-L1 16-20
ART1 Algorithm Summary 16-21
Initialization 16-21
Algorithm 16-21
Other ART Architectures 16-23
Summary of Results 16-25
Solved Problems 16-30
Epilogue 16-45
Further Reading 16-46
Exercises 16-48

Objectives

In Chapters 14 and 15 we learned that one key problem of competitive net-
works is the stability of learning. There is no guarantee that, as more in-
puta are applied to the network, the weight matrix will eventually
converge, In this chapter we will present a modified type of competitive
learning, called adaptive resonance theory (ART), which is designed to
overcome the problem of learning stability.

16-1

16 Adaptive Resonance Theory

Theory and Examples

16.2

Stability/FPlasticity

A key problem of the Grossberg network presented in Chapter 15, and the
competitive networks of Chapter 14, is that they do not always form stable
clusters (or categories). Grossherg did show [Gros76] that if the number of
input patterns is not too large, or if the input patterns do not form too many
clusters relative to the number of neurons in Layer 2, then the learning
eventually stabilizes. However, he also showed that the standard competi-
tive networks do not have stable learning in response to arbitrary input
patterns. The learning instability occurs because of the network’s adapt-
ability (or plasticity), which causes prior learning to be eroded by more re-
cent learning.

Grossberg refers to this problem as the “stability / plasticity dilemma.” How
can a system he receptive to significant new patterns and yet remain stable
in response to irrelevant patterns? We know that biological systems are
very goad at this. For example, you can easily recognize your mother's face,
even if you have not seen her for a long time and have met many new people
in the mean time,.

Grossberg and Gail Carpenter developed a theory, called adaptive reso-
nance theory (ART), to address the stability/plasticity dilemma (see
[CaGr87al, [CaGr87b], [CaGr90], {CaGrRe91] and {CaGrMa92]). The ART
networks are based on the Grossberg network of Chapter 15. The key inno-
vation of ART is the use of “expectations.” As each input pattern is present-
ed to the network, it is compared with the prototype vector that it most
closely matches (the expectation). If the match between the prototype and
the input vector is not adequate, a new prototype is selected. In this way,
previously learned memories (prototypes) are not eroded by new learning.

It is beyond the scope of this text to discuss all of the variations of adaptive
resonance theory. Instead, we will present one of the ART networks in de-
tail — ARTI (see [CaGr8Tal). This particular network is designed for bina-
ry input vectors only. However, from this one architecture, the key features
of adaptive resonance theory can be understood.

Overview of Adaptive Resonance

The basic ART architecture is shown in Figure 16.1. It is a modification of
the Grossberg network of Chapter 15 (compare with Figure 15.13), which
is designed to stabilize the learning process. The innovations of the ART ar-
chitecture consist of three parts; Layer 2 (12) to Layer 1{L1) expectations,
the orienting subsystem and gain control. In this section we will describe
the general operation of the ART syster; then, in later sections, we will dis-
cuss each subsystem in detail.

Overview of Adapiive Resonarice

Layer 1 Layer 2
Gain Control
Input /K /]\
O" Expectation ’O
ot O
—» O O
O O
o4 O
Reset
Crienting
Subsystem

Figure 16.1 Basic ART Architacture

Recall from Chapter 15 that the L1-L2 connections of the Grossberg net-
work are instars, which perform 2 clustering (or categorization) operation.
When an input pattern is presented to the network, it is multiplied (after
normalization) by the L1-L2 weight matrix. Then, 2 competition is per-
formed at Layer 2 to determine which row of the weight matrix is closest to
the input vector. That row is then moved toward the input vector. After
learning is complete, each row of the L1-L2 weight matrix is a prototype
pattern, which represents a cluster (or category) of input vectors.

In the ART networks, learning also oceurs in a set of feedback connections
from Layer 2 to Layer 1. These connections are outstars (see Chapter 13),
which perform pattern recall. When a node in Layer 2 is activated, this re-
produces a prototype pattern (the expectation) at Layer 1. Layer 1 then
performs a comparison between the expectation and the input pattern.

When the expectation and the input pattern are not closely matched, the
orienting subsystem causes a reset in Layer 2. This reset disables the cur-
rent winning neuron, and the current expectation is removed. A new com-
petition is then performed in Layer 2, while the previpus winning neuron
is disabled. The new winning neuron in Layer 2 projects a new expectation
to Layer 1, through the L2-L1 connections. This process continues until the
L2-L1 expectation provides a close enough match to the input pattern.

In the following sections we will investigate each of the subsystems of the
ART system, as they apply to one particular ART network — ART1
{([CaGr87al]. We will first describe the differential equations that describe
the subsystem operations. Then we will derive the steady state respenses
of each subsystem. Finally, we will summarize the overall operation of the
ART1 system.

16-3

18 Adaptive Resonance Thebry

Layer 1

The main purpose of Layer 1 is to compare the input pattern with the ex-
pectation pattern from Layer 2. (Both patterns are binary in ART1.) If the
patterns are not closely matched, the orienting subsystem will cause a re-
set in Layer 2. If the patterns are close enough, Layer 1 combines the ex-

pectation and the input o form a new prototype pattern.

Layer 1 of the ART1 network, which is displayed in Figure 16.2, is very

similar to Layer 1 of the Grossberg network (see Figure 15.14). The differ-
ences occur at the excitatory and inhibitory inputs to the shunting model.
For the ART1 network, no nornalization is performed at Layer 1; therefore
we don’t have the on-center/off-surrcund connections from the input vector.
The excitatory input to Layer 1 of ART1 consists of a combination of the in-
put pattern and the L1-L2 expectation. The inhibitory input consists of the
gain control signal from Layer 2. In the following we will explain how these

inputs work together.
input Layer 1
rf Y7 A
N tation
() Expec Wzl al
P
s
5

- a2

Gain Control w

Slus?

—/ \ J
edn/dt = -n! + (*h! - n)) {p + W2taz} - (n! + "b)[-W1] a2

Figure 16.2 Layer 1 of the ART1 Network
The equation of operation of Layer 1 ig
1
280 = _n'y+ (b n'e) o+ W () (16.1)
~ (0@ +0") (Wa' (1)

16-4

Layer I

and the output of Layer 1 is computed

a' = hardlim®(n'), (16.2)
where
1, n>0
hardlim® ={ ' , 16.
ardlim (n) 0. n<o {16.3)

Eq. (16.1) is a shunting model with excitatory input p+ W’ 'a’ (¢} , which
is the sum of the input vector and the L2-L1 expectation. For example, as-
sume that the jth neuron in Layer 2 has won the competition, so that its
output is 1, and the other neurons have zero output. For this case we have

(16.4)

where w’' is the jth column of the matrix W*', (The W*' matrix is
trained sing an outstar rule, as we will show in a later section.) Now we
can see that

prW'a' = prwi. (16.5)

Therefore the excitatory input to Layer 1 is the sum of the input pattern
and the L2-L1 expectation. Each column of the L2-L1 matrix represents a
different expectation (prototype pattern). Layer 1 combines the input pat-
tern with the expectation using an AND operation, as we will see later.

The inhibitory input to Layer 1 is the gain control term ['W']a’ () , where

111
w'= (LT 1 (16.6)
111
Therefore, the inhibitory input to each neuron in Layer 1 is the sum of all
of the outputs of Layer 2. Since we will be using a winner-take-all compe-
tition in Layer 2, whePever Layer 2 ig active there will be one, and only one,

nonzero element of a° after the competition. Therefore the gain control in-
put to Layer 1 will be one when Layer 2 is active, and zero when Layer 2 is

165

16 Adaptive Resonance Theory

16-6

inactive (all neurons having zero output). The purpose of this gain control
will become apparent as we analyze the steady state behavior of Layer 1.

Steady State Analysis
The response of neuron i in Layer 1 is described by

1 2

dn 1 a0 1 %12 1-1522

e =-n+ (b —ni)[p# w, [~ (n+ b)) Y a,, (16.7)
i= 1 j =1

where £ « 1 so that the short-term memory traces (the neurcn outputs)

change much faster than the long-term memory traces (the weight matri-

ces).

We want to investigate the steady state response of this system for two dif-
ferent cases. In the first case Layer 2is inactive, therefore a . =0 forallj.

In the second case Layer 2 is active, and therefore one neuron has an out-

put of 1, and all other neurons gutput 0.

Consider first the case where Layer 2 is inactive. Since each aj =0, Eq.
(16.7) simplifies to

dnl

E*E?i =-n+ (b -n) {p}. (16.8)

In the steady state (dn:(t)/dt =) we have
8=-n'+ (b =nyp, = = (Lep)n +'b'p,. (16.9)
If we solve for the steady state neuron output n, we find

1 +bIP;-
n.

;= , {(16.10)
L+p,

Therefore, if p; = 0 then n: = 0,andif p, = | then n: = *p'/2>0. Since
we chose the transfer function for Layer 1 to be the hardlim® function, then
we have

a =p. (16.11)

Therefore, when Layer 2 is inactive, the output of Layer 1 is the same as
the input pattern.

Now let’s consider the second case, where Layer 2 izs active. As%ume that
neuron j is the winning neuron in Layer 2. Then ¢, = 1 and a; = 0 for
& # j. For this case Eq. (16.7) simplifies to

Layer 1

d 1 + . i
":":f =i+ (b -n) {4 wE - () 4B (16.12)

In the steady state {dnl.l[f)/ dt = 0) we have

=
fi

e 6 n)) (pAw b - (48D (16.13)

- (1+p‘.+wi:; + l}nj +((p,.+wi:;) -8 .

If we solve for the steady state neurcen output n; we find

+,1 2:1 -1
bi{p+w, Y- b
o 2B (16.14)
2+pi+wi._j

Recall that Layer 1 should combme the input vector with the expectation

from Layer 2 (represented by w) Since we are dealing with binary pat-

terns (both the input and the expectatlon] we will use a logzcal AND oper-
ation to combine the two vectors. In other words, we want n to be less than
zero when either p; or w2 is e ual to zero, and we want n, to be greater

than zero when both p, and w ; are equal to one.

If we apply these conditions to Eq. (16.14), we obtain the following equa-
tions:

B () -5 >0, (16.15)
B - b <0, (16.16)
which we ¢an combine to produce
b (2> > (16.17)
For example, we can use *s' = 1 and ' = 1.5 to satisfy these conditions.

Therefore, if Eq. (16.17) is satisfied, and neuron j of Layer 2 is active, then
the output of Layer 1 will be

a' =paw ., (16.18)

where ~ represents the logical AND operation.

Notice that we needed the gain control in order to implement the ANI) op-
eration. Consider the numerator of Eq. (16.14):

187

16 Adaptive Resonance Theory

B (pw)= (16.19)

The term &' is multiplied by the gain control term, which in this case is 1.
If this term did not exist, then Eq. (16.19) would be greater than zg70 {(and
therefore n; would be greater than zero) whenever either p, or w,; was
greater than zerg. This would represent an OR operation, rather than an
AND operation. As we will see when we discuss the orienting subsystem, it
is critical that Layer 1 perform an AND operation.

When Layer 2 is inactive, the gain control term i3 zero, This is necessary
because in that case we want Layer 1 to respond to the input pattern alone,
since no expectation will be activated by Layer 2.

To summarize the steady state operation of Layer 1:
If Layer 2 is not active (i.e., each aﬁ =0),

a = p. (16.20)

If Layer 2 is active (i.e., one ajz. = 1),

a =pn wf."l. (16.91)

2 To demonstrate the operation of Layer 1, assume the following network pa-
& rameters:

g£=01," =1and ' = LS. (16.22)

Assume also that we have two neurons in Layer 2, two elements in the in-
put vector and the following weight matrix and input:

w - [l I:[and p = H (16.23)
01 1

If we take the case where Layer 2 ig active, and neuron 2 of Layer 2 wins
the competition, the equations of operation of Layer 1 are

d": 1 : 3 1
{O.I}E = -+ (1-n) {p +w 5} - (n +15) (16.24)

= —n + (1-n) {0+1} = (n] +15) = =30 -05

1838

Laver 1

dn, .
(o.l)dif = —my+ (1-ny) {py+wy5} - (ny+ 15) (16.25)

=om+ (L-m) {1 +1} = (my+15) = -4n)+0.5,

These can be simplified to obtain

dﬂl !
7:?[= -30n, -5, (16.26)

dn; 1
— = - 5 .
= 40n, + 5. (16.27)

In this simple cazse we can find closed-form solutions for these equations. If
we assume that both neurons start with zero initial conditions, the solu-
tions are

m = -1-e™, (16.28)
B = % (1-¢ . (16.29)
These are displayed in Pigure 16.3.

II.-;|

a1

/”'f_ n; (0

< |
|

o1} \

\

— m

oy [T a1 a3 o2

Figure 16.3 Response of Layer 1

Note that n: (¢) converges to a negative value, and n; () convergestoa
positive value. Therefore, a: (t) convergesto 0, and a; (t) convergestol
(recall that the transfer function for Layer 1 is hardlim®). This agrees with
our steady state analysis (see Eq, (16.21)), since

169

16 Adaptive Resonance Theory

an?=lﬂm{ﬂ=rﬂ=aa (16.30)
| 1 1

To experiment with Layer 1 of the ART! network, use the Neural Network
Design Demonstration ARTT Layer 1 (and16a11).

Layer 2

Layer 2 of the ART1 network is almost identical to Layer 2 of the Grossberg
network of Chapter 15. Its main purpose is to contrast enhance its output
pattern. For our implementation of the ART1 network, the contrast en-
hancement will be a winner-take-all competition, so only the neuron that
receives the largest input will have a nonzero output.

There is one major difference between the second layers of the Grossberg
and the ART1 networks. Layer 2 of the ART1 network uses an integrator
that can be reset. In this type of integrator, whose symbol is shong in the
left margin, any positive outputs are reset to zero whenever the ¢ signal
becomes positive, The outputs that are reset remain inhibited for a long pe-
riod of time, so that they cannot be driven above zero. (By a “long” period
of time we mean until an adequate match has occurred and the weights
have been updated.}

In the original ART1 paper, Carpenter and Grossberg suggested that the
reset mechanism could be implemented using a gated dipole field
(CaGr87]. They later suggested a more sophisticated biological model, us-
ing chemical neurotransmitters, in their ART3 architecture [CaGr20]. For
our purposes we will not be concerned with the specific biological imple-
mentation.

Figure 16.4 displays the complete Layer 2 of the ART1 network. Again, it
is almost identical to Layer 2 of the Grossberg network (see Figure 15.16),
with the primary exception of the resetable integrator. The reset signal, @ .
is the output of the orienting subsystem, which we will disenss in the next
section. It generates a reset whenever there is a mismatch at Layer 1 be-
tween the input signal and the L2-L1 expectation.

One other small difference between Layer 2 of the ART1 network and Lay-
er 2 of the Grossberg network 2is t;xat two transfer functions are used in
ART1. The transfer function £*(n") is used for the on-center/off-surround
fezedhack connecti?ns, while the output of Layer 2 is computed as

a~ = hardlim’ (n*) . The reason for the second transfer function is that we

want the output of Layer 2 to be a binary signal,

16-10

Layer 2

Layer 2

On-Center

“Wel—
Reset Off-Surround w
52xs?

€ dw’ldr = - + ("2 -) (W2 f(n2) + Wi2at}
-+ Wi fin)

Figure 16.4 Layer 2 of the ART1 Network

The equation of operation of Layer 2 is

2
Ed"““'z_,(r} = “112(!}+ (+b2—n2(t}} { [+W2] i) + Wl:zai} (16.31)
- () + b)) (WP .

This is a shunting model with excitatory input { ["Wz] f 2{nz(t)) + leza'} ,
where "W’ provides on-center feedback connections tidentical to Layers 1
and 2 of the Grossberg network of Chapter 15, Eq. (15.6)), and W' con-
sists of adaptive weights, analogous to the weights in the Kohonen net-
work. They are trained according to an instar rule, as we will see in a later
section. The rows of Wl:z, after training, will represent the prototype pat-
terns.

The inhibitory input to the shunting model is 'W £ (n%()), where W
provides off-surround feedback connections (identical to Layers 1 and 2 of
the Grossberg network — Eq. (15.7)).

15-11

I6 Adaptive Resonance Theory

To illustrate the performance of Layer 2, consider a two-neuron layer with

3z
22
4 { wi:E)T
e =01 , +b2 -]il} , -b:’- = {1} , w]:2 - | = [0.5 O.Sj] , (16.32)
1 i 12. T PO
(¥ ")
and
£ = {10('” v om0 (16.33)
0, n<0

The equations of operation of the layer will be

1()

01)—--n(£}+ 1-n2) {72 + (W'D a') (16.34)
— (ni0) + 1) Fde)
(0. 1)-£ = o+ (1-a) (o) + (wD e’} (1635)

- (O +) e .

This is identical in form to the Grossherg Layer 2 example in Chapter 15
(see Eq (15.20) and Eq. (15.21)), except that " = 1. This will allow n,{r)
and nztt) to range between -1 and +1.

The inputs to Layer 2 are the i mner products of the prototype patterns
(rows of the weight matrix w'?) with the output of Layer 1. (The rows of
this weight matrix are normalized, as will be explained in a later section.)
The largest inner product will correspond to the prototype pattern that is
closest to the output of Layer 1. Layer 2 then performs a competition be-
tween the neurons. The tranafer function f'2 (m) is chosen {0 be a faster-
than-linear transfer function (see Chapter 15, page 15-20, for a discussion
of the effect of f(»)). This choice will force the neuron with largest input
to have a positive #, and the other neuron to have a negative n (with ap-
propriate choice of network perameters). After the competition, one neuron
output will be 1, and the other neuron output will be zero, since we are us-
ing the hardlim” transfer function to compute the layer output.

Figure 16.] illugtrates the response of Layer 2 when the input vector i is

a' = [] . The second row of W' has a larger inner product with a'

16-12

Orienting Subsystem

than the second row, therefore neuron 2 wins the competition. At steady
state, ni(r) has a positive value, and nf(r) has a negative value. The steady
state Layer 2 output will then be

al = {OJ. (16.36)

e~ -

" NN

] [T [%] s 2

H

Figure 16.5 Response of Layer 2
We can summarize the steady state operation of Layer 2 as follows:

1. ,f'1:2T|= '1:2T|
az_{ f((w) 8 =marl(w") a]) 1637

P =

0, otherwise

To experiment with Layer 2 of the ART1 network, use the Neural Network
Design Demonstretion ART1 Layer 2 (nnd16al2).

Orienting Subsystem

One of the key elements of the ART architecture is the Orienting Sub-
system. Its purpose is to determine if there is a sufficient match between
the L.2-L1 expectation and the input pattern. When there is not enough of
a mateh, the Orienting Subsystem should send a reset signal to Layer 2,
The reset signal will cause a long-lasting inhibition of the previous winning
neuron, and thus allow another neuron te win the competition.

Figure 16.6 displays the Orienting Subsystem.

16-13

16 Adaptive Resonance Theory

18-14

Orienting Subsystem

€ dndidt = -n0 + (YB - nO [*WOIp - (n® + B[We]a?
Figure 16.6 Orienting Subsystem of the ART1 Network

The equation of operation of the Orienting Subsystem is

4
e‘%(’-) = 1@+ (=" W) - (R + 0% {W'a'} . (1638)
This is a shunting model, with excitatory input +W0p, where
Wsloa. o (16.39)

Therefore, the excitatory input can be written

SI
Wp = [ﬂ Q.. a]P =) p = alpl’, (16.40)
=1

where the last equality holds because p is a binary vector.
The inhibitory input to the Orienting Subsystem is ‘W'a', where
W=[3p. g (16.41)

Therefore, the inhibitory input can be written

S]
Wa's[pp. g =BTq0 =phl. aee
j=

Vigilance

2

“jrana

Orienting Subsystem

Whenever the excitatory input is larger than the inhibitory input, the Ori-
enting Subsystem will be driven on, Consider the following steady state op-
eration:

4 (80 {alpl®t - (a4 Y (Bla'ly (16.43)

]
1]

1+ adpl?+ Bl + 8 etpt®y — 5 Bla

If we solve for n° , we find
o ¥ codpt - (Bla'l)
(t+ofpl’ +Bla'l)

Let 5" = 5 = 1,then n’>0 if(l||pﬂ2—BHal”2>0,0rin other words:

(16.44)

142
>0 if“i‘-ﬁfqg =p. (16.45)
Iel” P

i5 i the condi%ion that will cause a reset of Layer 2, since
a = hardiim’ (n') . The term p is called the vigilance parameter, and
must fall in the range 0 < p < 1. If the vigilance is close to 1, a reset will oc-
curunless a is close to p. Ifthe vigilance is close 10 0, a' need not be close
to p to prevent a reset. The vigilance parameter determines the coarseness
of the categorization (or clustering) created by the prototype vectors.

Recall from Eq. (16.21) that a' = PN wf:] whenever La er22 is active.
Therefore, |p|”~ will always be greater than or equal to ILIH . They will be
equal when the expectation wf.:] has a 1 wherever the input p hasa 1.
Therefore, the orienting subsystem will cause a reset when there is enough
of a2 mismatch between p and w?ﬂ . The ameunt of mismatch required for
a reset is determined by the vigilance parameter p .

To demonstrate the operaticn of the Orienting Subsystem, suppose that
e=01,a=3,B=4(=075),

p= H anda' = H (16.46)
1 0

i6-15

16 Adaptive Resonance Theory

16-16

The equation of operation becomes

(0.1]1’%‘—) = - O+ (1-n'0) {3(p+py)} (16.47)
- (' + 1) {4(a) +ap)}
or
d"Tot(‘) = - 110n°(t) +20. (16.48)

The response is plotted in Figure 16.7. In this case a reset signal will be
sent to Layer 2, since n (t) is positive, In this example, because the vigi-
lance parameter is set to p = 0.75, and p has only two elements, we will
have a reset whenever p and a’ are not identical. (If the vigilance param-
eter were set to p = 0.25, we would not have had a reset for the p and a'
of Eq. (16.46), since Ja'l /lpl® = 1/2.)

/ (1)
L
/

L5}

<

Figure 16.7 Response of the Orienting Subsystem

The steady state operation of the Orienting Subeystem can be summarized
as follows:

orll 2 2
o { L ifth'f el <p). (16.49)

0, otherwise

To experiment with the Orienting Subsystem, use the Neural Network De-
sign Demonstration QOrienting Subsystem (nnd18os).

Learning Low: L1.L2

Learning Law: L1-L2

Resonance

The ART1 network has two separate learning laws: one for the L.1-L2 con-
nections, and another for the L2-L1 connections. The L.1-L2 connections
use a type of ingtar learning to learn to recognize a set of prototype pat-
terns. The L.2-L.1 connections use outstar learning in order to reproduce (or
recall) a set of prototype patterns. In this section we will describe the L1-
L2 instar learning law, and in the following section we will present the L2-
L1 outstar learning law.

We should note that the L1-L2 connections and the L2-1.1 connections are
updated at the same time. Whenever the input pattern and the expectation
have an adeguate match, as determined by the Orienting Subsystem, both

W'? and W are adapted. This process of matching, and subsequent ad-
aptation, is referred to as resonance, hence the name adaptive resonance

theory.

Subset/Superset Dilemma

The learning in the L1-L2 connections of the ART1 network is very close to
the learning in the Grosgberg network of Chapter 15, with one major dif-
ference. In the Grossberg network, the input patterns are normalized in
Layer 1, and therefore all of the prototype patterns will have the same
length. In the ART1 network no normalization takes place in Layer 1.
Therefore a problem ean occur when one prototype pattern is a subset of
another. For example, suppose that the L1-L2 connection matrix is

w2 |10 (16.50)
111
go that the prototype patterns are
i:z L I:2 1
=1 and W = (1], (16.51)
0 1

2. | B 1:2 1:2
We say that ,w ~ isasubsetof ,w ~,since ,w = hasalwherever ;w = has
al

If the output of Layer 1 is

(16.52)

16-17

16 Adapiive Resonance Theory

16-18

then the input to Layer 2 will be

1
w'Zal = 11 {ﬂl =12, (16.53)
BRI

Both prototype vectors have the same inner product with a',even though
the first prototype isidentical to a' and the second prototype is not. This
1 called the subset/superset dilemma.

One solution to the subset/superset dilemma is to normalize the prototype
patterns. That is, when a prototype pattern has a large number of nonzero
entries, the magnitude of each entry should be reduced, For example, using
our preceding problem, we could modify the L1-L2 matrix as follows;

11,
w2o |22 (16.54)
111
333
The input to Layer 2 will then be
11
, 2zol1 1
W'l = 221 1| =1 (16.55)
11 <
3330 B

Now we have the desired result: the first prototype has the largest inner
product with a' . The first neuron in Layer 2 will be activated.

In the Grossherg network of Chapter 15 we obtained normalized prototype
patterns by normalizing the input patterns in Layer 1. In the ART1 net-
work we will normalize the prototype patterns by using an en-center/off-
surround competition in the L1-L2 learning law.

Learning Law
The learning law for W' is
diw"* (1]
— (r) [{ b- w (r)}C[W]a (1 (16.56)

C{#0 + b} (W] (r)} .

where

Fast Learning

Learning Law: L1.12

1 1] 1090 01--1
e % w0 e w10 e
1 0 001 e Q

This is a modified form of instar learning. When neuron i of Layer 2is ac-
tive, the ith row of W'” w’ , is moved in the direetion of a' . The differ-
ence between Eg. (16. 56) and the standard instar learning is that the
elements of I.w] 2 compete, and therefore ;.wl" is normalized. In the bracket
on the right side of Eq. (16.56) we can see that it has the form of a shunting
model, with on-center/off-surround input connections from a'. The excita-
tory biasis 'b = 1 (a vector of 1 s) and the inhibitery bias is b = ¢, which
ensures that the elements of w remain between 0 and 1. (Recall our dis-
cussion of the shunting model in Chapter 15.)

To verify that Eq. (16.56) causes normalization of the prototype patterns,
let’s investigate the steady state operation. For this analysis we will as-
sume that the outputs of Layer 1 and Layer 2 remain constant until the
weights reach steady state. This is called fast learning.

. 12 .
The equation for element w, is

1:2
dwi.,J{r}

s =, (r)[(l— s r))ca - wu(r)zak(ﬂ (16.58)

k#j

If we assume that neuron : is active in Layer 2 [af () = 1}and set the de-
rivative to zero in Eq. (16.58), we see that

0= [(1 - caj. - w,{’f.kzla;] . {16.59)
*f
To find the steady state value of w , we will consider two cases. First, as-
sume that a; = 1. Then we have
P . 2 .

0= (1-wht-w2al-1 = - @+lal’-pw+g, 1660
or
W = b (16.61)

£+ Y

§
(Note that) a; = ||a!
k=1

T 1. .
| , 8ince a is a binary vector.)

16.19

16 Adaptive Resonance Theory

On the other hand, if a} = ¢, then Eq. (16.59) reduces to

2

0 = -wial", (16.62)
or
Wi =0, (16.63)
To summarize Eq. (16.61) and Eq. (16.63):
1
.G (16.64)

v

= " Y
c+lall -1
where £ >1 to ensure that the denominator will never equal zero.

Therefore the prototype patterns will be normalized, and this will solve the
subset/superset dilemma, (By “normalized” here we do not meen that all
prototype vectors wi]l have unit length in Euclidean distance, but simply
that the rows of W~ that have more nonzero entries will have elements
with smaller magnitudes. In this case, vectors with more nonzero entriea
mey actually have a smaller length than vectors with fewer nonzero en-
tries.)

Learning Law: L2-L1

The 1.2-L.1 connections, W*' | in the ART! architecture are trained using
an outstar learning rule. The purpose of the L2-L1 connections is to recall
an appropriate prototype pattern (the expectation), so that it can be com-
péred and combined, in Layer 1, with the input pattern. When the expec-
tation and the input pattern do not match, a reset is sent to Layer 2, so that
a new prototype patiern can be chosen (as we have discussed in previous
sections).

The learning law for W' is a typical outstar equation:

diw;' (01 2 .
i:‘—r =a; (1 [-w; () +a(n]. (16.66)

Therefore, if neuron j in Layer 2 is active ¢has won the competition), then
column j of W is moved toward the a* pattern. To illustrate this, let's
investigate the steady state operation of Eq. (16.65).

For this analysis we will assume the fast learning scenario, where the out-
puts of Layer 1 and Layer 2 remain constant until the weights reach steady
state. Assume that neuron j in Layer 2 is active, so that 4; = 1. Setting
the derivative in Eq. {16.65) to zero, we find

16-20

ARTI Algorithm Summary

0=-w"+a',orw =a. (16.66)
Therefore column j of w converges to the output of Layer 1, a . Recall
from Eq. (16.20) and Eq. (16.21) that a' is a combination of the input pat-
tern and the appropriate prototype pattern. Therefore the prototype pat-

tern is modified to incorporate the current input pattern (if there is a close
enough match).

Keep in mind that W' and W*' are updated at the same time. When neu-
ron j of Layer 2 is active and there is a sufficient match between the expec-
tation and ’q_l}e input pattern {(whi]11 indicates a resonance condition), then
TOW | fI W' and eplumn j of W™ are dapted. In fast learning, column
j Iof W issetto a’, while row j of W is set to a normalized version of

ART1 Algorithm Summary

Now that we have investigated each of the subsystems of the ART1 archi-
tecture, we can gain some insight into its overall operation if we summarize
the key steady state equations and organize them into an algorithm.

Initialization

The ART1 algorithm begins with an initialization of the weight matrices
W'? and W' . The initial W*' matrix is set to all I’s. Thus, the first time
a new neuron in Layer 2 wins a competition, resonance will oceur, gince
a = pnwj?'l = p and therefore ||a'| /IipII2 = | » p. This means that any
untrained column in W' is effectively a blank slate and will canse &
match with any input pattern.

Since the rgws of the W' matrix should be normalized versions of the col-
umns of W, every element of the initial W~ matrix is set to

C/(C+8-1).
Algorithm
After initialization, the ART1 algorithm proceeds as follows:

1. First, we present an input pattern fo the network. Since Layer 2 is not
active on initialization (i.., each a; = 0), the output of Layer 1 is(Eq.
(16.20))

a = p. (16.67)

1621

16 Adaptive Resonance Theory

2. Next, we compute the input to Layer 2,
W', (16.68)

and activate the neuron in Layer 2 with the largest input (Eq. (16.37)):

(16.69)

, {1, (W' 2" = max[(w9 a"))
a, = .

o, otherwise
In case of a tie, the neuron with the smailest index is deciared the win-

ner.

3. We then compute the L2-L1 expectation (where we assume neuron j of
Layer 2 is activated);

wial = wh, (16.70)

4. Now that Layer 2 is active, we adjust the Layer 1 output to include the
12-11 expectation (Eq, (16.21))

a' = pmwi:] . (16.71)

5. Next, the Orienting Subsystem determines the degree of match be-
tween the expectation and the input pattern (Eq. (16.49));

L2, 2
0. { 1 ittlal /el <p). (16.72)

0, otherwise

6. Ifa'=1 ,thenweseta = 0, inhibiti} until an adequate mateh occurs
(resonance), and return to step 1. If ¢ = 0, we continue with step 7.

~1

Resonance has occurred. Therefore we update row j of w'’ {Eq.
(16.61):

1

wio_ta (16.73)

FRE

8. We now update column j of W' (Eg. (16.66)):

i

W, =a (16.74)

9. We remove the input pattern, restore all inhibited neurons in Layer 2,
and return to step 1 with a new input pattern,

i16-22

Other ART Architectures

The input patterns continue to be applied to the network until the weights
stabilize {dc not change}. Carpenter and Grossherg have shown [CaGr87a]
that the ART1 algorithm will always form stable clusters for any set of in-
put patterns.

See Problems P16.5, P16.6 and P16.7 for detailed examples of the ART1 al-
gorithm.

To experiment with the ART1 algorithm, use the Neural Network Design
Demonstration ART{ (nnd18a1).

Other ART Architectures

The ART1 network is just one example of adaptive resonance theory. Car-
penter and Grossberg, and others in their research group, have developed
many variations on this theme.

One disadvantage of the ART1 network is that it can only be used for bina-
ry input patterns. Carpenter and Grossberg developed a variation of ART1,
called ART2, to handle either analog or binary patterns [CaGr87b]. The ba-
sic structure of ARTZ is very similar to ART1, with the exception of Layer
1. In ART2 several sublayers take the place of Layer 1. These sublayers are
needed because analog vectors, unlike binary vectors, can be arbitrarily
close together. The sublayers perform a combinatior of normalization and
noise suppression, in addition to the comparison of the input vector and the
expectation that is needed by the orienting subsystem.

Carpenter and Grossberg later developed the ART3 network [CaGr90],
which introduced a more sophisticated biological model for the reset mech-
anism required for ART. Up to the present time, this network has not been
widely applied.

In 1991 Carpenter, Grossberg and Reynolds introduced the ARTMAP net-
work [CaGGrRe91]. In contrast with all of the previous ART networks, it is
a supervised network. The ARTMAP architecture consists of two ART mod-
ules that are connected by an “inter-ART” associative memory. One ART
module receives the input vector, while the other ART module receives the
desired output vector. The network learns to predict the correct output vec-
tor whenever the input vector is presented.

More recently, Carpenter, Grossberg, Markuzon, Reynolds and Rosen have
modified the ARTMAP architecture to incorporate fuzzy logic. The result is
referred to as Fuzzy ARTMAP [CaGrMa92). It seems to improve perfor-
mance, especially with noisy input patterns.

16-23

16 Adaptive Resonance Theory

16-24

All of these ART architectures incorporate the key modules discussed in
thia chapter, including:

* L.1-L2 instars for pattern recognition.
¢ L2-L1 outstars for pattern recall.

Layer 2 for contrast enhancement (competition),

Layer 1 for comparison of input and expectation.

Orienting Subsystem for reseiting when a pattern mismatch occurs.

Summary of Results

Summary of Results
Basic ART Architecture
Layer 1 Layer2

Gain Control
Input ﬁ\ é\

@ Exgeciation
O O
—» O O
o, O
Q] O

Reser
Qrienting
Subsystem

ART1 Network (Binary Patterns)

ART1 Layer 1
Input Layer 1
N N\
N Expectation
pec ¢ ”
P
shx1
§i
- ‘_ 2
Gain Control w ?
H
W sixst W,

ednVdt = -+ (*b! - nt) {p + W2ra2} - (' + b1)["Wi]a2

16-25

16 Adaptive Resonance Theory

Layer 1 Equation

1
20 - nly+ (o' -n'e) tp+Wa) — (0 +0) [Wa’ ()

Steady State Operation
If Layer 2 is not active (i.e., each af. =0),a = p.

If Layer 2 is active (i.e., one af = 1), a = pO wf '

ART1 Layer 2

Layer 2
4 N

+ o+
Wiz On-Center e

sixst +b2 + 52y5l

£
al ty + n n
lre

b 5
R “Wild—
oset Off-Surround W
52xs2
A

£dnd/dr = -0? + (*H? - B {[*W2]F:(n2) + W2g1}
- 2+ bYW f2(n2)

Layer 2 Equation

2
ed—-':ﬂ(” = -0’0+ (6 -0’) { W Em ey W'} - i+) (W)

Steady State Operation

o T 2 T

) { 1w 2l = max [(W' a')
0, otherwise

16-26

Summary of Results

Orienting Subsysiem
Orienting Subsystem

p—p

»
\
£ dndidt = -n0 + (H0 - nO)[*WOlp - (n0 + B0 [Wo]a!
Orienting Subsystem Equation
A0 g (8 -a0) {W) - i+) (W)

where "W’ = [aa...a},-wo =[pp.. ﬁ},+50 =8 =1

Steady State Operation

o { v, irtlal i <p)
0, otherwise

L1-L2 Learning Law
d .wm t + : + ; - i
L —”d:()] = af{:) [{ b—,w"z(r}}t;[W]al (1~ {5W"2(r) + b} [W}ﬂlI (f)]
: 0 100 011
Bl b= w010 wo 10T
1 0 0 0 ee 1 1. 0

16-27

18 Adaptive Resonance Theory

16-28

Steady State Operation {Fast Learning)

1:2 Ljal

= (Neuron { in Layer 2 Active}
112
£+ l‘a || -1

w

L2-L1 Learning Law
21
f{[—i"fmﬂ =ar () [-w; (1) +a ()]

Steady State Operation {Fast Learning)

wi"‘ = a' (Neuron j in Layer 2 Active)

ART1 Algorithm (Fast Learning) Summary

Inttialization
The initial W*' matrix is set to all Us.
Every element of the initial W'~ matrix is set to £/ ({+5 - 1) .

Algorithm

1. First, we present an input pattern to the network. Since Layer 2 is not
active on initialization (i.e., each a; = 0), the output of Layer 1is

|
a =p.
2. Next, we compute the input to Layer 2,
w]:ﬁal

and activate the neuron in Layer 2 with the largest input:

. [1, WD a = marl (@D a)

4= { 0, otherwise

In case of a tie, the nevron with the smallest index is declared the win-
ner.

3. Wa then compute the L2-L1 expectation (where we assume neuron j of
Layer 2 is activated):

2t 2 2
Wia =w,.

Summary of Resulls

. Now that Layer 2is active, we adjust the Layer 1 output to include the
L2-L1 expectation:

1 21
a = pnwj .

. Next, the Orienting Subsystem determines the degree of match bo-
tween the expectation and the input pattern:

a® = { 1. it /1t <pl

0, otherwise

L Ifdl =1 , then we set a? = 0, inhibit it until an adequate match oceurs
(resonance), and returd tostep 1. If o = 0, we continue with step 7.

Resonance has occurred, therefore we update row j of W'=:

12 t_’,al . .
T T

We now update column j of W*':

., We remove the input patiern, restore all inhibited neurons in Layer 2,
and return to step 1 with a new input pattern,

16.29

16 Adaptive Resonance Theory

Solved Problems

P16.1 Consider Layer 1 of the ART1 network with the following parame-
ters:

e=001 =2 B =3,

Assume two neurons in Layer 2, two ¢lements in the input vectar
and the foliowing weight matrix and input:

e e[

Also, assume that neuron 1 of Layer 2 is active.
i. Find and plot the response n'.

ii. Check to see that the answer to part (i) satisfies the steady
state response predicted by Eq. (16.21).

i. Since Layer 2 ig active, and neurcn 1 of Layer 2 wins the competition,
the equations of operation of Layer 1 are

dn
{001]—d—_-n +(2-n) {p +wy) - () +3)

nl e (2on) {140} - (n]+3) = ~3n) -1

&=
o
I

—-’12 (2~ nz) “’2‘*“’21}_ n2+3)

cmy et (2-m) {141} = (my+3) = —dmy+ 1

These can be simpliﬁed to obtain

dn 300n! - 100
T T 30w -0,

i
dﬂz 1
o = —400n, + 100,

If we assume that both neurons start with zero initial condition, the solu-
tions are

16-30

Solved Problems

1 | <100
n(n = —zll-e 1,
(1) = —{1— e
These are displayed in Figure P16.1.
oti—— - —.—— fo—— — ,,_____]
ST T
:
. i
L n () |
| - = J—

Figure P16.1 Response of Layer 1

ii. Notethat n, 0 converges to a negative value, and n, (1) converges to
a positive value Therefore, a, L) converges to 0, and a2 (1) convergestol
{recall that the transfer functmn for Layer 1is hardlim"). This agrees with
our steady state analysis (see Eq. (16.21)), since

prw = m A [‘j = H =a', (16.75)

P16.2 Consider Layer 2 of the ART1 network with the following parame-

ters:
£ =0l +b2=H bE:H w2 [GW y' [OSOSJ
2 2 [zw]«)r {0
and

18-81

16 Adaptive Resonance Theory

Assume that the output of Layer 1 is

§

This is equivalent to the Layer 2 example in the text (page 18-12),

with the exception of the bias values.

i. Write the equations of operation of Layer 2 and simulate and
plot the response. Explain the effect of increasing the bias
values.

ii. Verify that the steady state operation of Layer 2 is correct.
i. The equations of operation of the layer will be

2
(0.) —= ‘() = —nl0r+ @-nk0) (ko) + (WD) a')

— (R +2) £y,

01) —d’(— = - + 2-n0) (£ + w') o'y

— (W + D £

Figure P1§,2 illustrates the response of Layer 2 when the input vector is
a' = [h . The second row of W'” has a larger inner product with a'
than t! row, therefore neuron 2 wins the competition.

1 ’/—I'2Ti
[/(zw')a } !

\ nt (1)

|
)
BT ew T ey o ew T e

2

Figure P16.2 Response of Layer 2

16-32

Solved Problemy

If we compare Figure P16.2 with Figure 16.5, we can see that the bias value
has three effects, First, the speed of response is increased; the neuron out-
puts move more quickly to their steady state values. Second, the range of
the response i3 increased from [-1, 1] to [-2, 2]. (Recall from Chapter 15
that for the shunting model the upper limit will be the excitatory bias b.
The lower limit will be the inhibitory bias 5.} Third, the neuron responses
move closer to the upper and lower limits.

ii. At steady state, 7)) hasa positive value, and ni(r) has a negative val-
ue. The steady state Layer 2 output will then be -

1

This agrees with the desired steady state response characteristics of Layer
2

) {1. £ ((w'™ 8" = max{ (@ a))

0. otherwise

P16.3 Consider the Orienting Subsysiem of the ART] network with the
following parameters;

=01 u=05 B=2 (p=025) B =73"=05.
The inputs to the Orienting Subsystem are
[y
P=[1f & =lo-
I 1]

i Fa‘nd and plot the response of the Orienting Subsystem
n(t).

if. Verify that the steady state conditions are satisfied.
The equation of operation of the Orienting Subsystem is

dn'te) _

= -n@)+ (05-n%0) {0.5(p,+ py+ p)}

(0.1)
- (1) +05) {2(a} +ay+a}) }

or

16.33

16 Adaptive Resonance Theory

16-34

dn'e)

0.
0 —65n (N -12.3.

The response is then

n’ (1) = —0.1923{1-¢*
This response is plotted in Figure P16.3. In this case, since n {f) is nega-
tive, @ = hard! im+(n“} = (, and therefore a reset signal will not be sent
to Layer 2.

4.15% \\\ . nﬂ(r) {/

P S

[[F: -] LAl ais o

Figure P16.3 Response of the Orienting Subsystem

ii. The steady state operation of the Orienting Subsysgtem can be summa-
rized as follows:

2 1
a0={l, it tha'l /g’ < p)
0, otherwise .

For this problem

2 2
i
bt /100 = ol /11 =%>p=02&
il

Therefore o’ = ©, which agrees with the results of part (i).

Solved Problems

P164 Show that the learning equation for the L2-L1 connections is
equivalent to the outstar equation described in Chapter 13.

The L2-L1 learning law (Eq. (16.65)) is

2l
5{[_“%(21 = a () [-w (1) +a (1],

If we approximate the derivative by

dlw;' O] W, t+A)-w,()
at At ’

then we can rewrite Eq. (16.65) as
witean = w'O+ (A0 a0 {-w, () +a'®)} .

This is equivalent to the outatar ruzle of Chapter 13 (Eq. (13.51)). Here the
input to qxe L2-L1 connections is a;(¢) , and the output of the L2-L1 connec-
tionsis a .

P16.5 Train an ART1 network using the following input vectors:

0 1 1
P, P =(0:P5 = |1
0 0 0
Use the parameters { = 2, and p = 04, and choose § = 3 (3 cate-
gories).
Qur initial weights will be
- 111 2 050505
W =1111,W" = 1050505
i11 050505
We now begin the algorithm.

1. Compute the Layer 1 response:

1
a =p1

1}
—

1635

16 Adaptive Resonance Theory

2. Next, compute the input to Layer 2:

L, Josos 05} o [os
W™ = 050505([1| = |05]-
0505050/ (05

Since all neurons have the same input, pick the first neuron as the win-
ner. (In case of a tie, pick the neuron with the amallest index.}

3. Now compute the L2-L1 expectation:

22 111’-1 L 21
Woha =110 = 11| =" -
1

1
11 1){0

4, Adjust the Layer 1 output to include the L2-L1 expectation:

} pa |
a =pnw =

= = O
==

;
N =
1
5. Next, the Orienting Subsystem determines the degree of match be-
tween the expectation and the input pattern:
2
||al|| /'||p|||2 = % >p = 0.4, therefore ® = 0 (no reset).

6. Since g’ = 0, continue with step 7.

7. Resonance has cccurred, therefore update row 1 of w'.

_ 1 0 . 1 0
w? = -_-3%—- =a'= |1, W2 = 050505
2+[a'l" -1 0 0.5 0.5 0.5

8. Update column 1 of W*':

16-36

Solved Problems

of _ otl
w, =8 = 1|, W~ =1111]-
0 011

. Remove p,, and return to step 1 with input pattern p, .

. Compute the new Layer 1 response (Layer 2 inactive):
1

a =p,=|pl.
0

. Next, compute the input to Layer 2:

PR L B 0
W"a = |g50505[o| = |05/
0505050 |05

Since neurons 2 and 3 have the same input, pick the second neuron as
the winner:

(16.76)

-]
U
=~ =

. Now compute the L2-L1 expectation:

212 0110 2 L
W5 = i q 1| =W =1
1

011{0

. Adjust the Layer 1 cutput to include the L2-L1 expectation:

1 [n
1 2.1 i
a =p,W, =1IplNy1l =10 -
o 1 o

. Next, the Orienting Subsystem determines the degree of match be-
tween the expectation and the input patiern:

1|a‘||2/]p,§’ = % >p = 04, therefore a” = 0 (no reset).

16-37

16 Adaptive Resonance Theory

16-38

Since 2’ = 0 , continue with step 7.

Resonance has occurred, therefore update row 2 of w,

12 2al R 1 1:2 ere
W= ——m—=a =g, W =110 0
2+ -1 0 0.5 0.50.5
Update column 2 of W™':
1 1 1 21 0]1
w, =a = . W =101l
0 001

Remove p,, and return to step 1 with input pattern p;.
Compute the Layer 1 response with the new input vector:

ner:

Now compute the L2-L1 expectation:

.. |orih . |0
Woa = 10110 =% =[1)-
00 1].0 0

Adjust the Layer 1 output to include the L2-L1 expectation:

Solved Problems

1 b A
a = Paﬁ“ﬂ =

o e —
>

o — O
[§}

o

5. Next, the Orienting Subsystem determines the degree of match be-
tween the expectation and the input pattern:

o'l jpof* = ;

IP;I‘Z =3 >p = 04, therefore 2 = 0 (no reset).

6. Since a° = 0, continue with step 7.

7. Resonance has occurred, therefore update row 1 of w'

1.2 7a’ 1 0 12 ot 0
]w‘= —H]"2 =a = I,W =1 0 0}
2+jal -1 0 0.505 0.5

8. Updatecolumn 1 of W' :

1 1 0 21 011
w, =a =11, W =101l
0 001

This completes the training, since if you apply any of the three patterns
again they will not change the weights. These patterns have been success-
fully clustered. This type of result (stable learning) is guaranteed for the
ART1 algorithm, since it has been proven to always produce stable clus-
ters.

P16.6 Repeat Problem P18.5, but change the vigilance parameter to
p = 06.

The training will proceed exactly as in Problem P16.5, until pattern p, is
presented, so let's pick up the algorithm at that peint.

1. Compute the Layer 1 response:

2. Next, compute the input to Layer 2:

16-39

16 Adapftive Resonance Theory

16-40

Lo o] [
W =11 0 ofjtf = |1

0505050 1

Sinee all neurons have the same input, pick the first neuren as the win-
ner:

-]
il
e

Now compute the L2-L1 expectation:

21 2 01l 21 0
Wha = 19100/ =% =1
001]]0 0

Adjust the Layer 1 output to include the L2-L1 expectation:

: . {0 o
a =pow = N = |t
o [0 o

Next, the Orienting Subsystem determines the degree of match be-
tween the expectation and the input pattern:

||3l"2/"p3||2= %cp = 0.6, therefore a’ = 1 (reset).

Since a” = 1, set af = (0, inhibit it until an adequate match occurs
(resonance), and return to step 1.

Recompute the Layer 1 response (Layer 2 inactive):
3

a8 = p3 = 1 .
0

Next, compute the input to Layer 2:

Solved Problems

L, oot
W =11 ¢ 0|1
0.50505/{0] 11

Since neuron 1 is inhibited, neuron 2 is the winner:

--)
i
=

. Now compute the L2-L1 expectation:

» 011l . 1
Wia = 101)1| =W, =10
001|lo 0

. Adjust the Layer 1 output to inclnde the L2-L1 expectation;

e o —
= o -

1 21 1
a = p3 [Wz =11 I
0
. Next, the Orienting Subsystem determines the degree of match be-
tween the expectation and the input pattern:
"31"2/"1)3"2 = % <p = 0.6, therefore &’ = 1 (reset).

. Since a” = 1 , set ai = {, inhibit it until an adequate match occurs
(resonance), and return to step 1.

. Recompute the Layer 1 response:

..
a=p3=1-

o

. Next, compute the input to Layer 2:
Lo et
W' =1 9 o1} =1
0.5 0.5 0.5]{0 1

1641

16 Adaptive Resonance Theory

Since neurons 1 and 2 are inhibited, neuron 3 is the winner:

3. Now compute the L2-L1 expectation:

21 2 0110 2]
W5 = l1o1|jof = w; =

00151

— o b

4. Adjust the Layer 1 output to include the L2-L1 expectation:

1 1
a =p;NWwW, =

o e
L= e]

1
N1l =
1

5. Next, the Orienting Subsystem determines the degree of match be-
tween the expectation and the input pattern:

||a1N2/ﬂp3||2 = %> p = 06, therefore a’ = 0 (no reset).

6. Since a° = 0, continue with step 7.
7. Resonance has occurred, therefore update row 3 of W'”:

: % 010
12 2a 21 2
4W =——12—=§a= z,wl = 100
2+ﬂan—l 3 22,
o 33
8. Update column 3 of W'
2:1 1 1 21 01l
W, =8 =1,W =101
0 000

This completes the training, since if you apply any of the three patterns
again they will not change the weights. (Verify this for yourself by applying

1642

P16.7

Solved Problems

each input pattern to the network.) These patterns have been successfully
clustered.

Note that in Problem P16.5, where the vigilance was g§ = 0.4, the patterns
were clustered inte two categories. In this problem, with vigilance p = 0.6,
the patterns were clustered into three categories. The closer the vigilance
is to 1, the more categories will be used. This is because an input pattern
must be closer to a prototype in order te be incorporated into that proto-
type. When the vigilance is close to zero, many different input patterns can
be incorporated into one prototype, The vigilance parameter adjusts the
coargeness of the categorization.

Train an ART1 network using the following input vectors (see

[CaGr87a}):

)R T R Y

Present the vectors in the order p, —p,-p,—p,-p, (i.e., p, is pre-
sented twice jn each epoch). Use the parameters { = 2 and p = 06,
and choose §° = 3 (3 categories), Train the network until the
weights have converged.

We begin by initializing the weight matrices. The initial W' matrix is an
§'x§* = 25x 3 matrix of 1s. The initial W'* matrix is normalized, there-
fore itis an S°x§' = 3Ix25 matrix, with each element equal to

 _.__ 2 .
v ers Ty Rl

To create the input vectors we will scan each pattern row-by-row, where
each blue square will be represented by a 1 and each white square will be
represented by a 0. Since the input patterns are 5 x 5 grids, this will create
25-dimensional input vectors.

We now begin the training. Since it is not practical to display all of the cal-
culations when the vectors are sc large, we have summarized the results of
the algorithm in Figure P16.4. Each row represents one iteration of the
ART1 algorithm (presentation of one input vector). The left-mosat pattern
in each row is the input yector. The remainder of the patterns represent the
three columns of the W' matrix. ét each iteration, a star indicates the
resonance point — the column of W' that matched with the input pattern.
Whenever a reset occurred, it is represented by a check mark. When more
than one reset occurred in a given iteration, the number beside the check
mark indicates the order in which the reset occurred.

16-#3

16 Adaptive Resonance Theory

16-44

P WIZ | w22:l w32:l wIZ] wzli w31'|

EEEE ¥ ETE

x

EEEE SR
KRl ® TR
RN R T
Y L

{a) First Epoch (b) Second Epoch
Figure P16.4 ART1 lierations for Problem

A total of 10 iterations of the algorithm were performed (two epochs of the
sequence p,—p,—p,—p, -p, - The weights are now stable. (You may want
to check this by presenting each input pattern.)

There are several interesting points to notice in thjs example. First, notice
that at iteration 4 both p, g;}d p; arecoded by w;" . However, on itthion
5, when p, is presented, w, is modified to include p,. This new w,” no
longer provides an adequate match with p, and p,, as we can see at itera-
tions 6 and 8. This requires them to take over neuron 3, which was unused
during the first epoch.

The results of the algorithm eould be medified by changing the vigilance
parameter. How small would you have to make the vigilance, so that only
two neurons in Layer 2 would bo required to code all 4 input vectors? How
large would the vigilance have to bo before a fourth Layer 2 neuron was

needed?

Epilogue

Epilogue

Competitive learning, and many other types of neural network training al-
gorithms, suffer from a probiem called the stability/plasticity dilemma. If a
learning algorithm ig sensitive to new inputs (plastic), then it runs the risk
of forgetting prior learning (unstable). The ART networks were designed to
achieve learning stability while maintaining sensitivity to novel inputs.

In this chapter, the ART1 network was used to illustrate the key concepts
of adaptive resonance theory. The ART1 network is based on the Grossberg
competitive network of Chapter 15, with a few modifications. The key in-

novation of ART ig the use of “expectations.” As each input pattern is pre-
sented to the network, it is compared with the prototype vector that it most
closely matches {the expectation). If the match between the prototype and
the input vector is not adequate, a new prototype is selected. In this way,
previously learned memories {prototypes) are net eroded hy new learning.

One important point to keep in mind when analyzing ART networks, is
that they were designed to be biologically plausible mechanisms for learn-
ing. They have as much to do with understanding how the brain works as
they do with inspiring practical pattern recognition systems. For this rea-
son, the learning mechanisms are required to use only local information at
each neuron, This is not true of all of the learning rules discussed in this
text.

Although the ART networks solve the problem of learning instability, in
which the network weights never stabilize, there is another stability prob-
lem that we have not yet discussed. This is the stability of the differential
equations that implement the short-term memory equations of the net-
work. In Layer 2, for example, we have a set of differential equations with
nonlinear feedhack. Can we make some general statement about the sta-
hility of such systems? Chapter 17 will present a comprehensive discussion
of this problem.

16-45

16 Adaptive Resonance Theory

Further Reading

16-46

[CaGr87a)

[CaGr87b)

[CaGra0]

[CaGrMa92]

[CaGrRe91])

G. A. Carpenter and S. Grossberg, “A massively parallel ar-
chitecture for a self-organizing neural pattern recognition
machine,” Computer Vision, Graphics, and Image Process-
ing, vol. 37, pp. 54116, 1987.

In this original presentation of the ART1 architecture, Car-
penter and Grossberg demonstrate that the architecture
self-organizes and self-stabilizes in response to an arbi-
frary number of binary input patterns. The key feature of
ART is a top-down matching mechanism.

G. A. Carpenter and S. Grossberg, “ART2: Self-organiza-
tion of stable category recognition codes for analog input
patterns,” Applied Optics, vol. 26, no, 23, pp. 49194930,
1987.

This article describes an extension of the ART1 architec-
ture that is designed to handle analog input patterns.

G. A. Carpenter and 8. Grossberg, “ART3: Hierarchical
search using chemical transmitters in self-organizing pat-
tern recognition architectures,” Neural Networks, vol. 3,
10. 23, pp. 129-152, 1990.

This article demonstrates how the Orienting Subsystem of
the ART networks could be implemented in biological neu-
rons through the use of chemical transmitters.

G. A. Carpenter, 8. Grossberg, N. Markuzon, J. Reynolds
and D. Rosen, “Fuzzy ARTMAP: An adaptive resonance ar-
chitecture for incremental learning of analog maps,” Pro-
ceedings of the International Joint Conference on Neural
Networks, Baltimore, MD, vol. 3, no. 5, pp. 309314, 1992,

The authors present a modification of the ARTMAP archi-
tecture to include fuzzy logic that enables better perfor-
manee in a noisy environment.

G. A. Carpenter, S. Grossberg and J. Reynolds, “ARTMAP:
Supervised real-time learning and classification of nonsta-
Honary data by a self-organizing neural] network,” Neural

Netwaorks, vol. 4, no. 5, pp. 169-181, 1991,

This article presents an adaptive resonance theory net-
work for supervised learning. The network consists of two
interconnected ART modules. One module receives the in-
put vector, and the other module receives the desired out-
put vector.

[Gros76]

[Gros82]

Further Reading

8. Grossberg, “Adaptive pattern classification and univer-
sal recoding; 1. Parallel development and coding of neural
feature detectors,” Biological Cybernetics, vol. 23, pp. 121-
134, 1976.

Grossberg describes a continuous-time competitive net-
work, inspired by the developmental physiology of the visu-
al cortex. The structure of this network forms the
foundation for other important networks,

S. Grossberg, Studies of Mind and Brain, Boston: D. Reidel
Publishing Co., 1982.

This beok is a collection of Stephen Grossberg papers from

the period 1968 through 1980. It covers many of the funda-
mental concepts used in later Grossberg networks, such as

the adaptive resonance theory networks.

16-47

16 Adaptive Resonance Theory

Exercises

n242
BnE =

=24+2
ang =

16-48

E16.1 Consider Layer 1 of the ART1 network with £ = 0.02 . Assume two neurons
in Layer 2, two elements in the input vector and the following weight ma-

trix and input:
.
21 _ 10 1i 0
W o= op=-
L L u

Algo assume that neuron 2 of Layer 2 i active.
i. Find and plot the response n' if *5' = 2 and ' = 3.
ii. Find and plot the response n' if ' =4and b = 5.
iii. Find and plot the response n’ if ‘b =4 and B = 4.

iv. Check to see that the answers to parts (i)(iii) satiafy the steady
state response predicted by Eq. {(16.21). Explain any ineonsisten-
cies.

v. Check your answers to parts (1){iii) by writing a MATLAB M-file to
gimulate Layer 1 of the ART1 network. Use the ode45 routine. Plot
the response for each case.

E16.2 Consider Layer 2 of the ART1 network with the following parameters:

12, T
2 | (W) |

12, T

W)

e=01 W

L P o]
o ik

and

Fon < {10(;:)2, n20
o, n<h

Assume that the output of Layer 1 is

f

i. Write the equations of eperation of Layer 2, and simulate and plot
the response if the following bias vectors are used:

wga2
ans =

Exercises

oo -

ii. Repeat part (i} for the following bias vectors:

[v-8

iii. Repeat part (i) for the following bias vectors:

-

iv. Do the results of all of the previous parts satisfy the desired steady
state response described in Eq. (16.37)? If not, explain why.

E16.3 Consider the Orienting Subsystem of the ART1 network with the following
parameters:

e=01 =1 =2,

The inputs to the Orienting Subsystem are

1
1
p:lﬁ:
1

- 2o o

i. Find and plot the response of the Orienting Subsystem »’ (1) , for
a=05 =4 (p=10125)

il. Find and plet the response of the Orienting Subsystem n’ (#) , for
a=05 B=2 (p=025)

iil. Verify that the steady state conditions are satisfied in parts (i) and
{ii),

iv. Check your answers to parts (i) and (ii) by writing a MATLAB M-file
to simulate the Orienting Subsyatem,

16-49

16 Adaptive Resonance Theory

16-50

»2+2
ans =

El6d

El6.5

El6.6

E16.7

To derive the steady state conditions for the L1-L2 and L.2-11 learning
rules, we have made the assumption that the input pattern and the neuron
outputs remain constant until the weight matrices converge. This is called
“fast learning.” Show that this fast learning assumption is equivalent to
setting the learning rate ¢ to 1 in the instar and outstar learning rules pre-
sented in Chapter 13 and the Kohonen competitive learning rule in Chap-
ter 14.

Train an ART1 network using the following input vectors:

4; i] | i
1 0] I

p = ‘p = ‘p = !p = .
TR o7 o7
| i 0 1

Use the parameter { = 2, and choose $5=38 categories).
i. Train the network {o convergence using p = 0.3.
ii. Repeat part (i) using p = 0.6.
iii. Repeat part (ii) using p = 0.9.

The ART1 algorithm can be modified to add a2 new neuron in Layer 2 when-
ever there iz no adequate match between the existing prototypes and the
input pattern. This irgr]olves creating a new row of the W " matrix and a
new column of the W*' matrix. Describe how this would be done.

Write a Matlab M-file to implement the ART1 algorithm (with the modifi-
cation described in Exercise E16.6). Use this M-file to train an ART1 net-
work using the following input vectors {(see Preblem P16.7):

Bk

m P P D

Present the vectors in the order p —p,-p,—p,-p, (ie, p, is presented
twice in each epoch). Use the parameters { = 2 and p = 0.9, and choose
5" = 3 (3 categories). Train the network untii the weights have converged.
Compare your results with Problem P16.7.

n24+2
ans =

Exercises

E16.8 Recall the digit recognition problem deseribed in Chapter 7 (page 7-10).

Train an ART1 network using the digits 0--9, as displayed below:

Bl Eadgntal

B P P P P P2 P P

Use the parameter { = 2, and choose §% = 5 (5 categories). Use the Mat-

lab M-file from Exercise E16.7.
i. Train the network to convergence using p = 0.3.
ii. Train the network to convergence using p = 0.6.

iii. Train the network to convergence using p = 0.9.

iv. Discuss the results of parts (i}iil). Explain the effect of the vigi-

lance parameter,

16-61

17 stability

Objectives

Objectives 17-1
Theory and Examples 17-2
Recurrent Networks 17-2
Stabiiity Concepts 17-3
Definitions 17-4
Lyapunov Stability Theorem 17-5
Pendulum Example 17-6
LaSalle's Invariance Theorem 17-12
Definitions 17-12
Theorem 17-13
Example 17-14
Comments 17-18
Summary of Resulis 17-19
Soived Problems 17-21
Epilogue 17-28
Further Reading 17-29
Exercises 17-30

The problem of “convergence” in a recurrent network was first raised in our
discussion of the Hopfield network, in Chapter 3. It was noted there that
the output of a recurrent network could converge to a stable point, oscillate,
or perhaps even diverge. The “stability” of the steepest descent process and
of the LMS algorithm were discussed in Chapters 9 and 10, respectively.
The stahility of Grossberg's continuous-time recurrent networks was dis-
cussed in Chapter 15.

In this chapter we will define stability more carefully. Qur objective is to
determine whether a particular set of nonlinear equations has points (er
trajectories) to which its output might converge. To help us study this topic
we will introduce Lyapunov's Stability Theorem and apply it to a simple,
but instructive, problem. Then, we will present a generalization of the
Lyapunov Theory: LaSalle’s Invariance Theorem. This will set the stage for
Chapter 18, where LaSalle’s theorem is used to prove the stability of
Hopfield networks,

17-1

17 Stability

Theory and Examples

Recurrent Networks

We first discussed recurrent neural networks, which have feedback connee-
tions from their outputs o their inputs, when we introduced the Hamming
and Hopfield networks in Chapter 3. The Grossberg networks of Chapters
15 and 16 also contain recurrent connections, Recurrent networks are po-
tentially more powerful than feedforward networks, since they are able to
recognize and recall temporal, as well as spatial, patterns. However, the
behavior of these recurrent networks is much more complex than that of
feedforward networks,

For feedforward networks, the output is constant (for a fixed input) and is
a function only of the network input. For recurrent networks, however, the
output of the network is a function of time. For & given input and a given
initial network output, the response of the network may converge to a sta-
ble output. However, it may also oscillate, explode to infinity, or follow a
chaotic pattern. In the remainder of this chapter we want to investigate
general noulinear recurrent networks, in order to determine their long-
term behavior.

We will consider recurrent networks that can be described by nonlinear dif-
ferential equations of the form:

ga(n =g .pny . 7.)

Here p(r) is the input to the network, and a (1) is the output of the net-
work. {See Figure 17.1.)

Nonlinear Recurrent Network

{ N
p .
a I) a .
a0y
. J

da()fd: = g(aln),p(1).n)

Figure 17.1 Nonlinear, Continuous-Time, Recurrent Network

172

Stability Concepts

We want to know how these systems perform in the steady state. We will
be most interested in those cases where the network converges to a con-
stant output - a stable equilibrium point. A nonlinear system can have
many stable points. For some neural networks these stable points repre-
sent stored prototype patterns. When possible, we would like to know
where the stable points are, and which initial conditions a (0) converge to
a given stable point (i.e., what is the basin of attraction for a given stable

point?).

Stability Concepts

./

To begin cur discussion, let’s introduce some basic stability concepts with
asimple, ntuitive example. Consider the motion of a ball bearing, with dis-
sipative friction, in a gravity field. In the adjacent figure, we have a ball
bearing at the bottom ¢f a trough {point a*). If we move the bearing toa
different position, it will oscillate back and forth in the trough, but, because
of friction, it will eventually settle back to the bottom of the trough. We will
call this position an asympiotically stable point, which we will define more
precisely in the next section.

Consider now the second figure in the left margin. Here we have a ball
bearing positicned at the center of a flat surface. If we place the bearing in
a different position, it will not move. The position at the center of the sur-
face is not asymptoticaily stable, since the bearing does not move back to
the center if it is moved away. However, it is stable in a certain sense, be-
cause at least the ball does not roll farther away from the center point. We
call this kind of point siable in the sense of Lyapunov, which we will define
in the next section.

Now consider the third figure in the left margin. The ball bearing is posi-
tioned at the top of a hill. This is an equilibrium point, since the ball will
remain at the top of the hill, if we position it carefully. However, if the bear-
ing is given the slightest disturbance, it will roll down the hill. This is an
unstable equilibrium point.

In the next chapter we will try to design Hopfield neural networks, in
which the stored prototype patterns will be asymptotically stable equilibrt-
um points. We would also like the basins of attraction for these stable

points Lo be as large as possible.

For example, consider Figure 17.2. We would like to design neural net-
works with large basing of attraction such as those of Case A. One can cer-
tainly imagine that if a ball that rolls with high friction is placed (with zero
velocity) in any one of the basins of Cage 4, it will remain in that basin and
will eventually find its way to the bottom (stable point). However, Case B
is more complicated. If, for instance, one places a ball with friction at point
P, it is not clear which stable point will eventually capture the ball. The ball
may not come to rest at the stable point closest to P. It is also difficult to
tell how large the basin of attraction is for a specific stable point.

17-3

17 Stabdility

174

Equilibrium Point

Stahility

Case A Large Basin of Attraction
B —
Case B

Complex Region of Attraction

Figure 17.2 Basins of Attraction

Now that we have presented some intuitive notions of stability, we will
pursue them with mathematical rigor in the remainder of this chapter.

Definitions

We will begin with specific mathematical definitions of the different types
of stability discussed in the previous section. In these definitions we will be
talking about the stability of an equilibrium point; a point a* where the de-
rivative in Eq. (17.1) is zero. For simplicity, we will talk specifically about
the point a* = 0, which is referred to as the origin. This restriction does
not affect the generality of our discussion.

Definition 1: Stability (in the sense of Lyapunov)

The origin is a stable equilibrium point if for any given value £> 0 there
exists a number 3 (2) >0 such that if Ja (0)]) < §, then the resulting motion
a(t) satisfies la(nll<e for :>0.

This definition says that the system output is not going to move too far
away from & given stable point, so long as it is initially close to the stable
point. Let’s say that you want the system output to remain within a dis-
tance & of the origin. If the origin is stable, then you can always find a dis-
tance § (which may be a function of €), such that if the system output is
within & of the origin at time : = 0, then it will always remain within ¢ of
the origin. The position of the ball (with zero velocity) in the figure to the
left ig stable in the sense of Lyapunov, so long as the ball bearing has fric-
tion. If the ball bearing did not have friction, then any initial velocity would
produce a trajectory a(r) in which the position would go to infinity. (The
vector a(#) in this case would consist of the position and the velocity of the
ball,)

Asymptotic Stability

o/

Positive Definite

Positive Semidefinite

Lyapunov Stability Theorem

Next, let’s consider the stronger concept of asymptotic stability.
Definition 2: Asymptotic Stability

The origin is an asymptotically stable equilibrium point if there exists a
number § > 0 such that whenever |a (0)] < & the resulting motion satisfies
la(s)f =0 ast— .

This is a stronger definition of stability. It says that as long as the output
of the system is initially within some distance & of the stable point, the out-
put will eventually converge to the stable point. The position of the ball
(with zero velocity} in the diagram in the left margin is asymptotically sta-
ble, so long as the ball bearing has friction. If there is no friction, the posi-
tion is only stable in the sense of Lyapunov.

We would like to build neural networks that have many specified agymp-
totieally stable points, each of which represents a prototype pattern. This
is the design ohjective we will use for building Hopfield networks in Chap-
fer 18.

In addition to the stability definitions, there is another concept we will use
in analyzing stability. It is the concept of a definite function. The next two
definitions will clarify this concept.

Definition 3: Positive Definite

A scalar function V(a) is positive definite if V(0) = 0 and V{a) >0 for
az0.

Definition 4: Positive Semidefinite

A scalar function ¥V (a) is positive semidefinite if V (a) 20 forall a.
(These definitions can be modified appropriately to define the concepts nag-

ative definite and negative semidefinite.) Now that we have defined stabil-
ity, let’s consider a method for testing stability.

Lyapunov Stability Theorem

One of the most important approaches for investigating the stebility of
nonlinear systems is the theory intreduced by Alexandr Mikhailovich
Lyapunov, a Russian mathematician, Although his major work was first
published in 1892, it received little attention outside Russia until much lat-
er. In this section we will discuss one of Lyapunov's most powerful tech-
niques for stability analysis — the so-called direct method.

175

17 Stability

Consider the autonomous (unforced, no explicit time dependence) system:

da
oo . 72
ik (a) (17.2)

The Lyapunov stability theorem can then be stated as follows,

Theorem 1: Lyapunov Stability Theorem

If a positive definite function V (a) can be found such that 4V (a) /dr is
negative semidefinite, then the origin (a =) is stable for the system of
Eq. (17.2). If a positive definite function V (a) can be found such that
dV (a) /d: is negative definite, then the origin {(a = 0) is asymptotically
stable. In each case, V is called a Lyapunov function of the system.

You can think of V (a) as a generalized energy function. The concept of the
theorem is that if the energy of a system is continually decreasing

(dV (a) /dt negative definite), then it will eventually settle at some mini-
muimn energy state. Lyapunov’s insight was to generalize the concept of en-
ergy, so that the theorem could be applied to systems where the energy is
difficult to express or has no meaning.

We should note that the theorem only states that if a suitable Lyapunov
function V (a) can be found, the system is stable. It gives us no information
about the stability of the system in those situations where we are unable to
find such a function,

Pendulum Example

We can gain some insight into Lyapunov’s stability theorem by applying it
to & simple mechanical system. This system is very simple, and its opera-
tion is easy to visualize, and yet it illustrates important concepts that we

will apply to neural network design in the next chapter. The example sys-
tem we will use ia the pendulum shown in Figure 17.3.

mg
Figure 17.3 Pendulum

176

Pendulum Exampile

Using Newton's second law (F = ma), we can write the equation of opera-
tion of the pendulum as

2

ml ﬁz-({-)) = —cg—e~mgsin (0), (17.3)
dt dt
ar
T »
mi 2242 mgsin(e) =0, (17.4)
4t dt

where 9 is the angle of the pendulum, = is the mass of the pendulum, ! is
the length of the pendulum, ¢ is the damping coefficient, and g is the grav-
itational conatant.

The first term on the right side of Eq. (17.3) is the damping foree, which is
proportional to the velocity of the pendulum. It is this term that represents
the energy dissipation in the gystem. The second term on the right side of
Eq. (17.3) is the gravitational force, which is proportional to the sine of the
angle of the pendulum. It is equal to zero when the pendulum is straight
down and has its maximum value when the pendulum is horizontal.

If the damping coeificient is not zero, the pendulum will eventually come
to rest hanging down in the vertical position. This solution might be viewed
as 8 = 0, but more generallyitis 6 = 2zn, where n = 0,21, 12, £3, ...
That is, given the appropriate initial conditions, the pendulum might sim-
ply settle to © = 0 or it might rotate once to give a solution of 8 = 2x, elc.
There are many possible equilibrinm solutiens. (The positions 8 = #n, for
odd values of », are also equilibrium points, but they are not stable.)

To analyze the stability of this system, we will write the pendulum equa-
tion in state variable form, where it will appear as a pair of first-order dif-
ferential equations. Let's choose the following state variables:

0, =0anda = 2. (175)

We can write equations for the pendulum in terms of these state variables
as follows:

da,

E = az, (17-6)
day, g ¢
5 = 7S (@) = =8y a7.n

1%.7

o tvm—— v cdmie e P T S

17 Stability

17.8

Now we want to investigate the stability of the origin (a = 0) for this pen-
dulum gystem. (The origin corresponds to a pendulum angle of zero and a
pendulum velocity of zero.) We first want to check that the origin is an equi-
librium point. We do this by substituting a = 0 into the state egquations.

da

El =a, = 0, (17.8)

Y. _c -
6 = IEsm(O) ml{ﬂ) =0 (179

Bince the derivatives are zero, the origin is an equilibrium point.

Next we need to find a Lyapunov function for the pendulum, For this ex-
ample we will use the energy of the system as the Lyapunov function V. To
obtain the total energy of the pendulum, we add the kinetic and potential
energies.

Via) = %Jm!z(a?}2 +mgl(1-cos(a}) (17.10)

In order to test the stability of the system, we need 1o evaluate the deriva-
tive of V with respect to time.

do . r . ov(day) av da2]
aV(a) = [VV(a)] 'g(a) = E[E }+a‘al(3 ‘ (17.11)

The partial derivatives of V (a) can be obtained from Eq. (17.10), and the
derivatives of the two state variables are given by Eq. (17.6} and Eq. (17.7).
Thus we have

%V(a) = (mglsin (a,))a, + (mf"ai}(ﬂfsin(al}-éaz) (17.12)

The (mgisin(a,))a, terms cancel, which leaves only
d 2
EI-EV (a) = —cl(ay)"<0. (17.18)

In order to prove that the origin (a = 0) is asymptotically stable, we must
show that this derivative is negative definite. The derivative is zero at the
origin, but it also is zero for any value of ¢, , as long as a, = 0. Thus,
dV(a) /dt is negative semidefinite, rather than negative definite. From
Lyapunov's theorem, then, we know that the origin is a stable point. How-
ever, we cannot say, from the theorem and this Lyapunov function, that the
origin is asymptotically stable.

&lmm

Pendulum Example

In this case we know that as long as the pendulum has friction, it will even-
tually settle in 2 vertical position, and, therefore, that the origin is asymp-
totically stable. However, Lyapunov's theorem, using our Lyapunov
function, can only tell us that the origin is stable. To prove that the origin
is asymptotically stable, we will need a refinement of Lyapunov’s theorem,
LaSalle’s Invariance Theorem. We will discuss LaSalle’s theorem in the
next section.

First, let's investigate the pendulum further, by taking a specific numerical
example. let g = 98, m =1, =98, c¢=196.Now we can rewrite the

state equations for the pendulum as

@ . (17.14)
dt 2

da

—?% = sin (a,) -0.2a, . (17.15)

dr

Expressions for V and its derivative follow:

V=08 [Fia) s (1-eos ()], (17.16)
g = ~(19.208) {a,)’. (17.17)

Note that dV/dr is zero for any value of a, as long as a, = 0.

Figure 17.4 displays the 3-D and contour plots of the energy surface, V, as
the angle varies between - 10 and +10 radians and the angular velocity var-
ies between -2 and 2 radians per second. Note that in this range there are
three possible minimum points of the energy surface, at 0 and +2n.

=>
5
=

Figure 17.4 Pendulum Energy Surface

179

17 Stability

17-10

(We will find in Chapter 18 that the minimum points of the Lyapunov func-
tion can correspond to prototype patterns in an autoassociative neural net-
work. The pendulum system, like recurrent neural networks, has many

minimum points.)

Of course, the energy plots shown in Figure 17.4 do not tell us in what way,
or by what route, the pendulum finds a particular energy minimum. To
show this, we have plotted the energy contours, and one particular path for
the pendulum, in Figure 17.5. The response trajectory, shown by the blue
line, starts from an initial position, 4, (0) , of 1.3 radians (74°) and an ini-
tial velocity, a,(0) . of 1.3 radians per second. The trajectory converges to
the equilibrium point a = 0.

Figure 17.6 Pendulum Response on State Variable Plane

A time response plot of the two state variables is shown in Figure 17.6. No-
tice that, because the initial velocity is positive, the pendulum continues to
move up initially. (Check to see if this agrees with Figure 17.5.) It reaches
a maximum angle of about 2 radians before falling back down. The oscilla-
tions continue to decay as both state variables converge to zero.

In this case, both state variables converge to zero. However, this is not the
only possible equilibrium point, as we wil! show later.

Tt is also interesting to plot the pendulum energy, v, as in Figure 17.7. Re-
call from Eq. (17.17) that the energy should never increase; this is consis-
tent with Figure 17.7, Eq. (17.17) also predicts that the derivative of the
energy curve should only be zere when the velocity, a, , is zero. This is also
verified if we compare Figure 17.7 with Figure 17.6. At those times where
the @, graph crosses the zero axis, the slope of the energy curve is zero.

Pendulum Example

2}:'\\“|
'
|II
. . .
Ii r'l/\'n'll :
i Yy A
A AR
lI|II I II'I | '(JJ'J -
IRy
W
e az 1
@ |
' WS TTw T m]

Figure 17.6 State Variables a, (blue) and a, vs. Time

Notice that, although there are points where the derivative of the energy
curve is zero, the derivative does not.remain zero until the energy is alse
zero, This observation will lead to LaSalle’s Invariance Theorem, which we
will discuss in the next section. The key idea of that theorem is to identify
those points where the derivative of the Lyapunov funetion is zero, and
then to determine if the system will be trapped at those points. (Those plac-
es where a trajectory can be trapped are called invariant sets.) If the only
point that can trap the trajectory, and that has zero derivative, is the ori-
gin, then the origin is asymptotically stable.

'h,—“—————- _—————— ——

'

P

3
S

bt

Figure 17.7 Pendulum Lyapunov Function {Energy} vs. Time

The particular pendulum behavior shown in the graphs in this section de-
pends on the initial conditions of the two state variables. The choice of a dif-

ferent set of initial conditions may give results entirely different from those
shown in these plots. We will expand on this in the next section.

1711

et o Ad ket A A A A b =

17 Stability

To experiment with the pendulum, use the Neural Network Design Demon-
stration Dynamic System (nnd17ds).

LaSalle’s Invariance Theorem

Lyapunov Function

Set Z

112

The pendulum example demonstrated a problem with Lyapunov's theorem.
We found a Lyapunov function whose derivative was only negative
semidefinite (not negative definite), and yet we know that the origin is as-
ymptotically stable for the pendulum system. In this section we will intro-
duce a theorem that clarifies this uncertainty in Lyapunov’s theorem. It
does 80 by defining those regions of the state space where the derivative of
the Lyapunov function is zero, and then identifying those parts of that re-
gion that can trap the trajectory.

Before we discuss LaSalle’s Invariance Theorem, we first need to introduce
the following definitions.

Definitions
Definition 5: Lyapunov Function

Let V be a continuously differentiable function from %" to R, If G is any
subset of ", we say that V is a Lyapunov function on G for the system
da/dt = g(a) if

dv (a)

T
= (VV(a)) g{(a} (17.18)

does not change sign on G .

This is a generalization of our previous definition of the Lyapunov function,
which we used in Theorem 1. Here we do not require that the function be
positive definite. In fact, there is no direct requirement on the function it-
self (except that it be continuously differentiable). The only requirement is
on the derivative of ¥. The derivative cannot change sign anywhere on the
set . Note that the derivative will not change sign if it is negative
semidefinite or if it is positive semidefinite.

We should note here that we have not yet explained how to choose the set
G . We will use the following definitions and theorems to help us select the
best G for a given system,

Definition 6: Set Z

Z = {a: dV(a) /dt =0, ain the closure of G} . {17.19)

Invariant Set

Set L

LaSalle's Invariance Theorem

Here “the closure of G ” includes the interior and the boundary of . This
is a key set. It contains all of those points where the derivative of the
Lyapunov function is zero. Later we will want to determine where in this
set the system trajectory can be trapped.

Definition 7: Invariant Set

Aset of points in R is invariant with respect to da/dt = g(a) if every so-
lution of da/dt = g(a) starting in that set remains in the set for all time.

If the system gets into an invariant set, then it can’t get out.

Definition 8: Set I,

L i defined as the largest invariant set in Z.

This set includes all possible points at which the solution might converge.
The Lyapunov function does not change in L (because its derivative is ze-
ro}, and the trajectory will be trapped in L (because it is an invariant set),
Now, if this set has only one stable point, then that point is asymptotically
stable. This is, in essence, what LaSalle’s theorem will say.

Theorem

LaSalle’s Invariance Theorem extends the Lyapunov Stability Theorem,
We will use it to design Hopfield networks in the next chapter. The theorem
proceeds as follows [Lasaé7).

Theorem 2: LaSalle’s Invariance Theorem

If V is a Lyapunov function on G for da/dt = g(a) , then each solution
a(r) thatremainsin G for all 1> () approaches L°= LU [} a8t > .
(G is a basin of attraction for L, which has all of the stable points.) If all
trajectories are bounded, then a(¢¥) 3 L as t 5 o,

If a trajectory stays in G, then it will either converge to I, or it will go to
infinity. If al trajectories are bounded, then all trajectories will converge
to L.

There is a corollary to LaSalle’s theorem that we will use extensively. it in-
volves choosing the set G in a special way.

17.13

17 Stability

17.14

*
-@-lhﬂ-'

Corollary 1: LaSalle’s Coroliary
Let G be a component (one connected subset) of

Qn = {a:V{a) <n}. i17.20)

Assume that G is bounded, dV (a) /d: <0 onthe set G, and let the set
L = closure {L~ G) be a subset of G. Then L° is an attractor, and G is
in its region of attraction.

LaSalle’s theorem, and its corollary, are very powerful. Not only can they
tell us which points are stable (L®), but they can also provide us with a par-
tial region of attraction {G). (Note that L° is constructed differently in the
corollary than in the theorem.)

To clarify LaSalle's Invariance Theorem, let’s return to the pendulum ex-
ample we discussed earlier.

Example

Let's apply Corollary 1 to the pendulum example. The first step in using
the corollary will be to choose the set Q. This set will then be used to select
the get G (a component of Q,h

For this example we will use the value n = 100, therefore Q. , will be the
set of points where the energy is less than or equal to 100,
Q0 = {a:¥V(2) €100} (17.21)

This set is displayed in blue in Figure 17.8.

dy g

— T
4>

""*-uhh__h__h_‘_;,_'__/
//_ - T

H"—-—-.____

/(/ —
- »
—

&
&
5

Figure 17.8 [llustration of the Set Q,,,

The next step in our analysis is to choose a component (connected subset)
of Q4 for the set G. Since we have been investigating the stability of the

LaSalle’s Invariance Theorem

origin, let’s choose the component of Q that contains a = 0. The result-
ing set is shown in Figure 17.9.

e
-
—_—
e

Figure 17.9 Dlustration of the Set G

Now that we have chosen &, we need to check that the derivative of the
Lyapunov function is less than or equal to zero on G . From Eq. (17.17) we
know that 4V (a} /dr is negative semidefinite. Therefore it will certainly be
less than or equal to zero on G,

We are now ready to determine the attractor set L°. We begin with the set
L, which is the largest invariant set in Z.

Z = {a: dV{a}/dt = 0, a in the closure of G}

(17.22)
= {a: ¢, =0, ain the closure of G} .
This can also be written as
Z = {aa,=0,-16<ga 516} . (17.23)

We know from Eq. (17.17) that the derivative of V (a) is only zero when the
velocity is zero, which corresponds to the a, axis. Therefore Z consists of
the segment of the a, axis that falls within G. The set Z is displayed in
Figure 17.10.

The set L is the largest invariant setin Z, Tofind L we need to answer the
question: If we start the pendulum from an initial position between -1.5
and 1.6 radians, with zero initial velocity, will the velocity of the pendulum
remain zero? Clearly the only such initial condition would be 0 radians
(straight down). If we start the pendulum from any other position in Z, the
pendulum will start to fall, so the velocity will not remain zero and the tra-
jectory will move out of Z. Therefore, the set L consists only of the origin:

L={aa=0}. (17.24)

17.15

17 Stability

+
+|NN

17-16

I
/

L \ / Iy Sy
VANV
oA '-,I '\‘ LA o

f.' llu' I|I ".I I,"' I.' lll -II III- | Z I|I II'.
[II III ' \ I| 'I
A= 1
i [

| Sl |

/ \I‘\ II Vi I". i ! ;b Ilu ! ."l

" I'. . | l\. IR Y
R W FEOWN ST
RUZ\ZR\Y R

" s ' L L b s
3 \\\\/ ,.-"f _\\\\x/‘f;f}(b \._/'// f

N S U G
2§ - [) "

a

Figure 17.10 Ilustration of the Set 7

The set L° is the closure of the intersection of L and G, which in this case
is simply L:

L° = closure(LnG) = L= {a:a=0}. (17.25)
Therefore, based on LaSalle’s corollary, L° is an attractor (asymptotically

stable point} and G is in its region of attraction, This means that any tra-
jectory that starts in G will decay to the origin.

Now suppose that we had taken & bigger region for Q, , such as
Q,, = {a:(V(a) <300)} . (17.26)

This set is shown in gray in Figure 17.11.
wauraNbaN
o / / \J

: /z

NAN

Figure 17.11 Ilustration of G = Q,,, (Gray)and Z

-1

R

E! [}

Welet G = Q,,, since £2,,, has only one component. The set Z is given by

LaSalie’s Invariance Theorem

Z = {a:a,=0}, (17.27)

which is shown by the blue bar on the horizontal azis of Figure 17.11. Thus,
it follows that

L= L= {aa=1nn a,=0}. (17.28}

This is because there are now several different positions within the set Z
where we can place the pendulum, without causing the velocity to become
nonzero. The pendulum can be pointing directly up or directly down. This
corresponds to the positions tsn for any integer . If we place the pendu-
lum in any of these positions, with zero velocity, then the pendutum will re-
main stationary. We can show this by setting the derivatives equal to zero
in Eq. (17.14) and Eq. (17.15).

da,

- =a=0, (17.29)

da
Ez = -sin (a,) - 02a; = —sin (g;) = 0] = {q, = 1am) (17.30)

For this choice of G = Q,,, we can say very little about where the trajecto-
ry will converge, We trieéogo increase the size of our known region of attrac-
tion for the origin, but this G is a region of attraction for all of the
equilibrium points. We made G too large. The set L° is illustrated by the
blue dots in Figure 17,12,

Figure 17.12 The Set L°

We cannot tell which of the equilibrium points (blue dots) will attrect the
trajectory. All we can say is that if we start somewhere in (2,,,, one of the
equilibrium points will attract the system solution, but we cannot say for
sure which one it will be. Consider, for instance, the trajectory shown in

17-17

17 Stability

17.18

Figure 17.13. This shows the pendulum response for an initial pesition of 2
radians and an initial velocity of 1.5 radians per second. This time the pen-
dulum had enough velocity to go over the top, and it converged to the equi-
librium point at 2x radians.

Now that we have discussed LaSalle’s Invariance Theorem, you might want
to experiment some more with the pendulum, in order to investigate the re-
gions of attraction for the various stable points. To experiment with the pen-
dulum, use the Neural Network Design Demonstration Dynarmic Sysiem
(nnd17ds).

Figure 17.13 Pendulum Trajectory for Different Starting Conditions

Comments

The keys to LaSalle’s theorem are the choices of the Lyapunov function V
and the set G. We want G to be as large as possible, because that will in-
dicate the region of attraction. However, we want to choose V so that the
set Z, which will contain the attractor set, is as small as possible.

For instance, we could try ¥ = 0. This is a Lyapunov function for the en-
tire space R, since its derivative is zero {(and therefore doesn't change
sign) everywhere. However, it gives us no information since Z = ®".

Notice that if V, and V, are both Lyapunov functions on G, and 4V, /dt
and dV,/dt have the same sign, then V = V, +V, is also a Lyapunov fune-
tion, where Z = Z, n Z,. If Z is smaller than both Z,and Z,, then Z is a
“better” Lyapunov function than either V| orV,. V is always at least as
good aseither V| or V,, since Z can never be larger than the smaller of Z,
and Z, . Therefore, if you have found two different Lyapunov functions and
their tierivatives have the same sign, then add them together and you may
have a better function. The best Lyapunov function for a given system is
the one that has the smallest attractor set and the largest region of attrac-
tion.

Summary of Results

Summary of Results

Stability Concepts

Definitions
Definition 1: Stability (in the sense of Lyapunov)

The origin is a stable equilibrium point if for any given value £> 0 there
exists a number & () > 0 such that if |a (0)|| < §, then the resulting motion

2 (1) satizsfies ja ()] <& for 1>0.

Definition 2: Asymptotic Stability

The origin is an asymptotically stable equilibrium point if there exists a
number § > 0 such that whenever |a {0} <5 the resulting motion satisfies
Ja{0)] 20 as t 5o,

Definition 3: Positive Definite

A scalar function V(a) is positive definite if V(0) = 0 and V{a) >0 for
azl,

Definition 4: Positive Semidefinite
A scalar function V(a) ig positive semidefinite if V (a) 20 for all a.

Lyapunov Stability Theorem
Consider the autonomous (unforced, no explicit time dependence) system
h —
F7i g(a).

The Lyapunov stability theorem can then be stated as follows.

Theorem 1: Lyapunov Stability Theorem

If a positive definite function V (a) can be found such that 4V (a) /dt is
negative semidefinite, then the origin (a = 0) is stable for this system. Ifa
positive definite function V{a} can be found such that 4V (a) /dr is nega-
tive definite, then the origin (a = 0)is agymptotically stable. In each case,
V is called a Lyapunov function of the system.

1719

17 Stability

LaSalle’s Invariance Theorem

Definitions
Definition &: Lyapurov Function

Let V be a continuously differentiable function from R* to R .If G is any
subset of K", we say that V is a Lyapunov function on G for the system
da’/dr = g(a) if

OO
t
does not change sign on G.
Definition 6: Set Z
Z = {a: dV(a)/dt=0, ainthe closure of G} . (17.31)

Definition 7: Invariant Set

A set of points G in X" is invariant with respect to da/di = g (a) f every
solution of da/dr = g(a) starting in G remains in G for all time.

Definition 8: Set L

L is defined as the largest invariant set in Z.

Theorem

Theorem 2: LaSaile’s Invariance Theorem

If V is a Lyapunov function en G for da/dr = g{a) , then each solution
a(f) thatremains in G for all >0 approaches L°= LU {=} ag o,
(G is abasin of attraction for I, which has all of the stable points.} If all
trajectories are bounded, then a(r) > L as t — oo,
Corollary 1: LaSalle's Corollary
Let G be a component (one connected subset) of

Q, = {aV(a)<n}. (17.32)

Assume that G is bounded, 4V {(a) /di <0 on the set G, and let the set
L® = closure (LN G) be a subset of G. Then L° is an attractor, and G is
in its region of attraction.

17-20

Solved Problems

Solved Problems

P17.1

P17.2

P173

Test the stability of the origin for the following system.
day/dt = ~a,+ (a,)°
da,/dt = —a,{a +1)
The basic job here is to find a Lyapunov V (a) that is positive definite and

has a derivative that is negative semidefinite or, better yet, negative defi-
nite. (The latter is a stronger condition.)

Letustry V(a) = {a])2+ (az)z.The derivative of V{a) is

dV{a) _ (VV}T[@] av(dﬂ,] E)V[dazj’

dr @) " daNa) TwNd
or
db;# = 2a,(~a + (az}z} +2a,(~ay{a + 1)) = —2(‘31}2'2{52)2'

The derivative dV{a) /d¢ is negative definite. Therefore, the origin is as-
ymptotically stable,

Test the stability of the origin for the following system.
da/dt = —(aI)s
da/dt = -5(a,)
Let us try V(a) = () 24 (a,) ’ Then we have
‘ﬁ’d(t—“}- = 2a,(-(8,)%) +2a,(-5(a,)) = ~2(a)"~ 10(a;)".

Here again, 4V (a) /ds is negative definite, and therefore the origin is as-
ymptotically stable.

Consider the mechanical system shown in Figure P17.1. Thisisa
spring-mass-damper system, with a nonlinear spring. We will de-
fine ¢, = x and a, = dx/dt. Then the equations of motion are

da,/dt = a,,

1721

17 Stability

da,/dt = ~ (al)j—az (nonlinear spring} .
Consider the candidate Lyapunov function
Vi) = 30e) 5’
Use the corollary to LaSaile’s invariance theorem to provide as

much information as possible about the equilibrium points and ba-
sins of attraction.

u RE
7

Figure P17.1 Mechanical System
First calculate the derivative of V(a) as

dv(a) _av(da;) av(day) 1 3 _ 2
7 _B?I(I)-ra—%(—&-r-] = (g} ay+a,(~(a) -a) = -(a)".

Thus, d¥/dt does not change sign on %2,
Now let us define

G = Qn = {a: V{a) €1}

and consider the case for n = 1. A contour plot of V{a) is shown in Figure
P17.2. The set Q, is indicated in blue on the plot.

f aH\ \l

\ |

|

ak
-

Figure P17.2 Contour Plot of V (8) and Q,

17-32

Solved Problems

Now we need to determine the set Z.

Z= {a:dV/dr=0,a intheclosure of G} = {a:a,=0,a inthe closure of G}

or
Z= {a:a,=0 —Jis;:,sﬁ}

Next we find the set L. Since a = 0 is the only invariant set,

L= {a a=0 a4=0}.

B

is an attractor and £, is in its region of attraction.

Therefore, the origin,

Further, we can increase 1 to show that the entire %’ is the basin of at-
traction for the origin.

Figure P17.3 shows the reaponse of the spring-mass-damper from an initial
position of 2 and an initial velocity of 2. Note that the trajectory is parallel
to the contour lines when the trajectory crosses the a, axis. This agrees
with our earlier result, which showed that the derivative of the Lyapunov
function was zero whenever a, = 0. Fortunately, the 4, axis is not an in-
variant set (except for the origin); therefore the trajectory is only attracted
to the origin.

ra
| —
e

=

Figure P17.3 Spring-Mass-Damper Response

1723

17 Stability

P17.4 Counsider the following nonlinear system:

da,/dt = a,((a)* + (a) - 4) -a,

day/dt = a,+a,((a) + (a)" -4 .
This system has two invariant sets, the origin
{a: a=01},

and the circle

{a [al)2+ (02)2 =41,
Agsuming the candidate Lyapunov function

Via) = (a,) + (a)°,

use LaSalle’s Invariance Theorem to find out as much as you can
about the region of attraction for the origin.

QOur job, then, is to determine whether or not the given invariant sets rep-
resent a stable point or a stable trajectory. Let’s first take a look at dV/dr.
We recal] that

dvV(a) _ov ﬂ)){a_g(@)
dt ~ da\dt/ da,

and substitute for the various terms to give

dvd(:a) = 2a, [al((a1)2+ {a2}2—4] -a,] +2a,(a, +az{(a1)2+ {02}2—4)] .
This can be simplified to

T =20+ @ (e + ta)"-9).

Thus, 4V /dt is zero at a = 0 and on the circle {al)2+ (az}2 =

We now pick G, a region of attraction. I8 there a change of sign of ¢V /ds
over all %7 Yes, there is. As we go from outside the circle of radius 2 toits
interior, the sigh of 4V/dr changes from positive to negative. So dV/dr is
negative semidefinite inside the circle (a,) ‘s (“z) = 4. Let's picka G in-
side this circle, so that the circle will not be included. The following set will
do.

1724

Solved Problems

G=Q = {aViaysl}

Now we consider ;. There are just two places that dV/dr = 0, and the
only point inside €, is a = 0. Therefore,

Z={a a=0a=0}
and
L*=L=2Z.

The origin is the attractor, and Q, isin its region of attraction.We can use
the same arguments to show that the Jegion oj attraction for the origin in-
cludes all points inside the circle (a)" + (a,)” = 4.

PFigure P17.4 displalys two trajectories for this system, one that begins in-
gide the circle {2,)" + (a,) - 4, and one that begins outside the circle. Al-
though the circle is an invariant set, it is not an attractor. The only
attractor for this system is the origin.

Figure P17.4 Sample Trajectories for Problem P17.4

P17.5 Consider the following nonlinear system,
da(}/(d) =—(a(t) -1} (a(t) -2)
i. Find any equilibrium points for this system.

ii. Use the following candidate Lyapunov function to obtain
whatever information you can about the regions of attrac-
tion for the equilibrium points found in part (i). (Hint: Use
the coroliary to LaSalle’s Invariance Theorem.)

17-25

17 Stability

17-26

Via) = (a-2)°
i. To find the equilibrium points, we set da (¢} /dr = 0.
O0=—-(a-11(a-2) = a=1,a=2 areequilibium points

ii. To use LaSalle’s corollary, we need to find 4V/dr.
v . 3_"(1“]= 2(a-2) [-(a-1) (a-2)]=-2(a-1) (a-2)°

Now we let
G=Q, = {a V(g) <n}.
For example, try 1= 0.5. This gives

G=Qy = {a (a-2)’<05}.

Note that a solution of (a-2) 2<05 yields

t{a-2) <J0.5 or 13<a<27.

Thus, 4V /dt is negative definite on G .

Next we need to find the set Z, which contains those points within G where
dV/d: is zero. There are two points where dV/df iszero,a = 1 anda = 2.
Only one of these falls within & . Therefore

Z={a a=2}.
Now we need to find L, the largest invariant set in Z. There is only one
point in Z, and it is an equilibrinm point. Thus
L°=L=2.
This means that G is in the region of attraction for 2.

We can use the same argumento with values of i up to 1.0. S0 we can say
that the region for attraction for a = 2 must include at least

{a: 1<a<3}.

What if we consider those regions where 1 > 1? Then Z includeaboth 1 and
2, and dV/dt wiil change sign on G . Therefore we cannot say anything
about the region of attraction for ¢ = 1, using this Lyapunov function and
the corollary to LaSalle’s Invariance Theorem.

Solved Problems

Figure P17.5 displays some typical responses for this system. Here we can
see that the equilibrium point ¢ = 1 is actually unstable. Any initial con-
dition above a = 1 converges to @ = 2. Anythinglessthan ¢ = 1 goesto

minus infinity.

Figure P17.56 Stable and Unstable Responses for Problem P17.5

17.27

17 Stability

Epilogue

17.28

In this chapter we have presented the concept of stability, as applied to dy-
namic gystems. For nonlinear dynamic systems, like recurrent neural net-
works, we do not talk about the stability of the system. Rather, we discuss
the stability of certain system trajectories and, in particular, equilibrium
points.

There were two main stability theorems discussed in this chapter. The first
is the Lyapunov Stability Theorem, which introduces the concept of gener-
alized energy - the Lyapunov function. The concept behind this theorem
is that if a system’s “energy” is always decreasing, then it will eventually
stabilize at a point of minimum “energy.”

The second theorem presented was LaSalle’s Invariance Theorem, which is
an enhancement of the Lyapunov Stability Theorem, There are two key im-
provements made by LaSalle. The first is a clarification of the cases in
which the Lyapunov function does not decrease throughout the state space,
but stays constant in some regions. LaSalle’s theorem introduced the con-
cept of an invariant set to identify those regions that can trap the system
trajectory. The second improvement made by LaSalle’s theorem is that, in
addition to indicating the stability of equilibrium points, it also gave infor-
mation about the regions of attraction of each stabie point.

The ideas presented in this chapter are important tools for the analysis of
recurrent neural networks, like the Grossberg networks of Chapters 15 and
16. (See JCoGr83) for an application of LaSalle’s Invariance Theorem to re-
current neural networks.) In Chapter 18 we will use LaSalle’s theorem to
explain the operation of the Hopfield network.

Further Reading

Further Reading

[Brog9l]

{CoGr83]

[Lasa67]

[SILi91]

W. L. Brogan, Modern Control Theory, 3rd Ed., Englewood
Cliffs, NJ: Prentice-Hall, 1991,

This is a well-written book on the subject of linear systems.
The first half of the book is devoted to linear algebra. It also
has good sections on the solution of linear differential equa-
tions and the stability of linear and nonlinear systems. It
has many worked problems.

M. A. Cohen and 8. Grossberg, “Absolute stability of global
pattern formation and parallel memory storage by compet-
itive neural networks,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 13, no. 5, pp. 815826, 1983.

Cohen and Grossherg apply LaSalle’s Invariance Theorem
to the analysis of the stability of competitive neural net-
works. The network description is very general, and the au-
thors show how their analysis can be applied to many
different types of recurrent neural networks.

d. P. LaSalle, “An invariance principle in the theory of sta-
bility,” in Differential Equations and Dynamic Systems, J.

K. Hale and J. P, LaSalle, eds., New York: Academic Press,

pp. 277-286, 1967,

This article provides a unified presentation of Lyapunov’s
stability theory, including several extensions, It introduces
LaSalle’s Invariance Theorem and various corollaries.

J.-J. E. Slotine and W. Li, Applied Nonlinear Control, En-
glewood Cliffs, NJ: Prentice-Hali, 1991.

This text is an introduction to nonlinear control systems. A
significant portion of the book is devoted to the analysis of
nonlinear dynamic systems. A number of stability theo-
rems are presented and demonstrated.

I17-29

17 Stabdility

Exercises

E171 Use Lyapunov’s Stability Theorem to test the stability of the origin for the
following systems.

i da /dt = - (al)3 +a,
da,/dt = —a,-a,
ii. da,/dt = -a + (“z}z

da,/dt = -a,(a,+1)
E17.2 Consider the following nonlinear system:
da,/dt = a,-2a,({a)’ + (a)?),

da,/dt = —a,-2a,((a)’+ (a)") .

i. Use Lyapunov’s Stability Theorem and the candidate Lyapunov
function shown below to investigate the stability of the origin.

Vie) = a(e) +f(a)’

o ii. Check your stability result from part (i) by writing a MATLAB M-

4 file to simulate the response of this system for several different ini-
tial conditions. Use the ode4S routine. Plot the responses.

E17.3 For the nonlinear system da/dr = sin (a},
i. Find any invarient sets.

ii. Find a Lyapunov function and identify attractors and basins of at-
traction.

17-30

Exercises

E174 Consider the following nonlinear system:
da /dt = a,,

3
da,/dt = -a,- (4,)".

i. Find any equilibrium points.

ii, Find as much information about the stability of the equilibrium
points as possible, using the corollary to LaSalle’s theorem and the
candidate Lyapunov function

Via) = (a) + ().

ifi. Check your results from parts (i) and (ii) by writing a MATLAB M-

¢ file to simulate the response of this system for several different ini-
i tial conditions. Use the ode45 routine. Plot the responses.

E17.5 Consider the following nonlinear system

dosdi = (1-a) (L+a) = 1-d°.

i. Find any equilibrium points.

li. Find a suitable Lyapunov function. (Hint: Start with a form for
dV/dt and work backward to find V.)

iii. Sketch the Lyapunov function.

iv. Use the corollary to LaSalle’s theorem and the Lyapunov function
of part (ji) to find as much information as possible ahout regions of
attraction. Use graphs wherever possible.

(Hint. The graph shown in Figure E17.1 may be helpful.)

}
fla)=1- (a/B)y’

T

Figure E17.1 Helpful Function for Exercise E17.5

17-31

“r A . . - .

17 Stability

E176 Congider the system

»2s2
‘ans;
4

[[

17.32

da,/dt = ay-a,((a)" +2(a,) - 10),

da,/dt = — (a,)° ~3(a) ((a) +2(a) - 10) .

i. Find any invariant sets. (You may want to simulate this syatem us-
ing MATLAB in order to help identify the invariant sets.)

ii. Using the candidate Lyapunov function shown below and the corni-
lary to LaSalle’s theorem, investigate the stability of the invariant

gets you found in part {i).

Vi) = ({a)’+2(a,)"-10)°

18 Hopfield Network

Objectives

Objectives 18-1
Theory and Examples 18-2
Hopfield Mede! 18-3
Lyapunov Function 18-5
Invariant Sets 18-7
Example 18-7
Hopfieid Attractors 18-11
Effect of Gain 18-12
Hopfietd Design 18-16
Content-Addressable Memory 18-16
Hebb Rule 18-18
Lyapunov Surface 18-22
Summary of Results 18-24
Soived Probiems 18-26
Epilogue 18-36
Further Reading 18-37
Exercises 1840

This chapter will discuss the Hopfield recurrent neural network — a net-
work that was highly influential in bringing about the resurgence of neural
nstwork research in the early 1980s. We will begin with a description of the
network, and then we will show how Lyapunov stability theory can be used
to analyze the network operation. Finally, we will demonstrate how the
network can be designed to behave as an associative memory.

This chapter brings together many topics discussed in previous chapters:
the discrete-time Hopfield network (Chapter 3), eigenvalues and eigenvec-
tors (Chapter 6); associative memory and the Hebb rule (Chapter 7); Hes-
sian matrices, conditions for optimality, quadratic functions ard surface
and contour plots (Chapter B); steepest descent and phase plane trajecto-
ries (Chapter 9); continuous-time recurrent networks (Chapter 15); and
Lyapunov's Stability Theorem and LaSalle’s Invariance Theorem (Chapter
17). This chapter is, in some ways, a culmination of all our previous efforts.

18-1

o

18 Hopfield Network

Theory and Examples

18-2

Much of the resurgence of interest in neural networks during the early
1980s can be attributed to the work of John Hopfield. As a well-known Cal.
Tech. physicist, Hopfield's visibility and scientific credentials lent renewed
credibility to the neural network field, which had been tarnished by the
hype of the mid-1960s. Early in his career he studied the interaction be-
tween light and solids. Later he focused on the mechanism of electron
transfer between biological molecules. One can imagine that his academic
study in physics and mathematics, combined with his later experiences in
biology, prepared him uniquely for the conception and presentation of his
neural network contribution.

Hopfield wrote two highly influential papers in 1982 {Hopf82] and 1984
{Hopf84]. Many of the ideas in these papers were based on the previous
work of other researchers, such as the neuron model of MeCulloch and Pitts
[McPi43], the additive model of Grossberg [Gros67], the linear associator of
Anderson [Ande72) and Kohonen [Koho72] and the Brain-State-in-a-Box
network of Anderson, Silverstein, Ritz and Jones [AnSi77]. However,
Hopfield’s papers are very readable, and they bring together a number of
important ideas and present them with a clear mathematical analysis (in-
cluding the application of Lyapunov stability theory).

There are several other reasons why Hopfield's papers have had such an
impact. First, he identified a close analogy between his neural network and
the Ising model of magnetic materials, which is used in statistical physics.
This brought a significant amount of existing theory to bear on the analysis
of neural networks, and it encouraged many physicists, as well as other sci-
entists and engineers, to turn their attention to neural network research,

Hopfield also had close contacts with VLSI chip designers, because of his
long association with AT&T Bell Laboratories. As early as 1987, Bell Labs
had successfully developed neural network chips based on the Hopfield net-
work. One of the main promises of neural networks is their suitability for
parallel implementation in VLSI and optical devices, The fact that Hopfield
addressed the implementation issues of his networks distinguished him
from most previous neural network researchers.

Hopfield emphasized practicality, both in the implementation of his net-
works and in the types of problems they solved. Some of the applications
that he described in his early papers include content-addressable memory
(which we will discuss later in this chapter), analog-to-digital conversion
{TaHoSﬁ], and optimization [HoTa85] (as in the traveling salesman prob-
em),

In the next section we will present the Hopfield model. We will use the con-
tinuous-time meodel from the 1984 paper [Hopf84]. Then we will apply
Lyapunov stability theory and LaSalle’s Invariance Theorem to the analy-

Hopfield Model

sis of the Hopfield model. In the final section we will demonstrate how the
Hebb rule can be used to design Hopfield networks as content-addressable
memories.

Hopfield Model

In keeping with his practical viewpoint, Hopfield presented his model as an
Hopfield Model electrical circuit. The basic Hopfield model (see [Hopf84]) is shown in Fig-

ure 18,1,
l'rlr 12 ‘[S
JR;IS A
1L
Amplifier = = Ji Ry
!l
- S
inverting R
Py, P 2 p p
7 7 ‘e 7
Resistor
[]

[21] d, ds

Figure 18.1 Hopfield Model

Each neuron is represented by an operational amplifier and its associated
resistor/capacitor network. There are two sets of inputs to the neurons. The
first set, represented by the currents /,, [,, ... , are constant external inputs.
The other set consists of feedback connectmns from other op-amps. For in-
stance, the second output, 4, , is fed to resistor R 15 which is connected, in
turn, to the input of amplifier §. Resistors are, of course, only positive, but
a negative input to a neuron can be chtained by selecting the inverted out-
put of a particular amplifier. (In Figure 18.1, the inverting output of the
first amplifier is connected to the input of the second amplifier through re-
sistor R, ,.}

The equation of operation for the Hopfield model, derived using Kirchhoff's
current law, is

dft {f) (!}

§
Z A=+ (18.1)

]
[

18-8

I8 Hopfield Network

184

where n, is the input voltage to the ith amplifier, a, is the output voltage
of the ith amplifier, C is the amplifier input capacitance and /, is a fixed
input current to the ith amplifier, Also,

5
¢l n = @) Gora, = Fn)), (182)

where f(n) is the amplifier characteristic. Here and in what follows we
will assume that the circuit is symmetric, so that T, ;=T

The amplifier transfer function, a; = f(n,) ,is ordinarily a sigmoid func-
tion. Both this sigmoid function and its inverse are assumed to be increas-
ing functions. We will provide a specific example of a suitable transfer
function later in this chapter.

If we multiply both sides of Eq. (18.1) by R,, we obtain

d 5
R,c';_fr) = ‘Z! RT, af)-n{ty+R,1. (18.3)

J

This can be transformed into our standard neural network notation if we
define

€= RC,w,, = RT, andb, = R]. (18.4)

Now Eq. (18.3) can be rewritten as

E% = -nfH+ ZS', woan+b (18.5)
j=1
In vector form we have
e — () + Wad +b. (18.6)
and
() = £(n()) . (18.7)

The resulting Hopfield network is displayed in Figure 18.2.

Thus, Hopfield’s original network of § operational amplifier circuits can be
repregented conveniently in our standard network notation. Note that the
input vector p determines the initial network output. This form of the
Hopfield network is used for associative memory networks, as will be dis-
cussed at the end of this chapter.

Lyapunov Function

Input Recurrent Layer
N ' N
p
§x1
b}
—/ J

n0)=f'(p), (a0)=p) edndi=-n+Win)+b

Figure 18.2 Hopfield Network

Lyapunov Function

The application of Lyapunov stability theory to the analysis of recurrent

networks was one of the key contributions of Hopfield. (Cohen and Gross-

berg also used Lyapunov theory for the analysis of competitive networks at

about the same time [CoGr83].) In this section we will demonstrate how

LaSalle’s Invariance Theorem, which was presented in Chapter 17, can be

used with the Hopfield network. The first step in using LaSalle’s theorem _

is to choose a Lyapunov function, Hopfield suggested the following func- 1 E
tion:

4

5
V(a) = _%aTWa+ 2 {jf_'(u) a‘u} —b'a. {13.8}
=1

I

Hopfield's choice of this particular Lyapunov candidate is one of his key
contributions. Notice that the first and third terms make up a quadratic
function. In a later section of this chapter we will use our previous results
on quadratic functions to help develop some insight into this Lyapunov
function.

To use LaSalle’s theorem, we will need to evaluate the derivative of V (a) .
For clarity, we will consider each of the three terms of V (a) separately.
Using Eq. {8.37), the derivative of the first term is

d 17 | — 7da _ Ty.d8
E{_Ea Wa} = ~§V[a Wa] i —[Wa] il wdr' (18.9)

18-5

18 Hopfield Network

18-6

The second term in ¥ {a) congists of a sum of integrals. If we consider one
of these integrals, we find

da

dd—l _da] _ 1 ;_ da;
E{{f (u)du} _d_ai{'!f {u)du}dt = f (al.)a =n—'. {18.10)

The total derivative of the second term in V (a} is then

5 &
%{E {Jlf"(u)duH =2 (18.11)

i=1 0

Using Eq. (8.36), we can find the derivative of the third term in V (a) .

d T T . Tda Tda
E{_b a} = -V[b'a] i ~b o (18.12)

Therefore, the total derivative of V(a) is
d da rda rda T r . T.da
E?V{a] ﬁaW Ef_b_ [-a W+n _b]E' (18.13)
From Eq: (18.6) we know that
T
a'W+n —b} = -s[d—?} . (18.14)

This allows us to rewrite Eq. (18.13) as
5
dn{) _ dn, | da,

V{a) [:] 2 - —EE(E J[Iﬁ] (18.15)
Since n, = f" (a)) , we can expand the derivative of n; as follows:

dn; _d -l _d da;

T _Eif- {a)] _F&;U (aj)]E . (18.16)
Now Eq. (18.15) can be rewritten

gr‘””*““’é[j?}[da] EE([f " (a)1)[]2. (18.17)

If we assume that f'1 (@,) is an increasing function, as it would be for an
operational amplifier, then

+
+|mm

Lyapunov Function

d -t
d_th[f (a)]1>0. (18.18)

From Eq. (18.17), this implies that

d

Thus, if f_] (a;) is an increasing function, dV (&) /ds is a negative semidef-
inite function. Therefore, V (a) is a valid Lyapunov function.

Jnvariant Sets

Now we want to apply LaSalle’s Invariance Theorem to determine equilib-
rium points for the Hopfield network. The first step is to find the set Z (Eq.
(17.19).

Z = {a: dV{(a)/dt =0, ainthe closure of G} (18.20

This set includes all points at which the derivative osf the Lyapunov func-
tion ig zero. For now, let’s assume that G is all of R°.

We can see from Eq. (18.17) that such derivatives will be zero if the deriv-
atives of all of the neuron outputs are zero.

da

o 18.21

7 (18.21)
However, when the derivatives of the outputs are zero, the cireuit is at

equilibrium. Thus, those points where the system “energy” is not changing
are also points where the circuit is at equilibrium,

This means that the set L, the largest invariant set in Z, is exactly equal
toZ.

L=2Z (18.22)

Thus, all points in Z are potential attractors.
Some of these features will be illustrated in the following example.

Example
Consider the following example from Hopfield’s origina! paper [Hopf84).
We will examine a system having an amplifier characteristie
= f(n) =i’ m]
a= f(n -ntan (Bk (18.23)

We can alsc write this expression as

18-7

18 Hopfield Nefwork

i8-8

n = %tan[ga). (18.24)

Assume two amplifiers, with the output of each connected o the input of
the other through a unit resistor, so that

R,=Ry, =landT,=T,,=1 {18.25)

Thus we have a weight matrix

W= [0 1]. (18.26)
10

If the amplifier input capacitance is also set to 1, we have
£=RC=1. (18.27)

Let us also take y = 1.4 and I, = [, = 0. Therefore

b = H (18.28)
0

Recall from Eq. (18.8) that the Lyapunov function is

g la
V(a) = -%aTWM Y { f Fw du] -b'a. (18.29)
0

i=1

The first term of the Lyapunov function, for this example, is

1r t 012
54 Wa = [a, a) L {JM = —a,a,. (18.30)

The third term is zero, because the biases are zero. The ith part of the sec-
ond term is

] a
ovd = L E) =20 (5)2"'
£f (u) du Tﬂ!tan(zu du Tﬂ[log[cns 2H L]o . {18.31)
Thig expression can be simplified to

gf_l[u}du = —élog[ws(gaiﬂ . (18.32)

Lyapunov Function

Finally, substituting all three terms into Eq. {18.29), we have our
Lyapunov fanction:

4 n n
Via) = -qa,a -—{log{cas(-a J} +log{cos(—a)}} (18.33)
%2 1.411;2 2 2 2
Now let’s write out the network equation (Eq. (18.6)). With ¢ = 1 and
b=0,itis

@=~n+Wf(n) = —n+Wa, (18.34)

dr

If we substitute the weight matrix of Eq. (18.26), this expression can be
written as the following pair of equations:

dn/dr = ay-n,, (18.35)
dny/dt = a,-n,, (18.38)
The neuron outputs are
Al
o = J%tan-](ig—nnd, (18.37)
ay = %tan"](l-é“l‘nz] (18.38)

Now that we have found expressions for the system Lyapunov function and
the network equation of operation, let’s investigate the network behavior.
The Lyapunov functjon contour and a sample trajectory are shown in Fig-
ure 18.3.

41
2 e N a4,
a4

Figure 18.3 Hopfield Example Lyapunov Function and Trajectory

189

18 Hopfield Nehwork

18-10

The contour lines in this figure represent constant values of the Lyapunov
function. The system has two atiractors, one in the lower left and onein the
upper right of Figure 18.3. Starting from the upper left, the system con-
verges, as shown by the blue line, to the stable point at the lower lefi.

Figure 18.4 displays the time response of the two neuron cutputs.

L

i1

ash

|

|
|
o lll'n, a,
A

5

Figure 18.4 Hopfield Example Time Response

Figure 18.5 displays the time response of the Lyapunov function. As ex-
pected, it decreases continuously as the equilibrium point is approached.

Figure 18.5 Lyapunov Function Response

The system also has an equilibrium point at the origin. If the network is

initialized anywhere on a diagonal line drawn from the upper-lefi corner to
the lower-right corner, the solution converges to the origin. Any initial con-
ditions that do not fall on this line, however, will converge to one of the so-
lutions in the lower-left or upper-right corner. The solution at the origin is
a saddle point of the Lyapunov function, not a local minimum. We will dis-

Lyapunov Funciion

cuss this problem in a later section. Figure 18.6 displays a trajectory that
converges to the saddle point.

Figure 18.6 Hopfield Convergence to a Saddle Point

To experiment with the Hopfield network, use the Neural Network Design
Demonstration Hopfield Network (nnd18hn).

This example has provided some ingight into the Hopfield attractors. In the
next section we will analyze them more carefully.

Hopfield Attractors

In the example network in the previous section we found that the Hopfield
network atiractors were stationary points of the Lyapunov function. Now
we want to show that this is true in the general case. Recall from Eq.
{18.21) that the potential atiractors of the Hopfield network satisfy

da _o (18.39)
dr

How are these points related to the minima of the Lyapunev funetion
V{a) ? In Chapter 8 (Eq. (8.27)) we showed that the minima of a function
must be stationary points (i.e., gradient equal to zero). The stationary
peints of ¥ (a) will satisfy

da, da, " Jay

T
VY = FV v 3VJ =9, (18.40)

where

18-11

18 Hopfield Network

Vi(a) = ——a "Wa+) {ff (u)du} ~ba. (18.41)

i=1 0

If we follow steps similar to those we used to derive Eq. (18.13), we can find
the following expression for the gradient:

VV(a) = [-Wa+n-b] = [“';E‘)} (18.42)

The ith element of the gradient is therefore

iV(a} = —851——,lj = *€i([f_](aJ]) -*Si[f_l(a)]d—ai (18.43)
da T Tdr T Cdr AT Ty CAF T ;

i

Notice, incidentally, that if £ () is linear, Eq. (18.43) implies that

fi i
i = -uVV{a). (18.44)

Therefore, the response of the Hopﬁeld network is steepest descent. Thus,
if you are in a region where f~ "a) is approximately linear, the network
solution approximates steepest descent.

We have assumed that the transfer function and its inverse are monotonic
increasing functions. Therefore,

L@, (18.45)

From Eq. (18.43), this implies that those points for which

da(t)

— = 0, (18.46}
will also be points where

VVia) = 0. {(18.47)

Therefore, the attractors, which are members of the set L and satisfy Eq.
(18.39), will also be stationary points of the Lyapunov function V (a) .

Effect of Gain

18-12

The Hopfield Lyapunov function can be simplified if we consider those cas-
es where the amplifier gain ¥ is large. Recall that the nonlinear amplifier
cheracteristic for our previous example was

High-Gain

Effect of Gain

a=fn) = %mnl[%) (18.48)

This functicn is displayed in Figure 18.7 for four different gain values.

Figure 18,7 Inverse Tangent Amplifier Characteristic

The gain y determines the steepness of the curve at » = 0. As 7 increases,
the slope of the curve at the origin increases. As y goes to infinity, f (1)
approaches a signum {step) function.

Now recall from Eq. (18.8) that the general Lyapunov function is

s
V(a) = —%aTWa+) {jf_l(u)du} -b'a. (18.49)

j=t 0

For our previous example,

= %m(%‘) (18.50)

Therefore, the second term in the Lyapunov function takes the form

Tf-l(u] du = %Elog[cos(%‘]i)]} = -élog [cos(%)] (18.51)

¢

A graph of this function is shown in Figure 18.8 for three different values
of the gain. Note that as v increases the function flattens and is close to 0
most of the time. Thus, as the gain y goes to infinity, the integral in the
second term of the Lyapuncv function will be close to zero in the range
-1<ag;<1. This allows us to eliminate that term, and the high-gain

Lyapunov Function Lyapunov function then reduces to

18-13

18 Hopfield Network

Va) = - %aTWa—bTa. (18.52)
1% T I,
'5 ;
|‘, \1 = 014 | |'
. \ L
| ' ; .'I
ll'll'f = |4 \ f,-'ll ;1
05 ‘-..\ ! .-"II
" ; /
AN % / / ‘
. \H_H ‘\ P -~ L
e LT
1 F) %
a

Figure 18.8 Second Term in the Lyapunov Function
By comparing Eq. (18.52) with Eq. (8.35), we can see that the high-gain
Lyapunov function is, in fact, a quadratic function:

V(a) = - %aTWa b= %arAa +da+e, (18.53)

where
V¥V(a) =A=-W,d=-bandc=0. (18.54)

This is an important development, for now we can apply our results from
Chapter 8 on quadratic functions to the understanding of the operation of

Hopfield networks.

Recall that the shape of the surface of a quadratic function is determined
by the eigenvalues and eigenvectors of its Hessian matrix. The Hessian

matrix for our example Lyapunov function is

V2V (a) = -W = [0 “l] (18.55)
-1 0

The eigenvalues of this Hessian matrix are computed as follows:

- -1

|V2V (a) -Al] = =R-1= QA+ (A-1. (1856

Thus, the eigenvalues are A, = -1 and &, = 1. It follows that the eigen-
vectors are

18-14

Effect of Gain

zZ, = H and z, = [1]. (18.57)
1 -1

What does the surface of the high-gain Lyapunov function look like? We
know, since the Hessian matrix has one positive and one negative eigenval-
ue, that we have a saddle point condition. The surface will have a negative
curvature along the first eigenvector and a positive curvature along the
second eigenvector. The surface is shown in Figure 18.9.

Figure 18.9 Example High Gain Lyapunov Function

The function does not have a minimum. However, the network is con-
strained to the hypercube {a: -1<a,<1} by the amplifier transfer fune-
tion. Therefore, there will be constrained minima at the two corners of the

hypercube
a= m and s = ["ﬂ (18.58)

When the gain is very small, there is a single minimum at the origin (see
Exercise E18.1). As the gain is increased, two minima move out from the
origin toward the two corners given by Eq. (18.58). Figure 18.3 displays an
intermediate case, where the gain is y = 1.4. The minima in that figure oc-
cur at

a= [0‘5?] anda = {'0'5?] {18.59)
0.57 057

In the general case, where there are more than two neurons in the network,
the high-gain minima will fall in certain corners of the hypercube
{a:-1<a,<1} . We will discuss the general case in more detail in later
sections, after we describe the Hopfield design process.

18-15

18 Hopfield Network

Hopfield Design

Content-Addressable
Memory

18-1¢

The Hopfield network does not have a learning law associated with it. It is
not trained, nor does it learn on its own. Instead, a design procedure based
on the Lyapunov function is used to determine the weight matrix.

Consider again the high-gain Lyapunov function
Vi) = -4 Wa-b'a. (18.60)

The Hopfield design technique is to choose the weight matrix W and the
bias vector b so that V takes on the form of a function that you want to
minimize. Convert whatever problem you want to solve into a quadratic
minimization problem. Since the Hopfield network will minimize V, it will
also solve the original problem. The trick, of course, is in the conversion,
which is generally not straightforward.

Content-Addressable Memory

In this section we will describe how a Hopfield network can be designed 1o
work as an associative memory. The type of associative memory we will de-
sign is called a content-addressable memory, because # retrieves stored
memories on the basis of part of the contents. This is in contrast to stan-
dard computer memories, where items are retrieved based on their ad-
dresses. For example, if we have a content-addressabie data base that
contains names, addresses and phone numbers of employees, we can re-
trieve a complete data entry simply by providing the employee name (or
perhaps a partial name). The content-addressable memory is effectively
the same as the autoassociative memaory described in Chapter 7 (see page
7-10), except that in this chapter we will use the recurrent Hopfield net-
work instead of the linear associator.

Suppose that we want o store a set of prototype patterns in a Hopfield net-
work. When an input pattern is presented to the network, the network
should produce the stored pattern that most closely resembles the input
pattern. The initial network output is assigned to the input pattern. The
network output should then converge to the prototype pattern closest to the
input pattern. For this to happen, the prototype patterns must be minima
of the Lyapunov function,

Let’s assume that the prototype patterns are
{p]! pzr"' !pQ} Ll (18.61)

Each of these vectors consists of § elements, having the values 1 or -1, As-
sume further that @ « 5, so that the state space is large, and that the pro-
totype patterns are well distributed in this space, and so will not be close
to each other.

Hopfield Design

In order for a Hopfield network to be able to recall the prototype patterns,
the patterns must be minima of the Lyapunov function. Since the high-gain
Lyapunov function is quadratic, we need the prototype patterns to be {con-
strained) minima of an appropriate quadratic function. We propose the fol-
lowing quadratic performance index:

[
J(a) = %Z (fp)). (18.62)

Ifthe elements of the vectors a are restricied to be £1 , this function is min-
imized at the prototype pattarns, as we will now show.

Assume that the prototype patterns are orthogonal. If we evaluate the per-
formance index at one of the prototype patterns, we find

1 r .2 §

I(p) = 2 E (Ip,] p} =-5([pd°p) = -3 (18.63)

The second equatity follows from the orthegonality of the prototype pat-
terns. The last equality follows because all elements of p; are 11.

Next, evaluate the performance index at a random input pattern a, which
is presumably not close to any prototype pattern. Each element in the sum
in Eq. (18.62) is an inner product between a prototype pattern and the in-
put. The inner product will increase as the input moves closer to a proto-
type pattern. However, if the input is not close to any prototype pattern,
then all terme of the sum in Eq. (18.62) will be small. Therefore, J (a) will
be largest (least negative) when a is not close to any prototype pattern, and
will be smallest (most negative) when a is equal to any one of the prototype
patterns.

We have now found a quadratic function that accurately indicates the per-
formance of the content-addressable memory. The next step is to choose the
weight matrix W and bias b so that the Hopfield Lyapunov function V will
be equivalent to the quadratic performance index J.

If we use the supervised Hebb rule to compute the weight matrix (with tar-
get patterns being the same as input patterns) as

Q
= Z pq(pq)r’ (18.64}
g=1
and set the bias to zero
b=490 {18.65)

then the Lyapunov function is

18-17

18 Hopfield Network

Q g
Via) = ——a "Wa = —ia [Z p,(,) Ja = —% Y, a'p,(p,) 8. (18.66)
= g=1

Thig can be rewritten

V{a) = - E [{(p,) 8] = J(a). (18.67)

q !

Therefore, the Lyapunov function is indeed equal to the quadratic perfor-
mance index for the content-addressable memory problem, The Hopfield
network output will tend to converge to the stored prototype patterns
{among other possible equilibrium peints, as we will discuss later).

As noted in Chapter 7, the supervised Hebb rule does not work well if there
is significant correlation between the prototype patterns. In that case the
peeudoinverse technique has been suggested. Another design technigue,
which is beyond the scope of this text, is given in [LiMi89].

In the best situation, where the prototype patterns are orthogonal, every
prototype pattern will be an equilibrium point of the network. However,
there will be many other equilibrium points ag well. The network may well
converge to a pattern that is not one of the prototype patterns. A general
rule is that, when using the Hebb rule, the number of stored patterns can
beno more than 15% of the number of neurons. The reference [LiMi88] dis-
cusses more complex design procedures, which minimize the number of
spurious equilibrium points,

In the next section we will analyze the location of the equilibrium points
more closely.

Hebb Rule

Let’s take a cloger look at the operation of the Hopfield network when the

Hebb rule is used to compute the weight matrix and the prototype patterns

are orthogoual. (The following analysis follows the discussion in the Chap-
ter 7, Problem P7.5.) The supervised Hebb rule is given by

Q
W= 2 p,(p,) T (18.68)

g=1
If we apply the prototype vector p ; to the network, then
g T T
Wp; = Y p,(p) P = B;(p) P; = Sp;, (18.69)

g=1

I18-18

Hopjield Design

where the second equality holds because the prototype patterns are orthog-
onal, and the third equality holds because each element of p; iseither 1 or
-1 . Eq. (18.69) is of the form

Wp, = Ap,. {18.70)

Therefore, each prototype vector is an eigenvector of the weight matrix and
they have a common eigenvalue of A = §. The eigenapace X for the eigen-
value A = § ig therefore

X = span{p,,p; .. .pQ} . {18.71}

This space contains all vectors that can be written as linear combinations
of the prototype vectors. That is, any vector a that is a linear combination
of the prototype vectors is an eigenvector,

Wa = W{op +a,p +-- + 0P}

{e,Wp, +a,Wp,+---+ aQWpQ}
(18.72)

L]

{“lsl’. +0,5p,+ - + uQSpQ}

S{oup, +ep,+--+ anQ} = Sa

The eigenspace for the eigenvalue A = § is @-dimensional (assuming that

the prototype vectors are independent).

The entire space R’ can be divided into two disjoint sets (Brog85],
B=xux, (18.73)

where X is the orthogonal complement of X . (This is true for any set X,

not just the one we are considering here.) Every vectorin)il is orthogonal
to every vector in X. This means that for any vector ae X,

()2 =0 ¢=12..,0. (18.74)
Therefore,if ac X,
a r o
Wa=Yp(p)a=z=Y (p-0)=0=0a, (18.75)
g=1 g=1

So X defines an eigenspace for the repeated eigenvalue A = 0.

18-19

18 Hopfield Network

18-20

Spurious Patterns

]

To summarize, the weight matrix has two eigenvalues, S and 0. The
eigrenspace for the eigenvalue § is the space spanned by the prototype vec-
tors. The eigenspace for the eigenvalue 0 is the orthogonal complement of
the space spanned by the prototype vectors.

Since (from Eq. (18.54)) the Hessian matrix for the high-gain Lyapunov
function V is

ViV = W, (18.76)
the eigenvalues for V2V will be -$ and 0.

The high-gain Lyapunev function is a quadratic function, Therefore, the
eigenvalues of the Hessian matrix determine itg shape. Because the first
eigenvalue is negative, V will have negative curvature in X. Because the
second eigenvalue is zero, V will have zero curvature in

What do these results say about the response of the Hopfield network? Be-
cause V has negative curvature in X, the trajectories of the Hopfield net-
work will tend to fall into the corners of the hypercube {a: -1 <a,< 1} that
are contained in X.

Note that if we compute the weight matrix using the Hebh rule, there will
be at least two minima of the Lyapunov function for each prototype vector.
If p, is a prototype vector, then ~p , will also be in the space spanned by
the prototype vectors, X . Therefore, the negative of each prototype vecior
will be one of the corners of the hypercube {a: ~1<a <1} that are con-
tained in X . There will also be a number of other minima of the Lyspunov
function that do not correspond to prototype patterns.

The minima of V are in the corners of the hypercube {a: -1< a;<1} that
are contained in X. These corners will include the prototype patterns but
they will alse include some linear combinations of the prototype patterns.
Those minima that are not prototype patterns are often referred to as spu-
rious patterns. The objective of Hopfield network design is to minimize the
number of spurious patterns and to make the basins of attraction for each
of the prototype patterns as large as possible. A design method that is guar-
anteed to minimize the number of spurious patterns is described in
[LiMi89].

To illustrate these principles, consider again the second-order example we
have been discussing, where the connection matrix is

w= |01 {18.77)
10

Suppose that this had been designed using the Hebb rule with one proto-
type pattern (obviously not an interesting practical case):

Hopfield Design

p, = H (18.78)
Then
W=p(p) = m [11] = B ﬂ (18.79)
Notice that
W= w-oI= [0 1} (18.80)
10

corresponds to our original connection matrix, More about this in the next
section.

The high-gain Lyapunov function is

V() = -1a'Wa = in“ 1]a. (18.81)
L

VV(a) = -W = {—1 *1} (18.82)

[ts eigenvalues are

A =-8=-2,and), =0, (18.83)

and the corresponding eigenvectors are

z, = H and z, = H (18.84)
i -1

The first eigenvector, corresponding to the eigenvalue —$, represents the
space spanned by the prototype vector:

X={ag,=a}. (18.85)

The second eigenvector, corresponding to the eigenvalue 0, represents the
orthogonal complement of the first eigenvector:

1821

18 Hopfield Network

Xt = {a: a,=-a,} . (18.86)

The Lyapunov function iz displayed in Figure 18.10.

Figure 18.10 Example Lyapunov Function

This surface has a straight ridge from the upper—lefI to the lower-right cor-
ner, Thig represents the zerc curvature region of X . Initial conditions to
the left or to the right of the ridge will converge to the points

a= m ora = {_ﬂ, (18.87)

respectively. Initial conditions exactly on this ridge will stabilize where
they start. This situation is the same as that for our original example (see
Figure 18.9), except that in that case, initial points on the sloping ridge con-
verged to the origin, ingtead of remaining where they started (see Figure
18.6}. Initial points to the right or to the left of the ridge, in both systems,
converge to the prototype design points. Thus, the convergence of our orig-
inal system, and the convergence of the system with zero diagonal ele-
ments, are identical in every important aspect. We will investigate this
further in the next section.

Lyapunov Surface

In many discussions of the Hopfield network the diagonal elements of the
weight matrix are set to zero. In this section we will analyze the effect of
this operation on the Lyapunov surface. (See also Chapter 7, Exercise
E7.5.)

For the content-addresaable memory network, all of the diagonal elements
of the weight matrix will be equal to @ (the number of prototype patterns},
since the elements of each p, are *1 . Therefore, we can zero the diagonal
by subtracting ¢ times the identity matrix:

18.22

Hopfield Design

W =W-0I. (18.88)

Let’s investigate how this change affects the form of the Lyapunov fune-
tion. If we multiply this new weight matrix times one of the prototype vec-

tors we find
Wp, = [W-0llp, = Sp,-Qp, = (S-Q)p,- (18.89)

Therefore, (5- Q) is an eigenvalue of W', and the corresponding eigen-
space is X, the space spanned by the prototype vectors.

If we multiply the new ;fight matrix times a vector from the orthogonal
complement space, ae X, we find

Wa= [W-0lla=10-0a=-Qa, (18.90)

'?Ierefore, -Q is an eigenvalue of W', and the corresponding eigenspace is

To summarize, the eigenvectors of W' are the same as the eigenvectors of
W, but the eigenvalues are now (§- () and —-@, insteadof § and 0.
Therefore, the eigenvalues of the Hessian matrix of the modified Lyapunov

fanction, V2V (a) = -W', are —-(§—- () and g.

This implies that the energy surface will have negative curvature in X and
positive curvature in xt , in contrast with the original Lya;;&nov fenction,
which had negative curvature in X and zero curvature in X ™.

A comparison of Figure 18.9 and Figure 18.10 demonstrates the effect on
the Lyapunov function of setting the diagonal elements of the weight ma-
trix to zero. In terms of system performance, the change has little effect. If
the initial condition of the Hopfield network falls anywhere off of the line
a, = -a,, then, in either case, the output of the network will converge to
one of the corners of ;he hypercube {a; -1<g< 1} , which coneists of the
two points a = [] [] and a = [_1 _1] .

If the initial condition falls exactly on the line a, = -a,, and the weight
matrix W is used, then the network output will remain constant. If the ini-
tial condition fells exactly on the line 4, = -a,, and the weight matrix W'
is used, then the network output will converge to the saddle point at the
origin (as in Figure 18.6). Neither of these results is desirable, since the
network output does not converge to a minimum of the Lyapunov function.
Of course, the only case in which the network converges to a saddle point
is when the initial condition falls exactly on the line g, = -g,, which would
be highly unlikely in practice.

18.28

18 Hopfield Network

Summary of Results
Hopfield Model
e‘% =-ni)+Wa{f)+b
a(H = f(n())
Input Recurrent Layer
£\ 4 3
p
Sxl a
Fx1
S $
-/ J
n(0) =f'(p), A0 =p) edn/dr=-n+Win)+b
L.yapunov Function
1r 514 -1 T
V(a) =-58 Wa+ Y _rf («)dul ~b'a
i=1 0
b 2
d d da;
2V = —ezl(a;i[f (a‘-n)ﬁﬁ]
d | - d
If?dré_i[f (2)]1>0, then aV{a) £0.
Invariant Sets

The Invariant Set Consists of the Equilibrium Points.

L =2 = {a:da/dt=0, ainthe closure of G}

18-24

Summary of Results

Hopfield Attractors
The Equilibrium Points Are Stationary Points.

If%ﬁ—o =0,thenVV(a) = 0.

)

VV(a) = [-Wa+n—b] = ~£[2

High-Gain Lyapunov Function

V(a) = - %aTWa ~b'a

V¥ (a) = -W

Content-Addressable Memory

o
W=Yp(p) andb=0
g=1

Energy Surface {Orthogonal Prototype Patterns)
Eigenvalues/Eigenvectors of V2V (a) = -W Are

Ay = -8, with eigenspace X = span {p, p,,Py} -
A, = 0, with eigenspace X
X" is defined such that for any vector ae XJ', (pq) Ta = 0,¢g=12..,0

Trajectories (Orthogonal Prototype Patterns)

Because the first eigenvalue is negative, V (a) will have negative curva-

ture in X . Because the second eigenvalue is zero, V (a) will have zero cur-

vaturein X . Because V (a) has negative curvature in X, the trajectories

of the Hopfield network will tend to fall into the corners of the hypercube
{a: -1 <a, <1} that are contained in X.

18-25

18 Hopfield Network

Solved Problems

P18.1 Assume the binary prototype vectors

i. Design a continuous-time Hopfield network (specify connec-
tion weights) to recognize these patterns, using the Hebb
rule,

ii. Find the Hessian matrix of the high-gain Lyapunov function
for this network. What are the eigenvalues and eigenvectors
of the Hessian matrix?

iii. Assuming large gain, what are the stable equilibrium points
for this Hopfield network?

i. First calculate the weight matrix from the reference vectors, using the
supervised Hebb rule.

1 1-1-1 -1 1-1
1 1-1-1f j-1 b-1 1
-1-1 11 -1 1-1
-1-1 v ¢ |-1 1-11

W= P|(p|}T+P2(P2)T =

¥

which simplifies to
20 02
wel|0 220
0-2 20
-2 002
ii. The Hessian of the high-gain Lyapunov function, from Eq. (18.54), is
the negative of the weight matrix:
-2 0 0-=2
VY (a) = 0-2 2 0
¢ 2-20
2002

18-26

Solved Problems

The prototype patterns are orthogonal ([p,] sz = 0). Thus, the eigenval-
nes are 4, = -$ = -4 and A, = 0. The eigenspace for A, = 4 is

X = span{p, p,} .

The eigenspace for A, = 0 is the orthogonal complement of X:

where we have chosen two vectors that are orthogonal to both p, and p, .

iii. The stable points will be p,, p,. —p,. —p, since the negative of the pro-
totype patterns will also be equilibrium points. There may be other equilib-
rium points, if other corners of the hypercube lie in the span {p,, p,} .

There are a total of 2 = 16 corners of the hypercube. Four will fallin X_
and four will fall in X . The other corners are partly in X and partly in x'.

P18.2 Consider a high-gain Hopfield network with a weight matrix and

bias given by
w:["‘l} andb=H.
- -l

i. Sketch a contour plot of the high-gain Lyapunov function
for this network.

fi. Ifthe network is given the initial condition [1 I] ! » where
will the network converge?

i. First consider the high-gain Lyapunov function
V(a) = - %aTWa —b’a.

The Hessian matrix is

VW (a) = -W = [‘ 1}.
11

Next, we need to compute the eigenvalues and eigenvectors:

1827

18 Hopfield Network

V2V (a) - ALl = =M 2h+1-1=A(A-2).

1-4
1 1-%

The eigenvalues are &, = G and 4, = 2.
Now we can find the eigenvectors, For &, = 0,

(VV(a) -1 1]z, = 0,

PR

[VV{a) -2,1lz, = 0

-
-1 1 1
., =0orz, = |,

1 r
—ia Wa

and therefore

Similarly, for A, = 2,

and therefore

S0 the term

has zero curvature in the direction z, and positive curvature in the direc-
tion z,.

Now we have to account for the linear term, First plot the contour without
the linear term, as in Figure P18.1.

The linear term will cause a negative slope in the direction of

Therefore everything will curve down toward [1 _ﬂ r’ as is shown in Fig-
ure P18.2,

18-28

Solved Problems

L}

o

N <
N

/

1

Figure P18.1 Contour Without Linear Term

ii. All trajectories will converge to [1 _ﬂ d , Tegardless of the initial condi-
tions. As we can see in Figure P18.2, the energy function has only one min-
imum, which is located at [1 _1:] . (Keep in mind that the output of the
network is constrained to fall within the hypercube {a: -1<a <1} .}

Figure P18.2 Contour Including Linear Term

P183 Consider the following prototype vectors.

_hl o [
P) P {

i. Design a Hopfield network to recognize these patterns,

ii. Find the Hessian matrix of the high-gain Lyapunov function

for this network. What are the eigenvalues and eigenvectors
of the Heasian matrix?

18-29

18 Hopfield Network

18-30

iii. What are the stable points for this Hopfield network (as-
sume large gain)? What are the basins of atiraction?

iv. How well does this network perform the pattern recognition
problem?

i. We will use the Hebb rule to find the weight matrix.

1) _ |20
S IR+

The bias is set to zero.
b= 0
0

ii. The Hessian matrix of the high-gain Lyapunov function is the negative
of the weight matrix.

VV(a) = -W = {‘2 0}
0 -2

By inspection, we can see that there is a repeated eigenvalue.

A=Ay = -8 = -2

The eigenvectors will then be

1 0
Z, = and z, = ,
<y]

or any linear combination. (The entire ®” is the eigenspace for the eigen-
value A = -2.)

iii. From Chapter 8 we know that when the eigenvalues of the Hessian are
equal, the contours will be circular. Because the eigenvalues are negative,
the function will have a single maximum at the origin. There will be four
minima at the four corners of the hypercube {a: -1<a;< 1} . There are
also four saddle points. The high-gain Lyapunov function is displayed in
Figure P18.3.

Solved Problems

-5

0§ 4 [s 1

Figure P18.3 High-Gain Lyapunov Function for Problem P18.3

There are a total of nine stationary points. We could use the corollary to La-
Salle’s Invariance Theorem to show that the maximum peint at the origin
has a basin of attraction that only includes the origin itself. Therefore it is
not a stable equilibrium point. The saddie points have regions of attraction
that are lines. (For example, the saddle point at [_1 g} ! has a region of at-
traction along the negative | axis.) The four corners of the hypercube are
the only attractors that have two-dimensional regions of attraction. The re-
gion of attraction for each corner is the corresponding quadrant of the hy-
percube. Figure P18.4 shows the low-gain Lyapunov function (with gain

¥ = 1.4 }and illustrates convergence to a saddle point and to a minimum.

Figure P18.4 Lyapunov Function for Problem P18.3

iv. The network does not do a good job on the pattern recognition problem,
Not only does it recognize the two prototype patterns, but it also “recogniz-
es” the other two corners of the hypercube as well. The network will con-
verge to whichever corner is closest to the input pattern, even though we

1831

18 Hopfield Network

18-32

Pr184

only wanted it to store the two prototype patterns. Since every possible
two-bit pattern has been stored, the network is not very useful. This is not
unexpected, since the number of patterns that the Hebb rule is expected to
store is only 15% of the number of neurcns. Since we only have two neu-
rons, we can't expect to successfully store many patterns. Try Exercise
E18.2 for a better network.

A Hopfield network has the following high-gain Lyapunov fune-
tion:

V@) =5 (7(a)" +126,8,-2(a)).

i. Find the weight matrix.

ii. Find the gradient vector of the Lyapunov function.,
ifi. Find the Hessian matrix of the Lyapunov function.
iv. Sketch a contour plot of the Lyapunov function,

v. Sketch the path that a steepest descent algorithm would fol-
low for V(a) with an initial condition of [0.25 0_25j .

i. V(a) isa quadratic function, which can be rewritten as
1 I 70
V@) = 5 (7e) + 120,,-2(a)") = ‘E“Tg ja .
Therefore the weight matrix is

)

ii. Since V{a) is a quadratic function, we can use Eq. (8.38) to find the
gradient.

VW(a) = -E ‘ja

iii. From Eq. (8.39), the Hessian is

o= -4

Solved Problems

iv. To compute the eigenvalues,

[~7—l —671

V2V (a) - Al| = =324 5h-50 = (A+10) (A-5).

The eigenvalues are &, = -10 and &, = 5.

Now we can find the eigenvectors. For 4, = -10,
V2V (a) -3, 1]z, = 0,

[3_6}' =0orz H
—6 12 1

[V2V (a) ~A 012, = 0

and therefore

It

Similarly, for 4, = 5,

and therefore

_12'6zz=00rzz= : 1 .
-6 -3 -2

Note that this is a saddle point case, since A, <0<A,. There will be nega-
tive curvature along z, and positive curvature along z,. The contour plot
of the high-gain Lyapunov function is shown in Figure P18.5.

<5
\

it —

-1 L1 o

Figure P18.5 High-Gain Lyapunov Func. & Steepest Descent Trajectory
v. The steepest descent path will follow the negative of the gradient and
will be perpendicular to the contour lines, as we saw in Chapter 9. When

18-33

18 Hopfield Network

the trajectory hits the edge of the hypercube, it follows the edge down to the
minimum point. The resulting trajectory is shown in Figure P18.5,

The high-gain Lyapuncv function is only an approximation, since it as-
sumes infinite gain. As a comparison, Figure P18.6 illustrates the
Lyapunov function, and the Hopfield trajectory, for a gain of 0.5.

Figure P18.6 Lyapunov Function & Hopfield Trajectory

P18.5 The Hopfield network has been used for applications other than
content-addressable memory. One of these other applications is
analog-to-digital (A/D) eonversion [HoTa88]. The function of the
A/D converter is to take an analog signal y, and convert it into a se-
ries of bits (zeros and ones). For example, a two-bit A/D converter
would try to approximate the signal y as follows:

2
f- 1
¥ Ea;“ 'z a,+a,2,
i=1

where a, and q, are allowed values of 0 or 1. (This A/D converter
would approximate analog values in the range from 0 to 3, witha
resolution of 1,) Tank and Hopfield suggest the following perfor-
mance index for the A/D conversion process:

I : oy P : I
f(a} = 5(-”'_ Eaiz(l—)) *5[222“-)‘1,-(05—1)],
i=1

where the first term represents the A/D conversion error, and the
second term forces 4, and a, to take on valuesof (or 1.

Show that this performance index can be written as the Lyapunov
function of 2 Hopfield network and define the appropriate weight
matrix and bias vector.

18-34

Solved Problems

The first step is to expand the terms of the performance index.

2 2 2 2 2)
(;v- 2052“_”] = y2—2}'2012“‘” +2 2“&“;‘2('_]“(‘—”'

i=1 i=l j=li=l

2 2 i
(222“"’@(@._ 1)] SO I AR WY A
: i=1 i=1

If we substitute these terms back into the performance index we find

22 2
J(a) = y2+ E Z aiaj2(1—1)+(r—1) + Zai(zl(t-—ll _Z:y} .

J=1=1 i=1
i#j

[l

The first term is not a function of a . Therefore, it does not affect where the
ninima will occur, and we can ignore it.

We now want to show that this performance index takes the form of a high-
gain Lyapunov function:

V() = —%aTWa—bTa.

This will be the case if

0 1
W={ *Jandb= r=31.
20 2y-2

In this Hopfield network, unlike the content-addressable memory, the in-
put to the network is the scalar y, which is then used to compute the bias
vector. In the content-addressable memory, the inputs to the network were
vector patterns, which became the initial conditions on the network out-
puts.

Note that in this network the transfer function must limit the output to the
range 0 <a < 1. One transfer function that could be used is

1

flm = —1—.

(1-e™

18.35

18 Hopfield Network

- Epilogue

18-36

In this chapter we have introduced the Hopfield model, one of the most in-
fluential neural network architectures. One of the reasons that Hopfield
was s0 influential was that he emphasized the practical considerations of
the network. He described how the network could be implemented as an
electrical circuit, and VLSI implementations of Hopfield-type networks
were built at an early stage,

Hopfield also explained how the network could be used to solve practical
problems in pattern recognition and optimization. Some of the applications
that Hopfield proposed for his networks were: content-addressable memory
[Hopf82], A/D conversion {TaHo86] and linear programming and optimiza-
tion tagks, such as the traveling salesman problem [HoTa85].

One of Hopfield’s key contributions was the application of Lyapunov stabil-
ity theory to the analysis of his recurrent networks. He also showed that,
for high-gain amplifiers, the Lyapunov funetion for his network was a qua-
dratic function, which was minimized by the network. This led to several
design procedures. The idea behind the development of the design tech-
niques was to convert a given task into a quadratic minimization problem,
which the network could then solve.

The Hopfield network is the last topic we will cover in any detail in this
text. However, we have certainly not exhausted all of the important neural
network architectures. In the next chapter we will give you some ideas
about where to go next to explore the subject further.

Further Reading

Further Reading

[Ande72]

[AnSi77]

[CoGr83]

{Gros67]

J. Anderson, “A simple neural network generating an inter-
active memory,” Mathematical Biosciences, vol. 14, pp.
197-220, 1972,

Anderson proposed a “linear asscciator” model] for associa-
tive memory. The model was trained, using a generaliza-
tion of the Hebb postulate, to learn an association between
input and cutput vectors, The physiological plausibility of
the network was emphasized. Kohonen published & closely
related paper at the same time {Koho72}, although the two
researchers were working independently.

J. A. Anderson, J. W. Silverstein, 5. A. Ritz and R. 5. Jones,
“Distinctive features, categorical perception, and probabil-
ity learning: Some applications of a neural model,” Psycho-
logical Review, vol. 84, pp. 413-451, 1977,

This article describes the brain-state-in-a-box neural net-
work model. It combines the linear associator network with
recurrent connections to form a more powerful auteassocia-
tive system. It uses a nonlinear transfer function to contain
the network output within a hypercube.

M. A. Cohen and S. Grossberg, “Absolute stability of global
pattern formation and parallel memory storage by compet-
itive neural networks,” IEEE Transactions on Systems,
Mar and Cybernetics, vol. 18, no. 5, pp. 815-826, 1983,

Cohen and Grossberg apply LaSalle’s Invariance Thecrem
to the analysis of the stability of competitive neural net-
works. The network description is very general, and the au-
thors show how their analysis can be applied to many
different types of recurrent neural networks.

S. Grossberg, “Nonlinear difference-differential equations
in prediction and learning theory,” Proceedings of the Na-
tional Academy of Sciences, vol. 58, pp. 13251334, 1967.

This early work of Grossberg’s discusses the storage of in-
formation in dynamically stable configurations.

18-37

18 Hopfield Network

18-38

[Hopf82]

[Hopf84]

[HoTa85]

[Koho72]

J. J. Hopfield, “Neural networks and physical systems with
emergent collective computational properties,” Proceedings
of the National Academy of Sciences, val. 79, pp. 2554—
2558, 1982.

This is the original Hopfield neural network paper, which
signaled the resurgence of the field of neural networks. It
describes a discrete-time network that behaves as a con-
tent-addressable memory. Hopfield demonstrates that the
network evolves so as to minimize a specific Lyapunov
function.

J. J. Hopfield, “Neurons with graded response have collec-
tive computational properties like those of two-state neu-
rons.” Proceedings of the National Academy of Sciences, vol.
81, pp. 3088-3092, 1984,

Hopfield demonstrates how an analog electrical circuit can
funetion as a model for a large network of neurons with a

graded response. The Lyapunoy function for this network

is derived and is used to design a network for use as a con-
tent-addressable memory.

J.J. Hopfield and D. W. Tank, “ ‘Neural’ computation of de-
cisions in optimization problems,” Biological Cybernetics,
vol, 52, pp. 141154, 1985.

This article describes the application of Hopfield networks
to the solution of optimization problems. The traveling
salesman problem, in which the length of a trip through a
number of cities with only one visit to each city is mini-
mized, is mapped onto a Hopfield network.

T. Kchonen, “Correlation matrix memories,” IEEE Trans-
actions on Computers, vol. 21, pp. 353-359, 1972,

Kohonen proposed a correlation matrix model for associa-
tive memory. The model was trained, using the outer pred-
uct rule (also known as the Hebb rule), to learn an
agsociation between input and output vectors. The mathe-
matical structure of the network was emphasized. Ander-
son published a closely related paper at the same time
fAnde72], although the two researchers were working inde-
pendently.

[LiMig9]

[McPi43]

[TaHo86]

Further Reading

J.Li, A. N. Michel and W. Porod, “Analysis and synthesis
of a class of neural networks: Linear systems operating on
a closed hypercube,” IEEE Transactions on Circuits and
Systems, vol. 36, no. 11, pp. 1405-1422, November 1989,

This article investigates a class of neural networks de-
scribed by first-order linear differential equations defined
on a closed hypercube (Hopfield-like networks). Wanted
and unwanted equilibrium points fall at the corners of the
cube. The authors discuss design procedures that minimize
the number of spurious equilibrium peints.

W. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” Bulletin of Mathematical
Biophysics., vol. 5, pp. 115-133, 1943.

This article introduces the first mathematical model of a
neuren in which a weighted sum of input signals is com-
pared to a threshold to determine whether or not the neu-
ron fires,

D. W. Tank and J. J. Hopfield, “Simple ‘neural’ optimiza-
tion networks: An A/T) converter, signal decision circuit
and a linear programming circuit,” ITEEE Transactions on
Cireuits and Systems, vol. 33, no. 5, pp. 533-541, 1986.

The authors describe how Hopfield neural networks can be
designed to solve certain optimization problems. In one ex-
ample the Hopfield network implements an analog-to-digi-
tal conversion,

18-39

18 Hopfield Network:

Exercises

E18.1 In the Hopfield network example starting on page 18-7 we used a gain of
v = 1.4. Figure 18.3 displays the Lyapunov function for that example. The
high-gain Lyapunov function for the example is shown in Figure 18.9.

i. Show that the minima of the Lyapunov function for this example
will be located at points where n, = n, = f(n) = f(n;).(UseEq.
(18.42) and set the gradient of ¥ {a) to zero.)

ii. Investigate the change in location of the minima as the gain is var-
o ied from v = 0.1 to y = 10.
w22 |

ans= | ifi. Sketch the contour plot for several different values of gain in this in-
4] terval. You will probably need to use MATLAB for this.

E18.2 In Problem P18.3 we used the supervised Hebb rule to design a Hopfield
network to recognize the following patterns:

nef] metl]

If we use another design rule (LiMi89], we find the following weight matrix

and bias
w=1 0 p- |0
0-10 11

i. Graph the contour plot for the high-gain Lyapunov function, if this
weight matrix and bias are used.

ii. Discuss the difference between the performance of this Hopfield
network and the one designed in Problem P18.3.

anes+2 r iti. Write a MATLARB M-file to simulate the Hopfield network. Use the

4 | oded$ routine. Plot the responses of this network for several initial
conditions.

E18.3 A Hopfield network has the following high-gain Lyapunov function:

Via) = ~%((a1) 2 42,0, +4(a;) " + 62, +10a;) .

i. Find the weight matrix and bias vector for this network.

ii. Find the gradient and Hessian for V (a} .

18-40

242
ans =

Exercises

iii. Sketch a contour plot of V(a).

iv. Find the stationary point(s} for V (a) . Use the coroliary to LaSalle’s
Invariance Theorem to find as much information as you can about
basins of attraction for any stable equilibrium points.

E18.4 In Problem P18.5 we demonstrated how a Hopfield network could be de-
signed to operate as an A/D converter.

i. Sketch the contour plot of the high-gain Lyapunov function for the
two-bit A/D converter network using an input value of y = 0.5, Lo~
cate the minimum points.

ii. Repeat part (i) for an inpnt value of y = 2.5.

iti. Use the answers to parts (i) and (ii) to explain how the network will
operate. Will the network perform the A/D conversion correctly?

E18.5 Assume the binary prototype vectors

i. Design a continuous-time Hopfield network (specify connection
weights and biases only} to recognize thege patterns, using the Hebb
rule.

ii. Find the Hessian matrix of the high-gain Lyapunev function for this
network. What are the eigenvalues and eigenvectors of the Hessian

matrix?

iii. Assuming large gain, what are the stable equilibrium points for this
Hopfield network?

E186 In Exercise E7.7 we asked the question: How many prototype patterns can
be stored in one weight matrix? Repeat that problem using the Hopfield
network. Begin with the digits “0” and “1”. (The digits are shown at the end
of this problem.) Add one digit at a time up to “6”, and tegt how often the
correct digit i reconstructed after randomly changing 2, 4 and 6 pixels.

i. First use the Hebb rule to create the weight matrix for the digits “0”
and “1”, Then randomly change 2 pixels of each digit and apply the
noisy digits to the network. Repeat this process 10 times, and record
the percentage of times in which the correct pattern (without noise)
is produced at the output of the network. Repeat as 4 and 6 pixels of

1841

18 Hopfield Network

18-42

jii.

each digit are modified. The entire process is then repeated when
the digits “0”, “1” and “2” are used. This continues, one digit at a
time, until you test the network when all of the digits “0” through
“6” are used. When you have completed all of the tests, you will be
able to plot three curves showing percentage error versus number of
digits stored, one curve each for 2, 4 and & pixel errors.

Repeat part (i) using the pseudoinverse rule (see Chapter 7), and
compare the results of the two rules.

For extra credit, repeat part (i} using the method described in
[LiMi89). In that paper it i called Synthesis Procedure 5.1.

QIZ2RHTETaH

Ph P2 P Pt Ps Ps Pr Ps P Pu

19 Epilogue

Objectives

Objectives 19-1
Theoty and Examples 19-2
Feediorward and Related Networks 19-2
Competitive Networks 19-8
Dynamic Associative Memory Networks 19-9
Classical Foundations of Neural Networks 19-10
Books and Joumals 19-10
Epilogue 19-13
Further Reading 19-14

We have discussed many of the key neural network architectures and
learning rules and have explained how they can be used to design networks
for applications in pattern recognition, function approximation, adaptive
filtering, ete. Of course it is impossible for one text to provide in-depth cov-
erage of all important neural networks. The field is extremely broad and is

changing very rapidly.
In this chapter we want to give you a few ideas about where to go next. We

~ will discuss some of the networks we were not able to cover in detail in this

text, and will provide some references for further reading.

19-1

19 Epilogue

Theory and Examples

19-2

Chapter 3 provided a preview of the types of networks covered in this text.
If you recall, Chapter 3 presents three neural networks and appiies them
to a simple pattern recognition problem. The three networks are the per-
ceptron, the Hamming network and the Hopfield network. The perceptron
is an example of a feedforward network, which we later generalized to mul-
tilayer perceptron networks. We discussed feedforward networks in Chap-
ters 4, 7 and 10-12 (perceptron, linear associator, ADALINE, multilayer
perceptron). The Hamming network is an example of a competitive net-
work. We presented competitive networks in Chapters 14-16 (Kohonen
layers, self-organizing feature map, learning vector quantizers, Grossherg
network, ART network). The Hopfield network is an example of a dynamic
associative memory network. The continuous-time Hopfield network was
presented in Chapter 18.

In this chapter we will discuss some of the neural networks we did not have
space to present in detail in previous chapters. These networks are related
to the networks we have covered, and they fit into the three categories of
network presented in Chapter 3 - feedforward networks, competitive net-
works and dynamic associative memory networks. We will present these
other networks in the context of these three categories.

In addition to current neural network research, we will also discuss some
of the classical foundations of neural networks, In previous chapters we de-
scribed some principles in linear algebra, optimization and stability theory
that have contributed to neural networks. In this chapter we will indicate
some of the other disciplines that have supplied ideas and algorithms to the
field.

The final section of this chapter lists some current neural network journals
and textbooks that ¢can assist you in your future studies.

The list of networks that we discuss in the remainder of this chapter is not
comprehensive, and even if it were complete at the time of publication, it
would be out of date within a few weeks. However, we hope this list will in-
dicate the breadth of the field and will give you a place to start in your fur-
ther study of neural networks.

Feedforward and Related Networks

Radial Basis Networks

First introduced in the solution of real multivariable interpolation prob-
lems, the radial basis function (RBF) network consists of two layers. The
neurons in the first layer do not use the weighted sum of inputs and the sig-
moid transfer function, which are typical of multilayer networks. Instead,

Feedforward and Related Networks

the outputs of the first-layer neurons, each of which represents a basis
function, are determined by the distance between the network input and
the “center” of the basis function. As the input moves away from a given
center, the neuron output drops off rapidly to zero. The second layer of the
RBF network is linear and produces a weighted sum of the outputs of the
first layer. The neurons in the RBF network have localized receptive fields
because they only respond to inputs that are close to their centers. This is
in contrast to the standard multilayer networks, where the sigmoid func-
tion creates a global response. The RBF network trains faster than multi-
layer perceptron networks, but requires many neurons for high-dimension-
al input spaces. [Powe87], [BrLo88], [MoDa89), [PoGio0]

CMAC (Cerebellar Model Articulation Controller)

Like the radial basis networks, the CMAC is a network that uses hidden
units with localized receptive fields. This allows efficient learning. The
CMAC was developed by Albus (1971} as 2 model of the cerebellum. He lat-
er applied the network to the control of robotic manipulators. In its initial
form, the CMAC was implemented by a table look-up procedure. {Albu71),
[Albu75]

Polynomial Networks

In Chapters 3, 4 and 10 we discussed the limitations of single-layer net-
works, They can only learn to classify patterns that are linearly separable.
In Chapter 11 we illustrated that this limitation could be overcome by us-
ing multilayer networks, which could implement arbitrary decision re-
gions. Another solution to this problem is to use a different type of neuron
in a single layer. Instead of computing a linear combination of the inputs,
the neurons can compute a more complex function, such as a polynomial,
The following networks are examples of polynomial networks.

Functional Link Network

The neurons in the functional link network receive the standard linear
combination of input elements plua higher-order terms. The higher-order
terms include groups of products of different input elements. [Pao89)

Group Method of Data Handling (GMDH)

The group method of data handling (GMDH) was introduced by A.G. Iva-
khnenko in 1968. Each neuron in this network has exactly two inputs. The
output of each neuron is a general quadratic multinomial combination of
the two inputs. Each layer of the network increases the degree of the poly-
nomial created by the network. [Ivak71]

193

19 Epilogue

19-4

Sigma-Pi Network

This network is a generalization of multilayer perceptron networks that in-
corporates product terms into the net input of each neuron, The net input
to each neuron is equal to a weighted sum of all signals impinging on that
neuron, as well as a weighted sum of selected products of these signals.
[RuMc86], [HeNo95]

Modular Network

This network is a compromise between the networks with localized recep-
tive fields, like the radial basis function network and the CMAC, and global
networks, like the multilayer perceptron. It consists of a number of expert
networks, each of which can be a multilayer network, followed by a gating
network that combines the outputs of the expert networks into one overall
output. {Jado91a], {JaJo91hb]

Adaptive Critic

The basic adaptive critic system, which is normally used in control system
applications, consists of two networks: the critic network and the action
network. The purpose of the critic network is to evaluate the system per-
formance in the absence of a true error measurement. The action network
is then updated based on information from the critie network. The system
is trained using reinforcement learning, which is somewhere between su-
pervised and unsupervised learning. The system does not have access to a
target output, but it does receive a reinforcement signal, such as “success”
or “failure.” [BaSu831, [Sutt84)]

Variations of Backpropagation

Many variations on backpropagation, other than those of Chapter 12, have
been proposed. This has probably been the most active area of neural net-
work research since 1986. We discuss a few of the more successful back-
propagation variations below.

Quickprop

Quickprop is a heuristic modification of backpropagation, in which the step
size is determined by assuming that the error surface is quadratic and that
the derivative with respect to one weight is independent of the other
weights. [Fah189]

Rprop

This procedure is designed to overcome the problem cansed by the deriva-
tive of the sigmoid function being small when the magnitude of the net in-
put is large. This may cause the gradient of the performance index to be
small, even when far from a minimum point. Steepest descent would then
produce very small steps. In Rprop the step size is not a function of the

Feedforward and Related Networks

magnitude of the gradient. If the sign of the derivative for a given weight
remains the same over several iterations, then the magnitude of the step
size increases. If the sign of the derivative oscillates, then the magnitude
of the step size decreases. [RiBr33]

Cascade-Correlation

The cascade-correiation learning architecture (Fahlman and Lebiere,
1890} is an example of a network growing precedure. It begins with ne hid-
den nodes and can be trained with the LMS algorithm, Then hidden nodes
are added to the network one at a time. Each new hidden node has a con-
nection from each of the inputs and from each of the pre-existing hidden
nodes. Each hidden node is connected to each output node. [Fale90]

Network Pruning

One of the problems with training neural networks, as we discusged in
Chapter 11, is a lack of generalization, If the network has too many param-
eters it can overfit the data. The error on the training set can become very
small, but when data points outside the training set are presented, the er-
ror is large. One approach to improve network generalization is to reduce
the number of parameters in the network. Network pruning eliminates cer-
tain weights after the network has been trained. Examples are Optimal
Brain Damage [LeDe80] and Optimal Brain Surgeon [Ha5193].

Regularization

Another solution to network overfitting is to add a term to the performance
index, a complexity penalty, which accounts for the size of the network. In
other words, the modified performance index would consist of two parts,
one a function of the squared error and the other a function of the number
of network parameters (or their size). The training process attempts to
minimize the squared error while using the least complex network. Two ex-
amples of regularization are the weight decay procedure [Hinto89], and the
weight elimination method [WeRu91].

Stopped Training

This procedure, like regularization, is used to achieve better generalization
in trained networks. The idea is to separate the data set into three parts:
the training set, the validation set and the testing set. The training set is
used to compute the gradient and to determine the weight update. The val-
idation set is used to decide when to stop training. The test set is used to
compare the performance of different networks. The training is stopped
when the error on the validation set begins to increase. This keeps the net-
work from overfitting on the training set. [Sarl95]

9.5

19 Epilogue

19-8

Probabllistic Neural Network

The probabilistic neural network is actually a parallel implementation of a
standard Bayesian classifier. It is a three-layer network that can perform
pattern classification. In its standard form, the probabilistic network is not
trained. The training vectors simply become the weight vectors in the first
layer of the network, in a manner similar to the Hamming network. The
advantage of the PNN is that it does not require training. The disadvan-
tage is that the weight matrix can be very large if there are many vectors
in the training set. If the training set is too large, a clustering operation
may have to be performed to reduce the size. [Spec90]

Generalized Regression Neural Network

Like the PNN, the generalized regression neural network does not require
an iterative {raining procedure, While the PNN is used for classification
problems, the GRNN is used for the estimation of continuous variables, as
in standard regression techniques. It is related to the radial basis function
network and the CMAC and is based on a standard statistical technique
called kernel regression. [Spec91]

Multitayer Networks with Time Delays

Multilayer feedforward networks can approximate any Borel-integrable
function, but they cannot incorporate any time dependency. For this rea-
son, a number of researchers have proposed networks that combine multi-
layer perceptrons with time delays, some of which include feedback
connections.

Time-Delay Neural Network

The time-delay neural network (TDNN) is a multilayer feedforward net-
work in which the outputs of a layer are buffered several time steps and
then fully connected to the next layer, It has been applied most often to
speech recognition tasks. [LaHi88], [WaHa89].

Finite Impulse Response Multilayer Perceptron

The finite impulse response (FIR) multilayer perceptron network is a gen-
eralization of the TDNN. The FIR network is a multilayer network with
each weight replaced by a finite impulse response filter, This network was
first applied to time series prediction. [Wan90z], {[Wan 80b], [Wan94|

Pipelined Recurrent Neural Network

The pipelined recurrent neural network (PPRN) consists of a number of
modules, each of which receives an appropriately delayed version of the in-
put signal. Each module is a fully connected recurrent network with a sin-
gle output neuron. The modules operate sequentially, with the output of
one module feeding into the succeeding module. It is more complex than the

Feedforward and Related Networks

TDNN and FIR networks because it has both feedforward and feedback (re-
current} connections and therefore hag infinite memery. However, the
modularity of the network allows efficient training. The PPRN was de-
signed for adaptive prediction of nonstationary signals. (Hali95]

Nonlinear Autoregressive Moving Average (NARMA) Network

The NARMA network is based on the linear ARMA model used in time se-
ries analysis and system identification. It consists of a single multilayer
network that has two sets of inputs. The first set consists of the input sig-
nal and delayed values of the input signal. The second set of inputs consists
of delayed values of the network output. The network is used for identifica-
tion and control of dynamic systems and the prediction of time series.
[NaPa$S0]

Elman Network

The Elman network is a two-layer network with feedback connections from
the output of the hidden layer toits input, The feedback paths allow Etman
networks to learn to recognize and generate temporal patterns as well as

spatial patterns. [Elma90]

Real-Time Recurrent Network

The real-time recurrent network (RTRN) has a structure similar to the dis-
crete-time Hopfield network, except that it contains hidden neurons. The
RTRN has two layers: a hidden layer and an output layer. Both layers re-
ceive two sets of inputs. The first set consists of delayed values of all neuron
outputs {both hidden and output neurons). The second set consists of exter-
nal input signals. The RTRN, with its associated learning rule, is able to
run continuously and te learn in real-time. It has the disadvantage that,
because it is fully connected, it may require many neurons and excessive
computation. [WiZi89]

Training Multilayer Networks with Delays

The multilayer networks described in the previous section, as well as other
dynamic networks, cannot normally be trained with the standard back-
propagation algorithm because of the time dependence. They require the
use of dynamic backpropagation. There are two basic structures for dynam-
ic backpropagation. One evolves forward through time, while the other
evolves backward through time,

Backpropagation Through Time

The backpropagation through time (BTT) algorithm for dynamic networks
is an extension of the backpropagation algorithm for static networks. It can
be derived by unfolding the network forward through time to produce a
multilayer feedforward network — a set of a layers for each time step, The
backpropagation process effectively moves backward through time. The

197

19 Epilogue

19-8

BTT algorithm is characterized by relatively low computational cost and
relatively high storage requirements. The standard BTT algorithm is not
suitable for real-time operation because the autput of the network for all
time steps must be computed before the gradient is calculated (by back-
propagating through the entire time sequence). (See Exercise E11.5 for an
example of the BTT concept.) [RuMc86], {Werb50]

Forward Perturbation Algorithm

The forward perturbation algorithm (also referred to as the real-time re-
current learning algorithm, the sensitivity method or the recursive back-
propagation algorithm) is designed for real-time operation. The gradient is
updated at each time step — forward through time. This algorithm is char-
acterized by relatively high computational cost and relatively low storage
requirements. (See Problems P11.4 and P11.9 for an example of the for-
ward perturbation concept.) [WiZi89], [NaPa91]

Competitive Networks

Counterpropagation

The counterpropagation network (CPN) combines a competitive Jayer of in-
stars with a layer of outstars. The CPN can be used for data compression,
function approximation or pattern association, It combines supervised and
unsupervised training, [Hech87], [Hech88]

Neocognitron

The neocognitron, a hierarchical network, is one of the most complex net-
works yet developed. The neurons in each layer of the network receive con-
nections from only a localized subset of the neurons in the previous layer.
The neocognitron is designed for pattern recognition, in particular hand-
written character recognition, and is relatively insensitive to distortion
and sealing of patterns. [FuMi83], [Fuku88]

ART Networks

There are many variations of the ART network other than the ART1 net-
work described in Chapter 16. The ART1 network was designed for unsu-
pervised categorization of binary patterns. Later networks were modified
to handle analog patterns, and some networks also include supervised
learning. [CaGr87], [CaGr20], [CaGrMa92], [CaGrRo91], [CaGrRed1],
[CaRo95] ’

Dynamic Associafive Memory Networks

Dynamic Associative Memory Networks

The Hopfield network is the only dynamic associative memory network
presented in this text. A number of related networks have been suggested

in the literature.

Li-Michel Networks

This class of network is described by a system of first-order linear differen-
tial equations defined on a closed hypercube. The design proeedure for
these networks guarantees that the number of spurious equilibrium points
is as small as possible and that the basin of attraction for each prototype
pattern is as large as possible. These networks are closely related to the
Hopfield model, and the design procedures can be applied directly to the
Hopfield model. [LiMi89], [MiFaS0]

Boltzman Machine

A Hopfield network will converge to a local minimum of the Lyapunov func-
tion, but there is no guarantee that it will converge to a global minimunm.
In the Boltzman machine, noise is used in an attempt to reach the global
minimum. The technigue is called simulated annealing and is analogous to
metallurgical annealing, in which a body of metal is heated to near melting
and then slowly cooled according to a specified schedule. The high temper-
atures cause thermal agitation, which prevents the metal from becoming
frozen in a high energy (brittle) state. In the Boltzman machine, noise is
added to the network trajectory so that it will not be trapped in a local min-
imum. The magnitude of the noise is decreased over time, so that the net-
work will eventually converge. [GeGe84], [AkHi85]

Bidirectional Associative Memory

The bidirectional associative memory {BAM) is related to the Hopfield net-
work and also has some similarity to the ART architecture. It consiats of
two layers and uses the forward and backward information flow between
the layers to perform a search for a stored stimulus-response association.
The network evolves to a local minimum of the “energy” surface, which is a
two-pattern resonance state, with each pattern at the output of one layer.
[Kosk87], [(Kosk88)

Brain-State-in-a-Box

The brain-state-in-a-box (BSB) is a dynamic associative memory model
that preceded the Hopfield model. This discrete-time model was derived as
an extension of the linear associator. Feedback was added, and a saturat-
ing .inear transfer function was used to contain the network response with-
in a hypercube. As with the high-gain Hopfield network, the stahle points
correspond to corners of the hypercube. [AnSi77]

19-9

19 Epilogue

19-1¢

Classical Foundations of Neural Networks

Many of the technigues used in neural networks are related to procedures
that have been developed in uther fields of study. This fact is often over-
looked by newcomers to the field. In this section we want to review just a
few of the ideas from other disciplines that are closely related to current
neural network architectures or learning rules.

Statistics

Many classes of neural netwerks are functionally equivalent to standard
procedures in mathematical statistics. For example, single-layer feedfor-
ward networks (including functional-link neural networke and polynomial
neural networks) are basically generalized linear models. Two-layer feed-
forward networks are closely related to projection pursuit regression. Prob-
abilistic neural networks are identical to kernel discriminant analysis.
General regression neural networks are identical to Nadaraya-Watson ker-
nel regression. Kohonen competitive networks are similar to k-means clus-
ter analysis. Hebbian learning is closely related to principal component
analysis. [Smit93], [Sarle94], [BaCo94], [Brid90], [MacK92], [Joll86],
[HwLa94]

Physics/Statistical Mechanics

Several neural networks were inspired by work in physics, and in particu-
lar. by statistical mechanics. For instance, the Hopfield model was so influ-
ential because it was shown to be analogous to the Ising-spin model of
magnetic materials that is used in statistical mechanics. The Boltzman
machine is based on the principle of simulated annealing, which also comes
out of the statistical physics literature. [ShKi72], [KiSh78], [Pere84],
[Pere92]

Biology/Psychology

The connection between neural networks and ideas in biology and psychol-
ogy is clear. However, even though the entire field of neural networks is in-
spired by these disciplines, we often fail to keep up with the current
developments in these areas. [Thom75}, [Gros82], {ChSe92], {Ande95]

Books and Journals

Neural Network Journais

The references we have provided in this chapter represent just the tip of
the iceberg of neural network research and application. To keep up with
the current neural network activity, you may wish to survey the following
list of journals. Some of them are addressed solely to neural networks, oth-

Books and Journals

erg cover broader subject areas but devote significant space to neural net-
work topics.

* Applied Optics

* Biological Cybernetics

* Cognitive Science

» Connection Science

s IEEE Transactions on Circuits and Systems

* IEEE Transaetions on Neural Networks

* IEEE Transactions on Systems, Man, and Cybernetics
*» International Journal of Neural Systems

¢ Journal of Artificial Neural Networks

¢ Journal of Cognitive Neuroscience

¢ Journal of Neuroscience

¢ Machine Learning

» Network: Computation in Neural Systems

¢ Neural Computation

v Neural Networks

* Proceedings of the Nutional Academy of Sciences

Neural Network Texthooks

We have also included a list of neural network textbooks. We hope you have
found our texthook to be satisfactory, but to obtain the deepest understand-

ing of a subject, it is worthwhile to investigate it from several points of

view. Each of these texthooks takes a slightly different approach to the sub-

ject.

* Self-Organization and Associative Memory, 3rd Edition, T. Kohonen,
Springer-Verlag, 1989,

¢ Adaptive Pattern Recognition and Neural Networks, Y.-H. Pao, Addison-
Wesley, 1989,

* Neurocomputing, R. Hecht-Nielsen, Addison-Wesley, 1990.

* Introduction to the Theory of Neural Computation, J. Hertz, A. Krogh
and R. G. Palmer, Addison-Wesley, 1991,

19-11

19 Epilogue

19-12

o Neural Networks: Algorithms, Applications, and Programming Tech-
nigques, J. A. Freeman and D. M. Skapura, Addison-Wesley, 1991.

» Neural Computing: An Introduction, 2nd Edition, R. Beale and T. Jack-
son, Adam Hilger, 1991.

» Introduction to Artificial Neural Systems, J. Zurada, West Publishing,
1992,

¢ An Introduction fo the Modeling of Neural Networks, P. Peretto, Cam-
bridge University Press, 1992.

* Neural Networks and Fuzzy Systems, B. Kosko, Prentice-Hall, 1992.
s Neural Networks for Pattern Recognition, A. Nigrin, MIT Prees, 1993.
¢ Digital Neural Networks, S. Y. Kung, Prentice-Hall, 1993.

* Neural Networks for Statistical Modeling, M. Smith, Van Nostrand Re-
inhold, 1993.

» Advanced Methods in Neural Computing, P. D. Wasserman, Van Nos-
trand Reinhold, 1993.

* Neural Networks: A Tutorial, M. Chester, Prentice-Hall, 1993.

® Neural Networks for Optimization and Signel Processing, A. Cichocki
and R. Unbehauen, John Wiley & Sons, 1993,

¢ Neural Networks: A Comprekensive Foundation, S. Haykin, Macmillan,
1994,

¢ Neural Network Principles, R. L. Harvey, Prentice-Hall, 1994,

s Fundamentals of Neural Networks: Architectures, Algorithms, and Ap-
plications, L. Fausett, Prentice-Hall, 1994.

* Fundamentals of Artificial Neural Networks, M. H. Hassoun, MIT Press,
1995.

* An Introduction to Neural Networks, J. A. Anderson, MIT Press, 1995.
* Self-Organizing Maps, T. Kohonen, Springer-Verlag, 1995.

Epilogue

Epilogue

We hope that this text has helped shed some light on the field of neural net-
works and that it will encourage you to explore the subject further. The
field is broad and is expanding rapidly. There will certainly be many new
developments in neural networks in the coming years. The concepts dis-
cussed in this text will provide you with a good foundation to pursue fur-
ther studies in this area. In this chapter we have suggested some places
where you can go to continue your neural network exploration.

1913

P e ik b et M s oam ke owLMeeade s .

19 Epilogue

Further Reading

19-14

Radial Basis Networks

[BrLo88] D. 8. Broomhead and D. Lowe, “Multivariable functional
interpolation and adaptive networks,” Complex Systems,
vol. 2, pp. 321-355, 1988,

[MoDa89] J. E. Moody and C. J. Darken, “Fast learning in networks
of locally-tuned processing units,” Neural Computation,
vol. 1, pp. 281-294, 1989.

[PoGi80] T. Poggio and F. Girosi, “Networks for approximation and
learning,” Proceedings of the IEEE, vol. 78, pp. 1481-1497,
1990,

[Powe87) M. J. D. Powell, “Radial basis functions for multivariable
interpolation: A review,” in Algorithms for the Approximae-
tion of Functions and Date, J. C., Mason and M. G. Cox,
eds., Oxford, England: Clarendon Press, pp. 143-167, 1987.

CMAC

{Albu71] J. 8. Albus, “A theory of cerebellar function,” Mathematical
Biosciences, vol. 10, pp. 25-61, 1971.

[Albu75] J. S. Albus, “A new approach to manipulator control: The

cerebellar model articulation contreller (CMAC),” Journal
of Dynamic Systems, Measurement and Control, Transac-
tions of the ASME, vol. 97, pp. 220-227, 1975.

Polynomial Networks

Funetional Link

[Pa089] Y.-H. Pao, Adaptive Paitern Recognition and Neural Net-
works, Reading, MA: Addison-Wesley, 1989,

Group Method of Data Handling (GMDH)

[Ivalk71] A G. Ivakhnenko, “Polynomial theory of complex systems,”
IEEE Transactions on Systems, Man, and Cybernetics, vol,
12, pp. 364-378, 1971.

Sigma-Pi Networks

{(HeNo95] M. Heywood and P. Noakes, “A framework for improved
training of sigma-pi networks,” IEEE Transactions on Neu-
ral Networks, vol. 8, no. 4, pp. 893-903, 1995,

[RuMc86)

Further Reading

D. E. Rumelhart and J. L. MeClelland, Parallel Distributed

Processing, Explorations in the Macrostructure of Cogni-

tion, vol. 1, Cambridge, MA: MIT Press, 1586.

Modular Network

[Jado%1a])

[JaJo81b]

R. A Jacobs and M. 1 Jordan, “A competitive modular con-
nectionist architecture,” in Advances in Newral Informa-
tior Procegsing Systems 3, R. P. Lippman, J, E. Moody and
B. J. Touretzky, eds., pp. 767~773, San Mateo, CA: Morgan
Kaufmann, 1991.

R. A Jacobs, M. [. Jordan, S. J. Nowlan and G. E. Hinton,
“Adaptive mixtures of local experts,” Neural Compuitation,
vol. 3, pp. 79-87, 1991,

Adaptive Critic

[Ba5u83]

[Sutts4)

A. R. Barto, R. 8. Sutton and C. W. Anderson, “Neuronlike
adaptive elements that can solve diffieult learning control
problems,” IEEE Transactions on Systems, Man, and Cy-
bernetics, vol. 13, pp. 834-846, 1983.

R. 5. Sutton, “Temporal credit assignment in reinforce-
ment learning,” Ph.D. Dissertation, University of Massa-
chusetts, Amherst, MA, 1984.

Variations of Backpropagation Learning

Quickprop
(Fahig9]

Rprop
(RiBrg3j

8. E. Fahlman, “Fast learning variations on back-propaga-
tion: An empirical study,” in Proceedings of the 1988 Con-
necionist Models Summer School (Pittsburgh 1988), D.
Touretzky, G. Hinton and T. Sejnowski, eds., pp. 38-51,
San Mateo, CA: Morgan Kaufmann, 1989.

M. Riedmiller and H. Braun, “A direct adaptive method for
faster backpropagation learning: The RPROP algorithm”,
Proceedings of the IEEE International Conference on Neu-
ral Networks, San Francisco: IEEE, 1993.

Cascade Correlation

[FaLe90}

A. E. Fahlman and C. Lebiere, “The cascade-correlation
learning architecture,” in Advances in Neural Information
Processing Systems 2, D. Touretzky, ed., San Mateo, CA:
Morgan Kaufmann, pp. 524-532, 1990,

19-15

19 Epilogue

18-16

Pruning

[HaSt93] B. Hassibi, D. G. Stork and G. J. Welff, “Optimal brain sur-
geon and general network pruning,” Proceedings of the
IEEE International Joint Conference on Neural Networks,
vol. 2, pp. 441444, 1992,

[LeDeS0] Y. Le Cun, J. S. Denker and 8. A, Solla, “Optimal Brain
Damage,” in Advances in Neural Information Processing
Systems 2, D. Touretzky, ed., San Mateo, CA: Morgan
Kaufmann, pp. 588—604, 1990,

Regularization
Weight Decay

[HintoB9] G. E. Hinton, “Connectionist learning procedures,” Artifi-
cial Intelligence, vol. 40, pp. 185-234, 1989, :

Weight Elimination

[WeRu91] A B, Weigand, D. E. Rumelhart and B. A. Huberman,
“Generalization by weight elimination with application to
forecasting,” in Advances in Neural Information Processing
Systems 3, R. Lippman, J. Moody and D. Touretzky, eds.,
San Mateo, CA: Morgan Kaufmann, pp. 575-582, 1991.

Stopped Training

[Sarle95] W. 8. Sarle, “Stopped training and other remedies for over-
fitting,” to appear in Proceedings of the 27th Symposium on
the Interface, 1995.

Probabilistic Neural Network

{Specd0] D. F. Specht, “Probabilistic neural networks,” Neural Net-
works, vol. 3, no. 1, pp. 109-118, 1990,

Generalized Regression Neural Network

[Specd1] D. F. Specht, “A general regression neural network,” IEEE
Transactions on Neural Networks, vol. 2, no. 6, pp. 568—
576, 1991,

Further Reading

Multilayer Networks with Time Delays
Time-Delay Neural Network

[LaHi88] K. J. Lang and G. E. Hinton, “The development of the time-
delay neural network architecture for speech recognition,”
Technical Report CMU-CS-88-152, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, 1988.

[(WaHag&9] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J.
Lang, “Phoneme recognition using time-delay neural net-
works,” IEEE Transactions on Acoustics, Speech and Sig-
nal Processing, vol. 37, pp. 328-333, 1989,

Finite Impulse Response (FIR) Network

[(Wan$0a] E. A. Wan, “Temporal backpropagation for FIR neural net-
works,” IEEE International Joint Conference on Neural
Networks, vol. 1, San Diego, CA, pp. 575-580, 1990.

[Wan90b] E. A. Wan, “Temporal backpropagation: An efficient algo-
rithm for finite impulse response neural networks,” in Pro-
ceedings of the 1990 Connectionist Models Summer School,
D, 8. Touretzky, J. L. Elman, T. J. Sejnowski and G. E. Hin-
ton, eds., San Mateo, CA: Morgan Kaufmann, pp. 131-140,
1990.

[Wan94] E. A. Wan, “Time series prediction by using a connectionist
network with internal delay lines,” in Tirme Series Predic-
tion: Forecasting the Future and Understanding the Past,
A. B. Weigend and N. A. Gershenfeld, eds., Reading, MA;
Addizon Wesley, pp. 195-217, 1994,

Pipelined Recurrent Neural Network

[HaLid5] S. Haykin and L. Li, “Nonlinear adaptive prediction of non-
stationary signals,” IEEE Transqctions on Signal Process-
ing, vol. 43, no. 2, pp. 526-535, 1995,

Nonlinear Autoregressive Moving Average (NARMA) Network

{NaPa90] K. 8. Narendra and K. Parthasarathy, “ldentification and
control of dynamical systems using neural networks,”
IEEE Transactions on Neural Networks, vol. 1,no. 1, pp. 4~
27, 1990,

Elman Network

(Elmag0] d. L. Elman, “Finding structure in time,” Cognitive Science,
vol. 14, pp. 179-211, 1980.

1817

19 Epilogue

19-18

Real-Time Recurrent Network

[WiZi89]

R.J. Williams and D. Zipser, “A learning algorithm for con-
tinually running fully recurrent neural networks,” Neural
Computation, vol. 1, pp. 270-280, 1989,

Training Multilayer Networks with Time Delays
Backpropagation Through Time

[RuMc86]

[Werbg0]

. E. Rumelhart and J. L. McClelland, Parallel Distributed
Processing, Explorations in the Macrostructure of Cogni-
tion, vol. 1, Cambridge, MA: MIT Press, 1986.

P. J. Werbos, “Backpropagation through time: What it is
and how to do it,” Proceedings of the IEEE, vol. 78, pp.
15501560, October 1990,

Forward Perturbation Algorithm

[NaPa91] K. 8. Narendra and K. Parthasarathy, “Gradient methods
for the optimization of dynamical systems containing neu-
ral networks,” IEEE Transactions on Neural Networks, vol.
2, pp. 252262, 1991.

[WiZig9] R. J. Williams and D. Zipser, “A learning algorithm for con-
tinnally running fully recurrent neural networks,” Neural
Computation, vol. 1, pp. 270-280, 1989

Competitive Networks

Counterpropagation

[Hech87] R. Hecht-Nielsen, “Counterpropagation Networks,” Ap-
plied Optics, vol. 26, pp. 49794984, December 1987.

fHech88] R. Hecht-Nielsen, “Applications of Counterpropagation
Networks,” Neural Networks, vol. 1, no. 2, pp. 131-139,
1988.

Neocoghnitron

(FuMi83] K. Fukushima, S. Miyake and T. Ito, “Neocognitron: A neu-
ral network model for a mechanism of visual pattern recog-
nition,” IEEE Transactions on Systerns, Man, and
Cybernetics, vol. 13, no. 5, pp. 826-834, 1983,

[Fuku88] K. Fukushima, “Neccognitron: A hierarchical neural net-

work capabie of visual pattern recognition,” Neural Net-
works, vol. 1, pp. 119-130, 1988.

Further Reading

ART

[CaGr8Th] G. A. Carpenter and S. Grossberg, “ART2: Self-organiza-
tion of stable category recognition codes for analog input
patterns,” Applied Optics, vol. 26, no. 23, pp. 49194930,
1987.

[CaGroo] G. A, Carpenter and S. Grossberg, “ART3: Hierarchical
search using chemical transmitters in self-organizing pat-
tern recognition architectures,” Neural Networks, vol. 3,
no. 23, pp. 129-152, 199¢.

[CaGrMa92] G. A. Carpenter, 8. Grossberg, N. Markuzon, J. H. Rey-
nolds and D). B. Rosen, “Fuzzy ARTMAP: A neural network
architecture for incremental learning of analog multidi-
mengional maps,” IEEE Transactions on Neural Networks,
vol. 3, pp. 698-713, 1992,

[CaGrRo91] G. A Carpenter, S. Grossberg and D. B. Rosen, “Fuzzy
ART: Fast stable learning and categorization of analog pat-
terns by an adaptive resonance system,” Neural Networks,
vol. 4, pp. 769771, 1991.

[CaGrRe91] @. A, Carpenter, 8. Grossberg and J. Reynolds, “ARTMAP:
Supervised real-time learning and classification of nonsta-
tionary data by a self-organizing neural network,” Neural
Networks, vol, 4, pp. 5656-588, 1991.

[CaRo95] G. A, Carpenter and W. D. Ross, “ART-EMAP: A neural
network architecture for object recognition by evidence ac-
cumulation.” IEEE Transactions on Neural Networks, vol.
6, no. 4, pp. 805-818, July 1995,

Associative Memory Recurrent Networks

Li-Michel Networks

[LiMi89] J. Li, A. N. Michel and W. Porod, “Analysis and synthesis
of a clags of neural networks: Linear systems operating on
a closed hypercube,” JEEE Transgctions on Circuits and
Systems, vol. 36, no, 11, pp. 14051422, November 1989.

[Mi¥Fa90] A, N. Michel and J. A. Farrell, “Associative memories via
artificial neural networks,” JEEE Control Systems Maga-
zine, April, pp. 6-17, 1990,

19-18

19 Epilogue

19-20

Boltzman Machine

[AcHi85]

[GeGe84]

D. H. Ackley, G. F. Hinton and T. J. Sejnowski, “A learning
algorithm for Boltzman machines,” Cognitive Science, vol.
9, pp. 147-169, 1985,

8. Geman and D. Geman, “Stochastic relaxation. Gibbs dis-
tributions, and the Bayesian restoration of images,” IEEE
Transactions on Pattern Analysis and Machine Intell;-
gence, vol. 6, pp. 721-741, 1984,

Bidirectional Associative Memory

[Kosk&7]

[Kosk88]

B. Kosko, “Adaptive bidirectional associative memories,”
Applied Optics, vol. 26, pp, 4910-4918, 1987.

B. Koske, “Bidirectional associative memories,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 18, no.
1, pp. 4960, 1988.

Brain-State-in-a-Box

[AnSi77}

J. A. Anderson, J. W. Silverstein, S. A. Ritz and R. 8. Jones,
“Distinctive features, categorical perception, and probabil-
ity learning: some applications of a neural model,” Psycho-
logical Review, vol. 84, pp. 413-351, 1977,

Classical Techniques

Statistics
[BaCo94)

[Brid90]

[HwLa94]

[Joli886]

P. V. Balakrishnan, M. C. Cooper, V. S. Jacob, and P. A.
Lewis, “A study of the classification capabilities of neural
networks using unsupervised learning: A comparison with
k-means clustering,” Psychometrika, vol. 59, pp. 508-525,
1994.

J. 8. Bridle, “Probabilistic interpretation of feedforward
classification network outputs, with relationships to statis-
tical pattern recognition,” in Neurocomputing: Algorithms,
Architectures and Applications, F. Fogleman-Soulie and J.
Herault, eds., Berlin: Springer-Verlag, pp. 227-236, 1990.

J.-N. Hwang, S.-R. Lay, M. Maechler, R. D. Martin and J.
Schimert, “Regression modeling in back-propagation and
projection pursuit learning,” IEEE Transactions on Neural
Networks, vol. 5, no. 3, pp. 342-353, 1994.

1. T. Jelliffe, Principal Component Anclysis, New York:
Springer-Verlag, 1986,

[(MacK92]

{Sarle94]

[Smit93]

Further Reading

D.d. C. MacKay, “A practical Bayesian framework for
backpropagation networks,” Neural Computation, vol. 4,
pp. 448472, 1992,

W. S. Sarle, “Neural networks and statistical models,” Pro-
ceedings of the Nineteenth Annual SAS Users Group Inter-
national Conference, Cary, NC: SAS Institute, pp. 1538
1550, 1994,

M. Smith, Neural Networks for Statistical Modeling, New
York: Van Nostrand Reinhold, 1993,

Physics/Statistical Mechanics

[KiSh78] 8. Kirkpatrick and D. Sherringten, “Infinite-range models
of spin-glasses,” Physical Review, Series B, vol. 17, pp.
4384--4408, 1978.

[Pered4] P. Peretto, “Collective properties of neural networks: A sta-
tistical physics approach,” Biological Cybernetics, vol. 50,
pp. 51-62, 1984.

[Pere92} P. Peretto, An Introduction to the Modeling of Neural Net-
works, Cambridge, England: Cambridge University Press,
1992,

[ShKi72] D. Sherrington and 8. Kirkpatrick, “Spin-glasses,” Physical
Review Letters, vol. 35, 1972.

Biology/Psychology

[Anded5] J. A. Anderson, An Introduction to Neural Networks, Cam-
bridge, MA: MIT Press, 1995.

{ChSe92] P. 8. Churchland and T. J. Sejnowski, The Computational
Brain, Cambridge, MA: MIT Press, 1992.

[Gros82] 8. Grossberg, Studies of Mind and Brain, Boston: D. Reidel
Publishing Co., 1982.

(Thom75] R. F. Thompson, Introduction to Physiological Psychology,

New York: Harper and Row, 1975,

19.21

A Bibliography

[AcHi85]

[Albe72]

[Albu71]

[Albu75]

{Ande72]

[Anded5]

[AnRo88]

[AnSi77]

[BaCo94]

[Barn92]

D. H. Ackley, G. F. Hinton and T. J. Sejnowski, “A learning
algorithm for Boltzman machines,” Cognitive Science, vol.
9, pp. 147-168, 1985. (Chapter 19)

A. Albert, Regression and the Moore-Penrose Pseudoin-
verse, New York: Academic Press, 1972. (Chapter 7)

dJ. 8. Albus, “A theory of cerebellar function,” Mathematical
Biosciences, val. 10, pp. 25-81, 1971. (Chapter 19}

J. 8. Albus, “A new approach to manipulator control: The
cerebeilar model articulation controller (CMAC),” Journal
of Dynamic Systems, Measurement and Control, Transec-
tions of the ASME, vol. 97, pp. 220227, 1975. (Chapter 19)

J. A. Anderson, “A simple neural network generating an in-
teractive memory,” Mathematica! Biosciences, vol. 14, pp.
1987-220, 1972. (Chapter 1, 13, 18)

J. A. Anderson, An Introduction to Neural Networks, Cam-
bridge, MA: MIT Press, 1995, (Chapter 19)

J. A. Anderson and E. Rosenfeld, Neurocomputing: Foun-
dations of Research, Cambridge, MA: MIT Press, 1989,
{Chapters 1, 10)

dJ. A, Anderson, J. W. Silverstein, S. A. Ritz and R. 8. Jones,
“Distinctive features, categorical perception, and probabil-
ity learning: Some applications of a neural model,” Psycho-
logical Review, vol. 84, pp. 413451, 1977, (Chapters 18,
19)

P. V. Balakrishnan, M. C. Cooper, V. 8. Jacob, and P. A,
Lewis, “A study of the classification capabilities of neural
networks using unsupervised learning: A comparison with
k-means clustering,” Psychometrika, vol. 59, pp. 509-525,
1994. (Chapter 19)

E. Barnard, “Optimization for training neural nets,” IEEE
Transactions on Neural Networks, vol. 3, no. 2, pp. 232-
240, 1992, (Chapter 12)

Al

A Bibliography

A.2

[BaSu83]

[Batt92]

[Brid90]

[Brog91]

[BrLo8&8]

[CaGr87a)

[CaGGr87h]

[CaGra0]

[CaGrMa02]

[CaGrRe91]

A. R. Barto, R. 8. Sutton and C. W. Anderson, “Neuronlike
adaptive elements that can solve difficult learning control
problems,” IEEE Transactions on Systems, Man, and Cy-
bernetics, vol. 13, pp. 834-846, 1983. (Chapters 4, 19)

R. Battiti, “First and second order methods for learning:
Between steepest descent and Newton’s method,” Neura!
Computation, vol. 4, no. 2, pp. 141-166, 1992. (Chapters 9,
12)

J. 8. Bridle, “Probabilistic interpretation of feedforward
classification network outputs, with relationships to statis-
tical pattern recognition,” in Neurocomputing: Algorithms,
Architectures and Applications, F.Fogleman-Soulie and J.
Herault, eds., Berlin: Springer-Verlag, pp. 227-236, 1990.
(Chapter 19)

W. L. Brogan, Modern Control Theory, 3rd Ed., Englewood
Cliffs, NJ: Prentice-Hall, 1991. (Chapters 4, 5, 6, 8, 9, 17}

D. S. Broomhead and D). Lowe, “Multivariable functional
interpolation and adaptive networks,” Complex Systems,
vol. 2, pp. 321-356, 1988. {Chapter 19)

G. A Carpenter and S. Grossberg, “A masgively parallel ar-
chitecture for a self-organizing neural pattern recognition
machine,” Computer Vision, Graphics, and Image Process-
ing, vol. 37, pp. 54-115, 1987. (Chapter 16)

G. A. Carpenter and 8. Grossberg, “ART2: Self-organiza-
tion of stable category recognition codes for analog input
patterns,” Applied Optics, vol. 26, no. 23, pp. 49194930,
1987. (Chapters 16, 19)

G. A. Carpenter and S. Grossberg, “ART3: Hierarchical
search using chemical transmitters in self-organizing pat-
tern recognition architectures,” Neural Networks, vol. 3,
ne. 23, pp. 129-152, 1990. (Chapters 16, 19)

G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Rey-
nolds and D). B. Rosen, “Fuzzy ARTMAP: A neural network
architecture for incremental learning of analog multidi-
mensional maps,” IEEE Transoctions on Neural Networks,
vol. 3, pp. 698-T13, 1992. (Chapters 16, 19)

G.A. Carpenter, S. Grossberg and J. Reynolds, “ARTMAP:

Supervigsed real-time learning and classification of nonsta-
tionary data by a self-organizing neural network,” Neural

Networks, vol. 4, pp. 565-588, 1991. (Chapters 16, 19)

[CaGrRo91]

{CaRo95]

[Char92]

[ChSe92]

[CoGr83]

[DARPSS]

{Eima9%0]

[Fahl89]

[Fale90]

[Fr8k91]

[FuMi83]

A Bibliography

G. A, Carpenter, 8. Grossberg and D. B. Rosen, “Fuzzy
ART: Fast stable learning and categorization of analog pat-
terns by an adaptive resonance system,” Neural Networks,
vol. 4, pp. 769771, 1991. (Chapter 19}

G. A, Carpenter and W. D). Ross, “ART-EMAP: A neural
network architecture for object recognition by evidence ac-
cumulation,” IEEE Transactions on Neural Networks, vol.
6, no, 4, pp. 805-818, July 1995. (Chapter 19)

C. Charalambous, “Conjugate gradient algorithm for effi-
cient training of artificial neural networks,” IEEE Proceed-
ings, vol. 139, no, 3, pp. 301-310, 1692. (Chapter 12)

P. 8. Churchiand and T. J. Sejnowski, The Computetional
Bruin, Cambridge, MA: MIT Press, 1992, (Chapter 19)

M. A. Cohen and 8. Grossberg, “Absolute stability of global
pattern formation and parallel memory storage by compet-
itive neural neitworks,” IEEE Transactions on Systems,
Man, and Cybernetics, vol, 13, no. 5, pp. 815826, 1983.
(Chapters 17, 18)

DARPA Neural Network Study, Lexington, MA: MIT Lin-
coln Laberatory, 1988. (Chapter 1)

J. L. Elman, “Finding structure in time,” Cognitive Science,
wvol. 14, pp. 179-211, 1990. (Chapter 19}

S. E. Fahlman, “Fast learning variations on back-propaga-
tion: An empirical study,” in Proceedings of the 1988 Con-
nectionist Models Summer School, D. Touretzky, G. Hinton
and T. Sejnowski, eds., San Mateo, CA: Morgan Kaufmann,
pp. 3861, 1989. (Chapters 12-19)

A E. Fahlman and C. Lebiere, “The cascade-correlation
learning architecture,” in Advances in Neural Information
Processing Systems 2, D. Touretzky, ed., San Mateo, CA;
Morgan Kaufmann, pp. 524-532, 1980. (Chapter 19}

J. Freeman and D. Skapura, Neural Networks: Algorithms,
Applications, and Programming Technigques, Reading, MA:
Addison-Wesley, 1991. (Chapter 14)

K. Fukmshima, S. Miyake and T. Ito, “Neocognitron: A neu-
ral network model for a mechanism of visual pattern recog-
nition,” [EEE Transactions on Systems, Man, and

Cybernetics, vol. 13, no, 5, pp. 826-834, 1983. (Chapter 19)

A3

A Bibliography

A-4

[Fuku88)

[GeGeB4]

[Gill81)

[GrMi89]

[Gros67]

[Gros68]

[Gros76]

[Gros80]

{Gros82]

[Gros90]

[HaMed4]

[HaLi95]

K Mushima, “Neocognitron: A hierarchical neura! net-
work capable of visual pattern recognition,” Neural Net-
works, vol. 1, pp. 119-130, 1988. (Chapter 19)

S. Geman and D. Geman, “Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images,” IEEE.
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 6, pp. 721-741, 1984, (Chapter 19)

P.E. Gill, W. Murray and M. H. Wright, Practical Optimi-
zation, New York: Academic Press, 1981, (Chapters 8, 8)

8. Groasberg, E. Mingolla and D, Todorovic, “A neural net-
work architecture for preattentive vigion,” IEEE Transac-

tions on Biomedical Engineering, vol. 36, no. 1, pp. 65-84,

Jan. 1989, (Chapter 15)

8. Grossberg, “Nonlinear difference-differential equations
in prediction and learning theory,” Proceedings of the Na-
tional Academy of Sciences, vol. 58, pp. 1329-1334, 1967,

{Chapter 18}

8. Grossberg, “Some physiological and biochemical conse-
quences of psychological postulates,” Proceedings of the Na-
tional Academy of Sciences, vol. 60, pp. 758-765, 1968,
(Chapter 13)

8. Grossberg, “Adaptive pattern classification and univer-
sal recoding: I. Parallel development and coding of neural
feature detectors,” Biological Cybernetics, vol. 23, pp. 121-
134, 1976, (Chapters 1, 15, 16)

S. Grossberg, “How does the brain build a cognitive code?
Psychological Retiew, vol. 88, pp. 375-407, 1980, (Chapter
1)

8. Grossberg, Studies of Mind and Brain, Boston: D. Reidel
Publishing Co., 1982. (Chapters 13, 15, 16, 19)

3. Grossherg, “Neural networks: From foundations to ap-
plications,” Short-Course Notes, Boston University, Bos-
ton, MA, May 6-11, 1990, (Chapter 15)

M. T. Hagan and M. Menhaj, “Training feedforward net-
works with the Marquardt algorithm,” IEEFE Transactions
on Neural Networks, vol. 5, no. 8, pp. 989993, 1994, (Chap-
ter 12) '

S. Haykin and L. Li, “Nonlinear adaptive prediction of non-
stationary signals,” IEEE Transactions on Signel Process-
ing, vol. 43, no. 2, pp. 526-535. (Chapter 19)

[HaSt93]

[Hebb 49]

[Hech87]

[Hech88]

[Hechg90]

(HeNo96]

[Himm72]

(Hinto89]

[Hopf82)

[Hopi84]

[HoTa85]

[HoSt89]

[Hube88]

A Bibliography

B. Hagssibi, D. G. Stork and G. J. Wolff, “Optimal brain sur-
geon and general network pruning,” Proceedings of the
IEEE International Joint Conference on Neural Networks,
vol. 2, pp. 441444, 1992. (Chapter 19)

D. O. Hebb, The Organization of Behavior, New York:
Wiley, 1949. (Chapters 1, 7, 13)

R. Hecht-Nielsen, “Counterpropagation networks,” Applied
Optics, vol. 26, pp. 49794984, December 1987, (Chapter
19

R. Hecht-Nielsen, “Applications of counterpropagation net-
works,” Neural Networks, vol. 1, no. 2, pp. 131-139, 1988.
(Chapter 19)

R. Hecht-Nielsen, Neurocomputing, Reading, MA: Addi-
gon-Wegley, 1990, (Chapter 14)

M. Heywood and P. Noakes, “A framework for improved
training of sigma-pi networks,” IEEE Transactions on Neu-
rai Networks, vol. 6, no. 4, pp. 893-903, 1895. {Chapter 19)

D, M. Himmelblau, Applied Nonlinear Programming, New
York: McGraw-Hill, 1972. (Chapters 8, 9)

Q. E. Hinton, “Connectionist learning procedures,” Artifi-
cial Intelligence, vol. 40, pp. 185-234, 1989. (Chapter 19}

dJ.J. Hopfield, “Neural networks and physical systems with
emergent collective computational properties,” Proceedings
of the National Academy of Sciences, vol. 79, pp. 2554—
2558, 1982. (Chapters 1, 18)

J. J. Hopfield, “Neurons with graded response have collec-
tive computational properties like those of two-state neu-
rons,” Proceedings of the National Academy of Sciences, vol.
81, pp. 3088-3092, 1984. (Chapter 18)

J. J. Hopfield and D. W. Tank, “ ‘Neural’ computation of de-
cisions in optimization problems,” Biological Cybernetics,
vol. 52, pp. 141-154, 1985. (Chapter 18)

K. M. Hornik, M. Stinchcombe and H. White, “Multilayer
feedforward networks are universal approximators,” Neu-
ral Networks, vol. 2, no. 5, pp. 356-366, 1989. (Chapter 11)

D. H. Hubel, Eye, Brain, and Vision, New York: Scientific
American Library, 1988. (Chapter 15)

A Bibliography

A6

[HwLa%4]

[Ivak71]

[Jaco88]

{JadoSia]l

[JeJo91b]

[JohnO1]

[Jcll86]

[KiSh78]

[Koho72]

[Koho871

{Kosk87]

[Kosk88]

J.-N. Hwang, S.-R. Lay, M. Maechler, R. D. Martin and J.
Schimert, “Regression modeling in back-propagation and
projection pursuit learning,” IEEE Transactions on Neural
Networks, vol. b, no. 3, pp. 342-353, 1934. (Chapter 19)

A. G. Ivakhnenko, “Polynomial theory of complex sysiems,”
IEEE Transcctions on Systems, Mar, and Cybernetics, vol,
12, pp. 364378, 1971. (Chapter 19)

R. A. Jacobs, “Increased rates of convergence through
learning rate adaptation,” Neural Networks, vol. 1, no. 4,
pp 295-308, 1988. (Chapter 12)

R. A Jacobs and M. I Jordan, “A competitive modular con-
nectionist architecture,” in Advances in Neural Informa-
tion Processing Systems 3, R. P. Lippman, J. E. Moody and
D. J. Touretzky, eds., pp. 767-773, San Mateo, CA: Morgan
Kaufmann, 1991. (Chapter 19)

R. A. Jacobs, M. L Jordan, S. J. Nowlan and G. E. Hinton,
“Adaptive mixtures of local experts,” Neural Computation,
vol 3, pp. 79-87, 1991, {Chapter 19)

G. L. Johnson, “Contributions to the comparative anatomy
of the mammalian eye, chiefly based on ophthalmoscopic
examination,” Philosophical Transactions of the Royel So-
ciety of London, Series B., vol. 194, pp. 1-82, Plate 1, 1901.
{Chapter 15)

L. T. Jolliffe, Principal Component Analysis, New York:
Springer Verlag, 1986. (Chapter 19)

8. Kirkpatrick and D. Sherrington, “Infinite-range models
of spin-glasses,” Physical Review, Series B, vol. 17, pp.
43844403, 1978. (Chapter 19)

T. Kohonen, “Correlation matrix memories,” IEEE Trans-
actions on Computers, vol. 21, pp. 353-359, 1972. (Chapters
1,13,18)

T. Kohonen, Self-Organization and Associative Memory,
2nd Ed., Berlin: Springer-Verlag, 1987. (Chapters 13, 14)

B. Kosko, “Adaptive bidirectional associative memories,”
Applied Optics, vol. 26, pp, 49104918, 1987. (Chapter 19)

B. Kosko, “Bidirectional associative memories,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 18, no.
1, pp. 49-60, 1988, (Chapter 19)

{LaHi88]

[LaSa67}

[LeCu85]

[LeDe90]

[Leib90]

[LiMi89]

[MacK92]

[McPid3]

[MiFa90]

(MiPa69]

[MoDa89]

[NaP=90]

A Bibliography

K. J. Lang and G. E. Hinton, “The development of the time-
delay neural network architecture for speech recognition,”
Technical Report CMU-CS-88-152, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, 1988. (Chapter 19)

J. P, LaSalle, “An invariance principle in the theory of sta-
bility,” in Differential Equations and Dynamic Systems, J.
K. Hale and J. P. Lasalle, eds., New York: Academic Press,
pp. 277286, 1967. {Chapter 17)

Y. Le Cun, “Une procedure d'apprentissage pour reseau a
seuil assymetrique,” Cognitiva, vol. 85, pp. 599-604, 1985,
(Chapter 11)

Y. Le Cun, J. 5. Denker and 5. A. Solla, “Optimal brain
damage,” in Advences in Neural Information Processing
Systems 2, D. Touretzky, ed., San Mateo, CA: Morgan
Kaufmann, pp. 538-604, 1990, (Chapter 19}

D. Lieberman, Learning, Behavior and Cognition, Bel-
mont, CA: Wadsworth, 1990. (Chapter 13)

J. L, A N. Michel and W. Porod, “Analysis and synthesis
of a class of neural networks: Linear systems operating on
a closed hypercube,” IEEE Transactions on Circuits and
Systems, vol. 36, no. 11, pp. 1405-1422, November 1989.
(Chapter 18, 19)

D. J. C. MacKay, “A practical bayesian framework for back-
propagation networks,” Neurol Computation, vol. 4, pp.
448472, 1992. (Chapter 19)

W. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” Bulletin of Mathematical
Biophysics, vol. 5, pp. 115-133, 1943, (Chapters 1, 4, 18)

A, N. Miche! and J. A. Farrell, “Associative memories via
artificial neural networks,” IEEE Conirol Systems Maga-
zine, April, pp. 6-17, 1990, (Chapter 19)

M. Minsky and 8. Papert, Perceptrons, Cambridge, MA:
MIT Press, 1969. (Chapters 1, 4)

J. E. Moody and C. J. Darken, “Fast le‘aming in networka
of locally-tuned processing units,” Neural Computation,
vol. 1, pp. 281-294, 1989. (Chapter 19)

K. 8. Nerendra and K Parthasarathy, “Identification and
control of dynamical systems using neural networks,”
IEEE Tronsactions on Neural Networks, vol. 1,n0. 1, pp. 4-
27,1990, (Chapter 19}

AT

A Bibliography

A-8

[NaPa91]

[NgWi90]

[Pao89]

[Park85]

[Pere84]

[Pere92)

[PoGig0]

[Powe87]

[RiBro3]

[Rilr90]

[Rose58])

[Rose61]

K. 8. Narendra and K, Parthasarathy, “Gradient methods
for the optimization of dynamical systems contgining new-
ral networks,” IEEE Transactions on Neural Networks, vol.
2, pp. 252-262, 1991. (Chapter 19)

D. Nguyen and B. Widrow, “Improving the learning speed
of 2-layer neural networks by choosing initial values of the
adaptive weights,” Proceedings of the IJCNN, vol. 3, pp.
21-26, July 1990. (Chapter 12)

Y.-H. Pao, Adaptive Pattern Recognition and Neural Net-

_ works, Reading, MA: Addison-Wesley, 1989. (Chapter 19)

D. B. Parker, “Learning-logic: Casting the cortex of the hu-
man brain in silicon,” Technical Report TR-47, Center for
Computational Research in Economics and Management
Science, MIT, Cambridge, MA, 1985. (Chapter 11)

P. Peretto, “Collective properties of neural networks: A sta-
tistical physics approach,” Biological Cybernetics, vol, 59,
pp. 51-62, 1984. (Chapter 19)

P. Peretto, An Introduction to the Modeling of Neural Net-
works, Cambridge, England: Cambridge University Press,
1992. (Chapter 19}

T. Poggio and F. Girosi, “Networks for approximation and
learning,” Proceedings of the IEEE, vol. 78, pp. 1481-1497,
1990. (Chapter 19)

M. J. D. Powell, “Radial basis functions for multivariable
interpelation: A review,” in Algorithms for the Approxima-
tion of Functions and Data, J. C. Mason and M. G. Cox,
eds., Oxford, England: Clarendon Press, pp. 143-167, 1987.
(Chapter 19)

M. Riedmiller and H. Braun, “A direct adaptive method for
Tester backpropagation learning: The RPROP algorithm,”
Proceedings of the IEEE International Conference on Neu-
ral Networks, San Franciseo: IEEE, 1993. (Chapter 19)

A K Rigler, J. M. Irvine and T. P. Vog!, “Rescaling of vari-
ables in back propagation learning,” Neural Nefworks, vol.
3, no. 5, pp 561-573, 1990. (Chapter 12}

F. Rosenblatt, “The perceptron: A probabilistic model for
information storage and organization in the brain,” Psycho-
logical Review, vol. 65, pp. 386—408, 1958, {Chapters 1, 4)

F. Rosenblatt, Principles of Neurodynamics, Washington
DC: Spartan Press, 1961. (Chapter 4)

{RuHi86]

[RuMc86]

[Sarlefd]

[Sarle95]

[Scal85)

[Shan90]

[ShKi72]
[SILig1]

{Smit93]
(Spec90]

[Specdl]

[StDo84]

[Stra76]

A Bibliography

D. E. Rumelhart, G. E. Hinton and R. J. Williams,.“Learn-
ing representations by back-propagating errors,” Nature,
vol, 323, pp. 533-536, 1986, (Chapter 11)

D. E. Rumelhart and J. L. McClelland, eds., Parallel Dis-
tributed Processing: Explorations in the Microstructure of
Cognition, vol. 1, Cambridge, MA: MIT Press, 1986. (Chap-
ters 1, 11, 14, 19)

W. S. Sarle, “Neural networks and statistical models,” Pro-
ceedings of the Nineteenth Annual SAS Users Group Inter-
notional Conference, Cary, NC: SAS Institute, pp. 1538-
1560, 1894. (Chapter 19}

W. 5. Sarle, “Stopped training and other remedies for over-
fitting,” to appear in Proceedings of the 27th Symposium on
the Interface, 1995. (Chapter 19)

L. E. Scales, Introduction to Non-Linear Optimization,
New York: Springer-Verlag, 1985. (Chapters 8, 9, 12)

D. F. Shanno, “Recent advances in numerical techniques
for large-scale optimization,” in Neural Networks for Con-
trol, Miller, Sutton and Werbos, eds., Cambridge, MA: MIT
Press, 1990. (Chapter 12)

D. Sherrington and 8. Kirkpatrick, “Spin-glasses,” Physical
Review Letters, vol. 35, 1972, (Chapter 19)

J.-d. E. Slotine and W. Li, Applied Nonlinear Control, En-
glewood Cliffs, NJ: Prentice-Hall, 1991, (Chapter 17)

M. Smith, Neural Networks for Statistical Modeling, New
York: Van Nostrand Reinhold, 1993. (Chapter 19)

D. F. Specht, “Probabilistic newral networks,” Neural Net-
works, vol. 3, no. 1, pp. 109118, 1990. (Chapter 19)

D. F. Specht, “A peneral regression neural network,” IEEE
Transactions on Neural Networks, vol. 2, no. 6, pp. 568—
576, 1991. (Chapter 19)

W. D. Stanley, G. R. Dougherty and R. Dougherty, Digital
Signal Processing, Reston VA: Regton Publishing Co.,
1984. (Chapter 10)

G. Strang, Linear Algebra and Its Applications, New York:
Academic Press, 1980, (Chapters 5, 6)

A Bibliography

[Sutt84]

[TaHo86]

[Thom75]

[Tol190]

[vanT75]

[VoMa88]

fvond73]

[WaHa89])

[Wan90al

[(Wan90h]

A-10

R. S. Sutton, “Temperal credit assignment in reinforce-
ment learning,” Ph.D). Dissertation, University of Massa-
chusetts, Amherst, MA, 1984. (Chapter 19)

D. W. Tank and J. J. Hopfield, “Simple ‘neural’ optimiza-
tion networks: An A/D converter, signal decision circuit
and a linear programming circuit,” IEEE Transactions on
Circuits and Systems, vol. 33, no. §, pp. 533-541, 1986.
(Chapter 18)

R. F. Thompson, Introduction to Physiological Psychology,
New York: Harper and Row, 1975. (Chapter 19)

T. Tollenaere, “SuperSAB: Faat adaptive back propagation
with good sealing properties,” Neural Networks, vol. 3, no.
5, pp. 561573, 1990. {Chapter 12)

H.F.J. M, van Tuiji, “A new visual illusion: Neonlike color
spreading and complementary color induction between
subjective contours,” Acta Psychologica, vol. 39, pp. 441~
445, 1975, (Chapter 15)

T. P. Vogl, . K. Mangis, A. K. Zigler, W. T. Zink and D. L.
Alkon, “Accelerating the convergence of the backpropaga-
tion method,” Biological Cybernetics, vol. 58, pp. 256-264,
Sept. 1988. (Chapter 12)

C. von der Malsburg, “Self-organization of orientation sen-
sitive cells in the striate cortex,” Kybernetie, vol. 14, pp. 85-
100, 1973. (Chapter 15)

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J.
Lang, “Phoneme recognition uging time-delay neural net-
works,” IEEE Transactions on Acoustics, Speech and Sig-
nal Processing, vol. 37, pp. 328-339, 1989. (Chapter 19)

E. A. Wan, “Temporal backpropagation for FIR neural net-
works,” IEEE International Joint Conference on Neural
Networks, vol. 1, pp. 575-580, San Diego, CA, 1990. (Chap-
ter 19)

E. A. Wan, “Temporal backpropagation: An efficient algo-
rithm for finite impulse response neural networks,” in Pro-
ceedings of the 1990 Connectionist Models Summer School,
D. 8, Toureizky, J. L. Eiman, T. J. Sejnowski and G. E, Hin-
ton, eds., San Mateo, CA: Morgan Kaufmann, pp. 131-140,
1990. (Chapter 19)

[Wan94]

[WeRu91)

[Werho74]

[Werh80]

[WhS092]

[WiHe60]

[WiSt 85]

[Wiwi 88]

[WiZi89]

A Bibliography

E. A. Wan, “Time series prediction by using a connectionist
network with internal delay lines,” in Time Series Predic-
tion: Forecasting the Future and Understanding the Past,
A. 8. Weigend and N. A. Gershenfeld, eds., Reading, MA:
Addison-Wesley, pp. 195-217, 1994, (Chapter 19)

A. 8. Weigand, D. E. Rumelhart and B. A. Huberman,
“Generalization by weight elimination with application io
forecasting,” in Advarnces in Neural Informuation Processing
Systems 3, R. P. Lippman, J. E. Mcody and D. J. Touretzky,
eds., San Mateo, CA: Morgan Kaufmann, pp. 575-582,
1991, (Chapter 19)

P. J. Werbos, “Beyond regression: New tools for prediction
and analysis in the behavioral sciences,” Ph.D. Thesis,
Harvard University, Cambridge, MA, 1974. Also published
as The Roots of Backpropagation, New York: John Wiley &
Sons, 1994. (Chapter 11)

P. J. Werbos, “Backpropagation through time: What it is
and how to do it,” Proceedings of the IEEE, vol. 78, pp.
1550-1560, October 1990. (Chapter 19)

D. White and D. Sofge, eds., Handbook of Intelligent Con-
trol, New York:Van Nostrand Reinhold, 1992, (Chapter 4)

B. Widrow, M. E. Hoff, “Adaptive switching circuits,” 1960
IRE WESCON Convention Record, New York: IRE Part 4,
pp. 96104, 1960, (Chapters 1, 10)

B. Widrow and S. D. Stearns, Adoptive Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1985. (Chapter 10)

B. Widrow and R. Winter, “Neural nets for adaptive filter-
ing and adaptive pattern recognition,” IEEE Computer
Muagazine, March 1988, pp. 26-39. (Chapter 10)

R. J. Williams and D). Zipser, “A learning algorithm for con-
tinually rumming fully recurrent neural networks,” Neural
Compuiation, vol. 1, pp. 270-280, 1989. (Chapter 19)

A1l

B Notation

Basic Concepts

Scalars: small ifalic letters.....a,b,¢
Vectors: small bold nonitalic letters.....a,b,c
Matrices; capital BOLD nonitalic letters....A,B,C

Language

Vector means a column of numbers.

Row vector means a row of a matrix used ae a vector {column).
General Vectors and Transformations {(Chapters 5 and 6)
X =Ay
Weight Matrices

Scalar Element
W ;0
i -row, j - column, & -layer, ¢ - time or iteration
Matrix
W
Column Vector
k
W; 1
Row Vector
3
w0
Bias Vector

Scalar Element
b; ()

Vector
b (1)

B1

B Notation

input Vector

Scalar Element
p, (1)
As One of a Sequence of Input Vectors
p{1}
As One of a Set of Input Vectors
P,
Net Input Vector

Scalar Element
nf{r} or nf g

Vector

nk (t) or n::
Output Vector

Scalar Element

k k
a{f) ora,,

Vector

ak{:} or a:
Transter Function

Scalar Element
g = ' (n)

Yector
a =1 (n*)

Target Vector

Scalar Element

L ore,

B-2

Vector
t{1) or lq
Set of Prototype Input/Target Vectors
(Pptils (Pptd, o, Ryt

Error Vector

Scalar Element

e, (1) = 4;{1) -a,(1) or €q = Tigbig

Vector
e(t) or e,

Sizes and Dimensions

Number of Layers, Number of Neurons per Layer
M,

B Notation

Number of Input Vectors (and Targets), Dimension of Input Vector

o, R

Parameter Vector (includes all weights and biases)

Vector
)4

At Rteration i
x (k) orx,

Norm
=l

Performance index
F(x)

Gradient and Hessian
VF(x,) = g and VZF(x,) = A,

B Notation

Parameter Vector Change

R

Elgenvalue and Eigenvector

h; and z,

Approximate Performance Index (single time step)

Fix)
Transfer Function Derivative
Scalar
fi = Lsw
Matrix
£/ 0 .0
Fm (nm) = Q fm(n;") 0
0 o .. fm(n;,)_
Jacobian Matrix
J(x)
Approximate Hessian Matrix
H=I]
Sensltivity Vector
Scalar Element
n_ of
Sa- =—
dn;
Vector
n_ OF

§

m

B Notation

Marquardt Sensitlvity Matrix

Scalar Element

o v, _ aem
5. 4= —

m L3
on; . an,,' .

Partial Matrix (single Input vector p_) and Full Matrix (all inputs)
= m ha .
§ end§” = [grgr g

Parameters for Backpropagation and Variations

Learning Rate and Momentum
o and ¥

Leaming Rate Increase, Decrease and Percentage Change
n,p and

Conjugate Gradient Directlon Adjustment Parameter
By

Marquardt Parameters
p and ¥

Feature Map Terms

Distance Between Neurons
d,; - distance between neuron i and neuron j

Nelghborhood
N,{d) = {j,d,'_,'Sd}

Grossberg and ART Networks
On-Center and Off-Surround Connection Matrices

100 01
oW o (010 g 10
001 11

B-5

B Notation

Excitatory and Inhibitory Biases
b and b
Time Constant

€

Relative Intensity

P §

= _ Vi -

pi—-};whereP- ZPJ
i=1

Instar and Qutstar Weight Matrices
WI:Z an d WZ:I

Orienting Subsystem Parameters

o,Ppandp = g {(vigilance)

ART1 Learning Law Parameter
¢

Lyapunov Stability

Lyapunov Function
Via}

Zero Derivative Set, Largest Invariant Set and Closure
Z,Land L

Bounded Lyapunov Function Sel
Q, = {a:V(a) <n}

Hopfield Network Parameters

Circuit Parameters
T,,.,C R, L, p

ij?

Ampilfier Gain
H

C Software

Introduction

We have used MATLAB, a numeric computation and visualization soft-
ware package, in this text. However, MATLAB is not essential for using
this book. The computer exercises can performed with any available pro-
gramming language, and the Neural Network Design Demonstrations,
while helpful, are not critical to understanding the material covered in this

book.

MATLARB is widely available and, because of its matriz/vector notation and
graphics, i3 a convenient environment in which to experiment with neural
networks. We use MATLAB in two different ways. First, we have included
a number of exercises for the reader to perform in MATLAB, Many of the
important features of neural networks become apparent only for large scale
problems, which are computationally intensive and not feasible for hand
calculations. With MATLAB, neural network algorithms can be quickly im-
plemented, and large scale problems can be tested conveniently. If MAT-
LAB is not available, any other programming language can be used to
perform the exercises.

The second way in which we use MATLARB is through the Neural Network
Design Demonstrations, which are on a disk included with this book. These
interactive demonstrations illustrate important concepts in each chapter.
The icon to the left ideniifies references to these demonstrations in the text.

MATLAB version 4.0 or later, or the student edition of MATLAB version
4.0, should be installed on your hard drive in a directory (for a DOS ma-
chine) or a folder (for a Macintosh) named MATLAB. To create this direc-
tary or folder and complete the installation process, follow the instructions
given in the MATLAB documentation. Take care to follow the guidelines
given for setiing the path. A few of the demonstrations require the Math-
Works' Neural Network Toolbox 1.0 or later.

After the sofiware has been loaded into the MATLAB directory on your
computer, it can be invoked by typing and at the MATLAB prompt. All dem-
onstrations are easily accessible from a master menu.,

This book is accompanied by 58 demonstrations that can be run from with-
in MATLAB.

C-1

C Software

C-2

Overview of Demonstration Files

The demonstration files consist of two directories, NNDESIGN and
MININNET. The first directory NNDESIGN contains all the demonstra-
tions and functions that the demonstrations use.

The second directory MININNET contains a few key functions borrowed
from the Neural Network Toolbox (NNT), These functions allow many of
the demonstrations to run without the Toolbox. However, you should only
install this directory if you do not have the NNT. Having both the Toolbox
and the MININNET directory installed may result in unpredictable results
due to muitiple versions of the horrowed functions.

Demo Requirements

Many of the demonstrations do not require either the MININNET directo-
ry or the Neural Network Toolbox. Some functions require either the
MININNET directory or the Toolbox, and a few require the Toolbox.

The last section of this appendix lists all the demonstrations and indicates
the requirements for each. You can see the same list from within MATLAB
by typing help nndesign after installing the NNDESIGN directory.

Running the Demonstrations

You can run the demonstrations directly by typing their names at the
MATLAB prompt. Typing help nndesign brings up a list of all the demos
you can choose from.

Alternatively, you can run the Neural Network Design splash window
{nnd) and then click the Contents buiton. This will take you to a graphical
Table of Contents. From there you can select chapters with buttons at the
bottom of the window and individual demonstrations with popup menus,

Sound

Many of the demonstrations use sound. In many cases the sound adde to
the understanding of a demonstration. In other cases it ia there simply for
fun. If you need to turn the sound off you can give MATLAB the following
command and all demonstrations will run quietly:

nnsound off
To turn sound back on:
nasound on

You may note that demonstrations that utilize sound often run faster when
sound is off. In addition, on some machines which do not support sound er-
rors can oceur unless the sound is turned off.

Overview of Demonstration Files

List of Demonstrations

Many of the demonstrations are followed by one of two symbols to indicate
the resources required to run them:

+ Requires either MININNET functions or the Neural Network Toolbox.
* Requires the Neural Network Toolbox.

General

nnd - Splash screen.
nndtoc - Table of contents.
nnsound - Turn Neural Network Design sounds on and off.

Chapter 2, Neuron Model and Network Architectures

nnd2nl - One-input neuron demonstration.+
nnd2n2 - Two-input neuron demonstration.+

Chapter 3, An lllustrative Example

nnd3pc - Perceptron classification demonstration.+
nnd3hame - Hamming classification demonstration.+
mnd3hope - Hopfield classification demonstration.+

Chapter 4, Percaptron Learning Rule

nnd4db - Decision boundaries demonstration. +
nnd4pr - Perceptron rule demonstration.+

Chapter 5, Signal and Weight Vector Spaces
nnd5gs - Gram-Schmidt demonstration.
nndbrb - Reciprocal basis demonstration.

Chapter 6, Linear Transformations for Neural Networks
nnd6li - Linear transformations demonstration.
nndéeg - Eigenvector game.

Chapter 7, Supervised Hebbian Learning
nnd7sh - Supervised Hebb demenstration,

i

Chapter 8, Performance Surfaces and Optimum Points

nnd8tsl - Taylor series demonstration #1.
nnd8ts2 - Taylor series demonstration #2.
nnd8dd - Directional derivatives demonstration.
nnd8qf - Quadratic function demonstration.

C-3

C Software

C-4

Chapter 9, Performance Optimization

nnd9sdq - Steepest descent for quadratic function demonstration.
nnd9mc - Method comparison demonstration.

nnd9nm - Newton's method demonstration.

nnd9sd - Steepest descent demonstration.

Chapter 10, Widrow-Hoff Learning

nnd10nc - Adaptive noise cancellation demonstration,
nnd10eeg - Electroencephalogram noise cancellation demonstration.
nnd10le - Linear pattern classification demonstration,

Chapter 11, Backpropagation

nnd11nf - Network function demonstration.+

nnd1lbe - Backpropagation calculation demonstration.*
nnd11fa - Function approximation demonstration.*
nndllgn - Generalization demonstration.*

Chapter 12, Varlations on Backpropagation

nnd12sdil- Steepest descent backpropagation demonstration #1.*
nnd12sd? - Steepest descent backpropagation demonstration #2.*
nnd12mo - Momentum backpropagation demonstration.*

nnd12vl - Variable learning rate backpropagation demonstration.*
nnd12ls - Conjugate gradient line search demonstration.*
nndl2cg - Conjugate gradient backpropagation demonstration,*
nnd12ms - Maquardt step demonstration.*

nnd12m - Marquardt backpropagation demonstration.*

Chapter 13, Assoclative Learning

nndi3uh - Unsupervised Hebb demonstration.+
nnd13hd - Hebb with decay demonstration.+
nnd13edr - Effect of decay rate demonstration.+
nnd13gis - Graphical inatar demonstration.+
nnd13is - Instar demonstration.+

nnd13os - Outstar demonstration.+

Chapter 14, Competitive Networks

nndl4ec - Competitive classification demonstration.+
nnd1i4cl - Competitive learning demonstration.+
nnd14fm? - 1-D feature map demonstration.*
nnd14fm32 - 2-D feature map demonstration.*
nndldlvl - LVQ1 demonstration.*

nnd14lv2 - LVQ2 demonstration.*

Overview of Demonstration Files

Chapter 15, Grossberg Network

nnd15li - Leaky integrator demonstration.

nnd15sn - Shunting network demonstration.
nnd15gl1 - Grossberg layer 1 demonstration.
nnd15gl2 - Grossberg layer 2 demonstration.
nnd15aw - Adaptive weights demonstration.

Chapter 18, Adaptive Resonance Theory

nnd16all - ART1 layer 1 demonstration.
nnd16al2 - ART1 layer 2 demonstration.
nnd160s - Orienting subsystem demonstration,
nnd16al - ART1 algorithm.

Chapter 17, Stability
nnd17ds - Dynamicel system demonstration.

Chapter 18, Hopfield Network
nnd18hn - Hopfield network demonstration,

-5

Index

A
Abbreviated notation 2-8
ADALINE network 10-2
decigion boundary 10-4
mean squared error 10-4
Adaptive critic 19-4
Adaptive filtering 10-13
Adaptive neise cancellation 10-15
Adaptive resonance theory (ART) 16-2
Amacrine cells 15-4
Amari, 8. 15-2
AND gate 4-7
Anderson, J. A. 1-2, 1-3, 13-2, 15-2
Angle 5-7
Apple and orange example 3-2
Hamming network solution 3-8
Hopfield solution 3-12
perceptron 3-3
perceptron golution 3.5
problem statement 3-2
Applications of neural networks 1-5
aerospace 1-5
automotive 1-5
banking 1-5
defense 1-6
electronics 1-6
entertainment 1-6
financial 1-6
insurance 1-6
manufacturing 1-6
medical 1-6
oil and gas 1-6
robotics 1-7
securities 1-7
speech 1-7
telecommunications 1-7
transportation 1-7
ART networks 19-8
ART1
fast learning 16-19
Layer 1 16-4
Layer 2 16-10
learning law
L1-L.2 18-17
L2-L1 16-20
orienting subsystem 16-13
resonance 16-17

subset/superset dilemma 16-17
summary 16-21
vigilance 16-15
ARTZ216-23
ART3 16-23
ARTMAP 16-23
Associative learning
Hebb rule 7-4
instar rule 13-11
Kohonen rute 13-15
outstar rule 13-17
pseudoinverse rule 7-7
unsupervised Hebb rule 13-6
Associative memory 7-3
autoassociative memory 7-10
bidirectional associative memory (BAM)
19-9
Boltzman machine 19-9
brain-state-in-a-box 19-9
Hopfield network 18-5
Li-Michel networks 19-9
linear associator 7-3
Associative networks 13-3
instar 13-9
outstar 13-16
Attractors 18-11
Autoassociative memory 7-10

B

Backpropagation 11-7
batching 12-7
CGBP 12-15
choice of network architecture 11-17
conjugate gradient 12-14
convergence 11-19
delta-bar-delta 12-13
drawbacks 12-3
example 11-14
generalization 11-21
initial weights 12-6
Jacobian matrix 12-23
Levenberg-Marquardt 12-19, 12-21

Jacobian caleutation 12-22
Marquardt sensitivity 12-24

LMBP 12-25
MOBP 12-11
performance index 11-8
performance surface 12-3

Index-1

Index

Quickprop 12-14
SDBP 12-2
sensitivity 11-10
gsummary 11-13
SuperSAB 12-14
variations 19-4
cascade-correlation 19-5
netwerk pruning 19-5
Quickprop 19-4
regularization 19-5
Rprop 19-4
stopped training 19-5
VLBP 12-12
Backpropagation through time (BTT) 19-7
Basis set 5-5
Batching 12-7
Bidirectional sssociative memory (BAM) 19-9
Biological inspiration of neural networks 1-8
Biology, psychology and neural networks 19-10
Bipolar cells 15-3
Boltzman machine 19-9
Brain-state-in-a-box 19-9
Brightness constancy 15-8

C
Carpenter, G. 16-2
Cascade-correlation 19-5
Cerebellar model articulation controller (CMAC) 19-3
CGBP 1215
Chain rule 11-9
Change of basiz 6-6
similarity transformation 6-8
Choice of network architecture 11-17
Circular hollow 8-16
Competitive learning 14-7
adaptive resonance theory 16-2
ARTI 16-4
ART2 16-23
ART3 16-23
ARTMAP 16-23
Fuzzy ARTMAP 16-23
instar rule 14-7
Kohonen rule 14-7
learning rate 14-9
1vQ214-21
problems 14-9
Competitive networks 14-5
ART116-4
Grossherg 15-13
ing network 14-3
lateral inhibition 14-5
learning vector quantization 14-16
self-organizing feature map 14-12

Index-2

winner-take-zll 14.5
Conditioned stimulus 13-3
Cones 15-3
Conjugate divections 9-16
Conjugate gradient 9-15, 12.14

golden section searck 12-17

interval location 12-16

interval reduction 12-16
Content-addressable memory 18-16
Contour plot 8-8
Contrast enhancement 15-18
Correlation matrix 10-6
Counterpropagation 19-8

D

Decay rate 13-7

Decision boundary 4-5, 10-4, 11-4
Delay 2-13

Delta rule 7-13, 10-7
Delta-bar-delta 12-13

Descent direction 9-3
Diagonalization 6-13

Directional derivative 8-5
Domain 6-2

E

Echo cancellation 10-21
EEG 10-15

Eigenvalues 6-10
Eigenvectors 6-10
Eltiptical hollow 8-17
Elman network 19-7
Emergent segmentation 15-6
Equilibrium point 17-4
Euclidean space 5-3
Excitatory 15-10

F

Fahlman, A. E. 12-14

Featural filling-in 15-6

Pinite impulse response network (FIR) 19-6
Forward perturbation algorithm 19-8
Fovea 16-5

Pulcushima, K. 15-2

Function approximation 11-4

Functiona! link netwerk 19-3

Fuzzy ARTMAP 16-23

G
Ganglion cells 15-4
Gauss-Newton algorithm 12-21
Jacobian matrix 12-20
Generalization 11-21
Generalized regression neural network 19-6

Golden section search 12-17
Gradient 8-4
Gradient descent 9-2
Gram-Schrgidt erthogonalization 5-3
Groesberg competitive network 15-13
choice of transfer function 15-20
Layer 115-13
Layer 2 15-17
learning law 15-22
relation to Kohonen law 15-24
Grossberg, 5. 1-3, 13-2, 15-2, 16-2
Group method of data handling (GMDH) 19-3

H
Hamming network 3-8, 14-3
feedforward layer 3-8, 14-3
recarrent layer 3-9, 14-4
Hebb rule 7-4, 18-18
decay rate 13-7
performance analysis 7.5
supervised 7-4
unsuperviged 7-4, 13-5
with decay 7-12
Hebb, D. 0.1-3, 7-2
Hebb's postulate 7-2
Hebbian learning 7-2
variations 7-12
Hesgian 8-5
eigensystem 8-13
Hidden layer 2-11
High-gain Lyapunov function 18-13
Hinton, . E. 11-2
History of neural networks 1-2
Hoff, M. E. 1-3, 10-2, 11-2
Hopfield model 18-3
Hopfield network 3-12, 6-2, 18-5
attractors 18-11
design 18-18
content-addressable memory 18-16
effect. of gain 18-12
example 18-7
Hebb rule 18-18
high-gain Lyapunov function 18-13
Lasalle’s invariance theorem 18-7
Lyspunov function 18-5
Lyapunov surface 18-22
spurious patterns 18-20
Hopfield, J. J. 1-4
Horizontal cells 15-4
Hubel, D. H, 14-2, 15-12

Mlugions 15-4
Inhibitory 15-10

Index

Inner product 5-6
Instar 13-9

Instar rule 13-11, 14-7
Integrator 2-13

Interval location 12-16
Interval reduction 12.16
Invariant set 17-13

J

Jacobian matrix 12-20
Jacobs, R, A. 12-13
Jeurnals 19-10

K

Kohonen rule 13-15, 14-7
graphical representation 14-7

Kohonen, T. 1-3, 13-2, 15-2

L
LaSalle's corollary 17-14
LaSalle’s Invariance Theorem 17-13
invariant set 17-13
set
L1713
21712
Lateral inhibition 14-5
Layer 2-9
competitive 14-5
problems 14-9
hidden 2-11
ountput layer 2-11
superscript 2-11
Le Cun, Y. 11-2
Leaky integrator 15-9
Learning rate 9-3, 10-8
competitive learning 14-9
stable 9-6, 10-10
Learning rules 4-2
ART1 16-21
backpropagation 11-7
competitive learning 14-7
delta rule 7-13
Grossberg competitive network 15-22
Hebb rule 7-4
Hebbian learning 7-2
learning vector quantization 14-16
LMS algorithm 10-7
local learning 13-5
perceptron 4-8, 4-13
proof of convergence 4-15
performance learning 8-2
pseudoinverse rule 7-7
reinforcement learning 4-3
supervised learning 4-3

Index-3

Index

unsupervised learning 4-3
Widrow-Hoff 7-13

Learning vector quantization (LVQ) 14-16

subclass 14-17

Levenberg-Marquardt algorithm 12-19, 12-21

Jacoebian calculation 12-22
Jacobian matrix 12-20

Li-Michel networks 19-¢

Linear associator 7-3

Linear independence 5-4

Linear separghility 4-19

Linear transformation 6-2
change of hasis 6-6
domain 6-2
matrix representation 6-3

change of basis 6-6

range 6-2

Linear vector spaces 5-2

LMBP 12-25

LMS algorithm 10-2, 10-7
adaptive filtering 10-13
adaptive noise canceilation 10-15
analysia of convergence 10-9
learning rate 10-8
stable learning rate 10-10

Local learning 13-5

Long-term memory (LTM) 15-12, 15-22

LVQ2 14-21

Lyapunov function 17-12

Lyapunecv stability theorem 17-6

M
Mach, E. 1-2
Marquardt algorithm 12-19
Marquardt sensitivity 12-24
Matrix representation 6-3
change of basis 6-6
diagonalization 6-13
McClelland, J. L. 14, 11-2
McCulloch, W. S. 1-3, 4.2
Mean squared error 10-4, 11-8
Memory
associative 7-3
auntoassociative 7-10
Mexican-hat fimetion 14-11
Minima 8-7
first-arder conditions 8-10
global minimum 8-7
necessary conditions 8-9
gecond-order conditions 8-11
strong minimum 8-7
sufficient condition 811
weak minimum 8-7

Index-4

Minsky, M. 1-3, 4-2

MOBP 12-11

Modular network 19-4
Momentum 12-8, 13-7
Multilayer perceptron 11-2

N
Negative definite matrix 8-11
Negative semidefinite 8-11
Neighborhood 14-12
Neocognitron 19-8
Network architectures 2.9
layer 2-9
multilayers 2-10
Network pruning 19-5
Neural network journals 19-10
Neural network textbooks 18-11
Neural Network Toolbox for MATLAB 1-6
Neuron model 2-2
multiple-input neuron 2-7
gingle-input neuron 2-2
transfer functions 2.3
Newton’s method 9-10
Nilsson, N. 14-2
Noise cancellation
adaptive 10-15
echo cancellation 10-21
Nonlinear auntoregressive moving average (NARMA)
network 19-7
Norm 5-7

0
On-center/off-surround 14-11, 15-14
Optic disk 15-5
Optimality
first-order conditions 8-10
necessary conditions 8-9
second-order conditions 8-11
sufficient condition 8-11
Optimization
conjugate gradient 9-15, 12-14
deacent direction 9-3
Gauss-Newton 12-21
Levenberg-Marquardt 12-19, 12-21
Newton's method 9-10
guadratic termination 8-15
steepest descent 9-2
stable learning rates 9.6
Oriented receptive field 15-20
Orienting subaystem 16-13
Orthogonality 5-7
Orthonormal 5-9
Qutatar 13-16
Outstar rule 13-17

P
Papert, 8. 1-3, 4-2
Parker, D. B. 11-2
Pattern clasaification 11-3
Pavlov, 1. 1-2
Perceptron 3-3
architecture 4-3
constructing lesrning rules 4-10
decision boundary 4-5
learning rule 4-8, 4-13
proof of convergence 4-15
multilayer 11-2
multiple-neurpn 4-8
single-neuron 4-5
test problem 4-9
training multiple-neuron perceptrons 4-13
two-input case 3-4
unified learning rule 4-12
Performance index 8-2, 11-8
quadratic function 8-12
Performance learning 8-2
Pipelined recurrent neural network (FFRN) 19-8
Pitts, W. H, 1.3, 4-2
Polynomial networks 19-3
functional link network 19-3
group method of data handling (GMDH) 19-3
sigma-pi network 194
Pogitive definite 17-5
Pogitive definite matrix 8-11
Positive semidefinite 8-11, 17-5
Probabiligtic neural network 19-6
Projection 5-8
Prototype patierns 18-16
Pseudoinveree rule 7-7

Q
Quadratic function 8-12

circular hollow 8-16

elliptical bollow 8-17

Hessjan

eigensystem 8-13

saddle point 8-18

atationary valley 8-19
Quadratic termination 9-15
Quickprop 12-14, 194
R
Radial basis networka 19-2
Range 6-2
Real-time recurrent network (RFRN) 19-7
Reciprocal basis vectors 5-10
Recurrent network 2-13, 2-14, 17-2
Regularization 19-5

Index

Reinforcement learning 4-3

Resonance 16-17

Retina 15-3

Rods 15-3

Rosenblatt, F. 1-3, 4-2, 10-2, 11-2, 14-2
Rosenfeld, E. 1-2

Rprop 194

Rumelhart, D. E. 1-4, 11.2

S
Saddle point 8-8, 8-18
SDBP 12-2
8elf-organizing feature map (SOFM) 14-12
neighborhoed 14-12
Sanaitivity 11-10
backpropagation 11-11
Set
L17-13
217-12
Shakespeare, W. 1-5
Short-term memory (STM) 15-12, 16-17
Shunting model 15-10
Sigma-pi network 19-4
Similarity tranaform -8
Spanning a space 5-5
Spurious patterns 18-20
Stability
asymptotically stable 17-3, 17-6
concepts 17-3
equilibrium point 17-4
in the sense of Lyapunov 17-3, 17-4
LaSalle’s corollary 17-14
LaSalle's Invariance Theorem 17-13
Lyapunov function 17-12
Lyapunov stability theorem 17-6
pendulum example 17-6
Stability/plasticity dilemma 16-2
Stationary point 8-10
minima 8-7
saddle point 8-8
Stationary valley 8-19
Statistical physics and neural networks 19-10
Statistics and neural networks 19-10
Steepest descent 9-2
learning rate 9-3
minimizing along a line 9-8
stable learning rates 9-6
Stimalus-response 13-2
conditioned stimulus 13-3
unconditioned stimules 13-3
Stopped training 19-5
Subclass 14-17
Subset/superset dilemma 16-17

Index-5

Index

SuperSAB 12.14

Supervised learning 4-3
Hebb rule 7-4
performance learning §-2

Tapped delay line 10-13
Target 4-3
Taylor series expansion 8-2
vector case 8-4
Textbooks 19-11
Time constant 15-9
Time delay neural network (TDNN) 19-6
Tollenaere, T, 12-14
Training set 4-3
sequence 13-5
Transfer fanctions 2-3, 2-6
competitive 2-6
hard limit 2-3, 2-6
hyperbolic tangent sigmoid 2-6
linear 2-4, 2-6
log-sigmoid 2.5, 2-6
positive linear 2-6
saturating linear 2.6
symmetric saturating linear 2-6
symimetrical hard limit 2-6
table 2-6

U

Unconditioned stimulug 13-3

Unsupervised learning 4-3
Bebb rule 7-4, 13-5

Y
Vector expansion 5-9

reciprocal basis vectors 5-10
Vector space 5-2

angle 5-7

basgis set 5-5

orthonormal 5-5

projection 5-8

spanning 5-5

vector expansion 5-9
Vigilance 16-15
Vision 15-3
Vision normalization 15-8
Visual cortex 15-4
VLBP 12-12
von der Malsburg, C. 14-2, 15-12

W
Weight indices 2-7

Index-6

Weight matrix 2-7

Werbos, P. J. 11-2

Widrow, B. 1-3, 10-2, 11-2

Widrow-Hoff algorithm 7-13, 10-7
adaptive filtering 10-13

Wiesel, T. 14-2, 15-12

Williams, R. J. 11.2

Winner-take-all 14-5

	Chapter 6 linear stransformation for NN
	Chapter 7 Supervised Hebbian Learning
	Chapter 8 Performaces Surface and Optimum points
	Chapter 9 Performance Optimization
	Chapter 10 Widrow-Hoff Learning
	Chapter 11 Backpropagation

