ACN Lecture 2

Critical network

infrastructure services:

1. A day in the life of an application
2. The four layer Internet model
3. The IP service model

10/14/2015 Hajirasouliha H

A day in the life of an application
Networked Applications
Network Applications

=
=
» Read and write data over network
* Dominant model: bidirectional,
reliable byte stream connection
* One side reads what the other writes
+ Operates in both directions
» Reliable (unless connection breaks)

2

10/14/2015 Hajirasouliha H

A day in the life of an application
Byte Stream Model

10/14/2015 Hajirasouliha H 3

A day in the life of an application
World Wide Web (HTTP)

Client

10/14/2015 Hajirasouliha H

A day in the life of an application

if"* _

Client

GET / wrw/u)
e

10/14/2015 Hajirasouliha H 5

Two: Types of HTTP connections

1. non-persistent HTTP
+ at most one object sent over TCP connection and
Then connection is closed.

+ downloading multiple objects requires multiple
connections.

2. persistent HT' TP

<~ multiple objects can be sent over single TCP
connection between client, and server.

Application Layer 2-6

L Non-persistent HTTP
suppose user enters URL:

www . someSchool . edu/someDepartment /home. index

Assume: it contains text, and references to 10 jpeg images.

la. HTTP client initiates TCP
connection to HTTP server

(process) at: Ib. HTTP server at host:
www.someSchool.edu on port 8 www.someSchool.edu waiting for
TCP connection at port 80.
/ ‘““accepts’” connection, notifying

client
2.HTTP client sends HTTP request

message (containing URL) into TCP

connection socket. Message indicates
that client wants object : 3. HTTP server receives
someDepartment/home.index)

request message, forms
response message containing

. requested object, and sends
[1'lme message into its socket.
v

Application Layer 2-7

Non-persistent HTTP (cont.)

4. HTTP server closesTCP
/ connection.

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps |-5 repeated for each of 10
jpeg objects.

Application Layer 2-8

Non-persistent HTTP: response time

RTT (definition): time for a small
packet to travel from client to

server and back.
: B

HTTP response time: initiate TCP
+» one RTT to initiate TCP C°“"¢°“°:‘_€

connection + R

= one RTT for HTTP request and ;ﬁguﬂ-
first few bytes of HTTP response ¢

 time to

to return + E}}('lansmif
. Tile
+ file transmission time. file —
received
time time

Non-persistent HTTP response time =2RTT ¥ file transmission time

Application Layer 2-9

Non-persistent HT TP issues:

+requires 2 RTTs per object.

+OS overhead for each TCP
connection.

+browsers often open parallel TCP
connections to fetch referenced
objects.

Application Layer 2-10

Persistent HTTP
persistent HTTP:

+ server leaves connection open after sending
a response.

+» subsequent HTTP messages between same
client/server sent over open connection

+ client sends requests as soon as it
encounters a referenced object.

< As little as one RTT for all the referenced
objects.

Application Layer 2-11

HTTP request message

% 2 types of HT TP messages: request, response
» HTTP request message: ASCII (human-readable format)

carriage return character
line-feed character

request line J
(GET, POST, ~—P GET /index.html HTTP/1.1\r\n
HEAD commands) Host: www-net.cs.umass.edu\r\n

User—-Agent: Firefox/3.6.10\r\n

. Accept: text/html, application/xhtml+xml\r\n

Header Il,né> Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n

Accept—-Charset: IS0-8859-1,utf-8;qg=0.7\r\n

Keep—-Alive: 115\r\n

| Connection: keep-alive\r\n
“\r\n \

carriage return, line feed at start of line indicates end of header lines

Application Layer 2-12

HTTP request message: general format

cr

If

method |sp URL sp| version |cr|If
header field name value |cr| If
header field name value |cr| If

entity body

2)

<€ Request line

é-Header' lines

* € body

Application Layer 2-13

Uploading form input
POST method:

+ web pages often includes form inputs.
+ input is uploaded to server in entity body

URL method:
<+ uses GET method

+ input is uploaded in URL field of request
line: e.g.:

www.somesite.com/animalsearch?monkeysé&banana

Application Layer 2-14

Method types:
HTTP/1.0:

+ GET
+ POST
+ HEAD

= asks server to leave requested object out of
response

HTTP/I.I:
+ GET, POST, HEAD
» PUT

= uploads file in entity body to path specified in
URL field

+ DELETE
" deletes file specified in the URL field

Application Layer 2-15

HTTP response message:

status line (protocol status code status phrase)

™~

__HTTP/1.1 200 OK\r\n

GMT\r\n

Header lines ETag: "17dc6-a5c-b£f716880"\r\n

>
>

Accept—-Ranges: bytes\r\n
Content-Length: 2652\r\n

Connection: Keep-Alive\r\n

1\r\n
| \r\n

data data data data data
/

data,e.g., requested HTML file

Keep—-Alive: timeout=10, max=100\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last—-Modified: Tue, 30 Oct 2007 17:00:02

Content-Type: text/html; charset=IS0-8859-

Application Layer 2-16

HTTP response status codes

% status code appears in 1st line in server-
to-client response message.

+ some sample codes are:
200 OK

" request succeeded, requested object later in this msg
301 Moved Permanently

" requested object moved, new location specified later in
this msg (Location:)

400 Bad Request

" request msg not understood by server
404 Not Found

" requested document not found on this server
505 HTTP Version Not Supported

Application Layer 2-17

Trying out HTTP (client side) for yourself

I. Telnet to your favorite Web server: e.g.:

telnet cis.poly.edu 80 —opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
anything typed is sent to port 80 at

| cis.poly.edu

2. type in a GET HTTP request:
By typing this in (hit carriage return
twice), you send this minimal (but
complete)

|_GET request to HTTP server

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)
Application Layer 2-18

A day in the life of an application
BitTorrent

Tracker

g B

Client
Client Client

10/14/2015 Hajirasouliha H 19

A day in the life of an application
BitTorrent

Client
Client

10/14/2015 Hajirasouliha H 20

A day in the life of an application
Skype

Client A

Client B

10/14/2015 Hajirasouliha H 21

A day in the life of an application
Skype

10/14/2015 Hajirasouliha H 22

A day in the life of an application
Skype with Complications

Client A NAT Client B

Skype with Complications

10/14/2015 Hajirasouliha H

A day in the life of an application
Skype with Complications

Il B

Client A NAT Client B

10/14/2015 Hajirasouliha H

A day in the life of an application

Skype with Complications

Rendezvous

Client A | / NAT Client B

10/14/2015 Hajirasouliha H 25

A day in the life of an application
Skype with More Complications

Il B

Client A NAT NAT Client B

10/14/2015 Hajirasouliha H 26

A day in the life of an application
Skype with More Complications

- | Relay

NAT ClientB

Client A NAT

10/14/2015 Hajirasouliha H 27

A day in the life of an application
Skype with More Complications

ClientA NAT

10/14/2015 Hajirasouliha H 28

A day in the life of an application
Summary:

Application Communication

¢ Bidirectional, reliable byte stream

* Building block of most applications today

* Other models exist and are used, we'll cover them later in the class
* Abstracts away entire network -- just a pipe between two programs
* Application level controls communication pattern and payloads

» World Wide Web (HTTF)

+ Skype

* BitTorrent

10/14/2015 Hajirasouliha H 29

The four layer Internet model

Source End-Host

10/14/2015 Hajirasouliha H

30

The four layer Internet model

Source End-Host

lTransport

10/14/2015 Hajirasouliha H 31

The four layer Internet model

_ tackek |heoder
SRRl

~ Source End-Host

10/14/2015 Hajirasouliha H 32

The four layer Internet model

Source End-Host

Router

10/14/2015 Hajirasouliha H

33

The four layer Internet model

Source End-Host Destination End-Host

Router

Router

10/14/2015 Hajirasouliha H 34

The four layer Internet model

The network layer is “special”
We must use the Internet Protocol (IP)

- IP makes a best-effort attempt to deliver our datagrams to
the other end. But it makes no promises.

- |P datagrams can get lost, can be delivered out of order, and
can be corrupted. There are no guarantees.

10/14/2015 Hajirasouliha H 35

The four layer Internet model

TCP; TansisSion oo
-- Qrotocol

Transonort

TCP: Transmaission (oded.

The four layer Internet model

10/14/2015 Hajirasouliha H 37

The four layer Internet model

Putting it all together

Source End-Host Destination End-Host

Router Router

Putting it all together

Destination End-Host

— e e — = S

Router Router

10/14/2015 Hajirasouliha H 38

The four layer Internet model
Summary of 4 Layer Model

Bi-directional reliable byte stream between two applications,
using application-specific semantics (e.g. http, bit-torrent).

T O N T O N M W M W M W M R W E
- ——— - S R R

Delivers datagrams end-to-end. Best-effort delivery
NEtWDI"k - no guarantees. Must use the Internet Protocol (IP).

CEE R LEER L REEE PR LR T PRy e e L T R

N S T N N N B N NN N N N N N N N N N N NN N N N N N S

10/14/2015 Hajirasouliha H 39

The four layer Internet model

Two extra things you need to

know...
IP is the “thin waist”

10/14/2015

The four layer Internet model

IP is the “thin waist”

10/14/2015 Hajirasouliha H 41

The four layer Internet model

The 7-layer OSI Model

http ?
ASCH - 6
- 5
TCP |
Network | - IP ———| Network |3
Ethernet — | 2
1

The 7-layer OSI Model

10/14/2015 Hajirasouliha H

42

Link layer Services: next

our goals:

**understand principles behind link layer
services:

" Framing
= error detection, correction
= sharing a broadcast channel: multiple access

= |link layer addressing
= |ocal area networks: Ethernet, VLANSs

10/14/2015 Hajirasouliha H

5-43

Where is the link layer implemented?

* in each and every host
* link layer implemented in:

“adaptor” (aka network interface

card NIC) or on a chip

application |

— Ethernet card, 802.11 card; ransport v | [memory

Ethernet chipset implements: |k X |

* both link and physical layers r= W= =1 s

) | bus

* attaches into host’ s system °°”‘¢°"er | (e.9., PCI
buses physical | 1
ansAussion. |
v

combination of hardware, software,

firmware

card

Link Layer

network adapter

5-44

Typical Implementation of Layers (2)

Application

«— Computer

- Operating System

Network

T Driver
_ Link

e Network Interface
i ,— Card(NIC)
PHY

S

Cable (medium)

10/14/2015 Hajirasouliha H 45

Framing Methods

* We'll look at:
— Byte count (motivation)»
— Byte stuffing »
— Bit stuffing »

* |n practice, the physical layer often
helps to identify frame boundaries

— E.g., Ethernet, 802.11

10/14/2015 Hajirasouliha H

46

Byte Count

* First try:

— Let’s start each frame with a
length field!

— It’s simple, and hopefully good
enough ...

10/14/2015 Hajirasoul ihaH

Byte Count (2)

511|213|4|5|8]7

8 D]1112|13|4|5|6|8|7|8|9|0]1

\ Byte count j
9|8

- N

Frame 1 Frame 2 Frame 3 Frame 4
9 bytes 2 bytes 8 bytes 8 bytes

* How well do you think it works?

10/14/2015 Hajirasouliha H

Byte Count (2)

Byte count One byte
) 213 6|78 2(3|4 910 213
Frame 1 Frame 2 Frame 3 Frame 4
5 bytes 5 bytes 8 bytes 8 bytes

 How well do you think it works?

10/14/2015

Hajirasouliha H

49

Byte Count (3)

* Difficult to re-synchronize after framing error

— Want a way to scan for a start of frame

5(112(3|4|(7|6|7(8|9|8|0|1]12[3|4(5(6|8(7|8|9[0]1]|2

Frame 1 Frame 2 Now a byte
(Wrong) count

10/14/2015 Hajirasouliha H

Byte Count (3)

 Difficult to re-synchronize after framing error

— Want a way to scan for a start of frame

Error

(Y 1]2]3]4[z)e]7]8] 98] o[N@[3]D[5]6[e{D] 8o 0] 1]>2

j —
r
“ — i - ;

Frame 1 Frame 2 Now a byte
(Wrong) count

10/14/2015 Hajirasouliha H

Byte Stuffing

* Better idea:

— Have a special flag byte value that
means start/end of frame

— Replace (“stuff”) the flag inside the
frame with an escape code

— Complication: have to escape the
escape code too!

FLAG| Header Payload field Trailer |FLAG

10/14/2015 Hajirasouliha H

 Better idea:

Byte Stuffing

— Have a special flag byte value that

means start/end of frame

— Replace (“stuff”) the flag inside the

frame with an escape code
— Complication: have to escape the

escape code too!

[E LAG ‘l Header

Payload field

Trailer

z

10/14/2015

Hajirasouliha

53

Byte Stuffing (2)

* Rules:

— Replace each FLAG in data with ESCFLAG
— Replace each ESCin data with ESCESC

Original bytes
A ||FLAG|| B —
A ||esc|| B -

A ESC | IFLAG B —in

A ESC | | ESC B il

10/14/2015 Hajirasouliha H

Byte Stuffing (3)

* Now any unescaped FLAG is the start/end of a frame

Original bytes After stuffing
A FLAG B —_— A ESC | [FLAG B
A ESC B — A ESC | | ESC B

A ESC | [FLAG B — | A ESC | | ESC | | ESC | |FLAG B

A ESC | | ESC B —= | A ESC | |ESC || ESC || ESC B

10/14/2015 Hajirasouliha H 55

Link Example: PPP over SONET (2)

* Think of SONET as a bit stream, and PPP as the
framing that carries an IP packet over the link

Rauter\‘ IP P
PPP PPP
SONET ?bpjrca' SONET

10/14/2015

' IP packet |

:

PPP frame

' #

SONET payload || SONET payload

Protocol stacks

Hajirasouliha H

PPP frames may be split over
SONET payloads

56

Link Example: PPP over SONET (3)

* Framing uses byte stuffing
— FLAG is Ox7E and ESCis Ox7D

Bytes

(f
3]

1 1 1 ior2 Variable 20r4 1
Al Add Gontbol - Fi
ag ress ontro ag
01111110 | 11111111 | 0ooooo11 | "rotecol | Payload | Checksum | . 05,4

10/14/2015

Hajirasouliha H

57

Link Example: PPP over SONET (4)

* Byte stuffing method:

— To stuff (unstuff) a byte, add (remove) ESC (0x7D),
and XOR byte with 0x20

— Removes FLAG from the contents of the frame

10/14/2015 Hajirasouliha H 58

Link Example: PPP over SONET (4)

* Byte stuffing method:

— To stuff (unstuff) a byte, add (remove) ESC (0x7D),
and XOR byte with 0x20 wﬁmﬁ,}a AR

— Removes FLAG from the contents of the frame
ogeE — OxNSE
O»xF —7 0x1D5 D

10/14/2015 Hajirasouliha H 59

Bit Stuffing

* Can stuff at the bit level too

— Call a flag six consecutive 1s

— On transmit, after five 1s in the
data, inserta O

—»0n receive, a 0 after five 1s is
deleted

10/14/2015 Hajirasoul ihaH

Bit Stuffing (2)

* Example:

patabits 011011111111111111110010

Transmitted bits
with stuffing

Bit Stuffing (2)
* Example:
Databits 011011111111111111110010

T itted bit O i\) \Lilo] 1y
T A g g amiE

10/14/2015 Hajirasouliha H 61

Bit Stuffing (3)

* So how does it compare with byte stuffing?

Databits 011011111111111111110010

Transmittedbits 011011111011111011111010010

with stuffing ‘\ 1 /

Stuffed bits

10/14/2015 Hajirasouliha H 62

Link Example: PPP over SONET

* PPP is Point-to-Point Protocol
* Widely used for link framing

— E.g., it is used to frame IP
packets that are sent over
SONET optical links

10/14/2015 Hajirasouliha H 63

Link layer Services: next

our goals:

**understand principles behind link layer
services:

" Framing

= error detection, correction

= sharing a broadcast channel: multiple access

= |link layer addressing
= |ocal area networks: Ethernet, VLANSs

10/14/2015 Hajirasouliha H 5-64

Approach — Add Redundancy

* Error detection codes

Add check bits to the message bits to let
some errors be detected

* Error correction codes

—p Add more check bits to let some errors be
corrected

* Key issue is now to structure the code

to detect many errors with few check
bits and modest computation

L —

10/14/2015 Hajirasouliha H 65

Motivating Example

* A simple code to handle errors:

— Send two copies! Error if different.

* How good is this code?

— How many errors can it detect/correct?
— How many errors will make it fail?

10/14/2015 Hajirasouliha H 66

Motivating Example

* A simple code to handle errors:

— Send two copies! Error if different.

QI0OVO

* How good is this code?

— How many errors can it detect/correct?
— How many errors will make it fail?

10/14/2015 Hajirasouliha H 67

* Asimple code to handle errors:
— Send two copies! Error if different.
Q \@-:'O \ ¥
jr 8
: , 9
* How good is this code? (‘
— How many errors can it detect/correct?

— How many errors will ma ke@& 9,

10/14/2015 Hajirasouliha H 68

o

Using Error Codes

* Codeword consists of D data plus R
check bits (=systematic block code)

Data bits Check bits

D

R=fn(D)

* Sender:

—

— Compute R check bits based on the D data
bits; send the codeword of D+R bits

10/14/2015

Hajirasou

liha H

Using Error Codes (2)

* Recelver:
— Receive D+R bits with unknown errors

— Recompute R check bits based on the
D data bits; error if R doesn’t match R’

Data bits Check bits
D R’
- | X \'5\?

)-—3* R=fn(D) 4 e.@‘

10/14/2015 Hajirasouliha H 70

Intuition for Error Codes
* For D data bits, R check bits:

All —s¢ ™
codewords
Correct— -0
codewords - J

* Randomly chosen codeword is unlikely
to be correct; overhead is low

10/14/2015 Hajirasouliha H 71

* For D data bits, R check bits:

f)_b)'cl
Al — 4 N~
codewords | it
Correct—”"(%\'_ v
codewords - f\l

» Randomly chosen codeword is unlLker
to be correct; overhead is low yl

10/14/2015 Hajirasouliha H 72

R.W. Hamming (1915-1998)

* Much early work on codes:

— “Error Detecting and Error Correcting
Codes”, BSTJ, 1950

* See also:
— “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE

10/14/2015 Hajirasouliha H 73

Hamming Distance

* Distance is the number of bit flips

needed to change D to DEQ'

* Hamming distance of a code is the
minimum distance between any

pair of codewords

10/14/2015 Hajirasouliha H

Hamming Distance

* Distance is the number of bit flips
needed to change D to DEQ'

(> U, 090 hfano = 2

» Hamming distance of a code is the
minimum distance between any
pair of codewords AP=3

10/14/2015 Hajirasouliha H 75

Hamming Distance (2)

* Error detection:

— For a code of distanced+1, uptod
errors will always be detected

A3 4L oo\ olo

\ 8 01\
6oo \\\ e\ \\O

10/14/2015 Hajirasouliha H 76

Hamming Distance (3)

* Error correction:

— For a code of distance 2d+1, up to d
errors can always be corrected by
mapping to the closest codeword

10/14/2015 Hajirasouliha H 77

Hamming Distance (3)

Error correction:

— For a code of distance 2d+1, up to d
errors can always be corrected by
mapping to the closest codeword

2 wesd 20 Qo

10/14/2015 Hajirasouliha H

78

Error Detection 2:

1.Parity Codes
2.Checksum Codes
3.CRC Codes

10/14/2015 Hajirasouliha H

Simple Error Detection — Parity Bit

* Take D data bits, add 1 check bit 19411y
that is the sum of the D bits

— Sum is modulo 2 or XOR

10/14/2015 Hajirasouliha H 80

Parity Bit (2)

* How well does parity work?
— Whatis the distance of the code?

— How many errors will it detect/correct?

* What about larger errors?

10/14/2015 Hajirasouliha H 81

Parity Bit (2)

* How well does parity work?
— What s the distance of the code?

j
— How many errors will it de!;:ect/correct?
vd

* What about larger errors?
{‘ju ﬁ CAYND

10/14/2015 Hajirasouliha H

82

Checksums

* |dea: sum up data in N-bit words
— Widely used in, e.g., TCP/IP/UDP

1500 bytes 16 bits

» Stronger protection than parity

10/14/2015 Hajirasoul iha H

Internet Checksum

* Sum is defined in 1s complement
arithmetic (must add back carries)

— And it’s the negative sum

* { “The checksum field is the 16 bit one's
complement of the one's complement
sum of all 16 bit words ...” —RFC 791

v oDgl =% &
‘R0 - ;x"“"“ﬁq“\

10/14/2015 Hajirasouliha H 84

Internet Checksum (2)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

10/14/2015 Hajirasouliha H

0001
£203
f4£5
fef7

85

Sending:

1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

10/14/2015

Internet Checksum (3)

Hajirasouliha

0001
£203
£f4£5
f6£7
+(0000)

———— — —

Internet Checksum (4)

o 0001
Receiving: £203
1.Arrange data in 16-bit words §§§-5,

+ 220d

2.Checksum will be non-zero,add 7 <<€

3.Add any carryover back to get 16 bits

4.Negate the result and check it is O

10/14/2015 Hajirasouliha H

Internet Checksum (5)

o 0001
Receiving: £203

1.Arrange data in 16-bit words e

+ 220d

2.Checksum will be non-zero, add
3.Add any carryover back to get 16 bits | "7,

4.Negate the result and check it is O 0000

10/14/2015 Hajirasouliha H

88

Internet Checksum (6)

* How well does the checksum work?
— What is the distance of the code? L
— How many errors will it detect/correct?

¥ 3

\ O
* What about larger errors?

10/14/2015 Hajirasouliha H 89

Cyclic Redundancy Check (CRC)

* Even stronger protection

— Given n data bits, generate k check
bits such that the n+k bits are evenly
divisible by a generator C

* Example with numbers:
— n=302,k=o0nedigit,C=3

10/14/2015 Hajirasouliha H 90

Cyclic Redundancy Check (CRC)

* Even stronger protection

— Given n data bits, generate k check
bits such that the n+k bits are evenly
divisible by a generator C

* Example with numbers:

— n=302,k=onedigit,C=3

200 L "50\,@;’.}

10/14/2015 Hajirasouliha H 91

CRCs (2)

* The catch:

— It’s based on mathematics of finite
fields, in which “numbers”
represent polynomials

— e.g, 10011010 is x” + x* + x> + x*

* What this means:

— We work with binary values and
operate using modulo 2 arithmetic

10/14/2015 Hajirasouliha H 92

CRCs (3)

* Send Procedure:

ol -

1.

10/14/2015

Extend the n data bits with k zeros
Divide by the generator value C
Keep remainder, ignore quotient
Adjust k check bits by remainder

Receive Procedure:
Divide and check for zero remainder

Hajirasouliha H

93

Data bits:
1101011111

Check bits:
C(x)=x*+x*+1
C =10011
k=4

10/14/2015

CRCs (4)

10011|1101011111

Hajirasouliha H

94

CRCs (5)

100001 1

1 0 =— Quotient (thrown away)
170 0 0 0 =-— Frame with four zeros appended

1llrlllllr|'1ﬂ1n1ﬂ1ﬂ11

amsaege v Qe Dl Qe Q|
—=-er--l0 0000000
(=t] [= = [R o] [)
ialid [=R=|l=R=[=F=
(e [on Ban] o B

= Ol -

m——

T

L o

1 00

...................................... -0 0

e i o i i o e = e e)] e)

||||||||||||||||||||||||||||| =0 =|l==00

||||||||||||||||| ssmam-nge (O == =3 0|0 O

||||||||||||||||||| == Ol =0 00000
= ememcscssessspagmr Qi Ol Q= O™ ™

1 0 =— Remainder

1 0 0 1 0 =— Frame with four zeros appended

11 1 1

0

110

Transmitted frame:

minus remainder

95

Hajirasouliha H

10/14/2015

CRCs (6)

* Protection depend on generator

— Standard CRC-32is 10000010
01100000100011101101101112

* Properties:
— HD=4, detects up to triple bit errors
— Also odd number of errors
— And bursts of up to k bits in error

— Not vulnerable to systematic errors
like checksums

10/14/2015 Hajirasouliha H

96

Error Detection in Practice
* CRCs are widely used on links
— Ethernet, 802.11, ADSL, Cable ...

* Checksum used in Internet
— |P, TCP, UDP ... but it is weak

* Parity

— |s little used

10/14/2015 Hajirasouliha H 97

10/14/2015

Error Correction
Topic

* Some bits may be received in error
due to noise. How do we fix them?

— Hamming code »
— Other codes »

* And why should we use detection
when we can use correction?

Hajirasouliha H

98

Why Error Correction is Hard

* |f we had reliable check bits we
could use them to narrow down
the position of the error

— Then correction would be easy

* But error could be in the check

bits as well as the data bits!
— Data might even be correct

10/14/2015 Hajirasouliha H

99

Intuition for Error Correcting Code

* Suppose we construct a code with a
Hamming distance of at least 3

— Need 23 bit errors to change one
valid codeword into another

— Single bit errors will be closest to a
unique valid codeword

*| If we assume errors are only 1 bit,
we can correct them by mapping an
error to the closest valid codeword
L _ Works for d errors if HD 2 2d + 1

10/14/2015 Hajirasouliha H 100

Intuition (2)

» Visualization of code:

* Visualization of code:

O OOOOQ. valid
O Uﬁ)deword
0QBIOO
0AOBOO-_

O® O O® O codoword
000000

10/14/2015

00000 Q. vid
O ® O O @O ewer

00000 ®
000000,
0.00.0codewmd

000000

Intuition (3)
* Visualization of code:

Single Valid

OO0
t}i:j;rﬁr\&o O O .ﬁdewurd
QQOOOO

Three bit OO0
errors 10" @ O O @ O coseword

getto B

i0/14/2025 Hajirasouliha

Hamming Code

* Gives a method for constructing a
code with a distance of 3
—3» Uses n = 7K | 1, e.g., n=4, k=3

— Put check bits in positions p that are
powers of 2, starting with position 1

— Check bit in position p is parity of
positions with a p term in their values

* Plus an easy way to correct [soon]

10/14/2015 Hajirasouliha H 103

Hamming Code (2)

* Example: data=0101, 3 check bits
— 7 bit code, check bit positions 1, 2, 4
— Check 1 covers positions 1, 3,5, 7
— Check 2 covers positions 2, 3, 6, 7
— Check 4 covers positions 4, 5, 6, 7

10/14/2015 Hajirasouliha H 104

Hamming Code (3)

* Example: data=0101, 3 check bits
— 7 bit code, check bit positions 1, 2,4
— Check 1 covers positions 1, 3,5, 7
— Check 2 covers positions 2, 3,6, 7
— Check 4 covers positions4, 5, 6, 7

——— e— ——

A

0108101 —

p1=0+1+1=0, p,=0+0+1=1, py=1+0+1=0

10/14/2015 Hajirasouliha H 105

Hamming Code (4)

* To decode:

— Recompute check bits (with parity
sum including the check bit)

— Arrange as a binary number

— Value (syndrome) tells error position
— Value of zero means no error

— Otherwise, flip bit to correct

10/14/2015 Hajirasouliha H 106

Hamming Code (5)
* Example, continued

— 0100101
7

1 2 3 4 5 6

P1= Po=
Pg=

Syndrome =
Data =

10/14/2015 Hajirasouliha H 107

Hamming Code (6)
* Example, continued

—=0 100 1 0

1 [

1 2 3 4 5 6 7
p1=0+0+1+1=0, p,=1+0+0+1=0,
ps=0+1+0+1=0

Syndrome = 000, no error
Data=0101

10/14/2015 Hajirasouliha H 108

Hamming Code (7)
* Example, continued

—= 01890131

1 2 3 & 5 b /

P1= Po=

Syndrome =
Data =

10/14/2015 Hajirasouliha H 109

Hamming Code (8)
* Example, continued

—= U190 1.3

e e e
F -

1 3 ' i - _.";

P < 4 - .

p1=0+0+1+1=0, p,=1+0+1+1=1,
pg=0+1+1+1=1

Syndrome =110, flip position 6
Data=01 01 (correct after flip!)

10/14/2015 Hajirasouliha H 110

Detection vs. Correction (4)

* Error correction:

— Needed when errors are expected
— Or when no time for retransmission

* Error detection:

— More efficient when errors are not
expected

— And when errors are large when
they do occur

10/14/2015 Hajirasouliha H 111

Error Correction in Practice

Heavily used in physical layer

— LDPCis the future, used for demanding links
like 802.11, DVB, WiMAX, LTE, power-line, ...

— Convolutional codes widely used in practice

Error detection (w/ retransmission) is used in
the link layer and above for residual errors

Correction also used in the application layer
— Called Forward Error Correction (FEC)
— Normally with an erasure error model
— E.g., Reed-Solomon (CDs, DVDs, etc.)

10/14/2015 Hajirasouliha H 112

Main topics for Lecture 1

10/14/2015

2.

3.

4.

>

Topics

Framing \/
— Delimiting start/end of frames\/

Error detection and correction \/
— Handling errors ./

Retransmissions -

— Handling loss |
Multiple Access

— 802.11, classic Ethernet [Later
Switching

— Modern Ethernet

Hajirasouliha H

113

Where we are in the Course

* Finishing off the Link Layer!

— Builds on the physical layer to transfer
frames over connected links

Application

Transport

Network
Link
Physical

10/14/2015 Hajirasouliha H 114

Topics

1. Framing

— Delimiting start/end of frames
~Done

2. Error detection/correction

— Handling errors

DSL

10/14/2015 Hajirasouliha H 115

Topics (2)

3. Retransmissions

— Handling loss _g

4. Multiple Access 7 N
— Classic Ethernet, 802.11

5. Switching z
-

— Modern Ethernet

10/14/2015 Hajirasouliha H 116

Topic
* Two strategies to handle errors:

1. Detect errors and retransmit frame
(Automatic Repeat reQuest, ARQ)

2. Correct errors with an error

correcting code
Done this

10/14/2015 Hajirasouliha H 117

Context on Reliability

* Where in the stack should we
place reliability functions?

Application

Transport

Network
Link
Physical

10/14/2015 Hajirasouliha H 118

— Different layers contribute differently

Context on Reliability (2)

* Everywhere! It is a key issue

Application

Transport

Network

Link

Physical

10/14/2015

Recover actions
(correctness)

|

Mask errors
(performance optimization)

Hajirasouliha H

119

ARQ

* ARQ often used when errors are
common or must be corrected

— E.g., WiFi, and TCP (later)

* Rules at sender and receiver:

— Receiver automatically acknowledges
correct frames with an ACK

— Sender automatically resends after a
timeout, until an ACK is received

10/14/2015 Hajirasouliha H 120

ARQ (2)

* Normal operation (no loss)

Sender Receiver
Frame

Timeout / Time
ACK l

10/14/2015 Hajirasouliha H 121

ARQ (3)

* Loss and retransmission

Sender Receiver
Frame

"

Time

e ||
g |

10/14/2015 Hajirasouliha H 122

Timeout

So What'’s Tricky About ARQ?

* Two non-trivial issues:
— How long to set the timeout? »

— How to avoid accepting duplicate
frames as new frames »

* Want performance in the common
case and correctness always

10/14/2015 Hajirasouliha H 123

Timeouts

* Timeout should be:
— Not too big (link goes idle)
— Not too small (spurious resend)

* Fairly easy on a LAN
— Clear worst case, little variation

* Fairly difficult over the Internet

— Much variation, no obvious bound
— We'll revisit this with TCP (later)

10/14/2015 Hajirasouliha H 124

Duplicates
* What happens if an ACK is lost?

Sender Receiver

Timeout "”EE(

10/14/2015 Hajirasouliha H 125

Duplicates (2)
* What happens if an ACKis lost?

Sender Receiver

Timeout é/ﬁ"

Frame
// Frame??
ACK

10/14/2015 Hajirasouliha H 126

Duplicates (3)
* Or the timeout is early?

Sender Receiver

Timeout (/AC/

10/14/2015 Hajirasouliha H 127

Duplicates (4)

* Or the timeout is early?

Sender Receiver
Timeout AC
Fram New
el Frame??

10/14/2015 Hajirasouliha H 128

Sequence Numbers

* Frames and ACKs must both carry
sequence numbers for correctness

* To distinguish the current frame
from the next one, a single bit (two
numbers) is sufficient

— Called Stop-and-Wait

10/14/2015 Hajirasouliha H 129

Stop-and-Wait (2)

* |n the normal case:

Sender Receiver
Timeout ACK Time

\E%‘)
ACK 1

10/14/2015

|

Hajirasouliha H

* |n the normal case:

0-and-Wait

Sender Receiver

«=7<«f"o

Time

e

130

Stop-and-Wait (4)
* With ACK loss:

Sender Receiver

Timeout ACK O

FrameO
// Resend!
ACKO

Stop-and-Wait (3)

* With ACK loss:

10/14/2015 Hajirasouliha H 131

Stop-and-Wait (6)

* With early timeout:

Timeout

10/14/2015

Sender

ACK

Frame

oK ...

T Resend

Receiver

It’s a

Stop-and-Wait (5)

* With early timeout:

Sender Receiver

FrameQ
Timeout ACK
[§]
(i
Hajirasouliha H

X0

i

132

The IP service model
The Internet Protocol (IP)

Network PData | IPHar [@ oateram

10/14/2015 Hajirasouliha H 133

The IP service model

The Internet Protocol (IP)

e
|

| Link
Frame

10/14/2015 Hajirasouliha H 134

The IP service model

The IP Service Model

Property Behavior »

Datagram Individually routed packets.
Hop-by-hop routing. |

Eouter

Lirk

Unreliable Packets might be dropped.

Best effort ..but only if necessary. | . :

Connectionless | No per-flow state.
Packets might be mis-sequenced,

10/14/2015 Hajirasouliha H 135

The IP service model
The IP Service Model

Property

Datagram

Individually routed packets.
Hop-by-hop routing.

Behavior

Unreliable Packets might be dropped.

Best effort ..but only if necessary.

Connectionless Mo per-flow state,
Packets might be mis-sequenced.

The IP Service Model

Property

Behavior

Datagram

Individually routed packets.
Hop-by-hop routing.

Unreliable

Packets might be dropped.

Best effort

..but only if necessary.

Connectionless

No per-flow state.
Packets might be mis-sequenced,

10/14/2015

Hajirasouliha H

136

The IP service model
The IP Service Model

Property Behavior | '
Datagram Indmduallv routed packets. e

Unreliable | Packets might be dropped. i

Best effort ..but only if necessary. | - ;

Connectionless MNo per-flow state.
Packets might be mis-sequenced.

137

10/14/2015 Hajirasouliha H

The IP service model

The IP Service Model

Property Behavior | a

Datagram Individually routed packets.
Hop-by-hop routing.

Unreliable Packets might be dropped.

Lirdk

Best E_ﬂ'ﬂrt ..but only if necessary.

Mo per-flow state.
Packets might be mis-sequenced,

Connectionless

138

10/14/2015 Hajirasouliha H

The IP service model

The IP Service Model

Property Behavior »

Datagram Individually routed packets.
Hop-by-hop routing.

Unreliable Packets might be dropped.

Linde

Best effort ..but only if necessary. | - =

Connectionless @ MNo per-flow state,
Packets might be mis-sequenced,

139

10/14/2015 Hajirasouliha H

The IP service model

Why is the IP service so simple?

e Simple, dumb, minimal: Faster, more streamlined and
lower cost to build and maintain.

* The end-to-end principle: Where possible, implement
features in the end hosts.

* Allows a variety of reliable (or unreliable) services to be
built on top.

* Works over any link layer: IP makes very few
assumptions about the link layer below.

10/14/2015 Hajirasouliha H 140

The IP service model

The IP Service Model (Details)

1. Tries to prevent packets looping forever.
2. Will fragment packets if they are too long.

3. Uses a header checksum to reduce chances of
delivering datagram to wrong destination.

4. Allows for new versions of IP
- Currently IPv4 with 32 bit addresses
— And IPv6 with 128 bit addresses

5. Allows for new options to be added to header.

10/14/2015 Hajirasouliha H 141

The IP service model

IPv4 Datagram

Bit 0 Bit 31

Data

10/14/2015 Hajirasouliha H 142

The IP service model
IPv4 Datagram

Bit O Bit 31
Version ‘ Eﬁ? Type of Service Total Packet Length
Packet ID Flags ‘ Fragment Offset
ﬁmf b Protocol ID Checksum

Source IP Address

Destination IP Address
(OPTIONS)

Data

10/14/2015 Hajirasouliha H 143

The IP service model

summary

We use |IP every time we send and receive datagrams.

IP provides a deliberately simple service:

— Datagram
— Unreliable
— Best-effort

— Connectionless

10/14/2015 Hajirasouliha H 144

End of
L.ecture 2

10/14/2015 Hajirasouliha H

