Chapter 10: Rotation

\checkmark Angular Position, Velocity and Acceleration
\checkmark Rotational Kinematics
\checkmark Kinetic Energy of Rotation
\checkmark Rotational Inertia
\checkmark Torque
\checkmark Energy Consideration in Rotational Motion

Chapter 10: Rotation

Session 20:

\checkmark Angular Position, Velocity and Acceleration
\checkmark Rotational Kinematics
\checkmark Examples

Angular Position and Displacement

Angular Position :

$$
\theta=\frac{s}{r} \quad 1 \mathrm{rad}=1 \times\left(\frac{360^{\circ}}{2 \pi}\right)=57.3^{\circ}
$$

Angular Displacement :

$$
\Delta \theta=\theta_{2}-\theta_{1}
$$

Angular Speed and Acceleration

Angular speed : $\omega_{\mathrm{avg}}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}$

$$
\omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t}
$$

$\boldsymbol{\omega}>\mathbf{0}$ if θ is increasing (counterclockwise), $\boldsymbol{\omega}<\mathbf{0}$ if θ is decreasing (clockwise)

Angular Acceleration : $\alpha_{\text {avg }}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t} \quad \alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}$ $\mathrm{rad} / \mathrm{s}^{2}$

$$
\alpha>0 \text { if an object rotating counterclockwise (clockwise) is speeding up (slowing down) }
$$

Angular Speed and Acceleration

Angular displacements cannot be treated as vectors

Directions of $\overrightarrow{\boldsymbol{\omega}}$ and $\overrightarrow{\boldsymbol{\alpha}}$ are along the axis of rotation The directions are actually given by the right-hand rule.

Rotational Kinematics

$$
\begin{aligned}
& v=\frac{d x}{d t} \square x_{f}-x_{i}=\int_{t_{i}}^{t_{f}} v d t \\
& a=\frac{d v}{d t} \square v_{f}-v_{i}=\int_{t_{i}}^{t_{f}} a d t \\
& \text { if } a=\text { constant } \\
& \Gamma v(t)=v_{0}+a t \\
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& x=x_{0}+v_{a v g} t \\
& v_{a v g}=\frac{v_{0}+v(t)}{2} \\
& v^{2}-v_{0}^{2}=2 a\left(x-x_{0}\right) \\
& \omega=\frac{d \theta}{d t} \square \theta_{f}-\theta_{i}=\int_{t_{i}}^{t_{f}} \omega d t \\
& \alpha=\frac{d \omega}{d t} \square \omega_{f}-\omega_{i}=\int_{t_{i}}^{t_{f}} \alpha d t \\
& \text { if } \alpha=\text { constant } \\
& \Gamma \omega(t)=\omega_{0}+\alpha t \\
& \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
& \theta=\theta_{0}+\omega_{\text {avg }} t \\
& \omega_{\mathrm{avg}}=\frac{\omega_{0}+\omega(t)}{2} \\
& \omega^{2}-\omega_{0}^{2}=2 \alpha\left(\theta-\theta_{0}\right)
\end{aligned}
$$

Ex 1: A wheel rotates with a constant angular acceleration of $3.5 \mathrm{rad} / \mathbf{s}^{2}$. (a) If the angular speed of the wheel is $\mathbf{2} \mathbf{r a d} / \mathbf{s}$ at $\mathbf{t}_{\mathbf{i}}=\mathbf{0}$, through what angular displacement does the wheel rotate in $\mathbf{2} \mathbf{s}$? (b) Through how many revolutions has the wheel turned during this time interval? (c) What is the angular speed of the wheel at $\mathbf{t}=\mathbf{2} \mathbf{s}$?

$$
\alpha=3.5\left(\mathrm{rad} / \mathrm{s}^{2}\right)=\mathrm{constant} \quad \square \Delta \theta=\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

$$
\Delta \theta=(2)(2)+\frac{1}{2}(3.5)(2)^{2}=11 \mathrm{rad}=11 \times\left(\frac{360^{\circ}}{2 \pi \mathrm{rad}}\right)=630^{\circ}
$$

$$
\Delta \theta=630^{\circ} \times\left(\frac{1 \mathrm{rev}}{360^{\circ}}\right)=1.75 \mathrm{rev}
$$

$$
\omega=\omega_{0}+\alpha t \square \omega=2+(3.5)(2)=9(\mathrm{rad} / \mathrm{s})
$$

Ex 2: (Problem 10. 12 Halliday)

The angular speed of an automobile engine is increased at a constant rate from $1200 \mathrm{rev} / \mathrm{min}$ to 3000 rev/min in $\mathbf{1 2} \mathbf{s .}$. (a) What is its angular acceleration in revolutions per minute-squared? (b) How many revolutions does the engine make during this 12 s interval?

$$
\omega=\omega_{0}+\alpha t \longmapsto \alpha=\frac{\omega-\omega_{0}}{t}=\frac{3000-1200}{12\left(\frac{1 \mathrm{~min}}{60}\right)}=9000\left(\mathrm{rev} / \mathrm{min}^{2}\right)
$$

$$
\Delta \theta=\omega_{\text {avg }} t=\left(\frac{\omega_{0}+\omega}{2}\right) t \quad \Delta \theta=\left(\frac{1200+3000}{2}\right)\left(\frac{12}{60}\right)=420 \mathrm{rev}
$$

Ex 3: (Problem 10. 8 Halliday)

The angular acceleration of a wheel is $\alpha=6 t^{4}-4 t^{2}$ with α in radians per second-squared and \mathbf{t} in seconds. At time $\mathbf{t}=\mathbf{0}$, the wheel has an angular velocity of $+\mathbf{2 r a d} / \mathbf{s}$ and an angular position of +1 rad. Write expressions for (a) the angular velocity (rad/s) and (b) the angular position (rad) as functions of time (s).

$$
\begin{aligned}
\omega_{f}-\omega_{i}=\int_{t_{i}}^{t_{f}} \alpha d t & \square \omega(t)-2=\int_{0}^{t}\left(6 t^{4}-4 t^{2}\right) d t=\frac{6}{5} t^{5}-\frac{4}{3} t^{3} \\
& \omega(t)=\frac{6}{5} t^{5}-\frac{4}{3} t^{3}+2 \\
\theta_{f}-\theta_{i}=\int_{t_{i}}^{t_{f}} \omega d t & \theta \theta(t)-1=\int_{0}^{t}\left(\frac{6}{5} t^{5}-\frac{4}{3} t^{3}+2\right) d t=\frac{t^{6}}{5}-\frac{t^{4}}{3}+2 t \\
& \theta(t)=\frac{t^{6}}{5}-\frac{t^{4}}{3}+2 t+1
\end{aligned}
$$

Relationship Between Angular and Linear Quantities

Position:

$$
s=r \theta
$$

Velocity:

$$
\begin{array}{r}
v=\frac{d s}{d t}=r \frac{d \theta}{d t} \quad \begin{array}{l}
V=r \omega \\
T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega}
\end{array} \\
\end{array}
$$

Acceleration:

$$
\begin{array}{r}
a_{t}=\frac{d v}{d t}=r \frac{d \omega}{d t} \\
a_{r}=\frac{v^{2}}{r}=r \omega^{2} \\
a=\sqrt{a_{t}^{2}+a_{r}^{2}}=\sqrt{r^{2} \alpha^{2}+r^{2} \omega^{4}}=r \sqrt{\alpha^{2}+\omega^{4}}
\end{array}
$$

Ex 4: In a typical CD player, the constant speed of the surface at the point of the laser-lens system is $1.3 \mathrm{~m} / \mathrm{s}$. (a) Find the angular speed of the disc in revolutions per minute when information is being read from the innermost first track ($\mathbf{r}=23 \mathrm{~mm}$) and the outermost final track $(r=58 \mathrm{~mm})$. (b) The maximum playing time of a standard music disc is $74 \mathbf{~ m i n}$ and $\mathbf{3 3} \mathbf{s}$. How many revolutions does the disc make during that time? (c) What is the angular acceleration of the compact disc over the 4473-s time interval?

Angular speed must vary to keep the tangential speed constant

$$
v=r \omega
$$

$$
\omega_{i}=\frac{v}{r_{i}}=\frac{1.3}{0.023}=57(\mathrm{rad} / \mathrm{s})=5.4 \times 10^{2}(\mathrm{rev} / \mathrm{min})
$$

$$
\omega_{f}=\frac{v}{r_{f}}=\frac{1.3}{0.058}=22(\mathrm{rad} / \mathrm{s})=2.1 \times 10^{2}(\mathrm{rev} / \mathrm{min})
$$

$$
\Delta \theta=\omega_{\text {avg }} t=\left(\frac{\omega_{0}+\omega}{2}\right) t \square \Delta \theta=\left(\frac{57+22}{2}\right)(4473)=1.8 \times 10^{5} \mathrm{rad}=2.8 \times 10^{4} \mathrm{rev}
$$

11

$$
\alpha=\frac{22-57}{4473}=-7.6 \times 10^{-3}\left(\mathrm{rad} / \mathrm{s}^{2}\right)
$$

Ex 5: (Problem 10.28 Halliday)

Wheel A of radius $r_{A}=10 \mathbf{c m}$ is coupled by belt B to wheel C of radius $r_{C}=\mathbf{2 5} \mathbf{c m}$. The angular speed of wheel \mathbf{A} is increased from rest at a constant rate of $1.6 \mathrm{rad} / \mathbf{s}^{2}$. Find the time needed for wheel \mathbf{C} to reach an angular speed of $100 \mathrm{rev} / \mathrm{min}$, assuming the belt does not slip. (Hint: If the belt does not slip, the linear speeds at the two rims must be equal.)

$$
v_{A}=v_{B}=v_{C}
$$

$$
r_{A} \omega_{A}=r_{C} \omega_{C} \square r_{A} \alpha_{A}=r_{C} \alpha_{C} \square \alpha_{C}=\frac{r_{A}}{r_{C}} \alpha_{A}=\frac{10}{25}(1.6)=0.64 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\omega_{C}=\underbrace{\omega_{0 C}}_{0}+\alpha_{C} t
$$

$$
t=\frac{\omega_{C}}{\alpha_{C}}=\frac{100\left(\frac{2 \pi}{60}\right)}{0.64}=16.36 \mathrm{~s}
$$

$$
\omega_{A}=\frac{r_{C}}{r_{A}} \omega_{C}=2.5 \omega_{C}=250(\mathrm{rev} / \mathrm{min})
$$

