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ABSTRACT

Rotating machinery diagnostics have been, andheill

a critical area in the Qil and Gas Industry. Thougthe
early days oscilloscopes and spectrum analyzerg wer
typically used to analyze vibration data, in recgsdrs,
technological advances in computers have made it
possible to make use of them in solving machinery
problems. However, it becomes critical to accem th
fact that in order to manipulate vibration signaisa
software environment, they have to be previously
transformed into digital format. Even though
information on the various signal processing teghes

are readily available, most of the time, the mariner
which this topic is discussed tends to be somehow
theoretical. This tutorial intends to provide a soany

of these techniques, but most importantly, the link
between the basic theory and real applicationslsib
emphasizes how choosing the wrong parameters in the
data acquisition device will definitely affect tip@ality

of vibration data, critical to solving machinery
problems.

INTRODUCTION

The use of analog oscilloscopes and spectrum aralyz
to diagnose machinery problems is now a thing ef th
past. As computers got more powerful, they started
being used more frequently as diagnostic tools.
However, when using computers, the Machinery
Diagnostic Engineer has to consider an importact fa
they work in a digital world. For this reason, treious
vibration signals coming from the rotating equipitpen
which are “analog” in nature, need to be transfame
into the digital domain. The term “analog” refeosthe
continuous nature of the signal; it contains annitd
number of amplitude levels, separated by infinitesi
time intervals. A digital signal, on the other hargnot
continuous, as it is formed by a finite number of
amplitude levels, separated by finite time intesvidee
figure 1). Even though a great amount of published
information can be found on this subject, it tetmlde
too theoretical for the machinery diagnostic Engme
making it difficult to evaluate the consequence of
choosing the wrong parameters in the quality of the
data, which in turn drives the effectiveness of the

diagnosis.
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Figure 1: Comparison between an analog (top) and
a digitally sampled (bottom) signal.
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The process through which an analog signal is
transformed into digital is usually referred to as
“sampling”. Before getting into further detail, lettake

a look at the whole sampling process, which staitis

an analog signal, and ends up as a digital sigtaihg
with one of the most common operations on the aigit
signal, the Fast Fourier Transform (FFT). In Fig@re
the analog signal goes through a low pass filteown

as “Antialiasing filter” (AAF), which attenuates

frequency components above the specified frequency.

/\/_'AAF \“ﬂ

Analog
signal

Then the voltage level of the signal is “quantized”
through an Analog — to — Digital converter (ADC),
wherein the voltage is divided into discrete levéiter
having “measured” the signal voltage, it is stoied
some type of memory, at a certain rate specified in
samples per second. Once the signal has been shmple
it becomes available for either direct represeotatr
further processing.
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Figure 2: Flow diagram for converting an analogalgnto digital.

Let’s take a look at each part of the process wiittle
more detail. We start with the ADC and shall cotrex
antialiasing filters later.

ANALOG TO DIGITAL CONVERTER

An “Analog-to-digital” converter or ADC is a device
incorporated in all modern data acquisition insteumts,
and is used to convert the input analog signal ento
digital or discrete signal, so that it can be farth
processed. For the sake of keeping this paperdihti
the practical world, we will only focus on the most
important parameter for ADCs, the bit nhumber. This
number directly affects the amplitude resolutiontod
ADC, i.e. how finely it slices the configured fidtale
measurement range. Roughly, the number of digital
levels in which the full scale is divided 5, with n
being the number of bits. The higher the bit number
higher the resolution. For example, an 8-bit ADC
divides the vertical full scale into 256 levels,ilela 16-

bit ADC achieves 65536 levels. It is also importsmt
have in mind that this parameter is fixed, oncedhta
acquisition instrument has been selected. Figuneben

3 shows four examples with different amplitude
resolutions, for a 20 mils pp full scale range.

For practical applications involving vibration aritptie
measurements, anything at or above 12 bits will
certainly do the job. Even though bit numbers g fzis

24 or even 32 are available today, it has to be
considered that high numbers of bits do have aepric

memory space, in addition to being overkill. Let’'s
consider the 12-bit case in Figure 3. When trying t
record a vibration signal for a typical machine, ils

of full scale is usually enough. Then, using 12 hiill
yield a resolution as high as 0,0049 mils. At thsnt,

we must ask ourselves; do we really need more
resolution?.
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Figure 3: Comparison between numbers of bits fer th
ADC (resolution) for a full scale range of 20 mls.
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TIME RESOLUTION — SAMPLING FREQUENCY

Time resolution is basically controlled by how faélsé
instrument collects the data (sampling frequentry).
contrast with the amplitude resolution, time retohu
can be modified when configuring the data acquisiti
device up to some maximum limit. Because of this, t
Machinery Diagnostic Engineer is required to have
some knowledge on its effect on data quality. Let’'s
examine two basic examples shown in Figure 4, one
with low time resolution and the other with a hitgyme
resolution. In this example, the black line cormygts to
the analog signal being sampled. For case a), ing @s
good sampling frequency, the reconstructed digital
waveform (connecting the red dots) results in asalo
representation of the original signal. However, wie
look at case b), in which the sampling frequendyise
times slower, the reconstructed signal becomesaa po
representation of the analog one.

Analog
signal

a) 3 samples per second
o o

Figure 4: Comparison between good time resolution
(case a) and poor time resolution (case b).

Now let’s take a look at more realistic examplest'd.
consider a typical Time base plot, which is a direc
representation of the digitized signal. In thistigatar
example, the machine is running at 1700 rpm, aed th
dominant frequency is synchronous or 1X (the main
frequency equals running frequency). The same gnalo
signal coming from the vibration transducer hasnbee
sampled in two different ways: 640 Hz or samples pe
second (Figure 5), and 25600 samples per secoed (se
Figure 6). For comparison purposes, both plotsthee
same vertical and horizontal scales. The signdlhha
been digitized at 640 Hz appears to be quite smooth
exhibiting overall amplitude of 6 mils pp. However,
when we look at the other signal, it turns out ttet
waveform is not as uniform as the previous case,
showing some spikes that increase the overall aindgli
from 6,6 to 8,5 mils pp. Due to the low samplinterin
figure 5, those spikes go undetected. In other sjord
using a low sampling rate will prevent us from meft

all the information from the original signal.

Copyright© 2014 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station



[A/D UNDER RANGE (FLAGGED DATA PLOTTED) _

IIIIIIIIIII

T

IIIIIIII

(4]

L1 1

o

Il|l|Illlllllllllllllllll
(=]

lllllllllllllllll

|
|
|
|
o

o

100

| m—
20 ms/div

|
|
|
|
|
|
o

200

W
(=]
o

Figure 5: Digital signal sampled at 640 samplesspeond or 640 Hz.
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Figure 6: Digital signal sampled at 25600 sampkyssecond or 25600 Hz.

Now that we have already seen some real exampiss, i
important to define another term associated with th
subject of this paper. In both previous examplescan
see that only 300 milliseconds worth of signal laeeng
displayed. Generally speaking, when a signal isidei
sampled, we are dealing not only with samples being
collected at discrete time intervals, but also vaitfinite
observation time, or a finite number of collected
samples. Each group of samples being actually gtore
the acquisition device is called “time record”, e
amount of samples included in it is referred td'tame
record size N”. We will come back to this concegief
on this paper, when we discuss the FFT.

ALIASING — NYQUIST THEOREM

When we talked about time resolution, it was made
clear that the faster the samples are collectedbétter
quality we get for the reconstructed signal. Goihg
other way, the slower the samples are collected the
lower quality we achieve for the digital signal.ife
continue to decrease the sampling frequency, weaoget
the point in which we are not able to reconstrin t
original signal, but an “alias” of that signal. $hi
phenomenon is known indeed as “Aliasing”. In ortter
better understand this concept, we will considex th
following scenario. Let’s suppose we need to sarople
digitize the analog signal a) shown in Figure 7r the
purpose of this example, we will assume that tgeddi

to be sampled is a single frequency sinusoidalaign
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Part b) of Figure 7 shows black dots representiregy t
discrete samples collected by the acquisition d@gvic
overlaid on the original signal. In this case, shenpling
frequency is such that we are collecting two saspkr
signal cycle. In other words, we are collecting pls
at twice the signal frequency. By connecting thackl
dots, it is easy to see that we are identifyingrakting
amplitudes at the frequency of the original sighat’s
see now what happens if we collect samples at arlow
frequency. This lower sampling frequency is
characterized by a longer period between samples
Part c) of Figure 7 shows again the black dots
representing the samples, which are now being oaghtu
at different locations in the original signal. Arefit
consequence of this is that when we try to recanstr
the digitized signal, we will “see” a different s
(green). By comparing it to the original signaldyeit is
evident that the frequency of the reconstructedasics
lower than the original. The original high frequgnc
signal is said to have “aliased” to a lower frequen
signal. At this point, it is important to state tlomce the
aliasing of a signal has occurred, there is no ey
know whether the reconstructed signal is real ¢r no

Original analog signal

a) Digitized signal, sampled at twice the originalr&igfrequenc

b) Aliased lower frequency signal (green), resultingm a low
sample ratt

Figure 7: Aliasing of a digitized signal.

Going back to case b) of the previous examplefdbe
that we chose to collect two samples per signdiecigc
actually based on theNyquist sampling theoreih a
corner stone of signal sampling. This theorem sttitat

in order to accurately extract the frequency infation
from the original signal, the sampling frequency or
sampling rate must beat least twice the highest
frequency of interest in the original signal. A®aim in
the previous example, this requirement reduces the
possibility of erroneously representing the origina
signal with another signal of a lower frequency or
“aliasing”.

ANTIALIASING FILTERS

Even when the Nyquist theorem ensures that we detec
the frequencies of interest, undesired higher feagy
components may still generate aliased componeats th
will come up within our frequency span. Let's suppo
we want to examine frequency activity taking place
between zero and 1000 Hertz. The Nyquist theorelin wi
force us to sample at twice the maximum desired
frequency, in this case, 2000 Hertz. This will vaaty
that any frequency component up to 1000 Hz will
appear in the reconstructed signal, which would enak
us happy. However, what would happen if the analog
signal included for example a random 1600 Hertz
component? Signal sampling theory tells us that any
frequency componentf, above half the sampling
frequency will generate an aliased component at
sampling frequency —d In our example, a 1600 Hz
component will generate an aliased component at
2000Hz — 1600Hz = 400Hz. When this happens, we will
observe a 400Hz frequency component which is not
real, causing a tremendous waste of time tryingplate

it to a real problem. In order to avoid thatialiasing
filters are usually applied to the original signal “before
the sampling process, as it has been depictedjuré-il

of this paper. These are basically low pass filtaet
remove frequency components above our frequency
span, eliminating the chance of aliasing.

However, when talking about antialiasing filtersyre
considerations should be made. Even when we would
like these filters to look like figure # 8 a), pampall the
desired frequencies and rejecting any higher
frequencies, real filters usually exhibit behavisugh as

the one in Figure # 8 b). Here, a transition basd i
present, within which frequency components are
gradually attenuated. To avoid the possibility of
components within this transition band aliasing iotr
frequency span, the sampling rate is set to twice t
highest frequency in the transition band. We wilhhe
back to this later.
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Figure 8: Ideal and real antialiasing filters freqay
response.

FREQUENCY DOMAIN

So far we have been discussing the process of
transforming an analog signal into a digital onetB
the analog and digital representation of a sigmsal i
usually referred to as “Time domain”. This typepbdts
constitute a direct representation of the digitizeghal,
either as a single signal or as an orbit, whichais
combination of two signals coming from a pair of
orthogonal transducers. In other words, no further
processing, other than digitizing the analog signa
performed when generating this type of plots. Hasvev
when dealing with vibration diagnostics, useful
information can be extracted from the well-known
“spectrum plots”. When we observe this type of plod

are actually viewing the “frequency domain” of the
vibration signal. In contrast with time domain,dibes
require additional manipulation or processing oé th
original digitized waveforms. Without getting intoo
much theoretical detail, let's take a look at tlasits
associated with frequency domain processing. As we
stated in the previous paragraph, the first stepois
actually sample the original analog signal. In isec8,

we called this group of samples “time record”. Than
computational algorithm called Fast Fourier Transfo

or “FFT”, is applied to this time record. This atgbm

is based on the fact shown by Jean Baptiste Fotiiatr
any waveform encountered in the real world can be

reproduced by adding up sine waves. By applying thi
algorithm, we go from a time domain representatbn
the signal (waveform), to the frequency domain
representation of that signal, in order to get the
frequency spectrum of that signal (a representatfcil

the frequency components that exist in the original
complex signal, along with their respective amplés).
Let’s take a closer look now at this algorithm. Ukegng
that our time record is formed by equally spaced
samples, the FFT transforms them g2 equally
spaced samples in the frequency domain, calle@stin
Figure 9 shows, as an example, a digitized sigrital av
dominant 55Hz component with the resulting freqyenc
spectrum. The number of sampNds always a power
of 2 (2, 4, 8... 1024, 2048, etc.) as it makes th& FF
algorithm simpler and faster.
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Figure 9: FFT being applied to a digitized signal.

So now we are in the frequency domain, with B@
lines. Then the next question arises: what is faeisg
between each of those lines?. As all the linesqtelly
spaced, then to answer the question, we just reefiact

out what is the spacing for the first line, i.etvoeen
zero Hertz and the first line. As this is typicaliye
lowest frequency we can resolve, it has the longest
periodT (the reciprocal of its frequency). We also need
to consider that in order to precisely identify any

Copyright© 2014 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station



frequency component in the digitized signal; we inings
able to identify its period (the duration of onenqete
cycle). Then it follows that this particularly lonpgriod
has to be included in our time record, otherwise, w
won’t be able to properly identify this lowest fuegcy
component. Summarizing we can conclude that the
lowest frequency we can resolve with the FFT atpari

is the reciprocal of the time record period, 16T (see
figure 10).

A

Amplitude

Frequency
0 T 2T 3/T sesssnnnnnnnnnns N/2T

Figure 10. FFT resolution.

So far we know that the FFT delivers N/2 lines, at
those lines are equally spaced by the reciprocahef
time record periodTl. This information allows us to
easily calculate the highest frequency we can nreasu
using the following expression:

frm = @
max 2 T

Equation (1) shows that the maximum frequency we ca
view in our spectrum depends both on the number of
samples in the time record and the total time to
complete the time recorfl. Also, we now know that
depends on how fast the individual samples are
collected, i.e. thesampling rate Additionally, we have

to remember that the FFT delive¥é2 frequency lines
Summarizing, we have a mathematical expression
relating 5 variablesfax, N, T, sample rate and number
of lines!. At this point, the reader must be woriaigr
how all this comes down to reality, when trying to
configure a data acquisition device to collect good
vibration data.

Fortunately, most, if not all, data acquisition iteg,
limit these variables down to only Erequency Span
(FS) and number of lines (N/2).Note that the
frequency span is not abbreviatid,, but FS. This is

not a text error. There is an explanation for thisor
difference, and it involves what we have discusised
sections 4 and 5: Aliasing and Antialiasing filtets
order to better deal with this, let’'s work with soneal
numbers in the following example.

Let’s suppose that our time record is formed by4102
(remember, always power of 2 numbers) equally space
samples in the time domain. If we apply the FFThie
time record, we will get 512 usable lines in the
frequency domain (see figure 11). Those 512 will be
distributed along our total frequency spafiay).
However, in section 5 we learned that there is a
transition band for the antialiasing filter, which not
really useful for us. For this reason, we just &#wut.
But how much do we discard?. In our example, wekee
400 from the available 512 lines. The missing lhéd
used to be enough to cover the transition bantieobtd
antialiasing filters, and even when modern data
acquisition devices are capable of thinner trammsiti
bands, the ratio between 512 and 400 has beeneatiopt
Then, our usable Frequency Span willR&

A
Antialiasing filter

Usefull Transition band

frequency range

P »
<« »

Amplitude

»

»
5:8 fmax  Frequency

400 lines
' J
|

512 lines

Figure 11: Theoretical and actual numbers of lines
the FFT.

As the filter characteristics were always the sathe,
slope of the transition band was also the same,sand
was the ratio between the total and the real number
lines. Table 12 shows typical settings availableniost
instruments.

Table 12. Historical Numbers of Lines typically
available today.

Time record size | Original FFT lines | Actually used FFT lines

256 128 100

512 256 200

1024 512 400

2048 1024 800

4096 2048 1600

8192 4096 3200
16384 8192 6400
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Going back to figure 11, the Nyquist criteria raggi
that in order to properly identify the highest fueqcy
in the FFT {.a), we have to sample at twice this
frequency. Additionally, both from figure 11 andka
12, we can see th#it, is exactly 1,28 ¥S. Then it
follows that, by Nyquist:

= 2A128[FS= 256[FS

or Fg = 256[FS (2)

Equation (2) represents an important relationship
between the frequency span and the sampling freguen
at which individual samples are collected to fil the
time record.

In table 12 it is possible to see, by comparingtthe
record size and the actual number of lines, theesam
factor of 2.56, leading to another important expi@s.

Timerecord size= 256x N° lines €)

Basically, Equation (3) states that the more lirbs,
more samples in the time record. Those samples are
then collected at the sample frequency given by
Equation (2). Let’s apply these relationships tceal
example:

We want to analyze a frequency span of 500Hz, kut w
also want good resolution, so we choose 3200 lime f
our FFT. By using Equation (2), we determine the
sampling frequencys of 1280 samples/sec. Then, we
use Equation (3) to determine the time record size,
which then equals 8192 samples. In this scenar®, w
will have to collect 8192 samples at a rate of 1280
samples each second. The total sampling time cily ea
be calculated as:

8192samples

samples
1280%aMPIes

= 64ec (4)

Now 6.4 seconds may not seem a long time for
everyday activities. However, when collecting diata
rotating machine, 6.4 seconds represent reallyng lo
time, especially when we are trying to detect speak

in vibration, or when we are collecting data during
machine shutdown. Remember, in order to get a good
quality FFT, the signal included in the time recandst

be periodic. Now that we have already discussed the
properties and requirements for the FFT, let svgleat
tools we can use when a periodic signal is notikgad
available.

WINDOWING

Every time we try to configure our data acquisition
device in order to look at a spectrum plot, we are
prompted the question of what type of window to.use
In order to understand the concept of windowingjsle
go back to the FFT algorithm. This algorithm asssime
that the input signal is completely periodic, repen
itself over and over from one time record to thetnn

the real world, there are instances in which thisriie
(we will deal with these in section 8), and othérs
which it is not. But let's see some examples ohbot
cases.

Figure 13 shows a time record for a digitized sighat
contains exactly 10 cycles, i.e., an integer nuntfer
cycles. This means that when the algorithm triesojoy
the signal portion over and over to get a perfectly
periodic waveform, it succeeds. Then, the resulting
spectrum plot will show clean frequency lines wiitie
proper information, as shown on Figures 14 and 15.
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Figure 13: Signal with integer number of cycles.
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Figure 14: FFT applied to signal in Figure 13, izt
axis in dB.
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Figure 15: FFT applied to signal in Figure 13, izt
axis in magnitude.

If we now consider a signal time record that itlies

a non-integer number of cycles, it is evident tthedre
will be signal discontinuities at the edges, aswshin
Figure 16. It is important to say that the originaklog
signal in these two examples is the same. We dge on
changing the way it is being sampled into two défe
time records. This deviation from the ideal periodi
signal will cause the FFT algorithm to throw undedi
results, known as “leakage” (see Figures 17 and 18)
This term is associated to the fact that the enéxagy
the original frequency line is “leaking” out to adgnt
lines, even in those cases in which there is alesing
frequency component. If we are trying to identify
specific component in order to do vibration diagiuss
leakage will definitely be an issue. If the probleve
are analyzing involves frequency components that ar
really close, for example the two times line and tw
times rotation frequency in an asynchronous electri
motor, leakage will make it virtually impossible to
determine which one exhibits the highest amplitude.
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Figure 16: Signal with non-integer number of cycles
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Figure 17: FFT applied to signal in Figure 16, izt
axis in dB.
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Figure 18: FFT applied to signal in Figure 16, izt
axis in magnitude.
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Even though leakage cannot be fully eliminatedait
definitely be attenuated. The most common way to do
this is by the use of “windows functions”. The oitite
goal of using windows is to ensure that the digitiz
signal amplitude becomes zero at the beginningaind
the end of the time record. By achieving this, we
attenuate the discontinuities at the edges, resigerfer
causing leakage. Though there are many types of
functions currently used for this purpose, let’asider
one generic windowing function that is zero at ¢émels
and maximum amplitude in the middle. When we apply
this window function to our time record signal, &
actually multiplying both, in order to get a vikmat
signal somehow different to the original, in thense
that its frequency remains the same, but the angdit
has been forced to zero at both ends. Figure 1®@sho
comparison between not using windows and using them
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Figure 19: Non periodic signal without windowingeft) and using Hanning Window (Right).

Even though in most cases, the time record doesn’t
contain an integer number of vibration cycles, iiogc

us to use window functions, there are cases intwthie
time record does cover an integer number of these
cycles. If we also consider rotating equipment in
general, most of the signal frequency content isalg
related to rotating speed, through some ratio fane,

two times, etc.). In cases like these, it woulduseful
that our sampling rate has also some type of ogighiip
with rotation, some kind of synchronization. Thgpe

of sampling is actually available, and it is called
“synchronous sampling”, and we will deal with it time
next section.

SYNCHRONOUS OR ANGULAR SAMPLING

According to what we have been discussing throughou
this paper, it would be logical to arrive at thexckision

that if we want to get a good representation of the
original analog signal, we just need to make sues w
select a sampling frequency high enough (assumimg w
have a good quality ADC). However, this is not
completely true. In contrast with the typical sagmdor
data collection, in which the machine rotating shee
fairly constant during the data acquisition (typicd
small balance of plant machines), we are sometimes
faced with the task of sampling our vibration signa
during some transient event, such as a maching coas
down. Though this type of transient events might be
considered as uncommon, since it is usually expecte
that machines keep on running most of the time, the
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most useful information for diagnostic purposes is
actually gathered during these events.

It turns out that the most common lateral vibrati@ing
generated in rotating equipment is the one assmtiat
with the unbalance force. This force happens to be
locked into the rotation of the shaft (the heavgtspn

the rotor is located at a fixed angular locatiddhder
these conditions, the dominant vibration occurera
time running speed, usually referred to as 1X, wWith
representing rotating speed. This also means tiraigl
machine shutdown, this 1X frequency component will
track running speed as it decreases. Let’'s suppese
want to digitize the vibration signal resulting rimcan
unbalanced rotor, using the already discussed time
based sampling, i.e. collecting samples that at=lgg

spaced in time, during machine shutdown. Figure 20
shows the time based sampled signal. Because ¢eel sp
is decreasing, and also the dominant vibration
frequency, we can clearly see that each vibratiatec
takes a longer time to complete. In this scenarim
major issues arise: a) due to the fact that thepkssrare
being collected at regular time intervals, the yaif

the digitized signal improves throughout the tireeard

as rotating speed decreases; and b) the actuailefney

of the signal changes throughout the time recotds T
last statement is actually the most important asafa
quality of the data, since as we learned in theipts
section, the less periodic a signal, the stronder t
leakage or smearing effect in the correspondinge tim
domain FFT (see figure 21).
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Figure 20: Time-based sampled signal.
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Figure 21: FFT “smearing effect”.
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In order to avoid this phenomenon, we have two
options. We can select a higher sampling frequency,
causing the time record to be shorter (minimizihg t
chance to get changes in frequency), or, we can use
another type of sampling, the “synchronous sampling
In contrast with the time based sampling, synchusno
sampling is based on the angle of rotation. Thighy it

is also called Angular sampling. Basically, thensilg
portion included in each revolution is digitizedsach a
way, that the amount of samples per revolution is
always the same, independently of what the rotation
speed is. In other words, the individual samples ar
captured at regularly spaced “angle” intervals, as
opposed to regularly spaced “time” intervals. Under
these conditions, while collecting data during tsi@aror
shutdown event, any component that tracks running
speed (1X, 2X, etc.) will look “as if” it had a cstant
frequency in the angle domain. Then, the angle doma
FFT will properly show a well-defined peak. Thipty

of analysis is usually referred to as “order tragki

Focusing on the practical application point of vjekis
type of sampling requires that both the vibratiom @
robust tachometer (either once-per-turn or mulérgy
signals are sampled at a very high frequency (& th
MHz range). Then, using the tachometer signal as
reference, the data is resampled in order to olitan
signal amplitude as a function of shaft rotatiorangle.
Figure 22 shows the same signal from figure 20, but
synchronously sampled at 64 samples per revolution,
using a once-per-turn reference signal (see fi@Re
Even though we can still observe that the dominant
frequency is decreasing through the time record, th
resulting FFT looks much better than the one inirfyg

21 (see figure 24). The reason for this is thatneve
though the dominant frequency is decreasing as iseen
the time domain, it is actually constant in the lang
domain (it’s always 1X). The frequency unit usedh&
angle domain FFT is “orders” (1X, 2X, etc.).
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Figure 22: Angle-based sampled signal (64 sampmesgvolution).
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Figure 23: Once-per-turn reference signal.
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Figure 24: Angle Domain FFT.

Now that we are discussing data collection during
transient events such as machine start up or siwb,d
we cannot go any further without talking about afe
the most widely used plots: the Bode plot. Thistplo
shows how the 1X vibration (both amplitude and efas
change as a function of rotating speed. Even thahigh

is a well-known plot, the signal processing asdeda
with it is sometimes overlooked. So let’s see vilpée

of additional signal processing is required to aatmly
measure 1X amplitude and phase.

DIGITAL TRACKING FILTERS

We already talked about filters, when we discussed
antialiasing filters. These filters are locatedftre” the
digitizing process. In other words, they are andtog
pass filters. However, once the signal has bedtizdid,
digital filters become available (either at hardevar
software level). In this case, we are interestedain
specific type, “band pass filters”, designed in tswuc
way that only a frequency band is allowed to pass,
attenuating higher and lower frequencies. Figure 25
shows a typical band pass filter profile, alonghwtitvo
important parameters: bandwidthB)( and center
frequency {,).

Bandwidth B

Reject Reject

Amplitude

»

»
Frequency

Center frequency f.

Figure 25: Typical bandpass filter profile.

A tracking filter is a special type of bandpassefi in
which the center frequency. factually tracks the
machine rotational speed (and any desired multijte)
this fashion, 1X, 2X and any other “preconfigured”
multiple of running speed can be used to perfordeor
analysis, i.e. to evaluate how these frequency
components behave during a startup or shutdownteven
However, as usual, there is a catch. In generguéecy
analysis, there is a relationship between the batidw

B and the time required to process the datthis time

is the length of the time record we have been d&iog

in previous sections), given by the following exgsien:

BO =1 (5)

Equation (5) basically tells us that the narrovier filter
bandwidth, the longer the time to process the dzid.
since the purpose of this paper is to relate theory
practical applications, let’'s see some exampleham
the bandwidttB affects the quality of the vibration data.
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Figures 26, 27 and 28 show three Bode plots for the cold conditions. The ramp rate in this case is

same vibration transducer, considering three differ 228rpm/Min. Though the 120 and 12cpm filters seem
bandwidths for the 1X tracking filter: 2Hz (120cpm) to provide similar 1X data, the 1.2cpm trackingefilis
0.2Hz (12cpm) and 0.02Hz (1.2cpm). For this example measuring a lower amplitude value at the critipaes.

we are collecting data on a slow ramp rate machine,
such us a 400MW steam turbine generator startinig up
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Figure 26: Bode plot for a slow ramp rate machusig a bandwidth of 120cpm.
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Figure 27: Bode plot for a slow ramp rate machusing a bandwidth of 12cpm.
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Figure 28: Bode plot for a slow ramp rate machuséng a bandwidth of 1.2cpm.
Now let’s move our data acquisition device to & fas of these machines. Now we can easily see thatthely
ramp rate machine. The best example for this type o 2Hz bandwidth filter is able to provide proper dathe
machine in the field is the direct drive asynchnamo 0.02Hz bandwidth filter, on the other hand, is
motor. Bode plots included in figures 29, 30 and 31 completely unable to detect the maximum amplitude a
correspond to aB082rpm/min ramp rate, quite typical the critical speed.
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Figure 29: Bode plot for a fast ramp rate machirséng a bandwidth of 120cpm.
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Figure 30: Bode plot for a fast ramp rate machiurséng a bandwidth of 12cpm.
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Figure 31: Bode plot for a fast ramp rate machirséng a bandwidth of 1.2cpm.
>
So what is wrong in the previous example?. Let’s 2Hz (20cpm) = 05ec %
examine equation (3) again. Let’s rearrange ithia t 1
following way: 0.2Hz(2cpm) = —— 8)
5sec
B> 1 6) 002Hz (1.2cpm) 2 ©)
T 50sec
Using equation (6), we can determine “the minimum” . .
time T for the filter to provide the correct output, thie From Equation (7), we can see that a 2Hz bandwidth
three bandwidths used in the examples. filter requires at least a 0.5-second settling tiftee

required to provide a proper output). Then, a nagro
filter with a bandwidth of 0.2Hz will need 5 secani
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settle (see Equation (8)), and an even narrower filf
0.02Hz bandwidth will take as long as 50 seconde (s
Equation (9)). In this last case, if we go backhe fast
ramp rate example, the machine reaches nominatispee
in about 21 seconds, roughly half the filter segfltime.
What actually happens is that the center frequency
(rotating speed) is moving too fast for the filtercatch

it, causing its output reading to be a frequencycmu
lower than real 1X. This is why the displayed 1X
amplitude appears to be extremely low throughoat th
speed range in figure 31.

CONCLUSION

The use of computer based signal processing
instrumentation and software is common across
practically every industry and test engineering
application today. Although rotating machinery
diagnostics has its foundation in mechanical ereging
concepts, the diagnostics practitioner needs to be
knowledgeable in signal processing concepts and
methods in order to ensure that the highest qudéita

is always acquired and analyzed in the most optimal
manner. Important concepts such as antialiasimge ti
and frequency resolution, windowing, synchronous
sampling and filtering were presented. But most
importantly, the notion that “nothing is for free signal
processing” has also been discussed. High frequency
resolution always requires time to collect data,
becoming a critical issue when dealing with transie
conditions, such as machine startup or shutdowntsve
Even though current instrumentation and software
provide configurable options for high resolutiomet
diagnostics Engineer must understand how to manage
these options.

NOMENCLATURE

AAF = Antialiasing Filter

ADC = Analog to Digital Converter

FFT = Fast Fourier Transform

Mil pp = Vibration amplitude (thousand of an inch)
peak to peak

T = Period, time between samples

FS = Frequency Span

Fs = Sampling Frequency

1X = Frequency equal to running speed
B = Bandwidth

fc = Center Frequency

dB = Decibel, unit of ratio or gain
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