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ABSTRACT 
 
Rotating machinery diagnostics have been, and will be, 
a critical area in the Oil and Gas Industry. Though in the 
early days oscilloscopes and spectrum analyzers were 
typically used to analyze vibration data, in recent years, 
technological advances in computers have made it 
possible to make use of them in solving machinery 
problems. However, it becomes critical to accept the 
fact that in order to manipulate vibration signals in a 
software environment, they have to be previously 
transformed into digital format. Even though 
information on the various signal processing techniques 
are readily available, most of the time, the manner in 
which this topic is discussed tends to be somehow 
theoretical. This tutorial intends to provide a summary 
of these techniques, but most importantly, the link 
between the basic theory and real applications. It also 
emphasizes how choosing the wrong parameters in the 
data acquisition device will definitely affect the quality 
of vibration data, critical to solving machinery 
problems.     
 
 

INTRODUCTION 
 
The use of analog oscilloscopes and spectrum analyzers 
to diagnose machinery problems is now a thing of the 
past. As computers got more powerful, they started 
being used more frequently as diagnostic tools. 
However, when using computers, the Machinery 
Diagnostic Engineer has to consider an important fact: 
they work in a digital world. For this reason, the various 
vibration signals coming from the rotating equipment, 
which are “analog” in nature, need to be transformed 
into the digital domain. The term “analog” refers to the 
continuous nature of the signal; it contains an infinite 
number of amplitude levels, separated by infinitesimal 
time intervals. A digital signal, on the other hand, is not 
continuous, as it is formed by a finite number of 
amplitude levels, separated by finite time intervals (see 
figure 1). Even though a great amount of published 
information can be found on this subject, it tends to be 
too theoretical for the machinery diagnostic Engineer, 
making it difficult to evaluate the consequence of 
choosing the wrong parameters in the quality of the 
data, which in turn drives the effectiveness of the 
diagnosis.  

 
Figure 1: Comparison between an analog (top) and 

a digitally sampled (bottom) signal. 
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The process through which an analog signal is 
transformed into digital is usually referred to as 
“sampling”. Before getting into further detail, let´s take 
a look at the whole sampling process, which starts with 
an analog signal, and ends up as a digital signal, along 
with one of the most common operations on the digital 
signal, the Fast Fourier Transform (FFT). In Figure 2, 
the analog signal goes through a low pass filter, known 
as “Antialiasing filter” (AAF), which attenuates 
frequency components above the specified frequency. 

Then the voltage level of the signal is “quantized” 
through an Analog – to – Digital converter (ADC), 
wherein the voltage is divided into discrete levels. After 
having “measured” the signal voltage, it is stored in 
some type of memory, at a certain rate specified in 
samples per second. Once the signal has been sampled, 
it becomes available for either direct representation or 
further processing.  
 

 

 
Figure 2: Flow diagram for converting an analog signal into digital. 

Let´s take a look at each part of the process with a little 
more detail. We start with the ADC and shall cover the 
antialiasing filters later. 

ANALOG TO DIGITAL CONVERTER 
 
An “Analog-to-digital” converter or ADC is a device 
incorporated in all modern data acquisition instruments, 
and is used to convert the input analog signal into a 
digital or discrete signal, so that it can be further 
processed. For the sake of keeping this paper limited to 
the practical world, we will only focus on the most 
important parameter for ADCs, the bit number. This 
number directly affects the amplitude resolution of the 
ADC, i.e. how finely it slices the configured full-scale 
measurement range. Roughly, the number of digital 
levels in which the full scale is divided is 2n, with n 
being the number of bits. The higher the bit number, the 
higher the resolution. For example, an 8-bit ADC 
divides the vertical full scale into 256 levels, while a 16-
bit ADC achieves 65536 levels. It is also important to 
have in mind that this parameter is fixed, once the data 
acquisition instrument has been selected. Figure number 
3 shows four examples with different amplitude 
resolutions, for a 20 mils pp full scale range.  
For practical applications involving vibration amplitude 
measurements, anything at or above 12 bits will 
certainly do the job. Even though bit numbers as high as 
24 or even 32 are available today, it has to be 
considered that high numbers of bits do have a price: 

memory space, in addition to being overkill. Let´s 
consider the 12-bit case in Figure 3. When trying to 
record a vibration signal for a typical machine, 20 mils 
of full scale is usually enough. Then, using 12 bits will 
yield a resolution as high as 0,0049 mils. At this point, 
we must ask ourselves; do we really need more 
resolution?.  
  

 

Figure 3: Comparison between numbers of bits for the 
ADC (resolution) for a full scale range of 20 mils pp. 
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TIME RESOLUTION – SAMPLING FREQUENCY 
 

Time resolution is basically controlled by how fast the 
instrument collects the data (sampling frequency). In 
contrast with the amplitude resolution, time resolution 
can be modified when configuring the data acquisition 
device up to some maximum limit. Because of this, the 
Machinery Diagnostic Engineer is required to have 
some knowledge on its effect on data quality. Let´s 
examine two basic examples shown in Figure 4, one 
with low time resolution and the other with a high time 
resolution. In this example, the black line corresponds to 
the analog signal being sampled. For case a), by using a 
good sampling frequency, the reconstructed digital 
waveform (connecting the red dots) results in a closer 
representation of the original signal. However, when we 
look at case b), in which the sampling frequency is three 
times slower, the reconstructed signal becomes a poor 
representation of the analog one.  

Figure 4: Comparison between good time resolution 
(case a) and poor time resolution (case b). 

Now let´s take a look at more realistic examples. Let´s 
consider a typical Time base plot, which is a direct 
representation of the digitized signal. In this particular 
example, the machine is running at 1700 rpm, and the 
dominant frequency is synchronous or 1X (the main 
frequency equals running frequency). The same analog 
signal coming from the vibration transducer has been 
sampled in two different ways: 640 Hz or samples per 
second (Figure 5), and 25600 samples per second (see 
Figure 6). For comparison purposes, both plots use the 
same vertical and horizontal scales. The signal that has 
been digitized at 640 Hz appears to be quite smooth, 
exhibiting overall amplitude of 6 mils pp. However, 
when we look at the other signal, it turns out that the 
waveform is not as uniform as the previous case, 
showing some spikes that increase the overall amplitude 
from 6,6 to 8,5 mils pp. Due to the low sampling rate in 
figure 5, those spikes go undetected. In other words, 
using a low sampling rate will prevent us from getting 
all the information from the original signal. 
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Figure 5: Digital signal sampled at 640 samples per second or 640 Hz. 

 
Figure 6: Digital signal sampled at 25600 samples per second or 25600 Hz. 

 

Now that we have already seen some real examples, it is 
important to define another term associated with the 
subject of this paper. In both previous examples, we can 
see that only 300 milliseconds worth of signal are being 
displayed. Generally speaking, when a signal is being 
sampled, we are dealing not only with samples being 
collected at discrete time intervals, but also with a finite 
observation time, or a finite number of collected 
samples. Each group of samples being actually stored in 
the acquisition device is called “time record”, and the 
amount of samples included in it is referred to as “time 
record size N”. We will come back to this concept later 
on this paper, when we discuss the FFT.   
 
ALIASING – NYQUIST THEOREM 

 
When we talked about time resolution, it was made 
clear that the faster the samples are collected, the better 
quality we get for the reconstructed signal. Going the 
other way, the slower the samples are collected the 
lower quality we achieve for the digital signal. If we 
continue to decrease the sampling frequency, we get to 
the point in which we are not able to reconstruct the 
original signal, but an “alias” of that signal. This 
phenomenon is known indeed as “Aliasing”. In order to 
better understand this concept, we will consider the 
following scenario. Let´s suppose we need to sample or 
digitize the analog signal a) shown in Figure 7. For the 
purpose of this example, we will assume that the signal 
to be sampled is a single frequency sinusoidal signal. 
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Part b) of Figure 7 shows black dots representing the 
discrete samples collected by the acquisition device, 
overlaid on the original signal. In this case, the sampling 
frequency is such that we are collecting two samples per 
signal cycle. In other words, we are collecting samples 
at twice the signal frequency. By connecting the black 
dots, it is easy to see that we are identifying alternating 
amplitudes at the frequency of the original signal. Let´s 
see now what happens if we collect samples at a lower 
frequency. This lower sampling frequency is 
characterized by a longer period between samples T. 
Part c) of Figure 7 shows again the black dots 
representing the samples, which are now being captured 
at different locations in the original signal. A direct 
consequence of this is that when we try to reconstruct 
the digitized signal, we will “see” a different signal 
(green). By comparing it to the original signal (red), it is 
evident that the frequency of the reconstructed signal is 
lower than the original. The original high frequency 
signal is said to have “aliased” to a lower frequency 
signal. At this point, it is important to state that once the 
aliasing of a signal has occurred, there is no way to 
know whether the reconstructed signal is real or not.   
 

Figure 7: Aliasing of a digitized signal. 
 

Going back to case b) of the previous example, the fact 
that we chose to collect two samples per signal cycle is 
actually based on the “Nyquist sampling theorem”, a 
corner stone of signal sampling. This theorem states that 
in order to accurately extract the frequency information 
from the original signal, the sampling frequency or 
sampling rate must be “at least” twice the highest 
frequency of interest in the original signal. As shown in 
the previous example, this requirement reduces the 
possibility of erroneously representing the original 
signal with another signal of a lower frequency or 
“aliasing”. 
 
ANTIALIASING FILTERS 

 
Even when the Nyquist theorem ensures that we detect 
the frequencies of interest, undesired higher frequency 
components may still generate aliased components that 
will come up within our frequency span. Let´s suppose 
we want to examine frequency activity taking place 
between zero and 1000 Hertz. The Nyquist theorem will 
force us to sample at twice the maximum desired 
frequency, in this case, 2000 Hertz. This will warranty 
that any frequency component up to 1000 Hz will 
appear in the reconstructed signal, which would make 
us happy. However, what would happen if the analog 
signal included for example a random 1600 Hertz 
component? Signal sampling theory tells us that any 
frequency component f0 above half the sampling 
frequency will generate an aliased component at 
sampling frequency – f0. In our example, a 1600 Hz 
component will generate an aliased component at 
2000Hz – 1600Hz = 400Hz. When this happens, we will 
observe a 400Hz frequency component which is not 
real, causing a tremendous waste of time trying to relate 
it to a real problem. In order to avoid this, antialiasing 
filters are usually applied to the original signal “before” 
the sampling process, as it has been depicted in Figure 1 
of this paper. These are basically low pass filters that 
remove frequency components above our frequency 
span, eliminating the chance of aliasing. 
However, when talking about antialiasing filters, some 
considerations should be made. Even when we would 
like these filters to look like figure # 8 a), passing all the 
desired frequencies and rejecting any higher 
frequencies, real filters usually exhibit behaviors such as 
the one in Figure # 8 b). Here, a transition band is 
present, within which frequency components are 
gradually attenuated. To avoid the possibility of 
components within this transition band aliasing into our 
frequency span, the sampling rate is set to twice the 
highest frequency in the transition band. We will come 
back to this later. 

T 

T 

a) Digitized signal, sampled at twice the original signal frequency. 
 

b) Aliased lower frequency signal (green), resulting from a low 
sample rate. 

Original analog signal 
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Figure 8: Ideal and real antialiasing filters frequency 

response. 
 

FREQUENCY DOMAIN  

 
So far we have been discussing the process of 
transforming an analog signal into a digital one. Both 
the analog and digital representation of a signal is 
usually referred to as “Time domain”. This type of plots 
constitute a direct representation of the digitized signal, 
either as a single signal or as an orbit, which is a 
combination of two signals coming from a pair of 
orthogonal transducers. In other words, no further 
processing, other than digitizing the analog signals, is 
performed when generating this type of plots. However, 
when dealing with vibration diagnostics, useful 
information can be extracted from the well-known 
“spectrum plots”. When we observe this type of plot, we 
are actually viewing the “frequency domain” of the 
vibration signal. In contrast with time domain, it does 
require additional manipulation or processing of the 
original digitized waveforms. Without getting into too 
much theoretical detail, let´s take a look at the basics 
associated with frequency domain processing. As we 
stated in the previous paragraph, the first step is to 
actually sample the original analog signal. In section 3, 
we called this group of samples “time record”. Then, a 
computational algorithm called Fast Fourier Transform, 
or “FFT”, is applied to this time record. This algorithm 
is based on the fact shown by Jean Baptiste Fourier, that 
any waveform encountered in the real world can be 

reproduced by adding up sine waves. By applying this 
algorithm, we go from a time domain representation of 
the signal (waveform), to the frequency domain 
representation of that signal, in order to get the 
frequency spectrum of that signal (a representation of all 
the frequency components that exist in the original 
complex signal, along with their respective amplitudes).  
Let´s take a closer look now at this algorithm. Assuming 
that our time record is formed by N equally spaced 
samples, the FFT transforms them into N/2 equally 
spaced samples in the frequency domain, called “lines”. 
Figure 9 shows, as an example, a digitized signal with a 
dominant 55Hz component with the resulting frequency 
spectrum. The number of samples N is always a power 
of 2 (2, 4, 8… 1024, 2048, etc.) as it makes the FFT 
algorithm simpler and faster.  
 
 

 
 
 

 
Figure 9: FFT being applied to a digitized signal. 

 

So now we are in the frequency domain, with our N/2 
lines. Then the next question arises: what is the spacing 
between each of those lines?. As all the lines are equally 
spaced, then to answer the question, we just need to find 
out what is the spacing for the first line, i.e. between 
zero Hertz and the first line. As this is typically the 
lowest frequency we can resolve, it has the longest 
period T (the reciprocal of its frequency). We also need 
to consider that in order to precisely identify any 
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frequency component in the digitized signal; we must be 
able to identify its period (the duration of one complete 
cycle). Then it follows that this particularly long period 
has to be included in our time record, otherwise, we 
won´t be able to properly identify this lowest frequency 
component. Summarizing we can conclude that the 
lowest frequency we can resolve with the FFT algorithm 
is the reciprocal of the time record period, or 1/T (see 
figure 10). 
 

 
Figure 10. FFT resolution. 

 
So far we know that the FFT delivers N/2 lines, and that 
those lines are equally spaced by the reciprocal of the 
time record period T. This information allows us to 
easily calculate the highest frequency we can measure, 
using the following expression: 

                
T

N
f

1

2max ⋅=                              (1) 

Equation (1) shows that the maximum frequency we can 
view in our spectrum depends both on the number of 
samples in the time record N and the total time to 
complete the time record T. Also, we now know that T 
depends on how fast the individual samples are 
collected, i.e. the sampling rate. Additionally, we have 
to remember that the FFT delivers N/2 frequency lines. 
Summarizing, we have a mathematical expression 
relating 5 variables: fmax, N, T, sample rate and number 
of lines!. At this point, the reader must be wondering 
how all this comes down to reality, when trying to 
configure a data acquisition device to collect good 
vibration data.  
Fortunately, most, if not all, data acquisition devices, 
limit these variables down to only 2: Frequency Span 
(FS) and number of lines (N/2). Note that the 
frequency span is not abbreviated fmax, but FS. This is 
not a text error. There is an explanation for this minor 
difference, and it involves what we have discussed in 
sections 4 and 5: Aliasing and Antialiasing filters. In 
order to better deal with this, let´s work with some real 
numbers in the following example. 

Let´s suppose that our time record is formed by 1024 
(remember, always power of 2 numbers) equally spaced 
samples in the time domain. If we apply the FFT to this 
time record, we will get 512 usable lines in the 
frequency domain (see figure 11). Those 512 will be 
distributed along our total frequency span (fmax). 
However, in section 5 we learned that there is a 
transition band for the antialiasing filter, which is not 
really useful for us. For this reason, we just leave it out. 
But how much do we discard?. In our example, we keep 
400 from the available 512 lines. The missing 112 lines 
used to be enough to cover the transition band of the old 
antialiasing filters, and even when modern data 
acquisition devices are capable of thinner transition 
bands, the ratio between 512 and 400 has been adopted. 
Then, our usable Frequency Span will be FS.  

 
Figure 11: Theoretical and actual numbers of lines in 

the FFT. 

 
As the filter characteristics were always the same, the 
slope of the transition band was also the same, and so 
was the ratio between the total and the real number of 
lines. Table 12 shows typical settings available in most 
instruments.  
 

Table 12. Historical Numbers of Lines typically 
available today. 

Time record size Original FFT lines Actually used FFT lines

256 128 100

512 256 200

1024 512 400

2048 1024 800

4096 2048 1600

8192 4096 3200

16384 8192 6400
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Going back to figure 11, the Nyquist criteria requires 
that in order to properly identify the highest frequency 
in the FFT (fmax), we have to sample at twice this 
frequency. Additionally, both from figure 11 and table 
12, we can see that fmax is exactly 1,28 x FS. Then it 
follows that, by Nyquist: 
 

FSFSfFS ⋅=⋅⋅=⋅= 56,228,122 max  

or            FSFS ⋅= 56,2                             (2) 

Equation (2) represents an important relationship 
between the frequency span and the sampling frequency 
at which individual samples are collected to fill up the 
time record.  
In table 12 it is possible to see, by comparing the time 
record size and the actual number of lines, the same 
factor of 2.56, leading to another important expression: 
 

linesNsizerecordTime 056,2 ×=              (3) 

 
Basically, Equation (3) states that the more lines, the 
more samples in the time record. Those samples are 
then collected at the sample frequency given by 
Equation (2). Let´s apply these relationships to a real 
example: 
We want to analyze a frequency span of 500Hz, but we 
also want good resolution, so we choose 3200 line for 
our FFT. By using Equation (2), we determine the 
sampling frequency Fs of 1280 samples/sec. Then, we 
use Equation (3) to determine the time record size, 
which then equals 8192 samples. In this scenario, we 
will have to collect 8192 samples at a rate of 1280 
samples each second. The total sampling time can easily 
be calculated as: 
 

       sec4.6

sec1280

8192 =
samples

samples                        (4) 

 
Now 6.4 seconds may not seem a long time for 
everyday activities. However, when collecting data in a 
rotating machine, 6.4 seconds represent really a long 
time, especially when we are trying to detect some peak 
in vibration, or when we are collecting data during 
machine shutdown. Remember, in order to get a good 
quality FFT, the signal included in the time record must 
be periodic. Now that we have already discussed the 
properties and requirements for the FFT, let´s see what 
tools we can use when a periodic signal is not readily 
available. 

 
WINDOWING 

 
Every time we try to configure our data acquisition 
device in order to look at a spectrum plot, we are 
prompted the question of what type of window to use. 
In order to understand the concept of windowing, let´s 
go back to the FFT algorithm. This algorithm assumes 
that the input signal is completely periodic, repeating 
itself over and over from one time record to the next. In 
the real world, there are instances in which this is true 
(we will deal with these in section 8), and others in 
which it is not. But let´s see some examples of both 
cases. 
Figure 13 shows a time record for a digitized signal that 
contains exactly 10 cycles, i.e., an integer number of 
cycles. This means that when the algorithm tries to copy 
the signal portion over and over to get a perfectly 
periodic waveform, it succeeds. Then, the resulting 
spectrum plot will show clean frequency lines with the 
proper information, as shown on Figures 14 and 15. 
 

 
Figure 13: Signal with integer number of cycles. 

 

 
Figure 14: FFT applied to signal in Figure 13, vertical 

axis in dB. 
 

0 0.2 0.4 0.6 0.8 1.0
-0.800

-0.600

-0.400

-0.200

0

0.200

0.400

0.600

0.800

sec

R
ea

l, 
V

0 10 20 30 40 50 
-120 

-100 

-80 

-60 

-40 

-20 

0

Hz

d
B

M
a

g
, 

V



 

Copyright© 2014 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station 

 

 
Figure 15: FFT applied to signal in Figure 13, vertical 

axis in magnitude. 
 

If we now consider a signal time record that it includes 
a non-integer number of cycles, it is evident that there 
will be signal discontinuities at the edges, as shown in 
Figure 16. It is important to say that the original analog 
signal in these two examples is the same. We are only 
changing the way it is being sampled into two different 
time records. This deviation from the ideal periodic 
signal will cause the FFT algorithm to throw undesired 
results, known as “leakage” (see Figures 17 and 18). 
This term is associated to the fact that the energy from 
the original frequency line is “leaking” out to adjacent 
lines, even in those cases in which there is a single 
frequency component. If we are trying to identify 
specific component in order to do vibration diagnostics, 
leakage will definitely be an issue. If the problem we 
are analyzing involves frequency components that are 
really close, for example the two times line and two 
times rotation frequency in an asynchronous electric 
motor, leakage will make it virtually impossible to 
determine which one exhibits the highest amplitude.  
 

 
Figure 16: Signal with non-integer number of cycles. 

 

 
Figure 17: FFT applied to signal in Figure 16, vertical 

axis in dB. 
 

Figure 18: FFT applied to signal in Figure 16, vertical 
axis in magnitude.  

 
 

Even though leakage cannot be fully eliminated, it can 
definitely be attenuated. The most common way to do 
this is by the use of “windows functions”. The ultimate 
goal of using windows is to ensure that the digitized 
signal amplitude becomes zero at the beginning and at 
the end of the time record. By achieving this, we 
attenuate the discontinuities at the edges, responsible for 
causing leakage. Though there are many types of 
functions currently used for this purpose, let´s consider 
one generic windowing function that is zero at the ends 
and maximum amplitude in the middle. When we apply 
this window function to our time record signal, we are 
actually multiplying both, in order to get a vibration 
signal somehow different to the original, in the sense 
that its frequency remains the same, but the amplitude 
has been forced to zero at both ends. Figure 19 shows a 
comparison between not using windows and using them. 
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Figure 19: Non periodic signal without windowing (Left) and using Hanning Window (Right). 

 
Even though in most cases, the time record doesn´t 
contain an integer number of vibration cycles, forcing 
us to use window functions, there are cases in which the 
time record does cover an integer number of these 
cycles. If we also consider rotating equipment in 
general, most of the signal frequency content is usually 
related to rotating speed, through some ratio (one time, 
two times, etc.). In cases like these, it would be useful 
that our sampling rate has also some type of relationship 
with rotation, some kind of synchronization. That type 
of sampling is actually available, and it is called 
“synchronous sampling”, and we will deal with it in the 
next section. 
 
 
 

SYNCHRONOUS OR ANGULAR SAMPLING 

 
According to what we have been discussing throughout 
this paper, it would be logical to arrive at the conclusion 
that if we want to get a good representation of the 
original analog signal, we just need to make sure we 
select a sampling frequency high enough (assuming we 
have a good quality ADC). However, this is not 
completely true. In contrast with the typical scenario for 
data collection, in which the machine rotating speed is 
fairly constant during the data acquisition (typical of 
small balance of plant machines), we are sometimes 
faced with the task of sampling our vibration signals 
during some transient event, such as a machine coast 
down. Though this type of transient events might be 
considered as uncommon, since it is usually expected 
that machines keep on running most of the time, the 
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most useful information for diagnostic purposes is 
actually gathered during these events.  
It turns out that the most common lateral vibration being 
generated in rotating equipment is the one associated 
with the unbalance force. This force happens to be 
locked into the rotation of the shaft (the heavy spot on 
the rotor is located at a fixed angular location). Under 
these conditions, the dominant vibration occurs at one 
time running speed, usually referred to as 1X, with X 
representing rotating speed. This also means that during 
machine shutdown, this 1X frequency component will 
track running speed as it decreases. Let´s suppose we 
want to digitize the vibration signal resulting from an 
unbalanced rotor, using the already discussed time 
based sampling, i.e. collecting samples that are equally 

spaced in time, during machine shutdown. Figure 20 
shows the time based sampled signal. Because the speed 
is decreasing, and also the dominant vibration 
frequency, we can clearly see that each vibration cycle 
takes a longer time to complete. In this scenario, two 
major issues arise: a) due to the fact that the samples are 
being collected at regular time intervals, the quality of 
the digitized signal improves throughout the time record 
as rotating speed decreases; and b) the actual frequency 
of the signal changes throughout the time record. This 
last statement is actually the most important as far as 
quality of the data, since as we learned in the previous 
section, the less periodic a signal, the stronger the 
leakage or smearing effect in the corresponding time 
domain FFT (see figure 21).    

  

 
Figure 20: Time-based sampled signal. 

 
Figure 21: FFT “smearing effect”. 

 

Time based signal 
sampled at 640Hz 

a) 

b) 
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In order to avoid this phenomenon, we have two 
options. We can select a higher sampling frequency, 
causing the time record to be shorter (minimizing the 
chance to get changes in frequency), or, we can use 
another type of sampling, the “synchronous sampling”. 
In contrast with the time based sampling, synchronous 
sampling is based on the angle of rotation. This is why it 
is also called Angular sampling. Basically, the signal 
portion included in each revolution is digitized in such a 
way, that the amount of samples per revolution is 
always the same, independently of what the rotational 
speed is. In other words, the individual samples are 
captured at regularly spaced “angle” intervals, as 
opposed to regularly spaced “time” intervals. Under 
these conditions, while collecting data during startup or 
shutdown event, any component that tracks running 
speed (1X, 2X, etc.) will look “as if” it had a constant 
frequency in the angle domain. Then, the angle domain 
FFT will properly show a well-defined peak. This type 
of analysis is usually referred to as “order tracking”. 

Focusing on the practical application point of view, this 
type of sampling requires that both the vibration and a 
robust tachometer (either once-per-turn or multi-event) 
signals are sampled at a very high frequency (in the 
MHz range). Then, using the tachometer signal as 
reference, the data is resampled in order to obtain the 
signal amplitude as a function of shaft rotation or angle.  
Figure 22 shows the same signal from figure 20, but 
synchronously sampled at 64 samples per revolution, 
using a once-per-turn reference signal (see figure 23). 
Even though we can still observe that the dominant 
frequency is decreasing through the time record, the 
resulting FFT looks much better than the one in figure 
21 (see figure 24). The reason for this is that even 
though the dominant frequency is decreasing as seen in 
the time domain, it is actually constant in the angle 
domain (it´s always 1X). The frequency unit used in the 
angle domain FFT is “orders” (1X, 2X, etc.).  
 

  

 
Figure 22: Angle-based sampled signal (64 samples per revolution). 

Figure 23: Once-per-turn reference signal. 
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Figure 24: Angle Domain FFT.

 

Now that we are discussing data collection during 
transient events such as machine start up or shut down, 
we cannot go any further without talking about one of 
the most widely used plots: the Bode plot. This plot 
shows how the 1X vibration (both amplitude and phase) 
change as a function of rotating speed. Even though this 
is a well-known plot, the signal processing associated 
with it is sometimes overlooked. So let´s see what type 
of additional signal processing is required to accurately 
measure 1X amplitude and phase.  
 
DIGITAL TRACKING FILTERS 

We already talked about filters, when we discussed 
antialiasing filters. These filters are located “before” the 
digitizing process. In other words, they are analog low 
pass filters. However, once the signal has been digitized, 
digital filters become available (either at hardware or 
software level). In this case, we are interested in a 
specific type, “band pass filters”, designed in such a 
way that only a frequency band is allowed to pass, 
attenuating higher and lower frequencies. Figure 25 
shows a typical band pass filter profile, along with two 
important parameters: bandwidth (B) and center 
frequency (fc).  

 
Figure 25: Typical bandpass filter profile. 

 
A tracking filter is a special type of bandpass filter, in 
which the center frequency fc actually tracks the 
machine rotational speed (and any desired multiple). In 
this fashion, 1X, 2X and any other “preconfigured” 
multiple of running speed can be used to perform order 
analysis, i.e. to evaluate how these frequency 
components behave during a startup or shutdown event. 
However, as usual, there is a catch. In general frequency 
analysis, there is a relationship between the bandwidth 
B and the time required to process the data T (this time 
is the length of the time record we have been discussing 
in previous sections), given by the following expression: 
                                                                                               

           1≥⋅TB                                             (5) 

 
Equation (5) basically tells us that the narrower the filter 
bandwidth, the longer the time to process the data. But 
since the purpose of this paper is to relate theory to 
practical applications, let´s see some examples on how 
the bandwidth B affects the quality of the vibration data. 
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Figures 26, 27 and 28 show three Bode plots for the 
same vibration transducer, considering three different 
bandwidths for the 1X tracking filter: 2Hz (120cpm), 
0.2Hz (12cpm) and 0.02Hz (1.2cpm). For this example, 
we are collecting data on a slow ramp rate machine, 
such us a 400MW steam turbine generator starting up in 

cold conditions. The ramp rate in this case is 
228rpm/Min. Though the 120 and 12cpm filters seem 
to provide similar 1X data, the 1.2cpm tracking filter is 
measuring a lower amplitude value at the critical speed. 
 

 

 
Figure 26: Bode plot for a slow ramp rate machine, using a bandwidth of 120cpm. 

 

Figure 27: Bode plot for a slow ramp rate machine, using a bandwidth of 12cpm. 
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Figure 28: Bode plot for a slow ramp rate machine, using a bandwidth of 1.2cpm. 

 
Now let´s move our data acquisition device to a fast 
ramp rate machine. The best example for this type of 
machine in the field is the direct drive asynchronous 
motor. Bode plots included in figures 29, 30 and 31 
correspond to an 8082rpm/min ramp rate, quite typical 

of these machines. Now we can easily see that only the 
2Hz bandwidth filter is able to provide proper data. The 
0.02Hz bandwidth filter, on the other hand, is 
completely unable to detect the maximum amplitude at 
the critical speed. 

 
 

 

Figure 29: Bode plot for a fast ramp rate machine, using a bandwidth of 120cpm. 
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Figure 30: Bode plot for a fast ramp rate machine, using a bandwidth of 12cpm. 

 

Figure 31: Bode plot for a fast ramp rate machine, using a bandwidth of 1.2cpm. 
 

 
So what is wrong in the previous example?. Let´s 
examine equation (3) again. Let´s rearrange it in the 
following way: 
                                                                                                 

                
T

B
1≥                                                (6) 

Using equation (6), we can determine “the minimum” 
time T for the filter to provide the correct output, for the 
three bandwidths used in the examples.  

             
sec5.0

1
)120(2 ≥cpmHz                         (7) 

             
sec5

1
)12(2.0 ≥cpmHz                         (8) 

          
sec50

1
)2.1(02.0 ≥cpmHz                     (9) 

 
From Equation (7), we can see that a 2Hz bandwidth 
filter requires at least a 0.5-second settling time (time 
required to provide a proper output). Then, a narrower 
filter with a bandwidth of 0.2Hz will need 5 seconds to 
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settle (see Equation (8)), and an even narrower filter of 
0.02Hz bandwidth will take as long as 50 seconds (see 
Equation (9)). In this last case, if we go back to the fast 
ramp rate example, the machine reaches nominal speed 
in about 21 seconds, roughly half the filter settling time. 
What actually happens is that the center frequency 
(rotating speed) is moving too fast for the filter to catch 
it, causing its output reading to be a frequency much 
lower than real 1X. This is why the displayed 1X 
amplitude appears to be extremely low throughout the 
speed range in figure 31.  
 
CONCLUSION 

The use of computer based signal processing 
instrumentation and software is common across 
practically every industry and test engineering 
application today. Although rotating machinery 
diagnostics has its foundation in mechanical engineering 
concepts, the diagnostics practitioner needs to be 
knowledgeable in signal processing concepts and 
methods in order to ensure that the highest quality data 
is always acquired and analyzed in the most optimal 
manner. Important concepts such as antialiasing, time 
and frequency resolution, windowing, synchronous 
sampling and filtering were presented. But most 
importantly, the notion that “nothing is for free in signal 
processing” has also been discussed. High frequency 
resolution always requires time to collect data, 
becoming a critical issue when dealing with transient 
conditions, such as machine startup or shutdown events. 
Even though current instrumentation and software 
provide configurable options for high resolution, the 
diagnostics Engineer must understand how to manage 
these options.   
 
 
NOMENCLATURE 
 
AAF = Antialiasing Filter 
ADC = Analog to Digital Converter 
FFT = Fast Fourier Transform 
Mil pp = Vibration amplitude (thousand of an inch) 
peak to peak 
T = Period, time between samples 
FS = Frequency Span 
FS = Sampling Frequency 
1X = Frequency equal to running speed 
B = Bandwidth 
fc = Center Frequency 
dB = Decibel, unit of ratio or gain 
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