
Real-time Classification via Sparse Representation in
Acoustic Sensor Networks

Bo Wei†‡, Mingrui Yang‡, Yiran Shen†‡, Rajib Rana‡, Chun Tung Chou†, Wen Hu‡
† School of Computer Science and Engineering,

University of New South Wales, Sydney, NSW, Australia
‡ CSIRO Computational Informatics, Brisbane, Queensland, Australia

{bwei,yrshen,ctchou}@cse.unsw.edu.edu†
{mingrui.yang,rajib.rana,wen.hu}@csiro.au‡

ABSTRACT
Acoustic Sensor Networks (ASNs) have a wide range of ap-
plications in natural and urban environment monitoring, as
well as indoor activity monitoring. In-network classification
is critically important in ASNs because wireless transmission
costs several orders of magnitude more energy than compu-
tation. The main challenges of in-network classification in
ASNs include effective feature selection, intensive compu-
tation requirement and high noise levels. To address these
challenges, we propose a sparse representation based feature-
less, low computational cost, and noise resilient framework
for in-network classification in ASNs. The key component of
Sparse Approximation based Classification (SAC), `1 min-
imization, is a convex optimization problem, and is known
to be computationally expensive. Furthermore, SAC algo-
rithms assumes that the test samples are a linear combi-
nation of a few training samples in the training sets. For
acoustic applications, this results in a very large training
dictionary, making the computation infeasible to be per-
formed on resource constrained ASN platforms. Therefore,
we propose several techniques to reduce the size of the prob-
lem, so as to fit SAC for in-network classification in ASNs.
Our extensive evaluation using two real-life datasets (con-
sisting of calls from 14 frog species and 20 cricket species
respectively) shows that the proposed SAC framework out-
performs conventional approaches such as Support Vector
Machines (SVMs) and k-Nearest Neighbor (kNN) in terms of
classification accuracy and robustness. Moreover, our SAC
approach can deal with multi-label classification which is
common in ASNs. Finally, we explore the system design
spaces and demonstrate the real-time feasibility of the pro-
posed framework by the implementation and evaluation of
an acoustic classification application on an embedded ASN
testbed.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SenSys’13, November 11–15, 2013, Roma, Italy.
Copyright 2013 ACM 978-1-4503-2027-6/13/11 ...$15.00.

D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
`1 minimization, sparse approximation, audio classification,
Acoustic Sensor Networks (ASNs)

1. INTRODUCTION
Acoustic Sensor Networks (ASNs) have been prototyped

for many military and civilian applications such as animal
vocalization recognition [13, 22, 24], military vehicle clas-
sification [12, 5], tracking [14] and indoor activity classifi-
cation [20, 35]. Because the sampling rates of ASNs (e.g.,
10kHz or above) are several orders of magnitude higher than
those of traditional Wireless Sensor Networks (WSNs) (e.g.,
0.1Hz for microclimate sensing applications), enormous amount
of data are collected by ASNs. It is known that wireless
transmission of a bit costs over 1,000 times more energy
than a single 32-bit computation [4]. Therefore, in-network
classification, which enables ASN nodes to perform acoustic
classification on its own without having to transmit acoustic
data, is of critical importance for ASNs.

A popular method for acoustic classification is to first se-
lect the appropriate features, which are often problem spe-
cific, and then feed the selected features to classifiers such as
Support Vector Machines (SVMs) [19, 13, 24]. However, the
selection of good features is not a trivial problem and the
performance of the classification algorithm often depends on
the selection of good features. Moreover, different feature
selections can result in significantly different classification
accuracy for certain acoustic signals, ranging from 50% to
91.53% [34, 24, 37]. Although Mel-frequency Cepstrum Co-
efficients (MFCC) is one of the most popular features which,
together with SVMs, has been used successfully in ASNs [13,
24, 32], MFCC usually needs other carefully selected fea-
tures [37] to improve classification performance.

An alternative to feature selection is to use featureless
classification methods. A recent success story is the Sparse
Approximation based Classification (SAC) method proposed
by Wright et al. [38] for face recognition. This method forms
a dictionary from the pixels of the training images directly
(i.e., without computing features) and uses `1 minimization

to determine the best match of the test image among the
training classes in the dictionary. The method has been
shown to outperform state-of-the-art classifiers based on SVMs
and k-Nearest Neighbors (kNN).

Motivated by this promising outcome, we are interested in
investigating the use of SAC in ASNs. The biggest challenge
is that, due to the high sampling rate of acoustic signals, the
dictionary formed by the featureless SAC method is large.
This has two important implications for ASNs because this
dictionary has to be stored on an ASN node in order to
enable in-network classification. First, a large dictionary
means that an ASN node can only store a limited number
of training classes. This limits the number of different types
(or classes) of acoustic signals that an ASN node can clas-
sify. Second, the computation time for `1 minimization is
proportional to the size of the dictionary. This means that
real-time classification may only be possible if the number
of classes is small. The purpose of real-time classification
in ASNs is two-fold. First, some ASN applications such as
military vehicle tracking [12, 5, 14] require real-time event
reporting. Second, a node needs to finish processing the cap-
tured audio signal in real-time because the audio signal input
is a continuous stream. Otherwise, part of the captured au-
dio signal will be lost.1 In order to address this problem of
high dictionary dimensionality, we propose a novel method
to reduce the size of the dictionary without sacrificing clas-
sification performance. The reduced dictionary enables each
ASN node to complete the classification in real-time on its
own. Nodes in ASN are only required to transmit classi-
fication results and wireless transmission requirements are
significantly reduced. Although each node can perform clas-
sification on its own, the network has two important roles
to play. First, a network of acoustic sensors is important to
increase the size of sensing coverage area. Second, a network
is important for ASN re-tasking, e.g. a new dictionary can
be transferred to the ASN nodes to enable them to classify
new animal species.

The classification problem in ASNs differs from that in
many other domains, such as image recognition, in that the
test samples in ASNs may include simultaneous sound from
multiple sources, e.g., an ASN node may pick up the sound
of trains, planes and birds at the same time. This requires
multi-label classification, which is a variant of the classifica-
tion problem where multiple target labels must be assigned
to each test instance. We show that our proposed SAC clas-
sification framework is able to give a unified treatment of
the single-label and multi-label classification problems.

Our contributions in this paper are as follows.

• We adopt the SAC framework for acoustic classifica-
tion. The key advantage of the framework is that it
does not require feature selection. The SAC frame-
work does not appear to have been applied to acoustic
classification before.

• We propose a novel method to significantly reduce
the dimension of the dictionary formed by the SAC
method in order to enable real-time classification on
resource constrained ASN platforms.

• We propose a novel multi-label classification algorithm
for the SAC method.

1Queuing theory [1] shows that the size of queue (storage)
will not help when arrival rates exceed departure rates.

• We conduct extensive simulations, using two real-life
animal vocalization datasets with the sound from 14
frog species and 20 cricket species respectively, to demon-
strate the classification accuracy and robustness to en-
vironmental noise of the proposed SAC framework.
Furthermore, we compare our proposed SAC method
against two standard classifiers, SVM and kNN, and
show that SAC outperforms SVM and kNN for a wide
range of signal-to-noise ratios. Moreover, we compare
the multi-label classification accuracy of SAC against a
standard classifier ML-kNN and show that SAC gives
better performance.

• We explore the system design spaces of SAC and con-
duct experiments on an outdoor ASN testbed for clas-
sifying bird calls. We show that our dictionary reduc-
tion method enables real-time classification, and the
classification accuracy of SAC is significantly (more
than 25%) higher than those of SVM and kNN, which
makes SAC a good candidate for the remote ASNs de-
ployed in harsh environment.

The rest of this paper is organized as follows. Section 2
presents the background on the SAC framework proposed
in [38]. We then present the details of our proposed SAC
framework for ASNs in Section 3. Evaluation results are
given in Section 4 (simulation) and Section 5 (outdoor ASN
testbed). Related work is presented in Section 6. Finally,
we conclude the paper in Section 7.

2. BACKGROUND ON SAC
This section gives an overview of the SAC method pre-

sented in [38]. The method solves a single-label classification
problem, which aims to return the class that best matches
a given test sample. The method assumes that there are s
classes indexed by i = 1, ..., s. Class i contains ti training
examples. Each training example is assumed to be a col-
umn vector with p elements. For example, in [38], which
deals with face recognition, each training example contains
the intensity levels of the pixels in the training image; there-
fore, p equals to the number of pixels in a training image.
The method is featureless in the sense that the number of
elements in a training example is of the same order of mag-
nitude as the amount of raw data describing the example.
Note that because training examples and test samples are
vectors, we will also refer to them as training vectors and
test vectors.

A key idea behind SAC is to assemble all the training
vectors from all classes into a dictionary matrix. Let ai,j ∈
Rp denote the j-th training vector for the i-th class. The
dictionary matrix A ∈ Rp×n has the form

A = [a1,1, . . . , a1,t1 , . . . , ai,1, . . . , ai,ti , . . . , as,1, . . . , as,ts]
(1)

where n =
∑s
i=1 ti is the total number of training vectors.

The columns of the dictionary are also known as atoms.
In order to explain the classification method, we assume

that there is a test vector y ∈ Rp belonging to the i-th class.
Since y comes from the i-class, ideally, we want y to be de-
pendent on a small subset of training vectors {ai,1, . . . , ai,ti}
in class i only and is independent of the training vectors from
all other classes. We can check whether this holds by solving
the linear equation

y = Ax (2)

with unknown vector x ∈ Rn where the number of unknowns
n in x is equal to the number of columns in the dictionary.
If the ideal condition holds, x has the form

xideal = [0, . . . , 0, xi,1, . . . , xi,ti , 0, . . . , 0]T (3)

where T denotes matrix transpose. The ideal solution xideal
means that y is a linear combination of the training vectors
in i-th class but not others. Furthermore, if y depends only
on a small subset of training vectors in class i, only a few of
xi,1, . . . , xi,ti is non-zero. Therefore, xideal is a sparse vector
because most of its elements are zero.

Unfortunately, the ideal condition does not hold because
of noise and other reasons. In order to overcome these prob-
lems, [38] proposes to solve for x using the `1 minimization
problem:

x̂ = arg min
x

‖x‖1 subject to ‖y −Ax‖2 < ε, (4)

where ε is used to account for noise. The optimization ob-
jective uses `1 norm because xideal is sparse and `1 norm
is known to give a feasible sparse solution compared with
other choices of norms [6, 8]. The constraint in (4) is to deal
with noise. The optimization problem (4) has been shown
to work well even in noisy condition [6].

To demonstrate the intuition why `1 minimization per-
forms better than the `2 approaches, we show in Figure 1
and Figure 2 typical `1 and `2 solutions to Equation (2)
respectively. The `1 solution is located at the point where
y = Ax hits the `1 ball. For 2-dimensional (2-D) space, the
`1 ball takes the shape of a diamond, see Figure 1(a). In
this case, the solution x is located on the axis which means
x is spare because it has only one non-zero element. This
result can be generalized to higher dimensions. Figure 1(b)
shows the solution vector x for classifying Cyclorana Cul-
tripes (also known as Grassland Collared Frog). The figure
plots xi against i where xi is the i-th element of the vector
x. It can be seen that x has only a few non-zero elements
or is sparse. Figure 2(a) shows the behavior of `2 solutions
in 2-D where the `2-ball is a circle. The solution x is gener-
ally not located on the axis and is therefore not sparse. The
`2 solution of classifying C. Cultripes is plotted in Figure
2(b). The solution x is clearly not sparse.

(a)

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

7

8
x 10

−5 Coefficients for frog 3 via l1 minimization

Atom index

C
o

e
ff

ic
ie

n
ts

(b)

Figure 1: Sparse solution from `1 minimization

An issue with (4) is that the dimension p can be large.
However, motivated by the results from Compressive Sens-
ing (CS) [3, 6, 8], it is possible to solve a reduced dimension
minimization problem whose solution is close to that in (4).
The reduced dimension problem is:

x̂r = arg min
x

‖x‖1 subject to ‖ỹ − Ãx‖2 < ε, (5)

(a)

0 500 1000 1500 2000 2500 3000 3500
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

(b)

Figure 2: Dense solution from `2 minimization

where ỹ = Ry, Ã = RA, andR is anm×p random projection
matrix whose elements come from Gaussian, sub-Gaussian
or symmetric Bernoulli distribution, and m � k log(n/k), k
being the sparsity of x. Note that the number of rows (= m)

in ỹ and Ã is much smaller than that in the original problem
with y and A.

We are now ready to describe the classification algorithm.
Assuming that dictionary A and a test vector y are available,
and a random projection matrix R has been generated. The
first step is to solve (5) and its solution is denoted by x̂r.
We can proceed to compute the residuals for each class

ri(y) = ‖y −Aδi(x̂r)‖2, (6)

where δi(x̂r) selects only the nonzero coefficients belonging
to class i, i.e., let x̂r = [χ1,1, . . . , χ1,t1 , . . . , χi,1, . . . , χi,ti , . . . , χs,ts]T

then δi(x̂r) = [0, . . . , 0, χi,1, . . . , χi,ti , 0, . . . , 0]T . The chosen

class î given by

î = arg min
i=1,...,s

ri(y), (7)

i.e. the class that minimizes the residuals .

3. EFFICIENT ACOUSTIC `1 CLASSIFIER
In this section, we first discuss the challenges in apply-

ing `1 minimization based classification in ASNs. We then
present the architecture of our classification framework and
the details of the components.

3.1 Challenges
There have been successful applications of `1 minimization

in many research areas recently. For instance, Wright et al. [38]
adopt ideas from sparse approximation and uses `1 mini-
mization for face recognition. They show that by using `1
minimization to find the sparse representation, feature se-
lection is no longer important. In addition, `1 minimization
is robust to occlusion. This motivates us to investigate the
possibility of adopting `1 minimization for acoustic classifi-
cation in ASNs.

However, we have to address several issues before it can
be applied to ASNs. First, in order for sparsity to hold, the
work in [38] requires that each test image must be a linear
combination of a small number of training images in its class.
For acoustic signals, we can use the temporal domain acous-
tic samples in a time window to form a training vector, and
then shift the time window by a fixed offset to obtain the
next training vector and so on. In order to meet the sparsity
requirement in the acoustic domain where a test vector is a

linear combination of a small number of training vectors,
the offset has to be made very small. We refer to this as
the alignment problem. The alignment problem means that
a dictionary will contain a large number of training vec-
tors and this imposes enormous computation burden on the
system. Alternatively, we find that if we transform the tem-
poral signals into spectrum domain, then the requirement of
alignment (or small offset) can be relaxed significantly. This
means that we can reduce the number of training vectors in
the dictionary while maintaining classification performance.

Second, despite of its outstanding performance for clas-
sification, `1 minimization problem is known to be expen-
sive to solve in terms of resource consumption. It is a con-
vex optimization problem and an LP solver is needed. In
general, each application of an LP solver requires O(n3)
floating-point operations (flops), where n is the number of
unknowns. Even for optimized fast `1 minimization algo-
rithms such as the `1-homotopy method, the complexity is
still O(k3 + kmn), where k denotes the sparsity of the so-
lution, m is the number of equations, and n is the number
of unknowns [10]. Therefore, if we can reduce the number
of unknowns, equivalently, the number of atoms/columns in
the dictionary, as well as the number of equations in the
system, then we will be able to reduce the computational
cost, and realize real-time classification on ASNs. There-
fore, instead of applying `1 minimization directly to the
classification problem, we first reduce the size of the dic-
tionary to reduce the dimension of the problem, so that it
can better fit into the resource constrained ASNs. In Section
3.3.2, we formulate the problem of reducing the number of
atoms/columns in a dictionary and show that it is NP-hard.
We propose two heuristics to tackle this problem. Note that
the work on `1 classifier has so far been carried out on pow-
erful computer platforms. To the best of our knowledge,
our work is the first to consider `1 classification in resource
constrained embedded platforms.

3.2 System Architecture
In this section, we outline the proposed SAC framework

for acoustic classification in ASNs. As shown in the flow
chart in Figure 3, the whole procedure consists of three
parts: offline dictionary learning, online pre-processing of
input signals, and online classification.

For the training signal, a silence detection algorithm is
applied to the training signal to remove any not-of-interest
parts, and a windowed FFT with overlaps is performed to
form an initial dictionary. Then a column reduction tech-
nique is applied to the initial dictionary to reduce the num-
ber of columns in the dictionary (see Section 3.3) which is
then followed by a multiplication of a projection matrix to
reduce the number of rows in the dictionary. We denote the
reduced training dictionary by matrix Ã.

After the acquisition of the test signal, we again apply
silence detection to only keep the interesting parts. A win-
dowed FFT with no overlap is then applied to the retained
sound segment. The same projection matrix (as used for
training) is used to reduce the dimension of the test signal
and provide the measurement vector ỹ, see Section 3.4.

Now both the training dictionary Ã and the measurement
ỹ are passed to the classifier. The `1 classifier first finds the
sparse coefficient vector x. It then calculates the residuals
for each class i in the training dictionary and computes a
threshold. If the residual for class i is less than the threshold,

then a class i in the test signal is identified. Otherwise, if all
residuals are greater than the threshold, then the test signal
is an unknown class. See Section 3.5 for more details.

3.3 The Training Dictionary
Obtaining the right dictionary is always one of the most

important steps for classification problems because of its ef-
fect on classification accuracy. For different applications,
the dictionary needs to be trained accordingly.

3.3.1 Silence Removal and Segment Formation
We first describe how the initial training dictionary is ob-

tained for our classification scheme. For the training sound
samples from each class, we first apply a simple silence re-
moval technique as shown in Algorithm 1, where the thresh-
old ρ is learned from the environment. RMS in line 3 of
Algorithm 1 stands for root mean squares.

The signal is then partitioned into small segments using
fixed window size and overlap size. Let w and o denote, re-
spectively, the window size and overlap size, in number of
samples. The first segment consists of samples 1 to w, sec-
ond segment consists of samples w − o + 1 to 2w − o (i.e.,
shifting w − o samples to create an overlap of o samples),
third segment consists of samples 2(w−o)+1 to 3w−2o and
so on. Note that the overlap is required so that a test vector
can be expressed as a linear combination of a small number
of training vectors. As discussed in Section 3.1 on the align-
ment problem, if training vectors are formed from temporal
samples, then a large overlap (or small offset) is required.
However, only a small overlap (or large offset) is required if
training vectors are formed from spectrum domain data.

For each segment, a windowed FFT is performed and the
spectrum energy (i.e. the magnitude of the FFT coefficients)
is calculated to give an atom (column) of the dictionary.
The atoms of all the classes are then put together to form
the initial training dictionary A where the atoms from each
class is a sub-matrix of A. The class boundary information
for each class in A is also recorded. Note that the number
of elements in each atom is of the same order of magnitude
as the amount of data in a segment, therefore, the method
is featureless.

Algorithm 1 Silence Removal

1: Input: Audio Segment SGi=1:Z ∈ Rα > 1, where Z is
the total number of segments and ρ is the threshold

2: for i = 1 : Z do
3: if RMS (SGi) < ρ then
4: Remove (SGi)
5: end if
6: end for

3.3.2 Column Reduction
As mentioned in Section 3.1, one of the major factors that

affects the speed of `1 minimization is the number of un-
knowns in the system, or equivalently, the number of atoms
in the dictionary. When inspecting the initial training dic-
tionary obtained above, we notice that many of the atoms
within each class are highly correlated. This means that
the atoms of each class contain a lot of redundant informa-
tion, which is unnecessary for representing the class, and

Figure 3: System flow chart

hopefully can be removed. This motivates us to reduce the
number of atoms within each class.

In order to reduce the redundancy in each class, we need
a criterion to measure the redundancy. As a first step, we
first normalize the columns of the dictionary A so that each
column has a unit norm. As a result, the inner product
between two training vectors in the dictionary is equal to
the cross-correlation coefficient between them. We define the
mutual coherence M(A) of a dictionary A as the maximum
magnitude of the cross-correlation coefficient of all possible
pairs of columns in A. Mathematically, let ai, i = 1, . . . , n,
denote the columns of a matrix A ∈ Rp×n with ‖ai‖2 = 1.
The mutual coherence M(A) of A is:

M(A) = max
i 6=j
|〈ai, aj〉|, (8)

where 〈·, ·〉 denotes the inner product. Clearly, the smaller
M(A) is, the less redundancy the dictionary A has. The
concept of mutual coherence is also used in CS to measure
how well the minimization problem (4) can solve a sparse
problem [9, 11, 10] and is therefore a relevant measure.

We propose to reduce the number of columns of the initial
dictionary by reducing the mutual coherence for each class.
In other words, within each class, we want to find a subset
of atoms with a certain cardinality whose mutual coherence
is minimized over all possible combinations. This can be
formulated as the following optimization problem

arg min
I

max
i,j∈I,i 6=j

|〈ai, aj〉| subject to |I| = τ, (9)

where I denotes an index set and τ is the cardinality of
I, which is given. However, this problem is known to be
NP-hard [25]. That is, in the general case, no known effi-
cient algorithm can solve this optimization problem exactly
in polynomial time. It is then natural to seek for an alter-
native heuristic approach: greedy algorithm.

Greedy Algorithm
We propose here a greedy algorithm to reduce the redun-

dancy of the training dictionary. Our greedy approach can
be described as follows. For each class i, we randomly select
one atom from that class as an initial atom (Line 2 of Algo-
rithm 2). In the following iterations, always pick one atom

from the remaining atoms that minimizes the maximum of
the corresponding mutual coherence between this atom and
the already selected ones (Line 6). If the desired number
of atoms is reached or the preset threshold for coherence is
satisfied (Line 3 and Line 4), stop the iteration and continue
to the next class. By applying this approach, we are able
to remove significant amount of redundant information and
reduce substantially the number of atoms in the training
dictionary, and therefore speed up the `1 minimization part
for classification significantly.

Algorithm 2 Greedy Training Dictionary Column Reduc-
tion
1: for each class i do
2: Input: Dictionary Ai for class i, initial AIi = {a1},
AJi = Ai \ {a1}, where a1 is a column chosen randomly
from Ai.

3: for j < given number of columns do
4: if maxak∈AIi

,aj∈AJi
|〈aj , ak〉| > threshold then

5: //ak, aj are columns in AIi and AJi respectively
6: ãj = arg minaj∈AJi

maxak∈AIi
|〈aj , ak〉|

7: //aj and ak are column in AJi and AIi respectively
8: AIi = AIi

⋃
{ãj}

9: AJi = Ai \AIi
10: else
11: break
12: end if
13: j++
14: end for
15: Output: Reduced dictionary AIi for class i.
16: end for

Tabu Search
However, greedy algorithms are known to converge only

to the local optimum, which heavily depends on the initial
guess. This local optimum could be way far from the global
optimum. Therefore, to ensure our greedy algorithm is giv-
ing us the good quality result, we compare it with the tabu
search algorithm [16].

Tabu search is a meta-heuristic algorithm for searching
solutions to combinational optimization problems, and was

widely used to produce good quality approximation results
for NP-hard problems efficiently [2, 23, 27]. Tabu search
enhances the performance of local search algorithms by ex-
ploring unreached areas of the greedy algorithms. The com-
putational complexity of tabu search isO(n2) which means it
can be solved in polynomial-time. It utilizes memory struc-
tures by defining the neighborhood of the current solution
and two tabu lists. The size of the neighborhood can be
tuned according to the processing capability of the devices,
and can be as large as the size of the search space. The tabu
lists store elements according to specific rules. For instance,
in our case, one tabu list stores the column indices that can-
not be visited within a certain number of iterations, and the
other list stores the column indices that cannot be removed
from the solution space within another number of iterations.
The number of iterations are determined by the size of the
tabu lists, which should be large enough to avoid cycles. We
tune them as half of the size of the search space and the solu-
tion space respectively. Details of the tabu search algorithm
are shown in Algorithm 3.

Algorithm 3 Tabu Search for Column Reduction

1: for each class i do
2: Input: Dictionary Ai and number of columns of out-

put class ti;
3: Initialization: allocate two empty lists: Lin and Lout,

stop criteria stop i = 500; BestCoh = Inf; i = 0,
4: while i < stop i do
5: CurrentCoh = Inf, j = 0
6: Randomly choose ti columns from Ai to form P̂ti ,

record the indices list of P̂ti as L̂ (L̂∩Lout = ∅; L̂∩Lin =
Lin); The lists are first-in-first-out;

7: while j < ti do
8: P̂ti−1 = P̂ti\{P̂ti{j}};
9: Ac = Ai\P̂ti−1;

10: Cohj = minad∈Ac maxpk∈P̂ti−1
|pTk ad|

11: //ad and pk are column in Ac and P̂ti−1 respectively
12: if Cohj < CurrentCoh then

13: CurrentCoh=Cohj ; PotentialObj =P̂ti{j}
14: Store current solution P̂ti in P̄;
15: end if
16: j++
17: end while
18: if CurrentCoh > BestCoh then
19: BestCoh = CurrentCoh; BestSubmtx = P̄
20: Clear Lout; Push PotentialObj in Lin
21: i = 0
22: else
23: Push P̂ti in Lout
24: i++
25: end if
26: end while
27: Outputs: Reduced dictionary BestSubmtx for class i
28: end for

This algorithm aims to pick ti feasible columns for class i
in the search space to minimize the mutual coherence within
each class in the training dictionary.

3.4 Pre-processing of the Test Signal
The construction of the testing set is similar to that of

the training dictionary except that no overlap is performed
for the purpose of real-time online classification. For an
incoming testing signal, we first run Algorithm 1 to remove
the uninteresting parts. Then a windowed FFT, of the same
length as used in training, is applied to obtain segments in
spectrum domain. The test vectors, which consist of the
magnitude of the FFT coefficients, are then passed to the
classifier for classification.

3.5 The multi-label `1 Classifier
Recall that the classification problem in ASNs is of multi-

label type, here we describe how `1 minimization can be
used to perform single-label and multi-label classification in
a unified manner. We assume the following is available: A
dictionary A ∈ Rp×n which has already gone through col-
umn reduction to reduce mutual coherence, a test vector
y ∈ Rp and a projection matrix R ∈ Rm×p. We first solve
the minimization problem (5). The dimension of this op-

timization problem has been reduced because the Ã = RA
matrix has a reduced number of rows by using projection
matrix R and a reduced number of columns due to column
reduction. Note that in machine learning literature, the rows
of the matrix Ã = RA are interpreted as features. In our
case, Ã is obtained from the multiplication of a random ma-
trix R with the dictionary A. No elaborate computation
processes are used to construct Ã, or in other words, our
method does not require careful feature selection.

After solving (5), the next step is to compute the residu-
als of each class according to Equation (6). Again, let ri(y)
denote the residuals of class i. Let µ and σ denote, respec-
tively, the mean and standard deviation of r1, . . . , rs. If
ri < µ− 2σ for some class i, then a match is identified. By
applying this technique, we can reduce the number of false
positives. In particular, it is useful for avoiding misclassifica-
tion when there are unknown classes recorded as test signals
which do not belong to any of the known training classes,
because the solution will give relatively even residuals for all
the classes.

This setting can also deal with the case when multi-label
sounds are captured within a same time window by identi-
fying all the classes i’s whose residuals ri’s are less than the
threshold µ−2σ. Figure 4 shows an example of the residual
plot for classifying two types of frogs simultaneously. It is
clear from the plot that the residuals for both classes are
below the threshold. Therefore, both types of frogs can be
correctly identified.

4. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our pro-

posed SAC based acoustic classification framework via sim-
ulation.

There are two datasets we use for our evaluation. The
first one contains sound samples recorded from fourteen dif-
ferent species of frogs, for both training and testing. For
completeness, they are Cyclorana Cryptotis, Cyclorana Cul-
tripes, Limnodynastes Convexiusculus, Litoria Caerulea, Lito-
ria Inermis, Litoria Nasuta, Litoria Pallida, Litoria Rubella,
Litoria Tornieri, Notaden Melanoscaphus, Ranidella Bilin-
gua, Ranidella Deserticola, Uperoleia Lithomoda, and Bufo
Marinus. The sampling frequency for this dataset is at
24kHz. The second dataset is from [21], which is available at
http://www.cs.ucr.edu/~yhao/animalsoundfingerprint.

http://www.cs.ucr.edu/~yhao/animalsoundfingerprint.html

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
s
id

u
a
l

Classes

Figure 4: Residual plots demonstrating multi-label
classification. The horizontal line shows the thresh-
old. Both classes 1 and 2 have correctly been iden-
tified.

html. It contains sound samples from twenty different species
of crickets. The silence removal algorithm (Algorithm 1) is
applied to the raw signals, so as to remove uninteresting
parts. We obtain 228 event segments from frog dataset and
663 event segments from cricket dataset respectively.

4.1 Goals, Metrics and Methodology
Our goal in this evaluation is to show that our acoustic

classification scheme is featureless, accurate, and robust. For
this purpose, we evaluate the performance of our classifica-
tion scheme on two different datasets with respect to differ-
ent signal-to-noise ratios (SNRs). In addition, we compare
our proposed approach against the conventional approaches,
kNN and SVM, and show that our scheme performs better.
We also demonstrate that our proposed framework is feasible
for multi-label sound classification scenario.

A common approach for evaluating the performance of a
classifier is to first partition the dataset into complementary
subsets, then perform the analysis on one subset (the train-
ing set), and validate on the other subset (the testing set).
A generalization of this method is called the K-fold cross-
validation. The data set is first partitioned into K disjoint
subsets of roughly equal size. Then the classifier is evalu-
ated over K rounds. For each round, a different subset is
retained as the testing set, while training is carried out on
the other (K − 1) subsets. The validation results are then
averaged over the rounds. In our simulation, we use K = 3,
the 3-fold cross-validation to obtain the training and test-
ing sets, which are used to evaluate the `1 classifier, the
kNN classifier, and the SVM classifier. For the `1 classifier,
we use `1-homotopy [29] as the `1 minimization algorithm.
The kNN classifier is directly from Matlab. And the SVM
classifier we use is from [7].

The metric we use to evaluate the performance of all the
classifiers for single-label classification is the accuracy, which
is simply the number of true detections over the total num-
ber of test vectors. Since random projection matrices are
used, we run the simulation ten times. The accuracy is first
averaged over these ten runs, and then averaged over the
three folds. In the results, we show both the averaged ac-
curacy and its standard deviation. For the multi-label case,
Hamming loss is used as the performance metric. Hamming
loss is a typical metric used for multi-label classification [30,
41], which is the average of the symmetric difference of the

outcome index set and the ground truth index set over all
the testing vectors and training classes.

To demonstrate the robustness of our scheme, we add in
environmental noise, which is scaled to different magnitudes,
to our testing signals to create different SNRs. The environ-
ment noise is from the same national park where the frog
calls are recorded. We compare our framework against kNN
and SVM with respect to different SNR levels.

For illustration purpose, Figure 5 shows some sample sound
segments from our simulation and experiment. The first row
is in spectrum domain, and the second row is in temporal
domain. Plot (a)-(c) show sample calls of frog C. Cryp-
totis with no noise, with 0dB SNR, and with 10dB SNR
respectively. Plot (d) shows the sample call of another frog
C. Cultripes with no noise. Plot (e) shows the combination
of the calls from these two frogs with 0dB signal-to-signal ra-
tio (SSR) for multi-label classification in Section 4.4. Plots
(f) and (g) show typical cockatoo and rainbow lorikeet calls
from our outdoor experiment (discussed in Section 5), where
the noise level is between that in (b) and (c).

4.2 Performance of SAC
We first evaluate the performance of our framework in

a single-label multi-class classification setting. The initial
training dictionary is obtained from windowed FFT with
an overlap ratio (i.e. ratio of overlap size to window size)
of 15/16. Figure 6(a) shows the classification accuracy for
different SNRs with five different window sizes from 210 to
214 samples, which is the largest possible number of samples
for the training signals. To avoid possible effects from other
factors, we do not use projection matrix or column reduction
to reduce the dimension of the dictionary for Figure 6(a).
The figure shows a clear performance gain as we increase
the window size. Thus, from now on, we fix the window size
to be 214 samples.

4.2.1 Performance on Frog Data
In this section, we use Rademarcher (symmetric Bernoulli)

matrix as the random projection matrix because of its effi-
cient implementation. The number of random projections,
which equals to number of rows in the projection matrix,
should be of the order k log(n/k) according to compressive
sensing theory. However, in real applications, most of the
time it is impossible to show that the assumptions for this
bound are satisfied. Figure 6(b) shows the impact of the
number of projections on classification accuracy at different
SNR levels with no column reduction for the frog data. It
shows that classification accuracy increases with the num-
ber of projections but the improvement diminishes when the
number of projections is large. This observation can be ex-
plained by the fact that the number of projections plays the
same role as the number of features. However, a significant
difference of the `1 method is that it uses random matrices
to generate “features”, which means careful feature selection
is not required. When the number of projections is 300,
the classification accuracy has already reached 95% at 2dB
SNR, and there is no significant improvement in accuracy
if we keep increasing the number of projections. Therefore,
from now on in this simulation, we fix the number of pro-
jections to be 300 if not specified for the frog data.

Figure 6(c) investigates the effect of column reduction us-
ing Algorithm 2 on classification accuracy at different SNR

http://www.cs.ucr.edu/~yhao/animalsoundfingerprint.html

(a) (b) (c) (d) (e) (f) (g)

Figure 5: (Picture view best in color) (a) C. Cryptotis’ call without noise, (b) C. Cryptotis’ call with noise
(0dB SNR), (c) C. Cryptotis’ call with noise (10dB SNR), (d) C. Cultripes’ call without noise, (e) Combined
sound from (a) and (d) (0dB SSR), (f) Typical cockatoo sound from experiment, (g) Typical rainbow lorikeet
call from experiment

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

SNR(dB)

P
ro

b
a
b

il
it

y
 o

f
T

ru
e
 D

e
te

c
ti

o
n

2
10

 window size

2
11

 window size

2
12

 window size

2
13

 window size

2
14

 window size

(a) For varying number of window size

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

SNR(dB)

P
ro

b
a
b

il
it

y
 o

f
T

ru
e
 D

e
te

c
ti

o
n

50 projections

100 projections

200 projections

300 projections

400 projections

(b) For varying number of projections

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

SNR(dB)
P

ro
b

a
b

il
it

y
 o

f
T

ru
e
 D

e
te

c
ti

o
n

90% column reduction

80% column reduction

70% column reduction

60% column reduction

No column reduction

(c) For varying number of columns

Figure 6: Frog: Accuracy versus SNR curves.

levels. The initial training dictionary has 2,487 atoms, and
the test set has 76 test vectors. We compare five different
column reduction strategies: 90% (i.e.,10% of the columns
are retained), 80%, 70%, 60% reduction rate, and no reduc-
tion. Notice that we do not use projections for this plot so
as to avoid possible interference from other factors. We ob-
serve that we can reduce as much as 90% of the columns with
little impact on classification accuracy at every SNR level.
Therefore, from now on, we take 90% column reduction rate
as our default setting for evaluations.

As discussed in Section 3, we need to compare the re-
sults from our greedy algorithm with that of the well known
mega-heuristic approach, tabu search. Figure 7(a) shows the
comparison of these two algorithms. We see no difference be-
tween these two algorithms. Therefore, the performance of
our greedy algorithm is close to optimal. For fair compari-
son, equal reduction rate of 90% is used for each class in the
greedy algorithm, and tabu search algorithm. Note that we
have tried other column reduction rates, which show similar
phenomena.

4.2.2 Performance on Cricket Data
Similar to the frog data, Figure 7(b) shows the impact

of different number of projections on the classification ac-

curacy for the cricket dataset with different SNR levels. To
avoid interference by other factors, no column reduction is
used. The figures shows that 200 projections give the worst
performance in terms of classification accuracy. But again,
as the number of projections increases, the improvement on
the classification accuracy diminishes. There is no more sig-
nificant difference when the number of projections exceeds
1,000. This experiment demonstrates that the number of
projections required depends on the dataset.

4.3 Comparing to Benchmarks
In this paper we employ both SVMs and kNN to bench-

mark the classification performance of our proposed SAC
framework for ASNs. We choose these two classifiers due
to their wide acceptance for various audio processing, in-
cluding phonetic segmentation, audio classification, speech
recognition etc.

For SVM, we choose MFCC as the feature because it is
the most popular choice for representing audio signals. We
calculate the MFCC of each window by transforming the
power spectrum of each window into the logarithmic mel-
frequency spectrum. The SVM is trained using the MFCC
extracted from different training classes, and classifies the
testing signal according to its MFCC features. For kNN,

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

SNR(dB)

P
ro

b
a
b

il
it

y
 o

f
T

ru
e
 D

e
te

c
ti

o
n

Greedy pick

Tabu search

(a) Frog dataset: for different column re-
duction methods

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

SNR(dB)

P
ro

b
a
b

il
it

y
 o

f
T

ru
e
 D

e
te

c
ti

o
n

200 projections

500 projections

1000 projections

1500 projections

2000 projections

(b) Cricket dataset: for varying number
of projections

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

SNR(dB)

P
ro

b
a
b

il
it

y
 o

f
T

ru
e
 D

e
te

c
ti

o
n

l1 method

kNN method

SVM MFCC

(c) Frog dataset: for `1, SVM and kNN
classifers

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

SNR(dB)

P
ro

b
a
b

il
it

y
 o

f
T

ru
e
 D

e
te

c
ti

o
n

l1 method

kNN method

SVM MFCC

(d) Cricket dataset: for `1, SVM and
kNN classifers

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

SNR(dB)

P
ro

b
a
b

il
it

y
 o

f
T

ru
e
 D

e
te

c
ti

o
n

l1 method

kNN MFCC

SVM

SVM spectrum

(e) Frog dataset: for kNN and SVM with
other settings

−10 −5 0 5 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

SSR(dB)

H
a
m

m
in

g
 L

o
s
s

ML−l1

ML−kNN

(f) Frog dataset: performance of multi-
label classification

Figure 7: Accuracy versus SNR curves.

we use similar settings as for our `1 classifier, e.g., sound
signals in power spectrum domain, because the employment
of MFCC in kNN produces bad result (discussed with Fig-
ure 7(e) later). Note that we do not perform matrix column
reduction and random projection for kNN because it pro-
duced significantly worse result. Therefore, the dimension
of kNN is significantly (more than 150 times) larger than
that of `1.

Figure 7(c) and Figure 7(d) compare the performance of
our `1 classifier to SVM with MFCC and kNN for, respec-
tively, the frog dataset and the cricket dataset. For the frog
dataset, SVM with MFCC performs the worst among all the
three classifiers. This suggests that the different classes are
not well separated in the feature space. Therefore, a small
amount of noise can cause erroneous classification by SVM.
This also explains why MFCC usually needs other carefully
selected features [37] to improve classification performance.
Our `1 classifier performs much better than the other two
classifiers, especially when SNR is low. For instance, for
the frog data, when SNR is 0dB, the `1 classifier is at least
20% more accurate. The `1 classifier is more robust than
kNN because a test vector is “compared” against all training
vectors (see Eq (2)) in case of `1 but is only compared to
individual vectors for kNN. For the cricket data, SVM with
MFCC still has the worst performance, while the `1 classifier
and the kNN classifier have similar performance when the
SNR is high. However, when SNR is low, our `1 classifier
still outperforms the kNN classifier significantly (more than
15% when SNR is smaller than 10dB). These results show
that, besides the featureless property, the `1 classifier is also
robust to noise compared to the conventional approaches,

which coincides with our reasoning in Section 2.
Clearly, the robustness to noise makes our `1 classifier

more suitable for real deployments in noisy environments.
Furthermore, the better classification performance in low
SNR means a larger monitoring coverage, since sound sam-
ples from distance typically have low SNR. Alternatively, it
means that less sensors are needed for monitoring a certain
area of interest.

For the purpose of completeness, we have also evaluated
the performance of SVM in temporal domain, SVM in spec-
trum domain, and kNN with MFCC. They all perform worse
than the `1 classifier. The results are shown in Figure 7(e)
for the frog dataset. Note that the `1 classifier’s performance
curve in Figure 7(e) is identical to that in Figure 7(c).

4.4 Multi-label Classification
As mentioned in Section 3.5, the scheme we propose is able

to handle multi-label classification problems. The metric
for multi-label classification is much more complicated than
that for the single-label case. Recall from Section 4.1, we
will use Hamming loss as the performance metric. Hamming
loss has a range from 0 to 1. With a Hamming loss value 0,
a classifier has perfect classification performance on multi-
label scenario; and with a value 1, it totally fails.

To demonstrate the performance of our proposed frame-
work on multi-label classification, we manually mix the calls
from two types of frogs, C. Cryptotis and C. Cultripes. We
vary the relative strengths of their calls to create different
signal-to-signal ratios (SSRs), defined in a way similar to
SNR. We vary the SSRs between -10dB to 10dB. At the ex-

treme SSRs of ±10dB, the signal energy of one frog call is
10 times that of the other. When the SSR is 0dB, it means
that the energy of the two calls are equal.

As a benchmark, we compare the result of ML-kNN clas-
sifier [41] with our `1 classifier. We train the ML-kNN clas-
sifier with both the smoothness parameter and the number
of neighbors set to one. Figure 7(f) shows the Hamming loss
curves with varying SSRs for both `1 and ML-kNN classi-
fiers. If the SSR is either very low or very high, the two
classifiers have similar performance, where our `1 classifier
is still a bit better. However, when the SSR is around 0dB,
which means the two classes have about the same energy, our
`1 classifier outperforms the ML-kNN classifier significantly.

This characteristic of our `1 classifier could be very useful
in practice. It provides the ASN deployment the ability to
detect multiple sound sources when they occur at the same
time, especially when the energy levels of the sound sources
are not very different from each other.

5. EXPERIMENTS ON TESTBED
In this section, we evaluate the performance of the pro-

posed SAC on an outdoor ASN testbed. The testbed, which
is located on our campus with thin vegetation, consists of
five nodes (Figure 8(a)) configured as Ad-hoc mode with a
star network topology. The aim of the experiments is auto-
matic bird vocalization recognition, which is a typical pat-
tern recognition problem [32, 13, 37]. We choose two bird
species that are frequently observed on our campus: cocka-
toos (Figure 8(b)) and rainbow lorikeets (Figure 8(c)). The
experiment is a multi-class classification with 3 classes: the
calls of cockatoos, the calls of rainbow lorikeets and environ-
mental noise (which includes the sound all other birds, crick-
ets etc.). The goal of the experiment is to demonstrate that
the reduced dictionary enables each ASN node to complete
the real-time classification on its own. After classification,
each node sends its classification results to a server.

5.1 System Description

Table 1: Node Power Consumption at 5V
Module Consumption (W)
CPU 2.05
CPU + microphone 2.1
CPU + Wifi (idle) 2.45
CPU + Wifi (Rx) 2.67
CPU + Wifi (Tx) 2.78

The nodes in our ASN testbed are based on the Pand-
aboard ES (see the left side of Figure 9), a single board com-
puter costing US$182, which has a 1.2GHz ARM Cortex-A9
with 1GB of RAM and a 4GB SD-card. Pandaboard also
features an 802.11 interface for wireless communication, and
runs Ubuntu Linux distribution. Each node hosts 2 USB
ports, one of which connects to a USB microphone. The
microphones are configured to sample at 24kHz. We imple-
mented the `1 Homotopy — a fast `1 minimization algorithm
which is also used in simulation experiments in Section 4
— in C++ based on GNU Scientific Library (GSL) for the
Pandaboard platform.

A node is powered by a 12V 7.2Ah rechargeable battery,
and an optional 5W, 12V solar panel (see the right side of

(a)

(b) (c)

Figure 8: (a) Star topology of the 5 deployed nodes.
(b) A picture of cockatoo. (c) A picture of rainbow
lorikeet.

Figure 9: A Pandaboard node (left), and a deployed
node (right)

Figure 9). Table 1 shows the power consumption of differ-
ent modules. The nodes in SolarStore testbed [40] consume
10W (low load) and 15W (high load) energy respectively.
Therefore, the nodes in our ASN testbed is approximately
3.5 to 5.4 times more energy efficient. Without solar panel,
a node in our ASN testbed will run continuously for more
than 31 hours, which is significantly longer than the pre-
vious platforms such as ENSBox [15]. A solar panel with
8-hour exposure to direct sunlight per day can maintain a
50% duty cycle at 85% solar charge efficiency.

The nodes use Network Time Protocol (NTP) for time
synchronization. We use one node as the NTP server, and
the other nodes as the NTP clients. The NTP clients send
request for time synchronization every 10 seconds. The time
synchronization accuracy is 25 ms in average.

We introduce two components to counter one of the main
challenges for outdoor ASNs: wind sound. Firstly, we install
foam and fur windscreen around each microphone (see the
left side of Figure 9), which can reduce the effect of wind
sound significantly. Secondly, we apply a fifth order Butter-
worth high pass filter to cut off the recorded audio frequency
lower than 200Hz, because most of the wind audio energy is
in the frequency band below 200Hz, and most of the vocal-
ization energy of the cockatoo and rainbow lorikeet is in the
frequency band higher than 200Hz.

5.2 Classifier Parameter Selection
The proposed `1 classifier has two important parameters

— the percentage of column reduction and the number of
projections — which have to be tuned for each classifica-
tion problem. We tune these parameters by using training
data sets collected from our experiment testbed. Altogether
609 pieces of sound recordings with length of 214/24, 000 =
682.67ms have been collected. We then process these sound
recordings using the procedure described in Section 4 to ob-
tain an initial, but rather redundant, dictionary. The initial
dictionary contains 313 and 231 columns, respectively, for
cockatoos and rainbow lorrikeets.

With this initial dictionary, we test the impact on the
classification accuracy and computation time by varying the
percentage of column reduction and number of projections.
We use 5 different column reduction percentages: no reduc-
tion, 70%, 80%, 90% and 95%; and 6 different number of
projections: 20, 40, 60, 80, 100 and 200. The accuracy is
evaluated by simulations, similar to those described in Sec-
tion 4. The computation time is evaluated on Pandaboard.
The results on classification accuracy and computation time
and are shown, respectively, in Figures 10(a) and 10(b).

Figure 10(a) shows the column reduction can significantly
shorten the computation time. For example, with 100 ran-
dom projections, the computation time reduces by a factor
of more than 5 when 90% column reduction is used. Fig-
ure 10(b) shows that the classification accuracy increases
with larger number of projections but the improvement di-
minishes when more than 100 random projections are used.
Based on this observation, we choose 100 projections as the
parameter. With 100 projections, we see that 90% column
reduction can give almost the same classification accuracy
as 70% or 80% column reduction, so we select 90% column
reduction as the parameter.

Pandaboard is a rather powerful embedded platform with
1 GB RAM and a 1.2 GHz micro-controller. A node with
less RAM and slower micro controller cannot process such
a large matrix (with 90% column reduction and 100 projec-
tions), and will result in less classification accuracy or can-
not process all the real-time captured audio signals (only
a percentage of captured signals will be processed). This
is a design space of the the ASN application developers.
For example, if an application developer has an ASN plat-
form which is approximately 50% of Pandaboard’s process-
ing power, he/she can choose either process all the capture
audio signals with 95% column reduction and 40 projection,
or process half of the capture signals with 90% column re-

95%CR 90%CR 80%CR 70%CR NO CR
0

200

400

600

800

1000

1200

Column Reduction

C
o

m
p

u
ta

ti
o

n
 T

im
e
(m

s
)

20RP

40RP

60RP

80RP

100RP

200RP

(a)

95%CR 90%CR 80%CR 70%CR NO CR
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Column Reduction

A
c
c
u

ra
c
y

20RP

40RP

60RP

80RP

100RP

200RP

(b)

Figure 10: (a) Computation time. (b) Classification
accuracy. CR = Column Reduction, RP = Random
Projection.

duction and 100 projections. The first option will achieve
higher classification accuracy (approximately 69% as showed
in Figure 10(b)) than the second option (approximately 63%
as showed in Figure 10(b)).

5.3 System Performance
In order to realize real-time in-network classification, an

ASN node needs to complete the classification of a time win-
dow of data within the duration of the window. Table 2
shows the computation time (in milliseconds) of the major
modules of the proposed SAC framework for two scenarios:
No column reduction with 100 projections and 90% column
reduction with 100 projections. The table shows that `1
minimization is indeed computation intensive and consumes
most of the Pandaboard CPU time. Without column reduc-
tion, the residual calculation and `1 minimization module
consume approximately 75% of the CPU time. The pro-
posed 90% Column Reduction improves the speed of these

two modules by approximately six times. Because the dura-
tion of each time window is 682.67ms and the total process
time is approximately 120ms, the nodes in our ASN testbed
can process all the captured acoustic data in real time.

Table 2: Mean (Standard Deviation) of Computa-
tion Time (ms). CR – Column Reduction.

Module No CR 90% CR
Silence removal 20.38(2.04)

16384-point FFT 15.33(0.63)
Random projection 26.41(0.77)
`1 minimization 534.71(184.83) 46.16(15.20)

Residual 92.08(2.37) 10.32(0.49)
Total time 688.91 118.60

5.4 Outdoor Validation Experiments
After tuning the classifier parameters, we implement the

classifier on the ASN testbed. Each node in the testbed runs
the proposed classifier locally produces classification results
for all the time periods that are not silent. At the same
time, the nodes store the audio records of non-silent periods
in the SD cards for ground truth and comparison purposes.

The goal of this experiment is to classify the sound in each
non-silent period as either cockatoos, rainbow lorrikeets or
others. For comparison purpose, we also input the recorded
sound samples to the SVM classifier with MFCC features
and the kNN classifier. The sound samples collected in this
validation experiment result in 1,321 test vectors. The ac-
curacy of our proposed `1-classifier is 70.17%, which is sig-
nificantly better than that of SVM with MFCC at 41.03%
and of kNN at 44.28%. This result is similar to those in
Section 4.3 and demonstrate that proposed `1 is robust to
the environment noise, which makes it a good candidate for
in-network classification tasks for ASNs deployed in remote
harsh environment.

6. RELATED WORK

6.1 Classification using Sparse Representation
The `1-classification method is first proposed in [38] for

the purpose of face recognition. The method in [38] makes
a number of assumptions, such as registration and scaling,
which are only valid for images but do not apply to acous-
tic signals. There are a number of important differences
between `1 classification for face recognition and acoustic
signals. Section 3.1 has already discussed the alignment and
dictionary redundancy problems. Another important differ-
ence is that face recognition is a single-label classification
problem while acoustic classification is a multi-label one.
This paper addresses the issues on making `1-classification
possible for acoustic signals and solves the alignment, multi-
label and dictionary redundancy problems.

Sparse approximation and `1-classification have also been
applied to other acoustic classification problems. Sainath et al.
[28] adopt the sparse approximation idea and use Approx-
imate Bayesian Compressive Sensing (ABCS), which is es-
sentially an `1 minimization technique, for phonetic classifi-
cation. They show that in their setting, ABCS outperforms
Gaussian Mixture Models (GMM), kNN and SVM meth-
ods, and offers an accuracy close to the best reported result

in the literature. However, their approach still depends on
feature selection and is only for single-label classification.
In addition, they do not discuss whether their classification
methods can be handled in real-time for real deployments.

6.2 Acoustic Classification using Machine Learn-
ing Techniques

Machine learning techniques have been heavily employed
for animal acoustic classification and recognition (see for in-
stance [19, 13, 22, 24]). Fagerlund [13] uses SVMs for bird
species recognition. They use MFCC together with other
descriptive parameters as the syllable candidates for fea-
ture extraction to classify the bird species. Huang et al.
[24] adopt both kNN and SVMs for frog sound classifica-
tion. They employ features like spectral centroid and sig-
nal bandwidth, which are well known in pattern recogni-
tion literature. Besides these, they propose a new feature
called threshold-crossing rate to reduce the impact of noise
in sound samples. However, how to select good features and
kernel functions for SVMs are always difficult problems. Be-
cause of the difficulty of the feature selection and motivated
by [38], we adopt the featureless spectrum domain sam-
ples for acoustic classification. Moreover, we investigate the
system challenges of `1 classification methods in embedded
ASNs in the realistic environment for remote acoustic sens-
ing.

6.3 Classification on Wireless Sensor Networks
Although a network of embedded devices can largely in-

crease the size of monitoring coverage area, it is challenging
to realize classification methods on WSNs because of WSNs’
limited computational ability and energy resource. In addi-
tion to the accuracy of the classification method, the compu-
tational speed and energy efficiency are also main concerns
on WSNs. Recently, researchers have proposed classification
methods for resource constrained environment according to
these characteristics of WSNs. Sun [33] dynamically picks
a part of the feature space rather than the entire one af-
ter feature selection to accelerate the classification. This
method offers a good accuracy. However, the feature ex-
traction procedure is very complicated. Gu et al. [18] design
a hierarchical four-tier classification architecture. Each tier
offers a classification based on the results from the lower
ones, which enhances the accuracy. Hu et al. [22] design
a hybrid ASN for monitoring amphibian population, which
also chooses the strategy of in-network classification to save
the transmission power consumption. Trifa et al. [36] imple-
ment hidden Markov models on the networked embedded
devices for automated species recognition, where a wireless
network plays a role in the acoustic sample recording and
automatic real-time detection of the species. However, they
rely on careful feature selection while we adopt a featureless
approach. Duarte [12] applies local classification and global
decision fusion strategy to classify the sound of moving vehi-
cles in distributed sensor networks. The local classification
can avoid the transmission loss, while the global decision
can increase the accuracy. Su et al. [32] design a hierarchi-
cal aggregate classification protocol on WSNs. Each node
only forwards its decision to the parent node to save energy.
They also take the tradeoff between the energy consump-
tion and the classification accuracy into consideration, and
propose to use constrained hierarchical aggregate classifi-

cation to increase the accuracy at the cost of energy con-
sumption. In contrast, our work aims to realize in-network
acoustic classification without transmission of acoustic sam-
ples, which can cause high energy consumption because of
high data rates of acoustic signals.

6.4 Compressive Sensing on Wireless Sensor
Networks

Compressive sensing and sparse approximation can reduce
the data dimension, which helps increase the computational
efficiency and save the energy cost for transmission. The
main question of applying compressive sensing to WSNs is
how to use it to save energy in terms of minimizing the di-
mension of the transmitted data. Wu and Liu [39] use com-
pressive sensing idea for soil moisture monitoring in WSNs
for data compression. It results in a longer lifetime due to
reduced amount of transmitted data. Misra et al. [26] use
cross-correlation via sparse representation for range estima-
tion in WSNs. The key idea there is to compress the signal
samples using random projections and transmit them to a
central device for reconstruction based on the knowledge of
the sparsifying domain, which they call the correlation do-
main. Shen et al. [31] use compressive sensing as a dimension
reduction tool to for background subtraction, reducing the
amount of computations needed for calculating mixture of
Gaussians (MoG) while retaining the accuracy. It is a fast
background subtraction algorithm which can realize real-
time tracking. Based on compressive sensing, Griffin and
Tsakalides [17] study the reconstruction of audio signals us-
ing multiple sensor audio models, so as to detect and track a
device that transmits periodical audio signals. The authors
validate different sparsifying domains and reconstruction al-
gorithms, and show that the system only requires the nodes
to transmit part of the collected samples, which saves energy
for transmission.

Different from these applications, we use compressive sens-
ing and sparse approximation for classification purposes,
which do not need accurate reconstruction. More impor-
tantly, in addition to random projections, we impose tech-
niques such as silence removal and column reduction to fur-
ther reduce the dimension of the problem. The resulting
algorithm provides a better accuracy in noisy environment
compared to the conventional machine learning methods
without tedious feature selection.

7. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel featureless, efficient and

robust SAC framework for ASNs. We address a number
of challenges to make SAC possible on resource constrained
ASN nodes. In particular, in order to make the computa-
tionally expensive SAC method feasible for ASNs, we pro-
pose a column reduction algorithm to significantly reduce
the size of the training dictionary. We also evaluate the per-
formance of our proposed method using both simulations
and experiments on an ASN testbed. The simulations are
conducted with two real-life animal vocalization datasets.
The results show that our proposed SAC method outper-
forms standard classifiers such as SVM and kNN for single-
label classification, and ML-kNN for multi-label classifica-
tion. The evaluations on the outdoor ASN testbed show
that our column reduction method can significantly reduce
the processing time so as to make real-time in-network clas-

sification using SAC method on embedded platforms possi-
ble. Our work can be extended in a few different directions.
First, SAC on less powerful embedded platforms could be
studied. Second, the effect of acoustic signals that over-
lap in both time and spectrum domains on classification is
worth investigating. Third, the applications of SAC for mil-
itary vehicles classification, indoor activity monitoring and
speaker recognition are also interesting.

Acknowledgments. We thank our shepherd, Prof. Dr.
Pedro José Marrón, and the anonymous reviewers for their
helpful feedbacks on earlier versions of this paper.

8. REFERENCES
[1] A. O. Allen. Probability, Statistics, and Queueing

Theory with Computer Science Applications.
Academic Press, Inc., Orlando, FL, USA, 1978.

[2] E. Arráiz and O. Olivo. Competitive simulated
annealing and tabu search algorithms for the max-cut
problem. In Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, GECCO
’09, pages 1797–1798, New York, NY, USA, 2009.
ACM.

[3] R. Baraniuk, M. Davenport, R. DeVore, and W. M. A
Simple Proof of the Restricted Isometry Property for
Random Matrices. Constr Approx, 28:253–263, 2008.

[4] K. C. Barr and K. Asanović. Energy-aware lossless
data compression. ACM Trans. Comput. Syst.,
24(3):250–291, Aug. 2006.

[5] T. Bokareva, W. Hu, S. Kanhere, B. Ristic,
N. Gordon, T. Bessell, M. Rutten, and S. Jha.
Wireless sensor networks for battlefield surveillance. In
Proceedings of the Land Warfare Conference (LWC),
2006.

[6] E. J. Candes, J. Romberg, and T. Tao. Robust
uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE
Trans. on Inf. Theory, 52(2):489–509, 2006.

[7] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[8] D. Donoho. Compressed sensing. Information Theory,
IEEE Transactions on, 52(4):1289–1306, 2006.

[9] D. Donoho and X. Huo. Uncertainty principles and
ideal atomic decomposition. Information Theory,
IEEE Transactions on, 47(7):2845–2862, 2001.

[10] D. Donoho and Y. Tsaig. Fast Solution of `1 -Norm
Minimization Problems When the Solution May Be
Sparse. Information Theory, IEEE Transactions on,
54(11):4789–4812, 2008.

[11] D. L. Donoho and M. Elad. Optimally sparse
representation in general (nonorthogonal) dictionaries
via `1 minimization. Proceedings of the National
Academy of Sciences, 100(5):2197–2202, 2003.

[12] M. Duarte. Vehicle classification in distributed sensor
networks. Journal of Parallel and Distributed
Computing, 2004.

[13] S. Fagerlund. Bird species recognition using support
vector machines. EURASIP J. Appl. Signal Process.,
2007(1):64–64, 2007.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[14] D. Friedlander, C. Griffin, N. Jacobson, S. Phoha, and
R. R. Brooks. Dynamic agent classification and
tracking using an ad hoc mobile acoustic sensor
network. EURASIP J. Appl. Signal Process.,
2003:371–377, Jan. 2003.

[15] L. Girod, M. Lukac, V. Trifa, and D. Estrin. The
design and implementation of a self-calibrating
distributed acoustic sensing platform. In SenSys,
pages 71–84. ACM, 2006.

[16] F. Glover and M. Laguna. Tabu Search. Kluwer
Academic Publishers, Norwell, MA, USA, 1997.

[17] A. Griffin and P. Tsakalides. Compressed sensing of
audio signals using multiple sensors. In Proceedings of
16th European Signal Processing Conference,
EUSIPCO 2008, 2008.

[18] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala,
Q. Cao, T. He, J. A. Stankovic, T. Abdelzaher, and
B. H. Krogh. Lightweight detection and classification
for wireless sensor networks in realistic environments.
In Proceedings of the 3rd international conference on
Embedded networked sensor systems, SenSys ’05, pages
205–217, New York, NY, USA, 2005. ACM.

[19] G. Guo and S. Li. Content-based audio classification
and retrieval by support vector machines. Neural
Networks, IEEE Transactions on, 14(1):209–215, 2003.

[20] Y. Guo and M. Hazas. Localising speech, footsteps
and other sounds using resource-constrained devices.
In Information Processing in Sensor Networks
(IPSN), 2011 10th International Conference on, pages
330 –341, april 2011.

[21] Y. Hao, B. Campana, and E. Keogh. Monitoring and
mining animal sounds in visual space. Journal of
Insect Behavior, pages 1–28, 2012.

[22] W. Hu, N. Bulusu, C. T. Chou, S. Jha, A. Taylor, and
V. N. Tran. Design and evaluation of a hybrid sensor
network for cane toad monitoring. ACM Trans. Sen.
Netw., 5(1):4:1–4:28, 2009.

[23] W. Hu, C. T. Chou, S. Jha, and N. Bulusu. Deploying
long-lived and cost-effective hybrid sensor networks.
Ad Hoc Networks, 4(6):749 – 767, 2006.

[24] C.-J. Huang, Y.-J. Yang, D.-X. Yang, and Y.-J. Chen.
Frog classification using machine learning techniques.
Expert Syst. Appl., 36(2):3737–3743, 2009.

[25] A. Krause and C. Guestrin. Optimizing Sensing: From
Water to the Web. Computer, 42:38–45, 2009.

[26] P. Misra, W. Hu, M. Yang, and S. Jha. Efficient
cross-correlation via sparse representation in sensor
networks. In Proceedings of the 11th international
conference on Information Processing in Sensor
Networks, IPSN ’12, pages 13–24, New York, NY,
USA, 2012. ACM.

[27] J. Renaud, G. Laporte, and F. F. Boctor. A tabu
search heuristic for the multi-depot vehicle routing
problem. Computers & Operations Research, 23(3):229
– 235, 1996.

[28] T. Sainath, A. Carmi, D. Kanevsky, and
B. Ramabhadran. Bayesian compressive sensing for
phonetic classification. In Acoustics Speech and Signal
Processing (ICASSP), 2010 IEEE International
Conference on, pages 4370–4373, 2010.

[29] M. Salman Asif and J. Romberg. Dynamic updating
for `1 minimization. Selected Topics in Signal
Processing, IEEE Journal of, 4(2):421 –434, april 2010.

[30] R. E. Schapire and Y. Singer. BoosTexter: A
Boosting-based System for Text Categorization.
Machine Learning, 39(2/3):135–168, 2000.

[31] Y. Shen, W. Hu, J. Liu, M. Yang, B. Wei, and C. T.
Chou. Efficient background subtraction for real-time
tracking in embedded camera networks. In Proceedings
of the 10th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’12, New York, NY, USA,
2012. ACM.

[32] L. Su, J. Gao, Y. Yang, T. F. Abdelzaher, B. Ding,
and J. Han. Hierarchical aggregate classification with
limited supervision for data reduction in wireless
sensor networks. In Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems,
SenSys ’11, pages 40–53, New York, NY, USA, 2011.
ACM.

[33] Y. Sun. Dynamic target classification in wireless
sensor networks. Pattern Recognition, 2008.

[34] A. Taylor, G. Watson, G. Grigg, and H. McCallum.
Monitoring frog communities: an application of
machine learning. In Proceedings of the eighth annual
conference on Innovative applications of artificial
intelligence, pages 1564–1569. AAAI Press, 1996.

[35] Z. C. Taysi, M. A. Guvensan, and T. Melodia.
Tinyears: spying on house appliances with audio
sensor nodes. In Proceedings of the 2nd ACM
Workshop on Embedded Sensing Systems for
Energy-Efficiency in Building, BuildSys ’10, pages
31–36, New York, NY, USA, 2010. ACM.

[36] V. Trifa, A. Kirschel, C. E. Taylor, and E. E. Vallejo.
Automated species recognition of antbirds in a
mexican rainforest using hidden markov models.
Journal of the Acoustical Society of America,
123(4):2424–2431, April 2008.

[37] G. Vaca-Castaño and D. Rodriguez. Using syllabic mel
cepstrum features and k-nearest neighbors to identify
anurans and birds species. In Signal Processing
Systems (SIPS), 2010 IEEE Workshop on, pages
466–471, oct. 2010.

[38] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma.
Robust face recognition via sparse representation.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 31(2):210–227, 2009.

[39] X. Wu and M. Liu. In-situ soil moisture sensing:
measurement scheduling and estimation using
compressive sensing. In Proceedings of the 11th
international conference on Information Processing in
Sensor Networks, IPSN ’12, pages 1–12, New York,
NY, USA, 2012. ACM.

[40] Y. Yang, L. Wang, D. K. Noh, H. K. Le, and T. F.
Abdelzaher. Solarstore: enhancing data reliability in
solar-powered storage-centric sensor networks. In
Proceedings of the 7th international conference on
Mobile systems, applications, and services, MobiSys
’09, pages 333–346, New York, NY, USA, 2009. ACM.

[41] M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning
approach to multi-label learning. Pattern Recogn.,
40(7):2038–2048, July 2007.

	Introduction
	Background on SAC
	Efficient Acoustic 1 Classifier
	Challenges
	System Architecture
	The Training Dictionary
	Silence Removal and Segment Formation
	Column Reduction

	Pre-processing of the Test Signal
	The multi-label 1 Classifier

	Performance Evaluation
	Goals, Metrics and Methodology
	Performance of SAC
	Performance on Frog Data
	Performance on Cricket Data

	Comparing to Benchmarks
	Multi-label Classification

	Experiments on Testbed
	System Description
	Classifier Parameter Selection
	System Performance
	Outdoor Validation Experiments

	Related work
	Classification using Sparse Representation
	Acoustic Classification using Machine Learning Techniques
	Classification on Wireless Sensor Networks
	Compressive Sensing on Wireless Sensor Networks

	Conclusion and Future Work
	References

