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ABSTRACT
We aim to detect and diagnose energy anomalies, abnormally heavy
battery use. This paper describes a collaborative black-box method,
and an implementation called Carat, for diagnosing anomalies on
mobile devices. A client app sends intermittent, coarse-grained
measurements to a server, which correlates higher expected energy
use with client properties like the running apps, device model, and
operating system. The analysis quantifies the error and confidence
associated with a diagnosis, suggests actions the user could take to
improve battery life, and projects the amount of improvement. Dur-
ing a deployment to a community of more than 500,000 devices,
Carat diagnosed thousands of energy anomalies in the wild. Carat
detected all synthetically injected anomalies, produced no known
instances of false positives, projected the battery impact of anoma-
lies with 95% accuracy, and, on average, increased a user’s bat-
tery life by 11% after 10 days (compared with 1.9% for the control
group).

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques; H.3.4
[Systems and Software]: Performance evaluation (efficiency and
effectiveness); D.2.8 [Metrics]

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
mobile, battery, energy, diagnosis, analytics, collaborative

1 Introduction
Mobile computing, especially smartphones and tablets, is becom-
ing ubiquitous. Recent work [31] acknowledged the rise of a class
of mobile software misbehavior: energy bugs. These bugs add
to the list of causes of poor battery life that already includes sys-
tem configurations, user behavior, and power-hungry apps. Signifi-
cantly increased battery drain, called an energy anomaly, frustrates
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users, creates poor press for vendors, and can render devices unus-
able. For such a user, the goal is to understand what is using up the
battery, whether or not that is normal, and what can be done.

For some devices, there are third-party apps and OS services for
quantifying energy use and in some cases attributing it to specific
processes [21]. Unfortunately, a single device has limited diagnos-
tic power because there is no a priori specification of normal energy
use (c.f. many correctness bugs; crashing is almost always bad).
Local instrumentation alone is insufficient to determine whether
observed energy use is normal or merely a consequence of local
configuration parameters, system or device properties, or user be-
haviors. Without seeing the app running under different conditions,
we cannot say whether changing some aspect of the system would
improve battery life or by how much. No amount of local instru-
mentation can enable these capabilities; the information is simply
not present on any single device.

We overcome this limitation by using a community of devices;
ours is the first collaborative approach to energy diagnosis. Mea-
surements aggregated from multiple clients allow us to collect more
data more quickly, account (statistically) for individual variation
in configurations and usage, say whether energy use is normal,
and project the impact of certain actions. Each client occasionally
records the battery level and other local data. We aggregate these
measurements and compare average discharge rates under different
conditions, such as which third-party apps (a common source of
battery problems) are running.

If the average discharge rate while running some appA is higher
than when A is not running (but any other apps may be), that app
is an energy hog. A hog may be caused by a coding error (e.g., it
prevents the screen from dimming) or because such energy use is
intrinsic to the app’s function (e.g., it frequently requires the GPS).
If an app B is not a hog, it may be an energy bug on client X if the
average rate on X is higher than the average on all the other clients
running B. Energy bugs may be caused by a code error that only
triggers under certain conditions (which our analysis tries to dis-
cover), configurations, or user behaviors. Distinguishing between
hogs and bugs requires a collaborative method.

Our method for diagnosing energy anomalies uses the commu-
nity to infer a specification (expected energy use), and we call devi-
ation from that inferred specification an anomaly [9]. Unlike previ-
ous work, we are looking for regularity and deviation in the use of
energy and leveraging this insight to characterize the abnormal use
of that resource (the battery). Deviant energy use is an anomaly,
regardless of the cause (e.g., coding error or user behavior). Our
method further computes diagnosis trees called MCADs, which en-
able us to advise users what actions they can take to improve battery
life and to estimate the amount of improvement (accompanied by
error and confidence bounds).



Some prior work has aimed to understand energy use by em-
ploying a combination of hardware, OS, and app source code or
binary instrumentation [11, 23, 32, 44]. In this paper, we present
a non-invasive inference method for diagnosing energy anomalies
that uses all the information available to a user app on both the An-
droid and iOS platforms. In addition to being a pragmatic point in
the design space, our solution naturally possesses several desirable
qualities:

• Software-only. Hardware solutions are expensive, require tech-
nical skill, and void warranties.
• No kernel modifications. Hacking an OS requires skill; even

“jailbreaking” may result in the user bricking their device or
introducing bugs or security vulnerabilities.
• Black-box apps. The user does not have access to the source

code for most of the apps they run or, usually, the ability to
instrument binaries.

Extensions to our method could take advantage of platform-specific
information (our implementation does so), but the aim of this paper
is to evaluate how far we can take diagnosis without relying on such
data. Distribution mechanisms like the app stores make it easy to
get instrumentation onto off-the-shelf devices if that instrumenta-
tion is a standard app.

We take a black-box approach with process-level granularity;
when we observe anomalously high energy use, we implicate one
or more processes. Although this restriction may seem severe, for
a method that can still be distributed via the App Store, our method
is maximally invasive. Despite the limitations, these data are suf-
ficient to diagnose anomalies with enough accuracy to provide ac-
tionable recommendations that improve battery life in practice.

In this paper, we do the following:

• Present a collaborative inference method for detecting and diag-
nosing energy anomalies by looking for deviation from typical
battery use (see Section 2) and an implementation as an app
called Carat for iOS and Android (see Section 3), and
• Evaluate our method with a 500,000-device deployment, show-

ing a 100% detection rate of injected energy anomalies and par-
tial corroboration for the thousands of anomalies we diagnosed
in the wild (see Section 5).

The battery life of a device for which Carat generated action rec-
ommendations improves by an average of 41% during the first three
months (compared with 7.9% for devices without Carat recom-
mendations), 95.2% of the projected battery improvements (e.g.,
“Killing app A will increase battery life by 45m ± 5m”) match the
actual improvements within the 95% confidence bounds, and the
battery overhead of running Carat is negligible (indistinguishable
from running nothing, according to hardware power metering ex-
periments). We conclude with a discussion of the limitations of our
approach (see Section 6), an explanation of our place among the
related work and how we distinguish ourselves (see Section 7), and
a summary of the conclusions (see Section 8).

2 Method
Our method builds and compares conditional probability distribu-
tions of rates of energy use to look for energy anomalies; e.g., the
rates when an app is running on a client with one OS version (the
subject distribution) may be significantly higher than when run-
ning on clients with another OS version (the reference distribu-
tion). We focus on two kinds of anomalies: hogs and bugs (see
Section 2.1). In Sections 2.2–2.4, we compute the magnitude of
an anomaly, corresponding to the expected improvement in battery
life that an average user experiencing the anomaly would see if they
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Figure 1: We compare the expected values of conditional distri-
butions of energy drain rates to classify apps as hogs, bugs, or
neither. The distance d shown is used to estimate the severity of
the anomaly.

became like the average user not experiencing it. We quantify the
error and uncertainty of these projected improvements and decrease
that uncertainty by classifying measurements according to various
conditions (e.g., rates taken when WiFi was, or was not, available).
We generate the classifiers for an anomaly as a diagnosis tree (see
Section 2.5–2.6), which we then reduce to a minimal, complete set
of actionable recommendations (MCAD). An MCAD translates to
anomaly diagnoses, such as “With C% confidence, killing app A
would increase battery life by d1 ± e1 minutes; upgrading to OS
version V would increase battery life by d2±e2 minutes; disabling
WiFi. . . ” and so on.

2.1 Hogs and Bugs

We define two categories of anomalies, hogs and bugs, by the types
of subject and reference distributions we compare. Informally, an
app is an energy hog when using that app drains the battery sig-
nificantly faster, in a statistical sense defined in Section 2.4, than
the average app. In contrast, an app has an energy bug when some
running instances of the app (the ones in which the bug manifests)
drain the battery significantly faster than other instances of the same
app (the ones in which the bug does not manifest). Anomalies
do not imply incorrect behavior; they may have innocuous causes.
Hogs and bugs are computed as follows.

First, we build a (reference) distribution of battery discharge
rates for devices used normally: playing games, browsing the web,
making phone calls, leaving it idle, etc. Introduce an app A into
the community, which some subset of clients will install and use,
possibly in place of certain other apps. Build another (subject) dis-
tribution consisting only of rates observed while A is running. If
the expected battery life while A is running is significantly lower
than the expected lifetime without A, we call A an energy hog.

Intuitively, a hog lowers the community’s average battery life.
Note that an app may make use of energy-demanding device re-
sources (e.g., WiFi or GPS) without being considered a hog; anoma-
lous apps tend to overuse these resources. An app could be a hog
because of a coding error that affects many clients or because an
app legitimately needs to use large amounts of energy to serve its
function. Regardless, a user seeking to improve their battery life
would do well to not have a hog running. Although per-device in-
strumentation, such as Android provides, can quantify energy use
relative to other apps on one device, it cannot say whether that use
is abnormal relative to other devices or to apps not running on the
device, and so cannot detect or diagnose hogs.

An app B that is not a hog may still use much more energy on
some client X . If the expected discharge rate of B running on
client X (subject distribution) is significantly higher than that of
B running on other clients (reference distribution), we call B an
energy bug on client X . No amount of instrumentation on a single
device can detect or diagnose bugs.
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Figure 2: The process of converting battery level samples to rate distributions using the a priori distribution. Samples marked with
green Xs are discarded because the device was charging. iOS may report a battery level up to 5% above the actual level. The slope
bounds (x and y) determine the a priori slice.

An energy bug is therefore a pair: an app and a client it af-
flicts. An energy bug may be caused by a coding error that affects
a small group of clients, a rare configuration that uses more energy
(“correct” or otherwise), or unusual user behavior (which requires
a community to detect). If the buggy app is getting caught in a bad
state, restarting the app may return the app to normal; otherwise,
the remedy is the same as for a hog. Other actions may be sug-
gested by our diagnosis trees (Section 2.6), but the current app UI
does not reflect this.

We added a caveat that a hog cannot also be a bug to distinguish
anomalies that affect all or most clients (hogs) from those that affect
only a subset. Hogs are unlikely to be fixed by a restart, so we
recommend killing them. This difference in appropriate response
motivated the naming, and we found the distinction useful.

The subject and reference distributions are built using battery
level samples from the community, as we explain in the follow-
ing sections. The expected values of these distributions converge
rapidly to the true expected value as the number of clients increases
(see Section 5.7).

Note that even perfect knowledge of app behavior on a single
client could not distinguish hogs from bugs; heavy energy use on
one device could be a matter of configuration, user behavior, or
some other bug trigger that stays static across runs. In order to
say whether an app or app instance is anomalous, a community is
required.

2.2 Conditional Distribution Model

As discussed in Section 2.1, to detect energy anomalies we com-
pare two distributions of the battery drain (see Figure 1). This sec-
tion explains how such a conditional distribution is modeled, and
how we quantify the associated uncertainty. The input is a set of
n rates, tuples consisting of a feature vector c and a rate probabil-
ity distribution u, computed from some pair of samples (see Sec-
tion 2.3). We model these as being randomly sampled from a true
distribution Uc, with mean µ and variance σ2, composed of mea-
surements satisfying predicate c (e.g., iPhone 4 with WiFi access).

We first take the expected value of each u to yield a rate r. Con-
sider the conditional distributionRc of rates r satisfying c. To com-
pute the error and confidence bounds on the expected value of Rc,
we model it as n independent samples from Uc. These rates—
means computed from a large number of random i.i.d. variables—
are therefore approximately normally distributed as N (µ, σ

2

n
), ac-

cording to the Central Limit Theorem (CLT).
This result can also be obtained by starting with the assump-

tion that Rc is distributed as N (µ, σ2). Although we do not know
the parameters µ and σ2, we can estimate them using the rates
(r1, . . . , rn). The well-known maximum likelihood estimators for
these parameters—obtained by maximizing the log-likelihood func-

tion—are as follows:

µ̂ = r̄ =
1

n

n∑
i=1

ri

σ̂2 =
1

n

n∑
i=1

(ri − r̄)2.

By the Lehmann-Scheffé theorem, µ̂ is the uniformly minimum
variance unbiased estimator for µ: µ̂ ∼ N (µ, σ

2

n
).

This agrees with the CLT method. The estimator σ̂2, however,
is biased, so we apply Bessel’s correction to obtain the uniformly
minimum variance unbiased estimator for the sample variance:

s2 =
n

n− 1
σ̂2 =

1

n− 1

n∑
i=1

(ri − r̄)2.

By our normality assumption, we can construct the t-statistic t =
(µ̂−µ)/(s/

√
n), which has the Student’s t-distribution with n−1

degrees of freedom. We can approximate the error bounds on this
estimate of µ using a standard formula, where h is chosen accord-
ing to the desired confidence level:

µ ≈∈
[
µ̂− hs√

n
, µ̂+

hs√
n

]
= µ̂± ε

For 95% confidence error bounds, h = 1.96; we use this value for
all experiments in this paper. Crucially, to estimate the mean µ and
to assign error and confidence bounds to that estimate, we require
only the rates r, not the original distributions u.

As we gather more data, the uncertainty associated with these
expected values decreases. We gauge empirically how convergence
occurs in practice in Section 5.7.

2.3 Computing Rate Distributions
To compute rate distributions, our method must first convert a set
of samples from a single client into a set of rates. A sample is a
measurement taken at a particular point in time that consists of the
battery level (%) and a list of features: device model, OS version,
names of running processes, battery state (e.g., unplugged), etc.
Let st = (b, p, q, ĉ) denote a sample taken at time t, triggered
by reason q (e.g., the device was unplugged), where the battery
level was observed to be at fraction 0 ≤ b ≤ 1 and the battery
state was p (e.g., unplugged). The remaining features are denoted
collectively as a set ĉ of key-value pairs (e.g., “OSVersion=5.0” or
“AppXRunning=YES”).

First, we sort the samples by t and filter them using the p val-
ues to retain only those adjacent samples that span a period during
which the device was not plugged in, restarted, or otherwise in-
creasing in battery level: that is, only periods when the battery was
discharging. This reduces the initial set of all samples to a set of
consecutive pairs. We compute discharge rates from these pairs.
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Figure 3: We compare distributions of the expected values of
battery drain to identify anomalies (d′ > 0) and quantify the
error and confidence ranges for expected battery drain under
different conditions.

Our method allows for imprecision in both the battery level and
time measurements by converting a consecutive pair st1 = (b1, p1,
q1, ĉ1) and st2 = (b2, p2, q2, ĉ2) not to a single rate number but to
a rate distribution u. We associate this distribution with a set of
features, yielding the pair R = (u, c), computed from the features
of the constituent pair of samples, as explained below.

If both endpoints, (b1, t1) and (b2, t2), are exact, then the rate
distribution is u = b1−b2

t2−t1
with probability 1. Discharging yields a

positive rate.
On iOS, we only get such exact measurements when the UI-

DeviceBatteryLevelDidChangeNotification is triggered.
Otherwise, we estimate a probability distribution for the rate. There
are a variety of techniques one might employ, depending on the
nature of the uncertainty. In this paper, we address the case of iOS
measurements, which present unique challenges. Specifically, the
API provides battery level measurements at a granularity of 0.05.
In other words, if we request the battery level at an arbitrary time
during execution and get 0.95, the true level may be in the range
(0.90, 0.95].

The true rate, therefore, lies between b′1−b2
t2−t1

and b1−b′2
t2−t1

, where
b′1 = b1 − 0.05 and b′2 = b2 − 0.05, and subject to the con-
straint that the rate is nonnegative. Not all values in this range are
equally likely, however, so we use this range to take a “slice” of an
a priori rate probability distribution (see Figure 2), computed us-
ing the rates that clients were able to compute exactly, as described
above. There was sufficient data in this distribution to bootstrap
our method. We convert the slice to a probability distribution by
dividing by the slice mass and use it as the rate distribution u.

We compute c from ĉ1 and ĉ2 by taking the union: c = ĉ1 ∪
ĉ2. Features like device model do not change between consecutive
samples. We conservatively say that an app was running during the
period [t1, t2] if it was seen in either sample. It would be straight-
forward to use a different function if the semantics of the features
demanded it.

2.4 Comparing Rate Distributions

Let c1 be the conditions of the subject distribution (e.g., app A is
running) and c2 be the conditions of the reference distribution (e.g.,
app A is not running). We aim to ascertain whether c1 corresponds
to significantly greater energy use than c2. For this to be answered
in the affirmative, we require the following:

µ̂1 −
hs1√
n1
− µ̂2 −

hs2√
n2

= µ̂1 − µ̂2 − (ε1 + ε2) > 0.

Otherwise, the data does not support the assertion with the desired
confidence. Graphically, this corresponds to a positive value of d′

in Figure 3.
Carat suggests actions that would improve battery life along with

c1c3
A¬A

c2¬V

Figure 4: The minimal complete actionable diagnosis (MCAD)
for the example anomaly c1 described in Section 2.6, consisting
of c2 and c3. The dashed lines indicate nodes and subtrees that,
while produced via splits when the tree was constructed, did
not meet the criteria for an MCAD.

the expected value of that improvement for an average client (start-
ing from full charge and fully draining the battery). The improve-
ment if the client were to change from c1 (experiencing the anomaly)
to c2 (not experiencing it) follows directly from the distance metric
d = µ̂1− µ̂2. Within our confidence bounds, however, the value of
d could be as much as

e = h

(
s1√
n1

+
s2√
n2

)
.

This is symmetric about the expectation. The estimated improve-
ment is therefore d± e.
2.5 Splitting Distributions
In order to more confidently diagnose anomalies, we build a tree
that separates conditional distributions by features that significantly
affect energy use. Let each conditional distribution be a node in
this tree, uniquely identified by its condition c. Starting with some
distribution c (e.g., app A is running), iterate through each feature
f /∈ c and attempt a split by creating new child nodes c ∧ f and
c ∧ ¬f . For instance, if f is whether the client is running a Galaxy
S II, then one child would get the rates from node c taken from
Galaxy S IIs and the other would get all other rates satisfying c.

Splitting has two competing effects on the error bounds. First,
it reduces n, thereby increasing the error (increasing uncertainty).
Second, if feature f divides rates from distributions having signif-
icantly different means, then it will likely reduce the sample vari-
ance of at least one child and thereby decrease the error (decreasing
uncertainty).

A split is performed if the child nodes c1 and c2 yield a positive
gap, d′ > 0, as in Figure 3. Splitting generates two leaves, children
of c, with edges f and ¬f . Otherwise, we make no changes to the
tree and proceed to test the next feature. When no more features
remain, we can recursively repeat the process on any new leaves.

2.6 Diagnosis
This section describes how to generate a diagnosis for an anomaly,
which involves building a tree structure similar to a classification or
decision tree [24, 39], and conclude with an example. Consider a
node c1 corresponding to a subject distribution for an anomaly (see
Section 2.1). A diagnosis is a set of nodes with significantly lower
energy use than c1. Intuitively, a node in this diagnosis is some
condition under which the anomaly does not occur. The diagnosis
is complete if it includes all such nodes.

Let node c2 be said to be reachable from node c1 if, in the prob-
lem domain, it is possible to initially be in a state satisfying c1 and,
by performing some actions, then satisfy c2. We define an action-
able diagnosis to be one consisting only of reachable nodes.

A diagnosis is minimal if every subtree entirely contained in a
complete diagnosis is replaced by its root. The minimal complete
actionable diagnosis (MCAD) is unique, but note that it may in-
clude paths from c1 to multiple different states.

For example, consider the node for running app A, c1 = A,
with significantly more energy use compared with ¬A; it is a hog.
Say, for simplicity, that there are only two other features of the
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Figure 5: The Carat architecture, consisting of the crowd-
based front end, the central server with the analysis running
in the cloud, and the stored samples and results.

device—modelM and OS version V—and only one other possible
OS version. Every node in the subtree rooted at ¬A has signifi-
cantly lower energy use than c1, as does every node with ¬M or
with ¬V . In our domain, a user cannot change their device model,
so all nodes with ¬M are excluded from the actionable diagnosis
despite showing less energy use. To make the diagnosis minimal,
replace with their respective roots the nodes in the subtrees rooted
at A ∧ ¬V and ¬A. Thus, the MCAD (illustrated in Figure 4) is
exactly these two nodes (c2 and c3); the interpretation is that the
client can improve their battery life either by changing OS versions
or killing the hog.

These trees helped diagnose problems in the wild, such as the
Kindle bug in Section 5.4.3 where WhisperSync was using far more
energy when syncing over GSM. Our analysis discovered the bug
was correlated with the iPhone 4 and only occurred on iPads when
they did not have WiFi. There are dozens of such diagnoses that
we have investigated, and in some cases reported to the developers,
and thousands more produced by Carat.

Although the client UI only displays recommendations to kill
or restart an app or to upgrade the operating system, our anal-
ysis computes diagnoses—and can make recommendations based
on—features like internet connectivity status (radio or WiFi), mo-
bility, device model, app versions, GPS activity, the user ID (usu-
ally indicating a bad battery or strange user behavior), and so on.
Thus, our MCADs can recommend actions like turning on/off the
WiFi/GPS/radio, upgrading the app/OS to a newer version, or avoid-
ing an app under certain conditions (e.g., while moving around or
when not connected to the internet).

3 Implementation
The Carat architecture consists of a mobile app for device users (see
Section 3.1), a central server that collects the data (see Section 3.2),
and an analysis running in the cloud (see Section 3.3). Figure 5
shows an overview.

3.1 Carat App

We implemented Carat as an app on both the iOS and Android plat-
forms. It is available as a free download on Apple’s App Store,
Google’s Play Store, and as source code on GitHub, all of which
are linked from the project homepage1. The clients are lightweight;
e.g., the iOS app is ∼6000 lines of Objective-C, excluding third-
party libraries like Flurry (for collecting usage statistics), ShareKit
(for enabling sharing over social networks), Thrift (for handling
messaging protocols), CorePlot (for plotting), and several others.
This number also excludes auto-generated code related to the UI.

Carat runs as a user-level app on stock devices. This places
platform-specific restrictions on what information is accessible and
when our app is allowed CPU time to measure it. Our implementa-
tion records the following information using the public APIs:

• battery level fraction,
• battery state (e.g., plugged in or unplugged),

• names of running processes (each non-OS process roughly equates
to a single user app),
• state of memory (e.g., number of active pages),
• OS and version,
• device model, and
• a unique, anonymous, Carat-specific client ID.

This information resides in persistent storage until the app is brought
to the foreground, at which point it communicates with the Ca-
rat server over TCP. Our communication model is client-initiated
(since they are situated behind NATs) and utilizes Apache Thrift to
define the service interface.

The app intermittently transfers stored samples to the server over
3G or WiFi. Since we optimized Carat with respect to energy use,
the client invokes a data transmission to the server only when it is
running in the foreground and when the user is interacting with the
UI. At this time, the app also requests results from the server to
update the UI.

To comply with legal restrictions and to alleviate user concerns,
our implementation neither records nor transmits personally-iden-
tifying information. What it does record is visible within the app
(see Section 3.1.1), so the user knows exactly what Carat is measur-
ing. Furthermore, our EULA (required by the App Store and also
available on the project webpage1) includes an additional clause
making it clear exactly what our app will do. Finally, the app is
open source under a BSD license and is available on GitHub1.

Although jailbroken iOS devices allow us to collect more data
(e.g., app versions), requiring jailbreaking also would have restricted
the size of our userbase, biased our data toward a certain class of
users, and prevented us from distributing Carat on the App Store.
We opted for less data from more users, and our results demon-
strate that energy anomalies diagnosing does not require intrusive
instrumentation.

On Android, Carat samples when the ACTION_BATTERY_CHAN-
GED Intent fires, at 1% battery level granularity. As we discuss for
the remainder of this section, not only is Carat more restricted on
iOS than Android with respect to what it can measure, but also
when. Carat does not fall into the class of apps that are allowed to
run as proper background tasks, which are given intermittent CPU
time to perform tasks such as buffering audio, maintaining VoIP
server connections, or continuously tracking the GPS coordinates
of the device using location services. This means that, in order
to take samples while Carat is suspended, our app subscribes to
several notifications. When one of these notifications is triggered,
iOS allows Carat a small amount of time to take measurements
and save these to persistent storage; there is not enough time to
communicate with the server.

Carat subscribes to battery-related events (UIDeviceBattery-
LevelDidChangeNotification and UIDeviceBatteryState-
DidChangeNotification) and significant location changes (sta-
rtMonitoringSignificantLocationChanges). The location
change feature is especially valuable for us. It not only uses far less
energy than using the full-fledged location service, but it means that
the OS will automatically relaunch Carat if it is terminated while
the service is active. (In our deployment, while Carat was in the
background, roughly half of samples were triggered by location
services and a third were triggered by the battery level event.)

3.1.1 User Interface

When the Carat app is launched, it sends locally stored samples to
the server. When Carat is in the foreground, the temporal resolu-
tion of sampling increases several-fold. These observations—that
increased user engagement leads directly to data being recorded



Figure 6: The top of the main screen of Carat on Android,
showing recommended actions and projected battery life im-
provements.

Figure 7: The Device tab on the iOS client. The J-Score indi-
cates the percent of the community with worse battery life than
this device.

more often and reported sooner—motivated us to spend time hon-
ing the user interface, which we now present.

The main screen of Carat is the Actions list, shown in Figure 6,
which presents actions the user can take to improve battery life,
based on what Carat has learned about their device (e.g., what
apps they run), sorted by the expected improvement if that action
is taken. For example, the figure shows an action “Kill OruxMaps”
that would result in an expected increase of 44m. This means our
analysis observed that a typical device running this game will run
a full battery down to zero almost 44 minutes sooner than a typical
device running typical apps but not OruxMaps. Carat will suggest
restarting bugs, admitting the possibility that the instance is caught
in a bad state; if restarting does not help, it may be a configuration
problem or specific to user behavior. Finally, our current imple-
mentation suggests upgrading the operating system if it observes
that a newer version is correlated, across the community, with better
battery life. The current UI does not reflect all information present
in the diagnosis trees; that is planned for a future release.

The Device tab displays information about the client’s device,
including most of the information that is being recorded and trans-
mitted to our server: the process list, the device model and OS, the
state of memory, etc. This tab also prominently displays a number

called a J-Score, which is the percentile into which the client’s bat-
tery life falls within the community; a J-Score of 65 means a better
active battery life than 65% of similar devices. Active battery life
is computed based on Carat sampling and omits idle periods. This
client’s average battery drain when using the device would fully
deplete the battery in about 16 hours.

We created the J-Score (see Figure 7) to increase user interest
and sharing, hoping that it would introduce an element of social
competitiveness to energy efficiency. It appears, anecdotally, to
have worked. For instance, upon observing that her score had
dropped precipitously due to an influx of new users, one user re-
marked (tongue-in-cheek) that she was “no longer confident in our
analysis results.” She continues to check her score regularly, inci-
dentally sending us samples each time.

The Actions list only suggests killing or restarting an app that is
currently active (i.e., in the process list). The Hogs tab shows the
top hogs ever reported to have run on the device. The same is true
for bugs under the Bugs tab. Clicking on one of the hogs or bugs
brings up a detail page where the user can explore the data further.

3.2 Carat Server
The Carat server collects samples from instances of the Carat app
running on clients’ mobile devices and stores them for use by the
backend analysis (see Section 3.3), and it serves actions and other
analysis results to clients.

The server is a<1300-line Java application (excluding code auto-
generated by Thrift) that listens on TCP port 8080 for incoming
client connections. We host with Amazon EC2 because it provides
a mechanism to scale the server by spawning new instances and to
run a load-balancer to distribute incoming connections.

Received samples undergo lightweight processing to remove junk
or malformed data and are then sent to persistent storage. This pre-
processing removes OS daemons from the list of processes. We
manually maintain a blacklist of such daemons, as it does not ap-
pear that the iOS API provides enough information to determine
this automatically.

3.3 Backend Analysis
The Carat analysis consists of approximately 5000 lines of Scala,
written in the Spark framework [45]. Spark is a cluster comput-
ing framework designed for iterative and interactive jobs, distin-
guished by its use of Resilient Distributed Datasets (RDDs). RDDs
are read-only collections of objects partitioned across a set of ma-
chines that can be rebuilt if a partition is lost. Parallelism in Spark
is provided through operations on the RDDs (e.g., map, reduce,
and filter).

Existing data-flow based frameworks such as Hadoop or Dryad
depend on intermediate data being written and read from disk, in-
curring a huge performance hit for iterative jobs. In contrast, Spark
provides an efficient environment for multi-stage jobs by reusing
the same worker nodes across iterations. In addition, it provides a
robust programming model for interactive queries where it is desir-
able to load data into memory and query it repeatedly (with differ-
ent filters). These features, along with fault tolerance and its mem-
ory management model, made Spark a good fit for implementing
Carat’s analysis.

The production version of Carat runs in a 20-node cluster com-
posed of high-memory Amazon EC2 instances. This section pro-
vides an overview of Spark, the challenges related to parallelizing
our analysis, and our solutions.

After converting samples to rates, the computation proceeds in
two main stages: identifying hogs and bugs and then generating
MCAD trees (see Section 2). The first stage is summarized in Al-
gorithm 3.1



ĉr1

ĉrn
... ⇒map rc

rc
...
{0,1}

{0,1}
⇒
map

reduce rc

rc
...
count

count
⇒groupBy {{r,count}}c

{{r,count}}c
...

Figure 8: The parallelization process starts with rates as an RDD. Each rate r has features ĉ = (c1 . . . cn). To compute rate
distributions on feature c (e.g., each app), we map the RDD to a structure with (c, r) as the key (shaded) and, as the value, 1 if the
feature occurs and 0 otherwise. A reduce operation yields the rate frequencies for features. We map again, now with c as the key, and
(r, count) as the value. Grouping by key then gives the frequency of every R for every F . With slight modifications to the mapping
and grouping fields, we use this parallelization strategy for hogs, bugs, J-Scores, etc.

Algorithm 3.1: ANALYZERATES(allRates, aDist)

comment: Hog detection

for each app ∈ allApps

do


filt← ALLRATES.FILTER(app in _.allApps)
filtNeq ← ALLRATES.FILTER(app not in _.allApps)
d′ ← COMPAREDISTRIBUTIONS(filt, filtNeq, aDist)
if d′ > 0

then
{

comment: store hog and distributions

comment: Bug detection

for each id ∈ allIds

do



fid← ALLRATES.FILTER(_.id = id)
notF id← ALLRATES.FILTER(_.id!=id)
comment: Consider apps reported by id, omit hogs

fidNonHogs← FID.MAP(_.allApps) \Hogs
for each app ∈ fidNonHogs

do


appF id← FID.FILTER(app in _.allApps)
appNotF id← NOTFID.FILTER(app in _.allApps)
d′ ← COMPAREDISTRIBUTIONS(filt, filtNeq, aDist)
if d′ > 0

then
{

comment: store bug and distributions

scoreDist← GETDIST(fid, notF id, aDist)
comment: Save scoreDist for J-Score calculation

comment: Write J-Scores based on the processed distributions

In Section 2.3, we discussed how Carat converts consecutive
samples into rates. This computation involves a dependency be-
tween samples that complicates the parallelization process.

To remove this inter-sample dependency, we create RDDs of
consecutive sample pairs. This new RDD is free of dependencies,
so the Spark runtime can independently assign data and conversion
tasks to workers. This is done by applying a map operation to ev-
ery item in the RDD. The result of this operation is another RDD
consisting of rates. We add metadata for backtracking.

3.3.1 Parallelizing Distribution Building

The bulk of Carat’s analysis is the process of building and compar-
ing rate distributions. We load the rates into an RDD, which Spark
automatically distributes to all compute nodes. The parallelization
strategy must compute distributions on features in parallel. That
is, when building distributions on feature c, the technique must
compute distributions for all values of feature c. We devise such
a strategy using Spark’s RDD operations as follows.

We begin with items in the rate RDD, composed of rates r and
their associated features (c1, ..., cn), split among worker nodes. We
compute distributions of rates conditioned on c and compare them
with distributions satisfying ¬c. (We compute the distribution for
¬c by subtracting the distribution for c from the full distribution.)

The first step maps items to the format ((c, r), {0, 1}), keyed on
c and r and with a value of 0 or 1, indicating the presence of the
rate, computed from the apriori (see Section 2.2). A reduce op-
eration computes the frequency of each (c, r) pair. We remap the
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Figure 9: The Carat server sees minimal traffic from individual
clients, and the growth of this traffic is linear in the number of
users.
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Figure 10: The Carat analysis scales almost linearly when par-
allelized, while a serial implementation shows exponential com-
plexity.

reduced RDD and make c the key and (r, count) the value. When
we apply a groupBy on the key, we obtain the frequency of ev-
ery rate for every value of c, or a sequence of (c, (r, count)) (see
Figure 8).

We now have two RDDs, one with the frequency of rates satisfy-
ing c and its complement. The RDDs are joined using a groupWith
operation. A final map operation passes them through our distribu-
tion building and comparison module in a parallel fashion, thus
obtaining the expected improvements and the correlations. The
same parallelization strategy is applied to compute hogs (features
are apps), bugs (features are (UserID, App) pairs), J-scores (fea-
tures are UserIDs). We observe that most other feature-grouping
required in Carat’s analysis can be reduced to this parallel model.

3.4 Performance and Scaling

The success of our approach depends on an active community and
generates better results as that community grows, so the implemen-
tation must be scalable.

Our frontend experienced linear traffic scaling with the size of
our deployment, at a rate far below 1 byte per second per client
(see Figure 9). Sample reporting is presumed to be unreliable; a
client with no disk space or network access is allowed to throw
away samples and an overloaded server may drop packets. Five



Figure 11: Close-up of the wiring rig that connects our iPhone
4S test phone with the Monsoon Power Monitor.

medium Amazon EC2 instances behind an Elastic Load Balancer
(ELB) has been handling our userbase of half a million devices.

Our current implementation of the analysis backend (see Sec-
tion 3.3) uses the Spark cluster computing framework. The com-
putation is massively parallel, as every distribution and comparison
can be computed independently. Figure 10 compares the runtime
for an optimized serial implementation of the analysis algorithm
compared to a parallel implementation in Spark for increasing num-
ber of samples. The results underline the need for parallelization.
As our userbase grew, we made numerous optimizations. The anal-
ysis program now computes all reports for all our users (24 million
samples) from scratch in approximately 45 minutes.

4 Ground Truth and Overhead
For Carat to accurately account for when energy is being used, it
must convert intermittent (low precision) battery level samples into
energy drain rates in a way that is faithful to the ground truth. Fur-
thermore, the practicality of our method relies on sampling that is
sufficiently low-overhead that it does not have a significant impact
on the energy use, itself. In this section, we attach mobile devices to
power metering hardware: an iPhone 4S to a Monsoon Power Mon-
itor2 (see Figure 11) and a Galaxy Tab 2 10.1 to Leyden Energy’s3

battery-testing equipment. Our results confirm that Carat generates
accurate energy distributions while consuming few resources (i.e.,
almost no battery).

To test the fidelity and cost of our sampling, we ran the devices
through a script of varied activities. The script is not intended to
be a representative workload, but to repeatably exercise the device
features and drain the battery at different rates. It includes such
behaviors as downloading and running an app, browsing the web,
playing a game, and idle periods. The WiFi was turned on for some
periods and off for others.

On each device, we ran through the script under three different
arrangements: (1) hooked up to the power meter with and (2) with-
out Carat running and (3) not hooked up to the power meter with
Carat running. We compare the data from (1) and (2) to quantify
the overhead of running Carat; we compare the data from (1) and
(3) to ensure the meter was not influencing Carat’s measurements
and to assess the fidelity of our sampling and rate estimation. For
the runs performed without Carat, where our app appears in the
script, we substituted the standard Weather app.

The battery levels reported by the OS, both through the API (Ca-
rat samples) and the on-screen indicator, track the actual use of
power by the device. Figure 12 shows the iOS data. Between 00:30
and 1:30, Carat took no samples and conflated a higher-rate period
with a lower-rate period. Higher frequency sampling would have
avoided this error.

The expected energy discharge rates computed from the Carat
samples approximate the values computed using power metering
hardware. During the 9-hour iOS experiment, Carat took 9 sam-

Figure 12: The battery levels during our iOS power metering
experiments, either taken directly from the on-screen battery
indicator, the Carat samples, or computed from the meter’s
readings.
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Figure 13: The energy rate distributions from our iOS power
metering experiments, smoothed with a Gaussian kernel esti-
mator for visibility. Using the a priori, Carat is able to faithfully
estimate the distribution with sparse sampling, overestimating
the mean energy drain rate by only 0.00088% from 9 samples.

ples at 5% granularity; the power meter took 13,549 samples at ef-
fectively 0.0001% resolution. Carat overestimates the average dis-
charge rate by only 0.00088%/sec (see Figure 13). On the Galaxy
Tab, where Carat took twice as many samples as on iOS (19), the er-
ror is an order of magnitude less (0.00015%/sec). This accuracy is
possible thanks to the a priori distribution, which uses knowledge
of community behavior to refine noisy and incomplete measure-
ments; imprecision in per-client measurements is further mitigated
by the statistical backend analysis.

Carat imposes negligible energy overhead. Our power metering
hardware indicates that running through our iOS script with Ca-
rat running used less energy (53.691 mAh or ∼3.5% of the battery
less) than executing that same script with the Weather app running
in its place (i.e., 54 minutes less battery life running Weather in-
stead of Carat). We also ran the script without substituting another
app but found battery life with Carat running was slightly higher
than without; Carat’s energy use is less than the experimental pre-
cision. Similar results held on Android. We can afford to perform
sparse, low-overhead sampling on individual clients because we
aggregate such data from many clients.

5 Deployment Evaluation
Carat became available as a free download on Apple’s App Store
and on Google’s Play Store in mid-June of 2012. Days later, it
was featured on the popular TechCrunch blog4; the story was soon
picked up by dozens of other news sources. Within 24 hours of the
article’s publication, we went from a few hundred users to more
than 100,000. This doubled in the subsequent 24 hours. Carat has
been installed more than 560,000 times; of those, 475,041 clients
reported data (some never ran the app or never when connected to
the internet); 409,867 reported enough data to yield diagnoses.

Our salient results (see Sections 5.4–5.7) are that we found no in-
stances of false positives among the reported anomalies; after two
weeks, users who received Carat recommendations improved bat-
tery life by 13% (c.f. 3% for those who did not); and 95.2% of the
predicted battery life improvements fell within the predicted 95%
confidence bounds.



Device Model Number % Total % Platform
iOS

iPhone 4S 85,267 20.8 37.6
iPhone 4 54,853 13.4 24.2
iPhone 5,2 12,590 3.07 5.56
iPhone 3GS 12,364 3.02 5.46
iPhone 5,1 12,239 2.99 5.40
Other 49,258 12.0 21.7

Android
unknown 22,057 5.38 12.0
GT-I9100 15,770 3.85 8.60
Galaxy Nexus 10,333 2.52 5.64
GT-I9300 7238 1.77 3.95
GT-N7000 5009 1.22 2.73
Other 122,889 30.0 67.0

Table 1: The most common device models in our deployment,
showing the percent of users from whom we had sufficient data
to generate diagnoses.

OS Version Number % Total % Platform
iOS

5.1.1 136,485 33.3 60.2
6.0 35,708 8.71 15.8
6.0.1 21,068 5.14 9.30
6.1 10,009 2.44 4.42
Other 23,301 5.69 10.3

Android
4.0.4 40,512 9.88 22.1
4.0.3 24,439 5.96 13.3
2.3.6 19,782 4.83 10.8
unknown 18,075 4.41 9.86
Other 80,488 19.6 43.9

Table 2: The most common operating system versions in our
deployment, showing the percent of users from whom we had
sufficient data to generate diagnoses.

5.1 Data

Our users ran iOS (55%) and Android (45%). Tables 1 and 2 show
breakdowns of the most common device models and operating sys-
tems. In aggregate, the devices recorded 16.5 million rates, launch-
ing our app 7.4 million times (a median of 1.9 sessions per day).

The community ran 102,421 different apps, with a dispropor-
tionate number (56%) coming from Android users. Of these apps,
10,110 (9.9%) were classified as hogs, of which 83% were An-
droid apps. Carat detected energy bugs in thousands of apps; of
the 21,529,249 total possible bugs (user-app instance pairs), 1.1%
were classified as such.

Clients reported samples at a wide variety of rates, clustering into
casual users recording a few samples daily and heavier users sam-
pling sometimes a hundred times as often. The average number of
samples per day was nearly the same on both platforms (36.8 sam-
ples per user per day on iOS and 37.7 on Android), but the variance
of this rate on Android was 32% higher than on iOS. This is, in part,
because some Motorola devices only triggered the battery level in-
tent at 10% levels while most other Android devices triggered every
1%; iOS devices triggered consistently at 5% increments.

5.2 User Behavior

The frequency and duration of user engagement matters. The more
often users launch Carat, the fresher our data will be (that is when
it is sent to our server). On both iOS and Android, the longer
users keep Carat in the foreground, the more samples it can record.
The session length data (see Table 3) and click-path data show that
many stay in the app to explore the reports or check their J-Score.

Session Length Sessions % of Sessions
0–3 secs 257,632 4.15
3–10 secs 893,793 14.4
10–30 secs 2,100,538 33.9
30–60 secs 1,397,873 22.5
1–3 mins 1,109,035 17.9
3–10 mins 163,478 2.63
10+ mins 282,645 4.56

Table 3: The length of Carat sessions. The app only reports
data when it is opened and can sample more aggressively in
the foreground. So, incentivizing the user to open the app and
explore results from within the UI helps us collect more data.
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Figure 14: The number of days over which Carat users open
the app. Some users check Carat only over a period of several
days (to see their initial reports) and then never again; the ma-
jority, however, check back with the app occasionally over the
following weeks or months.

Almost half of the sessions last more than 30 seconds.
Figure 14 shows the period of time over which users open Carat.

After a month, we retain roughly 25% of our users; only 6% use
the app for more than 90 days. The median user opens Carat 1.9
times per day and 3.0 times per week.

5.3 Injected Anomalies

We added energy anomalies to an existing app—initially with no
apparent misbehavior—to confirm that Carat is able to detect the
new bugs. We chose the Wikipedia Mobile app made by Wikime-
dia Foundation for iOS because it is an open-source app used by
many of our clients but was not reported as an anomaly. We added
several behaviors to the Wikipedia app that consume large amounts
of energy when activated, with each one repeatedly using a differ-
ent resource: radio, CPU, and GPS.

We installed the buggy Wikipedia instance on one of our test
devices, an iPhone 3GS. Wikipedia Mobile was already in use by
several clients at this point, so a baseline distribution had been es-
tablished and Carat did not consider the app to be anomalous. We
ran the app for one day for each injected bug (i.e., radio, CPU, and
GPS), activating the app a handful of times during the day but only
leaving it open for a couple of minutes (casual use). At the end of
the third day, we ran the analysis with the real, non-buggy data as
the reference distribution and once each with the data from exactly
one of the buggy days as the subject distribution. Thus, we could
declare success if the analysis reported three bugs, one for each
injected behavior.

Indeed, after performing the injection, Carat correctly detected
each of the three bugs (no false negatives). Figure 15 shows the
reference distribution and each of the three subject distributions for
the iPhone 3GS running our buggy Wikipedia build. The expected
improvement reported for fixing each bug (i.e., returning the app to
typical Wikipedia Mobile behavior) was 27m 26s for the CPU bug,
9m 22s for the GPS bug, and 55m 28s for the Radio bug, which
agreed with what the experimenter observed on the device.
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Figure 15: The reference (anomaly-free) and anomalous rate
distributions for the modified Wikipedia Mobile, using only the
a priori from the private deployment. Carat successfully de-
tects all of the injected bugs.

5.4 Wild Anomalies

Carat detected 10,110 hogs and 233,258 buggy app instances among
the 102,421 apps run by the 409,867 users for whom we had suf-
ficient data to generate reports. We ranked the hogs and bugs by
a function of severity (predicted battery impact) and popularity
(number of users than ran the hog or had a buggy instance), re-
sulting in one list for each kind of anomaly. Although our manual
validation process prevented us from checking the entire list, we did
check the first two dozen from each list using a combination of user
complaints, news coverage, analysis tools (see Section 5.4.1), or
experimental results in the literature (e.g., [32, 33]). Among these
anomalies, there were no false positives. Later in this section, we
describe a subset of these manually-checked anomalies that we feel
highlight interesting circumstances or salient aspects of our analy-
sis (see Sections 5.4.2–5.4.3). Note that the number of apps for
which we performed manual validation (∼50) already makes this
paper a high-water mark for evaluating energy diagnosis on mo-
bile devices, even without considering the other 100,00+ apps that
Carat analyzed or the many thousands of diagnoses it generated.

Our attempts to acquire the tools used in prior work to validate
our results were unsuccessful; the authors either did not respond,
told us the tools were not in a state to be used by people other than
themselves and they didn’t have time to help us, or they simply
refused to furnish the tool. Regardless, no existing tool that we
know of would have allowed us to validate all tens of thousands of
anomalous apps and app instances that Carat discovered.

5.4.1 External Validation with ARO

AT&T provides a tool called the Application Resource Optimizer
(ARO) that uses network traces to identify communication-related
misbehavior. We selected the four most severe hogs (GO SMS Pro,
Advanced Task Killer, Line: free calls and messages, and Chant
for Twitter) and four non-anomalies (Lookout Antivirus, Facebook,
Gachinko Tennis, and Dropbox) on Android that showed a strong
correlation between increased energy use and network connectivity.

The tool indicated that all four hogs had bursts of network com-
munication that could be more tightly grouped. Three were missing
cache headers that might have reduced retransmission; the fourth,
Advanced Task Killer, was implicated for wasting energy by not
closing network connections. Although half the non-anomalies
also lacked cache headers, they did not perform redundant down-
loads like some of the hogs. ARO corroborated these hogs, but also
gave some indications of misbehavior by the non-anomalies; only
the accompanying energy measurements separated the misbehav-
ior that hurts battery life from that which doesn’t. Furthermore,
without a collaborative method like Carat that collects data from
multiple devices, it is hard to say whether any of this behavior is
intrinsic to the app or a function of device- or user-specific factors.

5.4.2 Hogs

Of the 102,421 apps seen during our deployment, 10,110 (9.9%)
were categorized as hogs. (Before checking for statistical signifi-
cance, there were 15,038 (14.7%).) Recall that an app is a hog if
the community-wide average discharge rate while running the app
is significantly greater than the average rate while not running it
(see Section 2.1) and that we can compute the expected improve-
ment in battery life by killing a hog (see Section 2.4). Hogs may be
caused by an oft-triggered code bug or may be simply intrinsic to
the app. Users concerned about battery life are advised by the Ac-
tion list to kill hogs; the user is not concerned about the intention,
or lack thereof, behind the energy use.

While some hogs were unsurprising to us (e.g., Pandora and
Skype), others were (e.g., some Android themes and wallpapers).
For instance, while most apps for searching airline fares and book-
ing flights are not among the hogs—they use the network but not
heavily and do not use many other resources—there were a handful
of such apps that appeared among the top hogs. We discovered that
all those airline apps were written by the same developer and were
suffering from a systematic programming inefficiency.

The top ten hogs (by severity) on iOS all fall into the category of
utilities, including iDesp Money (for budget management), Ushahidi
(for sharing stories within a community), and the Citi Mobile bank-
ing app. There were no games; despite being typically resource-
intensive, they did not use energy as anomalously as other kinds of
apps. Similarly, the top hogs on Android were primarily utilities,
but there were also several wallpaper apps (e.g., Beach at Night
and Heart and Love) and one game (which has since been removed
from the app store).

We now describe a couple of hogs from among those we manu-
ally checked (again, there were no false positives) and cite corrobo-
rating evidence that the app does, indeed, consume an anomalously
large amount of energy.

Pandora Radio: Carat classifies Pandora Radio, which 7116
iOS users ran, as a hog and says killing it will increase an client’s
average battery life by 50m 43s. This is corroborated by user re-
ports, one of which claimed Pandora drained the battery to 30% in
a few hours even with the screen off5. To improve battery life while
using Pandora, the MCAD suggests using WiFi for connectivity (an
additional 25–35m). Pandora is an example of an intuitive hog, as it
uses several energy-hungry resources, but Carat quantifies the cost.

Skype: 27,741 iOS clients were running the Skype VoIP app,
which was also reported as a hog. This is also confirmed by the fo-
rums; one user even used the term “power hog” to describe Skype6.
Skype’s energy use is driven by network connectivity; when no
network connection is available, expected battery life is about 6.5h
above average.

Go launcher exe new theme. . . : (sic) Is an unlikely hog on
the Android platform that costs most users between 2h 1m and 2h
53m of battery life. Experiences with Go Launcher and its variants,
which change the UI of the device, vary among users7, but gener-
ally “fancier” themes and widgets cause higher battery drain8.

Live wallpapers: Carat identifies several Android Live Wallpa-
pers as energy hogs. Two that rank among the top 10 most severe
hogs on the Android platform are Beach at Night9 and Heart and
Love10. They cost most users 2h 33m–2h 49m and 2h 37m–2h
51m battery life, respectively. Both are ad-supported; the detri-
mental effects of adware are known [32]. Both live11 wallpapers12

and adware13 have been blamed for abnormally fast battery drain.

5.4.3 Bugs

Recall that a bug is an app that is not a hog (it usually consumes
below-average energy) but consumes far more energy on some clients
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Figure 16: MCAD for the Kindle app on iOS, showing the ex-
pected battery life when using exclusively this app under var-
ious conditions. The diagnosis points to network connectivity
as the primary determinant of energy use. Note that, as with
all bugs, Kindle uses less energy than a typical app (“Without
Kindle”) when the bug is not triggered.

than others (see Section 2.1). Although the current Carat client-side
UI only suggests restarting a bug (in case it is simply caught in a
bad state), the MCAD diagnosis computed on the backend enables
more specific recommendations, such as disabling WiFi or turn-
ing on GPS; we plan to add this in later versions of the app. Note
that, without a community of clients, distinguishing bugs from hogs
would be impossible and identifying the triggers would be difficult.

The maximum number of bugs that Carat could report is the sum
over clients of the number of non-hog apps they ran, which was
9.1 million in our dataset. Our method reported 233,258 buggy app
instances (1.1%); we describe some examples below.

Many popular apps, including Facebook and Youtube (on iOS)
and Twitter and Chrome (on Android), exhibit anomalously high
energy use among small subsets of users. This suggests that those
apps have configurations or usage modes that consume significantly
more energy. By severity, however, most of the bugs are again
less popular utilities: e.g., Koder and Raved on iOS and Police
Scanner and Are You Watching This?! on Android. There were
two games among the top ten most severe bugs: Tower of Fortune
(iOS) and Papaya Diamond (Android). Unlike the Android hogs,
no wallpapers were among the top bugs.

Kindle: This electronic book app was reported as a bug for 254
out of 2617 iOS clients (9.7%). Figure 16 shows a diagnosis tree
for Kindle, in which 3G connectivity appears especially detrimen-
tal. The support forums blame the problem on WhisperSync14,
which synchronizes notes, bookmarks, previous location, and Pop-
ular Highlights. When syncing over GSM, in particular, the device
uses much more energy than syncing over WiFi. Our data support
this hypothesis, which had previously been only anecdotal.

Facebook Messenger: Was anomalous on 792 of 7350 Android
clients (10.8%). The MCAD indicates that upgrading the OS im-
proves battery life (71–83m), and that WiFi is more energy effi-
cient than other connectivity options. Using the app while station-
ary gives a 63–97m boost to battery life. (Note that Carat does not
advise users to stand still.)

YouTube: Was a bug on 3118 of 37475 iOS clients (8.3%). The
MCAD shows that while moving, users of mobile Internet have
a battery life advantage over WiFi users (25–34m). When com-
pared to immobile WiFi users, mobile network users still have a
20–28m advantage. This is contrary to many apps, where WiFi is
less energy-consuming.

Twitter: Was reported as a bug on 2744 of 18651 Android clients
(14.9%). The MCAD for Twitter indicates that the most critical
cause of battery drain is an old OS version. Users of Ice Cream
Sandwich (4.0.4) got 94m to 100m more battery life than other An-
droid Twitter users. Use of WiFi with 4.0.4 yielded another 85m to
105m; this was not observed on other OS versions.

SwiftKey: A popular keyboard application for Android, SwiftKey

0 20 40 60 80

1.
0

1.
2

1.
4

Days Since First Report

R
el

at
iv

e 
B

at
te

ry
 L

ife All
With Anomalies
Without Anomalies

Figure 17: Average relative battery life of Carat users following
the generation of their first report (hog and bug lists), using the
battery life of the first day as the baseline. A typical user (black
line) sees an 7.0% increase after a week, surpassing 23% after
two months.

is one of the top 15 bugs by severity, affecting 2402 users. The de-
veloper website indicates that the latest release of the app exhibits
high energy drain, especially in newer versions of Android OS15.

5.5 Diagnosis on Other Features
Carat analyzes the battery life implications of many other combina-
tions of features on the backend as part of the MCAD generation,
including the OS version, device model, internet connectivity, and
so on. For various reasons, the Carat UI does not recommend that a
user take actions like purchasing a different device model or down-
grading to an earlier operating system version (those features are
not actionable, as discussed in Section 2.6). Other than killing or
restarting apps, the only action our current Carat implementation
might suggest to users is to upgrade the operating system.

iOS 5.0.1: Shortly after Apple released iOS 5.0, many users
complained of issues with poor battery life. The subsequent point
release—iOS 5.0.1—was touted, in part, as a fix for these problems.
The public reaction was mixed16. One user said, “After updating I
am seeing my power drain at a much quicker rate”; another claimed
his phone was “Still draining at the exact same rate”; and a third,
meanwhile, reported that his battery life was “doing much better.”
In summary, users had a wide variety of anecdotes but no data.

Using the data from our deployment, Carat discovered that, in
fact, the average discharge rate for devices running 5.0 was higher
than for devices running 5.0.1. Clients running 5.0.1 should expect
to see, on average, a 1h 11m 30s increase in battery life, supporting
Apple’s claims that the update addressed some of the battery prob-
lems in the initial release. Users running iOS 5.0 at the time 5.0.1
was released (and this diagnosis was computed) were advised by
our app to upgrade.

5.6 Battery Life Improvement
One key metric metric is whether battery life tends to increase over
time for our users, a coarse measure of whether using Carat reduces
energy use. The metric is coarse because it includes several con-
founding factors: some of these users may not have followed Ca-
rat’s recommendations, the population is biased toward users who
originally had battery problems (and thus installed Carat), and users
may have also employed alternative means to decrease energy use.
Some users did not run any apps that Carat considers anomalies and
therefore did not receive any reports; that is our control group. Fig-
ure 17 shows average relative battery life over time for Carat users
who did (“With Anomalies”) and did not (“Without Anomalies”)
receive reports. (The increased variance at higher “Days Since First
Report” is due to user attrition; see Figure 14.)



After 2 weeks, the average user sees an 11.7% improvement in
battery life, however, users who received reports saw a 13% in-
crease while those who did not gained only 3%. This is more pro-
nounced for long-term users (90+ days); when Carat recommended
battery-saving actions, users improved battery life by 41%, com-
pared with 7.9% when Carat did not.

Although users who received recommendations from Carat had a
marked improvement in battery life, we considered the possibility
that the improvement may have arisen through actions other than
those specifically suggested by our app. For example, upon being
told to kill App X, the user might instead simply restart their phone,
kill all the running apps, or coincidentally stop using App X as part
of normal app turnover. This may be partly true, but the data also
clearly show that users are performing the actions Carat presents to
them; after receiving their first report, anomalous app usage (hogs
and bugs) decreased by 60%. This is almost double the decrease for
non-anomalous apps (33%). (A number which is probably higher
than turnover in the general population due to the more prevalent
device restarting and app killing among our users.)

These data suggest that not only do users who receive reports
manage to significantly improve their battery life, but that they are
following the recommendations contained in those reports. Per-
forming the Carat actions yields increased battery life.

5.7 Improvement Prediction Accuracy

A second key metric is how closely the Carat Actions—and the pro-
jected benefits—match the observed benefits. Specifically, when
Carat predicts that killing/restarting an app a will improve battery
life by b± e seconds with 95% confidence, how often is it correct?
We found that Carat tended to underestimate the improvement that
clients would experience, but 95.2% of these predictions fell within
our 95% confidence bounds.

We reached this number using the following analysis. Let xu,a
be the fraction of the time that user u reports running app a, within
some window of time. The estimated battery life improvement b
(in seconds) that Carat quotes assumes a transition from xu,a =
1 ; 0. We assume that the achieved benefit is linear in ∆x, so
moving from xu,a = 1 ; 0.5 (using the app half half the time
instead of all the time) yields an improvement of 0.5b seconds;
transitioning from xu,a = 0.5 ; 0.3 yields an improvement of
0.2b seconds. (Other actions that Carat suggests, such as upgrading
the operating system, cannot be done fractionally.) The predicted
benefit b is therefore a slope; we compare the predicted improve-
ment curve y = bx (and error margins) with the empirical curve—a
least-squares best-fit line through the actual battery life and usage
numbers collected by the app—with slope b′.

As stated above, the data show that if Carat advises killing an
app and that doing so will increase battery life by b±e, then across
all recommendations made by Carat there is a greater than 95%
chance that decreasing the frequency of app use will result in the
projected improvements (subject to the scaling described above).

As the number of clients and samples increases, so does the ac-
curacy of our predictions. In particular, Carat’s estimate of the ex-
pected value—the crucial number used to identify anomalies and
compute expected benefits—tends to converge to the true value.
Figure 18 shows the shrinking relative error envelope of this esti-
mate for some of the anomalies Carat detected in the wild.

There is no guarantee of convergence in practice because the
true rate distribution may be neither stationary nor identically dis-
tributed. Indeed, this paper has discussed at length one situation
where a rate distribution may not be identically distributed across
clients: the presence of an energy bug. As long as a bug affects a
constant fraction of the population, however, this convergence hap-
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Figure 18: As the number of samples increases, the relative
error in our estimate of the expected discharge rate shrinks
rapidly. Above is the average expected value for several of the
largest anomalies seen in our deployment and the 95% confi-
dence error envelope.

pens almost surely, in the mathematical sense (as the number of
samples goes to infinity, the estimated expected value converges to
the true value with probability 1).

6 Limitations and Future Work
Carat takes a black-box approach to diagnosing anomalies, which
carries inherent limitations. Without visibility into the mechanisms
(e.g., code, messages, or kernel state) and without the ability to per-
turb the system (i.e., it is passive and cannot modify other apps), the
best possible result is to say what aspects of the system are likely to
be involved with the abnormal battery discharge. This is what Ca-
rat provides, and it does so by correlating real-valued signals from
features without initial assumptions about their relationships. This
kind of approach has proven fruitful in prior work [26, 28].

Compared to iOS, Android provides greater visibility into the
behavior of apps and the operating system, as would facilitating
app instrumentation through a developer API. We opted for feature
parity with iOS for this paper in order to evaluate a method that
works for both platforms, but plan to leverage such additional data
in later versions of the app (and already do so on the backend).

As with any passive approach, which a regulation iOS app must
be, our results are limited by the data. If none of the clients ever
runs a particular buggy app, Carat will never detect a problem; if
two apps are always run together and one is anomalous, they will
both be categorized as anomalies and there is nothing that correla-
tion can do to disambiguate. The likelihood of spurious correlations
increases with the number of features (apps and configurations).
The way to combat this problem is with more data. For example,
as we gather more samples involving highly correlated apps that
show one but not the other, we can begin to discern which (or pos-
sibly both) are responsible for the anomaly. The results show that
our data are sufficient for actionable diagnosis.

Carat is targeted at users, but additional in-app instrumentation
(such as via a developer API) would enable finer-grained diagnoses
for developers, e.g., identifying what user behaviors, app settings,
or other environmental conditions trigger abnormal energy use.

7 Related Work
There is a rich body of work in diagnosis for correctness and per-
formance. Recent work identified an emerging class of software
misbehavior that afflicts battery life [31] and proposed a method for
detecting a specific class of such bugs [33]. We believe our work is
the first collaborative method to automatically detect and diagnose
abnormal energy use on mobile devices. Unlike previous work, Ca-
rat is able to disambiguate between hogs and bugs—anomalies that
are intrinsic to an app versus those that may be triggered by device-
or user-specific conditions, respectively—a capability that requires
measurements from multiple devices. An early prototype and small
deployment of the method on a single platform was summarized in



our workshop paper [27].
Our approach is a form of statistical debugging, in which (loosely

speaking) deviant behavior is called a bug [9]. Such methods have
been used to identify code paths correlated with failure [16, 17],
concurrency bugs [14], shared influence (surprising behavior that
is correlated in time) [26, 28], invariant violation [13], and config-
uration errors [41]. In the field of security, anomaly-based intrusion
detection has a long history [8, 34, 35]. Recently, statistical meth-
ods were used to diagnose energy problems by comparing the be-
havior of an app at different times on a single device [21]; this kind
of approach cannot disambiguate hogs from bugs or separate app-
intrinsic behavior (many apps consume different amounts of energy
depending on what features are being exercised) from device- or
user-specific factors.

These statistical methods frequently make use of a large number
of instances or users of these programs, which is sometimes called
a community. A recent paper suggests a collaborative debugging
framework called MobiBug for mobile devices [1], but they focus
on crashes, not continuous or intermittent measurements. There is
prior work for file systems [42] and peer-to-peer networks [22] that
generate alerts based on aggregate behavior.

Projects like the Application Communities project [20] use the
community to distribute work; instead, we employ uniform, light-
weight instrumentation. There are also security applications for
the community besides detection, such as diagnosing problems by
discovering root causes [41] and preventing known exploits (e.g.,
sharing antibodies) [7, 25].

Many projects have sought to profile or emulate energy use on
mobile devices [10, 11, 23, 29, 30, 32, 44], sometimes for predic-
tion [37, 40], mitigation [3, 18], diagnosis [21], or developer tools
[15]. Human interface studies have shown that 80% of mobile users
will take steps to improve their battery life [36]; Carat recommends
specific, personalized actions for users to take and even estimates
the benefit they are likely to see. This is a distinguishing feature of
our work.

Energy debugging shares similarities with performance debug-
ging; both areas aim to account for the use or abuse of a shared re-
source. Some notable performance debugging work includes history-
based analysis in datacenters [5], resource accounting [4], and black-
box debugging [2]

Pinpoint [6] and Magpie [4] track communication dependencies
with the aim of isolating the root cause of misbehavior; they require
instrumentation of the application to tag client requests. In order
to determine the causal relationships among messages, Project5 [2]
and WAP5 [38] use message traces and compute dependency paths.
D3S [19] uses binary instrumentation to perform online predicate
checks. Recent work shows how access to source code can fa-
cilitate tasks like log analysis [43] and distributed diagnosis [12].
CarrierIQ17 collects detailed measurements by integrating with the
mobile platform, and has drawn criticism for the intrusiveness of
their implementation18. Unlike the preceding methods, we do not
assume such access to code, communications, or binaries, taking
instead a black-box approach with broader deployment potential.

8 Conclusions
This paper presents a method for diagnosing energy anomalies in
the wild given incomplete and noisy instrumentation measurements
from a community of clients. We implemented this method as an
app for iOS and Android called Carat and deployed it to a com-
munity of more than 500,000 devices. Carat diagnosed thousands
of anomalies, which involves detecting the anomaly, estimating its
severity, quantifying the error and confidence bounds on that esti-
mate, and sometimes identifying the device features that are corre-

lated with the anomaly. We also validated our implementation with
hardware measurements and synthetic anomaly injection, showing
that Carat can accurately estimate energy use and detect anomalies.

Specifically, Carat imposes negligible overhead on each device,
estimates energy use with accuracy comparable to hardware, de-
tected 100% of synthetically injected anomalies in controlled ex-
periments, produced no known false positives (based on corrobo-
rating dozens of anomalies using other methods), and predicted the
battery impact of anomalies with greater than 95% accuracy. Fi-
nally, users receiving reports from Carat improved their battery life
by 21% after a month; users who received no reports gained only
5.5% over the same period.

A collaborative approach is required to diagnose energy bugs;
even complete knowledge of app behavior on a single client could
be specific to a device or user. We believe this is the first collab-
orative diagnosis of energy anomalies in the wild and represents
a crucial extension of previous work in distributed and statistical
debugging to include a new class of abnormal behavior related to
mobile energy use.

Notes
1http://carat.cs.berkeley.edu
2http://msoon.com/LabEquipment/PowerMonitor/
3http://www.leydenenergy.com/
4http://techcrunch.com/2012/06/14/carat-battery/
5http://bit.ly/yTIUeU
6http://bit.ly/wsMraK
7http://bit.ly/WZ4dQi
8http://bit.ly/QSiv72
9com.bobisoft.wallpaper.beachatnight

10com.custom.lwp.FREE_HeartAndLove
11http://bit.ly/QSixvT
12http://bit.ly/TLWRhV
13http://bit.ly/Scgjs2
14http://gdg.to/xeK9CZ
15http://bit.ly/ODNyxQ
16http://zd.net/y0dyCr
17http://www.carrieriq.com/
18http://onforb.es/zd1zmF
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