
http://www.cambridge.org/9780521872652

This page intentionally left blank

A First Course in Statistical Programming with R

This is the only introduction you’ll need to start programming in R, the open-
source language that is free to download, and lets you adapt the source code
for your own requirements. Co-written by one of the R core development
team, and by an established R author, this book comes with real R code
that complies with the standards of the language.

Unlike other introductory books on the ground-breaking R system, this
book emphasizes programming, including the principles that apply to most
computing languages, and the techniques used to develop more complex
projects. Learning the language is made easier by the frequent exercises
within chapters which enable you to progress conf idently through the
book. More substantial exercises at the ends of chapters help to test your
understanding.

Solutions, datasets, and any errata will be available from the book’s website.

W. John Braun is an Associate Professor in the Department of Statistical
and Actuarial Sciences at the University of Western Ontario. He is also a
co-author, with John Maindonald, of Data Analysis and Graphics Using R.

Duncan J. Murdoch is an Associate Professor in the Department of
Statistical and Actuarial Sciences at the University of Western Ontario.
He was columnist and column editor of the statistical computing column
of Chance during 1999–2000.

A First Course in
Statistical Programming
with R

W. John Braun and Duncan J. Murdoch

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-87265-2

ISBN-13 978-0-521-69424-7

ISBN-13 978-0-511-50614-7

© W. John Braun and Duncan J. Murdoch 2007

2007

Information on this title: www.cambridge.org/9780521872652

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521872652

Contents

Preface page ix

1 Getting started 1

1.1 What is statistical programming? 1

1.2 Outline of the book 2

1.3 The R package 3

1.4 Why use a command line? 3

1.5 Font conventions 4

1.6 Installation of R 4

2 Introduction to the R language 5

2.1 Starting and quitting R 5

2.1.1 Recording your work 6

2.2 Basic features of R 7

2.2.1 Calculating with R 7

2.2.2 Named storage 7

2.2.3 Functions 9

2.2.4 Exact or approximate? 9

2.2.5 R is case-sensitive 12

2.2.6 Listing the objects in the workspace 12

2.2.7 Vectors 12

2.2.8 Extracting elements from vectors 13

2.2.9 Vector arithmetic 14

2.2.10 Simple patterned vectors 15

2.2.11 Missing values and other special values 16

2.2.12 Character vectors 16

2.2.13 Factors 17

2.2.14 More on extracting elements from vectors 18

2.2.15 Matrices and arrays 18

2.2.16 Data frames 19

2.2.17 Dates and times 21

2.3 Built-in functions and online help 21

2.3.1 Built-in examples 22

2.3.2 Finding help when you don’t know

the function name 23

2.3.3 Built-in graphics functions 23

2.3.4 Additional elementary built-in functions 25

2.4 Logical vectors and relational operators 26

2.4.1 Boolean algebra 26

2.4.2 Logical operations in R 27

2.4.3 Relational operators 28

2.5 Data input and output 29

2.5.1 Changing directories 29

vi CONTENTS

2.5.2 dump() and source() 29

2.5.3 Redirecting R output 30

2.5.4 Saving and retrieving image files 31

2.5.5 Data frames and the read.table function 31

2.5.6 Lists 31

Chapter exercises 32

3 Programming statistical graphics 33

3.1 High-level plots 33

3.1.1 Bar charts and dot charts 34

3.1.2 Pie charts 35

3.1.3 Histograms 35

3.1.4 Box plots 36

3.1.5 Scatterplots 38

3.1.6 QQ plots 39

3.2 Choosing a high-level graphic 41

3.3 Low-level graphics functions 42

3.3.1 The plotting region and margins 42

3.3.2 Adding to plots 43

3.3.3 Setting graphical parameters 45

Chapter exercises 46

4 Programming with R 47

4.1 Flow control 47

4.1.1 The for() loop 47

4.1.2 The if() statement 50

4.1.3 The while() loop 54

4.1.4 Newton’s method for root finding 55

4.1.5 The repeat loop, and the break and next statements 57

4.2 Managing complexity through functions 59

4.2.1 What are functions? 59

4.2.2 Scope of variables 62

4.3 Miscellaneous programming tips 63

4.3.1 Using fix() 63

4.3.2 Documentation using # 64

4.4 Some general programming guidelines 65

4.4.1 Top-down design 67

4.5 Debugging and maintenance 72

4.5.1 Recognizing that a bug exists 72

4.5.2 Make the bug reproducible 73

4.5.3 Identify the cause of the bug 73

4.5.4 Fixing errors and testing 75

4.5.5 Look for similar errors elsewhere 75

4.5.6 The browser() and debug() functions 75

4.6 Efficient programming 77

4.6.1 Learn your tools 77

4.6.2 Use efficient algorithms 78

4.6.3 Measure the time your program takes 79

CONTENTS vii

4.6.4 Be willing to use different tools 80

4.6.5 Optimize with care 80

Chapter exercises 80

5 Simulation 82

5.1 Monte Carlo simulation 82

5.2 Generation of pseudorandom numbers 83

5.3 Simulation of other random variables 88

5.3.1 Bernoulli random variables 88

5.3.2 Binomial random variables 89

5.3.3 Poisson random variables 93

5.3.4 Exponential random numbers 97

5.3.5 Normal random variables 99

5.4 Monte Carlo integration 101

5.5 Advanced simulation methods 104

5.5.1 Rejection sampling 104

5.5.2 Importance sampling 107

Chapter exercises 109

6 Computational linear algebra 112

6.1 Vectors and matrices in R 113

6.1.1 Constructing matrix objects 113

6.1.2 Accessing matrix elements; row and column names 115

6.1.3 Matrix properties 117

6.1.4 Triangular matrices 118

6.1.5 Matrix arithmetic 118

6.2 Matrix multiplication and inversion 119

6.2.1 Matrix inversion 120

6.2.2 The LU decomposition 121

6.2.3 Matrix inversion in R 122

6.2.4 Solving linear systems 123

6.3 Eigenvalues and eigenvectors 124

6.4 Advanced topics 125

6.4.1 The singular value decomposition of a matrix 125

6.4.2 The Choleski decomposition of a positive definite matrix 126

6.4.3 The QR decomposition of a matrix 127

6.4.4 The condition number of a matrix 128

6.4.5 Outer products 129

6.4.6 Kronecker products 129

6.4.7 apply() 129

Chapter exercises 130

7 Numerical optimization 132

7.1 The golden section search method 132

7.2 Newton–Raphson 135

7.3 The Nelder–Mead simplex method 138

7.4 Built-in functions 142

viii CONTENTS

7.5 Linear programming 142

7.5.1 Solving linear programming problems in R 145

7.5.2 Maximization and other kinds of constraints 145

7.5.3 Special situations 146

7.5.4 Unrestricted variables 149

7.5.5 Integer programming 150

7.5.6 Alternatives to lp() 151

7.5.7 Quadratic programming 151

Chapter exercises 157

Appendix Review of random variables
and distributions 158

Index 161

Preface

This text began as notes for a course in statistical computing for sec-
ond year actuarial and statistical students at the University of Western
Ontario. Both authors are interested in statistical computing, both as sup-
port for our other research and for its own sake. However, we have
found that our students were not learning the right sort of programming
basics before they took our classes. At every level from undergraduate
through Ph.D., we found that students were not able to produce simple,
reliable programs; that they didn’t understand enough about numeri-
cal computation to understand how rounding error could influence their
results; and that they didn’t know how to begin a difficult computational
project.

We looked into service courses from other departments, but we found
that they emphasized languages and concepts that our students would not
use again. Our students need to be comfortable with simple programming
so that they can put together a simulation of a stochastic model; they also
need to know enough about numerical analysis so that they can do numerical
computations reliably. We were unable to find this mix in an existing course,
so we designed our own.

We chose to base this text on R. R is an open-source computing package
which has seen a huge growth in popularity in the last few years. Being open
source, it is easily obtainable by students and economical to install in our
computing lab. One of us (Murdoch) is a member of the R core development
team, and the other (Braun) is a co-author of a book on data analysis using
R. These facts made it easy for us to choose R, but we are both strong
believers in the idea that there are certain universals of programming, and
in this text we try to emphasize those: it is not a manual about programming
in R, it is a course in statistical programming that uses R.

Students starting this course are not assumed to have any program-
ming experience or advanced statistical knowledge. They should be familiar
with university-level calculus, and should have had exposure to a course
in introductory probability, though that could be taken concurrently: the
probabilistic concepts start in Chapter 5. (We include a concise appendix
reviewing the probabilistic material.) We include some advanced topics in

x PREFACE

simulation, linear algebra, and optimization that an instructor may choose
to skip in a one-semester course offering.

We have a lot of people to thank for their help in writing this book.
The students in Statistical Sciences 259b have provided motivation and
feedback, Lutong Zhou drafted several figures, and Diana Gillooly of
Cambridge University Press, Professor Brian Ripley of Oxford Univer-
sity, and some anonymous reviewers all provided helpful suggestions. And
of course, this book could not exist without R, and R would be far less
valuable without the contributions of the worldwide R community.

1

Getting started

Welcome to the world of statistical programming. This book will contain
a lot of specific advice about the hows and whys of the subject. We start
in this chapter by giving you an idea of what statistical programming is all
about. We will also tell you what to expect as you proceed through the rest
of the book. The chapter will finish with some instructions about how to
download and install R, the software package and language on which we
base our programming examples.

1.1 What is statistical programming?

Computer programming involves controlling computers, telling them what
calculations to do, what to display, etc. Statistical programming is harder to
define. One definition might be that it’s the kind of computer programming
statisticians do – but statisticians do all sorts of programming. Another
would be that it’s the kind of programming one does when one is doing
statistics – but again, statistics involves a wide variety of computing tasks.

For example, statisticians are concerned with collecting and analyzing
data, and some statisticians would be involved in setting up connections
between computers and laboratory instruments – but we would not call
that statistical programming. Statisticians often oversee data entry from
questionnaires, and may set up programs to aid in detecting data entry errors.
That is statistical programming, but it is quite specialized, and beyond the
scope of this book.

Statistical programming involves doing computations to aid in statistical
analysis. For example, data must be summarized and displayed. Models
must be fit to data, and the results displayed. These tasks can be done
in a number of different computer applications: Microsoft Excel, SAS,
SPSS, S-PLUS, R, Stata, etc. Using these applications is certainly statistical
computing, and usually involves statistical programming, but it is not the
focus of this book. In this book our aim is to provide a foundation for an
understanding of how these applications work: we describe the calculations
they do, and how you could do them yourself.

2 GETTING STARTED

Since graphs play an important role in statistical analysis, drawing
graphics of one, two, or higher dimensional data is an aspect of statistical
programming.

An important part of statistical programming is stochastic simulation.
Digital computers are naturally very good at exact, reproducible computa-
tions, but the real world is full of randomness. In stochastic simulation we
program a computer to act as though it is producing random results, even
though if we knew enough, the results would be exactly predictable.

Statistical programming is closely related to other forms of numerical
programming. It involves optimization and approximation of mathematical
functions. There is less emphasis on differential equations than in physics
or applied mathematics (though this is slowly changing). We tend to place
more of an emphasis on the results and less on the analysis of the algorithms
than in computer science.

1.2 Outline of the book

This book is an introduction to statistical programming. We will start with
basic programming: how to tell a computer what to do. We do this using the
open source R statistical package, so we will teach you R, but we will try
not to just teach you R. We will emphasize those things that are common
to many computing platforms.

Statisticians need to display data. We will show you how to construct
statistical graphics. In doing this, we will learn a little bit about human
vision, and how it motivates our choice of display.

In our introduction to programming, we will show how to control the
flow of execution of a program. For example, we might wish to do repeated
calculations as long as the input consists of positive integers, but then stop
when an input value hits 0. Programming a computer requires basic logic,
and we will touch on Boolean algebra, a formal way to manipulate logical
statements. The best programs are thought through carefully before being
implemented, and we will discuss how to break down complex problems
into simple parts. When we are discussing programming, we will spend
quite a lot of time discussing how to get it right: how to be sure that the
computer program is calculating what you want it to calculate.

One distinguishing characteristic of statistical programming is that it is
concerned with randomness: random errors in data, and models that include
stochastic components. We will discuss methods for simulating random
values with specified characteristics, and show how random simulations
are useful in a variety of problems.

Many statistical procedures are based on linear models. While discus-
sion of linear regression and other linear models is beyond the scope of
this book, we do discuss some of the background linear algebra, and how
the computations it involves can be carried out. We also discuss the gen-
eral problem of numerical optimization: finding the values which make a
function as large or as small as possible.

WHY USE A COMMAND LINE? 3

Each chapter has a number of exercises which are at varying degrees
of difficulty. Solutions to selected exercises can be found on the web at
www.stats.uwo.ca/faculty/braun/statprog!.

1.3 The R package

This book uses R, which is an open-source package for statistical comput-
ing. “Open source” has a number of different meanings; here the important
one is that R is freely available, and its users are free to see how it is written,
and to improve it. R is based on the computer language S, developed by
John Chambers and others at Bell Laboratories in 1976. In 1993 Robert
Gentleman and Ross Ihaka at the University of Auckland wanted to exper-
iment with the language, so they developed an implementation, and named
it R. They made it open source in 1995, and hundreds of people around the
world have contributed to its development.

S-PLUS is a commercial implementation of the S language. Because
both R and S-PLUS are based on the S language, much of what is described
in what follows will apply without change to S-PLUS.

1.4 Why use a command line?

The R system is mainly command-driven, with the user typing in text and
asking R to execute it. Nowadays most programs use interactive graphical
user interfaces (menus, etc.) instead. So why did we choose such an old-
fashioned way of doing things?

Menu-based interfaces are very convenient when applied to a limited
set of commands, from a few to one or two hundred. However, a command-
line interface is open ended. As we will show in this book, if you want to
program a computer to do something that no one has done before, you
can easily do it by breaking down the task into the parts that make it up,
and then building up a program to carry it out. This may be possible in
some menu-driven interfaces, but it is much easier in a command-driven
interface.

Moreover, learning how to use one command line interface will give
you skills that carry over to others, and may even give you some insight into
how a menu-driven interface is implemented. As statisticians it is our belief
that your goal should be understanding, and learning how to program at a
command line will give you that at a fundamental level. Learning to use a
menu-based program makes you dependent on the particular organization
of that program.

There is a fairly rich menu-driven interface to R available in the Rcmdr
package.1 After you have worked through this book, if you come upon

1 A package is a collection of functions
and programs that can be used within R.

a statistical task that you don’t know how to start, you may find that the
menus in Rcmdr give you an idea of what methods are available.

http://www.stats.uwo.ca/faculty/braun/statprog

4 GETTING STARTED

1.5 Font conventions

This book describes how to do computations in R. As we will see in the
next chapter, this requires that the user types input, and R responds with
text or graphs as output. To indicate the difference, we have typeset the user
input in a slanted typewriter font, and text output in an upright version of
the same font. For example,

> This was typed by the user
This is a response from R

In most cases other than this one and certain exercises, we will show the
actual response from R.2

2 We have used the Sweave package
so that R itself is computing the output.
The computations in the text were done
with a pre-release version of R 2.5.0.

There are also situations where the code is purely illustrative and is not
meant to be executed. (Many of those are not correct R code at all; others
illustrate the syntax of R code in a general way.) In these situations we have
typeset the code examples in an upright typewriter font. For example,

f(some arguments)

1.6 Installation of R

R can be downloaded from http://cran.r-project.org!. Most
users should download and install a binary version. This is a version that
has been translated (by compilers) into machine language for execution
on a particular type of computer with a particular operating system. R is
designed to be very portable: it will run on Microsoft Windows, Linux,
Solaris, Mac OSX, and other operating systems, but different binary ver-
sions are required for each. In this book most of what we do would be the
same on any system, but when we write system-specific instructions, we
will assume that readers are using Microsoft Windows.

Installation on Microsoft Windows is straightforward. A binary
version is available for Windows 98 or above from the web page
http://cran.r-project.org/bin/windows/base.
Download the “setup program,” a file with a name like R-2.5.1-
win32.exe. Clicking on this file will start an almost automatic installa-
tion of the R system. Though it is possible to customize the installation, the
default responses will lead to a satisfactory installation in most situations,
particularly for beginning users.

One of the default settings of the installation procedure is to create an
R icon on your computer’s desktop.

Once you have installed R, you will be ready to start statistical
programming. Let’s learn how.

http://http://cran.r-project.org!
http://http://cran.r-project.org/bin/windows/base

2

Introduction to the R language

Having installed the R system, you are now ready to begin to learn the
art of statistical programming. The first step is to learn the syntax of the
language that you will be programming in; you need to know the rules of
the language. This chapter will give you an introduction to the syntax of R.

2.1 Starting and quitting R

In Microsoft Windows, the R installer will have created a Start Menu item
and an icon for R on your desktop. Double clicking on the R icon starts the
program.1 The first thing that will happen is that R will open the console,

1 Other systems may install an icon to
click, or may require you to type “R” at
a command prompt.

into which the user can type commands.
The greater-than sign (>) is the prompt symbol. When this appears, you

can begin typing commands.
For example, R can be used as a calculator. We can type simple

arithmetical expressions at the > prompt:

> 5 + 49

Upon pressing the Enter key, the result 54 appears, prefixed by the
number 1 in square brackets:

> 5 + 49
[1] 54

The [1] indicates that this is the first (and in this case only) result from
the command. Other commands return multiple values, and each line of
results will be labeled to aid the user in deciphering the output. For example,
the sequence of integers from 1 to 20 may be displayed as follows:

> options(width=40)
> 1:20
[1] 1 2 3 4 5 6 7 8 9 10 11 12
[13] 13 14 15 16 17 18 19 20

6 INTRODUCTION TO THE R LANGUAGE

The first line starts with the first return value, so is labeled [1]; the second
line starts with the 13th, so is labeled [13].2

2 The position of the line break shown
here depends on the optional setting
options(width=40). Other choices
of line widths would break in different
places.

Anything that can be computed on a pocket calculator can be computed
at the R prompt. Here are some additional examples:

> # "*" is the symbol for multiplication.
> # Everything following a # sign is assumed to be a
> # comment and is ignored by R.
> 3 * 5
[1] 15
> 3 - 8
[1] -5
> 12 / 4
[1] 3

To quit your R session, type

> q()

If you then hit the Enter key, you will be asked whether to save an
image of the current workspace, or not, or to cancel. The workspace image
contains a record of the computations you’ve done, and may contain some
saved results. Hitting the Cancel option allows you to continue your current
R session. We rarely save the current workspace image, but occasionally
find it convenient to do so.

Note what happens if you omit the parentheses () when attempting to
quit:

> q
function (save = "default", status = 0, runLast = TRUE)
.Internal(quit(save, status, runLast))
<environment: namespace:base>

This has happened because q is a function that is used to tell R to
quit. Typing q by itself tells R to show us the (not very pleasant-looking)
contents of the function q. By typing q(), we are telling R to call the
function q. The action of this function is to quit R. Everything that R
does is done through calls to functions, though sometimes those calls are
hidden (as when we click on menus), or very basic (as when we call the
multiplication function to multiply 3 times 5).

2.1.1 Recording your work
Rather than saving the workspace, we prefer to keep a record of the com-
mands we entered, so that we can reproduce the workspace at a later date.
In Windows, the easiest way to do this is to enter commands in R’s script
editor, available from the File menu. Commands are executed by high-
lighting them and hitting Ctrl-R (which stands for “run”). At the end of
a session, save the final script for a permanent record of your work. In
other systems a text editor and some form of cut and paste serve the same
purpose.

BASIC FEATURES OF R 7

2.2 Basic features of R

2.2.1 Calculating with R
At its most basic level, R can be viewed as a fancy calculator. We saw in
the previous section that it can be used to do scalar arithmetic. The basic
operations are + (add), - (subtract), * (multiply), and / (divide).

It can also be used to compute powers with the ˆ operator. For example,

> 3ˆ4
[1] 81

Modular arithmetic is also available. For example, we can compute the
remainder after division of 31 by 7, i.e. 31 (mod 7):

> 31 %% 7
[1] 3

and the integer part of a fraction as

> 31 %/% 7
[1] 4

We can confirm that 31 is the sum of its remainder plus seven times the
integer part of the fraction:

> 7 * 4 + 3
[1] 31

2.2.2 Named storage
R has a workspace known as the global environment that can be used to
store the results of calculations, and many other types of objects. For a
first example, suppose we would like to store the result of the calculation
1.0025ˆ30 for future use. (This number arises out of a compound interest
calculation based on an interest rate of 0.25% per year and a 30-year period.)
We will assign this value to an object calledinterest.30. To this, we type

> interest.30 <- 1.0025ˆ30
>

We tell R to make the assignment using an arrow that points to the left,
created with the less-than sign (<) and the hyphen (-). R also supports using
the equals sign (=) in place of the arrow in most circumstances, but we rec-
ommend using the arrow, as it makes clear that we are requesting an action
(i.e. an assignment), rather than stating a relation (i.e. that interest.30
is equal to 1.0025ˆ30) or making a permanent definition. Note that when
we hit Enter, nothing appears on the screen except a new prompt: R has
done what we asked, and is waiting for us to ask for something else.

We can see the results of this assignment by typing the name of our new
object at the prompt:

> interest.30
[1] 1.077783

8 INTRODUCTION TO THE R LANGUAGE

Think of this as just another calculation: R is calculating the result of the
expressioninterest.30, and printing it. We can also useinterest.30
in further calculations if we wish. For example, we can calculate the bank
balance after 30 years at 0.25% annual interest, if we start with an initial
balance of $3000:

> initial.balance <- 3000
> final.balance <- initial.balance * interest.30
> final.balance
[1] 3233.35

Example 2.1
An individual wishes to take out a loan, today, of P at a monthly interest rate
i. The loan is to be paid back in n monthly installments of size R, beginning
one month from now. The problem is to calculate R.

Equating the present value P to the future (discounted) value of the n
monthly payments R, we have

P = R(1 + i)−1 + R(1 + i)−2 + · · · R(1 + i)−n

or

P = R
n∑

j=1

(1 + i)−j.

Summing this geometric series and simplifying, we obtain

P = R

(
1 − (1 + i)−n

i

)
.

This is the formula for the present value of an annuity. We can find R, given
P, n and i as

R = P
i

1 − (1 + i)−n
.

In R, we define variables as follows: principal to hold the value of
P, and intRate to hold the interest rate, and n to hold the number of
payments. We will assign the resulting payment value to an object called
payment.

Of course, we need some numerical values to work with, so we will
suppose that the loan amount is $1500, the interest rate is 1% and the
number of payments is 10. The required code is then

> intRate <- 0.01
> n <- 10
> principal <- 1500
> payment <- principal * intRate / (1 - (1 + intRate)ˆ(-n))

BASIC FEATURES OF R 9

> payment
[1] 158.3731

For this particular loan, the monthly payments are $158.37.

2.2.3 Functions
Most of the work in R is done through functions. For example, we saw
that to quit R we type q(). This tells R to call the function named q. The
parentheses surround the argument list, which in this case contains nothing:
we just want R to quit, and do not need to tell it how.

We also saw that q is defined as

> q
function (save = "default", status = 0, runLast = TRUE)
.Internal(quit(save, status, runLast))
<environment: namespace:base>

This shows thatq is a function that has three arguments: save, status,
and runLast. Each of those has a default value: "default", 0, and
TRUE, respectively. What happens when we execute q()is that R calls the
q function with the arguments set to their default values.

If we want to change the default values, we specify them when we call
the function. Arguments are identified in the call by their position, or by
specifying the name explicitly. For example, both

q("no")
q(save = "no")

tell R to call q with the first argument set to "no", i.e. to quit without
saving the workspace. If we had given two arguments without names, they
would apply to save and status. If we want to accept the defaults of the
early parameters but change later ones, we give the name when calling the
function, e.g.

q(runLast = FALSE)

or use commas to mark the missing arguments, e.g.

q(, , FALSE)

It is a good idea to use named arguments when calling a function
which has many arguments or when using uncommon arguments, because
it reduces the risk of specifying the wrong argument, and makes your code
easier to read.

2.2.4 Exact or approximate?
One important distinction in computing is between exact and approximate
results. Most of what we do in this book is aimed at approximate meth-
ods. It is possible in a computer to represent any rational number exactly,
but it is more common to use approximate representations: usually floating
point representations. These are a binary (base-two) variation on scientific

10 INTRODUCTION TO THE R LANGUAGE

notation. For example, we might write a number to four significant digits
in scientific notation as 6.926 × 10−4. This representation of a number
could represent any true value between 0.000 692 55 and 0.000 692 65.
Standard floating point representations on computers are similar, except
that a power of 2 would be used rather than a power of 10, and the fraction
would be written in binary notation. The number above would be written
as 1.0112 × 2−11 if four binary digit precision was used. The subscript 2 in
the mantissa 1.0112 indicates that this number is shown in base 2; that is, it
represents 1×20+0×2−1+1×2−2+1×2−3, or 1.375 in decimal notation.

However, 6.926×10−4 and 1.0112 ×2−11 are not identical. Four binary
digits give less precision than four decimal digits: a range of values from
approximately 0.000 641 to 0.000 702 would all get the same representation
to four binary digit precision. In fact, 6.926 × 10−4 cannot be represented
exactly in binary notation in a finite number of digits. The problem is similar
to trying to represent 1/3 as a decimal: 0.3333 is a close approximation,
but is not exact. The standard precision in R is 53 binary digits, which is
equivalent to about 15 or 16 decimal digits.

To illustrate, consider the fractions 5/4 and 4/5. In decimal notation
these can be represented exactly as 1.25 and 0.8 respectively. In binary
notation 5/4 is 1 + 1/4 = 1.012. How do we determine the binary repre-
sentation of 4/5? It is between 0 and 1, so we’d expect something of the
form 0.b1b2b3 · · · , where each bi represents a “bit,” i.e. a 0 or 1 digit. Multi-
plying by 2 moves the all bits left by one, i.e. 2×4/5 = 1.6 = b1.b2b3 · · · .
Thus b1 = 1, and 0.6 = 0.b2b3 · · · .

We can now multiply by 2 again to find 2 × 0.6 = 1.2 = b2.b3 · · · , so
b2 = 1. Repeating twice more yields b3 = b4 = 0. (Try it!)

At this point we’ll have the number 0.8 again, so the sequence of 4 bits
will repeat indefinitely: in base 2, 4/5 is 0.110 011 001 100 · · · . Since R
only stores 53 bits, it won’t be able to store 0.8 exactly. Some rounding
error will occur in the storage.

We can observe the rounding error with the following experiment. With
exact arithmetic, (5/4)×(4/5) = 1, so (5/4)×(n×4/5) should be exactly
n for any value of n. But if we try this calculation in R, we find

> n <- 1:10
> 1.25 * (n * 0.8) - n

[1] 0.000000e+00 0.000000e+00 4.440892e-16 0.000000e+00 0.000000e+00
[6] 8.881784e-16 8.881784e-16 0.000000e+00 0.000000e+00 0.000000e+00

i.e. it is equal for some values, but not equal for n = 3, 6, or 7. The
errors are very small, but nonzero.

Rounding error tends to accumulate in most calculations, so usually
a long series of calculations will result in larger errors than a short one.
Some operations are particularly prone to rounding error: for example,
subtraction of two nearly equal numbers, or (equivalently) addition of two
numbers with nearly the same magnitude but opposite signs. Since the
leading bits in the binary expansions of nearly equal numbers will match,
they will cancel in subtraction, and the result will depend on what is stored
in the later bits.

BASIC FEATURES OF R 11

Example 2.2
Consider the standard formula for the sample variance of a sample
x1, . . . , xn:

s2 = 1

n − 1

n∑
i=1

(xi − x̄)2,

where x̄ is the sample mean, (1/n)
∑

xi. In R, s2 is available as var(),
and x̄ is mean(). For example:

> x <- 1:11
> mean(x)
[1] 6
> var(x)
[1] 11
> sum((x - mean(x))ˆ2) / 10
[1] 11

Because this formula requires calculation of x̄ first and the sum of squared
deviations second, it requires that all xi values be kept in memory. Not too
long ago memory was so expensive that it was advantageous to rewrite the
formula as

s2 = 1

n − 1

(
n∑

i=1

x2
i − nx̄2

)
.

This is called the “one-pass formula,” because we evaluate each xi value
just once, and accumulate the sums of xi and of x2

i . It gives the correct
answer, both mathematically and in our example:

> (sum(xˆ2) - 11 * mean(x)ˆ2) / 10
[1] 11

However, notice what happens if we add a large value A to each xi.
The sum

∑n
i=1 x2

i increases by approximately nA2, and so does nx̄2.
This doesn’t change the variance, but it provides the conditions for a
“catastrophic loss of precision” when we take the difference:

> A <- 1.e10
> x <- 1:11 + A
> var(x)
[1] 11
> (sum(xˆ2) - 11 * mean(x)ˆ2) / 10
[1] 0

Since R gets the right answer, it clearly doesn’t use the one-pass formula,
and neither should you.

12 INTRODUCTION TO THE R LANGUAGE

2.2.5 R is case-sensitive
See what happens if you type

> x <- 1:10
> MEAN(x)
Error: could not find function "MEAN"

or

> mean(x)
[1] 5.5

Now try

> MEAN <- mean
> MEAN(x)
[1] 5.5

The function mean()is built in to R. R considers MEAN to be a different
function, because it is case-sensitive: m is a different letter than M.

2.2.6 Listing the objects in the workspace
The calculations in the previous sections led to the creation of several simple
R objects. These objects are stored in the current R workspace. A list of
all objects in the current workspace can be printed to the screen using the
objects()function:

> objects()
[1] "A" "final.balance" "initial.balance"
[4] "interest.30" "intRate" "MEAN"
[7] "n" "payment" "principal"
[10] "saveopt" "x"

A synonym for objects()is ls().
Remember that if we quit our R session without saving the workspace

image, then these objects will disappear. If we save the workspace image,
then the workspace will be restored at our next R session.3

3 This will always be true if we start R
from the same folder, or working
directory, as where we ended the
previous R session. Normally this will
be the case, but users are free to change
the folder during a session using the
menus or the setwd() function.

2.2.7 Vectors
A numeric vector is a list of numbers. The c()function is used to collect
things together into a vector. We can type

> c(0, 7, 8)
[1] 0 7 8

Again, we can assign this to a named object:

> x <- c(0, 7, 8) # now x is a 3-element vector

To see the contents of x, simply type

> x
[1] 0 7 8

BASIC FEATURES OF R 13

The : symbol can be used to create sequences of increasing (or
decreasing) values. For example,

> numbers5to20 <- 5:20
> numbers5to20
[1] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Vectors can be joined together (i.e. concatenated) with the c function.
For example, note what happens when we type

> c(numbers5to20, x)
[1] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 7 8

Here is another example of the use of the c()function:

> some.numbers <- c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
+ 43, 47, 59, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 113, 119)

Notice that R has prompted us with the +sign for a second line of input;
it does this when the first line is incomplete.

We can append numbers5to20 to the end of some.numbers, and
then append the decreasing sequence from 4 to 1:

> a.mess <- c(some.numbers, numbers5to20, 4:1)
> a.mess
[1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 59
[17] 67 71 73 79 83 89 97 103 107 109 113 119 5 6 7 8
[33] 9 10 11 12 13 14 15 16 17 18 19 20 4 3 2 1

Remember that the numbers in the square brackets give the index of
the element immediately to the right. Among other things, this helps us to
identify the 22nd element of a.mess as 89.

2.2.8 Extracting elements from vectors
Anicer way to display the 22nd element ofa.mess is to use square brackets
to extract just that element:

> a.mess[22]
[1] 89

To print the second element of x, type

> x[2]
[1] 7

We can extract more than one element at a time. For example,

> some.numbers[c(3, 6, 7)]
[1] 5 13 17

To get the third through seventh elements of numbers5to20, type

> numbers5to20[3:7]
[1] 7 8 9 10 11

14 INTRODUCTION TO THE R LANGUAGE

Negative indices can be used to avoid certain elements. For example,
we can select all but the second element of x as follows:

> x[-2]
[1] 0 8

The third through eleventh elements ofsome.numbers can be avoided
as follows:

> some.numbers[-(3:11)]
[1] 2 3 37 41 43 47 59 67 71 73 79 83 89 97 103 107
[17] 109 113 119

Using a zero index returns nothing. This is not something that one would
usually type, but it may be useful in more complicated expressions.

> numbers5to20[c(0, 3:7)]
[1] 7 8 9 10 11

Do not mix positive and negative indices. To see what happens, consider

> x[c(-2, 3)]
Error: only 0’s may be mixed with negative subscripts

The problem is that it is not clear what is to be extracted: do we want the
third element of x before or after removing the second one?

2.2.9 Vector arithmetic
Arithmetic can be done on R vectors. For example, we can multiply all
elements of x by 3:

> x * 3
[1] 0 21 24

Note that the computation is performed elementwise. Addition, sub-
traction and division by a constant have the same kind of effect. For
example,

> y <- x - 5
> y
[1] -5 2 3

For another example, consider taking the third power of the elements
of x:

> xˆ3
[1] 0 343 512

The above examples show how a binary arithmetic operator can be
used with vectors and constants. In general, the binary operators also work
element-by-element when applied to pairs of vectors. For example, we can
compute yxi

i , for i = 1, 2, 3, i.e. (yx1
1 , yx2

2 , yx3
3), as follows:

> yˆx
[1] 1 128 6561

BASIC FEATURES OF R 15

When the vectors are different lengths, the shorter one is extended by
recycling: values are repeated, starting at the beginning. For example, to
see the pattern of remainders of the numbers 1 to 10 modulo 2 and 3, we
need only give the 2:3 vector once:

> c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5,
+ 6, 6, 7, 7, 8, 8, 9, 9, 10, 10) %% 2:3
[1] 1 1 0 2 1 0 0 1 1 2 0 0 1 1 0 2 1 0 0 1

R will give a warning if the length of the longer vector is not a multiple
of the length of the smaller one, because that is usually a sign that something
is wrong. For example, if we wanted the remainders modulo 2, 3, and 4,
this is the wrong way to do it:

> c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5,
+ 6, 6, 7, 7, 8, 8, 9, 9, 10, 10) %% 2:4
[1] 1 1 2 0 0 3 0 1 1 1 0 2 1 1 0 0 0 1 0 1
Warning message:
longer object length

is not a multiple of shorter object length in: c(1, 1, 2, 2,
3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10)%%2:4

(Do you see the error?)

2.2.10 Simple patterned vectors
We saw the use of the:operator for producing simple sequences of integers.
Patterned vectors can also be produced using the seq()function as well as
the rep()function. For example, the sequence of odd numbers less than
or equal to 21 can be obtained using

seq(1, 21, by=2)

Notice the use of by=2 here. The seq()function has several optional
parameters, including one named by. If by is not specified, the default
value of 1 will be used.

Repeated patterns are obtained using rep(). Consider the following
examples:

> rep(3, 12) # repeat the value 3, 12 times
[1] 3 3 3 3 3 3 3 3 3 3 3 3
> rep(seq(2, 20, by=2), 2) # repeat the pattern 2 4 ... 20, twice
[1] 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
> rep(c(1, 4), c(3, 2)) # repeat 1, 3 times and 4, twice
[1] 1 1 1 4 4
> rep(c(1, 4), each=3) # repeat each value 3 times
[1] 1 1 1 4 4 4
> rep(seq(2, 20, 2), rep(2, 10)) # repeat each value twice
[1] 2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20 20

16 INTRODUCTION TO THE R LANGUAGE

2.2.11 Missing values and other special values
The missing value symbol is NA. Missing values often arise in real data
problems, but they can also arise because of the way calculations are
performed.

> some.evens <- NULL # creates a vector with no elements
> some.evens[seq(2, 20, 2)] <- seq(2, 20, 2)
> some.evens
[1] NA 2 NA 4 NA 6 NA 8 NA 10 NA 12 NA 14 NA 16 NA 18 NA 20

What happened here is that we assigned values to elements 2, 4, . . . , 20
but never assigned anything to elements 1, 3, . . . , 19, so R uses NA to signal
that the value is unknown.

Recall that x contains the values (0, 7, 8). Consider

> x / x
[1] NaN 1 1

The NaN symbol denotes a value which is “not a number,” which arises
as a result of attempting to compute the indeterminate 0/0. This sym-
bol is sometimes used when a calculation does not make sense. In other
cases, special values may be shown, or you may get an error or warning
message:

> 1 / x
[1] Inf 0.1428571 0.1250000

Here, R has tried to evaluate 1/0.
Always be careful to make sure that vector indices are integers. When

fractional values are used, they will be truncated towards 0. Thus 0.4
becomes 0, and we see

> x[0.4]
numeric(0)

The output numeric(0)indicates a numeric vector of length zero.

2.2.12 Character vectors
Scalars and vectors can be made up of strings of characters instead of
numbers. All elements of a vector must be of the same type. For example,

> colors <- c("red", "yellow", "blue")
> more.colors <- c(colors, "green", "magenta", "cyan")
> # this appended some new elements to colors
> z <- c("red", "green", 1) # an attempt to mix data types in a vector

To see the contents of more.colors and z, simply type

> more.colors
[1] "red" "yellow" "blue" "green" "magenta" "cyan"
> z # 1 has been converted to the character "1"
[1] "red" "green" "1"

BASIC FEATURES OF R 17

There are two basic operations you might want to perform on character
vectors. To take substrings, use substr(). The former takes arguments
substr(x, start, stop), where x is a vector of character strings,
and start and stop say which characters to keep. For example, to print
the first two letters of each color use

> substr(colors, 1, 2)
[1] "re" "ye" "bl"

The substring()function is similar, but with slightly different
definitions of the arguments: see the help page ?substring.

The other basic operation is building up strings by concatenation. Use
the paste()function for this. For example,

> paste(colors, "flowers")
[1] "red flowers" "yellow flowers" "blue flowers"

There are two optional parameters to paste(). The sep parameter
controls what goes between the components being pasted together. We
might not want the default space, for example:

> paste("several ", colors, "s", sep="")
[1] "several reds" "several yellows" "several blues"

The collapse parameter to paste()allows all the components of
the resulting vector to be collapsed into a single string:

> paste("I like", colors, collapse = ", ")
[1] "I like red, I like yellow, I like blue"

2.2.13 Factors
Factors offer an alternative way of storing character data. For example,
a factor with four elements and having the two levels, control and
treatment can be created using:

> grp <- c("control", "treatment", "control", "treatment")
> grp
[1] "control" "treatment" "control" "treatment"
> grp <- factor(grp)
> grp
[1] control treatment control treatment
Levels: control treatment

Factors are a more efficient way of storing character data when there
are repeats among the vector elements. This is because the levels of a factor
are internally coded as integers. To see what the codes are for our factor,
we can type

> as.integer(grp)
[1] 1 2 1 2

18 INTRODUCTION TO THE R LANGUAGE

The labels for the levels are only stored once each, rather than being
repeated. The codes are indices into the vector of levels:

> levels(grp)
[1] "control" "treatment"
> levels(grp)[as.integer(grp)]
[1] "control" "treatment" "control" "treatment"

2.2.14 More on extracting elements from vectors
As for numeric vectors, square brackets []are used to index factor and
character vector elements. For example, the factor grp has four elements,
so we can print out the third element by typing

> grp[3]
[1] control
Levels: control treatment

We can access the second through fifth elements of more.colors as
follows:

> more.colors[2:5]
[1] "yellow" "blue" "green" "magenta"

When there may be missing values, the is.na()function should be
used to detect them. For instance,

> is.na(some.evens)
[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
[12] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

(The result is a “logical vector”. More on these in Section 2.4 below.)
The !symbol means “not”, so we can locate the non-missing values in
some.evens as follows:

> !is.na(some.evens)
[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[12] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

We can then display the even numbers only:

> some.evens[!is.na(some.evens)]
[1] 2 4 6 8 10 12 14 16 18 20

2.2.15 Matrices and arrays
To arrange values into a matrix, we use the matrix()function:

> m <- matrix(1:6, nrow=2, ncol=3)
> m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

BASIC FEATURES OF R 19

We can then access elements using two indices. For example, the value in
the first row, second column is

> m[1, 2]
[1] 3

Somewhat confusingly, R also allows a matrix to be indexed as a vector,
using just one value:

> m[4]
[1] 4

Here elements are selected in the order in which they are stored inter-
nally: down the first column, then down the second, and so on. This is
known as column-major storage order. Some computer languages use row-
major storage order, where values are stored in order from left to right
across the first row, then left to right across the second, and so on.

Whole rows or columns of matrices may be selected by leaving the
corresponding index blank:

> m[1,]
[1] 1 3 5
> m[, 1]
[1] 1 2

A more general way to store data is in an array. Arrays have multiple
indices, and are created using the array function:

> a <- array(1:24, c(3, 4, 2))
> a
, , 1

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
, , 2

[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

Notice that the dimensions were specified in a vector c(3, 4, 2).
When inserting data, the first index varies fastest; when it has run through
its full range, the second index changes, etc.

2.2.16 Data frames
Most data sets are stored in R as data frames. These are like matrices, but
with the columns having their own names. Columns can be of different
types from each other. Use the data.frame()function to construct data

20 INTRODUCTION TO THE R LANGUAGE

frames from vectors:

> colors <- c("red", "yellow", "blue")
> numbers <- c(1, 2, 3)
> colors.and.numbers <- data.frame(colors, numbers,
+ more.numbers=c(4, 5, 6))

We can see the contents of a data frame:

> colors.and.numbers
colors numbers more.numbers

1 red 1 4
2 yellow 2 5
3 blue 3 6

Exercises
1 Calculate the remainder after dividing 31 079 into 170 166 719.
2 Calculate the monthly payment required for a loan of $200 000, at a

monthly interest rate of 0.003, based on 300 monthly payments, starting
in one month’s time.

3 Calculate the sum
∑n

j=1 r j, where r has been assigned the value 1.08,

and compare with (1 − rn+1)/(1 − r), for n = 10, 20, 30, 40. Repeat
for r = 1.06.

4 Referring to the above question, use the quick formula to compute∑n
j=1 r j, for r = 1.08, for all values of n between 1 and 100. Store the

100 values in a vector.
5 Calculate the sum

∑n
j=1 j and compare with n(n + 1)/2, for n =

100, 200, 400, 800.
6 Referring to the above question, use the quick formula to compute∑n

j=1 j for all values of n between 1 and 100. Store the 100 values in a
vector.

7 Calculate the sum
∑n

j=1 j2 and compare with n(n + 1)(2n + 1)/6, for
n = 200, 400, 600, 800.

8 Referring to the above question, use the quick formula to compute∑n
j=1 j2 for all values of n between 1 and 100. Store the 100 values in

a vector.
9 Calculate the sum

∑N
i=1 1/i, and compare with log(N)+ 0.6, for

N = 500, 1000, 2000, 4000, 8000.
10 Can you explain these two results? (Hint: see Section 2.2.4.)

> x <- c(0,7,8)
> x[0.9999999999999999]
numeric(0)
> x[0.99999999999999999]
[1] 0

11 Using rep()and seq()as needed, create the vectors

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

BUILT-IN FUNCTIONS AND ONLINE HELP 21

and

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

12 Using rep()and seq()as needed, create the vector

1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9

13 Use the more.colors vector, rep()and seq()to create the vector

"red" "yellow" "blue" "yellow" "blue" "green"
"blue" "green" "magenta" "green" "magenta" "cyan"

2.2.17 Dates and times
Dates and times are among the most difficult types of data to work with on
computers. The standard calendar is very complicated: months of different
lengths, leap years every four years (with exceptions for whole centuries)
and so on. When looking at dates over historical time periods, changes to
the calendar (such as the switch from the Julian calendar to the modern
Gregorian calendar that occurred in various countries between 1582 and
1923) affect the interpretation of dates.

Times are also messy, because there is often an unstated time zone
(which may change for some dates due to daylight savings time), and some
years have “leap seconds” added in order to keep standard clocks consistent
with the rotation of the earth.

There have been several attempts to deal with this in R. The base
package has the function strptime()to convert from strings (e.g.
"2007-12-25", or "12/25/07") to an internal numerical representa-
tion, and format()to convert back for printing. The ISOdate()and
ISOdatetime()functions are used when numerical values for the year,
month day, etc. are known. Other functions are available in the chron
package. These can be difficult functions to use, and a full description is
beyond the scope of this book.

2.3 Built-in functions and online help

The function q()is an example of a built-in function. There are many
functions in R which are designed to do all sorts of things. The online help
facility can help you to see what a particular function is supposed to do.
There are a number of ways of accessing the help facility.

If you know the name of the function that you need help with,
the help()function is likely sufficient. For example, for help on the
q()function, type

> ?q

or

> help(q)

Either of these commands opens a window which will give you a description
of the function for quitting R.

22 INTRODUCTION TO THE R LANGUAGE

Another commonly used function in R is mean(). Upon typing

> help(mean)

a new window will appear. The first part of its contents is

mean package:base R Documentation

Arithmetic Mean

Description:

Generic function for the (trimmed) arithmetic mean.

Usage:

mean(x, ...)

Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)

Arguments:

x: An R object. Currently there are methods for numeric data
frames, numeric vectors and dates. A complex vector is
allowed for ’trim = 0’, only.

trim: the fraction (0 to 0.5) of observations to be trimmed from
each end of ’x’ before the mean is computed.

(There may be small differences in the display on your system.) This tells
us that mean()will compute the ordinary arithmetic average or it will do
something called “trimming” if we ask for it.

To compute the mean of the values of the x vector created earlier, we
simply type

> mean(x)
[1] 5

2.3.1 Built-in examples
A useful alternative to help()is the example()function:

> example(mean)
mean> x <- c(0:10, 50)

mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.10))
[1] 8.75 5.50

mean> mean(USArrests, trim = 0.2)
Murder Assault UrbanPop Rape

7.42 167.60 66.20 20.16

BUILT-IN FUNCTIONS AND ONLINE HELP 23

This example shows simple use of the mean()function as well as how
to use the trim argument. (When trim=0.1, the highest 10% and lowest
10% of the data are deleted before the average is calculated.)

2.3.2 Finding help when you don’t know
the function name

It is often convenient to use help.start(). This brings up an Internet
browser, such as Internet Explorer or Firefox.4 The browser will show you

4 R depends on your system having a
properly installed browser. If it doesn’t
have one, you may see an error message,
or possibly nothing at all.

a menu of several options, including a listing of installed packages. The
base package contains many of the routinely used functions.

Another function that is often used is help.search(). For example,
to see if there are any functions that do optimization (finding minima or
maxima), type

help.search("optimization")

Here is the result of a such a search:

Help files with alias or concept or title matching "optimization" using
fuzzy matching:

lmeScale(nlme) Scale for lme Optimization
optimization(OPM) minimize linear function with linear

constraints
constrOptim(stats) Linearly constrained optimisation
nlm(stats) Non-Linear Minimization
optim(stats) General-purpose Optimization

optimize(stats) One Dimensional Optimization
portfolio.optim(tseries)

Portfolio Optimization

Type "help(FOO, package = PKG)" to inspect entry "FOO(PKG) TITLE".

We can then check for specific help on a function like nlm()by typing

help(nlm)

Web search engines such as Google can be useful for finding help on R.
Including “R” as a keyword in such a search will often bring up the relevant
R help page.5 The name of the R package that is needed is usually listed at

5 You may find pages describing
functions that you do not have installed,
because they are in user-contributed
packages.

the top of the help page.
Another function to note is RSiteSearch()which will do a search in

the R-help mailing list and other web resources. For example, to bring up
information on the treatment of missing values in R, we can type

RSiteSearch("missing")

2.3.3 Built-in graphics functions
Two basic plots are the histogram and the scatterplot. Consider

> x <- c(12, 15, 13, 20, 14, 16, 10, 10, 8, 15)
> hist(x)

24 INTRODUCTION TO THE R LANGUAGE

Histogram of x

x

F
re

qu
en

cy

8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

10 12 14 16 18 20

Fig. 2.1 A simple histogram.

2

0

x

y

4 6 8 10

Fig. 2.2 A simple scatterplot.

(see Figure 2.1) and

> x <- seq(1, 10)
> y <- xˆ2 - 10 * x
> plot(x, y)

(see Figure 2.2). Note that the x values are plotted along the horizontal axis.
Another useful plotting function is the curve()function for plotting

the graph of a univariate mathematical function on an interval. The left and
right endpoints of the interval are specified by from and to arguments,
respectively.

BUILT-IN FUNCTIONS AND ONLINE HELP 25

0

0.
0

0.
5

1.
0

x

si
n

(x
)

5 10 15

Fig. 2.3 Plotting the sin curve.

A simple example involves plotting the sine function on the interval
[0, 6π]:
> curve(expr = sin, from = 0, to = 6 * pi)

(see Figure 2.3). The expr parameter is either a function (whose output
is a numeric vector when the input is a numeric vector) or an expression in
terms of x. An example of the latter type of usage is:

curve(xˆ2 - 10 * x, from = 1, to = 10)

More information on graphics can be found in Chapter 3.

2.3.4 Additional elementary built-in functions
The sample median
The sample median measures the middle value of a data set. If the data are
x[1] ≤ x[2] ≤ · · · ≤ x[n], then the median is x[(n + 1)/2], if n is odd, or
{[x[n/2] + x[n/2 + 1]}/2, if n is even.

For example, the median of the values: 10, 10, 18, 30, 32 is 18, and the
median of 40, 10, 10, 18, 30, 32 is the average of 18 and 30, i.e. 24.

This calculation is handled by R as follows:

median(x) # computes the median or 50th percentile of the data in x

Other summary measures
Summary statistics can be calculated for data stored in vectors. In
particular, try

var(x) # computes the variance of the data in x
summary(x) # computes several summary statistics on the data in x

Exercises
1 The following are a sample of observations on incoming solar radiation

at a greenhouse:

11.1 10.6 6.3 8.8 10.7 11.2 8.9 12.2

26 INTRODUCTION TO THE R LANGUAGE

(a) Assign the data to an object called solar.radiation.
(b) Find the mean, median and variance of the radiation observations.
(c) Add 10 to each observation of solar.radiation, and assign the

result tosr10. Find the mean, median, and variance ofsr10. Which
statistics change, and by how much?

(d) Multiply each observation by −2, and assign the result to srm2.
Find the mean, median, and variance of srm2. How do the statistics
change now?

(e) Plot a histogram of the solar.radiation, sr10, and srm2.
(f) There are two formulas commonly used for the variance of a set of

numbers: (1/n)
∑n

i=1(xi − x̄)2 and [1/(n − 1)]∑n
i=1(xi − x̄)2. One

uses the sample size n in the denominator, and the other uses n − 1.
Which formula does the var()function in R use?

2.4 Logical vectors and relational operators

We have used the c()function to put numeric vectors together as well
as character vectors. R also supports logical vectors. These contain two
different elements: TRUE and FALSE.

2.4.1 Boolean algebra
To understand how R handles TRUE and FALSE, we need to understand
a little “Boolean algebra.” The idea of Boolean algebra is to formalize a
mathematical approach to logic.

Logic deals with statements that are either true or false. We represent
each statement by a letter or variable, e.g. A is the statement that the sky
is clear, and B is the statement that it is raining. Depending on the weather
where you are, those two statements may both be true (there is a “sun-
shower”), A may be true and B false (the usual clear day), A false and B
true (the usual rainy day), or both may be false (a cloudy but dry day).

Boolean algebra tells us how to evaluate the truth of compound state-
ments. For example, “A and B” is the statement that it is both clear and
raining. This statement is only true during a sunshower. “A or B” says that
it is clear or it is raining, or both: anything but the cloudy dry day. This is
sometimes called an inclusive or, to distinguish it from the exclusive or “A
xor B,” which says that it is either clear or raining, but not both. There is
also the “not A” statement, which says that it is not clear.

There is a very important relation between Boolean algebra and set
theory. If we interpret A and B as sets, then we can think of “A and B” as
the set of elements which are in A and are in B, i.e. the intersection A ∩ B.
Similarly “A or B” can be interpreted as the set of elements that are in A or
are in B, i.e. the union A∪B. Finally, “not A” is the complement of A, i.e. Ac.

Because there are only two possible values (true and false), we can
record all Boolean operations in a table. On the first line of Table 2.1 we
list the basic Boolean expressions, on the second line the equivalent way
to code them in R, and in the body of the table the results of the operations.

LOGICAL VECTORS AND RELATIONAL OPERATORS 27

Table 2.1. Truth table for Boolean operations

Boolean A B not A not B A and B A or B
R A B !A !B A & B A | B

TRUE TRUE FALSE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE TRUE
FALSE TRUE TRUE FALSE FALSE TRUE
FALSE FALSE TRUE TRUE FALSE FALSE

Exercises
1 More complicated expressions can be constructed from the basic Boolean

operations. Write out the truth table for the xor operator, and show how
to write it in terms of and, or, and not.

2 Venn diagrams can be used to illustrate set unions and intersections. Draw
Venn diagrams that correspond to the and, or, not, and xor operations.

3 DeMorgan’s laws in R notation are !(A & B) == (!A) | (!B)
and !(A | B) == (!A) & (!B). Write these out in English using
the A and B statements above, and use truth tables to confirm each
equality.

2.4.2 Logical operations in R
One of the basic types of vector in R holds logical values. For example, a
logical vector may be constructed as

> a <- c(TRUE, FALSE, FALSE, TRUE)

The result is a vector of four logical values. Logical vectors may be
used as indices:

> b <- c(13, 7, 8, 2)
> b[a]
[1] 13 2

The elements of b corresponding to TRUE are selected.
If we attempt arithmetic on a logical vector, e.g.

> sum(a)
[1] 2

then the operations are performed after converting FALSE to 0 and
TRUE to 1. In this case the result is that we count how many occurrences
of TRUE are in the vector.

There are two versions of the Boolean operators. The usual versions are
&, |, and !, as listed in the previous section. These are all vectorized, so
we see for example

> !a
[1] FALSE TRUE TRUE FALSE

28 INTRODUCTION TO THE R LANGUAGE

If we attempt logical operations on a numerical vector, 0 is taken to be
FALSE, and any nonzero value is taken to be TRUE:

> a & (b - 2)
[1] TRUE FALSE FALSE FALSE

The operators &&and ||are similar to &and |, but behave differently in
two respects. First, they are not vectorized: only one calculation is done.
Secondly, they are guaranteed to be evaluated from left to right, with the
right-hand operand only evaluated if necessary. For example, if A is FALSE,
then A && Bwill be FALSE regardless of the value of B, so B needn’t be
evaluated. This can save time if evaluating B would be very slow, and
may make calculations easier, for example if evaluating B would cause an
error when A was FALSE. This behavior is sometimes called short-circuit
evaluation.

Exercises
1 Under what circumstances wouldBneed to be evaluated in the expression
A || B?

2 Using the values from the previous section, predict the output from each
of these expressions, and then try them in R.

min(b)
min(a)
max(b)
max(a)
length(a)

3 Type

b * a

2.4.3 Relational operators
It is often necessary to test relations when programming to decide whether
they are TRUE or FALSE. R allows for equality and inequality relations to
be tested in using the relational operators: <, >, ==, >=, <=, !=.

Examples:

• Type

a <- c(3, 6, 9)

• To test which elements are greater than 4, type

a > 4

• To test which elements are exactly equal6 to 4, type
6 Be careful with tests of equality.
Because R works with only a limited
number of decimal places rounding error
can accumulate, and you may find
surprising results, such as 49 * (4 /

49) not being equal to 4.

a == 4

• To test which elements are greater than or equal to 4, type

a >= 4

DATA INPUT AND OUTPUT 29

• To test which elements are not equal to 4, type

a != 4

• To print the elements of a which are greater than 4, type

a[a > 4]

• Type

b <- c(4, 6, 8)

• To test which elements of a are less than the corresponding elements of
b, type

a < b

• To print the elements of a that are less than the corresponding elements
of b, type

a[a < b]

2.5 Data input and output

When in an R session, it is possible to read and write data to files outside of
R, for example on your computer’s hard drive. Before we can discuss some
of the many ways of doing this, it is important to know where the data is
coming from or going to.

2.5.1 Changing directories
In Windows versions of R, it is possible to use the File | Change dir...
menu to choose the directory or folder to which you wish to direct your
data.

It is also possible to use the setwd()function. For example, to work
with data in the folder mydata on the C: drive, type

setwd("c:/mydata") # or setwd("c:\\ mydata")

From now on, all data input and output will default to the mydata folder
in the C: drive.7

7 If you are used to folder names in
Windows, you might have expected this
to be written as "c:\mydata".
However, R treats the backslash
character “\” as a special “escape”
character, which modifies the
interpretation of the next character. If
you really want a backslash, you need to
double it: the first backslash tells the
second backslash not to be an escape.
Because other systems use a forward
slash “/” in their folder names, and
because doubling the backslash is
tedious in Windows, R accepts either
form.

2.5.2 dump() and source()
Suppose you have constructed an R object called usefuldata. In order
to save this object for a future session, type

dump("usefuldata", "useful.R")

This stores the command necessary to create the vector usefuldata
into the file useful.R on your computer’s hard drive. The choice of filename
is up to you, as long as it conforms to the usual requirements for filenames
on your computer.

30 INTRODUCTION TO THE R LANGUAGE

To retrieve the vector in a future session, type

source("useful.R")

This reads and executes the command in useful.R, resulting in the cre-
ation of the usefuldata object in your global environment. If there was
an object of the same name there before, it will be replaced.

To save all of the objects that you have created during a session, type

dump(list=objects(), "all.R")

This produces a file called all.R on your computer’s hard drive. Using
source("all.R")at a later time will allow you to retrieve all of these
objects.

To save existing objects humidity, temp and rain to a file called
weather.R on your hard drive, type

dump(c("humidity", "temp", "rain"), "weather.R")

Exercises
1 Use a text editor to create a file consisting of the line

randomdata <- c(64, 38, 97, 88, 24, 14, 104, 83)

Save it to a file called randomdata.
2 Source the file randomdata into R and confirm the randomdata

vector was created.
3 Create a vector called numbers which contains

3 5 8 10 12

Dump numbers to a file called numbers.R and delete numbers using
the rm()function. Using ls(), confirm that numbers has been
deleted. Now, use the source command to retrieve the vector numbers.

2.5.3 Redirecting R output
By default, R directs the output of most of its functions to the screen. Output
can be directed to a file with the sink()function.

As an example, consider the greenhouse data in the vector
solar.radiation. The command mean(solar.radiation)prints
the mean of the data to the screen. To print this to a file called solarmean.txt,
type

sink("solarmean.txt") # Create a file solarmean.txt for output
mean(solar.radiation) # Write mean value to solarmean.txt

All subsequent output will be printed to the file solarmean.txt until the
command

sink() # Close solarmean.txt; print new output to screen

is invoked. This returns subsequent output to the screen.

DATA INPUT AND OUTPUT 31

2.5.4 Saving and retrieving image files
The vectors and other objects created during an R session are stored in the
workspace known as the global environment. When ending an R session,
we have the option of saving the workspace in a file called a workspace
image. If we choose to do so, a file called by default .RData is created in the
current working directory (folder) which contains the information needed
to reconstruct this workspace. In Windows, the workspace image will be
automatically loaded if R is started by clicking on the icon representing the
file .RData, or if the .RData file is saved in the directory from which R
is started. If R is started in another directory, the load()function may be
used to load the workspace image.

It is also possible to save workspace images without quitting. For exam-
ple, we could save all current workspace image information to a file called
temp.RData by typing

> save.image("temp.RData")

Again, we can begin an R session with that workspace image,
by clicking on the icon for temp.RData. Alternatively, we can type
load("temp.RData")after entering an R session. Objects that were
already in the current workspace image will remain, unless they have the
same name as objects in the workspace image associated with temp.RData.
In the latter case, the current objects will be overwritten and lost.

2.5.5 Data frames and the read.table function
Data sets frequently consist of more than one column of data, where each
column represents measurements of a single variable. Each row usually rep-
resents a single observation. This format is referred to as case-by-variable
format.

For example, the following data set consists of four observations on the
three variables x, y, and z:

x y z
61 13 4

175 21 18
111 24 14
124 23 18

If such a data set is stored in a file called pretend.dat in the directory
myfiles on the C: drive, then it can be read into an R data frame. This can
be accomplished by typing

> pretend.df <- read.table("c:/myfiles/pretend.dat", header=T)

In a data frame, the columns are named. To see the x column, type

> pretend.df$x

2.5.6 Lists
Data frames are actually a special kind of list, or structure. Lists in R can
contain any other objects. You won’t often construct these yourself, but

32 INTRODUCTION TO THE R LANGUAGE

many functions return complicated results as lists. You can see the names
of the objects in a list using the names()function, and extract parts of it:

> names(d) # Print the names of the objects in the d data frame.
> d$x # Print the x component of d

The list()function is one way of organizing multiple pieces of output
from functions. For example,

> x <- c(3, 2, 3)
> y <- c(7, 7)
> list(x = x, y = y)
$x
[1] 3 2 3

$y
[1] 7 7

Exercises
1 Display the row 1, column 3 element of pretend.df.
2 Use two different commands to display the y column of pretend.df.

Chapter exercises

1 Assign the data set in rnf6080.dat8 to a data frame called rain.df.

8 This data set is available at
www.stats.uwo.ca/faculty/

braun/data/rnf6080.dat.

Use the header=FALSE option.

(a) Display the row 2, column 4 element of rain.df.
(b) What are the names of the columns of rain.df.
(c) Display the contents of the second row of the rain dataset.
(d) Use the following command to re-label the columns of this data

frame:

> names(rain.df) <- c("year", "month", "day", seq(0, 23))

(e) Create a new column called daily which is the sum of the 24
hourly columns.

(f) Plot a histogram of the daily rainfall amounts.

2 Plot the graph of the function

f (x) =
{

3x + 2, x ≤ 3
2x − 0.5x2, x > 3

on the interval [0, 6].

http://www.stats.uwo.ca/faculty/braun/data/rnf6080.dat
http://www.stats.uwo.ca/faculty/braun/data/rnf6080.dat

3

Programming statistical
graphics

Users of statistical computing will need to produce graphs of their data and
the results of their computations. In this chapter we start with a general
overview of how this is done in R, and learn how to draw some basic plots.
We then discuss some of the issues involved in choosing a style of plot to
draw: it is not always an easy choice, and there are plenty of bad examples
in the world to lead us astray. Finally, we will go into some detail about
how to customize graphs in R.

There are several different graphics systems in R. The oldest one is most
directly comparable to the original S graphics, and is now known as base
graphics. You can think of base graphics as analogous to drawing with ink on
paper. You build up a picture by drawing fixed things on it, and once some-
thing is drawn, it is permanent, though you might be able to cover it with
something else, or move to a clean sheet of paper. Since the very beginning,
base graphics has been designed to allow easy production of good quality
scientific plots. In this chapter we will concentrate on base graphics.

The grid package provides the basis for a newer graphics system. It
also has facilities to produce good quality graphics, but the programmer
has access to the individual pieces of a graph, and can modify them: a
graph is more like a physical model being built and displayed, rather than
just drawn. The lattice and ggplot packages provide functions for
high-level plots based on grid graphics.

Both base and grid graphics are designed to be “device independent.”
Directions are given where to draw and these drawing commands work on
any device. The actual look of a graph will vary slightly from one device
to another (e.g. on paper versus in a window on your screen), because of
different capabilities.

There are other more exotic graphics systems available in R as well,
providing interactive graphics, 3-D displays, etc. These are beyond the
scope of this book.

3.1 High-level plots

In this section we will discuss several basic plots. The functions to draw
these in R are called “high level” because you don’t need to worry about

34 PROGRAMMING STATISTICAL GRAPHICS

Rural Male Rural Female Urban Male Urban Female

Death rates in Virginia

D
ea

th
s

pe
r

10
00

0
20

40
60

80

Fig. 3.1 An example of a bar
chart.

the details of where the ink goes; you just describe the plot you want, and
R does the drawing.

3.1.1 Bar charts and dot charts
The most basic type of graph is one that displays a single set of numbers.
Bar charts and dot charts do this by displaying a bar or dot whose length or
position corresponds to the number.

For example, the VADeaths dataset in R contains death rates (number
of deaths per 1000 population per year) in various subpopulations within
the state of Virginia in 1940. This may be plotted as a bar chart.

> VADeaths
Rural Male Rural Female Urban Male Urban Female

50-54 11.7 8.7 15.4 8.4
55-59 18.1 11.7 24.3 13.6
60-64 26.9 20.3 37.0 19.3
65-69 41.0 30.9 54.6 35.1
70-74 66.0 54.3 71.1 50.0

> barplot(VADeaths, beside=TRUE, legend=TRUE, ylim=c(0, 90),
+ ylab="Deaths per 1000",
+ main="Death rates in Virginia")

Figure 3.1 shows the plot that results. The bars correspond to each num-
ber in the matrix. The beside=TRUE argument causes the values in each
column to be plotted side-by-side; legend=TRUE causes the legend in the
top right to be added. The ylim=c(0, 90) argument modifies the verti-
cal scale of the graph to make room for the legend. (We will describe other
ways to place the legend in Section 3.3 below.) Finally, themain=argument
sets the main title for the plot.

HIGH-LEVEL PLOTS 35

Rural male

Rural female

Urban male

Urban female

0

Death rates in Virginia

Deaths per 1000
20 40 60

Fig. 3.2 An example of a dot
chart.

An alternative way to plot the same data is in a dot chart (Figure 3.2).

> dotchart(VADeaths, xlim=c(0, 75),
+ xlab="Deaths per 1000",
+ main="Death rates in Virginia") A

B

C D

F

Fig. 3.3 A pie chart showing the
distribution of grades in a class.

We set the x-axis limits to run from 0 to 75 so that zero is included,
because it is natural to want to compare the total rates in the different
groups.

3.1.2 Pie charts
Pie charts display a vector of numbers by breaking up a circular disk into
pieces whose angle (and hence area) is proportional to each number. For
example, the letter grades assigned to a class might arise in the proportions
shown in Figure 3.3, which was drawn with the R code

> groupsizes <- c(18, 30, 32, 10, 10)
> labels <- c("A", "B", "C", "D", "F")
> pie(groupsizes, labels, col=c("grey40", "white", "grey", "black", "grey90"))

Pie charts are popular in non-technical publications, but they have fallen
out of favour with statisticians. Some of the reasons why will be discussed
in Section 3.2.

3.1.3 Histograms
A histogram is a special type of bar chart that is used to show the frequency
distribution of a collection of numbers. Each bar represents the count of x
values that fall in the range indicated by the base of the bar. Usually all bars
should be the same width; this is the default in R. In this case the height of
each bar is proportional to the number of observations in the corresponding
interval. If bars have different widths, then the area of the bar should be
proportional to the count; in this way the height represents the density (i.e.
the frequency per unit of x).

36 PROGRAMMING STATISTICAL GRAPHICS

Histogram of x

x

Fr
eq

ue
nc

y

0–2 –1 1

0
10

15
20

2 3

5

Fig. 3.4 An example of a
histogram of the values in a vector
x of length 100. We can see for
example that the most frequently
observed interval is −0.5 to 0, and
that 23 values lie therein.

In R, hist(x,...) is the main way to plot histograms. Here x is a
vector consisting of numeric observations, and optional parameters in ...
are used to control the details of the display. For example, Figure 3.4 shows
the result of the following code.

> x <- rnorm(100)
> hist(x)

If you have n values of x, R, by default, divides the range into approxi-
mately log2(n)+1 intervals, giving rise to that number of bars. For example,
our data set consisted of 100 measurements. Since

100 > 26 = 64

100 < 27 = 128

6 < log2(100) < 7,

it can be seen that R should choose about 7 or 8 bars. In fact, it chose 11,
because it also attempts to put the breaks at round numbers (multiples of
0.5 in this case).

The above rule (known as the “Sturges” rule) is not always sat-
isfactory for very large values of n, giving too few bars. Current
research suggests that the number of bars should increase proportionally
to n1/3 rather than proportional to log2(n). The breaks = "Scott" and
breaks = "Freedman-Diaconis" options provide variations on this
choice. For example, Figure 3.5 shows the results for a 10 000 point dataset
using the “Sturges” and “Scott” rules.

3.1.4 Box plots
A box plot (or “box-and-whisker plot”) is an alternative to a histogram to
give a quick visual display of the main features of a set of data. Arectangular
box is drawn, together with lines which protrude from two opposing sides.

HIGH-LEVEL PLOTS 37

breaks = "Sturges"

x

F
re

qu
en

cy

–4 –2 4

0
50

0
10

00
15

00
20

00

breaks = "Scott"

x

F
re

qu
en

cy

–2

0
20

0
40

0
60

0
80

0

0 20 2 4

Fig. 3.5 Histograms of the
values in a vector x of length
10 000, using two different rules
for setting the breaks.

The box gives an indication of the location and spread of the central portion
of the data, while the extent of the lines (the “whiskers”) provides an idea
of the range of the bulk of the data. In some implementations, outliers
(observations that are very different from the rest of the data) are plotted as
separate points.

The basic construction of the box part of the boxplot is as follows:

1 A horizontal line is drawn at the median.
2 Split the data into two halves, each containing the median.
3 Calculate the upper and lower quartiles as the medians of each half, and

draw horizontal lines at each of these values. Then connect the lines to
form a rectangular box.

The box thus drawn defines the interquartile range (IQR). This is the
difference between the upper quartile and the lower quartile. We use the
IQR to give a measure of the amount of variability in the central portion of
the dataset, since about 50% of the data will lie within the box.

The lower whisker is drawn from the lower end of the box to the smallest
value that is no smaller than 1.5 IQR below the lower quartile. Similarly,
the upper whisker is drawn from the middle of the upper end of the box to
the largest value that is no larger than 1.5 IQR above the upper quartile. The
rationale for these definitions is that when data are drawn from the normal
distribution or other distributions with a similar shape, about 99% of the
observations will fall between the whiskers.

outliers

lower whisker

lower quartile

median

upper quartile

upper whisker

outlier

Fig. 3.6 Construction of a
boxplot.

An annotated example of a box plot is displayed in Figure 3.6. Box
plots are convenient for comparing distributions of data in two or more
categories, with a number (say 10 or more) of numerical observations per
category. For example, the iris dataset in R is a well-studied dataset of
measurements of 50 flowers from each of three species of iris. Figure 3.7,
produced by the code

> boxplot(Sepal.Length ˜ Species, data = iris,
+ ylab = "Sepal length (cm)", main = "Iris measurements",
+ boxwex = 0.5)

compares the distributions of the sepal length measurements between
the different species. Here we have used R’s formula based interface to
the graphics function: the syntax Sepal.Length ˜ Species is read
as “Sepal.Length depending on Species,” where both are columns of the
data frame specified by data = iris. The boxplot() function draws
separate side-by-side box plots for each species. From these, we can see

38 PROGRAMMING STATISTICAL GRAPHICS

●

setosa versicolor virginica

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

Iris measurements

S
ep

al
 le

ng
th

 (
cm

)

Fig. 3.7 An example of
side-by-side boxplots.

substantial differences between the mean lengths for the species, and that
there is one unusually small specimen among the virginica samples.

3.1.5 Scatterplots
When doing statistics, most of the interesting problems have to do with
the relationships between different measurements. To study this, one of
the most commonly used plots is the scatterplot, in which points (xi, yi),
i = 1, . . . , n are drawn using dots or other symbols. These are drawn to
show relationships between the xi and yi values. In R, scatterplots (and
many other kinds of plots) are drawn using the plot () function. Its
basic usage is plot(x, y, ...)where x and y are numeric vectors of
the same length holding the data to be plotted. There are many additional
optional arguments, and versions of plot designed for non-numerical data
as well.

One important optional argument is type. The default is type="p",
which draws a scatterplot. Line plots (in which line segments join the (xi, yi)

points in order from first to last) are drawn using type="l". Many other
types are available, including type="n", to draw nothing: this just sets
up the frame around the plot, allowing other functions to be used to draw
in it. Some of these other functions will be discussed in Section 3.3.

Many other types of graphs can be obtained with this function. We
will show how to explore some of the options using some artificial data.
Two vectors of numbers will be simulated, one from a standard normal
distribution and the other from a Poisson distribution having mean 30.

> x <- rnorm(100) # assigns 100 random normal observations to x
> y <- rpois(100, 30) # assigns 100 random Poisson observations
> # to y; mean value is 30
> mean(y) # the resulting value should be near 30
[1] 30.91

HIGH-LEVEL PLOTS 39

–3 –2 –1 0

20
25

30
35

40
45

50

Poisson versus Normal

x

y

1 2

Fig. 3.8 An example of a
scatterplot.

The main argument sets the main title for the plot. Figure 3.8 shows
the result of

> plot(x, y, main = "Poisson versus Normal")

Other possibilities you should try:

> plot(x, y, type="l") # plots a broken line (a dense tangle of line
> # segments here)
> plot(sort(x), sort(y), type="l") # a plot of the sample "quantiles"

There are many more optional arguments to the plot() function,
described on the ?plot and ?par help pages.

3.1.6 QQ plots
Quantile–quantile plots (otherwise known as QQ plots) are a type of scat-
terplot used to compare the distributions of two groups or to compare a
sample with a reference distribution.

In the case where there are two groups of equal size, the QQ plot is
obtained by first sorting the observations in each group: X [1] ≤ · · · ≤
X [n] and Y [1] ≤ · · · ≤ Y [n]. Next, draw a scatterplot of (X [i], Y [i]), for
i = 1, . . . , n.

When the groups are of different sizes, some scheme must be used to
artificially match them. R reduces the size of the larger group to the size
of the smaller one by keeping the minimum and maximum values, and
choosing equally spaced quantiles between. For example, if there were five
X values but twenty Y values, then the X values would be plotted against
the minimum, lower quartile, median, upper quartile and maximum of the
Y values.

When plotting a single sample against a reference distribution, theoret-
ical quantiles are used for one coordinate. R normally puts the theoretical
quantiles on the X axis and the data on the Y axis, but some authors make

40 PROGRAMMING STATISTICAL GRAPHICS

the opposite choice. To avoid biases, quantiles are chosen corresponding to
probabilities (i − 1/2)/n: these are centered evenly between zero and one.

Fig. 3.9 Several examples of
QQ plots.

When the distributions of X and Y match, the points in the QQ plot
will lie near the line y = x. We will see a different straight line if one
distribution is a linear transformation of the other. On the other hand, if
the two distributions are not the same, we will see systematic patterns in
the QQ plot. The following code illustrates some common patterns (see
Figure 3.9).

> X <- rnorm(1000)
> A <- rnorm(1000)
> qqplot(X, A, main="A and X are the same")
> B <- rnorm(1000, mean=3, sd=2)
> qqplot(X, B, main="B is rescaled X")
> C <- rt(1000, df=2)
> qqplot(X, C, main="C has heavier tails")
> D <- exp(rnorm(1000))
> qqplot(X, D, main="D is skewed to the right")

Exercises
1 The islands vector contains the areas of 48 land masses.

(a) Plot a histogram of these data.
(b) Are there advantages to taking logarithms of the areas before plotting

the histogram?
(c) Compare the histograms that result when using breaks based on

Sturges’ and Scott’s rules. Make this comparison on the log-scale
and on the original scale.

(d) Construct a boxplot for these data on the log-scale as well as the
original scale.

(d) Construct a dot-chart of the areas. Is a log transformation needed
here?

(f) Which form of graphic do you think is most appropriate for
displaying these data?

2 The stackloss data frame contains 21 observations on four variables
taken at a factory where ammonia is converted to nitric acid. The first
three variables are Air.Flow, Water.Temp, and Acid.Conc. The
fourth variable is stack.loss, which measures the amount of ammo-
nia that escapes before being absorbed. (Read the help file for more
information about this data frame.)
(a) Use scatterplots to explore possible relationships between acid con-

centration, water temperature, and air flow and the amount of
ammonia which escapes. Do these relationships appear to be linear
or nonlinear?

(b) Use the pairs() function to obtain all pairwise scatterplots among
the four variables. Identify pairs of variables where there might be
linear or nonlinear relationships.

3 Consider the pressure data frame. There are two columns:
temperature and pressure.

CHOOSING A HIGH-LEVEL GRAPHIC 41

(a) Construct a scatterplot with pressure on the vertical axis and
temperature on the horizontal axis. Are the variables related
linearly or nonlinearly?

(b) The graph of the following function passes through the plotted points
reasonably well:

y = (0.168 + 0.007x)20/3.

The differences between the pressure values predicted by the curve
and the observed pressure values are called residuals. Here is a way
to calculate them:

> residuals <-with(pressure, pressure-(0.168+0.007*temperature)ˆ(20/3))

Construct a normal QQ-plot of these residuals and decide whether
they are normally distributed or whether they follow a skewed
distribution.

(c) Now, apply the power transformation y3/20 to the pressure data val-
ues. Plot these transformed values against temperature. Is a linear or
nonlinear relationship evident now?

(d) Calculate residuals for the difference between transformed pressure
values and those predicted by the straight line. Obtain a normal
QQ-plot, and decide whether the residuals follow a normal distribu-
tion or not.

3.2 Choosing a high-level graphic

We have described bar, dot, and pie charts, histograms, box plots, scatter-
plots, and QQ plots. There are many other styles of statistical graphics that
we haven’t discussed. How should a user choose which one to use?

The first consideration is the type of data. As discussed in the previous
section, bar, dot, and pie charts display individual values, histograms, box
plots, and QQ plots display distributions, and scatterplots display pairs of
values.

Another consideration is the audience. If the plot is for yourself or for a
statistically educated audience, then you can assume a more sophisticated
understanding. For example, a box plot or QQ plot would require more
explanation than a histogram, and might not be appropriate for the general
public.

It is also important to have some understanding of how human visual
perception works in order to make a good choice. There has been a huge
amount of research on this and we can only touch on it here.

When looking at a graph, you extract quantitative information when
your visual system decodes the graph. This process can be described in
terms of unconscious measurements of lengths, positions, slopes, angles,
areas, volumes, and various aspects of color. It has been found that people
are particularly good at recognizing lengths and positions, not as good
at slopes and angles, and their perception of areas and volumes can be

42 PROGRAMMING STATISTICAL GRAPHICS

quite inaccurate, depending on the shape. Most of us are quite good at
recognizing differences in colors. However, up to 10% of men and a much
smaller proportion of women are partially color-blind, and almost nobody
is very good at making quantitative measurements from colors.

We can take these facts about perception into account when we construct
graphs. We should try to convey the important information in ways that are
easy to perceive, and we should try not to have conflicting messages in a
graph.

For example, the bars in bar charts are easy to recognize, because the
position of the ends of the bars and the length of the bars are easy to see.
The area of the bars also reinforces our perception.

However, the fact that we see length and area when we look at a bar
constrains us. We should normally base bar charts at zero, so that the posi-
tion, length and area all convey the same information. If we are displaying
numbers where zero is not relevant, then a dot chart is a better choice: in a
dot chart it is mainly the position of the dot that is perceived.

Thinking in terms of visual tasks tells us that pie charts can be poor
choices for displaying data. In order to see the sizes of slices of the pie, we
need to make angle and area measurements, and we are not very good at
those.

Finally, color can be very useful in graphs to distinguish groups from
each other. The RColorBrewer package in R contains a number of
palettes, or selections of colors. Some palettes indicate sequential groups
from low to high, others show groups that diverge from a neutral value, and
others are purely qualitative. These are chosen so that most people (even if
color-blind) can easily see the differences.

3.3 Low-level graphics functions

Functions like barplot(), dotchart()and plot()do their work by
using low-level graphics functions to draw lines and points, to establish
where they will be placed on a page, and so on.

In this section we will describe some of these low-level functions, which
are also available to users to customize their plots. We will start with a
description of how R views the page it is drawing on, then show how to add
points, lines, and text to existing plots, and finish by showing how some of
the common graphics settings are changed.

3.3.1 The plotting region and margins
Base graphics in R divides up the display into several regions. The plot
region is where data will be drawn. Within the plot region R maintains a
coordinate system based on the data. The axes show this coordinate system.
Outside the plot region are the margins, numbered clockwise from 1 to 4,
starting at the bottom. Normally text and labels are plotted in the margins,
and R positions objects based on a count of lines out from the plot region.
Figure 3.10 illustrates this. (We give the code that produced this plot below.)

LOW-LEVEL GRAPHICS FUNCTIONS 43

2

0

Plot region

(6, 20)

Margin 1

M
ar

gi
n

2

Margin 3

M
ar

gi
n

4

Line 0

Line 1

Line 2

Line 3

Line 4

Li
ne

 0

Li
ne

 1

Li
ne

 2

Li
ne

 3

Li
ne

 4

Line 0

Line 1

Line 2

Line 3

Line 4

Li
ne

 0

Li
ne

 1

Li
ne

 2

Li
ne

 3

Li
ne

 4

10
20

30
40

50

4 6 8

Fig. 3.10 The plotting region in
base graphics.

We can see from the figure that R chose to draw the tick mark labels on
line 1. We drew the margin titles on line 3.

3.3.2 Adding to plots
Several functions exist to add components to the plot region of existing
graphs:

• points(x, y, ...)
• lines(x, y, ...) adds line segments
• text(x, y, labels, ...) adds text into the graph
• abline(a, b, ...) adds the line y = a + bx
• abline(h=y, ...) adds a horizontal line
• abline(v=x, ...) adds a vertical line
• polygon(x, y, ...) adds a closed and possibly filled polygon
• segments(x0, y0, x1, y1, ...) draws line segments
• arrows(x0, y0, x1, y1, ...) draws arrows
• symbols(x, y, ...) draws circles, squares, thermometers, etc.
• legend(x, y, legend, ...) draws a legend.

The optional arguments to these functions specify the color, size, and other
characteristics of the items being added.

For example, we will use measurements on the lengths and widths (in
cm) of the left index finger for a random sample of eight adult individuals.
The data are stored in a data frame calledindexfingerwhich is displayed
below.

> indexfinger
sex length width

1 M 7.9 2.3
2 F 6.5 1.7

44 PROGRAMMING STATISTICAL GRAPHICS

5.5 6.0 6.5 7.0 7.5 8.0 8.5

1.
8

2.
0

2.
2

2.
4

2.
6

Length

W
id

th

M

F

M

F

F

M

F
M

5.5 6.0 6.5 7.0 7.5 8.0 8.5

1.
8

2.
0

2.
2

2.
4

2.
6

Length

W
id

th

Male
Female

(a) (b)

Fig. 3.11 A scatter plot of finger width versus finger length for eight individuals. (a): Highlighting two points. (b): Using different
plot characters for each sex.

3 M 8.4 2.6
4 F 5.5 1.7
5 F 6.5 1.9
6 M 8.0 2.1
7 F 7.0 1.8
8 M 7.5 1.9

We can create a simple scatter plot of these data illustrating the relation
between length and width using

> plot(width ˜ length, data=indexfinger)

Suppose that after plotting this figure, we decide to highlight the male
and female with the longest fingers (observations 3 and 7). We will use the
points() function to plot additional points on the graph on top of the
original ones with the following code:1

1 The with () function allows us to
access columns of a data frame directly
without using the $ convention. See
help (with) for more information.

> with(indexfinger[c(3, 7),], points(length, width, pch=16))

The result is shown in Figure 3.11(a). The pch=16 argument changes
the plotting character from the default open circle to a solid black dot.
Other numerical values of this parameter will give different plotting char-
acters. We can also ask for different characters to be plotted; for example,
pch="f" causes R to plot the letter f.

Another possibility would be to specify the pch value in the original
call to plot(), for example

> plot(width ˜ length, pch=as.character(sex), data=indexfinger)

We could then add linear regression lines for the males and the females,
and a legend to identify them.

> abline(lm(width ˜ length, data=indexfinger, subset=sex=="M"), lty=1)
> abline(lm(width ˜ length, data=indexfinger, subset=sex=="F"), lty=2)
> legend("topleft", legend=c("Male", "Female"), lty=1:2)

Figure 3.11(b) shows the results.

LOW-LEVEL GRAPHICS FUNCTIONS 45

One may also wish to annotate graphs outside the plot region. Several
functions exist to do this:

• title(main, sub, xlab, ylab, ...)adds a main title, a sub-
title, an x-axis label and/or a y-axis label

• mtext(text, side, line, ...) draws text in the margins
• axis(side, at, labels, ...) adds an axis to the plot
• box(...) adds a box around the plot region.

For example, Figure 3.10 was drawn using the following code:

> par(mar=c(5, 5, 5, 5) + 0.1)
> plot(c(1, 9), c(0, 50), type="n", xlab="", ylab="")
> text(6, 40, "Plot region")
> points(6, 20)
> text(6, 20, "(6, 20)", adj=c(0.5, 2))
> mtext(paste("Margin", 1:4), side=1:4, line=3)
> mtext(paste("Line", 0:4), side=1, line=0:4, at=3, cex=0.6)
> mtext(paste("Line", 0:4), side=2, line=0:4, at=15, cex=0.6)
> mtext(paste("Line", 0:4), side=3, line=0:4, at=3, cex=0.6)
> mtext(paste("Line", 0:4), side=4, line=0:4, at=15, cex=0.6)

We discuss the par() function in the next section.

3.3.3 Setting graphical parameters
When creating a new plot, there are two opportunities to set its overall
characteristics. The first is when the plotting device is opened. R normally
opens a screen device automatically with default parameters, but a user
can open a plotting device explicitly, and set it up exactly as required. The
availability of these depends on the platform on which you are working.
Some plotting devices in R are:

• windows(...) to open a screen device in MS Windows
• x11(...)or X11(...) to open a screen device in Unix-alike systems
• quartz(...) to open a screen device in Mac OSX
• postscript(...) to open a file for Postscript output for printing
• pdf(...) to open a file for PDF output
• jpeg(...) to open a file for JPEG bitmap output
• png(...) to open a file for PNG bitmap output.

You will need to read the help pages for each of these functions to find
out the exact details of the available parameters. They control things like
the size of the plot, background colors, and so on.

After a device is opened, other graphical parameters may be set using
the par(...) function. This function controls a very large number of
parameters; we will just highlight a few here. For the complete list, see the
help page.

• mfrow=c(m, n) tells R to draw m rows and n columns of plots, rather
than going to a new page for each plot.

• mfg=c(i, j) says to draw the figure in row i and column j next.
• ask=TRUE tells R to ask the user before erasing a plot to draw a new

one.

46 PROGRAMMING STATISTICAL GRAPHICS

• cex=1.5 tells R to expand characters by this amount in the plot region.
There are separate cex.axis, etc. parameters to control text in the
margins.

• mar=c(side1, side2, side3, side4) sets the margins of the
plot to the given numbers of lines of text on each side.

• oma=c(side1, side2, side3, side4) sets the outer margins
(the region outside the array of plots).

• usr=c(x1, x2, y1, y2) sets the coordinate system within the plot
with x and y coordinates on the given ranges.

The par() function is set up to take arguments in several forms. If you
give character strings (e.g. par("mfrow")), the function will return the
current value of the graphical parameter. If you provide named arguments
(e.g. par(mfrow=c(1, 2))), you will set the corresponding parameter,
and the previous value will be returned in a list. Finally, you can use a
list as input to set several parameters at once.

Chapter exercises

1 Consider the islands data set again. In particular, try out the following
code.

> hist(log(islands,10), breaks="Scott", axes=FALSE, xlab="area",
+ main="Histogram of Island Areas")
> axis(1, at=1:5, labels=10ˆ(1:5))
> axis(2)
> box()

(a) Explain what is happening at each step of the above code.
(b) Add a subtitle to the plot such as “Base-10 Log-Scale.”
(c) Modify the code to incorporate the use of the Sturges rule in place

of the Scott rule. In this case, you will need to use the round()
function to ensure that excessive numbers of digits are not used in
the axis labels.

2 Consider the pressure data frame again.
(a) Plot pressure against temperature, and use the following

command to pass a curve through these data:

> curve((0.168 + 0.007*x)ˆ(20/3), from=0, to=400, add=TRUE)

(b) Now, apply the power transformation y3/20 to the pressure data val-
ues. Plot these transformed values against temperature. Is a linear
or nonlinear relationship evident now? Use the abline() function
to pass a straight line through the points. (You need an intercept
and slope for this – see the previous part of this question to obtain
appropriate values.)

(c) Add a suitable title to the graph.
(d) Re-do the above plots, but use the mfrow() function to display

them in a 2 × 1 layout on the graphics page. Repeat once again
using a 1 × 2 layout.

4

Programming with R

Programming involves writing relatively complex systems of instructions.
There are two broad styles of programming: the imperative style (used in
R, for example) involves stringing together instructions telling the com-
puter what to do. The declarative style (used in HTML in web pages, for
example) involves writing a description of the end result, without giving
the details about how to get there. Within each of these broad styles, there
are many subdivisions, and a given program may involve aspects of sev-
eral of them. For example, R programs may be procedural (describing
what steps to take to achieve a task), modular (broken up into self-
contained packages), object-oriented (organized to describe operations on
complex objects), functional (organized as a collection of functions which
do specific calculations without having external side-effects), among other
possibilities. In this book we will concentrate on the procedural aspects of
programming.

As described in Chapter 1, R statements mainly consist of expressions to
be evaluated. Most programs are very repetitive, but the amount of repeti-
tion depends on the input. In this chapter we start by describing several f low
control statements that control how many times statements are repeated.
The remainder of the chapter gives advice on how to design and debug
programs.

4.1 Flow control

4.1.1 The for() loop
One of the goals of this book is to introduce stochastic simulation. Simu-
lations are often very repetitive: we want to see patterns of behaviour, not
just a single instance.

The for()statement allows one to specify that a certain operation
should be repeated a fixed number of times.

Syntax
for (name in vector) {commands}

48 PROGRAMMING WITH R

This sets a variable called name equal to each of the elements of vector,
in sequence. For each value, whatever commands are listed within the curly
braces will be performed. The curly braces serve to group the commands
so that they are treated by R as a single command. If there is only one
command to execute, the braces are not needed.

Example 4.1
The Fibonacci sequence is a famous sequence in mathematics. The first
two elements are defined as [1, 1]. Subsequent elements are defined as the
sum of the preceding two elements. For example, the third element is 2
(= 1+1), the fourth element is 3 (= 1+2), the fifth element is 5 (= 2+3),
and so on.

To obtain the first 12 Fibonacci numbers in R, we can use

> Fibonacci <- numeric(12)
> Fibonacci[1] <- Fibonacci[2] <- 1
> for (i in 3:12) Fibonacci[i] <- Fibonacci[i - 2] + Fibonacci[i - 1]

Understanding the code
The first line sets up a numeric vector of length 12 with the name
Fibonacci. This vector consists of 12 zeroes. The second line updates
the first two elements of Fibonacci to the value 1. The third line
updates the third element, fourth element, and so on according to the rule
defining the Fibonacci sequence. In particular, Fibonacci[3]is
assigned the value of Fibonacci[1] + Fibonacci[2],
i.e. 2. Fibonacci[4]is then assigned the latest value of
Fibonacci[2] + Fibonacci[3], giving it the value 3. The
for()loop updates the third through 12th element of the sequence in
this way.

To see all 12 values, type in

> Fibonacci
[1] 1 1 2 3 5 8 13 21 34 55 89 144

Example 4.2
Suppose a car dealer promotes two options for the purchase of a new
$20 000 car. The first option is for the customer to pay up front and
receive a $1000 rebate. The second option is “0%-interest financing” where
the customer makes 20 monthly payments of $1000 beginning in one
month’s time.

Because of option 1, the effective price of the car is really $19 000, so the
dealer really is charging some interest rate i for option 2. We can calculate
this value using the formula for the present value of an annuity:

19 000 = 1000

(
1 − (1 + i)−20

i

)
.

FLOW CONTROL 49

By multiplying both sides of this equation by i and dividing by 19 000, we
get the form of a fixed-point problem:1

i = (1 − (1 + i)−20)

19
.

By taking an initial guess for i and plugging it into the right-hand side of
this equation, we can get an ‘updated’ value for i on the left. For example,
if we start with i = 0.006, then our update is

i = (1 − (1 + 0.006)−20)

19
= 0.005 93.

By plugging this updated value into the right-hand side of the equation
again, we get a new update:

i = (1 − (1 + 0.005 93)−20)

19
= 0.005 86.

This kind of fixed-point iteration usually requires many iterations before
we can be confident that we have the solution to the fixed-point equation.
Here is R code to work out the solution after 1000 iterations:

> i <- 0.006
> for (j in 1:1000) {
+ i <- (1 - (1 + i)ˆ(-20)) / 19
+ }
> i
[1] 0.004 935 593

1 A fixed-point problem arises when we
want to solve an equation of the form x =
f (x), for some function f (x). Note that
the unknown value is on both sides of the
equation.

Exercises
1 Modify the code to generate the Fibonacci sequence in the following

ways:
(a) Change the first two elements to 2 and 2.
(b) Change the first two elements to 3 and 2.
(c) Change the update rule from summing successive elements to taking

differences of successive elements. For example, the third element
is defined as the second element minus the first element, and so on.

(d) Change the update rule so that each element is defined as the sum
of three preceding elements. Set the third element as 1 in order to
start the process.

2 Let fn denote the nth Fibonacci number.
(a) Construct a sequence of ratios of the form fn/fn−1, n = 1, 2, . . . , 30.

Does the sequence appear to be converging?
(b) Compute the golden ratio (1 + √

5)/2. Is the sequence converging
to this ratio? Can you prove this?

3 In each of the following, determine the final value of answer. Check
your result by running the code in R.
(a) > answer <- 0

> for (j in 1:5) answer <- answer + j

50 PROGRAMMING WITH R

(b) > answer <- NULL
> for (j in 1:5) answer <- c(answer, j)

(c) > answer <- 0
> for (j in 1:5) answer <- c(answer, j)

(d) > answer <- 1
> for (j in 1:5) answer <- answer * j

(e) > answer <- 3
> for (j in 1:15) answer <- c(answer, (7 * answer[j]) %% 31)
Inspect this last sequence of numbers. If you did not know the
rule used to determine this sequence, would you be able to predict
successive elements?

4 Refer to the car dealer promotion example in this section. Calculate the
first 20 updates of the interest rate i, starting with i = 0.006. Repeat with
a starting value of i = 0.005, and with a starting value of i = 0.004.
Based on these observations, what is the true value of i (up to five-digit
accuracy)?

5 Use a fixed-point iteration to determine the solution (in [0, 1]) of the
equation x = cos(x). Use a starting value of 0.5. How many iterations
does it take before you have an answer which is accurate in the first
two digits? …in the first three digits? …in the first four digits? What
happens if you change the starting value to 0.7? …to 0.0?

6 Repeat the previous question, but using the equation x = 1.5 cos(x).
(The solution is near x = 0.914 856 5.)
(a) Does the fixed-point iteration converge? If not, modify the equation

so that x = cos(x)/30 + 44x/45. Does the iteration converge now?
(b) Can you show that the solutions to these two equations are the same?
(c) Compute the absolute value of the derivative of 1.5 cos(x) and of

cos(x)/30+44x/45. There is a theorem in numerical analysis which
says that if this quantity is less than 1, then the fixed-point iteration
will converge if the starting guess is close enough to the solution.
Does this explain the behavior that you observed in part (a)?

4.1.2 The if() statement
Earlier, we learned about logical vectors and relational operators. The
subscripting device is a powerful way to perform different operations on
different parts of vectors. The if()statement allows us to control which
statements are executed, and sometimes this is more convenient.

Syntax
if (condition) {commands when TRUE}
if (condition) {commands when TRUE} else {commands when FALSE}

This statement causes a set of commands to be invoked if condition
evaluates to TRUE. The else part is optional, and provides an alternative
set of commands which are to be invoked in case the logical variable is
FALSE. Be careful how you type this. Typing it as

if (condition) {commands when TRUE}
else {commands when FALSE}

FLOW CONTROL 51

may be an error, because R will execute the first line before you have
time to enter the second. If these two lines appear within a block of com-
mands in curly braces, they won’t trigger an error, because R will collect
all the lines before it starts to act on any of them.

To avoid ambiguities such as this, a common convention for typing
if ... else is

if (condition) {
commands when TRUE

} else {
commands when FALSE

}

When typed in this form, it is very clear that the statement is incomplete
until the very end.

R also allows numerical values to be used as the value of condition.
These are converted to logical values using the rule that zero becomes
FALSE, and any other value becomes TRUE. Missing values are not allowed
for the condition, and will trigger an error.

Example 4.3
A simple example:

> x <- 3
> if (x > 2) y <- 2 * x else y <- 3 * x

Since x > 2 is TRUE, y is assigned 2 * 3 = 6. If it hadn’t been true, y
would have been assigned the value of 3 * x.

The if()statement is often used inside user-defined functions. The
following is a typical example.

Example 4.4
The correlation between two vectors of numbers is often calculated using
the cor()function. It is supposed to give a measure of linear association.
We can add a scatter plot of the data as follows:

> corplot <- function(x, y, plotit) {
+ if (plotit == TRUE) plot(x, y)
+ cor(x, y)
+ }

We can apply this function to two vectors without plotting by typing

> corplot(c(2, 5, 7), c(5, 6, 8), FALSE)
[1] 0.953821

52 PROGRAMMING WITH R

Example 4.5
The function that follows is based on the sieve of Eratosthenes, the oldest
known systematic method for listing prime numbers up to a given value
n. The idea is as follows: begin with a vector of numbers from 2 to n.
Beginning with 2, eliminate all multiples of 2 which are larger than 2.
Then move to the next number remaining in the vector, in this case, 3.
Now, remove all multiples of 3 which are larger than 3. Proceed through
all remaining entries of the vector in this way. The entry for 4 would have
been removed in the first round, leaving 5 as the next entry to work with
after 3; all multiples of 5 would be removed at the next step and so on.

> Eratosthenes <- function(n) {
+ # Return all prime numbers up to n (based on the sieve of Eratosthenes)
+ if (n >= 2) {
+ sieve <- seq(2, n)
+ primes <- c()
+ for (i in seq(2, n)) {
+ if (any(sieve == i)) {
+ primes <- c(primes, i)
+ sieve <- c(sieve[(sieve %% i) != 0], i)
+ }
+ }
+ return(primes)
+ } else {
+ stop("Input value of n should be at least 2.")
+ }
+ }

Here are a couple of examples of the use of this function:

> Eratosthenes(50)
[1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
> Eratosthenes(-50)
Error in Eratosthenes(-50) : Input value of n should be at least 2.

Understanding the code
The purpose of the function is to provide all prime numbers up to the given
value n. The basic idea of the program is contained in the lines:

sieve <- seq(2, n)
primes <- c()
for (i in seq(2, n)) {

if (any(sieve == i)) {
primes <- c(primes, i)
sieve <- sieve[(sieve %% i) != 0]

}
}

The sieve object holds all the candidates for testing. Initially, all
integers from 2 through n are stored in this vector. The primes object is

FLOW CONTROL 53

set up initially empty, eventually to contain all of the primes that are less
than or equal to n. The composite numbers in sieve are removed, and the
primes are copied to primes.

Each integer i from 2 through n is checked in sequence
to see whether it is still in the vector. The any() function
returns a TRUE if at least one of the logical vector elements in its argu-
ment is TRUE. In the case that i is still in the sieve vector, it must be
a prime, since it is the smallest number that has not been eliminated yet.
All multiples of i are eliminated, since they are necessarily composite, and
i is appended to primes. The expression (sieve %% i) == 0 would
give TRUE for all elements of sieve which are multiples of i; since we
want to eliminate these elements and save all other elements, we can negate
this using !(sieve %% i == 0)or sieve %% i != 0. Then we can
eliminate all multiples of i from the sieve vector using

sieve <- sieve[(sieve %% i) != 0]

Note that this eliminates i as well, but we have already saved it in primes.
If the supplied argument n is less than 2, then the function output would

be meaningless. To avoid this, we cause an error to be triggered if a value
smaller than 2 is supplied by the user.

Exercises
1 Does the Eratosthenes()function work properly if n is not an

integer? Is an error message required in this case?
2 Use the idea of the Eratosthenes()function to prove that there

are infinitely many primes. Hint: Suppose all primes were less than
m, and construct a larger value n that would not be eliminated by
the sieve.

3 A twin prime is a pair of primes (x, y), such that y = x + 2. Construct a
list of all twin primes below 1000.2

2 It has been known since ancient times
that there are infinitely many primes. It
remains a conjecture as to whether there
is an infinite set of twin primes.

4 A bank offers a guaranteed investment certificate (GIC) which pays an
annual interest rate of 4% (compounded annually) if the term is 3 years
or less, or 5% if the term is more than 3 years. Write a function which
takes the initial investment amount, P, and the number of interest periods
(i.e. years) as arguments and which returns the amount of interest earned
over the term of the GIC. That is, return I , where I = P((1 + i)n − 1).

5 Mortgage interest rates can sometimes depend on whether the mortgage
term is open or closed. Use the formula

R = Pi

1 − (1 + i)−n

to create a function to calculate a monthly mortgage payment R where
i is an interest rate (compounded monthly), P is the original principal,
and n is the length of the term (in months). The function should take
n, P, and open as arguments. If open==TRUE, then take i = 0.005;
otherwise, take i = 0.004.

54 PROGRAMMING WITH R

4.1.3 The while() loop
Sometimes we want to repeat statements, but the pattern of repetition
isn’t known in advance. We need to do some calculations and keep
going as long as a condition holds. The while()statement accom-
plishes this.

Syntax
while (condition) {statements}

The condition is evaluated, and if it evaluates to FALSE, nothing more
is done. If it evaluates to TRUE the statements are executed, condition
is evaluated again, and the process is repeated.

Example 4.6
Suppose we want to list all Fibonacci numbers less than 300. We
don’t know beforehand how long this list is, so we wouldn’t know
how to stop the for()loop at the right time, but a while()loop is
perfect:

> Fib1 <- 1
> Fib2 <- 1
> Fibonacci <- c(Fib1, Fib2)
> while (Fib2 < 300) {
+ Fibonacci <- c(Fibonacci, Fib2)
+ oldFib2 <- Fib2
+ Fib2 <- Fib1 + Fib2
+ Fib1 <- oldFib2
+ }

Understanding the code
The central idea is contained in the lines

while (Fib2 < 300) {
Fibonacci <- c(Fibonacci, Fib2)

That is, as long as the latest Fibonacci number created (in Fib2) is less
than 300, it is appended to the growing vector Fibonacci.

Thus, we must ensure that Fib2 actually contains the updated Fibonacci
number. By keeping track of the two most recently added numbers (Fib1
and Fib2), we can do the update

Fib2 <- Fib1 + Fib2

Now Fib1 should be updated to the old value of Fib2, but that has been
overwritten by the new value. So before executing the above line, we make
a copy of Fib2 in oldFib2. After updating Fib2, we can assign the value
in oldFib2 to Fib1.

In order to start things off, Fib1, Fib2, and Fibonacci need to be
initialized. That is, within the loop, these objects will be used, so they need
to be assigned sensible starting values.

FLOW CONTROL 55

To see the final result of the computation, type

> Fibonacci
[1] 1 1 1 2 3 5 8 13 21 34 55 89 144 233

Caution
Increasing the length of a vector element by element as in
Fibonacci<- c(Fibonacci, Fib2)in a for()or while()loop
should be avoided if the number of such operations is likely to be large. R
will have to keep allocating new vectors, each one element longer than the
last one, and this will slow the process down substantially.

Exercises
1 The variable oldFib2 isn’t strictly necessary. Rewrite the Fibonacci
while()loop with the update of Fib1 based just on the current values
of Fib1 and Fib2.

2 In fact, Fib1 and Fib2 aren’t necessary either. Rewrite the Fibonacci
while()loop without using any variables except Fibonacci.

3 Determine the number of Fibonacci numbers less than 1 000 000.
4 Recall the car dealer interest rate example in Section 4.2. Use a
while()loop to iteratively calculate the interest rate i which satisfies
the fixed-point equation

i =
(

1 − (1 + i)−20
)

/19.

Use a starting guess of i = 0.006. Stop the calculation when two
successive values of the interest rate are less than 0.000 001 apart.
What happens when you try other starting guesses?

5 Referring to the previous exercise, modify your code so that it also
computes the number of iterations required to get two successive values
of the interest rate that are less than 0.000 001 apart.

4.1.4 Newton’s method for root finding
Newton’s method is a popular numerical method to find a root of an
algebraic equation:3

3 Alternatively, we say that it is finding
a zero of the function f (x).

f (x) = 0.

If f (x) has derivative f ′(x), then the following iteration will converge to a
root of the above equation if started close enough to the root.

x0 = initial guess

xn = xn−1 − f (xn−1)

f ′(xn−1)
.

The idea is based on the Taylor approximation

f (xn) ≈ f (xn−1) + (xn − xn−1) f ′(xn−1). (4.1)

56 PROGRAMMING WITH R

Newton’s method is equivalent to setting f (xn) = 0 and solving for xn

in (4.1). Even though (4.1) is only an approximation, we hope that the
solution xn should give a close approximation to the root. Be careful: there
are many examples where xn will fail to converge to a root unless xn−1
is already sufficiently close, and some where it will fail regardless of the
starting value.

Example 4.7

Suppose f (x) = x3 + 2x2 − 7. Then, if x0 is close enough to one of the
three roots of this equation,

xn = xn−1 − x3
n−1 + 2x2

n−1 − 7

3x2 + 4x

will converge to a root.
An R version of this could be implemented as follows:

> x <- x0
> f <- xˆ3 + 2 * xˆ2 - 7
> tolerance <- 0.000001
> while (abs(f) > tolerance) {
+ f.prime <- 3 * xˆ2 + 4 * x
+ x <- x - f / f.prime
+ f <- xˆ3 + 2 * xˆ2 - 7
+ }
> x

Understanding the code
We start with x equal to x0, and evaluate f(x0). Then, as long as | f (xi)| is
more than 0.000001, we update x using Newton’s method. Notice that we
don’t need a variable i. Because Newton’s method is a recursive formula
where the new value can be calculated from the old one, there is no need
to know which iteration we are on when doing the updates.

Exercises
1 The equation

x7+10 000x6+1.06x5+10 600x4+0.0605x3+605x2+0.0005x+5

has exactly one real root. How many iterations of Newton’s method are
required to find this root if the initial guess is x = 0?

2 Use Newton’s method to find a zero of

f (x) = x4 + 3x3 − 2x2 − 7,

using an initial guess of x = 1.
3 Modify the above function so that it finds one of the zeros of

f (x) = cos(x) + ex,

using an initial guess of x = −1.5.

FLOW CONTROL 57

4 Find a minimizer of the function

f (x) = (x − 3)4 + 7(x − 2)2 + x.

5 How many zeros does the function

f (x) = 5x − 3

x − 1

have? What are they? Describe the behavior of Newton’s method applied
to this function if the initial guess is
(a) 0.5
(b) 0.75
(c) 0.2
(d) 1.25.

6 How many zeros does the function

f (x) = (x2 − 6x + 9)e−x

have? What are they? Describe the behavior of Newton’s method applied
to this function if the initial guess is
(a) 3
(b) 3.2
(c) 2.99
(d) 3.01.

7 Refer to the car dealer interest rate example in Section 4.2. Use Newton’s
method to calculate the interest rate i which satisfies

i =
(

1 − (1 + i)−20
)

/19.

Use i = 0.006 as your starting guess. How many iterations are required
for two successive values of i to be within 0.000 001 of each other?

4.1.5 The repeat loop, and the break and next
statements

Sometimes we don’t want a fixed number of repetitions of a loop, and
we don’t want to put the test at the top of the loop the way it is in a
while()loop. In this situation we can use a repeat loop. This loop
repeats until we execute a break statement.

Syntax
repeat { statements }

This causes the statements to be repeated endlessly. The statements should
normally include a break statement, typically in the form

if (condition) break

but this is not a requirement of the syntax.
The break statement causes the loop to terminate immediately. break

statements can also be used in for()and while()loops. The next

58 PROGRAMMING WITH R

statement causes control to return immediately to the top of the loop; it
can also be used in any loop.

The repeat loop and the break and next statements are used rela-
tively infrequently. It is usually easier to understand code when the test is
clearly displayed at the top, and when that is the only exit from the loop (as
in the for and while loops.) However, sometimes these statements help
to make programs clearer.

Example 4.8
We can repeat the Newton’s algorithm example from the previous section
using a repeat loop:

> x <- x0
> tolerance <- 0.000001
> repeat {
+ f <- xˆ3 + 2 * xˆ2 - 7
+ if (abs(f) < tolerance) break
+ f.prime <- 3 * xˆ2 + 4 * x
+ x <- x - f / f.prime
+ }
> x

This version removes the need to duplicate the line that calculates f.

Exercises
1 Another algorithm for finding a zero of a function is called the bisection

algorithm. This algorithm starts with two values x1 and x2 for which
f (x1) and f (x2) have opposite signs. If f (x) is a continuous function,
then we know a root must lie somewhere between these two values. We
find it by evaluating f (x) at the midpoint, and selecting whichever half
of the interval still brackets the root. We then start over, and repeat the
calculation until the interval is short enough to give us our answer to the
required precision.
(a) Use a repeat loop to write a bisection algorithm to find a root of

f (x) = x3 + 2x2 − 7 to an accuracy of 6 decimal places, given that
the root is known to lie between 0 and 2.

(b) Prove that your bisection algorithm is guaranteed to converge for
any continuous function which takes opposite signed values at 0 and
2, and calculate how many loops it will take.

2 We could implement the Sieve of Eratosthenes using a while()loop:

> Eratosthenes <- function(n) {
+ # Print prime numbers up to n (based on the sieve of Eratosthenes)
+ if (n >= 2) {
+ sieve <- seq(2, n)
+ primes <- c()
+ while (length(sieve) > 0) {
+ p <- sieve[1]

MANAGING COMPLEXITY THROUGH FUNCTIONS 59

+ primes <- c(primes, p)
+ sieve <- sieve[(sieve %% p) != 0]
+ }
+ return(primes)
+ } else {
+ stop("Input value of n should be at least 2.")
+ }
+ }

(a) Trace through this function until you understand why it works.
(b) Show that once p >= sqrt(n)all remaining entries in sieve are

prime.
(c) Modify this function using break to take advantage of the above

result.

4.2 Managing complexity through functions

Most real computer programs are much longer than the examples we give
in this book. Most people can’t keep the details in their heads all at once, so
it is extremely important to find ways to reduce the complexity. There have
been any number of different strategies of program design developed over
the years. In this section we give a short outline of some of the strategies
that have worked for us.

4.2.1 What are functions?
Functions are self-contained units with a well-defined purpose. In gen-
eral, functions take inputs, do calculations (possibly printing intermediate
results, drawing graphs, calling other functions, etc.), and produce outputs.
If the inputs and outputs are well-defined, the programmer can be reason-
ably sure whether the function works or not; and once it works, can move
on to the next problem.

Example 4.9
Suppose payments of R dollars are deposited annually into a bank account
which earns constant interest i per year. What is the accumulated value of
the account at the end of n years, supposing deposits are made at the end
of each year?

The total amount at the end of n years is

R(1 + i)n−1 + · · · + R(1 + i) + R = R
(1 + i)n − 1

i
.

An R function to calculate the amount of an annuity is

> annuityAmt <- function(n, R, i) {
+ R*((1 + i)ˆn - 1) / i
+ }

60 PROGRAMMING WITH R

If $400 is deposited annually for 10 years into an account bearing 5%
annual interest, we can calculate the accumulated amount using

> annuityAmt(10, 400, 0.05)
[1] 5031.157

R is somewhat unusual among computer languages in that functions are
objects that can be manipulated like other more common objects such as
vectors, matrices, and lists.
The definition of a function normally has the following structure:

1 The word function.
2 A pair of round parentheses ()which enclose the argument list. The list

may be empty.
3 A single statement, or a sequence of statements enclosed in curly braces
{}.

Like other R objects, functions are usually named. You should choose
the names of your functions to succinctly describe the action of the function.
For example, var()computes variances, and median()computes medi-
ans. The name is important: if you choose a name that you can’t remember,
you will waste time looking it up later. If you choose a name that is mislead-
ing about the action of the function (e.g. if we had named our annuityAmt
function annuityRate), you will find your programs extremely hard to
understand.

When R executes a function definition, it produces an object with three
parts: the header, the body, and a reference to the environment in which the
definition was executed.

The first two items in the function definition are used to create the
header. The header to an R function describes the inputs, or “argu-
ments.” For example, the header of our Eratosthenes function above is
function(n). This tells us that the function takes one argument named n,
which specifies the upper limit for the sieve. The header on annuityAmt
is function(n, R, i), telling us that it takes three arguments named
n, R and i. Functions may take any number of arguments. Again, choose
their names to indicate their function.

To reduce the burden on the user of a function, we may give default
values to some arguments: if the user doesn’t specify the value, the default
will be used. For example, we could have used the header

annuityAmt <- function(n, R = 1, i = 0.01)

to indicate that if a user called annuityAmt(24)without specifying
R and i, then we should act as though R = 1and i = 0.01.

The second part of a function is the body. This is a single statement, or
sequence of statements in curly braces. They specify what computations are
to be carried out by the function. In the original Eratosthenes example,

MANAGING COMPLEXITY THROUGH FUNCTIONS 61

the body was

{
if (n >= 2) {

sieve <- seq(2, n)
primes <- c()
for (i in seq(2, n)) {

if (any(sieve == i)) {
primes <- c(primes, i)
sieve <- c(sieve[(sieve %% i) != 0], i)

}

}
return(primes)

} else {
stop("Input value of n should be at least 2.")

}
}

At some point in the body of the function there is normally a statement
like return(primes)which specifies the output value of the function.
(In R all functions produce a single output. In some other languages
functions may produce no output, or multiple outputs.) If there is no
return()statement, then the value of the last statement executed is
returned. This is how annuityAmt returns its value.

The third part of a function is the hardest part to understand, because
it is the least concrete: the environment of the function. We won’t give a
complete description here, but will limit ourselves to the following circular
definition: the environment is a reference to the environment in which the
function was defined.

What we mean by this is the following. In our Eratosthenes func-
tion, we made use of two quite different sorts of objects: n, sieve,
primes, and i were all defined locally within the function. There is
no ambiguity about what they mean. But seq, c, any, return, and
stop are not defined there: they were part of the R environment where
Eratosthenes was defined. (They are all functions, and the local
variables were not: this is commonly the case, but it is by no means
necessary.)

The really interesting thing is the following. Within theEratosthenes
function, we could have defined a new function. Its environment would
include n, sieve, primes, and i. For example, we might want to make
the removal of multiples of the prime values clearer by putting that operation
into a small function called noMultiples:

> Eratosthenes <- function(n) {
+ # Print all prime numbers up to n (based on the sieve of Eratosthenes)
+ if (n >= 2) {
+
+ noMultiples <- function(j) sieve[(sieve %% j) != 0]
+

62 PROGRAMMING WITH R

+ sieve <- seq(2, n)
+ primes <- c()
+ for (i in seq(2, n)) {
+ if (any(sieve == i)) {
+ primes <- c(primes, i)
+ sieve <-c(noMultiples(i), i)
+ }
+ }
+ return(primes)
+ } else {
+ stop("Input value of n should be at least 2.")
+ }
+ }

The noMultiples function defines j in its header, so j is a local
variable, and it finds sieve in its environment.

Exercises
1 Verify that the objects var, cos, median, read.table, and dump

are all functions.4

4 It is conventional to refer to functions
with parentheses after the name, i.e. as
var(), cos(), etc. We didn’t do that
here in order to avoid the ambiguity: do
we mean the var object, or the result
returned by a call to var()?

2 Suppose Mr. Ng deposits a certain amount (say, P) of money in a
bank where the interest rate is i.r, and interest is compounded. If
he leaves the money in the bank for n interest conversion periods, it will
accumulate to

P(1 + i.r)n.

(a) Write an R function called compound.interest()which com-
putes this amount. Your function should have three arguments.

(b) Often, one interest conversion period is equal to 1 month. In this
case, how much will Mr. Ng have in the bank at the end of 30
months, if he deposits $1000, and the interest rate is 1% per month?

3 Write a function which uses the bisection algorithm to calculate the zero
of a user-supplied function.

4.2.2 Scope of variables
The “scope” of a variable tells us where the variable would be recognized.
For example, variables defined within functions have local scope, so they
are only recognized within the function. A variable could be created with
the same name in a different function but there is no risk of a clash.

Example 4.10
In this example we create two functions f and g, both with local variables
named x. g is called by f and modifies its instance of x without affecting
the x in f.

> f <- function() {
+ x <- 1
+ g() # g will have no effect on our local x
+ return(x)
+ }

MISCELLANEOUS PROGRAMMING TIPS 63

> g <- function() {
+ x <- 2 # this changes g’s local x, not the one in f
+ }
> f()
[1] 1

In R, scope is controlled by the environment of functions. Variables
defined at the console have global scope, meaning they are visible in any
user-defined function. Variables defined in a function are visible in the
function, and in functions defined within it.

Using local variables rather than globals helps tremendously in pro-
gramming, because while you are writing the function, you don’t need to
worry about some other part of the program changing the values of your
variables. You can predict their values from the code you write, and be sure
that once you get it correct, you can trust it.

R also has “packages,” which are collections of functions and data.
Normally packages have their own scope (known as their “namespace”),
but the details of namespaces (and of packages without namespaces) are
beyond the scope of this text.

4.3 Miscellaneous programming tips

4.3.1 Using fix()
Sometimes we make errors when we write functions. To help us replace the
incorrect version with a new one, the fix()function can be used to make
corrections. fix()can also be used to create functions.

Example 4.11
Type fix(Eratosthenes)to make changes to the Eratosthenes
function.

Example 4.12
Type fix(factorial)to create a template for a new function named
factorial. The argument and body are ready to be filled in.

To create an object that computes factorials, we will use the
prod()function. This function multiplies all of the elements in its
argument together. Therefore,

prod(1:n)

should produce n!. The above statement belongs in the body (between the
curly brackets), while the header will be function(n).

Exit from the editor, and experiment with the new
factorial()function.

64 PROGRAMMING WITH R

4.3.2 Documentation using #
The #symbol is a simple way of inserting comments such as titles and
descriptions into R functions and scripts. R ignores all text from the
#character to the end of the line.

It is good practice to add a title and short description to any function
that you create, so that you and other users can be reminded later of the
purpose of the function. It is surprising how easy it is to forget the purpose
of a function created only a few weeks or months ago.

It is also sometimes useful to describe what a particular line of code
does. This is especially useful when an obscure command has been used.

Exercises
1 Compute 10!, 50!, 100!, and 1000!
2 (a) Using fix()and factorial(), create a function which computes

the binomial coefficient(
n

m

)
.

(b) Compute
(4

2

)
,
(50

20

)
, and

(5000
2000

)
.

(c) The sum()function can be used to sum up all elements of its
argument, while the log()and exp()functions take the natural
logarithm and exponential of all elements in their argument. Use
these functions to create an improved function to compute binomial
coefficients.

(d) Compute
(4

2

)
,
(50

20

)
, and

(5000
2000

)
using the improved version.

3 Refer to Exercise 2 of Section 4.2.1 in which you created a function
called compound.interest(). Often, the interest rate is quoted as
a nominal annual rate, compounded monthly. To obtain the monthly
rate, the nominal annual rate is simply divided by 12. More generally, if
there are m interest conversion periods in a year, the nominal annual rate
is divided by m to obtain the effective interest rate for the appropriate
conversion period (e.g. if the compounding is daily, the nominal annual
rate is divided by 365). Fix compound.interest()so that a nominal
annual interest rate j and m, the number of conversion periods per year
are part of the argument. The effective rate i.r is assigned j/m in the body
of the function. (You may delete i.r from the argument list.)

4 Use the new compound.interest()function to compute the amount
accumulated from $1000 at an annual rate of 12%, compounded daily.
Compare this with the amount accumulated if the compounding is
monthly or yearly.

5 Suppose Ms. Wu wishes to take out a mortgage on a house. She wants
to know what her periodic payments will be. If P is the initial amount
mortgaged, i.r is the effective interest rate, and n is the length of the
mortgage, then the periodic payment R is given by

R = Pi.r

1 − (1 + i.r)−n
.

(a) Construct a function called mortgage.payment()which employs
this formula.

SOME GENERAL PROGRAMMING GUIDELINES 65

(b) Calculate Ms. Wu’s monthly payments, if the initial amount is
$100 000, the interest rate is 1% and the number of interest
conversion periods is 300.

(c) Use the annuity()function to compute accumulated amounts
after 10 years, with periodic payments of $400, but with a vec-
tor of interest rates ranging from 0.01 through 0.20, by increments
of 0.01.

4.4 Some general programming guidelines

Writing a computer program to solve a problem can usually be reduced to
following this sequence of steps:

1 Understand the problem.
2 Work out a general idea how to solve it.
3 Translate your general idea into a detailed implementation.
4 Check: Does it work?

Is it good enough?
If yes, you are done!
If no, go back to step 2.

Example 4.13
We wish to write a program which will sort a vector of integers into
increasing order.

1 Understand the problem. A good way to understand your programming
problem is to try a specific case. You will often need to consider a
simple case, but take care not to make it too trivial. For the sorting
problem, we might consider sorting the vector consisting of the elements
3, 5, 24, 6, 2, 4, 13, 1.
We will write a function to be called sort()for which we could do the
following:

x <- c(3, 5, 24, ..., 1)
sort(x)

The output should be the numbers in increasing order:
1, 2, 3, 4, 5, 6, 13, 24.

2 Work out a general idea. A first idea might be to find where the smallest
value is, and put it aside. Then repeat, with the remaining values, setting
aside the smallest value each time.
An alternative idea: compare successive pairs of values, starting at the
beginning of the vector, and running through to the end. Swap pairs if
they are out of order.
After checking, you will find that the alternative idea doesn’t work. Try
using this idea on 2, 1, 4, 3, 0, for example. After running through it, you
should end up with 1, 2, 3, 0, 4.

66 PROGRAMMING WITH R

In your check of this alternate idea, you may notice that the largest
value always lands at the end of the new vector. (Can you prove to
yourself that this should always happen?) This means that we can sort
the vector by starting at the beginning of the vector, and going through
all adjacent pairs. Then repeat this procedure for all but the last value,
and so on.

3 Detailed implementation. At the implementation stage, we need to
address specific coding questions. In this sorting problem, one question
to be addressed is: How do we swap x[i]and x[i+1]?
Here is a way to swap the value of x[3]with that of x[4]:

> save <- x[3]
> x[3] <- x[4]
> x[4] <- save

Note that you should not over-write the value of x[3]with the value of
x[4]before its old value has been saved in another place; otherwise, you
will not be able to assign that value to x[4].
We are now ready to write the code:

> sort <- function(x) {
+ # x is initially the input vector and will be modified to form
+ # the output
+ # first is compared with last
+ for(last in length(x):2){
+ for(first in 1:(last-1)) {
+ if(x[first] > x[first + 1]) { # swap the pair
+ save <- x[first]
+ x[first] <- x[first + 1]
+ x[first + 1] <- save
+ }
+ }
+ }
+ return (x)
+ }

4 Check. Always begin testing your code on simple examples to identify
obvious bugs:

> sort(c(2, 1))
[1] 1 2
> sort(c(2, 24, 3, 4, 5, 13, 6, 1))
[1] 1 2 3 4 5 6 13 24

Try the code on several other numeric vectors. What is the output when
the input vector has length 1?

> sort(1)
Error in if (x[first] > x[first + 1]) {: missing value where
TRUE/FALSE needed

SOME GENERAL PROGRAMMING GUIDELINES 67

The problem here is that when length(x) == 1, the value of last
will take on the values 1:2, rather than no values at all. This doesn’t
require a redesign of the function, we can fix it by handling this as a
special case at the beginning of our function:

> sort <- function(x) {
+ # x is initially the input vector and will be modified to form
+ # the output
+
+ if (length(x) < 2) return (x)
+
+ # last is the last element to compare with
+
+ for(last in length(x):2) {
+ for(first in 1:(last - 1)) {
+ if(x[first] > x[first + 1]) { # swap the pair
+ save <- x[first]
+ x[first] <- x[first + 1]
+ x[first + 1] <- save
+ }
+ }
+ }
+ return (x)
+ }

Test the new version:

> sort(1)
[1] 1

Success! (Or at least we hope so. Have we missed anything?)

4.4.1 Top-down design
Working out the detailed implementation of a program can appear to be a
daunting task. The key to making it manageable is to break it down into
smaller pieces which you know how to solve. One strategy for doing that
is known as “top-down design.” Top-down design is similar to outlining an
essay before filling in the details:

1 Write out the whole program in a small number (1–5) of steps.
2 Expand each step into a small number of steps.
3 Keep going until you have a program.

Example 4.14
The sort algorithm described in Example 4.13 is known as a “bubble sort.”
The bubble sort is easy to program and is efficient when the vector x is
short, but when x is longer, more efficient methods are available. One of
these is known as a “merge sort.”

68 PROGRAMMING WITH R

The general idea of a merge sort is to split the vector into two halves,
sort each half, and then merge the two halves. During the merge, we only
need to compare the first elements of each sorted half to decide which is the
smallest value over all. Remove that value from its half; then the second
value becomes the smallest remaining value in this half, and we can proceed
to put the two parts together into one sorted vector.

So how do we do the initial sorting of each half? We could use a bubble
sort, but a more elegant procedure is to use a merge sort on each of them.
This is an idea called recursion. The mergesort()function which we
will write below can make calls to itself. Because of variable scoping, new
copies of all of the local variables will be created each time it is called, and
the different calls will not interfere with each other.

Understanding the idea
It is often worthwhile to consider small numerical examples in order to
ensure that we understand the basic idea of the algorithm, before we proceed
to designing it in detail. For example, suppose x is [8, 6, 7, 4], and we want
to construct a sorted result r. Then our merge sort would proceed as follows:

1 Split x into two parts: y ← [8, 6], z ← [7, 4].
2 Sort y and z: y ← [6, 8], z ← [4, 7].
3 Merge y and z:

(a) Compare y1 = 6 and z1 = 4: r1 ← 4; remove z1; z is now [7].
(b) Compare y1 = 6 and z1 = 7: r2 ← 6; remove y1; y is now [8].
(c) Compare y1 = 8 and z1 = 7: r3 ← 7; remove z1; z is now empty.
(d) Append remaining values of y onto r: r4 ← 8.

4 Return r = [4, 6, 7, 8].

Translating into code
It is helpful to think of the translation process as a stepwise process of
refining a program until it works.

We begin with a general statement, and gradually expand each part. We
will use a double comment marker ##to mark descriptive lines that still
need expansion. We will number these comments so that we can refer to
them in the text; in practice, you would probably not find this necessary.
After expanding, we will change to the usual comment marker to leave our
description in place.

We start with just one aim, which we can use as our first descriptive line:

1. Use a merge sort to sort a vector

We will slowly expand upon previous steps, adding in detail as we go.
A simple expansion of step 1 follows from recognizing that we need an
input vector x which will be processed by a function that we are naming
mergesort. Somehow, we will sort this vector. In the end, we want the
output to be returned:

1. Use a merge sort to sort a vector
mergesort <- function (x) {

2: sort x into result
return (result)

}

SOME GENERAL PROGRAMMING GUIDELINES 69

We now expand step 2, noting how the merge sort algorithm proceeds:

1. Use a merge sort to sort a vector
mergesort <- function (x) {

2: sort x into result
2.1: split x in half
2.2: sort each half
2.3: merge the 2 sorted parts into a sorted result
return (result)

}

Each substep of the above needs to be expanded. First, we expand
step 2.1:

2.1: split x in half
len <- length(x)
x1 <- x[1:(len / 2)]
x2 <- x[(len / 2 + 1):len]

Be careful with “edge” cases; usually, we expect to sort a vector
containing more than one element, but our sort function should be able
to handle the simple problem of sorting a single element. The code above
does not handle len < 2properly.

We must try again, fixing step 2.1. The solution is simple: if the length
of x is 0 or 1, our function should simply return x. Otherwise, we proceed
to split x and sort as above. This affects code outside of step 2.1, so we need
to correct our outline. Here is the new outline, including the new step 2.1:

1. Use a merge sort to sort a vector
mergesort <- function (x) {

Check for a vector that doesn’t need sorting
len <- length(x)
if (len < 2) result <- x
else {

2: sort x into result
2.1: split x in half
y <- x[1:(len / 2)]
z <- x[(len / 2 + 1):len]
2.2: sort y and z
2.3: merge y and z into a sorted result

}
return(result)

}

Step 2.2 is very easy to expand, because we can make use of our
mergesort()function, even though we haven’t written it yet! The key
idea is to remember that we are not executing the code at this point, we are
designing it. We should assume our design will eventually be successful,
and we will be able to make use of the fruits of our labour. So step 2.2
becomes

2.2: sort y and z
y <- mergesort(y)
z <- mergesort(z)

70 PROGRAMMING WITH R

Step 2.3 is more complicated, so let’s take it slowly. We know that we
will need a result vector, but let’s describe the rest of the process before
we code it. We repeat the whole function here, including this expansion
and the expansion of step 2.2:

1. Use a merge sort to sort a vector
mergesort <- function (x) {

Check for a vector that doesn’t need sorting
len <- length(x)
if (len < 2) result <- x
else {

2: sort x into result
2.1: split x in half
y <- x[1:(len / 2)]
z <- x[(len / 2 + 1):len]
2.2: sort y and z
y <- mergesort(y)
z <- mergesort(z)
2.3: merge y and z into a sorted result
result <- c()
2.3.1: while (some are left in both piles)
2.3.2: put the smallest first element on the end
2.3.3: remove it from y or z
2.3.4: put the leftovers onto the end of result

}
return(result)

}

The final steps are now easy to expand. Steps 2.3.2 and 2.3.3 end up
intertwined, because they both depend on the test of which of y[1]and
z[1]is smallest.

> # 1. Use a merge sort to sort a vector
> mergesort <- function (x) {
+ # Check for a vector that doesn’t need sorting
+ len <-length(x)
+ if (len < 2) result <- x
+ else {
+ # 2: sort x into result
+ # 2.1: split x in half
+ y <- x[1:(len / 2)]
+ z <- x[(len / 2 + 1):len]
+ # 2.2: sort y and z
+ y <- mergesort(y)
+ z <- mergesort(z)
+ # 2.3: merge y and z into a sorted result
+ result <- c()
+ # 2.3.1: while (some are left in both piles)
+ while (min(length(y), length(z)) > 0) {

SOME GENERAL PROGRAMMING GUIDELINES 71

+ # 2.3.2: put the smallest first element on the end
+ # 2.3.3: remove it from y or z
+ if (y[1] < z[1]) {
+ result <- c(result, y[1])
+ y <- y[-1]
+ } else {
+ result <- c(result, z[1])
+ z <- z[-1]
+ }
+ }
+ # 2.3.4: put the leftovers onto the end of result
+ if (length(y) > 0)
+ result <- c(result, y)
+ else
+ result <- c(result, z)
+ }
+ return(result)
+ }

Exercises
1 Modify the mergesort function described in this section so that it

takes a logical argument (called decreasing) which causes sorting
in decreasing order when set to TRUE.

2 The equations

f (x, y) = 0

g(x, y) = 0 (4.2)

can be solved numerically using a form of Newton’s method. Assign
initial guesses to each of x0 and y0.
Then perform the following iteration, for n = 1, 2, . . .:

xn = xn−1 − (gy,n−1fn−1 − fy,n−1gn−1)/dn−1

yn = yn−1 − (fx,n−1gn−1 − gx,n−1 fn−1)/dn−1,

where

fx,n−1 = ∂f

∂x
(xn−1, yn−1)

fy,n−1 = ∂f

∂y
(xn−1, yn−1)

gx,n−1 = ∂g

∂x
(xn−1, yn−1)

gy,n−1 = ∂g

∂y
(xn−1, yn−1)

fn−1 = f (xn−1, yn−1)

gn−1 = g(xn−1, yn−1),

72 PROGRAMMING WITH R

and

dn−1 = fx,n−1gy,n−1 − fy,n−1gx,n−1.

The iteration is terminated when the function values are close enough
to 0.
(a) Write a function which will perform this iteration.
(b) Apply the function to the system

x + y = 0

x2 + 2y2 − 2 = 0.

Find the two solutions to this system analytically as a check on your
numerical result.

4.5 Debugging and maintenance

Computer errors are called “bugs.” Removing these errors from a program
is called “debugging.” Debugging is difficult, and one of our goals is to write
programs that don’t have bugs in them: but sometimes we make mistakes.

We have found that the following five steps help us to find and fix bugs
in our own programs:

1 Recognize that a bug exists.
2 Make the bug reproducible.
3 Identify the cause of the bug.
4 Fix the error and test.
5 Look for similar errors.

We will consider each of these in turn.

4.5.1 Recognizing that a bug exists
Sometimes this is easy; if the program doesn’t work, there is a bug. How-
ever, in other cases the program seems to work, but the output is incorrect,
or the program works for some inputs, but not for others. A bug causing
this kind of error is much more difficult to recognize.

There are several strategies to make it easier. First, follow the advice
in previous sections of this text, and break up your program into simple,
self-contained functions. Document their inputs and outputs. Within the
function, test that the inputs obey your assumptions about them, and think
of test inputs where you can see at a glance whether the outputs match your
expectations.

In some situations, it may be worthwhile writing two versions of a
function: one that may be too slow to use in practice, but which you are
sure is right, and another that is faster but harder to be sure about. Test that
both versions produce the same output in all situations.

When errors only occur for certain inputs, our experience shows that
those are often what are called “edge cases”: situations which are right on
the boundary between legal and illegal inputs. Test those! For example, test

DEBUGGING AND MAINTENANCE 73

what happens when you try a vector of length zero, test very large or very
small values, etc.

4.5.2 Make the bug reproducible
Before you can fix a bug, you need to know where things are going wrong.
This is much easier if you know how to trigger the bug. Bugs that only
appear unpredictably are extremely difficult to fix. The good news is that
for the most part computers are predictable: if you give them the same
inputs, they give you the same outputs. The difficulty is in working out
what the necessary inputs are.

For example, a common mistake in programming is to misspell the
name of a variable. Normally this results in an immediate error message, but
sometimes you accidentally choose a variable that actually does exist. Then
you’ll probably get the wrong answer, and the answer you get may appear
to be random, because it depends on the value in some unrelated variable.

The key to tracking down this sort of problem is to work hard to make
the error reproducible. Simplify things as much as possible: start a new
empty R session, and see if you can reproduce it. Once you can reproduce
the error, you will eventually be able to track it down.

Some programs do random simulations. For those, you can make the
simulations reproducible by setting the value of the random number seed
(see Chapter 5) at the start.

4.5.3 Identify the cause of the bug
When you have confirmed that a bug exists, the next step is to identify its
cause. If your program has stopped with an error, read the error messages.
Try to understand them as well as you can.

In R, you can obtain extra information about an error message using the
traceback()function. When an error occurs, R saves information about
the current stack of active functions, and traceback()prints this list.

Example 4.15
In this function we calculate the coefficient of variation as the standard
deviation of a variable, after dividing by its mean. However, the coefficient
of variation of the value 0 gives an error.

> cv <- function(x) {
+ sd(x / mean(x))
+ }
> cv(0)
Error in var(x, na.rm = na.rm) : missing observations in cov/cor

The error message talks about the function var(), which we didn’t use.
To find out where it was called from, we use traceback():

> traceback()
3: var(x, na.rm = na.rm)
2: sd(x/mean(x))
1: cv(0)

74 PROGRAMMING WITH R

This shows that the standard function sd()calls var(), and that’s
where the error was found. Our calculation of x/mean(x)must have given
a missing value. When we try this calculation directly, we see why:

> x <- 0
> mean(x)
[1] 0
> x / mean(x)
[1] NaN

The solution to this is to check the input on entry to our cv()function. The
standard definition of the coefficient of variation requires all x values to be
positive, so we’ll check for that before doing the calculation:

> cv <- function(x) {
+ stopifnot(all(x > 0))
+ sd(x / mean(x))
+ }
> cv(0)
Error: all(x > 0) is not TRUE

We use the standard function stopifnot()to stop execution when the
condition all(x > 0)is not TRUE.

The traceback()function shows where an error is happening, but it
doesn’t show why. Furthermore, many bugs don’t trigger any error message,
you just see that your program is giving the wrong answer.

How do you work out what is going wrong?
With proper planning beforehand, this step can be made somewhat

easier. The advice above in Section 4.5.1 also helps here. If you have chosen
meaningful names for variables, you can check whether they contain what
you think they contain by printing their values. The simplest way to do this
is to edit your functions to add statements like this:

cat("In cv, x=", x, "\n")

This will print the value of x, identifying where the message is coming
from. The "\n"at the end tells R to go to a new line after printing. You may
want to use print()rather than cat()to take advantage of its formatting,
but remember that it can only print one thing at a time, so you would likely
use it as

cat("In cv, x=\n")
print(x)

A more flexible way to examine the values in functions is to use the
browser()or debug()or functions discussed in Section 4.5.6.

Another great way to understand what is going wrong in a small function
is to simulate it by hand. Act as you think R would act, and write down the
values of all variables as the function progresses. In combination with the

DEBUGGING AND MAINTENANCE 75

techniques described above, this can also identify misconceptions about R:
if your simulation would print different results than the real R prints, then
you’ve identified a possible cause of your bug: R is not behaving as you
expect. Most likely this is because you don’t know R well enough yet, but
it is possible that you have actually discovered a bug in R!

4.5.4 Fixing errors and testing
Once you have identified the bug in your program, you need to fix it. Try
to fix it in such a way that you don’t cause a different problem. Then test
what you’ve done! You should put together tests that include the way you
know that would reproduce the error, as well as edge cases, and anything
else you can think of.

4.5.5 Look for similar errors elsewhere
Often when you have found and fixed a bug, you can recognize the kind
of mistake you made. It is worthwhile looking through the rest of your
program for similar errors, because if you made the mistake once, you may
have made it twice.

4.5.6 The browser() and debug() functions
Rather than using cat()or print()for debugging, R allows you to call
the function browser(). This will pause execution of your function, and
allow you to examine (or change!) local variables, or execute any other R
command, inside the evaluation environment of the function.

You can also execute a debugger command:

• n – “next”; execute the next line of code, single-stepping through the
function

• c – “continue”; let the function continue running
• Q – quit the debugger.

Another way to enter the browser is to use the debug()function. You
mark function f for debugging using debug(f), and then the browser
will be called when you enter the function. Turn off debugging using
undebug(f).

Example 4.16
Consider the mergesort()function constructed earlier. We will apply the
debug()function and check the value of the x argument before any other
calculation is completed, and then the values of y and z just before sorting
them.

> debug(mergesort) # Set the debugging flag on mergesort
> mergesort(c(3, 5, 4, 2)) # This stops and displays the function
debugging in: mergesort(c(3, 5, 4, 2))
debug: {

len <- length(x)
if (len < 2)

result <- x

76 PROGRAMMING WITH R

else {
y <- x[1:(len / 2)]
z <- x[(len / 2 + 1):len]
y <- mergesort(y)
z <- mergesort(z)
result <- c()
while (min(length(y), length(z)) > 0) {

if (y[1] < z[1]) {
result <- c(result, y[1])
y <- y[-1]

}
else {

result <- c(result, z[1])
z <- z[-1]

}
}
if (length(y) > 0)

result <- c(result, y)
else result <- c(result, z)

}
return(result)

}
Browse[1]> x # This shows the value of x on entry
[1] 3 5 4 2
Browse[1]> n # Enter the body
debug: len <- length(x)
Browse[1]> # Enter is the same as n: execute the
assignment to len
debug: if (len < 2) result <- x else {

y <- x[1:(len / 2)]
z <- x[(len / 2 + 1):len]
... # The if statement is shown, but we have deleted it

Browse[1]> n
debug: y <- x[1:(len / 2)]
Browse[1]> n
debug: z <- x[(len / 2 + 1):len]
Browse[1]> n
debug: y <- mergesort(y)
Browse[1]> y # Look at y just before the call to
mergesort
[1] 3 5
Browse[1]> z # Look at z
[1] 4 2
Browse[1]> Q # Hitting enter again would enter the mergesort that

sorts y
We use Q to quit instead

> undebug(mergesort) # Remove the debug marker from mergesort

EFFICIENT PROGRAMMING 77

4.6 Efficient programming

When producing computer code, you may find that it runs slower than you
want it to, even on today’s fast computers. But take heart: there are always
ways to speed up a program. The process is called optimization. In this
section we will give a few examples of hand optimization in R: ways to
rewrite your code so that it runs faster. Other possibilities are automatic
optimization (not available in R, but some other programming platforms
can do this), or hardware optimization, where you change your computer
to run your programs faster, e.g. by buying a new one.

Optimization always requires some sort of trade-off. Hand optimization
can be time consuming, and since optimized code can be harder to under-
stand, errors can slip by undetected. You should always ensure that your
code is correct before you try to optimize it because it will probably be
harder to debug later. You should use judgment about whether optimization
will be worthwhile.

4.6.1 Learn your tools
In order to write efficient code, you need to understand the platform you are
working with. For example, R is designed to work with vectors. Operations
on whole vectors are usually much faster than working one element at a
time. Summing two vectors could be done as follows:

> X <- rnorm(100000) # Xi ˜ N(0, 1) i=1, ..., 100 000
> Y <- rnorm(100000) # Yi ˜ N(0, 1) i=1, ..., 100 000
> Z <- c()
> for (i in 1:100000) {
+ Z <- c(Z, X[i] + Y[i]) # this takes about 53 seconds
+ }

However, this is extremely inefficient in R. First, it reallocates the vector
Z 100 000 times, increasing its length by one each time. Since we know the
length of Z in advance, we could allocate it once, and modify its entries:

> Z <- rep(NA, 100000)
> for (i in 1:100000) {
+ Z[i] <- X[i] + Y[i] # this takes about 0.88 seconds
+ }

Simply by avoiding the reallocations, we have speeded up the operation
by a factor of approximately 60 times.

A more natural way to do this calculation in R is by vectorizing
completely, i.e.

> Z <- X + Y # 0.002 seconds (approx)

The fully vectorized calculation is another 440 times faster, i.e. 26 500
times faster than the original loop. If the original code had taken a year to
run, the optimized code would be done in about 20 minutes, making the
difference between an infeasible solution and a feasible one.

78 PROGRAMMING WITH R

However, the original code in our example took 53 seconds to run, and
the optimized version 2 milliseconds: an impressive ratio, but still only a
savings of 53 seconds. In this case the revised code is clearer and more
obvious than the original so we think the effort was worthwhile. But if we
had been forced to spend a lot of time on the optimization, and had ended
up with obscure code that we wouldn’t understand the next time we looked
at it, we would judge the effort not to have been worth it.

4.6.2 Use efficient algorithms

Example 4.17
Think about the problem of recording grades in a spreadsheet. You have a
pile of tests from a class. There are n tests, each with a name and grade. You
also have a class list in a spreadsheet, and want to record the grades there.

A really slow algorithm
1 Read the name of the first student in the mark spreadsheet.
2 Randomly select one of the n tests.
3 If the names match, record the grade, and go on to the next student.
4 If not, put the test back, and randomly select another.
5 Continue until all grades have been recorded.

How bad is this algorithm? One answer to this question is to determine
the expected time until we get our first matching grade.

Since there are n tests, the probability of a correct match is 1/n. The
number of draws until the first match is a geometric random variable with
parameter 1/n. The expected value for that random variable is known
to be n. When we get to the second student, the expected value will be
n − 1, because there is one less test to search. Overall, the expected time
to completely record all of the grades is

∑n
i=1 i = n(n − 1)/2 times the

amount of time to do one selection and check.

A slightly faster algorithm
1 Take the first test.
2 Scan through all the names in the spreadsheet until you find the

matching name, and record the grade.
3 Repeat for each student.

For each test, this algorithm requires scanning an average of half the
names in the list, so the total time is n2/2 times the time to scan one name,
plus n times the time to select a test from the pile. Even though this is a
total of n2/2 + n = n(n + 2)/2 steps, each step is faster than the steps
above, so this algorithm is probably faster.

A much faster algorithm
1 First, sort the names in the spreadsheet into alphabetical order.
2 Take the first test.
3 Search for the name in the spreadsheet, using the alphabetical sorting

to help.
4 Repeat for each student.

EFFICIENT PROGRAMMING 79

This is much faster, because searching through a sorted list can be
quicker, using a bisection technique: check the middle name, then the
middle name of whichever half the current test falls in, and so on. Each test
takes about log2 n comparisons before you’ll find it, so the whole operation
takes n log2 n operations. For a medium to large class this is much better
than the n2/2 lookup time of the previous algorithm. For a class of 100, it’s
the difference between 5 000 operations and fewer than 700.

We could go further, and sort the tests before recording them: since
the tests and the class list will be in the same order, the recording would
take just n steps. However, the sorting of the tests is probably much slower
than sorting the names in the spreadsheet, since it requires physical sorting
rather than just asking the computer to sort the names, so this will likely
be slower than the algorithm above. On the other hand, it leaves the tests
in sorted order so other future operations on them (e.g. looking up the test
of a particular student) would be faster. It will require a judgment whether
the additional investment now will pay off in saved time later.

4.6.3 Measure the time your program takes
Optimization is hard work, so you don’t want to do it when it’s not necessary.
In many cases, it will take more time to optimize a program than you could
ever hope to save from the optimization. Before starting to optimize, you
should measure the amount of time your program is taking, as an upper
bound on the amount of time you could possibly save.

In R, the system.time() function measures the execution time of
evaluating expressions. For example,

> X <- rnorm(100000)
> Y <- rnorm(100000)
> Z <- rep(NA, 100000)
> system.time({
+ for (i in 1:100000) {
+ Z[i] <- X[i] + Y[i]
+ }
+ })

user system elapsed
0.87 0.00 0.88

shows how we obtained the timing reported above. The “user” time is
the time dedicated to this particular task, the “system” time is how much
time your system spent doing other tasks, and the “elapsed” time is the time
we would have seen on a clock.

You may also be able to measure which particular parts of your program
are the best targets for optimization. Afamous rule of thumb in computing is
the 90/10 rule: 90% of the execution time of your program comes from 10%
of the code. We call code in the slow 10% the bottlenecks. The corollary
is that if you can identify and optimize the bottlenecks, you can obtain a
substantial increase in speed without even looking at 90% of the program.

80 PROGRAMMING WITH R

Many software platforms offer profilers to help find the bottlenecks in
your program. There are various kinds of profilers, but in general they
monitor the program while it is running and report on where the execution
time was spent. In R the profiler is controlled by the Rprof()function, but
a discussion of the details is beyond the scope of this text.

4.6.4 Be willing to use different tools
Much as we love it, we admit that R is not the only computing platform
available, and it is not the best tool for all tasks. For raw speed, you are
much better off using a compiled language like C, C++, or Fortran. R itself
is written in C and Fortran, which is why the operations on vectors go so
quickly: most of the work is done in compiled code.

Astyle of programming that we recommend is to do most of your work in
R. In cases where you don’t get acceptable speed, identify the bottlenecks,
and consider translating those into a compiled language. R has extensive
support for linking to code in other languages. Unfortunately this requires
a level of technical detail that is again beyond the scope of this book.

4.6.5 Optimize with care
The famous computer scientist Donald Knuth once said, “Premature opti-
mization is the root of all evil (or at least most of it) in programming.”5

5 Knuth, D. E. (1974) Computer
programming as art. Commun. ACM
17(12), 671.

We have emphasized above that optimization is difficult and that it is not
always advisable. We finish the chapter with this advice for writing efficient
code:

1 Get it right.
2 Get it fast enough.
3 Make sure it’s still right.

Chapter exercises

1 Write a function which will evaluate polynomials of the form

P(x) = cnxn−1 + cn−1xn−2 + · · · + c2x + c1.

Your function should take x and the vector of polynomial coefficients
as arguments and it should return the value of the evaluated polynomial.
Call this function directpoly().

2 Refer to the previous question. For moderate to large values of n, eval-
uation of a polynomial at x can be done more efficiently using Horner’s
Rule:
(a) Set an ← cn.
(b) For i = n − 1, . . . , 1 set ai = ai+1x + ci.
(c) Return a1. (This is the computed value of P(x).)
Write an R function with arguments x and a vector of polynomial coef-
ficients and which returns the value of the polynomial evaluated at x.
Call the resulting function hornerpoly(). Ensure that your function
returns an appropriate vector of values when x is a vector.

CHAPTER EXERCISES 81

3 Do some timings to compare the algorithms used in the previous two
questions.
(a) In particular, try the following code:

> system.time(directpoly(x=seq(-10, 10, length=5000000),
+ c(1, -2, 2, 3, 4, 6, 7)))
> system.time(horner(x=seq(-10, 10, length=5000000),
+ c(1, -2, 2, 3, 4, 6, 7)))

(b) What happens to the comparison when the number of polynomial
coefficients is smaller? Try the polynomial

P(x) = 2x2 + 17x − 3.

4 Using a starting value of 2.9, find the time that it takes for Newton’s
method to find the zero (to within seven-digit accuracy) of
(a) (x − 3)e−x

(b) (x2 − 6x + 9)e−x.
5 Repeat the previous question, using the bisection algorithm and the initial

interval [2.1, 3.1].
6 Do a timing comparison of the bubble sort (see Example 4.13) and the

merge sort (see Example 4.14). Do the comparison for vectors of length
10, 1000, 10 000, and 100 000. (You may use the function rnorm()to
generate vectors for this purpose.)

5

Simulation

Much of statistics relies on being able to evaluate expectations of random
variables, and finding quantiles of distributions.1 For example:

1 See the Appendix if you need a review
of random variables and their properties.

• In hypothesis testing, the p-value of a sample is defined as the probability
of observing data at least as extreme as the sample in hand, given that the
null hypothesis is true. This is the expected value of a random variable
defined to be 0 when a sample is less extreme, and 1 otherwise.

• The bias of an estimator is defined to be the expected value of the estimator
minus the true value that it is estimating.

• Confidence intervals are based on quantiles of the distribution of a pivotal
quantity, e.g. (X̄ − µ)/(s/

√
n).

In simple cases we may evaluate these quantities analytically, or use large
sample approximations. However, in other cases we need computer-based
methods to approximate them.

In this chapter, you will be introduced to Monte Carlo simulation. This
introduction will include basic ideas of random (or more properly, pseu-
dorandom) number generation. You will then see how to simulate random
variables from several of the common probability distributions. Next, we
will show you how simulation can be used in a surprising way: to evalu-
ate integrals. The final topics of the chapter on rejection and importance
sampling will give you a hint as to what more advanced methods are like.

5.1 Monte Carlo simulation

One of the most general computer-based methods for approximating
properties of random variables is the Monte Carlo method.

To approximate the mean µ = E(X) using the Monte Carlo method,
we generate m independent and identically distributed (i.i.d.) copies of
X , namely X1, . . . , Xm, and use the sample mean X̄ = (1/m)

∑
Xi as an

estimate of E(X). For large values of m, X̄ gives a good approximation to
E(X).2

2 This follows from the law of large
numbers.

GENERATION OF PSEUDORANDOM NUMBERS 83

Furthermore, if m is large the distribution of the sample mean, X̄ , can be
approximated3 by a normal distribution with mean µ and variance σ 2/m.

3 This is the central limit theorem.

Here σ 2 is the variance Var(X), which can be approximated by the sam-
ple variance s2 = [1/(m − 1)]∑(Xi − X̄)2. This allows us to construct
approximate confidence intervals for µ. For example, X̄ ± 1.96 s/

√
m will

contain µ approximately 95% of the time.
The remainder of this chapter describes methods for simulating the gen-

eration of random variables on a computer. We will describe deterministic
methods of generating values, which are then treated as though they are
random. It is useful to think of two participants in this process: the pro-
grammer hiding behind a curtain knows that the algorithms are deterministic
and predictable, but the user of those numbers is unaware of the mecha-
nisms used to compute them, so to that user, the numbers appear random
and unpredictable. In practice, both participants may be the same person!
To distinguish this scheme from true random numbers which really are
unpredictable, we will call our simulated random numbers pseudorandom
numbers in the remainder of the chapter.

5.2 Generation of pseudorandom numbers

We begin our discussion of simulation with a brief exploration of the
mechanics of pseudorandom number generation. In particular, we will
describe one of the simplest methods for simulating independent uniform
random variables on the interval [0,1].

A multiplicative congruential random number generator produces a
sequence of pseudorandom numbers, u0, u1, u2, . . . , which appear similar
to independent uniform random variables on the interval [0,1].

Let m be a large integer, and let b be another integer which is smaller
than m. The value of b is often chosen to be near the square root of m.
Different values of b and m give rise to pseudorandom number generators
of varying quality. There are various criteria available for choosing good
values of these parameters, but it is always important to test the resulting
generator to ensure that it is providing reasonable results.

To begin, an integer x0 is chosen between 1 and m. x0 is called the seed.
We discuss strategies for choosing x0 below.

Once the seed has been chosen, the generator proceeds as follows:

x1 = b x0 (mod m)

u1 = x1/m.

u1 is the first pseudorandom number, taking some value between 0 and 1.
The second pseudorandom number is then obtained in the same manner:

x2 = b x1 (mod m)

u2 = x2/m.

u2 is another pseudorandom number. If m and b are chosen properly and
are not disclosed to the user, it is difficult to predict the value of u2, given
the value of u1 only. In other words, for most practical purposes u2 is

84 SIMULATION

approximately independent of u1. The method continues according to the
following formulas:

xn = b xn−1 (mod m)

un = xn/m.

This method produces numbers which are entirely deterministic, but to
an observer who doesn’t know the formula above, the numbers appear to
be random and unpredictable, at least in the short term.

Example 5.1
Take m = 7 and b = 3. Also, take x0 = 2. Then

x1 = 3 × 2 (mod 7) = 6, u1 = 0.857
x2 = 3 × 6 (mod 7) = 4, u2 = 0.571
x3 = 3 × 4 (mod 7) = 5, u3 = 0.714
x4 = 3 × 5 (mod 7) = 1, u4 = 0.143
x5 = 3 × 1 (mod 7) = 3, u5 = 0.429
x6 = 3 × 3 (mod 7) = 2, u6 = 0.286.

It should be clear that the iteration will set x7 = x1 and cycle xi through the
same sequence of integers, so the corresponding sequence ui will also be
cyclic. An observer might not easily be able to predict u2 from u1, but since
ui+6 = ui for all i > 0, longer sequences are very easy to predict. In order
to produce an unpredictable sequence, it is desirable to have a very large
cycle length so that it is unlikely that any observer will ever see a whole
cycle. The cycle length cannot be any larger than m, so m would normally
be taken to be very large.

Care must be taken in the choice of b and m to ensure that the cycle
length is actually m. Note, for example, what happens when b = 171 and
m = 29 241. Start with x0 = 3, say, then

x1 = 171 × 3 = 513
x2 = 171 × 513 (mod 29 241) = 0.

All remaining xn’s will be 0. To avoid this kind of problem, we should
choose m so that it is not divisible by b; thus, prime values of m will be pre-
ferred. The next example gives a generator with somewhat better behavior.

Example 5.2
The following lines produce 50 pseudorandom numbers based on the
multiplicative congruential generator:

xn = 171 xn−1 (mod 30 269)

un = xn/30 269,

with initial seed x0 = 27 218.

GENERATION OF PSEUDORANDOM NUMBERS 85

> random.number <- numeric(50) # this will store the
> # pseudorandom output
> random.seed <- 27218
> for (j in 1:50) {
+ random.seed <- (171 ∗ random.seed) %% 30269
+ random.number[j] <- random.seed / 30269
+ }

The results, stored in the vectorrandom.number, are as follows. Note that
the vector elements range between 0 and 1. These are the pseudorandom
numbers, u1, u2, . . . , u50.

> random.number
[1] 0.76385080 0.61848756 0.76137302 0.19478675 0.30853348 0.75922561
[7] 0.82757937 0.51607255 0.24840596 0.47741914 0.63867323 0.21312234
[13] 0.44391952 0.91023820 0.65073177 0.27513297 0.04773861 0.16330239
[19] 0.92470845 0.12514454 0.39971588 0.35141564 0.09207440 0.74472232
[25] 0.34751726 0.42545178 0.75225478 0.63556774 0.68208398 0.63636063
[31] 0.81766824 0.82126929 0.43704780 0.73517460 0.71485678 0.24051009
[37] 0.12722587 0.75562457 0.21180085 0.21794575 0.26872378 0.95176583
[43] 0.75195745 0.58472364 0.98774324 0.90409330 0.59995375 0.59209092
[49] 0.24754700 0.33053619

A similar kind of operation (though using a different formula, and with
a much longer cycle) is used internally by R to produce pseudorandom
numbers automatically with the function runif().

Syntax
runif(n, min = a, max = b)

Execution of this command produces n pseudorandom uniform numbers
on the interval [a, b]. The default values are a = 0 and b = 1. The seed is
selected internally.

Example 5.3
Generate five uniform pseudorandom numbers on the interval [0, 1], and
10 uniform such numbers on the interval [−3, −1].
> runif(5)
[1] 0.9502223 0.3357378 0.1330718 0.4901114 0.0607455
> runif(10 , min = -3 , max = -1)
[1] -2.284105 -2.545768 -2.199852 -1.126908 -1.324746 -2.744848
[7] -1.549739 -1.445740 -2.834744 -1.372574

If you execute the above code yourself, you will almost certainly obtain
different results than those displayed in our output. This is because the
starting seed that you will use will be different from the one that was selected
when we ran our code.

86 SIMULATION

There are two different strategies for choosing the starting seed x0. If
the goal is to make an unpredictable sequence, then a random value is
desirable. For example, the computer might determine the current time of
day to the nearest millisecond, then base the starting seed on the number
of milliseconds past the start of the minute. To avoid predictability, this
external randomization should only be done once, after which the formula
above should be used for updates. For example, if the computer clock were
used as above before generating every ui, on a fast computer there would be
long sequences of identical values that were generated within a millisecond
of each other.

The second strategy for choosing x0 is to use a fixed, non-random
value, e.g. x0 = 1. This makes the sequence of ui values predictable and
repeatable. This would be useful when debugging a program that uses ran-
dom numbers, or in other situations where repeatability is needed. The way
to do this in R is to use the set.seed() function.

For example,

> set.seed(32789) # this ensures that your output will match ours
> runif(5)
[1] 0.3575211 0.3537589 0.2672321 0.9969302 0.1317401

Exercises
1 Generate 20 pseudorandom numbers using

xn = 172 xn−1 (mod 30 307),

with initial seed x0 = 17 218.
2 Generate 20 pseudorandom numbers using the multiplicative congru-

ential generator with b = 171 and m = 32 767 with an initial seed of
2018.

3 Use the runif() function (with set.seed(32078)) to generate 10
pseudorandom numbers from
(a) the uniform (0, 1) distribution
(b) the uniform (3, 7) distribution
(c) the uniform (−2, 2) distribution.

4 Generate 1000 uniform pseudorandom variates using the runif()
function, assigning them to a vector calledU. Useset.seed(19908).

(a) Compute the average, variance, and standard deviation of the
numbers in U.

(b) Compare your results with the true mean, variance, and standard
deviation.

(c) Compute the proportion of the values of U that are less than 0.6,
and compare with the probability that a uniform random variable
U is less than 0.6.

(d) Estimate the expected value of 1/(U + 1).
(e) Construct a histogram of the values of U, and of 1/(U+1).

5 Simulate 10 000 independent observations on a uniformly distributed
random variable on the interval [3.7,5.8].

GENERATION OF PSEUDORANDOM NUMBERS 87

(a) Estimate the mean, variance, and standard deviation of such a uni-
form random variable and compare your estimates with the true
values.

(b) Estimate the probability that such a random variable is greater than
4.0. Compare with the true value.

6 Simulate 10 000 values of a uniform (0, 1) random variable, U1, using
runif(), and simulate another set of 10 000 values of a uniform (0, 1)

random variable U2. Assign these vectors to U1 and U2, respectively.
Since the values in U1 and U2 are approximately independent, we can
view U1 and U2 as independent uniform (0, 1) random variables.
(a) Estimate E[U1 + U2]. Compare with the true value, and compare

with an estimate of E[U1] + E[U2].
(b) Estimate Var(U1 + U2) and Var(U1) + Var(U2). Are they equal?

Should the true values be equal?
(c) Estimate P(U1 + U2 ≤ 1.5).
(d) Estimate P(

√
U1 + √

U2) ≤ 1.5).
7 Suppose U1, U2 and U3 are independent uniform random variables on

the interval (0, 1). Use simulation to estimate the following quantities:
(a) E[U1 + U2 + U3]
(b) Var(U1 + U2 + U3) and Var(U1) + Var(U2) + Var(U3)

(c) E
[√

U1 + U2 + U3
]

(d) P
(√

U1 + √
U2 + √

U3 ≥ 0.8
)
.

8 Use the round() function together with runif() to generate 1000
pseudorandom integers which take values from 1 through 10, assigning
these values to a vector called discreteunif. Use the table()
function to check whether the observed frequencies for each value are
close to what you expect. If they are not close, how should you modify
your procedure?

9 The sample() function allows you to take a simple random sample
from a vector of values. For example, sample(c(3,5,7),size = 2, replace = FALSE)will
yield a vector of two values taken (without replacement) from the set
{3, 5, 7}. Use the sample() function to generate 50 pseudorandom
integers from 1 through 100,
(a) sampled without replacement
(b) sampled with replacement.

10 The following code simulates the sum (X) and difference (Y) of two
uniform random variables (U1 and U2). A scatterplot of Y versus X is
then displayed and the correlation between X and Y is estimated.

> U2 <- runif(1000)
> U1 <- runif(1000)
> X <- U1 + U2
> Y <- U1 - U2
> plot(Y ˜ X)
> cor(X,Y) # this calculates the sample correlation

The correlation gives a measure of linear dependence between two
random variables. A value near 0 indicates almost no such dependence,
while a value near −1 or 1 indicates the existence of a linear relationship.

88 SIMULATION

Execute the above code and use the output to answer the following
questions.
(a) Do you think that X and Y are linearly dependent?
(b) Do you think that X and Y are stochastically independent? (To

answer this, look carefully at the scatterplot.)
(c) Do you think that U1 and U2 are linearly dependent? (Perform an

appropriate calculation to check.)
(d) Do you think that U1 and U2 are stochastically independent?

(Obtain an appropriate plot to check.)

5.3 Simulation of other random variables

5.3.1 Bernoulli random variables
A Bernoulli trial is an experiment in which there are only two possible
outcomes. For example, a light bulb may work or not work; these are the
only possibilities. Each outcome (“work” or “not work”) has a probability
associated with it; the sum of these two probabilities must be 1.

Example 5.4
Consider a student who guesses on a multiple choice test question which
has five options; the student may guess correctly with probability 0.2 and
incorrectly with probability 0.8. [The possible outcome of a guess is to
either be correct or to be incorrect.]

Suppose we would like to know how well such a student would do on a
multiple choice test consisting of 20 questions. We can get an idea by using
simulation.

Each question corresponds to an independent Bernoulli trial with proba-
bility of success equal to 0.2. We can simulate the correctness of the student
for each question by generating an independent uniform random number.
If this number is less than 0.2, we say that the student guessed correctly;
otherwise, we say that the student guessed incorrectly.

This will work, because the probability that a uniform random variable
is less than 0.2 is exactly 0.2, while the probability that a uniform random
variable exceeds 0.2 is exactly 0.8, which is the same as the probability
that the student guesses incorrectly. Thus, the uniform random number
generator is simulating the student. R can do this as follows:

> set.seed(23207) # use this to obtain our output
> guesses <- runif(20)
> correct.answers <- (guesses < 0.2)
> correct.answers
[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE
[12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

The vector correct.answers is a logical vector which contains the
results of the simulated student’s guesses; a TRUE value corresponds to a

SIMULATION OF OTHER RANDOM VARIABLES 89

correct guess, while a FALSE corresponds to an incorrect guess. The total
number of correct guesses can be calculated.

> table(correct.answers)
correct.answers
FALSE TRUE

14 6

Our simulated student would score 6/20.

In the preceding example, we could associate the values “1” and “0”
with the outcomes from a Bernoulli trial. This defines the Bernoulli random
variable: a random variable which takes the value 1 with probability p, and
0 with probability 1 − p.

The expected value of a Bernoulli random variable is p and its theoretical
variance is p(1−p). In the above example, a student would expect to guess
correctly 20% of the time; our simulated student was a little bit lucky,
obtaining a mark of 30%.

Exercises
1 Write an R function which simulates the outcomes of a student guessing

at a True–False test consisting of n questions.
(a) Use the function to simulate one student guessing the answers to a

test with 10 questions; calculate the number of correct answers for
this student.

(b) Simulate the number of correct answers for a student who guesses
at a test with 1000 questions.

2 Suppose a class of 100 writes a 20-question True–False test, and everyone
in the class guesses at the answers.
(a) Use simulation to estimate the average mark on the test as well as

the standard deviation of the marks.
(b) Estimate the proportion of students who would obtain a mark of 30%

or higher.
3 Write an R function which simulates 500 light bulbs, each of which has

probability 0.99 of working. Using simulation, estimate the expected
value and variance of the random variable X, which is 1 if the light bulb
works and 0 if the light bulb does not work. What are the theoretical
values?

4 Write an R function which simulates a binomial random variable with
n = 25 and p = 0.4. (This is a sum of 25 independent Bernoulli (p) ran-
dom variables.) By generating 100 of these binomial random variables,
estimate the mean and variance of such a binomial random variable.
(Compare with the theoretical values: 10, 6.)

5.3.2 Binomial random variables
Let X denote the sum of m independent Bernoulli random variables, each
having probability p. X is called a binomial random variable; it represents
the number of “successes” in m Bernoulli trials.

90 SIMULATION

A binomial random variable can take values in the set {0, 1, 2, . . . , m}.
The probability of a binomial random variable X taking on any one of these
values is governed by the binomial distribution:

P(X = x) =
(m

x

)
px(1 − p)m−x, x = 0, 1, 2, . . . , m.

These probabilities can be computed using the dbinom() function.

Syntax
dbinom(x, size, prob)

Here, size andprob are the binomial parameters m and p, respectively,
while x denotes the number of “successes.” The output from this function
is the value of P(X = x).

Example 5.5
Compute the probability of getting four heads in six tosses of a fair coin.

> dbinom(x = 4, size = 6, prob = 0.5)
[1] 0.234375

Thus, P(X = 4) = 0.234, when X is a binomial random variable with
m = 6 and p = 0.5.

Cumulative probabilities of the form P(X ≤ x) can be computed using
pbinom(); this function takes the same arguments as dbinom(). For
example, we can calculate P(X ≤ 4) where X is the number of heads
obtained in six tosses of a fair coin as:

> pbinom(4, 6, 0.5)
[1] 0.890625

The function qbinom() gives the quantiles for the binomial distribu-
tion. The 89th percentile of the distribution of X (as defined above) is:

> qbinom(0.89, 6, 0.5)
[1] 4

The expected value (or mean) of a binomial random variable is mp and
the variance is mp(1 − p).

The rbinom() function can be used to generate binomial pseudoran-
dom numbers.

Syntax
rbinom(n, size, prob)

Here, size and prob are the binomial parameters, while n is the
number of variates generated.

SIMULATION OF OTHER RANDOM VARIABLES 91

Example 5.6
Suppose 10% of the vacuum tubes produced by a machine are defective,
and suppose 15 tubes are produced each hour. Each tube is independent of
all other tubes. This process is judged to be out of control when more than
four defective tubes are produced in any single hour. Simulate the number
of defective tubes produced by the machine for each hour over a 24-hour
period, and determine if any process should have been judged out of control
at any point in that simulation run.

Since 15 tubes are produced each hour and each tube has a 0.1 probability
of being defective, independent of the state of the other tubes, the number
of defectives produced in one hour is a binomial random variable with
m = 15 and p = 0.1. To simulate the number of defectives for each hour
in a 24-hour period, we need to generate 24 binomial random numbers. We
then identify all instances in which the number of defectives exceeds 5.
One such simulation run is:

> defectives <- rbinom(24, 15, 0.1)
> defectives
[1] 0 1 1 0 1 1 2 5 0 0 1 1 3 3 0 2 2 0 1 0 1 1 4 2
> any(defectives > 5)
[1] FALSE

Exercises
1 Suppose the proportion defective is 0.15 for a manufacturing operation.

Simulate the number of defectives for each hour of a 24-hour period,
assuming 25 units are produced each hour. Check if the number of
defectives ever exceeds 5. Repeat, assuming p = 0.2 and then p = 0.25.

2 Simulate 10 000 binomial pseudorandom numbers with parameters 20
and 0.3, assigning them to a vector called binsim. Let X be a binomial
(20, 0.3) random variable. Use the simulated numbers to estimate the
following:

(a) P(X ≤ 5)

(b) P(X = 5)

(c) E[X]
(d) Var(X)

(e) the 95th percentile of X (you may use the quantile() function)
(f) the 99th percentile of X
(g) the 99.9999th quantile of X .

In each case, compare your estimates with the true values. What is
required to estimate extreme quantities accurately?

3 Use simulation to estimate the mean and variance of a binomial random
variable with n = 18 and p = 0.76. Compare with the theoretical values.

4 Consider the following function which is designed to simulate binomial
pseudorandom variates using the so-called inversion method:
> ranbin <- function(n, size, prob) {
+ cumpois <- pbinom(0:(size - 1), size, prob)
+ singlenumber <- function() {

92 SIMULATION

+ x <- runif(1)
+ N <- sum(x > cumpois)
+ N
+ }
+ replicate(n, singlenumber())
+ }

(a) Study this function carefully and write documentation for it. Note,
particularly, what the operations in the singlenumber()function
are for.4

4 The replicate() function allows
us to repeatedly call
singlenumber(), assigning n
results to a vector. See
help(replicate) for more
information.

(b) Use ranbin() to simulate vectors of length 1000, 10 000, and
100 000 from the binomial distribution with size parameter 10
and probability parameter 0.4. Use the system.time() func-
tion to compare the execution times for these simulations with the
corresponding execution times when rbinom() is used.

5 The following function simulates binomial pseudorandom numbers by
summing up the corresponding independent Bernoulli random variables:

> ranbin2 <- function(n, size, prob) {
+ singlenumber <- function(size, prob) {
+ x <- runif(size)
+ N <- sum(x < prob)
+ N
+ }
+ replicate(n, singlenumber(size, prob))
+ }

(a) Study this function carefully and write documentation for it. Note,
particularly, what the operations in the singlenumber() function
are for.

(b) Use ranbin2() to simulate vectors of length 10 000 from the
binomial distribution with size parameters 10, 100, and 1000, and
probability parameter 0.4. Use the system.time() function to
compare the execution times for these simulations with the corre-
sponding execution times when rbinom() is used. Compare with
execution times from theranbin() function created in the previous
exercise.

6 The generator in the previous exercise requiredsizeuniform pseudoran-
dom numbers to be generated for each binomial number generated. The
following generator is based on the same principle as the previous one,
but only requires one uniform pseudorandom number to be generated for
each binomial number generated:

> ranbin3 <- function(n, size, prob) {
+ singlenumber <- function(size, prob) {
+ k <- 0
+ U <- runif(1)
+ X <- numeric(size)
+ while (k < size) {
+ k <- k + 1
+ if (U <= prob) {

SIMULATION OF OTHER RANDOM VARIABLES 93

+ X[k] <- 1
+ U <- U / prob
+ } else {
+ X[k] <- 0
+ U <- (U - prob)/(1 - prob)
+ }
+ }
+ return(sum(X))
+ }
+ replicate(n, singlenumber(size, prob))
+ }

(a) Use the ranbin3() function to generate 100 pseudorandom num-
bers from binomial distributions with the following parameters:
(i) size = 20 and prob = 0.4

(ii) size = 500 and prob = 0.7.
(b) What is the conditional distribution of U/p, given that U < p?
(c) What is the conditional distribution of (U − p)/(1 − p), given that

U > p?
(d) Use the answers to the above questions to provide documentation

for the ranbin3() function.
7 One version of the central limit theorem says that if X is a binomial

random variable with parameters m and p, and

Z = X − mp√
mp(1 − p)

,

then Z is approximately standard normal, and the approximation
improves as m gets large.
The following code simulates a large number of such Z values for values
of m in the set {1, 2, . . . , 100} and plots a normal QQ-plot in each case:

> for (m in 1:100) {
+ z <- (rbinom(20000, size = m, prob = 0.4) - m ∗ 0.4) / sqrt(m ∗ 0.4 ∗ 0.6)
+ qqnorm(z, ylim = c(-4, 4), main = paste("QQ-plot, m = ", m))
+ qqline(z)
+ }

(a) Execute the code and observe how the distribution of Z changes as
m increases.

(b) Modify the code so that a similar “movie” is produced for the cases
where p = 0.3, 0.2, 0.1, 0.05, respectively. How large must m be
before you see a reasonably straight line in the QQ-plot? Is m = 100
satisfactorily large in all cases?

5.3.3 Poisson random variables
The Poisson distribution is the limit of a sequence of binomial distribu-
tions with parameters n and pn, where n is increasing to infinity, and pn is
decreasing to 0, but where the expected value (or mean) npn converges to
a constant λ. The variance npn(1 − pn) converges to this same constant.
Thus, the mean and variance of a Poisson random variable are both equal
to λ. This parameter is sometimes referred to as a rate.

94 SIMULATION

Poisson random variables arise in a number of different ways. They are
often used as a crude model for count data. Examples of count data are
the numbers of earthquakes in a region in a given year, or the number of
individuals who arrive at a bank teller in a given hour. The limit comes
from dividing the time period into n independent intervals, on which the
count is either 0 or 1. The Poisson random variable is the total count.

The possible values that a Poisson random variable X could take are
the nonnegative integers {0, 1, 2, . . .}. The probability of taking on any of
these values is

P(X = x) = e−xλx

x! , x = 0, 1, 2,

These probabilities can be evaluated using the dpois()function.

Syntax
dpois(x, lambda)

Here, lambda is the Poisson rate parameter, while x is the number of
Poisson events. The output from the function is the value of P(X = x).

Example 5.7
According to the Poisson model, the probability of three arrivals at an
automatic bank teller in the next minute, where the average number of
arrivals per minute is 0.5, is

> dpois(x = 3, lambda = 0.5)
[1] 0.01263606

Therefore, P(X = 3) = 0.0126, if X is Poisson random variable with mean
0.5.

Cumulative probabilities of the form P(X ≤ x) can be calculated using
ppois(), and Poisson quantiles can be computed using qpois().

We can generate Poisson random numbers using the rpois()function.

Syntax
rpois(n, lambda)

The parameter n is the number of variates produced, and lambda is as
above.

Example 5.8
Suppose traffic accidents occur at an intersection with a mean rate of 3.7
per year. Simulate the annual number of accidents for a 10-year period,
assuming a Poisson model.

> rpois(10, 3.7)
[1] 6 7 2 3 5 7 6 2 4 4

SIMULATION OF OTHER RANDOM VARIABLES 95

Poisson processes
A Poisson process is a simple model of the collection of events that occur
during an interval of time. A way of thinking about a Poisson process is to
think of a random collection of points on a line or in the plane (or in higher
dimensions, if necessary).

The homogeneous Poisson process has the following properties:

1 The distribution of the number of points in a set is Poisson with rate
proportional to the size of the set.

2 The numbers of points in non-overlapping sets are independent of each
other.

In particular, for a Poisson process with rate λ the number of points on an
interval [0, T] is Poisson distributed with mean λT . One way to simulate
this is as follows:

1 Generate N as a Poisson pseudorandom number with parameter λT .
2 Generate N independent uniform pseudorandom numbers on the interval

[0, T].

Example 5.9
Simulate points of a homogeneous Poisson process having a rate of 1.5 on
the interval [0, 10].
> N <- rpois(1, 1.5 ∗ 10)
> P <- runif(N, max = 10)
> sort(P)
[1] 0.03214420 0.11731867 0.25422972 2.43762063 3.93583254 4.05037783
[7] 4.50931123 5.28833876 7.43922932 8.47007125 8.76151095 8.81578295
[13] 9.35800644

Exercises
1 Simulate the number of accidents for each year for 15 years, when the

average rate is 2.8 accidents per year, assuming a Poisson model for
numbers of accidents each year.

2 Simulate the number of surface defects in the finish of a sports car for 20
cars, where the mean rate is 1.2 defects per car.

3 Estimate the mean and variance of a Poisson random variable whose
mean is 7.2 by simulating 10 000 Poisson pseudorandom numbers.
Compare with the theoretical values.

4 Simulate vectors of 10 000 pseudorandom Poisson variates with mean
5, 10, 15, and 20, assigning the results to P5, P10, P15, and P20,
respectively.
(a) Estimate E[√X] and Var(

√
X), where X is Poisson with rates λ =

5, 10, 15, and 20.
(b) Noting that the variance of X increases with the mean of X , when

X is a Poisson random variable, what is the effect of taking a square
root of X on the relationship between the variance and the mean?

96 SIMULATION

(Statisticians often take square roots of count data to ‘stabilize the
variance’; do you understand what this means?)

5 Conduct a simulation experiment to check the reasonableness of the
assertion that the distribution of the number of points from a rate 1.5
Poisson process which fall in the interval [4, 5] is Poisson with a mean
of 1.5 by the following simulation. First, simulate a large number of
realizations of the Poisson process on the interval [0, 10]. Then count the
number of points in [4, 5] for each realization. Compare this set of counts
with simulated Poisson values using a QQ-plot. We supply the code for
this below, and leave it to you to execute it and look at the resulting
graph.

> poissonproc <- function() {
+ N <- rpois(1, 1.5 ∗ 10)
+ P <- runif(N, max = 10)
+ return(sum(4 <= P & P <= 5))
+ }
> counts <- replicate(10000, poissonproc())
> qqplot(counts, rpois(10000, 1.5))
> abline(0, 1) # the points lie reasonably close to this line

6 One version of the central limit theorem says that if X is a Poisson random
variable with parameter λ, and

Z = X − λ√
λ

,

then Z is approximately standard normal, and the approximation
improves as λ gets large.
The following code simulates a large number of such Z values for values
of λ in the set {1, 3, . . . , 99} and plots a normal QQ-plot in each case:

> for (m in seq(1, 120, 2)) {
+ z <- (rpois(20000, lambda = m) - m) / sqrt(m)
+ qqnorm(z, ylim = c(-4, 4), main = "QQ-plot")
+ qqline(z)
+ mtext(bquote(lambda == .(m)), 3) # this creates a subtitle which
+ # mixes mathematical and numerical notation
+ }

(a) Execute the code and observe how the distribution of Z changes as
λ increases.

(b) How large must λ be before you see a reasonably straight line in the
QQ-plot?

7 Simulate 10 000 realizations of a Poisson process with rate 2.5 on the
interval [0, 2].
(a) In each case, count the number of points in the subintervals [0, 1]

and [1, 2].
(b) Are the counts in part (a) reasonably approximated by Poisson

distributions with rate 2.5?

SIMULATION OF OTHER RANDOM VARIABLES 97

(c) Using an appropriate scatterplot, make a judgement as to whether it
is reasonable to assume that the number of points in the interval [0, 1]
is independent of the number in [1, 2]. (In order for the scatterplot
to be useful, it will be necessary to use the jitter() function.)

5.3.4 Exponential random numbers
Exponential random variables are used as simple models for such things as
failure times of mechanical or electronic components, or for the time it takes
a server to complete service to a customer. The exponential distribution is
characterized by a constant failure rate, denoted by λ.

T has an exponential distribution with rate λ > 0 if

P(T ≤ t) = 1 − e−λt

for any nonnegative t. The pexp() function can be used to evaluate this
function.

Syntax
pexp(q, rate)

The output from this is the value of P(T ≤ q), where T is an exponential
random variable with parameter rate.

Example 5.10
Suppose the service time at a bank teller can be modeled as an exponential
random variable with a rate of 3 per minute. Then the probability of a
customer being served in less than 1 minute is

> pexp(1, rate = 3)
[1] 0.950213

Thus, P(X ≤ 1) = 0.95, when X is an exponential random variable with a
rate of 3.

Differentiating the right-hand side of the distribution function with
respect to t gives the exponential probability density function:

f (t) = λe−λt .

The dexp() function can be used to evaluate this. It takes the same argu-
ments as the pexp() function. The qexp() function can be used to obtain
quantiles of the exponential distribution.

The expected value of an exponential random variable is 1/λ, and the
variance is 1/λ2.

Asimple way to simulate exponential pseudorandom variates is based on
the inversion method. For an exponential random variable F(x) = 1−e−λx,
so F−1(x) = − log(1−U)

λ
. Therefore, for any x ∈ (0, 1), we have

P(F(T) ≤ x) = P(T ≤ F−1(x)) = F(F−1(x)) = x.

98 SIMULATION

Thus, F(T) is a uniform random variable on the interval (0, 1). Since
we know how to generate uniform pseudorandom variates, we can obtain
exponential variates by applying the inverse transformation F−1(x) to them.

That is, generate a uniform pseudorandom variable U on [0,1], and set

1 − e−λT = U

Solving this for T , we have

T = − log(1 − U)

λ
.

T has an exponential distribution with rate λ.
The R function rexp() can be used to generate n random exponential

variates.

Syntax
rexp(n, rate)

Example 5.11
A bank has a single teller who is facing a queue of 10 customers. The time
for each customer to be served is exponentially distributed with rate 3 per
minute. We can simulate the service times (in minutes) for the 10 customers.

> servicetimes <- rexp(10, rate = 3)
> servicetimes
[1] 0.25415279 0.79177402 0.24280817 0.07887371 0.10738250 0.16583246
[7] 0.83294959 0.09676131 0.16938459 0.53317718

The total time until these 10 simulated customers will complete service is
around 3 minutes and 16 seconds:

> sum(servicetimes)
[1] 3.273096

Another way to simulate a Poisson process
It can be shown that the points of a homogeneous Poisson with rate λ process
on the line are separated by independent exponentially distributed random
variables with mean 1/λ. This leads to another simple way of simulating a
Poisson process on the line.

Example 5.12
Simulate the first 25 points of a Poisson 1.5 process, starting from 0.

> X <- rexp(25, rate = 1.5)

> cumsum(X)
[1] 1.406436 1.608897 1.800167 3.044730 3.160853 3.640911
[7] 4.827413 5.229759 6.542869 6.596817 7.305832 8.134470

SIMULATION OF OTHER RANDOM VARIABLES 99

[13] 10.704220 11.412163 11.515945 11.642972 12.277173 12.505261
[19] 15.205137 15.548352 16.727192 17.381278 17.678511 18.457350
[25] 18.658113

Exercises
1 Simulate 50 000 exponential random numbers having rate 3.

(a) Find the proportion of these numbers which are less than 1. Compare
with the probability that an exponential random variable with rate 3
will be less than 1.

(b) Compute the average of these numbers. Compare with the expected
value.

(c) Calculate the variance of this sample, and compare with the
theoretical value.

2 Suppose that a certain type of battery has a lifetime which is exponentially
distributed with mean 55 hours. Use simulation to estimate the average
and variance of the lifetime for this type of battery. Compare with the
theoretical values.

3 A simple electronic device consists of two components which have
failure times which may be modeled as independent exponential ran-
dom variables. The first component has a mean time to failure of 3
months, and the second has a mean time to failure of 6 months. The
electronic device will fail when either of the components fails. Use sim-
ulation to estimate the mean and variance of the time to failure for the
device.

4 Re-do the calculation in the previous question under the assumption that
the device will fail only when both components fail.

5 Simulate 10 000 realizations of a Poisson process with rate 2.5, using
the method described in this section. Check that the distribution of the
number of points in the interval [0, 2] is reasonably close to a Poisson
distribution with a mean of 5.

5.3.5 Normal random variables
A normal random variable X has a probability density function given by

f (x) = 1

σ
√

2π
e− (x−µ)2

2σ2

where µ is the expected value of X , and σ 2 denotes the variance of X . The
standard normal random variable has mean µ = 0 and standard deviation
σ = 1.

The normal density function can be evaluated using the dnorm() func-
tion, the distribution function can be evaluated using pnorm(), and the
quantiles of the normal distribution can be obtained using qnorm(). For
example, the 95th percentile of the normal distribution with a mean of 2.7
and a standard deviation of 3.3 is:

> qnorm(0.95, mean = 2.7, sd = 3.3)
[1] 8.128017

100 SIMULATION

Normal pseudorandom variables can be generated using the rnorm()
function in R.

Syntax
rnorm(n, mean, sd)

This produces n normal pseudorandom variates which have mean mean
and standard deviation sd.

Example 5.13
We can simulate 10 independent normal variates with a mean of −3 and a
standard deviation of 0.5 using

> rnorm(10, -3, 0.5)
[1] -3.520803 -3.130006 -2.682143 -2.330936 -3.158297 -3.293808
[7] -3.171530 -2.815075 -2.783860 -2.899138

We can simulate random numbers from certain conditional distri-
butions by first simulating according to an unconditional distribution, and
then rejecting those numbers which do not satisfy the specified condition.

Example 5.14
Simulate x from the standard normal distribution, conditional on the event
that 0 < x < 3. We will simulate from the entire normal distribution and
then accept only those values which lie between 0 and 3.

We can simulate a large number of such variates as follows:

> x <- rnorm(100000) # simulate from the standard normal
> x <- x[(0 < x) & (x < 3)] # reject all x’s outside (0,3)
> hist(x, probability=TRUE) # show the simulated values

Figure 5.1 shows how the histogram tracks the rescaled normal density over
the interval (0, 3).

Exercises
1 Simulate 100 realizations of a normal random variable having a mean

of 51 and a standard deviation of 5.2. Estimate the mean and standard
deviation of your simulated sample and compare with the theoretical
values.

2 Simulate 1000 realizations of a standard normal random variable Z , and
use your simulated sample to estimate:
(a) P(Z > 2.5)

(b) P(0 < Z < 1.645)

(c) P(1.2 < Z < 1.45)

(d) P(−1.2 < Z < 1.3).
Compare with the theoretical values.

MONTE CARLO INTEGRATION 101

Histogram of x

x

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

Fig. 5.1 Histogram of simulated
values with the standard normal
density (solid curve) and the
rescaled normal density (dashed
curve) overlaid.

3 Simulate from the conditional distribution of a normal random variable
X with a mean of 3 and a variance of 16, given that |X | > 2.

4 Using the fact that a χ2 random variable on one degree of freedom
has the same distribution as the square of a standard normal random
variable, simulate 100 independent realizations of such a χ2 random vari-
able, and estimate its mean and variance. (Compare with the theoretical
values: 1, 2.)

5 A χ2 random variable on n degrees of freedom has the same dis-
tribution as the sum of n independent standard normal random vari-
ables. Simulate a χ2 random variable with eight degrees of freedom,
and estimate its mean and variance. (Compare with the theoretical
values: 8, 16.)

5.4 Monte Carlo integration

Suppose g(x) is any function that is integrable on the interval [a, b]. The
integral∫ b

a
g(x)dx

gives the area of the region with a < x < b and y between 0 and g(x)
(where negative values count towards negative areas).

Monte Carlo integration uses simulation to obtain approximations to
these integrals. It relies on the law of large numbers. This law says that
a sample mean from a large random sample will tend to be close to the

102 SIMULATION

expected value of the distribution being sampled. If we can express an
integral as an expected value, we can approximate it by a sample mean.

For example, let U1, U2, . . . , Un be independent uniform random vari-
ables on the interval [a, b]. These have density f (u) = 1/(b − a) on that
interval. Then

E[g(Ui)] =
∫ b

a
g(u)

1

b − a
du

so the original integral
∫ b

a g(x)dx can be approximated by b − a times a
sample mean of g(Ui).

Example 5.15
To approximate the integral

∫ 1
0 x4dx, use the following lines:

> u <- runif(100000)
> mean(uˆ4)
[1] 0.2005908

Compare with the exact answer 0.2, which can easily be computed in this
case.

Example 5.16
To approximate the integral

∫ 5
2 sin(x) dx, use the following lines:

> u <- runif(100000, min = 2, max = 5)
> mean(sin(u))∗(5-2)
[1] -0.6851379

The true value can be shown to be −0.700.

Multiple integration
Now let V1, V2, . . . , Vn be an additional set of independent uniform random
variables on the interval [0, 1], and suppose g(x, y) is now an integrable
function of the two variables x and y. The law of large numbers says that

lim
n→∞

n∑
i=1

g(Ui, Vi)/n =
∫ 1

0

∫ 1

0
g(x, y) dx dy,

with probability 1.
So we can approximate the integral

∫ 1
0

∫ 1
0 g(x, y) dx dy by generat-

ing two sets of independent uniform pseudorandom variates, computing
g(Ui, Vi) for each one, and taking the average.

MONTE CARLO INTEGRATION 103

Example 5.17
Approximate the integral

∫ 10
3

∫ 7
1 sin(x − y) dx dy using the following:

> U <- runif(100000, min = 1, max = 7)
> V <- runif(100000, min = 3, max = 10)
> mean(sin(U - V))∗42
[1] 0.07989664

The factor of 42 = (7 − 1)(10 − 3) compensates for the joint density of U
and V being f (u, v) = 1/42.

The uniform density is by no means the only density that can be used in
Monte Carlo integration. If the density of X is f (x), then E[g(X)/ f (X)] =∫ [g(x)/f (x)] f (x) dx = ∫

g(x) dx so we can approximate the latter by
sample averages of g(X)/f (X).

Example 5.18
To approximate the integral

∫∞
1 exp(−x2) dx, write it as the integral∫∞

0 exp[−(x + 1)2] dx, and use an exponential distribution for X :

> X <- rexp(100000)
> mean(exp(-(X + 1)ˆ2) / dexp(X))
[1] 0.1401120

The true value of this integral is 0.1394.

Monte Carlo integration is not always successful: sometimes the ratio
g(X)/f (X) varies so much that the sample mean doesn’t converge. Try to
choose f (x) so this ratio is roughly constant, and avoid situations where
g(x)/f (x) can be arbitrarily large.

Exercises
1 Use Monte Carlo integration to estimate the following integrals. Compare

with the exact answer, if known.

∫ 1

0
x dx

∫ 3

1
x2 dx

∫ π

0
sin(x) dx

∫ π

1
ex dx

∫ ∞

0
e−x dx

∫ ∞

0
e−x3

dx
∫ 3

0
sin(ex) dx

∫ 1

0

1√
2π

e−x2/2 dx

∫ 2

0

1√
2π

e−x2/2 dx
∫ 3

0

1√
2π

e−x2/2 dx

104 SIMULATION

2 Use Monte Carlo integration to estimate the following double integrals.∫ 1

0

∫ 1

0
cos(x − y) dx dy

∫ 1

0

∫ 1

0
e−(y+x)2

(x + y)2 dx dy

∫ 3

0

∫ 1

0
cos(x − y) dx dy

∫ 5

0

∫ 2

0
e−(y+x)2

(x + y)2 dx dy

5.5 Advanced simulation methods

The simulation methods discussed so far will only work for particular types
of probability densities or distributions. General purpose simulation meth-
ods can be used to draw pseudorandom samples from a wide variety of
distributions.

Example 5.19
Suppose X is a binomial (n, p) random variable with n known, but where
the value of p is not known precisely; it is near 0.7. Given the data value
X = x, we want to estimate p.

The maximum likelihood estimator for p is p̂ = x/n, but this ignores
our prior knowledge, i.e. the fact that p is really near 0.7.

If we convert our prior knowledge to a density, e.g. p ∼ N (0.7, σ =
0.1), Bayes’ theorem lets us calculate the conditional density of p, given
X = x, as:

f (p |X = x) ∝ exp

(−(p − 0.7)2

2(0.1)2

)
px(1 − p)n−x, 0 < p < 1.

It is quite difficult to work out the constant that makes this a standard
density integrating to 1, but numerical approximations (e.g. using Monte
Carlo integration) are possible.

The goal of this section is to present simulation methods which can be
used to generate pseudorandom numbers from a density like the one in the
above example. Two simulation methods are commonly used:

• rejection sampling
• importance sampling.

5.5.1 Rejection sampling
The idea of rejection sampling was used in Section 5.3.5 to sample from a
conditional distribution: sample from a convenient distribution, and select
a subsample to achieve the target distribution. We will show how to use
rejection sampling to draw a random sample from a univariate density or
probability function g(x), using a sequence of two examples.

ADVANCED SIMULATION METHODS 105

–1 0

0.
0

0.
4

0.
8

x

1–
|1

–x
|

1–
|1

–x
|

0.
0

0.
4

0.
8

x

(a) (b)

1 2 3 –1 0 1 2 3

Fig. 5.2 The graph of the
triangular density function on
(0, 2), together with a dashed
rectangle in (b).

Our first example demonstrates the simplest version of rejection
sampling.

Example 5.20
Simulate pseudorandom variates from the triangular density function

g(x) =
{

1 − |1 − x|, 0 ≤ x < 2
0, otherwise.

The graph of the density function is displayed in Fig. 5.2(a). If we could
draw points uniformly from the triangular region below the density, the
x-coordinate would be distributed with density g(x). Figure 5.2(b) shows
that the graph where the density is nonzero can be entirely contained in a
rectangle of height 1 and width 2. A subset of uniformly distributed points
in the rectangle will be uniformly distributed in the triangular area under the
triangular density. Thus, a strategy for simulating values from the triangular
density is:

1 Simulate a point (U1, U2) uniformly in the rectangle.
2 If (U1, U2) is located within the triangular region, accept U1 as a

pseudorandom variate; otherwise, reject it, and return to step 1.

Since the triangular density occupies half of the area of the rectangle,
we would expect to sample roughly two uniform points from the rectangle
for every point we accept from the triangular distribution.

In vectorized form, the steps are:

> U1 <- runif(100000, max=2)
> U2 <- runif(100000)
> X <- U1[U2 < (1 - abs(1 - U1))]

The vector X will contain approximately 50 000 simulated values from the
triangular distribution.

To accommodate situations where the density g(x) might be nonzero on
larger (possibly infinite) regions, and to increase the potential for compu-
tational efficiency, a more general form of rejection sampling is possible.
Find a constant k, and density f (x) from which we know how to sample,
and for which kg(x) ≤ f (x) for all x.

106 SIMULATION

1.0 0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

f (
x)

●

●
●

●

●

●

●
●

●

●

●
●

Fig. 5.3 Density f (x) (solid line)
and kg(x) (dashed line). The points
are uniformly distributed below
f (x); those above kg(x) (open
dots) are rejected, while those
below (solid dots) are accepted.
The tick marks show the output
values of X .

Then we draw points uniformly below kg(x) by taking a subsample of
those drawn below f (x) (see Figure 5.3):

repeat {
draw X ˜ f(X) , U ˜ unif(0,1)
if U ∗ f(X) < kg(X)

break
}
output X

Example 5.21
Simulate from the density g(x) = Ce−x1.5

for x ≥ 0. The constant C is the
unknown normalizing constant for this density. Even though we don’t know
C, since 0.5e−x1.5 ≤ e−x, we can use rejection sampling with k = 0.5/C:

> kg <- function(x) 0.5∗exp(-(xˆ1.5))
> X <- rexp(100000)
> U <- runif(100000)
> # accept only those X
> X <- X[U∗dexp(X) < kg(X)] # for which Uf(X) < kg(X)

The vector X now contains a large number of pseudorandom numbers from
the required density. We can plot a histogram of these numbers as follows:

> hist(X, freq = FALSE, breaks="Scott")

We have chosen the relative frequency version of the histogram in order
to overlay the theoretical density. The problem is that we don’t know C to
make g(x) a density function. We could use Monte Carlo integration to find
it, or more simply we can use the fact that we expect to accept a proportion
k of the sampled points.

> k <- length(X) / 100000
> g <- function(x) kg(x) / k
> curve(g, from=0, to=max(X), add=TRUE)

ADVANCED SIMULATION METHODS 107

Histogram of X

X

D
en

si
ty

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4

Fig. 5.4 Histogram of a sample

from g(x) = Ce−x1.5
. The

approximate density g(x) is shown
with the solid line, and f (x)/k is
shown dashed.

> fbyk <- function(x) dexp(x) / k
> curve(fbyk, from=0, to=max(X), add=TRUE, lty=2)

The resulting graph is shown in Figure 5.4.

5.5.2 Importance sampling
A weighted average is an average in which observations are individ-
ually weighted. That is, instead of the usual sample average formula
x̄ = (1/n)

∑n
i=1 xi we incorporate weights w1, . . . , wn and use x̄w =∑n

i=1 wixi/
∑n

i=1 wi. The usual sample average can be seen to be a weighted
average with all weights equal.

Importance sampling is a technique to generate both the sample and
the weights randomly, in such a way that weighted averages approximate
expected values with respect to a target density function g(x). As with
rejection sampling, we start by sampling from some other more convenient
density f (x):

1 Choose a convenient density f (x) (which we know how to draw samples
from).

2 Draw (x1, . . . , xn) as a sample from f (x).
3 Calculate weights wi = g(xi)/f (xi).

We may now approximate the expectation of a function h(X) where
X ∼ g(x) using averages of h(xi) weighted by wi.

One way to see why this works is to notice that wi is proportional to
the probability that a rejection sampler would accept xi as a draw from
g(x). Given xi, the contribution wih(xi)/

∑n
i=1 wi in the weighted average

108 SIMULATION

formula is exactly the expected contribution from this draw to a sample
mean if we were using rejection sampling. We know rejection sampling
works, so importance sampling must work too. It may even be more effi-
cient, in that we don’t throw away information from rejected draws. In
addition, it is not necessary to find the constant k as in rejection sampling.
Neither g(xi) nor f (xi) need be normalized densities: dividing by the sum
of the weights automatically provides the appropriate scaling.

On the other hand, working with weighted samples is more difficult than
working with simple random samples, so in many cases rejection sampling
would be preferred.

We illustrate these issues by continuing with the example from the
previous section. We may approximate the mean and variance of the density
g(x) from that section using the weighted.mean function:

> X <- rexp(100000)
> W <- g(X)/dexp(X)
> mean <- weighted.mean(X, W)
> mean
[1] 0.6579574
> weighted.mean((X - mean)ˆ2, W) # The variance as E[(X - Xbar)ˆ2]
[1] 0.3036045

Exercises
1 Write a function to generate standard normal pseudorandom numbers

on the interval [−4, 4], using runif() and the rejection method.
Can you modify the function so that it can generate standard normal
pseudorandom numbers on the entire real line?

2 The following function returns normal pseudorandom numbers:

> rannorm <- function(n, mean = 0, sd = 1){
+ singlenumber <- function() {
+ repeat{
+ U <- runif(1)
+ U2 <- sign(runif(1, min = -1)) # value is +1 or -1
+ Y <- rexp(1) ∗ U2 # Y is a double exponential r.v.
+ if (U < dnorm(Y) / exp(-abs(Y))) break
+ }
+ return(Y)
+ }
+ replicate(n, singlenumber()) ∗ sd + mean
+ }

(a) Use this function to generate a vector of 10 000 normal pseudo-
random numbers with a mean of 8 and standard deviation 2.

(b) Obtain a QQ-plot to check the accuracy of this generator.
(c) Use the curve() function to draw the graph of the standard normal

density on the interval [0, 4]. Use the add = TRUE parameter to
overlay the exponential density on the same interval to verify that
the rejection method has been implemented appropriately.

CHAPTER EXERCISES 109

3 Consider the following two methods for simulating from the discrete
distribution with values 0, 1, 2, 3, 4, 5 which take respective probabilities
0.2, 0.3, 0.1, 0.15, 0.05, 0.2.
The first method is an inversion method:

> probs <- c(0.2, 0.3, 0.1, 0.15, 0.05, 0.2)
> randiscrete1 <- function(n, probs) {
+ cumprobs <- cumsum(probs)
+ singlenumber <- function() {
+ x <- runif(1)
+ N <- sum(x > cumprobs)
+ N
+ }
+ replicate(n, singlenumber())
+ }

The second method is a rejection method:

> randiscrete2 <- function(n, probs) {
+ singlenumber <- function() {
+ repeat{
+ U <- runif(2, min=c(-0.5, 0), max=c(length(probs) - 0.5,
+ max(probs)))
+ if (U[2] < probs[round(U[1]) + 1]) break
+ }
+ return(round(U[1]))
+ }
+ replicate(n, singlenumber())
+ }

Execute both functions using n = 100, 1000, and 10 000. Use
system.time() to determine which method is faster.

4 Repeat the above exercise using the probability distribution on the
integers {0, 1, 2, . . . , 99} defined by

> set.seed(91626)
> probs <- runif(100)
> probs <- probs / sum(probs)

When is rejection sampling preferred to the inversion method for discrete
distributions?

5 Write a function which generates a weighted sample of binomial
(m, p) pseudorandom numbers using importance sampling. Compare the
weighted average to the theoretical mean.

Chapter exercises

1 Write a function which simulates two people (Ann and Bob) playing
table tennis. (Assume that the first person to reach 21 points wins the
game.)

110 SIMULATION

(a) Begin with the assumption that each player successively hits the ball
with probability pAnn and pBob, respectively. Find the probability
that Ann will win for various values of these probabilities.

(b) Add more features, such as an ability to serve, or to smash, or spin
the ball. Use your imagination.

2 The following model has been used for the study of contagion.5 Suppose

5 Adapted from Chung, K. L. (1979)
Elementary Probability Theory with
Stochastic Processes. New York:
Springer.

that there are N persons some of whom are sick with influenza. The
following assumptions are made:
• when a sick person meets a healthy one, the chance is α that the latter

will be infected
• all encounters are between two persons
• all possible encounters in pairs are equally likely
• one such encounter occurs in every unit of time.
(a) Write a function which simulates this model for various values of

N (say, 10 000) and α (say, between 0.001 and 0.1). Monitor the
history of this process, assuming that one individual is infected at
the beginning.

(b) Suppose that initially only one individual is infected. What is the
expected length of time until 1000 people are infected?

(c) Now add the assumption that each infected person has a 0.01 chance
of recovering at each time unit. Monitor several histories of this new
process, and compare them with the histories of the old process.

(d) Re-do with the assumption that the time between encounters is an
exponential random variable with a mean of 5 minutes.

(e) Re-do assuming that the time between encounters is the absolute
value of a normal random variable with a mean of 5 minutes and a
standard deviation of 1 minute.

3 Simulate the following simple model of auto insurance claims:
• Claims arise according to a Poisson process at a rate of 100 per year.
• Each claim is a random size following a gamma distribution with shape

and rate parameters both equal to 2. This distribution has a mean of 1
and a variance of 1/2. Claims must be paid by the insurance company
as soon as they arise.

• The insurance company earns premiums at a rate of 105 per year, spread
evenly over the year (i.e. at time t measured in years, the total premium
received is 105t.)

Write R code to do the following:
(a) Simulate the times and amounts of all the claims that would occur

in one year. Draw a graph of the total amount of money that the
insurance company would have through the year, starting from zero:
it should increase smoothly with the premiums, and drop at each
claim time.

(b) Repeat the simulation 1000 times, and estimate the following
quantities:
(i) The expected minimum amount of money that the insurance

company would have.
(ii) The expected final amount of money that the insurance company

would have.

CHAPTER EXERCISES 111

4 Let f (x) = (sin x)2 for 0 < x < 2π .
(a) Graph the function.
(b) Use Monte Carlo integration to find the area under f (x) on the range

0 < x < 2π , and to find a 95% confidence interval for the area.
(c) Use trigonometry or calculus to find the same area exactly. Did the

confidence interval cover the true value?
(d) Write a function called rsin2 which generates random values from

the density f (x)/k, 0 < x < 2π , where k is the area found above.
The function should take a single argument specifying how many
samples are required, e.g. rsin2(10) would return a vector of 10
samples from this distribution. Use the rejection method to draw the
samples. Plot a histogram based on 1000 samples.

(e) Use your function to draw a sample of 1 000 000 samples, and
calculate a 95% confidence interval for the mean. (By symmetry, the
true mean must be π . Did your confidence interval cover the true
value?)

6

Computational linear algebra

Linear algebra deals with vector spaces and linear operations on them. In
mathematics, we usually represent vectors as column vectors of numbers,
and linear operations as matrices. Applying a linear operation to a vector
becomes multiplication of a column vector by a matrix, and composition
of operations is matrix multiplication.

One of the most important applications of linear algebra is in solving
systems of linear equations. For example, we represent the system

3x1 − 4x2 = 6
x1 + 2x2 = −3

as

Ax = b,

where

A =
[

3 −4
1 2

]
, x =

[
x1
x2

]
, b =

[
6

−3

]
,

and solve it as

x = A−1b =
[

0.2 0.4
−0.1 0.3

] [
6

−3

]
=
[

0
−1.5

]
.

Linear algebra is also extensively used in statistics in linear regression,
smoothing, simulation, and so on. We will touch on some of these
applications in this book, but most of them are beyond our scope.

From a computational point of view, many of the issues in linear algebra
come down to solving systems of linear equations efficiently and accurately.
In order to assess accuracy we need to understand properties of the matrices;
this understanding is valuable in itself. Efficiency often means formulating
problems differently than we would from a strict mathematical point of
view. For example, as we will see below, we would not normally solve
Ax = b using the mathematical solution x = A−1b: computationally, this
is both inefficient and inaccurate.

In this chapter, we will present several approaches to this problem,
and illustrate them with R code. R incorporates routines for linear algebra

VECTORS AND MATRICES IN R 113

computations from the LINPACK1 and LAPACK2 libraries. These are

1 Dongarra, J. J., Bunch, J. R., Moler,
C. B. and Stewart, G. W. (1978)
LINPACK Users Guide. Philadelphia:
SIAM.

2 Anderson, E. et al. (1999) LAPACK
Users’ Guide, 3rd edition. Philadelphia:
SIAM. Available on-line at
www.netlib.org/lapack/lug/

lapack_lug.html.

well-tested, well-trusted libraries, so R is an excellent platform for compu-
tational linear algebra. However, as with all numerical computation, under-
standing the underlying theory is essential in order to obtain reliable results.

6.1 Vectors and matrices in R

Numeric “vector” and “matrix” objects in R are a close match to mathemati-
cal vectors and matrices. (R also allows other types of data in its vectors and
matrices, but that won’t concern us here.) R normally makes no distinction
between column vectors and row vectors, though it does allow matrices
with one column or one row when this distinction is important.

Numeric matrices in R are printed as rectangular arrays of numbers, but
are stored internally as vectors with dimension attributes. For the purpose
of computational linear algebra, the internal storage can usually be ignored.

6.1.1 Constructing matrix objects
Matrices can be constructed using the functions matrix(), cbind() or
rbind().

Syntax
matrix(data, nrow, ncol) # data is a vector of nrow*ncol values
cbind(d1, d2, ..., dm) # d1, ..., dm are vectors (columns)
rbind(d1, d2, ..., dn) # d1, ..., dn are vectors (rows)

Example 6.1
Hilbert matrices are often studied in numerical linear algebra because they
are easy to construct but have surprising properties.

> H3 <- matrix(c(1, 1/2, 1/3, 1/2, 1/3, 1/4, 1/3, 1/4, 1/5), nrow=3)
> H3

[,1] [,2] [,3]
[1,] 1.0000000 0.5000000 0.3333333
[2,] 0.5000000 0.3333333 0.2500000
[3,] 0.3333333 0.2500000 0.2000000

Here H3 is the 3 × 3 Hilbert matrix, where entry (i, j) is 1/(i + j − 1). Note
that ncol is not required in the command that created it, since the data
argument has been assigned a vector consisting of nine elements; it is clear
that if there are three rows there must also be three columns.

We could also construct this matrix by binding columns together as
follows:

> 1/cbind(seq(1, 3), seq(2, 4), seq(3, 5))
[,1] [,2] [,3]

[1,] 1.0000000 0.5000000 0.3333333
[2,] 0.5000000 0.3333333 0.2500000
[3,] 0.3333333 0.2500000 0.2000000

http://www.netlib.org/lapack/lug/lapackprotect LY1	extunderscore lug.html
http://www.netlib.org/lapack/lug/lapackprotect LY1	extunderscore lug.html

114 COMPUTATIONAL LINEAR ALGEBRA

In this example, rbind() would give the same result, because of
symmetry.

Matrices are not necessarily square.

Example 6.2
For some simple non-square examples, consider

> matrix(seq(1, 12), nrow=3)
[,1] [,2] [,3] [,4]

[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

and

> x <- seq(1, 3)
> x2 <- xˆ2
> X <- cbind(x, x2)
> X

x x2
[1,] 1 1
[2,] 2 4
[3,] 3 9

The matrix X, above, could also have been constructed as

> X <- matrix(c(1, 2, 3, 1, 4, 9), ncol=2)

though it will print differently, because we haven’t entered any column
names.

Exercises
1 Use the matrix(), seq() and rep() functions to construct the

following 5 × 5 Hankel matrix:

A =

⎡⎢⎢⎢⎢⎣
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9

⎤⎥⎥⎥⎥⎦ .

Convert the code into a function which can be used to construct matrices
of dimension n × n which have the same pattern. Use the function to
output 10 × 10 and 12 × 12 Hankel matrices.

VECTORS AND MATRICES IN R 115

2 Use rbind() to stack the vectors [0.1 0.5 0.0 0.4], [0.2 0.3 0.5 0.0],
[0.3 0.0 0.5 0.2], and [0.2 0.3 0.2 0.3] into a 4 × 4 matrix. Assign the
result to an object called P.

3 Use cbind() to construct the 7 × 3 matrix:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 4
1 3 7
1 4 5
1 5 6
1 6 7
1 7 5
1 8 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

6.1.2 Accessing matrix elements; row and column names
Indexing of matrix elements is the same as for data frames: the (i, j) element
is located in the ith row and jth column. For example, the (3, 2) element of
X is 9. We can access this element using

> X[3, 2]
[1] 9

We can access the ith row using X[i,], and the jth column using
X[, j]. For example,

> X[3,]
x x2
3 9
> X[, 2]
[1] 1 4 9

When we do this, the result is usually a vector, with no dimension
information kept. If we want to maintain the result as a row or column
vector, we use the optional drop = FALSE argument when we index:

> X[3, , drop = FALSE]
x x2

[1,] 3 9
> X[, 2, drop = FALSE]

x2
[1,] 1
[2,] 4
[3,] 9

As X shows, it is possible for the rows and/or columns of a matrix to
have individual names. For example,

> colnames(X)
[1] "x" "x2"

116 COMPUTATIONAL LINEAR ALGEBRA

In this example, the rows do not have names:

> rownames(X)
NULL

We can assign names using

> rownames(X) <- c("obs1", "obs2", "obs3")
> X

x x2
obs1 1 1
obs2 2 4
obs3 3 9

Internally, R stores matrices and data frames quite differently. Matrices
are stored as a single vector of values with an associated dimension attribute,
while data frames are stored as lists of columns. Because of this, the $
extraction function does not work for matrices. For example,

> X$x
NULL

However, it is possible to use the row or column names to access rows
or columns as in the following example:

> X[, "x"]
obs1 obs2 obs3

1 2 3

Exercises
1 Construct the stochastic matrix3 that appears below.

3 A stochastic matrix has the properties
that all entries are nonnegative and the
rows sum to 1. Such a matrix is used to
describe transition probabilities for a
Markov chain. In this example, we
might be thinking of the weather on a
sequence of days; if it is sunny today,
the probability of a sunny day tomorrow
is 0.2, and if it is rainy today, the
probability of a sunny day tomorrow
is 0.3.

sunny rainy
sunny 0.2 0.8
rainy 0.3 0.7

2 Construct the two vectors of heights (in cm) and weights (in kg) for 5
individuals:

> height <- c(172, 168, 167, 175, 180)
> weight <- c(62, 64, 51, 71, 69)

Bind these vectors into a matrix, and modify the result to obtain:

height weight
Neil 172 62
Cindy 168 64
Pardeep 167 51
Deepak 175 71
Hao 180 69

3 Refer to the previous exercise. Pardeep’s height is really 162 cm, Hao’s
height is really 181 cm and his weight is really 68 kg. Correct the matrix
accordingly.

VECTORS AND MATRICES IN R 117

6.1.3 Matrix properties
The dimension of a matrix is its number of rows and its number of columns.
For example,

> dim(X)
[1] 3 2

Recall that the determinant of a 2 × 2 matrix
[

a b
c d

]
can be calculated

as ad − bc. For larger square matrices, the calculation becomes more
complicated. It can be found in R using the det()function, as in

> det(H3)
[1] 0.000462963

The diagonal elements can be obtained using the diag()function, as
in

> diag(X)
[1] 1 4
> diag(H3)
[1] 1.0000000 0.3333333 0.2000000

We can then compute the trace (the sum of the diagonal entries) using
a home-made function such as

> trace <- function(data) sum(diag(data))

Applying this function to the matrices constructed in Examples 6.1 and
6.2, we obtain

> trace(X)
[1] 5
> trace(H3)
[1] 1.533333

The diag() function can also be used to turn a vector into a square
diagonal matrix whose diagonal elements correspond to the entries of the
given vector. For example,

> diag(diag(H3))
[,1] [,2] [,3]

[1,] 1 0.0000000 0.0
[2,] 0 0.3333333 0.0
[3,] 0 0.0000000 0.2

The t() function is used to calculate the matrix transpose X T :

> t(X)
obs1 obs2 obs3

x 1 2 3
x2 1 4 9

118 COMPUTATIONAL LINEAR ALGEBRA

Exercises
1 Verify that det(A) = det(AT) by experimenting with several matrices A.
2 A matrix A is said to be skew-symmetric if

AT = −A.

Construct a 3×3 skew-symmetric matrix and verify that its determinant
is 0. What is the trace of your matrix?

6.1.4 Triangular matrices
The functionslower.tri() and upper.tri() can be used to obtain the
lower and upper triangular parts of matrices. The output of the functions is
a matrix of logical elements, with TRUE representing the relevant triangular
elements. For example,

> lower.tri(H3)
[,1] [,2] [,3]

[1,] FALSE FALSE FALSE
[2,] TRUE FALSE FALSE
[3,] TRUE TRUE FALSE

We can obtain the lower triangular matrix whose nonzero elements
match the lower triangular elements of H3 by using

> Hnew <- H3
> Hnew[upper.tri(H3, diag=TRUE)] <- 0 # diag=TRUE causes all
> # diagonal elements to be
> # included
> Hnew

[,1] [,2] [,3]
[1,] 0.0000000 0.00 0
[2,] 0.5000000 0.00 0
[3,] 0.3333333 0.25 0

Exercises
1 Obtain a matrix which has the same upper triangular part asH3 (including

the diagonal) but is 0 below the diagonal.
2 Check the output from

> Hnew[lower.tri(H3)]

Is it what you expected?
3 With X as defined in Section 6.2, what difference would you expect

between X[3, 2] and X[3, 2, drop=FALSE]? Use R to calculate
the dimension of each of these expressions.

6.1.5 Matrix arithmetic
Multiplication of a matrix by a scalar constant is the same as multiplication
of a vector by a constant. For example, using the Xmatrix from the previous
section, we can multiply each element by 2 as in

> Y <- 2 * X
> Y

MATRIX MULTIPLICATION AND INVERSION 119

x x2
obs1 2 2
obs2 4 8
obs3 6 18

Elementwise addition of matrices also proceeds as for vectors. For
example,

> Y + X
x x2

obs1 3 3
obs2 6 12
obs3 9 27

When adding matrices, always ensure that the dimensions match
properly. If they do not match correctly, an error message will appear, as in

> t(Y) + X
Error in t(Y) + X : non-conformable arrays

In this example, Y T is a 2 × 3 matrix while X is 3 × 2.
The command X * Y performs elementwise multiplication. Note that

this differs from the usual form of matrix multiplication that we will discuss
below. For example,

> X * Y
x x2

obs1 2 2
obs2 8 32
obs3 18 162

Again, in order for this kind of multiplication to work, the dimensions
of the matrices must match.

6.2 Matrix multiplication and inversion

If A and B are matrices, then the matrix product AB is the matrix representing
the composition of the two operations: first apply B, then apply A to the
result. For matrix multiplication to be a properly defined operation, the
matrices to be multiplied must conform. That is, the number of columns
of the first matrix must match the number of rows of the second matrix.
The resulting matrix AB will have its row dimension taken from A and its
column dimension taken from B.

In R, this form of matrix multiplication can be performed using the
operator %*%, for example

> t(Y) %*% X
x x2

x 28 72
x2 72 196

120 COMPUTATIONAL LINEAR ALGEBRA

From the previous section we saw that t(Y)has three columns and X
has three rows, so we can perform the multiplication Y T X . The result is a
2 × 2 matrix, since t(Y)has two rows and X has two columns.

If we failed to transpose Y, we would obtain an error, as in

> Y %*% X
Error in Y %*% X : non-conformable arguments

The crossprod()function is a somewhat more efficient way to
calculate Y T X :

> crossprod(Y,X)
x x2

x 28 72
x2 72 196

Note that the first argument of crossprod()is transposed automati-
cally. The reason this is more efficient than t(Y) %*% X is that the latter
needs to make a new object t(Y)before performing the multiplication. If Y
is a large matrix, this will consume a lot of memory and noticeable compu-
tation time. The crossprod(Y, X)function call can access the elements
of Y directly, since the (i, j) element of Y T is simply the (j, i) element of Y .

Exercises
1 Compute 1.5X , using the matrix X discussed in Section 6.2.
2 Use the crossprod()function to compute X T X and XX T . Note the

dimensions of the resulting products.

6.2.1 Matrix inversion
The inverse of a square n × n matrix A, denoted by A−1, is the solution to
the matrix equation AA−1 = I , where I is the n × n identity matrix. We can
view this as n separate systems of linear equations in n unknowns, whose
solutions are the columns of A−1. For example, with

A =
[

3 −4
1 2

]
,

the matrix equation[
3 −4
1 2

] [
b11 b12
b21 b22

]
=
[

1 0
0 1

]
is equivalent to the two equations:[

3 −4
1 2

] [
b11
b21

]
=
[

1
0

]
,

and [
3 −4
1 2

] [
b12
b22

]
=
[

0
1

]
.

MATRIX MULTIPLICATION AND INVERSION 121

The usual computational approach to finding A−1 involves solving these
two equations.

However, this is not always a good idea! Often the reason we are trying
to find A−1 is so that we can solve a system Ax = b with the solution
x = A−1b. It doesn’t make sense from a computational point of view to
solve n systems of linear equations in order to obtain a result which will be
used as the solution to one system. If we know how to solve systems, we
should use that knowledge to solve Ax = b directly. Furthermore, using A−1

may give a worse approximation to the final result than the direct approach,
because there are so many more operations involved, giving opportunties
for much more rounding error to creep into our results.

6.2.2 The LU decomposition
The general strategy for solving a system of equations Ax = b is to break
down the problem into simpler ones. This often involves rewriting the
matrix A in a special form; one such form is called the LU decomposition.

In the LU decomposition, we write A as a product of two matrices L
and U . The matrix L is lower triangular with unit values on the diagonal,
i.e.

L =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0

l21 1
. . .

...
...

. . . 0
ln1 ln2 · · · 1

⎤⎥⎥⎥⎥⎦ .

U is upper triangular, i.e.

U =

⎡⎢⎢⎢⎣
u11 u12 · · · u1n

0 u22 · · · u2n
...

. . .
. . .

...
0 · · · 0 unn

⎤⎥⎥⎥⎦ .

It turns out that this factorization of A is quite easy to find by stepping
through the entries one by one. For example, if

A =
⎡⎣ 2 4 3

6 16 10
4 12 9

⎤⎦ ,

the calculations would proceed as follows, where we write the entries of A
as aij. We make repeated use of the relation

aij =
3∑

k=1

likukj,

and take advantage of knowing the 0’s and 1’s in L and U :

1 a11 = 2 = l11 × u11 = 1 × u11, so u11 = 2
2 a21 = 6 = l21 × u11 = l21 × 2, so l21 = 3

122 COMPUTATIONAL LINEAR ALGEBRA

3 a31 = 4 = l31 × u11 = l31 × 2, so l31 = 2
4 a12 = 4 = l11 × u12, so u12 = 4
5 a22 = 16 = l21 × u12 + l22 × u22 = 3 × 4 + 1 × u22, so u22 = 4
6 a32 = 12 = l31 × u12 + l32 × u22 = 2 × 4 + l32 × 4, so l32 = 1
7 a13 = 3 = l11 × u13 = 1 × u13, so u13 = 3
8 a23 = 10 = l21 × u13 + l22 × u23 = 3 × 3 + 1 × u23, so u23 = 1
9 a33 = 9 = l31 × u13 + l32 × u23 + l33 × u33 = 2 × 3 + 1 × 1 + 1 × u33,

so u33 = 2.

Once we have L and U in hand, solving the system of equations Ax = b
is easy. We write the system as L(Ux) = b, set y = Ux and solve Ly = b
for y first. Because L is lower triangular, this is straightforward using a
procedure known as forward elimination. Continuing the example above,
with b = [−1, −2, −7]T , and setting y = [y1, y2, y3]T , we make use of the
relation

bi =
3∑

j=1

lijyj

to calculate:

10 b1 = −1 = l11 × y1 = 1 × y1, so y1 = −1
11 b2 = −2 = l21 × y1 + l22 × y2 = 3 × (−1) + 1 × y2, so y2 = 1
12 b3 = −7 = l31 × y1 + l32 × y2 + l33 × y3 = 2 × (−1)+ 1 × 1 + 1 × y3,

so y3 = −6.

Finally, we solve Ux = y. This time the fact that U is upper triangular
means solving for the entries in reverse order is easy, using a procedure
called back substitution:

13 y3 = −6 = u33 × x3 = 2 × x3, so x3 = −3
14 y2 = 1 = u22 × x2 + u23 × x3 = 4 × x2 + 1 × (−3), so x2 = 1
15 y1 = −1 = u11 ×x1 +u12 ×x2 +u13 ×x3 = 2×x1 +4×1+3× (−3),

so x1 = 2.

By processing these steps successively, the problem of solving Ax =
b has been reduced to solving 15 successive linear equations, each with
just one unknown. The procedure is easily automated. In fact, the default
method used in R for solving linear equations is based on this technique; the
only substantial difference is that the ordering of the columns is rearranged
before factoring so that rounding error is minimized.

6.2.3 Matrix inversion in R
In R, matrices are inverted and linear systems of equations are solved using
the solve()or qr.solve()functions. solve()uses a method based on
the LU decomposition; qr.solve()is based on the QR decomposition
that is described below.

As an example, we compute the inverse of the 3 × 3 Hilbert matrix
introduced in Section 6.1:

> H3inv <- solve(H3)

MATRIX MULTIPLICATION AND INVERSION 123

> H3inv
[,1] [,2] [,3]

[1,] 9 -36 30
[2,] -36 192 -180
[3,] 30 -180 180

To verify that this is the inverse of H3, we can check that the product of
H3inv and H3 is the 3 × 3 identity:

> H3inv %*% H3
[,1] [,2] [,3]

[1,] 1.000000e+00 8.881784e-16 6.882515e-16
[2,] -3.774758e-15 1.000000e+00 -3.420875e-15
[3,] 6.144391e-15 0.000000e+00 1.000000e+00

The diagonal elements are all 1’s, but five of the off-diagonal elements
are nonzero. Scientific notation is used for these elements; they are all
computed to be of the order of 10−14 or smaller. They are “numerically”
close to 0. H3inv is not the exact inverse of H3, but it is believable that it
is very close.

Exercises
1 Compute the inverse of X T X . Verify your result using crossprod().
2 Can you compute the inverse of XX T ? Why is there a problem?
3 The general n×n Hilbert matrix has (i, j) element given by 1/(i+j−1).

(a) Write a function which gives the n × n Hilbert matrix as its output,
for any positive integer n.

(b) Are all of the Hilbert matrices invertible?
(c) Use solve()and qr.solve()to compute the inverse of the

Hilbert matrices, up to n = 10. Is there a problem?

6.2.4 Solving linear systems
The function solve(A, b)gives the solution to systems of equations of
the form Ax = b. For example, let us find x such that H3x = b where H3 is
the 3 × 3 Hilbert matrix and b = [1 2 3]T .

> b <- c(1, 2, 3)
> x <- solve(H3, b)
> x
[1] 27 -192 210

In other words, the solution vector is x = [27, −192, 210]T .

Exercise
1 Let [x1, x2, x3, x4, x5, x6]T = [10, 11, 12, 13, 14, 15]T . Find the coeffi-

cients of the quintic polynomial f (x) for which [f (x1), f (x2), f (x3), f (x4),
f (x5), f (x6)]T = [25, 16, 26, 19, 21, 20]T . (Hint: the quintic polynomial
f (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 can be viewed as the
matrix product of the row vector [1, x, x2, x3, x4, x5] with the column

124 COMPUTATIONAL LINEAR ALGEBRA

vector [a0, a1, a2, a3, a4, a5]T . Work out the matrix version of this to
give [f (x1), f (x2), f (x3), f (x4), f (x5), f (x6)]T .)

6.3 Eigenvalues and eigenvectors

Eigenvalues and eigenvectors can be computed using the function
eigen(). For example,

> eigen(H3)
$values
[1] 1.408318927 0.122327066 0.002687340

$vectors
[,1] [,2] [,3]

[1,] 0.8270449 0.5474484 0.1276593
[2,] 0.4598639 -0.5282902 -0.7137469
[3,] 0.3232984 -0.6490067 0.6886715

To see what this output means, let x1 denote the first column of the
$vectors output, i.e. [0.827 0.459 0.323]T . This is the first eigenvector,
and it corresponds to the eigenvalue 1.408. Thus,

H3x1 = 1.408x1.

Denoting the second and third columns of $vectors by x2 and x3, we
have

H3x2 = 0.122x2,

and

H3x3 = 0.00268x3.

Exercises
1 Calculate the matrix H = X (X T X)−1X T , where X was as defined in

Section 6.1.
2 Calculate the eigenvalues and eigenvectors of H .
3 Calculate the trace of the matrix H , and compare with the sum of the

eigenvalues.
4 Calculate the determinant of the matrix H , and compare with the product

of the eigenvalues.
5 Using the definition, verify that the columns of X and I − H are

eigenvectors of H .
6 Obtain the 6 × 6 Hilbert matrix, and compute its eigenvalues and eigen-

vectors. Compute the inverse of the matrix. Is there a relation between
the eigenvalues of the inverse and the eigenvalues of the original matrix?
Is there supposed to be a relationship?
Repeat the above analysis on the 7 × 7 Hilbert matrix.

ADVANCED TOPICS 125

6.4 Advanced topics

6.4.1 The singular value decomposition of a matrix
The singular value decomposition of a square matrix A consists of three
square matrices, U , D, and V . The matrix D is a diagonal matrix. The
relation among these matrices is

A = UDV T .

The matrices U and V are said to be orthogonal, which means that U−1 =
U T and V −1 = V T .

The singular value decomposition of a matrix is often used to obtain
accurate solutions to linear systems of equations.

The elements of D are called the singular values of A. Note that
AT A = V −1D2V . This is a “similarity transformation” which tells us that
the squares of the singular values of A are the eigenvalues of AT A.

The singular value decomposition can be obtained using the function
svd(). For example, the singular value decomposition of the 3×3 Hilbert
matrix H3 is

> H3.svd <- svd(H3)
> H3.svd
$d
[1] 1.408318927 0.122327066 0.002687340
$u

[,1] [,2] [,3]
[1,] -0.8270449 0.5474484 0.1276593
[2,] -0.4598639 -0.5282902 -0.7137469
[3,] -0.3232984 -0.6490067 0.6886715
$v

[,1] [,2] [,3]
[1,] -0.8270449 0.5474484 0.1276593
[2,] -0.4598639 -0.5282902 -0.7137469
[3,] -0.3232984 -0.6490067 0.6886715

We can verify that these components can be multiplied in the appropriate
way to reconstruct H3:

> H3.svd$u %*% diag(H3.svd$d) %*% t(H3.svd$v)
[,1] [,2] [,3]

[1,] 1.0000000 0.5000000 0.3333333
[2,] 0.5000000 0.3333333 0.2500000
[3,] 0.3333333 0.2500000 0.2000000

Because of the properties of the U , V and D matrices, the singular
value decomposition provides a simple way to compute a matrix inverse.

126 COMPUTATIONAL LINEAR ALGEBRA

For example, H−1
3 = VD−1U T and can be recalculated as

> H3.svd$v %*% diag(1/H3.svd$d) %*% t(H3.svd$u)
[,1] [,2] [,3]

[1,] 9 -36 30
[2,] -36 192 -180
[3,] 30 -180 180

6.4.2 The Choleski decomposition of a positive definite
matrix

If a matrix A is positive definite, it possesses a square root. In fact, there are
usually several matrices B such that B2 = A. The Choleski decomposition
is similar, but the idea is to find an upper triangular matrix U such that
U T U = A. The function chol()accomplishes this task.

For example, we can compute the Choleski decomposition of the 3 × 3
Hilbert matrix.

> H3.chol <- chol(H3)
> H3.chol # This is U, the upper triangular matrix

[,1] [,2] [,3]
[1,] 1 0.5000000 0.3333333
[2,] 0 0.2886751 0.2886751
[3,] 0 0.0000000 0.0745356
> crossprod(H3.chol, H3.chol) # Multiplying UˆT U to recover H3

[,1] [,2] [,3]
[1,] 1.0000000 0.5000000 0.3333333
[2,] 0.5000000 0.3333333 0.2500000
[3,] 0.3333333 0.2500000 0.2000000

Once the Choleski decomposition of a matrix A = U T U has been
obtained, we can compute the inverse of A using the fact that A−1 =
U−1U−T (where U−T is a short way to write the transpose of U−1). This
computation is much more stable than direct calculation of A−1 by Gaussian
elimination. The function chol2inv()does this calculation. For example,
we can compute the inverse of H3 as

> chol2inv(H3.chol)
[,1] [,2] [,3]

[1,] 9 -36 30
[2,] -36 192 -180
[3,] 30 -180 180

Once the Choleski decomposition has been obtained, we can compute
solutions to linear systems of the form

Ax = b.

If A = U T U , then we see that Ux = U−T b. Therefore, the solution x can
be obtained in a two-step procedure:

1 Solve U T y = b for y. The solution will satisfy y = U−T b.
2 Solve Ux = y.

ADVANCED TOPICS 127

The first system is lower triangular, so forward elimination can be used
to solve it. The function forwardsolve()can be used for this. The
second system is upper triangular, so back substitution using function
backsolve()can be used.

For the problem H3x = b, where b = [1 2 3]T , we can proceed as
follows:

> b <- seq(1, 3)
> y <- forwardsolve(t(H3.chol), b)
> backsolve(H3.chol, y) # the solution x
[1] 27 -192 210

6.4.3 The QR decomposition of a matrix
Another way of decomposing a matrix A is via the QR decomposition

A = QR,

where Q is an orthogonal matrix, and R is an upper triangular matrix.
This decomposition can be applied even if A is not square. Again, this
decomposition can be used to obtain accurate solutions to linear systems
of equations.

For example, suppose we want to solve

Ax = b

for x, given the n × n matrix A and n-vector b. If we compute the QR
decomposition of A first, we can write

QRx = b.

Multiplying through by QT on the left gives

Rx = QT b.

This is an easier system to solve, because R is an upper triangular matrix.
Note that QT b is an easily calculated n-vector.

To obtain the decomposition, we use the qr()function. For example,

> H3.qr <- qr(H3)
> H3.qr
$qr

[,1] [,2] [,3]
[1,] -1.1666667 -0.6428571 -0.450000000
[2,] 0.4285714 -0.1017143 -0.105337032
[3,] 0.2857143 0.7292564 0.003901372

$rank
[1] 3

$qraux
[1] 1.857142857 1.684240553 0.003901372

$pivot
[1] 1 2 3

128 COMPUTATIONAL LINEAR ALGEBRA

attr(,"class")
[1] "qr"

The output is an object of class qr.
The functionsqr.Q()andqr.R()can be applied to this object to obtain

the explicit Q and R matrices. For our example, we have

> Q <- qr.Q(H3.qr)
> Q

[,1] [,2] [,3]
[1,] -0.8571429 0.5016049 0.1170411
[2,] -0.4285714 -0.5684856 -0.7022469
[3,] -0.2857143 -0.6520864 0.7022469
> R <- qr.R(H3.qr)
> R

[,1] [,2] [,3]
[1,] -1.166667 -0.6428571 -0.450000000
[2,] 0.000000 -0.1017143 -0.105337032
[3,] 0.000000 0.0000000 0.003901372

We can recover H3 by multiplying Q by R:

> Q % * % R
[,1] [,2] [,3]

[1,] 1.0000000 0.5000000 0.3333333
[2,] 0.5000000 0.3333333 0.2500000
[3,] 0.3333333 0.2500000 0.2000000

Again, the inverse of H3 can be obtained from R−1QT . Since R is
upper triangular, this inverse can be computed quickly, in principle. In the
following, we compute R−1 in a computationally inefficient way, simply
to demonstrate that the decomposition can be used to get at the inverse of
a matrix:

> qr.solve(R) % * % t(Q)
[,1] [,2] [,3]

[1,] 9 -36 30
[2,] -36 192 -180
[3,] 30 -180 180

6.4.4 The condition number of a matrix
The function kappa()can be used to compute the condition number of a
given matrix (the ratio of the largest to smallest nonzero singular values).
This gives an idea as to how bad certain numerical calculations will be
when applied to the matrix. Large values of the condition number indicate
poor numerical properties.

> kappa(H3)
[1] 646.2247

As this is a fairly large value, matrix inversion will not be very accurate.

ADVANCED TOPICS 129

6.4.5 Outer products
The function outer()is sometimes useful in statistical calculations. It can
be used to perform an operation on all possible pairs of elements coming
from two vectors.

A simple example involves computing all quotients among pairs of
elements of the sequence running from 1 through 5:

> x1 <- seq(1, 5)
> outer(x1, x1, "/") # or outer(x1, x1, function(x, y) x / y)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0.5 0.3333333 0.25 0.2
[2,] 2 1.0 0.6666667 0.50 0.4
[3,] 3 1.5 1.0000000 0.75 0.6
[4,] 4 2.0 1.3333333 1.00 0.8
[5,] 5 2.5 1.6666667 1.25 1.0

Replacing the division operation with the subtraction operator gives all
pairwise differences:

> outer(x1, x1, "-")
[,1] [,2] [,3] [,4] [,5]

[1,] 0 -1 -2 -3 -4
[2,] 1 0 -1 -2 -3
[3,] 2 1 0 -1 -2
[4,] 3 2 1 0 -1
[5,] 4 3 2 1 0

The third argument can be any function that takes two vector arguments.
The second argument can differ from the first. For example,

> y <- seq(5, 10)
> outer(x1, y, "+")

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 6 7 8 9 10 11
[2,] 7 8 9 10 11 12
[3,] 8 9 10 11 12 13
[4,] 9 10 11 12 13 14
[5,] 10 11 12 13 14 15

6.4.6 Kronecker products
The function kronecker()can be used to compute the Kronecker product
of two matrices and other more general products. See the help()file for
more information.

6.4.7 apply()
In statistical applications, it is sometimes necessary to apply the same func-
tion to each of the rows of a matrix, or to each of the columns. Afor()loop
could be used, but it is sometimes more efficient computationally to use the
apply()function.

130 COMPUTATIONAL LINEAR ALGEBRA

There are three arguments. The first specifies the matrix. The second
specifies whether the operation is to be applied to rows (1) or columns (2).
The third argument specifies the function that should be applied.

A simple example is to compute the sum of the rows of H3:

> apply(H3, 1, sum)
[1] 1.8333333 1.0833333 0.7833333

Chapter exercises

1 Consider the following circulant matrix:

P =

⎡⎢⎢⎣
0.1 0.2 0.3 0.4
0.4 0.1 0.2 0.3
0.3 0.4 0.1 0.2
0.2 0.3 0.4 0.1

⎤⎥⎥⎦ .

(a) P is an example of a stochastic matrix. Use the apply()function
to verify that the row sums add to 1.

(b) Compute Pn for n = 2, 3, 5, 10. Is a pattern emerging?
(c) Find a nonnegative vector x whose elements sum to 1 and which

satisfies

(I − PT)x = 0.

Do you see any connection between P10 and x?
(d) Using a loop, generate a pseudorandom sequence of numbers y from

the set {1, 2, 3, 4} using the rules:
(i) set y1 ← 1

(ii) for j = 2, 3, . . . , n, set yj = k with probability Pyj−1,k .
For example, y2 would be assigned the value 1, with probability 0.1;
2, with probability 0.2; and so on. Choose n to be some large value
like 10 000.
The resulting vector y is an example of a simulated Markov chain.

(e) Use the table()function to determine the relative frequency dis-
tribution of the four possible values in the y vector. Compare this
distribution with the stationary distribution x calculated earlier.

2 Repeat the previous exercise using the matrix

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0.2 0.3 0.4 0.0 0.0 0.0
0.1 0.1 0.1 0.1 0.1 0.1 0.4
0.2 0.2 0.2 0.2 0.2 0.0 0.0
0.3 0.3 0.3 0.1 0.0 0.0 0.0
0.3 0.3 0.3 0.1 0.0 0.0 0.0
0.3 0.3 0.3 0.1 0.0 0.0 0.0
0.3 0.3 0.3 0.1 0.0 0.0 0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3 An insurance company has four types of policies, which we will label A,
B, C, and D.

CHAPTER EXERCISES 131

• They have a total of 245 921 policies.
• The annual income from each policy is $10 for type A, $30 for type B,

$50 for type C, and $100 for type D.
• The total annual income for all policies is $7 304 620.
• The claims on these policies arise at different rates. The expected num-

ber of type A claims is 0.1 claims per year, type B 0.15 claims per year,
type C 0.03 claims per year, and type D 0.5 claims per year.

• The total expected number of claims for the company is 34 390.48 per
year.

• The expected size of the claims is different for each policy type. For
type A, it is $50, for type B it is $180, for type C it is $1500, and for
type D it is $250.

• The expected total claim amount is $6 864 693. This is the sum over
all policies of the expected size of claim times the expected number of
claims in a year.

Use R to answer the following questions:

(a) Find the total number of each type of policy.
(b) Find the total income and total expected claim size for each type of

policy.
(c) Assuming that claims arise in a Poisson process, and each claim

amount follows a Gamma distribution with a shape parameter
of 2 and the means listed above, use simulation to estimate the
following:
(i) The variance in the total claim amount.

(ii) The probability that the total claim amount will exceed the total
annual income from these policies.

Write a function to do these calculations, and do it once for the overall
company income and claims, and once for each of the four types of
policy.

7

Numerical optimization

In many areas of statistics and applied mathematics one has to solve the
following problem: given a function f (·), which value of x makes f (x) as
large or as small as possible?

For example, in financial modeling f (x) might be the expected return
from a portfolio, with x being a vector holding the amounts invested in each
of a number of possible securities. There might be constraints on x (e.g.
the amount to invest must be positive, the total amount invested must be
fixed, etc.)

In statistical modeling, we may want to find a set of parameters for a
model which minimize the expected prediction errors for the model. Here x
would be the parameters and f (·) would be a measure of the prediction error.

Knowing how to do minimization is sufficient. If we want to maximize
f (x), we simply change the sign and minimize −f (x). We call both opera-
tions “numerical optimization.” Use of derivatives and simple algebra often
lead to the solution of such problems, but not nearly always. Because of
the wide range of possibilities for functions f (·) and parameters x, this is a
rich area of computing.

7.1 The golden section search method

The golden section search method is a simple way of finding the minimizer
of a single-variable function which has a single minimum on the interval
[a, b].

Consider minimizing the function

f (x) = |x − 3.5| + (x − 2)2

on the interval [0, 5]. This function is not differentiable at x = 3.5, so some
care must be taken to find the minimizer. We can write an R function to
evaluate f (x) as follows:

> f <- function(x) {
+ abs(x - 3.5) + (x - 2)ˆ2
+ }

THE GOLDEN SECTION SEARCH METHOD 133

1

2
10

x

f (
x)

2 3 4 5

4
6

8

Fig. 7.1 The function

f (x) = |x − 3.5| + (x − 2)2.

To check that this function has a single minimum in the interval we use
the curve() function to plot it:

> curve(f, from = 1, to = 5)

The curve is displayed in Figure 7.1, where we can see that the minimizer
is located near x = 2.5.

The golden section search method is an iterative method, which may be
outlined as follows:

1 Start with the interval [a, b], known to contain the minimizer.
2 Repeatedly shrink it, finding smaller and smaller intervals [a′, b′] which

still contain the minimizer.
3 Stop when b′ − a′ is small enough, i.e. when the interval length is less

than a pre-set tolerance.

When the search stops, the midpoint of the final interval will serve as a good
approximation to the true minimizer, with a maximum error of (b′ − a′)/2.

The shrinkage step 2 begins by evaluating the function at two points
x1 < x2 in the interior of the interval [a, b]. (How the points are chosen
will be described below.) Because we have assumed that there is a unique
minimum, we know that if f (x1) > f (x2), then the minimum must lie to
the right of x1, i.e. in the interval [a′, b′] = [x1, b]. If f (x1) < f (x2), the
minimum must lie in [a′, b′] = [a, x2] (see Figure 7.2). (What if the values
are exactly equal? We will consider that case later.) Then new values of
x1, f (x1), x2, and f (x2) are computed, and the method is repeated until the
tolerance criterion is satisfied.

The choice of the points between a and b makes use of properties of the
golden ratio φ = (

√
5+1)/2. The golden ratio (which we saw in Chapter 3

in the context of Fibonacci numbers) has a number of interesting algebraic
properties. We make use of the fact that 1/φ = φ − 1 and 1/φ2 = 1 − 1/φ

in the following. (Some authors call the value � = 1/φ the “silver ratio,”
but we’ll stick with φ in our formulas.)

134 NUMERICAL OPTIMIZATION

1

0

x

f (
x)

●

●

●

●

●

a

b

x1

x2a′′

b′′
x1′′ x2′′

2 3 4 5

2
4

6
8

10
12 Fig. 7.2 One iteration of the

golden section search, applied to
the test function
f (x) = |x − 3.5| + (x − 2)2.

We locate the interior points at x1 = b−(b−a)/φ and x2 = a+(b−a)/φ.
The reason for this choice is as follows. After one iteration of the search, it
is possible that we will throw away a and replace it with a′ = x1. Then the
new value to use as x1 will be

x′
1 = b − (b − a′)/φ

= b − (b − x1)/φ

= b − (b − a)/φ2

= a + (b − a)/φ

= x2,

i.e. we can re-use a point we already have, we do not need a new calculation
to find it, and we don’t need a new evaluation of f (x′

1), we can re-use f (x2).
Similarly, if we update to b′ = x2, then x′

2 = x1, and we can re-use that
point.

We put this together into the following R function:

> golden <- function (f, a, b, tol = 0.0000001)
+ {
+ ratio <- 2 / (sqrt(5) + 1)
+ x1 <- b - ratio * (b - a)
+ x2 <- a + ratio * (b - a)
+
+ f1 <- f(x1)
+ f2 <- f(x2)
+
+ while(abs(b - a) > tol) {
+
+ if (f2 > f1) {
+ b <- x2
+ x2 <- x1

NEWTON–RAPHSON 135

+ f2 <- f1
+ x1 <- b - ratio * (b - a)
+ f1 <- f(x1)
+ } else {
+ a <- x1
+ x1 <- x2
+ f1 <- f2
+ x2 <- a + ratio * (b - a)
+ f2 <- f(x2)
+ }
+ }
+ return((a + b) / 2)
+ }

We test and see that golden() works, at least on one function:

> golden(f, 1, 5)
[1] 2.5

Exercises
1 Apply the golden section minimization technique to the following

functions:

(a) f (x) = |x − 3.5| + |x − 2| + |x − 1|
(b) f (x) = |x − 3.2| + |x − 3.5| + |x − 2| + |x − 1|.
For the second function, check the graph to see that the minimizer is not
unique. Show that the minimizer found by golden() depends on the
initial interval supplied to the function.

2 For an odd number of data values x1, x2, . . . , xn, the minimizer of the
function

f (x) =
n∑

i=1

|x − xi|

is the sample median of the data values. (Exercise 1(a) is an example of
this.) Verify this result for the following data sets:

(a) 3, 7, 9, 12, 15
(b) 3, 7, 9, 12, 15, 18, 21.

Describe, in words, what happens when the number of observations is
even.

3 Write a function that would find the maximizer of a function using the
golden section search.

7.2 Newton–Raphson

If the function to be minimized has two continuous derivatives and we
know how to evaluate them, we can make use of this information to give a
faster algorithm than the golden section search.

136 NUMERICAL OPTIMIZATION

We want to find a minimizer x∗ of the function f (x) in the interval
[a, b]. Provided the minimizer is not at a or b, x∗ will satisfy f ′(x∗) = 0.
This is a necessary condition for x∗ to be a minimizer of f (x), but it is
not sufficient: we must check that x∗ actually minimizes f (x). Other solu-
tions of f ′(x∗) = 0 are maximizers and points of inflection. One sufficient
condition to guarantee that our solution is a minimum is to check that
f ′′(x∗) > 0.

Now, if we have a guess x0 at a minimizer, we use the fact that
f ′′(x) is the slope of f ′(x) and approximate f ′(x) using a Taylor series
approximation:

f ′(x) ≈ f ′(x0) + (x − x0)f
′′(x0).

Finding a zero of the right-hand side should give us an approximate solution
to f ′(x∗) = 0.

We implement this idea as follows, using the Newton–Raphson algo-
rithm to approximate a solution to f ′(x∗) = 0. Start with an initial guess
x0, and compute an improved guess using the solution

x1 = x0 − f ′(x0)

f ′′(x0)
.

This gives a new guess at the minimizer. Then use x1 in place of x0, to
obtain a new update x2. Continue with iterations of the form

xn+1 = xn − f ′(xn)

f ′′(xn)
.

This iteration stops when f ′(xn) is close enough to 0. Usually, we set a
tolerance ε and stop when |f ′(xn)| < ε.

It can be shown that the Newton–Raphson method is guaranteed to
converge to a local minimizer, provided the starting value x0 is close enough
to the minimizer. As with other numerical optimization techniques, where
there are multiple minimizers, Newton–Raphson won’t necessarily find
the best one. However, when f ′′(x) > 0 everywhere, there will be only
one minimizer.

In actual practice, implementation of Newton–Raphson can be
tricky. We may have f ′′(xn) = 0, in which case the function looks locally
like a straight line, with no solution to the Taylor series approximation
to f ′(x∗) = 0. In this case a simple strategy is to move a small
step in the direction which decreases the function value, based only
on f ′(xn).

In other cases where xn is too far from the true minimizer, the Taylor
approximation may be so inaccurate that f (xn+1) is actually larger than
f (xn). When this happens one may replace xn+1 with (xn+1 + xn)/2 (or
some other value between xn and xn+1) in the hope that a smaller step will
produce better results.

NEWTON–RAPHSON 137

Finally, there is always the possibility that the code to calculate f ′(x)
or f ′′(x) may contain bugs: it is usually worthwhile to do careful checks to
make sure this is not the case.

Example 7.1
We wish to find the minimizer of f (x) = e−x + x4. By inspection, we can
guess that the minimizer is somewhere to the right of zero, because e−x is
a decreasing function, and x4 has a minimum at zero. We start by plotting
the function to find an initial guess (Figure 7.3):

> f <- function(x) exp(-x) + xˆ4
> curve(f, from=-1, to=4)

From the figure, we can see that the minimizer is somewhere near
x0 = 0.5; we will use that as our starting value. Because of the difficulties
mentioned above, we will not attempt to write a general Newton–Raphson
implementation. Instead, we will simply evaluate several updates to see
whether it converges or not.

> f <- function(x) exp(-x) + xˆ4
> fprime <- function(x) -exp(-x) + 4 * xˆ3
> fprimeprime <- function(x) exp(-x) + 12 * xˆ2
> x <- c(0.5, rep(NA, 6))
> fval <- rep(NA, 7)
> fprimeval <- rep(NA, 7)
> fprimeprimeval <- rep(NA, 7)
> for (i in 1:6) {
+ fval[i] <- f(x[i])
+ fprimeval[i] <- fprime(x[i])
+ fprimeprimeval[i] <- fprimeprime(x[i])
+ x[i + 1] <- x[i] - fprimeval[i] / fprimeprimeval[i]
+ }
> data.frame(x, fval, fprimeval, fprimeprimeval)

x fval fprimeval fprimeprimeval
1 0.5000000 0.6690307 -1.065307e-01 3.606531
2 0.5295383 0.6675070 5.076129e-03 3.953806
3 0.5282544 0.6675038 9.980020e-06 3.938266
4 0.5282519 0.6675038 3.881429e-11 3.938235
5 0.5282519 0.6675038 0.000000e+00 3.938235
6 0.5282519 0.6675038 0.000000e+00 3.938235
7 0.5282519 NA NA NA

We see that convergence was very rapid, with the derivative numerically
equal to zero by the fourth update. The second derivative is positive there,
confirming that this is a local minimum. In fact, since f ′′(x) = e−x + 12x2,
the second derivative is positive everywhere, and we can be sure that this
is a global minimum.

138 NUMERICAL OPTIMIZATION

–1

0

x

f (
x)

0 1 2 3 4

50
10

0
15

0
20

0
25

0 Fig. 7.3 The function

f (x) = e−x + x4.

7.3 The Nelder–Mead simplex method

In the previous sections, we have talked about two different methods for
optimizing a function of one variable. However, when a function depends
on multiple inputs, optimization becomes much harder. It is hard even to
visualize the function once it depends on more than two inputs.

The Nelder–Mead simplex algorithm is one method for optimization
of a function of several variables. In p dimensions, it starts with p + 1
points x1, . . . , xp+1, arranged so that when considered as vertices of a
p-dimensional solid (a “simplex”), they enclose a nonzero volume. For
example, in two dimensions the three points would not be allowed to all lie
on one line so they would form a triangle, and in three dimensions the four
points would form a proper tetrahedron.

The points are labeled in order from smallest to largest values of
f (xi), so that f (x1) ≤ f (x2) ≤ · · · ≤ f (xp+1). The idea is that
to minimize f (x), we would like to drop xp+1 and replace it with
a point that gives a smaller value. We do this by calculating sev-
eral proposed points zi from the existing points. There are four kinds
of proposals, illustrated in Figure 7.4 in two dimensions. The first
three refer to the midpoint of x1, . . . , xp which we calculate as xmid =
(x1 + · · · + xp)/p.

1 Reflection: reflect xp+1 through xmid to z1.
2 Reflection and expansion: reflect xp+1 through xmid, and double its

distance, giving z2.
3 Contraction 1: contract xp+1 halfway towards xmid to give z3.
4 Contraction 2: contract all points halfway towards x1, giving

z4, . . . , zp+3.

We consider each of these choices of simplex in order, based on the
values of f (zi). It is helpful to consider the line shown in Figure 7.5 as you

THE NELDER–MEAD SIMPLEX METHOD 139

Reflection

x1

x3

x1 x1 x2

x3

z4

z5

x2

x1

x3

x2

z2

x2

x3

z1

xmid xmid

xmid

Reflection and expansion

Contraction 1

z3

Contraction 2

Fig. 7.4 The four types of
proposals of the Nelder–Mead
algorithm, illustrated in two
dimensions.

A B C D

f(X1) f(Xp) f(Xp+1)

Fig. 7.5 f (z1) will fall in region
A, B, C, or D in the Nelder–Mead
algorithm.

read through the following pseudocode outline of the decision process for
one update of the simplex:

Initialization:
Place the initial points in a matrix x, so that point i is in

x[i,]
For i in 1:(p + 1) calculate f(x[i,])
Relabel the points so that

f(x[1,]) <= f(x[2,]) <= ... <= f(x[p + 1,])
Calculate the midpoint xmid = (x[1,] + x[2,] + ... + x[p,]) / p

Trials:
Calculate z1 by reflection: z1 <- xmid - (x[p + 1,] - xmid)
If f(z1) < f(x[1,]) { # Region A

Calculate z2 by reflection and expansion:
z2 <- xmid - 2 * (x[p + 1,] - xmid)

If f(z2) < f(z1) return(z2)
else return(z1)

} else {

140 NUMERICAL OPTIMIZATION

If f(z1) < f(x[p,]) return(z1) # Region B
If f(z1) < f(x[p + 1,]) {

Swap z1 with x[p + 1,] # Region C
}

}

At this point we know f(z1) is in region D.

Try contraction 1, giving z3.
If f(z3) < f(x[p + 1,]) return(z3) # Region A, B, or C

At this point nothing has worked, so we use contraction 2 to move
everything towards x[1,]

Example 7.2
In this example we try to minimize the function

> f <- function(x, y) ((x - y)ˆ2 + (x - 2)ˆ2 + (y - 3)ˆ4) / 10

using the Nelder–Mead algorithm. We start by drawing a contour plot of
the function, in order to get approximate starting values. After some exper-
imentation, we obtain the plot shown in Figure 7.6 using the following
code:

> x <- seq(0, 5, len=20)
> y <- seq(0, 5, len=20)
> z <- outer(x, y, f)
> contour(x, y, z)

We implemented the Nelder–Mead update algorithm in an R function
with header neldermead(x, f), where x is our matrix in the pseu-
docode, and f is the function. The output of neldermead(x, f) is an
updated copy of the matrix x. The following log shows the output of nine
Nelder–Mead updates. Figure 7.7 shows the steps the algorithm took in this
demonstration.

> x <- matrix(c(0, 0, 2, 0, 2, 0), 3, 2)
> polygon(x)
> for (i in 1:9) {
+ cat(i,":") + x <- neldermead(x,f) + polygon(x) +
text(rbind(apply(x, 2, mean)), labels=i) + }
1 :Accepted reflection, f(z1)= 3.3
2 :Swap z1 and x3
Accepted contraction 1, f(z3)= 3.25
3 :Accepted reflection and expansion, f(z2)= 0.31875
4 :Accepted reflection, f(z1)= 0.21875
5 :Accepted contraction 1, f(z3)= 0.21875
6 :Accepted contraction 1, f(z3)= 0.1

THE NELDER–MEAD SIMPLEX METHOD 141

0 1

5

2 3 4 5

0
1

2
3

4

x

y
Fig. 7.6 Contour plot of
f (x, y) =
[(x − y)2 + (x −2)2 + (y −3)4]/10.

–2 0

0
5

1

2

3
4

5
6 78
9

2 4
x

y

1
2

3
4

Fig. 7.7 Nine Nelder–Mead
updates for f (x, y) =
[(x − y)2 + (x −2)2 + (y −3)4]/10.

7 :Accepted contraction 1, f(z3)= 0.04963379
8 :Accepted contraction 1, f(z3)= 0.03874979
9 :Swap z1 and x3
Accepted contraction 1, f(z3)= 0.02552485
> x

[,1] [,2]
[1,] 2.609375 2.656250
[2,] 1.937500 2.625000
[3,] 2.410156 2.460938

At the end of these nine steps, we see that x should be around 1.9–2.6,
and y should be around 2.4–2.7. A further 50 updates narrows these down
to the true minimum at (x, y) = (2.25, 2.5).

142 NUMERICAL OPTIMIZATION

7.4 Built-in functions

There are several general purpose optimization functions in R.
For one-dimensional optimization, theoptimize() function performs

a variation on the golden section search we described earlier. There are also
multi-dimensional optimizers. The first of these is the optim() function.
optim() is a general purpose wrapper for several different optimization
methods, including Nelder–Mead, variations on Newton–Raphson, and
others that we haven’t discussed.

Syntax
optim(par, fn, ...)

The par parameter to optim() gives starting values for the parameters.
Besides telling optim() where to begin, these indicate how many param-
eters will vary in its calls to fn, the second parameter. fn is an R function
which evaluates the function to be minimized. Its first argument should be a
vector of the same length as par; optim() will call it repeatedly, varying
the value of this parameter, in order to find the minimum. It should return
a scalar value. The optim() function has a number of optional parame-
ters described on its help page. Besides those, the optional parameters in
the ... list could include additional parameters to pass to fn.

There are other functions in R for general function optimization: nlm()
and nlminb(). In most cases optim() is preferred because it offers more
flexibility, but there may be instances where one of the others performs
better. The constrOptim() function is aimed at cases where there are
linear inequalities expressing constraints on the parameters.

Exercises
1 Use the optimize() function to minimize the following functions:

(a) f (x) = |x − 3.5| + |x − 2| + |x − 1|
(b) f (x) = |x − 3.2| + |x − 3.5| + |x − 2| + |x − 1|.

2 Use nlm() and optim() to minimize the function

f (a, b) = (a − 1) + 3.2/b + 3 log(
(a)) + 3a log(b).

Note that
(a) is the gamma function which can be evaluated in R using
gamma(a).

3 Re-do the previous exercise usingnlminb(), noting that a and b should
be restricted to being nonnegative.

7.5 Linear programming

We often need to minimize (or maximize) a function subject to constraints.
When the function is linear and the constraints can be expressed as lin-
ear equations or inequalities, the problem is called a linear programming
problem.

LINEAR PROGRAMMING 143

The so-called standard form for the minimization problem in linear
programming is

min
x1,x2,...,xk

C(x) = c1x1 + · · · + ckxk ,

subject to the constraints

a11x1+ · · · + a1kxk ≥ b1

a21x1+ · · · + a2kxk ≥ b2

· · ·
am1x1+ · · · + amkxk ≥ bm,

and the nonnegativity conditions x1 ≥ 0, …, xk ≥ 0.
The idea is to find values of the decision variables x1, x2, . . . , xn

which minimize the objective function C(x), subject to the constraints and
nonnegativity conditions.

Example 7.3
A company has developed two procedures for reducing sulfur dioxide and
carbon dioxide emissions from its factory. The first procedure reduces equal
amounts of each gas at a per unit cost of $5. The second procedure reduces
the same amount of sulfur dioxide as the first method, but reduces twice as
much carbon dioxide gas; the per unit cost of this method is $8.

The company is required to reduce sulfur dioxide emissions by 2 million
units and carbon dioxide emissions by 3 million units. What combination of
the two emission procedures will meet this requirement at minimum cost?

Let x1 denote the amount of the first procedure to be used, and let x2
denote the amount of the second procedure to be used. For convenience,
we will let these amounts be expressed in millions of units.

Then the cost (in millions of dollars) can be expressed as

C = 5x1 + 8x2.

Since both methods reduce sulfur dioxide emissions at the same rate, the
number of units of sulfur dioxide reduced will then be

x1 + x2.

Noting that there is a requirement to reduce the sulfur dioxide amount by
2 million units, we have the constraint

x1 + x2 ≥ 2.

The carbon dioxide reduction requirement is 3 million units, and the second
method reduces carbon dioxide twice as fast as the first method, so we have
the second constraint

x1 + 2x2 ≥ 3.

144 NUMERICAL OPTIMIZATION

2

1.5

2

x1

x2

16

13

15

Direction of most
rapidly increasing cost

Feasible region

Infeasible
region

3

Fig. 7.8 A graphical interpreta-
tion of the pollution emission
linear programming example. The
grey region corresponds to values
of x1 and x2 which satisfy all of the
constraints. The dashed grey line
corresponds to values of x1 and x2
which give the minimum cost (13);
note that this line intersects the
feasible region at exactly one
point – the optimal solution to the
problem (1, 1).

Finally, we note that x1 and x2 must be nonnegative, since we cannot
use negative amounts of either procedure. Thus, we obtain the linear
programming problem:

min C = 5x1 + 8x2,

subject to the constraints

x1 + x2 ≥ 2

x1 + 2x2 ≥ 3,

and

x1, x2 ≥ 0.

These relations are graphed in Figure 7.8. The region shaded in grey is
the feasible region; this is the set of all possible (x1, x2) combinations which
satisfy the constraints. The unshaded area contains those combinations of
values where the constraints are violated.

The gradient of the function C(x) is (5, 8), so this vector gives the direc-
tion of most rapid increase for that function. The level sets or contours
of this function are perpendicular to this vector. One of the level sets is
indicated as a dashed line in Figure 7.8. The solution of the minimization
problem lies at the intersection of the first contour which intersects the fea-
sible region. If this happens at a single point, we have a unique minimizer.
In this example, this intersection is located at the point (1, 1).

It can be shown that the only possible minimizers for such linear
programming problems must be at the intersections of the constraint bound-
aries, as in the above example. The points of intersection of the constraints
are called basic solutions. If these intersection points lie in the feasible
region, they are called basic feasible solutions. If there is at least one basic

LINEAR PROGRAMMING 145

feasible solution, then one of them will be an optimal solution. In the above
example, the point (1, 1) is the optimal solution.

7.5.1 Solving linear programming problems in R
There is more than one linear programming function available in R, but we
believe the lp() function in the lpSolve package may be the most stable
version currently available. It is based on the revised simplex method; this
method intelligently tests a number of extreme points of the feasible region
to see whether they are optimal.

The lp() function has a number of parameters; the following are
needed to solve minimization problems like the one in the earlier example:

• objective.in – the vector of coefficients of the objective function
• const.mat – a matrix containing the coefficients of the decision vari-

ables in the left-hand side of the constraints; each row corresponds to a
constraint

• const.dir – a character vector indicating the direction of the constraint
inequalities; some of the possible entries are >=, == and <=

• const.rhs – a vector containing the constants given on the right-hand
side of the constraints.

Example 7.4
To solve the minimization problem set out in Example 7.3, type

> library(lpSolve)
> eg.lp <- lp(objective.in=c(5, 8), const.mat=matrix(c(1, 1, 1, 2),
+ nrow=2), const.rhs=c(2, 3), const.dir=c(">=", ">="))
> eg.lp
Success: the objective function is 13
> eg.lp$solution
[1] 1 1

The output tells us that the minimizer is at x1 = 1, x2 = 1, and the minimum
value of the objective function is 13.

7.5.2 Maximization and other kinds of constraints
The lp() function can handle maximization problems with the use of the
direction="max" parameter. Furthermore, the const.dir parameter
allows for different types of inequalities.

Example 7.5
We will solve the problem:

max C = 5x1 + 8x2,

subject to the constraints

x1 + x2 ≤ 2

x1 + 2x2 = 3,

146 NUMERICAL OPTIMIZATION

and

x1, x2 ≥ 0.

In R, this can be coded as

> eg.lp <- lp(objective.in=c(5, 8),
+ const.mat=matrix(c(1, 1, 1, 2), nrow=2),
+ const.rhs=c(2, 3),
+ const.dir=c("<=", "="), direction="max")
> eg.lp$solution
[1] 1 1

The solution is (1, 1), giving a maximum value of 13.

7.5.3 Special situations
Multiple optima
It sometimes happens that there are multiple solutions for a linear
programming problem.

Example 7.6
A slight modification of the pollution emission example (Example 7.3) is

min C = 4x1 + 8x2,

subject to the constraints

x1 + x2 ≥ 2

x1 + 2x2 ≥ 3,

and

x1, x2 ≥ 0.

This problem has a solution at (1, 1) as well as at (3, 0). All points on the
line joining these two points are solutions as well. Figure 7.9 shows this
graphically.

The lp() function does not alert the user to the existence of multiple
minima. In fact, the output from this function for the modified pollution
emission example is the solution x1 = 3, x2 = 0.

Degeneracy
For a problem with m decision variables, degeneracy arises when more
than m constraint boundaries intersect at a single point. This situation is
quite rare, but it has potential to cause difficulties for the simplex method,
so it is important to be aware of this condition. In very rare circumstances,

LINEAR PROGRAMMING 147

2

1.5

2

x1

x2

16

12

12

12

Direction of most
rapidly increasing cost

Feasible region

Infeasible
region

3

Fig. 7.9 A plot of the gradient of
the objective function and the
constraint boundaries for Example
7.6. The points on the heavy black
segment are all optimal for this
problem.

degeneracy can prevent the method from converging to the optimal solution;
most of the time, however, there is little to worry about.

Example 7.7
The following problem has a point of degeneracy which is not at the
optimum; however, the lp() function still finds the optimum without
difficulty.

min C = 3x1 + x2,

subject to the constraints

x1 + x2 ≥ 2

x1 + 2x2 ≥ 3

x1 + 3x2 ≥ 4

4x1 + x2 ≥ 4,

and

x1, x2 ≥ 0.

The constraint boundaries are plotted in Figure 7.10.
This problem can be solved easily:

> degen.lp <- lp(objective.in=c(3, 1),
+ const.mat=matrix(c(1, 1, 1, 4, 1, 2, 3, 1), nrow=4),
+ const.rhs=c(2, 3, 4, 4), const.dir=rep(">=", 4))
> degen.lp

Success: the objective function is 3.333333
> degen.lp$solution
[1] 0.6666667 1.3333333

148 NUMERICAL OPTIMIZATION

1

4/3
1.5

2

4

Point of degeneracy

Minimizer

2 3 4
x1

x2

Fig. 7.10 A plot of four
constraint boundaries, one of
which is redundant, leading to
degeneracy. The feasible region is
shaded.

Infeasibility
Infeasibility is a more common problem. When the constraints cannot
simultaneously be satisfied there is no feasible region. Then no feasible
solution exists.

Example 7.8
In the following example, it is obvious that the constraints cannot
simultaneously be satisfied.

min C = 5x1 + 8x2,

subject to the constraints

x1 + x2 ≥ 2

x1 + x2 ≤ 1,

and

x1, x2 ≥ 0.

Here is the output from the lp() function:

> eg.lp <- lp(objective.in=c(5, 8),
+ const.mat=matrix(c(1, 1, 1, 1), nrow=2),
+ const.rhs=c(2, 1), const.dir=c(">=", "<="))
> eg.lp
Error: no feasible solution found

Unboundedness
In rare instances, the constraints and objective function give rise to an
unbounded solution.

LINEAR PROGRAMMING 149

Example 7.9
A trivial example of unboundedness arises when solving the problem

max C = 5x1 + 8x2,

subject to the constraints

x1 + x2 ≥ 2

x1 + 2x2 ≥ 3,

and

x1, x2 ≥ 0.

The feasible region for this problem is the same as for Example 7.3 and is
plotted in Figure 7.8. However, instead of trying to minimize the objective
function, we are now maximizing, so we follow the direction of increasing
the objective function this time. We can make the objective function as
large as we wish, by taking x1 and x2 arbitrarily large.

Here is what happens when lp() is applied to this problem:

> eg.lp <- lp(objective.in=c(5, 8),
+ const.mat=matrix(c(1, 1, 1, 2), nrow=2),
+ const.rhs=c(2, 3), const.dir=c(">=", ">="),
+ direction="max")
> eg.lp
Error: status 3

The condition of unboundedness will most often arise when constraints
and/or the objective function have not been formulated correctly.

7.5.4 Unrestricted variables
Sometimes a decision variable is not restricted to being nonnegative. The
lp() function is not set up to handle this case directly. However, a simple
device gets around this difficulty.

If x is unrestricted in sign, then x can be written as x1 − x2, where
x1 ≥ 0 and x2 ≥ 0. This means that every unrestricted variable in a linear
programming problem can be replaced by the difference of two nonnegative
variables.

Example 7.10
We will solve the problem:

min C = x1 + 10x2,

subject to the constraints

x1 + x2 ≥ 2

x1 − x2 ≤ 3,

150 NUMERICAL OPTIMIZATION

and

x1 ≥ 0.

Noting that x2 is unrestricted in sign, we set x2 = x3−x4 for nonnegative
x3 and x4. Plugging these new variables into the problem gives

min C = x1 + 10x3 − 10x4,

subject to the constraints

x1 + x3 − x4 ≥ 2

x1 − x3 + x4 ≤ 3,

and

x1 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Converting this to R code, we have

> unres.lp <- lp(objective.in=c(1, 10, -10),
+ const.mat=matrix(c(1, 1, 1, -1, -1, 1), nrow=2),
+ const.rhs=c(2, 3), const.dir=c(">=", "<="))
> unres.lp
Success: the objective function is -2.5
> unres.lp$solution
[1] 2.5 0.0 0.5

The solution is given by x1 = 2.5 and x2 = x3 − x4 = −0.5.

7.5.5 Integer programming
Decision variables are often restricted to be integers. For example, we might
want to minimize the cost of shipping a product by using one, two, or three
different trucks. It is not possible to use a fractional number of trucks, so
the number of trucks must be integer-valued.

Problems involving integer-valued decision variables are called integer
programming problems. Simple rounding of a non-integer solution to the
nearest integer is not good practice; the result of such rounding can be a
solution which is quite far from the optimal solution.

The lp() function has a facility to handle integer-valued variables
using a technique called the branch and bound algorithm. The int.vec
argument can be used to indicate which variables have integer values.

Example 7.11
Find nonnegative x1, x2, x3, and x4 to minimize

C(x) = 2x1 + 3x2 + 4x3 − x4,

subject to the constraints

x1 + 2x2 ≥ 9

3x2 + x3 ≥ 9,

LINEAR PROGRAMMING 151

and

x2 + x4 ≤ 10.

Furthermore, x2 and x4 can only take integer values. To set up and solve
this problem in R, type

> integ.lp <- lp(objective.in=c(2, 3, 4, -1),
+ const.mat=matrix(c(1, 0, 0, 2, 3, 1, 0, 1, 0, 0, 0, 1), nrow=3),
+ const.dir=c(">=", ">=", "<="), const.rhs=c(9, 9, 10),
+ int.vec=c(2, 4))
> integ.lp
Success: the objective function is 8
> integ.lp$solution
[1] 1 4 0 6

Thus, the best solution when x2 and x4 are integer-valued is x1 = 1, x2 = 4,
x3 = 0, and x4 = 6.

Here is what happens when the integer variables are ignored:

> wrong.lp <- lp(objective.in=c(2, 3, 4, -1),
+ const.mat=matrix(c(1, 0, 0, 2, 3, 1, 0, 1, 0, 0, 0, 1), nrow=3),
+ const.dir=c(">=", ">=", "<="), const.rhs=c(9, 9, 10))
> wrong.lp
Success: the objective function is 8
> wrong.lp$solution
[1] 0.0 4.5 0.0 5.5

Rounding the solution to the nearest integer will lead to a violation of the
first constraint (if x2 is taken to be 4) or to a minimum value of the objective
function that is larger than 8 (if x2 = 5).

7.5.6 Alternatives to lp()
The lp() function provides an interface to code written in C. There is
another function in the linprog package called solveLP() which is
written entirely in R; this latter function solves large problems much more
slowly than the lp() function, but it provides more detailed output. We
note also the function simplex() in the boot package.

It should also be noted that, for very large problems, the simplex method
might not converge quickly enough; better procedures, called interior point
methods, have been discovered recently, and are implemented in other
programming languages, but not yet in R.

7.5.7 Quadratic programming
Linear programming problems are a special case of optimization problems
in which a possibly nonlinear function is minimized subject to constraints.
Such problems are typically more difficult to solve and are beyond the
scope of this text; an exception is the case where the objective function
is quadratic and the constraints are linear. This is a problem in quadratic
programming.

152 NUMERICAL OPTIMIZATION

2 1 0

2.
0

1.
0

0.
0

0.
5

1.
0

x

y

1

Fig. 7.11 A scatterplot of the 20
observations with a line of slope 1
and intercept 0.05 overlaid.

A quadratic programming problem with k constraints is often of the
form

min
β

1

2
βT Dβ − dT β,

subject to constraints AT β ≥ b. Here β is a vector of p unknowns, D is a
positive definite p × p matrix, d is vector of length p, A is a p × k matrix,
and b is a vector of length k.

Example 7.12
Consider the following 20 pairs of observations on the variables x and y.
A scatterplot is displayed in Figure 7.11.

> x <- c(0.45, 0.08, -1.08, 0.92, 1.65, 0.53, 0.52, -2.15, -2.20,
+ -0.32, -1.87, -0.16, -0.19, -0.98, -0.20, 0.67, 0.08, 0.38,
+ 0.76, -0.78)
> y <- c(1.26, 0.58, -1.00, 1.07, 1.28, -0.33, 0.68, -2.22, -1.82,
+ -1.17, -1.54, 0.35, -0.23, -1.53, 0.16, 0.91, 0.22, 0.44,
+ 0.98, -0.98)

Our problem is to pass a line of “best-fit” through these data. We seek a
line of the form

y = β0 + β1x,

where β0 is the y-intercept and β1 is the slope. However, we have additional
background information about these data that indicate that the slope β1 of
the required line is at least 1.

The line we want is the one that minimizes the sum of the squared vertical
distances between the observed points and the line itself:

min
β0,β1

20∑
i=1

(yi − β0 − β1xi)
2.

LINEAR PROGRAMMING 153

Our extra information about the slope tells us that this minimization is
subject to the constraint β1 ≥ 1.

This is an example of a restricted least-squares problem and is
equivalent to

min
β

βT X T X β − 2yT X β,

subject to

Aβ ≥ b,

where A = [0 1], β = [β0 β1]T , y is a column vector consisting of the
20 y measurements, and X is a matrix consisting of two columns, where
the first column contains only 1’s and the second column contains the 20 x
observations:

X =

⎡⎢⎢⎣
1 x1
1 x2
... ...
1 xn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0.45
1 0.08
... ...
1 −0.78

⎤⎥⎥⎦ .

We then have

X T X =
[

n
∑n

i=1 xi∑n
i=1 xi

∑n
i=1 x2

i

]
=
[

20 −3.89
−3.89 21.4

]
,

yT X =
[

n∑
i=1

yi

n∑
i=1

xiyi

]
= [−2.89 20.7585].

This is a quadratic programming problem with D = X T X and d = yT X .

Linear programming methods have been adapted to handle quadratic
programming problems. The solve.QP() function is in the quadprog
package. It solves minimization problems, and the following are parameters
which are required:

• Dmat – a matrix containing the elements of the matrix (D) of the quadratic
form in the objective function

• dvec – a vector containing the coefficients of the decision variables in
the objective function

• Amat – a matrix containing the coefficients of the decision variables in
the constraints; each row of the matrix corresponds to a constraint

• bvec – a vector containing the constants given on the right-hand side of
the constraints

• mvec – a number indicating the number of equality constraints. By
default, this is 0. If it is not 0, the equality constraints should be listed
ahead of the inequality constraints.

The output from this function is a list whose first two elements are the
vector that minimizes the function and the minimum value of the function.

154 NUMERICAL OPTIMIZATION

Example 7.13
For the restricted least squares problem of Example 7.12, we must first set
up the matrices D and A as well as the vectors b and d . Here, D = X T X
and d = X T y.

> library(quadprog)
> X <- cbind(rep(1, 20), x)
> XX <- t(X) %*% X
> Xy <- t(X) %*% y
> A <- matrix(c(0, 1), ncol=1)
> b <- 1
> solve.QP(Dmat=XX, dvec=Xy, Amat=A, bvec=b)
$solution
[1] 0.05 1.00

$value
[1] -10.08095
$unconstrainted.solution
[1] 0.04574141 0.97810494

$iterations
[1] 2 0

$iact
[1] 1

From the output, we see that the required line is

ŷ = 0.05 + x.

The rest of the output is indicating that the constraint is active. If the uncon-
strained problem had yielded a slope larger than 1, the constraint would have
been inactive, and the solution to the unconstrained problem would be the
same as the solution to the constrained problem.

Note that the decision variables in the above example were restricted
in sign. If needed, nonnegativity conditions must be explicitly set when
using the solve.QP() function. Also, it should be noted that inequality
constraints are all of the form >=. If your problem contains some inequality
constraints with <=, then the constraints should be multiplied through by
−1 to convert them to the required form.

It should be noted that there are more efficient ways to solve restricted
least squares problems in other computing environments. The matrix D
in the preceding example is a diagonal matrix, and this special structure
can be used to reduce the computational burden. The following example
involves a full matrix. This example also places a restriction on the sign of
the decision variables.

LINEAR PROGRAMMING 155

Example 7.14
Quadratic programming can be applied to the problem of finding an optimal
portfolio for an investor who is choosing how much money to invest in
each of a set of n stocks. A simple model for this problem boils down to
maximizing

xT β − k

2
βT Dβ,

subject to the constraints
∑n

i=1 βi = 1 and βi ≥ 0 for i = 1, . . . , n.
The ith component of theβ vector represents the fraction of the investor’s

fortune that should be invested in the ith stock. Note that each element of this
vector must be nonnegative, since the investor cannot allocate a negative
fraction of her portfolio to a stock.1 The vector x contains the average daily
returns for each stock; the daily return value for a stock is the difference
in closing price for the stock from one day to the next. Therefore, xT β

represents the average daily return for the investor.
Most investors do not want to take large risks; the second term in

the objective function takes this fact into account. The factor k quantifies
the investor’s tolerance for risk. If the investor’s goal is purely to maxi-
mize the average daily return without regard for the risk, then k = 0. The
value of k is larger for an investor who is concerned about taking risks.
The D matrix quantifies the underlying variability in the returns; it is called
a covariance matrix. The diagonal elements of the D matrix are the vari-
ances of the returns for each of the stocks. An off-diagonal element (i, j)
is the covariance between returns of the ith and jth stocks; this is a simple
measure of relation between the two returns.

For a specific example, we consider three stocks and set k = 4 and

D =
 0.010 0.002 0.002

0.002 0.010 0.002
0.002 0.002 0.010

 .

We assume the mean daily returns for the three stocks are 0.002, 0.005, and
0.01, respectively, so xT = [0.002 0.005 0.01].

The requirement that β1+β2+β3 = 1 and the nonnegativity restrictions
on the β variables can be written as

1 1 1
1 0 0
0 1 0
0 0 1

 β1

β2
β3

 =
≥
≥
≥

1
0
0
0

 .

Therefore, we take

AT =

1 1 1
1 0 0
0 1 0
0 0 1

 .
1 Such behaviour is called shorting a
stock, and we do not allow it here.

156 NUMERICAL OPTIMIZATION

To set this up in R, we note first that the maximization problem is
equivalent to minimizing the negative of the objective function, subject to
the same constraints. This fact enables us to employ solve.QP().

> A <- cbind(rep(1, 3), diag(rep(1, 3)))
> D <- matrix(c(0.01, 0.002, 0.002, 0.002, 0.01, 0.002, 0.002, 0.002, 0.01),
+ nrow=3)
> x <- c(0.002, 0.005, 0.01)
> b <- c(1, 0, 0, 0)
> # meq specifies the number of equality constraints;
> # these are listed before the inequality constraints
> solve.QP(2 * D, x, A, b, meq=1)
$solution
[1] 0.1041667 0.2916667 0.6041667

$value
[1] -0.002020833

$unconstrainted.solution
[1] -0.02678571 0.16071429 0.47321429

$iterations
[1] 2 0

$iact
[1] 1

The optimal investment strategy (for this investor) is to put 10.4% of her
fortune into the first stock, 29.2% into the second stock, and 60.4% into the
third stock.

The optimal value of the portfolio is 0.0020 (from $value above).
(Recall that the negative sign appears in the output, because we were
minimizing the negative of the objective function.)

Exercises
1 (a) Find nonnegative x1, x2, x3, and x4 to minimize

C(x) = x1 + 3x2 + 4x3 + x4,

subject to the constraints

x1 − 2x2 ≥ 9

3x2 + x3 ≥ 9,

and

x2 + x4 ≥ 10.

(b) Will the solution change if there is a requirement that any of the
variables should be integers? Explain.

CHAPTER EXERCISES 157

(c) Suppose the objective function is changed to

C(x) = x1 − 3x2 + 4x3 + x4.

What happens to the solution now?
2 Find nonnegative x1, x2, x3, and x4 to maximize

C(x) = x1 + 3x2 + 4x3 + x4,

subject to the constraints

x1 − 2x2 ≤ 9

3x2 + x3 ≤ 9,

and

x2 + x4 ≤ 10.

Chapter exercises

1 Consider the data of Example 7.12. Calculate the slope and intercept for
a line of “best-fit” for these data for which the intercept is at least as
large as the slope.

2 Re-do the calculation in the portfolio allocation example using k = 1.
How does being less risk-averse affect the investor’s behavior?

3 Often, there are upper bounds on the proportion that can be invested
in a particular stock. Re-do the portfolio allocation problem with the
requirement that no more than 50% of the investor’s fortune can be tied
up in any one stock.

4 Duncan’s Donuts Inc. (DDI) and John’s Jeans Ltd. (JJL) are two stocks
with mean daily returns of 0.005 and 0.010, respectively. What is
the optimal portfolio for a completely risk-loving investor (i.e. risk-
tolerance constant k = 0) who invests only in these two stocks? (Hint:
this question does not require any computations.)

5 Suppose the daily returns for DDI and JJL are independent, but
σ 2

DDI = 0.01 and σ 2
JJL = 0.04. What is the optimal allocation for an

investor with a risk tolerance constant (a) k = 1? (b) k = 2?
You can use the fact that

D =
[

0.01 0
0 0.04

]
.

6 Repeat the preceding question under the assumption that the covariance
between the returns for DDI and JJL is 0.01. You can use the fact that

D =
[

0.01 0.01
0.01 0.04

]
.

Appendix

Review of random variables
and distributions

Suppose an experiment is conducted in which a number of different
outcomes are possible. Each outcome has a certain probability of occur-
rence.

Consider a cancer treatment that will be tested on 10 patients. The
number of patients who show an increase in their white-blood cell count at
the end of 5 weeks of treatment cannot be predicted exactly at the beginning
of the trial, so this number, which we might label N , is thought of as a
random variable. N is an example of a discrete random variable since it
only takes values from a discrete set, i.e. {0, 1, 2, . . . , 10}. The time, T ,
until death could also be measured for one of the patients; again, T cannot
be predicted exactly in advance, so it is also an example of a random
variable; since it can take a continuum of possible values, it is referred to
as a continuous random variable.

A random variable is characterized by its distribution. This specifies
the probability that the variable will take one or more values. If X denotes
the number of heads obtained in two independent tosses of a fair coin, we
might write

P(X ≤ 1) = 0.75

to indicate that the probability of 0 or 1 head in two tosses is 0.75. In general,
the function

F(x) = P(X ≤ x)

is called the distribution function of the random variable X . If
F(x) has a derivative, we can define the probability density function
of X as

f (x) = F ′(x).

This is often possible with continuous random variables X . Note that, in
this case,

F(y) =
∫ y

−∞
f (x) dx.

REVIEW OF RANDOM VARIABLES AND DISTRIBUTIONS 159

Among other things, note that the area under the curve specified by
f (x) is 1.

The expected value of a random variable is also an important concept.
For continuous random variables, we can write

E[X] =
∫ ∞

−∞
x f (x) dx.

This is the mean value of the density function f (x). It is often denoted by the
symbol µ. We also can take expectations of functions of random variables
using the formula

E[g(X)] =
∫ ∞

−∞
g(x) f (x) dx.

An important example of this is the variance. The variance of a random
variable gives an indication of the unpredictability in a random variable.
Its formula is

Var(X) = E[(X − µ)2] =
∫ ∞

−∞
(x − µ)2f (x) dx.

Another important concept is that of quantile: this is the value of x for
which F(x) takes on a particular value. When the inverse function F−1(y)
is defined, the α quantile of X is given by F−1(α). For example, the 0.95
quantile is the value of x for which F(x) = 0.95; in other words, x is the 95th
percentile of the distribution. Frequently used quantiles are the median x̃
which satisfies F(x̃) = 0.5, and the upper and lower quartiles which satisfy
F(x) = 0.75 and F(x) = 0.25, respectively.

The following tables summarize properties of some commonly used
univariate distributions:

Distribution name f (x) F(x) E[X] Var(X)

Uniform (a, b) 1
b−a , a < x < b x a+b

2
(b−a)2

12

Exponential (λ) λe−λx, x > 0 1 − e−λx 1
λ

1
λ2

Normal (µ, σ 2) 1
σ
√

2π
e− (x−µ)2

2σ2
∫ x
−∞

1
σ
√

2π
e− (y−µ)2

2σ2 dy µ σ 2

Distribution name P(X = x) E[X] Var(X)

Binomial (n, p)

(
n
x

)
px(1 − p)n−x np np(1 − p)

Poisson (λ) λxe−λ

x! λ λ

160 REVIEW OF RANDOM VARIABLES AND DISTRIBUTIONS

We conclude this review with some brief comments about bivariate dis-
tributions. In particular, suppose X and Y are continuous random variables
having joint probability density f (x, y). We can define expectations using
double integrals:

E[g(X , Y)] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f (x, y) dx dy

for functions g(x, y). In particular, setting g(X , Y) = I(X ≤ u)I(Y ≤ v)
gives

E[I(X ≤ u)I(Y ≤ v)] =
∫ u

−∞

∫ v

−∞
f (x, y) dx dy,

which implies that, for any u and v,

P(X ≤ u, Y ≤ v) =
∫ u

−∞

∫ v

−∞
f (x, y) dx dy.

Here, I() denotes the indicator function which takes on the value 1, when
its argument is true, and 0, when its argument is false.

The marginal density of X is obtained by integrating over all
values of y:

fX (x) =
∫ ∞

−∞
f (x, y) dy,

and similarly, the marginal density of Y is obtained by integrating over all
values of x:

fY (y) =
∫ ∞

−∞
f (x, y) dx.

X and Y are stochastically independent if

f (x, y) = fX (x) fY (y).

Among other things, this implies that P(X ≤ u, Y ≤ v) = P(X ≤ u)

P(Y ≤ v), and, by the definition of conditional probability,

P(X ≤ u|Y ≤ v) = P(X ≤ u, Y ≤ v)

P(Y ≤ v)
= P(X ≤ u).

The term on the left denotes the conditional probability that X ≤ u, given
that Y ≤ v. Intuitively, the above statement means that knowledge of the
value of Y does not give us any additional information with which to predict
the value of X .

Index

abline(), 43
any(), 53
apply(), 129
array, 19
arrows(), 43
axis(), 45

backsolve(), 127
bar charts, 34
barplot(), 34
base graphics, 33
bias, 82
bisection algorithm, 58
boot, 151
box plot, 36
box(), 45
box-and-whisker plot, 36
boxplot(), 37
branch and bound algorithm,

150
break, 57
browser(), 75
bugs, 72

c(), 12
catastrophic loss of precision,

11
cbind(), 113
central limit theorem, 83
chol(), 126
chol2inv(), 126
Choleski decomposition, 126

chron, 21
column vectors, 112
column-major, 19
concatenation, 13, 17
confidence interval, 83
console, 5
constrOptim(), 142
continuous, 158
CRAN, 3, 4
crossprod(), 120

data.frame(), 19
dates and times, 21
dbinom(), 90
debug(), 75
debugging, 72
declarative programming style,

47
default value, 9
det(), 117
determinant, 117
dexp(), 97
diag(), 117
discrete, 158
distribution, 158

Bernoulli, 89
binomial, 89, 90
exponential, 97
normal, 83, 99
Poisson, 93
uniform, 83, 85, 88, 98

distribution function, 158
dnorm(), 99

dot charts, 34
dpois(), 94

edge cases, 72
eigen(), 124
Eratosthenes, 52, 60
example(), 22
expected value, 159

factor(), 17
Fibonacci sequence, 48, 133
fix(), 63
fixed-point problem, 49
floating point, 9
for(), 47
format(), 21
forwardsolve(), 127
function body, 60
function environment, 61
function header, 60
functional programs, 47
functions, 9, 59

ggplot, 33
global environment, 7
golden ratio, 133
golden section search, 132
graphical parameters, 45
grid, 33

help(), 21
help.search(), 23
help.start(), 23

162 INDEX

Hilbert matrix, 113
hist(), 36
histograms, 35
Horner’s rule, 80

if(), 50
imperative programming style,

47
importance sampling, 107
indices, 13

logical, 27
negative, 14
zero, 14

Inf, 16
integer programming, 150
interior point methods, 151
interquartile range, 37
IQR, 37
is.na(), 18
ISOdate(), 21
ISOdatetime(), 21

jitter(), 97
jpeg(), 45

kappa(), 128
kronecker(), 129

LAPACK, 113
lattice, 33
law of large numbers, 82, 101,

102
legend(), 43
linear operations, 112
linear programming, 142
linear system, solving, 123
lines(), 43
LINPACK, 113
linprog, 151
list(), 32
load(), 31
logical vectors, 50
lower.tri(), 118
lp(), 145
lpSolve, 145
ls(), 12

Markov chain, 116
matrices, 112
matrix inversion, 122
matrix multiplication, 112
matrix(), 18, 113
maximization, 132
mean(), 11
median(), 25
minimization, 132
Monte Carlo, 82
mtext(), 45

NA, 16
namespace, 63
NaN, 16
Nelder–Mead simplex algorithm,

138
Newton’s method, 55
Newton–Raphson, 135
next, 57
nlm(), 142
nlminb(), 142
non-conformable arguments, 120
non-conformable arrays, 119
numeric(0), 16

object oriented programs, 47
objects(), 12
one-pass formula, 11
optim(), 142
optimize(), 142
optional parameters, 15
outer(), 129

p-value, 82
package, 2, 3
packages, 63
par(), 39, 45
paste(), 17
pbinom(), 90
pdf(), 45
pexp(), 97
pie charts, 35
plot margins, 42
plot region, 42

plot (), 37
plotting character, 44
png(), 45
pnorm(), 99
points(), 43, 44
Poisson process, 95, 98
polygon(), 43
postscript(), 45
ppois(), 94
prime numbers, 52
probability density function, 158
procedural programs, 47
profiling, 80
pseudorandom, 83

q(), 6
qbinom(), 90
qexp(), 97
qnorm(), 99
qpois(), 94
QQ plots, 39
qqplot(), 40
QR decomposition, 127
qr(), 127
qr.solve(), 122
quadprog, 153
quadratic programming, 151
quantile, 159
quantile-quantile plots, 39
quartz(), 45
quitting, 6

random variable, 158
rbind(), 113
rbinom(), 90
Rcmdr, 2, 3
RColorBrewer, 42
recursion, 68
recycling, 15
rejection sampling, 104
relational operators, 50
repeat, 57
replicate (), 92
rexp(), 98
rm(), 30

INDEX 163

rnorm(), 100
rounding error, 10
row-major, 19
rpois(), 94
RSiteSearch(), 23
runif(), 85

S-PLUS, 2, 3
sample variance, 11
sample(), 87
save.image(), 31
scatterplot, 38
scope, 62
segments(), 43
set.seed(), 86
setup, 3, 4
setwd(), 29
short-circuit evaluation, 28
silver ratio, 133
simplex method, 145

simplex(), 151
singular value decomposition, 125
sink(), 30
solve(), 122
solveLP(), 151
stochastic matrix, 116
stopifnot(), 74
strftime(),
strptime(), 21
subscripts, see indices
substr(), 17
substring(), 17
svd(), 125
symbols(), 43
system.time(), 79
systems of linear equations, 112

t(), 117
table(), 89
text(), 43

times and dates, 21
title(), 45
top-down design, 67
traceback(), 73

unboundedness, 149
upper.tri(), 118

var(), 11
vector spaces, 112
visual perception, 41

weighted.mean, 108
while(), 54
windows(), 45
with(), 44
workspace, 6, 7

X11(), 45

	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface
	1 Getting started
	1.1 What is statistical programming?
	1.2 Outline of the book
	1.3 The R package
	1.4 Why use a command line?
	1.5 Font conventions
	1.6 Installation of R

	2 Introduction to the R language
	2.1 Starting and quitting R
	2.1.1 Recording your work

	2.2 Basic features of R
	2.2.1 Calculating with R
	2.2.2 Named storage
	2.2.3 Functions
	2.2.4 Exact or approximate?
	2.2.5 R is case-sensitive
	2.2.6 Listing the objects in the workspace
	2.2.7 Vectors
	2.2.8 Extracting elements from vectors
	2.2.9 Vector arithmetic
	2.2.10 Simple patterned vectors
	2.2.11 Missing values and other special values
	2.2.12 Character vectors
	2.2.13 Factors
	2.2.14 More on extracting elements from vectors
	2.2.15 Matrices and arrays
	2.2.16 Data frames
	2.2.17 Dates and times

	2.3 Built-in functions and online help
	2.3.1 Built-in examples
	2.3.2 Finding help when you don't know the function name
	2.3.3 Built-in graphics functions
	2.3.4 Additional elementary built-in functions

	2.4 Logical vectors and relational operators
	2.4.1 Boolean algebra
	2.4.2 Logical operations in R
	2.4.3 Relational operators

	2.5 Data input and output
	2.5.1 Changing directories
	2.5.2 dump() and source()
	2.5.3 Redirecting R output
	2.5.4 Saving and retrieving image files
	2.5.5 Data frames and the read.table function
	2.5.6 Lists

	Chapter exercises

	3 Programming statistical graphics
	3.1 High-level plots
	3.1.1 Bar charts and dot charts
	3.1.2 Pie charts
	3.1.3 Histograms
	3.1.4 Box plots
	3.1.5 Scatterplots
	3.1.6 QQ plots

	3.2 Choosing a high-level graphic
	3.3 Low-level graphics functions
	3.3.1 The plotting region and margins
	3.3.2 Adding to plots
	3.3.3 Setting graphical parameters

	Chapter exercises

	4 Programming with R
	4.1 Flow control
	4.1.1 The for() loop
	4.1.2 The if() statement
	4.1.3 The while() loop
	4.1.4 Newton's method for root finding
	4.1.5 The repeat loop, and the break and next statements

	4.2 Managing complexity through functions
	4.2.1 What are functions?
	4.2.2 Scope of variables

	4.3 Miscellaneous programming tips
	4.3.1 Using fix()
	4.3.2 Documentation using #

	4.4 Some general programming guidelines
	4.4.1 Top-down design

	4.5 Debugging and maintenance
	4.5.1 Recognizing that a bug exists
	4.5.2 Make the bug reproducible
	4.5.3 Identify the cause of the bug
	4.5.4 Fixing errors and testing
	4.5.5 Look for similar errors elsewhere
	4.5.6 The browser() and debug() functions

	4.6 Efficient programming
	4.6.1 Learn your tools
	4.6.2 Use efficient algorithms
	4.6.3 Measure the time your program takes
	4.6.4 Be willing to use different tools
	4.6.5 Optimize with care

	Chapter exercises

	5 Simulation
	5.1 Monte Carlo simulation
	5.2 Generation of pseudorandom numbers
	5.3 Simulation of other random variables
	5.3.1 Bernoulli random variables
	5.3.2 Binomial random variables
	5.3.3 Poisson random variables
	5.3.4 Exponential random numbers
	5.3.5 Normal random variables

	5.4 Monte Carlo integration
	5.5 Advanced simulation methods
	5.5.1 Rejection sampling
	5.5.2 Importance sampling

	Chapter exercises

	6 Computational linear algebra
	6.1 Vectors and matrices in R
	6.1.1 Constructing matrix objects
	6.1.2 Accessing matrix elements; row and column names
	6.1.3 Matrix properties
	6.1.4 Triangular matrices
	6.1.5 Matrix arithmetic

	6.2 Matrix multiplication and inversion
	6.2.1 Matrix inversion
	6.2.2 The LU decomposition
	6.2.3 Matrix inversion in R
	6.2.4 Solving linear systems

	6.3 Eigenvalues and eigenvectors
	6.4 Advanced topics
	6.4.1 The singular value decomposition of a matrix
	6.4.2 The Choleski decomposition of a positive definite matrix
	6.4.3 The QR decomposition of a matrix
	6.4.4 The condition number of a matrix
	6.4.5 Outer products
	6.4.6 Kronecker products
	6.4.7 apply()

	Chapter exercises

	7 Numerical optimization
	7.1 The golden section search method
	7.2 Newton–Raphson
	7.3 The Nelder–Mead simplex method
	7.4 Built-in functions
	7.5 Linear programming
	7.5.1 Solving linear programming problems in R
	7.5.2 Maximization and other kinds of constraints
	7.5.3 Special situations
	7.5.4 Unrestricted variables
	7.5.5 Integer programming
	7.5.6 Alternatives to lp()
	7.5.7 Quadratic programming

	Chapter exercises

	Appendix Review of random variables and distributions
	Index

