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ABSTRACT
In large-scale resource-constrained systems, such as wireless
sensor networks, global objectives should be ideally achieved
through inexpensive local interactions. A technique satis-
fying these requirements is information potentials, in which
distributed functions disseminate information about the pro-
cess monitored by the network. Information potentials are
usually computed through local aggregation or gossiping.
These methods however, do not consider the topological
properties of the network, such as node density, which could
be exploited to enhance the performance of the system.

This paper proposes a novel aggregation method with
which a potential becomes sensitive to the network topol-
ogy. Our method introduces the notion of affinity spaces,
which allow us to uncover the deep connections between the
aggregation scope (the radius of the extended neighborhood
whose information is aggregated) and the network’s Lapla-
cian (which captures the topology of the connectivity graph).
Our study provides two additional contributions: (i) It char-
acterizes the convergence of information potentials for static
and dynamic networks. Our analysis captures the impact of
key parameters, such as node density, time-varying infor-
mation, as well as of the addition (or removal) of links and
nodes. (ii) It shows that information potentials are decom-
posed into wave-like eigenfunctions that depend on the ag-
gregation scope. This result has important implications, for
example it prevents greedy routing techniques from getting
stuck by eliminating local-maxima. Simulations and exper-
imental evaluation show that our main findings hold under
realistic conditions, with unstable links and message loss.
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C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed networks
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1. INTRODUCTION
This paper focuses on two problems pertaining to sensor

networks: information aggregation and information discov-
ery. These problems appear when sensor nodes need to act
locally in response to a process that is monitored globally.
The monitored processes may relate to the intrinsic proper-
ties of the network operation, e. g., density, channel conges-
tion, algorithm faults, load, or to properties related to the
physical environment, e. g., monitoring the climate, traffic
congestion or the movement of crowds. To avoid centralized
solutions where nodes report their measurements to a sin-
gle point, the sensor network community has explored the
concept of information potentials [15, 17, 19, 21]. Potentials
are formed through the exchange of local information and
provide gradients that achieve objective-specific goals, such
as routing through areas with low traffic congestion.

It is known that the computation of useful information
potentials exposes a fundamental dilemma. How much infor-
mation should a node take into account? How wide should
the aggregation scope be? More information leads to more
informed decisions, but it comes at the cost of increased
message complexity. Our work moves beyond this dilemma
and proposes that the quality of information potentials de-
pends not only on the extent of the aggregation scope, but
also on the connectivity properties of the network. Hence,
the construction of information potentials should be tailored
towards the specific characteristic of the network topology.

Hitherto, two distributed approaches have been used for
aggregating information in the vicinity of nodes. The first
approach exploits the (possible) spatial correlation of infor-
mation processes, and requires nodes to aggregate informa-
tion at a decaying function of distance [10, 13, 18]. This ap-
proach requires location information and it is mainly aimed
at physical processes with strong spatial correlations, such
as temperature. The distance-based approach does not per-
form well for processes related to the network operation (for
example, load-balanced routing), because the information of
these processes depend more on the network topology than
on the inter-node distances. The second approach overcomes
the limitations of the first by using constrained averaging;
nodes aggregate all values within their k-hop vicinity. This
approach is location-independent, but it does not distinguish
the relative significance of information. This means that a
neighbor with degree one has the same relevance as a high-
degree neighbor. Additionally, all information within k-hops
is aggregated uniformly, irrespectively of whether it is one or



k hops away. Within this context, our paper provides three
main contributions.

Contribution 1: an aggregation method that is sen-
sitive to topological features (Section 3). We introduce
a subtle yet important change to traditional constrained av-
eraging algorithms. This change allows us to model infor-
mation dissemination as a random walk starting at a given
node, and then, moving (randomly) for k steps. The distri-
bution of the potential destinations of these random walks
captures the underlying connectivity of the graph. Similar
to constrained averaging, our approach requires no location
information, it is simple, and decentralized. Yet, it is also
sensitive to the relative significance of information, as well
as to the network topology. The latter leads to a key advan-
tage: our algorithm can be modeled by connectivity matri-
ces, which allows us (i) to use standard linear algebra tech-
niques to analyze the convergence of this new way of forming
information potentials, and (ii) to use spectral graph theory
to demonstrate how information potentials can reshape the
landscapes of information processes.

Contribution 2: an analysis of the convergence of
information potentials on static and dynamic net-
works (Sections 4 and 5). With respect to convergence
analysis, our study provides the following findings:

• The algorithm converges exponentially and the con-
vergence is faster in dense regular networks.

• There is a critical aggregation scope under which net-
work dynamics hardly matter. Above this threshold,
higher dynamics require narrower aggregation scopes
for faster convergence.

In practice, these findings provide some dos and don’ts for
information potential deployments. Avoid concave shapes
(dents), void regions and radio transceivers with high sen-
sitivity variance because they increase degree heterogeneity
(irregularity). Adding nodes to a deployment helps more if
they are uniformly distributed. Prior to a deployment, ana-
lyze the dynamics of the network, which might be caused by
the movement of people, the failure/addition of nodes, etc.;
if the dynamics are high, it is better to avoid using very wide
aggregation scopes. If the dynamics are low, the extent of
the aggregation scope does not play a major role, i. e., feel
free to explore the trade-off between amount-of-information
and message complexity.

Contribution 3: a framework to shape the land-
scapes of information potentials (Section 6). Informa-
tion potentials resemble landscapes with valleys and peaks;
Figure 1 depicts an example of our method. By borrowing
results from spectral graph theory, we reveal deep connec-
tions between these landscapes and the eigenfunctions of the
normalized Laplacian:

• The eigenfunctions of the normalized Laplacian are
wave-like and characterize the spatial variation of the
monitored process.

• The slope of our aggregation function shapes the po-
tential landscape. In particular, there exists a criti-
cal slope under which the potential becomes unimodal,
i. e., it features a single extremum.

To understand the practical importance of these results,
consider an information potential that needs to smoothen

Figure 1: An information potential landscape which
considers node density. Nodes within green cells
have the maximum potential (highest relative den-
sity) among all of their neighbors. The arrows reveal
the potential gradient.

the peaks formed by nodes with abnormally high (or low)
values with respect to their neighbors. The spatial variation
of information is captured by the eigenfunctions. The higher
the variation, the higher the frequency; and our aggrega-
tion method filters eigenfunctions based on their frequency.
In effect, this means that an information landscape can be
smoothened to any desired level: the higher the slope, the
smoother the landscape. Beyond a threshold, the continuous
elimination of higher-frequency eigenfunctions leads to the
elimination of local extrema until the point where a single
maxima is present.

Section 7 validates some of our analysis by simulations
and experiments on a 100+ node testbed.

Applications of information potentials. The quintessen-
tial application of information potentials in sensor networks
is greedy routing [19]. Still, the advent of smart mobile em-
bedded devices, e. g., smartphones, makes information po-
tentials also relevant to other practical applications, such as
traffic management and crowd management.

Greedy routing. In greedy routing, nodes use gradients to
forward information greedily. In these scenarios, the pres-
ence of local maxima is undesirable as it prevents packets
from arriving at the intended destination. Our work elimi-
nates this issue by providing unimodality (Contribution 3).
It is important to remark that the work of Lin et al. [15]
also provides unimodality. However, their approach, which
is based on harmonic functions, relies on a larger set of
assumptions. A detailed discussion of the similarities and
differences of our approach with this and other studies is
presented in Section 8.

In a more general context, information potentials can be
thought of as distributed primitives that (i) facilitate the
discovery of areas of high (low) level of information, and (ii)
provide mobile entities an efficient way of navigating towards



these areas. The mobile entities can be packets, people,
robots, cars, etc. In a preliminary version of this study [16],
we showed through simulations how our algorithm is used for
rendezvous coordination, where a swarm of mobile entities
identify the nodes with the largest potentials, and the rest of
the swarm moves towards their closest high-potential node
in real time. Below, we describe two applications that can
benefit from our work on information potentials.

Crowd management. Our interest in information potential
algorithms was sparked by their ability to support the man-
agement of large crowds in open air festivals. In these type of
festivals, crowds of hundreds of thousands gather in city cen-
ters within confined spaces. For safety reasons, the crowds
should not exceed densities above a given margin1. As part
of two larger projects involving several institutions (D2S2
and EWiDS), we focus on the facilitation of crowd man-
agement through self-monitoring. We aim at providing at-
tendees with coin-size wearable devices, each equipped with
sensors, actuators (light), and a wireless transceiver. In this
way, information potentials will be able to monitor the den-
sity of people in real time and warn attendees if their sur-
rounding density exceeds safe levels. The attendees will also
have access to the gradients formed by the potentials to
move to areas with lower densities.

Traffic management. Parking management is a highly im-
portant topic in public policy. As reported by Shou [20],
on average 30% of traffic in downtown areas is due to vehi-
cles looking for parking. Cities such as San Francisco and
London are installing wireless sensors on individual park-
ing spots that report information to a central server to help
drivers in finding available parking2. Information poten-
tials are a low-cost efficient distributed alternative for the
current centralized methods. Neighbouring meters could
exchange their occupancy information and guide cars to-
wards free parking areas by communicating with the drivers’
smartphones via bluetooth. Information potentials have the
added advantage of aggregating the information of nearby
free parking spots into “more/less crowded” regions, as op-
posed to tracking individual spaces.

Overall, we believe that information potentials have an
important role to play in the future of SmartCities. As
more and more wireless devices are embedded in our daily
surroundings and more data is harvested from them, a cen-
tral problem will be how to guide the various mobile entities
towards the areas that they are mostly interested in. This
work describes an alternative that is simple, decentralized,
and generic enough such that it can be shaped to suit the
needs of the application at hand.

2. MODEL AND NOTATION
Network model. We model a network as an undirected
graph G = (V, E), where V is the node set of cardinality
n and E is the edge set. Two nodes are neighbors i ∼ j,
if (i, j) ∈ E . The neighborhood of a node is captured by

1In 2010, a crowd rush in a popular electronic dance festival
in Germany ended up with 21 deaths and more than 500
injured people.
2The system for San Francisco is SFpark (spark.org)
and for London is the Bay Sensor Technology (www.
westminster.gov.uk/services/transportandstreets/
parking/bay-sensor-technology)

the neighbor set Vi = {j : i ∼ j} and the adjacent edge set
Ei = {(i, j) : i ∼ j}, with cardinality ni and mi, respectively.
Node density is di = ni+1, while the max and min densities
for all i ∈ V are dmax and dmin.

Matrix notation. We describe G through its n × n adja-
cency matrix A, where Aij = 1 if i ∼ j or i = j, and Aij = 0
otherwise. Matrix A is symmetric. We let D be the diagonal
node density matrix with Dii = di ∀ i ∈ V and zero other-
wise. With A and D, we define the row-stochastic transition
matrix P = D−1A, the elements of which describe the tran-
sition probability of random particle moving randomly on
G. The eigenvalues of P are denoted by µk. The transition
matrix is similar to the well known normalized Laplacian
L [7]. For the spectral analysis, we use a modified Laplacian
matrix that considers self-loops: Lij = 1 − 1/di if i = j,
Lij = 1/

√
didj if i ∼ j, and Lij = 0 otherwise.

3. INFORMATION POTENTIALS
This section describes our method of computing informa-

tion potentials and explains how a potential captures infor-
mation with respect to the topology of the network.

3.1 Distributed computation
In a nutshell, an information potential is a function that

maps local information to a value more meaningful within
the global network context. For instance, the local informa-
tion may be the traffic load of the node, and the potential
could be a relative value that states how high (or low) this
traffic is with respect to other areas in the network – to fa-
cilitate, for instance, load balanced routing. Formally, let
x, y : V → R be functions over V that assign a real value
to each node. We call function x the process information,
as x(i) is a value that is sensed or computed by each node
i ∈ V and represents the quantity or quality of a process
in the vicinity of i. Function y is the information potential
derived from x.

The computation of an information potential, described
in Algorithm 1, is iterative. For the duration of each round,
nodes i ∈ V exchange their potential y(i) with their neigh-
bors (lines 5 and 7). Since nodes do not exchange x(i),
they affect their neighbors indirectly by changing the aver-
age neighborhood potential. At the end of a round, nodes
update their potential to the weighted sum of their local
information process x(i) and of the average over the most
recent potential values, including their own (line 11). Intu-
itively, nodes behave like anchors, each pulling the neigh-
borhood average towards its own x(i) with a force that is
proportional to the difference between x(i) and the average.
The force also depends on a parameter which we call inhibit-
ing factor, and lies in 0 < ϕ ≤ 1. In the final step (line 12),
all received values are discarded and the round ends. The
algorithm converges when all forces are balanced. Note that
the algorithm includes no termination condition; it runs in-
definitely, continuously adapting to any network or informa-
tion dynamics. If no dynamics are expected, termination is
locally decided by comparing the difference of the potential
at consecutive rounds against some error threshold.

The reuse of the information x(i) throughout the com-
putation (line 11) differentiates our work from: (i) average
consensus, in which y is initialized to x and, at each round
t, nodes simply average their values, yt+1 = Pyt [7], as well
as from (ii) broadcast consensus [1], in which each node i



Algorithm 1 Potential computation

Require: Factor ϕ ∈ (0, 1] and i a unique node id.

1: initialize
2: y(i)← x(i)
3: S(i)← {y(i)} . state set

4: event OnTransmit
5: broadcast {i, y(i)} to all neighbors

6: event OnReceive(j, y(j))
7: S(i)← S(i) ∪ {y(j)} . keep only latest values

8: event OnRoundEnd
9: update x(i)

10: d(i)← |S(i)| . local density

11: y(i)← (1− ϕ)
∑

j∈S(i)

y(j)

d(i)
+ ϕx(i) . compute

12: S(i)← {y(i)} . clear state

computes a weighted average after every received broadcast
from j ∼ i, y0(i) = x(i) and yt+1(i) = γyt(i) + (1− γ)yt(j).
As we show in the following, this simple alteration of average
consensus gives rise to very interesting properties which re-
late to affinity spaces (Section 3.2) and the spectrum of the
graph Laplacian (Section 6), improves the convergence com-
pared to deterministic consensus (Section 4), and increases
the algorithm’s resilience to message loss (Section 7).

3.2 Algorithmic analysis
We will now describe how this simple distributed algo-

rithm captures the topology of the network. For the sake of
clarity and conciseness, our analysis assumes that (i) nodes
operate in synchronous rounds, (ii) at the end of which
nodes have received at least one message from each of their
neighbors. In Section 7 we show that, in practice, neither
assumption is necessary for the correct and timely operation
of the algorithm. We will also assume, for now, that the
information x is constant, i.e., line 9 in the algorithm does
not have any valid effect at this point. This assumption will
be lifted in Section 4.2, which studies the convergence un-
der time-varying xt. Formula (1) rewrites Algorithm 1 in
an iterative matrix form, where yt is the y vector after t
iterations.

yt+1 = (1− ϕ)Pyt + ϕx (1)

At round t, the potential yt is given by

yt = (ψP )ty0 + ϕ

t−1∑
k=0

(ψP )kx, (2)

where, for brevity, we set ψ = 1−ϕ. When t grows to infin-
ity, the potential y has the following closed-form expression:

y = lim
t→∞

yt = ϕ

∞∑
k=0

(ψP )kx (3)

Note that Formula (2) converges under all cases. As t grows
larger, (ψP )t approaches asymptotically zero because ψ <
1 and P t is a row-stochastic matrix that converges to the
stationary distribution of a uniform random walk on G. The
decay of (ψP )t removes any influence of the initial state
y0 on the potential y. In Sections 4 and 5 we analyze the

convergence rate for information processes in detail, the rest
of this section provides more insights on the potential itself.

Affinity spaces. In contrast to definitions of affinity that
result from other metrics of distance, such as euclidean dis-
tance [13], our method aggregates information based on a
new type of affinity that is very sensitive to the topology of
a network. As we will observe, this topological sensitivity
is achieved because nodes aggregate information in a sort of
“random-walk” manner.

Formula (3) expresses the potential as an infinite sum
that, at each round k, changes information x with a weight-
ing factor of (ψP )k. P kij expresses the probability of a ran-
domly moving particle starting from node i and reaching
node j in k steps. The better the connectivity between i
and j and the shorter the path, the higher the probability.
In other words, instead of averaging the information within
the k-th range of a node, our method assigns higher signif-
icance to the information residing in nearby nodes (close
connectivity) and in nodes with higher centrality (better
connectivity). In most graphs, centrality is an important
metric that captures the “importance” of the information.

The inhibiting factor ϕ determines the aggregation scope:
(i) When ϕ = 1, there is no exchange of information and
hence the network topology plays no role. As Formula (1)
shows, the potential has the same value as the process in-
formation (y = x). (ii) When ϕ → 0+, the aggregation
scope is global and the network topology plays its greatest
role. The iterative formulation reduces to the well studied
average consensus yt+1 = P yt [7]. As t→∞, the potential
gets closer to 1π>x, where 1 is the n × 1 vector with all
elements equal to one and π is the stationary distribution of
the transition matrix. Within these extremes, the network
has ample flexibility to shape information potentials accord-
ing to the requirements of the application. In Section 6, we
will analyze this characteristic in more detail and its impact
on greedy search techniques. Note that, since the geometric
series ψk converges to 1/ϕ, the multiplication with ϕ serves
as a normalization.

It is important to highlight that while the analysis con-
siders the global connectivity matrix P , the algorithm only
requires communication with 1-hop neighbors. The advan-
tage of our simple and distributed algorithm is that it entails
such global behavior inherently.

4. CONVERGENCE IN STATIC GRAPHS
In this section we bound the rate of convergence in static

graphs for invariant and time-varying information processes.
We limit our analysis to ϕ ∈ (0, 1) as for ϕ = 1 the algorithm
converges instantaneously. We will first present our theoreti-
cal analysis, and then, discuss its implications. In our study,
we define the `2-distance of an information potential yt as
‖y − yt‖, that is, its distance to the steady state.

4.1 Time-invariant information
We first consider the case when the information x stays

constant over time and the graph G is static. In the next
sections, we will remove these constraints.

Theorem 1. After t rounds, the `2-distance of an in-
formation potential on a static graph G with information
process x is bounded by εt ≤ e−ϕt(c2 + c) ‖x‖, where c =
n
2m
dmax + ξµ2 and ξ =

√
dmax/dmin.



Proof. The `2-distance at the t-th round is

εt = ‖y − yt‖

=
∥∥ϕ ∞∑

k=0

(ψP )kx− ϕ
t−1∑
k=0

(ψP )kx− (ψP )ty0
∥∥

=
∥∥(ψP )t

(
ϕ

∞∑
k=0

(ψP )kx− y0
)∥∥. (4)

Using a known bound on P tx [7], we get that for t ≥ 0 and
an arbitrary vector x,

‖(ψP )tx‖ ≤
(
ψt

n

2m
dmax + (ψµ2)t ξ

)
‖x‖

≤ ψtc ‖x‖. (5)

Above, m = |E| is the number of edges considering self-
loops, µ2 is the second eigenvalue of the transition matrix
P and ξ =

√
dmax/dmin quantifies the degree irregularity of

G. In the last step, (ψµ2)t ≤ ψtµ2 because µ2 < 1 and
0 ≤ ψ < 1. This loosens the error bound when µ2 > 0, but
allows to estimate the necessary number of rounds t until
the algorithm converges ε-close to the stable state. One can
achieve a tighter bound if an estimate of t is not required.
Substituting Inequality (5) into Formula (4) we have that

εt ≤ ψtc
∥∥ϕ ∞∑

k=0

(ψP )kx− y0
∥∥. (6)

From Formula (2), we observe that the choice of the initial
state y0 is irrelevant to the stable state y. Nevertheless, a
reasonable step is to set y0 = x. The normed difference in
Inequality (6) then is simplified to∥∥ϕ ∞∑

k=0

(ψP )kx− x
∥∥ ≤ ϕ ∞∑

k=0

‖(ψP )kx‖+ ‖x‖

≤ (ϕ

∞∑
k=0

ψkc+ 1)‖x‖

= (c+ 1) ‖x‖. (7)

The substitution of (7) into (6) concludes our proof.

εt < ψtc (c+ 1) ‖x‖ ≤ e−ϕt(c2 + c) ‖x‖

A direct consequence of Theorem 1 is that the necessary
number of rounds until the algorithm converges ε-close to y
is given by

t ≥ ϕ−1 log
(c2 + c)‖x‖

ε
. (8)

4.2 Time-varying information
During the lifetime of some practical applications, the in-

formation process x may change over time. For example, a
sensor network monitoring the presence of some type of an-
imals will change its measurements when the animal moves.
We proceed to examine the behavior of such time-varying
information processes.

Lemma 1. Let an information potential be at steady state
y, while its underlying information process x changes to x̂,
with ‖x̂ − x‖ ≤ δx. After τ > 0 steps, the `2-distance of
the potential to the new stable state ŷ is bounded by ετ ≤
e−ϕτc δx.

Proof. Without loss of generality, assuming that the
change from x to x̂ occurs at time t, the `2-distance to ŷ
at round τ is bounded by

ετ = ‖ ŷ − yt+τ‖

=
∥∥ϕ ∞∑

k=0

(ψP )kx̂− ϕ
τ−1∑
k=0

(ψP )kx̂− (ψP )τy
∥∥

= ϕ
∥∥ ∞∑
k=τ

(ψP )kx̂−
∞∑
k=τ

(ψP )kx
∥∥

≤ ϕ
∞∑
k=τ

∥∥(ψP )k(x̂− x)
∥∥ ≤ e−ϕτc δx.

A direct consequence of Lemma 1 is that the minimum τ
for which the algorithm manages to converge ε close to the
new stable state ŷ is given by

τ ≥ ϕ−1 log
c δx
ε
. (9)

4.3 Analysis Insights
Theorem 1 and Lemma 1 provide us with four important

insights: (i) The convergence error decreases exponentially.
The inhibiting factor determines the rate of convergence.
Smaller values of ϕ aggregate the values over an exponen-
tially larger subgraphs and as a consequence exhibit slower
convergence. (ii) For ϕ > 0, the proposed algorithm con-
verges faster than average consensus [7]. The common ratio
of the geometric series which upper bounds the convergence
error decreases from µ2 (average consensus) to (1 − ϕ)µ2

(proposed algorithm). For ϕ = 0, the two mechanisms are
exactly the same. (iii) Information dynamics proportionally
increase the `2-error. This effect should be taken into ac-
count when choosing the value of the inhibiting factor. (iv)
Convergence is faster in dense, degree regular graphs. Con-
stant c captures the influence of the network topology to
the convergence. Through c we derive that convergence is
faster for dense graphs (n/m is the inverse of the graph den-
sity), as well as for graphs with small node density variations
(quantified by ξ).

5. CONVERGENCE IN DYNAMIC GRAPHS
In this section, we study the algorithmic behavior in the

context of graphs that change over time. We model graph
dynamics as a sequence of edge and node operations: Edge
operations describe the addition or deletion of edges between
pairs of nodes. Node operations model nodes joining or leav-
ing the graph. Through edge and node operations we cap-
ture a wide range of network dynamics, such as node and
link failures, as well as the dynamics of open networks where
the network is subject to mobility and churn. Due to the
complexity of the problem, we assume time-invariant infor-
mation.

We will first derive a bound on the convergence error given
any change in the graph. The bound, which is stated in
Theorem 2, is general enough to hold for any possible graph
dynamics. On the down side, the bound depends on the
specifics of the graph dynamics δG in question. We gain
further insight by characterizing δG for edge and node oper-
ations in Lemmas 2 and 3, respectively.



Theorem 2. For any dynamic graph Gt which varies with
steps τ > 0 and is bounded, ‖Pt+τ−Pt‖ ≤ δG, the `2-distance
of the potential to the stable state, just before any consecutive
variation of Gt, is bounded by

εt+τ ≤ e−ϕ(t+1)ct+τ
(
δG

1− ϕ
ϕ

ct+τ ct +
ϕ

1− ϕ

)
‖x‖,

where ct quantifies the connectivity properties of Gt.

Proof. Consider that the algorithm has already converged
to a stable state y on a graph G. An adversary then changes
the graph to Ĝ. In the following we annotate symbols that
relate to the new graph Ĝ with a hat; as such P̂ is the new
transition matrix, n̂ is the number of nodes in V̂, and so on.
As in previous proofs, we capture convergence error through
the `2-distance between the state after t iterations and the
new stable state ŷ. By substituting the analytic expression
of y into Formula (4) we get

εt = ‖ŷ − yt‖ =
∥∥∥ϕ (ψP̂ )t

( ∞∑
k=1

ψk
(
P̂ k − P k

)
x− x

)∥∥∥.
Using Inequality (5) and after some algebraic manipula-

tion we have that

εt ≤ ψtϕ ĉ
(∥∥ ∞∑

k=1

(ψP̂ )kx−
∞∑
k=1

(ψP )kx
∥∥+ ‖x‖

)
= ψtϕ ĉ

(∥∥(ψP̂ − ψP )

∞∑
k=1

(ψP̂ )k
∞∑

l=k+1

(ψP )l−k−1x
∥∥+ ‖x‖

)
≤ ψt+1ϕ ĉ

(
δG

∞∑
k=1

(ψk ĉ)

∞∑
l=0

(ψlc) + ψ−1
)
‖x‖

≤ e−ϕ(t+1)ĉ
(
δG

1− ϕ
ϕ

ĉ c+
ϕ

1− ϕ

)
‖x‖,

which concludes our proof.

Solving for t we find that the least number of rounds until
εt ≤ ε is at most

t ≥ ϕ−1 log
ĉ
(
δG

1−ϕ
ϕ
ĉ c+ ϕ

)
‖x‖

ε
− 1. (10)

Theorem 2 draws a relation between the influence of graph
dynamics in convergence time and the value of ϕ. Depend-
ing on whether (1 − ϕ)/ϕ < ϕ/(1 − ϕ) and thus ϕ > 1/2,
the theorem distinguishes two regions of convergence: (i)
ϕ > 1/2 and as ϕ grows larger, the graph dynamics (δG) be-
come irrelevant. The convergence becomes independent of
the relation between G and Ĝ; convergence depends solely
on the new graph Ĝ. (ii) ϕ < 1/2 and as ϕ gets closer to
0, the rate of convergence becomes slow enough such that
the graph dynamics do matter. In this region, convergence
depends heavily on the nature of edge operations performed.

We proceed to examine how edge and node operations
influence convergence by computing δp for each case.

5.1 Edge operations
An adversary adds or deletes edges E+ and E−, respec-

tively to the graph, such that either Ê = E ∪ E+ (edge ad-

dition), or Ê = E \ E− (edge deletion). We also place the

constrain that the symmetric edge set difference, Ê 	 E =
E+ ∪ E−, contains at most one edge (i, j) for each node i
in V. The constraint demands that the adversary performs

at most one edge operation in the vicinity of each node.
Multiple edge alterations on the same node are modeled as
consecutive operations. As expected, self-loops cannot be
deleted, that is di ≥ 1 for all i in V. We prove the following
bound.

Lemma 2. For any graphs Ĝ, G, with identical node sets,
V = V̂, and edge sets Ê 6= E that have at most one edge
difference in the vicinity of each node, |(i, j) ∈ Ê 	 E| ≤ 1
for all i ∈ V,

δG =
1

dmin
+

σ(A) + 1

min
i∈V±
{d̂idi}

,

with V± = {i ∈ V : |(i, j) ∈ Ê 	 E| = 1 for some j ∈ V} the

set of nodes that have different neighbors in Ĝ and G, d̂i, di
their respective densities in each graph, and σ(A) the largest
singular value of A.

Proof. The adjacency matrix of Ĝ can be written as

Â = A+
∑

(i,j)∈E+

(
Eij + Eji

)
−
∑

(i,j)∈E−

(
Eij + Eji

)
,

where matrix Eij has only element (i, j) equal to one and

the rest zero. The inverse density matrix of Ĝ can in turn
be written as

D̂−1 = D−1 +
∑

(i,j)∈E+

(
aiEii + ajEjj

)
−
∑

(i,j)∈E−

(
biEii + bjEjj

)
,

where ai = 1
di(di+1)

and bi = 1
di(di−1)

. Matrix Eij has the

useful property of ‖Eij‖ = 1 for all i, j ∈ V. Due to Ê 	 E
containing at most one edge (i, j) for each node i in V and

because Â−A is a symmetric projection matrix,∥∥Â−A∥∥ = 1. (11)

As in Lemma 2, V± = {i ∈ V : |(i, j) ∈ Ê 	 E| =
1 for some j ∈ V} is the set of nodes that were affected by

an edge operation. Matrix D̂−1 − D−1 is diagonal and its
norm is the maximum diagonal element in absolute value.∥∥D̂−1 −D−1

∥∥ = min
i∈V±
{d̂idi}−1 (12)

Observe that d̂idi ≥ dmin(dmin − 1) ≥ 2, for all i ∈ V±.
The first equality is satisfied when one of the endpoints of a
deleted edge was connected to the node with the minimum
density, while the second equality iff dmin = 2. We re-write
the `2-distance between the two random walk matrices as

‖P̂ − P‖ =
∥∥D̂−1Â−D−1A

∥∥
≤
(
‖D−1‖+

∥∥D̂−1 −D−1
∥∥)∥∥Â−A∥∥+ . . .

+ ‖D̂−1 −D−1‖ ‖A‖.

The required bound is derived if we substitute Formulas (11)

and (12) into ‖P̂ − P‖.

δG = ‖D−1‖+
‖A‖+ 1

min
i∈V±
{d̂idi}

=
1

dmin
+

σ(A) + 1

min
i∈V±
{d̂idi}

Above, ‖A‖ = σ(A) is the largest singular value of the
adjacency matrix.



Let us reflect on the influence of edge operations on the
convergence: (i) Edge operations affect well connected graphs
to a greater extend. That is due to σ(A) ≤ n, with the equal-
ity satisfied for fully connected networks. While in sparse
networks the effects of dynamics tend to be isolated, in dense
networks there is a higher likelihood that any single change
affects more nodes. (ii) Nevertheless, networks with few
links mitigate the effects of network dynamics slower. Our
method compensates for edges added or deleted in dense
areas of the network (i. e., di >> dmin for i ∈ V±) faster
than in areas where the network is sparsely connected. The
effect is understood by the property of information to dif-
fuse faster in dense than in sparse areas. (iii) Convergence
also depends on the density irregularity. The algorithm ex-
hibits faster convergence when running on regular networks,
where ξ = ξ̂ = 1. (iv) Last, even though edge operations
affect multiple edges, the error bound is independent of the
exact number of affected edges. The error depends instead
solely on the edge that connects to the least dense node.

5.2 Node operations
Node operations are operations on the set V of graph

nodes. In node additions (deletions), an adversary adds

(deletes) nodes V+ (V−), such that V̂ = V∪V+ (V̂ = V\V−).
We provide an upper bound of δG for the simultaneous ad-
dition and deletion of nodes.

Lemma 3. Let Ĝ be the graph that results from the addi-
tion and deletion of sets V+ and V− from G, respectively.
Given that (i) at most one edge joins each node in the graph

intersection to the symmetric graph difference, |(i, j) ∈ Ê 	
E| ≤ 1 for all i ∈ V̂ ∩ V, and (ii) that no two added nodes

are adjacent, (i, j) /∈ Ĝ for all i, j ∈ V+, then

δG =
∑

i∈V̂	V

√
di

dmin
+ max
i∈V̂	V

{
di − 1

di

}
(σ(A) +

∑
i∈V̂	V

√
di),

where σ(A) is the largest singular value of A.

Proof. In the computation of δG we cannot reuse our
previous results. Deleting a node is equivalent to delet-
ing all edges between the deleted node and its neighbors.
The number of deleted edges can therefore be larger than
one, which violates our constraint that at most one edge
is deleted from each node. To avoid a loose bound, we do
not model node deletion as a sequence of edge deletions.
Instead, we redefine the constraint for node operations to
allow multiple edge deletions if the edges are adjacent to
a deleted node. More formally, at most one edge should
join any node in the graph intersection to the symmetric
graph difference. This constraint definition applies to both
additions and deletions. An added node can simultaneously
connect to multiple nodes, given that the nodes it connects
to are not affected by other operations. For simplicity, we
also assume that added nodes cannot be adjacent to each
other. We now express Â and D̂−1 as a function of A and
D−1, respectively.

Â = A+
∑
i∈V+

∑
j∼i

(
Eij + Eji

)
−
∑
i∈V−

∑
j∼i

(
Eij + Eji

)

and

D̂−1 = D−1 +
∑
i∈V+

di − 1

di
Eii +

∑
i∈V+

∑
j∼i

ajEjj + . . .

+
∑
i∈V−

1− di
di

Eii −
∑
i∈V−

∑
j∼i

bjEjj .

Naturally, a deleted node can not be simultaneously added
or vice versa. Also, added nodes cannot be adjacent to
deleted nodes. Last, the constraint guarantees that at most
one edge changes for any of the nodes that are not added or
deleted. Therefore, at most one term is added or subtracted
to each diagonal element. Given that D̂−1−D−1 is diagonal
and because | di−1

di
| = | 1−di

di
| ≥ max{aj , bj} for all i ∈ V̂ 	V

and j ∼ i, ∥∥D̂−1 −D−1
∥∥ = max

i∈V̂	V

{
di − 1

di

}
. (13)

For similar reasons, matrix Â−A is symmetric with non-
zero elements equal to one.∥∥Â−A∥∥ ≤∑

i∈V̂	V

√
di (14)

Substituting Inequalities (13) and (14) into the definition
of δG and factoring the result we get the desired bound.

The above bound provides three insights on how node
operations affect convergence: (i) Added and deleted nodes

i ∈ V̂ 	 V introduce a convergence error that is proportional
to the square root of the number of nodes they connect to.
On the left,

√
di is normalized to the minimum network

density. On the right,
√
di is weighted by the maximum

value of (di− 1)/di which tends to one as di →∞. (ii) It is
the most connected node involved in a node operation which
effects convergence the most. Since the right term incurs
the most significant error, we deduce that the convergence
error after a node operation depends to a large extend on the
density of the most connected node of the operation; whether
the node was deleted or added is of no significance. (iii) It
is density irregularity that affects convergence the most, not
absolute node density. This seems to be an inherent property
of information potentials as it consistently arises in all the
convergence bounds we have derived so far (cf. Sections 4
and 5). In contrast to regular spaces such as continuous
domains and regular graphs, the information diffusion in
irregularly shaped spaces incurs a price.

6. SPECTRAL PROPERTIES
Thus far we have analyzed the impact of various network

dynamics on the convergence of information potentials. In
this section, we show that these potentials are not solely
determined by the network’s properties, but they can be
shaped into different landscapes using the inhibiting factor
ϕ. First, we employ results from spectral graph theory to
showcase the connection between information potentials and
the eigenfunctions of the network’s Laplacian, and then, we
show how the inhibiting factor can “filter” these eigenfunc-
tions to shape the information landscape.

6.1 The spectral form
Let us start with some basic definitions. A scalar λ is an

eigenvalue of a matrix B if there exists a non-zero vector u



such that Bu = λu. Vector u is called a (right) eigenfunction
and the pair (λ, u) is called an eigenpair. The collection of
all eigenpairs is often referred to as the spectrum of B, where
the eigenvalues are ordered with increasing magnitude. Our
main result ties information potentials to the spectrum of
the normalized Laplacian, which is described in Section 2.

Theorem 3. (Spectral Form) Let (λ, u) be eigenpairs
of the normalized Laplacian L of a graph G. For any infor-
mation process x, the information potential y is

y = D−
1/2

n∑
k=1

wk〈D1/2 x, uk〉uk, (15)

where wk = ϕ
1−ψ(1−λk)

.

Proof. We exploit the spectral relations between the
transition matrix P and the Laplacian L. The reader can
refer to the text by Biyikoglu et al. [3] for more details on
the topic. Let (µ, v) be eigenpairs of the transition matrix
P . In connected graphs, P has a unique largest eigenvalue
µ1 = 1 and all other eigenvalues µk, with k ∈ N and k ≤ n,
have smaller magnitude. Since ψ < 1, matrix ψP has eigen-
values that are strictly smaller than one and we re-write
Formula (3) as

y = ϕ (I − ψP )−1x. (16)

As shown next, (I − ψP ) has the same eigenfunctions as P
and its eigenvalues are equal to 1− ψµ,

Pv = µv

(I − ψP )v = (1− ψµ)v.

It is well known that invertible matrices have the same eigen-
functions as their inverse and eigenvalues that are the recip-
rocal of the eigenvalues of their inverse. Formula (16) can
therefore be re-written through the spectral expansion of the
inverse of 1− ψP as

y =

n∑
k=1

ϕ

1− ψµk
vkv
>
k x, (17)

where v>k is the k-th left eigenfunction of P . From [3], we

know that vk = D−
1/2uk, v>k = u>k D

1/2 and 1 − λk = µk.
Substituting these equalities into Formula (17) concludes our
proof.

6.2 Landscape architecture
In this section we interpret the results from Theorem 3

and describe how the inhibiting factor controls the shape of
the information landscape. Before describing the theoretical
framework behind our method, we start with an intuitive
explanation.

Intuitive explanation. In simple terms, Theorem 3 states
that an information potential is a weighted sum of the eigen-
functions of the normalized Laplacian. Setting aside their
discrete and irregular shape, Laplacian eigenfunctions are
analogous to waves. They possess peaks and valleys, and are
characterized by a spatial frequency which is determined by
their rank (i. e., higher rank means more peaks). The pro-
jection of the information x on an eigenfunction captures
the components of x which are characterized by that spe-
cific spatial variation; the higher the eigenfunction’s rank,
the higher the spatial variation of x that it captures. The
weight 0 ≤ wk ≤ 1, which depends on the inhibiting factor,

decreases the significance of eigenfunctions with high spatial
variation (w1 is always equal to one and the other weights
decrease monotonically). Hence, the inhibiting factor can
be seen as a low-pass filter that attenuates phenomena of
high spatial frequencies. By fine-tuning this parameter, our
method smoothens the landscape of an information potential
and, as a consequence, reduces the number of local extrema.

Formal explanation. Consider the n-dimensional bi-ortho-
normal eigenspace formed by the eigenfunctions uk of L.
Theorem 3 rewrites the potential as a weighted projection of
the density-normalized information on each of uk. Weights
0 ≤ wk ≤ 1 decrease the significance of projections on non-
principal3 eigenfunctions.

To capture the spatial variation of eigenfunctions, we rely
on the concept of nodal domains from spectral graph the-
ory [3, 7]. Recall that an eigenfunction assigns a positive
or negative value to each node in a graph. Nodal domains
(also called sign graphs) induce a partition of the graph into
maximal induced subgraphs on which a function does not
change its sign. In other words, consider a graph where the
real values of nodes are mapped to their positive or negative
signs, then group connected nodes with the same sign into
subgraphs. The number of subgraphs represent the num-
ber of nodal domains. Intuitively, the larger the number of
nodal domains, the higher the variance of a function. Based
on whether the subgraph also includes nodes with zero value,
nodal domains are further characterized as weak or strong.

The discrete nodal domain theorem [8] gives an upper
bound on the number of nodal domains of the eigenfunctions
of a generalized Laplacian. Specifically for the normalized
Laplacian of a connected graph, the theorem states that
any eigenfunction uk corresponding to the k-th eigenvalue
λk with multiplicity r has at most k weak nodal domains
and at most k + r − 1 strong nodal domains. Eigenfunc-
tions with higher eigenvalues are likely to have more nodal
domains. Intuitively, attenuating the projections of an in-
formation process into eigenfunctions with several nodal do-
mains should lead to less local extrema. Below we proof
Lemma 4, which provides an upper bound on the number of
eigenfunction extrema. The lemma interprets positive and
negative nodal domains as the peaks and valleys of eigen-
functions. It then bounds the number of extrema by show-
ing that a positive (negative) nodal domain has at most one
maximum (minimum).

Lemma 4. Any eigenfunction uk corresponding to the k-
th eigenvalue λk of the normalized Laplacian of a connected
graph has at most k extrema.

Proof. The proof proceeds by method of contradiction.
An eigenfunction of a graph Laplacian cannot have a non-
negative local minimum or a non-positive local maximum [11,
12]. Without loss of generality, assume a negative nodal do-
main and suppose there are two local minima residing in the
domain. This necessitates the existence of a negative local
maximum between the two minima, which contradicts the
first observation. Therefore, a single minimum (maximum)
must exist at every negative (positive) nodal domain. Since
the number of weak nodal domains of uk (zeros are irrele-
vant) is bounded by k by the discrete nodal domain theorem,
the number of extrema of uk is at most k.

3Principal is the eigenfunction that corresponds to λ1.



We use Lemma 4 to draw some useful observations about
the shape of information potential landscapes. We saw that
a potential is a composition of information projections on
n eigenfunctions (Theorem 3). The rank k of an eigenfunc-
tion determines the maximum number of extrema it con-
tains (Lemma 4). A such, projections of the information on
high order eigenfunctions describe information components
of progressively higher spatial frequency. As the inhibiting
factor decreases so do the weights of non-principal eigen-
functions (i.e., rank > 1). By decreasing the significance
of projections on non-principal eigenfunctions, the inhibit-
ing factor removes phenomena of high spatial variation and
reveals spatial patterns of lower frequency.

Potentials reshape an information landscape in more sub-
tle ways than simply eliminating its extrema. As shown in
Section 3.2, the potential of a node depends on the values
of all the nodes in the node’s affinity space, as well as on
the underlying connectivity. Therefore, it is possible that a
node that is an extremum of y, but not of x. For example,
an already unimodal x will remain unimodal. The position
of the extremum however will not necessarily be the same.
The extremum of x is the node with the maximum value,
which is not always equivalent to the node with the high-
est information y in its surroundings. This phenomenon is
captured in our evaluation.

6.3 The unimodality property
An important outcome of our spectral analysis is that, for

any graph G and information process x, a critical value ϕ
exists for which the potential is unimodal. The unimodal-
ity property proves useful for gradient search. In unimodal
search spaces, greedy search cannot get stuck in local op-
tima. By achieving unimodality in networks of multiple
information sources (i. e., each node has its own informa-
tion), this part of our study in essence extends the work by
Lin et al. [15].

Formally, a function defined on a graph is unimodal if it
has a single extremum and, for each node, at least one path
to the extremum exists on which the values of the function
are monotonic. Depending on the monotonicity, the uni-
modality is further characterized as weak or strong. As ϕ
becomes smaller, non-principal weights decrease the influ-
ence of information of high spatial variation and thus elim-
inate local extrema. Due to this trend, a value of ϕ exists
below which a potential possesses a single, global maximum
(or minimum). Since Lemma 4 does not guarantee that
two neighboring nodes in the same domain do not have the
same value, the unimodality of potentials is in the general
case weak.

In practice, unimodal potentials are not always desirable;
one has to pay in terms of convergence time for the increased
search scope. In very large networks, the critical value can
be too small to allow for any adaptivity and landscapes with
multiple extrema incur lower computation cost. Despite its
sub-optimality, greedy gradient search in multimodal poten-
tials yields more spatially relevant results as the extrema
exhibit a higher spatial correlation to node location. Nev-
ertheless, unimodal potentials are particularly useful in spe-
cific tasks, such as robot coordination. Our previous paper
demonstrated how unimodal potentials solve the problem of
multi-agent rendezvous [16].
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Figure 2: Number of rounds until the convergence
error becomes smaller than 0.05 versus network di-
ameter. Simulation results are depicted with mark-
ers connected by dotted lines and analytical results
with dashed lines.

7. EVALUATION
Our analysis provides several insights. Due to page con-

straints, we can not present evaluations for all of them.
Hence, we focus on the four which are the most impor-
tant. We perform a controlled evaluation based on sim-
ulations (i) to evaluate the convergence of our algorithm
under different settings and to validate the analytical re-
sults of Section 4.1, and (ii) to challenge our theoretical
assumptions on synchronous execution and no data losses
(Section 3.2). We perform a short testbed evaluation (iii)
to show that the simple distributed algorithm can be imple-
mented in resource-constrained devices, (iv) to exemplify
that it is resilient to normal operating conditions such as
link variability and node failures, and (v) to showcase its
capability to shape the information landscapes into a uni-
modal potential (Section 6.3). Our evaluation is only meant
to demonstrate the feasibility of our approach. A robust
protocol implementation would need to consider the specific
requirements of the application at hand.

7.1 Model validation
We used the COOJA simulator, a widespread tool for

wireless network simulation. We chose the information val-
ues arbitrarily, by setting x(i) = 0 for some random i ∈ V
and x(V \ i) = 1, otherwise. The nodes were deployed uni-
formly at random and the unit-disk model was used to estab-
lish connectivity. To capture a wide range of connectivity
properties, we tested four network sizes: 10, 50, 100 and
150 nodes, with four different transmission ranges. We eval-
uated 14 instances for each 〈size, range〉 tuple, resulting in
224 different networks. Overall, the networks had average
degrees between 3.4 and 17.24, diameters between 1 and 20,
and clustering coefficients between 0.27 and 1. We evaluated
three representative values of the inhibiting factor, i. e., ϕ =
0.01, 0.1, and 0.5, respectively.

Asynchrony. Our first set of experiments show that syn-
chrony is not a critical assumption; the convergence bounds
in Section 4.1 still hold for asynchronous simulations. Fig-
ure 2 summarizes our experiments. The markers represent
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Figure 3: Error after convergence versus percentage
of unknown neighboring values to the total neigh-
bors at the end of each round. The algorithmic ro-
bustness increases for small ϕ.

simulation results and the dashed lines represent the conver-
gence bounds from Section 4.1. Each marker represents a
〈topology, ϕ〉 tuple, and for each tuple, we record the round
when ‖y− yt‖ ≤ 0.05, i. e., when it converges. The iterative
calculation of yt used our distributed algorithm, while the
ground-truth y was calculated assuming an oracle’s view of
the network. To test our method under the worst possible
circumstances, we intentionally bootstrap nodes to a value
that is far from the stable state, y0 = 0 � x, y. It is im-
portant to highlight the trade-offs of the inhibiting factor ϕ.
Our method is better suited for large-scale networks. The
number of rounds to reach convergence does not increase
significantly with the network’s diameter (for any value of
ϕ). On the other hand, small values of ϕ are not suitable for
small networks. Observe that, even in fully connected net-
works (1-hop diameter), our method incurs an overhead that
is on the order of 1/ϕ, which translates to more than 250
rounds for ϕ = 0.01. Setting the inhibiting factor to very
small values only makes sense for large networks or in cases
of high information variation. For small networks, high val-
ues of ϕ or simpler aggregation schemes may be preferable.

Robustness to data loss. Observe that some markers in
Figure 2 are over the bounds. The observed difference sug-
gests that message loss, i. e., our second assumption, has an
effect on the algorithmic operation. Message losses require
more rounds than expected to reach convergence. Figure 3
distills the results of a set of experiments which character-
ize the effect of imperfect knowledge. In the experiment,
nodes disregarded a specific, randomly selected, percentage
of their received values Si just before recomputing their po-
tential (line 11 of Algorithm 1). Before measuring the nor-
malized potential error of a given topology, we waited for
a sufficient number of rounds until the algorithm had con-
verged. For each 〈ϕ, data loss〉 tuple, we summarize the er-
rors across time from all 224 topologies, by the correspond-
ing median and 68.2% confidence interval. Even under se-
vere loss, the algorithm exhibits an error that is smaller
than 0.04. The algorithm is robust because it is not based
on algorithmic primitives that are sensitive to message loss,
e. g., mass conservation, or to partial knowledge, e. g., count-

ing. Instead, it employs averaging as a statistical measure
that, in non-skewed distributions, approximates well the
central tendency, even with small sample sizes. Compar-
ing the three subfigures we also notice that, for large per-
centages of data loss (ϕ = 0.01), the topmost subfigure re-
ports a median error that is approximately two times smaller
that the one in the bottommost subfigure (ϕ = 0.5). This
phenomenon stems from the tendency of small ϕ to limit
the magnitude of change between consecutive computation
rounds. As such, the sensitivity of the algorithm to the high
variation effects that accompany data loss decreases with ϕ.

7.2 Empirical results
This section evaluates our method in a wireless testbed

of 105 nodes. The testbed is deployed in the ceiling of
our floor in TU Delft. The devices are equipped with a
MSP430 micro-controller and a CC1101 radio chip, with the
transmission power set to −30dBm. The algorithm was im-
plemented on Contiki OS. For medium access control, we
used NullMAC, a simple random-access MAC protocol with
carrier-sense capabilities that is part of the standard Con-
tiki OS. Each computation round lasted for 0.5 seconds, over
which each node exchanged an average of 3.5 messages. An
instance of the connectivity graph is shown in Figure 4(a).
As also revealed by previous investigations [23], the connec-
tivity was highly variable over time due to the well-known
volatility of low-power wireless links. Figure 4(b) depicts the
nodes’ degree (density). The darker the Voronoi cell color
(the larger the disc), the higher the density. The maxima
are shown in green cells and the red arrows represent greedy
searches that reach their respective local maxima. Due to
the non-uniform coverage of radio transceivers, nearby nodes
may not have a link, while far away nodes may – this is
typical in testbeds and real-world deployments. This im-
plies that nodes in adjacent Voronoi cells are not necessar-
ily neighbors (in terms of distance) and the reader should
refrain from interpreting Voronoi diagrams as continuous
fields.

To demonstrate that our method eliminates phenomena
of high variation, such as noise and false extrema, (i) we
corrupted the information process by adding noise to each
node’s degree. The noise was uniformly distributed between
[0, dmin]. Also, (ii) we introduced a false maximum at a ran-
domly chosen “faulty” node – colored orange. Figures 4(c–d)
show the computed information potentials for ϕ = 0.50 and
0.01, respectively. Each experiment was run for ten min-
utes, during which we experienced a high variability of links
and some (normal) node failures between the evaluations of
ϕ = 0.50 and 0.01. This test highlights the resilience of
our method to real network phenomena. Observe how our
method progressively eliminates local maxima, thus making
the potential unimodal. Figure 4(c) eliminates one of the
four local maxima and Figure 4(d) has a single extrema.
Two of the three search queries get stuck in local maxima in
Figures 4(b–c), while in Figure 4(d) all queries reach the
global maximum. Observe also that the position of the
global maximum is not the same across all figures, which
confirms our analysis in Section 6.2. Our method uncovers
the node with the largest information in its vicinity, which is
not necessarily the one with the largest information (discov-
ering paths towards a maximum value can be easily solved
using a max-consensus algorithm and a distance gradient).
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Figure 4: Information potentials (c–d) and information process (b) on a testbed of 105 nodes (a). Function
maxima reside in green Voronoi cells. The orange node is an artificially injected maximum. As the aggregation
scope widens, our method progressively eliminates local extrema.

8. RELATED WORK
The computation of potential functions is inspired by the

natural process of chemotaxis, in which cells respond to the
concentrations of chemicals in their environment [2], and has
been exploited to achieve the coordination of swarms [17].
In the following, we group related work into three subcate-
gories. First, We discuss the connections to vicinity-based
aggregation methods. Second, we focus on unimodality and
thus on information discovery. Last, we classify and relate
our work with respect to the family of consensus algorithms.

Vicinity-based aggregation. In sensor networks, poten-
tial functions are information specific and vicinity based;
nodes consider surrounding information with a significance
that decays with distance [10, 13, 18]. Gao et al. [10],
use quad-trees to store data, such that each node is aware
of the data in its vicinity. In their seminal paper [13],
Kempe et al. propose spatial gossiping algorithms, in which
any two nodes gossip with probabilities that decrease poly-
nomially to their distance. Sarkar et al. [18] extend spa-
tial gossiping to compute multi-resolution representations
of information. Their algorithm computes information ag-
gregates over exponentially enlarging areas centered at each
node. All of these approaches however use physical distance
to define information affinity. Our method defines affinity
using the random movement of particles on the network. As
a result, it is sensitive to the network topology and indepen-
dent of any knowledge of physical location or distance.

Information discovery. A number of recent works have
also employed information potentials as mediums of discov-
ery [10, 15, 19, 21]. Skraba et al. [21] use potential gradients
to sweep a sensor network. Lin et al. [15] construct smooth
harmonic gradients towards node subsets, called sources,
such that local forwarding guarantees their discovery. Their
method achieves the absence of local extrema by keeping the
information of sources constant, fixing the values of bound-
ary nodes to zero, and averaging in between. The number of
extrema however is equal to the number of sources. In com-
parison, our method guarantees unimodality irrespectively
of the number of sources. It does not require knowledge of
the network boundary. It is also more flexible as it aggre-
gates values that stem from a real-valued monitored process,
as compared to the boolean distinction between sources and
non-sources. Sarkar et al. [19] design query mechanisms for

general information fields, which support the use of more ad-
vanced operations, such as iso-contour queries and value re-
stricted routing. Their approach is complementary to ours,
as it does not concern the landscape formation but advanced
methods of information discovery.

Consensus algorithms. From an algorithmic point of
view, this paper proposes a variant of the well known con-
sensus algorithms [1, 9]. In a strict sense however, our al-
gorithm does not solve the consensus problem; the stable
state of a consensus algorithm is α1, where α ∈ R is usu-
ally the average or the maximum of the information. In our
case, each node converges to a distinct value; the collection
of values form landscapes that support information discov-
ery. However, Khan et al. recently proposed a wider family
of consensus algorithms, referred to as higher dimensional
consensus algorithms, under which our method can be clas-
sified [14]. We also have to note that, unlike most consensus
and gossip algorithms that are used in sensor networks [1, 4],
our method is not randomized and does not sacrifice accu-
racy in the presence of communication loss. Throughout the
computation, information works as an anchor that steers the
network towards the correct stable state. As witnessed by
our evaluation, message loss mainly increases the variance
of the stable state and has little effect on the mean error.

Due to its connection to the graph Laplacian, our method
is also related to data clustering algorithms, such as mean
shift clustering [5] and spectral clustering [22]. Choa et al. [6]
independently proposed a similar approach to compute the
modes of a graph. Even though their paper concerns the
processing of images, it is a special case of our method as
they consider only the case of xi = di and do not identify
the property of unimodality. A preliminary version of this
work was presented in [16]. The previous study focused on
the analysis of the unimodality property and on its applica-
tion to the multi-agent rendezvous problem. We enhanced
the spectral graph analysis (Section 6) , and provide the fol-
lowing new contributions: the convergence bounds for static
(Section 4) and dynamic (Section 5) graphs, and the algo-
rithmic evaluation (Section 7).

9. CONCLUSIONS
Hitherto, information potentials in sensor networks have

been studied without taking into consideration the topol-
ogy of the network. In this study, we introduced a novel



aggregation method that overcomes this limitation. By an-
choring the information potential of each node to their orig-
inal value – as opposed to letting the information potential
evolve “freely” at each iteration, our method inherently con-
siders network connectivity in the construction of informa-
tion potentials. It is also simple, decentralized, robust to
communication loss, and adaptive to network dynamics. We
exploit linear algebra and spectral graph theory to gain deep
insights into the impact of the network topology. We show
that potentials are composed out of discrete waves that cap-
ture information phenomena of increasing spatial variation;
our method reshapes the information landscape by attenuat-
ing information of high variation (e. g., noise). The elimina-
tion of local maxima has important implications for greedy
search methods. Our analysis includes valuable guidelines
for practical deployments: (i) dense regular networks pro-
vide faster convergence rates; (ii) expected information and
network dynamics can be used to derive appropriate aggre-
gation scopes.
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