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Abstract—Detection based on features is most popular way to 
prevent malware these days. Current feature abstracting and 
matching methods are susceptible to obfuscation techniques, 
and cannot deal with the variants which are emerging quickly. 
This paper proposes a malware feature extracting method 
based on its behaviors. This method can abstract the critical 
behaviors of malware and the dependencies between them 
through dynamic analysis, and generate the features to defeat 
malware obfuscations considering semantic irrelevancy and 
semantic equivalency to improve the describing capabilities of 
the malware features. This paper also designs a corresponding 
detecting method based on these features. The experiment 
results show that our method is more resilient to malware 
obfuscation techniques, especially for real world malware 
variants. 

Keywords-malware, feature exstracting, dynamic taint 
analysis, behavior dependency, semantic analysis 

I.  INTRODUCTION 
Malware is one of the most serious challenges to 

computer and Internet today. Obfuscation using by malware 
is a popular method to avoid malware detecting. The 
traditional malware detection abstracts syntactic features 
from malware samples to distinguish the malware, and 
usually require accurately match. The syntactic features 
should be frequently updated and cannot manipulate simply 
obfuscating. Although the obfuscated malware omits its 
syntactic features, it is very possibly that the semantic 
remains. Then semantic-based detection has been used in 
some previous works, such as Christodorescu etc. [3] 
developed a robust way which abstracted features by 
semantic analysis, but performed poor against instruction-
replacing for preventing some obfuscating methods. 

The capability and efficiency of feature-based malware 
detection depends on the description capability of features. 
Recently, the bottleneck of feature-based detection is the gap 
between the malware’s features and its real behavior [1]. 
Present methods based on sequence and control flow-graph 
cannot describe the internal logic of malware, while the 
dependence graph which focuses on data dependence with 
little control dependence cannot give a well expression to the 
behavior logic. How to abstract the essential characteristics 
of malware to prevent from obfuscation, thus to make 

malware detecting more precisely and efficiently, is the main 
focus of malware prevention these days. 

We present a prototype system based on behavior 
semantic to abstract the character of malware. Our 
implementation begin with analyzing the malware samples 
through dynamic taint analysis, abstracting the critical 
behaviors, the data dependence and control dependence, then 
reconstruct behavior logic of malware and execute semantic 
analysis. The characters collected with our method can be 
adapted to detect malwares variants derived by obfuscation, 
perform better on malwares variants, and reduce the delay 
between the malware variants arising and features updating.  

The main contributions of this paper are as follows: 
• We extend presently DDG (Data Dependence 

Graph) and CDG (Control Dependence Graph), and 
bring out a novel method to construct Dependence 
Graph. 

• We propose a semantic analysis and process method 
for behavior characters, which focuses on semantic-
irrelevant and semantic-equivalent to improve the 
description capability of features. 

• We implement a prototype abstracting features, and 
evaluate the features by constructing corresponding 
detecting arithmetic. 

This paper is organized as follows: section 2 is system 
overview; section 3 gives a brief description of the malware 
analysis on behaviors; section 4 introduces the semantic 
analysis. Our algorithm based on the abstracted features is 
presented in section 5. The evaluation details are shown in 
section 6. We introduce relative work in section 7, and give a 
conclusion in section 8. 

II. SYSTEM OVERVIEW 
We implement a prototype to abstract the behavior 

semantic features of malware. Using dynamic analysis, this 
prototype abstracts malware’s critical behaviors and the 
dependency of these behaviors which can be concluded as 
behavior semantic features to detect polymorphic malware. 
This paper focuses on improving the capabilities of malware 
feature to describe malware behavior and prevent 
obfuscating. 
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Our prototype system consists of behavior analysis 
module, semantic analysis module and detection verified 
module, as is illustrated in Fig.1. 

Behavior analysis module is composed of analysis 
environment, behavior analyzer and analysis output. Our 
prototype is implemented on WooKon platform, which 
constructed on a hardware emulator Qemu [8]. We run a 
Windows XP on WooKon as the environment of malware. 
This architecture is highly transparent for malware, because 
of the separated running environments of analysis module 
and analysis object. We enhance present dynamic taint 
technology with supporting reverse analysis to trace and 
analyze malware in fine grain. 

DetectionBehavior Analysis

Dynamic Taint Analysis

Record

Guest OS

suspicious 
programs

Taint

propagation Trace 
back

Disassemble Semantic Analysis

Anti-obfuscation process

 
Figure 1.  Prototype System Overview. 

The output of this module is behavior dependence graph, 
which is composed of system calls and the dependencies of 
them. Almost all the operations on sensitive data structures 
are relative to critical system calls [1, 2]. So we use critical 
system calls to describe critical behaviors of malware. To 
present the logic relation between malware behaviors, we use 
both the data dependence and control dependences to 
construct dependence graph.  

To prevent from obfuscating, we abstract behavior 
characteristics from dependence graph through semantic 
analysis. Usually, the key behaviors of obfuscated malware, 
namely the semantic of statements in the main function, keep 
stable. So we implement the semantic analysis with the 
purpose of recognizing the obfuscated instance of existent 
samples. To manipulate common obfuscating technologies, 
we process the dependence graph through both semantic 
irrelevancy and semantic equivalency. The outputting 
malware behavior feature graph perform obviously effect in 
prevent from common obfuscation. 

To evaluate the abstracted behavior features, we design a 
detection verified module which is processed as follow. First 
we analyze the target program by dynamic taint analysis, 
reveal the system calls and dependence, and match the 
features of sample set. Second we set the nodes and edges 
with weight value according to the operating sensitivity, and 
set the detecting threshold. Last we calculate the eigen value 
on the matching result, and then detect malware when eigen 
value is larger than detecting threshold. 

III. BEHAVIOR ANALYSIS 
The behavior analysis constructs behavior dependence 

graph on critical system calls and the data dependencies and 
control dependencies between them by analyzing the critical 
behavior flow when tracing the process of malware samples 
by dynamic taint analysis. 

A. Taint Analysis 
Our system analyzes the behaviors of malware by 

dynamic taint analysis. Through tracing and analyzing 
corresponding behaviors and data processing, our system can 
abstract critical system calls, the corresponding data 
dependencies and control dependencies, and instructions 
relative with tainted data.  

We build a taint source system call list which contains 
four main parts naming file, network, register and process. 
These four parts is denoted as: 
Fsens={FileTaint,RegistryTaint,NetworkTaint,ProcessTaint} 

When the system call belonging to Fsens occurs, the 
outputting parameters of it are marked as taint according to 
the type of taint source. 

We construct shadow memory to save taint records as 
Taint={Address,Length,Status,Type}, Address stands for the 
start address of taint, Length stands for the length of taint 
counted by byte, Status stands for the status of taint, Type 
stands for the type of taint iterated by general-purpose 
register, flag register and memory. 

After taint having been marked, we analyze malware by 
single-stepping, and calculate taint propagation path on taint 
propagating rules. The taint propagating rules contain system 
call part and instruction part. The taint propagating rules of 
system calls is built for each function. Considering system 
call F, if the inputting parameters Parameterin Taint, then 
the outputting parameters Parameterout Taint. The taint 
propagating rules of instruction is built for each type, and we 
focus on memory operation instructions, operation 
instructions and control flow transfer instructions. 

When taint propagating, if the taint source T1 from 
system call F1 extends to F2 as input parameter, then F2 data-
depend on F1. When control flow transfer instruction I1 is to 
be executed and this instruction is influenced by the tainted 
EFLAGS, we disassemble the current instruction and the 
subsequent instruction, and then calculate the dominators to 
determine the control domain D1, of I1 [5], i.e., when the taint 
source of system call F1 extends to I1, all F in the domain D1 
control-depend on F1. 

Taint bleach when taint data have been rewritten by 
irrelevant data. We start reverse analysis to abstract the 
dependencies between behaviors when taint is bleaching.  

B. Trigger Condition Managing Engine
Malware usually include some trigger condition, which is 

a judge condition in code running. Malware execute vicious 
behaviors only when the trigger conditions meet, which is 
used to protect itself.  

We construct trigger condition managing engine which 
can recognize the trigger condition and try to meet it to 
continue the code executing. We focus on three main cases 
namely delaying by calling sleep function, cyclic algebra 
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calculating and judging system time. For delaying by calling 
sleep function, we hook the sleep function in operation 
system, read the delay from stack when the sleep function 
being called, and modify the cpu_get_ticks series function by 
setting it return value with the delay to alter the hardware 
time to meet the trigger condition. The cyclic algebra 
calculating is not related to taint operations, then we firstly 
detect the loop in no-taint instructions and determine the 
instructions that put forwards the loop, secondly NOT the 
corresponding bit in EFLAGS to force the loop out at the 
next execution. For judging system time, we determine 
whether the control flow transfer instruction depends on the 
taint data from system time, and set the flag bit 
corresponding to this instruction to continue the executing 
flow. 

C. Behavior Dependence Graph
In this section, we construct behavior dependence graph 

as the base of describing characters.We present behavior 
dependence graph Gi as: 

Gi={NE,N,C,D,Ins} 
NE stands for the entry node, N stands for the node set, C 

stands for data dependence edge set, D stands for control 
dependence edge set, and Ins stands for the instructions 
related. It is possible that more than one Gi can be found 
during analyzing malware.. 

At the beginning of analysis, Ti is an empty set. Then we 
set the NE of Gi with critical system call with tainted output, 
and refresh the shadow memory. Then the iterating 
procedure of computing the taint propagating process during 
every instruction in single-stepping will go on. 

When a new system call occurs, the input parameters will 
be parsed, and a node will be added in Gi if the input 
parameters have been tainted. By the way, if a file has been 
copied to memory, the reading or writing behaviors should 
be transfer into corresponding system call node. 

The dependence edge adding process is implemented by 
reversely computing taint propagation when adding new 
node, and can be divided into data dependence edge adding 
and control dependence edge adding. At the same time of 
adding new node, we query the taint data of current node and 
the dependencies between current node and the node which 
generating taint data, then add data dependence edges 
between current node and corresponding nodes.  

About control dependence edge adding, if the current 
system call is within the control domain of some instruction, 
we add an edge between current node and the system call 
being taint source. To analyze control domain, we integrate 
our system with disassemble engine. When the control flow 
transfer occurs, we disassemble the following instructions 
recursively, and compute the control domain.  

The constructing process may finish in two situation: 
1)when all the taint data have been bleached; 2)when the 
execution of malware has completed. 

IV. SEMANTIC ANALYSIS 
The present variants of malware are usually generated by 

obfuscation technologies, which can transfer the signature to 
avoid the current detection method.  

On the basis of behavior dependence graph of malware, 
we abstract the semantic features from vicious behavior, and 
manipulate semantic irrelevant call and semantic equivalent 
call well to prevent obfuscation. 

We build anti-obfuscation engine in semantic domain to 
treat behavior obfuscation. By analyzing behavior 
obfuscation technologies, we classify it in two types namely 
semantic irrelevant system call and semantic equivalent 
system call. The former refer that malware usually contain 
some system calls that have nothing to do with its purpose. 
The latter refer to change the system call sequence by 
equivalent system call replacing and loop transfer.  

For semantic irrelevant system call, we eliminate it 
during the process of taint propagating. The character of 
semantic irrelevant system call is that they don’t change the 
system status. The set influencing system status can be 
denoted as SChange. The system call occurring on the path 
of the Taint propagating is denoted as N1, and the taint 
extending path following it as LN. When N1 occurring, LN= ; 
when the taint propagating to N2, LN={N1,N2}. The condition 
of semantic irrelevant system call is LN= , or LN   
( N LN, N SChange). 

For semantic equivalent system call, we discuss it in two 
cases, namely equivalent system call replacing and loop 
transfer. Equivalent system call replacing is a great challenge 
in character abstracting and malware detecting. This paper 
recognizes the system calls by the set of semantic equivalent 
sequences, and adds set node in behavior dependence graph. 
We denote the equivalent sequence library as: 

Lequ={S1,S2,…,Sn} 
S standing for system call sequence. The set of semantic 

equivalent sequence library can be denoted as: 
F={Lequ1,Lequ2,…,Lequn,Index} 

All S in Lequ have the same behavior and can be altered 
by each other. The Index in F stands for the index set 
{Ea,Eb,Ec,…}, and Ei stands for the name of the first node of 
Si which corresponding to a set which contains the same first 
node. The set node represents a semantic equivalent 
sequence library, and all the system call sequence in Lequ will 
be map as the same set node. If the sequence in behavior 
dependence graph belongs to a semantic equivalent sequence 
library, it should be reduced as set node. 

Another case in semantic equivalent is loop translation. 
To prevent from the interference caused by equivalent loop 
translation, we reduce the loop into once execution by 
semantic methods. We consider the loop relative to taint 
data, and record the operation domain for every occurrence 
of taint system call. When there is a loop, we compare the 
address of the system call in loop. If the taint operating 
address in successor node equal to the sum of the taint 
operating address and the length of, the prior node, the nodes 
can merge, and set the range as the sum of the two ranges.  

Through semantic analysis, we describe the features of 
malware as behavior feature graph: 

G={NE,N,N',C,D} 
In which, NE, N, N', C, D stands for the entry node of 

graph, general node, set node, control dependence edge set 
and data dependence edge set respectively. The malware 
feature is represented as behavior dependence graph set: 
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T={G1,G2,...,Gn}, n N 
Fig.2 illustrates the process of constructing behavior 

feature graph by semantic analysis, when analyzing sample 
Forbot. Having abstracted the behavior dependence graph 
(graph (a)), we first identify and eliminate the semantic 
irrelevant system calls, e.g., the sequence CreateFile, 
ReadFile, then reduce the loop of ReadFile and SendTo, at 
last, recognize sequence CreateFile, ReadFile belongs to 
semantic equivalent library READ, and replace this sequence 
by READ. The output of this process is behavior feature 
graph (graph (b)). 

                
                    (a)                                                              (b) 

Figure 2.  Forbot anti-obfuscation treatment. 

V. MALWARE DETECTION 
The detection based on behavior feature graph 

distinguish the critical system calls and dependencies of 
testing code, then match it to existing behavior features in 
feature library, and compute the matching score. 

Count set Mx={nN,nN’,nC,nD} is assigned to each Tx, to 
maintain the count of the nodes and edges which have been 
matched to Tx in detection. We trace the execution flow of 
object code, and match the behavior features with system 
calls and dependencies from taint analysis. The first step is 
matching the entry to the feature graph Gxy (Gxy Tx). Then 
we mark the return value of the entry system call as taint 
source and begin taint propagation. For general system call, 
the parameters of present system call should be determined 
whether refer to the taint data. If not, the system call will be 
omitted and taint propagate continuously; if the parameters 
refer to taint data, the system call will be matched to the 
node in behavior feature graph and the dependencies of it 
will matched to the edges. 

The matching area of general nodes includes system call 
name and system call parameters. The name matching 
compares two system calls by string, and the parameters 
matching should compare the parameter type. We take four 
data type into considering, namely handle, string, 
enumeration and struct, and design special matching rules 
for different system call type.  

There are some differences in set node case. When 
matching the set node, we step in semantic equivalent 
sequence library for advance matching. The matching 
process in semantic equivalent sequence library will end 
when a sequence has been matched, and then return to 
previous feature graph. 

The edge matching goes at the same time of node 
matching. When the node is matching, the dependencies can 
be computed out by reverse analysis, and then is matched to 
the edges of feature graph. 

The following step is calculating weighted eigen value by 
the result of matching. Since system call, data dependency 
and control dependency performs different influence on the 
behavior of malware, we set the weight value of general 
node, set node, control dependence edge and data control 
dependence as 0.5, 1, 0.2 and 0.5 respectively. The formula 
for calculating eigen value is expressed as follow: 
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VI. EXPERIMENTS 
To verify the effectiveness of the feature of malware 

abstracted by our method, we chose some typical malware 
and corresponding variants for testing, and then analyzed and 
evaluated the result. 

In this section, we chose NetSky and SdBot as examples 
to analyze the experiment results. The samples of NetSky 
were got from VX Heavens [10]. For SdBot, we generated 
SdBot.ma by manually obfuscaton and SdBot.up, SdBot.ex 
and SdBot.as by UPX, EXECryptor and Asprotect 
respectively, besides samples got from VX Heavens. 

TABLE I.  EIGEN VALUE OF NETSKY VARIANTS 

Variants 
Match Results 

Set 
Node Node Control 

Dependence 
Data 

dependence 
Eigen 
Value 

NetSky.ad 9 31 83 62  
NetSky.aa 6 23 61 42 0.70 
NetSky.af 8 25 72 53 0.85 
NetSky.c 8 22 68 51 0.81 
NetSky.r 8 23 74 55 0.86 
NetSky.t 8 26 71 55 0.87 
In the experiment of NetSky, we firstly extracted features 

from NetSky.ad, and used it to detect other variants. The 
results are showed in Table 1. We find that the number of 
detected system calls is much more than matched system 
calls, which is caused by the junk system calls and the loops. 
For example, NetSky.ad used many ReadFile and WriteFile 
to copy itself, and we reduced these loops in abstracting 
process. The loop operation and equivalent operation 
replacing cannot impact on our method. 

TABLE II.  EIGEN VALUE OF SDBOT VARIANTS 

Variants 
Match Results 

Set 
Node Node Control 

Dependence 
Data 

dependence 
Eigen 
Value 

SdBot.b 10 14 103 61  
SdBot.up 10 14 103 61 1 
SdBot.as 8 13 73 51 0.8 
SdBot.m 10 14 65 47 0.79 
SdBot.bx 10 13 76 50 0.83 
SdBot.by 10 11 84 48 0.83 
In the experiment of SdBot, we changed some code 

signatures by manual obfuscating to prove the effectiveness 
of our method, and the results are shown in Table 2. Taking 
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SdBot.bx e.g., we found many loops in it. Since our feature 
abstracting includes the process of reducing loops, these 
obfuscating methods cannot disturb our analysis. 

To evaluate the false positive, we chose typical innocent 
software including Internet Explorer, FTP (File Transfer 
Protocol), Calculator and Notepad, and used the features 
abstracted from NetSky.ad and SdBot.b to computed the 
eigen value. The results were shown in Table 3. Obviously, 
the eigen values of innocent software are less than 0.7, which 
proves that the method in this paper can distinguish malware 
and innocent software well. 

TABLE III.  EIGEN VALUE OF SDBOT VARIANTS 

Program 
Match Results 

NetSky.ad SdBot.b 
Notepad.exe 0.26 0.11 

Calc.exe 0 0.16 
Iexplore.exe 0.34 0.31 
Ftpserv.exe 0.34 0.25 

VII. RELATED WORK 

A. Malwre analysis 
Static analysis disassembles the binary code as first step, 

and then analyzes and abstracts the feature of malware. It can 
analyze the code all-around. One limitation is the 
dependence on disassemble technology; malware usually use 
obfuscation to prevent from being disassembled [7] and 
analyzed. Some works have been done to alleviate the 
influence of obfuscation, such as Christodorescu etc. [6] 
propose a method to treat code reordering, packing and junk-
insertion, to recover the native code, but they didn’t manage 
the equivalently replacing, etc. 

Dynamic analysis analyzes the executing code while the 
code is running, so it is immune to most obfuscating 
technologies, but has difficulty in treating with multipath 
problem. Recently, Moser etc. [9] explore the multipath with 
help of system snapshot, which improve the performance of 
treating with multipath. 

B. Feature extraction 
Traditional characters of malware are signatures of 

sequences, such as Kirda etc. [2] described the characters 
with system call sequences, and Bailey etc.[4] used system 
message sequences to represent the characters. The sequence 
signatures deeply rely on the order of codes or behaviors, 
and are not resistance to obfuscation. Control flow graph 
(CFG) is another method to describe the features. It 
represents the malware behaviors as the execution process, 
and cannot deal with irreverent operations reordering. 
Recently works focus on describing malware with 
dependences, such as Christodorescu etc. [1] used system 
calls and the dependencies between them to describe 
features, and abstracted contrast sub graph between normal 
program and malware. Christodorescu etc. [3] relieve the 
interference from some obfuscation technologies and 
generate features through static method associated by 
semantic. This method focuses on instructions and performs 
weakly to deal with interference at behavior level. 

VIII. CONCLUSIONS AND FUTURE WORK 
This paper proposes a method to abstract the behavior 

characters of malware at semantic level. This method adopts 
dynamic taint analysis to abstract critical system calls and 
the dependencies between them to construct behavior 
dependence graphs. The behavior dependence graphs can 
describe the characters of malware well, and is robust to 
interference with help of semantic analysis. The evaluations 
on various malware show that our method is robust to 
obfuscation and can detect malware variant precisely. 

In experiment, we find that the efficiency of analysis 
process is slightly low, which is inevitable because that the 
dynamic taint analysis need parse the instructions one by 
one. Another problem is that only one path can be analyzed 
in an execution, which is a common defect of dynamic 
analysis. Both of these problems are on our schedule. In 
future, we will also pay attention to the feature integrated 
from multi-sample. 
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