

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 1

Using Optimizer Hints

Chapter 16

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 2

Using Optimizer Hints

Using Optimizer Hints

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 3

Objectives

Objectives

After completing this lesson, you should be able to :

• Use hints when appropriate

• Specify hints for:
– Optimizer mode

– Query transformation

– Access path

– Join orders

– Join methods

– Views

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 4

Optimizer Hints: Overview

Optimizer Hints: Overview

Hints enable you to influence decisions made by the optimizer. Hints provide a mechanism to
direct the optimizer to select a certain query execution plan based on the specific criteria.

For example, you might know that a certain index is more selective for certain queries. Based
on this information, you might be able to select a more efficient execution plan than the plan
that the optimizer recommends. In such a case, use hints to force the optimizer to use the
optimal execution plan. This is illustrated in the slide example where you force the optimizer to
use the EMPFIRSTNAME_IDX index to retrieve the data. As you can see, you can use
comments in a SQL statement to pass instructions to the optimizer.

The plus sign (+) causes the system to interpret the comment as a list of hints. The plus sign
must follow immediately after the comment delimiter. No space is permitted.

Hints should be used sparingly, and only after you have collected statistics on the relevant
tables and evaluated the optimizer plan without hints using the EXPLAIN PLAN statement.
Changing database conditions as well as query performance enhancements in subsequent
releases can have a significant impact on how hints in your code affect performance.

In addition, the use of hints involves extra code that must be managed, checked, and
controlled.

Optimizer Hints: Overview

Optimizer hints:

• Influence optimizer decisions

• Example:

• HINTS SHOULD ONLY BE USED AS A LAST RESORT.

• When you use a hint, it is good practice to also add a
comment about that hint.

SELECT /*+ INDEX(e empfirstname_idx) skewed col */ *
FROM employees e
WHERE first_name='David'

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 5

Types of Hints

Types of Hints

Single-table: Single-table hints are specified on one table or view. INDEX and USE_NL are
examples of single-table hints.

Multitable: Multitable hints are like single-table hints, except that the hint can specify one or
more tables or views. LEADING is an example of a multitable hint.

Query block: Query block hints operate on single query blocks. STAR_TRANSFORMATION
and UNNEST are examples of query block hints.

Statement: Statement hints apply to the entire SQL statement. ALL_ROWS is an example of a
statement hint.

Note: USE_NL(table1 table2) is not considered a multitable hint because it is actually a
shortcut for USE_NL(table1) and USE_NL(table2).

Types of Hints

Single-table hints Specified on one table or view

Multitable hints Specify more than one table or view

Query block hints Operate on a single query block

Statement hints Apply to the entire SQL statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 6

Specifying Hints

Specifying Hints

Hints apply to the optimization of only the block of the statement in which they appear. A
statement block is:

• A simple MERGE, SELECT, INSERT, UPDATE, or DELETE statement

• A parent statement or a subquery of a complex statement

• A part of a compound query using set operators (UNION, MINUS, INTERSECT)

For example, a compound query consisting of two component queries combined by the
UNION operator has two blocks, one for each component query. For this reason, hints in the
first component query apply only to its optimization, not to the optimization of the second
component query.

Optimizer Hint Syntax

Enclose hints within the comments of a SQL statement. You can use either style of comment.
The hint delimiter (+) must come immediately after the comment delimiter. If you separate
them by a space, the optimizer does not recognize that the comment contains hints.

Specifying Hints

Hints apply to the optimization of only one statement block:
• A self-contained DML statement against a table
• A top-level DML or a subquery

hint

comment
text

//+

hint

comment
text

--+
SELECT

INSERT

DELETE

UPDATE

MERGE

SELECT

INSERT

DELETE

UPDATE

MERGE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 7

Rules for Hints

Rules for Hints

• You must place the hint comment immediately after the first keyword (MERGE, SELECT,
INSERT, DELETE, or UPDATE) of a SQL statement block.

• A statement block can have only one comment containing hints, but it can contain many
hints inside that comment separated by spaces.

• Hints apply to only the statement block in which they appear and override instance- or
session-level parameters.

• If a SQL statement uses aliases, hints must reference the aliases rather than the table
names.

The Oracle optimizer ignores incorrectly specified hints. However, be aware of the following
situations:

• You never get an error message.

• Other (correctly) specified hints in the same comment are considered.

• The Oracle optimizer also ignores combinations of conflicting hints.

Rules for Hints

• Place hints immediately after the first SQL keyword of a
statement block.

• Each statement block can have only one hint comment,
but it can contain multiple hints.

• Hints apply to only the statement block in which they
appear.

• If a statement uses aliases, hints must reference the
aliases rather than the table names.

• The optimizer ignores hints specified incorrectly without
raising errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 8

Hint Recommendations

Hint Recommendations

• Use hints as a last remedy when tuning SQL statements.

• Hints may prevent the optimizer from using better execution plans.

• Hints may become less valid (or even invalid) when the database structure or contents
change.

Hint Recommendations

• Use hints carefully because they imply a high-maintenance
load.

• Be aware of the performance impact of hard-coded hints
when they become less valid.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 9

Optimizer Hint Syntax: Example

Optimizer Hint Syntax: Example

The slide shows an example with a hint that advises the cost-based optimizer (CBO) to use
the index. The execution plan is as follows:
Execution Plan

--

 0 UPDATE STATEMENT Optimizer=ALL_ROWS (Cost=3 …)

 1 0 UPDATE OF 'PRODUCTS'

 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'PRODUCTS' (TABLE) (Cost…)

 3 2 INDEX (RANGE SCAN) OF 'PRODUCTS_PROD_CAT_IX' (INDEX)

 (cost…)

 4 1 TABLE ACCESS (BY INDEX ROWID) OF 'PRODUCTS' (TABLE) (Cost…)
 5 4 INDEX (UNIQUE SCAN) OF 'PRODUCTS_PK' (INDEX (UNIQUE))
 (Cost=0 …)

The hint shown in the example works only if an index called PRODUCTS_PROD_CAT_IX exists
on the PRODUCTS table in the PROD_CATEGORY column.

Optimizer Hint Syntax: Example

UPDATE /*+ INDEX(p PRODUCTS_PROD_CAT_IX)*/
products p
SET p.prod_min_price =

(SELECT
(pr.prod_list_price*.95)
FROM products pr
WHERE p.prod_id = pr.prod_id)

WHERE p.prod_category = 'Men'
AND p.prod_status = 'available, on stock'
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 10

Hint Categories

Hint Categories

Most of these hints are discussed in the following slides. Many of these hints accept the table
and index names as arguments.

Note: Hints for parallel execution is not covered in this course.

Hint Categories

There are hints for:

• Optimization approaches and goals

• Access paths

• Query transformations

• Join orders

• Join operation

• Parallel execution

• Additional hints

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 11

Optimization Goals and Approaches

Optimization Goals and Approaches

ALL_ROWS: The ALL_ROWS hint explicitly selects the cost-based approach to optimize a
statement block with a goal of best throughput. That is, minimum total resource consumption.

FIRST_ROWS(n): The FIRST_ROWS(n) hint (where n is any positive integer) instructs the
Oracle server to optimize an individual SQL statement for fast response. It instructs the server
to select the plan that returns the first n rows most efficiently. The FIRST_ROWS hint, which
optimizes for the best plan to return the first single row, is retained for backward compatibility
and plan stability. The optimizer ignores this hint SELECT statement blocks that include any
blocking operations, such as sorts or groupings. Such statements cannot be optimized for
best response time because Oracle Database must retrieve all rows accessed by the
statement before returning the first row. If you specify this hint in any such statement, the
database optimizes for best throughput.

If you specify either the ALL_ROWS or the FIRST_ROWS(n) hint in a SQL statement, and if the
data dictionary does not have statistics about tables accessed by the statement, then the
optimizer uses default statistical values to estimate the missing statistics and to subsequently
select an execution plan.

If you specify hints for access paths or join operations along with either the ALL_ROWS or
FIRST_ROWS(n) hint, the optimizer gives precedence to the access paths and join operations
specified by the hints.

Optimization Goals and Approaches

Note: The ALTER SESSION... SET OPTIMIZER_MODE
statement does not affect SQL that is run from within PL/SQL.

ALL_ROWS Selects a cost-based approach with a goal
of best throughput

FIRST_ROWS(n) Instructs the Oracle server to optimize an
individual SQL statement for fast response

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 12

Note: The FIRST_ROWS hints are probably the most useful hints.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 13

Hints for Access Paths

Hints for Access Paths

Specifying one of these hints causes the optimizer to choose the specified access path only if
the access path is available based on the existence of an index and on the syntactic
constructs of the SQL statement. If a hint specifies an unavailable access path, the optimizer
ignores it. You must specify the table to be accessed exactly as it appears in the statement. If
the statement uses an alias for the table, use the alias rather than the table name in the hint.
The table name in the hint should not include the schema name if the schema name is
present in the statement.

FULL: The FULL hint explicitly selects a full table scan for the specified table. For example:

 SELECT /*+ FULL(e) */ employee_id, last_name

 FROM hr.employees e WHERE last_name LIKE 'K%';

The Oracle server performs a full table scan on the employees table to execute this
statement, even if there is an index on the last_name column that is made available by the
condition in the WHERE clause.

CLUSTER: The CLUSTER hint instructs the optimizer to use a cluster scan to access the
specified table. This hint applies only to clustered tables.

HASH: The HASH hint instructs the optimizer to use a hash scan to access the specified table.
This hint applies only to tables stored in a table cluster.

Hints for Access Paths

FULL Performs a full table scan

CLUSTER Accesses table using a cluster scan

HASH Accesses table using a hash scan

ROWID Accesses a table by ROWID

INDEX Selects an index scan for the specified
table

INDEX_ASC Scans an index in ascending order

INDEX_COMBINE Explicitly chooses a bitmap access path

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 14

ROWID: The ROWID hint explicitly chooses a table scan by ROWID for the specified table.

INDEX: The INDEX hint explicitly chooses an index scan for the specified table. You can use
the INDEX hint for domain, B*-tree, bitmap, and bitmap join indexes. However, it is better if
you use INDEX_COMBINE rather than INDEX for bitmap indexes because it is a more versatile
hint. This hint can optionally specify one or more indexes.

If this hint specifies a single available index, the optimizer performs a scan on this index. The
optimizer does not consider a full table scan or a scan on another index on the table.

If this hint specifies a list of available indexes, the optimizer considers the cost of a scan on
each index in the list and then performs the index scan with the lowest cost. The optimizer can
also choose to scan multiple indexes from this list and merge the results, if such an access
path has the lowest cost. The optimizer does not consider a full table scan or a scan on an
index not listed in the hint.

If this hint specifies no indexes, the optimizer considers the cost of a scan on each available
index on the table and then performs the index scan with the lowest cost. The optimizer can
also choose to scan multiple indexes and merge the results, if such an access path has the
lowest cost. The optimizer does not consider a full table scan.

INDEX_ASC: The INDEX_ASC hint explicitly chooses an index scan for the specified table. If
the statement uses an index range scan, the Oracle server scans the index entries in
ascending order of their indexed values. Because the server’s default behavior for a range
scan is to scan index entries in the ascending order of their indexed values, this hint does not
specify anything more than the INDEX hint. However, you might want to use the INDEX_ASC
hint to specify ascending range scans explicitly, should the default behavior change.

INDEX_COMBINE: The INDEX_COMBINE hint explicitly chooses a bitmap access path for the
table. If no indexes are given as arguments for the INDEX_COMBINE hint, the optimizer uses a
Boolean combination of bitmap indexes that has the best cost estimate for the table. If certain
indexes are given as arguments, the optimizer tries to use some Boolean combination of
those particular bitmap indexes.

For example:

SELECT /*+INDEX_COMBINE(customers cust_gender_bix cust_yob_bix)*/ *

FROM customers WHERE cust_year_of_birth < 70 AND cust_gender = 'M';

Note: For INDEX, INDEX_FFS, and INDEX_SS, there are counter hints, NO_INDEX,
NO_INDEX_FFS, and NO_INDEX_SS, respectively to avoid using those paths. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 E
ga

bi
 S

ol
ut

io
ns

 u
se

 o
nl

y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 15

Hints for Access Paths

Hints for Access Paths (continued)

INDEX_JOIN: The INDEX_JOIN hint explicitly instructs the optimizer to use an index join as
an access path. For the hint to have a positive effect, a sufficiently small number of indexes
must exist that contain all the columns required to resolve the query.

For example, the following query uses an index join to access the employee_id and
department_id columns, both of which are indexed in the employees table:

SELECT /*+index_join(employees emp_emp_id_pk emp_department_ix)*/
employee_id, department_id
FROM hr.employees WHERE department_id > 50;

INDEX_DESC: The INDEX_DESC hint instructs the optimizer to use a descending index scan
for the specified table. If the statement uses an index range scan and the index is ascending,
the system scans the index entries in the descending order of their indexed values. In a
partitioned index, the results are in the descending order within each partition. For a
descending index, this hint effectively cancels out the descending order, resulting in a scan of
the index entries in the ascending order. The INDEX_DESC hint explicitly chooses an index
scan for the specified table.

For example:

Hints for Access Paths

INDEX_JOIN Instructs the optimizer to use an index
join as an access path

INDEX_DESC Scans an index in descending order

INDEX_FFS Performs a fast-full index scan

INDEX_SS Performs an index skip scan

NO_INDEX Does not allow using a set of indexes

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 16

SELECT /*+ INDEX_DESC(a ord_order_date_ix) */ a.order_date,
a.promotion_id, a.order_id
FROM oe.orders a WHERE a.order_date < '01-jan-1985';

INDEX_FFS: The INDEX_FFS hint causes a fast-full index scan to be performed rather than a
full table scan.

For example:

 SELECT /*+ INDEX_FFS (o order_pk) */ COUNT(*)
FROM order_items l, orders o
WHERE l.order_id > 50 AND l.order_id = o.order_id;

INDEX_SS: The INDEX_SS hint instructs the optimizer to perform an index skip scan for the
specified indexes of the specified table. If the statement uses an index range scan, the system
scans the index entries in the ascending order of their indexed values. In a partitioned index,
the results are in the ascending order within each partition. There are also INDEX_SS_ASC
and INDEX_SS_DESC hints.

NO_INDEX: The NO_INDEX hint explicitly disallows a set of indexes for the specified table.

• If this hint specifies a single available index, the optimizer does not consider a scan on
this index. Other indexes that are not specified are still considered.

• If this hint specifies a list of available indexes, the optimizer does not consider a scan on
any of the specified indexes. Other indexes that are not specified in the list are still
considered.

• If this hint specifies no indexes, the optimizer does not consider a scan on any index on
the table. This behavior is the same as a NO_INDEX hint that specifies a list of all
available indexes for the table.

The NO_INDEX hint applies to function-based, B*-tree, bitmap, or domain indexes. If a
NO_INDEX hint and an index hint (INDEX, INDEX_ASC, INDEX_DESC, INDEX_COMBINE, or
INDEX_FFS) both specify the same indexes, then both the NO_INDEX hint and the index hint
are ignored for the specified indexes and the optimizer considers the specified indexes.

For example:

 SELECT /*+NO_INDEX(employees emp_empid)*/ employee_id
FROM employees WHERE employee_id > 200;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 17

The INDEX_COMBINE Hint: Example

The INDEX_COMBINE Hint: Example

The INDEX_COMBINE hint is designed for bitmap index operations. Remember the following:

• If certain indexes are given as arguments for the hint, the optimizer tries to use some
combination of those particular bitmap indexes.

• If no indexes are named in the hint, all indexes are considered to be hinted.

• The optimizer always tries to use hinted indexes, whether or not it considers them to be
cost effective.

In the example in the slide, suppose that all the three columns that are referenced in the
WHERE predicate of the statement in the slide (CUST_MARITAL_STATUS, CUST_GENDER, and
CUST_YEAR_OF_BIRTH) have a bitmap index. When you enable AUTOTRACE, the execution
plan of the statement might appear as shown in the next slide.

The INDEX_COMBINE Hint: Example

SELECT /*+INDEX_COMBINE(CUSTOMERS)*/
cust_last_name

FROM SH.CUSTOMERS
WHERE (CUST_GENDER= 'F' AND
CUST_MARITAL_STATUS = 'single')
OR CUST_YEAR_OF_BIRTH BETWEEN '1917'
AND '1920';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 18

The INDEX_COMBINE Hint: Example

The INDEX_COMBINE Hint: Example (continued)

In the example in the slide, the following bitmap row sources are used:

• BITMAP CONVERSION TO ROWIDS: Converts bitmaps into ROWIDs to access a table

• COUNT: Returns the number of entries if the actual values are not needed

• BITMAP OR: Computes the bitwise OR of two bitmaps

• BITMAP AND: Computes the bitwise AND of two bitmaps

• BITMAP INDEX SINGLE VALUE: Looks up the bitmap for a single key

• BITMAP INDEX RANGE SCAN: Retrieves bitmaps for a value range

• BITMAP MERGE: Merges several bitmaps resulting from a range scan into one (using a bitwise
AND operator)

The INDEX_COMBINE Hint: Example

Execution Plan

| 0 | SELECT STATEMENT |
| 1 | TABLE ACCESS BY INDEX ROWID | CUSTOMERS
2	BITMAP CONVERSION TO ROWIDS
3	BITMAP OR
4	BITMAP MERGE
5	BITMAP INDEX RANGE SCAN
6	BITMAP AND
7	BITMAP INDEX SINGLE VALUE
8	BITMAP INDEX SINGLE VALUE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 19

Hints for Query Transformation

Hints for Query Transformation

NO_QUERY_TRANSFORMATION: The NO_QUERY_TRANSFORMATION hint instructs the
optimizer to skip all query transformations, including but not limited to OR-expansion, view
merging, subquery unnesting, star transformation, and materialized view rewrite.

USE_CONCAT: The USE_CONCAT hint forces combined OR conditions in the WHERE clause of a
query to be transformed into a compound query using the UNION ALL set operator. Generally,
this transformation occurs only if the cost of the query using the concatenations is cheaper
than the cost without them. The USE_CONCAT hint disables IN-list processing.

NO_EXPAND: The NO_EXPAND hint prevents the cost-based optimizer from considering OR-
expansion for queries having OR conditions or IN-lists in the WHERE clause. Usually, the
optimizer considers using OR expansion and uses this method if it decides that the cost is
lower than not using it.

REWRITE: The REWRITE hint instructs the optimizer to rewrite a query in terms of materialized
views, when possible, without cost consideration. Use the REWRITE hint with or without a view
list. This course does not deal with Materialized Views.

UNNEST: The UNNEST hint instructs the optimizer to unnest and merge the body of the
subquery into the body of the query block that contains it, allowing the optimizer to consider
them together when evaluating access paths and joins.

Hints for Query Transformation

NO_QUERY_TRANSFORMATION Skips all query transformation

USE_CONCAT Rewrites OR into UNION ALL and
disables INLIST processing

NO_EXPAND Prevents OR expansions

REWRITE Rewrites query in terms of
materialized views

NO_REWRITE Turns off query rewrite

UNNEST Merges subquery bodies into
surrounding query block

NO_UNNEST Turns off unnesting

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 20

Hints for Query Transformation

Hints for Query Transformation (continued)

MERGE: The MERGE hint lets you merge a view for each query. If a view’s query contains a
GROUP BY clause or a DISTINCT operator in the SELECT list, then the optimizer can merge
the view’s query into the accessing statement only if complex view merging is enabled. This is
the case by default, but you can disable this mechanism using the NO_MERGE hint. Complex
merging can also be used to merge an IN subquery into the accessing statement if the
subquery is not correlated.

When the MERGE hint is used without an argument, it should be placed in the view query
block. When MERGE is used with the view name as an argument, it should be placed in the
surrounding query.

NO_MERGE: The NO_MERGE hint causes the Oracle server not to merge views that can be
merged. This hint gives the user more influence over the way in which the view is accessed.
When the NO_MERGE hint is used without an argument, it should be placed in the view query
block. When NO_MERGE is used with the view name as an argument, it should be placed in the
surrounding query.

STAR_TRANSFORMATION: The STAR_TRANSFORMATION hint causes the optimizer to use the
best plan in which the transformation has been used. Without the hint, the optimizer could
make a cost-based decision to use the best plan that is generated without the transformation,
instead of the best plan for the transformed query.

Hints for Query Transformation

MERGE Merges complex views or subqueries
with the surrounding query

NO_MERGE Prevents merging of mergeable views

STAR_TRANSFORMATION Makes the optimizer use the best plan
in which the transformation can be
used

FACT Indicates that the hinted table should
be considered as a fact table

NO_FACT Indicates that the hinted table should
not be considered as a fact table

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 21

Even if the hint is given, there is no guarantee that the transformation will take place. The
optimizer generates the subqueries only if it seems reasonable to do so. If no subqueries are
generated, there is no transformed query, and the best plan for the untransformed query is
used regardless of the hint.

FACT: The FACT hint is used in the context of the star transformation to indicate to the
transformation that the hinted table should be considered as a fact table.

NO_FACT: The NO_FACT hint is used in the context of the star transformation to indicate to the
transformation that the hinted table should not be considered as a fact table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 22

Hints for Join Orders

Hints for Join Orders

The following hints are used to suggest join orders:

ORDERED: The ORDERED hint causes the Oracle server to join tables in the order in which they
appear in the FROM clause. If you omit the ORDERED hint from a SQL statement performing a
join, the optimizer selects the order in which to join the tables. You might want to use the
ORDERED hint to specify a join order if you know something that the optimizer does not know
about the number of rows that are selected from each table. With a nested loops example, the
most precise method is to order the tables in the FROM clause in the order of the keys in the
index, with the large table at the end. Then use the following hints:

/*+ ORDERED USE_NL(FACTS) INDEX(facts fact_concat) */

Here, facts is the table and fact_concat is the index. A more general method is to use the
STAR hint.

LEADING: The LEADING hint instructs the optimizer to use the specified set of tables as the
prefix in the execution plan. The LEADING hint is ignored if the tables specified cannot be
joined first in the order specified because of dependencies in the join graph. If you specify two
or more LEADING hints on different tables, all the hints are ignored. If you specify the
ORDERED hint, it overrides all LEADING hints.

Hints for Join Orders

ORDERED Causes the Oracle server to join tables in
the order in which they appear in the
FROM clause

LEADING Uses the specified tables as the first table
in the join order

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 23

Hints for Join Operations

Hints for Join Operations

Each hint described here suggests a join operation for a table. In the hint, you must specify a
table exactly the same way as it appears in the statement. If the statement uses an alias for
the table, you must use the alias rather than the table name in the hint. However, the table
name in the hint should not include the schema name if the schema name is present in the
statement. Use of the USE_NL and USE_MERGE hints is recommended with the ORDERED hint.
The Oracle server uses these hints when the referenced table is forced to be the inner table of
a join; the hints are ignored if the referenced table is the outer table.

USE_NL: The USE_NL hint causes the Oracle server to join each specified table to another
row source with a nested loops join, using the specified table as the inner table. If you want to
optimize the statement for best response time or for the minimal elapsed time that is
necessary to return the first row selected by the query, rather than for best throughput, then
you can force the optimizer to select a nested loop join by using the USE_NL hint.

USE_NL_WITH_INDEX: The USE_NL_WITH_INDEX hint is similar to the USE_NL hint.
However, if no index is specified, the optimizer must be able to use some index with at least
one join predicate as the index key. If an index is specified, the optimizer must be able to use
that index with at least one join predicate as the index key.

NO_USE_NL: The NO_USE_NL hint causes the optimizer to exclude the nested loops join.

Hints for Join Operations

USE_NL Joins the specified table using a nested loop
join

NO_USE_NL Does not use nested loops to perform the join

USE_NL_WITH_INDEX Similar to USE_NL, but must be able to use an
index for the join

USE_MERGE Joins the specified table using a sort-merge
join

NO_USE_MERGE Does not perform sort-merge operations for the
join

USE_HASH Joins the specified table using a hash join

NO_USE_HASH Does not use hash join

DRIVING_SITE Instructs the optimizer to execute the query at
a different site than that selected by the
database

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 24

However, in some cases tables can only be joined using nested loops. In such cases, the
optimizer ignores the hint for those tables.

In many cases, a nested loop join returns the first row faster than a sort-merge join does. A
nested loop join can return the first row after reading the first selected row from one table and
the first matching row from the other and combining them. But a sort-merge join cannot return
the first row until after reading and sorting all selected rows of both tables and then combining
the first rows of each sorted row source.

In the following statement in which a nested loop is forced through a hint, orders is accessed
through a full table scan and the l.order_id = h.order_id filter condition is applied to
every row. For every row that meets the filter condition, order_items is accessed through
the index order_id.

SELECT /*+ USE_NL(l h) */ h.customer_id, l.unit_price * l.quantity
FROM oe.orders h ,oe.order_items l
WHERE l.order_id = h.order_id;

Adding an INDEX hint to the query could avoid the full table scan on orders, resulting in an
execution plan similar to one that is used on larger systems, even though it might not be
particularly efficient here.

USE_MERGE: The USE_MERGE hint causes the Oracle server to join each specified table with
another row source by using a sort-merge join, as in the following example:

SELECT /*+USE_MERGE(employees departments)*/ * FROM employees,
departments WHERE employees.department_id =
departments.department_id;

NO_USE_MERGE: The NO_USE_MERGE hint causes the optimizer to exclude the sort-merge
join to join each specified table to another row source using the specified table as the inner
table.

USE_HASH: The USE_HASH hint causes the Oracle server to join each specified table with
another row source using a hash join, as in the following example:

 SELECT /*+USE_HASH(l l2) */ l.order_date, l.order_id,
 l2.product_id, SUM(l2.unit_price*quantity)
FROM oe.orders l, oe.order_items l2
WHERE l.order_id = l2.order_id
GROUP BY l2.product_id, l.order_date, l.order_id;

Here is another example:

 SELECT /*+use_hash(employees departments)*/ *
FROM hr.employees, hr.departments
WHERE employees.department_id = departments.department_id;

NO_USE_HASH: The NO_USE_HASH hint causes the optimizer to exclude the hash join to join
each specified table to another row source using the specified table as the inner table.

DRIVING_SITE: This hint instructs the optimizer to execute the query at a different site than
that selected by the database. This hint is useful if you are using distributed query optimization
to decide on which site a join should be executed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 25

Additional Hints

Additional Hints

APPEND: The APPEND hint lets you enable direct-path INSERT if your database runs in serial
mode. Your database is in serial mode if you are not using Enterprise Edition. Conventional
INSERT is the default in serial mode, and direct-path INSERT is the default in parallel mode.
In direct-path INSERT, data is appended to the end of the table rather than using existing
space currently allocated to the table. As a result, direct-path INSERT can be considerably
faster than the conventional INSERT.
Note: In Enterprise Edition, a session must be placed in parallel mode for direct-path insert to
be the default.

NOAPPEND: The NOAPPEND hint disables direct-path INSERT by disabling parallel mode for
the duration of the INSERT statement. (Conventional INSERT is the default in serial mode,
and direct-path INSERT is the default in parallel mode.)

CURSOR_SHARING_EXACT: The Oracle server can replace literals in SQL statements with
bind variables if it is safe to do so. This is controlled with the CURSOR_SHARING startup
parameter. The CURSOR_SHARING_EXACT hint causes this behavior to be disabled. In other
words, the Oracle server executes the SQL statement without any attempt to replace literals
with bind variables.

Additional Hints

APPEND Enables direct-path INSERT

NOAPPEND Enables regular INSERT

CURSOR_SHARING_EXACT Prevents replacing literals with bind
variables

CACHE Overrides the default caching
specification of the table

PUSH_PRED Pushes join predicate into view

PUSH_SUBQ Evaluates nonmerged subqueries first

DYNAMIC_SAMPLING Controls dynamic sampling to
improve server performance

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 26

CACHE: The CACHE hint instructs the optimizer to place the blocks retrieved for the table in the
corresponding hot part of the buffer cache when a full table scan is performed. This hint is
useful for small lookup tables.

The CACHE and NOCACHE hints affect system statistics table scans (long tables) and table
scans (short tables), as shown in the V$SYSSTAT data dictionary view.

PUSH_PRED: The PUSH_PRED hint instructs the optimizer to push a join predicate into the
view.

PUSH_SUBQ: The PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries
at the earliest possible step in the execution plan. Generally, subqueries that are not merged
are executed as the last step in the execution plan. If the subquery is relatively inexpensive
and reduces the number of rows significantly, evaluating the subquery earlier can improve
performance. This hint has no effect if the subquery is applied to a remote table or one that is
joined using a merge join.

DYNAMIC_SAMPLING: The DYNAMIC_SAMPLING hint lets you control dynamic sampling to
improve server performance by determining more accurate selectivity and cardinality
estimates. You can set the value of DYNAMIC_SAMPLING to a value from 0 to 10. The higher
the level, the more effort the compiler puts into dynamic sampling and the more broadly it is
applied. Sampling defaults to the cursor level unless you specify a table.

Consider the following example:

SELECT /*+ dynamic_sampling(1) */ * FROM ...

This example enables dynamic sampling if all the following conditions are true:

• There is more than one table in the query.

• At least one table has not been analyzed and has no indexes.

• The optimizer determines that a relatively expensive table scan is required for the table
that has not been analyzed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 27

Additional Hints

Additional Hints (continued)

MONITOR: The MONITOR hint forces real-time SQL monitoring for the query, even if the
statement is not long running. This hint is valid only when the
CONTROL_MANAGEMENT_PACK_ACCESS parameter is set to DIAGNOSTIC+TUNING.

NO_MONITOR: The NO_MONITOR hint disables real-time SQL monitoring for the query.

RESULT_CACHE: The RESULT_CACHE hint instructs the database to cache the results of the
current query or query fragment in memory and then to use the cached results in future
executions of the query or query fragment.

NO_RESULT_CACHE: The optimizer caches query results in the result cache if the
RESULT_CACHE_MODE initialization parameter is set to FORCE. In this case, the
NO_RESULT_CACHE hint disables such caching for the current query.

OPT_PARAM: The OPT_PARAM hint lets you set an initialization parameter for the duration of
the current query only. This hint is valid only for the following parameters:
OPTIMIZER_DYNAMIC_SAMPLING, OPTIMIZER_INDEX_CACHING,
OPTIMIZER_INDEX_COST_ADJ, OPTIMIZER_SECURE_VIEW_MERGING, and
STAR_TRANSFORMATION_ENABLED

Additional Hints

MONITOR Forces real-time query monitoring

NO_MONITOR Disables real-time query
monitoring

RESULT_CACHE Caches the result of the query or
query fragment

NO_RESULT_CACHE Disables result caching for the
query or query fragment

OPT_PARAM Sets initialization parameter for
query duration

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 28

Hints and Views

Hints and Views

You should not use hints in or on views because views can be defined in one context and
used in another; such hints can result in unexpected plans. In particular, hints in views are
handled differently from hints on views depending on whether or not the view is mergeable
into the top-level query.

View Optimization

The statement is normally transformed into an equivalent statement that accesses the view’s
base tables. The optimizer can use one of the following techniques to transform the
statement:

• Merge the view’s query into the referencing query block in the accessing statement.

• Push the predicate of the referencing query block inside the view.

When these transformations are impossible, the view’s query is executed and the result is
accessed as if it were a table. This appears as a VIEW step in execution plans.

Mergeable Views

The optimizer can merge a view into a referencing query block if the view definition does not
contain the following:

• Set operators (UNION, UNION ALL, INTERSECT, MINUS)

Hints and Views

• Do not use hints in views.

• Use view-optimization techniques:
– Statement transformation

– Results accessed like a table

• Hints can be used on mergeable views and nonmergeable
views.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 29

• The CONNECT BY clause

• The ROWNUM pseudocolumn

• Group functions (AVG, COUNT, MAX, MIN, SUM) in the select list

Hints and Mergeable Views

Optimization-approach and goal hints can occur in a top-level query or in views:

• If there is such a hint in the top-level query, that hint is used regardless of any such hints
in the views.

• If there is no top-level optimizer-mode hint, mode hints in referenced views are used as
long as all mode hints in the views are consistent.

• If two or more mode hints in the referenced views conflict, all mode hints in the views are
discarded and the session mode is used, whether default or user specified.

Access-method and join hints on referenced views are ignored unless the view contains a
single table (or references another view with a single table). For such single-table views, an
access-method hint or a join hint on the view applies to the table in the view.

Access-method and join hints can also appear in a view definition:

• If the view is a subquery (that is, if it appears in the FROM clause of a SELECT
statement), all access-method and join hints in the view are preserved when the view is
merged with the top-level query.

• For views that are not subqueries, access-method and join hints in the view are
preserved only if the top-level query references no other tables or views (that is, if the
FROM clause of the SELECT statement contains only the view).

Hints and Nonmergeable Views

With nonmergeable views, optimizer-mode hints in the view are ignored. The top-level query
decides the optimization mode.

Because nonmergeable views are optimized separately from the top-level query, access-
method and join hints in the view are always preserved. For the same reason, access-method
hints on the view in the top-level query are ignored.

However, join hints on the view in the top-level query are preserved because (in this case) a
nonmergeable view is similar to a table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 30

Global Table Hints

Global Table Hints

Hints that specify a table generally refer to tables in the DELETE, SELECT, or UPDATE query
block in which the hint occurs, rather than to tables inside any views that are referenced by
the statement. When you want to specify hints for tables that appear inside views, it is
recommended that you use global hints instead of embedding the hint in the view.

The table hints can be transformed into global hints by using an extended table specification
syntax that includes view names with the table name as shown in the slide. In addition, an
optional query block name can precede the table specification.

For example, by using the global hint structure, you can avoid the modification of a view with
the specification of an index hint in the body of view.

Note: If a global hint references a table name or alias that is used twice in the same query (for
example, in a UNION statement), the hint applies to only the first instance of the table (or
alias).

Global Table Hints

• Extended hint syntax enables specifying for tables that
appear in views

• References a table name in the hint with a recursive dot
notation

CREATE view city_view AS
SELECT *
FROM customers c
WHERE cust_city like 'S%';

SELECT /*+ index(v.c cust_credit_limit_idx) */
v.cust_last_name, v.cust_credit_limit

FROM city_view v
WHERE cust_credit_limit > 5000;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 31

Specifying a Query Block in a Hint

Specifying a Query Block in a Hint

You can specify an optional query block name in many hints to specify the query block to
which the hint applies. This syntax lets you specify in the outer query a hint that applies to an
inline view.

The syntax of the query block argument is of the @queryblock form, where queryblock is
an identifier that specifies a query block in the query. The queryblock identifier can either be
system-generated or user-specified. When you specify a hint in the query block itself to which
the hint applies, you do not have to specify the @queryblock syntax.

The slide gives you an example. You can see that the SELECT statement uses an inline view.
The corresponding query block is given the name strange through the use of the QB_NAME
hint.

The example assumes that there is an index on the DEPTNO column of the DEPT table so that
the optimizer would normally choose that index to access the DEPT table. However, because
you specify the FULL hint to apply to the strange query block in the main query block, the
optimizer does not use the index in question. You can see that the execution plan exhibits a
full table scan on the DEPT table. In addition, the output of the plan clearly shows the system-
generated names for each query block in the original query.

Specifying a Query Block in a Hint

explain plan for
select /*+ FULL(@strange dept) */ ename
from emp e, (select /*+ QB_NAME(strange) */ *

from dept where deptno=10) d
where e.deptno = d.deptno and d.loc = 'C';

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(NULL, NULL, 'ALL'));

Plan hash value: 615168685

| Id | Operation | Name | Rows | Bytes | Cost(%CPU)|

0	SELECT STATEMENT		1	41	7 (15)
* 1	HASH JOIN		1	41	7 (15)
* 2	TABLE ACCESS FULL	DEPT	1	21	3 (0)
* 3	TABLE ACCESS FULL	EMP	3	60	3 (0)

Query Block Name / Object Alias (identified by operation id):

1 - SEL$DB579D14
2 - SEL$DB579D14 / DEPT@STRANGE
3 - SEL$DB579D14 / E@SEL$1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 32

Specifying a Full Set of Hints

Specifying a Full Set of Hints

When using hints, you might sometimes need to specify a full set of hints to ensure the
optimal execution plan. For example, if you have a very complex query consisting of many
table joins, and if you specify only the INDEX hint for a given table, then the optimizer needs
to determine the remaining access paths to be used as well as the corresponding join
methods. Therefore, even though you gave the INDEX hint, the optimizer might not
necessarily use that hint because the optimizer might have determined that the requested
index cannot be used due to the join methods and access paths that were selected by the
optimizer.

In the example, the LEADING hint specifies the exact join order to be used. The join methods
to be used on the different tables are also specified.

Specifying a Full Set of Hints

SELECT /*+ LEADING(e2 e1) USE_NL(e1)
INDEX(e1 emp_emp_id_pk) USE_MERGE(j) FULL(j) */

e1.first_name, e1.last_name, j.job_id,
sum(e2.salary) total_sal

FROM hr.employees e1, hr.employees e2,
hr.job_history j

WHERE e1.employee_id = e2.manager_id

AND e1.employee_id = j.employee_id

AND e1.hire_date = j.start_date

GROUP BY e1.first_name, e1.last_name, j.job_id

ORDER BY total_sal;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 33

Summary

Summary

In this lesson, you should have learned about additional optimizer settings and hints.

By using hints, you can influence the optimizer at the statement level. Use hints as a last
remedy when tuning SQL statements. There are several hint categories, one of which
includes hints for access-path methods.

To specify a hint, use the hint syntax in the SQL statement.

Summary

In this lesson, you should have learned how to:

• Use hints when appropriate

• Specify hints for:
– Optimizer mode

– Query transformation

– Access path

– Join orders

– Join methods

– Views

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Optimizer Hints

 Chapter 16 - Page 34

Practice Appendix B: Overview

Practice Appendix B: Overview

This practice covers using various hints to influence execution
plans.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

	Chapter 16: (Appendix B) Using Optimizer Hints
	Using Optimizer Hints
	Objectives
	Optimizer Hints: Overview
	Types of Hints
	Specifying Hints
	Rules for Hints
	Hint Recommendations
	Optimizer Hint Syntax: Example
	Hint Categories
	Optimization Goals and Approaches
	Hints for Access Paths
	The INDEX_COMBINE Hint: Example
	Hints for Query Transformation
	Hints for Join Orders
	Hints for Join Operations
	Additional Hints
	Hints and Views
	Global Table Hints
	Specifying a Query Block in a Hint
	Specifying a Full Set of Hints
	Summary
	Practice Appendix B: Overview

