
CS787: Advanced Algorithms

Homework 2 Solution Lecturer: Shuchi Chawla

Exercise 1

Showing that Not-All-Equal-SAT is in NP is trivial. We prove that it is NP-hard by reducing SAT to
it. Let φ be a 3-CNF formula. We are going to construct a CNF formula φ′ such that φ is satisfiable
if and only if φ′ is a positive Not-All-Equal-SAT instance. We introduce a “reference variable” z.
For each clause (`i∨ `j ∨ `k) in φ (where the `’s are literals), add a clause (`i∨ `j ∨ `k ∨ z) in φ′. We
claim that φ is satisfiable if and only if φ′ is a positive Not-All-Equal-SAT instance. Suppose that
φ is satisfiable. Then we can keep the values of the xi’s in the satisfying assignment and set z to
false to satisfy φ′ not-all-equally. Now suppose that φ′ has a not-all-equal assignment. If z is false
in this assignment, then this assignment is a satisfying assignment to φ. Otherwise, we can negate
all the xi’s and get a satisfying assignment to φ. This shows that Not-All-Equal-SAT is NP-hard
for 4-CNF formulas.

To show that Not-All-Equal-SAT is also NP-hard for 3-CNF formulas, we can simply break up each
4-literal clause into two 3-literal clauses, introducing a new variable as follows:

(xi ∨ xj ∨ xk ∨ z) −→ (xi ∨ xj ∨ w) ∧ (xk ∨ z ∨ w̄)

Thus Not-All-Equal-SAT is NP-complete.

Exercise 2

Consider the complete graph Kn. The optimal solution to the LP relaxation is xv = 1/2 for all
v ∈ V , giving an optimal value of n/2. On the other hand, the minimum vertex cover has n − 1
vertices (if there are two vertices not in the cover, then the edge between them is uncovered). The
gap is (n− 1)/(n/2) = 2− 1/n.

Problem 1

Part a

We assume that the optimal solution contains at least 40 elements, otherwise we can find it through
exhaustive search in polynomial time. The reason for this assumption is explained below.

We can solve this problem using randomized rounding in the same way that we did for set cover in
class (although there is a better greedy algorithm that gives a 1− 1/e approximation). We obtain
a 10-approximation. The following is an LP relaxation of the max coverage problem. Here j refers
to elements and i to the sets.

1

Maximize
∑

j

yj s.t.

yj ≤
∑

i:Si3j

xi ∀j ∈ E

m∑
i=1

cixi ≤ B

xi, yj ∈ {0, 1} ∀i, j

We can round the solution to this program as follows.

1. Solve the LP.

2. (Randomized rounding). ∀ i, pick Si independently with probability xi/4.

3. If the cost of the solution in step 2 is less than B and the number of elements covered is at
least 1/10

∑
j yj , then output the solution, else repeat step 2.

Following the analysis of set cover in class, we get that for a single run of step 2, the expected cost
of the solution is 1/4cixi ≤ B/4. Therefore, applying Markov’s inequality, the probability that the
solution’s cost exceeds B is at most 1/4.

Next, again following the analysis in class, the probability that an element j is not covered in the
solution is at most ∏

i:j∈Si

e−xi/4 = e
−1/4

∑
i:j∈Si

xi ≤ eyj/4 ≤ 1− yj(1− e−1/4)

Here, the second to last inequality follows from noting that
∑

i:j∈Si
xi ≥ yj , and the last follows

from noting that yj ≤ 1 and a−z ≤ 1− z(1− 1/a) for any z ∈ [0, 1] and a > 0.

Then, the expected number of elements covered, using the sum of expectations rule is at least∑
j yj(1 − e−1/4) > 40(1 − e−1/4) > 8 by our assumption at the beginning. We can now apply

Chernoff bounds with δ = 1/2 and get that with probability at least 1− 1/e, the actual number of
elements covered is at least 1/2(1− e−1/4)

∑
j yj > 1/10

∑
j yj .

Therefore, with constant probability (1/2 − 1/e > 0), our solution from step 2 meets the criteria
in step 3, and after a constant number of repetitions of step 2, we get the desired solution. Note
that the factor of approximation in this algorithm can be improved to a factor arbitrarily close to
1− 1/e. The greedy approach gives an approximation factor of exactly 1− 1/e.

Part b

Suppose that maximum coverage can be approximated within a factor of (1 − 1/e + ε) for some
constant ε > 0. We will show how to obtain a (1− ε) lnn-approximation for weighted set cover.

2

Let OPT be the optimal solution to some weighted set cover problem. If we set the bound of the
corresponding maximum coverage problem to OPT , the optimal solution will cover all n elements,
and hence by the hypothesis, our algorithm will give a solution that covers at least n(1− 1/e+ ε)
elements. We remove all covered elements from the set and repeat the above process, until all
elements have been covered. After t iterations, the number of remaining elements is at most
n(1/e− ε)t. We want to find t such that n(1/e− ε)t < 1.

n(1/e− ε)t < 1
lnn+ t ln(1/e− ε) < 0

t ln(1/e− ε) < − lnn

t > − lnn
ln(1/e− ε)

Note that ln(1/e− ε) < −1. Let ε′ = 1 + 1/ ln(1/e− ε) > 0. Our above analysis shows that every
element is covered after (1 − ε′) lnn iterations. The total weight of sets used in a single iteration
is bounded by OPT , hence our overall set cover has total weight at most (1− ε′) lnn ·OPT . This
gives us a (1− ε′) lnn approximation for set cover.

(As an aside, it is NP-hard to obtain a (1 − ε) lnn approximation for set cover for any constant
ε > 0.)

Problem 2

Part a

We give an O(n2) time algorithm for finding such a coloring. Let G be a graph with maximum
degree ∆. The algorithm runs as follows:

Pick an uncolored vertex and assign to it an arbitrary color that does not conflict with
any of its colored neighbors. Repeat until all vertices have been colored.

It is clear that we can always find a feasible color in step 1, since the vertex has at most ∆
neighbors which, in the worst case, eliminate ∆ colors from the choices, leaving one feasible color
for the vertex.

Part b

For each connected component of the graph, pick a starting vertex s and compute the shortest path
distances from s to all other vertices in the component by doing breadth first search. Vertices with
an odd distance are colored white, and the rest are colored black. This algorithm runs in O(n2)
time.

Part c

We claim that the neighborhood of any vertex in a 3-colorable graph is 2-colorable. Let v be a
vertex in a such a graph and N(v) be the set of neighbors of v. Without loss of generality, suppose

3

that v is colored with Color 1. Then none of the vertices in N(v) is colored with Color 1, which
means N(v) can be colored with 2 colors. Such a 2-coloring can be found as described in part (b)
by considering the subgraph induced by N(v).

Making use of the above fact, we get the following algorithm:

1. Set k to 0.

2. Pick a vertex v with degree at least
√
n. If there is no such vertex, go to step 5.

3. Arbitrarily choose a subset S of
√
n vertices adjacent to v and 2-color the subset with Color

3k + 1 and Color 3k + 2. Color v with Color 3k + 3.

4. Remove v and S (and all incident edges) from the graph. Increment k by 1. Go to step 2.

5. The remaining graph has maximum degree less than
√
n. We use the algorithm in part (a)

to color it with
√
n new colors.

Clearly, the algorithm runs in polynomial time and gives a valid coloring. The number of colors
used is 3k +

√
n, where k is the number of times step 4 gets executed. Note that at the each

execution of step 4,
√
n + 1 vertices are removed from the graph, thus step 4 can be executed at

most
√
n times. The number of colors used is therefore bounded by 4

√
n.

Part d

The algorithm is pretty much the same as the one in part (c), except that in step 2 we require v to
have degree at least n2/3, and in step 3 we color a subset of n2/3 neighbors of v (which is 3-colorable)
using the algorithm in part (c). Again, it is clear that the algorithm runs in polynomial time and
gives a valid coloring. The only thing we need to show is that the number of colors used is O(n2/3).
At the each execution of step 4, n2/3 + 1 vertices are removed from the graph, thus step 4 can be
executed at most n1/3 times. The number of colors used in each iteration is O(

√
n2/3) = O(n1/3).

At step 5, the graph has maximum degree less than n2/3, and so can be colored using no more
than n2/3 according to part (a). Therefore, the total number of colors used in the algorithm is
O(n1/3 · n1/3 + n2/3) = O(n2/3).

Problem 3

Part a

Recall the LP for facility location:

minimize
∑

j fjxj +
∑

i

∑
j cijyij

subject to xj − yij ≥ 0 ∀i, j∑
j yij ≥ 1 ∀i

yi, xij ≥ 0 ∀i, j

4

By introducing a variable αi for each customer i and βij for each customer-facility pair (i, j), we
get the following dual LP.

maximize
∑

i αi

subject to
∑

i βij ≤ fj ∀j
αj − βij ≤ cij ∀i, j
αi, βij ≥ 0 ∀i, j

We can interpret the dual LP as follows. The LP tries to recover the cost of opening facilities and
routing from customers. For each customer i, αi is the total amount paid by i. For each facility
j and customer i, βij is the portion of i that pays for facility j. The constraint αj − βij ≤ cij
states that the amount paid by customer i should not exceed the portion that goes to facility j
plus the routing cost cij , for every facility j. The constraint

∑
i βij ≤ fj states that no facility

should overcharge its customers, i.e. the customers should not pay more than enough to open the
facility. Under these constraints, we want to maximize

∑
i αi, the total amount collected from the

customers.

Part b

The main idea is that feasible solutions to the relaxed LP can partially assign each customer to
several partially-open facilities whereas the original ILP can only fully assign each customer to a
single facility. If each customer has many possible facilities available, then this advantage becomes
significant.

Suppose we have n customers and n facilities where n ≥ 2. We let the cost c(i, j) of routing
customer i to facility j be 1 if i 6= j and 3 if i = j (the verification that this defines a metric is left
to the reader). Each facility j will have cost fj = b for some constant b to be determined later.

First we determine the value of an optimal ILP solution. If we only open one facility j, the total
cost is b + (n − 1) + 3, as the minimum routing cost for customer j is 3, and all other customers
have routing cost 1. If we open two facilities, then each customer has routing cost 1 and the total
cost is 2b + n. Clearly, opening more than two facilities is suboptimal. The minimum of both of
these lower bounds is maximized when b = 2 so we let this be the cost of opening any facility and
an optimal ILP solution has cost n+ 4.

Now we find a good feasible solution to the relaxed LP. Each facility will be a (1
n−1)-fraction

open so that each customer can split its requirements uniformly over n− 1 facilities and maintain
a total routing cost of 1 per customer. This means the total value of the objective function is
bn/(n− 1) + n = 2n/(n− 1) + n, so the integrality gap is n+4

2n/(n−1)+n which is maximized at n = 4,
yielding a gap of 6/5. As an aside, note there are similar costructions that achieve gaps of 5/4 and
4/3.

Problem 4

Part a

Recall that we construct a feasible solution (ỹ, x̃) as follows.

5

1. For each customer i, let Si = {j|cij ≤ 2Ai} be the set of nearby facilities.

2. For each i and j, if j /∈ Si then set ỹij = 0; otherwise, set ỹij = y∗ij/αi where αi =
∑

j∈Si
y∗ij

is the normalizing factor.

3. For each facility j, let x̃j = min(2x∗j , 1).

We interpret the problem of picking a subset of facilities as a set cover problem. The elements are
the set of customers. For each facility j, there is a set Cj = {i|j ∈ F (i)} with weight fj . We want
to cover all customers with a minimum cost collection of facilities. This is exactly the weighted set
cover problem. The LP relaxation for this set cover problem is:

minimize
∑

j fjxj

subject to
∑

j∈F (i) xj ≥ 1 ∀i
xj ≥ 0 ∀j

We now use the LP-rounding based approach to get an O(log n) approximation for set cover.
Let x′ be the integral solution obtained by the approximation algorithm. Observe that for every
customer i,

∑
j∈F (i) x̃j ≥

∑
j∈F (i) ỹij =

∑
j∈J ỹij ≥ 1. Hence, x̃ is a feasible solution of the above

LP and the (facility opening) cost of x′ is at most O(log n) times that of x̃. We extend x′ to a
solution for the facility location problem and call it (y′, x′). The routing cost of this solution is
at most

∑
i 2Ai =

∑
i

∑
j cijy

∗
ij ≤ LPC(y∗, x∗) ≤ LPC(ỹ, x̃). Therefore, LPC(y′, x′) is at most

O(log n) times LPC(ỹ, x̃). Since LPC(ỹ, x̃) ≤ 2 ·LPC(y∗, x∗), LPC(y′, x′) is at most O(log n) times
LPC(y∗, x∗) — we have achieved a O(log n) approximation.

Problem 5

Part a

We can find a minimum cycle cover for a complete directed weighted graph G = (V,E) by reducing
it to a weighted bipartite matching problem. We define the complete bipartite graph Γ = (L,R,E′)
so that L = V , R is a “copy” of V , and every edge (u, v) ∈ E′ has weight identical to its counterpart
in E, except that for all u ∈ V , (u, u) has prohibitively large weight (say, larger than all of the other
edges combined). Next we note that any perfect matching in Γ that doesn’t contain edges of the
form (u, u) induces a cycle cover on G. In particular, each vertex in G is incident on exactly two
edges in the minimum weight perfect matching, one through the right set R and one through the
left set L. Moreover, the weight of the matching is exactly equal to the weight of the cycle cover.
Therefore, the optimal perfect matchings for Γ correspond precisely with the optimal solutions for
a cycle cover of G.

Part b

The idea is to first get a minimal cycle cover for the graph by running the algorithm above. Then
for each cycle, we remove an edge from that cycle and introduce a new edge to connect it to the
next cycle. Carrying out this transformation for all cycles in the obvious way converts the cycle
cover into a valid TSP tour.

6

TSP-{1-2}({1,2}-graph G = (V,E))
Let G′ = (V,E′) = CycleCover(G)
Let C0, . . . , Ck−1 be the disjoint cycles of G′

foreach i ∈ {0, . . . , k − 1}
Let (xi, yi) be an edge in Ci

Let E′′ = {∪k−1
i=0 (xi, y(i+1) mod k)} ∪ E′ \ {∪k−1

i=0 (xi, yi)}
return (V,E′′)

Let the number of cycles in the cycle cover be k. If we use c to denote the cost of the cycle cover,
then since edge weights are in {1, 2}, each cycle has at least two vertices, and c ≤ OPT , we get

ALG = c−
k−1∑
i=0

w((xi, yi)) +
k−1∑
i=0

w((xi, y(i+1) mod m)

≤ c− k + 2k
≤ c+ c/2
≤ (3/2)OPT.

For the last inequality we used the fact that c ≥ 2k, because each cycle contains at least two edges
of cost 1 each.

7

