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Abstract
Sensor convergence on the mobile phone is spawning

a broad base of new and interesting mobile applications.
As applications grow in sophistication, raw sensor read-
ings often require classification into more useful application-
specific high-level data. For example, GPS readings can be
classified as running, walking or biking. Unfortunately, tra-
ditional classifiers are not built for the challenges of mobile
systems: energy, latency, and the dynamics of mobile.

Kobe is a tool that aids mobile classifier development.
With the help of a SQL-like programming interface, Kobe
performs profiling and optimization of classifiers to achieve
an optimal energy-latency-accuracy tradeoff. We show
through experimentation on five real scenarios, classifiers
on Kobe exhibit tight utilization of available resources. For
comparable levels of accuracy traditional classifiers, which
do not account for resources, suffer between 66% and 176%
longer latencies and use between 31% and 330% more en-
ergy. From the experience of using Kobe to prototype two
new applications, we observe that Kobe enables easier de-
velopment of mobile sensing and classification apps.

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Microcom-

puters—Portable devices

General Terms
Algorithms, Design, Performance
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1 Introduction
Mobile devices are increasingly capable of rich multi-

modal sensing. Today, a wealth of sensors including camera,
microphone, GPS, accelerometers, proximity sensors, ambi-
ent light sensors, and multi-touch panels are already standard
on high- and mid-tier mobile devices. Mobile phone manu-
facturers are already integrating a host of additional sensors
such as compass, health monitoring sensors, dual cameras
and microphones, environmental monitoring sensors, and
RFID readers into next generation phones. The convergence
of rich sensing on the mobile phone is an important trend –
it shows few signs of abating as mobile phones are increas-
ingly the computing platform of choice for the majority of
the world’s population. As a result of this sensor-to-phone
integration, we are beginning to see continuous sensing un-
derpin many applications [22, 23, 18, 2].

Yet as sensing becomes richer and applications become
more sophisticated, sensor readings alone are typically in-
sufficient. Mobile applications rarely use raw sensor read-
ings directly, since such readings do not cleanly map to
meaningful user context, intent or application-level actions.
Rather, mobile applications often employ sensor classifica-
tion to extract useful high-level inferred data, or Applica-
tion Data Units (ADUs). For example: a human activity in-
ference application might sift through microphone and ac-
celerometer data to understand when an individual is in a
meeting, working alone, or exercising [22]; a transportation
inference application might look at patterns in GPS and WiFi
signals to determine when an individual takes a car, bike or
subway [33]; or an augmented reality application might pro-
cess the camera video feed to label interesting objects that
the individual is viewing through the camera lens [2]. These
examples span the gamut from rich multi-sensor capture to
simple sensor streams. Yet, each application involves non-
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trivial conversion of raw data into ADUs.
The idea of mapping low-level sensor readings (collected

on mobile phones or otherwise) to high-level ADUs has a
long history. Statistical Machine Learning (SML) has been
identified as offering good mathematical underpinnings and
broad applicability across sensor modalities, while eschew-
ing brittle rule-based engineering [9]. For example, activ-
ity recognition and image recognition commonly employ
SML [7]. SML tools almost exclusively drive ubiquitous
computing building blocks such as gesture recognition and
wearable computing [19]. To assign correct ADU class la-
bels to sensor readings, these scenarios all use continuous
classification – classification that is repeated over some ex-
tended time window and is driven by the rate of sensor read-
ings rather than explicit user requests.

Given this rich body of work, SML seems to offer an el-
egant solution for mobile sensing application development.
The battery of mature SML classification algorithms directly
address the problem of ADU construction from base sensor
readings.

Unfortunately, SML classification algorithms are not
purpose-built for mobile settings. Symptoms from early
classifier-based mobile applications include swings of up to
55% in classification accuracy [22, 23], erratic user experi-
ence with response times fluctuating from user to user [11, 7,
17], and undesirable drop-offs of phone standby time from
20 hours to 4 hours due to unanticipated energy consump-
tion [22]. Moreover, anecdotal evidence indicates that suc-
cessful prototypes take tedious hand tuning and are often too
brittle beyond the lab [22, 20].

In response to these symptoms, we have developed Kobe
which is comprised of: a SML classifier programming in-
terface, classifier optimizer, and adaptive runtime for mobile
phones. Kobe offers no SML algorithmic contributions –
rather, it extends systems support to app developers daunted
by getting their mobile classifiers right. Specifically, Kobe
addresses the following three challenges.

First, traditional classifiers designed for non-mobile envi-
ronments target high accuracy but ignore latency and energy
concerns pervasive in mobile systems. In contrast, mobile
apps need classifiers that offer reasonable trade-offs among
accuracy, latency and energy. With Kobe, developers sup-
ply accuracy, energy and latency constraints. Kobe identifies
configurations that offer the best accuracy-to-cost tradeoff.
Configurations can differ in the following ways.
• Classifier-specific parameters. As a simple example, an

acoustic activity classifier may be configured to: take
either longer or shorter microphone samples per time
period; use either a greater or fewer number of Fourier
transform sample points for spectral analysis, or; use
higher or lower dimensional Gaussian distributions for
Gaussian mixture model based classification. Parame-
ter choices affect both accuracy and cost.

• Classifier Partitioning. Classifiers may be partitioned
to either partially or entirely offload computation to the
cloud. In the example above, the cloud may support of-
fload of the Fourier computation, the modeling, or both.
Previous work [5, 11] has looked closely at online cloud

offload, and Kobe adopts similar techniques. Partition-
ing choices affects cost but not accuracy.

In contrast to previous work, Kobe’s exclusive focus on clas-
sifiers permits it to perform extensive offline classifier profil-
ing to determine Pareto optimal accuracy-to-cost tradeoffs.
Offline profiling occurs on cluster servers, with only a small
amount of configuration data stored on the phone. This shifts
the overhead of optimal configuration search from tightly
constrained online/mobile to the more favorable offline/clus-
ter. As a result, Kobe classifiers are optimally-balanced for
accuracy and cost, and operate within developer-defined con-
straints at low runtime overhead.

Second, traditional classifiers are not built to target the
wide range of environments that mobile classifiers encounter:
Networking and cloud availability fluctuates, user usage pat-
terns vary, and devices are extremely heterogeneous and
increasingly multitasking which cause dynamic changes in
shared local resources of memory, computation and energy.
In response, Kobe leverages the optimization techniques de-
scribed above and identifies configurations under a range of
different environments as characterized by network band-
width and latency, processor load, device and user. For each
environment, Kobe identifies the optimal configuration. Dur-
ing runtime, whenever an environment change is detected,
the Kobe runtime reconfigures to the new optimal classifier.

Third, mobile application logic and the classifiers they
employ are too tightly coupled. The two are inextrica-
bly intertwined because of the tedious joint application-and-
classifier hand tuning that goes into getting good accuracy
(not to mention latency and energy). Kobe provides a SQL-
like interface to ease development and decouple application
logic from SML algorithms. Moreover, we demonstrate that
the decoupling allows two simple but effective query opti-
mizations, namely, short-circuiting during pipeline evalua-
tion and the substitution of costly N-way classifiers when
simpler binary classifiers will suffice; as well as allowing
classifier algorithm updates without application modifica-
tion.

We evaluated Kobe by porting established classifiers for
five distinct classification scenarios, and additionally used
Kobe to prototype two new applications. The five scenar-
ios were: user state detection, transportation mode inference,
building image recognition, sound classification, and face
recognition. From our in-house experience, we found ap-
plications straightforward to write, and SML classifiers easy
to port into Kobe, with an average porting time of one week.
Moreover, using established datasets, Kobe was able to adapt
classification performance to tightly fit all tested environ-
mental changes, whereas traditional classifiers, for similar
accuracy levels, suffered between 66% and 176% longer la-
tencies and used between 31% and 330% more energy. Fur-
thermore, Kobe’s query optimizer allowed additional energy
and latency savings of 16% and 76% that traditional, isolated
classifiers do not deliver. Lastly, from the experience of us-
ing Kobe to prototype two new applications, we observe that
Kobe decreases the burden to build mobile continuous clas-
sification applications.

Our contributions are as follows.
• We present an approach to optimizing mobile classifiers



for accuracy and cost. The optimization can run entirely
offline, allowing it to scale to complex classifiers with
many configuration options.

• We show our approach can also build adaptive classi-
fiers that are optimal in a range of mobile environments.

• We show that our SQL-like classifier interface decou-
ples app developers from SML experts. It also leads to
support for two query optimizations.

• The Kobe system realizes these benefits, and is exten-
sively evaluated on several classifiers and datasets.

The paper is organized as follows. §2 reviews several
mobile classifiers. §3 delves into the challenges inhibiting
mobile classifiers. §4 provides a brief system overview. §5
presents the Kobe programming interface. §6 discusses the
system architecture. §7 details the implementation. §8 eval-
uates Kobe. §9 discusses related work, and §10 discusses
usage experiences and draws conclusions.

2 Example Classifiers and Issues
SML classification is implemented as a data processing

pipeline consisting of three main stages. The Sensor Sam-
pling (SS) stage gets samples from sensors. The Feature Ex-
traction (FE) stage converts samples into (a set of) feature
vectors. Feature vectors attempt to compactly represent sen-
sor samples while preserving aspects of the samples that best
differentiate classes. The Model Computation (MC) stage
executes the classification algorithm on each (set of) feature
vector, emitting an ADU indicating the class of the corre-
sponding sample. The MC stage employs a model, which is
trained offline. Model training ingests a corpus of training
data, and computes model parameters according to a model-
specific algorithm. We focus on supervised learning scenar-
ios with labeled training data, in which each feature vector
of the training data is tagged with its correct class.

SML experts measure a classification pipeline’s perfor-
mance by its accuracy: the percentage of samples which it
classifies correctly.1 SML experts seek to maximize the gen-
erality of their model, measuring accuracy not only against
training data, but also against previously unencountered test
data. At best, energy and latency concerns are nascent and
application-specific [20, 31].

To make things concrete, we walk through four represen-
tative mobile classifiers, and highlight the specific challenges
of each.

Sound Classification (SC) Sound classifiers have been used
to classify many topics including music genre, everyday
sound sources, and social status among speakers. The bottle-
neck to efficient classification is data processing for the high
audio data rate. Especially in the face of network variability
and device heterogeneity, it can be unclear whether to prefer:
local phone processing or remote server processing [11]; and
sophisticated classifiers or simple ones [20].

Image Recognition (IR) Vision-based augmented reality

1Other success metrics such as true/false positives, true/false
negatives, precision and recall, and model simplicity are also ap-
plicable, though we focus on accuracy as the chief metric in this
work.

systems continuously label objects in the phone camera’s
field of view [2]. These continuous image classifiers must
inherently deal with limited latency budgets and treat energy
parsimoniously. Vision pipelines tuned for traditional image
recognition are poorly suited for augmented reality [13]. An
approach that accounts for application constraints and adapts
the pipeline accordingly is needed.

Motion Classification Sensor such as GPS, accelerometer
and compass can be converted into user state for use in ex-
ercise tracking [3], mobile social networking [22], and per-
sonal environmental impact assessment [23]. Acceleration
Classifiers (AC) can be used for detecting highly-specific
ADUs. For example, some have used ACs for senior citizen
fall detection, and our own application (§5) detects whether
the user is slouching or not slouching while seated. Such
app-specific ADUs mean developers must spend effort to en-
sure their custom classifiers meet energy and latency needs
while remaining accurate. Another motion classifier exam-
ple is using GPS to infer Transportation Mode (TM) such
as walking, driving or biking. However, naı̈ve sampling
of energy-hungry sensors such as GPS is a significant is-
sue [15, 22]. In addition, effective FE routines may be too
costly on mobile devices [33]. As a result, practitioners often
spend much effort to hand-tune such systems [22, 23].

3 Limitations of Existing Solutions
To address the challenges outlined above, many proposals

have emerged. Unfortunately, our exploratory evaluation de-
tailed below found that these options are not fully satisfying.

Energy and Latency To meet mobile energy and latency
constraints, developers have sought to either engage in (1)
isolated sample rate tuning, or (2) manual FE and MC ma-
nipulation [33]. In the former approach, downsampling sen-
sors is appealing because it is straightforward to implement.
However, downsampling alone leads to suboptimal configu-
rations, since the remainder of the pipeline is not optimized
for the lower sample rate [16, 14]. Conversely, upsampling
when extra energy is available is likely to yield negligible
performance improvement since the rest of the pipeline is un-
prepared to use the extra samples. Furthermore, as discussed
in §2, the cost of sampling may be dominated by pipeline
bottlenecks in FE and MC, and not by SS energy cost. For
example, we found that sample rate adjustments in isolation
resulted in missed accuracy gain opportunities of 3.6% for
TM. Sample rate tuning is at most a partial solution to devel-
oping good classification pipelines.

In the latter approach, developers engage in extensive
hand tuning of classification algorithms when porting to mo-
bile devices [29]. Algorithm-specific hand tuning can offer
good results for point cases, but does not scale. Optimizing
FE and MC stages are non-trivial tasks, and it is not obvi-
ous which of the many FE- and MC-specific parameters are
most suitable. As an example, we found that for a standard
IR classifier [8], accuracy and latency were very weakly cor-
related (0.61), so simply choosing “more expensive settings”
does not necessarily yield higher accuracy. As a result, de-
velopers may only perform very coarse tuning, such as swap-
ping in and out entire pipeline stages as black boxes, easily



overlooking good configurations.

Adaptivity With the complications above, it may not be
surprising that app developers are loathed to re-tune their
pipelines. However, these fossilized pipelines operate in in-
creasingly dynamic environments. Lack of adaptation cre-
ates two issues. Static pipelines tuned conservatively for cost
give up possible accuracy gains when resources are abun-
dant, suffering underutilization. Conversely, static pipelines
tuned aggressively for accuracy often exceed constraints
when resources are limited, suffering overutilization. As one
example, in our tests with IR, we experienced overutilization
leading to as much as 263% longer latencies for the nearly
the same classification accuracy.

Tight Coupling Ideally, mobile applications and the classi-
fier implementations they employ should be decoupled and
able to evolve independently. Unfortunately, these two are
currently entangled due to the brittle pipeline tuning that de-
velopers must undertake. The result is mobile applications,
once built, cannot easily incorporate orthogonal advances in
SML classification.

Furthermore, decoupling helps with pipeline reuse and
concurrent pipeline execution. Multi-classifier applications
are currently rare, since they suffer the single-classifier
challenges mentioned above, as well as from the chal-
lenges of composition: how should developers construct
multi-classifier applications, and what are efficient execution
strategies? It turns out that Kobe’s decoupling of applica-
tion and pipeline leads to natural support for multi-classifier
scheduling, facilitating multi-classifier apps.

Why Not Just Cloud and Thin Client? Mobile devices
should leverage cloud resources when it makes sense. One
approach taken by mobile applications is to architect a thin
client to a resource rich cloud backend. However, this ap-
proach is not the best solution for all scenarios. First, cloud-
only approaches ignore the fact that mobile phones are get-
ting increasingly powerful processors. Second, with sens-
ing being more continuous, it is very energy intensive to
continuously power a wireless connection for constant up-
loading of samples and downloading of ADUs. Our exper-
iments confirmed these two observations for our IR and SC
pipelines: compared to the energy demands of local com-
putation for phone-only, cloud-only classifiers used between
31-252% more energy for WiFi, 63-77% more for GSM, and
250-259% more for 3G, in line with findings in the litera-
ture [6].

4 Overview of Kobe
Kobe is structured as a SQL-like Interface, Optimizer and

Runtime (see Fig. 1 and Fig. 2). It supports two workflows
designed to cater to two distinct user types, app developers
and SML experts. SML experts are able to port to Kobe their
latest developed and tested algorithms by contributing brand
new modules or extending existing ones. Each pipeline mod-
ule is an implementation of a pipeline stage. Modules expose
parameters that possibly affect the accuracy-cost balance.2

2Module parameters should not be confused with model training
parameters.
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Figure 1. The Kobe Optimizer generates configuration
files offline.
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Figure 2. The Kobe Runtime. Note pipeline stages FE
and MC may either run on the phone or in the cloud.

Module contributions join an existing library of Kobe mod-
ules that app developers can leverage.

App developers incorporate classification into their mo-
bile applications by simply supplying: (1) one or more SQL-
like queries, (2) training data, (3) app-specific performance
constraints on accuracy, energy or latency, and (4) prototype
pipelines consisting of desired modules.

The common Kobe workflow begins with the query sub-
mitted to the Optimizer. The Optimizer (Fig. 1) performs an
offline search for pipeline configurations that meet app con-
straints. Configurations are modules with parameter values
set. The Runtime selects and executes the best configuration
at runtime, changing among configurations as the environ-
ment changes (Fig. 2).

The Optimizer consists of a series of nested optimizers.
First, the Query Optimizer is responsible for multi-pipeline
and query substitution optimizations. It invokes the Adapta-
tion Optimizer for this purpose potentially multiple times to
assess different query execution strategies. The responsibil-
ity of the Adaptation Optimizer is to explore environmental
pipeline configuration variations. Each call to the Adapta-
tion Optimizer typically will result in multiple calls to the



Core Optimizer. The role of the Core Optimizer is to profile
the costs of all candidate pipeline configuration for a given
environment. The Personalizer can further tune the pipeline
based on an individual’s observed data over time.

Prior to deployment the Optimizer completes its search
of candidate pipeline configurations and selects the subset
which are Pareto optimal. The output of this process is a
mapping of the Pareto optimal pipelines to the appropriate
discretized environments. Later, post deployment, the Kobe
Runtime installs the appropriate pipeline configuration based
on observed environmental conditions. A pipeline change
can entail running lower or higher accuracy or cost configu-
rations at any stage, as well as repartitioning stages between
phone and cloud. §6 examines the Optimizer and Runtime
in more depth.

5 Programming Interface
Kobe decouples the concerns of app developers from

SML experts by interposing a straightforward SQL-like in-
terface.

App Developer Interface. App developers construct classi-
fiers with the CLASSIFIER keyword.

MyC = CLASSIFIER ( TRAINING DATA ,
CONSTRAINTS ,
PROTOTYPE PIPELINE )

The TRAINING DATA represents a set of pairs, each pair con-
sisting of a sensor sample and a class label. While obtaining
labeled data does impose work, it is a frequently used ap-
proach. Partially-automated and scalable approaches such as
wardriving, crowdsourcing and mechanical turks can be of
some assistance. The CONSTRAINTS supplied by the devel-
oper specify a latency cap per classification, an energy cap
per classification, or a minimally acceptable expected clas-
sification accuracy. The PROTOTYPE PIPELINE specifies an
array of pipeline modules since it is not uncommon for the
developer to have some preference for the pipeline’s compo-
sition. For example, a pipeline for sound classification may
consist of an audio sampling module, MFCC3 module, fol-
lowed by a GMM4 module. Example parameters include the
sampling rate and resolution for the audio module; MFCC’s
number of coefficients (similar to an FFT’s number of sam-
ple points); and GMM’s number of Gaussian model compo-
nents used.

The SQL-like interface naturally supports standard SQL
operations and composition of multiple pipelines. At the
same time, this interface leaves certain execution decisions
purposely unspecified. Consider the following two applica-
tions and their respective queries.

Example 1: Offict Fit Office workers may need occasional
reminders to lead healthier lifestyles around the office. Offict
Fit cues users on contextually relevant opportunities such as
taking the stairs in lieu of the elevator, and sitting up straight

3Mel-frequency cepstral coefficients [12], frequency based fea-
tures commonly used for sound classification and speaker and
speech recognition.

4Classification by a mixture of Gaussian distributions [12].

rather than slouching. User states are detected via contin-
uous sampling of the accelerometer. Offict Fit also identi-
fies intense periods of working consisting of sitting (via ac-
celerometer) and typing (via microphone). An AC differenti-
ates among the user states mentioned. An SC checks whether
sounds are typing or non-typing sounds.

Example 2: Cocktail Party Suppose that at a social gather-
ing, we wish to automatically record names of other people
with whom we’ve had conversations, but only if they are our
coworkers. The application uses a continuous image stream
and sound stream (e.g., from a Bluetooth earpiece). A clas-
sifier is first constructed for classifying sounds as conver-
sations. Second, images of faces are classified as people’s
names, and the person’s name is emitted when the person is
a coworker and a conversation is detected.

We first construct a query for Offict Fit. Classification can
be combined with class filtering (SQL selection) to achieve
detection. The following constructs a classifier that classi-
fies ambient sound as one of several sounds (‘typing’, ‘mu-
sic’, ‘convo’, ‘traffic’, or ‘office-noise’),5 and returns only
the sounds that are typing sounds.

N o i s e P i p e = CLASSIFIER ( sndTra in , [ maxEnergy
= 500mJ ] , [AUDIO ,MFCC,GMM] )

SELECT S n d S t r . Raw EVERY 30 s FROM S n d S t r
WHERE N o i s e P i p e ( S n d S t r . Raw ) = ’ t y p i n g ’

Here, SndStr is a data stream [4]. Unlike static tables, data
streams produce data indefinitely. Queries, once submitted,
continuously process the stream. EVERY 30s indicates that
the query should emit an ADU every 30 seconds. SndStr is a
sound stream that emits sound samples as SndStr .Raw. Note
that the frequency of accessing SndStr stream is not speci-
fied by design. We finish the Offict Fit example by show-
ing the interface’s support for two classifiers on two streams.
The second stream, AccelStr , is an accelerometer stream that
emits accelerometer readings and is classified by an Accel-
eration Classifier MotionPipe.

Mot ionPipe = CLASSIFIER ( a c c e l T r a i n ,
[ minAccuracy = 95%] ,
[ACC, FFT SUITE , DTREE ] )

SELECT ’ work ing ’ EVERY 30 s
FROM A c c e l S t r , S n d S t r
WHERE Mot ionPipe ( A c c e l S t r . Raw ) = ’ s i t t i n g ’
AND N o i s e P i p e ( S n d S t r . Raw ) = ’ t y p i n g ’

This multi-classifier query with logical conjunction is a sim-
ple to express in the SQL-like interface. Also, note that
the query does not define the processing order of the two
pipelines.

The Cocktail Party query similarly combines the results
of a face classifier and sound classifier to achieve its objec-
tive of identifying conversations with coworkers.

FacePipe = CLASSIFIER ( mugsTrain ,
[ maxLatency = 10 s ] ,
[ACC, FFT SUITE , DTREE ] )

5Note class labels are defined by the labeled training data.
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Figure 3. Verifying accuracy of Cost Model techniques
SELECT Coworkers . Name EVERY 30 s
FROM ImgStr , SndS t r , Coworkers
WHERE FacePipe ( I mg S t r . Raw ) = Coworkers . Name
AND N o i s e P i p e ( S n d S t r . Raw ) = ’ convo ’

Note that Coworkers is a regular SQL table that just lists
names of coworkers. It is consulted for a match whenever
FacePipe classifies a person’s face.

SML Expert Interface Each Kobe module corresponds to
an implementation of a SS, FE or MC stage in a classification
pipeline. While Kobe provides a standard library of modules,
SML experts can contribute new algorithmic innovations or
scenario-specific feature extractors through new module im-
plementations. For example, even though face recognition is
a subclass of image recognition, face-specific feature extrac-
tion is common. We implemented several face-specific mod-
ules [10] after implementing general purpose image mod-
ules [8]. The following describes the details of the Kobe API
for connecting new SML modules.

Each module is tuned by the Optimizer via one or more
parameters which affect the module’s accuracy-cost trade-
off. The SML expert can expose as many parameters as
desired, and exposes each parameter by an instance of the
SET COMPLEXITY(CVAL) call. The CVAL is a continuous
[0,1] scalar. As a guideline, the module developer should
map higher values of CVAL to more costly operating points.
For example, a parameter of the image feature extractor is
the number of bits used to represent the feature vector; set-
ting this parameter at high complexity results in more feature
vector bits. In addition, each parameter suggests a step size
in the parameter space with the GET SUGGESTED STEPSZ()
call. The Optimizer uses the step size as a guide when step-
ping through the parameter space.

6 Architecture
We first describe the Core Optimizer, which consists of

the Cost Modeler and Searcher. Afterward, we describe
the layers above the Core Optimizer: Adaptation Optimizer,
Query Optimizer and Personalizer.

Cost Modeling The Cost Modeler maps pipeline configu-
rations to accuracy and cost profiles that capture phone la-
tency and energy consumption. Ideally, the cost profile of
every configuration is profiled by performing measurement
experiments using actual phone hardware. However, this
is not scalable as manual measurement is required for ev-
ery candidate combination of pipeline configuration and dif-
ferent phone hardware when searching for Pareto optimal

pipelines. During the development of the Cost Modeler we
investigated two alternatives for approximating the accuracy
of making actual hardware measurements without requiring
every configuration to be measured. The first of these uses
software emulation, with the second using regression mod-
eling.

Our emulation-based approach executes pipeline configu-
rations using software emulation of the phone platform run-
ning on a server. Emulation accurately reflects an actual clas-
sifier’s performance because, provided faithful training data,
classifiers are deterministic functions. We find that we can
estimate energy and latency based on the latency observed
in the emulator and the use of two simple calibration func-
tions, one for energy and one for latency. To build this func-
tion we make around 45 measurements which compare the
observed emulator latency with the energy and latency of
one single phone model for different pipeline configurations.
The calibration functions are simply linear regressions that
model real phone latency or real phone energy consumption
using the emulator latency as a dependent variable. This cal-
ibration function is independent of the pipeline configura-
tion and is only specific to the hardware used, making the
number required manageable. When this technique is used
to model the cost of a particular configuration the emulator
runs the configuration, producing the latency of the emulated
pipeline. By applying the calibration functions to the emu-
lation latency, an estimate of actual energy and latency is
produced.

Our regression modeling approach trades emulation’s fi-
delity for faster modeling speed. We again make a series of
real latency and energy measurements for differing pipeline
configurations. A separate multi-factor regression model is
fitted for every pair of phone hardware and either FE or
MC modules. Each regression model predicts: (1) energy,
which incorporates the energy cost to the phone of both lo-
cal data processing and any required wireless data transfers;
and (2) latency, which considers the complete delay from
module start (i.e., the sensor is sampled, or model inference
begins) to completion (i.e., features extracted or model infer-
ence made) – including any delay incurred by data transfer
and cloud computation. These predictions are based on a dif-
ferent set of dependent variables for each regression model.
Specifically, predictions are based on the particular configu-
ration options exposed by the FE or MC module being mod-
eled. By summing the model estimates for the FE and MC
modules defined by the pipeline configuration, we are able
to estimate the cost of the complete pipeline configuration.
Around 10 to 12 measurements are used for each regression
model we use.

The classification accuracy of each pipeline is determined
without the use of either of our cost modeling techniques.
Instead, for each FE and MC configuration, we use five-fold
cross validation over the training data to assign its accuracy.

So far our Cost Modeler has been used on two phones:
the HTC Wizard and HTC Touch Pro. We experimentally
validate the accuracy of our two Cost Modeling approaches
for these two phones. Figure 3(a) and figure 3(b) summa-
rize the results of these experiments for latency under the
two approaches. Each data point represents a single valida-



tion experiment result in which a single pipeline configura-
tion latency estimate was compared to an actual value. If
the estimate and the actual values were perfect then all data
points would sit along the diagonal of the graph. The good-
ness of fit values for these two figures are 99.98 and 92.01
respectively. Similar results supporting our Cost Modeling
techniques were found for energy as well. Our final Cost
Model is a hybrid of both approaches. We primarily use the
regression based Cost Model, and then refine it by the emu-
lator based Cost Model for configurations that appear close
to optimal.

Searching Given all the possible configurations, Searcher
finds the set of Pareto optimal configurations as judged by
accuracy vs. cost. We employ an off-the-shelf search so-
lution, Grid Search [30], because it is embarrassingly par-
allel and allows us to scale configuration evaluation to an
arbitrarily-sized machine cluster. Grid Search determines
which configurations to explore, and calls out to the Cost
Modeler to retrieve their accuracy and cost profiles. It is
during this time that the Searcher explores various sample
rates and other module-specific parameters. Grid search is
simply one search algorithm, and in principle, we can substi-
tute more efficient (but less parallel) search algorithms [30].
Searcher precomputes all Pareto optimal configurations of-
fline prior to runtime.

Searching also benefits from the fact that pipelines con-
sist of sequential stages. This means that the number of con-
figurations is polynomial, not exponential, in the number of
module parameters. In §8, we show that Grid Search scales
to support this number of configurations.

Runtime Adaptation and Cloud Offloading The Adapta-
tion Optimizer and Runtime cooperate to support runtime
adaptation for both multi-programming, and cloud offload.
Kobe tackles the two cases together. Offline, Kobe first
discretizes the possible environments into fast/medium/s-
low networking and heavily/moderately/lightly loaded de-
vice processor. Kobe also enumerates the possible mobile
and cloud pipeline placement options: FE and MC on the
mobile; FE on the mobile and MC on the cloud; FE on the
cloud and MC on the mobile; FE and MC on the cloud.6 For
each environment discretization, Adaptation Optimizer calls
Core Optimizer to compute a Pareto optimal configuration
set. The Core Optimizer considers all pipeline placement op-
tions in determining the Pareto optimal. The Cost Modeler
maintains a collection of regression models for each discrete
environment – if cloud servers are involved, the Cost Mod-
eler actually runs the pipeline across an emulated network
and server. The collection of all Pareto optimal configura-
tion sets is first pruned of those that do not meet developer
constraints. The remainder is passed to the Runtime.

Online, Runtime detects changes to networking latency,
bandwidth or processor utilization, and reconfigures to the
optimal configuration corresponding to the new environment
as well as the application’s accuracy and cost constraints.
Reconfiguration is simply a matter of setting parameters of
each pipeline module. In the case that the new pipeline

6SS must occur on the phone since it interfaces to the sensors.

placement spans the cloud, Runtime also initializes connec-
tions with the remote server and sets parameter values on its
modules.

The advantages of this approach are that heavy-weight
optimization is entirely precomputed, and reconfiguration is
just a matter of parameter setting and (possibly) buffer ship-
ment. The modules need not handle any remote invocation
issues. It does require additional configuration storage space
on the phone, which we show in §8 is not significant. It
also requires FE and MC modules to provide both phone and
server implementations. Both are installed on their respec-
tive platforms before runtime.

Query Optimizer The Query Optimizer performs two op-
timizations. First, it performs multi-classifier scheduling to
optimally schedule multiple classifiers from the same query.
To accomplish this offline, it first calls Adaptation Optimizer
for each pipeline independently. All of these optimal config-
urations are stored on the device. During runtime, the Run-
time selects a configuration for each pipeline such that (1)
the sum processor utilization is equal to the actual proces-
sor availability, and (2) the application constraints for each
pipeline are satisfied.

Commonly, applications are only interested in logical
conjunctions of specific ADUs. For example, in Cocktail
Party, only faces of coworkers AND conversation sounds are
of interest. Query Optimizer short circuits evaluation of lat-
ter pipelines if former pipelines do not pass interest condi-
tions. This results in significant cost savings by skipping en-
tire pipeline executions. While short-circuiting logical con-
junction evaluation is well-understood, Kobe can confidently
calculate both criteria for good ordering: the labeled train-
ing data tells us the likelihood of passing filter conditions,
and the Cost Modeler tells us the pipeline cost. In prac-
tice, this makes our approach robust to estimation errors.
This scheduling optimization is in the spirit of earlier work
on sensor sampling order [21]. However, it differs in that
we deal explicitly with filtering ADUs, not raw sensor data
which is more difficult to interpret.

Second, the Query Optimizer performs binary classifier
substitution for N-way classifiers when appropriate. N-way
classifiers (all of our examples thus far) label each sample
as a specific class out of N labels, whereas a binary clas-
sifier simply decides whether a sample belongs to a single
class (e.g., “in conversation” or “not in conversation” for a
Sound Classifier). By inspecting the query, Query Optimizer
identifies opportunities where N-way classifiers may be re-
placed with a binary classifiers. An example is NoisePipe in
Offict Fit, which involves an equality test with a fixed class
label. Upon identifying this opportunity, Query Optimizer
calls Adaptation Optimizer n times to builds n classifiers
each of which is binary, one for each class. Specifically, for
one class with label i, Kobe trains a binary classifier for it by
merging all training data outside this class and labeling them
as i. During online classification, when binary classification
for class i is encountered, the Runtime substitutes in the bi-
nary classifier for class i to perform the inference. Besides
equality tests, the binary classifier substitution also applies
to class change detection over continuous streams; when an



N-way classifier detects i at time t, a binary classifier may
be used to detect changes to i at subsequent time steps. If a
change to i is detected, then the full N-way classifier is in-
voked to determine the new class. The benefit of the binary
classifier is that it can be more cost-effective than the N-way
classifier, as we show in §8.

Personalization The Personalizer adapts the classifier(s) to
a user’s usage patterns. It does this by calling Query Opti-
mizer with training data reduced to only that of the end user
for whom the application is being deployed. Training data is
often sourced from many end users, and the resulting classi-
fier may be poorly suited for classifying particular individual
end users. The advantage of personalization is that models
trained on an end user’s data should intuitively perform well
when run against test data for the same individual. The dis-
advantage is a practical one: any one individual may not have
sufficient training data, and hence constructed pipelines may
not accurately classify long-tail classes. Therefore, Kobe
runs the Personalizer as an offline reoptimization after an
initial deployment period collects enough personal data. Ini-
tially, the regular classifier is used.

7 Implementation
The Optimizer is implemented in C# on a cluster of 26

machines. One machine is designated the master, and the
others are slaves. A user invokes the master with a new re-
quest with the elements discussed in §5. The master first
copies all the training data and required classifier modules
to each slave. Next, the classifier’s parameter space is sub-
divided among the slave machines. Each slave is responsi-
ble for estimating the accuracy and cost of all configurations
in its parameter subspace across all environments, and re-
turning these estimates to the master. The master sorts all
configurations by accuracy and cost to determine the Pareto
optimal set per environment. The Query Optimizer invokes
the master-slave infrastucture multiple times for the purpose
of profiling binary classifiers, and for each classifier that is
part of a multi-classifier query. The Personalizer is simply a
request with user-specific training data. The master outputs
configuration files that are used by the Runtime. These files
follow a JSON-like format. Since our cluster is small, any
node failures are restarted manually. Slaves can be restarted
without impacting correctness since each configuration pro-
file is independent of others. Master failure causes us to
restart the entire request.

The Runtime spans the phone client and the cloud server.
The modules are implemented in C# and C++ on the phone’s
Windows Mobile .NET Compact Framework and on the
server’s .NET Framework. Cloud offload invocations use
.NET Web Services for RPC. Modules can either be stateless
or stateful. Stateless modules generate output based only on
the current input. Therefore, they can switch between phone
and cloud execution without any further initialization. Most
FE and MC modules are stateless. Stateful modules gener-
ate output based on a history of past inputs. Two stateful
modules are HMM7 which smooths a window of the most
recent feature vectors to produce an ADU, and the Trans-

7Hidden Markov Model

portation Mode FE which batches up many samples before
emitting a features vector. Stateful modules expose their
state to the Runtime so that the Runtime may initialize the
state at the phone or server whenever the place of execution
changes. To obtain state storage, modules make the upcall
GET BUFFER(BUFFERSZ). The input BUFFERSZ, the maxi-
mum possible history of inputs that the module should ever
need. It returns a buffer which can be populated by the mod-
ule, but is otherwise managed by the Runtime.

Cloud offload does introduce the possibility of server fail-
ure independent of phone failure. Server fail-stop faults are
handled by reverting to phone-only execution after timeout.
Since most FEs and MCs are stateless, restarting execution is
straightforward. For those that are stateful, the fault does not
impact correctness, and only degrades accuracy temporarily
e.g., while an HMM repopulates its window’s worth of data.

To monitor environmental change at runtime, we adopt
standard tools ping and [1] for measuring latency and band-
width respectively. Active probing is only necessary when
phone-only execution is underway. Otherwise, probing
metadata is piggybacked on to phone-server communication,
as in [11]. Currently, active probing is initiated at coarse time
scales – upon change of cellular base station ID. Idle proces-
sor time is periodically checked for processor utilization.

Modules Implemented Kobe’s SS modules are very simple:
all SS modules expose parameters for sampling rate, and
some, such as image and audio, also expose sample size or
bit rate. Kobe currently implements all of the FE and MC
modules listed in Table 1. Module implementations were
ported from Matlab and other publicly available libraries.
Our pipeline porting times – typically one week – suggest
that it is not difficult to convert existing code into Kobe mod-
ules. There was an outlier time of less than 1 day when we
modified a preexisting pipeline. The types of parameters that
FE and MC modules expose to Kobe are varied and over-
whelmingly module-specific. Examples include an FFT’s
number of sample points, Gaussian Mixture Model’s num-
ber of components, and a HMM’s window size. We refer the
interested reader to the citations in Table 1 for discussion of
the semantics of these parameters. Some parameters are gen-
eral. For example, all FE modules expose a parameter that
controls the feature vector size through a generic vector size
reduction algorithm, Principle Component Analysis [9]. Pa-
rameters that are set-valued and enumerations may not yield
natural mappings to continuous scalar ranges as required by
SET COMPLEXITY(). To address this, modules use the statis-
tical tool rMBR which performs feature selection to map sets
and enumerations to continuous ranges [26].

8 Evaluation
In this section, we evaluate Kobe with respect to each

of the three challenges it addresses, and we find that: (1)
Kobe successfully balances accuracy, energy and latency de-
mands. (2) Kobe adapts to tightly utilize available resources,
for practically equivalent accuracy nonadaptive approaches
suffer between 66% and 176% longer latencies and use be-
tween 31% and 330% more energy. (3) Kobe’s interface en-
ables query optimizations that can save between 16% and
76% of latency and energy. (4) Kobe optimization is scal-



Scenario Pipeline Name Classifier Pipeline Modules Port TimeSS FE MC
Transportation Mode (TM) TransPipe GPS TransModeFeatures [33] Hidden Markov Model [9] 5 days

Image Recognition (IR) ImgPipe Image SURF [8] K-Nearest Neighbor [9] 7 days
Sound Classification (SC) SoundPipe Sound MFCC [12] Gausian Mixture Model [9] 8 days

Acceleration Classification (AC) AccelPipe Accel MotionFeatures [28] Decision Trees, HMM [28] 7 days
Face Recognition (FR) FacePipe Image FaceFeatures [10] K-Nearest Neighbor [9] <1 day

Table 1. Classifiers Ported to Kobe

able and introduces minimal runtime overhead.

Methodology
We evaluate Kobe based primarily on the four scenarios

of §3: Transportation Mode Inference (TM), Image Recogni-
tion (IR), Sound Classification (SC) and Acceleration Clas-
sification (AC). We also evaluated a Face Recognition (FR)
scenario.

Data Sets. Pipeline performance is highly dependent on the
input sensor data sets used. For this reason we evaluate Kobe
using established, large and real-world data sets when possi-
ble. The TM data set is provided by the authors of [33]. It
consists of 200 GPS traces of people in Beijing labeled with
the transportation mode they used: {subway, drive, walk,
bike}. The IR data set is of 5,000 building images taken
at Oxford University [27]. Each image is labeled with the
building visible in the image. The SC data set comes from a
previous sound scene classification study [20] and consists of
200 sound clips of 10 different everyday classes of sounds:
{driving, vacuuming, clapping, classical music, showering,
a fan, street noise, conversation, crowd noise, pop music}.
The FR data set is provided by the authors of [10] and con-
sists of 3700 face images of 130 individuals collected from
photo albums. The AC data is collected over a period of two
weeks from a developer using Kobe to build his application
for the first time.

Classifiers. For each scenario, we port established classifiers
developed by SML experts to the Kobe system. Refer to
Table 1 and §7 for discussion of the modules.

Measurements. Energy and latency measurements are made
with a Monsoon Solutions Power Monitor FTA22D. We em-
ploy two Windows Mobile phones, the HTC Touch Pro and
HTC Wizard. The HTC Touch Pro has 200 MB of mem-
ory, a 528 MHz processor, and GPRS and 3G radios. The
HTC Wizard, a less powerful device, has 50 MB of memory,
a 200 MHz processor, and a GPRS radio. Both have WiFi
802.11b/802.11g. Accuracy measurements are performed
with five-fold cross validation to ensure high confidence.

Baseline Comparisons. We compare Kobe against five base-
lines. Four are manually tuned static solutions. C-Aggr
and C-Safe are cloud-only configurations, and P-Aggr and
P-Safe are phone-only configurations. C-Aggr and P-Aggr
are set aggressively to the max possible accuracy, and
C-Safe and P-Safe are set to a safe conservative latency.
The fifth baseline, P-Samp, is representative of the class of
solutions that only tunes sensor sample rate. These base-
lines all correspond to different heuristics commonly used
by system designers when manually tuning a system prior to
deployment. When comparing these baselines to Kobe, we

define underutilization to mean the % additional unrealized
accuracy gain when compared to the closest Pareto optimal
configuration while still preserving user constraints. We de-
fine overutilization to mean the % latency or energy exceed-
ing the user-specified constraints.

Balancing Accuracy, Energy & Latency
We first show that Kobe finds good balances of accuracy

and cost for the phone-only setting, and that finding such so-
lutions manually is non-trivial. We applied Core Optimizer
to the Wizard phone and show results for optimization of la-
tency in the case of IR and SC, and energy in the case of TM
and AC.

Fig. 4(a) illustrates IR’s Pareto curve for the accuracy-
latency trade-off as found by Kobe on the Touch Pro. Sub-
optimal configurations encountered by Kobe are also shown.
The costs of all configurations are estimated using Core Opti-
mizer’s Cost Model, with the addition that Pareto configura-
tions are verified by actual phone measurements. The figure
shows that there are many suboptimal points; a randomly
chosen configuration suffers an accuracy loss of 4% and
latency increase of 263% more than an optimal configura-
tion with the same constraints. The correlation between cost
and accuracy is only 0.61, indicating that a simple heuristic
of choosing more costly configurations does not guarantee
good accuracy.

Fig. 4(b) shows a similar result for SC: the Pareto curve
is found, with many suboptimal points. A randomly cho-
sen configuration loses 14% accuracy and suffers 176% ad-
ditional latency versus the closest optimal configuration.

Fig. 4(c) illustrates the accuracy vs. energy Pareto opti-
mal configurations for TM. It is compared to P-Samp. Kobe
tunes sampling rate along with other classifier parameters,
whereas P-Samp only tunes sampling rate. We can see that
while P-Samp does manage to scale energy use by adjusting
sampling rate, it is unable to reach accuracy gains as good
Kobe because other pipeline parameters are not tuned. Con-
sequently, P-Samp suffers a 3.6% accuracy underutilization
penalty on average.

Fig. 4(d) shows the Pareto optimal configurations for AC.
As with the previous pipelines, a range of accuracies (86% -
98%) and energy usage (0.9-4.3mJ) tradeoffs are possible.

Adapting to Changes
We next evaluate Kobe’s and existing solutions’ abilities

to adapt to device heterogeneity, networking and cloud avail-
ability, multi-programming and user usage behavior with
Adaptation Optimizer.

Device Adaptation. In this experiment, we are interested
in the performance penalty of not tightly optimizing the
pipeline for the device. Using the IR scenario, we first deter-
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(a) Building Image Recognition
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(c) Transportation Mode Inference
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(d) Accelerometer-based Classification

Figure 4. Optimal and suboptimal configurations found for various classification scenarios
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Figure 5. Penalty incurred for not accounting for device
differences in Image Recognition

mine Pareto configurations taking the high-end Touch Pro as
the a ‘reference’ platform. We then evaluate the performance
of these configurations against the less capable low-end Wiz-
ard. In Fig. 5, we see that the penalty for using the wrong
reference platform is an average latency penalty of 176%.

Network and Cloud Adaption. In this experiment Kobe has
the option of placing FE and MC modules on a remote server
or local phone. Using the IR scenario, we compare Kobe
under a latency constraint to C-Safe and C-Aggr. These
two manually-tuned configurations represent the conserva-
tive and optimistic extremes in use. The top pane of Fig. 6
shows the independent variable, network bandwidth, which
changes at time t1 and t2. We purposely choose a long dura-

tion between t1 and t2 to make the accuracy trend clear. The
middle pane of Fig. 6 shows that despite network changes,
Kobe remains slightly below the latency constraint, whereas
C-Aggr suffers from overutilization, exceeding the latency
constraint by 36% on average. The bottom pane of Fig. 6
shows that Kobe appropriately improves its accuracy as the
network gets better (t1) and scales back its accuracy as the
network gets worse (t2), whereas C-Safe consistently expe-
riences underutilization, resulting in 7% lower accuracy on
average.

We also test the IR scenario’s energy usage when run-
ning Kobe vs. cloud-only executions C-Safe and C-Aggr.
Kobe is able to find lower energy phone-only executions
whereas C-Safe and C-Aggr are handicapped with high-
energy network access because they must power on/off their
network connections at every periodic classification (keep-
ing the network connection on continuously performed sig-
nificantly worse). On 3G, WiFi and GSM networks, C-Safe
and C-Aggr use between 31-252%, 250-259% and 63-77%
more energy than Kobe, depending on the accuracy desired.

Multi-programming Adaptation. We test Kobe’s ability to
adapt to multi-programming relative to P-Safe and P-Aggr
for a fixed latency constraint. Due to space, we omit the
graphs. As a summary, we find that in the IR scenario,
P-Safe experiences underutilization leading to accuracy loss
of 13%, P-Aggr experiences overutilization leading to ex-
cess latency by 440%, whereas Kobe successfully varies its
accuracy while remaining within the latency constraint.
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Figure 6. Dynamic network adaptation achieves higher
accuracy than static safe configs, and lower latency than
static aggressive configs.

User Usage Behavior Adaptation. We test the Personalizer
on the TM scenario, the only dataset which was tagged with
user id. Personalizer builds better models for 36% of the
users – users whose traces were too short did not benefit as
much. Of those that benefited, the average classification ac-
curacy rises from 0.598 to 0.726 – a 21% improvement.

Programming Interface Benefits
We evaluated several optimizations enabled by the Kobe

SQL-like interface.

Switching Pipelines. We evaluate the developer’s (1) effort
and (2) app performance improvement when switching from
one pipeline to another, and use the scenario of Face Recog-
nition, a subclass of Image Recognition. For this experi-
ment, we use the face data set. We assume the developer
had already built their application with ImgPipe but wants
to switch to the purportedly superior FacePipe which im-
plements a face-specific FE module [10]. Our findings are
that the effort to switch is very minimal: FacePipe took less
than 1 day to port from the original implementation in [10]

(a) Offict Fit Classifier Scheduling.

(b) Cocktail Party Classifier Scheduling

Figure 7. Multi-classifier scheduling with logical con-
junction shortcutting optimization
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Figure 8. Switching pipelines w/o app modification

and required a change only to the PROTOTYPE PIPELINE of
the classifier declaration. Moreover, Fig. 8 shows that given
a latency budget, accuracy improved in accuracy by 0.27
(64%). It is also interesting to note that FacePipe did not
completely dominate ImgPipe; if the app developer desires
latency below 7.5s, it is actually preferable to use ImgPipe
since FacePipe cannot meet such latencies.

Scheduling Multiple Classifiers We use Kobe to implement
two apps that each uses multiple classifiers. These are Offict
Fit and Cocktail Party, discussed in §5. Logical conjunc-
tion shortcircuiting for Offict Fit saves 76% in energy simply
because AC is such an inexpensive pipeline relative to SC
(Fig. 7(a)). Optimized scheduling for Cocktail Party saves
66% latency by selecting FR ahead of SC. This result may
at first seem counterintuitive when considering the larger la-
tencies of IR in Fig. 4(a) over SC in Fig. 4(b). However, the
probability of detecting a conversation is much higher than
that of detecting a coworker’s face. Therefore, despite FR’s
longer latency, it is the better pipeline to run first. Random
scheduling for Cocktail Party only saves 31% (Fig. 7(b)).

Binary Classifier Substitution We test the binary classifier
substitution optimization on SC and IR. N-way SC consists
of 9 classes, so Kobe built 9 binary classifiers. A sequence
of binary classification queries is generated, with the prob-
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Figure 9. Binary classifiers can substitute for N-way classifiers for accuracy and latency benefits.

ability of each binary classification query matching that of
the prior probability of the class label in the training data.
Fig. 9(a) shows the accuracy vs. latency tradeoff for N-way
and Binary Classifiers respectively. The N-way Classifier
cannot achieve latencies lower than 19ms without sacrificing
substantial accuracy, whereas Binary classifiers offer more
gradual accuracy degradation. Given an accuracy bound
lower than 92%, Binary Classifiers can shorten the latency
up to 3ms – an 16% improvement. It should be noted that to
achieve higher accuracy, N-way Classifiers are preferrable.
We performed similar experiments on IR, with the ImgPipe.
We used a subset of the dataset, choosing 11 classes, which
led to the generation of 11 Binary Classifiers. Figure 9(b)
shows that in most cases, the Binary Classifier outperforms
or is comparable to the N-way Classifier. Given a latency
bound below 10s, Binary Classifiers can improve the accu-
racy by up to 1.8%.

Scalability and Overhead
The cost of Kobe is primarily offline Optimizer compu-

tation time, and online Runtime overhead. We find neither
offers significant cause for concern.

Optimizer Scalability The offline Optimizer running time is
dependent upon the number of configurations profiled. Ap-
proximately 13,000 configurations are evaluated per each
invocation of the Adaptation Optimizer. This is a prod-
uct several factors whose typical values follow in paren-
theses. These are the parameters per module (3), settings
per parameter (20), number of modules (3), network dis-
cretizations (3), module placement options (4), processor
discretization (3), and phones supported (2). Scalability with
respect to the number of phones can be made more man-
ageable if it is assumed that similar phone chipsets exhibit
similar performance, which is often the case. The Query
Optimizer invokes Adaptation Optimizer once per class for
the purpose of binary classifier substitution. The entire Op-
timizer only needs to be executed once per application, or
once per user if personalization is desired. Typical running
times for the Optimizer on a 10 machine cluster are shown
in Table 2.

Runtime Overhead The Runtime incurs four potential over-
heads. First, the Runtime stores each of the optimal con-
figuration files generated by Optimizer. From the number

Pipeline Name Time
TransPipe 2 hours
ImgPipe 15 - 20 mins

SoundPipe 30 mins - 3 hours†

Table 2. Optimization running time
†Longer times reflect Binary Classification Substitution

Optimization running time.
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Figure 10. Bandwidth estimation overhead for phone-
only classifier executions. Bandwidth estimation is piggy-
backed on to existing traffic for phone-server executions.

of profiled configurations, Kobe selects only those that are
Pareto optimal, meet the developer constraints, and are for
the specific user’s phone. The number of stored configura-
tions per classifier is a product of the number of network dis-
cretizations (typically 3) and processor discretization (typi-
cally 3). Each configuration file is small; the largest is only
2KB. Therefore, configuration file storage is not a signifi-
cant overhead. Second, the Runtime must store the FE and
MC module binaries on the phone, which can be avoided
by cloud-only solutions. The max and min pipelines we en-
countered were respectively 12MB for IR and 5KB for TM.
The discrepancy stems from the fact that IR’s MC stage,
KNN, scales linearly with the training data size, whereas
TM’s does not. Third, Runtime incurs an overhead for mon-
itoring the network and estimating bandwidth and latency
changes when currently executing phone-only classifier con-
figurations. To estimate the significance of this overhead,
we randomly sampled traces from our TM dataset, and es-
timated the frequency with which users switched cellular
base stations. Fig. 10 shows that this overhead is under 80
milliseconds even when user is switching regions rapidly.
Anecdotally, our estimation heuristic was reasonably accu-



rate. Lastly, Runtime incurs a CPU cost when switching be-
tween configurations. Since it is simply setting configuration
parameters and possibly passing a buffer, the cost was negli-
gible and did not noticeably affect performance (see Fig. 6).

9 Related Work
The early work of [25] describes programming interfaces

for application-aware adaptation where developers specify
functions to execute for each given resource range. [13] pio-
neered systematic mobile energy adaptation by jointly turn-
ing down hardware components and degrading application
fidelity. [11] dynamically decided remote vs. local execu-
tion based on online measurements of application resource
usage. [24] uses prediction models to assess resource avail-
ability and adjust app fidelity correspondingly. From this line
of work, Kobe is most similar to that of Chroma [5], which
proposes interfaces to expose server offload opportunities, as
well as variable fidelity execution options.

Unlike Kobe, these pioneering systems attempt to address
adaptivity broadly for all mobile applications. Kobe takes a
strict focus to mobile SML classification, an emerging and
important domain. This has three benefits. First, we lever-
age properties of this domain (such as offline labeled train-
ing data availability and linear pipelines) to aggressively pre-
compute all of the optimal configurations ahead of time,
thereby incurring very little runtime overhead while simul-
taneously offering extremely simple programming interfaces
and a highly adaptive runtime. In contrast, a system like
Chroma uses runtime trial-and-error to measure performance
because it can make few assumptions about general mobile
programs. This leads to significant performance overhead
and scalability limitations. In fact, the authors of Chroma
assume that the user enumerates only a handful of configu-
rations (<10) for exploration. Second, Kobe decouples app
developers from SML experts, whereas general systems have
no notion of distinct domains of expertise. Lastly, Kobe
builds in classification-specific optimizations, such as Binary
Classifier Substitution, Multi-Classifier Scheduling, and the
Personalizer for additional gains, which general systems do
not attempt to do.

Recognizing the need for mobile classifier optimization,
some promising work has recently begun. Many proposals
have surfaced for abstracting and dynamically adapting sam-
pling rate [16, 14, 32]. Optimizations that rely on sampling
rate adaptation have commonalities in their techniques with
work investigating energy efficient mobile localization (e.g.,
[15]). As we’ve illustrated in this work, sampling rate tun-
ing alone is myopic and only addresses energy, not latency
concerns. Several works have looked at either application-
specific [20], application-scenario specific classifier opti-
mization [31]. While Kobe does not offer application- nor
scenario-specific tuning, Kobe otherwise subsumes this ear-
lier work and is applicable to all classification problems.

10 Experiences, Discussion and Conclusion
Thus far we have prototyped two applications with Kobe:

Cocktail Party and Offict Fit. Their screenshots are shown in
Fig. 11. Our in-house experiences with Kobe suggest that the
SQL-like interface is good for quickly assembling classifiers
and embedding them into the overall application.

(a) Cocktail Party (b) Offict Fit

Figure 11. Application Screenshots

Kobe’s ability to tune classifiers to different latency and
energy budgets proved quite useful. Low classification laten-
cies allowed Cocktail Party to provide timely reminders rele-
vant to the current conversation partner e.g., detecting “con-
versation” and “Alice” triggers a personal note reminder such
as “Talk to Alice about the homework assignment.” Low en-
ergy usage allowed Offict Fit to run for long periods during
the day, an important criteria for a background fitness app.
On the whole, we are sanguine about Kobe’s ability to build
classifiers for mobile apps. However, Kobe has several limi-
tations discussed below.

Kobe currently only supports three stage linear classifiers.
There are domain-specific classifiers with more sophisticated
processing stages that have evolved over time, such as in hi-
erarchical models used in speech recognition and speech-to-
text processing. The focus for Kobe is to complement these
established techniques. SML expert hand-tuning will con-
tinue to be the norm for widely-used classifiers. However,
app-specific classifiers with highly specialized ADUs may
not receive the same expert treatment, and prebuilt classi-
fiers for specific ADUs may not be available. We suggest
that Kobe is an appropriate solution for non-experts that wish
to classify such ADUs.

Kobe supports only one sensor input at the SS stage. As
demonstrated by the multi-pipeline examples, Kobe accom-
plishes sensor fusion through execution of disjoint pipelines.
Alternatively, a classifier that directly ingests multiple sen-
sors may provide better accuracy (at higher sampling cost).
Supporting these classifiers is part of future work.

Some apps, such as archival personal sensing [22], may
not need ADUs until long after the signal collection time.
Delay-tolerant classifiers ought to defer processing until re-
sources are abundant, such as when the phone is docked for
charging. Currently, Kobe does not support delayed clas-
sification, but it would be natural to consider extensions to
support delayed classification because latency constraints are
already part of the Kobe interface.

Kobe offers a basic but effective query optimizer. Fur-
ther optimizations should be possible as the types of queries
posed expands. As more applications subscribe to continu-



ous ADUs, there may be opportunities for sharing the com-
putation subprocedures among different classifiers. For ex-
ample, two SCs could share their FE stages if they both are
MFCC FEs. We intend to use Kobe as a starting point for
further investigation.

Many compelling applications are now emerging as mo-
bile devices integrate an increasing array of sensors. How-
ever, employing raw sensor data directly is only the begin-
ning – meaningful application data units will drive interest-
ing applications. We developed Kobe as an automated ap-
proach to constructing classification pipelines. Kobe lets de-
velopers supply what they already know: which sensors to
use, and what labeled training data to target. It lets SML ex-
perts easily contribute their new algorithms. In exchange,
Kobe builds adaptive classifiers that balance accuracy, la-
tency and energy.
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