Viyay V. Vaziran:

College of Computing
Georgia Institute of Technology

Copyright (¢) 2001

Approximation Algorithms

Springer

Berlin Heidelberg New York
Barcelona Hong Kong
London Milan Paris
Singapore Tokyo

To my parents

Preface

Although this may seem a paradox, all exact
science s dominated by the idea of approrimation.

Bertrand Russell (1872-1970)

Most natural optimization problems, including those arising in important
application areas, are NP-hard. Therefore, under the widely believed con-
jecture that P £ NP, their exact solution is prohibitively time consuming.
Charting the landscape of approximability of these problems, via polynomial
time algorithms, therefore becomes a compelling subject of scientific inquiry
in computer science and mathematics. This book presents the theory of ap-
proximation algorithms as it stands today. It is reasonable to expect the
picture to change with time.

The book is divided into three parts. In Part I we cover a combinato-
rial algorithms for a number of important problems, using a wide variety
of algorithm design techniques. The latter may give Part I a non-cohesive
appearance. However, this is to be expected — nature is very rich, and we
cannot expect a few tricks to help solve the diverse collection of NP-hard
problems. Indeed, in this part, we have purposely refrained from tightly cat-
egorizing algorithmic techniques so as not to trivialize matters. Instead, we
have attempted to capture, as accurately as possible, the individual character
of each problem, and point out connections between problems and algorithms
for solving them.

In Part II, we present linear programming based algorithms. These are
categorized under two fundamental techniques: rounding and the primal-
dual schema. But once again, the exact approximation guarantee obtainable
depends on the specific LP-relaxation used, and there is no fixed recipe for
discovering good relaxations, just as there is no fixed recipe for proving a the-
orem in mathematics (readers familiar with complexity theory will recognize
this as the philosophical point behind the P # NP question).

Part IIT covers four important topics. The first is the problem of finding
a shortest vector in a lattice which, for several reasons, deserves individual
treatment (see Chapter 27).

The second topic is the approximability of counting, as opposed to
optimization, problems (counting the number of solutions to a given in-
stance). The counting versions of all known NP-complete problems are #P-
complete!. Interestingly enough, other than a handful of exceptions, this is
true of problems in P as well. An impressive theory has been built for ob-

! However, there is no theorem to this effect yet.

VIII Preface

taining efficient approximate counting algorithms for this latter class of prob-
lems. Most of these algorithms are based on the Markov chain Monte Carlo
(MCMC) method, a topic that deserves a book by itself and is therefore not
treated here. In Chapter 28 we present combinatorial algorithms, not using
the MCMC method, for two fundamental counting problems.

The third topic is centered around recent breakthrough results, estab-
lishing hardness of approximation for many key problems, and giving new
legitimacy to approximation algorithms as a deep theory. An overview of
these results is presented in Chapter 29, assuming the main technical theo-
rem, the PCP Theorem. The latter theorem, unfortunately, does not have a
simple proof at present.

The fourth topic consists of the numerous open problems of this young
field. The list presented should by no means be considered exhaustive, and
is moreover centered around problems and issues currently in vogue. Exact
algorithms have been studied intensively for over four decades, and yet basic
insights are still being obtained. Considering the fact that among natural
computational problems, polynomial time solvability is the exception rather
than the rule, it is only reasonable to expect the theory of approximation
algorithms to grow considerably over the years.

The set cover problem occupies a special place, not only in the theory of
approximation algorithms, but also in this book. It offers a particularly simple
setting for introducing key concepts as well as some of the basic algorithm
design techniques of Part I and Part II. In order to give a complete treatment
for this central problem, in Part III we give a hardness result for it, even
though the proof is quite elaborate. The hardness result essentially matches
the guarantee of the best algorithm known — this being another reason for
presenting this rather difficult proof.

Our philosophy on the design and exposition of algorithms is nicely il-
lustrated by the following analogy with an aspect of Michelangelo’s art. A
major part of his effort involved looking for interesting pieces of stone in the
quarry and staring at them for long hours to determine the form they natu-
rally wanted to take. The chisel work exposed, in a minimalistic manner, this
form. By analogy, we would like to start with a clean, simply stated problem
(perhaps a simplified version of the problem we actually want to solve in
practice). Most of the algorithm design effort actually goes into understand-
ing the algorithmically relevant combinatorial structure of the problem. The
algorithm exploits this structure in a minimalistic manner. The exposition of
algorithms in this book will also follow this analogy, with emphasis on stating
the structure offered by problems, and keeping the algorithms minimalistic.

An attempt has been made to keep individual chapters short and simple,
often presenting only the key result. Generalizations and related results are
relegated to exercises. The exercises also cover other important results which
could not be covered in detail due to logistic constraints. Hints have been

Preface IX

provided for some of the exercises; however, there is no correlation between
the degree of difficulty of an exercise and whether a hint is provided for it.

This book is suitable for use in advanced undergraduate and graduate level
courses on approximation algorithms. It has more than twice the material
that can be covered in a semester long course, thereby leaving plenty of room
for an instructor to choose topics. An undergraduate course in algorithms
and the theory of NP-completeness should suffice as a prerequisite for most
of the chapters. For completeness, we have provided background information
on several topics: complexity theory in Appendix A, probability theory in
Appendix B, linear programming in Chapter 12, semidefinite programming in
Chapter 26, and lattices in Chapter 27. (A disproportionate amount of space
has been devoted to the notion of self-reducibility in Appendix A because
this notion has been quite sparsely treated in other sources.) This book can
also be used is as supplementary text in basic undergraduate and graduate
algorithms courses. The first few chapters of Part I and Part II are suitable
for this purpose. The ordering of chapters in both these parts is roughly by
increasing difficulty.

In anticipation of this wide audience, we decided not to publish this book
in any of Springer’s series — even its prestigious Yellow Series. (However, we
could not resist spattering a patch of yellow on the cover!) The following
translations are currently planned: French by Claire Kenyon, Japanese by
Takao Asano, and Romanian by Ion Mandoiu. Corrections and comments
from readers are welcome. We have set up a special email address for this
purpose: approx@cc.gatech.edu.

Finally, a word about practical impact. With practitioners looking for
high performance algorithms having error within 2% or 5% of the optimal,
what good are algorithms that come within a factor of 2, or even worse,
O(logn), of the optimal? Further, by this token, what is the usefulness of
improving the approximation guarantee from, say, factor 2 to 3/27

Let us address both issues and point out some fallacies in these assertions.
The approximation guarantee only reflects the performance of the algorithm
on the most pathological instances. Perhaps it is more appropriate to view
the approximation guarantee as a measure that forces us to explore deeper
into the combinatorial structure of the problem and discover more powerful
tools for exploiting this structure. It has been observed that the difficulty
of constructing tight examples increases considerably as one obtains algo-
rithms with better guarantees. Indeed, for some recent algorithms, obtaining
a tight example has been a paper by itself (e.g., see Section 26.7). Experi-
ments have confirmed that these and other sophisticated algorithms do have
error bounds of the desired magnitude, 2% to 5%, on typical instances, even
though their worst case error bounds are much higher. Additionally, the the-
oretically proven algorithm should be viewed as a core algorithmic idea that
needs to be fine tuned to the types of instances arising in specific applications.

X Preface

We hope that this book will serve as a catalyst in helping this theory grow
and have practical impact.

Acknowledgments

This book is based on courses taught at the Indian Institute of Technology,
Delhi in Spring 1992 and Spring 1993, at Georgia Tech in Spring 1997, Spring
1999, and Spring 2000, and at DIMACS in Fall 1998. The Spring 1992 course
resulted in the first set of class notes on this topic. It is interesting to note
that more than half of this book is based on subsequent research results.

Numerous friends — and family members — have helped make this book a
reality. First, I would like to thank Naveen Garg, Kamal Jain, Ion Mandoiu,
Sridhar Rajagopalan, Huzur Saran, and Mihalis Yannakakis — my extensive
collaborations with them helped shape many of the ideas presented in this
book. I was fortunate to get Ion Mandoiu’s help and advice on numerous
matters — his elegant eye for layout and figures helped shape the presentation.
A special thanks, Ion!

I would like to express my gratitude to numerous experts in the field for
generous help on tasks ranging all the way from deciding the contents and
its organization, providing feedback on the writeup, ensuring correctness and
completeness of references to designing exercises and helping list open prob-
lems. Thanks to Sanjeev Arora, Alan Frieze, Naveen Garg, Michel Goemans,
Mark Jerrum, Claire Kenyon, Samir Khuller, Daniele Micciancio, Yuval Ra-
bani, Sridhar Rajagopalan, Dana Randall, Tim Roughgarden, Amin Saberi,
Leonard Schulman, Amin Shokrollahi, and Mihalis Yannakakis, with special
thanks to Kamal Jain, Eva Tardos, and Luca Trevisan.

Numerous other people helped with valuable comments and discussions.
In particular, I would like to thank Sarmad Abbasi, Cristina Bazgan, Rogerio
Brito Gruia Calinescu, Amit Chakrabarti, Mosses Charikar, Joseph Cheriyan,
Vasek Chvatal, Uri Feige, Cristina Fernandes, Ashish Goel, Parikshit Gopalan,
Mike Grigoriadis, Sudipto Guha, Dorit Hochbaum, Howard Karloff, Leonid
Khachian, Stavros Kolliopoulos, Jan van Leeuwen, Nati Lenial, George
Leuker, Vangelis Markakis, Aranyak Mehta, Rajeev Motwani, Prabhakar
Raghavan, Satish Rao, Miklos Santha, Jiri Sgall, David Shmoys, Alistair
Sinclair, Prasad Tetali, Pete Veinott, Ramarathnam Venkatesan, Nisheeth
Vishnoi, and David Williamson. I am sure I am missing several names — my
apologies and thanks to these people as well. A special role was played by
the numerous students who took my courses on this topic and scribed notes.
It will be impossible to individually remember their names. I would like to
express my gratitude collectively to them.

I would like to thank II'T Delhi — with special thanks to Shachin Mahesh-
wari — Georgia Tech, and DIMACS for providing pleasant, supportive and
academically rich environments. Thanks to NSF for support under grants
CCR~9627308 and CCR~9820896.

Preface XI

It was a pleasure to work with Hans Wossner on editorial matters. The
personal care with which he handled all such matters and his sensitivity to
an author’s unique point of view were especially impressive. Thanks also to
Frank Holzwarth for sharing his expertise with IXTEX.

A project of this magnitude would be hard to pull off without whole-
hearted support from family members. Fortunately, in my case, some of them
are also fellow researchers — my wife, Milena Mihail, and my brother, Umesh
Vazirani. Little Michel’s arrival, halfway through this project, brought new
joys and energies, though made the end even more challenging! Above all,
I would like to thank my parents for their unwavering support and inspira-
tion — my father, a distinguished author of several Civil Engineering books,
and my mother, with her deep understanding of Indian Classical Music. This
book is dedicated to them.

Atlanta, Georgia, May 2001 Vijay Vazirani

Table of Contents

Introduction 1
1.1 Lower bounding OPT 2

1.1.1 An approximation algorithm for cardinality vertex cover 3

1.1.2 Can the approximation guarantee be improved? 3
1.2 Well-characterized problems and min—max relations.........)
1.3 EXErciSes 7
1.4 Notes ..o 10

Part I. Combinatorial Algorithms

2

Set Cover 15
2.1 The greedy algorithm 16
2.2 Layering i 17
2.3 Application to shortest superstring 19
2.4 BEXEICISES . ..ot e 22
2.0 NOteS ..o e 26
Steiner Tree and TSP i 27
3.1 Metric Steiner treet 27

3.1.1 MST-based algorithm 28
3.2 Metric TSP 30

3.2.1 A simple factor 2 algorithm........................ 31

3.2.2 Improving the factor to 3/2..................... ... 32
3.3 BEXErciSes 33
3.4 NOteS ..o 37
Multiway Cut and k-Cut 38
4.1 The multiway cut problem............ 38
4.2 The minimum k-cut problem............................. 40
4.3 EXEICISES . .o i it 44

A4 NOLES . oot 46

X1V

10

11

Table of Contents

k-Center 47
5.1 Parametric pruning applied to metric k-center.............. 47
5.2 The weighted version 50
0.3 EXercises i 52
.4 NOTES « oo 53
Feedback Vertex Set 54
6.1 Cyclomatic weighted graphs 54
6.2 Layering applied to feedback vertex set.................... 57
6.3 EXercises 60
6.4 Notes 60
Shortest Superstring........... 61
7.1 A factor 4 algorithm 61
7.2 TImproving to factor 3 64
7.2.1 Achieving half the optimal compression 66
7.3 BEXEICISES ..ot 66
T4 NOtes .. 67
Knapsack 68
8.1 A pseudo-polynomial time algorithm for knapsack 69
8.2 An FPTAS for knapsack 69
8.3 Strong NP-hardness and the existence of FPTAS’s 71

8.3.1 Is an FPTAS the most desirable approximation
algorithm?. 72
8.4 EXEICISES . ..o 72
8.0 Notes ... e 73
Bin Packing 74
9.1 An asymptotic PTAS 74
0.2 EXEICISES . .. v vt 7
0.3 Notes ... 78
Minimum Makespan Scheduling 79
10.1 Factor 2 algorithm 79
10.2 A PTAS for minimum makespan 80
10.2.1 Bin packing with fixed number of object sizes 81
10.2.2 Reducing makespan to restricted bin packing 81
10.3 EXEICISEs ..o v vttt e 83
104 Notes ..ot 83
Euclidean TSP 84
11.1 The algorithm 84
11.2 Proof of correctness. 87
11.3 EXercises 89

T1.4 NOGES . o v oot e e e e e e &89

Table of Contents XV

Part 1I. LP-Based Algorithms

12

13

14

15

16

17

Introduction to LP-Duality 93
12.1 The LP-duality theorem 93
12.2 Min-—max relations and LP-duality 97
12.3 Two fundamental algorithm design techniques.............. 100
12.3.1 A comparison of the techniques and the notion of
integrality gap 101
12.4 EXETCISES .« oottt e 103
12.5 Notes ..o 107
Set Cover via Dual Fitting.......... 108
13.1 Dual-fitting-based analysis for the greedy set cover algorithm 108
13.1.1 Can the approximation guarantee be improved? 111
13.2 Generalizations of set cover, .. 112
13.2.1 Dual fitting applied to constrained set multicover. 112
13.3 EXEICISes . oottt 116
13.4 Notes ..o 118
Rounding Applied to Set Cover........................... 119
14.1 A simple rounding algorithm 119
14.2 Randomized rounding i 120
14.3 Half-integrality of vertex cover 122
14.4 EXEICISES - .o vttt et e e e 123
14.5 NOtes . oot 124
Set Cover via the Primal-Dual Schema 125
15.1 Overview of the schema 125
15.2 Primal-dual schema applied to set cover................... 127
15.3 EXEICISES . oottt 129
15.4 NOtes ..o 129
Maximum Satisfiability L. 131
16.1 Dealing with large clauses 132
16.2 Derandomizing via the method of conditional expectation ... 132
16.3 Dealing with small clauses via LP-rounding 134
16.4 A 3/4 factor algorithm 136
16.5 EXEICISes . oottt e 137
16.6 NOtes . ..o 139
Scheduling on Unrelated Parallel Machines 140
17.1 Parametric pruning in an LP setting 140
17.2 Properties of extreme point solutions...................... 141

17.3 The algorithm 142

XVI

18

19

20

21

Table of Contents

17.4 Additional properties of extreme point solutions 143
17.5 EXEICISES . oottt e 144
17.6 NoOtes ..o 145
Multicut and Integer Multicommodity Flow in Trees 146
18.1 The problems and their LP-relaxations 146
18.2 Primal-dual schema based algorithm...................... 149
18.3 EXErcCiSest 152
18.4 Notes ..o 154
Multiway Cut 155
19.1 An interesting LP-relaxation 155
19.2 Randomized rounding algorithm................. 157
19.3 Half-integrality of node multiway cut 160
19.4 EXEICISES . oottt e e 163
19.5 Notes ..o 167
Multicut in General Graphs 168
20.1 Sum multicommodity flow L 168
20.2 LP-rounding-based algorithm 170

20.2.1 Growing a region: the continuous process 171

20.2.2 The discrete processcuuiiiiiinena.. 172

20.2.3 Finding successive regionscouin... 173
20.3 A tight example 175
20.4 Some applications of multicut 176
20.5 EXEICISES .« .\ttt 177
20.6 NOTES « oottt 179
Sparsest Cut......... 180
21.1 Demands multicommodity flow 180
21.2 Linear programming formulation 181
21.3 Metrics, cut packings, and ¢;-embeddability................ 183

21.3.1 Cut packings for metrics, .. 183

21.3.2 ¢1-embeddability of metrics 185
21.4 Low distortion ¢;-embeddings for metrics 186

21.4.1 Ensuring that a single edge is not overshrunk 187

21.4.2 Emsuring that no edge is overshrunk 190
21.5 LP-rounding-based algorithm 191
21.6 Applications 192

21.6.1 Edge expansioniiiiiiiiiii., 192

21.6.2 Conductance.o, 192

21.6.3 Balanced cut 193

21.6.4 Minimum cut linear arrangement 194
21.7 EXETCISES . . vt oot e 195

21.8 NOBES . .o 197

22

23

24

25

26

Table of Contents XVII

Steiner Forest 198
22.1 LP-relaxation and dual 198
22.2 Primal-dual schema with synchronization 199
22.3 Analysis.t 204
224 EXETICISES .« o vttt et e 207
22,5 Notes ... 212
Steiner Network 213
23.1 The LP-relaxation and half-integrality 213
23.2 The technique of iterated rounding 217
23.3 Characterizing extreme point solutions 219
23.4 A counting argument 221
23.5 EXEICISES . .o oot 224
23.6 NOTES . oottt 231
Facility Location........ 232
24.1 An intuitive understanding of the dual 233
24.2 Relaxing primal complementary slackness conditions 234
24.3 Primal-dual schema based algorithm................... ... 235
24.4 Analysis. 236
24.4.1 Running time 238
24.4.2 Tight example 238
24.5 EXETCISES . . vt it 239
24.6 NOTES .« oottt 242
E-Median 243
25.1 LP-relaxation and dual 243
25.2 The high-level idea 244
25.3 Randomized rounding i 247
25.3.1 Derandomization, 248
25.3.2 Running time o i 249
25.3.3 Tight example 249
25.3.4 Integrality gap 250
25.4 A Lagrangian relaxation technique
for approximation algorithms 250
25.5 EXEICISES . . v oot 251
25.6 Notes . ..o 254
Semidefinite Programming............. 255
26.1 Strict quadratic programs and vector programs............. 255
26.2 Properties of positive semidefinite matrices 257
26.3 The semidefinite programming problem 258
26.4 Randomized rounding algorithm.................. 260
26.5 Improving the guarantee for MAX-2SAT 263
26.6 EXEICISES . ..ottt 265

20.7 NOBES . .o 268

XVIII Table of Contents

Part III. Other Topics

27 Shortest Vector........ 273
27.1 Bases, determinants, and orthogonality defect 274
27.2 The algorithms of Euclid and Gauss 276
27.3 Lower bounding OPT using Gram—Schmidt orthogonalization 278
27.4 Extension ton dimensionstiiiiiii... 280
27.5 The dual lattice and its algorithmic use 284
27.6 EXEICISES . . v v ittt e e 288
2.7 NOTES « oot 292

28 Counting Problems 294
28.1 Counting DNF solutions. 295
28.2 Network reliability 297

28.2.1 Upperbounding the number of near-minimum cuts. ... 298
28.2.2 AnalysiS. .. oot 300
28.3 EXEICISES . . v v ittt 302
28.4 NOLES .« v ittt 305

29 Hardness of Approximation............................... 306
29.1 Reductions, gaps, and hardness factors 306
29.2 The PCP theorem 309
29.3 Hardness of MAX-3SAT i, 311
29.4 Hardness of MAX-3SAT with bounded occurrence

of variables 313
29.5 Hardness of vertex cover and Steiner tree 316
29.6 Hardness of clique i, 318
29.7 Hardness of set cover i 322
29.7.1 The two-prover one-round characterization of NP 322
29.7.2 The gadget 324
29.7.3 Reducing error probability by parallel repetition. 325
29.7.4 Thereduction........, 326
20.8 EXEICISES . .t v i it 329
20.9 NOteS . oot 332

30 Open Problems 334
30.1 Problems having constant factor algorithms................ 334
30.2 Other optimization problems............................. 336

30.3 Counting problems 338

Table of Contents
Appendix

A An Overview of Complexity Theory

for the Algorithm Designer
A.1 Certificates and the class NP
A.2 Reductions and NP-completeness
A.3 NP-optimization problems and approximation algorithms . ..

A.3.1 Approximation factor preserving reductions..........
A.4 Randomized complexity classes................
A5 Self-reducibility
AB NOLES .ot

B Basic Facts from Probability Theory......................
B.1 Expectation and moments
B.2 Deviations from the mean
B.3 Basic distributions..........
Bid Notes ...

References
Problem Index e

Subject Index

XIX

1 Introduction

NP-hard optimization problems exhibit a rich set of possibilities, all the
way from allowing approximability to any required degree, to essentially not
allowing approximability at all. Despite this diversity, underlying the process
of design of approximation algorithms are some common principles. We will
explore these in the current chapter.

An optimization problem is polynomial time solvable only if it has
the algorithmically relevant combinatorial structure that can be used as
“footholds” to efficiently home in on an optimal solution. The process of
designing an exact polynomial time algorithm is a two-pronged attack: un-
raveling this structure in the problem and finding algorithmic techniques that
can exploit this structure.

Although NP-hard optimization problems do not offer footholds for find-
ing optimal solutions efficiently, they may still offer footholds for finding
near-optimal solutions efficiently. So, at a high level, the process of design of
approximation algorithms is not very different from that of design of exact
algorithms. It still involves unraveling the relevant structure and finding al-
gorithmic techniques to exploit it. Typically, the structure turns out to be
more elaborate, and often the algorithmic techniques result from generalizing
and extending some of the powerful algorithmic tools developed in the study
of exact algorithms.

On the other hand, looking at the process of designing approximation
algorithms a little more closely, one can see that it has its own general princi-
ples. We illustrate some of these principles in Section 1.1, using the following
simple setting.

Problem 1.1 (Vertex cover) Given an undirected graph G = (V, E), and
a cost function on vertices ¢ : V — Q7 find a minimum cost vertex cover,
i.e., a set V/ C V such that every edge has at least one endpoint incident at
V'. The special case, in which all vertices are of unit cost, will be called the
cardinality vertex cover problem.

Since the design of an approximation algorithm involves delicately attack-
ing NP-hardness and salvaging from it an efficient approximate solution, it
will be useful for the reader to review some key concepts from complexity
theory. Appendix A and some exercises in Section 1.3 have been provided for
this purpose.

2 1 Introduction

It is important to give precise definitions of an NP-optimization problem
and an approximation algorithm for it (e.g., see Exercises 1.9 and 1.10). Since
these definitions are quite technical, we have moved them to Appendix A.
We provide essentials below to quickly get started.

An NP-optimization problem I is either a minimization or a maximiza-
tion problem. Each valid instance I of II comes with a nonempty set of
feasible solutions, each of which is assigned a nonnegative rational number
called its objective function value. There exist polynomial time algorithms
for determining validity, feasibility, and the objective function value. A fea-
sible solution that achieves the optimal objective function value is called an
optimal solution. OPT7(I) will denote the objective function value of an
optimal solution to instance I. We will shorten this to OPT when there is
no ambiguity. For the problems studied in this book, computing OPT 7 ([) is
NP-hard.

For example, valid instances of the vertex cover problem consist of an
undirected graph G = (V,FE) and a cost function on vertices. A feasible
solution is a set S C V that is a cover for G. Its objective function value is
the sum of costs of all vertices in S. A minimum cost such set is an optimal
solution.

An approximation algorithm, A, for II produces, in polynomial time, a
feasible solution whose objective function value is “close” to the optimal,;
by “close” we mean within a guaranteed factor of the optimal. In the next
section, we will present a factor 2 approximation algorithm for the cardinality
vertex cover problem, i.e., an algorithm that finds a cover of cost < 2 - OPT
in time polynomial in |V].

1.1 Lower bounding OPT

When designing an approximation algorithm for an NP-hard NP-optimiza-
tion problem, one is immediately faced with the following dilemma. In order
to establish the approximation guarantee, the cost of the solution produced
by the algorithm needs to be compared with the cost of an optimal solution.
However, for such problems, not only is it NP-hard to find an optimal solu-
tion, but it is also NP-hard to compute the cost of an optimal solution (see
Appendix A). In fact, in Section A.5 we show that computing the cost of an
optimal solution (or even solving its decision version) is precisely the difficult
core of such problems. So, how do we establish the approximation guarantee?
Interestingly enough, the answer to this question provides a key step in the
design of approximation algorithms.

Let us demonstrate this in the context of the cardinality vertex cover
problem. We will get around the difficulty mentioned above by coming up
with a “good” polynomial time computable lower bound on the size of the
optimal cover.

1.1 Lower bounding OPT 3
1.1.1 An approximation algorithm for cardinality vertex cover

We provide some definitions first. Given a graph H = (U, F'), a subset of
the edges M C F is said to be a matching if no two edges of M share an
endpoint. A matching of maximum cardinality in H is called a mazimum
matching, and a matching that is maximal under inclusion is called a maximal
matching. A maximal matching can clearly be computed in polynomial time
by simply greedily picking edges and removing endpoints of picked edges.
More sophisticated means lead to polynomial time algorithms for finding a
maximum matching as well.

Let us observe that the size of a maximal matching in G provides a lower
bound. This is so because any vertex cover has to pick at least one endpoint
of each matched edge. This lower bounding scheme immediately suggests the
following simple algorithm:

Algorithm 1.2 (Cardinality vertex cover)

Find a maximal matching in G and output the set of matched vertices.

Theorem 1.3 Algorithm 1.2 is a factor 2 approximation algorithm for the
cardinality vertex cover problem.

Proof: No edge can be left uncovered by the set of vertices picked — other-
wise such an edge could have been added to the matching, contradicting its
maximality. Let M be the matching picked. As argued above, |[M| < OPT.
The approximation factor follows from the observation that the cover picked
by the algorithm has cardinality 2 |M |, which is at most 2 - OPT. O

Observe that the approximation algorithm for vertex cover was very much
related to, and followed naturally from, the lower bounding scheme. This is in
fact typical in the design of approximation algorithms. In Part II of this book,
we show how linear programming provides a unified way of obtaining lower
bounds for several fundamental problems. The algorithm itself is designed
around the LP that provides the lower bound.

1.1.2 Can the approximation guarantee be improved?

The following questions arise in the context of improving the approximation
guarantee for cardinality vertex cover:

1. Can the approximation guarantee of Algorithm 1.2 be improved by a
better analysis?

hamid
Highlight

4 1 Introduction

2. Can an approximation algorithm with a better guarantee be designed
using the lower bounding scheme of Algorithm 1.2, i.e., size of a maximal
matching in G?

3. Is there some other lower bounding method that can lead to an improved
approximation guarantee for vertex cover?

Example 1.4 shows that the answer to the first question is “no”, i.e.,
the analysis presented above for Algorithm 1.2 is tight. It gives an infinite
family of instances in which the solution produced by Algorithm 1.2 is twice
the optimal. An infinite family of instances of this kind, showing that the
analysis of an approximation algorithm is tight, will be referred to as a tight
example. The importance of finding tight examples for an approximation
algorithm one has designed cannot be overemphasized. They give critical
insight into the functioning of the algorithm and have often led to ideas for
obtaining algorithms with improved guarantees. (The reader is advised to
run algorithms on the tight examples presented in this book.)

Example 1.4 Consider the infinite family of instances given by the complete
bipartite graphs K, .

When run on K, ,, Algorithm 1.2 will pick all 2n vertices, whereas picking
one side of the bipartition gives a cover of size n. O

Let us assume that we will establish the approximation factor for an
algorithm by simply comparing the cost of the solution it finds with the lower
bound. Indeed, almost all known approximation algorithms operate in this
manner. Under this assumption, the answer to the second question is also
“no”. This is established in Example 1.5, which gives an infinite family of
instances on which the lower bound, of size of a maximal matching, is in fact
half the size of an optimal vertex cover. In the case of linear-programming-
based approximation algorithms, the analogous question will be answered by
determining a fundamental quantity associated with the linear programming
relaxation — its integrality gap (see Chapter 12).

The third question, of improving the approximation guarantee for ver-
tex cover, is currently a central open problem in the field of approximation
algorithms (see Section 30.1).

1.2 Well-characterized problems and min—max relations 5

Example 1.5 The lower bound, of size of a maximal matching, is half the
size of an optimal vertex cover for the following infinite family of instances.
Consider the complete graph K,,, where n is odd. The size of any maximal
matching is (n — 1)/2, whereas the size of an optimal cover is n — 1. O

1.2 Well-characterized problems and min—max relations

Consider decision versions of the cardinality vertex cover and maximum
matching problems.

e Is the size of the minimum vertex cover in GG at most k7
e Is the size of the maximum matching in G at least [7

Both these decision problems are in NP and therefore have Yes certificates
(see Appendix A for definitions). Do these problems also have No certificates?
We have already observed that the size of a maximum matching is a lower
bound on the size of a minimum vertex cover. If G is bipartite, then in fact
equality holds; this is the classic Konig-Egervary theorem.

Theorem 1.6 In any bipartite graph,

max |M|= min |U|.
matching M vertex cover U

Therefore, if the answer to the first decision problem is “no”, there must be
a matching of size k+ 1 in GG that suffices as a certificate. Similarly, a vertex
cover of size [— 1 must exist in G if the answer to the second decision problem
is “no”. Hence, when restricted to bipartite graphs, both vertex cover and
maximum matching problems have No certificates and are in co-NP. In fact,
both problems are also in P under this restriction. It is easy to see that any
problem in P trivially has Yes as well as No certificates (the empty string
suffices). This is equivalent to the statement that P C NP N co-NP. It is
widely believed that the containment is strict; the conjectured status of these
classes is depicted below.

NP co-NP

6 1 Introduction

Problems that have Yes and No certificates, i.e., are in NP N co-NP, are
said to be well-characterized. The importance of this notion can be gauged
from the fact that the quest for a polynomial time algorithm for matching
started with the observation that it is well-characterized.

Min—max relations of the kind given above provide proof that a problem is
well-characterized. Such relations are some of the most powerful and beautiful
results in combinatorics, and some of the most fundamental polynomial time
algorithms (exact) have been designed around such relations. Most of these
min—max relations are actually special cases of the LP-duality theorem (see
Section 12.2). As pointed out above, LP-duality theory plays a vital role in
the design of approximation algorithms as well.

What if G is not restricted to be bipartite? In this case, a maximum
matching may be strictly smaller than a minimum vertex cover. For instance,
if G is simply an odd length cycle on 2p 4 1 vertices, then the size of a max-
imum matching is p, whereas the size of a minimum vertex cover is p + 1.
This may happen even for graphs having a perfect matching, for instance,
the Petersen graph:

This graph has a perfect matching of cardinality 5; however, the minimum
vertex cover has cardinality 6. One can show that there is no vertex cover of
size 5 by observing that any vertex cover must pick at least p + 1 vertices
from an odd cycle of length 2p + 1, just to cover all the edges of the cycle,
and the Petersen graph has two disjoint cycles of length 5.

Under the widely believed assumption that NP # co-NP, NP-hard prob-
lems do not have No certificates. Thus, the minimum vertex cover problem in
general graphs, which is NP-hard, does not have a No certificate, assuming
NP # co-NP. The maximum matching problem in general graphs is in P.
However, the No certificate for this problem is not a vertex cover, but a more
general structure: an odd set cover.

An odd set cover C in a graph G = (V, E) is a collection of disjoint odd
cardinality subsets of V', S1, ..., Sk, and a collection vy, . .., v; of vertices such
that each edge of G is either incident at one of the vertices v; or has both
endpoints in one of the sets S;. The weight of this cover C is defined to be
w(C) =1+, (ISi| —1)/2. The following min-max relation holds.

1.3 Exercises 7

Theorem 1.7 In any graph, max |M|= min w(C).
matching M odd set cover C'

As shown above, in general graphs a maximum matching can be smaller
than a minimum vertex cover. Can it be arbitrarily smaller? The answer is
“no”. A corollary of Theorem 1.3 is that in any graph, the size of a maximum
matching is at least half the size of a minimum vertex cover. More precisely,
Theorem 1.3 gives, as a corollary, the following approximate min—max rela-
tion. Approximation algorithms frequently yield such approximate min—max
relations, which are of independent interest.

Corollary 1.8 In any graph,

max |M| < min |U| §2-(max |M|>

matching M ~ wvertex cover U matching M

Although the vertex cover problem does not have No certificate under the
assumption NP # co-NP, surely there ought to be a way of certifying that
(G,k) is a “no” instance for small enough values of k. Algorithm 1.2 (more
precisely, the lower bounding scheme behind this approximation algorithm)
provides such a method. Let A(G) denote the size of vertex cover output by
Algorithm 1.2. Then, OPT(G) < A(G) < 2-OPT(G). If k < A(G)/2 then
k < OPT(G), and therefore (G, k) must be a “no” instance. Furthermore,
if £ < OPT(G)/2 then k < A(G)/2. Hence, Algorithm 1.2 provides a No
certificate for all instances (G, k) such that k < OPT(G)/2.

A No certificate for instances (I, B) of a minimization problem II satis-
fying B < OPT(I)/« is called a factor a approximate No certificate. As in
the case of normal Yes and No certificates, we do not require that this certifi-
cate be polynomial time computable. An « factor approximation algorithm
A for IT provides such a certificate. Since A has polynomial running time,
this certificate is polynomial time computable. In Chapter 27 we will show
an intriguing result — that the shortest vector problem has a factor n approx-
imate No certificate; however, a polynomial time algorithm for constructing
such a certificate is not known.

1.3 Exercises

1.1 Give a factor 1/2 algorithm for the following.

Problem 1.9 (Acyclic subgraph) Given a directed graph G = (V, E), pick
a maximum cardinality set of edges from F so that the resulting subgraph is
acyclic.

Hint: Arbitrarily number the vertices and pick the bigger of the two sets,
the forward-going edges and the backward-going edges. What scheme are you
using for upper bounding OPT?

8 1 Introduction

1.2 Design a factor 2 approximation algorithm for the problem of finding a
minimum cardinality maximal matching in an undirected graph.

Hint: Use the fact that any maximal matching is at least half the maximum
matching.

1.3 (R. Bar-Yehuda) Consider the following factor 2 approximation algo-
rithm for the cardinality vertex cover problem. Find a depth first search tree
in the given graph, GG, and output the set, say S, of all the nonleaf vertices
of this tree. Show that S is indeed a vertex cover for G and |S| < 2- OPT.
Hint: Show that G has a matching of size |S]|.

1.4 Perhaps the first strategy one tries when designing an algorithm for an
optimization problem is the greedy strategy. For the vertex cover problem,
this would involve iteratively picking a maximum degree vertex and removing
it, together with edges incident at it, until there are no edges left. Show that
this algorithm achieves an approximation guarantee of O(logn). Give a tight
example for this algorithm.

Hint: The analysis is similar to that in Theorem 2.4.

1.5 A maximal matching can be found via a greedy algorithm: pick an edge,
remove its two endpoints, and iterate until there are no edges left. Does this
make Algorithm 1.2 a greedy algorithm?

1.6 Give a lower bounding scheme for the arbitrary cost version of the vertex
cover problem.
Hint: Not easy if you don’t use LP-duality.

1.7 Let A = {a1,...,a,} be a finite set, and let “<” be a relation on
A that is reflexive, antisymmetric, and transitive. Such a relation is called
a partial ordering of A. Two elements a;,a; € A are said to be comparable
if a; < a; or a; < a;. Two elements that are not comparable are said to
be incomparable. A subset S C A is a chain if its elements are pairwise
comparable. If the elements of S are pairwise incomparable, then it is an
antichain. A chain (antichain) cover is a collection of chains (antichains)
that are pairwise disjoint and cover A. The size of such a cover is the number
of chains (antichains) in it. Prove the following min—max result. The size of
a longest chain equals the size of a smallest antichain cover.

Hint: Let the size of the longest chain be m. For a € A, let ¢(a) denote the
size of the longest chain in which a is the smallest element. Now, consider
the partition of A, A; ={a € A | ¢(a) =i}, for 1 <i <m.

1.8 (Dilworth’s theorem, see [195]) Prove that in any finite partial order,
the size of a largest antichain equals the size of a smallest chain cover.
Hint: Derive from the Koénig-Egervary Theorem. Given a partial order on n-
element set A, consider the bipartite graph G = (U, V, E) with |U| = |V| =n
and (u;,v;) € E iff a; < aj.

hamid
Highlight

1.3 Exercises 9

The next ten exercises are based on Appendix A.

1.9 Is the following an NP-optimization problem? Given an undirected
graph G = (V, E), a cost function on vertices ¢ : V — Q7, and a positive
integer k, find a minimum cost vertex cover for G containing at most k
vertices.

Hint: Can valid instances be recognized in polynomial time (such an instance
must have at least one feasible solution)?

1.10 Let A be an algorithm for a minimization NP-optimization problem IT
such that the expected cost of the solution produced by A is < aOPT, for a
constant o > 1. What is the best approximation guarantee you can establish
for IT using algorithm A?

Hint: A guarantee of 2a — 1 follows easily. For guarantees arbitrarily close
to «, run the algorithm polynomially many times and pick the best solution.
Apply Chernoft’s bound.

1.11 Show that if SAT has been proven NP-hard, and SAT has been reduced,
via a polynomial time reduction, to the decision version of vertex cover, then
the latter is also NP-hard.

Hint: Show that the composition of two polynomial time reductions is also
a polynomial time reduction.

1.12 Show that if the vertex cover problem is in co-NP, then NP = co-NP.

1.13 (Pratt [222]) Let L be the language consisting of all prime numbers.
Show that L € NP.

Hint: Consider the multiplicative group modn, Z* = {a € Z7 | 1 < a <
n and (a,n) = 1}. Clearly, |Z%| < n — 1. Use the fact that |Z}| = n — 1 iff
n is prime, and that Z is cyclic if n is prime. The Yes certificate consists
of a primitive root of Z, the prime factorization of n — 1, and, recursively,
similar information about each prime factor of n — 1.

1.14 Give proofs of self-reducibility for the optimization problems discussed
later in this book, in particular, maximum matching, MAX-SAT (Problem
16.1), clique (Problem 29.15), shortest superstring (Problem 2.9), and Mini-
mum makespan scheduling (Problem 10.1).

Hint: For clique, consider two possibilities, that v is or isn’t in the optimal
clique. Correspondingly, either restrict G to v and its neighbors, or remove
v from G. For shortest superstring, remove two strings and replace them
by a legal overlap (may even be a simple concatenation). If the length of
the optimal superstring remains unchanged, work with this smaller instance.
Generalize the scheduling problem a bit — assume that you are also given
the number of time units already scheduled on each machine as part of the
instance.

10 1 Introduction

1.15 Give a suitable definition of self-reducibility for problems in NP, i.e.,
decision problems and not optimization problems, which enables you to ob-
tain a polynomial time algorithm for finding a feasible solution given an
oracle for the decision version, and moreover, yields a self-reducibility tree
for instances.

Hint: Impose an arbitrary order among the atoms of a solution, e.g., for
SAT, this was achieved by arbitrarily ordering the n variables.

1.16 Let II; and II; be two minimization problems such that there is an
approximation factor preserving reduction from Il to Il5. Show that if there
is an « factor approximation algorithm for /75 then there is also an « factor
approximation algorithm for I7;.

Hint: First prove that if the reduction transforms instance I; of II; to
instance Iy of 115 then OPT 7, (I;) = OPTp, (12).

1.17 Show that

L € ZPP iff L € (RPN co-RP).

1.18 Show that if NP C co-RP then NP C ZPP.

Hint: If SAT instance ¢ is satisfiable, a satisfying truth assignment for ¢
can be found, with high probability, using self-reducibility and the co-RP
machine for SAT. If ¢ is not satisfiable, a “no” answer from the co-RP
machine for SAT confirms this; the machine will output such an answer with
high probability.

1.4 Notes

The notion of well-characterized problems was given by Edmonds [69] and
was precisely formulated by Cook [51]. In the same paper, Cook initiated the
theory of NP-completeness. Independently, this discovery was also made by
Levin [186]. It gained its true importance with the work of Karp [164], show-
ing NP-completeness of a diverse collection of fundamental computational
problems.

Interestingly enough, approximation algorithms were designed even before
the discovery of the theory of NP-completeness, by Vizing [255] for the min-
imum edge coloring problem, by Graham [113] for the minimum makespan
problem (Problem 10.1), and by Erdds [73] for the MAX-CUT problem (Prob-
lem 2.14). However, the real significance of designing such algorithms emerged
only after belief in the P # NP conjecture grew. The notion of an approx-
imation algorithm was formally introduced by Garey, Graham, and Ullman
[91] and Johnson [150]. The first use of linear programming in approximation

1.4 Notes 11

algorithms was due to Lovasz [192], for analyzing the greedy set cover algo-
rithm (see Chapter 13). An early work exploring the use of randomization in
the design of algorithms was due to Rabin [224] — this notion is useful in the
design of approximation algorithms as well. Theorem 1.7 is due to Edmonds
[69] and Algorithm 1.2 is due to Gavril [93].

For basic books on algorithms, see Cormen, Leiserson, Rivest, and Stein
[54], Papadimitriou and Steiglitz [217], and Tarjan [246]. For a good treatment
of min—max relations, see Lovdsz and Plummer [195]. For books on approx-
imation algorithms, see Hochbaum [126] and Ausiello, Crescenzi, Gambosi,
Kann, Marchetti, and Protasi [17]. Books on linear programming, complexity
theory, and randomized algorithms are listed in Sections 12.5, A.6, and B.4,
respectively.

Part |

Combinatorial Algorithms

2 Set Cover

The set cover problem plays the same role in approximation algorithms that
the maximum matching problem played in exact algorithms — as a problem
whose study led to the development of fundamental techniques for the entire
field. For our purpose this problem is particularly useful, since it offers a very
simple setting in which many of the basic algorithm design techniques can be
explained with great ease. In this chapter, we will cover two combinatorial
techniques: the fundamental greedy technique and the technique of layering.
In Part IT we will explain both the basic LP-based techniques of rounding
and the primal-dual schema using this problem.

Among the first strategies one tries when designing an algorithm for an
optimization problem is some form of the greedy strategy. Even if this strat-
egy does not work for a specific problem, proving this via a counterexample
can provide crucial insights into the structure of the problem.

Perhaps the most natural use of this strategy in approximation algorithms
is to the set cover problem. Besides the greedy set cover algorithm, we will
also present the technique of layering in this chapter. Because of its generality,
the set cover problem has wide applicability, sometimes even in unexpected
ways. In this chapter we will illustrate such an application — to the shortest
superstring problem (see Chapter 7 for an improved algorithm for the latter
problem).

Problem 2.1 (Set cover) Given a universe U of n elements, a collection
of subsets of U, S = {S1,..., S}, and a cost function ¢ : S — Q7 find a
minimum cost subcollection of & that covers all elements of U.

Define the frequency of an element to be the number of sets it is in.
A useful parameter is the frequency of the most frequent element. Let us
denote this by f. The various approximation algorithms for set cover achieve
one of two factors: O(logn) or f. Clearly, neither dominates the other in all
instances. The special case of set cover with f = 2 is essentially the vertex
cover problem (see Exercise 2.7), for which we gave a factor 2 approximation
algorithm in Chapter 1.

16 2 Set Cover
2.1 The greedy algorithm

The greedy strategy applies naturally to the set cover problem: iteratively
pick the most cost-effective set and remove the covered elements, until all
elements are covered. Let C' be the set of elements already covered at the be-
ginning of an iteration. During this iteration, define the cost-effectiveness of a
set S to be the average cost at which it covers new elements, i.e., ¢(S)/|S — C/|.
Define the price of an element to be the average cost at which it is covered.
Equivalently, when a set S is picked, we can think of its cost being distributed
equally among the new elements covered, to set their prices.

Algorithm 2.2 (Greedy set cover algorithm)

1.C+0
2. While C # U do

Find the most cost-effective set in the current iteration, say S.
Cost(9)

Let o = SCT i.e., the cost-effectiveness of S.
Pick .S, and for each e € S — C, set price(e) = a.
C+CuUS.

3. Output the picked sets.

Number the elements of U in the order in which they were covered by the
algorithm, resolving ties arbitrarily. Let ey, ..., e, be this numbering.

Lemma 2.3 For each k € {1,...,n}, price(ex) < OPT/(n —k+1).

Proof: In any iteration, the leftover sets of the optimal solution can cover
the remaining elements at a cost of at most OPT. Therefore, among these
sets, there must be one having cost-effectiveness of at most OPT/|C|. In the
iteration in which element e was covered, C contained at least n — k + 1
elements. Since e, was covered by the most cost-effective set in this iteration,
it follows that

OPT< OPT
C| ~ n—k+1

price(eg) <

From Lemma 2.3 we immediately obtain:

Theorem 2.4 The greedy algorithm is an H, factor approximation algo-
rithm for the minimum set cover problem, where H,, = 1 + % + -+ %

Proof: Since the cost of each set picked is distributed among the new ele-
ments covered, the total cost of the set cover picked is equal to Y, _, price(ex).
By Lemma 2.3, this is at most (1+ 5 +---+ 1) - OPT. O

2.2 Layering 17

Example 2.5 The following is a tight example for Algorithm 2.2:

I/n Um-1) 1

When run on this instance the greedy algorithm outputs the cover consisting
of the n singleton sets, since in each iteration some singleton is the most
cost-effective set. Thus, the algorithm outputs a cover of cost

1 1
— + +---+1=H,.
n n-—1
On the other hand, the optimal cover has a cost of 1 + ¢. O

Surprisingly enough, for the minimum set cover problem the obvious al-
gorithm given above is essentially the best one can hope for; see Sections 29.7
and 29.9.

In Chapter 1 we pointed out that finding a good lower bound on OPT
is a basic starting point in the design of an approximation algorithm for a
minimization problem. At this point the reader may be wondering whether
there is any truth to this claim. We will show in Section 13.1 that the correct
way to view the greedy set cover algorithm is in the setting of the LP-duality
theory — this will not only provide the lower bound on which this algorithm
is based, but will also help obtain algorithms for several generalizations of
this problem.

2.2 Layering

The algorithm design technique of layering is also best introduced via set
cover. We note, however, that this is not a very widely applicable technique.
We will give a factor 2 approximation algorithm for vertex cover, assuming
arbitrary weights, and leave the problem of generalizing this to a factor f
approximation algorithm for set cover, where f is the frequency of the most
frequent element (see Exercise 2.13).

The idea in layering is to decompose the given weight function on vertices
into convenient functions, called degree-weighted, on a nested sequence of
subgraphs of GG. For degree-weighted functions, we will show that we will be
within twice the optimal even if we pick all vertices in the cover.

Let us introduce some notation. Let w : V' — Q™ be the function assigning
weights to the vertices of the given graph G = (V, E). We will say that a
function assigning vertex weights is degree-weighted if there is a constant

hamid
Highlight

hamid
Highlight

hamid
Highlight

hamid
Highlight

18 2 Set Cover

¢ > 0 such that the weight of each vertex v € V' is ¢-deg(v). The significance
of such a weight function is captured in:

Lemma 2.6 Let w:V — Q7 be a degree-weighted function. Then w(V) <
2-OPT.

Proof: Let ¢ be the constant such that w(v) = ¢ - deg(v), and let U be an
optimal vertex cover in GG. Since U covers all the edges,

> deg(v) > |E].

velU

Therefore, w(U) > c|E|. Now, since), deg(v) = 2|E|, w(V') = 2¢|E|. The
lemma follows. O

Let us define the largest degree-weighted function in w as follows: remove
all degree zero vertices from the graph, and over the remaining vertices, com-
pute ¢ = min{w(v)/deg(v)}. Then, t(v) = ¢ - deg(v) is the desired function.
Define w'(v) = w(v) — t(v) to be the residual weight function.

The algorithm for decomposing w into degree-weighted functions is as
follows. Let Gy = G. Remove degree zero vertices from G, say this set is Dy,
and compute the largest degree-weighted function in w. Let W be vertices of
zero residual weight; these vertices are included in the vertex cover. Let G; be
the graph induced on V —(DoUW),). Now, the entire process is repeated on G,
w.r.t. the residual weight function. The process terminates when all vertices
are of degree zero; let (G;, denote this graph. The process is schematically
shown in the following figure.

Gy Dy

G W D,

G) 12)

Let tg, ..., tx—1 be the degree-weighted functions defined on graphs Gy, ..., Gy_1.
The vertex cover chosen is C' = WyU. . .UW}_;. Clearly, V—C = DyU...UDy.

Theorem 2.7 The layer algorithm achieves an approrimation guarantee of
factor 2 for the vertex cover problem, assuming arbitrary verter weights.

Proof: We need to show that set C' is a vertex cover for G and w(C) <
2 - OPT. Assume, for contradiction, that C' is not a vertex cover for G. Then

hamid
Highlight

hamid
Highlight

hamid
Highlight

hamid
Highlight

hamid
Highlight

hamid
Highlight
minimum meghdari ra peida mikonad ke mitavanad az rasha kam konad t ahich rasi manfi nashavad

hamid
Highlight

hamid
Highlight
wi ha rashayi hastand ke dar har marhale yalhayi az anha ra bardashte va daraje anha sefr shode ast

2.3 Application to shortest superstring 19

there must be an edge (u,v) with v € D; and v € Dj, for some i, j. Assume
i < j. Therefore, (u,v) is present in G;, contradicting the fact that u is a
degree zero vertex.

Let C* be an optimal vertex cover. For proving the second part, consider
a vertex v € C. If v € Wy, its weight can be decomposed as

w(v) =Y ti(v).

]

Next, consider a vertex v € V — C. If v € D;, a lower bound on its weight is
given by

w(v) > Y ti(v).

i<j

The important observation is that in each layer i, C* N G; is a vertex
cover for GG, since GG; is a vertex-induced graph. Therefore, by Lemma 2.6,
t;(CNG;) <2-t,(C*NG;). By the decomposition of weights given above,
we get

k—1 k—1
w(C) =) t(CNG;) <2 (C*NG;) <2-w(C*)
1=0 1=0

|

Example 2.8 A tight example is provided by the family of complete bi-
partite graphs, K,, ,, with all vertices of unit weight. The layering algorithm
will pick all 2n vertices of K, ,, in the cover, whereas the optimal cover picks
only one side of the bipartition. O

2.3 Application to shortest superstring

The following algorithm is given primarily to demonstrate the wide applica-
bility of set cover. A constant factor approximation algorithm for shortest
superstring will be given in Chapter 7.

Let us first provide motivation for this problem. The human DNA can
be viewed as a very long string over a four-letter alphabet. Scientists are
attempting to decipher this string. Since it is very long, several overlapping
short segments of this string are first deciphered. Of course, the locations of
these segments on the original DNA are not known. It is hypothesized that
the shortest string which contains these segments as substrings is a good
approximation to the original DNA string.

20 2 Set Cover

Problem 2.9 (Shortest superstring) Given a finite alphabet X', and a
set of n strings, S = {s1,...,s,} € X7, find a shortest string s that contains
each s; as a substring. Without loss of generality, we may assume that no
string s; is a substring of another string s;, j # i.

This problem is NP-hard. Perhaps the first algorithm that comes to mind
for finding a short superstring is the following greedy algorithm. Define the
overlap of two strings s,t € X* as the maximum length of a suffix of s that is
also a prefix of ¢. The algorithm maintains a set of strings T'; initially T = S.
At each step, the algorithm selects from T two strings that have maximum
overlap and replaces them with the string obtained by overlapping them as
much as possible. After n — 1 steps, T" will contain a single string. Clearly,
this string contains each s; as a substring. This algorithm is conjectured to
have an approximation factor of 2. To see that the approximation factor of
this algorithm is no better than 2, consider an input consisting of 3 strings:
ab®, bFe, and bFT1. If the first two strings are selected in the first iteration,
the greedy algorithm produces the string ab®cb**1. This is almost twice as
long as the shortest superstring, ab¥+!c.

We will obtain a 2H,, factor approximation algorithm, using the greedy
set cover algorithm. The set cover instance, denoted by &, is constructed as
follows. For s;,s; € S and k > 0, if the last k symbols of s; are the same as
the first k£ symbols of s;, let 0y be the string obtained by overlapping these
k positions of s; and s;:

Cijk

Let M be the set that consists of the strings o;;x, for all valid choices of
i,j,k. For a string m € Xt define set(w) = {s € S | s is a substring of 7}.
The universal set of the set cover instance S is S, and the specified subsets
of S are set(m), for each string 7 € S U I. The cost of set(w) is ||, i.e., the
length of string .

Let OPTs and OPT denote the cost of an optimal solution to & and the
length of the shortest superstring of S, respectively. As shown in Lemma 2.11,
OPTgs and OPT are within a factor of 2 of each other, and so an approxima-
tion algorithm for set cover can be used to obtain an approximation algorithm
for shortest superstring. The complete algorithm is:

2.3 Application to shortest superstring 21

Algorithm 2.10 (Shortest superstring via set cover)

1. Use the greedy set cover algorithm to find a cover for the instance S.
Let set(m1),...,set(m) be the sets picked by this cover.

2. Concatenate the strings 1, ..., 7, in any order.

3. Output the resulting string, say s.

Lemma 2.11 OPT < OPTgs <2-0OPT.

Proof: Consider an optimal set cover, say {set(m;)|1 <i <[}, and obtain a
string, say s, by concatenating the strings m;, 1 < ¢ <[, in any order. Clearly,
|s| = OPTgs. Since each string of S is a substring of some m;, 1 <14 <[, it is
also a substring of s. Hence OPTs = |s| > OPT.

To prove the second inequality, let s be a shortest superstring of s, ..., s,,
|s| = OPT. It suffices to produce some set cover of cost at most 2 - OPT.

Consider the leftmost occurrence of the strings si, ..., s, in string s. Since
no string among s, ..., s, is a substring of another, these n leftmost occur-
rences start at distinct places in s. For the same reason, they also end at
distinct places. Renumber the n strings in the order in which their leftmost
occurrences start. Again, since no string is a substring of another, this is also
the order in which they end.

S
L
I

Sbq ,

1
| |
I 1
I I
. Ses
I

1 Sba I
' 1
! | |
' f 1
: I I
| Ses I
: - |
E Sbs ' ,
, 1
! | ! |
! . : !
: I I
! . Ses
i I

1 E
T2 1
I 7_(_3 1

We will partition the ordered list of strings si,...,s, in groups as de-

scribed below. Each group will consist of a contiguous set of strings from this

22 2 Set Cover

list. Let b; and e; denote the index of the first and last string in the ith group
(b; = e; is allowed). Thus, by = 1. Let e; be the largest index of a string that
overlaps with s; (there exists at least one such string, namely s; itself). In
general, if e; < n we set b;11 = e; + 1 and denote by e;+1 the largest index
of a string that overlaps with s;,, . Eventually, we will get e; = n for some
t<n.

For each pair of strings (sp,, se,), let k; > 0 be the length of the overlap
between their leftmost occurrences in s (this may be different from their
maximum overlap). Let m; = op,¢,k,. Clearly, {set(m;)|1 <1 <t} is a solution
for S, of cost), |m].

The critical observation is that m; does not overlap m;12. We will prove
this claim for ¢ = 1; the same argument applies to an arbitrary 7. Assume, for
contradiction, that m; overlaps m3. Then the occurrence of s, in s overlaps
the occurrence of s.,. However, s, does not overlap s, (otherwise, s;, would
have been put in the second group). This implies that s., ends later than
Sp,, contradicting the property of endings of strings established earlier.

Because of this observation, each symbol of s is covered by at most two
of the m;’s. Hence OPTs <). |m;| < 2-OPT. O

The size of the universal set in the set cover instance § is n, the number
of strings in the given shortest superstring instance. This fact, Lemma 2.11,
and Theorem 2.4 immediately give the following theorem.

Theorem 2.12 Algorithm 2.10 is a 2H,, factor algorithm for the shortest
superstring problem, where n is the number of strings in the given instance.

2.4 Exercises

2.1 Given an undirected graph G = (V, E), the cardinality maximum cut
problem asks for a partition of V into sets S and S so that the number of
edges running between these sets is maximized. Consider the following greedy
algorithm for this problem. Here v; and vy are arbitrary vertices in G, and
for A C V, d(v, A) denotes the number of edges running between vertex v
and set A.

Algorithm 2.13

1. Initialization:
A« {1)1}
B + {?}2}
2. Forv eV —{v,v2} do:
if d(v, A) > d(v, B) then B + B U {v},
else A+ AU {v}.
3. Output A and B.

2.4 Exercises 23

Show that this is a factor 1/2 approximation algorithm and give a tight
example. What is the upper bound on OPT that you are using? Give examples
of graphs for which this upper bound is as bad as twice OPT. Generalize the
problem and the algorithm to weighted graphs.

2.2 Consider the following algorithm for the maximum cut problem, based
on the technique of local search. Given a partition of V' into sets, the basic
step of the algorithm, called fiip, is that of moving a vertex from one side
of the partition to the other. The following algorithm finds a locally optimal
solution under the flip operation, i.e., a solution which cannot be improved
by a single flip.

The algorithm starts with an arbitrary partition of V. While there is a
vertex such that flipping it increases the size of the cut, the algorithm flips
such a vertex. (Observe that a vertex qualifies for a flip if it has more neigh-
bors in its own partition than in the other side.) The algorithm terminates
when no vertex qualifies for a flip. Show that this algorithm terminates in
polynomial time, and achieves an approximation guarantee of 1/2.

2.3 Consider the following generalization of the maximum cut problem.

Problem 2.14 (MAX k-CUT) Given an undirected graph G = (V, E)
with nonnegative edge costs, and an integer k, find a partition of V into
sets S1,..., Sk so that the total cost of edges running between these sets is
maximized.

Give a greedy algorithm for this problem that achieves a factor of (1 — %)
Is the analysis of your algorithm tight?

2.4 Give a greedy algorithm for the following problem achieving an approx-
imation guarantee of factor 1/4.

Problem 2.15 (Maximum directed cut) Given a directed graph G =
(V, E') with nonnegative edge costs, find a subset S C V' so as to maximize
the total cost of edges out of S, i.e., cost({(u = v) | u € S and v € S}).

2.5 (N. Vishnoi) Use the algorithm in Exercise 2.2 and the fact that the
vertex cover problem is polynomial time solvable for bipartite graphs to give
a factor [logy, A] algorithm for vertex cover, where A is the degree of the
vertex having highest degree.

Hint: Let H denote the subgraph consisting of edges in the maximum
cut found by Algorithm 2.13. Clearly, H is bipartite, and for any vertex v,

degp (v) = (1/2)degq(v).

2.6 (Wigderson [257]) Consider the following problem.

Problem 2.16 (Vertex coloring) Given an undirected graph G = (V, E),
color its vertices with the minimum number of colors so that the two end-
points of