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1D Elastic Stress Waves
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1D Elastic Wave
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Definitions 
• Stress wave:

• A pulse transmitted through a body when different parts of it are 
not at equilibrium. 

• Body waves:

• Waves traveling through the mass of a body

• Surface waves:

• Waves traveling over the surface of a body

• Wave types:

• Longitudinal, torsional, bending
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Compressive wave

• Equation of motion:
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Compressive wave
• Strain:

• The Hooke’s law is:

• Differentiating the above:

• Substituting into the equation of motion:

• The wave equation.
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Solution 

• Try:

• Hence,  

8

Wave speed

• Suppose,

• If u=s when x=x1 and t=t1 and also u = s when t = t2 and x = 

x2 

• Thus, 

• and
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Wave speed
• !! is the speed of elastic wave propagation along the fixed 

axis of the bar

• Note that the speed of propagation is independent of !"/!$, or 
the local velocity of the elements transmitting the wave.

• %! depends only on the elastic properties of the transmitting 
medium and its density.

• Similarly, for torsional waves, 
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Wave speed
• Wave speed for common materials:
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Intensity of stress
• The stress propagated in the material:

• By                          , we have                              . Or

• for steel if the stress is 16 $&'(/)'", the particle speed would be

• For pure lead, at its yield stress of about 1 $&'(/)'", v0 is only 
about 4 ft/sec.

• The quantity ""!! is often referred to as the mechanical 

impedance of the bar.
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Torsional wave

• Equation of motion: 
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Torsional wave
• Or 

• Where

• is the torsional wave speed.

• For a circular cylinder:
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Torsional stress
• With rotation

• Stress can be obtained with known torsional torque. 
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Flexural wave

• Equation of motion: 

• From beam theory, 
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Flexural wave
• # denotes the radius of gyration of the cross-section about 

an axis in the neutral surface

• If we try a solution of the form $ = &(( − !*) or $ = &((
+ !*) the equation is found not to be satisfied. 

• Thus flexural disturbances of arbitrary form are not 

propagated without dispersion.
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Momentum approach
• Longitudinal wave

• After time $, the compressed zone length is %!$.

• If the bar is originally stationary and the end face is caused to 
move with and maintains uniform speed +# , then the whole 
length will be moving with uniform speed +# at time $.

• Equating the change in momentum of this length %!$ to the 
impulse, we have
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Momentum approach
• Thus 

• The strain is                     , so

• Substituting,

• Hence,   
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Energy 
• The total energy acquired by the rod at time * is made up 

of

• (a) kinetic energy

• (b) stored strain energy

• and thus the total energy acquired by the bar at time t is 
composed equally of strain energy and kinetic energy. 
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Torsional wave

• A uniform thin hollow tube of radius a and cross-sectional area 
A0 is rotating at angular speed  , when at time t = 0 the end DD 
is suddenly brought to rest.

• a length %$$ will have been brought to rest and the remainder of 
the tube will still be rotating at speed ,#
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Torsional wave
• The mean shear stress - which prevails in length %$$ is arrived at 

by equating the impulsive torque, $. (/#-. 0), to the loss in 
angular momentum of the tube in time t, 

• Thus

• The torsional strain is 

• Hence, 

• Substituting,  
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Plane strain condition

• Equation of motion:
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Plane strain condition
• Plane strain condition:

• Thus

• Also,

• Hence   
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Plane strain condition
• Hence

• The longitudinal wave speed is 

!""
!$" =

4
5# 1 − +"

⋅
!""
!9"

%!% =
4

5# 1 − +"

%!%

%!
=

1
1 − +"
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Transversely constrained
• Wave transmission along a uniform bar constrained to have 

zero transverse deformation.

• From symmetry:

• So,  

• For zero transverse strain,

• With  
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Transversely constrained

• Substituting, 



27

Transversely constrained
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Different conditions
• Wave speed for 1D, plane strain, and transversely 

constrained conditions
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Torsional wave via longitudinal wave
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Torsional wave via longitudinal wave
• If the transverse shear stress in the tube wall is -, the 

principal stresses in a long uniform helical fiber at 45° to 

the tube axis are + - and - -.

• The  fiber lying along a principal axis may be considered 

simply as a bar. 

• The initiation of a torsional wave at the end of the tube can 

be identified with the propagation of a longitudinal wave 

along the fiber.

• Equation of motion:
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Torsional wave via longitudinal wave
• With

• Substituting into eq. of motion:

• The speed of longitudinal wave propagation:
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Torsional wave via longitudinal wave
• The speed of the wave parallel to the axis of the tube which 

is just the torsional wave speed !# is !!! cos 45
$



Collision of bars
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Collision of bars
• Before impact let the two square-ended bars which have 

different mechanical impedances (5#. %) possess speeds +& and 
+" , where +& < +"

• After impact, compressive longitudinal waves will propagate 
from the impact interface into each bar.

• the impact interface and the material engulfed by each wave will 
all have the same speed +′

• The stress created in each bar is the same.
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Collision of bars
• Earlier we derived the stress as 4" = ""!!5" for stationary 

bar.

• For a bar with initial speed +&, the expression will be 5#%!(+%
− +&), where +′ is the new particle speed after the wave has 
travelled through it.

• Thus, +# is properly to be understood as a change in particle 
speed due to the passage of a wave or the magnitude of the 
velocity discontinuity across a wave front. 

• The quantity (+′ − +&) in respect of the initially translating bar 
and +# for the stationary bar are therefore identical quantities 
for the purpose of calculation.

• Henceforth, when we use the expression <# = 5#%!+# it must be 
remembered that +# refers to a change in particle speed.
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Collision of bars
• Thus,

• If "%!% = "&!&, and 5% = −5& then 5' = 0 and 4 = "%!%5%
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Impact with water
• Consider a square-ended projectile of initial density ""

impinging normally upon a plane sheet of water. 

• Let the elastic compressive stress generated in the cylinder, 
which is initially moving with speed +# , be <#

• Then the particle speed in that part of the cylinder traversed by 
the stress wave is reduced to + = +# − <#/(5#%!)

• at the instant of impact, + is also the particle speed of the 
contiguous water surface

• The compressive stress immediately created in the water <':
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Impact with water
• The stress in the cylinder (4( = 4"):

• a square-ended steel bullet moving at 2500 ft/sec. would 

give rise to an elastic stress 4" of 283000 ;<&/>?&

≈ 126 *C?&/>?& , on hitting the water
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Stressed material

• Let the right hand end of the stationary rod be given a 

speed of 5 which is maintained until the whole of the bar 

has the same speed.

• The length of the bar will have then become ; 1 +
)"
*

• Denote the wave speed through the space occupied by the 

bar in its final stressed state. by D*:
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Stressed material
• Hence,

• Or 

• %# is the wave speed in the unstressed bar

• %( is the wave speed in the stressed bar

• + is the velocity of the particles

• If the bar had been put into compression instead of 

tension, 
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Stressed material
• Since an element initially of unit length when stressed by a 

tension wave becomes (1 + e),

• Or

• Since speed, +, for elastic behavior is of the order of 10 ft/sec 
and %# is of the order of 10000 ft/sec, then +/%# , or +/%( are  
≈ 1/1000.

• Thus for cases of elastic impact, for all practical purposes, we 
need not distinguish between %# and %(.
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Rectangular pulse

• Let the end / of an unstrained stationary bar S, be moved with 
constant speed +# to the right for a time $, so that / moves to 
/′ and //% = +#$. 

• At the same time a compressive wave < = 5#%#+# is caused to 
travel along the bar from / to the right as far as ?, with speed 
%#, so that /? = %#$.
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Rectangular pulse

• Consider a bar identical with S the end A of which is caused to 
move to the left to A with speed +# but only commencing at a 
time t = T.

• The magnitude of the induced tensile stress is < = 5#%#+# and 
the wave travels to the right so that at time t > T, AD = c(t - T); 
also //" = +#(t − T).
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Rectangular pulse

• Suppose now that the left hand end of unstrained stationary bar 
S, at $ = 0 is moved to the right and that this is maintained for 
all $; also, suppose that time $ = C, there is imposed on this the 
previous situation and to the end of the bar is added a speed to 
the left of +#.

• Length /"′D is stationary and unstressed having undergone a 
rigid body movement to the right of //"′ or +#C

• DB which has an unstrained length %#C is subject to compressive 
stress <, is actually compressed amount +#C
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Rectangular pulse

• The portion of bar to the right of B of course stationary and 

unstressed.

• A rectangular pulse of length !E can thus be considered in 

itself

46

Reflection 

• Assume an elastic rectangular pulse of tension to be 

moving along a uniform rod in the positive x-direction.

• Introduce a hypothetical rectangular compressive wave length 
and stress magnitude moving in the opposite direction.

• At AB the two wave fronts first meet and after some time have 
moved through one another completely.
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Reflection

• At AB, the stresses in these waves annul one another so 

that the stress is zero: a free end.

• Hence, for a free-ended bar, a tensile wave is reflected as a 

compressive wave.

• In the portion of the bar where the two pulses overlap the 

total stress is zero and the particle speed is twice what it 

was when covered by the incident tensile wave alone.
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Reflection

• Consider two identical tensile waves moving towards one 

another.

• at CD, where the heads of the two pulse first meet, the stress is 
doubled and the particle speed is zero: fixed end.

• Hence, an elastic wave reflected from a fixed-ended bar is 
entirely unchanged in shape or intensity.
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Reflection

• It should now be evident that the net stress on, or the 

speed of particles in, a given plane are easily obtained by 

adding together the separate effects of the operative 

waves at that plane, e.g. the incident and reflected waves, 

provided, of course, that the waves are elastic.
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Impact of identical bars

• Immediately after impact a compressive wave of intensity, 

""5"!!, moves into each bar from the common plane of 

impact.
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Impact of identical bars
• Energies:

• Thus at * = 2;/!! the particles in the common plane of 

impact will move away from one another with equal but 

opposite speeds. 

• The bars will thus rebound as unstressed bodies at a time *
= 2;/!! after impact first took place.

• The coefficient of restitution F = 1 in this case. 
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Impact of bars

• A compressive stress 4 = ""!"5" will have been 

propagated away from the common plane of impact.

• The compressive pulse is reflected as a wave of tension 

from the free end of each bar, so that for the period of 

time 

+#
,"
< * <

&+#
,"

, H& will be being unloaded.

• When $ = 2F"/%#, G" is just completely stress free and the 
particle speed in it will everywhere have been exactly reversed.
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Impact of bars
• at this instant an unloading wave travels into H% from H& so 

that the particles at the right hand end of H% move to the 

right with speed 5".

• Contact ceases at ! = 2"&/#& when the wave reflected 

from the left band end of H% reaches the  right hand end of 

H& and so cancels the speed there of 5".
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Impact of bars
• At this instant, i.e. * = 2;&/!", let us ascertain how the 

energy is distributed in H% and H& if 2;& > ;%:



55

Impact of bars
• Kinetic energy of H&:

• And H%:

• the elastic strain energy in H& is zero and that in H%:

• Because 4 = 5" J""
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Impact of bars
• Total energy of the bars:

• which is just the kinetic energy of F& and F" before impact took 
place.



57

Impact of bars
• If we consider the case of ;% = 2;&, then at * = ;%/!" , the 

whole of H% will be compressed and stationary.

• At $ = 1.5F&/%#, G& will be completely unstrained.

• The left hand half of G& will be moving to the left with speed +#
and right hand half to the right with speed +#.

• At time $ = 2F&/%# each half of the bar will be in tension.

• At $ = 2.5F&/%# the halves will be unloaded.

• At $ = 3F&/%# they will again be entirely in compression
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Impact of bars
• The coefficient of restitution F at the impact of S% and H&, 

when ;% = 2;&, calculated by reference to the center of 

gravity of each, is



Impact of spheres 
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Impact of spheres

• Equations of motion:



61

Impact of spheres
• The force-displacement relation for static conditions is 

given by ref. 1.4 as

• Where

• Substituting,

• Integrating,  
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Impact of spheres
• Where 5" denotes the value of (5% + 5&) when * = 0.

• Putting (̇ = 0, the maximum compression (" is,

• We have

• Hence the time to maximum compression, T, is

• The radius of the circle of contact, M, is given by
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Impact of spheres
• For a spherical body, or a spherical-nosed projectile, radius 

N& , impinging against a plane surface, the maximum 

compressive force is

• and
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Impact of spheres
• Also,

• The maximum approach distance for identical spheres is 

given by 



Impact of multiple bars
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Impact of three bars

• Two identical bars, A and B, of mass J, length F and cross-
sectional area /# , are placed end-to-end touching one another, 
and one of them is hit on one end by a third identical bar, C, 
moving with speed +#
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Impact of three bars
• The initial momentum is O5" and the initial kinetic energy 

is ½O5"
&

• the momentum of B and C are each equal to )*!"

• The strain energy in each is equal to 

• Thus, the total energy is
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Impact of three bars
• After stress relief as between B and C at * = 2;/!" an 

unloading wave moves into B from its right hand end and 

an equally intense unloading wave moves into A from its 

left hand end.

• At time * = 3; /!", B will come to rest since the unloading 

tensile wave nullifies the compression in B and at the same 

time cancels the velocity, 5"/2, of particles in B.

• At * = 3;/!" , B and C are stress free and stationary whilst 

A is stress free but moving to the left, every particle having 

the same speed 5"

• Initial momentum and kinetic energy of C is wholly transferred to 
A.
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Bars of unequal impedance
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Bars of unequal impedance
• The mechanical impedance (""!") of each of the three bars 

is different, but subject to the condition that 

+!
,!
=

+#
,#
=

+$
,$

= E

• The second and third bars are initially stationary and in contact, 
and that the first bar impinges collinearly on the second with an 
initial speed of +#

• For 0 < $ < C:

• Hence,
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Bars of unequal impedance
• For C < $ < 2C, the compressive wave in the first bar reflected 

from its free end after t = T; the first bar is completely stress free 
at t = 2T:
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Bars of unequal impedance
• For 2E < * < 3E

• At * = 3E:

• Kinetic energy of 1st bar:

• Where !" = #"$" and !# = ##$#
• Its momentum:

• The 2nd bar will also be completely unloaded 
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Bars of unequal impedance
• Its kinetic energy:

• And momentum: 

• The 3rd bar is stress-free but the linear speed of the whole bar is 
2++; thus its kinetic energy 4+, is 

• And its momentum:
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Bars of unequal impedance
• The total kinetic energy will be
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Bars of unequal impedance
• Total momentum:

• = O5" = the original momentum of the first bar. 
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Space-time diagram
• Two identical bars:
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Space-time diagram
• Three identical bar:
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Space-time diagram
• Four bars: 
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Falling weight 

• Assuming that all the kinetic energy of Q% is absorbed as 

uniformly distributed strain energy in the rod:
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Falling weight 
• The dynamic stress at impact:

• <# is independent of L&

• No matter how small L& , for a given +# the stress <# would be 
generated at impact.
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Arbitrary bars

• The forces at the interface are equal:

• Thus 

• So

• The stresses would be  
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Arbitrary bars
• If "%!% = "&!&, and assuming 

-!
-#
= R

• For the case S" = 0, ;% = 2;&, "% = "&, when H& is 

completely unloaded at time * = 2;&/!&, S& will be moving 

as a wholly unstressed bar having a translational speed of 

2S" − 5& .

• Coefficient of restitution:  



Wave transmission in 
stepped and conical bars
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Stepped shafts

• If U& was zero the wave would be wholly reflected whilst if 

H% and H& were identical the wave would be wholly 

transmitted.
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Stepped shafts
• Equilibrium at the discontinuity: 

• Continuity of displacement:

• Hence

• Note to the special cases! 
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Stepped shafts
• These results show that a small shaft on the end of larger 

one can act as a wave trap to a pulse or blow on the far end 

of the large shaft.

• For free end, the stress magnification factor is 2. (wave 

reflection).

• This intensification factor is not reduced by using a solid 

two-step shaft (at the end) but, on the contrary, is 

increased!
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Stepped shafts

• Let 

-!
-$
= 4,

-!
-#
=

-#
-$
= 2

• Transmitted stress in H&:

• S3:

• If H& is omitted:  
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Stepped shafts
• For no wave to be reflected from the discontinuity in the 

bar we require 4. = 0 and then U&"&!& = U%"%!% so that

• Ensuring that U&"&!& = U%"%!% is known as impedance 

matching.
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Conical bar

• Assuming 4/ = 1, at * = 0 and at the interface 5: 
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Conical bar
• At * = E, 4#0 reaches section 4:

• At * = 2E, 4#1 will reach section 3:

• 4.1 reaches section 5:
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Conical bar
• At * = 3E, 4#2 reaches section 2:

• 4.1,0 will reach section 4:

• 4.2 reaches section 4:

• The total intensity of stress proceeding across section 4 is (-

0.0574) + (-0.0885) = -0.146
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Conical bar
• At * = 4E, at section 1:

• At section 3:

• Thus the total intensity of stress two segment lengths 

behind the head of the successively transmitted initial unit 

pulse is ( -0.199) + (-0.187) = -0.386
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Conical bar
• It should be noted particularly that as the pulse travels 

towards the end of the bar, the stress intensity at the head 

increases, whilst a tail to the pulse is developed which has a 

smaller intensity but one of opposite sign.

• In a bar which possesses an end segment, F, of constant 

length, a high compressive stress will be attained and after 

reaching the end of the bar, it will be reflected as a tensile 

stress pulse of equal intensity.
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Finite lateral restraint
• Consider a bar a finite length of which is wholly restrained 

against any lateral expansion.

• A rectangular compressive stress wave of intensity 4" is 

then reflected, 4., and transmitted,  4#, at the boundary 

between the two regions:

• If the restraint applies over a finite length of bar, then on 

emerging from the restraint zone, reflected and 

transmitted waves will again be generated:


