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1D Elastic Wave
.

Definitions

e Stress wave:

* A pulse transmitted through a body when different parts of it are
not at equilibrium.

* Body waves:

* Waves traveling through the mass of a body
* Surface waves:

* Waves traveling over the surface of a body
* Wave types:

* Longitudinal, torsional, bending
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e Equation of motion:
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B+ 0T - AO — A0p05$ 8t2
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ComEressive wave

e Strain: €z = %

, Y oo -
The Hooke’s law is: ~ St = E

i i i . 80’0 _ 82
Differentiating the above: 2 EOu i

Substituting into the equation of motion:

82
Po 3t2 Eamz
0%u E . 0%u C2 0%u
ot? Po Ox? L Ox2
_ /E
€L = Po

* The wave equation.




Solution

v c2 0%y
ot: Ox?

o Try; u:f(x—Ct)+F(x+Ct)

% = c2f"(x — ct) + F"(z + ct)

Tk = [z —ct) + F'(z + ct)

* Hence, 02w 2 8%
otz Ox2

Wave sEeed

At
t=1,

71’4375‘\

« Suppose, u = f(x — ct)

e |f u=s when x=x1 and t=tl and alsou=swhent=t2and x =

X2
s = f(xy — ct1) = f(xe — cty)
* Thus, T1 — ct] = T9 — iy
e and T2—T1

¢ = to—1t




Wave sEeed

e ¢y is the speed of elastic wave propagation along the fixed
axis of the bar

cL = v/ E/po

* Note that the speed of propagation is independent of du/dt, or
the local velocity of the elements transmitting the wave.

* ¢; depends only on the elastic properties of the transmitting
medium and its density.

e Similarly, for torsional waves,

cr =/ G/po

Wave sEeed

* Wave speed for common materials:

Cast Carbon : Alum-

Iron Steel Brass Copper Lead inium Glass
E Ibf/in? 16:5.10% | 29-5.10°{ 13-5.10° | 16:5.10°| 25.10" 10.10° | 8.10°
Po = Ib/in? 0-26 0-28 0-30 032 041 0.-096 0-070
L =VEpg .
ft/sec
(g ~ 384 13025 16 900 11000 12 100 3900 16 700 17 500
in/sec/sec)
r = /G/po 8 100 10 600 6 700 7 500 2 300 10 200 10 700
ft/sec o -
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Intensi’g of stress

* The stress propagated in the material:

oy = —FEOu/0x = —(E/cp)0u/0t
* By vg = 0u/0t ,wehave o9 = Evy/cy, .Or

00 — PoCLVQ

o for steel if the stress is 16 tonf /in?, the particle speed would be
16 x 2240i
_ 6x2240in/sec ~ 20ft/sec
\/30-106.0.28 /384
* For pure lead, at its yield stress of about 1 tonf /in?, vO is only
about 4 ft/sec.

Vo

* The quantity pyc; is often referred to as the mechanical
impedance of the bar.
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Torsional wave




Torsional wave

e Or
0%0 JG 0%
ot? I Ozx2
%0 __ c2 06
otz T 9x2
* Where C% = #
* isthe torsional wave speed.
* For acircular cylinder:
Cz _ Gwmat/2 G
T~ pord /2~ o
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Torsional stress

* With rotation 6 = g(z — crt),
06
oz g (z — crt)
06
5 = —ger(x — cpt)
0 _ 1o
or  cr Ot
06
T = JG—
G Ox
L JG e
Ccr 8?5

e Stress can be obtained with known torsional torque.
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Flexural wave

ELEMENT
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* Equation of motion: —(poAodz)

4—-5‘x~* ]-‘,

f+§§'3x

XA |
ZELEMENT? f

M
Fr b

(5)

0w

M+ M Sx
0x

ot?

3
From beam theory, E£I f’;;é’ =F

0w

poAo5

0w
ot?

— _EI%v

Or?

212 0%
= ck—8$4

__ 9F
= 5 dz
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Flexural wave

k denotes the radius of gyration of the cross-section about

an axis in the neutral surface

If we try a solution of the formw = f(x —ct) orw = f(x
+ ct) the equation is found not to be satisfied.

Thus flexural disturbances of arbitrary form are not
propagated without dispersion.
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Momentum aEEroach

* Longitudinal wave

STATIONARY

o

SITUATION AT TIME [
* Aftertime t, the compressed zone length is ¢, t.

e |f the baris originally stationary and the end face is caused to
move with and maintains uniform speed v, , then the whole
length will be moving with uniform speed v, at time t.

* Equating the change in momentum of this length ¢; t to the
impulse, we have

(A()CLtp())’U() — (0'0A0) 3 7

17

Momentum aEEroach

* Thus gp = PoCLYV
* Thestrainis wvot/crt ,s0 o9 = Ewvy/ct

 Substituting, FEwgy/cr, = pocrvg

« Hence, cr =+ E/po

18




Energz

* The total energy acquired by the rod at time t is made up
of

* (a) kinetic energy %AO(CLt)PO’U(%
* (b) stored strain energy A (th)a(z)/ZE

2 2.2,.2
Agert - 5= = Ag(cpt) - 2L = 1 - Ag(cpt)povd

e and thus the total energy acquired by the bar at time tis
composed equally of strain energy and kinetic energy.
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Torsional wave

* A uniform thin hollow tube of radius a and cross-sectional area
AO is rotating at angular speed w when at time t =0 the end DD
is suddenly brought to rest.

* alength ¢t will have been brought to rest and the remainder of
the tube will still be rotating at speed w,

20




Torsional wave

The mean shear stress T which prevails in length ¢t is arrived at
by equating the impulsive torque, t. (4,7. a), to the loss in
angular momentum of the tube in time t,

[(tCT. A()),O(). CL2]. wo
Thus tAgTa = t.cr. Aoazpowo
The torsional strainis wota/cpt

Hence, 7= G.¢ = G - L&
CTt

. . . woa
Substituting, G = = POCTawWy

cr =/ G/po
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Equation of motion:

Plane strain condition

—_—
WAVE DIRECTION '. sx > |

A% 5z = Agpy - Oz - L
—A0p, 0T = AgPo * 0T * F

0o, ¢u

ox __pO.W
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Plane strain condition

* Plane strain condition:
e,=(—0,—vo,)/E =0,

e Thus o, = —voy,
R _ 0= V0y—v0, _  —o,—v-0+vvo,
Also, e, = R = =
* Hence
ou (1 — ’02)
oz *~  EB 7"
0%u B (1 — ’02) 00,
or2 E Oz

Plane strain condition

* Hence
0%u E d0%u

otz po(1—v?) " 9x2

* The longitudinal wave speed is

, E
C =
L po(1—v2)




Transverselz constrained

* Wave transmission along a uniform bar constrained to have
zero transverse deformation.

* Fromsymmetry: ey = €,; 0y =0,

* So,
* For zero transverse strain, 0y = —vo,/(1 — v)
* With

ou _ —0z—2v0y

o €T T E

25

Transverselx constrained

ou (1 —v— 2’02)

8z E(l—v)
0o, _ g (1—v) . 0%u
Ox (14+v)(1—-2v) Ox?

e Substituting,

O*u _ E (1-v) 0%
o2 po  (14v)(1—2v)  Ox?

26




C” . \/E ) (1 —’U)
Vo (T+0)(1-20)

<L _ (1—v)

cr (14 v)(1—2v)

cr, =1/ (A+2G)/po

A=vE/(1+4v)(1 - 2v).

Transverselx constrained

Different conditions

* Wave speed for 1D, plane strain, and transversely
constrained conditions

v i 3 7
, 4 5
c,jer 7 3./24)  2/33
(from(120)) | ~1.03 | ~1.06 | ~1.15
clleL 12 1.5 o0
(from (1.24)) | ~1. ~122




Torsional wave via longitudinal wave

1
12
'l
T / o
T/% “
T 0 DEVELOPED

— 7 L ” TUBE

——e

¢ =/§/l7<)

Torsional wave via longitudinal wave

* If the transverse shear stress in the tube wall is 7, the
principal stresses in a long uniform helical fiber at 45° to
the tube axis are + T and - 1.

* The fiber lying along a principal axis may be considered
simply as a bar.

e The initiation of a torsional wave at the end of the tube can
be identified with the propagation of a longitudinal wave
along the fiber.

* Equation of motion:
82'11,1
pvod:IZl . atz = A() -dTt




Torsional wave via longitudinal wave

* With
o _ Ou;  T(1+w)
L 8:131 B E
e Substituting into eq. of motion:
62’LL1 FE 02u1

o2 po(l+v) . Ox?

* The speed of longitudinal wave propagation:

E
C =
" po(1 + v)

Torsional wave via longitudinal wave

* The speed of the wave parallel to the axis of the tube which
is just the torsional wave speed cr is ¢, cos 45°

C = —_— = L — g
'—Va 2(T+v)po Po




Collision of bars
.

Collision of bars

* Before impact let the two square-ended bars which have
different mechanical impedances (py. c) possess speeds v; and
v, , where v; < v,

* After impact, compressive longitudinal waves will propagate
from the impact interface into each bar.

e the impact interface and the material engulfed by each wave will
all have the same speed v’

* The stress created in each bar is the same.

—, —V,

Ls: I - s |
€y <5 <
s, "2 Y &\Q&Sl Wil
- >

INTERFACE i§4




Collision of bars

Earlier we derived the stress as g, = pyc; v, for stationary

bar.

For a bar with initial speed v4, the expression will be pyc; (v’
— v,), where v is the new particle speed after the wave has
travelled through it.

Thus, v, is properly to be understood as a change in particle
speed due to the passage of a wave or the magnitude of the
velocity discontinuity across a wave front.

The quantity (v — v;) in respect of the initially translating bar
and v, for the stationary bar are therefore identical quantities
for the purpose of calculation.

Henceforth, when we use the expression g, = poc; v, it must be

remembered that v, refers to a change in particle speed. 35
Collision of bars
* Thus,
0 = p2C2 (Uz - U') — p1€1 (’U' — ’01)
. = Prav + P2C202
pi1c1 + p2C2
o Vo2 — V1
9= 3 1
pici p2C2
* If pjc; = pycy,andv; = —v, thenv' = 0and o = pycyvy

36




Impact with water

* Consider a square-ended projectile of initial density p,
impinging normally upon a plane sheet of water.

* Let the elastic compressive stress generated in the cylinder,
which is initially moving with speed v, , be g

* Then the particle speed in that part of the cylinder traversed by
the stress wave is reduced to v = vy — gy /(pocL)

e attheinstant of impact, v is also the particle speed of the
contiguous water surface

* The compressive stress immediately created in the water g,,,:

— — )
Ow = PwCw¥ — Puwluw (UO ~ oco )

37

Impact with water

* The stress in the cylinder (o, = ay):

_ PwCwVy Vo
00 = 2w — T3
POCO pwew ' POCO

e asquare-ended steel bullet moving at 2500 ft/sec. would
give rise to an elastic stress g, of 283000 Ibf /in?
~ 126 tonf/in?, on hitting the water

38




Stressed material
< /s ( 1+ %b) )'JI

==
I V.05

Let the right hand end of the stationary rod be given a
speed of v which is maintained until the whole of the bar
has the same speed.

The length of the bar will have then become [ (1 + (;1)

Denote the wave speed through the space occupied by the

bar in its final stressed state. by Cg:

[(1+2)
Ckg

o0
l5

<

Stressed material

Hence,

_ w(ton/B) _
= =%k =Lt

Or
Cp =Cy+v
Co is the wave speed in the unstressed bar
cg is the wave speed in the stressed bar

v is the velocity of the particles

If the bar had been put into compression instead of
tension,
cp=co—v

40




Stressed material

* Since an element initially of unit length when stressed by a
tension wave becomes (1 + e),

CE _ v

Co o 1 _|_ Co

* Since speed, v, for elastic behavior is of the order of 10 ft/sec
and c, is of the order of 10000 ft/sec, then v/cy , or v/cg are
~ 1/1000.

* Thus for cases of elastic impact, for all practical purposes, we
need not distinguish between ¢y and cg.

41

Rectangular Eulse

- ct -—-———-*—1
:91{ -rb('
Al_A : B |
LS ——> V=V V=0l ]
0 _—'r—_-a'--o

* Let the end A of an unstrained stationary bar S, be moved with
constant speed v, to the right for a time t, so that A moves to
A" and AA" = v,t.

* At the same time a compressive wave a = pyCyV, is caused to
travel along the bar from A to the right as far as B, with speed
Co, SOthat AB = cyt.

42




Rectangular Eulse

o~ = I
g [ ET——— clpal) > 1 3 :
rﬂ)’ I
A” A D L
) V= Vg 4— [ v=0 3
_’{J [ t ‘ :
Vo(’-r) — > —4»c

e Consider a bar identical with S the end A of which is caused to
move to the left to A with speed v, but only commencing at a
timet=T.

* The magnitude of the induced tensile stress is 0 = pycovy and
the wave travels to the right so that at time t>T, AD =c(t - T);
also AA" =vy(t — T).

43

Rectangular Eulse

Al A™ DF— cl —ig
& v=0 L v=vw ! v=038
E °mmm°£r—_-v
vo I SITUATIONS af 1>1T s e

e Suppose now that the left hand end of unstrained stationary bar
S, at t = 0 is moved to the right and that this is maintained for
all t; also, suppose thattime t = T, there is imposed on this the
previous situation and to the end of the bar is added a speed to
the left of v,.

« Length A"'D is stationary and unstressed having undergone a
rigid body movement to the right of AA" or v,T

* DB which has an unstrained length ¢, T is subject to compressive
stress g, is actually compressed amount vyT

44




Rectangular Eulse

Al A™ DF* cl —
& . v=0 Lv=vy ! v=038
[ <*'lzunmunmuzmnnmnr"_—',t__—_-o'
vo I SITUATIONS af 1> 1T e ~T¥e

* The portion of bar to the right of B of course stationary and
unstressed.

* A rectangular pulse of length ¢T can thus be considered in
itself

45

Reflection

+0 N
o_m L1 J-r ©

BAR ' . T
| —
u,v
B

e Assume an elastic rectangular pulse of tension to be
moving along a uniform rod in the positive x-direction.

* Introduce a hypothetical rectangular compressive wave length
and stress magnitude moving in the opposite direction.

At AB the two wave fronts first meet and after some time have
moved through one another completely.

46




Reflection

—
[IITIITT
oo oo _l_]
' 1 %
Cl (—E— |__. !
I
' ! | B

At AB, the stresses in these waves annul one another so

that the stress is zero: a free end.

—O PULSES OVERLAP

* Hence, for a free-ended bar, a tensile wave is reflected as a
compressive wave.

* In the portion of the bar where the two pulses overlap the
total stress is zero and the particle speed is twice what it
was when covered by the incident tensile wave alone.

47

Reflection

* Consider two identical tensile waves moving towards one
another.

e at CD, where the heads of the two pulse first meet, the stress is
doubled and the particle speed is zero: fixed end.

* Hence, an elastic wave reflected from a fixed-ended bar is
entirely unchanged in shape or intensity.

48




Reflection

NET PARTICLE
SPEED 26RO\ C‘:

1
INCIDENT PULSE [[5T]~

REFLECTED PULSE | | &+ o 720' NET STRESS
. ‘ f IN REAL BAR
[} 1

D

L NET PARTICLE SPEED, ¥ —»
—-b-l €

* It should now be evident that the net stress on, or the
speed of particles in, a given plane are easily obtained by
adding together the separate effects of the operative
waves at that plane, e.g. the incident and reflected waves,
provided, of course, that the waves are elastic.

=<1

Impact of identical bars
et | i

’ 0>1
Vo v=0'v=0 Vo
— [T <— ] o<t <I/CL
Yo y=0 | v=0 Vo / I
C<— A== fe, <1 <2,
2 ' - 2/
C=—1 C——= 1 t>%,

* Immediately after impact a compressive wave of intensity,
PoVoCr, moves into each bar from the common plane of
impact.




Impact of identical bars

* Energies:
K = L(massofbar)-v? =+ - Agl- pg - v?
2 0= 2 400 P Y

o2 Agl-(povocr)® _ Aglpovd

E = volume - 55 = 5E = —

 Thusatt = 2l/c; the particles in the common plane of

impact will move away from one another with equal but
opposite speeds.

 The bars will thus rebound as unstressed bodies at atime t
= 2l/c; after impact first took place.

 The coefficient of restitution e = 1 in this case.

51

Impact of bars

A

|
3 ! ' Iz : S
i‘ | l}* )'J'. %ri — M - —tr
8, |4o.p0 — |[vo<—— Aops |8, B —>% i 0 0 ! vo«m_f"
| Il 1 ' 1 |
| !
A l l! '! 12—"

* A compressive stress g = pyCoVo Will have been
propagated away from the common plane of impact.

 The compressive pulse is reflected as a wave of tension

from the free end of each bar, so that for the period of
: l 21 : :
time C—Z <t< C—z, S, will be being unloaded.
0 0
* Whent = 2l,/cy, S, is just completely stress free and the
particle speed in it will everywhere have been exactly reversed.

52




right with speed v,.

S, and so cancels the speed there of v,.

Impact of bars

e at this instant an unloading wave travels into S; from S, so
that the particles at the right hand end of S; move to the

» Contact ceases at t = 2l,/c, when the wave reflected
from the left band end of S; reaches the right hand end of

energy is distributed in S; and S, if 21, > [;:

Impact of bars

e Atthisinstant,i.e. t = 2[,/c,, let us ascertain how the

- !
= e U R R

NET STRESS AT TIME
=2l /¢

A
L= 2(11‘12)
r .
= +:‘ K- =ss=s=z=zzzz=cEEE
— | B s,
: [
T
~ (2-1,) ’» 8




Impact of bars

* Kinetic energy of S,: lA [ov2
5 0P0t27

. : 1
And 51 EAOPO(zlz — 11 )vg

* the elastic strain energy in S, is zero and that in S;:

1 o?
= S A2 — 1) =

5 0[2(l1 — I2)] Z

1 Epo
= §A0[2(11 — b)]vg =

* Becauseo = vo\/EpO

1
= Epvo’U%(le — 2l1)

55

Impact of bars

e Total energy of the bars:

1 1 1
EAopolz’U% + EAopov(z)(le — ll) + EAopo’Ug(zll — 2l2)

1
= EAOpO'Ug o + 21y — 11 + 211 — 2I5]

1
= EAOPO'U?) 11 + 1o

* which is just the kinetic energy of [; and [, before impact took
place.

56




Impact of bars

* If we consider the case of [; = 21,,thenatt = [, /c,, the
whole of S; will be compressed and stationary.

e Att = 1.50;/cy, S1 will be completely unstrained.

* The left hand half of S; will be moving to the left with speed v,
and right hand half to the right with speed v,,.

e Attimet = 2l;/cy each half of the bar will be in tension.
 Att = 2.51;/cy the halves will be unloaded.

 Att = 3l;/cy they will again be entirely in compression

57

Impact of bars

* The coefficient of restitution e at the impact of S; and S5,
when l; = 21,, calculated by reference to the center of
gravity of each, is

velocity of separation of bar = -e (velocity of approach of bars)
vg — (—vg) = —e(0 — vp)

_1
€=

58




Impact of spheres

Impact of spheres

i
b

POINTS A anD A’
TOUCH IN -
COMPRESSION |

* Equations of motion:

d’Ul - d’Uz -
my- = Pandmg — =—P
da: _ _ d’Ul d’Uz
a = V1T and 4 dt2 =@ T &

Lz _ _p, mutmy _

dt2 T mime T PIJ'




Impact of sEheres

* The force-displacement relation for static conditions is
given by ref. 1.4 as

P = kx®/?

e Where

1/2
Lk — 4 . Ri Ry /
o 3 [ 1—v2 1—v2 ] Ri+ Ry

1 2
71'E1 7rE2

.. 2
* Substituting, L = ‘ZZT;’ — _k,ux?’/Z

* |ntegrating, %(:ﬁ — vg) — —%k,ua:5/2
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Impact of sEheres

* Where v, denotes the value of (v; + v,) whent = 0.

e Putting x = 0, the maximum compression Xg IS,

e We have 12
Cae 4 kua®? 1/2_ 5/2
g o422 - (5)

* Hence the time to maximum compression, T,is

~ Zo

e The radius of the circle of contact, d, is given by

d— [3P(1 uog ) 4(§ff22)}1/3

62




Impact of sEheres

For a spherical body, or a spherical-nosed projectile, radius
R, , impinging against a plane surface, the maximum

compressive force is

4-R;/5 (12 mmav

2)3/5

0

3/2
Pz = km() — 5 2N 2/5
3. ( l—vl 1—112 )
TI'El 7TE2
e and

l—v% l—v% 9 1/5

2/5 157r( B + i >m2v0

dmax — R2 16

63

given by

L0

Impact of sEheres

e Also,
3'Pmax
Qmax = 273 —
1/2
__ E [ o /
T 7'('(].—’02) R2

The maximum approach distance for identical spheres is

1—?

R

[ 5\/3@ .

E

.’IJO

2] 2/5

64




Imﬁact of multigle bars

Impact of three bars

At t=0 =K "I~ | €

At t =1l 2 1T 8 1 ¢ ]

o - Vo .
e PoCo 2R : STRESS

At 1 =2y

At t =3l

Two identical bars, A and B, of mass m, length [ and cross-

sectional area A, , are placed end-to-end touching one another,

and one of them is hit on one end by a third identical bar, C,
moving with speed v,




Impact of three bars

* The initial momentum is mv, and the initial kinetic energy
is Yomvé

* the momentum of B and C are each equal to mzﬂ

e The strain energy in each is equal to

Aol - [poco(vo/2)]? /2E, or Ayl. pgc§§/4 = muv} /8

e Thus, the total energy is

(Y o e . .
=2X imR 42 xmL = %mvg = original kinetic energy

67

Impact of three bars

» After stress relief as between Band Catt = 2[/cy an
unloading wave moves into B from its right hand end and
an equally intense unloading wave moves into A from its
left hand end.

 Attimet = 3l /cy, B will come to rest since the unloading
tensile wave nullifies the compression in B and at the same
time cancels the velocity, v, /2, of particles in B.

« Att = 3l/cy, BandCare stress free and stationary whilst
A is stress free but moving to the left, every particle having
the same speed v,

* |nitial momentum and kinetic energy of C is wholly transferred to
A.

68




Bars of unegual 1mEedance
= o .
[=0 L 3 | 2 N 1 i |
0 V) . V)
=T [ [ ] -
¥ o
o= 7 = U=
V3 V3 2v,=v,
t=2T I | | ]
—®
03
2V 2(v3=",) 2V,=V,
r=3T L T T ]
69

Bars of unegual imEedance

* The mechanical impedance (pycy) of each of the three bars

- : . l l l
is different, but subject to the condition that == == =

C1 €2 €3
=T

The second and third bars are initially stationary and in contact,

and that the first bar impinges collinearly on the second with an
initial speed of v,

e ForO<t<T: 0'1=p161(’00—’02)
09 = P2C2 * V2
01 — 09.
* Hence, piC1
Vo = Vo
pi1c1 + pa2c2
p1C1 - P2C2
0'2 = 0'1 = )]
p1C1 + p2C2
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Bars of unegual imEedance

* ForT <t < 2T, the compressive wave in the first bar reflected
from its free end after t = T; the first bar is completely stress free
att=2T:

v — (Vo — v2) = 2v2 — vy = (p1c1 — pac2)vo/(pic1 + pac2)
03 = P3C3U3
0y = paca(v2 — v3)
o3 = 02 + 0'2

o 2p2cy

U3 = * U2

p2C2 + p3cs
vy — 2p1c1 - p2c2 2

(prc1 + paca)(paca + p3cs)
o5 = 2p1c1 - pace - p3C3 g

(pie1 + paca)(pace + pscs)

9 :
Yy — vy = p1C1 - P3C3 -V
(p1c1 + pac2)(pace + pscs) .

Bars of unegual imEedance

e For2T <t < 3T
2Uu3 — 2v9 > 209 — g
vo > 2(2v9 — v3)

(1 i pici ) <1+ P303) > 4,0161  P3cs
P2C2 P2C2 p2C2  P2C2

e Att = 3T:
* Kinetic energy of 1stbar: Fq = —Aollp [21;2 . ’Uo] 2
* Wherei; = p;c; and iy, = pyc,
* Its momentum: = Aolip1 zljﬂz

e The 2" bar will also be completely unloaded
V3 — (2’02 — ’03) = 2(’03 — ’02) = 2i1(i2 — ’1:3)’00/(7:1 + iz)(iz + ’1:3)
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Bars of unegual imEedance

* |ts kinetic energy:

P 2
. l 211(’1,2—23) .
E2 — 9 A0l2p2 |: (i1+i2)(iz+i3) v0i|
e  And momentum:

M, = Alyps { Al ko ]

11 —f—Zg) (12—|—’L3)

* The 3 bar is stress-free but the linear speed of the whole bar is
2v3; thus its kinetic energy E3, is

2
o l 4-11197
By = 2 A0l3p3 [ (41+142) (i2+13) ]
e And its momentum:

4i1'i2v
= Al3P3 [ (il-l-iz)(i?(i"iif) ]

/3

Bars of unegual imEedance

* The total kinetic energy will be

. N2 o 2
2 (21—’&2) (lz pz) ( i1 - (g — 3) >

— ) + | =) 4| =

11 + 22 i m (41 + i2) (32 + 13)

1
=§Allplvo
s p3 1112 2
+| 16\ —————
(ll P1 ) ( (41 + 42) (32 + i3) ) ]
ZEmvg l(zl —i9)? - (ig +i3)* +4- ﬁ 82 (ig — i3)?

+16- = . 4% 22] /(i1 + ’Lz) (i + i3)2
1

L [(il —i9)? - (g + 43)° + diyia(is + i3)® — 16 - i162i5 + 164, - igig]
=5 MY . .
2 (41 + 22)2 - (32 + %3)2

= %mvg = the original kinetic energy of the first bar whose mass m = Ayl p;
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Bars of unegual imEedance

e Total momentum:

o ’il — 7:2 l2p2 2’i1 (’1,2 — 23) l3p3 4’1:1’1:2
= Aollplvo ; ; i N7 ; iy TN ;
1+12  hpr (i1 +d2)(de+id3)  lLpr (41 +d2) (32 + i3) |
[ (’I:l — ’I:z)(’iz + ’i3) + 2’i2(’i2 — ’i3) + 41913 ]
= Mg X N7 X
i (41 + i2)(d2 + i3)
e [ (32 +13) (41 + 1) — 24a(i2 + 43) + 2d2(d2 + i3)] ]
— 0 X X X X
(21 + 22)(22 + 23)

* = mv, = the original momentum of the first bar.

/5

SEace-time diagram

e Two identical bars:

A2 A‘
- X, DISTANCE
BAR 1 I \
INITIAL CONDITION —v—> i 4v——— I (a)
0 0
e 5
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SEace-time diagram
* Three identical bar:
Al TIME
R SR, C ’3 3
As e : ’ P :
. i
A, &
INITIAL CONDITION 0 0 1 Yo » X
BAR i 1l T
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SEace-time diagram

* Four bars:
T4
S 1
| 1 > 0 0
4 1 1
: 7 7 | o 0
3
1 i A i B
7 2 2 2 0
2 0 1 | | i 6
7 2 2 2
1
0 0 1 1 1
® 2 2 >\
INITIAL CONDITION 0 0 0 11 1 1w
BAR v 111 I - |

S




Falling weight

X AL S
4"1""/42
Il M WEIGHT
1 PP
v |
0
JL_ s COLLAR

* Assuming that all the kinetic energy of M, is absorbed as
uniformly distributed strain energy in the rod:

o2 1
Aoly - —— = = M;v2
22" 9, — 9t
]\41’()2 M
2 0 1 2
0'=—°E2=— ’U’Egﬂg
M/ ps M, Y
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Falling weight

* The dynamic stress at impact:
_ Ey 2 _ 2
09 = P2v04/ - OF 0 = pavy L
* 0y isindependent of M;
o _ M, __ Striker mass
oo My, Struck rod mass

* No matter how small M, , for a given v, the stress g, would be
generated at impact.
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Arbitra1_~z bars

"'——>v| —»"

81 A| Az » SZ

.

* The forces at the interface are equal: A101 = As09
* Thus Alplcl(vl — ’u,()) = Azpog(Uo — ’02)

° SO U2+—A2p2c2 ‘U1

Arbitrag bars

o |If = d o AL
pP1C1 = PCo, anNd aSSUMIng A, = U
Vo + U1

Uo = —17,

* Forthecaseuy =0,l; = 2l,,p1 = p,, when S, is
completely unloaded at time t = 21, /c,, S, will be moving
as a wholly unstressed bar having a translational speed of

(2uy — v,).

e Coefficient of restitution:

2ug — vo =—e(vy — v1)
_ o (vrtpu)
Pt g
V2 — U1 1+ Hu
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Wave transmission in

steEHed and conical bars

SteEEed shafts

Gy — —07 .

0. %

e If A, was zero the wave would be wholly reflected whilst if
S and S, were identical the wave would be wholly
transmitted.




SteEEed shafts

* Equilibrium at the discontinuity:
Ai(or+oRr) = Asor

e Continuity of displacement:

vj—vg=vp or 2L _ 9B _ OT
pici pici P2C2
* Hence
o 2A1pscy .
T = 0T
Aszpaca + Aipic
Agpacy — Arprc
OR = Lo

- Aspaca + Arpic

* Note to the special cases!
85

SteEEed shafts

* These results show that a small shaft on the end of larger
one can act as a wave trap to a pulse or blow on the far end
of the large shaft.

* For free end, the stress magnification factor is 2. (wave
reflection).

* This intensification factor is not reduced by using a solid
two-step shaft (at the end) but, on the contrary, is
increased!
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Stepped shafts
Ay
A, I
Ay s,
82 J
Sy :
A A A
¢ let—==4,===2=2
A3 Az A3
. . or. 24
* Transmitted stressin S,: —* = 74~ = % = %
24 2x2 4
© 3 on = b on = 33 - or=1-T80;
. . . _ 2A1 . _ 2x4 . _ 1 . 60
* IfSyisomitted: oy = T4 0TI = 441 "0I = o1
c7a

SteEEed shafts

* For no wave to be reflected from the discontinuity in the
bar we require o = 0 and then 4,p,c, = A;p;1c, so that

or = o1v/ Eapa/E1p1

e Ensuring that A,p,c, = A, p,cq is known as impedance
matching.




Conical bar

fe— "CONICAL” END ~— _.1
36 25 - ¢
16 . |

A B C O =] ——

RENAR s\ 4 3| Do £ FET30
" !
|
= |

* Assuming g; = 1,att = 0 and at the interface 5:

_ 2x36 1 _
0T, — 25136 1=1.18

__ 25636 1 _ _
UR5_25+36 1=-0.18
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Conical bar

* Att =T, oy reaches section 4:

or, = oo - 1.18 = 1.44

ORr, = Ter5r - 1.18 = —0.26

* Att = 2T, or, will reach section 3:

o, = 295 - 1.44 = 1.84

_ 9-16 —
or, = 338 .1.44 = —0.403

* 0o, reaches section 5:

ORy; = s - (—0.26) = —0.047
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Conical bar

* Att = 3T, o, reaches section 2:

o, = 25 -1.84 = 2.55

* Opys will reach section 4:

TRy = 5oear - (—0.047) = —0.0574

* 0Op, reaches section 4:

ORy, = 21 - (—0.403) = —0.0885

* The total intensity of stress proceeding across section 4 is (-
0.0574) + (-0.0885) = -0.146
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Conical bar

e Att = 4T, at section 1:
or, = £5 - 2.55 = 4.08

oR, = 173 - 2.55 = —1.53

* At section 3:
ORyy = o3 + (—0.71) = —0.199

ORy.s = oo7¢ - (—0.1461) = —0.187

e Thus the total intensity of stress two segment lengths
behind the head of the successively transmitted initial unit
pulse is (-0.199) + (-0.187) =-0.386
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Conical bar

* |t should be noted particularly that as the pulse travels
towards the end of the bar, the stress intensity at the head
increases, whilst a tail to the pulse is developed which has a
smaller intensity but one of opposite sign.

* In a bar which possesses an end segment, F, of constant
length, a high compressive stress will be attained and after
reaching the end of the bar, it will be reflected as a tensile
stress pulse of equal intensity.

93
5 4 3 2 1 0
A B € | b JEE—s
! |
i |
|
-~ ]
s
87 e 8T
-oan 77T Esg 7T
6T —46T
~ 408
—ous ST 5T
408
4T i 4T
=023 3T 1 3T
Tk 1?7
o 1T 417
S S S R N
DISTANCE ALONG BAR A




or _ c¢/d-1 orn _ —2(d/c)(d/c-1)

L= Y and thus % = @ /er1)
o 2 o 2efd) | AL 4
or  c¢/d+1 and thus gp  c/d+1l  dfetl (¢ /et1)3s

Finite lateral restraint

Consider a bar a finite length of which is wholly restrained
against any lateral expansion.

A rectangular compressive stress wave of intensity g is
then reflected, oy, and transmitted, o, at the boundary
between the two regions:

2(c'/c)

c/c+17

or _ CJc—1
oo c/e+l

and Z£ =
oo

If the restraint applies over a finite length of bar, then on
emerging from the restraint zone, reflected and
transmitted waves will again be generated:




