

Impact Mechanics

1D Elastic Stress Waves

Dr. Jaafar Ghanbari Ghanbari@qut.ac.ir

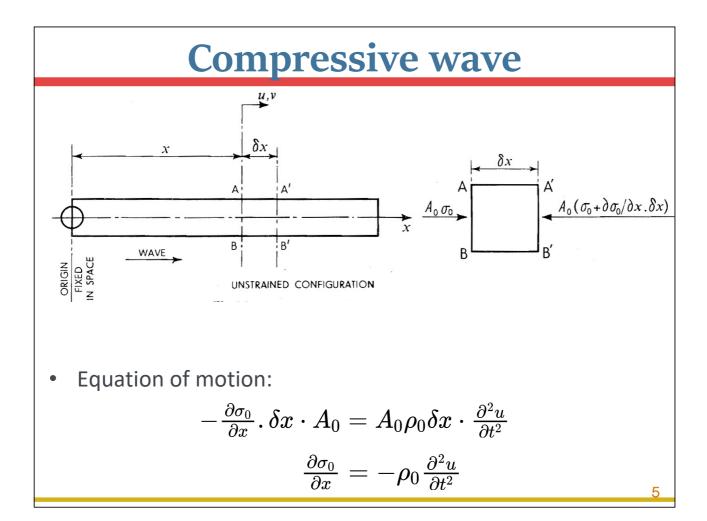
Content

- Longitudinal waves
- Wave transmission along a uniform bar
- Coaxial collision of bars
- Reflection and superposition of waves
- Impact of bars and spheres
- Energy and momentum transmission
- Propagation of torsional waves

1D Elastic Wave

Definitions

- Stress wave:
 - A pulse transmitted through a body when different parts of it are not at equilibrium.
- Body waves:
 - Waves traveling through the mass of a body
- Surface waves:
 - Waves traveling over the surface of a body
- Wave types:
 - Longitudinal, torsional, bending

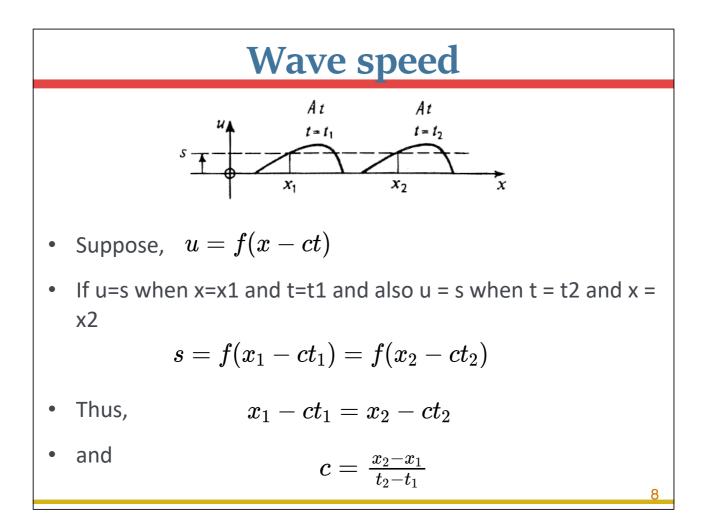


• Strain: $\varepsilon_x = \frac{\partial u}{\partial x}$ • The Hooke's law is: $-\frac{\sigma_0}{\partial u/\partial x} = E$ • Differentiating the above: $\frac{\partial \sigma_0}{\partial x} = -E \frac{\partial^2 u}{\partial x^2}$ • Substituting into the equation of motion: $\rho_0 \frac{\partial^2 u}{\partial t^2} = E \frac{\partial^2 u}{\partial x^2}$ $\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho_0} \cdot \frac{\partial^2 u}{\partial x^2} = c_L^2 \frac{\partial^2 u}{\partial x^2}$ $c_L = \sqrt{\frac{E}{\rho_0}}$ • The wave equation.

Solution

$$rac{\partial^2 u}{\partial t^2} = c^2 rac{\partial^2 u}{\partial x^2}$$

• Try: $u = f(x - ct) + F(x + ct)$
 $rac{\partial^2 u}{\partial t^2} = c^2 f''(x - ct) + c^2 F''(x + ct)$
 $rac{\partial^2 u}{\partial x^2} = f''(x - ct) + F''(x + ct)$
• Hence, $rac{\partial^2 u}{\partial t^2} = c^2 rac{\partial^2 u}{\partial x^2}$



Wave speed

• c_L is the speed of elastic wave propagation along the fixed axis of the bar

$$c_L=\sqrt{E/
ho_0}$$

- Note that the speed of propagation is independent of $\partial u/\partial t$, or the local velocity of the elements transmitting the wave.
- c_L depends only on the elastic properties of the transmitting medium and its density.
- Similarly, for torsional waves,

$$c_T=\sqrt{G/
ho_0}$$

Wave speed

• Wave speed for common materials:

2000 2000	Cast Iron	Carbon Steel	Brass	Copper	Lead	Alum- inium	Glass
E lbf/in ²	16.5.106	29.5.10*	13.5.106	16·5 . 10 ⁶	2.5.10*	10.106	8.10*
$\rho_0 = lb/in^3$	0.26	0.28	0.30	0.32	0.41	0096	0-070
$c_L = \sqrt{E/\rho_0}$ ft/sec (g \approx 384 in/sec/sec)	13 025	16 900	11 000	12 100	3 900	16 700	17 500
$c_{\tau} = \sqrt{G/\rho_0}$ ft/sec	8 100	10 600	6 700	7 500	2 300	10 200	10 700

Intensity of stress

• The stress propagated in the material:

$$\sigma_0 = -E\partial u/\partial x = -(E/c_L)\partial u/\partial t$$

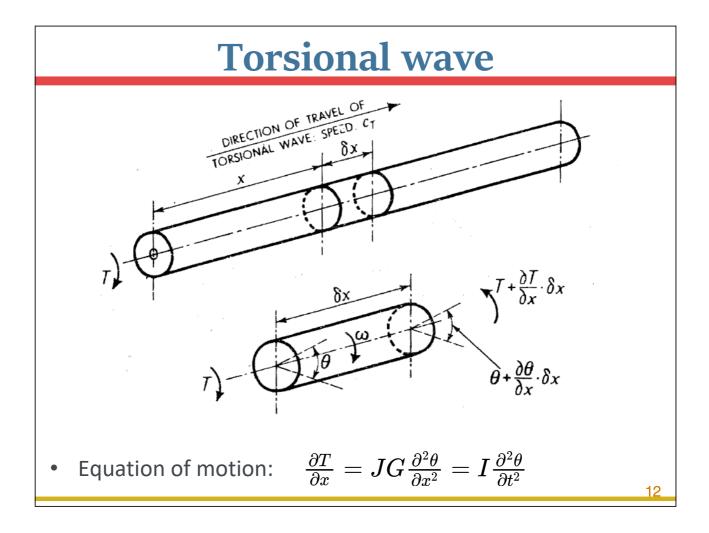
- By $v_0=\partial u/\partial t$, we have $\sigma_0=Ev_0/c_L$. Or

 $\sigma_0=
ho_0 c_L v_0$

• for steel if the stress is 16 $tonf/in^2$, the particle speed would be $v_0=rac{16 imes2240 {
m in/sec}}{\sqrt{20}}\simeq 20 {
m ft/sec}$

$$=\frac{1}{\sqrt{30\cdot 10^6\cdot 0\cdot 28/384}}\simeq 2010$$

- For pure lead, at its yield stress of about 1 *tonf /in*², v0 is only about 4 ft/sec.
- The quantity $\rho_0 c_L$ is often referred to as the mechanical impedance of the bar.



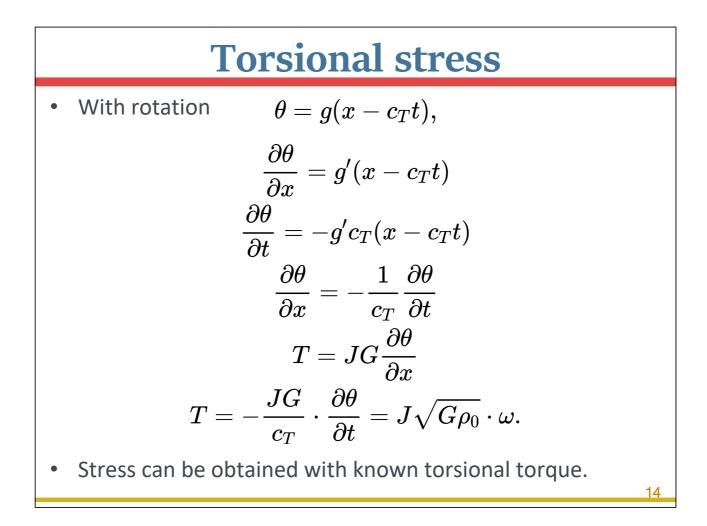
Torsional wave

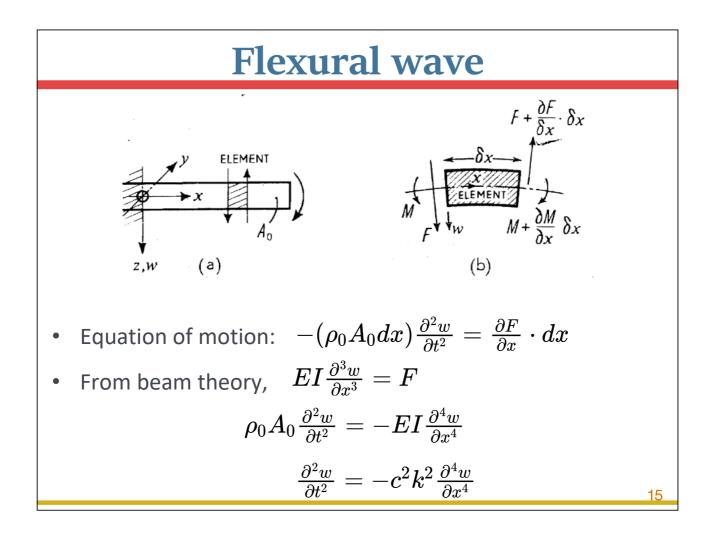
• Or

$rac{\partial^2 heta}{\partial t^2}$	—	$\frac{JG}{I}$	$-rac{\partial^2 heta}{\partial x^2}$
$rac{\partial^2 heta}{\partial t^2}$	=	c_T^2 ·	$rac{\partial^2 heta}{\partial x^2}$

- Where $c_T^2 = rac{JG}{I}$
- is the torsional wave speed.
- For a circular cylinder:

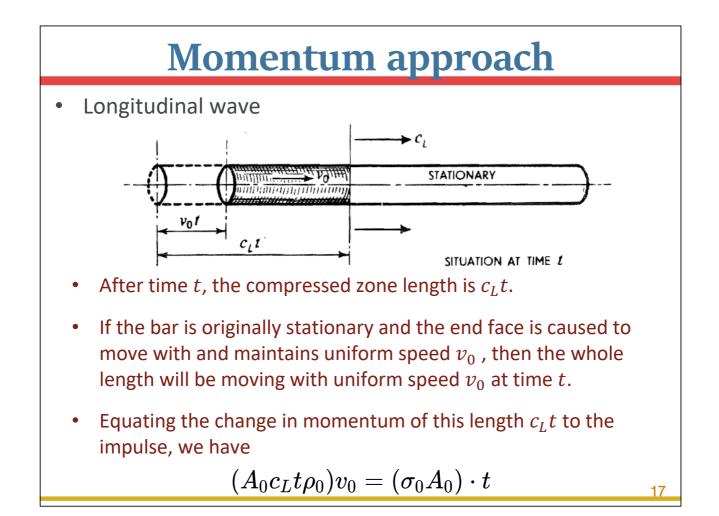
$$c_{T}^{2}=rac{G\cdot\pi a^{4}/2}{
ho_{0}\pi a^{4}/2}=rac{G}{
ho_{0}}$$





Flexural wave

- *k* denotes the radius of gyration of the cross-section about an axis in the neutral surface
- If we try a solution of the form w = f(x ct) or w = f(x + ct) the equation is found not to be satisfied.
- Thus flexural disturbances of arbitrary form are not propagated without dispersion.



Momentum approach

• Thus
$$\sigma_0=
ho_0c_Lv_0$$

- The strain is $\, v_0 t/c_L t\,$, so $\, \sigma_0 = E\, v_0/c_L\,$
- Substituting, $E\,v_0/c_L=
 ho_0c_Lv_0$

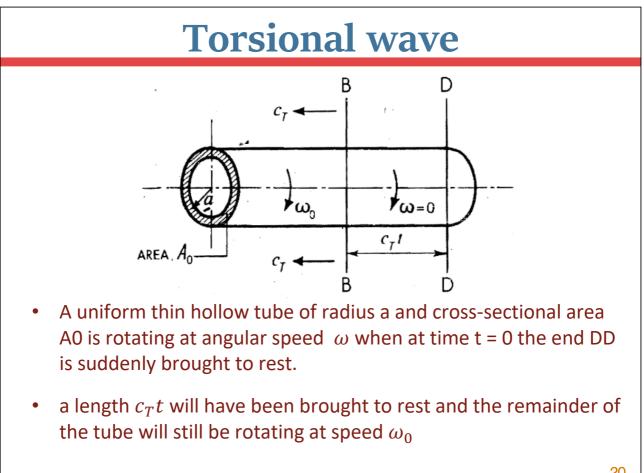
• Hence,
$$c_L=\sqrt{E/
ho_0}$$

Energy

- The total energy acquired by the rod at time *t* is made up of
 - (a) kinetic energy $rac{1}{2}A_0(c_L t)
 ho_0 v_0^2$
 - (b) stored strain energy $~A_0(c_L t)\sigma_0^2/2E$

$$A_0 c_L t \cdot rac{\sigma_0^2}{2E} = A_0 (c_L t) \cdot rac{
ho_0^2 c_L^2 v_0^2}{2E} = rac{1}{2} \cdot A_0 (c_L t)
ho_0 v_0^2$$

• and thus the total energy acquired by the bar at time t is composed equally of strain energy and kinetic energy.



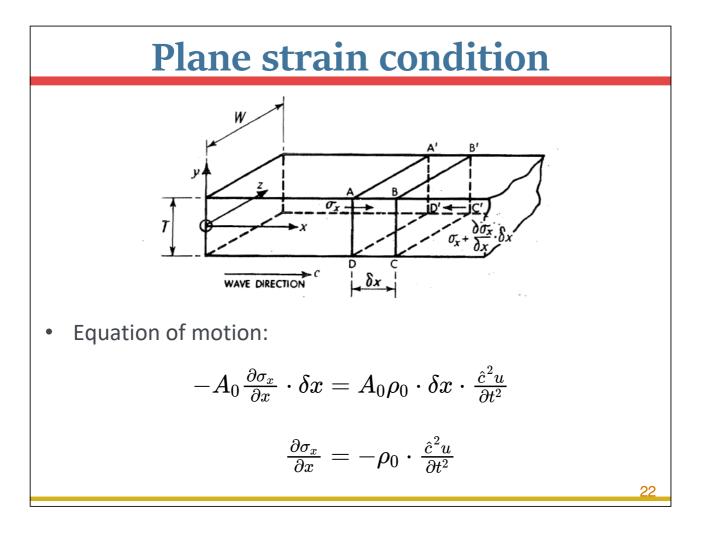
Torsional wave

• The mean shear stress τ which prevails in length $c_T t$ is arrived at by equating the impulsive torque, t. $(A_0\tau, a)$, to the loss in angular momentum of the tube in time t,

 $[(tc_T.\,A_0)
ho_0.\,a^2].\,w_0$

- Thus $tA_0 au a=t.\,c_T.\,A_0a^2
 ho_0\omega_0$
- The torsional strain is $\;\omega_0 t a/c_T t$
- Hence, $au = G.\,\phi = G\cdot rac{\omega_0 ta}{c_T t}$
- Substituting, $G \cdot rac{\omega_0 a}{c_T} =
 ho_0 c_T a \omega_0$

$$c_T=\sqrt{G/
ho_0}$$



Plane strain condition

• Plane strain condition: $e_{z} = (-\sigma_{z} - \nu\sigma_{x})/E = 0,$ • Thus $\sigma_{z} = -\nu\sigma_{x}$ • Also, $e_{x} = \frac{-\sigma_{x} - \nu\sigma_{y} - \nu\sigma_{z}}{E} = \frac{-\sigma_{x} - \nu \cdot 0 + \nu \cdot \nu\sigma_{x}}{E}$ • Hence $\frac{\partial u}{\partial x} = e_{x} = -\frac{(1 - \nu^{2})}{E} \cdot \sigma_{x}$ $\frac{\partial^{2} u}{\partial x^{2}} = -\frac{(1 - \nu^{2})}{E} \cdot \frac{\partial \sigma_{x}}{\partial x}$

Plane strain condition

• Hence

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho_0 (1 - v^2)} \cdot \frac{\partial^2 u}{\partial x^2}$$

• The longitudinal wave speed is

$$c_L' = \sqrt{\frac{E}{\rho_0(1-v^2)}}$$

$$\frac{c_L'}{c_L} = \frac{1}{\sqrt{1-\nu^2}}$$

Transversely constrained

- Wave transmission along a uniform bar constrained to have zero transverse deformation.
- From symmetry: $e_y=e_z;\;\;\sigma_y=\sigma_z$
- So,

$$Ee_y = \sigma_y -
u(\sigma_y - \sigma_x) \ = \sigma_y(1-
u) +
u\sigma_x$$

- For zero transverse strain, $\,\,\sigma_y = u\sigma_x/(1u)$
- With

$$rac{\partial u}{\partial x}=e_x=rac{-\sigma_x-2v\sigma_y}{E}$$

25

$\begin{aligned} \frac{\partial u}{\partial x} &= -\sigma_x \frac{\left(1 - v - 2v^2\right)}{E(1 - v)} \\ \frac{\partial \sigma_x}{\partial x} &= -E \frac{\left(1 - v\right)}{\left(1 + v\right)\left(1 - 2v\right)} \cdot \frac{\partial^2 u}{\partial x^2} \end{aligned}$ • Substituting, $\frac{\partial^2 u}{\partial t^2} &= \frac{E}{\rho_0} \cdot \frac{\left(1 - v\right)}{\left(1 + v\right)\left(1 - 2v\right)} \cdot \frac{\partial^2 u}{\partial x^2} \end{aligned}$

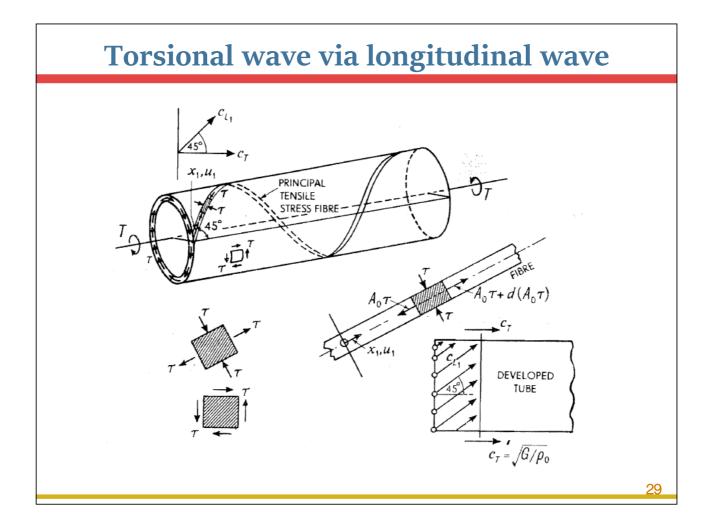
Transversely constrained

$$egin{aligned} c_L'' &= \sqrt{rac{E}{
ho_0} \cdot rac{(1-v)}{(1+v)(1-2v)}} \ &rac{c_L''}{c_L} &= \sqrt{rac{(1-v)}{(1+v)(1-2v)}} \ &\ &c_L'' &= \sqrt{(\lambda+2G)/
ho_0} \ &\ &\lambda &= vE/(1+v)(1-2v). \end{aligned}$$

Different conditions

• Wave speed for 1D, plane strain, and transversely constrained conditions

ν	<u>1</u> 4	<u>1</u> 3	1 2
c'_L/c_L	$\frac{4}{\sqrt{15}}$	3\sqrt{2/4}	$2\sqrt{3}/3$
(from (1.20))	$\simeq 1.03$	$\simeq 1.06$	≈1.15
<i>c_L'/c_L</i> (from (1.24))	$ \begin{array}{c} \sqrt{1 \cdot 2} \\ \simeq 1.1 \end{array} $	$\frac{\sqrt{1.5}}{\simeq 1.22}$	00



Torsional wave via longitudinal wave

- If the transverse shear stress in the tube wall is τ , the principal stresses in a long uniform helical fiber at 45° to the tube axis are + τ and τ .
- The fiber lying along a principal axis may be considered simply as a bar.
- The initiation of a torsional wave at the end of the tube can be identified with the propagation of a longitudinal wave along the fiber.
- Equation of motion:

$$ho_0 A_0 dx_1 \cdot rac{\partial^2 u_1}{\partial t^2} = A_0 \cdot d au$$

Torsional wave via longitudinal wave

• With

$$e_1 = rac{\partial u_1}{\partial x_1} = rac{ au(1+v)}{E}$$

• Substituting into eq. of motion:

$$rac{\partial^2 u_1}{\partial t^2} = rac{E}{
ho_0(1+v)}\cdot rac{\partial^2 u_1}{\partial x_1^2}$$

• The speed of longitudinal wave propagation:

$$c_{L_1}=\sqrt{rac{E}{
ho_0(1+v)}}$$

Torsional wave via longitudinal wave

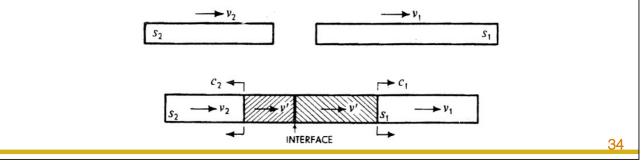
• The speed of the wave parallel to the axis of the tube which is just the torsional wave speed c_T is $c_{L_1} \cos 45^o$

$$c_{T} = rac{c_{L_{1}}}{\sqrt{2}} = \sqrt{rac{E}{2(1+v)
ho_{0}}} = \sqrt{rac{G}{
ho_{0}}}$$

Collision of bars

Collision of bars

- Before impact let the two square-ended bars which have different mechanical impedances ($\rho_0.c$) possess speeds v_1 and v_2 , where $v_1 < v_2$
- After impact, compressive longitudinal waves will propagate from the impact interface into each bar.
- the impact interface and the material engulfed by each wave will all have the same speed v^\prime
- The stress created in each bar is the same.



Collision of bars

- Earlier we derived the stress as $\sigma_0 = \rho_0 c_L v_0$ for stationary bar.
 - For a bar with initial speed v_1 , the expression will be $\rho_0 c_L(v' v_1)$, where v' is the new particle speed after the wave has travelled through it.
 - Thus, v_0 is properly to be understood as a change in particle speed due to the passage of a wave or the magnitude of the velocity discontinuity across a wave front.
 - The quantity $(v' v_1)$ in respect of the initially translating bar and v_0 for the stationary bar are therefore identical quantities for the purpose of calculation.
 - Henceforth, when we use the expression $\sigma_0 = \rho_0 c_L v_0$ it must be remembered that v_0 refers to a change in particle speed. 35

Collision of bars

• Thus,

$$\sigma=
ho_2c_2ig(v_2-v'ig)=
ho_1c_1ig(v'-v_1ig)$$

$$v'=rac{
ho_1 c_1 v_1+
ho_2 c_2 v_2}{
ho_1 c_1+
ho_2 c_2}$$

$$\sigma=rac{v_2-v_1}{rac{1}{
ho_1c_1}+rac{1}{
ho_2c_2}}$$

• If $\rho_1 c_1 = \rho_2 c_2$, and $v_1 = -v_2$ then v' = 0 and $\sigma = \rho_1 c_1 v_1$

Impact with water

- Consider a square-ended projectile of initial density ρ_0 impinging normally upon a plane sheet of water.
 - Let the elastic compressive stress generated in the cylinder, which is initially moving with speed v_0 , be σ_0
 - Then the particle speed in that part of the cylinder traversed by the stress wave is reduced to $v = v_0 \sigma_0/(\rho_0 c_L)$
 - at the instant of impact, v is also the particle speed of the contiguous water surface
 - The compressive stress immediately created in the water σ_w :

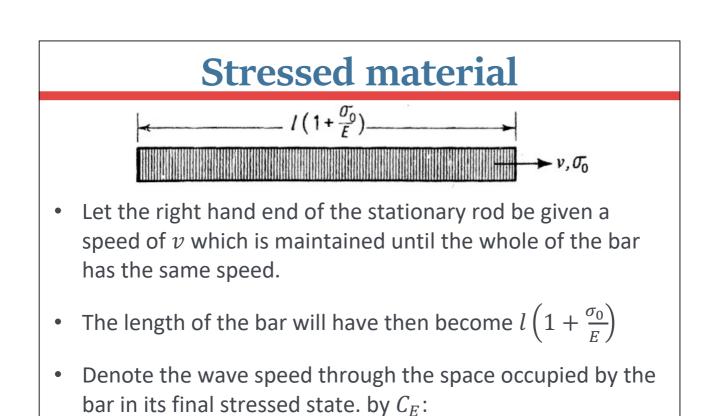
$$\sigma_w =
ho_w c_w v =
ho_w c_w \Big(v_0 - rac{\sigma_0}{
ho_0 c_0} \Big)$$

Impact with water

• The stress in the cylinder ($\sigma_w = \sigma_0$):

$$\sigma_0 = rac{
ho_w c_w v_0}{1 + rac{
ho_w c_w}{
ho_0 c_0}} = rac{v_0}{rac{1}{
ho_w c_w} + rac{1}{
ho_0 c_0}}$$

• a square-ended steel bullet moving at 2500 ft/sec. would give rise to an elastic stress σ_0 of 283000 $lbf/in^2 \approx 126 \ tonf/in^2$, on hitting the water



$$rac{lig(1+rac{\sigma_0}{E}ig)}{C_E}=rac{lrac{\sigma_0}{E}}{v}$$

Stressed material

• Hence,

$$c_E = rac{v(1+\sigma_0/E)}{\sigma_0/E} = c_L + v$$

• Or

$$c_E = c_0 + v$$

- c₀ is the wave speed in the unstressed bar
- *c_E* is the wave speed in the stressed bar
- *v* is the velocity of the particles
- If the bar had been put into compression instead of tension,

$$c_E^\prime = c_0 - v$$

Stressed material

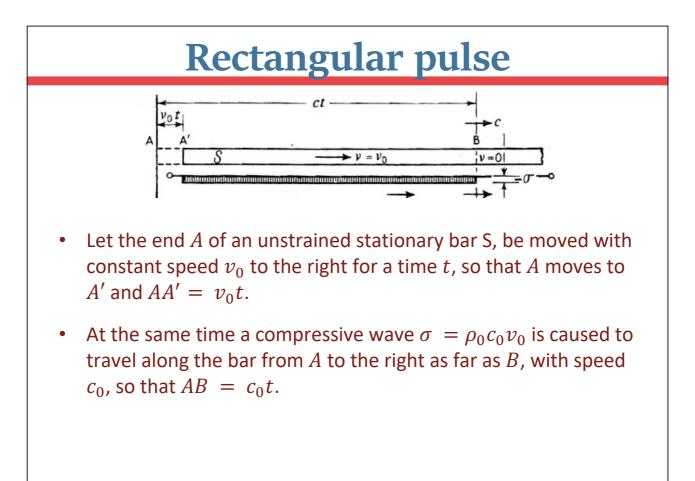
• Since an element initially of unit length when stressed by a tension wave becomes (1 + e),

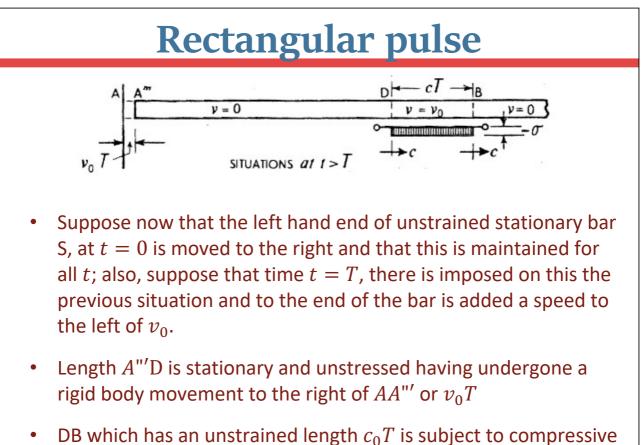
$$rac{1}{c_0}=rac{1+e}{c_E}$$

• Or

$$rac{c_E}{c_0} = 1 + rac{v}{c_0}$$

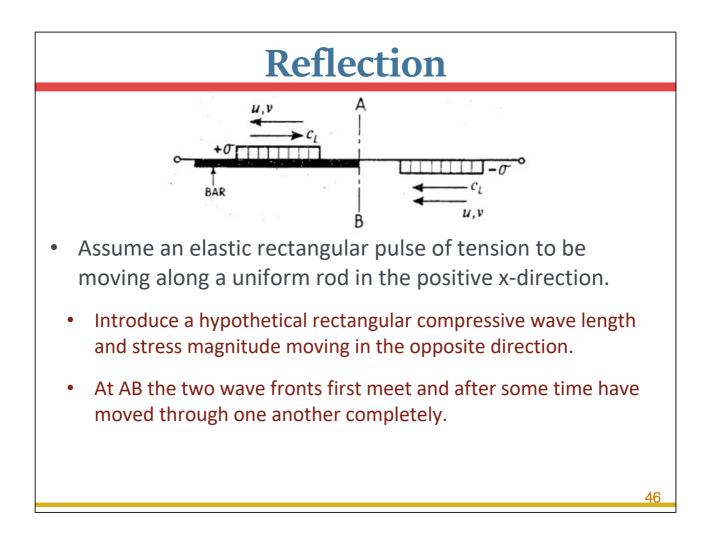
- Since speed, v, for elastic behavior is of the order of 10 ft/sec and c_0 is of the order of 10000 ft/sec, then v/c_0 , or v/c_E are $\approx 1/1000$.
- Thus for cases of elastic impact, for all practical purposes, we need not distinguish between c_0 and c_E .

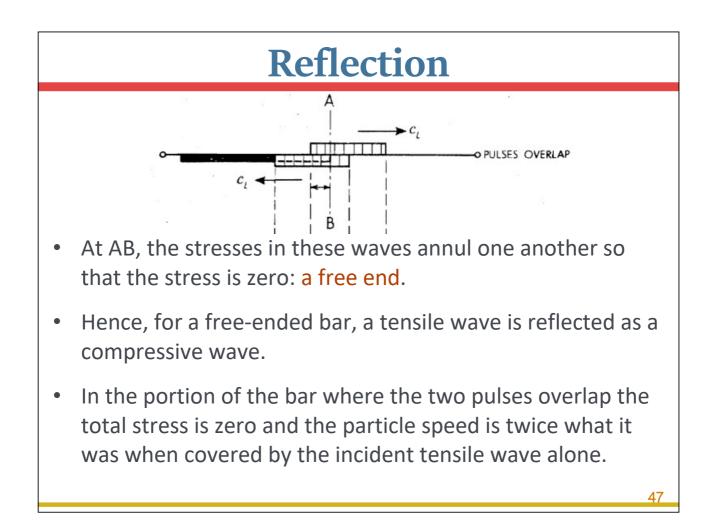


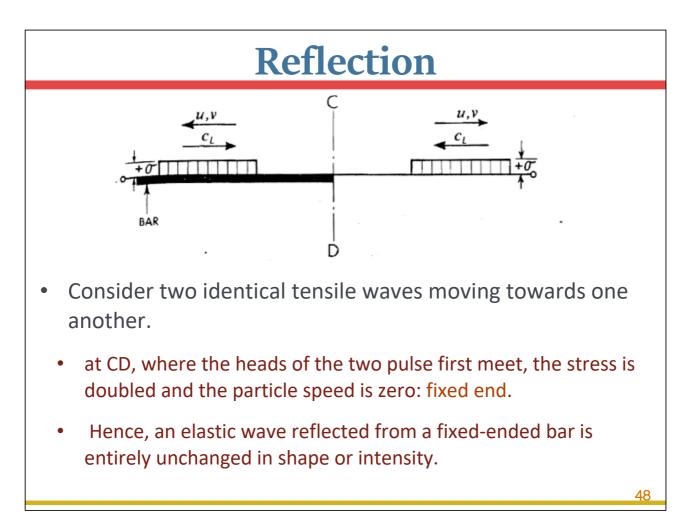


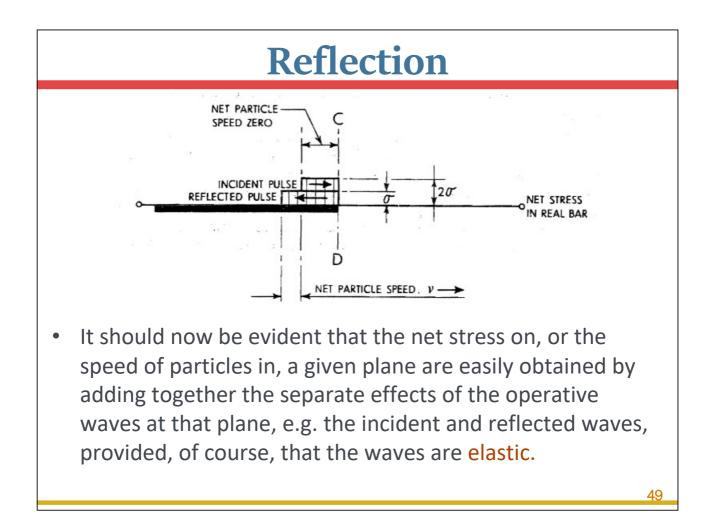
stress σ , is actually compressed amount $v_0 T$

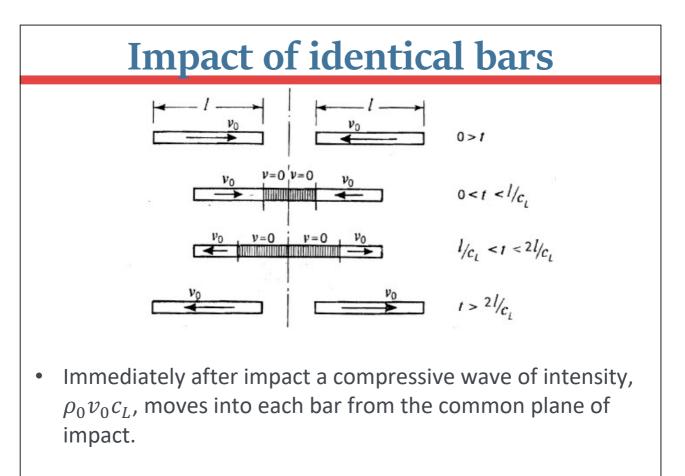
Rectangular pulse \$\prod_T \rightarrow \frac{\prod_T \rightarrow \frac{\prod_T











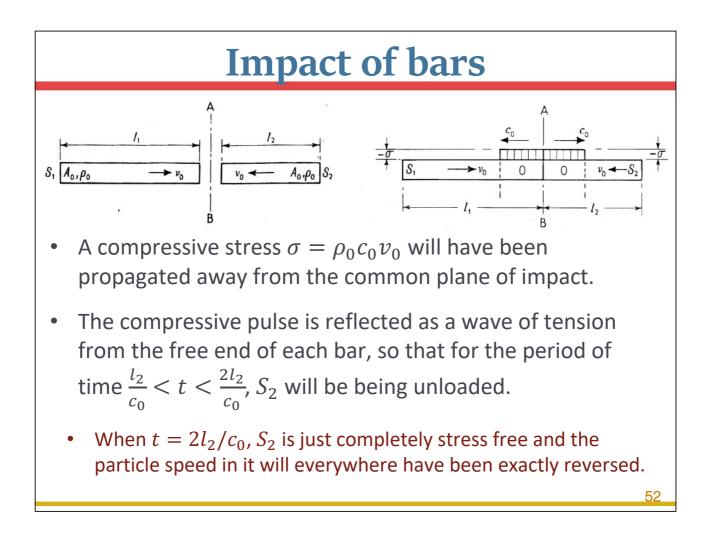
Impact of identical bars

• Energies:

$$K=rac{1}{2}(ext{ mass of bar })\cdot v_0^2=rac{1}{2}\cdot A_0l\cdot
ho_0\cdot v_0^2$$

 $E= ext{ volume }\cdot rac{\sigma^2}{2E}=rac{A_0l\cdot \left(
ho_0v_0c_L
ight)^2}{2E}=rac{A_0l
ho_0v_0^2}{2}$

- Thus at $t = 2l/c_L$ the particles in the common plane of impact will move away from one another with equal but opposite speeds.
- The bars will thus rebound as unstressed bodies at a time $t = 2l/c_L$ after impact first took place.
- The coefficient of restitution e = 1 in this case.



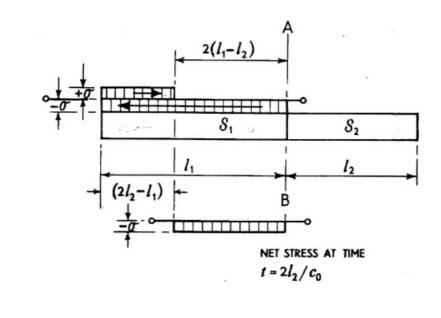
Impact of bars

- at this instant an unloading wave travels into S₁ from S₂ so that the particles at the right hand end of S₁ move to the right with speed v₀.
- Contact ceases at $t = 2l_2/c_2$ when the wave reflected from the left band end of S_1 reaches the right hand end of S_2 and so cancels the speed there of v_0 .

53

Impact of bars

• At this instant, i.e. $t = 2l_2/c_0$, let us ascertain how the energy is distributed in S_1 and S_2 if $2l_2 > l_1$:



Impact of bars

- Kinetic energy of S_2 : $rac{1}{2}A_0
 ho_0 l_2 v_0^2$ And S_1 : $rac{1}{2}A_0
 ho_0(2l_2-l_1)v_0^2$
- the elastic strain energy in S_2 is zero and that in S_1 :

$$=rac{1}{2}A_0[2(l_1-l_2)]rac{\sigma^2}{E} \ =rac{1}{2}A_0[2(l_1-l_2)]v_0^2rac{E
ho_0}{E},$$

• Because
$$\sigma=
u_0\sqrt{E
ho_0}\ =rac{1}{2}
ho_0A_0v_0^2(2l_2-2l_1)$$

Impact of bars

Total energy of the bars:

$$egin{aligned} &rac{1}{2}A_0
ho_0 l_2 v_0^2 + rac{1}{2}A_0
ho_0 v_0^2 (2l_2 - l_1) + rac{1}{2}A_0
ho_0 v_0^2 (2l_1 - 2l_2) \ &= rac{1}{2}A_0
ho_0 v_0^2 [l_2 + 2l_2 - l_1 + 2l_1 - 2l_2] \ &= rac{1}{2}A_0
ho_0 v_0^2 [l_1 + l_2] \end{aligned}$$

which is just the kinetic energy of l_1 and l_2 before impact took place.

Impact of bars

- If we consider the case of $l_1 = 2l_2$, then at $t = l_1/c_0$, the whole of S_1 will be compressed and stationary.
 - At $t = 1.5l_1/c_0$, S_1 will be completely unstrained.
 - The left hand half of S_1 will be moving to the left with speed v_0 and right hand half to the right with speed v_0 .
 - At time $t = 2l_1/c_0$ each half of the bar will be in tension.
 - At $t = 2.5l_1/c_0$ the halves will be unloaded.
 - At $t = 3l_1/c_0$ they will again be entirely in compression

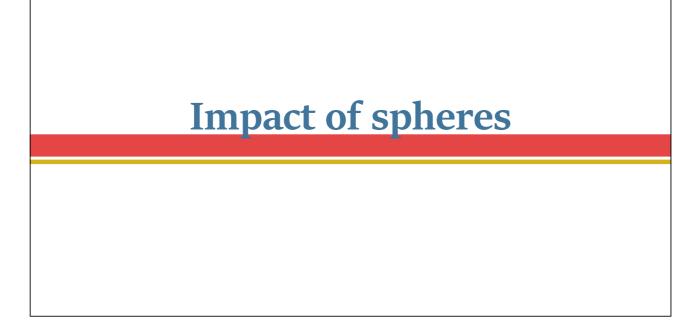
57

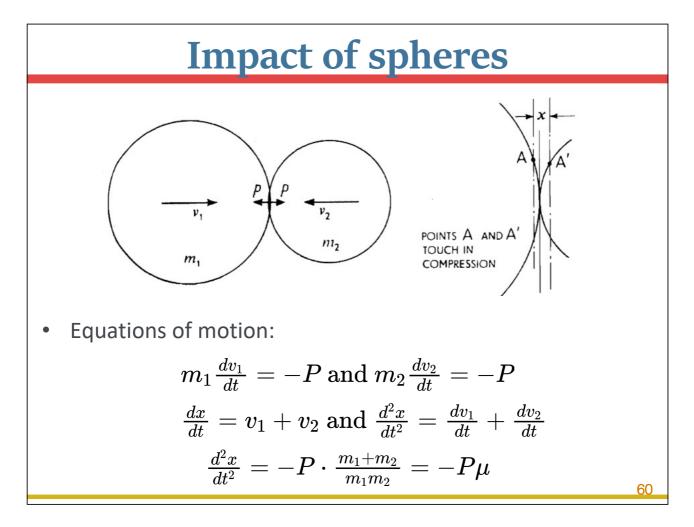
Impact of bars

 The coefficient of restitution *e* at the impact of S₁ and S₂, when l₁ = 2l₂, calculated by reference to the center of gravity of each, is

velocity of separation of bar = -e (velocity of approach of bars)

$$egin{aligned} v_0 - (-v_0) &= -e(0-v_0) \ &e &= rac{1}{2} \end{aligned}$$





Impact of spheres

• The force-displacement relation for static conditions is given by ref. 1.4 as

$$P = k x^{3/2}$$

• Where

$$k = rac{4}{3\pi \left[rac{1-v_1^2}{\pi E_1} + rac{1-v_2^2}{\pi E_2}
ight]} \cdot \left(rac{R_1 R_2}{R_1 + R_2}
ight)^{1/2}$$

- Substituting, $\ddot{x}=rac{d^2x}{dt^2}=-k\mu x^{3/2}$
- Integrating, $rac{1}{2} \left(\dot{x}^2 v_0^2
 ight) = rac{2}{5} k \mu x^{5/2}$

Impact of spheres

- Where v_0 denotes the value of $(v_1 + v_2)$ when t = 0.
- Putting $\dot{x} = 0$, the maximum compression x_0 is,

$$x_0\,=\left(rac{5}{4}rac{v_0^2}{k\mu}
ight)^{2/5}$$

• We have

$$\dot{x} = rac{dx}{dt} = v_0 \Big[1 - rac{4}{5} rac{k \mu x^{5/2}}{v_0^2} \Big]^{1/2} = v_0 igg[1 - \Big(rac{x}{x_0} \Big)^{5/2} igg]^{1/2}$$

• Hence the time to maximum compression, T, is

$$T=rac{x_{0}}{v_{0}}\int_{0}^{1}rac{dv}{\left[1-v^{5/2}
ight]^{1/2}}\cong1.47rac{x_{0}}{v_{0}}$$

• The radius of the circle of contact, d, is given by $d = \left[3P\left(rac{1-v_1^2}{E_1}+rac{1-v_2^2}{E_2}
ight)rac{R_1R_2}{4(R_1+R_2)}
ight]^{1/3}$

61

1 /0

Impact of spheres

For a spherical body, or a spherical-nosed projectile, radius R₂, impinging against a plane surface, the maximum compressive force is

$$P_{max} = k x_0^{3/2} = rac{4 \cdot R_2^{1/5} ig(rac{15}{16} \pi m_2 v_0^2ig)^{3/5}}{3 \pi \cdot ig(rac{1-v_1^2}{\pi E_1} + rac{1-v_2^2}{\pi E_2}ig)^{2/5}}$$

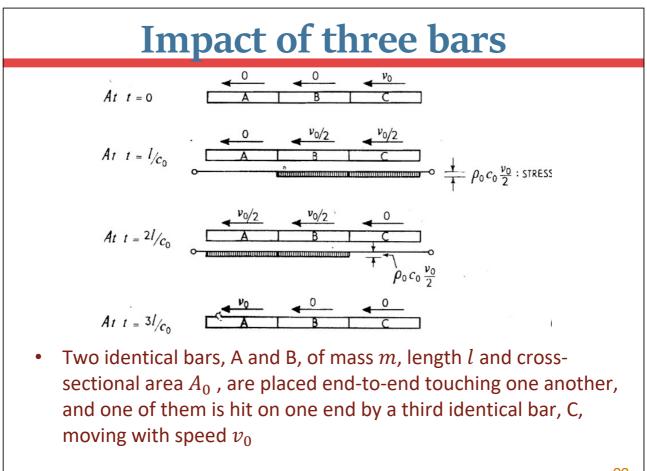
• and

$$d_{ ext{max}} = R_2^{2/5} \left[rac{15 \pi \left(rac{1-v_1^2}{E_1} + rac{1-v_2^2}{E_2}
ight) m_2 v_0^2}{16}
ight]^{1/5}$$

Impact of spheres

• Also, $q_{\max} = \frac{3 \cdot P_{\max}}{2\pi \cdot d_{\max}^2}$ $= \frac{E}{\pi(1-v^2)} \cdot \left(\frac{x_0}{R_2}\right)^{1/2}$ • The maximum approach distance for identical spheres is given by $\frac{x_0}{R} = \left[\frac{5\sqrt{2}\pi\rho}{4} \cdot \frac{1-v^2}{E} \cdot v_0^2\right]^{2/5}$

Impact of multiple bars



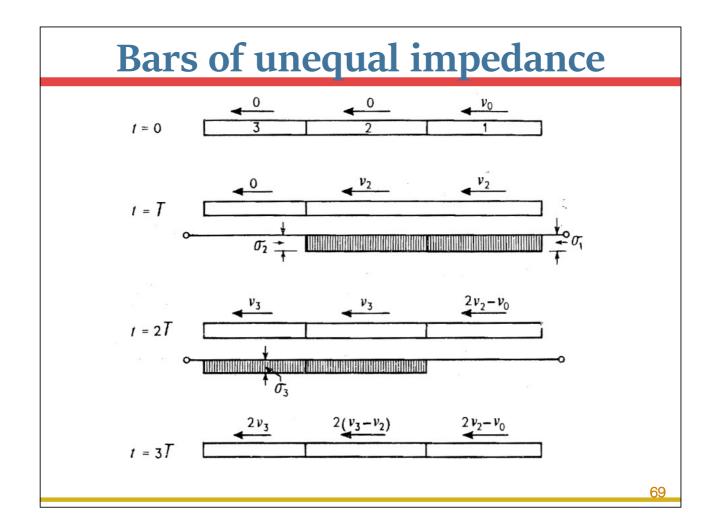
Impact of three bars

- The initial momentum is mv_0 and the initial kinetic energy is $\frac{1}{2}mv_0^2$
 - the momentum of B and C are each equal to $\frac{mv_0}{2}$
 - The strain energy in each is equal to $A_0l\cdot\left[
 ho_0c_0(v_0/2)
 ight]^2/2E, ext{ or } A_0l. \, rac{
 ho_0^2c_0^2v_0^2/4}{2E}=mv_0^2/8$
 - Thus, the total energy is

$$=2 imes rac{1}{2}mrac{v_0^2}{4}+2 imes mrac{v_0^2}{8}=rac{1}{2}mv_0^2= ext{ original kinetic energy}$$

Impact of three bars

- After stress relief as between B and C at $t = 2l/c_0$ an unloading wave moves into B from its right hand end and an equally intense unloading wave moves into A from its left hand end.
- At time $t = 3l / c_0$, B will come to rest since the unloading tensile wave nullifies the compression in B and at the same time cancels the velocity, $v_0/2$, of particles in B.
- At $t = 3l/c_0$, B and C are stress free and stationary whilst A is stress free but moving to the left, every particle having the same speed v_0
 - Initial momentum and kinetic energy of C is wholly transferred to A.



Bars of unequal impedance

- The mechanical impedance $(\rho_0 c_0)$ of each of the three bars is different, but subject to the condition that $\frac{l_1}{c_1} = \frac{l_2}{c_2} = \frac{l_3}{c_3}$ = T
 - The second and third bars are initially stationary and in contact, and that the first bar impinges collinearly on the second with an initial speed of v_0

• For
$$0 < t < T$$
:
 $\sigma_1 = \rho_1 c_1 (v_0 - v_2)$
 $\sigma_2 = \rho_2 c_2 \cdot v_2$
 $\sigma_1 = \sigma_2$.
• Hence,
 $v_2 = \frac{\rho_1 c_1}{\rho_1 c_1 + \rho_2 c_2} \cdot v_0$
 $\sigma_2 = \sigma_1 = \frac{\rho_1 c_1 \cdot \rho_2 c_2}{\rho_1 c_1 + \rho_2 c_2} \cdot v_0$

Bars of unequal impedance

 For T < t < 2T, the compressive wave in the first bar reflected from its free end after t = T; the first bar is completely stress free at t = 2T:

$$\begin{aligned} v_{2} - (v_{0} - v_{2}) &= 2v_{2} - v_{0} = (\rho_{1}c_{1} - \rho_{2}c_{2})v_{0}/(\rho_{1}c_{1} + \rho_{2}c_{2}) \\ \sigma_{3} &= \rho_{3}c_{3}v_{3} \\ \sigma'_{2} &= \rho_{2}c_{2}(v_{2} - v_{3}) \\ \sigma_{3} &= \sigma_{2} + \sigma'_{2} \\ v_{3} &= \frac{2\rho_{2}c_{2}}{\rho_{2}c_{2} + \rho_{3}c_{3}} \cdot v_{2} \\ v_{3} &= \frac{2\rho_{1}c_{1} \cdot \rho_{2}c_{2}}{(\rho_{1}c_{1} + \rho_{2}c_{2})(\rho_{2}c_{2} + \rho_{3}c_{3})} \cdot v_{0}, \\ \sigma_{3} &= \frac{2\rho_{1}c_{1} \cdot \rho_{2}c_{2} \cdot \rho_{3}c_{3}}{(\rho_{1}c_{1} + \rho_{2}c_{2})(\rho_{2}c_{2} + \rho_{3}c_{3})} \cdot v_{0} \\ 2v_{2} - v_{3} &= \frac{2\rho_{1}c_{1} \cdot \rho_{3}c_{3}}{(\rho_{1}c_{1} + \rho_{2}c_{2})(\rho_{2}c_{2} + \rho_{3}c_{3})} \cdot v_{0} \end{aligned}$$

Bars of unequal impedance

- For 2T < t < 3T $2v_3 - 2v_2 > 2v_2 - v_0$ $v_0 > 2(2v_2 - v_3)$ $\left(1 + \frac{\rho_1 c_1}{\rho_2 c_2}\right) \left(1 + \frac{\rho_3 c_3}{\rho_2 c_2}\right) > 4 \frac{\rho_1 c_1}{\rho_2 c_2} \cdot \frac{\rho_3 c_3}{\rho_2 c_2}$ • At t = 3T: • Kinetic energy of 1st bar: $E_1 = \frac{1}{2} A_0 l_1 \rho_1 \left[\frac{i_1 - i_2}{i_1 + i_2} \cdot v_0\right]^2$ • Where $i_1 = \rho_1 c_1$ and $i_2 = \rho_2 c_2$ • Its momentum: $M_1 = A_0 l_1 \rho_1 \frac{i_1 - i_2}{i_1 + i_2} v_0$
 - The 2nd bar will also be completely unloaded $v_3 - (2v_2 - v_3) = 2(v_3 - v_2) = 2i_1(i_2 - i_3)v_0/(i_1 + i_2)(i_2 + i_3)$

Bars of unequal impedance

• Its kinetic energy:

$$E_2 = rac{1}{2} A_0 l_2
ho_2 \Big[rac{2 i_1 (i_2 - i_3)}{(i_1 + i_2) (i_2 + i_3)} \cdot v_0 \Big]^2$$

• And momentum:

$$M_2 = A l_2
ho_2 \Big[rac{2 i_1 (i_2 - i_3) v_0}{(i_1 + i_2) (i_2 + i_3)} \Big]$$

• The 3rd bar is stress-free but the linear speed of the whole bar is $2v_3$; thus its kinetic energy E_3 , is

$$E_3 = rac{1}{2} A_0 l_3
ho_3 \Big[rac{4 \cdot i_1 i_2 v_0}{(i_1 + i_2)(i_2 + i_3)} \Big]^2$$

• And its momentum:

$$M_3 = A l_3
ho_3 \Big[rac{4 i_1 i_2 v_0}{(i_1 + i_2)(i_2 + i_3)} \Big]$$

<u>73</u>

Bars of unequal impedance

• The total kinetic energy will be

$$= \frac{1}{2} A l_1 \rho_1 v_0^2 \left[\left(\frac{i_1 - i_2}{i_1 + i_2} \right)^2 + \left(\frac{l_2}{l_1} \cdot \frac{\rho_2}{\rho_1} \right) \cdot 4 \left(\frac{i_1 \cdot (i_2 - i_3)}{(i_1 + i_2)(i_2 + i_3)} \right)^2 \right] \\
+ \left(\frac{l_3}{l_1} \cdot \frac{\rho_3}{\rho_1} \right) \cdot 16 \cdot \left(\frac{i_1 i_2}{(i_1 + i_2)(i_2 + i_3)} \right)^2 \right] \\
= \frac{1}{2} m v_0^2 \left[(i_1 - i_2)^2 \cdot (i_2 + i_3)^2 + 4 \cdot \frac{i_2}{i_1} \cdot i_1^2 (i_2 - i_3)^2 + 16 \cdot \frac{i_3}{i_1} \cdot i_1^2 \cdot i_2^2 \right] / (i_1 + i_2)^2 \cdot (i_2 + i_3)^2 \right] \\
= \frac{1}{2} m v_0^2 \frac{\left[(i_1 - i_2)^2 \cdot (i_2 + i_3)^2 + 4 i_1 i_2 (i_2 + i_3)^2 - 16 \cdot i_1 i_2^2 i_3 + 16 i_1 \cdot i_2^2 i_3 \right]}{(i_1 + i_2)^2 \cdot (i_2 + i_3)^2} \\
= \frac{1}{2} m v_0^2 = \text{the original kinetic energy of the first bar whose mass } m = A_0 l_1 \rho_1$$

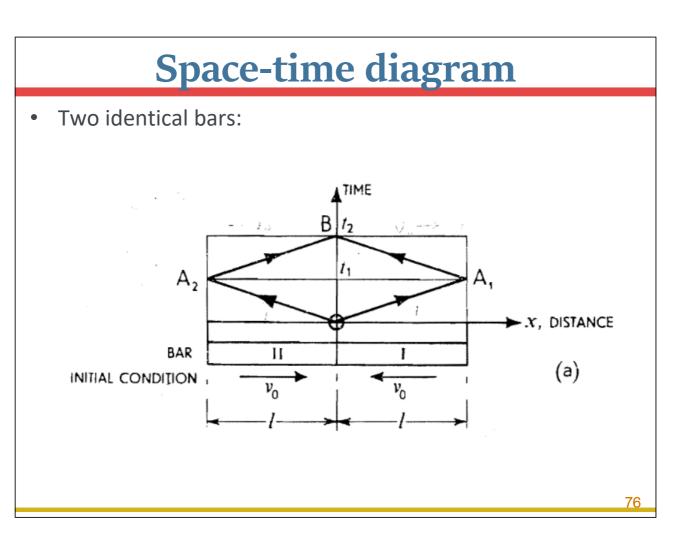
74

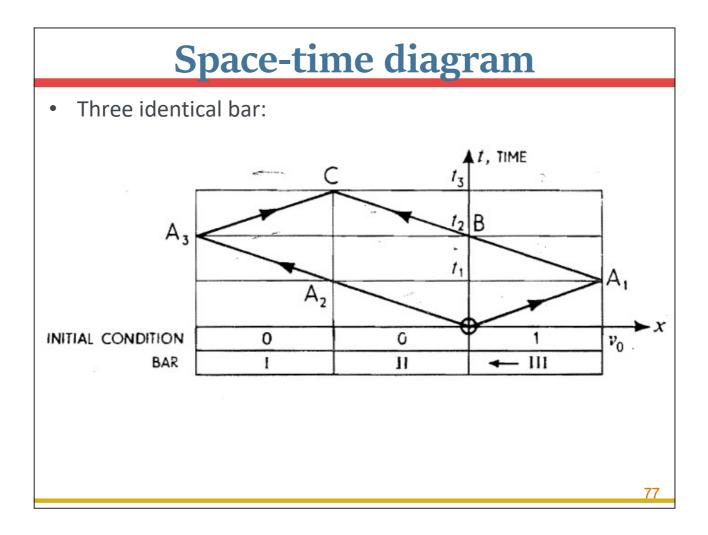
Bars of unequal impedance

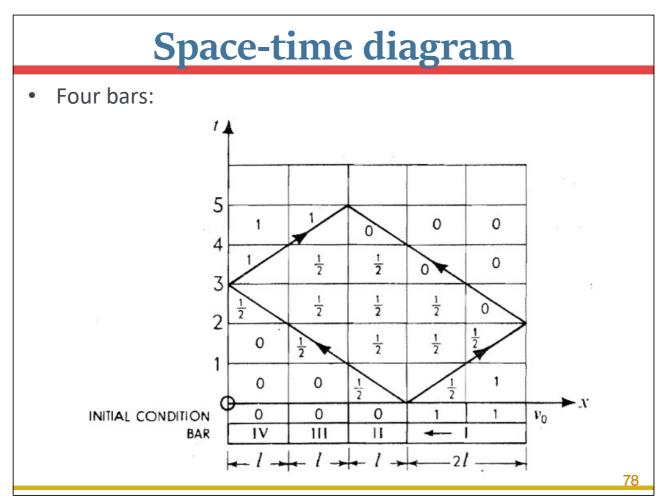
• Total momentum:

$$egin{aligned} &=A_0l_1
ho_1v_0igg[rac{i_1-i_2}{i_1+i_2}+rac{l_2
ho_2}{l_1
ho_1}\cdotrac{2i_1(i_2-i_3)}{(i_1+i_2)(i_2+i_3)}+rac{l_3
ho_3}{l_1
ho_1}\cdotrac{4i_1i_2}{(i_1+i_2)(i_2+i_3)}igg] \ &=mv_0igg[rac{(i_1-i_2)(i_2+i_3)+2i_2(i_2-i_3)+4i_2i_3}{(i_1+i_2)(i_2+i_3)}igg] \ &=mv_0igg[rac{(i_2+i_3)(i_1+i_2)-2i_2(i_2+i_3)+2i_2(i_2+i_3)]}{(i_1+i_2)(i_2+i_3)}igg] \end{aligned}$$

• $= mv_0 =$ the original momentum of the first bar.









Falling weight

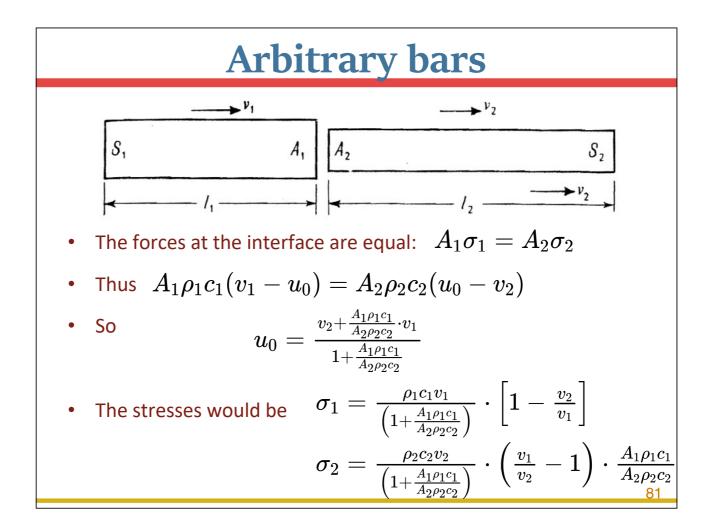
• The dynamic stress at impact:

$$\sigma_0=
ho_2v_0\sqrt{rac{E_2}{
ho_2}} ext{ or } \sigma_0^2=
ho_2v_0^2E_2$$

• σ_0 is independent of M_1

$$rac{\sigma}{\sigma_0} = \sqrt{rac{M_1}{M_2}} = \sqrt{rac{ ext{Striker mass}}{ ext{Struck rod mass}}}$$

• No matter how small M_1 , for a given v_0 the stress σ_0 would be generated at impact.



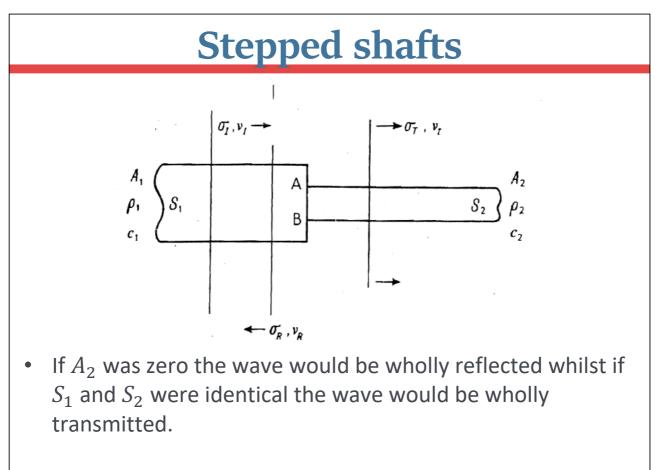
Arbitrary bars

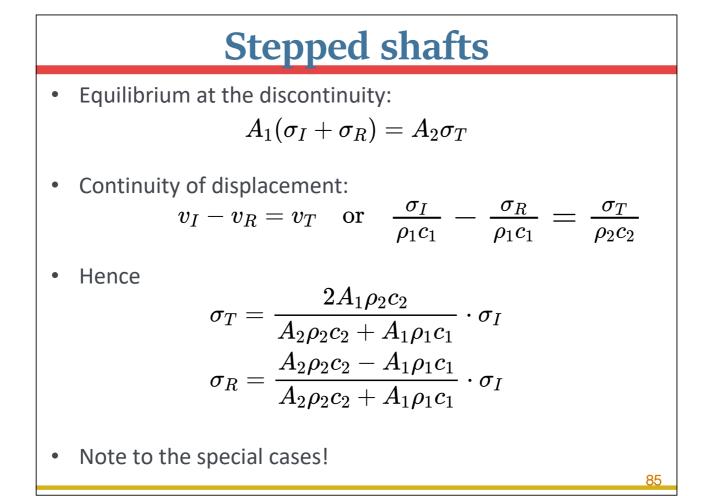
- If $ho_1 c_1 =
 ho_2 c_2$, and assuming $rac{A_1}{A_2} = \mu$ $u_0 = rac{v_2 + \mu v_1}{1 + \mu}$
- For the case $u_0 = 0$, $l_1 = 2l_2$, $\rho_1 = \rho_2$, when S_2 is completely unloaded at time $t = 2l_2/c_2$, S_2 will be moving as a wholly unstressed bar having a translational speed of $(2u_0 - v_2)$.
- Coefficient of restitution:

$$2u_0-v_2=-e(v_2-v_1)\ e=rac{-2rac{(v_2+\mu v_1)}{(1+\mu)}+v_2}{v_2-v_1}=rac{\mu}{1+\mu}$$

82

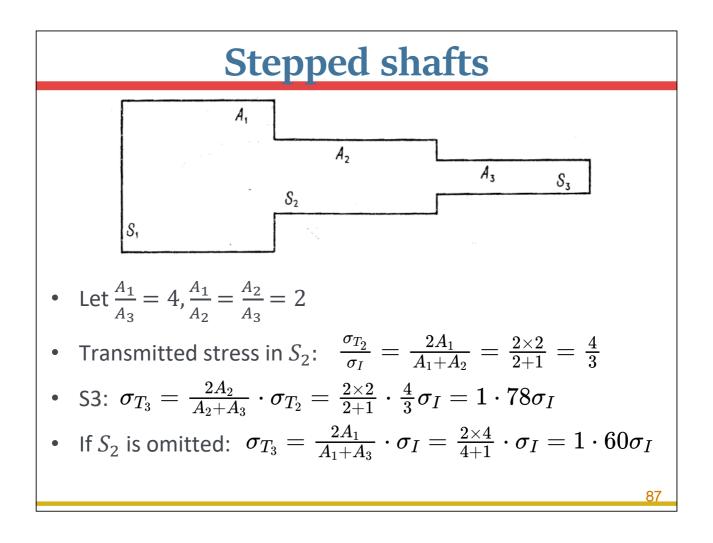
Wave transmission in stepped and conical bars





Stepped shafts

- These results show that a small shaft on the end of larger one can act as a wave trap to a pulse or blow on the far end of the large shaft.
- For free end, the stress magnification factor is 2. (wave reflection).
- This intensification factor is not reduced by using a solid two-step shaft (at the end) but, on the contrary, is increased!

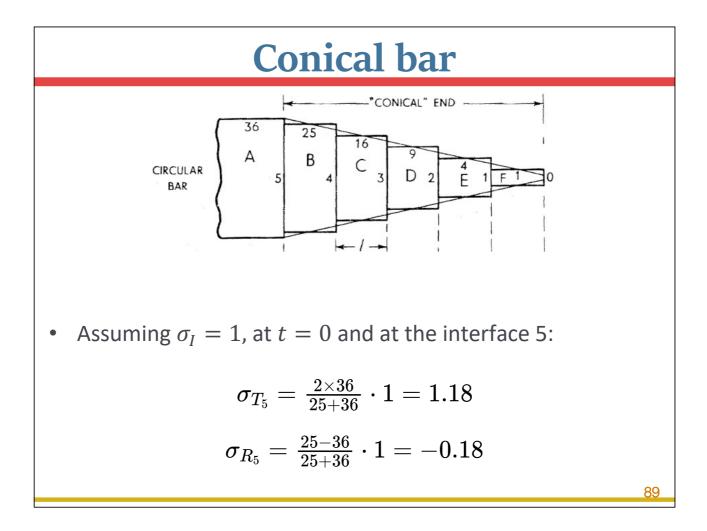


Stepped shafts

• For no wave to be reflected from the discontinuity in the bar we require $\sigma_R = 0$ and then $A_2\rho_2c_2 = A_1\rho_1c_1$ so that

$$\sigma_T=\sigma_I\sqrt{E_2
ho_2/E_1
ho_1}$$

• Ensuring that $A_2\rho_2c_2 = A_1\rho_1c_1$ is known as impedance matching.



Conical bar

• At t = T, σ_{T_5} reaches section 4: $\sigma_{T_4} = \frac{2 \times 25}{16 + 25} \cdot 1.18 = 1.44$ $\sigma_{R_4} = \frac{16 - 25}{16 + 25} \cdot 1.18 = -0.26$ • At t = 2T, σ_{T_4} will reach section 3: $\sigma_{T_3} = \frac{2 \times 16}{9 + 16} \cdot 1.44 = 1.84$ $\sigma_{R_3} = \frac{9 - 16}{9 + 16} \cdot 1.44 = -0.403$ • σ_{R_4} reaches section 5: $\sigma_{R_{4,5}} = \frac{36 - 25}{36 + 25} \cdot (-0.26) = -0.047$

Conical bar

• At t = 3T, σ_{T_3} reaches section 2:

$$\sigma_{T_2} = rac{2 imes 9}{4 + 9} \cdot 1.84 = 2.55$$

• $\sigma_{R_{4,5}}$ will reach section 4:

$$\sigma_{R_{4,5,4}} = rac{2 imes 25}{25+16} \cdot (-0.047) = -0.0574$$

• σ_{R_3} reaches section 4:

$$\sigma_{R_{3,4}} = rac{25-16}{25+16} \cdot (-0.403) = -0.0885$$

 The total intensity of stress proceeding across section 4 is (-0.0574) + (-0.0885) = -0.146

91

Conical bar

- At t=4T, at section 1: $\sigma_{T_1}=rac{2 imes 4}{1+4}\cdot 2.55=4.08$ $\sigma_{R_1}=rac{1-4}{1+4}\cdot 2.55=-1.53$
- At section 3:

$$\sigma_{R_{2,3}} = rac{16-9}{16+9} \cdot (-0.71) = -0.199$$

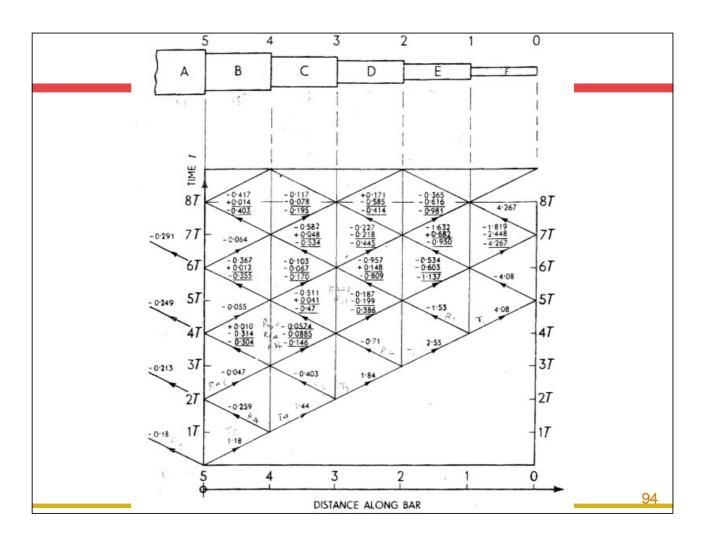
$$\sigma_{R_{3,4,3}} = rac{2 imes 16}{9+16} \cdot (-0.1461) = -0.187$$

 Thus the total intensity of stress two segment lengths behind the head of the successively transmitted initial unit pulse is (-0.199) + (-0.187) = -0.386

92

Conical bar

- It should be noted particularly that as the pulse travels towards the end of the bar, the stress intensity at the head increases, whilst a tail to the pulse is developed which has a smaller intensity but one of opposite sign.
- In a bar which possesses an end segment, F, of constant length, a high compressive stress will be attained and after reaching the end of the bar, it will be reflected as a tensile stress pulse of equal intensity.



Finite lateral restraint

- Consider a bar a finite length of which is wholly restrained against any lateral expansion.
- A rectangular compressive stress wave of intensity σ_0 is then reflected, σ_R , and transmitted, σ_T , at the boundary between the two regions:

$$rac{\sigma_R}{\sigma_0} = rac{c'/c-1}{c'/c+1} ext{ and } rac{\sigma_T}{\sigma_0} = rac{2(c'/c)}{c'/c+1},$$

• If the restraint applies over a finite length of bar, then on emerging from the restraint zone, reflected and transmitted waves will again be generated:

 $rac{\sigma'_R}{\sigma_T} = rac{c/c'-1}{c/c'+1} ext{ and thus } rac{\sigma'_R}{\sigma_0} = rac{-2(c'/c)(c'/c-1)}{(c'/c+1)^2} \ rac{\sigma'_T}{\sigma_T} = rac{2 \cdot c/c'}{c/c'+1} ext{ and thus } rac{\sigma'_T}{\sigma_0} = rac{2(c/c')}{c/c'+1} \cdot rac{2(c'/c)}{c'/c+1} = rac{4(c'/c)}{(c'/c+1)^{95}}$