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2.2

Chapter 2
Objectives

d To review integer arithmetic, concentrating on divisibility
and finding the greatest common divisor using the Euclidean
algorithm

(J To understand how the extended Euclidean algorithm can be
used to solve linear Diophantine equations, to solve linear
congruent equations, and to find the multiplicative inverses

 To emphasize the importance of modular arithmetic and
the modulo operator, because they are extensively used in

cryptography

] To emphasize and review matrices and operations on residue
matrices that are extensively used in cryptography

1 To solve a set of congruent equations using residue matrices



2-1 INTEGER ARITHMETIC

2.3

In integer arithmetic, we use a set and a few
operations. You are familiar with this set and the
corresponding operations, but they are reviewed here
to create a background for modular arithmetic.

Topics discussed in this section:

2.1.1 Set of Integers

2.1.2 Binary Operations

2.1.3 Integer Division

2.1.4 Divisibility

2.1.5 Linear Diophantine Equations




2.1.1 Set of Integers

The set of integers, denoted by Z, contains all integral
numbers (with no fraction) from negative infinity to
positive infinity (Figure 2.1).

Figure 2.1 The set of integers

Z=1{. .. ,-2.-1,0,1,2, ...}
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2.5

2.1.2 Binary Operations

In cryptography, we are interested in three binary
operations applied to the set of integers. A binary
operation takes two inputs and creates one output.

Figure 2.2 Three binary operations for the set of integers

Z={...,-2,-1,0,1,2, . . .}

a b

I

+ — X IOperation




2.1.2 Continued
Example 2.1

The following shows the results of the three binary operations
on two integers. Because each input can be either positive or
negative, we can have four cases for each operation.

Add: 5+49=14 (-5)+9=4 54(-9)=-4 -5+ (-9 =-14
Subtract: 5-9=—4 (-5)-9=-14 5-(-9) =14 -5 - (-9 =+
Multiply: 5x9=45 (=5)x9=-45 5% (-9)=-45 (=5) X (-9) =45

2.6



2.7

2.1.3 Integer Division

In integer arithmetic, if we divide a by n, we can get g
and r . The relationship between these four integers can
be shown as:

a=qgxn+r




 2.1.3 Continued
Example 2.2

Assume that a = 255 and n = 11. We can find q = 23 and R = 2
using the division algorithm.

Figure 2.3 Example 2.2, finding the quotient and the remainder

divisor ]
L T
n———>» 11 255 «—a <'|: dividend
g
22
335
33

remainder
2 «—r <{— "a




2.9

2.1.3 Continued

Figure 2.4 Division algorithm for integers

n >a=qxn+ri
(positive)

Jo

> r
(nonnegative)

Z={. . .,-2,-1,0,1,2, . ..




2.1.3 Continued
Example 2.3

When we use a computer or a calculator, » and ¢ are negative
when «a is negative. How can we apply the restriction that r
needs to be positive? The solution is simple, we decrement the
value of ¢ by 1 and we add the value of » to r to make it
positive.

s g Y

—255=(23x11)+ (-2) < -255=(-24x%x11) + 9

2.10
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2.1.3 Continued

Figure 2.5 Graph of division alogorithm

Case of
positive a | N
| | |
! 1 1
0 n 2n cee qn
r
—>
| <« l }
(g=—Dn a gn coe —2n —n
Case of
negative a



2.1.4 Divisbility (suuii cabld

If a is not zero and we let r = 0 in the division relation,
we get

a=sqgxn

If the remainder is zero, a|N

If the remainder is not zero, A1 N

2.12



2.1.4 Continued
Example 2.4

a. The integer 4 divides the integer 32 because 32 =8 x 4, We
show this as

4|32

b. The number 8 does not divide the number 42 because
42 =5 x 8 + 2. There is a remainder, the number 2, in the
equation. We show this as

3142

2.13
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2.1.4 Continued

Property 1:
Property 2:
Property 3:

Property 4:

Properties of divisibility

if a|1, then a = 1.

if a|b and b|a, then a = 1b.
if a|b and b|c, then ajc.

if a|b and a|c, then

allm x b + n x c), where m
and n are arbitrary integers



2.1.4 Continued
Example 2.5

a. We have 13|78, 7198, 6|24, 4|44, and 11|(=33).

b. We have 13427, 7450, -6423,4+441, and 114 (-32).

2.15



2.1.4 Continued
Example 2.6

a. Since 3|15 and 1545,
according to the third property, 3|45.

b. Since 3|15 and 319,

according to the tourth property,
31(15 x 2 + 9 x 4), which means 3|66.

2.16



2.1.4 Continued

‘ Note \

Fact 1: The integer 1 has only one
divisor, itself.

Fact 2: Any positive integer has at least

two divisors, 1 and itself (but it
can have more).

2.17



2.1.4 Continued

Figure 2.6 Common divisors of two integers

Divisors of 140 Divisor of 12

Common Divisors
of 140 and 12
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2.1.4 Continued

| Note \ Greatest Common Divisor

The greatest common divisor of two
positive Integers Is the largest integer
that can divide both integers.

| Note \ Euclidean Algorithm

Fact1: gcd (a, 0) = a
Fact 2: gcd (a, b) = gcd (b, r), whereris
the remainder of dividing a by b

2.19



2.1.4 Continued

Euclidean Algorithm Fact 2 Example:
gcd(36,10) = gcd (10,6) = gcd (4,2) = gcd(2,0) = 2

2.20
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2.1.4 Continued

Figure 2.7 Euclidean Algorithm

rn=ar,=b—» r

i

" o r
[ ] [ ]
[ ] [ ]
[ ] o
1 —» 0

ged (a,b)=r

ry<a;, ry<b;
while (r, > 0)
{
q—ry /1
ro—ry—qX%Xr;

]"1 (_rz; I‘2<—r;

§
ged (a, b) <« ry

a. Process

(Inmitialization)

b. Algorithm




2.1.4 Continued

| Note \

When gcd (a, b) = 1, we say thata and b
are relatively prime.

2.22



2.1.4 Continued
Example 2.7

Find the greatest common divisor of 2740 and 1760.

Solution
We have gcd (2740, 1760) = 20.

q r] 1’2 r

1| 2740 1760 080
1| 1760 /980 780

£

L | 980 7801 200
3 | 780 — 2004 180
1 | 200 — 0% 20
o | 180 = 0T 0

2.23



2.1.4 Continued
Example 2.8

Find the greatest common divisor of 25 and 60.

Solution
We have ged (25, 65) =5.

q I I r

0 25 60 25

2 60 25 10

2 25 10 S

2 10 5 0
S 0

2.24



2.1.4 Continued
Extended Euclidean Algorithm

Given two integers a and b, we often need to find other two
integers, s and ¢, such that

sXa+txXb=gcd (a, b)

The extended Euclidean algorithm can calculate the ged (a, b)
and at the same time calculate the value of s and ¢.

2.25



2.1.4 Continued

Figure 2.8.a Extended Euclidean algorithm, part a

r1=ar2=b—> r Sl=152=0—) s t1=0 t2=l—> {
' Iy —» r S1 Sy > Ky N Iy —» t
T r—» 0 81 S>> s l lp —»
ged (a,b)=r s =5 =1

a. Process

2.26




2.1.4 Continued

Figure 2.8.b Extended Euclidean algorithm, part b

1 a, ry < b;
s; < 1; 55 < 0; (Initialization)
t; < 0; I, < 1;
while (, > 0)
{
q—ry/1r;
F<ry—qxrp; .
: : (Updating 7’s)
Iy €Ty, Py« T,
S =S| —qXSy; .
: : (Updating s’s)
S] ¢85 Sy S
[ <1 —q X1y )
1 . (Updating #’s)

h<—bL; LT

}

ged(a,b)«r;; s«sp; <1

b. Algorithm

2.27



2.1.4 Continued
Example 2.9

Given a = 161 and b = 28, find gcd (a, b) and the values of s
and .

Solution
We get ged (161,28)=7,s=—1and 7= 6.
r=r—qXr,,s=s;,—qXs,,t=t, —qXxt,

q r; 1 r S; 8 § b t
5 161 28 21 10 1 0 1 =5
1 28 21 7 0 I —1 I =5 6
3 21 7 0 -1 4 -5 6 —23

2.28



2.1.4 Continued
Example 2.10

Given a = 17 and b = 0, find gcd (a, b)) and the values of s
and .

Solution
We get ged (17,0)=17,s=1,and 1= 0.

)

q ry
K
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2.1.4 Continued
Example 2.11

Given a = 0 and b = 45, find gcd (a, b) and the values of s
and .

Solution
We get gcd (0,45)=45,s=0,and 7 = 1.

2.30
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2.1.4 Continued

Linear Diophantine Equation

i (aS3l0 5l o 305 kg ATl s il oy 55 (0005015 1 5

""“"/U" LZ‘J@}:'/J
| Note \

A linear Diophantine equation of two
variables is ax + by = c.

| Note \

gcd (a,b)=d :
If d¥cthen the equation has no solution.

If d |c, then the equation has infinite number
of solution.




2.1.4 Continued

Linear Diophantine Equation

| Note \

Particular solution:
X, = (c/d)s and y, = (c/d)t

‘ Note ‘

General solutions:
x=x,+ k (b/d) and y =y, - k(a/d)
where k is an integer

2.32



2.1.4 Continued
Example 2.12

Find the particular and general solutions to the equation
21x + 14y = 35.

Solution
(d = ged(a,b)) oS o pundi d g3 1) olro (pud yb -
d= ged (21,14) = 7 then 3x+ 2y =5
Cawddy A8l o wwd cwildl s joSl lawgi 2 ST bt =1 cdoleo glp Iyt g8 Hlado -Y
25 T & Aolre oges g B Olgm g ot =1 g8 =1 Hlade 3s+2t =1 :49,9]
JuIw]
Particular: xp=5x1=3 and yy=5%x(-1)=-5 since 33/7 =35
General: x=5+kx2 and y=-5-kX3 where k is an integer

2.33



2-2 MODULAR ARITHMETIC

The division relationship (a = q X n + r) discussed in
the previous section has two inputs (a and n) and two
outputs (q and r). In modular arithmetic, we are
interested in only one of the outputs, the remainder r.

Topics discussed in this section:

2.2.1 Modular Operator

2.2.2 Set of Residues

2.2.3 Congruence

2.2.4 Operations in Z

2.2.5 Addition and Multiplication Tables
2.2.6 Different Sets

2.34




2.2.1 Modulo Operator ( s/ vloy Klo<)

The modulo operator is shown as mod. The second input
(n) is called the modulus (4\w). The output r is called the

residue (c0iledl). (a mod n =r)

Figure 2.9 Division algorithm and modulo operator

&S99
(positive)

<7

2.35

I

I

7 I»onnegative)

7S

gs-?ﬁj-”

Z={. .. .2-1,012 ...}
5995 ,i> la
($99.9 #% mod Operator
(positive)

r (nonnegative)

N\

gs-?ﬁj-”




2.1.4 Continued
Example 2.14

Find the result of the following operations:

a. 27 mod 5 b. 36 mod 12
¢c. —18 mod 14 d. =7 mod 10
Solution

a. Dividing 27 by 5 results in r =2
b. Dividing 36 by 12 results in » = 0.

¢. Dividing —18 by 14 results in » = —4. After adding the
modulus » =10

d. Dividing —7 by 10 results in r = —7. After adding the
modulus to —7, r = 3.

2.36



2.2.2 Set of Residues

The modulo operation creates a set, which in modular

arithmetic is referred to as the set of least residues
modulo (4lew) n, or Z,.

Figure 2.10 Some Z, sets

Z,={0,1,2,3, ..., (n-1)}

Z,={0,1} Z,=1{0,1,2,3,4,5}| |Z,;,=1{0,1,2,3,4,5,6,7,8,9,10}

2.37



2.2.3 Congruence

In cryptography, we often used the concept of congruence

instead of equality. To show that two integers are
congruent (_uwlxw), we use the congruence (uwilx)

operator ( =). For example, we write:

2 =12 (mod 10) 13 =23 (mod 10)
3=8 (mod J) 8 =13 (mod J)

2.38



Congruence points

10,10 o 2Ll Lol Cuwl galud JSlos als gwilxi [Klos

Lol a3 oo sl Z &y |y Z gac goo Lae! gobus ;Kloc Yol (I
B 0 K Z, w1y 7 sacgozmo glac! gl )f.Lo.c

ol JSos Ll el (0ne to one) o & SO g9l [ Klos LG
Cewl (IMaNy to one) S @ ol ) olows

ooliw!| gwilxy JSlos Cawly Coonw yo b a5 (Mod n) o)l (o
ol Lol (Zn) dado dfgoxo 405 o gl add S 0
ooliw! CLlS o lailowy dz s LG U oS 0 a8LS1 1) O,le
Plos ;o Mod oloi b ol o ipl jo mod oloi .09 0
9 cwl Klac 12 mod 10 jo mod sled [0 lo @ 0410 50l
Saegox0 AS Cawl (p] Sxo 4 2512 (mod 10) yo (mod 10) o ,le
Ll Zig g b
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2.2.3 Continued

Figure 2.11 Concept of congruence

10 mod 10 mod 10 mod 10 mod

I

Zio={0...2...9}

8 =2=12 = 22 (mod 10)

Congruence Relationship

2.40



2.2.3 Continued

Residue Classes

A residue class [af or [a], is the set of integers congruent
modulo n. In other words, it is a set of all integers such

that x = a (mod n). For example, if n = 5, we have five
sets [0], [1], [2], [3] and [4] as shown in below:

15, =10, =5,0, 5,10, 1
14, -9, 4,1, 6,11,1
| —3,2, 7,12, 1
12, -7, =5,3, 8,13,1
11, -6, —1,4, 9,14,1

AN ]

Ay

B W o = O
|l

i p— p—— p—— p——
|

—_ DN W B N
|
@0

@OO\.\IO\U"I
N e —— —— ——
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2.2.3 Continued

Figure 2.12 Comparison of Z and Z,, using graphs

— —

—(n—1) 201 0 1 2 n-1)

(n—2) 2@--------- i a =2 (mod n) I
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2.2.3 Continued
Example 2.15

We use modular arithmetic in our daily life; for example, we
use a clock to measure time. Our clock system uses modulo 12
arithmetic. However, instead of a 0 we use the number 12.

2.43



2.2.4 Operation in Z,

The three binary operations that we discussed for the set
Z can also be defined for the set Z,. The result may need
to be mapped to Z, using the mod operator.

Figure 2.13 Binary operations in Z,

Z or Z,
a b
Operations
+ - X
(a+b)ymod n=c
(a—b)mod n=c
(axb)ymod n=c
n—> mod

lc

Z,={0,1,2, ..., (n—1)}

2.44



2.2.4 Continued
Example 2.16

Perform the following operations (the inputs come from Zn):
a.Add 7 to 14 in Z,..

b. Subtract 11 from 7 in Z ;.
c. Multiply 11 by 7 in Z,,,.

Solution

(14+7)mod 15 — (21)mod 15=6
(7—11)mod 13 — (—4)mod 13=9
(7%X11)mod20 — (77) mod20=17

2.45



2.2.4 Continued
Example 2.17

Perform the following operations (the inputs come from
either Z or Z.,):

a. Add 17 to 27 in Z.y4.

b. Subtract 43 from 12 in Z;3.

¢. Multiply 123 by —10 in Zo.

Solution
(17+27)mod 14 — (44)mod 14=2
(12—43) mod 13 — (=31)mod 13=8

(123X (=10)mod 19 — (-1230)mod 19=5

2.46



2.2.4 Continued

Properties

First Property: (a+b)modn =[(a mod n)+ (b mod n)] mod n

Second Property: (a—b) mod n = [(a mod n) — (b mod n)] mod n

Third Property: (aXb)modn = [(a mod n) X (b mod n)] mod n

2.47



2.48

2.2.4 Continued

Figure 2.14 Properties of mode operator

Z,=1{0,1,2, ...

,(n— 1)}

a. Original process

Z or Z,

n mod

a

mod

a mod n

b mod n

mod

c

Z=1{0,1,2, ... (n—1)

b. Applying properties




2.2.4 Continued
Example 2.18

The following shows the application of the above properties:
1. (1,723,345 + 2,124,945) mod 11 = (8 + 9) mod 11 =6
2.(1,723,345 — 2,124,945) mod 16 = (8 — 9) mod 11 =10

3. (1,723,345 x 2,124,945) mod 16 = (8 x 9) mod 11 =6

2.49



2.2.4 Continued
Example 2.19

In arithmetic, we often need to find the remainder of powers
of 10 when divided by an integer.

10" mod x = (10 mod x)*  Applying the third property n times.

I0mod3=1 — 10"mod3=(10mod 3)"=1
I0mod9=1 — 10"mod 9= (10 mod 9)"=1
I0mod7=3 — 10" mod7=(10mod 7)"=3"mod 7

2.50



2.2.4 Continued
Example 2.20

We have been told in arithmetic that the remainder of an
integer divided by 3 is the same as the remainder of the sum
of its decimal digits. We write an integer as the sum of its
digits multiplied by the powers of 10.

a:anX10”+---+a1><101+a0><100
For example: 6371 =6 X 10° + 3 x 10+ 7 x 10" + 1 x 10°

amod 3 =(a, X 10"+ - .-+ a; X 10" + ayx 10”) mod 3
=(a, X 10" mod 3 + - - -+ (a; X 10") mod 3 + (ay % 10%) mod 3
= (a, mod 3) X (10" mod 3) + - - - + (a; mod 3) X (10" mod 3)+
(apmod 3) ><(10O mod 3)
=a,mod 3+ -.-+a;mod3 + aymod 3
=(a, +---+ay;+ay mod3

2.51



2.52

2.2.5 Inverses

When we are working in modular arithmetic, we often need
to find the inverse of a number relative to an operation. We
are normally looking for an additive inverse (relative to an
addition operation) or a multiplicative inverse (relative to a
multiplication operation).



2.2.5 Continue

Additive Inverse

In Z,, two numbers a and b are additive inverses of each
other if

a+b=0 (mod n)

| Note \

In modular arithmetic, each integer has
an additive inverse. The sum of an
integer and its additive inverse is
congruent to 0 modulo n.
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2.2.5 Continued
Example 2.21

Find all additive inverse pairs in Z10.

Solution

The six pairs of additive inverses are (0, 0), (1, 9), (2, 8), (3, 7),
(4, 6), and (5, 5).

2.54



2.2.5 Continue

Multiplicative Inverse

In Z,, two numbers a and b are the multiplicative inverse of
each other if

axb=1(modn)

| Note \

In modular arithmetic, an integer may or
may not have a multiplicative inverse.
When it does, the product of the integer
and its multiplicative inverse is
congruent to 1 modulo n.

2.55



2.2.5 Continue

Multiplicative Inverse

In Z,, two numbers a and b are the multiplicative inverse of
each other if

axb=1(modn)

| Note \

a has a multiplicative Iinverse in Z,_, if
and only if gcd (n, a) = 1.

In this case, a and n are said to be
relatively prime.

2.56
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2.2.5 Continued

Example 2.22
Find the multiplicative inverse of 8 in Z,,,.

Solution

There is no multiplicative inverse because ged (10, 8) =2 # 1.
In other words, we cannot find any number between 0 and 9
such that when multiplied by 8, the result is congruent to 1.

Example 2.23

Find all multiplicative inverses in Z,,.

Solution

There are only three pairs: (1, 1), (3, 7) and (9, 9). The
numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative
inverse.



2.2.5 Continued
Example 2.24

Find all multiplicative inverse pairs in Z;.

Solution

We have seven pairs: (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), and (10,
10).
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2.59

2.2.5 Continued

Multiplicative Inverse

The extended Euclidean algorithm we discussed earlier in the chapter can
find the multiplicative inverse of b in Z_, when n and b are given and the
inverse exists. To show this, let us replace the first integer a with n (the
modulus).
We can say that the algorithm can find s and t such

sxn+bxt=ged (n,b)
However, if the multiplicative inverse of b exists, gcd (n, b) must be 1. So
the relationship is

(sxn)+(bxt)=1

Now we apply the modulo operator to both sides. In other words, we map
each side to Z_. We will have

(sXn+bXxXt)imodn=1modn

[(sXn)modn]+ [(bXf)modn]=1modn

O+[(bxnmodn]=1

(X ymodn=1 ~ This means 7 is the multiplicative inverse of b in Z,,



2.2.5 Continued

I Note \

The extended Euclidean algorithm finds
the multiplicative inverses of b in Z,
when n and b are given and
ged (n, b) = 1.

The multiplicative inverse of b is the
value of t after being mapped to Z,.
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2.2.5 Continued

Figure 2.15 Using extended Euclidean algorithm to

find multiplicative inverse

ri<n;, 1< b
[1(_0, tz(_l,
while (7, > 0)
1’121’1 r2=b r f1=0 fzzl [ {
v — | e i
rl rz r fl fz > [ r‘_rl_qx’é;
. . . . Fi <715 Ty T
7"1 1"2 » 0 fl ,2 > [ t(_tl_qxtzs
— v — v hebs el
T 0 h 53 )
ng(nab)zrl If]"lzl,b_lzfl 1f(l‘1=1)thenb71<—fl
a. Process b. Algorithm




2.2.5 Continued

Example 2.25
Find the multiplicative inverse of 11 in Z,.
Solution
q ry I r t; 1 t
2 26 11 4 0 1 —2
2 11 4 3 1 -2 S
1 4 3 | -2 5 —7
3 3 1 0 S -7
o I -7

The ged (26, 11) is 1; the inverse of 11 is —7 or 19.
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2.2.5 Continued

Example 2.26
Find the multiplicative inverse of 23 in Z,,.
Solution
q Iy ) 5 t
4 100 23 1 —4
2 23 8 —4 19
| 8 7 9 —13
7 7 I —13 100
I o

2.63

The ged (100, 23) is 1; the inverse of 23 is —13 or 87.



2.2.5 Continued

Example 2.27
Find the inverse of 12 in Z,.
Solution
q Iy ) r Iy > [
2 26 12 0 1 —2
6 12 2 0 1 —2 13

The gcd (26, 12) is 2; the inverse does not exist.
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2.2.6 Addition and Multiplication Tables

Figure 2.16 Addition and multiplication table for Z,,

9098765432!0
w|o|w|o|t|a|o|w|elt|a] N
7074!852963.m
60628406284%“
v oln|loln|o|ln|olela|n| E
40482604826.M
30369258!47.m
20246802468;1@
10!23456789.m
UOOOOOOOOOOM
S NN TS I~ 0

oo = —||en|<|n|o|e~]|w

® || ZH—||en | |n|o|~

||l NE— | |en| <t |n |\©O o
66789012345ﬂ
55678901234M
St IRIEINEIEY - H NG
33456789012“
22345678901@
) R Y oy ey g [V P P Py [
0“123456789A
S =N TS~
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2.2.7 Different Sets

Figure 2.17 Some Z, and Z,,- sets

Z:.=1{0,1,2,3,4,5) Z. = {1,5)
Z,=1{0,1,2,3,4,5,6) 7, =1{1,2,3,4,5,6)
Z,,=10,1,2,3,4,5,6,7,8,9} Z, =1{1,3,7,9

| Note \

We need to use Z, when additive
Inverses are needed; we need to use Z,*
when multiplicative inverses are needed.
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2.2.8 Two More Sets

Cryptography often uses two more sets: £, and Z,*.
The modulus in these two sets is a prime number.

Z13=1{0,1,2,3,4,5,6,7.8,9, 10, 11, 12}
Zi3x=1{1,2,3,4,5,6,7.8,9, 10, 11, 12

2.67



2-3 MATRICES

In cryptography we need to handle matrices. Although
this topic belongs to a special branch of algebra called
linear algebra, the following brief review of matrices is
necessary preparation for the study of cryptography.

Topics discussed in this section:

2.3.1 Definitions
2.3.2 Operations and Relations

2.3.3 Determinants
2.3.4 Residue Matrices

2.68




2.3.1 Definition

Figure 2.18 A matrix of size l xm

m columns
d1; 4 A1
. 2| 921 422 m
Matrix A: o
—
a1 ap A

The element a;; is located in the ith row and jth column.
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Figure 2.19 Examples of matrices

[21511} 2

Row matrix 4
12

Column
matrix

2.3.1 Continued

23
12

10

14
21

8

Square
matrix

56 |
18

31

o O O

o O O




. 2.3.2 Operations and Relations
Example 2.28

Figure 2.20 shows an example of addition and
subtraction.

Figure 2.20 Addition and subtraction of matrices

12 4 4 521+723
11 12 30| [3 2 10 g 10 20

C=A+8B

2 0 -2 5 2 1 7 2 3
-5 -8 10| |3 2 10 s 10 20

D=A-B
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- 2.3.2 Continued
Example 2. 29

Figure 2.21 shows the product of a row matrix (1 X 3)
by a column matrix (3 < 1). The result is a matrix of

size 1 x 1.

Figure 2.21 Multiplication of a row matrix by a column matrix

s[5 2 ][ |

In which: |53=5x7+2x8+1 x2
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- 2.3.2 Continued
Example 2. 30

Figure 2.22 shows the product of a 2 X 3 matrix by a
3 X 4 matrix. The result is a 2 X 4 matrix.

Figure 2.22 Multiplication of a 2 x 3 matrix by a 3 % 4 matrix

41 21 22 7

[b—*m\]l
-
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Figure 2.23
multiplication.

 2.3.2 Continued
Example 2. 31

shows

an

example

of

scalar

Figure 2.23 Scalar multiplication ( s>9c & »2)

B
6 3
6 12

A
5 2
3 2
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2.3.3 Determinant

The determinant of a square matrix A of size m X m
denoted as det (A) is a scalar calculated recursively as
shown below:

[. Itm=1,det(A)=ay,

2. Ifm>1.det (A) = T (— 1)‘+’><a X det (Aj))

Where A;; 1s a matrix obtamed from A
by deleting the ith row and jth column.

| Note H

The determinant is defined only for a
square matrix.




- 2.3.3 Continued
Example 2. 32

Figure 2.24 shows how we can calculate the
determinant of a 2 *x 2 matrix based on the
determinant of a 1 x 1 matrix.

Figure 2.24 Calculating the determinant of a 2 x 2 matrix

2 o o
4J :(_1)1+1><5xdett4j +(—1)1+2><2><det_3_ —>» S5x4-2x3=14

a1 412 | _ _
or |det = ap) Xay T apXay
A1 aAp
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- 2.3.3 Continued
Example 2. 33

Figure 2.25 shows the calculation of the determinant
of a 3 X 3 matrix.

Figure 2.25 Calculating the determinant of a 3 x 3 matrix

Figure 2.25 Cualculaiing the determinant of a 3 X 3 mairiy
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2.3.4 Inverses

I Note \

The additive inverse of matrix A is
another matrix B such that A + B = 0.

‘ Note ‘

Multiplicative inverses are only defined
for square matrices.
The multiplicative inverse of a square
matrix A is a square matrix B such that
AxB=BxA=]
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2.3.5 Residue Matrices

Cryptography uses residue matrices: matrices where
all elements are in Z, A residue matrix has a
multiplicative inverse if gcd (det(A), n) = 1.

Example 2. 34

Figure 2.26 A residue matrix and its multiplicative inverse
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2-4 LINEAR CONGRUENCE

Cryptography often involves solving an equation or a
set of equations of one or more variables with
coefficient in Z,. This section shows how to solve
equations when the power of each variable is 1 (linear
equation).

Topics discussed in this section:

2.4.1 Single-Variable Linear Equations
2.4.2 Set of Linear Equations

2.80




2.4.1 Single-Variable Linear Equations

Equations of the form ax = b (mod n ) might have no
solution or a limited number of solutions.

Assume that the ged (a, n) =d.

It d+ b, there 1s no solution.
If d|b, there are d solutions.

1. Reduce the equation by dividing both sides of the equation
(including the modulus) by d.

2. Multiply both sides of the reduced equation by the multiplicative
inverse of a to find the particular solution X,

3. The general solutions arex =x,+ k (n/d) fork=0,1,..., (d- ).
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2.4.1 Continued

Example 2.35
Solve the equation 10 x = 2(mod 15).

Solution
First we find the gcd (10 and 15) = 5. Since 5 does not divide
2, we have no solution.

Example 2.36
Solve the equation 14 x =12 (mod 18). (7! = 4)

Solution

14dx=12(mod 18) > T7x=6(mod9) — x=6 (7_1) (mod 9)
xO=(6><7_l)m0d9=(6><4) (mod 9) =6
X1 = Xp + 1 X (]8/2)2 15
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2.4.1 Continued
Example 2.37

Solve the equation 3x +4 = 6 (mod 13).

Solution

First we change the equation to the form ax = b (mod n). We
add —4 (the additive inverse of 4) to both sides, which give
3x =2 (mod 13). Because ged (3, 13) =1, the equation has only
one solution, which is x, = (2 X 371) mod 13 = 18 mod 13 = 5.
We can see that the answer satisfies the original equation:
3 x5+4=6 (mod 13).
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2.4.2 Single-Variable Linear Equations

We can also solve a set of linear equations with the
same modulus if the matrix formed from the
coefficients of the variables is invertible.

dr

253

nl

%)
25%)

2%)

Figure 2.27 Set of linear equations

allxl + alzxZ + ... + alnxn = bl
Ay1X] + ApXy + . . . + ayX, = by
a,X; + apx, + ...+ a,x, = b,

a. Equations

ap, | [x] [ b xp | diy 4y - - - Ay b,

2 X2 b, X2 dr G - - - Ay b,

ann_ B Xn | | bn i | Xn | _anl a2 ot arm_ | bn ]
b. Interpretation c. Solution



2.4.2 Continued

Example 2.38
Solve the set of following three equations:

3x+5y+7z=3 (mod 16)

x+4y+ 13z=5 (mod 16)
2x+ 7y +3z=4 (mod 16)
Solution

The result is x = 15 (mod 16), y =4 (mod 16), and z = 14 (mod
16). We can check the answer by inserting these values into
the equations.
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