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 To review integer arithmetic, concentrating on divisibility
and finding the greatest common divisor using the Euclidean
algorithm

 To understand how the extended Euclidean algorithm can be
used to solve linear Diophantine equations, to solve linear
congruent equations, and to find the multiplicative inverses

 To emphasize the importance of modular arithmetic and 
the modulo operator, because they are extensively used in
cryptography

 To emphasize and review matrices and operations on residue
matrices that are extensively used in cryptography

 To solve a set of congruent equations using residue matrices

Objectives
Chapter 2
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2-1   INTEGER ARITHMETIC

In integer arithmetic, we use a set and a few
operations. You are familiar with this set and the
corresponding operations, but they are reviewed here
to create a background for modular arithmetic.

2.1.1 Set of Integers
2.1.2 Binary Operations
2.1.3 Integer Division
2.1.4 Divisibility
2.1.5 Linear Diophantine Equations

Topics discussed in this section:
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The set of integers, denoted by Z, contains all integral
numbers (with no fraction) from negative infinity to
positive infinity (Figure 2.1).

2.1.1  Set of Integers

Figure 2.1  The set of integers
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In cryptography, we are interested in three binary
operations applied to the set of integers. A binary
operation takes two inputs and creates one output.

2.1.2  Binary Operations

Figure 2.2  Three binary operations for the set of integers
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Example 2.1
2.1.2 Continued

The following shows the results of the three binary operations
on two integers. Because each input can be either positive or
negative, we can have four cases for each operation.
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In integer arithmetic, if we divide a by n, we can get q
and r . The relationship between these four integers can
be shown as:

2.1.3  Integer Division

a = q × n + r
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Assume that a = 255 and n = 11. We can find q = 23 and R = 2
using the division algorithm.

2.1.3  Continued

Figure 2.3  Example 2.2, finding the quotient and the remainder

Example 2.2

quotient
خارج قسمت

dividend
مقسوم

remainder
باقيمانده

divisor
مقسوم عليه
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2.1.3  Continued
Figure 2.4 Division algorithm for integers
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Example 2.3
2.1.3   Continued

When we use a computer or a calculator, r and q are negative
when a is negative. How can we apply the restriction that r
needs to be positive? The solution is simple, we decrement the
value of q by 1 and we add the value of n to r to make it
positive.

a q r q-1 n+rn
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2.1.3   Continued
Figure 2.5  Graph of division alogorithm
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If a is not zero and we let r = 0 in the division relation,
we get

2.1.4  Divisbility (قابليت تقسيم)

a = q × n

If the remainder is zero,

If the remainder is not zero,
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Example 2.4
2.1.4   Continued

a. The integer 4 divides the integer 32 because 32 = 8 × 4. We
show this as

b. The number 8 does not divide the number 42 because
42 = 5 × 8 + 2. There is a remainder, the number 2, in the
equation. We show this as
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Properties of divisibility
2.1.4   Continued

Property 1: if a|1, then a = ±1.

Property 2: if a|b and b|a, then a = ±b.

Property 3: if a|b and b|c, then a|c.

Property 4: if a|b and a|c, then 
a|(m × b + n × c), where m
and n are arbitrary integers



2.15

Example 2.5
2.1.4   Continued
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Example 2.6
2.1.4   Continued
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2.1.4   Continued

Fact 1: The integer 1 has only one
divisor, itself.

Fact 2: Any positive integer has at least 
two divisors, 1 and itself (but it
can have more).

Note
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2.1.4   Continued
Figure 2.6  Common divisors of two integers
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Euclidean Algorithm

2.1.4   Continued

Fact 1: gcd (a, 0) = a
Fact 2: gcd (a, b) = gcd (b, r), where r is

the remainder of dividing a by b

The greatest common divisor of two 
positive integers is the largest integer 
that can divide both integers.

Greatest Common Divisor

Note

Note
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Euclidean Algorithm Fact 2 Example:
gcd(36,10) = gcd (10,6) = gcd (4,2) = gcd(2,0) = 2

2.1.4   Continued
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2.1.4   Continued
Figure 2.7  Euclidean Algorithm
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2.1.4   Continued

When gcd (a, b) = 1, we say that a and b 
are relatively prime.

Note
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Example 2.7
2.1.4   Continued

Find the greatest common divisor of 2740 and 1760.

We have gcd (2740, 1760) = 20.
Solution
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Example 2.8
2.1.4   Continued

Find the greatest common divisor of 25 and 60.

We have gcd (25, 65) = 5.
Solution
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Extended Euclidean Algorithm
2.1.4   Continued

Given two integers a and b, we often need to find other two
integers, s and t, such that

The extended Euclidean algorithm can calculate the gcd (a, b)
and at the same time calculate the value of s and t.
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2.1.4   Continued
Figure 2.8.a  Extended Euclidean algorithm, part a
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2.1.4   Continued
Figure 2.8.b  Extended Euclidean algorithm, part b
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Example 2.9
2.1.4   Continued

Given a = 161 and b = 28, find gcd (a, b) and the values of s
and t.

We get gcd (161, 28) = 7, s = −1 and t = 6.
r = r1 q × r2, s = s1  q× s2 , t = t1  q× t2

Solution
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Example 2.10
2.1.4   Continued

Given a = 17 and b = 0, find gcd (a, b) and the values of s
and t.

We get gcd (17, 0) = 17, s = 1, and t = 0.
Solution
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Example 2.11
2.1.4   Continued

Given a = 0 and b = 45, find gcd (a, b) and the values of s
and t.

We get gcd (0, 45) = 45, s = 0, and t = 1.
Solution
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Linear Diophantine Equation
2.1.4   Continued

A linear Diophantine equation of two
variables is ax + by = c.

Note

ي خطـي   يكي از كاربردهاي الگوريتم اقليدسي گسترش يافته پيدا كردن جـواب بـراي معادلـه   
. دايوفانتاين است

gcd (a,b)= d :
If        ,then  the equation has no solution.
If d |c, then the equation has infinite number 
of solution. 

Note
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Linear Diophantine Equation
2.1.4   Continued

Particular solution: 
x0 = (c/d)s and     y0 = (c/d)t

Note

General solutions: 
x = x0 + k (b/d) and  y = y0 − k(a/d) 
where k is an integer

Note
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Example 2.12
2.1.4   Continued

Find the particular and general solutions to the equation
21x + 14y = 35.

Solution
d( .كنيم مي تقسيم d بر را معادله طرفين -1 = gcd(a,b)(

d= gcd (21,14) = 7 then 3x+ 2y =5 
 دست به يافته گسترش اقليدسي الگوريتم توسط t1bs+1a=1 ي معادله براي را t و s مقدار -2

3s+2t :آوريم مي s مقدار  1= = t و 1 =  زير شرح به معادله عمومي و خاص جواب .شود مي 1-
:است
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2-2   MODULAR ARITHMETIC

The division relationship (a = q × n + r) discussed in
the previous section has two inputs (a and n) and two
outputs (q and r). In modular arithmetic, we are
interested in only one of the outputs, the remainder r.

2.2.1 Modular Operator
2.2.2 Set of Residues
2.2.3 Congruence
2.2.4 Operations in Zn
2.2.5 Addition and Multiplication Tables
2.2.6 Different Sets

Topics discussed in this section:
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The modulo operator is shown as mod. The second input
(n) is called the modulus .(پيمانه) The output r is called the
residue .(باقيمانده) (a mod n = r)

2.2.1  Modulo Operator (عملگر پيمانه اي)

Figure 2.9  Division algorithm and modulo operator

ورودي

ورودي

خروجي

ورودي

ورودي

خروجي
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Example 2.14
2.1.4   Continued

Find the result of the following operations:
a. 27 mod 5 b. 36 mod 12
c. −18 mod 14 d. −7 mod 10

a. Dividing 27 by 5 results in r = 2

b. Dividing 36 by 12 results in r = 0. 

c.   Dividing −18 by 14 results in r = −4. After adding the 
modulus r = 10

d.   Dividing −7 by 10 results in r = −7. After adding the 
modulus to −7, r = 3. 

Solution
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The modulo operation creates a set, which in modular
arithmetic is referred to as the set of least residues
modulo (پيمانه) n, or Zn.

2.2.2  Set of Residues

Figure 2.10  Some Zn sets
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In cryptography, we often used the concept of congruence
instead of equality. To show that two integers are
congruent ,(متجانس) we use the congruence (تجانس)
operator ( ≡ ). For example, we write:

2.2.3  Congruence
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:دارد هم هايي تفاوت اما است عملگرتساوي شبيه تجانس عملگر
  اما .دهد مي نگاشت Z به را Z ي مجموعه اعضاي تساوي عملگر اولاً )الف

  .دهد مي نگاشت nZ به را Z ي مجموعه اعضاي تجانس عملگر
one( يك به يك تساوي عملگر ثانياً to one( تجانس عملگر اما است 

many( يك به زيادي تعداد to one( است.
mod( عبارت )ب n( استفاده تجانس عملگر راست سمت در ما كه 
  اين ما .است )nZ( مقصد مجموعه كردن مشخص براي فقط كنيم مي

 استفاده نگاشت در اي پيمانه چه دهيم نشان تا كنيم مي اضافه را عبارت
 عملگز در mod نماد با متفاوتي معني جا اين در mod نماد .شود مي

12 در mod نماد ديگر بيان به .دارد باينري mod  ولي است عملگر 10
 ي مجموعه كه است اين معني به                          در mod)10(  عبارت
.است 10Z مقصد

Congruence points
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2.2.3  Continued
Figure 2.11  Concept of congruence



2.41

A residue class [a] or [a]n is the set of integers congruent
modulo n.  In other words, it is a set of all integers such
that x = a (mod n). For example, if n = 5, we have five
sets [0], [1], [2], [3] and [4] as shown in below:

2.2.3  Continued
Residue Classes
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2.2.3  Continued
Figure 2.12  Comparison of Z and Zn using graphs
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Example 2.15
2.2.3   Continued

We use modular arithmetic in our daily life; for example, we
use a clock to measure time. Our clock system uses modulo 12
arithmetic. However, instead of a 0 we use the number 12.
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The three binary operations that we discussed for the set
Z can also be defined for the set Zn. The result may need
to be mapped to Zn using the mod operator.

2.2.4  Operation in Zn

Figure 2.13  Binary operations in Zn
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Example 2.16
2.2.4   Continued

Perform the following operations (the inputs come from Zn):
a. Add 7 to 14 in Z15.
b. Subtract 11 from 7 in Z13.
c. Multiply 11 by 7 in Z20.

Solution
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Example 2.17
2.2.4   Continued

Perform the following operations (the inputs come from
either Z or Zn):
a. Add 17 to 27 in Z14.
b. Subtract 43 from 12 in Z13.
c. Multiply 123 by −10 in Z19.

Solution
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Properties
2.2.4   Continued
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2.2.4   Continued
Figure 2.14  Properties of mode operator
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Example 2.18
2.2.4   Continued

The following shows the application of the above properties:

1. (1,723,345 + 2,124,945) mod 11 = (8 + 9) mod 11 = 6

2. (1,723,345 − 2,124,945) mod 16 = (8 − 9) mod 11 = 10

3. (1,723,345 × 2,124,945) mod 16 = (8 × 9) mod 11 = 6
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Example 2.19
2.2.4   Continued

In arithmetic, we often need to find the remainder of powers
of 10 when divided by an integer.
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Example 2.20
2.2.4   Continued

We have been told in arithmetic that the remainder of an
integer divided by 3 is the same as the remainder of the sum
of its decimal digits. We write an integer as the sum of its
digits multiplied by the powers of 10.
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2.2.5   Inverses

When we are working in modular arithmetic, we often need
to find the inverse of a number relative to an operation. We
are normally looking for an additive inverse (relative to an
addition operation) or a multiplicative inverse (relative to a
multiplication operation).
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2.2.5   Continue

In Zn, two numbers a and b are additive inverses of each
other if

Additive Inverse

In modular arithmetic, each integer has 
an additive inverse. The sum of an 
integer and its additive inverse is 

congruent to 0 modulo n.

Note
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Example 2.21
2.2.5   Continued

Find all additive inverse pairs in Z10.

Solution
The six pairs of additive inverses are (0, 0), (1, 9), (2, 8), (3, 7),
(4, 6), and (5, 5).
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2.2.5   Continue

In Zn, two numbers a and b are the multiplicative inverse of
each other if

Multiplicative Inverse

In modular arithmetic, an integer may or 
may not have a multiplicative inverse.

When it does, the product of the integer 
and its multiplicative inverse is 

congruent to 1 modulo n.

Note
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2.2.5   Continue

In Zn, two numbers a and b are the multiplicative inverse of
each other if

Multiplicative Inverse

a has a multiplicative inverse in Zn, if 
and only if gcd (n, a) = 1.
In this case, a and n are said to be 
relatively prime.

Note
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Example 2.22

2.2.5   Continued

Find the multiplicative inverse of 8 in Z10.
Solution
There is no multiplicative inverse because gcd (10, 8) = 2 ≠ 1.
In other words, we cannot find any number between 0 and 9
such that when multiplied by 8, the result is congruent to 1.

Example 2.23

Find all multiplicative inverses in Z10.

Solution
There are only three pairs: (1, 1), (3, 7) and (9, 9). The
numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative
inverse.
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Example 2.24
2.2.5   Continued

Find all multiplicative inverse pairs in Z11.

Solution
We have seven pairs: (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), and (10,
10).
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2.2.5   Continued

The extended Euclidean algorithm we discussed earlier in the chapter can 
find the multiplicative inverse of b in Zn when n and b are given and the 
inverse exists. To show this, let us replace the first integer a with n (the 
modulus). 
We can say that the algorithm can find s and t such 

s × n + b × t = gcd (n, b) 
However, if the multiplicative inverse of b exists, gcd (n, b) must be 1. So 
the relationship is

(s × n) + (b × t) = 1
Now we apply the modulo operator to both sides. In other words, we map 
each side to Zn. We will have

Multiplicative Inverse
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2.2.5   Continued

The extended Euclidean algorithm finds 
the multiplicative inverses of b in Zn

when n and b are given and 
gcd (n, b) = 1.

The multiplicative inverse of b is the 
value of t after being mapped to Zn.

Note
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2.2.5   Continued
Figure 2.15  Using extended Euclidean algorithm to 

find multiplicative inverse
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Example 2.25
2.2.5   Continued

Find the multiplicative inverse of 11 in Z26.

Solution

The gcd (26, 11) is 1; the inverse of 11 is 7 or 19.
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Example 2.26
2.2.5   Continued

Find the multiplicative inverse of 23 in Z100.

Solution

The gcd (100, 23) is 1; the inverse of 23 is 13 or 87.
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Example 2.27
2.2.5   Continued

Find the inverse of 12 in Z26.

Solution

The gcd (26, 12) is 2; the inverse does not exist.
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2.2.6   Addition and Multiplication Tables
Figure 2.16  Addition and multiplication table for Z10
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2.2.7   Different Sets
Figure 2.17  Some Zn and Zn* sets

We need to use Zn when additive 
inverses are needed; we need to use Zn* 
when multiplicative inverses are needed.

Note
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2.2.8   Two More Sets

Cryptography often uses two more sets: Zp and Zp*.
The modulus in these two sets is a prime number.
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2-3   MATRICES

In cryptography we need to handle matrices. Although
this topic belongs to a special branch of algebra called
linear algebra, the following brief review of matrices is
necessary preparation for the study of cryptography.

2.3.1 Definitions
2.3.2 Operations and Relations
2.3.3 Determinants
2.3.4 Residue Matrices

Topics discussed in this section:
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2.3.1   Definition

Figure 2.18  A matrix of size l  m

The element aij is located in the ith row and jth column.
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2.3.1 Continued 

Figure 2.19  Examples of matrices
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2.3.2   Operations and Relations

Figure 2.20 shows an example of addition and
subtraction.

Example 2.28

Figure 2.20  Addition and subtraction of matrices
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2.3.2 Continued 

Figure 2.21 shows the product of a row matrix (1 × 3)
by a column matrix (3 × 1). The result is a matrix of
size 1 × 1.

Example 2. 29

Figure 2.21  Multiplication of a row matrix by a column matrix
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2.3.2 Continued 

Figure 2.22 shows the product of a 2 × 3 matrix by a
3 × 4 matrix. The result is a 2 × 4 matrix.

Example 2. 30

Figure 2.22  Multiplication of a 2 × 3 matrix by a 3 × 4 matrix
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2.3.2   Continued 

Figure 2.23 shows an example of scalar
multiplication.

Example 2. 31

Figure 2.23  Scalar multiplication (ضرب عددي)
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2.3.3   Determinant

The determinant of a square matrix A of size m × m
denoted as det (A) is a scalar calculated recursively as
shown below:

The determinant is defined only for a 
square matrix.

Note
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2.3.3 Continued 

Figure 2.24 shows how we can calculate the
determinant of a 2 × 2 matrix based on the
determinant of a 1 × 1 matrix.

Example 2. 32

Figure 2.24  Calculating the determinant of a 2  2 matrix
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2.3.3 Continued 

Figure 2.25 shows the calculation of the determinant
of a 3 × 3 matrix.

Example 2. 33

Figure 2.25  Calculating the determinant of a 3  3 matrix
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2.3.4   Inverses

Multiplicative inverses are only defined 
for square matrices.

The multiplicative inverse of a square 
matrix A is a square matrix B such that 

A × B = B × A = I

Note

The additive inverse of matrix A is 
another matrix B such that A + B = 0.

Note
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2.3.5   Residue Matrices

Cryptography uses residue matrices: matrices where
all elements are in Zn. A residue matrix has a
multiplicative inverse if gcd (det(A), n) = 1.

Example 2. 34

Figure 2.26  A residue matrix and its multiplicative inverse
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2-4   LINEAR CONGRUENCE

Cryptography often involves solving an equation or a
set of equations of one or more variables with
coefficient in Zn. This section shows how to solve
equations when the power of each variable is 1 (linear
equation).

2.4.1 Single-Variable Linear Equations
2.4.2 Set of Linear Equations

Topics discussed in this section:
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2.4.1   Single-Variable Linear Equations

Equations of the form ax ≡ b (mod n ) might have no
solution or a limited number of solutions.

1. Reduce the equation by dividing both sides of the equation
(including the  modulus) by d.
2. Multiply both sides of the reduced equation by the multiplicative
inverse of a to find the particular solution xo. 
3. The general solutions are x = xo + k (n/d) for k = 0, 1, . . . , (d - 1).
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Example 2.35

2.4.1 Continued

Solve the equation 10 x ≡ 2(mod 15).

Solution
First we find the gcd (10 and 15) = 5. Since 5 does not divide
2, we have no solution.

Solve the equation 14 x ≡ 12 (mod 18). (7-1 = 4)
Solution

Example 2.36
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Example 2.37
2.4.1 Continued

Solve the equation 3x + 4 ≡ 6 (mod 13).

Solution
First we change the equation to the form ax ≡ b (mod n). We
add −4 (the additive inverse of 4) to both sides, which give
3x ≡ 2 (mod 13). Because gcd (3, 13) = 1, the equation has only
one solution, which is x0 = (2 × 3−1) mod 13 = 18 mod 13 = 5.
We can see that the answer satisfies the original equation:
3 × 5 + 4 ≡ 6 (mod 13).
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2.4.2   Single-Variable Linear Equations

We can also solve a set of linear equations with the
same modulus if the matrix formed from the
coefficients of the variables is invertible.

Figure 2.27  Set of linear equations
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Example 2.38

2.4.2   Continued

Solve the set of following three equations:

The result is x ≡ 15 (mod 16), y ≡ 4 (mod 16), and z ≡ 14 (mod
16). We can check the answer by inserting these values into
the equations.

Solution


