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PREFACE TO THE SECOND EDITION 

In the two and a half years since the first edition of this book was published, 

the field of logic programming has grown rapidly. Consequently, it seemed 

advisable to try to expand the subject matter covered in the first edition. The new 

material in the second edition has a strong database flavour, which reflects my own 

research interests over the last three years. However, despite the fact that the 

second edition has about 70% more material than the first edition, many 

worthwhile topics are still missing. I can only plead that the field is now too big 

to expect one author to cover everything. 

In the second edition, I discuss a larger class of programs than that discussed 

in the first edition. Related to this, I have also taken the opportunity to try to 

improve some of the earlier terminology. Firstly, I introduce "program 

statements", which are formulas of the form Af-W, where the head A is an atom 

and the body W is an arbitrary formula. A "program" is a finite set of program 

statements. There are various restrictions of this class. "Normal" programs are 

ones where the body of each program statement is a conjunction of literals. (The 

terminology "general", used in the first edition, is obviously now inappropriate). 

This. terminology is new and I risk causing some confusion. However, there is no 

widely used terminology for such programs and "normal" does have the right 

connotation. "Definite" programs are ones where the body of each program 

statement is a conjunction of atoms. This terminology is more standard. 

The material in chapters 1 and 2 of the first edition has been reorganised so 

that the first chapter now contains all the preliminary results and the second 

chapter now contains both the declarative and procedural semantics of definite 

programs. In addition, chapter 2 now contains a proof of the result that every 

computable function can be computed by a definite program. 

Further material on negation has been added to chapter 3, which is now 

entitled "Normal Programs". This material includes discussions of the 
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consistency of the completion of a normal program, the floundering of SLDNF­
resolution, and the completeness of SLDNF-resolution for hierarchical programs. 

The fourth chapter is a new one on (unrestricted) programs. There is no good 
practical or theoretical reason for restricting the bodies of program statements or 
goals to be conjunctions of literals. Once a single negation is allowed, one should 
go all the way and allow arbitrary formulas. This chapter contains a discussion of 
SLDNF-resolution for programs, the main results being the soundness of the 
negation as failure rule and SLDNF-resolution. There is also a discussion of error 
diagnosis in logic programming, including proofs of the soundness and 
completeness of a declarative error diagnoser. 

The fifth chapter builds on the fourth by giving a theoretical foundation for 
deductive database systems. The main results of the chapter are soundness and 
completeness results for the query evaluation process and a simplification theorem 
for integrity constraint checking. This chapter should also prove useful to those in 
the "conventional" database community who want to understand the impact logic 
programming is having on the database field. 

The last chapter of the second edition is the same as the last chapter of the 
first edition on perpetual processes. This chapter is still the most speculative and 
hence has been left to the end. It can be read directly after chapter 2, since it does 
not depend on the material in chapters 3, 4 and 5. 

This second edition owes much to Rodney Topor, who collaborated with me 
on four of the papers reported here. Various people made helpful suggestions for 
improvements of the first edition and drafts of the second edition. These include 
David Billington, Torkel Franzen, Bob Kowalski, Jean-Louis Lassez, Donald 
Loveland, Gabor Markus, Jack Minker, Ken Ross, John Shepherdson, Harald 
Sondergaard, Liz Sonenberg, Rodney Topor, Akihiro Yamamoto and Songyuan 
Yan. John Crossley read the entire manuscript and found many improvements. 
John Shepherd showed me how to use ditroff to produce an index. He also 
introduced me to the delights of cip, which I used to draw the figures. Rodney 
Topor helped with the automation of the references. 

April 1987 JWL 



PREFACE TO THE FIRST EDITION 

This book gives an account of the mathematical foundations of logic 
programming. I have attempted to make the book self-contained by including 
proofs of almost all the results needed. The only prerequisites are some familiarity 
with a logic programming language, such as PROLOG, and a certain mathematical 
maturity. For example, the reader should be familiar with induction arguments and 
be comfortable manipulating logical expressions. Also the last chapter assumes 
some acquaintance with the elementary aspects of metric spaces, especially 
properties of continuous mappings and compact spaces. 

Chapter 1 presents the declarative aspects of logic programming. This chapter 
contains the basic material from first order logic and fixpoint theory which will be 
required. The main concepts discussed here are those of a logic program, model, 
correct answer substitution and fixpoint. Also the unification algorithm is 
discussed in some detail. 

Chapter 2 is concerned with the procedural semantics of logic programs. The 
declarative concepts are implemented by means of a specialised form of resolution, 
called SLD-resolution. The main results of this chapter concern the soundness and 
completeness of SLD-resolution and the independence of the computation rule. We 
also discuss the implications of omitting the occur check from PROLOG 
implementations. 

Chapter 3 discusses negation. Current PROLOG systems implement a form of 
negation by means of the negation as failure rule. The main results of this chapter 
are the soundness and completeness of the negation as failure rule. 

Chapter 4 is concerned with the semantics of perpetual processes. With the 
advent of PROLOG systems for concurrent applications, this has become an area 
of great theoretical importance. 



X 

The material of chapters 1 to 3, which is now very well established, could be 
described as "what every PROLOG programmer should know". In chapter 4, I 
have allowed myself the luxury of some speculation. I believe the material 
presented there will eventually be incorporated into a much more extensive 
theoretical foundation for concurrent PROLOGs. However, this chapter is 
incomplete insofar as I have confined attention to a single perpetual process. 
Problems of concurrency and communication, which are not very well understood 
at the moment, have been ignored. 

My view of logic programming has been greatly enriched by discussions with 
many people over the last three years . In this regard, I would particularly like to 
thank Keith Clark, Maarten van Emden, Jean-Louis Lassez, Frank McCabe and Lee 
Naish. Also various people have made suggestions for improvements of earlier 
drafts of this book. These include Alan Bundy, Herve Gallaire, Joxan Jaffar, 
Donald Loveland, Jeffrey Schultz, Marek Sergot and Rodney Topor. To all these 
people and to others who have contributed in any way at all ,  may I say thank you. 

July 1984 JWL 
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Chapter 1 

PRELIMINARIES 

This chapter presents the basic concepts and results which are needed for the 
theoretical foundations of logic programming. After a brief introduction to logic 
programming, we discuss first order theories, interpretations and models, 
unification, and fixpoints. 

§1. INTRODUCTION 

Logic programming began in the early 1970's as a direct outgrowth of earlier 
work in automatic theorem proving and artificial intelligence. Constructing 
automated deduction systems is, of course, central to the aim of achieving artificial 
intelligence. Building on work of Herbrand [44] in 1930, there was much activity 
in theorem proving in the early 1960's by Prawitz [84], Gilmore [39] , Davis, 
Putnam [26] and others. This effort culminated in 1965 with the publication of the 
landmark paper by Robinson [88] , which introduced the resolution rule. 
Resolution is an inference rule which is particularly well-suited to automation on a 
computer. 

The credit for the introduction of logic programming goes mainly to Kowalski 
[48] and Colmerauer [22] , although Green [40] and Hayes [43] should be 
mentioned in this regard. In 1972, Kowalski and Colmerauer were led to the 
fundamental idea that logic can be used as a programming language. The 
acronym PROLOO (PROgramming in LOGic) was conceived, and the ftrst 
PROLOG interpreter [22] was implemented in the language ALGOL-W by 
Roussel, at Marseille in 1972. ( [8] and [89] describe the improved and more 
influential version written in FORTRAN.) The PLANNER system of Hewitt [45] 
can be regarded as a predecessor of PROLOG. 
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The idea that first order logic, or at least substantial subsets of it, could be 
used as a programming language was revolutionary, because, until 1972, logic had 
only ever been used as a specification or declarative language in computer science. 
However, what [48] shows is that logic has a procedural interpretation, which 
makes it very effective as a programming language. Briefly, a program clause 
A�B 1 ' . . .  ,Bn is regarded as a procedure definition. If �C 1 ' ... ,Ck is a goal, then 
each Cj is regarded as a procedure call. A program is run by giving it an initial 
goal. If the current goal is �c1 , ... ,Sc, a step in the computation involves unifying 
some Cj with the head A of a program clause A�B 1 , . . .  ,Bn and thus reducing the 
current goal to the goal �(Cl ' . . .  ,Cj_1 ,B 1 , . . .  ,Bn,Cj+1 , ... ,Ck)9, where e is the 
unifying substitution. Unification thus becomes a uniform mechanism for parameter 
passing, data selection and data construction. The computation terminates when 
the empty goal is produced. 

One of the main ideas of logic programming, which is due to Kowalski [49] , 
[50] , is that an algorithm consists of two disjoint components, the logic and the 
control. The logic is the statement of what the problem is that has to be solved. 
The control is the statement of lww it is to be solved. Generally speaking, a logic 
programming system should provide ways for the programmer to specify each of 
these components. However, separating these two components brings a number of 
benefits, not least of which is the possibility of the programmer only having to 
specify the logic component of an algorithm and leaving the control to be 
exercised solely by the logic programming system itself. In other words, an ideal 
of logic programming is purely declarative programming. Unfortunately, this has 
not yet been achieved with current logic programming systems. 

Most current logic programming systems are resolution theorem provers. 
However, logic programming systems need not necessarily be based on resolution. 
They can be non-clausal systems with many inference rules [ 1 1], [41 ] ,  [42] . This 
account only discusses logic programming systems based on resolution and 
concentrates particularly on the PROLOG systems which are currently available. 

There are two major, and rather different, classes of logic programming 
languages currently available. The first we shall call "system" languages and the 
second "application" languages. These terms are not meant to be precise, but 
only to capture the flavour of the two classes of languages. 
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For "system" languages, the emphasis is on AND-parallelism, don't-care 
non-determinism and definite programs (that is, no negation). In these languages, 
according to the process interpretation of logic, a goal �B 1 , . . .  ,Bn is regarded as a 
system of concurrent processes. A step in the computation is the reduction of a 
process to a system of processes (the ones that occur in the body of the clause that 
matched the call). Shared variables act as communication channels between 
processes. There are now several " system" languages available, including 
PARLOG [1 8] ,  concurrent PROLOG [93] and GHC [106] . These languages are 
mainly intended for operating system applications and object-oriented programming 
[94] .  For these languages, the control is still very much given by the programmer. 
Also these languages are widely regarded as being closer to the machine level. 

"Application" languages can be regarded as general-purpose programming 
languages with a wide range of applications. Here the emphasis is on OR­
parallelism, don't-know non-determinism and (unrestricted) programs (that is, the 
body of a program statement is an arbitrary formula). Languages in this class 
include Quintus PROLOG [10] , rnicro-PROLOG [20] and NU-PROLOG [104] . 
For these languages, the automation of the control component for certain kinds of 
applications has already largely been achieved. However, there are still many 
problems to be solved before these languages will be able to support a sufficiently 
declarative style of prograrnrning over a wide range of applications. 

''Application ' ' languages are better suited to deductive database systems and 
expert systems. According to the database interpretation of logic, a logic program 
is regarded as a database [35] , [36] , [37], [38] .  We thus obtain a very natural and 
powerful generalisation of relational databases. The latter correspond to logic 
programs consisting solely of ground unit clauses. The concept of logic as a 
uniform language for data, programs, queries, views and integrity constraints has 
great theoretical and practical power. 

The distinction between these two classes of languages is, of course, by no 
means clearcut. For example, non-trivial problem-solving applications have been 
implemented in GHC. Also, the coroutining facilities of NU-PROLOG make it 
suitable as a system programming language. Nevertheless, it is useful to make the 
distinction. It also helps to clarify some of the debates in logic programming, 
whose source can be traced back to the "application" versus "system" views of 
the participants. 



4 Chapter 1. Preliminaries 

The emergence of these two kinds of logic programming languages has 
complicated the already substantial task of building parallel logic machines. 
Because of the differing hardware requirements of the two classes of languages, it 
seems that a difficult choice has to be made. This choice is between building a 
predominantly AND-parallel machine to directly support a " system" programming 
language or building a predominantly OR-parallel machine to directly support an 
''application' ' programming language. 

There is currently substantial effort being invested in the ftrst approach; 
certainly, the Japanese ftfth generation project [7 1] is headed this way. The 
advantage of this approach is that the hardware requirements for an AND-parallel 
language, such as GHC, seem less demanding than those required for an OR­
parallel language. However, the success of a logic machine ultimately rests on the 
power and expressiveness of its application languages. Thus this approach requires 
some method of compiling the application languages into the lower level system 
language. 

In summary, logic provides a single formalism for apparently diverse parts of 
computer science. It provides us with general-purpose, problem-solving languages, 
concurrent languages suitable for operating systems and also a foundation for 
deductive database systems and expert systems. This range of application together 
with the simplicity, elegance and unifying effect of logic programming assures it of 
an important and influential future. Logical inference is about to become the 
fundamental unit of computation. 

§2. FIRST ORDER THEORIES 

This section introduces the syntax of well-formed formulas of a ftrst order 
theory. While all the requisite concepts from ftrst order logic will be discussed 
informally in this and subsequent sections, it would be helpful for the reader to 
have some wider background on logic. We suggest reading the ftrst few chapters of 
[ 14] , [33], [64] , [69] or [99] . 

First order logic has two aspects: syntax and semantics. The syntactic aspect is 
concerned with well-formed formulas admitted by the grammar of a formal 
language, as well as deeper proof-theoretic issues. The semantics is concerned with 
the meanings attached to the well-formed formulas and the symbols they contain. 
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We postpone the discussion of semantics to the next section. 

A first order theory consists of an alphabet, a first order language, a set of 
axioms and a set of inference rules [69] , [99]. The first order language consists of 
the well-formed formulas of the theory. The axioms are a designated subset of 
well-formed formulas. The axioms and rules of inference are used to derive the 
theorems of the theory. We now proceed to define alphabets and first order 
languages. 

Definition An alphabet consists of seven classes of symbols: 
(a) variables 
(b) constants 
(c) function symbols 
(d) predicate symbols 
(e) connectives 
(f) quantifiers 
(g) punctuation symbols. 

Classes (e) to (g) are the same for every alphabet, while classes (a) to (d) vary 
from alphabet to alphabet. For any alphabet, only classes (b) and (c) may be 
empty. We adopt some informal notational conventions for these classes. 
Variables will normally be denoted by the letters u, v, w, x, y and z (possibly 
subscripted). Constants will normally be denoted by the letters a, b and c (possibly 
subscripted). Function symbols of various arities > 0 will normally be denoted by 
the letters f, g and h (possibly subscripted). Predicate symbols of various arities � 
0 will normally be denoted by the letters p, q and r (possibly subscripted). 
Occasionally, it will be convenient not to apply these conventions too rigorously. 
In such a case, possible confusion will be avoided by the context. The connectives 
are -, 1\, v, --+ and �. while the quantifiers are 3 and "d. Finally, the punctuation 
symbols are "(" , ")" and " ," .  To avoid having formulas cluttered with brackets, 
we adopt the following precedence hierarchy, with the highest precedence at the 
top: 

-,\;/,3 
v 
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Next we turn to the definition of the first order language given by an alphabet. 

Definition A tennis defined inductively as follows: 
(a) A variable is a term. 
(b) A constant is a term. 
(c) If f is an n-ary function symbol and t1 , . . . ,tn are terms, then f(t 1 , . . .  ,tn) is a term. 

Definition A (well-fonned ) formula is defined inductively as follows: 
(a) If p is an n-ary predicate symbol and t1' . . .  ,tn are terms, then p(t 1 , . . .  ,tn) is a 
formula (called an atomic fonnu/a or, more simply, an atom). 

(b) If F and G are formulas, then so are (-F) , (FAG), (FvG), (F�G) and (F(--+G). 
(c) If F is a formula and x is a variable, then (Vx F) and (3x F) are formulas. 

It will often be convenient to write the formula (F�G) as (Gf--F) . 

Definition The first order language given by an alphabet consists of the set of 
all formulas constructed from the symbols of the alphabet. 

Example (Vx (3y (p(x,y)�q(x)))), (-(3x (p(x,a)Aq(f(x))))) and 
(Vx (p(x,g(x))f--(q(x)A(-r(x))))) are formulas. By dropping pairs of brackets when 
no confusion is possible and using the above precedence convention, we can write 
these formulas more simply as Vx3y (p(x,y)�q(x)), -3x (p(x,a)Aq(f(x))) and 
Vx (p(x,g(x))f--q(x)A-r(x)). We will simplify formulas in this way wherever 
possible. 

The informal semantics of the quantifiers and connectives is as follows. - is 
negation, A is conjunction (and), v is disjunction (or), � is implication and (--+ is 
equivalence. Also, 3 is the existential quantifier, so that "3x" means "there exists 
an x", while V is the universal quantifier, so that "Vx" means "for all x". Thus 
the informal semantics of Vx (p(x,g(x)) f-- q(x)A-r(x)) is "for every x, if q(x) is 
true and r(x) is false, then p(x,g(x)) is true". 

Definition The scope of Vx (resp. 3x) in Vx F (resp. 3x F) is F. A bound 

occurrence of a variable in a formula is an occurrence immediately following a 
quantifier or an occurrence within the scope of a quantifier, which has the same 
variable immediately after the quantifier. Any other occurrence of a variable is 
free. 

Example In the formula 3x p(x,y)Aq(x), the first two occurrences of x are 

bound, while the third occurrence is free, since the scope of 3x is p(x,y). In 
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3x (p(x,y)Aq(x)), all occurrences of x are bound, since the scope of 3x is 
p(x,y)Aq(x). 

Definition A closed formula is a formula with no free occurrences of any 
variable. 

Example 'v'y3x (p(x,y)Aq(x)) is closed. However, 3x (p(x,y)Aq(x)) is not 
closed, since there is a free occurrence of the variable y. 

Definition If F is a formula, then V'(F) denotes the universal closure of F, 

which is the closed formula obtained by adding a universal quantifier for every 
variable having a free occurrence in F. Similarly, ::l(F) denotes the existential 

closure of F, which is obtained by adding an existential quantifier for every 
variable having a free occurrence in F. 

Example If F is p(x,y)Aq(x), then V'(F) is 'v'x'v'y (p(x,y)Aq(x)), while ::l(F) is 
3x3y (p(x,y)Aq(x)). 

In chapters 4 and 5,  it will be useful to have available the concept of an atom 

occurring positively or negatively in a formula. 

Definition An atom A occurs positively in A. 
If atom A occurs positively (resp. , negatively) in a formula W, then A occurs 

positively (resp. ,  negatively) in 3x W and 'v'x W and W A V and WvV and 
Wf-V. 

If atom A occurs positively (resp., negatively) in a formula W, then A occurs 

negatively (resp. ,  positively) in -W and Vf-W. 

Next we introduce an important class of formulas called clauses. 

Definition A literal is an atom or the negation of an atom. A positive literal is 
an atom. A negative literal is the negation of an atom. 

Definition A clause is a formula of the form 
Vx1 . . .  'v'xs (L 1 v . . . vLm) 

where each Li is a literal and x1 ' . . .  ,xs are all the variables occurring in L1 v . . .  vLm. 

Example The following are clauses 
'v'x'v'y'v'z (p(x,z)v-q(x,y)v-r(y,z)) 

'v'x'v'y ( -p(x,y)vr(f(x,y),a)) 
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Because clauses are so common in logic programming, it will be convenient to 
adopt a special clausal notation. Throughout, we will denote the clause 

'v'x1 . .  .'v'xs (Alv . . .  vAk v-B1 v . . .  v-Bn) 
where A l ' . . .  ,Ak,B 1 ' . . . ,Bn are atoms and x 1 ' . . .  ,xs are all the variables occurring in 
these atoms, by 

Al , . . .  ,Akf-B l , . . .  ,Bn 
Thus, in the clausal notation, all variables are assumed to be universally quantified, 
the commas in the antecedent B 1 ' . . .  ,Bn denote conjunction and the commas in the 
consequent A 1 ' . . .  ,Ak denote disjunction. These conventions are justified because 

'v'x1 . . .  \ixs (A1v . . .  vAkv-B 1v . . .  v-Bn) 
is equivalent to 

To illustrate the application of the various concepts in this chapter to logic 
programming, we now define definite programs and definite goals. 

Definition A definite program clause is a clause of the form 
Af-B1, . . . ,Bn 

which contains precisely one atom (viz. A) in its consequent. A is called the head 

and B 1 , . . . ,Bn is called the body of the program clause. 

Definition A unit clause is a clause of the form 
Af-

that is, a definite program clause with an empty body. 

The informal semantics of Af-B l ' . . .  ,Bn is "for each assignment of each 
variable, if B 1 ' . . .  ,Bn are all true, then A is true". Thus, if n>O, a program clause is 
conditional. On the other hand, a unit clause Af- is unconditional. Its informal 
semantics is "for each assignment of each variable, A is true". 

Definition A definite program is a finite set of definite program clauses. 

Definition In a definite program, the set of all program clauses with the same 
predicate symbol p in the head is called the definition of p. 

Example The following program, called slowsort, sorts a list of non-negative 
integers into a list in which the elements are in increasing order. It is a very 
inefficient sorting program! However, we will find it most useful for illustrating 
various aspects of the theory. 
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In this program, non-negative integers are represented using a constant 0 and a 
unary function symbol f. The intended meaning of 0 is zero and f is the successor 
function. We define the powers of f by induction: f>(x)=O and rfi+1 (x)=f(rfl(x)). 
Then the non-negative integer n is represented by the term rfl(O). In fact, it will 
sometimes be convenient simply to denote fl(O) by n. 

Lists are represented using a binary function symbol " ."  (the cons function 
written infix) and the constant nil representing the empty list. Thus the list 
[ 17, 22, 6, 5] would be represented by 17.(22.(6. (5.nil))). We make the usual right 
associativity convention and write this more simply as 17.22.6.5 .nil . 

SLOWSORT PROORAM 
sort(x,y) � sorted(y), perm(x,y) 
sorted(nil) � 

sorted(x.nil) � 
sorted(x.y.z) � x�y. sorted(y.z) 
perm(nil,nil) � 

perm(x.y,u.v) � delete(u,x.y,z) ,  perm(z,v) 
delete(x,x.y,y) � 
delete(x,y.z,y.w) � delete(x,z,w) 
O�x � 

f(x)�f(y) � x�y 
Slowsort contains definitions of five predicate symbols, sort, sorted, perm, 

delete and � (written infix). The informal semantics of the definition of sort is ''if 
x and y are lists, y is a permutation of x and y is sorted, then y is the sorted 
version of x" .  This is clearly a correct top-level description of a sorting program. 
Similarly, the first clause in the definition of sorted states that " the empty list is 
sorted".  The intended meaning of the predicate symbol delete is that delete(x,y,z) 
should hold if z is the list obtained by deleting the element x from the list y. The 
above definition for delete contains obviously correct statements about the delete 
predicate. 

Definition A definite goal is a clause of the form 
�B 1 ' . . .  ,Bn 

that is, a clause which has an empty consequent. Each Bi (i=l , . . .  ,n) is called a 
subgoa/ of the goal. 

If Yl '· · ··Yr are the variables of the goal 
�Bl , . . .  ,Bn 
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then this clausal notation is shorthand for 
'r:/yl . . .  'r:/yr (-B lv . . . v-Bn) 

or, equivalently, 

Example To run slowsort, we give it a goal such as 
f- sort(l7 .22.6.5 .nil,y) 

Chapter 1 .  Preliminaries 

This is understood as a request to find the list y, which is the sorted version of 
17.22.6.5.nil. 

Definition The empty clause, denoted o, is the clause with empty consequent 
and empty antecedent. This clause is to be understood as a contradiction. 

Definition A Horn clause is a clause which is either a definite program clause 
or a definite goal. 

§3. INTERPRETATIONS AND MODELS 

The declarative semantics of a logic program is given by the usual (model­
theoretic) semantics of formulas in first order logic . This section discusses 
interpretations and models, concentrating particularly on the important class of 
Herbrand interpretations. 

Before we give the main definitions, some motivation is appropriate. In order 
to be able to discuss the truth or falsity of a formula, it is necessary to attach some 
meaning to each of the symbols in the formula first. The various quantifiers and 
connectives have fixed meanings, but the meanings attached to the constants, 
function symbols and predicate symbols can vary. An interpretation simply 
consists of some domain of discourse over which the variables range, the 
assignment to each constant of an element of the domain, the assignment to each 
function symbol of a mapping on the domain and the assignment to each predicate 
symbol of a relation on the domain. An interpretation thus specifies a meaning for 
each symbol in the formula. We are particularly interested in interpretations for 
which the formula expresses a true statement in that interpretation. Such an 
interpretation is called a model of the formula. Normally there is some 
distinguished interpretation, called the intended interpretation, which gives the 
principal meaning of the symbols. Naturally, the intended interpretation of a 
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formula should be a model of the formula. 

First order logic provides methods for deducing the theorems of a theory. 
These can be characterised (by Gl:idel ' s completeness theorem [69] ,  [99]) as the 
formulas which are logical consequences of the axioms of the theory, that is, they 
are true in every interpretation which is a model of each of the axioms of the 
theory. In particular, each theorem is true in the intended interpretation of the 
theory. The logic programming systems in which we are interested use the 
resolution rule as the only inference rule. 

Suppose we want to prove that the formula 
3y1 . . . 3yr (B 1 A . . . ABn) 

is a logical consequence of a program P. Now resolution theorem provers are 
refutation systems. That is, the negation of the formula to be proved is added to 
the axioms and a contradiction is derived. If we negate the formula we want to 
prove, we obtain the goal 

f-B l , . . . ,Bn 
Working top-down from this goal, the system derives successive goals. If the 
empty clause is eventually derived, then a contradiction has been obtained and later 
results assure us that 

3y1 . . .  3yr (B 1A . . .  ABn) 
is indeed a logical consequence of P. 

From a theorem proving point of view, the only interest is to demonstrate 
logical consequence. However, from a programming point of view, we are much 
more interested in the bindings that are made for the variables y l '"' 'y r' because 
these give us the output from the running of the program. In fact, the ideal view 
of a logic programming system is that it is a black box for computing bindings and 
our only interest is in its input-output behaviour. The internal workings of the 
system should be invisible to the programmer. Unfortunately, this situation is not 
true, to various extents, with current PROLOO systems. Many programs can only 
be understood in a procedural (i.e. operational) manner, because of the way they 
use cuts and other non-logical features. 

Returning to the slowsort program, from a theorem proving point of view, we 
can regard the goal f-sort( l7.22.6.5 .nil,y) as a request to prove that 
3y sort( 17 .22.6.5.nil,y) is a logical consequence of the program. In fact, we are 
much more interested that the proof is constructive and provides us with a specific 
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y which makes sort(17.22.6.5.nil,y) true in the intended interpretation. 

We now give the definitions of pre-interpretation, interpretation and model. 

Definition A pre-interpretation of a first order language L consists of the 
following: 
(a) A non-empty set D, called the domain of the pre-interpretation. 
(b) For each constant in L, the assignment of an element in D. 
(c) For each n-ary function symbol in L, the assignment of a mapping from Dn to 
D. 

Definition An interpretation I of a first order language L consists of a pre­
interpretation J with domain D of L together with the following: 
For each n-ary predicate symbol in L, the assignment of a mapping from Dn into 
(true, false } (or, equivalently, a relation on Dn). 

We say I is based on J. 

Definition Let J be a pre-interpretation of a first order language L. A variable 

assignment (wrt J) is an assignment to each variable in L of an element in the 
domain of J. 

Definition Let J be a pre-interpretation with domain D of a first order 
language L and let V be a variable assignment. The term assignment (wrt J and V) 
of the terms in L is defined as follows :  
(a) Each variable is given its assignment according to V. 

(b) Each constant is given its assignment according to J. 

(c) If t] , . . .  ,t� are the term assignments of t1 , . . .  ,tn and f' is the assignment of the 
n-ary function symbol f, then f'(tl , . . .  ,t�)E D is the term assignment of f(tl ' . . . ,tn) .  

Definition Let J be a pre-interpretation of a first order language L, V a 
variable assignment wrt J, and A an atom. Suppose A is p(t1 , . . .  ,tn) and d1 , . . .  ,dn in 
the domain of J are the term assignments of t1 , . . .  ,tn wrt J and V. We call 
AJ,V 

= p(d1 ' . . .  ,dn) the ]-instance of A wrt V. Let [A]
J = ( A

J,V : V is a variable 
assignment wrt J } .  We call each element of [A]J a ]-instance of A. We also call 
each p(d1 ' . . .  ,dn) a ]-instance. 

Definition Let I be an interpretation with domain D of a first order language L 
and let V be a variable assignment. Then a formula in L can be given a truth 

value, true or false, (wrt I and V) as follows: 
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(a) If  the formula is an atom p(t1 , . . .  ,tn) ,  then the truth value is obtained by 
calculating the value of p'(t'l' . . . ,t�), where p' is the mapping assigned to p by I and 
t'1 , . . .  ,t� are the term assignments of t 1 , . . . ,tn wrt I and V. 

(b) If the formula has the form -F, FAG, FvG, F�G or F�G, then the truth 
value of the formula is given by the following table: 

F G -F FAG FvG F�G F�G 

true true false true true true true 
true false false false true false false 
false true true false true true false 
false false true false false true true 

(c) If the formula ha3 the form 3x F, then the truth value of the formula is true 
if there exists de D such that F has truth value true wrt I and V(x/d), where V(x/d) 
is V except that x is assigned d; otherwise, its truth value is false. 

(d) If the formula has the form Vx F, then the truth value of the formula is 
true if, for all de D, we have that F has truth value true wrt I and V(x/d); 
otherwise, its truth value is false. 

Clearly the truth value of a closed formula does not depend on the variable 
assignment. Consequently, we can speak unambiguously of the truth value of a 
closed formula wrt to an interpretation. If the truth value of a closed formula wrt 
to an interpretation is true (resp., false), we say the formula is true (resp,. false) 
wrt to the interpretation. 

Definition Let I be an interpretation for a first order language L and let W be 
a formula in L. 

We say W is satisfiable in I if 3(W) is true wrt I. 
We say W is valid in I if V(W) is true wrt I. 
We say W is unsatisfiab/e in I if 3(W) is false wrt I. 
We say W is nonvalid in I if V(W) is false wrt I. 

Definition Let I be an interpretation of a first order language L and let F be a 
closed formula of L. Then I is a model for F if F is true wrt I. 

Example Consider the formula Vx3y p(x,y) and the following interpretation I. 
Let the domain D be the non-negative integers and let p be assigned the relation <. 
Then I is a model of the formula, as is easily seen. In I, the formula expresses the 
true statement that "for every non-negative integer, there exists a non-negative 
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integer which is strictly larger than it" . On the other hand, I is not a model of the 
formula 3y\ix p(x,y). 

The axioms of a first order theory are a designated subset of closed formulas 
in the language of the theory. For example, the first order theories in which we are 
most interested have the clauses of a program as their axioms. 

Definition Let T be a first order theory and let L be the language of T. A 
model for T is an interpretation for L which is a model for each axiom of T. 

If T has a model, we say T is consistent. 

The concept of a model of a closed formula can easily be extended to a model 
of a set of closed formulas. 

Definition Let S be a set of closed formulas of a first order language L and let 
I be an interpretation of L. We say I is a model for S if I is a model for each 
formula of S .  

Note that, if S = { F 1 , . . .  ,F  n } is a finite set of closed formulas, then I i s  a model 
for S iff I is a model for F I"·· .AF n. 

Definition Let S be a set of closed formulas of a first order language L. 
We say S is satisfiable if L has an interpretation which is a model for S.  
We say S is valid if every interpretation of L is a model for S .  
We say S i s  unsatisfiable i f  no interpretation of  L is a model for S .  
We say S is nonvalid i f  L has an interpretation which i s  not a model for S .  

Now we can give the definition of the important concept of  logical 
consequence. 

Definition Let S be a set of closed formulas and F be a closed formula of a 
first order language L. We say F is a logical consequence of S if, for every 
interpretation I of L, I is a model for S implies that I is a model for F. 

Note that if S = {F 1'" .. ,F n } is a finite set of closed formulas, then F is a 
logical consequence of S iff F 1/\ . .. AF n �F is valid. 

Proposition 3.1 Let S be a set of closed formulas and F be a closed formula 
of a first order language L. Then F is a logical consequence of S iff S u { -F}  is 
unsatisfiable. 
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Proof Suppose that F is a logical consequence of S. Let I be an interpretation 
of L and suppose I is a model for S .  Then I is also a model for F. Hence I is not a 
model for S u { -F} .  Thus S u { -F }  is unsatisfiable. 

Conversely, suppose S u { -F} is unsatisfiable. Let I be any interpretation of 
L. Suppose I is a model for S. Since S u { -F} is unsatisfiable, I cannot be a 
model for -F. Thus I is a model for F and so F is a logical consequence of S. I 

Example Let S = {p(a), V'x (p(x)-+q(x)) }  and F be q(a). We show that F is a 
logical consequence of S .  Let I be any model for S. Thus p(a) is true wrt I. Since 
V'x(p(x)-+q(x)) is true wrt I, so is p(a)-+q(a) . Hence q(a) is true wrt I. 

Applying these definitions to programs, we see that when we give a goal G to 
the system, with program P loaded, we are asking the system to show that the set 
of clauses P u { G }  is unsatisfiable. In fact, if G is the goal f-B l ' . . .  ,Bn with 
variables y l' . . .  ,y r' then proposition 3. 1 states that showing P u { G }  unsatisfiable is 
exactly the same as showing that 3y1 " . .  3yr (B1A •.• /\Bn) is a logical consequence of 
P. 

Thus the basic problem is that of determining the unsatisfiability, or otherwise, 
of P u { G } ,  where P is a program and G is a goal. According to the definition, 
this implies showing every interpretation of P v { G }  is not a model. Needless to 
say, this seems to be a formidable problem. However, it turns out that there is a 
much smaller and more convenient class of interpretations, which are all that need 
to be investigated to show unsatisfiability. These are the so-called Herbrand 
interpretations, which we now proceed to study. 

Definition A ground tenn is a term not containing variables. Similarly, a 
ground atom is an atom not containing variables. 

Definition Let L be a first order language. The Herbrand universe UL for L 
is the set of all ground terms, which can be formed out of the constants and 
function symbols appearing in L. (In the case that L has no constants, we add 
some constant, say, a, to form ground terms.) 

Example Consider the program 
p(x) f- q(f(x),g(x)) 
r(y) f.-

which has an underlying first order language L based on the predicate symbols p, q 
and r and the function symbols f and g. Then the Herbrand universe for L is 
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{a, f(a), g(a), f(f(a)), f(g(a)), g(f(a)), g(g(a)), . . .  } . 

Definition Let L be a frrst order language. The Herbrand base BL for L is the 
set of all ground atoms which can be formed by using predicate symbols from L 
with ground terms from the Herbrand universe as arguments. 

Example For the previous example, the Herbrand base for L is 
{p(a), q(a,a), r(a), p(f(a)), p(g(a)), q(a,f(a)), q(f(a),a), . . .  } .  

Definition Let L be a flrst order language. The Herbrand pre-interpretation 

for L is the pre-interpretation given by the following: 
(a) The domain of the pre-interpretation is the Herbrand universe UL. 
(b) Constants in L are assigned themselves in UL. 
(c) If f is an n-ary function symbol in L, then the mapping from (UL)n into UL 
defined by (t1 , . . .  ,tn) --+ f(t1 , . . .  ,tn) is assigned to f. 

An Herbrand interpretation for L is any interpretation based on the Herbrand 
pre-interpretation for L. 

Since, for Herbrand interpretations, the assignment to constants and function 
symbols is flxed, it is possible to identify an Herbrand interpretation with a subset 
of the Herbrand base. For any Herbrand interpretation, the corresponding subset of 
the Herbrand base is the set of all ground atoms which are true wrt the 
interpretation. Conversely, given an arbitrary subset of the Herbrand base, there is 
a corresponding Herbrand interpretation defined by specifying that the mapping 
assigned to a predicate symbol maps some arguments to "true" precisely when the 
atom made up of the predicate symbol with the same arguments is in the given 
subset. This identification of an Herbrand interpretation as a subset of the 
Herbrand base will be made throughout. More generally, each interpretation based 
on an arbitrary pre-interpretation J can be identified with a subset of ]-instances, in 
a similar way. 

Definition Let L be a first order language and S a set of closed formulas of L. 
An Herbrand model for S is an Herbrand interpretation for L which is a model for 
s. 

It will often be convenient to refer, by abuse of language, to an interpretation 
of a set S of formulas rather than the underlying first order language from which 
the formulas come. Normally, we assume that the underlying first order language 
is defined by the constants, function symbols and predicate symbols appearing in 
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S.  With this understanding, we can now refer to the Herbrand universe Us and 
Herbrand base Bs of S and also refer to Herbrand interpretations of S as subsets of 
the Herbrand base of S. In particular, the set of formulas will often be a program 
P, so that we will refer to the Herbrand universe Up and Herbrand base Bp of P. 

Example We now illustrate these concepts with the slowsort program. This 
program can be regarded as the set of axioms of a ftrst order theory. The language 
of this theory is given by the constants 0 and nil, function symbols f and " ." and 
predicate symbols sort, perm, sorted, delete and ::;; . The only inference rule is the 
resolution rule. The intended interpretation is an Herbrand interpretation. An atom 
sort(l,m) is in the intended interpretation iff each of 1 and m is either nil or is a list 
of terms of the form rc(O) and m is the sorted version of 1.  The other predicate 
symbols have the obvious assignments. The intended interpretation is indeed a 
model for the program and hence a model for the associated theory. 

Next we show that in order to prove unsatisftability of a set of clauses, it 
suffices to consider only Herbrand interpretations. 

Proposition 3.2 Let S be a set of clauses and suppose S has a model. Then S 
has an Herbrand model. 

Proof Let I be an interpretation of S. We define an Herbrand interpretation I' 

of S as follows: 
I' =  {p(t1 , . . .  ,tn)eB8 : p(tl ' . . .  ,tn) is true wrt I } .  

It i s  straightforward to show that if I i s  a model, then I '  i s  also a model. I 

Proposition 3.3 Let S be a set of clauses. Then S is unsatisfiable iff S has no 
Herbrand models. 

Proof If S is satisfiable, then proposition 3.2 shows that it has an Herbrand 
model. I 

It is important to understand that neither proposition 3.2 nor 3.3 holds if we 
drop the restriction that S be a set of clauses. In other words, if S is a set of 
arbitrary closed formulas, it is not generally possible to show S is unsatisfiable by 
restricting attention to Herbrand interpretations. 

Example Let S be {p(a), 3x -p(x) } .  Note that the second formula in S is not a 
clause. We claim that S has a model. It suffices to let D be the set {0, 1 } ,  assign 0 
to a and assign to p the mapping which maps 0 to true and 1 to false. Clearly this 
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gives a model for S. 
However, S does not have an Herbrand model. The only Herbrand 

interpretations for S are 0 (the empty set) and { p(a) } .  But neither of these is a 
model for S .  

The point is worth emphasising. Much of the theory of logic programming is 
concerned only with clauses and for this Herbrand interpretations suffice. 
However, non-clausal formulas do arise naturally (particularly in chapters 3, 4 and 
5). For this part of the theory, we will be forced to consider arbitrary 
interpretations. 

There are various normal forms for formulas. One, which we will find useful, 
is prenex conjunctive normal form. 

Definition A formula is in prenex conjunctive normal form if it has the form 
Qxl . . .  Qxk ((Ll lv . .. vLlml

)/\ . . . 1\(Ln l v . . .  vLnmn
)) 

where each Q is an existential or universal quantifier and each L . . is a literal. lJ 
The next proposition shows that each formula has an ' 'equivalent' '  formula, 

which is in prenex conjunctive normal form. 

Definition We say two formulas W and V are logically equivalent if 
V (W H V) is valid. 

In other words, two formulas are logically equivalent if they have the same 
truth values wrt any interpretation and variable assignment. 

Proposition 3.4 For each formula W, there is a formula V, logically equivalent 
to W, such that V is in prenex conjunctive normal form. 

Proof The proof is left as an exercise. (See problem 5.) I 

When we discuss deductive database systems in chapter 5, we will base the 
theoretical developments on a typed first order theory. The intuitive idea of a 
typed theory (also called a many-sorted theory [33]) is that there are several sorts 
of variables, each ranging over a different domain. This can be thought of as a 
generalisation of the theories we have considered so far which only allow a single 
domain. For example, in a database context, there may be several domains of 
interest, such as the domain of customer names, the domain of supplier cities, and 
so on. For semantic integrity reasons, it is important to allow only queries and 
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database clauses which respect the typing restrictions. 

In addition to the components of a frrst order theory, a typed frrst order theory 
has a finite set, whose elements are called types. Types are denoted by Greek 
letters, such as 't and o. The alphabet of the typed frrst order theory contains 
variables, constants, function symbols, predicate symbols and quantifiers, each of 
which is typed. Variables and constants have types such as 't. Predicate symbols 
have types of the form t 1 x . . .  xtn and function symbols have types of the form 
t1 x . . . xtn �t. If f has type t1x . . .  xt

n �t. we say f has range type t. For each type 
t, there is a universal quantifier V t and an existential quantifier 3t. 

Definition A term of type t is defined inductively as follows: 
(a) A variable of type t is a term of type 't. 
(b) A constant of type t is a term of type t. 
(c) If f is an n-ary function symbol of type 1:1x . . . x'tn �t and ti is a term of type 'ti 
(i=l , . . .  ,n), then f(t1 , . . .  ,tn) is a term of type t. 

Definition A typed (well{ormed ) formula is defined inductively as follows: 
(a) If p is an n-ary predicate symbol of type t1 x . . .  X'tn and ti is a term of type 'ti 
(i=l , . . .  ,n), then p(t1 ' . . .  ,tn) is a typed atomic formula. 
(b) If F  and G are typed formulas, then so are -F, FAG, FvG, F�G and F�G. 
(c) If F is a typed formula and x is a variable of type t, then V tx F and 3'tx F are 
typed formulas. 

Definition The typed first order language given by an alphabet consists of the 
set of all typed formulas constructed from the symbols of the alphabet. 

We will find it more convenient to use the notation Vx/t F in place of V 'tx F. 
Similarly, we will use the notation 3x/'t F in place of 3'tx F. We let V'(F) denote 
the typed universal closure of the formula F and :l(F) denote the typed existential 
closure. These are obtained by prefixing F with quantifiers of appropriate types. 

Definition A pre-interpretation of a typed first order language L consists of 
the following: 
(a) For each type 't, a non-empty set D 't , called the domain of type 't of the pre­
interpretation. 
(b) For each constant of type t in L, the assignment of an element in D't . 
(c) For each n-ary function symbol of type t1 x . . .  xtn �'t in L, the assignment of a 
mapping from Dt x . . .  xDt to Dt. 

1 n 
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Definition An interpretation I of a typed first order language L consists of a 
pre-interpretation J with domains (D't } of L together with the following: 
For each n-ary predicate symbol of type 'tl x . . .  X'tn in L, the assignment of a 
mapping from D't x . . . xD't into ( true, false } (or, equivalently, a relation on 

I n D't x . . . xD't ) . 
I n 

We say I is based on J. 

It is straightforward to define the concepts of variable assignment, term 
assignment, truth value, model, logical consequence, and so on, for a typed first 
order theory. We leave the details to the reader. Generally speaking, the 
development of the theory of first order logic can be carried through with only the 
most trivial changes for typed first order logic. We shall exploit this fact in 
chapter 5, where we shall use typed versions of results from earlier chapters. 

The other fact that we will need about typed logics is that there is a 
transformation of typed formulas into (type-free) formulas, which shows that the 
apparent extra generality provided by typed logics is illusory [33] . This 
transformation allows one to reduce the proof of a theorem in a typed logic to a 
corresponding theorem in a (type-free) logic. We shall use this transformation 
process as one stage of the query evaluation process for deductive database 
systems in chapter 5 . 

§4. UNIFICATION 

Earlier we stated that the main purpose of a logic programming system is to 
compute bindings. These bindings are computed by unification. In this section, we 
present a detailed discussion of unifiers and the unification algorithm. 

Definition A substitution e is a finite set of the form (v 1/t 1 , . . .  ,vJtn } ,  where 
each vi is a variable, each ti is a term distinct from vi and the variables v 1 ' . . .  ,vn 
are distinct. Each element v/ti is called a binding for vi. e is called a ground 

substitution if the ti are all ground terms. e is called a variable-pure substitution if 
the ti are all variables. 

Definition An expression is either a term, a literal or a conjunction or 
disjunction of literals. A simple expression is either a term or an atom. 
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Definition Let e = { v 1tt 1 , . . .  ,v itn } be a substitution and E be an expression. 
Then Ee, the instance of E by e, is the expression obtained from E by 
simultaneously replacing each occurrence of the variable vi in E by the term ti 
(i=l , . . .  ,n). If Ee is ground, then Ee is called a ground instance of E. 

Example Let E = p(x,y,f(a)) and e = {x/b, y/x } . Then Ee = p(b,x,f(a)) .  

If S = { E1 ' . . .  ,En } is a finite set of expressions and e is a substitution, then Se 
denotes the set { E1e, . . .  ,Ene } .  

Definition Le t  e = { u1/sl ' . . .  ,um/sm } and a =  {v1tt1 , . . .  ,vJtn } be substitutions. 
Then the composition ea of e and (J is  the substitution obtained from the set 

{ u 1ts 1a, . . .  ,unfsma' v 1tt 1 , . . . ,vJtn } 
by deleting any binding u ./s .a for which u.=s.a and deleting any binding v.ft. for I 1 1 1 J J 
which vje { u 1 ' . . . ,um} .  

Example Let e = {x/f(y), y/z } and a =  { x/a, y/b, z/y } .  Then ea = {x/f(b), 
z/y} . 

Definition The substitution given by the empty set is called the identity 

substitution. 

We denote the identity substitution by e. Note that EE = E, for all expressions 
E. The elementary properties of substitutions are contained in the following 
proposition. 

Proposition 4.1 Let e, (J and '( be substitutions. Then 
(a) ee = ee = e. 
(b) (Ee)a = E(ea), for all expressions E. 
(c) (9a)y = e(<J'f). 

Proof (a) This follows immediately from the definition of e. 
(b) Clearly it suffices to prove the result when E is a variable, say, x. Let 

e = { ul/s l ' . . . ,unfsm} and (J = {vl/tl '"' 'vJtn } .  If xi {ul ' . . .  ,um} u {vl ' . . .  ,vn } , then 
(xe)a = x = x(ea). If xe { u 1 , .. . ,urn} ,  say x=ui' then (xe)a = sia = x(Sa).  If 
xe { vl ' . . .  ,vn }\{ u1 , . . .  ,um} ,  say x=vj , then (xe)a = tj = x(ecr). 

(c) Clearly it suffices to show that if x is a variable, then x((ecr)y) = x(e(<J'()) . 
In fact, x((ecr)y) = (x(ea))y = ((xe)cr)y = (xe)(<J'() = x(e(<J'()), by (b). I 



22 Chapter 1 .  Preliminaries 

Proposition 4. 1 (a) shows that e acts as a left and right identity for composition. 
The definition of composition of substitutions was made precisely to obtain (b). 
Note that (c) shows that we can omit parentheses when writing a composition 
el . . .  en of substitutions. 

Example Let 8 = {x/f(y), y/z } and cr= {x/a, z/b} .  Then Scr = { x/f(y), y/b, z/b } .  
Let E = p(x,y,g(z)). Then E S  = p(f(y),z,g(z)) and (ES)cr = p(f(y),b,g(b)) .  Also 
E(Scr) = p(f(y),b,g(b)) = (ES)cr. 

Definition Let E and F be expressions. We say E and F are variants if there 
exist substitutions e and cr such that E=FS and F=Ecr. We also say E is a variant 
of F or F is a variant of E. 

Example p(f(x,y),g(z),a) is a variant of p(f(y,x),g(u),a). However, p(x,x) is not 
a variant of p(x,y). 

Definition Let E be an expression and V be the set of variables occurring in E. 
A renaming substitution for E is a variable-pure substitution { x 1/y1 , . . . ,xn/yn } such 
that { x1 ' . . .  ,xn } � V, the yi are distinct and (V \ { x1 ' . . .  ,xn } )  n { y 1 , . . .  ,yn } = 0. 

Proposition 4.2 Let E and F be expressions which are variants. Then there 
exist substitutions 8 and cr such that E=FS and F=Ecr, where 8 is a renaming 
substitution for F and cr is a renaming substitution for E. 

Proof Since E and F are variants, there exist substitutions e 1 and cr1 such that 
E=FS 1 and F=Ecr 1 . Let V be the set of variables occurring in E and let cr be the 
substitution obtained from cr1 by deleting all bindings of the form x/t, where xi/:.V. 
Clearly F=Ecr. Furthermore, E=F81=Ecr81 and it follows that cr must be a 
renaming substitution for E. • 

We will be particularly interested in substitutions which unify a set of 
expressions, that is, make each expression in the set syntactically identical. The 
concept of unification goes back to Herbrand [44] in 1930. It was rediscovered in 
1963 by Robinson [88] and exploited in the resolution rule, where it was used to 
reduce the combinatorial explosion of the search space. We restrict attention to 
(non-empty) finite sets of simple expressions, which is all that we require. Recall 
that a simple expression is a term or an atom. 

Definition Let S be a finite set of simple expressions. A substitution e is 
called a unifier for S if SS is a singleton. A unifier 8 for S is called a most 
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general unifier (mgu) for S if, for each unifier cr of S, there exists a substitution "( 
such that cr=&y. 

Example (p(f(x),a), p(y,f(w)) } is not unifiable, because the second arguments 
cannot be unified. 

Example ( p(f(x),z), p(y,a) } is unifiable, since cr = {y/f(a), x/a, z/a } is a 
unifier. A most general unifier is e = { y/f(x), z/a} .  Note that cr = 9{x/a} .  

It follows from the definition of an mgu that if e and cr are both mgu's of 
(E1 , . . .  ,En } ,  then E1e is a variant of E1cr. Proposition 4.2 then shows that E 1cr can 
be obtained from E1 9 simply by renaming variables. In fact, problem 7 shows that 
mgu's  are unique modulo renaming. 

We next present an algorithm, called the unification algorithm, which takes a 
finite set of simple expressions as input and outputs an mgu if the set is unifiable. 
Otherwise, it reports the fact that the set is not unifiable. The intuitive idea behind 
the unification algorithm is as follows. Suppose we want to unify two simple 
expressions. Imagine two pointers, one at the leftmost symbol of each of the two 
expressions. The pointers are moved together to the right until they point to 
different symbols. An attempt is made to unify the two subexpressions starting 
with these symbols by making a substitution. If the attempt is successful, the 
process is continued with the two expressions obtained by applying the 
substitution. If not, the expressions are not unifiable. If the pointers eventually 
reach the ends of the two expressions, the composition of all the substitutions 
made is an mgu of the two expressions. 

Definition Let S be a finite set of simple expressions. The disagreement set of 
S is- defined as follows. Locate the leftmost symbol position at which not all 
expressions in S have the same symbol and extract from each expression in S the 
subexpression beginning at that symbol position. The set of all such subexpressions 
is the disagreement set. 

Example Let S = (p(f(x),h(y),a) , p(f(x),z,a), p(f(x),h(y),b) } .  Then the 
disagreement set is ( h(y), z } .  

We now present the unification algorithm. In this algorithm, S denotes a finite 
set of simple expressions. 
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UNIFICATION ALGORITHM 
1 . Put k=O and a0=e. 
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2 .. If Sak is a singleton, then stop; ak is an mgu of S. Otherwise, find the 
disagreement set Dk of Sak. 

3. If there exist v and t in Dk such that v is a variable that does not occur in t, 
then put ak+l = ak {v/t } ,  increment k and go to 2. Otherwise, stop; S is not 
unifiable. 

The unification algorithm as presented above is non-deterministic to the extent 
that there may be several choices for v and t in step 3. However, as we remarked 
earlier, the application of any two mgu's produced by the algorithm leads to 
expressions which differ only by a change of variable names. It is clear that the 
algorithm terminates because S contains only finitely many variables and each 
application of step 3 eliminates one variable. 

Example Let S = ( p(f(a),g(x)), p(y,y) } .  
(a) a0 = E. 
(b) D0 = ( f(a), y } ,  a1 = { y/f(a) } and Sa1 = (p(f(a),g(x)), p(f(a),f(a)) } .  
(c) D1 = { g(x), f(a) } .  Thus S is not unifiable. 

Example Let S = {p(a,x,h(g(z))), p(z,h(y),h(y)) } . 

(a) a0 = E. 
(b) D0 = ( a, z } ,  a1 = { 7/a} and Sa1 = (p(a,x,h(g(a))) ,  p(a,h(y) ,h(y)) } .  
(c) D1 = { x, h(y) } ,  a2 = { z/a, x/h(y) } and Sa2 = {p(a,h(y) ,h(g(a))), p(a,h(y),h(y)) } .  
(d) D2 = ( y, g(a) } ,  a3 = { z/a, x/h(g(a)), y/g(a) } and sa3 = { p(a,h(g(a)),h(g(a))) } .  
Thus S is unifiable and a3 is an mgu. 

In step 3 of the unification algorithm, a check is made to see whether v occurs 
in t. This is called the occur check. The next example illustrates the use of the 
occur check. 

Example Let S = (p(x,x), p(y,f(y)) } .  
(a) aO = e. 

(b) D0 = (x, y } , a1 = {x/y } and sa1 = { p(y,y), p(y,f(y)) } .  
(c) D1 = { y, f(y) } .  Since y occurs in f(y), S is not unifiable. 

Next we prove that the unification algorithm does indeed find an mgu of a 
unifiable set of simple expressions. This result first appeared in [88] . 
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Theorem 4.3 (Unification Theorem) 
Let S be a finite set of simple expressions. If S is unifiable, then the 

unification algorithm terminates and gives an mgu for S .  If S is not unifiable, then 
the unification algorithm terminates and reports this fact. 

Proof We have already noted that the unification algorithm always terminates. 
It suffices to show that if S is unifiable, then the algorithm finds an mgu. In fact, 
if S is not unifiable, then the algorithm cannot terminate at step 2 and, since it 
does terminate, it must terminate at step 3. Thus it does report the fact that S is 
not unifiable. 

Assume then that S is unifiable and let 9 be any unifier for S. We prove first 
that, for �0. if ok is the substitution given in the kth iteration of the algorithm, 
then there exists a substitution 'Yk such that e = okyk. 

Suppose first that k=O. Then we can put 'Yo = 9, since 9 = ee. Next suppose, 
for some �0, there exists 'Yk such that e = ok 'Yk· If Sok is a singleton, then the 
algorithm terminates at step 2. Hence we can confine attention to the case when 
Sok is not a singleton. We want to show that the algorithm will produce a further 
substitution ok+1 and that there exists a substitution 'Yk+l  such that e = ok+1'Yk+1 . 

Since Sok is not a singleton, the algorithm will determine the disagreement set 
Dk of Sok and go to step 3. Since 9 = ok 'Yk and 9 unifies S, it follows that 'Yk 
unifies Dk. Thus Dk must contain a variable, say, v. Let t be any other term in Dk. 
Then v cannot occur in t because vyk = tyk. We can suppose that {v/t }  is indeed 
the substitution chosen at step 3. Thus ok+1 = ok{v/t } . 

We now define 'Yk+l  = yk\{v/vyk} . If 'Yk has a binding for v, then 

'Yk = { v/vyk} u 'Yk+l 
= {v/tyk } u 'Yk+1 (since vyk = tyk) 
= { v/tyk+ 1 } u 'Yk+ 1 (since v does not occur in t) 
= { v/t }yk+ 1 (by the definition of composition). 

If 'Yk does not have a binding for v, then 'Yk+1 = 'Yk' each element of Dk is a 
variable and 'Yk = { v/t }'Yk+1 . Thus e = okyk = ok{v/t }yk+1 = ok+1'Yk+1 ' as 
required. 

Now we can complete the proof. If S is unifiable, then we have shown that the 
algorithm must terminate at step 2 and, if it terminates at the kth iteration, then 
e = ok 'Yk' for some 'Yk· Since ok is a unifier of S ,  this equality shows that it is 
indeed an mgu for S. I 
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The unification algorithm which we have presented can be very inefficient. In 
the worst case, its running time can be an exponential function of the length of the 
input. Consider the following example, which is taken from [9] . Let 
S = {p(x 1 ' . . .  ,xn) ,  p(f(x0,x0), . . .  ,f(xn-l 'xn-l)) } .  Then a1 = { x1/f(x0,x0) } and sa1 = 
{p(f(x0,x0) ,x2, . . .  ,xn), p(f(x0,x0),f(f(x0,x0),f(x0,x0)),f(x2,x2) ,  . . .  ,f(xn-l ,xn_1)) } .  The 

next substitution is a2 = { x1/f(x0,x0), xt'f(f(x0,x0), f(x0,x0)) } ,  and so on. Note 

that the second atom in San has 2k -1 occurrences of f in its kth argument 
(l��n). In particular, its last argument has 2n-1 occurrences of f. Now recall 
that step 3 of the unification algorithm has the occur check. The performance of 
this check just for the last substitution will thus require exponential time. In fact, 
printing an also requires exponential time. This example shows that no unification 
algorithm which explicitly presents the (final) unifier can be linear. 

Much more efficient unification algorithms than the one presented above are 
known. For example, [67] and [80] give linear algorithms (see also [68]) .  In [80] ,  
linearity is achieved by the use of a carefully chosen data structure for representing 
expressions and avoiding the explicit presentation of the unifier, which is instead 
presented as a composition of constituent substitutions. Despite its linearity, this 
algorithm is not employed in PROLOG systems. Instead, most use essentially the 
unification algorithm presented earlier in this section, but with the expensive occur 
check omitted! From a theoretical viewpoint, this is a disaster because it destroys 
the soundness of SLD-resolution. We discuss this matter further in §7. 

§5. FIXPOINTS 

Associated with every definite program is a monotonic mapping which plays . a 
very important role in the theory. This section introduces the requisite concepts and 
results concerning monotonic mappings and their fixpoints. 

Definition Let S be a set. A relation R on S is a subset of SxS .  

We usually use infix notation writing (x,y)eR as  xRy. 

Definition A relation R on a set S is a partial order if the following 
conditions are satisfied: 
(a) xRx, for all xeS .  
(b) xRy and yRx imply x=y, for al l  x,yE S.  
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(c) xRy and yRz imply xRz, for all x,y,ze S .  

Example Let S be a set and 2S be the set of all subsets of S. Then set 
inclusion, k:, is easily seen to be a partial order on 2S. 

We adopt the standard notation and use � to denote a partial order. Thus we 
have (a) x�x. (b) x�y and y�x imply x=y and (c) x�y and y�z imply x�z. for all 
x,y,zeS .  

Definition Let S be a set with a partial order �- Then ae S i s  an upper bound 

of a subset X of S if x�a, for all xeX. Similarly, be S is a lower bound of X if 
b�x, for all xeX. 

Definition Let S be a set with a partial order �- Then ae S is the least upper 

bound of a subset X of S if a is an upper bound of X and, for all upper bounds a' 

of X, we have �a' . Similarly, be S  is the greatest lower bound of a subset X of S 
if b is a lower bound of X and, for all lower bounds b' of X, we have b'�b. 

The least upper bound of X is unique, if it exists, and is denoted by lub(X). 
Similarly, the greatest lower bound of X is unique, if it exists, and is denoted by 
glb(X). 

Definition A partially ordered set L is a complete lattice if lub(X) and glb(X) 
exist for every subset X of L. 

We let T denote the top element lub(L) and .l denote the bottom element 

glb(L) of the complete lattice L. 

Example In the previous example, 2S under k: is a complete lattice. In fact, 
the least upper bound of a collection of subsets of S is their union and the greatest 
lower bound is their intersection. The top element is S and the bottom element is 
0. 

Definition Let L be a complete lattice and T : L---+L be a mapping. We say T 
is monotonic if T(x)�T(y) , whenever x�y. 

Definition Let L be a complete lattice and X k: L. We say X is directed if 
every fmite subset of X has an upper bound in X. 

Definition Let L be a complete lattice and T : L---+ L be a mapping. We say T 
is continuous if TOub(X)) = lub(T(X)), for every directed subset X of L. 
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By taking X = {x,y } ,  we see that every continuous mapping is monotonic. 
However, the converse is not true. (See problem 12.) 

Our interest in these definitions arises from the fact that for a definite program 
P, the collection of all Herbrand interpretations forms a complete lattice in a 
natural way and also because there is a continuous mapping associated with P 
defined on this lattice. Next we study fixpoints of mappings defined on lattices. 

Definition Let L be a complete lattice and T :  L-+L be a mapping. We say 
aeL is the least fiXfJoint of T if a is a fixpoint (that is, T(a)=a) and for all fixpoints 
b of T, we have �b. Similarly, we define greatest f1Xpoint. 

The next result is a weak form of a theorem due to Tarski [ 103] , which 
generalises an earlier result due to Knaster and Tarski. For an interesting account 
of the history of propositions 5. 1 ,  5.3 and 5.4, see [55] . 

Proposition 5.1 Let L be a complete lattice and T : L-+L be monotonic. Then 
T has a least fixpoint, lfp(T), and a greatest fixpoint, gfp(T). Furthermore, lfp(T) = 
glb{x : T(x)=x }  = glb {x : T(x)�x } and gfp(T) = lub{ x : T(x)=x } = lub {x : x�T(x) } .  

Proof Put G = { x  : T(x)�x } and g = glb(G).  We show that ge G. Now g�x, 
for all xe G, so that by the monotonicity of T, we have T(g)�T(x), for all xeG. 
Thus T(g)�x, for all xeG, and so T(g)�g, by the definition of glb. Hence geG. 

Next we show that g is a fixpoint of T. It remains to show that g�T(g). Now 
T(g)�g implies T(T(g))�T(g) implies T(g)eG. Hence g�T(g), so that g is a 
fixpoint of T. 

Now put g' = glb{x  : T(x)=x } .  Since g is a fixpoint, we have g'�g. On the 
other hand, { x  : T(x)=x }  � {x : T(x)�x } and so g�g'. Thus we have g=g' and the 
proof is complete for lfp(T). 

The proof for gfp(T) is similar. • 

Proposition 5.2 Let L be a complete lattice and T : L-+L be monotonic. 
Suppose aeL and �T(a). Then there exists a fixpoint a' of T such that �a'. 
Similarly, if beL and T(b)�b, then there exists a fixpoint b' of T such that b'�b. 

Proof By proposition 5. 1 , it suffices to put a'=gfp(T) and b'=lfp(T). • 

We will also require the concept of ordinal powers of T. First we recall some 
elementary properties of ordinal numbers, which we will refer to more simply as 
ordinals. Intuitively, the ordinals are what we use to count with. The first ordinal 0 
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is defined to be 0. Then we define 1 = { 0 }  = { 0 } , 2 = {0, { 0 } } = {0, 1 } ,  
3 = { 0, { 0 } ,  { 0, { 0 } } }  = {0, 1 , 2 } ,  and so on. These are the finite ordinals, the 
non-negative integers. The frrst infinite ordinal is ro = { 0, 1 , 2, . . .  } , the set of all 
non-negative integers. We adopt the convention of denoting finite ordinals by 
roman letters n, m, . . .  , while arbitrary ordinals will be denoted by Greek letters a, 
p, . . . .  We can specify an ordering < on the collection of all ordinals by defining 
a<l3 if ae 13. For example, n<ro, for all finite ordinals n. We will normally write 
ne ro rather than n<ro. If a is an ordinal, the successor of a is the ordinal a+ 1 = 
a u { a } ,  which is the least ordinal greater than a. a+ 1 is then said to be a 
successor ordinal. For example, 1 = 0+1 , 2 = 1+1 , 3 = 2+1 , and so on. If a is a 
successor ordinal, say a = 13+ 1 , we denote 13 by a-1 . An ordinal a is said to be a 
limit ordinal if it is not the successor of any ordinal. The smallest limit ordinal 
(apart from 0) is ro. After ro comes ro+ 1 = ro u { ro } ,  ro+2 = (ro+ 1)+ 1 , ro+3, and so 
on. The next limit ordinal is ro2, which is the set consisting of all n, where ne ro, 
and all ro+n, where ne ro. Then come ro2+1 , ro2+2, . . .  ,ro3, ro3+1 , . . . ,co4, . . . ,cpn, . . . . 

We will also require the principle of transfinite induction, which is as follows. 
Let P(a) be a property of ordinals. Assume that for all ordinals 13. if P(y) holds for 
all y<l3, then P(l3) holds. Then P(a) holds for all ordinals a. 

' 
Now we can give the definition of the ordinal powers of T. 

Definition Let L be a complete lattice and T :  L�L be monotonic. Then we 
define 

TiO = l. 
Tia = T(Ti(a-1)), if a is a successor ordinal 
Tia = lub{ TiJ3 : J3<a } ,  if a is a limit ordinal 
T.!.O = T 
T.!.a = T(T.!.(a-1)), if a is a successor ordinal 
T.!.a = glb{ T.!.I3 :  13<a } ,  if a is a limit ordinal 

Next we give a well-known characterisation of lfp(T) and gfp(T) in terms of 
ordinal powers of T. 

Proposition 5.3 Let L be a complete lattice and T : L� L be monotonic. 
Then, for any ordinal a, Ti a � lfp(T) and T .!.a � gfp(T). Furthermore, there exist 
ordinals p 1 and 132 such that y1 � 13 1 implies Tiy1 = lfp(T) and y2 � 132 implies 
T .!.y2 = gfp(T). 
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Proof The proof for lfp(T) follows from (a) and (e) below. The proofs of (a), 
(b) and (c) use transfinite induction. 
(a) For all a, Ti a s; lfp(T): 

If a is a limit ordinal, then Tin = lub {Tip : P<a} s; lfp(T), by the induction 
hypothesis. If a is a successor ordinal, then Tin = T(Ti(a-1)) s; 
T(lfp(T)) = lfp(T), by the induction hypothesis, the monotonicity of T and the 
fixpoint property. 

(b) For all a, Tin s; Ti(a+l):  
If a is a successor ordinal, then Tin = T(Ti(a-1)) s; T(Tia) = Ti(a+l), 
using the induction hypothesis and the monotonicity of T. If a is a limit 
ordinal, then Tin = lub {TiP : P<a} s; lub {Ti(P+l) : P<a } s; T(lub{Tip : 
P<a } )  = Ti(a+l ), using the induction hypothesis and monotonicity of T. 

(c) For all a,p, a<P implies Tin s; TiP: 
If p is a limit ordinal, then Tin s; lub{ Tiy : r<Pl = Tip. If P is a successor 
ordinal, then a s; �1 and so Tin s; Ti(�l) s; Tip, using the induction 
hypothesis and (b). 

(d) For all a,(3, if a<P and Tia = Tip, then Tin = lfp(T) : 
Now Tin s; Ti(a+l) s; Tip, by (c). Hence Tin = Ti(a+l) = T(Tia) and so 
Tin is a fixpoint. Furthermore, Tia = lfp(T), by (a) .  

(e) There exists P such that y ;;:: P implies Tiy = lfp(T): 
Let a be the least ordinal of cardinality greater than the cardinality of L. 
Suppose that TiS :#: lfp(T), for all S<a. Define h:a�L by h(S) = TiS. Then, 
by (d), h is injective, which contradicts the choice of a. Thus Tip = lfp(T), for 
some P<a, and the result follows from (a) and (c). 
The proof for gfp(T) is similar. • 

The least a such that Tin = lfp(T) is called the closure ordinal of T. The next 
result, which is usually attributed to Kleene, shows that under the stronger 
assumption that T is continuous, the closure ordinal of T is s; co. 

Proposition 5.4 Let L be a complete lattice and T : L�L be continuous. Then 
lfp(T) = Ti co . 

Proof By proposition 5.3, it suffices to show that Tiro is a fixpoint. Note that 
{Tin : ne ro}  is directed, since T is monotonic. Thus T(Tico) = T(lub{ Tin 
nero} ) = lub {T(Tin) : ne ro}  = Tiro, using the continuity of T. • 
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The analogue of proposition 5.4 for gfp(T) does not hold, that i s ,  gfp(T) may 
not be equal to T J..ro. A counterexample is given in the next section. 

PROBLEMS FOR CHAPTER 1 

1 . Consider the interpretation I: 
Domain is the non-negative integers 
s is assigned the successor function x � x+ 1 
a is assigned 0 
b is assigned 1 
p is assigned the relation { (x,y) : x>y } 
q is assigned the relation { x : x>O} 
r is assigned the relation { (x,y) : x divides y }  

For each of the following closed formulas, determine the truth value of the formula 
wrt 1: 
(a) Vx 3y p(x,y) 
(b) 3x Vy p(x,y) 
(c) p(s(a),b) 
(d) Vx(q(x)�p(x,a)) 
(e) Vx p(s(x),x) 
(f) Vx Vy(r(x,y)�-p(x,y)) 
(g) Vx(3y p(x,y) v r(s(b),s(x)) � q(x)) 

2. Determine whether the following formulas are valid or not: 
(a) Vx 3y p(x,y) � 3y \7'x p(x,y) 
(b) 3y \7'x p(x,y) � Vx 3y p(x,y) 

3. Consider the formula 

(Vx p(x,x) A Vx Vy\iz [ (p(x,y)Ap(y ,z))�p(x,z)] A Vx Vy [p(x,y )vp(y ,x)]) � 3y\7'x p(y ,x) 

(a) Show that every interpretation with a finite domain is a model. 
(b) Find an interpretation which is not a model. 

4. Complete the proof of proposition 3.2. 

5 .  Let W be a formula. Suppose that each quantifier in W has a distinct variable 
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following it and no variable in W is both bound and free. (This can be achieved 
by renaming bound variables in W, if necessary.) Prove that W can be transformed 
to a logically equivalent formula in prenex conjunctive normal form (called a 
prenex conjunctive normal form of W) by means of the following transformations : _  
(a) Replace 

all occurrences of Ff-G by Fv-G 
all occurrences of Ff-+G by (Fv-G)I\(-FvG). 

(b) Replace 
-\ixF by 3x-F 
-3xF by \ix-F 
-(FvG) by -FI\-G 
-(FI\G) by -Fv-G 
--F by F 

until each occurrence of - immediately precedes an atom. 
(c) Replace 

3xF v G by 3x(FvG) 
F v 3xG by 3x(FvG) 
\ixF v G by \ix(FvG) 
F v \ixG by \ix(FvG) 
3xF 1\ G by 3x(FI\G) 
F " 3xG by 3x(F "G) 
\ixF " G by \ix(FI\G) 
F "  \ixG by \ix(FI\G) 

until all quantifiers are at the front of the formula. 
(d) Replace 

(FI\G)vH by (FvH)I\(GvH) 
Fv(GI\H) by (FvG)I\(FvH) 

until the formula is in prenex conjunctive normal form. 

6. Let W be a closed formula. Prove that there exists a formula V, which is a 
conjunction of clauses, such that W is unsatisfiable iff V is unsatisfiable. 

7. Suppose e 1 and e2 are substitutions and there exist substitutions a1 and a2 such 
that e 1 = e2a1 and e2 = e 1 a2. Show that there exists a variable-pure substitution 
'Y such that el = e2y. 
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8. A substitution 9 is idempotent if 9 = 99. Let 9 = { x 1tt1 , . . .  ,xitn } and suppose V 
is the set of variables occurring in terms in { tl ' . . .  ,tn } .  Show that 9 is idempotent 
iff { x1 ' . . .  ,xn } n V = 0. 

9. Prove that each mgu produced by the unification algorithm is idempotent. 

10. Let 9 be a unifier of a finite set S of simple expressions. Prove that 9 is an 
mgu and is idempotent iff, for every unifier cr of S, we have cr = ecr. 

1 1 . For each of the following sets of simple expressions, determine whether mgu 's 
exist or not and find them when they exist: 
(a) { p(f(y),w,g(z)), p(u,u,v) } 
(b) {p(f(y),w,g(z)), p(v,u,v) } 
(c) {p(a,x,f(g(y))), p(z,h(z,w),f(w)) } 

12. Find a complete lattice L and a mapping T : L--+L such that T is monotonic 
but not continuous. 

13 .  Let L be a complete lattice and T : L--+L be monotonic. 
(a) Suppose ae L  and !lST(a). Define 

T0(a) = a  
Tl(a) = T(Tl-1(a)), if a is a successor ordinal 
Tl(a) = lub {T�(a) : �<a} ,  if a is a limit ordinal. 

Prove that there exists an ordinal � such that T�(a) is a fixpoint of T and a�TP(a). 
(b) Suppose be L  and T(b)�b. Define 

�(b) = b 
Ta(b) = T(Ta-l (b)), if a is a successor ordinal 
Ta(b) = glb {Tp(b) : �<a } ,  if a is a limit ordinal. 

Prove th<i:tthere exists an ordinal y such that Ty(b) is a fixpoint of T and TY(b)�b. 





DEFINITE PROGRAMS 

This chapter is concerned with the declarative and procedural semantics of 
definite programs. First, we introduce the concept of the least Herbrand model of 
a definite program and prove various important properties of such models. Next, 
we define correct answers, which provide a declarative description of the desired 
output from a program and a goal. The procedural counterpart of a correct answer 
is a computed answer, which is defined using SLD-resolution. We prove that 
every computed answer is correct and that every correct answer is an instance of a 
computed answer. This establishes the soundness and completeness of SLD­
resolution, that is, shows that SLD-resolution produces only and all correct 
answers. Other important results established are the independence of the 
computation rule and the fact that any computable function can be computed by a 
definite program. Two pragmatic aspects of PROLOG implementations are also 
discussed. These are the omission of the occur check from the unification 
algorithm and the control facility, cut. 

§6. DECLARATIVE SEMANTICS 

This section introduces the least Herbrand model of a definite program. This 
particular model plays a central role in the theory. We show that the least 
Herbrand model is precisely the set of ground atoms which are logical 
consequences of the definite program. We also obtain an important fixpoint 
characterisation of the least Herbrand model. Finally, we define the key concept of 
correct answer. 

First, let us recall some definitions given in the previous chapter. 
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Definition A definite program clause is a clause of the form 
Af-B 1 , . . .  ,Bn 

which contains precisely one atom (viz. A) in its consequent. A is called the head 

and B 1 ' . . .  ,Bn is called the body of the program clause. 

Definition A definite program is a finite set of definite program clauses. 

Definition A definite goal is a clause of the form 
f-Bl , . . .  ,Bn 

that is, a clause which has an empty consequent. 

In later chapters, we will consider more general programs, in which the body 
of a program clause can be a conjunction of literals or even an arbitrary formula. 
Later we will also consider more general goals. The theory of definite programs is 
simpler than the theory of these more general classes of programs because definite 
programs do not allow negations in the body of a clause. This means we can avoid 
the theoretical and practical difficulties of handling negated subgoals. Definite 
programs thus provide an excellent starting point for the development of the 
theory. 

Proposition 6.1 (Model Intersection Property) 
Let P be a definite program and { Mi } iel be a non-empty set of Herbrand 

models for P. Then nieiMi is an Herbrand model for P. 

Proof Clearly nieiMi is an Herbrand interpretation for P. It is straightforward 
to show that nie iMi is a model for P. (See problem 1 .) • 

Since every definite program P has Bp as an Herbrand model, the set of all 
Herbrand models for P is non-empty. Thus the intersection of all Herbrand models 
for P is again a model, called the least Herbrand model, for P. We denote this 
model by Mp. 

The intended interpretation of a definite program P can, of course, be different 
from Mp. However, there are very strong reasons for regarding Mp as the natural 
interpretation of a program. Certainly, it is usual for the programmer to have in 
mind the "free" interpretation of the constants and function symbols in the 
program given by an Herbrand interpretation. Furthermore, the next theorem shows 
that the atoms in Mp are precisely those that are logical consequences of the 
program. This result is due to van Emden and Kowalski [ 107]. 
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Theorem 6.2 Let P be a definite program. Then Mp = {AeBP : A is a logical 
consequence of P } .  

Proof We have that 
A is a logical consequence of P 
iff P u {-A} is unsatisfiable, by proposition 3. 1 
iff P u { -A }  has no Herbrand models, by proposition 3.3 
iff -A is false wrt all Herbrand models of P 
iff A is true wrt all Herbrand models of P 
iff AE Mp . • 

We wish to obtain a deeper characterisation of Mp using fixpoint concepts. For 
this we need to associate a complete lattice with every definite program. 

Let P be a definite program. Then 2BP, which is the set of all Herbrand 
interpretations of P, is a complete lattice under the partial order of set inclusion 
!::: • The top element of this lattice is Bp and the bottom element is 0. The least 

upper bound of any set of Herbrand interpretations is the Herbrand interpretation 
.which is the union of all the Herbrand interpretations in the set. The greatest 
lower bound is the intersection. 

Definition Let P be a definite program. The mapping T P : 2Bp � 2Bp is 
defined as follows. Let I be an Herbrand interpretation. Then T p(l) = 
{AEBp : A+-A1 , . . .  ,An is a ground instance of a clause in P and {A1 , . . .  ,An } !:: 1 } .  

Clearly Tp i s  monotonic. Tp provides the link between the declarative and 
procedural semantics of P. This definition was first given in [ 107] .  

Example Consider the program P 
p(f(x)) +-- p(x) 
q(a) +-- p(x) 

Put 11 = Bp, 12 = Tp(I1) and 13 = 0. Then Tp(l1 ) = { q(a) } u { p(f(t)) : tEUp} ,  
Tp(�) = { q(a) } u { p(f(f(t))) : tEUp} and Tp(l3) = 0. 

Proposition 6.3 Let P be a definite program. Then the mapping Tp is 
continuous. 

Proof Let X be a directed subset of 2BP. Note first that {A1 ' . . . ,An } !:: lub(X) 
iff { A1 , . . .  ,An } !:: I, for some leX. (See problem 3.) In order to show Tp is 
continuous, we have to show TpOub(X)) = lub(Tp(X)), for each directed subset X. 
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Now we have that 
Ae T p(lub(X)) 
iff A+-A1 ' . . .  ,An is a ground instance of a clause in P and { A1 ' . . .  ,An } !;;;; lub(X) 
iff A+-A1 ' . . .  ,An is a ground instance of a clause in P and { A1 ' . . .  ,An } � I, for 

some le X 
iff Ae Tp(l), for some leX 
iff Aelub(Tp(X)). I 

Herbrand interpretations which are models can be characterised in terms of Tp· 

Proposition 6.4 Let P be a definite program and I be an Herbrand 
interpretation of P. Then I is a model for P iff T p(l) !;;;; I. 

Proof I is a model for P iff for each ground instance A+-A1 , . . .  ,An of each 
clause in P, we have {A1 ' . . .  ,An } !;;;; I implies Ael iff Tp(l) !;;;; I. I 

Now we come to the first major result of the theory. This theorem, which is 
due to van Emden and Kowalski [ 107] , provides a fixpoint characterisation of the 
least Herbrand model of a definite program. 

Theorem 6.5 (Fixpoint Characterisation of the Least Herbrand Model) 
Let P be a definite program. Then Mp = lfp(T p) = T pi ro. 

Proof Mp = glb { I  : I is an Herbrand model for P }  
= glb { I : Tp(l) 1:: 1 } ,  by proposition 6.4 
= lfp(Tp),  by proposition 5. 1 
= Tp iro, by propositions 5.4 and 6.3 . I 

However, it can happen that gfp(Tp) ::1- Tp..l-ro. 

Example Consider the program P 
p(f(x)) +-- p(x) 
q(a) +-- p(x) 

Then Tp..l-ro = { q(a) } ,  but gfp(Tp) = 0. In fact, gfp(Tp) = Tp..l-(ro+l).  

Let us now tum to the definition of a correct answer. This is a central concept 
in logic programming and provides much of the focus for the theoretical 
developments. 
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Definition Let P be a definite program and G a definite goal. An answer for 
P u { G }  is a substitution for variables of G. 

It is understood that the answer does not necessarily contain a binding for 
every variable in G. In particular, if G has no variables the only possible answer is 
the identity substitution. 

Definition Let P be a definite program, G a definite goal f-A1 , . . .  ,Ak and e an 
answer for P u { G} . We say that e is a correct answer for P u { G } if 
V'((A1 A . . .  AAk)9) is a logical consequence of P. 

Using propos1t1on 3. 1 , we see that e is a correct answer iff 
P u { -V'((A1 A . . .  AAk)9) }  is unsatisfiable. The above definition of correct answer 
does indeed capture the intuitive meaning of this concept. It provides a declarative 
description of the desired output from a definite program and goal. Much of this 
chapter will be concerned with showing the equivalence between this declarative 
concept and the corresponding procedural one, which is defined by the refutation 
procedure used by the system. 

As well as returning substitutions, a logic programming system may also return 
the answer "no".  We say the answer "no" is correct if P u { G}  is satisfiable. 

Theorem 6.2 and the definition of correct answer suggest that we may be able 
to strengthen theorem 6.2 by showing that an answer e is correct iff 
V'((A1 A . . .  AAk)9) is true wrt the least Herbrand model of the program. 
Unfortunately, the result does not hold in this generality, as the following example 
shows. 

Example Consider the program P 
p(a) f-

Let G be the goal f-p(x) and e be the identity substitution. Then Mp = {p(a) }  and 
so Vx p(x)e is true in Mp. However, e is not a correct answer, since Vx p(x)9 is 
not a logical consequence of P. 

The reason for the problem here is that -Vx p(x) is not a clause and hence we 
cannot restrict attention to Herbrand interpretations when attempting to establish 
the unsatisfiability of {p(a)f- } u { -Vx p(x) } . However, if we make a restriction 
on e, we do obtain a result which generalises theorem 6.2. 
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Theorem 6.6 Let P be a definite program and G a definite goal �A1 , . . .  ,Ak. 
Suppose 8 is an answer for P u { G }  such that (AI''· · ·"Ak)8 is ground. Then the 
following are equivalent: 
(a) e is correct. 
(b) (A 1 11. . . .  11.Ak)8 is true wrt every Herbrand model of P. 
(c) (A1 11. . . .  11.Ak)8 is true wrt the least Herbrand model of P. 

Proof Obviously, it suffices to show that (c) implies (a) . Now 
(A111. . . .  11.Ak)8 is true wrt the least Herbrand model of P 
implies (A1 11. . . . 11.Ak)8 is true wrt all Herbrand models of P 
implies -(A1 11. . . .  11.Ak)8 is false wrt all Herbrand models of P 
implies P u {-(A 1 " · . . 11.Ak)8 } has no Herbrand models 
�plies P u {-(A111. . . .  11.Ak)8} has no models, by proposition 3.3. I 

§7. SOUNDNESS OF SLD-RESOLUTION 

In this section, the procedural semantics of definite programs is introduced. 
Computed answers are defined and the soundness of SLD-resolution is established. 
The implications of omitting the occur check from the unification algorithm are 
also discussed. Although all the requisite results concerning SLD-resolution will 
be discussed in this and subsequent sections, it would be helpful for the reader to 
have a wider perspective on automatic theorem proving. We suggest consulting (9] , 
[ 14] , [64] or [66] . 

There are many refutation procedures based on the resolution inference rule, 
which are refinements of the original procedure of Robinson [88] .  The refutation 
procedure of interest here was first described by Kowalski [48] . It was called 
SW-resolution in [4] . (The term LUSH-resolution has also been used [46] .) SLD­
resolution stands for SL-resolution for Definite clauses. SL stands for Linear 
resolution with Selection function. SL-resolution, which is due to Kowalski and 
Kuehner [53] , is a direct descendant of the model elimination procedure of 
Loveland [65] .  In this and the next two sections, we will be concerned with SLD­
refutations. In § 10, we will study SLD-refutation procedures. 

Definition Let G be �A1' . . . ,Am, . . . ,Ak and C be A�B 1 , . .. ,Bq. Then G' is 
derived from G and C using mgu 8 if the following conditions hold: 
(a) Am is an atom, called the selected atom, in G. 
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(b) e is an mgu of Am and A. 
(c) G' is  the goal �(Al ' . . .  ,Am-l 'B l ' . . .  ,Bq,Am+l ' . . .  ,Ak)8. 

In resolution terminology, G' is called a resolvent of G and C. 

Definition Let P be a definite program and G a definite goal. An SLD­

derivation of P u { G }  consists of a (finite or infinite) sequence G0=G, G1 , . . . of 
goals, a sequence c 1 , c2, . . . of variants of program clauses of P and a sequence e 1 , 
e2, . . .  of mgu's such that each Gi+l is derived from Gi and Ci+l using ei+l " 

Each ci is a suitable variant of the corresponding program clause so that ci 
does not have any variables which already appear in the derivation up to Gi-l " 
This can be achieved, for example, by subscripting variables in G by 0 and 
variables in ci by i. This process of renatiring variables is called standardising the 
variables apart. It is necessary, otherwise, for example, we would not be able to 
unify p(x) and p(f(x)) in �p(x) and p(f(x))�. Each program clause variant c1 ,  
c2·· · ·  is called an input clause of the derivation. 

Definition An SLD-refutation of P u { G}  is a finite SLD-derivation of 
P u { G} which has the empty clause o as the last goal in the derivation. If Gn = o ,  

we say the refutation has length n. 

Throughout this chapter, a "derivation" will always mean an SLD-derivation 
and a "refutation" will always mean an SLD-refutation. We can picture SLD­
derivations as in Figure 1 .  

It will be convenient in some of the results to have a slightly more general 
concept available. 

Definition An unrestricted SLD-refutation is an SLD-refutation, except that we 
drop the requirement that the substitutions ei be most general unifiers. They are 
only required to be unifiers. 

SLD-derivations may be finite or infinite. A finite SLD-derivation may be 
successful or failed. A successful SLD-derivation is one that ends in the empty 
clause. In other words, a successful derivation is just a refutation. A failed SLD­
derivation is one that ends in a non-empty goal with the property that the selected 
atom in this goal does not unify with the head of any program clause. Later we 
shall see examples of successful, failed and infinite derivations (see Figure 2 and 
Figure 3). 
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G0[ G/Cl ' e l 

G
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� c2. e2 

Fig. 1 .  An SLD-derivation 

Definition Let P be a definite program. The success set of P is the set of all 
Ae BP such that P u { �A} has an SLD-refutation. 

The success set is the procedural counterpart of the least Herbrand model. We 
shall see later that the success set of P is in fact equal to the least Herbrand model 
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of P. Similarly, we have the procedural counterpart of a correct answer. 

Definition Let P be a definite program and G a definite goal. A computed 

answer e for P u { G } is the substitution obtained by restricting the composition 
e1 . . .  en to the variables of G, where e1 ' . . . ,en is the sequence of mgu's used in an 
SLD-refutation of P u { G } .  

Example If P is the slowsort program and G is the goal t-sort(17.22.6.5 .nil,y), 
then { y/5.6 . 17.22.nil } is a computed answer. 

The first soundness result is that computed answers are correct. In the fonn 
below, this result is due to Clark [16] . 

Theorem 7.1 (Soundness of SLD-Resolution) 
Let P be a definite program and G a definite goal. Then every computed 

answer for P u { G }  is a correct answer for P u { G } .  

Proof Let G be the goal t-A1 '  . . .  ,Ak and e1 ' . . . ,en be the sequence of 
mgu' s used in a refutation of P u { G } .  We have to show that 

· V'((A1A . . .  /\Ak)e1 . . .  en) is a logical consequence of P. The result is proved by 
induction on the length of the refutation. 

Suppose first that n=l . This means that G is a goal of the form t-Al' the 
program has a unit clause of the form At- and A1e1  = Ae1 .  Since A181t- is an 
instance of a unit clause of P, it follows that V'(A1e1)  is a logical consequence of 
P. 

Next suppose that the result holds for computed answers which come from 
refutations of length n-1 . Suppose e1 ' . . .  ,en is the sequence of mgu' s used in a 
refutation of P u { G )  of length n. Let At-B l ' . . .  ,Bq (q�O) be the first input clause 
and Am the selected atom of G. By the induction hypothesis, 
V'((A1A . . . AAm-l"B l/\ . . .  ABq"Am+l""""Ak)e1 . . .  en) is a logical consequence of P. 
Thus, if q>O, V'((B1 A  . . .  /\Bq)e1 . . .  en) is a logical consequence of P. Consequently, 
V'(Ame 1  ... en), which is the same as V'(A8 1 ... en), is a logical consequence of P. 
Hence V'((A1A ... /\Ak)e 1 ... en) is a logical consequence of P. • 

Corollary 7.2 Let P be a definite program and G a definite goal. Suppose 
there exists an SLD-refutation of P u { G } .  Then P u { G } is unsatisfiable. 

Proof Let G be the goal t-A1 ' . . .  ,Ak. By theorem 7 . 1 , the computed answer e 
coming from the refutation is correct. Thus V'((A1A . . .  AAk)8) is a logical 
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consequence of P. It follows that P u { G} is unsatisfiable. • 

Corollary 7.3 The success set of a definite program is contained in its least 
Herbrand model. 

Proof Let the program be P, let AeBp and suppose P u { f-A }  has a 
refutation. By theorem 7. 1 , A is a logical consequence of P. Thus A is . in the least 
Herbrand model of P. • 

It is possible to strengthen corollary 7.3 . We can show that if Ae Bp and 
P u { f-A }  has a refutation of length n, then AeTp in. This result is due to Apt 
and van Emden [4] .  

I f  A i s  an atom, we put [A] = { A'e Bp : A'=AO, for some substitution 0 } . 
Thus [A] is the set of all ground instances of A. Equivalently, [A) is [A)1, where J 

is the Herbrand pre-interpretation. 

Theorem 7.4 Let P be a definite program and G a definite goal f-A1 , . . .  ,Ak. 
Suppose that P u {G}  has an SLD-refutation of length n and e 1 ' . . . ,en is the 
sequence of mgu's of the SLD-refutation. Then we have that 
�=1[Aje 1 . . .  en] s:: Tpin. 

Proof The result is proved by induction on the length of the refutation. 
Suppose first that n=l . Then G is a goal of the form f-Al ' the program has a unit 
clause of the form Af- and A1e 1 = Ae1 . Clearly, [A] � Tpi1 and so 
[A1 e1 ] !;;; Tpil . 

Next suppose the result is true for refutations of length n-1 and consider a 
refutation of P u { G }  of length n. Let Aj be an atom of G. Suppose first that Aj 
is not the selected atom of G. Then Aje 1 is an atom of G 1 , the second goal of the 
refutation. The induction hypothesis implies that [Aje1 e2 . . .  en] �:; T p i(n-1) and 
Tp i(n-1) �:; Tp in, by the monotonicity of Tp. 

Now suppose that Aj is the selected atom of G. Let Bf-B l ' . . . ,Bq (<?-0) be the 
first input clause. Then Aje 1 is an instance of B .  If q=O, we have [B) �:; Tp il . 
Thus [Aje1 . . .  en] �:; [Aje1] !::; [B) !:;; Tp il !: Tp in. If q>O, by the induction 
hypothesis, [Bie 1 . . .  en] !:: Tp i(n-1), for i=1 , . . .  ,q. By the definition of Tp, we have 
that [Aje 1 . . .  en] � Tpin. • 

Next we tum to the problem of the occur check. As we mentioned earlier, the 
occur check in the unification algorithm is very expensive and most PROLOG 
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systems leave it out for the pragmatic reason that it is only very rarely required. 
While this is certainly true, its omission can cause serious difficulties. 

Example Consider the program 
test +--- p(x,x) 
p(x,f(x)) +-

Given the goal +-test, a PROLOG system without the occur check will answer 
"yes" (equivalently, e is a correct answer) ! This answer is quite wrong because 
test is not a logical consequence of the program. The problem arises because, 
without the occur check, the unification algorithm of the PROLOG system will 
mistakenly unify p(x,x) and p(y,f(y)). 

Thus we see that the lack of occur check has destroyed one of the principles 
on which logic programming is based - the soundness of SLD-resolution. 

Example Consider the program 
test +--- p(x,x) 
p(x,f(x)) +--- p(x,x) 

. This time a PROLOG system without the occur check will go into an infinite loop 
in the unification algorithm because it will attempt to use a "circular" binding 
made in the second step of the computation. 

These examples illustrate what can go wrong. We can distinguish two cases. 
The first case is when a circular binding is constructed in a "unification", but this 
binding is never used again. The first example illustrates this. The second case 
happens when an attempt is made to use a previously constructed circular binding 
in a step of the computation or in printing out an answer. The second example 
illustrates this. The first case is more insidious because there may be no indication 
that an error has occurred. 

While these examples may appear artificial, it is important to appreciate that 
we can easily have such behaviour in practical programs. The most commonly 
encountered situation where this can occur is when programming with difference 
lists [2 1 ] . A difference list is a term of the form x-y, where - is a binary function 
(written infix). x-y represents the difference between the two lists x and y. For 
example, 34.56. 12.x-x represents the list [34, 56, 12] . Similarly, x-x represents the 
empty list. 
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Let us say two difference lists x-y and z-w are compatible if y=z. Then 
compatible difference lists can be concatenated in constant time using the 
following definition which comes from [2 1] 

concat(x-y ,y-z,x-z) � 
For example, we can concatenate 12.34.67 .45.x-x and 36.89.y-y in one step to 
obtain 12.34.67 .45.36.89.z-z. This is clearly a very useful technique. However, it 
is also dangerous in the absence of the occur check. 

Example Consider the program 
test � concat(u-u,v-v,a.w-w) 
concat(x-y,y-z,x-z) � 

Given the goal �test, a PROLOG system without the occur check will answer 
"yes" . In other words, it thinks that the concatenation of the empty list with the 
empty list is the list [a) ! 

Programs which use the difference list technique normally do not have an 
explicit concat predicate. Instead the concatenation is done implicitly. For 
example, the following clause is taken from such a version of quicksort [93] .  

Example Consider the program 
qsort(nil,x-x) � 

Given the goal �qsort(nil ,a.y-y) , a PROLOG system without the occur check will 
succeed on the goal (however, it will have a problem printing out its "answer",  
which contains the circular binding y/a.y). 

It is possible to minimise the danger of an occur check problem by using a 
certain programming methodology. The i;1ea is to "protect" programs which could 
cause problems by introducing an appropriate top-level predicate to restrict uses of 
the program to those which are known to be sound. This means that there must be 
some mechanism for forcing all calls to the program to go through this top-level 
predicate. However, with this method, the onus is still on the programmer and it 
thus remains suspect. A better idea [82] is to have a preprocessor which is able to 
identify which clauses may cause problems and add checking code to these clauses 
(or perhaps invoke the full unification algorithm when these clauses are used) . 
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§8. COMPLETENESS OF SLD-RESOLUTION 

The major result of this section is the completeness of SLD-resolution. We 
begin with two very useful lemmas. 

Lemma 8.1 (Mgu Lemma) 
Let P be a definite program and G a definite goal. Suppose that P u { G }  has 

an unrestricted SLD-refutation. Then P u { G }  has an SLD-refutation of the same 
length such that, if e 1  , . . .  ,en are the unifiers from the unrestricted SLD-refutation 
and 8'1 ' . . .  ,8� are the mgu's frOm the SLD-refutation, then there exists a substitution 
y such that e 1 . . .  en = Si . . . e� y. 

Proof The proof is by induction on the length of the unrestricted refutation. 
Suppose frrst that n=l . Thus P u { G }  has an unrestricted refutation G0=G, G1= o 

with input clause c1 and unifier e 1 . Suppose 8'1 is an mgu of the atom in G and 
the head of the unit clause c 1 . Then e 1 = Siy, for some y. Furthermore, P u { G}  
has a refutation G0=G, G 1= o with input clause c1 and mgu 8'1 . 

Now suppose the result holds for n-1 . Suppose P u { G }  has an unrestricted 
refutation G0=G, G l ' . . . ,Gn= o of length n with input clauses C 1 ' . . .  ,Cn and unifiers 
e 1 ,  . . .  ,en. There exists an mgu 8'1 for the selected atom in G and the head of c 1 
such that e1 = Sip, for some p. Thus P u { G }  has an unrestricted refutation 
G0=G, G'1 , G2, . . .  ,Gn = o with input clauses c1 , . . .  ,Cn and unifiers e'1 , pe2, e3, . . .  ,en, 
where 0 1 = GiP· By the induction hypothesis, P u { Gi } has a refutation 
Gi , 02, . . .  ,G�= o with mgu' s  82, . . . ,8� such that pe2 . . . en = e2 . . .  S�y, for some y. 
Thus P u { G }  has a refutation 00=0, G'1 , . . .  ,G�= o with mgu's 8'1 ' . . .  ,8� such that 
e1 . . .  en = Si pe2 . . .  en = ei . . . e� y. 1 

Lemma 8.2 (Lifting Lemma) 
Let P be a definite program, G a definite goal and 8 a substitution. Suppose there 

exists an SLD-refutation of P u {08}  such that the variables in the input clauses are 
distinct from the variables in 8 and G. Then there exists an SLD-refutation of 
P u { G }  of the same length such that, if 8 l ' . . .  ,en are the mgu 's from the SLD­
refutation of P u  { 08 }  and 8\ , . . .  ,8� are the mgu's from the SLD-refutation of 
P u { G } ,  then there exists a substitution 'Y such that ee 1 . . .  en = 8'1 . . .  8� y. 

Proof Suppose the first input clause for the refutation of P u ( GS } is c1 , the 
first mgu is e 1 and G 1 is the goal which results from the first step. Now 88 1 is a 
unifier for the head of C 1 and the atom in G which corresponds to the selected atom 
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in GO. The result of resolving G and c1 using ee 1 is exactly Gl " Thus we obtain a 
(properly standardised apart) unrestricted refutation of P u { G } ,  which looks exactly 
like the given refutation of p u { oe } .  except the original goal is different, of course, 
and the first unifier is ee 1 . Now apply the mgu lemma. I 

The first completeness result gives the converse to corollary 7 .3 .  This result is 
due to Apt and van Emden [4] . 

Theorem 8.3 The success set of a definite program is equal to its least 
Herbrand model. 

Proof Let the program be P. By corollary 7.3,  it suffices to show that the 
least Herbrand model of P is contained in the success set of P. Suppose A is in 
the least Herbrand model of P. By theorem 6.5, Ae Tp in, for some ne ro. We 
prove by induction on n that Ae T pin implies that P u { �A }  has a refutation and 
hence A is in the success set. 

Suppose first that n=l .  Then Ae TP it means that A is a ground instance of a 
unit clause of P. Clearly, P u (�A }  has a refutation. 

Now suppose that the result holds for n-1 . Let Ae TP in. By the definition of 
Tp, there exists a ground instance of a clause B�B 1 ' . . .  ,Bk such that A=BO and 
(B 1e, . . .  ,Bk9 }  s:: Tp i(n-1), for some e. By the induction hypothesis, P u { �Bie }  
has a refutation, for i=l ,  . . . ,k. Because each Bie i s  ground, these refutations can be 
combined into a refutation of P u { �(B 1 , . . .  ,Bk)9 } .  Thus P u { �A }  has an 
unrestricted refutation and we can apply the mgu lemma to obtain a refutation of 
P u { �A } .  I 

The next completeness result was first proved by Hill [46] . See also [4] . 

Theorem 8.4 Let P be a definite program and G a definite goal. Suppose that 
P u { G }  is unsatisfiable. Then there exists an SLD-refutation of P u { G } .  

Proof Le t  G be the goal �A1 ' . . .  ,Ak. Since P u { G }  i s  unsatisfiable, G is 
false wrt Mp. Hence some ground instance GO of G is false wrt Mp. Thus 
{ A 1e, . . .  ,Ake }  � Mp. By theorem 8.3, there is a refutation for P u { �Aie } ,  for 
i=l , . . . ,k. Since each A.e is ground, we can combine these refutations into a 1 
refutation for P u { GO } .  Finally, we apply the lifting lemma. I 

Next we tum attention to correct answers. It is not possible to prove the exact 
converse of theorem 7. 1 because computed answers are always "most general" .  
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However, we can prove that every correct answer is an instance of a computed 
answer. 

Lemma 8.5 Let P be a definite program and A an atom. Suppose that 't/(A) is 
a logical consequence of P. Then there exists an SLD-refutation of P u ( �A }  
with the identity substitution as the computed answer. 

Proof Suppose A has variables x1 ' . . . ,xn. Let a1 ' . . .  ,an be distinct constants not 
appearing in P or A and let S be the substitution { x1ta1 , . . .  ,xian } .  Then it is clear 
that AS is a logical consequence of P. Since AS is ground, theorem 8.3 shows that 
P u ( �AS } has a refutation. Since the ai do not appear in P or A, by replacing ai 
by xi (i=l , . . .  ,n) in this refutation, we obtain a refutation of P u { �A }  with the 
identity substitution as the computed answer. 8 

Now we are in a position to prove the major completeness result. This result 
is due to Clark [ 1 6] . 

Theorem 8.6 (Completeness of SLD-Resolution) 
Let P be a definite program and G a definite goal. For every correct answer S for 

P u ( G } ,  there exists a computed answer 0" for P u { G}  and a substitution "( such that 
S and 0""( have the same effect on all variables in G. 

Proof Suppose G is the goal �A 1 , . . . ,Ak. Since S is correct, 
V((A 11\ • • •  I\Ak)S) is a logical consequence of P. By lemma 8.5 ,  there exists a 
refutation of P u { �AiS }  such that the computed answer is the identity, for i=l , . . . ,k. 
We can combine these refutations into a refutation of P u ( GS } such that the 
computed answer is the identity. 

Suppose the sequence of mgu 's of the refutation of P u {GS }  is S 1 ' . . .  ,Sn. Then 
GSS 1 . . .  Sn=GS. By the lifting lemma, there exists a refutation of P u ( G }  with mgu's 
s'l ' . . .  ,S� such that ss r·S n = S'

r··s'n "(, for some substitution "(. Let 0" be s'
l . . . s� 

restricted to the variables in G. Then S and 0""( have the same effect on all variables in 
G. 8 

§9. INDEPENDENCE OF THE COMPUTATION RULE 

In this section, we introduce the concept of a computation rule, which is used 
to select atoms in an SLD-derivation. We show that, for any choice of 
computation rule, if P u (G } is unsatisfiable, we can always find a refutation 
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using the given computation rule. This fact is called the "independence" of the 
computation rule. We also prove that every computable function can be computed 
by a definite program. 

Definition A computation rule is a function from a set of definite goals to a 
set of atoms such that the value of the function for a goal is an atom, called the 
selected atom, in that goal. 

Definition Let P be a definite program, G a definite goal and R a computation 
rule. An SW-derivation of P u { G} via R is an SLD-derivation of P u { G }  in 
which the computation rule R is used to select atoms. 

It is important to realise that using a computation rule to select atoms in an 
SLD-derivation is actually a restriction, in the sense that, if the same goal occurs 
in different places, then the computation rule will always select the same atom of 
that goal. In other words, there are SLD-derivations which are not SLD­
derivations via R, for any computation rule R. 

Definition Let P be a definite program, G a definite goal and R a computation 
rule. An SW-refutation of P u { G }  via R is an SLD-refutation of P u { G}  in 
which the computation rule R is used to select atoms. 

Definition Let P be a definite program, G a definite goal and R a computation 
rule. An R-computed answer for P u { G}  is a computed answer for P u { G } 
which has come from an SLD-refutation of P u { G}  via R. 

Now we are in a position to consider the independence result. According to 
theorem 8.4, if P u { G }  is unsatisfiable, then there exists a refutation of P u { G } .  
In fact, we will show that, for any computation rule R ,  there i s  actually a refutation 
of P u {G } via R. This result means that, in principle, a logic programming 
system can use any computation rule it finds convenient. We will explore the 
practical consequences of this result in § 10. 

The key to the independence result is a technical lemma. For this, it will be 
convenient to introduce some new notation. If C is a definite program clause, then 
c+ denotes the head of the clause and c- denotes the body. 

Lemma 9.1 (Switching Lemma) 
Let P be a definite program and G a definite goal. Suppose that P u { G }  has 

an SLD-refutation G0=G, o1,  . . . ,Gq-l ' Gq' Gq+l ' . . .  ,Gn= o with input clauses 
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C1 ' . . . ,Cn and mgu's 8 1 ' ... ,8n. Suppose that 

Gq-l is +-A 1 ' . . .  ,Ai-l 'Ai' . . . ,Aj-l 'Aj ' . . . ,Ak 
Gq is +-(A 1 , . . .  ,Ai_1 ,C�, . . .  ,Aj-l '�'· · · •Ak)8q 
G q+ l is +-(A 1 , . . . ,Ai-l ,C�, . . .  ,Aj_1 ,C�+ 1 , . . . ,Ak)8 q 8 q+ 1 . 
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Then there exists an SLD-refutation of P u { G }  in which Aj is selected in G q-1 
instead of Ai and Ai is selected in G q instead of �. Furthermore, if O" is the 
computed answer for P u { G }  from the given refutation and cr' is the computed 
answer for P u { G }  from the new refutation, then Gcr is a variant of Gcr' . 

+ + 
Proof We have Ajeqeq+1 = cq+leq+1 = cq+leqeq+l " Thus we can unify � 

and C�+1 . Let 8� be an mgu of Aj and C�+1 . Thus 8q8q+1 = 8�cr, for some 

substitution cr. Clearly, we can assume that 8� does not act on any of the variables 

of Cq. 

Furthermore, C�cr = C�S�cr = C�8q8q+l = Ai8q8q+l = Ai8�cr. Hence we can 

unify C� and Ai8�. Suppose 8�+1 is an mgu. Thus cr = 8�+1cr', for some cr'. 

Consequently, 8q8q+1 = 8�8�+1cr'. We have now shown that Ai and Aj can be 

selected in the reverse order. 

Next, note that Ai8�8�+1 = C�8�8�+1 ' but that 8q is an mgu of Ai and C�. 

Thus 8�8�+1 = 8q'Y· for some y. But Aj8qy = �8�8�+1 = C�+18�8�+1 
C�+ 18 q 'Y = C�+ 1 y. Thus 'Y unifies Aj8 q and C�+ 1 ,  and so 'Y = 8 q+ 1 cr" , for some 

cr". Consequently, 8�8�+1 8q8q+1cr" and so the (q+1 )st goal in the new 

refutation is a variant of G q+ 1 . 
The remainder of the new refutation now proceeds in the same way as the 

given refutation (modulo variants) and the result follows. • 

Theorem 9.2 (Independence of the Computation Rule). 
Let P be a definite program and G a definite goal. Suppose there is an SLD­

refutation of P u { G }  with computed answer cr. Then, for any computation rule R, 
there exists an SLD-refutation of P u { G }  via R with R-computed answer cr' such 
that Gcr' is a variant of Gcr. 
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Proof Apply the switching lemma repeatedly. (See problem 15.) • 

We can use theorem 9.2 to strengthen theorems 8.3, 8.4 and 8.6. 

Definition Let P be a definite program and R a computation rule. The R­

success set of P is the set of all Ae Bp such that P u { f-A }  has an SLD-refutation 
via R. 

Theorem 9.3 Let P be a definite program and R a computation rule. Then the 
R-success set of P is equal to its least Herbrand modeL 

Proof The theorem follows immediately from theorems 8.3 and 9.2. • 

Theorem 9.4 Let P be a definite program, G a definite goal and R a 
computation rule. Suppose that P u { G }  is unsatisfiable. Then there exists an 
SLD-refutation of P u { G }  via R. 

Proof The theorem follows immediately from theorems 8.4 and 9.2. • 

Theorem 9.5 (Strong Completeness of SLD-Resolution) 
Let P be a definite program, G a definite goal and R a computation rule. Then for 

every correct answer 8 for P u { G } ,  there exists an R-computed answer a for 
P u { G }  and a substitution y such that 8 and ay have the same effect on all variables 
in G. 

Proof The theorem follows immediately from theorems 8 .6 and 9.2. • 
Theorem 9.4 is due to Hill [46] . See also [4] . Theorem 9.5 is due to Clark 

[ 16] . 

We now establish the important result that every computable function can be 
computed by an appropriate definite program. There are a number of ways of 
establishing this result, depending on the definition of "computable" chosen. For 
example, Tarnlund [ 102] showed that every Turing computable function can be 
computed by a definite program. Shepherdson established the result using 
unlimited register machines to define computable functions [96] . Kowalski [52] 
established the result by showing how to transform a set of recursive equations 
into a definite program. Andreka and Nemeti [ 1 ] and Sonenberg and Topor [ 100] 
show the adequacy of definite programs for computation over an Herbrand 
universe. Here, we follow Sebelik and Stepanek [9 1] by showing that every partial 
recursive function can be computed by a definite program. The definition of a 



§9. Independence of the Computation Rule 53 

partial recursive function and the basic results of computability are contained in 
[23] , for example. For a survey of these computability results, see [ 100] .  

Theorem 9.6 (Computational Adequacy of Definite Programs) 
Let f be an n-ary partial recursive function. Then there exists a definite 

program Pf and an (n+l)-ary predicate symbol Pf such that all computed answers 
for Pf u { �pf(skl(0), . . .  }11(0),x) } have the form { x/sk(O) } and, for all non­
negative integers k1 ' . . .  ,kn and k, we have f(kl ' . . .  ,kn) =k iff { x/sk(O) } is a computed 

answer for P f u { �pf(b (O), . . .  ,s �(O),x) } .  

Proof In the program P f' a non-negative integer k is represented by the term 
sk(O), where s represents the successor function. By theorem 9.2, we can suppose 
that all computed answers are R-computed, where R is the computation rule which 
always selects the leftmost atom. The result is proved by induction on the number 
q of applications of composition, primitive recursion and minimalisation needed to 
define f. 

Suppose first that q=O. Thus f must be either the zero function, the successor 
function or a projection function. 

Zero function 

Suppose that f is the zero function defmed by f(x)=O. Define P f to be the 
program Pf(x,O)�. 

Successor function 

Suppose that f is the successor function defined by f(x)=x+ 1. Define P f to be 
the program pr<x,s(x))�. 

Projection functions 

Suppose that f is the projection function defined by f(x l ' . . .  ,xn)=xj ' where 
ls;js;n. Define Pf to be the program Pf(x 1 , . . .  ,xn,xj)�. 

Clearly, for each of the basic functions, the program P f defined has the desired 
properties. 

Next suppose the partial recursive function f is defined by q (q>O) applications 
of composition, primitive recursion and minimalisation. 

Composition 

Suppose that f is defined by f(x 1 ' . . .  ,xn) = h(g1 (x 1 , . . .  ,xn) ,  . . .  ,gm(xl ' . . . ,xn)), 
where g1 ' . . .  ,gm and h are partial recursive functions. By the induction hypothesis, 
corresponding to each gi' there is a definite program P g. and a predicate symbol Pg. 
satisfying the properties of the theorem. Similarly, cofresponding to h, there is i 
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definite program Ph and a predicate symbol ph satisfying the properties of the 
theorem. We can suppose that the programs P , . . . ,P and Ph do not have any 
predicate symbols in common. Define P f to 

g6e th�m union of these programs 
together with the clause 

pr<x1 , . . .  ,xn,z) � Pg1 
(x1 , . . . ,xn,y 1) , . . .  ,pgm 

(x 1 , . . .  ,xn,ym)' ph(y 1 , . . .  ,ym,z) 
k k Clearly all computed answers for P f u { �pf(s l (O), . . .  ,s O(O),z) } have the form 

{ :z/sk(O) } ,  using the induction hypothesis. 
Now suppose that f(k1 , . . .  ,kn) ��- Thus gi(k1 , . . . ,kn) =ni, say, for 1 �i�m. By the 

induction hypothesis, [ y./s 1(0) } is a computed answer for 
Pg. u { �Pg.<

b(O), . . .  ,s�(O),yi} J . Also, by the induction hypothesis, { :z/sk(O) } is a 
1 1 n n k computed answer for Ph u { �ph(s l (O) ,  . . . ,s ID(O),z) } .  Hence { z/s (0) } is a 

k k computed answer for P f u { �Pf(s l(O), . . .  ,s O(O) ,z) } . 
Conversely, suppose that { :zlsk(O) } is a computed answer for 

P f u { �Pf(s kl (O), . . . ,s �(O),z) } .  From the refutation giving this answer, we can 
extract computed answers { yls\O) } for Pg. u { �Pg. <s

kl(0), . . .  }0(0) ,yi) } ,  for 
k 1 1 n n 1�i�m. and a computed answer [ :zls (0) } for Ph u [ �ph(s l (O), . . .  ,s ID(O) ,z) } .  It 

now follows from the induction hypothesis that g. (k1 , . . .  ,k ) =n. , for 1�i�m. and 
1 n 1 

that h(n1 , . . . ,nm) =k. Hence f(k1 , . . .  ,kn) =k. 
Primitive recursion 

Suppose that f is defined by 
f(x1 , . . . ,xn,O) = h(x1 , . . . ,xn) 
f(x1 , . . .  ,xn,y+ 1 ) = g(x1 , . . . ,xn,y,f(x1 , . . . ,xn,y)), 

where h and g are partial recursive functions. By the induction hypothesis, 
corresponding to h (resp. ,  g), there is a definite program Ph (resp. ,  P g) and a 
predicate symbol ph (resp.,  Pg) satisfying the properties of the theorem. We can 
also suppose that Ph and P g do not have any predicate symbols in common. Define 
Pf to be the union of Ph and P g together with the clauses 

pf(x l ' . . .  ,xn,0,z) � ph(x1 , . . .  ,xn,z) 
pf(x1 ' . . .  ,xn,s(y),z) � pf(x1 ' . . .  ,xn,y,u), Pg(xl ' . . . ,xn,y,u,z). 

An argument similar to the one for composition shows that P f has the desired 
properties. 

Minimalisation 

Suppose that f is defined by f(x 1 , . . .  ,xn) = j.l.y(g(x1 , . . .  ,xn,y)=O), where g is a 
partial recursive function. That is, j.l.y(g(xl ' . . .  ,xn,y)=O) is the least y such that 
g(x1 ' . . .  ,xn,z) is defined for all z�y and g(x 1 , . . .  ,xn,y)=O, if such a y exists; 
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otherwise, Jly(g(xl ' . . .  ,xn,y)=O) is undefined. By the induction hypothesis, 
corresponding to g, there is a defmite program P g and a predicate symbol p g 
satisfying the properties of the theorem. Define P f to be P g together with the 
clauses 

pf(x 1 ' . . .  ,xn,y) f- pg(x1 , . . .  ,xn,O,u) , r(x1 , . . .  ,xn,O,u,y) 
r(x 1 ' . . . ,xn,y,O,y) f-
r(x l ' . . .  ,xn,y,s(v),z) f- Pg(xl ' . . .  ,xn,s(y),u), r(x1 ' . . .  ,xn,s(y),u,z) . 

An argument similar to the one for composition shows that P f has the desired 
properties. • 

§10. SLD-REFUTATION PROCEDURES 

In this section, we consider the possible strategies a logic programming system 
might adopt in its search for a refutation. We show that the use of a depth-first 
search strategy has serious implications with regard to completeness. We also 
briefly discuss the automatic generation of control. 

The search space is a certain type of tree, called an SLD-tree. The results of 
§9 show that in building the SLD-tree, the system does not have to consider 
alternative computation rules. A computation rule can be fixed in advance and an 
SLD-tree constructed using this computation rule. This dramatically reduces the 
size of the search space. 

Definition Let P be a definite program and G a definite goal. An SW-tree for 
P u { G }  is a tree satisfying the following: 
(a) Each node of the tree is a (possibly empty) definite goal. 
(b) The root node is G. 
(c) Let f-A1 , . . .  ,Am•· · · •Ak (Je 1) be a node in the tree and suppose that Am is the 
selected atom. Then, for each input clause Af-B 1 , . . .  ,Bq such that Am and A are 
unifiable with mgu a, the node has a child 

f-(Al , . . . ,Am-1 ,B l , . . .  ,B q'Am+ 1 , . . .  ,Ak)S 
(d) Nodes which are the empty clause have no children. 

Each branch of the SLD-tree is a derivation of P u { G } .  Branches 
corresponding to successful derivations are called success branches, branches 
corresponding to infinite derivations are called infinite branches and branches 
corresponding to failed derivations are called failure branches. 
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Definition Let P be a definite program,. G a definite goal and R a computation 
rule. The SW-tree for P u { G}  via R is the SLD-tree for P u { G }  in which the 
atoms selected are those selected by R. 

Example Consider the program 
1 . p(x,z) +-- q(x,y) ,  p(y,z) 
2. p(x,x) +--
3. q(a,b) +-

and the goal +-p(x,b). Figures 2 and 3 show two SLD-trees for this program and 
goal. The SLD-tree .in Figure 2 comes from the standard PROLOG computation 
rule (select the leftmost atom). The SLD-tree in Figure 3 comes from the 
computation rule which always selects the rightmost atom. The selected atoms are 
underlined and the success, failure and infinite branches are shown. Note that the 
first tree is finite, while the second tree is infinite. Each tree has two success 
branches corresponding to the answers { x/a} and { x/b} .  

This example shows that the choice of  computation rule has a great bearing on 
the size and structure of the corresponding SLD-tree. However, no matter what the 
choice of computation rule, if P u { G }  is unsatisfiable, then the corresponding 
SLD-tree does have a success branch. This is just a restatement of theorem 9.4. 

Theorem 10.1 Let P be a definite program, G a definite goal and R a 
computation rule. Suppose that P u { G} is unsatisfiable. Then the SLD-tree for 
P u { G }  via R has at least one success branch. 

Theorem 9.5 can also be restated. 

Theorem 10.2 Let P be a definite program, G a definite goal and R a 
computation rule. Then every correct answer e for P u { G }  is "displayed" on the 
SLD-tree for P u { G }  via R. 

"Displayed" means that, given e,  there is a success branch such that e is an 
instance of the computed answer from the refutation corresponding to this branch. 

While any two SLD-trees may have greatly different size and structure, they 
are essentially the same with respect to success branches. 

Theorem 10.3 Let P be a definite program and G a definite goal. Then either 
every SLD-tree for P u { G} has infinitely many success branches or every SLD­
tree for P u { G }  has the same finite number of success branches. 
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f-p(x,b) 

f-q(x,y) , p(y,b) 

3 

f-p(b,b) 

f-q(b,u), p(u,b) 

failure 

0 
{ x/a }  

success 

Fig. 2. A finite SLD-tree 

0 
{ x/b}  

success 
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Proof Using the switching lemma, we can set up a bijection between the 
success branches of any pair of SLD-trees. (See problem 17.) • 

For example, in Figures 2 and 3, the respective success branches giving the 
answer { x/a}  can be transformed into one another by using the switching lemma. 

Next we tum to the problem of searching SLD-trees to find success branches. 

Definition A search rule is a strategy for searching SLD-trees to find success 
branches. An SW-refutation procedure is specified by a computation rule together 
with a search rule. 

Standard PROLOG systems employ the computation rule which always selects 
the leftmost atom in a goal together with a depth-first search rule. The search rule 
is implemented by using a stack of goals. An instance of the goal stack represents 
the branch currently being investigated. The computation essentially becomes an 
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�p(x,b) 

�q(x,y),p(y,b) 0 
{ x/b} 

success 
1 2 

�q(x,y), q(y,u), p(u,b) �q(x,b) 

2 3 

�q(x,y), q(y,u), q(u,v), p(v,b) �q(x,y), q(y,b) 0 

A2 { x/a}  
1 3 success 

' ' ' ' ' ' ' ' ' ' ' �q(x,a) 
infinite 

failure 

Fig. 3. An infinite SLD-tree 

interleaved sequence of pushes and pops on this stack. A push occurs when the 
selected atom in the goal at the top of the stack is successfully unified with the 
head of a program clause. The resolvent is pushed onto the stack. A pop occurs 
when there are no (more) program clauses with head to match the selected atom in 
the goal at the top of the stack. This goal is then popped and the next choice of 
matching clause for the new top of stack is investigated. While depth-first search 
rules have undeniable problems (see below), they can be very efficiently 
implemented. This approach is entirely consistent with the view, which we share, 
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that PROLOG is primarily a programming language rather than a theorem prover. 

For a system that searches depth-frrst, the search rule reduces to an ordering 

rule, that is, a rule which specifies the order in which program clauses are to be 
tried. Standard PROLOG systems use the order of clauses in a program as the 
fixed order in which they are to be tried. This is very simple and efficient to 
implement, but has the disadvantage that each call to a definition tries the clauses 
in the definition in exactly the same order. 

Naturally, we would prefer the search rule to be fair, that is, to be such that 
each success branch on the SLD-tree will eventually be found. For infinite SLD­
trees, search rules which do not have a breadth-first component will not be fair in 
general. However, a breadth-first component is less compatible with an efficient 
implementation. 

Let us now consider the "completeness" of logic programming systems that 
use a depth-frrst search rule combined with a fixed order for trying clauses given 
by their ordering in the program. As well as standard PROLOG systems, let us 
also consider systems, such as IC-PROLOG [ 19] , MU-PROLOG [73] , [74] and 
NU-PROLOG [ 104] , [75], which allow more complex computation rules. 
According to theorem 10. 1 , if P u { G} is unsatisfiable, no matter what the 
computation rule, the corresponding SLD-tree will always contain a success 
branch. The question is this: will a logic programming system with a depth-first 
search rule using a fixed order for trying program clauses and an arbitrary 
computation rule, guarantee to always find the success branch? Unfortunately, the 
answer is no. In other words, none of the earlier completeness results is applicable 
to most current PROLOG systems because efficiency considerations have forced 
the implementation of unfair search rules! 

Let us consider an example to make this clear. 

Example Let P be the program 
1 . p(a,b) � 
2. p(c,b) � 

3. p(x,z) � p(x,y), p(y,z) 
4. p(x,y) � p(y,x) 

and G be the goal �p(a,c) . It is straightforward to show that P u {G }  has a 
refutation and, moreover, that if any clause of P is omitted, P u {G }  will no 
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longer have a refutation. 
We claim that no matter how the clauses of P are ordered and no matter what 

the computation rule, a logic programming system using a depth-first search with 
the fixed order for trying program clauses, will never find a refutation. 

This claim follows immediately from the fact that clauses 3 and 4 have 
completely general heads. They will therefore always match any subgoal. Thus if 
clause 3 is before clause 4 in the program, the system will never consider clause 4 

and vice versa. However, all the clauses are needed in any refutation. (See 
problem 1 8.) 

Figure 4 illustrates the situation. There we have given the SLD-tree resulting 
from the use of the standard computation rule, which selects the leftmost atom, and 
the order for trying clauses given by the order of the clauses in the above program. 
As can be seen, the leftmost branch of this SLD-tree is infinite and thus a depth­
first search will never find the success branch. In fact, for every computation rule 
and every fixed order for trying the program clauses, the leftmost branch of the 
corresponding SLD-tree will be infinite. 

Finally, we discuss the importance of using appropriate computation rules. It 
would clearly be a substantial step towards purely declarative programming if we 
were able to build systems which would automatically find an appropriate 
computation rule for each program run on the system. To illustrate what is 
involved in this, consider once again the slowsort program. 

sort(x,y) f- sorted(y), perm(x,y) 
sorted(nil) f-
sorted(x.nil) f-
sorted(x.y.z) f- x�y, sorted(y.z) 
perm(nil,nil) f-
perm(x.y,u.v) f- delete(u,x.y,z), perm(z,v) 
delete(x,x.y,y) f-
delete(x,y.z,y.w) f- delete(x,z,w) 
O�x f-
f(x)�f(y) f- x�y 

Now the first thing to note about slowsort is that it does not run on standard 
PROLOG systems! Consider the goal f-sort( l7.22.6.5 .nil,y) . A standard PROLOG 
system goes into an infinite loop because sorted makes longer and longer incorrect 
guesses for y. Of course, sorted has no business guessing at all. It is purely a test. 
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Fig. 4. SLD-tree which illustrates the problem with depth-first search 

Thus a way to fix the problem is to change the definition of sort to 
sort(x,y) +- perm(x,y), sorted(y) 
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This a t  least gives a program which runs, even if  i t  i s  spectacularly inefficient. It 
sorts the given list by making random permutations of it and then using sorted to 
check if the permutations are sorted. 



62 Chapter 2. Definite Programs 

The attraction of the slowsort program is that it does give a very clear logic 
component for a sorting program. The disadvantage for standard PROLOG systems 
is that the only way to make it reasonably efficient is to substantially change the 
logic. To keep the above simple logic what we require is a computation rule which 
coroutines between perm and sorted. In this case, the list is given to perm which 
generates a partial permutation of it and then checks with sorted to see if the 
partial permutation is correct so far. If sorted finds that the partial permutation is 
indeed sorted, perm generates a bit more of the permutation and then checks with 
sorted again. Otherwise, perm undoes a bit of the partial permutation, generates a 
slightly different partial permutation and checks with sorted again. Such a program 
is clearly going to be a great deal more efficient than the one which generates an 
entire permutation before checking to see if it is sorted. 

Thus we can obtain a more efficient sorting program by adding clever control 
to the simple logic. (Of course, much more efficient sorting programs are known, 
but this is not the point of the discussion.) There are now a number of PROLOG 
systems which allow the programmer to specify such control. For example, in 
NU-PROLOG [104] the programmer could add the when declarations 

?- sorted(nil) when ever 
?- sorted(x.y) when y 

to the program. If the argument of the call to sorted either is nil or has the form 
s.t, where t is a non-variable, then the call proceeds. Thus the calls sorted(nil) and 
sorted(3.2.x) will proceed. If the argument of the call to sorted does not unify 
with nil or x.y, then the call proceeds (and then fails). If the argument of the call 
to sorted has the form y or s.y, then the call to sorted delays. Thus the call 
sorted(3.y) will delay. When a call sorted(y) or sorted(s.y) is delayed, the variable 
y is marked. When this variable is bound later, the delayed subgoal is resumed. 
This simple mechanism achieves the desired behaviour. 

In standard PROLOG systems, a "generator" subgoal should come before a 
"test" subgoal. Thus perm should be put before sorted, if slowsort is to be run on 
a standard PROLOG system. However, in NU-PROLOG, the "test" should be put 
before the "generator" .  This order, together with appropriate when declarations 
on the "test" , ensures proper coroutining between the "test" and the "generator". 
The coroutining starts by delaying the "test". The "generator" is then run until it 
creates a binding which causes the "test" to be resumed, and so on. 
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When declarations would not be of major interest if their addition always 
required programmer intervention. However, NU-PROLOG has a preprocessor 
which is able to automatically add when declarations to many programs in order to 
obtain more sensible behaviour. For example, given the slowsort program as input, 
the preprocessor outputs the above when declarations for sorted. (It also gives 
when declarations for perm, delete and �. but these are not needed for the use we 
have made of slowsort.) It does this by finding clauses with recursive calls which 
could cause infinite loops and generating sufficient when declarations to stop the 
loops. The preprocessor is also able to recognise that sorted is a "test" and should 
appear before perm in the first clause. It will reorder sorted and perm, if necessary. 
An account of the automatic generation of control is given in [74] . By relieving 
programmers of some of the responsibility for providing control in this way, NU­
PROLOG is a step towards the ideal of purely declarative programming. 

§11. CUTS 

In this section, we discuss the cut, which is a widely used and controversial 
control facility offered by PROLOG systems. It is usually written as " ! " in 
programs, although some systems call it " slash" and write it as "/" . There has 
been considerable discussion of the advantages and disadvantages of cut and, in 
particular, whether it "affects the semantics" of programs in which it appears. We 
argue that cut does not affect the declarative semantics of definite programs, but it 
can introduce an undesirable form of incompleteness into the refutation procedure. 
(In § 15 ,  we discuss the effect that cuts can have in a program which has negative 
literals in the body of a program clause.) 

First, we must be precise about what a cut actually does. Throughout this 
discussion, we restrict attention to systems which always select the leftmost atom 

in a goal. Cut is simply a non-logical annotation of programs which conveys 
certain control information to the system. Although it is written like an atom in the 
body of a clause, it is not an atom and has no logical significance at all. On the 
other hand, for pedagogical reasons, it is sometimes convenient to regard it as an 
atom which succeeds immediately on being called. The declarative semantics of a 
program with cuts is exactly the declarative semantics of the program with the cuts 
removed. In other words, the cuts do not in any way modify the declarative 
reading of the program. 
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What, then, is the nature of the control information conveyed by a cut? First, 

we need some terminology. Let us call the goal which caused the clause containing 

the cut to be activated, the parent goal. That is, the selected atom in the parent 

matched the head of the clause whose body contains the cut. Now, when 

" selected",  the cut simply "succeeds" immediately. However, if backtracking 

later returns to the cut, the system discontinues searching in the subtree which has 

the parent goal at the root. The cut thus causes the remainder of that subtree to be 

pruned from the SLD-tree. 

To clarify this, consider the following program fragment 

A � B, C  

B � D, ! , E  

D �  

where A, B, C, D and E are atoms. In Figure 5, we show part of the SLD-tree for 

a call to this program. The selected atom B in the goal �B,C causes the cut to be 
introduced. The atom D is then selected and succeeds. The cut then succeeds, but 

the subgoal E eventually fails and the system backtracks to the cut. At this point, 

"deep" backtracking occurs. The system discontinues any further searching in the 

subtree which has the root �B,C and, instead, resumes the search with the next 

choice for the goal �A. This can be implemented very simply by popping goals 

from the goal stack until the goal �A becomes top of the stack. 

So a cut "merely" prunes the SLD-tree. Is it possible that a cut can somehow 

be harmful? The key issue is whether or not there is an answer to the (top level) 

goal in the part of the SLD-tree pruned by the cut. If there is no answer in the 

pruned part (that is, if the pruned part does not contain a success branch), then we 

call such a use of cut safe. However, if a success branch gets pruned by the cut, 

we call such a use of cut unsafe. Safe uses of cut are beneficial - they improve 

efficiency without missing answers. Unsafe uses of cut are harmful to the extent 

that a correct answer is missed. 

Thus the harmful effect of cuts is that they can introduce a form of 

incompleteness into the SLD-resolution implementation of correct answer. 

Theorem 9.5 assures us that in the absence of cuts every correct answer can be 

computed. However, a cut in a program can destroy the completeness guaranteed 

by this theorem. 
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Note that this form of incompleteness is of a different nature from the form of 
incompleteness mentioned in § 10, which occurs because a depth-first search can 
get lost down an infinite branch. A system which allows the search to become lost 
down an infinite branch does not give any answer at all (only a stack overflow 
message!) .  With an unsafe use of cut, a system can answer "no" when it should 
have answered "yes" . However you look at it, the system has given an incorrect 
answer. 

But, there is a further, much more harmful, effect of cuts. This occurs when 
programmers take advantage of cuts to write programs which are not even 
declaratively correct. For example, consider the program 

max(x,y,y) f- x�y. ! 
max(x,y,x) f-.-

where max(x,y,z) is intended to be true iff z is the maximum of x and y. 
Advantage has been taken of the effect of the cut to leave the test x>y out of the 
second clause. Procedurally, the semantics of the above program is the maximum 
relation. Declaratively, it is something else entirely. Such programs severely 
compromise the credibility of logic programming as declarative programming. 

Admittedly, there are occasions when efficiency considerations force the use of 
such aberrations. However, it is far better for programmers, whenever possible, to 
make use of such higher level facilities as (sound implementations of) if-then-else, 
negation and not equals, which are not only reasonably efficient, but also lead to 
programs whose declarative semantics more accurately reflects the relation being 
computed. 

PROBLEMS FOR CHAPTER 2 

1 . Complete the proof of proposition 6. 1 .  

2 .  Find a finite set S of clauses and a non-empty set {Mi } ie l of Herbrand models 
for S such that n. 1M. is not a model for S. 

l E  1 

3. Let X be a directed subset of the lattice of Herbrand interpretations of a definite 
program. Show that { A1 ' .. . ,An } t;: lub(X) iff { A 1 ' . . .  ,An } t;: I, for some le X. 
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4. Let P be the program 
p(a) (- p(x), q(x) 
p(f(x)) (- p(x) 
q(b) (-
q(f(x)) (- q(x) 

Show that Tp.!.ro = {p(fl(a)) : ne ro} u { q(fl(b)) : ne ro} 
Tp.!.ro2 = lfp(Tp) = { q(fl(b)) : ne ro } .  

5. Let P be the program 
q(b) (-
q(f(x)) (- q(x) 
p(f(x)) (- p(x) 
p(a) (- p(x) 
r(c) (- r(x) , q(x) 
r(f(x)) (- r(x) 
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= 

Show that :J> iro = {q(fl(b)) : ne ro } ,  Tp.!.ro = {p(fl(a)) : nero}  u {q(fl(b)) : 

ne ro }  u ( r(f11(c)) : ne ro} and Tp.!.ro2 = (p(fl(a)) : ne ro} u {q(fl(b)) : nero}  = 

gfp(Tp)· 

6. Let P be the program 
p i (f(x)) (- p i (x) 
p2(a) (- PI (x) 
p2(f(x)) (- p2(x) 
p3(a) (- p2(x) 
p3(f(x)) (- p3(x) 
Pia) (- p3(x) 
p4(f(x)) (- PiX) 
p5(a) (- p4(x) 
p5(f(x)) (- p5(x) 

Show that T p.J..co4 '# gfp(T p). but T p.J..ro5 = 0 = gfp(T p) = lfp(T p)· 

7. (a) Let P be a definite program which contains no function symbols. Show that 
Tp.!.ro = gfp(Tp).  
(b) Let P be a definite program with the property that, for each clause, each 
variable in the body of the clause also appears in the head. Show that 
T p.J..ro = gfp(T p)· 
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8. Let P be a definite program with the following property: for each clause in P, if 

the clause has variables in the body that do not appear in the head, then the set of 

variables in the head is disjoint from the set of variables in the body. Prove that 

gfp(Tp) = Tp
.!.ron, for some finite n depending on P. 

9. Give an example of a correct answer which is not computed. 

10. Let P be the slowsort program, G the goal �sort(l .O.nil,y) and R the 

computation rule which always selects the leftmost atom. Show directly that 

P v { G }  has an SLD-refutation via R. 

1 1 . Consider the program 

leaves(tree(void,v,void),v.x-x) � 

leaves(tree(u,v,w),x-y) � leaves(u,x-z), leaves(w,z-y) 

Find a goal such that a PROLOG system without the occur check will answer the 

goal incorrectly. 

12. Show that if the occur check is omitted from the unification algorithm, one can 

use SLD-resolution to "prove" that V'x 3y p(x,y) � 3y V'x p(x,y) is valid. 

(Hint: this problem requires the use of Skolem functions [66, p. 126]). 

13. Find an example to show that Ae Tp 
'tn, for some ne ro, does not necessarily 

imply that there exists an SLD-refutation of length � ,  n for P u { �A } .  

14. Let P be a definite program and A an atom. Determine whether the following 

statement is correct or not: 

'V(A) is a logical consequence of P iff [A] 6 Tp 
'tn, for some ne ro. 

15. Complete the details of the proof of theorem 9.2. 

16. Let P be the program 

p(x) � q(x), r(x) 

q(a) � 

r(x) � r1 (x) 

r1 (a) � 
Let R be the computation rule which always selects the leftmost atom and R' be 
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the computation rule which always selects the rightmost atom. Use the switching 

lemma to transform the refutation of P u { �p(x) } via R into one via R'. 

17. Complete the details of the proof of theorem 10.3. 

1 8.  Let P be the program 

p(a,b) � 

p(c,b) � 

p(x,z) � p(x,y), p(y,z) 

p(x,y) � p(y,x) 

and G be the goal �p(a,c). Show that, if any clause of P is omitted, P u { G }  does 

not have a refutation (no matter what the computation rule). 

19. Find a definite program P and a definite goal G such that each SLD-tree for 

P u { G }  has two success branches, but no depth-frrst search will ever find both 

success branches no matter what the computation rule and even if the program 

clauses can be dynamically reordered for each call to each definition of the 

program. 

20. Let P be the slowsort program and G the goal �sort(1 .0.2.nil,y). Find an 

SLD-refutation of P u { G }  using a computation rule which suitably delays calls to 

sorted. 

2 1 .  What problems arise in a PROLOG system which allows coroutining 

computation rules and also has the cut facility? How might these problems be 
solved? 

22. Show that the condition in the lifting lemma that the variables in the input clauses 

be distinct from the variables in a and G cannot be dropped. 

23. Give an example of a definite program P, a definite goal G, and a correct answer e 
for P u { G }  such that there does not exist a computed answer a for P u { G }  and a 

substitution 'Y for which e = cry. 





Chapter 3 

NORMAL PROGRAMS 

In this chapter, we study various forms of negation. Since only positive 
information can be a logical consequence of a program, special rules are needed to 
deduce negative information. The most important of these rules are the closed 
world assumption and the negation as failure rule. This chapter introduces normal 
programs, which are programs for which the body of a program clause is a 
conjunction of literals .  The major results of this chapter are soundness and 
completeness theorems for the negation as failure rule and SLDNF-resolution for 
normal programs. 

§12. NEGATIVE INFORMATION 

The inference system we have studied so far is very specialised SLD­
resolution applies only to sets of Horn clauses with exactly one goal clause. Using 
SLD-resolution, we can never deduce negative information. To be precise, let P be 
a definite program and Ae Bp· Then we cannot prove that -A is a logical 
consequence of P. The reason is that P u { A }  is satisfiable, having Bp as a model. 

To illustrate this, consider the program 
studentGoe) +--
student(bill) +--
studentGim) +--
teacher(mary) +-

Now suppose we wish to establish that mary is not a student, that is, 
-student(mary). As we have shown above, -student(mary) is not a logical 
consequence of the program. However, note that student(mary) is also not a 
logical consequence of the program. What we can do now is invoke a special 
inference rule: if a ground atom A is not a logical consequence of a program, then 
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infer -A. This inference rule, introduced by Reiter [86] , is called the closed world 

assumption (CW A). (Because of the approach taken here to the CW A, we would 
have preferred it to have been called the closed world rule.) Under this inference 
rule, we are entitled to infer -student(mary) on the grounds that student(mary) is 
not a logical consequence of the program. 

The CW A is often a very natural rule to use in a database context. In 
relational databases, this rule is usually applied - information not explicitly present 
in the database is taken to be false. Of course, in logic programs, the situation is 
complicated by the presence of non-unit clauses. The information content of a 
program is not determined by mere inspection. It is now the set of all things which 
can be deduced from the program. Whether or not use of the CW A is justified 
must be determined for each particular application. While it is often natural to use 
the CWA, its use may not always be justified. 

The CWA is an example of a non-monotonic inference rule. Such rules are 
currently of great interest in artificial intelligence. (See, for example, [57] and the 
references therein.) An inference rule is non-monotonic if the addition of new 
axioms can decrease the set of theorems that previously held. As an example, if we 
add sufficient clauses to the above program so as to be able to deduce 
student(mary), then we will no longer be able to use the CWA to infer 
-student( mary). 

Now let us consider a program P for which the CW A is applicable. Let Ae Bp 
and suppose we wish to infer -A. In order to use the CWA, we have to show that 
A is not a logical consequence of P. Unfortunately, because of the undecidability 
of the validity problem of frrst order logic, there is no algorithm which will take an 
arbitrary A as input and respond in a finite amount of time with the answer 
whether A is or is not a logical consequence of P. If A is not a logical 
consequence, it may loop forever. Thus, in practice, the application of the CW A is 
generally restricted to those AEBp whose attempted proofs fail finitely. Let us 
make this idea precise. 

For a definite program P, the SW finite failure set of P is the set of all AEBp 
for which there exists a finitely failed SLD-tree for P u { f-A } ,  that is, one which 
is finite and contains no success branches. By proposition 13 .4 and corollary 7.2, 
if A is in the SLD finite failure set of P, then A is not a logical consequence of P 
and every SLD-tree for P u { f-A}  contains only infinite or failure branches. 
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Now let us return to the CWA. In order to show that Ae Bp is not a logical 

consequence of P, we can try giving �A as a goal to the system. Let us assume 

that A is not, in fact, in the success set of P. Now there are two possibilities: 

either A is in the SLD finite failure set or it is not. If A is in the SLD finite 

failure set, then the system can construct a finitely failed SLD-tree and return the 

answer "no". The CWA then allows us to infer -A. In the other case, each 

SLD-tree has at least one infinite branch. Thus, unless the system has a 

mechanism for detecting infinite branches, it will never be able to complete the 

task of showing that A is not a logical consequence of P. 

These considerations lead us to another non-monotonic inference rule, called 

the negation as failure rule. This rule, frrst studied in detail by Clark [ 15] ,  is also 

used to infer negative information. It states that if A is in the SLD finite failure set 

of P, then infer -A. Since the SLD finite failure set is a subset of the complement 

of the success set, we see that the negation as failure rule is less powerful than the 

CW A. However, in practice, implementing anything beyond negation as failure is 

difficult. The possibility of extending negation as failure closer to the CW A by 

adding mechanisms for detecting infinite branches has hardly been explored. 

Negation as failure is easily and efficiently implemented by "reversing" the 

notions of success and failure. Suppose Ae Bp and we have the goal � -A. The 

system tries the goal �A. If �A succeeds, then � -A fails, while if it fails 

finitely, then � -A succeeds. 

Next we note that definite programs lack sufficient expressiveness for many 

situations. The problem is that often a negative condition is needed in the body of 

a clause. As an example, consider the definition 

different(x,y) � member(z,x), -member(z,y) 

different(x,y) � -member(z,x), member(z,y) 

which defines when two sets are different. Practical PROLOG programs often 

require such extra expressiveness. Thus it is important to extend the definition of 

programs to include negative literals in the bodies of clauses. This is done in § 14, 
where normal programs are introduced. These are programs for which the body of 

a program clause is a conjunction of literals. 

However, even though normal programs allow negative literals in the bodies of 

program clauses, we still cannot deduce negative information from them. As 

before, the reason is that a normal program only contains the if halves of the 
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definitions of its predicate symbols, so that its Herbrand base is a model of the 

program. To deduce negative information from a normal program, we could 

"complete" the program. This involves adding the only-if halves of the definitions 

of the predicate symbols, together with an equality theory, to the program. In our 

previous example, if we add the missing only-if half to the definition of student, 

we obtain 

'Vx (student(x)H(x=joe )v(x=bill)v(x=jim)) 

Adding appropriate axioms for =, we can now deduce -student(mary). This 

process of completion is another way of capturing the idea that information not 

given by the program is taken to be false. The concept of a correct answer can be 

extended to this context by defining an answer to be correct if the goal, with the 

answer applied, is a logical consequence of the completion of the program. 

Having given the definition of the appropriate declarative concept, it remains 

to give the definition of a computed answer, which is the procedural counterpart of 

a correct answer. The mechanism usually chosen to compute answers is to use 

SLDNF-resolution, which is SLD-resolution augmented by the negation as failure 

rule. In § 15 and § 1 6, we study soundness and completeness results for SLDNF­
resolution and the negation as failure rule for normal programs. 

For additional discussion of the relationship between the CW A, the negation as 

failure rule and the completion of a program, we refer the reader to papers by 

Shepherdson [95] , [97] and [98] . In [95], alternatives to the soundness theorems 

15.4 and 15.6 below are presented, based on the idea of making explicit the 

appropriate first order theory underlying the CWA. Problems 26-3 1 at the end of 

this chapter are based on results from [95] . [98] contains a detailed discussion of 

some of the forms of negation used in logic programming, which as well as the 

approaches to negation based on (classical) first order logic mentioned above, also 

include the use of 3-valued logic, modal logic and intuitionistic logic. In this 

book, we concentrate on the approach to negation which is based on the 

completion of a program and first order logic . 

§13. FINITE FAILURE 

The main results of this section are several characterisations of the finite 

failure set of a definite program. 
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First, we give the definition of the finite failure set of a definite program. This 
definition was first given by Lassez and Maher [54] . 

Definition Let P be a definite program. Then �· the set of atoms in Bp which 
are finitely failed by depth d, is defined as follows: 
(a) AeF� if A¢Tp.J.. l .  

(b) Ae�, for d>l , if for each clause B+-B 1 ' . . .  ,Bn in P and each substitution e 
such that A=BO and B 1e, . . .  ,B e are ground, there exists k such that lS:kS:n and 

_n. 1 n 
Bk0e l:'p- .  

Definition Let P be a definite program. The finite failure set Fp of P is 
defined by Fp = u� 1�. 

Note the following simple relationship between Fp and T p.J..ro. (See problem 
1 .) 

Proposition 13.1 Let P be a definite program. Then Fp = Bp\T P.J..ro. 

We now give, more formally, the definition of the SLD finite failure set of a 
definite program [4] , [ 1 5] .  

Definition Let P be a definite program and G a definite goal. A finitely failed 

SLD-tree for P u { G }  is one which is finite and contains no success branches. 

Definition Let P be a definite program. The SW finite failure set of P is the 
set of all Ae Bp for which there exists a finitely failed SLD-tree for P u { +-A } . 

Note carefully in this last definition that there is no requirement that all SLD­
trees fail finitely, only that there exists at least one. 

Our main task is to establish the equivalence of Fp and the SLD finite failure 
set. We begin with two lemmas, due to Apt and van Emden [4] , whose easy 
proofs are omitted. (See problems 2 and 3.) 

Lemma 13.2 Let P be a definite program, G a definite goal and e a 
substitution. Suppose that P u {G}  has a finitely failed SLD-tree of depth s; k. 
Then P u {GO} also has a finitely failed SLD-tree of depth s; k. 

Lemma 13.3 Let P be a definite program and Aie Bp, for i=l ,  . . .  ,m. Suppose 
that P u { +-A1' . . .  ,Am} has a finitely failed SLD-tree of depth s; k. Then there 
exists ie { 1 , . . .  ,m} such that P u ( +-Ai } has a finitely failed SLD-tree of depth S: k. 
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The next proposition is due to Apt and van Emden [4] . 

Proposition 13.4 Let P be a definite program and Ae Bp. If P u { f-A }  has a 
finitely failed SLD-tree of depth :;; k, then A�T pJ..k. 

Proof Suppose first that P u { f-A }  has a finitely failed SLD-tree of depth 1 .  
Then A�Tp.!.l . 

Now assume the result holds for k-1 . Suppose that P u { f-A} has a finitely 
failed SLD-tree of depth :;; k. Suppose, to obtain a contradiction, that AeTp

J..k. 
Then there exists a clause Bf-B l ' . . .  ,Bn in P such that A=BO and 
{ B 1e, . . . ,Bn9 } !:.: Tp.!.(k-1), for some ground substitution e. Thus there exists an 
mgu "( such that Ay=By and 9=)U, for some CJ. Now f-(B 1 , . . .  ,Bn)"( is the root of a 
finitely failed SLD-tree of depth :;; k-1 . By lemma 13.2, so also is f-(B 1 , . . .  ,B0)9. 
By lemma 1 3.3, some f-Bie is the root of a finitely failed SLD-tree of depth :;; 
k-1 .  By the induction hypothesis, Bie�Tp

.l..(k-1) ,  which gives the contradiction. • 

It is interesting that the (strict) converse of proposition 13.4 does not hold. 
(See problem 4.) Next we note that SLD finite failure only guarantees the existence 
of one finitely failed SLD-tree - others may be infinite. It would be helpful to 
identify exactly those ways of selecting atoms which guarantee to find a finitely 
failed SLD-tree, if one exists at all. For this purpose, the concept of fairness was 
introduced by Lassez and Maher [54] . 

Definition An SLD-derivation is fair if it is either failed or, for every atom B 
in the derivation, (some further instantiated version of) B is selected within a finite 
number of steps. 

Note that there are SLD-derivations via the standard computation rule which 
are not fair. One can achieve fairness by, for example, selecting the leftmost atom 
to the right of the (possibly empty set of) atoms introduced at the previous 
derivation step, if there is such an atom; otherwise, selecting the leftmost atom. 

Definition An SLD-tree is fair if every branch of the tree is a fair SLD­
derivation. 

Proposition 13.5 Let P be a definite program and f-A1 , . . .  ,Am a definite goal. 
Suppose there is a non-failed fair derivation f-Al ' " .. ,Am=G0, 01 ' . . .  with mgu 's 
e1 , e2, . . . . Then, given ke ro, there exists ne ro such that [Aie1 . . .  9n] � Tp

J..k, for 
i=1 , . . .  ,m. 
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Proof Theorem 7.4 shows that we can assume that the derivation is infinite. 
Clearly it suffices to show that given ie { 1 , . . . ,m} and ke ro, there exists ne ro such 
that [Aie1 . . .  en] � Tp.!.k. 

Fix ie { 1 , . . . ,m } .  The result is clearly true for k=O. Assume it is true for k-1 . 
Suppose Aie1 . . .  ep-1 is selected in the goal Gp-1 . (By fairness, Ai must eventually 
be selected.) Let Gp be f-B l' . . .  ,Bq, where q� l .  By the induction hypothesis, there 
exists se ro such that uf=1 [Bjep+l" 'ep+s] !;; Tp.!.(k-1). Hence we have that 

[Aie 1 . . . ep+sJ !;;;;; Tp<uf= 1[Bjep+l"'ep+sD !;;;;; Tp<Tp.l..(k-1)) = TpJ..k. • 

Combining the results of Apt and van Emden [4] and Lassez and Maher [54] , 
we can now obtain the characterisations of the finite failure set. 

Theorem 13.6 Let P be a definite program and Ae Bp. Then the following are 
equivalent: 
(a) Ae Fp. 

(b) A�TpJ..ro. 
(c) A is in the SLD finite failure set. 
(d) Every fair SLD-tree for P u { f-A}  is finitely failed. 

Proof (a) is equivalent to (b) by proposition 13. 1 . That (d) implies (c) is 
obvious. Also (c) implies (b) by proposition 13 .4. 

Finally, suppose that (d) does not hold. Then there exists a non-failed fair 
derivation for f-A. By proposition 13.5, AeTpJ..ro. Thus (b) does not hold. • 

Theorem 1 3 .6 shows that fair SLD-resolution is a sound and complete 
implementation of fmite failure. 

§14. PROGRAMMING WITH THE COMPLETION 

In this section, normal programs are introduced. These are programs whose 
program clauses may contain negative literals in their body. The completion of a 
normal program is also defined. The completion will play an important part in the 
soundness and completeness results for the negation as failure rule and SLDNF­
resolution. The definition of a correct answer is extended to normal programs. 

Definition A program clause is a clause of the form 
Af-L1 , . . .  ,Ln 

where A is an atom and L 1 , . . .  ,Ln are literals .  
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Definition A normal program is a finite set of program clauses. 

Definition A normal goal is a clause of the form 
t-Ll , . . .  ,Ln 

where L1 ' . . .  ,Ln are literals. 

Definition The definition of a predicate symbol p in a normal program P is the 
set of all program clauses in P which have p in their head. 

Every definite program is a normal program, but not conversely. 

In order to justify the use of the negation as failure rule, Clark [ 15] introduced 
the idea of the completion of a normal program. We next give the definition of 
the completion. 

Let p(t1 , . . .  ,t )t-L1 , . . .  ,L be a program clause in a normal program P. We .n m 
will require a new predicate symbol =, not appearing in P, whose intended 
interpretation is the identity relation. The first step is to transform the given clause 
into 

p(xl , . . .  ,xn)t-(xl =tl )A . . .  A(Xn =tn)ALl A . . .  ALm 
where x1 , . . .  ,xn are variables not appearing in the clause. Then, if y 1 , . . .  ,y d are the 
variables of the original clause, we transform this into 

p(xl , . . .  ,xn)t-3y 1 . . .  3y d ((xl =t1)A . . .  A(Xn =tn)AL1A . . .  ALm) 
Now suppose this transformation is made for each clause in the definition of p. 

Then we obtain le 1 transformed formulas of the form 
p(xl , . . .  ,xn)+-El 

p(xl , . . .  ,xn)t-Ek 
where each Ei has the general form 

3y 1 . . .  3y d ((xl =tl )A . . .  A(Xn =tn)ALl A . . .  ALm) 
The completed definition of p is then the formula 

'Vx1 . . .  'VX:n (p(xl ' . . .  ,xn)�E1 v . . . v�) 

Example Let the definition of a predicate symbol p be 
p(y) +- q(y), -r(a,y) 
p(f(z)) +- -q(z) 
p(b) +-

Then the completed definition of p is 
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Vx (p(x) f-+ (3y ((x=y)Aq(y)A-r(a,y)) v 3z((x=f(z))A-q(z)) v (x=b))) 

Example The completed definition of the predicate symbol student from the 

example in § 12 is 

Vx (student(x)f-+(x=joe )v(x=bill)v(x=jim)) 

Some predicate symbols in the program may not appear in the head of any 

program clause. For each such predicate symbol q, we explicitly add the clause 

Vx1 . . .  Vxn -q(x 1 , . . .  ,xn) 

This is the definition of such q given implicitly by the program. We also call this 

clause the completed definition of such q. 

It is essential to also include some axioms which constrain =. The following 

equality theory is sufficient for our purpose. In these axioms, we use the standard 

notation "# for not equals. 

1 . c"#d, for all pairs c,d of distinct constants. 

2. V'(f(x1 , . . .  ,xn)"#g(yl ' . . .  ,y
m

)), for all pairs f,g of distinct function symbols. 

3. V'(f(x
l
' ... ,xn)"#C), for each constant c and function symbol f. 

4. V'(t[x]"#x), for each term t[x] containing x and different from x. 

5. V'((x1"#y1)v . . .  v(xn"#Yn)-+f(xl ' . . .  ,xn)"#f(yl ' . .. ,yn
)), for each function symbol f. 

6. V'(x=x). 

7.  V'((x1=y1)A ... A(Xn=Yn)-+f(x1 , . . .  ,xn)=f(yl ' . . .  ,yn
)), for each function symbol f. 

8. V'((x 1=y 1)A . . .  A(xn=Yn)-+(p(x 1 , . . .  ,xn)-+p(yl ' . . .  ,yn))), for each predicate symbol p 

(including =). 

Definition Let P be a normal program. The completion of P, denoted by 

comp(P), is the collection of completed definitions of predicate symbols in P 
together with the equality theory. 

Axioms 6, 7 and 8 are the usual axioms for first order theories with equality. 

Note that axioms 6 and 8 together imply that = is an equivalence relation. (See 

problem 9.) The equality theory places a strong restriction on the possible 

interpretations of =. This restriction is essential to obtain the desired justification 

of negation as failure. Roughly speaking, we are forcing = to be interpreted as the 

identity relation on Up. (See problem 10.) 

Now, as Clark [ 15] has pointed out, it is appropriate to regard the completion 

of the normal program, not the normal program itself, as the prime object of 

interest. Even though a programmer only gives a logic programming system the 
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normal program, the understanding is that, conceptually, the normal program is 
completed by the system and that the programmer is actually programming with 
the completion. Corresponding to this notion, we have the concept of a correct 
answer. The problem then arises of showing that SLD-resolution, augmented by the 
negation as failure rule, is a sound and complete implementation of the declarative 
concept of a correct answer. We tackle this problem in § 15 and § 1 6. 

Definition Let P be a normal program and G a normal goal. An answer for 
P u { G }  is a substitution for variables in G. 

Definition Let P be a normal program, G a normal goal �L1 , ... ,Ln, and e an 
answer for P u { G } .  We say e is a correct answer for comp(P) u { G }  if 
'v'((L r'' . . .  ALn)e) is a logical consequence of comp(P). 

It is important to establish that this definition generalises the definition of 
correct answer given in §6. The first result we need to prove this is the following 
proposition. 

Proposition 14.1 Let P be a normal program. Then P is a logical consequence 
of comp(P). 

Proof Let M be a model for comp(P). We have to show that M is a model for 
P. Let p(tl ' . . .  ,tn)�L1 , . . . ,Lm be a program clause in P and suppose that L1 ' . . .  ,Lm 
are true in M, for some assignment of the variables y 1 , . . .  ,y d in the clause. 

Consider the completed definition of p 
'Vx1 . . . 'Vxn (p(x1 , .. .  ,xn)�E1v . . .  v�) 

and suppose Ei is 
3y 1 . . .  3y d ((x1 =tl )A . . .  A(Xn =tn)AL1 A . . .  ALm) 

Now let x. be t. ( 1Sj!:On), for the same assignment of the variables y l ' . . .  ,y d as 
J J . 

above. Thus Ei is true in M, since L1 , . . .  ,Lm are true in M and also since M must 
satisfy axiom 6. Hence p(t1 , . . .  ,tn) is true in M. • 

We now define a mapping � from the lattice of interpretations based on some 
pre-interpretation J to itself. 

Definition Let J be a pre-interpretation of a normal program P and I an 
interpretation based on J. Then T{,<I) = { AJ,V : A�L1 A . . .  ALn e P, V is a 
variable assignment wrt J, and L1A . . .  ALn is true wrt I and V } .  
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When J is the Herbrand pre-interpretation of P, we write Tp instead of �· 
This convention is consistent with our earlier usage of T p· Note that � is 
generally not monotonic. For example, if P is the program 

p � -p 
then T p is not monotonic. However, if P is a definite program, then � is 
monotonic. Many other properties of Tp easily extend to -r:,. 

Proposition 14.2 Let P be a normal program, J a pre-interpretation of P, and I 
an interpretation based on J. Then I is a model for P iff -r:,(I) !:: I. 

Proof Similar to the proof of proposition 6.4. (See problem 1 1 .)  • 

The next result shows that fixpoints of -r:, give models for comp(P). 

Proposition 14.3 Let P be a normal program, J a pre-interpretation of P, and I 
an interpretation based on J. Suppose that I, together with the identity relation 
assigned to =, is a model for the equality theory. Then I, together with the identity 
relation assigned to =, is a model for comp(P) iff -r:,(I) = I. 

Proof Suppose first that -r:,(I) = I. Since we have assumed that I, together with 
the identity relation assigned to =, is a model for the equality theory, it suffices to 
show that this interpretation is a model for each of the completed definitions of 
comp(P). Consider a completed definition of the form Vx1 . . .  Vxn -q(x1 ' . . .  ,xn). 
Since I is a fixpoint, it is clear that the interpretation is a model of this formula. 
Now consider a completed definition of the form 

Vx1 . . .  Vxn (p(x1 , . . . ,xn)�E1 v . . .  vEk) 
Since -r:,(l) k; I, it follows that the interpretation is a model for the formula 

Vx1 . . . Vxn (p(x1 , . . . ,xn)�E1 v .. . vEk) 
Also, since -r:,(I) � I, it follows that the interpretation is a model for the formula 

Vx 1 . . . Vxn (p(x1 , . . .  ,xn)�E1 v . . .  vEk) 
Conversely, suppose that I, together with the identity relation assigned to = ,  is 

a model for the completion. Then using the fact that the interpretation is a model 
for formulas of the form 

Vx1 . . .  Vxn (p(x1 , . . .  ,xn)�E1 v . . .  vEk) 
it follows that -r:,(I) k; I. Similarly, using the fact that the interpretation is a 
model for formulas of the form 

Vx1 . . .  Vxn (p(x1 , . . .  ,xn)�E1 v . . . vEk) 
it follows that -r:,(l) � I. • 
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Proposition 14.4 Let P be a definite program and Ae Bp· Then Ae gfp(Tp) iff 
comp(P) u {A }  has an Herbrand model. 

Proof Suppose Ae gfp(Tp)· Then gfp(Tp) u { s=s : seUp } is an Herbrand 
model for comp(P) u { A } ,  by proposition 14.3. 

Conversely, suppose comp(P) u {A }  has an Herbrand model M. By the 
equality theory, the identity relation on Up must be assigned to = in the model M. 
Thus M has the form I u { s=s : se UpJ .  for some Herbrand interpretation I of P. 
Hence I=Tp(l), by proposition 14.3, and so Ae gfp(Tp)· I 

Proposition 14.5 Let P be a definite program and A1 , . . . ,Am be atoms. If 
\f(A 1 "· · ·"Am) is a logical consequence of comp(P), then it is also a logical 
consequence of P. 

Proof Let x 1 ' . . .  ,xk be the variables in A1A . . .  AAm. We have to show that 
'v'x1 . . .  'v'xk (A1 A . . .  AAm) is a logical consequence of P, that is, 
P u { -'v'x1 . . . 'v'xk (A1 A . . .  I\Am) } is unsatisfiable or, equivalently, S 
P u {-A} v . . .  v-A� } is unsatisfiable, where Ai is Ai with x1 ' . . .  ,xk replaced by 
appropriate Skolem constants. 

Since S is in clause form, we can restrict attention to Herbrand interpretations 
of S. Let I be an Herbrand interpretation of S. We can also regard I as an 

interpretation of P. (Note that I is not necessarily an Herbrand interpretation of P.) 
Suppose I is a model for P. Consider the pre-interpretation J obtained from I by 
ignoring the assignments to the predicate symbols in I. By proposition 14.2, we 
have that �(I) !:;;; I. Since � is monotonic, proposition 5.2 shows that there 
exists a fixpoint I' � I of Tf,. Since I', together with the identity relation 
assigned to =, is obviously a model for the equality theory, proposition 14.3 shows 
that this interpretation is a model for comp(P) . Hence -A '1 v . . . v-A� is false in this 
interpretation. Since I' !:;;; I, we have that -A} v . . . v-A� is false in I. Thus S is 
unsatisfiable. I 

Note that by combining propositions 14. 1 and 14.5, it follows that the positive 

information which can be deduced from comp(P) is exactly the same as the 
positive information which can be deduced from P. To be precise, we have the 
following result. 

Theorem 14.6 Let P be a definite program, G a definite goal, and 8 an 
answer for P u { G } .  Then 8 is a correct answer for comp(P) u { G} iff 8 is a 
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correct answer for P u { G } .  

Theorem 14.6 shows that the definition of correct answer given i n  this section 
generalises the definition given in §6. 

Every normal program is consistent, but the completion of a normal program 
may not be consistent. (See problem 8.) We now investigate a weak syntactic 
condition sufficient to ensure that the completion of a normal program is 
consistent. The motivation is to limit the use of negation in recursive rules to keep 
the model theory manageable. 

Definition A level mapping of a normal program is a mapping from its set of 
predicate symbols to the non-negative integers. We refer to the value of a predicate 
symbol under this mapping as the level of that predicate symbol. 

Definition A normal program is hierarchical if it has a level mapping such 
that, in every program clause p(t 1 , . . .  ,tn) +-- L1 , . . .  ,Lm, the level of every predicate 
symbol occurring in the body is less than the level of p. 

Definition A normal program is stratified if it has a level mapping such that, 
in every program clause p(t 1 , . . .  ,tn) +-- L1 

, . . .  ,Lm, the level of the predicate symbol 
of every positive literal in the body is less than or equal to the level of p, and the 
level of the predicate symbol of every negative literal in the body is less than the 
level of p. 

Clearly, every definite program and every hierarchical normal program is 
stratified. We can assume without loss of generality that the levels of a stratified 
program are O, l ,  . . . ,k, for some k. Stratified normal programs were introduced by 
Apt, Blair and Walker [3) as a generalisation of a class of databases discussed by 
Chandra and Harel [ 1 3] ,  and later, independently, by Van Gelder [ 109] . Other 
papers on stratified programs are contained in [70] . 

Even though the mapping � is, in general, not monotonic, it does have an 
important property similar to monotonicity for stratified normal programs. This 
result is due to Lloyd, Sonenberg and Topor [60] . 

Proposition 14.7 Let P be a stratified normal program and J a pre­
interpretation for P. 
(a) Suppose P has only predicates of level 0. Then P is definite and � is 
monotonic over the lattice of interpretations based on J. 
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(b) Suppose P has maximum predicate level k+l .  Let Pk denote the set of 
program clauses in P with the property that the predicate symbol in the head of the 
clause has level :::;; k. Suppose that Mk is an interpretation based on J for Pk and 
Mk is a fixpoint of �

k
· Then A =  {Mk u S  : S � {p(d1 ' . . .  ,dn) : p is a level k+1 

predicate symbol and each di is in the domain of J }  } is a complete lattice, under 
set inclusion. Furthermore, A is a sublattice of the lattice of interpretations based 
on J, and �· restricted to A ,  is well-defined and monotonic. 

Proof Straightforward. (See problem 1 3.) • 

Corollary 14.8 Let P be a stratified normal program. Then comp(P) has a 
minimal normal Herbrand model. 

Proof (A normal model is one for which the identitY relation is assigned to =. 

Minimal means that there is no strictly smaller normal Herbrand model.) The proof 
is by induction on the maximum level, k, of the predicate symbols in P. The case 
k=O uses proposition 14.7(a) and proposition 5. 1 to obtain the least fixpoint of Tp. 
Proposition 14.3 yields the model. The induction step uses proposition 5. 1 , 
proposition 14.3 and proposition 14.7(b) with Mk as the fixpoint provided by the 
induction hypothesis. • 

Corollary 14.8 is due to Apt, Blair and Walker [3] . 

§15. SOUNDNESS OF SLDNF-RESOLUTION 

In section § 14, we introduced the fundamental concept of a correct answer for 
comp(P) u { G } .  Now that we have the appropriate declarative concept, let us see 
how we can implement it. The basic idea is to use SLD-resolution, augmented by 
the negation as failure rule (SLDNF-resolution). In this section, we prove the 
soundness of the negation as failure rule and of SLDNF-resolution. We give 
conditions which are sufficient for a computation to avoid floundering. We also 
discuss the effect that cuts in a normal program can have on the soundness results. 

Our first task is to give a precise definition of an SLDNF-refutation and a 
finitely failed SLDNF-tree. For this, we first give the mutually recursive 
definitions of the concepts of SLDNF-refutation of rank k and finitely failed 
SLDNF-tree of rank k. 
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In the definitions which follow, it will be necessary to select literals from 
normal goals. The choice of which literal is selected is constrained in the following 
way. There is no restriction on which positive literal can be selected; however, 
only a ground negative literal can be selected. This condition is called the safeness 

condition on the selection of literals. It is used to ensure the soundness of 
SLDNF-resolution. Later we discuss the possibility of weakening this condition. 

Definition Let G be f-L1 , . . .  ,Lm··· ··Lp and C be Af-M1, . . .  ,Mq. Then G' is 
derived from G and C using mgu e if the following conditions hold: 
(a) Lm is an atom, called the selected atom, in G. 
(b) e is an mgu of Lm and A. 
(c) G' is the normal goal f-(L1 , . . .  ,Lm-l 'M1 , . . .  ,Mq,Lm+l '" ' 'Lp)e. 

Definition Let P be a normal program imd G a normal goal. An SWNF­

refutation of rank 0 of P u {G}  consists of a sequence G0=G, G1 , . . .  , Gn = o of 
normal goals, a sequence c1 , . . .  ,Cn of variants of program clauses of P and a 
sequence e1 ' . . .  ,en of mgu' s such that each Gi+l is derived from Gi and Ci+1 using 
ei+l '  

Definition Let P be a normal program and G a normal goal. A finitely failed 

SWNF-tree of rank 0 for P u { G }  is a tree satisfying the following: 
(a) The tree is finite and each node of the tree is a non-empty normal goal. 
(b) The root node is G. 
(c) Only positive literals are selected at nodes in the tree. 
(d) Let f-L1 , . . .  ,Lm, . . .  ,Lp be a non-leaf node in the tree and suppose that Lm is an 
atom and it is selected. Then, for each program clause (variant) Af-M1 , . . .  ,Mq such 
that Lm and A are unifiable with mgu e, this node has a child 
f-(L1 , . . . ,Lm_1,M1 , . . .  ,Mq,Lm+ 1 , . . .  ,Lp)e. 
(e) Let f-L1 , ... ,Lm, ... ,Lp be a leaf node in the tree and suppose that Lm is an atom 
and it is selected. Then there is no program clause (variant) in P whose head 
unifies with Lm. 

Definition Let P be a normal program and G a normal goal. An SWNF­

refutation of rank k+l of P u {G )  consists of a sequence G0=G, G1 ' . . .  , Gn = o  of 
normal goals, a sequence C1 ' . . .  ,Cn of variants of program clauses of P or ground 
negative literals, and a sequence e1 ' . . .  ,en of substitutions, such that, for each i, 
either 

(i) Gi+ 1 is derived from Gi and Ci+ 1 using ei+ 1 , or 



86 Chapter 3. Normal Programs 

(ii) Gi is f-L1 , . . .  ,Lm, . . .  ,Lp, the selected literal Lm in Gi is a ground negative 
literal -Am and there is a fmitely failed SLDNF-tree of rank k for P u { f-Am} .  
In this case, Gi+1 is  f-Ll ' . . .  ,Lm_1 ,Lm+1 , . . .  ,Lp' ei+1 is the identity substitution 
and Ci+ 1 is -Am. 

Definition Let P be a normal program and G a normal goal. A finitely failed 

SWNF-tree of rank k+ 1 for P u { G }  is a tree satisfying the following: 
(a) The tree is finite and each node of the tree is a non-empty normal goal. 
(b) The root node is G. 
(c) Let f-Ll ' . . .  ,Lm, . . .  ,Lp be a non-leaf node in the tree and suppose that Lm is 
selected. Then either 

(i) Lm is an atom and, for each program clause (variant) Af-Ml ' .. .  ,Mq such 
that Lm and A are unifiable with mgu e, the node has a child 
f-(L1 , . . .  ,Lm_1 ,M1 , . . . ,Mq,Lm+ 1 , . . .  ,Lp)e, or 

(ii) Lm is a ground negative literal -Am and there is a finitely failed SLDNF­
tree of rank k for P u { f-Am } ,  in which case the only child is 
f-L1 , . . . ,Lm-l 'Lm+1 ' . . .  ,Lp. 
(d) Let f-L1 , . . .  ,Lm, . . .  ,Lp be a leaf node in the tree and suppose that Lm is 
selected. Then either 

(i) Lm is an atom and there is no program clause (variant) in P whose head 
unifies with Lm, or 

(ii) Lm is a ground negative literal -Am and there is an SLDNF-refutation of 
rank k of P u { f-Am} .  

Note that an SLDNF-refutation (resp. ,  finitely failed SLDNF-tree) of rank k is 
also an SLDNF-refutation (resp., finitely failed SLDNF-tree) of rank n, for all n�k. 

Definition Let P be a normal program and G a normal goal. An SWNF­

refutation of P u { G}  is an SLDNF-refutation of rank k of P u { G } ,  for some k. 

Definition Let P be a normal program and G a normal goal. A finitely failed 

SWNF-tree for P u { G }  is a finitely failed SLDNF-tree of rank k for P u { G } ,  
for some k. 

Definition Let P be a normal program and G a normal goal. A computed 

answer e for P u { G} is the substitution obtained by restricting the composition 
e1 . . .  en to the variables of G, where e1 ' . . .  ,en is the sequence of substitutions used 
in an SLDNF-refutation of P u {G} . 
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Since only ground negative literals are selected, it follows that Lie must be 
ground, for each negative literal Li in G. This definition extends the definition of a 
computed answer given in §7. 

Now that we have given the definition of a computed answer, we consider the 
procedure a logic programming system might use to compute answers. The basic 
idea is to use SLD-resolution, augmented by the negation as failure rule. When a 
positive literal is selected, we use essentially SLD-resolution to derive a new goal. 
However, when a ground negative literal is selected, the goal answering process is 
entered recursively in order to try to establish the negative subgoal. We can regard 
these negative subgoals as separate lemmas, which must be established to compute 
the result. Having selected a ground negative literal -A in some goal, an attempt 
is made to construct a finitely failed SLDNF-tree with root �A before continuing 
with the remainder of the computation. If such a finitely failed tree is constructed, 
then the subgoal -A succeeds. Otherwise, if an SLDNF-refutation is found for 
�A. then the subgoal -A fails. Note that bindings are only made by successful 
calls of positive literals. Negative calls never create bindings; they only succeed or 
fail. Thus negation as failure is purely a test. 

Next we give the definitions of SLDNF-derivation and SLDNF-tree. 

Definition Let P be a normal program and G a normal goal. An SWNF­

derivation of P u {G }  consists of a (finite or infinite) sequence G0=G, G1 , . . .  of 
normal goals, a sequence c1 , c2·· · · of variants of program clauses (called input 

clauses) of p or ground negative literals, and a sequence e 1 , e2· · · ·  of substitutions 
satisfying the following: 
(a) For each i, either 

(i) Gi+ 1 is derived from Gi and an input clause Ci+ 1 using ei+ 1 , or 
(ii) Gi is  �Ll ' . . .  ,Lm, . . .  ,Lp, the selected literal Lm in Gi is a ground negative 

literal -Am and there is a finitely failed SLDNF-tree for P u {�Am } .  In this 
case, Gi+ 1 is �Ll ' . . .  ,Lm_1 ,Lm+ 1 , . . .  ,Lp, ei+ l is the identity substitution and 
Ci+1 is -Am. 
(b) If the sequence G0, G 1 , . . .  of goals is finite, then either 

(i) the last goal is empty, or 
(ii) the last goal is �L1 , . . .  ,Lm, . . .  ,Lp, Lm is an atom, Lm is selected and there 

is no program clause (variant) in P whose head unifies with Lm, or 
(iii) the last goal is �L1 , . . .  ,Lm, . . .  ,Lp, Lm is a ground negative literal -Am., 

Lm is selected and there is an SLDNF-refutation of P u { �Am } .  
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Definition Let P be a normal program and G a normal goal. An SWNF-tree 

for P u { G }  is a tree satisfying the following: 
(a) Each node of the tree is a (possibly empty) normal goal. 
(b) The root node is G. 
(c) Let �L1 ' ... ,Lm, . . . ,Lp (p;;:: I ) be a non-leaf node in the tree and suppose that Lm 
is selected. Then either 

(i) Lm is an atom and, for each program clause (variant) A�M1 ' . . .  ,Mq such 
that Lm and A are unifiable with mgu 0, the node has a child 
�(L1 , . . .  ,Lm_1 ,M1 , . . .  ,Mq,Lm+ 1 , . . .  ,Lp)O, or 

(ii) Lm is a ground negative literal -Am and there is a finitely failed SLDNF­
tree for P u { �Am } ,  in which case the only child is �Ll ' . . .  ,Lm-l 'Lm+l ' . . .  ,Lp. 
(d) Let �L1 ' . . .  ,Lm, . . .  ,Lp (p;;:: 1 ) be a leaf node in the tree and suppose that Lm is 
selected. Then either 

(i) Lm is an atom and there is no program clause (variant) in P whose head 
unifies with Lm, or 

(ii) Lm is a ground negative literal -Am and there is an SLDNF-refutation of 
P u { �Am} .  
(e) Nodes which are the empty clause have no children. 

The concepts of SLDNF-derivation, SLDNF-refutation and SLDNF-tree 
generalise those of SLD-derivation, SLD-refutation and SLD-tree. An SLDNF­
derivation is finite if it consists of a finite sequence of goals; otherwise, it is 
infinite. An SLDNF-derivation is successful if it is finite and the last goal is the 
empty goal. An SLDNF-derivation is failed if it is finite and the last goal is not 
the empty goal. Similarly, we define success, infinite and failure branches of an 
SLDNF-tree. It is clear that a successful SLDNF-derivation is indeed an SLDNF­
refutation and an SLDNF-tree, for which every branch is a failure branch, is indeed 
a finitely failed SLDNF-tree. 

If a goal contains only non-ground negative literals, then, because of the 
safeness condition, no literal is available for selection. Let us formalise this 
notion. By a computation of P u { G } ,  we mean an attempt to construct an 
SLDNF-derivation of P u { G } .  

Definition Let P be a normal program and G a normal goal. We say a 
computation of P u { G }  flounders if at some point in the computation a goal is 
reached which contains only non-ground negative literals. 
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Example If G is � -p(x) and P is any normal program, then the computation 
of P u { G }  flounders immediately. 

We now give a condition under which we can be sure that SLDNF-resolution 
never flounders. 

Definition Let P be a normal program and G a normal goal. 
We say a program clause A�L1 , . . .  ,Ln in P is admissible if every variable that 

occurs in the clause occurs either in the head A or in a positive literal of the body 
Ll , . . .  ,Ln. 

We say a program clause A�L1 ' . . .  ,Ln in P is allowed if every variable that 
occurs in the clause occurs in a positive literal of the body L1 , . . .  ,Ln. 

We say G is allowed if G is �L1 ' . . .  ,Ln and every variable that occurs in G 

occurs in a positive literal of the body L1 , . . .  ,Ln. 
We say P u {G}  is allowed if the following conditions are satisfied: 
(a) Every clause in P is admissible. 
(b) Every clause in the definition of a predicate symbol occurring in a positive 

literal in the body of G or in a positive literal in the body of a clause in P is 
allowed. 

(c) G is allowed. 

Note that an allowed unit clause must be ground and every allowed clause is 
admissible. These definitions generalise Clark' s definition [ 1 5] of an allowed 
query and Shepherdson's covering axiom [95] . The next result is due to Lloyd and 
Topor [63] and Shepherdson [97]. Other results on allowedness are contained in 
[97] . 

Proposition 15.1 Let P be a normal program and G a normal goal. Suppose 
that P u { G }  is allowed. Then we have the following properties. 
(a) No computation of P u { G} flounders. 
(b) Every computed answer for P u {G}  is a ground substitution for all variables 
in G. 

Proof (a) Since P u { G }  is allowed, one can prove that every goal in an 
SLDNF-derivation of P u { G }  (including subsidiary derivations) is allowed. The 
result then follows as a goal containing only non-ground negative literals is not 
allowed. 

(b) Let G be �L1 , . . .  ,Lm and let G0=G, Gl ' . . .  ,Gn= o be an SLDNF-refutation 
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of P u {G }  using substitutions e1 , . . .  ,9n. Note that any input clause whose head is 
matched against a positive literal in (the top level of) the refutation has the 
property that each variable which occurs in the head also occurs in the body. It is 
straightforward to prove by induction on the length n of the refutation that 
(L 1A . . .  ALm)e 1 . . .  en is ground. The result then follows. 1 

The next result of this section is the soundness of the negation as failure rule. 
In preparation for the proof of this result, we establish two lemmas due to Clark 
[1 5] .  

Lemma 15.2 Let p(s 1 ' . . . ,sn) and p(t1 , . . .  ,tn) be atoms. 
(a) If p(s1 ' . . .  ,sn) and p(t l ' . . .  ,tn) are not unifiable, then -:3((s 1 =t 1)A . . .  A(sn =tn)) is a 
logical consequence of the equality theory. 
(b) If p(s 1 , . . . ,sn) and p(t"1 , . . .  ,tn) are unifiable with mgu e = { x1/r 1 , . . .  ,xllrk } given 
by the unification algorithm, then \t((s 1 =t1 )1\ . . .  /\(Sn =tn) � (x1 =r 1 )A . . . A(xk =rk)) is 
a logical consequence of the equality theory. 

Proof Suppose that p(s 1 , . . .  ,sn) and p(t1 , . . .  ,tn) are unifiable with mgu 9 = 
{ x 1/r1 , . . .  ,xllrk } .  Then it follows from equality axioms 6, 7 and 8 that 
\t((s 1 =t1)/\ . . . A(sn =tn)�(x1 =r 1 )/\ . . .  A(xk =rk)) is a logical consequence of the 
equality theory. The remainder of the lemma is proved by induction on the 
number of steps k of an attempt by the unification algorithm to unify p(s 1 ' . . .  ,sn) 
and p(t 1 , . . . ,tn). 

Suppose first that k=l . If the unification algorithm finds a substitution { x 1/r 1 } , 
say, which unifies p(s1 , . . .  ,sn) and p(t1 , . . .  ,tn), then equality axiom 5 can be used to 
show that \t((s 1 =t1)A . . .  /\(Sn =tn)�(x 1 =r 1)) is a logical consequence of the equality 
theory. Otherwise, we use equality axiom 5 and one of the equality axioms 1 to 4 
to conclude that -:3((s 1=t1 )A . . .  A(sn=tn)) is a logical consequence of the equality 
theory. 

Suppose now that the result holds for k-1 . Let p(s 1 ' . . .  ,sn) and p(t 1 , . . .  ,tn) be 
such that it takes the unification algorithm k steps to decide whether they are 
unifiable or not. Suppose that 9 1 = { x 1Jr

'
1 } is the first substitution made by the 

unification algorithm. Then p(s1 , . . .  , sn)91 and p(t1 , . . .  ,tn)9 1 are such that the 
unification algorithm can discover in k-1 steps whether they are unifiable or not. 

Suppose that p(s 1 , . . .  ,sn)91 and p(t1 , . . .  ,tn)e 1 are not unifiable. Then the 
induction hypothesis gives that -:3((s 1 =t 1)9 1A . . .  A(sn =tn)9 1) is a logical 
consequence of the equality theory. It then follows from this and the fact that 9 1 
was the first substitution made by the unification algorithm that 
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-3((s1 =t1 ) A  . . .  A(sn =tn)) i s  a logical consequence of the equality theory. 
On the other hand, suppose that p(s l ' . . .  ,sn)e1 and p(tl ' . . .  ,tn)e1 are unifiable. 

Then the induction hypothesis is used to obtain that 
\f((s1 =t1 )e 1 /\ . . .  1\(Sn =tn)e c �(Xz=rz)A. .. /\(Xk =rk)) is a logical COnsequence Of the 
equality theory. It follows from this, the fact that r 1 is r'1 y, where y = 
{x2/r2, . . .  ,xJ!rk} .  and equality axioms 5, 6, 7 and 8 that 
\f((s1 =t1 )A . . .  A(sn =tn)�(x1 =r 1 )A . . .  A(xk =rk)) is a logical consequence of the 
equality theory. • 

Lemma 15.3 Let P be a normal program and G a normal goal. Suppose the 
selected literal in G is positive. 
(a) If there are no derived goals, then G is a logical consequence of comp(P) . 
(b) If the set { G1 , . . .  ,Gr} of derived goals is non-empty, then G�G1/\ . . .  /\Gr is a 
logical consequence of comp(P). 

Proof Suppose G is the normal goal �M1 , ... ,Mq and the selected positive 
literal Mj is p(s1 , . . .  ,sn) .  If the completed definition for p is \7'(-p(xl ' . . .  ,xn)), then it 
is clear that G is a logical consequence of comp(P). 

Next suppose that the completed definition of p is 
\f(p(x1 , . . .  ,xn)�E1 v . . . vEk) 

where E. is 1 

It follows that 
k G � " · _ 1  -::J(M1 A . . .  J\M. 1/\(s 1 =t. 1)/\ . . .  A(s =t. )1\L. 1/\ . . . J\L. AM.+ 1 1\ . . .  /\Mq) 1- J- 1, n 1,n 1, 1,mi J 

is a logical consequence of comp(P). If p(s 1 ' . . .  ,sn) does not unify with the head of 
any program clause in the definition of p, then it follows from lemma 15.2(a) that 
G is a logical consequence of comp(P) . 

On the other hand, suppose e is an mgu of p(s1 ' . . .  ,sn) and p(ti, 1 · · · ·\n) .  Then 
we have that 

3(M1A . . .  AM· 1A(s 1=t. 1 )/\ . . .  A(s =t. )AL. 1/\ . . .  J\L. AM-+1/\ . . .  /\Mq) � J- 1, n 1,n 1, 1 ,mi J 
3((M1A .. .  AM ._1 1\L. 1/\ . . .  ALi AM·+ 1 "· · ·"Mq)e) J � ,mi J 

is a logical consequence of comp(P), using lemma 15.2(b) and the equality axioms 
6, 7 and 8. Thus, if { G1 , . . .  ,Gr} is the set of derived goals, then G�G1A .. /\Gr is a 
logical consequence of comp(P) . • 

The next result is due to Clark [ 15]. 
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Theorem 15.4 (Soundness of the Negation as Failure Rule) 
Let P be a normal program and G a normal goal. If P u { G }  has a finitely 

failed SLDNF-tree, then G is a logical consequence of comp(P). 

Proof The proof is by induction on the rank k of the finitely failed SLDNF­
tree for P u { G } .  Let G be the goal t-Ll' . . . ,Ln. 

Suppose first that k=O. Then the result follows by a straightforward induction 
on the depth of the tree, using lemma 15.3. 

Next suppose the result holds for finitely failed SLDNF-trees of rank k. 
Consider a finitely failed SLDNF-tree of rank k+1 for P u { G } .  We establish the 
result by a secondary induction on the depth of this tree. 

Suppose first that the depth of this tree is 1 . Suppose the selected literal in G 
is positive. Then the result follows from lemma 15.3(a). On the other hand, 
suppose the selected literal L. in G is the ground negative literal -A. . Since the 

1 1 
depth is 1 , there is an SLDNF-refutation of rank k of P u { t-Ai } .  Note that for a 
goal whose selected literal is positive, the derived goal is a logical consequence of 
the given goal and the input clause. Thus, using proposition 14. 1 and applying the 
induction hypothesis on any finitely f8.iled SLDNF-trees of rank k-1 in this 
refutation, we obtain that Ai is a logical consequence of comp(P). Hence 
-::l(L1 A . . . ALn) is also a logical consequence of comp(P). (This last step uses the 
fact that Ai is ground. )  

Now suppose that the finitely failed SLDNF-tree for P u {G }  has depth d+l . 
Suppose that the selected literal in G is positive. Then the result follows from 
lemma 15.3(b) and the secondary induction hypothesis. Suppose the selected 
literal in G is the ground negative literal L. . By the secondary induction 1 
hypothesis, we obtain that -::l(L 1 A . . .  ALi_1 ALi+ 1 A . . .  ALn) is a logical consequence 
of comp(P). Hence -::l(L1 A . . .  ALn) is also a logical consequence of comp(P). • 

Corollary 15.5 Let P be a definite program. If Ae Fp, then -A is a logical 
consequence of comp(P). 

Now we come to the soundness of SLDNF-resolution. This result, which 
generalises theorem 7. 1 , is essentially due to Clark [ 15] .  

Theorem 15.6 (Soundness of SLDNF-Resolution) 
Let P be a normal program and G a normal goal. Then every computed 

answer for P u { G }  is a correct answer for comp(P) u { G } .  
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Proof Let G be the normal goal �L1 ' . . .  ,Lk and e1 , . . .  ,en be the sequence of 
substitutions used in an SLDNF-refutation of P u { G ) . We have to show that 
\i((L1/\ . . .  /\�)e 1 . . .  en) is a logical consequence of comp(P). The result is proved by 
induction on the length of the SLDNF-refutation. 

Suppose first that n=l . This means that G has the form �L1 . We consider 
two cases. 

(a) L1 is positive. 
Then P has a unit clause of the form A� and L1e 1 = A8 1 . Since L1e 1� is 

an instance of a unit clause of P, it follows that \i(L1e 1) is a logical consequence 
of P and, hence, of comp(P). 

(b) L1 is negative. 
In this case, L1 is ground, e 1 is the identity substitution and theorem 1 5.4 

shows that L1 is a logical consequence of comp(P). 
Next suppose that the result holds for computed answers which come from 

SLDNF-refutations of length n-1 . Suppose 8 1 ' . . . ,en is the sequence of substitutions 
used in the SLDNF-refutation of P u { G }  of length n. Let Lm be the selected 
literal of G. Again we consider two cases. 

(a) Lm is positive. 
Let A�M1 ' . . .  ,Mq (q�O) be the first input clause. By the induction hypothesis, 

\i((L1 /\ . . .  /\Lm-l"MI"·· ·"Mq"Lm+ 1 /\ . . .  /\Lk)e1 . . .  en) is a logical consequence of 
comp(P). Therefore, if q>O, \i((M 1/\ . . .  /\Mq)e 1 . . .  en) is a logical consequence of 
comp(P). Consequently, \i(Lme1 . . .  en), which is the same as \i(A81 . . .  en)' is a 
logical consequence of comp(P). Hence we have that \i((L1/\ . . .  /\4:)8 1 . . .  en) is a 
logical consequence of comp(P). 

(b) Lm is negative. 
In this case, Lm is ground, e 1 is the identity substitution and theorem 15.4 

shows that Lm is a logical consequence of comp(P). Using the induction 
hypothesis, we obtain that \i((L1/\ . . .  /\Lk)e1 . . .  en) is a logical consequence of 
comp(P). • 

Finally, we turn to the problem of weakening the safeness condition on the 
selection of literals. First we show that if the safeness condition is dropped, then 
theorem 15 .4 will no longer hold. 

Example Consider the normal program P 
p � -q(x) 
q(a) � 



94 Chapter 3. Normal Programs 

If we drop the safeness condition, then the literal -q(x) can be selected and we 
obtain a "finitely failed SLDNF-tree" for P u f�p } .  The subgoal -q(x) fails 
because there is a refutation of �q(x) in which x is bound to a. However, it is 
easy to see that -p is not a logical consequence of comp(P). 

It is possible to weaken the safeness condition a little and still obtain the 
results. Consider the following weaker safeness condition. Non-ground negative 
subgoals are allowed to proceed. If the negative subgoal succeeds, then we 
proceed as before. However, if the negative subgoal fails, a check is made to make 
sure no bindings were made to any variables in the top-level goal of the 
corresponding refutation. If no such binding was made, then the negative subgoal 
is allowed to fail and we proceed as before. But, if such a binding was made, then 
a different literal is selected and the negative subgoal is delayed in the hope that 
more of its variables will be bound later. Alternatively, a control error could be 
generated and the program halted. 

The key point here is that the refutation which causes the negative subgoal to 
fail must prove something of the form V(A) rather than only 3(A). For this 
weakened safeness condition, theorems 15.4 and 15.6 continue to hold. The only 
change to their proofs is in the proof of theorem 15.4 at the place where we 
remarked that use was made of the fact that A was ground. 

The simplest way to implement the safeness condition in a PROLOG system is 
to delay negative subgoals until any variables appearing in the subgoal have been 
bound to ground terms. For example, this is the method used by MU-PROLOG 
[73] and NU-PROLOG [104]. Unfortunately, the majority of PROLOG systems do 
not have a mechanism for delaying subgoals and so this solution is not available to 
them. Worse still, most PROLOG systems do not bother to check that negative 
subgoals are ground when called. This can lead to rather bizarre behaviour. 

Example Consider the program 
p(a) � 
q(b) � 

and the normal goal � -p(x),q(x). If this program and goal are run on a PROLOG 
system which uses the standard computation rule and does not bother to check that 
negative subgoals are ground when called, then it will return the answer "no" ! On 
the other hand, MU-PROLOG and NU-PROLOG will delay the first subgoal, solve 
the second subgoal and then solve the first subgoal to give the correct answer 
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{ x/b } .  Of course, the problem with this particular goal can be fixed for a standard 
PROLOG system by reordering the subgoals in the goal. However, that is not the 
point. A problem similar to this could lie undetected deep inside a very large and 
complex software system. 

We now discuss the effect that cuts in a normal program can have on the 
soundness results. In § 1 1 , we showed that the existence of a cut in a definite 
program does not affect the soundness, but may introduce a form of 
incompleteness into the SLD-resolution implementation of correct answer. 
However, for normal programs, it is possible for a cut to affect soundness. 

Example Consider the subset program 
subset(x,y) (- -p(x,y) 
p(x,y) (- member(z,x), -member(z,y) 
member(x, x.y) (- ! 
member(x, y.z) (- member(x,z) 

in which sets are represented by lists. The goal (-Subset([ l ,2,3] , [ 1])  succeeds for 
this program! The reason is that the unsafe use of cut in the definition of member 
causes a finitely failed tree for (-p([ l ,2,3] ,[ 1 ]) to be incorrectly constructed. Hence 
the negated subgoal -p([ l ,2,3] , [ 1] )  incorrectly succeeds. 

As before, the best solution to the problems of cut seems to be to replace its 
use by higher level facilities, such as if-then-else and not equals. 

§16. COMPLETENESS OF SLDNF-RESOLUTION 

In this section, we prove completeness results for the negation as failure rule 
for definite programs and SLDNF-resolution for hierarchical programs. We also 
present a summary of the main results of the chapter for definite programs. 

The next result is due to Jaffar, Lassez and Lloyd [47] .  The simpler definition 
of the equivalence relation in the proof, which avoids most of the technical 
complications of the original proof in [47] , is due to Wolfram, Maher and Lassez 
[1 12] .  

Theorem 16.1 (Completeness of the Negation as Failure Rule) 
Let P be a definite program and G a definite goal. If G is a logical 

consequence of comp(P), then every fair SLD-tree for P u { G }  is finitely failed. 
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Proof Let G be the goal �A1 ' . . . ,Aq. Suppose that P u {G } has a fair SLD­
tree which is not finitely failed. We prove that comp(P) u {3(A1A . . . AAq) }  has a 
model. 

Let BR be any non-failed branch in the fair SLD-tree for P u { G } .  Suppose 
BR is G0=G, G1 ' . . . with mgu 's e 1 , e2, . . . and input clauses c1 , c2, . . . . The first 
step is to use BR to define a pre-interpretation J for P. 

Suppose L is the underlying first order language for P. Naturally, L is assumed 
to be rich enough to support any standardising apart necessary in BR. We define a 
relation * on the set of all terms in L as follows. Let s and t be terms in L. Then 
S*t if there exists n� l SUCh that s91 . . . 9n = t9 1 .. . 9n' that is, e 1 . . . en unifies S and t. 
It is clear that * is indeed an equivalence relation. We then define the domain D 
of the pre-interpretation J as the set of all *-equivalence classes of terms in L. If s 
is a term in L, we denote the equivalence class containing s by [s] . 

Next we give the assignments to the constants and function symbols in L. If c 
is a constant in L, we assign [c] to c. If f is an n-ary function symbol in L, we 
assign the mapping from Dn into D defined by ([s 1] , . . . ,[sn]) � [f(s l ' . . . ,sn)] to f. It 
is clear that the mapping is indeed well-defined. This completes the definition of 
J. 

The next task is to give the assignments to the predicate symbols in order to 
extend J to an interpretation for comp(P) u { 3(A1A . . . AAq) } .  First we define the 
set I0 as follows: 

I0 = { p([t1 ] , . . . ,[tn]) : p(t l ' . . . ,tn) appears in BR } .  
We next show that I0 � r:,(I0), where r:, i s  the mapping associated with the pre­
interpretation J. Suppose that p([t1] , . . . ,[tn]) e I0, where p(t1 , . . . ,tn) appears in some 
Gi, iero. Because BR is fair and not failed, there exists jero such that p(sl ' . . . ,sn) = 

p(t1 , . . . ,tn)ei+ 1 . . . ei+j appears in goal Gi+j and p(s1 , . . . ,sn) is the selected atom in 
Gi+j ' Suppose Ci+j+1 is p(r1 , . . . ,rn)�B 1 , . . . ,Bm. By the definition of �· it follows 
that p([r1ei+j+l] , . . . ,[rnei+j+l]) e 1t<I0). Then, using the fact that, for each k, 
e1 . . . ek can be assumed to be idempotent, we have that 

p([t 1] , . . . ,[tn]) 
= p([tl 9i+ l . . . ei+jJ , .. .  , [tn 9i+ 1 . . . ei+jD 
= p([s 1 ] , . . . ,[sn]) 
= p([s 1 ei+j+ 1 ] ,  . . . ,[snei+j+ 1]) 
= p([r 1 ei+j+ 1 ] , . . . , [rn 9i+j+ 1 ]), 

so that p([t1 ] , ... ,[tn]) e r:,(I0). Thus I0 �:; �(10). 
Now, by proposition 5.2, there exists I such that I0 � I  and I = r:,(I). I gives 



§ 1 6. Completeness of SLDNF-Resolution 97 

the assignments to the predicate symbols in L. We assign the identity relation on D 
to =. 

This completes the definition of the interpretation I, together with the identity 
relation assigned to =, for comp(P) u {3(A1A • • •  /\Aq) } .  Note that this 
interpretation is a model for :3(A1A • • •  /\Aq) because I0 � I. Note further that this 
interpretation is clearly a model for the equality theory. Hence, proposition 14.3 

gives that I, together with the identity relation assigned to =, is a model for 
comp(P) u {3(A1/\ . . . /\Aq) } .  I 

Corollary 16.2 Let P be a definite program and AeBP. If -A is a logical 
consequence of comp(P), then AeFp. 

The model constructed in the proof of theorem 16. 1 is not an Herbrand model. 
In fact, the next example shows that theorem 16. 1  simply cannot be proved by 
restricting attention to Herbrand models (based on the constants and function 
symbols appearing in the program). 

Example Consider the program P 
p(f(y)) � p(y) 
q(a) � p(y) 

Note that q(a)IEFp. Now gfp(Tp)=0 and hence q(a)r,Egfp(Tp)· According to 
proposition 14.4, comp(P) u {q(a) } does not have an Herbrand model. 

Problem 34 shows that theorem 1 6. 1  generalises to stratified normal programs. 
However, this generalisation is not really a completeness result because, as the next 
example shows, the existence of a (fair) SLDNF-tree is not guaranteed, in co�trast 
to the definite case, where fair SLD-trees always exist. To obtain a completeness 
result for stratified normal programs, it will thus be necessary to impose further 
restrictions to ensure the existence of a fair SLDNF-tree. 

Example Consider the stratified normal program P 
q � -r 
r � p  
r � -p 
p � p 

Then it is easy to show that -q is a logical consequence of comp(P), but that 
P u { �q} does not have an SLDNF-tree. (See problem 20.) 
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Next, we turn to the question of completeness of SLDNF-resolution. 

Example Consider the program 
p(x) � 
q(a) � 
r(b) � 

and the goal �p(x),-q(x). Clearly, x/b is a correct answer. However, this answer 
can never be computed, nor can any more general version of it. 

This simple example clearly illustrates one of the problems in obtaining a 
completeness result for SLDNF-resolution. SLD-resolution returns most general 
answers. In the above example, it will return the identity substitution E for the 
subgoal p(x). What we would like is for the negation as failure rule to further 
instantiate x by the binding x/b and thus compute the correct answer. However, 
negation as failure is only a test and cannot make any bindings. Unless it is 
presented with a goal which already is the root of a finitely failed SLD-tree, it has 
no machinery for further instantiating the goal so as to obtain such a tree. In the 
above example, �q(x) is not the root of a finitely failed SLD-tree and negation as 

failure has no way to find the appropriate binding x/b. 

The next example illustrates another problem in obtaining a completeness 
result for SLDNF-resolution. 

Example Consider the normal program P 
r � p  
r � -p 
P � P 

Then the identity substitution E is a correct answer for comp(P) u { �r} , but E 
cannot be computed. (See problem 21 .) 

These examples show that to obtain a completeness result, it will be necessary 
to impose rather strong restrictions. We now show that for hierarchical programs, 
there is such a completeness result. Sadly, this result is not very useful because the 
hierarchical condition bans any recursion. For the statement of this result, we need 
to generalise the concept of a computation rule. 

Definition A safe computation rule is a function from a set of normal goals, 
none of which consists entirely of non-ground negative literals, to a set of literals 
such that the value of the function for such a goal is either a positive literal or a 
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ground negative literal, called the selected literal, in that goal. 

Definition Let P be a normal program, G a normal goal, and R a safe 
computation rule. 

An SWNF -derivation of P u { G }  via R is an SLDNF-derivation of P u { G }  
in which the computation rule R i s used to select literals. 

An SWNF-tree for P u {G} via R is an SLDNF-tree for P u {G }  in which 
the computation rule R is used to select literals. 

An SWNF -refutation of P u { G} via R is an SLDNF-refutation of P u { G}  
in which the computation rule R is used to select literals. 

An R-computed answer for P u {G }  is a computed answer for P u {G }  which 
has come from an SLDNF�refutation of P u { G}  via R 

Now we can give the completeness result for hierarchical programs. Versions 
of this result are due to Clark [ 15] ,  Shepherdson [97] , and Lloyd and Topor [63] . 

Theorem 16.3 (Completeness of SLDNF-Resolution for Hierarchical Programs) 
Let P be a hierarchical normal program, G a normal goal, and R a safe 

computation rule. Suppose that P u { G } is allowed. Then the following 
properties hold. 
(a) The SLDNF-tree for P u { G }  via R exists and is finite. 
(b) If e is a correct answer for comp(P) u {G}  and e is a ground substitution for 
all variables in G, then e is an R-computed answer for P u {G } .  

Proof (a) By proposition 15 . 1 (a), the computation of P u {G }  via R does not 
flounder. 

To show that there are no infinite derivations, we use multisets. If M and M' 
are finite multisets of non-negative integers, then we define M' < M if M' can be 
obtained from M by replacing one or more elements in M by any finite number of 
non-negative integers, each of which is smaller than one of the replaced elements. 
It is shown in [28] that the set of all finite multisets of non-negative integers under 
< is a well-founded set. Now consider the multiset of levels of the predicate 
symbols in the literals of the body of a goal G' in an SLDNF-derivation via R 
Since P is hierarchical, the child of the goal G' has a smaller multiset than G'. 
Hence there are no infinite derivations. 

Moreover, an induction argument on the levels of predicate symbols shows that 
the SLDNF-tree for P u { G }  via R does indeed exist. 

(b) Note that, by corollary 14.8, comp(P) is consistent because P is 
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hierarchical. Let G be the goal (-L1' . . .  ,Ln. The SLDNF-tree for P u {GS } via R 
is not finitely failed; otherwise, by theorem 15.4, we would have that 
-(L1 1\ . . .  ALn)S is a logical consequence of comp(P), which contradicts the 
consistency of comp(P) and the assumption that 8 is correct. 

Hence there exists an SLDNF-refutation for P u {GS }  via R. We now modify 
the selection of literals in (the top level of) this refutation so that the first part of 
the refutation contains goals in which the selected literal is positive and the last 
part contains goals in which the selected literal is negative. We can now apply the 
argument of lemma 8.2, the fact that e is a ground substitution for all the variables 
in G, and the allowedness of P u {G } to obtain an SLDNF-refutation of P u {G }  
i n  which the computed answer i s  e. 

We next apply essentially the argument of lemma 9. 1 so that the selection of 
literals in (the top level of) this refutation is made using R. Since any subsidiary 
finitely failed trees are not modified by these constructions, their literals are still 
selected using R. Thus 8 is an R -computed answer for P u { G } .  • 

For further discussion and results on completeness the reader is referred to 
[95] , [97] and [98]. The completeness of the negation as failure rule and SLDNF­
resolution are of such importance that finding more general completeness results is 
an urgent priority. The most interesting completeness results would be for classes 
of stratified programs, which strictly include the class of hierarchical programs. 

Finally, we summarise the main results for definite programs given in this 
chapter. First we need one more definition. The Herbrand rule is as follows: if 
comp(P) u { A }  has no Herbrand model, then infer -A. 

We now have three possible rules for inferring negative information: the CW A, 
the Herbrand rule and the negation as failure rule. If P is a definite program, then 
we have the following results (see Figure 6): 

{AeBp : -A can be inferred under the negation as failure rule } = Bp\TpJ.ro 
{AeBp : -A can be inferred under the Herbrand rule } = Bp\gfp(Tp) 
{ AeBP : -A can be inferred under the CWA} = Bp\Tp iro 

Since T pi ro !:;;; gfp(T p) !;: T P
J.ro, it follows that the CW A is the most powerful 

rule, followed by the Herbrand rule, followed by the negation as failure rule. 
Since T pi ro, gfp(T p) and T P

J.ro are generally distinct (see problem 5, chapter 2), 
it follows that the rules are distinct. 
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-A inferred under 
negation as failure rule 

-A inferred 
under CWA 

-A inferred under 
Herbrand rule 

Fig. 6. Relationship between the various rules 

1 01 
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We can combine theorem 13.6 with corollaries 15.5 and 1 6.2. 

Theorem 16.4 Let P be a definite program and AEBp· Then the following 
are equivalent: 
(a) AEFp. 
(b) A�TpJ..ro. 
(c) A is in the SLD finite failure set. 
(d) Every fair SLD-tree for P u {f-A} is finitely failed. 
(e) -A is a logical consequence of comp(P). 

We can also combine theorems 15.4 and 16. 1 .  

Theorem 16.5 Let P be a definite program and G a definite goal. Then G is 
a logical consequence of comp(P) iff P u { G} has a finitely failed SLD-tree. 

It is also worth emphasising the following facts, which highlight the difference 
between (arbitrary) models and Herbrand models for comp(P) and between Tp.!.ro 
and gfp(Tp). Let AEBp· Then we have the following properties: 
(a) AEgfp(Tp) iff comp(P) u {A} has an Herbrand model. 
(b) AETpJ..ro iff comp(P) u {A} has a model. 

PROBLEMS FOR CHAPTER 3 

1 .  Let P be a definite program. Show that � = Bp \ T PJ..d , for d� 1 .  

2 .  Prove lemma 13 .2. 

3. Prove lemma 1 3.3. 

4. Show that the converse of proposition 13 .4 does not hold. In fact, show that, 
given k, there exists a definite program P and AEBp such that A�Tp.!.2 and yet 
the depth of every SLD-tree for P u {f-A] is at least k. 

5. Let P be a definite program and G a definite goal. Then G is called infinite 

(with respect to P) if every SLD-tree for P u {G }  is infinite. Show that there 
exists a program P and AEBp such that f-A is infinite and yet A is in the success 
set of P. 
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6. Let P be a definite program, AeBp and A not be in the success set of P. Show 

that t-A is infinite iff A is not in the SLD finite failure set. 

7. Consider the program P 

p(x) f- q(y), r(y) 

q(h(y)) f- q(y) 

r(g(y)) f-
Find two SLD-trees for P u { t-p(a) } ,  one of which is infinite and the other 

finitely failed. 

8. Give an example of a normal program P such that comp(P) is not consistent. 

9. Use equality axioms 6 and 8 to show that, in any model of the equality theory, 

the relation assigned to = is an equivalence relation. 

10. Let P be a normal program and s,te Up. Prove the following: 

(a) s=s is a logical consequence of the equality theory. 

(b) If s and t are syntactically different, then s:#:t is a logical consequence of the 

equality theory. 

(c) The domain of every model for comp(P) contains an isomorphic copy of Up 
and the relation assigned to = ,  when restricted to Up, is the identity relation. 

1 1 . Prove proposition 14.2. 

12. Show that proposition 14.5 does not hold for normal programs. 

1 3 .  Prove proposition 14.7. 

14. Show that lemma 15.2 (b) does not hold if we drop the phrase "given by the 

unification algorithm" from its statement. 

15. Show that corollary 1 5 .5 no longer holds if we drop any one of the equality 

axioms 1 to 5 from the definition of comp(P). 

16. Show that the safeness condition cannot be dropped from theorem 15.6 .  
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17.  Consider the normal program P 
p � -q(x) 
q(a) � 

Show that -p is not a logical consequence of comp(P). 

1 8 .  Consider the normal program P 
p � -r 
r � q(x) 
q(a) � 

Chapter 3. Normal Programs 

Show that P u { �p }  has a finitely failed SLDNF-tree and that -p is a logical 
consequence of comp(P). This program looks equivalent to the one in problem 17.  
Explain the difference. 

19. Consider the definite program P 
p(f(y)) � p(y) 
q(a) � p(y) 

and let A be q(a). What is the model for comp(P) u {A }  given by the construction 
in theorem 16. 1 for this program? Show that the domain of this model is 
isomorphic to Up u Z, where Z is the integers. 

20. Consider the normal program P 
q � -r 
r � p 
r � -p 
p � p 

Show that -q is a logical consequence of comp(P), but that P u { �q} does not 
have an SLDNF-tree. 

21 . Consider the normal program P 
r � p 
r � -p 
P � P 

Show that the identity substitution e is a correct answer for comp(P) u { �r} , but 
that e cannot be computed. 

22. Give an example of a normal program whose completion has a model, but no 
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Herbrand model (based on the constants and function symbols appearing in the 
program). 

23. Give an example of a nonnal program P and goal G such that the computation 
of P u { G} produces an infinite nested sequence of negated calls, but the 
computation never flounders (in the sense of § 15) and never produces an infinite 
branch. Prove that, if P is stratified, there can never be an infinite nested sequence 
of negated calls. 

24. Let P be a nonnal program and G a nonnal goal. Suppose that P u ( G} has a 
finitely failed SLDNF-tree. Prove that there exists a safe computation rule R such 
that P u ( G} has a fmitely failed SLDNF-tree via R. 

25. Let P be a nonnal program and G a nonnal goal. Suppose that P u { G} has a 
computed answer e. Prove that there exists a safe computation rule R and an R­
computed answer <1> for P u { G} such that Gel> is a variant of Ga. 

26. Let P be a nonnal program and G a nonnal goal. Suppose that P u { G} has a 
computed answer e. Let y be a substitution. Prove that P u {G9y} has the 
identity substitution as a computed answer. 

27. Let P be a nonnal program and G a nonnal goal. Suppose that P u {G} has a 
finitely failed SLDNF-tree. Let y be a substitution. Prove that P u { Gy} has · a  
finitely failed SLDNF-tree. 

28. Let P be a nonnal program and G a ground nonnal goal �L1 ' . . . ,Ln. Suppose 
that P u {G }  has a finitely failed SLDNF-tree. Prove that there exists ie { l , . . . ,n } 
such that P u { �Li } has a finitely failed SLDNF-tree. 

29. Let P be a nonnal program and G a ground nonnal goal �L1 ' . . . ,Ln. Suppose 
that P u { G } has an SLDNF-refutation. Prove that P u { �Li } has an SLDNF­
refutation, for all ie { l , . . . ,n } . 

30. Let P be a nonnal program and G a nonnal goal. Suppose that P u { G} has 
an SLDNF-refutation. Prove that P u {G} does not have a finitely failed 
SLDNF-tree. 
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3 1 . Let P be a normal program. Define M = { Ae Bp : P u { f-A }  does not have a 
finitely failed SLDNF-tree} .  Prove that M is a model for P. 

32. Let P be a normal program and G a normal goal. Put P* = P u {-A :  AeBp 
and P u { f-A }  has a finitely failed SLDNF-tree} .  Determine whether the 
following statements are correct or not: 
(a) If P u { G }  has a finitely failed SLDNF-tree, then P u { G} is consistent. 
(b) If P u {G }  has a finitely failed SLDNF-tree, then G is a logical consequence 
of P*. 

33. Let P be a definite program and G an allowed normal goal. Determine 
whether the following statement is correct or not: 
If comp(P) u { G} is unsatisfiable, then there is a correct answer for 
comp(P) u { G } .  

34. Let P be a normal program and G a normal goal. An  SLDNF-derivation for 
P u { G }  is fair if it is either failed or, for every literal L in (the top level of) the 
derivation, (some further instantiated version of) L is selected within a finite 
number of steps. An SLDNF-tree for P u {G } is fair if every (top level) branch 
of the tree is a fair SLDNF-derivation. Prove the following generalisation of 
theorem 16. 1 : 
Let P be a stratified normal program and G a normal goal. If G is a logical 
consequence of comp(P), then every fair SLDNF-tree for P u { G }  is finitely 
failed. 

35. Let P be a stratified normal program and A a ground atom. Suppose that A is 
a logical consequence of comp(P). Let P* be the definite program obtained from P 
by deleting all negative literals appearing in the bodies of program clauses in P. 
Prove that A is a logical consequence of P*. 

36. Give an example of an infinite SLDNF-derivation which has subsidiary finitely 
failed trees of unbounded rank. (In other words, the derivation does not have rank 
k, for any k.) 

37 . Let R be any computation rule. Prove that there exists an SLD-derivation via R 
which is not fair. 



Chapter 4 

PROGRAMS 

In this chapter, we study programs and goals. A program is a finite set of 

program statements, each of which has the form Af-W, where the head A is an 

atom and the body W is an arbitrary first order formula. Similarly, a goal has the 

form f-W, where the body W is an arbitrary first order formula. We prove the 

soundness of the negation as failure rule and SLDNF-resolution for programs and 

goals. We also study an error diagnoser, which is declarative in the sense that the 

programmer need only know the intended interpretation of an incorrect program to 

use the diagnoser. 

§17. INTRODUCTION TO PROGRAMS 

This section introduces programs and goals. A program is a finite set of 

program statements, each of which has the form Af-W, where the head A is an 

atom and the body W is an arbitrary first order formula. Similarly, a goal has the 

form f-W, where the body W is an arbitrary first order formula. We argue that 

PROLOG systems should allow the increased expressiveness of programs and 

goals as a standard feature. The only requirement for implementing such a feature 

is a sound form of the negation as failure rule. Programs and goals were 

introduced by Lloyd and Topor [61] .  Special cases of them were studied earlier by 

Clark [ 15] and Kowalski [49] . 

Definition A program statement is a first order formula of the form 

A f- W  

where A is an atom and W is a (not necessarily closed) first order formula. The 

formula W may be absent. Any variables in A and any free variables in W are 

assumed to be universally quantified at the front of the program statement. A is 

called the head of the statement and W is called the body of the statement. 
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Note that a program clause is a program statement for which the body is a 
conjunction of literals. 1broughout, we make the assumption, as we may, that in 
each formula each quantifier is followed by a distinct variable and no variable is 
both bound and free. 

Definition A program is a finite set of program statements. 

Definition A goal is a first order formula of the form 
� w  

where W is a (not necessarily closed) first order formula. Any free variables in W 
are assumed to be universally quantified at the front of the goal. 

Example Consider the program statement 
A �  V'x 1 . . .  V'xn(3y1 . . .  3ykW�W1A . . .  AWm) 

Often program statements have this form. Typically, W, W l '  . . . ,W m are atoms and 
the yi are absent. For example, the well-ordered predicate can be defined as 
follows. 

well_ordered(x) � V'z (hasleastelt(z) � set(z) " z �:: x " nonempty(z)) 
nonempty(z) � 3u ue z 
hasleastelt(z) � 3u (ue z " V'v (u:S:v � ve z)) 
X k: Y � V'z (ze y � ze x) 

The increased expressiveness of programs and goals is useful for expert 
systems, deductive database systems, and general purpose programming. In expert 
systems, it allows the statement of the rules in the knowledge base in a form closer 
to a natural language statement, such as would be provided by a human expert. 
This makes it easier to understand the knowledge base. This increased 
expressiveness also has an application to deductive database systems, by providing 
first order logic (known as domain relational calculus in database terminology 
[25]) as a query language in a straightforward manner. (See chapter 5.)  In general 
purpose programming, applications like the example above occur often. If this 
increased expressiveness is not available, it is only possible to express such 
statements rather obscurely. 

Furthermore, from a theoretical point of view, it makes no sense to stop at 
normal programs and normal goals. As we will show in the next section, by means 
of simple transformations it is possible to transform any program to an 
"equivalent" normal program. By means of this technique, we can extend the 
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theory of normal programs to arbitrary programs in a straightforward . way. This 
transformation technique also provides a straightforward implementation of 
programs and goals in any PROLOG system which has a safe implementation of 
the negation as failure rule. NV-PROLOG [75] , [ 104] provides this increased 
expressiveness as a standard feature. 

Next we define the completion of a program P. Throughout, we assume that = 
does not appear in P. 

Definition The definition of a predicate symbol p appearing in a program P is 
the set of all program statements in P which have p in their head. 

Definition Suppose the definition of an n-ary predicate symbol p in a program 
is 

Ak � wk 
Then the completed definition of p is the formula 

'Vx1 . . .  'Vxn (p(x 1 , . . .  ,xn) � E1v . . .  vEk) 
where Ei is 3y r .. 3yd ((x 1=t1)A . .. A(xn=tn)"Wi),  Ai is p(tl ' ... ,tn), Yl '· · · ·Yd are the 
variables in Ai and the free variables in Wi, and x1 , . . .  ,xn are variables not 
appearing anywhere in the definition of p. 

Example Let the definition of p be 
p(y) � q(y)A 'Vz(r(y,z)�q(z)) 
p(f(z)) � -q(z) 

Then the completed definition of p is 
'Vx(p(x) � (3y((x=y)Aq(y)A 'Vz(r(y,z)�q(z))) v 3z((x=f(z))A-q(z))) 

Definition Suppose the n-ary predicate symbol p appears in a program P, but 
not in the head of any program statement in P. Then the completed definition of p 
is the formula 

We will also require the equality theory given § 14. 

Definition Let P be a program. The completion of P, denoted by comp(P), is 
the collection of completed definitions of predicate symbols in P together with the 
equality theory. 
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Next we introduce the declarative concept of a correct answer for a program 
and goal. In this definition, if W is a formula and e is a substitution for some of 
the free variables in W, then we is the formula obtained by simultaneously 
replacing each such variable by its binding in e. For example, if W is 
V'x3y(p(z,f(x))f-q(y)) and e is { 2"/g(w) } ,  then we is V'x3y(p(g(w),f(x))f-q(y)). 
Note that it may be necessary to rename some bound variables in W before 
applying e to avoid clashes with the variables in the terms of the bindings of e. 

Definition Let P be a program and G a goal f-W. An answer for P u { G } is 
a substitution for free variables in W. 

Definition Let P be a program and G a goal f-W. A correct answer for 
comp(P) u { G }  is an answer e such that V' (We) is a logical consequence of 
comp(P). 

This definition, which generalises the previous definition of correct answer (see 
§ 14), provides the appropriate declarative description of the output from a program 
and goal. 

We now investigate under what conditions the completion of a program will be 
consistent. In a way similar to that in chapter 3, the concept of a stratified program 
gives a satisfactory answer to this question. 

Definition A level mapping of a program is a mapping from its set of 
predicate symbols to the non-negative integers. We refer to the value of a predicate 
symbol under this mapping as the level of that predicate symbol. 

Definition A program is hierarchical if it has a level mapping such that, in 
every program statement p(t 1 , . . .  ,tn) f- W, the level of every predicate symbol in 
W is less than the level of p. 

Definition A program is stratified if it has a level mapping such that, in every 
program statement p(t1 , . . .  ,tn) f- W, the level of the predicate symbol of every 
atom occurring positively in W is less than or equal to the level of p, and the level 
of the predicate symbol of every atom occurring negatively in W is less than the 
level of p. 

This definition generalises the definition of stratified normal programs given in 
§ 14. We can assume without loss of generality that the levels of a stratified 
program are 0, 1 ,  . . . ,k, for some k. Note that, at level 0, all atoms in the bodies of 
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program statements must occur positively, but that these program statements need 
not be definite program clauses. 

Next we extend the definition of the mapping � to arbitrary programs. 

Definition Let J be a pre-interpretation of a program P and I an interpretation 
based on J. Then �(I) =  { AJ,V : At-W e P, V is a variable assignment wrt J, 
and W is true wrt I and V } .  

Proposition 17.1 Let P be a program, J a pre-interpretation of P, and I an 
interpretation based on J. Then I is a model for P iff �(I) � I. 

Proof Similar to the proof of proposition 6.4. I 

Proposition 17.2 Let P be a program, J a pre-interpretation of P, and I an 
interpretation based on J. Suppose that I, together with the identity relation 
assigned to =, is a model for the equality theory. Then I, together with the identity 
relation assigned to =, is a model for comp(P) iff �(I) = I. 

Proof Similar to the proof of proposition 14.3. I 

Proposition 17.3 Let P be a stratified program and J a pre-interpretation for P. 
(a) Suppose P has only predicates of level 0. Then � is monotonic over the 
lattice of interpretations based on J. 

(b) Suppose P has maximum predicate level k+l . Let Pk denote the set of 
program statements in P with the property that the predicate symbol in the head of 
the statement has level s; k. Suppose that Mk is an interpretation based on J for 
Pk and Mk is a fixpoint of � . Then A =  {Mk u S :  S � {p(d 1 , . . . ,dn) :  p is a 

k 
level k+1 predicate symbol and each di is in the domain of J }  } is a complete 
lattice, under set inclusion. Furthermore, A is a sublattice of the lattice of 
interpretations based on J, and �· restricted to A ,  is well-defined and monotonic. 

Proof Straightforward. (See problem 1 .) I 

Corollary 17.4 Let P be a stratified program. Then comp(P) has a minimal 
normal Herbrand model. 

Proof Similar to the proof of corollary 14.8. I 

The results of this section are due to Lloyd, Sonenberg and Topor [60] .  
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§18. SLDNF-RESOLUTION FOR PROGRAMS 

In this section, we prove the soundness of the negation as failure rule and 
SLDNF-resolution for programs and goals. We also give a completeness result for 
hierarchical programs. The soundness results are proved by first transforming a 
program and goal into a normal program and normal goal. We then use the fact 
that the negation as failure rule and SLDNF-resolution are known to be sound in 
this case (theorems 15 .4 and 15.6). This transformation technique can be used to 
give a straightforward implementation of programs and goals. 

The first lemma justifies the transformation of a goal to a normal goal. 
Suppose P is a program and G is a goal . Let G have the form �w. where W has 
free variables x 1 ' . . .  ,xn. Suppose answer is an n-ary predicate symbol not appearing 
in P or G. The transformation replaces G by the normal goal 

� answer(x1 , . . . ,xn) 
and adds the program statement 

answer(x1 , . . . ,xn) � W 
to the program P. 

Lemma 18.1 Let P be a program, G a goal, and e an answer. Assume G has 
the form �w. where W has free variables x1 , . . .  ,x and answer is an n-ary n -
predicate symbol not appearing in P or G. Then we have the following properties. 
(a) G is a logical consequence of comp(P) iff �answer(x1 , . . .  ,xn) is a logical 
consequence of comp(P'), where P' is P u { answer(xl ' . . . ,xn)�W} .  
(b) 'V(W9) is a logical consequence of comp(P) iff 'V(answer(x1 , . . .  ,xn)9) is a 
logical consequence of comp(P'). 

Proof Note that in the presence of equality axioms 6, 7, and 8 
'Vz1 . . .  'Vzn (answer(z1 , .. . ,zn) � 3x1 . . .  3xn((z1 =x1)A . . . A(zn =xn)" W)) 

is logically equivalent to 
'Vx1 .. . 'Vxn (answer(x1 , . . . ,xn)� W) 

Hence we can assume that comp(P') is simply comp(P) together with the latter 
formula (and an equality axiom 8 for the predicate symbol answer). Both parts of 
the lemma now follow easily from this. • 

The next step is to transform a program P into a normal program P', called a 
normal form of P, by means of the following transformations. 



§18 .  SLDNF-Resolution for Programs 

(a) Replace 
by 
and 

A �  Wr''· · ·"wi-1"-(V"W)"Wi+1"·· ·"wm 
A �  W1A . . .  J\Wi-1"-V"Wi+1"· · ·"Wm 
A �  w1"·· ·"wi-1"-w"wi+1"·· ·"wm 

(b) Replace A �  W1A . . .  AWi_1AV'x1 . . . \7'xnW"Wi+1"·· ·"Wm 
by A � W 1 "···" Wi_1 A-3x1 . . . 3xn -W" Wi+ 1 "· · ·" W m 

(c) Replace A �  W1A . . . AWi_1A-V'x1 . . .  \7'xnW"Wi+1"· · ·"Wm 
by A �  W1A . . .  J\Wi_1A3x1 . . .  3xn-W"Wi+l"·· ·"Wm 

(d) Replace 
by 
and 

A �  W I"· · ·"Wi-1"(V�W)"Wi+1"·· ·"W m 
A �  w1"·· ·"wi-1"v"wi+I"· ··"wm 
A �  WI"·· ·"Wi-1"-W"Wi+1"·· ·"Wm 

(e) Replace A � W1A . . .  AWi_1A-(V�W)"Wi+I"·· ·"Wm 
by A �  w1"· · ·"wi_1"w"-v"wi+1"· ··"wm 

(f) Replace 
by 
and 

A � w 1 1\ • • •  J\ wi-1 A(VVW)J\ wi+ 1 1\ • • •  J\ w m 
A �  w1" . . .  "wi-1"v"wi+1"·· ·"wm 
A �  wl"· · ·"wi-1"w"wi+I"·· ·"wm 

(g) Replace A �  W1A . . . AWi_1A-(VvW)AWi+l"·· ·"Wm 
by A � W1A . . . AWi_1A-VA-WAWi+l"···"Wm 

(h) Replace A �  W1A . . .  AWi-l"-W"Wi+lA. .. AWm 
by A �  w1"·· ·"wi-I"w"wi+I"· · ·"wm 

(i) Replace A � W l "· · ·" Wi-l J\3x 1 . . .  3xn W "W i+ l "· · ·" W m 
by A �  w1"·· ·"wi-I"w"wi+I"·· ·"wm 

G) Replace A �  W1A . . .  AWi-l"-3x1 . . .  3xnW"Wi+1"· ··"Wm 
by A �  WI"·· ·"Wi-1"-p(yl ' . . .  ,yk)"Wi+I"·· ·"Wm 
and p(y 1 , . . .  ,yk) � 3x1 . . . 3xn W 

1 1 3  

where y 1 , . . .  ,yk are the free variables in 3x1 . . . 3xn W and p is a new predicate 
symbol not already appearing in the program. 



1 1 4  Chapter 4. Programs 

Note that, from a logical viewpoint, the various transformations for negation 
could be replaced by a single all-encompassing transformation for negation similar 
to G). However, the transformations for negation have been presented as above to 
try to overcome the limitations of the negation as failure rule. For example, 
without (h), a subgoal of the form --A can flounder if A contains any variables. 
This problem disappears once the subgoal is transformed to A. Similar problems 
are overcome by (a), (c), (e), and (g). 

Example Consider the program statement 
A �  Vx1 . . .  Vxn(3y1 . . . 3ykw�w1"·· ·"Wm) 

If u1 ' . . .  ,us are the free variables in the body and w1 ' . . .  ,wd are the free variables in 
3y 1 . . .  3yk W, then the above program statement can be transformed to 

A �  -p(u 1 ' . . .  ,us) 
p(u 1 ' . . .  ,us) � W1A . . . AWmA-q(w1 , .. .  ,wd) 
q(w1 ' . . . ,wd) � W 

Example The subset predicate (k) can be defined by the program statement 
xcy � Vu(ue y � uex) 

A normal form of this program statement is 
xcy � -p(x,y) 
p(x,y) � -(ue y) " ue x 

We apply transformations (a), . . .  ,G) until no more such transformations are 
possible. The proposition below shows that this process terminates after a finite 
number of steps and that the resulting normal form of the original program is 
indeed a normal program. Of course, the normal form is not unique. 

Proposition 18.2 Let P be a program. Then the process of continually applying 
transformations (a), . . .  ,G) to P terminates after a finite number of steps and results 
in a normal program (called a normal form of P) . 

Proof If M and M' are finite multisets of non-negative integers, then we define 
M' < M as in the proof of theorem 16.3. The basic idea of the proof is to define a 
termination function Jl from programs into the well-founded set of all finite 
multisets of non-negative integers under <. 

Inductively define the mapping Jl as follows: 
Jl(atom) = 1 
Jl(V" W) = Jl(V) + Jl{W) 
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f.J.(-W) = fl(3xW) = Jl(W) + 1 
Jl(V +-W) = Jl(V) + Jl{W) + 1 
f.J.(VvW) = Jl{V) + Jl{W) + 2 

fl(\txW) = Jl(W) + 4 
Jl(program P) = {Jl{W) : A+-W is a statement in P } ,  
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where { . . .  } denotes a multiset. It now suffices to remark that if Q' is obtained 
from a program Q by a single transformation (a) or .. .  or (j), then f.J.(Q') < f.J.(Q), so 
the process terminates. Furthermore, the resulting program is a normal program 
since, otherwise, some further transformation would be possible. • 

Lemma 18.3 Let P be a program and let Q be the program which results from 
a single transformation (a) or . . .  or (i) . Then P and Q are logically equivalent and 
also comp(P) and comp(Q) are logically equivalent. 

Proof Straightforward. (See problem 3.) • 

The corresponding result for transformation (j) is more complicated, as the 
following lemma shows. 

Lemma 18.4 Let P be a program and P' a normal form of P. If U is a closed 
formula which is a logical consequence of comp(P') and U only contains predicate 
symbols which appear in P, then U is a logical consequence of comp(P). 

Proof It follows from lemma 1 8.3 that we only have to prove the lemma for a 
single application of transformation (j). Suppose that P contains the program 
statement 

A+-W 1"· · ·" Wi-1"-W" Wi+l""" '" W m 
and we apply transformation (j) to obtain 

A+-W 1"" ' ·" Wi-1"-p(x1 , . . .  ,xn)" Wi+1""' ·" W m 
p(xl ' . . . ,xn)+-W 

where x1 ' . . .  ,xn are the free variables of W and W has the form 3y 1 . . . 3yk V. Let Q 
be the program obtained from P by replacing the statement to which the 
transformation was applied by these two statements. 

Now comp(Q) contains the formula 
\tz 1 " . . \tzn (p(z 1 ' . . . ,zn) � 3x1 . . . 3xn((z1=x1 )A . . .  A(zn=xn)"W)) 

As in the proof of lemma 1 8 . 1 , we can assume that the latter formula is replaced in 
comp(Q) by the formula 
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It follows easily from this that if U is a closed formula which is a logical 
consequence of comp(Q) and U contains only predicate symbols which appear in 
P, then U is a logical consequence of comp(P). I 

Now we are in a position to define computed answers for programs and goals, 
and to show that computed answers are correct. 

Definition Let P be a program and G a goal � W, where W has free variables 
x 1 ' . . . ,xn. A normal form of P u { G }  is a normal program and goal P' u { G' } ,  

where G '  i s  �answer(x1 ' .. . ,xn) and P' i s  a normal form of 
P u { answer(xl ' . . .  ,xn)�W} .  

Definition Let P be a program and G a goal. 
An SWNF-derivation of P u {G}  is an SLDNF-derivation of P' u { G' } ,  

where P' u {G' }  i s  a normal form of P u { G } .  

An SWNF-rejutation of P u {G}  i s  an SLDNF-refutation of P' u {G' } ,  where 
P' u { G' }  is a normal form of P u { G } .  

A computed answer for P u {G}  is a computed answer for P' u { G' } , where 
P' u { G' }  is a normal form of P u { G } .  

An SWNF-tree for P u { G }  i s  an SLDNF-tree for P' u { G' } , where 
P' u {G' } is a normal form of P u {G } .  

A finitely failed SWNF-tree for P u {G )  is a finitely failed SLDNF-tree for 
P' u { G' } ,  where P' u { G' }  is a normal form of P u _{ G } .  

It i s  straightforward to show that th e  above definitions essentially extend those 
given in chapter 3 for normal programs and normal goals. (See problem 4.) 

We now consider the problem of computations floundering. Let P be a 
program and G a goal. By a computation of P u { G } ,  we mean an attempt to 
construct an SLDNF-derivation of P' u { G' } ,  where P' u { G' }  is a normal form of 
P u { G } . 

Definition Let P be a program and G a goal. We say a computation of 
P u { G }  flounders if at some point in the computation a goal is reached which 
contains only non-ground negative literals. 

Definition Let P be a program and G a goal. We say that P u {G } is allowed 

if some normal form of P u { G} is allowed. 
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It is straightforward to show that if one normal form of P u { G }  is allowed, 
then every normal form of P u { G }  is allowed. (See problem 5.) 

Proposition 18.5 Let P be a program and G a goal �w. Suppose that 
P u { G }  is allowed. Then we have the following properties. 
(a) No computation of P u { G} flounders. 
(b) Every computed answer for P u {G }  is a ground substitution for all free 
variables in W. 

Proof The proposition follows immediately from proposition 15 . 1 . • 

We now prove the soundness of the negation as failure rule and SLDNF­
resolution. 

Theorem 18.6 (Soundness of the Negation as Failure Rule) 
Let P be a program and G a goal. If P u { G }  has a finitely failed SLDNF­

tree, then G is a logical consequence of comp(P). 

Proof Note first that the result is known to hold when P is a normal program 
and G is a normal goal (theorem 1 5.4) . Suppose G is the goal �w. where W has 
free variables x 1 ' . . .  ,xn. Let P" be P u { answer(x1 ' . . .  ,xn)�W } .  Suppose P u {G }  
has a finitely failed SLDNF-tree. By definition, P' u {G' } has a finitely failed 
SLDNF-tree, where G' is �answer(x1 , . . . ,xn) and P' is a normal form of P". Thus, 
G' is a logical consequence of comp(P') .  By lemma 18.4, G' is a logical 
consequence of comp(P"). Thus, by lemma 18. 1 (a), G is a logical consequence of 
comp(P). • 

Theorem 18.7 (Soundness of SLDNF-Resolution) 
Let P be a program and G a goal. Then every computed answer for P u ( G} 

is a correct answer for comp(P) u ( G } .  

Proof Note first that the result i s  known to hold when P is a normal program 
and G is a normal goal (theorem 15.6). Suppose G is the goal �w. where W has 
free variables x 1 ' . . . ,xn. Let P" be P u { answer(x1 , . . .  ,xn)�W} and e be a 
computed answer for P u { G } . By definition, e is a computed answer for 
P' u { G' } ,  where G' is  �answer(x1 ' . . .  ,xn) and P' is a normal form of P". Hence, e 
is a correct answer for comp(P') u {G' } .  By lemma 18.4, V(answer(x1 , . . .  ,xn)9) is a 
logical consequence of comp(P"). Thus, by lemma 18. 1 (b), V(W9) is a logical 
consequence of comp(P). That is, e is a correct answer for comp(P) u { G } .  • 
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Theorems 1 8.6 and 1 8 .7 are due to Lloyd and Topor [61] .  

Next, we shall prove a completeness result for hierarchical programs, which 
extends theorem 16.3. 

Lemma 18.8 Let P be a program and P' a normal form of P. Then comp(P) is 
a logical consequence of comp(P') .  

Proof By lemma 18.3, we only have to prove the lemma when P' is a program 
obtained from P by a single application of transformation (j). Suppose that P 
contains the program statement 

At-W 1"· · ·"Wi-1"-W"Wi+1 "·· ·"Wm 
and we apply transformation (j) to obtain 

At-W t"· · ·" wi-1 A-p(xl , . . .  ,xn)" w i+ 1 "· · ·" w m 
p(x1 , . . .  ,xn)t-W 

where x1 , . . .  ,xn are the free variables in W and W has the form 3y 1 . . .  3yk V. Let P' 

be the program obtained from P by replacing the statement to which the 
transformation was applied by these two statements. 

Now comp(P') contains the formula 
Vz1 . . .  V'zn (p(z1 , . . . ,zn) H 3x1 . . .  3xn ((z1 =x 1)A . . .  A(zn =xn)" W)) 

Using equality axioms 6, 7 and 8, we can assume that the latter formula is replaced 
in comp(P') by the formula 

Vx1 . . .  V'xn(p(x1 , . . .  ,xn)HW) 
It follows easily from this that comp(P) is a logical consequence of comp(P') .  • 

If P is a program and P' is a normal form of P, then it follows from lemmas 
1 8.4 and 18 .8  that comp(P') is a conservative extension [99] of comp(P). 

Definition Let P be a program, G a goal, and R a safe computation rule. 
An SWNF-derivation of P u { G }  via R is an SLDNF-derivation of P u { G }  

i n  which the computation rule R i s  used to select literals. 
An SWNF -tree for P u { G } via R is an SLDNF-tree for P u { G} in which 

the computation rule R is used to select literals. 
An SWNF-refutation of P u { G }  via R is an SLDNF-refutation of P u { G }  

in which the computation rule R i s  used to select literals. 
An R-computed answer for P u { G }  is a computed answer for P u { G }  which 

has come from an SLDNF-refutation of P u { G }  via R. 
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Theorem 18.9 (Completeness of SLDNF-Resolution for Hierarchical Programs) 
Let P be a hierarchical program, G a goal f-W, and R a safe computation rule. 

Suppose that P u { G }  is allowed. Then the following properties hold. 
(a) For every normal form of P u { G } ,  the corresponding SLDNF-tree for 
P u { G }  via R exists and is finite. 
(b) If e is a correct answer for comp(P) u {G }  and e is a ground substitution for 
all free variables in W, then e is an R-computed answer for P u { G } .  

Proof (a) Let P' u {G' } be a normal form of P u {G } . Then P' i s  hierarchical 
(see problem 8) and part (a) follows from theorem 16.3(a). 

(b) Since e is a correct answer for comp(P) u {G} that is a ground 
substitution for all free variables in W, we have that we is a logical consequence 
of comp(P). By lemma 1 8. 1 (b), answer(xl ' . . . ,xn)8 is a logical consequence of 
comp(P u { answer(xl ' . . .  ,xn)f-W}) .  By lemma 1 8.8, answer(xl ' . . .  ,xn)8 is a logical 
consequence of comp(P'). The result now follows from theorem 16.3(b). I 

§19. DECLARATIVE ERROR DIAGNOSIS 

This section presents an error diagnoser which finds errors in programs that 
use advanced control facilities and the increased expressiveness of program 
statements .  The diagnoser is declarative, in the sense that the programmer need 
only know the intended interpretation of an incorrect program to use the diagnoser. 
In particular, the programmer needs no understanding whatever of the underlying 
computational behaviour of the PROLOG system which runs the program. It is 
argued that declarative error diagnosers will be indispensable components of 
advanced logic programming systems, which are currently under development. 
The results of this section are due to Lloyd [59] . 

One of the greatest strengths of logic programming is its declarative nature. To 
a large extent, programmers need only concern themselves with a declarative 
understanding of their programs, leaving much of the procedural aspect to the logic 
programming system itself. 

However, the ideal of purely declarative programming is still far from being 
achieved. Current research aimed at attaining this ideal is proceeding on a number 
of fronts. For example, some PROLOG systems have advanced control facilities to 
overcome the severe limitations of the standard left to right computation rule (e.g., 
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[73] ,  [74]). Improved forms of negation are being introduced (e.g. , [75] , [ 104]). 
There has been work on program transformation, which allows programmers to 
write programs in a form closer to their specification (e.g. , [ 101] and the references 
therein). 

The advanced logic programming systems, which will become available in the 
near future, will be compiler systems exploiting all the above techniques. Source 

programs for these systems will be written in a subset of first order logic. This 
subset will include at least the class of programs defined in this chapter. In the 
fust stage of compilation, source programs will be transformed into assembly 

programs by the automatic addition of control information and the application of 
various transformation techniques. These assembly language programs will be 
similar to PROLOG programs as they are currently written for a coroutining 
system. In the second stage of compilation, the assembly program will be further 
compiled into a machine program, which can then be run on a coroutining version 
of Warren's abstract PROLOG machine [ 1 10] . This second compilation stage is 
now well understood. Note that, according to the above view, current versions of 
PROLOG, which are now regarded as high level languages, will eventually be 
regarded as low level machine languages. 

Such systems will allow programmers to write in a more declarative style than 
is currently possible and should ensure a great decrease in programmer effort. 
However, there is a catch. The compiled program could be so different from the 
source program and the control could be so complicated that debugging such 
programs by conventional tracing techniques is likely to be extraordinarily difficult. 
In other words, the programmer may only require an understanding of the intended 
interpretation to write the program, but will need to know everything about the 
computational behaviour of the system to debug the program! In fact, this problem 
in a less extreme form also plagues current PROLOG systems. 

For this reason, we argue that an indispensable component of future logic 
programming systems will be a declarative debugging system, that is, one that can 
be used without the need to understand the computational behaviour of the system. 
The main purpose of this section is to present a declarative error diagnoser which 
finds errors in programs that use advanced control facilities and the increased 
expressiveness of program statements. Attention is confined to errors which lead 
to a wrong or missing solution. In particular, errors which lead to infinite loops 
are not discussed here. 
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Declarative error diagnosis was introduced into logic programming, under the 
name algorithmic debugging, by Shapiro [92] . As well as an error diagnoser, he 
also presented an error corrector (regarded as a kind of inductive program 
synthesiser). Shapiro was mainly concerned with definite programs using the 
standard computation rule. Av-Ron [6] studied top-down diagnosers for definite 
programs. Under the name rational debugging, Pereira [8 1] presented a diagnoser 
for arbitrary PROLOG programs, including the non-declarative features of 
PROLOG, such as cut. More recently, Ferrand [34] gave a mathematical analysis 
of an error diagnoser for definite programs. Other work on debugging (not 
necessarily declarative) is contained in [ 12], [30] , [3 1] ,  [32] ,  [83] and the 
references therein. 

We now give the definitions of the concepts necessary for a foundation for 
error diagnosis. 

Definition Let P be a program. An intended interpretation for P is a normal 
Herbrand interpretation for comp(P). 

The restriction to Herbrand interpretations is not essential. However, in 
practice, intended interpretations are usually Herbrand and the analysis is a little 
easier in this case. The foremost aim of a programmer is to write programs which 
have their intended interpretations as models. This leads to the following 
definition. 

Definition Let P be a program and I an intended interpretation for P. We say P 
is correct wrt I if I is a model for comp(P); otherwise, we say that P is incorrect 

wrt l. 

Of course, the reason we want P to be correct wrt I is so that all answers 
computed by P will be true wrt I. 

Proposition 19.1 Let P be a program, G a goal (c-W, and 9 a computed 
answer for P u { G } .  Let I be an intended interpretation for P and suppose that P is 
correct wrt I. Then W9 is valid in I. 

Proof The result follows immediately from the soundness of SLDNF-resolution 
(theorem 18.7), since I is a model for comp(P). • 

However, even if P is correct wrt I, we cannot guarantee that P will compute 
everything in I. 
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Example Suppose that P is a definite program such that lfp(Tp) ::1= gfp(Tp).' 
Then P is correct wrt gfp(Tp), together with the identity relation assigned to =, but 
P does not compute all atoms in gfp(T p)· 

In other words, even if P is correct wrt I, P may still have a bug in the sense 
that it is incomplete. This kind of bug is not detectable by the error diagnoser. 
What it can detect is when P is incorrect wrt I. 

An error in a program usually shows up because the program gives a wrong 
answer or misses an answer (more precisely, finitely fails when it should succeed). 
The next proposition formalises this. 

Proposition 19.2 Let P be a program, G a goal f-W, and I an intended 
interpretation for P. 
(a) If e is a computed answer for P u { G }  and we is not valid in I, then P is 
incorrect wrt I. 
(b) If P u {G } has a finitely failed SLDNF-tree and W is satisfiable in I, then P is 
incorrect wrt I. 

Proof Part (a) follows directly from the soundness of SLDNF-resolution 
(theorem 1 8.7) and part (b) follows directly from the soundness of the negation as 
failure rule (theorem 1 8.6). I 

Now we define the two kinds of errors which the diagnoser can detect. 

Definition Let P be a program and I an intended interpretation for P. Let A be 
an atom with predicate symbol p. We say that A is an uncovered atom for P wrt I 
if A is valid in I and, for every program statement A'f-W in the definition of p 
such that A and A' unify with mgu e, say, we have that we is unsatisfiable in I. 

Definition Let P be a program and I an intended interpretation for P. We say 
an instance Af-W of a program statement in P is an incorrect statement instance 

for P wrt I if A is unsatisfiable in I and W is valid in I. In case the program 
statement is a program clause, we call the incorrect statement instance an incorrect 

clause instance. 

Note that every instance of an uncovered atom is uncovered and every instance 
of an incorrect statement instance is incorrect. 
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The next result gives the connection between the concepts of incorrect 
program, uncovered atom, and incorrect statement instance. 

Proposition 19.3 Let P be a program and I an intended interpretation for P. 
Then P is incorrect wrt I iff there is an uncovered atom for P wrt I or there is an 
incorrect statement instance for P wrt I. 

Proof Suppose that there is an incorrect statement instance (in the definition of 
p) for P wrt I. It is easy to see that I does not satisfy the if part 

'v'x1 . . . 'v'xn (p(x1 ' . . .  ,xn) +- E1v . . .  vEk) 
of the completed definition of p and hence that P is incorrect wrt I. Next suppose 
that there is an uncovered atom p(s 1 ' . . .  ,sn) for P wrt I. If there is no definition for 
p, then it follows immediately that P is incorrect wrt I. Otherwise, I does not 
satisfy the only if part 

'v'x 1 .. . 'v'xn (p(x 1 , . . .  ,xn) � E1v . . .  v�) 
of the completed definition of p and hence P is incorrect wrt I. 

Now suppose that P is incorrect wrt I. Note that any normal Herbrand 
interpretation for comp(P) is a model for the equality theory of comp(P) and thus I 
can not be a model for the remainder .of comp(P). If I does not satisfy a completed 
definition of the form 

'v'xl . . .  'v'xn -p(x l , . . . ,xn) 
then there is an uncovered atom. If I does not satisfy the only if part 

'v'x1 ... 'v'xn (p(x1 ' . . . ,xn) � E1 v ... vEk) 
of a completed definition, then there is an uncovered atom. Finally, if I does not 
satisfy the if part 

'v'x1 . . .  'v'xn (p(x 1 ' . . . ,xn) +- E1v . . .  vEk) 
of a completed definition, then there is an incorrect statement instance. • 

Propositions 19.2 and 19.3 together show that if a program gives a wrong 
answer or misses an answer, then there is an uncovered atom or an incorrect 
statement instance. We now present a diagnoser which detects these errors. 

The definitions below are those of the main predicates, wrong and missing. 
The definitions of the predicates valid, unsatisfiable and clause need to be added. 
If W is a formula, we let W' denote its image, which is a ground term, under the 
representation scheme used by the diagnoser. This scheme uses "and" for 
conjunction, "or" for disjunction, "not" for negation, "if' '  for implication, 
"all(x',W')" for 'v'xW, and "some(x',W')" for 3xW. 
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Declarative Error Diagnoser 

wrong(all(v, w), x) � wrong(w, x) 
wrong(some(v, w), x) � wrong(w, x) 
wrong(v if w, x) � wrong(v, x) 
wrong(v if w, x) � missing(w, x) 
wrong(v or w, x) � wrong(v, x) 
wrong(v or w, x) � wrong(w, x) 
wrong(not w, x) � missing(w, x) 
wrong(v and w, x) � wrong(v, x) 
wrong(v and w, x) � wrong(w, x) 
wrong(x, z) � clause(x, x1 if y) " wrong(y, z) 

Chapter 4. Programs 

wrong(x, x1 if y) � unsatisfiable(x, x1) " clause(x, x1 if y) " valid(y, y) 

missing(all(v, w), x) � missing(w, x) 
missing(some(v, w), x) � missing(w, x) 
missing(v if w, x) � missing(v, x) 
missing(v if w, x) � wrong(w, x) 
missing(v or w, x) � missing(v, x) 
missing(v or w, x) � missing(w, x) 
missing(not w, x) � wrong(w, x) 
missing(v and w, x) � missing(v, x) 
missing(v and w, x) � missing(w, x) 
missing(x, z) � clause(x, x 1 if y) " missing(y, z) 
missing(x, x1) � valid(x, x1) "  V'y(3x2clause(x1 , x2 if y) --+ unsatisfiable(y, y)) 

The first argument of wrong is a goal (body). The second argument is an 
uncovered atom or incorrect statement instance returned by the diagnoser. An 
incorrect statement instance is actually found using the last statement of the 
definition of wrong. The first argument of missing is a goal (body). Similarly, the 
second argument is an uncovered atom or incorrect statement instance returned by 
the diagnoser. An uncovered atom is actually found using the last statement of the 
definition of missing. 

The definition of clause contains all facts of the form clause(A', B' if W')�. 
where A is an atom, B is an instance of A and B� W is an instance of a program 
statement. The definition of valid contains all facts of the form valid(W', V')�. 

where W is a formula and V is an instance of W valid in I. The definition of 
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unsatisfiable contains all facts of the form unsatisfiable(W', V')�. where W is a 
formula and V is an instance of W unsatisfiable in l 

What we have presented above is the purely declarative part of the diagnoser. 
It is important to isolate this declarative component, as we have done, for two 
reasons. First, it clarifies the theoretical developments. One can prove the 
soundness and completeness of the diagnoser without the complication of coping 
with some particular control component. Second, it makes the challenge of 
building practical error diagnosers clearer. This challenge is to find a sufficiently 
clever control component to add to the above declarative component. Later we 
show one way of adding this control. 

The last four statements in the definition of wrong and the last four statements 
in the definition of missing could be used together as a diagnoser for definite 
programs. This diagnoser can be compared directly with the diagnosers of Shapiro 
[92] , Av-Ron [6] and Ferrand [34] for definite programs. Later we compare 
Shapiro' s single-stepping and divide-and-query algorithms for diagnosing incorrect 
answers with a top-down version of the diagnoser. The main difference between 
the diagnoser and Ferrand's is that we have dispensed with the statements in his 
diagnoser which are concerned with returning the result that the error is undefined. 

The seventh statement in the definition of wrong and the seventh statement in 
the definition of missing together handle negated calls. These statements come 
from [92] , where they are attributed to McCabe. Their motivation is as follows. If 
the negation of a goal has incorrectly succeeded (resp. ,  incorrectly failed), then the 
goal must have incorrectly failed (resp., incorrectly succeeded). The remainder of 
the statements in the definitions handle the other connectives and quantifiers. As 
an example, we give the motivation for the statements for implication in the 
definition of wrong: if the goal v if w has returned a wrong answer, then either v 
has returned a wrong answer or w has missed an answer. 

We now show a method for adding control information to obtain a more 
practical declarative error diagnoser. The idea is to ensure that the following 
conditions are satisfied. In every call to wrong, the first argument is unsatisfiable. 
Similarly, in every call to missing, the first argument is valid. For this purpose, 
we make sure that a top level call to wrong has its first argument unsatisfiable and 
a top level call to missing has its first argument valid. Furthermore, we add calls to 
valid and unsatisfiable to ensure that subsequent calls to wrong and missing satisfy 
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the above conditions. (See problem 13.) 

We also add calls to succeed and fail. The definition of succeed contains all 
facts of the form succeed(W', (W9)')f-, where W is a formula and 9 is a computed 
answer for P u { f-W} .  The definition of fail contains all facts of the form 
fail(W')f-, where W is a formula and P u { f-W} has a finitely failed SLDNF­
tree. These additional calls are used as heuristics to guide the search for an error. 
We call this the top-down version of the diagnoser. For definite programs, the top­
down diagnoser for wrong answers was given by Av-Ron [6] . A different top­
down diagnoser for missing answers for definite programs was also given in [6] . 

Top-Down Version of the Declarative Error Diagnoser 

wrong(all(v, w}, x) f- unsatisfiable(w, w1) " wrong(w1 , x) 
wrong(some(v, w), x) f- wrong(w, x) 
wrong(v if w, x) f- succeed(v, v1) "  wrong(v1 , x) 
wrong(v if w, x) f- fail(w) " missing(w, x) 
wrong(v or w, x) f- succeed(v, v1) 1\ wrong(v1 , x) 
wrong(v or w, x) f- succeed(w, w1) " wrong(w1, x) 
wrong(not w, x) f- missing(w, x) 
wrong(v and w, x) f- unsatisfiable(v, v1) "  wrong(v1 , x) 
wrong(v and w, x) f- unsatisfiable(w, w1) 1\ wrong(w1, x) 
wrong(x, z) f- clause(x, x 1 if y) " succeed(y, y) " unsatisfiable(y, y) " wrong(y, z) 
wrong(x, x1 if y) f- unsatisfiable(x, x1) " clause(x, x1 if y) 1\ valid(y, y) 

missing(all(v, w), x) f- missing(w, x) 
missing(some(v, w), x) f- valid(w, w1) " missing(w1 , x) 
missing(v if w, x) f- valid(v, v 1) 1\ missing(v 1 , x) 
missing(v if w, x) f- unsatisfiable(w, w1) "  wrong(w1 , x) 
missing(v or w, x) f- valid(v, v1) " missing(v1 , x) 
missing(v or w, x) f- valid(w, w1) " missing(w1 , x) 
missing(not w, x) f- wrong(w, x) 
missing(v and w, x) f- fail(v) " missing(v, x) 
missing(v and w, x) f- fail(w} " missing(w, x) 
missing(x, z) f- clause(x, x 1 if y) 1\ fail(y) 1\ valid(y, y) 1\ missing(y, z) 
missing(x, x1) f- valid(x, x1) 1\ 'v'y (3x2clause(x1 , x2 if y) --+ unsatisfiable(y, y)) 
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Example Consider the following (incorrect) subset program in which sets are 
represented by lists. 

subset(x,y) f- 'Vz (member(z,y) f- member(z,x)) 
member(x,x.y) f-
member(x,y.z) f- member(y,z) 

The goal f-subset(2.nil, 1 .2.nil) incorrectly fails. The top-down algorithm produces 
the following computation (in which some intermediate goals are not shown). 

f- missing(subset(2.nil, 1 .2.nil), x) 
f- missing(all(z', member(z', 1 .2.nil) if member(z', 2.nil)), x) 
f- missing(member(z' , 1 .2.nil) if member(z' , 2.nil) , x) 
f- missing(member(2, 1 .2.nil), x) 
0 

The computed answer is x/member(2, 1 .2.nil), that is, member(2, 1 .2.nil) is an 
uncovered atom. 

The implementation of the top-down algorithm in MU-PROLOG and examples 
of its use are given in [59] . (For examples of the use of various other declarative 
error diagnosers, the reader should consult [6] , [34], [8 1] and [92] .) The 
implementations of valid and unsatisfiable rely on an oracle to answer questions 
abOut the intended interpretation. In practice, the oracle is usually the programmer. 
Answers from the oracle are recorded so that the oracle is never asked the same 
question twice. Also complex formulas are broken down so that the oracle is only 
ever questioned about the validity of atoms. 

Example For the previous example, the implementation in [59] of the top-
down algorithm produces the following sequence of oracle queries. 

subset(2.nil, 1 .2.nil) valid? 
member(z, 2.nil) valid? 
z=2. 
member(2, 1 .2.nil) valid? 
The following atoms are known to be valid: 
member(2, 2.nil) 
member(z, 2.nil) valid for other values? n 
member(1 , 2.nil) valid? n 

at which point the uncovered atom member(2, 1 .2.nil) is printed. A return after the 
? indicates yes, while an n followed by a return indicates no. The value z=2 was 
given by the oracle after a prompt with the variable name. 
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Note that, by means of the metacalls, succeed and fail, the top-down algorithm 
has decoupled the diagnosis of the program from whatever transformation, 
compilation or advanced control was applied to the program. In other words, the 
top-down algorithm is essentially independent of the underlying computational 
behaviour of the logic programming system, which could therefore be changed or 
improved without affecting the diagnoser. 

We have tried to minimise the number of oracle calls made by the top-down 
algorithm, without being too concerned about its computational complexity. 
Nevertheless, this algorithm makes rather extravagant use of metacalls and hence 
could be prohibitively expensive for some programs. It would be possible to 
reduce this cost by building the erroneous refutation (or finitely failed tree) once at 
the beginning of the diagnosis and then searching this refutation (or tree) for the 
error. Wrong could be easily adapted to this approach, but missing would seem to 
require more extensive changes, along the lines of [6] . 

The top-down algorithm for diagnosing missing answers for definite programs 
is similar to Shapiro's algorithm for missing answers [92, p.55] . We now briefly 
compare the top-down algorithm for diagnosing incorrect answers for definite 
programs with the single-stepping and divide-and-query algorithms of Shapiro [92] . 
For this comparison, it is convenient to assume that, for all three algorithms, the 
final computation tree of the erroneous computation is first constructed and the 
algorithms search this tree for the incorrect clause instance. The final computation 
tree is the AND-tree corresponding to the refutation obtained by applying all the 
mgu's used in the refutation to all the nodes in the tree. For simplicity, we also 
assume that the goal (body) is a single atom. Thus some instance of this atom is 
the root of the final computation tree and its children are instances of atoms in the 
body of the input clause invoked by the goal. 

The single-stepping algorithm finds the error by doing a post-order traversal of 
the final computation tree. Suppose the algorithm has just queried the oracle about 
all the children of some node and found them to be valid. It then queries the 
oracle about the node itself. If this node is not valid, then an incorrect clause 
instance has been found. If this node is valid, then the algorithm continues the 
post-order traversal. This algorithm is essentially a bottom-up algorithm. It has 
the disadvantage that its worst case query complexity is equal to the number of 
nodes in the tree. A version of the single-stepping algorithm is as follows. 
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wrong(v and w, x) � wrong(v, x) 
wrong(v and w, x) � wrong(w, x) 
wrong(x, z) � clause(x, xi if y) A succeed(y, y) A wrong(y, z) 
wrong(x, x i if y) � unsatisfiable(x, xi) A clause(x, xi if y) A valid(y, y) 
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The divide-and-query algorithm is an improvement in that its query complexity 
is optimal to within a constant factor. The idea of this algorithm is as follows. It 
finds a node in the tree such that the weight of the subtree rooted at that node is as 
close as possible to half the weight of the entire tree. It then queries the oracle 
about this node. If this node is not valid, then the algorithm recursively enters the 
subtree rooted at this node. If not, the algorithm calculates a new "middle" node 
for the entire tree with this subtree deleted. It is shown in [92] that this algorithm 
has logarithmic query complexity. Unfortunately, it is rarely possible to divide the 
tree in half. Usually, we must settle for a "middle" node which is the root of a 

subtree with somewhat smaller weight. This detracts from the performance of the 
divide-and-query algorithm. If the tree has n nodes and branching factor b, then 
the worst case query complexity is blog n (not log n, as a superficial analogy with 
the binary search algorithm might suggest). 

The top-down algorithm searches the final computation tree as follows. First, 
the oracle is queried about the root node, which is presumably not valid. It then 
queries each child of the root node in turn. If they are all valid, then an incorrect 
clause instance has been found. Otherwise, it enters the subtree rooted at the 
leftmost child which it finds to be not valid and continues the search in the same 
way in this subtree. The top-down algorithm does indeed search the tree in a top­
down fashion. Note that it would be easy to add the flexibility of querying the 
children in some preferred order. If the final computation tree has branching factor 
b and height h, then the worst case query complexity of the top-down algorithm is 
bh. 

We now compare in more detail the query complexity of the top-down and 
divide-and-query algorithms. First, the top-down algorithm can perform worse 
than the divide-and-query algorithm. Suppose the tree is linear and the error is 
right at the bottom of the tree. The top-down algorithm queries all nodes in the 
tree, while the divide-and-query algorithm only queries the logarithm of this 
number. On the other hand, suppose the tree has two subtrees, the one on the right 
being very much greater than the one on the left, and the only error is in the left 
subtree. The top-down algorithm will quickly find the error by immediately 
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searching the left subtree, while the divide-and-query algorithm will fruitlessly 
search the right subtree before finally searching the left subtree. Thus the top­
down algorithm can perform better than the divide-and-query algorithm. 

Suppose the fmal computation tree is perfectly balanced (that is, every internal 
node has b children and all leaf nodes are at the same level) with height h and 
branching factor b (>1) .  In this case, the "middle" node will be the leftmost child 
of the root node. If this node is valid and b>2, the next "middle" node will be 
the second from left child of the root node. Assuming the rightmost child is the 
only child which is not valid, the divide-and-query algorithm will query all the 
other children before searching the subtree rooted at the rightmost node. Thus, for 
a perfectly balanced tree, the top-down and divide-and-query algorithms search the 
tree in a very similar manner. They both have worst case query complexity bh, 
approximate! y. 

The advantage of the divide-and-query algorithm is its logarithmic worst case 
query complexity for any computation tree. However, its method of deciding which 
node to query next is relatively inflexible and is dependent on a syntactic criterion 
unrelated to the error. In this regard, the top-down algorithm is more flexible, as it 
would be easy to add heuristics to suggest an order in which to query the children 
of a node. It would be interesting to compare these two algorithms on a large 
variety of incorrect programs and also to see the effectiveness of various heuristics. 

§20. SOUNDNESS AND COMPLETENESS OF THE DIAGNOSER 

Let us now tum to the soundness and completeness of the (first version on 
page 124 of the) diagnoser. In the following theorems, it is assumed that valid, 
unsatisfiable and clause have the sound and complete definitions indicated above. 
The results of this section are due to Lloyd [59] . 

Theorem 20.1 (Soundness of the Error Diagnoser) 
Let P be a program, f-W a goal, and I an intended interpretation for P. 

(a) If f-wrong(W', x) (resp., f-missing(W', x)) returns the answer x = A' if V', 

then Af-V is an incorrect statement instance for P wrt I. 
(b) If f-wrong(W', x) (resp., f-missing(W', x)) returns the answer x = A', then A 
is an uncovered atom for P wrt I. 

In either case, P is incorrect wrt I. 
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Proof Parts (a) and (b) of the theorem are proved by induction on the total 
number of calls to wrong and missing on the refutation produced by the diagnoser. 
If there is only one such call , then either the last statement in the definition of 
wrong or the (transformed version of the) last statement in the definition of 
missing must be the single input clause used from either of these definitions. In the 
frrst case, it is clear that Af-V is an incorrect statement instance. In the second 
case, it is clear that A is an uncovered atom. 

Now suppose that parts (a) and (b) of the theorem are true when the total 
number of calls to wrong and missing is n. Consider a refutation which has n+ 1 
such calls. An examination of the definitions of wrong and missing shows that the 
frrst such call can use any statement as an input clause, except the last statement in 
either definition. Thus the frrst call merely returns the result given by the 
derivation starting from the second call to missing or wrong, which produces a 
correct result, by the induction hypothesis. Parts (a) and (b) of the theorem follow 
from this. 

The last part of the theorem now follows from proposition 19.3.  I 

Next we study the completeness of the diagnoser. For this, it is convenient to 
define (inductively) the concept of a formula and an atom being connected wrt a 
program. 

Definition Let W be a formula, A an atom, and P a program. 
We say A is connected positively (resp., negatively) to W in 0 steps wrt P if A 

occurs positively (resp., negatively) in W. 

We say A is connected positively (resp. , negatively) to W in n steps wrt P 
(n>O) if either there exists an atom B occurring positively in W and a statement 
Cf-V in P such that B and C are unifiable with mgu e, say, and A is connected 
positively (resp., negatively) to ve in n-1 steps wrt P or there exists an atom B 
occurring negatively in W and a statement Cf-V in P such that B and C are 
unifiable with mgu e. say, and A is connected negatively (resp., positively) to ve 
in n-1 steps wrt P. 

Definition Let W be a formula, A an atom, and P a program. We say that A 
is connected positively (resp. , negatively) to W wrt P if A is connected positively 
(resp. ,  negatively) to W in n steps wrt P, for some n�O. 

Lemma 20.2 Let P be a program, f-W a goal, A an atom, and I an intended 
interpretation for P. Let A be connected positively (resp., negatively) to W wrt P. 
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(a) If an instance of A is the head of an incorrect statement instance for P wrt I, 
then there exists a computed answer for f-wrong(W', x) (resp. , f-missing(W', x)) 
in which x is bound to the representation of this incorrect statement instance. 
(b) If an instance of A is an uncovered atom for P wrt I, then there exists a 
computed answer for f-missing(W', x) (resp., f-wrong(W', x)) in which x is bound 
to the representation of this uncovered atom. 

Proof The proof is a straightforward induction argument on the number of 
steps needed to connect W and A. (See problem 14.) 1 

Lemma 20.3 Let P be a normal program, G a normal goal f-W, and I an 
intended interpretation for P. 
(a) If e is a computed answer for P u { G }  and we is not valid in I, then either 

there exists an atom A connected positively to W wrt P such that an instance of A 
is the head of an incorrect clause instance for P wrt I or there exists an atom A 
connected negatively to W wrt P such that an instance of A is an uncovered atom 
for P wrt I. 
(b) If P u { G } has a finitely failed SLDNF-tree and W is satisfiable in I, then 
either there exists an atom A connected positively to W wrt P such that an instance 
of A is an uncovered atom for P wrt I or there exists an atom A connected 
negatively to W wrt P such that an instance of A is the head of an incorrect clause 
instance for P wrt I. 

Proof Let W be L1 A . . .  ALn. Parts (a) and (b) are proved together by induction 
on the number of calls k (including calls in subsidiary refutations and trees) in the 
SLDNF-refutation for (a) and in the SLDNF-tree for (b), respectively. When k=1 , 
the result is obvious. Now suppose that (a) and (b) hold when there are at most 
k-1 calls. 

(a) Suppose e is a computed answer for P u { G} ,  we is not valid in I and the 
SLDNF-refutation has k calls. We can assume that e is actually the composition 
of the substitutions used in the SLDNF-refutation. Let Li be the selected literal in 
G. We consider two cases. 

Li 
is a negative literal 

Suppose Li is -B.  If B is satisfiable in I, then P u { f-B } has a finitely failed 
SLDNF-tree with < k calls and the result follows by the induction hypothesis. 
Otherwise, B is unsatisfiable in I and hence L. is valid in I. Thus e is a computed 

1 
answer for P u { f-L1 A . . .  ALi_1 ALi+ 1 A . . .  ALn } and (L1 A . . .  ALi_1 ALi+ 1 A . . . ALn)e is 
not valid in I. Hence the result follows from the induction hypothesis. 
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L
i 

is a positive literal 

Let B�V be the flrst input clause. Suppose that 
(L1 A . . .  ALi_1 A V ALi+ 1 A . . .  ALn)e is not valid in I. Then the result follows from the 
induction hypothesis. Otherwise, L.e is not valid in I. Hence Be� ve has an 1 
incorrect clause instance and the result follows. 

(b) Suppose P u {G } has a flnitely failed SLDNF-tree, W is satisfiable in I 
and the SLDNF-tree has k calls. Let Li be the selected literal in G. We consider 
two cases. 

Li is a negative literal 

Suppose Li is -B. Suppose first that Li fails. Then the identity substitution is 
a computed answer for P u { � B }  and B is not valid in I. The result follows by 
applying the induction hypothesis. Otherwise, Li succeeds. Then 
P U { �L1A . . .  ALi_1ALi+1 A . . .  ALn } has a finitely failed SLDNF-tree and 
L1 A . . .  ALi_1 ALi+ 1 A . . .  ALn is satisfiable in I. Again, the result follows from the 
induction hypothesis. 

Li is a positive literal 

Suppose there exists an input clause B�V with mgu e 1 , say, such that 
(L1 A . . .  ALi_1 A V ALi+ 1A . . .  ALn)e1 is satisfiable in I. Then the result follows by 
applying the induction hypothesis. Otherwise, an instance of Li is an uncovered 
atom and the result follows. • 

Next we generalise lemma 20.3 to arbitrary programs and goals. 

Lemma 20.4 Let P be a program, G a goal �w. and I an intended 
interpretation for P. 
(a) If e is a computed answer for P u { G }  and we is not valid in I, then either 

there exists an atom A connected positively to W wrt P such that an instance of A 
is the head of an incorrect statement instance for P wrt I or there exists an atom A 
connected negatively to W wrt P such that an instance of A is an uncovered atom 
for P wrt I. 
(b) If P u { G } has a finitely failed SLDNF-tree and W is satisfiable in I, then 
either there exists an atom A connected positively to W wrt P such that an instance 
of A is an uncovered atom for P wrt I or there exists an atom A connected 
negatively to W wrt P such that an instance of A is the head of an incorrect 
statement instance for P wrt I. 

Proof (a) First, we show that we can reduce the lemma to the case that W is 
an atom. Suppose that W has free variables x1 ' ... ,xn. Let answer be a new n-ary 
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predicate symbol. Let G' be �answer(x1 , . . . ,xn) and P' be 
P u { answer(xl' . . . ,xn)�W} .  Extend I to an interpretation I' for P' by defining 
answer(t l ' . . . ,tn) to be true in I' if W{x1tt1 , . . . ,xJtn} is true in I, where t1 ' . . . ,tn are 
ground terms. If e is a computed answer for P v { G} and we is not valid in I, 
then it is clear that e is a computed answer for P' u {G' }  and answer(x l ' . . .  ,xn)8 is 
not valid in I'. Note also that no instance of the statement for answer is incorrect 
for P' wrt I' and no instance of answer(x1 ' . . . ,xn) is uncovered for P' wrt I'. 
Assuming the result is true for the case when the goal (body) is an atom, either 
there exists an atom A connected positively to answer(xl ' . . . ,xn) wrt P' such that an 
instance of A is the head of an incorrect statement instance for P' wrt I' or there 
exists an atom A connected negatively to answer(x1 , . . . ,xn) wrt P' such that an 
instance of A is an uncovered atom for P' wrt I'. Part (a) of the lemma follows 
easily from this. 

Let us now assume that W is an atom. We prove the result by induction on the 
number of transformation steps k required to transform P into a normal form of P. 
When k=O, P is already a normal program and the result follows from lemma 20.3. 

Next suppose that the result holds for programs which require at most k-1 
transformation steps. Let P be a program which requires k such steps. Suppose P' 
is the program obtained from P by applying the first such transformation step. 
Note that if e is a computed answer for P u { G} ,  then e is a computed answer for 
P' u {G } 

Suppose that the frrst transformation used i s one of the frrst nine 
transformations, (a) to (i), given in § 18 . In this case, if B is an uncovered atom for 
P' wrt I, then B is also an uncovered atom for P wrt I. Similarly, if B� V is an 
incorrect statement instance for P' wrt I, then either B� V is an incorrect statement 
instance for P wrt I or the statement in P, which gave rise via the transformation to 
the clause in P' whose instance is B�V. has a corresponding incorrect statement 
instance. We can now obtain the result by applying the induction hypothesis to P'. 

Finally, suppose that the frrst such transformation used is the last 
transformation (j) given in § 18, that is, 

Replace B � w 1 "·· ·" wi-1 A-3x1 . . . 3xn v 1\ wi+ 1 /\ . . .  /\ w m 
by B � W1"· ··"Wi-1A-p(yl ' . . . ,yk)"Wi+1"· · ·"Wm 
and p(y l ' . . . ,yk) � 3x1 .. . 3xn V 

where y l ' . . . ,yk are the free variables in 3x1 . . . 3xn V and p is a new predicate 
symbol not already appearing in P. We extend I to I' for P' by defining p(t1 , . . . ,tk) 
to be true in I' if (3x1 . . . 3xn V) { y 1ttl ' . . . ,yJtk} is true in I, where t1 ' . . . ,tk are ground 
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terms. Note that no instance of the statement for p is incorrect for P' wrt I' and no 
instance of p(x1 ' . . .  ,xn) is uncovered for P' wrt I' . Note also that if an instance of 
B � w1 ..... . . ...... wi-ll\-p(yl ' . . .  ,yk)"Wi+l"·· ·"Wm is incorrect for P' wrt I', then a 
corresponding instance of B � w1 ..... . . .  1\Wi-l"-3x1 . . .  3xnV"Wi+I"·· ·"Wm is 
incorrect for P wrt I. Furthermore, if q is the predicate symbol of B and some 
atom C with predicate symbol q is uncovered for P' wrt I', then C is also 
uncovered for P wrt I. The result now follows by applying the induction 
hypothesis to P'. 

(b) The proof of part (b) is similar. • 

Theorem 20.5 (Completeness of the Error Diagnoser) 
Let P be a program, G a goal �w. and I an intended interpretation for P. 

(a) If e is a computed answer for P u { G }  and we is not valid in I, then there 
exists a computed answer for �wrong(W', x) in which x is bound to the 
representation of either an incorrect statement instance or an uncovered atom. 
(b) If P u { G }  has a finitely failed SLDNF-tree and W is satisfiable in I, then 
there exists a computed answer for �missing(W', x) in which x is bound to the 
representation of either an incorrect statement instance or an uncovered atom. 

Proof The theorem follows immediately from lemmas 20.2 and 20.4. • 

The main advantages of the approach taken in this chapter to error diagnosis 
are that the diagnoser itself has a simple and elegant semantics, that the 
programmer only needs to know the intended interpretation of the incorrect 
program to debug it, and that the diagnoser can handle programs which use 
advanced control facilities and the increased expressiveness of program statements. 

However, a disadvantage of the approach is that it does not cope with the 
non-declarative features of PROLOG, such as cut, assert and retract. At first sight, 
this would appear to invalidate the approach, since practically every non-trivial 
PROLOG program makes some use of these non-declarative features! However, the 
outlook is more promising than that. 

The first point to note in this regard is that well-written PROLOG programs 
usually consist of a small number of definitions using non-declarative features 
together with the remainder of the definitions which are purely declarative (except 
possibly for safe uses of cut, which are only for efficiency and can be ignored for 
the purposes of debugging). This means that the programmer can use a diagnoser 
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like the one above for debugging the major part of the program which is purely 
declarative. Second, as we pointed out earlier, there is a strong effort being put 
towards making the new generation of PROLOG systems more declarative. 
Advanced control facilities and better forms of negation allow the programmers to 
write their programs in a more declarative style. In fact, it may even be possible to 
avoid the overt use of cut entirely. All these advances in the design of PROLOG 
systems make the job of debugging much easier. They will also make the 
declarative diagnoser more practically useful, since the proportion of programs to 
which the pure approach above applies will increase. 

Leaving aside the problem of the non-declarative features of PROLOG, we 
now look at other ways in which the diagnoser could be improved. A useful way 
of thinking about error diagnosers is that they are expert systems and a number of 
recent papers (e.g. [3 1 ] , [32]) have taken this approach. One can imagine the 
diagnoser being augmented with expert knowledge about typical program errors 
and all kinds of heuristics for quickly locating them. Another interesting 
possibility would be the incorporation of the intelligent backtracking ideas of [8 1] . 
This has been investigated in some detail for definite programs in [6] . These ideas 
need to be extended to (arbitrary) programs. 

The diagnoser also needs some method of locating errors which lead to infinite 
loops [92] . The analysis of a looping program is complicated by the fact that it 
may actually be correct wrt the intended interpretation, but get into an infinite loop 
because of the deficiencies of the standard PROLOG computation rule. The 
employment of advanced control facilities, which are more likely to avoid infinite 
loops [73] , will help here. 

Much more research needs to be done before we will be able to build truly 
practical declarative error diagnosers. We hope the results of this chapter will 
provide a useful foundation for this research. 

PROBLEMS FOR CHAPTER 4 

1 .  Prove proposition 17.3. 
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2. Consider the following program 

grandparent(x,y) � parent(x,z}, parent(z,y) 

parent(x,y) � mother(x,y) 
parent(x,y) � father(x,y) 

ancestor(x,y) � parent(z,y), ancestor(x,z) 
ancestor(x,y) � parent(x,y) 

father(Fred, Mary) 
father(George, James) 
father(John, Fred) 
father(Albert, Jane) 

mother(Sue, Mary) 
mother(Jane, Sue) 
mother(Liz, Fred) 
mother(Sue, James) 

(a) Write the following queries as goals. 
(i) Who is the father of Jane? 
(ii) Who has Sue as mother and John as grandfather? 
(iii) Who are the ancestors of Mary? 
(iv) Does every person with a mother also have a father? 
(v) Are all Sue' s children childless? 
(vi) Find everyone who has a grandparent in common with Mary. 
(vii) Find every mother who has no father. 
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(viii) Is it true that everyone who has a grandparent in common with George has 
an ancestor in common with Mary? 
(b) For the above program and each of the goals in part (a) , show a normal 
program and normal goal which result from the transformation process. 

3 .  Prove lemma 1 8.3 .  

4 .  Let P be a normal program and G a normal goal. 
(a) Prove that e is a computed answer for P u { G } in the sense of § 1 8  iff e is a 
computed answer for P u { G} in the sense of § 15. 
(b) Prove that P u {G} has a finitely failed SLDNF-tree in the sense of § 1 8  iff 
P u {G }  has a finitely failed SLDNF-tree in the sense of § 15. 
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(c) What is the relationship between SLDNF-derivations, SLDNF-refutations, and 
SLDNF-trees in the sense of § 1 8 and in the sense of § 15? 

5. Let P be a program and G a goal. Prove that if one normal form of P u { 0} is 
allowed, then every normal form of P u { G} is allowed. 

6. Let P be a program and P' and P" normal forms of P. Let U be a closed 
formula containing only predicate symbols which appear in P. Prove that U is a 
logical consequence of comp(P') iff U is a logical consequence of comp(P") .  

7 .  Give an  example of a program P with a normal form P' such that P i s  not a 
logical consequence of P' . 

8 .  Let P be a hierarchical program, G a goal and P' u {G' } a normal form of 
P u { 0 } .  Prove that P' is hierarchical. 

9. Let P be a program and W a closed formula. 
(a) Prove that P u { +---W} has a finitely failed SLDNF-tree iff P u { +--- -W} has 
an SLDNF-refutation. 
(b) Prove that P u { +-W} has an SLDNF-refutation iff P u { +--- -W} has a finitely 
failed SLDNF-tree. 
What happens if W is not closed? 

10. Let P be a program, 0 1 a goal +-W1 , and 02 a goal +-W2. Suppose that w1 
and W 2 are logically equivalent. Determine whether the following statements are 
correct or not: 
(a) e is a computed answer for P u { G 1 } iff e is a computed answer for 
p u {02 } .  
(b) P u { G1 } has a finitely failed SLDNF-tree iff P u {02 } has a finitely failed 
SLDNF-tree. 

1 1 . Let P be the program 
p(a) +-

and 0 the goal +--- "tx p(x). Show that, if the safeness condition is dropped, the 
identity substitution is a "computed answer" , but that "tx p(x) is not a logical 
consequence of comp(P) . 
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12. Let P be the program 
p(a,a) � 
q(b,y) � 
r(a) � 'v'y(q(x,y)�p(x,y)) 
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and G the goal �r(a). Show that r(a) is a logical consequence of comp(P), but 
that, if the safeness condition is dropped, P u {G }  has a "finitely failed SLDNF­
tree" . 

13 .  Consider the top-down version of the error diagnoser. Assume that a top level 
call to wrong has its first argument unsatisfiable and a top level call to missing has 
its first argument valid. Prove that the top-down version of the error diagnoser has 
the property that any subsequent call to wrong has its first argument unsatisfiable 
and any subsequent call to missing has its first argument valid. 

14. Prove lemma 20.2. 

1 5. Consider the following (incorrect) program for the Sieve of Eratosthenes. 

primes(x,y) � integers(2,x,z), sift(z,y) 

integers(x,y,x.z) � xsy, plus(x, 1 ,w), integers(w,y,z) 
integers(x,y,nil) � x>y 

sift(nil,nil) 
sift(x.u,x.y) � remove(x,u,z) , sift(z,y) 

remove(x,nil,nil) 
remove(x,y.u,z) � -(x div y), remove(x,u,z) 
remove(x,y.u,y.z) � x div y, remove(x,u,z) 

The goal �primes( 10, x) returns the incorrect answer x/2.4.8.nil. 
(a) Show the oracle queries which would be asked by the single-stepping diagnoser 
for the goal 

� wrong(primes(lO, 2.4.8.nil) , x) 
and hence determine an incorrect clause instance in the program. 
(b) Repeat part (a) for the top-down diagnoser. 
(c) Repeat part (a) for the divide-and-query diagnoser. 
[Note that x div y is true if x divides y. Also plus(x,y,z) is true if x+y=z. You 
may assume the system predicates >, S, plus and div all work correctly. Thus 
oracle queries for these predicates can be avoided by simply calling them.] 
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16. Consider the following (incorrect) subset program 
subset(x,y) f- "iiz (member(z,y) +-- member(z,x)) 
member(x,y.z) +-- member(x,z) 

Chapter 4. Programs 

and the goal +-subset( 1 .2.3.nil, 1 .2.nil), which incorrectly succeeds. For the top­
down diagnoser, show the computation and oracle queries that result from the goal 

+-wrong(subset( l .2.3.nil, 1 .2.nil) , x) 
Hence calculate the incorrect statement instance or uncovered atom. 



Chapter 5 

DEDUCTIVE DATABASES 

This chapter provides a theoretical basis for deductive database systems. A 
deductive database consists of a finite number of database statements, which have 
the form Af-W, where A is an atom and W is a typed first order formula. A 
query has the form f-W, where W is a typed first order formula. An integrity 
constraint is a closed, typed first order formula. Function symbols are allowed to 
appear in formulas. Such a deductive database system can be implemented using a 
PROLOG system. The main results of this chapter are the soundness and 
completeness of the query evaluation process, the soundness of the implementation 
of integrity constraints, and a simplification theorem for implementing integrity 
constraints. 

§21. INTRODUCTION TO DEDUCTIVE DATABASES 

In this section, we introduce the important concepts of deductive database 
systems, such as database, query, correct answer, and integrity constraint. We also 
introduce several classes of databases, such as hierarchical and stratified databases. 

In recent years, there has been a growing interest in deductive database 
systems [24] , [35] to [38] , [5 1 ] ,  [58] , [60] to [63] , [70] , [87] , [ 105] , [ 1 1 1] .  Such 
systems have first order logic as their theoretical foundation. This approach has 
several desirable properties. 

First, it provides an expressive environment for data modelling, since the use 
of database statements allows a single general statement to replace many explicit 
facts. 
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Second, it allows a single language to be used for expressing databases, 

queries, integrity constraints, views and programs. In particular, there is no need 

for separate query and host programming languages as are commonly used in 

relational database systems. 

Third, logic itself has a well-understood and well-developed theory which 

already provides much of the theoretical foundation required for database systems. 

Fourth, logic allows the declarative expression of databases, queries, integrity 

constraints and, especially, the key concept of a correct answer. The advantage to 

the user of only having to deal with declarative concepts is obvious. 

Finally, and this is most important, the approach encourages a clear separation 

of the declarative and procedural concepts. For example, we can distinguish the 

declarative concept of a correct answer from the query evaluation process used to 

compute the answer. This contrasts with the standard relational database approach 

in which the declarative concept is commonly either ignored or identified with the 

implementation. The existence of a declarative definition provides an important 

yardstick against which the correctness of an implementation can be measured. 

Without it, we would not be able to even state the soundness and completeness 

theorems. 

As the collection of papers in [70] shows, there is currently a great deal of 

research into the theoretical aspects of deductive database systems. There is even 

more interest in the implementation of deductive database systems, especially in 

the crucial area of query optimisation. Most efforts have been put into finding 

efficient ways of answering definite queries to (recursive) definite databases 

without functions. For a recent survey of the techniques for this problem found so 

far, the reader is referred to [7]. Unfortunately, little attention has so far been paid 

to optimising normal queries, much less arbitrary queries. However, given the 

great interest in the implementation problems, there is every chance that 

commercially competitive deductive database systems will become available in the 

next couple of years. Certainly, ten years from now, deductive database systems 

will be the standard database systems in the same way as relational database 

systems are standard now. 

Underlying the theoretical developments of this chapter is a typed first order 

theory. (See §3 for a discussion of typed theories.) The reason for using a typed 
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theory is that types provide a natural way of expressing the domain concept of 
relational databases. The requirement that formulas be correctly typed ensures that 
important kinds of semantic integrity constraints are maintained. In this chapter, 
we assume that the alphabet of the theory contains only finitely many constants, 
function symbols and predicate symbols. Also we assume that, for each type 't, 
there is a ground term of type t. 

Next we turn to the definitions of the main concepts. The particular 
formulation of these concepts presented in this chapter is due to Lloyd and Topor 
[61 ] , [62], [63] . 

Definition A database statement is a typed first order formula of the form 
A � W  

where A is an atom and W is a typed first order formula. The formula W may be 
absent. Any variables in A and any free variables in W are assumed to be 
universally quantified at the front of the statement. A is called the head and W the 
body of the statement. 

Definition A database is a finite set of database statements. 

Definition A query is a typed first order formula of the form 
� w  

where W is a typed first order formula and any free variables of W are assumed to 
be universally quantified at the front of the query. 

Example Consider a supplier-part-job database, whose predicate symbols have 
types associated with them as follows: 

supplier has type sno x sname x city 
local_supplier has type sno 
major_supplier has type sno 
part has type pno x pname x colour x weight 
job has type jno xjname x city 
spj has type sno x pno xjno x quantity 

In a typical state, the database may contain the following statements : 
supplier(S l , Smith, Adelaide) � 
supplier(S2, Jones, Sydney) � 
supplier(S3,  James, Perth) � 
local_supplier(S 1) � 
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local_supplier(s) +-- supplier(s,_,Melboume) 
major_supplier(s) +-- 'v'j/jno 3q/quantity (spj(s,_,j,q) " q� 100) 
part(P1 , Screw, White, 1 0) +-
part(P2, Nut, Black, 20) +-
job(Jl , Build, Melbourne) +-
job(J2, Repair, Sydney) +-
spj(S 1 ,  P1 ,  Jl ,  100) +-
spj(S2, P2, J3 ,  200) +-

In these database statements and in subsequent queries and integrity constraints, 
each underscore ("_") in an argument position represents a unique variable 
existentially quantified immediately before the atom containing it. Constants are 
denoted by names beginning with an upper case letter. Some possible queries that 
may be asked of this database are the following: 
(1 ) Find suppliers who supply the same part to all jobs in Perth: 

+-- 3p/pno 'v'j/jno (spj(s,p,j ,_) +-- job(j,_,Perth)) 
(2) Find parts supplied by all suppliers who supply some red part: 

+-- 'v's/sno (spj(s,p,_,_) +-- 3p'/pno (spj(s,p',_,_)Apart(p',_,Red,_))) 
(3) Find major suppliers such that if S 1 supplies some part to some job then the 
major supplier supplies either the part or the job: 

+-- major_supplier(s) " 'v'p/pno 'v'j/jno (spj(s,p,_,_) v spj(s,_,j ,_) +-- spj(S 1 ,p,j,_)) 

Definition Let D be a database and Q a query +-W, where W has free 
variables x1 , . . . ,xn. An answer for D v { Q} is a substitution for some or all of the 
variables x1 ' . . . ,xn. 

It is understood that substitutions are correctly typed in that each variable is 
bound to a term of the same type as the variable. 

Definition An integrity constraint is a closed typed first order formula. 

Example Some integrity constraints that may be imposed on the above 
database are the following: 
(1 ) No local supplier supplies part P2: 

'v's/sno (-spj(s,P2,_,_) +-- local_supplier(s)) 
(2) Supplier S2 supplies every job in Sydney: 

'v'j/jno (spj(S2,_j ,_) +-- job(j,_,Sydney)) 
(3) Supplier S3 only supplies jobs in Adelaide or Perth: 

'v'j/jno (job(j ,_,Adelaide) v job(j ,_,Perth) +-- spj(S3,_j,_)) 
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Next we give the definition of the completion of a database. This definition 
requires the introduction of a typed equality predicate symbol =t of type tXt, for 
each type t. These predicate symbols are assumed not to appear in the original 
language. In particular, no database, query or integrity constraint contains any =t . 

Definition The definition of a predicate symbol p appearing in a database D is 
the set of all database statements in D which have p in their head. 

Definition Suppose the definition of a predicate symbol p of type t1 x .. . xtn in 
a database is 

Al � wl 

Ak � wk 
Then the completed definition of p is the formula 

'Vx1/tr.'Vxu'tn (p(x1 ' . . . ,xn) � E1 v . .. v�) 

where Ei is 3y1/o-1 . .. 3yJo-d ((x1=t1t1)A ... A(xn=tn
tn)"Wi), Ai is p(tl ' . . . ,tn), 

y 1 , . . . ,y d are the variables in Ai and the free variables in Wi, and x1 , . . .  ,xn are 
variables not appearing anywhere in the definition of p. 

Example Let the definition of p be 
p(x) � q(x,y) 
p(b) � 

where x has type t and y has type 0". Then the completed definition for p is 
'Vz/t (p(z) � (3x/t 3y/O" ((z=tx)Aq(x,y)) v (z=tb))) 

Definition Let D be a database and p a predicate symbol of type t1 x . . . xtn 
occurring in D. Suppose there is no database statement in D with predicate 
symbol p in its head. Then the completed definition of p is the formula 

'Vxl/tl . . . 'Vxn/tn -p(xl , . . .  ,xn) 

The equality theory for a database consists of all axioms of the following 
form: 

1 . c:;t:td' where c and d are distinct constants of type t. 

2. V'(f(x1 , . . . ,xn)*tg(yl ' . . . ,ym)), where f and g are distinct function symbols of 
range type t. 
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3. 'd(f(x1 , .. .  ,xn):;t:'tc), where c is a constant of type 't and f is a function symbol of 
range type 't. 

4. 'd(t[x]:;t:'tx), where t[x] is a term of type 't containing x and different from x. 

5 .  'd((xl:;t:t/ l) v . . .  v (xn:;t:-c/n) � f(x1 , . . . ,xn):;t:i(Yl '·· · ·Yn)), where f is a 

function symbol of type -c1 x . . . x'tn �'t. 

6. Vx/'t (x= 'tx). 

7. 'd((x1=-c/ l ) " . . . " (xn=-c/n) � f(x1 , . . .  ,xn)=i<Yl ' · · · ·Yn)), where f 

function symbol of type -c1 x . . . x'tn �'t. 

is a 

8. 'd((x1=-c/l) " . . . " (xn=-c/n) � (p(x1 ' . . . ,xn) � p(y1 , . . .  ,yn))), where p 

(including every =-c) is a predicate symbol of type -c1 x . . . x'tn. 

9. Vx/t ((x='ta1) v . . .  v (x='tak) v (3x1t-c1 . . . 3xn/'tn(x=i1Cx1 , . . . ,xn))) v 

. . .  v (3y1tcr1 . . . 3ym/crm(x=-cf/y1 , . . . ,ym)))), 
where a1 ' . . . ,ak are all the constants of type 't and f1 ' . . .  ,fr are all the function 
symbols of range type 't. 

Axioms 1 to 8 are the typed versions of the usual equality axioms for a 
program. (See § 14.) The axioms 9 are the domain closure axioms, which were 
introduced in the function-free case by Reiter [85] . 

Definition Let D be a database. The completion of D, denoted by comp(D) , is 
the collection of completed definitions of predicate symbols in D together with the 
above equality theory. 

Definition Let D be a database, Q a query � W, and 9 an answer for 
D u ( Q} .  We say 9 is a correct answer for comp(D) u ( Q }  if 'd(W9) is a 
logical consequence of comp(D). 

The concept of a correct answer gives a declarative description of the desired 
output from a query to a database. Next we give the definition of a database 
satisfying or violating an integrity constraint. 

Definition Let D be a database such that comp(D) is consistent and let W be 

an integrity constraint. We say D satisfies W if W is a logical consequence of 
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comp(D); otherwise, we say D violates W. 

This definition is due to Reiter [87] .  Intuitively, an integrity constraint should 
be an invariant of the database. 

There are two common views of databases, at least relational databases, which 
have been called the model-theoretic view and the proof-theoretic view [5 1] ,  [79] , 
[87] .  

In the model-theoretic view, a database is a model of its integrity constraints. 
Furthermore, an answer to a query should make the query true in the model given 
by the database. This view is essentially that provided by conventional relational 
database theory [25] .  

In  the proof-theoretic view, the database i s  a first order theory and its integrity 
constraints should be an invariant of the theory. Furthermore, answering a query 
involves proving the query to be a logical consequence of the database. This 
chapter takes a proof-theoretic view of databases. 

The proof-theoretic view has a number of advantages over the model-theoretic 
view, which are mainly concerned with the extension from relational databases to 
more general databases. For example, the model-theoretic view only works in a 
natural way for relational databases because the facts in the database can equally 
well be regarded as constituting an Herbrand interpretation. Once we move beyond 
having just ground facts in the database, there is no natural way of regarding the 
database as an interpretation any more. The other advantages are related to the 
fact that, if the database is regarded as a first order theory, then we have available 
more powerful data modelling capabilities for the treatment of incomplete 
information and null values, and the incorporation of more real world semantics. 
We refer the interested reader to [5 1] and [87] for a detailed discussion of these 
matters. 

Next, we give the definitions of several important classes of queries and 
databases. 

Definition A normal query is a query of the form rLl''· · ·"Ln, where 
L1 , . . .  ,Ln are literals. 

Definition A definite query is a query of the form rA1 A. . .  AAn, where 
A1 , . . .  ,An are atoms. 
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Definition A database clause is a database statement that has the form 
ArL1A . . .  ALn, where L1 ' . . .  ,Ln are literals. A normal database is a database that 
consists of database clauses only. 

Definition A definite database clause is a database clause that has the form 
ArA1A . . .  AAn, where A1 ' . . .  ,An are atoms. A definite database is a database that 
consists of definite database clauses only. 

Definition A level mapping of a database is a mapping from its set of 
predicate symbols to the non-negative integers. We refer to the value of a predicate 
symbol under this mapping as the level of that predicate symbol. 

Definition A database is hierarchical if it has a level mapping such that, in 
every database statement p(t1 , . . .  ,tn) r W, the level of every predicate symbol in 
W is less than the level of p. 

Definition A database is stratified if it has a level mapping such that, in every 
database statement p(t1 , . . .  ,tn) r W, the level of the predicate symbol of every 
atom occurring positively in W is less than or equal to the level of p, and the level 
of the predicate symbol of every atom occurring negatively in W is less than the 
level of p. 

Clearly, every hierarchical database is . stratified and also every definite 
database is stratified. 

We can assume without loss of generality that the levels of a stratified 
database are O, l , . . .  ,k, for some k, and we will normally assume this without 
comment in what follows. However, whenever we deal with stratified databases D 
and D' such that D !:: D', it will be convenient to assume that D inherits the 
stratification induced by D'. This implies that for the smaller database D, there 
may not be predicate symbols of all levels O, l ,  . . .  ,k. Note that, at level 0, all atoms 
in the bodies of database statements must occur positively, but that these database 
statements need not be definite database clauses. 

Since every formula can be transformed into a logically equivalent formula in 
prenex conjunctive normal form (see proposition 3.4), we can transform the body 
of each statement in a database into this form. The transformed database is 
logically equivalent to the original one, and the completion of the transformed 
database is logically equivalent to the completion of the original one. Also the 
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mapping T (defmed below) associated with the transformed database is equal to the 
mapping associated with the original one. Furthermore, if W' is a prenex 
conjunctive normal form of W, then an atom occurs positively (resp., negatively) 
in W iff it occurs positively (resp. ,  negatively) in W'. (See problem 1 .) Thus the 
transformed database is stratified iff the original database is stratified. Also the 
transformed database is hierarchical iff the original database is hierarchical. 

To simplify the proofs in this chapter, we assume without loss of generality 
that the body of each statement in a database is in prenex conjunctive normal form. 
In this case, it is easy to identify positive and negative occurrences of atoms. An 
atom occurring in the body of a statement occurs positively if it appears in a 
positive literal; otherwise, it occurs negatively. 

We now define a mapping � from the lattice of interpretations based on J to 
itself. 

Definition Let J be a pre-interpretation of a database D and I an interpretation 
based on J. Then �(I) = { AJ,V : A�W e D, V is a variable assignment wrt J, 
and W is true wrt I and V} .  

It will be convenient to suppress the J and denote this mapping by T 0. Let E 
be u't [='t(x,x)]J ' Subsequent use of E ensures that all models considered are 
normal, that is, assign an identity relation to each equality predicate. 

The following propositions and corollary · are the database versions of 
propositions 17 . 1  to 17.3 and corollary 17.4, and have the same proofs. 

Proposition 21.1 Let D be a database, J a pre-interpretation of D, and I an 
interpretation based on J. Then I is a model for D iff T0(I) !:: I. 

Proposition 21.2 Let D be a database, J a pre-interpretation of D, and I an 
interpretation based on J. Suppose that I u E is · a model for the equality theory. 
Then I u E is a  model for comp(D) iff T0(I) = I. 

Proposition 21.3 Let D be a stratified database and J a pre-interpretation for 
D. 
(a) Suppose D has only predicates of level 0. Then T0 is monotonic over the 
lattice of interpretations based on J. 
(b) Suppose D has maximum predicate level k+l .  Let Dk denote the set of 
database statements in D with the property that the predicate symbol in the he�d of 
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the statement has level � k. Suppose that Mk is an interpretation based on J for 
Dk and Mk is a fixpoint of T0k

. Then A =  {Mk u S  : S l:: { p(d1 ' . . .  ,dn) : p is a 

level k+l predicate symbol and each di is in the domain of J } } is a complete 
lattice, under set inclusion. Furthermore, A is a sublattice of the lattice of 
interpretations based on J, and T0, restricted to A ,  is well-defined and monotonic. 

Corollary 21.4 Let D be a stratified database. Then comp(D) has a minimal 
normal Herbrand model. 

The results of this section are due to Lloyd, Sonenberg and Topor [60] .  

§22. SOUNDNESS OF QUERY EVALUATION 

In this section, we present the query evaluation process, and prove that it is 
sound and never flounders. These results are due to Lloyd and Topor [61 ] ,  [62] , 
[63]. The first step of the query evaluation process transforms typed first order 
formulas into corresponding type-free first order formulas. For this, we use a 
standard transformation [33]. 

Definition Let W be a typed ftrst order formula. For each type t, we associate 
a new unary type predicate symbol also denoted by t. Then the typefree form W* 

of W is the frrst order formula obtained from W by applying the following 
transformations to all subformulas of W of the form 'r:/x/t V and "3x/t V: 

(a) Replace 'r:fx/t V by 'r:/x(Vf-t(x)). 

(b) Replace "3x/t V by "3x(V At(x)) . 

Example Let W be the database statement 
p(x) f- "3y/cr q(x,y) 

where x has type t. Then W* is the program statement 
p(x) f- "3y(q(x,y)Acr(y)) " t(x) 

If Q is the query 
f-'r:fx/t q(x,y) 

then Q* is the goal 
f-'r:fx(q(x,y)f-t(x)) A cr(y) 

More generally, if Q is the query f-W, where W has free variables x 1 ' . . . ,xn and xi 
has type ti (i=l , . . . ,n), then Q* is the goal 

f-W* "t 1 (x 1 )A . . .  A tn (xn) 
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We will also require the usual type theory [33] . 

Definition The type theory <I> consists of all axioms of the following form: 
1 . 't(a)�. where a is a constant of type 't. 
2. Vx1 . . .  \7'xn ('t(f(x l ' . . .  ,xn)) � 'tl (x1)A . . .  /\'tn(xn)), where f is a function symbol of 
type 't l x . . . X'tn �'t. 

Since we are allowing functions, a query can have infinitely many answers. 
However, under a reasonable restriction on the type theory <I>, we can ensure that 
each query can have at most finitely many answers. If <I> is hierarchical, then there 
are only finitely many ground terms of each type. (See problem 2.) Consequently, 
each query can have at most finitely many answers. We emphasise that it is not so 
much the presence of functions which causes queries to have infinitely many 
answers, but rather the presence of a "recursive" type theory. 

Now we are in a position to give the definitions of the appropriate procedural 
concepts. 

Definition Let D be a database, <I> its type theory, Q a query and R a safe 
computation rule. Let D* and Q* be the type-free forms of D and Q. (That is, D* 
is the set of type-free forms of each of its database statements.) 

An SWNF-derivation of D u ( Q) (via R) is an SLDNF-derivation of 
D* u <I> u ( Q* )  (via R). 

An SWNF-refutation of D u (Q)  (via R) is an SLDNF-refutation of 
D* u <I> u ( Q* )  (via R). 

An (R-)computed answer for D u (Q)  is an (R-)computed answer for 
D* u <I> u ( Q* ) .  

An SWNF-tree for D u { Q )  (via R )  is an SLDNF-tree for D *  u <I> u (Q* }  

(via R). 
A finitely failed SWNF-tree for D u (Q}  (via R) is a finitely failed SLDNF­

tree for D* u <I> u ( Q* } (via R) . 

Thus, to answer a query Q to a database D, we first transform D and Q to their 
type-free forms and then apply the techniques of § 1 8 to the goal Q* and program 
D* u <I>. Note that, due to the presence of the type predicate symbols, every 
computed answer is a ground substitution for all the free variables in the body of 
the query. (See problem 3.) Also every computed answer is correctly typed. The 
next theorem shows that this implementation is sound. 
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Lemma 22.1 Let D be a database, <I> its type theory, and W a closed typed 
first order formula. Let D* and W* be the type-free forms of D and W. If W* is a 
logical consequence of comp(D* u <1>), then W is a logical consequence of 
comp(D). 

Proof The proof is rather long and requires some preparation. Given a model 
M for comp(D), we construct a model M* for comp(D* u <1>). The complexity of 
the construction of M* which we use is needed to ensure that the equality axioms 
are satisfied. 

Let M be a model for comp(D). Using (the typed version of) [69, p.83] ,  we 
can assume without loss of generality that M is normal, that is, the identity relation 
on the domain C't is assigned to =t' for each type t. We can also assume that the 
Ct' s  are disjoint. Put C = utCt . 

The underlying language L* for the interpretation M* includes all the 
constants, function symbols and (non-equality) predicate symbols of the underlying 
language L for M. L * differs from L in that all type information is suppressed, the 
various typed equality predicate symbols ='t are replaced by a single equality 
predicate symbol = and there is a unary predicate symbol t for each type t. 

Let F' be the set of mappings on the Ct assigned by M to the function symbols 
in L. Let T be the set of all (free) terms that can be formed using elements of C as 
primitive terms and elements of F' as function symbols. (Note that the type 
restrictions are ignored in forming these terms.) The domain of M* will be the set 
of equivalence classes of a particular equivalence relation l:i on T. 

To define l:i, we introduce a reduction operation on T. We write 
f' (d1 , . . .  ,dn) � d, if f has type t1 x . . . xtn �t, f' is the mapping assigned to f by M, 

die ct. ' 
de Ct ' and f'(dl ' . . .  ,dn)=d. For s,tET, we write s=>t if t is the result of 

1 
replacing some (not necessarily proper) subterm f'(d1 , . . .  ,dn) of s by d, where 
f'(d1 , . . .  ,dn) � d. We say that sET is irreducible if there is no tET such that s=>t. 
Finally, for s,tET, we say that s reduces to t if there exist r0,rl ' . . .  ,rne T  such that 
s=r0=>r 1 => .. .  =>rn =t. 

Now we can define the equivalence relation l:i on T. Let s,tET. Then sl:it if 
there exists ueT such that s reduces to u and t reduces to u. To prove that l:i is an 
equivalence relation, we use the following lemma. 
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Lemma 22.2 Let se T. Then there exists a unique irreducible teT such that s 
reduces to t. (We say that t is the irreducible form of s.) 

Proof of lemma 22.2 Clearly there exists an irreducible form of each seT, 
since, in each reduction u:::;ov, v has fewer subterms than u. 

To prove that irreducible forms are unique, frrst note that if f' (s1 , .. . ,sn) reduces 
to g'(tl ' . . .  ,tm) ,  then f'=g', and that the last step in any reduction of f'(s l ' . . .  ,sn) to an 
element de C therefore has the form f'(dl ' . . .  ,dn) :::;. d. We then use induction on 
the structure of s and a case analysis to show that if u and v are irreducible forms 
of s, then u = v. • 

Lemma 22.3 A is an equivalence relation. 

Proof of lemma 22.3 Clearly, A is reflexive and symmetric. That A is transitive 
follows immediately from lemma 22.2. • 

We now define the domain of the model M* to be T/A, the set of A­
equivalence classes in T. If teT, we let [t] denote the A-equivalence class 
containing t. Note that T/A contains a copy of C via the injective mapping d � [d) . 
Thus, in essence, we have simply enlarged C in a particular way to obtain a 
domain for M*. 

If c is a constant in L* and M assigns c'eC  to c, then M* assigns [c'] in T/A to 
c. Let feL* be an n-ary function symbol. Suppose M assigns the mapping f' to f. 
Then M* assigns the mapping from (T/A)n into T/A defined by ([t 1 ] , . . .  ,[tn]) � 
[f'(t1 , . . .  ,tn)] to f. It is easy to see that this mapping is well-defined. Note that this 
mapping is an extension of f' . 

Suppose p is an n-ary predicate symbol in L* . If M assigns the relation p' to 
p, then M* assigns the relation { ([d1] , . . .  , [dn]) : (dl ' . . .  ,dn)ep' } on (T/A)n to p. To a 
type predicate symbol t, M* assigns the unary relation { [d) : de Ct} .  Finally, M* 
assigns the identity relation on T/A to =. 

This completes the definition of the interpretation M* for comp(D* u <1>) .  We 
now check that M* is a model for comp(D* u <1>).  Much of the verification is 
routine and we take the liberty of omitting some details. 

We frrst check that M* is a model for the equality theory of comp(D* u <1>). 
The eight axioms of the equality theory are given in § 14. Apart from axiom 4, 
these axioms are easily seen to be satisfied. Axiom 4 is 
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'v'(t[x]�x), where t[x] is a term containing x and different from x. 
That this axiom is satisfied follows immediately from the next lemma. 

Lemma 22.4 Let r,seT. If r is a proper subterm of s, then r!/.s. 

Proof of lemma 22.4 Suppose rM. Then there exists an irreducible teT such 
that r reduces to t and s reduces to t. Let ueT be the result of replacing the 
occurrence of r in s by t. Then t is a proper subterm of u and u reduces to t. If 
tEC, then we obtain a contradiction using axiom 4 of the equality theory for D. 
Otherwise, t has the form f'(t1 , . . . ,tn), in which case we again have a contradiction 
since it is impossible for u to reduce to t. I 

The remainder of the verification that M* is a model for comp(D* u <l>) 
depends on another lemma. For this we need a definition. A variable assignment 

V wrt M is an assignment to each variable x in L of an element deCt , where t is 
the type of x. Corresponding to V, there is a variable assignment V* wrt M* 
which assigns [ d] to x. 

Lemma 22.5 Let W be a (not necessarily closed) typed first order formula, V 
a variable assignment wrt M, and V* the corresponding variable assignment wrt 
M*. Then W is true wrt M and V iff W* is true wrt M* and V*.  

Proof of lemma 22.5 The proof is  a straightforward induction argument on the 
structure of W. (See problem 5.)  I 

Using lemma 22.5, it can now be checked that M* is a model for the 
remainder of comp(D* u <l>). The domain closure axioms for comp(D) are used to 
show that M* is a model for the only-if halves of the completed definitions of the 
type predicate symbols. 

We have now finally shown that M* is a model for comp(D* u <l>). Since W* 
is a logical consequence of comp(D* u <l>), we have that M* is a model for W*. 
Using lemma 22.5 again, we obtain that M is a model for W. Thus W is a logical 
consequence of comp(D). This completes the proof of lemma 22. 1 . I 

Theorem 22.6 (Soundness of Query Evaluation) 
Let D be a database and Q a query. Then every computed answer for 

D u {Q }  is a correct answer for comp(D) u { Q} . 
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Proof Let e be a computed answer for D u { Q ) ,  where Q is f-W, W has free 
variables x 1 ' . . .  ,xn and xi has type 'ti (i=1 , . . .  ,n). By theorem 18.7, 
(W*/\'t1 (x1)/\ ... /\'tn(xn))e is a logical consequence of comp(D* u <!>), where <I> is 
the type theory of D. Thus (We)* is a logical consequence of comp(D* u <!>). By 
lemma 22. 1 , we is a logical consequence of comp(D). That is, e is a correct 
answer for comp(D) u { Q } .  • 

As the following example shows, theorem 22.6 no longer holds if we omit the 
domain closure axioms from the definition of comp(D). 

Example Let D be the database 
p(a) f-

and Q be the query f-'Vx/'t p(x). Suppose that the type theory is just 't(a)f-. Then 
the identity substitution is a computed answer, but 'Vx/'t p(x) is not a logical 
consequence of comp(D) if the domain closure axiom 'Vx/'t (x=a) is omitted from 
comp(D). 

Theorem 22.6 is the fundamental result which guarantees the soundness of the 
query evaluation process. The implementation of the query evaluation process is, 
at least in principle, quite straightforward. The main part of the implementation 
concerns the 10 transformations given in § 18 .  These can be implemented in a 
PROLOG program which contains one clause for each transformation plus a short 
procedure for locating free variables. Also, it is easy to avoid the explicit 
introduction of new predicate symbols which is formally required. A direct 
implementation of types would also be easy. However, such an implementation 
would be inefficient and hence some optimisations would be required. 

Next we show that the query evaluation process never flounders. Let D be a 
database, <I> its type theory, and Q a query. By a computation of D u { Q} ,  we 
mean a computation of D* u <I> u { Q* } .  

Definition Let D be a database, <I> its type theory, and Q a query. We say a 
computation of D u { Q} flounders if at some point in the computation a goal is 
reached which contains only non-ground negative literals. 

Lemma 22.7 Let D be a database, <I> its type theory, and Q a query. Then 
D* u <I> u { Q* } is allowed. 
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Proof The form of the 10 transformations in § 1 8 and the presence of the type 
predicate symbols ensures that every normal form of D* u <I> u { Q* } is allowed. 
(See problem 8.) • 

Note that not every clause in a normal form of D* need be allowed. 

Example Let D be 
p(x) � '\/y/cr q(x,y) 

where x is of type 't. Then a normal form of D* is 
p(x) � -r(x) " 't(x) 
r(x) � -q(x,y) " cr(y) 

where r is a new predicate symbol. The second clause is admissible, but not 
allowed. 

Proposition 22.8 Let D be a database and Q a query. Then no computation of 
D u { Q} flounders. 

Proof The result follows immediately from lemma 22.7 and proposition 
1 8.5(a). • 

§23. COMPLETENESS OF QUERY EVALUATION 

In §22, we proved that every computed answer for D u { Q} is a correct 
answer for comp(D) u { Q } .  We would like to obtain the converse of this result. 
Unfortunately, there is no hope of this because there is no general completeness 
result even for normal programs. However, we can prove that query evaluation is 
complete for the special cases that the database is definite or hierarchical. These 
results are due to Lloyd and Topor [63] .  We start by proving the converse of 
lemma 22. 1 . 

Lemma 23.1 Let D be a database, <I> its type theory, and W a closed typed 
first order formula. Let D* and W* be the type-free forms of D and W. If W is a 
logical consequence of comp(D), then W* is a logical consequence of 
comp(D* u <I>). 

Proof Let M* be a normal model for comp(D* u <I>). We construct a normal 
model M for comp(D) . Suppose M* has domain C. We define C't = { ceC : c is in 
the relation assigned to 't } .  M assigns to a constant the same element of C as M* 
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does. Note that a constant of type 't is thus assigned an element of C't , since M* 
satisfies <I>. If f is a function symbol of type "t1x . . . x"tn ---+"t and M* assigns f' to f, 
then M assigns f'I(C't x . . .  x C't ) to f. Note that the range of f' I(C't x . . . x C't ) is 

1 n 1 n 
contained in C't , since M* satisfies <I>. Let p be a predicate symbol different from 
= and 't, for each type 't. If p is of type "t1x . . .  x"tn and M* assigns p to p', then M 
assigns p' n (C't x . . .  x C't ) to p. Finally, M assigns the identity relation on C't to 

1 n 
='t , for each type 't. 

We now show that M is a model for comp(D). It is easy to see that M is a 
model for the equality axioms. For the remainder of the proof, we require the 
following lemma, whose proof is a straightforward induction argument on the 
structure of W. (See problem 9.) 

Lemma 23.2 Let W be a (not necessarily closed) typed first order formula, V 

a variable assignment wrt M, and V* the corresponding variable assignment wrt 
M*. Then W is true wrt M and V iff W* is true wrt M* and V*. 

Using lemma 23.2, one can establish that M is indeed a model for comp(D). 
Hence M is a model for W and, using lemma 23.2 again, M* is a model for W*. 
Thus W* is a logical consequence of comp(D* u <I>). This completes the proof of 
lemma 23. 1 . • 

Lemma 23.3 Let D be a database, <I> its type theory, and Q a query f-W, 
where xl '"' 'xn are the free variables in w and xi has type 'ti (i=l , . . .  ,n). Let e be a 
correct answer for comp(D) u {Q}  that is a ground substitution for x 1 , . . .  ,xn. Then 
e is a correct answer for comp(D* u <I>) u { Q* } .  

Proof Since 9 i s  a correct answer for comp(D) u { Q }  and since 9 is a ground 
substitution for the free variables x1 , . . .  ,xn in W, it follows that We is a logical 
consequence of comp(D). By lemma 23. 1 , W*9 is a logical consequence of 
comp(D* u <I>). Hence (W*A"t1 (x1 )/\ . . .  /\'tn(xn))9 is a logical consequence of 
comp(D* u <I>). That is, e is a correct answer for comp(D* u <I>) u {Q* } . • 

The next theorem is a database version of theorem 9.5. 

Theorem 23.4 (Completeness of Query Evaluation for Definite Databases) 
Let D be a definite database, Q a definite query f-W, and R a computation 

rule. Let e be a correct answer for comp(D) u { Q}  that is a ground substitution 
for all variables in W. Then e is an R-computed answer for D u {Q} . 
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Proof Let D have type theory ell. By lemma 23.3, 0 is a correct answer for 
comp(D* u ell) u { Q* } .  By theorem 14.6, e is a correct answer for 
D* u ell u { Q* } .  By theorem 9.5, there exists an R-computed answer a for 
D* u ell u { Q* } and a substitution y such that O=ay. Since a is a ground 
substitution for all the variables in W, it follows that O=a. That is, 0 is an R­
computed answer for D u {Q } .  I 

The requirement in theorem 23.4 that e be a ground substitution for all 
variables in W cannot be omitted, since every computed answer for D u {Q }  has 
this property. From a database viewpoint, theorem 23.4 is a rather weak 
completeness result. It would be preferable to have conditions under which a query 
had only finitely many answers and the query evaluation process was guaranteed to 
find all these answers and then terminate. One rather strong condition, which 
ensures these properties hold, is that the database be hierarchical. We now present 
this completeness result for hierarchical databases, which is the database version of 
theorem 1 8.9. 

Theorem 23.5 (Completeness of Query Evaluation for Hierarchical Databases) 
Let D be a database, ell its type theory, Q a query �w. and R a safe 

computation rule. Suppose that both D and ell are hierarchical. Then the following 
properties hold. 
(a) Each SLDNF-tree for D u { Q}  via R exists and is finite. 
(b) If e is a correct answer for comp(D) u { Q} and e is a ground substitution for 
all free variables in W, then 0 is an R-computed answer for D u { Q} . 

Proof By lemma 22.7, D* u ell u {Q* } is allowed. Also D* u ell is 
hierarchical. By lemma 23.3, e is a correct answer for comp(D* u ell) u {Q* } .  
Hence the result follows from theorem 18.9. I 

§24. INTEGRITY CONSTRAINTS 

In this section, we study integrity constraints in deductive database systems 
and prove the correctness of a simplification method for checking integrity 
constraints. 

A number of proofs in this section use typed versions of results from earlier 
chapters. In each case, it will be clear from the context that the reference to the 
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earlier result is actually a reference to the appropriate typed version of the result. 

The standard method of determining whether a database satisfies or violates an 
integrity constraint W is by evaluating the query f-W. The following two 
theorems, due to Lloyd and Topor [61] ,  [62] , show that this method is sound. 

Theorem 24.1 Let D be a database and W an integrity constraint. Suppose 
that comp(D) is consistent. If there exists an SLDNF-refutation of D u { f-W} ,  
then D satisfies W. 

Proof The theorem follows immediately from theorem 22.6. • 

Theorem 24.2 Let D be a database and W an integrity constraint. Suppose 
that comp(D) is consistent. If D u { f-W} has a finitely failed SLDNF-tree, then 
D violates W. 

Proof The theorem follows easily from theorem 18.6 and lemma 22. 1 . • 

Now we turn to the simplification theorem for integrity constraint checking. 
From a theoretical viewpoint, it is highly desirable for a database to satisfy its 
integrity constraints at all times. However, from a practical viewpoint, there are 
serious difficulties in finding efficient ways of checking the integrity constraints 
after each update. The problem is especially difficult for deductive databases, since 
the addition of a single fact can have a substantial impact on the logical 
consequences of the database because of the presence of rules. 

In spite of these difficulties, it is possible to reduce the amount of computation 
if advantage is taken of the fact that, before the update was made, the database was 
known to satisfy its integrity constraints. The simplification theorem shows that it 
is only necessary to check certain instances of each integrity constraint. For a very 
large database, this can lead to a dramatic reduction in the amount of computation 
required. This idea is originally due to Nicolas [78] in the context of relational 
database systems. A method related to the one given in this chapter was presented 
by Decker [27] . An alternative "theorem proving" approach was given by Sadri 
and Kowalski [90] . 

To cover the most general situation by a single theorem, we use the concept of 
a transaction. A transaction is a finite sequence of additions of statements to a 
database and deletions of statements from a database. If D is a database and t is a 
transaction, then the application of t to D produces a new database D', which is 
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obtained by applying each of the deletions and additions in t in turn . We assume 
that, in any transaction, we do not have the addition and deletion of the same 
statement. As the deletions and additions in a transaction can then be performed in 
any order, we assume that all the deletions are performed before the additions. 
With respect to integrity constraint checking, we regard a transaction as indivisible, 
so we need only check the constraints at the end of the transaction. Note that we 
can use a single transaction to pass from any database D to any other database D' . 

Suppose L is the typed language underlying the database D. We make the 
assumption throughout that, whatever changes D may undergo, L remains fixed. 
Thus, for example, adding a new statement to D does not introduce new constants 
into the language. 

Implementing the simplification method involves computing four sets of atoms, 
computing two sets of substitutions by unifying atoms in the sets with atoms in an 
integrity constraint, and evaluating corresponding instances of the integrity 
constraint. We begin with the definitions of the appropriate sets of atoms. 

Definition Let D and D' be databases such that D !:;;; D'. We define the sets 
posD,D' and negD,D' inductively as follows: 

0 posD,D' ( A  : Af-W e D' \ D } 

0 negD,D' 

n+l posD,D' 

n+l negD,D' 

po� .D' 

negD,D' 

( } 

( A9 : Af-W e D, B occurs positively in W, C e pos�.D' , 
and 9 is an mgu of B and C } 

u ( A9 Af-W e D, B occurs negatively in W, C e neg� ,D' , 
and e is an mgu of B and C } 

( A9 : Af-W e D, B occurs positively in W, C e neg�,D' , 
and e is an mgu of B and C } 

u ( A9 Af-W e D, B occurs negatively in W, C e pos�.D' , 

n un�O posD,D' 
n un�o negD,D' 

and 9 is an mgu of B and C } 
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To motivate the above definitions, consider the case when we add a fact Af­
to a database D to obtain a database D'. An important task of the simplification 
method is to capture the difference between a model for comp(D') and a model for 
comp(D) .  In the case that D is a relational database, we see that posD,D' is { A } ,  
which i s  precisely the difference between a model for comp(D) and a model for 
comp(D') .  (In this case, the models are essentially unique.) For a deductive 
database, the presence of rules means that the difference between the models could 
be larger. However, as we shall see, for stratified databases, pos0 D' and neg0 D' ' ' 
can still be used to captirre the differences between (suitably related) models of 
comp(D) and comp(D'). Intuitively, poSO,D' captures the part that is added to the 
model for comp(D) when passing from D to D' and negD,D' captures th� part that 
is lost. (See lemma 24.4 below.) In the context of normal databases, poSO,D' and 
neg0 D' have been discussed by Topor et al [ 105] .  ' 

Definition Let D and D' be databases such that D � D' and J a pre­
interpretation of D. We define 

posinst0 ,D' ,J 

neginst0 D' 1 ' ' 

u [A] Aepos0 0, J 
' 

u [A] . Ae negD,D' J 

Lemma 24.3 Let D and D' be databases such that D � D'. Let J be a pre­
interpretation of D and V be a variable assignment wrt J. Suppose there exists an 
interpretation I based on J such that I u E is a  model for the equality theory. 
(a) If Af-W is in D, B occurs positively in W, and BJ,V E neginstD,D',J ' then 
A1 V E neginst0 D' 1. ' ' ' 
(b) If Af-W is in D, B occurs positively in W, and BJ,V E posinstD,D' ,J ' then 
AJ,V E posinstD,D',J" 
(c) If Af-W is in D, B occurs negatively in W, and BJ,V E posinstD,D',J ' then 
AJ,V E neginstD,D',J· 
(d) If Af-W is in D, B occurs negatively in W, and BJ,V E neginstD,D',J ' then 
A1 V E posinst0 D' 1. ' ' ' 

Proof (a) Recall that BJ,V denotes the J-instance of atom B wrt V. Since 
BJ,V E neginstD,D',J' we have that BJ,V is also a J-instance of some 
C E negD,D' . By lemma 15.2 (a), B and C are unifiable with mgu 
e = { x l/rl , . . .  ,xnfrm} ,  say. Since c E negD,D' and Be = ce, we have that 
AO E neg0 0• . By lemma 15.2 (b), the variable assignment, which we can 
suppose without loss of generality to be V, that maps B and C to BJ,V also maps 
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xj and rj to the same domain element, for each j. Hence AJ,V is also a J-instance 
of A9 and so AJ,V e neginstD,D',J · 

The proofs of the other parts are similar. • 

Lemma 24.4 Let D and D' be stratified databases such that D k D' and let J 
be a pre-interpretation of D. 
(a) Let M' be an interpretation based on J for D' such that M' u E is a model for 
comp(D'). Then there exists an interpretation M based on J such that M u E is a 
model for comp(D), M' \ M k posinstD D' 1• and M \ M' k neginstD D' r 
(b) Let M be an interpretation based on 

'1 for D such that M u E is � �odel for 
comp(D). Then there exists an interpretation M' based on J such that M' u E is a 
model for comp(D'), M' \ M k posinstD,D',J• and M \ M' k neginstD,D',r 

Proof (a) The proof is by induction on the maximum level, k, of D'. 
Base step, k=O. 
By proposition 2 1 .2, M' is a fixpoint of :p• and hence TD(M') k M'. By 

proposition 2 1 .3(a), TD is monotonic and so Tj)(M') is defined, for every ordinal 
a.. (See problem 1 3 of chapter 1 . )  We prove by transfinite induction that 
M' \ Tg(M') k posinstD,D' ,J' for every ordinal a.. 

a. is a limit ordinal. 

The case a. = 0 is trivial. Otherwise, M' \ �(M') = M' \ nf3<a. T�(M') 
uf3<a.(M' \ T�(M')) k posinstD,D' ,J , by the induction hypothesis. 

a. is a successor ordinal. 

The case a. = 1 is immediate from the definition of posinstD,D' ,J . Otherwise, 
note that M' \ Tg(M') = (M' \ TD(M')) u (TD(M') \ Tg(M')).  Suppose that 
B E  TD(M') \ Tg(M').  Then one can prove that there exists a statement Af-W in 
D such that, for some variable assignment V wrt J and for some atom C in W, B is 
AJ,V and CJ,V E M' \ Tg-l (M'). Thus, by the induction hypothesis, 
c1 V E posinstD D' 1 .  By lemma 24.3, we have that B E posinstD D' J . This 
co:Upletes the pr�r' that M' \ �(M') k posinstD,D',J• for every ordin� �-

Since TD is monotonic, there exists an ordinal y such that Tb(M') is a fixpoint 
of TD. (See problem 1 3  of chapter 1 .) Put M = Tb(M'). By proposition 2 1 .2, 
M u E is a  model for comp(D). Finally, note that M \ M' = 0 = neginstD,D',r 

Induction step. 

Suppose the result holds for stratified databases of maximum level k and D' 
has maximum level k+ 1 . Let Dk (resp. ,  D

k) be the set of database statements in 
D' (resp. ,  D) with the property that the predicate symbol in the head of the 
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statement has level s; k. Let Mk be the set of all p(d1 , . . .  ,dn) in M' such that p has 
level s; k. Then Mk u E is a model for comp(Dk). By the induction hypothesis, 
there exists an interpretation Mk based on J such that Mk u E is a model for 
comp(Dk)' Mk \ Mk � posinst0 D' J' and Mk \ Mk � neginst0 D' J" k' k' k' k'  

Put N = Mk u (M' \ Mk) u neginstD,D' ,JI(k+ l ), where neginstD,D',JI(k+l)  is 
the set of all p(d1 '  . . .  ,dn) in neginstD,D',J such that p has level k+ 1. Then one can 
prove that T0(N) � N, using the fact that Mk is a fixpoint of TD , the definition 

k 
of neginstD,D',J• lemma 24.3,  and the induction hypothesis. 

We now consider transfinite iterations of TD on N in the lattice A defined in 
proposition 2 1 .3(b). We claim the following properties hold: 
(i) Tg(N) \ M' � neginstD,D',J• for every ordinal a. 
(ii) M' \ �(N) � posinstD,D',J• for every ordinal a. 

For (i), note that, for all a, we have 
�(N) \ M' � N \  M' � (Mk \ Mk) u neginstD,D',JI(k+ l )  � neginstD,D',J• 

using the induction hypothesis on Mk \ Mk, and the definition of neginstD,D',J" 
We prove (ii) by transfinite induction. 
<X is a limit ordinal. 

Suppose a=O. Then we have 
M' \ N � Mk \ Mk � posinst0 D' J !,;;;; posinst0 D' 1. k' k' , , 

Now suppose <X>O. Then we have 
M' \ �(N) = M' \ fl�<<XT�(N) = u�<<X(M' \ T�(N)) � posinstD,D' ,J" 

<X is a successor ordinal. 

Suppose that B e M' \ �(N). Then, as M' is a fixpoint of T0., there exists a 
statement A�W in D' such that, for some variable assignment V wrt J, B is A1 V 
and W is true wrt M' and V. If the statement is in D' \ D, then A e posg ,D, a�d 
so B e posinst0 D',J immediately. Now suppose that the statement is in D. Since 
Bl,tTg(N), one c� prove that there exists a variable assignment V* and an atom C 
in W such that AJ V = A1 V* and either C occurs positively in W and 
cJ,V* E M' \ Tg-l <N) or c �curs negatively in w and cJ,V* E Tg-1 (N) \ M'. 

In the first case, by the induction hypothesis, CJ,V* e posinstD,D' ,J .  By 
lemma 24.3, we have that B e  posinstD,D',J · In the second case, by (i), 
cJ,V* E neginstD,D',J " By lemma 24.3,  we have that B E  posinstD,D',J• This 
completes the proof of (ii) . 

By proposition 2 1 . 3(b) and problem 1 3  of chapter 1 ,  there exists an ordinal 'Y 
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such that Tb(N) is a fixpoint of T0 restricted to A. Put M = Tf>(N). Since M is 
a fixpoint of T0, by proposition 21 .2, we have that M u E is a model for 
comp(D). This completes the proof of part (a). 

(b) The proof is similar to part (a). We use a construction based on the set 
N' = Mk u [(M \ Mk) \ neginstD,D',JI(k+l)] ,  for which it can be shown that 
T0,(N') � N'. (See problem 12.) 1 

Now we are in a position to state and prove the simplification theorem. This 
theorem is due to Lloyd, Sonenberg and Topor [60] , [62] . 

Theorem 24.5 (Simplification Theorem for Integrity Constraint Checking) 
Let D and D' be stratified databases and t a transaction whose application to D 

produces D'. Suppose t consists of a sequence of deletions followed by a sequence 
of additions and that the application of the sequence of deletions to D produces the 
intermediate database D". Let W be an integrity constraint 'ilx1 . . . 'ilxn W

' in prenex 
conjunctive normal form. Suppose D satisfies W. Let e = { e : e is the 
restriction to x1 , . . . ,x of either an mgu of an atom occurring negatively in W and n . 
an atom in pos0 .. D' or an mgu of an atom occurring positively in W and an atom ' 
in negD",D' } and 'P = { 'If : 'If is the restriction to x1 ' . . .  ,xn of either an mgu of an 
atom occurring positively in W and an atom in pos0 .. D or an mgu of an atom 
occurring negatively in W and an atom in neg0 .. � } . Then the following ' 
properties hold. 
(a) D' satisfies W iff D' satisfies V(W'cp) for all cp e e u 'P. 
(b) If D' u { �V(W'cp) } has an SLDNF-refutation for all cp e e u 'P, then D' 
satisfies W. 
(c) If D' u { �V(W'cp) } has a finitely failed SLDNF-tree for some cp e e u 'P, 
then D' violates W. 

Proof (a) Suppose D' satisfies V(W'cp), for all cp e e u 'P. Note that the 
formula W' is not necessarily quantifier free. Let M' be an interpretation for D' 
based on J such that M' u E is a model for comp(D'). By lemma 24.4(a), there 
exists an interpretation M" based on J such that M" u E is a model for comp(D"), 
M' \ M" !::: posinstD",D',J• and M" \ M' � neginstD",D',J· Similarly, by lemma 
24.4(b), there exists an interpretation M based on J such that M u E is a model for 
comp(D), M \ M" s;;; posinst0 . . D 1, and M" \ M !:: neginst0 .. D J' ' ' , ' 

By supposition, W is true wrt M u E. Let V be a variable assignment wrt J. 
We have to prove that W' is true wrt M' u E and V. If V* is a variable 
assignment that agrees with V on x 1 , . . .  ,xn, then we say V* is compatible with V. 
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We consider the following two cases. 
Case 1 : For every atom A occurring negatively in W and for every V* 

compatible with V, the J-instance AJ,V* of A wrt V* is not in M' \ M, and for 
every atom B occurring positively in W and for every V* compatible with V, the 
J-instance BJ,V* of B wrt V* is not in M \ M'. 

Let A be an atom occurring negatively in W and suppose that, for some V* 

compatible with V, we have that AJ,V* rJ. M. By the condition of case 1 , we have 
that AJ,V

* r1. M' \ M. Hence AJ,V* i M'. 
Let B be an atom occurring positively in W and suppose that, for some V* 

compatible with V, we have that BJ,V* e M. By the condition of case 1 ,  we have 
that BJ,V* i M \ M'. Hence BJ,V* e M'. 

It follows from this that W' is true wrt M' u E and V. 
Case 2: Either (a) there exists an atom A occurring negatively in W and a V* 

compatible with V such that the J-instance AJ,V* of A wrt V* is in M' \ M or (b) 
there exists an atom B occurring positively in W and a V* compatible with V such 
that the J-instance BJ,V* of B wrt V* is in M \ M'. 

Case 2(a) : Then AJ,V* e (M' \ M") u (M" \ M) and, hence, either 
A1 V* e posinst0 .. D' J or A1 V* e neginst0 .. 0 1. In the first case, A1 V* is also ' ' ' ' , ' ' 
a J-instance of an atom F e pos0 .. D' . By lemma 1 5.2 (a), A and F are unifiable 
with mgu 9', say. Let 9 be the 

'
restriction of 8' to x1 ' . . .  ,xn. By supposition, 

\:/(W'8) is true wrt M' u E. It then follows from lemma 15.2 (b) that W' is true 
wrt M' u E and V. Similarly, in the second case, using '¥, we obtain that W' is 
true wrt M' u E and V. 

Case 2(b) : Then BJ,V* e (M \ M") u (M" \ M') and, hence, either 
BJ,V* e posinsto",D,J or BJ,V* e neginsto",D' ,J' In the first case, BJ,V* is also 
a J-instance of an atom G e pos0 .. 0 . By lemma 15 .2 (a), B and G are unifiable 
with mgu 'Jf', say. Let 'I' be the 'restriction of 'I'' to x1 , . . .  ,xn. By supposition, 
\:/(W''Jf) is true wrt M' u E. It then follows from lemma 15.2 (b) that W' is true 
wrt M' u E and V. Similarly, in the second case, using e, we obtain that W' is 
true wrt M' u E and V. 

(b) This part follows immediately from theorem 22.6 and part (a). 
(c) Suppose D' u { � \:/(W'cjl) } has a finitely failed SLDNF-tree, for some 

cjl e e u '¥. By theorem 1 8.6 and lemma 22. 1 -V(W'cjl) is a logical consequence 
of comp(D'). By the consistency of comp(D'), W is not a logical consequence of 
comp(D') and so D' violates W. I 
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The theorem has an immediate corollary for the case when the transaction 
consists of a single addition. 

Corollary 24.6 Let D be a stratified database, C a database statement, and 
D' = D u { C } a stratified database. Let W be an integrity constraint 'lrfx1 . . .  '1rfxnW' 
in prenex conjunctive normal form. Suppose D satisfies W. Let e = { 8 : 8 is the 
restriction to x 1 , . . .  ,xn of either an mgu of an atom occurring negatively in W and 
an atom in posD,D' or an mgu of an atom occurring positively in W and an atom 
in negD,D' } . Then the following properties hold. 
(a) D' satisfies w iff D' satisfies V(W'S) for all e E e. 
(b) If D' u { f--\/(W'8) } has an SLDNF-refutation for all 8 e e, then D' satisfies 
w. 
(c) If D' u { f--\/(W'8) } has a finitely failed SLDNF-tree for some 8 e e, then D' 

violates W. 

Similarly, the theorem has a corollary' for the case when the transaction 
consists of a single deletion. 

Corollary 24.7 Let D be a stratified database, C a database statement in D, 
and D' = D \ {C }  a stratified database. Let W be an integrity constraint 
'lrfx1 . . .  '1rfxn W' in prenex conjunctive normal form. Suppose D satisfies W. Let '¥ = 

{ \jf : \jf is the restriction to x1 , . . .  ,xn of either an mgu of an atom occurring 
positively in W and an atom in posD',D or an mgu of an atom occurring negatively 
in W and an atom in negD',D } .  Then the following properties hold. 
(a) D' satisfies W iff D' satisfies V(W'\jf) for all \jf e '¥. 
(b) If D' u { f--\/(W'\jf) } has an SLDNF-refutation for all \jf e '¥, then D' satisfies 
w. 
(c) If D' u { f--V(W'\jf) } has a finitely failed SLDNF-tree for some \jf e '¥, then D' 

violates W. 

Next we briefly discuss some implementation issues related to the 
simplification theorem. The theorem shows that the implementation of the 
simplification method involves calculating four atom sets posD",D'' negD",D'' 
pos0 .. 0, and neg0 .. 0, computing e and '¥, and then evaluating each query 
f--\/(VI'�) . where � � e u '¥. Note that the method is independent of the level 
mappings used to show that the databases are stratified. 
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Some special cases of the theorem are of interest. If E> u \!' is empty, then the 
corresponding integrity constraint W can be eliminated from further consideration, 
since the theorem shows that D' satisfies W. If E> u \!' contains the identity 
substitution, then no simplification of W is possible. Nicolas [78] also studied 
various refinements of the basic idea which could lead to optimisations of the 
implementation. We do not discuss these optimisations here except to note that all 
of them are equally applicable to stratified databases. 

The key to an efficient implementation of the simplification theorem is to find 
an efficient way to calculate posD,D' and negD,D' , for D !:: D'. We emphasise that 
this calculation only involves the rules and not the facts in D. This is an important 
point because, even for a large deductive database, the number of rules is likely to 
be very much smaller than the number of facts. In particular, the rules are likely to 
be kept in main memory, so that access to the disk during the calculation of these 
sets is obviated. 

We now briefly consider some aspects of the computation of the atom sets. In 
principle, this computation involves the calculation of infinitely many sets pos� D' 
and neg� ,D'' for n�O. However, in practice, we can often use a stopping rule

' 
to 

terminate the computation after only finitely many steps. Application of one such 
stopping rule involves computing sets of atoms Pn and Nn rather than the sets 
pos� D' and neg� D' . Pn and Nn are defined and used in much the same way as , , 
po� D' and neg� D'' except for the following additional (simplifying) step. We 
omit 

'
any atom fr�m Pn (resp. ,  Nn) which is an instance of another atom in pk 

(resp. ,  N
k), for O�k�n. 

The stopping rule is then as follows. If after deletions in this manner, some Pn 

and Nn both become empty, then terminate the computation and use the unions, P 
and N, of the respective sets of atoms computed thus far in place of pos0 D' and , 
neg0 D' . The proof of the simplification theorem is valid for the sets P and N 
used 'in place of pos0 D' and neg0 D' . A further refinement is to delete from P 
(resp. ,  N) any atom �hich is an in'stance of another atom in P (resp. , N). The 
example below illustrates the application of this stopping rule. 

Example Let D be the database 
no_male_descendant(x) f- "dy (female(y) f- ancestor(x,y)) 
ancestor(x,y) f- parent(x,z) " ancestor(z,y) 
ancestor(x,y) f- parent(x,y) 
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parent(x,y) � mother(x,y) 
parent(x,y) � father(x,y) 

Chapter 5. Deductive Databases 

together with facts for the predicate symbols mother, father, male and female. If 
we give no_male_descendant level 1 and all other predicate symbols level 0, then 
we see that D is a stratified database. Let C be the clause 

mother(Mary, Bill) � 
and let D' = D u { C } .  Then we obtain 

posg D' = { mother(Mary, Bill) }  = P0 

o ' o negD,D' = { }  = N 

posb.n• = {parent(Mary, Bill) } = P1 
1 1 negD,D' = { }  = N 

po� D' = { ancestor(Mary, Bill), ancestor(Mary, y) } 

p2 = 
' 
{ ancestor(Mary, y) } 

2 2 neg0 D' = { } = N 
' 

pos�
.D

' = { ancestor(x, Bill), ancestor(x, y) } 

P3 = { ancestor(x, y) } 
neg�,D' = { no_male_descendant(Mary) } = N3 

po{,,D' = { ancestor(x, Bill), ancestor(x, y) } 
p4 = { }  
neg�

.D
' = { no_male_descendant(x) } = if 

p5 = { }  
N5 = { }  

At this point, we can apply the stopping rule. Thus, when applying the 
simplification theorem, in place of posD,D' , we can use the set P = { mother(Mary, 
Bill) , parent(Mary, Bill), ancestor(x, y) } and, in place of negD,D' , we can use the 
set N = { no_male_descendant(x) } .  

Another possibility in the computation of posD,D' and negD,D' is that one or 
both of them may contain infinitely many "independent" atoms, in which case the 
simplification method may require checking infinitely many instances of an 
integrity constraint. For example, let D be the database 
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p(f(x),y) � p(x,y) , 
C the clause p(a,b) � .  and D' = D u {C} .  Then posD,D' is the infinite set 
{p(a,b), p(f(a),b), p(f(f(a)),b), . . .  } .  In this case, the previous stopping rule is not 
applicable. However, we can add the instance, p(f(x),b), of the head of the 
offending clause in D to posb

.n
• instead of p(f(a),b). If we do this, we can use 

{p(a,b), p(f(x),b) } in place of pos0 D' . This example suggests the existence of 
another stopping rule, which replac�s an infinite set of atoms by a single more 
general instance of a statement head. 

The simplification method appears to be an essential ingredient of any efficient 
method of checking integrity constraints. The main issues which require further 
research are finding more powerful stopping rules and investigating the various 
techniques which will be required for a really practical implementation. 

PROBLEMS FOR CHAPTER 5 

1 . Let W be a formula and W' a prenex conjunctive normal form of W obtained by 
applying the transformations of problem 5 of chapter 1 . Prove that an atom occurs 
positively (resp. ,  negatively) in W iff it occurs positively (resp., negatively) in W'. 

2. Let «<> be a hierarchical type theory. Prove that there are only finitely many 
ground terms of each type. 

3. Let D be a database and Q a query � W. Prove that every computed answer for 
D u { Q }  is a ground substitution for all the free variables in W. 

4. Give an example to show that lemma 22. 1 no longer holds if we omit the 
domain closure axioms from the equality theory. 

5. Prove lemma 22.5 

6. (a) Consider the database D 
p(a)� 
q(a)� 
q(b)� 
r(a)� 
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and the query Q 
f-. Vx/t (q(x)f--p(x)) 1\ -r(y) 

where p, q and r have type 't and the constants of type 't are a and b. Show the 
result of transforming D and Q into a normal program and goal, which is required 
by the query evaluation process. Hence compute the answer(s), if any, to the 
query Q. 
(b) Repeat (a) for the query 

f-. Vy/'t (p(y) f-. Vx/t r(x)) 

7. Consider the supplier-part-job database of §2 1 .  
(a) The following query i s  ambiguous: 
Is it true that each red part is supplied by a supplier located in Perth? 
Find two possible meanings for the query and for each of these meanings write 
down the corresponding (first order logic) query f--W. 
(b) For each of the (first order logic) queries of part (a) show the normal program 
and goal which results from the query transformation process. 
(c) Write each of the (first order logic) queries of part (a) in SQL [25].  
(d) Compare first order logic and SQL as query languages with regard to 
expressiveness, semantic clarity, conciseness and simplicity. 

8. Prove lemma 22.7. 

9. Prove lemma 23.2. 

10. Let D be a database and Q a query. Suppose that D u { Q }  has a finitely 
failed SLDNF-tree. Prove that Q is a logical consequence of comp(D). 

1 1 . Let D be a definite database and Q a definite query. Suppose that Q is a 
logical consequence of comp(D).  Prove that every fair SLD-tree for D u { Q }  is 
finitely failed. 

12 .  Complete the details of the proof of lemma 24.4(b). 

1 3.  Let D be the database 
no_male_descendant(x) f-. Vy (female(y) f-. ancestor(x,y)) 
ancestor(x,y) f-. parent(x,z) 1\ ancestor(z,y) 
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ancestor(x,y) � parent(x,y) 
parent(x,y) � mother(x,y) 
parent(x,y) � father(x,y) 
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together with facts for the predicate symbols mother, father, male and female. Let 
D' be the database obtained by adding to D the facts 

father(John, Fred)� 
mother(Jane, Fred)� 

(a) Calculate posD,D'' negD,D'• P, and N. 
(b) For each of the integrity constraints below, state which instances of them will 
need to be checked when the database changes from D to D', assuming D satisfies 
the integrity constraints. 
(i) 'Vx (male(x) � 3y father(x,y)) 
(ii) 'Vx (-3y mother(x,y) v -3z father(x,z)) 
(iii) 'Vx 'Vy (no_male_descendant(y) � ancestor(x,y) 1\ no_male_descendant(x)) 
(iv) 'Vx 'Vy (-parent(x,y) v -parent(y,x)) 





Chapter 6 

PERPETUAL PROCESSES 

A perpetual process is a definite program which does not terminate and yet is 
doing useful computation, in some sense. With the advent of PROLOG systems 
for concurrent applications [ 1 8], [93] , [ 106], especially operating systems, more 
and more programs will be of this type. Unfortunately, the semantics for definite 
programs developed in chapter 2 do not apply to perpetual processes, simply 
because they do not terminate. In this chapter, starting from the pioneering work 
of Andreka, van Emden, Nemeti and Tiuryn [2] , we discuss the basic results of a 
semantics for perpetual processes. 

§25. COMPLETE HERBRAND INTERPRETATIONS 

In this section, we introduce complete Herbrand interpretations. We define the 
complete Herbrand universe and base and prove that they are compact metric 
spaces under a suitable metric. Some elementary notions from metric space 
topology, all of which can be found in [29], for example, will be required. 

The complete Herbrand universe for a definite program is the collection of all 
(possibly infinite) terms which can be constructed from the constants and function 
symbols in the program. Thus our first task is to give a precise definition of a 
(possibly infinite) term, which extends the definition given in §2 of a (finite) term. 

Let ro* denote the set of all finite lists of non-negative integers. Lists are 
denoted by [i 1 ' . . .  ,ik] ,  where i 1 ' . . .  ,ike ro. If m,ne ro*, then [m,n] denotes the list 
which is the concatenation of m and n. If nero* and ie ro, then [n,i] denotes the 
list [n,[i]] .  We let lXI denote the cardinality of the set X. Similarly, if ne ro*, then 
lnl denotes the number of elements in n. 
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Definition We say T c; ro* is a tree if the following conditions are satisfied: 
(a) For all ne ro* and for all i,je ro, if [n,i]e T  and j<i., then neT and [nj]eT. 
(b) l { i  : [n,i]eT } I  is finite, for all neT. 

Definition A tree T is finite if T is a finite subset of ro*. Otherwise, T is 
infinite. 

Example The finite tree { [] ,  [0] , [ 1 ] , [2] , [ 1 ,0] ,  [ 1 , 1 ] ,  [2,0] , [2, 1 ] ,  [2,2] } can be 
pictured as in Figure 7. 

The infinite tree { [] ,  [0] ,  [ 1] ,  [ 1 ,0] ,  [ 1 , 1 ] ,  [ 1 , 1 ,0] ,  [ 1 , 1 , 1 ] ,  [ 1 , 1 , 1 ,0] ,  [ 1 , 1 , 1 , 1 ] ,  . . .  } 
can be pictured as in Figure 8. 

[ ] 

[0] 

[ 1 ,0] [ 1 , 1] [2,0] [2, 1 ] [2,2] 

Fig. 7. A finite tree 

Intuitively, each ne T is a node of the tree T. Condition (b) in the definition of 
tree states that each node has bounded degree. 

We let S be a set of symbols and ar be a mapping from S into ro, which 
determines the arity of each symbol in S. 

Definition A term (over S )  is a function t : dom(t) � S such that 
(a) The domain of t, dom(t), is a non-empty tree. 
(b) For all nedom(t), ar(t(n)) = l { i : [n,i]edom(t) } l . 

We say the tree dom(t) underlies t. We let Terms denote the set of all terms 
over S .  
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[ ]  

[ 1 , 1 , 1 , 1] 
[ 1 , 1 , 1 ,0] 

Fig. 8. An infinite tree 

Intuitively, a term is a (possibly infinite) tree, whose nodes are labelled by 
symbols in such a way that the arity of the label of each node is equal to the 
degree of that node. 

Definition The term t is finite if dom(t) is finite. Otherwise, t is infinite. 

Definition Let t be a term. The depth, dp(t) , of t is defined as follows: 
(a) If t is infinite, then dp(t) = oo. 

(b) If t is finite, then dp(t) = 1 + max { lnl : ne dom(t) } .  

It will be convenient to have available the concept of the truncation at depth n 

(ne ro) of a term t, denoted by ex (t). For this purpose, we introduce a new symbol n 
Q of arity 0, which will be used to indicate that a branch of the term t has been 
cut off in the truncation. Thus cxn is a mapping from Terms into Terms u { n} 
defined as follows: 
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(a) dom(a.n(t)) = { me dom(t) : lml�n } .  
(b) a.n(t} : dom(a.n(t)) � S u { .Q }  i s  defined by 

a.n(t)(m} = t(m), if lml < n 
= n, if lml = n. 

Chapter 6. Perpetual Processes 

Clearly, a.n(t} is a finite term with dp(a.n(t)) � n+l . 

Terms can be made into a metric space in a natural way. First, we recall the 
definition of a metric space [29] . 

Definition Let X be a set. A mapping d : X x X � non-negative reals is a 
metric for X if 
(a) d(x,y) = 0 iff x=y, for all x,ye X. 
(b) d(x,y) = d(y,x}, for all x,ye X. 
(c) d(x,z) � d(x,y) + d(y,z), for all x,y,zeX. 
d is an ultrametric [5] if 
(d) d(x,z) � max{d(x,y), d(y,z) } ,  for all x,y,zeX. 

Definition (X,d) is a metric space, if d is a metric on X. If d is an 
ultrametric, then (X,d) is an ultrametric space. 

Ultrametric spaces have topological properties rather similar to discrete metric 
spaces [5] . 

Now let s,te TermS. If s�. then it is clear that a.n(s):;t:a.n(t), for some n>O. 
Consequently, if s:;t:t, then {n : a.n(s):;t:a.n(t) } is not empty. We define a.(s,t) = 

min{ n : a.n(s):;t:a.n(t) } .  Thus a.(s,t) is the least depth at which s and t differ. 

Proposition 25.1 (Terms, d) is an ultrametric space, where d is defined by 
d(s,t) = 0, if s=t 

= 2-a(s,t), otherwise. 

Proof Straightforward. (See problem 1 . )  • 

Convergence in the topology induced by d is denoted by �. Thus tn �t 
means that the sequence { tn } ne 00 co�verges to t in this topology. The closure of a 
set A in this topology is denoted by A. 

Definition A metric space (X,d) is compact if every sequence in X has a 
subsequence which converges to a point in X. 
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A crucial fact about Terms is given by the following proposition [72] . 

Proposition 25.2 (Terms, d) is compact iff S is finite. 

Proof Suppose first that S is infinite. Let { ts : se S } be any collection of 
terms with the property that ts(O)=s (that is, the root is labelled by s). If sl';t=s2, 
then d(t ,t ) = 1/2. Thus Terms is not compact. sl s2 

Conversely, suppose that S is finite. Let { tk}ke ro  be a sequence in Terms. 
We consider two cases. 

(a) There exists me ro and pe ro such that, for all n'?.p, we have dp(tn)�m. 

Since S is finite, there are only a finite number of terms over S of depth � m. 
Hence { tk} ke ro must have a constant and, hence, convergent subsequence. 

(b) Given me ro and pero, there exists n'?.p such that dp(tn)>m. 

In this case, we can suppose without loss of generality that the sequence 
{ tk }ke ro is such that dp(tk)>k, for ke ro. Note that every subsequence of { tk}kero 
has the property that the depths of the terms in the subsequence are unbounded. 

We define by induction an infinite term teTermS such that, for each n'?. l , there 
exists a subsequence { tk } ro of { tk}k ro with a. (tk ) = a. (t), for me ro. m me e n m n 

Suppose first that n=l . Since S is finite, a subsequence {� lme ro of 
. m 

{ tk }ke ro must have the same symbol, say s, labelling their root nodes. We define 
t([] )  = s. 

Next suppose that t is defined up to depth n. Thus there exists a subsequence 
{ tkm} me ro of { tk}ke ro such that a.n(tkm) = a.n(t), for me ro . Since S is finite, 

there exists a subsequence { �m } pe ro of {�m} mero such that the a.n+l(�m ) are 
p . p 

all equal, for pero. Define the nOdes at depth n+ 1 for t m the same way as each of 
the tk . This completes the inductive definition. m 

Sin�e it is clear that t is an accumulation point of { tk }ke 00, we have shown 
that Terms is compact. • 

Now we are in a position to define the complete Herbrand universe. Let P be 
a definite program and F be the finite set of constants and function symbols in P. 
We regard constants as function symbols of arity 0. 

Definition The complete Herbrand universe Up for P is TermF. The elements 
of Up are called ground terms. 
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Thus Up is the set of all ground (possibly infinite) terms which can be formed 
out of the constants and function symbols appearing in P. It is straightforward to 
show that "ground term",  as defined in §3, can be identified with "finite ground 
term", as just defined. (See problem 2.) This identification is taken for granted 
throughout this chapter. Thus we have Up !:; Up· As long as P contains at least 
one function symbol, it is clear that Up is a proper subset of Up. 

We adopt the convention throughout this chapter that "term", without 
qualification, will always mean a possibly infinite term. If a term is finite, this 
will always be explicitly stated. 

Despite the fact that we have given a rather formal definition of term, in the 
material which follows we will rarely make direct reference to this definition, 
relying instead on the reader's intuitive understanding of a term. All the 
arguments presented could easily be formalised, if desired. We will also find it 
convenient to use a more informal notation for terms. In particular, for finite 
terms we will continue to use the old notation. 

Example fff... is the infinite term pictured in Figure 9. 
f(a,f(a,f(a, . . .  ))) is the infinite term pictured in Figure 10. 

Proposition 25.3 Let P be a definite program. Then Up is a compact metric 
space, under the metric d introduced earlier. 

Proof The result follows from proposition 25.2, since the set of constants and 
function symbols in P is finite. • 

The proof of the next result is straightforward. (See problem 3 . )  

Proposition 25.4 Let P be a definite program. Then Up is  dense in Up, under 
the topology induced by d. 

Up is called "complete" because it is the completion [29] of the metric space 
Up. We will also require the concept of a (possibly infinite) atom. Let P be a 
definite program, F be the set of constants and function symbols in P, R be the set 
of predicate symbols in P and V be the set of variables in P (more precisely, the 
first order language underlying P). All variables have arity 0. 

Definition An atom A is an element of TermV u Fu R such that A(n)e R  iff 
n=[] , for all ne dom(A). 
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f 

f 

f 

Fig. 9. The infinite term fff. .. 

Thus an atom is a term with the root node (only) labelled by a predicate 
symbol. Just as we did for terms, we can identify "finite atom", as just defined, 
with "atom",  as defined in §2. Whenever an atom is finite, this will always be 
explicitly stated in this chapter. 

Definition The complete Herbrand base Bp for a definite program P is the set 
of all terms A in Te�u R for which A(n)e R iff n=[] , for all ne dom(A). The 
elements of Bp are called ground atoms. 

Thus Bp is the set of all ground (possibly infinite) atoms which can be formed 
out of the finite set of constants, function symbols and predicate symbols appearing 
in P. Note that Bp � Bp· 

Proposition 25.5 Let P be a definite program. Then Bp is a compact metric 
space, under the metric d introduced earlier. 
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a 

Fig. 10. The infinite term f(a,f(a,f(a, . . .  ))) 

Proof Te�u R is compact, by proposition 25.2. It is easy to show that B}> is 
a closed and, therefore, compact subspace of Te� uR· • 

Proposition 25.6 Let P be a definite program. Then Bp is dense in B}>, under 
the topology induced by d. 

Proof Straightforward. • 

The concept of a substitution applied to an atom in §4 can be easily 
generalised to the present more general definition of atom and term. We restrict 
attention to ground substitutions applied to finite atoms, which is all that is needed 
in this chapter. 

Definition A ground substitution 8 is a finite set of the form { v 1tt 1 , . . .  ,vk!tk} ,  
where each vi is a variable, the variables are distinct and tie U}>, for i=1 , . . . ,k. 

Definition Let A be a finite atom with variables { v 1 , . . .  ,vk} and 8 = 

{v 1/t l ' . . .  ,vk!tk} be a ground substitution. Then AS is the ground atom defined as 
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follows: 
(a) dom(AS) = dom(A) u { [m,n] : me dom(A), A(m)=vi and nedom(ti), for some 
ie { l ,  . . . ,k } } .  
(b) AS : dom(AS) � F u R is defined by 
AS(m) = A(m), if me dom(A) and A(m)fi { v 1 , . . . ,vk} 
AS([m,n] ) = ti(n), if me dom(A), A(m)=vi and ne dom(ti), for some ie { l , . . .  ,k} .  

We say AS i s  a ground instance of A. The collection of all ground instances 
of the finite atom A is denoted by [[A]] .  Note that [A] � [[A]] � B}>. 

Proposition 25.7 Let P be a definite program and C = {A1 ' . . . ,Am} be a set of 
finite atoms with variables x1 ' . . .  ,xn. Consider the mapping 

Sc : (Up)n � (Bp)m 

defined by 
Sc(t1 , . . . ,tn) = (A1 S, . . .  ,Am S), 

where S = { x 1/t 1 , . .. ,xJtn } .  Then Sc is continuous, where (Up)n and (Bp)m are 
each given the product topology. 

Proof Suppose that { (t l ,k• · · · •tn,k) }ke ro  converges to (t1 ' . . .  ,tn) in the product 

topology on (Up)n. Put Sk = { x1/t i ,k• · · ··xn/tn,k} ,  for ke ro. Clearly AiSk � AiS, 

for i=l , ... ,m, and hence SC is continuous. • 

Proposition 25.8 Let A be a finite atom. Then [[A]] is a closed subset of B}>. 

Proof Put C = { A } .  If A has n variables, then [[A]] = Sc<(U}>)n). Since Sc 
is continuous and U}> is compact, Sc((U}>)n) is a compact and, therefore, closed 
subset of B}> . • 

Proposition 25.9 Let A be a finite atom. Then [A] = [[A]] . 

Proof Since [A] � [[A]] and [[A]] is closed, [A] � [[A]] .  On the other hand, if 
C= { A }  and A has n variables, then [[A]] = Sc<(U}>)n) = Sc<(Up)n) � Sc((Up)n) 
= [A], by propositions 25.4 and 25.7. • 

We conclude this section with the definition of a complete Herbrand 
interpretation and the mapping T}>. 

Definition Let P be a definite program. An interpretation for P is a complete 

Herbrand interpretation if the following conditions are satisfied: 
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(a) The domain of the interpretation is the complete Herbrand universe Up . 
(b) Constants in P are  assigned themselves in Up. 
(c) If f is an n-ary function symbol in P, then the mapping from (Up)n into Up 
defined by (t 1 , . . . ,tn) --+ f(t 1 , . . .  ,tn) is assigned to f. 

We make no restrictions on the assignment to the predicate symbols in P, so 
that different complete Herbrand interpretations arise by taking different such 
assignments. In an analogous way to that in §3, we identify a complete Herbrand 
interpretation with a subset of Bp· The set of all complete Herbrand interpretations 
for P is a complete lattice under the partial order of set inclusion. 

Definition Let P be a definite program. A complete Herbrand model for P is a 
complete Herbrand interpretation which is a model for P. 

We also define a mapping Tp from the lattice of complete Herbrand 
interpretations to itself as follows. Let I be a complete Herbrand interpretation. 
Then Tp(I) = (AeBp : Af-B l '  . . . ,Bn is a ground instance of a clause in P and 
(B 1 , . . . ,Bn } !:: 1 } . 

Note that Tp is � for the pre-interpretation J consisting of the domain Up and 
the above assignments to constants and function symbols. It turns out that because 
of the compactness of Up and Bp, Tp has an even richer set of properties than T p· 
We explore these properties in the next section. 

§26. PROPERTIES OF Tp 
In this section we establish various important properties of Tp, notably that 

gfp(Tp) = Tpiro. 

We begin with four results, which are the analogues for Tp of propositions 6. 1 ,  

6.3 and 6.4 and theorem 6.5. The proofs of these results are essentially the same 
as the earlier ones. 

Proposition 26.1 (Model Intersection Property) 
Let P be a definite program and (Mi } iel be a non-empty set of complete 

Herbrand models for P. Then ll ie iMi is a complete Herbrand model for P. 

We let Mp denote the least complete Herbrand model for P. Thus Mp is the 
intersection of all complete Herbrand models for P. 
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Proposition 26.2 Let P be a definite program. Then the mapping Tp is 
continuous (in the lattice-theoretic sense of §5). 

Proposition 26.3 Let P be a definite program and I be a complete Herbrand 
interpretation for P. Then I is a model for P iff T}>(n � I. 

Theorem 26.4 Let P be a definite program. Then M}> = lfp(Tp) = T}> i ro. 

The next result is due to Andreka, van Emden, Nemeti and Tiuryn [2] . 

Theorem 26.5 (Closedness of Tp) 
Let P be a definite program and I be a closed subset of B}>. Then T}>(I) is a 

closed subset of B}>. Furthermore, T}>(J) !:;:;; T}>(l). for J � B}>. 

Proof Let I be a closed subset of B}>. We show T}><n is closed. It is sufficient 
to consider the case when P consists of a single clause, say, A�A1 , . . . ,Am. 
Suppose the clause has n variables. Put C={A, A1 ' . . . ,Am} and let Sc be the 
associated mapping defined in §25. Since Sc is continuous and U}> is compact, 

we have that Sc((Up)n) is a closed subset of (Bp)m
+ 1

. Let 1t denote the 

projection from (Bp)m
+ 1 onto its first component. Then T}>(I) 

1t(Sc((Up)n) n (Bp x Im)) and thus T}>(l) is closed. 
For the last part, it is straightforward to show that T'p maps closed sets to 

closed sets iff T}>(J) !::: T}>(J), for J !::: B}>. • 

Corollary 26.6 T}>.l.k is closed, for kero. Furthermore, T}>.!.ro is closed. 

Note carefully that we do not necessarily have the opposite inclusion 
T}><n ;;:;1 T}>(n. for J !::: B}>. 

Example Let P be the program 
q(a) � p(f(x),f(x)) 

Let J = {p(t,f(t)) : te Up} .  Then T}>(J)={ q(a) } , but T}>(J)=0. 

Next we establish an important weak continuity result for T}>. For this we 
need the concept of the limit superior of a sequence of subsets of a metric space 
[5] .  

Definition Let (X,d) be a metric space and { Y } 00 be a sequence of subsets n ne 
of X. Then we defme LS 00(Y ) = { xe X : for every neighbourhood V of x and ne n 
for every me ro, there exists !em such that V n Y k;t:0} .  
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If {Yn}nero i s  a decreasing sequence of closed sets, i t  i s  easy to show that 
LSnero<Y n) = nnero  Yn. 

Theorem 26.7 (Weak Continuity of Tp) 
Let P be a definite program and { Ik}kero be a sequence of sets in Bp· Then 

LSkero(Tp(lk)) !:: Tp(LSkero(Ik)). 

Proof Suppose AeLSkero(TP(Ik)). Then, for every neighbourhood V of A, 
there exist infinitely many k such that V n TP(Ik};t0. Since P is finite, there exist 
a clause A0f-Al' .. . ,Am in P, a subsequence { Ikp

lpero of { Ik}kero and a sequence 
{ ep }pero of ground substitutions for the variables x1 ' . . . ,xn of the clause such that 

A0ep�A and A.e elk , for j=l , . . . ,m and pero. 
J p p 

Suppose ep is {x1tt1 p, . . . ,x /t } .  Since Up' is compact, we can assume . , n n,p 
without loss of generality that (t1 , . . . ,t )�(t1 , . . . ,t ), say. Put e = ,p n,p n 
{x1/t1 , . . . ,xn/tn} .  By proposition 25.7, we have that 
(A0ep, . . . ,Amep)�(A0e, . . . ,Ame). Since A0ep �A. we have that A0e=A. 
Furthermore, since Ajep �Aje, we have that AjeeLSkero<Ik), for j=l , . . . ,m. Hence 
Ae Tp(LSke ro (lk) ). I 

Note that we do not generally have LSkero<Tp(lk)) = Tp(LSkero(lk)). 

Example Consider the program 
q(a) f- p(f(x),f(x)) 

Put lk={p(f
k(a) ,f

k+l(a)) } , for kero. Then LSkero<Ik)={p(fff . . . ,fff.. .) } .  Thus 

Tp(LSkero<Ik))={q(a) } ,  but LSkero(TP(Ik))=0. 

Corollary 26.8 (Intersection Property for Tp) 
Let P be a definite program and {Ik}kero be a decreasing sequence of closed 

sets in Bp. Then Tp( nkerolk) = nkeroTP(Ik). 

Proof We have that 

Tp( nkero1k) 
= Tp(LSke ro (Ik) ), 

;;;2 LSkero<Tf,(lk)), 

= n ke ro TP(Ik), 

since the Ik are closed and decreasing 
by theorem 26.7 

since the TP(Ik) are closed and decreasing. 
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We cannot drop the requirement that each Ik be closed in corollary 26.8. 

Example Consider the program 
q(a) � p(f(x)) 
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Let Ik be {p(fl(a)) : n::::k } , for kero. Then { Ik}kero is a decreasing sequence. 
Furthermore, nkerolk=0, so that Tp( n kerolk)=0. However, Tp(Ik) = {q(a) } , 
for ke ro. Thus n ke ro Tp(Ik)={ q(a) } . 

Part (a) of the next theorem is due to Andreka, van Emden, Nemeti and Tiuryn 
[2] . Recall that it can happen that gfp(Tp)*Tp-l.ro. 

Theorem 26.9 Let P be a definite program. Then we have 
(a) gfp(Tp) = Ti>J.ro. 

(b) Tp( nkeroTP-l.k) :::2 nkeroTP-l.k. 

Proof (a) It suffices to show that Tp(Tp-l.ro)=Tp-l.ro. Now we have 
Tp<Tp-l.ro) 

= Tp( nkeroTP-l.k) 
= n ke ro Tp(Tp-l.k), by corollaries 26.6 and 26.8 

= Ti>J.ro. 
(b) We have 
Tp( nkeroTP-l.k) 

= nkeroTP(fP-l.k), 
:::2 n ke roTP(T P-l.k), 

:::2 nkeroTP-l.k. I 

by corollary 26.8 

by theorem 26.5 

It is apparent that the essential reason that gfp(Tp)=Tp-l.ro is because Up is 
compact. We generally have gfp(Tp):;t:TPJ.ro precisely because limits of sequences 
of finite terms are missing from Up. In many respects, Tp, Up and Bp give a 
more appropriate setting for the foundations of logic programming than T p• Up 
and Bp· 
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Note that n ke ol p-1-k may not be a ftxpoint of Tp. 
Example Let P be the program 
q(a) r p(x,f(x)) 
p(f(x),f(x)) r p(x,x) 

Then nkeolP-1-k = {p(fff . . .  ,fff...) } ,  but Tp( nkeclP-1-k) = {q(a), p(fff . . .  ,fff... ) } .  

Proposition 26.10 Let P be a definite program. Then we have 

(a) Tp-1-k = Tp-1-k, for k=O, 1 . 

(b) Tp-1-k !:; Tp-1-k, for J.e2. 

Proof By corollary 26.6, Tp-1-k is closed, for keco. Also it is easy to show by 

induction that Tp-1-k !:; Tp-1-k, for kero. Thus we have Tp-1-k !:; Tp-1-k, for kero. 
Furthermore, Tp

-1-0 = Bp = Bp = Tp-1-0. Finally, we leave the proof that Tp-1-1 = 

Tp-1-1 to problem 9. I 

Note that Tp-1-k may be a proper subset of Tp-1-k, for l.e2. (See problem 10.) 

Proposition 26.11 Let P be a definite program. Then Tp-1-ro !:; nkeroTP-1-k 
!:; Tp-1-ro. 

Proof We have 

Tp-1-co 
= nkeroTP-1-k 
!:; nkeroTP-1-k 
!:; nkeroTP-1-k, by proposition 26. 10 

= Tp-1-ro. I 

Note that both of the inclusions in proposition 26. 1 1  may be proper. (See 
problem 1 1 . )  

Next, we prove a useful characterisation of nkeroTP-1-k. 
Theorem 26.12 Let P be a definite program and Ae Bp. Then the following 

are equivalent: 
(a) Ae  nkeroTP-1-k. 
(b) There exists a sequence {Ak}kero such that AkeTp-1-k, for kero, and Ak �A. 
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(c) There exists a finite atom B and a non-failed fair derivation f-B=G0, 01 , . . . 
with mgu's 91 , a2, . . .  such that A e n ke ro[[B91 . . .  9k]] .  (If the derivation is 
successful, then the intersection is over the finite set of non-negative integers 
which index the goals of the derivation) . 

Proof The equivalence of (a) and (b) is left to problem 12. 
(c) implies (a). Suppose (c) holds. By proposition 25.9, we have that 

A e n 00 [B9 1 . . . a ]. By proposition 13.5, given ke ro, there exists ne ro such that ne n --
[B91 . . . an] � Tp.!.k. Hence A e n ke roTP.!.k. 

(b) implies (c). For this proof, we ensure fairness in all derivations by always 
selecting atoms as follows. We select the leftmost atom to the right of the 
(possibly empty set of) atoms introduced at the previous derivation step, if there is 
such an atom; otherwise, we select the leftmost atom. 

Let { Ak} ke ro be a sequence such that Ake Tp.!.k, for ke ro, and Ak �A. Since 
Ake Tp.!.k, proposition 13.4 shows that there is a derivation Dk beginning with 
f-Ak, which is either successful (that is, Dk is a refutation of P v { f-Ak} ) or has 
length > k. We consider two cases. 

( 1 ) Given me ro and pero, there exists n�p such that D n 
has length > m. 

In this case, by passing to an appropriate subsequence, we can assume without 
loss of generality that the sequence { Ak} ke ro is such that Ake Tp.!.k, for ke ro, 
Ak �A and Dk has length > k. 

We now prove by induction that there exists a finite atom B and an infinite 
fair derivation f-B=G0, 01 , . . .  with input clauses c1 • c2, . . . such that, for each 
ne ro, there exists a subsequence { Akm }me ro of ( Ak}ke ro' where C1 ' . . . ,Cn+l are 

the same (up to variants) as the first n+ 1 input clauses of each of the Dk and 
m On+ l is more general than the (n+l)th goal in Dkm' for me ro. 

Suppose first that n=O. Since P contains only finitely many clauses, a 
subsequence { Ak

m
} me ro of { Ak }ke ro must use the same program clause, say E, in 

the frrst step of Dk . We let B be the head of E and let c1 be a suitable variant of 
m 

E. 
Next suppose the result holds for n-1 . Thus there exists a finite atom B and a 

fair derivation f-B=Oo• 0l ' . . . ,On via R with input clauses C1 ' . . .  ,Cn such that there 
exists a subsequence { Akm }me ro of {Ak}ke ro• where C 1 ' . . . ,Cn are the same (up to 

variants) as the first n input clauses of each of the Dk and 0 is more general m n 
than the nth goal in Dk , for me ro. Note that as the lengths of the Dk are 

m m 
unbounded, the nth goal in each Dk is not empty. Furthermore, the same atom is 

m 
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selected in the nth goal of each Dk Since P contains only finitely many clauses, 
m 

a subsequence {Ak } co of {Ak } co must use the same program clause, say 
m pe m me 

F, as the (n+ l )th in8ut clause of the derivation Dk . It is clear that (a suitable 
m 

variant of) F can be used as Cn+ 1 . This completes th� induction argument. 
To finish off case ( 1) ,  we have only to show that if 8 1 ' e2, . . .  are the mgu's of 

the derivation just constructed, then Ae [[BS 1 .. . en]],  for ne co. However, this 
follows from proposition 25 .9, since, given ne ro, there exists a subsequence 
{Ak } m co such that Ak �A and Ak e [B81 . . . e ] .  Thus A satisfies condition (c). 

m e m m n 
(2) There exists me co and peco such that, for all rU!.p, D n 

has length s; m. 
In this case, since each Dk is either successful or has length > k, we may 

assume without loss of generality that there exists me co such that the sequence 
{Ak }ke co has the properties that Ak �A and each Dk is successful with length s; 
m. Because P is finite, there exists a subsequence { Ak } co such that all the 

m me 
Dk have exactly the same sequence of input clauses (up to variants) . Suppose E 

m 
is the program clause used first in each of the Dk . We let B be the head of E and 

m 
construct a refutation of P u { +-B } of length s; m using the same sequence of 
input clauses as each of the Dk . In a similar way to case (1 ), we can show that 

m 
A satisfies condition (c). I 

§27. SEMANTICS OF PERPETUAL PROCESSES 

As we stated above, a perpetual process is a definite program which does not 
terminate and yet is doing useful computation, in some sense. The problem is to 
find the appropriate sense of an infinite computation being "useful" .  We solve 
this problem by introducing the concept of an infinite atom in Bp being 
"computable at infinity" .  The set of all such atoms plays the role for perpetual 
processes that the success set plays for programs which terminate. The major 
result of this section is that the set of all atoms computable at infinity is a subset 
of gfp(Tp)· Related results have been obtained by Nait Abdallah and van Emden 
[76] , [77], [108] .  

We begin with the key definition. 
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Definition Let P be a definite program and Ae Bp\Bp. We say A is 
computable at infinity if there is a finite atom B and an infinite fair derivation 
t-B=G0, G1 , . . .  with mgu's e1 , e2, . . .  such that d(A, Be1 . . .  ek)�O. as k�oo. 

We put Cp = (Ae Bp\Bp : A is computable at infinity } .  

Example Let P be the program 
p(f(x)) t- p(x) 

Since lfp(Tp)=0, this program does not compute anything in the sense of chapter 
2. However, given the goal t-p(x), the atom p(fff . . .  ) can be "computed at 
infinity".  In fact, it is clear that Cp={p(fff . . . ) } .  

Example Let P be the program 
fib(x) t- fibl (O. l .x) 
fibl (x.y.z.w) t- plus(x,y,z) , fibl (y.z.w) 
plus(O,x,x) t-
plus(f(x),y,f(z)) t- plus(x,y,z) 

(Recall the convention that n stands for :f(O)). Clearly fib(1 .2.3.5.8. 1 3 . . . .  )e CP, 
where the argument of fib is the Fibonacci sequence. We simply let B be fib(x) 
and we obtain the approximating sequence fib(Lx1), fib( l .2.x2), fib(1 .2.3.x3), . . . . 

Example We consider Hamming' s problem, which is to construct the sorted 
sequence t of positive integers containing no prime factors other than 2, 3 or 5. 
Thus the initial part of the sequence t is 2.3 .4.5.6.8.9. 10. 12. 15 . . . . . The following 
program P to solve this problem appeared in [ 17] and [41] .  

hamming(x) t- seqprod(l .x,2,u) , seqprod(l .x,3 ,v) , seqprod(l .x,5 ,w), 
merge(u,v,z) , merge(z,w,x) 

merge(x.u ,y.v,x.w) t- y>x, merge(u,y.v,w) 
merge(x.u,y.v,y.w) t- x>y, merge(x.u,v,w) 
merge(x.u,x.v,x.w) t- merge(u,v,w) 
seqprod(x.u,y,z.v) t- prod(x,y,z), seqprod(u,y,v) 
f(x)>f(y) t- x>y 
f(x)>O t-
prod(x,O,O) t-
prod(x,f(y),z) t- prod(x,y,w), plus(w,x,z) 
plus(O,x,x) t-
plus(f(x),y,f(z)) t- plus(x,y,z) 

Then it is clear that hamming(t)e Cp· 
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The next proposition gives a characterisation of Cp independent of the metric 
d. 

Proposition 27.1 Let P be a definite program and AeB}>\Bp. Then Ae CP iff 
there is a finite atom B and an infinite fair derivation � B=G0, G 1 , . . .  with mgu' s 
e 1 , e2, . . .  such that n ke ro[[B9 1 . . .  9k]] = {A } .  

Proof We have to show that d(A, Be1 . . .  9k)---+0, a s  k---+oo, iff 
n ke ro[[B91 .. . 9k]] = { A } .  

We first suppose that n ke ro[[B9 1 . . .  9k]] = {A } .  Assume that there exists ne ro 
such that, for all ke ro, we have a.n (A);t:(Xn (B9 1 . . .  9k). Then, for each ke ro, 
a.n(B91 . . .  9k) must have at least one node labelled by a variable. Since a.n(A) is 
finite, it is clear that there exist a node in a.n (A) and me ro such that, for �m. the 
corresponding node in Be1 . . .  ek is labelled by a variable. (The variable may 
depend on k.) Consequently, n ke ro[[B9 1 . . . 9k]]  contains not just A, but infinitely 
many ground infinite atoms. Thus our original assumption is incorrect and hence, 
given ne ro, there exists ke ro  such that a.n(A)=a.n(B91 . . .  9k). Then 
d(A, se 1 . . .  9k)---+0, as k---+oo. 

Conversely, let us suppose that d(A, B91 . . .  9k)---+0, as k---+oo. Since each 
[[Be 1 ... 9k]]  is closed and { [ [B91 ... 9k]] }ke ro  is decreasing, i t  is clear that 
A e  n ke ro[[B9 1 " .. 9�] .  Next suppose A' e n kero[[B91 . . .  9k] ] .  Let E>O be given. 
Choose m such that d(A, Be 1 . . .  9m)<E. Suppose A'=B91 .. . eme, for some e. Thus 
d(A, A')=d(A, B9 r··em9)<E. Since E was arbitrary, we have that d(A, A')=O and 
hence A=A'. Thus nke ro[[B91 . . .  9k]]= {A} .  • 

We could have adopted a weaker definition of Cp in which we simply demand 
that A e  n ke ro[[B9 1 . . .  9k]] . However, the following example shows that this 
weaker definition doesn't properly capture the notion of "computable at infinity" .  

Example Let P be the program 
p(f(x)) � p(f(x)) 

Under the weaker definition, we would have p(fff . . . )eCp. 

Now we can give the main result of this chapter. 

Theorem 27.2 (Soundness of SLD-Resolution for Perpetual Processes) 
Let P be a definite program. Then Cp k gfp(Tp)· 
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Proof We have 
Cp 

� n keclP-l..k, 
!:: Ti>-l..ro, 
= gfp(Tp) ,  

by theorem 26. 12  and proposition 27. 1 
by proposition 26. 1 1  
by theorem 26.9. I 

1 9 1 

Theorem 27.2 is the analogue for perpetual processes of theorem 8.3, which 
states that the success set is equal to lfp(Tp) .  Since Cp contains only infinite 
atoms, it follows from theorem 27.2 that Cp !:: gfp(Tp)\Bp. It would be pleasant 
if Cp=gfp(Tp)\Bp· However, as the following examples show, this cannot be 
achieved without some restrictions on P or modifications to the definitions of Cp 
and Tp or both. 

Example Let P be the program 
p(f(x)) � 

Then p(fff...)e gfp(Tp)\Bp, but p(fff... )iCp· 

Example Let P be the program 
p(f(x)) � p(f(x)) 

Then p(fff...)e gfp(Tp)\Bp, but p(fff ... )i Cp. 

Example Let P be the program 
p(x,f(x)) +- p(x,x) 

Then p(fff . . .  ,fff . . . )E gfp(Tp)\Bp, but p(fff. . . ,fff . . .  )i Cp. The problem here is that no 
matter what we choose for B in the definition of Cp, the computation will fail. 
Note that p(fff . . .  ,fff . . . )E gfp(Tp) ,  because Tp does not respect the occur check. 

In view of these developments, we propose the following setting for perpetual 
processes. The intended interpretation of a perpetual process P is gfp(Tp)· This is 
indeed a model for P. gfp(Tp) is the analogue of the intended interpretation 
lfp(Tp) for (ordinary) definite programs. Cp is then the analogue of the success set 
for programs. For (ordinary) definite programs, we get soundness and 
completeness, since lfp(T p) = success set. For perpetual processes, we only have 
the soundness result Cp !:: gfp(Tp)· As we have seen, completeness cannot be 
achieved without further restrictions. 

Taking a complete Herbrand model as the intended interpretation seems to be 
the simplest and most natural way of providing a semantics for perpetual 
processes. The results of this chapter suggest that gfp(Tp) should be the intended 
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interpretation. However, gfp(fp) generally contains infinite atoms which are not 
intuitively computable at infinity and thus we do not get completeness. For another 
approach to this topic, we suggest the reader consult the paper by Levi and 
Palamidessi [56] .  

This chapter leaves many questions unanswered. Finding a satisfactory 
semantics for perpetual processes and for communication and synchronisation 
between concurrent processes is a current research problem. We believe that the 
appropriate setting in which to discuss such problems is the setting of Up, Bp and 
T'p and that the basic results presented in this chapter will play a central role in 
any satisfactory semantics. 

PROBLEMS FOR CHAPTER 6 

1 . Prove proposition 25. 1 . 

2. Prove that "finite ground term" as defined in §25 can be identified with 
"ground term" as defined in §3. 

3. Prove that Up is dense in Up. 

4. Suppose I !:;;; Bp and Ae BP. Prove that Ae I iff Ae l. 

5 .  Find a definite program P and a complete Herbrand model I for P such that I is 
not a model for P. 

6. Show that we cannot drop the requirement that the sequence { Ik }ke ro  be 
decreasing in corollary 26.8 .  

7. The set of all non-empty closed subsets of Bp can be made into a metric space 
using the Hausdorff metric p defined by p(C,D)=max { h(C,D), h(D,C) } ,  where C 
and D are non-empty closed subsets of Bp and h(C,D)=sup {d(x,D) : xe C} . (See 
[29] .) 
(a) Show that, if A,BeBp, then p( {A } , { B } ) = d(A,B). 
(b) Show that, if { Cn} nero is a decreasing sequence of closed subsets of Bp, then 
{Cn} ne ro  is convergent in the topology induced by p and its limit is n neroCn. 
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(c) Restrict further attention to P such that Tp(0)¢0. This restriction and the fact 
that Tp is closed imply that Tp is a well-defined mapping from the metric space of 
non-empty closed subsets of Bp into itself. Part (b) suggests that corollary 26.8 

can be extended by proving that Tp is continuous in the topology induced by p. 
Show that this conjecture is false. 

8. Show that gfp(Tp) may no longer be equal to Tp.!-c.o if the definite program P is 
allowed to consist of an infinite number of clauses with an infinite number of 
constants. 

9. Prove that Tp.!-1 = Tp.!- 1 . 

10. Find a definite program P such that Tp.!-2 c Tp.!-2. 

1 1 . Find a definite program P such that T p.!-c.o c n ke c.oT p.!-k c Tp.!-c.o. 

12. Prove that A e  nkec.oTP.!-k iff there is a sequence {Ak}kec.o such that 
AkeTp.!-k, for ke c.o, and Ak �A. 

1 3 .  lllustrate theorem 26. 12  with the program 
p(f(x)) f- p(x) 

and with A = p(fff ... ). 
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u union 
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c subset 
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X\ Y set difference 
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• end of proof 

T top element 
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co non-negative integers 

25 set of all subsets of S 

gfp(T) greatest fixpoint of T 
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G goal 
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