

Springer Series
SYMBOLIC COMPUTATION- Artificial Intelligence

N.J. Nilsson: Principles of Artificial Intelligence. XV, 476 pages,
139 figs., 1982
J.H. Siekmann, G. Wrightson (Eds.): Automation of Reasoning 1.
Classical Papers on Computational Logic 1957-1966. XXII. 525
pages, 1983
J.H. Siekmann, G. Wrightson (Eds.): Automation of Reasoning 2.
Classical Papers on Computational Logic 1967-1970. XXII. 638
pages, 1983
L. Bole (Ed.): The Design of Interpreters, Compilers, and Editors
for Augmented Transition Networks. XI, 214 pages, 72 figs., 1983
R.S. Michalski, J.G. Carbonell, T.M. Mitchell (Eds.): Machine
Learning. An Artificial Intelligence Approach. XI, 572 pages, 1984
L. Bole (Ed.): Natural Language Communication with Pictorial
Information Systems. VII, 327 pages, 67 figs., 1984
J. W. Lloyd: Foundations of Logic Programming. X, 124 pages, 1984;
Second, extended edition, XII, 212 pages, 1987
A. Bundy (Ed.): Catalogue of Artificial Intelligence Tools. XXV,
150 pages, 1984. Second, revised edition, IV, 168 pages, 1986
M. M. Botvinnik: Computers in Chess. Solving Inexact Search Prob­
lems. With contributions by A. I. Reznitsky, B. M. Stilman, M.A.
Tsfasman, A.D. Yudin. Translated from the Russian by A. A. Brown.
XIV, 158 pages, 48 figs., 1984
C. Blume, W. Jakob: Programming Languages for Industrial Robots.
XIII, 376 pages, 145 figs., 1986
L. Bole (Ed.): Computational Models of Learning. IX, 208 pages, 34
figs., 1987
L. Bole (Ed.): Natural Language Parsing Systems. Approx. 384
pages, 155 figs., 1987

J. W Lloyd

Foundations of
Logic Programming

Second, Extended Edition

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

John Wylie Lloyd

Department of Computer Science
University of Bristol
Queen's Building, University Walk
Bristol BS8 1 TR, UK

First Corrected Printing 1993

ISBN 3-540-18199-7 Springer-Verlag Berlin Heidelberg New York

ISBN 0-387-18199-7 Springer-Verlag New York Berlin Heidelberg

ISBN 3-540-13299-6 1. Auflage Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-13299-6 1st edition Springer-Verlag New York Berlin Heidelberg Tokyo

Library of Congress Cataloging in Publication Data. Lloyd, J. W. (John Wylie), 1947-.

Foundations of logic programming. (Symbolic computation. Artificial intelligence) Biblio­
graphy: p. Includes index. 1. Logic programming. 2. Programming languages (Electronic
computers)-Semantics. I. Title . II. Series. QA76.6.L583 1987 005.1 87-20753

ISBN 0-387-18199-7 (U.S.)

T his work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, re-use of illustrations,
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data
banks. Duplication of this publication or parts thereof is only permitted under the provi­
sions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985,

and a copyright fee must always be paid. Violations fall under the prosecution act of the
German Copyright Law.

© J. W. Lloyd 1984, 1987

Printed in Germany

Printing: Druckhaus Beltz, 6944 Hemsbach/Bergstr.
Bookbinding: J. Schaffer GmbH & Co. KG, 6718 Griinstadt
45/3140-543210

To
Susan, Simon and Patrick

PREFACE TO THE SECOND EDITION

In the two and a half years since the first edition of this book was published,

the field of logic programming has grown rapidly. Consequently, it seemed

advisable to try to expand the subject matter covered in the first edition. The new

material in the second edition has a strong database flavour, which reflects my own

research interests over the last three years. However, despite the fact that the

second edition has about 70% more material than the first edition, many

worthwhile topics are still missing. I can only plead that the field is now too big

to expect one author to cover everything.

In the second edition, I discuss a larger class of programs than that discussed

in the first edition. Related to this, I have also taken the opportunity to try to

improve some of the earlier terminology. Firstly, I introduce "program

statements", which are formulas of the form Af-W, where the head A is an atom

and the body W is an arbitrary formula. A "program" is a finite set of program

statements. There are various restrictions of this class. "Normal" programs are

ones where the body of each program statement is a conjunction of literals. (The

terminology "general", used in the first edition, is obviously now inappropriate).

This. terminology is new and I risk causing some confusion. However, there is no

widely used terminology for such programs and "normal" does have the right

connotation. "Definite" programs are ones where the body of each program

statement is a conjunction of atoms. This terminology is more standard.

The material in chapters 1 and 2 of the first edition has been reorganised so

that the first chapter now contains all the preliminary results and the second

chapter now contains both the declarative and procedural semantics of definite

programs. In addition, chapter 2 now contains a proof of the result that every

computable function can be computed by a definite program.

Further material on negation has been added to chapter 3, which is now

entitled "Normal Programs". This material includes discussions of the

VIII

consistency of the completion of a normal program, the floundering of SLDNF­
resolution, and the completeness of SLDNF-resolution for hierarchical programs.

The fourth chapter is a new one on (unrestricted) programs. There is no good
practical or theoretical reason for restricting the bodies of program statements or
goals to be conjunctions of literals. Once a single negation is allowed, one should
go all the way and allow arbitrary formulas. This chapter contains a discussion of
SLDNF-resolution for programs, the main results being the soundness of the
negation as failure rule and SLDNF-resolution. There is also a discussion of error
diagnosis in logic programming, including proofs of the soundness and
completeness of a declarative error diagnoser.

The fifth chapter builds on the fourth by giving a theoretical foundation for
deductive database systems. The main results of the chapter are soundness and
completeness results for the query evaluation process and a simplification theorem
for integrity constraint checking. This chapter should also prove useful to those in
the "conventional" database community who want to understand the impact logic
programming is having on the database field.

The last chapter of the second edition is the same as the last chapter of the
first edition on perpetual processes. This chapter is still the most speculative and
hence has been left to the end. It can be read directly after chapter 2, since it does
not depend on the material in chapters 3, 4 and 5.

This second edition owes much to Rodney Topor, who collaborated with me
on four of the papers reported here. Various people made helpful suggestions for
improvements of the first edition and drafts of the second edition. These include
David Billington, Torkel Franzen, Bob Kowalski, Jean-Louis Lassez, Donald
Loveland, Gabor Markus, Jack Minker, Ken Ross, John Shepherdson, Harald
Sondergaard, Liz Sonenberg, Rodney Topor, Akihiro Yamamoto and Songyuan
Yan. John Crossley read the entire manuscript and found many improvements.
John Shepherd showed me how to use ditroff to produce an index. He also
introduced me to the delights of cip, which I used to draw the figures. Rodney
Topor helped with the automation of the references.

April 1987 JWL

PREFACE TO THE FIRST EDITION

This book gives an account of the mathematical foundations of logic
programming. I have attempted to make the book self-contained by including
proofs of almost all the results needed. The only prerequisites are some familiarity
with a logic programming language, such as PROLOG, and a certain mathematical
maturity. For example, the reader should be familiar with induction arguments and
be comfortable manipulating logical expressions. Also the last chapter assumes
some acquaintance with the elementary aspects of metric spaces, especially
properties of continuous mappings and compact spaces.

Chapter 1 presents the declarative aspects of logic programming. This chapter
contains the basic material from first order logic and fixpoint theory which will be
required. The main concepts discussed here are those of a logic program, model,
correct answer substitution and fixpoint. Also the unification algorithm is
discussed in some detail.

Chapter 2 is concerned with the procedural semantics of logic programs. The
declarative concepts are implemented by means of a specialised form of resolution,
called SLD-resolution. The main results of this chapter concern the soundness and
completeness of SLD-resolution and the independence of the computation rule. We
also discuss the implications of omitting the occur check from PROLOG
implementations.

Chapter 3 discusses negation. Current PROLOG systems implement a form of
negation by means of the negation as failure rule. The main results of this chapter
are the soundness and completeness of the negation as failure rule.

Chapter 4 is concerned with the semantics of perpetual processes. With the
advent of PROLOG systems for concurrent applications, this has become an area
of great theoretical importance.

X

The material of chapters 1 to 3, which is now very well established, could be
described as "what every PROLOG programmer should know". In chapter 4, I
have allowed myself the luxury of some speculation. I believe the material
presented there will eventually be incorporated into a much more extensive
theoretical foundation for concurrent PROLOGs. However, this chapter is
incomplete insofar as I have confined attention to a single perpetual process.
Problems of concurrency and communication, which are not very well understood
at the moment, have been ignored.

My view of logic programming has been greatly enriched by discussions with
many people over the last three years . In this regard, I would particularly like to
thank Keith Clark, Maarten van Emden, Jean-Louis Lassez, Frank McCabe and Lee
Naish. Also various people have made suggestions for improvements of earlier
drafts of this book. These include Alan Bundy, Herve Gallaire, Joxan Jaffar,
Donald Loveland, Jeffrey Schultz, Marek Sergot and Rodney Topor. To all these
people and to others who have contributed in any way at all , may I say thank you.

July 1984 JWL

CONTENTS

Chapter 1 . PRELIMINARIES
§ 1 . Introduction 1
§2. First Order Theories 4
§3. Interpretations and Models 10
§4. Unification 20
§5. Fixpoints 26
Problems for Chapter 1 3 1

Chapter 2. DEFINITE PROGRAMS
§6. Declarative Semantics 35
§7. Soundness of SLD-Resolution 40
§8. Completeness of SLD-Resolution 47
§9. Independence of the Computation Rule 49

§ 10. SLD-Refutation Procedures 55
§ 1 1 . Cuts 63
Problems for Chapter 2 66

Chapter 3. NORMAL PROGRAMS
§ 12. Negative Information 7 1
§ 1 3. Finite Failure 74
§ 14. Programming with the Completion 77
§ 15. Soundness of SLDNF-Resolution 84
§ 1 6. Completeness of SLDNF-Resolution 95
Problems for Chapter 3 102

1

35

7 1

XII

Chapter 4. PROGRAMS
§ 17. Introduction to Programs 107
§ 1 8 . SLDNF-Resolution for Programs 1 12
§ 19. Declarative Error Diagnosis 1 19
§20. Soundness and Completeness of the Diagnoser 130
Problems for Chapter 4 136

Chapter 5. DEDUCTIVE DATABASES
§21 . Introduction to Deductive Databases 14 1
§22. Soundness of Query Evaluation 1 50
§23. Completeness of Query Evaluation 156
§24. Integrity Constraints 158
Problems for Chapter 5 169

107

141

Chapter 6. PERPETUAL PROCESSES 173
§25. Complete Herbrand Interpretations 173
§26. Properties of Tj, 1 82
§27. Semantics of Perpetual Processes 1 88
Problems for Chapter 6 192

REFERENCES 195

NOT A TION 205

INDEX 207

Chapter 1

PRELIMINARIES

This chapter presents the basic concepts and results which are needed for the
theoretical foundations of logic programming. After a brief introduction to logic
programming, we discuss first order theories, interpretations and models,
unification, and fixpoints.

§1. INTRODUCTION

Logic programming began in the early 1970's as a direct outgrowth of earlier
work in automatic theorem proving and artificial intelligence. Constructing
automated deduction systems is, of course, central to the aim of achieving artificial
intelligence. Building on work of Herbrand [44] in 1930, there was much activity
in theorem proving in the early 1960's by Prawitz [84], Gilmore [39] , Davis,
Putnam [26] and others. This effort culminated in 1965 with the publication of the
landmark paper by Robinson [88] , which introduced the resolution rule.
Resolution is an inference rule which is particularly well-suited to automation on a
computer.

The credit for the introduction of logic programming goes mainly to Kowalski
[48] and Colmerauer [22] , although Green [40] and Hayes [43] should be
mentioned in this regard. In 1972, Kowalski and Colmerauer were led to the
fundamental idea that logic can be used as a programming language. The
acronym PROLOO (PROgramming in LOGic) was conceived, and the ftrst
PROLOG interpreter [22] was implemented in the language ALGOL-W by
Roussel, at Marseille in 1972. ([8] and [89] describe the improved and more
influential version written in FORTRAN.) The PLANNER system of Hewitt [45]
can be regarded as a predecessor of PROLOG.

2 Chapter 1. Preliminaries

The idea that first order logic, or at least substantial subsets of it, could be
used as a programming language was revolutionary, because, until 1972, logic had
only ever been used as a specification or declarative language in computer science.
However, what [48] shows is that logic has a procedural interpretation, which
makes it very effective as a programming language. Briefly, a program clause
A�B 1 ' . . . ,Bn is regarded as a procedure definition. If �C 1 ' ... ,Ck is a goal, then
each Cj is regarded as a procedure call. A program is run by giving it an initial
goal. If the current goal is �c1 , ... ,Sc, a step in the computation involves unifying
some Cj with the head A of a program clause A�B 1 , . . . ,Bn and thus reducing the
current goal to the goal �(Cl ' . . . ,Cj_1 ,B 1 , . . . ,Bn,Cj+1 , ... ,Ck)9, where e is the
unifying substitution. Unification thus becomes a uniform mechanism for parameter
passing, data selection and data construction. The computation terminates when
the empty goal is produced.

One of the main ideas of logic programming, which is due to Kowalski [49] ,
[50] , is that an algorithm consists of two disjoint components, the logic and the
control. The logic is the statement of what the problem is that has to be solved.
The control is the statement of lww it is to be solved. Generally speaking, a logic
programming system should provide ways for the programmer to specify each of
these components. However, separating these two components brings a number of
benefits, not least of which is the possibility of the programmer only having to
specify the logic component of an algorithm and leaving the control to be
exercised solely by the logic programming system itself. In other words, an ideal
of logic programming is purely declarative programming. Unfortunately, this has
not yet been achieved with current logic programming systems.

Most current logic programming systems are resolution theorem provers.
However, logic programming systems need not necessarily be based on resolution.
They can be non-clausal systems with many inference rules [1 1], [41] , [42] . This
account only discusses logic programming systems based on resolution and
concentrates particularly on the PROLOG systems which are currently available.

There are two major, and rather different, classes of logic programming
languages currently available. The first we shall call "system" languages and the
second "application" languages. These terms are not meant to be precise, but
only to capture the flavour of the two classes of languages.

§1. Introduction 3

For "system" languages, the emphasis is on AND-parallelism, don't-care
non-determinism and definite programs (that is, no negation). In these languages,
according to the process interpretation of logic, a goal �B 1 , . . . ,Bn is regarded as a
system of concurrent processes. A step in the computation is the reduction of a
process to a system of processes (the ones that occur in the body of the clause that
matched the call). Shared variables act as communication channels between
processes. There are now several " system" languages available, including
PARLOG [1 8] , concurrent PROLOG [93] and GHC [106] . These languages are
mainly intended for operating system applications and object-oriented programming
[94] . For these languages, the control is still very much given by the programmer.
Also these languages are widely regarded as being closer to the machine level.

"Application" languages can be regarded as general-purpose programming
languages with a wide range of applications. Here the emphasis is on OR­
parallelism, don't-know non-determinism and (unrestricted) programs (that is, the
body of a program statement is an arbitrary formula). Languages in this class
include Quintus PROLOG [10] , rnicro-PROLOG [20] and NU-PROLOG [104] .
For these languages, the automation of the control component for certain kinds of
applications has already largely been achieved. However, there are still many
problems to be solved before these languages will be able to support a sufficiently
declarative style of prograrnrning over a wide range of applications.

''Application ' ' languages are better suited to deductive database systems and
expert systems. According to the database interpretation of logic, a logic program
is regarded as a database [35] , [36] , [37], [38] . We thus obtain a very natural and
powerful generalisation of relational databases. The latter correspond to logic
programs consisting solely of ground unit clauses. The concept of logic as a
uniform language for data, programs, queries, views and integrity constraints has
great theoretical and practical power.

The distinction between these two classes of languages is, of course, by no
means clearcut. For example, non-trivial problem-solving applications have been
implemented in GHC. Also, the coroutining facilities of NU-PROLOG make it
suitable as a system programming language. Nevertheless, it is useful to make the
distinction. It also helps to clarify some of the debates in logic programming,
whose source can be traced back to the "application" versus "system" views of
the participants.

4 Chapter 1. Preliminaries

The emergence of these two kinds of logic programming languages has
complicated the already substantial task of building parallel logic machines.
Because of the differing hardware requirements of the two classes of languages, it
seems that a difficult choice has to be made. This choice is between building a
predominantly AND-parallel machine to directly support a " system" programming
language or building a predominantly OR-parallel machine to directly support an
''application' ' programming language.

There is currently substantial effort being invested in the ftrst approach;
certainly, the Japanese ftfth generation project [7 1] is headed this way. The
advantage of this approach is that the hardware requirements for an AND-parallel
language, such as GHC, seem less demanding than those required for an OR­
parallel language. However, the success of a logic machine ultimately rests on the
power and expressiveness of its application languages. Thus this approach requires
some method of compiling the application languages into the lower level system
language.

In summary, logic provides a single formalism for apparently diverse parts of
computer science. It provides us with general-purpose, problem-solving languages,
concurrent languages suitable for operating systems and also a foundation for
deductive database systems and expert systems. This range of application together
with the simplicity, elegance and unifying effect of logic programming assures it of
an important and influential future. Logical inference is about to become the
fundamental unit of computation.

§2. FIRST ORDER THEORIES

This section introduces the syntax of well-formed formulas of a ftrst order
theory. While all the requisite concepts from ftrst order logic will be discussed
informally in this and subsequent sections, it would be helpful for the reader to
have some wider background on logic. We suggest reading the ftrst few chapters of
[14] , [33], [64] , [69] or [99] .

First order logic has two aspects: syntax and semantics. The syntactic aspect is
concerned with well-formed formulas admitted by the grammar of a formal
language, as well as deeper proof-theoretic issues. The semantics is concerned with
the meanings attached to the well-formed formulas and the symbols they contain.

§2. First Order Theories 5

We postpone the discussion of semantics to the next section.

A first order theory consists of an alphabet, a first order language, a set of
axioms and a set of inference rules [69] , [99]. The first order language consists of
the well-formed formulas of the theory. The axioms are a designated subset of
well-formed formulas. The axioms and rules of inference are used to derive the
theorems of the theory. We now proceed to define alphabets and first order
languages.

Definition An alphabet consists of seven classes of symbols:
(a) variables
(b) constants
(c) function symbols
(d) predicate symbols
(e) connectives
(f) quantifiers
(g) punctuation symbols.

Classes (e) to (g) are the same for every alphabet, while classes (a) to (d) vary
from alphabet to alphabet. For any alphabet, only classes (b) and (c) may be
empty. We adopt some informal notational conventions for these classes.
Variables will normally be denoted by the letters u, v, w, x, y and z (possibly
subscripted). Constants will normally be denoted by the letters a, b and c (possibly
subscripted). Function symbols of various arities > 0 will normally be denoted by
the letters f, g and h (possibly subscripted). Predicate symbols of various arities �
0 will normally be denoted by the letters p, q and r (possibly subscripted).
Occasionally, it will be convenient not to apply these conventions too rigorously.
In such a case, possible confusion will be avoided by the context. The connectives
are -, 1\, v, --+ and �. while the quantifiers are 3 and "d. Finally, the punctuation
symbols are "(" , ")" and " ," . To avoid having formulas cluttered with brackets,
we adopt the following precedence hierarchy, with the highest precedence at the
top:

-,\;/,3
v

6 Chapter 1. Pre liminaries

Next we turn to the definition of the first order language given by an alphabet.

Definition A tennis defined inductively as follows:
(a) A variable is a term.
(b) A constant is a term.
(c) If f is an n-ary function symbol and t1 , . . . ,tn are terms, then f(t 1 , . . . ,tn) is a term.

Definition A (well-fonned) formula is defined inductively as follows:
(a) If p is an n-ary predicate symbol and t1' . . . ,tn are terms, then p(t 1 , . . . ,tn) is a
formula (called an atomic fonnu/a or, more simply, an atom).

(b) If F and G are formulas, then so are (-F) , (FAG), (FvG), (F�G) and (F(--+G).
(c) If F is a formula and x is a variable, then (Vx F) and (3x F) are formulas.

It will often be convenient to write the formula (F�G) as (Gf--F) .

Definition The first order language given by an alphabet consists of the set of
all formulas constructed from the symbols of the alphabet.

Example (Vx (3y (p(x,y)�q(x)))), (-(3x (p(x,a)Aq(f(x))))) and
(Vx (p(x,g(x))f--(q(x)A(-r(x))))) are formulas. By dropping pairs of brackets when
no confusion is possible and using the above precedence convention, we can write
these formulas more simply as Vx3y (p(x,y)�q(x)), -3x (p(x,a)Aq(f(x))) and
Vx (p(x,g(x))f--q(x)A-r(x)). We will simplify formulas in this way wherever
possible.

The informal semantics of the quantifiers and connectives is as follows. - is
negation, A is conjunction (and), v is disjunction (or), � is implication and (--+ is
equivalence. Also, 3 is the existential quantifier, so that "3x" means "there exists
an x", while V is the universal quantifier, so that "Vx" means "for all x". Thus
the informal semantics of Vx (p(x,g(x)) f-- q(x)A-r(x)) is "for every x, if q(x) is
true and r(x) is false, then p(x,g(x)) is true".

Definition The scope of Vx (resp. 3x) in Vx F (resp. 3x F) is F. A bound

occurrence of a variable in a formula is an occurrence immediately following a
quantifier or an occurrence within the scope of a quantifier, which has the same
variable immediately after the quantifier. Any other occurrence of a variable is
free.

Example In the formula 3x p(x,y)Aq(x), the first two occurrences of x are

bound, while the third occurrence is free, since the scope of 3x is p(x,y). In

§2. Rrst Order Theories 7

3x (p(x,y)Aq(x)), all occurrences of x are bound, since the scope of 3x is
p(x,y)Aq(x).

Definition A closed formula is a formula with no free occurrences of any
variable.

Example 'v'y3x (p(x,y)Aq(x)) is closed. However, 3x (p(x,y)Aq(x)) is not
closed, since there is a free occurrence of the variable y.

Definition If F is a formula, then V'(F) denotes the universal closure of F,

which is the closed formula obtained by adding a universal quantifier for every
variable having a free occurrence in F. Similarly, ::l(F) denotes the existential

closure of F, which is obtained by adding an existential quantifier for every
variable having a free occurrence in F.

Example If F is p(x,y)Aq(x), then V'(F) is 'v'x'v'y (p(x,y)Aq(x)), while ::l(F) is
3x3y (p(x,y)Aq(x)).

In chapters 4 and 5, it will be useful to have available the concept of an atom

occurring positively or negatively in a formula.

Definition An atom A occurs positively in A.
If atom A occurs positively (resp. , negatively) in a formula W, then A occurs

positively (resp. , negatively) in 3x W and 'v'x W and W A V and WvV and
Wf-V.

If atom A occurs positively (resp., negatively) in a formula W, then A occurs

negatively (resp. , positively) in -W and Vf-W.

Next we introduce an important class of formulas called clauses.

Definition A literal is an atom or the negation of an atom. A positive literal is
an atom. A negative literal is the negation of an atom.

Definition A clause is a formula of the form
Vx1 . . . 'v'xs (L 1 v . . . vLm)

where each Li is a literal and x1 ' . . . ,xs are all the variables occurring in L1 v . . . vLm.

Example The following are clauses
'v'x'v'y'v'z (p(x,z)v-q(x,y)v-r(y,z))

'v'x'v'y (-p(x,y)vr(f(x,y),a))

8 Chapter 1 . Preliminaries

Because clauses are so common in logic programming, it will be convenient to
adopt a special clausal notation. Throughout, we will denote the clause

'v'x1 . . .'v'xs (Alv . . . vAk v-B1 v . . . v-Bn)
where A l ' . . . ,Ak,B 1 ' . . . ,Bn are atoms and x 1 ' . . . ,xs are all the variables occurring in
these atoms, by

Al , . . . ,Akf-B l , . . . ,Bn
Thus, in the clausal notation, all variables are assumed to be universally quantified,
the commas in the antecedent B 1 ' . . . ,Bn denote conjunction and the commas in the
consequent A 1 ' . . . ,Ak denote disjunction. These conventions are justified because

'v'x1 . . . \ixs (A1v . . . vAkv-B 1v . . . v-Bn)
is equivalent to

To illustrate the application of the various concepts in this chapter to logic
programming, we now define definite programs and definite goals.

Definition A definite program clause is a clause of the form
Af-B1, . . . ,Bn

which contains precisely one atom (viz. A) in its consequent. A is called the head

and B 1 , . . . ,Bn is called the body of the program clause.

Definition A unit clause is a clause of the form
Af-

that is, a definite program clause with an empty body.

The informal semantics of Af-B l ' . . . ,Bn is "for each assignment of each
variable, if B 1 ' . . . ,Bn are all true, then A is true". Thus, if n>O, a program clause is
conditional. On the other hand, a unit clause Af- is unconditional. Its informal
semantics is "for each assignment of each variable, A is true".

Definition A definite program is a finite set of definite program clauses.

Definition In a definite program, the set of all program clauses with the same
predicate symbol p in the head is called the definition of p.

Example The following program, called slowsort, sorts a list of non-negative
integers into a list in which the elements are in increasing order. It is a very
inefficient sorting program! However, we will find it most useful for illustrating
various aspects of the theory.

§2. Rrst Order Theories 9

In this program, non-negative integers are represented using a constant 0 and a
unary function symbol f. The intended meaning of 0 is zero and f is the successor
function. We define the powers of f by induction: f>(x)=O and rfi+1 (x)=f(rfl(x)).
Then the non-negative integer n is represented by the term rfl(O). In fact, it will
sometimes be convenient simply to denote fl(O) by n.

Lists are represented using a binary function symbol " ." (the cons function
written infix) and the constant nil representing the empty list. Thus the list
[17, 22, 6, 5] would be represented by 17.(22.(6. (5.nil))). We make the usual right
associativity convention and write this more simply as 17.22.6.5 .nil .

SLOWSORT PROORAM
sort(x,y) � sorted(y), perm(x,y)
sorted(nil) �

sorted(x.nil) �
sorted(x.y.z) � x�y. sorted(y.z)
perm(nil,nil) �

perm(x.y,u.v) � delete(u,x.y,z) , perm(z,v)
delete(x,x.y,y) �
delete(x,y.z,y.w) � delete(x,z,w)
O�x �

f(x)�f(y) � x�y
Slowsort contains definitions of five predicate symbols, sort, sorted, perm,

delete and � (written infix). The informal semantics of the definition of sort is ''if
x and y are lists, y is a permutation of x and y is sorted, then y is the sorted
version of x" . This is clearly a correct top-level description of a sorting program.
Similarly, the first clause in the definition of sorted states that " the empty list is
sorted". The intended meaning of the predicate symbol delete is that delete(x,y,z)
should hold if z is the list obtained by deleting the element x from the list y. The
above definition for delete contains obviously correct statements about the delete
predicate.

Definition A definite goal is a clause of the form
�B 1 ' . . . ,Bn

that is, a clause which has an empty consequent. Each Bi (i=l , . . . ,n) is called a
subgoa/ of the goal.

If Yl '· · ··Yr are the variables of the goal
�Bl , . . . ,Bn

10

then this clausal notation is shorthand for
'r:/yl . . . 'r:/yr (-B lv . . . v-Bn)

or, equivalently,

Example To run slowsort, we give it a goal such as
f- sort(l7 .22.6.5 .nil,y)

Chapter 1 . Preliminaries

This is understood as a request to find the list y, which is the sorted version of
17.22.6.5.nil.

Definition The empty clause, denoted o, is the clause with empty consequent
and empty antecedent. This clause is to be understood as a contradiction.

Definition A Horn clause is a clause which is either a definite program clause
or a definite goal.

§3. INTERPRETATIONS AND MODELS

The declarative semantics of a logic program is given by the usual (model­
theoretic) semantics of formulas in first order logic . This section discusses
interpretations and models, concentrating particularly on the important class of
Herbrand interpretations.

Before we give the main definitions, some motivation is appropriate. In order
to be able to discuss the truth or falsity of a formula, it is necessary to attach some
meaning to each of the symbols in the formula first. The various quantifiers and
connectives have fixed meanings, but the meanings attached to the constants,
function symbols and predicate symbols can vary. An interpretation simply
consists of some domain of discourse over which the variables range, the
assignment to each constant of an element of the domain, the assignment to each
function symbol of a mapping on the domain and the assignment to each predicate
symbol of a relation on the domain. An interpretation thus specifies a meaning for
each symbol in the formula. We are particularly interested in interpretations for
which the formula expresses a true statement in that interpretation. Such an
interpretation is called a model of the formula. Normally there is some
distinguished interpretation, called the intended interpretation, which gives the
principal meaning of the symbols. Naturally, the intended interpretation of a

§3. Interpretations and Models 11

formula should be a model of the formula.

First order logic provides methods for deducing the theorems of a theory.
These can be characterised (by Gl:idel ' s completeness theorem [69] , [99]) as the
formulas which are logical consequences of the axioms of the theory, that is, they
are true in every interpretation which is a model of each of the axioms of the
theory. In particular, each theorem is true in the intended interpretation of the
theory. The logic programming systems in which we are interested use the
resolution rule as the only inference rule.

Suppose we want to prove that the formula
3y1 . . . 3yr (B 1 A . . . ABn)

is a logical consequence of a program P. Now resolution theorem provers are
refutation systems. That is, the negation of the formula to be proved is added to
the axioms and a contradiction is derived. If we negate the formula we want to
prove, we obtain the goal

f-B l , . . . ,Bn
Working top-down from this goal, the system derives successive goals. If the
empty clause is eventually derived, then a contradiction has been obtained and later
results assure us that

3y1 . . . 3yr (B 1A . . . ABn)
is indeed a logical consequence of P.

From a theorem proving point of view, the only interest is to demonstrate
logical consequence. However, from a programming point of view, we are much
more interested in the bindings that are made for the variables y l '"' 'y r' because
these give us the output from the running of the program. In fact, the ideal view
of a logic programming system is that it is a black box for computing bindings and
our only interest is in its input-output behaviour. The internal workings of the
system should be invisible to the programmer. Unfortunately, this situation is not
true, to various extents, with current PROLOO systems. Many programs can only
be understood in a procedural (i.e. operational) manner, because of the way they
use cuts and other non-logical features.

Returning to the slowsort program, from a theorem proving point of view, we
can regard the goal f-sort(l7.22.6.5 .nil,y) as a request to prove that
3y sort(17 .22.6.5.nil,y) is a logical consequence of the program. In fact, we are
much more interested that the proof is constructive and provides us with a specific

12 Chapter 1 . Preliminaries

y which makes sort(17.22.6.5.nil,y) true in the intended interpretation.

We now give the definitions of pre-interpretation, interpretation and model.

Definition A pre-interpretation of a first order language L consists of the
following:
(a) A non-empty set D, called the domain of the pre-interpretation.
(b) For each constant in L, the assignment of an element in D.
(c) For each n-ary function symbol in L, the assignment of a mapping from Dn to
D.

Definition An interpretation I of a first order language L consists of a pre­
interpretation J with domain D of L together with the following:
For each n-ary predicate symbol in L, the assignment of a mapping from Dn into
(true, false } (or, equivalently, a relation on Dn).

We say I is based on J.

Definition Let J be a pre-interpretation of a first order language L. A variable

assignment (wrt J) is an assignment to each variable in L of an element in the
domain of J.

Definition Let J be a pre-interpretation with domain D of a first order
language L and let V be a variable assignment. The term assignment (wrt J and V)
of the terms in L is defined as follows :
(a) Each variable is given its assignment according to V.

(b) Each constant is given its assignment according to J.

(c) If t] , . . . ,t� are the term assignments of t1 , . . . ,tn and f' is the assignment of the
n-ary function symbol f, then f'(tl , . . . ,t�)E D is the term assignment of f(tl ' . . . ,tn) .

Definition Let J be a pre-interpretation of a first order language L, V a
variable assignment wrt J, and A an atom. Suppose A is p(t1 , . . . ,tn) and d1 , . . . ,dn in
the domain of J are the term assignments of t1 , . . . ,tn wrt J and V. We call
AJ,V

= p(d1 ' . . . ,dn) the]-instance of A wrt V. Let [A]
J = (A

J,V : V is a variable
assignment wrt J } . We call each element of [A]J a]-instance of A. We also call
each p(d1 ' . . . ,dn) a]-instance.

Definition Let I be an interpretation with domain D of a first order language L
and let V be a variable assignment. Then a formula in L can be given a truth

value, true or false, (wrt I and V) as follows:

§3. Interpretations and Models 13

(a) If the formula is an atom p(t1 , . . . ,tn) , then the truth value is obtained by
calculating the value of p'(t'l' . . . ,t�), where p' is the mapping assigned to p by I and
t'1 , . . . ,t� are the term assignments of t 1 , . . . ,tn wrt I and V.

(b) If the formula has the form -F, FAG, FvG, F�G or F�G, then the truth
value of the formula is given by the following table:

F G -F FAG FvG F�G F�G

true true false true true true true
true false false false true false false
false true true false true true false
false false true false false true true

(c) If the formula ha3 the form 3x F, then the truth value of the formula is true
if there exists de D such that F has truth value true wrt I and V(x/d), where V(x/d)
is V except that x is assigned d; otherwise, its truth value is false.

(d) If the formula has the form Vx F, then the truth value of the formula is
true if, for all de D, we have that F has truth value true wrt I and V(x/d);
otherwise, its truth value is false.

Clearly the truth value of a closed formula does not depend on the variable
assignment. Consequently, we can speak unambiguously of the truth value of a
closed formula wrt to an interpretation. If the truth value of a closed formula wrt
to an interpretation is true (resp., false), we say the formula is true (resp,. false)
wrt to the interpretation.

Definition Let I be an interpretation for a first order language L and let W be
a formula in L.

We say W is satisfiable in I if 3(W) is true wrt I.
We say W is valid in I if V(W) is true wrt I.
We say W is unsatisfiab/e in I if 3(W) is false wrt I.
We say W is nonvalid in I if V(W) is false wrt I.

Definition Let I be an interpretation of a first order language L and let F be a
closed formula of L. Then I is a model for F if F is true wrt I.

Example Consider the formula Vx3y p(x,y) and the following interpretation I.
Let the domain D be the non-negative integers and let p be assigned the relation <.
Then I is a model of the formula, as is easily seen. In I, the formula expresses the
true statement that "for every non-negative integer, there exists a non-negative

14 Chapter 1 . Preliminaries

integer which is strictly larger than it" . On the other hand, I is not a model of the
formula 3y\ix p(x,y).

The axioms of a first order theory are a designated subset of closed formulas
in the language of the theory. For example, the first order theories in which we are
most interested have the clauses of a program as their axioms.

Definition Let T be a first order theory and let L be the language of T. A
model for T is an interpretation for L which is a model for each axiom of T.

If T has a model, we say T is consistent.

The concept of a model of a closed formula can easily be extended to a model
of a set of closed formulas.

Definition Let S be a set of closed formulas of a first order language L and let
I be an interpretation of L. We say I is a model for S if I is a model for each
formula of S .

Note that, if S = { F 1 , . . . ,F n } is a finite set of closed formulas, then I i s a model
for S iff I is a model for F I"·· .AF n.

Definition Let S be a set of closed formulas of a first order language L.
We say S is satisfiable if L has an interpretation which is a model for S.
We say S is valid if every interpretation of L is a model for S .
We say S i s unsatisfiable i f no interpretation of L is a model for S .
We say S is nonvalid i f L has an interpretation which i s not a model for S .

Now we can give the definition of the important concept of logical
consequence.

Definition Let S be a set of closed formulas and F be a closed formula of a
first order language L. We say F is a logical consequence of S if, for every
interpretation I of L, I is a model for S implies that I is a model for F.

Note that if S = {F 1'" .. ,F n } is a finite set of closed formulas, then F is a
logical consequence of S iff F 1/\ . .. AF n �F is valid.

Proposition 3.1 Let S be a set of closed formulas and F be a closed formula
of a first order language L. Then F is a logical consequence of S iff S u { -F} is
unsatisfiable.

§3. Interpretations and Models 15

Proof Suppose that F is a logical consequence of S. Let I be an interpretation
of L and suppose I is a model for S . Then I is also a model for F. Hence I is not a
model for S u { -F} . Thus S u { -F } is unsatisfiable.

Conversely, suppose S u { -F} is unsatisfiable. Let I be any interpretation of
L. Suppose I is a model for S. Since S u { -F} is unsatisfiable, I cannot be a
model for -F. Thus I is a model for F and so F is a logical consequence of S. I

Example Let S = {p(a), V'x (p(x)-+q(x)) } and F be q(a). We show that F is a
logical consequence of S . Let I be any model for S. Thus p(a) is true wrt I. Since
V'x(p(x)-+q(x)) is true wrt I, so is p(a)-+q(a) . Hence q(a) is true wrt I.

Applying these definitions to programs, we see that when we give a goal G to
the system, with program P loaded, we are asking the system to show that the set
of clauses P u { G } is unsatisfiable. In fact, if G is the goal f-B l ' . . . ,Bn with
variables y l' . . . ,y r' then proposition 3. 1 states that showing P u { G } unsatisfiable is
exactly the same as showing that 3y1 " . . 3yr (B1A •.• /\Bn) is a logical consequence of
P.

Thus the basic problem is that of determining the unsatisfiability, or otherwise,
of P u { G } , where P is a program and G is a goal. According to the definition,
this implies showing every interpretation of P v { G } is not a model. Needless to
say, this seems to be a formidable problem. However, it turns out that there is a
much smaller and more convenient class of interpretations, which are all that need
to be investigated to show unsatisfiability. These are the so-called Herbrand
interpretations, which we now proceed to study.

Definition A ground tenn is a term not containing variables. Similarly, a
ground atom is an atom not containing variables.

Definition Let L be a first order language. The Herbrand universe UL for L
is the set of all ground terms, which can be formed out of the constants and
function symbols appearing in L. (In the case that L has no constants, we add
some constant, say, a, to form ground terms.)

Example Consider the program
p(x) f- q(f(x),g(x))
r(y) f.-

which has an underlying first order language L based on the predicate symbols p, q
and r and the function symbols f and g. Then the Herbrand universe for L is

16 Chapter 1 . Preliminaries

{a, f(a), g(a), f(f(a)), f(g(a)), g(f(a)), g(g(a)), . . . } .

Definition Let L be a frrst order language. The Herbrand base BL for L is the
set of all ground atoms which can be formed by using predicate symbols from L
with ground terms from the Herbrand universe as arguments.

Example For the previous example, the Herbrand base for L is
{p(a), q(a,a), r(a), p(f(a)), p(g(a)), q(a,f(a)), q(f(a),a), . . . } .

Definition Let L be a flrst order language. The Herbrand pre-interpretation

for L is the pre-interpretation given by the following:
(a) The domain of the pre-interpretation is the Herbrand universe UL.
(b) Constants in L are assigned themselves in UL.
(c) If f is an n-ary function symbol in L, then the mapping from (UL)n into UL
defined by (t1 , . . . ,tn) --+ f(t1 , . . . ,tn) is assigned to f.

An Herbrand interpretation for L is any interpretation based on the Herbrand
pre-interpretation for L.

Since, for Herbrand interpretations, the assignment to constants and function
symbols is flxed, it is possible to identify an Herbrand interpretation with a subset
of the Herbrand base. For any Herbrand interpretation, the corresponding subset of
the Herbrand base is the set of all ground atoms which are true wrt the
interpretation. Conversely, given an arbitrary subset of the Herbrand base, there is
a corresponding Herbrand interpretation defined by specifying that the mapping
assigned to a predicate symbol maps some arguments to "true" precisely when the
atom made up of the predicate symbol with the same arguments is in the given
subset. This identification of an Herbrand interpretation as a subset of the
Herbrand base will be made throughout. More generally, each interpretation based
on an arbitrary pre-interpretation J can be identified with a subset of]-instances, in
a similar way.

Definition Let L be a first order language and S a set of closed formulas of L.
An Herbrand model for S is an Herbrand interpretation for L which is a model for
s.

It will often be convenient to refer, by abuse of language, to an interpretation
of a set S of formulas rather than the underlying first order language from which
the formulas come. Normally, we assume that the underlying first order language
is defined by the constants, function symbols and predicate symbols appearing in

§3. Interpretations and Models 17

S. With this understanding, we can now refer to the Herbrand universe Us and
Herbrand base Bs of S and also refer to Herbrand interpretations of S as subsets of
the Herbrand base of S. In particular, the set of formulas will often be a program
P, so that we will refer to the Herbrand universe Up and Herbrand base Bp of P.

Example We now illustrate these concepts with the slowsort program. This
program can be regarded as the set of axioms of a ftrst order theory. The language
of this theory is given by the constants 0 and nil, function symbols f and " ." and
predicate symbols sort, perm, sorted, delete and ::;; . The only inference rule is the
resolution rule. The intended interpretation is an Herbrand interpretation. An atom
sort(l,m) is in the intended interpretation iff each of 1 and m is either nil or is a list
of terms of the form rc(O) and m is the sorted version of 1. The other predicate
symbols have the obvious assignments. The intended interpretation is indeed a
model for the program and hence a model for the associated theory.

Next we show that in order to prove unsatisftability of a set of clauses, it
suffices to consider only Herbrand interpretations.

Proposition 3.2 Let S be a set of clauses and suppose S has a model. Then S
has an Herbrand model.

Proof Let I be an interpretation of S. We define an Herbrand interpretation I'

of S as follows:
I' = {p(t1 , . . . ,tn)eB8 : p(tl ' . . . ,tn) is true wrt I } .

It i s straightforward to show that if I i s a model, then I ' i s also a model. I

Proposition 3.3 Let S be a set of clauses. Then S is unsatisfiable iff S has no
Herbrand models.

Proof If S is satisfiable, then proposition 3.2 shows that it has an Herbrand
model. I

It is important to understand that neither proposition 3.2 nor 3.3 holds if we
drop the restriction that S be a set of clauses. In other words, if S is a set of
arbitrary closed formulas, it is not generally possible to show S is unsatisfiable by
restricting attention to Herbrand interpretations.

Example Let S be {p(a), 3x -p(x) } . Note that the second formula in S is not a
clause. We claim that S has a model. It suffices to let D be the set {0, 1 } , assign 0
to a and assign to p the mapping which maps 0 to true and 1 to false. Clearly this

1 8 Chapter 1 . Preliminaries

gives a model for S.
However, S does not have an Herbrand model. The only Herbrand

interpretations for S are 0 (the empty set) and { p(a) } . But neither of these is a
model for S .

The point is worth emphasising. Much of the theory of logic programming is
concerned only with clauses and for this Herbrand interpretations suffice.
However, non-clausal formulas do arise naturally (particularly in chapters 3, 4 and
5). For this part of the theory, we will be forced to consider arbitrary
interpretations.

There are various normal forms for formulas. One, which we will find useful,
is prenex conjunctive normal form.

Definition A formula is in prenex conjunctive normal form if it has the form
Qxl . . . Qxk ((Ll lv . .. vLlml

)/\ . . . 1\(Ln l v . . . vLnmn
))

where each Q is an existential or universal quantifier and each L . . is a literal. lJ
The next proposition shows that each formula has an ' 'equivalent' ' formula,

which is in prenex conjunctive normal form.

Definition We say two formulas W and V are logically equivalent if
V (W H V) is valid.

In other words, two formulas are logically equivalent if they have the same
truth values wrt any interpretation and variable assignment.

Proposition 3.4 For each formula W, there is a formula V, logically equivalent
to W, such that V is in prenex conjunctive normal form.

Proof The proof is left as an exercise. (See problem 5.) I

When we discuss deductive database systems in chapter 5, we will base the
theoretical developments on a typed first order theory. The intuitive idea of a
typed theory (also called a many-sorted theory [33]) is that there are several sorts
of variables, each ranging over a different domain. This can be thought of as a
generalisation of the theories we have considered so far which only allow a single
domain. For example, in a database context, there may be several domains of
interest, such as the domain of customer names, the domain of supplier cities, and
so on. For semantic integrity reasons, it is important to allow only queries and

§3. Interpretations and Models 1 9

database clauses which respect the typing restrictions.

In addition to the components of a frrst order theory, a typed frrst order theory
has a finite set, whose elements are called types. Types are denoted by Greek
letters, such as 't and o. The alphabet of the typed frrst order theory contains
variables, constants, function symbols, predicate symbols and quantifiers, each of
which is typed. Variables and constants have types such as 't. Predicate symbols
have types of the form t 1 x . . . xtn and function symbols have types of the form
t1 x . . . xtn �t. If f has type t1x . . . xt

n �t. we say f has range type t. For each type
t, there is a universal quantifier V t and an existential quantifier 3t.

Definition A term of type t is defined inductively as follows:
(a) A variable of type t is a term of type 't.
(b) A constant of type t is a term of type t.
(c) If f is an n-ary function symbol of type 1:1x . . . x'tn �t and ti is a term of type 'ti
(i=l , . . . ,n), then f(t1 , . . . ,tn) is a term of type t.

Definition A typed (well{ormed) formula is defined inductively as follows:
(a) If p is an n-ary predicate symbol of type t1 x . . . X'tn and ti is a term of type 'ti
(i=l , . . . ,n), then p(t1 ' . . . ,tn) is a typed atomic formula.
(b) If F and G are typed formulas, then so are -F, FAG, FvG, F�G and F�G.
(c) If F is a typed formula and x is a variable of type t, then V tx F and 3'tx F are
typed formulas.

Definition The typed first order language given by an alphabet consists of the
set of all typed formulas constructed from the symbols of the alphabet.

We will find it more convenient to use the notation Vx/t F in place of V 'tx F.
Similarly, we will use the notation 3x/'t F in place of 3'tx F. We let V'(F) denote
the typed universal closure of the formula F and :l(F) denote the typed existential
closure. These are obtained by prefixing F with quantifiers of appropriate types.

Definition A pre-interpretation of a typed first order language L consists of
the following:
(a) For each type 't, a non-empty set D 't , called the domain of type 't of the pre­
interpretation.
(b) For each constant of type t in L, the assignment of an element in D't .
(c) For each n-ary function symbol of type t1 x . . . xtn �'t in L, the assignment of a
mapping from Dt x . . . xDt to Dt.

1 n

20 Chapter 1 . Prel iminaries

Definition An interpretation I of a typed first order language L consists of a
pre-interpretation J with domains (D't } of L together with the following:
For each n-ary predicate symbol of type 'tl x . . . X'tn in L, the assignment of a
mapping from D't x . . . xD't into (true, false } (or, equivalently, a relation on

I n D't x . . . xD't) .
I n

We say I is based on J.

It is straightforward to define the concepts of variable assignment, term
assignment, truth value, model, logical consequence, and so on, for a typed first
order theory. We leave the details to the reader. Generally speaking, the
development of the theory of first order logic can be carried through with only the
most trivial changes for typed first order logic. We shall exploit this fact in
chapter 5, where we shall use typed versions of results from earlier chapters.

The other fact that we will need about typed logics is that there is a
transformation of typed formulas into (type-free) formulas, which shows that the
apparent extra generality provided by typed logics is illusory [33] . This
transformation allows one to reduce the proof of a theorem in a typed logic to a
corresponding theorem in a (type-free) logic. We shall use this transformation
process as one stage of the query evaluation process for deductive database
systems in chapter 5 .

§4. UNIFICATION

Earlier we stated that the main purpose of a logic programming system is to
compute bindings. These bindings are computed by unification. In this section, we
present a detailed discussion of unifiers and the unification algorithm.

Definition A substitution e is a finite set of the form (v 1/t 1 , . . . ,vJtn } , where
each vi is a variable, each ti is a term distinct from vi and the variables v 1 ' . . . ,vn
are distinct. Each element v/ti is called a binding for vi. e is called a ground

substitution if the ti are all ground terms. e is called a variable-pure substitution if
the ti are all variables.

Definition An expression is either a term, a literal or a conjunction or
disjunction of literals. A simple expression is either a term or an atom.

§4. Unification 21

Definition Let e = { v 1tt 1 , . . . ,v itn } be a substitution and E be an expression.
Then Ee, the instance of E by e, is the expression obtained from E by
simultaneously replacing each occurrence of the variable vi in E by the term ti
(i=l , . . . ,n). If Ee is ground, then Ee is called a ground instance of E.

Example Let E = p(x,y,f(a)) and e = {x/b, y/x } . Then Ee = p(b,x,f(a)) .

If S = { E1 ' . . . ,En } is a finite set of expressions and e is a substitution, then Se
denotes the set { E1e, . . . ,Ene } .

Definition Le t e = { u1/sl ' . . . ,um/sm } and a = {v1tt1 , . . . ,vJtn } be substitutions.
Then the composition ea of e and (J is the substitution obtained from the set

{ u 1ts 1a, . . . ,unfsma' v 1tt 1 , . . . ,vJtn }
by deleting any binding u ./s .a for which u.=s.a and deleting any binding v.ft. for I 1 1 1 J J
which vje { u 1 ' . . . ,um} .

Example Let e = {x/f(y), y/z } and a = { x/a, y/b, z/y } . Then ea = {x/f(b),
z/y} .

Definition The substitution given by the empty set is called the identity

substitution.

We denote the identity substitution by e. Note that EE = E, for all expressions
E. The elementary properties of substitutions are contained in the following
proposition.

Proposition 4.1 Let e, (J and '(be substitutions. Then
(a) ee = ee = e.
(b) (Ee)a = E(ea), for all expressions E.
(c) (9a)y = e(<J'f).

Proof (a) This follows immediately from the definition of e.
(b) Clearly it suffices to prove the result when E is a variable, say, x. Let

e = { ul/s l ' . . . ,unfsm} and (J = {vl/tl '"' 'vJtn } . If xi {ul ' . . . ,um} u {vl ' . . . ,vn } , then
(xe)a = x = x(ea). If xe { u 1 , .. . ,urn} , say x=ui' then (xe)a = sia = x(Sa). If
xe { vl ' . . . ,vn }\{ u1 , . . . ,um} , say x=vj , then (xe)a = tj = x(ecr).

(c) Clearly it suffices to show that if x is a variable, then x((ecr)y) = x(e(<J'()) .
In fact, x((ecr)y) = (x(ea))y = ((xe)cr)y = (xe)(<J'() = x(e(<J'()), by (b). I

22 Chapter 1 . Preliminaries

Proposition 4. 1 (a) shows that e acts as a left and right identity for composition.
The definition of composition of substitutions was made precisely to obtain (b).
Note that (c) shows that we can omit parentheses when writing a composition
el . . . en of substitutions.

Example Let 8 = {x/f(y), y/z } and cr= {x/a, z/b} . Then Scr = { x/f(y), y/b, z/b } .
Let E = p(x,y,g(z)). Then E S = p(f(y),z,g(z)) and (ES)cr = p(f(y),b,g(b)) . Also
E(Scr) = p(f(y),b,g(b)) = (ES)cr.

Definition Let E and F be expressions. We say E and F are variants if there
exist substitutions e and cr such that E=FS and F=Ecr. We also say E is a variant
of F or F is a variant of E.

Example p(f(x,y),g(z),a) is a variant of p(f(y,x),g(u),a). However, p(x,x) is not
a variant of p(x,y).

Definition Let E be an expression and V be the set of variables occurring in E.
A renaming substitution for E is a variable-pure substitution { x 1/y1 , . . . ,xn/yn } such
that { x1 ' . . . ,xn } � V, the yi are distinct and (V \ { x1 ' . . . ,xn }) n { y 1 , . . . ,yn } = 0.

Proposition 4.2 Let E and F be expressions which are variants. Then there
exist substitutions 8 and cr such that E=FS and F=Ecr, where 8 is a renaming
substitution for F and cr is a renaming substitution for E.

Proof Since E and F are variants, there exist substitutions e 1 and cr1 such that
E=FS 1 and F=Ecr 1 . Let V be the set of variables occurring in E and let cr be the
substitution obtained from cr1 by deleting all bindings of the form x/t, where xi/:.V.
Clearly F=Ecr. Furthermore, E=F81=Ecr81 and it follows that cr must be a
renaming substitution for E. •

We will be particularly interested in substitutions which unify a set of
expressions, that is, make each expression in the set syntactically identical. The
concept of unification goes back to Herbrand [44] in 1930. It was rediscovered in
1963 by Robinson [88] and exploited in the resolution rule, where it was used to
reduce the combinatorial explosion of the search space. We restrict attention to
(non-empty) finite sets of simple expressions, which is all that we require. Recall
that a simple expression is a term or an atom.

Definition Let S be a finite set of simple expressions. A substitution e is
called a unifier for S if SS is a singleton. A unifier 8 for S is called a most

§4. Unification 23

general unifier (mgu) for S if, for each unifier cr of S, there exists a substitution "(
such that cr=&y.

Example (p(f(x),a), p(y,f(w)) } is not unifiable, because the second arguments
cannot be unified.

Example (p(f(x),z), p(y,a) } is unifiable, since cr = {y/f(a), x/a, z/a } is a
unifier. A most general unifier is e = { y/f(x), z/a} . Note that cr = 9{x/a} .

It follows from the definition of an mgu that if e and cr are both mgu's of
(E1 , . . . ,En } , then E1e is a variant of E1cr. Proposition 4.2 then shows that E 1cr can
be obtained from E1 9 simply by renaming variables. In fact, problem 7 shows that
mgu's are unique modulo renaming.

We next present an algorithm, called the unification algorithm, which takes a
finite set of simple expressions as input and outputs an mgu if the set is unifiable.
Otherwise, it reports the fact that the set is not unifiable. The intuitive idea behind
the unification algorithm is as follows. Suppose we want to unify two simple
expressions. Imagine two pointers, one at the leftmost symbol of each of the two
expressions. The pointers are moved together to the right until they point to
different symbols. An attempt is made to unify the two subexpressions starting
with these symbols by making a substitution. If the attempt is successful, the
process is continued with the two expressions obtained by applying the
substitution. If not, the expressions are not unifiable. If the pointers eventually
reach the ends of the two expressions, the composition of all the substitutions
made is an mgu of the two expressions.

Definition Let S be a finite set of simple expressions. The disagreement set of
S is- defined as follows. Locate the leftmost symbol position at which not all
expressions in S have the same symbol and extract from each expression in S the
subexpression beginning at that symbol position. The set of all such subexpressions
is the disagreement set.

Example Let S = (p(f(x),h(y),a) , p(f(x),z,a), p(f(x),h(y),b) } . Then the
disagreement set is (h(y), z } .

We now present the unification algorithm. In this algorithm, S denotes a finite
set of simple expressions.

24

UNIFICATION ALGORITHM
1 . Put k=O and a0=e.

Chapter 1 . Preliminaries

2 .. If Sak is a singleton, then stop; ak is an mgu of S. Otherwise, find the
disagreement set Dk of Sak.

3. If there exist v and t in Dk such that v is a variable that does not occur in t,
then put ak+l = ak {v/t } , increment k and go to 2. Otherwise, stop; S is not
unifiable.

The unification algorithm as presented above is non-deterministic to the extent
that there may be several choices for v and t in step 3. However, as we remarked
earlier, the application of any two mgu's produced by the algorithm leads to
expressions which differ only by a change of variable names. It is clear that the
algorithm terminates because S contains only finitely many variables and each
application of step 3 eliminates one variable.

Example Let S = (p(f(a),g(x)), p(y,y) } .
(a) a0 = E.
(b) D0 = (f(a), y } , a1 = { y/f(a) } and Sa1 = (p(f(a),g(x)), p(f(a),f(a)) } .
(c) D1 = { g(x), f(a) } . Thus S is not unifiable.

Example Let S = {p(a,x,h(g(z))), p(z,h(y),h(y)) } .

(a) a0 = E.
(b) D0 = (a, z } , a1 = { 7/a} and Sa1 = (p(a,x,h(g(a))) , p(a,h(y) ,h(y)) } .
(c) D1 = { x, h(y) } , a2 = { z/a, x/h(y) } and Sa2 = {p(a,h(y) ,h(g(a))), p(a,h(y),h(y)) } .
(d) D2 = (y, g(a) } , a3 = { z/a, x/h(g(a)), y/g(a) } and sa3 = { p(a,h(g(a)),h(g(a))) } .
Thus S is unifiable and a3 is an mgu.

In step 3 of the unification algorithm, a check is made to see whether v occurs
in t. This is called the occur check. The next example illustrates the use of the
occur check.

Example Let S = (p(x,x), p(y,f(y)) } .
(a) aO = e.

(b) D0 = (x, y } , a1 = {x/y } and sa1 = { p(y,y), p(y,f(y)) } .
(c) D1 = { y, f(y) } . Since y occurs in f(y), S is not unifiable.

Next we prove that the unification algorithm does indeed find an mgu of a
unifiable set of simple expressions. This result first appeared in [88] .

§4. U nification 25

Theorem 4.3 (Unification Theorem)
Let S be a finite set of simple expressions. If S is unifiable, then the

unification algorithm terminates and gives an mgu for S . If S is not unifiable, then
the unification algorithm terminates and reports this fact.

Proof We have already noted that the unification algorithm always terminates.
It suffices to show that if S is unifiable, then the algorithm finds an mgu. In fact,
if S is not unifiable, then the algorithm cannot terminate at step 2 and, since it
does terminate, it must terminate at step 3. Thus it does report the fact that S is
not unifiable.

Assume then that S is unifiable and let 9 be any unifier for S. We prove first
that, for �0. if ok is the substitution given in the kth iteration of the algorithm,
then there exists a substitution 'Yk such that e = okyk.

Suppose first that k=O. Then we can put 'Yo = 9, since 9 = ee. Next suppose,
for some �0, there exists 'Yk such that e = ok 'Yk· If Sok is a singleton, then the
algorithm terminates at step 2. Hence we can confine attention to the case when
Sok is not a singleton. We want to show that the algorithm will produce a further
substitution ok+1 and that there exists a substitution 'Yk+l such that e = ok+1'Yk+1 .

Since Sok is not a singleton, the algorithm will determine the disagreement set
Dk of Sok and go to step 3. Since 9 = ok 'Yk and 9 unifies S, it follows that 'Yk
unifies Dk. Thus Dk must contain a variable, say, v. Let t be any other term in Dk.
Then v cannot occur in t because vyk = tyk. We can suppose that {v/t } is indeed
the substitution chosen at step 3. Thus ok+1 = ok{v/t } .

We now define 'Yk+l = yk\{v/vyk} . If 'Yk has a binding for v, then

'Yk = { v/vyk} u 'Yk+l
= {v/tyk } u 'Yk+1 (since vyk = tyk)
= { v/tyk+ 1 } u 'Yk+ 1 (since v does not occur in t)
= { v/t }yk+ 1 (by the definition of composition).

If 'Yk does not have a binding for v, then 'Yk+1 = 'Yk' each element of Dk is a
variable and 'Yk = { v/t }'Yk+1 . Thus e = okyk = ok{v/t }yk+1 = ok+1'Yk+1 ' as
required.

Now we can complete the proof. If S is unifiable, then we have shown that the
algorithm must terminate at step 2 and, if it terminates at the kth iteration, then
e = ok 'Yk' for some 'Yk· Since ok is a unifier of S , this equality shows that it is
indeed an mgu for S. I

26 Chapter 1. Preliminaries

The unification algorithm which we have presented can be very inefficient. In
the worst case, its running time can be an exponential function of the length of the
input. Consider the following example, which is taken from [9] . Let
S = {p(x 1 ' . . . ,xn) , p(f(x0,x0), . . . ,f(xn-l 'xn-l)) } . Then a1 = { x1/f(x0,x0) } and sa1 =
{p(f(x0,x0) ,x2, . . . ,xn), p(f(x0,x0),f(f(x0,x0),f(x0,x0)),f(x2,x2) , . . . ,f(xn-l ,xn_1)) } . The

next substitution is a2 = { x1/f(x0,x0), xt'f(f(x0,x0), f(x0,x0)) } , and so on. Note

that the second atom in San has 2k -1 occurrences of f in its kth argument
(l��n). In particular, its last argument has 2n-1 occurrences of f. Now recall
that step 3 of the unification algorithm has the occur check. The performance of
this check just for the last substitution will thus require exponential time. In fact,
printing an also requires exponential time. This example shows that no unification
algorithm which explicitly presents the (final) unifier can be linear.

Much more efficient unification algorithms than the one presented above are
known. For example, [67] and [80] give linear algorithms (see also [68]) . In [80] ,
linearity is achieved by the use of a carefully chosen data structure for representing
expressions and avoiding the explicit presentation of the unifier, which is instead
presented as a composition of constituent substitutions. Despite its linearity, this
algorithm is not employed in PROLOG systems. Instead, most use essentially the
unification algorithm presented earlier in this section, but with the expensive occur
check omitted! From a theoretical viewpoint, this is a disaster because it destroys
the soundness of SLD-resolution. We discuss this matter further in §7.

§5. FIXPOINTS

Associated with every definite program is a monotonic mapping which plays . a
very important role in the theory. This section introduces the requisite concepts and
results concerning monotonic mappings and their fixpoints.

Definition Let S be a set. A relation R on S is a subset of SxS .

We usually use infix notation writing (x,y)eR as xRy.

Definition A relation R on a set S is a partial order if the following
conditions are satisfied:
(a) xRx, for all xeS .
(b) xRy and yRx imply x=y, for al l x,yE S.

§5. Fixpoints 27

(c) xRy and yRz imply xRz, for all x,y,ze S .

Example Let S be a set and 2S be the set of all subsets of S. Then set
inclusion, k:, is easily seen to be a partial order on 2S.

We adopt the standard notation and use � to denote a partial order. Thus we
have (a) x�x. (b) x�y and y�x imply x=y and (c) x�y and y�z imply x�z. for all
x,y,zeS .

Definition Let S be a set with a partial order �- Then ae S i s an upper bound

of a subset X of S if x�a, for all xeX. Similarly, be S is a lower bound of X if
b�x, for all xeX.

Definition Let S be a set with a partial order �- Then ae S is the least upper

bound of a subset X of S if a is an upper bound of X and, for all upper bounds a'

of X, we have �a' . Similarly, be S is the greatest lower bound of a subset X of S
if b is a lower bound of X and, for all lower bounds b' of X, we have b'�b.

The least upper bound of X is unique, if it exists, and is denoted by lub(X).
Similarly, the greatest lower bound of X is unique, if it exists, and is denoted by
glb(X).

Definition A partially ordered set L is a complete lattice if lub(X) and glb(X)
exist for every subset X of L.

We let T denote the top element lub(L) and .l denote the bottom element

glb(L) of the complete lattice L.

Example In the previous example, 2S under k: is a complete lattice. In fact,
the least upper bound of a collection of subsets of S is their union and the greatest
lower bound is their intersection. The top element is S and the bottom element is
0.

Definition Let L be a complete lattice and T : L---+L be a mapping. We say T
is monotonic if T(x)�T(y) , whenever x�y.

Definition Let L be a complete lattice and X k: L. We say X is directed if
every fmite subset of X has an upper bound in X.

Definition Let L be a complete lattice and T : L---+ L be a mapping. We say T
is continuous if TOub(X)) = lub(T(X)), for every directed subset X of L.

28 Chapter 1 . Preliminaries

By taking X = {x,y } , we see that every continuous mapping is monotonic.
However, the converse is not true. (See problem 12.)

Our interest in these definitions arises from the fact that for a definite program
P, the collection of all Herbrand interpretations forms a complete lattice in a
natural way and also because there is a continuous mapping associated with P
defined on this lattice. Next we study fixpoints of mappings defined on lattices.

Definition Let L be a complete lattice and T : L-+L be a mapping. We say
aeL is the least fiXfJoint of T if a is a fixpoint (that is, T(a)=a) and for all fixpoints
b of T, we have �b. Similarly, we define greatest f1Xpoint.

The next result is a weak form of a theorem due to Tarski [103] , which
generalises an earlier result due to Knaster and Tarski. For an interesting account
of the history of propositions 5. 1 , 5.3 and 5.4, see [55] .

Proposition 5.1 Let L be a complete lattice and T : L-+L be monotonic. Then
T has a least fixpoint, lfp(T), and a greatest fixpoint, gfp(T). Furthermore, lfp(T) =
glb{x : T(x)=x } = glb {x : T(x)�x } and gfp(T) = lub{ x : T(x)=x } = lub {x : x�T(x) } .

Proof Put G = { x : T(x)�x } and g = glb(G). We show that ge G. Now g�x,
for all xe G, so that by the monotonicity of T, we have T(g)�T(x), for all xeG.
Thus T(g)�x, for all xeG, and so T(g)�g, by the definition of glb. Hence geG.

Next we show that g is a fixpoint of T. It remains to show that g�T(g). Now
T(g)�g implies T(T(g))�T(g) implies T(g)eG. Hence g�T(g), so that g is a
fixpoint of T.

Now put g' = glb{x : T(x)=x } . Since g is a fixpoint, we have g'�g. On the
other hand, { x : T(x)=x } � {x : T(x)�x } and so g�g'. Thus we have g=g' and the
proof is complete for lfp(T).

The proof for gfp(T) is similar. •

Proposition 5.2 Let L be a complete lattice and T : L-+L be monotonic.
Suppose aeL and �T(a). Then there exists a fixpoint a' of T such that �a'.
Similarly, if beL and T(b)�b, then there exists a fixpoint b' of T such that b'�b.

Proof By proposition 5. 1 , it suffices to put a'=gfp(T) and b'=lfp(T). •

We will also require the concept of ordinal powers of T. First we recall some
elementary properties of ordinal numbers, which we will refer to more simply as
ordinals. Intuitively, the ordinals are what we use to count with. The first ordinal 0

§5. Fixpoints 29

is defined to be 0. Then we define 1 = { 0 } = { 0 } , 2 = {0, { 0 } } = {0, 1 } ,
3 = { 0, { 0 } , { 0, { 0 } } } = {0, 1 , 2 } , and so on. These are the finite ordinals, the
non-negative integers. The frrst infinite ordinal is ro = { 0, 1 , 2, . . . } , the set of all
non-negative integers. We adopt the convention of denoting finite ordinals by
roman letters n, m, . . . , while arbitrary ordinals will be denoted by Greek letters a,
p, We can specify an ordering < on the collection of all ordinals by defining
a<l3 if ae 13. For example, n<ro, for all finite ordinals n. We will normally write
ne ro rather than n<ro. If a is an ordinal, the successor of a is the ordinal a+ 1 =
a u { a } , which is the least ordinal greater than a. a+ 1 is then said to be a
successor ordinal. For example, 1 = 0+1 , 2 = 1+1 , 3 = 2+1 , and so on. If a is a
successor ordinal, say a = 13+ 1 , we denote 13 by a-1 . An ordinal a is said to be a
limit ordinal if it is not the successor of any ordinal. The smallest limit ordinal
(apart from 0) is ro. After ro comes ro+ 1 = ro u { ro } , ro+2 = (ro+ 1)+ 1 , ro+3, and so
on. The next limit ordinal is ro2, which is the set consisting of all n, where ne ro,
and all ro+n, where ne ro. Then come ro2+1 , ro2+2, . . . ,ro3, ro3+1 , . . . ,co4, . . . ,cpn,

We will also require the principle of transfinite induction, which is as follows.
Let P(a) be a property of ordinals. Assume that for all ordinals 13. if P(y) holds for
all y<l3, then P(l3) holds. Then P(a) holds for all ordinals a.

'
Now we can give the definition of the ordinal powers of T.

Definition Let L be a complete lattice and T : L�L be monotonic. Then we
define

TiO = l.
Tia = T(Ti(a-1)), if a is a successor ordinal
Tia = lub{ TiJ3 : J3<a } , if a is a limit ordinal
T.!.O = T
T.!.a = T(T.!.(a-1)), if a is a successor ordinal
T.!.a = glb{ T.!.I3 : 13<a } , if a is a limit ordinal

Next we give a well-known characterisation of lfp(T) and gfp(T) in terms of
ordinal powers of T.

Proposition 5.3 Let L be a complete lattice and T : L� L be monotonic.
Then, for any ordinal a, Ti a � lfp(T) and T .!.a � gfp(T). Furthermore, there exist
ordinals p 1 and 132 such that y1 � 13 1 implies Tiy1 = lfp(T) and y2 � 132 implies
T .!.y2 = gfp(T).

30 Chapter 1 . Preliminaries

Proof The proof for lfp(T) follows from (a) and (e) below. The proofs of (a),
(b) and (c) use transfinite induction.
(a) For all a, Ti a s; lfp(T):

If a is a limit ordinal, then Tin = lub {Tip : P<a} s; lfp(T), by the induction
hypothesis. If a is a successor ordinal, then Tin = T(Ti(a-1)) s;
T(lfp(T)) = lfp(T), by the induction hypothesis, the monotonicity of T and the
fixpoint property.

(b) For all a, Tin s; Ti(a+l):
If a is a successor ordinal, then Tin = T(Ti(a-1)) s; T(Tia) = Ti(a+l),
using the induction hypothesis and the monotonicity of T. If a is a limit
ordinal, then Tin = lub {TiP : P<a} s; lub {Ti(P+l) : P<a } s; T(lub{Tip :
P<a }) = Ti(a+l), using the induction hypothesis and monotonicity of T.

(c) For all a,p, a<P implies Tin s; TiP:
If p is a limit ordinal, then Tin s; lub{ Tiy : r<Pl = Tip. If P is a successor
ordinal, then a s; �1 and so Tin s; Ti(�l) s; Tip, using the induction
hypothesis and (b).

(d) For all a,(3, if a<P and Tia = Tip, then Tin = lfp(T) :
Now Tin s; Ti(a+l) s; Tip, by (c). Hence Tin = Ti(a+l) = T(Tia) and so
Tin is a fixpoint. Furthermore, Tia = lfp(T), by (a) .

(e) There exists P such that y ;;:: P implies Tiy = lfp(T):
Let a be the least ordinal of cardinality greater than the cardinality of L.
Suppose that TiS :#: lfp(T), for all S<a. Define h:a�L by h(S) = TiS. Then,
by (d), h is injective, which contradicts the choice of a. Thus Tip = lfp(T), for
some P<a, and the result follows from (a) and (c).
The proof for gfp(T) is similar. •

The least a such that Tin = lfp(T) is called the closure ordinal of T. The next
result, which is usually attributed to Kleene, shows that under the stronger
assumption that T is continuous, the closure ordinal of T is s; co.

Proposition 5.4 Let L be a complete lattice and T : L�L be continuous. Then
lfp(T) = Ti co .

Proof By proposition 5.3, it suffices to show that Tiro is a fixpoint. Note that
{Tin : ne ro} is directed, since T is monotonic. Thus T(Tico) = T(lub{ Tin
nero}) = lub {T(Tin) : ne ro} = Tiro, using the continuity of T. •

Problems for Chapter 1 31

The analogue of proposition 5.4 for gfp(T) does not hold, that i s , gfp(T) may
not be equal to T J..ro. A counterexample is given in the next section.

PROBLEMS FOR CHAPTER 1

1 . Consider the interpretation I:
Domain is the non-negative integers
s is assigned the successor function x � x+ 1
a is assigned 0
b is assigned 1
p is assigned the relation { (x,y) : x>y }
q is assigned the relation { x : x>O}
r is assigned the relation { (x,y) : x divides y }

For each of the following closed formulas, determine the truth value of the formula
wrt 1:
(a) Vx 3y p(x,y)
(b) 3x Vy p(x,y)
(c) p(s(a),b)
(d) Vx(q(x)�p(x,a))
(e) Vx p(s(x),x)
(f) Vx Vy(r(x,y)�-p(x,y))
(g) Vx(3y p(x,y) v r(s(b),s(x)) � q(x))

2. Determine whether the following formulas are valid or not:
(a) Vx 3y p(x,y) � 3y \7'x p(x,y)
(b) 3y \7'x p(x,y) � Vx 3y p(x,y)

3. Consider the formula

(Vx p(x,x) A Vx Vy\iz [(p(x,y)Ap(y ,z))�p(x,z)] A Vx Vy [p(x,y)vp(y ,x)]) � 3y\7'x p(y ,x)

(a) Show that every interpretation with a finite domain is a model.
(b) Find an interpretation which is not a model.

4. Complete the proof of proposition 3.2.

5 . Let W be a formula. Suppose that each quantifier in W has a distinct variable

32 Chapter 1 . Prel iminaries

following it and no variable in W is both bound and free. (This can be achieved
by renaming bound variables in W, if necessary.) Prove that W can be transformed
to a logically equivalent formula in prenex conjunctive normal form (called a
prenex conjunctive normal form of W) by means of the following transformations : _
(a) Replace

all occurrences of Ff-G by Fv-G
all occurrences of Ff-+G by (Fv-G)I\(-FvG).

(b) Replace
-\ixF by 3x-F
-3xF by \ix-F
-(FvG) by -FI\-G
-(FI\G) by -Fv-G
--F by F

until each occurrence of - immediately precedes an atom.
(c) Replace

3xF v G by 3x(FvG)
F v 3xG by 3x(FvG)
\ixF v G by \ix(FvG)
F v \ixG by \ix(FvG)
3xF 1\ G by 3x(FI\G)
F " 3xG by 3x(F "G)
\ixF " G by \ix(FI\G)
F " \ixG by \ix(FI\G)

until all quantifiers are at the front of the formula.
(d) Replace

(FI\G)vH by (FvH)I\(GvH)
Fv(GI\H) by (FvG)I\(FvH)

until the formula is in prenex conjunctive normal form.

6. Let W be a closed formula. Prove that there exists a formula V, which is a
conjunction of clauses, such that W is unsatisfiable iff V is unsatisfiable.

7. Suppose e 1 and e2 are substitutions and there exist substitutions a1 and a2 such
that e 1 = e2a1 and e2 = e 1 a2. Show that there exists a variable-pure substitution
'Y such that el = e2y.

Problems for Chapter 1 33

8. A substitution 9 is idempotent if 9 = 99. Let 9 = { x 1tt1 , . . . ,xitn } and suppose V
is the set of variables occurring in terms in { tl ' . . . ,tn } . Show that 9 is idempotent
iff { x1 ' . . . ,xn } n V = 0.

9. Prove that each mgu produced by the unification algorithm is idempotent.

10. Let 9 be a unifier of a finite set S of simple expressions. Prove that 9 is an
mgu and is idempotent iff, for every unifier cr of S, we have cr = ecr.

1 1 . For each of the following sets of simple expressions, determine whether mgu 's
exist or not and find them when they exist:
(a) { p(f(y),w,g(z)), p(u,u,v) }
(b) {p(f(y),w,g(z)), p(v,u,v) }
(c) {p(a,x,f(g(y))), p(z,h(z,w),f(w)) }

12. Find a complete lattice L and a mapping T : L--+L such that T is monotonic
but not continuous.

13 . Let L be a complete lattice and T : L--+L be monotonic.
(a) Suppose ae L and !lST(a). Define

T0(a) = a
Tl(a) = T(Tl-1(a)), if a is a successor ordinal
Tl(a) = lub {T�(a) : �<a} , if a is a limit ordinal.

Prove that there exists an ordinal � such that T�(a) is a fixpoint of T and a�TP(a).
(b) Suppose be L and T(b)�b. Define

�(b) = b
Ta(b) = T(Ta-l (b)), if a is a successor ordinal
Ta(b) = glb {Tp(b) : �<a } , if a is a limit ordinal.

Prove th<i:tthere exists an ordinal y such that Ty(b) is a fixpoint of T and TY(b)�b.

DEFINITE PROGRAMS

This chapter is concerned with the declarative and procedural semantics of
definite programs. First, we introduce the concept of the least Herbrand model of
a definite program and prove various important properties of such models. Next,
we define correct answers, which provide a declarative description of the desired
output from a program and a goal. The procedural counterpart of a correct answer
is a computed answer, which is defined using SLD-resolution. We prove that
every computed answer is correct and that every correct answer is an instance of a
computed answer. This establishes the soundness and completeness of SLD­
resolution, that is, shows that SLD-resolution produces only and all correct
answers. Other important results established are the independence of the
computation rule and the fact that any computable function can be computed by a
definite program. Two pragmatic aspects of PROLOG implementations are also
discussed. These are the omission of the occur check from the unification
algorithm and the control facility, cut.

§6. DECLARATIVE SEMANTICS

This section introduces the least Herbrand model of a definite program. This
particular model plays a central role in the theory. We show that the least
Herbrand model is precisely the set of ground atoms which are logical
consequences of the definite program. We also obtain an important fixpoint
characterisation of the least Herbrand model. Finally, we define the key concept of
correct answer.

First, let us recall some definitions given in the previous chapter.

36 Chapter 2 . . Definite Programs

Definition A definite program clause is a clause of the form
Af-B 1 , . . . ,Bn

which contains precisely one atom (viz. A) in its consequent. A is called the head

and B 1 ' . . . ,Bn is called the body of the program clause.

Definition A definite program is a finite set of definite program clauses.

Definition A definite goal is a clause of the form
f-Bl , . . . ,Bn

that is, a clause which has an empty consequent.

In later chapters, we will consider more general programs, in which the body
of a program clause can be a conjunction of literals or even an arbitrary formula.
Later we will also consider more general goals. The theory of definite programs is
simpler than the theory of these more general classes of programs because definite
programs do not allow negations in the body of a clause. This means we can avoid
the theoretical and practical difficulties of handling negated subgoals. Definite
programs thus provide an excellent starting point for the development of the
theory.

Proposition 6.1 (Model Intersection Property)
Let P be a definite program and { Mi } iel be a non-empty set of Herbrand

models for P. Then nieiMi is an Herbrand model for P.

Proof Clearly nieiMi is an Herbrand interpretation for P. It is straightforward
to show that nie iMi is a model for P. (See problem 1 .) •

Since every definite program P has Bp as an Herbrand model, the set of all
Herbrand models for P is non-empty. Thus the intersection of all Herbrand models
for P is again a model, called the least Herbrand model, for P. We denote this
model by Mp.

The intended interpretation of a definite program P can, of course, be different
from Mp. However, there are very strong reasons for regarding Mp as the natural
interpretation of a program. Certainly, it is usual for the programmer to have in
mind the "free" interpretation of the constants and function symbols in the
program given by an Herbrand interpretation. Furthermore, the next theorem shows
that the atoms in Mp are precisely those that are logical consequences of the
program. This result is due to van Emden and Kowalski [107].

§6. Declarative Semantics 37

Theorem 6.2 Let P be a definite program. Then Mp = {AeBP : A is a logical
consequence of P } .

Proof We have that
A is a logical consequence of P
iff P u {-A} is unsatisfiable, by proposition 3. 1
iff P u { -A } has no Herbrand models, by proposition 3.3
iff -A is false wrt all Herbrand models of P
iff A is true wrt all Herbrand models of P
iff AE Mp . •

We wish to obtain a deeper characterisation of Mp using fixpoint concepts. For
this we need to associate a complete lattice with every definite program.

Let P be a definite program. Then 2BP, which is the set of all Herbrand
interpretations of P, is a complete lattice under the partial order of set inclusion
!::: • The top element of this lattice is Bp and the bottom element is 0. The least

upper bound of any set of Herbrand interpretations is the Herbrand interpretation
.which is the union of all the Herbrand interpretations in the set. The greatest
lower bound is the intersection.

Definition Let P be a definite program. The mapping T P : 2Bp � 2Bp is
defined as follows. Let I be an Herbrand interpretation. Then T p(l) =
{AEBp : A+-A1 , . . . ,An is a ground instance of a clause in P and {A1 , . . . ,An } !:: 1 } .

Clearly Tp i s monotonic. Tp provides the link between the declarative and
procedural semantics of P. This definition was first given in [107] .

Example Consider the program P
p(f(x)) +-- p(x)
q(a) +-- p(x)

Put 11 = Bp, 12 = Tp(I1) and 13 = 0. Then Tp(l1) = { q(a) } u { p(f(t)) : tEUp} ,
Tp(�) = { q(a) } u { p(f(f(t))) : tEUp} and Tp(l3) = 0.

Proposition 6.3 Let P be a definite program. Then the mapping Tp is
continuous.

Proof Let X be a directed subset of 2BP. Note first that {A1 ' . . . ,An } !:: lub(X)
iff { A1 , . . . ,An } !:: I, for some leX. (See problem 3.) In order to show Tp is
continuous, we have to show TpOub(X)) = lub(Tp(X)), for each directed subset X.

38 Chapter 2. Definite Programs

Now we have that
Ae T p(lub(X))
iff A+-A1 ' . . . ,An is a ground instance of a clause in P and { A1 ' . . . ,An } !;;;; lub(X)
iff A+-A1 ' . . . ,An is a ground instance of a clause in P and { A1 ' . . . ,An } � I, for

some le X
iff Ae Tp(l), for some leX
iff Aelub(Tp(X)). I

Herbrand interpretations which are models can be characterised in terms of Tp·

Proposition 6.4 Let P be a definite program and I be an Herbrand
interpretation of P. Then I is a model for P iff T p(l) !;;;; I.

Proof I is a model for P iff for each ground instance A+-A1 , . . . ,An of each
clause in P, we have {A1 ' . . . ,An } !;;;; I implies Ael iff Tp(l) !;;;; I. I

Now we come to the first major result of the theory. This theorem, which is
due to van Emden and Kowalski [107] , provides a fixpoint characterisation of the
least Herbrand model of a definite program.

Theorem 6.5 (Fixpoint Characterisation of the Least Herbrand Model)
Let P be a definite program. Then Mp = lfp(T p) = T pi ro.

Proof Mp = glb { I : I is an Herbrand model for P }
= glb { I : Tp(l) 1:: 1 } , by proposition 6.4
= lfp(Tp), by proposition 5. 1
= Tp iro, by propositions 5.4 and 6.3 . I

However, it can happen that gfp(Tp) ::1- Tp..l-ro.

Example Consider the program P
p(f(x)) +-- p(x)
q(a) +-- p(x)

Then Tp..l-ro = { q(a) } , but gfp(Tp) = 0. In fact, gfp(Tp) = Tp..l-(ro+l).

Let us now tum to the definition of a correct answer. This is a central concept
in logic programming and provides much of the focus for the theoretical
developments.

§6. Declarative Semantics 39

Definition Let P be a definite program and G a definite goal. An answer for
P u { G } is a substitution for variables of G.

It is understood that the answer does not necessarily contain a binding for
every variable in G. In particular, if G has no variables the only possible answer is
the identity substitution.

Definition Let P be a definite program, G a definite goal f-A1 , . . . ,Ak and e an
answer for P u { G} . We say that e is a correct answer for P u { G } if
V'((A1 A . . . AAk)9) is a logical consequence of P.

Using propos1t1on 3. 1 , we see that e is a correct answer iff
P u { -V'((A1 A . . . AAk)9) } is unsatisfiable. The above definition of correct answer
does indeed capture the intuitive meaning of this concept. It provides a declarative
description of the desired output from a definite program and goal. Much of this
chapter will be concerned with showing the equivalence between this declarative
concept and the corresponding procedural one, which is defined by the refutation
procedure used by the system.

As well as returning substitutions, a logic programming system may also return
the answer "no". We say the answer "no" is correct if P u { G} is satisfiable.

Theorem 6.2 and the definition of correct answer suggest that we may be able
to strengthen theorem 6.2 by showing that an answer e is correct iff
V'((A1 A . . . AAk)9) is true wrt the least Herbrand model of the program.
Unfortunately, the result does not hold in this generality, as the following example
shows.

Example Consider the program P
p(a) f-

Let G be the goal f-p(x) and e be the identity substitution. Then Mp = {p(a) } and
so Vx p(x)e is true in Mp. However, e is not a correct answer, since Vx p(x)9 is
not a logical consequence of P.

The reason for the problem here is that -Vx p(x) is not a clause and hence we
cannot restrict attention to Herbrand interpretations when attempting to establish
the unsatisfiability of {p(a)f- } u { -Vx p(x) } . However, if we make a restriction
on e, we do obtain a result which generalises theorem 6.2.

40 Chapter 2. Definite Programs

Theorem 6.6 Let P be a definite program and G a definite goal �A1 , . . . ,Ak.
Suppose 8 is an answer for P u { G } such that (AI''· · ·"Ak)8 is ground. Then the
following are equivalent:
(a) e is correct.
(b) (A 1 11. . . . 11.Ak)8 is true wrt every Herbrand model of P.
(c) (A1 11. . . . 11.Ak)8 is true wrt the least Herbrand model of P.

Proof Obviously, it suffices to show that (c) implies (a) . Now
(A111. . . . 11.Ak)8 is true wrt the least Herbrand model of P
implies (A1 11. . . . 11.Ak)8 is true wrt all Herbrand models of P
implies -(A1 11. . . . 11.Ak)8 is false wrt all Herbrand models of P
implies P u {-(A 1 " · . . 11.Ak)8 } has no Herbrand models
�plies P u {-(A111. . . . 11.Ak)8} has no models, by proposition 3.3. I

§7. SOUNDNESS OF SLD-RESOLUTION

In this section, the procedural semantics of definite programs is introduced.
Computed answers are defined and the soundness of SLD-resolution is established.
The implications of omitting the occur check from the unification algorithm are
also discussed. Although all the requisite results concerning SLD-resolution will
be discussed in this and subsequent sections, it would be helpful for the reader to
have a wider perspective on automatic theorem proving. We suggest consulting (9] ,
[14] , [64] or [66] .

There are many refutation procedures based on the resolution inference rule,
which are refinements of the original procedure of Robinson [88] . The refutation
procedure of interest here was first described by Kowalski [48] . It was called
SW-resolution in [4] . (The term LUSH-resolution has also been used [46] .) SLD­
resolution stands for SL-resolution for Definite clauses. SL stands for Linear
resolution with Selection function. SL-resolution, which is due to Kowalski and
Kuehner [53] , is a direct descendant of the model elimination procedure of
Loveland [65] . In this and the next two sections, we will be concerned with SLD­
refutations. In § 10, we will study SLD-refutation procedures.

Definition Let G be �A1' . . . ,Am, . . . ,Ak and C be A�B 1 , . .. ,Bq. Then G' is
derived from G and C using mgu 8 if the following conditions hold:
(a) Am is an atom, called the selected atom, in G.

§7. Soundness of SLD-Resolution 41

(b) e is an mgu of Am and A.
(c) G' is the goal �(Al ' . . . ,Am-l 'B l ' . . . ,Bq,Am+l ' . . . ,Ak)8.

In resolution terminology, G' is called a resolvent of G and C.

Definition Let P be a definite program and G a definite goal. An SLD­

derivation of P u { G } consists of a (finite or infinite) sequence G0=G, G1 , . . . of
goals, a sequence c 1 , c2, . . . of variants of program clauses of P and a sequence e 1 ,
e2, . . . of mgu's such that each Gi+l is derived from Gi and Ci+l using ei+l "

Each ci is a suitable variant of the corresponding program clause so that ci
does not have any variables which already appear in the derivation up to Gi-l "
This can be achieved, for example, by subscripting variables in G by 0 and
variables in ci by i. This process of renatiring variables is called standardising the
variables apart. It is necessary, otherwise, for example, we would not be able to
unify p(x) and p(f(x)) in �p(x) and p(f(x))�. Each program clause variant c1 ,
c2·· · · is called an input clause of the derivation.

Definition An SLD-refutation of P u { G} is a finite SLD-derivation of
P u { G} which has the empty clause o as the last goal in the derivation. If Gn = o ,

we say the refutation has length n.

Throughout this chapter, a "derivation" will always mean an SLD-derivation
and a "refutation" will always mean an SLD-refutation. We can picture SLD­
derivations as in Figure 1 .

It will be convenient in some of the results to have a slightly more general
concept available.

Definition An unrestricted SLD-refutation is an SLD-refutation, except that we
drop the requirement that the substitutions ei be most general unifiers. They are
only required to be unifiers.

SLD-derivations may be finite or infinite. A finite SLD-derivation may be
successful or failed. A successful SLD-derivation is one that ends in the empty
clause. In other words, a successful derivation is just a refutation. A failed SLD­
derivation is one that ends in a non-empty goal with the property that the selected
atom in this goal does not unify with the head of any program clause. Later we
shall see examples of successful, failed and infinite derivations (see Figure 2 and
Figure 3).

42 Chapter 2. Definite Programs

G0[G/Cl ' e l

G

I
� c2. e2

Fig. 1 . An SLD-derivation

Definition Let P be a definite program. The success set of P is the set of all
Ae BP such that P u { �A} has an SLD-refutation.

The success set is the procedural counterpart of the least Herbrand model. We
shall see later that the success set of P is in fact equal to the least Herbrand model

§7. Soundness of SLD-Resolution 43

of P. Similarly, we have the procedural counterpart of a correct answer.

Definition Let P be a definite program and G a definite goal. A computed

answer e for P u { G } is the substitution obtained by restricting the composition
e1 . . . en to the variables of G, where e1 ' . . . ,en is the sequence of mgu's used in an
SLD-refutation of P u { G } .

Example If P is the slowsort program and G is the goal t-sort(17.22.6.5 .nil,y),
then { y/5.6 . 17.22.nil } is a computed answer.

The first soundness result is that computed answers are correct. In the fonn
below, this result is due to Clark [16] .

Theorem 7.1 (Soundness of SLD-Resolution)
Let P be a definite program and G a definite goal. Then every computed

answer for P u { G } is a correct answer for P u { G } .

Proof Let G be the goal t-A1 ' . . . ,Ak and e1 ' . . . ,en be the sequence of
mgu' s used in a refutation of P u { G } . We have to show that

· V'((A1A . . . /\Ak)e1 . . . en) is a logical consequence of P. The result is proved by
induction on the length of the refutation.

Suppose first that n=l . This means that G is a goal of the form t-Al' the
program has a unit clause of the form At- and A1e1 = Ae1 . Since A181t- is an
instance of a unit clause of P, it follows that V'(A1e1) is a logical consequence of
P.

Next suppose that the result holds for computed answers which come from
refutations of length n-1 . Suppose e1 ' . . . ,en is the sequence of mgu' s used in a
refutation of P u { G) of length n. Let At-B l ' . . . ,Bq (q�O) be the first input clause
and Am the selected atom of G. By the induction hypothesis,
V'((A1A . . . AAm-l"B l/\ . . . ABq"Am+l""""Ak)e1 . . . en) is a logical consequence of P.
Thus, if q>O, V'((B1 A . . . /\Bq)e1 . . . en) is a logical consequence of P. Consequently,
V'(Ame 1 ... en), which is the same as V'(A8 1 ... en), is a logical consequence of P.
Hence V'((A1A ... /\Ak)e 1 ... en) is a logical consequence of P. •

Corollary 7.2 Let P be a definite program and G a definite goal. Suppose
there exists an SLD-refutation of P u { G } . Then P u { G } is unsatisfiable.

Proof Let G be the goal t-A1 ' . . . ,Ak. By theorem 7 . 1 , the computed answer e
coming from the refutation is correct. Thus V'((A1A . . . AAk)8) is a logical

44 Chapter 2. Definite Programs

consequence of P. It follows that P u { G} is unsatisfiable. •

Corollary 7.3 The success set of a definite program is contained in its least
Herbrand model.

Proof Let the program be P, let AeBp and suppose P u { f-A } has a
refutation. By theorem 7. 1 , A is a logical consequence of P. Thus A is . in the least
Herbrand model of P. •

It is possible to strengthen corollary 7.3 . We can show that if Ae Bp and
P u { f-A } has a refutation of length n, then AeTp in. This result is due to Apt
and van Emden [4] .

I f A i s an atom, we put [A] = { A'e Bp : A'=AO, for some substitution 0 } .
Thus [A] is the set of all ground instances of A. Equivalently, [A) is [A)1, where J

is the Herbrand pre-interpretation.

Theorem 7.4 Let P be a definite program and G a definite goal f-A1 , . . . ,Ak.
Suppose that P u {G} has an SLD-refutation of length n and e 1 ' . . . ,en is the
sequence of mgu's of the SLD-refutation. Then we have that
�=1[Aje 1 . . . en] s:: Tpin.

Proof The result is proved by induction on the length of the refutation.
Suppose first that n=l . Then G is a goal of the form f-Al ' the program has a unit
clause of the form Af- and A1e 1 = Ae1 . Clearly, [A] � Tpi1 and so
[A1 e1] !;;; Tpil .

Next suppose the result is true for refutations of length n-1 and consider a
refutation of P u { G } of length n. Let Aj be an atom of G. Suppose first that Aj
is not the selected atom of G. Then Aje 1 is an atom of G 1 , the second goal of the
refutation. The induction hypothesis implies that [Aje1 e2 . . . en] �:; T p i(n-1) and
Tp i(n-1) �:; Tp in, by the monotonicity of Tp.

Now suppose that Aj is the selected atom of G. Let Bf-B l ' . . . ,Bq (<?-0) be the
first input clause. Then Aje 1 is an instance of B . If q=O, we have [B) �:; Tp il .
Thus [Aje1 . . . en] �:; [Aje1] !::; [B) !:;; Tp il !: Tp in. If q>O, by the induction
hypothesis, [Bie 1 . . . en] !:: Tp i(n-1), for i=1 , . . . ,q. By the definition of Tp, we have
that [Aje 1 . . . en] � Tpin. •

Next we tum to the problem of the occur check. As we mentioned earlier, the
occur check in the unification algorithm is very expensive and most PROLOG

§7. Soundness of SLD-Resolution 45

systems leave it out for the pragmatic reason that it is only very rarely required.
While this is certainly true, its omission can cause serious difficulties.

Example Consider the program
test +--- p(x,x)
p(x,f(x)) +-

Given the goal +-test, a PROLOG system without the occur check will answer
"yes" (equivalently, e is a correct answer) ! This answer is quite wrong because
test is not a logical consequence of the program. The problem arises because,
without the occur check, the unification algorithm of the PROLOG system will
mistakenly unify p(x,x) and p(y,f(y)).

Thus we see that the lack of occur check has destroyed one of the principles
on which logic programming is based - the soundness of SLD-resolution.

Example Consider the program
test +--- p(x,x)
p(x,f(x)) +--- p(x,x)

. This time a PROLOG system without the occur check will go into an infinite loop
in the unification algorithm because it will attempt to use a "circular" binding
made in the second step of the computation.

These examples illustrate what can go wrong. We can distinguish two cases.
The first case is when a circular binding is constructed in a "unification", but this
binding is never used again. The first example illustrates this. The second case
happens when an attempt is made to use a previously constructed circular binding
in a step of the computation or in printing out an answer. The second example
illustrates this. The first case is more insidious because there may be no indication
that an error has occurred.

While these examples may appear artificial, it is important to appreciate that
we can easily have such behaviour in practical programs. The most commonly
encountered situation where this can occur is when programming with difference
lists [2 1] . A difference list is a term of the form x-y, where - is a binary function
(written infix). x-y represents the difference between the two lists x and y. For
example, 34.56. 12.x-x represents the list [34, 56, 12] . Similarly, x-x represents the
empty list.

46 Chapter 2. Definite Programs

Let us say two difference lists x-y and z-w are compatible if y=z. Then
compatible difference lists can be concatenated in constant time using the
following definition which comes from [2 1]

concat(x-y ,y-z,x-z) �
For example, we can concatenate 12.34.67 .45.x-x and 36.89.y-y in one step to
obtain 12.34.67 .45.36.89.z-z. This is clearly a very useful technique. However, it
is also dangerous in the absence of the occur check.

Example Consider the program
test � concat(u-u,v-v,a.w-w)
concat(x-y,y-z,x-z) �

Given the goal �test, a PROLOG system without the occur check will answer
"yes" . In other words, it thinks that the concatenation of the empty list with the
empty list is the list [a) !

Programs which use the difference list technique normally do not have an
explicit concat predicate. Instead the concatenation is done implicitly. For
example, the following clause is taken from such a version of quicksort [93] .

Example Consider the program
qsort(nil,x-x) �

Given the goal �qsort(nil ,a.y-y) , a PROLOG system without the occur check will
succeed on the goal (however, it will have a problem printing out its "answer",
which contains the circular binding y/a.y).

It is possible to minimise the danger of an occur check problem by using a
certain programming methodology. The i;1ea is to "protect" programs which could
cause problems by introducing an appropriate top-level predicate to restrict uses of
the program to those which are known to be sound. This means that there must be
some mechanism for forcing all calls to the program to go through this top-level
predicate. However, with this method, the onus is still on the programmer and it
thus remains suspect. A better idea [82] is to have a preprocessor which is able to
identify which clauses may cause problems and add checking code to these clauses
(or perhaps invoke the full unification algorithm when these clauses are used) .

§8. Completeness of SLD-Resolution 47

§8. COMPLETENESS OF SLD-RESOLUTION

The major result of this section is the completeness of SLD-resolution. We
begin with two very useful lemmas.

Lemma 8.1 (Mgu Lemma)
Let P be a definite program and G a definite goal. Suppose that P u { G } has

an unrestricted SLD-refutation. Then P u { G } has an SLD-refutation of the same
length such that, if e 1 , . . . ,en are the unifiers from the unrestricted SLD-refutation
and 8'1 ' . . . ,8� are the mgu's frOm the SLD-refutation, then there exists a substitution
y such that e 1 . . . en = Si . . . e� y.

Proof The proof is by induction on the length of the unrestricted refutation.
Suppose frrst that n=l . Thus P u { G } has an unrestricted refutation G0=G, G1= o

with input clause c1 and unifier e 1 . Suppose 8'1 is an mgu of the atom in G and
the head of the unit clause c 1 . Then e 1 = Siy, for some y. Furthermore, P u { G}
has a refutation G0=G, G 1= o with input clause c1 and mgu 8'1 .

Now suppose the result holds for n-1 . Suppose P u { G } has an unrestricted
refutation G0=G, G l ' . . . ,Gn= o of length n with input clauses C 1 ' . . . ,Cn and unifiers
e 1 , . . . ,en. There exists an mgu 8'1 for the selected atom in G and the head of c 1
such that e1 = Sip, for some p. Thus P u { G } has an unrestricted refutation
G0=G, G'1 , G2, . . . ,Gn = o with input clauses c1 , . . . ,Cn and unifiers e'1 , pe2, e3, . . . ,en,
where 0 1 = GiP· By the induction hypothesis, P u { Gi } has a refutation
Gi , 02, . . . ,G�= o with mgu' s 82, . . . ,8� such that pe2 . . . en = e2 . . . S�y, for some y.
Thus P u { G } has a refutation 00=0, G'1 , . . . ,G�= o with mgu's 8'1 ' . . . ,8� such that
e1 . . . en = Si pe2 . . . en = ei . . . e� y. 1

Lemma 8.2 (Lifting Lemma)
Let P be a definite program, G a definite goal and 8 a substitution. Suppose there

exists an SLD-refutation of P u {08} such that the variables in the input clauses are
distinct from the variables in 8 and G. Then there exists an SLD-refutation of
P u { G } of the same length such that, if 8 l ' . . . ,en are the mgu 's from the SLD­
refutation of P u { 08 } and 8\ , . . . ,8� are the mgu's from the SLD-refutation of
P u { G } , then there exists a substitution 'Y such that ee 1 . . . en = 8'1 . . . 8� y.

Proof Suppose the first input clause for the refutation of P u (GS } is c1 , the
first mgu is e 1 and G 1 is the goal which results from the first step. Now 88 1 is a
unifier for the head of C 1 and the atom in G which corresponds to the selected atom

48 Chapter 2. Definite Programs

in GO. The result of resolving G and c1 using ee 1 is exactly Gl " Thus we obtain a
(properly standardised apart) unrestricted refutation of P u { G } , which looks exactly
like the given refutation of p u { oe } . except the original goal is different, of course,
and the first unifier is ee 1 . Now apply the mgu lemma. I

The first completeness result gives the converse to corollary 7 .3 . This result is
due to Apt and van Emden [4] .

Theorem 8.3 The success set of a definite program is equal to its least
Herbrand model.

Proof Let the program be P. By corollary 7.3, it suffices to show that the
least Herbrand model of P is contained in the success set of P. Suppose A is in
the least Herbrand model of P. By theorem 6.5, Ae Tp in, for some ne ro. We
prove by induction on n that Ae T pin implies that P u { �A } has a refutation and
hence A is in the success set.

Suppose first that n=l . Then Ae TP it means that A is a ground instance of a
unit clause of P. Clearly, P u (�A } has a refutation.

Now suppose that the result holds for n-1 . Let Ae TP in. By the definition of
Tp, there exists a ground instance of a clause B�B 1 ' . . . ,Bk such that A=BO and
(B 1e, . . . ,Bk9 } s:: Tp i(n-1), for some e. By the induction hypothesis, P u { �Bie }
has a refutation, for i=l , . . . ,k. Because each Bie i s ground, these refutations can be
combined into a refutation of P u { �(B 1 , . . . ,Bk)9 } . Thus P u { �A } has an
unrestricted refutation and we can apply the mgu lemma to obtain a refutation of
P u { �A } . I

The next completeness result was first proved by Hill [46] . See also [4] .

Theorem 8.4 Let P be a definite program and G a definite goal. Suppose that
P u { G } is unsatisfiable. Then there exists an SLD-refutation of P u { G } .

Proof Le t G be the goal �A1 ' . . . ,Ak. Since P u { G } i s unsatisfiable, G is
false wrt Mp. Hence some ground instance GO of G is false wrt Mp. Thus
{ A 1e, . . . ,Ake } � Mp. By theorem 8.3, there is a refutation for P u { �Aie } , for
i=l , . . . ,k. Since each A.e is ground, we can combine these refutations into a 1
refutation for P u { GO } . Finally, we apply the lifting lemma. I

Next we tum attention to correct answers. It is not possible to prove the exact
converse of theorem 7. 1 because computed answers are always "most general" .

§9. Independence of the Computation Rule 49

However, we can prove that every correct answer is an instance of a computed
answer.

Lemma 8.5 Let P be a definite program and A an atom. Suppose that 't/(A) is
a logical consequence of P. Then there exists an SLD-refutation of P u (�A }
with the identity substitution as the computed answer.

Proof Suppose A has variables x1 ' . . . ,xn. Let a1 ' . . . ,an be distinct constants not
appearing in P or A and let S be the substitution { x1ta1 , . . . ,xian } . Then it is clear
that AS is a logical consequence of P. Since AS is ground, theorem 8.3 shows that
P u (�AS } has a refutation. Since the ai do not appear in P or A, by replacing ai
by xi (i=l , . . . ,n) in this refutation, we obtain a refutation of P u { �A } with the
identity substitution as the computed answer. 8

Now we are in a position to prove the major completeness result. This result
is due to Clark [1 6] .

Theorem 8.6 (Completeness of SLD-Resolution)
Let P be a definite program and G a definite goal. For every correct answer S for

P u (G } , there exists a computed answer 0" for P u { G} and a substitution "(such that
S and 0""(have the same effect on all variables in G.

Proof Suppose G is the goal �A 1 , . . . ,Ak. Since S is correct,
V((A 11\ • • • I\Ak)S) is a logical consequence of P. By lemma 8.5 , there exists a
refutation of P u { �AiS } such that the computed answer is the identity, for i=l , . . . ,k.
We can combine these refutations into a refutation of P u (GS } such that the
computed answer is the identity.

Suppose the sequence of mgu 's of the refutation of P u {GS } is S 1 ' . . . ,Sn. Then
GSS 1 . . . Sn=GS. By the lifting lemma, there exists a refutation of P u (G } with mgu's
s'l ' . . . ,S� such that ss r·S n = S'

r··s'n "(, for some substitution "(. Let 0" be s'
l . . . s�

restricted to the variables in G. Then S and 0""(have the same effect on all variables in
G. 8

§9. INDEPENDENCE OF THE COMPUTATION RULE

In this section, we introduce the concept of a computation rule, which is used
to select atoms in an SLD-derivation. We show that, for any choice of
computation rule, if P u (G } is unsatisfiable, we can always find a refutation

50 Chapter 2. Definite Programs

using the given computation rule. This fact is called the "independence" of the
computation rule. We also prove that every computable function can be computed
by a definite program.

Definition A computation rule is a function from a set of definite goals to a
set of atoms such that the value of the function for a goal is an atom, called the
selected atom, in that goal.

Definition Let P be a definite program, G a definite goal and R a computation
rule. An SW-derivation of P u { G} via R is an SLD-derivation of P u { G } in
which the computation rule R is used to select atoms.

It is important to realise that using a computation rule to select atoms in an
SLD-derivation is actually a restriction, in the sense that, if the same goal occurs
in different places, then the computation rule will always select the same atom of
that goal. In other words, there are SLD-derivations which are not SLD­
derivations via R, for any computation rule R.

Definition Let P be a definite program, G a definite goal and R a computation
rule. An SW-refutation of P u { G } via R is an SLD-refutation of P u { G} in
which the computation rule R is used to select atoms.

Definition Let P be a definite program, G a definite goal and R a computation
rule. An R-computed answer for P u { G} is a computed answer for P u { G }
which has come from an SLD-refutation of P u { G} via R.

Now we are in a position to consider the independence result. According to
theorem 8.4, if P u { G } is unsatisfiable, then there exists a refutation of P u { G } .
In fact, we will show that, for any computation rule R , there i s actually a refutation
of P u {G } via R. This result means that, in principle, a logic programming
system can use any computation rule it finds convenient. We will explore the
practical consequences of this result in § 10.

The key to the independence result is a technical lemma. For this, it will be
convenient to introduce some new notation. If C is a definite program clause, then
c+ denotes the head of the clause and c- denotes the body.

Lemma 9.1 (Switching Lemma)
Let P be a definite program and G a definite goal. Suppose that P u { G } has

an SLD-refutation G0=G, o1, . . . ,Gq-l ' Gq' Gq+l ' . . . ,Gn= o with input clauses

§9. Independence of the Computation Rule

C1 ' . . . ,Cn and mgu's 8 1 ' ... ,8n. Suppose that

Gq-l is +-A 1 ' . . . ,Ai-l 'Ai' . . . ,Aj-l 'Aj ' . . . ,Ak
Gq is +-(A 1 , . . . ,Ai_1 ,C�, . . . ,Aj-l '�'· · · •Ak)8q
G q+ l is +-(A 1 , . . . ,Ai-l ,C�, . . . ,Aj_1 ,C�+ 1 , . . . ,Ak)8 q 8 q+ 1 .

51

Then there exists an SLD-refutation of P u { G } in which Aj is selected in G q-1
instead of Ai and Ai is selected in G q instead of �. Furthermore, if O" is the
computed answer for P u { G } from the given refutation and cr' is the computed
answer for P u { G } from the new refutation, then Gcr is a variant of Gcr' .

+ +
Proof We have Ajeqeq+1 = cq+leq+1 = cq+leqeq+l " Thus we can unify �

and C�+1 . Let 8� be an mgu of Aj and C�+1 . Thus 8q8q+1 = 8�cr, for some

substitution cr. Clearly, we can assume that 8� does not act on any of the variables

of Cq.

Furthermore, C�cr = C�S�cr = C�8q8q+l = Ai8q8q+l = Ai8�cr. Hence we can

unify C� and Ai8�. Suppose 8�+1 is an mgu. Thus cr = 8�+1cr', for some cr'.

Consequently, 8q8q+1 = 8�8�+1cr'. We have now shown that Ai and Aj can be

selected in the reverse order.

Next, note that Ai8�8�+1 = C�8�8�+1 ' but that 8q is an mgu of Ai and C�.

Thus 8�8�+1 = 8q'Y· for some y. But Aj8qy = �8�8�+1 = C�+18�8�+1
C�+ 18 q 'Y = C�+ 1 y. Thus 'Y unifies Aj8 q and C�+ 1 , and so 'Y = 8 q+ 1 cr" , for some

cr". Consequently, 8�8�+1 8q8q+1cr" and so the (q+1)st goal in the new

refutation is a variant of G q+ 1 .
The remainder of the new refutation now proceeds in the same way as the

given refutation (modulo variants) and the result follows. •

Theorem 9.2 (Independence of the Computation Rule).
Let P be a definite program and G a definite goal. Suppose there is an SLD­

refutation of P u { G } with computed answer cr. Then, for any computation rule R,
there exists an SLD-refutation of P u { G } via R with R-computed answer cr' such
that Gcr' is a variant of Gcr.

52 Chapter 2. Definite Programs

Proof Apply the switching lemma repeatedly. (See problem 15.) •

We can use theorem 9.2 to strengthen theorems 8.3, 8.4 and 8.6.

Definition Let P be a definite program and R a computation rule. The R­

success set of P is the set of all Ae Bp such that P u { f-A } has an SLD-refutation
via R.

Theorem 9.3 Let P be a definite program and R a computation rule. Then the
R-success set of P is equal to its least Herbrand modeL

Proof The theorem follows immediately from theorems 8.3 and 9.2. •

Theorem 9.4 Let P be a definite program, G a definite goal and R a
computation rule. Suppose that P u { G } is unsatisfiable. Then there exists an
SLD-refutation of P u { G } via R.

Proof The theorem follows immediately from theorems 8.4 and 9.2. •

Theorem 9.5 (Strong Completeness of SLD-Resolution)
Let P be a definite program, G a definite goal and R a computation rule. Then for

every correct answer 8 for P u { G } , there exists an R-computed answer a for
P u { G } and a substitution y such that 8 and ay have the same effect on all variables
in G.

Proof The theorem follows immediately from theorems 8 .6 and 9.2. •
Theorem 9.4 is due to Hill [46] . See also [4] . Theorem 9.5 is due to Clark

[16] .

We now establish the important result that every computable function can be
computed by an appropriate definite program. There are a number of ways of
establishing this result, depending on the definition of "computable" chosen. For
example, Tarnlund [102] showed that every Turing computable function can be
computed by a definite program. Shepherdson established the result using
unlimited register machines to define computable functions [96] . Kowalski [52]
established the result by showing how to transform a set of recursive equations
into a definite program. Andreka and Nemeti [1] and Sonenberg and Topor [100]
show the adequacy of definite programs for computation over an Herbrand
universe. Here, we follow Sebelik and Stepanek [9 1] by showing that every partial
recursive function can be computed by a definite program. The definition of a

§9. Independence of the Computation Rule 53

partial recursive function and the basic results of computability are contained in
[23] , for example. For a survey of these computability results, see [100] .

Theorem 9.6 (Computational Adequacy of Definite Programs)
Let f be an n-ary partial recursive function. Then there exists a definite

program Pf and an (n+l)-ary predicate symbol Pf such that all computed answers
for Pf u { �pf(skl(0), . . . }11(0),x) } have the form { x/sk(O) } and, for all non­
negative integers k1 ' . . . ,kn and k, we have f(kl ' . . . ,kn) =k iff { x/sk(O) } is a computed

answer for P f u { �pf(b (O), . . . ,s �(O),x) } .

Proof In the program P f' a non-negative integer k is represented by the term
sk(O), where s represents the successor function. By theorem 9.2, we can suppose
that all computed answers are R-computed, where R is the computation rule which
always selects the leftmost atom. The result is proved by induction on the number
q of applications of composition, primitive recursion and minimalisation needed to
define f.

Suppose first that q=O. Thus f must be either the zero function, the successor
function or a projection function.

Zero function

Suppose that f is the zero function defmed by f(x)=O. Define P f to be the
program Pf(x,O)�.

Successor function

Suppose that f is the successor function defined by f(x)=x+ 1. Define P f to be
the program pr<x,s(x))�.

Projection functions

Suppose that f is the projection function defined by f(x l ' . . . ,xn)=xj ' where
ls;js;n. Define Pf to be the program Pf(x 1 , . . . ,xn,xj)�.

Clearly, for each of the basic functions, the program P f defined has the desired
properties.

Next suppose the partial recursive function f is defined by q (q>O) applications
of composition, primitive recursion and minimalisation.

Composition

Suppose that f is defined by f(x 1 ' . . . ,xn) = h(g1 (x 1 , . . . ,xn) , . . . ,gm(xl ' . . . ,xn)),
where g1 ' . . . ,gm and h are partial recursive functions. By the induction hypothesis,
corresponding to each gi' there is a definite program P g. and a predicate symbol Pg.
satisfying the properties of the theorem. Similarly, cofresponding to h, there is i

54 Chapter 2. Definite Programs

definite program Ph and a predicate symbol ph satisfying the properties of the
theorem. We can suppose that the programs P , . . . ,P and Ph do not have any
predicate symbols in common. Define P f to

g6e th�m union of these programs
together with the clause

pr<x1 , . . . ,xn,z) � Pg1
(x1 , . . . ,xn,y 1) , . . . ,pgm

(x 1 , . . . ,xn,ym)' ph(y 1 , . . . ,ym,z)
k k Clearly all computed answers for P f u { �pf(s l (O), . . . ,s O(O),z) } have the form

{ :z/sk(O) } , using the induction hypothesis.
Now suppose that f(k1 , . . . ,kn) ��- Thus gi(k1 , . . . ,kn) =ni, say, for 1 �i�m. By the

induction hypothesis, [y./s 1(0) } is a computed answer for
Pg. u { �Pg.<

b(O), . . . ,s�(O),yi} J . Also, by the induction hypothesis, { :z/sk(O) } is a
1 1 n n k computed answer for Ph u { �ph(s l (O) , . . . ,s ID(O),z) } . Hence { z/s (0) } is a

k k computed answer for P f u { �Pf(s l(O), . . . ,s O(O) ,z) } .
Conversely, suppose that { :zlsk(O) } is a computed answer for

P f u { �Pf(s kl (O), . . . ,s �(O),z) } . From the refutation giving this answer, we can
extract computed answers { yls\O) } for Pg. u { �Pg. <s

kl(0), . . . }0(0) ,yi) } , for
k 1 1 n n 1�i�m. and a computed answer [:zls (0) } for Ph u [�ph(s l (O), . . . ,s ID(O) ,z) } . It

now follows from the induction hypothesis that g. (k1 , . . . ,k) =n. , for 1�i�m. and
1 n 1

that h(n1 , . . . ,nm) =k. Hence f(k1 , . . . ,kn) =k.
Primitive recursion

Suppose that f is defined by
f(x1 , . . . ,xn,O) = h(x1 , . . . ,xn)
f(x1 , . . . ,xn,y+ 1) = g(x1 , . . . ,xn,y,f(x1 , . . . ,xn,y)),

where h and g are partial recursive functions. By the induction hypothesis,
corresponding to h (resp. , g), there is a definite program Ph (resp. , P g) and a
predicate symbol ph (resp., Pg) satisfying the properties of the theorem. We can
also suppose that Ph and P g do not have any predicate symbols in common. Define
Pf to be the union of Ph and P g together with the clauses

pf(x l ' . . . ,xn,0,z) � ph(x1 , . . . ,xn,z)
pf(x1 ' . . . ,xn,s(y),z) � pf(x1 ' . . . ,xn,y,u), Pg(xl ' . . . ,xn,y,u,z).

An argument similar to the one for composition shows that P f has the desired
properties.

Minimalisation

Suppose that f is defined by f(x 1 , . . . ,xn) = j.l.y(g(x1 , . . . ,xn,y)=O), where g is a
partial recursive function. That is, j.l.y(g(xl ' . . . ,xn,y)=O) is the least y such that
g(x1 ' . . . ,xn,z) is defined for all z�y and g(x 1 , . . . ,xn,y)=O, if such a y exists;

§10 . SLD-Refutation Procedures 55

otherwise, Jly(g(xl ' . . . ,xn,y)=O) is undefined. By the induction hypothesis,
corresponding to g, there is a defmite program P g and a predicate symbol p g
satisfying the properties of the theorem. Define P f to be P g together with the
clauses

pf(x 1 ' . . . ,xn,y) f- pg(x1 , . . . ,xn,O,u) , r(x1 , . . . ,xn,O,u,y)
r(x 1 ' . . . ,xn,y,O,y) f-
r(x l ' . . . ,xn,y,s(v),z) f- Pg(xl ' . . . ,xn,s(y),u), r(x1 ' . . . ,xn,s(y),u,z) .

An argument similar to the one for composition shows that P f has the desired
properties. •

§10. SLD-REFUTATION PROCEDURES

In this section, we consider the possible strategies a logic programming system
might adopt in its search for a refutation. We show that the use of a depth-first
search strategy has serious implications with regard to completeness. We also
briefly discuss the automatic generation of control.

The search space is a certain type of tree, called an SLD-tree. The results of
§9 show that in building the SLD-tree, the system does not have to consider
alternative computation rules. A computation rule can be fixed in advance and an
SLD-tree constructed using this computation rule. This dramatically reduces the
size of the search space.

Definition Let P be a definite program and G a definite goal. An SW-tree for
P u { G } is a tree satisfying the following:
(a) Each node of the tree is a (possibly empty) definite goal.
(b) The root node is G.
(c) Let f-A1 , . . . ,Am•· · · •Ak (Je 1) be a node in the tree and suppose that Am is the
selected atom. Then, for each input clause Af-B 1 , . . . ,Bq such that Am and A are
unifiable with mgu a, the node has a child

f-(Al , . . . ,Am-1 ,B l , . . . ,B q'Am+ 1 , . . . ,Ak)S
(d) Nodes which are the empty clause have no children.

Each branch of the SLD-tree is a derivation of P u { G } . Branches
corresponding to successful derivations are called success branches, branches
corresponding to infinite derivations are called infinite branches and branches
corresponding to failed derivations are called failure branches.

56 Chapter 2. Definite Programs

Definition Let P be a definite program,. G a definite goal and R a computation
rule. The SW-tree for P u { G} via R is the SLD-tree for P u { G } in which the
atoms selected are those selected by R.

Example Consider the program
1 . p(x,z) +-- q(x,y) , p(y,z)
2. p(x,x) +--
3. q(a,b) +-

and the goal +-p(x,b). Figures 2 and 3 show two SLD-trees for this program and
goal. The SLD-tree .in Figure 2 comes from the standard PROLOG computation
rule (select the leftmost atom). The SLD-tree in Figure 3 comes from the
computation rule which always selects the rightmost atom. The selected atoms are
underlined and the success, failure and infinite branches are shown. Note that the
first tree is finite, while the second tree is infinite. Each tree has two success
branches corresponding to the answers { x/a} and { x/b} .

This example shows that the choice of computation rule has a great bearing on
the size and structure of the corresponding SLD-tree. However, no matter what the
choice of computation rule, if P u { G } is unsatisfiable, then the corresponding
SLD-tree does have a success branch. This is just a restatement of theorem 9.4.

Theorem 10.1 Let P be a definite program, G a definite goal and R a
computation rule. Suppose that P u { G} is unsatisfiable. Then the SLD-tree for
P u { G } via R has at least one success branch.

Theorem 9.5 can also be restated.

Theorem 10.2 Let P be a definite program, G a definite goal and R a
computation rule. Then every correct answer e for P u { G } is "displayed" on the
SLD-tree for P u { G } via R.

"Displayed" means that, given e, there is a success branch such that e is an
instance of the computed answer from the refutation corresponding to this branch.

While any two SLD-trees may have greatly different size and structure, they
are essentially the same with respect to success branches.

Theorem 10.3 Let P be a definite program and G a definite goal. Then either
every SLD-tree for P u { G} has infinitely many success branches or every SLD­
tree for P u { G } has the same finite number of success branches.

§10 . SLD-Refutation Procedures

f-p(x,b)

f-q(x,y) , p(y,b)

3

f-p(b,b)

f-q(b,u), p(u,b)

failure

0
{ x/a }

success

Fig. 2. A finite SLD-tree

0
{ x/b}

success

57

Proof Using the switching lemma, we can set up a bijection between the
success branches of any pair of SLD-trees. (See problem 17.) •

For example, in Figures 2 and 3, the respective success branches giving the
answer { x/a} can be transformed into one another by using the switching lemma.

Next we tum to the problem of searching SLD-trees to find success branches.

Definition A search rule is a strategy for searching SLD-trees to find success
branches. An SW-refutation procedure is specified by a computation rule together
with a search rule.

Standard PROLOG systems employ the computation rule which always selects
the leftmost atom in a goal together with a depth-first search rule. The search rule
is implemented by using a stack of goals. An instance of the goal stack represents
the branch currently being investigated. The computation essentially becomes an

58 Chapter 2. Definite Programs

�p(x,b)

�q(x,y),p(y,b) 0
{ x/b}

success
1 2

�q(x,y), q(y,u), p(u,b) �q(x,b)

2 3

�q(x,y), q(y,u), q(u,v), p(v,b) �q(x,y), q(y,b) 0

A2 { x/a}
1 3 success

' ' ' ' ' ' ' ' ' ' ' �q(x,a)
infinite

failure

Fig. 3. An infinite SLD-tree

interleaved sequence of pushes and pops on this stack. A push occurs when the
selected atom in the goal at the top of the stack is successfully unified with the
head of a program clause. The resolvent is pushed onto the stack. A pop occurs
when there are no (more) program clauses with head to match the selected atom in
the goal at the top of the stack. This goal is then popped and the next choice of
matching clause for the new top of stack is investigated. While depth-first search
rules have undeniable problems (see below), they can be very efficiently
implemented. This approach is entirely consistent with the view, which we share,

§10 . SLD-Refutation Procedures 59

that PROLOG is primarily a programming language rather than a theorem prover.

For a system that searches depth-frrst, the search rule reduces to an ordering

rule, that is, a rule which specifies the order in which program clauses are to be
tried. Standard PROLOG systems use the order of clauses in a program as the
fixed order in which they are to be tried. This is very simple and efficient to
implement, but has the disadvantage that each call to a definition tries the clauses
in the definition in exactly the same order.

Naturally, we would prefer the search rule to be fair, that is, to be such that
each success branch on the SLD-tree will eventually be found. For infinite SLD­
trees, search rules which do not have a breadth-first component will not be fair in
general. However, a breadth-first component is less compatible with an efficient
implementation.

Let us now consider the "completeness" of logic programming systems that
use a depth-frrst search rule combined with a fixed order for trying clauses given
by their ordering in the program. As well as standard PROLOG systems, let us
also consider systems, such as IC-PROLOG [19] , MU-PROLOG [73] , [74] and
NU-PROLOG [104] , [75], which allow more complex computation rules.
According to theorem 10. 1 , if P u { G} is unsatisfiable, no matter what the
computation rule, the corresponding SLD-tree will always contain a success
branch. The question is this: will a logic programming system with a depth-first
search rule using a fixed order for trying program clauses and an arbitrary
computation rule, guarantee to always find the success branch? Unfortunately, the
answer is no. In other words, none of the earlier completeness results is applicable
to most current PROLOG systems because efficiency considerations have forced
the implementation of unfair search rules!

Let us consider an example to make this clear.

Example Let P be the program
1 . p(a,b) �
2. p(c,b) �

3. p(x,z) � p(x,y), p(y,z)
4. p(x,y) � p(y,x)

and G be the goal �p(a,c) . It is straightforward to show that P u {G } has a
refutation and, moreover, that if any clause of P is omitted, P u {G } will no

60 Chapter 2. Defin ite Programs

longer have a refutation.
We claim that no matter how the clauses of P are ordered and no matter what

the computation rule, a logic programming system using a depth-first search with
the fixed order for trying program clauses, will never find a refutation.

This claim follows immediately from the fact that clauses 3 and 4 have
completely general heads. They will therefore always match any subgoal. Thus if
clause 3 is before clause 4 in the program, the system will never consider clause 4

and vice versa. However, all the clauses are needed in any refutation. (See
problem 1 8.)

Figure 4 illustrates the situation. There we have given the SLD-tree resulting
from the use of the standard computation rule, which selects the leftmost atom, and
the order for trying clauses given by the order of the clauses in the above program.
As can be seen, the leftmost branch of this SLD-tree is infinite and thus a depth­
first search will never find the success branch. In fact, for every computation rule
and every fixed order for trying the program clauses, the leftmost branch of the
corresponding SLD-tree will be infinite.

Finally, we discuss the importance of using appropriate computation rules. It
would clearly be a substantial step towards purely declarative programming if we
were able to build systems which would automatically find an appropriate
computation rule for each program run on the system. To illustrate what is
involved in this, consider once again the slowsort program.

sort(x,y) f- sorted(y), perm(x,y)
sorted(nil) f-
sorted(x.nil) f-
sorted(x.y.z) f- x�y, sorted(y.z)
perm(nil,nil) f-
perm(x.y,u.v) f- delete(u,x.y,z), perm(z,v)
delete(x,x.y,y) f-
delete(x,y.z,y.w) f- delete(x,z,w)
O�x f-
f(x)�f(y) f- x�y

Now the first thing to note about slowsort is that it does not run on standard
PROLOG systems! Consider the goal f-sort(l7.22.6.5 .nil,y) . A standard PROLOG
system goes into an infinite loop because sorted makes longer and longer incorrect
guesses for y. Of course, sorted has no business guessing at all. It is purely a test.

§10 . SLD-Refutation Procedures

+-p(a,c)

/\
+-p(a,y), p(y,c) +-p(c,a)

+-p(b,c)

1\

\ 4
\

\
I \

+-p(b,u), p(u,c) +-p(c,b)

1'<.
+-p(b,w), p(w,u), p(u,c)

\ I \ I \

infinite
\

0
success

1\
3 4

I
I \

I \

Fig. 4. SLD-tree which illustrates the problem with depth-first search

Thus a way to fix the problem is to change the definition of sort to
sort(x,y) +- perm(x,y), sorted(y)

61

This a t least gives a program which runs, even if i t i s spectacularly inefficient. It
sorts the given list by making random permutations of it and then using sorted to
check if the permutations are sorted.

62 Chapter 2. Definite Programs

The attraction of the slowsort program is that it does give a very clear logic
component for a sorting program. The disadvantage for standard PROLOG systems
is that the only way to make it reasonably efficient is to substantially change the
logic. To keep the above simple logic what we require is a computation rule which
coroutines between perm and sorted. In this case, the list is given to perm which
generates a partial permutation of it and then checks with sorted to see if the
partial permutation is correct so far. If sorted finds that the partial permutation is
indeed sorted, perm generates a bit more of the permutation and then checks with
sorted again. Otherwise, perm undoes a bit of the partial permutation, generates a
slightly different partial permutation and checks with sorted again. Such a program
is clearly going to be a great deal more efficient than the one which generates an
entire permutation before checking to see if it is sorted.

Thus we can obtain a more efficient sorting program by adding clever control
to the simple logic. (Of course, much more efficient sorting programs are known,
but this is not the point of the discussion.) There are now a number of PROLOG
systems which allow the programmer to specify such control. For example, in
NU-PROLOG [104] the programmer could add the when declarations

?- sorted(nil) when ever
?- sorted(x.y) when y

to the program. If the argument of the call to sorted either is nil or has the form
s.t, where t is a non-variable, then the call proceeds. Thus the calls sorted(nil) and
sorted(3.2.x) will proceed. If the argument of the call to sorted does not unify
with nil or x.y, then the call proceeds (and then fails). If the argument of the call
to sorted has the form y or s.y, then the call to sorted delays. Thus the call
sorted(3.y) will delay. When a call sorted(y) or sorted(s.y) is delayed, the variable
y is marked. When this variable is bound later, the delayed subgoal is resumed.
This simple mechanism achieves the desired behaviour.

In standard PROLOG systems, a "generator" subgoal should come before a
"test" subgoal. Thus perm should be put before sorted, if slowsort is to be run on
a standard PROLOG system. However, in NU-PROLOG, the "test" should be put
before the "generator" . This order, together with appropriate when declarations
on the "test" , ensures proper coroutining between the "test" and the "generator".
The coroutining starts by delaying the "test". The "generator" is then run until it
creates a binding which causes the "test" to be resumed, and so on.

§1 1 . Cuts 63

When declarations would not be of major interest if their addition always
required programmer intervention. However, NU-PROLOG has a preprocessor
which is able to automatically add when declarations to many programs in order to
obtain more sensible behaviour. For example, given the slowsort program as input,
the preprocessor outputs the above when declarations for sorted. (It also gives
when declarations for perm, delete and �. but these are not needed for the use we
have made of slowsort.) It does this by finding clauses with recursive calls which
could cause infinite loops and generating sufficient when declarations to stop the
loops. The preprocessor is also able to recognise that sorted is a "test" and should
appear before perm in the first clause. It will reorder sorted and perm, if necessary.
An account of the automatic generation of control is given in [74] . By relieving
programmers of some of the responsibility for providing control in this way, NU­
PROLOG is a step towards the ideal of purely declarative programming.

§11. CUTS

In this section, we discuss the cut, which is a widely used and controversial
control facility offered by PROLOG systems. It is usually written as " ! " in
programs, although some systems call it " slash" and write it as "/" . There has
been considerable discussion of the advantages and disadvantages of cut and, in
particular, whether it "affects the semantics" of programs in which it appears. We
argue that cut does not affect the declarative semantics of definite programs, but it
can introduce an undesirable form of incompleteness into the refutation procedure.
(In § 15 , we discuss the effect that cuts can have in a program which has negative
literals in the body of a program clause.)

First, we must be precise about what a cut actually does. Throughout this
discussion, we restrict attention to systems which always select the leftmost atom

in a goal. Cut is simply a non-logical annotation of programs which conveys
certain control information to the system. Although it is written like an atom in the
body of a clause, it is not an atom and has no logical significance at all. On the
other hand, for pedagogical reasons, it is sometimes convenient to regard it as an
atom which succeeds immediately on being called. The declarative semantics of a
program with cuts is exactly the declarative semantics of the program with the cuts
removed. In other words, the cuts do not in any way modify the declarative
reading of the program.

64 Chapter 2. Definite Programs

What, then, is the nature of the control information conveyed by a cut? First,

we need some terminology. Let us call the goal which caused the clause containing

the cut to be activated, the parent goal. That is, the selected atom in the parent

matched the head of the clause whose body contains the cut. Now, when

" selected", the cut simply "succeeds" immediately. However, if backtracking

later returns to the cut, the system discontinues searching in the subtree which has

the parent goal at the root. The cut thus causes the remainder of that subtree to be

pruned from the SLD-tree.

To clarify this, consider the following program fragment

A � B, C

B � D, ! , E

D �

where A, B, C, D and E are atoms. In Figure 5, we show part of the SLD-tree for

a call to this program. The selected atom B in the goal �B,C causes the cut to be
introduced. The atom D is then selected and succeeds. The cut then succeeds, but

the subgoal E eventually fails and the system backtracks to the cut. At this point,

"deep" backtracking occurs. The system discontinues any further searching in the

subtree which has the root �B,C and, instead, resumes the search with the next

choice for the goal �A. This can be implemented very simply by popping goals

from the goal stack until the goal �A becomes top of the stack.

So a cut "merely" prunes the SLD-tree. Is it possible that a cut can somehow

be harmful? The key issue is whether or not there is an answer to the (top level)

goal in the part of the SLD-tree pruned by the cut. If there is no answer in the

pruned part (that is, if the pruned part does not contain a success branch), then we

call such a use of cut safe. However, if a success branch gets pruned by the cut,

we call such a use of cut unsafe. Safe uses of cut are beneficial - they improve

efficiency without missing answers. Unsafe uses of cut are harmful to the extent

that a correct answer is missed.

Thus the harmful effect of cuts is that they can introduce a form of

incompleteness into the SLD-resolution implementation of correct answer.

Theorem 9.5 assures us that in the absence of cuts every correct answer can be

computed. However, a cut in a program can destroy the completeness guaranteed

by this theorem.

§1 1 . Cuts

When cut is encountered

on backtracking, the search

is resumed here

f-! , E, C

I
f-E, C

D
Failed subtree with

root f-E, C

f-D, ! , E, C

I

f-A

f-B, C \

I
I
\
\

This part of subtree

\
\

with root f-B, C is not

searched because of the cut

Fig. 5. The effect of cut

65

66 Chapter 2. Definite Programs

Note that this form of incompleteness is of a different nature from the form of
incompleteness mentioned in § 10, which occurs because a depth-first search can
get lost down an infinite branch. A system which allows the search to become lost
down an infinite branch does not give any answer at all (only a stack overflow
message!) . With an unsafe use of cut, a system can answer "no" when it should
have answered "yes" . However you look at it, the system has given an incorrect
answer.

But, there is a further, much more harmful, effect of cuts. This occurs when
programmers take advantage of cuts to write programs which are not even
declaratively correct. For example, consider the program

max(x,y,y) f- x�y. !
max(x,y,x) f-.-

where max(x,y,z) is intended to be true iff z is the maximum of x and y.
Advantage has been taken of the effect of the cut to leave the test x>y out of the
second clause. Procedurally, the semantics of the above program is the maximum
relation. Declaratively, it is something else entirely. Such programs severely
compromise the credibility of logic programming as declarative programming.

Admittedly, there are occasions when efficiency considerations force the use of
such aberrations. However, it is far better for programmers, whenever possible, to
make use of such higher level facilities as (sound implementations of) if-then-else,
negation and not equals, which are not only reasonably efficient, but also lead to
programs whose declarative semantics more accurately reflects the relation being
computed.

PROBLEMS FOR CHAPTER 2

1 . Complete the proof of proposition 6. 1 .

2 . Find a finite set S of clauses and a non-empty set {Mi } ie l of Herbrand models
for S such that n. 1M. is not a model for S.

l E 1

3. Let X be a directed subset of the lattice of Herbrand interpretations of a definite
program. Show that { A1 ' .. . ,An } t;: lub(X) iff { A 1 ' . . . ,An } t;: I, for some le X.

Problems for Chapter 2

4. Let P be the program
p(a) (- p(x), q(x)
p(f(x)) (- p(x)
q(b) (-
q(f(x)) (- q(x)

Show that Tp.!.ro = {p(fl(a)) : ne ro} u { q(fl(b)) : ne ro}
Tp.!.ro2 = lfp(Tp) = { q(fl(b)) : ne ro } .

5. Let P be the program
q(b) (-
q(f(x)) (- q(x)
p(f(x)) (- p(x)
p(a) (- p(x)
r(c) (- r(x) , q(x)
r(f(x)) (- r(x)

67

=

Show that :J> iro = {q(fl(b)) : ne ro } , Tp.!.ro = {p(fl(a)) : nero} u {q(fl(b)) :

ne ro } u (r(f11(c)) : ne ro} and Tp.!.ro2 = (p(fl(a)) : ne ro} u {q(fl(b)) : nero} =

gfp(Tp)·

6. Let P be the program
p i (f(x)) (- p i (x)
p2(a) (- PI (x)
p2(f(x)) (- p2(x)
p3(a) (- p2(x)
p3(f(x)) (- p3(x)
Pia) (- p3(x)
p4(f(x)) (- PiX)
p5(a) (- p4(x)
p5(f(x)) (- p5(x)

Show that T p.J..co4 '# gfp(T p). but T p.J..ro5 = 0 = gfp(T p) = lfp(T p)·

7. (a) Let P be a definite program which contains no function symbols. Show that
Tp.!.ro = gfp(Tp).
(b) Let P be a definite program with the property that, for each clause, each
variable in the body of the clause also appears in the head. Show that
T p.J..ro = gfp(T p)·

68 Chapter 2 . Definite Programs

8. Let P be a definite program with the following property: for each clause in P, if

the clause has variables in the body that do not appear in the head, then the set of

variables in the head is disjoint from the set of variables in the body. Prove that

gfp(Tp) = Tp
.!.ron, for some finite n depending on P.

9. Give an example of a correct answer which is not computed.

10. Let P be the slowsort program, G the goal �sort(l .O.nil,y) and R the

computation rule which always selects the leftmost atom. Show directly that

P v { G } has an SLD-refutation via R.

1 1 . Consider the program

leaves(tree(void,v,void),v.x-x) �

leaves(tree(u,v,w),x-y) � leaves(u,x-z), leaves(w,z-y)

Find a goal such that a PROLOG system without the occur check will answer the

goal incorrectly.

12. Show that if the occur check is omitted from the unification algorithm, one can

use SLD-resolution to "prove" that V'x 3y p(x,y) � 3y V'x p(x,y) is valid.

(Hint: this problem requires the use of Skolem functions [66, p. 126]).

13. Find an example to show that Ae Tp
'tn, for some ne ro, does not necessarily

imply that there exists an SLD-refutation of length � , n for P u { �A } .

14. Let P be a definite program and A an atom. Determine whether the following

statement is correct or not:

'V(A) is a logical consequence of P iff [A] 6 Tp
'tn, for some ne ro.

15. Complete the details of the proof of theorem 9.2.

16. Let P be the program

p(x) � q(x), r(x)

q(a) �

r(x) � r1 (x)

r1 (a) �
Let R be the computation rule which always selects the leftmost atom and R' be

Problems for Chapter 2 69

the computation rule which always selects the rightmost atom. Use the switching

lemma to transform the refutation of P u { �p(x) } via R into one via R'.

17. Complete the details of the proof of theorem 10.3.

1 8. Let P be the program

p(a,b) �

p(c,b) �

p(x,z) � p(x,y), p(y,z)

p(x,y) � p(y,x)

and G be the goal �p(a,c). Show that, if any clause of P is omitted, P u { G } does

not have a refutation (no matter what the computation rule).

19. Find a definite program P and a definite goal G such that each SLD-tree for

P u { G } has two success branches, but no depth-frrst search will ever find both

success branches no matter what the computation rule and even if the program

clauses can be dynamically reordered for each call to each definition of the

program.

20. Let P be the slowsort program and G the goal �sort(1 .0.2.nil,y). Find an

SLD-refutation of P u { G } using a computation rule which suitably delays calls to

sorted.

2 1 . What problems arise in a PROLOG system which allows coroutining

computation rules and also has the cut facility? How might these problems be
solved?

22. Show that the condition in the lifting lemma that the variables in the input clauses

be distinct from the variables in a and G cannot be dropped.

23. Give an example of a definite program P, a definite goal G, and a correct answer e
for P u { G } such that there does not exist a computed answer a for P u { G } and a

substitution 'Y for which e = cry.

Chapter 3

NORMAL PROGRAMS

In this chapter, we study various forms of negation. Since only positive
information can be a logical consequence of a program, special rules are needed to
deduce negative information. The most important of these rules are the closed
world assumption and the negation as failure rule. This chapter introduces normal
programs, which are programs for which the body of a program clause is a
conjunction of literals . The major results of this chapter are soundness and
completeness theorems for the negation as failure rule and SLDNF-resolution for
normal programs.

§12. NEGATIVE INFORMATION

The inference system we have studied so far is very specialised SLD­
resolution applies only to sets of Horn clauses with exactly one goal clause. Using
SLD-resolution, we can never deduce negative information. To be precise, let P be
a definite program and Ae Bp· Then we cannot prove that -A is a logical
consequence of P. The reason is that P u { A } is satisfiable, having Bp as a model.

To illustrate this, consider the program
studentGoe) +--
student(bill) +--
studentGim) +--
teacher(mary) +-

Now suppose we wish to establish that mary is not a student, that is,
-student(mary). As we have shown above, -student(mary) is not a logical
consequence of the program. However, note that student(mary) is also not a
logical consequence of the program. What we can do now is invoke a special
inference rule: if a ground atom A is not a logical consequence of a program, then

72 Chapter 3. Normal Programs

infer -A. This inference rule, introduced by Reiter [86] , is called the closed world

assumption (CW A). (Because of the approach taken here to the CW A, we would
have preferred it to have been called the closed world rule.) Under this inference
rule, we are entitled to infer -student(mary) on the grounds that student(mary) is
not a logical consequence of the program.

The CW A is often a very natural rule to use in a database context. In
relational databases, this rule is usually applied - information not explicitly present
in the database is taken to be false. Of course, in logic programs, the situation is
complicated by the presence of non-unit clauses. The information content of a
program is not determined by mere inspection. It is now the set of all things which
can be deduced from the program. Whether or not use of the CW A is justified
must be determined for each particular application. While it is often natural to use
the CWA, its use may not always be justified.

The CWA is an example of a non-monotonic inference rule. Such rules are
currently of great interest in artificial intelligence. (See, for example, [57] and the
references therein.) An inference rule is non-monotonic if the addition of new
axioms can decrease the set of theorems that previously held. As an example, if we
add sufficient clauses to the above program so as to be able to deduce
student(mary), then we will no longer be able to use the CWA to infer
-student(mary).

Now let us consider a program P for which the CW A is applicable. Let Ae Bp
and suppose we wish to infer -A. In order to use the CWA, we have to show that
A is not a logical consequence of P. Unfortunately, because of the undecidability
of the validity problem of frrst order logic, there is no algorithm which will take an
arbitrary A as input and respond in a finite amount of time with the answer
whether A is or is not a logical consequence of P. If A is not a logical
consequence, it may loop forever. Thus, in practice, the application of the CW A is
generally restricted to those AEBp whose attempted proofs fail finitely. Let us
make this idea precise.

For a definite program P, the SW finite failure set of P is the set of all AEBp
for which there exists a finitely failed SLD-tree for P u { f-A } , that is, one which
is finite and contains no success branches. By proposition 13 .4 and corollary 7.2,
if A is in the SLD finite failure set of P, then A is not a logical consequence of P
and every SLD-tree for P u { f-A} contains only infinite or failure branches.

§12 . Negative Information 73

Now let us return to the CWA. In order to show that Ae Bp is not a logical

consequence of P, we can try giving �A as a goal to the system. Let us assume

that A is not, in fact, in the success set of P. Now there are two possibilities:

either A is in the SLD finite failure set or it is not. If A is in the SLD finite

failure set, then the system can construct a finitely failed SLD-tree and return the

answer "no". The CWA then allows us to infer -A. In the other case, each

SLD-tree has at least one infinite branch. Thus, unless the system has a

mechanism for detecting infinite branches, it will never be able to complete the

task of showing that A is not a logical consequence of P.

These considerations lead us to another non-monotonic inference rule, called

the negation as failure rule. This rule, frrst studied in detail by Clark [15] , is also

used to infer negative information. It states that if A is in the SLD finite failure set

of P, then infer -A. Since the SLD finite failure set is a subset of the complement

of the success set, we see that the negation as failure rule is less powerful than the

CW A. However, in practice, implementing anything beyond negation as failure is

difficult. The possibility of extending negation as failure closer to the CW A by

adding mechanisms for detecting infinite branches has hardly been explored.

Negation as failure is easily and efficiently implemented by "reversing" the

notions of success and failure. Suppose Ae Bp and we have the goal � -A. The

system tries the goal �A. If �A succeeds, then � -A fails, while if it fails

finitely, then � -A succeeds.

Next we note that definite programs lack sufficient expressiveness for many

situations. The problem is that often a negative condition is needed in the body of

a clause. As an example, consider the definition

different(x,y) � member(z,x), -member(z,y)

different(x,y) � -member(z,x), member(z,y)

which defines when two sets are different. Practical PROLOG programs often

require such extra expressiveness. Thus it is important to extend the definition of

programs to include negative literals in the bodies of clauses. This is done in § 14,
where normal programs are introduced. These are programs for which the body of

a program clause is a conjunction of literals.

However, even though normal programs allow negative literals in the bodies of

program clauses, we still cannot deduce negative information from them. As

before, the reason is that a normal program only contains the if halves of the

74 Chapter 3. Normal Programs

definitions of its predicate symbols, so that its Herbrand base is a model of the

program. To deduce negative information from a normal program, we could

"complete" the program. This involves adding the only-if halves of the definitions

of the predicate symbols, together with an equality theory, to the program. In our

previous example, if we add the missing only-if half to the definition of student,

we obtain

'Vx (student(x)H(x=joe)v(x=bill)v(x=jim))

Adding appropriate axioms for =, we can now deduce -student(mary). This

process of completion is another way of capturing the idea that information not

given by the program is taken to be false. The concept of a correct answer can be

extended to this context by defining an answer to be correct if the goal, with the

answer applied, is a logical consequence of the completion of the program.

Having given the definition of the appropriate declarative concept, it remains

to give the definition of a computed answer, which is the procedural counterpart of

a correct answer. The mechanism usually chosen to compute answers is to use

SLDNF-resolution, which is SLD-resolution augmented by the negation as failure

rule. In § 15 and § 1 6, we study soundness and completeness results for SLDNF­
resolution and the negation as failure rule for normal programs.

For additional discussion of the relationship between the CW A, the negation as

failure rule and the completion of a program, we refer the reader to papers by

Shepherdson [95] , [97] and [98] . In [95], alternatives to the soundness theorems

15.4 and 15.6 below are presented, based on the idea of making explicit the

appropriate first order theory underlying the CWA. Problems 26-3 1 at the end of

this chapter are based on results from [95] . [98] contains a detailed discussion of

some of the forms of negation used in logic programming, which as well as the

approaches to negation based on (classical) first order logic mentioned above, also

include the use of 3-valued logic, modal logic and intuitionistic logic. In this

book, we concentrate on the approach to negation which is based on the

completion of a program and first order logic .

§13. FINITE FAILURE

The main results of this section are several characterisations of the finite

failure set of a definite program.

§13. FinHe Failure 75

First, we give the definition of the finite failure set of a definite program. This
definition was first given by Lassez and Maher [54] .

Definition Let P be a definite program. Then �· the set of atoms in Bp which
are finitely failed by depth d, is defined as follows:
(a) AeF� if A¢Tp.J.. l .

(b) Ae�, for d>l , if for each clause B+-B 1 ' . . . ,Bn in P and each substitution e
such that A=BO and B 1e, . . . ,B e are ground, there exists k such that lS:kS:n and

_n. 1 n
Bk0e l:'p- .

Definition Let P be a definite program. The finite failure set Fp of P is
defined by Fp = u� 1�.

Note the following simple relationship between Fp and T p.J..ro. (See problem
1 .)

Proposition 13.1 Let P be a definite program. Then Fp = Bp\T P.J..ro.

We now give, more formally, the definition of the SLD finite failure set of a
definite program [4] , [1 5] .

Definition Let P be a definite program and G a definite goal. A finitely failed

SLD-tree for P u { G } is one which is finite and contains no success branches.

Definition Let P be a definite program. The SW finite failure set of P is the
set of all Ae Bp for which there exists a finitely failed SLD-tree for P u { +-A } .

Note carefully in this last definition that there is no requirement that all SLD­
trees fail finitely, only that there exists at least one.

Our main task is to establish the equivalence of Fp and the SLD finite failure
set. We begin with two lemmas, due to Apt and van Emden [4] , whose easy
proofs are omitted. (See problems 2 and 3.)

Lemma 13.2 Let P be a definite program, G a definite goal and e a
substitution. Suppose that P u {G} has a finitely failed SLD-tree of depth s; k.
Then P u {GO} also has a finitely failed SLD-tree of depth s; k.

Lemma 13.3 Let P be a definite program and Aie Bp, for i=l , . . . ,m. Suppose
that P u { +-A1' . . . ,Am} has a finitely failed SLD-tree of depth s; k. Then there
exists ie { 1 , . . . ,m} such that P u (+-Ai } has a finitely failed SLD-tree of depth S: k.

76 Chapter 3. Normal Programs

The next proposition is due to Apt and van Emden [4] .

Proposition 13.4 Let P be a definite program and Ae Bp. If P u { f-A } has a
finitely failed SLD-tree of depth :;; k, then A�T pJ..k.

Proof Suppose first that P u { f-A } has a finitely failed SLD-tree of depth 1 .
Then A�Tp.!.l .

Now assume the result holds for k-1 . Suppose that P u { f-A} has a finitely
failed SLD-tree of depth :;; k. Suppose, to obtain a contradiction, that AeTp

J..k.
Then there exists a clause Bf-B l ' . . . ,Bn in P such that A=BO and
{ B 1e, . . . ,Bn9 } !:.: Tp.!.(k-1), for some ground substitution e. Thus there exists an
mgu "(such that Ay=By and 9=)U, for some CJ. Now f-(B 1 , . . . ,Bn)"(is the root of a
finitely failed SLD-tree of depth :;; k-1 . By lemma 13.2, so also is f-(B 1 , . . . ,B0)9.
By lemma 1 3.3, some f-Bie is the root of a finitely failed SLD-tree of depth :;;
k-1 . By the induction hypothesis, Bie�Tp

.l..(k-1) , which gives the contradiction. •

It is interesting that the (strict) converse of proposition 13.4 does not hold.
(See problem 4.) Next we note that SLD finite failure only guarantees the existence
of one finitely failed SLD-tree - others may be infinite. It would be helpful to
identify exactly those ways of selecting atoms which guarantee to find a finitely
failed SLD-tree, if one exists at all. For this purpose, the concept of fairness was
introduced by Lassez and Maher [54] .

Definition An SLD-derivation is fair if it is either failed or, for every atom B
in the derivation, (some further instantiated version of) B is selected within a finite
number of steps.

Note that there are SLD-derivations via the standard computation rule which
are not fair. One can achieve fairness by, for example, selecting the leftmost atom
to the right of the (possibly empty set of) atoms introduced at the previous
derivation step, if there is such an atom; otherwise, selecting the leftmost atom.

Definition An SLD-tree is fair if every branch of the tree is a fair SLD­
derivation.

Proposition 13.5 Let P be a definite program and f-A1 , . . . ,Am a definite goal.
Suppose there is a non-failed fair derivation f-Al ' " .. ,Am=G0, 01 ' . . . with mgu 's
e1 , e2, Then, given ke ro, there exists ne ro such that [Aie1 . . . 9n] � Tp

J..k, for
i=1 , . . . ,m.

§14. Programming with the Completion 77

Proof Theorem 7.4 shows that we can assume that the derivation is infinite.
Clearly it suffices to show that given ie { 1 , . . . ,m} and ke ro, there exists ne ro such
that [Aie1 . . . en] � Tp.!.k.

Fix ie { 1 , . . . ,m } . The result is clearly true for k=O. Assume it is true for k-1 .
Suppose Aie1 . . . ep-1 is selected in the goal Gp-1 . (By fairness, Ai must eventually
be selected.) Let Gp be f-B l' . . . ,Bq, where q� l . By the induction hypothesis, there
exists se ro such that uf=1 [Bjep+l" 'ep+s] !;; Tp.!.(k-1). Hence we have that

[Aie 1 . . . ep+sJ !;;;;; Tp<uf= 1[Bjep+l"'ep+sD !;;;;; Tp<Tp.l..(k-1)) = TpJ..k. •

Combining the results of Apt and van Emden [4] and Lassez and Maher [54] ,
we can now obtain the characterisations of the finite failure set.

Theorem 13.6 Let P be a definite program and Ae Bp. Then the following are
equivalent:
(a) Ae Fp.

(b) A�TpJ..ro.
(c) A is in the SLD finite failure set.
(d) Every fair SLD-tree for P u { f-A} is finitely failed.

Proof (a) is equivalent to (b) by proposition 13. 1 . That (d) implies (c) is
obvious. Also (c) implies (b) by proposition 13 .4.

Finally, suppose that (d) does not hold. Then there exists a non-failed fair
derivation for f-A. By proposition 13.5, AeTpJ..ro. Thus (b) does not hold. •

Theorem 1 3 .6 shows that fair SLD-resolution is a sound and complete
implementation of fmite failure.

§14. PROGRAMMING WITH THE COMPLETION

In this section, normal programs are introduced. These are programs whose
program clauses may contain negative literals in their body. The completion of a
normal program is also defined. The completion will play an important part in the
soundness and completeness results for the negation as failure rule and SLDNF­
resolution. The definition of a correct answer is extended to normal programs.

Definition A program clause is a clause of the form
Af-L1 , . . . ,Ln

where A is an atom and L 1 , . . . ,Ln are literals .

78 Chapter 3. Normal Programs

Definition A normal program is a finite set of program clauses.

Definition A normal goal is a clause of the form
t-Ll , . . . ,Ln

where L1 ' . . . ,Ln are literals.

Definition The definition of a predicate symbol p in a normal program P is the
set of all program clauses in P which have p in their head.

Every definite program is a normal program, but not conversely.

In order to justify the use of the negation as failure rule, Clark [15] introduced
the idea of the completion of a normal program. We next give the definition of
the completion.

Let p(t1 , . . . ,t)t-L1 , . . . ,L be a program clause in a normal program P. We .n m
will require a new predicate symbol =, not appearing in P, whose intended
interpretation is the identity relation. The first step is to transform the given clause
into

p(xl , . . . ,xn)t-(xl =tl)A . . . A(Xn =tn)ALl A . . . ALm
where x1 , . . . ,xn are variables not appearing in the clause. Then, if y 1 , . . . ,y d are the
variables of the original clause, we transform this into

p(xl , . . . ,xn)t-3y 1 . . . 3y d ((xl =t1)A . . . A(Xn =tn)AL1A . . . ALm)
Now suppose this transformation is made for each clause in the definition of p.

Then we obtain le 1 transformed formulas of the form
p(xl , . . . ,xn)+-El

p(xl , . . . ,xn)t-Ek
where each Ei has the general form

3y 1 . . . 3y d ((xl =tl)A . . . A(Xn =tn)ALl A . . . ALm)
The completed definition of p is then the formula

'Vx1 . . . 'VX:n (p(xl ' . . . ,xn)�E1 v . . . v�)

Example Let the definition of a predicate symbol p be
p(y) +- q(y), -r(a,y)
p(f(z)) +- -q(z)
p(b) +-

Then the completed definition of p is

§14 . Programming with the Completion 79

Vx (p(x) f-+ (3y ((x=y)Aq(y)A-r(a,y)) v 3z((x=f(z))A-q(z)) v (x=b)))

Example The completed definition of the predicate symbol student from the

example in § 12 is

Vx (student(x)f-+(x=joe)v(x=bill)v(x=jim))

Some predicate symbols in the program may not appear in the head of any

program clause. For each such predicate symbol q, we explicitly add the clause

Vx1 . . . Vxn -q(x 1 , . . . ,xn)

This is the definition of such q given implicitly by the program. We also call this

clause the completed definition of such q.

It is essential to also include some axioms which constrain =. The following

equality theory is sufficient for our purpose. In these axioms, we use the standard

notation "# for not equals.

1 . c"#d, for all pairs c,d of distinct constants.

2. V'(f(x1 , . . . ,xn)"#g(yl ' . . . ,y
m

)), for all pairs f,g of distinct function symbols.

3. V'(f(x
l
' ... ,xn)"#C), for each constant c and function symbol f.

4. V'(t[x]"#x), for each term t[x] containing x and different from x.

5. V'((x1"#y1)v . . . v(xn"#Yn)-+f(xl ' . . . ,xn)"#f(yl ' . .. ,yn
)), for each function symbol f.

6. V'(x=x).

7. V'((x1=y1)A ... A(Xn=Yn)-+f(x1 , . . . ,xn)=f(yl ' . . . ,yn
)), for each function symbol f.

8. V'((x 1=y 1)A . . . A(xn=Yn)-+(p(x 1 , . . . ,xn)-+p(yl ' . . . ,yn))), for each predicate symbol p

(including =).

Definition Let P be a normal program. The completion of P, denoted by

comp(P), is the collection of completed definitions of predicate symbols in P
together with the equality theory.

Axioms 6, 7 and 8 are the usual axioms for first order theories with equality.

Note that axioms 6 and 8 together imply that = is an equivalence relation. (See

problem 9.) The equality theory places a strong restriction on the possible

interpretations of =. This restriction is essential to obtain the desired justification

of negation as failure. Roughly speaking, we are forcing = to be interpreted as the

identity relation on Up. (See problem 10.)

Now, as Clark [15] has pointed out, it is appropriate to regard the completion

of the normal program, not the normal program itself, as the prime object of

interest. Even though a programmer only gives a logic programming system the

80 Chapter 3. Normal Programs

normal program, the understanding is that, conceptually, the normal program is
completed by the system and that the programmer is actually programming with
the completion. Corresponding to this notion, we have the concept of a correct
answer. The problem then arises of showing that SLD-resolution, augmented by the
negation as failure rule, is a sound and complete implementation of the declarative
concept of a correct answer. We tackle this problem in § 15 and § 1 6.

Definition Let P be a normal program and G a normal goal. An answer for
P u { G } is a substitution for variables in G.

Definition Let P be a normal program, G a normal goal �L1 , ... ,Ln, and e an
answer for P u { G } . We say e is a correct answer for comp(P) u { G } if
'v'((L r'' . . . ALn)e) is a logical consequence of comp(P).

It is important to establish that this definition generalises the definition of
correct answer given in §6. The first result we need to prove this is the following
proposition.

Proposition 14.1 Let P be a normal program. Then P is a logical consequence
of comp(P).

Proof Let M be a model for comp(P). We have to show that M is a model for
P. Let p(tl ' . . . ,tn)�L1 , . . . ,Lm be a program clause in P and suppose that L1 ' . . . ,Lm
are true in M, for some assignment of the variables y 1 , . . . ,y d in the clause.

Consider the completed definition of p
'Vx1 . . . 'Vxn (p(x1 , .. . ,xn)�E1v . . . v�)

and suppose Ei is
3y 1 . . . 3y d ((x1 =tl)A . . . A(Xn =tn)AL1 A . . . ALm)

Now let x. be t. (1Sj!:On), for the same assignment of the variables y l ' . . . ,y d as
J J .

above. Thus Ei is true in M, since L1 , . . . ,Lm are true in M and also since M must
satisfy axiom 6. Hence p(t1 , . . . ,tn) is true in M. •

We now define a mapping � from the lattice of interpretations based on some
pre-interpretation J to itself.

Definition Let J be a pre-interpretation of a normal program P and I an
interpretation based on J. Then T{,<I) = { AJ,V : A�L1 A . . . ALn e P, V is a
variable assignment wrt J, and L1A . . . ALn is true wrt I and V } .

§14 . Programming with the Completion 81

When J is the Herbrand pre-interpretation of P, we write Tp instead of �·
This convention is consistent with our earlier usage of T p· Note that � is
generally not monotonic. For example, if P is the program

p � -p
then T p is not monotonic. However, if P is a definite program, then � is
monotonic. Many other properties of Tp easily extend to -r:,.

Proposition 14.2 Let P be a normal program, J a pre-interpretation of P, and I
an interpretation based on J. Then I is a model for P iff -r:,(I) !:: I.

Proof Similar to the proof of proposition 6.4. (See problem 1 1 .) •

The next result shows that fixpoints of -r:, give models for comp(P).

Proposition 14.3 Let P be a normal program, J a pre-interpretation of P, and I
an interpretation based on J. Suppose that I, together with the identity relation
assigned to =, is a model for the equality theory. Then I, together with the identity
relation assigned to =, is a model for comp(P) iff -r:,(I) = I.

Proof Suppose first that -r:,(I) = I. Since we have assumed that I, together with
the identity relation assigned to =, is a model for the equality theory, it suffices to
show that this interpretation is a model for each of the completed definitions of
comp(P). Consider a completed definition of the form Vx1 . . . Vxn -q(x1 ' . . . ,xn).
Since I is a fixpoint, it is clear that the interpretation is a model of this formula.
Now consider a completed definition of the form

Vx1 . . . Vxn (p(x1 , . . . ,xn)�E1 v . . . vEk)
Since -r:,(l) k; I, it follows that the interpretation is a model for the formula

Vx1 . . . Vxn (p(x1 , . . . ,xn)�E1 v .. . vEk)
Also, since -r:,(I) � I, it follows that the interpretation is a model for the formula

Vx 1 . . . Vxn (p(x1 , . . . ,xn)�E1 v . . . vEk)
Conversely, suppose that I, together with the identity relation assigned to = , is

a model for the completion. Then using the fact that the interpretation is a model
for formulas of the form

Vx1 . . . Vxn (p(x1 , . . . ,xn)�E1 v . . . vEk)
it follows that -r:,(I) k; I. Similarly, using the fact that the interpretation is a
model for formulas of the form

Vx1 . . . Vxn (p(x1 , . . . ,xn)�E1 v . . . vEk)
it follows that -r:,(l) � I. •

82 Chapter 3. Normal Programs

Proposition 14.4 Let P be a definite program and Ae Bp· Then Ae gfp(Tp) iff
comp(P) u {A } has an Herbrand model.

Proof Suppose Ae gfp(Tp)· Then gfp(Tp) u { s=s : seUp } is an Herbrand
model for comp(P) u { A } , by proposition 14.3.

Conversely, suppose comp(P) u {A } has an Herbrand model M. By the
equality theory, the identity relation on Up must be assigned to = in the model M.
Thus M has the form I u { s=s : se UpJ . for some Herbrand interpretation I of P.
Hence I=Tp(l), by proposition 14.3, and so Ae gfp(Tp)· I

Proposition 14.5 Let P be a definite program and A1 , . . . ,Am be atoms. If
\f(A 1 "· · ·"Am) is a logical consequence of comp(P), then it is also a logical
consequence of P.

Proof Let x 1 ' . . . ,xk be the variables in A1A . . . AAm. We have to show that
'v'x1 . . . 'v'xk (A1 A . . . AAm) is a logical consequence of P, that is,
P u { -'v'x1 . . . 'v'xk (A1 A . . . I\Am) } is unsatisfiable or, equivalently, S
P u {-A} v . . . v-A� } is unsatisfiable, where Ai is Ai with x1 ' . . . ,xk replaced by
appropriate Skolem constants.

Since S is in clause form, we can restrict attention to Herbrand interpretations
of S. Let I be an Herbrand interpretation of S. We can also regard I as an

interpretation of P. (Note that I is not necessarily an Herbrand interpretation of P.)
Suppose I is a model for P. Consider the pre-interpretation J obtained from I by
ignoring the assignments to the predicate symbols in I. By proposition 14.2, we
have that �(I) !:;;; I. Since � is monotonic, proposition 5.2 shows that there
exists a fixpoint I' � I of Tf,. Since I', together with the identity relation
assigned to =, is obviously a model for the equality theory, proposition 14.3 shows
that this interpretation is a model for comp(P) . Hence -A '1 v . . . v-A� is false in this
interpretation. Since I' !:;;; I, we have that -A} v . . . v-A� is false in I. Thus S is
unsatisfiable. I

Note that by combining propositions 14. 1 and 14.5, it follows that the positive

information which can be deduced from comp(P) is exactly the same as the
positive information which can be deduced from P. To be precise, we have the
following result.

Theorem 14.6 Let P be a definite program, G a definite goal, and 8 an
answer for P u { G } . Then 8 is a correct answer for comp(P) u { G} iff 8 is a

§14. Programming with the Completion 83

correct answer for P u { G } .

Theorem 14.6 shows that the definition of correct answer given i n this section
generalises the definition given in §6.

Every normal program is consistent, but the completion of a normal program
may not be consistent. (See problem 8.) We now investigate a weak syntactic
condition sufficient to ensure that the completion of a normal program is
consistent. The motivation is to limit the use of negation in recursive rules to keep
the model theory manageable.

Definition A level mapping of a normal program is a mapping from its set of
predicate symbols to the non-negative integers. We refer to the value of a predicate
symbol under this mapping as the level of that predicate symbol.

Definition A normal program is hierarchical if it has a level mapping such
that, in every program clause p(t 1 , . . . ,tn) +-- L1 , . . . ,Lm, the level of every predicate
symbol occurring in the body is less than the level of p.

Definition A normal program is stratified if it has a level mapping such that,
in every program clause p(t 1 , . . . ,tn) +-- L1

, . . . ,Lm, the level of the predicate symbol
of every positive literal in the body is less than or equal to the level of p, and the
level of the predicate symbol of every negative literal in the body is less than the
level of p.

Clearly, every definite program and every hierarchical normal program is
stratified. We can assume without loss of generality that the levels of a stratified
program are O, l , . . . ,k, for some k. Stratified normal programs were introduced by
Apt, Blair and Walker [3) as a generalisation of a class of databases discussed by
Chandra and Harel [1 3] , and later, independently, by Van Gelder [109] . Other
papers on stratified programs are contained in [70] .

Even though the mapping � is, in general, not monotonic, it does have an
important property similar to monotonicity for stratified normal programs. This
result is due to Lloyd, Sonenberg and Topor [60] .

Proposition 14.7 Let P be a stratified normal program and J a pre­
interpretation for P.
(a) Suppose P has only predicates of level 0. Then P is definite and � is
monotonic over the lattice of interpretations based on J.

84 Chapter 3. Normal Programs

(b) Suppose P has maximum predicate level k+l . Let Pk denote the set of
program clauses in P with the property that the predicate symbol in the head of the
clause has level :::;; k. Suppose that Mk is an interpretation based on J for Pk and
Mk is a fixpoint of �

k
· Then A = {Mk u S : S � {p(d1 ' . . . ,dn) : p is a level k+1

predicate symbol and each di is in the domain of J } } is a complete lattice, under
set inclusion. Furthermore, A is a sublattice of the lattice of interpretations based
on J, and �· restricted to A , is well-defined and monotonic.

Proof Straightforward. (See problem 1 3.) •

Corollary 14.8 Let P be a stratified normal program. Then comp(P) has a
minimal normal Herbrand model.

Proof (A normal model is one for which the identitY relation is assigned to =.

Minimal means that there is no strictly smaller normal Herbrand model.) The proof
is by induction on the maximum level, k, of the predicate symbols in P. The case
k=O uses proposition 14.7(a) and proposition 5. 1 to obtain the least fixpoint of Tp.
Proposition 14.3 yields the model. The induction step uses proposition 5. 1 ,
proposition 14.3 and proposition 14.7(b) with Mk as the fixpoint provided by the
induction hypothesis. •

Corollary 14.8 is due to Apt, Blair and Walker [3] .

§15. SOUNDNESS OF SLDNF-RESOLUTION

In section § 14, we introduced the fundamental concept of a correct answer for
comp(P) u { G } . Now that we have the appropriate declarative concept, let us see
how we can implement it. The basic idea is to use SLD-resolution, augmented by
the negation as failure rule (SLDNF-resolution). In this section, we prove the
soundness of the negation as failure rule and of SLDNF-resolution. We give
conditions which are sufficient for a computation to avoid floundering. We also
discuss the effect that cuts in a normal program can have on the soundness results.

Our first task is to give a precise definition of an SLDNF-refutation and a
finitely failed SLDNF-tree. For this, we first give the mutually recursive
definitions of the concepts of SLDNF-refutation of rank k and finitely failed
SLDNF-tree of rank k.

§15 . Soundness of SLDNF-Resolution 85

In the definitions which follow, it will be necessary to select literals from
normal goals. The choice of which literal is selected is constrained in the following
way. There is no restriction on which positive literal can be selected; however,
only a ground negative literal can be selected. This condition is called the safeness

condition on the selection of literals. It is used to ensure the soundness of
SLDNF-resolution. Later we discuss the possibility of weakening this condition.

Definition Let G be f-L1 , . . . ,Lm··· ··Lp and C be Af-M1, . . . ,Mq. Then G' is
derived from G and C using mgu e if the following conditions hold:
(a) Lm is an atom, called the selected atom, in G.
(b) e is an mgu of Lm and A.
(c) G' is the normal goal f-(L1 , . . . ,Lm-l 'M1 , . . . ,Mq,Lm+l '" ' 'Lp)e.

Definition Let P be a normal program imd G a normal goal. An SWNF­

refutation of rank 0 of P u {G} consists of a sequence G0=G, G1 , . . . , Gn = o of
normal goals, a sequence c1 , . . . ,Cn of variants of program clauses of P and a
sequence e1 ' . . . ,en of mgu' s such that each Gi+l is derived from Gi and Ci+1 using
ei+l '

Definition Let P be a normal program and G a normal goal. A finitely failed

SWNF-tree of rank 0 for P u { G } is a tree satisfying the following:
(a) The tree is finite and each node of the tree is a non-empty normal goal.
(b) The root node is G.
(c) Only positive literals are selected at nodes in the tree.
(d) Let f-L1 , . . . ,Lm, . . . ,Lp be a non-leaf node in the tree and suppose that Lm is an
atom and it is selected. Then, for each program clause (variant) Af-M1 , . . . ,Mq such
that Lm and A are unifiable with mgu e, this node has a child
f-(L1 , . . . ,Lm_1,M1 , . . . ,Mq,Lm+ 1 , . . . ,Lp)e.
(e) Let f-L1 , ... ,Lm, ... ,Lp be a leaf node in the tree and suppose that Lm is an atom
and it is selected. Then there is no program clause (variant) in P whose head
unifies with Lm.

Definition Let P be a normal program and G a normal goal. An SWNF­

refutation of rank k+l of P u {G) consists of a sequence G0=G, G1 ' . . . , Gn = o of
normal goals, a sequence C1 ' . . . ,Cn of variants of program clauses of P or ground
negative literals, and a sequence e1 ' . . . ,en of substitutions, such that, for each i,
either

(i) Gi+ 1 is derived from Gi and Ci+ 1 using ei+ 1 , or

86 Chapter 3. Normal Programs

(ii) Gi is f-L1 , . . . ,Lm, . . . ,Lp, the selected literal Lm in Gi is a ground negative
literal -Am and there is a fmitely failed SLDNF-tree of rank k for P u { f-Am} .
In this case, Gi+1 is f-Ll ' . . . ,Lm_1 ,Lm+1 , . . . ,Lp' ei+1 is the identity substitution
and Ci+ 1 is -Am.

Definition Let P be a normal program and G a normal goal. A finitely failed

SWNF-tree of rank k+ 1 for P u { G } is a tree satisfying the following:
(a) The tree is finite and each node of the tree is a non-empty normal goal.
(b) The root node is G.
(c) Let f-Ll ' . . . ,Lm, . . . ,Lp be a non-leaf node in the tree and suppose that Lm is
selected. Then either

(i) Lm is an atom and, for each program clause (variant) Af-Ml ' .. . ,Mq such
that Lm and A are unifiable with mgu e, the node has a child
f-(L1 , . . . ,Lm_1 ,M1 , . . . ,Mq,Lm+ 1 , . . . ,Lp)e, or

(ii) Lm is a ground negative literal -Am and there is a finitely failed SLDNF­
tree of rank k for P u { f-Am } , in which case the only child is
f-L1 , . . . ,Lm-l 'Lm+1 ' . . . ,Lp.
(d) Let f-L1 , . . . ,Lm, . . . ,Lp be a leaf node in the tree and suppose that Lm is
selected. Then either

(i) Lm is an atom and there is no program clause (variant) in P whose head
unifies with Lm, or

(ii) Lm is a ground negative literal -Am and there is an SLDNF-refutation of
rank k of P u { f-Am} .

Note that an SLDNF-refutation (resp. , finitely failed SLDNF-tree) of rank k is
also an SLDNF-refutation (resp., finitely failed SLDNF-tree) of rank n, for all n�k.

Definition Let P be a normal program and G a normal goal. An SWNF­

refutation of P u { G} is an SLDNF-refutation of rank k of P u { G } , for some k.

Definition Let P be a normal program and G a normal goal. A finitely failed

SWNF-tree for P u { G } is a finitely failed SLDNF-tree of rank k for P u { G } ,
for some k.

Definition Let P be a normal program and G a normal goal. A computed

answer e for P u { G} is the substitution obtained by restricting the composition
e1 . . . en to the variables of G, where e1 ' . . . ,en is the sequence of substitutions used
in an SLDNF-refutation of P u {G} .

§15 . Soundness of SLDNF-Resolution 87

Since only ground negative literals are selected, it follows that Lie must be
ground, for each negative literal Li in G. This definition extends the definition of a
computed answer given in §7.

Now that we have given the definition of a computed answer, we consider the
procedure a logic programming system might use to compute answers. The basic
idea is to use SLD-resolution, augmented by the negation as failure rule. When a
positive literal is selected, we use essentially SLD-resolution to derive a new goal.
However, when a ground negative literal is selected, the goal answering process is
entered recursively in order to try to establish the negative subgoal. We can regard
these negative subgoals as separate lemmas, which must be established to compute
the result. Having selected a ground negative literal -A in some goal, an attempt
is made to construct a finitely failed SLDNF-tree with root �A before continuing
with the remainder of the computation. If such a finitely failed tree is constructed,
then the subgoal -A succeeds. Otherwise, if an SLDNF-refutation is found for
�A. then the subgoal -A fails. Note that bindings are only made by successful
calls of positive literals. Negative calls never create bindings; they only succeed or
fail. Thus negation as failure is purely a test.

Next we give the definitions of SLDNF-derivation and SLDNF-tree.

Definition Let P be a normal program and G a normal goal. An SWNF­

derivation of P u {G } consists of a (finite or infinite) sequence G0=G, G1 , . . . of
normal goals, a sequence c1 , c2·· · · of variants of program clauses (called input

clauses) of p or ground negative literals, and a sequence e 1 , e2· · · · of substitutions
satisfying the following:
(a) For each i, either

(i) Gi+ 1 is derived from Gi and an input clause Ci+ 1 using ei+ 1 , or
(ii) Gi is �Ll ' . . . ,Lm, . . . ,Lp, the selected literal Lm in Gi is a ground negative

literal -Am and there is a finitely failed SLDNF-tree for P u {�Am } . In this
case, Gi+ 1 is �Ll ' . . . ,Lm_1 ,Lm+ 1 , . . . ,Lp, ei+ l is the identity substitution and
Ci+1 is -Am.
(b) If the sequence G0, G 1 , . . . of goals is finite, then either

(i) the last goal is empty, or
(ii) the last goal is �L1 , . . . ,Lm, . . . ,Lp, Lm is an atom, Lm is selected and there

is no program clause (variant) in P whose head unifies with Lm, or
(iii) the last goal is �L1 , . . . ,Lm, . . . ,Lp, Lm is a ground negative literal -Am.,

Lm is selected and there is an SLDNF-refutation of P u { �Am } .

88 Chapter 3. Normal Programs

Definition Let P be a normal program and G a normal goal. An SWNF-tree

for P u { G } is a tree satisfying the following:
(a) Each node of the tree is a (possibly empty) normal goal.
(b) The root node is G.
(c) Let �L1 ' ... ,Lm, . . . ,Lp (p;;:: I) be a non-leaf node in the tree and suppose that Lm
is selected. Then either

(i) Lm is an atom and, for each program clause (variant) A�M1 ' . . . ,Mq such
that Lm and A are unifiable with mgu 0, the node has a child
�(L1 , . . . ,Lm_1 ,M1 , . . . ,Mq,Lm+ 1 , . . . ,Lp)O, or

(ii) Lm is a ground negative literal -Am and there is a finitely failed SLDNF­
tree for P u { �Am } , in which case the only child is �Ll ' . . . ,Lm-l 'Lm+l ' . . . ,Lp.
(d) Let �L1 ' . . . ,Lm, . . . ,Lp (p;;:: 1) be a leaf node in the tree and suppose that Lm is
selected. Then either

(i) Lm is an atom and there is no program clause (variant) in P whose head
unifies with Lm, or

(ii) Lm is a ground negative literal -Am and there is an SLDNF-refutation of
P u { �Am} .
(e) Nodes which are the empty clause have no children.

The concepts of SLDNF-derivation, SLDNF-refutation and SLDNF-tree
generalise those of SLD-derivation, SLD-refutation and SLD-tree. An SLDNF­
derivation is finite if it consists of a finite sequence of goals; otherwise, it is
infinite. An SLDNF-derivation is successful if it is finite and the last goal is the
empty goal. An SLDNF-derivation is failed if it is finite and the last goal is not
the empty goal. Similarly, we define success, infinite and failure branches of an
SLDNF-tree. It is clear that a successful SLDNF-derivation is indeed an SLDNF­
refutation and an SLDNF-tree, for which every branch is a failure branch, is indeed
a finitely failed SLDNF-tree.

If a goal contains only non-ground negative literals, then, because of the
safeness condition, no literal is available for selection. Let us formalise this
notion. By a computation of P u { G } , we mean an attempt to construct an
SLDNF-derivation of P u { G } .

Definition Let P be a normal program and G a normal goal. We say a
computation of P u { G } flounders if at some point in the computation a goal is
reached which contains only non-ground negative literals.

§15 . Soundness of SLDNF-Resolution 89

Example If G is � -p(x) and P is any normal program, then the computation
of P u { G } flounders immediately.

We now give a condition under which we can be sure that SLDNF-resolution
never flounders.

Definition Let P be a normal program and G a normal goal.
We say a program clause A�L1 , . . . ,Ln in P is admissible if every variable that

occurs in the clause occurs either in the head A or in a positive literal of the body
Ll , . . . ,Ln.

We say a program clause A�L1 ' . . . ,Ln in P is allowed if every variable that
occurs in the clause occurs in a positive literal of the body L1 , . . . ,Ln.

We say G is allowed if G is �L1 ' . . . ,Ln and every variable that occurs in G

occurs in a positive literal of the body L1 , . . . ,Ln.
We say P u {G} is allowed if the following conditions are satisfied:
(a) Every clause in P is admissible.
(b) Every clause in the definition of a predicate symbol occurring in a positive

literal in the body of G or in a positive literal in the body of a clause in P is
allowed.

(c) G is allowed.

Note that an allowed unit clause must be ground and every allowed clause is
admissible. These definitions generalise Clark' s definition [1 5] of an allowed
query and Shepherdson's covering axiom [95] . The next result is due to Lloyd and
Topor [63] and Shepherdson [97]. Other results on allowedness are contained in
[97] .

Proposition 15.1 Let P be a normal program and G a normal goal. Suppose
that P u { G } is allowed. Then we have the following properties.
(a) No computation of P u { G} flounders.
(b) Every computed answer for P u {G} is a ground substitution for all variables
in G.

Proof (a) Since P u { G } is allowed, one can prove that every goal in an
SLDNF-derivation of P u { G } (including subsidiary derivations) is allowed. The
result then follows as a goal containing only non-ground negative literals is not
allowed.

(b) Let G be �L1 , . . . ,Lm and let G0=G, Gl ' . . . ,Gn= o be an SLDNF-refutation

90 Chapter 3. Normal Programs

of P u {G } using substitutions e1 , . . . ,9n. Note that any input clause whose head is
matched against a positive literal in (the top level of) the refutation has the
property that each variable which occurs in the head also occurs in the body. It is
straightforward to prove by induction on the length n of the refutation that
(L 1A . . . ALm)e 1 . . . en is ground. The result then follows. 1

The next result of this section is the soundness of the negation as failure rule.
In preparation for the proof of this result, we establish two lemmas due to Clark
[1 5] .

Lemma 15.2 Let p(s 1 ' . . . ,sn) and p(t1 , . . . ,tn) be atoms.
(a) If p(s1 ' . . . ,sn) and p(t l ' . . . ,tn) are not unifiable, then -:3((s 1 =t 1)A . . . A(sn =tn)) is a
logical consequence of the equality theory.
(b) If p(s 1 , . . . ,sn) and p(t"1 , . . . ,tn) are unifiable with mgu e = { x1/r 1 , . . . ,xllrk } given
by the unification algorithm, then \t((s 1 =t1)1\ . . . /\(Sn =tn) � (x1 =r 1)A . . . A(xk =rk)) is
a logical consequence of the equality theory.

Proof Suppose that p(s 1 , . . . ,sn) and p(t1 , . . . ,tn) are unifiable with mgu 9 =
{ x 1/r1 , . . . ,xllrk } . Then it follows from equality axioms 6, 7 and 8 that
\t((s 1 =t1)/\ . . . A(sn =tn)�(x1 =r 1)/\ . . . A(xk =rk)) is a logical consequence of the
equality theory. The remainder of the lemma is proved by induction on the
number of steps k of an attempt by the unification algorithm to unify p(s 1 ' . . . ,sn)
and p(t 1 , . . . ,tn).

Suppose first that k=l . If the unification algorithm finds a substitution { x 1/r 1 } ,
say, which unifies p(s1 , . . . ,sn) and p(t1 , . . . ,tn), then equality axiom 5 can be used to
show that \t((s 1 =t1)A . . . /\(Sn =tn)�(x 1 =r 1)) is a logical consequence of the equality
theory. Otherwise, we use equality axiom 5 and one of the equality axioms 1 to 4
to conclude that -:3((s 1=t1)A . . . A(sn=tn)) is a logical consequence of the equality
theory.

Suppose now that the result holds for k-1 . Let p(s 1 ' . . . ,sn) and p(t 1 , . . . ,tn) be
such that it takes the unification algorithm k steps to decide whether they are
unifiable or not. Suppose that 9 1 = { x 1Jr

'
1 } is the first substitution made by the

unification algorithm. Then p(s1 , . . . , sn)91 and p(t1 , . . . ,tn)9 1 are such that the
unification algorithm can discover in k-1 steps whether they are unifiable or not.

Suppose that p(s 1 , . . . ,sn)91 and p(t1 , . . . ,tn)e 1 are not unifiable. Then the
induction hypothesis gives that -:3((s 1 =t 1)9 1A . . . A(sn =tn)9 1) is a logical
consequence of the equality theory. It then follows from this and the fact that 9 1
was the first substitution made by the unification algorithm that

§15 . Soundness of SLDNF-Resolution 9 1

-3((s1 =t1) A . . . A(sn =tn)) i s a logical consequence of the equality theory.
On the other hand, suppose that p(s l ' . . . ,sn)e1 and p(tl ' . . . ,tn)e1 are unifiable.

Then the induction hypothesis is used to obtain that
\f((s1 =t1)e 1 /\ . . . 1\(Sn =tn)e c �(Xz=rz)A. .. /\(Xk =rk)) is a logical COnsequence Of the
equality theory. It follows from this, the fact that r 1 is r'1 y, where y =
{x2/r2, . . . ,xJ!rk} . and equality axioms 5, 6, 7 and 8 that
\f((s1 =t1)A . . . A(sn =tn)�(x1 =r 1)A . . . A(xk =rk)) is a logical consequence of the
equality theory. •

Lemma 15.3 Let P be a normal program and G a normal goal. Suppose the
selected literal in G is positive.
(a) If there are no derived goals, then G is a logical consequence of comp(P) .
(b) If the set { G1 , . . . ,Gr} of derived goals is non-empty, then G�G1/\ . . . /\Gr is a
logical consequence of comp(P).

Proof Suppose G is the normal goal �M1 , ... ,Mq and the selected positive
literal Mj is p(s1 , . . . ,sn) . If the completed definition for p is \7'(-p(xl ' . . . ,xn)), then it
is clear that G is a logical consequence of comp(P).

Next suppose that the completed definition of p is
\f(p(x1 , . . . ,xn)�E1 v . . . vEk)

where E. is 1

It follows that
k G � " · _ 1 -::J(M1 A . . . J\M. 1/\(s 1 =t. 1)/\ . . . A(s =t.)1\L. 1/\ . . . J\L. AM.+ 1 1\ . . . /\Mq) 1- J- 1, n 1,n 1, 1,mi J

is a logical consequence of comp(P). If p(s 1 ' . . . ,sn) does not unify with the head of
any program clause in the definition of p, then it follows from lemma 15.2(a) that
G is a logical consequence of comp(P) .

On the other hand, suppose e is an mgu of p(s1 ' . . . ,sn) and p(ti, 1 · · · ·\n) . Then
we have that

3(M1A . . . AM· 1A(s 1=t. 1)/\ . . . A(s =t.)AL. 1/\ . . . J\L. AM-+1/\ . . . /\Mq) � J- 1, n 1,n 1, 1 ,mi J
3((M1A .. . AM ._1 1\L. 1/\ . . . ALi AM·+ 1 "· · ·"Mq)e) J � ,mi J

is a logical consequence of comp(P), using lemma 15.2(b) and the equality axioms
6, 7 and 8. Thus, if { G1 , . . . ,Gr} is the set of derived goals, then G�G1A .. /\Gr is a
logical consequence of comp(P) . •

The next result is due to Clark [15].

92 Chapter 3. Normal Programs

Theorem 15.4 (Soundness of the Negation as Failure Rule)
Let P be a normal program and G a normal goal. If P u { G } has a finitely

failed SLDNF-tree, then G is a logical consequence of comp(P).

Proof The proof is by induction on the rank k of the finitely failed SLDNF­
tree for P u { G } . Let G be the goal t-Ll' . . . ,Ln.

Suppose first that k=O. Then the result follows by a straightforward induction
on the depth of the tree, using lemma 15.3.

Next suppose the result holds for finitely failed SLDNF-trees of rank k.
Consider a finitely failed SLDNF-tree of rank k+1 for P u { G } . We establish the
result by a secondary induction on the depth of this tree.

Suppose first that the depth of this tree is 1 . Suppose the selected literal in G
is positive. Then the result follows from lemma 15.3(a). On the other hand,
suppose the selected literal L. in G is the ground negative literal -A. . Since the

1 1
depth is 1 , there is an SLDNF-refutation of rank k of P u { t-Ai } . Note that for a
goal whose selected literal is positive, the derived goal is a logical consequence of
the given goal and the input clause. Thus, using proposition 14. 1 and applying the
induction hypothesis on any finitely f8.iled SLDNF-trees of rank k-1 in this
refutation, we obtain that Ai is a logical consequence of comp(P). Hence
-::l(L1 A . . . ALn) is also a logical consequence of comp(P). (This last step uses the
fact that Ai is ground.)

Now suppose that the finitely failed SLDNF-tree for P u {G } has depth d+l .
Suppose that the selected literal in G is positive. Then the result follows from
lemma 15.3(b) and the secondary induction hypothesis. Suppose the selected
literal in G is the ground negative literal L. . By the secondary induction 1
hypothesis, we obtain that -::l(L 1 A . . . ALi_1 ALi+ 1 A . . . ALn) is a logical consequence
of comp(P). Hence -::l(L1 A . . . ALn) is also a logical consequence of comp(P). •

Corollary 15.5 Let P be a definite program. If Ae Fp, then -A is a logical
consequence of comp(P).

Now we come to the soundness of SLDNF-resolution. This result, which
generalises theorem 7. 1 , is essentially due to Clark [15] .

Theorem 15.6 (Soundness of SLDNF-Resolution)
Let P be a normal program and G a normal goal. Then every computed

answer for P u { G } is a correct answer for comp(P) u { G } .

§1 5 . Soundness of SLDNF-Resolution 93

Proof Let G be the normal goal �L1 ' . . . ,Lk and e1 , . . . ,en be the sequence of
substitutions used in an SLDNF-refutation of P u { G) . We have to show that
\i((L1/\ . . . /\�)e 1 . . . en) is a logical consequence of comp(P). The result is proved by
induction on the length of the SLDNF-refutation.

Suppose first that n=l . This means that G has the form �L1 . We consider
two cases.

(a) L1 is positive.
Then P has a unit clause of the form A� and L1e 1 = A8 1 . Since L1e 1� is

an instance of a unit clause of P, it follows that \i(L1e 1) is a logical consequence
of P and, hence, of comp(P).

(b) L1 is negative.
In this case, L1 is ground, e 1 is the identity substitution and theorem 1 5.4

shows that L1 is a logical consequence of comp(P).
Next suppose that the result holds for computed answers which come from

SLDNF-refutations of length n-1 . Suppose 8 1 ' . . . ,en is the sequence of substitutions
used in the SLDNF-refutation of P u { G } of length n. Let Lm be the selected
literal of G. Again we consider two cases.

(a) Lm is positive.
Let A�M1 ' . . . ,Mq (q�O) be the first input clause. By the induction hypothesis,

\i((L1 /\ . . . /\Lm-l"MI"·· ·"Mq"Lm+ 1 /\ . . . /\Lk)e1 . . . en) is a logical consequence of
comp(P). Therefore, if q>O, \i((M 1/\ . . . /\Mq)e 1 . . . en) is a logical consequence of
comp(P). Consequently, \i(Lme1 . . . en), which is the same as \i(A81 . . . en)' is a
logical consequence of comp(P). Hence we have that \i((L1/\ . . . /\4:)8 1 . . . en) is a
logical consequence of comp(P).

(b) Lm is negative.
In this case, Lm is ground, e 1 is the identity substitution and theorem 15.4

shows that Lm is a logical consequence of comp(P). Using the induction
hypothesis, we obtain that \i((L1/\ . . . /\Lk)e1 . . . en) is a logical consequence of
comp(P). •

Finally, we turn to the problem of weakening the safeness condition on the
selection of literals. First we show that if the safeness condition is dropped, then
theorem 15 .4 will no longer hold.

Example Consider the normal program P
p � -q(x)
q(a) �

94 Chapter 3. Normal Programs

If we drop the safeness condition, then the literal -q(x) can be selected and we
obtain a "finitely failed SLDNF-tree" for P u f�p } . The subgoal -q(x) fails
because there is a refutation of �q(x) in which x is bound to a. However, it is
easy to see that -p is not a logical consequence of comp(P).

It is possible to weaken the safeness condition a little and still obtain the
results. Consider the following weaker safeness condition. Non-ground negative
subgoals are allowed to proceed. If the negative subgoal succeeds, then we
proceed as before. However, if the negative subgoal fails, a check is made to make
sure no bindings were made to any variables in the top-level goal of the
corresponding refutation. If no such binding was made, then the negative subgoal
is allowed to fail and we proceed as before. But, if such a binding was made, then
a different literal is selected and the negative subgoal is delayed in the hope that
more of its variables will be bound later. Alternatively, a control error could be
generated and the program halted.

The key point here is that the refutation which causes the negative subgoal to
fail must prove something of the form V(A) rather than only 3(A). For this
weakened safeness condition, theorems 15.4 and 15.6 continue to hold. The only
change to their proofs is in the proof of theorem 15.4 at the place where we
remarked that use was made of the fact that A was ground.

The simplest way to implement the safeness condition in a PROLOG system is
to delay negative subgoals until any variables appearing in the subgoal have been
bound to ground terms. For example, this is the method used by MU-PROLOG
[73] and NU-PROLOG [104]. Unfortunately, the majority of PROLOG systems do
not have a mechanism for delaying subgoals and so this solution is not available to
them. Worse still, most PROLOG systems do not bother to check that negative
subgoals are ground when called. This can lead to rather bizarre behaviour.

Example Consider the program
p(a) �
q(b) �

and the normal goal � -p(x),q(x). If this program and goal are run on a PROLOG
system which uses the standard computation rule and does not bother to check that
negative subgoals are ground when called, then it will return the answer "no" ! On
the other hand, MU-PROLOG and NU-PROLOG will delay the first subgoal, solve
the second subgoal and then solve the first subgoal to give the correct answer

§1 6. Completeness of SLDNF-Resolution 95

{ x/b } . Of course, the problem with this particular goal can be fixed for a standard
PROLOG system by reordering the subgoals in the goal. However, that is not the
point. A problem similar to this could lie undetected deep inside a very large and
complex software system.

We now discuss the effect that cuts in a normal program can have on the
soundness results. In § 1 1 , we showed that the existence of a cut in a definite
program does not affect the soundness, but may introduce a form of
incompleteness into the SLD-resolution implementation of correct answer.
However, for normal programs, it is possible for a cut to affect soundness.

Example Consider the subset program
subset(x,y) (- -p(x,y)
p(x,y) (- member(z,x), -member(z,y)
member(x, x.y) (- !
member(x, y.z) (- member(x,z)

in which sets are represented by lists. The goal (-Subset([l ,2,3] , [1]) succeeds for
this program! The reason is that the unsafe use of cut in the definition of member
causes a finitely failed tree for (-p([l ,2,3] ,[1]) to be incorrectly constructed. Hence
the negated subgoal -p([l ,2,3] , [1]) incorrectly succeeds.

As before, the best solution to the problems of cut seems to be to replace its
use by higher level facilities, such as if-then-else and not equals.

§16. COMPLETENESS OF SLDNF-RESOLUTION

In this section, we prove completeness results for the negation as failure rule
for definite programs and SLDNF-resolution for hierarchical programs. We also
present a summary of the main results of the chapter for definite programs.

The next result is due to Jaffar, Lassez and Lloyd [47] . The simpler definition
of the equivalence relation in the proof, which avoids most of the technical
complications of the original proof in [47] , is due to Wolfram, Maher and Lassez
[1 12] .

Theorem 16.1 (Completeness of the Negation as Failure Rule)
Let P be a definite program and G a definite goal. If G is a logical

consequence of comp(P), then every fair SLD-tree for P u { G } is finitely failed.

96 Chapter 3. Normal Programs

Proof Let G be the goal �A1 ' . . . ,Aq. Suppose that P u {G } has a fair SLD­
tree which is not finitely failed. We prove that comp(P) u {3(A1A . . . AAq) } has a
model.

Let BR be any non-failed branch in the fair SLD-tree for P u { G } . Suppose
BR is G0=G, G1 ' . . . with mgu 's e 1 , e2, . . . and input clauses c1 , c2, The first
step is to use BR to define a pre-interpretation J for P.

Suppose L is the underlying first order language for P. Naturally, L is assumed
to be rich enough to support any standardising apart necessary in BR. We define a
relation * on the set of all terms in L as follows. Let s and t be terms in L. Then
S*t if there exists n� l SUCh that s91 . . . 9n = t9 1 .. . 9n' that is, e 1 . . . en unifies S and t.
It is clear that * is indeed an equivalence relation. We then define the domain D
of the pre-interpretation J as the set of all *-equivalence classes of terms in L. If s
is a term in L, we denote the equivalence class containing s by [s] .

Next we give the assignments to the constants and function symbols in L. If c
is a constant in L, we assign [c] to c. If f is an n-ary function symbol in L, we
assign the mapping from Dn into D defined by ([s 1] , . . . ,[sn]) � [f(s l ' . . . ,sn)] to f. It
is clear that the mapping is indeed well-defined. This completes the definition of
J.

The next task is to give the assignments to the predicate symbols in order to
extend J to an interpretation for comp(P) u { 3(A1A . . . AAq) } . First we define the
set I0 as follows:

I0 = { p([t1] , . . . ,[tn]) : p(t l ' . . . ,tn) appears in BR } .
We next show that I0 � r:,(I0), where r:, i s the mapping associated with the pre­
interpretation J. Suppose that p([t1] , . . . ,[tn]) e I0, where p(t1 , . . . ,tn) appears in some
Gi, iero. Because BR is fair and not failed, there exists jero such that p(sl ' . . . ,sn) =

p(t1 , . . . ,tn)ei+ 1 . . . ei+j appears in goal Gi+j and p(s1 , . . . ,sn) is the selected atom in
Gi+j ' Suppose Ci+j+1 is p(r1 , . . . ,rn)�B 1 , . . . ,Bm. By the definition of �· it follows
that p([r1ei+j+l] , . . . ,[rnei+j+l]) e 1t<I0). Then, using the fact that, for each k,
e1 . . . ek can be assumed to be idempotent, we have that

p([t 1] , . . . ,[tn])
= p([tl 9i+ l . . . ei+jJ , .. . , [tn 9i+ 1 . . . ei+jD
= p([s 1] , . . . ,[sn])
= p([s 1 ei+j+ 1] , . . . ,[snei+j+ 1])
= p([r 1 ei+j+ 1] , . . . , [rn 9i+j+ 1]),

so that p([t1] , ... ,[tn]) e r:,(I0). Thus I0 �:; �(10).
Now, by proposition 5.2, there exists I such that I0 � I and I = r:,(I). I gives

§ 1 6. Completeness of SLDNF-Resolution 97

the assignments to the predicate symbols in L. We assign the identity relation on D
to =.

This completes the definition of the interpretation I, together with the identity
relation assigned to =, for comp(P) u {3(A1A • • • /\Aq) } . Note that this
interpretation is a model for :3(A1A • • • /\Aq) because I0 � I. Note further that this
interpretation is clearly a model for the equality theory. Hence, proposition 14.3

gives that I, together with the identity relation assigned to =, is a model for
comp(P) u {3(A1/\ . . . /\Aq) } . I

Corollary 16.2 Let P be a definite program and AeBP. If -A is a logical
consequence of comp(P), then AeFp.

The model constructed in the proof of theorem 16. 1 is not an Herbrand model.
In fact, the next example shows that theorem 16. 1 simply cannot be proved by
restricting attention to Herbrand models (based on the constants and function
symbols appearing in the program).

Example Consider the program P
p(f(y)) � p(y)
q(a) � p(y)

Note that q(a)IEFp. Now gfp(Tp)=0 and hence q(a)r,Egfp(Tp)· According to
proposition 14.4, comp(P) u {q(a) } does not have an Herbrand model.

Problem 34 shows that theorem 1 6. 1 generalises to stratified normal programs.
However, this generalisation is not really a completeness result because, as the next
example shows, the existence of a (fair) SLDNF-tree is not guaranteed, in co�trast
to the definite case, where fair SLD-trees always exist. To obtain a completeness
result for stratified normal programs, it will thus be necessary to impose further
restrictions to ensure the existence of a fair SLDNF-tree.

Example Consider the stratified normal program P
q � -r
r � p
r � -p
p � p

Then it is easy to show that -q is a logical consequence of comp(P), but that
P u { �q} does not have an SLDNF-tree. (See problem 20.)

98 Chapter 3. Normal Programs

Next, we turn to the question of completeness of SLDNF-resolution.

Example Consider the program
p(x) �
q(a) �
r(b) �

and the goal �p(x),-q(x). Clearly, x/b is a correct answer. However, this answer
can never be computed, nor can any more general version of it.

This simple example clearly illustrates one of the problems in obtaining a
completeness result for SLDNF-resolution. SLD-resolution returns most general
answers. In the above example, it will return the identity substitution E for the
subgoal p(x). What we would like is for the negation as failure rule to further
instantiate x by the binding x/b and thus compute the correct answer. However,
negation as failure is only a test and cannot make any bindings. Unless it is
presented with a goal which already is the root of a finitely failed SLD-tree, it has
no machinery for further instantiating the goal so as to obtain such a tree. In the
above example, �q(x) is not the root of a finitely failed SLD-tree and negation as

failure has no way to find the appropriate binding x/b.

The next example illustrates another problem in obtaining a completeness
result for SLDNF-resolution.

Example Consider the normal program P
r � p
r � -p
P � P

Then the identity substitution E is a correct answer for comp(P) u { �r} , but E
cannot be computed. (See problem 21 .)

These examples show that to obtain a completeness result, it will be necessary
to impose rather strong restrictions. We now show that for hierarchical programs,
there is such a completeness result. Sadly, this result is not very useful because the
hierarchical condition bans any recursion. For the statement of this result, we need
to generalise the concept of a computation rule.

Definition A safe computation rule is a function from a set of normal goals,
none of which consists entirely of non-ground negative literals, to a set of literals
such that the value of the function for such a goal is either a positive literal or a

§16 . Completeness of SLDNF-Resolution 99

ground negative literal, called the selected literal, in that goal.

Definition Let P be a normal program, G a normal goal, and R a safe
computation rule.

An SWNF -derivation of P u { G } via R is an SLDNF-derivation of P u { G }
in which the computation rule R i s used to select literals.

An SWNF-tree for P u {G} via R is an SLDNF-tree for P u {G } in which
the computation rule R is used to select literals.

An SWNF -refutation of P u { G} via R is an SLDNF-refutation of P u { G}
in which the computation rule R is used to select literals.

An R-computed answer for P u {G } is a computed answer for P u {G } which
has come from an SLDNF�refutation of P u { G} via R

Now we can give the completeness result for hierarchical programs. Versions
of this result are due to Clark [15] , Shepherdson [97] , and Lloyd and Topor [63] .

Theorem 16.3 (Completeness of SLDNF-Resolution for Hierarchical Programs)
Let P be a hierarchical normal program, G a normal goal, and R a safe

computation rule. Suppose that P u { G } is allowed. Then the following
properties hold.
(a) The SLDNF-tree for P u { G } via R exists and is finite.
(b) If e is a correct answer for comp(P) u {G} and e is a ground substitution for
all variables in G, then e is an R-computed answer for P u {G } .

Proof (a) By proposition 15 . 1 (a), the computation of P u {G } via R does not
flounder.

To show that there are no infinite derivations, we use multisets. If M and M'
are finite multisets of non-negative integers, then we define M' < M if M' can be
obtained from M by replacing one or more elements in M by any finite number of
non-negative integers, each of which is smaller than one of the replaced elements.
It is shown in [28] that the set of all finite multisets of non-negative integers under
< is a well-founded set. Now consider the multiset of levels of the predicate
symbols in the literals of the body of a goal G' in an SLDNF-derivation via R
Since P is hierarchical, the child of the goal G' has a smaller multiset than G'.
Hence there are no infinite derivations.

Moreover, an induction argument on the levels of predicate symbols shows that
the SLDNF-tree for P u { G } via R does indeed exist.

(b) Note that, by corollary 14.8, comp(P) is consistent because P is

100 Chapter 3. Normal Programs

hierarchical. Let G be the goal (-L1' . . . ,Ln. The SLDNF-tree for P u {GS } via R
is not finitely failed; otherwise, by theorem 15.4, we would have that
-(L1 1\ . . . ALn)S is a logical consequence of comp(P), which contradicts the
consistency of comp(P) and the assumption that 8 is correct.

Hence there exists an SLDNF-refutation for P u {GS } via R. We now modify
the selection of literals in (the top level of) this refutation so that the first part of
the refutation contains goals in which the selected literal is positive and the last
part contains goals in which the selected literal is negative. We can now apply the
argument of lemma 8.2, the fact that e is a ground substitution for all the variables
in G, and the allowedness of P u {G } to obtain an SLDNF-refutation of P u {G }
i n which the computed answer i s e.

We next apply essentially the argument of lemma 9. 1 so that the selection of
literals in (the top level of) this refutation is made using R. Since any subsidiary
finitely failed trees are not modified by these constructions, their literals are still
selected using R. Thus 8 is an R -computed answer for P u { G } . •

For further discussion and results on completeness the reader is referred to
[95] , [97] and [98]. The completeness of the negation as failure rule and SLDNF­
resolution are of such importance that finding more general completeness results is
an urgent priority. The most interesting completeness results would be for classes
of stratified programs, which strictly include the class of hierarchical programs.

Finally, we summarise the main results for definite programs given in this
chapter. First we need one more definition. The Herbrand rule is as follows: if
comp(P) u { A } has no Herbrand model, then infer -A.

We now have three possible rules for inferring negative information: the CW A,
the Herbrand rule and the negation as failure rule. If P is a definite program, then
we have the following results (see Figure 6):

{AeBp : -A can be inferred under the negation as failure rule } = Bp\TpJ.ro
{AeBp : -A can be inferred under the Herbrand rule } = Bp\gfp(Tp)
{ AeBP : -A can be inferred under the CWA} = Bp\Tp iro

Since T pi ro !:;;; gfp(T p) !;: T P
J.ro, it follows that the CW A is the most powerful

rule, followed by the Herbrand rule, followed by the negation as failure rule.
Since T pi ro, gfp(T p) and T P

J.ro are generally distinct (see problem 5, chapter 2),
it follows that the rules are distinct.

§1 6. Completeness of SLDNF-Resolution

-A inferred under
negation as failure rule

-A inferred
under CWA

-A inferred under
Herbrand rule

Fig. 6. Relationship between the various rules

1 01

1 02 Chapter 3. Normal Programs

We can combine theorem 13.6 with corollaries 15.5 and 1 6.2.

Theorem 16.4 Let P be a definite program and AEBp· Then the following
are equivalent:
(a) AEFp.
(b) A�TpJ..ro.
(c) A is in the SLD finite failure set.
(d) Every fair SLD-tree for P u {f-A} is finitely failed.
(e) -A is a logical consequence of comp(P).

We can also combine theorems 15.4 and 16. 1 .

Theorem 16.5 Let P be a definite program and G a definite goal. Then G is
a logical consequence of comp(P) iff P u { G} has a finitely failed SLD-tree.

It is also worth emphasising the following facts, which highlight the difference
between (arbitrary) models and Herbrand models for comp(P) and between Tp.!.ro
and gfp(Tp). Let AEBp· Then we have the following properties:
(a) AEgfp(Tp) iff comp(P) u {A} has an Herbrand model.
(b) AETpJ..ro iff comp(P) u {A} has a model.

PROBLEMS FOR CHAPTER 3

1 . Let P be a definite program. Show that � = Bp \ T PJ..d , for d� 1 .

2 . Prove lemma 13 .2.

3. Prove lemma 1 3.3.

4. Show that the converse of proposition 13 .4 does not hold. In fact, show that,
given k, there exists a definite program P and AEBp such that A�Tp.!.2 and yet
the depth of every SLD-tree for P u {f-A] is at least k.

5. Let P be a definite program and G a definite goal. Then G is called infinite

(with respect to P) if every SLD-tree for P u {G } is infinite. Show that there
exists a program P and AEBp such that f-A is infinite and yet A is in the success
set of P.

Problems for Chapter 3 1 03

6. Let P be a definite program, AeBp and A not be in the success set of P. Show

that t-A is infinite iff A is not in the SLD finite failure set.

7. Consider the program P

p(x) f- q(y), r(y)

q(h(y)) f- q(y)

r(g(y)) f-
Find two SLD-trees for P u { t-p(a) } , one of which is infinite and the other

finitely failed.

8. Give an example of a normal program P such that comp(P) is not consistent.

9. Use equality axioms 6 and 8 to show that, in any model of the equality theory,

the relation assigned to = is an equivalence relation.

10. Let P be a normal program and s,te Up. Prove the following:

(a) s=s is a logical consequence of the equality theory.

(b) If s and t are syntactically different, then s:#:t is a logical consequence of the

equality theory.

(c) The domain of every model for comp(P) contains an isomorphic copy of Up
and the relation assigned to = , when restricted to Up, is the identity relation.

1 1 . Prove proposition 14.2.

12. Show that proposition 14.5 does not hold for normal programs.

1 3 . Prove proposition 14.7.

14. Show that lemma 15.2 (b) does not hold if we drop the phrase "given by the

unification algorithm" from its statement.

15. Show that corollary 1 5 .5 no longer holds if we drop any one of the equality

axioms 1 to 5 from the definition of comp(P).

16. Show that the safeness condition cannot be dropped from theorem 15.6 .

1 04

17. Consider the normal program P
p � -q(x)
q(a) �

Show that -p is not a logical consequence of comp(P).

1 8 . Consider the normal program P
p � -r
r � q(x)
q(a) �

Chapter 3. Normal Programs

Show that P u { �p } has a finitely failed SLDNF-tree and that -p is a logical
consequence of comp(P). This program looks equivalent to the one in problem 17.
Explain the difference.

19. Consider the definite program P
p(f(y)) � p(y)
q(a) � p(y)

and let A be q(a). What is the model for comp(P) u {A } given by the construction
in theorem 16. 1 for this program? Show that the domain of this model is
isomorphic to Up u Z, where Z is the integers.

20. Consider the normal program P
q � -r
r � p
r � -p
p � p

Show that -q is a logical consequence of comp(P), but that P u { �q} does not
have an SLDNF-tree.

21 . Consider the normal program P
r � p
r � -p
P � P

Show that the identity substitution e is a correct answer for comp(P) u { �r} , but
that e cannot be computed.

22. Give an example of a normal program whose completion has a model, but no

Problems for Chapter 3 1 05

Herbrand model (based on the constants and function symbols appearing in the
program).

23. Give an example of a nonnal program P and goal G such that the computation
of P u { G} produces an infinite nested sequence of negated calls, but the
computation never flounders (in the sense of § 15) and never produces an infinite
branch. Prove that, if P is stratified, there can never be an infinite nested sequence
of negated calls.

24. Let P be a nonnal program and G a nonnal goal. Suppose that P u (G} has a
finitely failed SLDNF-tree. Prove that there exists a safe computation rule R such
that P u (G} has a fmitely failed SLDNF-tree via R.

25. Let P be a nonnal program and G a nonnal goal. Suppose that P u { G} has a
computed answer e. Prove that there exists a safe computation rule R and an R­
computed answer <1> for P u { G} such that Gel> is a variant of Ga.

26. Let P be a nonnal program and G a nonnal goal. Suppose that P u { G} has a
computed answer e. Let y be a substitution. Prove that P u {G9y} has the
identity substitution as a computed answer.

27. Let P be a nonnal program and G a nonnal goal. Suppose that P u {G} has a
finitely failed SLDNF-tree. Let y be a substitution. Prove that P u { Gy} has · a
finitely failed SLDNF-tree.

28. Let P be a nonnal program and G a ground nonnal goal �L1 ' . . . ,Ln. Suppose
that P u {G } has a finitely failed SLDNF-tree. Prove that there exists ie { l , . . . ,n }
such that P u { �Li } has a finitely failed SLDNF-tree.

29. Let P be a nonnal program and G a ground nonnal goal �L1 ' . . . ,Ln. Suppose
that P u { G } has an SLDNF-refutation. Prove that P u { �Li } has an SLDNF­
refutation, for all ie { l , . . . ,n } .

30. Let P be a nonnal program and G a nonnal goal. Suppose that P u { G} has
an SLDNF-refutation. Prove that P u {G} does not have a finitely failed
SLDNF-tree.

1 06 C hapter 3. Normal Programs

3 1 . Let P be a normal program. Define M = { Ae Bp : P u { f-A } does not have a
finitely failed SLDNF-tree} . Prove that M is a model for P.

32. Let P be a normal program and G a normal goal. Put P* = P u {-A : AeBp
and P u { f-A } has a finitely failed SLDNF-tree} . Determine whether the
following statements are correct or not:
(a) If P u { G } has a finitely failed SLDNF-tree, then P u { G} is consistent.
(b) If P u {G } has a finitely failed SLDNF-tree, then G is a logical consequence
of P*.

33. Let P be a definite program and G an allowed normal goal. Determine
whether the following statement is correct or not:
If comp(P) u { G} is unsatisfiable, then there is a correct answer for
comp(P) u { G } .

34. Let P be a normal program and G a normal goal. An SLDNF-derivation for
P u { G } is fair if it is either failed or, for every literal L in (the top level of) the
derivation, (some further instantiated version of) L is selected within a finite
number of steps. An SLDNF-tree for P u {G } is fair if every (top level) branch
of the tree is a fair SLDNF-derivation. Prove the following generalisation of
theorem 16. 1 :
Let P be a stratified normal program and G a normal goal. If G is a logical
consequence of comp(P), then every fair SLDNF-tree for P u { G } is finitely
failed.

35. Let P be a stratified normal program and A a ground atom. Suppose that A is
a logical consequence of comp(P). Let P* be the definite program obtained from P
by deleting all negative literals appearing in the bodies of program clauses in P.
Prove that A is a logical consequence of P*.

36. Give an example of an infinite SLDNF-derivation which has subsidiary finitely
failed trees of unbounded rank. (In other words, the derivation does not have rank
k, for any k.)

37 . Let R be any computation rule. Prove that there exists an SLD-derivation via R
which is not fair.

Chapter 4

PROGRAMS

In this chapter, we study programs and goals. A program is a finite set of

program statements, each of which has the form Af-W, where the head A is an

atom and the body W is an arbitrary first order formula. Similarly, a goal has the

form f-W, where the body W is an arbitrary first order formula. We prove the

soundness of the negation as failure rule and SLDNF-resolution for programs and

goals. We also study an error diagnoser, which is declarative in the sense that the

programmer need only know the intended interpretation of an incorrect program to

use the diagnoser.

§17. INTRODUCTION TO PROGRAMS

This section introduces programs and goals. A program is a finite set of

program statements, each of which has the form Af-W, where the head A is an

atom and the body W is an arbitrary first order formula. Similarly, a goal has the

form f-W, where the body W is an arbitrary first order formula. We argue that

PROLOG systems should allow the increased expressiveness of programs and

goals as a standard feature. The only requirement for implementing such a feature

is a sound form of the negation as failure rule. Programs and goals were

introduced by Lloyd and Topor [61] . Special cases of them were studied earlier by

Clark [15] and Kowalski [49] .

Definition A program statement is a first order formula of the form

A f- W

where A is an atom and W is a (not necessarily closed) first order formula. The

formula W may be absent. Any variables in A and any free variables in W are

assumed to be universally quantified at the front of the program statement. A is

called the head of the statement and W is called the body of the statement.

1 08 Chapter 4. Programs

Note that a program clause is a program statement for which the body is a
conjunction of literals. 1broughout, we make the assumption, as we may, that in
each formula each quantifier is followed by a distinct variable and no variable is
both bound and free.

Definition A program is a finite set of program statements.

Definition A goal is a first order formula of the form
� w

where W is a (not necessarily closed) first order formula. Any free variables in W
are assumed to be universally quantified at the front of the goal.

Example Consider the program statement
A � V'x 1 . . . V'xn(3y1 . . . 3ykW�W1A . . . AWm)

Often program statements have this form. Typically, W, W l ' . . . ,W m are atoms and
the yi are absent. For example, the well-ordered predicate can be defined as
follows.

well_ordered(x) � V'z (hasleastelt(z) � set(z) " z �:: x " nonempty(z))
nonempty(z) � 3u ue z
hasleastelt(z) � 3u (ue z " V'v (u:S:v � ve z))
X k: Y � V'z (ze y � ze x)

The increased expressiveness of programs and goals is useful for expert
systems, deductive database systems, and general purpose programming. In expert
systems, it allows the statement of the rules in the knowledge base in a form closer
to a natural language statement, such as would be provided by a human expert.
This makes it easier to understand the knowledge base. This increased
expressiveness also has an application to deductive database systems, by providing
first order logic (known as domain relational calculus in database terminology
[25]) as a query language in a straightforward manner. (See chapter 5.) In general
purpose programming, applications like the example above occur often. If this
increased expressiveness is not available, it is only possible to express such
statements rather obscurely.

Furthermore, from a theoretical point of view, it makes no sense to stop at
normal programs and normal goals. As we will show in the next section, by means
of simple transformations it is possible to transform any program to an
"equivalent" normal program. By means of this technique, we can extend the

§17 . Introduction to Programs 1 09

theory of normal programs to arbitrary programs in a straightforward . way. This
transformation technique also provides a straightforward implementation of
programs and goals in any PROLOG system which has a safe implementation of
the negation as failure rule. NV-PROLOG [75] , [104] provides this increased
expressiveness as a standard feature.

Next we define the completion of a program P. Throughout, we assume that =
does not appear in P.

Definition The definition of a predicate symbol p appearing in a program P is
the set of all program statements in P which have p in their head.

Definition Suppose the definition of an n-ary predicate symbol p in a program
is

Ak � wk
Then the completed definition of p is the formula

'Vx1 . . . 'Vxn (p(x 1 , . . . ,xn) � E1v . . . vEk)
where Ei is 3y r .. 3yd ((x 1=t1)A . .. A(xn=tn)"Wi), Ai is p(tl ' ... ,tn), Yl '· · · ·Yd are the
variables in Ai and the free variables in Wi, and x1 , . . . ,xn are variables not
appearing anywhere in the definition of p.

Example Let the definition of p be
p(y) � q(y)A 'Vz(r(y,z)�q(z))
p(f(z)) � -q(z)

Then the completed definition of p is
'Vx(p(x) � (3y((x=y)Aq(y)A 'Vz(r(y,z)�q(z))) v 3z((x=f(z))A-q(z)))

Definition Suppose the n-ary predicate symbol p appears in a program P, but
not in the head of any program statement in P. Then the completed definition of p
is the formula

We will also require the equality theory given § 14.

Definition Let P be a program. The completion of P, denoted by comp(P), is
the collection of completed definitions of predicate symbols in P together with the
equality theory.

1 1 0 Chapter 4. Programs

Next we introduce the declarative concept of a correct answer for a program
and goal. In this definition, if W is a formula and e is a substitution for some of
the free variables in W, then we is the formula obtained by simultaneously
replacing each such variable by its binding in e. For example, if W is
V'x3y(p(z,f(x))f-q(y)) and e is { 2"/g(w) } , then we is V'x3y(p(g(w),f(x))f-q(y)).
Note that it may be necessary to rename some bound variables in W before
applying e to avoid clashes with the variables in the terms of the bindings of e.

Definition Let P be a program and G a goal f-W. An answer for P u { G } is
a substitution for free variables in W.

Definition Let P be a program and G a goal f-W. A correct answer for
comp(P) u { G } is an answer e such that V' (We) is a logical consequence of
comp(P).

This definition, which generalises the previous definition of correct answer (see
§ 14), provides the appropriate declarative description of the output from a program
and goal.

We now investigate under what conditions the completion of a program will be
consistent. In a way similar to that in chapter 3, the concept of a stratified program
gives a satisfactory answer to this question.

Definition A level mapping of a program is a mapping from its set of
predicate symbols to the non-negative integers. We refer to the value of a predicate
symbol under this mapping as the level of that predicate symbol.

Definition A program is hierarchical if it has a level mapping such that, in
every program statement p(t 1 , . . . ,tn) f- W, the level of every predicate symbol in
W is less than the level of p.

Definition A program is stratified if it has a level mapping such that, in every
program statement p(t1 , . . . ,tn) f- W, the level of the predicate symbol of every
atom occurring positively in W is less than or equal to the level of p, and the level
of the predicate symbol of every atom occurring negatively in W is less than the
level of p.

This definition generalises the definition of stratified normal programs given in
§ 14. We can assume without loss of generality that the levels of a stratified
program are 0, 1 , . . . ,k, for some k. Note that, at level 0, all atoms in the bodies of

§1 7. Introduction to Programs 1 1 1

program statements must occur positively, but that these program statements need
not be definite program clauses.

Next we extend the definition of the mapping � to arbitrary programs.

Definition Let J be a pre-interpretation of a program P and I an interpretation
based on J. Then �(I) = { AJ,V : At-W e P, V is a variable assignment wrt J,
and W is true wrt I and V } .

Proposition 17.1 Let P be a program, J a pre-interpretation of P, and I an
interpretation based on J. Then I is a model for P iff �(I) � I.

Proof Similar to the proof of proposition 6.4. I

Proposition 17.2 Let P be a program, J a pre-interpretation of P, and I an
interpretation based on J. Suppose that I, together with the identity relation
assigned to =, is a model for the equality theory. Then I, together with the identity
relation assigned to =, is a model for comp(P) iff �(I) = I.

Proof Similar to the proof of proposition 14.3. I

Proposition 17.3 Let P be a stratified program and J a pre-interpretation for P.
(a) Suppose P has only predicates of level 0. Then � is monotonic over the
lattice of interpretations based on J.

(b) Suppose P has maximum predicate level k+l . Let Pk denote the set of
program statements in P with the property that the predicate symbol in the head of
the statement has level s; k. Suppose that Mk is an interpretation based on J for
Pk and Mk is a fixpoint of � . Then A = {Mk u S : S � {p(d 1 , . . . ,dn) : p is a

k
level k+1 predicate symbol and each di is in the domain of J } } is a complete
lattice, under set inclusion. Furthermore, A is a sublattice of the lattice of
interpretations based on J, and �· restricted to A , is well-defined and monotonic.

Proof Straightforward. (See problem 1 .) I

Corollary 17.4 Let P be a stratified program. Then comp(P) has a minimal
normal Herbrand model.

Proof Similar to the proof of corollary 14.8. I

The results of this section are due to Lloyd, Sonenberg and Topor [60] .

1 1 2 Chapter 4 . Programs

§18. SLDNF-RESOLUTION FOR PROGRAMS

In this section, we prove the soundness of the negation as failure rule and
SLDNF-resolution for programs and goals. We also give a completeness result for
hierarchical programs. The soundness results are proved by first transforming a
program and goal into a normal program and normal goal. We then use the fact
that the negation as failure rule and SLDNF-resolution are known to be sound in
this case (theorems 15 .4 and 15.6). This transformation technique can be used to
give a straightforward implementation of programs and goals.

The first lemma justifies the transformation of a goal to a normal goal.
Suppose P is a program and G is a goal . Let G have the form �w. where W has
free variables x 1 ' . . . ,xn. Suppose answer is an n-ary predicate symbol not appearing
in P or G. The transformation replaces G by the normal goal

� answer(x1 , . . . ,xn)
and adds the program statement

answer(x1 , . . . ,xn) � W
to the program P.

Lemma 18.1 Let P be a program, G a goal, and e an answer. Assume G has
the form �w. where W has free variables x1 , . . . ,x and answer is an n-ary n -
predicate symbol not appearing in P or G. Then we have the following properties.
(a) G is a logical consequence of comp(P) iff �answer(x1 , . . . ,xn) is a logical
consequence of comp(P'), where P' is P u { answer(xl ' . . . ,xn)�W} .
(b) 'V(W9) is a logical consequence of comp(P) iff 'V(answer(x1 , . . . ,xn)9) is a
logical consequence of comp(P').

Proof Note that in the presence of equality axioms 6, 7, and 8
'Vz1 . . . 'Vzn (answer(z1 , .. . ,zn) � 3x1 . . . 3xn((z1 =x1)A . . . A(zn =xn)" W))

is logically equivalent to
'Vx1 .. . 'Vxn (answer(x1 , . . . ,xn)� W)

Hence we can assume that comp(P') is simply comp(P) together with the latter
formula (and an equality axiom 8 for the predicate symbol answer). Both parts of
the lemma now follow easily from this. •

The next step is to transform a program P into a normal program P', called a
normal form of P, by means of the following transformations.

§18 . SLDNF-Resolution for Programs

(a) Replace
by
and

A � Wr''· · ·"wi-1"-(V"W)"Wi+1"·· ·"wm
A � W1A . . . J\Wi-1"-V"Wi+1"· · ·"Wm
A � w1"·· ·"wi-1"-w"wi+1"·· ·"wm

(b) Replace A � W1A . . . AWi_1AV'x1 . . . \7'xnW"Wi+1"·· ·"Wm
by A � W 1 "···" Wi_1 A-3x1 . . . 3xn -W" Wi+ 1 "· · ·" W m

(c) Replace A � W1A . . . AWi_1A-V'x1 . . . \7'xnW"Wi+1"· · ·"Wm
by A � W1A . . . J\Wi_1A3x1 . . . 3xn-W"Wi+l"·· ·"Wm

(d) Replace
by
and

A � W I"· · ·"Wi-1"(V�W)"Wi+1"·· ·"W m
A � w1"·· ·"wi-1"v"wi+I"· ··"wm
A � WI"·· ·"Wi-1"-W"Wi+1"·· ·"Wm

(e) Replace A � W1A . . . AWi_1A-(V�W)"Wi+I"·· ·"Wm
by A � w1"· · ·"wi_1"w"-v"wi+1"· ··"wm

(f) Replace
by
and

A � w 1 1\ • • • J\ wi-1 A(VVW)J\ wi+ 1 1\ • • • J\ w m
A � w1" . . . "wi-1"v"wi+1"·· ·"wm
A � wl"· · ·"wi-1"w"wi+I"·· ·"wm

(g) Replace A � W1A . . . AWi_1A-(VvW)AWi+l"·· ·"Wm
by A � W1A . . . AWi_1A-VA-WAWi+l"···"Wm

(h) Replace A � W1A . . . AWi-l"-W"Wi+lA. .. AWm
by A � w1"·· ·"wi-I"w"wi+I"· · ·"wm

(i) Replace A � W l "· · ·" Wi-l J\3x 1 . . . 3xn W "W i+ l "· · ·" W m
by A � w1"·· ·"wi-I"w"wi+I"·· ·"wm

G) Replace A � W1A . . . AWi-l"-3x1 . . . 3xnW"Wi+1"· ··"Wm
by A � WI"·· ·"Wi-1"-p(yl ' . . . ,yk)"Wi+I"·· ·"Wm
and p(y 1 , . . . ,yk) � 3x1 . . . 3xn W

1 1 3

where y 1 , . . . ,yk are the free variables in 3x1 . . . 3xn W and p is a new predicate
symbol not already appearing in the program.

1 1 4 Chapter 4. Programs

Note that, from a logical viewpoint, the various transformations for negation
could be replaced by a single all-encompassing transformation for negation similar
to G). However, the transformations for negation have been presented as above to
try to overcome the limitations of the negation as failure rule. For example,
without (h), a subgoal of the form --A can flounder if A contains any variables.
This problem disappears once the subgoal is transformed to A. Similar problems
are overcome by (a), (c), (e), and (g).

Example Consider the program statement
A � Vx1 . . . Vxn(3y1 . . . 3ykw�w1"·· ·"Wm)

If u1 ' . . . ,us are the free variables in the body and w1 ' . . . ,wd are the free variables in
3y 1 . . . 3yk W, then the above program statement can be transformed to

A � -p(u 1 ' . . . ,us)
p(u 1 ' . . . ,us) � W1A . . . AWmA-q(w1 , .. . ,wd)
q(w1 ' . . . ,wd) � W

Example The subset predicate (k) can be defined by the program statement
xcy � Vu(ue y � uex)

A normal form of this program statement is
xcy � -p(x,y)
p(x,y) � -(ue y) " ue x

We apply transformations (a), . . . ,G) until no more such transformations are
possible. The proposition below shows that this process terminates after a finite
number of steps and that the resulting normal form of the original program is
indeed a normal program. Of course, the normal form is not unique.

Proposition 18.2 Let P be a program. Then the process of continually applying
transformations (a), . . . ,G) to P terminates after a finite number of steps and results
in a normal program (called a normal form of P) .

Proof If M and M' are finite multisets of non-negative integers, then we define
M' < M as in the proof of theorem 16.3. The basic idea of the proof is to define a
termination function Jl from programs into the well-founded set of all finite
multisets of non-negative integers under <.

Inductively define the mapping Jl as follows:
Jl(atom) = 1
Jl(V" W) = Jl(V) + Jl{W)

§18 . SLDNF-Resolution for Programs

f.J.(-W) = fl(3xW) = Jl(W) + 1
Jl(V +-W) = Jl(V) + Jl{W) + 1
f.J.(VvW) = Jl{V) + Jl{W) + 2

fl(\txW) = Jl(W) + 4
Jl(program P) = {Jl{W) : A+-W is a statement in P } ,

1 1 5

where { . . . } denotes a multiset. It now suffices to remark that if Q' is obtained
from a program Q by a single transformation (a) or .. . or (j), then f.J.(Q') < f.J.(Q), so
the process terminates. Furthermore, the resulting program is a normal program
since, otherwise, some further transformation would be possible. •

Lemma 18.3 Let P be a program and let Q be the program which results from
a single transformation (a) or . . . or (i) . Then P and Q are logically equivalent and
also comp(P) and comp(Q) are logically equivalent.

Proof Straightforward. (See problem 3.) •

The corresponding result for transformation (j) is more complicated, as the
following lemma shows.

Lemma 18.4 Let P be a program and P' a normal form of P. If U is a closed
formula which is a logical consequence of comp(P') and U only contains predicate
symbols which appear in P, then U is a logical consequence of comp(P).

Proof It follows from lemma 1 8.3 that we only have to prove the lemma for a
single application of transformation (j). Suppose that P contains the program
statement

A+-W 1"· · ·" Wi-1"-W" Wi+l""" '" W m
and we apply transformation (j) to obtain

A+-W 1"" ' ·" Wi-1"-p(x1 , . . . ,xn)" Wi+1""' ·" W m
p(xl ' . . . ,xn)+-W

where x1 ' . . . ,xn are the free variables of W and W has the form 3y 1 . . . 3yk V. Let Q
be the program obtained from P by replacing the statement to which the
transformation was applied by these two statements.

Now comp(Q) contains the formula
\tz 1 " . . \tzn (p(z 1 ' . . . ,zn) � 3x1 . . . 3xn((z1=x1)A . . . A(zn=xn)"W))

As in the proof of lemma 1 8 . 1 , we can assume that the latter formula is replaced in
comp(Q) by the formula

1 1 6 Chapter 4. Programs

It follows easily from this that if U is a closed formula which is a logical
consequence of comp(Q) and U contains only predicate symbols which appear in
P, then U is a logical consequence of comp(P). I

Now we are in a position to define computed answers for programs and goals,
and to show that computed answers are correct.

Definition Let P be a program and G a goal � W, where W has free variables
x 1 ' . . . ,xn. A normal form of P u { G } is a normal program and goal P' u { G' } ,

where G ' i s �answer(x1 ' .. . ,xn) and P' i s a normal form of
P u { answer(xl ' . . . ,xn)�W} .

Definition Let P be a program and G a goal.
An SWNF-derivation of P u {G} is an SLDNF-derivation of P' u { G' } ,

where P' u {G' } i s a normal form of P u { G } .

An SWNF-rejutation of P u {G} i s an SLDNF-refutation of P' u {G' } , where
P' u { G' } is a normal form of P u { G } .

A computed answer for P u {G} is a computed answer for P' u { G' } , where
P' u { G' } is a normal form of P u { G } .

An SWNF-tree for P u { G } i s an SLDNF-tree for P' u { G' } , where
P' u {G' } is a normal form of P u {G } .

A finitely failed SWNF-tree for P u {G) is a finitely failed SLDNF-tree for
P' u { G' } , where P' u { G' } is a normal form of P u _{ G } .

It i s straightforward to show that th e above definitions essentially extend those
given in chapter 3 for normal programs and normal goals. (See problem 4.)

We now consider the problem of computations floundering. Let P be a
program and G a goal. By a computation of P u { G } , we mean an attempt to
construct an SLDNF-derivation of P' u { G' } , where P' u { G' } is a normal form of
P u { G } .

Definition Let P be a program and G a goal. We say a computation of
P u { G } flounders if at some point in the computation a goal is reached which
contains only non-ground negative literals.

Definition Let P be a program and G a goal. We say that P u {G } is allowed

if some normal form of P u { G} is allowed.

§18 . SLDNF-Resolution for Programs 1 1 7

It is straightforward to show that if one normal form of P u { G } is allowed,
then every normal form of P u { G } is allowed. (See problem 5.)

Proposition 18.5 Let P be a program and G a goal �w. Suppose that
P u { G } is allowed. Then we have the following properties.
(a) No computation of P u { G} flounders.
(b) Every computed answer for P u {G } is a ground substitution for all free
variables in W.

Proof The proposition follows immediately from proposition 15 . 1 . •

We now prove the soundness of the negation as failure rule and SLDNF­
resolution.

Theorem 18.6 (Soundness of the Negation as Failure Rule)
Let P be a program and G a goal. If P u { G } has a finitely failed SLDNF­

tree, then G is a logical consequence of comp(P).

Proof Note first that the result is known to hold when P is a normal program
and G is a normal goal (theorem 1 5.4) . Suppose G is the goal �w. where W has
free variables x 1 ' . . . ,xn. Let P" be P u { answer(x1 ' . . . ,xn)�W } . Suppose P u {G }
has a finitely failed SLDNF-tree. By definition, P' u {G' } has a finitely failed
SLDNF-tree, where G' is �answer(x1 , . . . ,xn) and P' is a normal form of P". Thus,
G' is a logical consequence of comp(P') . By lemma 18.4, G' is a logical
consequence of comp(P"). Thus, by lemma 18. 1 (a), G is a logical consequence of
comp(P). •

Theorem 18.7 (Soundness of SLDNF-Resolution)
Let P be a program and G a goal. Then every computed answer for P u (G}

is a correct answer for comp(P) u (G } .

Proof Note first that the result i s known to hold when P is a normal program
and G is a normal goal (theorem 15.6). Suppose G is the goal �w. where W has
free variables x 1 ' . . . ,xn. Let P" be P u { answer(x1 , . . . ,xn)�W} and e be a
computed answer for P u { G } . By definition, e is a computed answer for
P' u { G' } , where G' is �answer(x1 ' . . . ,xn) and P' is a normal form of P". Hence, e
is a correct answer for comp(P') u {G' } . By lemma 18.4, V(answer(x1 , . . . ,xn)9) is a
logical consequence of comp(P"). Thus, by lemma 18. 1 (b), V(W9) is a logical
consequence of comp(P). That is, e is a correct answer for comp(P) u { G } . •

1 1 8 Chapter 4. Programs

Theorems 1 8.6 and 1 8 .7 are due to Lloyd and Topor [61] .

Next, we shall prove a completeness result for hierarchical programs, which
extends theorem 16.3.

Lemma 18.8 Let P be a program and P' a normal form of P. Then comp(P) is
a logical consequence of comp(P') .

Proof By lemma 18.3, we only have to prove the lemma when P' is a program
obtained from P by a single application of transformation (j). Suppose that P
contains the program statement

At-W 1"· · ·"Wi-1"-W"Wi+1 "·· ·"Wm
and we apply transformation (j) to obtain

At-W t"· · ·" wi-1 A-p(xl , . . . ,xn)" w i+ 1 "· · ·" w m
p(x1 , . . . ,xn)t-W

where x1 , . . . ,xn are the free variables in W and W has the form 3y 1 . . . 3yk V. Let P'

be the program obtained from P by replacing the statement to which the
transformation was applied by these two statements.

Now comp(P') contains the formula
Vz1 . . . V'zn (p(z1 , . . . ,zn) H 3x1 . . . 3xn ((z1 =x 1)A . . . A(zn =xn)" W))

Using equality axioms 6, 7 and 8, we can assume that the latter formula is replaced
in comp(P') by the formula

Vx1 . . . V'xn(p(x1 , . . . ,xn)HW)
It follows easily from this that comp(P) is a logical consequence of comp(P') . •

If P is a program and P' is a normal form of P, then it follows from lemmas
1 8.4 and 18 .8 that comp(P') is a conservative extension [99] of comp(P).

Definition Let P be a program, G a goal, and R a safe computation rule.
An SWNF-derivation of P u { G } via R is an SLDNF-derivation of P u { G }

i n which the computation rule R i s used to select literals.
An SWNF -tree for P u { G } via R is an SLDNF-tree for P u { G} in which

the computation rule R is used to select literals.
An SWNF-refutation of P u { G } via R is an SLDNF-refutation of P u { G }

in which the computation rule R i s used to select literals.
An R-computed answer for P u { G } is a computed answer for P u { G } which

has come from an SLDNF-refutation of P u { G } via R.

§19 . Declarative Error Diagnosis 1 1 9

Theorem 18.9 (Completeness of SLDNF-Resolution for Hierarchical Programs)
Let P be a hierarchical program, G a goal f-W, and R a safe computation rule.

Suppose that P u { G } is allowed. Then the following properties hold.
(a) For every normal form of P u { G } , the corresponding SLDNF-tree for
P u { G } via R exists and is finite.
(b) If e is a correct answer for comp(P) u {G } and e is a ground substitution for
all free variables in W, then e is an R-computed answer for P u { G } .

Proof (a) Let P' u {G' } be a normal form of P u {G } . Then P' i s hierarchical
(see problem 8) and part (a) follows from theorem 16.3(a).

(b) Since e is a correct answer for comp(P) u {G} that is a ground
substitution for all free variables in W, we have that we is a logical consequence
of comp(P). By lemma 1 8. 1 (b), answer(xl ' . . . ,xn)8 is a logical consequence of
comp(P u { answer(xl ' . . . ,xn)f-W}) . By lemma 1 8.8, answer(xl ' . . . ,xn)8 is a logical
consequence of comp(P'). The result now follows from theorem 16.3(b). I

§19. DECLARATIVE ERROR DIAGNOSIS

This section presents an error diagnoser which finds errors in programs that
use advanced control facilities and the increased expressiveness of program
statements . The diagnoser is declarative, in the sense that the programmer need
only know the intended interpretation of an incorrect program to use the diagnoser.
In particular, the programmer needs no understanding whatever of the underlying
computational behaviour of the PROLOG system which runs the program. It is
argued that declarative error diagnosers will be indispensable components of
advanced logic programming systems, which are currently under development.
The results of this section are due to Lloyd [59] .

One of the greatest strengths of logic programming is its declarative nature. To
a large extent, programmers need only concern themselves with a declarative
understanding of their programs, leaving much of the procedural aspect to the logic
programming system itself.

However, the ideal of purely declarative programming is still far from being
achieved. Current research aimed at attaining this ideal is proceeding on a number
of fronts. For example, some PROLOG systems have advanced control facilities to
overcome the severe limitations of the standard left to right computation rule (e.g.,

1 20 Chapter 4. Programs

[73] , [74]). Improved forms of negation are being introduced (e.g. , [75] , [104]).
There has been work on program transformation, which allows programmers to
write programs in a form closer to their specification (e.g. , [101] and the references
therein).

The advanced logic programming systems, which will become available in the
near future, will be compiler systems exploiting all the above techniques. Source

programs for these systems will be written in a subset of first order logic. This
subset will include at least the class of programs defined in this chapter. In the
fust stage of compilation, source programs will be transformed into assembly

programs by the automatic addition of control information and the application of
various transformation techniques. These assembly language programs will be
similar to PROLOG programs as they are currently written for a coroutining
system. In the second stage of compilation, the assembly program will be further
compiled into a machine program, which can then be run on a coroutining version
of Warren's abstract PROLOG machine [1 10] . This second compilation stage is
now well understood. Note that, according to the above view, current versions of
PROLOG, which are now regarded as high level languages, will eventually be
regarded as low level machine languages.

Such systems will allow programmers to write in a more declarative style than
is currently possible and should ensure a great decrease in programmer effort.
However, there is a catch. The compiled program could be so different from the
source program and the control could be so complicated that debugging such
programs by conventional tracing techniques is likely to be extraordinarily difficult.
In other words, the programmer may only require an understanding of the intended
interpretation to write the program, but will need to know everything about the
computational behaviour of the system to debug the program! In fact, this problem
in a less extreme form also plagues current PROLOG systems.

For this reason, we argue that an indispensable component of future logic
programming systems will be a declarative debugging system, that is, one that can
be used without the need to understand the computational behaviour of the system.
The main purpose of this section is to present a declarative error diagnoser which
finds errors in programs that use advanced control facilities and the increased
expressiveness of program statements. Attention is confined to errors which lead
to a wrong or missing solution. In particular, errors which lead to infinite loops
are not discussed here.

§19 . Declarative Error Diagnosis 1 21

Declarative error diagnosis was introduced into logic programming, under the
name algorithmic debugging, by Shapiro [92] . As well as an error diagnoser, he
also presented an error corrector (regarded as a kind of inductive program
synthesiser). Shapiro was mainly concerned with definite programs using the
standard computation rule. Av-Ron [6] studied top-down diagnosers for definite
programs. Under the name rational debugging, Pereira [8 1] presented a diagnoser
for arbitrary PROLOG programs, including the non-declarative features of
PROLOG, such as cut. More recently, Ferrand [34] gave a mathematical analysis
of an error diagnoser for definite programs. Other work on debugging (not
necessarily declarative) is contained in [12], [30] , [3 1] , [32] , [83] and the
references therein.

We now give the definitions of the concepts necessary for a foundation for
error diagnosis.

Definition Let P be a program. An intended interpretation for P is a normal
Herbrand interpretation for comp(P).

The restriction to Herbrand interpretations is not essential. However, in
practice, intended interpretations are usually Herbrand and the analysis is a little
easier in this case. The foremost aim of a programmer is to write programs which
have their intended interpretations as models. This leads to the following
definition.

Definition Let P be a program and I an intended interpretation for P. We say P
is correct wrt I if I is a model for comp(P); otherwise, we say that P is incorrect

wrt l.

Of course, the reason we want P to be correct wrt I is so that all answers
computed by P will be true wrt I.

Proposition 19.1 Let P be a program, G a goal (c-W, and 9 a computed
answer for P u { G } . Let I be an intended interpretation for P and suppose that P is
correct wrt I. Then W9 is valid in I.

Proof The result follows immediately from the soundness of SLDNF-resolution
(theorem 18.7), since I is a model for comp(P). •

However, even if P is correct wrt I, we cannot guarantee that P will compute
everything in I.

1 22 Chapter 4. Programs

Example Suppose that P is a definite program such that lfp(Tp) ::1= gfp(Tp).'
Then P is correct wrt gfp(Tp), together with the identity relation assigned to =, but
P does not compute all atoms in gfp(T p)·

In other words, even if P is correct wrt I, P may still have a bug in the sense
that it is incomplete. This kind of bug is not detectable by the error diagnoser.
What it can detect is when P is incorrect wrt I.

An error in a program usually shows up because the program gives a wrong
answer or misses an answer (more precisely, finitely fails when it should succeed).
The next proposition formalises this.

Proposition 19.2 Let P be a program, G a goal f-W, and I an intended
interpretation for P.
(a) If e is a computed answer for P u { G } and we is not valid in I, then P is
incorrect wrt I.
(b) If P u {G } has a finitely failed SLDNF-tree and W is satisfiable in I, then P is
incorrect wrt I.

Proof Part (a) follows directly from the soundness of SLDNF-resolution
(theorem 1 8.7) and part (b) follows directly from the soundness of the negation as
failure rule (theorem 1 8.6). I

Now we define the two kinds of errors which the diagnoser can detect.

Definition Let P be a program and I an intended interpretation for P. Let A be
an atom with predicate symbol p. We say that A is an uncovered atom for P wrt I
if A is valid in I and, for every program statement A'f-W in the definition of p
such that A and A' unify with mgu e, say, we have that we is unsatisfiable in I.

Definition Let P be a program and I an intended interpretation for P. We say
an instance Af-W of a program statement in P is an incorrect statement instance

for P wrt I if A is unsatisfiable in I and W is valid in I. In case the program
statement is a program clause, we call the incorrect statement instance an incorrect

clause instance.

Note that every instance of an uncovered atom is uncovered and every instance
of an incorrect statement instance is incorrect.

§19 . Declarative Error Diagnosis 1 23

The next result gives the connection between the concepts of incorrect
program, uncovered atom, and incorrect statement instance.

Proposition 19.3 Let P be a program and I an intended interpretation for P.
Then P is incorrect wrt I iff there is an uncovered atom for P wrt I or there is an
incorrect statement instance for P wrt I.

Proof Suppose that there is an incorrect statement instance (in the definition of
p) for P wrt I. It is easy to see that I does not satisfy the if part

'v'x1 . . . 'v'xn (p(x1 ' . . . ,xn) +- E1v . . . vEk)
of the completed definition of p and hence that P is incorrect wrt I. Next suppose
that there is an uncovered atom p(s 1 ' . . . ,sn) for P wrt I. If there is no definition for
p, then it follows immediately that P is incorrect wrt I. Otherwise, I does not
satisfy the only if part

'v'x 1 .. . 'v'xn (p(x 1 , . . . ,xn) � E1v . . . v�)
of the completed definition of p and hence P is incorrect wrt I.

Now suppose that P is incorrect wrt I. Note that any normal Herbrand
interpretation for comp(P) is a model for the equality theory of comp(P) and thus I
can not be a model for the remainder .of comp(P). If I does not satisfy a completed
definition of the form

'v'xl . . . 'v'xn -p(x l , . . . ,xn)
then there is an uncovered atom. If I does not satisfy the only if part

'v'x1 ... 'v'xn (p(x1 ' . . . ,xn) � E1 v ... vEk)
of a completed definition, then there is an uncovered atom. Finally, if I does not
satisfy the if part

'v'x1 . . . 'v'xn (p(x 1 ' . . . ,xn) +- E1v . . . vEk)
of a completed definition, then there is an incorrect statement instance. •

Propositions 19.2 and 19.3 together show that if a program gives a wrong
answer or misses an answer, then there is an uncovered atom or an incorrect
statement instance. We now present a diagnoser which detects these errors.

The definitions below are those of the main predicates, wrong and missing.
The definitions of the predicates valid, unsatisfiable and clause need to be added.
If W is a formula, we let W' denote its image, which is a ground term, under the
representation scheme used by the diagnoser. This scheme uses "and" for
conjunction, "or" for disjunction, "not" for negation, "if' ' for implication,
"all(x',W')" for 'v'xW, and "some(x',W')" for 3xW.

1 24

Declarative Error Diagnoser

wrong(all(v, w), x) � wrong(w, x)
wrong(some(v, w), x) � wrong(w, x)
wrong(v if w, x) � wrong(v, x)
wrong(v if w, x) � missing(w, x)
wrong(v or w, x) � wrong(v, x)
wrong(v or w, x) � wrong(w, x)
wrong(not w, x) � missing(w, x)
wrong(v and w, x) � wrong(v, x)
wrong(v and w, x) � wrong(w, x)
wrong(x, z) � clause(x, x1 if y) " wrong(y, z)

Chapter 4. Programs

wrong(x, x1 if y) � unsatisfiable(x, x1) " clause(x, x1 if y) " valid(y, y)

missing(all(v, w), x) � missing(w, x)
missing(some(v, w), x) � missing(w, x)
missing(v if w, x) � missing(v, x)
missing(v if w, x) � wrong(w, x)
missing(v or w, x) � missing(v, x)
missing(v or w, x) � missing(w, x)
missing(not w, x) � wrong(w, x)
missing(v and w, x) � missing(v, x)
missing(v and w, x) � missing(w, x)
missing(x, z) � clause(x, x 1 if y) " missing(y, z)
missing(x, x1) � valid(x, x1) " V'y(3x2clause(x1 , x2 if y) --+ unsatisfiable(y, y))

The first argument of wrong is a goal (body). The second argument is an
uncovered atom or incorrect statement instance returned by the diagnoser. An
incorrect statement instance is actually found using the last statement of the
definition of wrong. The first argument of missing is a goal (body). Similarly, the
second argument is an uncovered atom or incorrect statement instance returned by
the diagnoser. An uncovered atom is actually found using the last statement of the
definition of missing.

The definition of clause contains all facts of the form clause(A', B' if W')�.
where A is an atom, B is an instance of A and B� W is an instance of a program
statement. The definition of valid contains all facts of the form valid(W', V')�.

where W is a formula and V is an instance of W valid in I. The definition of

§1 9 . Declarative Error Diagnosis 125

unsatisfiable contains all facts of the form unsatisfiable(W', V')�. where W is a
formula and V is an instance of W unsatisfiable in l

What we have presented above is the purely declarative part of the diagnoser.
It is important to isolate this declarative component, as we have done, for two
reasons. First, it clarifies the theoretical developments. One can prove the
soundness and completeness of the diagnoser without the complication of coping
with some particular control component. Second, it makes the challenge of
building practical error diagnosers clearer. This challenge is to find a sufficiently
clever control component to add to the above declarative component. Later we
show one way of adding this control.

The last four statements in the definition of wrong and the last four statements
in the definition of missing could be used together as a diagnoser for definite
programs. This diagnoser can be compared directly with the diagnosers of Shapiro
[92] , Av-Ron [6] and Ferrand [34] for definite programs. Later we compare
Shapiro' s single-stepping and divide-and-query algorithms for diagnosing incorrect
answers with a top-down version of the diagnoser. The main difference between
the diagnoser and Ferrand's is that we have dispensed with the statements in his
diagnoser which are concerned with returning the result that the error is undefined.

The seventh statement in the definition of wrong and the seventh statement in
the definition of missing together handle negated calls. These statements come
from [92] , where they are attributed to McCabe. Their motivation is as follows. If
the negation of a goal has incorrectly succeeded (resp. , incorrectly failed), then the
goal must have incorrectly failed (resp., incorrectly succeeded). The remainder of
the statements in the definitions handle the other connectives and quantifiers. As
an example, we give the motivation for the statements for implication in the
definition of wrong: if the goal v if w has returned a wrong answer, then either v
has returned a wrong answer or w has missed an answer.

We now show a method for adding control information to obtain a more
practical declarative error diagnoser. The idea is to ensure that the following
conditions are satisfied. In every call to wrong, the first argument is unsatisfiable.
Similarly, in every call to missing, the first argument is valid. For this purpose,
we make sure that a top level call to wrong has its first argument unsatisfiable and
a top level call to missing has its first argument valid. Furthermore, we add calls to
valid and unsatisfiable to ensure that subsequent calls to wrong and missing satisfy

1 26 Chapter 4. Programs

the above conditions. (See problem 13.)

We also add calls to succeed and fail. The definition of succeed contains all
facts of the form succeed(W', (W9)')f-, where W is a formula and 9 is a computed
answer for P u { f-W} . The definition of fail contains all facts of the form
fail(W')f-, where W is a formula and P u { f-W} has a finitely failed SLDNF­
tree. These additional calls are used as heuristics to guide the search for an error.
We call this the top-down version of the diagnoser. For definite programs, the top­
down diagnoser for wrong answers was given by Av-Ron [6] . A different top­
down diagnoser for missing answers for definite programs was also given in [6] .

Top-Down Version of the Declarative Error Diagnoser

wrong(all(v, w}, x) f- unsatisfiable(w, w1) " wrong(w1 , x)
wrong(some(v, w), x) f- wrong(w, x)
wrong(v if w, x) f- succeed(v, v1) " wrong(v1 , x)
wrong(v if w, x) f- fail(w) " missing(w, x)
wrong(v or w, x) f- succeed(v, v1) 1\ wrong(v1 , x)
wrong(v or w, x) f- succeed(w, w1) " wrong(w1, x)
wrong(not w, x) f- missing(w, x)
wrong(v and w, x) f- unsatisfiable(v, v1) " wrong(v1 , x)
wrong(v and w, x) f- unsatisfiable(w, w1) 1\ wrong(w1, x)
wrong(x, z) f- clause(x, x 1 if y) " succeed(y, y) " unsatisfiable(y, y) " wrong(y, z)
wrong(x, x1 if y) f- unsatisfiable(x, x1) " clause(x, x1 if y) 1\ valid(y, y)

missing(all(v, w), x) f- missing(w, x)
missing(some(v, w), x) f- valid(w, w1) " missing(w1 , x)
missing(v if w, x) f- valid(v, v 1) 1\ missing(v 1 , x)
missing(v if w, x) f- unsatisfiable(w, w1) " wrong(w1 , x)
missing(v or w, x) f- valid(v, v1) " missing(v1 , x)
missing(v or w, x) f- valid(w, w1) " missing(w1 , x)
missing(not w, x) f- wrong(w, x)
missing(v and w, x) f- fail(v) " missing(v, x)
missing(v and w, x) f- fail(w} " missing(w, x)
missing(x, z) f- clause(x, x 1 if y) 1\ fail(y) 1\ valid(y, y) 1\ missing(y, z)
missing(x, x1) f- valid(x, x1) 1\ 'v'y (3x2clause(x1 , x2 if y) --+ unsatisfiable(y, y))

§19 . Declarative Error Diagnosis 1 27

Example Consider the following (incorrect) subset program in which sets are
represented by lists.

subset(x,y) f- 'Vz (member(z,y) f- member(z,x))
member(x,x.y) f-
member(x,y.z) f- member(y,z)

The goal f-subset(2.nil, 1 .2.nil) incorrectly fails. The top-down algorithm produces
the following computation (in which some intermediate goals are not shown).

f- missing(subset(2.nil, 1 .2.nil), x)
f- missing(all(z', member(z', 1 .2.nil) if member(z', 2.nil)), x)
f- missing(member(z' , 1 .2.nil) if member(z' , 2.nil) , x)
f- missing(member(2, 1 .2.nil), x)
0

The computed answer is x/member(2, 1 .2.nil), that is, member(2, 1 .2.nil) is an
uncovered atom.

The implementation of the top-down algorithm in MU-PROLOG and examples
of its use are given in [59] . (For examples of the use of various other declarative
error diagnosers, the reader should consult [6] , [34], [8 1] and [92] .) The
implementations of valid and unsatisfiable rely on an oracle to answer questions
abOut the intended interpretation. In practice, the oracle is usually the programmer.
Answers from the oracle are recorded so that the oracle is never asked the same
question twice. Also complex formulas are broken down so that the oracle is only
ever questioned about the validity of atoms.

Example For the previous example, the implementation in [59] of the top-
down algorithm produces the following sequence of oracle queries.

subset(2.nil, 1 .2.nil) valid?
member(z, 2.nil) valid?
z=2.
member(2, 1 .2.nil) valid?
The following atoms are known to be valid:
member(2, 2.nil)
member(z, 2.nil) valid for other values? n
member(1 , 2.nil) valid? n

at which point the uncovered atom member(2, 1 .2.nil) is printed. A return after the
? indicates yes, while an n followed by a return indicates no. The value z=2 was
given by the oracle after a prompt with the variable name.

1 28 Chapter 4. Programs

Note that, by means of the metacalls, succeed and fail, the top-down algorithm
has decoupled the diagnosis of the program from whatever transformation,
compilation or advanced control was applied to the program. In other words, the
top-down algorithm is essentially independent of the underlying computational
behaviour of the logic programming system, which could therefore be changed or
improved without affecting the diagnoser.

We have tried to minimise the number of oracle calls made by the top-down
algorithm, without being too concerned about its computational complexity.
Nevertheless, this algorithm makes rather extravagant use of metacalls and hence
could be prohibitively expensive for some programs. It would be possible to
reduce this cost by building the erroneous refutation (or finitely failed tree) once at
the beginning of the diagnosis and then searching this refutation (or tree) for the
error. Wrong could be easily adapted to this approach, but missing would seem to
require more extensive changes, along the lines of [6] .

The top-down algorithm for diagnosing missing answers for definite programs
is similar to Shapiro's algorithm for missing answers [92, p.55] . We now briefly
compare the top-down algorithm for diagnosing incorrect answers for definite
programs with the single-stepping and divide-and-query algorithms of Shapiro [92] .
For this comparison, it is convenient to assume that, for all three algorithms, the
final computation tree of the erroneous computation is first constructed and the
algorithms search this tree for the incorrect clause instance. The final computation
tree is the AND-tree corresponding to the refutation obtained by applying all the
mgu's used in the refutation to all the nodes in the tree. For simplicity, we also
assume that the goal (body) is a single atom. Thus some instance of this atom is
the root of the final computation tree and its children are instances of atoms in the
body of the input clause invoked by the goal.

The single-stepping algorithm finds the error by doing a post-order traversal of
the final computation tree. Suppose the algorithm has just queried the oracle about
all the children of some node and found them to be valid. It then queries the
oracle about the node itself. If this node is not valid, then an incorrect clause
instance has been found. If this node is valid, then the algorithm continues the
post-order traversal. This algorithm is essentially a bottom-up algorithm. It has
the disadvantage that its worst case query complexity is equal to the number of
nodes in the tree. A version of the single-stepping algorithm is as follows.

§19 . Declarative Error Diagnosis

wrong(v and w, x) � wrong(v, x)
wrong(v and w, x) � wrong(w, x)
wrong(x, z) � clause(x, xi if y) A succeed(y, y) A wrong(y, z)
wrong(x, x i if y) � unsatisfiable(x, xi) A clause(x, xi if y) A valid(y, y)

1 29

The divide-and-query algorithm is an improvement in that its query complexity
is optimal to within a constant factor. The idea of this algorithm is as follows. It
finds a node in the tree such that the weight of the subtree rooted at that node is as
close as possible to half the weight of the entire tree. It then queries the oracle
about this node. If this node is not valid, then the algorithm recursively enters the
subtree rooted at this node. If not, the algorithm calculates a new "middle" node
for the entire tree with this subtree deleted. It is shown in [92] that this algorithm
has logarithmic query complexity. Unfortunately, it is rarely possible to divide the
tree in half. Usually, we must settle for a "middle" node which is the root of a

subtree with somewhat smaller weight. This detracts from the performance of the
divide-and-query algorithm. If the tree has n nodes and branching factor b, then
the worst case query complexity is blog n (not log n, as a superficial analogy with
the binary search algorithm might suggest).

The top-down algorithm searches the final computation tree as follows. First,
the oracle is queried about the root node, which is presumably not valid. It then
queries each child of the root node in turn. If they are all valid, then an incorrect
clause instance has been found. Otherwise, it enters the subtree rooted at the
leftmost child which it finds to be not valid and continues the search in the same
way in this subtree. The top-down algorithm does indeed search the tree in a top­
down fashion. Note that it would be easy to add the flexibility of querying the
children in some preferred order. If the final computation tree has branching factor
b and height h, then the worst case query complexity of the top-down algorithm is
bh.

We now compare in more detail the query complexity of the top-down and
divide-and-query algorithms. First, the top-down algorithm can perform worse
than the divide-and-query algorithm. Suppose the tree is linear and the error is
right at the bottom of the tree. The top-down algorithm queries all nodes in the
tree, while the divide-and-query algorithm only queries the logarithm of this
number. On the other hand, suppose the tree has two subtrees, the one on the right
being very much greater than the one on the left, and the only error is in the left
subtree. The top-down algorithm will quickly find the error by immediately

1 30 Chapter 4. Programs

searching the left subtree, while the divide-and-query algorithm will fruitlessly
search the right subtree before finally searching the left subtree. Thus the top­
down algorithm can perform better than the divide-and-query algorithm.

Suppose the fmal computation tree is perfectly balanced (that is, every internal
node has b children and all leaf nodes are at the same level) with height h and
branching factor b (>1) . In this case, the "middle" node will be the leftmost child
of the root node. If this node is valid and b>2, the next "middle" node will be
the second from left child of the root node. Assuming the rightmost child is the
only child which is not valid, the divide-and-query algorithm will query all the
other children before searching the subtree rooted at the rightmost node. Thus, for
a perfectly balanced tree, the top-down and divide-and-query algorithms search the
tree in a very similar manner. They both have worst case query complexity bh,
approximate! y.

The advantage of the divide-and-query algorithm is its logarithmic worst case
query complexity for any computation tree. However, its method of deciding which
node to query next is relatively inflexible and is dependent on a syntactic criterion
unrelated to the error. In this regard, the top-down algorithm is more flexible, as it
would be easy to add heuristics to suggest an order in which to query the children
of a node. It would be interesting to compare these two algorithms on a large
variety of incorrect programs and also to see the effectiveness of various heuristics.

§20. SOUNDNESS AND COMPLETENESS OF THE DIAGNOSER

Let us now tum to the soundness and completeness of the (first version on
page 124 of the) diagnoser. In the following theorems, it is assumed that valid,
unsatisfiable and clause have the sound and complete definitions indicated above.
The results of this section are due to Lloyd [59] .

Theorem 20.1 (Soundness of the Error Diagnoser)
Let P be a program, f-W a goal, and I an intended interpretation for P.

(a) If f-wrong(W', x) (resp., f-missing(W', x)) returns the answer x = A' if V',

then Af-V is an incorrect statement instance for P wrt I.
(b) If f-wrong(W', x) (resp., f-missing(W', x)) returns the answer x = A', then A
is an uncovered atom for P wrt I.

In either case, P is incorrect wrt I.

§20. Soundness and Completeness of the Diagnoser 1 31

Proof Parts (a) and (b) of the theorem are proved by induction on the total
number of calls to wrong and missing on the refutation produced by the diagnoser.
If there is only one such call , then either the last statement in the definition of
wrong or the (transformed version of the) last statement in the definition of
missing must be the single input clause used from either of these definitions. In the
frrst case, it is clear that Af-V is an incorrect statement instance. In the second
case, it is clear that A is an uncovered atom.

Now suppose that parts (a) and (b) of the theorem are true when the total
number of calls to wrong and missing is n. Consider a refutation which has n+ 1
such calls. An examination of the definitions of wrong and missing shows that the
frrst such call can use any statement as an input clause, except the last statement in
either definition. Thus the frrst call merely returns the result given by the
derivation starting from the second call to missing or wrong, which produces a
correct result, by the induction hypothesis. Parts (a) and (b) of the theorem follow
from this.

The last part of the theorem now follows from proposition 19.3. I

Next we study the completeness of the diagnoser. For this, it is convenient to
define (inductively) the concept of a formula and an atom being connected wrt a
program.

Definition Let W be a formula, A an atom, and P a program.
We say A is connected positively (resp., negatively) to W in 0 steps wrt P if A

occurs positively (resp., negatively) in W.

We say A is connected positively (resp. , negatively) to W in n steps wrt P
(n>O) if either there exists an atom B occurring positively in W and a statement
Cf-V in P such that B and C are unifiable with mgu e, say, and A is connected
positively (resp., negatively) to ve in n-1 steps wrt P or there exists an atom B
occurring negatively in W and a statement Cf-V in P such that B and C are
unifiable with mgu e. say, and A is connected negatively (resp., positively) to ve
in n-1 steps wrt P.

Definition Let W be a formula, A an atom, and P a program. We say that A
is connected positively (resp. , negatively) to W wrt P if A is connected positively
(resp. , negatively) to W in n steps wrt P, for some n�O.

Lemma 20.2 Let P be a program, f-W a goal, A an atom, and I an intended
interpretation for P. Let A be connected positively (resp., negatively) to W wrt P.

1 32 Chapter 4. Programs

(a) If an instance of A is the head of an incorrect statement instance for P wrt I,
then there exists a computed answer for f-wrong(W', x) (resp. , f-missing(W', x))
in which x is bound to the representation of this incorrect statement instance.
(b) If an instance of A is an uncovered atom for P wrt I, then there exists a
computed answer for f-missing(W', x) (resp., f-wrong(W', x)) in which x is bound
to the representation of this uncovered atom.

Proof The proof is a straightforward induction argument on the number of
steps needed to connect W and A. (See problem 14.) 1

Lemma 20.3 Let P be a normal program, G a normal goal f-W, and I an
intended interpretation for P.
(a) If e is a computed answer for P u { G } and we is not valid in I, then either

there exists an atom A connected positively to W wrt P such that an instance of A
is the head of an incorrect clause instance for P wrt I or there exists an atom A
connected negatively to W wrt P such that an instance of A is an uncovered atom
for P wrt I.
(b) If P u { G } has a finitely failed SLDNF-tree and W is satisfiable in I, then
either there exists an atom A connected positively to W wrt P such that an instance
of A is an uncovered atom for P wrt I or there exists an atom A connected
negatively to W wrt P such that an instance of A is the head of an incorrect clause
instance for P wrt I.

Proof Let W be L1 A . . . ALn. Parts (a) and (b) are proved together by induction
on the number of calls k (including calls in subsidiary refutations and trees) in the
SLDNF-refutation for (a) and in the SLDNF-tree for (b), respectively. When k=1 ,
the result is obvious. Now suppose that (a) and (b) hold when there are at most
k-1 calls.

(a) Suppose e is a computed answer for P u { G} , we is not valid in I and the
SLDNF-refutation has k calls. We can assume that e is actually the composition
of the substitutions used in the SLDNF-refutation. Let Li be the selected literal in
G. We consider two cases.

Li
is a negative literal

Suppose Li is -B. If B is satisfiable in I, then P u { f-B } has a finitely failed
SLDNF-tree with < k calls and the result follows by the induction hypothesis.
Otherwise, B is unsatisfiable in I and hence L. is valid in I. Thus e is a computed

1
answer for P u { f-L1 A . . . ALi_1 ALi+ 1 A . . . ALn } and (L1 A . . . ALi_1 ALi+ 1 A . . . ALn)e is
not valid in I. Hence the result follows from the induction hypothesis.

§20 . Soundness and Completeness of the Diagnoser 1 33

L
i

is a positive literal

Let B�V be the flrst input clause. Suppose that
(L1 A . . . ALi_1 A V ALi+ 1 A . . . ALn)e is not valid in I. Then the result follows from the
induction hypothesis. Otherwise, L.e is not valid in I. Hence Be� ve has an 1
incorrect clause instance and the result follows.

(b) Suppose P u {G } has a flnitely failed SLDNF-tree, W is satisfiable in I
and the SLDNF-tree has k calls. Let Li be the selected literal in G. We consider
two cases.

Li is a negative literal

Suppose Li is -B. Suppose first that Li fails. Then the identity substitution is
a computed answer for P u { � B } and B is not valid in I. The result follows by
applying the induction hypothesis. Otherwise, Li succeeds. Then
P U { �L1A . . . ALi_1ALi+1 A . . . ALn } has a finitely failed SLDNF-tree and
L1 A . . . ALi_1 ALi+ 1 A . . . ALn is satisfiable in I. Again, the result follows from the
induction hypothesis.

Li is a positive literal

Suppose there exists an input clause B�V with mgu e 1 , say, such that
(L1 A . . . ALi_1 A V ALi+ 1A . . . ALn)e1 is satisfiable in I. Then the result follows by
applying the induction hypothesis. Otherwise, an instance of Li is an uncovered
atom and the result follows. •

Next we generalise lemma 20.3 to arbitrary programs and goals.

Lemma 20.4 Let P be a program, G a goal �w. and I an intended
interpretation for P.
(a) If e is a computed answer for P u { G } and we is not valid in I, then either

there exists an atom A connected positively to W wrt P such that an instance of A
is the head of an incorrect statement instance for P wrt I or there exists an atom A
connected negatively to W wrt P such that an instance of A is an uncovered atom
for P wrt I.
(b) If P u { G } has a finitely failed SLDNF-tree and W is satisfiable in I, then
either there exists an atom A connected positively to W wrt P such that an instance
of A is an uncovered atom for P wrt I or there exists an atom A connected
negatively to W wrt P such that an instance of A is the head of an incorrect
statement instance for P wrt I.

Proof (a) First, we show that we can reduce the lemma to the case that W is
an atom. Suppose that W has free variables x1 ' ... ,xn. Let answer be a new n-ary

1 34 Chapter 4. Programs

predicate symbol. Let G' be �answer(x1 , . . . ,xn) and P' be
P u { answer(xl' . . . ,xn)�W} . Extend I to an interpretation I' for P' by defining
answer(t l ' . . . ,tn) to be true in I' if W{x1tt1 , . . . ,xJtn} is true in I, where t1 ' . . . ,tn are
ground terms. If e is a computed answer for P v { G} and we is not valid in I,
then it is clear that e is a computed answer for P' u {G' } and answer(x l ' . . . ,xn)8 is
not valid in I'. Note also that no instance of the statement for answer is incorrect
for P' wrt I' and no instance of answer(x1 ' . . . ,xn) is uncovered for P' wrt I'.
Assuming the result is true for the case when the goal (body) is an atom, either
there exists an atom A connected positively to answer(xl ' . . . ,xn) wrt P' such that an
instance of A is the head of an incorrect statement instance for P' wrt I' or there
exists an atom A connected negatively to answer(x1 , . . . ,xn) wrt P' such that an
instance of A is an uncovered atom for P' wrt I'. Part (a) of the lemma follows
easily from this.

Let us now assume that W is an atom. We prove the result by induction on the
number of transformation steps k required to transform P into a normal form of P.
When k=O, P is already a normal program and the result follows from lemma 20.3.

Next suppose that the result holds for programs which require at most k-1
transformation steps. Let P be a program which requires k such steps. Suppose P'
is the program obtained from P by applying the first such transformation step.
Note that if e is a computed answer for P u { G} , then e is a computed answer for
P' u {G }

Suppose that the frrst transformation used i s one of the frrst nine
transformations, (a) to (i), given in § 18 . In this case, if B is an uncovered atom for
P' wrt I, then B is also an uncovered atom for P wrt I. Similarly, if B� V is an
incorrect statement instance for P' wrt I, then either B� V is an incorrect statement
instance for P wrt I or the statement in P, which gave rise via the transformation to
the clause in P' whose instance is B�V. has a corresponding incorrect statement
instance. We can now obtain the result by applying the induction hypothesis to P'.

Finally, suppose that the frrst such transformation used is the last
transformation (j) given in § 18, that is,

Replace B � w 1 "·· ·" wi-1 A-3x1 . . . 3xn v 1\ wi+ 1 /\ . . . /\ w m
by B � W1"· ··"Wi-1A-p(yl ' . . . ,yk)"Wi+1"· · ·"Wm
and p(y l ' . . . ,yk) � 3x1 .. . 3xn V

where y l ' . . . ,yk are the free variables in 3x1 . . . 3xn V and p is a new predicate
symbol not already appearing in P. We extend I to I' for P' by defining p(t1 , . . . ,tk)
to be true in I' if (3x1 . . . 3xn V) { y 1ttl ' . . . ,yJtk} is true in I, where t1 ' . . . ,tk are ground

§20. Soundness and Completeness of the Diagnoser 1 35

terms. Note that no instance of the statement for p is incorrect for P' wrt I' and no
instance of p(x1 ' . . . ,xn) is uncovered for P' wrt I' . Note also that if an instance of
B � w1 wi-ll\-p(yl ' . . . ,yk)"Wi+l"·· ·"Wm is incorrect for P' wrt I', then a
corresponding instance of B � w1 1\Wi-l"-3x1 . . . 3xnV"Wi+I"·· ·"Wm is
incorrect for P wrt I. Furthermore, if q is the predicate symbol of B and some
atom C with predicate symbol q is uncovered for P' wrt I', then C is also
uncovered for P wrt I. The result now follows by applying the induction
hypothesis to P'.

(b) The proof of part (b) is similar. •

Theorem 20.5 (Completeness of the Error Diagnoser)
Let P be a program, G a goal �w. and I an intended interpretation for P.

(a) If e is a computed answer for P u { G } and we is not valid in I, then there
exists a computed answer for �wrong(W', x) in which x is bound to the
representation of either an incorrect statement instance or an uncovered atom.
(b) If P u { G } has a finitely failed SLDNF-tree and W is satisfiable in I, then
there exists a computed answer for �missing(W', x) in which x is bound to the
representation of either an incorrect statement instance or an uncovered atom.

Proof The theorem follows immediately from lemmas 20.2 and 20.4. •

The main advantages of the approach taken in this chapter to error diagnosis
are that the diagnoser itself has a simple and elegant semantics, that the
programmer only needs to know the intended interpretation of the incorrect
program to debug it, and that the diagnoser can handle programs which use
advanced control facilities and the increased expressiveness of program statements.

However, a disadvantage of the approach is that it does not cope with the
non-declarative features of PROLOG, such as cut, assert and retract. At first sight,
this would appear to invalidate the approach, since practically every non-trivial
PROLOG program makes some use of these non-declarative features! However, the
outlook is more promising than that.

The first point to note in this regard is that well-written PROLOG programs
usually consist of a small number of definitions using non-declarative features
together with the remainder of the definitions which are purely declarative (except
possibly for safe uses of cut, which are only for efficiency and can be ignored for
the purposes of debugging). This means that the programmer can use a diagnoser

1 36 Chapter 4. Programs

like the one above for debugging the major part of the program which is purely
declarative. Second, as we pointed out earlier, there is a strong effort being put
towards making the new generation of PROLOG systems more declarative.
Advanced control facilities and better forms of negation allow the programmers to
write their programs in a more declarative style. In fact, it may even be possible to
avoid the overt use of cut entirely. All these advances in the design of PROLOG
systems make the job of debugging much easier. They will also make the
declarative diagnoser more practically useful, since the proportion of programs to
which the pure approach above applies will increase.

Leaving aside the problem of the non-declarative features of PROLOG, we
now look at other ways in which the diagnoser could be improved. A useful way
of thinking about error diagnosers is that they are expert systems and a number of
recent papers (e.g. [3 1] , [32]) have taken this approach. One can imagine the
diagnoser being augmented with expert knowledge about typical program errors
and all kinds of heuristics for quickly locating them. Another interesting
possibility would be the incorporation of the intelligent backtracking ideas of [8 1] .
This has been investigated in some detail for definite programs in [6] . These ideas
need to be extended to (arbitrary) programs.

The diagnoser also needs some method of locating errors which lead to infinite
loops [92] . The analysis of a looping program is complicated by the fact that it
may actually be correct wrt the intended interpretation, but get into an infinite loop
because of the deficiencies of the standard PROLOG computation rule. The
employment of advanced control facilities, which are more likely to avoid infinite
loops [73] , will help here.

Much more research needs to be done before we will be able to build truly
practical declarative error diagnosers. We hope the results of this chapter will
provide a useful foundation for this research.

PROBLEMS FOR CHAPTER 4

1 . Prove proposition 17.3.

Problems for Chapter 4

2. Consider the following program

grandparent(x,y) � parent(x,z}, parent(z,y)

parent(x,y) � mother(x,y)
parent(x,y) � father(x,y)

ancestor(x,y) � parent(z,y), ancestor(x,z)
ancestor(x,y) � parent(x,y)

father(Fred, Mary)
father(George, James)
father(John, Fred)
father(Albert, Jane)

mother(Sue, Mary)
mother(Jane, Sue)
mother(Liz, Fred)
mother(Sue, James)

(a) Write the following queries as goals.
(i) Who is the father of Jane?
(ii) Who has Sue as mother and John as grandfather?
(iii) Who are the ancestors of Mary?
(iv) Does every person with a mother also have a father?
(v) Are all Sue' s children childless?
(vi) Find everyone who has a grandparent in common with Mary.
(vii) Find every mother who has no father.

1 37

(viii) Is it true that everyone who has a grandparent in common with George has
an ancestor in common with Mary?
(b) For the above program and each of the goals in part (a) , show a normal
program and normal goal which result from the transformation process.

3 . Prove lemma 1 8.3 .

4 . Let P be a normal program and G a normal goal.
(a) Prove that e is a computed answer for P u { G } in the sense of § 1 8 iff e is a
computed answer for P u { G} in the sense of § 15.
(b) Prove that P u {G} has a finitely failed SLDNF-tree in the sense of § 1 8 iff
P u {G } has a finitely failed SLDNF-tree in the sense of § 15.

1 38 Chapter 4. Programs

(c) What is the relationship between SLDNF-derivations, SLDNF-refutations, and
SLDNF-trees in the sense of § 1 8 and in the sense of § 15?

5. Let P be a program and G a goal. Prove that if one normal form of P u { 0} is
allowed, then every normal form of P u { G} is allowed.

6. Let P be a program and P' and P" normal forms of P. Let U be a closed
formula containing only predicate symbols which appear in P. Prove that U is a
logical consequence of comp(P') iff U is a logical consequence of comp(P") .

7 . Give an example of a program P with a normal form P' such that P i s not a
logical consequence of P' .

8 . Let P be a hierarchical program, G a goal and P' u {G' } a normal form of
P u { 0 } . Prove that P' is hierarchical.

9. Let P be a program and W a closed formula.
(a) Prove that P u { +---W} has a finitely failed SLDNF-tree iff P u { +--- -W} has
an SLDNF-refutation.
(b) Prove that P u { +-W} has an SLDNF-refutation iff P u { +--- -W} has a finitely
failed SLDNF-tree.
What happens if W is not closed?

10. Let P be a program, 0 1 a goal +-W1 , and 02 a goal +-W2. Suppose that w1
and W 2 are logically equivalent. Determine whether the following statements are
correct or not:
(a) e is a computed answer for P u { G 1 } iff e is a computed answer for
p u {02 } .
(b) P u { G1 } has a finitely failed SLDNF-tree iff P u {02 } has a finitely failed
SLDNF-tree.

1 1 . Let P be the program
p(a) +-

and 0 the goal +--- "tx p(x). Show that, if the safeness condition is dropped, the
identity substitution is a "computed answer" , but that "tx p(x) is not a logical
consequence of comp(P) .

Problems for Chapter 4

12. Let P be the program
p(a,a) �
q(b,y) �
r(a) � 'v'y(q(x,y)�p(x,y))

1 39

and G the goal �r(a). Show that r(a) is a logical consequence of comp(P), but
that, if the safeness condition is dropped, P u {G } has a "finitely failed SLDNF­
tree" .

13 . Consider the top-down version of the error diagnoser. Assume that a top level
call to wrong has its first argument unsatisfiable and a top level call to missing has
its first argument valid. Prove that the top-down version of the error diagnoser has
the property that any subsequent call to wrong has its first argument unsatisfiable
and any subsequent call to missing has its first argument valid.

14. Prove lemma 20.2.

1 5. Consider the following (incorrect) program for the Sieve of Eratosthenes.

primes(x,y) � integers(2,x,z), sift(z,y)

integers(x,y,x.z) � xsy, plus(x, 1 ,w), integers(w,y,z)
integers(x,y,nil) � x>y

sift(nil,nil)
sift(x.u,x.y) � remove(x,u,z) , sift(z,y)

remove(x,nil,nil)
remove(x,y.u,z) � -(x div y), remove(x,u,z)
remove(x,y.u,y.z) � x div y, remove(x,u,z)

The goal �primes(10, x) returns the incorrect answer x/2.4.8.nil.
(a) Show the oracle queries which would be asked by the single-stepping diagnoser
for the goal

� wrong(primes(lO, 2.4.8.nil) , x)
and hence determine an incorrect clause instance in the program.
(b) Repeat part (a) for the top-down diagnoser.
(c) Repeat part (a) for the divide-and-query diagnoser.
[Note that x div y is true if x divides y. Also plus(x,y,z) is true if x+y=z. You
may assume the system predicates >, S, plus and div all work correctly. Thus
oracle queries for these predicates can be avoided by simply calling them.]

1 40

16. Consider the following (incorrect) subset program
subset(x,y) f- "iiz (member(z,y) +-- member(z,x))
member(x,y.z) +-- member(x,z)

Chapter 4. Programs

and the goal +-subset(1 .2.3.nil, 1 .2.nil), which incorrectly succeeds. For the top­
down diagnoser, show the computation and oracle queries that result from the goal

+-wrong(subset(l .2.3.nil, 1 .2.nil) , x)
Hence calculate the incorrect statement instance or uncovered atom.

Chapter 5

DEDUCTIVE DATABASES

This chapter provides a theoretical basis for deductive database systems. A
deductive database consists of a finite number of database statements, which have
the form Af-W, where A is an atom and W is a typed first order formula. A
query has the form f-W, where W is a typed first order formula. An integrity
constraint is a closed, typed first order formula. Function symbols are allowed to
appear in formulas. Such a deductive database system can be implemented using a
PROLOG system. The main results of this chapter are the soundness and
completeness of the query evaluation process, the soundness of the implementation
of integrity constraints, and a simplification theorem for implementing integrity
constraints.

§21. INTRODUCTION TO DEDUCTIVE DATABASES

In this section, we introduce the important concepts of deductive database
systems, such as database, query, correct answer, and integrity constraint. We also
introduce several classes of databases, such as hierarchical and stratified databases.

In recent years, there has been a growing interest in deductive database
systems [24] , [35] to [38] , [5 1] , [58] , [60] to [63] , [70] , [87] , [105] , [1 1 1] . Such
systems have first order logic as their theoretical foundation. This approach has
several desirable properties.

First, it provides an expressive environment for data modelling, since the use
of database statements allows a single general statement to replace many explicit
facts.

1 42 Chapter 5. Deductive Databases

Second, it allows a single language to be used for expressing databases,

queries, integrity constraints, views and programs. In particular, there is no need

for separate query and host programming languages as are commonly used in

relational database systems.

Third, logic itself has a well-understood and well-developed theory which

already provides much of the theoretical foundation required for database systems.

Fourth, logic allows the declarative expression of databases, queries, integrity

constraints and, especially, the key concept of a correct answer. The advantage to

the user of only having to deal with declarative concepts is obvious.

Finally, and this is most important, the approach encourages a clear separation

of the declarative and procedural concepts. For example, we can distinguish the

declarative concept of a correct answer from the query evaluation process used to

compute the answer. This contrasts with the standard relational database approach

in which the declarative concept is commonly either ignored or identified with the

implementation. The existence of a declarative definition provides an important

yardstick against which the correctness of an implementation can be measured.

Without it, we would not be able to even state the soundness and completeness

theorems.

As the collection of papers in [70] shows, there is currently a great deal of

research into the theoretical aspects of deductive database systems. There is even

more interest in the implementation of deductive database systems, especially in

the crucial area of query optimisation. Most efforts have been put into finding

efficient ways of answering definite queries to (recursive) definite databases

without functions. For a recent survey of the techniques for this problem found so

far, the reader is referred to [7]. Unfortunately, little attention has so far been paid

to optimising normal queries, much less arbitrary queries. However, given the

great interest in the implementation problems, there is every chance that

commercially competitive deductive database systems will become available in the

next couple of years. Certainly, ten years from now, deductive database systems

will be the standard database systems in the same way as relational database

systems are standard now.

Underlying the theoretical developments of this chapter is a typed first order

theory. (See §3 for a discussion of typed theories.) The reason for using a typed

§21 . Introduction to Deductive Databases 1 43

theory is that types provide a natural way of expressing the domain concept of
relational databases. The requirement that formulas be correctly typed ensures that
important kinds of semantic integrity constraints are maintained. In this chapter,
we assume that the alphabet of the theory contains only finitely many constants,
function symbols and predicate symbols. Also we assume that, for each type 't,
there is a ground term of type t.

Next we turn to the definitions of the main concepts. The particular
formulation of these concepts presented in this chapter is due to Lloyd and Topor
[61] , [62], [63] .

Definition A database statement is a typed first order formula of the form
A � W

where A is an atom and W is a typed first order formula. The formula W may be
absent. Any variables in A and any free variables in W are assumed to be
universally quantified at the front of the statement. A is called the head and W the
body of the statement.

Definition A database is a finite set of database statements.

Definition A query is a typed first order formula of the form
� w

where W is a typed first order formula and any free variables of W are assumed to
be universally quantified at the front of the query.

Example Consider a supplier-part-job database, whose predicate symbols have
types associated with them as follows:

supplier has type sno x sname x city
local_supplier has type sno
major_supplier has type sno
part has type pno x pname x colour x weight
job has type jno xjname x city
spj has type sno x pno xjno x quantity

In a typical state, the database may contain the following statements :
supplier(S l , Smith, Adelaide) �
supplier(S2, Jones, Sydney) �
supplier(S3, James, Perth) �
local_supplier(S 1) �

1 44 Chapter 5. Deductive Databases

local_supplier(s) +-- supplier(s,_,Melboume)
major_supplier(s) +-- 'v'j/jno 3q/quantity (spj(s,_,j,q) " q� 100)
part(P1 , Screw, White, 1 0) +-
part(P2, Nut, Black, 20) +-
job(Jl , Build, Melbourne) +-
job(J2, Repair, Sydney) +-
spj(S 1 , P1 , Jl , 100) +-
spj(S2, P2, J3 , 200) +-

In these database statements and in subsequent queries and integrity constraints,
each underscore ("_") in an argument position represents a unique variable
existentially quantified immediately before the atom containing it. Constants are
denoted by names beginning with an upper case letter. Some possible queries that
may be asked of this database are the following:
(1) Find suppliers who supply the same part to all jobs in Perth:

+-- 3p/pno 'v'j/jno (spj(s,p,j ,_) +-- job(j,_,Perth))
(2) Find parts supplied by all suppliers who supply some red part:

+-- 'v's/sno (spj(s,p,_,_) +-- 3p'/pno (spj(s,p',_,_)Apart(p',_,Red,_)))
(3) Find major suppliers such that if S 1 supplies some part to some job then the
major supplier supplies either the part or the job:

+-- major_supplier(s) " 'v'p/pno 'v'j/jno (spj(s,p,_,_) v spj(s,_,j ,_) +-- spj(S 1 ,p,j,_))

Definition Let D be a database and Q a query +-W, where W has free
variables x1 , . . . ,xn. An answer for D v { Q} is a substitution for some or all of the
variables x1 ' . . . ,xn.

It is understood that substitutions are correctly typed in that each variable is
bound to a term of the same type as the variable.

Definition An integrity constraint is a closed typed first order formula.

Example Some integrity constraints that may be imposed on the above
database are the following:
(1) No local supplier supplies part P2:

'v's/sno (-spj(s,P2,_,_) +-- local_supplier(s))
(2) Supplier S2 supplies every job in Sydney:

'v'j/jno (spj(S2,_j ,_) +-- job(j,_,Sydney))
(3) Supplier S3 only supplies jobs in Adelaide or Perth:

'v'j/jno (job(j ,_,Adelaide) v job(j ,_,Perth) +-- spj(S3,_j,_))

§21 . Introduction to Deductive Databases 1 45

Next we give the definition of the completion of a database. This definition
requires the introduction of a typed equality predicate symbol =t of type tXt, for
each type t. These predicate symbols are assumed not to appear in the original
language. In particular, no database, query or integrity constraint contains any =t .

Definition The definition of a predicate symbol p appearing in a database D is
the set of all database statements in D which have p in their head.

Definition Suppose the definition of a predicate symbol p of type t1 x .. . xtn in
a database is

Al � wl

Ak � wk
Then the completed definition of p is the formula

'Vx1/tr.'Vxu'tn (p(x1 ' . . . ,xn) � E1 v . .. v�)

where Ei is 3y1/o-1 . .. 3yJo-d ((x1=t1t1)A ... A(xn=tn
tn)"Wi), Ai is p(tl ' . . . ,tn),

y 1 , . . . ,y d are the variables in Ai and the free variables in Wi, and x1 , . . . ,xn are
variables not appearing anywhere in the definition of p.

Example Let the definition of p be
p(x) � q(x,y)
p(b) �

where x has type t and y has type 0". Then the completed definition for p is
'Vz/t (p(z) � (3x/t 3y/O" ((z=tx)Aq(x,y)) v (z=tb)))

Definition Let D be a database and p a predicate symbol of type t1 x . . . xtn
occurring in D. Suppose there is no database statement in D with predicate
symbol p in its head. Then the completed definition of p is the formula

'Vxl/tl . . . 'Vxn/tn -p(xl , . . . ,xn)

The equality theory for a database consists of all axioms of the following
form:

1 . c:;t:td' where c and d are distinct constants of type t.

2. V'(f(x1 , . . . ,xn)*tg(yl ' . . . ,ym)), where f and g are distinct function symbols of
range type t.

1 46 Chapter 5. Deductive Databases

3. 'd(f(x1 , .. . ,xn):;t:'tc), where c is a constant of type 't and f is a function symbol of
range type 't.

4. 'd(t[x]:;t:'tx), where t[x] is a term of type 't containing x and different from x.

5 . 'd((xl:;t:t/ l) v . . . v (xn:;t:-c/n) � f(x1 , . . . ,xn):;t:i(Yl '·· · ·Yn)), where f is a

function symbol of type -c1 x . . . x'tn �'t.

6. Vx/'t (x= 'tx).

7. 'd((x1=-c/ l) " . . . " (xn=-c/n) � f(x1 , . . . ,xn)=i<Yl ' · · · ·Yn)), where f

function symbol of type -c1 x . . . x'tn �'t.

is a

8. 'd((x1=-c/l) " . . . " (xn=-c/n) � (p(x1 ' . . . ,xn) � p(y1 , . . . ,yn))), where p

(including every =-c) is a predicate symbol of type -c1 x . . . x'tn.

9. Vx/t ((x='ta1) v . . . v (x='tak) v (3x1t-c1 . . . 3xn/'tn(x=i1Cx1 , . . . ,xn))) v

. . . v (3y1tcr1 . . . 3ym/crm(x=-cf/y1 , . . . ,ym)))),
where a1 ' . . . ,ak are all the constants of type 't and f1 ' . . . ,fr are all the function
symbols of range type 't.

Axioms 1 to 8 are the typed versions of the usual equality axioms for a
program. (See § 14.) The axioms 9 are the domain closure axioms, which were
introduced in the function-free case by Reiter [85] .

Definition Let D be a database. The completion of D, denoted by comp(D) , is
the collection of completed definitions of predicate symbols in D together with the
above equality theory.

Definition Let D be a database, Q a query � W, and 9 an answer for
D u (Q} . We say 9 is a correct answer for comp(D) u (Q } if 'd(W9) is a
logical consequence of comp(D).

The concept of a correct answer gives a declarative description of the desired
output from a query to a database. Next we give the definition of a database
satisfying or violating an integrity constraint.

Definition Let D be a database such that comp(D) is consistent and let W be

an integrity constraint. We say D satisfies W if W is a logical consequence of

§21 . I ntroduction to Deductive Databases 147

comp(D); otherwise, we say D violates W.

This definition is due to Reiter [87] . Intuitively, an integrity constraint should
be an invariant of the database.

There are two common views of databases, at least relational databases, which
have been called the model-theoretic view and the proof-theoretic view [5 1] , [79] ,
[87] .

In the model-theoretic view, a database is a model of its integrity constraints.
Furthermore, an answer to a query should make the query true in the model given
by the database. This view is essentially that provided by conventional relational
database theory [25] .

In the proof-theoretic view, the database i s a first order theory and its integrity
constraints should be an invariant of the theory. Furthermore, answering a query
involves proving the query to be a logical consequence of the database. This
chapter takes a proof-theoretic view of databases.

The proof-theoretic view has a number of advantages over the model-theoretic
view, which are mainly concerned with the extension from relational databases to
more general databases. For example, the model-theoretic view only works in a
natural way for relational databases because the facts in the database can equally
well be regarded as constituting an Herbrand interpretation. Once we move beyond
having just ground facts in the database, there is no natural way of regarding the
database as an interpretation any more. The other advantages are related to the
fact that, if the database is regarded as a first order theory, then we have available
more powerful data modelling capabilities for the treatment of incomplete
information and null values, and the incorporation of more real world semantics.
We refer the interested reader to [5 1] and [87] for a detailed discussion of these
matters.

Next, we give the definitions of several important classes of queries and
databases.

Definition A normal query is a query of the form rLl''· · ·"Ln, where
L1 , . . . ,Ln are literals.

Definition A definite query is a query of the form rA1 A. . . AAn, where
A1 , . . . ,An are atoms.

1 48 Chapter 5 . Deductive Databases

Definition A database clause is a database statement that has the form
ArL1A . . . ALn, where L1 ' . . . ,Ln are literals. A normal database is a database that
consists of database clauses only.

Definition A definite database clause is a database clause that has the form
ArA1A . . . AAn, where A1 ' . . . ,An are atoms. A definite database is a database that
consists of definite database clauses only.

Definition A level mapping of a database is a mapping from its set of
predicate symbols to the non-negative integers. We refer to the value of a predicate
symbol under this mapping as the level of that predicate symbol.

Definition A database is hierarchical if it has a level mapping such that, in
every database statement p(t1 , . . . ,tn) r W, the level of every predicate symbol in
W is less than the level of p.

Definition A database is stratified if it has a level mapping such that, in every
database statement p(t1 , . . . ,tn) r W, the level of the predicate symbol of every
atom occurring positively in W is less than or equal to the level of p, and the level
of the predicate symbol of every atom occurring negatively in W is less than the
level of p.

Clearly, every hierarchical database is . stratified and also every definite
database is stratified.

We can assume without loss of generality that the levels of a stratified
database are O, l , . . . ,k, for some k, and we will normally assume this without
comment in what follows. However, whenever we deal with stratified databases D
and D' such that D !:: D', it will be convenient to assume that D inherits the
stratification induced by D'. This implies that for the smaller database D, there
may not be predicate symbols of all levels O, l , . . . ,k. Note that, at level 0, all atoms
in the bodies of database statements must occur positively, but that these database
statements need not be definite database clauses.

Since every formula can be transformed into a logically equivalent formula in
prenex conjunctive normal form (see proposition 3.4), we can transform the body
of each statement in a database into this form. The transformed database is
logically equivalent to the original one, and the completion of the transformed
database is logically equivalent to the completion of the original one. Also the

§21 . I ntroduction to Deductive Databases 1 49

mapping T (defmed below) associated with the transformed database is equal to the
mapping associated with the original one. Furthermore, if W' is a prenex
conjunctive normal form of W, then an atom occurs positively (resp., negatively)
in W iff it occurs positively (resp. , negatively) in W'. (See problem 1 .) Thus the
transformed database is stratified iff the original database is stratified. Also the
transformed database is hierarchical iff the original database is hierarchical.

To simplify the proofs in this chapter, we assume without loss of generality
that the body of each statement in a database is in prenex conjunctive normal form.
In this case, it is easy to identify positive and negative occurrences of atoms. An
atom occurring in the body of a statement occurs positively if it appears in a
positive literal; otherwise, it occurs negatively.

We now define a mapping � from the lattice of interpretations based on J to
itself.

Definition Let J be a pre-interpretation of a database D and I an interpretation
based on J. Then �(I) = { AJ,V : A�W e D, V is a variable assignment wrt J,
and W is true wrt I and V} .

It will be convenient to suppress the J and denote this mapping by T 0. Let E
be u't [='t(x,x)]J ' Subsequent use of E ensures that all models considered are
normal, that is, assign an identity relation to each equality predicate.

The following propositions and corollary · are the database versions of
propositions 17 . 1 to 17.3 and corollary 17.4, and have the same proofs.

Proposition 21.1 Let D be a database, J a pre-interpretation of D, and I an
interpretation based on J. Then I is a model for D iff T0(I) !:: I.

Proposition 21.2 Let D be a database, J a pre-interpretation of D, and I an
interpretation based on J. Suppose that I u E is · a model for the equality theory.
Then I u E is a model for comp(D) iff T0(I) = I.

Proposition 21.3 Let D be a stratified database and J a pre-interpretation for
D.
(a) Suppose D has only predicates of level 0. Then T0 is monotonic over the
lattice of interpretations based on J.
(b) Suppose D has maximum predicate level k+l . Let Dk denote the set of
database statements in D with the property that the predicate symbol in the he�d of

1 50 Chapter 5. Deductive Databases

the statement has level � k. Suppose that Mk is an interpretation based on J for
Dk and Mk is a fixpoint of T0k

. Then A = {Mk u S : S l:: { p(d1 ' . . . ,dn) : p is a

level k+l predicate symbol and each di is in the domain of J } } is a complete
lattice, under set inclusion. Furthermore, A is a sublattice of the lattice of
interpretations based on J, and T0, restricted to A , is well-defined and monotonic.

Corollary 21.4 Let D be a stratified database. Then comp(D) has a minimal
normal Herbrand model.

The results of this section are due to Lloyd, Sonenberg and Topor [60] .

§22. SOUNDNESS OF QUERY EVALUATION

In this section, we present the query evaluation process, and prove that it is
sound and never flounders. These results are due to Lloyd and Topor [61] , [62] ,
[63]. The first step of the query evaluation process transforms typed first order
formulas into corresponding type-free first order formulas. For this, we use a
standard transformation [33].

Definition Let W be a typed ftrst order formula. For each type t, we associate
a new unary type predicate symbol also denoted by t. Then the typefree form W*

of W is the frrst order formula obtained from W by applying the following
transformations to all subformulas of W of the form 'r:/x/t V and "3x/t V:

(a) Replace 'r:fx/t V by 'r:/x(Vf-t(x)).

(b) Replace "3x/t V by "3x(V At(x)) .

Example Let W be the database statement
p(x) f- "3y/cr q(x,y)

where x has type t. Then W* is the program statement
p(x) f- "3y(q(x,y)Acr(y)) " t(x)

If Q is the query
f-'r:fx/t q(x,y)

then Q* is the goal
f-'r:fx(q(x,y)f-t(x)) A cr(y)

More generally, if Q is the query f-W, where W has free variables x 1 ' . . . ,xn and xi
has type ti (i=l , . . . ,n), then Q* is the goal

f-W* "t 1 (x 1)A . . . A tn (xn)

§22 . Soundness of Query Evaluation 1 51

We will also require the usual type theory [33] .

Definition The type theory <I> consists of all axioms of the following form:
1 . 't(a)�. where a is a constant of type 't.
2. Vx1 . . . \7'xn ('t(f(x l ' . . . ,xn)) � 'tl (x1)A . . . /\'tn(xn)), where f is a function symbol of
type 't l x . . . X'tn �'t.

Since we are allowing functions, a query can have infinitely many answers.
However, under a reasonable restriction on the type theory <I>, we can ensure that
each query can have at most finitely many answers. If <I> is hierarchical, then there
are only finitely many ground terms of each type. (See problem 2.) Consequently,
each query can have at most finitely many answers. We emphasise that it is not so
much the presence of functions which causes queries to have infinitely many
answers, but rather the presence of a "recursive" type theory.

Now we are in a position to give the definitions of the appropriate procedural
concepts.

Definition Let D be a database, <I> its type theory, Q a query and R a safe
computation rule. Let D* and Q* be the type-free forms of D and Q. (That is, D*
is the set of type-free forms of each of its database statements.)

An SWNF-derivation of D u (Q) (via R) is an SLDNF-derivation of
D* u <I> u (Q*) (via R).

An SWNF-refutation of D u (Q) (via R) is an SLDNF-refutation of
D* u <I> u (Q*) (via R).

An (R-)computed answer for D u (Q) is an (R-)computed answer for
D* u <I> u (Q*) .

An SWNF-tree for D u { Q) (via R) is an SLDNF-tree for D * u <I> u (Q* }

(via R).
A finitely failed SWNF-tree for D u (Q} (via R) is a finitely failed SLDNF­

tree for D* u <I> u (Q* } (via R) .

Thus, to answer a query Q to a database D, we first transform D and Q to their
type-free forms and then apply the techniques of § 1 8 to the goal Q* and program
D* u <I>. Note that, due to the presence of the type predicate symbols, every
computed answer is a ground substitution for all the free variables in the body of
the query. (See problem 3.) Also every computed answer is correctly typed. The
next theorem shows that this implementation is sound.

1 52 Chapter 5. Deductive Databases

Lemma 22.1 Let D be a database, <I> its type theory, and W a closed typed
first order formula. Let D* and W* be the type-free forms of D and W. If W* is a
logical consequence of comp(D* u <1>), then W is a logical consequence of
comp(D).

Proof The proof is rather long and requires some preparation. Given a model
M for comp(D), we construct a model M* for comp(D* u <1>). The complexity of
the construction of M* which we use is needed to ensure that the equality axioms
are satisfied.

Let M be a model for comp(D). Using (the typed version of) [69, p.83] , we
can assume without loss of generality that M is normal, that is, the identity relation
on the domain C't is assigned to =t' for each type t. We can also assume that the
Ct' s are disjoint. Put C = utCt .

The underlying language L* for the interpretation M* includes all the
constants, function symbols and (non-equality) predicate symbols of the underlying
language L for M. L * differs from L in that all type information is suppressed, the
various typed equality predicate symbols ='t are replaced by a single equality
predicate symbol = and there is a unary predicate symbol t for each type t.

Let F' be the set of mappings on the Ct assigned by M to the function symbols
in L. Let T be the set of all (free) terms that can be formed using elements of C as
primitive terms and elements of F' as function symbols. (Note that the type
restrictions are ignored in forming these terms.) The domain of M* will be the set
of equivalence classes of a particular equivalence relation l:i on T.

To define l:i, we introduce a reduction operation on T. We write
f' (d1 , . . . ,dn) � d, if f has type t1 x . . . xtn �t, f' is the mapping assigned to f by M,

die ct. '
de Ct ' and f'(dl ' . . . ,dn)=d. For s,tET, we write s=>t if t is the result of

1
replacing some (not necessarily proper) subterm f'(d1 , . . . ,dn) of s by d, where
f'(d1 , . . . ,dn) � d. We say that sET is irreducible if there is no tET such that s=>t.
Finally, for s,tET, we say that s reduces to t if there exist r0,rl ' . . . ,rne T such that
s=r0=>r 1 => .. . =>rn =t.

Now we can define the equivalence relation l:i on T. Let s,tET. Then sl:it if
there exists ueT such that s reduces to u and t reduces to u. To prove that l:i is an
equivalence relation, we use the following lemma.

§22. Soundness of Query Evaluation 1 53

Lemma 22.2 Let se T. Then there exists a unique irreducible teT such that s
reduces to t. (We say that t is the irreducible form of s.)

Proof of lemma 22.2 Clearly there exists an irreducible form of each seT,
since, in each reduction u:::;ov, v has fewer subterms than u.

To prove that irreducible forms are unique, frrst note that if f' (s1 , .. . ,sn) reduces
to g'(tl ' . . . ,tm) , then f'=g', and that the last step in any reduction of f'(s l ' . . . ,sn) to an
element de C therefore has the form f'(dl ' . . . ,dn) :::;. d. We then use induction on
the structure of s and a case analysis to show that if u and v are irreducible forms
of s, then u = v. •

Lemma 22.3 A is an equivalence relation.

Proof of lemma 22.3 Clearly, A is reflexive and symmetric. That A is transitive
follows immediately from lemma 22.2. •

We now define the domain of the model M* to be T/A, the set of A­
equivalence classes in T. If teT, we let [t] denote the A-equivalence class
containing t. Note that T/A contains a copy of C via the injective mapping d � [d) .
Thus, in essence, we have simply enlarged C in a particular way to obtain a
domain for M*.

If c is a constant in L* and M assigns c'eC to c, then M* assigns [c'] in T/A to
c. Let feL* be an n-ary function symbol. Suppose M assigns the mapping f' to f.
Then M* assigns the mapping from (T/A)n into T/A defined by ([t 1] , . . . ,[tn]) �
[f'(t1 , . . . ,tn)] to f. It is easy to see that this mapping is well-defined. Note that this
mapping is an extension of f' .

Suppose p is an n-ary predicate symbol in L* . If M assigns the relation p' to
p, then M* assigns the relation { ([d1] , . . . , [dn]) : (dl ' . . . ,dn)ep' } on (T/A)n to p. To a
type predicate symbol t, M* assigns the unary relation { [d) : de Ct} . Finally, M*
assigns the identity relation on T/A to =.

This completes the definition of the interpretation M* for comp(D* u <1>) . We
now check that M* is a model for comp(D* u <1>). Much of the verification is
routine and we take the liberty of omitting some details.

We frrst check that M* is a model for the equality theory of comp(D* u <1>).
The eight axioms of the equality theory are given in § 14. Apart from axiom 4,
these axioms are easily seen to be satisfied. Axiom 4 is

1 54 Chapter 5. Deductive Databases

'v'(t[x]�x), where t[x] is a term containing x and different from x.
That this axiom is satisfied follows immediately from the next lemma.

Lemma 22.4 Let r,seT. If r is a proper subterm of s, then r!/.s.

Proof of lemma 22.4 Suppose rM. Then there exists an irreducible teT such
that r reduces to t and s reduces to t. Let ueT be the result of replacing the
occurrence of r in s by t. Then t is a proper subterm of u and u reduces to t. If
tEC, then we obtain a contradiction using axiom 4 of the equality theory for D.
Otherwise, t has the form f'(t1 , . . . ,tn), in which case we again have a contradiction
since it is impossible for u to reduce to t. I

The remainder of the verification that M* is a model for comp(D* u <l>)
depends on another lemma. For this we need a definition. A variable assignment

V wrt M is an assignment to each variable x in L of an element deCt , where t is
the type of x. Corresponding to V, there is a variable assignment V* wrt M*
which assigns [d] to x.

Lemma 22.5 Let W be a (not necessarily closed) typed first order formula, V
a variable assignment wrt M, and V* the corresponding variable assignment wrt
M*. Then W is true wrt M and V iff W* is true wrt M* and V*.

Proof of lemma 22.5 The proof is a straightforward induction argument on the
structure of W. (See problem 5.) I

Using lemma 22.5, it can now be checked that M* is a model for the
remainder of comp(D* u <l>). The domain closure axioms for comp(D) are used to
show that M* is a model for the only-if halves of the completed definitions of the
type predicate symbols.

We have now finally shown that M* is a model for comp(D* u <l>). Since W*
is a logical consequence of comp(D* u <l>), we have that M* is a model for W*.
Using lemma 22.5 again, we obtain that M is a model for W. Thus W is a logical
consequence of comp(D). This completes the proof of lemma 22. 1 . I

Theorem 22.6 (Soundness of Query Evaluation)
Let D be a database and Q a query. Then every computed answer for

D u {Q } is a correct answer for comp(D) u { Q} .

§22. Sou ndness of Query Evaluation 1 55

Proof Let e be a computed answer for D u { Q) , where Q is f-W, W has free
variables x 1 ' . . . ,xn and xi has type 'ti (i=1 , . . . ,n). By theorem 18.7,
(W*/\'t1 (x1)/\ ... /\'tn(xn))e is a logical consequence of comp(D* u <!>), where <I> is
the type theory of D. Thus (We)* is a logical consequence of comp(D* u <!>). By
lemma 22. 1 , we is a logical consequence of comp(D). That is, e is a correct
answer for comp(D) u { Q } . •

As the following example shows, theorem 22.6 no longer holds if we omit the
domain closure axioms from the definition of comp(D).

Example Let D be the database
p(a) f-

and Q be the query f-'Vx/'t p(x). Suppose that the type theory is just 't(a)f-. Then
the identity substitution is a computed answer, but 'Vx/'t p(x) is not a logical
consequence of comp(D) if the domain closure axiom 'Vx/'t (x=a) is omitted from
comp(D).

Theorem 22.6 is the fundamental result which guarantees the soundness of the
query evaluation process. The implementation of the query evaluation process is,
at least in principle, quite straightforward. The main part of the implementation
concerns the 10 transformations given in § 18 . These can be implemented in a
PROLOG program which contains one clause for each transformation plus a short
procedure for locating free variables. Also, it is easy to avoid the explicit
introduction of new predicate symbols which is formally required. A direct
implementation of types would also be easy. However, such an implementation
would be inefficient and hence some optimisations would be required.

Next we show that the query evaluation process never flounders. Let D be a
database, <I> its type theory, and Q a query. By a computation of D u { Q} , we
mean a computation of D* u <I> u { Q* } .

Definition Let D be a database, <I> its type theory, and Q a query. We say a
computation of D u { Q} flounders if at some point in the computation a goal is
reached which contains only non-ground negative literals.

Lemma 22.7 Let D be a database, <I> its type theory, and Q a query. Then
D* u <I> u { Q* } is allowed.

1 56 Chapter 5. Deductive Databases

Proof The form of the 10 transformations in § 1 8 and the presence of the type
predicate symbols ensures that every normal form of D* u <I> u { Q* } is allowed.
(See problem 8.) •

Note that not every clause in a normal form of D* need be allowed.

Example Let D be
p(x) � '\/y/cr q(x,y)

where x is of type 't. Then a normal form of D* is
p(x) � -r(x) " 't(x)
r(x) � -q(x,y) " cr(y)

where r is a new predicate symbol. The second clause is admissible, but not
allowed.

Proposition 22.8 Let D be a database and Q a query. Then no computation of
D u { Q} flounders.

Proof The result follows immediately from lemma 22.7 and proposition
1 8.5(a). •

§23. COMPLETENESS OF QUERY EVALUATION

In §22, we proved that every computed answer for D u { Q} is a correct
answer for comp(D) u { Q } . We would like to obtain the converse of this result.
Unfortunately, there is no hope of this because there is no general completeness
result even for normal programs. However, we can prove that query evaluation is
complete for the special cases that the database is definite or hierarchical. These
results are due to Lloyd and Topor [63] . We start by proving the converse of
lemma 22. 1 .

Lemma 23.1 Let D be a database, <I> its type theory, and W a closed typed
first order formula. Let D* and W* be the type-free forms of D and W. If W is a
logical consequence of comp(D), then W* is a logical consequence of
comp(D* u <I>).

Proof Let M* be a normal model for comp(D* u <I>). We construct a normal
model M for comp(D) . Suppose M* has domain C. We define C't = { ceC : c is in
the relation assigned to 't } . M assigns to a constant the same element of C as M*

§23. Completeness of Query Evaluation 1 57

does. Note that a constant of type 't is thus assigned an element of C't , since M*
satisfies <I>. If f is a function symbol of type "t1x . . . x"tn ---+"t and M* assigns f' to f,
then M assigns f'I(C't x . . . x C't) to f. Note that the range of f' I(C't x . . . x C't) is

1 n 1 n
contained in C't , since M* satisfies <I>. Let p be a predicate symbol different from
= and 't, for each type 't. If p is of type "t1x . . . x"tn and M* assigns p to p', then M
assigns p' n (C't x . . . x C't) to p. Finally, M assigns the identity relation on C't to

1 n
='t , for each type 't.

We now show that M is a model for comp(D). It is easy to see that M is a
model for the equality axioms. For the remainder of the proof, we require the
following lemma, whose proof is a straightforward induction argument on the
structure of W. (See problem 9.)

Lemma 23.2 Let W be a (not necessarily closed) typed first order formula, V

a variable assignment wrt M, and V* the corresponding variable assignment wrt
M*. Then W is true wrt M and V iff W* is true wrt M* and V*.

Using lemma 23.2, one can establish that M is indeed a model for comp(D).
Hence M is a model for W and, using lemma 23.2 again, M* is a model for W*.
Thus W* is a logical consequence of comp(D* u <I>). This completes the proof of
lemma 23. 1 . •

Lemma 23.3 Let D be a database, <I> its type theory, and Q a query f-W,
where xl '"' 'xn are the free variables in w and xi has type 'ti (i=l , . . . ,n). Let e be a
correct answer for comp(D) u {Q} that is a ground substitution for x 1 , . . . ,xn. Then
e is a correct answer for comp(D* u <I>) u { Q* } .

Proof Since 9 i s a correct answer for comp(D) u { Q } and since 9 is a ground
substitution for the free variables x1 , . . . ,xn in W, it follows that We is a logical
consequence of comp(D). By lemma 23. 1 , W*9 is a logical consequence of
comp(D* u <I>). Hence (W*A"t1 (x1)/\ . . . /\'tn(xn))9 is a logical consequence of
comp(D* u <I>). That is, e is a correct answer for comp(D* u <I>) u {Q* } . •

The next theorem is a database version of theorem 9.5.

Theorem 23.4 (Completeness of Query Evaluation for Definite Databases)
Let D be a definite database, Q a definite query f-W, and R a computation

rule. Let e be a correct answer for comp(D) u { Q} that is a ground substitution
for all variables in W. Then e is an R-computed answer for D u {Q} .

1 58 Chapter 5 . Deductive Databases

Proof Let D have type theory ell. By lemma 23.3, 0 is a correct answer for
comp(D* u ell) u { Q* } . By theorem 14.6, e is a correct answer for
D* u ell u { Q* } . By theorem 9.5, there exists an R-computed answer a for
D* u ell u { Q* } and a substitution y such that O=ay. Since a is a ground
substitution for all the variables in W, it follows that O=a. That is, 0 is an R­
computed answer for D u {Q } . I

The requirement in theorem 23.4 that e be a ground substitution for all
variables in W cannot be omitted, since every computed answer for D u {Q } has
this property. From a database viewpoint, theorem 23.4 is a rather weak
completeness result. It would be preferable to have conditions under which a query
had only finitely many answers and the query evaluation process was guaranteed to
find all these answers and then terminate. One rather strong condition, which
ensures these properties hold, is that the database be hierarchical. We now present
this completeness result for hierarchical databases, which is the database version of
theorem 1 8.9.

Theorem 23.5 (Completeness of Query Evaluation for Hierarchical Databases)
Let D be a database, ell its type theory, Q a query �w. and R a safe

computation rule. Suppose that both D and ell are hierarchical. Then the following
properties hold.
(a) Each SLDNF-tree for D u { Q} via R exists and is finite.
(b) If e is a correct answer for comp(D) u { Q} and e is a ground substitution for
all free variables in W, then 0 is an R-computed answer for D u { Q} .

Proof By lemma 22.7, D* u ell u {Q* } is allowed. Also D* u ell is
hierarchical. By lemma 23.3, e is a correct answer for comp(D* u ell) u {Q* } .
Hence the result follows from theorem 18.9. I

§24. INTEGRITY CONSTRAINTS

In this section, we study integrity constraints in deductive database systems
and prove the correctness of a simplification method for checking integrity
constraints.

A number of proofs in this section use typed versions of results from earlier
chapters. In each case, it will be clear from the context that the reference to the

§24 . Integrity Constraints 1 59

earlier result is actually a reference to the appropriate typed version of the result.

The standard method of determining whether a database satisfies or violates an
integrity constraint W is by evaluating the query f-W. The following two
theorems, due to Lloyd and Topor [61] , [62] , show that this method is sound.

Theorem 24.1 Let D be a database and W an integrity constraint. Suppose
that comp(D) is consistent. If there exists an SLDNF-refutation of D u { f-W} ,
then D satisfies W.

Proof The theorem follows immediately from theorem 22.6. •

Theorem 24.2 Let D be a database and W an integrity constraint. Suppose
that comp(D) is consistent. If D u { f-W} has a finitely failed SLDNF-tree, then
D violates W.

Proof The theorem follows easily from theorem 18.6 and lemma 22. 1 . •

Now we turn to the simplification theorem for integrity constraint checking.
From a theoretical viewpoint, it is highly desirable for a database to satisfy its
integrity constraints at all times. However, from a practical viewpoint, there are
serious difficulties in finding efficient ways of checking the integrity constraints
after each update. The problem is especially difficult for deductive databases, since
the addition of a single fact can have a substantial impact on the logical
consequences of the database because of the presence of rules.

In spite of these difficulties, it is possible to reduce the amount of computation
if advantage is taken of the fact that, before the update was made, the database was
known to satisfy its integrity constraints. The simplification theorem shows that it
is only necessary to check certain instances of each integrity constraint. For a very
large database, this can lead to a dramatic reduction in the amount of computation
required. This idea is originally due to Nicolas [78] in the context of relational
database systems. A method related to the one given in this chapter was presented
by Decker [27] . An alternative "theorem proving" approach was given by Sadri
and Kowalski [90] .

To cover the most general situation by a single theorem, we use the concept of
a transaction. A transaction is a finite sequence of additions of statements to a
database and deletions of statements from a database. If D is a database and t is a
transaction, then the application of t to D produces a new database D', which is

1 60 Chapter 5. Deductive Databases

obtained by applying each of the deletions and additions in t in turn . We assume
that, in any transaction, we do not have the addition and deletion of the same
statement. As the deletions and additions in a transaction can then be performed in
any order, we assume that all the deletions are performed before the additions.
With respect to integrity constraint checking, we regard a transaction as indivisible,
so we need only check the constraints at the end of the transaction. Note that we
can use a single transaction to pass from any database D to any other database D' .

Suppose L is the typed language underlying the database D. We make the
assumption throughout that, whatever changes D may undergo, L remains fixed.
Thus, for example, adding a new statement to D does not introduce new constants
into the language.

Implementing the simplification method involves computing four sets of atoms,
computing two sets of substitutions by unifying atoms in the sets with atoms in an
integrity constraint, and evaluating corresponding instances of the integrity
constraint. We begin with the definitions of the appropriate sets of atoms.

Definition Let D and D' be databases such that D !:;;; D'. We define the sets
posD,D' and negD,D' inductively as follows:

0 posD,D' (A : Af-W e D' \ D }

0 negD,D'

n+l posD,D'

n+l negD,D'

po� .D'

negD,D'

(}

(A9 : Af-W e D, B occurs positively in W, C e pos�.D' ,
and 9 is an mgu of B and C }

u (A9 Af-W e D, B occurs negatively in W, C e neg� ,D' ,
and e is an mgu of B and C }

(A9 : Af-W e D, B occurs positively in W, C e neg�,D' ,
and e is an mgu of B and C }

u (A9 Af-W e D, B occurs negatively in W, C e pos�.D' ,

n un�O posD,D'
n un�o negD,D'

and 9 is an mgu of B and C }

§24. Integrity Constraints 1 61

To motivate the above definitions, consider the case when we add a fact Af­
to a database D to obtain a database D'. An important task of the simplification
method is to capture the difference between a model for comp(D') and a model for
comp(D) . In the case that D is a relational database, we see that posD,D' is { A } ,
which i s precisely the difference between a model for comp(D) and a model for
comp(D') . (In this case, the models are essentially unique.) For a deductive
database, the presence of rules means that the difference between the models could
be larger. However, as we shall see, for stratified databases, pos0 D' and neg0 D' ' '
can still be used to captirre the differences between (suitably related) models of
comp(D) and comp(D'). Intuitively, poSO,D' captures the part that is added to the
model for comp(D) when passing from D to D' and negD,D' captures th� part that
is lost. (See lemma 24.4 below.) In the context of normal databases, poSO,D' and
neg0 D' have been discussed by Topor et al [105] . '

Definition Let D and D' be databases such that D � D' and J a pre­
interpretation of D. We define

posinst0 ,D' ,J

neginst0 D' 1 ' '

u [A] Aepos0 0, J
'

u [A] . Ae negD,D' J

Lemma 24.3 Let D and D' be databases such that D � D'. Let J be a pre­
interpretation of D and V be a variable assignment wrt J. Suppose there exists an
interpretation I based on J such that I u E is a model for the equality theory.
(a) If Af-W is in D, B occurs positively in W, and BJ,V E neginstD,D',J ' then
A1 V E neginst0 D' 1. ' ' '
(b) If Af-W is in D, B occurs positively in W, and BJ,V E posinstD,D' ,J ' then
AJ,V E posinstD,D',J"
(c) If Af-W is in D, B occurs negatively in W, and BJ,V E posinstD,D',J ' then
AJ,V E neginstD,D',J·
(d) If Af-W is in D, B occurs negatively in W, and BJ,V E neginstD,D',J ' then
A1 V E posinst0 D' 1. ' ' '

Proof (a) Recall that BJ,V denotes the J-instance of atom B wrt V. Since
BJ,V E neginstD,D',J' we have that BJ,V is also a J-instance of some
C E negD,D' . By lemma 15.2 (a), B and C are unifiable with mgu
e = { x l/rl , . . . ,xnfrm} , say. Since c E negD,D' and Be = ce, we have that
AO E neg0 0• . By lemma 15.2 (b), the variable assignment, which we can
suppose without loss of generality to be V, that maps B and C to BJ,V also maps

1 62 Chapter 5. Deductive Databases

xj and rj to the same domain element, for each j. Hence AJ,V is also a J-instance
of A9 and so AJ,V e neginstD,D',J ·

The proofs of the other parts are similar. •

Lemma 24.4 Let D and D' be stratified databases such that D k D' and let J
be a pre-interpretation of D.
(a) Let M' be an interpretation based on J for D' such that M' u E is a model for
comp(D'). Then there exists an interpretation M based on J such that M u E is a
model for comp(D), M' \ M k posinstD D' 1• and M \ M' k neginstD D' r
(b) Let M be an interpretation based on

'1 for D such that M u E is � �odel for
comp(D). Then there exists an interpretation M' based on J such that M' u E is a
model for comp(D'), M' \ M k posinstD,D',J• and M \ M' k neginstD,D',r

Proof (a) The proof is by induction on the maximum level, k, of D'.
Base step, k=O.
By proposition 2 1 .2, M' is a fixpoint of :p• and hence TD(M') k M'. By

proposition 2 1 .3(a), TD is monotonic and so Tj)(M') is defined, for every ordinal
a.. (See problem 1 3 of chapter 1 .) We prove by transfinite induction that
M' \ Tg(M') k posinstD,D' ,J' for every ordinal a..

a. is a limit ordinal.

The case a. = 0 is trivial. Otherwise, M' \ �(M') = M' \ nf3<a. T�(M')
uf3<a.(M' \ T�(M')) k posinstD,D' ,J , by the induction hypothesis.

a. is a successor ordinal.

The case a. = 1 is immediate from the definition of posinstD,D' ,J . Otherwise,
note that M' \ Tg(M') = (M' \ TD(M')) u (TD(M') \ Tg(M')). Suppose that
B E TD(M') \ Tg(M'). Then one can prove that there exists a statement Af-W in
D such that, for some variable assignment V wrt J and for some atom C in W, B is
AJ,V and CJ,V E M' \ Tg-l (M'). Thus, by the induction hypothesis,
c1 V E posinstD D' 1 . By lemma 24.3, we have that B E posinstD D' J . This
co:Upletes the pr�r' that M' \ �(M') k posinstD,D',J• for every ordin� �-

Since TD is monotonic, there exists an ordinal y such that Tb(M') is a fixpoint
of TD. (See problem 1 3 of chapter 1 .) Put M = Tb(M'). By proposition 2 1 .2,
M u E is a model for comp(D). Finally, note that M \ M' = 0 = neginstD,D',r

Induction step.

Suppose the result holds for stratified databases of maximum level k and D'
has maximum level k+ 1 . Let Dk (resp. , D

k) be the set of database statements in
D' (resp. , D) with the property that the predicate symbol in the head of the

§24. Integrity Constraints 1 63

statement has level s; k. Let Mk be the set of all p(d1 , . . . ,dn) in M' such that p has
level s; k. Then Mk u E is a model for comp(Dk). By the induction hypothesis,
there exists an interpretation Mk based on J such that Mk u E is a model for
comp(Dk)' Mk \ Mk � posinst0 D' J' and Mk \ Mk � neginst0 D' J" k' k' k' k'

Put N = Mk u (M' \ Mk) u neginstD,D' ,JI(k+ l), where neginstD,D',JI(k+l) is
the set of all p(d1 ' . . . ,dn) in neginstD,D',J such that p has level k+ 1. Then one can
prove that T0(N) � N, using the fact that Mk is a fixpoint of TD , the definition

k
of neginstD,D',J• lemma 24.3, and the induction hypothesis.

We now consider transfinite iterations of TD on N in the lattice A defined in
proposition 2 1 .3(b). We claim the following properties hold:
(i) Tg(N) \ M' � neginstD,D',J• for every ordinal a.
(ii) M' \ �(N) � posinstD,D',J• for every ordinal a.

For (i), note that, for all a, we have
�(N) \ M' � N \ M' � (Mk \ Mk) u neginstD,D',JI(k+ l) � neginstD,D',J•

using the induction hypothesis on Mk \ Mk, and the definition of neginstD,D',J"
We prove (ii) by transfinite induction.
<X is a limit ordinal.

Suppose a=O. Then we have
M' \ N � Mk \ Mk � posinst0 D' J !,;;;; posinst0 D' 1. k' k' , ,

Now suppose <X>O. Then we have
M' \ �(N) = M' \ fl�<<XT�(N) = u�<<X(M' \ T�(N)) � posinstD,D' ,J"

<X is a successor ordinal.

Suppose that B e M' \ �(N). Then, as M' is a fixpoint of T0., there exists a
statement A�W in D' such that, for some variable assignment V wrt J, B is A1 V
and W is true wrt M' and V. If the statement is in D' \ D, then A e posg ,D, a�d
so B e posinst0 D',J immediately. Now suppose that the statement is in D. Since
Bl,tTg(N), one c� prove that there exists a variable assignment V* and an atom C
in W such that AJ V = A1 V* and either C occurs positively in W and
cJ,V* E M' \ Tg-l <N) or c �curs negatively in w and cJ,V* E Tg-1 (N) \ M'.

In the first case, by the induction hypothesis, CJ,V* e posinstD,D' ,J . By
lemma 24.3, we have that B e posinstD,D',J · In the second case, by (i),
cJ,V* E neginstD,D',J " By lemma 24.3, we have that B E posinstD,D',J• This
completes the proof of (ii) .

By proposition 2 1 . 3(b) and problem 1 3 of chapter 1 , there exists an ordinal 'Y

1 64 Chapter 5 . Deductive Datf!bases

such that Tb(N) is a fixpoint of T0 restricted to A. Put M = Tf>(N). Since M is
a fixpoint of T0, by proposition 21 .2, we have that M u E is a model for
comp(D). This completes the proof of part (a).

(b) The proof is similar to part (a). We use a construction based on the set
N' = Mk u [(M \ Mk) \ neginstD,D',JI(k+l)] , for which it can be shown that
T0,(N') � N'. (See problem 12.) 1

Now we are in a position to state and prove the simplification theorem. This
theorem is due to Lloyd, Sonenberg and Topor [60] , [62] .

Theorem 24.5 (Simplification Theorem for Integrity Constraint Checking)
Let D and D' be stratified databases and t a transaction whose application to D

produces D'. Suppose t consists of a sequence of deletions followed by a sequence
of additions and that the application of the sequence of deletions to D produces the
intermediate database D". Let W be an integrity constraint 'ilx1 . . . 'ilxn W

' in prenex
conjunctive normal form. Suppose D satisfies W. Let e = { e : e is the
restriction to x1 , . . . ,x of either an mgu of an atom occurring negatively in W and n .
an atom in pos0 .. D' or an mgu of an atom occurring positively in W and an atom '
in negD",D' } and 'P = { 'If : 'If is the restriction to x1 ' . . . ,xn of either an mgu of an
atom occurring positively in W and an atom in pos0 .. D or an mgu of an atom
occurring negatively in W and an atom in neg0 .. � } . Then the following '
properties hold.
(a) D' satisfies W iff D' satisfies V(W'cp) for all cp e e u 'P.
(b) If D' u { �V(W'cp) } has an SLDNF-refutation for all cp e e u 'P, then D'
satisfies W.
(c) If D' u { �V(W'cp) } has a finitely failed SLDNF-tree for some cp e e u 'P,
then D' violates W.

Proof (a) Suppose D' satisfies V(W'cp), for all cp e e u 'P. Note that the
formula W' is not necessarily quantifier free. Let M' be an interpretation for D'
based on J such that M' u E is a model for comp(D'). By lemma 24.4(a), there
exists an interpretation M" based on J such that M" u E is a model for comp(D"),
M' \ M" !::: posinstD",D',J• and M" \ M' � neginstD",D',J· Similarly, by lemma
24.4(b), there exists an interpretation M based on J such that M u E is a model for
comp(D), M \ M" s;;; posinst0 . . D 1, and M" \ M !:: neginst0 .. D J' ' ' , '

By supposition, W is true wrt M u E. Let V be a variable assignment wrt J.
We have to prove that W' is true wrt M' u E and V. If V* is a variable
assignment that agrees with V on x 1 , . . . ,xn, then we say V* is compatible with V.

§24. Integrity Constraints 1 65

We consider the following two cases.
Case 1 : For every atom A occurring negatively in W and for every V*

compatible with V, the J-instance AJ,V* of A wrt V* is not in M' \ M, and for
every atom B occurring positively in W and for every V* compatible with V, the
J-instance BJ,V* of B wrt V* is not in M \ M'.

Let A be an atom occurring negatively in W and suppose that, for some V*

compatible with V, we have that AJ,V* rJ. M. By the condition of case 1 , we have
that AJ,V

* r1. M' \ M. Hence AJ,V* i M'.
Let B be an atom occurring positively in W and suppose that, for some V*

compatible with V, we have that BJ,V* e M. By the condition of case 1 , we have
that BJ,V* i M \ M'. Hence BJ,V* e M'.

It follows from this that W' is true wrt M' u E and V.
Case 2: Either (a) there exists an atom A occurring negatively in W and a V*

compatible with V such that the J-instance AJ,V* of A wrt V* is in M' \ M or (b)
there exists an atom B occurring positively in W and a V* compatible with V such
that the J-instance BJ,V* of B wrt V* is in M \ M'.

Case 2(a) : Then AJ,V* e (M' \ M") u (M" \ M) and, hence, either
A1 V* e posinst0 .. D' J or A1 V* e neginst0 .. 0 1. In the first case, A1 V* is also ' ' ' ' , ' '
a J-instance of an atom F e pos0 .. D' . By lemma 1 5.2 (a), A and F are unifiable
with mgu 9', say. Let 9 be the

'
restriction of 8' to x1 ' . . . ,xn. By supposition,

\:/(W'8) is true wrt M' u E. It then follows from lemma 15.2 (b) that W' is true
wrt M' u E and V. Similarly, in the second case, using '¥, we obtain that W' is
true wrt M' u E and V.

Case 2(b) : Then BJ,V* e (M \ M") u (M" \ M') and, hence, either
BJ,V* e posinsto",D,J or BJ,V* e neginsto",D' ,J' In the first case, BJ,V* is also
a J-instance of an atom G e pos0 .. 0 . By lemma 15 .2 (a), B and G are unifiable
with mgu 'Jf', say. Let 'I' be the 'restriction of 'I'' to x1 , . . . ,xn. By supposition,
\:/(W''Jf) is true wrt M' u E. It then follows from lemma 15.2 (b) that W' is true
wrt M' u E and V. Similarly, in the second case, using e, we obtain that W' is
true wrt M' u E and V.

(b) This part follows immediately from theorem 22.6 and part (a).
(c) Suppose D' u { � \:/(W'cjl) } has a finitely failed SLDNF-tree, for some

cjl e e u '¥. By theorem 1 8.6 and lemma 22. 1 -V(W'cjl) is a logical consequence
of comp(D'). By the consistency of comp(D'), W is not a logical consequence of
comp(D') and so D' violates W. I

166 Chapter 5. Deductive Databases

The theorem has an immediate corollary for the case when the transaction
consists of a single addition.

Corollary 24.6 Let D be a stratified database, C a database statement, and
D' = D u { C } a stratified database. Let W be an integrity constraint 'lrfx1 . . . '1rfxnW'
in prenex conjunctive normal form. Suppose D satisfies W. Let e = { 8 : 8 is the
restriction to x 1 , . . . ,xn of either an mgu of an atom occurring negatively in W and
an atom in posD,D' or an mgu of an atom occurring positively in W and an atom
in negD,D' } . Then the following properties hold.
(a) D' satisfies w iff D' satisfies V(W'S) for all e E e.
(b) If D' u { f--\/(W'8) } has an SLDNF-refutation for all 8 e e, then D' satisfies
w.
(c) If D' u { f--\/(W'8) } has a finitely failed SLDNF-tree for some 8 e e, then D'

violates W.

Similarly, the theorem has a corollary' for the case when the transaction
consists of a single deletion.

Corollary 24.7 Let D be a stratified database, C a database statement in D,
and D' = D \ {C } a stratified database. Let W be an integrity constraint
'lrfx1 . . . '1rfxn W' in prenex conjunctive normal form. Suppose D satisfies W. Let '¥ =

{ \jf : \jf is the restriction to x1 , . . . ,xn of either an mgu of an atom occurring
positively in W and an atom in posD',D or an mgu of an atom occurring negatively
in W and an atom in negD',D } . Then the following properties hold.
(a) D' satisfies W iff D' satisfies V(W'\jf) for all \jf e '¥.
(b) If D' u { f--\/(W'\jf) } has an SLDNF-refutation for all \jf e '¥, then D' satisfies
w.
(c) If D' u { f--V(W'\jf) } has a finitely failed SLDNF-tree for some \jf e '¥, then D'

violates W.

Next we briefly discuss some implementation issues related to the
simplification theorem. The theorem shows that the implementation of the
simplification method involves calculating four atom sets posD",D'' negD",D''
pos0 .. 0, and neg0 .. 0, computing e and '¥, and then evaluating each query
f--\/(VI'�) . where � � e u '¥. Note that the method is independent of the level
mappings used to show that the databases are stratified.

§24. I ntegrity Constraints 1 67

Some special cases of the theorem are of interest. If E> u \!' is empty, then the
corresponding integrity constraint W can be eliminated from further consideration,
since the theorem shows that D' satisfies W. If E> u \!' contains the identity
substitution, then no simplification of W is possible. Nicolas [78] also studied
various refinements of the basic idea which could lead to optimisations of the
implementation. We do not discuss these optimisations here except to note that all
of them are equally applicable to stratified databases.

The key to an efficient implementation of the simplification theorem is to find
an efficient way to calculate posD,D' and negD,D' , for D !:: D'. We emphasise that
this calculation only involves the rules and not the facts in D. This is an important
point because, even for a large deductive database, the number of rules is likely to
be very much smaller than the number of facts. In particular, the rules are likely to
be kept in main memory, so that access to the disk during the calculation of these
sets is obviated.

We now briefly consider some aspects of the computation of the atom sets. In
principle, this computation involves the calculation of infinitely many sets pos� D'
and neg� ,D'' for n�O. However, in practice, we can often use a stopping rule

'
to

terminate the computation after only finitely many steps. Application of one such
stopping rule involves computing sets of atoms Pn and Nn rather than the sets
pos� D' and neg� D' . Pn and Nn are defined and used in much the same way as , ,
po� D' and neg� D'' except for the following additional (simplifying) step. We
omit

'
any atom fr�m Pn (resp. , Nn) which is an instance of another atom in pk

(resp. , N
k), for O�k�n.

The stopping rule is then as follows. If after deletions in this manner, some Pn

and Nn both become empty, then terminate the computation and use the unions, P
and N, of the respective sets of atoms computed thus far in place of pos0 D' and ,
neg0 D' . The proof of the simplification theorem is valid for the sets P and N
used 'in place of pos0 D' and neg0 D' . A further refinement is to delete from P
(resp. , N) any atom �hich is an in'stance of another atom in P (resp. , N). The
example below illustrates the application of this stopping rule.

Example Let D be the database
no_male_descendant(x) f- "dy (female(y) f- ancestor(x,y))
ancestor(x,y) f- parent(x,z) " ancestor(z,y)
ancestor(x,y) f- parent(x,y)

1 68

parent(x,y) � mother(x,y)
parent(x,y) � father(x,y)

Chapter 5. Deductive Databases

together with facts for the predicate symbols mother, father, male and female. If
we give no_male_descendant level 1 and all other predicate symbols level 0, then
we see that D is a stratified database. Let C be the clause

mother(Mary, Bill) �
and let D' = D u { C } . Then we obtain

posg D' = { mother(Mary, Bill) } = P0

o ' o negD,D' = { } = N

posb.n• = {parent(Mary, Bill) } = P1
1 1 negD,D' = { } = N

po� D' = { ancestor(Mary, Bill), ancestor(Mary, y) }

p2 =
'
{ ancestor(Mary, y) }

2 2 neg0 D' = { } = N
'

pos�
.D

' = { ancestor(x, Bill), ancestor(x, y) }

P3 = { ancestor(x, y) }
neg�,D' = { no_male_descendant(Mary) } = N3

po{,,D' = { ancestor(x, Bill), ancestor(x, y) }
p4 = { }
neg�

.D
' = { no_male_descendant(x) } = if

p5 = { }
N5 = { }

At this point, we can apply the stopping rule. Thus, when applying the
simplification theorem, in place of posD,D' , we can use the set P = { mother(Mary,
Bill) , parent(Mary, Bill), ancestor(x, y) } and, in place of negD,D' , we can use the
set N = { no_male_descendant(x) } .

Another possibility in the computation of posD,D' and negD,D' is that one or
both of them may contain infinitely many "independent" atoms, in which case the
simplification method may require checking infinitely many instances of an
integrity constraint. For example, let D be the database

Problems for Chapter 5 1 69

p(f(x),y) � p(x,y) ,
C the clause p(a,b) � . and D' = D u {C} . Then posD,D' is the infinite set
{p(a,b), p(f(a),b), p(f(f(a)),b), . . . } . In this case, the previous stopping rule is not
applicable. However, we can add the instance, p(f(x),b), of the head of the
offending clause in D to posb

.n
• instead of p(f(a),b). If we do this, we can use

{p(a,b), p(f(x),b) } in place of pos0 D' . This example suggests the existence of
another stopping rule, which replac�s an infinite set of atoms by a single more
general instance of a statement head.

The simplification method appears to be an essential ingredient of any efficient
method of checking integrity constraints. The main issues which require further
research are finding more powerful stopping rules and investigating the various
techniques which will be required for a really practical implementation.

PROBLEMS FOR CHAPTER 5

1 . Let W be a formula and W' a prenex conjunctive normal form of W obtained by
applying the transformations of problem 5 of chapter 1 . Prove that an atom occurs
positively (resp. , negatively) in W iff it occurs positively (resp., negatively) in W'.

2. Let «<> be a hierarchical type theory. Prove that there are only finitely many
ground terms of each type.

3. Let D be a database and Q a query � W. Prove that every computed answer for
D u { Q } is a ground substitution for all the free variables in W.

4. Give an example to show that lemma 22. 1 no longer holds if we omit the
domain closure axioms from the equality theory.

5. Prove lemma 22.5

6. (a) Consider the database D
p(a)�
q(a)�
q(b)�
r(a)�

1 70 Chapter 5. Deductive Databases

and the query Q
f-. Vx/t (q(x)f--p(x)) 1\ -r(y)

where p, q and r have type 't and the constants of type 't are a and b. Show the
result of transforming D and Q into a normal program and goal, which is required
by the query evaluation process. Hence compute the answer(s), if any, to the
query Q.
(b) Repeat (a) for the query

f-. Vy/'t (p(y) f-. Vx/t r(x))

7. Consider the supplier-part-job database of §2 1 .
(a) The following query i s ambiguous:
Is it true that each red part is supplied by a supplier located in Perth?
Find two possible meanings for the query and for each of these meanings write
down the corresponding (first order logic) query f--W.
(b) For each of the (first order logic) queries of part (a) show the normal program
and goal which results from the query transformation process.
(c) Write each of the (first order logic) queries of part (a) in SQL [25].
(d) Compare first order logic and SQL as query languages with regard to
expressiveness, semantic clarity, conciseness and simplicity.

8. Prove lemma 22.7.

9. Prove lemma 23.2.

10. Let D be a database and Q a query. Suppose that D u { Q } has a finitely
failed SLDNF-tree. Prove that Q is a logical consequence of comp(D).

1 1 . Let D be a definite database and Q a definite query. Suppose that Q is a
logical consequence of comp(D). Prove that every fair SLD-tree for D u { Q } is
finitely failed.

12 . Complete the details of the proof of lemma 24.4(b).

1 3. Let D be the database
no_male_descendant(x) f-. Vy (female(y) f-. ancestor(x,y))
ancestor(x,y) f-. parent(x,z) 1\ ancestor(z,y)

Problems for Chapter 5

ancestor(x,y) � parent(x,y)
parent(x,y) � mother(x,y)
parent(x,y) � father(x,y)

1 71

together with facts for the predicate symbols mother, father, male and female. Let
D' be the database obtained by adding to D the facts

father(John, Fred)�
mother(Jane, Fred)�

(a) Calculate posD,D'' negD,D'• P, and N.
(b) For each of the integrity constraints below, state which instances of them will
need to be checked when the database changes from D to D', assuming D satisfies
the integrity constraints.
(i) 'Vx (male(x) � 3y father(x,y))
(ii) 'Vx (-3y mother(x,y) v -3z father(x,z))
(iii) 'Vx 'Vy (no_male_descendant(y) � ancestor(x,y) 1\ no_male_descendant(x))
(iv) 'Vx 'Vy (-parent(x,y) v -parent(y,x))

Chapter 6

PERPETUAL PROCESSES

A perpetual process is a definite program which does not terminate and yet is
doing useful computation, in some sense. With the advent of PROLOG systems
for concurrent applications [1 8], [93] , [106], especially operating systems, more
and more programs will be of this type. Unfortunately, the semantics for definite
programs developed in chapter 2 do not apply to perpetual processes, simply
because they do not terminate. In this chapter, starting from the pioneering work
of Andreka, van Emden, Nemeti and Tiuryn [2] , we discuss the basic results of a
semantics for perpetual processes.

§25. COMPLETE HERBRAND INTERPRETATIONS

In this section, we introduce complete Herbrand interpretations. We define the
complete Herbrand universe and base and prove that they are compact metric
spaces under a suitable metric. Some elementary notions from metric space
topology, all of which can be found in [29], for example, will be required.

The complete Herbrand universe for a definite program is the collection of all
(possibly infinite) terms which can be constructed from the constants and function
symbols in the program. Thus our first task is to give a precise definition of a
(possibly infinite) term, which extends the definition given in §2 of a (finite) term.

Let ro* denote the set of all finite lists of non-negative integers. Lists are
denoted by [i 1 ' . . . ,ik] , where i 1 ' . . . ,ike ro. If m,ne ro*, then [m,n] denotes the list
which is the concatenation of m and n. If nero* and ie ro, then [n,i] denotes the
list [n,[i]] . We let lXI denote the cardinality of the set X. Similarly, if ne ro*, then
lnl denotes the number of elements in n.

1 74 Chapter 6. Perpetual Processes

Definition We say T c; ro* is a tree if the following conditions are satisfied:
(a) For all ne ro* and for all i,je ro, if [n,i]e T and j<i., then neT and [nj]eT.
(b) l { i : [n,i]eT } I is finite, for all neT.

Definition A tree T is finite if T is a finite subset of ro*. Otherwise, T is
infinite.

Example The finite tree { [] , [0] , [1] , [2] , [1 ,0] , [1 , 1] , [2,0] , [2, 1] , [2,2] } can be
pictured as in Figure 7.

The infinite tree { [] , [0] , [1] , [1 ,0] , [1 , 1] , [1 , 1 ,0] , [1 , 1 , 1] , [1 , 1 , 1 ,0] , [1 , 1 , 1 , 1] , . . . }
can be pictured as in Figure 8.

[]

[0]

[1 ,0] [1 , 1] [2,0] [2, 1] [2,2]

Fig. 7. A finite tree

Intuitively, each ne T is a node of the tree T. Condition (b) in the definition of
tree states that each node has bounded degree.

We let S be a set of symbols and ar be a mapping from S into ro, which
determines the arity of each symbol in S.

Definition A term (over S) is a function t : dom(t) � S such that
(a) The domain of t, dom(t), is a non-empty tree.
(b) For all nedom(t), ar(t(n)) = l { i : [n,i]edom(t) } l .

We say the tree dom(t) underlies t. We let Terms denote the set of all terms
over S .

§25 . Complete Herbrand Interpretations 1 75

[]

[1 , 1 , 1 , 1]
[1 , 1 , 1 ,0]

Fig. 8. An infinite tree

Intuitively, a term is a (possibly infinite) tree, whose nodes are labelled by
symbols in such a way that the arity of the label of each node is equal to the
degree of that node.

Definition The term t is finite if dom(t) is finite. Otherwise, t is infinite.

Definition Let t be a term. The depth, dp(t) , of t is defined as follows:
(a) If t is infinite, then dp(t) = oo.

(b) If t is finite, then dp(t) = 1 + max { lnl : ne dom(t) } .

It will be convenient to have available the concept of the truncation at depth n

(ne ro) of a term t, denoted by ex (t). For this purpose, we introduce a new symbol n
Q of arity 0, which will be used to indicate that a branch of the term t has been
cut off in the truncation. Thus cxn is a mapping from Terms into Terms u { n}
defined as follows:

1 76

(a) dom(a.n(t)) = { me dom(t) : lml�n } .
(b) a.n(t} : dom(a.n(t)) � S u { .Q } i s defined by

a.n(t)(m} = t(m), if lml < n
= n, if lml = n.

Chapter 6. Perpetual Processes

Clearly, a.n(t} is a finite term with dp(a.n(t)) � n+l .

Terms can be made into a metric space in a natural way. First, we recall the
definition of a metric space [29] .

Definition Let X be a set. A mapping d : X x X � non-negative reals is a
metric for X if
(a) d(x,y) = 0 iff x=y, for all x,ye X.
(b) d(x,y) = d(y,x}, for all x,ye X.
(c) d(x,z) � d(x,y) + d(y,z), for all x,y,zeX.
d is an ultrametric [5] if
(d) d(x,z) � max{d(x,y), d(y,z) } , for all x,y,zeX.

Definition (X,d) is a metric space, if d is a metric on X. If d is an
ultrametric, then (X,d) is an ultrametric space.

Ultrametric spaces have topological properties rather similar to discrete metric
spaces [5] .

Now let s,te TermS. If s�. then it is clear that a.n(s):;t:a.n(t), for some n>O.
Consequently, if s:;t:t, then {n : a.n(s):;t:a.n(t) } is not empty. We define a.(s,t) =

min{ n : a.n(s):;t:a.n(t) } . Thus a.(s,t) is the least depth at which s and t differ.

Proposition 25.1 (Terms, d) is an ultrametric space, where d is defined by
d(s,t) = 0, if s=t

= 2-a(s,t), otherwise.

Proof Straightforward. (See problem 1 .) •

Convergence in the topology induced by d is denoted by �. Thus tn �t
means that the sequence { tn } ne 00 co�verges to t in this topology. The closure of a
set A in this topology is denoted by A.

Definition A metric space (X,d) is compact if every sequence in X has a
subsequence which converges to a point in X.

§25. Complete Herbrand Interpretations 177

A crucial fact about Terms is given by the following proposition [72] .

Proposition 25.2 (Terms, d) is compact iff S is finite.

Proof Suppose first that S is infinite. Let { ts : se S } be any collection of
terms with the property that ts(O)=s (that is, the root is labelled by s). If sl';t=s2,
then d(t ,t) = 1/2. Thus Terms is not compact. sl s2

Conversely, suppose that S is finite. Let { tk}ke ro be a sequence in Terms.
We consider two cases.

(a) There exists me ro and pe ro such that, for all n'?.p, we have dp(tn)�m.

Since S is finite, there are only a finite number of terms over S of depth � m.
Hence { tk} ke ro must have a constant and, hence, convergent subsequence.

(b) Given me ro and pero, there exists n'?.p such that dp(tn)>m.

In this case, we can suppose without loss of generality that the sequence
{ tk }ke ro is such that dp(tk)>k, for ke ro. Note that every subsequence of { tk}kero
has the property that the depths of the terms in the subsequence are unbounded.

We define by induction an infinite term teTermS such that, for each n'?. l , there
exists a subsequence { tk } ro of { tk}k ro with a. (tk) = a. (t), for me ro. m me e n m n

Suppose first that n=l . Since S is finite, a subsequence {� lme ro of
. m

{ tk }ke ro must have the same symbol, say s, labelling their root nodes. We define
t([]) = s.

Next suppose that t is defined up to depth n. Thus there exists a subsequence
{ tkm} me ro of { tk}ke ro such that a.n(tkm) = a.n(t), for me ro . Since S is finite,

there exists a subsequence { �m } pe ro of {�m} mero such that the a.n+l(�m) are
p . p

all equal, for pero. Define the nOdes at depth n+ 1 for t m the same way as each of
the tk . This completes the inductive definition. m

Sin�e it is clear that t is an accumulation point of { tk }ke 00, we have shown
that Terms is compact. •

Now we are in a position to define the complete Herbrand universe. Let P be
a definite program and F be the finite set of constants and function symbols in P.
We regard constants as function symbols of arity 0.

Definition The complete Herbrand universe Up for P is TermF. The elements
of Up are called ground terms.

1 78 Chapter 6. Perpetual Processes

Thus Up is the set of all ground (possibly infinite) terms which can be formed
out of the constants and function symbols appearing in P. It is straightforward to
show that "ground term", as defined in §3, can be identified with "finite ground
term", as just defined. (See problem 2.) This identification is taken for granted
throughout this chapter. Thus we have Up !:; Up· As long as P contains at least
one function symbol, it is clear that Up is a proper subset of Up.

We adopt the convention throughout this chapter that "term", without
qualification, will always mean a possibly infinite term. If a term is finite, this
will always be explicitly stated.

Despite the fact that we have given a rather formal definition of term, in the
material which follows we will rarely make direct reference to this definition,
relying instead on the reader's intuitive understanding of a term. All the
arguments presented could easily be formalised, if desired. We will also find it
convenient to use a more informal notation for terms. In particular, for finite
terms we will continue to use the old notation.

Example fff... is the infinite term pictured in Figure 9.
f(a,f(a,f(a, . . .))) is the infinite term pictured in Figure 10.

Proposition 25.3 Let P be a definite program. Then Up is a compact metric
space, under the metric d introduced earlier.

Proof The result follows from proposition 25.2, since the set of constants and
function symbols in P is finite. •

The proof of the next result is straightforward. (See problem 3 .)

Proposition 25.4 Let P be a definite program. Then Up is dense in Up, under
the topology induced by d.

Up is called "complete" because it is the completion [29] of the metric space
Up. We will also require the concept of a (possibly infinite) atom. Let P be a
definite program, F be the set of constants and function symbols in P, R be the set
of predicate symbols in P and V be the set of variables in P (more precisely, the
first order language underlying P). All variables have arity 0.

Definition An atom A is an element of TermV u Fu R such that A(n)e R iff
n=[] , for all ne dom(A).

§25 . Complete Herbrand Interpretations 1 79

f

f

f

Fig. 9. The infinite term fff. ..

Thus an atom is a term with the root node (only) labelled by a predicate
symbol. Just as we did for terms, we can identify "finite atom", as just defined,
with "atom", as defined in §2. Whenever an atom is finite, this will always be
explicitly stated in this chapter.

Definition The complete Herbrand base Bp for a definite program P is the set
of all terms A in Te�u R for which A(n)e R iff n=[] , for all ne dom(A). The
elements of Bp are called ground atoms.

Thus Bp is the set of all ground (possibly infinite) atoms which can be formed
out of the finite set of constants, function symbols and predicate symbols appearing
in P. Note that Bp � Bp·

Proposition 25.5 Let P be a definite program. Then Bp is a compact metric
space, under the metric d introduced earlier.

1 80 Chapter 6. Perpetual Processes

a

Fig. 10. The infinite term f(a,f(a,f(a, . . .)))

Proof Te�u R is compact, by proposition 25.2. It is easy to show that B}> is
a closed and, therefore, compact subspace of Te� uR· •

Proposition 25.6 Let P be a definite program. Then Bp is dense in B}>, under
the topology induced by d.

Proof Straightforward. •

The concept of a substitution applied to an atom in §4 can be easily
generalised to the present more general definition of atom and term. We restrict
attention to ground substitutions applied to finite atoms, which is all that is needed
in this chapter.

Definition A ground substitution 8 is a finite set of the form { v 1tt 1 , . . . ,vk!tk} ,
where each vi is a variable, the variables are distinct and tie U}>, for i=1 , . . . ,k.

Definition Let A be a finite atom with variables { v 1 , . . . ,vk} and 8 =

{v 1/t l ' . . . ,vk!tk} be a ground substitution. Then AS is the ground atom defined as

§25 . Complete Herbrand Interpretations 1 81

follows:
(a) dom(AS) = dom(A) u { [m,n] : me dom(A), A(m)=vi and nedom(ti), for some
ie { l , . . . ,k } } .
(b) AS : dom(AS) � F u R is defined by
AS(m) = A(m), if me dom(A) and A(m)fi { v 1 , . . . ,vk}
AS([m,n]) = ti(n), if me dom(A), A(m)=vi and ne dom(ti), for some ie { l , . . . ,k} .

We say AS i s a ground instance of A. The collection of all ground instances
of the finite atom A is denoted by [[A]] . Note that [A] � [[A]] � B}>.

Proposition 25.7 Let P be a definite program and C = {A1 ' . . . ,Am} be a set of
finite atoms with variables x1 ' . . . ,xn. Consider the mapping

Sc : (Up)n � (Bp)m

defined by
Sc(t1 , . . . ,tn) = (A1 S, . . . ,Am S),

where S = { x 1/t 1 , . .. ,xJtn } . Then Sc is continuous, where (Up)n and (Bp)m are
each given the product topology.

Proof Suppose that { (t l ,k• · · · •tn,k) }ke ro converges to (t1 ' . . . ,tn) in the product

topology on (Up)n. Put Sk = { x1/t i ,k• · · ··xn/tn,k} , for ke ro. Clearly AiSk � AiS,

for i=l , ... ,m, and hence SC is continuous. •

Proposition 25.8 Let A be a finite atom. Then [[A]] is a closed subset of B}>.

Proof Put C = { A } . If A has n variables, then [[A]] = Sc<(U}>)n). Since Sc
is continuous and U}> is compact, Sc((U}>)n) is a compact and, therefore, closed
subset of B}> . •

Proposition 25.9 Let A be a finite atom. Then [A] = [[A]] .

Proof Since [A] � [[A]] and [[A]] is closed, [A] � [[A]] . On the other hand, if
C= { A } and A has n variables, then [[A]] = Sc<(U}>)n) = Sc<(Up)n) � Sc((Up)n)
= [A], by propositions 25.4 and 25.7. •

We conclude this section with the definition of a complete Herbrand
interpretation and the mapping T}>.

Definition Let P be a definite program. An interpretation for P is a complete

Herbrand interpretation if the following conditions are satisfied:

1 82 Chapter 6. Perpetual Processes

(a) The domain of the interpretation is the complete Herbrand universe Up .
(b) Constants in P are assigned themselves in Up.
(c) If f is an n-ary function symbol in P, then the mapping from (Up)n into Up
defined by (t 1 , . . . ,tn) --+ f(t 1 , . . . ,tn) is assigned to f.

We make no restrictions on the assignment to the predicate symbols in P, so
that different complete Herbrand interpretations arise by taking different such
assignments. In an analogous way to that in §3, we identify a complete Herbrand
interpretation with a subset of Bp· The set of all complete Herbrand interpretations
for P is a complete lattice under the partial order of set inclusion.

Definition Let P be a definite program. A complete Herbrand model for P is a
complete Herbrand interpretation which is a model for P.

We also define a mapping Tp from the lattice of complete Herbrand
interpretations to itself as follows. Let I be a complete Herbrand interpretation.
Then Tp(I) = (AeBp : Af-B l ' . . . ,Bn is a ground instance of a clause in P and
(B 1 , . . . ,Bn } !:: 1 } .

Note that Tp is � for the pre-interpretation J consisting of the domain Up and
the above assignments to constants and function symbols. It turns out that because
of the compactness of Up and Bp, Tp has an even richer set of properties than T p·
We explore these properties in the next section.

§26. PROPERTIES OF Tp
In this section we establish various important properties of Tp, notably that

gfp(Tp) = Tpiro.

We begin with four results, which are the analogues for Tp of propositions 6. 1 ,

6.3 and 6.4 and theorem 6.5. The proofs of these results are essentially the same
as the earlier ones.

Proposition 26.1 (Model Intersection Property)
Let P be a definite program and (Mi } iel be a non-empty set of complete

Herbrand models for P. Then ll ie iMi is a complete Herbrand model for P.

We let Mp denote the least complete Herbrand model for P. Thus Mp is the
intersection of all complete Herbrand models for P.

§26. Properties of Tp 1 83

Proposition 26.2 Let P be a definite program. Then the mapping Tp is
continuous (in the lattice-theoretic sense of §5).

Proposition 26.3 Let P be a definite program and I be a complete Herbrand
interpretation for P. Then I is a model for P iff T}>(n � I.

Theorem 26.4 Let P be a definite program. Then M}> = lfp(Tp) = T}> i ro.

The next result is due to Andreka, van Emden, Nemeti and Tiuryn [2] .

Theorem 26.5 (Closedness of Tp)
Let P be a definite program and I be a closed subset of B}>. Then T}>(I) is a

closed subset of B}>. Furthermore, T}>(J) !:;:;; T}>(l). for J � B}>.

Proof Let I be a closed subset of B}>. We show T}><n is closed. It is sufficient
to consider the case when P consists of a single clause, say, A�A1 , . . . ,Am.
Suppose the clause has n variables. Put C={A, A1 ' . . . ,Am} and let Sc be the
associated mapping defined in §25. Since Sc is continuous and U}> is compact,

we have that Sc((Up)n) is a closed subset of (Bp)m
+ 1

. Let 1t denote the

projection from (Bp)m
+ 1 onto its first component. Then T}>(I)

1t(Sc((Up)n) n (Bp x Im)) and thus T}>(l) is closed.
For the last part, it is straightforward to show that T'p maps closed sets to

closed sets iff T}>(J) !::: T}>(J), for J !::: B}>. •

Corollary 26.6 T}>.l.k is closed, for kero. Furthermore, T}>.!.ro is closed.

Note carefully that we do not necessarily have the opposite inclusion
T}><n ;;:;1 T}>(n. for J !::: B}>.

Example Let P be the program
q(a) � p(f(x),f(x))

Let J = {p(t,f(t)) : te Up} . Then T}>(J)={ q(a) } , but T}>(J)=0.

Next we establish an important weak continuity result for T}>. For this we
need the concept of the limit superior of a sequence of subsets of a metric space
[5] .

Definition Let (X,d) be a metric space and { Y } 00 be a sequence of subsets n ne
of X. Then we defme LS 00(Y) = { xe X : for every neighbourhood V of x and ne n
for every me ro, there exists !em such that V n Y k;t:0} .

1 84 Chapter 6. Perpetual Processes

If {Yn}nero i s a decreasing sequence of closed sets, i t i s easy to show that
LSnero<Y n) = nnero Yn.

Theorem 26.7 (Weak Continuity of Tp)
Let P be a definite program and { Ik}kero be a sequence of sets in Bp· Then

LSkero(Tp(lk)) !:: Tp(LSkero(Ik)).

Proof Suppose AeLSkero(TP(Ik)). Then, for every neighbourhood V of A,
there exist infinitely many k such that V n TP(Ik};t0. Since P is finite, there exist
a clause A0f-Al' .. . ,Am in P, a subsequence { Ikp

lpero of { Ik}kero and a sequence
{ ep }pero of ground substitutions for the variables x1 ' . . . ,xn of the clause such that

A0ep�A and A.e elk , for j=l , . . . ,m and pero.
J p p

Suppose ep is {x1tt1 p, . . . ,x /t } . Since Up' is compact, we can assume . , n n,p
without loss of generality that (t1 , . . . ,t)�(t1 , . . . ,t), say. Put e = ,p n,p n
{x1/t1 , . . . ,xn/tn} . By proposition 25.7, we have that
(A0ep, . . . ,Amep)�(A0e, . . . ,Ame). Since A0ep �A. we have that A0e=A.
Furthermore, since Ajep �Aje, we have that AjeeLSkero<Ik), for j=l , . . . ,m. Hence
Ae Tp(LSke ro (lk)). I

Note that we do not generally have LSkero<Tp(lk)) = Tp(LSkero(lk)).

Example Consider the program
q(a) f- p(f(x),f(x))

Put lk={p(f
k(a) ,f

k+l(a)) } , for kero. Then LSkero<Ik)={p(fff . . . ,fff.. .) } . Thus

Tp(LSkero<Ik))={q(a) } , but LSkero(TP(Ik))=0.

Corollary 26.8 (Intersection Property for Tp)
Let P be a definite program and {Ik}kero be a decreasing sequence of closed

sets in Bp. Then Tp(nkerolk) = nkeroTP(Ik).

Proof We have that

Tp(nkero1k)
= Tp(LSke ro (Ik)),

;;;2 LSkero<Tf,(lk)),

= n ke ro TP(Ik),

since the Ik are closed and decreasing
by theorem 26.7

since the TP(Ik) are closed and decreasing.

§26. Properties of Tp

We cannot drop the requirement that each Ik be closed in corollary 26.8.

Example Consider the program
q(a) � p(f(x))

1 85

Let Ik be {p(fl(a)) : n::::k } , for kero. Then { Ik}kero is a decreasing sequence.
Furthermore, nkerolk=0, so that Tp(n kerolk)=0. However, Tp(Ik) = {q(a) } ,
for ke ro. Thus n ke ro Tp(Ik)={ q(a) } .

Part (a) of the next theorem is due to Andreka, van Emden, Nemeti and Tiuryn
[2] . Recall that it can happen that gfp(Tp)*Tp-l.ro.

Theorem 26.9 Let P be a definite program. Then we have
(a) gfp(Tp) = Ti>J.ro.

(b) Tp(nkeroTP-l.k) :::2 nkeroTP-l.k.

Proof (a) It suffices to show that Tp(Tp-l.ro)=Tp-l.ro. Now we have
Tp<Tp-l.ro)

= Tp(nkeroTP-l.k)
= n ke ro Tp(Tp-l.k), by corollaries 26.6 and 26.8

= Ti>J.ro.
(b) We have
Tp(nkeroTP-l.k)

= nkeroTP(fP-l.k),
:::2 n ke roTP(T P-l.k),

:::2 nkeroTP-l.k. I

by corollary 26.8

by theorem 26.5

It is apparent that the essential reason that gfp(Tp)=Tp-l.ro is because Up is
compact. We generally have gfp(Tp):;t:TPJ.ro precisely because limits of sequences
of finite terms are missing from Up. In many respects, Tp, Up and Bp give a
more appropriate setting for the foundations of logic programming than T p• Up
and Bp·

1 86 Chapter 6. Perpetual Processes

Note that n ke ol p-1-k may not be a ftxpoint of Tp.
Example Let P be the program
q(a) r p(x,f(x))
p(f(x),f(x)) r p(x,x)

Then nkeolP-1-k = {p(fff . . . ,fff...) } , but Tp(nkeclP-1-k) = {q(a), p(fff . . . ,fff...) } .

Proposition 26.10 Let P be a definite program. Then we have

(a) Tp-1-k = Tp-1-k, for k=O, 1 .

(b) Tp-1-k !:; Tp-1-k, for J.e2.

Proof By corollary 26.6, Tp-1-k is closed, for keco. Also it is easy to show by

induction that Tp-1-k !:; Tp-1-k, for kero. Thus we have Tp-1-k !:; Tp-1-k, for kero.
Furthermore, Tp

-1-0 = Bp = Bp = Tp-1-0. Finally, we leave the proof that Tp-1-1 =

Tp-1-1 to problem 9. I

Note that Tp-1-k may be a proper subset of Tp-1-k, for l.e2. (See problem 10.)

Proposition 26.11 Let P be a definite program. Then Tp-1-ro !:; nkeroTP-1-k
!:; Tp-1-ro.

Proof We have

Tp-1-co
= nkeroTP-1-k
!:; nkeroTP-1-k
!:; nkeroTP-1-k, by proposition 26. 10

= Tp-1-ro. I

Note that both of the inclusions in proposition 26. 1 1 may be proper. (See
problem 1 1 .)

Next, we prove a useful characterisation of nkeroTP-1-k.
Theorem 26.12 Let P be a definite program and Ae Bp. Then the following

are equivalent:
(a) Ae nkeroTP-1-k.
(b) There exists a sequence {Ak}kero such that AkeTp-1-k, for kero, and Ak �A.

§26. Properties of Tp 1 87

(c) There exists a finite atom B and a non-failed fair derivation f-B=G0, 01 , . . .
with mgu's 91 , a2, . . . such that A e n ke ro[[B91 . . . 9k]] . (If the derivation is
successful, then the intersection is over the finite set of non-negative integers
which index the goals of the derivation) .

Proof The equivalence of (a) and (b) is left to problem 12.
(c) implies (a). Suppose (c) holds. By proposition 25.9, we have that

A e n 00 [B9 1 . . . a]. By proposition 13.5, given ke ro, there exists ne ro such that ne n --
[B91 . . . an] � Tp.!.k. Hence A e n ke roTP.!.k.

(b) implies (c). For this proof, we ensure fairness in all derivations by always
selecting atoms as follows. We select the leftmost atom to the right of the
(possibly empty set of) atoms introduced at the previous derivation step, if there is
such an atom; otherwise, we select the leftmost atom.

Let { Ak} ke ro be a sequence such that Ake Tp.!.k, for ke ro, and Ak �A. Since
Ake Tp.!.k, proposition 13.4 shows that there is a derivation Dk beginning with
f-Ak, which is either successful (that is, Dk is a refutation of P v { f-Ak}) or has
length > k. We consider two cases.

(1) Given me ro and pero, there exists n�p such that D n
has length > m.

In this case, by passing to an appropriate subsequence, we can assume without
loss of generality that the sequence { Ak} ke ro is such that Ake Tp.!.k, for ke ro,
Ak �A and Dk has length > k.

We now prove by induction that there exists a finite atom B and an infinite
fair derivation f-B=G0, 01 , . . . with input clauses c1 • c2, . . . such that, for each
ne ro, there exists a subsequence { Akm }me ro of (Ak}ke ro' where C1 ' . . . ,Cn+l are

the same (up to variants) as the first n+ 1 input clauses of each of the Dk and
m On+ l is more general than the (n+l)th goal in Dkm' for me ro.

Suppose first that n=O. Since P contains only finitely many clauses, a
subsequence { Ak

m
} me ro of { Ak }ke ro must use the same program clause, say E, in

the frrst step of Dk . We let B be the head of E and let c1 be a suitable variant of
m

E.
Next suppose the result holds for n-1 . Thus there exists a finite atom B and a

fair derivation f-B=Oo• 0l ' . . . ,On via R with input clauses C1 ' . . . ,Cn such that there
exists a subsequence { Akm }me ro of {Ak}ke ro• where C 1 ' . . . ,Cn are the same (up to

variants) as the first n input clauses of each of the Dk and 0 is more general m n
than the nth goal in Dk , for me ro. Note that as the lengths of the Dk are

m m
unbounded, the nth goal in each Dk is not empty. Furthermore, the same atom is

m

1 88 Chapter 6. Perpetual Processes

selected in the nth goal of each Dk Since P contains only finitely many clauses,
m

a subsequence {Ak } co of {Ak } co must use the same program clause, say
m pe m me

F, as the (n+ l)th in8ut clause of the derivation Dk . It is clear that (a suitable
m

variant of) F can be used as Cn+ 1 . This completes th� induction argument.
To finish off case (1) , we have only to show that if 8 1 ' e2, . . . are the mgu's of

the derivation just constructed, then Ae [[BS 1 .. . en]], for ne co. However, this
follows from proposition 25 .9, since, given ne ro, there exists a subsequence
{Ak } m co such that Ak �A and Ak e [B81 . . . e] . Thus A satisfies condition (c).

m e m m n
(2) There exists me co and peco such that, for all rU!.p, D n

has length s; m.
In this case, since each Dk is either successful or has length > k, we may

assume without loss of generality that there exists me co such that the sequence
{Ak }ke co has the properties that Ak �A and each Dk is successful with length s;
m. Because P is finite, there exists a subsequence { Ak } co such that all the

m me
Dk have exactly the same sequence of input clauses (up to variants) . Suppose E

m
is the program clause used first in each of the Dk . We let B be the head of E and

m
construct a refutation of P u { +-B } of length s; m using the same sequence of
input clauses as each of the Dk . In a similar way to case (1), we can show that

m
A satisfies condition (c). I

§27. SEMANTICS OF PERPETUAL PROCESSES

As we stated above, a perpetual process is a definite program which does not
terminate and yet is doing useful computation, in some sense. The problem is to
find the appropriate sense of an infinite computation being "useful" . We solve
this problem by introducing the concept of an infinite atom in Bp being
"computable at infinity" . The set of all such atoms plays the role for perpetual
processes that the success set plays for programs which terminate. The major
result of this section is that the set of all atoms computable at infinity is a subset
of gfp(Tp)· Related results have been obtained by Nait Abdallah and van Emden
[76] , [77], [108] .

We begin with the key definition.

§27. Semantics of Perpetual Processes 1 89

Definition Let P be a definite program and Ae Bp\Bp. We say A is
computable at infinity if there is a finite atom B and an infinite fair derivation
t-B=G0, G1 , . . . with mgu's e1 , e2, . . . such that d(A, Be1 . . . ek)�O. as k�oo.

We put Cp = (Ae Bp\Bp : A is computable at infinity } .

Example Let P be the program
p(f(x)) t- p(x)

Since lfp(Tp)=0, this program does not compute anything in the sense of chapter
2. However, given the goal t-p(x), the atom p(fff . . .) can be "computed at
infinity". In fact, it is clear that Cp={p(fff . . .) } .

Example Let P be the program
fib(x) t- fibl (O. l .x)
fibl (x.y.z.w) t- plus(x,y,z) , fibl (y.z.w)
plus(O,x,x) t-
plus(f(x),y,f(z)) t- plus(x,y,z)

(Recall the convention that n stands for :f(O)). Clearly fib(1 .2.3.5.8. 1 3)e CP,
where the argument of fib is the Fibonacci sequence. We simply let B be fib(x)
and we obtain the approximating sequence fib(Lx1), fib(l .2.x2), fib(1 .2.3.x3),

Example We consider Hamming' s problem, which is to construct the sorted
sequence t of positive integers containing no prime factors other than 2, 3 or 5.
Thus the initial part of the sequence t is 2.3 .4.5.6.8.9. 10. 12. 15 The following
program P to solve this problem appeared in [17] and [41] .

hamming(x) t- seqprod(l .x,2,u) , seqprod(l .x,3 ,v) , seqprod(l .x,5 ,w),
merge(u,v,z) , merge(z,w,x)

merge(x.u ,y.v,x.w) t- y>x, merge(u,y.v,w)
merge(x.u,y.v,y.w) t- x>y, merge(x.u,v,w)
merge(x.u,x.v,x.w) t- merge(u,v,w)
seqprod(x.u,y,z.v) t- prod(x,y,z), seqprod(u,y,v)
f(x)>f(y) t- x>y
f(x)>O t-
prod(x,O,O) t-
prod(x,f(y),z) t- prod(x,y,w), plus(w,x,z)
plus(O,x,x) t-
plus(f(x),y,f(z)) t- plus(x,y,z)

Then it is clear that hamming(t)e Cp·

1 90 Chapter 6. Perpetual Processes

The next proposition gives a characterisation of Cp independent of the metric
d.

Proposition 27.1 Let P be a definite program and AeB}>\Bp. Then Ae CP iff
there is a finite atom B and an infinite fair derivation � B=G0, G 1 , . . . with mgu' s
e 1 , e2, . . . such that n ke ro[[B9 1 . . . 9k]] = {A } .

Proof We have to show that d(A, Be1 . . . 9k)---+0, a s k---+oo, iff
n ke ro[[B91 .. . 9k]] = { A } .

We first suppose that n ke ro[[B9 1 . . . 9k]] = {A } . Assume that there exists ne ro
such that, for all ke ro, we have a.n (A);t:(Xn (B9 1 . . . 9k). Then, for each ke ro,
a.n(B91 . . . 9k) must have at least one node labelled by a variable. Since a.n(A) is
finite, it is clear that there exist a node in a.n (A) and me ro such that, for �m. the
corresponding node in Be1 . . . ek is labelled by a variable. (The variable may
depend on k.) Consequently, n ke ro[[B9 1 . . . 9k]] contains not just A, but infinitely
many ground infinite atoms. Thus our original assumption is incorrect and hence,
given ne ro, there exists ke ro such that a.n(A)=a.n(B91 . . . 9k). Then
d(A, se 1 . . . 9k)---+0, as k---+oo.

Conversely, let us suppose that d(A, B91 . . . 9k)---+0, as k---+oo. Since each
[[Be 1 ... 9k]] is closed and { [[B91 ... 9k]] }ke ro is decreasing, i t is clear that
A e n ke ro[[B9 1 " .. 9�] . Next suppose A' e n kero[[B91 . . . 9k]] . Let E>O be given.
Choose m such that d(A, Be 1 . . . 9m)<E. Suppose A'=B91 .. . eme, for some e. Thus
d(A, A')=d(A, B9 r··em9)<E. Since E was arbitrary, we have that d(A, A')=O and
hence A=A'. Thus nke ro[[B91 . . . 9k]]= {A} . •

We could have adopted a weaker definition of Cp in which we simply demand
that A e n ke ro[[B9 1 . . . 9k]] . However, the following example shows that this
weaker definition doesn't properly capture the notion of "computable at infinity" .

Example Let P be the program
p(f(x)) � p(f(x))

Under the weaker definition, we would have p(fff . . .)eCp.

Now we can give the main result of this chapter.

Theorem 27.2 (Soundness of SLD-Resolution for Perpetual Processes)
Let P be a definite program. Then Cp k gfp(Tp)·

§27. Semantics of Perpetual Processes

Proof We have
Cp

� n keclP-l..k,
!:: Ti>-l..ro,
= gfp(Tp) ,

by theorem 26. 12 and proposition 27. 1
by proposition 26. 1 1
by theorem 26.9. I

1 9 1

Theorem 27.2 is the analogue for perpetual processes of theorem 8.3, which
states that the success set is equal to lfp(Tp) . Since Cp contains only infinite
atoms, it follows from theorem 27.2 that Cp !:: gfp(Tp)\Bp. It would be pleasant
if Cp=gfp(Tp)\Bp· However, as the following examples show, this cannot be
achieved without some restrictions on P or modifications to the definitions of Cp
and Tp or both.

Example Let P be the program
p(f(x)) �

Then p(fff...)e gfp(Tp)\Bp, but p(fff...)iCp·

Example Let P be the program
p(f(x)) � p(f(x))

Then p(fff...)e gfp(Tp)\Bp, but p(fff ...)i Cp.

Example Let P be the program
p(x,f(x)) +- p(x,x)

Then p(fff . . . ,fff . . .)E gfp(Tp)\Bp, but p(fff. . . ,fff . . .)i Cp. The problem here is that no
matter what we choose for B in the definition of Cp, the computation will fail.
Note that p(fff . . . ,fff . . .)E gfp(Tp) , because Tp does not respect the occur check.

In view of these developments, we propose the following setting for perpetual
processes. The intended interpretation of a perpetual process P is gfp(Tp)· This is
indeed a model for P. gfp(Tp) is the analogue of the intended interpretation
lfp(Tp) for (ordinary) definite programs. Cp is then the analogue of the success set
for programs. For (ordinary) definite programs, we get soundness and
completeness, since lfp(T p) = success set. For perpetual processes, we only have
the soundness result Cp !:: gfp(Tp)· As we have seen, completeness cannot be
achieved without further restrictions.

Taking a complete Herbrand model as the intended interpretation seems to be
the simplest and most natural way of providing a semantics for perpetual
processes. The results of this chapter suggest that gfp(Tp) should be the intended

1 92 Chapter 6. Perpetual Processes

interpretation. However, gfp(fp) generally contains infinite atoms which are not
intuitively computable at infinity and thus we do not get completeness. For another
approach to this topic, we suggest the reader consult the paper by Levi and
Palamidessi [56] .

This chapter leaves many questions unanswered. Finding a satisfactory
semantics for perpetual processes and for communication and synchronisation
between concurrent processes is a current research problem. We believe that the
appropriate setting in which to discuss such problems is the setting of Up, Bp and
T'p and that the basic results presented in this chapter will play a central role in
any satisfactory semantics.

PROBLEMS FOR CHAPTER 6

1 . Prove proposition 25. 1 .

2. Prove that "finite ground term" as defined in §25 can be identified with
"ground term" as defined in §3.

3. Prove that Up is dense in Up.

4. Suppose I !:;;; Bp and Ae BP. Prove that Ae I iff Ae l.

5 . Find a definite program P and a complete Herbrand model I for P such that I is
not a model for P.

6. Show that we cannot drop the requirement that the sequence { Ik }ke ro be
decreasing in corollary 26.8 .

7. The set of all non-empty closed subsets of Bp can be made into a metric space
using the Hausdorff metric p defined by p(C,D)=max { h(C,D), h(D,C) } , where C
and D are non-empty closed subsets of Bp and h(C,D)=sup {d(x,D) : xe C} . (See
[29] .)
(a) Show that, if A,BeBp, then p({A } , { B }) = d(A,B).
(b) Show that, if { Cn} nero is a decreasing sequence of closed subsets of Bp, then
{Cn} ne ro is convergent in the topology induced by p and its limit is n neroCn.

Problems for Chapter 6 1 93

(c) Restrict further attention to P such that Tp(0)¢0. This restriction and the fact
that Tp is closed imply that Tp is a well-defined mapping from the metric space of
non-empty closed subsets of Bp into itself. Part (b) suggests that corollary 26.8

can be extended by proving that Tp is continuous in the topology induced by p.
Show that this conjecture is false.

8. Show that gfp(Tp) may no longer be equal to Tp.!-c.o if the definite program P is
allowed to consist of an infinite number of clauses with an infinite number of
constants.

9. Prove that Tp.!-1 = Tp.!- 1 .

10. Find a definite program P such that Tp.!-2 c Tp.!-2.

1 1 . Find a definite program P such that T p.!-c.o c n ke c.oT p.!-k c Tp.!-c.o.

12. Prove that A e nkec.oTP.!-k iff there is a sequence {Ak}kec.o such that
AkeTp.!-k, for ke c.o, and Ak �A.

1 3 . lllustrate theorem 26. 12 with the program
p(f(x)) f- p(x)

and with A = p(fff ...).

REFERENCES

1 . Andreka, H. and I. Nemeti, "The Generalized Completeness of Hom
Predicate Logic as a Programming Language", Acta Cybernetica 4, 1 (1978),

3-10.

2. Andreka, H., M. H. van Emden, I. Nemeti and J. Tiuryn, "Infinite-Term
Semantics for Logic Programs", draft manuscript, 1983.

3 . Apt, K. R. , H. A. Blair and A. Walker, "Towards a Theory of Declarative
Knowledge", in Foundations of Deductive Databases and Logic

Programming, Minker, J. (ed.), Morgan Kaufmann, Los Altos, 1987 .

4. Apt, K. R. and M. H. van Emden, "Contributions to the Theory of Logic
Programming" , J. ACM 29, 3 (July 1982), 841-862.

5. Arnold, A. and M. Nivat, ' 'The Metric Space of Infinite Trees: Algebraic
and Topological Properties" , Fundamenta Informatica 3, 4 (1980), 445-476.

6. Av-Ron, E., "Top-Down Diagnosis of Prolog Programs", M.Sc. Thesis,
Weizmann Institute of Science, 1984.

7 . Bancilhon, F . and R. Ramakrishnan, "An Amateur's Introduction to
Recursive Query Processing Strategies" , Proc. ACM Int. Conf. on

Management of Data, Washington, D.C., 1986, 16-52.

8 . Battani, G . and H. Meloni, "Interpreteur du Language de Prograrnmation
PROLOG", Groupe d'lntelligence Artificielle, Universite d' Aix-Marseille,
1973.

9. Bibel, W., Automated Theorem Proving, Vieweg, Braunschweig, 1982.

1 96 References

10. Bowen, D. L., L. Byrd, D. Ferguson and W. Kornfeld, Quintus Prolog

Reference Manual, Quintus Computer Systems, Inc., May, 1985.

1 1 . Bowen, K. A., "Programming with Full First-Order Logic", in Machine

Intelligence /0, Ellis Horwood, Chichester, 1982, 421 -440.

12. Byrd, L. , "PROLOG Debugging Facilities" , Working Paper, Department of
Artificial Intelligence, University of Edinburgh, 1980.

1 3. Chandra, A. K. and D. Harel, "Horn Clause Queries and Generalizations" , J.
Logic Programming 2, 1 (1985), 1 - 1 5.

14. Chang, C. L. and R. C. T. Lee, Symbolic Logic and Mechanical Theorem

Proving, Academic Press, New York, 1973.

15 . Clark, K. L., "Negation as Failure" , in Logic and Data Bases, Gallaire, H.
and J. Minker (eds), Plenum Press, New York, 1978, 293-322.

16. Clark, K. L., "Predicate Logic as a Computational Formalism", Research
Report DOC 79/59, Department of Computing, Imperial College, 1979.

17. Clark, K. L. and S. Gregory, "A Relational Language for Parallel
Programming" , Proc. ACM Conf. on Functional Programming Languages

and Computer Architecture, Portsmouth, N.H. , 198 1 , 171 - 178 .

1 8 . Clark, K . L . and S . Gregory, "PARLOG: A Parallel Logic Programming
Language" , ACM Trans . on Prog. Lang. and Systems 8, 1 (Jan. 1986), 1 -49.

19. Clark, K. L. and F. G. McCabe, "The Control Facilities of IC-PROLOG", in
Expert Systems in the Micro Electronic Age, Michie, D. (ed.), Edinburgh
University Press, 1979, 122-149.

20. Clark, K. L. and F. G. McCabe, micro-PROLOG: Programming in Logic,

Prentice-Hall, Englewood Cliffs, N.J., 1984.

2 1 . Clark, K.L. and S.-A . Tllrnlund, "A First Order Theory of Data and
Programs", Information Processing 77, Toronto, North-Holland, 1977, 939-
944.

22. Colmerauer, A., H. Kanoui, P. Roussel and R. Pasero, Un Systeme de

Communication Homme-Machine en Francais, Groupe de Recherche en

References 1 97

Intelligence Artificielle, Universite d' Aix-Marseille, 1973 .

23. Cutland, N. J., Computability: An Introduction to Recursive Function Theory,

Cambridge University Press, Cambridge, 1980.

24. Dahl, V. , "On Database Systems Development through Logic", ACM Trans.

on Database Systems 7, 1 (1982), 102- 123.

25. Date, C. J. , An Introduction to Database Systems, Vol. 1 , Addison Wesley,
Reading, Mass. , 4th Edition, 1986.

26. Davis, M. and H. Putnam, "A Computing Procedure for Quantification
Theory" , J. ACM 7 (1960), 201-2 15.

27. Decker, H. , "Integrity Enforcement in Deductive Databases" , Proc. 1st Int.

Conf. on Expert Database Systems, Charleston, S .C., 1986.

28. Dershowitz, N. and Z. Manna, "Proving Termination with Multiset
Orderings" , Comm. ACM 22, 8 (1979), 465-476.

29. Dugundji, J. , Topology, Allyn and Bacon, Boston, 1966.

30. Edman, A. and S.-A. Tltmlund, "Mechanization of an Oracle in a Debugging
System" , /JCAI-83, Karlsruhe, 1983, 553-555.

3 1 . Eisenstadt, M., "Retrospective Zooming: A Knowledge Based Tracing and
Debugging Methodology for Logic Programming" , /JCA/-85, Los Angeles,
1985, 7 17-7 19.

32. Eisenstadt, M. and A. Hasemer, "An Improved User Interface for
PROLOG", Interact 84, 1984, 109- 1 13 .

33. Enderton, H. B., A Mathematical Introduction to Logic, Academic Press ,
New York, 1972.

34. Ferrand, G., "Error Diagnosis in Logic Programming: An Adaptation of E.
Y. Shapiro' s Method", Rapport de Recherche 375, INRIA, 1985.

35. Ga11aire, H. and J. Minker (eds), Logic and Data Bases, Plenum Press, New
York, 1978.

1 98 References

36. Gallaire, H. , J. Minker and J.-M. Nicolas (eds), Advances in Database

Theory, Vol. 1 , Plenum Press, New York, 198 1 .

37. Gallaire, H., J . Minker and J.-M. Nicolas (eds) , Advances i n Database

Theory, Vol. 2, Plenum Press, New York, 1984.

38. Gallaire, H. , J. Minker and J.-M. Nicolas, "Logic and Databases: A
Deductive Approach" , Computing Surveys 16, 2 (June 1984), 153- 1 85.

39. Gilmore, P. C., "A Proof Method for Quantification Theory", IBM J. Res.

Develop. 4 (1960), 28-35.

40. Green, C. , "Applications of Theorem Proving to Problem Solving", JJCAJ-

69, Washington, D.C., 1969, 219-239.

41 . Hansson, A, S. Haridi and S.-A. Tarnlund, "Properties of a Logic
Programming Language" , in Logic Programming, Clark, K.L. and S.-A.
Tll.rnlund (eds), Academic Press, New York, 1982, 267-280.

42. Haridi, S. and D. Sahlin, ' 'Evaluation of Logic Programs based on Natural
Deduction", TRITA-CS-8305 B, Royal Institute of Technology, Stockholm,
1983.

43. Hayes, P. J. , "Computation and Deduction", Proc. MFCS Conf.,

Czechoslovak Academy of Sciences, 1973, 105- 1 1 8.

44. Herbrand, J. , "Investigations in Proof Theory", in From Frege to Godel: A

Source Book in Mathematical Logic, 1879-1931 , van Heijenoort, J. (ed.) ,
Harvard University Press, Cambridge, Mass. , 1967, 525-58 1 .

45. Hewitt, C., "Description and Theoretical Analysis (Using Schemata) of
PLANNER: A Language for Proving Theorems and Manipulating Models in
a Robot", A.I. Memo 25 1 , MIT, 1972.

46. Hill, R., "LUSH-Resolution and its Completeness" , DCL Memo 78 ,

Department of Artificial Intelligence, University of Edinburgh, 1974.

47. Jaffar, J., J.-L. Lassez and J. W. Lloyd, "Completeness of the Negation as
Failure Rule", JJCAJ-83, Karlsruhe, 1983, 500-506.

References 1 99

48. Kowalski, R. A., "Predicate Logic as a Programming Language",
Information Processing 74, Stockholm, North Holland, 1974, 569-574.

49. Kowalski, R. A., Logic for Problem Solving, North Holland, New York,
1979.

50. Kowalski, R. A. , "Algorithm = Logic + Control" , Comm. ACM 22, 7 (July
1979), 424-436.

5 1 . Kowalski, R. A., "Logic as a Database Language" , Research Report DOC
82/25 (Revised May 1984), Department of Computing, Imperial College,
1982.

52. Kowalski, R. A., ' 'The Relation Between Logic Programming and Logic
Specification" , in Mathematical Logic and Programming Languages, Hoare,
C. A. R. and J. C. Shepherdson (eds), Prentice-Hall, Englewood Cliffs, N.J. ,
1985, 1 1 -27.

53. Kowalski, R. A. and D. Kuehner, ' 'Linear Resolution with Selection
Function", Artificial Intelligence 2 (197 1), 227-260.

54. Lassez, J.-L. and M. J. Maher, "Closures and Fairness in the Semantics of
Programming Logic" , Theoretical Computer Science 29 (1984), 1 67-1 84.

55. Lassez, J.-L. , V. �- Nguyen and E. A. Sonenberg, "Fixed Point Theorems
and Semantics: A Folk Tale" , Inf. Proc. Letters 14, 3 (1982), 1 12- 1 16.

56. Levi, G. and C. Palamidessi, " Contributions to the Semantics of Logic
Perpetual Processes" , Technical Report, Dipartimento di Informatica,
Universita di Pisa, 1986.

57. Lifschitz, V., "Closed-World Databases and Circumscription", Artificial

Intelligence 27 (1985), 229-235.

58. Lloyd, J. W., "An Introduction to Deductive Database Systems" , Australian

Computer J. 15, 2 (May 1983), 52-57.

59. Lloyd, J. W., "Declarative Error Diagnosis" , New Generation Computing S,
2 (1987).

200 References

60. Lloyd, J. W., E. A. Sonenberg and R. W. Topor, "Integrity Constraint
Checking in Stratified Databases" , Technical Report 86/5, Department of
Computer Science, University of Melbourne, 1986. To appear in J. Logic

Programming.

6 1 . Lloyd, J . W. and R . W. Topor, "Making Prolog More Expressive", J. Logic

Programming 1, 3 (1984), 225-240.

62. Lloyd, J. W. and R. W. Topor, "A Basis for Deductive Database Systems" ,
J. Logic Programming 2, 2 (1985), 93- 109.

63. Lloyd, J. W. and R. W. Topor, "A Basis for Deductive Database Systems
II", J. Logic Programming 3, 1 (1986), 55-67.

64. Loveland, D. W., Automated Theorem Proving: A Logical Basis, North
Holland, New York, 1978.

65. Loveland, D. W., "A Simplified Format for the Model Elimination
Procedure", J. ACM 16, 3 (July 1969), 349-363.

66. Manna, Z., Mathematical Theory of Computation, McGraw-Hill, New York,
1974.

67. Martelli, A. and U. Montanari, "Unification in Linear Time and Space: A
Structured Presentation", Nota Interna B76-1 6, Instituto di Elaborazione
della Informazione, Pisa, 1976.

68. Martelli, A. and U. Montanari, "An Efficient Unification Algorithm", ACM

Trans. on Prog. Lang. and Systems 4, 2 (April 1982), 258-282.

69. Mendelson, E., Introduction to Mathematical Logic, 2nd Edition, Van
Nostrand, Princeton, N.J. , 1979.

70. Minker, J. (ed.) , Proc. Workshop on Foundations of Deductive Databases

and Logic Programming, Washington, D.C., 1986.

7 1 . Mota-Oka, T. (ed.), Fifth Generation Computer Systems: Proc. Int. Conf. on

Fifth Generation Computer Systems, TIPDEC, North-Holland, 1982.

72. Mycielski, J. and W. Taylor, "A Compactification of the Algebra of
Terms" , Algebra Universalis 6 (1976), 159- 163.

References 201

73. Naish, L., "Automating Control for Logic Programs", J. Logic

Programming 2, 3 (1985), 167- 1 83.

74. Naish, L., Negation and Control in PROLOG, Lecture Notes in Computer
Science 238, Springer-Verlag, 1986.

75. Naish, L., "Negation and Quantifiers in NU-PROLOG", Proc. Third Int.

Conf on Logic Programming, Lecture Notes in Computer Science 225,

Springer-Verlag, 1986, 624-634.

76. Nait Abdallah, M. A., "On the Interpretation of Infinite Computations in
Logic Programming", /CALP 84, Lecture Notes in Computer Science 172,

Springer-Verlag, 1984, 358-370.

77. Nait Abdallah, M. A. and M. H. van Emden, "Algorithm Theory and Logic
Programming" , draft manuscript, 1983.

78. Nicolas, J.-M., "Logic for Improving Integrity Checking in Relational Data
Bases" , Acta Informatica 18, 3 (1982), 227-253 .

79. Nicolas, J.-M. and H. Gallaire, "Data Base: Theory vs. Interpretation", in
Logic and Data Bases, Gallaire, H. and J. Mink:er (eds), Plenum Press, New
York, 1978, 33-54.

80. Paterson, M. S. and M. N. Wegman, "Linear Unification", J. Computer and

System Sciences 16, 2 (1978), 1 58- 167.

· 8 1 . Pereira, L. M., "Rational Debugging in Logic Programming", Proc. Third

Int. Conf. on Logic Programming, Lecture Notes in Computer Science 225,

Springer-Verlag, 1986, 203-2 10.

82. Plaisted, D. A., "The Occur-Check Problem in PROLOG", IEEE Int. Symp.

on Logic Programming, Atlantic City, 1984, 272-280.

83. Plaisted, D. A., "An Efficient Bug Location Algorithm", Proc. Second Int.

· Conf on Logic Programming, Uppsala, 1984, 15 1 - 157.

84. Prawitz, D., "An Improved Proof Procedure", Theoria 26 (1960), 102-139.

85. Reiter, R., "Deductive Question-Answering on Relational Data Bases", in
Logic and Data Bases, Gallaire, H. and J. Mink:er (eds), New York, 1978,

202 References

149-177.

86. Reiter, R. , "On Closed World Data Bases" , in Logic and Data Bases,

Gallaire, H. and J. Minker (eds), Plenum Press, New York, 1978 , 55-76.

87. Reiter, R. , "Towards a Logical Reconstruction of Relational Database
Theory" , in On Conceptual Modelling: Perspectives from Artificial

Intelligence, Databases and Programming Languages, Brodie, M. L., J.
Mylopoulos and J. W. Schmidt (eds), Springer-Verlag, Berlin, 1984, 191 -

233.

88. Robinson, J. A., "A Machine-oriented Logic Based on the Resolution
Principle", J. ACM 12, 1 (Jan. 1965), 23-41 .

89. Roussel, P. , PROLOG: Manuel de Reference et d' Utilization, Groupe
d'Intelligence Artificielle, Universite d' Aix-Marseille, 1975.

90. Sadri, F. and R. A. Kowalski, "An Application of General Purpose
Theorem-Proving to Database Integrity" , in Proc. Workshop on Foundations

of Deductive Databases and Logic Programming, Minker, J. (ed.),
Washington, D.C. , 1986.

9 1 . Sebelik, J. and P. Stepanek, "Hom Clause Programs for Recursive
Functions", in Logic Programming, Clark, K.L. and S .-A. Tll.mlund (eds) ,
Academic Press, New York, 1982, 324-340.

92. Shapiro, E. Y. , Algorithmic Program Debugging, MIT Press, Cambridge,
Mass., 1983.

93. Shapiro, E. Y . , "A Subset of Concurrent PROLOG and its Interpreter" ,
Technical Report TR-003, ICOT, Tokyo, 1983.

94. Shapiro, E. Y. and A. Takeuchi, "Object-Oriented Programming in
Concurrent PROLOG", New Generation Computing 1, 1 (1983), 25-48.

95. Shepherdson, J. C., "Negation as Failure: A Comparison of Clark's
Completed Data Base and Reiter's Closed World Assumption", J. Logic

Programming 1, 1 (1984), 5 1 -79.

96. Shepherdson, J. C., "Undecidability of Hom Clause Logic and Pure Prolog" ,
unpublished manuscript, 1985.

References 203

97. Shepherdson, J. C., "Negation as Failure ll", J. Logic Programming 2, 3

(1985), 1 85-202.

98. Shepherdson, J. C. , "Negation in Logic Programming", in Foundations of

Deductive Databases and Logic Programming, Minker, J. (ed.), Morgan
Kaufmann, Los Altos, 1987.

99. Shoenfield, J. , Mathematical Logic, Addison-Wesley, Reading, Mass. , 1967.

100. Sonenberg, E. A. and R. W. Topor, "Computation in the Herbrand
Universe", unpublished manuscript, 1986.

101 . Tamaki, H. and T. Sato, "Unfold/Fold Transformation of Logic Programs" ,
Proc. Second Int. Conf. on Logic Programming, Uppsala, 1984, 127- 138 .

102. TII.rnlund, S . -A., "Horn Clause Computability", BIT 17, 2 (1977), 215-226.

103. Tarski, A., "A Lattice-theoretical Fixpoint Theorem and its Applications",
Pacific J. Math. 5 (1955), 285-309.

104. Thorn, J. A. and J. A. Zobel (eds), "NU-Prolog 1 .0 Reference Manual" ,
Machine Intelligence Project, Technical Report 86/10, Department of
Computer Science, University of Melbourne, 1986.

105. Topor, R. W., T. Keddis and D. W. Wright, "Deductive Database Tools" ,
Australian Computer J . 17, 4 (Nov. 1985), 163- 173.

106. Ueda, K., "Guarded Horn Clauses", Ph.D. Thesis, University of Tokyo,
1986.

107 . van Emden, M. H. and R. A. Kowalski, "The Semantics of Predicate Logic
as a Programming Language" , J. ACM 23, 4 (Oct. 1976), 733-742.

108. van Emden, M. H. and M. A. Nait Abdallah, "Top-Down Semantics of Fair
Computations of Logic Programs", J. Logic Programming 2, 1 (1985), 67-

75.

109. Van Gelder, A. , "Negation as Failure using Tight Derivations for General
Logic Programs" , Proc. 3rd IEEE Symp. on Logic Programming, Salt Lake
City, 1986, 127-138 .

204 References

1 10. Warren, D. H. D., "An Abstract PROLOG Instruction Set" , Technical Note
309, SRI International, 1983.

1 1 1 . Warren, D. H. D. and F. C. N. Pereira, "An Efficient Easily Adaptable
System for Interpreting Natural Language Queries", DAI Research Paper No.
155 , Department of Artificial Intelligence, University of Edinburgh, 198 1 .

1 12. Wolfram, D. A., M. J. Maher and J.-L. Lassez, " A Unified Treatment of
Resolution Strategies for Logic Programs", Proc. Second Int. Conf. on Logic

Programming, Uppsala, 1984, 263-276.

NOTATION

n intersection

u union

e membership

� improper subset

� improper superset

c subset

::::> superset

+--, --+ implication

� equivalence

1\ conjunction

v disjunction

- negation

V universal quantifier

3 existential quantifier

V'(F) universal closure of F

3(F) existential closure of F

V 't universal quantifier of type 't

3't existential quantifier of type 't

0 empty set

oo infinity

lXI cardinality of X

X\ Y set difference

XxY cartesian product

o empty clause

= equality predicate

= 't equality predicate of type 't

• end of proof

T top element

j_ bottom element

co non-negative integers

25 set of all subsets of S

gfp(T) greatest fixpoint of T

lfp(T) least fixpoint of T

glb(X) greatest lower bound of X

lub(X) least upper bound of X

P program

G goal

D database

Q query

comp(P) completion of a program P

comp(D) completion of a database D

! 63

2Bp 37

ar 174

AJ,V 12

BL 1 6

Bp 17

Bs 17

206

Bp 179
Cp 1 89
c't 152

c+ so
c- so
D* 15 1
dom(t) 174
dp(t) 175

fff . . . 178
Fp 75
� 75

LSne ro<Yn)
Mp 36
neginstD D' J

' '
negD,D' 160

n negD,D' 160

1 83

161

posinstD,D' ,J 1 61

posD,D' 160
n posD,D' 160

Q* 15 1
s 174
sc 1 8 1
Terms 174
T.l.a 29

Tia 29
TD 149
t0-+t 176

Tp 37

�(a) 33
-rb 149

� 80, 1 1 1

T' p 1 82

UL 15

Up 17
us 17

U'
p 177

xRy 26
[A] 44

[A]J
12

[n,i] 173
[[A]] 1 8 1

{ v 1tt1 , . . . ,v Jtn}
lnl 173

a0(t) 175
e 21
<I> 15 1
e 164

'¥ 164

1:1x . . . X't0 19
1:1 x . . . X'tn -+'t 19

n 175

co* 173
ro+n 29
ron 29

� 27
"tx/'t F 19

3x/'t F 19

I 63
A 176

Notation

20

INDEX

admissible 89

algorithmic debugging 121

allowed 89, 1 16

alphabet 5

answer 39, 80, 1 10, 144

arity 174

atom 6, 178

based on 12, 20

binding 20

body 8, 36, 107, 143

bottom element 27

bound occurrence 6

clause 7

closed formula 7

closed world assumption 72

closure ordinal 30

compact metric space 176

compatible 1 64

compatible difference lists 46

complete Herbrand base 179

complete Herbrand interpretation 1 8 1

complete Herbrand model 1 82

complete Herbrand universe 177

complete lattice 27

completed definition 78, 79, 109, 145

completion 74, 79, 109, 146

composition 21

computable at infinity 1 89

computable function 52

computation 88, 1 16, 1 55

computation rule 50, 60

computed answer 43, 86, 1 16, 15 1

conjunction 6

connected negatively 1 3 1

connected positively 13 1

connective 5

conservative extension 1 18

consistent 14

constant 5

continuous mapping 27

correct answer 39, 74, 80, 1 10, 146

correct program 121

cut 63, 95

CWA 72

208

database 143

database clause 148

database interpretation 3

database statement 143

declarative error diagnoser 1 19, 124

declarative semantics 10, 35, 37

definite database 148

definite database clause 148

definite goal 9, 36

definite program 8, 36

definite program clause 8, 36

definite query 147

definition 8, 78, 109, 145

depth of a term 175

derivation 41

derived goal 40, 85

difference list 45

directed set 27

disagreement set 23

disjunction 6

divide-and-query algorithm 125, 128

domain 12

domain closure axioms 146

domain of type 't 19

empty clause 10

equality theory 79, 109, 145

equivalence 6

error diagnoser 1 19, 124

existential closure 7

existential quantifier 6

expression 20

failed SLD-derivation 41

failed SLDNF-derivation 88

failure branch 55, 88

fair search rule 59

fair SLD-derivation 76

fair SLD-tree 76

fair SLDNF-derivation 106

fair SLDNF-tree 106

Fibonacci sequence 1 89

finite failure set 75

finite SLD-derivation 41

finite SLDNF-derivation 88

finite term 175

finite tree 174

finitely failed by depth d 75

finitely failed SLD-tree 75

I ndex

finitely failed SLDNF-tree 86, 1 16, 1 5 1

finitely failed SLDNF-tree of rank 0 85

finitely failed SLDNF-tree of rank k 86

finitely failed SLDNF-tree via R 15 1

first order language 6

first order theory 5

flounder 88, 1 16, 155

formula 6

free occurrence 6

free variable 6

function symbol 5

Index

goal 108

greatest fixpoint 28

greatest lower bound 27

ground atom 15 , 179

ground instance 21, 1 8 1

ground substitution 20, 1 80

ground term 15, 177

Hamming's problem 189

head 8, 36, 107, 143

Herbrand base 16

Herbrand interpretation 16

Herbrand model 16

Herbrand pre-interpretation 16

Herbrand rule 100

Herbrand universe 15

hierarchical database 148

hierarchical normal program 83

hierarchical program 1 10

hierarchical type theory 15 1

Hom clause 10

IC-PROLOG 59

idempotent substitution 33

identity substitution 2 1

implication 6

incorrect clause instance 122

incorrect program 121

incorrect statement instance 122

infinite branch 55, 88

infinite goal 102

infinite SLD-derivation 41

infinite SLDNF-derivation 88

infinite term 17 5

infinite tree 17 4

input clause 41 , 87

209

instance 21

integrity constraint 144

intended interpretation 10, 36, 121

interpretation 12, 20

irreducible 152

irreducible form 153

J-instance 12

least fixpoint 28

least Herbrand model 36

least upper bound 27

length of a refutation 41

level 83, 1 10, 148

level mapping 83, 1 10, 148

limit ordinal 29

literal 7

logical consequence 14

logically equivalent 1 8

lower bound 27

LUSH-resolution 40

metric 176

metric space 17 6

21 0

mgu 23

minimal model 84

model 10, 13, 14

model-theoretic view 147

monotonic mapping 27

most general unifier 23

MU-PROLOG 59

negation 6

negation as failure rule 73

negative literal 7

non-monotonic inference rule 72

nonvalid 13, 14

normal database 148

normal form 1 12, 1 14, 1 16

normal goal 78

normal model 84, 149

normal program 78

normal query 147

NV-PROLOG 59, 62

occur check 24, 44

occurs negatively 7

occurs positively 7

oracle 127

ordering rule 59

ordinal powers 29

parent goal 64
partial order 26

partial recursive function 52

perpetual process 173

positive literal 7

pre-interpretation 12, 19

predicate symbol 5

Index

prenex conjunctive normal form 1 8, 32

procedural interpretation 2

procedural semantics 37, 40

process interpretation 3

program 108

program clause 77

program statement 107

PROLOG 1 , 1 1

proof-theoretic view 147

punctuation symbol 5

quantifier 5

query 143

R-computed answer 50, 99, 1 1 8, 15 1

R-success set 52

range type 19

rational debugging 121

leduces to 152

refutation 41

relation 12, 26

renaming substitution 22

representation scheme 123

resolvent 41

Index

safe computation rule 98

safe use of cut 64
safeness condition 85, 93, 94

satisfiable 13, 14

satisfy an integrity constraint 146

scope 6

search rule 57

selected atom 40, 50, 85

selected literal 99

simple expression 20

simplification method 158

single-stepping algorithm 125, 128

SLD finite failure set 72, 75

SLD-derivation 41

SLD-derivation via R 50

SLD-refutation 41

SLD-refutation procedure 57

SLD-refutation via R 50

SLD-resolution 40

SLD-tree 55

SLD-tree via R 56

SLDNF-derivation 87, 1 16, 15 1

SLDNF-derivation via R 99, 1 1 8, 1 5 1

SLDNF-refutation 86, 1 16, 15 1

SLDNF-refutation of rank 0 85

SLDNF-refutation of rank k 85

SLDNF-refutation via R 99, 1 18 , 15 1

SLDNF-resolution 74

SLDNF-tree 88, 1 16, 15 1

SLDNF-tree via R 99, 1 18, 15 1

� l I

slowsort program 9

standard computation rule 56, 76

standard PROLOO system 57, 59, 60

standardising apart 41

stopping rule 167

stratified database 148

stratified normal program 83

stratified program 1 10

subgoal 9

substitution 20

success branch 55, 88

success set 42

successful SLD-derivation 41

successful SLDNF-derivation 88

successor ordinal 29

term 6, 174

term assignment 12

term of type 't 19

top element 27

top-down error diagnoser 126

transaction 159

transfinite induction, principle of 29

tree 174

truncation at depth n 175

truth value 12

type 19

type predicate symbol 1 50

type theory 151

type-free form 150

21 2

typed existential closure 19

typed first order language 19

typed first order theory 19, 142

typed formula 19

typed universal closure 19

ultrametric 176

ultrametric space 176

uncovered atom 122

underlies 17 4

unification 2

unification algorithm 24

unifier 22

unit clause 8

universal closure 7

universal quantifier 6

unrestricted SLD-refutation 41

unsafe use of cut 64
unsatisfiable 13 , 14

upper bound 27

valid 13, 14

variable 5

variable assignment 12, 154

variable-pure substitution 20

variant 22

violate an integrity constraint 147

when declaration 62

I ndex

Springer Series
Artificial Intelligence

N . J. Nilsson: Principles of Artificial Intelligence . XV, 476 pages , 1 39 figs . , 1982

J . H. S iekmann, G.Wrightson (Eds .) : Automation of Reasoning l . Classical

Papers on Computational Logic 1 957-1 966. XXII, 525 pages , 1 983

J. H. Siekmann, G . Wrightson (Eds .) : Automation of Reasoning 2. Classical

Papers on Computational Logic 1 967-1 970. XXII, 638 pages , 1 983

L. Bole (Ed.) : The Design of Interpreters , Compilers, and Editors for Augmented

Transition Networks . XI, 2 1 4 pages , 72 figs . , 1 98 3

M. M. Botvinnik : Computers in Chess . Solving Inexact Search Problems. With

contributions by A . I. Reznitsky , B . M. Stilman, M. A. Tsfasman, A. D.Yudin.

Translated from the Russian by A. A . Brown. XIV, 1 5 8 pages, 48 figs . , 1 984

L. Bole (Ed.) : Natural Language Communication with Pictorial Information

Systems. VII, 327 pages, 67 fig s . , 1 984

R. S . Michalski, J . G . Carbonell, T. M . Mitchell (Eds .) : Machine Learning.

An Artificial Intelligence Approach. XI, 572 pages, 1 984

C. Blume, W. Jakob: Programming Languages for Industrial Robots.

XIII, 376 pages, 1 45 figs. , 1 986

J . W. Lloyd: Foundations of Logic Programming. Second, extended edition.

XII , 2 1 2 pages, 1 987

L. Bole (Ed.) : Computational Models of Learning. IX, 208 pages, 34 figs. , 1 987

L. B ole (Ed.) : Natural Language Parsing Systems. XVIII, 367 pages, 1 5 1 figs . ,

1 987

N . Cercone, G . McCalla (Eds .) : The Knowledge Frontier. Essays in the

Representation of Knowledge. XXXV, 5 1 2 pages , 93 figs . , 1 9 87

G. Rayna: REDUCE. Software for Algebraic Computation. IX, 329 pages , 1 987

D. D. McDonald, L. Bole (Eds .) : Natural Language Generation Systems.

XI , 389 pages , 84 figs . , 1 9 8 8

L. Bole, M. J . Coombs (Eds .) : Expert System Applications. I X , 47 1 pages ,

84 figs . , 1 9 8 8

Springer Series
Artificial Intelligence

C.-H. Tzeng: A Theory of Heuristic Information in Game-Tree Search. X,

1 07 pages, 22 figs . , 1 9 8 8

H. Coelho, J . C . Cotta: Prolog b y Example. How t o Learn, Teach and U s e It.

X, 382 pages, 68 figs . , 1 9 8 8

L. Kana! , V. Kumar (Eds.) : Search in Artificial Intel ligence. X, 4 8 2 pages ,

67 figs . , 1988

H . Abramson, V . Dahl : Logic Grammars . XIV, 234 pages, 40 fig s . , 1 989

R. Hausser: Computation of Language . An Essay on Syntax , Semantics, and

Pragmatics in Natural Man-Machine Communication. XVI, 425 pages, 1 989

P . Besnard : An Introduction to Default Logic. XI, 20 1 pages , 1 989

A. Kobsa, W. Wahlster (Eds.) : User Models in Dialog Systems . XI, 47 1 pages ,

1 1 3 figs . , 1 989

B. D ' Ambrosio: Qualitative Process Theory Using Linguistic Variables .

X, 1 56 pages , 22 figs . , 1 989

V. Kumar, P . S. Gopalakrishnan, L . N. Kana! (Eds .) Parallel Algorithms for

Machine Intelligence and Vision. XI, 433 pages, 1 4 8 figs . , 1 990

Y. Peng, J. A. Reggia: Abductive Inference Models for Diagnostic Problem­

Solving. XII, 284 pages, 25 figs . , 1 990

A. Bundy (Ed.) : Catalogue of Artificial Intelligence Techniques . Third , revised

edition. XV, 1 79 pages, 1 990

D. Navinchandra: Exploration and Innovation in Design. XI, 1 96 pages , 5 1 figs . ,

1 9 9 1

R. Kruse, E. Sch wecke , J . Heinsohn : Uncertainty and Vagueness in Knowledge

Based Systems. Numerical Methods . XI, 49 1 pages, 59 figs . , 1 99 1

Z. Michalewicz: Genetic Algorithms + Data S tructures == Evolution Programs.

XVII, 250 pages, 48 figs . , 1 992

Spri nger-Verlag
and the Envi ronment

We at Spr i nger-Ver lag fi rm ly bel ieve that o n

i nte rnationa l sc i ence pub l i sher h a s a spec ia l

obl i gat ion to the envi ron ment , a nd ou r corpo­

rate pol ic ies cons i stently reflect th is conviction .

We a lso expect ou r bus i ­

ness pa rtners - pa per m i l l s , pr i nters , packag­

i ng manufactu rers , etc . - to com m i t themselves

to us i ng env i ron menta l ly f r iend ly mater ia l s a nd

prod uct ion processes .

The pa per i n th i s book i s mode from

low- or no-ch lo ri ne pu l p a nd i s acid free , i n

conforma nce wi th i nternationa l sta nda rds for

pa per pe rmanency .

	PREFACE TO THE SECOND EDITION
	PREFACE TO THE FIRST EDITION
	CONTENTS
	1. PRELIMINARIES
	§1. Introduction
	§2. First Order Theories
	§3. Interpretations and Models
	§4. Unification
	§5. Fixpoints
	Problems for Chapter1

	2. DEFINITE PROGRAMS
	§6. Declarative Semantics
	§7. Soundness of SLD-Resolution
	§8. Completeness of SLD-Resolution
	§9. Independence of the Computation Rule
	§10. SLD-Refutation Procedures
	§11. Cuts
	Problems for Chapter2

	3. NORMAL PROGRAMS
	§ 12. Negative Information
	§ 13. Finite Failure
	§ 14. Programming with the Completion
	§ 15. Soundness of SLDNF-Resolution
	§ 16. Completeness of SLDNF-Resolution
	Problems for Chapter3

	4. PROGRAMS
	§ 17. Introduction to Programs
	§ 18. SLDNF-Resolution for Programs
	§ 19. Declarative Error Diagnosis
	§ 20. Soundness and Completeness of the Diagnoser
	Problems for Chapter4

	5. DEDUCTIVE DATABASES
	§21. Introduction to Deductive Databases
	§22. Soundness of Query Evaluation
	§23. Completeness of Query Evaluation
	§24. Integrity Constraints
	Problems for Chapter5

	6. PERPETUAL PROCESSES
	§25. Complete Herbrand Interpretations
	§26. Properties of T'_p
	§27. Semantics of Perpetual Processes
	Problems for Chapter6

	REFERENCES
	NOTATION
	INDEX

