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Abstract :  

In the game theory, the well-known solution to obtain the best profit in non-repeated games as 

much as possible is the Nash equilibrium. However, in some repeated non-cooperative games, 

agents can achieve more profit than the Nash equilibrium by tacit collusion. One of the methods 

to achieve profit more than Nash equilibriums in tacit collusion is reinforcement learning. 

However, reinforcement learning-based methods consider only one step in the learning process. 

To achieve and improve profit in these games, more than one step can be used. In this regard, a 

learning-based forwarding N-steps algorithm called Forwarding Steps (ForSts) is proposed in 

this paper. The main idea behind ForSts is to improve the performance of agents in non-

cooperative games by observing the last N-step rewards. As ForSts is used in the game theory to 

learn tacit collusion, it is evaluated by the iterated prisoner’s dilemma and the Cournot market. 

Prisoner’s Dilemma is an example of a traditional game. The results show that in the iterated 

prisoner’s dilemma, the agents using ForSts achieve better profit than the agents playing in the 

Nash equilibrium. Also, in the Cournot electricity market, sum of the profit of agents using 

ForSts is 3.614% more than the sum of profit of agents` playing in the Nash equilibrium.  

Keywords: Cournot, Electricity market, Nash equilibrium, Non-cooperative repeated games, 

Prisoner’s Dilemma, Reinforcement learning. 

 

1. Introduction  

Game theory can be used to solve problems 

in different fields such as electricity 

markets, economics, psychology, and 

computer science. The main participants in 

games to solve the problems in these fields 

are agents. The main desire of agents is to 

achieve more profit as much as possible. 

However, cooperation between these agents 

can provide more profit. Based on the 

cooperation between agents, games can be 

categorized into non-cooperative and 

cooperative ones. As their names imply, in 

cooperative games, agents try to maximize 
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their joint profit while in non-cooperative 

games the aim is each agent’s profit.  

However, most of the problems in the 

industry can be solved by non-cooperative 

games. In these games, agents try to 

maximize their profit in one step and the 

well-known solution to obtain the best 

profit is Nash equilibrium. Each agent is 

assumed to know the equilibrium strategies 

of the other agents, and no agent can gain 

more profit than Nash equilibrium only by 

changing his strategy [1]. It is proved that 

all non-cooperative games have at least one 

Nash equilibrium [1]. 

It is shown that in non-cooperative 

repeated games, agents can achieve more 

profit by the use of learning methods [3][4]. 

They can learn to trust each other and gain 

more profit than the Nash Equilibrium. In 

other words, tacit collusion can occur when 

more than one agent changes his strategy. 

One of the tacit collusion learning 
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approaches is reinforcement learning [2]. In 

reinforcement learning, the agent improves 

its policy by interacting with the 

environment [2,25]. At each step, the agent 

takes action and receives a reward from the 

environment. Reinforcement learning can 

be used to achieve more profit in repeated 

game cases. 

Several studies in the literature have 

been done on non-cooperative repeated 

games to improve the profit. Some of these 

works investigate the influence of 

cooperation on the amount of collusion [3]–

[5]. Based on these studies, cooperation is 

important for collusion results, especially 

for more than two agents. Most of the 

learning approaches used for teaching 

agents in games use reinforcement learning. 

Some reinforcement learning methods in 

games are applied for oligopoly models, 

especially Cournot Oligopolies [6]–[10]. In 

these models, it is proved that some factors 

are important to get a coherent result. This 

result depends on the specific details 

learning process. In Ref [7] Q-learning 

model is used in Oligopoly Cournot with 

two levels of production. Computer 

simulations illustrate that this kind of 

learning leads to collaboration if the agent 

does not have a memory, except if machine 

strategies cannot be used and even if there 

are more than two agents. Q-learning is a 

model-free reinforcement learning 

technique that works by learning the 

expected utility of action-value pairs for a 

given action in a given state following the 

optimal policy thereafter. When the utility 

is learned, the optimal policy can be 

constructed simply by selecting the action 

with the highest value in each state. Q-

learning can handle problems with 

stochastic transitions and rewards. It has 

been proven that Q-learning will eventually 

find the optimal policy, in terms of the 

expected value for the total reward [11]. All 

of these methods consider only one step in 

the learning process. Some of the papers do 

not consider multi-agent[26]. 

Although in repeated non-cooperative 

games, agents try to maximize their profit 

in all games considering Nash equilibrium, 

the problem is that agents only try to 

maximize their profit in this one step and 

they don`t consider profit that they can 

achieve in future steps of the games. 

Because of this behavior, all agents try to 

change their behavior and to learn the 

behavior of other agents. As these games 

are a real-world problem, achieving more 

profit can help agents to make better 

decisions and get better results. In non-

zero-sum games, the sum of benefits for 

agents is not zero. In these games, althougth 

the agents have differences of interest, they 

can cooperate. In non-repeated games, for 

two agents that do not have contract and 

cooperation, the maximum benefit is Nash 

equilibrium. However, in repeated games, 

the sum of benefits is not zero and this can 

be used as a motivation to use learning 

methods. In other words agents without 

having a contract can reach more benefits 

than Nash equilibrium by the use of 

rewards in learning methods. 

To solve the above-mentioned problem 

in repeated non-cooperative games and to 

learn tacit collusion and to achieve more 

profit; this paper provides a novel 

reinforcement learning algorithm called 

forwarding N-steps reinforcement (ForSts). 

As a result, tacit collusion agents achieve 

more profit. Agents who are using ForSts 

observe next n steps rewards because when 

the agents observe next n steps rewards, the 

problem of thinking about just this step will 

be solved and they care about future 

rewards. in the case that agents  learned 

successfully, they can make tacit collusion. 

Results show that agents who use ForSts 

achieved 300% more profit than the Nash 

equilibrium in prisoner’s dilemma with 

respect to Q-learning. This idea is tested by 

Prisoner’s Dilemma problem and Cournot 

equilibria. In the Cournot electricity market 

sum of profit of agents who  use ForSts is 

3.614% more than the sum of agents in 

Nash equilibrium with respect to Q-

learning. Also, to analyze the impact of 
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uncertainties of each parameter of the 

market in the final results, sensitivity 

analysis is performed and shows that in the 

real market, even though with uncertain 

parameters, tacit collusion occurs and 

provides more profits for generators in the 

electricity markets. 

The rest of this paper is structured as 

follows: related case studies are presented 

in Section 2. Then, in Section 3, the 

proposed algorithm ForSts is described. In 

Section 4 simulation results are discussed 

and eventually the conclusion is presented 

in Section 5. 

 

2. Related Case Studies 
Reinforcement Learning (RL) uses reward 

functions to learn effective behavior 

between a variety of tasks and 

environments in some cases without any 

environmental reward [27]. In some 

previous works, Multi-Agent 

Reinforcement Learning (MARL) (e.g.[28]-

[30]) is considered. These works focus on 

value function decomposition, consensus, 

and learning to communicate between 

agents [31]. Here, we consider the problem 

of repeated non-cooperative games and 

achieve more profit by using N-steps 

reinforcement learning in the repeated non-

cooperative games such as Iterated 

Prisoner’s dilemma and electricity market. 

Concerning the fact that Prisoner’s 

dilemma and Cournot are two well-known 

case studies in game theory; in this section, 

they are discussed in more detail.  

The Prisoner’s dilemma is a two-agent 

non-zero-sum game. In this game, there are 

two actions; cooperate and defect. Each 

agent may receive one of the four possible 

outcomes. Reward (R) outcome, which is 

obtained by both agents if they both 

cooperate, punishment (P) outcome which 

is obtained by both agents if they both 

defect, temptation (T) outcome which is 

obtained by the agent who is defecting 

against the cooperating agent and sucker 

(S) outcome, which is obtained by the agent 

who cooperates with the defecting rival. In 

the prisoner’s dilemma, we have 𝑇 > 𝑅 >

𝑃 > 𝑆 and 2𝑅 > 𝑇 + 𝑆. The prisoner’s 

dilemma is a one-stage game. If it is played 

repeatedly, it will be called the Iterated 

Prisoner’s Dilemma (IPD). The Prisoner’s 

dilemma has been studied for more than 50 

years [12]. In a prisoner’s dilemma defect is 

a dominant strategy.  

One of the early studies in the Prisoner’s 

dilemma has been done by Flood [13]. 

Flood applied this game with the help of 

two economists. Theoretically, it is 

predicted that both agents always defect in 

the Prisoner’s dilemma since it is a 

dominant strategy, but practically, Flood 

observed cooperation. Cooperation in the 

Prisoner’s dilemma is proposed in [14]. 

This paper indicates that incomplete 

information about the other agent can be the 

reason for cooperation. Due to this reason, 

each rational agent wants to cooperate. 

Cooperation can only be achieved before 

the last step. In [15], the Iterated Prisoner’s 

Dilemma was studied experimentally. 

These experiments were used to understand 

the factors affecting an agent’s behavior. 

They indicated that the agents cooperate 

conditionally. Another approach to solving 

the IPD problem is learning in games. In 

[16], a reinforcement learning method has 

been proposed to learn the best strategy for 

an agent to achieve more profit. The 

“Social Reward Shaping” is used to 

accelerate the learning process. The method 

is tested against the Tit-For-Tat, always-C, 

and Q-learning strategies. Based on the 

game results, the agent using the Social 

Reward Shaping achieves good rewards 

against all agents who have used different 

strategies. Sometimes the agent converged 

to defect strategy. Since Q learning 

observes immediate reward and defecting is 

a dominant strategy, the agent using social 

reward shaping can partially compensate 

for the consequences of not observing the 

next n-step rewards. Inspired by the 

solutions to the Prisoner’s Dilemma 

problem, researches have been done to 

solve more complex social dilemma 
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problems. In [17], a method is proposed for 

learning, in the fruit gathering and 

woolpack hunting games, based on the 

learning methods used to solve the 

prisoner’s dilemma problem. The method 

uses deep Q-networks for each agent. In 

[18], a learning method is proposed for an 

agent trying to cooperate in social 

dilemmas. It is shown that using the 

reinforcement learning methods Tit-For-Tat 

strategy for Prisoner’s Dilemma problemis 

is generalized. The researchers created 

agents that cooperated first, trying to avoid 

being exploited, and returned to mutual 

cooperation. They showed theoretically and 

experimentally that their agents can reach 

cooperation in complex games. This 

method is tested on a coin game.  

In a Cournot competition, each firm 

decides on the amount of its products based 

on its expectations from the other firms. 

Thus, if an equilibrium is reached, each 

firm's expectations of how the other firm's 

act, is correct, and no firm have the desire 

to change its output decision [19]. This 

equilibrium is called “the Cournot-Nash 

equilibria” [20].  

In the Cournot equilibria, if all the 

sellers determine the output that they 

produce, none of them have the desire to 

change its output, as for any seller changing 

its output; the profit of this agent is 

reduced. This equilibrium is often called 

“Cournot-Nash Equilibrium”. In this 

equilibrium, the sellers achieve less profit 

than the maximum possible profit, because 

the sellers don’t trust each other. If the 

sellers cooperate to make a cartel, they can 

reduce their productions, therefore, the 

price will increase, hence they will achieve 

more profit in this situation. If one of the 

seller's defects, he will gain more profit 

while the other agents will gain less. In [21] 

an analytic approach is proposed to 

evaluate the potential of collusion in the 

electricity market. Their method allows the 

market regulator to assess the level of 

competition in the electricity market. In 

[22], the model of collusion is presented in 

the form of a mathematical program. Ref 

[22] used the Power pool market as a game. 

In [20], a method called SA-Q-learning is 

proposed which is a modified version of Q-

learning to learn the best strategy in the 

electricity market. Results of [20] 

demonstrate the development of Tacit 

Collusion among generators. In [23], both 

cooperative and non-cooperative supply 

chains are modeled. In both models, once, 

the buyer was considered the leader and 

then the seller is the follower. It is observed 

that the retailer price in the cooperative 

model was less than the one in the non-

cooperative model. In [7], the Q-learning is 

used for the learning agent in the Cournot-

Oligopoly market. They used Q-learning 

with memory and Q-learning without 

memory, separately. It is observed that Q-

learning agents could learn to cooperate. In 

all of the mentioned works, it is possible to 

achieve more profits; furthermore, some of 

these methods couldn’t be applied to other 

game theory problems. 

 

3. The Proposed Algorithm The 

roposed Algorithm: Forwarding 

N-steps Reinforcement Learning 

(ForSts) 
In this section, to achieve more profit than 

Nash equilibrium in non-cooperative 

repeated games, we propose an algorithm 

called Forwarding N-steps Reinforcement 

Learning (ForSts). The main novelty in 

ForSts concerning other state-of-the-art 

methods is that each agent decides based on 

the next n-step rewards. We use a 

reinforcement learning approach, to let the 

agents learn the nearly optimal strategy. 

This approach is like Q-learning but instead 

of observing only the immediate step; it 

observes the next n-step rewards and 

updates its Q Table by a weighted average 

of these rewards. In this approach, the 
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applied reward is a weighted average of the 

next n-step rewards and the weights 

determine the strategy which is more 

valuable for the agent to learn a good 

policy. 

One of the important parameters of 

ForSts is the number of steps the learners 

observe. This parameter affects the learning 

process; if this number is too small, the 

learners won’t converge to cooperation, and 

if it’s too large, the learners won’t learn a 

good policy. The agent should maximize its 

payoff. A learner agent should try to 

cooperate against the agent who has the 

incentive to cooperate. In addition, the 

learner agent defects against the agent 

which has the incentive to defect. The 

learner agent must also defect against the 

agent which always cooperates or defects 

without considering the other agent. 

Another important parameter of ForSts 

is the exploration rate that affects the 

number of visited state-action pairs. It is 

initialized to a predefined value in the first 

step of the game and decreases linearly 

until it reaches zero. 

The action selection mechanism is ɛ-

greedy. In this mechanism, in each state, 

the action which has the maximum Q-value 

is selected with a probability of  1- ɛ, and a 

random action is selected with a probability 

of ɛ (exploration rate). 

ForSts can be used to learn the nearly 

optimal policy in different game theory 

problems. We can use arbitrary value as the 

initial value of the Q-Table, but if we 

choose the initial values intelligently 

according to the problem which needs to be 

solved, the convergence speed is improved. 

The pseudo-code of ForSts is presented in 

Fig. 1. 

Learning rate determines how much we 

care about new rewards instead of the 

previous Q-value. The number of steps each 

agent observes is n. Weights are the 

coefficients of rewards of the next n-steps. 

We update the Q-value of a state-action pair 

after observing the next n-state action pairs 

because we need the values of the next n 

rewards to update the Q-value. In the 

beginning, when we are at the first n 

iterations, we only use the immediate 

reward to update the Q-values. After n 

iterations, we began to update the Q-value 

of the state which is the n step before the 

current state using all rewards of the last n-

steps. The flowchart of ForSts is shown in 

Fig. 2. 

 
1. Initialize Q table 

2. Initialize discount factor, initial 

exploration rate, learning rate, 

number of observing states(n), 

weights (the coefficients of rewards 

of the next n-steps,𝑤1, 𝑤2, … . , 𝑤𝑛), 

and number of steps 

3. For 𝑖 =  1 to  number_of_steps do 

a. Select an action based on 

the ɛ-greedy mechanism 

and get its immediate 

reward (ri) 

b. If 𝑖 >  𝑛 then 

i. 𝑅 =  0 

ii. For 𝑗 =  1 to n do 

 𝑅 = 𝑅 + 𝑟𝑖+1−𝑗 ∗ 𝑤𝑗  (R is the applied 

reward, which is the weighted average of 

rewards of the n-steps) 

𝑄(𝑠𝑖+1−𝑛, 𝑎𝑖+1−𝑛 )  
= 𝑄(𝑠𝑖+1−𝑛, 𝑎𝑖+1−𝑛 ) + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒
∗ (𝑅 + 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡_𝑓𝑎𝑐𝑡𝑜𝑟
∗ max

𝑎
(Q(s𝑖+1, 𝑎𝑖+1))  −𝑄(𝑠𝑖+1−𝑛, 𝑎𝑖+1−𝑛)) 

c. else 

𝑅 =  𝑟𝑖, (R is the applied reward) 

   

𝑄(𝑠𝑖, 𝑎𝑖 )  
= 𝑄(𝑠𝑖, 𝑎𝑖 ) + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗ (𝑅
+ 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡_𝑓𝑎𝑐𝑡𝑜𝑟
∗ max

𝑎
(Q(s𝑖+1, 𝑎𝑖+1))  −𝑄(𝑠𝑖 , 𝑎𝑖)) 

Fig. 1. Pseudo code 
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Fig 2. Flowchart of ForSts 

 

4. Simulation results 
In this section, the simulation results are 

presented to investigate the effectiveness of 

ForSts. ForSts is tested to learn a nearly 

optimal policy in the iterated prisoner’s 

dilemma and the Cournot’s duopoly 

market. Results are compared with the Q-

learning method which is used to solve the 

same problems. The Q-learning algorithm 

presented in [16] is used, but due to the 

difference in the values of rewards, the 

presented results are obtained from 

implementations. The result achieved from 

the implemented algorithm is the same as 

[16] in the condition that the values of 

rewards are the same with the values of the 

ref [16]. 

 

4.1. Iterated Prisoner’s Dilemma 

In the iterated prisoner’s dilemma, the 

learner agent is tested once against itself, 

and once against the agent using the Tit-

For-Tat, always-C, and always-D strategies. 

The outcome of R (cooperate-cooperate) is 

4, the outcome of T (when our agent defects 

and the other cooperates) is 5, the outcome 

of P (defect-defect) is 1 and the outcome of 

S (when our agent cooperates and the other 

defects) is 0. The game is played for 10000 

steps. In the experiments, the initial value 

for all state-action pairs is 0.5. The initial 

exploration rate was 0.6 in the first step and 

decreased linearly until it reached zero in 

step 8000. The discount factor was 0.9. The 

agent saw the next 3 steps. The weight of 

the first step was 0, the weight of the 

second step was 0.3 and the weight of the 

third step was 0.4. Many different values 

for these parameters were tested and 

achieved better results with the mentioned 

values. 

Fig. 3 indicates the reward which has 

been achieved by our learning agent in each 

iteration. In this simulation, the vertical line 

is step 8000. After step 8000, the 

exploration rate is set to 0. 

Our agent has played against itself and 

the agents using the other strategies such as 

the Tit-For-Tat, always-C, and etc. It is 

observed that the results for our agent, 

compared to the Q-learner agent, are more 

favorable.  

The presented results are the average of 

20 times stimulation running. Furthermore, 

each presented reward is an average of the 

achieved rewards of the last 100 steps; we 

do that to smooth the curve. 

In Fig. 3, an agent using the ForSts 

algorithm plays against an agent who 

always cooperates. In this situation, we 

expect the learner to choose a defect 

strategy (the outcome T). The best action 

against an agent using the always-C 

strategy is defecting all the time because by 

defecting the best reward will be achieved. 

The results are compared to a Q-learner 

agent; both agents converge to defecting 

after step 8000. This indicates both 

algorithms behave efficiently against the 
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always-C strategy. 

In Fig. 4, an agent using the presented 

algorithm plays against an agent who 

always defects. Similar to always-C, the 

best action against an agent using the 

always-D strategy is defecting all the time 

because by defecting the best reward will 

be achie ved. The results are compared to a 

Q-learner agent; both agents converge to 

defecting after step 8000. This indicates 

both algorithms behave efficiently against 

the always-D strategy. 

In Fig. 5, an agent using the ForSts 

algorithm plays against an agent using the 

Tit-For-Tat strategy. Unlike previous 

strategies, the best action against the agent 

using the Tit-For-Tat strategy is 

cooperating all the time. The results are 

compared to a Q-learner agent; both agents 

converge to cooperating after step 8000. 

These indicate both algorithms behave 

properly against the Tit-For-Tat strategy. 
 

 
Fig. 3. Comparison of the average achieved 

reward against the always-C strategy. 
 

 
Fig. 4. Comparison of the average achieved 

reward against the always-D strategy. 

 
Fig. 5. Comparison of the average achieved 

reward against the Tit-For-Tat strategy. 

 

 
Fig. 6. Comparison of the average achieved 

reward against the agent using the same 

strategy. 
 

In Fig. 6, an agent using the ForSts 

algorithm plays against an agent using the 

same strategy. This is the most important 

test for a learning agent. The best outcome 

in this situation is expected to be cooperate-

cooperate (the outcome of R). Based on 

these results it is shown that the ForSts 

algorithm converges to cooperate-cooperate 

after 8000 steps but Q-learner agents cannot 

converge to the best outcome. The average 

achieved reward for the last 100 steps is 

considered. This process runs for 2000 

times and the average of these 2000 runs is 

reported in Table 1. 

Table (1): The profits of our learning agent 
in different cases 

Profit Type

3.977Learner

4Tit-For-Tat

5Always-C

1Always-D
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The best possible result when the learner 

agent is playing against itself is converging 

to cooperate-cooperate and achieving an 

outcome of 4. Based on the results 

presented in Table 1, the average achieved 

reward by our learning agent is 3.977 which 

is very close to 4, hence in 98.7%of the 

iterations, the two agents have converged to 

cooperate-cooperate. The best possible 

strategy against an agent using the Tit-For-

Tat strategy is to always cooperate and 

achieve the outcome of 4. The results show 

that the agent has done perfectly well and it 

has achieved the outcome of 4. The best 

possible strategy against an agent that is 

using the always-C strategy is to always 

defect and achieve the outcome of 5. The 

results show that the agent has converged to 

this strategy and achieved the outcome of 5 

every time. The best possible strategy 

against an agent that is using the always-D 

strategy is to always defect and achieve the 

outcome of 1. We can see that the agent has 

always converged to the best possible 

strategy (always defecting). 

 

4.2. Cournot’s duopoly model 
Also, ForSts on Cournot’s duopoly model is 

applied. In this model, we consider two 

agents and each agent has a specific cost 

function. All agents produce the same 

product. q1 is the quantity of the production 

for the seller 1 and q2 is the quantity of the 

production for the seller 2. cost1 and cost2 

are the costs for the seller 1 and the seller 2, 

which are shown in equation 1 and equation 

2, respectively. In these equations a1, a2, 

b1, b2, c1, and c2 are the coefficients of 

cost functions. 

 

(1) 𝑐𝑜𝑠𝑡1 = 𝑎1 ∗ 𝑞1 ∗ 𝑞1 + 𝑏1 ∗ 𝑞1 + 𝑐1  

 

(2) 
𝑐𝑜𝑠𝑡2 = 𝑎2 ∗ 𝑞2 ∗ 𝑞2 +  𝑏2 ∗ 𝑞2 + 𝑐2  

 

The parameter values of the cost 

function of the agents which have been 

used in simulations are given in Table 2. 

 

Table (2): The parameter values of the cost 

function of the agents 

Value Parameters Value Parameters 

0.17 𝑎2  0.2 𝑎1  

2  𝑏2  1.8 𝑏1  

50 𝑐2  70 𝑐1  

 

The profit of the agents and the price of 

the market are given by equation 3. Profit1 

and profit2 are the profit for the seller 1 and 

the seller 2, that can be calculated by, 

equation 4 and equation 5, respectively 

 

(3) 𝑝𝑟𝑖𝑐𝑒 = 20 − 0.18 ∗ 𝑞1 − 0.16 ∗ 𝑞2 

(4) 𝑝𝑟𝑜𝑓𝑖𝑡1 = 𝑞1 ∗ 𝑝𝑟𝑖𝑐𝑒 −  𝑐𝑜𝑠𝑡1  

(5) 𝑝𝑟𝑜𝑓𝑖𝑡2 = 𝑞2 ∗ 𝑝𝑟𝑖𝑐𝑒 −  𝑐𝑜𝑠𝑡2  

 

The values for cost function, profit and 

the price parameters, also profit and cost 

function equations of the agents are taken 

from [24]. The Nash equilibrium for this 

game indicates that the production quantity 

for seller 1 is 21 and the production 

quantity for seller 2 is 20.6. Under these 

circumstances, seller 1 will achieve a profit 

of 106.48, and seller 2 will achieve a profit 

of 73.87. To test ForSts, this game is played 

for 10000 steps. The initial Q-values for all 

state-action pairs were 1000. The initial 

exploration rate was 0.6 in the first step and 

decreased linearly until it reached zero in 

step 8000. The discount factor was 0.9. The 

agent observes the next 3 steps. The weight 

of the first step was 0, the weight of the 

second step was 0.4, and the weight of the 

third step was 0.3. We tested many different 

values for Both agents in the simulation 

used the same learning method. Fig. 7, Fig. 

8, and Fig. 9 show the rewards achieved by 

seller 1, seller 2, and the summation of 

rewards for seller 1 and seller 2. The 

presented results are a comparison between 

usages of ForSts versus the Q-learning 

method. The vertical line is a step. After 

step 8000, the exploration rate is set to 0. 
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The horizontal line is the reward achieved 

by the agents using the Nash equilibrium 

strategy. 

The presented results are the average of 

20 times stimulation running. Furthermore, 

each presented reward is an average of the 

achieved rewards of the last 100 steps; we 

do that to smooth the curve. Fig. 7, Fig. 8, 

and Fig. 9 indicate that the learner agent 

can cooperate and achieve more profit than 

the Nash equilibrium. Results show that 

agents using our learning method cooperate 

more than the agents using the Q-learning 

method. We use the Q-learning algorithm 

which is presented in [20], but due to the 

difference in the purpose of learning, the 

presented results are obtained from 

implementations. Table 3 compares the 

average rewards of the last 1000 steps of 

the game, which is considered as the output 

of two methods. 

 

Fig. 7. Comparison of the average achieved 
reward for the seller 1 

 

 

Fig. 8. Comparison of the average achieved 
reward against the agent using the same 

strategy. 

Fig. 9. Comparison of the average achieved 
reward for the player 1 

Fig. 10. Comparison of the average achieved 
reward for the player 2 

 

Fig. 11. Comparison of the average achieved 
reward for sum of palyers 

 

Besides, to test the results with other 

cost functions and prices, another case 

study is simulated.  In this simulation, Costs 

of seller 1 and seller 2 are shown as cost1 

and cost2 in equation 6 and equation 7, 

respectively. In equation 8 the price of the 

market is also given. 

 

𝑐𝑜𝑠𝑡1 = q1 ∗ q1 (6) 
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𝑐𝑜𝑠𝑡2 = 15 × q2+ q2 × q2 (7) 

𝑝𝑟𝑖𝑐𝑒 = 60 − q1 − q2 (8) 

The Nash equilibrium in this game for 

player 1 is 13 and for player 2 is 8. 

Based on our simulation results a Nash 

profit of 338 and 128 is achieved by player 

1 and 2, respectively.  These results are 

played 10000 steps to test ForSts. Q-values 

for all state-action pairs are considered 

1000.  In the first step, the initial 

exploration rate was 0.6 and decreased 

linearly until it reached zero in step 8000.  

The discount factor, has the same scenario 

as our previous case study. Both players in 

the simulation used the same learning 

method. Fig. 10, Fig. 11, and Fig. 12 show 

the rewards achieved by player 1, player 2, 

and the summation of rewards for player 1 

and player 2, respectively. Table 4 

compares the average rewards of the last 

1000 steps of the game, which is considered 

as the output of two methods. 

 

Table (3): Comparison of the average reward 

of last 1000 steps of the game 
Summation Seller 2 Seller 1 Method 

76.80 187.61 110.81 ForSts 

76.64 185.97 109.32 Q-learning 

 

Table (4): Comparison of the average 

rewards of last 1000 steps of the game 
Summation Player 1 Player 1 Method 

473.2 128.1 345.1 ForSts 

469.6 129.8 339.8 Q-learning 

 

 

Table (5): Sensitivity analysis 

 
Without 

change 
a1+10% a1-10% b1+10% b1-10% a2+10% a2-10% b2+10% b2-10% 

Agent 1 : 

Profit of 

learning 

111.114 105.614 112.272 107.484 112.776 107.799 107.357 106.866 109.963 

Agent 1:  

profit of 

Nash 

equilibrium 

106.485 98.402 115.496 102.032 111.003 110.271 102.279 107.383 105.589 

Agent 2: 

Profit of 

learning 

75.769 77.224 75.239 76.926 76.986 67.477 86.780 77.396 75.504 

Agent 2: 

profit of 

Nash 

equilibrium 

73.878 77.630 69.775 74.971 72.790 65.440 83.434 70.087 77.720 

Sum of both 

agent: 

Profit of 

learning 

186.884 182.839 187.512 184.410 189.762 175.276 194.138 184.263 185.468 

Sum of both 

agent: profit 

of Nash 

equilibrium 

180.364 176.033 185.272 177.003 183.793 175.712 185.713 177.471 183.310 

 

4.3. Sensitivity Analysis 

Usually, the parameters of the market have 

uncertainties. To analyze the impact of 

uncertainties of each parameter of the 

market in the final results, sensitivity 

analysis is performed. The final result is 

calculated by using equations 1 and 2 (cost 

functions). This test is performed to analyze 

the impact of uncertainties of the values of 

the parameters of the cost functions (a1, b1, 

a2, b2). 

10% uncertainty in each parameter is 
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assumed. We analyze the effect of ±10% 

change in the value of each parameter, 

where the other parameters are fixed. Each 

game is played 10 times and the results are 

averaged. The presented profit is the 

average profit of the last 100 steps of the 

learning agents. The results are as shown in 

Table 5. 

The results show that the tacit collusion 

occurs in the presence of uncertainties in 

the parameters of the cost function of the 

other agent except for some cases and this 

is promising because cooperation occurs in 

almost all cases. When a parameter of the 

cost function decreases, the cost will 

decrease and consequently, the net profit 

will increase, but when a parameter 

increases, the net profit will be decreased. 

In the case in which b2 increases by 

10%, the difference between the profits of 

Nash equilibrium and learner agent is 

almost equal to the case in which the values 

of the parameters have not changed, so the 

results show that this method is not 

sensitive to the increase of b2. In the case in 

which a2 increases by 10% the difference 

between the profits of the Nash equilibrium 

and the learner agent is not equal to the case 

in which the parameters of the cost function 

of agent 1 have not changed, so these 

results show that the algorithm is sensitive 

to the increase of a2. 

 

5. Conclusions 
In this paper, a novel reinforcement 

learning algorithm called ForSts is 

proposed for the agents in the non-

cooperative games to achieve more profit 

than the Nash equilibrium. In ForSts, the 

agent observes the next n-step rewards. The 

results in the Iterated Prisoner’s dilemma 

show that the agent using the approach had 

learned the nearly optimal strategy. The 

agent achieved the best possible results 

against the agents using the always-D, 

always-C, and the Tit-For-Tat strategies; 

furthermore, the agent almost achieved the 

best results possible against itself. Also, the 

results show that the agents in Cournot’s 

duopoly using the proposed method had 

learned to achieve more profit than the 

Cournot-Nash equilibrium. 
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