

1 Computational Intelligence in Electrical Engineering, 12

th
 year, No.4, 2022

ForSts: Tacit Collusion in the Repeated Non-Cooperative Games Using

Forwarding N-Steps Reinforcement Learning Algorithm

Amin Golzari Hormozi
1
, Seyed Hossein Khasteh

1
, Amirhossein Nikoofard

2
, Zahra

Shirmohammadi*
3

1
 Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran

golzari@email.kntu.ac.ir, khasteh@kntu.ac.ir
2
 Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran

a.nikoofard@kntu.ac.ir
3
 Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

shirmohammadi@sru.ac.ir

Abstract :

In the game theory, the well-known solution to obtain the best profit in non-repeated games as

much as possible is the Nash equilibrium. However, in some repeated non-cooperative games,

agents can achieve more profit than the Nash equilibrium by tacit collusion. One of the methods

to achieve profit more than Nash equilibriums in tacit collusion is reinforcement learning.

However, reinforcement learning-based methods consider only one step in the learning process.

To achieve and improve profit in these games, more than one step can be used. In this regard, a

learning-based forwarding N-steps algorithm called Forwarding Steps (ForSts) is proposed in

this paper. The main idea behind ForSts is to improve the performance of agents in non-

cooperative games by observing the last N-step rewards. As ForSts is used in the game theory to

learn tacit collusion, it is evaluated by the iterated prisoner’s dilemma and the Cournot market.

Prisoner’s Dilemma is an example of a traditional game. The results show that in the iterated

prisoner’s dilemma, the agents using ForSts achieve better profit than the agents playing in the

Nash equilibrium. Also, in the Cournot electricity market, sum of the profit of agents using

ForSts is 3.614% more than the sum of profit of agents` playing in the Nash equilibrium.

Keywords: Cournot, Electricity market, Nash equilibrium, Non-cooperative repeated games,

Prisoner’s Dilemma, Reinforcement learning.

1. Introduction

Game theory can be used to solve problems

in different fields such as electricity

markets, economics, psychology, and

computer science. The main participants in

games to solve the problems in these fields

are agents. The main desire of agents is to

achieve more profit as much as possible.

However, cooperation between these agents

can provide more profit. Based on the

cooperation between agents, games can be

categorized into non-cooperative and

cooperative ones. As their names imply, in

cooperative games, agents try to maximize

1

Submission date:09, 03, 2020

Acceptance date: 05, 12, 2020

Corresponding author: Zahra Shirmohammadi,

Department Faculty of Electrical Engineering, K. N.

Toosi University of Technology, Tehran, Iran

their joint profit while in non-cooperative

games the aim is each agent’s profit.

However, most of the problems in the

industry can be solved by non-cooperative

games. In these games, agents try to

maximize their profit in one step and the

well-known solution to obtain the best

profit is Nash equilibrium. Each agent is

assumed to know the equilibrium strategies

of the other agents, and no agent can gain

more profit than Nash equilibrium only by

changing his strategy [1]. It is proved that

all non-cooperative games have at least one

Nash equilibrium [1].

It is shown that in non-cooperative

repeated games, agents can achieve more

profit by the use of learning methods [3][4].

They can learn to trust each other and gain

more profit than the Nash Equilibrium. In

other words, tacit collusion can occur when

more than one agent changes his strategy.

One of the tacit collusion learning

2 ForSts: Tacit Collusion in the Repeated Non-Cooperative Games Using Forwarding N-Steps

approaches is reinforcement learning [2]. In

reinforcement learning, the agent improves

its policy by interacting with the

environment [2,25]. At each step, the agent

takes action and receives a reward from the

environment. Reinforcement learning can

be used to achieve more profit in repeated

game cases.

Several studies in the literature have

been done on non-cooperative repeated

games to improve the profit. Some of these

works investigate the influence of

cooperation on the amount of collusion [3]–

[5]. Based on these studies, cooperation is

important for collusion results, especially

for more than two agents. Most of the

learning approaches used for teaching

agents in games use reinforcement learning.

Some reinforcement learning methods in

games are applied for oligopoly models,

especially Cournot Oligopolies [6]–[10]. In

these models, it is proved that some factors

are important to get a coherent result. This

result depends on the specific details

learning process. In Ref [7] Q-learning

model is used in Oligopoly Cournot with

two levels of production. Computer

simulations illustrate that this kind of

learning leads to collaboration if the agent

does not have a memory, except if machine

strategies cannot be used and even if there

are more than two agents. Q-learning is a

model-free reinforcement learning

technique that works by learning the

expected utility of action-value pairs for a

given action in a given state following the

optimal policy thereafter. When the utility

is learned, the optimal policy can be

constructed simply by selecting the action

with the highest value in each state. Q-

learning can handle problems with

stochastic transitions and rewards. It has

been proven that Q-learning will eventually

find the optimal policy, in terms of the

expected value for the total reward [11]. All

of these methods consider only one step in

the learning process. Some of the papers do

not consider multi-agent[26].

Although in repeated non-cooperative

games, agents try to maximize their profit

in all games considering Nash equilibrium,

the problem is that agents only try to

maximize their profit in this one step and

they don`t consider profit that they can

achieve in future steps of the games.

Because of this behavior, all agents try to

change their behavior and to learn the

behavior of other agents. As these games

are a real-world problem, achieving more

profit can help agents to make better

decisions and get better results. In non-

zero-sum games, the sum of benefits for

agents is not zero. In these games, althougth

the agents have differences of interest, they

can cooperate. In non-repeated games, for

two agents that do not have contract and

cooperation, the maximum benefit is Nash

equilibrium. However, in repeated games,

the sum of benefits is not zero and this can

be used as a motivation to use learning

methods. In other words agents without

having a contract can reach more benefits

than Nash equilibrium by the use of

rewards in learning methods.

To solve the above-mentioned problem

in repeated non-cooperative games and to

learn tacit collusion and to achieve more

profit; this paper provides a novel

reinforcement learning algorithm called

forwarding N-steps reinforcement (ForSts).

As a result, tacit collusion agents achieve

more profit. Agents who are using ForSts

observe next n steps rewards because when

the agents observe next n steps rewards, the

problem of thinking about just this step will

be solved and they care about future

rewards. in the case that agents learned

successfully, they can make tacit collusion.

Results show that agents who use ForSts

achieved 300% more profit than the Nash

equilibrium in prisoner’s dilemma with

respect to Q-learning. This idea is tested by

Prisoner’s Dilemma problem and Cournot

equilibria. In the Cournot electricity market

sum of profit of agents who use ForSts is

3.614% more than the sum of agents in

Nash equilibrium with respect to Q-

learning. Also, to analyze the impact of

3 Computational Intelligence in Electrical Engineering, 12

th
 year, No.4, 2022

uncertainties of each parameter of the

market in the final results, sensitivity

analysis is performed and shows that in the

real market, even though with uncertain

parameters, tacit collusion occurs and

provides more profits for generators in the

electricity markets.

The rest of this paper is structured as

follows: related case studies are presented

in Section 2. Then, in Section 3, the

proposed algorithm ForSts is described. In

Section 4 simulation results are discussed

and eventually the conclusion is presented

in Section 5.

2. Related Case Studies
Reinforcement Learning (RL) uses reward

functions to learn effective behavior

between a variety of tasks and

environments in some cases without any

environmental reward [27]. In some

previous works, Multi-Agent

Reinforcement Learning (MARL) (e.g.[28]-

[30]) is considered. These works focus on

value function decomposition, consensus,

and learning to communicate between

agents [31]. Here, we consider the problem

of repeated non-cooperative games and

achieve more profit by using N-steps

reinforcement learning in the repeated non-

cooperative games such as Iterated

Prisoner’s dilemma and electricity market.

Concerning the fact that Prisoner’s

dilemma and Cournot are two well-known

case studies in game theory; in this section,

they are discussed in more detail.

The Prisoner’s dilemma is a two-agent

non-zero-sum game. In this game, there are

two actions; cooperate and defect. Each

agent may receive one of the four possible

outcomes. Reward (R) outcome, which is

obtained by both agents if they both

cooperate, punishment (P) outcome which

is obtained by both agents if they both

defect, temptation (T) outcome which is

obtained by the agent who is defecting

against the cooperating agent and sucker

(S) outcome, which is obtained by the agent

who cooperates with the defecting rival. In

the prisoner’s dilemma, we have 𝑇 > 𝑅 >

𝑃 > 𝑆 and 2𝑅 > 𝑇 + 𝑆. The prisoner’s

dilemma is a one-stage game. If it is played

repeatedly, it will be called the Iterated

Prisoner’s Dilemma (IPD). The Prisoner’s

dilemma has been studied for more than 50

years [12]. In a prisoner’s dilemma defect is

a dominant strategy.

One of the early studies in the Prisoner’s

dilemma has been done by Flood [13].

Flood applied this game with the help of

two economists. Theoretically, it is

predicted that both agents always defect in

the Prisoner’s dilemma since it is a

dominant strategy, but practically, Flood

observed cooperation. Cooperation in the

Prisoner’s dilemma is proposed in [14].

This paper indicates that incomplete

information about the other agent can be the

reason for cooperation. Due to this reason,

each rational agent wants to cooperate.

Cooperation can only be achieved before

the last step. In [15], the Iterated Prisoner’s

Dilemma was studied experimentally.

These experiments were used to understand

the factors affecting an agent’s behavior.

They indicated that the agents cooperate

conditionally. Another approach to solving

the IPD problem is learning in games. In

[16], a reinforcement learning method has

been proposed to learn the best strategy for

an agent to achieve more profit. The

“Social Reward Shaping” is used to

accelerate the learning process. The method

is tested against the Tit-For-Tat, always-C,

and Q-learning strategies. Based on the

game results, the agent using the Social

Reward Shaping achieves good rewards

against all agents who have used different

strategies. Sometimes the agent converged

to defect strategy. Since Q learning

observes immediate reward and defecting is

a dominant strategy, the agent using social

reward shaping can partially compensate

for the consequences of not observing the

next n-step rewards. Inspired by the

solutions to the Prisoner’s Dilemma

problem, researches have been done to

solve more complex social dilemma

4 ForSts: Tacit Collusion in the Repeated Non-Cooperative Games Using Forwarding N-Steps

problems. In [17], a method is proposed for

learning, in the fruit gathering and

woolpack hunting games, based on the

learning methods used to solve the

prisoner’s dilemma problem. The method

uses deep Q-networks for each agent. In

[18], a learning method is proposed for an

agent trying to cooperate in social

dilemmas. It is shown that using the

reinforcement learning methods Tit-For-Tat

strategy for Prisoner’s Dilemma problemis

is generalized. The researchers created

agents that cooperated first, trying to avoid

being exploited, and returned to mutual

cooperation. They showed theoretically and

experimentally that their agents can reach

cooperation in complex games. This

method is tested on a coin game.

In a Cournot competition, each firm

decides on the amount of its products based

on its expectations from the other firms.

Thus, if an equilibrium is reached, each

firm's expectations of how the other firm's

act, is correct, and no firm have the desire

to change its output decision [19]. This

equilibrium is called “the Cournot-Nash

equilibria” [20].

In the Cournot equilibria, if all the

sellers determine the output that they

produce, none of them have the desire to

change its output, as for any seller changing

its output; the profit of this agent is

reduced. This equilibrium is often called

“Cournot-Nash Equilibrium”. In this

equilibrium, the sellers achieve less profit

than the maximum possible profit, because

the sellers don’t trust each other. If the

sellers cooperate to make a cartel, they can

reduce their productions, therefore, the

price will increase, hence they will achieve

more profit in this situation. If one of the

seller's defects, he will gain more profit

while the other agents will gain less. In [21]

an analytic approach is proposed to

evaluate the potential of collusion in the

electricity market. Their method allows the

market regulator to assess the level of

competition in the electricity market. In

[22], the model of collusion is presented in

the form of a mathematical program. Ref

[22] used the Power pool market as a game.

In [20], a method called SA-Q-learning is

proposed which is a modified version of Q-

learning to learn the best strategy in the

electricity market. Results of [20]

demonstrate the development of Tacit

Collusion among generators. In [23], both

cooperative and non-cooperative supply

chains are modeled. In both models, once,

the buyer was considered the leader and

then the seller is the follower. It is observed

that the retailer price in the cooperative

model was less than the one in the non-

cooperative model. In [7], the Q-learning is

used for the learning agent in the Cournot-

Oligopoly market. They used Q-learning

with memory and Q-learning without

memory, separately. It is observed that Q-

learning agents could learn to cooperate. In

all of the mentioned works, it is possible to

achieve more profits; furthermore, some of

these methods couldn’t be applied to other

game theory problems.

3. The Proposed Algorithm The

roposed Algorithm: Forwarding

N-steps Reinforcement Learning

(ForSts)
In this section, to achieve more profit than

Nash equilibrium in non-cooperative

repeated games, we propose an algorithm

called Forwarding N-steps Reinforcement

Learning (ForSts). The main novelty in

ForSts concerning other state-of-the-art

methods is that each agent decides based on

the next n-step rewards. We use a

reinforcement learning approach, to let the

agents learn the nearly optimal strategy.

This approach is like Q-learning but instead

of observing only the immediate step; it

observes the next n-step rewards and

updates its Q Table by a weighted average

of these rewards. In this approach, the

5 Computational Intelligence in Electrical Engineering, 12

th
 year, No.4, 2022

applied reward is a weighted average of the

next n-step rewards and the weights

determine the strategy which is more

valuable for the agent to learn a good

policy.

One of the important parameters of

ForSts is the number of steps the learners

observe. This parameter affects the learning

process; if this number is too small, the

learners won’t converge to cooperation, and

if it’s too large, the learners won’t learn a

good policy. The agent should maximize its

payoff. A learner agent should try to

cooperate against the agent who has the

incentive to cooperate. In addition, the

learner agent defects against the agent

which has the incentive to defect. The

learner agent must also defect against the

agent which always cooperates or defects

without considering the other agent.

Another important parameter of ForSts

is the exploration rate that affects the

number of visited state-action pairs. It is

initialized to a predefined value in the first

step of the game and decreases linearly

until it reaches zero.

The action selection mechanism is ɛ-

greedy. In this mechanism, in each state,

the action which has the maximum Q-value

is selected with a probability of 1- ɛ, and a

random action is selected with a probability

of ɛ (exploration rate).

ForSts can be used to learn the nearly

optimal policy in different game theory

problems. We can use arbitrary value as the

initial value of the Q-Table, but if we

choose the initial values intelligently

according to the problem which needs to be

solved, the convergence speed is improved.

The pseudo-code of ForSts is presented in

Fig. 1.

Learning rate determines how much we

care about new rewards instead of the

previous Q-value. The number of steps each

agent observes is n. Weights are the

coefficients of rewards of the next n-steps.

We update the Q-value of a state-action pair

after observing the next n-state action pairs

because we need the values of the next n

rewards to update the Q-value. In the

beginning, when we are at the first n

iterations, we only use the immediate

reward to update the Q-values. After n

iterations, we began to update the Q-value

of the state which is the n step before the

current state using all rewards of the last n-

steps. The flowchart of ForSts is shown in

Fig. 2.

1. Initialize Q table

2. Initialize discount factor, initial

exploration rate, learning rate,

number of observing states(n),

weights (the coefficients of rewards

of the next n-steps,𝑤1, 𝑤2, … . , 𝑤𝑛),

and number of steps

3. For 𝑖 = 1 to number_of_steps do

a. Select an action based on

the ɛ-greedy mechanism

and get its immediate

reward (ri)

b. If 𝑖 > 𝑛 then

i. 𝑅 = 0

ii. For 𝑗 = 1 to n do

 𝑅 = 𝑅 + 𝑟𝑖+1−𝑗 ∗ 𝑤𝑗 (R is the applied

reward, which is the weighted average of

rewards of the n-steps)

𝑄(𝑠𝑖+1−𝑛, 𝑎𝑖+1−𝑛)
= 𝑄(𝑠𝑖+1−𝑛, 𝑎𝑖+1−𝑛) + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒
∗ (𝑅 + 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡_𝑓𝑎𝑐𝑡𝑜𝑟
∗ max

𝑎
(Q(s𝑖+1, 𝑎𝑖+1)) −𝑄(𝑠𝑖+1−𝑛, 𝑎𝑖+1−𝑛))

c. else

𝑅 = 𝑟𝑖, (R is the applied reward)

𝑄(𝑠𝑖, 𝑎𝑖)
= 𝑄(𝑠𝑖, 𝑎𝑖) + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗ (𝑅
+ 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡_𝑓𝑎𝑐𝑡𝑜𝑟
∗ max

𝑎
(Q(s𝑖+1, 𝑎𝑖+1)) −𝑄(𝑠𝑖 , 𝑎𝑖))

Fig. 1. Pseudo code

6 ForSts: Tacit Collusion in the Repeated Non-Cooperative Games Using Forwarding N-Steps

Initialize Q Table

Initialize Hyper

Parameters

Select an action and get

its immediate reward

(ri)

i>n

Calculate R

and Q based on

Step

Calculate R and

Q based on

learning

Yes

No

Fig 2. Flowchart of ForSts

4. Simulation results
In this section, the simulation results are

presented to investigate the effectiveness of

ForSts. ForSts is tested to learn a nearly

optimal policy in the iterated prisoner’s

dilemma and the Cournot’s duopoly

market. Results are compared with the Q-

learning method which is used to solve the

same problems. The Q-learning algorithm

presented in [16] is used, but due to the

difference in the values of rewards, the

presented results are obtained from

implementations. The result achieved from

the implemented algorithm is the same as

[16] in the condition that the values of

rewards are the same with the values of the

ref [16].

4.1. Iterated Prisoner’s Dilemma

In the iterated prisoner’s dilemma, the

learner agent is tested once against itself,

and once against the agent using the Tit-

For-Tat, always-C, and always-D strategies.

The outcome of R (cooperate-cooperate) is

4, the outcome of T (when our agent defects

and the other cooperates) is 5, the outcome

of P (defect-defect) is 1 and the outcome of

S (when our agent cooperates and the other

defects) is 0. The game is played for 10000

steps. In the experiments, the initial value

for all state-action pairs is 0.5. The initial

exploration rate was 0.6 in the first step and

decreased linearly until it reached zero in

step 8000. The discount factor was 0.9. The

agent saw the next 3 steps. The weight of

the first step was 0, the weight of the

second step was 0.3 and the weight of the

third step was 0.4. Many different values

for these parameters were tested and

achieved better results with the mentioned

values.

Fig. 3 indicates the reward which has

been achieved by our learning agent in each

iteration. In this simulation, the vertical line

is step 8000. After step 8000, the

exploration rate is set to 0.

Our agent has played against itself and

the agents using the other strategies such as

the Tit-For-Tat, always-C, and etc. It is

observed that the results for our agent,

compared to the Q-learner agent, are more

favorable.

The presented results are the average of

20 times stimulation running. Furthermore,

each presented reward is an average of the

achieved rewards of the last 100 steps; we

do that to smooth the curve.

In Fig. 3, an agent using the ForSts

algorithm plays against an agent who

always cooperates. In this situation, we

expect the learner to choose a defect

strategy (the outcome T). The best action

against an agent using the always-C

strategy is defecting all the time because by

defecting the best reward will be achieved.

The results are compared to a Q-learner

agent; both agents converge to defecting

after step 8000. This indicates both

algorithms behave efficiently against the

7 Computational Intelligence in Electrical Engineering, 12

th
 year, No.4, 2022

always-C strategy.

In Fig. 4, an agent using the presented

algorithm plays against an agent who

always defects. Similar to always-C, the

best action against an agent using the

always-D strategy is defecting all the time

because by defecting the best reward will

be achie ved. The results are compared to a

Q-learner agent; both agents converge to

defecting after step 8000. This indicates

both algorithms behave efficiently against

the always-D strategy.

In Fig. 5, an agent using the ForSts

algorithm plays against an agent using the

Tit-For-Tat strategy. Unlike previous

strategies, the best action against the agent

using the Tit-For-Tat strategy is

cooperating all the time. The results are

compared to a Q-learner agent; both agents

converge to cooperating after step 8000.

These indicate both algorithms behave

properly against the Tit-For-Tat strategy.

Fig. 3. Comparison of the average achieved

reward against the always-C strategy.

Fig. 4. Comparison of the average achieved

reward against the always-D strategy.

Fig. 5. Comparison of the average achieved

reward against the Tit-For-Tat strategy.

Fig. 6. Comparison of the average achieved

reward against the agent using the same

strategy.

In Fig. 6, an agent using the ForSts

algorithm plays against an agent using the

same strategy. This is the most important

test for a learning agent. The best outcome

in this situation is expected to be cooperate-

cooperate (the outcome of R). Based on

these results it is shown that the ForSts

algorithm converges to cooperate-cooperate

after 8000 steps but Q-learner agents cannot

converge to the best outcome. The average

achieved reward for the last 100 steps is

considered. This process runs for 2000

times and the average of these 2000 runs is

reported in Table 1.

Table (1): The profits of our learning agent
in different cases

Profit Type

3.977Learner

4Tit-For-Tat

5Always-C

1Always-D

8 ForSts: Tacit Collusion in the Repeated Non-Cooperative Games Using Forwarding N-Steps

The best possible result when the learner

agent is playing against itself is converging

to cooperate-cooperate and achieving an

outcome of 4. Based on the results

presented in Table 1, the average achieved

reward by our learning agent is 3.977 which

is very close to 4, hence in 98.7%of the

iterations, the two agents have converged to

cooperate-cooperate. The best possible

strategy against an agent using the Tit-For-

Tat strategy is to always cooperate and

achieve the outcome of 4. The results show

that the agent has done perfectly well and it

has achieved the outcome of 4. The best

possible strategy against an agent that is

using the always-C strategy is to always

defect and achieve the outcome of 5. The

results show that the agent has converged to

this strategy and achieved the outcome of 5

every time. The best possible strategy

against an agent that is using the always-D

strategy is to always defect and achieve the

outcome of 1. We can see that the agent has

always converged to the best possible

strategy (always defecting).

4.2. Cournot’s duopoly model
Also, ForSts on Cournot’s duopoly model is

applied. In this model, we consider two

agents and each agent has a specific cost

function. All agents produce the same

product. q1 is the quantity of the production

for the seller 1 and q2 is the quantity of the

production for the seller 2. cost1 and cost2

are the costs for the seller 1 and the seller 2,

which are shown in equation 1 and equation

2, respectively. In these equations a1, a2,

b1, b2, c1, and c2 are the coefficients of

cost functions.

(1) 𝑐𝑜𝑠𝑡1 = 𝑎1 ∗ 𝑞1 ∗ 𝑞1 + 𝑏1 ∗ 𝑞1 + 𝑐1

(2)
𝑐𝑜𝑠𝑡2 = 𝑎2 ∗ 𝑞2 ∗ 𝑞2 + 𝑏2 ∗ 𝑞2 + 𝑐2

The parameter values of the cost

function of the agents which have been

used in simulations are given in Table 2.

Table (2): The parameter values of the cost

function of the agents

Value Parameters Value Parameters

0.17 𝑎2 0.2 𝑎1

2 𝑏2 1.8 𝑏1

50 𝑐2 70 𝑐1

The profit of the agents and the price of

the market are given by equation 3. Profit1

and profit2 are the profit for the seller 1 and

the seller 2, that can be calculated by,

equation 4 and equation 5, respectively

(3) 𝑝𝑟𝑖𝑐𝑒 = 20 − 0.18 ∗ 𝑞1 − 0.16 ∗ 𝑞2

(4) 𝑝𝑟𝑜𝑓𝑖𝑡1 = 𝑞1 ∗ 𝑝𝑟𝑖𝑐𝑒 − 𝑐𝑜𝑠𝑡1

(5) 𝑝𝑟𝑜𝑓𝑖𝑡2 = 𝑞2 ∗ 𝑝𝑟𝑖𝑐𝑒 − 𝑐𝑜𝑠𝑡2

The values for cost function, profit and

the price parameters, also profit and cost

function equations of the agents are taken

from [24]. The Nash equilibrium for this

game indicates that the production quantity

for seller 1 is 21 and the production

quantity for seller 2 is 20.6. Under these

circumstances, seller 1 will achieve a profit

of 106.48, and seller 2 will achieve a profit

of 73.87. To test ForSts, this game is played

for 10000 steps. The initial Q-values for all

state-action pairs were 1000. The initial

exploration rate was 0.6 in the first step and

decreased linearly until it reached zero in

step 8000. The discount factor was 0.9. The

agent observes the next 3 steps. The weight

of the first step was 0, the weight of the

second step was 0.4, and the weight of the

third step was 0.3. We tested many different

values for Both agents in the simulation

used the same learning method. Fig. 7, Fig.

8, and Fig. 9 show the rewards achieved by

seller 1, seller 2, and the summation of

rewards for seller 1 and seller 2. The

presented results are a comparison between

usages of ForSts versus the Q-learning

method. The vertical line is a step. After

step 8000, the exploration rate is set to 0.

9 Computational Intelligence in Electrical Engineering, 12

th
 year, No.4, 2022

The horizontal line is the reward achieved

by the agents using the Nash equilibrium

strategy.

The presented results are the average of

20 times stimulation running. Furthermore,

each presented reward is an average of the

achieved rewards of the last 100 steps; we

do that to smooth the curve. Fig. 7, Fig. 8,

and Fig. 9 indicate that the learner agent

can cooperate and achieve more profit than

the Nash equilibrium. Results show that

agents using our learning method cooperate

more than the agents using the Q-learning

method. We use the Q-learning algorithm

which is presented in [20], but due to the

difference in the purpose of learning, the

presented results are obtained from

implementations. Table 3 compares the

average rewards of the last 1000 steps of

the game, which is considered as the output

of two methods.

Fig. 7. Comparison of the average achieved
reward for the seller 1

Fig. 8. Comparison of the average achieved
reward against the agent using the same

strategy.

Fig. 9. Comparison of the average achieved
reward for the player 1

Fig. 10. Comparison of the average achieved
reward for the player 2

Fig. 11. Comparison of the average achieved
reward for sum of palyers

Besides, to test the results with other

cost functions and prices, another case

study is simulated. In this simulation, Costs

of seller 1 and seller 2 are shown as cost1

and cost2 in equation 6 and equation 7,

respectively. In equation 8 the price of the

market is also given.

𝑐𝑜𝑠𝑡1 = q1 ∗ q1 (6)

10 ForSts: Tacit Collusion in the Repeated Non-Cooperative Games Using Forwarding N-Steps

𝑐𝑜𝑠𝑡2 = 15 × q2+ q2 × q2 (7)

𝑝𝑟𝑖𝑐𝑒 = 60 − q1 − q2 (8)

The Nash equilibrium in this game for

player 1 is 13 and for player 2 is 8.

Based on our simulation results a Nash

profit of 338 and 128 is achieved by player

1 and 2, respectively. These results are

played 10000 steps to test ForSts. Q-values

for all state-action pairs are considered

1000. In the first step, the initial

exploration rate was 0.6 and decreased

linearly until it reached zero in step 8000.

The discount factor, has the same scenario

as our previous case study. Both players in

the simulation used the same learning

method. Fig. 10, Fig. 11, and Fig. 12 show

the rewards achieved by player 1, player 2,

and the summation of rewards for player 1

and player 2, respectively. Table 4

compares the average rewards of the last

1000 steps of the game, which is considered

as the output of two methods.

Table (3): Comparison of the average reward

of last 1000 steps of the game
Summation Seller 2 Seller 1 Method

76.80 187.61 110.81 ForSts

76.64 185.97 109.32 Q-learning

Table (4): Comparison of the average

rewards of last 1000 steps of the game
Summation Player 1 Player 1 Method

473.2 128.1 345.1 ForSts

469.6 129.8 339.8 Q-learning

Table (5): Sensitivity analysis

Without

change
a1+10% a1-10% b1+10% b1-10% a2+10% a2-10% b2+10% b2-10%

Agent 1 :

Profit of

learning

111.114 105.614 112.272 107.484 112.776 107.799 107.357 106.866 109.963

Agent 1:

profit of

Nash

equilibrium

106.485 98.402 115.496 102.032 111.003 110.271 102.279 107.383 105.589

Agent 2:

Profit of

learning

75.769 77.224 75.239 76.926 76.986 67.477 86.780 77.396 75.504

Agent 2:

profit of

Nash

equilibrium

73.878 77.630 69.775 74.971 72.790 65.440 83.434 70.087 77.720

Sum of both

agent:

Profit of

learning

186.884 182.839 187.512 184.410 189.762 175.276 194.138 184.263 185.468

Sum of both

agent: profit

of Nash

equilibrium

180.364 176.033 185.272 177.003 183.793 175.712 185.713 177.471 183.310

4.3. Sensitivity Analysis

Usually, the parameters of the market have

uncertainties. To analyze the impact of

uncertainties of each parameter of the

market in the final results, sensitivity

analysis is performed. The final result is

calculated by using equations 1 and 2 (cost

functions). This test is performed to analyze

the impact of uncertainties of the values of

the parameters of the cost functions (a1, b1,

a2, b2).

10% uncertainty in each parameter is

11 Computational Intelligence in Electrical Engineering, 12

th
 year, No.4, 2022

assumed. We analyze the effect of ±10%

change in the value of each parameter,

where the other parameters are fixed. Each

game is played 10 times and the results are

averaged. The presented profit is the

average profit of the last 100 steps of the

learning agents. The results are as shown in

Table 5.

The results show that the tacit collusion

occurs in the presence of uncertainties in

the parameters of the cost function of the

other agent except for some cases and this

is promising because cooperation occurs in

almost all cases. When a parameter of the

cost function decreases, the cost will

decrease and consequently, the net profit

will increase, but when a parameter

increases, the net profit will be decreased.

In the case in which b2 increases by

10%, the difference between the profits of

Nash equilibrium and learner agent is

almost equal to the case in which the values

of the parameters have not changed, so the

results show that this method is not

sensitive to the increase of b2. In the case in

which a2 increases by 10% the difference

between the profits of the Nash equilibrium

and the learner agent is not equal to the case

in which the parameters of the cost function

of agent 1 have not changed, so these

results show that the algorithm is sensitive

to the increase of a2.

5. Conclusions
In this paper, a novel reinforcement

learning algorithm called ForSts is

proposed for the agents in the non-

cooperative games to achieve more profit

than the Nash equilibrium. In ForSts, the

agent observes the next n-step rewards. The

results in the Iterated Prisoner’s dilemma

show that the agent using the approach had

learned the nearly optimal strategy. The

agent achieved the best possible results

against the agents using the always-D,

always-C, and the Tit-For-Tat strategies;

furthermore, the agent almost achieved the

best results possible against itself. Also, the

results show that the agents in Cournot’s

duopoly using the proposed method had

learned to achieve more profit than the

Cournot-Nash equilibrium.

Acknowledgment
This work was supported by Shahid Rajaee

Teacher Training University.

References
[1] M. J. Osborne and A. Rubinstein, A course in

game theory. MIT Press, 1994.

[2] R. S. Sutton and A. G. Barto, “Introduction to

reinforcement learning (Vol. 135).” Cambridge:

MIT Press, 1998.

[3] C. Engel, “Tacit collusion: The neglected

experimental evidence,” J. Empir. Leg. Stud., vol.

12, no. 3, pp. 537–577, 2015.

[4] M. A. Haan, L. Schoonbeek, and B. M. Winkel,

“Experimental results on collusion,” Exp.

Compet. policy, vol. 9, 2009.

[5] J. Potters and S. Suetens, “Oligopoly experiments

in the current millennium,” J. Econ. Surv., vol.

27, no. 3, pp. 439–460, 2013.

[6] S. S. Izquierdo and L. R. Izquierdo, “The ‘Win-

Continue, Lose-Reverse’ rule in Cournot

oligopolies: robustness of collusive outcomes,” in

Advances in Artificial Economics, Springer,

2015, pp. 33–44.

[7] L. Waltman and U. Kaymak, “Q-learning agents

in a Cournot oligopoly model,” J. Econ. Dyn.

Control, vol. 32, no. 10, pp. 3275–3293, 2008.

[8] S. O. Kimbrough and M. Lu, “A note on Q-

learning in the Cournot game,” in Proceedings of

the second workshop on e-business, 2003.

[9] S. O. Kimbrough, M. Lu, and F. Murphy,

“Learning and tacit collusion by artificial agents

in Cournot duopoly games,” in Formal modelling

in electronic commerce, Springer, 2005, pp. 477–

492.

[10] G. Tesauro and J. O. Kephart, “Pricing in

agent economies using multi-agent Q-learning,”

Auton. Agent. Multi. Agent. Syst., vol. 5, no. 3,

pp. 289–304, 2002.

[11] F. S. Melo, “Convergence of Q-learning: A

simple proof,” Inst. Syst. Robot. Tech. Rep, pp.

1–4, 2001.

[12] T. W. Sandholm and R. H. Crites,

“Multiagent reinforcement learning in the iterated

prisoner’s dilemma,” Biosystems, vol. 37, no. 1–

2, pp. 147–166, 1996.

[13] M. M. Flood, “Some experimental games,”

Manage. Sci., vol. 5, no. 1, pp. 5–26, 1958.

[14] D. M. Kreps, P. Milgrom, J. Roberts, and R.

Wilson, “Rational cooperation in the finitely

repeated prisoners’ dilemma,” J. Econ. Theory,

vol. 27, no. 2, pp. 245–252, 1982.

[15] M. Embrey, G. R. Fréchette, and S. Yuksel,

“Cooperation in the finitely repeated prisoner’s

dilemma,” Q. J. Econ., vol. 133, no. 1, pp. 509–

551, 2017.

[16] M. Babes, E. M. De Cote, and M. L. Littman,

12 ForSts: Tacit Collusion in the Repeated Non-Cooperative Games Using Forwarding N-Steps

“Social reward shaping in the prisoner’s

dilemma,” in Proceedings of the 7th international

joint conference on Autonomous agents and

multiagent systems-Volume 3, 2008, pp. 1389–

1392.

[17] J. Z. Leibo, V. Zambaldi, M. Lanctot, J.

Marecki, and T. Graepel, “Multi-agent

reinforcement learning in sequential social

dilemmas,” in Proceedings of the 16th

Conference on Autonomous Agents and

MultiAgent Systems, 2017, pp. 464–473.

[18] A. Peysakhovich and A. Lerer, “Maintaining

cooperation in complex social dilemmas using

deep reinforcement learning,” 2018.

[19] H. R. Varian, Intermediate Microeconomics:

A Modern Approach: Ninth International Student

Edition. WW Norton & Company, 2014.

[20] A. C. Tellidou and A. G. Bakirtzis, “Agent-

based analysis of capacity withholding and tacit

collusion in electricity markets,” IEEE Trans.

Power Syst., vol. 22, no. 4, pp. 1735–1742, 2007.

[21] M. Samadi and M. E. Hajiabadi, “Assessment

of the collusion possibility and profitability in the

electricity market: A new analytical approach,”

Int. J. Electr. Power Energy Syst., vol. 112, pp.

381–392, 2019.

[22] S. Jahanbakhshi, H. Khaloozadeh, and A.

Nikoofard, “Tacit collusion in pool-based

electricity markets with a demand shock,” in

Electrical Engineering (ICEE), Iranian

Conference on, 2018, pp. 1197–1202.

[23] M. Esmaeili, M.-B. Aryanezhad, and P.

Zeephongsekul, “A game theory approach in

seller-buyer supply chain,” Eur. J. Oper. Res.,

vol. 195, no. 2, pp. 442–448, 2009.

[24] H. Kamalinejad, V. J. Majd, H. Kebriaei, and

A. Rahimi-Kian, “Cournot games with linear

regression expectations in oligopolistic markets,”

Math. Comput. Simul., vol. 80, no. 9, pp. 1874–

1885, 2010.

[25] N. Jaques, Angeliki Lazaridou, E. Hughes,

Caglar Gulcehre, P. Ortega, D. Strouse, Joel Z.

Leibo, and N. De Freitas, “Social influence as

intrinsic motivation for multi-agent deep

reinforcement learning,” In Proceedings of the

36th International Conference on Machine

Learning, vol. 97 of Proceedings of Machine

Learning Research, p.p. 3040–3049, 2019.

[26] A. D. Edwards, L. Downs, and J. C.

Davidson. Forward-backward reinforcement

learning. ArXiv, 1803.10227, 2018.

[27] S. P. Singh, A. G.Barto, and N. Chentanez,

“Intrinsically motivated reinforcement learning.

In Advances in Neural Information Processing

Systems 17 Neural Information Processing

Systems,” NIPS 2004, December 13-18, 2004,

Vancouver, British Columbia, Canada], pp.

1281–1288, 2004.

[28] H. Mao, Zhengchao Zhang, Z. Xiao, and Z.

Gong. “Modelling the dynamic joint policy of

teammates with attention multi-agent ddpg,” 18th

International Conference on Autonomous Agents

and Multiagent Systems, pp. 1108–1116.

International Foundation for Autonomous Agents

and Multiagent Systems, 2019.

[29] W. J. K. David Earl Hostallero Kyunghwan

Son, D. K., and Y. Yi. “ Qtran: Learning to

factorize with transformation for cooperative

multi-agent reinforcement learning,” 31st

International Conference on Machine Learning,

2019.

[30] K. Zhang, Z. Yang, and T. Basar.

“Networked multi-agent reinforcement learning

in continuous spaces,” IEEE Conference on

Decision and Control (CDC), p.p 2771–2776,

2018.

[31] A. OroojJadid, and D. Hajinezhad, 2019. “ A

review of cooperative multi-agent deep

reinforcement learning,” arXiv preprint

arXiv:1908.03963.

