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Introduction

The purpose of this book is to provide a broad and general introduction
to the subject of dynamical systems, suitable for a one- or two-semester
graduate course. We introduce the principal themes of dynamical systems
both through examples and by explaining and proving fundamental and
accessible results. We make no attempt to be exhaustive in our treatment of
any particular area.

This book grew out of lecture notes from the graduate dynamical systems
course at the University of Maryland, College Park. The choice of topics
reflects not only the tastes of the authors, but also to a large extent the
collective opinion of the Dynamics Group at the University of Maryland,
which includes experts in virtually every major area of dynamical systems.

Early versions of this book have been used by several instructors at
Maryland, the University of Bonn, and Pennsylvania State University. Expe-
rience shows that with minor omissions the first five chapters of the book can
be covered in a one-semester course. Instructors who wish to cover a differ-
ent set of topics may safely omit some of the sections at the end of Chapter 1,
882.7-82.8,883.5-3.8, and §84.8-4.12, and then choose from topics in later
chapters. Examples from Chapter 1 are used throughout the book. Chapter 6
depends on Chapter 5, but the other chapters are essentially independent.
Every section ends with exercises (starred exercises are the most difficult).

The exposition of most of the concepts and results in this book has been
refined over the years by various authors. Since most of these ideas have
appeared so often and in so many variants in the literature, we have not at-
tempted to identify the original sources. In many cases, we followed the writ-
ten exposition from specific sources listed in the bibliography. These sources
cover particular topics in greater depth than we do here, and we recommend
them for further reading. We also benefited from the advice and guidance
of a number of specialists, including Joe Auslander, Werner Ballmann,

Xi
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Ken Berg, Mike Boyle, Boris Hasselblatt, Michael Jakobson, Anatole Katok,
Michal Misiurewicz, and Dan Rudolph. We thank them for their contribu-
tions. We are especially grateful to Vitaly Bergelson for his contributions to
the treatment of applications of topological dynamics and ergodic theory to
combinatorial number theory. We thank the students who used early ver-
sions of this book in our classes, and who found many typos, errors, and
omissions.



CHAPTER ONE

Examples and Basic Concepts

Dynamical systems is the study of the long-term behavior of evolving
systems. The modern theory of dynamical systems originated at the end
of the 19th century with fundamental questions concerning the stability and
evolution of the solar system. Attempts to answer those questions led to
the development of a rich and powerful field with applications to physics,
biology, meteorology, astronomy, economics, and other areas.

By analogy with celestial mechanics, the evolution of a particular state of
a dynamical system is referred to as an orbit. A number of themes appear
repeatedly in the study of dynamical systems: properties of individual orbits;
periodic orbits; typical behavior of orbits; statistical properties of orbits;
randomness vs. determinism; entropy; chaotic behavior; and stability under
perturbation of individual orbits and patterns. We introduce some of these
themes through the examples in this chapter.

We use the following notation throughout the book: N is the set of
positive integers; Ng = N U {0}; Z is the set of integers; Q is the set of rational
numbers; R is the set of real numbers; C is the set of complex numbers; R*
is the set of positive real numbers; R} = R* U {0}.

1.1 The Notion of a Dynamical System

A discrete-time dynamical system consists of a non-empty set X and a map
f: X — X. For n € N, the nth iterate of f is the n-fold composition f" =
fo---o f;wedefine fOto be the identity map, denoted Id. If f is invertible,
then f™ = f~lo...0 f~i(n times). Since " = f"o f™, these iterates
form a group if f is invertible, and a semigroup otherwise.

Although we have defined dynamical systems in a completely abstract
setting, where X is simply a set, in practice X usually has additional structure
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that is preserved by the map f. For example, (X, f) could be a measure space
and a measure-preserving map; a topological space and a continuous map;
a metric space and an isometry; or a smooth manifold and a differentiable
map.

A continuous-time dynamical system consists of a space X and a one-
parameter family of maps of { f': X — X}, € Rort € R}, that forms a one-
parameter group or semigroup, i.e., f/** = f' o f* and f°=1Id. The dynam-
ical system is called a flow if the time ¢ ranges over R, and a semiflow if ¢
ranges over Ry . For a flow, the time-t map f" is invertible, since f~ = ( f*)~L.
Note that for a fixed fo, the iterates ( f*)"” = f" form a discrete-time dynam-
ical system.

We will use the term dynamical system to refer to either discrete-time
or continuous-time dynamical systems. Most concepts and results in dy-
namical systems have both discrete-time and continuous-time versions. The
continuous-time version can often be deduced from the discrete-time ver-
sion. In this book, we focus mainly on discrete-time dynamical systems, where
the results are usually easier to formulate and prove.

To avoid having to define basic terminology in four different cases, we
write the elements of a dynamical system as f, where f ranges over Z, Ny, R,
or Ry, as appropriate. For x € X, we define the positive semiorbit O} (x) =
U0 f'(x). In the invertible case, we define the negative semiorbit O (x) =
Ui<o f'(x), and the orbit Oy(x) = (’)f(x) U0 (x) =, f'(x) (we omlt the
subscript “ f” if the context is clear). A point x € X is a periodic point of
period T > 0if f7(x) = x. The orbit of a periodic point is called a periodic
orbit. If f'(x) = x for all ¢, then x is a fixed point. If x is periodic, but not
fixed, then the smallest positive 7, such that f7(x) = x, is called the minimal
period of x. If f*(x) is periodic for some s > 0, we say that x is eventu-
ally periodic. In invertible dynamical systems, eventually periodic points are
periodic.

Forasubset A C Xandt > 0,let f'(A)be theimage of Aunder f’,andlet
f~'(A) be the preimage under f,i.e., f(A)=(f) " (A={xe X fi(x)e
A}. Note that f~/( f(A)) contains A, but, for a non-invertible dynamical
system, is generally not equal to A. A subset AC X is f-invariantif f'(A) CA
for all t; forward f-invariant if f'(A)C A for all ¢t >0; and backward
f-invariant if f~'(A) C Aforallt > 0.

In order to classify dynamical systems, we need a notion of equivalence.
Let f': X— Xand g': Y — Y be dynamical systems. A semiconjugacy from
(Y, g) to (X, f) (or, briefly, from g to f) is a surjective map n: Y — X sat-
isfying f' o =m o g’, for all 1. We express this formula schematically by
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saying that the following diagram commutes:

Yy 5 v

ﬂl lﬂ
x L x

An invertible semiconjugacy is called a conjugacy. If there is a conju-
gacy from one dynamical system to another, the two systems are said to
be conjugate; conjugacy is an equivalence relation. To study a particular
dynamical system, we often look for a conjugacy or semiconjugacy with a
better-understood model. To classify dynamical systems, we study equiva-
lence classes determined by conjugacies preserving some specified structure.
Note that for some classes of dynamical systems (e.g., measure-preserving
transformations) the word isomorphism is used instead of “conjugacy.”

If there is a semiconjugacy 7 from g to f, then (X, f) is a factor of (Y, g),
and (Y, g) is an extension of (X, f). The map n: Y — Xis also called a fac-
tor map or projection. The simplest example of an extension is the direct
product

(Ax H)XixX— X x X

of two dynamical systems f': X; —X;,i = 1,2, where (fi x £)"(x1,x) =
(f{(x1), f;(x2)). Projection of X; x X> onto Xj or X; is a semiconjugacy, so
(X1, fi) and (X>, f») are factors of (X x X5, fi x f2).

An extension (Y, g) of (X, f) with factor map n: Y — Xis called a skew
productover (X, f)if Y = X x F,and r is the projection onto the first factor
or, more generally, if Y'is a fiber bundle over X with projection 7.

Exercise 1.1.1. Show that the complement of a forward invariant set is
backward invariant, and vice versa. Show that if f is bijective, then an in-
variant set A satisfies f'(A) = Afor all . Show that this is false, in general,
if f is not bijective.

Exercise 1.1.2. Suppose (X, f) is a factor of (Y, g) by a semiconjugacy
m:Y — X. Show that if y € Y is a periodic point, then 7 (y) € X is periodic.
Give an example to show that the preimage of a periodic point does not
necessarily contain a periodic point.

1.2 Circle Rotations

Consider the unit circle S! = [0, 1] / ~, where ~ indicates that 0 and 1 are
identified. Addition mod 1 makes S! an abelian group. The natural distance
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on [0, 1] induces a distance on S'; specifically,
d(x, y) =min(lx — y|,1 — |x — yl).

Lebesgue measure on [0, 1] gives a natural measure A on S!, also called
Lebesgue measure A.

We can also describe the circle as the set ' = {z € C:|z| = 1}, with com-
plex multiplication as the group operation. The two notations are related by
7 = e¥™*_ which is an isometry if we divide arc length on the multiplicative
circle by 2. We will generally use the additive notation for the circle.

For « € R, let R, be the rotation of S! by angle 27, i.e.,

Ryx =x+a mod1.

The collection {R,:« € [0, 1)} is a commutative group with composition as
group operation, R, o Rg = R,, where y = o 4+ f mod 1. Note that R, is an
isometry: It preserves the distance d. It also preserves Lebesgue measure A,
i.e., the Lebesgue measure of a set is the same as the Lebesgue measure of
its preimage.

If o = p/q is rational, then R = Id, so every orbit is periodic. On the
other hand, if « is irrational, then every positive semiorbit is dense in S.
Indeed, the pigeon-hole principle implies that, for any ¢ > 0, there arem, n <
1/€ such that m < n and d(R?', R?) < €. Thus R" is rotation by an angle
less than e, so every positive semiorbit is e-dense in S' (i.e., comes within
distance € of every point in S'). Since € is arbitrary, every positive semiorbit
is dense.

For « irrational, density of every orbit of R, implies that S* is the only
R,-invariant closed non-empty subset. A dynamical system with no proper
closed non-empty invariant subsets is called minimal. In Chapter 4, we show
that any measurable R,-invariant subset of S' has either measure zero or
full measure. A measurable dynamical system with this property is called
ergodic.

Circle rotations are examples of an important class of dynamical systems
arising as group translations. Given a group G and an element 4 € G, define
maps L,: G—G and R,: G— G by

L,g=hg and Rpg=gh.

These maps are called left and right translation by h. If G is commutative,
Ly = Ry.

A topological group is a topological space G with a group structure
such that group multiplication (g, #) 1 —gh, and the inverse g 1—g~! are
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continuous maps. A continuous homomorphism of a topological group to
itself is called an endomorphism; an invertible endomorphism is an automor-
phism. Many important examples of dynamical systems arise as translations
or endomorphisms of topological groups.

Exercise 1.2.1. Show that for any k € Z, there is a continuous semiconju-
gacy from R, to Ryy.

Exercise 1.2.2. Prove that for any finite sequence of decimal digits there is
an integer n > 0 such that the decimal representation of 2" starts with that
sequence of digits.

Exercise 1.2.3. Let G be a topological group. Prove that for each g € G, the
closure H(g) of the set {g"}5__ is a commutative subgroup of G. Thus, if

n=—00

G has a minimal left translation, then G is abelian.

*Exercise 1.2.4. Show that R, and Rg are conjugate by a homeomorphism
if and only if « = £ mod 1.

1.3 Expanding Endomorphisms of the Circle
For m € Z, |m| > 1, define the times-m map E,: S' — S by
E,x =mxmod 1.

This map is a non-invertible group endomorphism of S'. Every point has
m preimages. In contrast to a circle rotation, E,, expands arc length and
distances between nearby points by a factor of m: If d(x, y) < 1/(2m), then
d(E.x, E,y) = md(x, y). A map (of a metric space) that expands distances
between nearby points by a factor of at least i« > 1 is called expanding.

The map E,, preserves Lebesgue measure A on S! in the following sense:
if A C S'is measurable, then A(E,'(A)) = 1(A) (Exercise 1.3.1). Note, how-
ever, that for a sufficiently small interval I, A(E,,,(1)) = mi(I). We will show
later that E,, is ergodic (Proposition 4.4.2).

Fix a positive integer m > 1. We will now construct a semiconjugacy from
another natural dynamical system to E,,. Let ¥ = {0, ..., m — 13N be the set
of sequences of elements in {0, ..., m — 1}. The shift 0: ¥ — X discards the
first element of a sequence and shifts the remaining elements one place to
the left:

o((xl, X2, X3, .. )) = ()Cz, X3, X4, .. )

A base-m expansion of x € [0, 1] is a sequence (x;)icy € £ such that
X = Eizlxi/mi. In analogy with decimal notation, we write x = 0.x1xx3 . ...
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Base-m expansions are not always unique: A fraction whose denominator
is a power of m is represented both by a sequence with trailing m — 1s and
a sequence with trailing zeros. For example, in base 5, we have 0.144... =
0.200...=2/5.

Define a map

o2 —[0,1],  ¢((xi)ienw) = ) —-
iz M
We can consider ¢ as a map into S! by identifying 0 and 1. This map is
surjective, and one-to-one except on the countable set of sequences with
trailing zeros or m — 1’s. If x = 0.x;x3x3... € [0, 1), then E,x = 0.xx3....
Thus, ¢ o 0 = E,;, 0 ¢, 50 ¢ is a semiconjugacy from o to E,,.

We can use the semiconjugacy of E,, with the shift o to deduce properties
of E,,. For example, a sequence (x;) € X is a periodic point for o with period
k if and only if it is a periodic sequence with period k, i.e., xi; = x; for all
i. It follows that the number of periodic points of o of period k is m*. More
generally, (x;) is eventually periodic for o if and only if the sequence (x;) is
eventually periodic. A point x € S' = [0, 1] / ~is periodic for E,, with period
k if and only if x has a base-m expansion x = 0.x1x; . .. that is periodic with
period k. Therefore, the number of periodic points of £, of period kis mF — 1
(since 0 and 1 are identified).

Let 7, = U,ZI{O, e, M — 1}" be the set of all finite sequences of ele-
ments of the set {0,...,m—1}. A subset A C [0, 1] is dense if and only if
every finite sequence w € F,,, occurs at the beginning of the base-m expan-
sion of some element of A. It follows that the set of periodic points is dense
in St. The orbit of a point x = 0.x1x; ... is dense in S' if and only if every
finite sequence from F,,, appears in the sequence (x;). Since F,, is countable,
we can construct such a point by concatenating all elements of F,,,.

Although ¢ is not one-to-one, we can construct a right inverse to ¢. Con-
sider the partition of S* = [0, 1] /~ into intervals

P =[k/m, (k+1)/m), O<k<m-1.

For x € [0, 1], define y;(x) = kif E/ x € P,. The map ¥: S! — X, given by
x 1—>(Pi(x))$2,, is arightinverse for ¢, i.e., ¢ o ¥ = Id: S' — S'. In particular,
x € S' is uniquely determined by the sequence (¥;(x)).

The use of partitions to code points by sequences is the principal motiva-
tion for symbolic dynamics, the study of shifts on sequence spaces, which is
the subject of the next section and Chapter 3.



1.4. Shifts and Subshifts 7

Exercise 1.3.1. Prove that A(E,!([a,b])) = A([a,b]) for any interval
[a,b] C [0, 1].

Exercise 1.3.2. Prove that £, o £, = E; o E;, = Ey. Whenis E, o R, =
R, o E?

Exercise 1.3.3. Show that the set of points with dense orbits is uncountable.
Exercise 1.3.4. Prove that the set

C={xe[0,1]: Efx ¢ (1/3,2/3)V k € Ny}
is the standard middle-thirds Cantor set.

*Exercise 1.3.5. Show that the set of points with dense orbits under £, has
Lebesgue measure 1.

1.4 Shifts and Subshifts

In this section, we generalize the notion of shift space introduced in the
previous section. For an integer m > 1 set A,, = {1, ..., m}. We refer to A,,
as an alphabet and its elements as symbols. A finite sequence of symbols
is called a word. Let £, = AZ be the set of infinite two-sided sequences of
symbols in A,,, and £ = A be the set of infinite one-sided sequences. We
say that a sequence x = (x;) contains the word w = wyw, ... wy (or that w
occurs in x) if there is some j such that w; = x;; fori =1,... k.

Given a one-sided or two-sided sequence x = (x;), let o (x) = (o (x);) be
the sequence obtained by shifting x one step to the left, i.e., o (x); = x;41.
This defines a self-map of both £, and ;! called the shift. The pair (X,,, o) is
called the full two-sided shift, (X}, o) is the full one-sided shift. The two-sided
shift is invertible. For a one-sided sequence, the leftmost symbol disappears,
so the one-sided shift is non-invertible, and every point has m preimages.
Both shifts have m" periodic points of period #n.

The shift spaces X, and X, are compact topological spaces in the product
topology. This topology has a basis consisting of cylinders

C;’l',’.‘.‘."’j’i" ={x=()x,; =ji,i=1,...,k},

wheren; < ny < --- < ngareindicesin Z or N, and j; € A,,. Since the preim-
age of acylinderis a cylinder, o is continuous on X, and is a homeomorphism
of X,,. The metric

d(x,x') =27, where [ = min{|i|:x; Ax;}
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11
11
110
101

Figure 1.1. Examples of directed graphs with labeled vertices and the corresponding
adjacency matrices.

generates the product topology on ¥, and ¥ (Exercise 1.4.3). In %,

the open ball B(x,27") is the symmetric cylinder C; 7't~/ 'and in £,

d(o(x), o (x')) = 2d(x, x').

In the product topology, periodic points are dense, and there are dense
orbits (Exercise 1.4.5).

Now we describe a natural class of closed shift-invariant subsets of the full
shift spaces. These subshifts can be described in terms of adjacency matrices
or their associated directed graphs. An adjacency matrix A= (a;;) is an m x
m matrix whose entries are zeros and ones. Associated to A is a directed
graph T4 with m vertices such that a;; is the number of edges from the
ith vertex to the jth vertex. Conversely, if T is a finite directed graph with
vertices vy, ..., Uy, then I' determines an adjacency matrix B, and I' = I'.
Figure 1.1 shows two adjacency matrices and the associated graphs.

Given an m x m adjacency matrix A= (a;;), we say that a word or in-
finite sequence x (in the alphabet A,,) is allowed if a,,,,,, > 0 for every i;
equivalently, if there is a directed edge from x; to x;4; for every i. A word
or sequence that is not allowed is said to be forbidden. Let £ 4 C X,, be the
set of allowed two-sided sequences (x;), and £ C Z; be the set of allowed
one-sided sequences. We can view a sequence (x;) € £ 4 (or £ ) as an infinite
walk along directed edges in the graph I" 4, where x; is the index of the vertex
visited at time i. The sets X 4 and Ej‘ are closed shift-invariant subsets of X,
and %', and inherit the subspace topology. The pairs (24, 0) and (27, o)
are called the two-sided and one-sided vertex shifts determined by A.

A point (x;) € £ 4 (or £F) is periodic of period n if and only if x;1, = x;
for every i. The number of periodic points of period n (in X 4 or £¥) is equal
to the trace of A" (Exercise 1.4.2).

Exercise 1.4.1. Let A be a matrix of zeros and ones. A vertex v; can be
reached (in n steps) from a vertex v; if there is a path (consisting of n edges)
from v; to v; along directed edges of I' . What properties of A correspond
to the following properties of I 4?
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(a) Any vertex can be reached from some other vertex.

(b) There are no terminal vertices, i.e., there is at least one directed edge
starting at each vertex.

(c) Any vertex can be reached in one step from any other vertex .

(d) Any vertex can be reached from any other vertex in exactly n steps.

Exercise 1.4.2. Let Abe an m x m matrix of zeros and ones. Prove that:
(a) the number of fixed points in T 4 (or £7) is the trace of A;
(b) the number of allowed words of length n 4+ 1 beginning with the sym-
bol i and ending with j is the i, jth entry of A”; and
(c) the number of periodic points of period n in X 4 (or £7) is the trace
of A”.

Exercise 1.4.3. Verify that the metrics on ¥, and £, generate the product
topology.

Exercise 1.4.4. Show that the semiconjugacy ¢: ¥ — [0, 1] of §1.3 is con-
tinuous with respect to the product topology on X.

Exercise 1.4.5. Assume that all entries of some power of A are positive.
Show that in the product topology on ¥ 4 and X7, periodic points are dense,
and there are dense orbits.

1.5 Quadratic Maps

The expanding maps of the circle introduced in 81.3 are linear maps in the
sense that they come from linear maps of the real line. The simplest non-
linear dynamical systems in dimension one are the quadratic maps

gu(x) = px(1 —x), pu>0.

Figure 1.2 shows the graph of g3 and successive images x; = ¢}(x) of a point
X0-

If 4 > 1and x ¢ [0, 1], then gJ;(x) — —oc as n — ooc. For this reason, we
focus our attention on the interval [0, 1]. For u € [0, 4], the interval [0, 1]
is forward invariant under ¢,,. For u > 4, the interval (1/2 — /1/4 —1/pu,
1/2 + /1/4 — 1/u) maps outside [0, 1]; we show in Chapter 7 that the set of
points A, whose forward orbits stay in [0, 1] is a Cantor set, and (A, g,,) is
equivalent to the full one-sided shift on two symbols.

Let X be a locally compact metric space and f: X — X a continuous
map. A fixed point p of f is attracting if it has a neighborhood U such that U
is compact, f(U) c U, and "),., f"(U) = {p}. A fixed point p is repelling
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0.8

0.6

04

0.2

M Xo Q3(.Xo) qg( Xo) \

Figure 1.2. Quadratic map of g;.

if it has a neighborhood U such that U C f(U), and ", f(U) = {p}.
Note that if f is invertible, then p is attracting for f if and only if it is
repelling for f~1, and vice versa. A fixed point p is called isolated if there is
a neighborhood of p that contains no other fixed points.

If x is a periodic point of f of period n, then we say that f is an attracting
(repelling) periodic point if x is an attracting (repelling) fixed point of f”. We
also say that the periodic orbit O(x) is attracting or repelling, respectively.

The fixed points of g, are 0 and 1 —1/u. Note that g;,(0) = u and that
q,(1 = 1/u) =2 — p. Thus, O is attracting for 4 < 1 and repelling for 4 > 1,
and 1—1/u is attracting for u € (1,3) and repelling for p ¢ [1,3]
(Exercise 1.5.4).

The maps g,, u > 4, have interesting and complicated dynamical be-
havior. In particular, periodic points abound. For example,

qu((1/p.1/2])) D [1 =1/, 1],

qu([1 = 1/p, 1)) D [0,1 = 1/u] D [1/1, 1/2].
Hence, qi([l/u, 1/2]) D [1/m, 1/2], so the Intermediate Value Theorem
implies that qi has a fixed point p, € [1/u, 1/2]. Thus, p, and q,(p,) are
non-fixed periodic points of period 2. This approach to showing existence
of periodic points applies to many one-dimensional maps. We exploit this
technique in Chapter 7 to prove the Sharkovsky Theorem (Theorem 7.3.1),
which asserts, for example, that for continuous self-maps of the interval the

existence of an orbit of period three implies the existence of periodic orbits
of all orders.

Exercise 1.5.1. Show that for any x ¢ [0, 1], g,(x) — —oo asn — oo.

Exercise 1.5.2. Show that a repelling fixed point is an isolated fixed point.
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Exercise 1.5.3. Suppose pis an attracting fixed point for f.Show that there
is a neighborhood U of p such that the forward orbit of every point in U
converges to p.

Exercise 1.5.4. Let f:R — R be a C! map, and p be a fixed point. Show
thatif | f'(p)| < 1, then pis attracting, and if | f'(p)| > 1, then p is repelling.

Exercise 1.5.5. Are 0 and 1 — 1/u attracting or repelling for © = 1? for
uw=23?

Exercise 1.5.6. Show the existence of a non-fixed periodic point of g, of
period 3, for p > 4.

Exercise 1.5.7. Is the period-2 orbit {p,, g, (p2)} attracting or repelling for
uw > 4?

1.6 The Gauss Transformation

Let [x] denote the greatest integer less than or equal to x, for x € R. The
map ¢: [0, 1] — [0, 1] defined by

_f1x—[1/x] if  xe(0,1],
‘p(x)_{o if x=0

was studied by C. Gauss, and is now called the Gauss transformation. Note
that ¢ maps each interval (1/(n + 1), 1/n] continuously and monotonically
onto [0, 1);itis discontinuous at 1/x for all n € N. Figure 1.3 shows the graph
of ¢.

0.8 ¢
0.6 ¢
0.4 ¢

0.2

U4 13 12

Figure 1.3. Gauss transformation.
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Gauss discovered a natural invariant measure i for ¢. The Gauss measure
of an interval A= (a, b) is

1 b ax 1
A) = = (log2)™'1 :
n) = o5 [ 155 = o) M og
This measure is g-invariant in the sense that (¢ ' (A)) = u(A) for any inter-
val A= (a, b). To prove invariance, note that the preimage of (a, b) consists
of infinitely many intervals: In the interval (1/(n 4+ 1), 1/n), the preimage is

(1/(n+ b),1/(n+ a)). Thus,

w(e (@ b)) = 1 (U (s %>>

n=1

1 & n+a+1 n+b
o 221 ) = tta.t)

n+a n+b+l

Note that in general u(¢(A)) ~u(A).
The Gauss transformation is closely related to continued fractions. The
expression

[al,dz,...,ﬂn]z—, Ll],...,[lneN,

an

is called afinite continued fraction. For x € (0, 1],wehave x = 1/([1] + ¢(x)).
More generally, if 9" ~!(x) /&0, seta; = [1/¢'~'(x)] > 1 fori < n. Then,

1

X =

a; +

a + I

+ -
an + ¢"(x)

Note that x isrational if and only if ™ (x) = 0 for some m € N (Exercise 1.6.2).
Thus any rational number is uniquely represented by a finite continued frac-
tion.

For an irrational number x € (0, 1), the sequence of finite continued
fractions

a1, az, ..., a,] = I
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converges to x (where a; = [1/¢'~}(x)]) (Exercise 1.6.4). This is expressed
concisely with the infinite continued fraction notation

1
x=la,a,...]=
a +
ay+--
Conversely, given a sequence (b;);en, b; € N, the sequence [by, by, ..., by]

converges, as n — 00, to a number y € [0, 1], and the representation y =
[b1, by, ...] is unique (Exercise 1.6.4). Hence ¢(y)={[b», b3, ...], because
by =[1/¢""" ()]

We summarize this discussion by saying that the continued fraction rep-
resentation conjugates the Gauss transformation and the shift on the space
of finite or infinite integer-valued sequences (b; ), w € N U {oo}, b; e N. (By
convention, the shift of a finite sequence is obtained by deleting the first term;
the empty sequence represents 0.) As an immediate consequence, we obtain
a description of the eventually periodic points of ¢ (see Exercise 1.6.3).

Exercise 1.6.1. What are the fixed points of the Gauss transformation?

Exercise 1.6.2. Show that x € [0, 1] is rational if and only if ¢"(x) =0 for
some m e N.

Exercise 1.6.3. Show that:
(a) a number with periodic continued fraction expansion satisfies a
quadratic equation with integer coefficients; and
(b) a number with eventually periodic continued fraction expansion
satisfies a quadratic equation with integer coefficients.
The converse of the second statement is also true, but is more difficult to
prove [Arc70], [HW79].

*Exercise 1.6.4. Show thatgiven anyinfinitesequence b, e N, k=1,2, ...,
the sequence [by, . .., b,] of finite continued fractions converges. Show that
forany x € R, the continued fraction [a1, ay, . ..], a; = [1/¢'~!(x)], converges
to x, and that this continued fraction representation is unique.

1.7 Hyperbolic Toral Automorphisms
Consider the linear map of R? given by the matrix
2 1
a=( ).
The eigenvalues are = (3 ++/5)/2 > 1 and 1/A. The map expands by a fac-
tor of A in the direction of the eigenvector v, = ((1 4 +/5)/2, 1), and contracts
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(1,1)

@1

(0,0)
(3,0)

Figure 1.4. The image of the torus under A.

by 1/ in the direction of vy, = ((1 — +/5)/2, 1). The eigenvectors are per-
pendicular because Ais symmetric.

Since A has integer entries, it preserves the integer lattice Z?> C R? and
induces a map (which we also call A) of the torus T?> = R?/Z?. The torus
can be viewed as the unit square [0, 1] x [0, 1] with opposite sides identified:
(x1,0) ~ (x1,1) and (0, x2) ~ (1, x2), x1, x» € [0, 1]. The map A is given in

coordinates by
A X1 (2X1 + XQ) mod 1
<x2> ~\ (¢ +x)mod 1
(see Figure 1.4). Note that T? is a commutative group and Ais an automor-
phism, since A~! is also an integer matrix.

The periodic points of A: T> — T? are the points with rational coordinates
(Exercise 1.7.1).

The lines in R? parallel to the eigenvector v, project to a family W* of
parallel lines on T2. For x € T?, the line W*(x) through x is called the unstable
manifold of x. The family W* partitions T? and is called the unstable folia-
tion of A. This foliation is invariant in the sense that A(W"(x)) = W*( Ax).
Moreover, A expands each line in W* by a factor of 1. Similarly, the stable
foliation W* is obtained by projecting the family of lines in R? parallel to
v1/,. This foliation is also invariant under A, and A contracts each stable
manifold W*(x) by 1/A. Since the slopes of v, and v, are irrational, each of
the stable and unstable manifolds is dense in T? (Exercise 1.11.1).

In a similar way, any n x n integer matrix B induces a group endomor-
phism of the n-torus T" = R"/Z" = [0, 1]"/ ~. The map is invertible (an
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automorphism) if and only if B! is an integer matrix, which happens if and
only if | det B| = 1 (Exercise 1.7.2). If Bis invertible and the eigenvalues do
not lie on the unit circle, then B: T" — T" has expanding and contracting
subspaces of complementary dimensions and is called a hyperbolic toral
automorphism. The stable and unstable manifolds of a hyperbolic toral
automorphism are dense in T" (85.10). This is easy to show in dimension
two (Exercise 1.7.3 and Exercise 1.11.1).

Hyperbolic toral automorphisms are prototypes of the more general class
of hyperbolic dynamical systems. These systems have uniform expansion and
contraction in complementary directions at every point. We discuss them in
detail in Chapter 5.

Exercise 1.7.1. Consider the automorphism of T? corresponding to a non-
singular 2 x 2 integer matrix whose eigenvalues are not roots of 1.
(a) Prove that every point with rational coordinates is eventually periodic.
(b) Prove that every eventually periodic point has rational coordinates.

Exercise 1.7.2. Prove that the inverse of an n x n integer matrix B is also
an integer matrix if and only if | det B| =1.

Exercise 1.7.3. Show that the eigenvalues of a two-dimensional hyperbolic
toral automorphism are irrational (so the stable and unstable manifolds are
dense by Exercise 1.11.1).

Exercise 1.7.4. Show that the number of fixed points of a hyperbolic toral
automorphism A is det(A — I) (hence the number of periodic points of
period n is det( A" — I)).

1.8 The Horseshoe

Consider a region D C R? consisting of two semicircular regions D; and Ds
together with a unit square R = D, U D3 U D; (see Figure 1.5).

Let f: D — D be a differentiable map that stretches and bends D into
a horseshoe as shown in Figure 1.5. Assume also that f stretches D, U Dy
uniformly in the horizontal direction by a factor of © > 2 and contracts

D1 | Dy |Ds | Dy

o3

Figure 1.5. The horseshoe map.
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R
Figure 1.6. Horizontal rectangles.

uniformly in the vertical direction by A < 1/2. Since f(Ds) C Ds, the
Brouwer fixed point theorem implies the existence of a fixed point p € Ds.

Set Ry= f(D») N Rand R, = f(D4) N R. Note that f(R)N R= Ry U Ry.
The set f2(R)N f(R)N R= f2(R) N R consists of four horizontal rectan-
gles R, i, j € {0, 1}, of height A (see Figure 1.6). More generally, for any
finite sequence wy, . .., w, of zeros and ones,

Ruyor.on = Ry 0 f(Ruy) N ---N f"(Ry,)

is a horizontal rectangle of height A", and f"(R)N R is the union of
2" such rectangles. For an infinite sequence o = (w;) € {0, 1}, let R, =
N2y f(Ry). The set HY = (M2, f*(R) =, R. is the product of a hor-
izontal interval of length 1 and a vertical Cantor set C* (a Cantor set is a
compact, perfect, totally disconnected set). Note that f(H') = H*.

We now construct, in a similar way, a set H~ using preimages. Observe that
FY(Ro)=f""(R)N Dy,and f~'(R;) = f~'(R) N D, are vertical rectangles
of width x~!. For any sequence w_,,, @_pi1, ..., w_1 of zeros and ones,
N, f'(R,,) is a vertical rectangle of width x™™, and H~ = (2, f(R)
is the product of a vertical interval (of length 1) and a horizontal Cantor
set C™.

The horseshoe set H= H* N H- = (2__ f'(R) is the product of the
Cantor sets C~ and C* and is closed and f-invariant. It is locally maximal,
i.e., thereis an open set U containing H such that any f-invariant subset of U
containing H coincides with H (Exercise 1.8.2). The map ¢: ¥, = {0, 1}* —
H that assigns to each infinite sequence w = (w;) € X, the unique point
d(w) = N, f(R,,) is a bijection (Exercise 1.8.3). Note that

F@(@) =[] [T (Ro) = ¢(0r(w)),



1.9. The Solenoid 17

where o, is the right shift in X, 0, (w);+1 = w;. Thus, ¢ conjugates f|H and
the full two-sided 2-shift.

The horseshoe was introduced by S. Smale in the 1960s as an example of
a hyperbolic set that “survives” small perturbations. We discuss hyperbolic
sets in Chapter 5.

Exercise 1.8.1. Draw a picture of f~'(R)N f(R) and f=2(R) N f*(R).
Exercise 1.8.2. Prove that H is a locally maximal f-invariant set.

Exercise 1.8.3. Prove that ¢ is a bijection, and that both ¢ and ¢! are
continuous.

1.9 The Solenoid

Consider the solid torus 7 = S! x D?, where S'=[0,1] mod 1 and D?=
{(x,y) e R x* + y?> < 1}. Fix A € (0, 1/2), and define F: 7 — T by

F(¢.x,y) = (2¢, 2x + %cosan&, Ay + %sinanb).

The map F stretches by a factor of 2 in the S'-direction, contracts by a
factor of A in the D?-direction, and wraps the image twice inside 7 (see
Figure 1.7).

The image F(7) is contained in the interior int(7) of 7, and F"*1(7) c
int(F"(7)). Note that F is one-to-one (Exercise 1.9.1). A slice F(7) N {¢p =
const} consists of two disks of radius A centered at diametrically opposite
points at distance 1/2 from the center of the slice. A slice F"(7) N {¢ = const}

Figure 1.7. The solid torus and its image F(7).
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Figure 1.8. A cross-section of the solenoid.

consists of 2" disks of radius A": two disks inside each of the 2"~! disks of
F~1(T) N {¢ = const}. Slices of F(T), F(T), and F3(T) for ¢ = 1/8 are
shown in Figure 1.8.

The set S = (-, F"(7) is called a solenoid. It is a closed F-invariant
subset of 7 on which F is bijective (Exercise 1.9.1). It can be shown that S'is
locally the product of an interval with a Cantor set in the two-dimensional
disk.

The solenoid is an attractor for F. In fact, any neighborhood of S con-
tains F"(7) for n sufficiently large, so the forward orbit of every point in
7T converges to S. Moreover, S is a hyperbolic set, and is therefore called a
hyperbolic attractor. We give a precise definition of attractors in §1.13.

Let ® denote the set of sequences (¢;),, where ¢; € S' and ¢; =
2¢;+1 mod 1 for all i. The product topology on (S')™ induces the subspace
topology on ®. The space ® is a commutative group under component-wise
addition (mod 1). The map (¢, V) 1—¢ — ¢ is continuous, so @ is a topo-
logical group. The map a: ® — @, (¢o, ¢1, ...) 1 —=>(2¢0, ¢o, ¢1, . ..) is a group
automorphism and a homeomorphism (Exercise 1.9.3).

For s e S, the first (angular) coordinates of the preimages F~"(s)=
(¢, » Xu, yn) form a sequence A(s) = (¢o, ¢1, ...) € ®. This defines a map
h: S — ®. The inverse of 4 is the map (¢o, @1, ...) 1= oey F"({pn} x D?),
and 4 is a homeomorphism (Exercise 1.9.2). Note that #: S — & conjugates
F anda,i.e., ho F =« oh. This conjugation allows one to study properties
of (S, F) by studying properties of the algebraic system (@, «).

Exercise 1.9.1. Prove that (a) F: 7 — T is injective, and (b) F: S — § is
bijective.
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Exercise 1.9.2. Prove that for every (¢o, ¢1,...) € ® the intersection
Moy F*({¢n} x D?)consists of asingle points,andA(s) = (¢o, ¢1, - - .). Show
that % is a homeomorphism.

Exercise 1.9.3. Show that @ is a topological group, and « is an automor-
phism and homeomorphism.

Exercise 1.9.4. Find the fixed point of F and all periodic points of period 2.

1.10 Flows and Differential Equations

Flows arise naturally from first-order autonomous differential equations.
Suppose x = F(x) is a differential equation in R”, where F: R" — R" is
continuously differentiable. For each point x € R", there is a unique solution
f'(x) starting at x at time 0 and defined for all ¢ in some neighborhood of
0. To simplify matters, we will assume that the solution is defined for all
t € R; this will be the case, for example, if F is bounded, or is dominated
in norm by a linear function. For fixed ¢ € R, the time-f map x1—f'(x) is a
C! diffeomorphism of R”. Because the equation is autonomous, f'*5(x) =
fi(f(x)),ie., f'isaflow.

Conversely, given a flow f': R” — R”, if the map (¢, x)1 — f*(x) is differ-
entiable, then f' is the time-f map of the differential equation

o d :
= . ff(x).

Here are some examples. Consider the linear autonomous differential
equation x = Ax in R”, where A is a real n x n matrix. The flow of this
differential equation is f*(x)=e“/x, where e’ is the matrix exponential. If
Ais non-singular, the flow has exactly one fixed point at the origin. If all the
eigenvalues of A have negative real part, then every orbit approaches the
origin, and the origin is asymptotically stable. If some eigenvalue has positive
real part, then the origin is unstable.

Most differential equations that arise in applications are non-linear. The
differential equation governing an ideal frictionless pendulum is one of the
most familiar:

6 +sind = 0.

This equation cannot be solved in closed form, but it can be studied by
qualitative methods. It is equivalent to the system

X =y,

y = —sinx.
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The energy E of the system is the sum of the kinetic and potential energies,
E(x,y)=1— cosx + y?/2.One can show (Exercise 1.10.2) by differentiating
E(x, y) with respect to ¢ that E is constant along solutions of the differential
equation. Equivalently,if f*is the flowin R? of this differential equation, then
Eis invariant by the flow,i.e., E( f'(x, y)) = E(x, y),forallt € R, (x, y) € R?.
A function that is constant on the orbits of a dynamical system is called a
first integral of the system.

The fixed points in the phase plane for the undamped pendulum are
(kn,0), k € Z. The points (2kn, 0) are local minima of the energy. The points
(2(k + 1)m, 0) are saddle points.

Now consider the damped pendulum § + y + sin6 = 0, or the equi-
valent system

X =y,
y = —sinx —yy.

A simple calculation shows that £ < 0 except at the fixed points (krx, 0), k €
Z, which are the local extrema of the energy. Thus the energy is strictly
decreasing along every non-constant solution. In particular, every trajec-
tory approaches a critical point of the energy, and almost every trajectory
approaches a local minimum.

The energy of the pendulum is an example of a Lyapunov function, i.e.,
a continuous function that is non-increasing along the orbits of the flow.
Any strict local minimum of a Lyapunov function is an asymptotically sta-
ble equilibrium point of the differential equation. Moreover, any bounded
orbit must converge to the maximal invariant subset M of the set of points
satisfying E = 0. In the case of the damped pendulum, M = {(kr, 0): k € Z}.

Here is another class of examples that appears frequently in applications,
particularly optimization problems. Given a smooth function f: R"” — R,
the flow of the differential equation

x = grad f(x)

is called the gradient flow of f. The function —f is a Lyapunov function
for the gradient flow. The trajectories are the projections to R” of paths of
steepest ascent along the graph of f and are orthogonal to the level sets of
f (Exercise 1.10.3).

A Hamiltonian system is a flow in R?" given by a system of differential
equations of the form

aH oH

pi = i=1,...,n,

qi —a—qi,

~opi’



1.11. Suspension and Cross-Section 21

where the Hamiltonian function H(p, q) is assumed to be smooth. Since
the divergence of the right-hand side is 0, the flow preserves volume. The
Hamiltonian function is a first integral, so that the level surfaces of H are
invariant under the flow. If for some C € R the level surface H(p,q) = C
is compact, the restriction of the flow to the level surface preserves a finite
measure with smooth density. Hamiltonian flows have many applications
in physics and mathematics. For example, the flow associated with the un-
damped pendulum is a Hamiltonian flow, where the Hamiltonian function
is the total energy of the pendulum (Exercise 1.10.5).

Exercise 1.10.1. Show that the scalar differential equation x = x log x in-
duces the flow f(x) = x*P®) on the line.

Exercise 1.10.2. Show that the energy is constant along solutions of the
undamped pendulum equation and strictly decreasing along non-constant
solutions of the damped pendulum equation.

Exercise 1.10.3. Show that —f is a Lyapunov function for the gradient flow
of f, and that the trajectories are orthogonal to the level sets of f.

Exercise 1.10.4. Prove that any differentiable one-parameter group of
linear maps of R is the flow of a differential equation x = kx.

Exercise 1.10.5. Show that the flow of the undamped pendulum is a
Hamiltonian flow.

1.11 Suspension and Cross-Section

There are natural constructions for passing from a map to a flow, and vice
versa. Given a map f: X — X, and a function ¢: X — R* bounded away
from 0, consider the quotient space

X.={(x,t) e XxR": 0 <t <c(x)}/ ~,

where ~ is the equivalence relation (x, c(x)) ~ (f(x), 0). The suspension
of f with ceiling function c is the semiflow ¢': X, — X given by ¢'(x, s) =
(f"(x),s"), where n and s’ satisfy

n—1

Zc(f’(x))—i—s’zt—f-s, 0 <s' <c(f'(x)).

i=0
In other words, flow along {x} x R* to (x, ¢(x)), then jump to ( f(x), 0) and
continue along { f(x)} x RT, and so on. See Figure 1.9. A suspension flow is
also called a flow under a function.
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'(a)

(2,00  (f(2),0) X

Figure 1.9. Suspension and cross-section.

Conversely, a cross-section of a flow or semiflow ¥/': Y — Yisasubset A C
Y with the following property: the set T, = {t € R*:y/'(y) € A} is a non-
empty discrete subset of R* for every y € Y. Fora € A, let t(a) = min T, be
the return time to A. Define the first return map g: A — Aby g(a) = ¥ (a),
i.e., g(a) is the first point after a in O;;(x) N A (see Figure 1.9). The first
return map is often called the Poincaré map. Since the dimension of the
cross-section is less by 1, in many cases maps in dimension n present the
same level of difficulty as flows in dimension #n + 1.

Suspension and cross-section are inverse constructions: the suspension of
g with ceiling function t is ¥', and X x {0} is a cross-section of ¢ with first
return map f. If ¢ is a suspension of f, then the dynamical properties of
f and ¢ are closely related, e.g., the periodic orbits of f correspond to the
periodic orbits of ¢. Both of these constructions can be tailored to specific
settings (topological, measurable, smooth, etc.).

As an example, consider the 2-torus T? = R?/Z* = §' x S!, with topo-
logy and metric induced from the topology and metric on R?. Fix @ € R, and
define the linear flow ¢: T> — T2 by

¢y (x,y) =(x+at,y+t)mod1.

Note that ¢/, is the suspension of the circle rotation R, with ceiling function 1,
and S' x {0} is a cross-section for ¢, with constant return time 7(y) = 1 and
first return map R,,. The flow ¢/, consists of left translations by the elements
g' = (at,t) mod 1, which form a one-parameter subgroup of T?.

Exercise 1.11.1. Show that if « is irrational, then every orbit of ¢, is dense
in T2, and if « is rational, then every orbit of ¢, is periodic.

Exercise 1.11.2. Let ¢' be a suspension of f. Show that a periodic orbit
of ¢' corresponds to a periodic orbit of f, and that a dense orbit of ¢’
corresponds to a dense orbit of f.
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*Exercise 1.11.3. Suppose 1, s, and as are real numbers that are linearly
independent over Q. Show that every orbit of the time s map ¢;, is dense in
T2

1.12 Chaos and Lyapunov Exponents

A dynamical system is deterministic in the sense that the evolution of the sys-
tem is described by a specific map, so that the present (the initial state) com-
pletely determines the future (the forward orbit of the state). At the same
time, dynamical systems often appear to be chaotic in that they have sensitive
dependence on initial conditions,i.e., minor changes in the initial state lead to
dramatically different long-term behavior. Specifically, a dynamical system
(X, f) has sensitive dependence on initial conditions on a subset X’ C X if
there is € > 0, such that for every x € X" and é > 0 there are ye Xand neN
for which d(x, y) <8 and d( f"(x), f"(y)) > €. Although there is no univer-
sal agreement on a definition of chaos, it is generally agreed that a chaotic
dynamical system should exhibit sensitive dependence on initial conditions.
Chaotic systems are usually assumed to have some additional properties,
e.g., existence of a dense orbit.

The study of chaotic behavior has become one of the central issues in
dynamical systems during the last two decades. In practice, the term chaos
has been applied to a variety of systems that exhibit some type of random
behavior. This random behavior is observed experimentally in some situ-
ations, and in others follows from specific properties of the system. Often
a system is declared to be chaotic based on the observation that a typical
orbit appears to be randomly distributed, and different orbits appear to be
uncorrelated. The variety of views and approaches in this area precludes a
universal definition of the word “chaos.”

The simplest example of a chaotic system is the circle endomorphism
(8!, E,,), m> 1 (81.3). Distances between points x and y are expanded by a
factor of m if d(x, y) < 1/(2m), so any two points are moved at least 1/2m
apart by some iterate of F,,, so E,, has sensitive dependence on initial con-
ditions. A typical orbit is dense (81.3) and is uniformly distributed on the
circle (Proposition 4.4.2).

The simplest non-linear chaotic dynamical systems in dimension one are
the quadratic maps g, (x) = ux(1—x), u >4, restricted to the forward in-
variant set A, C [0, 1] (see §1.5 and Chapter 7).

Sensitive dependence on initial conditions is usually associated with
positive Lyapunov exponents. Let f be a differentiable map of an open
subset U C R™ into itself, and let df(x) denote the derivative of f at x. For
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x € U and a non-zero vector v € R” define the Lyapunov exponent x(x, v)
by

—1 "
x(x,v) = nll)rrolo; log ||df" (x)v]|.

If f has uniformly bounded first derivatives, then x is well defined for every
x € U and every non-zero vector v.

The Lyapunov exponent measures the exponential growth rate of tangent
vectors along orbits, and has the following properties:

x(x, 2v) = x(x,v) for all real A /0,
x(x, v+ w) <max(x(x, v), x(x,w)), (1.1)
x(f(x), df(x)v) = x(x. v).

See Exercise 1.12.1.
If x(x,v) = x > 0 for some vector v, then there is a sequence n; — 0o
such that for every n > 0

ldf"i ()l = e ).

This implies that, for a fixed j, there is a point y € U such that

AP ), £ () = 56 M),

In general, this does not imply sensitive dependence on initial conditions,
since the distance between x and y cannot be controlled. However, most
dynamical systems with positive Lyapunov exponents have sensitive depen-
dence on initial conditions.

Conversely, if two close points are moved far apart by f”, by the interme-
diate value theorem, there must exist points x and directions v for which
ldf™"(x)v|| > ||v||. Therefore, we expect f to have positive Lyapunov expo-
nents if it has sensitive dependence on initial conditions, though this is not
always the case.

The circle endomorphisms E,,, m > 1,have positive exponents at all points.
A quadratic map q,,, i > 2 + +/5, has positive exponents at any point whose
forward orbit does not contain 0.

Exercise 1.12.1. Prove (1.1).
Exercise 1.12.2. Compute the Lyapunov exponents for E,,.

Exercise 1.12.3. Compute the Lyapunov exponents for the solenoid, §1.9.
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Exercise 1.12.4. Using a computer, calculate the first 100 points in the orbit
of +/2 — 1 under the map E,. What proportion of these points is contained

in each of the intervals [0, 1), [1, 3). [3, 3), and [2,1)?

1.13 Attractors

Let X be a compact topological space, and f: X — X be a continuous map.
Generalizing the notion of an attracting fixed point, we say that a compact
set C C Xis an attractor if there is an open set U containing C, such that
f(U)c U and C =), f"(U). 1t follows that f(C) = C, since f(C)=
N,=1 f"(U) C C;ontheotherhand, C =), f(U) = f(C),since f(U) C
U. Moreover, the forward orbit of any point x € U converges to C, i.e., for
any open set V containing C, there is some N > 0 such that f*(x) € V for
all n > N. To see this, observe that X is covered by V together with the
open sets X\ f*(U), n > 0. By compactness, there is a finite subcover, and
since f*(U) c f"~'(U), we conclude that there is some N > 0 such that
X=VU(X\fYU))foralln > N.Thus, f"(x) € f*(U)C Vforn> N.

The basin of attraction of C is the set BA(C) = |, f~"(U). The basin
BA(C) is precisely the set of points whose forward orbits converge to C
(Exercise 1.13.1).

An open set U C X such that U is compact and f(U) C U is called a
trapping region for f.If U is a trapping region, then (), f"(U) is an at-
tractor. For flows generated by differential equations, angl region with the
property that along the boundary the vector field points into the region is
a trapping region for the flow. In practice, the existence of an attractor is
proved by constructing a trapping region. An attractor can be studied ex-
perimentally by numerically approximating orbits that start in the trapping
region.

The simplest examples of attractors are: the intersection of the images
of the whole space (if the space is compact); attracting fixed points; and
attracting periodic orbits. For flows, the examples include asymptotically
stable fixed points and asymptotically stable periodic orbits.

Many dynamical systems have attractors of a more complicated nature.
For example, recall that the solenoid S (81.9) is a (hyperbolic) attractor for
(7, F).Locally, Sis the product of an interval with a Cantor set. The structure
of hyperbolic attractors is relatively well understood. However, some non-
linear systems have attractors that are chaotic (with sensitive dependence
on initial conditions) but not hyperbolic. These attractors are called strange
attractors. The best-known examples of strange attractors are the Hénon
attractor and the Lorenz attractor.
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The study of strange attractors began with the publication by E. N. Lorenz
in 1963 of the paper “Deterministic non-periodic flow” [Lor63]. In the pro-
cess of investigating meteorological models, Lorenz studied the non-linear
system of differential equations

x=o0(y—x),
y=Rx —y—xz, (1.2)
z=—-bz+ xy,

now called the Lorenz system. He observed that at parameter values o =
10, b = 8/3, and R = 28, the solutions of (1.2) eventually start revolving
alternately about two repelling equilibrium points at (£+/72, /72, 27).
The number of times the solution revolves about one equilibrium before
switching to the other has no discernible pattern. There is a trapping region
U that contains 0 but not the two repelling equilibrium points. The attractor
contained in U is called the Lorenz attractor. It is an extremely complicated
set consisting of uncountably many orbits (including a saddle fixed point at
0), and non-fixed periodic orbits that are known to be knotted [Wil84]. The
attractor is not hyperbolic in the usual sense, though it has strong expansion
and contraction and sensitive dependence on initial conditions. The attractor
persists for small changes in the parameter values (see Figure 1.10).
The Hénon map H = (£, g): R*? — R? is defined by

f(x,y)=a—by—x*
glx,y) =x,

where a and b are constants [Hén76]. The Jacobian of the derivative d H

Figure 1.10. Lorenz attractor.
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Figure 1.11. Hénon attractor.

equals b. If b A0, the Hénon map is invertible; the inverse is

(x, y)1=(y. (a —x = y*)/b).

The map changes area by a factor of ||, and is orientation reversing if b < 0.

For the specific parameter values a = 1.4 and b = —0.3, Hénon showed
that there is a trapping region U homeomorphic to a disk. His numerical
experiments suggested that the resulting attractor has a dense orbit and
sensitive dependence on initial conditions, though these properties have not
been rigorously proved. Figure 1.11 shows a long segment of an orbit starting
in the trapping region, which is believed to approximate the attractor. It is
known that for a large set of parameter values a € [1,2],b € [-1, 0], the
attractor has a dense orbit and a positive Lyapunov exponent, but is not
hyperbolic [BC91].

Exercise 1.13.1. Let A be an attractor. Show that x € B(A) if and only if
the forward orbit of x converges to A.

Exercise 1.13.2. Find atrappingregion for the flow generated by the Lorenz
equations with parameter values o = 10, b = 8/3, and R = 28.

Exercise 1.13.3. Find a trapping region for the Hénon map with parameter
valuesa =14, b = —0.3.

Exercise 1.13.4. Using a computer, plot the first 1000 points in an orbit of
the Hénon map starting in a trapping region.



CHAPTER TWO

Topological Dynamics

A topological dynamical system is a topological space X and either a contin-
uous map f: X — Xor a continuous (semi)flow f’ on X, i.e.,a (semi)flow f*
for which the map (¢, x)1 —f"(x) is continuous. To simplify the exposition, we
usually assume that X'is locally compact, metrizable, and second countable,
though many of the results in this chapter are true under weaker assumptions
on X. As we noted earlier, we will focus our attention on discrete-time sys-
tems, though all general results in this chapter are valid for continuous-time
systems as well.

Let X and Y be topological spaces. Recall that a continuousmap f: X—Y
is a homeomorphism if it is one-to-one and the inverse is continuous.

Let f: X — X and g: Y — Y be topological dynamical systems. A topo-
logical semiconjugacy from g to f is a surjective continuous map h: Y — X
such that foh = ho g. If his a homeomorphism, it is called a topological
conjugacy, and f and g are said to be topologically conjugate or isomorphic.
Topologically conjugate dynamical systems have identical topological prop-
erties. Consequently, all the properties and invariants we introduce in this
chapter, including minimality, topological transitivity, topological mixing,
and topological entropy, are preserved by topological conjugacy.

Throughout this chapter, a metric space X with metric d is denoted (X, d).
If x € Xand r > 0, then B(x, r) denotes the open ball of radius r centered
at x. If (X, d) and (Y, d") are metric spaces, then f: X — Y'is an isometry if
d'(f(x1), f(x2)) = d(x1, x,) for all x1, x, € X.

2.1 Limit Sets and Recurrence

Let f: X — X be a topological dynamical system. Let x be a point in X.
A point y € Xis an w-limit point of x if there is a sequence of natural num-
bers ny — oo (as k — o00) such that f"(x) — y. The w-limit set of x is the

28
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set w(x) = wy(x) of all w-limit points of x. Equivalently,

o) = J Fie).

neN i>n

If f is invertible, the a-limit set of x is a(x) = a r(x) = [ey Uisn ().
A pointin «(x) is an «-limit point of x. Both the «- and w-limit sets are closed
and f-invariant (Exercise 2.1.1).

A point x is called (positively) recurrent if x € w(x); the set R(f) of
recurrent points is f-invariant. Periodic points are recurrent.

A point x is non-wandering if for any neighborhood U of x there exists
n € Nsuch that f*(U)NU / = @. The set NW() of non-wandering points is
closed, f-invariant, and contains w(x) and «(x) for allx € X (Exercise 2.1.2).
Every recurrent point is non-wandering, and in fact R(f) c NW(f)
(Exercise 2.1.3); in general, however, NW( f) / &(f) (Exercise 2.1.11).

Recall the notation O(x) = |, f"(x) for an invertible mapping f, and

O7(x) = Upen, f"(®)-

PROPOSITION 2.1.1
1. Let f be a homeomorphism, y € O(x), and z € O(y). Then z € O(x).
2. Let fbeacontinuousmap, y € Ot (x),and z € O*(y). Thenz € O+ (x).

Proof. Exercise 2.1.7. O

Let X be compact. A closed, non-empty, forward f-invariant subset Y C
X is a minimal set for f if it contains no proper, closed, non-empty, forward
f-invariant subset. A compact invariant set Y'is minimal if and only if the for-
ward orbit of every point in Y'is dense in Y (Exercise 2.1.4). Note that a peri-
odic orbitis a minimal set. If X itselfis a minimal set, we say that f is minimal.

PROPOSITION 2.1.2. Let f: X — X be a topological dynamical system. If
Xis compact, then X contains a minimal set for f.

Proof. The proof is a straightforward application of Zorn’s lemma. Let
C be the collection of non-empty, closed, f-invariant subsets of X, with the
partial ordering given by inclusion. Then C is not empty, since X € C. Suppose
K C C is a totally ordered subset. Then any finite intersection of elements
of K is non-empty, so by the finite intersection property for compact sets,
MNkex K / = Whus, by Zorn’s lemma, C contains a minimal element, which
is a minimal set for f. O

In a compact topological space, every point in a minimal set is recurrent
(Exercise 2.1.4), so the existence of minimal sets implies the existence of
recurrent points.
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A subset A C N (or Z) is relatively dense (or syndetic) if there is k > 0 such
that{n,n+1,....,n+k}N A/ =f@ranyn. A point x € X is almost periodic
if for any neighborhood U of x, the set {i € N: f/(x) € U} is relatively dense
in N.

PROPOSITION 2.1.3. If X is a compact Hausdorff space and f: X — X is
continuous, then O*(x) is minimal for f if and only if x is almost periodic.

Proof. Suppose x is almost periodic and y € O+(x). We need to show that
x € O*(y). Let U be a neighborhood of x. There is an openset U’ C X, x €
U c U, and an open set V C X x X containing the diagonal, such that if
x1 € U'and (x1, x;) € V,then x, € U. Since x is almost periodic, thereis K € N
such that for every j € N we have that f/*k(x) € U’ for some 0 < k < K.
Let V' = ﬂlK: o f7'(V). Note that V' is open and contains the diagonal of
X x X. There is a neighborhood W > y such that W x W C V'. Choose n
such that f"(x) € W, and choose k such that f"**(x) € U’ with 0 < k < K.
Then ( f*(x), f*(y)) € V, and hence f*(y) e U.

Conversely, suppose x is not almost periodic. Then there is a neigh-
borhood U of x such that A= {i: f/(x) € U} is not relatively dense. Thus,
there are sequences ¢; € N and k; € N, k; — oo, such that f%*/(x) ¢ U for
j=0,...,k.Let ybe alimit point of { f*(x)}. By passing to a subsequence,
we may assume that f%(x) — y. Fix j € N. Note that f%+/(x) — f/(y),
and f%*i(x) ¢ U for i sufficiently large. Thus f/(y) ¢ U for all j € N, so
x ¢ O*(y), which implies that O*(x) is not minimal. O

Recall that an irrational circle rotation R, is minimal (81.2). Therefore
every point is non-wandering, recurrent, and almost periodic. An expanding
endomorphism E,, of the circle has dense orbits (81.3), but is not minimal
because it has periodic points. Every point is non-wandering, but not all
points are recurrent (Exercise 2.1.5).

Exercise 2.1.1. Show that the «- and w-limit sets of a point are closed in-
variant sets.

Exercise 2.1.2. Show that the set of non-wandering points is closed, is f-
invariant, and contains w(x) and «(x) for all x € X.

Exercise 2.1.3. Show that R(f) c NW(f).

Exercise 2.1.4. Let X be compact, f: X — X continuous.
(a) Show that Y C X is minimal if and only if w(y) = Y for every y € Y.
(b) Show that Y is minimal if and only if the forward orbit of every point
in Yis dense in Y.
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Exercise 2.1.5. Show that there are points that are non-recurrent and not
eventually periodic for an expanding circle endomorphism E,,.

Exercise 2.1.6. For a hyperbolic toral automorphism A: T? — T2, show
that:

(a) R(A) is dense, and hence NW(A) = T?, but

(b) R(A) / #.

Exercise 2.1.7. Prove Proposition 2.1.1.

Exercise 2.1.8. Prove that a homeomorphism f: X — X is minimal if
and only if for each non-empty open set U C X there is n € N, such that

Ui F4(U) = X.

Exercise 2.1.9. Prove that a homeomorphism f of a compact metric space
X is minimal if and only if for every € > 0 there is N = N(¢) € N, such that
for every x € Xthe set {x, f(x),..., fN(x)}is e-dense in X.

Exercise 2.1.10. Let f: X — Xand g: Y — Y be continuous maps of com-
pact metric spaces. Prove that O}, (x, y) = O} (x) x Og (y) if and only if
(x,8(1)) € Of,(x, y).

Assume that f and g are minimal. Find necessary and sufficient conditions
for f x g to be minimal.

*Exercise 2.1.11. Give an example of a dynamical system where NW( f) / C

R(f)-

2.2 Topological Transitivity

We assume throughout this section that X is second countable.

A topological dynamical system f: X — X is topologically transitive if
thereis a point x € X whose forward orbit is dense in X. If X hasno isolated
points, this condition is equivalent to the existence of a point whose w-limit
set is dense in X (Exercise 2.2.1).

PROPOSITION 2.2.1. Let f: X — X be a continuous map of a locally com-
pact Hausdorffspace X. Suppose that for any two non-empty open sets U and
V there is n € N such that f*(U)NV / = . Then f is topologically transitive.
Proof. The hypothesis implies that given any open set V C X, the set
Upen £7"(V) is dense in X, since it intersects every open set. Let {V;} be

a countable basis for the topology of X. Then Y =, U,y f"(Vi) is a
countable intersection of open, dense sets and is therefore non-empty by
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the Baire category theorem. The forward orbit of any point y € Y enters
each V;, hence is dense in X. O

In most topological spaces, existence of a dense full orbit for a home-
omorphism implies existence of a dense forward orbit, as we show in the
next proposition. Note, however, that density of a particular full orbit O(x)
does not imply density of the corresponding forward orbit Ot (x) (see
Exercise 2.2.2).

PROPOSITION 2.2.2. Let f: X — X be a homeomorphism of a compact
metric space, and suppose that X has no isolated points. If there is a dense full
orbit O(x), then there is a dense forward orbit Ot (y).

Proof. Since m = X, the orbit O(x) visits every non-empty open set U
at least once, and therefore infinitely many times because X has no isolated
points. Hence there is a sequence ny, with |ng| — oo, such that f"(x) e
B(x,1/k) for k e N, i.e., f*(x) — x as k — oo. Thus, f**/(x) — f!(x) for
any [ € Z. There are either infinitely many positive or infinitely many neg-
ative indices nyg, and it follows that either O(x) C O*(x) or O(x) C O~ (x).
In the former case, O*+(x) = X, and we are done. In the latter case, let
U, V be non-empty open sets. Since O~(x) = X, there are integers i <
j < 0 such that fi(x) e U and f/(x) € V,so fI=/(U)NV / = Mence, by
Proposition 2.2.1, f is topologically transitive. O

Exercise 2.2.1. Show that if X has no isolated points and O*(x) is dense,
then w(x) is dense. Give an example to show that this is not true if X has
isolated points.

Exercise 2.2.2. Give an example of a dynamical system with a dense full
orbit but no dense forward orbit.

Exercise 2.2.3. Is the product of two topologically transitive systems topo-
logically transitive? Is a factor of a topologically transitive system topologi-
cally transitive?

Exercise 2.2.4. Let f: X — X be a homeomorphism. Show that if f has
a non-constant first integral or Lyapunov function (81.10), then it is not
topologically transitive.

Exercise 2.2.5. Let f: X — X be a topological dynamical system with at
least two orbits. Show that if f has an attracting periodic point, then it is not
topologically transitive.

Exercise 2.2.6. Let « be irrational and f: T2 — T2 be the homeomor-
phism of the 2-torus given by f(x, y) = (x + &, x + y).
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(a) Prove that every non-empty, open, f-invariant set is dense, i.e., f is
topologically transitive.

(b) Suppose the forward orbit of (xo, yo) is dense. Prove that for ev-
ery y € S! the forward orbit of (xo, y) is dense. Moreover, if the set
Ureo fX(x0, yo) is e-dense, then | J}_, f*(x0, y) is e-dense.

(c) Prove that every forward orbit is dense, i.e., f is minimal.

2.3 Topological Mixing

A topological dynamical system f: X — Xis topologically mixing if for any
two non-empty opensets U, V C X, thereis N > Osuchthat f*(U)NV /=@
for n > N. Topological mixing implies topological transitivity by Proposi-
tion 2.2.1, but not vice versa. For example, an irrational circle rotation is
minimal and therefore topologically transitive, but not topologically mixing
(Exercise 2.3.1).

The following propositions establish topological mixing for some of the
examples from Chapter 1.

PROPOSITION 2.3.1. Any hyperbolic toral automorphism A: T?> — T? is
topologically mixing.

Proof. By Exercise 1.7.3, for each x € T?, the unstable manifold W*(x) of A
isdense in T2. Thus for every e > 0, the collection of balls of radius € centered
at points of W*(x) covers T?. By compactness, a finite subcollection of these
balls also covers T2. Hence, there is a bounded segment Sy C W¥(x) whose
e-neighborhood covers T?. Since group translations of T? are isometries, the
e-neighborhood of any translate L,Sy = g + Sy C W¥(g + x) covers T?. To
summarize: For every € > 0, there is L(€) > 0 such that every segment S of
length L(¢) in an unstable manifold is e-dense in T?, i.e.,d(y, S) < € for every
y e T?.

Let U and V be non-empty open sets in T2. Choose y € V and € > 0 such
that B(y, €) C V. The open set U contains a segment of length § > 0in some
unstable manifold W*(x). Let A, [A| > 1, be the expanding eigenvalue of A,
and choose N > 0 such that [A|V§ > L(¢). Then for any n > N, the image
A'U contains a segment of length at least L(¢) in some unstable manifold,
so A'U is e-dense in T? and therefore intersects V. |

PROPOSITION 2.3.2. The full two-sided shift (,,, o) and the full one-sided
shift (.}, o) are topologically mixing.

Proof. Recall from §1.4 that the topology on ¥, has a basis consisting
of open metric balls B(w,27) = {o": w; = w;, |i| <I}. Thus it suffices to
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show that for any two balls B(w,27) and B(w',27"), there is N > 0 such
that 0" B(w,27") N B(«',27"?) / =fbr n > N. Elements of 0" B(w, 2™ are
sequences with specified values in the places —n — [y, ..., —n + ;. Therefore
the intersection is non-empty when —n+1; < —h,ie,n> N=1 + 1, + 1.
This proves that (,,, o) is topologically mixing; the proof for (£}, o) is an
exercise (Exercise 2.3.4). O

COROLLARY 2.3.3. The horseshoe (H, f) (81.8) is topologically mixing.

Proof. The horseshoe (H, f) is topologically conjugate to the full two-shift
(X2, o) (see Exercise 1.8.3). O

PROPOSITION 2.3.4. The solenoid (S, F) is topologically mixing.

Proof. Recall (Exercise 1.9.2) that (S, F) is topologically conjugate to
(®, o), where

®={(¢): ¢ €S, ¢ =2¢is1. Vi) C[[S' =T,
i=0

and (¢, ¢1, P2, ...) »a—(2¢0, ®0, P1, - ..). Thus, it suffices to show that (P, «)
is topologically mixing. The topology in T has a basis consisting of open
sets [ 172, Ik, where the I;s are open in S! and all but finitely many are equal
toS. LetU=(Iyx I} x - x [ xS'xS'x--)ndand V= (Jy x J; x
—ox Jy x S'x S' x --.) N ®be non-empty open sets from this basis. Choose
m > 0 so that 2" Iy = S'. Then for n > m + [, the first n — m components of

a”(U):(Z”IOXZ”_llox coox Iyx I x oo x I x ST x St X )No
are S',soa"(U)NV /=0 O
Exercise 2.3.1. Show thata circle rotation is not topologically mixing. Show
that an isometry is not topologically mixing if there is more than one point

in the space.

Exercise 2.3.2. Show that expanding endomorphisms of S' are topologi-
cally mixing (see §1.3).

Exercise 2.3.3. Show that a factor of a topologically mixing system is also
topologically mixing.

Exercise 2.3.4. Prove that (X, o) is topologically mixing.
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2.4 Expansiveness

A homeomorphism f: X — Xis expansive if there is § > 0 such that for any
two distinct points x, y € X, there is some n € Z such that d( f"(x), f"(y)) >
3. A non-invertible continuous map f: X — X is positively expansive if there
is 6 > 0 such that for any two distinct points x, y € X, there is some n > 0
such thatd( f"(x), f"(y)) > 8. Any number § > 0 with this property is called
an expansiveness constant for f.

Among the examples from Chapter 1, the following are expansive (or
positively expansive): the circle endomorphisms E,, |m| > 2; the full and
one-sided shifts; the hyperbolic toral automorphisms; the horseshoe; and
the solenoid (Exercise 2.4.2). For sufficiently large values of the parameter
w, the quadratic map g, is expansive on the invariant set A ,. Circle rotations,
group translations, and other equicontinuous homeomorphisms (see §2.7)
are not expansive.

PROPOSITION 2.4.1. Let f be a homeomorphism of an infinite compact
metric space X. Then for every € > 0 there are distinct points xy, yo € X such
that d( f"(xo), f"(M)) < € foralln € Ny.

Proof [Kin90]. Fix € > 0. Let E be the set of natural numbers m for which
there is a pair x, y € X such that

dx,y)>e¢ and d(f"(x), f'(y))<e forn=1,...,m. (2.1)

Let M=supEif E /=0, anfl =0if E=0.
If M = oo, then for every m € N there is a pair x,,, y,, satisfying (2.1). By
compactness, there is a sequence my — oo such that the limits

fim s = Jim =
exist. By (2.1), d(x’, y') > € and, since f/ is continuous,
d(f1 &, f1GN) = Jim d(f7(on), 7 (vm)) < €

for every j € N. Thus, xo = f(x'), yo = f()') are the desired points.
Suppose now that M is finite. Since any finite collection of iterates of f is
equicontinuous, there is § > O such that if d(x, y) <8, then d( f"(x), f"(y)) <
e for0 < n < M;the definition of M thenimplies thatd( f~'(x), f~1(y)) < €.
By induction, we conclude that d( f~/(x), f~/(y)) < € for j € N whenever
d(x, y) < 8. By compactness, there is a finite collection B of open §/2-balls
that covers X. Let K be the cardinality of 5. Since X is infinite, we can
choose a set W C X consisting of K + 1 distinct points. By the pigeon-hole
principle, for each j € Z, there are distinct pointsa;, b; € Wsuch that f/(a;)
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and f/(b;) belong to the same ball B; € B, so d(f/(a;), f/(b;)) < §. Thus,
d(f"(a;), f"(bj)) < € for —oo < n < j. Since W is finite, there are distinct
X0, Yo € W such that

aj=xo and b; =y

for infinitely many positive j and hence d( f"(xo), f"(y)) <€ for all n> 0.
O

Proposition 2.4.1 is also true for non-invertible maps (Exercise 2.4.3).

COROLLARY 2.4.2. Let f be an expansive homeomorphism of an infinite
compact metric space X. Then there are xg, yo € X such that d( f"(xo),
f"(w)) = 0asn — oo.

Proof. Let§ > 0 be an expansiveness constant for f. By Proposition 2.4.1,
there are xp, yo € X such that d( f"(xo), f"(y)) < 8 for all n € N. Suppose
d(f"(x0), f"(3)) - 0. Then by compactness, there is a sequence n; — 0o
such that f"(xg) — x’ and f™(yy) — y’ with x’ / 3. Then f"%+t"(xy) —
f™(x") and f™*"(y) — f™(y’) for any m € Z. For k large, ny +m > 0 and
hence d( f"(x"), f™(y")) < 8 for all m € Z, which contradicts expansiveness.

O

Exercise 2.4.1. Prove that every isometry of a compact metric space to
itself is surjective and therefore is a homeomorphism.

Exercise 2.4.2. Show that the expanding circle endomorphisms E,,, |m| >
2, the full one- and two-sided shifts, the hyperbolic toral automorphisms,
the horseshoe, and the solenoid are expansive, and compute expansiveness
constants for each.

Exercise 2.4.3. Show that Proposition 2.4.1 is true for non-invertible con-
tinuous maps of infinite metric spaces.

2.5 Topological Entropy

Topological entropy is the exponential growth rate of the number of es-
sentially different orbit segments of length n. It is a topological invariant
that measures the complexity of the orbit structure of a dynamical system.
Topological entropy is analogous to measure-theoretic entropy, which we
introduce in Chapter 9.
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Let (X, d) be a compact metric space, and f: X — X a continuous map.
For each n € N, the function
dy(x, y) = max d(f*(x), f4(y))
<k=n—1
measures the maximum distance between the first n iterates of x and y. Each
d,isametricon X, d,, > d,_1,and d; = d. Moreover, the d; are all equivalent
metrics in the sense that they induce the same topology on X (Exercise 2.5.1).

Fix € > 0. A subset AC X is (n, €)-spanning if for every x € X there is
y € Asuchthatd,(x, y) < €. By compactness, there are finite (n, €)-spanning
sets. Let span(n, €, ) be the minimum cardinality of an (n, €)-spanning set.

A subset A C X is (n, €)-separated if any two distinct points in A are at
least € apartin the metricd,. Any (n, € )-separated setisfinite. Letsep(n, €, f)
be the maximum cardinality of an (n, €)-separated set.

Let cov(n, €, f) be the minimum cardinality of a covering of X by sets of
d,-diameter less than ¢ (the diameter of a set is the supremum of distances
between pairs of points in the set). Again, by compactness, cov(n, €, f) is
finite.

The quantities span(n, €, f), sep(n, €, f),andcov(n, €, f)count the num-
ber of orbit segments of length » that are distinguishable at scale €. These
quantities are related by the following lemma.

LEMMA 2.5.1. cov(n, 2¢, f) < span(n, ¢, f) <sep(n, ¢, f) < cov(n, ¢, f).

Proof. Suppose A isan (n, €)-spanning set of minimum cardinality. Then the
open balls of radius € centered at the points of A cover X. By compactness,
there exists €; < € such that the balls of radius €; centered at the points of
Aalso cover X. Their diameter is 2¢; < 2¢, so cov(n, 2¢, f) < span(n, ¢, f).

The other inequalities are left as an exercise (Exercise 2.5.2). O
Let
he(f)= lim - log(cov(n, €, f)). (2.2)
n—00

The quantity cov(n, €, f) increases monotonically as € decreases, so A.(f)
does as well. Thus the limit

htop = h(f) = Glilg hf(f)

exists;itis called the topological entropy of f.Theinequalitiesin Lemma2.5.1
imply that equivalent definitions of 4( ) can be given using span(n, €, f) or
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sep(n, €, f), i.e.,

h(f)= liI{)l+ n@o %log(span(n, € 1)) (2.3)
= lim lim 1log(sep(n € f)). (2.4)

e—>0t n—o0
LEMMA 2.5.2. The limit lim,_, rlllog(cov(n, €, ) = h(f) exists and is
finite.
Proof. Let U have d,,-diameter less than €, and V have d,-diameter less
than €. Then U N f~(V) has d,,.4,-diameter less than €. Hence

covim+n, €, f) <cov(m,e, f)-cov(n, e, f),

so the sequence a, = log(cov(n, ¢, f)) > 0 is subadditive. A standard
lemma from calculus implies that a,/n converges to a finite limit as n — oo
(Exercise 2.5.3). O

It follows from Lemmas 2.5.1 and 2.5.2 that the lim sups in Formulas (2.2),
(2.3), and (2.4) are finite. Moreover, the corresponding lim infs are finite, and

h(f)= 11r101+ hm —log(cov(n € f)) (2.5)
= lim lim ! log(span(n,e,f)) (2.6)

4
e—~>0" 500

= lim lim llog(sep(n, €, f)). 2.7)
e—>0" 500 N
The topological entropy is either +oco or a finite non-negative number.
There are dramatic differences between dynamical systems with positive
entropy and dynamical systems with zero entropy. Any isometry has zero
topological entropy (Exercise 2.5.4). In the next section, we show that topo-
logical entropy is positive for several of the examples from Chapter 1.

PROPOSITION 2.5.3. The topological entropy of a continuous map f: X —
Xdoes not depend on the choice of a particular metric generating the topology
of X.

Proof. Suppose d and d’ are metrics generating the topology of X. Fore > 0,
let 3(e) = sup{d'(x, y):d(x, y) < €}. By compactness, §(¢) — 0 as e — 0. If
U is a set of d,-diameter less than ¢, then U has d/-diameter at most §(¢).
Thus cov'(n, 8(¢), ) < cov(n, €, f), where cov and cov’ correspond to the
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metrics d and d’, respectively. Hence,

1 1
lim lim —log(cov'(n,§, f)) < lim lim —log(cov(n,e, f)).
§—0t n—oo n e—~>0t n—oo n

Interchanging d and d’ gives the opposite inequality. g

COROLLARY 2.5.4. Topological entropy is an invariant of topological con-
jugacy .

Proof. Suppose f: X — X and g:Y — Y are topologically conjugate dy-
namical systems, with conjugacy ¢: Y — X. Let d be a metric on X. Then
d'(y1, v2) = d(¢p(»1), $(¥2)) is a metric on Y generating the topology of Y.
Since ¢ is an isometry of (X, d) and (Y, d’), and the entropy is independent
of the metric by Proposition 2.5.3, it follows that 4( ) = h(g). O

PROPOSITION 2.5.5. Let f: X — Xbe a continuous map of a compact met-
ric space X.
1. h(f™)y=m-h(f)formeN.
2. If f is invertible, then h( f~') = h( f). Thus h(f™) = |m| - h( f) for all
meZ.
3. If A;,i=1,...,k are closed (not necessarily disjoint) forward f-
invariant subsets of X, whose union is X, then

h(f) = max h(f|4;).

In particular, if A is a closed forward invariant subset of X, then

h(flA) < h(f).
Proof. 1: Note that

max d(f"(x), f" (7)) = max d(f'(x). /().

Thus, span(n, €, f™) < span(mn, €, f),soh( f™) < m- h( f). Conversely, for
€ >0, there is §(¢) > O such that d(x, y) < 8(¢) implies that d( fi(x), fi(y)) <
e fori =0,...,m. Thenspan(n, §(¢), f™) > span(mn, €, f),so h(f™) > m-
h(f).

2: The nth image of an (n, €)-separated set for f is (n, €)-separated for
1, and vice versa.

3: Any (n, €)-separated set in A; is (n, €)-separated in X, so h( f|A;) <
h( f). Conversely, the union of (n, €)-spanning sets for the 4;s is an (7, €)-
spanning set for X. Thus if span,(n, €, f) is the minimum cardinality of an
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(n, €)-spanning subset of A;, then

k

span(n, €, f) < Zspani(n, &, f)<k- 1m}a)ispani(n, € f).
i=1 ==

Therefore,

1 1 1
lim —log (span(n, €, f)) < lim —logk+ lim —log <max span; (n, €, f))

n—>oo n—>oo n—>oo

1
=0+ max lim —log (span,(n, €, f))

1<i<k n—oo

The result follows by taking the limit as € — 0. O

PROPOSITION 2.5.6. Let (X, d~) and (Y, d¥) be compact metric spaces, and
f: X —> X, g Y — Y continuous maps. Then:

L. h(f x g)=h(f)+h(g); and
if g is a factor of f (or equivalently, f is an extension of g), then h( ) >

h(g).

Proof. To prove part 1, note that the metric d((x,y), (x’,y)) =
max{d¥(x, x'), d¥(y, y')} generates the product topology on X x Y, and

d((x, y), (', ) = max {d;X(x, x'). d; (v, ¥)}.

If U ¢ Xand V C Yhave diameters less than ¢, then U x V has d-diameters
less than €. Hence

cov(n, €, f x g) <cov(n, e, f)-cov(n,e,g),

so h(f x g) <h(f)+ h(g). On the other hand, if AC X and BC Y are
(n, €)-separated, then A x Bis (n, €)-separated for d. Hence

sep(n, €, f x g) >sep(n, ¢, ) -sep(n, ¢, g),

50, by (2.7), h(f x 8) = h(f) + h(g)
The proof of part 2 is left as an exercise (Exercise 2.5.5). O

PROPOSITION 2.5.7. Let (X, d) be a compact metric space, and f: X — X
an expansive homeomorphism with expansiveness constant 8. Then h( f) =

he(f) forany € < 6.

Proof. Fixy ande with0 < y <€ < §. We will show that h,, (f) = he(f).
By monotonicity, it suffices to show that h,, (f) < h.(f).

By expansiveness, for distinct points x and y, there is some i € Z such
that d(f'(x), fi(y)) > 8 > €. Since the set {(x,y) € Xx X:d(x,y) > y}
is compact, there is k= k(y,¢) € N such that if d(x,y)>y, then
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d( fi(x), fi(y)) > € for some |i| < k. Thus if Ais an (n, y)-separated set,
then f~%(A) is (n+ 2k, €)-separated. Hence, by Lemma 2.5.1, h.(f) >
hay (f)- O

REMARK 2.5.8. The topological entropy of a continuous (semi)flow can be
defined as the entropy of the time-1 map. Alternatively, it can be defined using
the analog dry, T > 0, of the metrics d,. The two definitions are equivalent
because of the equicontinuity of the family of time-t maps, t € [0, 1].

Exercise 2.5.1. Let (X, d) be a compact metric space. Show that the metrics
d; all induce the same topology on X.

Exercise 2.5.2. Prove the remaining inequalities in Lemma 2.5.1.

Exercise 2.5.3. Let {a,} be a subadditive sequence of non-negative real
numbers,i.e.,0 < a1, < a,, + a, for all m, n > 0. Show thatlim,,_, , a,/n =
inf,>0 a,/n.

Exercise 2.5.4. Show that the topological entropy of an isometry is zero.

Exercise 2.5.5. Let g: Y — Y be a factor of f: X — X. Prove that h(f) >
h(g).

Exercise 2.5.6. Let Y and Z be compact metric spaces, X =Y x Z, and
7 be the projection to Y. Suppose f: X — X is an isometric extension
of a continuous map g:Y — Y, ie., mo f=goxm and d(f(x1), f(x2)) =
d((x1), (x2)) for all x1, x, € Y with 7(x1) = 7w (x,). Prove that A( ) = h(g).

Exercise 2.5.7. Prove that the topological entropy of a continuously differ-
entiable map of a compact manifold is finite.

2.6 Topological Entropy for Some Examples

In this section, we compute the topological entropy for some of the examples
from Chapter 1.

PROPOSITION 2.6.1. Let A be a 2 x 2 integer matrix with determinant 1
and eigenvalues ), .~', with || > 1; and let A: T?> — T? be the associated
hyperbolic toral automorphism. Then h( A) = log |A|.

Proof. The natural projection : R> — R?/Z? = T? is a local homeomor-
phism, and 7 A= Ar. Any metric d on R? invariant under integer transla-
tions induces a metric d on T?, where d(x, y) is the d-distance between the
sets 77! (x) and 7 ~(y). For these metrics, 7 is a local isometry.

Let vy, v, be eigenvectors of A with (Euclidean) length 1 correspond-
ing to the eigenvalues A, A~!. For x, y € R?, write x — y = ajv; + ayv, and
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define d(x, y) = max(|ay|, |az|). This is a translation-invariant metric on R?.
A d-ball of radius € is a parallelogram whose sides are of (Euclidean) length
2¢ and parallel to v; and v,. In the metric d,, (defined for A), a ball of radius
€ is a parallelogram with side length 2¢|A| ™" in the v;-direction and 2¢ in the
vy-direction. In particular, the Euclidean area of a d,-ball of radius € is not
greater than 4€%|A|™". Since the induced metric d on T? is locally isometric
to d, we conclude that for sufficiently small €, the Euclidean area of a d,,-ball
of radius € in T2 is at most 4€2|A|~". It follows that the minimal number of
balls of d,-radius € needed to cover T? is at least

area(T?)/4e*|A|™" = |A|"/4€2.

Since a set of diameter € is contained in an open ball of radius €, we conclude
that cov(n, €, A) > |A|"/4€?. Thus, h( A) > log|A|.

Conversely, since the closed d,-balls are parallelograms, there is a tiling
of the plane by e-balls whose interiors are disjoint. The Euclidean area of
such a ball is Ce?|A|™", where C depends on the angle between v; and v,.
For small enough ¢, any e-ball that intersects the unit square [0, 1] x [0, 1]
is entirely contained in the larger square [—1, 2] x [—1, 2]. Therefore the
number of the balls that intersect the unit square does not exceed the area
of the larger square divided by the area of a d,-ball of radius €. Thus, the
torus can be covered by 94" /Ce? closed d,-balls of radius e. It follows that
cov(n, 2¢, A) < 91"/Ce?, so h(A) < log |A|. O

To establish the corresponding result in higher dimensions, we need some
results from linear algebra. Let B be a k x k complex matrix. If A is an
eigenvalue of B, let

Vi ={veCk(B—il)v=0forsomei e N}.
If Bisreal and y is a real eigenvalue, let
Vi=RNV, ={veR"(B—yl)v=0forsomei e N}.
If Bisreal and A, X is a pair of complex eigenvalues, let
VE=Rn(Vid V3).
These spaces are called generalized eigenspaces.

LEMMA 2.6.2. Let B be a k x k complex matrix, and A be an eigenvalue of
B. Then for every § > 0 there is C(8) > 0 such that

C(&)" (1Al = 8)"llvll < 1B™vll < C(8)(IA] + 8)"llvll

for every n € Nand every v € V.
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Proof. It suffices to prove the lemma for a Jordan block. Thus without loss
of generality, we assume that B has As on the diagonal, ones above and zeros
elsewhere. In this setting, V; = Ck and in the standard basis e, .. ., e, we
have Be; = Aejand Be; = Ae; +e;_q,fori =2, ..., k.For§ > 0,consider the
basis ey, 8ey, 8e3, . . ., ¥ Le;. In this basis, the linear map Bis represented by
the matrix

A B
A

Observe that By = Al + § A with || A| <1, where ||A| = sup, , pAvl/llv].
Therefore

(1A= 8)"Ivll < || Biv| < (141 + 8)"llv]l.

Since B; is conjugate to B, there is a constant C(§) > O that bounds the
distortion of the change of basis. |

LEMMA 2.6.3. Let B be a k x k real matrix and A an eigenvalue of B. Then
for every § > 0 there is C(8) > 0 such that

C) ' (IM = 8)"lvll < I1B"v]l < C)(IAl + 8)"[Iv]
foreveryn e Nand everyv € V; (if L e R) orevery v € V, ;5 (if L ¢ R).

Proof. If A isreal, then the result follows from Lemma 2.6.2. If A is complex,
then the estimates for V; and Vj from Lemma 2.6.2 imply a similar estimate
for V, 3, with a new constant C(8) depending on the angle between V; and
V; and the constants in the estimates for V; and V3 (since |A| = |A]). O

PROPOSITION 2.6.4. Let A be a k x k integer matrix with determinant 1
and with eigenvalues oy, . .., o, where

log] > log| = -+ > ol > 1> ogygt| = -+ > ol

Let A:T* — T* be the associated hyperbolic toral automorphism. Then
m
h(A) = Zlog i .
i=1

Proof. Let yi,...,y; be the distinct real eigenvalues of A, and Ay, A1, ...,
Ams» Am be the distinct complex eigenvalues of A. Then
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any vector v € R¥ can be decomposed uniquelyasv = vy +--- + v j+m With v;
in the corresponding generalized eigenspace. Given x, y € R¥,letv = x — y,
and define d(x, y) = max(Jvi|, ..., |vj+ml). This is a translation-invariant
metric on R¥, and therefore descends to a metric on TX. Now, using
Lemma 2.6.3, the proposition follows by an argument similar to the one
in the proof of Proposition 2.6.1 (Exercise 2.6.3). O

The next example we consider is the solenoid from §1.9.

PROPOSITION 2.6.5. Thetopological entropy of the solenoid map F: S — S
is log 2.

Proof. Recall from §1.9 that F is topologically conjugate to the automor-
phism o: & — &, where

® = {(#:)Zp: ¢ €[0,1), ¢ = 2641 mod 1},

and « is coordinatewise multiplication by 2 (mod 1). Thus, A(F) = h(«). Let
|x — y| denote the distance on S = [0, 1] mod 1. The distance function

o 1
¢, ¢) =3 5. \én =}l
n=0

generates the topology in @ introduced in §1.9.

Themapm: ® — S', (¢;)%,1 —#o, isasemiconjugacy froma to E>. Hence,
h(a) > h(E;) = log 2 (Exercise 2.6.1). We will establish the inequality 4(«) <
log 2 by constructing an (n, €)-spanning set.

Fixe > Oand choose k € Nsuch that 27k <€ /2.Forn € N,let A, C ® con-
sist of the 22 sequences ¥/ = (), where ¢/ = j - 27"+ ) mod 1, j =
0,...,2""% — 1. We claim that A, is (n, €)-spanning. Let ¢ = (¢;) be a point
in ®. Choose j € {0,...,2"t?k — 1} so that |¢; — j - 2-("+20)| < 2-(n+2k+1),
Then |¢ — /| < 25712-(m#2ktD) for 0 < i < k. It follows that for 0 < m < n,

L& 2 -2yl &2 — v
d(am(p,aml/f]):Z‘ ¢ wl|<2 |¢ wl|+i

i=0 Zi i=0 2i 2k
k_ Ak—in—(n+2k+1)
2k 1 1
<) tm e gT e

i=0

Thus d, (¢, ¥/) < €, s0 A, is (n, €)-spanning. Hence,

1
h(a) < lim —logcardA, = log?2.
n—oo n
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Note that a: ® — @ is expansive with expansiveness constant 1/3
(Exercise 2.6.4), so by Proposition 2.5.7, h.(«) = h(«) for any € < 1/3.

Exercise 2.6.1. Compute the topological entropy of an expanding endo-
morphism E,: S — S'.

Exercise 2.6.2. Compute the topological entropy of the full one- and two-
sided m-shifts.

Exercise 2.6.3. Finish the proof of Proposition 2.6.4.

Exercise 2.6.4. Prove that the solenoid map (§1.9) is expansive.

2.7 Equicontinuity, Distality, and Proximality’

In this section, we describe a number of properties related to the asymptotic
behavior of the distance between corresponding points on pairs of orbits.

Let f: X — X be ahomeomorphism of acompact Hausdorff space. Points
x,y € X are called proximal if the closure O((x, y)) of the orbit of (x, y)
under f x fintersects the diagonal A = {(z, z) € X x X: z € X}. Everypoint
is proximal to itself. If two points x and y are not proximal, i.e., if O((x, y)) N
A =, they are called distal. A homeomorphism f: X — X is distal if
every pair of distinct points x, y € X is distal. If (X, d) is a compact met-
ric space, then x, y € X are proximal if there is a sequence n, € Z such that
d(f"™(x), f™(y)) — 0 as k — oo; points x, y € X are distal if there is € > 0
such that d( f"(x), f"(y)) > € for all n € Z (Exercise 2.7.2)

A homeomorphism f of a compact metric space (X, d) is said to be
equicontinuous if the family of all iterates of f is an equicontinuous fam-
ily, i.e., for any € > 0, there exists § > 0 such that d(x, y) < § implies that
d(f*(x), f"(y)) < € for all n € Z. An isometry preserves distances and is
therefore equicontinuous. Equicontinuous maps share many of the dynam-
ical properties of isometries. The only examples from Chapter 1 that are
equicontinuous are the group translations, including circle rotations.

We denote by f x f the induced action of f in X x X, defined by

fx fley) = (f(x), f(»)-

PROPOSITION 2.7.1. An expansive homeomorphism of an infinite compact
metric space is not distal.

Proof. Exercise 2.7.1. O

1 Several arguments in this section were conveyed to us by J. Auslander.
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PROPOSITION 2.7.2. Equicontinuous homeomorphisms are distal.

Proof. Suppose the equicontinuous homeomorphism f: X — Xis not dis-
tal. Then there is a pair of proximal points x, y € X,sod( f™(x), f*(y)) — 0
for some sequence n; € Z. Let x, = f™(x) and yx = f™(y). Lete = d(x, y).
Then for any § > 0, there is some k€ N such that d(x, yx) <8, but
d(f~™(xx), f™(yx)) = €, so f is not equicontinuous. O

Distal homeomorphisms are not necessarily equicontinuous. Consider the
map F: T? — T? defined by

Xt —x+o modl,

y1 —x+y mod 1.

We view T? as the unit square with opposite sides identified and use the
metric inherited from the Euclidean metric. To see that this map is distal, let
(x, ), (x', y') be distinct points in T2. If x / #, then d(F"(x, y), F"(x', "))
is at least d((x, 0), (x',0)), which is constant. If x = x’, then d(F"(x, y),
F'(x',y")) =d((x,y), (x',¥)). Therefore, the pair (x, y), (x’, ') is distal. To
see that F' is not equicontinuous, let p = (0, 0) and g = (8, 0). Then for all
n, the difference between the first coordinates of F"(p) and F"(q) is 8. The
difference between the second coordinates of F"(p) and F"(q) is né as long
as né < 1/2. Therefore there are points that are arbitrarily close together
that are moved at least 1/4 apart, so F is not equicontinuous.

The preceding map is an example of a distal extension. Suppose a home-
omorphism g: Y — Y'is an extension of a homeomorphism f: X — X with
projection 7: Y — X. We say that the extension is distal if any pair of dis-
tinct points y, y' € Y with n(y) = m(y’) is distal. The map F: T? — T? in the
preceding paragraph is a distal extension of a circle rotation, with projection
on the first factor as the factor map. A straightforward generalization of the
argument in the previous paragraph shows that a distal extension of a distal
homeomorphism is distal. Moreover, as we show later in this section, any
factor of a distal map is distal. Thus, (Xi, fi) and (X2, f2) are distal if and
only if (X x X5, fi x f) is distal.

Similarly, 7: Y — Xis an isometric extension if d(g(y), g(y')) =d(y,y)
whenever 7 (y) = 7(y'). The extension 7: Y — X is an equicontinuous ex-
tension if for any € > 0, there exists § > 0 such that if 7n(y) = 7(y’) and
d(y,y') < 8, then d(g"(y), g"(y")) <€, for all n. An isometric extension
is an equicontinuous extension; an equicontinuous extension is a distal
extension.

To prove Theorem 2.7.4, we need the following notion: For asubset A C X
and a homeomorphism f: X — X, denote by f4 the induced action of f in
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the product space X4 (an element zof X*isa functionz: A — X, and f4(z) =
f o2z). We say that A C X is almost periodic if every z € X* with range A
is an almost periodic point of (X, f4). That is, A is almost periodic if for
every finite subset ay, ..., a, € A, and neighborhoods U; 3 ay, ..., U, > a,,
the set {k € Z: f¥(a;) € U;, 1 <i < n} is syndetic in Z. Every subset of an
almost periodic set is an almost periodic set. Note that if x is an almost
periodic point of f, then {x} is an almost periodic set.

LEMMA 2.7.3. Every almost periodic set is contained in a maximal almost
periodic set.

Proof. Let A be an almost periodicset, and C be a collection, totally ordered
by inclusion, of almost periodic sets containing A. The set [ Jo., C is an
almost periodic set and a maximal element of C. By Zorn’s lemma there is
a maximal almost periodic set containing A. O

THEOREM 2.7.4. Let f be a homeomorphism of a compact Hausdorff space
X Then every x € Xis proximal to an almost periodic point.

Proof. If x is an almost periodic point, then we are done, since x is proximal
to itself. Suppose x is not almost periodic, and let A be a maximal almost
periodic set. By definition, x ¢ A. Let z € X4 have range A, and consider
(x,2) € (X x X?). Let (xo, 20) be an almost periodic point (of (f x f4)) in
O(x, z). Since zis almost periodic, z € O(zp). Hence there is x’ € Xsuch that
(x’, z) is almost periodic and (x’, z) € O(x, z) (Proposition 2.1.1). Therefore
{x'} Urange(z) = {x'} U Ais an almost periodic set. Since A is maximal, x" €
A, i.e., x’ appears as one of the coordinates of z. It follows that (x’, x) €
O(x, x'), and x is proximal to x'. O

A homeomorphism f of acompact Hausdorff space X is called pointwise
almost periodic if every point is almost periodic. By Proposition 2.1.3, this
happens if and only if X'is a union of minimal sets.

PROPOSITION 2.7.5. Let f be a distal homeomorphism of a compact
Hausdorff space X. Then f is pointwise almost periodic.

Proof. Letx € X. Then, by Theorem 2.7.4, x is proximal to an almost peri-
odic y € X. Since f is distal, x = y and x is almost periodic. O

PROPOSITION 2.7.6. A homeomorphism of a compact Hausdorff space is
distal if and only if the product system (X x X, f x f) is pointwise almost
periodic.

Proof. If f is distal, so is f x f, and hence f x f is pointwise almost
periodic. Conversely, assume that f x f is pointwise almost periodic, and
let x, y € X be distinct points. If x and y are proximal, then there is z with
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(z,2) € O(x, y). Recall that O(x, y) is minimal (Proposition 2.1.3). Since
(x,y) ¢ O(z, z), we obtain a contradiction. O

COROLLARY 2.7.7. A factor of a distal homeomorphism f of a compact
Hausdorff space X is distal.

Proof. Let g:Y — Y be a factor of f. Then f x f is pointwise almost pe-
riodic by Proposition 2.7.6. Since (g x g) is a factor of f x f, it is pointwise
almost periodic (Exercise 2.7.5), and hence is distal. O

The class of distal dynamical systems is of special interest because it is
closed under factors and isometric extensions. The class of minimal distal sys-
tems is the smallest such class of minimal systems: According to Furstenberg’s
structure theorem [Fur63], every minimal distal homeomorphism (or flow)
can be obtained by a (possibly transfinite) sequence of isometric extensions
starting with the one-point dynamical system.

Exercise 2.7.1. Prove Proposition 2.7.1.

Exercise 2.7.2. Prove the equivalence of the topological and metric defini-
tions of distal and proximal points at the beginning of this section.

Exercise 2.7.3. Give an example of a homeomorphism f of a compact
metric space (X, d) such that d( f"(x), f"(y)) — 0 as n — oo for every pair
x,ye X

Exercise 2.7.4. Show that any infinite closed shift-invariant subset of %,,
contains a proximal pair of points.

Exercise 2.7.5. Prove that a factor of a pointwise almost periodic system is
pointwise almost periodic.

2.8 Applications of Topological Recurrence to Ramsey Theory?

In this section, we establish several Ramsey-type results to illustrate how
topological dynamics is applied in combinatorial number theory. One of the
main principles of the Ramsey theory is that a sufficiently rich structure is
indestructible by finite partitioning (see [Ber96] for more information on
Ramsey theory). An example of such a statement is van der Waerden’s
theorem, which we prove later in this section. We conclude this section by

2 The exposition in this section follows, to a large extent, [Ber00].
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proving a result in Ramsey theory about infinite-dimensional vector spaces
over finite fields.

THEOREM 2.8.1 (van der Waerden). For each finite partition 7. = U’,:’zl Sk,
one of the sets Sy contains arbitrarily long (finite) arithmetic progressions.

We will obtain van der Waerden’s theorem as a consequence of a general
recurrence property in topological dynamics.

Recall from §1.4 that =, = {1,2, ..., m}? with metric d(w, »') =27%,
where k= min{|i|: w; / &/}, is a compact metric space. The shift o: %, —
o, (cw); = wi41,1s a homeomorphism. A finite partition Z =  J;_, Sk can
beviewed asasequenceé € T, forwhichg = kifi € Sp.Let X=J2_ o'
be the orbit closure of & under o, and let Ay ={w e Xwy=k}. If w €
Ay, @ € X,andd(o', w) < 1,thenw’ € A;. Hence if there are integers p, g €
N and w € Xsuch that d(¢Pw, w) < 1for0 <i < q — 1, then thereisr € Z
suchthaté; = wofori =r,r + p,...,r +(q — 1) p. Therefore, Theorem2.8.1
follows from the following multiple recurrence property (Exercise 2.8.1).

PROPOSITION 2.8.2. Let T be a homeomorphism of a compact metric space
X Then for every € >0 and q € N there are p € N and x € X such that
d(T'P(x),x) <efor0<j<q.

We will obtain Proposition 2.8.2 as a consequence of a more general state-
ment (Theorem 2.8.3), which has other corollaries useful in combinatorial
number theory.

Let F be the collection of all finite non-empty subsets of N. For «, 8 € F,
we write « < B if each element of « is less than each element of 8. For a
commutative group G,amap T:F — G, o —,, defines an [P-system in G
if

y =Ty oo Ty

forevery{ii, ..., ix} € F;inparticular,ifo, 8 € Fanda N g = @, then T, p =
1, Tz. Every IP-system T is generated by the elements 7;,; € G,n € N.

Let Gbe a group of homeomorphisms of a topological space X. Forx € X,
denote by Gx the orbit of x under G. We say that G acts minimally on X if
for each x € X, the orbit Gx is dense in X.

THEOREM 2.8.3 (Furstenberg—Weiss [FW78]). Let G be a commutative
group acting minimally on a compact topological space X. Then for every
non-empty open set U C X, every n € N, every o € F, and any IP-systems
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TO, ..., T in G, there is B € F such that a < B and
1
untdWyn---nTU) / =0

Proof [Ber00]. Since G acts minimally, and X is compact, there are ele-
ments g1, ..., gm € Gsuch that [ J_, g:(U) = X (Exercise 2.8.2).

We argue by induction on n. For n = 1, let T be an [P-system and U C X
be open and not empty. Set Vy = U. Define recursively Vi = Tjg(Vie1) N
8i,(U), where iy is chosen so that 1 < iy < mand Ty (Vie1) N g, (U) / =By
construction, T{;}l(vk) C Vik-1 and Vi C g;, (U). In particular, by the pigeon-
hole principle, there are 1 <i < m and arbitrarily large p < g such that
V,UV, C gi(U).Choose psothat B ={p+1,p+2,...,q} > «. Then the
set W = g7 !(V,) c U is not empty, and

7;371(W) = gfl(T{;il} e T{;]l(\@)) - gfl(y—i;il}(vp+l)) cg'(V)cU.

Therefore, UNTg(U) D W / =0

Assume that the theorem holds true for any n IP-systemsin G.Let U C X
be open and not empty. Let 7)., T"+D be IP-systems in G. We will
construct a sequence of non-empty open subsets Vi C X and an increasing
sequence ay € F, ax > a, such that Vy = U, U?E(Y;f,f))‘l(vk) C Vi1, and
Vi C gi,(U) for some 1 < iy < m.

By the inductive assumption applied to Vo = U and the n IP-systems
(TC+)=17() j =1, ..., n, thereis a; > a such that

Vo n (TD) IOy n -0 (T8 T () / =0

Apply YZ,EI"H) and, for an appropriate 1 < i; < m, set

Vi=g, (V)N TP V) N TP (V) n--- N T (V) / =0

If Vk_1 and ak_; have been constructed, apply the inductive assumption to
Vi—1 and the IP-systems (7CtD)~1T7() j =1,...,n, to get ay > ag_; such
that

-1 -1
Vit N (T T T (Vi) 00 (T8 T T (Viey) / =0

Apply TOSZ'H) and, for an appropriate 1 < iy < m, set

Vi = &, (V) N TPV ) N TP (Vi) N N T D (Vi) / =0

By construction, the sequences aj and V have the desired properties. Since
Vi C & (U), there is 1 <i < m such that V; C g;(U) for infinitely many
k’s. Hence there are arbitrarily large p < ¢ such that V, UV, C g;(U). Let
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W:gi_](V,,)CU and B =ap U---Uay. Then W / =4, and for each
1<j<n+1,

(1) (W) = g7 (1) ' (V)

Qg1
() -1 _
Cg; 1(7;1(3-/31) (Vg-1) C - Cg; 1(Vp) cu.
Therefore U';i} Téj))*lW C U, and hence U:fﬁ(Tﬂ(j))*lU / = 0. O

COROLLARY 2.8.4. Let G be a commutative group of homeomorphisms
of a compact metric space X and let T, .. T pe IP-systems in G. Then
for every a € F and every € >0 there are x € X and B > «a such that
d(x, Y;él)(x)) <eforeachl <i <n.

Proof. Similarly to Proposition 2.1.2, there is a non-empty closed G-
invariant subset X’ C X on which G acts minimally (Exercise 2.8.3). Thus
the corollary follows from Theorem 2.8.3. |

Proof of Proposition 2.8.2. Let G = {T¥};z. For « € F, denote by || the
sum of the elements in o. Apply Corollary 2.8.4 to G, X, and the IP-systems
TV =T/l 1<j<q—1. O

The following generalization of Theorem 2.8.1 also follows from Corol-
lary 2.8.4.

THEOREM 2.8.5. Letd € N, and let A be a finite subset of Z°. Then for each

finite partition 74 = Ui Sk therearek € {1,...,m}, z € 74 andn € Nsuch
that zo + na € Sy foreacha € A, i.e, 20+ nAC S.
Proof. Exercise 2.8.5. O

Let Vr be an infinite vector space over a finite field F. A subset A C Vpis
a d-dimensional affine subspace if there are v € V¢ and linearly independent
X1,...,Xq € Vpsuch that A= v + Span(xy, ..., xg).

THEOREM 2.8.6 [GLR72], [GLR73). For each finite partition Vi = | J;—; Sk
one of the sets Sy contains affine subspaces of arbitrarily large (finite) dimen-
sion.

Proof ([Ber00]; see Theorem 2.8.3). We say that a subset L C Vr is mono-
chromatic of color jif L C §;.

Since Vp is infinite, it contains a countable subspace isomorphic to the
abelian group

Foo ={a= (a2, € F":a; = 0 for all but finitely many i € N}.
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Without loss of generality we assume that Vi = F,,. ThesetQ = {1, ..., m}
of all functions F, — {1, ..., m}is naturally identified with the set of all par-
titions of F, into msubsets. The discrete topology on {1, ..., m} and product
topology on 2 make it a compact Hausdorff space.

Let & € Q correspond to a partition F,, = [J;_; Sk, i.e., & Fy —
{1,...,m},&(a) = kif and only if a € S;. Each b € F, induces a homeomor-
phism 7;: Q@ — @, (Tyn)(a) = n(a+ b). Denote by X C Q the orbit closure
of &, X = {Upcp, o€} Similarly to the argument in the proof of Proposi-
tion 2.1.2, Zorn’s lemma implies that there is a non-empty closed subset
X' C X on which the group Fy, acts minimally.

Let g: F — F4 be an IP-system in F, such that the elements g,,n € N,
are linearly independent. Define an IP-system 7 of homeomorphisms of
X by setting 1, = T,. For each f e F, set ) = Ty, to get |F| = card F
IP-systems of commuting homeomorphisms of X. Let 0= (0,0, ...) be the
zero element of F, and A; = {n € Q:n(0) = i}. Then each A; is open and
Uf":] A; = Q. Therefore, thereis j € {1,...,m}suchthat U= A;NX /=0
By Theorem 2.8.3, there is f € F such that Uy = () . Télf)(U) / =Wne
Ui, thenn( fgg,) = jforeach f € F.In other words, n contains a monochro-
matic affine line of color j. Since the orbit of & is dense in X, there is
by € Fy such that £(fgg, +b1) = n(fgp ) = j. Thus, S; contains an affine
line.

To obtain a two-dimensional affine subspace in §; apply Theorem 2.8.3 to
Ui, B1 and the same collection of IP-systems to get B, > B; such that U, =
Nrer ngf )( U,) / = Bince gg, is linearly independent with every g,, a < f,
each n € U, contains a monochromatic two-dimensional affine subspace
of color j. Since 5 can be arbitrarily approximated by the shifts of &, the
latter also contains a monochromatic two-dimensional affine subspace of

color j.
Proceeding in this manner, we obtain a monochromatic subspace of
arbitrarily large dimension. O

Exercise 2.8.1. Prove Theorem 2.8.1 using Proposition 2.8.2.

Exercise 2.8.2. Prove that a group G acts minimally on a compact topo-
logical space X if and only if for every non-empty open set U C X there are
elements g1, ..., g, € Gsuch that | J_, g;(U) = X.

Exercise 2.8.3. Prove the following generalization of Proposition 2.1.2. If a
group G acts by homeomorphisms on a compact metric space X, then there
is a non-empty closed G-invariant subset X’ on which G acts minimally.
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Exercise 2.8.4. Prove that van der Waerden’s Theorem 2.8.1 is equivalent
to the following finite version: For each m, n € N there is k € N such that if
the set {1,2, ..., k} is partitioned into m subsets, then one of them contains
an arithmetic progression of length n.

*Exercise 2.8.5. For z € Z¢, the translation by zin Z¢ induces a homeomor-
phism (shift) 7,in £ = {1, ..., m}%'. Prove Theorem 2.8.5 by considering the
orbit closure under the group of shifts of the element £ € X corresponding
to the partition of Z¢ and the IP-systems in Z? generated by the translations
Ty, f € A.



CHAPTER THREE

Symbolic Dynamics

In §1.4, we introduced the symbolic dynamical systems (Z,,, o) and (X}, o),
and we showed by example throughout Chapter 1 how these shift spaces arise
naturally in the study of other dynamical systems. In all of those examples,
we encoded an orbit of the dynamical system by its itinerary through a finite
collection of disjoint subsets. Specifically, following an idea that goes back
to J. Hadamard, suppose f: X — X is a discrete dynamical system. Con-
sider a partition P = {P,, P», ..., Py} of X,ie, AU P U---U P, = X and
PN P;=¢fori / 3 For each x € X, let ¥;(x) be the index of the element
of P containing f?(x). The sequence (¥;(x))ien, is called the itinerary of x.
This defines a map

Vi X — T ={1,2,....m", x> (X)),

which satisfies ¥ o f = o o . The space T is totally disconnected, and the
map v usually is not continuous. If f isinvertible, then positive and negative
iterates of f define a similar map X — %,, = {1, 2, ..., m}%. The image of
¥ in ¥, or T} is shift-invariant, and ¢ semiconjugates f to the shift on
the image of . The indices v;(x) are symbols — hence the name symbolic
dynamics. Any finite set can serve as the symbol set, or alphabet, of a symbolic
dynamical system. Throughout this chapter, we identify every finite alphabet
with {1,2, ..., m}.
Recall that the cylinder sets

Cloroite — {a):(a)l):a)ni = Jj, i:l,...,k},
form a basis for the product topology of X, and X, and that the metric
dw, o) =27, where [ =min{|i[:ew; / &}
generates the product topology.

54
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3.1 Subshifts and Codes'’

In this section, we concentrate on two-sided shifts. The case of one-sided
shifts is similar.

A subshift is a closed subset X C X, invariant under the shift ¢ and its
inverse. We refer to X, as the full m-shift.

Let X; C X,,,i =1,2, be two subshifts. A continuous map c: X; — X,
is a code if it commutes with the shifts, i.e., 0 o ¢ = ¢ o o (here and later, o
denotes the shift in any sequence space). Note that a surjective code is a
factor map. An injective code is called an embedding; a bijective code gives
a topological conjugacy of the subshifts and is called an isomorphism (since
¥, is compact, a bijective code is a homeomorphism).

For a subshift X C %,,, denote by W, (X) the set of words of length n
that occur in X, and by |W,(X)| its cardinality. Since different elements of
X differ in at least one position, the restriction o | x is expansive. Therefore,
Proposition2.5.7 allows us to compute the topological entropy of o | x through
the asymptotic growth rate of |W,,(X)|.

PROPOSITION 3.1.1. Let X C X,, be a subshift. Then
1
h(o|x) = lim —log|W,(X)|.
n—oo n

Proof. Exercise 3.1.1. O

Let X be a subshift, k,/ e Ng,n =k+1[+1, and let ¢ be a map from
W,(X) to an alphabet A, . The (k,1) block code c, from X to the full shift
3, assigns to a sequence x = (x;) € X the sequence c¢,(x) with ¢,(x); =
a(Xi—g, -5 Xi, ..., X;i47). Any block code is a code, since it is continuous and
commutes with the shift.

PROPOSITION 3.1.2 (Curtis-Lyndon-Hedlund). Every code c: X — Y is a
block code.

Proof. Let A be the symbolset of Y, and define @: X — A by @(x) = c¢(x)o.
Since X is compact, & is uniformly continuous, so there is a § > 0 such that
@(x) = @(x’) whenever d(x, x') < 8. Choose k € Nsothat27% < §. Then a(x)

dependsonlyonx_g, ..., Xxo, ..., Xk, and therefore defines a map a: Wy —
A satistying c(x)o = a(x_k ... Xg ... xg). Since ¢ commutes with the shift, we
conclude that ¢ = ¢,. O

1 The exposition of this section as well as §3.2, §3.4, and 83.5 follows in part the lectures of
M. Boyle [Boy93].
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There is a canonical class of block codes obtained by taking the alphabet
of the target shift to be the set of words of length » in the original shift.
Specifically, let k,/ € N,/ < k, and let X be a subshift. For x € Xset

C(X),' = Xi—ktl4+1 - Xi o+ - Xitl, i €.

This defines a block code ¢ from X to the full shift on the alphabet Wj(X)
which is an isomorphism onto its image (Exercise 3.1.2). Such a code (or
sometimes its image) is called a higher block presentation of X.

Exercise 3.1.1. Prove Proposition 3.1.1.

Exercise 3.1.2. Prove that a higher block presentation of X is an isomor-
phism.

Exercise 3.1.3. Use a higher block presentation to prove that for any block
code ¢: X — Y, thereis asubshift Z and anisomorphism f: Z — X such that
co f+Z — Yisa(0,0) block code.

Exercise 3.1.4. Show that the full shift has points whose full orbit is dense
but whose forward orbit is nowhere dense.

3.2 Subshifts of Finite Type

The complement of a subshift X C %, is open and hence is a union of at
most countably many cylinders. By shift invariance, if C is a cylinder and
C C £,\X, then 6"(C) C X,\X for all n € Z, i.e., there is a countable list
of forbidden words such that no sequence in X contains a forbidden word
and each sequence in X,,\ X contains at least one forbidden word. If there
is a finite list of finite words such that X consists of precisely the sequences
in ¥, that do not contain any of these words, then X is called a subshift of
finite type (SFT); Xis a k-step SFT if it is defined by a set of words of length
at most k+ 1. A 1-step SFT is called a topological Markov chain.

In 8§1.4 we introduced a vertex shift % determined by an adjacency matrix
A of zeros and ones. A vertex shift is an example of an SFT. The forbidden
words have length 2 and are precisely those that are not allowed by A, i.e.,
a word uv is forbidden if there is no edge from u to v in the graph T'4
determined by A. Since the list of forbidden words is finite, X! is an SFT.
A sequence in X% can be viewed as an infinite path in the directed graph
" 4, labeled by the vertices.

An infinite path in the graph I'4 can also be specified by a sequence
of edges (rather than vertices). This gives a subshift £¢ whose alphabet is
the set of edges in I' 4. More generally, a finite directed graph I', possibly
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with multiple directed edges connecting pairs of vertices, corresponds to
an adjacency matrix B whose i, jth entry is a non-negative integer specify-
ing the number of directed edges in I' = I'g from the ith vertex to the jth
vertex. The set X% of infinite directed paths in I'g, labeled by the edges, is
closed and shift-invariant and is called the edge shift determined by B. Any
edge shift is a subshift of finite type (Exercise 3.2.3).

For any matrix A of zeros and ones, the map uv  —e, where e is the edge
from u to v, defines a 2-block isomorphism from X! to £¢. Conversely, any
edge shift is naturally isomorphic to a vertex shift (Exercise 3.2.4).

PROPOSITION 3.2.1. Every SFT is isomorphic to a vertex shift.

Proof. Let X be a k-step SFT with k > 0. Let Wi(X) be the set of words of
length k that occur in X. Let I" be the directed graph whose set of vertices
is Wi(X); a vertex x; ... x is connected to a vertex x| ...x; by a directed
edgeif x; ... xx;, = x1x] ... X3 € Wiy 1(X). Let A be the adjacency matrix of
. The code ¢(x); = x; ... X;1k—1 gives an isomorphism from Xto X%, O

COROLLARY 3.2.2. Every SFT is isomorphic to an edge shift.

The last proposition implies that “the future is independent of the past” in
an SFT; i.e., with appropriate one-step coding, if the sequences ...x_x_1xg
and xpx1x; ... are allowed, then ... x_x_1xpx1xz . .. is allowed.

Exercise 3.2.1. Show that the collection of all isomorphism classes of sub-
shifts of finite type is countable.

*Exercise 3.2.2. Show that the collection of all subshifts of ¥, is uncount-
able.

Exercise 3.2.3. Show that every edge shift is an SFT.

Exercise 3.2.4. Show that every edge shift is naturally isomorphic to a ver-
tex shift. What are the vertices?

3.3 The Perron-Frobenius Theorem

The Perron-Frobenius Theorem guarantees the existence of special invari-
ant measures, called Markov measures, for subshifts of finite type.

A vector or matrix all of whose coordinates are positive (non-negative)
is called positive (non-negative). Let A be a square non-negative matrix. If
for any i, j there is n € N such that (A");; > 0, then Ais called irreducible;
otherwise A is called reducible. If some power of A is positive, A is called
primitive.
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An integer non-negative square matrix A is primitive if and only if the
directed graph I' 4 has the property that there is # € N such that, for every
pair of vertices u and v, there is a directed path from u to v of length n (see
Exercise 1.4.2). An integer non-negative square matrix A is irreducible if
and only if the directed graph I' 4 has the property that, for every pair of
vertices u and v, there is a directed path from u to v (see Exercise 1.4.2).

A real non-negative m x m matrix is stochastic if the sum of the entries
in each row is 1 or, equivalently, the column vector with all entries 1 is an
eigenvector with eigenvalue 1.

THEOREM 3.3.1 (Perron). Let Abe a primitive m x m matrix. Then A has
a positive eigenvalue A with the following properties:

1. A is a simple root of the characteristic polynomial of A,

2. X has a positive eigenvector v,

3. any other eigenvalue of A has modulus strictly less than .,

4. any non-negative eigenvector of Ais a positive multiple of v.

Proof. Denote by int(W) the interior of a set W. We will need the following
lemma.

LEMMA 3.3.2. Let L: R¥ — R be a linear operator, and assume that there
is a non-empty compact set P such that 0 € int(P) and L'(P) C int(P) for
some i > 0. Then the modulus of any eigenvalue of L is strictly less than 1.

Proof. If the conclusion holds for L} with some i > 0, then it holds for L.
Hence we may assume that L(P) C int(P). It follows that L*( P) C int(P)
for all n > 0. The matrix L cannot have an eigenvalue of modulus greater
than 1, since otherwise the iterates of L would move some vector in the open
set int(P) off to oco.

Suppose that o is an eigenvalue of L and |o| = 1. If 6/ = 1, then L/ has
a fixed point on 9 P, a contradiction.

If o is not a root of unity, there is a 2-dimensional subspace U on which
L acts as an irrational rotation and any point p € 3 P N U is a limit point of
U,~0 L'(P), a contradiction. O

Since A is non-negative, it induces a continuous map f from the unit
simplexS={x e R": > x; =1, x; >0, j =1,..., m}intoitself; f(x)isthe
radial projection of Ax onto S. By the Brouwer fixed point theorem, there
is a fixed point v € S of f, which is a non-negative eigenvector of A with
eigenvalue A > 0. Since some power of A is positive, all coordinates of v are
positive.

Let V be the diagonal matrix that has the entries of v on the diagonal.
The matrix M = A~ V1 AV is primitive, and the column vector 1 with all
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entries 1 is an eigenvector of M with eigenvalue 1, i.e., M is a stochastic
matrix. To prove parts 1 and 3, it suffices to show that 1 is a simple root of
the characteristic polynomial of M and that all other eigenvalues of M have
moduli strictly less than 1. Consider the action of M on row vectors. Since
M is stochastic and non-negative, the row action preserves the unit simplex
S. By the Brouwer fixed point theorem, there is a fixed row vector w € §
all of whose coordinates are positive. Let P = § — w be the translation of S
by —w. Since for some j > 0 all entries of M/ are positive, M/(P) C int(P)
and, by Lemma 3.3.2, the modulus of any eigenvalue of the row action of M
in the (m — 1)-dimensional invariant subspace spanned by P is strictly less
than 1.

The last statement of the theorem follows from the fact that the
codimension-one subspace spanned by P is M'-invariant and its intersec-
tion with the cone of non-negative vectors in R” is {0}. |

COROLLARY 3.3.3. Let A be a primitive stochastic matrix. Then 1 is a simple
root of the characteristic polynomial of A, both A and the transpose of A
have positive eigenvectors with eigenvalue 1, and any other eigenvalue of A
has modulus strictly less than 1.

Frobenius extended Theorem 3.3.1 to irreducible matrices.

THEOREM 3.3.4 (Frobenius). Let A be a non-negative irreducible square
matrix. Then there exists an eigenvalue A of Awith the following properties:
(i) > > 0, (ii) A is a simple root of the characteristic polynomial, (iii) X has a
positive eigenvector, (iv) if u is any other eigenvalue of A, then || < A, (v) ifk
is the number of eigenvalues of modulus | 1|, then the spectrum of A (with mul-
tiplicity) is invariant under the rotation of the complex plane by angle 27 / k.

A proof of Theorem 3.3.4 is outlined in Exercise 3.3.3. A complete argu-
ment can be found in [Gan59] or [BPY%4].

Exercise 3.3.1. Show that if A is a primitive integral matrix, then the edge
shift X¢ is topologically mixing.

Exercise 3.3.2. Show that if A is an irreducible integral matrix, then the
edge shift X¢ is topologically transitive.

Exercise 3.3.3. This exercise outlines the main steps in the proof of
Theorem 3.3.4. Let A be a non-negative irreducible matrix, and let B be
the matrix with entries b;; = 0if a;; = 0 and b;; = 1if a;; > 0. Let I be the
graph whose adjacency matrix is B. For a vertex v in I, let d = d(v) be the
greatest common divisor of the lengths of closed paths in I starting from v.
LetV,,k=0,1,...,d— 1, be the set of vertices of I" that can be connected



60 3. Symbolic Dynamics

to v by a path whose length is congruent to £ mod d.

(a) Prove that d does not depend on v.

(b) Prove that any path of length / starting in Vj ends in V},, with m con-
gruent to k+/ mod d.

(c) Prove that there is a permutation of the vertices that conjugates B¢
to a block-diagonal matrix with square blocks B, k=0,1,...,d — 1,
along the diagonal and zeros elsewhere, each By being a primitive
matrix whose size equals the cardinality of V.

(d) What are the implications for the spectrum of A?

(e) Deduce Theorem 3.3.4.

3.4 Topological Entropy and the Zeta Function of an SFT

For an edge or vertex shift, dynamical invariants can be computed from
the adjacency matrix. In this section, we compute the topological entropy
of an edge shift and introduce the zeta function, an invariant that collects
combinatorial information about the periodic points.

PROPOSITION 3.4.1. Let A be a square non-negative integer matrix. Then
the topological entropy of the edge shift ¥, and the vertex shift X% equals the
logarithm of the largest eigenvalue of A.

Proof. We consider only the edge shift. By Proposition 3.1.1, it suffices to
compute the cardinality of W, (X ,4) (the words of length n in X 4), which is
the sum S, of all entries of A" (Exercise 1.4.2). The proposition now follows
from Exercise 3.4.1. O

For a discrete dynamical system f, denote by Fix( f) the set of fixed points
of f and by |Fix( f)] its cardinality. If |Fix( f")| is finite for every n, we define
the zeta function ¢ ;(z) of f to be the formal power series

(2 = exp Y FiX(f)IE
n=1

The zeta function can also be expressed by the product formula:

(=[]0~ )7

14

where the product is taken over all periodic orbits y of f, and |y| is the
number of points in y (Exercise 3.4.4). The generating function g(z) is
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another way to collect information about the periodic points of f:
o0
gr(z) =Y [Fix(f")|z".
n=1

The generating functionisrelated to the zeta function by ¢ ¢(z) = exp(zg'4(2)).

The zeta function of the edge shift determined by an adjacency matrix A
is denoted by ¢ 4. A priori, the zeta function is merely a formal power series.
The next proposition shows that the zeta function of an SFT is a rational
function.

PROPOSITION 3.4.2. ¢4(z) = (det(I — zA))~L.

Proof. Observe that

exp (Z ";) = exp(~log(1 ~x)) = 71—

n=1

and that [Fix(¢"| X 4)| = tr(A") = >, A", where the sum is over the eigenval-
ues of A, repeated with the proper multiplicity (see Exercise 1.4.2). There-
fore, if Ais N x N,

£4(2) = exp (i 2. %) =[]exp (i %) —[Ja-»"
n=1 i A n=1 A
1 1 -1 1 -1

O

The following theorem addresses the rationality of the zeta function for
a general subshift.

THEOREM 3.4.3 (Bowen-Lanford [BL70]). The zeta function of a subshift
X C %, is rational if and only if there are matrices A and B such that
|Fix(c"|x)| = trA" — tr B" for alln € Ny.

Exercise 3.4.1. Let A be a non-negative, non-zero, square matrix, S, the
sum of entries of A", and A the eigenvalue of A with largest modulus. Prove
that lim,,_, «, (log S,)/n = log A.

Exercise 3.4.2. Calculate the zeta and generating functions of the full
2-shift.

Exercise 3.4.3. Let A= (; }). Calculate the zeta function of X
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Exercise 3.4.4. Prove the product formula for the zeta function.

Exercise 3.4.5. Calculate the generating function of an edge shift with ad-
jacency matrix A.

Exercise 3.4.6. Calculate the zeta function of a hyperbolic toral automor-
phism (see Exercise 1.7.4).

Exercise 3.4.7. Prove that if the zeta function is rational, then so is the
generating function.

3.5 Strong Shift Equivalence and Shift Equivalence

We saw in §3.2 that any subshift of finite type is isomorphic to an edge shift ¢
for some adjacency matrix A. In this section, we give an algebraic condition
on pairs of adjacency matrices that is equivalent to topological conjugacy of
the corresponding edge shifts.

Square matrices A and B are elementary strong shift equivalent if there
are (not necessarily square) non-negative integer matrices U and V such
that A= UV and B = VU. Matrices A and B are strong shift equivalent if
there are (square) matrices Ay, ..., A, such that 4 = A, A, = B, and the
matrices A; and A;; are elementary strong shift equivalent. For example,
the matrices

110
1 1 1] and (3)

2 21

are strong shift equivalent but not elementary strong shift equivalent
(Exercise 3.5.1).

THEOREM 3.5.1 (Williams [Wil73]). The edge shifts ¢ and X, are topolog-
ically conjugate if and only if the matrices Aand B are strong shift equivalent.

Proof. We show here only that strong shift equivalence gives an isomor-
phism of the edge shifts. The other direction is much more difficult (see
[LMI5)).

It is sufficient to consider the case when A and B are elementary strong
shift equivalent. Let A=UV, B=VU, and ' 4, I g be the (disjoint) directed
graphs with adjacency matrices Aand B. If Ais k x kand Bis/ x [, then U
isk x land Visl x k. We interpret the entry U;; as the number of (additional)
edges from vertex i of I'4 to vertex j of I'p, and similarly we interpret
Vi as the number of edges from vertex j of I'p to vertex i of I' 4. Since
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a_q ag ay
O———>»- 00— >»> 00— O
v Vo U1
eee Ug Uy eee
—1 0

Figure 3.1. A graph constructed from an elementary strong shift equivalence.

Apg = le=1 U,;Vj,, the number of edges in I' 4 from vertex p to vertex q is
the same as the number of paths of length 2 from vertex p to vertex g through
a vertex in I'p. Therefore we can choose a one-to-one correspondence ¢
between the edges a of I" 4 and pairs uv of edges determined by U and V,
i.e., ¢(a) = uv, so that the starting vertex of u is the starting vertex of a, the
terminal vertex of u is the starting vertex of v, and the terminal vertex of v
is the terminal vertex of a. Similarly, there is a bijection i from the edges
b of I'p to pairs vu of edges determined by V and U. For each sequence
...a_1apa; ... € X4 apply ¢ to get

e gb(a,1)¢(ao)¢(a1) ce. = .. UV UgVOUIVY ...,
and then apply ¥ ~! to get ...b_1byb; ... € X4 with b; = ¥ ~1(v;ui1) (see
Figure 3.1). This gives an isomorphism from X¢ to 4. O

Square matrices A and B are shift equivalent if there are (not necessarily
square) non-negative integer matrices U, V, and a positive integer k (called
the lag) such that

Ak=UvV, BK=vuU, AU = UB, BV = VA.

The notion of shift equivalence was introduced by R. Williams, who con-
jectured that if two primitive matrices are shift equivalent, then they are
strong shift equivalent, or, in view of Theorem 3.5.1, that shift equivalence
classifies subshifts of finite type. K. Kim and F. Roush [KR99] constructed a
counterexample to this conjecture.

For other notions of equivalence for SFTs see [Boy93].

Exercise 3.5.1. Show that the matrices

110
A=|1 1 1] and B=(3)
2 21

are strong shift equivalent but not elementary strong shift equivalent. Write
down an explicit isomorphism from (X 4, o) to (X35, o).



64 3. Symbolic Dynamics

Exercise 3.5.2. Show that strong shift equivalence and shift equivalence
are equivalence relations and elementary strong shift equivalence is not.

3.6 Substitutions?

For an alphabet A,, = {0, 1, ..., m — 1}, denote by A, the collection of all
finite words in A, and by |w| the length of w € A%,. A substitution s: A, —
A%, assigns to every symbol a € A, a finite word s(a) € A},. We assume
throughout this section that |s(a)| > 1 for some a € A,,, and that |s"(b)| — oo
for every b € A,,. Applying the substitution to each element of a sequence
or a word gives maps s: A%, > A% ands: X — Z

XoX1 ... 1o (x0)s(x1) .. ..

These maps are continuous but not surjective. If s(a) has the same length
for all a € A,,, then s is said to have constant length.

Consider the example m =2, s(0) =01, s(1) = 10. We have: s2(0) =
0110, s3(0) = 01101001, s*(0) = 0110100110010110, .... If w is the word
obtained from w by interchanging 0 and 1, then s"*1(0) = 5"(0)s"(0). The
sequence of finite words s”(0) stabilizes to an infinite sequence

M = 01101001100101101001011001101001 . . .

called the Morse sequence. The sequences M and M are the only fixed
points of s in =1

PROPOSITION 3.6.1. Every substitution s has a periodic point in T},

Proof. Consider the map a 1 —s(a). Since A, contains m elements, there
aren € {1,...,m} and a € A, such that s"(a)y = a. If |s"(a)| = 1, then the
sequence aaa . .. is a fixed point of s”. Otherwise, |s"(a)| — oo, and the
sequence of finite words s (a) stabilizes to a fixed point of s” in . O

If a substitution s has a fixed point x = xox; ... € £} and |s(xp)| > 1, then
s(x0)o = xo and the sequence s"(xg) stabilizes to x; we write x = s%°(xp). If
|s(a)| > 1 for every a € A, then s has at most m fixed points in %,,,.

The closure Z;(a) of the (forward) orbit of a fixed point s°°(a) under the
shift o is a subshift.

We call a substitution s: A,, — A’ irreducible if for any a, b € A, there is
n(a, b) € N such that s"(“:P)(a) contains b;s is primitive if there is n € N such
that s”(a) contains b for all a, b € A,,.

We assume from now on that |s”(b)| — oo for every b € A,,.

2 Several arguments in this section follow in part those of [Que87].
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PROPOSITION 3.6.2. Lets be an irreducible substitution over A,,. If s(a)o =
a for some a € A, then s is primitive and the subshift (Z;(a), o) is minimal.

Proof. Observe that s"(a)y = a for all n € N. Since s is irreducible, for
every b € A, there is n(b) such that b appears in s"®)(a), and therefore
appears in s"(a) for all n > n(b). Hence, s"(a) contains all symbols from
A if n > N = maxn(b). Since s is irreducible, for every b € A, there is k(b)
such that a appears in s*(?)(b) and hence in s”(b) with n > k(b). It follows that
forevery c € A, s"(c) contains all symbols from A, if n > 2(N + max k(b)),
s0 s is primitive.

Recall (Proposition 2.1.3) that (£,(a), o) is minimal if and only if s*°(a) is
almost periodic, i.e., for every n € N the word s"(a) occurs in s*(a) infinitely
often, and the gaps between successive occurrences are bounded. This hap-
pens if and only if a recurs in s*°(a) with bounded gaps, which holds true
because s is primitive (Exercise 3.6.1). O

For two words u, v € A%, denote by N,(v) the number of times u occurs in
v. The composition matrix M = M(s) of a substitution s is the non-negative
integer matrix with entries M;; = N;(s(j)). The matrix M(s) is primitive
(respectively, irreducible) if and only if the substitution s is primitive (re-
spectively, irreducible). For a word w € A%, the numbers N;(w), i € A,
form a vector N(w) € R™. Observe that M(s") = (M(s))" for all n € N and
N(s(w)) = M(s)N(w). If s has constant length /, then the sum of every col-
umn of M is [ and the transpose of /~! M is a stochastic matrix.

PROPOSITION 3.6.3. Lets: A, — A%, be a primitive substitution, and let 1
be the largest in modulus eigenvalue of M(s). Then for every a € A,
1. lim,_ o A" N(s"(a)) is an eigenvector of M(s) with eigenvalue A,
5" (a)]
2. lim ———— =,
ws [s7(a)
3. v=1lim,_  |s"(a)| "' N(s"(a)) is an eigenvector of M(s) corresponding
to A, and Z:”;()l v = 1.
Proof. The proposition follows directly from Theorem 3.3.1 (Exercise 3.6.2).
O

PROPOSITION 3.6.4. Lets be a primitive substitution, s*(a) be a fixed point
of s, and I, be the number of different words of length n occurring in s*®(a).
Then there is a constant C such thatl,, < C - n for all n € N. Consequently, the
topological entropy of (2s(a), o) is 0.

Proof. Let v, = minsc4, |s¥(a)| and ¥y = max,c4, |s¥(a)|, and note that
v, Vx — oo monotonically in k. Hence for every n € Nthereis k = k(n) e N
such that v, _; <n <v,. Therefore, every word of length »n occurring in x
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is contained in s¥(ab) for a pair of consecutive symbols ab from x. Let A
be the maximal-modulus eigenvalue A of the primitive composition matrix
M = M(s). Then for every non-zero vector v with non-negative components
there are constants C;(v) and C,(v) such that for all k € N,

Ci()A* < | M*|| < Go(v)Ak,

where ||-|| is the Euclidean norm. Hence, by Proposition 3.6.3(1), there are
positive constants C; and G, such that for all k € N

C- A<y <t <G-Ak

Since for every a € A,, there are at most v, different words of length »n in
s¥(ab) with initial symbol in s*(a), we have

C C C
I, < m217k < Czkk 2 = (émﬁ) Cl)\k_l < (émﬁ) Ve < (émﬁ) n.
O
Exercise 3.6.1. Prove that if s is primitive and s(a)o = a, then each symbol
b € A, appears in s*(a) infinitely often and with bounded gaps.

Exercise 3.6.2. Prove Proposition 3.6.3.

3.7 Sofic Shifts

A subshift X C X, is called soficif it is a factor of a subshift of finite type, i.e.,
there is an adjacency matrix A and acode c: ¥4 — X suchthatcoo =0 oc.
Sofic shifts have applications in finite-state automata and data transmission
and storage [MRS95].

A simple example of a sofic shift is the following subshift of (X,, o), called
the even system of Weiss [Wei73]. Let A be the adjacency matrix of the graph
I" 4 consisting of two vertices u and v, an edge from u to itself labeled 1,
an edge from u to v labeled 0;, and an edge from v to u labeled 0, (see
Figure 3.2). Let X be the set of sequences of Os and 1s such that there is
an even number of Os between every two 1s. The surjective code c: X4 — X
replaces both 0; and 0, by 0.

As Proposition 3.7.1 shows, every sofic shift can be obtained by the fol-
lowing construction. Let I be a finite directed labeled graph, i.e., the edges
of T are labeled by an alphabet 4,,. Note that we do not assume that differ-
ent edges of I are labeled differently. The subset Xr C %, consisting of all
infinite directed paths in I' is closed and shift invariant.



3.8. Data Storage 67

Figure 3.2. The directed graph used to construct the even system of Weiss.

If a subshift (X, o) is isomorphic to (Xr, o) for some directed labeled
graph I', then we say that I is a presentation of X. For example, a presentation
for the even system of Weiss is obtained by replacing the labels 0; and 0,
with 0 in Figure 3.2.

PROPOSITION 3.7.1. A subshift X C £, is sofic if and only if it admits a
presentation by a finite directed labeled graph.

Proof. Since X is sofic, there is a matrix A and a code c: ¢ — X (see
Corollary 3.2.2). By Proposition 3.1.2, ¢ is a block code. By passing to a
higher block presentation we may assume that c is a 1-block code. Hence,
X admits a presentation by a finite directed labeled graph. The converse is
Exercise 3.7.2. O

Exercise 3.7.1. Prove that the even system of Weiss is not a subshift of finite
type.

Exercise 3.7.2. Prove that for any directed labeled graph T', the set X is a
sofic shift.

Exercise 3.7.3. Show that there are only countably many non-isomorphic
sofic shifts. Conclude that there are subshifts that are not sofic.

3.8 Data Storage®

Most computer storage devices (floppy disk, hard drive, etc.) store data as a
chain of magnetized segments on tracks. A magnetic head can either change
or detect the polarity of a segment as it passes the head. Since it is technically
much easier to detect a change of polarity than to measure the polarity, a
common technique is to record a 1 as a change of polarity and a 0 as no
change in polarity. The two major problems that restrict the effectiveness
of this method are intersymbol interference and clock drift. Both of these

3 The presentation of this section follows in part [BP94].
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problems can be ameliorated by applying a block code to the data before it
is written to the storage device.

Intersymbol interference occurs when two polarity changes are adjacent
to each other on the track; the magnetic fields from the adjacent positions
partially cancel each other, and the magnetic head may not read the track
correctly. This effect can be minimized by requiring that in the encoded
sequence every two 1s are separated by at least one 0.

A sequence of n0s with 1s on both ends is read off the track as two
pulses separated by n non-pulses. The length # is obtained by measuring the
time between the pulses. Every time a 1 is read, the clock is synchronized.
However, for a long sequence of 0s, clock error accumulates, which may
cause the data to read incorrectly. To counteract this effect the encoded
sequence is required to have no long stretches of Os.

A common coding scheme called modified frequency modulation (MFM)
inserts a 0 between each two symbols unless they are both 0s, in which case
it inserts a 1. For example, the sequence

10100110001
is encoded for storage as
100010010010100101001.

This requires twice the length of the track, but results in fewer read/write
errors. The set of sequences produced by the MFM coding is a sofic system
(Exercise 3.8.3).

There are other considerations for storage devices that impose additional
conditions on the sequences used to encode data. For example, the total
magnetic charge of the device should not be too large. This restriction leads
to a subset of (X, o) that is not of finite type and not sofic.

Recall that the topological entropy of the factor does not exceed the
topological entropy of the extension (Exercise 2.5.5). Therefore in any one-
to-one coding scheme, which increases the length of the sequence by a factor
of n > 1, the topological entropy of the original subshift must be not more
than n times the topological entropy of the target subshift.

Exercise 3.8.1. Prove that the sequences produced by MFM have at least
one and at most three Os between every two 1s.

Exercise 3.8.2. Describe an algorithm to reverse the MFM coding.

Exercise 3.8.3. Prove that the set of sequences produced by the MFM cod-
ing is a sofic system.



CHAPTER FOUR

Ergodic Theory

Ergodic! theory is the study of statistical properties of dynamical systems
relative to a measure on the underlying space of the dynamical system. The
name comes from classical statistical mechanics, where the “ergodic hypoth-
esis” asserts that, asymptotically, the time average of an observable is equal
to the space average. Among the dynamical systems with natural invariant
measures that we have encountered before are circle rotations (§1.2) and
toral automorphisms (§1.7). Unlike topological dynamics, which studies the
behavior of individual orbits (e.g., periodic orbits), ergodic theory is con-
cerned with the behavior of the system on a set of full measure and with the
induced action in spaces of measurable functions such as L? (especially L?).

The proper setting for ergodic theory is a dynamical system on a measure
space. Most natural (non-atomic) measure spaces are measure-theoretically
isomorphic to an interval [0, a] with Lebesgue measure, and the results in this
chapter are most important in that setting. The first section of this chapter
recalls some notation, definitions, and facts from measure theory. It is not
intended to serve as a complete exposition of measure theory (for a full
introduction see, for example, [Hal50] or [Rud87]).

4.1 Measure-Theory Preliminaries

A non-empty collection 2 of subsets of a set X is called a o-algebra if 2 is
closed under complements and countable unions (and hence countable in-
tersections). A measure 1 on 2 is a non-negative (possibly infinite) function
on A that is o-additive, i.e., u(|J; A)) = Y, n(A;) for any countable collec-
tion of disjoint sets A4; € 2. A set of measure 0 is called a null set. A set
whose complement is a null set is said to have full measure. The o-algebra

1 From the Greek words épyov, “work,” and d8og, “path.”
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is complete (relative to ) if it contains every subset of every null set. Given
a o-algebra 2l and a measure u, the completion 2 is the smallest o-algebra
containing 2 and all subsets of null sets in 2I; the o-algebra 2 is complete.

A measure space is a triple (X, 2, ), where X'is a set, 2 is a o-algebra
of subsets of X, and p is a o-additive measure. We always assume that 2 is
complete, and that u is o-finite, i.e., that X is a countable union of subsets
of finite measure. The elements of A are called measurable sets.

If u(X) =1, then (X, 2, w) is called a probability space and p is a proba-
bility measure. If u(X) is finite, then we can rescale u by the factor 1/u(X)
to obtain a probability measure.

Let (X, 2, u)and (Y, B, v) be measure spaces. The product measure space
is the triple (X x Y, €, u x v), where € is the completion relative to . x v of
the o-algebra generated by 2 x B.

Let (X, 2, n) and (Y, B, v) be measure spaces. A map 7: X — Yis called
measurable if the preimage of any measurable set is measurable. A measur-
able map T is non-singular if the preimage of every set of measure 0 has
measure 0, and is measure-preserving if (T~ (B)) = v(B) for every B € B.
A non-singular map from a measure space into itself is called a non-singular
transformation (or simply a transformation). If a transformation T preserves
a measure u, then u is called T-invariant. If T is an invertible measurable
transformation, and its inverse is measurable and non-singular, then the iter-
ates T", n € Z,form a group of measurable transformations. Measure spaces
(X, 2, w) and (Y, B, v) are isomorphic if there is a subset X’ of full measure
in X, a subset Y’ of full measure in Y, and an invertible bijection 7: X" — Y’
such that T and T~! are measurable and measure-preserving with respect
to (2, 1) and (B, v). An isomorphism from a measure space into itself is an
automorphism.

Denote by A the Lebesgue measure on R. A flow 7" on a measure space
(X, A, n) is measurable if the map T: X x R — X, (x,1)1 —F'(x), is measur-
able with respect to the product measure on X x R, and 7": X — Xis a
non-singular measurable transformation for each ¢ € R. A measurable flow
T' is a measure-preserving flow if each T' is a measure-preserving transfor-
mation.

Let T be a measure-preserving transformation of a measure space
(X, 2, u), and S a measure-preserving transformation of a measure space
(Y, B, v). We say that T is an extension of § if there are sets X’ ¢ X and
Y’ C Y of full measure and a measure-preserving map ¥: X’ — Y’ such that
¥ o T = §o . A similar definition holds for measure-preserving flows. If ¢
is an isomorphism, then 7 and § are called isomorphic. The product T x S
is a measure-preserving transformation of (X x Y, €, u x v), where € is the
completion of the o-algebra generated by 2 x B.
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Let X be a topological space. The smallest o-algebra containing all the
open subsets of X is called the Borel o-algebra of X. If 2 is the Borel o-
algebra, then a measure u on 2 is a Borel measure if the measure of any
compact set is finite. A Borel measure is regular in the sense that the measure
of any set is the infimum of measures of open sets containing it, and the
supremum of measures of compact sets contained in it.

A one-point subset with positive measure is called an atom. A finite mea-
sure space is a Lebesgue space if it is isomorphic to the union of an interval
[0, a] (with Lebesgue measure) and at most countably many atoms. Most nat-
ural measure spaces are Lebesgue spaces. For example, if X is a complete
separable metric space, u a finite Borel measure on X, and 2 the comple-
tion of the Borel o-algebra with respect to p, then (X, 2, ) is a Lebesgue
space. In particular, the unit square [0, 1] x [0, 1] with Lebesgue measure is
(measure-theoretically) isomorphic to the unit interval [0, 1] with Lebesgue
measure (Exercise 4.1.1).

A Lebesgue space without atoms is called non-atomic, and is isomorphic
to an interval [0, a] with Lebesgue measure.

A set has full measure if its complement has measure 0. We say a property
holds mod 0 in X, or holds for p-almost every (a.e.) x, if it holds on a subset
of full u-measure in X. We also use the word essentially to indicate that a
property holds mod 0.

Let (X, 2, 1) be a measure space. Two measurable functions are equiv-
alent if they coincide on a set of full measure. For p € (0, o), the space
LP(X, n) consists of equivalence classes mod 0 of measurable functions
f: X — Csuch that [ | f|?du < oco. As a rule, if there is no ambiguity, we
identify the function with its equivalence class. For p > 1, the L? norm is de-
fined by || fll, = (/| f17 dp)/P. The space L*(X, i) is a Hilbert space with
inner product (f, g) = [ f-gdu. The space L®(X, 1) consists of equiva-
lence classes of essentially bounded measurable functions. If w is finite, then
L>®(X, n) C LP(X, p) for all p > 0. If X is a topological space and u is a
Borel measure on X, then the space Cy( X, C) of continuous, complex-valued,
compactly supported functions on Xis dense in L”(X, u) for all p > 0.

Exercise 4.1.1. Prove that the unit square [0, 1] x [0, 1] with Lebesgue
measure is (measure-theoretically) isomorphic to the unit interval [0, 1] with
Lebesgue measure.

4.2 Recurrence

The following famous result of Poincaré implies that recurrence is a generic
property of orbits of measure-preserving dynamical systems.
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THEOREM 4.2.1 (Poincaré Recurrence Theorem). Let T be a measure-
preserving transformation of a probability space (X, 2, w). If Ais a measur-
able set, then for a.e. x € A, there is some n € N such that T"(x) € A. Conse-
quently, for a.e. x € A, there are infinitely many k € N for which T*(x) € A.

Proof. Let

B={xe A TKx) ¢ A forallke N} = A\ U1 4).
keN
Then B € 2, and all the preimages T—*(B) are disjoint, are measurable, and
have the same measure as B. Since X has finite total measure, it follows that
B has measure 0. Since every point in A\ B returns to A, this proves the first
assertion. The proof of the second assertion is Exercise 4.2.1. O

For continuous maps of topological spaces, there is a connection between
measure-theoretic recurrence and the topological recurrence introduced in
Chapter 2. If Xis a topological space, and p is a Borel measure on X, then
supp u (the support of n) is the complement of the union of all open sets
with measure 0 or, equivalently, the intersection of all closed sets with full
measure. Recall from 8§2.1 that the set of recurrent points of a continuous
map 7: X — Xis R(T) = {x € X:x € w(x)}.

PROPOSITION 4.2.2. Let X be a separable metric space, i a Borel proba-
bility measure on X, and f: X — X a continuous measure-preserving trans-
formation. Then almost every point is recurrent, and hence supp u C R(f).

Proof. Since X is separable, there is a countable basis {U; };z, for the topol-
ogy of X. A point x € X is recurrent if it returns (in the future) to every
basis element containing it. By the Poincaré recurrence theorem, for each
i, there is a subset U; of full measure in U; such that every point of U; returns
to U;. Then X; = U; U (X\U;) has full measure in X,s0 X = Nicz Xi = R(T)
has full measure in X. O

We will discuss some applications of measure-theoretic recurrence in
84.11.

Given a measure-preserving transformation 7 in a finite measure space
(X, 2, ) and a measurable subset A € A of positive measure, the derivative
transformation Ty: A — Ais defined by Ty(x) = T*(x), where k € N is the
smallest natural number for which 7%(x) € A. The derivative transformation
is often called the first return map, or the Poincaré map. By Theorem 4.2.1,
T4 is defined on a subset of full measure in A.

Let T be a transformation on a measure space (X, 2, 1), and f: X— Na
measurable function. Let Xy = {(x,k):x € X, 1 <k < f(x)} C Xx N. Let
2 ¢ be the o-algebra generated by the sets A x {k}, A€ 2, k € N, and define
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w (A x {k}) = n(A). Define the primitive transformation Ty: X; — X; by
Tr(x, k)= (x,k+1)if k < f(x) and Ty(x, f(x)) = (T(x),1). If u(X) < o0
and f e L'(X, 2, p), then pus(Xy) = [, f(x)du. Note that the derivative
transformation of 7y on the set X x {1} is just the original transformation 7.

Primitive and derivative transformations are both referred to as induced
transformations; we will encounter them later.

Exercise 4.2.1. Prove the second assertion of Theorem 4.2.1.

Exercise 4.2.2. Suppose T: X — X is a continuous transformation of a
topological space X, and p is a finite 7T-invariant Borel measure on X with
supp # = X. Show that every point is non-wandering and pu-a.e. point is
recurrent.

Exercise 4.2.3. Prove that if 7 is a measure-preserving transformation,
then so are the induced transformations.

4.3 Ergodicity and Mixing

A dynamical system induces an action on functions: 7 acts on a function f
by (T, f)(x) = f(T(x)). The ergodic properties of a dynamical system cor-
respond to the degree of statistical independence between f and T f. The
strongest possible dependence happens for an invariant function f(7(x)) =
f(x). The strongest possible independence happens when a non-zero L?
function is orthogonal to its images.

Let T be a measure-preserving transformation (or flow) on a measure
space (X, 2, u). A measurable function f: X — R is essentially T-invariant
if u({x € X: f(T'x) ~f(x)}) =0 for every t. A measurable set Ais essen-
tially T-invariant if its characteristic function 14 is essentially 7-invariant;
equivalently, if 4(7'(A) A A) =0 (we denote by A the symmetric differ-
ence, A A B= (A\B) U (B\A)).

A measure-preserving transformation (or flow) T is ergodic if any es-
sentially T-invariant measurable set has either measure 0 or full measure.
Equivalently (Exercise 4.3.1), T is ergodic if any essentially 7-invariant
measurable function is constant mod 0.

PROPOSITION 4.3.1. Let T be a measure-preserving transformation or flow
on afinite measure space (X, 2, n), andlet p € (0, 0o]. Then T is ergodic if and
only if every essentially invariant function f € LP(X, u) is constant mod 0.

Proof. If T is ergodic, then every essentially invariant function is con-
stant mod 0.
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To prove the converse, let f be an essentially invariant measurable func-
tion on X. Then for every M > 0, the function

| fx) it f(x) <= M,
Tu(x) = {o if f(x)> M

is bounded, is essentially invariant, and belongs to L?( X, u). Therefore it is
constant mod 0. It follows that f itself is constant mod 0. O

As the following proposition shows, any essentially invariant set or func-
tion is equal mod 0 to a strictly invariant set or function.

PROPOSITION 4.3.2. Let (X, 2, ) be a measure space, and suppose that
f: X — R is essentially invariant for a measurable transformation or flow
T on X. Then there is a strictly invariant measurable function f such that
f(x) = f(x) modO.

Proof. We prove the proposition for a measurable flow. The case of a mea-
surable transformation follows by a similar but easier argument and is left
as an exercise.

Consider the measurable map ®: X x R - R, ®(x,t) = f(T'x) — f(x),
and the product measure v = u X A in X x R, where A is Lebesgue mea-
sure on R. The set A= ®~!(0) is a measurable subset of X x R. Since f is
essentially T-invariant, for each ¢ € R the set

A ={(x.1) € (XxR): f(T'x) = f(x)}
has full u-measure in X x {¢}. By the Fubini theorem, the set
Af={xe X f(T'x) = f(x) forae.r € R}
has full u-measure in X. Set

Fx) = f(y) if T'x =y e Ay forsomet € R,
— 1o otherwise.

If T"x =y e Ay and T°x = z € Ay, then y and z lie on the same orbit, and
the value of f along this orbit is equal A-almost everywhere to f(y) and
to f(z),s0 f(y) = f(z). Therefore f is well defined and strictly T-invariant.

O

A measure-preserving transformation (or flow) T on a probability space
(X, 2, w) is called (strong) mixing if

lim p(T7(A) N B) = pu(A) - w(B)
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for any two measurable sets A, B € 2. Equivalently (Exercise 4.3.3), T is
mixing if

tim [ (') s du = [ rerdu- [ gyn

for any bounded measurable functions f, g.
A measure-preserving transformation 7 of a probability space (X, 2, )
is called weak mixing if for all A, B € ,

n—1

Jim 3T (A0 B) — () () =0

or, equivalently (Exercise 4.3.3), if for all bounded measurable functions

5 g

}’l

hm —
n—oo n
l

1
S| serenewan— [ san- [ gau| <o

0

A measure-preserving flow 77 on (X, 2, ) is weak mixing if for all A, B € 2

lim f (T (A) "\ B) — pu(A) - w(B)| ds =0,

or, equivalently (Exercise 4.3.3), if for all bounded measurable functions

5 g

hm
t—oo t

[ nr (X))g(X)dudS—/ feu- /ng’—0

In practice, the definitions of ergodicity and mixing in terms of I? func-
tions are often easier to work with than the definitions in terms of measurable
sets. For example, to establish a certain property for each L? function on a
separable topological space with Borel measure it suffices to do it for a count-
able set of continuous functions that is dense in I? (Exercise 4.3.5). If the
property is “linear”, it is enough to check it for a basis in I?, e.g., for the
exponential functions e**** on the circle [0, 1).

PROPOSITION 4.3.3. Mixing implies weak mixing, and weak mixing implies
ergodicity.

Proof. Suppose T is a measure-preserving transformation of the probability
space (X, 2, u). Let A and B be measurable subsets of X. If T is mixing,
then |u(T(A) N B) — u(A) - u(B)| converges to 0, so the averages do as
well; thus 7" is weak mixing.
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Let A be an invariant measurable set. Then applying the definition of
weak mixing with B = A, we conclude that u(A) = u(A)?,soeither u(A) = 1
or u(A) = 0. O

For continuous maps, ergodicity and mixing have the following topologi-
cal consequences.

PROPOSITION 4.3.4. Let X be a compact metric space, T: X — X a contin-
uous map, and  a T-invariant Borel measure on X.

1. If T is ergodic, then the orbit of -almost every point is dense in supp [

2. If T is mixing, then T is topologically mixing on supp [.
Proof. Suppose T is ergodic. Let U be a non-empty open set in supp u.
Then p(U) > 0. By ergodicity, the backward invariant set |,y 7-%(U) has
full measure. Thus the forward orbit of almost every point visits U. It follows
that the set of points whose forward orbit visits every element of a countable
open basis has full measure in X. This proves the first assertion.

The proof of the second assertion is Exercise 4.3.4. O

Exercise 4.3.1. Show that a measurable transformation is ergodic if and
only if every essentially invariant measurable function is constant mod 0
(see the remark after Corollary 4.5.7).

Exercise 4.3.2. Let T be an ergodic measure-preserving transformation
in a finite measure space (X, A, n), A€ A, u(A) > 0, and f e L'(X, A, 1),
f: X — N. Prove that the induced transformations 74 and T are ergodic.

Exercise 4.3.3. Show that the two definitions of strong and weak mixing
given in terms of sets and bounded measurable functions are equivalent.

Exercise 4.3.4. Prove the second statement of Proposition 4.3.4.

Exercise 4.3.5. Let T be a measure-preserving transformation of (X, 2, 1),
andlet f € L'(X, u)satisty f(T(x)) < f(x)fora.e. x. Prove that f(T(x)) =
f(x) for a.e. x.

Exercise 4.3.6. Let X be a compact topological space, i a Borel measure,
and T: X — X a transformation preserving p. Suppose that for every con-
tinuous f and g with 0 integrals,

/X F(T"(x) - g)du— 0 as n— oo,

Prove that T is mixing.
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Exercise 4.3.7. Show that if 7: X — X is mixing, then Tx T: X x X —
X x Xis mixing.

4.4 Examples
We now prove ergodicity or mixing for some of the examples from Chapter 1.

PROPOSITION 4.4.1. The circle rotation R, is ergodic with respect to
Lebesgue measure if and only if « is irrational.

Proof. Suppose « is irrational. By Proposition 4.3.1, it is enough to prove
that any bounded R, -invariant function f:S! — R is constant mod 0. Since
f € L2(S', 1), the Fourier series Y oo a,e’™™* of f converges to f in
the I? norm. The series Y oo a,e?""'“+®) converges to f o R,. Since f =
f o R, mod 0, uniqueness of Fourier coefficients implies that a, = a,e*""'*
for all n € Z. Since @ /1 for n /=0, we conclude that a, = 0 for n /0,
so f is constant mod 0.

The proof of the converse is left as an exercise. O

PROPOSITION 4.4.2. An expanding endomorphism E,: S' — S' is mixing
with respect to Lebesgue measure.

Proof. Since any measurable subset of S' can be approximated by a
finite union of intervals, it is sufficient to consider two intervals
A=[p/m,(p+1)/m], pe{0,....,m =1}, and B=[q/m/, (q+1)/m'],
q €10, ...,m/ —1}. Recall that E,!(B) is the union of m uniformly spaced
intervals of length 1/m/*!:

m—1

E'\(B) = (k! +q)/m/ ™!, (km! + g + 1)/m/*1].
k=0

Similarly, E,*(B) is the union of »" uniformly spaced intervals of length
1/m/*". Thusforn > i,theintersection A N E,"(B) consists of m"~ intervals
of length m~("+/)_ Thus

W(ANE,(B)) = m"(1/m"™)) = m™~) = u(A) - u(B). O

PROPOSITION 4.4.3. Any hyperbolic toral automorphism A: T" — T" is
ergodic with respect to Lebesgue measure.

Proof. We consider here only the case

_ 21 .2 2.
A_<1 1).’1r—>’1r,
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the argument in the general case is similar. Let f:T?> — R be a bounded A-
invariant measurable function. The Fourier series Yy, _ . dnne>™ ") of
f converges to fin L?. The series

00
Z amneZni(m(2x+y)+n(x+y))

m,n=—0o0

converges to f o A. Since f is invariant, uniqueness of Fourier coefficients
implies that @, = a@n-4n)(mn) for allm, n.Since A does nothave eigenvalues
on the unit circle, if a,,, /A0 for some (m, n) ~(0,0), thena;; = a,,, ~0 with
arbitrarily large |i| 4+ |j|, and the Fourier series diverges. O

A toral automorphism of T” corresponding to an integer matrix A
is ergodic if and only if no eigenvalue of A is a root of unity; for a proof
see, for example, [Pet89]. A hyperbolic toral automorphism is mixing
(Exercise 4.4.3).

Let A be an m x mstochastic matrix, i.e., A has non-negative entries, and
the sum of every row is 1. Suppose A has a non-negative left eigenvector ¢
with eigenvalue 1 and sum of entries equal to 1 (recall that if A isirreducible,
then by Corollary 3.3.3, g exists and is unique). We define a Borel probability
measure P = P4, 0n %, (and =) as follows: for a cylinder Cj oflength 1, we
define P(C}) = g;; for a cylinder Cfon;l """"" 'k"+k C T (or E*) withk+1 > 1
consecutive indices,

k—1
n,n+1,..., n+k
P(CR ™) = ap [ [ Ajsi-
i=0

In other words, we interpret g as an initial probability distribution on the
set {1,...,m}, and A as the matrix of transition probabilities. The number
P(C;?) is the probability of observing symbol j in the nth place, and A;; is
the probability of passing from i to j. The fact that ¢ A = g means that the
probability distribution q is invariant under transition probabilities A4, i.e.,

m—1
q; = Cn+l — Z P
i=0
The pair (A4, g) is called a Markov chain on the set {1, ..., m}.

It can be shown that P extends uniquely to a shift-invariant o-additive
measure defined on the completion € of the Borel o-algebra generated by the
cylinders (Exercise 4.4.5); it is called the Markov measure corresponding to
A and g. The measure space (%,,, €, P)is anon-atomic Lebesgue probability
space. If Ais irreducible, this measure is uniquely determined by A.
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A very important particular case of this situation arises when the transi-
tion probabilities do not depend on the initial state. In this case each row of
A is the left eigenvector g, the shift-invariant measure P is called a Bernoulli
measure, and the shift is called a Bernoulli automorphism.

Let A be the adjacency matrix defined by A;; = 0if A;; =0and A;; =1
if A;; > 0. Then the support of P is precisely X% C X,, (Exercise 4.4.6).

PROPOSITION 4.4.4. If Ais a primitive stochastic m x m matrix, then the
shift o is mixing in X, with respect to the Markov measure P(A).

Proof. Exercise 4.4.7. O

Markov chains can be generalized to the class of stationary (discrete)
stochastic processes, dynamical systems with invariant measures on shift
spaces with a continuous alphabet. Let (2, 2[, P) be a probability space.
A random variable on Q is a measurable real-valued function on Q. A se-

quence (f;)2_,, of random variables is stationary if, for any iy, ...,ix € Z

and any Borel subsets By, ..., By C R,
Ploe: fij(a))ij,j:l,...,k}:P{a)eQ: f,-jJrn(a))eB',j:l,...,k}.
Define the map ®: @ — R” by

(@) = (..., fa(®), filw), filw),...),

and the measure u on the Borel subsets of RZ by u(A) = P(d~'(A)). Since
the sequence ( f;) is stationary, the shift o: R* — R” defined by (ox),, = X,41
preserves u (Exercise 4.4.8).

Exercise 4.4.1. Prove that the circle rotation R, is not weak mixing.

Exercise 4.4.2. Let « € R be irrational, and let F: T?> — T? be the map
(x,y)1 <x+ o, x+y) mod 1 introduced in §2.4. Prove that F preserves
the Lebesgue measure and is ergodic but not weak mixing.

Exercise 4.4.3. Prove that any hyperbolic automorphism of T” is mixing.

Exercise 4.4.4. Show that an isometry of a compact metric space is not
mixing for any invariant Borel measure whose support is not a single point.
In particular, circle rotations are not mixing.

Exercise 4.4.5. Prove that any Markov measure is shift invariant.
Exercise 4.4.6. Prove that supp Py, = ZY.

Exercise 4.4.7. Prove Proposition 4.4.4.
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Exercise 4.4.8. Prove that the measure x on R? constructed above for a
stationary sequence ( f;) is invariant under the shift o.

4.5 Ergodic Theorems?

The collection of all orbits represents a complete evolution of the dynam-
ical system T. The values f(7"(x)) of a (measurable) function f may
represent observations such as position or velocity. Long-term averages
% ZZ;& f(T*(x)) of these quantities are important in statistical physics and
other areas. A central question in ergodic theory is whether these averages
converge asn — oo and, if so, whether the limit depends on x. In the context
of statistical physics, the ergodic hypothesis states that the asymptotic time
average lim,.,(1/n) Y-4=y f(T*(x)) equals the space average | + fdu for
a.e. x. We show that this happens if 7 is ergodic.

Let (X, 2, u) be a measure space and 7: X — X a measure-preserving
transformation. For a measurable function f: X — C set (Urf)(x) =
f(T(x)). The operator Uy is linear and multiplicative: Ur(f -g) = Urf -
Urg. Since T is measure-preserving, Uy is an isometry of LP(X, 2, ) for
any p > 1,ie., |Ur fll, = | fll, for any f € L? (Exercise 4.5.3). If T'is an
automorphism, then U; ! = Uy is also an isometry, and hence Ur is a uni-
tary operator on I2(X, 2, u). We denote the scalar product on I2(X, 2L, i)
by (f, g), the norm by |.||, and the adjoint operator of U by U*.

LEMMA 4.5.1. Let U be an isometry of a Hilbert space H. Then Uf = f if
and only if U* f = f.

Proof. Forevery f, g€ Hwehave (U*Uf, g) = (Uf, Ug) = (f, g) and hence
U*Uf = f. If Uf = f, then (multiplying both sides by U*)U*f = f.
Conversely, if U*f=f, then (f,Uf)=(U*f, f)=|fI*> and (Uf, f)=
(LU f) =1fI?. Therefore (Uf — fUf — f)=IUfIP - (£ Uf) -
(Uf, H+If1>=o0. u

THEOREM 4.5.2 (von Neumann Ergodic Theorem). Let U be an isometry
of a separable Hilbert space H, and let P be orthogonal projection onto the
subspace I = {f € H:Uf = f} of U-invariant vectors in H. Then for every
feH

1 n—1 )

lim =Y "U'f = Pf.

n—oo n 4 g
=l

2 Several proofs in this section are due to F. Riesz; see [Hal60].
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Proof. LetU, = % Zf:_(} U'and L = {g — Ug: g € H}.Note that Land I are
U-invariant, and I is closed. If f =g — Ug € L,then Y./ U' f = g — U"g
andhence U, f — Oasn — oco.If f € I,then U, f = fforalln € N. We will
show that L 1. / and H = L& I, where L is the closure of L.

Let { fi} be a sequence in L, and suppose fi — f € L. Then |U, f| <
1Ua(f = Fll + 1Un fill < 1Uall- 1 f = fill + Uy fil, and hence Uy f — 0
asn — oo.

Let L denote the orthogonal complement, and note that Lt = L*. If
he Lt then0 = (h,g — Ug) = (h— U*h, g) for all g € H so that h = U*h,
and hence Uh = h, by Lemma 4.5.1. Conversely (again using Lemma 4.5.1),
ifh € I,then (h,g — Ug) = (h, g) — (U*h, g) = Oforevery g € H,and hence
he L

Therefore, H = L& I, and lim,,_., U, is the identity on I and 0 on L.

|

The following theorem is an immediate corollary of the von Neumann
ergodic theorem.

THEOREM 4.5.3. Let T be a measure-preserving transformation of a finite
measure space (X, 2, j1). For f € (X, 2, w), set

1 N-1
N =5 2 F(T"().
n=0

Then fy converges in L*(X, 2, i) to a T-invariant function f.

If T is invertible, then fy(x)= % Zy],\:ol f(T7(x)) also converges in
L2(X. 2, ) to f.

Similarly, let T be a measure-preserving flow in a finite measure space
(X, 2, w). For a function f € L*(X, %, ) set

1 [7 1 /7
F@=1 [ ATy and g = [ @@
T Jo T Jo
Then f; and f- converge in [*(X, %, ) to a T-invariant function f. O

Our next objective is to prove a pointwise version of the preceding theo-
rem. First, we need a combinatorial lemma. If a4, ..., a,, are real numbers
and 1 < n < m, we say that ay is an n-leader if ay + - - - + ax4p,—1 > 0 for some
p,l<p=<n

LEMMA 4.5.4. For every n, 1 <n < m, the sum of all n-leaders is non-
negative.
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Proof. If there are no n-leaders, the lemma is true. Otherwise, let a; be the
first n-leader, and p > 1be the smallestinteger for whichay + - - - + ax4p—1 >
0.Ifk<j<k+4+p—1,thena;+- -+ arp—1 >0, by the choice of p, and
hence a; is an n-leader. The same argument can be applied to the sequence
Qk+p, - - - » m, Which proves the lemma. O

THEOREM 4.5.5 (Birkhoff Ergodic Theorem). Let T be ameasure-preserving
transformation in a finite measure space (X, 2, ), and let f € L'(X, A, p).
Then the limit

_ . 1 n—1 X
fx) = lim — ; F(T )
exists for a.e. x € X, is p-integrable and T-invariant, and satisfies

[ ean= [ s

If. in addition, f e [*(X, %A, n), then by Theorem 4.5.3, f is the orthogonal
projection of f to the subspace of T-invariant functions.

If T is invertible, then % Z;(l) F(T~*(x)) also converges almost everywhere
to f.

Similarly, let T be a measure-preserving flow in a finite measure space
(X, A, ). Then

=1 [ e ad fow=1 [

converge almost everywhere to the same u-integrable and T-invariant limit

function f, and [, f(x)dpu = [, f(x)dp.

Proof. We consider only the case of a transformation. We assume without
loss of generality that f is real-valued. Let

A={x e X f(x)+ f(T(x))+---+ f(T*(x)) > 0 for some k € Ny}.

LEMMA 4.5.6 (Maximal Ergodic Theorem). [, f(x)du > 0.

Proof. Let A4, ={x e X' Zf;o f(T'(x)) > 0 for some k, 0 < k < n}. Then
A, C Ayy1, A=,y An and, by the dominated convergence theorem, it
suffices to show that fAn f(x)dp > 0 for each n.

Fix an arbitrary m € N. Let s,(x) be the sum of the n-leaders in the
sequence f(x), f(T(x)),..., fF(T™"(x)). For k<m—1, let B C X be
the set of points for which f(7*(x)) is an n-leader of this sequence. By
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Lemma 4.5.4,

m+n—1

< Sl X = kx . .
O_Ln()du > kaf(T())du (4.1)

Note that x € By if and only if T(x) € By_i. Therefore, By = T~'(B;_1) and
B, = T7%(By) for 1 < k <m—1, and hence

Fr du = [ S @)= /BO £ d.

By

Thus the first m terms in (4.1) are equal, and since By = A,,
m [ g dien [ 1 =0.

Since m is arbitrary, the lemma follows. O

Now we can finish the proof of the Birkhoff ergodic theorem. For any
a,beR, a <b, the set

n—1 n—1
X(a,b) = [x € X: lim 12 f(T'(x)) <a <b < lim 12 (T (x))
n—oo 1 =5 s (e

is measurable and T-invariant. We claim that w(X(a, b)) = 0. Apply
Lemma 4.5.6 to T x5 and f — b to obtain that fX(a!b)(f(x) —b)du > 0.
Similarly, [y, (@ — f(x))dn = 0, and hence [y, , (a —b)du = 0. There-
fore p(X(a, b)) = 0. Since a and b are arbitrary, we conclude that the aver-
ages % 27;01 f(T'(x)) converge for a.e. x € X.

For n e N, let f,(x) = LY f(T'(x)). Define f: X - R by f(x) =
lim, . fu(x). Then f is measurable, and f, converges a.e. to f. By Fatou’s
lemma and invariance of u,

lim | f,(x)lgdp < lim |fn(x)| dp

X n—oo n—oo J X

. 1 n—1 .
< lim > [T @)1di = [ 1@ du
n—oo N im0/ X X
Thus [, | f(x)|du = [, lim| f,(x)| dp is finite, so f is integrable.
The proof that [, f(x)du = [, f(x)du is left as an exercise (Exer-
cise 4.5.2). g

The following facts are immediate corollaries of Theorem 4.5.5 (Exer-
cise 4.5.4, Exercise 4.5.5).
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COROLLARY 4.5.7. A measure-preserving transformation T in a finite mea-
sure space (X, 2, ) is ergodic if and only if for each f € L'(X, 2, 1)

lim 1 S f(T(x)) = ;/ f(x)dp fora.e.x 4.2)
n—o0 n 4 w(X) Jx ’

i.e, if and only if the time average equals the space average for every L!
function. O

The preceding corollary implies that to check the ergodicity of a measure-
preserving transformation, it suffices to verify (4.2) for a dense subset of
LY(X, 2, u), e.g., for all continuous functions if X is a compact topological
space and p is a Borel measure. Moreover, due to linearity it suffices to check
the convergence for a countable collection of functions that form a basis.

COROLLARY 4.5.8. A measure-preserving transformation T of a finite mea-
sure space (X, U, w) is ergodic if and only if for every A€ 2, fora.e. x € X,

lim Zx (T = 4.

where x 4 is the characteristic function of A. O

Exercise 4.5.1. Let T be a measure-preserving transformation of a finite
measure space (X, 2, u). Prove that T is ergodic if and only if

n—->oo n

n—1
lim = u(T75(A) N B) = u(A) - u(B)
=0

for any A, B € 2.

Exercise 4.5.2. Using the dominated convergence theorem finish the
proof of Theorem 4.5.5 by showing that the averages Z f converge
to fin L.

Exercise 4.5.3. Prove that if T is a measure-preserving transformation,
then Uy is an isometry of LP(X, 2, u) for any p > 1.

Exercise 4.5.4. Prove Corollary 4.5.7.

Exercise 4.5.5. Prove Corollary 4.5.8.

Exercise 4.5.6. A real number x is said to be normal in base n if for any
k € N, every finite word of length & in the alphabet {0, ..., n — 1} appears
with asymptotic frequency n ¥ in the base-n expansion of x. Prove that almost
every real number is normal with respect to every base n € N.
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4.6 Invariant Measures for Continuous Maps

In this section, we show that a continuous map 7 of a compact metric space X
into itself has at least one invariant Borel probability measure. Every finite
Borel measure 1 on X defines a bounded linear functional L, (f) = [ fdu
on the space C(X) of continuous functions on X; moreover, L, is positive
in the sense that L,(f) > 0 if f > 0. The Riesz representation theorem
[Rud87] states that the converse is also true: for every positive bounded
linear functional L on C(X), there is a finite Borel measure © on X such
that L= [, fdpu.

THEOREM 4.6.1 (Krylov—-Bogolubov). Let X be a compact metric space and
T: X — X a continuous map. Then there is a T-invariant Borel probability
measure . on X.

Proof. Fix x € X. For a function f: X — R set S7(x) = %Z:l;ol f(Ti(x)).
Let 7 ¢ C(X) be adense countable collection of continuous functions on X.
For any f € F the sequence § ?(x) is bounded, and hence has a convergent
subsequence. Since F is countable, there is a sequence n; — oo such that
the limit

SF(x) = jlirgo St (x)

exists for every f € F. For any g € C(X) and any € > 0 there is f € F such
that max,cx|g(y) — f(y)| < €. Therefore, for a large enough j,

[5¢'() = SFE)] = Si_ (0 + (87 () = SF ()] < 2¢,

so Sg’(x) is a Cauchy sequence. Thus, the limit Sg°(x) exists for every g €
C(X) and defines a bounded positive linear functional L, on C(X). By the
Riesz representation theorem, there is a Borel probability measure p such
that L,(g) = [y gdu. Note that

nj nj 1 n;
|Sg/(T(x)) = Sg" (x)| = —18(T" (x)) = g(x)I.
i
Therefore, S;°(T(x)) = Sg°(x) and  is T-invariant. O

Let M = M(x) denote the set of all Borel probability measures on X. A
sequence of measures u, € M converges in the weak* topology to ameasure
weMif [, fdu, — [y fduforevery f e C(X).If u, is any sequence in
M and F C C(X) is a dense countable subset, then, by a diagonal process,
there is a subsequence ,, such that [, fdpu,, converges for every f € F,
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and hence the sequence [ g du,,, converges for every g € C(X). Therefore,
M is compact in the weak* topology. It is also convex: i + (1 — t)v € M
foranyt € [0, 1] and u, v € M. A point in a convex set is extreme if it cannot
be represented as a non-trivial convex combination of two other points. The
extreme points of M are the probability measures supported on points; they
are called Dirac measures.

Let M7 C M denote the set of all T-invariant Borel probability measures
on X. Then Mris closed, and therefore compact, in the weak* topology, and
convex.

Recall that if x and v are finite measures on a space X with o-algebra
2, then v is absolutely continuous with respect to u if v(A) = 0 whenever
u(A) =0, for Ae 2. If v is absolutely continuous with respect to u, then
the Radon-Nikodym theorem asserts that there is an L' function dv/dpu,
called the Radon-Nikodym derivative, such that v(A) = [,(dv/du)(x)dup
for every A € 2 [Roy88].

PROPOSITION 4.6.2. Ergodic T-invariant measures are precisely the ex-
treme points of Mr.

Proof. If  is not ergodic, then there is a T-invariant measurable sub-
set AC Xwith0 < u(A) < 1. Let ua(B) = u(BN A)/u(A) and ux a(B) =
w(BN(X\ A)/u(X\ A) for any measurable set B. Then p 4 and px 4 are
T-invariant and p = p(A)pa + w(X\ A)wx 4, S0 @ is not an extreme point.

Conversely, assume that p is ergodic and that u = tv + (1 — t)x with
v,k € Mr and t € (0,1). Then v is absolutely continuous with respect to
pand v(A) = [,rdu, wherer = dv/du € L'(X, w) is the Radon-Nikodym
derivative. Observe that r < % almost everywhere. Therefore r € I*(X, ).
Let U be the isometry of L?(X, i) given by Uf = f o T. Invariance of v
implies that for every f € L*(X, i)

(Uﬁr)uzf(foT)rd,tL:/frduz(f,r),L.

It follows that (f, U*r), = (Uf.r), = (f,r),, and hence U*r = r. By
Lemma 4.5.1 Ur =r. Since u is ergodic, the function r is essentially con-
stant,so 4 = v = k. O

By the Krein—-Milman theorem [Roy88], [Rud91], M is the closed con-
vex hull of its extreme points. Therefore, the set M of all T-invariant,
ergodic, Borel probability measures is not empty. However, M% may be
rather complicated; for example, it may be dense in M7 in the weak* topol-
ogy (Exercise 4.6.5).
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Exercise 4.6.1. Describe M1 and M¢% for the homeomorphism of the
1

circle T(x) = x +asin2zrx mod 1, 0 <a < 5-.
Exercise 4.6.2. Describe M1 and M¢ for the homeomorphism of the torus
T(x,y) = (x,x+ y)mod 1.

Exercise 4.6.3
(a) Give an example of a map of the circle that is discontinuous at ex-
actly one point and does not have non-trivial finite invariant Borel
measures.
(b) Give an example of a continuous map of the real line that does not
have non-trivial finite invariant Borel measures.

Exercise 4.6.4. Let X and Y be compact metric spaces and 7: X — Y a
continuous map. Show that 7 induces a natural map M(X) - M(Y), and
that this map is continuous in the weak* topology.

*Exercise 4.6.5. Prove that if o is the two-sided 2-shift, then M¢ is dense
in M, in the weak* topology.

4.7 Unique Ergodicity and Weyl's Theorem?®

In this section 7 is a continuous map of a compact metric space X. By §4.6,
there are T-invariant Borel probability measures. If there is only one such
measure, then 7T is said to be uniquely ergodic. Note that this unique invariant
measure is necessarily ergodic by Proposition 4.6.2.

An irrational circle rotation is uniquely ergodic (Exercise 4.7.1). More-
over, any topologically transitive translation on a compact abelian group is
uniquely ergodic (Exercise 4.7.2). On the other hand, unique ergodicity does
not imply topological transitivity (Exercise 4.7.3).

PROPOSITION 4.7.1. Let X be a compact metric space. A continuous map
T: X — X is uniquely ergodic if and only if S} = % Z?;ol f o T converges
uniformly to a constant function S for any continuous function f € C (X).
Proof. Suppose first that T is uniquely ergodic and p is the unique 7-
invariant Borel probability measure. We will show that

lim max
n—oo xeX

S”f(X)—/deu‘ ~0.

3 The arguments of this section follow in part those of [Fur81a] and [CFS82].
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Assume, for a contradiction, that there are f € C(X) and sequences x; €
X and ny; — oo such that lims_, o S;”‘(xk) =c /£~y fdup. As in the proof
of Proposition 4.6.1, there is a subsequence ny, — oo such that the limit
L(g) = lim;_, S;k" (xx,) exists for any g € C(X). As in Proposition 4.6.1,
L defines a T-invariant, positive, bounded linear functional on C(X). By
the Riesz representation theorem, L(g) = [, g dv for some v € M. Since
L(f) =c /~[y f du, the measures p and v are different, which contradicts
unique ergodicity.

The proof of the converse is left as an exercise (Exercise 4.7.4). O

Uniform convergence of the time averages of continuous functions does
not, by itself, imply unique ergodicity. For example, if (X, T) is uniquely
ergodic and I = [0, 1], then (X x I, T x Id) is not uniquely ergodic, but the
time averages converge uniformly for all continuous functions.

PROPOSITION 4.7.2. Let T be a topologically transitive continuous map
of a compact metric space X. Suppose that the sequence of time averages
8"t converges uniformly for every continuous function f € C(X). Then T is
uniquely ergodic.

Proof. Since the convergence is uniform, S;" = lim,_ S’} is a continuous
function. Asin the proof of Proposition 4.6.1, $%°(7T(x)) = S (x) for every x.
Since T'is topologically transitive, S7° is constant. As in previous arguments,
the linear functional f i —§°° deﬁnesameasure p € Mrwith [ xfdu= S°°
Let v € Mr. By the Blrkhoff ergodic theorem (Theorem 4.5.5), S°°(x)
[y fdvforevery f € C(X)andv a.e. x € X. Therefore, v = p. O

Let X be a compact metric space with a Borel probability measure u.
Let T: X — X be a homeomorphism preserving . A point x € X is called
generic for (X, u, T) if for every continuous function f

k
lim Z F) = [ fan
If T is ergodic, then by Corollary 4.5.8, -a.e. x is generic.

For a compact topological group G, the Haar measure on G'is the unique
Borel probability measure invariant under all left and right translations. Let
T: X — X be a homeomorphism of a compact metric space, G a compact
group, and ¢: X — G a continuous function. The homeomorphism §: X x
G — X x G given by S(x, g) = (T(x), ¢(x)g) is a group extension (or G-
extension) of T. Observe that S commutes with the right translations
Rq(x, h) = (x, hg).If nisa T-invariant measure on X and mis the Haar mea-
sure on G, then the product measure u x mis S-invariant (Exercise 4.7.7).
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PROPOSITION 4.7.3 (Furstenberg). Let G be a compact group with Haar
measure m, X a compact metric space with a Borel probability measure .,
T: X — X a homeomorphism preserving 1, Y = Xx G,v=pu xm, and
S:Y — Y a G-extension of T. If T is uniquely ergodic and S is ergodic, then
S is uniquely ergodic.

Proof. Since v is R,-invariant for every g € G, if (x, h) is generic for v, then
(x, hg) is generic for v. Since Sis ergodic, v-a.e. (x, k) is v-generic. Therefore
for pu-a.e. x € X, the point (x, &) is v-generic for every 4. If a measure v’ ~v
is S-invariant and ergodic, then v’-a.e. (x, &) is v'-generic. The points that
are v'-generic cannot be v-generic. Hence there is a subset N C X such that
u(N) = 0 and the first coordinate x of every v’-generic point (x, /) lies in
N. However, the projection of v' to X is T-invariant and therefore is . This
is a contradiction. O

PROPOSITION 4.7.4. Let a € (0, 1) be irrational, and let T: T — T* be
defined by

T(xt, ..., x) = (x1 + 0o, 2 +anx, ..., X+ Xy + - Qgr-1Xk-1),
where the coefficients a;; are integers and a;;—1 /<0,i =2,...,k Then T is
uniquely ergodic.

Proof. By Exercise 4.7.8, T is ergodic with respect to Lebesgue measure on

Tk. An inductive application of Proposition 4.7.3 yields the result. g

Let X be a compact topological space with a Borel probability measure
. A sequence (x;);en in X is uniformly distributed if for any continuous
function f on X,

1L
nlggo;;f(xk)=/xfdu-

THEOREM 4.7.5 (Weyl). If P(x) = byx* + - - - + by is a real polynomial such
that at least one of the coefficients b;, i > 0, is irrational, then the sequence
(P(n)mod 1),y is uniformly distributed in [0, 1].

Proof [Fur81a). Assume first that by = o/ k! with « irrational. Consider the
map 7: Tk — T* given by

T(xt, ..., x) = (1 + 0o, X0 + X1, ..o, X+ Xp_1)-

Let 7: R¥ — T* be the projection. Let Pi(x) = P(x) and P_;(x) =
P(x+1)—-P(x), i=k, ...,1. Then P (x) =ax + B. Observe that
T (P1(0), ..., P(0))) = n(Pi(n), ..., P(n)).Since T is uniquely ergodic
by Proposition 4.7.4, this orbit (and any other orbit) is uniformly distributed
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on TX. It follows that the last coordinate Pi(n) = P(n) is uniformly dis-
tributed on S'.
Exercise 4.7.9 finishes the proof. O

Exercise 4.7.1. Prove that an irrational circle rotation is uniquely ergodic.

Exercise 4.7.2. Prove that any topologically transitive translation on a com-
pact abelian group is uniquely ergodic.

Exercise 4.7.3. Prove that the diffeomorphism 7: S! — S! defined by
T(x) = x +asin’(7x), a < 1/, is uniquely ergodic but not topologically
transitive.

Exercise 4.7.4. Prove the remaining statement of Proposition 4.7.1.

Exercise 4.7.5. Prove that the subshift defined by a fixed point a of a prim-
itive substitution s is uniquely ergodic.

Exercise 4.7.6. Let T be a uniquely ergodic continuous transformation of
a compact metric space X, and u the unique invariant Borel probability
measure. Show that supp u is a minimal set for 7.

Exercise 4.7.7. Let S: X x G — X x G be a G-extension of T:(X, u) —
(X, 1), and let m be the Haar measure on G. Prove that the product measure
W X mis S-invariant.

Exercise 4.7.8. Use Fourier series on T* to prove that T from Proposi-
tion 4.7.4 is ergodic with respect to Lebesgue measure.

Exercise 4.7.9. Reduce the general case of Theorem 4.7.5 to the case where
the leading coefficient is irrational.

4.8 The Gauss Transformation Revisited*

Recall that the Gauss transformation (§1.6) is the map of the unit interval
to itself defined by

1 1
=__|= f 0,1], 0)=0.
o=1-[3] o veon 00
The Gauss measure p defined by
1 dx
A) = 4.3
WA log2 J41+x (43)

is a ¢-invariant probability measure on [0, 1].

4 The arguments of this section follow in part those of [Bil65].
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For an irrational x € (0, 1], the nth entry a,(x) = [1/¢"~(x)] of the con-
tinued fraction representing x is called the n-th quotient, and we write
x = [a1(x), a(x), ...]. The irreducible fraction p,(x)/q,(x) that is equal to
the truncated continued fraction [a;(x), ..., a,(x)] is called the nth conver-
gent of x. The numerators and denominators of the convergents satisfy the
following relations:

pO(x) =0, pl(x) =1, pn(x) = an(x)pnfl(x) + pn72(x)a (4-4)
qo(x) =1, q(x) =ai(x),  qu(x) = ay(x)gn-1(x) + gu2(x)  (4.5)
for n > 1. We have

PO+ @ )P (@)
4.0 + (@ ()1 (1)

By an inductive argument

pu(x) = 20722 and  g,(x) =202 for n=>2,

and
Pr-1(0)gn(x) = pa(X)gnr(x) = (=1)",  n=1. (4.6)
For positive integers by, k=1, ..., n, let
Apy.on, ={x €0, 1]t ar(x) =br, k=1,...,n}.

The interval Ay,
defined by

», 18 the image of the interval [0, 1) under the map ¥, p,

.....

If nis odd, ¥, . . », is decreasing; if n is even, it is increasing. For x € Ap, 5,

.....

Pn + tpn—l

, 4.7
Adn + 1gn—1 ( )

X =vYp, b)) =

where p, and g, are given by the recursive relations (4.4) and (4.5) with
a,(x) replaced by b,,. Therefore

AV [& M) if n is even,
qn qn + dn—1
and
Ap,,. by = <M &} if n is odd.
n+qn-1 qn

If A is Lebesgue measure, then A(Ap,.._5,) = (a(gn + gn-1)) 7"



92 4. Ergodic Theory

PROPOSITION 4.8.1. The Gauss transformation is ergodic for the Gauss
measure [L.

Proof. For a measure v and measurable sets A and B with v(B) A0, let
v(A|B) = v(A N B)/v(B) denote the conditional measure. Fix by, ..., b,,
and let A, = Ap, b, Yu = ¥p,...p,- The length of A, is £(,(1) — ¥,(0)),
andfor0<x <y<1,

AMizx = ¢"(2) < yIN AR = (YY) — ¥n(x)),
where the sign depends on the parity of n. Therefore

1/fn(y) - 1pn(x)

Mo ([x, ¥)) | An) = (D) = 0(0)"
and by (4.6) and (4.7),

qn(qn + Gn-1)
(Gn + xqn-1)(qn + Yqn-1) '
The second factor in the right-hand side is between 1/2 and 2. Hence

Mo ([x. )1 An) = (y — %) -

1
F X 3) = M7 ([x. ») 1 An) = 22([x. ).
Since the intervals [x, y) generate the o-algebra,
SHA) < 26T (A) ] A) < 20(4) (49)

for any measurable set A C [0, 1].
Because the density of the Gauss measure p is between 1/(2log2) and
1/log2,

1 1

By (4.8),

41_‘ 1(A) < w(@"(A)| An) < 4u(A)

for any measurable A C [0, 1].

Let A be a measurable ¢-invariant set with u(A) > 0. Then %/L(A) <
u(A| Ay), or, equivalently, % w(A,) < u(A,| A). Since the intervals A, gen-
erate the o-algebra, % u(B) < u(B|A)for any measurable set B. By choosing
B =[0, 1]\ Awe obtain that u(A) = 1. O

The ergodicity of the Gauss transformation has the following number-
theoretic consequences.
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PROPOSITION 4.8.2. For almost every x € [0, 1] (with respect to p measure
or Lebesgue measure), we have the following:
1. Eachintegerk € Nappears inthe sequence ai(x), ax(x), . .. with asymp-

totic frequency
1 o k+1
log?2 8\ )

1
2. lim —(a1(x)+ -+ + ay(x)) = oco.
n—oo n

00 1 logk/log2
3 lim (e a) =] (1 i 2k>
2
4 lim 89D _ 7
n— 00 n 1210g2

Proof. 1: Let f be the characteristic function of the semiopen interval
[1/k,1/(k+ 1)). Then a,(x) = kif and only if f(¢"(x)) = 1. By the Birkhoff
ergodic theorem, for almost every x,

nl£n3@%2f(¢i(x)) = /01 fdu :,;,([%, kjlq)) = 1olgzl°g<k;;1)’

which proves the first assertion.
2:Let f(x) = [1/x],i.e., f(x) = a;(x). Note that fol f(x)/(1 + x)dx = oo,

since f(x) > (1 —x)/x and fol % dx = oo. For N > 0, define

_ ) it fx) = N,
fnx) = { 0 otherwise.

Then, for any N > 0, for almost every x,

n—1 n—1
lim 1> f(ghw) = lim > f(64(0)
k=0 k=0

n— 00 n—oo

n—1
= Jim > (@ 00)
k=0

1 ') dx.
log2 Jo 1+x

Since limy_, o fol /;"Jf’;) dx — oo, the conclusion follows.
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3:Let f(x) =logai(x) = log([}—c]). Then f e L'([0, 1]) with respect to the
Gauss measure u (Exercise 4.8.1). By the Birkhoff ergodic theorem,

1 U f(x
lmolo Zlog ar(x) = oa2 oz2 ), 1f—(|—))c dx
logk

log k L1+ x
i L P
“~ log2 TeTax)
Exponentiating this expression gives part 3.
4: Note that p,(x) = g,—1(¢(x)) (Exercise 4.8.2), so

L o) pi @) pi(" @)
0 " 4 a0 @)

Thus

1 IR ST CE))
—ploga) =5 lo ()

_ 1 k = pn—k(¢k(x)) _ k
—nzlog«b )+, 3 (1og ZHEES ~ton(@t @) 49

It follows from the Birkhoff Ergodic Theorem that the first term of (4.9)
converges a.e. to (1/1log?2) fol logx/(1+ x)dx = —n?/12. The second term
converges to 0 (Exercise 4.8.2). O

Exercise 4.8.1. Show that log([1/x]) € L!([0, 1]) with respect to the Gauss
measure .

Exercise 4.8.2. Show that p,(x) = g,(¢(x)) and that

R K(x)) — log Pk @)Y _
Jim 5 2 (08064 — o0 S ) <o

4.9 Discrete Spectrum

Let T be an automorphism of a probability space (X, 2, u). The operator
Ur: [2(X, 2, u) — [?(X, 2, n) is unitary, and each of its eigenvalues is a
complex number of absolute value 1. Denote by X the set of all eigenval-
ues of Ur. Since constant functions are 7-invariant, 1 is an eigenvalue of
Ur. Any T-invariant function is an eigenfunction of Ur with eigenvalue 1.
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Therefore, T is ergodic if and only if 1 is a simple eigenvalue of Uy. If f, g
are two eigenfunctions with different eigenvalues o /A«, then (f, g) =0,
since (f, g) = (Ur f, Urg) = ok (f, g). Note that Uy is a multiplicative oper-
ator, i.e., Ur(f - g) = Ur(f) - Ur(g), which has important implications for
its spectrum.

PROPOSITION 4.9.1. X7 is a subgroup of the unit circle S' = {z € C:|z| =
1} If T is ergodic, then every eigenvalue of Uy is simple.

Proof. Ifo € 7 and f(T(x)) = o f(x), then f(T(x)) =& f(x), and hence
d=0"leXr. lfor,00 € Zr and fi(T(x)) = o1 fi(x), H(T(x)) = 02 fo(x),
then f = fi > has eigenvalue o107, and hence o0, € X7. Therefore, X is a
subgroup of S'.

If T is ergodic, the absolute value of any eigenfunction f is essentially
constant (and non-zero). Thus, if f and g are eigenfunctions with the same
eigenvalue o, then f/g is in I? and is an eigenfunction with eigenvalue
1, so it is essentially constant by ergodicity. Therefore every eigenvalue is
simple. O

An ergodic automorphism 7 has discrete spectrum if the eigenfunctions
of Ur span L?(X, 2, ). An automorphism 7 has continuous spectrum if 1 is
a simple eigenvalue of Ur and Uy has no other eigenvalues.

Consider a circle rotation R,(x) =x +a mod 1, x € [0, 1). For each n €
Z, the function f,(x) = exp(2winx) is an eigenfunction of Ug, with eigen-
value 2 na. If « is irrational, the eigenfunctions f, span L?, and hence R,
has discrete spectrum. On the other hand, every weak mixing transformation
has continuous spectrum (Exercise 4.9.1).

Let G be an abelian topological group. A character is a continuous ho-
momorphism x: G — S'. The set of characters of G with the compact-open
topology forms a topological group G called the group of characters (or the
dual group). For every g € G, the evaluation map x 1 —x(g) is a character
tg € G, the dual of G,and the map:: G — Gisahomomorphism.If,(x) = 1,
then x(g) = 1 for every x € G, and hence ¢ is injective. By the Pontryagin
duality theorem [Hel95], ¢ is also surjective and G = G. Moreover, if G is
discrete, G is a compact abelian group, and conversely.

For example, each character y € Z is completely determined by the value
x(1) € S'. Therefore Z = S'. On the other hand, if A € §!, then A: §' — S
is a homomorphism, so A(z) = z” for some n € Z. Therefore, 8! = Z.

On a compact abelian group G with Haar measure A, every character is
in L, and therefore in L?. The integral of any non-trivial character with
respect to Haar measure is 0 (Exercise 4.9.3). If o and ¢’ are characters of
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G, then oo’ is also a character. If o and o’ are different, then
0.0 = [ o6 aie) = [ @& drlz) =o.

Thus the characters of G are pairwise orthogonal in 12(G, ).

THEOREM 4.9.2. For every countable subgroup ¥ C S' there is an ergodic
automorphism T with discrete spectrum such that L = X.

Proof. The identity character Id: & — S',Id(0') = o, is a character of X.
Let T: 3 — 3 be the translation x 1 — - Id. The normalized Haar measure
A on ¥ isinvariant under T.For o € %, let f, € % be the character of 3 such
that f,(x) = x(o). Since

Urfo(x) = fo(1d) = fo(x) f>(d) = o f5(x).

f 1s an eigenfunction with eigenvalue o.

We claim that the linear span A of the set of characters { f,: o € X}, is
dense in I7(3, 1), which will complete the proof. The set of characters sep-
arates points of 3, is closed under complex conjugation, and contains the
constant function 1. Since the set of characters is closed under multiplica-
tion, A is closed under multiplication, and is therefore an algebra. By the
Stone-Weierstrass theorem [Roy88], A is dense in C(X, C), and therefore
in L2(3, 1). O

The following theorem (which we do not prove) is a converse to
Theorem 4.9.2.

THEOREM 4.9.3 (Halmos-von Neumann). Let T be an ergodic automor-
phism with discrete spectrum, and let = C S' be its spectrum. Then T is
isomorphic to the translation on 3 by the identity character 1d: ¥ — S'.

A measure-preserving transformation 7: (X, A, n) — (X, 2, ) is aperi-
odicif u({x € X: T"(x) = x}) = O for everyn € N.

Theorem 4.9.4 (which we do not prove) implies that every aperiodic trans-
formation can be approximated by a periodic transformation with an arbi-
trary period n. Many of the examples and counterexamples in abstract er-
godic theory are constructed using the method of cutting and stacking based
on this theorem.

THEOREM 4.9.4 (Rokhlin—-Halmos [Hal60]). Let T be an aperiodic auto-
morphism of a Lebesgue probability space (X, 2, w). Then for every n € N
and € > 0 there is a measurable subset A= A(n, €) C X such that the sets
Ti(A), i =0,...,n—1, are pairwise disjoint and (X \ U::Ol Ti(A)) < e.
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Exercise 4.9.1. Prove that every weak mixing measure-preserving transfor-
mation has continuous spectrum.

Exercise 4.9.2. Suppose that «, 8 € (0, 1) are irrational and «/8 is irra-
tional. Let T be the translation of T? given by T(x, y) = (x + «, y + B). Prove
that T is topologically transitive and ergodic and has discrete spectrum.

Exercise 4.9.3. Show that on a compact topological group G, the integral
of any non-trivial character with respect to the Haar measure is 0.

4.10 Weak Mixing®

The property of weak mixing is typical in the following sense. Since each
non-atomic probability Lebesgue space is isomorphic to the unit interval
with Lebesgue measure A, every measure-preserving transformation can be
viewed as a transformation of [0, 1] preserving A. The weak topology on
the set of all measure-preserving transformations of [0, 1] is given by 7, —
T if A(T,,(A) A T(A)) — 0 for each measurable A C [0, 1]. Halmos showed
[Hal44] that a residual (in the weak topology) subset of transformations
are weak mixing. V. Rokhlin showed [Roh48] that the set of strong mixing
transformations is of first category (in the weak topology).

The weak mixing transformations, as Theorem 4.10.6 below shows, are
precisely those that have continuous spectrum. To show this we first prove
a splitting theorem for isometries in a Hilbert space.

We say that a sequence of complex numbers a,, n € Z is non-negative
definite if for each N € N,

N
Z LU Zmk—m = 0
k,m=—N
for each finite sequence of complex numbers zx, —N < k < N.

For a (linear) isometry U in a separable Hilbert space H, denote by U*
the adjoint of U, and forn > Oset U, = U" and U_,, = U*".

LEMMA 4.10.1. For every v € H, the sequence (U,v, v) is non-negative def-
inite.
Proof.

N 2

N
Z Zkzm<Uk—mv7 v) = Z Zkzm<UkU, Umv> =
k,m=—N k,m=—N

N

Z z7Uw

I=—N

5 The presentation of this section to a large extent follows §2.3 of [Kre85].
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LEMMA 4.10.2 (Wiener). For a finite measure v on [0,1) set ¥y =
fol e Rxy(dx). Then lim,_, o n=' Y470 |0k| = 0 if and only if v has no atoms.

Proof. Observe that n=! Y"{_; [9x| — 0 if and only if n= 37~ |9[> — 0.
Now

n—1 n—1 1 1
%Z |Vk|2 — %Z/(; eZJ-rikxv(dx)\/0 €_2niky\)(dy)
k=0 k=0
/ / |: i z”ik(xy):| v(dx)v(dy).
k=

The functions n~! Zk—o exp(2mik(x — y)) are bounded in absolute value by
1 and converge to 1 for x = y and to 0 for x /4y. Therefore the last integral
tends to the product measure v x v of the diagonal of [0, 1) x [0, 1). It fol-
lows that

Jim -~ Z|vk| = D () -

O<x<l

For a (linear) isometry U of a separable Hilbert space H, set

n—oo n

HW(U)={veH lim — Z| ku,v)| = 0 for each v’ € H

and denote by H,(U) the closure of the subspace spanned by the eigenvectors
of U. Both H,(U) and H,(U) are closed and U-invariant.

PROPOSITION 4.10.3. Let U be a (linear) isometry of a separable Hilbert
space H. Then
1. Foreachv € H, there is a unique finite measure v, on the interval [0, 1)
(called the spectral measure) such that for every n € Z

1
(Upv, v) =/ e¥iney, (dx).
0

2. Ifv is an eigenvector of U with eigenvalue exp(2rwia), then v, consists

of a single atom at a of measure 1.
3. Ifv L H,(U), then v, has no atoms and v € H,(U).

Proof. The first statement follows immediately from Lemma 4.10.1 and
the spectral theorem for isometries in a Hilbert space [Hel95], [Fol95]. The
second statement follows from the first (Exercise 4.10.3).

To prove the last statement let v L H, and W = e~?"*U. Applying the
von Neumann ergodic theorem 4.5.2, let u = lim,,_, oo n! ZZ;(l) Wky. Then
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Wu = u. By Proposition 4.10.3,

(u’ U) — nll)ngo 727Tixk(Uk

1 n—1
— v, v)
n4

= lim/ Z “2mi=nky (dy) = vy(x).

If v,(x) > 0, then u is a non-zero eigenvector of U with eigenvalue >~
and v /u, which is a contradiction. Therefore v,(x) = 0 for each x, and
Lemma 4.10.2 completes the proof. O

For a finite subset B C N denote by | B| the cardinality of B. For a subset
A C N, define the upper density d(A) by

d(A) = limsup —|Aﬂ [1, 1]
n—00
We say that a sequence b, converges in density to b and write d-lim, b, = b
if there is a subset A C N such that d(A) = 0 and lim,,_, o, ngAbn = b.

LEMMA 4.10.4. If(b ) is a bounded sequence, then d-lim,, b, = 0 if and only
iflimy, 00 2 3070 by — b = 0.

Proof. Exercise 4.10.1. O

The following splitting theorem is an immediate consequence of Propo-
sition 4.10.3.

THEOREM 4.10.5 (Koopman-von Neumann [KvN32]). Let U be an isom-
etry in a separable Hilbert space H. Then H= H, ® H,. A vector ve H
lies in H,(U) if and only if d-lim,(U"v, v) =0, and if and only if d-lim,,
(U"v,w) =0 foreachw € H.

Proof. The splitting follows from Proposition 4.10.3. To prove the remain-
ing statement that d-lim(U"v, v) = 0 if and only if d-lim(U"v, w) = 0, ob-
serve that (U"v, w) = 0if v L. Ukvforallk € N.If w = U*v, then (U"v, w) =
(U™, Ukv) = (U™ v, v). O

Recall that if 7 and S are measure-preserving transformations in finite
measure spaces (X, 2, n) and (Y, B, v), then T x S is a measure-preserving
transformation in the product space (X x Y, 2 x 9B, u x v). As in 84.9, we
denote by Uy the isometry Ur f(x) = f(T(x)) of L*(X, A, ).

THEOREM 4.10.6. Let T be a measure-preserving transformation of a prob-
ability space (X, 2, w). Then the following are equivalent:
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T is weak mixing.

T has continuous spectrum.

d-lim, [, f(T"(x)) f(x)du =0if f € [2(X, A, ) and [, fdu = 0.
d-lim, [, f(T"(x))g(x)du= [y fdu- [ygdu for all functions
fig e (XA ).

5. T x Tisergodic.

6. T x S is weak mixing for each weak mixing S.

7. T x Sis ergodic for each ergodic S.

KN W~

Proof. The transformation T is weak mixing if and only if H,(Ur)
is the orthogonal complement of the constants in L?(X, 2, ). Therefore,
by Proposition 4.10.3, 1 < 2. By Lemma 4.10.4, 1 < 3. Clearly 4 = 3. As-
sume that 3 holds. It is enough to show 4 for f with [, fdu = 0. Observe
that 4 holds for g satisfying [, F(T*(x)) g(x)du =0 for all k € N. Hence it
suffices to consider g(x) = f(T*(x)). But [, f(T"(x)) f(T*(x))dp =
[y F(T"*(x)) f(x) die — 0 asn — oo by 3. Therefore 3 < 4.

Assume 5. Observe that T is ergodic and if Ur has an eigenfunction f,
then | f| is T-invariant, and hence constant. Therefore f(x)/f(y)is T x T-
invariant and 5 = 2. Clearly 6 = 2 and 7 = 5.

Assume 3. To prove 7 observe that I2(X x Y, x B, u x v) is spanned
by functions of the form f(x)g(y). Let [, fdu = [, gdv = 0. Then

»/X yf(Tn(x))g(Sn()’))f(x)g(y) dp x v
:f F(T™(x)) f(x)dpe - / g(S"(y)g(y) dv.
X Y

The first integral on the right-hand side converges in density to O by part 3,
while the second one is bounded. Therefore the product converges in density
to 0, and part 7 follows. The proof of 3 = 6 is similar (Exercise 4.10.4). 0O

Exercise 4.10.1. Let (b,) be a bounded sequence. Prove that d-lim b, = b
if and only if lim,—.oc 1 34 15, — b| = 0.

Exercise 4.10.2. Prove that d-lim has the usual arithmetic properties of
limits.

Exercise 4.10.3. Prove the second statement of Proposition 4.10.3.
Exercise 4.10.4. Prove that 3 = 6 in Theorem 4.10.6.

Exercise 4.10.5. Let T be a weak mixing measure-preserving transforma-
tion, and let S be a measure-preserving transformation such that ¥ = T for
some k € N (S is called a kth root of T'). Prove that S is weak mixing.
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4.11 Applications of Measure-Theoretic Recurrence
to Number Theory

In this section we give highlights of applications of measure-theoretic recur-
rence to number theory initiated by H. Furstenberg. As an illustration of
this approach we prove Sarkozy’s Theorem (Theorem 4.11.5). Our exposi-
tion follows to a large extent [Fur77] and [Fur81a].

For a finite subset F' C Z, denote by |F| the number of elements in F.
A subset D C Z has positive upper density if there are a,, b, € Z such that
b, — a,, — oo and for some § > 0,

|D ﬂ [anv bn]'

—T >4 forall neN.

Let D C Z have positive upper density. Let wp € ¥, = {0, 1} be the se-
quence for which (wp), =1ifn € Aand (wp), =0if n ¢ D, and let Xp be
the closure of its orbit under the shift o in 3,. Set Yp = {w € Xp:wy = 1}.

PROPOSITION 4.11.1 (Furstenberg). Let D C Z have positive upper den-
sity. Then there exists a shift-invariant Borel probability measure u on Xp
such that u(Yp) > 0.

Proof. By 8§4.6, every o-invariant Borel probability measure on Xp is a
linear functional L on the space C(Xp) of continuous functions on Xp such
that L(f) > 0if £ >0, L(1) =1,and L(f o o) = L( f).

For a function f € C(Xp), set

bn
L) = 5 2 Fo' o))

1=ay

where a,, b,, and § are associated with D as in the preceding paragraph.
Observe that L,(f) < max f for each n. Let (fj);jen be a countable dense
subset in C(X)p). By a diagonal process, one can find a sequence ny — oo
such that limy_, o Ly, (fj) exists for each j. Since ( f;);en is dense in C(Xp),
we have that

b
. 1 SN
L(f) = lim mi; f(o'(wp))
=lny,

exists for each f € C(Xp) and determines a o-invariant Borel probability
measure J.
Let x € C(Xp) be the characteristic function of Yp. Then

L(X)=/XdM=M(YD)>0- O
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PROPOSITION 4.11.2. Let p(k) be a polynomial with integer coefficients
and p(0) =0. Let U be an isometry of a separable Hilbert space H, and
H,y. C H be the closure of the subspace spanned by the eigenvectors of U

whose eigenvalues are roots of 1. Suppose v € H is such that (UP®v, v) =0
forallk e N. Then v 1. Hpy.

Proof. Letv = vy + w with vy € Hipe and w L Hy,e. We use the following
lemma, whose proof is similar to the proof of Lemma 4.10.2 (Exercise 4.11.1).
O

LEMMA 4.11.3. JM LS =bgo(y, — 0 for all w 1 Hiy.

Fix € > 0, and let vy, € H, and m be such that |v — vj, ]l < € and
U™, = v,,.- Then | U™ vgay — vrat|l < 2¢€ for each k and, since p(mk) is di-

visible by m,

< 2e.

1 n—1
k
E E Up(m )Urat — Vrat
k=0

Since (1/n) Zz;é U™y — 0by Lemma 4.11.3, for nlarge enough we have

1 n—1

Z Z UPomk)y, — Vrat

g

< 2e.

By assumption, (UP )y, v) = 0. Hence |(vrat, v)| < 2€]|v][, S0 (vrar, v) = 0.
O
As acorollary of the preceding proposition we obtain Furstenberg’s poly-
nomial recurrence theorem.5

THEOREM 4.11.4 (Furstenberg). Let p(t) be a polynomial with integer co-
efficients and p(0) = 0. Let T be a measure-preserving transformation of a
finite measure space (X, A, ), and A € 2 be a set with positive measure. Then
there is n € N such that (AN TP™ A) > 0.

Proof. Let U be the isometry induced by Tin H = [*(X, 2, ), (Uh)(x) =
h(T~(x)). If w(A N TP A) = 0 for each n € N, then the characteristic func-
tion x4 of A satisfies (UP™ x4, x4) = 0 for each n. By Proposition 4.11.2,
x4 1s orthogonal to all eigenfunctions of U whose eigenvalues are roots
of 1. However 1(x) =1 is an eigenfunction of U with eigenvalue 1 and

6 A slight modification of the arguments above yields Proposition 4.11.2 and Theorem 4.11.4
for polynomials with integer values at integer points (rather than integer coefficients).
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Theorem 4.11.4 and Proposition 4.11.1 imply the following result in com-
binatorial number theory.

THEOREM 4.11.5 (Sarkozy [Sar78]). Let D C Z have positive upper density,
and let p be a polynomial with integer coefficients and p(0) = 0. Then there
are x,y € Dand n € N such that x — y = p(n).

The following extension of the Poincaré recurrence theorem (whose
proof is beyond the scope of this book) was used by Furstenberg to give an
ergodic-theoretic proof of the Szemerédi theorem on arithmetic progres-
sions (Theorem 4.11.7).

THEOREM 4.11.6 (Furstenberg’s Multiple Recurrence Theorem [Fur77]).
Let T be an automorphism of a probability space (X, 2, ). Then for every
n € Nand every A € A with u(A) > 0 there is k € N such that

w(ANT XA NT2K(A NN T (A) > 0.

THEOREM 4.11.7 (Szemerédi [Sze69]). Every subset D C Z of positive up-
per density contains arbitrarily long arithmetic progressions.

Proof. Exercise 4.11.3. O
Exercise 4.11.1. Prove Lemma 4.11.3.

Exercise 4.11.2. Use Theorem 4.11.4 and Proposition 4.11.1 to prove
Theorem 4.11.5.

Exercise 4.11.3. Use Proposition 4.11.1 and Theorem 4.11.6 to prove
Theorem 4.11.7.

4.12 Internet Search’

In this section, we describe a surprising application of ergodic theory to the
problem of searching the Internet. This approach is is used by the Internet
search engine Google™ ((www.google.com)).

The Internet offers enormous amounts of information. Looking for infor-
mation on the Internet is analogous to looking for a book in a huge library
without a catalog. The task of locating information on the web is performed
by search engines. The first search engines appeared in the early 1990s. The
most popular engines handle tens of millions of searches per day.

7 The exposition in this section follows to a certain extent that of [BP9S].
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The main tasks performed by a search engine are: gathering information
from web pages; processing and storing this information in a database; and
producing from this database a list of web pages relevant to a query consisting
of one or more words. The gathering of information is performed by robot
programs called crawlers that “crawl” the web by following links embedded
in web pages. Raw information collected by the crawlers is parsed and coded
by the indexer, which produces, for each web page, a set of word occurrences
(including word position, font type, and capitalization) and records all links
from this web page to other pages, thus creating the forward index. The sorter
rearranges information by words (rather than web pages), thus creating the
inverted index. The searcher uses the inverted index to answer the query, i.e.,
to compile a list of documents relevant to the keywords and phrases of the
query.

The order of the documents on the list is extremely important. A typical
list may contain tens of thousands of web pages, but at best only the first sev-
eral dozen may be reviewed by the user. Google uses two characteristics of
the web page to determine the order of the returned pages — the relevance of
the document to the query and the PageRank of the web page. The relevance
is based on the relative position, fontification, and frequency of the key-
word(s) in the document. This factor by itself often does not produce good
search results. For example, a query on the word “Internet” in one of the early
search engines returned a list whose first entry was a web page in Chinese
containing no English words other than “Internet.” Even now, many search
engines return barely relevant results when searching on common terms.

Google uses Markov chains to rank web pages. The collection of all web
pages and links between them is viewed as a directed graph G in which the
web pages serve as vertices and the links as directed edges (from the web
page on which they appear to the web page to which they point). At the
moment there are about 1.5 billion web pages with about 10 times as many
links. We number the vertices with positive integers i = 1,2, ..., N. Let G
be the graph obtained from G by adding a vertex 0 with edges to and from
all other vertices. Let b;; = 1 if there is an edge from vertex i to vertex j
in G, and let O(i) be the number of outgoing edges adjacent to vertex i
in G. Note that O(i) > 0 for all i. Fix a damping parameter p € (0, 1) (for
example, p = .75). Set B; =0fori > 0. Fori, j > 0andi /4j set

1 1 it 0O(@) =1, 0 if b;; =0,
B =3 Bi°={1—p if 0(i) /1, Bj = & by =1.

The matrix B is stochastic and primitive. Therefore, by Corollary 3.3.3,

it has a unique positive left eigenvector g with eigenvalue 1 whose entries
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add up to 1. The pair (B, q) is a Markov chain on the vertices of G. Google
interprets ¢; as the PageRank of web page i and uses it together with the
relevance factor of the page to determine how high on the return list this
page should be.

For any initial probability distribution ¢’ on the vertices of G, the sequence
q' B" converges exponentially to g. Thus one can find an approximation for
q by computing p B", where ¢’ is the uniform distribution. This approach to
finding g is computationally much easier than trying to find an eigenvector
for a matrix with 1.5 billion rows and columns.

Exercise 4.12.1. Let Abe an N x N stochastic matrix, and let A7 be the
entries of A", i.e., A7, is the probability of going from i to j in exactly n steps
(84.4). Suppose ¢ is an invariant probability distribution, g A = q.
(a) Suppose that for some j, we have A;; =0 for alli /4j, and A5 >0
for some k /4j and some n € N. Show that g; = 0.
(b) Prove that if A;; > 0 for some j /i and A}, =0 for all n € N, then
q: = 0.



CHAPTER FIVE

Hyperbolic Dynamics

In Chapter 1, we saw several examples of dynamical systems that were locally
linear and had complementary expanding and/or contracting directions: ex-
panding endomorphisms of S, hyperbolic toral automorphisms, the horse-
shoe, and the solenoid. In this chapter, we develop the theory of hyperbolic
differentiable dynamical systems, which include these examples. Locally, a
differentiable dynamical system is well approximated by a linear map —
its derivative. Hyperbolicity means that the derivative has complementary
expanding and contracting directions.

The proper setting for a differentiable dynamical system is a differen-
tiable manifold with a differentiable map, or flow. A detailed introduction
to the theory of differentiable manifolds is beyond the scope of this book.
For the convenience of the reader, we give a brief formal introduction to
differentiable manifolds in 85.13, and an even briefer informal introduction
here.

For the purposes of this book, and without loss of generality (see the em-
bedding theorems in [Hir94]), it suffices to think of a differentiable manifold
M" as an n-dimensional differentiable surface, or submanifold,inRY, N > n.
The implicit function theorem implies that each point in M has a local coordi-
nate system that identifies a neighborhood of the point with a neighborhood
of 0 in R". For each point x on such a surface M C RV, the tangent space
T. M C RY is the space of all vectors tangent to M at x. The standard inner
product on R¥ induces an inner product (-, -), on each T, M. The collection
of inner products is called a Riemannian metric, and a manifold M together
with a Riemannian metric is called a Riemannian manifold. The (intrinsic)
distance d between two points in M is the infimum of the lengths of differ-
entiable curves in M connecting the two points.

A one-to-one differentiable mapping with a differentiable inverse is called
a diffeomorphism.

106
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A discrete-time differentiable dynamical system on a differentiable man-
ifold M is a differentiable map f: M — M. The derivative df; is a linear map
from T, M to Ty M. In local coordinates df; is given by the matrix of partial
derivatives of f. A continuous-time differentiable dynamical system on M is
a differentiable flow,i.e., a one-parameter group { f’}, t € R, of differentiable
maps f': M — M that depend differentiably on ¢. Since [~ o f' =Id, each
map f* is a diffeomorphism. The derivative

d t
w0 = 10|
is a differentiable vector field tangent to M, and the flow { f’} is the one-
parameter group of time-f maps of the differential equation x = v(x).
Differentiability, and even subtle differences in the degree of differen-
tiability, have important and sometimes surprising consequences. See, for
example, Exercise 2.5.7 and 8§7.2.

5.1 Expanding Endomorphisms Revisited

To illustrate and motivate some of the main ideas of this chapter we con-
sider again expanding endomorphisms of the circle E,x = mxmod 1, x €
[0,1), m > 1, introduced in §1.3.

Fix € < 1/2. A finite or infinite sequence of points (x;) in the circle is
called an e-orbit of E,, if d(x;11, Enx;) < € for all i. The point x; has m
preimages under E,, that are uniformly spread on the circle. Exactly one
of them, yii’l, is closer than €/m to x;_j. Similarly, yl’f’l has m preimages
under E,,; exactly one of them, yf =2 is closer than e /mto x; 5. Continuing
in this manner, we obtain a point y; with the property that d(Ej,)?, x;) < €
for 0 < j <i. In other words, any finite e-orbit of E,, can be approximated
or shadowed by a real orbit. If (x;)?2, is an infinite e-orbit, then the limit
y = lim;_,  y? exists (Exercise 5.1.1),and d(E!,,y, x;) < e fori > 0. Since two
different orbits of E,, diverge exponentially, there can be only one shadowing
orbit for a given infinite e-orbit. By construction, y depends continuously on
(x;) in the product topology (Exercise 5.1.2).

The above discussion of the e-orbits of E,, is based solely on the uniform
forward expansion of E,,. Similar arguments show that if f is C!-close to
E,,, then each infinite e-orbit (x;) of f is shadowed by a unique real orbit of
f that depends continuously on (x;) (Exercise 5.1.3).

Consider now f thatis C!-close enough to E,,. View each orbit ( f(x)) as
an e-orbit of E,,. Let y = ¢(x) be the unique point whose orbit (E! y) shad-
ows ( f/(x)). By the above discussion, the map ¢ is a homeomorphism and
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En¢(x) = ¢(f(x)) for each x (Exercise 5.1.4). This means that any differen-
tiable map that is C!-close enough to E,, is topologically conjugate to E,,.
In other words, E,, is structurally stable; see 85.5 and 85.11.

Hyperbolicity is characterized by local expansion and contraction, in com-
plementary directions. This property, which causes local instability of orbits,
surprisingly leads to the global stability of the topological pattern of the
collection of all orbits.

Exercise 5.1.1. Prove that lim;_», )" exists.

Exercise 5.1.2. Prove that lim; ., y? depends continuously on (x;) in the
product topology.

Exercise 5.1.3. Prove thatif fis C!-close to E,,, then each infinite e-orbit
(x;) of fis approximated by a unique real orbit of f that depends continu-
ously on (x;).

Exercise 5.1.4. Prove that ¢ is a homeomorphism conjugating f and E,,.

5.2 Hyperbolic Sets

In this section, M is a C! Riemannian manifold, U C M a non-empty open
subset,and f: U — f(U) ¢ M aC! diffeomorphism. A compact, f-invariant
subset A C U is called hyperbolic if there are A € (0, 1), C > 0, and families
of subspaces F*(x) C .M and E*(x) C T, M, x € A, such that for every
X € A,

LM = E'(x) ® E“(x),
ldfrvs|| < CA*||v*| for every v* € E°(x) and n > 0,
ldf"v*|| < CA™||v¥| for every v* € E*(x) and n > 0,

dfi E°(x) = E*(f(x)) and df, E"(x) = E"(f(x)).

The subspace E*(x) (respectively, E"(x)) is called the stable (unstable)
subspace at x, and the family { E°(x)}rea ({ E*(x)}ren ) is called the stable (un-
stable) distribution of f|,. The definition allows the two extreme cases
E*(x) = {0} or E*(x) = {0}.

The horseshoe (81.8) and the solenoid (81.9) are examples of hyperbolic
sets. If A = M, then f is called an Anosov diffeomorphism. Hyperbolic toral
automorphisms (81.7) are examples of Anosov diffeomorphisms. Any closed
invariant subset of a hyperbolic set is a hyperbolic set.

=

PROPOSITION 5.2.1. Let A be a hyperbolic set of f. Then the subspaces
E*(x) and E*(x) depend continuously on x € A.
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Proof. Let x; be a sequence of points in A converging to xy € A. Passing to
a subsequence, we may assume that dim E° (x;) is constant. Let wy ;, ..., wg;
be an orthonormal basis in E*(x;). The restriction of the unit tangent bundle
T'M to A is compact. Hence, by passing to a subsequence, w;; converges
tow;o € 7;10M foreach j = 1,..., k. Since condition 2 of the definition of a
hyperbolic set is a closed condition, each vector from the orthonormal frame
W10, - .., Wk satisfies condition 2 and, by the invariance (condition 4), lies
in E*(xp). It follows that dim E°(xg) > k = dim £*(x;). A similar argument
shows that dim E*(xy) > dim E*(x;). Hence, by (1), dim E* (xp) = dim E°(x;)
and dim E*(x) = dim E“(x;), and continuity follows. O

Any two Riemannian metrics on M are equivalent on a compact set, in the
sense that the ratios of the lengths of non-zero vectors are bounded above
and away from zero. Thus the notion of a hyperbolic set does not depend
on the choice of the Riemannian metric on M. The constant C depends on
the metric, but A does not (Exercise 5.2.2). However, as the next proposition
shows, we can choose a particularly nice metric and C = 1 by using a slightly
larger A.

PROPOSITION 5.2.2. If A is a hyperbolic set of f with constants C and 1,
then for every € > 0 there is a C' Riemannian metric (-, -) in a neighborhood
of A, called the Lyapunov, or adapted, metric (to f), with respect to which f
satisfies the conditions of hyperbolicity with constants C' =1 and )’ = A + ¢,
and the subspaces E*(x), E“(x) are e-orthogonal, i.e., (v*, v*) < € for all unit
vectors v* € E*(x), v* € E"*(x),x € A.

Proof. Forx € A,v* € F*(x), and v* € E"(x), set

=Y "0+ |dfrv . I =) e+ e dfm. (51
n=0 n=0

Both series converge uniformly for ||[v*||, [[v*]| <1 and x € A. We have

oo

ldfo’ ' = (4 o) [dfI | = 0o+ I = 11D < e+ )l
n=0

and similarly for ||dfx’1v”||/. For v =v*+v"* € T, M, x € A, define |v|’ =
Vv [')? + (Jlve]")?. The metric is recovered from the norm:

1 , , /
(v, w) = S (Jlv +wl? = vl? = Iwll?).

With respect to this continuous metric, £* and E* are orthogonal and f
satisfies the conditions of hyperbolicity with constant 1 and A + ¢. Now, by
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standard methods of differential topology [Hir%4], (-, -)’ can be uniformly
approximated on A by a smooth metric defined in a neighborhood of A.

O

Observe that to construct an adapted metric it is enough to consider
sufficiently long finite sums instead of infinite sums in (5.1).

A fixed point x of a differentiable map f is called hyperbolic if no eigen-
value of df; lies on the unit circle. A periodic point x of f of period k is
called hyperbolic if no eigenvalue of df* lies on the unit circle.

Exercise 5.2.1. Construct a diffeomorphism of the circle that satisfies the
first three conditions of hyperbolicity (with A being the whole circle) but
not the fourth condition.

Exercise 5.2.2. Prove that if A is a hyperbolic set of f: U — M for some
Riemannian metric on M, then A is a hyperbolic set of f for any other
Riemannian metric on M with the same constant A.

Exercise 5.2.3. Let x be a fixed point of a diffeomorphism f. Prove that
{x} is a hyperbolic set if and only if x is a hyperbolic fixed point. Identify the
constants C and A. Give an example when df, has exactly two eigenvalues
we (0,1)and !, but A Apu.

Exercise 5.2.4. Prove that the horseshoe (§1.8) is a hyperbolic set.

Exercise 5.2.5. Let A; be a hyperbolic set of f;:U; — M;,i = 1,2. Prove
that Ay x Ajis a hyperbolic set of fi x fo: Uy x Uy —> My x M.

Exercise 5.2.6. Let M be a fiber bundle over N with projection . Let U be
an open set in M, and suppose that A C U is a hyperbolic set of f:U — M
and that g: N — Nis a factor of f. Prove that w(A) is a hyperbolic set of g.

Exercise 5.2.7. What are necessary and sufficient conditions for a periodic
orbit to be a hyperbolic set?

5.3 e-Orbits

An e-orbit of f:U — M is a finite or infinite sequence (x,) C U such that
d(f(x,), x411) < € for all n. Sometimes e-orbits are referred to as pseudo-
orbits. Forr € {0, 1}, denote by dist, the distance in the space of C"-functions
(see 85.13).

THEOREM 5.3.1. Let A be a hyperbolic set of f:U — M. Then there is an
open set O C U containing A and positive €y, 8y with the following property:
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foreverye > Othereis§ > Osuchthat forany g: O — Mwithdist;(g, f) < €o,
any homeomorphism h: X — X of a topological space X, and any continuous
map ¢: X — O satisfying disto(¢p o h, g o ¢) < & there is a continuous map
Y: X — Owithy oh = goy and disto(¢p, ) < €. Moreover, ¥ is unique in
the sense that if ' oh = g oy’ for some ¥': X — O with disty(¢p, ¥') < 8o,
then ' = .

Theorem 5.3.1 implies, in particular, that any collection of bi-infinite
pseudo-orbits near a hyperbolic set is close to a unique collection of genuine
orbits that shadow it (Corollary 5.3.2). Moreover, this property holds not
only for f itself but for any diffeomorphism C!-close to f. In the simplest
example, if X is a single point x (and /4 is the identity), Theorem 5.3.1 implies
the existence of a fixed point near A(x) for any diffeomorphism C!-close to f.

Proof." By the Whitney embedding theorem [Hir94], we may assume that
the manifold M is an m-dimensional submanifold in R for some large N. For
y € M, let D,(y) be the disk of radius « centered at y in the (N — m)-plane
E*(y) c RN that passes through y and is perpendicular to 7, M. Since A is
compact, by the tubular neighborhood theorem [Hir94], for any relatively
compact open neighborhood O of A in M there is « € (0, 1) such that the -
neighborhood O, of O in RY is foliated by the disks D, (y). For each z € O,
there is a unique point 7 (z) € M closest to y, and the map x is the projection
to M along the disks D, (y). Each map g: O — M can be extended to a map
g:0, > Mby

§(z) = g(7 (2)).

Let C(X, O,) be the set of continuous maps from X to O, with distance
disty. Note that O, is bounded and ¢ € C(X, O,). Let T be the Banach
space of bounded continuous vector fields v: X — R" with the norm |jv| =
sup,. y llv(x)|l. The map ¢’ 1 —¢’ — ¢ is an isometry from the ball of radius
a centered at ¢ in C(X, O,) onto the ball B, of radius « centered at 0 in I.
Define ®: B, — I' by

(@) (x) = g@h ' () +v(h™ () = d(x).  veBy xeX

If v is a fixed point of ® and ¥ (x) = ¢(x) + v(x), then (¥ (h~'(x))) = ¥ (x).
Observe that g(y) € M and hence ¥ (x) € M for x € Xand g(v(h~'(x))) =
¥ (x). Thus to prove the theorem it suffices to show that ® has a unique fixed
point near ¢, which depends continuously on g.

' The main idea of this proof was communicated to us by A. Katok.
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The map & is differentiable as a map of Banach spaces, and the derivative

(dDyw)(x) = dg -1 (o)) o1 W (B (X))

is continuous in v. To establish the existence and uniqueness of a fixed point v
and its continuous dependence on g, we study the derivative of ®. By taking
the maximum of appropriate derivatives we obtain that ||[(d®,w)(x)| <
L|w||, where L depends on the first derivatives of g and on the embedding
but does not depend on X, A, and ¢. For v = 0,

(dPow)(x) = dy(1(xyw(h ™" (x)).

Since A is a hyperbolic set, for some constants A € (0, 1) and C > 1, we have
foreveryye Aandn e N

ldfyv| < Caloll if v e EX(y), (5.2)
laf, o] < CA"lvl - ifv e EY(y). (5.3)

For z € O,, let T, denote the m-dimensional plane through z that is or-
thogonal to the disk D, (7 (z)). The planes T, form a differentiable distri-
bution on O,. Note that 7, = T;M for z € O. Extend the splitting 7, M =
E*(y) & E"(y) continuously from A to O, (decreasing the neighborhood O
and « if necessary) so that F*(z) @ E“(z) = T;and RN = E*(2) ® E“(z) ®
E+(n(z)). Denote by P°, P*, and P+ the projections in each tangent space
T.RN onto E*(z), E*(z), and E*(7(z)), respectively.

Fix n € N so that CA" < 1/2. By (5.2)—(5.3) and continuity, for a small
enough o > 0 and small enough neighborhood O > A, there is ¢y > 0 such
that for every g with dist; ( f, g) < €g,everyz € Oy,andeveryv® € E*(z), v* €
E“(z), vt € Et(7(z)) we have

S ~n_.=s 1 S 17 ~n_.=s 1 S
| Pagi]| < Sl [Prdgi| < g5l (5.4)
U Jsn.u u S ~n_.u 1 u
| Prdgzvt] = 21000 | Prdgzvt | = 155" (5.5)
dgivt = 0. (5.6)

Denote

" ={vel:v(x) e E'(¢(x)) forall x € X}, v=s,u, L.
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The subspaces IS, T'“, 't are closedand I = I' @ ' @ I"'+. By construction,

ASS ASLL O
dog= | A% A« 0],
0 0 0

where A7:T" — T'/ i, j =s,u. By (5.4)~(5.6), there are positive ¢) and §
such that if dist;( f, g) < €o and disto(¢ o i, g 0 ¢) < §, then the spectrum of
d®y is separated from the unit circle. Therefore the operator d®, — Id is
invertible and

l(d®o —1d)7'| < K,

where K depends only on f and ¢.

As for maps of finite-dimensional linear spaces, ®(v) = ®(0) + dPpv +
H(v), where [[H(vi) — H(v2)ll < Crmax{[vi], [lv2[l} - llvi — vzl for some
Ci > 0 and small [|v1]|, |lv2]l. A fixed point v of ® satisfies

F(v) = —(d®o — Id)"}(®(0) + H(v)) = v.

If ¢ > 0is small enough, then for any vy, v, € I" with |Jvq], [[v2|| < ¢,

1
1F(vi) = F(u)ll < S lvr = vall.

Thus for an appropriate choice of constants and neighborhoods in the con-
struction, F:T" — T is a contraction, and therefore has a unique fixed point,
which depends continuously on g. O

Theorem 5.3.1 implies that an e-orbit lying in a small enough neighbor-
hood of a hyperbolic set can be globally (i.e., for all times) approximated by
areal f-orbit in the hyperbolic set. This property is called shadowing (the
real orbit shadows the pseudo-orbit). A continuous map f of a topological
space X has the shadowing property if for every € > 0 there is § > 0 such
that every §-orbit is e-approximated by a real orbit.

For € > 0, denote by A, the open e-neighborhood of A.

COROLLARY 5.3.2 (Anosov's Shadowing Theorem). Let A be a hyperbolic
setof f:U — M. Then for every € > Qthereis § > 0 such that if (xy) is a finite
or infinite 8-orbit of f and dist(xg, A) < § for all k, then there is x € A, with
dist( f*(x), x) < e.

Proof. Choose a neighborhood O satisfying the conclusion of Theorem
5.3.1, and choose § > 0 such that A; C O. If (x;) is finite or semi-infinite,
add to (xx) the preimages of some y, € A whose distance to the first point
of (xx) is < 8, and/or the images of some y,, € A whose distance to the
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last point of (x;) is < &, to obtain a doubly infinite §-orbit lying in the §-
neighborhood of A. Let X = (x;) with discrete topology, g = f, & be the
shift x; 1 —>xx11, and ¢: X — U be the inclusion, ¢(x;) = xx. Since (x) is a
8-orbit, dist(¢(h(xx)), f(¢d(xk)) < 8. Theorem 5.3.1 applies, and the corollary
follows. O

As in Chapter 2, denote by NW( f) the set of non-wandering points, and
by Per( f) the set of periodic points of f. If A is f-invariant, denote by
NW(f]a) the set of non-wandering points of f restricted to A. In general,
NW( /1) ANW(f) N A.

PROPOSITION 5.3.3. Let A beahyperbolicsetof f: U — M. Then Per( f|4)
= NW(fla)-

Proof. Fix e > 0 and let x € NW( f|4). Choose § from Theorem 5.3.1, and
let V = B(x,8/2) N A.Since x € NW( f|a), thereisn € Nsuch that f(V)nN
V EdLetze f(fA(V)NV)=Vn f(V). Then {z, f(2). ..., " '(z)}
is a §-orbit, so by Theorem 5.3.1 there is a periodic point of period n within
2e of z. O

COROLLARY 5.3.4. If f: M — M is Anosov, then Per(f) = NW(f).

Exercise 5.3.1. Interpret Theorem 5.3.1 for X=7Z, and h(z) =z+1
mod m.

Exercise 5.3.2. Let A be a hyperbolic set of f:U — M. Prove that the
restriction f|, is expansive.

Exercise 5.3.3. Let T:[0, 1] — [0, 1] be the tent map: T(x) = 2x for 0 <
x <1/2and T(x) =2(1 — x) for 1/2 < x < 1. Does T have the shadowing
property?

Exercise 5.3.4. Prove that a circle rotation does not have the shadowing
property. Prove that no isometry of a manifold has the shadowing property.

Exercise 5.3.5. Show that every minimal hyperbolic set consists of exactly
one periodic orbit.

5.4 Invariant Cones

Although hyperbolic sets are defined in terms of invariant families of linear
spaces, it is often convenient, and in more general settings even necessary,
to work with invariant families of linear cones instead of subspaces. In this
section, we characterize hyperbolicity in terms of families of invariant cones.
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Let A be a hyperbolic set of f: U — M. Since the distributions E° and
E" are continuous (Proposition 5.2.1), we extend them to continuous distri-
butions £* and E* defined in a neighborhood U(A) D A. If x € U(A) and
ve M, let v=1®+v* with v* € £*(x) and v* € E“(x). Assume that the
metric is adapted with constant A. For « > 0, define the stable and unstable
cones of size o by

K, (x) = {v e TM:|[v"| < allv’ll},
Ki(x) ={v e LM:|v'| <alvl}.

For a cone K, let K= int(K) U {0}. Let A, = {x € U:dist(x, A) < €}.

PROPOSITION 5.4.1. Foreverya > Othereise = e(a) > Osuch that f'(A.)
cU(A),i =-1,0,1, and for every x € A,

dfKL(0) C KU(F() and df;l Ko(f(0)C K3 ().

Proof. The inclusions hold for x € A. The statement follows by continuity.
O

PROPOSITION 5.4.2. For every § > 0 there are « > 0 and € > 0 such that
fi(A) Cc U(A),i =—1,0,1, and for every x € A,

ldfi o] < G+ 8ol if ve Ki),
and

ldfevll = (A +0)llvll if ve K (x).

Proof. The statement follows by continuity for a small enough « and € =
€(a) from Proposition 5.4.1. O

The following proposition is the converse of Propositions 5.4.1 and 5.4.2.

PROPOSITION 5.4.3. Let A be a compact invariant set of f:U — M. Sup-
pose that there is o > 0 and for every x € A there are continuous subspaces
F*(x) and E*(x) such that F*(x) & E*(x) = T, M, and the a-cones K5(x) and
K (x) determined by the subspaces satisfy

1. dfKHx) © KE(F(x)) and df 3 K(£(x)) © K& (x), and

2. Nldfevll < |lvll for non-zero v € Ki(x), and ||ldf; "]l < ||v]| for non-

zero v € Kl (x).

Then A is a hyperbolic set of f.
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Proof. By compactness of A and of the unit tangent bundle of M, there is
a constant A € (0, 1) such that

ldfooll < Allvl forve Ki(x) and |df; ]| < allvll forv e K¥(x).
For x € A, the subspaces

E(x) = (dfpi K (f'(x)) and  E“(x) = [)df}uie K (f (%))

n>0 n>0

satisfy the definition of hyperbolicity with constants A and C = 1. O
Let

Al ={x e U: dist( f"(x), A) < € for all n € Np},
AY ={x e U: dist(f™"(x), A) < € for all n € No}.

Note that both sets are contained in A and that f(A%) C A%, f~1(AY) C A%

PROPOSITION 5.4.4. Let A be a hyperbolic set of f with adapted metric.
Then for every § > 0 there is € > 0 such that the distributions E° and E* can
be extended to A, so that

1. E’is continuous on AS, and E" is continuous on AY,

2. ifx € AcN f(A)thendf, E*(x) = E*(f(x))anddf, E*(x) = E*(f(x)),

3. ldfivll < (A +9)|v| for every x € A and v € E*(x),

4. |ldf7 ] < (A +8)|v]l for every x € A, and v € E*(x).

Proof. Choose e > Osmall enoughthat A C U(A).Forx € Af,let E*(x) =
lim, 00 df ., (E*(f"(x))). By Proposition 5.4.2, the limit exists if §, o, and €
are small enough. If x € A\A¢,letn(x) € Nbesuch that f"(x) € A forn =
0.1,....n(x) and f"+1(x) ¢ A, and let E(x) = df () (B (£ (x))).
The continuity of E£* on A{ and the required properties follow from Proposi-
tion 5.4.2. A similar construction with f replaced by f~! gives an extension

of E". O
Exercise 5.4.1. Prove that the solenoid (81.9) is a hyperbolic set.

Exercise 5.4.2. Let A be a hyperbolic set of f. Prove that there is an open
set O D A and € > 0 such that for every g with dist;( f, g) < ¢, the invariant
set Ag = ()e_o 8"(0) is a hyperbolic set of g.

Exercise 5.4.3. Prove that the topological entropy of an Anosov diffeo-
morphism is positive.
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Exercise 5.4.4. Let A be a hyperbolic set of f. Prove that if dim E*(x) > 0
for each x € A, then f has sensitive dependence on initial conditions on A
(see 81.12).

5.5 Stability of Hyperbolic Sets

In this section, we use pseudo-orbits and invariant cones to obtain key prop-
erties of hyperbolic sets. The next two propositions imply that hyperbolicity
is “persistent.”

PROPOSITION 5.5.1. Let A be a hyperbolic set of f:U — M. There is an
open set U(A) D A and €y > 0 such that if K C U(A) is a compact invari-
ant subset of a diffeomorphism g: U — M with disti(g, f) < €, then K is a
hyperbolic set of g.

Proof. Assume that the metricis adapted to f, and extend the distributions
EY% and EY to continuous distributions £% and EY defined in an open neigh-
borhood U(A) of A. For an appropriate choice of U(A), €, and «, the stable
and unstable «-cones determined by Eff and E‘; satisfy the assumptions of
Proposition 5.4.3 for the map g. O

Denote by Diff! (M) the space of C! diffeomorphisms of M with the C'
topology.

COROLLARY 5.5.2. The set of Anosov diffeomorphisms of a given compact
manifold is open in Diff'(M).

PROPOSITION 5.5.3. Let A be a hyperbolic set of f:U — M. For every
open set V C U containing A and every € > 0, there is § > 0 such that
for every g: V. — M with disti(g, f) < 6, there is a hyperbolic set K C 'V
of g and a homeomorphism x:K — A such that x oglx = fla o x and
disto(x, Id) < e.

Proof. Let X=A,h= f|s, and let ¢:A < U be the inclusion. By
Theorem 5.3.1, there is a continuous map ¢: A — U such that ¥ o f|, =
goy.Set K = v¥(A). Now apply Theorem 5.3.1to X = K, h = g|k, and the
inclusion ¢: K — M to get /': K — U with ¥’ o g|x = f|a o ¥. By unique-
ness, ¥ ~! = /. For a small enough &, the map x = ¢ is close to the identity,
and, by Proposition 5.5.1, K is hyperbolic. O

A C! diffeomorphism f of a C! manifold M is called structurally stable
if for every € > 0 there is § > 0 such that if g € Diff'(M) and dist; (g, f) <
3, then there is a homeomorphism 4: M — M for which foh =ho g and
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distg(h, Id) < e. If one demands that the conjugacy 4 be C', the definition
becomes vacuous. For example, if f has a hyperbolic fixed point x, then any
small enough perturbation g has a fixed point y nearby; if the conjugation
is differentiable, then the matrices dg, and df, are similar. This condition
restricts g to lie in a proper submanifold of Diff' ( M).

COROLLARY 5.5.4. Anosov diffeomorphisms are structurally stable.

Exercise 5.5.1. Interpret Proposition 5.5.3 when A is a hyperbolic periodic
point of f.

5.6 Stable and Unstable Manifolds

Hyperbolicity is defined in terms of infinitesimal objects: a family of linear
subspaces invariant by the differential of a map. In this section, we construct
the corresponding integral objects, the stable and unstable manifolds.

For § > 0,let B; = B(0, §) C R™ be the ball of radius § at 0.

PROPOSITION 5.6.1 (Hadamard-Perron). Let f = (fi)neny, fu: Bs =& R™,
be a sequence of C' diffeomorphisms onto their images such that f,(0) = 0.
Suppose that for each n there is a splitting R" = E*(n) ® E*(n) and A € (0, 1)
such that
1. df,(0)E*(n) = E*(n+ 1) and df,(0)E*(n) = E"(n + 1),
2. df(0)v*|| < AllvS| for every v° € E*(n),
3. |ldf,,(0)v*|| > A~ Yv¥|| for every v* € E*(n),
4. the angles between E*(n) and E"(n) are uniformly bounded away
from 0,
5. {dfu(Dlnen, is an equicontinuous family of functions from Bs to
GL(m, R).
Then there are € > 0 and a sequence ¢ = (¢n)nen, of uniformly Lipschitz
continuous maps ¢,: B = {v € E*(n):||v|]| < €} - E*(n) such that
1. graph(¢,) N B = Wi (n) :={x € Be: || fark—1 00 fuy1 0 fu(X)ll
_>k—>000};
2. fa(graph(¢,)) C graph(dn1),
3. if x € graph(¢y,), then || f,(x)| < A|lx|, so by (2), f¥(x) — 0 exponen-
tially as k — oo,
4. for x € B.\graph(¢,),

| Bt 12 (6) = it (P Fu0) | > 271 B = du(Prx)

where PS(PY) denotes the projection onto E°(n)(E*(n)) parallel to
E*(n)(E*(n)),

b
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5. ¢, is differentiable at 0 and d¢,(0) =0, ie., the tangent plane to
graph(¢,) is E*(n).
6. ¢ depends continuously on f in the topologies induced by the following

distance functions:
d0(¢, I/f) = Sup 27n|¢n(x) - 1»ﬁn(x)L
neNy, xe B,
d(f,g) = sup 27"disti( fu, &n)
neNU

where disty is the C! distance.

Proof. For positive constants L and ¢, let ®(L, €) be the space of se-
quences ¢ = (¢n)nen,, Where ¢,: BS — E"(n) is a Lipschitz-continuous map
with Lipschitz constant L and ¢,(0) = 0. Define distance on ®(L, ¢) by
d(¢, V) = sup,n,. rep |9n(x) — ¥n(x)|. This metric is complete.

We now define an operator F: ®(L, ¢) — ®(L, €) called the graph trans-
form. Suppose ¢ = (¢,) € . We prove in the next lemma that for a small
enough ¢, the projection of the set f;!(graph(¢,.1)) onto E*(n) covers
ES(n), and f;!(graph(¢,1)) contains the graph of a continuous function
Y BS — EY(n) with Lipschitz constant L. We set F(¢), = .

Note that a map h: R — R/ is Lipschitz continuous at 0 with Lipschitz
constant L if and only if the graph of / lies in the L-cone about R¥, and is
Lipschitz continuous at x € R¥if and only ifits graph lies in the L-cone about
the translate of R* by (x, a(x)).

LEMMA 5.6.2. Forany L > 0, there exists € > 0such that the graph transform
F is a well-defined operator on ®(L, €).

Proof. For L > 0and x € B, let Kj(n) denote the stable cone
Ki(n)={veR™v =20+ V' e E'(n), v* € E"(n), [v"| < L]V*|}.

Note that df,; 1 (0)K3 (n + 1) C K3 (n) for any L > 0. Therefore, by the uni-
form continuity of df;,, for any L > 0 there is € > O such thatdf, ' (x) K3 (n +
1) € Kj(n) for any n € Ny and x € B.. Hence the preimage under f, of
the graph of a Lipschitz-continuous function is the graph of a Lipschitz-
continuous function. For ¢ € ®(L, €), consider the following composition
B = P(n)o f' o ¢, where P*(n) is the projection onto E*(n) parallel to
E*(n). If € is small enough, then 8 is an expanding map and its image covers
Bi(n) (Exercise 5.6.1). Hence F(¢) € ®(L, €). O

The next lemma shows that F is a contracting operator for an appropriate
choice of € and L.
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Figure 5.1. Graph transform applied to ¢ and .

LEMMA 5.6.3. There are ¢ > 0 and L > 0 such that F is a contracting oper-
ator on ®(L, €).

Proof. For L € (0,0.1), let K} (n) denote the unstable cone
K4(n) = v e R™v = v 4+ 0", v* € E*(n), v" € E"(n), [v"| > L™ [v*]},

and note that df,(0)K}(n) C K¥(n+1). Asin Lemma 5.6.2, by the uniform
continuity of df,, for any L > 0 there is € > 0 such that the inclusion
df,K}(n) c K}(n+ 1) holds for every n € Ny and x € B..

Leto, v € ®(L,€),¢' = F(¢), v’ = F(¢) (see Figure 5.1). Forany > 0
there aren € Nygand y € B! such that |¢/,(y) — ¥, (¥)| > d(¢’, ¥') — n. Letc*
be the straight line segment from (y, ¢,,(y)) to (v, ¢,,(y)). Since c* is parallel
to E“(n), we have that length( f,,(c*)) > A~! length(c*). Let f,(y, ¥.(y)) =
(2, ¥n11(2)), and consider the curvilinear triangle formed by the straight line
segment from (z, $n+1(2)) to (2, ¥u11(2)), fu(c*), and the shortest curve on
the graph of v, connecting the ends of these curves. For a small enough
€ > Othe tangent vectors to the image f,,(c") liein K} (n + 1) and the tangent
vectors to the graph of ¢, lie in Kj (n + 1). Therefore,

length( f,,(c*)) u
a2~ L0+ L) length(f(c")

(1 — 4D)length( fy(c")).

|¢n+l (Z) - 1z/fi1-+—1(z)| >

v

and
d(@, V) = |¢n11(2) = Ynt1(2)] = (1 — 4L) length (£,(c*))
> (1 —4L)x " length (¢*) = (1 — 4L)A~1(d(¢', ¥') — ).
Since n is arbitrary, F is contracting for small enough L and €. O

Since F is contracting (Lemma 5.6.3) and depends continuously on f,
it has a unique fixed point ¢ € ®(L, €), which depends continuously on f
(property 6) and automatically satisfies property 2. The invariance of the
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stable and unstable cones (with a small enough €) implies that ¢ satisfies
properties 3 and 4. Property 1 follows immediately from 3 and 4. Since
property 1 gives a geometric characterization of graph(¢,), the fixed point
of F for a smaller ¢ is a restriction of the fixed point of F for a larger ¢ to
a smaller domain. As ¢ — 0 and L — oo, the stable cone Kj (0, n) (which
contains graph(¢,)) tends to E°(n). Therefore E*(n) is the tangent plane to

graph(¢,) at 0 (property 5). O

The following theorem establishes the existence of local stable manifolds
for points in a hyperbolic set A and in A3}, and of local unstable manifolds
for points in A and in Aj (see §5.4); recall that Aj D A and A§ D A.

THEOREM 5.6.4. Let f: M — M be a C' diffeomorphism of a differentiable
manifold, and let A C M be a hyperbolic set of f with constant ) (the metric
is adapted).

Then there are €,5 > 0 such that for every x° € A§ and every x* € A§
(see 85.4)

1. the sets

W2 (x%)={y € M:dist(f"(x*), f"(y)) < € for all n € Ny},
Wi (x")={y € M:dist(f™"(x"), f7"(y)) < € forall n € Ny},

called the local stable manifold of x* and the local unstable manifold
of x*, are C' embedded disks,
2. T Wi(x*) = E°(y°) for every y* € W(x*), and T W*(x") = E"(y*)
for every y* € W!(x") (see Proposition 5.4.4),
3 FWR)) € W2(F(e)) and -1 (WE(F(x)) © W),
4. if y*, 72" € WE(x%), then d*(f()*), f(2)) < Ad*()*, 2*¥), where d° is the
distance along W?(x*),
if y, 2 € WE(xt), then d*(f~1(y), f-1(2)) < Ad“(y", ), where d"
is the distance along W*(x"),
5. if 0 < dist(x’, y) < € and expg' (y) lies in the 8-cone K!(x*), then dist
(f(x). f()) > 2~ Mdist(x*, y),
if 0 < dist(x", y) < € and expgi(y) lies in the §-cone Ki(x"), then
dist(f(x*), f(y)) < Adist(x", y),
6. if y* € W(x*), then Wi(y*) C W:(x*) for some o > 0,
if y* € Wi(x"), then W (y") C W{(x") for some B > 0,
Proof. Since Aj D A is compact, for a small enough § there is a collec-
tion U of coordinate charts (U, ¥,), x € Aj, such that U, covers the
s-neighborhood of x and the changes of coordinates ¥, o ! between

y
the charts have equicontinuous first derivatives. For any point x* € Aj, let
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fo= Wiy © o Yty EX0) = dvpoge (2) B (f/(x)). and E*(n) =
dyr pny (x) E*( f"(x)), apply Proposition 5.6.1, and set W (x) = W (¢). Simi-
larly, apply Proposition 5.6.1 to f~! to construct the local unstable manifolds.
Properties 1-6 follow immediately from Proposition 5.6.1. O

Let A be a hyperbolicsetof f: U — M and x € A. The (global) stable and
unstable manifolds of x are defined by

W (x) = {y € M:d(f"(x), f"(y)) > O0asn — oo},
WH(x) ={y e M:d(f"(x), f(y)) — 0asn — oo}.

PROPOSITION 5.6.5. Thereis ¢y > 0such that forevery € € (0, ), forevery
X €A,

W)= rmrw),  wre) = rmEge).
n=0 n=0

Proof. Exercise 5.6.2. O

COROLLARY 5.6.6. The global stable and unstable manifolds are embed-
ded C' submanifolds of M homeomorphic to the unit balls in corresponding
dimensions.

Proof. Exercise 5.6.3. O

Exercise 5.6.1. Suppose f:R™ — R™ is a continuous map such that
| f(x) — f(y)| = alx — y|forsome a > 1,forall x, y € R™.If f(0) = 0, show
that the image of a ball of radius r > 0 centered at 0 contains the ball of
radius ar centered at 0.

Exercise 5.6.2. Prove Proposition 5.6.5.

Exercise 5.6.3. Prove Corollary 5.6.6.

5.7 Inclination Lemma

Let M be a differentiable manifold. Recall that two submanifolds N;, N, C
M of complementary dimensions intersect transversely (or are transverse) at
apoint pe NN N if T,M = T,N; & T, N,. We write N, M N, if every point
of intersection of N; and N, is a point of transverse intersection.

Denote by B the open ball of radius € centered at 0 in R'. For v € R” =
R¥ x R!, denote by v* € R¥ and v* € R! the components of v = v* + v*, and
by 7*:R™ — Rk the projection to R¥. For § > 0, let K¥ = {v € R™: ||[v*|| <
§lv"ll} and K§ = {v € R™: [v"|| < S[[v*|}.
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Figure 5.2. The image of the graph of ¢ under f”.

LEMMA 5.7.1. Let» € (0,1),¢,8 € (0,0.1). Suppose f: B¥ x B! — R™ and
¢: BX — B! are C' maps such that

1. 0is a hyperbolic fixed point of f,
W (0) = BE x {0} and W¢(0) = {0} x B,
ldf: ()l = A7 ||v|| forevery v € K¥ whenever bothx, f(x) € B* x B,
ldf.(v)Il < Allv]| for every v € K3 whenever both x, f(x) € B* x B!,
df.(KY) C K whenever both x, f(x) € B* x B!,
d(fHx(K3) C K whenever both x, f~(x) € B* x B!,

7. Ty.s(v)eraph(¢) C K for every y € B,
Then for every n € N there is a subset D, C B¥ diffeomorphic to B* and such
that the image I, under f" of the graph of the restriction ¢| p, has the following

properties: 7(1,) D Bék/2 and T, I, C K., for each x € I,.

Proof. The lemma follows from the invariance of the cones (Exercise 5.7.2).
O

AU NI S

The meaning of the lemma is that the tangent planes to the image of
the graph of ¢ under f" are exponentially (in #) close to the “horizontal”
space R¥, and the image spreads over BX in the horizontal direction (see
Figure 5.2).

The following theorem, which is also sometimes called the Lambda
Lemma, implies that if f is C" with » > 1, and D is any C!-disk that in-
tersects transversely the stable manifold W*(x) of a hyperbolic fixed point
x, then the forward images of D converge in the C” topology to the unstable
manifold W*(x) [PAMS82]. We prove only C' convergence. Let BY% be the ball
of radius R centered at x in W*(x) in the induced metric.

THEOREM 5.7.2 (Inclination Lemma). Let x be a hyperbolic fixed point
of a diffeomorphism f:U — M, dimW*(x) = k, and dimW*(x) = 1. Let y €
W*(x), and supposethat D 5 yis a C' submanifold of dimension kintersecting
W#(x) transversely at y.
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Then for every R > 0 and B > 0 there are ng € N and, for each n > ny,
a subset D= D(R, B,n),y € D C D, diffeomorphic to an open k-disk and
such that the C' distance between (D)) and BY% is less than .

Proof. We will show that for some n; € N, an appropriate subset D; C
f™ (D) satisfies the assumptions of Lemma 5.7.1. Since {x} is a hyperbolic
set of f, for any § > 0O there is € > 0 such that F*(x) and E“(x) can be ex-
tended to invariant distributions £* and E" in the e-neighborhood B, of
x and the hyperbolicity constant is at most A + § (Proposition 5.4.4). Since
f™(y) — x, there is n, € N such that z = f"(y) € B:. Since D intersects
W¢(x) transversely, so does f"2( D). Therefore there is n > 0 such that if
ve T, (D), |v] =1,v=1"+v4 v € E(z), v* € E*(z),and v* /0, then
[lv*]l = nllv®||. By Proposition 5.4.4, for a small enough § > 0, the norm
|ldf"v*| decays exponentially and ||df"v"|| grows exponentially. Therefore,
for an arbitrarily small cone size, there exists n, € N such that Ty ) (D)
lies inside the unstable cone at f™2(y).

Exercise 5.7.1. Prove thatif x isahomoclinic point, then x is non-wandering
but not recurrent.

Exercise 5.7.2. Prove Lemma 5.7.1.

Exercise 5.7.3. Let p be a hyperbolic fixed point of f. Suppose W*(p) and
W*(p) intersect transversely at g. Prove that the union of p with the orbit
of g is a hyperbolic set of A.

5.8 Horseshoes and Transverse Homoclinic Points

Let R™ = RK x R'. We will refer to R* and R’ as the unstable and stable
subspaces, respectively, and denote by 7* and 7° the projections to those
subspaces. For v € R™, denote v* = 7%(v) € R and v* = n°(v) € R’. For
o € (0,1),call the sets K = {v € R™: |v*| < |v¥]} and K = {v € R™: [v¥] <
«|v*|} the unstable and stable cones, respectively. Let R* = {x € R*: |x| <
1}, R = {x e R:|x| <1},and R= R" x R*. For z=(x,y),x e R¥,y e R/,
the sets F*(z) = {x} x R® and F"(z) = R" x {y} will be referred to as unsta-
ble and stable fibers, respectively. We say that a C' map f: R — R” has a
horseshoe if there are A, « € (0, 1) such that

1. fis one-to-one on R;
2. f(R) N Rhas at least two components Ao, ..., Ay_1;
3. if ze R and f(z)€A;, 0<i <gq, then the sets G'(z)= f(F“(z))N
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Rk

Figure 5.3. A non-linear horseshoe.

A; and Gi(z) = f~Y(F*(f(z)) N A;) are connected, and the restric-
tions of 7" to G} (z) and of * to G} (z) are onto and one-to-one;

4. if z, f(z) € R, then the derivative df; preserves the unstable cone K¥
and Aldf,v| > |v| for every v € KJ, and the inverse d ff’(lz) preserves

the stable cone K and A|dffT(lz)v| > |v| for every v € K.
The intersection A = (1), f"(R) is called a horseshoe.

THEOREM 5.8.1. The horseshoe A = (),; f"(R) is a hyperbolic set of f.
If f(R) N R has q components, then the restriction of f to A is topologically
conjugate to the full two-sided shift o in the space %, of bi-infinite sequences
in the alphabet {0, 1, ...,q — 1}.

Proof. The hyperbolicity of A follows from the invariance of the cones and
the stretching of vectors inside the cones. The topological conjugacy of f|a
to the two-sided shift is left as an exercise (Exercise 5.8.2). O

COROLLARY 5.8.2. If a diffeomorphism f has a horseshoe, then the topo-
logical entropy of f is positive.

Let p be a hyperbolic periodic point of a diffeomorphism f:U — M.
A point g € U is called homoclinic (for p)if g /=p and g € W*(p) N W*(p);
it is called transverse homoclinic (for p) if in addition W*(p) and W*(p)
intersect transversely at q.

The next theorem shows that horseshoes, and hence hyperbolic sets in
general, are rather common.
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THEOREM 5.8.3. Let p be a hyperbolic periodic point of a diffeomorphism
f:U — M, and let q be a transverse homoclinic point of p. Then for every

€ > 0 the union of the e-neighborhoods of the orbits of p and q contains a
horseshoe of f.

Proof. We consider only the two-dimensional case; the argument for higher
dimensions is a routine generalization of the proof below. We assume without
loss of generality that f(p) = p and f is orientation preserving. There is a
C! coordinate system in a neighborhood V = V* x V* of p such that pis the
origin and the stable and unstable manifolds of p coincide locally with the
coordinate axes (Figure 5.4). For a point x € V and a vector v € R?, we write
x = (x*,x*)and v = (v*, v*), where s and u indicate the stable (vertical) and
unstable (horizontal) components, respectively. We also assume that there is
A € (0,1) such that |df,v*| < A[v*| and |df, 'v"| < A[v"| for every v /0. Fix
§ > 0, and let K3 P and Kgf/z be the stable and unstable §/2-cones. Choose V
small enough so that for every x € V

dfx(Kg‘/z) C K5 ’dfx‘lv’ <A ifve K5,
df; K3, C K3, ldfvl < Alv] ifve K.

Since g € W*(p) N W¥(p), we have that f"(g) € V and f~"(q) € V for all
sufficiently large n. By invariance, W*(p) and W*(p) pass through all images
f"(gq). Since W*(p) intersects W*(p) transversely at g, by Theorem 5.7.2
there is n, such that f"(q) € V forn > n,, and an appropriate neighborhood

~

Figure 5.4. A horseshoe at a homoclinic point.
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D" of f™*(q) in W¥(p) is a C! submanifold that “stretches across” V and
whose tangent planes lie in Kj,, i.e., D* is the graph of a C' function
¢*: V" — V¥ with ||d¢"|| < §/2. Similarly since g € W¥(p), there is ny € N
such that f~"(q) € U for n > n,; and a small neighborhood D’ of f~"(g) in
Ws(p)is the graph of a C! function ¢*: V¥ — V*with ||d¢*| < §/2. Note that
since f preserves orientation, the point f"«*!(gq) is not the next intersection
of W¥(p) with W*(p) after f™(q); in Figure 5.4 it is shown as the second
intersection after f"(q) along W*(p).

Consider a narrow “box” R shown in Figure 5.4, and let N =k+n, +
ns + 1. We will show that for an appropriate choice of the size and position
of Rand of k € N, themap f = fV, the box R, and itsimage f(R) satisfy the
definition of a horseshoe. The smaller the width of the box and the closer it
lies to W*(p), the larger is k for which f*(R) reaches the vicinity of f~"(q).
The number 7 = n, + n, + 1 is fixed. If v* is a horizontal vector at f~"(q),
itsimagew = d f]’?,,,s @ is tangent to W*(p) at f*1(g) and therefore lies in
Kg‘/z. Moreover, |w| > 28|v*|forsome 8 > 0. For any sufficiently close vector
v at a close enough base point, the image will lie in K§' and |df"v| > B|v|.
The same holds for “almost horizontal” vectors at points close to f~"~1(q).

On the other hand, df,(K}) C K}, for every small enough & > 0 and ev-
ery x € V. Therefore, if x € R, f(x), ..., f¥(x) € Vand v € K is a tangent
vector at x, then df¥v € K and |df¥v| > A7¥|v|. Suppose now that x € R is
such that f*(x) is close to either f~"(q) or f~"~!(q). Let k be large enough
so that 8/AK > 10. There is A" € (0, 1) such thatif x € Rand f"(x)is close to
either f™(q) or f*1(q) (ie., fX(x)is close to f~"(q) or f~=~1(q)), then
K! is invariant under dfN and A'|dfNv| > |v| for every v € K¥. Similarly,
for an appropriate choice of R and k, the stable §-cones are invariant under
df~N and vectors from K are stretched by df~N by a factor at least (1)~!.

To guarantee the correct intersection of fV(R) with R we must choose R
carefully. Choose the horizontal boundary segments of R to be straight line
segments, and let R stretch vertically so that it crosses W*(p) near f"(gq) and
f™*1(q). By Theorem 5.7.2, the images of these horizontal segments under
f* are almost horizontal line segments. To construct the vertical boundary
segments of R, take two vertical segments s; and s, to the left of f~=~!(q)
and to the right of f~(q), and truncate their preimages f*(s;) by the
horizontal boundary segments. By Theorem 5.7.2, the preimages are almost
vertical line segments. This choice of R satisfies the definition of a horseshoe.

O

Exercise 5.8.1. Let f:U — M be a diffeomorphism, p a periodic point
of f, and g a (non-transverse) homoclinic point (for p). Prove that every
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arbitrarily small C! neighborhood of f contains a diffeomorphism g such
that p is a periodic point of g and ¢ is a transverse homoclinic point (for p).

Exercise 5.8.2. Prove that if f(R) N R in Theorem 5.8.1 has g connected
components, then the restriction of f to A is topologically conjugate to the
full two-sided shift in the space X, of bi-infinite sequences in the alphabet

{1,...,q}.

Exercise 5.8.3. Let py, ..., px be periodic points (of possibly different pe-
riods) of f:U — M. Suppose W*(p;) intersects W*(p;,1) transversely at
gi,i=1,...,k pro1=p1 (in particular, dimW*(p;) = dimW*(p;) and
dimW*(p;) = dimW*(p1),i =2, ..., k). The points g; are called transverse
heteroclinic points. Prove the following generalization of Theorem 5.8.3: Any
neighborhood of the union of the orbits of p;s and g;s contains a horseshoe.

5.9 Local Product Structure and Locally Maximal Hyperbolic Sets

A hyperbolic set A of f:U — M is called locally maximal if there is an
open set V such that AC V Cc U and A=) ___ (V). The horseshoe
(85.8) and the solenoid (§1.9) are examples of locally maximal hyperbolic
sets (Exercise 5.9.1).

Since every closed invariant subset of a hyperbolic set is also a hyperbolic
set, the geometric structure of a hyperbolic set may be very complicated
and difficult to describe. However, due to their special properties, locally
maximal hyperbolic sets allow a geometric characterization.

Since E°(x) N E"(x) = {0}, the local stable and unstable manifolds of x
intersect at x transversely. By continuity, this transversality extends to a
neighborhood of the diagonal in A x A.

PROPOSITION 5.9.1. Let A be a hyperbolic set of f. For every small enough
€ > 0 there is § > 0 such that if x,y € A and d(x, y) < 8, then the intersec-
tion Wi (x) N W¥(y) is transverse and consists of exactly one point [x, y],
which depends continuously on x and y. Furthermore, thereis C, = C,(8) >
0 such that if x,y € A and d(x,y) <6, then d*(x, [x, y]) < Cpd(x, y) and
d“(x,[x, y]) < Cpd(x, y), where d° and d" denote distances along the stable
and unstable manifolds.

Proof. The proposition follows immediately from the uniform transversal-
ity of E* and E* and Lemma 5.9.2. O

Lete > 0,k [ € N,andlet B C R, B! C R/ be the e-balls centered at the
origin.
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LEMMA 5.9.2. For every € > 0 there is § > 0 such that if ¢: B — R! and
¥: Bl — Rk are differentiable maps and |¢(x)|, |[dp ()|, [¥(y)|, |dp(y)|| < 8
forall x € B*and y € B., then the intersection graph(¢) N graph(y) C R<
is transverse and consists of exactly one point, which depends continuously
on ¢ and v in the C' topology.

Proof. Exercise 5.9.3. O

The following property of hyperbolic sets plays a major role in their geo-
metric description and is equivalent to local maximality. A hyperbolic set A
has a local product structure if there are (small enough) € > 0 and § > O such
that (i) forallx, y € A theintersection W?(x) N W(y) consists of at most one
point, which belongs to A, and (ii) for x, y € A with d(x, y) < §, the inter-
section consists of exactly one point of A, denoted [x, y] = W2 (x) N W(y),
and the intersection is transverse (Proposition 5.9.1). If a hyperbolic set A
has a local product structure, then for every x € A there is a neighborhood
U(x) such that

Ux)NA={[y, z]:y € Ux)NW(x), z€ U(x) N W(x)}.

PROPOSITION 5.9.3. A hyperbolic set A is locally maximal if and only if it
has a local product structure.

Proof. Suppose A is locally maximal. If x, y € A and dist(x, y) is small
enough, then by Proposition 5.9.1, W¥(x) N W*(y) = [x, y] =: z exists and,
by Theorem 5.6.4(4), the forward and backward semiorbits of z stay close to
A. Since A is locally maximal, z € A.

Conversely, assume that A has a local product structure with constants
€,6, and C, from Proposition 5.9.1. We must show that if the whole orbit
of a point g lies close to A, then the point lies in A. Fix « € (0, §/3) such
that f(p) € Wjj;(f(x)) foreachx € A and p € Wy(x). Assume first that g €
W¥(xp) for some xy € A and that there are y, € A such that d( f"(q), y») <
a/C, foralln > 0.Since f(xp), y1 € Aandd(f(x0), y1) < d(f(x0), f(q)) +
d(f(q), y1) <é8/3+a/C, <8, we have that x; = [y;, f(x0)] € A and, by
Proposition5.9.1, f(q) € W*(x1).Similarly,x, = [y», f(x1)] € Aand f?(q) €
W (x). By repeating this argument we construct points x, = [y, f"(q)] € A
with f*(q) € W¥(x,). Observe that g, = f~"(x,) - q asn — oo. Since A is
closed, ¢ € A. Similarly, if ¢ € W (xo) for some xo € A and f"(q) stays close
enough to A for alln < 0, then g € A.

Assume now that f"(y) is close enough to x, € A for all n € Z. Then
y € A and y e A¥. Hence, by Propositions 5.4.4 and 5.4.3, the union A U O¢(y)
is a hyperbolic set (with close constants), and the local stable and unstable



130 5. Hyperbolic Dynamics

manifolds of y are well defined. Observe that the forward semiorbit of
p = [y, x0] and the backward semiorbit of ¢ = [xy, y] stay close to A. There-
fore, by the above argument, p, g € A and (by the local product structure)

y=[p,q] € A. O

Exercise 5.9.1. Prove that horseshoes (85.8) and the solenoid (§1.9) are
locally maximal hyperbolic sets.

Exercise 5.9.2. Let p be a hyperbolic fixed point of f and g € W*(p)N
W*(p) a transverse homoclinic point. By Exercise 5.7.3, the union of p with
the orbit of g is a hyperbolic set of f. Is it locally maximal?

Exercise 5.9.3. Prove Lemma 5.9.2.

5.10 Anosov Diffeomorphisms

Recall that a C! diffeomorphism f of a connected differentiable manifold
M is called Anosov if M is a hyperbolic set for f; it follows directly from the
definition that M is locally maximal and compact.

The simplest example of an Anosov diffeomorphism is the automorphism
of T? given by the matrix 3 1). More generally, any linear hyperbolic au-
tomorphism of the n-torus T” is Anosov. Such an automorphism is given
by an n x n integer matrix with determinant £1 and with no eigenvalues of
modulus 1.

Toral automorphisms can be generalized as follows. Let N be a simply
connected nilpotent Lie group, and I" a uniform discrete subgroup of N. The
quotient M = N/ T is a compact nilmanifold. Let f be an automorphism of
N that preserves I' and whose derivative at the identity is hyperbolic. The
induced diffeomorphism f of M is Anosov. For specific examples of this type
see [Sma67]. Up to finite coverings, all known Anosov diffeomorphisms are
topologically conjugate to automorphisms of nilmanifolds.

The families of stable and unstable manifolds of an Anosov diffeomor-
phism form two foliations (see 85.13) called the stable foliation W* and un-
stable foliation W* (Exercise 5.10.1). These foliations are in general not C',
or even Lipschitz [Ano67], but they are Holder continuous (Theorem 6.1.3).
In spite of the lack of Lipschitz continuity, the stable and unstable folia-
tions possess a uniqueness property similar to the uniqueness theorem for
ordinary differential equations (Exercise 5.10.2).

Proposition 5.10.1 states basic properties of the stable and unstable dis-
tributions E* and E“, and the stable and unstable foliations W* and W*, of
an Anosov diffeomorphism f. These properties follow immediately from
the previous sections of this chapter. We assume that the metric is adapted
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to f and denoted by d&* and d“, the distances along the stable and unstable
leaves.

PROPOSITION 5.10.1. Let f: M — M be an Anosov diffeomorphism. Then
there are 1 € (0,1),C, > 0,€ > 0,8 > 0, and, for every x € M, a splitting
.M = E°(x) & E*(x) such that
1. dfi(E*(x)) = E*(f(x)) and df.(E"(x)) = E*(f(x));
2. |dfev*|| < AllvS|land |df o < Mt forallv' € E¥(x), v* € E*(x);
3. W(x)={ye M:d(f"(x), f*(y)) - 0asn — oo}
and & (f(x), f(y)) < rd’(x, y) for every y € W*(x);
4. Wi(x)={y e M:d(f"(x), f7"(y)) > 0asn — oo}
and d"(f~'(x), f~1(y)) = A"d"(x, y) for every y € W*(x);
5. f(WH(x) = W(f(x)) and f(W"(x)) = W(f(x));
T W*(x) = E*(x) and T, W*(x) = E"(x);
7. ifd(x,y) < §, then the intersection W:(x) N W¥(y) is exactly one point
[x, y], which depends continuously on x and y, and d*([x, y], x) <

Cpd(x, y),d"([x, y]. y) = Cpd(x, y).

For convenience we restate several properties of Anosov diffeomor-
phisms. Recall that a diffeomorphism f: M — M is structurally stable if
for every € > 0 there is a neighborhood ¢ c Diff' (M) of f such that for
every g € U there is a homeomorphism #: M — M with ho f = goh and
disto(h, Id) < e.

IS

PROPOSITION 5.10.2
1. Anosov diffeomorphisms form an open (possibly empty) subset in the
C! topology (Corollary 5.5.2).
2. Anosov diffeomorphisms are structurally stable (Corollary 5.5.4).
3. The set of periodic points of an Anosov diffeomorphism is dense in the
set of non-wandering points (Corollary 5.3.4).

Here is a more direct proof of the density of periodic points. Let € and
8 satisfy Proposition 5.10.1. If x € M is non-wandering, then there isn € N
and y € M such that dist(x, y), dist(f"(y), y) < §/(2C,). Assume that A" <
1/(2C,). Then the map z 1 —[y, f"(z)] is well defined for z € W (y). It maps
W; (y) into itself and, by the Brouwer fixed point theorem, has a fixed point
yi such that d@*(y1, y) < 8, f"(y1) € W*(») and d“(y1, f"(»)) < 8. The map
f7" sends W§'( f*(y1)) to itself and therefore has a fixed point.

THEOREM 5.10.3. Let f: M — M be an Anosov diffeomorphism. Then the
following are equivalent:

1 NW(f) =M,

2. every unstable manifold is dense in M,
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3. every stable manifold is dense in M,

4. fistopologically transitive,

5. fistopologically mixing.

Proof. We say that a set Ais e-dense in a metric space (X, d) if d(x, A) < €
for every x € X.

1 = 2: We will show that every unstable manifold is e-dense in M for
an arbitrary € > 0. By Proposition 5.10.2(3), the periodic points are dense.
Assume that € > 0 satisfies Proposition 5.10.1(7) and that periodic points
x;,i =1,..., N, form an €/4-net in M. Let P be the product of the periods
of the x;s, and set g = f’. Note that the stable and unstable manifolds of g
are the same as those of f.

LEMMA 5.10.4. There is q € N such that if dist(tW"(y), x;) <¢€/2 and
dist(x;, x;) < €/2 for some 'y € M, i, j, then dist(g"?(W"(y)), x;) < €/2 and
dist(g™(W"(y)), x;) < €/2 for everyn € N.

Proof. By Proposition 5.10.2(3), there is z € W¥(y) N Wee, (x;). Therefore
dist(g'(z), x;) < €/2 for any t > ¢y, where fy depends on ¢ but not on z.
Since dist(g'(z), x;) < €, by Proposition 5.10.2(3) there exists a point
w e W'(g'(z)) N Wépep(x,»).Hence dist(g*(w), x;) < €/2forany t > sy which
depends only on € but not on w. The lemma follows with g = sy + fo. O

Since M is compact and connected, any x; can be connected to any x; by
a chain of not more than N periodic points x; with distance < ¢/2 between
any two consecutive points. By Lemma 5.10.4, gV9(W*(y) is e-dense in M
forany y € M. Hence, W*(x) is e-dense for any x = g~V4(y) € M. Therefore,
WH(x) is dense for each x. Reversing the time gives 1 = 3.

LEMMA 5.10.5. If every (un)stable manifold is dense in M, then for every
€ > Othereis R = R(¢) > Osuch that every ball of radius R in every (un)stable
manifold is e-dense in M.

Proof. Letx € M.Since W*(x) = |z Wi(x)isdense, thereis R(x) such that
W]lé(x)(x) is €/2-dense. Since W* is a continuous foliation, there is §(x) > 0
such that Wl‘é(x)( y) is e-dense for any y € B(x, 8(x)). By the compactness of
M, a finite collection B of the §(x)-balls covers M. The maximal R(x) for the
balls from B satisfies the lemma. O

2= 5:Let U, V C M be non-empty opensets. Letx, y € Mand§ > 0be
such that Wi(x) C U and B(y, §) C V,andlet R = R(5) (see Lemma 5.10.5).
Since f expands unstable manifolds exponentially and uniformly, there
is N € N such that f*(Wy(x)) D Wi(f"(x)) for n > N. By Lemma 5.10.5,
fM(U)NV £ dland hence f is topologically mixing. Similarly 3 = 5.

1 = 3 follows by reversing the time. Obviously 5 = 4 and 4 = 1. O
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Exercise 5.10.1. Prove that the stable and unstable manifolds of an Anosov
diffeomorphism form foliations (see §5.13).

Exercise 5.10.2. Although the stable and unstable distributions of an
Anosov diffeomorphism, in general, are not Lipschitz continuous, the fol-
lowing uniqueness property holds true. Let y(-) be a differentiable curve
such that y(¢) € E*(y(¢)) for every ¢. Prove that y lies in one stable mani-
fold.

5.11 Axiom A and Structural Stability

Some of the results of 85.10 extend to a natural wider class of hyperbolic
dynamical systems. Throughout this section we assume that f is a diffeo-
morphism of a compact manifold M. Recall that the set of non-wandering
points NW( f) is closed and f-invariant, and that Per( f) ¢ NW(f).

A diffeomorphism f satisfies Smale’s Axiom A if the set NW( f) is hyper-
bolic and Per( f) = NW( f). The second condition does not follow from the
first. By Proposition 5.3.3, the set Per( f) is dense in the set NW( f|nw(s)) of
non-wandering points of the restriction of f to NW( f). However, in general
NW( finw(r) ANW(f) (Exercise 5.11.1, Exercise 5.11.2).

For ahyperbolic periodic point p of f,denote by W*(O(p)) and W*(O(p))
the unions of the stable and unstable manifolds of p and its images, re-
spectively. If p and g are hyperbolic periodic points, we write p < g when
W#(O(p)) and W“(O(q)) have a point of transverse intersection. The re-
lation < is reflexive. It follows from Theorem 5.7.2 that < is transitive
(Exercise 5.11.3). If p < g and g < p, we write p ~ g and say that p and
q are heteroclinically related. The relation ~ is an equivalence relation.

THEOREM 5.11.1 (Smale’s Spectral Decomposition [Smaé7]). If f satisfies
Axiom A, then there is a unique representation of NW( f),

NW(f)=A1UA2U'~'UAk,

as a disjoint union of closed f-invariant sets (called basic sets) such that
1. each A; is a locally maximal hyperbolic set of f;
2. fistopologically transitive on each A;; and
3. each A, is a disjoint union of closed sets Aij, 1 < j < my, the diffeomor-
phism f cyclically permutes the sets Alf, and ™ is topologically mixing
on each Aij .

The basic sets are precisely the closures of the equivalence classes of ~.
For two basic sets, we write A; < A; if there are periodic points p € A; and
q € Ajsuch that p <gq.
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Let f satisfy Axiom A. We say that f satisfies the strong transversality
condition if W*(x) intersects W*(y) transversely (at all common points) for
all x, y e NW( f).

THEOREM 5.11.2 (Structural Stability Theorem). A C! diffeomorphism is
structurally stable if and only if it satisfies Axiom A and the strong transver-
sality condition.

J. Robbin [Rob71] showed that a C? diffeomorphism satisfying Axiom
A and the strong transversality condition is structurally stable. C. Robinson
[Rob76] weakened C? to C'. R. Maiié [Maii88] proved that a structurally
stable C! diffeomorphism satisfies Axiom A and the strong transversality
condition.

Exercise 5.11.1. Give an example of a diffeomorphism f such that
NW(fInw() ANW(S).

Exercise 5.11.2. Give an example of a diffeomorphism f for which NW( f)
is hyperbolic and NW( fInw(s)) ANW(f).

Exercise 5.11.3. Prove that < is a transitive relation.

Exercise 5.11.4. Suppose that f satisfies Axiom A. Prove that NW( f)isa
locally maximal hyperbolic set.

5.12 Markov Partitions

Recall (Chapter 1, Chapter 3) that a partition of the phase space of a dy-
namical system induces a coding of the orbits and hence a semiconjugacy
with a subshift. For hyperbolic dynamical systems, there is a special class of
partitions — Markov partitions — for which the target subshift is a subshift of
finite type. A Markov partition P for an invariant subset A of a diffeomor-
phism f of a compact manifold M is a collection of sets R; called rectangles
such that for all i, j, k

1. each R is the closure of its interior,
2. intRNintR; =Pifi Aj,
3. AC Ui R;,
4. if f"(int R;) Nint R; N A /= forsomem € Zand f"(int R;) Nint R N
A /£ ffor some n € Z, then f™™(int R)Nint RkNA =0
The last condition guarantees the Markov property of the subshift cor-

responding to P, i.e., the independence of the future from the past. For
hyperbolic dynamical systems, each rectangle is closed under the local
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ps

Figure 5.5. Markov partition for the toral automorphism fy,.

product structure “commutator” [x, y], i.e., if x, y € R;, then [x, y] € R;.
Forx e R;let W(x, R;) = U,eg,[x, y]and W*(x, R;) = g, [v. x]. The last
condition means that if x € int R; and f(x) € int R;, then W*(f(x), R;) C
F(Wi(x, R;)) and Wo(x, R) € [-Y(W(f(x), R))).

The partition of the unit interval [0, 1] into mintervals [k/m, (k+ 1)/m) is
a Markov partition for the expanding endomorphism E,,. The target subshift
in this case is the full shift on m symbols.

We now describe a Markov partition for the hyperbolic toral automor-
phism f = fj given by the matrix

2 1
= (i)
which was constructed by R. Adler and B. Weiss [AW67]. The eigenvalues are
(3 £ +/5)/2. We begin by partitioning the unit square representing the torus
T? in Figure 5.5 into two rectangles: A, consisting of three parts A, Ay, As;
and B, consisting of two parts B;, B,. The longer sides of the rectangles
are parallel to the eigendirection of the larger eigenvalue (3 ++/5)/2, and
the shorter sides are parallel to the eigendirection of the smaller eigenvalue
(3 — +/5)/2. InFigure 5.5, the identified points and regions are marked by the
same symbols. The images of Aand B are shown in Figure 5.6. We subdivide
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/// / "
Po| -~

\ A Po

Po
A3 Do

P3
Figure 5.6. The image of the Markov partition under fj,.

A and B into five subrectangles A, A,, Az, A4, As that are the connected
components of the intersections of Aand B with f(A) and f(B). The image
of A consists of Ay, Ay and A}; the image of B consists of A} and Aj. The part
of the boundary of the A;’s that is parallel to the eigendirection of the larger
eigenvalue is called stable; the part that is parallel to the eigendirection of the
smaller eigenvalue is called unstable. By construction, the partition A of T?
into five rectangles A; has the property that the image of the stable bound-
ary is contained in the stable boundary, and the preimage of the unstable
boundary is contained in the unstable boundary (Exercise 5.12.1). In other
words, for each i, j, the intersection A;; = A; N f(A;) consists of one or two
rectangles that stretch “all the way” through A;, and the stable boundary
of A;; is contained in the stable boundary of A;; similarly, the intersection
Ai_jl =A;Nf (A j) consists of one or two rectangles that stretch “all the
way” through A;, and the unstable boundary of Ai_]-l is contained in the un-
stable boundary of A;. Let g;; = 1 if the interior of f(A;) N A; is not empty,

and a;; = 0 otherwise, i, j =1, ..., 5. This defines the adjacency matrix
1 01 10
1 01 10
A=]1 0 1 1 0
01 0 01
01 0 01
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Ifw=(...,w_1,wo, o1, ...)isan allowed infinite sequence for this adjacency
matrix, then the intersection (2 f~'(A,,) consists of exactly one point
#(w); it follows that there is a continuous semiconjugacy ¢: =4 — T2, i.e.,
f o¢ = ¢ oo,whereo is the shiftin X 4 (Exercise 5.12.2). Conversely, let By
be the union of the boundaries of the A;’s, and let B = | J;2__ f*(By). For
x € TA\B, set ¥;(x) = j if fi(x) € A;. The itinerary sequence (¥;(x))%°_,
is an element of X 4, and ¢ o ¢ = Id (Exercise 5.12.3).

In higher dimensions, this direct geometric construction does not work.
Even for a hyperbolic toral automorphism, the boundary is nowhere differ-
entiable. Nevertheless, as R. Bowen showed [Bow70], any locally maximal
hyperbolic set A has a Markov partition [Bow70] which provides a semicon-
jugacy from a subshift of finite type to A.

Exercise 5.12.1. Prove that the stable boundary is forward invariant and
the unstable boundary is backward invariant under fy,.

Exercise 5.12.2. Prove that for the toral automorphism f),, the intersec-
tion of the preimages of rectangles A; along an allowed infinite sequence
o consists of exactly one point. Prove that there is a semiconjugacy ¢ from
o|x, to the toral automorphism fj.

Exercise 5.12.3. Prove that the map ¢ defined in the text above satisfies
¥ (x) € £4and that ¢ oy = Id.

Exercise 5.12.4. Construct Markov partitions for the linear horseshoe
(81.8) and the solenoid (81.9).

5.13 Appendix: Differentiable Manifolds

An m-dimensional C* manifold M is a second-countable Hausdorff topolog-
ical space together with a collection U/ of open sets in M and for each U € U
a homeomorphism ¢y from U onto the unit ball B” C R™ such that:

1. U isacover of M, and
2. forU,Vel,if UNV /@, the mapgy o ¢y, :dy(UNV) — ¢py(UN
V)is Ck.

We may take k € NU {oco, w}, where C® denotes the class of real analytic
functions.

We write M™ to indicate that M has dimension m. If x €¢ M and U € U
contains x, then the pair (U, ¢y), U € U, is called a coordinate chart at x,
and the n component functions x1, x,, . . ., X, of ¢y are called coordinates on
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U. The collection of coordinate charts {(U, ¢y )}uey is called an atlas on M.
Note that any open subset of R” is a C¥ manifold, for any k € N U {00, }.

If M and N" are C*¥ manifolds, then a continuous map f: M — Nis C¥if
for any coordinate chart (U, ¢yy) on M, and any coordinate chart (V, ¥y) on
N, the map ¥y o f o ¢y :9u(UN f~(V)) — R"is a C¥ map. For k > 0, the
set of CK maps from M to N is denoted C*(M, N). We say that a sequence of
functions f, € CK(M, N) converges if the functions and all their derivatives
up to order k converge uniformly on compact sets. This defines a topology
on CK(M, N) called the C* topology.

We set CX(M) = C*(M, R). The subset of C*(M, M) consisting of diffeo-
morphisms of M is denoted Diff*( M).

A CFcurvein M™ is a C* map a: (—¢, €) — M. The tangent vector to « at
«(0) = pis the linear map v: C' (M) — R defined by

d
= — t
o= g )
for f € CY(M). The tangent space at p is the linear space T, M of all tangent
vectors at p.
Suppose (U, ¢)is a coordinate chart, with coordinate functions x1, . . ., X,
andlet p e U.Fori =1, ..., m, consider the curves

af (1) = ¢~ (x1(p). . ... xic1(p). xi(p) + £, Xi1(P). - - ., Xm(P))-

Define (3/9x;), to be the tangent vector to o at p, i.e., for g € C1(M),

(a%)p(g) IR IO N )

The vectors 9/dx;,i =1, ..., m,arelinearly independent at p, and span 7, M.
In particular, 7, M is a vector space of dimension 1.

Let f:M — N be a CK map, k > 1. For p € M, the tangent map df,:
T,M — Ty N is defined by df,(v)(g) = v(g o f), for g € C'(N). In terms
of curves, if v is tangent to « at p = «(0), then df,(v) is tangent to f o« at
f(p).

The tangent bundle TM = | J,_,; T M of M is a C*~! manifold of twice the
dimension of M with coordinate charts defined as follows. Let (U, ¢y) be a

=0 #(p)

coordinate chart on M, ¢y = (x1, ..., x,»): U — R™. For each i, the deriva-
tive dx; is a function from TU = | ,.yy T, M to R, defined by dx;(v) = v(x;),
for v € TU. The function (x1, ..., Xy, dx1, ..., dx,): TU — R?"is a coordi-

nate chart on TU, which we denote d¢y. Note that if y, w € R”, then

dey o dey,' (v, w) = (du o ¢y (¥). d(du o ¢‘71)y(W))-
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Let7: TM — M be the projection map that sends a vector v € T, M to its
base point p. A C" vector field X on M is a C" map X: M — TM such that
7 o Xis the identity on M. We write X, = X(p).

Let M and N" be C¥ manifolds. We say that M is a C¥ submanifold of N
if M is a subset of N and the inclusion mapi: M — Nis C¥ and has rank m for
each x € M. If the topology of M coincides with the subspace topology, then
M is an embedded submanifold. For each x € M, the tangent space T, M is
naturally identified with a subspace of 7, N. Two submanifolds M;, M, C N
of complementary dimensions intersect transversely (or are transverse) at a
point pe NN N, if T,N =T, M, & T, M,.

A distribution E on a differentiable manifold M is a family of k-
dimensional subspaces E(x) C T, M, x € M. The distribution is C', [ > 0, if
locally it is spanned by k C vector fields.

Suppose W is a partition of a differentiable manifold M into C! subman-
ifolds of dimension k. For x € M, let W(x) be the submanifold containing x.
We say that W is a k-dimensional continuous foliation with C* leaves (or sim-
ply a foliation) if every x € M has a neighborhood U and a homeomorphism
h: B x B"* — U such that

1. for each z € B"*, the set h(B* x {z}) is the connected component of
W(h(0, z)) N U containing h(0, z), and
2. h(-,z)is C' and depends continuously on z in the C! topology.

The pair (U, h) is called a foliation coordinate chart. The sets h(B* x {z})
are called local leaves (or plaques), and the sets h({y} x B"¥) are called
local transversals. For x € U, we denote by Wy (x) the local leaf containing
x. More generally, a differentiable submanifold L% ¢ M is a transversal if
L is transverse to the leaves of the foliation. Each submanifold W(x) of the
foliation is called a leaf of W.

A continuous foliation W is a C* foliation, k > 1, if the maps h can be
chosen to be C*. For example, lines of constant slope on T? form a C®
foliation.

A foliation W defines a distribution E = TW consisting of the tangent
spaces to the leaves. A distribution Eis integrableif itis tangent to a foliation.

A CK Riemannian metric on a C**! manifold M consists of a positive
definite symmetric bilinear form (, ), in each tangent space 7, M such that
for any C¥ vector fields X and Y, the function p 1 — Xy, Yy,)p s C*. For each
ve T,M, we write |[v]| = ({v, v)p)l/z. If a: [a,b] — M is a differentiable
curve, we define the length of o to be [, b le(s)|| ds. The (intrinsic) distance
d between two points in M is defined to be the infimum of the lengths of
differentiable curves in M connecting the two points.
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A C* Riemannian manifold is a C*! manifold with a C¥ Riemannian met-
ric. We denote by T! M the set of tangent vectors of length 1in a Riemannian
manifold M.

A Riemannian manifold carries a natural measure called the Riemannian
volume. Roughly speaking, the Riemannian metric allows one to compute
the Jacobian of a differentiable map, and therefore allows one to define
integration in a coordinate-free way.

If Xis a topological space and (Y, d) is a metric space with metric, define
a metric distp on C(X, Y) by

disto( f, g) = min {1, sugmax{d(f(x), g(x))} .

If X is compact, then this metric induces the topology of uniform conver-
gence on compact sets. If X'is not compact, this metric induces a finer topol-
ogy. For example, the sequence of functions f,(x) = x" in C((0, 1), R) con-
verges to 0 in the topology of uniform convergence on compact sets, but not
in the metric disty. The topology of uniform convergence on compact sets is
metrizable even for non-compact sets, but we will not need this metric.

If M and N” are C! Riemannian manifolds, we define a distance function
dist; on C'(M, N) as follows: The Riemannian metric on N induces a metric
(distance function) on the tangent bundle T'N, making 7'N a metric space.
For f € C'(M, N), the differential of f gives a map df: T'M — TN on the
unit tangent bundle of M. We set dist; ( f, g) = disto(df, dg). If M is compact,
the topology induced by this metric is the C' topology.

A differentiable manifold M is a (differentiable) fiber bundle over a differ-
entiable manifold N with fiber F and (differentiable) projection n: M — N
if for every x € N there is a neighborhood V > x such that 7~'(V) is dif-
feomorphic to V x F and 7 !(y) = y x F. A diffeomorphism f: M — M
is an extension of or a skew product over a diffeomorphism g: N — N if
7w o f = gom;in this case g is called a factor of f.



CHAPTER SIX

Ergodicity of Anosov Diffeomorphisms

The purpose of this chapter is to establish the ergodicity of volume-
preserving Anosov diffeomorphisms (Theorem 6.3.1). This result, which was
first obtained by D. Anosov [Ano69] (see also [AS67]), shows that hyper-
bolicity has strong implications for the ergodic properties of a dynamical
system. Moreover, since a small perturbation of an Anosov diffeomorphism
is also Anosov (Proposition 5.10.2), this gives an open set of ergodic diffeo-
morphisms.

Our proof is an improvement of the arguments in [Ano69] and [AS67].
It is based on the classical approach called Hopf’s argument. The first obser-
vation is that any f-invariant function is constant mod 0 on the stable and
unstable manifolds (Lemma 6.3.2). Since these manifolds have complemen-
tary dimensions, one would expect the Fubini theorem to imply that the
function is constant mod 0, and ergodicity would follow. The major difficulty
is that, although the stable and unstable manifolds are differentiable, they
need not depend differentiably on the point they pass through, even if f
is real analytic. Thus the local product structure defined by the stable and
unstable foliations does not yield a differentiable coordinate system, and
we cannot apply the usual Fubini theorem. So we establish a property of
the stable and unstable foliations called absolute continuity that implies the
Fubini theorem.

The reason the stable and unstable manifolds do not vary differentiably
is that they depend on the infinite future and past, respectively.

6.1 Holder Continuity of the Stable and Unstable Distributions
For a subspace A C R and a vector v € RV, set
dist(v, A) = min [Jlv — w].
weA

141
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For subspaces A, Bin R", define

dist(A, B) = max ( max dist(v, B), max dist(w, A)) .

veA, |v]=1 weB |lw|=1

The following lemmas can be used to prove the Holder continuity of in-
variant distributions for a variety of dynamical systems. Our objective is the
Holder continuity of the stable and unstable distributions of an Anosov dif-
feomorphism, which was first established by Anosov [Ano67]. We consider
only the stable distribution; Holder continuity of the unstable distribution
follows by reversing the time.

LEMMA 6.1.1. Let Li: RN — RN i =1,2,n € N, be two sequences of linear
maps. Assume that for some b > 0 and § € (0, 1),

|, — L3] < sb"

for each positive integer n.
Suppose that there are two subspaces E', E> C RN and positive constants
C>1and , < pu with A < b such that

| Liv] < Aol ifveE,

|Lw| = Ctumiw] ifw L E.
Then

diSt(El, EZ) < 3C2 ﬁ3(10gu710gk)/(10gb710g)h).
- A

Proof. Set K! = {v e RN:|Llv|| <2CA"|v]}. Let v € K. Write v = v! +
v, where v! € E' and v} L E'. Then
| Zov] = [ Lu (0" +ol) | = [ Lovl | = [ L' | = €' [0l | = Gy,

and hence

)\‘ n
[ol|| = cu(| Zho] + CamI'l) = 3(:2(;) il
It follows that
dist(v, E') < W(%) vll- (6.1)

Set y =A/b<1. There is a unique non-negative integer k such that
yk1 <8 <yk Let v? € E%. Then

L] < | Lv?] + || L = LZ] - 121
< ORI+ bRs ||
< (CA 4 (by)YI)II?Il < 22510
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It follows that v € K} and hence E? C K}. By symmetry, E' C KZ. By (6.1)
and by the choice of k,

k
diSt(El, E2) < 3C2 (&) < 3C2%8(logu710gk)/(logb710g)h). O
"

LEMMA 6.1.2. Let f be a C? diffeomorphism of a compact C* submanifold
M C RN, Then foreachn e Nand all x, y € M,

lafr —dfy| <" Ix =yl

where b = maxgey ||df[|(1 + max;cy ”dzzf”)

Proof. Let by = max,ey |df.|l > 1 and b, = max.cpy ||d? f||, so that b=
bi1(1 + by). Observe that || f"(x) — f*(y)|l < (b1)"|lx — y| for all x,y € M.
The lemma obviously holds for n = 1. For the inductive step we have

ldfrt —dfytt | < \dfpe| - |dfe = dfy | + | df e — df ol - 47
< bib"|lx — yll + bab}llx — yliby < B H|x -yl O

Let M be a manifold embedded in R", and suppose E is a distribution on
M. We say that E is Holder continuous with Holder exponent o € (0, 1] and
Holder constant L if

dist(E(x), E(y)) < L [lx — y|*

forall x, y e M with ||x — y| < 1.

One can define Holder continuity for a distribution on an abstract
Riemannian manifold by using parallel transport along geodesics to iden-
tify tangent spaces at nearby points. However, for a compact manifold M it
suffices to consider Holder continuity for some embedding of M in RV, This
is so because on a compact manifold M, the ratio of any two Riemannian
metrics is bounded above and below. So is the ratio between the intrinsic
distance function on M and the extrinsic distance on M obtained by restrict-
ing the distance in R to M. Thus the Holder exponent is independent of
both the Riemannian metric and the embedding, but the Holder constant
does change. So, without loss of generality, and to simplify the arguments in
this section and the next one, we will deal only with manifolds embedded
in RV,

THEOREM 6.1.3. Let M be a compact C* manifold and f: M — M a C?
Anosov diffeomorphism. Suppose that 0 < » <1 < u and C > 0 are such that
ldfrv* |l < CAMv|| and || dfiv"|| = Cu||lvt|| for all x € M, vs € E*(x), v €
E“(x), and n e N. Set b =maxyy ||df;||(1+ max,cy ||dzzf||). Then the
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stable distribution E* is Holder continuous with exponenta = (log u — log )/
(logb —log ).

Proof. Asindicated above, we may assume that M is embedded in R". For
x € M, let E*(x) denote the orthogonal complement to the tangent plane
T.M in RV, Since E* is a smooth distribution, it is sufficient to prove the
Holder continuity of E* @ E+ on M.

Since M is compact, there is a constant C > 1 such that for any x € M, if
v € T, M is perpendicular to E®, then ||dfv|| > C~1u"||v].

For x € M, extend df, to a linear map L(x):RM — RV by setting
L(x)|gr(xy =0, and set L,(x) = L(f"'(x))o---o L(f(x)) o L(x). Note
that L,(x)|7,m = df?.

Fix x1, x, € M with ||x; — x2|| < 1. By Lemma 6.1.2, the conditions of
Lemma 6.1.1 are satisfied with L}, = L,(x;) and E' = F*(x;),i = 1,2, and
the theorem follows. O

Exercise 6.1.1. Let 8 € (0,1], and M be a compact C'*# manifold, i.e.,
the first derivatives of the coordinate functions are Holder continuous with
exponent 8. Let f: M — M be a C'*# Anosov diffeomorphism. Prove that
the stable and unstable distributions of f are Holder continuous.

6.2 Absolute Continuity of the Stable and Unstable Foliations

Let M be a smooth n-dimensional manifold. Recall (85.13) that a contin-
uous k-dimensional foliation W with C' leaves is a partition of M into C!
submanifolds W(x) 5 x which locally depend continuously in the C! topo-
logy on x € M. Denote by m the Riemannian volume in M, and by my the
induced Riemannian volume in a C! submanifold N. Note that every leaf
W(x) and every transversal carry an induced Riemannian volume.

Let (U, h) be a foliation coordinate chart on M (85.13), and let L =
h({y} x B" %) be a C! local transversal. The foliation W is called absolutely
continuous if for any such L and U there is a measurable family of positive
measurable functions §,: Wy (x) — R (called the conditional densities) such
that for any measurable subset A C U

m(A) = /L /WM 14(x. ) 82(3) dmwey(y) dmi (x).

Note that the conditional densities are automatically integrable.

PROPOSITION 6.2.1. Let W be an absolutely continuous foliation of a
Riemannian manifold M, and let f: M — R be a measurable function.
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p

Figure 6.1. Holonomy map p for a foliation W and transversals U; and U,.

Suppose there is a set A C M of measure 0 such that f is constant on W(x)\ A
for every leaf W(x).

Then f is essentially constant on almost every leaf, i.e., for any transversal
L, the function f is myy)-essentially constant for my-almost every x € L.

Proof. Absolute continuity implies that my (A NW(x)) =0 for m;-
almost every x € L. O

Absolute continuity of the stable and unstable foliations is the property we
need in order to prove the ergodicity of Anosov diffeomorphisms. However,
we will prove a stronger property, called transverse absolute continuity; see
Proposition 6.2.2.

Let W be a foliation of M, and (U, h) a foliation coordinate chart. Let
L; = h({y;} x B"™®)fory; € B*,i =1, 2. Define ahomeomorphism p: L; —
L, by p(h(y1, 2)) = h(, 2), for z € B"™ %, p is called the holonomy map
(see Figure 6.1). The foliation W is transversely absolutely continuous if the
holonomy map p is absolutely continuous for any foliation coordinate chart
and any transversals L; as above, i.e., if there is a positive measurable function
q: L1 — R (called the Jacobian of p) such that for any measurable subset
ACLy

mi,(p(A)) = /L 14q(2) dmy, (2).

If the Jacobian g is bounded on compact subsets of L, then W is said to be
transversely absolutely continuous with bounded Jacobians.

PROPOSITION 6.2.2. If W is transversely absolutely continuous, then it is
absolutely continuous.
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Figure 6.2. Holonomy maps for W and F.

Proof. Let L and U be as in the definition of an absolutely continuous
foliation, x € L and let F be an (n — k)-dimensional C!-foliation such that
F(x)D L, Fy(x) = L, and U = .y, ) Fu(»); see Figure 6.2. Obviously,
F is absolutely continuous and transversely absolutely continuous. Let §,(-)
denote the conditional densities for F. Since F is a C' foliation, § is contin-
uous and hence measurable. For any measurable set A C U, by the Fubini
theorem,

m(A) = / / La(y. 25,2 dmpy () dimwo (). (62)
Wy (x) J Fy(y)

Let p, denote the holonomy map along the leaves of W from Fy(x) = L
to Fy(y), and let g,(-) denote the Jacobian of p,. We have

/ 14(y. 2)5,(2) dimr(yy(2) = / La(py(5))ay(5) 3y (py(s)) dmy (s).
Fy(y) L

and by changing the order of integration in (6.2), which is an integral with
respect to the product measure, we get

m(A) = / / La(py(8))y(5) By (py(5)) dimswiey () dme(s).  (6.3)
L JWy(x)

Similarly, let p; denote the holonomy map along the leaves of F from Wy (x)
to Wy(s),s € L, and let g, denote the Jacobian of p,. We transform the
integral over Wy (x) into an integral over Wy (s) using the change of variables
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r=py(s),y=p;'(r):

/W T3,y 50 ()

- f L4(r)gy(5) 513 () dime (7).
Wy (s)

The last formula together with (6.3) gives the absolute continuity of W. 0O
The converse of Proposition 6.2.2 is not true in general (Exercise 6.2.2).

LEMMA 6.2.3. Let (X, A, 1), (Y,B,v) be two compact metric spaces
with Borel o-algebras and o-additive Borel measures, and let p,: X — Y,
n=12,...,and p: X — Y be continuous maps such that

1. each p, and p are homeomorphisms onto their images,

2. py, converges to p uniformly as n — oo,

3. there is a constant J such that v(p,(A)) < Ju(A) for every A e 2.

Then v(p(A)) < Ju(A) forevery Ae 2

Proof. 1t is sufficient to prove the statement for an arbitrary open ball
B.(x) in X. If § <r then p(B._s(x)) C pu(B.(x)) for n large enough,
and hence v(p(B,—s(x))) <v(pu(B,(x))) <Ju(B,(x)). Observe now that
v(p(B:—5(x))) /' v(p(B(x))) as § 0. O

For subspaces A, B C RV, set
O(A4, B) =min{llv —wl:v e A v =1; w e B, [w| =1}.

For 6 € [0, v/2], we say that a subspace A C RY is -transverse to a subspace
B Cc RN if @(A, B) > 6.

LEMMA 6.2.4. Let E be a smooth k-dimensional distribution on a compact
subset of RN. Then for every &£ >0 and € > 0 there is § > 0 with the follow-
ing property. Suppose Q1, Q> C RN are (N — k)-dimensional C' submani-
folds with a smooth holonomy map p: Q1 — Q, such that p(x) € Qy, p(x) —
x € E(x), O(T, Q1. E(x)) = &, O(Tp) Qa, E(x)) = £, dist(T; Q1. Ty Q) <56,
and | p(x) —x|| <& for each x € Q1. Then the Jacobian of p does not
exceed 1 + €.

Proof. Since only the first derivatives of O and Q, affect the Jacobian
of patx € O, it equals the Jacobian at x of the holonomy map p: T, Q) —
Ty Q2 along E. By applying an appropriate linear transformation L (whose
determinant depends only on &), switching to new coordinates (u, v) in RY,
and using the same notation for the images of all objects under L, we may
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assume that (a) x = (0, 0), (b) T{o,0)Q1 = {v =0}, (c) p(x) = (0, vp), where
lvoll = Il p(x) — xII, (d) Tio,v,) Q2 is given by the equation v = vy + Bu, where
Bis a k x (N — k) matrix whose norm depends only on 8, and (e) £(0, 0) =
{u=0}, and E(w,0) is given by the equation u = w + A(w)v, where A(w)
is an (N — k) x k matrix which is C! in w and A(0) = 0.

The image of (w, 0) under p is the intersection point of the planes v =
vo + Buand u = w + A(w)v. Since the norm of B is bounded from above in
terms of &, it suffices to estimate the determinant of the derivative du/dw at
w = 0. We substitute the first equation into the second one,

u=w+ Aw)vy + Aw)Bu;
differentiate with respect to w,

du 8A(W) BA( )

— =1 Bu + A B
ow + aw +Alw)
and obtain for w = 0 (using u(0) = 0 and A(O) =0)
ou dA(w)
— =1 .
3 * ow  |,_o v O

THEOREM 6.2.5. The stable and unstable foliations of a C* Anosov diffeo-
morphism are transversely absolutely continuous.

Proof. Let f:M — M be a C?> Anosov diffeomorphism with stable and
unstable distributions E* and E*, and hyperbolicity constants C and 0 <
A <1< p. We will prove the absolute continuity of the stable foliation W*.
Absolute continuity of the unstable foliation W* follows by reversing the
time. To prove the theorem, we are going to uniformly approximate the
holonomy map by continuous maps with uniformly bounded Jacobians.
Asin the proof of Theorem 6.1.3, we assume that M is a compact subman-
ifold in RY [Hir94] and denote by T, M* the orthogonal complement of T, M
in RV. Let £* be a smooth distribution that approximates the continuous
distribution £°(x) = E*(x) ® T, M*. O

LEMMA 6.2.6. For every 0 > 0 there is a constant C1 > 0 such that for every
x € M, for every subspace H C T, M of the same dimension as E*(x) and
O-transverse to E*(x), and for every k € N,

1. |ldf*v| = Cip*|v]| for every v € H,

2. dist(df*H, df*E"(x)) < Cl(%)k dist(H, E*(x)).
Proof. Exercise 6.2.3. O

By compactness of M, there is 6y > 0 such that ©(E*(x), E*(x)) > 6
for every x € M. Also by compactness, there is a covering of M by finitely
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Figure 6.3. Construction of approximating maps p;,.

many foliation coordinate charts (U;, h;),i =1, ..., 1, of the stable foliation
W¢ . It follows that there are positive constants € and § such thatevery y € M
is contained in a coordinate chart U; with the following property: If L is a
compact connected submanifold of U; such that

1. Lintersects transversely every local stable leaf of U;,

2. O(T,L, E*) > 6y/3 for all z € L, and

3. dist(y, L) < 6,
then for any subspace ECR" with dist(E, E*(y) ® T, M*) <e, the affine
plane y + E intersects L transversely in a unique point z,, and ||y — z,|l <
65/60.

Let (U, h) be a foliation coordinate chart, and L, L, local transversals
in U with holonomy map p: L; — L. Define a map p: f*(L;) — f*(L,) as
follows: For x € Ly, let p( f"(x)) be the unique intersection point of the affine
plane f"(x) + E(f"(x)) with f"(L,) thatis closest to f"(p(x))along f"(L;)
(note that there may be several such intersection points). The map p is well
defined by Lemma 6.2.6 and the remarks in the preceding paragraph.

For x € Ly, set p,(x) = f~"(p(f"(x))). Let x; € L1, x, = p,(x1) and set
yvi = f"(x;); see Figure 6.3. Observe that

dist( f*(x1), f5(p(x1))) < CAK dist(xy, p(x1))  fork=0,1,2,.... (6.4)

Assuming that £* is C'-close enough to £, it is, by Lemma 6.2.6, uniformly
transverse to (L) and f"(L,). Therefore, there is C; > 0 such that

dist(p(f"(x1)), f"(p(x1))) < Co dist(f"(x1), f*(p(x1)))
< GCA'dist(x1, p(x1)).

Therefore, by (6.4) and Lemma 6.2.6,

dis(pue). ) = 25 (2) disnpe). 69)

and hence p, converges uniformly to p as n — oc.
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Combining (6.4) and (6.5), we get

dist(f*(x1), f4(x2)) < dist(f*(x1), F4(p(x1))) + dist( f*(p(x1)), f4(x2))
< Gk, (6.6)

Let J( f*(x;)) be the Jacobian of f in the direction of the tangent plane
Tik(x,-) =Ty Lii=1,2,k=0,1,2,.... Also, denote by Jac,, the Jacobian
of p,, and by Jac; the Jacobian of p: f"(L;) — f"(L»), which is uniformly
bounded by Lemma 6.2.4. Then

n—

1 n—1
Tacy, (1) = [ JU(F@)) ™ - Jacy(f" (1)) - [T 7 (F4(x0))-
k=0 k=0

To obtain a uniform bound on Jac,, we need to estimate the quan-
tity P = [[/=5(J(f*(x1))/J(f*(x2))) from above. By Theorem 6.1.3,
Lemma 6.2.6, and (6.6), for some Cy, Cs, C¢ > 0 and &,

dist(T}(x1), T5'(x2)) < dist(T{(x1), E“(f*(x1)))

+dist(E“(f*(x1)), E“(f*(x2)))
+dist( T (x2), E“(f(x2)))

k
<26, (%) T Ca(dist( P40, 4 )

A k
<2C (—) + C51%k < Corok, (6.7)
n

Since f is a C? diffeomorphism, its derivative is Lipschitz continuous, and
the Jacobians J(f*(x;)) and J( f*(x;)) are bounded away from 0 and occ.
Therefore it follows from (6.7) that |J( fX(x1)) — J (X Ca))I/1J (f*(x2))| <
C71%k. Hence the product P converges and is bounded. O

Exercise 6.2.1. Let W be a k-dimensional foliation of M, and let L be an
(n — k)-dimensional local transversal to W at x € M, i.e., TM = T, W(x) ®
T, L. Prove that there is a neighborhood U > x and a C! coordinate chart
w: B¥ x B~k — U such that the connected component of L.N U containing
x is w(0, B"~*) and there are C! functions f,: B — B"*, y € B"*, with the
following properties:

(i) f, depends continuously on y in the C!-topology;

(ii) w(graph (£,)) = Wy(w(0, y)).

Exercise 6.2.2. Give an example of an absolutely continuous foliation,
which is not transversely absolutely continuous.
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Exercise 6.2.3. Prove Lemma 6.2.6.

Exercise 6.2.4. Let W;,i = 1, 2, be two transverse foliations of dimensions
k; on a smooth manifold M, i.e., T, Wi(x) N T, W5(x) = {0} for each x €
M. The foliations Wi and W, are called integrable if there is a (ky + k»)-
dimensional foliation W (called the integral hull of Wi and W) such that
W(x) = Uyewv) W2(3) = Uyemy o) Wi(y) for every x € M.

Let W be a C! foliation and W, be an absolutely continuous foliation,
and assume that W; and W, are integrable with integral hull W. Prove that
W is absolutely continuous.

6.3 Proof of Ergodicity

The proof of Theorem 6.3.1 below follows the main ideas of E. Hopf’s
argument for the ergodicity of the geodesic flow on a compact surface of
variable negative curvature.

We say that a measure p on a differentiable Riemannian manifold M
is smooth if it has a continuous density g with respect to the Riemannian
volume m, i.e., w(A) = [, q(x) dm(x) for each bounded Borel set A C M.

THEOREM 6.3.1. A C? Anosov diffeomorphism preserving a smooth
measure is ergodic.

Proof. Let (X, 2, 1) be a finite measure space such that X is a compact
metric space with distance d,  is a Borel measure, and 2 is the p-completion
of the Borel o-algebra. Let f: X — X be a homeomorphism. For x € X,
define the stable set V*(x) and unstable set V*(x) by the formulas

Vi(x)={y € Xed(f"(x), f"(y)) » Oasn — oo},
Vi(x)={y € X:d(f"(x), f"(y)) = 0asn — —oo}.
LEMMA 6.3.2. Let ¢: X — R be an f-invariant measurable function. Then

¢ is constant mod 0 on stable and unstable sets, i.e., there is a null set N such
that ¢ is constant on V*(x)\N and on V*(x)\N for every x € X\ N.

Proof. We will only deal with the stable sets. Without loss of generality
assume that ¢ is non-negative. For a real C set ¢¢c(x) = min(¢(x), C). The
function ¢¢ is f-invariant, and it suffices to prove the lemma for ¢ with
arbitrary C. For k € N, let y4: X — R be a continuous function such that
[xoc — Yl du(x) < % By the Birkhoff ergodic theorem, the limit

n—1
)= Jim S ()
i=0
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exists for p-a.e. x. By the invariance of u and ¢, for every j € Z,

L. /X 16c(6) — Y] din(x) = fX 6e(F1 ) — vl £ ()] due(y)

_ /X 1be(y) — vl £ ()] din(y).

and hence

du(y)

n—1
Be(r) — - S F )
i=0

J,

<2 [ 10c) = (M) <
iz /x
Since ¥y is uniformly continuous, ¥, (y) = ¥, (x) whenever y € V*(x) and
¥ (x) is defined. Therefore, there is a null set Nj such that ;" exists and is
constant on the stable sets in X\ N. It follows that ¢ (x) = limg o ¥ (x)
is constant on the stable sets in X\ |J M. Clearly ¢c(x) = ¢ (x) mod 0.

O

Let ¢ be a u-measurable f-invariant function. By Lemma 6.3.2, there is
a pu-null set N; such that ¢ is constant on the leaves of W* in M\ N; and
another u-null set N, such that ¢ is constant on the leaves of W* in M\ N,,.
Let x € M, and let U > x be a small neighborhood, as in the definition of
absolute continuity for W* and W*. Let G, C U be the set of points z € U for
which mys;)(N; N W¥(z2)) =0 and z ¢ N;. Let G, C U be the set of points
z € U for which myu;(N, N W*(z)) =0 and z ¢ N,. By Proposition 6.2.1
and the absolute continuity of W* and W* (Theorem 6.2.5), both sets G
and G, have full u-measure in U, and hence so does G; N G,,. Again, by the
absolute continuity of W¥, there is a full-pu-measure subset of points z € U
such that z € G; N G, and my(;)-a.e. point from W*(z) also lies in G, N G,,.
It follows that ¢(x) = ¢(z) for p-a.e. point x € U. Since M is connected, ¢ is
constant mod 0 on M. O

Exercise 6.3.1. Prove that a C?> Anosov diffeomorphism preserving a
smooth measure is weak mixing.



CHAPTER SEVEN

Low-Dimensional Dynamics

As we have seen in the previous chapters, general dynamical systems ex-
hibit a wide variety of behaviors and cannot be completely classified by
their invariants. The situation is considerably better in low-dimensional dy-
namics and especially in one-dimensional dynamics. The two crucial tools
for studying one-dimensional dynamical systems are the intermediate value
theorem (for continuous maps) and conformality (for non-singular differen-
tiable maps). A differentiable map f is conformal if the derivative at each
pointis a non-zero scalar multiple of an orthogonal transformation, i.e., if the
derivative expands or contracts distances by the same amount in all direc-
tions. In dimension one, any non-singular differentiable map is conformal.
The same is true for complex analytic maps, which we study in Chapter 8.
But in higher dimensions, differentiable maps are rarely conformal.

7.1 Circle Homeomorphisms

The circle S' = [0, 1] mod 1 can be considered as the quotient space R/Z.
The quotient map 7: R — S'is a covering map, i.e., each x € S! has a neigh-
borhood U, such that 7~1(U,) is a disjoint union of connected open sets,
each of which is mapped homeomorphically onto U, by x.

Let f: S! — S'be ahomeomorphism. We will assume throughout this sec-
tion that f is orientation-preserving (see Exercise 7.1.3 for the orientation-
reversing case). Since  is a covering map, we can lift f to anincreasing home-
omorphism F: R — R such that 7 o F = f ox. For each xy € 7' ( £(0))
there is a unique lift F such that F(0) = x¢, and any two lifts differ by an
integer translation. For any lift F and any n € Z, F(x + n) = F(x) + n for
any x € R.

153
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THEOREM 7.1.1. Let f:S' — S' be an orientation-preserving homeomor-
phism, and F: R — R a lift of f. Then for every x € R, the limit

F"'(x) —
p(F) = lim 1) =%
n—oo n
exists, and is independent of the point x. The number p(f) = n(p(F)) is
independent of the lift F, and is called the rotation number of f. If f has a
periodic point, then p( f) is rational.

Proof. Suppose for the moment that the limit exists for some x € [0, 1).
Since F maps any interval of length 1 to an interval of length 1, it follows
that | F"(x) — F"(y)| < 1forany y € [0, 1). Thus

I(F"(x) = x) = (F"(y) = )| < [F"(x) = F")| + Ix — y| = 2,
o)
F'(x) — F'(y) —
n—o0 n n—o0 n
Since F"(y + k) = F"(y) + k, the same holds for any y € R.

Suppose Fi(x) =x + p for some x € [0,1) and some p, g € N. This
is equivalent to asserting that 7 (x) is a periodic point for f with pe-
riod q. For n € N, write n = kq +r,0 <r < g. Then F"(x) = F"(F*ix)) =
F"(x 4+ kp) = F"(x) + kp, and since | F"(x) — x| is bounded for 0 < r < q,

F"(x) —
lim ) =X _ P
n—o0 n q
Thus the rotation number exists and is rational whenever f has a periodic
point.

Suppose now that F?(x) / =+ pforallx € Rand p, g € N. By continuity,
for each pair p, g € N, either F?(x) > x + pforallx e R,or Fi(x) <x+ p
for all x € R. For n € N, choose p, € Nso that p, — 1 < F"(x) — x < p, for
all x € R. Then for any m € N,

m—1
m(p,—1) < F™(x) —x = ¥ F'(F¥(x)) — F¥(x) < mp,,
k=0

which implies that
pn 1 F™(x)—x  pa
—_——— < =
n n mn n
Interchanging the roles of m and n, we also have
Pm 1 F"(x) =X  pm
—_——— < —.
m m mn m
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Thus, | p/m — pn/n| < |1/m+ 1/n|, so {p,/n} is a Cauchy sequence. It fol-
lows that (F"(x) — x)/n converges as n — 00.

If G = F + kis another lift of f, then p(G) = p(F) + k, so p(f) is inde-
pendent of the lift F. Moreover, there is a unique lift F such that p(F) = p(f)
(Exercise 7.1.1). O

Since S' = [0, 1] mod 1, we will often abuse notation by writing p( f) = x
for some x € [0, 1].

PROPOSITION 7.1.2. The rotation number depends continuously on the
map in the C° topology.

Proof. Let f be an orientation-preserving circle homeomorphism, and
choose p,q, p',q" € N such that p/q < p(f) < p'/q’. Let F be the lift of
f such that p < F9(x) —x < p+¢q. Then for all x e R, p < FI(x) —x <
p + ¢, since otherwise we would have p(f) = p/q. If g is another circle
homeomorphism close to F, then there is a lift G close to F, and for g suffi-
ciently close to f, the same inequality p < G7(x) —x < p + ¢ holds for all
x € R. Thus p/q < p(g). A similar argument involving p’ and ¢’ completes
the proof. O

PROPOSITION 7.1.3. Rotation number is an invariant of topological conju-
gacy.

Proof. Let f and h be orientation-preserving homeomorphisms of S*, and
let F and H be lifts of fand k. Then Ho Fo H 'isaliftof ho foh™!, and
for x € R,

(HFHYY"(x) — x _ (HF"H™ Y)(x) — x
_ H(F"H'(x))— F"H'(x)  F"H'(x)- H'(x)  H'(x)—x
N n + n + n '

Since the numerators in the first and third terms of the last expression are
bounded independent of n, we conclude that

—1\n _
m (HFH )"(x) — x — im

n n—00

=

p(hfh™") = i

1
N

PROPOSITION 7.1.4. If f:S' — S' is a homeomorphism, then p(f) is ra-
tional if and only if f has a periodic point. Moreover, if p(f) = p/q where p
and q are relatively prime non-negative integers, then every periodic point of
f has minimal period q, and if x € R projects to a periodic point of f, then
Fi(x) = x + p for the unique lift F with p(F) = p/q.
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Proof. The “if” part of the first assertion is contained in Theorem 7.1.1.

Suppose p(f) = p/q, where p,q € N. If F and F = F + 1 are two lifts
of f, then F? = F9 + Iq. Thus we may choose F to be the unique lift with
p < F1(0) < p + q. To show the existence of a periodic point of f, it suffices
to show the existence of a point x € [0, 1] such that F4(x) = x + k for some
k € N. We may assume that x + p < F4(x) <x+ p+q for all x € [0, 1],
since otherwise we have F4(x) =x + 1 for k= p or k= p + g, and we are
done. Choose € > 0 such that for any x € [0, 1], x + p+€ < FI(x) < x +
p + q — €. The same inequality then holds for all x € R, since F?(x + k) =
Fi(x) + kfor all k € N. Thus

pte _kpte) _ FH(x) —x _Mp+g—e) _p+l-c

q kq kq kg q

for all k € N, contradicting p( f) = p/q. We conclude that F?(x) = x + p or
Fi(x) = x + p + q for some x, and x is periodic with period q.

Now assume p(f) = p/q, with p and g relatively prime, and suppose
x € [0,1) is a periodic point of f. Then there are integers p’, ¢’ € N such
that F7(x) = x + p’. By the proof of Theorem 7.1.1, p(f) = p'/q’, so if
d is the greatest common divisor of p’ and ¢’, then ¢’ = gqd and p’ = pd.
We claim that F9(x) = x + p. If not, then either F9(x) > x + p or Fi(x) <
x + p. Suppose the former holds (the other case is similar). Then by mono-
tonicity,

Fl(x) > F9Y(x)+p>-..>x+dp,

contradicting the fact that F7 (x) = x + p'. Thus, x is periodic with period q.
O

Suppose f is a homeomorphism of S'. Given any subset A C S' and a
distinguished point x € A, we define an ordering on A by lifting A to the
interval [%, ¥ + 1) C R, where ¥ € 7 ~!(x), and using the natural ordering on
R. In particular, if x € S!, then the orbit {x, f(x), f2(x), ...} has a natural
order (using x as the distinguished point).

THEOREM 7.1.5. Let f: S' — S' be an orientation-preserving homeomor-
phism with rational rotation number p = p/q, where p and q are relatively
prime. Then for any periodic point x € S', the ordering of the orbit {x, f(x),
F2(x), ..., fi7Y(x)} is the same as the ordering of the set {0, p/q,2p/q. ...,
(g — 1)p/q}, which is the orbit of 0 under the rotation R,.
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Proof. Let x be a periodic point of f, and let i € {0,...,q — 1} be the
unique number such that f(x) is the first point to the right of x in the
orbit of x. Then f?(x) must be the first point to the right of f(x), since if
fl(x) € (fi(x), f¥(x))then! > i and f'~*(x) € (x, f(x)), contradicting the
choice of i. Thus the points of the orbit are ordered as x, f/(x), f%(x), ...,
fla=x (x).

Let ¥ be a lift of x. Since f* carries each interval [ f¥(x), f*+Di(x)] to its
successor, and there are g of these intervals, there is a lift ' of f* such that
Fi% = ¥ + 1. Let F be the lift of f with F9(x) = x + p. Then F' is a lift of
fi,s0 F' = F + k for some k. We have

x+ip=F"(x)=(F+k)(x)= Fi(x)+qgk=x+1+qk.

Thus ip = 1+ gk, so i is the unique number between 0 and g such that
ip = 1 mod q. Since the points of the set {0, p/q,2p/q, ..., (g —1)p/q} are
ordered as 0,ip/q, ..., (g — 1)ip/q, the theorem follows. O

Now we turn to the study of orientation-preserving homeomorphisms
with irrational rotation number. If x and y are two points in S!, then we
define the interval [x, y] C S' to be 7 ([%, 7]), where ¥ € #7!(x) and § =
7~ 1(y) N [%, ¥ +1). Open and half-open intervals are defined in a similar
way.

LEMMA 7.1.6. Suppose p( f) is irrational. Then for any x € S' and any dis-
tinct integers m > n, every forward orbit of f intersects the interval

I=[f"(x)., f"(x)}
Proof. It suffices to show that S! = (52, f*I. Suppose not. Then

Sl / = f—k(m—n)I: = f—(k—l)m-ﬁ-kn(x)’ f—km+(k+l)n(x) .
g kL:JI[ ]

Since the intervals f~%"="] abut at the endpoints, we conclude that
fKm=m) fn(x) converges monotonically to a point z € S', which is a fixed
point for f”" contradicting the irrationality of p( f). O

PROPOSITION 7.1.7. If p(f) is irrational, then w(x) = w(y) for any x, y €
SY, and either w(x) = S' or w(x) is perfect and nowhere dense.

Proof. Fix x,y e S'. Suppose f%(x) — xo € w(x) for some sequence
a, /' co. By Lemma 7.1.6, for each n € N, we can choose b, such that

f(y) € [f*1(x), f*(x)]. Then f(y) — xo, so o(x) C w(y). By sym-
metry, w(x) = w(y).
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To show that w(x) is perfect, we fix z € w(x). Since w(x) is invariant, we
have that z € w(z) is a limit point of { f*(2)} C w(x), s0 w(x) is perfect.

To prove the last claim, we suppose that w(x) / &. Then dw(x) is a
non-empty closed invariant set. If z € dw(x), then w(z) = w(x). Therefore,
w(x) C dw(x) and w(x) is nowhere dense. O

LEMMA 7.1.8. Suppose p(f) is irrational. Let F be a lift of f, and p =
o(F). Then forany x € R, nip +my < mp + my ifand only if F" (x) +my <
F™(x) + ny, for any my, np, ny, ny € Z,.

Proof. Suppose F"(x) 4+ my < F™(x) + m, or, equivalently,
Fm=m)(x) < x +my —my.

This inequality holds for all x, since otherwise the rotation number would
be rational. In particular, for x = 0 we have F"~)(0) < my — m;. By an
inductive argument, FX"—")(0) < k(my — my).If n; — ny > 0, it follows that
Fk(nl_nZ)(O) -0 m—m
k(n — ) n—ny’

s0 p = limy_, o, FK=)(0)/ k(ny — ny) < (my — my)/(ny — ny). Irrationality
of p implies strict inequality, so n; p + my < npp + my. The same result holds
in the case n; — ny < 0 by a similar argument. The converse follows by re-
versing the inequality. O

THEOREM 7.1.9 (Poincaré Classification). Let f: S! — S! be an orientation-
preserving homeomorphism with irrational rotation number p.
1. If f is topologically transitive, then f is topologically conjugate to the
rotation R,
2. If fisnottopologically transitive, then R, is a factor of f, and the factor
map h:S' — S' can be chosen to be monotone.

Proof. Let Fbealiftof f,andfixx € R.Let A= {F"(x) + m:n,m € Z} and
B = {np +m: n,m € Z}. Then B is dense in R (81.2). Define H: A — B by
H(F"(x) + m) = np + m. By the preceding lemma, H preserves order and
is bijective. Extend H to a map H: R — R by defining

H(y) = sup{np + m: F"(x) + m < y}.

Then H(y) = inf{np + m: F"(x) + m > y}, since otherwise R\ B would con-
tain an interval.

We claim that H: R — R is continuous. If y € A, then H(y) = sup{H(z):
z€ A, z<y}and H(y) = inf{ H(z): z€ A, z> y} implies that H is continuous
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on A. If I is an interval in R\ A, then H is constant on [ and the constant
agrees with the values at the endpoints. Thus H: R — R is a continuous
extension of H: A — B.

Note that H is surjective, non-decreasing, and that

H(y+1) =sup{np +m: F'(x) + m< y + 1}
=sup{np +m: F"(x)+ (m—1) < y} = H(y) + 1.

Moreover,

H(F(y)) = sup{np +m: F"(x) + m < F(y)}
= sup{np + m: F""1(x) + m < y}
= p+ H(y).

We conclude that H descends to amap h: S — S'andho f = R, o h.
Finally, note that f is transitive if and only if {F"(x) + m:n,m € Z} is
dense in R. Since H is constant on any interval in R\ A, we conclude that & is
injective if and only if f is transitive. (Note that by Proposition 7.1.7, either
every orbit is dense or no orbit is dense.) |

Exercise 7.1.1. Showthatif Fand G = F + karetwoliftsof f,then p(F) =
o(G) + k, so p( f) is independent of the choice of lift used in its definition.
Show that there is a unique lift F of f such that p(F) = p(f).

Exercise 7.1.2. Show that p( f™) = mp( f).

Exercise 7.1.3. Show thatif f is an orientation-reversing homeomorphism
of 1, then p(f?) = 0.

Exercise 7.1.4. Suppose f has rational rotation number. Show that:
(a)if f has exactly one periodic orbit, then every non-periodic point is
both forward and backward asymptotic to the periodic orbit; and
(b) if f has more than one periodic orbit, then every non-periodic orbit is
forward asymptotic to some periodic orbit and backward asymptotic
to a different periodic orbit.

Exercise 7.1.5. Show that Theorems 7.1.1 and 7.1.5 hold under the weaker
hypothesis that f:S' — S! is a continuous map such that any (and thus
every) lift F of f is non-decreasing.
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7.2 Circle Diffeomorphisms

The total variation of a function f:S' — Ris

Var( f) = sup Z [ f(xk) — fCerg)ls
=1

where the supremum is taken over all partitions 0 < x; < --- < x, < 1, for
all n € N. We say that g has bounded variation if Var(g) is finite. Note that
any Lipshitz function has bounded variation. In particular, any C' function
has bounded variation.

THEOREM 7.2.1 (Denjoy). Let f be an orientation-preserving C' diffeo-
morphism of the circle with irrational rotation number p = p(f). If [’ has
bounded variation, then f is topologically conjugate to the rigid rotation R,.

Proof. We know from Theorem 7.1.9 that if f is transitive, it is conjugate
to R,. Thus we assume that f is not transitive, and argue to obtain a contra-
diction. By Proposition 7.1.7, we may assume that »(0) is a perfect, nowhere
dense set. Then S"\w(0) is a disjoint union of open intervals. Let I = (a, b)
be one of these intervals. Then the intervals { f"(/)},cz are pairwise disjoint,
since otherwise f would have a periodic point. Thus ), _, I(f"(1)) <1,
where I( f*(I)) = [7(f")(¢) dt is the length of f"(I).

LEMMA 7.2.2. Let J be an interval in S', and suppose the interiors of the
intervals J, f(J), ..., "' (J) are pairwise disjoint. Let g =log f’, and fix
x,y € J. Then for any n € Z,

Var(g) = [log(f")'(x) —log(f")' ().

Proof. Using the fact that the intervals J, f(J),..., f"(J) are disjoint, we
get

n—1
Var(g) = Y 1g(f4(y) — g(f4(x))| =
k=0

n—1
> g(ff () - g(f"(x))‘
k=0

n—1 n—1
= llog [ T £/ (f“() —log[ | f’(f"(x))‘
k=0 k=0
= |log(f")'(y) — log(f") (x)I. O
Fix x € S'. We claim that there are infinitely many n € N such that the
intervals (x, £f7(x)), (f(x), f7"(x)), ..., (f*(x), x) are pairwise disjoint. It

suffices to show that there are infinitely many 7 such that f*(x) is not in the
interval (x, f(x)) for 0 < |k| < n. Lemma 7.1.8 implies that the orbit of x is
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ordered in the same way as the orbit of a point under the irrational rotation
R,. Since the orbit of a point under an irrational rotation is dense, the claim
follows.

Choose n as in the preceding paragraph. Then by applying Lemma 7.2.2
with y = f~"(x), we obtain

(f"yx)
()

Thus for infinitely many n € N, we have

Var(g) > (log

‘ — Hog((/Y ) F Y )L

(D) + 1(F (1)) = /I (") () dx + /1 (f ") (x) dx

- f (7Y () + (F) ()] dx

= [ Vi@ ear

> /I\/mdx = exp <—%Var(g)) I(1).

This contradicts the fact that ), _, I( f"(I)) < oo, so we conclude that f is
transitive, and therefore conjugate to R,. O

THEOREM 7.2.3 (Denjoy Example). For any irrational number p € (0, 1),
there is a non-transitive C' orientation-preserving diffeomorphism f: S' — S
with rotation number p.

Proof. We know from Lemma 7.1.8 that if p( f) = p, then for any x € S',
the orbit of x is ordered the same way as any orbit of R,,i.e., f¥(x) < fl(x) <
f"(x)ifand onlyif R¥(x) < R/(x) < R/'(x). Thusin constructing f,we have
no choice about the order of the orbit of any point. We do, however, have a
choice about the spacing between points in the orbit.

Let {/,}ncz be a sequence of positive real numbers such that )°, [, =1
and [, is decreasing asn — 400 (we will impose additional constraints later).
Fix xy € S, and define

a, = > I,  by=a,+1,.
{keZiRg(Xo)E[Xo,Rg(xo)}

The intervals [a,, b,] are pairwise disjoint. Since ), _, I, = 1, the union of

these intervals covers a set of measure 1 in [0, 1], and is therefore dense.
To define a C' homeomorphism f: S' — S it suffices to define a contin-

uous, positive function g on S' with total integral 1. Then f will be defined
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to be the integral of g. The function g should satisfy:

L [ g(e)dt = by,
To construct such a g it suffices to define g on each interval [a,,, b,] so that it
also satisfies:

2. g(an) = g(bn) =1L

3. For any sequence {x;} C {J,czlan, bu], if y = lim x;, then g(xx) — 1.
We then define g to be 1 on S"\ ,,.z[an, bn]-

There are many such possibilities for g|[a,, b,]. We use the quadratic
polynomial
6(ln+1 - ln)

&

which clearly satisfies condition 1. For n > 0, we have /,,;1 — [, < 0, so

6(Ly — Liv1) (1) Blup1 — 1y
3 2) — o,

n

glr) =1+ (bn = x)(x — an),

1>g(x)>1-

Forn < 0, we have [,,;1 —[,, > 0, so
3ln+1 - ln

20,

Thus if we choose /,, such that (3/,,.1 — /,,)/2/,, — 1 as n — o0, then condi-
tion 3 is satisfied. For example, we could choose [, = a(|n| +2)~'(|n| +3)7!,
where @ = 1/ 3,0, (Il +2)(1n] +3)1).

Now define f(x) = a; + [; g(¢)dt. Using the results above, it follows
that f: S' — S' is a C! homeomorphism of S' with rotation number p
(Exercise 7.2.1). Moreover, f*(0) = a,, and @(0) = S\ U,z (an, by) is a
closed, perfect, invariant set of measure zero. O

1<glx) <

Exercise 7.2.1. Verify the statements in the last paragraph of the proof of
Theorem 7.2.3.

Exercise 7.2.2. Show directly that the example constructed in the proof of
Theorem 7.2.3 is not C2.

7.3 The Sharkovsky Theorem

We consider the set Ng, = N U {2°°} obtained by adding the formal symbol
2% to the set of natural numbers. The Sharkovsky ordering of this set is

1 <2<+ <2"<...<2% < ...
<2". 2n+1) <---<2".7<2".5<2".3 < ...
<22n+1) <. <14 <10<6<---
<2n+1<---<7<5<3.
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The symbol 2% is added so that Ng; has the least-upper-bound property,
1.e., every subset of Ng, has a supremum. The Sharkovsky ordering is pre-
served by multiplication by 2%, for any k> 0 (where 2¢.2% =2%, by
definition).

For o € Ng, let S(a) = {k € N: k < «} (note that S(«) is defined to be a
subset of N, not Ngp,). For amap f:[0, 1] — [0, 1], we denote by MinPer( f)
the set of minimal periods of periodic points of f.

THEOREM 7.3.1 (Sharkovsky [Shaé4]). For every continuous map f:
[0,1] — [0, 1], there is & € Ngy such that MinPer( f) = S(«). Conversely, for
every a € Ngy, there is a continuous map f: [0, 1] — [0, 1] with MinPer( f) =
S(a).

The proof of the first assertion of the Sharkovsky theorem proceeds as
follows: We assume that f has a periodic point x of minimal period n > 1,
since otherwise there is nothing to show. The orbit of x partitions the interval
[0, 1] into a finite collection of subintervals whose endpoints are elements of
the orbit. The endpoints of these intervals are permuted by f. By examining
the combinatorial possibilities for the permutations of pairs of endpoints,
and using the intermediate value theorem, one establishes the existence of
periodic points of the desired periods.

The second assertion of the Sharkovsky theorem is proved as
Lemma 7.3.9.

If I and J are intervals in [0, 1] and f([) D J, we say that I f-covers J,
and we write / — J. If a, b € [0, 1], then we will use [a, b] to represent the
closed interval between a and b, regardless of whether a > bora < b.

LEMMA 7.3.2
1. If f(I) D I, then the closure of I contains a fixed point of f.
2. Fix m € NU {oo}, and suppose that {I}1<k<m is a finite or infinite se-
quence of non-empty closed intervals in [0, 1] such that f(I;) D Iy for
1 < k < m— 1. Then there is a point x € I, such that f*(x) € Iy for
1 <k <m—1. Moreover, if I, = I for some n > 0, then I contains a
periodic point x of period n such that f*(x) € Iy fork=1,...,n— 1.

Proof. The proof of part 1 is a simple application of the intermediate value
theorem.

To prove part 2, note that since f(I;) D L, there are points ag, by € I
that map to the endpoints of . Let J; be the subinterval of [; with
endpoints ag, byp. Then f(J;) = L. Suppose we have defined subintervals
Ji D Jy DD Jyin I such that f(J;) = Liy1. Then f"+1(J,) = f(I1) D
.42, so there is an interval J,.,; C J, such that f"*(J,41) = I,;». Thus we
obtain a nested sequence {J,,} of non-empty closed intervals. The intersection
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7' J; is non-empty, and for any x in the intersection, f¥(x) € Iy for
1<k<m-1.

The last assertion follows from the preceding paragraph together with
part 1. O

A partition of aninterval [ is a (finite or infinite) collection of closed subin-
tervals {Ix}, with pairwise disjoint interiors, whose union is /. The Markov
graph of f associated to the partition {I} is the directed graph with ver-
tices Ir, and a directed edge from I; to I; if and only if I; f-covers I;. By
Lemma 7.3.2, any loop of length » in the Markov graph of f forces the
existence of a periodic point of (not necessarily minimal) period n.

As a warmup to the proof of the full Sharkovsky theorem, we prove
that the existence of a periodic point of minimal period three implies the
existence of periodic points of all periods. This result was rediscovered in
1975 by T. Y. Li and J. Yorke, and popularized in their paper “Period three
implies chaos” [LY75].

Let x be a point of period three. Replacing x with f(x) or f?(x) if nec-
essary, we may assume that x < f(x) and x < f?(x). Then there are two
cases: (1) x < f(x) < f2(x)or (2) x < f2(x) < f(x).In the first case, we let
I =[x, f(x)] and L = [ f(x), f?(x)]. The associated Markov graph is one
of the two graphs shown in Figure 7.1.

Fork>2,thepathy - L, > L, — --- — I, — [ oflength kimplies the
existence of a periodic point y of period k with the itinerary 1, b, b, .. .,
b, I,. If the minimal period of yis less than k, then y € ; N I, = { f(x)}. But
f(x) does not have the specified itinerary for k / 3;so the minimal period of
yis k. A similar argument applies to case (2), and this proves the Sharkovsky
theorem for n = 3.

To prove the full Sharkovsky theorem it is convenient to use a sub-
graph of the Markov graph defined as follows. Let P = {x1, x, ..., x,,} be
a periodic orbit of (minimal) period n > 1, where x; < x, < --- < x,,. Let

Figure 7.1. The two possible Markov graphs for period three.
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Ij =[x, xj41]. The P-graph of f is the directed graph with vertices /;,
and a directed edge from /; to I if and only if I, C [ f(x;), f(x;4+1)]. Since
f(I;) D [f(x}), f(xj41)], it follows that the P-graph is a subgraph of the
Markov graph associated to the same partition. In particular, any loop in
the P-graph is also a loop in the Markov graph. The P-graph has the virtue
that it is completely determined by the ordering of the periodic orbit, and is
independent of the behavior of the map on the intervals /;. For example, in
Figure 7.1, the top graph is the unique P-graph for a periodic orbit of period
three with ordering x < f(x) < f2(x).

LEMMA 7.3.3. The P-graph of f contains a trivial loop, i.e., there is a vertex
I; with a directed edge from I; to itself.

Proof. Let j = max{i: f(x;) > x;}. Then f(x;) > x; and f(x;41) < Xj41,80
f(xj) = xjprand f(xj41) < xj. Thus [ f(x;), f(xj+1)]) D [x), %3] O

We will renumber the vertices of the P-graph (but not the points of P)
so that I; =[x}, xj41], where j = max{i: f(x;) > x;}. By the proof of the
preceding lemma, [; is a vertex with a directed edge from itself to itself.

For any two points x; < x; in P, define

k—1

Fxi xld) = JUF (). )]

I=i

Inparticular, f(I,) = [ f(xx), f(xx + D].If £(I) D I, wesay that I, f-covers
I;. Since we will only be using P-graphs throughout the remainder of this
section, we also redefine the notation I; — I; to mean that [ f -covers 1.

PROPOSITION 7.3.4. Any vertex of the P-graph can be reached from 1.

Proof. The nested sequence I; ¢ f(I;) C f?(I;) C --- must eventually sta-
bilize, since f*(I;) is an interval whose endpoints are in the orbit of x. Then
for k sufficiently large, O(x) N f(1;) is an invariant subset of O(x), and is
therefore equal to O(x). It follows that f¥(1;) = [x, x,,], so any vertex of the
P-graph can be reached from /. |

LEMMA 7.3.5. Suppose the P-graph has no directed edge from any interval
I, k / 5to L. Then n is even, and f has a periodic point of period 2.

Proof. LetJy = [x1, x;]and J; = [xj41, X,—1], where j = max{i: f(x;) > x;}
(the case j = 1is not excluded a priori). Then f(Jo) ¢ Jo (since f(x;) > x;)
and f(Jo) ¢ I1,s0 f(Jy) C Jy,since f(Jy)isconnected. Likewise, f(J1) C Jo.
Now f(Jo) U £(J1) D O(x),s0 f(Jo) = Ji and f(Jy) = Jy. Thus Jy f-covers
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TN

L= L— [ — [— e —> [, ,

Figure 7.2. The P-graph for Lemmas 7.3.6 and 7.3.9.

Ji and Jp f-covers Jy, so f has a periodic point of minimal period 2, and
n=|0(x)| =2|0(x) N Jy| is even. O

LEMMA 7.3.6. Suppose n > 1is odd and f has no non-fixed periodic points
of smaller odd period. Then there is a numbering of the vertices of the P-graph
so that the graph contains the following edges, and no others (see Figure 7.2):

1. 11 —> 11 and In—l — 11,

2. I, » L, fori=1,...,.n-2,

3 L1 — biy, forO<i<(n—1)/2
Proof. By Lemma 7.3.5 and Lemma 7.3.4, there is a non-trivial loop in the
P-graph starting from /;. By choosing a shortest such loop and renumbering
the vertices of the graph, we may assume that we have a loop

]1_)]2_>..._)]k—)]l (71)

in the P-graph, k < n — 1. The existence of this loop implies that f has a
periodic point of minimal period k. The path

Il—>11—)12—>--~—>1k—>11

implies the existence of a periodic point of minimal period k + 1. By the
minimality of n, we conclude that k = n — 1, which proves statement 1.

Let I} = [x;, xj+1]. Note that f(I,) contains I; and L, but no other I;,
since otherwise we would have a shorter path than (7.1). Similarly, if 1 <
i <n—2,then f(I;) cannot contain I for k > i + 1. Thus f(I) = [x}, x}2]
or f(I;) = [xj_1, xj+1]. Suppose the latter holds (the other case is similar).
Then b = [xj_1, x;], f(xj11) = xj-1, and f(x;) = xj41. If 2 <n—1, then
f(L) can contain at most L, and &, so f(x;_1) = x;42. Continuing in this
way (see Figure 7.3), we find that the intervals of the partition are ordered

IM 171—4 In—2
e oo o o o o e+ oo
~—

Figure 7.3. The action of f from Lemma 7.3.6 on x; is shown by arrows.
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on the interval I as follows:
Infla In73a ey 127 119 137 ceey In72~

Moreover, f(x2) = X4, f(x,) = x1, and f(x1) = x;, so f([n_l) = [x;, Xp—1],
and f(I,_1) contains all the odd-numbered intervals, which completes the
proof of the lemma. g

COROLLARY 7.3.7. Ifnisodd, then f has aperiodic point of minimal period
q for any q > n and for any even integer q < n.

Proof. Letm > 1 be the minimal odd period of a non-fixed periodic point.
By the preceding lemma, there are paths of the form

L—-5L—- - - >L—->bL—> - > 1,1—>1
of any length ¢ > m. For g = 2i < m, the path
Ino1 = Inzi = Lp-it1 — -+ = I

gives a periodic point of period q. The verification that these periodic points
have minimal period q is left as an exercise (Exercise 7.3.3). O

LEMMA 7.3.8. Ifnis even, then f has a periodic point of minimal period 2.

Proof. Letm be the smallest even period of a non-fixed periodic point, and
let I; be an interval of the associated partition that f-covers itself. If no other
interval f-covers I, then Lemma 7.3.5 implies that m = 2.

Suppose then that some other interval f-covers I;. In the proof of
Lemma 7.3.6, we used the hypothesis that n is odd only to conclude the
existence of such an interval. Thus the same argument as in the proof of that
lemma implies that the P-graph contains the paths

L—->L—>. ---—> 1, 11— 1 and I, —> L, for0<i<n/2.

Then I,,_1 — I,_» — I,_1implies the existence of a periodic point of minimal
period 2. O

Conclusion of the proof of the first assertion of the Sharkovsky
Theorem. There are two cases to consider:

1. n=2Kk>0.If g <n, then g =2/ with 0 </ < k. The case [ =0 is
trivial. If / > 0, then g = f%/2 = f27" has a periodic point of period
2%=1+1 's0 by Lemma 7.3.8, g has a non-fixed periodic point of period
2. This point is a fixed point for f9,i.e., it has period g for f. Since it
is not fixed by g, its minimal period is q.
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2. n= p2k, podd. The map f2* has a periodic point of minimal period p,
so by Corollary 7.3.7, 2 has periodic points of minimal period m for
all m > p and all even m < p. Thus f has periodic points of minimal
period m2k for all m > p and all even m < p. In particular, f has a
periodic point of minimal period 2¥*!, so by case 1, f has periodic
points of minimal period 2‘ fori =0, ..., k. O

The next lemma finishes the proof of the Sharkovsky theorem.

LEMMA 7.3.9. For any a € Ngy, there is a continuous map f: [0, 1] — [0, 1]
such that MinPer( f) = S(«).

Proof. We distinguish three cases:

1. €N, aodd,

2. o € N, o even, and

3. a=2%.

Case 1. Suppose n € N is odd, and « = n. Choose points xp, ..., X,_1 €

[0, 1] such that
O=x, 1< - " <X<XH<XN<XI <X3<-+<Xy_n=1,

and let I} = [xo, x1], L = [x2, 0], 5 = [x1, x3], etc. Let f:[0,1] — [0, 1] be
the unique map defined by:

1. f(xi))=xi41,i=0,...,n—2,and f(x,_1) = xo,

2. f is linear (or affine, to be precise) on each interval I;, j =1, ...,

n—1.

Then x( is periodic of period n, and the associated P-graph is shown in
Figure 7.2. Any path that avoids /; has even length. Loops of length less
than n must be of the following form:

1. [ -Ly— = Ii1—> hjy1— hjyp— ---— Lifori >1,or

2. L1 — 12,'+1 — ... —> [,_q,0r

3. Il—>11—>'~'—>11—>11
Paths of type 1 or 2 have even length, sono pointinint(/;), j =2,...,n—1,
can have odd period k < n. Since f(l;) = I; U b, we have |f'| > 1 on I,
so every non-fixed point in int(/;) must move away from the (unique) fixed
pointin I;, and therefore eventually enters ;. Once a point enters b, it must
enter every /; before it returns to int(/;). Thus there is no non-fixed periodic
point in /; of period less than n. It follows that no point has odd period less
than n. This finishes the proof of the theorem for n odd.
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f D(f) D(D(f))
Figure 7.4. Graphs of DX(f) for f=1/2.

Case 2. Suppose n € Nis even, and & = n. For f: [0, 1] — [0, 1], define a
new function D: [0, 1] — [0, 1] by

24+ 1f(x) x €0,
D(H)x)={C@+ fA)(3-x) xe]

1
3
x—% xe[%,l].

The operator D( f) is sometimes called the doubling operator, because
MinPer(D( f)) = 2 MinPer( f) U {1}, i.e., D doubles the periods of a map. To
see this,let g = D(f),andlet ; =[0,1/3], L =[1/3,2/3],and 5 = [2/3, 1].
For x € Ij, we have g*(x) = f(3x)/3,s0 g?*(x) = f*(3x)/3. Thus g?*(x) = x
if and only if f¥(3x) = 3x, so MinPer(g) D 2 MinPer( f) (see Figure 7.4).

On the interval I, |g'| > 2, so there is a unique repelling fixed point in
(1/3,2/3), and every other point eventually leaves this interval and never
returns, since g(/; U I3) N I, = . Thus no non-fixed point in /, is periodic.

Finally, any periodic point in /5 enters I, so its period is in 2MinPer( f),
which verifies our claim that MinPer(D( f)) = 2MinPer( f) U {1}.

Since n is even, we can write n = p2*, where pis odd and k > 0. Let f be
a map whose minimum odd period is p (see case 1). Then MinPer(D*( f)) =
2¥MinPer( f) U {2k-1, 252 1}, which settles case 2 of the lemma.

Case 3. Suppose a = 2. Let g = D*(I1d), where 1d is the identity map.
Then, by the induction and the remarks in the proof of case 2, MinPer(gx) =
{2k=1 2k=2 " . 1}. The sequence {gi}ren converges uniformly to a contin-
uous map guo: [0,1] — [0, 1], and g, = gx on [2/3%, 1] (Exercise 7.3.4). It
follows that MinPer(g.,) D S(2%).

Let x be a periodic point of g,.. If 0 ¢ O(x), then O(x) c [2/3%, 1] for k
sufficiently large, so x is a periodic point of g and has even period. Suppose
then that 0 is periodic with period p. If p > 2%, then there is ¢ € N such
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that p > g > 2°°. By the first part of the Sharkovsky theorem, g, has a
periodic point y with minimal period q. Since 0 € O(y), we conclude by
the preceding argument that g is even, which contradicts g > 2°°. Thus
MinPer(g) = S(2°).

This concludes the proof of Lemma 7.3.9, and thus the proof of
Theorem 7.3.1. O

Exercise 7.3.1. Let o be a permutation of {1, ..., n — 1}. Show that there is
a continuous map f: [0, 1] — [0, 1] with a periodic point x of period n such
thatx < f°) < ... < fotr=D),

Exercise 7.3.2. Show that there are maps f, g: [0, 1] — [0, 1], each with a
periodic point of period n (for some n), such that the associated P-graphs
are not isomorphic. (Note that for n = 3, all P-graphs are isomorphic.)

Exercise 7.3.3. Verify that the periodic points in the proof of Corollary7.3.7
have minimal period q.

Exercise 7.3.4. Show that the sequence {gx}xey defined near the end of the
proof of Lemma 7.3.9 converges uniformly, and the limit g, satisfies goo = g«
on [2/3K 1].

7.4 Combinatorial Theory of Piecewise-Monotone Mappings'

Let I = [a, b] be acompact interval. A continuous map f: I — I is piecewise
monotone if there are points a = ¢y < ¢; < -+- < ¢; < ¢j41 = b such that f
is strictly monotone on each interval I, = [¢;_1,¢],i =1,...,1 + 1. We al-
ways assume that each interval [c;_1, ¢;] is a maximal interval on which f is
monotone, so the orientation of f reverses at the turning points cy, . .., c.
The intervals I; are called laps of f.

Note that any piecewise-monotone map f:/ — [ can be extended to a
piecewise-monotone map of a larger interval J in such a way that f(8J) C
dJ. Thus we assume (without losing much generality) that f(31) Cc 91.1f f
has / turning points and f(d/) C 9/, then f is [-modal. If f has exactly one
turning point, then f is unimodal.

The address of a point x € I is the symbol c¢; if x =¢; for some j €
{1,...,1}, or the symbol [; if x € I; and x ¢ {c{, ..., ¢;}. Note that ¢y and
c41 are not included as addresses. The itinerary of x is the sequence i(x) =

1 Our arguments in this section follow in part those of [CES0] and [MT88].
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(ix(x))xen, » Where ix(x) is the address of f*(x). Let
Y= {Il, e, Il+1, Clyenny C[}N“.
Theni: I — X¥,andi o f = o oi, where o is the one-sided shift on X.

Example. Any quadratic map g, (x) = ux(1 — x),0 < u < 4,is a unimodal
map of I = [0, 1], with turning point ¢; = 1/2, ; = [0,1/2], L = [1/2,1]. If
0<p<2, then f(I)C[0,1/2), so the only possible itineraries are
(h, h,...), (a1, I, L, ...),and (b, I1, L1, .. .). Note that the map i: [0, 1] —
¥ is not continuous at cj.

If u =2, then the possible itineraries are (I, I, ...), (¢1,c1, ...), and
(L, L, L,...). If 2 < u <3, there is an attracting fixed point (u — 1)/u €
(1/2,2/3). Thus the possible itineraries are:

(h, L, ...),
(619 12’ 129 . ')1
(b, b, ...),

(hy.... 5,0, b,...),
(hi,....hL,Ci, b, b, ...),
any of the above preceded by .

LEMMA 7.4.1. The itinerary i(x) is eventually periodic if and only if the
iterates of x converge to a periodic orbit of f.

Proof. Ifi(x)iseventually periodic, then by replacing x by one of its forward
iterates, we may assume that i(x) is periodic, of period p. If i;(x) = ¢; for
some j, then ¢; is periodic, and we are done. Thus we may assume that f*(x)
is contained in the interior of a lap of f for each k. For j =0,..., p—1,
let J; be the smallest closed interval containing { f*(x): k = j mod p}. Since
the itinerary is periodic of period p, each J; is contained in a single lap,
so f:J; — Jj4 is strictly monotone. It follows that f7:Jy — Jp is strictly
monotone.

Suppose fP:Jy — Jy is increasing. If fP(x) > x, then by induction,
ff(x) > f*=Dr(x) for all k > 0, so { f*(x)} converges to a point y € J,
which is fixed for fP. A similar argument holds if f7(x) < x.

If fP:Jy — Jois decreasing, then f?P:Jy — Jy is increasing, and by the
argument in the preceding paragraph, the sequence { f>”(x)} converges to
a fixed point of f27.

Conversely, suppose that f%(x) — y as k — oo, where fi(y) = y. If the
orbit of y does not contain any turning points, then eventually x has the same
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itinerary as y. The case where O(y) does contain a turning point is left as an
exercise (Exercise 7.4.1). O

Let € be a function defined on {/i, ..., I;,c1, ..., ¢} such that e(f)) =
+1,e() = (=1)**'e()),and e(cy) = 1 for k=0, ..., l. Associated to € is a
signed lexicographic ordering < on X, defined as follows. For s € X, define

7,(8) = l_[ €(sy).

0<k<n

We order the symbols {+1;, £c;} by
-y <—-—<¢g<-hI<---<-L<h<c<bh<--<c¢<Iy.

Given s = (s;),t = (t;) € X, we say s < t if and only if sy < #y, or there is
n > Osuch thats; =¢ fori =0,...,n—1, and 1,(s)s, < 7,(¢)t,. The proof
that < is an ordering is left as an exercise.

Associated to an /-modal map f is a natural signed lexicographic order-

ing with €(Iy) =1 if f is increasing on [ and €([;) = —1 otherwise, and
€(cy)=1,fork=1,...,1. For x € I, we define 7,(x) = 7,(i(x)). Note that
if {x, f(x),..., f""1(x)} contains no turning points, then 7,(x) is the orien-

tation of f" at x: positive (i.e., increasing) if and only if 7,(x) = 1.

LEMMA 7.4.2. Forx,y € I, ifx < y, then i(x) < i(y). Conversely, ifi(x) <
i(y), then x < y.

Proof. Supposei(x) / &y),ix(x) =ir(y) fork=0,...,n—1,and i,(x) /
in(y). Then there is no turning point in the intervals [x, y], f([x, ¥]), - -,
" Y([x, y]), so f" is monotone on [x, y], and is increasing if and only if
7,(i(x)) = 1. Thus x < y if and only if 7,(x) f*(x) < ©.(y) f*(y), and the
latter holds if and only if 7,(x)i,,(x) < 7,(y)in(y) since in(x) / &(y). O

LEMMA 7.4.3. Let I(x) = {y:i(y) = i(x)}. Then:
1. I(x) is an interval (which may consist of a single point).
2. If I(x) / =}, then f"(I(x)) does not contain any turning points for
n > 0. In particular, every power of f is strictly monotone on I(x).
3. Eitherthe intervals I(x), f(I1(x)), f>(1(x)), ...are pairwise disjoint, or
the iterates of every point in I1(x) converge to a periodic orbit of f.

Proof. Lemma 7.4.2 implies immediately that /(x) is an interval. To prove
part 2, suppose there is y € I(x) such that f"(y) is a turning point. If /(x) is
not a single point, then there is some point z € /(x) such that f"(y) / #(z),
since f" is not constant on any interval. Thus i,(z) / &(y) = f(y), which
contradicts the fact that y, z € I(x). Thus /(x) must be a single point.
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To prove part 3, suppose the intervals 1(x), f(1(x)), f2(I(x)), ... are not
pairwise disjoint. Then there are integers n > 0, p > 0, such that f*(I(x)) N
frP(I(x)) / = 3. Thefi™ P (1(x)) N fr+4DP(I(x)) / =f6rall k > 1. It fol-
lows that L = | J,.; f*(I(x)) is a non-empty interval that contains no turn-
ing points and is invariant by f?.Since f? is strictly monotone on L, for any
y € L, the sequence { f?7(y)} is monotone and converges to a fixed point of

20, O

An interval J C I is wandering if the intervals J, f(J), f2(J), ... are
pairwise disjoint, and f"(J) does not converge to a periodic orbit of f.Recall
that if x is an attracting periodic point, then the basin of attraction BA(x) of
x is the set of all points whose w-limit set is O(x).

COROLLARY 7.4.4. Suppose f does not have wandering intervals, attracting
periodic points, or intervals of periodic points. Then i: I — X is an injection,
and therefore a bijective order-preserving map onto its image.

Proof. To prove that i is injective we need only show that I(x) = {x} for
everyx € I.Ifnot, then by the proof of Lemma 7.4.3, either /(x) is wandering
or there is an interval L with non-empty interior and p > 0 such that f7? is
monotone on L, fP(L) € L, and the iterates of any point in L converge to a
periodic orbit of f of period 2p. The former case is excluded by hypothesis.
In the latter case, by Exercise 7.4.2, either L contains an interval of periodic
points, or some open interval in L converges to a single periodic point,
contrary to the hypothesis. So I(x) = {x}. O

Our next goal is to characterize the subset i(/) C . As we indicated
above, the map i: I — X is not continuous. Nevertheless, for any x € I and
k € Ny, thereis§ > Osuch thati(y)isconstanton (x, x + §)andon (x — 6, x)
(but not necessarily the same on both intervals). Thus the limits i(xT) =
limy_, v+ i(y) and i(x~) = lim,_, .- i(y) exist. Moreover, i(x*) and i (x ™) are
both contained in {f, ..., [} c =. For j=1,...,1, we define the jth
kneading invariant of f to be v; = i(cf). For convenience we also define
sequences vy = i(co) = i(cy) and vy = i(c141) = i(c;,,). Note that vy and
v;+1 are eventually periodic of period 1 or 2, since by hypothesis the set
{co, c14+1} is invariant. In fact, there are only four possibilities for the pair
Vo, V141, corresponding to the four possibilities for f/;.

LEMMA 7.4.5. For any x € 1, i(x) satisfies the following:
1. oni(x) = i(e) if 1(x) = i
2. ov < o™i(x) < o if f(x) € Iyt and f is increasing on Iy 1.

"+ (x) = ovgyr if f1(x) € Iiy1 and f is decreasing on I, 1.

3. ovy>o
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Moreover, if f has no wandering intervals, attracting periodic points, or inter-
vals of periodic points, then the inequalities in conditions 2 and 3 are strict.

Proof. The first assertion is obvious. To prove the second, suppose that
f™(x) € Ix11, and f is increasing on Ii1. Then for y € (¢, f"(x)), we have

flew) < f(y) < f*!(x), s0
i(few)) < i(f() =i(f*1(x) = 0" i(x).

Since v = lim,_, . i(), we conclude that o v < o"*1i(x). The other inequal-
ities are proved in a similar way.

If f has no wandering intervals, attracting periodic points, or intervals of
periodic points, then Corollary 7.4.4 implies that i is injective, so < can be
replaced by < everywhere in the preceding paragraph. O

The following immediate corollary of Lemma 7.4.5 gives an admissibility
criterion for kneading invariants.

COROLLARY 7.4.6. If 6"(v;) = (Iis1. .. .), then
"y < ovg if f is increasing on I,
vj = ot if fis decreasing on Iiiq.

1. ovw=<o

2. oy > o't

Let f: I — I be an [-modal map with kneading invariants vy, ..., v, and
let v, v41 be the itineraries of the endpoints of /. Define X f to be the set of
all sequences t = (¢,) € X satistying the following:

1. ot =i(c) iftn = cx. k€ {0, ..., ).
2. oV < oy < oV if t, = Iy, 1 and G(Ik+1) = +1.
3. ovg > ot - O Vi1 if t, = I and 6(1k+1) =—1.

Similarly, we define 3. 7 to be the set of sequences in ¥ satisfying conditions
1-3 with < replaced by <.

THEOREM 7.4.7. Let f: I — I be an l-modal map with kneading invariants
Vi, ..., Vv, and let vy, viy1 be the itineraries of the endpoints. Then i(I) C
by r. Moreover, if f has no wandering intervals, attracting periodic points,
or intervals of periodic points, then i(I) = Xy, and i: 1 — Xy is an order-
preserving bijection.

Proof. Lemma 7.4.5 implies that i(/) C £, and i(I) C I if there are no
wandering intervals, attracting periodic points, or intervals of periodic points.

Suppose f has no wandering intervals, attracting periodic points or inter-
vals of periodic points. Let t = (#,) € X, and suppose ¢ ¢ i(f). Then

L ={xelilx)=<t}, R={xelilx)>1t}

are disjoint intervals, and I = L, U R,.
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We claim that L, and R, are non-empty. The proof of this claim breaks into
four cases according to the four possibilities for f|y;. We prove it in the case
f(co) = f(ci+1) = co. Then vy = i(C(J)r) =L, hL,...), v = l.(C;_H) = (141,
I, L,...),e() =1, and €(l;;1) = —1. Note that ¢t / &cy) =vg and ¢ /
i(ci41) = viu1, since ¢ ¢ i(f). Thus vy < ¢, s0 ¢ € L;. If o < Ij1q, then ¢ <
Vi+1, SO ¢;+1 € R;, and we are done. So suppose fy = I;41. If 1 > [, then
t < v41, and again we are done. If #; = [;, then condition 2 implies that
o vy < o’t, which implies in turn that ¢ < v;,;. Thus v;4; € R,.

Leta = sup L,. We will show thata ¢ L,. Suppose for a contradiction that
a € L. Since x ¢ L, for all x > a, we conclude that i(a) <t < i(a™). This
implies that the orbit of a contains a turning point. Let n > 0 be the smallest
integer such thati,(a) = cx forsome k € {1,...,/}. Thenij(a) =t; =i;(a™)
for j=1,...,n—1, and i,(at) = Ik or i,(a®) = Ii41. Suppose the latter
holds. Then f” is increasing on a neighborhood of a. Since i(a) <t < i(a%)
andij(a) =t;j =ij(a*)for j =0,...,n—1,it follows that

i(ck) = 0" (i(a)) < a"(t) < o"(i(a™)) = i,

and ¢x < t;, < Liq1.

If ¢, = c, then by condition 1, o”(¢t) = i(ck), so t = i(a), contradicting
the fact that ¢ ¢ i( f). Thus we may assume that ¢, = I,1. If f is increasing
on I, 1, then condition 2 implies that 6"*1(¢) > ov. But 0”(¢) < o"(i(a™)),
7,(t) = +1 and ¢, = i,(a™) imply that

o™ (1) < " (i(ah)) = o (w).

Similarly, if f is decreasing on I, 1, then condition 3 implies that o1 < oy,
which contradicts o”(¢) < o"(i(a™)), t,11(t) = —1, and ¢, = i, (a™).

We have shown that the case i,,(a%) = I, leads to a contradiction. Sim-
ilarly, the case i,(a™) = I leads to a contradiction. Thus a ¢ L,. By similar
arguments, inf R, ¢ R;, which contradicts the fact that / is the disjoint union
of L, and R;. Thust € i(I),s0i(l) = Xy.

Lemma 7.4.2 now implies that i: I — X is an order-preserving bijection.

O

COROLLARY 7.4.8. Let f and g be I-modal maps of I with no wandering
intervals, no attracting periodic points, and no intervals of periodic points. If
f and g have the same kneading invariants and endpoint itineraries, then f
and g are topologically conjugate.

Proof. Let i, and i, be the itinerary maps of f and g, respectively. Then
i;l oig:l — X(vo, v1,...,v41) — I is an order-preserving bijection, and
therefore a homeomorphism, which conjugates f and g. O
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REMARK 7.4.9. One can show that the following extension of Corollary 7.4.8
isalso true: Let f and g bel-modal maps of I, and suppose f has no wandering
intervals, no attracting periodic points, and no intervals of periodic points. If
f and g have the same kneading invariants and endpoint itineraries, then f
and g are topologically semiconjugate.

Example. Consider the unimodal quadratic map f: [-1,1] — [-1,1],
f(x) = —2x% + 1. This map is conjugate to the quadratic map g4: [0, 1] —
[0, 1], g4(x) = 4x(1 — x),viathe homeomorphism A: [—1, 1] — [0, 1], h(x) =
%(x + 1). The orbit of the turning pointc =0of fis0,1, -1, —1,...,so the
kneading invariantis v = (b, b, I1, 1, .. .).

Now let I = [—1, 1], and consider the tent map T: I — I defined by

2x+1, x <0,
T(x) =
—-2x+1, x>0.

The homeomorphism ¢: I — I, ¢(x) = (2/7)sin"'(x) conjugates f to T.

For any n > 0, the map f"*! maps each of the intervals [k/2", (k4 1)/2"],
k= -2",...,2" homeomorphically onto /. Thus the forward iterates of
any open set cover I, or equivalently, the backward orbit of any point in
I is dense in [. It follows from the next lemma that 7 has no wandering
intervals, attracting periodic points, or intervals of periodic points, so any
unimodal map with the same kneading invariants as 7 is semiconjugate to
T. In particular, any unimodal map g: [a, b] — [a, b] with g(a) = g(b) = a
and g(c) = b is semiconjugate to 7.

LEMMA 7.4.10. Let I = [a, b] beaninterval, and f: 1 — I a continuous map
with f(31) C d1. Suppose that every backward orbit is dense in I, and that f
has a fixed point xy notin d1. Then f has no wandering intervals, no intervals
of periodic points, and no attracting periodic points.

Proof. Let U € I be an open interval. Fix x € U. By density of | f~"(x),
there is n > O such that f™(x)NU / =®hen fA(U)NU / s¢ Uisnota
wandering interval.

Suppose z € [ is an attracting periodic point. Then the basin of attraction
BA(z) is a forward-invariant set with non-empty interior. Since backward
orbits are dense, BA(z) is a dense open subset of I and therefore intersects
the backward orbit of xy. Thus z = x(. On the other hand, the backward orbits
of a and b are dense, and therefore intersect BA(z), which is a contradiction.
Thus there can be no attracting periodic point.
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Any point in Per( f) has finitely many preimages in Per( f), so if Per( f)
had non-empty interior, the backward orbit of a point in Per( f) would not
be dense in Per( f). Thus f has no intervals of periodic points. |

The final result of this section is a realization theorem, which asserts that
any “admissible” set of sequences in X is the set of kneading invariants of
an /-modal map.

Note that for an /-modal map f, the endpoint itineraries are determined
completely by the orientation of f on the first and last laps of f. Thus, given
[ and a function € as in the definition of signed lexicographic orderings, we
can define natural endpoint itineraries vy and v, as sequences in the symbol
space {11, I141).

THEOREM 7.4.11. Let vy, ..., v € {L,..., 1}, and €(I;) = e(—1)),
where €g = £1. Let < be the signed lexicographic ordering on ¥ = {1, ...,
Dii1, 1, ..., )N associated to €. Let vy, v41 be the endpoint itineraries deter-
mined uniquely by € and . If {vy, . .., vi11} satisfies the admissibility criterion
of Corollary 7.4.6, then there is a continuous [-modal map f:[0,1] — [0, 1]
with kneading invariants vy, . .., vi41.

Proof. Define an equivalence relation ~ on X by the rule ¢t ~ s if and
onlyift =s,oro(t) = o(s)andty = I, so = ly+1. To paraphrase: t and s are
equivalent if and only if they differ at most in the first position, and then only
if the first positions are adjacent intervals. (Thus, for example, i(c; ) ~ i(c})
for a turning point of an /-modal map.)

We will define a sequence of /-modal maps fy, N € Ny, whose kneading
invariants agree up to order N with vy, ..., v;. The desired map f will be the
limit in the C° topology of these maps.

Letp?:c,-,j=O,...,l+1.Choosep0ints p} €l0,1],j=0,...,1+1,
such that

L. ifo™(v;) ~ o"(v;) then p/" = pl;

2. p" < pjifandonlyif o™(v;) < 0"(v;) and 0™ (v;) / o*(v;); and

3. the new points are equidistributed in each of the intervals [ p(]?, p? il

j=0,...,/+1
Define fi:[0, 1] — [0, 1] to be the piecewise-linear map specified by f( p(;) =
pj-Note that pj < pi,, ifandonlyifov; < ov;1, which happens if and only
if e(Ij11) = +1. Thus f; is [-modal.

For N > 0 we define inductively points p}v €[0,1],7=0,...,1+1,sat-
isfying conditions 1 and 2 for alln,m < Nand j =0, ...,/ + 1, and so that
in any subinterval defined by the points {p’:0 <n < N, 0 < j <[+ 1}, the
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new points { pf\’ } in that interval are equidistributed. Then we define the map
fn:I — 1 to be the piecewise-linear map connecting the points (p’, p?’“),
j=0,....,/+1,n=0,..., N— 1. It follows (Exercise 7.4.5) that:
1. fwnisl-modal for each N > 0;
2. {fn} converges in the C topology to an /-modal map f with turning
points c1, ..., ¢;; and
3. the kneading invariants of f are vq,..., ;. O

Exercise 7.4.1. Finish the proof of Lemma 7.4.1.

Exercise 7.4.2. Let Lbe aninterval and f: L — Lastrictly monotone map.
Show that either L contains an interval of periodic points, or some open
interval in L converges to a single periodic point.

Exercise 7.4.3. Work out the ordering on the set of itineraries of the
quadratic map g, for2 < u < 3.

Exercise 7.4.4. Show that the tent map has exactly 2" periodic points of
period n, and the set of periodic points is dense in [—1, 1].

Exercise 7.4.5. Verify the last three assertions in the proof of Theorem
7.4.11.

7.5 The Schwarzian Derivative

Let f be a C? function defined on an interval I C R. If f'(x) / 6 we define
the Schwarzian derivative of f at x to be

fx) 3 (f”(X)>2
f) 2\fx/)
If x is an isolated critical point of f, we define Sf(x) = lim,_,, Sf(y) if the
limit exists.

For the quadratic map ¢,(x)=pux(1—x), we have that
8q.(x) = —6/(1 —2x)? for x / &2, and Sf(1/2) = —co. We also have
Sexp(x) = —1/2 and Slog(x) = 1/2x%.

Sf(x) =

LEMMA 7.5.1. The Schwarzian derivative has the following properties:
L S(fog)=(Sfo 8)(g')* + Sg.
2. S(f") = X SFF ) - (FY ()2
3. If Sf <0, then S(f") <0 foralln > 0.

The proof is left as an exercise (Exercise 7.5.3).
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A function with negative Schwarzian derivative satisfies the following
minimum principle.

LEMMA 7.5.2 (Minimum Principle). Let I be an interval and f:1 — I a c?
map with f'(x) / &forallx € 1. If Sf < O, then | f'(x)| does not attain a local
minimum in the interior of 1.

Proof. Let z be a critical point of f’. Then f”(z) = 0, which implies that
f"(2)/f'(z) <0, since Sf < 0. Thus f”(z) and f'(z) have opposite signs.
If f'(z) <0, then f”(z) > 0 and z is a local minimum of f’, so z is a local
maximum of | f|. Similarly, if f'(z) > 0, then z is also a local maximum of
| f'|. Since f’is never zero on I, this implies that | f/| does not have a local
minimum on /. g

THEOREM 7.5.3 (Singer). Let I be a closed interval (possibly unbounded),
and f: 1 — I a C?> map with negative Schwarzian derivative. If f has n critical
points, then f has at most n + 2 attracting periodic orbits.

Proof. Let z be an attracting periodic point of period m. Let W(z) be the
maximal interval about z such that f""(y) — zasn — ooforall y € U. Then
W(z) is open (in I), and f™(W(z)) C W(z).

Suppose that W(z) is bounded and does not contain a point in 37, so
W(z) = (a, b) for some a < b € R. We claim that f™ has a critical point in
W(z). By maximality of W(z), f™ must preserve the set of endpoints of W(z).
If f(a) = f™(b), then f™ must have a maximum or minimum in W(z), and
therefore a critical point in W(z). If f"(a) / £"(b), then f™ must permute
a and b. Suppose f™(a) =a and f™(b) = b. Then (f™) > 1 on dU, since
otherwise a or b would be an attracting fixed point for f™” whose basin
of attraction overlaps U. By the minimum principle, if f” has no critical
points in U, then ( f™) > 1 on U, which contradicts f™(W(z)) = W(z), so
f™ has a critical point in W(z).If f"(a) =band f™(b) =a, then applying the
preceding argument to 2, we conclude that f2” has a critical pointin W(z).
Since f™(W(z)) = W(z), it follows that f™ also has a critical point in W(z).

By the chain rule, if p € W(z) is a critical point of f, then one of the
points p, f(p), ..., f™'(p)isacritical point of f.Thus we have shown that
either W(z) is unbounded, or it meets 8/, or there is a critical point of f
whose orbit meets W(z). Since there are only 7 critical points, and there are
only two boundary points (or unbounded ends) of /, the theorem is proved.

O

COROLLARY 7.5.4. For any u > 4, the quadratic map q,: R — R has at
most one (finite) attracting periodic orbit.
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Proof. The proof of Theorem 7.5.3 shows that if z is an attracting periodic
point, then W(z) either is unbounded or contains the critical point of g,,.
Since oo is an attracting periodic point, the basin of attraction of z must be
bounded, and therefore must contain the critical point. O

We now discuss a relation between the Schwarzian derivative and length
distortion thatis used in producing absolutely continuous invariant measures
for maps of the interval with negative Schwarzian derivative.?

Let f be apiecewise-monotone real-valued function defined on abounded
interval 1. Suppose J C [ is a subinterval such that 7 \ J consists of disjoint
non-empty intervals L and R. Denote by | F| the length of an interval F.
Define the cross-ratios

|- /]
[JUL|-|JUR|]’

_ 111

Cl,J)= = .
(Z.7) |L| - R

D(I,7)

If f is monotone on I, set

C(f(), f(J)) D(f(1), f(J))
c1r D(I.T)

The group M of real Mobius transformations consists of maps of the
extended real line R U {oo} of the form ¢(x) = (ax + b)/(cx + d), where
a,b,c,d e R and ad — bc / & Mobius transformations have Schwarzian
derivative equal to 0 and preserve the cross-ratios C and D (Exercise 7.5.4).
The group of Mobius transformations is simply transitive on triples of points
in the extended real line, i.e., given any three distinct pointsa, b, c € R U {oo},
there is a unique Mobius transformation ¢ € M such that¢(0) = a, ¢(1) = b
and ¢(c0) = ¢ (Exercise 7.5.5). Mobius transformations are also called linear
fractional transformations.

ALLT) = B(I,7) =

PROPOSITION 7.5.5. Let f be a C? real-valued function defined on a com-
pact interval I such that f has negative Schwarzian derivative and f'(x) / =
0,x € I. Let J C I be a closed subinterval that does not contain the endpoints
of I. Then A(1,J) > 1and B(1,J) > 1.

Proof. Since every Mobius transformation has Schwarzian derivative 0 and
preserves C and D, we may assume, by composing f on the left and on the
right with appropriate Mobius transformations and using Lemma 7.5.1, that
I1=1[0,1],J =[a,b]withO <a <b <1, f(0)=0, f(a) =a,and f(1) = 1.
By Lemma 7.5.2, | f’| does not have a local minimum in [0, 1], and hence f
cannot have fixed points except 0, a, and 1. Therefore f(x) < xif0 <x < a

2 Qur exposition here follows to a large extent [vS88] and [dMvS93]
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and f(x) > xifa < x < 1;in particular, f(b) > b. We have

| f() = fO)I-1£(b) = fa)l (|1 —0/- |b—a|)‘1
[fa) = fFO)I-17(1) = fB) \la—0[-[1-b|
LU -aaa-b
S a-(1-f(b)-1-(b-a)

This proves the second inequality. The first one is left as an exercise
(Exercise 7.5.6). |

B(1,J)=

The following proposition, which we do not prove, describes bounded dis-
tortion properties of maps with negative Schwarzian derivative on intervals
without critical points.

PROPOSITION 7.5.6 [vS88], [dMvS93]. Let f:[a, b] — R be a C3 map. As-
sume that Sf < 0and f'(x) / & forall x € [a, b]. Then

L |f(@!-1f®) = f®) = f@)l/(b—a)

L @I ®) = f@] 1) = f@] | 1£B) = [

b—a - xX—a b—x

for every x €
(a, b).

Exercise 7.5.1. Prove thatif f: 1 — Ris a C? diffeomorphism onto its im-
age and g(x) = - 4 Jog | f'(x)|, then

d? 1

Sf(x)=g'(x) - %(g(x))z = WOl T =y

Exercise 7.5.2. Show that any polynomial with distinct real roots has neg-
ative Schwarzian derivative.

Exercise 7.5.3. Prove Lemma 7.5.1.

Exercise 7.5.4. Prove that each Mobius transformation has Schwarzian
derivative 0 and preserves the cross-ratios C and D.

Exercise 7.5.5. Prove that the action of the group of Mobius transforma-
tions on the extended real line is simply transitive on triples of points.

Exercise 7.5.6. Prove the remaining inequality of Proposition 7.5.5.

7.6 Real Quadratic Maps

In 8§1.5, we introduced the one-parameter family of real quadratic maps
qu(x) = px(1 — x), u € R. We showed that for u > 1, the orbit of any point
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Figure 7.5. Quadratic map.

outside / = [0, 1] converges monotonically to —oo. Thus the interesting dy-
namics is concentrated on the set

Ay ={xellqi(x)el Vn=0}.

THEOREM 7.6.1. Let > 4. Then A, is a Cantor set, i.e., a perfect, nowhere
dense subset of [0, 1]. The restriction q,|a, is topologically conjugate to the
one-sided shift o: 5 — .

Proof. Leta=1/2—-/1/4—1/pu and b=1/2+ ./1/4 —1/u be the two
solutions of g, (x) = 1,andlet Iy = [0, a], ; = [b, 1]. Then g, (L) = q,.(L) =
I, and g, ((a, b)) N I = @ (see Figure 7.5). Observe that the images g;;(1/2)
of the critical point 1/2 lie outside / and tend to —oo. Therefore the two
inverse branches fy: I — Iy and fi: I — I; and their compositions are well
defined. For k € N, denote by W the set of all words of length k in the
alphabet {0, 1}. Forw = wjw; ... wr € Wrand j € {0, 1},set I,; = fj(1,)and
&v = fu, 0 0 fu, 0 fu,s0that I, = g, ().

LEMMA 7.6.2. lim maxmax|g,,(x)| = 0.

k—oo weW, xel

Proof. If u>2++/5, then 1> | f{(1)| = uy/1—4/u > | fj(x)| for every
x eI, j=0,1, and the lemma follows.

For 4 < 1 < 2+ +/5, the lemma follows from Theorem 8.5.10 (see also
Theorem 8.5.11). O

Lemma 7.6.2 implies that the length of the interval I, tends to O as
the length of w tends to infinity. Therefore, for each w = wjw, ... € E;
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the intersection (), fv..0, consists of exactly one point A(w). The
map h: £ — A, is a homeomorphism conjugating the shift o and g,|a,
(Exercise 7.6.2). |

Exercise 7.6.1. Prove that if u >4 and 1/2 - /1/4—1/u<x<1/2+
V1/4 =1/, then gj;(x) — —oo asn — oo.

Exercise 7.6.2. Prove that the map h: £ — A, in the proof of Theo-
rem 7.6.1 is a homeomorphism and that g, ch =hoo.

7.7 Bifurcations of Periodic Points3

The family of real quadratic maps g, (x) = ux(1 — x) (81.5, 87.6) is an ex-
ample of a (one-dimensional) parametrized family of dynamical systems.
Although the specific quantitative behavior of a dynamical system depends
on the parameter, it is often the case that the qualitative behavior remains
unchanged for certain ranges of the parameter. A parameter value where the
qualitative behavior changes is called a bifurcation value of the parameter.
For example, in the family of quadratic maps, the parameter value © = 3 is
a bifurcation value because the stability of the fixed point 1 — 1/u changes
from repelling to attracting. The parameter value u = 1is a bifurcation value
because for u < 1, 0 is the only fixed point, and for u > 1, g, has two fixed
points.

A bifurcation is called generic if the same bifurcation occurs for all nearby
families of dynamical systems, where “nearby” is defined with respect to an
appropriate topology (usually the C? or C? topology). For example, the
bifurcation value p = 3 is generic for the family of quadratic maps. To see
this, note that for pu close to the 3; the graph of g, crosses the diagonal
transversely at the fixed point x, = 1 — 1/, and the magnitude of g, (x,,) is
less than 1 for u < 3 and greater than 1 for 4 > 3. If f), is another family of
maps C!-close to g, then the graph of f, (x) must also cross the diagonal
at a point y, near x,, and the magnitude of f(y,) must cross 1 at some
parameter value close to 3. Thus f, has the same kind of bifurcation as g,,.
Similar reasoning shows that the bifurcation value © = 1 is also generic.

Generic bifurcations are the primary ones of interest. The notion of gener-
icity depends on the dimension of the parameter space (e.g., a bifurcation
may be generic for a one-parameter family, but not for a two-parameter

3 The exposition in this section follows to a certain extent that of [Rob95].
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family). Bifurcations that are generic for one-parameter families of dy-
namical systems are called codimension-one bifurcations. In this section, we
describe codimension-one bifurcations of fixed and periodic points for one-
dimensional maps.

We begin with a non-bifurcation result. If the graph of a differentiable
map f intersects the diagonal transversely at a point x, then the fixed point
xo persists under a small C! perturbation of f.

PROPOSITION 7.71. Let U C R™ and V C R" be open subsets, and let
f.:U — R™ €V, be a family of C' maps such that

1. the map (x, w) 1— f,.(x) is a C* map,

2. fu(x0) = x0 for some xo € U and pup € 'V,

3. 1is not an eigenvalue of d f,,,(xo).
Then there are opensets U' Cc U, V' C Vwithxy € U, up € V'anda leunc—
tion £&:V' — U’ such that for each . € V', () is the only fixed point of f,
inU'
Proof. The proposition is an immediate consequence of the implicit func-
tion theorem applied to the map (x, u) 1 — f,(x) — x (Exercise 7.7.1). O

Proposition 7.7.1 shows that if 1 is not an eigenvalue of the derivative,
then the fixed point does not bifurcate into multiple fixed points and does
not disappear. The next proposition shows that periodic points cannot appear
in a neighborhood of a hyperbolic fixed point.

PROPOSITION 7.7.2. Under the assumption (and notation) of Proposition
7.7.1, suppose in addition that xo is a hyperbolic fixed point of f,,, i.e., no
eigenvalue of df,,(xo) has absolute value 1. Then for each k € N there are
neighborhoods Uy C U’ of xy and Vi C V' of wo such that () is the only
fixed point of f;lf in Uy.

If, in addition, x is an attracting fixed point of f,,, i.e., all eigenvalues of
df,,(xo) are strictly less than 1 in absolute value, then the neighborhoods Uy,
and Vj can be chosen independent of k.

Proof. Since no eigenvalue of df,,(xo) has absolute value 1, it follows
that 1 is not an eigenvalue of d f,fo (x0), so the first statement follows from
Proposition 7.7.1.

The second statement is left as an exercise (Exercise 7.7.2). O

Propositions 7.7.1 and 7.7.2 show that, for differentiable one-dimensional
maps, bifurcations of fixed or periodic points can occur only if the abso-
lute value of the derivative is 1. For one-dimensional maps there are only
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two types of generic bifurcations: The saddle-node bifurcation (or the fold
bifurcation) may occur if the derivative at a periodic point is 1, and the
period-doubling bifurcation (or flip bifurcation) may occur if the derivative
at a periodic point is —1. We describe these bifurcations in the next two
propositions. See [CHS82] or [HK91] for a more extensive discussion of bi-
furcation theory, or [GG73] for a thorough exposition on the closely related
topic of singularities of differentiable maps.

PROPOSITION 7.7.3 (Saddle-Node Bifurcation). Let I, J C R be open in-
tervals and f: I x J — R be a C*> map such that

1. f(xo, no) = x0 and Z—j:(xo, wo) =1 for some xy € I and pgy € J,

2. 227{(360, o) < 0and g—'li(xo, o) > 0.
Then there are €, 8 > 0 and a C* function a: (xo — €, Xo + €) = (o — 8, 1o +
8) such that:

1. a(xo) = po, ' (x0) = 0, @"(x0) = — 5L (x0, 120)/ 3L (x0, 120) > 0.

2. Eachx € (xg — €, xo + €) isafixed point of f(-, a(x)), i.e, f(x,a(x)) =

x, and o~ () is exactly the fixed point set of f(-, ) in (xg — €, Xg + €)

for p e (no — 8, po +9).
3. For each p € (o, no + 98), there are exactly two fixed points x1(u) <

x2(u) of f(-, u) in (xo — €, Xo + €) with
%()ﬁ (w),u)>1 and 0< %(Xz(u), n) <1

a(xi(n)) = p fori=1,2.
4. f(-, ) does not have fixed points in (xo—€,x0+€) for each

w € (o — 8, o).

REMARK 7.7.4. Theinequalities in the second hypothesis of Proposition 7.7.3
correspond to one of the four possible generic cases when the two derivatives
do not vanish. The other three cases are similar (Exercise 7.7.3).

Proof. Consider the function g(x, u) = f(x, u) — x (see Figure 7.6). Ob-
serve that

0 0
—g(xoa o) = —f(xo, to) > 0.
ou o

Therefore, by the implicit function theorem, there are €,8 > 0 and a C?
function «:(xg — €, x0+€) — J such that g(x,a(x)) =0 for each x e
(xop — €, xp + €) and there are no other zeros of g in (xp — €, xo + €) x (o —
€, o + €). A direct calculation shows that « satisfies statement 1. Since



186 7. Low-Dimensional Dynamics

Figure 7.6. Saddle-node bifurcation.

a”(x9) > 0, statements 3 and 4 are satisfied for ¢ and § sufficiently small
(Exercise 7.7.4). O

PROPOSITION 7.7.5 (Period-Doubling Bifurcation). Let I, J C R be open
intervals, and f:1 x J — R be a C* map such that:
1. f(xo, po) = xp and g—f(xo, o) = —1forsome xy € I and gy € J, so that
by Proposition 7.7.1, there is a curve u 1 —& () of fixed points of f(-, )
for u close to .
2. n= %|M=Mog_£(§(ﬂ)s w) < 0.

3. ¢ = DU - 28 (), pg) — 3(5F (x0, 10))* < 0.
Then there are €, § >0 and C* functions &:(jo — 8, o +8) — R with
E(no) = xo and a:(xp—€,x0+¢) = R with a(xy) = o, &'(x0) =0, and
a”"(x0) = —2n/¢ > 0 such that:

1. f(E(w), n) = &(n), and () is the only fixed point of f(-, ) in (xo —
€, X0+ €) for w € (o — 8, o + 9).

2. &(w) is an attracting fixed point of f(-, u) for po — 8 < p < wo and is
a repelling fixed point for o < u < o + 6.

3. Foreach p € (no, o + 3), the map f(-, ) has, in addition to the fixed
point £(u), exactly two attracting period-2 points xi(u), x2(p) in the
interval (xo — €, xo + €); moreover, a(x;(n)) = n and x;(n) — xy as
w N\ o fori =1,2.

4. Foreach v € (1o — 8, pol, the map f(f(-, u), ) has exactly one fixed

point £E(u) in (xo — €, Xp + €).
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REMARK 7.7.6. The stability of the fixed point £ (1) and of the periodic points
x1(n) and x,(u) depend on the signs of the derivatives in the third and fourth
hypotheses of Proposition 7.7.5. Proposition 7.7.5 deals with only one of the
four possible generic cases when the derivatives do not vanish. The other three
cases are similar, and we do not consider them here (Exercise 7.7.5).

Proof. Since
af
_— = —1
3X(X0,M0) / E

we can apply the implicit function theorem to f(x, u) — x = 0 to obtain a
differentiable function & such that f(&(u), u) = &(w) for u close to ug and
&(wmo) = xo. This proves statement 1.

Differentiating f(&(w), n) = £(u) with respect to u gives

T IEG0. 1) = FEEG. 0 + TG00 ) = € ),

and hence

LEw, W 1af
") = > T / _lof .
E (M) - 1— %(E(M), /,L)’ E (MO) ) a/,L (X(), /,L())
Therefore
d of > f 1af 2f
@ It:/l-oa(é(u)’ I’L) = 0% (x()a MO) + E@(xo, /1«0) . w(xo’ I'LO) =,

and assumption 2 yields statement 2.

To prove statements 3 and 4 consider the change of variables y = x —
£(1).0 = %o — £(uo) and the function g(y.w) = F(f(y+E(k). 1), 1) —
&(p). Observe that fixed points of f( f(-, n), ) correspond to solutions of
g(y, u) = y. Moreover,

d’g

—(0, =0,

ayz ( MO)

i.e., the graph of the second iterate of f(-, uo) is tangent to the diagonal
at (xo, ;o) with second derivative 0. (See Figure 7.7.) A direct calculation
shows that, by assumption 3, the third derivative does not vanish:

2

0
g0.)=0.  B(0.u)=1.
y

a3g 83](‘ afZ
8_y3(0’ ®o) = —2 ﬁ(xo, ®o) —3 (ﬁ(xm Mo)) =¢<0.
Therefore

1
gy, o) =y + §Cy3 + o(y*).

Since &(u) is a fixed point of f(-, u), we have that g(0, #) = 0 in an interval
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1< po 1= po 1> po

Figure 7.7. Period-doubling bifurcation: the graph of the second iterate.

about po. Therefore there is a differentiable function 4 such that g(y, p) =
y - h(y, ), and to find the period-2 points of f(-, u) different from &(u) we
must solve the equation A(y, u) = 1. From (7.7.6) we obtain

1
h(y, mo) =1+ ;Cyz + o(y?),

ie.,
h(0, o) = 1, %(0, 4o) =0, and 22721(0’ =~
On the other hand,
%(0’ Ho) = lim ig—i(y, 110) = a?jgy (0, 110)
- % <%(g(“)’ “))2 e —2n > 0.

By the implicit function theorem, there is € > 0 and a differentiable func-
tion B: (—e, €) — R such that i(y, 8(y)) = 1 for |y| < € and B(0) = . Dif-
ferentiating 4(y, B(y)) = 1 with respect to y, we obtain that 8/(0) = 0. The
second differentiation yields B”(0) = ¢/6n > 0. Therefore B(y) > 0 for
y / & and the new period-2 orbit appears only for u > .

Note that since g(-, u) has three fixed points near xy for u close to wo,
and the middle one, &£(u), is unstable, the other two must be stable. In fact,
a direct calculation shows that

ag og 1 9%g 1 9%g 2 2
a. ) = T 07 PYRPG) 03 PYRPEY 0’
8y(y B(y)) ay( o) + 3, 8y2( ro)y + 35 8y3( o)y~ + o(y°)
=1+ %yz +0(y?).
Since ¢ < 0, the period-2 orbit is stable. O

Exercise 7.7.1. Prove Proposition 7.7.1.

Exercise 7.7.2. Prove the second statement of Proposition 7.7.2.
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Exercise 7.7.3. State the analog of Proposition 7.7.3 for the remaining
three generic cases when the derivatives from assumption 3 do not vanish.

Exercise 7.7.4. Prove statements 3 and 4 of Proposition 7.7.3.

Exercise 7.7.5. State the analog of Proposition 7.7.5 for the remaining three
generic cases when the derivatives from assumptions 3 and 4 do not vanish.

Exercise 7.7.6. Prove that a period-doubling bifurcation occurs for the
family f,(x) =1 — px? at o = 3/4, xo = 2/3.

7.8 The Feigenbaum Phenomenon
M. Feigenbaum [Fei79] studied the family
filr)=1-px*,  0<p<2

of unimodal maps of the interval [—1, 1]. For u < 3/4, the unique attracting
fixed point of f, is

X, =

V1i+4p—1

2p

The derivative f;,(x,) =1 — /1 + 4. is greater than —1 for u < 3/4, equals
—1 for u = 3/4, and is less than —1 for u > 3/4. A period-doubling bifur-
cation occurs at u = 3/4 (Exercise 7.7.6). For u > 3/4, the map f, has an
attracting period-2 orbit. Numerical studies show that there is an increasing
sequence of bifurcation values w, at which an attracting periodic orbit of
period 2" for f,, loses stability and an attracting periodic orbit of period 2"+!
is born. The sequence p,, converges, as n — 00, to a limit u, and

lim Moo — Mn—1
=00 oo — Mn
The constant § is called the Feigenbaum constant. Numerical experiments
show that the Feigenbaum constant appears for many other one-parameter
families.
The Feigenbaum phenomenon can be explained as follows. Consider the
infinite-dimensional space .4 of real analytic maps y: [—1, 1] — [—1, 1] with
¥ (0) = 1, and the map ®: A — A given by the formula

= § = 4.669201609. ... (7.2)

o)) = 1y oyl h=v(). (73)

A fixed point g of ® (which Feigenbaum estimated numerically) is an even
function satisfying the Cvitanovi¢-Feigenbaum equation

gog(ix) —xrg(x) =0. (7.4)
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Figure 7.8. Fixed point and stable and unstable manifolds for the Feigenbaum
map .

The function g is a hyperbolic fixed point of ®. The stable manifold W*(g)
has codimension one, and the unstable manifold W*(g) has dimension one
and corresponds to a simple eigenvalue § = 4.669201609 . . . of the derivative
d®,. The codimension-one bifurcation set B, of maps y for which an at-
tracting fixed point loses stability and an attracting period two orbit is born,
intersects W¥(g) transversely. The preimage B, = ®'~"(B,) is the bifurca-
tion set of maps for which an attracting orbit of period 2"~! is replaced by
an attracting orbit of period 2" (Exercise 7.8.1). Figure 7.8 is a graphical
depiction of the process underlying the Feigenbaum phenomenon.

By the infinite-dimensional version of the Inclination Lemma 5.7.2, the
codimension-one bifurcation sets B, accumulate to W*(g). Let f,, be a one-
parameter family of maps that intersects W*(g) transversely, and let u, be
the sequence of period-doubling bifurcation parameters, f,, € B,. Using
the inclination lemma, one can show that the sequence u, satisfies (7.2).
O. E. Lanford established the correctness of this model through a computer-
assisted proof [Lan84].

Exercise 7.8.1. Prove that if ¢ has an attracting periodic orbit of period 2k,
then ®(y) has an attracting periodic orbit of period k.



CHAPTER EIGHT

Complex Dynamics

In this chapter', we consider rational maps R(z) = P(z)/ Q(z) of the Riemann
sphere C = C U {oo}, where P and Q are complex polynomials. These maps
exhibit many interesting dynamical properties, and lend themselves to the
computer-aided drawing of fractals and other fascinating pictures in the
complex plane. For a more thorough exposition of the dynamics of rational
maps see [Bea91] and [CGI3].

8.1 Complex Analysis on the Riemann Sphere

We assume that the reader is familiar with the basic ideas of complex analysis
(see, for example, [BG91] or [Con95]).

Recall that a function f from a domain D C C to C is said to be mero-
morphic if it is analytic except at a discrete set of singularities, all of which
are poles. In particular, rational functions are meromorphic.

The Riemann sphere is the one-point compactification of the complex
plane, C = C U {oo}. The space C has the structure of a complex manifold,
given by the standard coordinate system on C and the coordinate z 1 —z! on
C\{0}. If M and N are complex manifolds, then a map f: M — N is analytic
if for every point ¢ € M, there are complex coordinate neighborhoods U of
¢ and V of f(¢)suchthat f: U — V is analytic in the coordinates on U and
V. An analytic map into C is said to be meromorphic. This terminology is
somewhat confusing, because in the modern sense (as maps of manifolds)
meromorphic functions are analytic, while in the classical sense (as functions
on C), meromorphic functions are generally not analytic. Nevertheless, the
terminology is so entrenched that it cannot be avoided.

1 Many of the proofs in this chapter follow the corresponding arguments from [CG93].

191
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It is easy to see that a map f: C — C is analytic (and meromorphic) if
and only if both f(z) and f(1/z) are meromorphic (in the classical sense)
on C. It is known that every analytic map from the Riemann sphere to itself
is a rational map. Note that the constant map f(z) = oo is considered to be
analytic.

The group of Mobius transformations

{z—> az+2:a,b,c,de(€;ad—bc=l}

acts on the Riemann sphere and is simply transitive on triples of points, i.e., for
any three distinct points x, y, z € C, there is a unique Mobius transformation
that carries x, y, zto 0, 1, oo, respectively (see §7.5).

Suppose f: C — C is a meromorphic map and ¢ is a periodic point of
minimal period k. If ¢ /&~ og the multiplier of ¢ is the derivative A(¢) =
(%' (¢). If ¢ = oo, the multiplier of ¢ is g’(0), where g(z) = 1/f(1/z). The
periodic point ¢ is attracting it 0 < |A(¢)| < 1, superattracting it A(¢) =0,
repelling if |A(¢)| > 1, rationally neutral if A(¢)" =1 for some m € N, and
irrationally neutral if |A(¢)| =1 but A(¢)™ A1 for every m € N. One can
prove that a periodic point is attracting or superattracting if and only if it is
a topologically attracting periodic point in the sense of Chapter 1; similarly
for repelling periodic points. The orbit of an attracting or superattracting
periodic point is said to be an attracting or superattracting periodic orbit,
respectively.

For an attracting or superattracting fixed point ¢ of a meromorphic map
f, we define the basin of attraction BA(¢) as the set of points z € C for
which f"(z) — ¢ asn — oo. Since the multiplier of ¢ is less than 1, there is a
neighborhood U of ¢ thatis containedin BA(¢),and BA(¢) = .oy f(U).
The set BA(¢) is open. The connected component of BA(¢) containing ¢ is
called the immediate basin of attraction, and is denoted BA°(¢).

If ¢ is an attracting or superattracting periodic point of period k, then the
basin of attraction of the periodic orbit is the set of all points z for which
f™(z) — fi(¢) asn — oo forsome j € {0, 1, ..., k} and is denoted BA(¢).
The union of the connected components of BA(¢) containing a point in the
orbit of ¢ is called the immediate basin of attraction and is denoted BA°(¢).

A point ¢ is a critical point (or branch point) of a meromorphic function
fif fisnot 1-to-1 on a neighborhood of ¢. A critical point ¢ has multiplicity
mif fis (m+ 1)-to-1 on U\{¢} for a sufficiently small neighborhood U of ¢
(this number is also called the branch number of f at ¢). Equivalently, ¢ is
a critical point of multiplicity m if ¢ is a zero of f’ (in local coordinates) of
multiplicity m. If ¢ is a critical point, then f(¢) is called a critical value.
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For a rational map R= P/Q, with P and Q relatively prime polynomials
of degree p and g, respectively, the degree of Ris deg(R) = max(p, q). If R
has degree d, then the map R: C — C is a branched covering of degree d,
i.e.,any £ € Cthatis not a critical value has exactly d preimages; in fact, every
point has exactly d preimages if critical points are counted with multiplicity.
Since the number of preimages of a generic point is a topological invariant
of R, the degree is invariant under conjugation by a Mobius transformation.

The rational maps of degree 1 are the Mobius transformations. A rational
map is a polynomial if and only if the only preimage of oo is occ.

PROPOSITION 8.1.1. Let R be a rational map of degree d. Then the number

of critical points, counted with multiplicity, is 2d — 2. If there are exactly two

distinct critical points, then R is conjugate by a Mébius transformation to z¢
—d

orz “.

Proof. By composing with a Mobius transformation we may assume that
R(00) = 0 and that oo is neither a critical point nor a critical value. Then
R(00) = 0 and the fact that oo is not a critical point imply that

d—1
az" A+
R )= —F—7F""",
where @ ~0 and 8 /~0. Hence
2d-2
R=-Lo
Bz +--)

and the critical points of R are the zeros of the numerator (since oo is not a
critical value).
The proof of the second assertion is left as an exercise (Exercise 8.1.5).

O

A family F of meromorphic functions in a domain D C C is normal if
every sequence from F contains a subsequence that converges uniformly on
compact subsets of D in the standard spherical metric on C ~ S%. A family
F is normal at a point z € C if it is normal in a neighborhood of z.

The Fatou set F(R) C C of a rational map R: C — C is the set of points
z € C such that the family of forward iterates { R"},cy is normal at z. The
Julia set J(R) is the complement of the Fatou set. Both F(R) and J(R) are
completely invariant under R (see Proposition 8.5.1). Points belonging to the
same component of F(R) have the same asymptotic behavior. As we will
see later, the Fatou set contains all basins of attraction and the Julia set is the
closure of the set of all repelling periodic points. The “interesting” dynamics
is concentrated on the Julia set, which is often a fractal set. The case when
J(R) is a hyperbolic set is reasonably well understood (Theorem 8.5.10).
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Exercise 8.1.1. Prove that any Mo&bius transformation is conjugate by
another Mobius transformation to either z1 —#zorz1 —z+a.

Exercise 8.1.2. Prove that a non-constant rational map R is conjugate to
a polynomial by a Mébius transformation if and only if R™(z9) = {20} for
some zp € C.

Exercise 8.1.3. Find all M6bius transformations that commute with gy(z) =

2.

Exercise 8.1.4. Let R be a rational map such that R(co) = oo, and let f
be a Mobius transformation such that f(oo) is finite. Define the multiplier
Ar(c0) of R at oo to be the multiplier of fo Ro f~! at f(oco). Prove that
A r(00) does not depend on the choice of f.

Exercise 8.1.5. Prove the second assertion of Proposition 8.1.1.
Exercise 8.1.6. Let R be a non-constant rational map. Prove that
deg(R) — 1 < deg(R’) < 2deg(R)

with equality on the left if and only if Ris a polynomial and with equality on
the right if and only if all poles of R are simple and finite.

8.2 Examples

The global dynamics of a rational map R depends heavily on the behavior of
the critical points of R under its iterates. In most of the examples below, the
Fatou set consists of finitely many components, each of which is a basin of
attraction. Some of the assertions in the following examples will be proved
in later sections of this chapter. Proofs of most of the assertions that are not
proved here can be found in [CG93].

Let g,: C — C be the quadratic map ¢,(z) = z*> — a, and denote by S!
the unit circle {z € C: |z| = 1}. The critical points of g, are 0 and oo, and
the critical values are —a and oc; if a /A0, the only superattracting periodic
(fixed) point is co. In the examples below, we observe drastically different
global dynamics depending on whether the critical point lies in the basin of
a finite attracting periodic point, or in the basin of oo, or in the Julia set.

1. qo(z) = 7> There is a superattracting fixed point at 0, whose basin of
attraction is the open disk Ay = {z € C: |z] < 1}, and a superattract-
ing fixed point at oo, whose basin of attraction is the exterior of S'.
There is also a repelling fixed point at 1, and for each n € N there
are 2" repelling periodic points of period n on S!. The Julia set is
S'; the Fatou set is the complement of S'. The map ¢ acts on S' by
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Figure 8.1. The Julia set for a = 1.

¢ 1 —2¢ mod 27 (where ¢ is the angular coordinate of a point z € S').
If U is a neighborhood of ¢ € S = J(qo), then Unen, 90 (U) = C\{0}.

2. q(z) =22 — €,0 < € < 1. There is an attracting fixed point near 0,
a superattracting fixed point at oo, and, for each n € N, 2" repelling
periodic points near S'. The Julia set J(g.) is a closed continuous g, -
invariant curve thatis C° close to S* and is not differentiable at a dense
set of points; it has a Hausdorff dimension greater than 1. The basins
of attraction of the fixed points near 0 and at oo are, respectively, the
interior and exterior of J (g, ). The critical point and critical value lie in
the immediate basin of attraction of the attracting fixed point near 0.
The same properties hold true for maps of the form f(z) = 2> + € P(z),
where P is a polynomial and ¢ is small enough.

3. qi(z) = 22 — 1. Note that g;(0) = —1, g;(—1) = 0. Therefore, 0 and —1
are superattracting periodic points of period 2. On the real line the
repelling fixed point (1 — +/5)/2 separates the basins of attraction of
0 and —1. The Julia set J(q;) contains two simple closed curves oy
and o_; that surround 0 and —1 and bound their immediate basins of
attraction. The only preimage of —1 is 0; hence the only preimage of
o_11s 9. However, 0 has two preimages, +1 and —1. Therefore oy has
two preimages, 0_; and a closed curve o surrounding 1. Continuing in
this manner and using the complete invariance of the Julia set (Propo-
sition 8.5.1), we conclude that J(q;) contains infinitely many closed
curves. Their interiors are components of the Fatou set. Figure 8.1
shows the Julia set for g;.2

2 The pictures in this chapter were produced with mandelspawn; see http.//www.araneus.fi/
gson/mandelspawn/.
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Figure 8.2. The Julia set for a = —i.

4. q_; = 7> + i. The critical point 0 is eventually periodic: ¢*,(0) =i — 1,

and i — 1is a repelling periodic point of period 2. The only attracting
periodic fixed point is oo. The Fatou set consists of one component
and coincides with BA(c0). The Julia set is a dendrite, i.e., a compact,
path-connected, locally connected, nowhere dense subset of C that
does not separate C. Figure 8.2 shows the Julia set for g_;.

q2(z) = 72 — 2. The change of variables z = ¢ + ¢! conjugates ¢, on
C\[-2,2] with ¢ 1 —? on the exterior of S'. Hence J(q) = [-2,2],
and F(q,) = C\[—2, 2]is the basin of attraction of co. The image of the
critical point 0 is —2 € J(g,). The change of variables y = (2 — x)/4
conjugates the action of ¢, on the real axisto y 1 —4y(1 — y). The only
attracting periodic point is co.

q4(z) = 72 — 4. The only attracting periodic point is co; the critical
value —4 lies in the (immediate) basin of attraction of co; and J(gy) is
a Cantor set on the real axis; BA(oco) is the complement of J(g4).
This example illustrates the connection between the dynamics of ra-
tional maps and issues of convergence for the Newton method. Let
0(z) = (z — a)(z — b) with a /b. To find the roots a and b using the
Newton method one iterates the map

=2 GG =t Ty

Q@)
The change of variables ¢ = (z —a)/(z — b) sends a to 0, b to oo, 0o
to 1, and the line / = {(a 4+ b)/2 + ti(a — b): t € R} to the unit circle,
and conjugates f with ¢ 1 —&2. Therefore the Newton method for
Q converges to a or b if the initial point lies in the half plane of /

Z—a
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containing a or b, respectively; the Newton method diverges if the
initial point lies on /.

Exercise 8.2.1. Prove the properties of gy described above.

Exercise 8.2.2. Let U be a neighborhood of a point z € S'. Prove that
Unen 90(U) = C\{0}.

Exercise 8.2.3. Check the above conjugacies for ¢,.
Exercise 8.2.4. Prove that oo is the only attracting periodic point of g.
Exercise 8.2.5. Let |a| > 2 and |z| > |a|. Prove that ¢}/(z) — oo asn — oo.

Exercise 8.2.6. Prove the statements in example 7.

8.3 Normal Families

The theory of normal families of meromorphic functions is a keystone in the
study of complex dynamics. The principal result, Theorem 8.3.2, is due to
P. Montel [Mon27].

PROPOSITION 8.3.1. Suppose F is a family of analytic functions in a domain
D, and suppose that for every compact subset K C D there is C(K) > 0 such
that | f(z)| < C(K) forall z € K and f € F. Then F is a normal family.

Proof. Lets = % min,ck dist(z, 3 D). By the Cauchy formula,

L[S
f(Z)—E/y(S_Z)ZdS

for any smooth closed curve y in D that contains zin its interior. Let K € D
be compact, K; be the closure of the §-neighborhood of K, and y be the
circle of radius § centered at z. Then | f'(z)| < C(K;)/8 for every f € F and
z € K. Thus the family F is equicontinuous on K, and therefore normal by
the Arzela—Ascoli theorem. O

We say that a family F of functions on a domain D omits a point a if
f(z) f=aforevery fe Fandze€ D.

THEOREM 8.3.2 (Montel). Suppose that a family F of meromorphic func-
tions in a domain D C C omits three distinct points a, b, c € C. Then F is
normal in D.

Proof. Since Discovered by disks, we may assume without loss of generality
that D is a disk. By applying a Mobius transformation, we may also assume
thata = 0,b =1, and ¢ = oo. Let A; be the unit disk. By the uniformization
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theorem [Ahl73], there is an analytic covering map ¢: A; — (C\{0, 1})(¢ is
called the modular function). For every function f: D — (C\{0, 1}) thereisa
lift 2 D — Ay suchthat¢ o f = f. The family F = {f: f € F}is bounded
and therefore, by Proposition 8.3.1, normal. The normality of F follows
immediately. O

Exercise 8.3.1. Let f be a meromorphic map defined on a domain D C C,
and let k > 1. Show that the family { f"},cn is normal on D if and only if the
family { f¥"},cn is normal.

8.4 Periodic Points

THEOREM 8.4.1. Let ¢ be an attracting fixed point of a meromorphic map
f: C — C. Then there is a neighborhood U > ¢ and an analytic map ¢: U —
C that conjugates f and z1 —(¢)z, Le, ¢(f(2)) = AM(¢)9(2) forall z € U.

Proof. We abbreviate A(¢) = A. Conjugating by a translation (orby z1 —%/z
if £ = 00), we replace ¢ by 0. Then on any sufficiently small neighborhood
of 0,say Aq» = {z: |z] < 1/2},thereisa C > Osuch that | f(z) — Az| < Clzl%.
Hence for every € > 0 there is a neighborhood U of 0 such that | f(z)| <
(]| + €)lz|, for all z € U, and, assuming that |A| + € < 1,

| ()] < (1A + €)"]zl.
Set ¢,(z) = 27" f*(2). Then, for z € U,

n _ n € 2n 512
- e = [ LT D@ Gl

and hence the sequence ¢, converges uniformly in U if (|| + €)? < |A].
By construction, ¢,,( f(z)) = A@u+1(2). Therefore the limit ¢ = lim,,, ¢y,
is the required conjugation. O

COROLLARY 8.4.2. Let ¢ be a repelling fixed point of a meromorphic map
f. Then there is a neighborhood U of ¢ and an analytic map ¢: U — C that
conjugates f and z1 —(¢)zin U, i.e., ¢(f(2)) = M(¢)p(2) for z € U.

Proof. Apply Theorem 8.4.1 to the branch g of f~! with g(¢) = ¢. O

PROPOSITION 8.4.3. Let ¢ be a fixed point of a meromorphic map f.
Assume that . = f'(¢) is not 0 and is not a root of 1, and suppose that an
analytic map ¢ conjugates f and z1 —z. Then ¢ is unique up to multiplica-
tion by a constant.
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Proof. Again, we assume ¢ = 0. If there are two conjugating maps ¢ and
¥, then n = ¢~ o conjugates z1 —%z with itself, i.e., n(Az) = An(z). If
n=aaz+az+---,thena,\" = ra, and a, = 0forn > 1. O

LEMMA 8.4.4. Any rationalmap R of degree >1 has infinitely many periodic
points.

Proof. Observe that the number of solutions of R"(z) — z =0 (counted
with multiplicity) tends to co as n — oo. Therefore, if R has only finitely
many periodic points, their multiplicities cannot be bounded in 7.

On the other hand, if ¢ is a multiple root of R"(z) — z = 0,then (R")'(¢) =
land R"(2) =¢+(z—¢)+a(z—¢)" + - - for some a A0 and m > 2. By
induction, R"(z) = ¢ + (z — ¢) + ka(z — ¢)" + - - - for k € N. Therefore, ¢
has the same multiplicity as a fixed point of R” and as a fixed point of R

O

PROPOSITION 8.4.5. Let f be a meromorphic map of C. If ¢ is an attracting
or superattracting periodic point of f, then the family { f"},>0 is normal in
BA(2).

If ¢ is a repelling periodic point of f, then the family { f"} is not normal
at¢.

Proof. Exercise 8.4.1. O

THEOREM 8.4.6. Let ¢ be an attracting periodic point of a rational map R.
Then the immediate basin of attraction BA°(¢) contains a critical point of f.

Proof. Consider first the case when ¢ is a fixed point. Suppose that BA°(¢)
does not contain a critical point. For a small enough € > 0, there is a branch
g of R~! that is defined in the open e-disk D, about ¢ and satisfies g(¢) = ¢.
The map g: D. — BA°(¢) is a diffeomorphism onto its image, and therefore
g(D¢) is simply connected and does not contain a critical point. Thus g
extends uniquely to a map on g(D,). By induction, g extends uniquely to
g"(D,), which is a simply connected subset of BA°(¢). The sequence {g"} is
normal on D,, since it omits infinitely many periodic points of R different
from ¢ (Lemma 8.4.4). (Note that if R is a polynomial, then {g"} omits a
neighborhood of oo, and Lemma 8.4.4 is not needed.) On the other hand,
lg’(¢)] > 1and hence (") (¢) — oo asn — oo, and therefore the family {g"}
is not normal (Proposition 8.4.5); a contradiction.

If ¢ is a periodic point of period n, then the preceding argument shows
that the immediate basin of attraction of ¢ for the map R” contains a critical
point of R”". Since the components of BA°(¢) are permuted by R, it follows
from the chain rule that one of the components contains a critical point
of R. g
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COROLLARY 8.4.7. A rational map has at most 2d — 2 attracting and super-
attracting periodic orbits.

Proof. The corollary follows immediately from Theorem 8.4.6 and Propo-
sition 8.1.1. O

More delicate analysis that is beyond the scope of this book leads to the
following theorem.

THEOREM 8.4.8 (Shishikura [Shi87]). The total number of attracting, super-
attracting, and neutral periodic orbits of a rational map of degree d is at most
2d — 2.

The upper bound 6d — 6 was obtained by P. Fatou.
Exercise 8.4.1. Prove Proposition 8.4.5.

Exercise 8.4.2. Let D Cc C be a domain whose complement contains at
least three points, and let f: D — D be a meromorphic map with an attract-
ing fixed point zy € D. Prove that the sequence of iterates f” converges in
D to zp uniformly on compact sets.

Exercise 8.4.3. Prove that every rational map R /4Id of degree d > 1 has
d + 1 fixed points in C counted with multiplicity.

8.5 The Julia Set

Recall that the Fatou set F(R) of a rational map R is the set of points z €
C such that the family of forward iterates R”,n € N, is normal at z. The
Julia set J(R) is the complement of F(R). The Julia set of a rational map is
closed by definition, and non-empty by Lemma 8.4.4, Proposition 8.4.5, and
Theorem 8.4.8. If U is a connected component of F(R), then R(U) is also a
connected component of F(R) (Exercise 8.5.1).

Suppose V' ~BA(00) is a component of BA(oco). Then R*(V) C BA°(00)
for some n > 0. Moreover, R"(V) is both open and closed in BA°(o0), since
R"(V) = R*(VUJ(R)\J(R). It follows that R"(V) = BA°(c0).

PROPOSITION 8.5.1. Let R: C — C bearational map. Then F(R) and J (R)
are completely invariant, i.e., R"'(F(R)) = F(R) and R(J(R)) = J(R), and
similarly for J(R).

Proof. Let ¢ = R(¢). Then R" converges in a neighborhood of ¢ if and
only if R™*! converges in a neighborhood of &. O
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PROPOSITION 8.5.2. Let R: C — C be a rational map. Then either J(R) =
C or J(R) has no interior.

Proof. Suppose U C J(R) is non-empty and open in C. Then the family
{R"}nen is not normal on U and, in particular, by Theorem 8.3.2, | J, R"(U)
omits at most two points in C. Since J(R) is invariant and closed, J(R) = C.

O

Let R: C — Cbe arational map, and U an open set such that U N J(R) £~
¢@. The family of iterates { R"},en, is not normal in U, so it omits at most two
points in C. The set Ey of omitted points is called the exceptional set of R
on U. The exceptional set of Ris the set E = | Ey, where the union is over
all opensets U with U N J(R) /~ @. A pointinE is called an exceptional point
of R.

PROPOSITION 8.5.3. Let R be arational map of degree greater than 1. Then
the exceptional set of R contains at most two points. If the exceptional set
consists of a single point, then R is conjugate by a Mobius transformation to
a polynomial. If it consists of two points, then R is conjugate by a Mobius
transformation to 7" or 1/7™, for some m > 1. The exceptional set is disjoint
from J(R).

Proof. If Ey is empty for every U with U N J(R) /A~ ¥, there is nothing to
show.

Suppose { R"},en, Omits two points z9, z1 on U for some open set U with
UNJ(R) £¥. Then after conjugating by the rational map ¢(z) =
(z— z1)/(z — 20), R becomes a rational map whose family of iterates omits
only 0 and oo on the set ¢(U). Thus there are no solutions of R(z) = oo except
possibly 0 or co. If R(0) /& oo, thenR has no poles, so it is a polynomial, and
is therefore equal to z”*, m > 0, since R(z) = 0 has no non-zero solutions. If
R(0) = oo, then R has a unique pole at 0; since there are no finite solutions
of R(z) = 0, it follows that R(z) = 1/z”". We have shown that Ris conjugate
to 7, |m| > 1, if the exceptional set of some open set U has two points. In
this case the exceptional set is {0, co}.

Suppose that { R"},,cy, omits at most a single point on U for every open
set U with UN J(R) /A @. Fix such a setU with Ey /A @, and letzy be the
omitted point. Replacing R with its conjugate by the rational map ¢(z) =
1/(z — zo), we may take zo = oo. Since {oco} is omitted, R has no poles, and is
therefore a polynomial. Thus R omits co on every open subset U C C, and
(by hypothesis) omits only a single point on U if U N J(R) /£ @, so ocis the
only exceptional point of R.

In either case, J(R) does not contain any exceptional points. O
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The following proposition shows that the Julia set possesses self-similarity,
a characteristic property of fractal sets.

PROPOSITION 8.5.4. Let R: C — C be a rational map of degree >1 with
exceptional set E, and let U be a neighborhood of a point ¢ € J(R). Then
Uneny R(U) = C\E, and J(R) C R"(U) for some n € N.

Proof. If E contains two points, then by Proposition 8.5.3, R is conjugate
to z™, |m| > 1, and the proof is left as an exercise (Exercise 8.5.4).

Suppose E is empty or consists of a single point. If the latter, we may
and do assume that the omitted point is oo and R is a polynomial. Since
repelling periodic points are dense in J(R), we may choose a neighborhood
V c U and n > 0 such that R*(V) D V. The family { R"*};cy on V does not
omit any points in C, and oo is omitted if and only if R is a polynomial, in
which case co ¢ J(R). Hence J(R) C |J,, R"(V). Since J(R) is compact and
R"™8 (V) > R"*=1D(V), the proposition follows. O

COROLLARY 8.5.5. Let R: C — C be a rational map of degree >1. For any
point ¢ ¢ E, J(R) is contained in the closure of the set of backward iterates
of ¢. In particular, J(R) is the closure of the set of backward iterates of any
point in J(R).

PROPOSITION 8.5.6. The Julia set of a rational map of degree >1 is perfect,
i.e., it does not have isolated points.

Proof. Exercise 8.5.3. O

PROPOSITION 8.5.7. Let R: C — C be a rational map of degree >1. Then
J(R) is the closure of the set of repelling periodic points.

Proof. We will show that J(R) is contained in the closure of the set Per(R)
of the periodic points of R. The result will follow, since J(R) is perfect and
there are only finitely many non-repelling periodic points.

Suppose ¢ € J(R) has a neighborhood U that contains no periodic points,
no poles, and no critical values of R. Since the degree of Ris >1, there are
distinct branches f and g of R™!in U, and f(z) A~g(z), f(z) ~R"(z), and
g(z) £R"(z)for alln > 0 and all z € U. Hence the family

R'(z) — f(2) z—g(z)
RY(z) —g(z) z— f(2)’
omits 0,1, and oo in U and therefore is normal by Theorem 8.3.2. Since

R" can be expressed in terms of 4, the family { R"} is also normal in U, a
contradiction. Therefore J(R) C Per(R). O

hn(z) = ne N,
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Let P: C — C be a polynomial. Then P(co) = oo, and locally near oo
there are deg P branches of P~!. The complete preimage of any connected
domain containing oo is connected, since oo = P~!(00) must belong to every
connected component of the preimage. Therefore BA(oco) is connected, i.e.,
BA(00) = BA®(00).

LEMMA 8.5.8. Let f: C — C be a meromorphic function, and suppose ¢
is an attracting periodic point. Then every component of BA°(¢) is simply
connected.

Proof. Since f cyclically permutes the components of BA°(¢), we may
replace f by f”, where n is the minimal period of ¢, and assume that ¢ is
fixed. After conjugating by a Mobius transformation, we may assume that ¢
is finite.

Let y be a smooth simple closed curve in BA®(¢), and let D be the simply
connected region (in C) that it bounds. Suppose D £ZBA°(¢). Let § be the
distance from ¢ to the boundary of BA°(¢),and let U be the disk of radius §/2
around ¢. Because ¢ is attracting, and y is a compact subset of BA°(¢), there
isn > Osuch that f"(y) c U.Let g(z) = f"(z) — ¢. Then |g(z)| < §/2 on y,
but |g(z)| > & for some z € D, since f"(D) £BA°(¢). This contradicts the
maximum principle for analytic functions. Thus D ¢ BA°(¢), and BA°(¢) is
simply connected. O

PROPOSITION 8.5.9. Let R: C — C be a rational map of degree >1. If
U is any completely invariant component of F(R), then J(R) = U\U, and
J(R) = dUif F(R) is not connected. Every other component of F(R) is simply
connected. There are at most two completely invariant components. If Ris a
polynomial, then BA(c0) is completely invariant.

Proof. Suppose U is a completely invariant component of F(R). Then, by
Corollary 8.5.5, J(R) is contained in the closure of U, and also of F(R)\U if
the latter is non-empty. This proves the first assertion. Since J(R)U U = U
is connected, every component of the complement in C is simply connected
(by a basic result of homotopy theory).

Suppose there is more than one completely invariant component of F(R).
Then, by the preceding paragraph, each must be simply connected. Let U be
such a component. Then R: U — U is a branched covering of degree d, so
there must be d — 1 critical points, counted with multiplicity. Since the total
number of critical points is 2d — 2 (Proposition 8.1.1), this implies that there
are at most two completely invariant components.

If Ris a polynomial, then BA(oc0) is completely invariant (Exercise 8.5.1).

O
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The postcritical set of a rational map R is the union of the forward orbits
of all critical points of R, and is denoted CL(R).

THEOREM 8.5.10 (Fatou). Let R be a rational map of degree >1. Suppose
that all critical points of R tend to attracting periodic points of R under the
forward iterates of R. Then J(R) is a hyperbolic set for R, i.e., there are a > 1
and n € N such that |(R") (z)| > a for every z € J(R).

Proof. If R has exactly two critical points, then it is conjugate to z% or z~
(Proposition 8.1.1), and the theorem follows by a direct computation.

We assume then that there are at least three critical points. Let U =
C\CL(R); then R"1(U) c U. By the uniformization theorem [Ahl73], there
isan analyticcoveringmap ¢: A1 — U.Letg: Ay — A;bethelift of alocally
defined branch of R™!,s0 Ro¢ o g = ¢.

The family {¢ o g"} is normal, since it omits CL(R). Let f be the uniform
limit of a sequence ¢ o g™. Let z0 € ¢~'(J(R)), and let O C A; be a neigh-
borhood of zj such that ¢(O) does not contain any attracting periodic points
of R. Since J(R) is invariant (Proposition 8.5.1) and closed, f(z9) € J(R).
If f'(z0) /A0, then f(O) contains a neighborhood of f(z;), and hence (by
Proposition 8.5.9) contains a point z; € BA(§), where & is an attracting peri-
odic point. Since ¢ o g™ — f, the value z; is taken on by every ¢ o g"* with k
large enough. This implies that R"(z;) € ¢(O) for k sufficiently large, which
contradicts the fact that z; € BA(§) and & ¢ ¢(O). Therefore, f'(z9) = 0, so
f is constant on ¢ (J(R)). It follows that (R™) = 1/(g")’ goes to infinity
uniformly on J( P), which proves the theorem. O

d

THEOREM 8.5.11 (Fatou). Let P: C — Cbeapolynomial suchthat P"(c) —
oo as n — oo for every critical point c. Then the Julia set J(P) is totally
disconnected, i.e., J(P) is a Cantor set.

Proof. Let D be a disk centered at 0 that contains J(P), and choose N
large enough that P carries all critical points outside of D. Then forn > N,
branches of P~" are globally defined on D. Fix zg € J(P), and let g, be the
branch of P~ with g,(P"(z0)) = 20, for n > N. The family F = {g,},>n is
uniformly bounded on D, and is therefore normal on D. Let f be the uniform
limit of a sequence in F. Since P is hyperbolic on J(P) (Theorem 8.5.10), f
must be constant on J(P), and therefore constant on D, since f is analytic
and J(P) has no isolated points. If y /z is any other point of J(P), then
y ¢ g,(D) for n sufficiently large, since the diameter of g,(D) converges to
zero. The set g,(D) N J(P) is both open and closed in J(P), because 3 D
does not intersect J (P). Thus zp and y are in different components of J (P),
so J(P) is totally disconnected. O
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PROPOSITION 8.5.12. Let P: C — C be a polynomial such that no critical
point lies in BA(oc0). Then J(P) is connected.

Proof. BA(00) is simply connected (Lemma 8.5.8) and completely invari-
ant. If F(P) has only one component, then J(P) is the complement in C
of BA(00), and is therefore connected by a fundamental result of algebraic
topology.

We assume then that F( P) has at least two components. We conjugate by a
Mobius transformation that carries oo to O, and one of the other components
of F(P) to a neighborhood of co. We obtain a rational map R such that 0
is a superattracting fixed point and BA(0) is a bounded, simply connected,
completely invariant component of F( R) that contains no critical points. Let
gn be the branch of R"” on BA(0) with g,(0) = 0. Let y be the unit circle.
Then g,(y) converges to J(R), so J(R) is connected. O

There are many other results about the Fatou and Julia sets that are be-
yond the scope of this book. For example, results of Wolff-Denjoy [Wol26],
[Den26] and of Douady-Hubbard [Dou83] show that if a component of the
Fatou set is eventually mapped back to itself, then its closure contains either
an attracting periodic point or a neutral periodic point. A result of Sullivan
[Sul85] shows that the Fatou set has no wandering components, i.e., no orbit
in the set of components is infinite.

Exercise 8.5.1. Show that if U is a connected component of F(R), then
R(U) is also a connected component of F(R). Show thatif P is a polynomial,
then BA(o0) is completely invariant.

Exercise 8.5.2. Show that, for m > 1, the Juliaset of z 1 —#" is the unit circle
S!, BA(00) is the exterior of S', and the «-limit set of every z /&0 is S'.

Exercise 8.5.3. Prove Proposition 8.5.6.
Exercise 8.5.4. Prove Proposition 8.5.4 for R(z) = 77, |m| > 1.

Exercise 8.5.5. Let P be a polynomial of degree at least 2. Prove that P" —
oo on the component of F(P) that contains co.

Exercise 8.5.6. Show that if R is a rational map of degree >1, and F(R)
has only finitely many components, then it has either 0, 1, or 2 components.

8.6 The Mandelbrot Set

For a general quadratic function ¢(z) = az® + Bz + y witha /40, the change
of variables ¢ = z+ /2 maps the critical point to 0 and conjugates g with
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Figure 8.3. The Mandelbrot set.

q.(z) = 7% — a. Since the conjugation is unique, the maps ¢,, a € C, are
in one-to-one correspondence with conjugacy classes of quadratic maps. If
q}(0) — oo, then J(g,) is totally disconnected (see Theorem 8.5.11).
Otherwise, the orbit {g”?(0)},eny is bounded and J(g,) is connected
(Proposition 8.5.12).

The Mandelbrot set M is the set of parameter values a for which the
orbit of 0 is bounded, or equivalently, M = {a € C: 0 ¢ BA(o0) for g,}. The
Mandelbrot set is shown in Figure 8.3.

THEOREM 8.6.1 (Douady-Hubbard [DH82]). M = {a € C: |g/(0)| < 2 for
all n € N}. M is closed and simply connected.

Proof. Let |a| >2. We have |q,(0)| = |a| > 2, |g2(0)| = |q.(a)| > |a*| — |a] =
la|(Ja| — 1), and |g?(0)| > |a|(la] — 1)"~! for n € N (Exercise 8.6.1). There-
fore a ¢ M. If |a| <2 and |g/(0)| =2 + « for some n € N and « > 0, then
lg"1(0)] > 2+ «)> =2 > 2 +da and |¢"*(0)| > 2 + 4*a — oo as k — oo.
Therefore a ¢ M. The first and second statements follow.

If Dis a bounded component of C\ M, then max,¢p5 |¢”(0)| > 2 for some
n € N, and, by the maximum principle, |g7(0)| > 2 for some a € 3D C M.
This contradicts the first assertion of the theorem. Thus C\ M has no bounded
components, has only one unbounded component containing co, and is there-
fore connected. Hence M is simply connected. O

The fixed points of g, are z=- = (1 £ +/1 + 4a)/2 with multipliers A* = 1 +
1+ 4a.Theset{a € C: |1 £ +/1+ 4a| < 1} isasubset of M (Exercise 8.6.3)
and is called the main cardioid of M.
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PROPOSITION 8.6.2. Every point in d M is an accumulation point of the set
of values of a for which q, has a superattracting cycle.

Proof. Since 0is the only critical point of g,, a periodic orbit is superattract-
ing if and only if it contains 0. Let D be a disk that intersects d M and does
not contain 0, and suppose that 0 is not a periodic point of g, for any a € D.
Then (¢”(0))? /f=aforalla € Dandn € N.Let /a be a branch of the inverse
of z1 —2* defined on D, and define f,(a) = q"(0)/s/a forn e Nand a € D.
Then the family { f,},,ey omits 0, 1, and co on D, and is therefore normal
in D. On the other hand, since D intersects d M, it contains both points a
for which f;(a) is bounded and points a for which f,(a) — oo, and hence
the family { f,,} is not normal on D. Thus 0 must be periodic for g, for some
aeD. O

Exercise 8.6.1. Prove by induction that if [a| >2, then |g7(0)| >
la|(la| — 1)*~! forn e N.

Exercise 8.6.2. Prove that the intersection of M with the real axis is
Exercise 8.6.3. Prove that the main cardioid is contained in M.
Exercise 8.6.4. Prove that the set of values a in C for which g, has an

attracting periodic point of period 2 is the disk of radius 1/4 centered at —1
(it is tangent to the main cardioid). Prove that this set is contained in M.



CHAPTER NINE

Measure-Theoretic Entropy

In this chapter, we give a short introduction to measure-theoretic entropy,
also called metric entropy, for measure-preserving transformations. This
invariant was introduced by A. Kolmogorov [Kol58], [Kol59] to classify
Bernoulli automorphisms and developed further by Ya. Sinai [Sin59] for
general measure-preserving dynamical systems. The measure-theoretic en-
tropy has deep roots in thermodynamics, statistical mechanics, and informa-
tion theory. We explain the interpretation of entropy from the perspective
of information theory at the end of the first section.

9.1 Entropy of a Partition

Throughout this chapter (X, 2, 1) is a Lebesgue space with u(X) = 1. We
use the notation of Chapter 4. A (finite) partition of X is a finite collection
¢ of essentially disjoint measurable sets C; (called elements or atoms of ¢)
whose union covers X mod 0. We say that a partition ¢’ is a refinement of
¢ and write ¢ < ¢’ (or ¢’ > ¢) if every element of ¢’ is contained mod 0 in
an element of ¢. Partitions ¢ and ¢’ are equivalent if each is a refinement of
the other. We will deal with equivalence classes of partitions. The common
refinement ¢ v ¢’ of partitions ¢ and ¢’ is the partition into intersections
Cy N Cy, where G, € ¢ and Cy € ¢'; it is the smallest partition which is > ¢
and ¢’. The intersection ¢ A ¢’ is the largest measurable partition which is
<¢ and ¢’. The trivial partition consisting of a single element X is denoted
by v.

Although many definitions and statements in this chapter hold for infinite
partitions, we discuss only finite partitions.

For A, BC X,let AAB=(A\B)U(B\A). Let £ ={C;:1 <i <m} and
n ={D;:1 < j < n} be finite partitions. By adding null sets if necessary, we

208
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may assume that m = n. Define
m
. n) = min ;M(Ci A Dy (),

where the minimum is taken over all permutations of m elements. The ax-
ioms of distance are satisfied by d (Exercise 9.1.1).

Partitions ¢ and ¢’ are independent, and we write ¢ L ¢/, if u(CNC') =
w(C)-u(CHforallC e ¢ and C' € ¢'.

For a transformation 7 and partition £ = {C}, ..., C,}, let T71(§) =
(T7H(C), ..., T (Cp)).

To motivate the definition of entropy below, consider a Bernoulli auto-
morphism of ¥, with probabilities ¢; > 0,¢q; + - -- + g» = 1 (see 84.4). Let
& be the partition of %, into m sets C; = {w € X,;: w9 = i}, u(C;) = g;. Set
Ny = Z;é o k(&), and let n,(w) denote the element of 7, containing . For
w € Xy, let f(w) be the relative frequency of symbol i in the word wy. . . w,.
Since o is ergodic with respect to u, by the Birkhoff ergodic theorem 4.5.5,
for every € > 0 there are N € N and a subset A, C %, with u(A;) > 1 —¢
such that | f"(w) — ¢;| < € for each w € A and n > N. Therefore, if w € A,
then

m
w(n(@)) =[] g+ = 2nZharaloea,
i=1

where |¢;| < €, and from now on log denotes logarithm base 2 with 0log 0 =
0. It follows that for u-a.e. w € %,

1 S
Jim - log 1u(na()) = ;q,- logg;,

and hence the number of elements of 5, with approximately correct
frequency of symbols 1,...,m grows exponentially as 2", where h =

— >l gilogg;.
For a partition ¢ = {C1, ..., C,} define the entropy of ¢ by

H(E) = — 3 w(C) log u(C)
i=1

(recall that 0log 0 = 0). Note that —x log x is a strictly concave continuous
function on [0, 1], i.e.,ifx; > 0,4; > 0,i =1,...,n,and ) ; A, = 1, then

- (2”: Aixi> -loan:Aixi > — Xn:kixi log x; 9.1)
i=1 i=1 i=1
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with equality if and only if all x;s are equal. For x € X, let m(x, {) denote
the measure of the element of ¢ containing x. Then

H() = — /X logm(x. £) dpe.

PROPOSITION 9.1.1. Let & and n be finite partitions. Then

1. H(&)>0,and HE) =0ifand only if ¢ = v;

2. if& <n, then H(&) < H(n), and equality holds if and only if ¢ = n;

3. if& has n elements, then H(&) < logn, and equality holds if and only if

each element of & has measure 1/n;

4. H(¢& v n) < H(E)+ H(n) with equality if and only if ¢ L n.
Proof. We leave the first three statements as exercises (Exercise 9.1.2). To
prove the last statement, let u;, v;, and «;; be the measures of the elements
of &, n,and & Vv n, respectively, so that Zj kij = piand ), k;; = v;. It follows
from (9.1) that

—V;j logv,- > — Z,ui% . Og% = — ZK,’/ IOgK,'j + ZIQ‘]' lOgMi,
i ! ! i i

and summation over j finishes the proof of the inequality. The equality is
achieved if and only if x; = «;;/u; does not depend on i for each j, which is
equivalent to the independence of § and 7. O

The entropy of a partition has a natural interpretation as the “average
information of the elements of the partition.” For example, suppose X
represents the set of all possible outcomes of an experiment, and p is the
probability distribution of the outcomes. To extract information from the
experiment, we devise a measuring scheme that effectively partitions X into
finitely many observable subsets, or events, Ci, C, ..., C,. We define the
information of an event C to be /(C) = —log £(C). This is a natural choice
given that the information should have the following properties:

1. Theinformationisanon-negative and decreasing function of the prob-
ability of an event; the lower the probability of an event, the greater
the informational content of observing that event.

2. The information of the trivial event Xis 0.

3. For independent events C and D, the information is additive, i.e.,
I(CN D) =1I1(C)+ I(D).

Up to a constant, — log «(C) is the only such function.
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With this definition of information, the entropy of a partition is simply
the average information of the elements of the partition.

Exercise 9.1.1. Prove: (i) d(&, n) > Owithequalityifand onlyif§ = n mod 0
and (i) d(§. ¢) < d(&.n) +d(n. ).

Exercise 9.1.2. Prove the first three statements of Proposition 9.1.1.

Exercise 9.1.3. For n € N, let P, be the the space of equivalence classes of
finite partitions with #n elements with metric d. Prove that the entropy is a
continuous function on P,,.

9.2 Conditional Entropy

For measurable subsets C, D C X with u(D) > 0, set u(C|D) = u(Cn D)/
u(D).Let& = {C;:i € I}and n = {D;: j € J} be partitions. The conditional
entropy of & with respect to n is defined by the formula

H(Eln) = =) (D)) Y (G| Dy)log (G| D).

jeJ iel

The quantity H(&|n) is the average entropy of the partition induced by &
on an element of 5. If C(x) € & and D(x) € n are the elements containing x,
then

H(El) = — /X log 11(C(x)| D(x)) .

The following proposition gives several simple properties of conditional
entropy.

PROPOSITION 9.2.1. Let &, n, and ¢ be finite partitions. Then
1. H(&|n) > 0 with equality if and only if & < n;

2. H(&lv) = H(§),

3. ifn < ¢, then H(gn) > H(§[S);

4. ifn < ¢, then H(E Vv n|t) = H(E|S),

5. if & <n, then H(|C) < H(n|t) with equality if and only if § v =
nvigs

6. H(Evnl¢) = H(EIL) + H(nlE v &) and H(E V) = H(E) + HnE),

7. HEInve) < HEC),

8. H(&|n) < H(§) with equality if and only if &€ L n.
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Proof. To prove part 6,let & = {A;}, n = {B;}, { = {Ci}. Then

M(A, n B] N Ck)
H(E v = _ AN BNG)-log—— X

AiNnG
= (AN B ﬂCk)logu
ij.k M(Ck)
w(A; N B; N Cy)

_ZM(AiﬂBjﬂCk)log (AN Co

ik

= H(§[Z) + H(nl§ Vv ¢),

and the first equality follows. The second equality follows from the first one
with ¢ = v.

The remaining statements of Proposition 9.2.1 are left as exercises
(Exercise 9.2.1). O

For finite partitions & and 7, define

p(&,n) = H(&|n) + H(nl§).

The function p, which is called the Rokhlin metric, defines a metric on the
space of equivalence classes of partitions (Exercise 9.2.2).

PROPOSITION 9.2.2. For every € > 0 and m € N there is § > 0 such that if
& and n are finite partitions with at most m elements and d(&, n) < 8, then
p(§.n) <e.
Proof ([KH95], Proposition 4.3.5). Let partitions, &£ = {C;:1 <i <m},n =
{Di:1 <i <m} satisfy d(&,n)=> 1, n(C AD)=235. We will estimate
H(n|&) in terms of § and m.

If w(G;) > 0,set o; = u(C:\D;)/u(C;). Then

w(Ci N Dy)

—u(C; N D)o
u( )log 2(C)

< —uw(G)(1 — ;) log(1 — ;)

and, by Proposition 9.1.1(3) applied to the partition of C;\ D; induced by 7,

w(G N D))

TG < —u(G)a;(loga; — log(m — 1)).

— Z /,L(Cl N D]) lOg
JA
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Therefore, since log x is concave,
w(Ci N D;)

_ ;M(Ci N D;)log (C)

-1
< u(C) ((1 —«o;)log + a; log m ) < u(C;)logm.
1- o o

It follows that
H(nlg)< > w(C)logm

w(Ci)</8

+ > wC)(—(1 —a)log(l — ;) — e log e + e log(m — 1)).

w(C)=s

The first term does not exceed /8 mlogm. To estimate the second term,
observe that o;(C;) < 8. Hence, if u(C;) > /8, then «; < /5. Since the
function f(x) = —xlogx — (1 — x)log(1l — x) is increasing on (0, 1/2), for
small 8 the second term does not exceed f(+/8) + +/8log(m — 1), and

H(nl§) < f(V/8) + v/S(mlogm +log(m — 1)).
Since f(x) — 0as x — 0, the proposition follows. O
Exercise 9.2.1. Prove the remaining statements of Proposition 9.2.1.

Exercise 9.2.2. Prove that (i) p(&, n) > 0 with equality if and only if & =
nmod 0 and (i) p(§, ¢) < p(§. 1) + p(n, ¢).

9.3 Entropy of a Measure-Preserving Transformation

Let T be a measure-preserving transformation of a measure space (X, 2, 1)
and ¢ = {C,:« € I} be a partition of X with finite entropy. For k,n € N,
set T-K(¢) = (T~%(C,):« € I} and

=V TNV v T,
Since H(T7%(¢)) = H(¢) and H(E v n) < H(§) + H(n), we have that
H(¢™™) < H(¢™) + H(¢™). By subadditivity (Exercise 2.5.3), the limit
1
WT.¢) = lim —H(;")
n—oo n
exists, and is called the metric (or measure-theoretic) entropy of T relative to
¢. Note that i(T, ¢) < H(?).
PROPOSITION 9.3.1. A(T, ¢) = lim,,oc H(¢|T~'(¢")).
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Proof. Since H(¢|n) = H(£|¢) for n < ¢, the sequence H (¢|T7'(¢")) is
non-increasingin n. Since H(T~'¢) = H(¢)and H(¢ v n) = H(§) + H(n|¢),
we get

H(") = H(T'(¢" ) ve)=HE" )+ HEIT ' (")
= H(" )+ HGIT (") + HGIT (") =

n—1
= H(¢)+ ) HEIT'(Y).

k=1
Dividing by n and passing to the limit as n — oo finishes the proof. O

Proposition 9.3.1 means that 4(T, ¢) is the average information added by
the present state on condition that all past states are known.

PROPOSITION 9.3.2. Let & and n be finite partitions. Then
1. h(T, T7Y(&)) = h(T, &), if T is invertible, then h(T, T(§)) = h(T, &);
2. W(T,&)=h(T,\/"_yT7'(£)) for neN; if T is invertible, then
W(T.&) = h(T.\/__, T7(¢)) forn € N;
3. W(T,&) < h(T, )+ H(En); if & < n, then h(T.€) < h(T, n);
4. |W(T. &) — h(T,n)| < p(§,n) = H(§In) + H(nl§) (the Rokhlininequal-
ity);
5. W(T,§vn) =h(T.§)+hT, n);
Proof. To prove statement 3 observe that, by the second statement of
Proposition 9.2.1(6), H(¢") < H(" v n") = H(n") + H(¢"|n"). We apply
Proposition 9.2.1(6) n times to get

H(E"|n") = HE Y TH(EIn") = HE") + H(T'E"HIE v ")
H(En) + H(T (" HIn")
< H(Eln) + H(T™'@)IT () + H(T2(E" ) ")

IA

A

A o--

nH(&n).

Therefore

1 1 "

—H(E") < —H®") + H(&n),
n n

and statement 3 follows.
The remaining statements of Proposition 9.3.2 are left as exercises
(Exercise 9.3.2). O
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The metric (or measure-theoretic) entropy is the supremum of the
entropies A(T, ¢) over all finite measurable partitions ¢ of X.

If two measure-preserving transformations are isomorphic (i.e., if there
exists a measure-preserving conjugacy), then their measure-theoretic en-
tropies are equal. If the entropies are different, the transformations are not
isomorphic.

We will need the following lemma.

LEMMA 9.3.3. Let n be a finite partition, and let ¢, be a sequence of finite
partitions such that d(¢,, n) — 0. Then there are finite partitions &, < ¢, such
that H(n|&,) — 0.

Proof. Let n={D;:1 < j <mj}. For each j choose a sequence Cietn
such that u(D; A CY) — 0. Let &, consist of C7,1 < j <m, and Cerl =
X\ U]+1 Cj. Then M(C”) — wu(Dj) and u(C +1) — 0. We have

< 1(Crn D)
H(nl&,) = w(C'N D;) - log ————*

2 )

4 n(Cpyy N Dj)
~3 u(Ch,, N D)) log 2

/2; +1 (Cm+1)

m chn D,
- > w(CrnDy) 'logu(l—cnj)-

i=1 A “( i)

The first sum tends to 0 because n(C!' N D;) — w(C!). The second and third
sums tend to 0 because u(C' N D;) — O for j Ai. O

A sequence (¢,) of finite partitions is called refining if {11 > ¢, forn € N.

A sequence (¢,) of finite partitions is called generating if for every finite
partition £ and every § > 0 there is ny € N such that for every n > ng there
is a partition &, with &, < \//_, ¢ and d(&,, §) < §, or equivalently if every
measurable set can be approximated by a union of elements of \/;_, ¢; for a
large enough n.

Every Lebesgue space has a generating sequence of finite partitions
(Exercise 9.3.3). If X is a compact metric space with a non-atomic Borel
measure /., then a sequence of finite partitions ¢, is generating if the maxi-
mal diameter of elements of ¢, tends to 0 as n — oo (Exercise 9.3.4).

PROPOSITION 9.3.4. If (¢,) is a refining and generating sequence of finite
partitions, then h(T) = lim,,_, c h(T, ¢,).

Proof. Let & be a partition of X with m elements. Fix € > 0. Since (¢,)
is a refining and generating, for every § > 0 there is n € N and a partition &,
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withmelementssuch that&, < \/i_, ¢ andd(&,, §) < §.ByProposition9.2.2,

p(&, &n) = H(E|2,) + H(5418) < €.

By the Rokhlin inequality (Proposition 9.3.2(4)), h(T, &) < h(T, ¢,) + €.
O

A (one-sided) generator for a non-invertible measure-preserving trans-
formation T is a finite partition £ such that the sequence £" = \/7_, T7%(¢)
is generating. For an invertible 7T, a (two-sided) generator is a finite parti-
tion & such that the sequence \/}__, T*(£) is generating. Equivalently, £ is a
generator if for any finite partition 7 there are partitions ¢, < \/j_, T7%(§)
(or & < \/4__, TX(¢)) such that d(¢,, n) — 0.

The following corollary of Proposition 9.3.4 allows one to calculate the
entropy of many measure-preserving transformations.

THEOREM 9.3.5 (Kolmogorov-Sinai). Let & be a generator for T. Then
h(T) = h(T, §).

Proof. We consider only the non-invertible case. Let n be a finite parti-
tion. Since £ is a generator, there are partitions ¢, < \/"_, 77/ (£) such that
d(¢y,,n) = 0. By Lemma 9.3.3 for any § > 0 there is n € N and a parti-
tion &, < &, < \/I_y T7'(§) with H(&,|n) < 8. By statements 3, 5, and 2 of
Proposition 9.3.2,

h(T,n) = K(T, ) + H(nl&,) < h (T, \n/ T"(S)) +6=nT.5)+5. O

i=0

PROPOSITION 9.3.6. Let T and S be measure-preserving transformations
of measure spaces (X, U, n) and (Y, B, v), respectively.

1. h(T*) = kh(T) for every k € N; if T is invertible, then h(T~') = h(T)

and h(T*) = |k|h(T) for every k € Z.

2. IfTis a factor of S, then h,(T) < h,(S).

3. huso(T x S) = h, (T) + hy(S).
Proof. To prove statement 3, consider refining and generating sequences
of partitions & and 7, in X and Y, respectively. Then

e = (& x v) v (1 X i)
is a refining and generating sequence in X x Y. Since

G = (& xv) v (nxug) and (& xv) L (kxng),
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we obtain, by Proposition 9.1.1 and Proposition 9.3.4, that

TR R | n n
W(T x §) = lim lim - H(¢7) lim lim = (H(E) + H(n)) = B(T) + A(S).
The first two statements are left as exercises (Exercise 9.3.6). O

Let T be a measure-preserving transformation of a probability space
(X, 2, ), and ¢ a finite partition. As before, let m(x, ¢") be the measure
of the element of ¢” containing x € X. The amount of information con-
veyed by the fact that x lies in a particular element of ¢” (or that the
points x, T(x), ..., T"~!(x) lie in particular elements of ¢) is I;»(x) = — log
x m(x, ¢™). A proof of the following theorem can be found in [Pet89] or
[Man88].

THEOREM 9.3.7 (Shannon-McMillan-Breiman). Let T be an ergodic
measure-preserving transformation of a probability space (X, 2, u), and ¢
a finite partition. Then

1
lim — I (x) = W(T, ¢) fora.e x € X and in L'(X, 2, ).
n—oon

Theorem 9.3.7 implies that, for a typical point x € X, the information
I»(x) grows asymptotically as n - h(7, ¢) and the measure m(x, ¢") decays
exponentially as e 7¢), The proof of the following corollary is left as an
exercise (Exercise 9.3.8).

COROLLARY 9.3.8. Let T be an ergodic measure-preserving transformation
of a probability space (X, 2, ), and ¢ a finite partition. Then for every € > 0
there is ny € N and for every n > ngy a subset S, of the elements of ¢" such
that the total measure of the elements from S,, is > 1 — € and for each element
CesS,

—n(h(T, )+ ¢€) <logu(C) < —n(h(T, ) — ¢).

Exercise 9.3.1. Let T be a measure-preserving transformation of a non-
atomic measure space (X, 2, ). For a finite partition & and x € X, let §,(x)
be the element of £” containing x. Prove that u(£"(x)) — Oasn — ocofora.e.
x and every non-trivial finite partition £ if and only if all powers 7", n € N,
are ergodic.

Exercise 9.3.2. Prove the remaining statements of Proposition 9.3.2.

Exercise 9.3.3. Prove that every Lebesgue space has a generating sequence
of partitions.
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Exercise 9.3.4. If ¢ is a partition of a finite metric space, then we define
the diameter of ¢ to be diam(¢) = sup, diam(C). Prove that a sequence
(&) of finite partitions of a compact metric space X with a non-atomic Borel
measure u is generating if the diameter of ¢, tends to 0 as n — oo.

Exercise 9.3.5. Suppose a measure-preserving transformation 7 has a gen-
erator with k elements. Prove that A(T) < log k.

Exercise 9.3.6. Prove the first two statements of Proposition 9.3.6.

Exercise 9.3.7. Show that if an invertible transformation 7 has a one-sided
generator, then A(T) = 0.

Exercise 9.3.8. Prove Corollary 9.3.8.

9.4 Examples of Entropy Calculation

Let (X, d) be a compact metric space, and 4 a non-atomic Borel measure on
X. By Exercise 9.3.4, any sequence of finite partitions whose diameter tends
to 0 is generating. We will use this fact repeatedly in computing the metric
entropy of some topological maps.

Rotations of S'. Let A be the Lebesgue measure on S'. If « is rational,
then R! = Id for some n, so h;(R,) = (1/n)h;,(R}) = (1/n)h;, (Id) = 0. If «
is irrational, let £y be a partition of S! into N intervals of equal length. Then
&% consists of nN intervals, so H(¢)) < lognN. Thus (R, &y) < lim,_.
(lognN)/n = 0. The collection of partitions £y, N € N, is clearly generating,
so h(R,) = 0.

This result can also be deduced from Exercise 9.3.7 by noting that ev-
ery forward semiorbit is dense, so any non-trivial partition is a one-sided
generator for R,.

Expanding Maps. The partition
& = {0, 1/K). [1/k.2/K). ... [(k = 1)/k. 1)}

is a generator for the expanding map Ei: S' — S', since the elements of £”
are of the form [i/ k", (i + 1)/k"). We have

i 1 1
HGE = = 3 i toe (1 ) = nlogk.

so h; (Ex) = log |k|.
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Shifts. Let 0: X, - X, be the one or two-sided shift on m symbols, and
let p = (p1, ..., pm) be a non-negative vector with Y ", p; = 1. The vector
p defines a measure on the alphabet {1, 2, ..., m}. The associated product
measure (i, on %, is called a Bernoulli measure. For a cylinder set, we have

Let & = {C?:j =1,...,m}. Then & is a (one- or two-sided) generator
for o, since diam(\//L,0'&) — 0 with respect to the metric d(w, ') =27/,
where / = min{|i|: w; ~w}}. Thus

. 1 " i
hle(U) = h/lp(a’ §)= "lgrolo ;H (M ’ S)

Fori /j,o'¢ and o/ are independent, so

H <\70‘i§> =nH().
i=0

Thus k(o) = H(§) = — }_ pi log pi.

Recall that the topological entropy of ¢ is log m. Thus the metric entropy
of o with respect to any Bernoulli measure is less than or equal to the
topological entropy, and equality holds if and only if p = (1/n, ..., 1/n).

We next calculate the metric entropy of o with respect to the Markov
measures defined in 84.4. Let A be an irreducible m x m stochastic matrix,
and g the unique positive left eigenvector whose entries sum to 1. Recall
that for the measure P = P4, the measure of a cylinder set is

By Proposition 9.3.1, we have hp(o, £) = lim,_, oo H(£|o~1(£")). By defini-
tion,

P(CN D)

HElo™ (€)= =3 P(CND)log o

Cet, Deo—1(£m)

For C=C% etand D=C;"", €o~!(£"), we have

n—1

n—1
P(CnD):q]‘()l_[A‘in_l and P(D):CI]HHA}]}H'
i=0 i=1
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Thus

m n—1
HEo @) = =3 an [T A tox (2222
Jorftaem ju=1 i=1 4qjy
m n—1
= 7 Z 4jo HAfi~fi+1 (log Aj, j, +1ogq;, —loggq;,).
Jos iy Jn=1 i=1

(9.2)

Using the identities ) ;_; ¢; A x = gx and Y ;_; A;x = 1, we find that

n—1
Z dj, l_[ A'uji+1 log A]'ijl = Z 9jo Aj()s]'l log Aj(),il > (9.3)
JosJ1sesJin i=0 Jo, i
n—1
Z qj 1_[ A'i,]'i+1 log qj, = Z qolog qjo- (9-4)
j0~jlw~~ujn i=0 jO
m n—1
Z djo 1_[ Aj i loggj, = Z qj, loggj,. 9:5)
Jos e jn=1 i=1 ji

It follows from (9.2)—(9.5) that

hp(0) ==Y qjAj,.j, 1og Aj ;.
Jos 11

There are many Markov measures for a given subshift. We now construct a
special Markov measure, called the Shannon—Parry measure, that maximizes
the entropy. By the results of the next section, a Markov measure maximizes
the entropy if and only if the metric entropy with respect to the measure is
the same as the topological entropy of the underlying subshift.

Let B be a primitive matrix of zeros and ones. Let A be the largest positive
eigenvalue of B, and let g be a positive left eigenvector of B with eigenvalue
A. Let v be a positive right eigenvector of B with eigenvalue A normalized so
that (g, v) = 1. Let V be the diagonal matrix whose diagonal entries are the
coordinates of v, i.e., V;; = §;v;. Then A= A~'V~! BV is a stochastic matrix:
all elements of A are positive, and the rows sum to 1. The elements of A are
Ajj = A‘lvi_]Bijvj. Let p=qV = (qiv1, ..., quv,). Then p is a positive left
eigenvector of Awith eigenvalue 1,and > | p; = (g, v) = 1.

The Markov measure P = P4, is called the Shannon—Parry measure for
the subshift o4. Recall that while P is defined on the full shift space %,
its support is the subspace ¥ 4. Thus hp(c4) = hp(o). Using the properties
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qB =g, {q,v) =1, and B;;log B;; = 0, we have

hp(o) = — ZPz’Au log A;j

]
=~ _avir v Bjvslog (7 v Byjvy)
i

— Z)\_lcﬁvaij lOg ()»_ll);lBijUj)
iJj

Z)\_ICIinBij IOg)» + Z)»_]qiv,-B’i/(log v; — IOg Bl']‘v]‘)
i,j L

= IOg)» + quvj IOng — Z)\_lqivaij IOng
J i

— >+ 'qv;B;log B
7

=logh + Zvjqj logv; — Zviqi logv; = log A.
j i

Thus hp(o4) = log A, which is the topological entropy of o4 (Proposition
3.4.1).

Toral Automorphisms. We consider only the two-dimensional case. Let
A: T? — T? be a hyperbolic toral automorphism. The Markov partition con-
structed in 85.12 gives a (measurable) semiconjugacy ¢: 4 — T2 between
a subshift of finite type and A. Since the image of the Lebesgue measure
under ¢* is the Parry measure, the metric entropy of A (with respect to
the Lebesgue measure) is the logarithm of the largest eigenvalue of A
(Exercise 9.4.1).

Exercise 9.4.1. Let Abe a hyperbolic toral automorphism. Prove that the
image of the Lebesgue measure on T? under the semiconjugacy ¢ is the Parry
measure, and calculate the metric entropy of A.

9.5 Variational Principle’

In this section, we establish the variational principle for metric entropy
[Din71], [Goo69], which asserts that for a homeomorphism of a compact
metric space, the topological entropy is the supremum of the metric en-
tropies for all invariant probability measures.

' The proof of the variational principle below follows the argument of M. Misiurewicz [Mis76];
see also [KH95] and [Pet89].
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Let f be a homeomorphism of a compact metric space X, and M the
space of Borel probability measures on X.

LEMMA 9.51. Let u,v € Mandt € (0,1). Then for any measurable parti-
tion of & of X,

tHu(g) + (1 - I)H)(S) = I_Itu-k—(l—t)v(g:)'

Proof. The proof is a straightforward consequence of the convexity of
xlogx (Exercise 9.5.1). O

For a partition & = { Ay, ..., A}, define the boundary of & to be the set
9 = U, 04;, where A= AN X — A.

LEMMA 9.5.2. Let u € M. Then:
1. foranyx € Xand$ > 0, there is 8' € (0, 8) such that (3 B(x, 8")) = 0;
2. for any § > 0, there is a finite measurable partition § = {Cy, ..., Cy}
with diam(C;) < é for all i and u(9¢) = 0;
3. if {un} C M is a sequence of probability measures that converges to |
in the weak* topology, and Ais a measurable set with (3 A) = 0, then
u(A) = lim, o 1 (A).
Proof. Let S(x,8) ={y € X:d(x,y)=38}. Then B(x,8) = Jy5_s S(x,8).
This is an uncountable union, so at least one of these must have measure 0.
Since 3 B(x, 8) C S(x, 3), statement 1 follows.

To prove statement 2, let { By, . .., Bi} be an open cover by balls of radius
less than 5/2 and [,L(aB,') =0. Let Cl = Bl, Cz = Ez\?l, C,' = El\ Ul];ll Ej.
Then & = {Cy, ..., Ci} is a partition, and 3§ = | JdC; C U;‘:l 9B;:.

To prove statement 3, let A be a measurable set with u(d.A) = 0. Since
X is a normal topological space, there is a sequence { fi} of non-negative
continuous functions on X such that f; \( x4 Then, for fixed k,

lim pn(A) < lim Mn(A) < lim pu(fi) = n( fio)-
N— 00 n—o00 n—oo
Taking the limit as k — oo, we obtain

Jim g1, (A) < lim u(fi) = n(A) = p(A).

Similarly,
Tim X\ A) < 2(X\A),
from which the result follows. O

Let | E| denote the cardinality of a finite set E.
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LEMMA 9.5.3. Let E, be an (n, €)-separated set, v, = (1/|E,|) > .. 8, and
Un = % Z:’:_g fj vp. If o is any weak* accumulation point of {{tn}nen, then p is
f-invariant and

xekE,

— 1
lim ZloglEn| < h,(f).

Proof. Let u be an accumulation point of {u,},cny. Then w is clearly
f-invariant.

Let &£ be a measurable partition with elements of diameter less than € and
w(0&) =0.1f C € &£", then v,(C) = 0 or 1/| E,|, since C contains at most one
element of E,. Thus H, (") = log | E,|.

Fix0<qg <n,and0 < k < q. Leta(k) = [%‘]

Let S={k+rqg+i:0<r <a(k), 0<i < gq},andlet T be the comple-
mentof Sin {0, 1,...,n — 1}. The cardinality of T isat most k+ g — 1 < 2q.
Since

n—1 a(k)—1
=\ re= ( \V4 f—’q—ksq) v (\/ f"é) :
i=0 r=0

ieT

it follows that

IOg | Enl = an(én) =

]

H, (f~r0g1) + 3" H, (f7'8)

r=0 ieT

]

H ron,, (§7) +2qlog|§].
r=0

Summing over k and using Lemma 9.5.1, we get
q 1 q—1 -1 fa(k)-1 1
“log Byl =~ 3" H, (") < Z ( Z ~ Hygows (s%) + —log|$|
k=0 k=0
0y 4 24
< H,(E")+ 7108|§|

Thus, by Lemma 9.5.2(3), for fixed g,

fim -~ log 1,1 < fim ~H,.(67) = - H,(&").

n—oo n
Letting ¢ — oo, we get lim,,_, o 5log |E,| < hy(f€). O

THEOREM 9.5.4 (Variational Principle). Let f be a homeomorphism of a
compact metric space (X, d). Then hyop( f) = sup{h, (f)ln € My}.
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Proof. Lemma 9.5.3 shows that A ( f) < Sup,c pq, Au( f), so we need only
demonstrate the opposite inequality.

Let € My be an f-invariant Borel probability measure on X, and
& ={Cy, ..., Cx} a measurable partition of X. By the regularity of x and
Lemma 9.3.3, we may choose compact sets B; C C; so that the partition
B =1{By = )ﬂUle B;, By, ..., By} satisfies H(&|8) < 1. Thus

ho(f. &) < h(f. B)+ H(EIB) < hu(f, B) + 1.

The collection B = {ByU By, ..., By U By} is a covering of X by open
sets. Moreover, |8"| < 2"|B"|, since each element of B”" intersects at most
two elements of 8. Thus

H,(B") <log|B"| <nlog2+log|B"|

Let 8y be the Lebesgue number of B, i.e., the supremum of all § such that for
allx € X, B(x, 8) is contained in some By U B;. Then §y is also the Lebesgue
number of B" with respect to the metric d,,.

No subcollection of B covers X, and the same is true of 3”. Thus each ele-
ment C € B contains a point x¢ that is not contained in any other element, so
B(xc, 8, n) C C.If follows that the collection of all x¢ is an (#, §)-separated
set. Thus sep(n, 8, f) > |B"|, from which it follows that

— 1 — 1
h(f,8) = lim — log(sep(n, &, f)) = lim - log|B"|
— 1 — 1
> lim —(log|B"| —nlog2) > lim —H,(B") —log2
n—»oo n n—>oo
= hu(f.B) —log2 = h(f.€) —log2 1

We conclude that &, (f) = h,(f")/n < L(hop(f") +1log2+1) for all
n > 0. Letting n — oo, we see that h,(f) < hp(f) for all u € M, which
proves the theorem. O

Exercise 9.5.1. Prove Lemma 9.5.1.

Exercise 9.5.2. Let f be an expansive map of a compact metric space with
expansiveness constant §p. Show that f has a measure of maximal entropy,
i.e., thereis u € M such that h,(f) = hwp( f). (Hint: Start with a measure
supported on an (n, €)-separated set, where € < §;.)
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normal number, 84
null set, 69
number theory, 49, 92, 103

omit a point, 197
one-parameter group, 107
one-sided shift, 35
orbit, 2

dense, 23, 32

periodic, 2

uniformly distributed, 23, 89

Parry, 220
partition, 208
boundary of, 222
Markov, 134
of an interval, 164
partitions, independent, 209
pendulum, 19
Per(f), 114
period, 2
period, minimal, 2
period-doubling bifurcation, 185
periodic
orbit, 2
point, 2,162, 198
attracting, 10, 192
irrationally neutral, 192
rationally neutral, 192
repelling, 10, 192
superattracting, 192
Perron theorem, 58
Perron-Frobenius theorem, 57
piecewise-monotone map, 170
plaque, 139
Poincaré, 71
map, 22, 72
Poincaré classification theorem,
158
Poincaré recurrence theorem, 72, 103
pointwise almost periodic homeomorphism,
47
polynomial recurrence theorem, 102
Pontryagin duality theorem, 95
positive semiorbit, 2
positive upper density, 101
positively expansive, 35
positively recurrent point, 29
postcritical set, 204
presentation, 67
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primitive

matrix, 57,79, 104

substitution, 64, 90

transformation, 73
probability

measure, 70

space, 70
product

direct, 3

formula, 60

skew, 3

structure, local, 129
projection, 3, 139, 140
proximal points, 45
pseudo-orbit, 110

quadratic map, 9, 35, 171, 176, 178, 179, 182,
205
quotient, 91

Radon-Nikodym
derivative, 86
theorem, 86
Ramsey, 48
Ramsey theory, 48
random behavior, 23
random variable, 79
rational map, 191
degree of, 193
rationally neutral periodic point, 192
rectangle, 134
recurrence
measure-theoretic, 71
topological, 29, 72
recurrent point, 29, 72
reducible matrix, 57
refinement, 208
refining sequence of partitions, 215
regular measure, 71
relatively dense subset, 30
repelling periodic point, 192
repelling point, 9
return time, 22
Riemann sphere, 191
Riemannian
manifold, 106, 140
metric, 106, 139
volume, 140
Riesz, 80, 85
Riesz representation theorem, 85
right translation, 4

Index

Robbin, 134

Robinson, 134

Rokhlin, 97

Rokhlin metric, 212
Rokhlin-Halmos lemma, 96
rotation number, 154
rotation, entropy of, 218
Roush, 63

saddle-node bifurcation, 184
Sarkozy, 103
Schwarzian derivative, 178
search engine, 103
self-similarity, 202
semiconjugacy, 2
topological, 28
semiflow, 2
semiorbit
negative, 2
positive, 2
sensitive dependence on initial conditions,
23,117
sep(n, €, f),37
separated set, 37
sequence of partitions
generating, 215
refining, 215
SFT, 56
shadowing, 107, 111, 113
Shannon, 220
Shannon-McMillan-Breiman theorem,
217
Shannon-Parry measure, 220
Sharkovsky ordering, 162
Sharkovsky theorem, 163
shift, 5, 7, 54, 60
edge, 57
entropy of, 219
equivalence, 62
full, 7, 35, 36
one-sided, 7
two-sided, 7
vertex, 8, 56
shift equivalence, strong, 62
Shishikura theorem, 200
signed lexicographic ordering, 172
simply transitive, 180, 192
Sinai, 208, 216
Singer theorem, 179
skew product, 3, 140
Smale, 133



Index

Smale’s spectral decomposition theorem,
133
smooth measure, 151
sofic subshift, 66
solenoid, 18, 35, 36, 44, 45, 108, 128
space average, 84
space, metric, 28
span(n, €, f),37
spanning set, 37
spectral measure, 98
spectrum
continuous, see continuous spectrum
discrete, see discrete spectrum
stable
cone, 115
distribution, 108
foliation, 14, 130
manifold, 14, 118, 122
local, 121
set, 151
subspace, 108
stationary sequence, 79
stochastic matrix, 58, 78, 104
stochastic process, 79
strange attractor, 25
strong mixing transformation, 74
strong transversality condition, 134
structural stability, 108, 117, 131
Structural Stability Theorem, 134
structurally stable diffeomorphism, 117
submanifold, 106, 139
embedded, 139
subshift, 8, 55, 134
entropy of, 219
generating function of, 60
of finite type, 56
one-sided, 55
sofic, 66
topological entropy of, 60
two-sided, 55
zeta function of, 61
substitution, 64
constant length, 64
irreducible, 64
primitive, 64, 90
Sullivan, 205
superattracting periodic point, 192
support, 72
suspension, 21
symbol, 7, 54
symbolic dynamics, 6, 54
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symmetric difference, 73
syndetic subset, 30
Szemerédi, 103
Szemerédi theorem, 103

tangent
bundle, 138
map, 138
space, 138
vector, 138

tent map, 114, 176

terminal vertex, 9

theorem
Anosov’s shadowing, 113
Birkhoff ergodic, 82
Bowen-Lanford, 61
Curtis—-Lyndon-Hedlund, 55
Denjoy, 160
Douady-Hubbard, 206
Fatou, 204
Frobenius, 59
Furstenberg—Weiss, 49
Hadamard-Perron, 118
Halmos—von Neumann, 96
Kolmogorov-Sinai, 216
Koopman-von Neumann, 99
Krein—-Milman, 86
Krylov—-Bogolubov, 85
maximal ergodic, 82
Montel, 197
multiple recurrence, 103
Perron, 58
Perron-Frobenius, 57
Poincaré classification, 158
Poincaré recurrence, 72
polynomial recurrence, 102
Pontryagin duality, 95
Riesz representation, 85
Sarkozy, 103
Shannon-McMillan—-Breiman, 217
Sharkovsky, 163
Shishikura, 200
Singer, 179
Smale’s spectral decomposition, 133
structural stability, 134
Szemerédi, 103
van der Waerden, 49
von Neumann ergodic, 80
Weyl, 89
Williams, 62

time average, 84, 88
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time-t map, 2

times-m map, 5

topological
conjugacy, 28, 39
dynamical system, 28
dynamics, 28
entropy, 36, 37, 60, 116, 125
group, 4, 95
Markov chain, 56
mixing, 33, 76
properties, 28
recurrence, 29, 72
semiconjugacy, 28
transitivity, 31, 33, 76, 88

topology, C¥, 138

toral automorphism, see hyperbolic toral

automorphism

transformation, 70

aperiodic, 96

derivative, 72

entropy of, 215

ergodic, 73

Gauss, see Gauss transformation

induced, 73

linear fractional, 180

measure-preserving, 70

mixing, 74

Mabius, 180, 192

non-singular, 70

primitive, 73

strong mixing, 74

uniquely ergodic, 87

weak mixing, 75
transition probability, 78
translation, 90

group, 4

left, 4

right, 4
translation-invariant metric, 44
transversal, 139

local, 139
transverse, 139
transverse homoclinic point, 125
transverse submanifolds, 122

transversely absolutely continuous foliation,

145
trapping region, 25
turning point, 170

uniform convergence, 88

uniformly distributed, 89, 90
unimodal map, 170
uniquely ergodic, 87-90
unitary operator, 80
unstable
cone, 115
distribution, 108
foliation, 14, 130
manifold, 14, 118, 122
local, 121
set, 151
subspace, 108
upper density, 99

van der Waerden’s theorem, 49

Index

variational principle for metric entropy, 221

vector
non-negative, 57
positive, 57
vector field, 107, 139
vertex shift, 8, 56
one-sided, 8
two-sided, 8
vertex, terminal, 9
von Neumann, 80
von Neumann ergodic theorem, 80

wandering domain, 205
wandering interval, 173
weak mixing, 75, 97, 100, 152
flow, 75
transformation, 75
weak topology, 97
weak™ topology, 85
Weiss, 49, 135
even system of, 66
Weyl theorem, 89
Whitney embedding theorem, 111
Wiener lemma, 98
Williams, 63
Wolff, 205
word, 7
allowed, 8, 56
forbidden, 8, 56

Yorke, 164

zeta function, 60
rational, 61
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