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Abstract—Semantic models of data sources describe the mean-
ing of the data in terms of the concepts and relationships defined
by a domain ontology. Building such models is an important step
toward integrating data from different sources, where we need
to provide the user with a unified view of underlying sources.
In this paper, we present a scalable approach to automatically
learn semantic models of a structured data source by exploiting
the knowledge of previously modeled sources. Our evaluation
shows that the approach generates expressive semantic models
with minimal user input, and it is scalable to large ontologies
and data sources with many attributes.

I. INTRODUCTION

A significant amount of information available on the Web is
available in sources such as relational databases, spreadsheets,
XML, JSON, and Web APIs. A common approach to integrate
these sources involves building a domain model and construct-
ing source descriptions that represent the intended meaning of
the data by specifying mappings between the sources and the
domain model [1]. In the Semantic Web, the domain model
is an ontology that defines concepts and relationships within
a domain, and source descriptions are formal specifications of
semantic models. Semantic models can be viewed as graphs
with ontology classes as the nodes and ontology properties as
the links between the nodes.

Manually constructing semantic models is a time-
consuming task that requires significant effort and expertise.
Automatically generating these models involves two steps.
The first step is specifying the semantic types, i.e., labeling
each data field, or source attribute with a class or a data
property of the domain ontology. However, simply annotating
the attributes is not sufficient. A precise semantic model needs
a second step that specifies the relationships between the
source attributes in terms of the properties in the ontology. In
Semantic Web research, there are many studies on mapping
data sources to ontologies [2]–[7], but most focus on the
first step of the modeling process or are very limited in
automatically inferring the relationships.

In our previous work [8], we presented a novel approach to
learn semantic models of data sources from known semantic
models, semantic models of sources that have already been
modeled. The work is inspired by the idea that different
sources in the same domain often provide similar or over-
lapping data and have similar semantic models. Given sample
data from the new source, we use an existing machine learning

technique [9] to label each source attribute with a semantic
type from the ontology. Next, we build a weighted directed
graph with known semantic models as the main components
and expand the graph by adding the paths in the ontology
connecting the nodes across different components. This graph
models the space of plausible semantic models. Then, we
produce mappings from the semantic types to the nodes of the
graph, and for each mapping we generate a candidate model by
computing the minimal tree that connects the mapped nodes.
Finally, we score the candidate models to prefer the ones
formed with more coherent and frequent patterns.

This past work has some limitations. First, we do not take
into account the uncertainty of the machine learning algorithm
when labeling the source attributes. That is, although the
machine learning algorithm learns a set of candidate semantic
types for each source attribute, we assign the one with higher
confidence value to the attributes and ignore the other sug-
gested semantic types. This is a strict assumption, because in
many cases, the learning algorithm cannot distinguish between
the semantic types of similar data values. Second, for data
sources with many attributes, the number of mappings between
the semantic types and the nodes of the graph can be large.
In these cases, processing all the mappings to generate the
candidate models is infeasible.

In this paper, we address the limitations of our past work.
We generalize the previous approach to consider a set of
candidate semantic types for each attribute rather than only
one semantic type per attribute. To overcome the problem of
large number of mappings, we introduce a search algorithm
that explores the space of possible mappings as we map the
semantic types to the nodes of the graph and expands only
the more promising mappings. We evaluated the approach on
a set of museum data sources modeled using relatively large
ontologies (119 classes and 351 properties). The evaluation
shows that the approach generates rich semantic models with
minimal user input, and it also scales well, learning semantic
models of data sources that contain many attributes.

II. EXAMPLE

In this section, we provide an example to demonstrate
the problem of learning semantic models. We will use this
example in the rest of the paper to illustrate different steps
of our approach. In this example, the goal is to model a
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set of museum data sources using EDM (www.europeana.
eu/schemas/edm), AAC (www.americanartcollaborative.org/
ontology), SKOS (www.w3.org/2008/05/skos#), Dublin Core
Metadata Terms (purl.org/dc/terms), FOAF (xmlns.com/foaf/0.
1), ORE (www.openarchives.org/ore/terms), and ElementsGr2
(rdvocab.info/ElementsGr2) ontologies and then use the cre-
ated semantic models to publish their data as RDF [10].
Suppose that we want to model a data source contain-
ing data of artworks in the Indianapolis Museum of Art
(www.imamuseum.org). Figure 1 shows examples of the data
values in this source. We formally write this source as
𝑠(𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙, 𝑖𝑚𝑎𝑔𝑒, 𝑡𝑦𝑝𝑒, 𝑎𝑟𝑡𝑖𝑠𝑡) where 𝑠 is the name of the
source and title, label, image, type, and artist are names of
the source attributes (columns).

Fig. 1. The source 𝑠(𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙, 𝑖𝑚𝑎𝑔𝑒, 𝑡𝑦𝑝𝑒, 𝑎𝑟𝑡𝑖𝑠𝑡) contains information
about artworks in the Indianapolis Museum of Art.

First, we must determine the semantic type of each source
attribute. For example, the attribute title declares the title of
a cultural heritage object and the attribute artist specifies the
name of a person. Then, we need to identify the relationships
between the classes used to model the attributes. Unless the
relationship between the person and the cultural heritage object
is explicitly specified, we do not know whether the person
is the creator, sitter, or copyrights holder of the object. The
precise semantic model of 𝑠 is depicted in Figure 2.

A semantic model of the source 𝑠, 𝑠𝑚(𝑠), is a directed graph
containing two types of nodes. Class nodes (ovals in Figure 2)
correspond to classes in the ontology and are labeled with class
URIs. Data nodes (rectangles in Figure 2) correspond to the
source attributes and are labeled with the attribute names. The
links in the graph correspond to ontology properties and are
labeled with property URIs.
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Fig. 2. Semantic model of the source 𝑠. Class nodes and links are labeled
with URIs (prefixed by the ontology namespace).

Automatically building a semantic model for a new source
is difficult. Machine learning methods can help us in assigning
semantic types to the attributes, however, these methods are
error prone when similar data values have different semantic
types. Extracting the relationships between the attributes is

a more complicated problem. There might be multiple paths
connecting two classes in the ontology and we do not know
which one models the intended meaning of the data.
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Fig. 3. Semantic models of 𝑠1 (artworks at Dallas Museum) and 𝑠2 (artworks
at The Metropolitan Museum of Art).

In general, the ontology defines a large space of pos-
sible semantic models and without additional information,
we do not know which one describes the source more
precisely. In this work, we present a scalable approach
that exploits the knowledge of previously modeled sources
to limit the search space and to hypothesize correct se-
mantic models. The main idea is that data sources in the
same domain usually provide overlapping data. Therefore,
we can leverage attribute relationships in known semantic
models to hypothesize attribute relationships for new sources.
Assume that before modeling the source 𝑠, we have al-
ready modeled two other museum sources 𝑠1(𝑡𝑖𝑡𝑙𝑒, 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-
𝐷𝑎𝑡𝑒, 𝑛𝑎𝑚𝑒, 𝑏𝑖𝑟𝑡ℎ𝐷𝑎𝑡𝑒, 𝑑𝑒𝑎𝑡ℎ𝐷𝑎𝑡𝑒, 𝑡𝑦𝑝𝑒), which contain
data of artworks in the Dallas Museum of Art (www.-
dma.org) and 𝑠2(𝑛𝑎𝑚𝑒, 𝑐𝑜𝑝𝑦𝑟𝑖𝑔ℎ𝑡,𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠,-
𝑖𝑚𝑎𝑔𝑒𝑈𝑟𝑙), which has data of artworks in The Metropolitan
Museum of Art (www.metmuseum.org). Figure 3 illustrates
the semantic models of these two data sources. In the next
section, we explain how our approach uses these known
models to learn a semantic model for the source 𝑠.

III. LEARNING SEMANTIC MODELS

The problem of learning semantic models of data sources
can be stated as follows. Let 𝑂 be the domain ontology1 and
{𝑠𝑚(𝑠1), 𝑠𝑚(𝑠2), ⋅ ⋅ ⋅ , 𝑠𝑚(𝑠𝑛)} is a set of known semantic
models corresponding to the data sources {𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑛}.
Given sample data from a new source 𝑠(𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑛), our
goal is to automatically compute a semantic model 𝑠𝑚(𝑠) that
captures the intended meaning of the source 𝑠.

Our approach to learn a semantic model for a new source
has four steps: (1) Using sample data from the new source,

1𝑂 can be a set of ontologies. In our example, 𝑂 consists of the EDM,
AAC, SKOS, Dublin Core, FOAF, ORE, and ElementsGr2 ontologies.
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learn the semantic types of the source (2) Construct a graph
with the known source models, augmented with paths connect-
ing the the learned semantic types in the domain ontology. (3)
Compute the candidate mappings from the semantic types to
the nodes of the graph. (4) Finally, build a candidate semantic
model for each mapping, and rank the candidate models.

This work has two major contributions compared to our
previous work on learning semantic models of data sources
[8]. First, we consider uncertainty in learning the semantic
types: we assume that for each source attribute we are given
a set of candidate semantic types along with their confidence
values rather than a single, correct semantic type. The second
and main contribution of this paper is a search algorithm to
find the good candidate mappings between the semantic types
and the nodes of the graph. The algorithm scores the mappings
as we map the semantic types to the nodes of the graph and
eliminates the mappings that are less likely to generate good
semantic models later. This algorithm enables our approach
to handle both the uncertainty of semantic types and sources
with a large number of attributes. Next we describe the overall
approach, focusing on new parts and only providing high level
descriptions of what is common to our previous work.

A. Learning Semantic Types of Source Attributes

The first step to model a source, which follows our previous
work, is to recognize the semantic types of its data. The ob-
jective of this step is mapping the attributes to the concepts of
the domain ontology. We formally define a semantic type to be
either an ontology class ⟨𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖⟩ or a pair consisting of a
data property and its domain class ⟨𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑢𝑟𝑖⟩.
We assign a class to attributes whose values are URIs and
assign a domain/data property pair to attributes containing
literal values. For example, the semantic types of the attributes
image and type in 𝑠 are respectively ⟨𝑒𝑑𝑚:𝑊𝑒𝑏𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒⟩
and ⟨𝑠𝑘𝑜𝑠:𝐶𝑜𝑛𝑐𝑒𝑝𝑡, 𝑠𝑘𝑜𝑠: 𝑝𝑟𝑒𝑓𝐿𝑎𝑏𝑒𝑙⟩.

To learn semantic types, our algorithm uses a supervised
machine learning technique [9] based on Conditional Random
Fields (CRF) [11] with features extracted from the attribute
names and sample data from the new source. A CRF model
is useful for this problem because it can handle large numbers
of features and learn from a small number of examples.

Once we apply this method, it generates a set of candidate
semantic types for each source attribute, each with a
confidence value. Our algorithm then selects the top 𝑘
semantic types for each attribute as an input to the next
step of the process. Thus, the output of the labeling step for
𝑠(𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑛) is 𝑇 = {(𝑡𝑝11

11 , ⋅ ⋅ ⋅, 𝑡𝑝1𝑘

1𝑘 ), ⋅ ⋅ ⋅, (𝑡𝑝𝑛1

𝑛1 , ⋅ ⋅ ⋅,
𝑡𝑝𝑛𝑘

𝑛𝑘 )}, where in 𝑡𝑝𝑖𝑗

𝑖𝑗 , 𝑡𝑖𝑗 is the 𝑗th semantic type learned for
the attribute 𝑎𝑖 and 𝑝𝑖𝑗 is the associated confidence value
which is a decimal value between 0 and 1. Considering
𝑘 = 2, we will have the following output after labeling the
attributes of the source 𝑠(𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙, 𝑖𝑚𝑎𝑔𝑒, 𝑡𝑦𝑝𝑒, 𝑎𝑟𝑡𝑖𝑠𝑡):

𝑡𝑖𝑡𝑙𝑒→ (⟨𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑂𝑏𝑗𝑒𝑐𝑡, 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑡𝑖𝑡𝑙𝑒⟩0.19,
⟨𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑂𝑏𝑗𝑒𝑐𝑡, 𝑟𝑑𝑓𝑠: 𝑙𝑎𝑏𝑒𝑙⟩0.08)

𝑙𝑎𝑏𝑒𝑙→ (⟨𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑂𝑏𝑗𝑒𝑐𝑡, 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛⟩0.7,

⟨𝑎𝑎𝑐:𝑃𝑒𝑟𝑠𝑜𝑛,𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐺𝑟2:𝑛𝑜𝑡𝑒⟩0.03)
𝑖𝑚𝑎𝑔𝑒→ (⟨𝑒𝑑𝑚:𝑊𝑒𝑏𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒⟩0.58, ⟨𝑓𝑜𝑎𝑓 :𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡⟩0.41)
𝑡𝑦𝑝𝑒→ (⟨𝑠𝑘𝑜𝑠:𝐶𝑜𝑛𝑐𝑒𝑝𝑡, 𝑠𝑘𝑜𝑠: 𝑝𝑟𝑒𝑓𝐿𝑎𝑏𝑒𝑙⟩0.82,

⟨𝑠𝑘𝑜𝑠:𝐶𝑜𝑛𝑐𝑒𝑝𝑡, 𝑟𝑑𝑓𝑠: 𝑙𝑎𝑏𝑒𝑙⟩0.15)
𝑎𝑟𝑡𝑖𝑠𝑡→ (⟨𝑓𝑜𝑎𝑓 :𝑃𝑒𝑟𝑠𝑜𝑛, 𝑓𝑜𝑎𝑓 :𝑛𝑎𝑚𝑒⟩0.27,

⟨𝑎𝑎𝑐:𝑃𝑒𝑟𝑠𝑜𝑛,𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐺𝑟2:𝑛𝑎𝑚𝑒𝑂𝑓𝑇ℎ𝑒𝑃𝑒𝑟𝑠𝑜𝑛⟩0.19)

As we can see in the output, the machine learning method
prefers ⟨𝑓𝑜𝑎𝑓 :𝑃𝑒𝑟𝑠𝑜𝑛, 𝑓𝑜𝑎𝑓 :𝑛𝑎𝑚𝑒⟩ for the semantic type of
the attribute artist, while according to the correct model (Fig-
ure 2), ⟨𝑎𝑎𝑐:𝑃𝑒𝑟𝑠𝑜𝑛,𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐺𝑟2:𝑛𝑎𝑚𝑒𝑂𝑓𝑇ℎ𝑒𝑃𝑒𝑟𝑠𝑜𝑛⟩
is the correct semantic type. We will show later how our
approach recovers the correct semantic type by considering
coherence of structure in computing the semantic models.

B. Building A Graph from Known Semantic Models, Semantic
Types, and Domain Ontology

So far, we have annotated the attributes of 𝑠 with semantic
types. To build a complete semantic model we still need to
determine the relationships between the attributes. We leverage
the knowledge of the known semantic models to discover the
most popular and coherent patterns connecting the semantic
types. The central component of our method is a directed
weighted graph 𝐺 built on top of the known semantic models
and expanded using the semantic types 𝑇 and the domain
ontology 𝑂. The algorithm we use to construct 𝐺 is described
in detail in our past work [8] and here we only provide a brief
explanation.

Similar to a semantic model, 𝐺 contains both class nodes
and data nodes and links. The links correspond to properties
in 𝑂 and there are weights on the links. Constructing the
graph has three parts: adding the known semantic models
(𝑠𝑚(𝑠1) and 𝑠𝑚(𝑠2) in our example); adding the semantic
types; and expanding the graph using the domain ontology
𝑂 (in our scenario, 𝑂 is a set of ontologies including EDM,
AAC, SKOS, Dublin Core Metadata Terms, FOAF, ORE, and
ElementsGr2).

Adding Known Semantic Models: We add each known
semantic model as a new component to 𝐺 if it is not a subgraph
of already added components. In our example, at the end
of this part, 𝐺 will consist of two disconnected subgraphs
corresponding to 𝑠𝑚(𝑠1) and 𝑠𝑚(𝑠2). These components are
depicted using a gray background in Figure 4.

Adding Semantic Types: As mentioned before, we
have two kinds of semantic types: ⟨𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖⟩ and
⟨𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑢𝑟𝑖⟩. For each learned semantic type 𝑡,
we search the graph to see whether 𝐺 includes a match for
𝑡. We say (𝑢, 𝑣, 𝑒) is a match for 𝑡 = ⟨𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖⟩ if 𝑢 is a
data node, 𝑣 is a class node with the label 𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖, and 𝑒
is a link from 𝑢 to 𝑣 with the label 𝑟𝑑𝑓 : 𝑡𝑦𝑝𝑒. For example,
in Figure 4, (𝑛25, 𝑟𝑑𝑓 : 𝑡𝑦𝑝𝑒, 𝑛18) is a match for the semantic
type ⟨𝑒𝑑𝑚:𝑊𝑒𝑏𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒⟩. We say (𝑢, 𝑣, 𝑒) is a match for
𝑡 = ⟨𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑢𝑟𝑖⟩ if 𝑢 is a class node with the
label 𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖, 𝑣 is a data node, and 𝑒 is a link from 𝑢
to 𝑣 with the label 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑢𝑟𝑖. For example, in Figure 4,
(𝑛4, 𝑠𝑘𝑜𝑠: 𝑝𝑟𝑒𝑓𝐿𝑎𝑏𝑒𝑙, 𝑛11) is a match for the semantic type
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⟨𝑠𝑘𝑜𝑠:𝐶𝑜𝑛𝑐𝑒𝑝𝑡, 𝑠𝑘𝑜𝑠: 𝑝𝑟𝑒𝑓𝐿𝑎𝑏𝑒𝑙⟩. We say 𝑡 = ⟨𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖⟩
or 𝑡 = ⟨𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑢𝑟𝑖⟩ has a partial match in
𝐺 when we cannot find a full match for 𝑡 but there is a
class node in 𝐺 whose label matches 𝑐𝑙𝑎𝑠𝑠 𝑢𝑟𝑖. For instance,
the semantic type ⟨𝑠𝑘𝑜𝑠:𝐶𝑜𝑛𝑐𝑒𝑝𝑡, 𝑟𝑑𝑓𝑠: 𝑙𝑎𝑏𝑒𝑙⟩ only has a
partial match in 𝐺 (𝑛4), because 𝐺 does not contain the
link 𝑟𝑑𝑓𝑠: 𝑙𝑎𝑏𝑒𝑙 after adding the known models (when 𝐺 only
includes the gray components).

For each semantic type 𝑡 learned in the labeling step, we
add the necessary nodes and links to 𝐺 to create a match or
complete existing partial matches. For example, for 𝑡𝑖𝑡𝑙𝑒 →
⟨𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑂𝑏𝑗𝑒𝑐𝑡, 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑡𝑖𝑡𝑙𝑒⟩, we do not
need to change 𝐺 because the graph contains two matches:
(𝑛1, 𝑛5, 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑡𝑖𝑡𝑙𝑒) and (𝑛17, 𝑛24, 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑡𝑖𝑡𝑙𝑒). For
𝑡𝑦𝑝𝑒 → ⟨𝑠𝑘𝑜𝑠:𝐶𝑜𝑛𝑐𝑒𝑝𝑡, 𝑟𝑑𝑓𝑠: 𝑙𝑎𝑏𝑒𝑙⟩, we have only one
partial match (𝑛4), thus, we add one data node (𝑛13) and
one link (𝑟𝑑𝑓𝑠: 𝑙𝑎𝑏𝑒𝑙) from 𝑛4 to 𝑛13 in order to complete
the existing partial match. For 𝑖𝑚𝑎𝑔𝑒→ ⟨𝑓𝑜𝑎𝑓 :𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡⟩,
there is neither a match nor a partial match. We add a class
node (𝑛15), a data node (𝑛19), and a link (𝑟𝑑𝑓 : 𝑡𝑦𝑝𝑒) from 𝑛19

to 𝑛15 to create a match. The nodes and the links that are
added in this step are shown with the blue color in Figure 4.

Adding Paths from the Ontology: We use the domain
ontology to find all the paths that relate the current class nodes
in 𝐺. We do this only for class nodes that do not belong
to the same pattern. The goal is to connect class nodes of
𝐺 using the direct paths or the paths inferred through the
subclass hierarchy in 𝑂. For instance, in Figure 4, there is the
link 𝑒𝑑𝑚: 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝐶𝐻𝑂 from 𝑛14 to 𝑛1. We add this link
because the object property 𝑒𝑑𝑚: 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝐶𝐻𝑂 is defined
with 𝑜𝑟𝑒:𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 as domain and 𝑒𝑑𝑚:𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑𝐶𝐻𝑂
as range, and 𝑒𝑑𝑚:𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛𝑎𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 is a subclass
of 𝑜𝑟𝑒:𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 and 𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑂𝑏𝑗𝑒𝑐𝑡 is
a subclass of 𝑒𝑑𝑚:𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑𝐶𝐻𝑂.

Assigning weights to the links of the graph is important
in our algorithm. We assign a very low weight 𝜖 to all the
links inside a component (black links in Figure 4). We assign
a high weight to all other links (blue and green links in
Figure 4). The intuition behind this decision is to produce
more coherent models later when we are generating candidate
semantic models for 𝑠. For the links that are outside a
component, we also take into account the link popularity. We
use a simple counting mechanism to assign lower weights (but
still very high compared to 𝜖) to the links that appear more
frequently in the set of known semantic models. For example,
the link 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑐𝑟𝑒𝑎𝑡𝑜𝑟 from 𝑛17 to 𝑛3 has a lower weight
compared to the link 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑠𝑖𝑡𝑡𝑒𝑟 from 𝑛17 to 𝑛3 because
𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑐𝑟𝑒𝑎𝑡𝑜𝑟 has appeared in one of the semantic models
(𝑠𝑚(𝑠1)), but 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑠𝑖𝑡𝑡𝑒𝑟 has not been seen before.

C. Mapping Semantic Types to the Graph

We use the graph built in the previous step to find the
relationships between the source attributes. First, we map the
source attributes to a subset of the nodes of the graph. Then,
we compute the minimal tree that connects those nodes (Sec-
tion III-D). To map the attributes of 𝑠 to the nodes of 𝐺, we

search 𝐺 to find the matches for the semantic types assigned
to the attributes. For example, the attribute 𝑡𝑦𝑝𝑒 in 𝑠 maps
to the nodes 𝑛4 and 𝑛11 because (𝑛4, 𝑛11, 𝑠𝑘𝑜𝑠: 𝑝𝑟𝑒𝑓𝐿𝑎𝑏𝑒𝑙)
is a match for ⟨𝑠𝑘𝑜𝑠:𝐶𝑜𝑛𝑐𝑒𝑝𝑡, 𝑠𝑘𝑜𝑠: 𝑝𝑟𝑒𝑓𝐿𝑎𝑏𝑒𝑙⟩, which is a
semantic type learned for the attribute 𝑡𝑦𝑝𝑒.

Since it is possible that a semantic type has more than
one match in 𝐺, more than one mapping 𝑚 might exist
from the source attributes to the nodes. In our past work
[8], we generated all the possible mappings and then selected
the candidate mappings after sorting them based on a metric
called coherence. However, generating all the mappings is not
feasible in cases where we have a data source with many
attributes and learned semantic types have many matches in
the graph. The problem is worse when we have more than one
semantic type for each attribute. Suppose that we are modeling
the source 𝑠 consisting of 𝑛 attributes and we have learned 𝑘
semantic type for each attribute. If there are 𝑟 matches for
each semantic type, we will have (𝑘 ∗ 𝑟)𝑛 mappings from
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑠) to 𝑛𝑜𝑑𝑒𝑠(𝐺).

In this section, we present an algorithm that scores a
mapping as we map the attributes to the nodes of the graph
and removes the low score mappings after mapping each
attribute. In addition to coherence, we also take into account
the confidence values of the semantic types and the size of the
mappings in the scoring function. The inputs to the algorithm
are the learned semantic types 𝑇 = {(𝑡𝑝11

11 , ⋅ ⋅ ⋅, 𝑡𝑝1𝑘

1𝑘 ), ⋅ ⋅ ⋅,
(𝑡𝑝𝑛1

𝑛1 , ⋅ ⋅ ⋅, 𝑡𝑝𝑛𝑘

𝑛𝑘 )} for the attributes {𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑛} and the graph
𝐺, and the output is a set of candidate mappings 𝑚 from
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑠) to a subset of 𝑛𝑜𝑑𝑒𝑠(𝐺). Algorithm 1 shows
the steps of our approach. The key idea is that instead of
generating all the mappings and then sorting them, we score
the partial mappings after processing each attribute and prune
the mappings with lower scores. In other words, we do not
wait until all the attributes are mapped. Instead, as soon as
we find the matches for the semantic types of an attribute, we
rank the partial mappings and keep the better ones. In this
way, the number of candidate mappings never exceeds a fixed
size after mapping each attribute.

The heart of the algorithm is the scoring function we use to
rank the partial mappings (line 24 in in Algorithm 1). We com-
pute three functions for each mapping 𝑚: 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑚),
𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑚), and 𝑠𝑖𝑧𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑚). Then, we calculate
𝑠𝑐𝑜𝑟𝑒(𝑚) as the arithmetic mean of these three values. We
explain these functions using an example. Suppose that the
maximum number of the mappings we expand in each step
is 8 (𝑚𝑎𝑥 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 in line 3). After mapping the second
attribute of the source 𝑠 (𝑙𝑎𝑏𝑒𝑙), we will have 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 = {
𝑚1 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛1, 𝑛5, 𝑛7},
𝑚2 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛1, 𝑛5, 𝑛3, 𝑛12},
𝑚3 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛1, 𝑛5, 𝑛17, 𝑛27}
𝑚4 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛1, 𝑛6, 𝑛7},
𝑚5 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛1, 𝑛6, 𝑛3, 𝑛12},
𝑚6 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛1, 𝑛6, 𝑛17, 𝑛27},
𝑚7 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛17, 𝑛24, 𝑛27},
𝑚8 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛17, 𝑛24, 𝑛3, 𝑛12},
𝑚9 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛17, 𝑛24, 𝑛1, 𝑛7},
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Fig. 4. The graph constructed from the known semantic models 𝑠𝑚(𝑠1), 𝑠𝑚(𝑠2), semantic types, and a set of ontologies including EDM, AAC, SKOS,
Dublin Core Metadata Terms, FOAF, ORE, and ElementsGr2. For legibility, only a few of all the possible paths between the class nodes are shown.

Algorithm 1 GenerateCandidateMappings
Input: 𝐺(𝑉,𝐸),

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑠) = {𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑛}
𝑇 = {(𝑡𝑝1111 , ⋅ ⋅ ⋅, 𝑡𝑝1𝑘1𝑘 ), ⋅ ⋅ ⋅, (𝑡𝑝𝑛1

𝑛1 , ⋅ ⋅ ⋅, 𝑡𝑝𝑛𝑘
𝑛𝑘 )}

Output: a set of candidate mappings 𝑚 from 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑠) to 𝑆 ⊂ 𝑉
1: 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 ← {}
2: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← {}
3: 𝑚𝑎𝑥 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 ← maximum number of mappings to expand
4: 𝑛𝑢𝑚 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← number of candidate mappings
5: for each 𝑎𝑖 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑠) do
6: for each 𝑡

𝑝𝑖𝑗
𝑖𝑗 ∈ (𝑡

𝑝𝑖1
𝑖1 , ⋅ ⋅ ⋅, 𝑡𝑝𝑖𝑘𝑖𝑘 ) do

7: 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ← all the (𝑢, 𝑣, 𝑒) in 𝐺 matching 𝑡𝑖𝑗
8: if 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 = {} then
9: for each (𝑢, 𝑣, 𝑒) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 do

10: 𝑚 ← ({𝑎𝑖} → {𝑢, 𝑣})
11: 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 ← 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 ∪𝑚
12: end for
13: else
14: for each 𝑚 : 𝑋 → 𝑌 ∈ 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 do
15: for each (𝑢, 𝑣, 𝑒) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 do
16: 𝑚′ ← (𝑋 ∪ {𝑎𝑖} → 𝑌 ∪ {𝑢, 𝑣})
17: 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 ← 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 ∪𝑚′
18: end for
19: remove 𝑚 from 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠
20: end for
21: end if
22: end for
23: if ∣𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠∣> 𝑚𝑎𝑥 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 then
24: compute 𝑠𝑐𝑜𝑟𝑒(𝑚) for each 𝑚 ∈ 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠
25: sort items in 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 based on their score
26: keep top 𝑚𝑎𝑥 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 mappings and remove others
27: end if
28: end for
29: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← top 𝑛𝑢𝑚 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 items from 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠

return 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

𝑚10 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛17, 𝑛26, 𝑛27},
𝑚11 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛17, 𝑛26, 𝑛3, 𝑛12},
𝑚12 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙} → {𝑛17, 𝑛26, 𝑛1, 𝑛7} }
There are 4 matches for the attribute 𝑡𝑖𝑡𝑙𝑒: (𝑛1, 𝑛5) and

(𝑛17, 𝑛24) for the semantic type ⟨𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒-
𝑂𝑏𝑗𝑒𝑐𝑡, 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑡𝑖𝑡𝑙𝑒⟩ and (𝑛1, 𝑛6) and (𝑛17, 𝑛26) for the
semantic type ⟨𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑂𝑏𝑗𝑒𝑐𝑡, 𝑟𝑑𝑓𝑠: 𝑙𝑎𝑏𝑒𝑙⟩;

and 3 matches for the attribute 𝑙𝑎𝑏𝑒𝑙: (𝑛1, 𝑛7) and
(𝑛17, 𝑛27) for the semantic type ⟨𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒-
𝑂𝑏𝑗𝑒𝑐𝑡, 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛⟩ and (𝑛3, 𝑛12) for the semantic
type ⟨𝑎𝑎𝑐:𝑃𝑒𝑟𝑠𝑜𝑛,𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐺𝑟2:𝑛𝑜𝑡𝑒⟩. This yields 4 ∗ 3 =
12 different mappings. Since 𝑚𝑎𝑥 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 = 8, we have
to eliminate four of these mappings. Now, we describe how
the algorithm ranks the mappings.

Confidence(m) is the arithmetic mean of the confidence
values associated with a mapping. For example, 𝑚1

is consisting of the matches for the semantic types
⟨𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑂𝑏𝑗𝑒𝑐𝑡, 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑡𝑖𝑡𝑙𝑒⟩0.19 and
⟨𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑂𝑏𝑗𝑒𝑐𝑡, 𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛⟩0.7.
Thus, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑚1) = 0.445.

Coherence(m) measures the largest number of nodes in a
mapping that belong to the same component. For instance,
𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑚1) = 0.66 because two nodes out of three
nodes in 𝑚1 (𝑛1 and 𝑛5) are from component 1, and
𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑚3) = 0.5 because 2 is the largest number of
nodes in 𝑚3 that are from the same component. The goal of
defining the coherence is to give more priority to the models
containing larger segments from the known patterns.

Size Reduction: Since we prefer concise models, we seek
mappings with fewer nodes. If a mapping has 𝑛 attributes, the
smallest possible size is 𝑙 = 𝑛 + 1 (when all the attributes
map to the same class node, e.g., 𝑚1) and the largest is 𝑢 =
2∗𝑛 (when all the attributes map to different class nodes, e.g.,
𝑚2). Thus, the possible size reduction in a mapping is 𝑢 −
𝑙. We define 𝑠𝑖𝑧𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑚) = 𝑢−𝑠𝑖𝑧𝑒(𝑚)

𝑢−𝑙+1 as how much
the size of a mapping is reduced compared to the possible
size reduction. For example, 𝑠𝑖𝑧𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑚1) = 0.5 and
𝑠𝑖𝑧𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑚2) = 0.
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Score(m) is the arithmetic mean of 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑚),
𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑚), and 𝑠𝑖𝑧𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑚). All these func-
tions have a value in [0, 1]. Here are the scores of the
12 mappings we mentioned before: 𝑠𝑐𝑜𝑟𝑒(𝑚1) = 0.535,
𝑠𝑐𝑜𝑟𝑒(𝑚2) = 0.286, 𝑠𝑐𝑜𝑟𝑒(𝑚3) = 0.315, 𝑠𝑐𝑜𝑟𝑒(𝑚4) =
0.406, 𝑠𝑐𝑜𝑟𝑒(𝑚5) = 0.185, 𝑠𝑐𝑜𝑟𝑒(𝑚6) = 0.213,
𝑠𝑐𝑜𝑟𝑒(𝑚7) = 0.535, 𝑠𝑐𝑜𝑟𝑒(𝑚8) = 0.203, 𝑠𝑐𝑜𝑟𝑒(𝑚9) =
0.315, 𝑠𝑐𝑜𝑟𝑒(𝑚10) = 0.380, 𝑠𝑐𝑜𝑟𝑒(𝑚11) = 0.101,
𝑠𝑐𝑜𝑟𝑒(𝑚12) = 0.213. Therefore, 𝑚5, 𝑚6, 𝑚8, and 𝑚11 will
be removed from the 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 (line 26), and the algorithm
continues to the next iteration, which is mapping the next
attribute of the source 𝑠 (𝑖𝑚𝑎𝑔𝑒) to the graph. At the end, we
will have maximum 𝑚𝑎𝑥 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 mappings, each of them
will include all the attributes. We sort these mappings based
on their score and consider the top 𝑛𝑢𝑚 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
mappings as the candidates (line 29). In the next part of the
approach, we compute a semantic model for each of these
candidate mappings.

D. Generating and Ranking Semantic Models

Once we generated candidate mappings from the source
attributes to the nodes of the graph, we compute a semantic
model for each mapping and then rank the resulting models.
To compute a semantic model for a mapping 𝑚, we find a
minimum-cost tree in 𝐺 that connects the nodes of 𝑚. This
problem is known as the Steiner Tree problem [12], [13].
Given an edge-weighted graph and a subset of the vertices,
called Steiner nodes, the goal is to find the minimum-weight
tree that spans all the Steiner nodes. The general Steiner
tree problem is NP-complete, thus, we use an approximation
algorithm [13] to compute the tree for each mapping 𝑚.
The inputs to the algorithm are the graph 𝐺 and the nodes
of 𝑚 (as Steiner nodes) and the output is a tree that we
consider it as a candidate semantic model for 𝑠. For example,
for the mapping 𝑚 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙, 𝑖𝑚𝑎𝑔𝑒, 𝑡𝑦𝑝𝑒, 𝑎𝑟𝑡𝑖𝑠𝑡} →
{𝑛1, 𝑛5, 𝑛7, 𝑛18, 𝑛25, 𝑛4, 𝑛11, 𝑛3, 𝑛10}, the resulting Steiner
tree is the correct semantic model of 𝑠 shown in Figure 2.
The final step of our approach is ranking the semantic models
generated for the candidate mappings where we rank them
based on their cost (sum of the weights of the links). The
output is a ranked list of plausible semantic models for 𝑠.

It is important to note that considering coherence of
patterns in scoring the mappings and also ranking the fi-
nal semantic models enables our approach to compute the
correct semantic model in many cases where the first-
ranked semantic types are not the correct ones. For exam-
ple, the mapping 𝑚 : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙, 𝑖𝑚𝑎𝑔𝑒, 𝑡𝑦𝑝𝑒, 𝑎𝑟𝑡𝑖𝑠𝑡} →
{𝑛1, 𝑛5, 𝑛7, 𝑛18, 𝑛25, 𝑛4, 𝑛11, 𝑛3, 𝑛10} that maps the at-
tribute artist to 𝑛3 and 𝑛10 using the semantic type
⟨𝑎𝑎𝑐:𝑃𝑒𝑟𝑠𝑜𝑛,𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐺𝑟2:𝑛𝑎𝑚𝑒𝑂𝑓𝑇ℎ𝑒𝑃𝑒𝑟𝑠𝑜𝑛⟩ will be
scored higher than the mapping 𝑚′ : {𝑡𝑖𝑡𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙, 𝑖𝑚𝑎𝑔𝑒,
𝑡𝑦𝑝𝑒, 𝑎𝑟𝑡𝑖𝑠𝑡} → {𝑛1, 𝑛5, 𝑛7, 𝑛18, 𝑛25, 𝑛4, 𝑛11, 𝑛16, 𝑛20} that
maps this attribute to 𝑛16 and 𝑛20 using the semantic type
⟨𝑓𝑜𝑎𝑓 :𝑃𝑒𝑟𝑠𝑜𝑛, 𝑓𝑜𝑎𝑓 :𝑛𝑎𝑚𝑒⟩. The mapping 𝑚 has lower
confidence value than 𝑚′, but it will be scored higher because
its coherence value is higher. The model computed from

the mapping 𝑚 will also be ranked higher than the model
computed from 𝑚′, because it includes more links from known
patterns, thus resulting in a lower cost tree.

IV. EVALUATION

We evaluated our approach on a dataset of 29 museum
data sources containing data from different art museums in
the US. The total number of attributes for this dataset was
332 (on average 11 attributes per source). We applied our
approach on this dataset to find the candidate semantic models
for each source and then compared the best suggested models
(the first ranked models) with models created manually by
domain experts. The sources were modeled using the EDM,
AAC, SKOS, Dublin Core Metadata Terms, FOAF, ORE, and
ElementsGr2 ontologies.

We compare semantic models using precision and recall:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑟𝑒𝑙(𝑠𝑚)∩𝑟𝑒𝑙(𝑠𝑚′)
𝑟𝑒𝑙(𝑠𝑚′) , 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑟𝑒𝑙(𝑠𝑚)∩𝑟𝑒𝑙(𝑠𝑚′)

𝑟𝑒𝑙(𝑠𝑚)

where for a semantic model 𝑠𝑚, 𝑟𝑒𝑙(𝑠𝑚) is the set of
triples ⟨𝑢, 𝑒, 𝑣⟩ in which 𝑒 is a directed link from 𝑢
to 𝑣 in 𝑠𝑚. For example, for the semantic model in
Figure 2, 𝑟𝑒𝑙(𝑠𝑚) = {⟨𝑒𝑑𝑚:𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛𝑎𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛,
𝑒𝑑𝑚: 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝐶𝐻𝑂, 𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑂𝑏𝑗𝑒𝑐𝑡⟩,
⟨𝑒𝑑𝑚:𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛𝑎𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛, 𝑒𝑑𝑚:ℎ𝑎𝑠𝑉 𝑖𝑒𝑤,
𝑒𝑑𝑚:𝑊𝑒𝑏𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒⟩, ⟨𝑎𝑎𝑐:𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐻𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑂𝑏𝑗𝑒𝑐𝑡,
𝑑𝑐𝑡𝑒𝑟𝑚𝑠: 𝑐𝑟𝑒𝑎𝑡𝑜𝑟, 𝑎𝑎𝑐:𝑃𝑒𝑟𝑠𝑜𝑛⟩, ⋅ ⋅ ⋅}.

Assume that the correct semantic model of the source 𝑠 is
𝑠𝑚 and the semantic model learned by our approach is 𝑠𝑚′.
We can prove that if all the nodes in 𝑠𝑚 have unique labels
and all the nodes in 𝑠𝑚′ also have unique labels, 𝑟𝑒𝑙(𝑠𝑚) =
𝑟𝑒𝑙(𝑠𝑚′) ensures that 𝑠𝑚 and 𝑠𝑚′ are equivalent. However,
if the semantic models have more than one instance of an
ontology class, we will have nodes with the same label. In
this case, 𝑟𝑒𝑙(𝑠𝑚) = 𝑟𝑒𝑙(𝑠𝑚′) does not guarantee 𝑠𝑚 = 𝑠𝑚′.
Many sources in our dataset have models that include two
instances of an ontology class. Therefore, before measuring
the precision and recall, we number the nodes having the same
label to assign them a unique label. For example, if we have
two nodes labeled with the class URI 𝑎𝑎𝑐:𝑃𝑒𝑟𝑠𝑜𝑛 in a model,
we change the labels to 𝑎𝑎𝑐:𝑃𝑒𝑟𝑠𝑜𝑛1 and 𝑎𝑎𝑐:𝑃𝑒𝑟𝑠𝑜𝑛2.

We ran three experiments: (1) We labeled each source
attribute with the correct semantic type. The goal was to
see how well our approach learns the attribute relationships
having the correct semantic types. (2) We applied the CRF
technique to learn the semantic types and then only considered
the semantic type with the highest confidence value (𝑘 = 1).
(3) We used CRF for labeling but instead of the top semantic
type, we considered the top four learned semantic types as the
candidate semantic types (𝑘 = 4).

In all experiments, we applied our method to learn a
semantic model for the source 𝑠𝑖, 𝑠𝑚(𝑠𝑖), assuming that the
semantic models of the other sources are known. To investigate
how the number of the known models influences the results,
we used variable number of known models as input. Suppose
that 𝑀𝑗 is the set of known semantic models including 𝑗
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models. Running the experiment with 𝑀0 means that we do
not use any knowledge other than the domain ontology and
running it with 𝑀28 means that the semantic models of all
other sources are known. For example, for 𝑠1, we ran the
code 29 times using 𝑀0 = {},𝑀1 = {𝑠𝑚(𝑠2)},𝑀2 =
{𝑠𝑚(𝑠2), 𝑠𝑚(𝑠3)}, ⋅ ⋅ ⋅ ,𝑀28 = {𝑠𝑚(𝑠2), ⋅ ⋅ ⋅ , 𝑠𝑚(𝑠29)}. We
used 𝑚𝑎𝑥 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 = 100 in our mapping algorithm and
then only considered the top 10 mappings as the candidate
mappings (𝑛𝑢𝑚 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 10). Figure 5 shows the
average precision and recall of all the learned semantic models
(𝑠𝑚′(𝑠1), ..., 𝑠𝑚′(𝑠29)) for all the three experiments.
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Fig. 5. Average precision and recall for the learned semantic models when:
the correct semantic type is known; only the top CRF suggested type is
considered (k=1); and the top four suggested types are considered (k=4).

The results show that the precision and recall increase
significantly even with a few known semantic models. When
all the attributes have the correct type, our approach can
learn relationships with high precision and recall. Obviously,
learning the correct semantic type for all the attributes is not
possible. As we can see in the graph, when we use the CRF
technique to learn the semantic types, the results are not as
good as when we know the correct types. In the case where
we only consider the top semantic type (𝑘 = 1), the average
precision and recall for most of the sources fall in [0.5, 0.6].
The reason is that for 38% of the attributes, the top learned
semantic type was not the correct semantic type. Nonetheless,
when we consider more than one semantic type (𝑘 = 4), we
can learn more accurate models. Given that still the correct
semantic type of 13% of the attributes was not among the top
four suggested semantic types, the results demonstrate that
our algorithm performs fairly well when there is uncertainty
is learning the semantic types.

To evaluate the running time of the approach, we measured
the time of running the algorithm (excluding the labeling step
and starting from building the graph) on a single machine
with a Mac OS X operating system and a 2.3 GHz Intel
Core i7 CPU. Figure 6 shows the average time (in seconds)
of learning the semantic models. We believe that the overall
time of the process can be further reduced by using parallel
programming and some optimizations in the implementation.
For example, the graph can be built incrementally. When a
new known model is added, we do not need to create the
graph from beginning. We just need to add a new component
to the existing graph and update the links.

We compared our new approach with the previous work [8]
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Fig. 6. Average semantic model learning time, for 𝑘 = 1 and 𝑘 = 4.

to show that the new approach scales better. In this experiment,
we used 𝑘 = 1 because the previous work was not able to
take into account more than one semantic type for each source
attribute. For each source, we applied both approaches to learn
a semantic model assuming that the semantic models of all
other sources are known (running both approaches with 𝑀28).

The previous approach could only learn a semantic model
for 2 out of 29 sources in the timeout of 1 hour. These two
sources only had 4 attributes. The reason is that the number of
mappings for sources that have more than a few attributes is
very large and it takes a long time to generate all of them. For
example, in modeling 𝑠16 with only 5 attributes, the number
of mappings was 16,633,298.

V. RELATED WORK

One of the basic approaches to data integration is building
a global schema and then defining every source as a view over
the global schema [1]. The core of this approach are source
descriptions that model the semantics of data sources as logical
mappings between the sources and the global schema. There
has been much work to automate the task of generating these
mappings. Some work [14], [15] only finds correspondences
between elements of the source and global schemas. This is
analogous to the semantic labeling step in our work, where
we use a machine learning technique [9] to learn candidate
semantic types for a source attribute. Every semantic type
maps an attribute to an element in the domain ontology (a class
or property in the domain ontology). Further work [16]–[19]
generates more complex mappings that express relationships.
However, they do not exploit the knowledge of previously
modeled sources as we do.

In the Semantic Web, the global model is an ontology that
defines the concepts and relationships within a domain. There
are many studies on mapping data sources to ontologies. Most
of this work [2]–[6] focus on semantic annotation, but is
limited in learning relationships. Carman and Knoblock [20]
use known source descriptions to generate a mapping for an
unknown target source. However, their approach was limited
to learning descriptions that were conjunctive combinations of
known source descriptions.

Our previous work on source modeling in Karma [7], [10],
[21] maps a source to an ontology interactively. The system
uses learned semantic types and a Steiner tree algorithm
to propose models to the user, who can correct them as
needed. Although Karma remembers new semantic type labels
assigned by the user, it does not learn from the structure of
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previously modeled sources. This prompted our recent work
[8] to exploit the known semantic models to learn a semantic
model for a new unknown source. However, this approach
assumed that each source attribute was labeled with the correct
semantic type and failed to scale to sources with a large
number of attributes. The work we have presented addresses
these limitations. Our algorithm considers multiple possible
semantic types for each attribute and searches the space of
semantic models efficiently.

VI. DISCUSSION

We presented a scalable approach to learn semantic models
of structured data sources as a mapping from the source to a
domain ontology. The core idea is to exploit the knowledge of
previously learned semantic models to hypothesize a plausible
semantic model for a new source. We extend on previous work
[8] by allowing for uncertainty in learning semantic types and
by scaling to sources with many attributes. Our evaluation
shows that the new approach can learn semantic models for
data sources that the previous approach was not able to handle.

The first step in learning semantic models is learning the
semantic types in which we label each source attribute with a
class or property from the ontology. Here, we generalize the
previous work to deal with uncertainty in labeling the source
attributes. The output of the labeling step is a set of candidate
semantic types and their confidence values rather than one
fixed semantic type. This new extension is very important
because machine learning techniques often cannot distinguish
the types of the source attributes that have similar data values,
e.g., birthDate and deathDate.

Once we learned the semantic types, we create a graph
from known semantic models and augment it by adding the
nodes and the links corresponding to the semantic types and
adding the paths inferred from the ontology. The next step
is mapping the source attributes to the nodes of the graph
where we introduce a new algorithm that enables us to do
the mapping even when the source has many attributes. In
the new algorithm, after processing each source attribute, we
prune the existing mappings by scoring them and removing
the ones having lower scores. The proposed scoring function
not only contributes to the scalability of our method, but also
increases the accuracy of the learned models.

The final part of the approach is computing the minimal
tree that connects the nodes of the candidate mappings. This
step might be computationally inefficient if we have a very
large graph (e.g, when we have a large number of known
models) or/and the number of candidate mappings is very
large. Reducing the size of the graph is part of our future work
where we want to investigate the idea of constructing a more
compact graph by consolidating the overlapping segments
of the known semantic models. Regarding the number of
candidate mappings, our empirical evaluation showed that
the algorithm works very well even with a few number of
candidates (10 in our experiment).

Another direction of future work is to leverage the large
amount of data available in the Linked Open Data (LOD)

cloud to improve the quality of the automatically generated
models. LOD contains lots of resources connected to each
other using the relationships defined by different domain
ontologies. Performing record linkage between some of the
source data and the entities in the LOD, allows us to exploit
existing links between those entities to improve the accuracy
of our automatically-generated source models.
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