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Ray Tracing:
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Ray Tracing:

Rendering the scene:
Generating a 2-dimensional image of a 3-dimensional scene
that amounts to:
• determining the visible object at each pixel on the screen,
• determining how bright the object is.

Ray tracing:
Determining the visible object at each pixel by shooting a ray
from the view point through each pixel.

Note:
Ray tracing can also determine how bright the object is.
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Supersampling:

• A pixel is not a point, but a small
square area.

• Shooting a ray through each pixel
center results in the well-known
jaggies in the image.

• The solution is to shoot more
than one ray per pixel.

Supersampling:
instead of taking one sample point per pixel, we take many.
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How should we distribute the rays over the pixel :

• Distributing rays regularly isn’t such a good idea. Small
per-pixel error, but regularity in error across rows and
columns. (which triggers the human visual system.)

• It’s better to choose the sample points in a somewhat
random fashion.

• We want the sample points to be distributed in such a way
that the number of hits is closed to the percentage of
covered area.
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Discrepancy:

Discrepancy of sample set with respect to object:
The difference between the percentage of hits for an object and
the percentage of the pixel area where that object is visible.

Note:
we don’t know in advance which objects will be visible in the
pixel.

Discrepancy of the sample set:
The maximum discrepancy over all possible ways that an object
can be visible inside the pixel.
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How discrepancy can be useful?
Based on the discrepancy of given set of sample points we can
decide if it is good enough: if the discrepancy is low enough we
decide to keep it, and otherwise we generate a new random set.

• For this we need an algorithm that computes the
discrepancy of a given point set.
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• Assume that curved
objects are approximated
using polygonal meshes.

• So the 2-dimensional
objects that we must
consider are the
projections of the facet of
polyhedra.

• Most likely, a single pixel intersects a single polygon side
which is like intersecting a half-plane.

• Therefore we restrict our attention to half-plane
discrepancy.
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• U = [0 : 1]× [0 : 1] : The unit
square (pixel)

• H = The (infinite) set of all
possible half-planes (scene)

• S = A set of n sample points in U
• Continuous measure : µ(h) =

area of h ∩ U
• Discrete measure :
µS(h) = card(S ∩ h)/card(S)

• Discrepancy of h wrt S :
∆S(h) = |µ(h)− µS(h)|

• Half-plane discrepancy of S :
∆H(S) = suph∈H ∆S(h)
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• We first identify a finit set of condidate half-planes.

• The half-plane of maximum discrepancy must pass
through at least one sample point.

• Let it pass through exactly one point.

• The maximum discrepancy must be at a local extremum of
the continuous measure.

• There are an infinite number of h through each point p, but
only O(1) of them are local extrema.
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Let:

• p := (px ,py ) be a point in S,
• lp(φ) be the line through p that

makes an angle φ with the
positive x-axis for 0 ≤ φ < 2π,

• hp(φ) be the half-plane initially
lying above lp(φ).

• We are interested in the local extrema of the function
φ→ µ(hp(φ)).
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• There is a constant number of local extrema per point
p ∈ S.

• Thus the total number of condidate half-planes with one
point on their boundary is O(n).

• Moreover, we can find the extrema and the corresponding
half-planes in O(1) time per point.
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Lemma 8.1
Let S be a set of n points in the unit square U. A half-plane h
that achieves the maximum discrepancy with respect to S is of
one of the following types:

(i) h contains one point p ∈ S on its boundary,
(ii) h contains two or more points of S on its boundary.

The number of type (i) condicates is O(n), and they can be
found in O(n) time.
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• The number of type (ii) condidates is quadratic.

• Because the number of type (i) condidates is linear, we
treat them in a brute-force way: for each of the O(n)
half-planes we compute their continuous measure in
constant time, and their discrete measure in O(n) time.
This way the muximum of the discrepancies of this
half-planes can be computed in O(n2) time.

• For the type (ii) candidates we need some new techniques.
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Theorem 8.2
The half-plane discrepancy of a set S of n points in the unit
square can be computed in O(n2) time.
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Duality:

• A point in the plane has two parameters: its x-coordinate
and its y-coordinate.

• A (non-vertical) line in the plane also has two parameters:
its slope and its intersection with the y-axis.

• Therefore we can map a set of points to a set of lines, and
vice versa, in a one-to-one manner.

Duality transform:
One-to-one mapping of a set of points to a set of lines such that
certain properties are preserved.

• The image of an object under a duality transform is called
the dual of the object.
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One possible and simple duality tranform:

• point p : (px ,py ) ⇐⇒ line p∗ : y = pxx − py

• line l : y = mx + b ⇐⇒ point l∗ : (m,−b)

Note:
The duality transform is not defined for vertical lines.
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Observation 8.3
Let p be a point in the plane and let l be a non-vertical line in
the plane. The duality transform o 7→ o∗ has the following
properties.

• It is incidence preserving: p ∈ l if and only if l∗ ∈ p∗.
• It is order preserving: p lies above l if and only if l∗ lies

above p∗.
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Duality can be applied to other objects, e.g. segments:

• Let s := p̄q be a line segment

• Dual of a segment is a double wedge.
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Duality can be applied to other objects, e.g. parabola:

• parabola U : y = x2/2
• point p = (px ,py ) on U
• derivative of U at p is px , i.e., p∗

has same slope as tangent line
• tangent line intersects y-axis at

(0,−p2
x/2)

• ⇒ p∗ is tangent line at p
• if q lies directly above or below p,

then q∗ is the line parallel to p∗
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How duality can be useful?

• If you can solve a problem in the dual plane, you could
solved it in the primal plane as well by mimicking the
solution to the dual problem in the primal problem.

• Looking at things on the dual plane provides new
perspectives.
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Back to the discrepancy problem:

To determine our discrete measure, we need to:

• Determine how many
sample points lie below a
given line(in the primal
plane).

Dualizes to:

• Given a point in the dual
plane we want to
determine how many
sample lines lie above it.
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Arrangements:

Arrangement A(L):
Let L be a set of n lines in the plane. L induces a subdivision of
the plane that consists of vertices,edges, and faces.This is
called the arrangement induced by L, denoted A(L).



Outline Supersampling in Ray Tracing Computing the Discrepancy Duality Arrangements of Lines Levels and Discrepancy

Simple arrangment:
An arrangement is called simple if no three lines pass through
the same point and no two lines are parallel.

Complexity:
The complexity of an arrangement is defined as the total
number of vertices, edges, and faces of the arrangement.
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Theorem 8.4
Let L be a set of n lines in the plane, and let A(L) be the
arrangement induced by L.

(i) The number of vertices of A(L) is at most n(n − 1)/2.
(ii) The number of edges of A(L) is at most n2.
(iii) The number of faces of A(L) is at most n2/2 + n/2 + 1.

Equality holds in these three statements if and only if A(L) is
simple.

• Total complexity of an arrangement is O(n2).
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Constructing Arrangements:

• We place a bounding box
B(L) that contains all the
vertices of A(L) in its
interior.

• The subdivision defined by the bounding box plus the part
of the arrangement inside it has bounded edges only and
can be stored in a doubly-connected edge list.
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Constructing Arrangements:

Goal:
Compute A(L) in bounding box in DCEL representation

• A plane sweep algorithm would run in O(n2 log n) time.
• faster: Incremental algorithm (O(n2))
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Incremental Algorithm:

• Compute a bounding box B(L)
that contains all vertices of A(L)
in its iterior and initialize the
DCEL.

• Incrementally add each line li to
Ai−1 and update DCEL.

• Find the edge e on B(L) that
contains the leftmost
intersection point of li and Ai

• Split face bounded by e
• Move on to next intersected

face



Outline Supersampling in Ray Tracing Computing the Discrepancy Duality Arrangements of Lines Levels and Discrepancy

Incremental Algorithm:

• Splitting a face f intersected by li :
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Incremental Algorithm:

• Splitting a face f intersected by li :
• Assume that the face intersected by li to the left of f has

already been split.
• Find the edge e′ where li leaves f and its twin.
• Create two new records for new faces f ′ and f ” created by

li .
• Create a new vertex record for vertex v ′ where li intersects

e′ (li ∩ e′).
• Create two new records for half-edges created by v ′.
• Create half-edge record for the edge li ∩ f .
• Delete records for e′ and f .

• Move to face bounded by twin(e′).
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Incremental Algorithm:
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Running time analysis:

• Step 1, computing B(L), can be done in O(n2) time.
• Step 2, constructing DCEL for B(L), takes only constant

time.
• Step 4, Finding the first face split by li takes O(n) time.
• We now bound the time it takes to split the faces

intersected by li (step 7).
• The edges we encounter are on the boundary of faces

whose closure is intersected by li . This leads us to the
concept of zones.
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Zones:

Zone of a line l in an arrangement:
The zone of a line l in an arrangement A(L) is the set of faces
of A(L) whose closure intersects l .



Outline Supersampling in Ray Tracing Computing the Discrepancy Duality Arrangements of Lines Levels and Discrepancy

Zones:

Complexity:
The complexity of a zone is defined as the total complexity of all
the faces it consists of, i.e. the sum of the number of edges and
vertices of these faces.

• The time we need to insert line li is linear in the complexity
of the zone of li in A(l1, . . . , li).

• The Zone Theorem tells us that his quantity is linear.



Outline Supersampling in Ray Tracing Computing the Discrepancy Duality Arrangements of Lines Levels and Discrepancy

Zones:

Complexity:
The complexity of a zone is defined as the total complexity of all
the faces it consists of, i.e. the sum of the number of edges and
vertices of these faces.

• The time we need to insert line li is linear in the complexity
of the zone of li in A(l1, . . . , li).

• The Zone Theorem tells us that his quantity is linear.



Outline Supersampling in Ray Tracing Computing the Discrepancy Duality Arrangements of Lines Levels and Discrepancy

Zone Theorem:

Theorem 8.5 (Zone Theorem)
The complexity of the zone of a line in an arrangement of m
lines in the plane is O(m).
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Proof of Zone Theorem:

• Given an arrangement of m lines, A(L), and a line l .
• Without loss of generality we assume that l coincides with

the x-axis.
• An edge is a left bounding edge for the face lying to the

right of it and a right bounding edge for the face lying to the
left of it.

• Claim: the number of left bounding edges of the faces in
the zone of l is at most 5m.(Same for number of right
bounding edges)
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Proof of Zone Theorem:

(i) Assume first that no line of L is horizontal.

Claim: the number of left bounding edges of the faces in the
zone of l is at most 5m.(Same for number of right bounding
edges)

• By induction on m.
• For m = 1: Trivial.

(1 left bounding edge ≤ 5)
• For m > 1:
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Proof of Zone Theorem:

(1) Let l1 be the rightmost line intersecting l (assume it’s
unique).

• The zone of l in A(L \ l1)
has at most 5(m − 1) left
bounding edges.

• When adding l1, the
number of such edges
increases:

• One new left bounding
edge on l1.

• Two old left bounding
edges split by l1.

• Hence, the total number of
left bounding edged in this
case is at most
5(m − 1) + 3 < 5m.
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bounding edges.

• When adding l1, the
number of such edges
increases:

• One new left bounding
edge on l1.

• Two old left bounding
edges split by l1.

• Hence, the total number of
left bounding edged in this
case is at most
5(m − 1) + 3 < 5m.
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Proof of Zone Theorem:

(1) Let l1 be the rightmost line intersecting l (assume it’s
unique).

• The zone of l in A(L \ l1)
has at most 5(m − 1) left
bounding edges.

• When adding l1, the
number of such edges
increases:

• One new left bounding
edge on l1.

• Two old left bounding
edges split by l1.

• Hence, the total number of
left bounding edged in this
case is at most
5(m − 1) + 3 < 5m.
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Proof of Zone Theorem:

(2) If exactly two lines intersect l in the rightmost intersection
point:

• Denote these lines by l1 ,l2.
• The zone of l in A(L \ l1)

has at most 5(m-1) left
bounding edges.

• l1 has two left bounding
edges

• l2 is split into two left
bounding edges

• l1 splits two other left
bounding edges

• Hence, the new zone
complexity is at most
5(m − 1) + 5 = 5m.
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Proof of Zone Theorem:

(3) If several lines (> 2) intersect l in the rightmost intersection
point:

• Pick l1 randomly out of
these lines.

• The zone of l in A(L \ l1)
has at most 5(m − 1) left
bounding edges.

• When adding l1, the
number of such edges
increases:

• Two new edges on l1.
• Two old edges split by l1.

• Hence, the new zone
complexity is at most
5(m − 1) + 4 < 5m.
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Proof of Zone Theorem:
(ii) And what if there are horizontal lines?

• A horizontal line that
does’nt coincide with l ,
introduces less complexity
into A(L) than a
non-horizontal line.

• If L contains a line li that
coincide with l , the addition
of li to A(L \ li) increases
the number of left
bounding edges by at most
4m − 2

• This concludes the proof of
the Zone Theorem.
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Theorem 8.6
A doubly-connected edge list for the arrangement induced by a
set of n lines in the plane can be constructed in O(n2) time.
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Back to Discrepancy (Again):

• For every line between two sample points, we want to
determine how many sample points lie below that line.

• For every vertex in the dual plane, we want to determine
how many sample lines lie above it.

• We build the arrangement A(S∗) and use that to
determine, for each vertex, how many lines lie above it.
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Levels and Discrepancy:

level of a point:
The level of a point in an arrangement of lines is the number of
lines strictly above it.
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Levels and Discrepancy:

level of a point:
The level of a point in an arrangement of lines is the number of
lines strictly above it.
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Computing the Levels:

• For each line l in S∗:
• Compute the level of the

leftmost vertex. O(n)
• Walk along l from left to

right to visit the other
vertices on l , using the
DCEL. The level only
changes at a vertex, and
the change can be
computed by inspecting
the edges incident to the
vertex that is
encountered.O(1)

• The levels of all vertices of
A(S∗) can be computed in
O(n2) time.
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Computing the Levels:

• For each line l in S∗:
• Compute the level of the

leftmost vertex. O(n)
• Walk along l from left to

right to visit the other
vertices on l , using the
DCEL. The level only
changes at a vertex, and
the change can be
computed by inspecting
the edges incident to the
vertex that is
encountered.O(1)

• The levels of all vertices of
A(S∗) can be computed in
O(n2) time.
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Summary:

• Problem regarding points S in ray-tracing
• Dualize to a problem of lines L.
• Compute arrangement of lines A(L).
• Compute level of each vertex in A(L).
• Use this to compute discrete measures in primal space.
• We can determine how good a distribution of sample

points is in O(n2) time.
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END.
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