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Abstract

Sensors are all around us, in buildings, vehicles and pub-
lic places, from commodity thermostats to custom sensor-
nets. Yet today these sensors are often disconnected from
the world, either because they are distant from infrastruc-
ture, and wide-area networking (by 3G cellular, satellite,
or other approaches) is too expensive to justify. Data mul-
ing makes communication cost-effective by leveraging short-
range wireless and mobility, perhaps by zebras, buses or
farmworkers. In this paper we propose that human-carried
mobile phones can serve as data mules for sensornet deploy-
ments, exploiting ubiquity of mobile phones and human mo-
bility to bring low-cost communication to sensors. We use
two mobile phone datasets to show that Bluetooth can serve
as a viable muling network, and humans already see many
potential sensors regularly. We have implemented a mobile-
phone-based data muling system, and used it in four sen-
sornet deployments totaling ten months operation. We find
that muling can be the only cost-effective option for rural de-
ployments, where it is critical to monitoring remote sensor
networks. We also show opportunistic mobility can collect
data without any extra effort in residential and office environ-
ments. Finally, we systematically evaluate our deployments
to understand how contact duration and data size interact,
and to evaluate the effect of muling on phone batteries.

1 Introduction

Yet our world is increasingly instrumented. Electronics
generate useful information: a modern office building has
a thermostat at every room, a motion detection sensor at the
door; automobiles have dozens of sensors monitoring the en-
gine, the passengers, and the outside environment. Today
these devices serve their original, dedicated purposes—yet
what if their data were made available through low-cost com-
munication?

Sensor networks begin with the premise that sensors can
communicate. SCADA systems have been used in industry
for decades, and industrial SCADA systems and sensornets
are increasingly sophisticated, but often price limits their use
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to high value applications. Similarly, scientific uses of sen-
sornets are growing, but connectivity to remote locations is
expensive, limiting less fortunate scientists to datalogging
without experiment supervision. How can we make wide-
area communication more accessible to sensornets?

Wifi, cellular telephone data networks, and satellite com-
munication make wide-area communication commonplace.
But these approaches do not solve these problems because
they are often too expensive or unavailable where needed.
Satellite data is often prohibitively expensive. Cellular seems
more affordable, but monthly fees for data service are of-
ten too high for many applications. (Even services such
as the Amazon Kindle that are free to the user embed data
fees in the cost of content, discouraging high-bandwidth con-
tent [12].) And if cost is not considered, coverage remains
a problem. Wifi is free, but coverage can be spotty even in
urban areas. Satellite coverage requires line-of-site to the
sky. Cellular coverage is generally good, but all providers
have dead spots. Humans work around coverage problems
by moving, but that option is not available to fixed sensors.
Some sensornets use a local mesh to get to wide-area con-
nectivity, but that approach greatly adds to complexity and
failure cases for simple, small deployments.

In this paper we describe our system where human-
carried mobile phones serve as data mules for sensornet de-
ployments, exploiting ubiquity of mobile phones and human
mobility to bring low-cost communication to sensors. Many
other groups have explored the idea of data muling for sen-
sor networks [21, 8, 28, 25, 3, 29, 20, 35], and some have
proposed human mobility for communication in remote ar-
eas [18], in disasters [11] or from cars [19]. Our work makes
three contributions beyond the prior work. First, we bring
together sensing and the mobile phone as a data mule in our
implementation of muling in an off-the-shelf mobile phone
(Section 3). We also describe several applications where
muling’s cost reduction makes new applications viable or
current applications easier to justify (Section 2.2).

Second and more importantly, we have used our phone-
based mule in four sensornet deployments, a field deploy-
ment for subsidence detection in an oilfield, an experimental
analog of that application in an urban area, and an office-
based person-detector (Section 4). As far as we know, we
are the first to use human-carried mobile phones in gathering
data from real sensor deployments in remote infrastructure-
less area for an extended time of period. Together these ten



months of deployment experience help us understand what
makes data muling work in practice. We show that muling
provides essential feedback for experimental deployments in
remote areas (Section 6.1.2), halving the time outages of ex-
perimental hardware were unknown, from 60 sensor-days to
27. We also evaluate when energy consumption is a limiting
factor (Section 6.4).

Our last contribution is to explore how human mobility
patterns affect the potential of data muling. We examine two
datasets of mobile phone contacts to show that humans see
many potential sensors (Section 5.1), and some of these reg-
ularly (Section 5.2). Yet our deployments show that inten-
tional mobility is often required when coverage of specific
sensors is required, at least with ranges typical for Bluetooth
(Section 6.1). We show the importance of the human’s loiter
time to effective muling (Section 6.2), and that that oppor-
tunistic mobility works best in our office deployment where
sensors are dense and loiter times are long (Section 6.1.4).
We also consider an alternative communication choice with
long range radio and fast data rate, showing that it benefits
the data muling and make opportunistic muling even more
practical (Section 6.3).

2 Motivation, Applications, and Challenges

In this section we describe why mobile phones can make
good data mules, then show potential applications that moti-
vate phone-based data muling.

2.1 Why Data Muling using Mobile Phones?

Both sensors and people with mobile phones are all
around us. However, the cost of bringing sensors on to the
wide-area network is often prohibitive. We suggest that mo-
bile phones can bridge this connectivity gap through data
muling.

Mobile phones are attractive as data mules for three rea-
sons. First, mobile phones are truly ubiquitous. In fact there
are approximately 4.6 billion mobile phone users worldwide
estimated by the International Telecommunication Union.
That means 68% of the worlds population already carry mo-
bile phones all the time. And mobile phones are widely used
in the developing world where the need for data muling is
greatest since other forms of wide-area communication are
often limited. Although currently most phones in the devel-
oping world are feature phones with limited extensibility, in
principle even these telephones could support muling, and
we expect phone capabilities to grow.

Second, current generation smart-phones are powerful,
general purpose computing platforms. They are already
equipped with energy-conserving, short-range radio net-
works like Bluetooth, and with wide-area Internet connec-
tivity through 3G and now 4G telephony. We show later
(Section 6.4) that we can use these networks for muling with
minimal additional energy cost.

Third, mobile phones are already carried by humans as
part of their daily life, so muling can easily piggy back on
this mobility for free.

Finally, the large display and physical or virtual keyboard
of modern smartphones provide a friendly interface to sen-
sors. Many embedded sensors lack a sophisticated interface
or on-site control, and as sensors become smaller, lower-

power, and cheaper, user interfaces become impossible to
provide. We anticipate the mobile phone can be used a uni-
fied interface to various sensors.

2.2 Motivating Data Mule Applications

We next describe five applications that are good matches
for data muling. Their common characteristic is the need
for sensing and delay-tolerant communication with the out-
side world, coupled with a lack of cheap communication,
and the presence of human mobility. With near-ubiquity of
mobile phone coverage, it may seem that wireless coverage
should be always available. However, we show that in our
Subsidence/Oilfield application, cellular data coverage was
so poor as to be unusable (Section 4.2), and even when cel-
lular coverage is good, its price or energy draw may be too
high to justify its use.

Assisted-reporting Garbage Bins: Today garbage is re-
moved from bins in national parks and urban streets with
a fixed, periodic schedule. A fixed schedule works poorly
when bursts of use fill bins unexpectedly, or underuse results
in needless trips for servicing. We expect that maintenance
costs could be reduced and citizen satisfaction improved if
garbage was removed on-demand rather than at fixed inter-
vals.

Garbage bin monitoring is ideal for data muling because
they are often sparsely deployed in remote areas, yet they
serve humans carrying mobile phones [32].

Habitat Monitoring: Habitat monitoring has been studied
by many sensornet researchers [6, 34, 30]. Several deploy-
ments to-date have used long-range wireless or satellite con-
nections to relay observations to researchers’ institutions, but
expensive and custom networking may be challenging to jus-
tify for smaller habitat monitoring projects. We suggest that
data muling can lower the cost and technical requirements
for habitat monitoring by exploiting the mobility of humans
as they travel to the target habitat then back to urban areas
with inexpensive networking. Even if some habitats lack reg-
ular hikers, opportunities for data muling may be sufficient
with park rangers or scientists.

Car Blackboxes: Several projects have brought sensing
into vehicles [4, 23, 19]. Vehicles have much service infor-
mation to provide, including gas mileage, emissions, cooler
temperature, and engine performance. Applications may
mine these data archives to suggest needed car maintenance
or to feedback to the car manufacturers. While projects such
as CarTel have shown one can exploit opportunistic wifi con-
nections [19], increased security concerns mean that avail-
ability of open wifi networks can be inconsistent, and owners
may not be motivated to extend their home wifi network to
parking areas. Our data muling system can replace wifi con-
nections with Bluetooth connections to the driver’s mobile
phone (CarTel suggested, but did not explore, this possibil-
ity [19]).

Personal Energy Monitoring: Personal energy conser-
vation is of growing interest, partly because simple knowl-
edge of energy consumption allows individuals to reduce
consumption by 5-10% [17]. Several projects have begun
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Figure 1. An overview of our data muling system.

instrumenting home power usage, including Google Power-
Meter [15] and MS Hohm [24]; others such as LoCal [22]
are exploring smart grids that negotiate electricity usage be-
tween suppliers and consumers.

While these approaches provide a region- or home-centric
view of energy use, we suggest that data muling can pro-
vide a personal model of energy use—capturing use at work
and in public spaces as well as at home. A personal view
of energy consumption requires harvesting data from sen-
sors in our environment. We suggest that data muling can
provide this data: imagine outfitting devices that consume
energy with Bluetooth-based energy sensors, and allowing
people’s mobile phones to gather this information directly
from their environment. Data muling in this case is less about
connectivity than about discovery and recording the correct
information. While energy data may be too sensitive to post
publicly on the Internet, the physical proximity provided by
muling may reduce those concerns, since proximity implies
some relationship with the provider of the data being col-
lected.

Hiking Water Quality: Hikers often face questions about
water quality, either at remote fountains or natural springs
or streams. Governments or informed hikers may inspect
water quality, but today there is little way to retrieve water
data from remote locations, or to share that data with other
hikers. Remote locations have little data infrastructure, and
although important to health, the economic value of moni-
toring hiking water cannot support satellite data. As shown
by CenWits [18], data muling can exploit hikers’ mobility
to deliver the information of water quality cost-effectively to
those who care about it. We suggest that the mobile phones
likely already carried by the hikers are an ideal data mule
today.

2.3 Data Muling Challenges

Prior work has shown the principles of data muling: relay-
ing data between nodes upon rendezvous, exploiting random
mobility [21] or expected mobility patterns [8, 25]. We build
on this prior work and answer several new challenges:

How effective are current mobile phones as data mules?
We examine mobile phone hardware, evaluating Bluetooth,
wifi, and 3G cellular technologies for networking. We
consider evaluate energy consumption and the unique con-
straints of mobile telephones, with typical daily charging and
an important requirement to never run out of power.

Is data muling feasible for traditional sensornet appli-
cations? We explore four sensornet deployments retrieving
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different kinds of data to understand how well data muling
works in practice. Important in our study is understanding
how mobile phones work in these environments, how real-
world data sizes and latency requirements affect muling, and
if muling is effective for these applications. We also compare
loiter time, from human mobility, and muling time, driven by
application requirements.

How well does human mobility support data muling? The
success of muling depends on the mobility pattern. Ideally
we would like muling to be “free”, leveraging human mobil-
ity. We study new and existing datasets of human mobility,
and then evaluate intentional and opportunistic mobility in
our deployments.

3 Design of Our Data Muling System

Our data muling system employs three components
shown in Figure 1: sensors, mules, and gateways. Sensors
generate data, store it locally, and periodically listen for a
mule to come by. Humans carry data mules around sensors;
mules periodically scan for sensors and automatically fetch
any new data they see. Humans may carry the data mules
with intentional, planned meetings with sensors, or they may
simply go about their daily business with rendezvous hap-
pening opportunistically. Mules and sensors communicate
over a short-range, low-power wireless network. In our im-
plementation this short-range network is Bluetooth, although
we have considered 802.11 and 802.15.4 is third option.

Data mules only store data temporarily, they relay their
data to Internet-based data servers where it analyzed by
users. Our implementation uses either 3G cellular networks
or 802.11 for mule-to-server communication, based on the
preference of the mule carrier and convenience of 802.11.
Muling allows two important advantages relative to tradi-
tional sensor networks: first, the sensornet need not have a
dedicated Internet gateway with corresponding need for ex-
tra power and cost. Bluetooth is inexpensive enough we use
it on all sensors, and the mule amortizes the cost of WAN
communication over all sensors. Second, when sensors orig-
inate data in an area with poor WAN coverage, a human can
take a mule from this data-rich/network-poor area to another
area with good or free WAN coverage. Both of these ad-
vantages motivated our adoption of data muling in our four
deployments.

Next we describe each component of our data muling sys-
tem in more detail.



3.1 Sensors

Details of sensor hardware depends on the specific ap-
plication. The only additional requirement for muling is
support of some low-power, short-range wireless network-
ing protocol.

In our deployments our sensors use embedded PCs with
Bluetooth as the short-range wireless protocol. Our choice
of Bluetooth is driven primarily by what is available on
the mule, but many devices today include built-in support
Bluetooth, including weather stations and automobile acces-
sories. In our case, our custom-built sensors did not include
built-in Bluetooth hardware, but we easily added a Bluetooth
via USB. In principle, other short-range, low-power wireless
networking protocols could replace Bluetooth. One promis-
ing protocol is 802.15.4 because of its low power; we also
considered 802.11 because of its higher speed, as discussed
in Section 6.2. Ultimately we look for Bluetooth 3.0 to pro-
vide both low-power rendezvous and high speed data trans-
mission when required.

Our muling scheme is agnostic to the type of sensor. We
use two sensors in our deployments. Two deployments use
GPS sensors that capture files that are 1-2 MB in size (after
compression) every two hours, generating 12-24 MB/day.
The third deployment tracks people via their carried Blue-
tooth devices; this sensor generates very small datasets, typ-
ically less than 800 kB per day.

3.2 Data Mules

Our data mules are mobile phones. We use mobile phones
to exploit these intelligent devices carried by almost every-
one today. We next describe our hardware and software
choices for our mules.

We currently use four different Android-based smart-
phones as our mules: the HTC Hero, HTC Touch, Sam-
sung Galaxy S, and HTC EVO. These platforms were cho-
sen because of their availability and suitability for an indi-
viduals personal mobile phone. These platforms also drive
our choice of Bluetooth as the sensor-to-mule wireless pro-
tocol, so that no hardware modifications to the mule is re-
quired. We also considered but have not yet implemented
a mule based on an embedded PC with 802.15.4 support so
we could mule from motes and other embedded sensors. We
currently require support for Android 2.0 for Bluetooth scan-
ning supported only since that release. In principle our mul-
ing software should port to other smartphones such as the
Apple iPhone or phones based on Windows or SymbianOS.

On the mobile phone we run our custom muling service.
The muling application runs as a background service, period-
ically scanning for neighboring Bluetooth devices to deter-
mine if they are sensors. We use a default scan interval of 2
minutes, although configured from 1 to 10 minutes to trade-
off detection speed against energy consumption (we look at
energy consumption in Section 6.4).

The mule has a list of known sensors, and when one is
within range it connects to the sensor and retrieve and fresh
data. In addition to gathering data from the sensor, the mule
pushes a delivery report of what data has been delivered to
the Internet, allowing the sensor to garbage collect data.

Although it is not essential for successful muling, our ap-
plication includes a user interface that reports what sensors

are in range and what data has been collected on the mule.
The interface can be used for other purposes well, if a sen-
sor needs servicing (perhaps battery replacement or sensor
cleaning), the mule could request assistance from the carrier.

3.3 Data Servers on the Internet

Finally, we expect that all data is ultimate hosted on
servers on the Internet (as is the case in nearly all op-
erational sensornets). Our current implementation uses
two different storage servers. We use a webserver with
an off-the-shelf uploading extension to support our two
data-intensive deployments. Subsidence/Oilfield and Sub-
sidence/Urban(Section 4) each generates 84-168 MB per
week. For our third application (People/ISI), we store data
in Sensorbase.org [9], a sensor data sharing platform built
on Apache and MySql. Sensorbase also includes support
for managing and sharing sensor data, and allowing users
to query and interact with stored data.

3.4 Design Alternatives

We prototyped sensors and mules based on Mica2 motes,
and considered multi-hop communication, although neither
is active in our current system. We briefly discuss these de-
sign alternatives here.

Mote-based Mules: We prototyped a data muling system
using Mica2 motes, and this prototype is representative of
muling with an 802.15.4 network for mote-to-mule. Mica2s
are very attractive sensors because of their proven success at
long-term, energy conscious operation, combined with their
easy customizability.

The chief barrier to 802.15.4-based sensors is with the
mule, since few commodity devices include 802.15.4 net-
work hardware. We considered having users carry a mote
as the mule, but use of a second device just for muling is
a significant burden. While we believe many users would
run muling if it had no impact on their use of existing de-
vices, we expect that few would add a new device to their
daily lives for this purpose. As a secondary concern, stan-
dard motes have less than 1 MB flash storage, too little for
our Subsidence applications. A more attractive alternative
may be to add an 802.15.4 radio to a mobile phone or other
already-carried device; we have not yet explored this option.

Multi-hop communication between sensors: Our cur-
rent system assumes all sensors can directly communicate
with the mule. With many multi-hop communication (mesh)
protocols for sensornets, we could easily employ multi-hop
communication between sensors.

A mesh network between sensors is of interest only when
sensors are clustered, physically close to each other. In that
case, the sensors could preemptively push data to a desig-
nated collection point, or the appearance of a mule could
prompt the sensors to gather their data on-the-fly. Either
way, mesh communication increases opportunities to mule
data. We believe the greatest advantage of multi-hop net-
working among sensors is that it can extend the energy-
efficient network to locations that are difficult for the mule
to reach. A second advantage may be coordinated sleeping
among sensors to conserve energy (as explored for other pur-
poses [36, 10, 27]). However, the cost of a sensor mesh is



much greater complexity, to insure a connected mesh and to
manage resource usage at a designated collection point. We
did not employ sensor-to-sensor communication because our
deployments have one or two clusters of sensors, so multi-
hop was not necessary at each site, where all sensors could
be reached with one visit, nor possible between sites.

Multi-hop communication between mules: We also con-
sidered multi-hop communication between mules, as in prior
sensornet muling deployments [21, 18] or between mobile
phones during disasters [11]. Given the wide-spread avail-
ability of cellular data connectivity our goal is to mule data
out of dead spots with poor network coverage but sensing in-
terest, and to amortize the cost of the data connection among
many sensors. Mule-to-mule communication does not help
either of those goals. We therefore do not consider mule-to-
mule connectivity.

4 Case Studies: Human Mobility and Sensor-
net Deployments

We employ six datasets in this paper to understand data
muling potential and practice. As shown in Table 1, the first
two, Mobility/MIT and Mobility/ISI, are passive observa-
tions taken from mobile phones, while the others are four
different sensornet deployments we undertook to study data
muling. These cases show both opportunistic and intentional
mobility patterns with different numbers of mules and sen-
sors; we describe each case next.

4.1 Observations of Human Mobility

We began our work with a public dataset about mobile
phone mobility, then conducted additional experiments to
improve precision.

The Mobility/MIT trace is from the Reality Mining
project, where they collected mobile phone activities from
100 mobile phones for 9 months [13]. (Their full dataset runs
18 months, but we use the 9 months starting in Sept. 2004
that they identify as their active data collection period.) Their
public dataset includes rich information including calls, loca-
tion, and Bluetooth contacts. We study their Bluetooth con-
tact information to estimate regularity in human mobility to
show the potential for data muling in Section 5.

The Mobility/MIT dataset scans for neighbors at 5-minute
intervals. To observe brief connectivity, we carried out a
smaller Bluetooth survey with mobile phones with the Mo-
bility/ISI dataset. We scan every two minutes, a period cho-
sen to balance battery life and frequency of detection. Each
scan takes about 15 seconds. We use this additional dataset
to update the prior dataset and to better understand opportu-
nities for muling in Section 6.

4.2 Sensornet Deployments

We have employed our data muling system with four sen-
sornet deployments.

The Subsidence/Oilfield deployment involves two pairs of
GPS units observing subsidence in a production oilfield. The
project carried out multiple deployments over several years
and adopted data muling for the most recent 4-month de-
ployment from Oct. 2010 to Jan. 2011 out of necessity. The
experimental hardware required close monitoring to insure

correct operation. Unfortunately, the industrial field wire-
less network was not ubiquitous, nor were we allowed to ac-
cess. Early deployments used 2G and 3G cellular modems
for data, but we were unable to get consistent cellular cover-
age for more than a few days. The system’s primary method
of data retrieval was with manually swapped flash mem-
ory cards, but month-long intervals and difficultly swapping
cards (travel to site, open locked box, halt machine, etc.)
made “sneakernet” untenable. We therefore turned to data
muling.

Unlike the mobility datasets, muling for subsi-
dence/oilfield is intentional: with only one mule and a
large oilfield, field personnel would explicitly drive to each
approximately weekly. Although in principle one could
have swapped memory cards, data muling greatly simplified
data retrieval, since it requires only wireless connection,
personnel need only drive nearby, park, and push a button
on the smartphone.

The Subsidence/Urban dataset uses the same equipment
as Subsidence/Oilfield. However in this case, subsidence is
part of a controlled experiment and the site is at a residence
in an urban area. As a residence, we were able to frequently
mule (except for travel and operator error). Because the sen-
sors are out of Bluetooth range of the residence, most mul-
ing was again intentional, however in Section 6.1.3 we show
that in many cases, normal movement was near enough to
the sensors provide opportunistic muling as well.

Finally, the People/ISI dataset is designed to provide pure
opportunistic muling in an office environment. We deployed
sensors in four locations: two offices and a break room at ISI,
and the home of a researcher. Each sensor tracked nearby
people, as determined by scanning for Bluetooth contacts;
each location had a number of visitors. Muling happened
only opportunistically, as the operator carried his mobile
phone as part of daily use. In Section 6.1 we use this dataset
to evaluate the effectiveness of casual muling in daily life.

S Evaluating the Potential for Data Muling

We next consider opportunities for data muling. We first
look at how pervasive short-range wireless sensors could be,
and how regularly humans visit them. For both of these
questions we consider our two observational datasets (Mo-
bility/MIT and Mobility/ISI) and use Bluetooth devices as
a stand-in for sensors, as described below. Then in the next
section we revisit these questions with our system in practice
in four deployments.

5.1 How Many Potential Sensors Around Us?

Data muling presumes that short-range wireless sensors
are pervasive and available for muling. Today wireless sen-
sors clearly are not everywhere, although each of the pieces
exist: sensors, wireless communication, and sensor net-
works. Sensors are deployed and operating in almost every-
where we go: thermostats, motion detector at door, smoke
detectors, power meters and water meters, several sensors in
each mobile phone, hundreds of sensors in automobiles, and
cameras and pressure sensors on streets. Yet today these sen-
sors often stand-alone or are used only in specific application
“stovepipe”. Wireless communication is everywhere as well,
with wifi, Bluetooth, and 3G and now 4G mobile phone data.



Dataset Goal  Description

Mules Mobility Sensors  Start  Duration

Mobility/MIT [13]

observation Bluetooth scanning log (5-minute interval)

100 opportunistic 815%  Sept. 2004 9 months

MOblllty/ISI observation Bluetooth scanning log (2-minute interval) 3 opportunistic 226%* May 2010 12
Subsidence/Oilfield deployment oilfield subsidence monitoring 1 intentional 4 Oct. 2010 3
Subsidence/Urban-BT  deployment subsidence monitoring in urban area (BT) 1 mostly intentional 2 Nov. 2010 4
Subsidence/Urban-Wifi deployment subsidence monitoring in urban area 802.11) 1 opportunistic 2 Jun. 2011 1
People/ISI deployment Person monitoring in office area 1 opportunistic 4 Feb. 2011 2

Table 1. Datasets considered in this paper: observations and sensornet deployments. (* indicates sensor stand-ins)

Mobility/MIT  Mobility/ISI

devices encountered 25,687 12,954
mobile devices 23,814 12,699
stationary devices 815 226
unknown 1029 29

start Sept. 2004 May. 2010

duration 9 months 12

Table 2. Devices seen in observation studies.

And there have been a number of long-term sensor network
deployments as well. Yet we conjecture that there is a boot-
strapping problem: there is no muling today because there
are few public, wireless sensors, and yet there are few such
sensors because there is no muling.

To break this deadlock we first wish to estimate character-
ize how wireless sensors might operate. Here we consider the
effectiveness of short-range wireless communication to an-
swer how many sensors might we see; in the next section we
evaluate how regularly humans would see those sensors. In
both cases, we use stationary Bluetooth devices as a stand-in
for wireless sensors. We list the specific classes we consider
stationary below. We target only stationary devices because
we expect most environmental sensors to be stationary. We
consider Bluetooth because it is cheap enough (current Blue-
tooth chipsets add only pennies to the cost of a device), and
low-enough power that it is a plausible technology for a pub-
lic wireless sensor. Therefore we leverage the installed base
of stationary Bluetooth devices to approximate the connec-
tivity future wireless sensors may have. (In Section 6.1 we
compare these results with muling in our real sensornet de-
ployments.)

We evaluate our two observation datasets in Table 2. The
Mobility/MIT dataset dataset has 25,687 unique Bluetooth
devices observed by 100 mobile phones over 9 months. In
Mobility/ISI dataset, we observed 12,954 unique devices
from a single phone. We attribute the count in Mobility/ISI
to its collection 7 years after Mobility/MIT and increasing
use of Bluetooth.

Potential sensors: Both traces show that humans natu-
rally encounter many different devices, but most of devices
are due to one-time encounters with other mobile devices.
(Not surprising since nearly every mobile phone as Blue-
tooth, while its use outside of phones is growing but lags.)
Since we expect most environmental sensors to be station-
ary, we wish to consider encounters with stationary devices.
Each Bluetooth devices includes class information in its pub-
lic announcements, in addition to its unique MAC address.
The class tells what kind of Bluetooth device it is, telephone,
headset, and stationary classes such as desktop computer,
server computer, modem/gateway, ISDN, loud speaker, set

top box, and VCR as stationary. Table 2 identifies these sta-
tionary devices and we treat them as sensor stand-ins. In
addition, 1058 devices omit class information. We find that
some devices (both stationary and mobile) send class infor-
mation occasionally; we classify these as mobile or station-
ary when possible, or as unknown when they never report.

We conclude that even today, humans encounter many
short-range, wireless devices every day. If these devices
made sensor data available we would be swimming in data.

Frequency: Muling depends on frequent encounters with
sensors, and humans are only likely to be interested in sensor
data they regularly encounter. We therefore next consider
how often humans encounter each sensor stand-in.

Figure 2 shows how often each device was seen over the
9 months of Mobility/MIT. Figure 2(a) shows the number
of visits for each sensor stand-in (running along the y-axis)
on each day (the x-axis). While some sensor stand-ins are
seen only a few times, many appear repeatedly. We define a
potential muling day as a day when some mule sees a given
sensor-stand-in at least once. If we assume data can toler-
ate up to 24 hours of latency, this metric represents muling
“timely coverage”. Figure 2(b) shows the number of poten-
tial muling days for the top 100 most frequently seen sensor
stand-ins. We see that 26 devices have more than 100 po-
tential muling days; these are seen on about 35% or more of
the days of the dataset. These devices are excellent candi-
dates for opportunistic muling, without their own wide-area
network infrastructure.

We repeated this study with our second observation
dataset (Mobility/ISI). The results in Figure 3 are quali-
tatively similar to our findings from Mobility/MIT, even
through the population of mobile observers was much
smaller. Part of the reason for similar coverage with fewer
mobile devices is much greater use of Bluetooth today.

We have shown that there are hundreds of sensor stand-
ins that are frequently seen with casual movement, and some
of these are seen quite frequently. We next look more care-
fully at the regularity of sensor encounters with opportunistic
mobility.

5.2 Regularity in Human Mobility

We have shown that there are many potential sensors for
which Bluetooth can provide reasonable coverage, and that
some are seen many times. But how regular is communi-
cation? If data muling is to replace wide-area networking,
we need guarantees that sensors are seen not only frequently,
but regularly. We next re-examine our observation datasets
to judge regularity in potential data muling.

To understand how often a specific sensor is visited, Fig-
ure 4 shows contact patterns (left) and inter-meeting times
(right) for a specific sensor stand-in (sensor-stand-in 270
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Figure 5. Autocorrelation of contacts between any mule the first, fourth, and sixth most seen sensors from two datasets.

from Mobility/MIT). We examined other sensors, this kind
of contact is typical for sensors that are seen relatively fre-
quently (this sensor was the fourth most common sensor).

Figure 4(a) shows the contact pattern over the dataset.
This sensor shows strong regular daily contact on most
weekdays (corresponding during a 9am to Spm workday).
It also shows occasional contact on weekends (Saturday and
Sunday) and extended periods of contact (for example, at the
beginning of the ninth week). We can infer that this target
device is located in the person’s work area. For other sen-
sors we see patterns of contact during non-work times (9pm
through 7am). This data shows the potential for regular con-
tact using mobile-phone-based mules.

To quantify the degree of contact, Figure 4(b) shows inter-
meeting times. Since contact is determined only by scans
every 5 minutes (for Mobility/MIT), we compute time be-
tween contacts by assuming contacts within some window
show continuous connectivity. We use two different time-
out windows, 1.5x and 2.5x the scan interval (7.5 or 12.5
minutes), to detect gaps, optionally bridging over a single
missed scan. Both windows show similar behavior: the most
frequent inter-meeting time is 5 or 10 minutes, correspond-
ing to the window size, because it is the minimum timeout
we can detect. They also a relatively sharp drop-off around
16-hours, corresponding to the non-work part of a weekday.

To better understand how often sensors are visited, Fig-
ure 5 examines autocorrelation values between for six differ-
ent sensor stand-ins taken from the two observation datasets.
All sensors show very strong daily periodicity (the peak at
lag of 24 hours, this peak is second highest to the lag at the
scan interval of 5 or 2 minutes). In addition, we often see
the next highest peak at one week (168 hours), showing a
strong weekly periodicity. In fact, for the sixth most seen
sensor stand-in in Mobility/ISI, only immediate, daily and
weekly periodicities are strong. This more complete anal-
ysis of mobility data confirms regular periodicity in human
mobility and strongly suggests the potential for human-based
data muling.

6 Evaluation of Our Data Muling System

Having established the potential for data muling, we next
explore our data muling implementation. We begin (Sec-
tion 6.1) by reviewing the potential we studied with mobile
phones and sensor stand-ins in Section 5 translates into mul-
ing at our four sensornet deployments. Our deployments al-
low us to study loiter time in Section 6.2, to understand how
data size and human movement interact. Finally, we evaluate
the energy requirements of muling to understand trade-offs
in network type and data size 6.4.

6.1 Does Data Muling Work in Real Deploy-
ments?

Our analysis of the observation datasets suggest the
potential for regular data muling with mobile phones
and opportunistic mobility. We next turn to our four
deployments: Subsidence/Oilfield, Subsidence/Urban-BT,
Subsidence/Urban-Wifi, and People/ISI, to evaluate how
muling performs in practice.

6.1.1 Muling in the Oilfield

First we consider the Subsidence/Oilfield deployment.
We turned to muling here to monitor experiment hardware,
after being denied access to the industrial wireless network
and having extremely poor coverage with the 3G mobile data
network. Some form of regular communication with sensors
was a requirement for this application because the hardware
required regular evaluation and maintenance at unexpected
times. Our muling system used a mobile phone carried by a
field engineer who would gather data using the phone’s Blue-
tooth connection, then carry the phone into town at night
where 3G coverage is quite good. The alternative to mul-
ing was a 6-hour round-trip drive into the field at periodic
intervals; our goal instead was at least weekly updates and
data-to-date.

This experimental deployment brought out three things: it
required intentional movement, muling met our latency ex-
pectations, and it succeeded in reducing downtime. We con-
sider each next.

First, this deployment required intentional, not oppor-
tunistic movement. Our studies of the observational datasets
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Figure 6. Weekly pattern of four muling deployments.

show that many sensor stand-ins are seen often. While true,
in the Subsidence/Oilfield deployment we have only one
mule and four specific sensors to visit, not 3 or 100 mules
scanning for any sensors. The oilfield is a very large area
(more than 50 km?), and Bluetooth radios typically oper-
ate with range limits of 10 m or less, so our single mule
would nearly never meet our sensors accidentally. Instead,
we asked the field engineer to intentionally travel to the sen-
sors and wait next to them while data transfer takes place. As
Figure 6(a) shows, regular weekly muling with intentional
mobility was successful for the first 5 weeks of operation.
However, the figure also shows a weakness in relying on hu-
man mobility: the gap in weeks 8 through 10 is due to De-
cember vacation by our mule carrier.

In a large outdoor area, muling with opportunistic mobil-
ity requires many more mules and longer-range radios. The
site has many workers moving about, if we could equip each
engineer’s phone with muling, or instrument company trucks
with wifi-based mules, we expect we would reduce the need
for intentional mobility.

Second, muling met our latency expectations, as Fig-
ure 6(a) shows, regular weekly muling with intentional mo-
bility was successful. With intentional movement this result
is expected, but it confirms that our muling system was suc-
cessful at meeting its goal, and that our system was usable
by a non-expert.

6.1.2 Oilfield Muling and Sensor Coverage

We have shown that muling works in the oilfield, but not
that it helps. For us, muling helps by providing data and
informing us of deployment problems more rapidly than pe-
riodic visits would.

Our alternatives were muling every week, or scheduled
visits every three weeks that swap memory cards. On av-
erage, muling retrieves data 1.5 weeks before it would have
been acquired with memory card swapping. (Although both
muling and memory card swaps require a visit to the site,
memory card swaps required much more time and a level of
technical involvement that field personnel were unwilling to
undertake.)

More important than getting data more rapidly, muling
alerted us to problems with our deployment. As an exper-
imental deployment, we encountered several hardware and
software problems. The early detection of muling gave us
an opportunity to understand when outages occur. Table 3
shows outages dates in our deployment, and when these out-
ages were detected with muling, compared to when they
would have been detected with a scheduled visit. As can be
seen, muling halved the time outages were unknown, from
60 sensor-days to 27, allowing us to make an informed deci-
sion about the need for early field visits for maintenance.

6.1.3 Muling for Urban Sensing

Our second deployment is Subsidence/Urban-BT de-
ployment. While the application is the same as Subsi-
dence/Qilfield, in this case the site is an urban area with the



detection date dur. unknown
sensor outage dates mule / scheduled mule / scheduled
hpl Nov. 12 to Nov.23 | Nov. 17  Nov. 23 5 11
Nov. 26 to Dec. 15 | Nov. 15  Dec. 15 4 19
hp2 Nov. 12toNov.23 | Nov.17  Nov. 23 5 11
Dec. 09 to Dec. 15 | Dec. 15  Dec. 15 6 6
Ipl none — — 0 0
Ip2 Nov. 10 to Nov. 23 | Nov. 17  Nov. 23 7 13
total 27 60

Table 3. Outages in Subsidence/OQilfield.

goal of collecting data for a controlled subsidence experi-
ment.

This experiment again required intentional mobility. Al-
though located at a residence, the sensors are behind the
garage and so usually of Bluetooth range from the primary
living areas. As Figure 6(b) shows, intentional mobility ad-
dresses this problem. However, in examining the data we
note about 7% of the contacts appear to be opportunistic.
Opportunistic mobility is therefore possible and may pro-
vide a benefit even when not planned. We expect use of wifi
over Bluetooth would have allowed all-opportunistic muling
in this scenario.

With Subsidence/Urban-Wifi deployment, we increase the
radio range by replacing Bluetooth with an 802.11 radio.
The longer radio range of 802.11 makes possible data muling
with all-opportunistic mobility. Figure 6(c) shows that data
mule covers sensors most of the time during four weeks of
experiment period. Sensors are contacted with data mule op-
portunistically, because we do not employ intentional mobil-
ity used in the Subsidence/Urban-BT deployment. We con-
clude pure opportunistic mobility is sufficient for data mul-
ing in the Subsidence/Urban-Wifi deployment. In addition,
we analyze how a faster data rate of 802.11 affects in muling
data in Section 6.3.

Both sensors in Figure 6(c) make contact exactly same
pattern. This is because sensors in the Subsidence/Urban-
Wifi deployment share a wireless access point that data mule
makes contact to. Whenever data mule connects to the wire-
less access point, both sensors are contacted by the mule at
the same time. Therefore, sensors have the same contact pat-
tern.

6.1.4 Muling for Office Sensing

Our final deployment was designed to test purely oppor-
tunistic data muling. We placed several sensors in an office
environment better suited to Bluetooth’s short range. Here
the sensors sense people (in our implementation, by looking
for human-carried Bluetooth devices using a second Blue-
tooth adapter); we place sensors in four locations: two of-
fices, each visited by a few people; a break room visited
by many people. We also place one sensor at an apartment
shared by several people. One individual carried the muling
device, visiting the apartment and one office and the break
room daily, the other office weekly.

Figure 6(d) shows muling opportunities at each sensor
over the course of eight weeks. We see many opportuni-
ties to mule at officel and home (square and circle), and
regular opportunities at the break room and office2. There
is actually some correlation between breakroom and office2

because they are at the edge of Bluetooth range. We con-
clude that opportunistic muling works very well when radio
range and mobility patterns are well matched, as in an office
environment.

6.2 Loiter Time Effects on Muling

For data muling to be successful, the mule must stay
within radio range of the sensors long enough to transfer any
pending data: the loiter time must be longer than the mul-
ing time. Muling time is a function of the size of each data
item and the number queued up to send, which in turn de-
pends on contact frequency. We next evaluate muling time
and estimate loiter times to see how often successful muling
is likely to occur.

Observing: We first estimate required muling time as a
function of data size and number of queued data items in
Figure 7(a). In this graph, each diagonal line represents a
single data size, from 1 byte to 1 MB, and each point on
that line a different number of data items, from 1 to 100 (for
small sizes), or to 20 or 2 for the largest sizes. (Note that the
observations in our subsidence applications are 1-2 MB in
size, the largest size listed.) Each point is taken experimen-
tally and is the mean of 10 measurements, with error bars
showing standard deviation. We include all delays in mul-
ing: There is roughly fixed-duration overhead for a mule to
discover sensors, and setup a Bluetooth connection, and de-
termine if there is data to mule; together this setup requires
about 17 seconds. Then the time to transfer data items is
roughly linear with the quantity of data transferred.

Modeling: To understand muling time, we fit a simple
linear model to our observations. Muling time consists of
three components: communication overhead (discovery and
connection), data transfer time, and muling overhead. Com-
munication overhead is almost constant; we measure 13 s for
Bluetooth discovery and 1 s to open a connection, consistent
with what is stated in the Bluetooth specification [16]. Trans-
fer time changes according to the total size of data, and the
muling overhead increases according to the number of files.
If we define k.4 is the transfer rate, kg as the per-file over-
head, and kp as monitoring and disconnect overhead, we can
solve for these constants using multiple linear regression.

Tmuling = tdiscovery +teonn + ttransfer + tmuling_overhead
ttransfer + tmuling_overhead = (l/kx r)SN +kpN +kp
where S is the data item size
and N is the number of files
(1
Predicting: This analytic model helps us evaluate how
muling can work with different kinds of mobility patterns.

Table 4. Parameters for the data muling time model
(802.11 model is discussed in Section 6.3).

802.11
u=3.70s,06 =0.192s
u=0.277s,6 =0.179s

variable | Bluetooth |
Uiscovery | #=13015,6 =0.4485

tconn u=1.616s,06=0.661s

kxfr 1.143Mb/s 14.435Mb/s
kp 0.3280s/file 0.3642s/file
kp 3.402s 1.670s
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The large rendezvous time is a critical factor to muling: with
Bluetooth, muling any amount of data takes at least 20 s.
This limit places a bound on user movement: with a 10 m ra-
dio range, a user can move at most 1 m/s if a scan begins im-
mediately on entering radio range. Typical human walking
pace depends on age, but ranges from 1.35 to 1.5 m/s for an
already walking individual, depending on age [S]. Therefore
Bluetooth-based muling will not work well for constantly
moving humans, even if mules constantly scan for sensors.
This result suggests that muling must involve either acci-
dental loitering, longer range radios (perhaps higher power
Bluetooth with ranges to 100 m, or 802.11 with ranges of
35-70 m), or great improvements to device discovery proto-
cols. This result is consistent with our observations in Peo-
ple/ISI, since we place each sensor at a location where the
data mule is likely to loiter—offices, a break room, or home.

The model also shows that transfer time is irrelevant for
almost all small data sizes (data items than 100 kB), since
connect time dominates. However, with the large, 1-2 MB
data items in our Subsidence applications, transfer time is
very noticeable and transfer time dominates muling time
when more than a few of items are queued for transfer.

Finally, we can compare this model to our observation
datasets to evaluate how often muling would likely succeed.
This comparison is difficult, because those datasets record
only sensor-stand-in defection times, not contact times, so
we know when a device was seen but not for how long. How-
ever, if we assume multiple consecutive detections corre-
spond to continuous contact, then we can infer contact times
in those cases. If consider the Mobility/ISI dataset since it
has greater scan frequency than Mobility/MIT (2 rather than
5 minutes between scans), we can then classify more than
two scans (loiter time more than 4 minutes) as enough time to
mule almost anything, two scans (2 to 4 minutes) as enough
time to mule all cases on Figure 7(a), and one scan (up to 2
minutes) as possibly enough to mule something

Figure 7(b) shows loiter times in these three categories
for the ten most frequently contacted sensor stand-ins from
Mobility/ISI. For these sensors, about 20%—60% of contacts
are 2 or more than 2 scans; long enough to transfer at least

15 MB of data. We cannot judge loiter times for single scans,
but there still seems some chance to transfer smaller data
items (1-100 kB) in 17-20 s.

Large, multi-item transfers: Finally, our focus here has
been understanding how brief loiter times interact with min-
imal, opportunistic data transfer. In our Subsidence appli-
cations, data items are each 1-2 MB in size, and muling is
done once a day (Subsidence/Urban) or once a week (Subsi-
dence/Oilfield). Each sensor generates an observation every
2 hours, so these applications require moving 12-24 MB or
84-168 MB of data per muling session. Our model predicts
muling times of 2-20 minutes, and our experiences bear this
out: muling takes a long time for large-data sensing with in-
frequent rendezvous.

The best way to reduce muling time for large data items is
to increase transfer speed. We considered 802.11 as a muling
network, and its 54 Mb/s transfer rate would slash a 2 MB
transfer from 16 s to 0.3 s. Bluetooth 3.0 has recognized this
need, and it will employ current Bluetooth for a low-power
signaling and discovery protocol, then shift to wifi for bulk
data transfer.

6.3 Data muling with a faster data communi-
cation: 802.11

In the previous section, we evaluated the muling time
with Bluetooth. Although Bluetooth was successful at sup-
porting these experiments, the data transfer rate was slow,
with some scenarios requiring loiter times of 70—-80 minutes.
The short radio range of Bluetooth is also problematic in the
Subsidence/Urban-BT deployment, since it requires inten-
tional mobility of data mules to make contact with sensors.

Here we propose 802.11 as an alternative to Bluetooth for
data muling communication. We re-evaluate 802.11-based
data muling in the Subsidence/Urban-Wifi deployment to see
how much it improves the muling data rate and muling op-
portunity. We see that the use of 802.11 permits shorter loiter
times and provides longer communications range, allowing
Subsidence/Urban-Wifi to work with only opportunistic mul-
ing; intentional mobility is no longer required.

First, 802.11 has much faster data rate and shorter discov-
ery time than Bluetooth. These improvements significantly
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reduce the required loiter time to get data from sensor. We
conduct the same analysis with 802.11 (shown in Figure 8)
and fit it to our analytic model of muling time (shown in
Equation 1) to evaluate the muling performance improved
by the faster data rate and shorter discovery time.

Table 4 shows a comparison of muling time of Blue-
tooth and 802.11. With 802.11, discovery time is reduced
to 3.7 s, less than one-third of the time with Bluetooth dis-
covery (13.0 s). It also takes only 0.3 s to connect to a sensor
via 802.11, where Bluetooth takes 1.6 s. These short dis-
covery and connection times allow data mules not only scan
neighboring sensors rapidly, but also check the availability
of new data quickly.

The transfer rate with 802.11 is 12 times faster than Blue-
tooth (shown in Table 4). This faster data rate enables data
muling that were previously impossible when mules use
Bluetooth For example, a Bluetooth mule takes 23 s to mule
IMB of data. Hence a successful Bluetooth-based muling
requires the carrier loiter around the sensor more than 23 s
However more than half of contacts last about 13—-120 s,
shown in Figure 7(b). In those short contacts, Bluetooth
discovers sensors successfully (longer than 13 s), but may
not be able to complete the data transfer (when loiter time
is less than 23 s). However, a 802.11 data mule takes only
6 s to rendezvous and transfer a IMB. Thus, data muling
with 802.11 is quick enough to complete the data transfer-
ring process even in a very short period of loiter time.

The improvement can be more substantial when muling
large and multiple data items. In the Subsidence/Oilfield
deployment, it takes 20 minutes to transfer a week’s worth
of data from a sensor with Bluetooth (84-168MB). A field
engineer who carries a data mule with Bluetooth will have
to spend 70-80 minutes to mule data from all four sensors.
With 802.11 muling, data transferring time will take 1-2
minutes per sensor and less than 6 minutes for all, so the
field engineer no longer need to wait hours to mule large and
multiple data items. Instead just a few minutes of short con-
tact will work. Data muling becomes more attractive with
fast data transfer rate and scanning time.

As importantly, the long ranges of 802.11 (35-70 m)
allow more frequent opportunistic muling. In the
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App.

Subsidence/Urban-BT deployment, sensors are located 10—
15 m away from the main building where data mule loiters
most of time. However Bluetooth has only 10 m radio range,
so sensors are not able to contact mule unless data mule come
quite close. Although we observe the data mule contacts sen-
sors opportunistically, opportunistic contacts are only 7% of
all contacts (Section 6.1.3). When we replace Bluetooth with
802.11 (in the Subsidence/Urban-Wifi deployment), the data
mule contacts sensors opportunistically and gather data suc-
cessfully, without intentional mobility that is required in the
Subsidence/Urban-BT deployment. Thus a longer range ra-
dio increases the chance of data muling and allows oppor-
tunistic data muling to replace intentional muling.

6.4 Energy Consumption

Energy consumption of mobile devices can be critical
for use. Although many mobile phones are charged every
day, running out of power mid-day quickly draws user com-
plaints. We next evaluate the energy consumption of our data
muling system.

To measure energy consumption, we observe energy con-
sumption over one hour of operation. Over that time we
carry out regular scans for sensors every two minutes, and
we relay 12 datafiles, each 1 MB in size. This amount of
data is roughly equivalent to the amount of data sent in one
daily rendezvous for the Subsidence/Urban-BT deployment.
While doing muling we run the PowerTutor application [31]
to record total energy consumption, and at the end of experi-
ment we use Android’s Settings: About Phone: Battery Use
application to evaluate the percentage energy consumed by
each component. The data we report is the result of one set of
experiments on a Samsung Galaxy S phone running Android
2.1 and BluetoothMule 2.2.3. We see similar proportions of
energy use on a HTC Magic (branded as T-Mobile myTouch
3G) running Android 2.2.1. Finally, we check phone status
for the first and last five minutes of the period, activating the
display.

Figure 9 shows both total energy consumption (the
heights of the bars, and indicated numerically above each
bar), and component costs (shown as percentages for key
components in each bar). We consider four scenarios: the
standard phone without muling (“no app”), running muling



doing scanning with one sensor in range (“‘scan”), muling the
amount of data (“mule”), and muling the data and sending it
over the 3G network to the Internet (“mule/3G”).

Our first observation from this analysis was surprising to
us: the display is by far the largest energy consumer. An
early version of our mule intentionally left the display ac-
tive to inform the user of progress; we quickly removed this
energy-wasting choice.

Second, we see that frequent scanning consumes a no-
ticeable amount of energy: about 30 J, comparing the scan
vs. no-app bars. Over the course of 24 hours, scanning con-
sumes about 5% of total battery energy.

We see that scanning takes noticeable energy. Whether
or not energy consumption from scanning is a problem de-
pends on if it runs the phone out of battery before the phone
is recharged. In our use we found that scanning did not
frequently exhaust phones batteries, however, on occasions
when the phone was taxed for other reasons (say, long voice
calls), muling contributed to forcing an early recharge.

By contrast, muling the data from the sensor does not con-
sume much additional energy (compare the scan and mule
bars in Figure 9). Bluetooth is optimized for energy-efficient
short-range data movement, while the cost of listening many
seconds to scan for potential devices is much more expen-
sive. (This trade-off is the same one that prompted low-
power listening [14, 26] and scheduling [37, 33, 38] opti-
mizations in MAC protocols.)

Finally, we see that 3G wide-area communication approx-
imately doubles energy consumption, consuming another
22 J (compare mule/3G vs. mule). In fact, this experiment
was conducted in an urban area, and the energy costs of 3G
can be greater still in areas where cellular coverage is poorer.

We conclude that energy costs of muling are noticeable,
however they are relatively small in absolute terms compared
to the primary function of most mobile phones: taking calls
and communicating information, as reflected in the cellular
standby and display energy costs. Energy consumption of
muling must be considered, but in our experience it is usually
not a primary factor in phone usability. In addition, when
muling is the primary use for the phone, as it was in our
Subsidence/Oilfield deployment, energy consumption is well
within the capacity of today’s typical phones.

Based on our experience running muling we implemented
several features to manage power usage. First, our muling
program disables relay to the Internet when operating on bat-
tery is less than 20% (however, muling from sensor-to-phone
is still done). This addition implement the policy of “phone
first, Internet second”, on the assumption that the phone will
likely be connected to grid power shortly and can complete
data relay to the Internet at that time.

7 Related Work

Our work builds on prior work in data sharing applica-
tions, data muling in sensor networks, and understanding hu-
man mobility.

7.1 Data Muling in Sensor Networks

The concept of using data mules to support sparse sen-
sor networks is an old one [21, 8, 28, 25, 3, 29, 20, 35].

The key idea is that a mobile mule can provide energy effi-
cient data relay with a short range radio, while mobility can
bridge long distances. Muling schemes can be categorized
by the type of mobility they expect: random, such as with an-
imals [21], humans [18], or simulated [28]; controlled, with
robots [29], airplanes [35], or boat; an predictable mobil-
ity with trains, shuttles, or buses [8, 25], or semi-predictable
farmworkers [3].

Different expectations about mobility usually are re-
flected by different research methodologies. Some prior
studies of humans as data mules have modeled primarily ran-
dom walk or random waypoint mobility patterns [28], yet we
know human mobility is far from random. Other work has
considered semi-random models [21, 29, 35]. We instead
study human mobility using traces from mobile phones, sam-
pling the mobility of real humans. We also and evaluate the
feasibility data muling with real human movement in our
four mule-based sensornet deployments.

Closest to our work, Burrell et al. [3] and CenWits [18]
recognize the potential of human mobility in data muling
from sensors We compares these work with ours next.

Burrell et al. study use of sensor networks in vine-
yards [3]. Based on ethnographic studies, they identify farm-
worker mobility as capable of supporting data muling, sim-
ilar to our identification of field engineer movement. Their
work focuses on motes dedicated for muling, so they do not
explore mobile phone traces, and their field system required
sensor densities that eliminated the need for data muling [1].

CenWits is a search-and-rescue system for hikers using
hiker-carried motes [18]. They recognized the need for com-
munication in sparse areas, but as with Burrell, they propose
a dedicated system.

Several recent applications have explored participatory
sensing using mobile-phones [2]. These applications ap-
plications often focus on the mobile phone as the sensor,
while the applications we identify in Section 2.2 assume
mobile phones relay data from an in-situ sensor. Garbage-
Watch is one proposed application: participants take pho-
tos of garbage bins on a campus to improve recycling [32].
We instead focus on data muling to permit reports on remote
garbage bins.

7.2 Understanding Human Mobility

Many groups have studied human mobility for data com-
munications, we summarize three very relevant studies here.
As described above, Burrell et al. explored farmworker mo-
bility with ethnographic studies [3].

Chaintreau et al. study transfer opportunities using wire-
less devices carried by humans as we do [7]. They find
heavy-tailed inter-meeting times, and so recommend new
opportunistic forwarding algorithms between mobile nodes.
We discuss opportunistic data forwarding as possible future
work for our system (Section 3.4), and instead focus on the
data transfer between mobile phones and stationary nodes
with a real working system.

Eagle et al. study human mobility patterns using mobile
phones as proxies [13]. Their goal is to understand human
and group relationships. They find that individual behavior
over a specific day can be approximated by a weighted sum



of repeated behavioral patterns they call eigenbehaviors, cor-
responding to behaviors such as a normal day vs. traveling,
weekends vs. weekday, etc. We build on their studies of hu-
man mobility to evaluate the feasibility of data muling in
daily life. While they focus on extracting and analyzing the
underlying structure of human behaviors, we exploit the rou-
tine of human mobility to cover sparsely deployed sensors
efficiently.

8 Future Work

Although our system has been operational for some time,
there remain several areas of future work.

As proposed in CarTel [19], a system should make the
most of short periods of opportunistic muling. We currently
implement a simple policy of relaying newest-data first, but
summaries or sampling may be better policies for specific
applications.

We have several ideas to make muling rendezvous more
efficient. First, there are opportunities to improve protocol-
level rendezvous, using techniques such as low-power lis-
tening [14, 26] or scheduling [37, 33, 38]. Also, we believe
that study of prior mobility patterns can improve predictions
about future rendezvous, allowing us to dynamically alter
protocol-level behavior when conditions for rendezvous are
favorable. In addition to speeding rendezvous, mules that
visit sensors very frequently waste energy confirming there
is nothing new to relay. We therefore may explore less fre-
quent scanning for often-visited sensors.

Finally, our system focuses on human mobility, so hu-
man motivation plays a role. While in some cases (like Sub-
sidence/Qilfield), muling may be company policy, in more
general cases we need to consider reasons for users partici-
pate in muling. More importantly, our current system makes
no attempt to influence human movement. We would like to
explore giving users incentives to approach sensors to assist
muling.

9 Conclusion

We have shown that data muling with human-carried mo-
bile phones is both possible and practical. We have demon-
strated the potential with analysis of two datasets of mobile
phone movement, showing that individuals see many poten-
tial sensors, and see some regularly. Inspired by this po-
tential, we implemented a data muling system and used it
to share data in four deployed sensornets. We showed that
short radio ranges of Bluetooth require intentional mobility
to make muling practical for industrial and even some urban
applications, but that opportunistic muling is suitable for our
office-based deployment. We investigated trade-offs in data
size, visitation frequency, and how they interact with mul-
ing and loiter times, and we examined energy consumption.
While work remains, we believe data muling has a role in
bringing communication to sparsely connected sensors.
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