
AVEKSHA: A Hardware-Software Approach for Non-intrusive
Tracing and Profiling of Wireless Embedded Systems

Abstract
It is important to get an idea of the events occurring in

an embedded wireless node when it is deployed in the field,
away from the convenience of an interactive debugger. Such
visibility can be useful for post-deployment testing, replay-
based debugging, and for performance and energy profiling
of various software components. Prior software-based solu-
tions to address this problem have incurred high execution
overhead and intrusiveness. The intrusiveness changes the
intrinsic timing behavior of the application, thereby reduc-
ing the fidelity of the collected profile. Prior hardware-based
solutions have involved the use of dedicated ASICs or other
tightly coupled changes to the embedded node’s processor,
which significantly limits their applicability.

In this paper, we present AVEKSHA, a hardware-software
approach for achieving the above goals in a non-intrusive
manner. Our approach is based on the key insight that
most embedded processors have an on-chip debug module
(which has traditionally been used for interactive debug-
ging) that provides significant visibility into the internal state
of the processor. We design a debug board that interfaces
with the on-chip debug module of an embedded node’s pro-
cessor through the JTAG port and provides three modes of
event logging and tracing: breakpoint, watchpoint, and pro-
gram counter polling. Using expressive triggers that the on-
chip debug module supports, AVEKSHA can watch for, and
record, a variety of programmable events of interest. A key
feature of AVEKSHA is that the target processor does not
have to be stopped during event logging (in the last two of the
three modes), subject to a limit on the rate at which logged
events occur. AVEKSHA also performs power monitoring of
the embedded wireless node and, importantly, enables power
consumption data to be correlated to events of interest.

AVEKSHA is an operating system-agnostic solution. We
demonstrate its functionality and performance using three
applications running on the TelosB motes; two in TinyOS
and one in Contiki. We show that AVEKSHA can trace tasks
and other generic events and can perform energy monitoring
at function and task-level granularity. We also describe how
we used AVEKSHA to find a subtle bug in the TinyOS low
power listening protocol.
1 Introduction

It is often important to get an idea of the events occur-
ring in an embedded wireless node when it is deployed in
the field in a remote location, away from the convenience of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’11, November 1–4, 2011, Seattle, WA, USA.
Copyright 2011 ACM XXX-X-XXXXX-XXX-X ...$5.00

an interactive debugger. Such visibility can be useful for var-
ious purposes — for debugging any problem a posteriori in
the lab, by recreating the exact sequence of events that the
node experienced in the deployment (this approach is called
“record and replay-based debugging”) [1, 2]; for profiling
the operation of a node for the performance of its various
software components and the energy consumed by different
hardware and software components on the node [3, 4, 5]. As
an example of the latter use case, a system owner may be
interested in figuring out which software component is being
invoked most often and which software component is con-
suming most energy per invocation. It is often not possible
to do these determinations in a lab setting because the events
that the node experiences in the deployment cannot be recre-
ated in the lab and the events (and even their sequence) can
have a bearing on these questions.

We would like to have visibility at a fine granularity -
both spatially and temporally. Spatially fine visibility im-
plies that it should be possible to trace individual events of
interest as opposed to only bursts of events (clearly, tracing
every event is likely to be prohibitive) and it should be pos-
sible to trace performance and energy at fine code regions,
such as a function or a task (using TinyOS terminology).
This is desirable because the fine region of code can then
be debugged if it is determined through performance pro-
filing that this region is causing a performance bottleneck,
through energy profiling that it is consuming unexpectedly
large amounts of energy, or through record and replay that it
is the source of a bug. Temporally fine visibility implies that
it should be possible to do the tracing with a high sampling
frequency. Clearly, the two dimensions are not independent.
In order to trace small regions of code in a loop, it is neces-
sary to be able to trace at a fine temporal granularity.

While the problem motivation laid out above has been
clear to researchers for quite some time [6], it has proved
very difficult to provide a solution for low-cost embedded
wireless nodes that can operate at a large deployed scale.
The first line of attack has been to provide pure software
solutions [6, 7, 8, 1, 2]. Such solutions have perturbed the
application too much to be useful for many of the use cases
indicated above. For one, they change the timing behavior
enough that some bugs get suppressed. Else, they cause such
a large slowdown in the application execution that it is not
possible to employ them in a deployed setting. To get around
this problem, a recent software solution [2] has focused on a
specific kind of tracing (control flow tracing) and intelligent
static analysis and runtime trace collection, compression and
storage. Thus, it addresses one of the above usage scenarios.
The second line of research has developed hardware solu-
tions for subsets of the usage scenarios laid out above. For
example, [5] has developed a dedicated integrated circuit,

implemented using an FPGA, that is tightly integrated with
the host processor and its peripherals and can measure en-
ergy drawn accurately at millisecond resolution. Quanto [4]
is a solution that de-emphasizes sophisticated hardware de-
sign. Instead, it measures energy at the node level, uses indi-
cation from device drivers about changes in power state, and
performs causality tracking to pin down energy usage due
to individual activities. Thus, Quanto is a hardware-software
solution, and like all prior solutions that have a software part,
is OS-specific (in this case, TinyOS).

A high-end hardware solution for tracing the execution
on an embedded processor is provided by solutions such as
Green Hills Software’s SuperTrace probe and TimeMachine
tools [9]. These solutions can collect fine-grained trace data
from nearly all 32-bit and 64-bit processors, even those with-
out integrated trace hardware. Unfortunately, such solutions
are very expensive in dollar terms (e.g., the SuperTrace probe
and TimeMachine tools together cost almost $15,000) and
are not available for the low-end embedded processors that
are commonly used in embedded wireless nodes.

In summary, our problem statement is the following:
How to perform non-intrusive tracing of execution at a high
spatial and temporal granularity suitable for an embedded
wireless node, i.e., in a low-cost manner and one that can be
deployed at a large scale?

In this paper, we present AVEKSHA, a system that
achieves this goal1. AVEKSHA is based on an insight that
most processors, including low-cost embedded processors,
offer visibility into their internal workings through an On-
Chip Debug Module (OCDM), whose signals are exposed
through a standard JTAG interface. This interface has been
used by embedded system engineers primarily for interac-
tive debugging, such as single stepping, showing values of
registers, etc. We show how this visibility, together with the
fact that most OCDMs provide a general-purpose method of
setting triggers, can be leveraged in AVEKSHA to perform
automated tracing in a deployed setting.

We develop a debug board formed of standardized com-
ponents – a microcontroller unit (MCU), which in our
case happens to be the same as the application processor,
MSP430F1611 from Texas Instruments, and an Actel FPGA,
both of which interact with the OCDM on the application
processor over the JTAG interface. We refer to our debug
board as the Telos Debug Board (TDB) because it is in-
tended to be used with the Telos wireless sensor node (how-
ever, that out solution is not restricted to the Telos and can
easily be adapted to other embedded platforms based on the
MSP430 microcontroller, and with some effort to other em-
bedded platforms). The MSP430 OCDM (also referred to by
the microcontroller datasheets as the Enhanced Emulation
Module or EEM) allows AVEKSHA unprecedented visibil-
ity into the state of the application processor. Further, the
OCDM has a small circular buffer where events of interest
can be stored and subsequently drained by the FPGA on the
TDB. The triggering mechanism of the OCDM is very flex-
ible and is therefore attractive for AVEKSHA. For example,
the OCDM can be triggered to indicate when the application

1AVEKSHA is a Sanskrit word that means “to monitor”.

processor has accessed a certain memory region or a certain
peripheral device, such as a sensor. We find that the trigger-
ing mechanism can be combined with thoughtful design to
trace all the events of interest for our three usage scenarios
– performance profiling, energy profiling, and record-and-
replay.

One challenge that we face, and resolve partially, is the
need to do real-time tracing, i.e., without interrupting the ap-
plication processor. AVEKSHA is able to achieve this when
the rate of events that it has to trace does not exceed some
bound, which depends on the mode of tracing it uses. AVEK-
SHA operates in one of three modes: breakpoint, watchpoint,
and program counter (PC) polling. Breakpoint is a baseline
and we use it for demonstrating some functionality of the
TDB. It is intrusive and, therefore, does not meet our solu-
tion requirements. The watchpoint mode has AVEKSHA set
triggers, where each trigger unambiguously maps to an event
of interest (such as when a sensor is read). When a trigger
fires, the application processor is not stopped, but the state is
dumped to a buffer on the OCDM, which is then emptied out
by AVEKSHA. This is a rate-limited operation and if events
of interest happen with a high enough frequency, the buffer
overflows and AVEKSHA misses some events of interest. In
the PC polling mode, the TDB tracks the program counter
values of the application processor without interrupting it.
Then, it processes the PC values to determine events of inter-
est, such as when control flow has entered a particular func-
tion. These three modes reveal different tradeoffs in terms
of intrusiveness, the flexibility in defining which events to
collect, and the rate at which collection can be done.

We make the following claims to novelty and practical
feasibility from AVEKSHA:

1. We present the first technique for non-intrusive tracing
of a wide variety of events, including arbitrary user-
defined events, in embedded wireless nodes. We moti-
vate the events of interest from three well-accepted us-
age scenarios.

2. Our tracing technique is agnostic to the operating sys-
tem, compiler infrastructure, or language in which the
application is implemented.

3. Our hardware is built using off-the-shelf components
and requires little effort in designing and integrating.
The hardware of the application board is modified only
very slightly for enabling the tracing.

4. Our solution is suitable for deployment at a large scale
because it is low cost, can operate on battery power,
and extracts program information from the application
processor without needing to halt it.

Our solution also has some limitations. We provide a
detailed discussion of these, along with thoughts on how to
mitigate them, in Section 5. In brief, the TDB is a relative
energy hog itself, drawing about the same power as the ap-
plication processor board. Its ability to keep pace with events
is exceeded if a burst of 8 events happens within a window
smaller than 976 clock cycles (in the watchpoint mode) or
events happen more frequently than 7 clock cycles (in the
PC polling mode).

Figure 1. The Telos Debug Board (TDB) shown with a
Telos mote underneath. The underside of the TDB is also
shown on the right.

The roadmap for the rest of the paper is as follows. In
Section 2, we describe the hardware of the TDB and the
firmware that goes on it. In Section 3, we show how the TDB
can be used for profiling. In Section 4, we present the exper-
imental setup and results with two TinyOS and one Contiki
application. In Section 5, we discuss feasible extensions of
AVEKSHA. In Section 6, we review related work and Section
7 concludes the paper.

2 TDB Hardware and Firmware
In this section, we present the design of the Telos Debug

Board (TDB), which operates as a sister board to the Te-
los mote, and provides JTAG control, and through it, energy
monitoring and execution profiling. An MCU and an FPGA
provide the programmability of the TDB.
Terminology. We lay out some terminology that we will
use through the rest of the paper. We wish to monitor the
execution of the application processor that is part of an ap-
plication processor board. The application processor board,
which we sometimes also refer to as the mote, has various
peripherals such as sensors and the JTAG interface in addi-
tion to the application processor. We refer to the hardware
board that is a part of our solution as the Telos Debug Board,
while the entire hardware-firmware that forms our solution
is called AVEKSHA.

Figure 1 shows a photograph of the TDB with a Telos
mote attached underneath. The MCU, FPGA, and multi-
ple USB ports on the TDB are highlighted. The figure also
shows the JTAG and IO connections between the TDB and
the mote. The TDB is designed so that it can be deployed in
the field, connected to a mote. In this mode of operation, a
battery powers the TDB, which in turn provides power to the
mote. As a secondary mode of operation, the TDB can also
stream logged events directly to a USB host such as a laptop.
This is useful for in-lab debugging.

2.1 Energy Monitoring
Energy is a key concern for sensor networks, because

motes must operate unattended on battery power for long
periods of time. When optimizing an application to reduce
energy consumption, it can be useful to observe how much
energy is consumed in different states. The TDB can mea-
sure and log the power consumed by the mote, which can
then be correlated to different operational states of the mote.

The standard method for measuring energy consumption
is by monitoring the voltage of a sense resistor. The sense

-
+

-
+

-
+

-
+

Rsense
3.74

3.3V 3.3V
5V

5V

3.3V

3.3V

ADCx10

ADCx105

100

0.1u

100

0.1uMote DVCC

10

105

Sense Amplify Filter Protect

Figure 2. A simplified schematic of the energy monitor-
ing circuit of the TDB.

Rsense
3.74

3.3V

Vin Vout
3.3V LDO

5V from USB

DVCC

Mote TDB
non-USB components

removed
battery

+
-

Rload

USB components

Figure 3. A simplified schematic of powering the mote
through the TDB. The battery should not be connected
to the mote.

resistor (Rsense) is placed in series with the load being mea-
sured. The voltage (V) across Rsense is sampled and the load’s
current draw is calculated by I =V/Rsense. The supply volt-
age (Vsupply) can then be used to find the power being drawn
by the load with P = I ∗Vsupply. The power samples can then
be integrated over time to determine energy consumption.

The challenges presented in monitoring energy in sensor
networks is the wide dynamic range of power draw of a mote
and the rapid changes in power draw. For example, a mote
may draw only tens of µA in sleep mode and as much as
30mA when fully active. It is may not be sufficient to ignore
the small power draw when the mote is in low power mode,
because typical sensor network applications spend long pe-
riods of time in the low power state while only waking for
short periods of time. Further, the change in the current draw
when the mote transitions from one state to another is rapid.

To meet these challenges, we use two instrumentation
amplifiers to amplify the voltage across Rsense by a gain of
10 and 105, as shown in Figure 2. Because Rsense is placed
on the high side, the amplifiers need to be supplied with a
voltage larger than 3.3V, in this case 5V. The output of these
amplifiers is fed into an RC low-pass filter with a cut off
frequency of about 16KHz. Another pair of amplifiers with
unity gain is used to protect the ADCs which cannot tolerate
more than 3.3V. Two ADC channels of the MCU on the TDB
sample the x10 and x105 lines at 20KHz. The ADCs are 12-
bit and sample against a reference voltage of 2.5V. This gives
ADCx10 a resolution of 61µV across Rsense which is equiv-
alent to 16.3µA of current draw, and a maximum reading of
250mV or 66.8mA, which is more than the mote’s maximum
current draw of 30mA. The ADCx105 gives a resolution of
5.81µV across Rsense which is equivalent to 1.55µA of current
draw, and a maximum reading of 23.8mV or 6.366mA.

As shown in Figure 3, Rsense is placed between the TDB’s
3.3V supply and the mote’s DVCC line, while the ground

0 1 2 3 4 5 6 7BIT

TDO

TDI

TMS

TCK

Figure 4. Timing example for shift IR. The byte 0xCC is
shifted in on TDI while 0x00 is shifted out on TDO, least
significant bit first.

lines of the mote and the TDB are shared. This configuration
is known as high side sensing. One advantage of high side
sensing is that the ground plane of the mote and the TDB
are shared. If on the other hand, we had used a low side
sensing approach, the ground of the mote would have been
connected to one end of the resistor away from the ground.
This would have caused the mote’s ground not to be exactly
at 0 V. Another advantage is that the Zener diode achieves
isolation between the USB components and the non-USB
components of the mote and thus allows us to capture the
current draw of the non-USB components (which is what we
are interested in) even when the mote is plugged into a USB
port of a laptop (or some other computing platform). This is
because the diode has a forward bias of about 360mV, mean-
ing that as long as the voltage drop across the sense resis-
tor remains below 360mV all current drawn by the non-USB
part of the mote will be from the TDB and not the USB part
of the mote. Rsense is chosen sufficiently low such that this
will happen even at maximum power draw by the mote. The
maximum current of the mote is 30mA which would result
in a voltage drop across the sense resistor of 112mV.

To account for amplifier offset we use a switch between
Rsense and DVCC that allows 3.3V to be temporarily placed
at both ends of Rsense in a manner similar to [3]. The MCU
has an ADC buffer of 16 samples. The x10 and x105 am-
plified signals are sampled alternately at a rate of 40ksps, to
achieve an effective sampling rate of 20ksps. When the ADC
buffer is full, an interrupt service routine sums up the sam-
ples in the buffer. A count of ADCx10, ADCx105, and the
total number of samples is maintained. From this, the total
energy consumed by the mote can be computed. It is desir-
able to use the ADCx105 reading due to its greater current
resolution, unless there has been an overflow in its reading.
This is determined by first reading the ADCx10 value and
taking the ADCx10 reading only if it indicates an overflow
in the ADCx105.

2.2 JTAG: Background
The application processor contains an on-chip debug

module. This module can be used to emulate the processor
(directly control the processor operations) and it can execute
breakpoints and watchpoints when certain conditions of the
data and address buses are met. A breakpoint halts execution
of the processor, while a watchpoint records the contents of
the data and address bus into an 8 entry circular buffer. The
OCDM is implemented as a state machine that is controlled
via the standard JTAG protocol.

USB Hub USB/UART
Adapter MCU

UARTUSB

Upstream USB

Mote USB Mote
Expansion
 Interface

FPGA

16

Mote
JTAG

control

data
4

Figure 5. Hardware architecture of the TDB.

JTAG uses four lines: data output to host (TDO), data in-
put to target (TDI), mode select (TMS), and clock (TCK).
JTAG shifts frames of data into and out of the OCDM and
that changes the state of the OCDM. There are two basic shift
modes: an 8-bit instruction register (IR) shift and an n-bit
data register (DR) shift. The TMS line selects between IR or
DR at the start of a shift based on the number of TCK rising
edges for which it remains high. For example, in Figure 4,
TMS remains high for two rising edges which selects the IR
mode, while one rising edge would select the DR mode. The
number of bits shifted in an n-bit DR shift is determined by
TMS being high a second time during the shift of the last bit.
Bits are shifted from the mote to the TDB on the TDO line
and from the TDB to the mote on the TDI line. Although the
JTAG protocol is standard, the sequence of instructions that
must be shifted into the OCDM on the MSP430 is propri-
etary. We have reverse engineered these control sequences
and used them in AVEKSHA to determine what command se-
quences must be sent to the OCDM for the application to en-
ter a breakpoint, to set a watchpoint, or to enable PC polling.

2.3 Architecture: Hardware
As shown in Figure 5, the TDB consists of a USB hub,

a USB to UART adapter, an MCU, and an FPGA. The USB
components are primarily for use in a lab environment and
provide reprogramming, control, and streaming of log data.
They can remain unpowered when the debug board is de-
ployed in the field. The USB hub has 1 upstream port and 3
downstream ports. The upstream port is used to access the
debug board from a PC. One of the downstream ports is per-
manently connected to a USB to UART adapter that provides
reprogramming and data transfer to and from the MCU. The
second downstream port is available for connection to the
USB port on the mote. This is useful in a lab or testbed de-
ployment where access to the mote’s USB port is desired.
The final downstream port is available for future use, and we
envision it being used in testbed deployments to daisy chain
several TDBs together.

The FPGA interfaces with the mote’s JTAG and expan-
sion interfaces. The expansion interface of the mote provides
access to the some of the its UART, I2C, ADC, and GPIO
peripherals. It was necessary to use an FPGA to control the
mote’s JTAG to be able to poll at a sufficient frequency to
keep up with the events we want to observe. For some oper-
ations (such as PC polling) we have found the need to drive
the clock line of the JTAG up to 24MHz. To implement a
protocol in software that can drive the JTAG at 24MHz would
require a processor that operates at several times that speed.

PC poll Function
lookup Filter Output

Buffer
PC

addr
func
ptr

func
ptr

16 16 16

Mote
JTAG

MCU

Figure 6. FPGA pipeline in PC polling mode.

Additionally, there is the problem of processing the collected
JTAG data to determine what should be logged. The FPGA
allows pipelining of JTAG control and data processing, so
that the polling loop never waits for data processing.

An MCU is placed between the USB to UART adapter
and the FPGA. It performs tasks that are less time critical
and better suited to software. For example, initialization of
the mote for debugging, reading the contents of the mote’s
program memory, and disassembly of the mote’s program
code are performed by the MCU. Using an MCU also makes
adding functionality to the debug board easier because the
MCU can be reprogrammed over USB. To simplify program-
ming, the MCU used on the TDB is an MSP430 processor
that is identical to the one used on the Telos mote. The TDB
operates its MSP430 MCU at 8MHz.

In the current prototype, the TDB logs are streamed over
USB. It would also be possible to add some Flash mem-
ory to act as a circular buffer as was done in FlashBox [8].
Our maximum reliable streaming throughput over USB is
1Mbps. This is limited by the USB 1.0 hub and adapter,
which have a theoretical throughput of 1.5Mbps. Moving
to USB 2.0 would boost the USB throughput to 480Mbps,
which would make the 8MHz MCU the bottleneck in stream-
ing logs. However, we have found 1Mbps to be sufficient in
all of our experiments as long as buffers are added in the
MCU and FPGA to absorb short bursts of data to be logged.

2.4 Architecture: Firmware
The firmware of the TDB consists of C code for the MCU

and Verilog code for the FPGA.
Firmware on the MCU The MCU is responsible for initial-
ization tasks. When the TDB is first connected to the mote,
the MCU sets the FPGA into a mode where the MCU can di-
rectly control the JTAG lines connected to the mote. Through
JTAG commands, the mote is put into a halt state and the
program memory of the mote is read. A simple disassem-
bly of the program is performed, where the start of every
function block is discovered by examining the destination of
every call instruction in the code. The resulting table is then
programmed into the FPGA’s RAM for use by the function
lookup module. At this point, any watchpoint trigger can be
set on the mote. What triggers will be set will depend on
the goal of the tracing. For example, if record and replay is
desired, then triggers will have to be set for the entry point
of every function, entry point of every interrupt handler, and
read from any peripheral device. We explain in Section 3 the
complete list of triggers that can be supported. Finally, the
MCU sets the FPGA to either the PC polling or the watch-
point mode and resumes execution on the mote. Thus, the
MCU on the TDB functions as an orchestrator, but leaves
the core functionality for the FPGA.

The main advantage of reading and disassembling the
mote’s program memory when the TDB is connected to the
mote is that the TDB need not be aware a priori of what
application the mote is running. The TDB can perform this
process independent of the application or operating system
used by the mote, but based on the machine language of the
MSP430.In addition to finding the entry point of every func-
tion, the disassembly of the code is also used to record the
start of every interrupt service routine, the address of every
function call, the address of every function return, the ad-
dress of return from every interrupt service routine, the con-
tents of the interrupt vector table, and the addresses of special
nop instructions (e.g. MOV R4, R4), that are used as trigger
markers in the code.
Firmware on the FPGA The FPGA is responsible for talk-
ing to the OCDM on the mote’s MCU through the JTAG
port. The FPGA polls the OCDM to to detect the occurrence
of any triggers of interest. Following each iteration of the
polling loop, processing may need to be performed to decide
whether or not the polled data should be logged. For exam-
ple, with PC polling, a log entry should be generated when
the polled PC value falls into the address range of a new
function. To prevent the slowdown of polling, the process-
ing is pipelined in the FPGA. Figure 6 shows the pipeline for
PC polling. The FPGA due to its inherent parallelism can
support this pipeline. At the end of each PC poll, the PC ad-
dress is passed to the function lookup module. The function
lookup module contains a table in RAM of the start address
of every function block. A binary search is performed on the
table to find the start address of the function block that corre-
sponds to the polled PC address. The function table capacity
is 1024 function pointers, so the lookup completes in at most
log2(1024) = 10 reads from RAM, which completes well
before a single PC poll. Note that one cycle on the FPGA is
much faster than one cycle on the application processor (20
MHz versus 4 MHz for our experiments) and hence, the ad-
dress lookup does not become a bottleneck under experimen-
tal conditions. After the correct function pointer is discov-
ered, it is passed to a filtering module. This module decides
whether or not the function pointer should be logged. If the
function pointer corresponds to the same function as the last
logged one, then it does not need to be logged again. A new
function pointer indicates that a different function has been
entered, so the value is logged. Finally, function pointers that
are to be logged are passed to a FIFO output buffer main-
tained in the FPGA. The MCU on the TDB reads this buffer
and logs the data either in local Flash memory, or, if required,
streams the log entries to a host machine to which the TDB is
connected through a USB port or through wireless commu-
nication. The buffer is necessary because the MCU performs
other functions, such as energy monitoring, and may not be
able to read a value to be logged in the time it takes to per-
form a single PC poll. The buffer also absorbs peaks in the
rate of new functions being invoked. We have observed a
buffer size of 256 to be sufficient to absorb all peaks in the
programs that we have monitored.

For some pathological cases, it is possible that the PC
polling mode of AVEKSHA is thrown off—the execution may
transition from function func1 to func2 and then back to

Table 1. Types of triggers available for monitoring events.

Event Condition # Triggers

Function call MDB-F==0x12B0 1
Function return MDB-F==0x4130 1
Interrupt MAB-R≥0xFFE0 1
Interrupt return MDB-F==0x1300 1
Peripheral read 0x0010≤MAB-R≤0x01FF 2
Peripheral write 0x0010≤MAB-W≤0x01FF 2
User defined MDB-F==0x4404 1

func1. The function func2 is small enough that PC polling
misses the transition and mistakenly determines that the ex-
ecution has stayed in func1 all through. For this to happen,
func2 has to be smaller than 7 clock cycles based on the
timings of PC polling, which we detail in Section 4.1.
3 Using AVEKSHA for Tracing and Profiling

There are three modes that AVEKSHA can operate in
while monitoring application execution, namely Breakpoint
mode, Watchpoint mode, and PC Polling mode. Depend-
ing on the mode of operation, AVEKSHA interacts with
the OCDM on the application processor in different ways.
Therefore, these modes have different tradeoffs in terms of
the level of intrusiveness to the application (breakpoints are
the most intrusive), the flexibility offered in terms of the
kinds of events that can be observed (watchpoints are the
most flexible), and the speed of event logging (PC polling is
the fastest). Before we describe the three modes of opera-
tion, we discuss the kinds of triggers that AVEKSHA can set
for observing events of interest on the application processor.
3.1 Types of Triggers Available

The OCDM on the application processor allows us to set
8 concurrent triggers for detecting events of interest. Al-
though this number may, upon first glance, seem insuffi-
cient to create a complete profile of an application, that is
not the case because the MSP430 offers far more advanced
triggers than just the program counter (PC) reaching a partic-
ular value. For example, a trigger can compare the Memory
Data Bus (MDB) or the Memory Address Bus (MAB) to a
set value or range of values. Additionally, the trigger can be
restricted to be active only during an instruction fetch (F), a
memory read instruction (R), or a memory write instruction
(W). This gives us great flexibility in using these 8 concur-
rent triggers to capture all our events of interest.

All of the triggers that we use in this paper are listed in
Table 1. The notation used for specifying the condition that
the value on the Memory Data Bus equals 0x12B0 on an in-
struction fetch is given by: MDB-F==0x12B0. This particular
trigger will fire for every function call because 0x12B0 is the
machine code for a function call instruction. Similarly, the
machine code for the return instruction from a function call
is ret=0x4130. Therefore, the trigger MDB-F==0x4130 will
trigger on all function call return events. A call to an inter-
rupt can be detected with the trigger MAB-R≥0xFFE0. The
interrupt vector table is located between address 0xFFE0 and
the end of the address space at 0xFFFF. Every time an inter-
rupt is to be serviced, the processor reads the interrupt vector
table to determine the address of the interrupt service routine

that corresponds to the interrupt being serviced. Interrupts
have their own return instruction (reti=0x1300) that can be
monitored with the trigger MDB-F==0x1300.

The compound trigger 0x0010≤MAB-R≤0x01FF will fire
for every read to memory between addresses 0x0010 and
0x01FF. A compound trigger, such as the above, that con-
tains two conditions is made by joining two triggers together,
and uses 2 of the 8 available trigger entries. In the MSP430,
the peripherals are all memory mapped to addresses between
0x0010 and 0x01FF. The peripherals include any sensors
that may be attached to the applicaton processor. For pur-
poses of deterministic record and replay, it is important to
track what sensor values are read. This can be done by us-
ing the trigger 0x0010≤MAB-R≤0x01FF, which captures a
read from the memory-mapped peripheral portion of mem-
ory. When a trigger is fired, the OCDM stores the values of
the MAB and the MDB to the 8-entry circular buffer. The
stored MDB will contain the value that was read from the
peripheral.

While functions and interrupts are interesting points for
monitoring, we would like even more flexibility to monitor
any arbitrary event in the executing application. For exam-
ple, if we want to monitor the execution of every task in
TinyOS, we cannot do this with a function call trigger. This
is because the gcc compiler inlines many of the tasks in the
scheduler’s runTask() function. One solution is to set the
noinline directive on all task functions. We have verified
that this works, however, this is unsatisfactory because it sac-
rifices the efficiency gains obtained due to function call inlin-
ing. A less costly solution is to trigger on a nop instruction.
However, the MSP430 does not have an explicit nop instruc-
tion. Instead, compilers emulate this instruction by using a 1
cycle instruction that has no direct effect and no side effect
on status or mode bits – specifically, gcc uses the instruc-
tion MOV R3, R3 to emulate a nop. There are three possible
1 cycle instructions that meet the requirements for no effect
or side effect: (MOV Rn, Rn), (BIC #0, Rn), and (BIS #0,
Rn). With 16 registers available on the MSP430, this gives
us 48 possible choices for an emulated nop. We can use dif-
ferent application-specific meanings for each emulated nop
instruction to monitor 48 arbitrary events of interest. For our
purposes we choose just one, (MOV R4, R4), which trans-
lates to the machine code 0x4404, and add an instruction
fetch trigger MDB-F==0x4404. A programmer can now place
the assembly code (MOV R4, R4) at arbitrary places in the
code to monitor user-defined events of interest, such as the
beginning of a task.
3.2 Breakpoint Mode

Any of the 8 concurrent triggers available can be set as
a breakpoint. When a breakpoint is reached, the OCDM on
the application processor halts execution and takes control of
the application processor. The TDB performs a continuous
poll of the CPU state of the application processor. When it
sees that the CPU state is halted, it retrieves the state of the
application processor (e.g., the value of the PC) and sends a
command to the OCDM asking it to resume execution.

Table 2 shows the speed at which a single poll (or test) of
the CPU state can be performed, the time it takes to read the
PC register, and the time it takes to resume CPU execution.

All of these operations involve shifting values into the in-
struction register (IR) and data register (DR) of the OCDM.
For example, a test of the CPU state requires shifting one
IR and one DR, reading the PC register requires shifting 2
IRs and 4 DRs, and resuming the CPU involves shifting 3
IRs and 1 DR. The operations needed for achieving the tasks
are not documented and we determined them through reverse
engineering TI’s IAR debug interface [10]. An IR can be
shifted in 15 cycles of the JTAG clock (TCK) and a DR can
be shifted in 23 JTAG clock cycles. Table 2 shows the times
for performing the required shift operations in software with
the MCU on the TDB running at 8MHz, and the FPGA im-
plementation. The FPGA is able to operate the JTAG clock
(TCK) at 10MHz, which is the fastest we have been able to
operate the JTAG reliably for the breakpoint and the watch-
point modes and is the maximum rated speed according to
the JTAG specification.

Breakpoints have the advantage that we never miss a trig-
ger firing, because every time a trigger is reached the CPU
is halted and control is passed to the TDB. The disadvantage
of the breakpoint mode is that we lose the property of non-
intrusiveness. In TinyOS, the MSP430 on the TelosB is set
by default to operate at 4MHz meaning 1µs = 4cycles. Us-
ing the FPGA implementation, the time to poll and resume
the application processor is equivalent to 91.2 cycles of the
application processor. The application processor has to be
halted for atleast this time while processing an event.

3.3 Watchpoint Mode
The same kinds of triggers as in the breakpoint mode can

also be set as watchpoints. The JTAG interface has an 8-
entry circular buffer where memory address bus (MAB) and
memory data bus (MDB) are stored when a watchpoint is
hit. As indicated earlier in Section 3.1, the trigger can be
on an instruction fetch, read, or write. Thus, by recording
the address bus content on an instruction fetch, it is possible
to know the PC value. The most recent entry written to the
8-entry buffer is indicated with a set flag. The TDB polls
the flag of the most recently written entry until it is cleared,
indicating that a new entry has been written to the buffer.
The TDB then continues to read entries until it again reaches
one that has its last entry flag set.

Watchpoints have the benefit that unlike breakpoints,
they are not intrusive to the application. The application does
not have to interrupt its execution when a watchpoint trigger
is met. However, this also means that there is a threshold
for the rate of triggers that the TDB can keep up with. Be-
yond this rate, the circular buffer will wrap around and the
TDB will miss some events of interest. Based on our empir-
ical measurements (given in Table 2), the entire processing
for one invocation of of a watchpoint trigger takes 30.5µs,
which corresponds to 122 cycles for the application proces-
sor (at the default frequency of 4 MHz). Thus, as long as we
do not have a sustained burst of 8 events of interest within
8×122 = 976 cycles, the TDB in the watchpoint mode will
not miss any event.

3.4 PC Polling Mode
The final approach to trace generation, is to forego us-

ing triggers entirely, and instead poll the program counter

!"#$

!%&'$()*$!'+,$
,-!'./,*0()*1$ +/,*0()*1$ '234560()*1$

7/%/,*0891$ 9/,*0891$

:9/,*0.91$ '2345+0.91$
;8$

<7/%/,*$2=$>?@2A5?B4C$DE>4$?F45$=B?5BGH$I5D3$+/,*J$

/G554EB$'2EK%:$/@D>L=$?EC$'2345=$

Figure 7. The setup of the MSP430 clock module used by
TinyOS.

!"#$

!%&'$()*+,-./$

0(!'1203,-./$ +203,1./$ '4567+,1./$

82%203,9:91--/$

.203,-./$

;.203,<93/$ '4567=,<93/$
>?$

@82%203$4A$BCD4E7CF6G$HIB6$CJ67$AFC7FKL$M7H5$+203N$

.HG4O6G$.;)-<P2DHBQ)$

>-$

Figure 8. The modified clock module to synchronize the
main clock (MCLK) with the FPGA clock.

of the application processor as it is running. If we could
observe every time the PC is modified, we could produce a
perfect trace of program execution. This is practically infea-
sible, however, because it is not possible to do PC polling at a
high enough rate and the amount of trace data generated will
be too large to be stored or streamed back to a base station.
However, for our applications, we find that it is possible to
do PC polling at a fast enough rate to keep track of all the the
functions that execute.

The advantage of PC polling is that it is about 15 times
faster than the watchpoint mode and hence can keep pace
with a higher frequency of events (function entry, exit, in-
terrupt entry, exit, etc.). The disadvantage is that it does not
allow for advanced triggers – it only allows reading the PC
value. For example, we could not use PC polling alone to
watch for a memory read or write to a specific memory lo-
cation. A single iteration of the PC poll can be performed
rather quickly; from Table 2, we see that it takes just 1.6µs,
which corresponds to 6.4 clock cycles of the application pro-
cessor. It is rarely the case that interesting functions that we
want to trace will take less than 6.4 cycles to execute.

However, implementing PC polling presents a practical
challenge, namely, synchronizing the TDB and the applica-
tion mote. This is because the TDB is reading the PC values
while the mote is executing. To achieve this synchronization,
we replace the mote’s external crystal oscillator with a wire
from the FPGA. Then, we modify how TinyOS configures
the processor’s clock module, as shown in Figure 7, so that
the main clock (MCLK) on the processor is wired directly
to the FPGA’s clock as shown in Figure 8. This achieves
synchronization of the TDB and the application processor.

In addition to reconfiguring the application processor’s
main clock (MCLK), we must also change the source of
TimerA which requires a 1MHz clock signal, and TimerB
which requires a 32kHz clock. The FPGA’s 4MHz signal
cannot be divided down to 32kHz, because LFXT1CLK and
ACLK each have a maximum clock divider of 8. Therefore,
we use the internal digitally controlled oscillator (DCOCLK)
to provide a 32kHz signal to TimerB and connect TimerA to
ACLK and remove the external crystal from the application
processor board. A consequence of this is that DCOCLK

Table 2. Time taken, in software and using the FPGA, to
perform various operations through JTAG in the break-
point, watchpoint, and PC polling modes.

Mode Operation Software (µs) FPGA (µs)

Breakpoint Test 13 3.8
Read Addr. 42 12.2
Resume 166 6.8
Total 221 22.8

Watchpoint Test 318 18.3
Read Addr. 212 12.2
Total 530 30.5

PC Polling Read PC 55 1.6
Total 55 1.6

cannot be turned off when the processor goes to sleep, be-
cause TimerB is responsible for waking the processor up.
Another solution would be to connect the FPGA clock to the
XT2 clock input pin. This would avoid removing the crystal
oscillator and would allow TimerB to use the oscillator as its
input, so the mote would not need DCOCLK in sleep mode.
We chose the first approach for practical reasons, because the
XT2 pin is physically less accessible than the crystal oscilla-
tor.

4 Experiments
4.1 Microbenchmarks

The objective of our microbenchmarking experiments is
to evaluate the performance of the building blocks of AVEK-
SHA. In particular, we evaluate (a) how many clock cycles
it takes for AVEKSHA to perform event monitoring each of
the three modes – breakpoint, watchpoint, and PC polling,
together with the individual components in each, (b) the ac-
curacy of the energy monitoring by comparing it with mea-
surements obtained using a Fluke multimeter as well as a
dedicated power monitor from Monsoon Inc., and (c) the en-
ergy consumption of the TDB itself.
4.1.1 Time Taken in Each Monitoring Mode

Ideally, we would like to poll the PC or the watchpoint
buffer at a rate sufficient to observe every single instruction
executed on the mote. Unfortunately, the debug module on
the MSP430 was only designed to be operated with a maxi-
mum frequency of 10MHz for the JTAG clock. One excep-
tion we have discovered empirically is that PC polling can
be reliably clocked at up to 24MHz. Table 2 presents the ef-
fect this has on the time taken to complete basic polling op-
erations. The software column shows how long operations
take if only the MCU on the TDB is being used while the
FPGA column represents the time operations take in the cur-
rent FPGA implementation. The FPGA implementation is
limited only by how fast the JTAG clock of the mote can be
reliably driven. The table presents results in µs. TinyOS op-
erates the main clock of the mote at 4MHz by default, so 1µs
is equivalent to 4 clock cycles on the mote.

The breakpoint mode of monitoring comprises a test op-
eration to determine if the mote has halted (which is done in a
loop), a read address phase to collect at which instruction the
mote halted, and a resume phase to restart execution on the

Table 3. Accuracy of the current measurements provided
by AVEKSHA for fixed resistive loads, compared to values
computed based on measurements with a Fluke multime-
ter.

Resistance Current Relative Error
(Ohms) Computed (µA) TDB (µA) (Unitless)

179.71 18362.92 18483.56 0.007
218.55 15099.52 15193.74 0.006
560.8 5884.45 5807.06 0.013
991.4 3328.63 3314.46 0.004

4689.2 703.74 674.77 0.041
32610 101.20 92.34 0.088
55220 59.76 52.97 0.114

179360 18.40 16.09 0.125
266750 12.37 16.28 0.316

mote. Likewise, the watchpoint mode has a test phase and a
read address phase. The test phase here is more complex be-
cause it has to test if a new entry has been created in the JTAG
circular buffer. In the watchpoint mode, a poll takes 122 cy-
cles and this means that this mode can keep up with events if
their sustained rate is less than 3.3×104 per second. For all
of the applications that we have experimented with (which
are a superset of the ones for which we provide results here),
the rate of events, tasks, and application-level functions is
lower than the above rate. However, if we include system-
level entities (functions, events, and tasks), then this rate is
occasionally exceeded. Finally, PC polling only requires a
read PC operation that can be performed in less than 7 mote
cycles. It is highly unlikely that functions of interest span
less than 7 cycles and therefore PC polling, while not as ex-
pressive as watchpoint, is able to keep pace with functions
that we want to monitor.

4.1.2 Accuracy of Power and Energy Monitoring
The objective of this experiment is to see if AVEKSHA

can faithfully monitor the power draw in the static case (us-
ing a fixed resistive load) and when there are spikes in power
consumption, which happen commonly in embedded sys-
tems, e.g., when the radio switches on. Table 3 shows the
current consumption reported by the TDB for various resis-
tive loads. For comparison, we measured the value of each
resistor using a high-accuracy Fluke multimeter and com-
puted the theoretical current consumption through it. As seen
in the table, TDB’s current measurement is within 10% of the
computed value for current draws of 100 µA or above, while
the error goes up for smaller current values. The accuracy of
the current measurement can be improved further using tech-
niques (which we have not implemented yet) such as better
isolation between the analog and the digital components and
better decoupling between analog components so that each
has a closer-to-perfect grounding.

We also measured the power consumption reported by
the TDB while attached to a TelosB mote running the
TestNetworkLpl TinyOS application. It is important to note
that the amplitude of the power consumption trace in this
case will have a significant dynamic range due to various
components on the mote changing power states during ap-

plication execution. The TDB measurement of energy draw
over a 1 minute period is within 3.2% of that given by a Mon-
soon power meter [11]. Since the spikes in energy draw are
three orders of magnitude higher than the steady state case,
this close result can only be achieved because TDB monitors
the current spikes faithfully. For comparison, the static en-
ergy metering of iCount over a five decade range is accurate
to 20% down to about 1 µA [12].
4.1.3 Power Consumption of TDB

It is important that the TDB itself consume a small
amount of power because the typical usage scenario is the
TDB coupled to the application processor board when the
latter is deployed in the field. In this usage scenario, only the
non-USB components on the application processor board are
active. We find that our current prototype consumes a maxi-
mum of 55mW at a supply voltage of 3V. For comparison the
TelosB mote with processor and radio active consumes about
49mW. So the TDB will approximately double the power
consumption when the mote is fully active. It is possible to
reduce this overhead by having the FPGA enter a sleep mode
when the mote goes to sleep. This would involve triggering
on the instructions that the application processor uses to set
up a timer for going to sleep. Alternatively, the OS on the ap-
plication processor could send a hardware signal to the debug
processor on the TDB on a general purpose pin whenever the
application processor is going to transition to a sleep state or
immediately after waking up from it.
4.2 Application Setup

Our experiments use both TinyOS and Contiki applica-
tions without needing any extra programming effort since
AVEKSHA is OS-agnostic by design. The only change to
the OSes is the one required due to the change of the clock
source that was required to synchronize the JTAG and appli-
cation processor’s clocks for PC polling (as shown in Figure
8). The clock initialization module is responsible for creat-
ing the main processor clock from the hardware clock and for
wiring other internal hardware clocks to different sources.
This module has to be changed in the OS for AVEKSHA to
work with our clock setup.

We use two TinyOS applications TestNetworkLpl and
TestFtsp and an object tracking application in Contiki.
TestNetworkLpl uses the collection tree protocol to push
sensor readings to a base station [13]. Each node samples
the sensed value every 128 ms and, if there is no data to be
read, goes to sleep. This is a typical application for sen-
sor networks. We present a bug that was uncovered when
we had AVEKSHA monitor all tasks in the watchpoint mode.
TestFtsp is a time synchronization protocol [14]. The Con-
tiki object tracking application takes light readings at each
node and passes values that reach a threshold to the base sta-
tion through a multi-hop routing protocol. This application
wakes up to sample the light readings every 125 ms.
4.3 Watchpoints
4.3.1 Using States to Monitor Energy

One application for the TDB is to monitor various state
variables. Monitoring state variables and transitions is use-
ful because they can be correlated to power consumption,
and can aid in understanding the behavior of applications (as

Figure 9. Watchpoint trace of states when sending a mes-
sage in TestNetworkLpl, showing the application, low-
power-listening, and radio layers. The number above
each state’s timeline corresponds to the numbering of the
states under the timeline. For example, in the low-power
listen layer, state 1 is S OFF and 2 is S ON; at the be-
ginning the state is 1, then an extended period of state 2,
followed by a return to state 1.

argued in Quanto as well [4]). This is particularly true in
TinyOS, where the event-driven model encourages the use
of explicit state machines.

In TestNetworkLpl, we have instrumented the appli-
cation layer, low-power-listening layer, and the radio layer
to monitor state changes. The instrumentation is simply to
place a nop instruction which can be used as a trigger in
the watchpoint mode. In the application layer, the begin-
ning of every task and event handler is instrumented. In the
low-power-listen layer, the state changes of interest are in
the RadioPowerState module. This uses the state compo-
nent interface in TinyOS and hence AVEKSHA inserts a nop
whenever a function from that component is called. In the ra-
dio layer, state variables have the postfix m state. We wrote
a script that finds all assignments to these variables in the
code and inserts a nop statement after the assignment.

Figure 9 shows a packet send that is initiated from the
application layer when Timer.fired is triggered. The
first step is to turn on the radio by starting the voltage
regulator and oscillator, which is given by the state variable
CC2420ControlP m state. The start up takes 1.6 ms,
the duration of the VREG STARTING, VREG STARTED, and
XOSC STARTING states. The CC2420TransmitP m state
shows the process of transmitting a message. The
message transmission takes place during the states

Figure 10. Watchpoint trace of task executions during a
radio start event. The PowerCycleP startRadio task is
called over 3000 times due to a bug in the handling of the
CC2420CsmaP SplitControlState.

S BEGIN TRANSMIT and S EFD. After the message is
transmitted, the sender waits for an acknowledgment, which
is shown in the CC2420ReceiveP m state. This variable
shows the acknowledgment being received at 12 ms (the
S RX FCF state) after which it is read off from the radio
layer (the S RX PAYLOAD state). After this, the radio turns
off at 32ms. A parameter of LPL controls the delay after
receive and the default is set to 20ms which is verified by
our experiment. This kind of low-level tracing of events
in the stacks is useful for a developer wanting to get a
detailed understanding of how a high-level function is
accomplished (in this case, transmission of a message which
requires an acknowledgment). Such an understanding can
be used for performance tuning (speeding up some event
in the time line, or reducing the amount of time spent in a
particular state) or for energy optimization (knowing some
energy-expensive state, reduce the amount of time the node
spends in that state). This level of tracing would be very
difficult to obtain through purely software means because of
the fine-level of instrumentation that will be required, and
correspondingly the high level of perturbation that will be
caused to the normal execution of the application. On the
other hand, AVEKSHA does not have to make tightly coupled
changes to the hardware (the radio in this case), which are
difficult to make and in some cases impossible when the
hardware or the firmware is closed source.

4.3.2 Using Tasks to Debug an Application
The original objective of this experiment was to trace

the collection tree protocol in the watchpoint mode.
However, during the tracing, we observed some sus-
picious behavior that caused us to suspect that there
was a bug in the low power listening layer of TinyOS.
This was discovered by instrumenting all of the tasks
in TinyOS for the TestNetworkLPL application. The
nesC compiler in TinyOS creates a function called
SchedulerBasicP TaskBasic runTask that contains a
switch statement with a case for every task. By inserting
a nop into each case, we can monitor every time any task is
executed. We originally found that AVEKSHA was unable to

Figure 11. Watchpoint trace of task executions with the
startRadio bug fixed.

Figure 12. Execution timeline that causes task spinning.

keep pace with the rate of events that is generated after the
mote is started up. Later, it turned out that this was due to
a bug where some tasks were being repeatedly and unneces-
sarily re-posted.

Figure 10 shows a trace of the tasks shortly after the mote
starts up. Three of the tasks (PowerCycleP startRadio,
DefaultLplP resend, and CC2420CsmaP sendDone
task) are stuck in a spin for more than a second after the

mote starts. This implies that these tasks keep re-posting
themselves and do not get any useful work done in each
execution of the task. The spinning tasks are the result of
the order of events that happen when the mote starts up. The
timeline in Figure 12 shows the relevant events. First the col-
lection tree protocol routing engine (CptRoutingEngineP)
posts a task (sendBeaconTask) to send a beacon. This
task results in the LPL module DefaultLplP posting a
startRadio task. The radio is duly started (at around 90
ms) and the radio layer CC2420CsmaP sends a signal to
DefaultLplP and PowerCycleP that the radio is started. At
this time the beacon begins to be sent out and DefaultLplP
attempts to send an initialization packet that will announce
to other nodes what the duty cycle of this node is. Because
the beacon is already being sent, the initialization packet
cannot be sent and a timer is scheduled to start a resend.
When the resend task DefaultLplP resend fails (because
the beacon is still being sent), it enters into a spin. Also,
following the DefaultLplP send task, PowerCycleP starts
a task that is meant to start the radio in order to perform
a CCA. If this task is unable to start the radio, it re-posts

itself, again causing a spin. This is precisely where the
bug lies. The radio has already been started and therefore
this task should not re-post itself, but should return without
doing anything. The bug is also not deterministic because if
the PowerCycleP module had received the event before the
DefaultLplP module, this bug would not have been seen.
Eventually, when the sending of the beacon message and the
initialization message are done, the radio is set off to sleep
and PowerCycleP’s startRadio operation succeeds. This
can be seen from the CC2420 state of STARTED toward
the end of the timeline (when it is started to do the CCA).

The buggy version of PowerCycleP startRadio is
shown first.
static inline void
PowerCycleP__startRadio__runTask(void) {
if (PowerCycleP__SubControl__start() != SUCCESS)
{
PowerCycleP__startRadio__postTask();

}
}

The undesirable effect of the bug is that it fills up the task
queue (though a redesign in TinyOS 2.x limits this effect)
and a task is being re-posted and invoked uselessly thus using
up CPU resources.

The above is a real-case where the bug is activated.
We hypothesize the following plausible application case
where the bug will be activated and the PowerCycleP’s
startRadio task will never succeed and will keep spin-
ning endlessly. Consider an application that starts sending
a message and shortly afterwards (after the radio has fin-
ished STARTING and entered STARTED state) turns off
low power listening. A LowPowerListen interval of 0 in-
dicates that low power listening should be shut off and
the radio left on in receive mode. In this case, the task
PowerCycleP startRadio will never have the SUCCESS
condition and will continue to spin until the LowPowerListen
interval is again changed. We have confirmed that this hap-
pens when the following synthetic application is executed.
event void RadioControl.startDone(error_t err) {
sendMessage();
// 10 ms is sooner than message will
// complete sending
call Time.startOneShot(10);

}
event void Timer.fired() {
call LowPowerListening.setLocalWakeupInterval(0);

}
To fix this bug, consider what happens

to the state of the CC2420 radio (shown as
CC2420CsmaP SplitControlState in Figure 10). The
function PowerCycleP SubControl start() tries to
start the radio and tests the state of CC2420. If the state is
STARTING it returns SUCCESS, if the state is STARTED
it returns EALREADY, and if the state is anything else
it returns EBUSY. Therefore, the simple fix to the task
PowerCycleP startRadio is as follows.
static inline void PowerCycleP__startRadio__runTask(void) {
if (PowerCycleP__SubControl__start() != SUCCESS
&& PowerCycleP__SubControl__start() != EALREADY) {
PowerCycleP__startRadio__postTask();

}
}

Figure 11 shows that this fix indeed stops
PowerCycleP startRadio from spinning. Tasks no
longer spin fruitlessly, but are successful in most instances.

Figure 13. Watchpoint trace of application level func-
tions and threads of a sender node in the Contiki tracking
application.

processMsg

getPayload addNewEntry calculateConversions

div/mulTimeSyncP

3 call2 ret

4 call

7 call

8 call

1 call
6 ret

5 ret

10 ret

9 ret

Figure 14. Call graph of the processMsg task in FTSP.
There are multiple multiplication and division func-
tions and time synchronization functions that have been
lumped together as div and sync, respectively.

4.3.3 Processes in Contiki

An advantage of our approach over software tracing is
that it is independent of the OS being used. Without any
modification to the Contiki OS, the TDB is able to generate
a trace of an application. In Figure 13, we show a trace of
a sender node of a simple object tracking application called
LightTracker [16], implemented in Contiki [17] version 2.4.
LightTracker tracks a moving light source in a sensor net-
work. There are two types of nodes present in the network:
a base station and a set of sender nodes. A sender node pe-
riodically (every 2 seconds) collects light intensity using its
light sensor and forwards it to the base station, possibly in
a multi-hop manner, if the sensed value is above a thresh-
old. The base station periodically checks the received sam-
ples and selects the node with the maximum light intensity.
The selected node is considered to be the current position of
the light source.

Unlike TinyOS, Contiki features the use of threads as
a key design component. This reduces the need of main-
taining explicit state machines in the code. In the sender
application, we place a nop at the starting point of ev-
ery thread command. PROCESS BEGIN represents the cre-
ation of a thread and is performed once at time 11 seconds.
PROCESS THREAD is executed every time the thread is started.
PROCESS WAIT EVENT UNTIL is a blocking wait statement in
the thread. We see that the power spikes correspond well
with the read magnet and send events.

Figure 15. Trace of the different functions invoked in one
execution of the processMsg task.

4.4 Profiling using PC Polling
Sampling the PC counter is a quick and non-intrusive op-

eration. It does not have the flexibility of setting watchpoint
triggers for specific conditions; however, it has the advantage
of being able to measure events with greater timing accuracy
than watchpoint polling. This is both because it is faster to
take a sample of the PC counter and because it does not have
to do buffer management.

A useful application of PC polling is for statistical profil-
ing of an application, say to determine what parts of the code
are most active. Raw PC polling data cannot directly give a
profile of the number of times a function is called or the total
time the function takes to execute, inclusive of the times of
the nested functions that it calls.

However, AVEKSHA uses the raw PC polling data to-
gether with some statically generated information to get us
the above measures. Figure 14 shows the static call graph
for the processMsg task in TestFtsp. This task adds a syn-
chronization method to a table by calling the addNewEntry
function and then calling the calculateConversion func-
tion, which performs some fairly complex mathematical
operations that necessitate repeated calls to div/mul (divi-
sion/multiply). It would not be practical to store the result
of every PC sample, because the rate of sampling is very
high. AVEKSHA performs profiling by loading, at the begin-
ning of execution of the application, a table of the start ad-
dress of every function and interrupt into the FPGA. It then
performs a binary search on every PC sampled to find the
function that the PC belongs to. As described in Section 2,
the search takes at most 10 cycles. The FPGA is clocked
much faster than the application processor. The rated speed
at which the FPGA can theoretically be clocked is 400 MHz
(of course this would be for the simplest of operations). For
our TDB, we clock the FPGA at 20 MHz and thus, 10 cycles
at this speed completes before a single PC polling. Also, due
to the parallelism inherent in the FPGA design, the pipeline
shown in Figure 6 can be followed in AVEKSHA. Hence, the
search can be supported without any increase of the cost of
PC polling. Every time AVEKSHA detects that the C func-
tion has changed, it stores the new function together with a
timestamp (the timestamp is automatically provided by PC
polling). Figure 15 shows the results of sampling the PC.
From this data and knowledge of the call graph, AVEKSHA
is able to infer that this single call to the processMsg task
took 7542 µs. It is also able to determine that the shortest
call to div/mul took only 151 µs, a granularity that cannot be
achieved with the watchpoint mode.

We are also able to know when the application processor
is in sleep by monitoring for the address of the sleep instruc-
tion. This is possible because the address does not change

once the application processor goes off to sleep and hence
PC polling can detect this address. Using this we found that
in a 30 second run of Ftsp, the application processor was ac-
tive for 521 ms (giving a duty cycle of 1.7%). Of all the tasks,
we found that the longest time was spent in the processMsg
task - 121ms (or about 23% of the awake time).

4.5 Overhead of a Simple Software Profiler
Software profiling is used to collect and arrange differ-

ent statistics about function calls in a program, such as the
time spent in each function, how many times a function was
called, etc. A prominent example of a software profiler is
gprof [15], which is widely used in Unix systems. In this
experiment, we measure the overheads that a software pro-
filer can introduce in an embedded wireless node. We create
a simple software profiler following the principles outlined
in several papers [6, 1]. In it, profiling is performed by in-
strumenting with additional code, the entry and exit points of
the functions that we are interested in. The additional code
collects the time spent inside those functions.

For this experiment, we use the LightTracker object
tracking application introduced earlier and instrument the
function, read light(), that is used by a sender node to col-
lect the light intensity. Figure 16 shows the modified func-
tion. The newly added code for profiling is shown in red.
Basically, the added code takes a time-stamp (lines 2 and
6) at the entry and the exit points of the function and stores
their difference in a memory location (line 7). It should be
noted that the time estimation is correct for a non-recursive
function. For recursive functions, additional code is needed
to keep track of the depth of the call in the recursion stack,
which will incur additional overheads. Further, we only pro-
file function entry and exit points and not other events of in-
terest that AVEKSHA profiles, such as, point of an interrupt,
data read from a peripheral, etc. From this perspective, our
estimation of the overhead of the software-based profiler is
conservative and provides a baseline for any implementation
of a software-based profiler.

We simulate and profile LightTracker, both for the orig-
inal and the instrumented version of read light, using
the Cooja [18] simulator for 500 seconds. In both cases,
read light was called 249 times. The average run-time
for the regular version was 1,827 clock cycles per call. The
version with code instrumentation for profiling spent 1,896
clock cycles on average. So, the additional code introduced
an average overhead of 69 clock cycles per call. In com-
parison, in AVEKSHA, PC polling takes 1.6 clock cycles and
watchpoint takes 30.5 clock cycles. In our simulation, a total
of 6,52,109 calls for 158 different functions were reported.
If we instrument each of those 158 functions, which would
be the case for a complete profiler, the additional overhead
will be significant. The instrumentation of read light also
increased the binary size by 201 bytes. For resource lim-
ited sensor nodes, the additional overheads, both in terms of
run-time and binary size, are significant.

AVEKSHA avoids the overheads accociated with a soft-
ware profiler because the application processor is relieved of
the burden of performing profiling-related tasks, which are
handled by the TDB instead.

static int read_light() {!
 uint16_t start_time = (uint16_t)clock_time();!
 SENSORS_ACTIVATE(light_sensor);!
 int val = light_sensor.value(LIGHT_SENSOR_PHOTOSYNTHETIC);!
 SENSORS_DEACTIVATE(light_sensor);!
 uint16_t end_time = (uint16_t)clock_time();!
 count_cycles[FID_READ_LIGHT] += end_time - start_time;!
 return val;!
}!

1!
2!
3 !
4!
5!
6!
7!
8!
9!

Figure 16. A function with additional code (marked in
red) for software profiling.

5 Discussion
The target mode of operation is the TDB coupled with

the application processor board in field deployments. In this
mode of operation, there is the consideration of where to
store the logged events. For debugging, it is sometime suf-
ficient to have a history of the last few events before some
condition in the application was reached. For example, the
OCDM of the MSP430 provides a history of the last 8 watch-
point events with this type of debugging in mind. If this is
the case, the TDB’s main processor can maintain a circular
buffer of events in RAM, which would have a small enough
memory footprint. If a larger history is required it is possible
to store events into the TDB MCU’s flash memory. For very
long term storage an external USB storage host could be at-
tached to the TDB or a compacted trace can even be sent to
a computing platform over wireless communication .

An objective of AVEKSHA is to monitor the application
processor without interfering with its execution. While the
breakpoint mode is not suitable from this standpoint, break-
points do have some useful potential for security and relia-
bility. For example, breakpoints can be used to implement
memory protection. The MSP430 has no memory protection
and buffer overflow code injection exploits are known [19].
The attack works by injecting code into the stack and get-
ting the processor to execute this code. Except for special
cases, such as some boot loaders, the application processor
should never need to execute code from RAM. All code is in
flash which has a well-defined address range. By setting a
breakpoint for an instruction fetch outside of this range, we
can prevent code injection exploits, while allowing for the
special circumstances such as boot loaders.

Our discussion of implementation details of AVEKSHA
has been specific to the MSP430 MCU. This is a shortcom-
ing of the current implementation, though the concepts apply
to a broad class of embedded processors. The requirement
for an OCDM within the processor, which can be accessed
through the JTAG interface is fundamental to our design. The
specific points of dependence on the MSP430 are the exact
format of the instructions used as event triggers, the address
ranges of the peripherals whose reads we are interested in,
and understanding the state machine of the OCDM in the
MSP430 which determines the sequence of instructions that
AVEKSHA needs to send in the different modes (breakpoint,
watchpoint, and PC polling). While breaking these depen-
dencies and porting our solution to another embedded pro-
cessor will require some effort (that we would roughly esti-
mate as 40 man hours), we feel this is eminently doable.

6 Related Work
There are primarily three areas of work related to AVEK-

SHA, namely power measurement, hardware support for de-
bugging embedded systems, and software-based debugging
techniques for wireless sensor networks. We expand upon
representative prior work in each of these three areas below.
Power measurement: The problem of estimating or mea-
suring power (or energy) consumption has been addressed
extensively in the context of various electronic systems. We
restrict our discussion of prior work to techniques that specif-
ically target sensor networks. Various sensor network simu-
lators, such as POWERTOSSIM, AVRORA, and COOJA pro-
vide energy estimation capability based on pre-built power
models of the target hardware platform. Measuring (as op-
posed to estimating) the power consumed by a sensor node
is usually done using the so-called sense resistor approach
(see Section 2). SPOT [3] is an energy meter for wire-
less sensor nodes that is based on the sense-resistor ap-
proach and uses a voltage to frequency converter to trans-
form the voltage samples into an energy counter that can
be read by the sensor node. iCount [12] is an energy me-
ter design that targets sensor nodes that have a switching
regulator. It provides energy metering capabilities at al-
most zero cost by just counting the cycles of the switch-
ing regulator. Quanto [4] builds on iCount by using regres-
sion models to obtain per-component energy consumption
based on the aggregate measurement provided by iCount and
also performs energy accounting to various application tasks
through causal activity tracking. The Energy Endoscope
project [5] uses a separate application-specific integrated
circuit (called EMAP2), implemented using a micro-power
fuse-based FPGA, to perform charge accumulation based on
the sense-resistor method. Similar to designs such as SPOT,
AVEKSHA provides energy measurement capability with a
large dynamic range. However, in contrast to the above solu-
tions, AVEKSHA has the added ability of correlating the en-
ergy measurement information with various temporal events
logged by the board.
Sensor network debugging: Replay debugging is a well
known technique for embedded systems [6]. Envirolog
presents a software-only solution for recording events to
flash memory [7]. Applications are annotated to indicate
what should be recorded, which a preprocessor then turns
into C code. During recording, 16 to 1024 bytes of RAM are
used to buffer events which are then stored to Flash. Flash-
Box adopts a hybrid hardware/software approach to elimi-
nate the bottleneck of writing to Flash [8]. In FlashBox, a
second MCU and flash memory are added to provide ded-
icated recording. The compiler is modified to insert addi-
tional code at each location in the program that needs to be
recorded. Events are directly sent via UART or GPIO to the
dedicated MCU. The above techniques and other software
solutions for event logging in sensor networks such as [1]
have the disadvantage that they either perturb the timing be-
havior of the application, possibly suppressing some subtle
bugs, or cause a large slowdown in application execution. A
recent software solution [2] has focused on a specific kind of
tracing (control flow tracing) and combines intelligent static
analysis with run-time trace compression to decrease over-

head. Nevertheless, this technique still requires applications
to be instrumented to gather the tracing information. In con-
trast, AVEKSHA not only requires no modification to the ap-
plication, but is also completely agnostic to the OS used.
Hardware support for debugging embedded systems:
Real-time trace functionality has been implemented in many
processor architectures. For example, the CoreSight Trace
Macrocells provides hardware cores that can be added on as
peripherals to an ARM-based system-on-chip to produce a
cycle-accurate trace of execution. This includes the ability
to collect and compress a large amount of trace data on chip
and to transfer this data to a trace port interface unit, such
as JTAG. The MSP430F1611 MCU used in the TelosB mote
also has a limited built-in OCDM. The OCDM allows up to
8 triggers to be set and an instruction trace of 8 elements
to be collected based on the triggers firing. This could be
used, for example, to store the last 8 instructions executed
before a trigger fired, or to record the last 8 triggers that
fired. AVEKSHA goes beyond this by demonstrating that it
is possible to provide CoreSight like functionality on a low
end MCU such as the MSP430F1611 that is commonly used
in wireless sensor nodes. Hardware designed to interface
an OCDM to a host computer via the JTAG standard is of-
ten referred to as an In-Circuit Emulator (ICE) or In-Circuit
Debugger (ICD), or more correctly, a JTAG adapter. Many
ICE tools are available for the MSP430 processor family. An
example is the open source GoodFET [20] tool. However,
the GoodFET is only capable of operations involving reading
and writing to flash. The debugging features of the OCDM
(e.g., breakpoints, watchpoints, state storage) are not docu-
mented by Texas Instruments. To gain access to these fea-
tures, we actually reverse-engineered parts of the integrated
development tool IAR as it communicates through an ICD
via JTAG [10]. Although IAR allows setting breakpoints
and watchpoints, real-time trace generation of traces larger
than the 8 entry state storage is not possible. AVEKSHA sig-
nificantly enhances the debugging capabilities provided by
IAR by eliminating this restriction. There exist several point
solutions for hardware meant for tracking different kinds of
control flow for the purpose of debugging, e.g., in [21], the
authors design a hardware ASIC that monitors loops taken
by tasks in a multi-tasking environment and performs this in
a non-intrusive manner to the application.

7 Conclusion
In this paper, we have presented AVEKSHA, a hardware-

software solution to the problem of tracing events at runtime
in an embedded wireless node, without slowing down the ap-
plication. AVEKSHA can trace a variety of events, such as,
particular PC addresses, reads from peripherals, entry and
exits from tasks and interrupt service routines, and arbitrary
user-defined events. We have shown through two applica-
tions in TinyOS and one in Contiki that such tracing is use-
ful for profiling the execution times of different tasks and
event handlers. While the watchpoint mode of operation is
capable of capturing a practically limitless variety of events,
it cannot keep pace with events that occur more frequently
than 122 clock cycles on a sustained basis. The PC polling
mode of operation is restricted in the kinds of events that it

can detect, but being faster it can keep pace with events that
occur at a rate less than every 7 clock cycles. Our profiling of
tasks uncovered a performance bug in the low power listen
radio module of TinyOS, which we were able to fix. Further,
AVEKSHA has the ability to do energy monitoring over the
µA to mA range and coupling it to execution regions between
two events of interest.

This work points to the feasibility of tracing a wide vari-
ety of events of interest in a low-cost and non-intrusive man-
ner while the embedded node is deployed in the field. We do
not have to rely on expensive and custom-built hardware to
achieve this. The events provided by AVEKSHA can be used
by a variety of existing and yet-to-be-developed solutions,
such as replay-based debugging, performance profiling, and
energy monitoring.
8 References
[1] M. Wang, Z. Li, F. Li, X. Feng, S. Bagchi, and Y.-H. Lu, “Dependence-based

Multi-level Tracing and Replay for Wireless Sensor Networks Debugging,” in
LCTES, 2011.

[2] V. Sundaram, P. Eugster, and X. Zhang, “Efficient diagnostic tracing for wireless
sensor networks,” in SenSys, 2010.

[3] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro power meter for energy mon-
itoring of wireless sensor networks at scale,” in IPSN, ACM, 2007.

[4] R. Fonseca, P. Dutta, P. Levis, and I. Stoica, “Quanto: Tracking energy in net-
worked embedded systems,” in OSDI ’08 USENIX Association, 2008.

[5] T. Stathopoulos, D. McIntire, and W. J. Kaiser, “The energy endoscope: Real-
time detailed energy accounting for wireless sensor nodes,” in IPSN, 2008.

[6] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson, “Replay debugging of
real-time systems using time machines,” in IPDPS, 2003.

[7] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A. Stankovic, “Achieving
repeatability of asynchronous events in wireless sensor networks with envirolog,”
in INFOCOM, apr. 2006.

[8] S. Choudhuri and T. Givargis, “Flashbox: a system for logging non-deterministic
events in deployed embedded systems,” in SAC Symposium on Applied Comput-
ing, ACM, 2009.

[9] “Green hills software inc.” http://www.ghs.com/.
[10] “IAR Embedded Workbench for TI MSP430.” http://www.iar.com.
[11] “Monsoon inc. power monitor.” http://www.msoon.com/LabEquipment/PowerMonitor/.
[12] P. Dutta, M. Feldmeier, J. A. Paradiso, and D. E. Culler, “Energy metering for

free: Augmenting switching regulators for real-time monitoring,” in IPSN, 2008.
[13] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection tree

protocol,” in SenSys, ACM, 2009.
[14] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time synchroniza-

tion protocol,” in SenSys, ACM, 2004.
[15] S. Graham, P. Kessler, and M. Mckusick, “gprof: a Call Graph Execution Pro-

filer,” in SIGPLAN, ACM, 1982.
[16] M. S. Hossain, A. B. M. A. A. Islam, M. Kulkarni, and V. Raghunathan, “µSETL:

A Set-based programming abstraction for wireless sensor networks,” in IPSN,
2011.

[17] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flexible oper-
ating system for tiny networked sensors,” in EmNets, 2004.

[18] F. Osterlind, A. Dunkels, J. Eriksson, and N. Finne, “Cross-level sensor network
simulation with cooja,” in LCN ’06, pp. 641–648, 2006.

[19] T. Goodspeed, “Msp430 buffer overflow exploit for wireless sensor nodes.”
http://travisgoodspeed.blogspot.com/2007/08/machine-code-injection-for-
wireless.html, August 2007.

[20] T. Goodspeed, “Goodfet.” http://goodfet.sourceforge.net, May 2010.
[21] K. Shankar and R. Lysecky, “Control Focused Soft Error Detection for Embed-

ded Applications,” Embedded Systems Letters, IEEE, vol. 2, no. 4, pp. 127–130,
2010.

	Introduction
	TDB Hardware and Firmware
	Energy Monitoring
	Jtag: Background
	Architecture: Hardware
	Architecture: Firmware

	Using Aveksha for Tracing and Profiling
	Types of Triggers Available
	Breakpoint Mode
	Watchpoint Mode
	PC Polling Mode

	Experiments
	Microbenchmarks
	Time Taken in Each Monitoring Mode
	Accuracy of Power and Energy Monitoring
	Power Consumption of TDB

	Application Setup
	Watchpoints
	Using States to Monitor Energy
	Using Tasks to Debug an Application
	Processes in Contiki

	Profiling using PC Polling
	Overhead of a Simple Software Profiler

	Discussion
	Related Work
	Conclusion
	References

