
International Journal of Computing & Information Sciences Vol. 9, No. 1, April 2011
Dynamic Load-Balancing Based on a Coordinator and Backup Automatic Election in Distributed Systems
Tarek Helmy and Fahd Al-Otaibi
Pages 19 -27

Dynamic Load-Balancing Based on a
Coordinator and Backup Automatic Election

in Distributed Systems
Tarek Helmy*

College of Computer Science and Engineering
King Fahd University of Petroleum and Minerals

Dhahran 31261, Mail Box 413, Kingdom of Saudi Arabia
Tel: 966-3-860-1967 & Fax: 966-3-860-2174

* On leave from College of Engineering, Department of Computers Engineering and Automatic Control,
Tanta University, Egypt.

helmy@kfupm.edu.sa

Fahd S. Al-Otaibi
Department of Computer, College of Education

King Abdulaziz University
Jeddah, Kingdom of Saudi Arabia

fsalotaibi@kau.edu.sa

Abstract: In a distributed system environment it is likely that some nodes are heavily loaded while others are
lightly loaded or even idle. It is desirable that the work-load is fully distributed among all nodes so as to utilize the
processing time and optimize the whole performance. A load-balancing mechanism decides where to migrate a
process and when. This paper introduces the load-balancing mechanism as a new scheme to support the reliability
and to increase the overall throughput for distributed systems environment. The idea is to assign one node as a
coordinator in addition to a backup node, with the possibility of automatic election in case both coordinator and
backup fail. The presented scheme has been integrated into a Zap system. Zap provides a transparent checkpoint-
restart mechanism for migrating a PrOcess Domain (POD). A POD provides a group of processes with a private
namespace that presents the process group with the same virtualized view of the system. Experimental results show
that the load among all nodes is balanced and the freezing time is low compared with other load-balancing
mechanisms such as random selection of the destination, unless the number of communication messages needed for
migrating a POD becomes high.

Keywords: Load-Balancing, Distributed Systems, Zap, POD, CBAE.

Received: June, 2010 | Revised: December 10, 2010 | Accepted: February 10, 2011
1. Introduction

IN the literature, there are many load-balancing
algorithms, especially for process migration [1], [4],
[6], [10], [14], [15], [21]. Each mechanism has pros
and cons. Generally, the load-balancing mechanisms
are divided into two main categories: central-based
algorithms and decentralized algorithms. In the
centralized approach [7], one coordinator node
regularly pools other nodes to obtain their current
load. Whenever the coordinator notices that a node is
lightly loaded, it selects this node to receive processes
from an overloaded node. The coordinator migrates a
process from an overloaded node to the lightly loaded
node. In the decentralized approach [17], [11], each

node has its own load balancer, and if the load exceeds
a pre-defined threshold then the node is overloaded.
There are three main categories of this kind of load
balancing; Sender-Initiated, Receiver-Initiated and
Symmetric [2].

One of the well-known decentralized mechanisms is a
random selection where no exchange of state
information is required. It works by selecting a
destination node randomly and then migrating a
process to that node. If the destination node is
currently overloaded, then it selects another
destination node randomly, and so on. One drawback
of this mechanism is the possibility of migrating the
same process to more than one node. Another way to
randomize the algorithm is to select a destination node

20

randomly so that the source node pools the current
load of the destination node. Before migrating process,
if the destination load is in an overloaded state then
the process will continue running locally; otherwise
the process will migrate directly.

The rest of the paper is organized as follows. Section 2
presents related work and our motivation. Section 3
describes the proposed algorithm, Coordinator Backup
Automatic Election (CBAE). In Section 4, the
performance of CBAE compared with random load
balancing algorithm in a series of simulations. Finally,
Section 5 concludes the paper and presents the future
work direction.

2. Related Work

Different types of load-balancing algorithm have been
developed and used in distributed environments [1],
[4], [6], [10], [14], [15], [18], [19], [20]. In Sprite [3],
load-balancing is restricted to two occasions. This
may be when a resource intensive program is about to
start, or during eviction from a remote host. A
combination of centralized and distributed load-
balancing mechanisms is used by allowing each node
to run a process called the load-average daemon to
monitor the load of that node. When the node becomes
idle, the load-average daemon notifies the central
migration server that the node is ready to accept
migrated processes. The new arrival process is
migrated to that idle node. The most complicated load
balancing mechanism is proposed in MOSIX [3]. It
differs from the previous systems since the load
balancing has to be done continuously, not just during
creation or eviction of a process. Processes get
migrated whenever the cluster gets unbalanced. If a
process requirement exceeds a certain threshold, then
the process becomes a candidate for migration. Each
node has a load vector which contains information
about the load of a random subset of neighboring
nodes. This load vector is constantly updated through
“load information dissemination”. Some researchers
combined the mechanism of load balancing with a
scheduling algorithm. A Global Scheduler (GS) is
implemented by MPVM [5]. This scheduler is a
centralized manager. GS decides when and where to
migrate a task, in addition to which task is to be
migrated. The load-balancing is done when the node is
under heavy load or during task creation or eviction as
in Sprite [3].

Another way of handling load-balancing called multi-
leader is proposed by Wills et al. [16]. This algorithm
assigns one of the nodes to be the leader. The leader
can be any node in the cluster, and is chosen randomly
from among all of the nodes. Since the leader works as
a coordinator, it has three basic roles: (1) Accepting
and storing information about the load of lightly nodes.
(2) Maintaining a list of available light load nodes. (3)
Returning a suitable node to any clients that request it.
PANT [9] uses this algorithm and employs a fault-

tolerant communication architecture based on
multicast communication that minimizes the load on
busy cluster nodes. Semi-distributed strategy is used
by PEACE [12] and provides good results. It works by
partitioning the whole cluster structure into several
local clusters. Each level has its own mechanism of
load balancing. Within each cluster a centralized
approach is used, while distributed mechanism is a
candidate to be done at cluster level. Each node in any
cluster becomes overloaded when it exceeds a specific
threshold. This threshold is not fixed but it can be
modified depending on the situation of the global and
centralized mechanism.

For the grid systems, Kai et al. [8] presented an
efficient decentralized load-balancing algorithm for
heterogeneous systems. It is different from the
traditional distributed environment since it takes care
of the site heterogeneity and the communication
overhead. This algorithm takes into consideration that
each node in the site has its own power and
communication delay. It applies the concept of sender
initiation for an overloaded node. Zap [13] is a system
that provides a transparent checkpoint-restart
mechanism for migrating a group of processes. It
introduces a thin virtualization layer on top of the
operating system that introduces a PrOcess Domain
(POD). A POD provides a group of processes with a
private namespace that presents the process group
with the same virtualized view of the system. The
POD itself can be stopped, migrated and then restarted
at the destination node transparently. Nevertheless,
Zap has a number of limitations and requires future
research.

In this paper, we focus on designing a load-balancing
mechanism that helps to decide where to migrate a
POD. The responsibility of this mechanism is to
guarantee the load of all nodes to be balanced and to
support the reliability and fault tolerant in case of
failure. The proposed load-balancing algorithm is a
hybrid of centralized and dynamic load balancing. It
works based on centralized coordinator and backup to
avoid the possibility of coordinator failure. It supports
the decentralization by allowing each node to take its
decision on migration. It takes into consideration the
possibility of simultaneous failures by allowing the
election concept. It supports fair load-balance among
the nodes with a low freezing time.

3. Coordinator and Backup with
Automatic Election

Coordinator and Backup with Automatic Election
(CBAE) is a load-balancing mechanism that works by
assigning one node as a coordinator and another node
as a backup, with the ability of automatic election
when both coordinator and backup fail. The
importance of backup is to increase the reliability of
the load-balancing algorithm and the overall system.

21

We apply CBAE to be as a load-balancing algorithm
that can be embedded into Zap [13].

Figure 1. No Failure.
3.1 CBAE Basic Setup

The coordinator and the backup nodes are the main
players in this scheme. Coordinator and backup
assignments are done randomly. The main
responsibility of a coordinator is to keep track of the
current load state of each lightly loaded node in the
community. Each lightly loaded node needs to send its
current load state periodically to the coordinator. The
coordinator itself maintains a table to hold incoming
valuable information from all nodes and then sends any
modification to the backup node. Every overloaded
node needs to ask the coordinator for an appropriate
node to migrate a process directly to that destination
node. We introduce a backup node that works in case
of coordinator failure. Moreover, we enhance this
mechanism by allowing an automatic election of new
coordinator and backup nodes in case of simultaneous
failures. Each node has to know exactly the coordinator
and the backup to communicate with. Each node has its
own defined threshold assigned by the system
administrator. A load balancer is presented in each
node to decide whether the node is overloaded when it
exceeds its threshold. This load balancer guarantees
that the migration decision is done by the node itself
without any intervention of the coordinator. The
overloaded node needs only to ask the coordinator for
an appropriate lightly loaded node.

Three possible states for this algorithm can be faced.
The no-failure state occurs when the coordinator is still
running. The second state represents the case of
coordinator failure. The worst case is when both
coordinator and backup nodes fail. In this paper, we
present each case, and then we make an experiment to
ensure that CBAE helps to utilize the CPU time in each
node. To illustrate these three states, Figure 1 shows 5
nodes from A to E connecting via a local network. We
assign node A and E to be the coordinator and backup
nodes respectively.

3.1.1 No Failure
Each overloaded node asks the coordinator for an
appropriate destination node. As shown in Figure 1,
suppose node B is overloaded. It must do the
following steps:
1. Node B sends a request to the coordinator, asking

for an appropriate destination.
2. Coordinator node then replies B with a lesser

load node and the maximum available free size
that can be migrated to the less load node, node C
in this example.

3. Node B sends a communication message to node
C to check its availability.

4. Node C replies Node B by an acknowledgment.
5. Node B selects one POD large enough but not

exceeding the maximum available size received
by coordinator.

6. Selected POD is migrated directly to node C.
This scenario occurs each time a node is overloaded,
and the coordinator is the main significant player in this
scheme.

3.1.2 Coordinator Failure State
CBAE algorithm treats the possibility of coordinator
failure by keeping track of backup node. In case of
coordinator failure, the overall load-balancing
mechanism is still running perfectly. Whenever the
backup node receives an incoming request for an
appropriate destination, it checks that the coordinator
has definitely failed. If so, it changes its status to act as
the coordinator and chooses one node randomly to act
as a backup, and then the whole information about the
nods’ loads is transferred to the new backup node. The
main idea is represented in Figure 2, which shows the
case of coordinator failure.

An overloaded node follows the same mechanism
represented in normal state, but there is a restriction
for sending a request to backup node after checking
that the coordinator has failed. It is clear from Figure 2
that the same situation is assumed where node B is
overloaded, so that the following procedure is done:
1. Node B sends a request to the coordinator for an

appropriate destination.

Figure 2. Coordinator Failure State.

22

2. If the coordinator doesn’t reply in the specific
period, B sends another request to the coordinator
to checks whether the coordinator is alive.

3. If the second request is not answered in the
specific period, B knows the coordinator has
failed.

4. Node B sends its request to the backup node for an
appropriate destination.

5. Backup node changes its state to be coordinator,
and it selects randomly one of the other nodes to
be, the new backup node.

6. New coordinator transfers the status table to the
new backup node.

7. New coordinator informs all other nodes to update
the coordinator and backup nodes information that
were kept in each node.

8. The new coordinator then replies B with a suitable
destination node which has a lesser load node and
the maximum available free size that can be
migrated to the destination, node C in this
example.

9. Node B sends a communication message to node
C to check its availability.

10. Node C replies Node B by an acknowledgment.
11. Node B selects one POD large enough but not

exceeding the maximum available size received
by coordinator node.

12. Selected POD is migrated directly to the
destination, node C in our example.

The main benefit of using a backup node is
significantly clear. Without backup, a lot of time and
communication messages are needed, for instance to
elect one of the nodes to be a new coordinator by
negotiation to elect the lightly loaded node to act as a
new coordinator. With backup the only communication
messages needed are to inform all nodes to change the
coordinator and the backup node’s addresses, so that
the communication messages are almost halved.

3.1.3 Coordinator and Backup Failure State
With CBAE, this issue can be resolved by introducing
an election concept. In case of coordinator and backup

failure, the overloaded node, that needs to migrate a
POD, elects itself to be as a new coordinator. It
informs and asks all other nodes to pass their load
status to it. The new backup node is chosen randomly
by the new coordinator, and then the whole load
information table will be transferred to it.

There are no restrictions on choosing a coordinator
and backup, and so the most feasible way is to allow
the overloaded node to elect itself to be a new
coordinator. This helps to save an election time that
may spent for negotiation and to ensure the system
reliability. Figure 3 shows that both coordinator and
backup have failed. The overloaded node B interacts
with this situation as follows:

1. Node B sends a request to the coordinator for an
appropriate destination.

2. If the coordinator doesn’t reply in the specific
period, B sends another request to the coordinator
to check whether the coordinator is alive.

3. If the second request isn’t replied in the specific
period, B knows the coordinator is failed.

4. Node B sends its request to the backup node for an
appropriate destination.

5. If the backup node doesn’t reply in the specific
period, B sends another request to the backup
node to check whether the backup fails.

6. If the second request isn’t answered in the specific
period, B knows the backup node has failed.

7. The overloaded node (node B) elects itself to be
new coordinator and then sends this election to
others to record it.

8. New coordinator selects randomly one of the other
nodes to be the new backup.

9. All other nodes change the previous coordinator
and backup information that were kept in each
node.

10. New coordinator asks all nodes to send their
current load status.

11. New coordinator transfers the nodes’ load status
table to the new backup.

12. In case of recovering an old coordinator or backup
nodes, they will be considered as a normal node.

The remaining steps follow the same normal state
steps for selecting a suitable node as a destination.
This election mechanism provides a valuable effect on
nodes community in the context of reliability. It
guarantees that the load distributes among all active
nodes to maximize the CPU utilization, and as a result
the throughput increases.

4. Experimental Results

We have implemented the CBAE load-balancing
algorithm using a programming simulation. We
conducted our experiments on machines with Intel
Core 2 Duo CPU 2.00 GHz, 2 GB RAM. The
operating system is Windows Vista Home Premium
platform. The simulation is programmed by C#

Figure 3. Coordinator and Backup Failure State.

23

programming language and MS Access for storing
results.

4.1 Main Characteristics
Initially, we simulated the main Zap components and
implemented the proposed algorithm on them. Mainly
Zap components consist mainly of:
 Node

Physical machine is represented as a logical node
that has a pre-defined node’s power that can be
assigned by the system administrator. Here, for
simulation, we present specification for each node
that reflects the node’s power. High specification
means a powerful machine and vice versa. Each
node can be a normal node, a coordinator or a
backup node.

 POD
Each node has a random number of PODs. A POD
itself has a size which is the sum of all process
sizes inside it. We assign a field with each POD to
count how often a specific POD is migrated. This
field helps to avoid choosing a specific POD
continuously “to avoid Thrashing” which prevents
this POD from executing.

 Process
Set of processes is assigned randomly to each
POD. Each process has size, time of execution,
period of time to be executed.

4.2 Experimental Assumption
To experiment and evaluate the CBAE load-balancing
mechanism, we assume that we have 10 nodes, 1 up to
10. Each node has a specification reflecting its power.
We assume specification 1 means the lowest power,
whereas 7 mean a high power node. Defined threshold
is assumed and assigned to each node depending on
the following relation. 1 specification = 100000
Threshold “Capacity of POD’s size”.

Table 1 shows that, we have 10 nodes each of which
has a specification and defined threshold. As we can
see, node 10 has the lowest specification, thus it has
the lowest threshold too. Node 7 is chosen randomly
to be as a coordinator node whereas a backup is
assigned to node 1. We assume having a case study of
nodes and their load running for 200 time units. For
simplicity, we just display the odd nodes in our
Figures. It is clear from Figure 4 that node 1 is

extremely over loaded for a long time. Node 3
fluctuates between overloaded and lightly loaded.
Node 5 and 7 are rarely overloaded whereas node 9 is
completely lightly loaded.

Figure 4. Nodes' load Case Study.

We have performed a number of experiments on the
same case study as an input for the task of comparison
between the CBAE load balancing algorithm and one
of the well known random load-balancing algorithms
[4]. To measure CBAE performance, we evaluate and
compare three main factors:
1. Node’s load which represents the total PODs’ size

in a particular time unit for each node.
2. Number of communication messages needed for

migrating one POD.
3. Freezing time which is the time a specific POD

spent during the migration process.
The CBAE mechanism works by selecting a
coordinator and backup nodes initially, as shown in
Table 1. Applying the CBAE algorithm to balance all
nodes yields significant results. Clearly, the gaps are
fully utilized as a result of load-balancing and POD
migration. One of the main important issues in load
balancing is to keep all machines’ load-balanced and
ensure that none is idle while others are fully busy.
CBAE guarantees that, whenever a node is
overloaded, the lightly loaded node contributes by
taking such a POD from an overloaded node. Thus,
almost all nodes are busy running either their own
processes or the migrated processes from other nodes.
Figure 5 shows the load of all nodes during 200 time
units. The load of node 1 is sharply reduced and, in 91
time units its load is less than or equal to the
threshold. The remaining nodes, 3, 5, 7 and 9, are
collaborating efficiently to share the load from node 1
and they are fully balanced. The CBAE load-
balancing mechanism accomplishes its job by sending
a number of communication messages. In each
migrating POD, the CBAE needs to exchange 4
communication messages per POD. Two messages are
needed to request and for a reply from the coordinator
node. In addition two communication messages are
needed to check the destination availability by
exchanging acknowledgements with a destination. So,
we can formalize the number of communication

Table 1. Nodes Information
Node ID Specification Threshold Coordinator Backup

1 7 700000 0 1
2 6 600000 0 0
3 5 500000 0 0
4 5 500000 0 0
5 4 400000 0 0
6 4 400000 0 0
7 3 300000 1 0
8 2 200000 0 0
9 2 200000 0 0

10 1 100000 0 0

24

message per node as follow. If node A is overloaded,
then the communication messages needed to migrate
one POD are 4. Figure 6 shows the number of
communication messages issued for each time unit.
The freezing time, which concerns the time needed to
select one proper destination and migrate a POD to it,
is very low in the CBAE mechanism.

Figure 5. Nodes' load with CBAE load-balancing.

Figure 6. Communication Messages for CBAE Load
Balancing.

Figure 7 shows the freezing time for each migrated
POD by using CBAE. The majority of PODs have a
freezing time less than 4.5 ms. The average freezing
time is 4.084 ms. The shorter freezing time results
because the overloaded node needs just to ask a
coordinator for an appropriate light load. This
information kept by the coordinator has already been
stored via coordinator in advance. So, the POD just
needs to wait for a reply from the coordinator, and
then it is directly migrated. The CBAE load-balancing
mechanism increases the systems reliability by
introducing the concept of backup and the automatic
election. We simulate two cases when the coordinator
fails alone and when both coordinator and backup fail.
Figure 8 shows the case of coordinator failure. As we
can see the node 7 is assigned randomly to be
coordinator. At the time unit 50, the coordinator fails,
so the backup comes up and takes the duty of the
coordinator.

The overall load-balancing mechanism works fine and
guarantees the reliability. The worst case is
represented when both coordinator and backup nodes
fail. In this case the overloaded node which needs the
service of migration elects itself to act as a new
coordinator. As we can see, in Figure 9, both node 7
and 1 have failed, which are the coordinator and
backup respectively. Applying the backup concept for
storing another copy of overall loads’ status is
worthwhile. The backup node is useful to reduce the
number of communication messages needed, in
comparison with applying the coordinator concept
alone [7]. In section 4.6 we evaluate the number of
communication message in the presence of the backup
concept and when it is omitted.

Figure 7. Nodes' load Case Study.

Figure 8. Coordinator Failure.

Figure 9. Coordinator and Backup Failure.

25

4.3 Random Load-Balance Mechanism
The random load-balancing algorithm can be
implemented in different ways. An overloaded node
selects one node randomly and then migrates one of its
PODs to that destination [4]. If a destination node is
already overloaded, then this destination node will
migrate that POD to another node, that chosen
randomly. A variation of this mechanism is done by
allowing an overloaded node to pull the destination
node before migrating step [4, 10]. If the destination
node is overloaded, or if the migration will put the
destination node in an overloaded state, then the POD
continues running locally. Figure 8 shows the load-
balancing algorithm based on random selection in the
same case-study. The random approach efficiency
depends on the possibility of choosing a non-
overloaded node. This possibility increases whenever
the number of nodes increases. As we can see in
Figure 10, the load among all nodes is totally
unbalanced. Node 1 is still overloaded at 168 time
units; whereas node 9 is a lightly loaded node for 196
time units. The number of communication messages
needed in the random load-balancing mechanism is
very low compared with what we evaluated in CBAE.
The random algorithm needs only 2 communication
messages before migrating a specific POD whereas
CBAE consumes twice what the random needs.
Although the number of communication messages in
the random algorithm is very low, it does not help
much to balance the load over all nodes. The overall
communication messages needed by the random
algorithm are shown in Figure 11.

Figure 10. Nodes' load with Random Load-Balancing.

Figure 11. Coordinator and Backup Failure.

A candidate POD for migrating is chosen randomly
from an overloaded node. This overloaded node then
asks the destination node about its load and threshold.

After that the overloaded node checks if the
destination node is overloaded. If the migration
process will put the destination node in an overloaded
situation, then the POD continues locally. This
mechanism significantly increases the freeze time for
a candidate POD. Although the number of
communication messages shown in Figure 11 is fewer
than the number resulting from CBAE, the average
freeze time of a random approach is three times the
CBAE average freeze time. Figure 12 shows the
freezing time for a migrated POD during 200 time
units. The majority of migrated PODs have freezing
time less than or equal to 9 ms, and this value is very
high compared with CBAE. The average freezing time
for PODs is 9.252 ms. The freezing time has to be as
small as possible since it affects the overall
performance and the overall throughput.

Figure 12. Freezing Time for migrated PODs using CBAE.

4.4 The Benefit of Backup
Let us consider the case of being able to elect
coordinator concept. In this situation, each time a
coordinator fails the overloaded node elects itself to
act as a new coordinator. Each time the coordinator
fails, the new coordinator needs to send its election to
all other nodes and receive from them their current
load status. Thus, the number of communication
messages increases. Assuming 50 nodes and applying
the previous case (only coordinator and the ability of
election), and our proposed CBAE to compare the
number of communications needed. As we can see in
Figure 13, the coordinator has failed 13 times.
Applying only the coordinator and election load-
balancing increases the communication messages
needed in case of coordinator failure. The CBAE
algorithm which depends on backup in case of
coordinator failure needs half the communication
messages compared with the mechanism without the
backup concept.

26

In CBAE, the only communication messages needed
are to inform the other active nodes to change the
coordinator address information to the new one, which
is the backup.

Figure 13. Communication Messages needed in case of
Coordinator Failure.

5. Conclusion
In this paper, we have proposed a fault-tolerant and
reliable load balancing CBAE algorithm that works by
assigning one node as a coordinator and another node
as a backup. We compare the CBAE with a well-
known random election algorithm. Results show that
all nodes are balanced by using CBAE, whereas by
using a random approach they are obviously
imbalanced. So we conclude that CBAE produces a
balanced load among nodes as well as low freezing
time. The random approach is better in relation to the
number of communication messages needed. Some
attributes cannot be measured by simulation, e.g. the
network traffic and the actual freezing time that is
affected by the network delay. As a future work in this
context, therefore, we plan to verify our simulation by
experiments in a real environment.

Acknowledgment

We would like to thank King Fahd University of
Petroleum and Minerals for providing the computing
facilities. Special thanks to Mr. David Birkett for his
help in editing the paper.

References
[1] S. Dejan Milojicic, Fred Douglis, Yves

Paindaveine, Richard Wheeler, Songnian Zhou,
“Process migration”, ACM Computing Surveys,
pp. 241-299, Vol. 32, Issue 3, Sept.2000.

[2] D. L. Eager, E. D. Lazowska, and J. Zahorjan,
“Adaptive load sharing in homogeneous
distributed systems,” IEEE Transactions on
Software Engineering, vol. SE-12, pp. 662–675,
May 1986.

[3] D. Frederick, “Transparent Process Migration in
the Sprite Operating System (PhD Thesis,
University of California, Berkeley), September
1990.

[4] J. Jahnich, Achim Rettberg, “Towards Dynamic
Load Balancing for Distributed Embedded

Automotive Systems, Springer, Volume 231
Embedded System Design: Topics, Techniques
and Trends, 2007.

[5] J. Casas, D. Clark, R. Konoru, S. Otto, R. Prouty,
J Walpole, “MPVM: A Migration Transparent
Version of PVM”, OGI Technical Report, Feb
1995.

[6] J.M. Bahi, C. Vivier, and R. Couturier, “Dynamic
Load Balancing and Efficient Load Estimators for
Asynchronous Iterative Algorithms,” IEEE Trans.
Parallel and Distributed Systems, vol. 16, no. 4,
Apr. 2005.

[7] Luís Paulo Peixoto, Escola De
Engenharia, Peixoto Santos, Peixoto Santos,”
Load Distribution: a Survey,
http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.50.2301.

[8] L. K. Subrata, R. Zomaya, A.Y., “An Efficient
Load Balancing Algorithm for Heterogeneous
Grid Systems Considering Desirability of Grid
Sites”, pp. 320, IEEE Proce. Of the 25th Inter.
Conference of Performance, Computing, and
Communications, 10-12 April 2006.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumb
er=1629422

[9] M. Claypool and David Finkel, “Transparent
Process Migration for Distributed Applications in
a Beowulf Cluster”, In Proceedings of the
International Network Conference (INC)
Plymouth, United Kingdom, July 16th-18th, 2002.

[10] M.M. Hayat, S. Dhakal, C.T. Abdallah, J.D.
Birdwell, and J. Chiasson, “Dynamic Time Delay
Models for Load Balancing. Part II: Stochastic
Analysis of the Effect of Delay Uncertainty,”
Advances in Time Delay Systems, vol. 38, pp.
355-368, Springer-Verlag, 2004.

[11] M. Mitzenmacher, “The power of Two
Choices in Randomized Load Balancing”, IEEE
Trans. Parallel and Distributed Systems, vol. 12,
no. 10, pp. 1094-1104, 2001.

[12] R. Krahl and Jörg Nolte and Lars Büttner, “A
Load Balancing Approach for the PEACE
Operating System”, 1993.

[13] S. Osman, D. Subhraveti, G. Su, and J. Nieh,
“The Design and Implementation of Zap: A
System for Migrating Computing Environments”,
In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation
(OSDI 2002), Boston, MA, Dec. 2002.

[14] S. Penmatsa, Anthony T. Chronopoulos,
“Dynamic Multi-User Load Balancing in
Distributed Systems. IEEE IPDPS”, pp. 1-10,
2007.

[15] S. Dhakal, Majeed M. Hayat, Jorge E. Pezoa,
Cundong Yang, David A. Bader, "Dynamic Load
Balancing in Distributed Systems in the Presence
of Delays: A Regeneration-Theory Approach,"
IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 4, pp. 485-497, April 2007.

[16] C. Wills, and Finkel, D., “Scalable
Approaches to Load Sharing in the Presence of

27

Multicasting”, Computer Communications, 18(9),
pp. 620-630, 1995.

[17] W. Osser, “Automatic Process Selection for
Load Balancing”, MS Thesis, University of
California, 1992.

[18] Tarek Helmy, S. A. Shahab, “Machine
Learning-Based Adaptive Load Balancing
Middleware Framework for Distributed Object
Computing”, Springer LNCS Journal, Volume
3947, pp. 488 – 497, 2006.

[19] Tarek Helmy, Syed S. Jafri, ”Avoidance of
Priority Inversion in Real Time Systems Based on
Resource Restoration”, International Journal of
Computer Science and Applications (IJCSA), Vol.
III, No. I, 2006, pp. 40–50.

[20] Sunil Thulasidasan, “Issues in Process
Migration, USC, 2000,
http://public.lanl.gov/sunil/pubs/csci555tp.pdf

[21] Tarek Helmy, Irfan Ahmed, Aleem Alvi “A
Framework for Fair and Reliable Resource
Sharing in Distributed Systems”, Chapter of Book
Titled: Distributed and Parallel systems, in focus:
Desktop Grid Computing, pp. 115-128, 2008.
Springer Publisher, ISBN: 978-0-387-79447-1.

Tarek Helmy is currently with the
department of Information and
Computer Science, College of
Computer Science and Engineering at

King Fahd University of Petroleum and Minerals
(KFUPM). On leave from the College of Engineering,
Department of Computers Engineering and Automatic
Control, Tanta University, Egypt. He received his
Ph.D. in Intelligent Systems from Kyushu University,
Japan, in 2002. His research interests include
Distributed Operating Systems, Multi-Agent Systems,
Personalized Web Services, and Cooperative
Intelligent Systems. He has published more than 50
papers in major international journals and conferences
in the fields of cooperative intelligent agents, artificial
intelligence distributed operating systems and
computational intelligence. Dr. Helmy is on the
program/organizing committee of various
international journals/conferences in the fields of
artificial intelligence, multi-agents, intelligent and
distributed systems.

Fahad Al-Otabi is a graduate assistant
at King Abdulaziz University, Faculty
of Education, Department of
Computers, Kingdom of Saudi Arabia.
He received his bachelor degree in a

Computer Education from Jeddah Teachers' Collage
of King Abdulaziz University. He is currently a master
candidate in the School of Computer Science at the
University of Hertfordshire, UK.

