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ABSTRACT
Collecting highly accurate scientific measurements asks for highest
data quality and yield. But, satisfying these requirements is non-
trivial, when considering phenomena common to wireless sensing
systems such as clock drift, packet duplicates, packet loss and de-
vice reboots. Previous experience shows that these problems have
not been resolved sufficiently by system design. In this paper, we
introduce an offline approach to improve data quality by (a) provid-
ing a formal system model, (b) verifying conformance of packets
received to this model, (c) providing the corrected packet sequence,
and (d) providing additional information on packet generation in-
ferred from temporally adjacent packets. We apply this method to a
substantial amount of data from a real-world deployment and show
the usefulness of this new intermediate packet processing step. In
our validation of the proposed algorithm, we find that our approach
successfully reconstructs the correct order of packet data streams.
On application of the proposed data cleaning only a single violation
is found when cross-validating a sequence of more than 4.6 million
packets with ground truth derived from duplicate sensor data recov-
ered from external storage post-deployment. The proposed method
is thus suitable for both enhancing data accuracy on the occurrence
of faults as well as the validation of data integrity.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication; B.8.2 [Performance
and Reliability]: Performance Analysis and Design Aids

General Terms
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1. INTRODUCTION
The field of wireless sensor networks (WSNs) is now in a stage

where serious applications of societal and economical importance
are in reach such as industrial process monitoring and control, envi-
ronmental monitoring, logistics, healthcare applications, home au-
tomation, and traffic control. Most prominently, wireless sensor
networks are today used for the collection of observations from the
surrounding environment. For example, recent applications include
ecosystem management [21], monitoring of heritage buildings [5],
and data center monitoring [15].

In contrast to earlier visions of sensor networks, in most of these
applications all sensor data samples and especially their integrity
are of significance and once acquired must not be lost. Moreover,
data must arrive ordered, sensors are often calibrated, sensor net-
work deployments and their maintenance are labor-intensive and
expensive. We argue that in order to significantly advance applica-
tion domains of sensor networks as a novel means of observation
and interaction, it is a requirement that such a tool be created as a
quality instrument with well-understood and predictable properties.

Looking at an end-to-end system there are two major cases that
lead to degradation in data quality. In the first case, data gener-
ated by sensors and data acquisition equipment may suffer from
noise, outliers and inaccuracy due to effects like faulty calibration,
stability of power supplies, peculiarities of the system design and
others [22]. Secondly, artifacts originating in the data transmission
system of a sensor network from the data source to the final data
sink may exist. For example, when analyzing data from a real sys-
tem [3] running a highly resource-optimized, energy-efficient data
collection protocol, we have observed packet loss, packet duplica-
tion, inaccurate timestamps of data generation and wrong packet
ordering. Our observations match with the reports of other re-
searchers, i.e., Barrenetxea et al. [1, 2] reported an average of 6.5%
packet duplicates and up to 20% of lost packets in comparable
multi-hop scenarios, others report even worse performance [25].

While incremental improvements of a system design lead to an
improved performance over time, we argue that offline data clean-
ing, reconstruction and validation are overall valuable and even in-
evitable for achieving data quality requirements. Firstly, it allows
to clean historical artifacts in data derived from e.g. an initial, yet
imperfect system version that are not present in data collected us-
ing successive versions of a system. This is very valuable since
more sensor data can be utilized despite early imperfections in the
realization of a sensor system. Secondly, it will always be the case
that a number of situations are not anticipated or accounted for in
a system design, leading to sensor data quality degradation or erro-
neous behavior in certain corner cases. Thirdly, even an “optimal”
system design may suffer from fundamental limits. For instance,
filtering out all packet duplicates in a streaming network is not re-
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alistic due to extensive memory requirements [8]. Likewise, out of
order packet arrivals can always occur in dynamic multi-hop rout-
ing topologies, packet streams must thus be reordered at a higher
layer [23]. Lastly, data integrity validation is a valuable tool even
if a system is designed and/or operating correctly.

While there has been extensive research for the first type of prob-
lems, i.e., by using statistical methods [6], sensor fusion and intense
data analysis of the transmitted packet payloads [25], a systematic
approach for the second case described is still missing. Experi-
ence has shown that typically users of sensor network data only
apply means for filtering of the transmitted packet payloads (i.e.,
based on data values) and typically do not question the correctness
of attributes such as packet header information – as we will argue
important indicators of data quality.

We propose to use a two-stage process to improve the quality of
data collected in a sensor network. In the first stage, arriving pack-
ets are processed by only using the application headers that have
been attached and accumulated during packet transmission, e.g.,
various timestamps, sojourn times throughout the network and var-
ious sequence counters. This stage allows to order measurements
in the temporal domain, relate measurements to a global notion of
time, and to identify packet duplications. In the second stage, data
samples are processed using more traditional methods that are typ-
ically established in the corresponding application domain and act
mainly based on the measurement values themselves, e.g., outlier
detection, filtering etc. This paper covers the first stage.
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Unfiltered
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Model-based 
Testing and 
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Science

{Inserted first stage {Second stage

Figure 1: Two-staged process for improving sensor data qual-
ity. Arriving packets are first processed by only using appli-
cation headers before filtering based on sensor data values is
applied in the second stage.

In order to provide guarantees on the order of received packets,
we propose a model-based approach:

(a) The non-determinism of the overall transmission system in-
cluding data capture, local clock drifts, reboots, transmission
errors, and packet reordering is described in a formal model.

(b) The conformance of received packets with respect to the model
is verified. Non-conforming packets are marked as unreliable
and excluded from further data analysis.

(c) The correct packet sequence is obtained by using assump-
tions from our formal model. Conforming packets are anno-
tated with this new sequencing information.

(d) Additional information on the generation of a packet is added
to conforming packets inferred from information of tempo-
rally adjacent packets.

As an example of this approach, we consider a wireless sen-
sor network application that periodically samples data at a constant
rate. Packets can be stored in the network for an arbitrary amount
of time. Sensor nodes do not have a global notion of time, local
clocks are not synchronized. Generation times of packets are es-
timated at the sink by subtracting the network sojourn time [13]
from the absolute arrival time. The formal model comprises four
scenarios that are common to wireless sensor networks: clock drift,
packet duplicates, node reboots, and packet loss.

Based on this formal model, we propose a packet verification
and processing approach that provides guarantees on the logical
ordering of data. Data that conform to the model are annotated
with ordering information and bounds on the time of generation.
Thereby, duplicate packets as well as packets that do not conform
to the formal system model are marked as such.

The contribution of this paper can be summarized as follows:

• We introduce an approach improving data quality by (a) pro-
viding a formal system model, (b) verifying conformance
of received packets to the model, (c) providing the correct
packet sequence, and (d) providing information on the gen-
eration of packets inferred from temporally adjacent packets.

• We apply our method to more than 23 months of data from
a real-world deployment in an hostile environment. During
this time, we collected more than 29 million packets that
carry sensor readings and attached application headers.

• A case study is provided validating the usefulness of the pro-
posed intermediate packet processing step. In our validation,
we find that our approach successfully reconstructs the cor-
rect order of packet data streams. Only a single violation
is found when cross-validating a sequence of more than 4.6
million packets with ground truth from external storage re-
covered post-deployment. We argue that the subsequent sci-
entific analysis of the environmental data can substantially
profit. Here, we especially refer to the problem of not falsely
modeling artifacts which have been introduced by the data
collection system while designing and calibrating new mod-
els of currently only partially understood physical processes.

The remainder of this paper is organized as follows. An overview
of related work is given in Section 2. Section 3 provides a precise
description of the considered problem. In Section 4, we present a
formal model of a data collection application. Methods for analyz-
ing data originating from systems that conform to this formulated
model are presented in Section 5. In particular, we consider dupli-
cate filtering, the reconstruction of the generation sequence, and the
improvement of timing information of single packets by reasoning
with interrelations of multiple packets. For evaluating their perfor-
mance and practical usefulness, these algorithms are applied to a
real data set in Section 6. An overview of the broader applicability
of our approach is given in Section 7.

2. RELATED WORK
Data quality and yield have been investigated by many researchers

in the community. In particular, literature gives many evidences
for approaches in which sensor readings were considered [24, 25].
The users of data typically remove data that exceeds a threshold
given by the sensor specification or identify outliers by applying
statistical methods. Orthogonal to work on data cleaning, several
data transmission protocols have been evaluated on a very detailed
level. But, to the best of our knowledge, this is the first work that
approaches data cleaning with a comprehensive formal model of
a data collection system that considers a whole set of interacting
transmission artifacts. Here, data cleaning is based on application
headers gathered during packet generation and forwarding. Our
work does not intend to replace the processing of sensor readings.
Instead, we propose to add the preceding stage of logical and tem-
poral data filtering before data are finally processed based on the
measured physical values.

The problem of reconstructing the temporal order of events has
been tackled from different perspectives. First, total message order-
ing in distributed systems can be achieved using a logical concept
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of time [14, 20]. However, logical time is not sufficient in WSN
applications that need to relate events in the physical world [7].

Time synchronization protocols such as FTSP [18] have been
proposed for establishing a global, synchronized time within the
sensor network. Ideally, recorded packet generation times immedi-
ately represent the temporal order of generation. However, Werner-
Allen et al. [26] reported problems with FTSP in the field. Besides
of an reported software bug, especially unstable (wireless) network
links caused significant time offsets in the range of hours. More
generally, the necessity of stable network links for synchronization
is unfortunate for applications that must tolerate high delays and
long periods of disconnected operation. For instance, environmen-
tal extremes such as ice and snow can force sensor nodes to remain
disconnected for several weeks or even months [19].

Non-applicability of network time synchronization protocols has
been addressed by the idea of data driven time synchronization.
Lukac et al. [17] use microseismics to reconstruct time informa-
tion, Gupchup et al. [10] developed a similar approach for recon-
structing the time from sunlight measurements.

Phoenix [9] is another recent work dealing with offline time re-
construction. For tackling the problem of sensor nodes losing their
local (clock) state due to frequent reboots, the authors propose to
exchange time information within the sensor network. An offline
algorithm is used to reconstruct global timestamps from this infor-
mation afterwards.

The work presented in this paper differs from previous work in
two aspects. First, our explicit reconstruction of the generation
sequence does not solely rely on either temporal or logical order
information, but involves both. This allows us not only to relate
events to the physical world, but also to reconstruct causalities in
the presence of possibly inaccurate time information. Second, the
presented approach does not filter packets based on sensor read-
ings, but on their (non)conformity to a formal model of a real data
collection application. For that purpose, we integrated several as-
pects of data transmission into a single model.

3. PROBLEM DESCRIPTION
Two basic questions are being answered: What are models able

to cover the non-deterministic behavior of packet capture and trans-
mission in highly dynamic sensor networks? What are methods that
can be used to classify received packets according to their confor-
mance to the model and to reconstruct the correct packet order?

As an example of the overall approach we consider a network of
sensor nodes that periodically generate packets. A received packet
can be described by the tuple (o, s, p, t̃s, tb) consisting of the sender
address o, the packet sequence number s, the payload p, the esti-
mated network sojourn time t̃s, and the absolute time of arrival
at the sink tb. Under a model that covers clock drift, packet dupli-
cates, node reboots and packet loss, packets are classified according
to their conformance to the system model. Valid packets are anno-
tated with additional information id, tlg and tug . Here, id represents

the temporal order of generation and tlg and tug denote upper and
lower bounds on the packet generation time.

4. SYSTEM MODEL
In this section, we introduce a formal model of a sensor network

for data collection. Assumptions made are chosen as realistic as
possible, but must also contain certain abstractions for providing a
solid base needed for deriving correct algorithms in the following
Section 5. Errors in the assumptions made will lead to a higher
amount of data from the real system being non-conforming with
respect to the formal model. This is not a particular problem of our

model, but a known drawback of modeling in general.
A sensor network for data collection consists of multiple sensor

nodes and a sink. For modeling purposes, we abstract a sensor node
as a device that offers two services: Packet capturing, i.e., the actual
sampling of sensors, and packet forwarding. Packet forwarding is
active on all sensor nodes, packet capturing is optional.

4.1 Packet Capturing Service
Following this modeling assumption, a sensor network contains

several sensor nodes that run the packet capturing service. Each
instance has the following properties:

• A source address o is unique in the sensor network. We will
additionally use No for referring to the sensor node that runs
the capture service having the source address o.

• A local clock τ = (1+ ρ)(t− tr) where ρ denotes the local
clock drift, t denotes the absolute time, and tr denotes the
time of the most recent restart of the node. The clock drift is
bounded by ρ ∈ [−ρ̂, ρ̂]. Both t and tr are measured on a
perfect clock, none of both is visible to the sensor node.

• Unplanned warm restarts occur non-deterministically with a
minimal interarrival time of treset.

• Each instance maintains a sequence counter i. The sequence
counter is an abstract variable that represents the packet gen-
eration sequence. We define the size of i as large enough so
that i will never overflow. The sequence counter is initialized
exactly once to i := 0. After i has been initialized, it sup-
ports only reading the current value of i or to increment the
value of i by 1.

• Each instance maintains a sequence counter offset ioffset. This
second abstract variable has the same size as the sequence
counter. Once ioffset has been initialized to ioffset := 0, the
value of ioffset can only be read or set to ioffset := i.

• The sampling period is denoted by T . If τ mod T = 0, a
data packet of the form (o, s, p) is generated that contains
the source address o, a sequence number s and sensor data p.
The sequence number is set to

s(i) = (i− ioffset) mod smax (1)

where smax bounds the transmitted sequence number. The
space for storing and transmitting the sequence number s in
a packet is limited, thus the sequence number over-rolls every
smax. After the generation of the packet, i is incremented by
1, i.e., i := i+ 1.

• Due to major faulty behavior, i.e., power failures, cold restarts
can occur. Contents stored in volatile memory, i.e., SRAM,
are lost after a cold restart. Since certain types of non-volatile
memory, i.e., NOR, are not designed for storing frequently
changing data, we assume sequence information and packet
queues being stored in volatile memory. Thus, a cold restart
resets the local clock to τ := 0 and the sequence number
to s(i) := 0. Our model abstracts the reset of the sequence
number s(i) by setting the sequence counter offset ioffset to
ioffset := i. The different behaviors of the model on warm
and cold restarts are shown in Table 1.

Let us now explain the motivation for the above specification of
a packet capturing service. It should generate a packet every T
time units, but the time interval T is measured on the local clock
and therefore subject to the current clock drift ρ ∈ [−ρ̂, ρ̂]. Using
the above model, we can see that for constant reference time tr the
absolute capturing time tg(i) of a packet i is given as follows:

tg(i) = tg(i− 1) +
T

1 + ρ(i)
(2)
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After packet capture: After warm restart: After cold restart:

i := i+ 1 tr := t tr := t

⇒ τ := 0 ioffset := i

⇒ τ := 0

⇒ s(i) := 0

Table 1: The state of the local clock is lost on restarts. Addition-
ally losing SRAM contents in case of a cold restart also causes
the sequence number of the next packet to be reset to s(i) := 0.

Sensor nodes can restart during operation. This can either be
planned, i.e., a reset button push, or unplanned, i.e., the software
watchdog resetting the sensor node due to an overrun of the task
queue. At this point in time, the clock state is lost and starts again
at τ = 0. In the case of a restart, sensor nodes immediately con-
tinue sampling after initialization. As a consequence, considering
sequence counter value i− 1 immediately before, and i just after a
restart, the time difference between the corresponding packet gen-
erations can be much smaller than the sampling period T . As a
restart may occur directly after the generation of a packet, we find

0 < tg(i)− tg(i− 1) ≤ T

1 + ρ(i)
(3)

4.2 Forwarding Network
Sensor nodes interact in a forwarding network that transmits pack-

ets to a sink using multi-hop routing. The sink S immediately
processes arriving packets, it is the only component of the sensor
network that has a global notion of time, the clock of the sink is
perfect. We model the forwarding network as follows:

• It immediately reads packets (o, s, p) generated by sensor
nodes that run the capturing service.

• A packet is delivered to the sink S after a sojourn time ts.
• It can duplicate packets arbitrarily, i.e., it can generate an

arbitrary number of copies from (o, s, p). These packets are
forwarded independently from each other.

• It can delete packets arbitrarily, i.e., a packet (o, s, p) is re-
moved and not delivered to the sink S.

• The forwarding network augments captured packets with in-
formation about the transmission. It outputs packets of the
form (o, s, p, t̃s, tb) where (o, s, p) was the captured packet,
t̃s is an estimate of the sojourn time ts and tb is the absolute
time of arrival at S. The estimated sojourn time t̃s satisfies

(1− ρ̂) · ts − ĥ · t̂u < t̃s ≤ (1 + ρ̂) · ts (4)

where ρ̂ is the bound on the local clock drifts. With t̂u as
the clock resolution of the local clock, sensor nodes measure
time differences with an uncertainty in the interval (−t̂u, 0].
This uncertainty is introduced per hop, the maximum number

of hops towards the sink is denoted by ĥ.

Again, let us now provide the motivation for the above model of
the (packet) forwarding network. The sensor nodes are organized
in a dynamic multi-hop tree topology where packets are transported
over multiple hops until they are finally received by the sink S.

During a one-hop communication, the receiving node sends a
receipt to acknowledge the transmission over one hop. A packet
is retransmitted as long as the acknowledgement of the next hop
did not arrive within an expected time frame. Packet duplicates are
generated if an acknowledgement was not received although the
transmission of the packet itself was successful.

Furthermore, packet loss is also a well-known problem in the
context of real-world applications. For instance, pending packets
waiting for transmission are lost if the contents of the local packet
queue of a sensor node are (fully or partially) lost due to a cold
restart. As another example, packets may also be dropped if the
limited local packet queue is full.

Capturing
Service

Forwarding
Service

Sensor Node
S

N1

N2

N3

N(o,i) = {No, N1, N2, N3}

No

Figure 2: Travel of a packet i being generated at sensor node
No. The packet is processed by all sensor nodes inN(o,i) before
it is finally received by the sink.

The sojourn time ts(N, i) is the time that packet i spent in the
packet queue of some sensor node N of the forwarding network.
We define N(o,i) as the set of nodes that process a packet i origi-
nating from the sensor node No. Figure 2 describes the exemplary
travel of a packet from sensor No to the sink S. The total sojourn
time ts(i) of a packet is thus calculated as

ts(i) =
∑

N∈N(o,i)

ts(N, i) (5)

During packet transmission, the sensor nodes accumulate the so-
journ times between packet reception and transmission. These times
are determined using the local clocks which have a bounded drift.
Therefore, at the sink there is only an estimate t̃s(i) of the sojourn
time ts(i) for each packet available which is

t̃s(i) =
∑

N∈N(o,i)

t̃s(N, i) (6)

where t̃s(N, i) is the locally determined estimate of the sojourn
time of packet i in node N . Considering uncertainties due to the
drift as well as the resolution of the local clock, we have t̃s(N, i) ∈
((1− ρ̂) · ts(N, i)− t̂u, (1 + ρ̂) · ts(N, i)]. The resulting interval
for t̃s(i) is presented in (4).

5. DATA ANALYSIS
The goal of the analysis is 1) to identify and exclude duplicate

packets, 2) to test the conformance of received packets to the spec-
ified system model, 3) to exclude packets that are not conforming,
and 4) to annotate the data set with additional information that pro-
vide the correct packet sequence.

The analysis consists of four steps that are explained in more de-
tail in the following sections. The presented sequence is inferred
from the order in which the data set must either be annotated with
extra information or reduced in its size for fulfilling the assump-
tions of subsequent steps:

• The time interval in which a packet has been generated is
initially calculated for all packets.

• Packet duplicates are removed from the data set. The goal
of duplicate filtering is to maximize the number of accepted
packets while guaranteeing that all duplicates are removed.
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• An epoch assignment algorithm is applied to the filtered data.
Assigning packets to so called “epochs” is a method for re-
constructing the temporal order of packet generation based
on application header information.

• Generation time intervals of ordered and filtered packets are
further improved by forward and backward reasoning.

5.1 Packet Generation Time Intervals
The estimated packet generation time t̃g(i) is given by subtract-

ing the estimated sojourn time of a packet t̃s(i) from the arrival
timestamp tb(i).

t̃g(i) = tb(i)− t̃s(i) (7)

We have to resort to estimates of the packet generation time as in-
formation to reconstruct the exact generation time is missing. Con-
cretely, the value of the local clock τ on packet generation and
involved clock drifts ρ(i) while a packet travels through the for-
warding network are not known at the sink. From the perspective
of the perfect clock at the sink, we get the estimation error

tg(i)− t̃g(i) ∈
[
− t̃s(i) · ρ̂+ ĥ · t̂u

1− ρ̂
,
t̃s(i) · ρ̂
1 + ρ̂

]

This equation firstly addresses the introduced worst-case error of
measuring the packet sojourn time t̃s(i) on local clocks with drift.

Secondly, ĥ · t̂u describes the worst-case error when accumulating

time measurements of at most ĥ sensor nodes with an uncertainty
of (−t̂u, 0] per hop. Based on these bounds, we can determine the
valid range of the packet generation time tg(i)

tg(i) ∈ [tlg(i), t
u
g (i)]

where

tug (i) := tb(i)− t̃s(i)

1 + ρ̂
(8)

tlg(i) := tb(i)− t̃s(i) + ĥ · t̂u
1− ρ̂

(9)

In Section 5.4, we will introduce forward and backward reasoning
for improving tug (i) and tlg(i).

5.2 Duplicate Filtering
The goal of the duplicate filtering step is to remove all packet

duplicates from a data set. Packet duplicates are packets that are
equal with at least one other packet in terms of the following three
properties: 1) Packet duplicates have the same source address o, 2)
packet duplicates have the same sequence number s, and 3) packet
duplicates have an equal payload p. Since packet duplicates travel
through the network independently, they may have different esti-
mated sojourn times t̃s, but they will have overlapping generation
time intervals [tlg, t

u
g ].

Based on this definition, we now explain our duplicate filtering
mechanism. Here, we consider a subset D of the whole data set
that only includes packets with an equal source address o, an equal
sequence number s and equal payloads p. It becomes apparent, that
any possible subset with these properties can be handled indepen-
dently. The subset is duplicate-free, if all included packets have
disjoint generation time intervals [tlg, t

u
g ].

For finding duplicate-free subsets, we consider the problem of
finding the maximum independent set of a graph. We consider a
graph G = (V,E) with the set of vertices V and the set of edges
E. In short, the maximum independent set I of G is the largest

subset I ⊆ V that contains only vertices that are not connected to
any other vertex of the subset I . For our application, each packet
being member ofD is represented by a vertex v ∈ V . Two vertices
v and w are connected by an edge (v, w) ∈ E, if the corresponding
packets have overlapping generation time intervals:

(v, w) ∈ E ⇔ (tug (v) ≥ tlg(w)) ∧ (tug (w) ≥ tlg(v)) (10)

In summary, duplicate filtering starts with separating a data set
into subsets of a fixed originator o, a fixed sequence number s, and
a fixed payload p. All subsets are analyzed independently. Firstly,
the corresponding graph G of the subset is constructed. Then, we
employ a standard algorithm [16] for finding a maximum indepen-
dent set I . Packets that correspond to a vertex v ∈ I are kept,
packets corresponding to a vertex v ∈ V \ I are marked as packet
duplicates and not considered in the further analysis.

Without further assumptions on the analyzed data set, it is not
possible to avoid packets falsely being marked as duplicates. Firstly,
we do not state any restrictions on the payload p. Thus, the payload
can also be constant for an arbitrary number of packets without any
packet duplications being involved. Secondly, a power failure can
lead to two consecutively generated packets k and l having an equal
sequence number s(k) ≡ s(l) ≡ 0. Concerning the trade-off be-
tween accepting false positives and accepting false negatives, our
superior goal of ensuring a duplicate-free data set allows us only to
tolerate packets being falsely removed. From now on, we suppose
that the packet streams are free of duplicates.

5.3 Epoch Assignment
In this section, we present and proof the core foundations of

our proposed packet sequence reconstruction step. We propose
to assign packets to epochs for reconstructing their temporal or-
der of generation. The following analysis first supposes that there
are no cold restarts which re-initialize the sequence number with
ioffset := i, only warm restarts that reset the timer of the capturing
service are allowed. The effect of cold restarts will be discussed at
the end of the section.

Considering data from a single sensor node, we are now briefly
explaining the concept of separating data into epochs:

• All packets being generated between two consecutive resets
of the sequence number s(i) = (i − ioffset) mod smax be-
long to the same epoch. An epoch embraces up to smax se-
quentially generated packets, any two packets belonging to
the same epoch have disjoint packet sequence numbers s(i).
More precisely, subsequent packets i, i + 1, ..., i + L − 1
belong to the same epoch if s(i) = 0, s(j) = j − i for all
i < j < i+ L, and s(i+ L) = 0.

• Epochs are labeled with incrementing index e ∈ N, the index
of the corresponding epoch of a packet i is denoted by e(i).

From this definition of an epoch, we can derive the following state-
ment: The epoch numbers e(k) and e(l) of two packets k and l
satisfy (e(k) < e(l))∨ ((e(k) ≡ e(l))∧ (s(k) < s(l)) if and only
if k was generated before l, i.e., tg(k) < tg(l).

We will now provide a method to assign packets uniquely to
epochs which leads to a total order according to the previous theo-
rem. The main concept is based on the notion of the “epoch center”
Tc(i) of a packet i which is computed offline according to

Tc(i) = t̃g(i)− s(i) · T (11)
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where t̃g(i) = tb(i)− t̃s(i) denotes the estimated generation time
of packet i. In order to explain the concept, let us first suppose that
there are no restarts, no measuring inaccuracies of time differences
and no clock drifts. Then, the estimated generation time of a packet
equals the actual one, i.e., t̃g(i) = tg(i), and the time difference
between subsequent packets is T . Therefore, Tc(i) = Tc(j) for all
packets of an epoch e(i) = e(j), i.e., all packets of an epoch have
the same “epoch center”. Using the above assumptions, the time
difference between subsequent “epoch centers” is simply smax · T .

Of course, node restarts and clock drifts will change the above
scenario as (a) the virtual “epoch centers” of packets belonging to
one epoch are not equal and (b) the time differences between sub-
sequent epoch centers are not smax · T anymore.

The concept of the epoch assignment algorithm can be described
as follows: All packets whose “epoch centers” are close enough
are assigned to the same epoch, whereas packets whose “epoch
centers” have a large distance are assigned to different epochs.
The following two theorems that allow for warm restarts formalize
the above notions.

THEOREM 1. All packets k, l that belong to the same epoch,
i.e., e(k) = e(l), satisfy

|Tc(k)− Tc(l)| ≤ ΔTc (12)

where

ΔTc = (smax − 1)(ρ̂T + T − T ′) + T ′ + 2ρ̂tmax
s (13)

where tmax
s is an upper bound on the network sojourn time, i.e.,

ts(k) ≤ tmax
s and

T ′ =
1

(1 + ρ̂) /T + 1/treset

PROOF. For two packets of the same epoch, we find

Tc(k)− Tc(l) = t̃g(k)− t̃g(l)− s(k)T + s(l)T

≤ tb(k)− tb(l)− (1− ρ̂)ts(k)

+ (1 + ρ̂)ts(l)− s(k)T + s(l)T

≤ (tg(k)− s(k)T )− (tg(l)− s(l)T ) + 2ρ̂tmax
s

Neglecting second order drift influences, we can upper bound the
first term as

tg(k)− s(k)T = tg(i0) + s(k)
T

1− ρ̂
− s(k)T

≤ tg(i0) + (smax − 1)ρ̂T

where i0 denotes the first packet of the epoch. The lower bound
on the second term is obtained by a packet generation that is as
fast as possible. In other words, we first need to determine a lower
bound B on time difference between smax packets. As we know, the
minimal interarrival time of unplanned warm restarts is treset and at
each restart, the generation clock is reset and a packet is generated.
As a result, B can be determined as the smallest value that satisfies

B ≥
(
smax − 1−

⌈
B

treset

⌉)
T

1 + ρ̂

≥
(
smax − 2− B

treset

)
T

1 + ρ̂

Solving this equation for B and using the abbreviation

T ′ =
1

1+ρ̂
T

+ 1
treset

yields a lower bound

B = (smax − 2)T ′
(14)

Now we can use this bound in order to determine

tg(l)− s(l)T ≥ tg(i0) + (smax − 2)T ′ − (smax − 1)T

As a result, we find now

Tc(k)− Tc(l) ≤ (smax − 1)(ρ̂T + T − T ′) + T ′ + 2ρ̂tmax
s

which finishes the proof.

THEOREM 2. Suppose that the generation period T satisfies

T > 2(1 + ρ̂)
ΔTc

smax
(15)

Then all packets k, l that belong to different epochs, e.g., e(k) <
e(l), satisfy

Tc(l)− Tc(k) > ΔTc (16)

where ΔTc is defined in Theorem 1.

PROOF. The proof uses results from the proof of Theorem 1. In
particular, we know that

Tc(k)− Tc(l) ≤ (tg(k)− s(k)T )− (tg(l)− s(l)T ) + 2ρ̂tmax
s

If e(l) = e(k) + 1, then we can not use the same reference time
tg(i0) of the first packet of the common epoch anymore. Instead,
the reference points of packets k and l differ by at least smax ·T/(1+
ρ̂). Therefore, we find

Tc(k)− Tc(l) ≤ −smax
T

1 + ρ̂
+ΔTc

By using Tc(l)− Tc(k) > ΔTc we finally obtain

smax
T

1 + ρ̂
> 2ΔTc

which leads to the condition in the theorem.

The condition on the nominal generation period T in Theorem 2
involves the maximal sojourn time of packets tmax

s . Therefore, given
a generation period T , the minimal restart time interval treset, the
maximal clock drift ρ̂, and the maximal sequence number smax, one
can determine an upper bound on the sojourn time of packets which
would allow for an epoch assignment based on the above theorems:

tmax
s <

1

2ρ̂

(
smax · T
2(1 + ρ̂)

− (smax − 1)(ρ̂T + T − T ′)− T ′
)
(17)

This bound can be used to mark (or remove) packets that cannot be
assigned to epochs due to their sojourn time.{≤ ΔTc > ΔTc

Tc(i)

{ {

t

≤ ΔTc

e(i) = 1 e(i) = 2

x
invalid

Figure 3: Assignment of packets to epochs. Epoch centers Tc(i)
of packets of the same epoch must lie within ΔTc, see (12). In turn,
epoch centers Tc(i) of two packets that belong to disjoint epochs
must be at least ΔTc apart from each other, see (16).

The two theorems also allow to classify packets that do not con-
form to the system model. In particular, suppose that we look
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at three packets i, j, and k where Tc(i) − Tc(j) ≤ ΔTc and
Tc(j) − Tc(k) ≤ ΔTc. In this case, i, j, and k need to belong
to the same epoch due to Theorem 1. But if Tc(i)−Tc(k) > ΔTc,
then i and k can not belong to the same epoch due to Theorem 2
which is a contradiction. The following Algorithm 1 uses this fact
to mark or remove such packets.

Algorithm 1: Annotation of epoch e and index id to all packets.
pop() returns the next packet from the ordered data set, or false
if all packets have been pulled.

input : Packets of a single node, ordered by increasing Tc(i)
output: Packets with annotated epoch e(i) and index id(i)

1 begin
2 epoch←− 0 ; l←− pop() ; f ←− l ;
3 while k ←− pop() do
4 if Tc(k)− Tc(f) > ΔTc then
5 if Tc(k)− Tc(l) ≤ ΔTc then
6 mark packet k as non-conforming ; continue ;
7 else
8 epoch←− epoch+ 1 ; f ←− k ;

9 e(k)←− epoch ; id(k)←− epoch · smax + s(k) ;
l←− k ;

The question arises, why packets could violate Theorems 1 and
2. As described in the formal model, there may be cold restarts,
i.e., a restart that also causes a reset of the sequence number. In this
case, epochs contain a smaller number of packets and therefore,
may have a smaller distance in time. Using the proof of Theorem
2, we can infer that the minimal distance between two epochs, i.e.,
the timing distance of a cold restart from the beginning of an epoch,
needs to be larger than 2ΔTc in order to guarantee a sufficient sep-
aration of epochs.

At first, all packets that do not satisfy the bound on the sojourn
time in (17) are removed. The estimated epoch centers Tc(i) are
calculated for all packets. Algorithm 1 firstly checks for packets
that violate Theorems 1 and 2. Non-violating packets are then an-
notated with the index of the corresponding epoch e(i) and an in-
dex id(i) which reflects the ordering of packets, i.e., it satisfies
id(i) > id(j) if tg(i) > tg(j). After executing Algorithm 1, all
packets that have the same index id and epoch e also need to be
marked as non-conforming.

5.4 Forward/Backward Reasoning
In Section 5.1, we introduced tug (i) and tlg(i) as upper and lower

bounds of the valid range of the unknown, perfect packet generation
time tg(i). The goal of the presented forward and backward rea-
soning is to refine these time intervals by exploiting the sequence
information provided by the index id computed in the previous sec-
tion. This way, we take into account sequence and timing informa-
tion of the whole packet stream.

For the following discussion, we suppose that the packet indices
i are ordered, i.e., we have id(i) < id(i + 1). The basis for the
algorithm are bounds on the time difference between the generation
of packets k and l with k < l

0 < tg(l)− tg(k) ≤ (id(l)− id(k))
T

1− ρ̂
(18)

where the lower bound is due to the possibility of node restarts and
the upper bound is due to a slow clock at the sensor node. Now,
we can tighten the upper and lower bounds by applying the above
relation iteratively for all packets.

The tightening algorithm applies (18) iteratively starting from
the initial upper and lower bounds, see (19)-(22). Note that the up-

per and lower bounds are treated independently. In addition, we
need only one pass for each iteration. For the lower bounds, the
iteration finished if we execute firstly (19) with increasing index
i and then (21) with decreasing index i. Likewise, the improved
upper bounds are determined after firstly executing (22) with de-
creasing index i and then (20) with increasing index i.

(Forward reasoning)

tlg(i) := max
(
tlg(i), t

l
g(i− 1)

)
(19)

tug (i) := min

(
tug (i),min

k>0

{
tug (i− k)

+ (id(i)− id(i− k))
T

1− ρ̂

})
(20)

(Backward reasoning)

tlg(i) := max

(
tlg(i),max

k>0

{
tlg(i+ k)

− (id(i+ k)− id(i))
T

1− ρ̂

})
(21)

tug (i) := min
(
tug (i), t

u
g (i+ 1)

)
(22)

If we use this order of execution, then in (19) and (22) we only
need to take the nearest neighbor into account, i.e., k = 1. In
addition, no fixed point iteration is necessary. Let us show this for
tlg only, as the other case can be handled similarly.

Obviously, after the forward phase, we have tlg(i) ≤ tlg(i + k)
for all k > 0, and after the backward phase, (21) holds for all
packets i. Therefore, we only have to show that tlg(i) ≤ tlg(i+ k)
still holds after the backward phase. Suppose that this is not the
case, i.e., there exists some i such that tlg(i) > tlg(i + 1). Then
there must exist a packet j > i which increased the bound for
i in the backward phase to the new (larger) value, i.e., tlg(i) =

tlg(j) −Δ1 for some positive value Δ1. j = i + 1 is not possible

as tlg(i+ 1) < tlg(i) and therefore, we have j > i+ 1. Therefore,
during the backward phase, packet j also may have changed packet
i + 1: tlg(i + 1) ≥ tlg(j) − Δ2 for some positive value Δ2. As
j − i > j − (i + 1) we have Δ1 > Δ2. Now, we can write
tlg(i) = tlg(j)−Δ1 < tlg(j)−Δ2 ≤ tlg(i+ 1) which contradicts
the assumption.

If after the execution of the algorithm there are packets i with
tug (i) < tlg(i), those packets will be marked as non-conforming
and removed. After that, the tightening algorithm is applied again.
This way, we finally achieve a packet stream that is conforming to
the formal model.

6. CASE STUDY
The PermaSense project [11] strives for modeling physical pro-

cesses related to high-alpine permafrost that have previously only
been partly understood by the environmental science community.
For verifying new physical models, considerable volumes of highly
accurate measurements collected over a multi-year period are nec-
essary. Observations are typically taken at remote locations that
offer no existing infrastructure. Furthermore, extremely harsh en-
vironmental conditions, especially ice and snow, allow to visit the
field locations only within a certain time period of the year. Here,
the approach is to deploy highly energy-optimized wireless sensor
nodes that are designed for a reliable operation under these con-
ditions. For highest data quality, a purpose-built sensor interface
board is used to interface expensive high-precision instruments [3].

For this paper we consider a data set that consists of more than 29
million packets that have been gathered during a 23 month period.
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Figure 4: Number of received packets at the sink of the multi-hop network. Each packet carries a number of sensor readings and
application headers. The three analyzed phases of the PermaSense deployment are denoted with A) to C).

Each packet carries a number of sensor readings and packet header
data. Within the observed time span, the deployment consisted of
up to 19 sensor nodes and a single sink. There are five different
packet types that include the same set of application headers, but
different types of sensor readings. The system is designed to gen-
erate a packet of each type every two minutes. These five packets
are generated in immediate succession one after the other, are indi-
vidually an locally time-stamped and a unique sequence number is
added. A multi-hop data collection protocol [4] is used to transport
the data from the sensor nodes to the sink where the accumulated
sojourn time of each packet and the absolute reference time of the
sink are used to calculate the generation time of the packet.

Unfiltered
Data

Five packet types

Simple heuristic
Algorithm 2

Sequence test
Algorithm 3

Sequence test
Algorithm 3

# of sequence 
violations

?= 0

# of sequence 
violations

Model-based approach
Duplicate filtering
Epoch assignment
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Figure 5: Case study validation strategy. We verify and compare
the correctness of the packet sequences resulting from applying the
model-based approach and a simple heuristic to the data set. Packet
sequences are validated by a model of the behavior of the node up-
time measurement. This measurement is included in health pack-
ets, one out of five packet types. Algorithm 3 returns the number
of sequence violations based on this model, ideally this should al-
ways be zero. We validate results on the whole packet stream with
Algorithm 3, the results on the deployment phases B) and C) are
additionally cross-validated with ground truth from recovered ex-
ternal storage. Annotations I) to III) correspond to probes that we
add for reference in the remainder of this paper.

The PermaSense deployment used in this case study has been
initially set up in July 2008. The time from July 2008 until May
2010 can be split into three different deployment phases that can
be characterized by different system behaviors. We will exploit
this history for evaluating the performance of our model-based ap-
proach in the following three scenarios: A) Highly non-conforming
system behavior, B) sensor nodes subject to a high frequency of un-
planned warm restarts, and C) more than one third of the collected
data experiencing transmission delays of several hours to days.

In more detail, the first four months of the deployment were
mainly determined by initial tests of new hardware and software.

Artifacts of this non-conforming system behavior during phase A)
are shown in Figure 4(b). The number of received packets per day
is varying over time, the total number of received packets during
this phase violates system specifications. Learning from problems
caused by outages of the sink on site and the database server in the
backend, the installed sensor nodes were completely replaced by
new sensor nodes with additional external storage to accommodate
sensor data duplicates in November 2008. In March 2009, initial
data analysis identified a severe software problem that caused all
sensor nodes to restart up to 40 times per day [12]. The resulting
long-term effect of “dying” sensor nodes is observable in the drop
of the packet reception rate at the end of phase B), see Figure 4(b).
This issue was fixed by installing a new sensor node software im-
age in September 2009. In the following phase C), lack of enough
solar power at the sink node often led to a nightly power cut-off at
the sink. Sensor data packets were buffered in the network for the
duration of the power outage and then flushed in burst mode to the
sink upon restoration of the network topology. The resulting bursty
behavior is also observable in Figure 4(b). While certainly an un-
desired behavior, the unique system design of Dozer [4] allowed
such long-term operation with only little extra energy cost and no
observed data loss.

For clarity and brevity, we limit our case study to the analysis
of only one out of five packet types, namely health packets. Ex-
tending our system model to support five packets being generated
in each sampling period is straightforward. However, limiting this
case study to only one single packet type facilitates a clear under-
standing of the core features of our approach.

After giving a short overview of our implementation of the model-
based approach used during this case study, we introduce a simple
heuristic that is used as a reference for evaluating the performance
of our model-based filtering approach. Then, we introduce the
number of sequence violations as metric for quantifying the cor-
rectness of a packet sequence. We then evaluate the performance
in terms of accepted packets and the correctness of the retrieved
packet sequence. The entire packet sequence validation strategy is
depicted in Figure 5. An evaluation of the achieved gain by apply-
ing forward and backward reasoning concludes this case study.

6.1 Case Study Implementation
The results shown in this case study are based on a MATLAB

implementation of the algorithms presented in Section 5. For pro-
cessing our data set with the model-based approach, we use the pa-
rameter set which is shown in Table 2. The analysis runs on a stan-
dard PC system, data is currently fetched from an external MySQL
database server. After neglecting the time spent for fetching the
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Parameter Value

Sampling period T 120 sec

Maximum clock drift ρ̂ ±60 ppm

Clock resolution t̂u 1 sec

Maximum hop distance ĥ 4

Restart interarrival time treset 0.6 hours

Packets per epoch smax 216

Table 2: PermaSense system parameters

data from the database server, the execution time for analyzing the
whole data set is less than one hour on a single processing core.

6.2 Comparison to A Simple Heuristic
In this case study, we evaluate the performance of our model-

based approach using three metrics: 1) Packet acceptance rate, 2)
correctness of retrieved packet sequence and 3) improvement of
generation time intervals by applying forward and backward rea-
soning. We evaluate the first two metrics using a comparison with
a simple heuristic for retrieving an ordered packet sequence. The
third metric will be evaluated standalone.

Algorithm 2 implements a simple heuristic for retrieving a packet
sequence that is ordered by the packet sequence number. The al-
gorithm uses a best effort approach to detect overflows of the se-
quence number counter, the sequence number is strictly increas-
ing between two subsequent overflows. A packet sequence number
overflow is assumed if the sequence number of a following packet
is smaller than the sequence number of its predecessor. Setting the
threshold for detecting an overflow to 0.8 · smax allows to detect an
overflow in the presence of a considerable amount of packet loss.

Algorithm 2: Simple heuristic for finding a packet sequence
that is ordered by the packet sequence number. pop() returns
the next packet from the input data set, or false if all packets
have been pulled.

input : Packets of a single node, ordered by ascending t̃g
output: Set of packets R, ordered by packet sequence number

1 begin
2 R←− ∅ ; l←− pop() ;
3 while k ←− pop() do
4 if s(k) > s(l) or s(l)− s(k) > 0.8 · smax then
5 R←− R ∪ {k} ; l←− k ;

6.3 Counting Sequence Violations
We now explain how we evaluate the correctness of a packet

sequence. For that purpose, we introduce the metric of sequence
violations which corresponds to the number of conflicting packets
when comparing a packet sequence under test with a baseline.

For the validation of this case study, we recovered external stor-
age cards containing duplicate sensor data packets for obtaining the
ground truth of the packet sequence. The data recovered from exter-
nal storage spans from November 2008 to May 2010 which allows
us to evaluate two of three deployment phases with this method. We
derive from our system specification that packets are sequentially
appended to the external storage in the correct sequence of packet
generation. The number of sequence violations is the result of com-
paring a packet sequence under test with the packet sequence from
external storage.

For evaluating the correctness of a packet sequence prior to Novem-
ber 2008, we have to resort to a generated baseline. Here, we eval-

Algorithm 3: Algorithm for counting sequence violations
based on a model of the node uptime measurement. pop() re-
turns the next packet from the ordered data set, or false if all
packets have been pulled.

input : Health packets of a single node, ordered by the
sequence under test

output: Number of sequence violations v

1 begin
2 T ←− ∅ ; v ←− 0 ; l←− pop() ;
3 while k ←− pop() do
4 if u(k) > u(l) or (u(k) < u(l) and u(k) < ureset)

then T ←− T ∪ k;
5 else
6 if |T | < cmin then v ←− v + |T |;
7 T ←− ∅ ;

8 l←− k ;

uate the correctness of a packet sequence by testing how good an
extracted, measured signal conforms with a model of this measure-
ment. As an exemplary measurement, we employ the node uptime
for testing the correctness of a packet sequence. The node uptime
is a local counter of a sensor node, its value is included in health
packets, one out of five packet types. Compared to other transmit-
ted measurements that mainly correspond to observations of com-
plex physical processes, the behavior of the node uptime can be
described by a simple model: After a node restart, the node uptime
is monotonically increasing until again being reset to zero on the
arrival of the next restart.

We define u(i) as the node uptime that has been transmitted
within the payload p(i) of a health packet i. Algorithm 3 lists the
used test for counting sequence violations. It is important to notice,
that detecting node restarts is a hard problem in the presence of ar-
bitrary packet loss. While one would normally detect a node restart
when receiving a node uptime of a defined minimal value, this is
not possible if exactly that packet got lost. It is not possible to
safely detect all restarts without extra information, but we use two
mechanisms that make the algorithm more robust to packet loss.
Firstly, we allow a certain number of health packets that were gen-
erated immediately after a node restart to be lost by introducing the
parameter ureset. For instance, ureset := 6 · T allows approximately
the first six health packets after a node restart to be lost.

Secondly, we try to distinguish between wrongly inserted pack-
ets and a discontinuation of the current measurement due to large
holes in the data. We group measurements as long as the signal
is monotonically increasing or explained by a node restart (Algo-
rithm 3, line 4). On the occurrence of a discontinuity, the size of the
current set is added to the number of sequence violations if the size
of the set is smaller than cmin (line 6). Here, we assume that only
short packet sequences are wrongly inserted into the packet stream
while long sequences are evidence for large holes.

6.4 Packet Acceptance Rate and Correctness
of Obtained Sequence

The result of filtering the data set with the model-based approach
matches with our expectations: 40.6% of the data from the first de-
ployment phase of non-conforming system operation are discarded.
In contrast, 96.8% and 95.4% of packets being generated in the last
two deployment phases are accepted. The packet acceptance rates
of the model-based approach and the simple heuristic are compa-
rable, see Table 3. The packet acceptance rate of 69.2% achieved
with the simple heuristic on data from the first deployment phase is
9.8% higher than the acceptance rate of the model-based approach,
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Counter A) Jul 08-Nov 08 B) Nov 08-Aug 09 C) Sep 09-May 10

II) Model-based approach
Accepted packets 632,058 (59.4%) 2,110,855 (96.8%) 2,579,444 (95.4%)

Sequence violations (Algorithm 3) 7 (0.0%) 11 (0.0%) 0 (0.0%)

Sequence violations (Ext. storage) n/a 1 (0.0%) 0 (0.0%)

III) Simple heuristic
Accepted packets 737,093 (69.2%) 2,100,558 (96.3%) 2,656,377 (98.2%)

Sequence violations (Algorithm 3) 3,063 (0.3%) 10 (0.0%) 1 (0.0%)

Sequence violations (Ext. storage) n/a 0 (0.0%) 11 (0.0%)

I) Unfiltered data set
Total packets 1,064,884 (100.0%) 2,180,684 (100.0%) 2,703,998 (100.0%)

Sequence violations (Algorithm 3) 189,645 (17.8%) 65,839 (3.0%) 46,987 (1.7%)

Sequence violations (Ext. storage) n/a 69,004 (3.2%) 47,253 (1.7%)

Table 3: Both approaches achieve comparable, high packet acceptance rates on good data. Only the model-based approach is able
to deliver correct packet sequences in all three scenarios of different system behaviors. While both approaches achieve comparable
results in the number of accepted packets, an incorrect packet sequence is retrieved when applying the simple heuristic to data from the first
deployment phase of non-conforming system operation.

the simple heuristic also accepts 2.8% more data of the third phase.
As we can apply this validation method to the whole packet

stream, we firstly start evaluating the correctness of obtained packet
sequences based on Algorithm 3 (ureset := 6 · T , cmin := 10). For
the unfiltered data set, the sequence under test is retrieved by order-
ing all packets by the ascending estimated packet generation time
t̃g(i). The non-conforming system behavior during the first deploy-
ment phase is again confirmed by 17.8% packets being marked as
invalid due to a sequence violation. In opposite, only 3.0% and
1.7% are marked as invalid when analyzing the last two deploy-
ment phases.

We are now comparing the number of sequence violations after
processing the data set. After applying the simple heuristic, the
packet sequence under test is again obtained by sorting accepted
packets by the ascending estimated packet generation time t̃g(i).
In opposite, the new property id(i) is used to sort the output of the
model-based approach. Both filter algorithms produce equal results
when being applied to data of the last two deployment phases. After
neglecting 11 errors that might be accounted to non-detected node
restarts, both algorithms deliver a correct packet sequence.

The situation is different for data from the first deployment phase:
While the simple heuristic rejects less data leading to remaining
3,063 sequence violations, only 7 sequence violations can be found
in the result of the model-based filter. While both algorithms per-
form well on good data, only the model-based approach is capable
of safely removing erroneous data.

We can make a stronger argument by also including results from
validating packet sequences against ground truth from recovered
external storage. The observations made from this method gener-
ally match with the results from Algorithm 3, and also underline
our claim that the model-based approach outputs a correct packet
sequence. Concretely, comparing the output of the model-based
approach with the packet sequence from external storage results in
a single sequence violation out of more than 4.6 million packets.

More detailed results on the performance of the model-based fil-
tering approach are shown in Table 4. It is notable, that only 130
packets of the second deployment phase, but 77,487 packets of the
third deployment phase are discarded due to invalid generation time
intervals. Regarding the two different underlying system behaviors,
we must infer that the implementation of the system currently intro-

duces an error for a considerable amount of packets having a high
network sojourn time t̃s(i). This effect is currently not covered by
our formal system model, further debugging facilities are needed
for tackling this problem.

Before evaluating the performance of forward and backward rea-
soning in the next section, we can conclude that both the model-
based approach and the simple heuristic deliver very good results
when being applied to data of the last two deployment phases.
However, only the model-based approach is also able to return a
correct packet sequence regarding data from the first deployment
phase. Thus, the model-based approach was successfully applied
to all three initially mentioned scenarios of different system behav-
iors: A) Highly non-conforming system behavior, B) sensor nodes
subject to a high frequency of unplanned warm restarts, and C)
more than one third of the collected data experiencing transmission
delays of several hours to days.

6.5 Packet Generation Time Intervals
At the beginning of the data analysis, generation time intervals

[tlg(i), t
u
g (i)] were initially set by only including information from

each single packet. In Section 5.4, we presented how these ini-
tially set intervals can be improved by also including information
of temporally adjacent packets. This second step can not be applied
before the correct packet sequence is known. Since data from the
first deployment phase does not conform to our formulated model,
further processing is only evaluated for packets of the last two de-
ployment phases B) and C).

Applying forward and backward reasoning leads to tighter gen-
eration time intervals tug (i) − tlg(i) for 90% of the packets. The
initial generation time interval width is at least reduced by half in
three fourth of all cases. This corresponds to an absolute reduction
between 2.6 and 100 seconds. The mean generation time interval
width of all processed packets is significantly decreased by a factor
of almost three from 8.1 seconds to 2.8 seconds.

Initial and improved generation time interval widths are shown in
Figure 6(a). Circa 70% of all packets have an initial generation time
interval width of five seconds. Concerning communication over up
to four hops with an uncertainty of one second per hop, we must
account four seconds of the initial width to the finite resolution of a
sensor node clock. In opposite, the initial generation time interval
width is dominated by measuring the network sojourn time ts(i)
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Counter A) Jul 08-Nov 08 B) Nov 08-Aug 09 C) Sep 09-May 10

Accepted packets 632,058 (59.4%) 2,110,855 (96.8%) 2,579,444 (95.4%)

Discarded packets 432,826 (40.6%) 69,829 (3.2%) 124,554 (4.6%)

Packet duplicates 4,020 (0.4%) 69,422 (3.2%) 44,601 (1.7%)

ts(i) > tmax
s 0 (0.0%) 0 (0.0%) 0 (0.0%)

Failed epoch assignment 235,927 (22.2%) 277 (0.0%) 2,466 (0.1%)

Invalid interval tu,lg (i) 192,879 (18.1%) 130 (0.0%) 77,487 (2.9%)

Total packets 1,064,884 (100.0%) 2,180,684 (100.0%) 2,703,998 (100%)

Table 4: Model-based approach, packet counters. The achieved packet acceptance rates clearly separate the first deployment phase of
non-conforming system operation from the following two phases of good operation. The distribution of discarded packets to categories is
also different for the second and third deployment phases. The third deployment phase being an example for system operation with large
transmission delays, we must infer that the implementation of the system currently introduces an error for a considerable amount of packets
having a high network sojourn time t̃s(i).
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Figure 6: Improvement of generation time interval width tug (i) − tlg(i). The analysis covers 4,767,916 packets of the last two de-
ployment phases. The initial generation time interval width could be shortened in 90% of the cases. The distributions of generation
time interval widths and achieved improvements by applying forward and backward reasoning are given in percentiles. For instance, the
40th percentile in Figure 6(a) corresponds to 40% of the packets having an interval width of at most 5 seconds before applying forward and
backward reasoning. The initial interval width was reduced by at least 3.3 seconds or 62% of the initial value for 40% of the packets.

under clock drift in 12% of the cases.
Absolute and relative improvement by applying forward and back-

ward reasoning are shown in Figure 6(b) and Figure 6(c), respec-
tively. The initial generation time interval is reduced by up to 100
seconds on the absolute scale. On the relative scale, up to 99% of
the initial width are subtracted. Large improvements on the abso-
lute scale can only be achieved for packets having a large initial in-
terval width. In contrast, large improvements on the relative scale
are in the majority of the cases achieved for packets whose ini-
tial generation time interval width is dominated by the uncertainty
caused by a finite clock resolution. Initial interval widths remain
unchanged for 10% of the packets.

Concluding, significant reductions of the initial generation time
intervals could be achieved for a considerable amount of packets.
The last processing step of forward and backward reasoning does
not only compensate introduced worst-case uncertainties, but also
leads to considerable improvements in general.

7. BROADER APPLICATION AND LIMITS
Key assumptions of our formal model are data acquisition at con-

stant rate, the existence of unique packet source addresses, the exis-
tence of packet sequence numbers, and the existence of provisions
for estimating the generation time of a packet. Hard limits are for-
mally given by Theorems 1 and 2 which must be satisfied for being
able to safely assign packets to epochs.

There is no strict requirement on the accuracy of generation time

estimates; the required accuracy can only be seen in the context of
a full system model parameter set. While we consider a system
design that also supports disconnected operation over long peri-
ods and thus resorts to a simple packet generation time estimation,
the presented data analysis algorithms for duplicate filtering and
epoch assignment are also suited for taking time information re-
trieved from other mechanisms, i.e., FTSP [18], as input. The pre-
sented work does not compete with work on clock synchronization,
rather, it can be used to enhance data quality also in systems that
already offer precise packet generation time information.

Additionally, we also want to stress that there are no strict re-
quirements concerning the used data collection protocol. Regard-
ing the retrieval of packet generation time information as an orthog-
onal problem that is addressed by another layer, we can currently
see no limitations when considering the use of other comparable
data collection systems.

Sampling data at a constant rate is a valid scenario in the context
of environmental monitoring. Prominent examples are the moni-
toring of the microclimate of a coastal redwood tree [25] or envi-
ronmental monitoring under extreme conditions [2]. Furthermore,
glacier monitoring [19] is an application that does not only sample
data at a constant rate, but also allows sensor nodes to be unable
to communicate for several days or even weeks. In spite of recent
advancements in protocols and platforms, we consider sampling at
constant rate as a valid scenario for many current and future envi-
ronmental monitoring applications. Even more, ensuring data qual-
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Figure 7: While both approaches succeed on data from the
last two deployment phases of good system operation, only the
model-based approach can deliver basically no sequence vi-
olations when applied to the first deployment phase of non-
conforming system operation (Algorithm 3).

ity will become more complex when systems grow in scale.
There are several possible extensions to this work, i.e., the gen-

eration of multiple packets in each sampling period, or additional
sporadic, aperiodic generation of packets.

8. CONCLUSIONS
The proposed model-based approach is a viable method for re-

constructing the correct sequence of packet generation and valida-
tion of data integrity at the sink. Only a single violation is found
when cross-validating a sequence of more than 4.6 million packets
with ground truth from external storage. Forward and backward
reasoning clearly tightens packet generation time bounds by em-
ploying information of temporally adjacent packets. Overall, we
retrieved convincing results for all three evaluated scenarios of A)
highly non-conforming system behavior, B) sensor nodes subject
to a high frequency of unplanned warm restarts, and C) more than
one third of the collected data experiencing transmission delays of
several hours to days. We compared the model-based approach to a
simple heuristic: Only the model-based approach was able to return
correct packet sequences in all three scenarios.

Our approach is not only useful for cleaning historical data. It
also enables to learn about the limits of a system design. First,
our formal model clearly shows the limitations of certain parame-
ter sets. For instance, it becomes obvious that the length and the
management of the packet sequence number are an important pa-
rameter for removing uncertainties when reconstructing the packet
sequence. Second, our new approach for offline data processing
also allows to shift complexity from resource-scarce sensor nodes
to powerful computation devices in the backend. Depending on the
application, services such as clock synchronization can be inten-
tionally left out without sacrificing data quality.
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