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CHAPTER 9

NON-NORMAL AND
CATEGORICAL DATA IN
STRUCTURAL EQUATION

MODELING

Sara J. Finney and Christine DiStefano

Structural equation modeling (SEM) has become an extremely popular
data analytic technique in education, psychology, business, and other dis-
ciplines (Austin & Calderén, 1996; MacCallum & Austin, 2000; Tremblay
& Gardner, 1996). Given the frequency of its use, it is important to recog-
nize the assumptions associated with different estimation methods, dem-
onstrate the conditions under which results are robust to violations of
these assumptions, and specify the procedures that should be employed
when assumptions are not met. The importance of attending to assump-
tions and, consequently, selecting appropriate analysis strategies based on
the characteristics of the data and the study’s design cannot be under-
stated. Put simply, violating assumptions can produce biased results in
terms of model fit as well as parameter estimates and their associated sig-
nificance tests. Biased results may, in turn, result in incorrect decisions
about the theory being tested.

While there are several assumptions underlying the popular normal
theory (NT) estimators used in SEM, the two assumptions that we focus
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on in this chapter concern the metric and distribution of the data. Specif-
ically, the data required by NT estimators are assumed to be continuous
and multivariate normally distributed in the population. We focus on
these two assumptions because often the data modeled in the social sci-
ences do not follow a multivariate normal distribution. For example, Mic-
ceri (1989) noted that much of the data gathered from achievement and
other measures are not normally distributed. This is disconcerting given
that Gierl and Mulvenon (1995) found that most researchers do not
examine the distribution of their data, but instead simply assume normal-
ity. In addition to the pervasiveness of non-normal data, the applied liter-
ature is thick with examples of categorical data collected using ordinal
measures (e.g., Likert-type scales).

Because of the prevalence of both non-normal and categorical data in
empirical research, this chapter focuses on issues surrounding modeling
data with these characteristics using SEM. First, we review the assump-
tions underlying NT estimators. We next describe non-normal and cate-
gorical data and review robustness studies of the most popular NT
estimator, maximum likelihood (ML), in order to understand the conse-
quences of violating these assumptions. We then discuss four popular
strategies that have been used to accommodate non-normal and/or cate-
gorical data:

1. Asymptotically distribution-free (ADF) estimation
2. Satorra-Bentler scaled »* and standard errors

3. Robust weighted least squares (WLS) estimation methods imple-
mented in the software program Mplus (e.g, WLSM, WLSMV)

4. Bootstrapping.

For each strategy we present the following: (a) a description of the strat-
egy; (b) a summary of research concerning the robustness of the 4 statis-
tic, fit indices, parameter estimates, and standard errors; and (c) a
description of implementation across three software programs.

NORMAL THEORY ESTIMATORS
Assumptions of Normal Theory Estimators

As with most statistical techniques, SEM is based on assumptions that
should be met in order for researchers to trust the obtained results. Cen-
tral to SEM is the choice of an estimation method that is used to obtain
parameter values, standard errors, and fit indices. The two common NT
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estimators are maximum likelihood (ML) and generalized least squares
(GLS), and require the following set of assumptions (e.g., Bentler & Dud-
geon, 1996; Bollen, 1989):

* Independent observations: Observations for different subjects are
independent. This can be achieved through simple random sam-
pling.

* Large sample size: All statistics estimated in SEM are based on an
assumption that the sample is sufficiently large.

* Correctly specified model is estimated: The model being estimated
reflects the true structure in the population.

* Multivariate normal data: The observed scores have a (condition-
ally) multivariate normal distribution.

* Continuous data: The assumption of multivariate normality implies
that the data are continuous in nature. Categorical data, such as
dichotomies or even Likert-type data, cannot by definition be nor-
mally distributed because they are discrete in nature (Kaplan,
2000). Therefore, it is often noted that NT estimators require con-
tinuous normally distributed endogenous variables.

If NT estimators are applied when the above conditions are satisfied, the
parameter estimates have three desirable properties: asymptotic unbi-
asedness (they neither over- nor underestimate the true population
parameters in large samples), asymptotic efficiency (variability of the
parameter estimate is at a minimum in large samples), and consistency
(parameter estimates converge to population parameters as sample size
increases).

Defining Normal Theory Estimators

For both ML and GLS estimation methods, model parameters are esti-
mated using an iterative process. The final set of parameters minimizes
the discrepancy between the observed sample covariance matrix (S) and
the model-implied covariance matrix calculated from the estimated
model parameters [£(0)]. The fit function that is minimized,
F = F[S,Z(8)], will equal zero if the model perfectly predicts the elements
in the sample covariance matrix. If the assumptions noted above are met,
the overall fit between the model and the data can be expressed as T =
F(N - 1), which follows a central 32 distribution.

The fit function for both ML and GLS estimators can be written in the
same general form:
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where #r is the trace of a matrix (i.e., the sum of the diagonal elements),

and [S—X(0)] represents the discrepancy between the elements in the
sample covariance matrix and the elements in the model-implied covari-

ance matrix. These residuals [S-£(0)] are weighted by a weight matrix,
W. The weight matrix differs between the two NT procedures; GLS
employs the observed sample covariance matrix S as the weight matrix,

whereas ML employs the model-implied covariance matrix £@).' If all
assumptions are met, the two weight matrices will be equivalent at the
last iteration and the estimators will produce convergent results (Olsson,
Troye, & Howell, 1999). However, if the model is misspecified, W at the
last iteration will differ between the two techniques, even if all other
assumptions are met. This difference in W results in different parame-
ter estimates and fit indices across the estimators. Specifically, GLS has
been found to produce overly optimistic fit indices and more biased
parameter estimates than ML if the estimated model is misspecified.
Seeing that most applied researchers are interested in the plausibility of
a specified model and would, therefore, prefer fit indices sensitive to
model misspecification, ML has been recommended over GLS (Olsson
et al., 1999; Olsson, Foss, Troye, & Howell, 2000). We, therefore, limit
subsequent discussion of NT estimators to ML.

NON-NORMAL DATA

Assessing Non-Normality

In general, the effects of non-normality on ML-based results depend
on its extent; the greater the non-normality, the greater the impact on
results. Therefore, researchers should assess the distribution of the
observed variables prior to analyses in order to make an informed deci-
sion concerning estimation method. Three indices of non-normality are
typically used to evaluate the distribution: univariate skew, univariate kur-
tosis, and multivariate kurtosis. Unfortunately, there is no clear consensus
regarding an “acceptable” degree of non-normality. Studies examining
the impact of univariate normality on ML-based results suggest that prob-
lems may occur when univariate skewness and univariate kurtosis
approach values of 2 and 7, respectively (e.g., Chou & Bentler, 1995; Cur-
ran, West, & Finch, 1996; Muthén & Kaplan, 1985). In addition, there is
no generally accepted cutoff value of multivariate kurtosis that indicates
non-normality. A guideline offered through the EQS software program
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(Bentler, 2004) suggests that data associated with a value of Mardia’s nor-
malized multivariate kurtosis (see Bollen, 1989, p. 424, equation 4, for
formula) greater than 3 could produce inaccurate results when used with
ML estimation (Bentler & Wu, 2002). This guideline is consistent with dis-
cussions by many applied and methodological researchers regarding this
issue found on SEMNET (structural equation modeling listserv). Future
research should investigate the utility of such a cutoff value and the condi-
tions under which it is relevant (e.g., size of model).

Effects of Analyzing Non-Normal Continuous Data:
Empirical Results

Given the abundance of non-normal and categorical data analyzed in
the social sciences, a question of significant interest concerns the robust-
ness of ML to these conditions. Research examining the effects of non-
normality has typically focused on (a) the #? statistic, (b) other model fit
indices, (c) parameter estimates, and (d) standard errors. As detailed
below, ML has been found to produce relatively accurate parameter esti-
mates under conditions of non-normality (e.g., Finch, West, & MacKin-
non, 1997); however, both the );2 statistic and standard errors of the
parameter estimates tend to exhibit bias as non-normality increases (e.g.,

Bollen, 1989; Chou, Bentler, & Satorra, 1991; Finch et al., 1997).

Chi-Square Statistic and Fit Indices

When estimating a correctly specified model, the ML-based 7* does
not follow the expected central z* distribution if the multivariate normal-
ity assumption is violated. More specifically, research has shown that #° is
inflated under conditions of moderate non-normality with values becom-
ing more inflated as non-normality increased (e.g., Chou et al., 1991;
Curran et al., 1996; Hu, Bentler, & Kano, 1992; Yu & Muthén, 2002).
Kurtotic distributions, especially leptokurtic distributions (positive kurto-
sis), seem to have the greatest effect on 7 (e.g., Browne, 1984; Chou et
al., 1991). The inflation of the #? statistic may lead to an increased Type I
error rate, which is a greater rate of rejecting a correctly specified model
than expected by chance.

In addition to the #* statistic, the performance of other fit indices is
important to understand given that most researchers are interested in the
approximate fit of the model to the data instead of an exact fit evaluation
determined solely by the 2° test (Bentler, 1990). As Hu and Bentler
(1998) explained, “A fit index will perform better when its corresponding
chi-square test performs well” (p. 427), meaning that because many fit
indices (e.g., comparative fit index [CFI]) are a function of the obtained
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72, these too can be affected by the same factors that influence 2.
Research has shown that if moderately to severely non-normal data are
coupled with a small sample size (N < 250), the ML-based Tucker-Lewis
Index (TLI), CFI, and root mean square error of approximation (RMSEA)
tend to overreject correctly specified models (Hu & Bentler, 1999; Yu &
Muthén, 2002).

Parameter Estimates and Standard Errors

Whereas parameter estimates are unaffected by non-normality, their
associated significance tests are incorrect if ML estimation is applied to
non-normal data. Specifically, the ML-based standard errors underesti-
mate the true variation of the parameter estimates (e.g., Chou et al,
1991; Finch et al., 1997; Olsson et al., 2000), which results in increased
Type I error rates associated with statistical significance tests of the
parameter estimates. This would imply that estimates of truly zero param-
eters could be deemed significantly different than zero, and thus, impor-
tant, to include in the model. Similar to the #° it appears that kurtotic
distributions, specifically leptokurtic distributions, have the greatest
impact on standard errors (Hoogland & Boomsma, 1998).

ORDERED CATEGORICAL DATA
Defining Ordered Categorical Data

As stated previously, ML estimation assumes that the observed data are
a sample drawn from a continuous and multivariate normally distributed
population. In the social sciences, data with these characteristics are not
always collected. Frequently, researchers collect and analyze ordinal data,
such as data obtained from the use of a Likert scale. While researchers
often treat ordinal data as continuous, the ordinal measurements are, as
Bollen (1989, p. 433) noted, “coarse” and “crude.” Even if the data
appear to be approximately normally distributed (e.g., indices of skew-
ness and kurtosis approach zero or plots of the observed data appear to
be normal), ordered categorical data are discrete in nature and, therefore,
cannot be normally distributed by definition. The crude nature of the
measurement will induce some level of non-normality in the data
(Kaplan, 2000).

One way in which observed ordered categorical data are thought to
occur is when a continuous latent response variable (y*) is divided into
distinct categories (e.g., Bollen, 1989; Muthén, 1993). This has been
referred to as the latent response variable formulation (e.g., Muthén &
Muthén, 2001). The points that divide the continuous latent response
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variable (y*) into a set number of categories (¢) are termed thresholds (7),
where the total number of thresholds is equal to the number of categories
less one (¢ —1). For example, if a Likert scale has five response choices,
four threshold values are needed to divide y* into five ordered categories.
The observed ordinal data (y) are thought to be produced as follows:

1 ify*<7
2 ifr<y*sog
y=33 ifp<y*<g ¢ (2)
4 ifp<y*<y,
5 y*>1y,

As a result, y* # y. Specifically, because subjects respond to the five-
point Likert scale, the observed ordinal-level data can only be reported as
discrete values from 1 to 5. However, subjects’ “true” levels of the latent
response variable (y*) are much more precise than allowed by the five-
point response scale. Figure 9.1 illustrates the relation between the con-
tinuous latent response variable (y*), observed level data (y), and the four
(c = 1) threshold values for a variable with five ordered categories. This
figure illustrates how the observed ordinal data provide an approximation
of the underlying continuous latent response variable.

This difference between y and y* has two important consequences when
modeling the data. First, unlike y*, the standard linear measurement
model (y* = bF + E) does not hold when modeling y (y # bF + E).2 Sec-
ond, the assumption that the model estimated reflects the true structure
in the population (X = £(0)) does not hold when ordinal data are present

77N

Y

y* latent level

o . & . (c-1 thresholds)

y observed level

Figure 9.1. Relation between y*, y, and thresholds.
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(Bollen, 1989). Therefore, many studies have been conducted to examine
the extent of bias present when applying the standard linear measure-
ment model to ordinal data.

Effects of Analyzing Approximately Normally Distributed
Ordered Categorical Data: Empirical Results

When modeling ordinal data, researchers often ignore the categorical
nature of the data and apply ML estimation. By creating a covariance
matrix based on Pearson product-moment (PPM) correlational tech-
niques and estimating relations at the observed level (y), one is treating
the ordinal data as if they were continuous. As the number of ordered cat-
egories increases, data more closely approximate continuous-level data
and, in turn, the obtained correlations are closer to their true values (Bol-
len, 1989). The fewer categories present, the more severe the attenuation
in the PPM correlations and the greater the discrepancy between true and
obtained values. As discussed below, if few categories are used and ML
estimation is employed, the model fit indices, parameter estimates, and
standard errors can be biased.

Chi-Square and Fit Indices

In general, fit indices have been found to perform well if approxi-
mately normally distributed five-category ordinal data are treated as con-
tinuous (Babakus, Ferguson, & Joreskog, 1987; Hutchinson & Olmos,
1998). While the % was found to be robust when modeling ordinal data
was collected using four ordered categories, inflation was present if fewer
than four categories were used (Green, Akey, Fleming, Hershberger, &
Marquis, 1997). In addition, slight underestimation of the goodness-of-fit
index (GFI), adjusted GFI (AGFI), and root mean square residual (RMR)
has been found if sample sizes are small and ordered categorical data with
five categories are analyzed as continuous (Babakus et al., 1987).
Researchers generally agree that when ordinal data are approximately
normal and have at least five ordered categories that the ordered categor-
ical data may be treated as if they were continuous without great distor-
tion in the fit indices (e.g., Bollen, 1989; Dolan, 1994; Muthén & Kaplan,
1985).

Parameter Estimates and Standard Errors

Previous research has shown that when ordinal data have at least five
categories and are approximately normal, treating data as continuous and
applying the ML estimator produces slight underestimation in parameter
estimates and factor correlations (Babakus et al., 1987; Muthén & Kaplan,
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1985). Standard errors have shown a greater sensitivity to categorization
than the parameter estimates, exhibiting negative bias (Babakus et al.,
1987; Muthén & Kaplan, 1985; West, Finch, & Curran, 1995). If standard
errors are too small, tests of parameter significance may be inflated,
resulting in Type I errors. As the number of ordered categories decreases,
the underestimation in both the parameter estimates and standard errors
becomes more severe, even if ordinal data are symmetric.

Effects of Analyzing Non-Normal Ordered Categorical Data:
Empirical Results

Ordinal data are considered by some researchers as inherently non-
normal (e.g., Muthén & Kaplan, 1985). However, as just described, if the
observed data have many categories (e.g., at least five ordered categories)
and are approximately normal, use of ML estimation techniques does not
result in severe levels of bias in fit indices, parameter estimates, or stan-
dard errors. Problems begin to emerge as the number of response options
decreases or the observed item distributions diverge widely from a normal
distribution. As the number of ordered categories is reduced, there are
fewer response choices available for subjects to choose. The fewer the
number of categories, the greater the amount of attenuation in PPM esti-
mates. Also, as the number of categories decreases, it becomes less likely
that observed data could approximate a normal distribution.

Chi-Square and Fit Indices

Similar to results found when modeling continuous non-normal data,
fit indices are adversely affected when ordinal data follow non-normal dis-
tributions. When modeling non-normal ordered categorical data, ML-
based 7> values (Green et al., 1997: West et al., 1995) and RMR values
were inflated, and values of the non-normed fit index (NNFI), GFI, and
CFI were underestimated (Babakus et al, 1987; Hutchinson & Olmos,
1998). This may suggest that a correctly specified model does not fit the
data well and could lead a researcher to discard a plausible model.

Parameters and Standard Errors

As univariate skewness and univariate kurtosis levels of the observed
ordered categorical data increase, the negative bias observed with the
ML-based parameter estimates and standard errors becomes more pro-
nounced (Babakus et al., 1987; Muthén & Kaplan, 1985). Bias levels
increased with lower sample sizes, fewer categories, weaker relations
between factors and indicators, or higher levels of non-normality (e.g.,
Babakus et al., 1987; Bollen, 1989; Dolan, 1994).



278 S. ). FINNEY and C. DISTEFANO

TECHNIQUES TO ADDRESS NON-NORMAL AND
ORDERED CATEGORICAL DATA

In this section we describe four methods that have been developed to
address problems encountered when modeling non-normal and/or cate-
gorical data. The first method involves an alternative method of estima-
tion that does not make the distributional assumptions of ML estimation
(ADF; Browne, 1984). The second method involves adjusting the ML-
based 72 and standard errors by a factor based on the level of multivariate
kurtosis displayed in the observed data (Satorra-Bentler scaled 2 and
standard errors). This method also involves adjusting any fit indices used
to assess model fit (e.g., CFI, RMSEA). The third method involves
employing robust WLS estimation methods (e.g., WLSM, WLSMV) avail-
able in the software package Mplus (Muthén & Muthén, 2004). These
estimators can be conceptualized as combining an alternative estimation
method with an adjustment method. Finally, a fourth method involves
bootstrapping empirical distributions of each parameter estimate and the

statistic in order to produce more accurate standard errors and proba-
bility values associated with 2°.

Asymptotically Distribution-Free (ADF) Estimator

Given the unrealistic assumption of multivariate normality and the lack
of robustness of ML to non-normal data, Browne (1984) developed the
ADF estimator. Unlike ML, ADF makes no assumption of normality;
therefore, variables that are kurtotic have no detrimental effect on the
ADF 22 or standard errors. In addition, input matrices that take the met-
ric of the variables into consideration can be employed to handle the
problems of parameter estimate attenuation associated with a small num-
ber of ordered categories (Muthén, 1984). For these reasons, it would
seem as though non-normally distributed and/or ordered categorical data
could be accommodated by the ADF estimation technique, thus avoiding
the problems encountered by NT estimators.

ADF Estimator with Non-normal Continuous Data: Description

In order to understand the ADF estimator and some of its practical
limitations, it is important to understand the form of the fit function,
which is typically written as

F=(s-6)W (s-6), 3)

where s represents a vector of the nonduplicated elements in the sample
covariance matrix (S8), & represents a vector of the nonduplicated ele-
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ments in the model-implied covariance matrix [E(ﬁ)], and (s — &) repre-
sents the discrepancy between the sample values and the model-implied
values. These residuals (s — @) are weighted by a weight matrix, W. The
weight matrix utilized with the ADF estimator is the asymptotic covari-
ance matrix, a matrix of the covariances of the observed sample variances
and covariances (Bollen, 1989). Elements of the asymptotic covariance
matrix, W;; 1, are calculated using the covariances among the elements in
the sampfe covariance matrix along with the fourth-order moments
(Bentler & Dudgeon, 1996),

Wij, ki = ikt = SijSeis (4)
where s;3; a quantity related to multivariate kurtosis, is defined as

N - P = =
Z (xaiux:' )(xaj_xj }(xak = )(xm'_x.l‘)
=1

Syu=1 - : (5)

and s;; and sy are the covariances of observed variables x; with x; and x;
with x;, respectively. This estimator is often called weighted least squares
(WLS) or ADF (Bollen, 1989).

There are practical problems in implementing ADF estimation that are
related to the weight matrix. Specifically, because the inverse of the weight
matrix (W™!) needs to be calculated, a large weight matrix can make ADF
estimation computationally intensive. Dimensions of W matrix can be cal-
culated as Y2 (p + ¢) (p + g + 1), where p is the number of observed exog-
enous variables and ¢ is the number of observed endogenous variables
(Bollen, 1989). For example, if a researcher has responses from a 10-item
scale and wishes to employ confirmatory factor analysis, the dimensions of
W would be 55 X 55, resulting in 3,025 elements in W. As the number of
observed variables increases, the number of elements in W increases rap-
idly. For example, if 10 items were added to the original 10-item measure,
the dimensions of the weight matrix would be 210 X 210, resulting in
44,100 elements in W. Due to the computational intensity of the ADF tech-
nique, it requires very large sample sizes for results to converge to stable
estimates. A minimum sample size of 1.5(p + ¢) (p + ¢ + 1) has been sug-
gested (Joreskog & Sérbom, 1996), but much larger sample sizes may be
needed to alleviate estimation and convergence problems.

ADF Estimator with Continuous Non-normal Data: Empirical Results
When modeling non-normal data, theoretically, the ADF estimator
should produce parameter estimates with desirable properties and fit sta-
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tistics that perform as expected (Browne, 1984). However, empirical
research has shown otherwise. ADF tends to break down under common
situations of moderate to large models (more than two factors, eight
items) and/or small to moderate sample sizes (N < 500). As discussed in
detail below, the poor performance of the ADF estimator under many
conditions makes it an unattractive option when modeling non-normal
continuous data.

Chi-square and fit indices. With respect to model fit, ADF yields mislead-
ing results unless sample size is extremely large (e.g., Olsson et al., 2000).
For example, when modeling non-normal continuous data, Hu and col-
leagues (1992) found that ADF estimation produced acceptable Type I
error rates only when sample sizes reached 5,000. Similarly, Curran and
colleagues (1996) found that the ADF-based z* increased as sample size
decreased and/or non-normality increased, resulting in correctly specified
models being rejected too frequently. Even more problematic is the ADF
estimator’s lack of sensitivity to model misspecification. Research has
shown that ADF estimation produces overly optimistic fit values when
models are misspecified, which in turn could lead researchers to fail to
reject an incorrectly specified model. The lack of sensitivity to specifica-
tion errors becomes worse with increasing departures from normality
(e.g., Curran et al., 1996; Olsson et al., 2000).

Parameter estimates and standard errors. Empirical results concerning
ADF-based parameter estimates and standard errors are also discourag-
ing. Parameters tend to be negatively biased unless the sample is large,
with bias levels becoming more pronounced as kurtosis increases. In addi-
tion, ADF-based standard errors estimated from a correctly specified
model under conditions of non-normality have been found to be superior
to ML-based standard errors only when the observed variables have an
average univariate kurtosis larger than three and the sample size is
greater than 400 (Hoogland & Boomsma, 1998).

ADF Estimator with Continuous Data: Software Implementation
Researchers who wish to utilize ADF as an estimator will find it easy to
employ using LISREL, EQS, or Mplus. In LISREL (Joéreskog & Soérbom,
2004), ADF estimation is called WLS and implementation requires the use
of two programs (LISREL and PRELIS). As noted, WLS/ADF employs the
asymptotic covariance matrix as the weight matrix. PRELIS (preprocessor
for LISREL; Joreskog & Sorbom, 1996) is used to produce both the
asymptotic and observed covariance matrices from the raw data. These
matrices are input into the LISREL program to estimate the model.
Appendix A provides an example of the SIMPLIS command language
(user-friendly language employed in LISREL program) that specifies
WLS/ADF estimation. Notice that WLS must be specified on the options



Non-Normal and Categorical Data in Structural Equation Modeling 281

line or else ML estimation will be employed by default. The combination
of ML estimation and an asymptotic covariance matrix will produce the
Satorra-Bentler scaling procedure (discussed below).

Similar to LISREL, the raw data file is necessary in order to construct
the asymptotic covariance matrix in EQS (Bentler, 2004) and Mplus
(Muthén & Muthén, 2004). Unlike LISREL, a preprocessor is not needed
to construct this matrix in either EQS or Mplus; it is constructed and
employed by specifying the estimator. Arbitrary GLS (AGLS) estimation is
requested as the estimation method for EQS while WLS is requested for
Mplus. AGLS follows the same general form as GLS, with the choice of
weight matrix based upon fourth-order moments to allow distribution-
free requirements of the variables (Bentler, 1995). While a different name
is used, it is equivalent to ADF/WLS. All three programs tend to produce
similar parameter estimates, standard errors, and fit indices.

ADF Estimator with Ordered Categorical Data: Description of
Categorical Variable Methodology (CVM)

As previously discussed, if researchers ignore the ordinal metric of the
data (i.e., treating ordinal data as if continuous and employing ML esti-
mation), data-model fit and parameter estimates may be underestimated.
Alternative strategies consider the metric of the ordinal data by including
this information in the estimation procedures. Specifically, categorical
variable methodology (CVM) incorporates the metric of the data into
analyses by considering two components: (1) input for analyses that rec-
ognizes the ordered categorical indicators and (2) the use of the correct
weight matrix when employing ADF/WLS estimation (Muthén, 1984;
Muthén & Kaplan, 1985). Therefore, CVM is basically ADF/WLS estima-
tion with specific input to accommodate ordered categorical variables.

Employing CVM. With regard to metric, if data are continuous then
data at the observed level are considered equivalent to the underlying
latent response variable, that is, y = y*. On the other hand, if data are
ordinal, y # y* (e.g., Joreskog & Sérbom, 1996; Muthén & Kaplan, 1985;
Muthén & Muthén, 2001). In order to avoid the consequences of model-
ing y using the standard linear confirmatory factor analysis model (e.g.,
y#bF + E and I # £(8)), y* can be modeled (Bollen, 1989). Applying the
linear factor model to the underlying latent response variable is illus-
trated in Figure 9.2. Notice that the factor does not directly affect y, but
instead, directly affects y*. Because y* is a continuous variable, the stan-
dard linear model (y* = bF + E) can be used to estimate the relation
between y* and the factor.

Modeling the relation between F and y* entails computing thresh-
olds and latent correlations. Because thresholds are used in the compu-
tation of latent correlations, these will be discussed first. Threshold
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Figure 9.2. Latent response variable formu-
lation.

values, which cut the underlying continuum into ordered categories (see
Figure 9.1), may be estimated if the number of subjects who chose a
certain category is known (Bollen, 1989). Threshold values are impor-
tant to estimate not only because they are thought of as critical points
that “move” a subject from one category to another but also because
they are used to create marginal distributions of ordinal variables that
assist with estimation procedures. Because the metric of ordered cate-
gorical data is arbitrary, the mean and standard deviation are often set
to 0 and 1, respectively. Using a mean of 0 and standard deviation of 1,
item thresholds may be estimated by considering the cumulative area
under the normal curve up to a given point (Bollen, 1989; Joreskog &
Soérbom, 1996) by:

}, t=1,2,...,c-1 (6)

where 7 is a particular threshold, @'l is the inverse of the normal distribu-
tion function, Ny is the number of subjects who selected category k, N is the
total sample size, and ¢ is the total number of categories. Equation 6 shows
that thresholds are calculated using the proportions of subjects within each
ordered category (Ny/N). The resulting threshold values (z-values) divide
the underlying normal distribution into the ¢ categories and relate the y
values to the y* values. By incorporating thresholds into the standard mea-
surement model, the linear model estimates the relation between the fac-
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tor and the continuous underlying latent response variable, thus avoiding
the problems associated with modeling y (Bollen, 1989).

Recall that in addition to the linear model not applying to ordinal
data, the assumption of a correctly specified model does not hold when
ordinal variables are modeled. In brief, the population covariance matrix
of the ordinal variables (X) will not equal the population covariance
matrix of the continuous underlying latent response variable (£*), for
which the model does hold (£* = Z(0)). In order to avoid this problem,
correlations representing the relations among the y* variables can be esti-
mated (Bollen, 1989).

The latent correlations represent the theoretical relations between the
underlying continuous latent response variables (y*). For each pair of vari-
ables, a latent correlation can be estimated. If both variables are dichoto-
mous, a tetrachoric correlation represents the relation between the y*
variables. If both variables are ordinal, a polychoric correlation represents
the relation between the y* variables. If one variable is ordinal and the
other variable is continuous, a polyserial correlation represents the rela-
tion between the y* variables.

The WLS estimator can then be employed using the thresholds and
latent correlations:

Fyis = (c=pYWlr-p), (7)

where r is a vector containing the sample latent correlations and thresh-
olds, p is the corresponding vector from the implied matrix, and W is the
asymptotic covariance matrix of r (e.g., Muthén, 1984). This asymptotic
covariance matrix, along with the appropriate correlational input, is
required to correctly implement CVM. It is important to realize that both
pieces (appropriate correlations and correct W) are necessary. If either
piece is missing, the estimation technique is not CVM.

An example to illustrate the calculation of a polychoric correlation. To illus-
trate how ordinal variables may be accommodated, consider an example
employing Rosenberg’s (1989) self-esteem scale. A sample of 120 college
freshmen responded to questions concerning their self-esteem using a
scale with four ordered categories anchored at “Strongly Disagree” to
“Strongly Agree.” Responses to two of the questions, “On the whole, I am
satisfied with myself” (SATISFIED) and “I feel that I have a number of
good qualities” (QUALITIES), are provided in Table 9.1.

To illustrate how threshold values are obtained, we can compute these
values directly from the sample data using two pieces of information: (1)
the proportion of students who selected a certain category and (2) the
area under the normal curve. Consider the first threshold for the variable,
SATISFIED. This threshold divides the underlying latent response vari-
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Table 9.1. Frequency of Responses to Self-Esteem Items

SATISFIED QUALITIES
Category Frequency Category Frequency
1 (SD) 4 1(SD) 4
2 (D) 16 2(D) 27
3(A) 50 3(A) 42
4 (SA) 50 4 (SA) 47
N 120 N 120
Skew -.812 Skew =514
Kurtosis 154 Kurtosis -.726

Note: SD = Strongly Disagree; D = Disagree; A = Agree; SA = Strongly Agree.

able into the two categories of “Strongly Disagree” (category 1) and “Dis-
agree” (category 2). Students below this threshold will have responded
“Strongly Disagree” to the statement. There are four students responding
“Strongly Disagree” to the SATISFIED item. Using Equation 6, the cumu-
lative probability of cases through category 1 is (4/120), or .033. Consider-
ing this as representative of cumulative area under the normal curve, the
threshold value is the z-value associated with .033, or a z-value of ~1.83.
The remaining thresholds may be calculated in a similar manner, as
shown in Table 9.2.

To determine the polychoric correlation between two ordinal variables,
a contingency table of students’ responses to each pair of the variables is
needed. The frequency of responses to each option can be tabulated
across the pair of variables. Table 9.3 shows the contingency table for the
responses to the SATISFIED and QUALITIES variables. From the table,
one can see a relation between the responses to the items. For example,
those students who agreed or strongly agreed that they were satisfied with
themselves generally agreed that they had a number of good qualities.
However, some discrepancies are noticed. For example, six students who
agreed that they possessed good qualities disagreed with the statement
about having self-satisfaction.

Table 9.2. Threshold Values and Cumulative Area

SATISFIED QUALITIES
Threshold 1 2 3 1 2 3
Cumulative N 4 20 70 4 31 73
Cumulative Area 033 167 583 033 258 608

Threshold Value -1.834 -0.967 0.210 -1.834 —-0.648 0.275
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Table 9.3. Contingency Table Between
SATISFIED and QUALITIES Variables

QUALITIES
1 2 3 4

SATISFIED (SD) (D) (A) (SA) Total
1 (SD) 2 1 1 0 4
2 (D) 0 6 9 16
3 (A) 1 15 26 8 50
4 (SA) 1 9 37 50
Total 4 27 42 47 120

Note:  SD = Strongly Disagree; D = Disagree; A = Agree; SA = Strongly Agree.

The contingency table information reported in Table 9.3 and item
thresholds are used to calculate latent correlations among the ordinal
variables (see Olsson, 1979, for formula). The estimated polychoric corre-
lation represents the value with the greatest likelihood of yielding the
observed contingency table, given the estimated thresholds. Here, the
polychoric correlation is .649, reflecting the positive relation, while
acknowledging some inconsistency in student responses. Note that the
polychoric correlation estimate is higher than the PPM correlation esti-
mate (.551) because the polychoric correlation is disattenuated for the
error associated with the ordinal variable’s coarse categorization of the
underlying latent variable’s continuum. To illustrate the polychoric corre-
lation graphically, the relation between the observed ordinal variables and
the underlying latent responses variables are plotted in Figure 9.3.

ADF/CVM with Ordered Categorical Data: Empirical Results

Although differences may exist in how software programs employ
CVM, the information presented here is made without specific reference
to software packages (details concerning the implementation of CVM
using LISREL, EQS, and Mplus are described below). In general, empiri-
cal studies have found that CVM has both desirable and undesirable char-
acteristics.

Chi-square and fit indices. When approximately normally distributed
ordinal data were analyzed using CVM, values of 3* were close to expected
values when small to moderate models were specified (15 parameters or
less) or sample sizes were large (N =1,000; Muthén & Kaplan, 1985; Pot-
thast, 1993). The amount of inflation of the CVM-based 2 increased as
sample size decreased, model size increased, or non-normality of the data
increased (DiStefano, 2002; Muthén & Kaplan, 1992; Potthast, 1993).
RMSEA has been found to be somewhat robust to ordinal data analyzed
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Figure 9.3. TIllustration of polychoric correlation between two observed variables.
Notes: Sat = SATISFIED; Qual = QUALITIES. Threshold values are specific to
the variable in question. For example, S1, S2, S3, respectively, refer to thresholds 1
through 3 for the variable SATISFIED. Similarly, thresholds Q1, Q2, Q3, respec-
tively, refer to thresholds 1 through 3 for the variable QUALITIES.

by CVM, and is not sensitive to sample size or model size when correctly
specified models were estimated (Hutchinson & Olmos, 1998).

Parameter estimates and standard errors. A major strength of CVM is that
parameter estimates appear unbiased when modeling non-normally dis-
tributed ordered categorical data. When estimating correctly specified
models, parameter estimates were found to have little bias, regardless of
whether dichotomous variables (Dolan, 1994; Muthén & Kaplan, 1985) or
non-normal ordered categorical data (approximate values: skewness =
2.5, kurtosis = 6) were analyzed (DiStefano, 2002; Dolan, 1994; Potthast,



288 S.J. FINNEY and C. DISTEFANO

no exogenous variable and CVM is conceptualized as discussed above
(latent response variable formulation). Specifically, it is assumed that con-
tinuous normally distributed latent response variables (y*) underlie the
ordinal variables (y). The thresholds, latent correlations (e.g., polycho-
rics), and the asymptotic covariance matrix are estimated. WLS can then
be employed as the estimator.

In case B, there is an exogenous variable influencing the factor (e.g.,
MIMIC models). In this situation, a different estimation process is
employed. As an alternative to the latent response variable formulation
there exists an equivalent formulation, termed the conditional probability
curve formulation (e.g., Muthén & Asparouhov, 2002; Muthén & Muthén,
2001). Instead of estimating the linear relation between y* and the factor
(as with the latent response variable formulation), the nonlinear relation
between y and the factor may be modeled. Specifically, a probit model can
be used to estimate the probability (ranging from 0 to 1) that a specific
category (k) is selected or exceeded by modeling the nonlinear relation
between y and the factor (F):

P(y 2 k|F) = ® (o + SF), 8)

where @ is the standard normal distribution function.? The « (intercept)
and S (slope) parameters from this conditional probability formulation
can be derived from the parameters estimated using the latent response
variable formulation, which illustrates the similarity of the two formula-
tions (see Muthén & Asparouhov, 2002, for formula). In fact, the two for-
mulations produce equivalent results in terms of the probability of being
in or exceeding a category given the factor, P(y < k|F) (Muthén & Aspa-
rouhov, 2002). Because these two formulations produce equivalent results,
Muthén and Asparouhov explained that the assumption of an underlying
continuous latent response variable is not necessary but rather a conve-
nience: “It is shown that the two formulations give equivalent results. The
discussion clarifies that the latent response variables are a convenient con-
ceptualization, but that it is not necessary that the data have been gener-
ated by categorizing latent response variables” (Muthén & Asparouhov,
2002, p. 2).

When the conditional probability formulation is employed, the first
step involves computing the sample statistics: probit thresholds, probit
regression coefficients, and probit residual correlations. In the second
step, the asymptotic covariance matrix of these sample statistics is con-
structed. In the final step, estimates of model parameters, standard
errors, and model fit information can be computed using a WLS estima-
tor (Muthén & Muthén, 2001).
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Satorra-Bentler Scaled Chi-Squares and Standard Errors

Description of Method

Another strategy employed to accommodate non-normal continuous
and/or categorical data that has become popular in the last several years
involves adjusting the 42, fit indices, and standard errors by a factor based
on the amount of non-normality in the data. With normally distributed
data the expected value of the 2 is equal to the model’s degrees of free-
dom when the model is correctly specified. Therefore, if a correctly speci-
fied model with 60 degrees of freedom was estimated using multivariate
normal data, a #? value of approximately 60 would be expected. However,
if data are moderately non-normal, the ML-based ;‘:2 will be biased even
though the model is correctly specified. A correction, typically called the
Satorra-Bentler (S-B) scaling procedure, uses the observed data’s distribu-
tional characteristics to adjust the ML-7? in order to better approximate
the theoretical 72 reference distribution:

S-B 72 = d"'(ML-based 2, (9)

where d is a scaling factor that incorporates the kurtosis of the variables
(Chou & Bentler, 1995; Satorra & Bentler, 1994). If no multivariate kurto-
sis exists, then ML-based 22 = S-B 2. However, as the level of multivari-
ate kurtosis increases, the S-B 7* becomes more discrepant from the ML-
based 22.

The S-B scaling method is typically applied with ML estimation.
Because ML is employed, computation problems experienced with the
ADF estimator are avoided. Recall that ADF requires the inversion of a
large asymptotic covariance matrix (W). The S-B scaling method does not
require inversion of this W matrix. Instead, the matrices to be inverted in
order to compute the scaling factor are of the smaller dimensions of df x
df, where df represents the degrees of freedom associated with the model
(Satorra & Bentler, 1994).

A similar scaling process is used to correct the standard errors, alleviat-
ing some of the attenuation present when modeling non-normal data
using ML estimation. Specifically, the scaled standard errors are adjusted
upward to approximate those that would have been obtained if the data
were normally distributed.* Recall that when non-normal data are ana-
lyzed using ML, the parameter estimates are not affected. Therefore, the
ML-based parameter estimates are not adjusted in any way when this
method is employed.

It must be noted that the typical 2 difference test employed for nested
model comparisons should not be calculated using the S-B scaled #* val-
ues (i.e., simply subtracting 2 of the less parsimonious model from the 22



290 S.J. FINNEY and C. DISTEFANO

of the more parsimonious model). The difference between two S-B 2 val-
ues is not distributed as a y*. Fortunately, fairly simple calculations can be
employed to correct the difference test in order to make nested model
comparisons using the S-B ,1'2 values (see Satorra & Bentler, 2001, for cal-
culations).

S-B Scaling Methods with Continuous Non-normal Data:
Empirical Results

Chi-square and fit indices. Studies using correctly specified models and
continuous non-normal data have shown that the S-B z* outperforms the
ML-based #*, particularly as the degree of non-normality increases (e.g.,
Chou et al., 1991; Curran et al., 1996; Hu et al., 1992; Yu & Muthén,
2002). In addition, it performs better than the ADF-based 7% when esti-
mating correctly specified models at all but the largest sample sizes (e.g.,
N = 1,000, Curran et al., 1996; N = 5,000, Hu et al., 1992).

If the S-B 2 is employed to handle non-normal data, it follows that the
S-B #* would be incorporated into the calculation of fit indices (e.g., TLI,
CFI) in order to gain benefits of the scaling procedure and, in turn, pro-
vide more accurate reflections of model—data fit. Few studies have investi-
gated the performance of these S-B scaled indices. Nevitt and Hancock
(2000) found that the S-B scaled RMSEA outperformed the unadjusted
index. Yu and Muthén (2002) also examined this index in addition to the
S-B scaled TLI and CFI and found that, under conditions of moderate to
severe non-normality coupled with small sample size (N < 250), the S-B
scaled versions of these three indices are preferred over the ML-based
estimates. Yu and Muthén suggested that values at or below .05 for the
S-B scaled RMSEA and at or above .95 for the S-B scaled CFI indicate
adequate fit, which is quite similar to the cutoff values recommended by
Hu and Bentler (1999) for the unadjusted indices.

Parameter estimates and standard errors. The scaled standard errors have
also been found to outperform ML-based and ADF-based standard errors
under conditions of non-normality (Chou & Bentler, 1995; Chou et al.,
1991). Similar to the ML-based and ADF-based standard errors, the
scaled standard errors showed some negative bias. However, they tended
to be much closer to the expected values of the standard errors than those
obtained from either ADF or ML methods. Recall that the ML-based
parameter estimates are not adjusted as they are not affected by non-nor-
mality.

$-B Scaling Methods with Non-Normal Ordered Categorical Data:
Empirical Results

While the functioning of the S-B correction has been generally exam-
ined with continuous non-normal data, a few studies have evaluated how
the correction performs with ordered categorical data. It is recognized
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that this approach treats the categorical data as continuous, ignoring the
metric level of the data. A caveat to this method is that ML estimation is
known to be sensitive to the number of ordered response categories in
addition to non-normal distributions.

Chi-square and fit indices. With regard to model fit, Green and colleagues
(1997) found that S-B scaling produced #* values very close to the
expected #* values when modeling two-, four- or six-ordered category
data that displayed symmetric, uniform, and negatively skewed distribu-
tions. The S-B 22 did show positive bias when modeling data that exhib-
ited differential skew, with bias being the greatest in the two-category
condition. In all conditions, the S-B ),'2 outperformed the ML-based 7.

Parameter estimates and standard errors. As noted above, the S-B correc-
tion simply scales the standard errors and the z*. Thus, S-B-based param-
eter estimates will be equivalent to ML-based estimates. This implies no
correction for the attenuation of the parameter estimates due to the cate-
gorical nature of the data. With respect to standard errors, research has
found that scaled standard errors exhibited greater precision than ML-
based standard errors when non-normally distributed ordered categorical
data were analyzed (skewness =2, kurtosis =6; DiStefano, 2002). The ben-
efit of the S-B scaling method was present even with non-normally distrib-
uted data having as few as three ordered categories (DiStefano, 2003).

S-B Scaling Methods: Software Implementation

As discussed above, the S-B scaling method has been applied to
ordered categorical data by treating them as continuous (i.e., calculation
of PPM covariances instead of latent correlations for ordered categorical
data). This implies that the implementation of this method is the same
across the two data types. All three software programs calculate the
S-B-scaled #*> and standard errors. Appendix B provides the syntax
needed to employ the S-B scaling method.

Similar to ADF estimation with continuous data, LISREL calculates the
S-B #* and scaled standard errors in two steps. The first step involves
computing the asymptotic and observed covariance matrix from the raw
data file using PRELIS. The second step involves specifying the model
and estimation technique in the SIMPLIS program file. Recall that ML is
used as the estimator and the obtained z° and standard errors are
adjusted for the level of non-normality. It is important to note that LIS-
REL 8.54 does not adjust all fit indices for non-normality. In fact, no
incremental indices are adjusted (e.g., CFI, NNFI). Adjustments to these
indices must be calculated by hand. This is done by first specifying and
estimating the independence model and then using the independence
model’s S-B #? along with the hypothesized model’s S-B £ in the corre-
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sponding fit index formula (see, e.g., Hu & Bentler, 1998, for fit index
formulas).

Both EQS and Mplus read the raw data file directly into the program
in order to construct the necessary matrices used to scale the % and stan-
dard errors. In addition to specifying ML as the estimator in EQS, the
word “robust” is included to request the scaling method. In Mplus one
simply requests “MLM” as the estimator, which refers to the ML-mean-
adjusted z° (equivalent to the S-B ,,‘22) and scaled standard errors. Unlike
LISREL 8.54, both EQS 6.1 and Mplus 3.01 adjust all the fit indices
reported when the S-B scaling method is used.

It must be noted that in addition to the MLM estimator, Mplus also
provides the MLMV estimator, which produces a mean- and variance-
adjusted chi-square. The scaled standard errors are equivalent across the
two estimators. Research has shown that the MLLM and MLMV chi-squares
perform similarly, indicating that the additional adjustment provided by
MLMYV may not be needed (Muthén, 1999).

Robust WLS Estimation Procedures

Description of Estimators

Because the S-B scaling method does not adjust parameters for the
metric of the data when modeling ordered categorical data, it may seem
as though CVM is a more attractive option for data of this type. However,
the computational demands of the ADF/WLS estimator make CVM an
implausible option for dealing with ordered categorical data unless an
extremely large sample size is available. Muthén (1993) developed and
implemented two robust WLS estimators (WLSM and WLSMV) that avoid
the necessity of a large sample size by decreasing the computational
intensity found with the traditional ADF/WLS estimator. In addition,
these estimators incorporate scaling similar to the S-B scaling methods.

Concerning the details of the estimators, WLSM and WLSMV differ
from the conventional ADF/WLS estimator in the use of the asymptotic
covariance matrix. Although WLS, WLSM, and WLSMV all use the same
asymptotic covariance matrix, they differ in what elements of the weight
matrix are used and how they are used. ADF/WLS employs and inverts
the full weight matrix in order to estimate parameters, standard errors,
and 2?. Instead of using the full matrix when estimating parameters,
WLSM and WLSMV use only the diagonal elements of the weight matrix
(e.g., asymptotic variances of the thresholds and latent correlation esti-
mates). While WLSM and WLSMV do utilize the entire weight matrix to
compute standard errors for the parameters, they employ a method that
avoids its inversion (Muthén, 1993; Muthén, du Toit, & Spisic, 1997).
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Like the standard errors, the 22 is calculated using the full weight
matrix but avoids its inversion. In addition, a scaling factor, akin to the
one employed in the Satorra-Bentler scaled 22, is employed to more thor-
oughly adjust the 2. Specifically, WLSM produces a mean-adjusted chi-
square. WLSMYV differs from WLSM in that the 2 is both mean- and vari-
ance-adjusted. The standard errors and parameter estimates from WLSM
and WLSMV are equivalent. An additional distinction exists between
WLSM and WLSMV in that WLSMV does not calculate model degrees of
freedom in the standard way. Instead, degrees of freedom are “estimated”
to approximate a z* distribution and are lower in value than standard
degrees of freedom (Muthén & Muthén, 2001). Therefore, fit indices
(e.g., CFI, NNFI) will differ due to both the different degrees of freedom
and different 22 values used in the calculations. Table 9.4 provides a brief
outline of the differences and similarities between these three estimation
techniques available in Mplus.

With the robust WLS estimators comes a new index for use with cate-
gorical data, the weighted root mean square residual (WRMR). This index
is well suited for categorical data because it incorporates the asymptotic
variances into the computation. The WRMR is also appropriate to employ
with non-normal continuous data, or if variables have large variances
(Muthén & Muthén, 2001). WRMR values under 1.0 have been recom-

Table 9.4. Mplus Estimation Techniques for Ordered Categorical Data

Chi-square  Parameter  Standard Applied

Description Estimation  Estimates Errors When?
WLS * Weighted least squares  Full weight Full weight Full weight Categori-
parameter estimates matrix matrix matrix cal or con-
* Conventional 2 used and  used used and  tinuous
* Conventional standard inverted inverted  endoge-
ETTOorS nous vari-
ables

WLSM * Weighted least squares Full weight Diagonal  Full weight At least

parameter estimates matrix weight matrix one cate-
+ Mean-adjusted 2 used but matrix used but  gorical
* Scaled standard errors  not used not endoge-
inverted inverted nous vari-
able
WLSMV  * Weighted least squares Fullweight Diagonal  Fullweight At least
parameter estimates matrix weight matrix one cate-
* Mean- and variance- used but matrix used but  gorical
adjusted 2 not used not endoge-
* Scaled standard errors  inverted inverted nous vari-

able
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mended to represent good fit with continuous or categorical data, with
smaller values indicating better fit (Yu & Muthén, 2002).

WLSM and WLSMV: Empirical Results

There is limited research examining the functioning of the robust WLS
estimators. Results have shown that these estimators perform much better
than the conventional WLS when the tested model is large (15 variables)
or sample size is small (N =1,000), yielding less biased % and standard
errors (Muthén, 1993). Tentative results suggest that WLSMV outper-
forms WLSM, with WLSM showing higher Type I error rates (Muthén,
1999, 2003; Muthén et al., 1997). WLSMYV tends to perform well except
under conditions of small sample sizes (N = 200) and markedly skewed
variables (Muthén et al., 1997).

WLSM and WLSMV: Software Implementation

Neither LISREL 8.54 nor EQS 6.1 have the capabilities to employ
WLSM or WLSMV estimation techniques. Therefore, discussion of the
implementation of these estimators will be limited to Mplus. In Mplus,
when ordered categorical dependent variables are analyzed, the default
estimator is WLSMV. The syntax for using the WLSM and WLSMV is very
similar to the Mplus WLS syntax reported in Appendix A. The categori-
cal indicators are identified by including the heading “CATEGORICAL
ARE:” when defining the “VARIABLES” command. Once the variables
are defined to be categorical, CVM will be conducted. To request one of
the robust estimation techniques, changes are made to the “ESTIMATOR
IS:” heading under the “ANALYSIS” command. Insert “WLSM” to
request the mean-adjusted WLS estimation procedure or “WLSMV” to
use the mean- and variance-adjusted estimation technique. Appendix C
outlines these procedures.

Bootstrapping

General Description

When a model is correctly specified and data are multivariate normal,
the expected value of the 7 statistic equals the model’s degrees of free-
dom. The degrees of freedom are used to identify the corresponding cen-
tral 2 distribution necessary to evaluate the probability value associated
with the obtained 2. The $-B adjustment described above also uses the
theoretical 7> distribution in order to evaluate statistical significance even
though data are not multivariate normal. Because data are not multivari-
ate normal, the obtained ML-based 27 is adjusted when using the S-B cor-
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rection in order to better approximate the expected #* distribution under
conditions of normality. Instead of using the theoretical sampling distri-
bution and adjusting the obtained #* for non-normality of the data, boot-
strapping techniques can be conceptualized as using the obtained #* and
adjusting the sampling distribution used to compute the probability
value. More specifically, bootstrapping can be used to construct an empir-
ical distribution of model test statistics that incorporates the non-normal-
ity of the data and relieves researchers from relying on the theoretical 7
distribution and its underlying assumptions.

In general, bootstrapping is a resampling technique that treats the
observed sample data as an estimate of the population (Efron & Tibshi-
rani, 1993). A large number of cases are then drawn with replacement
from the observed data (parent sample) in order to create B bootstrap
samples of the same size (N). Sampling with replacement implies that a
given case may appear more than once in the same bootstrap sample.
Using the sample data, the statistic of interest is computed from each of
the B bootstrap samples. The estimates computed from the B samples
then form an empirical sampling distribution of the statistic of interest.

In SEM, there are two methods of conducting bootstrapping, the naive
bootstrap and the Bollen-Stine bootstrap. They differ in the type of
empirical distribution formed. We first discuss the naive bootstrap and its
application to estimating standard errors and then discuss the Bollen-
Stine bootstrap and its application to estimating the probability value
associated with the obtained 2'2 value.

Assume we are estimating a structural model using non-normal data.
In addition to testing model fit, we also wish to evaluate the statistical sig-
nificance of the estimated parameters. Given non-normal data, the ML-
based standard errors will be underestimated. In contrast, the bootstrap
standard errors take into account the distribution of the data, producing
more accurate standard errors. Using the naive approach, B samples of
size N are drawn (with replacement), and the parameter estimate of inter-
est (e.g., factor loading, error variance) is estimated using each of the B
bootstrap samples. This distribution of bootstrap parameter estimates is
then used to calculate the standard error for that parameter. Specifically,
the standard deviation of the bootstrap estimates represents the bootstrap
standard error.

While the procedure above may provide better estimates of standard
errors, it is not appropriate for bootstrapping the empirical distribution
of the 7 statistic in SEM. Specifically, the resulting sampling distribution
is incorrect because it reflects not only non-normality and sampling vari-
ability, but also model misfit (i.e., the null hypothesis of perfect fit is
false). As Bollen and Stine (1992) pointed out, the parent sample must
first be transformed to reflect the covariance structure underlying the
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hypothesized model (i.e., bootstrap samples are drawn from a parent
sample where the null hypothesis is true). Transforming the data so that
the parent sample conforms to the specified model is necessary in order
to generate ° values that reflect only sampling variation and the impact
of non-normality, and not model misfit.

For example, suppose we are estimating a model with 60 degrees of
freedom using non-normal data. The sample data are first transformed to
have the same covariance structure as the implied covariance matrix
(using a matrix transformation given in Bollen & Stine, 1992), then B
random samples of size N are taken from the transformed parent sample
data matrix, and the 7 value for each sample is computed in order to
form the empirical sampling distribution of 7 values. This empirical
sampling distribution can then be used as the reference distribution to
identify the probability of the ML-based 2. Suppose that the mean 7
value across the bootstrap samples equaled 72. This implies that the
expected value of the empirical distribution is larger than that of the the-
oretical distribution (in this case 60). One would therefore expect differ-
ing probability values associated with the ML-based 2> when employing
the empirical versus the theoretical distribution. The probability value
associated with the obtained #* using the empirical distribution is simpl
the proportion of bootstrap 72 values that exceed the ML-based r
obtained from the original analysis (i.e., from fitting the proposed model
to the untransformed sample data).

Bootstrapping with Continuous Non-Normal Data: Empirical Results

Chi-square. There have been very few studies that have examined the
performance of the Bollen-Stine bootstrap for estimating the 2 probabil-
ity value. Fouladi (1998) found that, similar to the S-B scaled );2, the Bol-
len-Stine bootstrap controlled Type I error rates better than NT methods
when data were non-normal. In addition, when modeling non-normal
data, the Bollen-Stine bootstrap generally provided more accurate proba-
bility values than the S-B scaled 2 in all conditions except when sample
size was large. Fouladi did not necessarily advocate one method over the
other but instead suggested that readers realize the liberal or conservative
bias of each statistic and use this information to inform decisions pertain-
ing to the plausibility of a model.

Similar to Fouladi (1998), Nevitt and Hancock (2001) found that the
model rejection rates based on the Bollen-Stine bootstrap and the S-B Pa
were more accurate than those from the ML-based »* when estimating
correctly specified models under conditions of moderate non-normality.
Even under conditions of extreme non-normality and small sample sizes,
the Type I error rate associated with the Bollen-Stine bootstrap was con-
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trolled, outperforming the S-B > It is important to note, however, that
the bootstrap showed less power to identify misspecified models than the
S-B 2~ Again, this tradeoff between controlling Type I error rate and sen-
sitivity to misspecification complicates the decision of choosing one of the
two techniques over the other.

Standard Errors. Nevitt and Hancock (2001) also investigated the per-
formance of the naive bootstrap standard errors. Under conditions of
non-normality, the bootstrap standard errors displayed less bias than the
ML-based standard errors, and to a lesser extent, the S-B robust stan-
dard errors. However, it must be noted that the bootstrap standard error
estimates displayed notable variability, signifying a possible concern with
the stability of these estimates. A related finding concerning the stability
and bias of the naive bootstrap standard errors suggests that small sam-
ples (N < 100) should be avoided due to a dramatic increase in both the
variability and bias of the bootstrap standard errors. In addition,
increasing the number of bootstrap samples beyond 250 has seemingly
no benefits in terms of decreasing the bias in standard errors or model
rejection rates.

Bootstrap: Software Implementation

As noted by Fan (2003), there are very few applications of bootstrap-
ping in substantive research, which may be due to the limited automated
procedures in SEM software programs. Of the three software programs
presented here (EQS 6.1, Mplus 3.01, and LISREL 8.54), EQS (version 6
or higher) is the only program that has an automated bootstrapping
option that can produce Bollen-Stine z* probability values, accompanied
by naive bootstrap standard errors (see Appendix D for syntax). Mplus
3.01 has an automated bootstrapping option that can produce naive boot-
strap standard errors and bootstrap confidence intervals for the parame-
ter estimates (Muthén & Muthén, 2004). AMOS (Arbuckle & Wothke,
1999), another popular SEM software program, also has automated boot-
strapping capabilities that can produce the Bollen-Stine > probability val-
ues and the naive bootstrap standard errors (Byrne, 2001).

SUGGESTIONS FOR DEALING WITH NON-NORMALITY AND
ORDERED CATEGORICAL DATA

Recommendations

Because so much information is associated with issues surrounding
non-normal and ordered categorical data, Table 9.5 summarizes our rec-
ommendations when analyzing data of this type. This table is not meant
to trivialize the complex issues surrounding this topic; instead, it may be
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treated as a supplement to the information presented in this chapter.
Also, as explained throughout the chapter, the type of estimation method
or technique employed is closely tied to the degree of non-normality and/
or the crudeness of the categorization. Therefore, researchers need to rec-
ognize the type of data they are modeling, in terms of both metric and
distribution, before selecting a technique.

In brief, ML has been shown to be fairly robust if continuous data are
only slightly non-normal; therefore, we recommended its use in this situa-
tion (e.g., Chou et al., 1991; Green et al, 1997). If data are continuous
and non-normally distributed, we recommend the use of either the S-B
scaling method or bootstrapping. Given the availability of the S-B scaling
method, the ease of its use, and the empirical studies showing promising
results, we can easily understand why this method is becoming increas-
ingly popular.

When modeling ordered categorical data, the research seems to indi-
cate that if there are a large number of ordered categories the data could
be treated as continuous in nature. If the variables have five categories or

Table 9.5. Recommendations for Dealing with
Non-Normal and Ordered Categorical Data

Type of Data

Continuous Data

Suggestions Caveats/Notes

Use ML estimation * The assumptions of ML are
met and estimates should
be unbiased, efficient, and

consistent.

1. Approximately .
normally distributed

mal (skew < 2,
kurtosis < 7)

. Severely non-normal

(skew > 2,
kurtosis > 7)

. Moderately non-nor- *

Use ML estimation; fairly
robust to these conditions
Use S-B scaling to correct
and standard errors for even
slight non-normality

2

Use S-B scaling
Use bootstrapping

Given the availability of $-B
scaling methods in the soft-
ware packages, one could
always employ and report
findings from both ML esti-
mation and S-B scaling
method.

5-B correction works well,
currently much easier to
implement than the boot-
strap, and tends to be more
sensitive to model mis-
specification than the boot-
strap.

Fit indices that are not
adjusted for the S-B correc-
tion should be adjusted by
hand.

(Table continues)
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more, the data are approximately normally distributed, and Mplus is not
available, we recommend treating the data as continuous in nature and
employing ML estimation. If the variables have five categories or more,
the data are non-normally distributed, and Mplus is not available, we rec-
ommend S-B scaling methods or bootstrapping. On the other hand, if
ordered categorical variables have fewer than five categories, we recom-
mend employing CVM to address both the metric and distribution. We
specifically recommend employing CVM using Mplus’s robust estimator

Table 9.5. (Continued)

Type of Data

Suggestions

Caveals/Notes

Ordered Categorical Data
1. Approximately
normally distributed

2. Moderately non-nor-
mal (skew < 2,
kurtosis < 7)

3. Severely non-normal
(skew > 2,
kurtosis >7)
or
very few categories
(e.g- 3)

* Use Mplus's WLSMV estima- * WLSMV will adjust the

tor

Use ML estimation if there
are at least five categories
Use S-B scaling methods if
there are at least four catego-
ries

Use Mplus's WLSMV estima-
tor

Use ML estimation if there
are at least five categories
Use S-B scaling methods if
there are at least four catego-
ries

Use Mplus's WLSMV estima-
tor

If Mplus is not available then
employ S-B scaling method

parameter estimates, stan-
dard errors, and fit indices
for the categorical nature of
the data.

Realize that if employing
ML estimation that the
parameter estimates will be
attenuated.

Parameter estimates from
S-B scaling equal ML-based
estimates implying that
they too will be attenuated.
WLSMYV will adjust the
parameter estimates, stan-
dard errors, and fit indices
for the categorical nature of
the data.

Realize that if employing
ML estimation that the
parameter estimates will be
attenuated.

Parameter estimates from
S-B scaling equal ML-based
estimates, implying that
they too will be attenuated.
Fit indices recommended
with WLSMV because they
show promise with non-
normal ordered categori-
cal data: WRMR and
RMSEA.

Realize that S-B correction
doesn't correct parameters
for attenuation.
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WLSMYV, because unlike ADF/WLS, it avoids inverting a large asymptotic
covariance matrix and has exhibited promising results.

Strategies Not Recommended

An obvious omission from the above recommendations table is the
ADF/WLS estimator. Given the requirements of the ADF/WLS estimator
(e.g., large sample size) and the lack of sensitivity to model misspecifica-
tion (e.g., Olsson et al., 2000), we cannot recommend the use of this esti-
mator as a method to analyze non-normal or ordered categorical data. As
noted throughout the chapter, other techniques outperform this estima-
tor and should be employed.

A second technique that we cannot recommend, though commonly
used to construct “more normally distributed” data (e.g., Marsh, Craven,
& Debus, 1991), involves parceling items together (e.g., sum or average a
subset of items). For example, parceling items with opposite skew has
been conducted in order for the resulting parcel to have a better approxi-
mation of a normal distribution. Following the same logic, the parceling
of ordered categorical items has been conducted to achieve a more con-
tinuous normal distribution allowing for the use of NT methods. While it
is true that the parcel may have properties that better approximate the
assumptions underlying N'T estimators, we cannot recommend the uncrit-
ical use of this technique as a strategy to deal with non-normal or categor-
ical data because it results in ambiguous findings. As detailed at length in
other sources (Bandalos, 2002, 2003; Bandalos & Finney, 2001), parceling
can obscure the true relations among the variables leading to biased
parameters estimates and fit indices.

DIRECTIONS FOR FUTURE RESEARCH AND CONCLUSIONS

The purpose of this chapter was to review techniques used to accommo-
date non-normal and categorical data and summarize previous research
investigating their utility. Much of the previous research involving non-
normal and/or categorical data was concerned with comparing the perfor-
mance of different estimation techniques (e.g., ML, WLS) under various
conditions such as model size, sample size, and the observed variable dis-
tribution characteristics. An appropriate question at this point is where do
we go from here with respect to researching the effects of modeling cate-
gorical and non-normal data? We believe the most pressing questions
concern the functioning of the robust estimators (WLSM and WLSMV)
available in Mplus (Muthén & Muthén, 2004). Unlike ML and WLS, lim-
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ited research has been conducted that evaluates the performance of these
estimators. Additional studies exploring the functioning of WLSM and
WLSMYV under various conditions and in relation to other techniques are
needed in order to better understand the utility of these estimators. Also,
very recent advances in software allow categorical dependent variables to
be analyzed using ML estimation techniques. Specifically, when using
Mplus v3.0 to analyze categorical variables, a full-information ML estima-
tor can be employed. This estimator uses information from the full multi-
way frequency table of all categorical variables, which is why it is referred
to as a “full information” technique. This differs from WLS, which is a
“limited-information technique” because it uses bivariate information, or
two-way frequency tables between pairs of variables. This full-information
estimator uses the two-parameter logistic model, common in item
response theory, to describe the variation in the probability of the item
response as a function of the factor(s) (L. Muthén, personal communica-
tion, November 14, 2003). The availability of the full-information ML
estimation technique provides opportunities for new research in the area
of analyzing categorical data (e.g., feasibility with large models, compara-
bility of WLSMV-based versus ML-based parameter estimates and stan-
dard errors).

In closing, given the presence of non-normal and ordered categorical
data in applied research, researchers need to not only recognize the prop-
erties of their data but to also utilize techniques that accommodate these
properties. Simply using the default estimator from a computer package
does not guarantee valid results. Understanding the issues surrounding
various techniques, such as assumptions, robustness, and implementation
in software programs, makes a researcher much more competent to han-
dle issues that they may encounter.
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APPENDIX A: ADF SYNTAX

The following syntax illustrates how to employ the ADF estimator with
continuous and categorical data. The model being estimated is a two-fac-
tor model with six indicators per factor. Each observed variable serves as
an indicator to only one factor, all error covariances are fixed at zero, and
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the factor correlation is freely estimated. The metric of the factor is set by
constraining the factor variance to a value of 1.00.

Continuous Data

LISREL v8.54

! First run PRELIS to obtain covariance matrix and asymptotic covariance
matrix

DA NI=12

LA

ql q2q3 q4 q5 q6 q7 q8 q9 q10 ql1 q12

RA=example.dat

OR ALL

OU MA=CM SM=example.cov AC=example.acc BT XM

SIMPLIS command language employed using LISREL v8.54

1Second read matrices into SIMPLIS program

Title illustrating ADF estimation with continuous data
Observed Variables q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 ql1 q12
Covariance matrix from file example.cov

Asymptotic matrix from file example.acc

Sample size 1000

Latent variables: fact] fact2

Relationships

ql q2 q3 q4 g5 g6 = factl

q7 g8 q9 q10 ql1 q12 = fact2

Options: WLS

Path Diagram

End of Problem

EQS v6.1

/TITLE

illustrating ADF estimation with continuous data
/SPECIFICATIONS

VARIABLES = 12; CASES= 1000; DATAFILE = ‘example.ess’;
MATRIX= raw; METHOD = agls;

EQUATIONS

V1 = *Fl + El;

V2 = *F1 + E2;

V3 = *F1 + E3;
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V4 = *F1 + E4;
V5 = *F1 + E5;
V6 = *F1 + E6;
V7 = *F2 + E7;
V8 = *F2 + ES8;
V9 = *F2 + E9;

V10 = *F2 + E10;
V11 = *F2 + El1;
V12 = *F2 + E12;
/VARIANCES
FltoF2 = 1;
Elto E12 = *;
/COVARIANCES
F2,F1 =%,

/END

Mplus v3.01

TITLE: illustrating ADF estimation with continuous data
Data: FILE IS example.dat;

VARIABLE: NAMES ARE ql —ql12;

ANALYSIS: ESTIMATOR = WLS;

MODEL: f1 by q1* q2* q3* q4* q5* q6*;

f2 by q7* q8* q9* q10* q11* q12%;

fl@l;

2@2;

Ordered Categorical Data

LISREL v8.54

IPRELIS run to obtain correct correlation matrix and asymptotic covari-
ance matrix

Title ANALYZING ORDERED CATEGORICAL DATA

DA NI=12

LA

ql 9293 q4 q5 96 q7 q8 q9 q10 ql1 ql12

RA=cat.dat

ORALL

OU MA=KM SM=poly.cm AC=catex.acc BT XM
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SIMPLIS command language employed using LISREL v8.54

Title ANALYZING ORDERED CATEGORICAL DATA
Observed Variables q1 q2 q3 q4 q5 96 q7 q8 q9 q10 ql1 q12
Correlation matrix from File poly.cm

Asymptotic matrix from File catex.acc

Sample size 1000

Latent variables: factl fact2

Relationships

ql q2 q3 q4 g5 q6 = factl

q7q8q9ql0qll ql2 = fact2

Options: WLS

Path diagram

End of problem

EQS v6.1

JTITLE

illustrating CVM with categorical data
/SPECIFICATIONS

VARIABLES= 12; CASES= 1000; DATAFILE = ‘example.ess’;
MATRIX= RAW; METHOD = AGLS;

CATEGORY=V1 V2V3V4V5V6 V7 VBVIVIOVI1VI1Z;

JEQUATIONS

V1 = *F1 + EI;
V2 = *F1 + E2;
V3 = *F1 + E3;
V4 = *F1 + E4;
V5 = *F1 + E5;
V6 = *F1 + E6;
V7 = *F2 + ET;
V8 = *F2 + E8;
V9 = *F2 + E9;

V10 = *F2 + E10;
V11 = *F2 + El1;
V12 = *F2 + E12;
/VARIANCES
Flto F2 =1;
Elto E12 = *;
/COVARIANCES
F2,Fl1 = *;
/END
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Mplus v3.01°

TITLE: Mplus with ordered categorical data
DATA: FILE IS cat.dat;

VARIABLE: NAMES ARE q1-q12;
CATEGORICAL ARE ql-q12;

ANALYSIS: ESTIMATOR = WLS;

MODEL: fl BY q1* q2* q3* q4* q5* q6*;

f2 BY q7* q8* q9* q10* q11* q12%;

fl @1;

2 @1;

APPENDIX B: S-B SCALING SYNTAX

The following syntax illustrates how to employ the S-B scaling methodol-
ogy with continuous and ordered categorical data. The model being esti-
mated is a two-factor model with six indicators per factor. Each observed
variable serves as an indicator to only one factor, all error covariances are
fixed at zero, and the factor correlation is freely estimated. The metric of
the factor is set by constraining the factor variance to a value of 1.00.

Continuous and Ordered Categorical Data

SIMPLIS command language employed using LISREL v8.54

Title illustrating SB chisq and standard errors
Observed variables q1 q2 q3 q4 95 q6 q7 q8 q9 q10 ql1 q12
Covariance matrix from file example.cov
Asymptotic matrix from file example.acc
Sample size 1000

Latent variables: factl fact2

Relationships

ql q2 q3 g4 q5 q6 = fact]

q7q8 @9 ql0 ql1 ql12 = fact2

Options: ML

Path diagram

End of problem

EQS 6.1

/[TITLE
illustrating SB chisq and standard errors
/SPECIFICATIONS
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VARIABLES= 12; CASES= 1000; DATAFILE = ‘example.ess’;
MATRIX= raw; METHOD = ml, robust;

JEQUATIONS

V1 = *F1 + El;
V2 = *F1 + E2;
V3 = *F1 + E3;
V4 = *F1 + E4;
V5 = *F1 + E5;
V6 = *F1 + E6;
V7 = *F2 + ET;
V8 = *F2 + ES;

V9 = *F2 + E9;
V10 = *F2 + E10;
V11 = *F2 + El11;
VI2 = *F2 + E12;
/VARIANCES
FltoF2 = 1;
Elto E12 = *;
JCOVARIANCES
F2,F1 = %,
/END

Mplus v3.01

TITLE: illustrating SB chisq and standard errors
Data: FILE IS example.dat;
VARIABLE: NAMES ARE gl - ql12;
ANALYSIS: ESTIMATOR = MLM;
MODEL: f1 by q1* q2* q3* q4* q5* q6*;
f2 by q7* q8* q9* q10* ql1* q12%;
fl @1;
2@1;

APPENDIX C: ROBUST WLS (WLSM, WLSMV) SYNTAX

The following syntax illustrates how to employ the robust estimation tech-
niques using Mplus v2.11. The model being estimated is a two-factor
model with six indicators per factor and the factor correlation is freely
estimated. The metric of the factor is set by constraining the factor vari-
ance to a value of 1.00. It is noted that indicator error variance terms are
not estimated in Mplus when indicators are identified as categorical. To
employ either WLSM or WLSMV, simply type “WLSM” or “WLSMV” on
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the command line that specifies the estimation method. In the current
example, WLSMV would be employed.

TITLE: MPLUS with ordered categorical data — robust estimation
procedures
DATA: FILE IS cat.dat;

VARIABLE: NAMES ARE ql-q12;
CATEGORICAL ARE q1-q12;
ANALYSIS: ESTIMATOR=WLSMYV;,
MODEL: f1 by q1* q2* q3* q4* q5* q6*;
2 by q7* q8* q9* q10* q11* q12%;
fl@1;
f2@1;

APPENDIX D: BOOSTRAPPING SYNTAX

The following syntax illustrates how to employ the bootstrapping tech-
nique. The model being estimated is a two-factor model with six indica-
tors per factor. Each observed variable serves as an indicator to only one
factor, all error covariances are fixed at zero, and the factor correlation is
freely estimated. The metric of the factor is set by constraining a path
from a factor to an indicator equal to a value of 1.00 (see Hancock & Nev-
itt, 1999, for an explanation of why it is necessary).

EQS v6.1
Naive Bootstrap Standard Errors

/TITLE

naive bootstrap

/SPECIFICATIONS

VARIABLES= 12; CASES=1000; DATAFILE="example.ess’;
MATRIX=RAW; METHOD=ML;

/EQUATIONS

V1 = 1F1 + El;
V2 = *F1 + E2;
V3 = *F1 + E3;
V4 = *F1 + E4;
V5 = *F1 + E5;
V6 = *F1 + E6;
V7 = 1¥2 + E7;

V8 = *F2 + E8;
V9 = *F2 + E9;
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V10 = *F2 + E10;

V1i= *F2 + El11;

V12 = *F2 + E12;

/VARIANCES

Fl to F2 = *;

Elto E12 = *;

JCOVARIANCES

F1,F2 = *;

/technical litr increases number of iterations to increase the
itr = 500; bootstrap success rate

/SIMULATION IThe keyword bootstrap indicates the naive boot-
bootstrap = 1000, strap

replication = 250; 11000 refers to the number of cases in the bootstrap
seed = 123456789; samples

/OUTPUT INumber of replications equals 250
parameters; IDefault seed for the random number generator
/END IThe output will contain the mean parameter esti-

mates and the standard
Ideviations, which are the empirical standard errors

Bollen-Stine Bootstrap Ve probability value

[TITLE

Bollen-Stine bootstrap chisq probability value
/SPECIFICATIONS
VARIABLES= 12; CASES=1000; DATAFILE="example.ess’;
MATRIX=RAW; METHOD=ML;

JEQUATIONS

V1 = IF1 + EI;
V2 = *F1 + E2;
V3 = *F1 + E3;
V4 = *F1 + E4;
V5 = *F1 + E5;
V6 = *F1 + E6;
V7 = 1F2 + E7;
V8 = *F2 + E8;
V9 = *F2 + E9;

V10 = *F2 + EI0;
V1l= *F2 + El1;
V12 = *F2 + E12;
/VARIANCES
Fl to F2 = *;
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Elto E12 = *;
JCOVARIANCES
Fl1, F2 = *;
/technical

itr = 500;
/SIMULATION
mbb = 1000;
replication = 250;
seed = 123456789;
JOUTPUT
parameters;

/END

Mplus v3.01

litr increases the number of iterations

IThe keyword mbb indicates the model-based, or
Bollen-Stine, bootstrap

! 1000 refers to the number of cases in the boot-
strap samples

INumber of bootstrap samples (B) drawn equals
250

!Default seed for the random number generator

!Output presents information concerning the
empirical distribution of

!the model-based chi-square values including the
value that represents

Ithe upper 5% of the distribution, which can be
used as the critical chi-!square value to assess sig-
nificance of the ML-based chi-square

Naive Bootstrap Standard Errors and Confidence Intervals

TITLE:
DATA:
VARIABLE:
ANALYSIS:

MODEL:

f1 BY q1 q2 q3 q4 g5 g6; !

MPLUS with naive bootstrap standard errors and CI
FILE IS example.dat;
NAMES ARE ql-q12;
BOOTSTRAP = 250;

!Number of bootstrap sam-
ples (B) drawn = 250;

I'The size of the B samples=
size of original sample;

f2 BY q7 q8 q9 q10 q11 q12; !Other sample sizes of B can-

OUTPUT:

not be specified;

CINTERVAL;

NOTES

1. Technically, this gives the reweighted least squares fit function, which is
asymptotically equivalent to MLs well-known fit function,

F = log|Z(6)|+r[SZ(®)']-log|S|-p , where p equals the number of
observed variables.

2. The standard linear measurement model specifies that a person’s score is a
function of the relation (b) between the variable (y*) and the factor (F) plus
error (E): y* = bF + E
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3. This formulation is equivalent to the two-parameter normal ogive model
(probit model) applied to dichotomous items in item response theory
(Muthén & Asparouhov, 2002; Thissen & Orlando, 2001), P(y 2 k|F) = ®
[a (F - by)], where a is the item discrimination and b is the item difficulty.

4.  The formula used to calculate these scaled standard errors is complex but
can be found in Arminger and Schoenberg (1989) and Satorra and Bentler
(1994).

5. A unique feature of Mplus concerns the indicator error variance terms.
Whereas LISREL and EQS allow estimation of these parameters, Mplus
does not estimate indicator error variance terms if indicators are identified
as categorical. Muthén and Muthén (2001) state that this is related to the
use of a correlation matrix as input for analyses. With correlation input,
the diagonal elements (values of 1) do not enter into the computations.
Values related to each item variance are considered by Mplus to be “resid-
ual correlations” rather than as item variance terms.
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