
Texts in Applied Mathematics   59

Numerical 
Methods in Matrix 
Computations

Åke Björck



Texts in Applied Mathematics

Volume 59

Editors-in-chief

Stuart Antman, College Park, MD, USA
Leslie Greengard, New York, NY, USA
Philip Holmes, Princeton, NJ, USA



More information about this series at http://www.springer.com/series/1214

http://www.springer.com/series/1214


Åke Björck

Numerical Methods
in Matrix Computations

123



Åke Björck
Department of Mathematics
Linköping University
Linköping
Sweden

ISSN 0939-2475 ISSN 2196-9949 (electronic)
ISBN 978-3-319-05088-1 ISBN 978-3-319-05089-8 (eBook)
DOI 10.1007/978-3-319-05089-8

Library of Congress Control Number: 2014943253

47A12, 47A30, 47A52, 47B36, 62J02, 62J05, 62J07, 62J12, 65-01, 65Fxx, 65F05, 65F08, 65F10,
65F15, 65F20, 65F22, 65F25, 65F35, 65F40, 65F50, 65F60, 65G30, 65G50, 65H04, 65H17

Springer Cham Heidelberg New York Dordrecht London

� Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



In Memoriam
George E. Forsythe and Gene H. Golub



Preface

Work on this book started more than 15 years ago, when I began a revision of
a textbook from 1974 on numerical methods. That book devoted only about
90 pages to matrix computations compared to the more than 700 pages of the
present book. This difference reflects not only a change in ambition, but also an
increase in size and importance of the subject. A stunning growth in hardware
performance has allowed more sophisticated mathematical models to be employed
in sciences and engineering. In most of these applications, solution of systems of
linear equations and/or eigenvalue problems lies at the core. Increased problem
sizes and changes in computer architecture have also made the development of
new methods and new implementations of old ones necessary.

Although there is a link between matrix computations and linear algebra as
taught in departments of mathematics, there are also several important differences.
Matrices are used to represent many different objects such as networks and images,
besides linear transformations. Concepts such as ill-conditioning, norms, and
orthogonality, which do not extend to arbitrary fields, are central to matrix com-
putations. This is the reason for not using ‘‘linear algebra’’ in the title of the book.

This book attempts to give a comprehensible and up-to-date treatment of
methods and algorithms in matrix computations. Both direct and iterative methods
for linear systems and eigenvalue problems are covered. This unified approach has
several advantages. Much of the theory and methods used to solve linear systems
and eigenvalue problems are closely intertwined—it suffices to think of matrix
factorizations and Krylov subspaces.

It is inevitable that personal interests would to some extent influence the
selection of topics. This is most obvious in Chap. 2, which gives an unusually
broad coverage of least squares methods. Several nonstandard topics are treated,
e.g., tensor problems, partial least squares, and least angle regression. Methods for
solving discrete inverse problems are also treated. Nonlinear least squares prob-
lems such as exponential fitting, nonlinear orthogonal regression, and logistic
regression are covered. Parts of this chapter were originally written for a never
published revised edition of my 1996 monograph entitled Numerical Methods for
Least Squares.
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The book is suitable for use in a two-semester course on matrix computations at
advanced undergraduate or graduate level. The first semester could cover direct
methods for linear systems and least squares using Chaps. 1 and 2; the second
semester eigenvalue problems and iterative methods using Chaps. 3 and 4. But
other combinations are possible. As prerequisite, a basic knowledge of analysis
and linear algebra and some experience in programming and floating point com-
putations will suffice. The text can also serve as a reference for graduates in
engineering and as a basis for further research work. Problems and computer
exercises are included after each section. It is highly recommended that a modern
interactive system such as Matlab be available for working out these assignments.
It should be stressed that the Matlab programs included in the text are mainly for
illustration. They work, but are toy programs and not in any way close to pro-
duction codes.

To keep the book within reasonable bounds, complete proofs are not given for
all theorems. For the pursuit of particular topics in more detail, the book contains a
large comprehensive and up-to-date bibliography of historical and review papers,
as well as recent research papers. Care has been taken to include references to
the original research papers since these are often rewarding to read. More than
50 short biographical notes on mathematicians who have made significant con-
tributions to matrix computations are given as footnotes in the text.

When working on this book I soon realized that I was trying to hit a moving
target. Having rewritten one chapter I invariably found that some other chapter
now needed to be revised. Therefore, many draft versions have existed. At various
stages of this process several colleagues, including Bo Einarsson and Tommy
Elfving, read parts of early drafts and made many constructive comments. I am
also greatly indebted to Michele Benzi, Nick Higham, and David Watkins, as well
as several anonymous reviewers, whose suggestions led to major improvements in
later versions of the text. I am indebted to Wlodek Proskurowski for his continuous
encouragement and for using early versions of the book for courses at USC,
Los Angeles.

Michael Saunders somehow found time to proofread the last draft and pains-
takingly corrected my faulty English language and other lapses. Without his help I
would not have been able to get the book in shape. Finally, I thank Lynn Brandon,
my editor at Springer, for her helpful and professional support during the publi-
cation process.

The book was written in Emacs and typeset in LATEX, the references were prepared
in BibTEX, and the index with MakeIndex. Matlab was used for working out examples
and generating figures. Using these great tools is always a joy. The biographical notes are
based on the biographies compiled at the School of Mathematics and Statistics, Uni-
versity of St Andrews, Scotland (www-history.mcs.st-andrews.ac.uk).

The book is dedicated to the memory of George E. Forsythe and Gene
H. Golub, who were my gracious and inspiring hosts during my postdoctoral stay
at Stanford University in 1968. Their generosity with their time and ideas made
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this stay into a decisive experience for my future life and work. Finally, I thank my
wife Eva for her forbearance and understanding during all the time I spent on
writing this book.

Linköping, November 2013 Åke Björck
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Chapter 1
Direct Methods for Linear Systems

Technological developments over the last two decades (in both
scientific and Internet domains) permit the generation of very
large data sets. Such data are often modeled as matrices, which
provide a natural structure for encoding information.

—Gene H. Golub et al. SIAM News, Oct. 2006.

1.1 Elements of Matrix Theory

By a matrix we mean a rectangular array of real or complex numbers ordered in m
rows and n columns:

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠ . (1.1.1)

In linear algebra,matrices are often conceived as representing a linear transformation.
But matrices are used more widely to represent data sets in different applications.
For example, the matrix (1.1.1) provides a natural structure for encoding information
about m different objects, each of which is represented by n features. Recent tech-
nologies allow the generation of huge such data sets, the analysis of which provide
challenges for the numerical analyst.

The first to use the term “matrix”, in 1848, was Sylvester.1 The fundamental
discovery that such an array of numbers can be conceived as one single algebraic

1 James Joseph Sylvester (1814–1893), English mathematician, studied at St. John’s College,
Cambridge. Because of his Jewish faith, Sylvester could not find an adequate research position
in England. His most productive period was 1877–1884, when he held a chair at Johns Hopkins
University, USA. Much of the terminology in linear algebra is due to him, e.g., “canonical form”,
“minor”, and “nullity”.

© Springer International Publishing Switzerland 2015
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2 1 Direct Methods for Linear Systems

quantity A = (ai j ), with which certain algebraic operations can be performed, is due
to Cayley.2

The solution of systems of linear equation enters at some stage in almost all sci-
entific computing. Two quite different classes of methods are of interest. In direct
methods, typified by Gaussian elimination (GE), the matrix A is transformed by a
sequence of elementary transformations so that the resulting system is of a simpler
form and can be solved more easily. Disregarding rounding errors, direct methods
give the exact solution after a finite number of arithmetic operations. Direct meth-
ods are too expensive for handling very large linear systems that appear in some
applications. Some direct methods that are useful for theoretical purposes may be
useless for more than three of four unknowns—let alone for systems with thousands
or millions of variables. A prime example is the explicit determinant formula known
as Cramer’s rule. In iterative methods the matrix A is never transformed, but used
only in matrix-vector products such as Ax . Typically, a few hundred matrix-vector
products may suffice to obtain a sufficiently good approximate solution even for
systems of large size.

An important aspect of matrix computations is to take advantage of any special
structure of the matrix that can speed up the computations. An important case is
when the matrix is sparse, i.e., only a small fraction of the elements are nonzero.
Iterative methods automatically take advantage of sparsity. However, sparsity may
be destroyed by the transformations used in direct methods.

The short survey of matrix algebra and vector spaces that follows also serves
to introduce terminology and notation that will be used throughout the text. The
notational convention introduced byHouseholder will be followed andwe use upper-
case letters (e.g., A, B) to denote matrices. The corresponding lowercase letters with
subscripts i j refer to the entry (i, j) of the matrix (e.g., ai j , bi j ). Vectors are denoted
by lower case letters (e.g., x, y). Greek letters α, β, . . . are reserved for scalars.

1.1.1 Matrix Algebra

The set of all real (complex) m × n matrices is denoted by Rm×n (Cm×n). If m = n,
then the matrix A is said to be square and of order n. A column vector is a matrix
consisting of just one column, and we write x ∈ R

m instead of x ∈ R
m×1. Similarly,

a row vector is a matrix consisting of one row.
The two fundamental matrix operations, from which everything else can be

derived, are addition and multiplication. The algebra of matrices satisfies the
postulates of ordinary algebra, with the exception of the commutativity law for
multiplication. The addition of two matrices A and B inRm×n (orCm×n) is a simple
operation. The sum, defined if and only if A and B have the same dimensions, is

2 Arthur Cayley (1821–1895), English mathematician, studied at Trinity College, Cambridge. He
worked as a lawyer before being appointed Sadleirian Professor of Pure Mathematics at Cambridge
in 1863. In 1858 he published “Memoir on the theory of matrices”, which contained the first abstract
definition of a matrix. Besides developing the algebra of matrices, his most important work was in
geometry and group theory.
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C = A + B, ci j = ai j + bi j . (1.1.2)

The product of a matrix A with a scalar α is the matrix

B = αA, bi j = αai j . (1.1.3)

The product of two matrices A and B is a more complicated operation. We start with
a special case, the product y = Ax of a matrix A ∈ R

m×n and a column vector
x ∈ R

n . The result is a vector y with components

yi =
n∑

k=1
aik xk, i = 1 :m.

That is, the i th component of y is the sum of products of the elements in the i th row
of A and the elements of the column vector x . Note that the number of elements in
x must match the number of elements in a row of A. This definition means that the
linear system

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

b1
b2
...

bm

⎞
⎟⎟⎟⎠ , (1.1.4)

can be written compactly in matrix-vector form as Ax = b.
The general rule for matrix multiplication follows from the requirement that if

z = Ay and y = Bx , then by substitution we should obtain

z = ABx = Cx, C = AB.

Clearly the product is defined if and only if the number of columns in A equals the
number of rows in B. The product of the matrices A ∈ R

m×n and B ∈ R
n×p is the

matrix

C = AB ∈ R
m×p, ci j =

n∑
k=1

aikbk j . (1.1.5)

Matrix multiplication is associative and distributive:

A(BC) = (AB)C, A(B + C) = AB+ AC,

but not commutative. The product BA in (1.1.5) is defined only if p = m, but even
then AB �= BA, in general. If AB = BA the matrices are said to commute.

The transpose xT of a column vector x is the row vector with the same entries.
The transpose AT of a matrix A = (ai j ) is the matrix that satisfies
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(Ax)T = xT AT , ∀x .

It is easy to show that if C = AT , then ci j = a ji . If A and B are matrices of the
same dimensions, then (A + B)T = BT + AT . If the product AB is defined, then

(AB)T = BT AT ,

i.e., the product of the transposed matrices in reverse order. The proof of this result
is left as an exercise for the reader. A square matrix A ∈ R

n×n is called symmetric
if AT = A and skew-symmetric if AT = −A.

A matrix D for which di j = 0 if i �= j is called a diagonal matrix. In particular,
the identity matrix of order n is

In = (δi j ), δi j =
{
1 if i = j,

0 if i �= j,
(1.1.6)

For a square matrix A ∈ C
n×n we have AIn = In A = A. The dimension of the

identity matrix will usually be clear from the context. Then we delete the subscript
and just write I .

If x ∈ R
n is a vector, then D = diag(x) ∈ R

n×n is the diagonal matrix formed
by the elements of x . Conversely x = diag(A) is the column vector formed by the
main diagonal of the matrix A. We also write

In = diag(e) = (e1, e2, . . . , en), (1.1.7)

where the vector e j is the j th column of the identity matrix. The dimension of these
vectors is assumed to be clear from the context. Hence, Ae j is the j th column and
eT

i A the i th row of the matrix A. By e without a subscript we mean the vector

e = (1, 1, . . . , 1)T , (1.1.8)

with all elements equal to one.
It is convenient to allow a matrix A ∈ R

m×n to be empty. Such a matrix has no
rows and/or no columns, i.e., mn = 0. This is as natural as allowing empty sums and
products in analysis. It often simplifies the description of algorithms and theorems.
For a rigorous treatment of the algebra of empty matrices, see de Boor [22, 1990].

A square matrix A ∈ R
n×n is said to be nonsingular if there exists an inverse

matrix denoted by A−1, with the property that

A−1A = AA−1 = I. (1.1.9)

If such amatrix exists, then it is unique and (A−1)−1 = A. If A and B are nonsingular
matrices and the product AB defined, then
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(AB)−1 = B−1A−1,

i.e., (AB)−1 is the product of the inverse matrices in the reverse order. If A is non-
singular, then its transpose is also nonsingular and (AT )−1 = (A−1)T . Since the
operations commute, we will denote this inverse by A−T .

An upper triangular matrix is a matrix U for which ui j = 0 whenever i > j and
has the form

U =

⎛
⎜⎜⎜⎝

u11 u12 . . . u1n

u22 . . . u2n
. . .

...

unn

⎞
⎟⎟⎟⎠ . (1.1.10)

If additionally uii = 0, i = 1:n, thenU is strictly upper triangular. Similarly, amatrix
L is lower triangular if li j = 0, i < j , and strictly lower triangular if also lii = 0,
i = 1 :n. Clearly the transpose of an upper triangular matrix is lower triangular and
vice versa.

A triangular matrix U = (ui j ) ∈ C
n×n is nonsingular if and only if all diagonal

elements uii , i = 1 :n, are nonzero. The diagonal elements of the productU = U1U2
of two triangular matrices are just the product of the diagonal elements in U1 and
U2. From this it follows that if U is nonsingular the diagonal elements in U−1 are
the inverses of the diagonal elements in U . Triangular matrices have several nice
properties. It is easy to verify that sums, products and inverses of square nonsingular
upper (lower) triangular matrices are again triangular matrices of the same type; see
Problems 1.1.8 and 1.1.9.

A matrix A ∈ R
m×n is called nonnegative, and we write A ≥ 0, if ai j ≥ 0 for

all i, j . Similarly, it is called positive, A > 0, if ai j > 0 for all i, j . If A and B
are nonnegative, then so is their sum A + B and product AB. Hence, nonnegative
matrices form a convex set. Non-negative matrices occur, for example, in the study
of convergence of iterative methods and in applications such as queuing theory,
stochastic processes, and input–output analysis.

The binary relations “>” and “≥” define partial orderings on the set of matrices
in R

m×n . We define A > B and B < A to mean the same thing as A − B > 0.
Similarly, A ≥ B and B ≤ A mean the same thing as A − B ≥ 0. This ordering is
transitive because if A ≤ B and B ≤ C , then A ≤ C .

It is rather obvious which rules for handling inequalities can be generalized
to this partial ordering in matrix spaces. Obviously there are cases where two
matrices cannot be compared by this relation. This can be well illustrated by vec-
tors in R2.

It is useful to define array operations carried out element by element on vectors
and matrices. Following the convention inMatlab, we denote array multiplication
and division by .∗ and ./, respectively. If A and B have the same dimensions, then

C = A . ∗ B, ci j = ai j bi j (1.1.11)
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is the Hadamard product. Similarly, if B has no zero elements, the matrix
C = A ./B is the matrix with elements ci j = ai j/bi j . For + and −, the array
operations coincide with the matrix operations, so no distinction is necessary.

1.1.2 Vector Spaces

Let v1, v2, . . . , vk be vectors in R
n or Cn and α1, α2, . . . , αk be scalars. Then all

vectors that can be written as a linear combination v = α1v1 + α2v2 + · · · + αkvk

form a vector space V and we write v ∈ span{v1, . . . , vk}. The vectors are linearly
independent if none of them is a linear combination of the others. Otherwise, if a
nontrivial linear combination of v1, . . . , vk is zero, the vectors are said to be linearly
dependent. Then at least one vector vi will be a linear combination of the rest.

Abasis in a vector spaceV is a set of linearly independent vectors v1, v2, . . . , vn ∈
V such that any vector v ∈ V can be expressed as a linear combination

v =
n∑

i=1
ξivi .

The scalars ξi are called the components or coordinates of v with respect to the basis
{vi }. If the vector space V has a basis of n vectors, then any other basis of V has the
same number n of elements. The number n is the dimension of V .

The linear space of column vectors x = (x1, x2, . . . , xn)T , where xi ∈ R, is
denoted by Rn ; if xi ∈ C, then it is denoted by Cn . The dimension of this space is n,
and the unit vectors

e1 = (1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T , . . . , en = (0, 0, . . . , 1)T

constitute the standard basis. Note that the components x1, x2, . . . , xn are the coor-
dinates when the vector x is expressed as a linear combination of the standard basis.
We shall use the same name for a vector as for its coordinate representation by a
column vector with respect to the standard basis.

A linear transformation from the vector space Cn to Cm is a mapping L such that

L(αu + βv) = αL(u)+ βL(v)

for all α, β ∈ C and u, v ∈ C
n . Let x and y be the column vectors representing

the vectors v and L(v), respectively, using the standard bases of the two spaces.
Then there is a unique matrix A ∈ C

m×n representing this transformation such that
y = Ax . This gives a link between linear transformations and matrices.

The rank of a matrix, rank (A), is the number of linearly independent columns
in A. A significant result in linear algebra says that this is the same as the number of
linearly independent rows of A. If A ∈ R

m×n , then rank (A) ≤ min{m, n}. We say
that A has full column rank if rank (A) = n and full row rank if rank (A) = m. If
rank (A) < min{m, n}, we say that A is rank-deficient.
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The Euclidean space is a linear space of column vectors where the inner product
of two vectors x = (xi ) and y = (yi ) in Rn is

〈x, y〉 = xT y =
n∑

i=1
xi yi = yT x . (1.1.12)

For complex vectors x and y in Cn the inner product is defined as

〈x, y〉 = x H y =
n∑

i=1
x̄i yi , x H = (x̄1, . . . , x̄n), (1.1.13)

where x̄i denotes the complex conjugate of xi . The inner product has the properties:

1. 〈x, y〉 = 〈y, x〉.
2. 〈x1 + x2, y〉 = 〈x1, y〉 + 〈x2, y〉.
3. 〈x, αy〉 = α〈x, y〉, for all complex or real scalars α.
4. 〈x, x〉 ≥ 0.

Furthermore, 〈x, x〉 = 0 implies that x = 0. The Euclidean norm of a real or
complex vector x is the nonnegative real number

〈x H x〉1/2 =
(

n∑
i=1
|xi |2
)1/2

. (1.1.14)

Other vector and matrix norms will be introduced in Sect. 1.1.7.
Two nonzero vectors x and y in C

n are said to be orthogonal if x H y = 0. The
acute angle between two vectors x and y is

θ = ∠(x, y) = arccos
|x H y|

‖x‖2 ‖y‖2 0 ≤ θ ≤ π/2. (1.1.15)

If u1, . . . , uk are vectors in C
n and u H

i u j = 0, i �= j , then u1, . . . , uk are said
to be pairwise orthogonal. If, in addition, ‖ui‖2 = 1, i = 1:k, the vectors form
an orthonormal set. It is easy to show that an orthogonal set of vectors is linearly
independent.

The conjugate transpose of a complex matrix A = (ai j ) is the matrix AH with
elements (ā j i ). It is easily verified that

(A + B)H = AH + B H , (AB)H = B H AH .

A basic property of the conjugate transpose is that

〈x, Ay〉 = 〈AH x, y〉,
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and AH is also called the adjoint of A. A square complex matrix A ∈ C
n×n is called

self-adjoint or Hermitian if AH = A, and skew-Hermitian if AH = −A.
A Hermitian matrix has analogous properties to a real symmetric matrix. The

product of two Hermitian matrices is Hermitian if and only if A and B commute,
i.e., AB = BA. A matrix A ∈ C

n×n is called normal if

AAH = AH A.

Clearly, a Hermitian matrix is normal. An arbitrary square matrix A = (ai j ) ∈ C
n×n

can be uniquely represented in the form A = S+ K , where S is Hermitian and K is
skew-Hermitian:

S = 1

2
(A + AH ), K = 1

2
(A − AH ). (1.1.16)

(If A is real, then S is symmetric and K skew-symmetric.)
Let u1, . . . , un ∈ C

n be orthonormal vectors. Then U = (u1, . . . , un) ∈ C
n×n

is a unitary matrix. By definition, U H U = I and hence U is nonsingular. From
(1.1.9) it follows that U−1 = U H and UU H = I . A unitary matrix is normal and
preserves the complex inner product:

〈U x, U y〉 = (U x)H U y = x H U H U y = x H y = 〈x, y〉.

In particular, the Euclidean length of a vector is invariant under unitary transfor-
mations: ‖U x‖22 = (x H U H U x) = ‖x‖22. A square matrix Q ∈ R

n×n for which
QT Q = I is called orthogonal.

A collection of subspaces S1, . . . ,Sk of Cn are said to be pairwise orthogonal if
for all i �= j ,

x ∈ Si , y ∈ S j ⇒ x H y = 0.

The orthogonal complement S⊥ of a subspace S ⊂ C
n is defined by

S⊥ = {y ∈ C
n| x H y = 0, x ∈ S}.

Any vector x ∈ C
n can be uniquely written as x = x1 + x2, where x1 ∈ S and

x2 ∈ S⊥. Here x1 is called the orthogonal projection of x onto S. Let u1, . . . , uk be
a unitary basis for a subspace S ⊂ C

n . This can always be extended to a full unitary
basis u1, . . . , uk, uk+1 . . . , un for Cn , such that S⊥ = span{uk+1, . . . , un}.

If A ∈ C
n×n is Hermitian, i.e., AH = A, then the quadratic form x H Ax is real.

Then A is called positive definite if

x H Ax > 0 ∀x ∈ C
n, x �= 0.

If x H Ax ≥ 0, then A is called positive semidefinite.



1.1 Elements of Matrix Theory 9

Often it is appropriate to work with a more general inner product, defined by

〈x, y〉 = x H By,

where B is a fixed positive definite matrix. In such an inner product space the adjoint
matrix A∗ is defined by the requirement that 〈Ax, y〉 = 〈x, A∗y〉 or x H AH By =
x H BA∗y. Hence, AH B = BA∗, i.e., the adjoint is given by A∗ = B−1AH B. The
matrix A is said to be self-adjoint if A = A∗.

1.1.3 Submatrices and Block Matrices

Let A ∈ R
m×n be a matrix. A matrix formed by the elements at the intersection of

a subset of the rows and a subset of the columns of A is called a submatrix. For
example, the matrices

(
a22 a24
a42 a44

)
,

(
a22 a23
a32 a33

)
,

are two different submatrices of A. The second submatrix is called a contiguous
submatrix because it is formed by contiguous elements of A.

Definition 1.1.1 Let A = (ai j ) ∈ R
m×n be a matrix and choose a subset I =

{i1, i2, . . . , i p} of the rows and J = { j1, j2, . . . , jp} of the columns such that

1 ≤ i1 ≤ i2 ≤ · · · ≤ i p ≤ m, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jq ≤ n.

Then the matrix

A(I, J ) =

⎛
⎜⎜⎜⎝

ai1 j1 ai1 j2 · · · ai1 jq
ai2 j1 ai2 j2 · · · ai2 jq

...
...

. . .
...

ai p j1 ai p j2 · · · ai p jq

⎞
⎟⎟⎟⎠ (1.1.17)

is called a submatrixof A. If p = q and ik = jk , k = 1:p, then B is a principal
submatrix of A. If in addition, ik = jk = k, k = 1 : p, then B is a leading principal
submatrix of A.

Let
E = (ei1 , ei2 , . . . ei p ), F = (e j1 , e j2 , . . . e jp ),

where the columns of E and F are columns of the identity matrices Im and In ,
respectively. An explicit expression for the submatrix (1.1.17) is ET AF.

It is often convenient to think of a matrix (vector) as being built up of contiguous
submatrices (subvectors) of lower dimensions. This can be achieved by partitioning
the matrix or vector into blocks. We write, e.g.,
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A =

⎛
⎜⎜⎜⎝

q1 q2 . . . qN

p1 A11 A12 · · · A1N

p2 A21 A22 · · · A2N
...

...
...

. . .
...

pM AM1 AM2 · · · AM N

⎞
⎟⎟⎟⎠, x =

⎛
⎜⎜⎜⎝

q1 x1
q2 x2
...

...

qM xM

⎞
⎟⎟⎟⎠, (1.1.18)

where Ai j is a matrix of dimensions pi × q j and x j is a vector of length q j . We call
the matrix A a block matrix. The partitioning can be carried out in many ways and
is often suggested by the structure of the underlying problem. For square matrices
the most important case is when M = N , and pi = qi , i = 1 :N . Then the diagonal
blocks Aii , i = 1 :N , are square matrices.

The great convenience of block matrices lies in the fact that the operations of
addition and multiplication can be performed by treating the blocks Ai j as non-
commuting scalars. Let A = (Aik) and B = (Bkj ) be two block matrices of block
dimensions M × N and N × P , respectively, where the partitioning corresponding
to the index k is the same for each matrix. Then we have C = AB = (Ci j ), where

Ci j =
N∑

k=1
Aik Bk j , 1 ≤ i ≤ M, 1 ≤ j ≤ P. (1.1.19)

Therefore, many algorithms defined for matrices with scalar elements have a simple
generalization for partitioned matrices, provided that the dimensions of the blocks
are such that the operations can be performed. When this is the case, the matrices
are said to be partitioned conformally.

The colon notation used in Matlab is very convenient for handling partitioned
matrices and will be used throughout this volume:

j :k is the same as the vector [ j, j + 1, . . . , k],
j :k is empty if j > k,
j : i :k is the same as the vector [ j, j + i, j + 2i, . . . , k],
j : i :k is empty if i > 0 and j > k or if i < 0 and j < k.

The colon notation is used to pick out selected rows, columns, and elements of vectors
and matrices, for example,

x( j :k) is the vector [x( j), x( j + 1), . . . , x(k)],
A(:, j) is the j th column of A,
A(i, :) is the i th row of A,
A(:, :) is the same as A,
A(:, j :k) is the matrix[A(:, j), A(:, j + 1), . . . , A(:, k)],
Assume that the matrices A and B are conformally partitioned into 2× 2 blocks.

Then
(

A11 A12
A21 A22

)(
B11 B12
B21 B22

)
=
(

A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
.
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Be careful to note that since matrix multiplication is not commutative, the order of
the factors in the products cannot be changed. In the special case of block upper
triangular matrices this reduces to

(
U11 U12
0 U22

)(
S11 S12
0 S22

)
=
(

U11S11 U11S12 +U12S22
0 U22S22

)
.

Note that the product is again block upper triangular and its block diagonal simply
equal the products of the diagonal blocks of the factors. More generally, a matrix U
is block upper triangular if it has the form

U =

⎛
⎜⎜⎜⎝

U11 U12 · · · U1N

U22 · · · U2N
. . .

...

UNN

⎞
⎟⎟⎟⎠ .

Other various special forms of matrices also have analogous block forms.

Example 1.1.1 Let L and U be 2 × 2 block lower and upper triangular matrices,
respectively:

L =
(

L11 0
L21 L22

)
, U =

(
U11 U12
0 U22

)
. (1.1.20)

Assume that the diagonal blocks are square and nonsingular, but not necessarily
triangular. Then L and U are nonsingular and their inverses are given by

L−1 =
(

L−111 0

−L−122 L21L−111 L−122

)
, U−1 =

(
U−1
11 −U−1

11 U12U−1
22

0 U−1
22

)
. (1.1.21)

These formulas can be verified by forming the products L−1L and U−1U and using
the rule for multiplying partitioned matrices. �

Sometimes a matrix A can be brought into block triangular form by a symmetric
permutation of rows and columns.

Definition 1.1.2 A matrix A ∈ R
n×n , n ≥ 2, is said to be reducible if for some

symmetric permutation of rows and columns the resulting matrix has the block
triangular form (

B C
0 D

)
, (1.1.22)

where B, and therefore D, are square submatrices. Otherwise A is called irreducible.

Equivalently, a matrix A ∈ R
n×n is reducible if there exists a partitioning of the

index set {1, 2, . . . , n} into two nonempty disjoint subsets S and T such that ai j = 0
whenever i ∈ S and j ∈ T . If A is irreducible, so is AT .
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1.1.3.1 Complex Arithmetic

Some programming languages, e.g., C, do not have complex arithmetic. Then it can
be useful to avoid complex arithmetic. This can be done by using an alternative
representation of the complex field, where a complex number a + ib is represented
by the 2× 2 skew-symmetric matrix

(
a −b
b a

)
= a

(
1 0
0 1

)
+ b

(
0 −1
1 0

)
. (1.1.23)

The sum and product of two matrices of the form (1.1.23) is again of the same form.
Multiplication is commutative

(
a1 −b1
b1 a1

)(
a2 −b2
b2 a2

)
=
(

a1a2 − b1b2 −(a1b2 + b1a2)
a1b2 + b1a2 a1a2 − b1b2

)
(1.1.24)

and the result is the representation of the complex number (a1 + ib1)(a2 + ib2).
Every nonzero matrix of this form is invertible and its inverse is again of the same
form. The matrices of the form (1.1.23) are therefore field isomorphic to the field of
complex numbers. Note that the complex scalar u = cos θ + i sin θ = eiθ on the
unit circle corresponds to the orthogonal matrix

(
cos θ − sin θ

sin θ cos θ

)
,

which represents a counter-clockwise rotation of angle θ .
Complex matrices and vectors can similarly be represented by real block matrices

with 2× 2 blocks. For example, the complex matrix A + iB ∈ C
m×n is represented

by a block matrix C̃ ∈ R
2m×2n , where the (i, j)th block element is

c̃i j =
(

ai j −bi j

bi j ai j

)
. (1.1.25)

The operations of addition and multiplication can be performed on block matrices by
the general rules of matrix addition and multiplication, treating the blocks as scalars.
It follows that these operations, as well as inversion, can be performed by operating
on the real representations of the complex matrices.

Example 1.1.2 Consider the complex linear system (A + iB)(x + iy) = c + id. If
we separate the real and imaginary parts we obtain the real linear system

C

(
x
y

)
=
(

c
d

)
, C =

(
A −B
B A

)
.

Here we have associated the complex matrix with a real matrix C which is related to
the previous matrix C̃ = (̃ci j ) by a permutation of rows and columns. The product
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of two such matrices is a block matrix with 2 × 2 blocks of the same structure.
In (1.1.25) the real part corresponds to the diagonal (symmetric) matrix ai j I2, the
imaginary part corresponds to the skew-symmetric part. �

1.1.4 Operation Counts in Matrix Algorithms

It is often of interest to know roughly how much arithmetic work is required in
different matrix operations. We consider here matrix addition and matrix multipli-
cation. If A ∈ R

m×n and B ∈ R
n×p, then the product C = AB is defined. It follows

from (1.1.5) that computing each of the mp elements ci j of C requires n multipli-
cations and n − 1 additions. In particular, multiplying two square matrices in R

n×n

requires n3 multiplications and n2(n − 1) additions, compared to n2 additions for
computing A + B.

If a product of more than two matrices is to be computed, the number of arith-
metic operations required depends on the ordering of the products. Let C ∈ R

p×q

and consider the triple product M = ABC ∈ R
m×q . This can be computed as (AB)C

or A(BC). The first option requires mp(n + q) multiplications, whereas the sec-
ond requires nq(m + p) multiplications. These numbers can be very different. For
example, if A and B are square n × n matrices and c ∈ R

n is a column vector, then
computing (AB)c requires n3+n2 multiplications, whereas A(Bc) only requires 2n2

multiplications. When n � 1 this makes a great difference.
In older textbooks a flop means roughly the amount of work associated with the

computation s := s + aikbk j , i.e., one floating-point addition and multiplication
and some related subscript computation. (Floating-point arithmetic is introduced in
Sect. 1.4.1.) In more recent textbooks a flop is defined as one floating-point operation
doubling most of the older flop counts. Stewart [183, 1998] uses flam (floating-point
addition and multiplication) to denote an “old” flop.3 It is usually ignored that on
many computers a scalar division is 5–10 times slower than a scalar multiplication.
Using the new convention, multiplying two square matrices of order n requires 2n3

flops. Amatrix-vectormultiplication y = Ax , where A ∈ R
n×n and x ∈ R

n , requires
2n2 flops.

Operation counts like these only give a rough appraisal of the work and one should
not assign too much meaning to their precise value. Usually lower order terms are
dropped. On modern computer architectures the communication costs in moving
data between different levels of memory or between processors in a network can
exceed the arithmetic costs by orders of magnitude. Often memory access patterns
are very important for minimizing the total costs. A flop count still provides useful
information and can serve as an initial basis for comparing different algorithms.
For example, the running time for multiplying two square matrices on a computer
roughly will increase cubically with n. Doubling n will approximately increase the
work by a factor of eight.

3 To add to the confusion, in computer literature flops means floating-point operations per second.
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When implementing a matrix algorithm, such as matrix multiplication, the com-
munication costs may be greatly influenced by the sequencing of the operations.
Also, computed quantities may overwrite data if these are not needed for future use.
To express such ambiguities in the description of matrix algorithms, it is important
to be able to describe computations in a more precise form. For this purpose, we will
use eitherMatlab , which is a widely spread programming environment for matrix
computation, or a sufficiently precise informal programming language, that allows
the suppression of cumbersome details.

Let A ∈ R
m×p and B ∈ R

p×n be two matrices. Then the elements of the matrix
product C = AB ∈ R

m×n can be expressed as inner products ci j = aT
i b j , where

aT
i = eT

i A is the i th row in A and b j = Be j the j th column in B. AMatlab script
expressing this can be formulated as

for i = 1:m

for j = 1:n

C(i,j) = A(i,1:p)*B(1:p,j);

end

end

Note that the use of the colon notation described on page 9.
If instead A is partitioned by columns and B by rows, then we can write

C = AB = (a1 a2 · · · ap)

⎛
⎜⎜⎜⎜⎜⎝

bT
1

bT
2
...

bT
p

⎞
⎟⎟⎟⎟⎟⎠
=

p∑
k=1

akbT
k , (1.1.26)

where each term in the sum of (1.1.26) is a rank-one matrix or outer product. A code
expressing this is

C = zeros(m,n);

for k = 1:p

C = C + A(:,k)*B(k,:);

end

Both these codes for matrix multiplications compute the mnp products aipbpj , but
in different orderings giving different memory access patterns.

1.1.5 Permutations and Determinants

A permutation p = {p1, p2, . . . , pn} is a mapping of the integers {1, 2, . . . , n}
onto itself. The set Sn of all permutations forms a group with n! elements. With p
we associate a permutation matrix P ∈ R

n×n , which is the matrix whose columns
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are the corresponding permutation of the columns of the identity matrix:

P = (ep1 , . . . , epn ).

A permutation matrix contains just one unit element in every row and every column.
Permutation matrices are orthogonal by construction, PTP = PPT = I and PT =
P−1 effects the reverse permutation. If P is a permutation matrix, then AP is the
matrix A with its columns permuted and PTA performs the same permutation on the
rows of A. If A is symmetric, then PT AP is also symmetric. The product of two
permutations p and q is the composition defined by

(pq)(i) = p(q(i)), i = 1 :n.

The corresponding permutation matrix is the matrix product PQ, where Q =
(eq1 , . . . , eqn ).

A transposition τ is a permutation that only interchanges two elements. The
transposition matrix

Ii j = (. . . , ei−1, e j , ei+1, . . . , e j−1, ei , e j+1, . . .), i < j,

is a special case of a permutationmatrix. From its construction it immediately follows
that I 2i j = I and hence I−1i j = Ii j . Any permutation can be decomposed into a
sequence of transpositions, P = Ii1, j1 Ii2, j2 · · · Iik , jk , but this decomposition is not
unique.

Apermutationmatrix P canbe representedby the integer vector p= (p1, . . . , pn),
and need never be explicitly stored. For example, the vector p = (2, 4, 1, 3) repre-
sents the permutation matrix

P =

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠ .

Permutations can easily be manipulated in Matlab. Let p be a row or column
vector of length n containing a permutation of 1 : n. Using the colon notation, this
permutation acts on the columns of a matrix A as A(:,p). Similarly, A(p,:)
performs the same permutation on the rows of A. The permutation matrix P corre-
sponding to p is I(:,p) and PT is I(p, :). Conversely, p is (1 :n) ∗ P or P′ ∗ (1 :n)′
(inMatlab X ′ is used for X H ).

Example 1.1.3 A permutation that has many important applications is the odd-even
permutation. For n = 8 the permutation vector is p = (1, 3, 5, 7, 2, 4, 6, 8).
The inverse permutation is the perfect shuffle, represented by q = (1, 5, 2,
6, 3, 7, 4, 8). �

Determinants arise in many areas of mathematics, such as combinatorial enu-
meration, graph theory, representation theory, statistics, and theoretical computer
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science.4 The classical definition of the determinant requires some elementary facts
about permutations, which we now state. Let α = {α1, α2, . . . , αn} be a permuta-
tion of the integers {1, 2, . . . , n}. The sign of a permutation is +1 or −1, according
to whether the minimum number of transpositions needed to achieve it is even or
odd, respectively. Clearly the sign of a transposition is −1. A transposition τ of any
permutation will change its sign.

Definition 1.1.3 The determinant of a square matrix A ∈ R
n×n is the scalar

det(A) =
∑
α∈Sn

sign(α) a1,α1a2,α2 · · · an,αn , (1.1.27)

where the sum is over all permutations of the set {1, 2, . . . , n} and sign(α) = ±1
according to whether α is an even or odd permutation.

Note that there are n! terms in (1.1.27) and each term contains exactly one factor
from each row and each column in A. For example, for n = 2 there are 2! = 2 terms
in the sum (1.1.27):

det

(
a11 a12
a21 a22

)
= a11a22 − a12a21.

From the definition it follows easily that

det(β A) = βn det(A), det(AT ) = det(A).

Let A ∈ R
m×n be a matrix and let I = {1, 2, . . . , m}, J = {1, 2, . . . , n}. Let

A(I1, J1), I1 ⊂ I , J1 ⊂ J , be a square submatrix of A. Then the determinant of
A(I1, J1) is called a minor of A. If A is a square matrix we can also consider the
determinant of the submatrix A(I2, J2), where I2 = I \ I1, J2 = J \ J1, i.e., thematrix
consisting of the row and columns that are not included in I1 and J1 and taken in the
order as they occur in A. For a square matrix A the determinants of its principal sub-
matrices play an important role. These are usually called the principal minors of A.

If we collect all terms in (1.1.27) that contain the element ars , these can be written
as ars Ars , where Ars is the cofactor of ars . Each such term cannot contain other
elements from row r and column s. Hence, Ars does not depend on the elements
in row r and column s. Since each term in (1.1.27) contains precisely one of the
elements ar1, ar2,…,arn in row r , it follows that

det(A) = ai1Ai1 + ai2Ai2 + · · · + ain Ain, i = 1 :n. (1.1.28)

4 Determinants of 3× 3 matrices were first introduced by Sati and Leibniz in 1683. Cramer 1750
gave the general rule for n× n matrices. In 1770 Laplace gave the expansion of a determinant now
named after him. The term “determinant” was coined by Gauss 1801 in a paper discussing quadratic
forms. A paper from 1812 by Cauchy is the most complete of the early works on determinants.
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This is the Laplace expansion along (or by) row i . It can be shown that

Ars = (−1)r+s Mrs, (1.1.29)

where Mrs is the determinant of the matrix of order n − 1 obtained by striking out
row r and column s in A. Since det(A) = det(AT ), it is clear that det(A) can also
be expanded along a column.

For a matrix A ∈ R
n×n another matrix, called the adjoint of A, can be formed:

adj (A) =

⎛
⎜⎜⎜⎝

A11 A21 · · · An1
A12 A22 · · · An2
...

...
. . .

...

A1n A2n · · · Ann

⎞
⎟⎟⎟⎠ . (1.1.30)

Here each element is replaced by its cofactor and the resulting matrix is transposed.
We now derive a relation between the adjoint and the inverse of A. If we form the
linear combination of elements from column j and the cofactors of column r , then

a1 j A1r + a2 j A2r + · · · + anj Anr =
{
0 if j �= r,

det(A) if j = r.
(1.1.31)

For j = r this is an expansion along column r of det(A). For j �= r the expression
is the expansion of the determinant of a matrix equal to A except that column r
is equal to column j . Such a matrix is singular and has determinant equal to 0. In
matrix form, (1.1.31) can be written A adj (A) = det(A) In . If A is nonsingular, then
it follows that

A−1 = 1

det(A)
adj (A). (1.1.32)

For example, for a 2× 2 matrix the inverse is

A−1 = 1

a11a22 − a12a21

(
a22 −a12
−a21 a11

)
. (1.1.33)

Theorem 1.1.1 If the matrix A is nonsingular, then the solution of the linear system
Ax = b can be expressed as

x j = det(B j )/ det(A), j = 1 :n. (1.1.34)

Here B j is the matrix A where column j has been replaced by the right-hand side
vector b.

Proof Take the i th equation in Ax = b,
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ai1x1 + ai2x2 + · · · + ain xn = bi ,

multiply by Air , and sum over i = 1 : n. Then by (1.1.31) the coefficients of x j ,
j �= r , vanish and we infer

det(A)xr = b1A1r + b2A2r + · · · + bn Anr .

The right-hand side equals det(Br ) expanded by its r th column, which proves
(1.1.34). �

The expression (1.1.34) is known as Cramer’s rule.5 Since it requires the eval-
uation of n + 1 determinants of order n, it is computationally very expensive. Even
for n = 2 it is numerically less stable than Gaussian elimination with pivoting; see
Higham [129, 2002], p. 13.

Property (ii) in Theorem 1.1.2 generalizes to block triangular matrices. If U is
block upper triangular with square diagonal blocks Uii , i = 1 :N , then

det(U ) = det(U11) det(U22) · · · det(UNN). (1.1.35)

Thus, U is nonsingular if and only if all its diagonal blocks are nonsingular. Since
det(L) = det(LT ), a similar result holds for a lower block triangular matrix.

The direct use of the definition (1.1.27) to evaluate det(A) would require about
nn! operations and rapidly becomes intractable as n increases. Amuchmore efficient
way to compute det(A) is by repeatedly using the following properties, which we
state without proof.

Theorem 1.1.2

(i) The value of det(A) is unchanged if a row (column) in A multiplied by a scalar
is added to another row (column).

(ii) The determinant of a triangular matrix equals the product of the elements in
the main diagonal, i.e., if U ∈ R

n×n is upper triangular, then

det(U ) = u11u22 · · · unn . (1.1.36)

(iii) If two rows or columns in A are interchanged, the value of det(A) is multiplied
by −1.

(iv) The product rule is det(AB) = det(A) det(B).

It will be shown in Sect. 1.2.2 that any nonsingular matrix A can be reduced to
triangular form with nonzero diagonal elements by a sequence of column permuta-
tions and row operations such as in (i). It follows that a matrix A is nonsingular if
and only if det(A) �= 0. Moreover, if Q is square and orthogonal, i.e., QT Q = I ,
then from (iv) it follows that

5 Named after the Swiss mathematician Gabriel Cramer (1704–1752).
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1 = det(QT Q) = det(QT ) det(Q) = (det(Q))2,

so det(Q) = ±1. If det(Q) = 1, then Q is said to represent a pure rotation.
The theory of determinants is covered in a monumental five volume work “The

Theory of Determinants in the Historical Order of Development” by Thomas Muir
(1844–1934).

1.1.6 The Schur Complement

It is often useful to partition a given linear system Mx = b in 2× 2 block form as

(
A B
C D

)(
x1
x2

)
=
(

b1
b2

)
.

If A is square and nonsingular, then the variables x1 can be eliminated by multiply-
ing the first block equations from the left by −CA−1 and adding the result to the
second block equation. (The matrix M need not be square.) This is equivalent to
block Gaussian elimination using the matrix A as pivot. The reduced system for x2
becomes

(D − CA−1B)x2 = b2 − CA−1b1. (1.1.37)

If the reduced system is solved for x2, then x1 can be obtained by solving the system
Ax1 = b1 − Bx2. We remark that a more refined partitioning of the original matrix
can be obtained by recursively partitioning the submatrices. This idea will be pursued
in more detail in Sect. 1.6.3.

The matrix

S = [M/A] ≡ D − CA−1B (1.1.38)

is called the Schur complement6 of A in M . The Schur complement was so named
by Emilie Haynsworth in 1968 because of a lemma in Schur [176, 1917]. For a
historical account of the Schur complement, see [214, 2005].

The elimination step can also be effected by premultiplying the matrix by a block
lower triangular matrix

(
I 0

−CA−1 I

)(
A B
C D

)
=
(

A B
0 S

)
.

This gives a factorization of M as the product of a block lower and a block upper
triangular matrix

6 Issai Schur (1875–1941) was born in Russia, but studied at the University of Berlin, where he
became full professor in 1919. Schur is mainly known for his fundamental work on the theory of
groups, but he worked also in the field of matrices.
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M =
(

A B
C D

)
=
(

I 0
CA−1 I

)(
A B
0 S

)
. (1.1.39)

If A and S are nonsingular, then so is M , and from M−1 = (LU )−1 = U−1L−1,
using the formulas (1.1.21) for the inverses of 2×2 block triangular matrices follows
the Banachiewicz inversion formula.7 If A and M in (1.1.39) be invertible, then

M−1 =
(

A−1 −A−1BS−1
0 S−1

)(
I 0

−CA−1 I

)

=
(

A−1 + A−1BS−1CA−1 −A−1BS−1
−S−1CA−1 S−1

)
. (1.1.40)

This inversion formula is useful mainly for theoretical purposes, e.g., in the pertur-
bation analysis of solutions to least squares problems.

Assuming that D is nonsingular, M can also be factored as the product of a block
upper and a block lower triangular matrix

M =
(

I BD−1
0 I

)(
T 0
C D

)
, T = A − BD−1C, (1.1.41)

where T is the Schur complement of D in M . (This is equivalent to block Gaussian
elimination in reverse order.) If also T is nonsingular, then the following alternative
expression for M−1 can be derived:

M−1 =
(

T−1 −T−1BD−1
−D−1CT−1 D−1 + D−1CT−1BD−1

)
. (1.1.42)

Let A and D be square nonsingular matrices and let B and C be matrices of
appropriate dimensions. If (A − BD−1C) is nonsingular, then equating the (1, 1)
blocks in the inverse M−1 in (1.1.40) and (1.1.42), we obtain:

(A − BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1, (1.1.43)

This identity is often called the Woodbury formula, although it appeared in several
papers before Woodbury’s report [211, 1950].

It is well-known that anymatrix in E ∈ R
n×n of rank p can be written as a product

E = BD−1C , where B ∈ R
n×p and C ∈ R

p×n . (The factor D−1 ∈ R
p×p has been

added for convenience.) Hence, the Woodbury formula gives an expression for the
inverse of a matrix A after it has been modified by a matrix of rank p. It can be useful
in situations where p � n. Suppose, e.g., that it is required to solve a modified linear
system,

7 Tadeusz Banachiewicz (1882–1954) was a Polish astronomer and mathematician. In 1919 he
became director of Krakow (Cracow) Observatory. In 1925 he developed a special kind of matrix
algebra for “Cracovians” that brought him international recognition.
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(A − BD−1C)x̂ = b, B, CT ∈ R
n×p, (1.1.44)

where the matrix has been modified by a correction of rank p. Using the Woodbury
formula, we have

x̂ = (A − BD−1C)−1b = x + A−1B(D − CA−1B)−1Cx (1.1.45)

where x = A−1b is the solution to the unmodified system. This formula requires
computing the solution W = A−1B of the linear system AW = B. The correction
to x is then obtained by solving the small linear system

(D − CW )z = Cx,

of size p × p, and forming W z. If p � n and a factorization of A is known this
scheme can be very efficient.

In the special casewhere p = 1 and D = σ �= 0 is a nonzero scalar, theWoodbury
formula (1.1.43) becomes

(
A − σ−1uvT

)−1 = A−1 + 1

α
A−1uvT A−1, α = σ − vT A−1u �= 0, (1.1.46)

where u, v ∈ R
n . This formula is known as the Sherman–Morrison formula (see

[177, 1949]). From (1.1.46) it follows that the modified matrix is nonsingular if
and only if σ �= vT A−1u. Let x be the solution to the modified linear system(

A − σ−1uvT
)

x = b. From the Sherman–Morrison formula, we obtain

x = A−1b + β A−1u, β = vT (A−1b)

σ − vT A−1u
, (1.1.47)

Example 1.1.4 From (1.1.35) it follows that for the 2×2 block matrix M in (1.1.39)
it holds that

det(M) = det(A) det(D − CA−1B) = det(A) det([M/A]). (1.1.48)

It follows that if A is nonsingular, then M is nonsingular if and only if the Schur
complement [M/A] is nonsingular. In the special case of a rank-one correction,
D−1 = σ , B = x , and C = yT , this gives

det(A − σ xyT ) = det(A)(1− σ yT A−1x). (1.1.49)

This shows that det(A − σ xyT ) = 0 if σ = 1/yT A−1x , a fact that is useful for the
solution of eigenvalue problems. �
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It should be stressed that the Woodbury and Sherman–Morrison formulas cannot
be expected to be numerically stable and should be used with caution. Expressions
like A−1B and CA−1 should not be interpreted literally, but as solutions X and Y to
the linear systems AX = B and AT Y T = CT , respectively. These systems can then
be solved by various methods giving rise to different implementations.

The history of Banachiewicz inversion formula, introduced in 1937, is reviewed
in Henderson and Searle [125, 1981]. Hager [118, 1989] surveys the applications of
the Woodbury and the Sherman–Morrison formulas. The related Wedderburn rank
reduction (see Problem 1.1.11) is discussed in Chu et al. [40, 1995] from the point
of view of solving linear systems of equations.

1.1.7 Vector and Matrix Norms

In perturbation theory as well as in the analysis of errors in matrix computation it
is useful to have a measure of the size of a vector or a matrix. Such measures are
provided by vector and matrix norms, which can be regarded as generalizations of
the absolute value function on R and C.

Definition 1.1.4 A vector norm is a function C
n → R, denoted by ‖ · ‖, which

satisfies the following three conditions:

1. ‖x‖ > 0 ∀x ∈ C
n, x �= 0 (definiteness)

2. ‖αx‖ = |α| ‖x‖ ∀α ∈ C, x ∈ C
n (homogeneity)

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ C
n (triangle inequality)

The triangle inequality is often used in the form ‖x ± y‖ ≥ ∣∣ ‖x‖ − ‖y‖ ∣∣.
The concept of norm in a vector space was first developed by Minkowski

[156, 1911] using convex bodies.8He also introduced the concept of a dual norm.
Banach [8, 1922] developed the notion of normed linear spaces, which today are
called Banach spaces. A modern treatment of vector and matrix norms is given by
Householder [134, 1964], Chap. 2.

The most common vector norms are special cases of the family of Hölder norms
or 
p-norms:

‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p, 1 ≤ p <∞. (1.1.50)

The three most important particular cases are p = 1, 2, and the limit when p →∞:

8 Hermann Minkowski (1864–1909) was born in Alexotas, Russian Empire (now Kaunas,
Lithuania). He studied mathematics in Königsberg where he became close friends with David
Hilbert. In 1887 he obtained a professorship at Bonn and four years later he was appointed to ETH,
Zürich, where Einstein attended several of his lectures. In 1902 he accepted a chair at Göttingen.
Minkowski’s earlier work had been in quadratic forms and continued fractions, but in Göttingen
he started to work on problems in mathematical physics. He developed a new view of space and
time as a four-dimensional non-euclidean space. This provided a mathematical framework for the
theory of electrodynamics and relativity.
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‖x‖1 = |x1| + · · · + |xn|,
‖x‖2 = (|x1|2 + · · · + |xn|2)1/2 = (x H x)1/2, (1.1.51)

‖x‖∞ = max
1≤i≤n

|xi |.

The vector 
2-norm is also called the Euclidean norm. It is invariant under unitary
transformations, because if Q is unitary, then

‖Qx‖22 = x H Q H Qx = x H x = ‖x‖22.

The proof that the triangle inequality is satisfied for the 
p-norms rests upon the
following inequality: If p > 1 and q satisfy 1/p + 1/q = 1, then

αβ ≤ α p

p
+ βq

q
.

Indeed, let x and y be any real numbers and λ satisfy 0 < λ < 1. Then by the
convexity9 of the exponential function,

eλx+(1−λ)y ≤ λex + (1− λ)ey .

We obtain the desired result by setting λ = 1/p, x = p logα and y = q logβ.
Another important property of the 
p-norms is the Hölder inequality

|x H y| ≤ ‖x‖p‖y‖q ,
1

p
+ 1

q
= 1, p ≥ 1. (1.1.52)

For p = q = 2 this becomes the well-known Cauchy–Schwarz inequality

|x H y| ≤ ‖x‖2‖y‖2.

Another special case is p = 1, for which we have

|x H y| =
∣∣∣∣

n∑
i=1

x̄i yi

∣∣∣∣ ≤
n∑

i=1
|x̄i yi | ≤ max

i
|yi |

n∑
i=1
|xi | = ‖x‖1‖y‖∞. (1.1.53)

Definition 1.1.5 For any given vector norm ‖ · ‖ on C
n , the dual norm ‖ · ‖D is

defined by

‖x‖D = max
y �=0 |x

H y|/‖y‖. (1.1.54)

9 A function f (x) is convex on a convex set S if for any x1 and x2 in S and any λ with 0 < λ < 1,
we have f (λx1 + (1− λ)x2) ≤ λ f (x1)+ (1− λ) f (x2).
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The vectors in the set {y ∈ C
n | ‖y‖D‖x‖ = yH x = 1} are said to be dual vectors

to x with respect to ‖ · ‖.
It can be shown that the dual of the dual norm is the original norm (see [186, 1990],

TheoremII.1.12). It follows from Hölder’s inequality that the dual of the 
p-norm is
the 
q -norm, where

1

p
+ 1

q
= 1.

The dual of the 
2-norm can be seen to be itself. The 
2-norm can be shown to be the
only norm with this property (see Horn and Johnson [132, 1985]), Theorem5.4.16.

Let G be a Hermitian positive definite matrix. Then (x, Gy) = (x, y)2,G :=
x H Gy has the usual properties of a scalar product and

‖x‖G = (x, x)
1/2
2,G := (x H Gx)1/2 (1.1.55)

defines a vector norm. It can be shown that the unit ball {x : ‖x‖2,G ≤ 1} corre-
sponding to this norm is an ellipsoid. Hence, (1.1.55) is called an elliptic norm. For
this norm a generalized Cauchy–Schwarz inequality holds:

|(x, y)2,G | ≤ ‖x‖2,G‖y‖2,G .

Other useful generalized norms are the scaled 
p-norms, defined by

‖x‖p,D = ‖Dx‖p, D = diag(d1, . . . , dn), di �= 0, i = 1 :n. (1.1.56)

All norms on C
n , n <∞, are equivalent in the following sense: For each pair of

norms ‖ · ‖ and ‖ · ‖′ there are positive constants c and c′ such that

1

c
‖x‖′ ≤ ‖x‖ ≤ c′‖x‖′ ∀x ∈ C

n . (1.1.57)

In particular, for the 
p-norms it can be shown that

‖x‖q ≤ ‖x‖p ≤ n(1/p−1/q)‖x‖q , 1 ≤ p ≤ q ≤ ∞. (1.1.58)

For example, for p = 2 and q = ∞ we obtain

‖x‖∞ ≤ ‖x‖2 ≤ √n‖x‖∞.

We now consider matrix norms. Given a vector norm, a norm for A ∈ C
m×n can

be constructed by setting

‖A‖ = sup
x �=0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖. (1.1.59)
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(Note that the vectors in the numerator and denominator above may have different
dimensions.) This norm is called theoperator norm, or thematrix norm subordinate
to the given vector norm. From the definition it follows directly that

‖Ax‖ ≤ ‖A‖ ‖x‖ ∀x ∈ C
n . (1.1.60)

Whenever this inequality holds, we say that the matrix norm is compatible with the
vector norm.

It is an easy exercise to show that operator norms are submultiplicative, i.e.,
whenever the product AB is defined one has that

‖AB‖ ≤ ‖A‖ ‖B‖. (1.1.61)

Explicit expressions for the matrix norms subordinate to the vector 
p-norms are
known only for p = 1, 2,∞.

Theorem 1.1.3 For A ∈ C
m×n the subordinate matrix norms for p = 1, 2, and

∞ are

‖A‖1 = max
1≤ j≤n

m∑
i=1
|ai j |, (1.1.62)

‖A‖2 = max‖x‖=1(x H AH Ax)1/2 ≡ σ1(A), (1.1.63)

‖A‖∞ = max
1≤i≤m

n∑
j=1
|ai j |. (1.1.64)

Proof To prove the result for p = 1 we partition A = (a1, . . . , an) by columns. For
any x = (x1, . . . , xn)T �= 0 we have

‖Ax‖1 =
∥∥∥∥

n∑
j=1

x j a j

∥∥∥∥
1
≤

n∑
j=1
|x j |‖a j‖1 ≤ max

1≤ j≤n
‖a j‖1‖x‖1.

It follows that ‖Ax‖1/‖x‖1 ≤ max
1≤ j≤n

‖a j‖1 = ‖ak‖1 for some 1 ≤ k ≤ n. But then

‖Aek‖1 = ‖ak‖1 = max
1≤ j≤n

‖a j‖1,

and hence ‖A‖1 ≥ max
1≤ j≤n

‖a j‖1. This implies (1.1.62). The formula (1.1.64) for the

matrix 
∞-norm is proved in a similar fashion. �

The 
2-norm, also called the spectral norm, equals the largest singular value
σ1(A) of A; see Theorem 1.1.6. For p = 1 and p = ∞, the subordinate matrix
norms are easily computable. Note that the 
1-norm is the maximal column sum and
the 
∞-norm is the maximal row sum of the magnitude of the elements. It follows
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that ‖A‖1 = ‖AH‖∞. A useful expression for the∞-norm which follows directly
from th definition is

‖A‖∞ = ‖ |A|e ‖∞, e = (1, 1, . . . , 1)T . (1.1.65)

The spectral norm is a useful analytical tool, but expensive to compute. Since the
nonzero singular values of A and AH are the same, it follows that ‖A‖2 = ‖AH‖2.
If λ is an eigenvalue of A, then there is a vector x �= 0 such that Ax = λx . Thus, for
any compatible pair of matrix and vector norms

|λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖,

Hence, for any eigenvalueλ of A it holds that |λ| ≤ ‖A‖. Since ‖A‖22 = λmax(AH A),
we obtain an upper bound for the matrix 
2-norm:

‖A‖2 ≤ (‖AH‖1‖A‖1)1/2 = (‖A‖∞‖A‖1)1/2, (1.1.66)

which is cheap to evaluate.
Matrix norms can also be obtained by noting that the space Cm×n is isomorphic

to the space Cmn . Hence, for a matrix A ∈ C
m×n , we can use a norm for the vector

consisting of the mn components of the matrix A. The Frobenius norm10 is derived
from the vector 
2-norm:

‖A‖F =
(
trace(AH A)

)1/2 =
( m∑

i=1

n∑
j=1
|ai j |2
)1/2

. (1.1.67)

Here trace(A) denotes the sum of the diagonal elements of A. Note that ‖AH‖F =
‖A‖F . The Frobenius norm shares with the 
2-norm the property if invariance under
unitary (orthogonal) transformations, i.e., if P and Q are unitary matrices, then

‖QAP‖ = ‖A‖. (1.1.68)

Such norms are called unitarily invariant; see also Theorem 1.1.7. They have an
interesting history; see Stewart and Sun [186, 1990].

The Frobenius norm is submultiplicative, but bounds derived in terms of the
Frobenius norm are often not as sharp as one would like. The bounds

‖A‖2 ≤ ‖A‖F ≤
√

r‖A‖2, r = rank (A) ≤ min{m, n}, (1.1.69)

10 Ferdinand George Frobenius (1849–1917), German mathematician, received his doctorate at
University of Berlin, supervised by Weierstrass. In 1875 he took up a position as professor at ETH,
Zürich. He remained there until 1892, when he succeeded Kronecker in Berlin, where to became
the leading mathematician. His contributions to linear algebra include fundamental results in the
theory of irreducible matrices. Issai Schur was Frobenius’ doctoral student.
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which are the best possible (‖In‖F = n1/2) follow from the expressions (1.1.97).
Numbers γpq such that ‖A‖p ≤ γpq‖A‖q , where A ∈ C

m×n and rank (A) = r , are
given in Table1.1.

Definition 1.1.6 A vector norm is called absolute if ‖x‖ = ‖|x |‖, and monotone
if |x | ≤ |y| ⇒ ‖x‖ ≤ ‖y‖.

Clearly, the vector 
p-norms are absolute for all 1 ≤ p < ∞. For a matrix norm
subordinate to an absolute vector norm it holds that

D = diag(d1, . . . , dn) ⇒ ‖D‖ = max
i
|di |.

It can be shown that these three properties are equivalent; see Householder
[134, 1964], Sect. 2.3. Of the matrix norms, the 
1, 
∞, and the Frobenius norms
are absolute. For the 
2-norm the best result is

‖|A|‖2 ≤
√
min{m, n} ‖A‖2, A ∈ C

m×n .

One use of norms is in the study of limits of sequences of vectors and matrices.
We say that an infinite sequence of vectors in Cn ,

xk = (ξ
(k)
1 , ξ

(k)
2 , . . . , ξ (k)

n ), k = 1, 2, . . . , (1.1.70)

converges to a vector x = (ξ1, ξ2, . . . , ξn), and write limk→∞ xk = x , if each
component converges limk→∞ ξ

(k)
i = ξi , i = 1 :n. The sequence is said to converge

normwise if for some vector norm ‖ · ‖ on C
n it holds that

lim
k→∞‖xk − x‖ = 0.

For a finite-dimensional vector space it follows from the equivalence of norms
that convergence is independent of the choice of norm. The particular choice
‖ · ‖∞ shows that convergence of vectors in C

n is equivalent to convergence of
the n sequences of scalars formed by the components of the vectors. By considering
matrices in C

m×n as vectors in C
mn the same conclusion holds for matrices. We

define the limit of a sequence of matrices as follows.

Table 1.1 Numbers γpq such
that ‖A‖p ≤ γpq‖A‖q , where
A ∈ C

m×n and rank (A) = r

p\q 1 2 ∞ F

1 1
√

m m
√

m

2
√

n 1
√

m
√

mn

∞ n
√

n 1
√

n

F
√

n
√

r
√

m 1
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Definition 1.1.7 An infinite sequence of matrices A1, A2, . . . is said to converge to
a matrix A, lim

n→∞ An = A, if

lim
n→∞‖An − A‖ = 0.

An infinite sum of matrices is defined by

∞∑
k=0

Bk = lim
n→∞ Sn, Sn =

n∑
k=0

Bk .

In a similar manner we can define limz→∞ A(z), A′(z), etc., for matrix-valued
functions of a complex variable z ∈ C.

Theorem 1.1.4 If ‖ · ‖ is any matrix norm and
∑∞

k=0 ‖Bk‖ is convergent, then∑∞
k=0 Bk is convergent.

Proof The proof follows from the triangle inequality ‖∑n
k=0 Bk‖ ≤ ∑n

k=0 ‖Bk‖
and the Cauchy condition for convergence. (Note that the converse of this theorem
is not necessarily true.) �

An approximate inverse of a matrix A = I − B can sometimes be computed from
a matrix series expansion. To derive this we form the product

(I − B)(I + B + B2 + B3 + · · · + Bk) = I − Bk+1.

Suppose that ‖B‖ < 1 for some matrix norm. Then it follows that

‖Bk+1‖ ≤ ‖B‖k+1 → 0, k →∞,

and hence the Neumann expansion.11

(I − B)−1 = I + B + B2 + B3 + · · · , (1.1.71)

converges to (I − B)−1. Note the similarity with the Maclaurin series for (1− x)−1.
A more rapidly converging expansion is the Euler expansion

(I − B)−1 = (I + B)(I + B2) · · · (I + B2k
) = I + B+ B2+ · · ·+ B2k+1−1+ · · · .

(1.1.72)

11 John von Neumann was born János Neumann in Budapest in 1903, and died in Washington
D.C. in 1957. He studied under Hilbert in Göttingen (1926–1927), was appointed professor at
Princeton University in 1931, and in 1933 joined the newly founded Institute for Advanced Studies
in Princeton. He built a framework for quantum mechanics, worked in game theory, and was one
of the pioneers of computer science. His contributions to modern numerical analysis are surveyed
by Grcar [114, 2011].
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1.1.8 Eigenvalues

Of central importance in the study of matrices A ∈ C
n×n are the special vectors

x whose directions are not changed when multiplied by A. These vectors are the
nontrivial solutions to the linear homogeneous system

(A − λI )x = 0, x �= 0. (1.1.73)

A nontrivial solution exists if and only if A − λI is singular, or equivalently
det(A − λI ) = 0. Then the scalar λ is an eigenvalue and x an eigenvector of
A. The pair (λ, x) is said to be an eigenpair of A. Eigenvalues give information
about the behavior of evolving systems governed by a matrix or operator. Eigenval-
ues and eigenvectors are standard tools in the mathematical sciences and in scientific
computing. They also play an important part in the analysis of many numerical
methods.

The eigenvalues λ of a matrix A ∈ C
n×n are the roots of the characteristic

equation

pA(λ) = det(λI − A) =

∣∣∣∣∣∣∣∣∣

λ− a11 −a12 · · · −a1n

−a21 λ− a22 · · · −a2n
...

...
. . .

...

−an1 −an2 · · · λ− ann

∣∣∣∣∣∣∣∣∣
= 0. (1.1.74)

The determinant can be expanded to give the explicit polynomial equation

pA(λ) = λn + cn−1λn−1 + · · · + c1λ+ c0 = 0, (1.1.75)

where the polynomial pA(λ) of degree n is the characteristic polynomial. If λ is
an eigenvalue, then the corresponding eigenvectors are the nonzero solutions to the
homogeneous linear system (1.1.73). Note that, even if A is real, its eigenvalues and
eigenvectors may be complex.

By the fundamental theorem of algebra, the matrix A has exactly n eigenvalues
λi , i = 1 : n, counting multiple roots according to their multiplicities. The set
{λ1, . . . , λn} of all eigenvalues of A is called the spectrum12 of A, and is denoted by
(A). If λ is an eigenvalue of A, then any nonzero solution x to the homogeneous
linear system (A − λI )x = 0 is an eigenvector corresponding to λ. Similarly, any
nonzero vector y �= 0 such that

yH (A − λI ) = 0, y �= 0. (1.1.76)

is called a left eigenvector of A. Accordingly, x may be called a right eigenvector of
A. Taking the conjugate transpose of (1.1.76) shows that y is also a right eigenvector
to AH with eigenvalue λ̄.

12 From the Latin verb specere meaning “to look”.
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Clearly, the eigenvectors are only determined up to a multiplicative constant.
Usually the right eigenvectors are normalized so that ‖x‖2 = 1. The correspond-
ing left eigenvector is often normalized so that yH x = 1. For a Hermitian matrix
AH = A, and thus λ = λ, i.e., λ is real. In this case the left and right eigenvectors
can be chosen to coincide.

Expanding the determinant in (1.1.74) we can write the characteristic polyno-
mial as

pA(λ) = (λ− a11)(λ− a22) · · · (λ− ann)+ q(λ), (1.1.77)

where q(λ) is a polynomial of degree at most n − 2. We also have

pA(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn) = λn + cn−1λn−1 + · · · + c1λ+ c0.

From (1.1.77) it follows that det(A) = c0 and trace(A) = a11 + a22 + · · · + ann =
−cn−1. Using the relations between the roots and the coefficients of an algebraic
equation, we obtain the relations

trace(A) = λ1 + λ2 + · · · + λn, (1.1.78)

det(A) = λ1λ2 · · · λn . (1.1.79)

These relations are very useful for checking the accuracy of computed eigenvalues.
Two quantities play an important part in the convergence analysis for iterative

methods and linear differential equations.

Definition 1.1.8 Let A ∈ C
n×n have eigenvalues λi , i = 1 : n. Then the spectral

radius ρ(A) and the spectral abscissa α(A) are

ρ(A) = max
1≤i≤n

|λi | and α(A) = max
i
�(λi ). (1.1.80)

Any eigenvalue λ for which |λ| = ρ(A) is called a dominant eigenvalue and the
corresponding eigenvector is called a dominant eigenvector.

Lemma 1.1.1 Let ρ(A) = maxi |λi (A)| be the spectral radius of A. Then for any
compatible matrix norm it holds that

ρ(A) ≤ ‖A‖. (1.1.81)

Proof If λ is an eigenvalue of A, then there is a nonzero vector x such that λx = Ax .
Taking norms we get |λ| ‖x‖ ≤ ‖A‖‖x‖. Dividing by ‖x‖ gives the result. �

Theorem 1.1.5 Let the matrix A ∈ C
n×n be Hermitian: AH = A. Then, counting

multiplicities, A has n real eigenvalues λi , i = 1 : n, with pairwise orthogonal
eigenvectors:

Aui = λi ui , u H
i u j = 0, i �= j. (1.1.82)
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If all eigenvalues of A are distinct, then the eigenvectors are uniquely determined
up to a scaling.

Proof The proof is postponed until Sect. 3.1.3. In Theorem 3.1.10 all matrices
diagonalizable by a unitary similarity are characterized. �

By Theorem 1.1.5 a Hermitian matrix A has an eigenvalue decomposition

A = UU H , (1.1.83)

whereU ∈ C
n×n is a unitary matrix and is real. To an eigenvalue λi of multiplicity

m > 1, there corresponds an invariant subspace of dimension m. The eigenvectors
associated with λi can be arbitrarily chosen as any orthogonal set of m vectors that
span this space.

Krylov subspaces, named after A. N. Krylov,13 play a fundamental role in several
methods for solving both linear systems and eigenvalue problems.

Definition 1.1.9 Given a matrix A ∈ R
n×n , let v ∈ R

n be any nonzero vector.
Then the sequence of vectors v, Av, A2v, A3v, . . . is called a Krylov sequence. The
corresponding Krylov subspaces are

Kk(A, v) = span{v, Av, . . . , Ak−1v}, k = 1, 2, . . . , (1.1.84)

and Kk(A, v) = (v, Av, . . . , Ak−1v
)
is the related Krylov matrix.

The sequence of Krylov subspaces for k = 1 : n is nested, i.e., Kk(A, v) ⊆
Kk+1(A, v). In any Krylov sequence there will be a first vector that is expressible as
a linear combination of the preceding ones. If k = p is the smallest integer such that

Kk+1(A, v) = Kk(A, v), (1.1.85)

then the Krylov sequence terminates for k = p and there is a polynomial

ψ(λ) = ψ1 + ψ2λ+ · · · + ψpλ
p−1 + λp

of degree p, for which ψ(A)v = 0. The polynomial is said to annihilate v and to
be minimal for v. Since AKp(A, v) ⊂ Kp(A, v), it follows that Kp(A, v) is an
invariant subspace of dimension p. Conversely, if the vector v lies in an invariant
subspace of A of dimension p, then its Krylov sequence terminates for k = p. We
say that the grade of v with respect to A is p.

The Krylov subspaces satisfy the following easily verified invariance properties:

1. Scaling: Km(β A, αv) = Km(A, v), α �= 0, β �= 0.
2. Translation: Km(A − μI, v) = Km(A, v).

13 Aleksei Nikolaevich Krylov (1863–1945), Russian mathematician, joined the department of
ship construction at the Maritime Academy of St. Petersburg. In 1931 he found a new method for
determining the frequency of vibrations in mechanical systems using these subspaces.

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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3. Similarity: Km(U−1AU, U−1v) = U−1Km(A, v).

Property 3 implies that in the Hermitian case Krylov subspaces can be studied using
real diagonal matrices.

1.1.9 The Singular Value Decomposition

The singular value decomposition (SVD) is one of the most important and useful
matrix decompositions in linear algebra. The SVD gives a real diagonal form of a
real (or complex)matrix A under an unitary (orthogonal) equivalence transformation.
Although considerablymore expensive to compute than other commonly usedmatrix
decompositions, it provides a great deal more useful information about the matrix
and enables the solution of a wide variety of matrix problems.

Theorem 1.1.6 (Singular Value Decomposition) Every matrix A ∈ C
m×n of rank r

can be written as

A = U�V H = (U1 U2
) (�1 0

0 0

)(
V H
1

V H
2

)
, (1.1.86)

where U ∈ C
m×m, V ∈ C

n×n are unitary matrices, U1 ∈ C
m×r , V1 ∈ C

n×e, and

�1 = diag(σ1, σ2, . . . , σr ) ∈ R
r×r (1.1.87)

is a real nonnegative diagonal matrix. Here σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are called the
singular values of A. (Note that if r = n and/or r = m, some of the zero submatrices
in � are empty.) If we write

U = (u1, . . . , um), V = (v1, . . . , vn),

then ui , i = 1:m, and vi , i = 1 : n, are called left and right singular vectors,
respectively.

Proof Let f (x) = ‖Ax‖2 = (x H AH Ax)1/2 be the Euclidean length of the vector
y = Ax , and set σ1 := max‖x‖2≤1{ f (x) | x ∈ C

n}. Since f (x) is a real-valued
convex function defined on a convex, compact set, the maximum is attained at an
extreme point of the set (see, e.g., Ciarlet [41, 1989], Sect. 7.4). Let v1, ‖v1‖2 = 1
be a vector such that σ1 = ‖Av1‖. If σ1 = 0 then A = 0, and (1.1.86) holds with
� = 0, and U and V arbitrary unitary matrices. Therefore, assume that σ1 > 0, and
set u1 = (1/σ1)Av1 ∈ C

m , ‖u1‖2 = 1. Let the matrices

V = (v1, Ṽ1) ∈ C
n×n, U = (u1, Ũ1) ∈ C

m×m

be unitary. (Recall that it is always possible to extend a unitary set of vectors to a
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unitary basis for the whole space.) From Ũ H
1 Av1 = σ1Ũ H

1 u1 = 0, it follows that

A1 ≡ U H AV =
(

σ1 wH

0 B

)
,

where wH = u H
1 AṼ1 and B = Ũ H

1 AṼ1 ∈ C
(m−1)×(n−1). Hence,

∥∥∥∥A1

(
σ1
w

)∥∥∥∥
2
=
∥∥∥∥
(

σ1 wH

0 B

)(
σ1
w

)∥∥∥∥
2
≥ σ 2

1 + wH w.

Since UA1y = AVy = Ax , where U and V are unitary, we have

σ1 = max‖x‖2=1
‖Ax‖2 = max‖y‖2=1

‖A1y‖2.

It follows that

σ1(σ
2
1 + wH w)1/2 ≥

∥∥∥∥A1

(
σ1
w

)∥∥∥∥
2
.

Combining these two inequalities gives σ1 ≥ (σ 2
1 + wH w)1/2, which shows that

w = 0. The proof can now be completed by an induction argument on the smallest
dimension min(m, n). �

The SVD is closely related to two Hermitian eigenvalue problems. Let A =
U�V H be the SVD of a matrix A ∈ C

m×n . It is no restriction to assume that m ≥ n,
since otherwise we can consider AH . Then

AHA = V �T �V H and AAH = U��T U H (1.1.88)

are the eigenvalue decompositions of the Hermitian matrices AHA and AAH . It fol-
lows that the singular values σi of A equal the positive square roots of the eigenvalues
of AHA and AAH .

From (1.1.86) it follows that the SVD can be written in the compact form

A = U1�1V H
1 =

r∑
i=1

σi uiv
H
i . (1.1.89)

Here the last sum expresses A as a sum of r = rank (A) matrices of rank-one.
The geometrical significance of this theorem is as follows. The rectangular matrix

A represents a mapping from C
n to C

m . The theorem shows that there is a unitary
basis in each of these two spaces, with respect to which this mapping is represented
by a real diagonal matrix�. If A ∈ R

m×n , thenU and V are real orthogonal matrices.
The singular values of A are uniquely determined. The singular vector v j , j ≤ r ,

is unique (up to a factor of modulus unity) if σ j is a simple singular value. For
multiple singular values the corresponding singular vectors can be chosen as any
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orthonormal basis for the unique subspace they span. From

Av j = σ j u j , AH u j = σ jv j , j = 1 :r. (1.1.90)

it follows that once the singular vectors v j , 1 ≤ j ≤ r , have been chosen, the vectors
u j , 1 ≤ j ≤ r , are uniquely determined, and vice versa.

Definition 1.1.10 Let A ∈ C
m×n be a matrix of rank r = rank (A) ≤ min(m, n).

The range (or column space) of A is the subspace

R(A) = {y ∈ C
m | y = Ax, x ∈ C

n} (1.1.91)

of dimension r ≤ min{m, n}. The null space (or kernel) of A is the subspace of
dimension n − r defined by

N (A) = {x ∈ C
n| Ax = 0}. (1.1.92)

The SVD of a matrix A gives orthogonal bases for the four fundamental subspaces
of the matrix A:

R(A) = R(U1), N (AH ) = R(U2), (1.1.93)

R(AH ) = R(V1), N (A) = R(V2). (1.1.94)

From this follows a central result of linear algebra:

R(A)⊕N (AH ) = C
m, R(AH )⊕N (A) = C

n . (1.1.95)

Unitarily invariantmatrix norms interact nicelywith theEuclidean geometry ofCn

and are therefore important in many applications. Such norms can be characterized
in terms of singular values; see von Neumann [161, 1937].

Theorem 1.1.7 Let ‖ · ‖ be a unitarily invariant norm. Then ‖A‖ is a function of
the singular values,

‖A‖ = �(σ1, . . . , σn).

which is symmetric, i.e., invariant under permutations of its arguments.

Proof Let the singular value decomposition of A be A = U�V H . Then the
invariance implies that ‖A‖ = ‖�‖, which shows that �(A) depends only on �.
Since the ordering of the singular values in� is arbitrary,�must be symmetric in σi ,
i = 1 :n. �

The converse of Theorem 1.1.7 was also proved by von Neumann. Any function
�(σ1, . . . , σn) which is symmetric in its arguments and satisfies the three properties
in Definition 1.1.4 of a vector norm defines a unitarily invariant matrix norm. Such
functions are called symmetric gauge functions. Perhaps the most important class
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of unitarily invariant matrix norms are the Schatten norms

‖A‖ =
( r∑

i=1
σ

p
i

)1/p

, r = min{m, n}, 1 ≤ p <∞. (1.1.96)

These are obtained by taking the 
p-norm of the vector of singular values of A. For
p = 2 we get the Frobenius norm, and letting p →∞ gives the spectral norm

‖A‖2 = σ1, ‖A‖F = (σ 2
1 + · · · + σ 2

r )1/2, r = rank (A). (1.1.97)

A norm of increasing importance in applications is the nuclear norm (or Ky Fan’s
norm), which corresponds to p = 1:

‖A‖∗ =
r∑

i=1
σi (1.1.98)

The SVD dates back more than a century. Beltrami [14, 1873]14 derived the SVD
for a real, square, nonsingular matrix having distinct singular values. A year later
Jordan [138, 1874] independently published a derivation of the SVD that handled
multiple singular values. Jordan also stated avariational characterizationof the largest
singular value as the maximum of a function. Picard [166, 1809] seems to have been
the first to call the numbers σi singular values. Autonne [7, 1913] extended the SVD
to complex matrices and Eckart and Young [78, 1936] to rectangular matrices. The
use of the SVD in numerical computations was not practical until the late 1960s,
when an efficient and stable algorithm developed by Golub and Kahan ([109, 1965]
and Reinsch [110, 1970]) became available.

Exercises
1.1.1 Show that if A, B ∈ R

n×n are symmetric, then AB+ BA also has this property.
1.1.2 (a) Let A ∈ R

m×p , B ∈ R
p×n , and C = AB. Show that the column space of C is a

subspace of the column space of A, and the row space of C is a subspace of the row
space of B.

(b) Show that the ranks of a sum and of a product of two matrices satisfy

rank (A + B) ≤ rank (A)+ rank (B),

rank (AB) ≤ min{rank (A), rank (B)}.
1.1.3 Let C = A + iB be a nonsingular complex matrix. Show that C−1 = A1 + iB1,

A1 = (A + BA−1B)−1, B1 = A−1BA1 = A1BA−1. (1.1.99)

1.1.4 The complex unitary matrix U = Q1 + iQ2 and its conjugate transpose U H = Q1 − iQ2
can be represented by the real matrices

14 Eugenio Beltrami (1835–1900) studied applied mathematics in Pavia and Milan. In 1864 he was
appointed to the chair of geodesy at the University of Pisa and from 1866 on he was professor of
rational mechanics in Bologna. In 1873 he moved to Rome and after three years he went back to
Pavia. Beltrami made major contributions to the differential geometry of curves and surfaces.
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Ũ =
(

Q1 −Q2
Q2 Q1

)
, Ũ T =

(
Q1 Q2
−Q2 Q1

)
.

Show that Ũ and Ũ T are orthogonal.
1.1.5 To solve a linear system Ax = b, A ∈ R

n×n , by Cramer’s rule requires the evaluation
of n + 1 determinants of order n (see (1.1.34)). Estimate the number of multiplications
needed for n = 50 if the determinants are evaluated in the naive way. Estimate the time it
will take on a computer performing 109 floating-point operations per second.

1.1.6 (a) Show that if A ∈ C
n×n , then | det(A)| = σ1 · · · σn , i.e., the product of the singular

values.
(b) Use the result in (a) to show that det(A) can be interpreted as the volume of the

parallelepiped formed by the row vectors of A.
1.1.7 Which of the following relations are universally correct?

(a) N (B) ⊂ N (AB),
(b) N (A) ⊂ N (AB),
(c) N (AB) ⊂ N (A),
(d) R(AB) ⊂ R(B),
(e) R(AB) ⊂ R(A),
(f) R(B) ⊂ R(AB).

1.1.8 (a) Show that if a matrix T is both triangular and unitary, then T must be diagonal.
(b) Show that if T1 ∈ R

n×n and T2 ∈ R
n×n are upper triangular, then their product T1T2

is upper triangular.
1.1.9 (a) Show that the inverse of an upper triangular square matrix U is upper triangular, if it

exists. Is the same true for lower triangular matrices?
(b) Show that if U ∈ R

n×n is strictly upper triangular, then U n = 0.
1.1.10 Show that if I − AB is nonsingular, then

(I − AB)−1 = I + A(I − BA)−1B.

1.1.11 Suppose that A ∈ R
n×n is nonsingular and f, g ∈ R

n . Show that with u = A f and v = Ag,
it follows from the Sherman–Morrison formula that

rank (A − σ−1 A f gT A) < n ⇐⇒ σ − gT A f = 0.

Note: This is a special case of the stepwise rank reduction procedure by Wedderburn.
1.1.12 (a) Show that for x ∈ R

n , limp→∞ ‖x‖p = max1≤i≤n |xi |.
(b) Prove that the following inequalities are valid and best possible:

‖x‖2 ≤ ‖x‖1 ≤ n1/2‖x‖2, ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

Derive similar inequalities for the operator norms ‖A‖1, ‖A‖2, and ‖A‖∞.
1.1.13 Show the any vector norm satisfies the inequality

| ‖x‖ − ‖y‖ | ≤ ‖x − y‖, x, y ∈ R
n,

and therefore is uniformly continuous.
1.1.14 Show that for any matrix norm there exists a compatible vector norm.

Hint: Take ‖x‖ = ‖xyT ‖ for any vector y ∈ R
n , y �= 0.

1.1.15 Derive the formula for ‖A‖∞ given in Theorem 1.1.3.
1.1.16 Prove that for any subordinate matrix norm,

‖A + B‖ ≤ ‖A‖ + ‖B‖, ‖AB‖ ≤ ‖A‖‖B‖.
1.1.17 Let ρ(AT A) be the spectral radius of AT A. Use the result
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‖A‖22 = ρ(AT A) ≤ ‖AT A‖,
valid for any matrix operator norm ‖ · ‖, to deduce the upper bound in (1.1.66).

1.1.18 Show the following useful property of the trace function:

trace(AB) = trace(BA), (1.1.100)

1.1.19 Let L be a strictly lower triangular matrix. Prove that the Neumann and Euler expansions
for (I − L)−1 are finite.

1.1.20 (a) Let ‖ ·‖ be a vector norm and T a nonsingular matrix. Show that the function N (x) =
‖T x‖ is a vector norm. What is the matrix norm subordinate to N (x)?

(b) Let N (x) = maxi |wi xi | be a vector norm, where wi are arbitrary positive weights.
What is the subordinate matrix norm?

1.2 Gaussian Elimination Methods

The closer one looks, the more subtle and remarkable Gaussian elimination appears.

—LloydN. Trefethen, Threemysteries of Gaussian elimination. SIGNUMNewsletter, 1985.

The history of elimination methods for solving linear systems of equations goes
back at least to Chinese mathematicians about 250 BC. But until the advent of
computers in the 1940s, there was no practical experience of solving large linear
systems. Even though the mathematical theory is simple and algorithms have been
known for centuries, decisive progress has been made in the last decades. Gaussian
Elimination (GE) is named after Carl Friedrich Gauss (1777–1855). Gauss invented
a notation for elimination that was used for over one hundred years. His main interest
was to solve so called “normal equations” coming from least squares problems.

In the early days of the computer era, many leading mathematicians were pes-
simistic about the numerical stability of GE. It was argued that the growth of roundoff
errors wouldmake it impractical to solve even systems of fairlymoderate size. By the
early 1950s experience had revealed that this pessimism was unfounded. In 1951 a
symposium on “Simultaneous Linear Equations and Determination of Eigenvalues”
was held at the highly influential, but short lived, Institute for Numerical Analysis
in Los Angeles. One of the principal papers was delivered by George Forsythe.15

Forsythe assembled a list of around 500 references [84, 1953], which brought order
into an area that before had none.

The emphasis in this chapter will be on real systems of equations and complex
Hermitian systems, because these occur most commonly in applications. Nearly all
given algorithms can readily be generalized to the complex case.

15 George E. Forsythe (1917–1972), American mathematician, graduated from Brown University
in 1939. As a meteorologist, he became interested in numerical analysis and computing and in 1948
he joined the Institute for Numerical Analysis at UCLA. In 1957 he took up a position at Stanford
University as a professor of mathematics. One of his PhD students was Cleve Moler, who later
invented Matlab. At this time computer science was hardly thought of as a special discipline.
Forsythe became president of the Association of Computing Machinery. In 1961 he created the
Computer Science Department at Stanford University, which under his leadership had a profound
influence on the development of the subject.
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1.2.1 Solving Triangular Systems

Consider a linear system U x = b, where U is upper triangular:

U =

⎛
⎜⎜⎜⎝

u11 u12 · · · u1n

0 u22 · · · u2n
...

. . .
. . .

0 · · · 0 unn

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

b1
b2
...

bn

⎞
⎟⎟⎟⎠ , (1.2.1)

where uii �= 0, i = 1 : n. Such triangular systems are important, because many
methods for solving linear systems involve the solution of systems of this type.

In an upper triangular linear system the last equation only contains the unknown
xn . When xn is known the next to last equation can be solved for xn−1. Continuing
in this way the solution x can be computed recursively by back substitution:

xn = bn/unn xi =
(

bi −
n∑

k=i+1
uik xk

)/
uii , i = n − 1 :1. (1.2.2)

Clearly solving a triangular system requiresn divisions and
∑n

i=1(i−1) = n(n−1)/2
additions and multiplications. Less precisely it takes about n2 flops. A Matlab
implementation is given in Algorithm 1.2.1.

Algorithm 1.2.1 (Back Substitution) Given an upper triangular matrix U ∈ R
n×n

and a vector b ∈ R
n , the following algorithm computes x ∈ R

n such that U x = b.

function x = trisc(U,b)

% TRISC solves the upper triangular system

% Ux = b by back substitution

% -----------------------------------------

n = length(b);

x(n) = b(n)/U(n,n);

for i = n-1:(-1):1

s = U(i,i+1:n)*x(i+1:n);

x(i) = (b(i) - s)/U(i,i);

end

The transpose of an upper triangular matrix is lower triangular. The solution of a
lower triangular linear system Ly = c, where

L =

⎛
⎜⎜⎜⎜⎝

l11 0 · · · 0

l21 l22
. . .

...
...

...
. . . 0

ln1 ln2 . . . lnn

⎞
⎟⎟⎟⎟⎠

,
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can similarly be computed in forward order by forward substitution:

y1 = c1/u11 yi =
(

ci −
i−1∑
k=1

lik yk

)/
lii , i = 2 :n. (1.2.3)

Note that if U is upper triangular, then the permuted matrix obtained by reversing
the order of rows and columns is lower triangular. More generally, any linear system
Ax = b, where A is a permuted triangular matrix, can be solved by a permuted
backsubstitution. It is easy to check if a given matrix is a permuted triangular matrix
by looking at its zero structure. Most non-triangular matrices fail the test almost
immediately and therefore it is worthwhile to check this.

Algorithm1.2.1 is the inner product version for solving a triangular systembyback
substitution in which the elements in U are accessed in row-wise order. By changing
the order of the two loops above we obtain Algorithm 1.2.2, where the elements
in U are accessed in column-wise order. Such differences can greatly influence the
efficiency of matrix algorithms. Which version is to be preferred depends on several
factors. In general, the orientation of the algorithm should agree with the storage
scheme used by the implementation.

Algorithm 1.2.2 (Back Substitution)

function x = trisr(U,b)

% TRISR solves the upper triangular system

% Ux = b by back substitution

% -----------------------------------------

n = length(b); x = b;

for k = n:-1:1

x(k) = x(k)/U(k,k);

x(1:k-1) = x(1:k-1) - U(1:k-1,k)*x(k);

end

In programming languages that store arrays column-wise, such as Fortran, the
second version is to be preferred. But in C, which stores arrays row-wise, the first
version should be preferred. For some further comments on the efficient implemen-
tation of matrix algorithms, see Sect. 1.6.

1.2.2 Gaussian Elimination and LU Factorization

Consider a linear system Ax = b, where A ∈ R
n×n , b ∈ R

n . A fundamental
observation is that the following elementary operation can be performed on the
system without changing the set of solutions:

• Adding a multiple of the i th equation to the j th equation.
• Interchanging two equations.



40 1 Direct Methods for Linear Systems

These row operations should be carried out on the augmented matrix (A, b) with
the right-hand side included. It is also permissible to interchange two columns in A
provided we make the corresponding interchanges in the components of the solution
vector x . We say that the modified system is equivalent to the original system.

The idea behind GE is to use elementary operations in a systematic way in order
to eliminate unknowns in equations so that at the end an equivalent upper triangular
system is produced, which can be solved by back substitution.

The algorithm has n − 1 steps, yielding a sequence of systems A(k)x = b(k),
k = 1 : n, where we set A(1) = A and b(1) = b. In the first step the unknown x1 is
eliminated from the last n − 1 equations. Assuming that a(1)

11 �= 0, this is done by

for i = 2 : n subtracting the multiple li1 = a(1)
i1 /a(1)

11 of the first equation from the
i th equation. This produces a reduced system of n− 1 equations in n− 1 unknowns
x2, . . . , xn , where the new entries are given by

a(2)
i j = a(1)

i j − li1a(1)
1 j , b(2)

i = b(1)
i − li1b(1)

1 , i, j = 2 :n.

All following steps are similar. If a(k)
kk �= 0, then in step k the unknown xk can be

eliminated from the last n− k equations from the previous step. In the algorithm the
elements in A(k) and b(k) are transformed according to

a(k+1)
i j = a(k)

i j − lika(k)
k, j , lik = a(k)

ik /a(k)
kk , i, j = k + 1 :n, (1.2.4)

and

b(k+1)
i = b(k)

i − likb(k)
k , i = k + 1 :n. (1.2.5)

After the kth step, A(k) and the right-hand side b(k) are transformed into

A(k) =
(

A(k)
11 A(k)

12

0 A(k)
22

)
, b(k) =

(
b(k)
1

b(k)
2

)
,

where A(k)
11 ∈ R

k×k) is upper triangular. If this elimination process can be carried
out to completion, then after n − 1 steps an upper triangular system A(n)x = b(n) is
obtained. If a(n)

nn �= 0, this can be solved by back substitution.
The diagonal elements a(1)

11 , a(2)
22 , . . . , a(n)

nn that appear during the elimination are
called pivots. Let Ak denote the kth leading principal submatrix of A. Since the
determinant of a matrix does not change under row operations, it follows that

det(Ak) = a(1)
11 · · · a(k)

kk , k = 1 :n.

This implies that all pivotsa(i)
i i , i = 1 :n, inGEare nonzero if andonly if det(Ak) �= 0,

k = 1 :n. In particular, the determinant of A is given by
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det(A) = a(1)
11 a(2)

22 · · · a(n)
nn . (1.2.6)

Indeed, GE is the most efficient algorithm for evaluating the determinant of A.
underflow, so it is preferable to compute the logarithm of det(A).

If a zero pivot a(k)
kk = 0 is encountered for some k ≤ n, then the elimination

cannot proceed. For a square and nonsingular matrix A, the first k columns are
linearly independent. This must also be true for the first k columns of the reduced
matrix. Hence, at least one element in the kth column must be nonzero. Assume that
a(k)

pk �= 0. Then, by interchanging rows k and p, this element can bemoved into pivotal
position and the elimination can proceed. Note that when rows are interchanged in A,
the same interchanges must be made in the elements of the vector b. The determinant
formula (1.2.6) must be modified to read

det(A) = (−1)sa(1)
11 a(2)

22 · · · a(n)
nn , (1.2.7)

where s denotes the total number of row interchanges performed during the
elimination.

We nowdrop the assumption that A is a square nonsingularmatrix. Let A ∈ R
m×n ,

and assume that a zero pivot a(k)
kk = 0 is encountered. If there is a nonzero element in

the submatrix A(k)
i j , say a(k)

pq �= 0, p, q ≥ k, this can be brought into pivotal position
by interchanging rows k and p and columns k and q. (Note that when columns are
interchanged in A the same interchangesmust bemade in the elements of the solution
vector x .) Otherwise, if the entire submatrix is zero, then rank (A) = k − 1, and the
elimination stops.

Theorem 1.2.1 Let A ∈ R
m×n, b ∈ R

m and set r = rank (A). Then the linear
system Ax = b can be transformed in r − 1 steps of GE with row and column
interchanges into an equivalent system A(r) x̂ = b(r), where

A(r) =
(

A(r)
11 A(r)

12

0 0

)
, b(r) =

(
b(r)
1

b(r)
2

)
. (1.2.8)

Here A(r)
11 ∈ R

r×r is an upper triangular matrix with nonzero diagonal elements.
The blocks of zeros in A(r) have dimensions (m − r) × r and (m − r) × (n − r).
In the regular case, i.e., when A is square and nonsingular, there is unique solution
for any right-hand side.

Alinear system is said to be consistent ifb ∈ R(A), or equivalently rank (A, b) =
rank (A) ≤ min{m, n}. Otherwise the system is said to be inconsistent. Clearly, the
system is consistent if and only if b(r)

2 = 0 in the reduced form (1.2.8).

1. Assume that the system is consistent and r < n. Then there are infinitely many
solutions, for which the first r components of the (possibly permuted) solution
vector x are uniquely defined. Arbitrary values can be assigned to the last n − r
components. Such a system is said to be underdetermined.
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2. If the system is inconsistent there is no solution. Such a system is said to be
overdetermined. We have to be content with an approximate solution such that
the residual vector r = b − Ax is small in some sense.

If the calculations are done in exact arithmetic, the reduced trapezoidal form
(1.2.8) yields the (mathematical) rank of the matrix A and answers the question
whether the given system is consistent or not. In practice, when floating-point arith-
metic is used, results are contaminated by roundoff errors. Then it can be difficult to
decide if a pivot or an element in the transformed right-hand side should be consid-
ered to be zero or not. A pivot that is zero in exact arithmetic will almost invariably
be polluted by roundoff errors into a small nonzero number. Therefore, the numer-
ical rank assigned to a matrix must depend on some tolerance, which reflects the
error level in the data and/or the precision of the floating-point arithmetic used; see
Sect. 2.4.1.

To find the numerical rank and solve underdetermined or overdetermined systems
of equations, methods based on orthogonal transformations such as the SVD should
be preferred. Such methods are treated in Chap.2. In the rest of this chapter it is
assumed that matrices are nonsingular.

We now consider the implementation of GE as described by Eqs. (1.2.4)–(1.2.5).
Algorithm 1.2.3 uses GE to reduce a nonsingular linear system Ax = b to upper
triangular form U x = c. It is assumed that all pivots a(k)

kk , k = 1 :n, are nonzero. The
multipliers are stored in the unit lower triangular matrix L .

Algorithm 1.2.3 (Gaussian Elimination)

function [L,U,c] = gauss1(A,b);

% GAUSS1 reduces a nonsingular linear system Ax = b

% to upper triangular form Ux = c. L is unit lower

% triangular matrix containing the multipliers.

% ---------------------------------------------------

n = length(b); L = eye(n);

for k = 1:n-1

% Compute the multipliers.

for i = k+1:n

L(i,k) = A(i,k)/A(k,k);

% Eliminate x(k) from remaining equations.

for j = k+1:n

A(i,j) = A(i,j) - L(i,k)*A(k,j);

end

% Perform the same operations on b

b(i) = b(i) - L(i,k)*b(k);

end

end

U = triu(A); c = b;

http://dx.doi.org/10.1007/978-3-319-05089-8_2
http://dx.doi.org/10.1007/978-3-319-05089-8_2
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In step k of GE (n − k)2 multiplications and additions and n − k divisions are
required to transform the elements of A. Transforming the elements of b requires
n−k multiplications and additions. Summing over k and neglecting low-order terms,
we find that GE requires

n−1∑
k=1

2(n − k)2 ≈ 2n3/3 flops.

An important observation is that if the multipliers are saved, then the operations
on the right-hand side b can be deferred to a later stage. This observation is important
as it shows that when solving a sequence of linear systems Axi = bi , i = 1 : p, with
the same matrix A but different right-hand sides, the operations on A only have to be
carried out once. Each new right-hand side then requires additional

∑n−1
k=1 2(n−k) ≈

n2 flops. Except for very small values of n, the reduction ofA to triangular form will
dominate the work. This conclusion is not valid for banded or sparse systems; see
Sects. 1.5 and 1.7, respectively.

According to (1.2.4), in step k the elements a(k)
i j i, j = k + 1 :n are modified by

the rank-one matrix ⎛
⎜⎝

lk+1,k
...

ln,k

⎞
⎟⎠
(

a(k)
k+1,k · · · a(k)

n,k

)
.

We remark that when the multiplier li,k is computed, the element a(k)
i,k becomes zero

and no longer takes part in the elimination. Thus, memory space can be saved by
storing the multipliers in the lower triangular part of the matrix A. The efficiency of
the Algorithm 1.2.3 can be improved if these observations are incorporated. Then
the two innermost loops are written as

for k = 1:n-1

ij = k+1:n;

A(ij,k) = A(ij,k)/A(k,k);

A(ij,ij) = A(ij,ij) - A(ij,k)*A(k,ij);

b(ij) = b(ij) - A(ij,k)*b(k);

end

The modified matrix A and vector b are returned, from which one can obtain

U = triu(A); L = eye(n) + tril(A,-1); c = b;

The ordering of the three nested loops that occur in GE is somewhat arbitrary.
By reordering, 3 · 2 · 1 = 6 variants are obtained. Each will perform the same basic
operation
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a(k+1)
i j = a(k)

i j −
a(k)

k j a(k)
ik

a(k)
kk

, (1.2.9)

but in a different order. The version given above uses row operations and may be
called the “ki j” variant, where k refers to step number, i to row index, and j to
column index. This version is not suitable for languages in which matrix elements
are stored and accessed sequentially by columns. In such a language the form “k ji”
should be preferred, which is the column oriented variant of Algorithm 1.2.3; see
Problem 1.2.5. Note that although we have described GE as using row operations,
as (1.2.9) shows, there is complete symmetry between rows and columns.

1.2.3 LU Factorization and Pivoting

Since the 1950s and early 1960s the so-called decompositional approach to matrix
computation has come into favor. A prime example is GE, which can be interpreted
as a factorization of a matrix A as the product of a unit lower triangular matrix L
and an upper triangular matrix U : the LU factorization.16

Assume that A ∈ R
n×n and that GE can be carried out without pivoting. We will

show that GE can be interpreted as the factorization A = LU . Depending onwhether
the element ai j lies on or above or below the principal diagonal, we have

a(n)
i j =
{
· · · = a(i+1)

i j = a(i)
i j , i ≤ j,

· · · = a( j+1)
i j = 0, i > j,

where a(1)
i j = ai j . Thus, the elements ai j are transformed according to

a(k+1)
i j = a(k)

i j − lika(k)
k j , k = 1 : p, p = min(i − 1, j). (1.2.10)

If these equations are summed for k = 1 : p, we obtain
p∑

k=1
(a(k+1)

i j − a(k)
i j ) = a(p+1)

i j − ai j = −
p∑

k=1
lika(k)

k j .

This can also be written

ai j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a(i)
i j +

i−1∑
k=1

lika(k)
k j , i ≤ j;

0 +
j∑

k=1
lika(k)

k j , i > j,

. (1.2.11)

16 The first to interpret GE as triangular factorization seems to have been Banachiewicz in 1937.
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or, if we define lii = 1, i = 1 :n,

ai j =
r∑

k=1
likuk j , ukj = a(k)

k j , r = min(i, j). (1.2.12)

These equations are equivalent to the matrix equation A = LU , where L = (lik) is
lower triangular and U = (ukj ) is upper triangular, i.e., the LU factorization of A.
Since the unit diagonal elements in L need not be stored, L and U can be stored in
an array of the same dimensions as A.

Although the LU factorization is just a different interpretation of GE, it turns out
to have important conceptual advantages. It divides the solution of a linear system
into two independent steps:

1. The factorization P A = LU .
2. Solution of the systems Ly = Pb and U x = y.

As shown in Theorem 1.2.1. if A is square and nonsingular, then GE can always
be carried through provided row interchanges are allowed. We shall see that pivoting
is also needed to ensure the numerical stability of GE. This is according to a basic
rule of numerical computation that says: if a zero element causes an algorithm to
break down, then a loss of accuracy can be expected for a small nonzero element.
This is related to the fact that in floating-point computation the difference between
a zero and a small nonzero number is fuzzy.

Example 1.2.1 Consider the 2× 2 linear system

(
ε 1
1 1

)(
x1
x2

)
=
(
1
0

)
.

For ε �= 1 this is nonsingular and has the unique solution

x1 = −x2 = −1/(1− ε).

Suppose ε = 10−6 is accepted as pivot in GE. Multiplying the first equation by
106 and subtracting from the second we obtain (1 − 106)x2 = −106. By rounding
this could give x2 = 1, which is correct to six digits. But computing x1 by back
substitution gives 10−6x1 = 1− 1, or x1 = 0, which is completely wrong. �

This simple example illustrates that in general it is necessary to perform row
interchanges when a pivot that is small compared to other elements in the same
column is encountered. The most common pivot strategy is partial pivoting. At the
kth stage, let pk be the smallest integer for which

|a(k)
pk ,k
| = max

k≤i≤n
|a(k)

ik |. (1.2.13)

Then rows k and pk are interchanged and a(k)
pk ,k

is used as pivot.
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We now look at how the LU factorization has to be modified when partial pivoting
is incorporated.Note that these interchanges involve previously computedmultipliers
li j . At completion of the elimination, we have obtained lower and upper triangular
matrices L and U . We now make the important observation that these are the same
triangular factors that are obtained if we first carry out the row interchanges k ↔ pk ,
k = 1 :n− 1 on the original matrix A to get a matrix P A, where P is a permutation
matrix, and then perform GE on P A without any interchanges. This means that
GE with row interchanges computes the LU factors of P A. We now summarize the
results and prove the uniqueness of the LU factorization.

Theorem 1.2.2 (LU Factorization) Let A ∈ R
n×n be a given nonsingular matrix.

Then there is a row permutation P such that GE on the matrix Ã = P A can be
carried out without pivoting, giving the factorization P A = LU, where L = (li j )

is a unit lower triangular matrix and U = (ui j ) an upper triangular matrix. For a
fixed P, the factorization is uniquely determined.

Proof Suppose there are two factorizations P A = L1U1 = L2U2. Since P A is
nonsingular, so are the factors and hence L−12 L1 = U2U−1

1 . The left-hand matrix is
the product of two unit lower triangularmatrices and is therefore unit lower triangular,
while the right-hand matrix is upper triangular. It follows that both sides must equal
the identity matrix. Hence, L2 = L1 and U2 = U1. �

We remark that sometimes it is advantageous to write the LU factorization in the
form

A = LDU, (1.2.14)

where both L and U are unit triangular and D is diagonal. This makes it clear that
LU factorization (and therefore GE) is symmetric with respect to rows and columns.
If A = LDU, then AT = U T DLT is the unique LDU factorization of AT . AMatlab
implementation of LU factorization with partial pivoting is given in Algorithm 1.2.4.

A nontrivial example of the use of the LU factorization is the solution of the
transposed system AT y = c. Since PT P = I , and

(P A)T = AT PT = (LU )T = U T LT ,

we have AT PT Py = U T (LT Py) = c. It follows that ỹ = Py can be computed by
solving the two triangular systemsU T d = c and LT ỹ = d.We then obtain y = PT ỹ
by applying the interchanges k ↔ pk in reverse order k = n − 1 :−1 :1 to ỹ.

The main purpose of pivoting is to avoid large growth of elements during the
elimination. This growth can be measured by the growth ratio.
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Algorithm 1.2.4 (LU Factorization with Partial Pivoting)

function [L,U,p] = lupp(A);

% LUPP computes the LU factorization of a square

% nonsingular matrix A using partial pivoting.

% The permutations are stored in a vector p, such

% that A(p,:) = L*U

% -------------------------------------------------

n = size(A,1); p = 1:n;

for k = 1:n-1

% Find index of element of maximum magnitude below

% the diagonal in k:th column.

[piv,q] = max(abs(A(k:n,k)));

% Swap rows k and q.

q = k-1+q;

if q > k,

A([k q],:) = A([q k],:);

p([k q]) = p([q k]);

end

% Compute multipliers and update.

ij = k+1:n;

A(ij,k) = A(ij,k)/A(k,k);

A(ij,ij) = A(ij,ij) - A(ij,k)*A(k,ij);

end

L = eye(n) + tril(A,-1); U = triu(A);

Definition 1.2.1 Let a(k)
i j , k = 2 :n, be the elements in the kth stage of GE applied

to A = (ai j ). Then the growth ratio in the elimination is

ρn = max
i, j,k

|a(k)
i j |/max

i, j
|ai j |. (1.2.15)

InGEwithpartial pivoting (GEPP) the computedmultipliers satisfy the inequalities
|lik | ≤ 1, i = k + 1 :n. From this we obtain the estimate

|a(k+1)
i j | < |a(k)

i j | + |lik ||a(k)
k j | ≤ |a(k)

i j | + |a(k)
k j | ≤ 2max

i, j
|a(k)

i j |.

The bound ρn ≤ 2n−1 for the growth ratio in GEPP follows by induction. This bound
is attained for matrices An ∈ R

n×n of the form exemplified by

A5 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

⎞
⎟⎟⎟⎟⎠

. (1.2.16)
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Fig. 1.1 Illustration of rook
pivoting in a 5× 5 matrix
with positive integer entries
as shown. The (2, 4) element
9 is chosen as pivot
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For example, setting n = 54 gives ρn = 253 ≈ 0.9 · 1016. This indicates that even
using IEEE double precision all accuracy can be lost.

In practice, any substantial growth of elements is extremely uncommon with
partial pivoting. As remarked by Wilkinson17 [206, 1965], pp. 213–214, such rapid
growth does not seem to occur in practice:

It is our experience that any substantial increase in the size of elements of successive A(k)

is extremely uncommon even with partial pivoting. No example which has arisen naturally
has in my experience given an increase by a factor as large as 16.

In practice GE with partial pivoting is a remarkably stable method and is still the
universal algorithm for solving dense systems of equations.

An alternative to partial pivoting is complete pivoting, in which the element of
largest magnitude in the whole unreduced part of the matrix is taken as pivot. At the
start of the kth stage rows k and r and columns k and s are interchanged, where r
and s are the smallest integers for which

|a(k)
rs | = max

k≤i, j≤n
|a(k)

i j |. (1.2.17)

Partial pivoting requires only O(n2) arithmetic comparisons and involves a fairly
small overhead. Complete pivoting requires a total of O(n3) arithmetic compar-
isons, i.e., about as many as the number of floating-point operations. Since practical
experience shows that partial pivoting works well, this is the standard choice. One
instance when complete pivoting should be used is when A may have linearly depen-
dent columns.

A pivoting scheme that gives a pivot of size between that of partial and complete
pivoting is rook pivoting. In this a pivot element is chosen, which is the largest in
magnitude of both its column and its row, i.e., in step k the pivot a(k)

rs satisfies

17 James Hardy Wilkinson (1919–1986), English mathematician, graduated from Trinity College,
Cambridge. He became Alan Turing’s assistant at the National Physical Laboratory in London
in 1946, where he worked on the ACE computer project. He did pioneering work on numerical
methods for solving linear systems and eigenvalue problems and developed software and libraries
of numerical routines.
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|a(k)
rs | = max

k≤i≤n
|a(k)

is | = max
k≤ j≤n

|a(k)
r j |. (1.2.18)

The name rook pivoting is chosen because the pivot search resembles the moves
of a rook in chess. This is illustrated in Fig. 1.1. We start by finding the element
of maximum magnitude in the first column. If this element is also of maximum
magnitude in its row we accept it as pivot. Otherwise we compare the element of
maximum magnitude in the row with other elements in its column, etc.

Rook pivoting for unsymmetric matrices was introduced by Neal and Poole
in [159, 1992]; see also [160, 2000]. Related pivoting strategies were used earlier
by Fletcher [82, 1976] for symmetric indefinite matrices. Rook pivoting involves at
least twice as many comparisons as partial pivoting. In the worst case the number of
comparisons is of the same order of magnitude as for complete pivoting. Numerical
experience shows that the cost of rook pivoting usually is not much greater than the
cost for partial pivoting. A pivoting related to rook pivoting is used in the solution
of symmetric indefinite systems; see Sect. 1.3.4.

In the general case when A ∈ R
m×n is a rectangular matrix PrAPc ∈ R

m×n can
be factored into a product of a unit lower trapezoidal matrix L ∈ R

m×r and an upper
trapezoidal matrix U ∈ R

r×n , where r = rank (A); see Theorem 1.2.1. Here Pr and
Pc are permutationmatrices performing the necessary row and column permutations,
respectively. The factorization can be written in block form as

PrAPc = LU =
(

L11
L21

) (
U11 U12

)
, (1.2.19)

where L11 ∈ R
r×r and U11 ∈ R

r×r are triangular and nonsingular. The block L21 is
empty if A has full row rank, i.e. r = m; the block U12 is empty if A has full column
rank, i.e. r = n.

Using (1.2.19) we rewrite Ax = b as PrAPc(PT
c x) = LU x̃ = Prb = b̃, where

x = Pc x̃ . Then y = U x̃ satisfies

(
L11
L21

)
y =
(

b̃1
b̃2

)
.

Hence, y = L−111 b̃1 is uniquely determined. It follows that the system Ax = b is
consistent if and only if L21y = b̃2. Furthermore, U x̃ = y, or

y = (U11 U12
) (x̃1

x̃2

)
.

For an arbitrary x̃2, x̃2 is uniquely determined by U11 x̃1 = y −U12 x̃2.
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1.2.4 Variants of LU Factorization

It is easy to see that the LU factorization can be arranged so that the elements in L
and U are determined directly. For simplicity, we assume that any row or column
interchanges on A have been carried out in advance. The matrix equation A = LU
can be written in componentwise form (see (1.2.12)) as

ai j =
r∑

k=1
likuk j , 1 ≤ i, j ≤ n, r = min(i, j). (1.2.20)

These are n2 equations for the n2+n unknown elements in L andU . If we normalize
either L or U to have unit diagonal, these equations suffice to determine the rest of
the elements.

We use the normalization conditions lkk = 1, k = 1 :n, since this corresponds to
our previous convention. In the kth step, k = 1 :n, we compute the kth row of U and
the kth column of L , using the equations

ukj = akj −
k−1∑
p=1

lkpu pj , j ≥ k, likukk = aik −
k−1∑
p=1

lipu pk, i > k. (1.2.21)

Algorithm 1.2.5 (LU Factorization by Doolittle’s algorithm)

for k = 1 : n

for j = k : n

ukj = akj −
k−1∑
p=1

lkpu pj ;

end

for i = k + 1 : n

lik =
(

aik −
k−1∑
p=1

lipu pk

)
/ukk;

end

lkk = 1;
end

This algorithm is usually referred to as the Doolittle algorithm [68, 1878].18

The better known Crout’s algorithm [45, 1941] is similar, except that instead U is
normalized to have a unit diagonal. The main work in Doolittle’s algorithm is in the
inner products between rows of L and columns of U .

18 Myrick Doolittle (1830–1911) worked for the U.S. Coast and Geodetic Survey.
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Fig. 1.2 Computations in the
kth step of Doolittle’s and
Crout’s method. Light shaded
areas correspond to the
already computed parts of L
and U ; dark shaded areas are
the active parts of the step

Doolittle’s algorithm can be modified to include partial pivoting. Changing the
order of operations, we first calculate the elements l̃ik = likukk , i = k : n, and
determine that of maximum magnitude. The corresponding row is then permuted to
pivotal position. In this row exchange the already computed part of L and remaining
part of A also take part.

Since the LU factorization is unique, this algorithm produces the same factors L
and U as GE. In fact, successive partial sums in the Eq. (1.2.21) equal the elements
a(k)

i j , j > k, in GE. It follows that if each term in (1.2.21) is rounded separately, the
compact algorithm is also numerically equivalent to GE. If the inner products can
be accumulated in higher precision, then the compact algorithm is less affected by
rounding errors.19

Note that it is possible to sequence the computations in Doolittle’s and Crout’s
algorithms in several different ways. Indeed, any element li j or ui j can be computed
as soon as all elements in the i th row of L to the left and in the j th column of U
above have been determined. For example, three possible orderings are schematically
illustrated here:
⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
2 3 3 3 3
2 4 5 5 5
2 4 6 7 7
2 4 6 8 9

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

1 3 5 7 9
2 3 5 7 9
2 4 5 7 9
2 4 6 7 9
2 4 6 8 9

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

1 3 5 7 9
2 3 5 7 9
4 4 5 7 9
6 6 6 7 9
8 8 8 8 9

⎞
⎟⎟⎟⎟⎠

.

The entries indicate in which step certain elements li j and ui j are computed. The first
example corresponds to the ordering in Fig. 1.2. (Compare to the comments after
Algorithm 1.2.3.) Note that it is not possible to do complete pivoting with either of
the last two variants.

19 In the days of hand computations these algorithms had the advantage that they did away with the
necessity in GE to write down ≈ n3/3 intermediate results—one for each multiplication.
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Fig. 1.3 Computations in the
kth step of the bordering
method

After k − 1 steps, k = 2 : n − 1, of the bordering method (Fig. 1.3) the LU
factorization A11 = L11U11 of the leading principal submatrix of order k − 1 has
been computed. To proceed we seek the LU factors of the bordered matrix

(
A11 a1k

aT
k1 αkk

)
=
(

L11 0
lT
k1 1

)(
U11 u1k

0 ukk

)
. (1.2.22)

Forming the (1, 2)-block of the product on the right gives the equation

L11u1k = a1k . (1.2.23)

This lower triangular system can be solved for u1k . Equating the (2, 1)-blocks gives

U T
11lk1 = ak1, (1.2.24)

which is a lower triangular system for lk1. Finally, comparing the (2,2)-blocks, we
get lT

k1u1k + ukk = αkk , or
ukk = αkk − lT

k1u1k . (1.2.25)

The main work in the bordering method is done in solving the two triangular systems
(1.2.23) and (1.2.24). A drawback is that thismethod cannot be combinedwith partial
or complete pivoting, since the Schur complement of A11 is not available.

In step k, k = 1 :n, of the column sweep method one computes the kth columns
of L and U in the LU factorization of A. Let

(
A11 a1k

A21 a2k

)
=
(

L11 0
L21 l2k

)(
U11 u1k

0 ukk

)
∈ R

n×k

denote the first k columns of the LU factors of A and assume that L11, L21, and U11
have been computed. Equating elements in the kth column we find (see Fig. 1.4 left)
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L11u1k = a1k, l2kukk + L21u1k = a2k . (1.2.26)

The first equation is a lower triangular system for u1k . From the second equation,
we get

l2kukk = a2k − L21u1k . (1.2.27)

Together with the normalizing condition that the first component in the vector l2k

equals one, this determines l2k and the scalar ukk .
Partial pivoting can be implemented with this method as follows. When the right-

hand side in (1.2.27) has been evaluated, the element of maximum modulus in the
vector a2k − L21u1k is determined. This element is then permuted to top position
and the same row exchanges are performed in L21 and the unprocessed part of A.

In the column sweep method, L and U are determined column by column. Such
a method is also called “left-looking”, referring to the way in which the data are
accessed. In the corresponding row sweep or “right-looking” method, the factors
L and U are determined row by row. In step k of method the kth row of A is
processed. Let

(
A11 A12

aT
k1 aT

k2

)
=
(

L11 0

lT
k1 1

)(
U11 U12

0 uT
2k

)
∈ R

k×n

denote the first k rows of the LU factorization of A, where L11, U11 and U12 have
been computed. Equating elements in the kth row we find (see Fig. 1.4 right)

U T
11lk1 = ak1, uT

2k + lk1U12 = aT
k2. (1.2.28)

Hence, lk1 is obtained by solving an upper triangular system and u2k by a matrix–
vector product. Note that Doolittle’s method can be viewed as alternating between
the two sweep methods.

Fig. 1.4 Computations in the kth step of the sweepmethods. Left The column sweepmethod. Right
The row sweep method
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For computing the LU factors of a rectangular matrix A ∈ R
m×n , m > n, it is

advantageous to use the column sweep method. After n steps we obtain APc = LU ,
where

L =
(

L11
L21

)
∈ R

m×n (1.2.29)

is lower trapezoidal and U ∈ R
n×n is square upper triangular (see Fig. 1.4, left).

Similarly, if m < n, the row sweep method gives after m steps LU factors such that
L ∈ R

m×m is square and lower triangular and U is upper trapezoidal.
Higham [129, 2002], Sect. 9.13 gives a detailed historical perspective of Gauss

elimination and LU factorization. The decompositional approach extends to many
other matrix factorizations and has been named as one of the ten algorithms
with most influence on science and engineering in the 20th century; see Stewart
[184, 2000].

1.2.5 Elementary Elimination Matrices

The reduction of a matrix to triangular form by GE can be expressed entirely in
matrix notation using elementary elimination matrices. This way of looking at GE
was first systematically exploited by Wilkinson. It has the advantage that it suggests
ways of deriving other matrix factorizations. Elementary elimination matrices are
lower triangular matrices of the form

L j = I − l j e
T
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−l j+1, j 1

...
. . .

−ln, j 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.2.30)

where only the elements below the main diagonal in the j th column differ from the
identity matrix. If the vector v is premultiplied by L j , we obtain

L jv = (I − l j e
T
j )v = v − l jv j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1
...

v j

v j+1 − l j+1, jv j
...

vn − ln, jv j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e., multiples of the component v j are subtracted from the last n− j components of
v. Since eT

j l j = 0, it follows that
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(I − l j e
T
j )(I + l j e

T
j ) = I + l j e

T
j − l j e

T
j − l j (e

T
j l j )e

T
j = I,

and hence the inverse L−1j = I + l j eT
j is also an elementary elimination matrix.

The primary computational significance of elementary elimination matrices is
that they can be used to introduce zeros into a column vector v. Assuming that
eT

k v = vk �= 0, there is a unique elementary elimination matrix Lk = I − lkeT
k

such that

Lk(v1, . . . , vk, vk+1, . . . , vn)T = (v1, . . . , vk, 0, . . . , 0)
T .

Since the last n− k components of Lkv are to be zero, it follows that vi − li,kvk = 0,
i = k + 1 :n, and hence

lk = (0, . . . , 0, vk+1/vk, . . . , vn/vk)
T .

The product of two elementary elimination matrices L j Lk is a lower triangular
matrix that differs from the identity matrix in the two columns j and k below the
main diagonal:

L j Lk = (I − l j e
T
j )(I − lkeT

k ) = I − l j e
T
j + lkeT

k − l j (e
T
j lk)e

T
k .

If j ≤ k, then eT
j lk = 0, and the following simple multiplication rule holds:

L j Lk = I − l j e
T
j − lkeT

k , j ≤ k. (1.2.31)

Note that no products of the elements in L j and Lk occur! But if j > k, then in
general eT

j lk �= 0, and the product L j Lk will have a more complex structure.
We now show that GEPP can be accomplished via premultiplication of A by a

sequence of elementary elimination matrices combined with transposition matrices

Ii j = (. . . , ei−1, e j , ei+1, . . . , e j−1, ei , e j+1),

to express the interchange of rows. A transposition matrix is a symmetric permu-
tations matrix equal to the identity matrix with columns i and j interchanged; cf.
Sect. 1.1.5. If a matrix A is premultiplied by Ii j this results in the interchange of rows
i and j . Similarly, postmultiplication results in the interchange of columns i and j .

For simplicity, we assume that A ∈ R
n×n is nonsingular. In the first step let

ap1,1 �= 0 be the pivot element. Interchange rows 1 and p1 in A by premultiplication
of A with a transposition matrix, Ã = P1A, P1 = I1,p1 . Next we premultiply Ã by
the elementary elimination matrix

L1 = I − l1eT
1 , li1 = ãi1/̃a11, i = 2 :n,

to zero out the elements under the main diagonal in the first column. Then
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A(2)e1 = L1P1Ae1 = ã11e1,

where e1 is the first column in the identity matrix. All remaining steps are similar.
The second step is achieved by forming

A(3) = L2P2A(2) = L2P2L1P1A.

Here P2 = I2,p2 and L2 = I − l2eT
2 is an elementary elimination matrix with

nontrivial elements equal to li2 = −ã(2)
i2 /̃a(2)

22 , i = 3 : n, where a(2)
p2,2

is the pivot

element from the second column. Since P2
2 = I , we have after the first two steps

A(3) = L2 L̃1P2P1A,

where L̃1 = P2L1P2 = I − (P2l1)(eT
1 P2) = I − l̃1eT

1 . Hence, L̃1 is an elementary
elimination matrix of the same type as L1, except that two elements in l1 have been
interchanged. After n − 1 steps A is reduced to upper triangular form

U = Ln−1Pn−1 · · · L2P2L1P1A. (1.2.32)

As above, this implies

U = L̃n−1 · · · L̃2 L̃1(P A), P = Pn−1 · · · P2P1.

Premultiplying by L̃−1k , k = n − 1 :−1 : 1, gives L̃−11 L̃−12 · · · L̃−1n−1U = P A. From
the result in (1.2.31) it follows that the elimination matrices on the left-hand side can
trivially be multiplied together:

P A = LU, L = I +
n−1∑
k=1

l̃k .

Nothing new, except the notation, has been introduced. Needless to say, the trans-
position matrices and elimination matrices used here are never explicitly stored in a
computer implementation.

In GE we use in the kth step the pivot row to eliminate elements below the main
diagonal in column k. In Gauss–Jordan elimination20 the elements above the main
diagonal are simultaneously eliminated. After n − 1 steps, A is transformed into a
diagonal matrix containing the nonzero pivot elements. Gauss–Jordan elimination
was used in many early versions of the simplex method for linear programming and
also for implementing stepwise regression in statistics. Because of stability problems,
it has now been replaced by methods based on LU factorization.

Gauss–Jordan elimination canbedescribedby introducing elementary elimination
matrices of the form

20 Named after Wilhelm Jordan (1842–1899), a German geodesist who made surveys in Germany
and Africa. He used this method to compute the covariance matrix in least squares problems.
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M j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 l1 j
. . .

...

1 l j−1, j

1
l j+1, j 1
...

. . .

ln, j 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.2.33)

If partial pivoting is carried out we can write, cf. (1.2.32)

D = Mn M−1
n−1Pn−1 · · ·M−1

2 P2M−1
1 P1A,

where the li j are chosen to annihilate the (i, j)th element. Multiplying by D−1 gives

A−1 = D−1Mn M−1
n−1Pn−1 · · ·M−1

2 P2M−1
1 P1. (1.2.34)

This expresses the inverse of A as a product of elimination and transposition matri-
ces, and is called the product form of the inverse. If row interchanges have been
performed during the LU factorization, then P A = LU , where P = Pn−1 · · · P2P1
and Pk are transposition matrices. Hence, A−1 = (LU )−1P and A−1 is obtained
by performing the interchanges in reverse order on the columns of (LU )−1. The
operation count for this elimination process is ≈n3 flops, which is higher than for
the LU factorization by GE. Gauss–Jordan elimination may still have advantages for
certain parallel implementations.

To solve a linear system Ax = b we apply these transformations to the vector b
to obtain

x = A−1b = D−1M−1
n−1Pn−1 · · ·M−1

2 P2M−1
1 P1b. (1.2.35)

This requires 2n2 flops. Note that no back substitution is needed! The numeri-
cal stability properties of Gauss–Jordan elimination are less satisfactory than for
methods based on LU factorization. It will give about the same numerical accuracy
in the computed solution x̄ as GE. However, as shown by Peters and Wilkinson
[165, 1975], the residuals b− Ax̄ corresponding to the Gauss–Jordan solution x̄ can
be much larger than those corresponding to the solution by LU factorization.

1.2.6 Computing the Matrix Inverse

Almost anything you can do with A−1 can be done without it.
—Forsythe and Moler, Computer Solution of Linear Algebraic Systems, 1967.
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We first consider the inversion of a lower triangular matrix L ∈ R
n×n , or equiva-

lently solving LY = I , i.e., the n linear systems

Ly j = e j , j = 1 :n. (1.2.36)

This can be done by forward substitution. Since the vector e j has j−1 leading zeros,
the first j − 1 components in y j are zero. Therefore, L−1 is also a lower triangular
matrix. Its elements can be computed recursively as

y j j = 1/ l j j , yi j = −
( i−1∑

k= j

lik yk j

)/
lii , i = j + 1 :n. (1.2.37)

Note that the diagonal elements in L−1 are just the inverses of the diagonal elements
of L . If the columns are computed in the order j = 1 :n, then Y can overwrite L in
storage.

Similarly, if U is an upper triangular matrix, then Z = U−1 is an upper triangular
matrix, whose elements can be computed as

z j j = 1/u j j , zi j = −
( j∑

k=i+1
uik zk j

)/
uii , i = j − 1 : −1 : 1. (1.2.38)

If the columns are computed in the order j = n :−1 :1, then Z can overwrite U in
storage. To compute L−1 or U−1 requires the solution of triangular systems of order
k = 1, 2, . . . , n, or approximately

∑n
k=1 k2 = n3/3 flops. Variants of the above

algorithm can be obtained by reordering the loops.
In the general case let A = LU be an LU factorization, where we assume that

any pivoting has been applied in advance. Then

A−1 = (LU )−1 = U−1L−1. (1.2.39)

Computing the LU factorization requires 2n3/3 flops. The same amount is used
to compute L−1 and U−1 by the algorithm above. Since the matrix multiplication
U−1L−1 requires 2n3/3 flops (show this!), the total work to compute A−1 by (1.2.39)
is 2n3 flops. If we take advantage of y j j = 1/ l j j = 1, and carefully sequence the
computations, then L−1, U−1, and finally A−1 can overwrite A so that no extra
storage is needed.

A variant of this method is to compute Y = L−1 and then find X = A−1 from
the matrix equation U X = Y , i.e., by solving

U x j = y j , j = 1 :n. (1.2.40)

It is left to the reader to show that this approach also uses a total of 2n3 flops. In the
Matlab function inv(A) another variant is used. From X A = XLU = I it follows
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that X L = U−1. Here U−1 is computed by a column oriented algorithm and then
X = A−1 found by solving the matrix equation X L = U−1.

When the inverse matrix A−1 is known, the solution of Ax = b can be obtained
through a matrix-vector multiplication as x = A−1b. The explicit inverse A−1 can
also be used to get a reliable error estimate for the computed solution x̄ , which is
not directly available from the LU factorization. This is theoretically satisfying, but
in almost all computational problems it is unnecessary and inadvisable to explicitly
compute A−1. The work required to compute A−1 is about 2n3 flops, i.e., three times
greater than for computing the LU factorization. To solve a linear system Ax = b,
the matrix-vector multiplication A−1b requires 2n2 flops. This is exactly the same as
for the solution of the two triangular systems L(U x) = b resulting from the LU fac-
torization of A. Further, the solution computed from A−1b is usually less satisfactory
than that computed from the LU factorization; see the remark about size of the resid-
ual in Sect. 1.4.3. Finally, more efficient ways to obtain error estimates are available,
such as condition estimators (Sect. 1.4.4) or iterative refinement (Sect. 1.4.6).

If the matrix A is sparse, i.e., contains mostly zero elements, it is even more
essential to avoid computing the inverse explicitly. Although A may have a sparse
LU factorization, its inverse is in general full; see comments in Sect. 1.5.3 about the
inverse of a band matrix.

A detailed analysis of the stability properties of several different matrix inversion
algorithms is given in Du Croz and Higham [69, 1992] and Higham [129, 2002],
Sect. 14.2. “The use and abuse of matrix inversion” is discussed by Higham [129,
2002], Chap. 14.

1.2.7 Perturbation Analysis

It is characteristic of ill-conditioned sets of equations that small percentage errors in the
coefficients may lead to large percentage errors in the solution.
—Alan M. Turing [196, 1948].

Let Ax = b be a linear system with A nonsingular and b �= 0. Since A and b are
rarely known exactly, it is important to know the sensitivity of the inverse A−1 and
the solution x to perturbations in the entries of A and b.

Let f (A), A ∈ C
n×n , be a matrix function and let ‖ · ‖ denote a matrix norm.

Assume that a linear mapping L f (A, E): Cn×n → C
n×n exists, such that

lim
t→+0

∥∥∥∥
f (A + t E)− f (A)

t
− L f (A, E)

∥∥∥∥ = 0, (1.2.41)

for all E ∈ C
n×n . Then L f (A, E) is the (unique) Fréchet derivative of f at A. For

a fixed E , the directional derivative is

lim
t→+0

f (A + t E)− f (A)

t
= d

dt
f (A + t E)|t=0. (1.2.42)
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If the Fréchet derivative exists, then it is equal to the directional derivative. But the
existence of the directional derivative for all E is not a sufficient condition for the
existence of the Fréchet derivative.

We give the following definition.

Definition 1.2.2 The absolute condition number for the problem of computing the
matrix function f (A) is defined as

condabs( f, A) = inf
ε→+0 max‖E‖≤ε

‖ f (A + E)− f (A)‖
ε

. (1.2.43)

The relative condition number is obtained by multiplying this quantity by
‖A‖/‖ f (A)‖.

Let A be a nonsingular matrix and f (A) = A−1 the matrix inverse. Then, (A +
E)−1 exists for sufficiently small ‖E‖ ≤ ε. Using the identity

(A + E)−1 − A−1 = (A + E)−1E A−1

and taking norms, we obtain

max‖E‖≤t
‖(A + E)−1 − A−1‖ ≤ ε‖(A + E)−1‖ ‖A−1‖.

Dividing by ε and letting ε →+0, we find that the relative condition number of the
matrix inverse is

κ(A) = ‖A‖ ‖A−1‖. (1.2.44)

Clearly κ(A) depends on the chosen matrix norm. If we want to indicate that a
particular norm is used, then we write, e.g., κ∞(A) etc. For the Euclidean norm the
condition number can be expressed in terms of the singular values of A:

κ2(A) = ‖A‖2 ‖A−1‖2 = σmax(A)

σmin(A)
. (1.2.45)

Note that the second expression in (1.2.45) generalizes directly to rectangular matri-
ces A ∈ C

m×n with rank (A) = n.
The condition number is invariant under multiplication of A by a scalar:

κ(αA) = κ(A). From the definition it also follows that

κ(AB) ≤ κ(A) κ(B).

Using the identity AA−1 = I gives

κp(A) = ‖A‖p ‖A−1‖p ≥ ‖I‖p = 1
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for all 
p-norms. A matrix with large condition number is called ill-conditioned.
In the opposite case it is called well-conditioned. For any real orthogonal matrix Q,

κ2(Q) = ‖Q‖2‖Q−1‖2 = 1,

so Q is perfectly conditioned in the 
2-norm. Furthermore, if P and Q are orthogonal
matrices, then κ(PAQ) = κ(A) for the 
2-norm and the Frobenius norm. The fact
that κ(A) is invariant under orthogonal transformations is one reasonwhy orthogonal
transformations play such a central role in matrix computations.

Example 1.2.2 The Hilbert matrix Hn of order n with elements

Hn(i, j) = hi j = 1/(i + j − 1), 1 ≤ i, j ≤ n,

is a notable example of an ill-conditionedmatrix. TheHilbertmatrices are notoriously
ill-conditioned and the condition numbers grow exponentially with n. For n = 12,
κ2(Hn) = 1.678 · 1016. Solving Hn x = b fails for n > 12 even using IEEE double
precision. �

Although the severe ill-conditioning exhibited by the Hilbert matrices is rare,
moderately ill-conditioned linear systems do occur regularly in many applications.

Let x be the solution x to a systemof linear equations Ax = b, and let x+δx satisfy
the perturbed system (A+δA)(x+δx) = b+δb, where δA and δb are perturbations
in A and b. Subtracting out Ax = b, we get (A + δA)δx = −δAx + δb. Assuming
that A and A + δA are nonsingular, we can multiply by A−1 and solve for δx . This
yields

δx = (I + A−1δA)−1A−1(−δAx + δb), (1.2.46)

which is the basic identity for the perturbation analysis.
In the case where δA = 0, (1.2.46) simplifies to δx = A−1δb, which implies that

|δx | = |A−1| |δb|. Taking norms gives ‖δx‖ ≤ ‖A−1‖ ‖δb‖. This inequality is sharp
in the sense that for any matrix norm and for any A and b there exists a perturbation
δb such that equality holds. From ‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ it follows that

‖δx‖
‖x‖ ≤ κ(A)

‖δb‖
‖b‖ , (1.2.47)

i.e., a relative perturbation in the right-hand side can atmost be amplified by the factor
κ(A) = ‖A‖ ‖A−1‖. Note that equality will hold only for rather special right-hand
sides b. For given x (or b) the upper bound may not be achievable for any δb.

We now consider the effect of perturbations in A. First we give some results that
are frequently used in matrix analysis.

Lemma 1.2.1 Let E ∈ R
n×n be a matrix for which ‖E‖ < 1, where ‖ · ‖ is any

subordinate matrix norm. Then the matrix I − E is nonsingular and for its inverse,
we have the estimate
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‖(I − E)−1‖ ≤ 1/(1− ‖E‖). (1.2.48)

Proof If I − E is singular, there exists a vector x �= 0 such that (I − E)x = 0.
Then x = Ex and ‖x‖ = ‖Ex‖ ≤ ‖E‖ ‖x‖ < ‖x‖, which is a contradiction since
‖x‖ �= 0. Hence, I − E is nonsingular. Next, from the identity (I − E)(I − E)−1 =
(I − E)+ E we obtain (I − E)−1 = I + (I − E)−1E . Taking norms, we get

‖(I − E)−1‖ ≤ 1+ ‖(I − E)−1‖ ‖E‖,

or (1− ‖E‖)‖(I − E)−1‖ ≤ 1, and (1.2.48) follows. �

Corollary 1.2.1 If B is nonsingular and ‖B − A‖‖B−1‖ = η < 1, then

‖A−1‖ ≤ 1

1− η
‖B−1‖, ‖A−1 − B−1‖ ≤ η

1− η
‖B−1‖.

Proof We have ‖A−1‖ = ‖A−1B B−1‖ ≤ ‖A−1B‖ ‖B−1‖. Taking E = B−1(B −
A) = I − B−1A we have, by the assumption, that ‖E‖ ≤ η < 1. Since (I − E)−1 =
(B−1A)−1 = A−1B, the first inequality now follows from Lemma 1.2.1. From the
identity

A−1 − B−1 = A−1(B − A)B−1 (1.2.49)

we have ‖A−1−B−1‖ ≤ ‖A−1‖ ‖B−A‖ ‖B−1‖. The second inequality now follows
from the first. �

Theorem 1.2.3 Consider the linear system Ax = b, where the matrix A ∈ R
n×n is

nonsingular. Let (A + δA)(x + δx) = b be a perturbed system and assume that

η = ‖A−1‖ ‖δA‖ < 1.

Then A + δA is nonsingular and the norm of the perturbation δx is bounded by

‖δx‖
‖x‖ ≤

1

1− η
κ(A)

‖δA‖
‖A‖ . (1.2.50)

Proof Taking norms in Eq. (1.2.46) gives

‖δx‖ ≤ ‖(I + A−1δA)−1‖ ‖A−1‖‖δA‖ ‖x‖.

By assumption ‖A−1δA‖ ≤ ‖A−1‖ ‖δA‖ = η < 1. From Lemma 1.2.1 it follows
that I + A−1δA is nonsingular and

‖(I + A−1δA)−1‖ ≤ 1/(1− η),

which proves the result. �
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In most practical situations η � 1 and therefore 1/(1− η) ≈ 1. If upper bounds

‖δA‖ ≤ εA‖A‖, ‖δb‖ ≤ εb‖b‖, (1.2.51)

for ‖δA‖ and ‖δb‖ are known, then an upper bound for the normwise relative per-
turbation is

‖δx‖
‖x‖ � κ(A)

(
εA + εb

‖b‖
‖A‖‖x‖

)
.

To obtain a perturbation bound for the matrix inverse X = A−1 we consider the
system (A + δA)(X + δX) = I . From Theorem 1.2.3 we obtain

‖δX‖
‖X‖ � κ(A)

‖δA‖
‖A‖ , (1.2.52)

which shows that κ(A) is indeed the normwise condition number of A with respect
to inversion.

When a linear system is ill-conditioned, roundoff errors may cause a computed
solution to have a large error. How large should κ be before we consider the problem
to be ill-conditioned? That depends on the accuracy of the data and the accuracy
desired in the solution. If the data have a relative error of 10−7 and κ ≤ 0.5 · 104,
then roughly a (normwise) relative error ≤ 10−3 in the solution can be expected.

The relative distance of a matrix A to the set of singular matrices is

dist(A) := min
{‖δA‖/‖A‖ | A + δA is singular

}
. (1.2.53)

Let A = ∑i=1 σi uiv
H
i be the SVD of A. Then, for the 
2-norm, the singular

matrix closest to A is A + δA, where δA = −σnunvH
n . Since un and un are unit

vectors, it follows that ‖δA‖2 = σn = 1/‖A−1‖2 and

dist2(A) == 1/(‖A‖2‖A−1‖2) = 1/κ2(A). (1.2.54)

That is, dist2(A) equals the reciprocal of the condition number κ2(A). This is a special
case of a result onmatrix approximation to be given later (see Theorem 2.2.7, p. 237).

The following result, due to Kahan [141, 1966], can be used to get lower bounds
for the condition number.

Theorem 1.2.4 Let A ∈ C
n×n be a nonsingular matrix and κ(A) = ‖A‖‖A−1‖ the

condition number with respect to a norm ‖·‖ subordinate to some vector norm. Then

dist(A) = 1/κ(A). (1.2.55)
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Proof If A+ δA is singular, there is a vector x �= 0 such that (A+ δA)x = 0. Then,
with y = Ax it follows that

‖δA‖ ≥ ‖δA x‖
‖x‖ = ‖Ax‖

‖x‖ = ‖y‖
‖A−1y‖ ≥

1

‖A−1‖ =
‖A‖
κ(A)

,

or ‖δA‖/‖A‖ ≥ 1/κ(A). Now, let x be a vector with ‖x‖ = 1 such that ‖A−1x‖ =
‖A−1‖. If we take y = A−1x/‖A−1‖, then ‖y‖ = 1 and Ay = x/‖A−1‖. Let z be a
dual vector to y (see Definition 1.1.5). Then ‖z‖D‖y‖ = zH y = 1, where ‖ · ‖D is
the dual norm and ‖z‖D = 1. With δA = −xzH /‖A−1‖, we get

(A + δA)y = Ay − xzH y/‖A−1‖ = (x − x)/‖A−1‖ = 0.

This proves that A + δA is singular. Furthermore,

‖δA‖‖A−1‖ = ‖xzH‖ = max‖v‖=1 ‖(xzH )v‖ = ‖x‖ max‖v‖=1 |z
H v| = ‖z‖D = 1,

which gives ‖δA‖ = 1/‖A−1‖. �

1.2.8 Scaling and componentwise Analysis

In a linear system Ax = b, the i th equationmay be multiplied by an arbitrary scale
factor di �= 0, i = 1 :n, without changing the exact solution. Similarly, the columns
may be scaled if the scalings of the entries of x are changed accordingly. Denote
by Dk the set of nonsingular diagonal matrices in R

k×k . Then, by row and column
scaling matrices D1 ∈ Dm and D2 ∈ Dn , the rectangular linear system Ax = b,
A ∈ R

m×n , can be transformed into

(D1AD2)x̃ = b̃, x = D2 x̃, b̃ = D1b. (1.2.56)

For the perturbation analysis of the solution to Ax = b it is of interest to find a scaling
which minimizes the condition number κp(A) = ‖A‖p‖(A†)−1‖p, where A† is the
pseudoinverse and ‖ · ‖p denotes the Hölder 
p-norm. We first consider one-sided
scaling. The following result (Higham [129, 2002], Theorem7.5) is a generalization
of a theorem due to van der Sluis [180, 1969].21

Theorem 1.2.5 Let A ∈ R
m×n, D1 ∈ Dm, and D2 ∈ Dn. Define

D1 = diag(‖A(i, :)‖p)
−1, D2 = diag(‖A(:, j)‖p)

−1.

21 Abraham van der Sluis (1928–2004) became the doyen of Numerical Mathematics in the Nether-
lands, counting Henk van der Vorst among his students.
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Then,
κp(AD2) ≤ n1−1/p min

D∈Dn

κp(AD), if rank (A) = n, (1.2.57)

κp(D1A) ≤ m1/p min
D∈Dm

κp(D A), if rank (A) = m. (1.2.58)

�
This shows that to equilibrate the rows or columns is a nearly optimal strategy.

Setting p = ∞, it follows that in the 
∞-norm row equilibration is an optimal
strategy. Similarly, for p = 1, column equilibration is optimal. For the 
2-norm it
follows that row and column equilibration give condition numbers κ2(A) that at most
are larger by a factor

√
m and

√
n, respectively, than the achievable minimum.

Let A ∈ R
m×n have at most q non-zero elements in any row and at most p non-

zero elements in any column. Then for p = 2,
√

n and
√

m in (1.2.57) and (1.2.58)
can be replaced by

√
p and

√
q , respectively. For banded or sparse matrices this is a

useful improvement. For p = ∞ an explicit expression for the minimum condition
number can be given.

Theorem 1.2.6 Assume that A ∈ R
n×n has no row consisting entirely out of zeros.

Then
min

D∈Dm

κ∞(D A) = ‖ |A−1||A| ‖∞. (1.2.59)

Proof ‖ |A−1||A| ‖∞ is invariant when A is left-multiplied by a diagonal matrix
D ∈ Dm . We may therefore assume that each row sum in |A| is 1. The vector
e = (1, . . . , 1)T ∈ R

n is a maximizing vector with respect to the 
∞-norm of any
nonnegative matrix in Rn×n . Since the 
∞-norm is an absolute norm, it follows that

κ∞(A) ≡ ‖ |A−1||A| ‖∞ = ‖ |A−1||A| e‖∞
= ‖ |A−1|e‖∞ = ‖ |A−1| ‖∞ = ‖A−1‖∞. �

The next theorem is of interest for least squares problems.

Theorem 1.2.7 Let A ∈ R
n×n be a symmetric positive definite matrix with at most

q nonzero elements in any row. Then,

κ2(A) ≤ q min
D∈Dn

κ2(DAD)

if in A all diagonal elements are equal.

Proof If we let A = LLT be the Cholesky factorization of A, then all rows in L have
equal 
2-norm. Now apply (the improved) Theorem 1.2.5. �

It is important to realize that employing an optimal row or column scaling may
not improve the computed solution. Indeed, for a fixed pivot sequence, the solution
computed by GE is not affected by such scalings.
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Theorem 1.2.8 Denote by x and x ′ the computed solutions obtained by GE in
floating-point arithmetic to the two linear systems of equations where D1 and D2
are diagonal scaling matrices. Assume that the elements of D1 and D2 are powers
of the base of the number system used, so that no rounding errors are introduced by
the scaling. Then if the same pivot sequence is used and no overflow or underflow
occurs we have exactly x = D2x ′, i.e., the components in the solution differ only in
the exponents.

Proof By examining the scaling invariance of the basic step

a(k+1)
i j = a(k)

i j − (a(k)
ik a(k)

k j )/a(k)
kk ,

the statement follows. �

We conclude that, if carried out exactly, row scaling will not affect the computed
solution unless it leads to a change in the selection of pivots. But the choice of pivots
can be influenced by the scaling of equations and unknowns. When partial pivoting
is used, the scaling of the rows of A and b may change the choice of pivots. Indeed,
a row scaling can always be found that leads to any predetermined pivot sequence.
Since a bad choice of pivots can result in large errors in the computed solution, it
follows that the choice of a proper row scaling can be important.

A bad column scaling may be introduced without intention. For example, if the
unknowns are physical quantities, then a different choice of units will correspond to
a different scaling of the unknowns and hence of the columns in A. Partial pivoting
by row interchanges has the important property of being invariant under column
scaling. Complete and rook pivoting are influenced by both row and column scaling.

Example 1.2.3 Correctly rounded to four decimals, the system Ax = b in Exam-
ple 1.2.5, p. 70, has the solution x = (0.9999, 0.9999)T . Partial pivoting will here
select the element a11 as pivot. If results are rounded to three decimal digits, the
computed solution becomes x = (0, 1.00)T (bad). If GE instead is carried out on the
scaled system Âx = b̂, then a21 will be chosen as pivot and the computed solution
becomes x = (1.00, 1.00)T (good). �

As the above discussion shows, how to scale a linear system for GE in a good
way is a surprisingly intricate problem. Consider the effect of a perturbation in b on
the scaled system (D1AD2)x ′ = D1b. Then the bound (1.2.47) shows that

‖D−12 δx‖
‖D−12 x‖ ≤ κ(D1AD2)

‖D1δb‖
‖D1b‖ . (1.2.60)

It seems that if κ(D1AD2) can be made smaller than κ(A), then we might expect
a correspondingly more accurate solution. But this reasoning is flawed, since in
(1.2.60) the perturbation is now measured in the norm ‖D−12 x‖. We may only have
found a norm in which the error looks better. Instead, the column scaling D2 should
be chosen in a way that reflects the importance of errors in the components of the
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solution. If |x | ≈ c, and we want the same relative accuracy in all components, we
may take D2 = diag(c).

We now discuss the choice of row scaling. A scheme that is sometimes advocated
is to choose D1 = diag(di ) so that each row in D1A has the same 
1-norm, i.e.,

di = 1/‖aT
i ‖1, i = 1 :n. (1.2.61)

(Sometimes the 
∞-norms of the rows are instead made equal.) This scaling, called
row equilibration, can be used to avoid the bad pivot selection in Example 1.2.5.
But suppose that through an unfortunate choice of physical units the solution x has
components of widely varyingmagnitude. Then row equilibration can lead to aworse
computed solution than if no scaling is used.

Example 1.2.4 The system

A =
⎛
⎝
3 · 10−6 2 1

2 2 2
1 2 −1

⎞
⎠ , b =

⎛
⎝
3+ 3 · 10−6

6
2

⎞
⎠ ,

has the exact solution x = (1, 1, 1)T . Thematrix A iswell-conditioned,κ(A) ≈ 3.52,
but taking a11 as pivot leads to a disastrous loss of accuracy. Assume that through
an unfortunate choice of units, the exact solution is changed to x̂ = (10−6, 1, 1)T .
Then the first column in A is multiplied by 106 and if now the rows are equilibrated,
the system becomes

Ã =
⎛
⎝
3 2 1
2 2 · 10−6 2 · 10−6
1 2 · 10−6 −10−6

⎞
⎠ , b̃ =

⎛
⎝
3+ 3 · 10−6
6 · 10−6
2 · 10−6

⎞
⎠ .

GE with column pivoting will now choose a11 as pivot. Using floating-point arith-
metic with precision u = 0.47 · 10−9, the computed solution of Âx = b̂ becomes
x = (0.999894122 · 10−6, 0.999983255, 1.000033489)T . This has only about four
correct digits, so almost six digits have been lost. �

A row scaling rule for solving the system Ax = b with pivoted LU factorization
should depend not only on the matrix A, but also on the solution x . Skeel [178,
1979] has proposed a rule based on minimizing a bound on the backward error, that
contains the quantity

maxi (|D1A| |x |)i

mini (|D1A| |x |)i
.

Assuming that mini (|A| |x |)i > 0 the rows are scaled by

D1 = diag(d1, . . . , dn), di = 1/(|A| |x |)i , i = 1 :n. (1.2.62)

A measure of the ill-scaling of the system Ax = b is
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χ(A, x) = max
i

(|A| |x |)i/min
i

(|A| |x |)i . (1.2.63)

Scaling according to this rule is not practical in general, as it assumes that the solution
x is at least approximately known. If the components of the solution vector x are
known to be of the same magnitude, then we can take |x | = (1, . . . , 1)T in (1.2.62),
which corresponds to row equilibration. Note that this assumption is violated in
Example 1.2.4.

This scaling rule gives infinite scale factors for rows that satisfy (|A| |x |)i = 0.
This may occur for sparse systems, i.e., when A (and possibly also x) has many
zero components. In this case a large scale factor di should be chosen so that the
corresponding row is selected as pivot row at the first opportunity.

Sharper perturbation bounds for linear systems can be obtained by a componen-
twise perturbation analysis. In the following the absolute value of a matrix A and
vector b are denoted by |A| and |b| and should be interpreted componentwise, i.e.,
|A|i j = |ai j | and |b|i = |bi |. Likewise, the partial ordering “≤” for matrices and
vectors is to be interpreted as

A ≤ B ⇐⇒ ai j ≤ bi j , x ≤ y ⇐⇒ xi ≤ yi ,

for all i and j . It follows that if C = AB, then |ci j | ≤ ∑n
k=1 |aik | |bkj |, and hence

|C | ≤ |A| |B|. A similar rule |Ax | ≤ |A| |x | holds for matrix-vector multiplication.
To derive componentwise bounds we need some preliminary results.

Lemma 1.2.2 Let F ∈ R
n×n be a matrix for which ‖ |F | ‖ < 1. Then the matrix

I − |F | is nonsingular and

|(I − F)−1| ≤ (I − |F |)−1. (1.2.64)

Proof The nonsingularity follows from Lemma 1.2.1. From the identity
(I − F)−1 = I + F(I − F)−1, we obtain |(I − F)−1| ≤ I + |F | · |(I − F)−1|.
Hence,

(I − |F |) |(I − F)−1| ≤ I,

from which (1.2.64) follows. �

Theorem 1.2.9 Consider the perturbed linear system (A+ δA)(x + δx) = b+ δb,
where A is nonsingular and the perturbations satisfy the componentwise bounds

|δA| ≤ ωE, |δb| ≤ ω f, (1.2.65)

If ω‖ |A−1| E ‖ < 1, then A + δA is nonsingular and

‖δx‖ ≤ ω

1− ω‖ |A−1|E‖‖ |A
−1|(E |x | + f )‖. (1.2.66)
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Proof Setting F = A−1δA, we have |F | ≤ |A−1| |δA| ≤ ω|A−1|E . Hence, ‖|F |‖ ≤
1 and fromLemma 1.2.2 it follows that thematrix I−|A−1|δA is nonsingular. Taking
absolute values in (1.2.46) gives

|δx | ≤ |(I − |A−1||δA|)|−1|A−1|(|δA||x | + |δb|). (1.2.67)

Using the componentwise bounds in (1.2.65) gives

|δx | ≤ ω|(I − ω|A−1|E)|−1|A−1|(E |x | + f ). (1.2.68)

Taking norms the bound (1.2.66) now follows from Lemma 1.2.1. �

Taking E = |A| and f = |b| in (1.2.65) corresponds to bounds for the compo-
nentwise relative errors in A and b:

|δA| ≤ ω|A|, |δb| ≤ ω|b|. (1.2.69)

For this special case Theorem 1.2.9 gives

‖δx‖ ≤ ω

1− ωκ|A|(A)
‖ |A−1|(|A| |x | + |b|) ‖, (1.2.70)

where

κ|A|(A) = cond(A) = ‖ |A−1| |A| ‖ (1.2.71)

is the Bauer–Skeel condition number of the matrix A. By Theorem 1.2.6, cond(A)

is theminimum of κ∞(D A) taken over all scalings d ∈ Dn . It is possible for cond(A)

to be arbitrarily smaller than κ(A). If D1 is the diagonal matrix that equilibrates the
rows of (A), then it is known that

κ∞(A)

κ∞(D1)
≤ cond(A) ≤ κ∞(A).

Since |b| ≤ |A| |x |, it follows that

‖δx‖ ≤ 2ω‖ |A−1||A| |x | ‖ + O(ω2) ≤ 2ω cond(A)‖x‖ + O(ω2).

If Â = D A, b̂ = Db, where D > 0 is a diagonal scaling matrix, then | Â−1| =
|A−1||D−1|. Since the perturbations scale similarly, δ Â = DδA, δb̂ = Dδb, it
follows that

| Â−1||δ Â| = |A−1||δA|, | Â−1||δb̂| = |A−1||δb|.

Thus, cond(A) and the bound in (1.2.70) are invariant under row scaling.
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The following example illustrates that a componentwise analysis ismore adequate
when the perturbations in the elements of A and b are of different magnitude.

Example 1.2.5 The linear system Ax = b, where

A =
(
1 104

1 10−4
)

, b =
(
104

1

)
,

has the approximate solution x ≈ (1, 1)T . Assume that the vector b is subject
to a perturbation δb such that |δb| ≤ (1, 10−4)T . Using the 
∞-norm we have
‖δb‖∞ = 1, ‖A−1‖∞ = 1 (neglecting terms of order 10−8). Then Theorem 1.2.3
gives the gross overestimate ‖δx‖∞ ≤ 1.

Multiplying the first equation by 10−4, we obtain an equivalent system Âx = b̂,
where

Â =
(
10−4 1
1 10−4

)
, b̂ =

(
1
1

)
.

The perturbation in the vector b is now |δb̂| ≤ 10−4(1, 1)T , and from ‖δb̂‖∞ =
10−4, ‖( Â)−1‖∞ = 1, we obtain the sharp estimate ‖δx‖∞ ≤ 10−4. The original
matrix A is only artificially ill-conditioned. By a scaling of the equations, a well-
conditioned system is obtained. Neglecting terms of order 10−8, we have

| Â−1| | Â| =
(
10−4 1
1 10−4

)(
10−4 1
1 10−4

)
=
(

1 2 · 10−4
2 · 10−4 1

)
.

By the scaling invariance, cond(A) = cond( Â) = 1 + 2 · 10−4 in the 
∞-norm.
Thus, the componentwise condition number correctly reveals that the system is well-
conditioned for componentwise small perturbations. �

It has been observed that the computed solution to a triangular system T x = b
is often far more accurate than predicted by the normwise condition number. Often
this is due to an artificial ill-conditioning of the triangular matrix T . By this it is
meant that a positive diagonal matrix D exists such that DT is well-conditioned.
Counter-examples exist, so this observation does not hold in general.

A historic survey of error analysis in matrix computation is given by
Wilkinson [209, 1971]. Bauer [12, 1965] was the first to systematically study com-
ponentwise perturbation theory. This did not catch on in English publications until
it was taken up by Skeel in two important papers, [178, 1979] and [179, 1980].

Exercises

1.2.1 (a) Give the permutation matrix P that corresponds to the permutation vector p = (n, n−
1, . . . , 1). Show that P = PT = P−1, and that AP reverses the order of the columns
of the matrix A ∈ R

n×n .
(b) Show that if L is a lower triangular matrix, then PLP is upper triangular. Use this

result to derive the factorization of PAP as a product of an upper triangular and a lower
triangular matrix.

1.2.2 Write aMatlab program that checks if a given matrix is a permuted triangular matrix. If it
is, the program should return the permutation of rows and columns that reorders the matrix
into upper triangular form.



1.2 Gaussian Elimination Methods 71

1.2.3 Compute the LU factorization of A and det(A), where

A =

⎛
⎜⎜⎝
1 2 3 4
1 4 9 16
1 8 27 64
1 16 81 256

⎞
⎟⎟⎠ .

1.2.4 (a) Write a row-oriented and a column-oriented Matlab function for solving a lower
triangular system Ly = c.

(b) Write a Matlab function x = solve(L,U,p,b) that takes the output from the
LU factorization of Algorithm 1.2.4 and solves the system of equations Ax = b.

1.2.5 InAlgorithm1.2.3 forGaussian elimination the elements in A are accessed in row-wise order
in the innermost loop over j . If implemented in Fortran, this algorithm may be inefficient
because this language stores two-dimensional arrays by columns. Modify Algorithm 1.2.3
so that the innermost loop involves a fixed column index and a varying row index instead.

1.2.6 Suppose A ∈ R
n×n has an LU factorization. Show how Ax = b can be solved without

storing the multipliers by computing the LU factorization of the n × (n + 1) matrix (A b).
1.2.7 Write a Matlab function implementing Gaussian elimination with rook pivoting. Use the

function [y,i] = max(x), which returns the maximum value y and its index i of a
column vector x .

1.3 Hermitian Linear Systems

Let A ∈ C
n×n be a Hermitian matrix, i.e., AH = A. Then the quadratic form

(x H Ax)H = x H AH x = x H Ax is real. A is said to be positive definite if

x H Ax > 0 ∀x ∈ C
n, x �= 0, (1.3.1)

and positive semidefinite if xT Ax ≥ 0 for all x ∈ R
n . If x H Ax takes on both

positive and negative values, A is called indefinite.
Because of fundamental physical laws, many matrix problems that arise in appli-

cations are such that the matrix A is Hermitian (or real symmetric) and positive
definite. The solution of linear systems of equation with such a matrix of coefficients
is one of themost important problems in scientific computing. It is a simpler task than
for more general systems because, as mentioned in Sect. 1.5.6, GE can be performed
stably without any pivoting.

1.3.1 Properties of Hermitian Matrices

A positive definite matrix is nonsingular. For if it were singular, then there must be
a vector x such that Ax = 0. But then x H Ax = 0, which is a contradiction. Hence,
the inverse A−1 exists and for any x �= 0 the vector y = A−1x exists and

x H A−1x = yH Ay > 0.

It follows that A−1 is positive definite
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Theorem 1.3.1 Let A ∈ C
n×n be positive definite (semidefinite) and let X ∈ C

n×p

have full column rank. Then X H AX is positive definite (semidefinite). In particular,
any principal p × p submatrix

Ã =
⎛
⎜⎝

ai1i1 . . . ai1i p
...

...

ai pi1 . . . ai pi p

⎞
⎟⎠ ∈ C

p×p, 1 ≤ p < n,

is positive definite (semidefinite). Taking p = 1, it follows that all diagonal elements
in A are real positive (nonnegative).

Proof Let z �= 0 and let y = Xz. Then since X is of full column rank, y �= 0 and
zH (X H AX)z = yH Ay > 0 by the positive definiteness of A. Now, any principal
submatrix of A can be written as X H AX, where the columns of X are taken to be
the columns k = i j , j = 1 : p of the identity matrix. The case when A is positive
semidefinite follows similarly. �
Theorem 1.3.2 Let the positive definite Hermitian matrix A ∈ C

n×n be parti-
tioned as

A =
(

A11 A12

AH
12 A22

)
,

where A11 is square. Then A11 is nonsingular and the Schur complement

S = [A/A11] = A22 − AH
12A−111 A12

exists and is Hermitian positive definite.

Proof By Theorem 1.3.1, A11 is Hermitian positive definite. Therefore, it is nonsin-
gular and the Schur complement exists and is Hermitian. For x �= 0, we have

x H (A22 − AH
12A−111 A12)x = (yH −x H

) (A11 A12

AH
12 A22

)(
y
−x

)
> 0,

where y = A−111 A12x . It follows that S is also positive definite. �
In particular, it follows from Theorem 1.3.2 that for a Hermitian positive definite

matrix A, GE can be carried out without pivoting. Since all reduced matrices are
Hermitian, it follows that in GE only elements on and below (say) the main diagonal
have to be computed. This reduces the number of operations and storage needed by
half. It is interesting to note that Gauss derived his elimination algorithm in order to
solve systems of normal equations coming from least squares problems.

Since any diagonal element can be brought into pivotal position by a symmetric
row and column interchange, the same conclusion holds for any sequence of pivots
chosen along the diagonal.
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Theorem 1.3.3 Let A ∈ C
n×n be a positive definite Hermitian matrix. Then there

exist a unique unit lower triangular matrix L and a unique diagonal matrix D with
real positive elements such that

A = LDLH , D = diag(d1, . . . , dn).

Proof The proof is by induction on the order n of A. The result is trivial if n = 1,
since then D = d1 = a11 > 0 and L = l11 = 1. Now write

A =
(

a11 aH
2

a2 Ã

)
= L1D1L H

1 , L1 =
(
1 0
l2 I

)
, D1 =

(
d1 0
0 B

)
,

where

l2 = d−11 a2, B = Ã − d−11 a2aH
2 .

By Theorem 1.3.1, the Schur complement B is positive definite. Since B is of order
n − 1, by the induction hypothesis there exist a unique unit lower triangular matrix
L̃ and diagonal matrix D̃ with positive elements such that B = L̃ D̃ L̃ H . Then A =
LDLH , where

L =
(
1 0
l2 L̃

)
, D =

(
d1 0
0 D̃

)
.

To prove the uniqueness, suppose there are two factorizations A = L1D1L H
1 =

L2D2L H
2 . Then L−12 L1D1 = D2L−H

2 L−H
1 is both lower and upper triangular and

hence diagonal. But then D1 = D2 and L−12 L1 = I , whence L2 = L1. �

In symmetric Gaussian elimination only the elements on and below the main
diagonal needs to be computed. These elements are transformed in the kth step,
jk = 1 :n, according to (cf. (1.2.4))

a(k+1)
i j = a(k)

i j − lika(k)
k, j , lik = a(k)

ik /a(k)
kk , i = k + 1 :n, j = k + 1 : i. (1.3.2)

In the first equation dkl jk can be substituted for a(k)
k j .

If it can be carried through to completion, Algorithm 1.3.1 computes, for given
Hermitian matrix A ∈ C

n×n , a unit lower triangular matrix L ∈ C
n×n and a real

diagonal matrix D such that A = L DL H . This algorithm requires approximately
n3/3 (complex) flops, which is half as much as for the unsymmetric case. Note that
the elements in L and D can overwrite the elements in the lower triangular part of A,
so also the storage requirement is halved to n(n + 1)/2. The uniqueness of the fac-
torization A = LDLH follows trivially from the uniqueness of the LU factorization.

Assume that we are given a Hermitian matrix A for which Algorithm 1.3.1 yields
a factorization A = LDLH with positive pivotal elements dk > 0, k = 1 : n. Then



74 1 Direct Methods for Linear Systems

y = L H x �= 0 for all x �= 0 and

x H Ax = x H LDLH x = yH Dy > 0.

It follows that A is positive definite.

Algorithm 1.3.1 (Symmetric Gaussian Elimination)

function [L,D] = ldlt(A);

% LDLT computes a unit lower triangular matrix L and

% a real diagonal matrix D such that A = L D LˆH.

% Only the lower triangular part of A is accessed.

% --------------------------------------------------

n = size(A,1);

for k = 1:n

for i = k+1:n

t = A(i,k); A(i,k) = t/A(k,k);

ij = k+1:i;

A(i,ij) = A(i,ij) - t*A(ij,k)’;

end

end

D = diag(A); L = eye(n) + tril(A,-1);

Example 1.3.1 An important use of the LDLT factorization is for testing if a given
symmetric matrix A is positive definite. This is much faster than computing all the
eigenvalues of A. The Hilbert matrices Hn of order n with elements

Hn(i, j) = hi j = 1/(i + j − 1), 1 ≤ i, j ≤ n,

can be shown to be positive definite for all n. For n = 4 GE without pivoting gives
H4 = LDLT , where

D =

⎛
⎜⎜⎝
1

1/12
1/180

1/2800

⎞
⎟⎟⎠ , L =

⎛
⎜⎜⎝

1
1/2 1
1/3 1 1
1/4 9/10 3/2 1

⎞
⎟⎟⎠ .

The pivots are all positive, which confirms that H4 is positive definite. �

Using the factorization A = LDLH , the linear system Ax = b decomposes into
the two triangular systems

Ly = b, L H x = D−1y. (1.3.3)

The cost of solving these triangular systems is about 2n2 (complex) flops.
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Theorem 1.3.3 yields the following useful characterization of a positive definite
matrix.

Theorem 1.3.4 (Sylvester’s Criterion) Let A ∈ C
n×n be Hermitian and let Ak ∈

C
k×k , k = 1 :n, be the leading principal submatrices of A. Then A is positive definite

if and only if
det(Ak) > 0, k = 1 :n.

Proof If GE is carried out without pivoting, then det(Ak) = d1d2 · · · dk , where the
pivot elements di , i = 1 : n, are real. Hence, det(Ak) > 0, k = 1 : n, if and only if
all pivots are positive. By Theorem 1.3.1 this is the case if and only if A is positive
definite. �

In order to prove a bound on the growth ratio for symmetric positive definitematrices,
we first show the following.

Lemma 1.3.1 For a positive definite Hermitian matrix A = (ai j ) ∈ C
n×n, the

element of maximum magnitude lies on the diagonal.

Proof Theorem 1.3.1 and Sylvester’s criterion imply that

det

(
aii āi j

a ji a j j

)
= aii a j j − |ai j |2 > 0, 1 ≤ i, j ≤ n. (1.3.4)

Hence, |ai j |2 < aii a j j ≤ max1≤i≤n a2
i i , from which the lemma follows. �

Theorem 1.3.5 Let A ∈ C
n×n be Hermitian positive definite. Then in Gaussian

elimination without pivoting the growth ratio satisfies ρn ≤ 1.

Proof In Algorithm 1.3.1 the diagonal elements are transformed in the kth step of
GE according to

a(k+1)
i i = a(k)

i i −
|a(k)

ki |2
a(k)

kk

= a(k)
i i

(
1− |a(k)

ki |2
a(k)

i i a(k)
kk |

)
.

If A is positive definite, then so are A(k) and A(k+1). From Lemma 1.3.1 it follows
that 0 < a(k+1)

i i ≤ a(k)
i i , and hence the diagonal elements in the successive reduced

matrices cannot increase. Thus, we have

max
i, j,k

|a(k)
i j | = max

i,k
a(k)

i i ≤ max
i

aii = max
i, j
|ai j |,

which implies that ρn ≤ 1. �
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1.3.2 The Cholesky Factorization

If A ∈ C
n×n is aHermitian positive definitematrix, then the factorization A = LDLH

exists and D > 0. Then we can write

A = LDLH = (L D1/2)(L D1/2)H , D1/2 = diag(
√

d1, . . . ,
√

dn). (1.3.5)

If we redefine L := L D1/2, we obtain the Cholesky factorization

A = LLH , (1.3.6)

where L is the Cholesky factor of A and has real positive diagonal elements. By
Theorem 1.3.3, the factorization (1.3.5) is uniquely determined.

It is possible to arrange the computations so that the elements in the Cholesky
factor L = (li j ) are determined directly. (Compare with the compact schemes for LU
factorization in Sect. 1.2.4.) The matrix equation A = LLH with L lower triangular
can be written

ai j =
j∑

k=1
likl jk =

j−1∑
k=1

likl jk + li j l j j , 1 ≤ j ≤ i ≤ n. (1.3.7)

One has n(n + 1)/2 equations for the unknown elements in L . For i = j this gives

max
1≤k≤ j

|l jk |2 ≤
j∑

k=1
|l2jk | = a j j ≤ max

1≤i≤n
a j j ,

which shows that the elements in L are bounded in magnitude by the maximum
diagonal element in A.

Solving for li j from the corresponding equation in (1.3.7), we obtain

l j j =
(

a j j −
j−1∑
k=1
|l jk |2
)1/2

, li j =
(

ai j −
j−1∑
k=1

likl jk

)
/ l j j , i = j + 1 :n. (1.3.8)

(Note that the diagonal elements of A and L are real and positive.) These equations
are used in Algorithm 1.3.2 to compute the Cholesky22 factor L .

22 André-Louis Cholesky (1875–1918) was a French military officer involved in geodesy and
surveying in Crete and North Africa just before World War I. He developed the algorithm named
after him. His work was posthumously published by Benoit [15, 1924].
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Algorithm 1.3.2 (Column Sweep Cholesky)

function L = cholf(A);

% CHOLF computes the lower triangular Cholesky

% factor L of a positive definite Hermitian

% matrix A in column-wise order.

% --------------------------------------------

n = size(A,1); L = zeros(n,n);

for j = 1:n

k = 1:j-1;

L(j,j) = sqrt(A(j,j) - L(j,k)*L(j,k)’);

% Compute the j:th column of L.

for i = j+1:n

L(i,j) = (A(i,j) - L(i,k)*L(j,k)’)/L(j,j);

end

end

As for the LU factorization, there are several different ways to sequence the
computation of the elements in L . In the positive definite case no pivoting is needed
and the elements in L can be computed either one row or one column at a time; see
Fig. 1.5. The row- and column-wise versions are not only mathematically equivalent,
but also numerically equivalent, i.e., theywill compute the sameCholesky factor also
when rounding errors are taking into account. The algorithms require n square roots
and approximately n3/3 flops.

In the Cholesky factorization only elements in the lower triangular part of A
are referenced and only these elements need to be stored. Since most programming
languages only support rectangular arrays, this means that the lower triangular part
of the array holding A is not used. One possibility is then to use the lower half of the

Fig. 1.5 Computations in the kth step of Cholesky methods. Left The row sweep method. Right
The column sweep method
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array to store LT and not overwrite the original data. Another option is to store the
elements of the upper triangular part of A column-wise in a vector. For example, the
mapping of array-subscript of an upper triangular matrix of order 5 will be

⎛
⎜⎜⎜⎜⎝

1
2 3
4 5 6
7 8 9 10
11 12 13 14 15

⎞
⎟⎟⎟⎟⎠

. (1.3.9)

This is known as packed storage. These data are then overwritten by the elements of
L during the computations.Usingpacked storage complicates the index computations
somewhat, but should be used when it is important to economize storage.

1.3.2.1 Factorization of Semidefinite Matrices

Several applications lead to linear systems where A ∈ R
n×n is a symmetric semidef-

inite matrix. One example is when the finite element method is applied to a problem
where rigid body motion occurs. Another source is rank-deficient least squares prob-
lems. In the semidefinite case the Cholesky factorization needs to be modified by
choosing at each stage the largest diagonal element of the current reduced matrix as
pivot. The indefinite case, to be discussed in Sect. 1.3.4, requires more substantial
modifications.

Theorem 1.3.6 Let A ∈ C
n×n be a Hermitian positive semidefinite matrix of rank

r < n. Then there is a permutation matrix P such that the matrix PT AP has a
Cholesky factorization

PT AP = LLH , L =
(

L11 0
L21 0

)
, (1.3.10)

where L11 ∈ R
r×r has positive diagonal elements.

We prove the theorem by describing an outer product Cholesky algorithm to
compute L , which essentially is the same as Algorithm 1.3.1. At step k, a symmetric
rank-one matrix is subtracted from A. Ignoring pivoting, we have at the start of the
kth step

A(k) = (a(k)
i j ) = A −

k−1∑
j=1

l j l
T
j =
(
0 0
0 A(k)

22

)
, (1.3.11)

where l j = (0, . . . , 0, l j j , . . . , l jn). Here A(k)
22 ∈ R

(n−k+1)×(n−k+1) is the Schur
complement of the leading k × k principal submatrix of A. To advance one step, we
compute for k = 1 :n,
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lkk =
√

a(k)
kk , lik = a(k)

ik / lkk, i = k + 1 :n,

a(k+1)
i j = a(k)

i j − liklT
jk, j < i = k + 1 :n.

In order to retain symmetry, pivots can only be chosen from the diagonal. In the kth
elimination step of Algorithm 1.3.1 a maximal diagonal element a(k)

ss in the reduced
matrix A(k) is chosen as pivot, i.e.,

a(k)
ss = max

k≤i≤n
a(k)

i i . (1.3.12)

This pivoting strategy is easily implemented in the outer product version above.
Since all reduced matrices are positive semidefinite, their largest element lies

on the diagonal and diagonal pivoting is equivalent to complete pivoting. In exact
computation the Cholesky algorithm stops when all diagonal elements in the reduced
matrix are zero. This implies that the reduced matrix is the zero matrix. Symmetric
pivoting is also beneficial when A is close to a rank-deficient matrix.

Rounding errors can cause negative elements to appear on the diagonal in the
Cholesky algorithm even when A is positive semidefinite. Similarly, because of
rounding errors, the reducedmatrixwill in general be nonzero after r steps evenwhen
rank (A) = r . The question arises when to terminate the Cholesky factorization of
a semidefinite matrix. One possibility is to stop when maxk≤i≤n a(k)

i i ≤ 0, and set
rank (A) = k − 1. But this may cause unnecessary work in eliminating negligible
elements. Two other stopping criteria are suggested in [129, 2002], Sect. 10.3.2.
Taking computational cost into consideration it is recommended that the stopping
criterion

max
k≤i≤n

a(k)
i i ≤ ε l211 (1.3.13)

be used, where ε depends on the precision of the floating point arithmetic used.
The linear system Ax = b, or PT AP(PT x) = PT b, then becomes

LLT x̃ = b̃, x = Px̃, b̃ = PT b.

Setting z = LT x̃ , the linear system reads

Lz =
(

L11
L21

)
z =
(

b̃1
b̃2

)
, L11 ∈ R

r×r ,

and from the first r equations we obtain z = L−111 b̃1. Substituting this in the last n−r
equations we obtain

0 = L21z − b̃2 =
(
L21L−111 − I

) (b̃1
b̃2

)
.
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These equations are equivalent to b ⊥ N (A) and express the condition for the linear
system Ax = b to be consistent. If they are not satisfied, a solution does not exist.
It remains to solve LT x̃ = z, which gives

LT
11 x̃1 = z − LT

21 x̃2.

For an arbitrarily chosen x̃2 we can uniquely determine x̃1 so that these equations
are satisfied. This expresses the fact that a consistent singular system has an infinite
number of solutions. Finally, the permutations are undone to obtain x = Px̃ .

Any matrix A ∈ R
n×n can be written as the sum of a Hermitian and a skew-

Hermitian part, A = AH + AS , where

AH = 1
2 (A + AH ), AS = 1

2 (A − AH ). (1.3.14)

The matrix A is Hermitian if and only if AS = 0. Sometimes A is called positive
definite if its Hermitian part AH is positive definite. If the matrix A has a positive
definiteHermitian part, then its leading principal submatrices are nonsingular andGE
can be carried out to completion without pivoting. But the resulting LU factorization
may not be stable, as shown by the small example

(
ε 1
−1 ε

)
=
(

1
−1/ε 1

)(
ε 1

ε + 1/ε

)
, (ε > 0).

Of particular interest are complex symmetric matrices, arising in computational elec-
trodynamics, of the form

A = B + iC, B, C ∈ R
n×n, (1.3.15)

where B = AH and C = AS both are symmetric positive definite. It can be shown
that for this class of matrices ρn < 3, so LU factorization without pivoting is stable
(see George and Ikramov [97, 1962]).

1.3.3 Inertia of Symmetric Matrices

Hermitian matrices arise naturally in the study of quadratic forms ψ(x) = x H Ax ,
where A ∈ C

n×n is Hermitian. Let x = T y be a coordinate transformation, where
T is nonsingular. This transforms the quadratic form into

ψ(T y) = yH Ây, Â = T H AT.

The mapping A �−→ T H AT is called a congruence transformation of A and we
say that A and Â are congruent. The matrix Â is again Hermitian, but unless T is
unitary the transformation does not preserve the eigenvalues of A. The inertia of
A is defined as the number triple in(A) = (τ, ν, δ) of positive, negative, and zero
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eigenvalues of A. If A is positive definite matrix and Ax = λx , we have

x H Ax = λx H x > 0.

It follows that all eigenvalues must be positive and the inertia is (n, 0, 0). Sylvester’s
famous law of inertia23 says that the inertia of A is preserved by congruence trans-
formations.

Theorem 1.3.7 (Sylvester’s Law of Inertia) If A ∈ C
n×n is symmetric and T ∈

C
n×n is nonsingular, then A and Â = T H AT have the same inertia.

Proof Since A and Â are Hermitian, there exist unitary matrices U and Û such that

U H AU = D, Û H ÂÛ = D̂,

where D = diag(λi ) and D̂ = diag(λ̂i ) are diagonal matrices of the eigenvalues of
A and Â, respectively. By definition, we have in(A) = in(D), in( Â) = in(D̂), and
so we need to prove that in(D) = in(D̂), where

D̂ = SH DS, S = U H T Û .

Assume that τ �= τ̂ , say τ > τ̂ , and that the eigenvalues are ordered so that λ j > 0
for j ≤ τ and λ̂ j > 0 for j ≤ τ̂ . Let x = Sx̂ and consider the quadratic form
ψ(x) = x H Dx = x̂ H D̂x̂ , or

ψ(x) =
n∑

j=1
λ j |ξ j |2 =

n∑
j=1

λ̂ j |ξ̂ j |2.

Let x∗ �= 0 be a solution to the n − τ + τ̂ < n homogeneous linear relations

ξ j = 0, j > τ, ξ̂ j = (S−1x) j = 0, j ≤ τ̂ .

Then
ψ(x∗) =

τ∑
j=1

λ j |ξ∗j |2 > 0, ψ(x∗) =
n∑

j=τ̂

λ̂ j |ξ̂∗j |2 ≤ 0.

This is a contradiction and hence the assumption that τ �= τ̂ is false, so A and Â
have the same number of positive eigenvalues. Using the same argument on −A
it follows that also ν = ν̂. Finally, since the number of eigenvalues is the same,
δ = δ̂. �
Example 1.3.2 Let B ∈ R

m×m and C ∈ R
n×n be symmetric positive definite, and

consider the block matrix

23 Sylvester published the theorem in [188, 1852], but the result was later found in notes of Jacobi
dated 1847 and published posthumously.
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A =
(

B A
AT −C

)
. (1.3.16)

A matrix of the form (1.3.16) is called a saddle point matrix. Using block elimina-
tion, we find the block triangular factorization

(
B A

AT −C

)
=
(

I 0
AT B−1 I

)(
B 0
0 S

)(
I B−1A
0 I

)
, (1.3.17)

where S = −(C+ AT B−1A) ∈ R
n×n is the Schur complement. This shows thatA is

congruent with the block diagonal matrix

(
B 0
0 S

)
. If A has full column rank, then

S is negative definite and then Sylvester’s law of inertia shows that A is indefinite
and has m positive and n negative eigenvalues. �

Let A ∈ R
n×n be a real symmetric matrix and consider the solution set of the

quadratic equation

xT Ax − 2bx = c, A �= 0. (1.3.18)

For n = 2 the solution set of this equation is called a conic section, and can be of
one of three types: elliptic, hyperbolic, or parabolic.24

The geometric type of the conic section is determined by the inertia of A.
By Sylvester’s theorem, it can be determined without computing the eigenvalues
of A. Since the equation can always bemultiplied by−1, it is no restriction to assume
that there is at least one positive eigenvalue. Hence, there are three possibilities:

in(A) : (2, 0, 0) ellipse; (1, 0, 1) parabola; (1, 1, 0) hyperbola.

In n dimensions there will be n(n+1)/2 cases, assuming that at least one eigenvalue
is positive.

1.3.4 Symmetric Indefinite Matrices

If thematrix A is not positive definite, then itmay not be possible to performGEusing
pivots chosen from the diagonal. Consider, for example, the nonsingular symmetric
matrix

A =
(
0 1
1 ε

)
.

24 Traditionally, a conic section is defined as the intersection between a circular cone and a plane.
The Greek mathematician Appolonius of Perga (died 190 BC) wrote an eight volume treatise Conic
Sections, which summarized early knowledge.
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If we take ε = 0, then both diagonal elements are zero, and symmetric GE breaks
down. If ε �= 0, but |ε| � 1, then choosing ε as pivot will not be stable. On the other
hand, a row interchange will destroy symmetry. Even if A is well-conditioned and
a factorization of the form A = LDLT exists, this can be ill-conditioned because of
unbounded element growth. For example, the symmetric matrix

A =
(

ε 1
1 ε

)
, 0 < ε � 1,

is well-conditioned but indefinite, since det(A) = λ1λ2 = ε2 − 1 < 0. Its
LDLT factorization,

A =
(

1 0
ε−1 1

)(
ε 0
0 ε − ε−1

)(
1 ε−1
0 1

)
,

is ill-conditioned because of unbounded element growth in the factors. A stable
way of factorizing an indefinite matrix would be to use GEPP. But since partial
pivoting destroys symmetry, this will require twice work and the storage space of a
symmetric factorization. Furthermore, it will not determine the inertia of A, which
may be needed in some applications.

A stable symmetric factorization A = LDLT of a symmetric indefinite matrix A
can be obtained by allowing D to be block diagonal with some 2×2 blocks. Suppose
first that there is a positive element β on the diagonal. If this is brought to pivotal
position, then we can proceed one step and compute the factorization

A =
(

β cT

c E

)
=
(

1 0
c/β I

)(
β 0
0 E − ccT /β

)(
1 cT /β

0 I

)
, (1.3.19)

where the Schur complement E − ccT /β is symmetric. If such a pivot cannot be
found, then a symmetric block factorization with a 2 × 2 pivot B is used. Let B
be a nonsingular 2 × 2 principal submatrix of A brought into pivotal position by a
symmetric permutation. A symmetric block factorization with the 2× 2 pivot B has
the form
(

B CT

C E

)
=
(

I 0
C B−1 I

)(
B 0
0 E − C B−1CT

)(
I B−1CT

0 I

)
. (1.3.20)

This determines the elements in the first two columnsC B−1 of a unit lower triangular
matrix:

B−1 =
(

a11 ar1
ar1 arr

)−1
= 1

δ1r

(
arr −ar1
−ar1 a11

)
, δ1r = a11arr − a2

r1, (1.3.21)

The elements in the symmetric Schur complement E − C B−1CT are
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a(3)
i j = ai j − li1a1 j − lir ar j , 2 ≤ j ≤ i ≤ n. (1.3.22)

It can be shown that the reduced matrix is the same as if two steps of GE were taken,
first pivoting on the element a12 and then on a21. Since the Schur complement is
symmetric, this can be repeated.

A similar reduction is used if a 2×2 pivot is taken at a later stage in the factoriza-
tion. Ultimately a factorization A = LDLT is computed in which D is block diagonal
with a mixture of 1 × 1 and 2 × 2 blocks. When A(k) is reduced by a 2 × 2 pivot,
L is unit lower triangular with lk+1,k = 0. Since the effect of taking a 2 × 2 step is
to reduce A by the equivalent of two 1× 1 pivot steps, the amount of work must be
balanced against that. The part of the calculation that dominates the operation count
is (1.3.22), and this is twice the work as for a scalar pivot. Therefore, the leading
term in the operations count is always n3/6, whichever type of pivot is used.

The factorization can be implemented for A stored in conventional form as an n×n
array, or stored as a one-dimensional array of length n(n + 1)/2. The square array
has the advantage that it can hold L , D, and the strictly lower triangular part of A.
(The diagonal of A must be stored separately.) A snapshot of a possible configuration
is showed below, where two steps have been taken with the first pivot of size 1× 1
and the second of size 2× 2:

⎛
⎜⎜⎜⎜⎜⎜⎝

d11 l21 l31 l41 l51 l61
a21 d22 d32 l42 l52 l62
a31 a32 d33 l12 l12 l63
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
a61 a62 a63 a64 a65 a66

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Themain issue is to find a pivotal strategy that will give control of element growth
without requiring toomuch searching.Bunch andParlett [32, 1971] devised a strategy
comparable to that of complete pivoting. In the first step of the factorization, set

μ0 = max
i j
|ai j | = |apq |, μ1 = max

i
|aii | = |arr |.

Then if

μ1/μ0 > α = (
√
17+ 1)/8 ≈ 0.6404,

the diagonal element arr is taken as a 1× 1 pivot. Otherwise, the 2× 2 pivot

(
app aqp

aqp aqq

)
, p < q,

is chosen. In other words, if there is a diagonal element not much smaller than the
element of maximum magnitude, this is taken as a 1× 1 pivot. The magical number
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α can be shown to minimize the bound on the growth per stage of elements of A,
allowing for the fact that a 2 × 2 pivot is equivalent to two stages. The derivation,
which is straightforward but tedious (seeHigham [129, 2002] Sect. 11.1.1), is omitted
here. With this choice the element growth can be shown to be bounded by

ρn ≤ (1+ 1/α)n−1 < (2.57)n−1. (1.3.23)

This exponential growthmay seemalarming, but the important fact is that the reduced
matrices cannot grow abruptly from step to step. No example is known where signif-
icant element growth occurs at every step. The bound in (1.3.23) can be compared
to the bound 2n−1 that holds for GEPP. The elements in L can be bounded by
1/(1 − α) < 2.781 and this pivoting strategy therefore gives a backward stable
factorization.

Since the complete pivoting strategy above requires the whole active submatrix
to be searched in each stage, it requires O(n3) comparisons. The same bound for
element growth (1.3.23) can be achieved using the following partial pivoting strategy
due to Bunch and Kaufman [31, 1977]. For simplicity of notation we restrict our
attention to the first stage of the elimination. All later stages proceed similarly. First
the off-diagonal element of largest magnitude in the first column,

λ = |ar1| = max
i �=1 |ai1|,

is determined. If |a11| ≥ αλ, then take a11 as pivot. Else, the largest off-diagonal
element in column r ,

σ = max
1≤i≤n

|air |, i �= r,

is determined. If |a11| ≥ αλ2/σ , then we again take a11 as pivot, else if |arr | ≥ ασ ,
we take arr as pivot. Otherwise we take as pivot the 2× 2 principal submatrix

(
a11 a1r

a1r arr

)
.

Also, at most 2 columns need to be searched in each step, and at most O(n2) compar-
isons are needed in all. Note that this algorithm can be modified to work for complex
Hermitian or complex symmetric matrices.

Whenever a 2 × 2 pivot is used, we have a11arr ≤ α2|a1r |2 < |a1r |2. Hence,
with both pivoting strategies any 2 × 2 block in the block diagonal matrix D has
a negative determinant δ1r = a11arr − a2

1r < 0. By Sylvester’s law of inertia,
this block corresponds to one positive and one negative eigenvalue. Hence, a 2 × 2
pivot cannot occur if A is positive definite and in this case all pivots chosen by the
Bunch–Kaufman strategy will be 1× 1.



86 1 Direct Methods for Linear Systems

Although normwise backward stability holds also for the Bunch–Kaufman piv-
oting strategy, it is no longer true that the elements of L are bounded independently
of A. The following example (Higham [129, 2002], Sect. 11.1.2) shows that L is
unbounded:

A =
⎛
⎝
0 ε 0
ε 0 1
0 1 1

⎞
⎠ =
⎛
⎝

1
0 1

ε−1 0 1

⎞
⎠
⎛
⎝
0 ε

ε 0
1

⎞
⎠
⎛
⎝
1 0 ε−1

1 0
1

⎞
⎠ . (1.3.24)

For solving a linear system Ax = b, the factorization produced by the
Bunch–Kaufman pivoting strategy is satisfactory. For certain other applications the
possibility of a large L factor is not acceptable.

A bounded L factor can be achieved with themodified pivoting strategy suggested
inAshcraft et al. [5, 1998].This symmetric pivoting is roughly similar to rookpivoting
and has a total cost of between O(n2) and O(n3) comparisons. Probabilistic results
suggest that on average the cost is only O(n2). In this strategy a search is performed
until two indices r and s have been found such that the element ars bounds inmodulus
the other off-diagonal elements in the r and s columns (rows). Then either the 2× 2
pivot Drs , or the largest in modulus of the two diagonal elements as a 1× 1 pivot is
taken, according to the test

max(|arr |, |ass |) ≥ α|ars |.

An Algol program for the symmetric decomposition of an indefinite matrix using
the partial pivoting strategy of Bunch and Kaufmann was published in the Handbook
series [33, 1976]. Higham noticed that no proof of the stability of this method had
been given, only a proof that the growth factor is bounded. That gap was closed by
Higham [128, 1997], who proved normwise backward stability.

Aasen [1, 1971] has given an alternative algorithm that computes the symmetric
factorization

PAPT = LT LT , (1.3.25)

where P a permutation matrix, L is unit lower triangular with first column equal to
e1 and T symmetric and tridiagonal. Even though it rivals block LDLT factorization
in terms of speed and stability, it is less frequently used; see Higham [129, 2002],
Sect. 11.2.

NeitherAasen’s or the other algorithms described here preserve any band structure
of A. In this case GEPP can be used but this will destroy symmetry and not reveal
the inertia of A. An algorithm for computing the factorization A = LDLT of a
tridiagonal symmetric indefinite matrix is given in Sect. 1.5.4.

A block LDLT factorization can also be computed for a real skew-symmetric
matrix A. Note that AT = −A implies that such a matrix has zero diagonal elements.
Furthermore, since
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(xT Ax)T = xT AT x = −xT Ax,

it follows that all nonzero eigenvalues come in pure imaginary complex conjugate
pairs. If the dimension is odd, then A is singular. We therefore assume that the
dimension n is even and that A is nonsingular. In the first step of the factorization
we look for an off-diagonal element ap,q , p > q, such that

|ap,q | = max{ max
1<i≤n

|ai,1|, max
2≤i≤n

|ai,2|},

and take the 2× 2 pivot (
0 −ap,q

ap,q 0

)
.

It can be shown that with this pivoting the growth ratio is bounded by ρn ≤ (
√
3)n−2,

which for a general matrix is smaller than for Gaussian elimination with partial
pivoting.

Exercises

1.3.1 If the matrix A is symmetric positive definite, how should you compute xT Ax for a given
vector x in order to get a nonnegative result?

1.3.2 Let the matrix A be symmetric positive definite. Show that

|ai j | ≤ (aii + a j j )/2, i, j = 1 :n.

1.3.3 Show that if A is symmetric semidefinite and xT Ax = 0, then Ax = 0.
1.3.4 Let A = (ai j ) ∈ R

n×n be a symmetric positive definite matrix. Prove the special case of
Hadamard’s inequality

| det A| ≤
n∏

i=1
aii , (1.3.26)

where equality holds only if A is diagonal.
Hint: Use the Cholesky factorization A = LLT and show that det A = (det L)2.

1.3.5 Show that the matrix

A =

⎛
⎜⎜⎜⎝

a −1 · · · −1
−1 a · · · 0

.

.

.
.
.
.

. . .
.
.
.

−1 0 · · · a

⎞
⎟⎟⎟⎠ ∈ R

n×n

is positive definite if a >
√

n.
Hint: Reverse the rows and columns of A and then compute the Cholesky factorization.

1.3.6 TheHilbertmatrix Hn ∈ R
n×n with elements ai j = 1/(i+ j−1), 1 ≤ i, j ≤ n, is symmetric

positive definite for all n. Denote by H̄4 the corresponding matrix with elements rounded
to five decimal places, and compute its Cholesky factor L̄ . Then compute the difference
L̄ L̄T − Ā and compare it with A − Ā.

1.3.7 (a) Let A+ iB be Hermitian and positive definite, where A, B ∈ R
n×n . Show that the real

matrix

C =
(

A B
B A

)

is symmetric and positive definite.
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(b) How can the linear system (A + iB)(x + iy) = b + ic be solved using a Cholesky
factorization of C?

1.3.8 Implement the Cholesky factorization when the lower triangular part of A ∈ R
n×n is stored

columnwise in a one-dimensional array,

(a11, . . . , an1, a22, . . . , an2, . . . , ann).

Hint: What is the index of the element ai j , i ≥ j in the array?
1.3.9 Show that for n = 3 there are six different geometric types of surfaces xT Ax − 2bT x = c,

provided that A �= 0 and is scaled to have at least one positive eigenvalue.

1.4 Error Analysis in Matrix Computations

Consider a finite algorithm for computing y = f (x) ∈ R
m from input data x ∈ R

n

by a finite sequence of arithmetic operations. There are two basic forms of roundoff
error analysis for such an algorithm, both of which are useful.

(i) In forward error analysis, one attempts to find bounds for |ȳ − y|, where ȳ
denotes the computed value of y. The main tool used in forward error analysis
is the propagation of errors as the algorithm proceeds.

(ii) In backward error analysis, one attempts to show that the computed solution
ȳ is the exact solution for a modified set of data x + �x , and to give bounds
for |�x |. Let u be a measure of the precision used in the arithmetic operations.
If for some norm in the space of input data it holds for all x that

‖�x‖ ≤ cu‖x‖,

c is a “small” constant that may depend on m and n, then the algorithm is said
to be backward stable. The definition of “small” depends on the context.

Note that backward stability of an algorithm does not mean that the forward error
|ȳ − y| is small. If it can be shown that for all x an algorithm gives a forward
error of the same size as a backward stable algorithm, then the algorithm is called
backward stable. Even for some very simple problems no backward stable algo-
rithms may exist. A slightly weaker property is that the computed result satisfies
ȳ +�y = f (x +�x), where

‖�y‖ ≤ c1u‖y‖, , ‖�x‖ ≤ c2u‖x‖, (1.4.1)

where c1 and c2 are small. Then the algorithm is said to bemixed forward-backward
stable, or just stable. (In other areas of numerical analysis stability may have another
meaning.)
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1.4.1 Floating-Point Arithmetic

In floating-point computation a real number a is represented in the form

a = ±m · βe, β−1 ≤ m < 1, e an integer, (1.4.2)

where β is the base of the system. The fraction part m is called the significand and
e is the exponent. If t digits are used to represent m, then floating-point numbers
have the form in (1.4.2) with

m = (0.d1d2 · · · dt )β, 0 ≤ di < β, (1.4.3)

and the exponent is limited to a finite range emin ≤ e ≤ emax. In a floating-point
number system every real number in the floating-point range can be represented with
a relative error that does not exceed the unit roundoff u = 1

2β
−t+1.

The IEEE 754 standard (see [135, 1985]) for floating-point arithmetic is used
on virtually all general-purpose computers. It specifies formats for floating-point
numbers, elementary operations, and rounding rules. Two main basic binary formats
are specified: single and double precision, using 32 and 64 bits, respectively. In single
precision a floating-point number a is stored as the sign s (one bit), the exponent e
(8 bits), and the mantissa m (23 bits). A biased exponent is stored with no sign bit
used for exponent and emin = −126 and emax = 127, and e + 127 is stored. The
value v of a is in the normal case

v = (−1)s(1.m)22
e, emin ≤ e ≤ emax. (1.4.4)

Note that the digit before the binary point is always 1 for a normalized number.
Thus, the normalization of the mantissa is different from that in (1.4.3). This bit is
not stored (the hidden bit) and one bit is gained for the mantissa.

In double precision 11 of the 64 bits are used for the exponent, and 52 bits are
used for the mantissa. The largest number that can be represented is approximately
2.0 · 2127 ≈ 3.4028 · 1038 in single precision and 2.0 · 21023 ≈ 1.7977 · 10308 in
double precision. An exponent e = emin − 1 and m �= 0 signifies the denormalized
number (or subnormal number)

v = (−1)s(0.m)22
emin .

The smallest denormalized number that can be represented is 2−126−23 ≈ 1.4013 ·
10−45 in single precision and 2−1022−52 ≈ 4.9407 · 10−324 in double precision.

There are distinct representations for +0 and −0. ±0 is represented by a sign
bit, the exponent emin − 1, and a zero mantissa. Comparisons are defined so that
+0 = −0. One use of a signed zero is to distinguish between positive and negative
underflow. Another use occurs in the computation of complex elementary functions.
Infinity is also signed and ±∞ is represented by the exponent emax + 1 and a zero
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mantissa. When overflow occurs, the result is set to ±∞. This is safer than simply
returning the largest representable number, which may be nowhere near the correct
answer. The result±∞ is also obtained from the illegal operations a/0, where a �= 0.
The infinity symbol obeys the usual mathematical conventions such as∞+∞ =∞,
(−1)×∞ = −∞, a/∞ = 0.

IEEE arithmetic is a closed system, that is, every operation, even mathematically
invalid operations, even 0/0 or

√−1, produces a result. To handle exceptional situ-
ations without aborting the computations, some bit patterns are reserved for special
quantities like NaN (“Not a Number”) and∞. NaNs (there are more than one NaN)
are represented by e = emax+ 1 and m �= 0. A NaN is generated by operations such
as 0/0, +∞+ (−∞), 0×∞, and

√−1. A NaN compares unequal with everything
including itself. (Note that x �= x is a simple way to test if x equals a NaN.) When a
NaN and an ordinary floating-point number are combined, the result is the same as
the NaN operand. A NaN is also often used for uninitialized or missing data.

Exceptional operations also raise a flag. The default is to set a flag and continue,
but it is also possible to pass control to a trap handler. The flags are “sticky” in that
they remain set until explicitly cleared. This implies that without a log file everything
before the last setting is lost, which is why it is always wise to use a trap handler.
There is one flag for each of the following five exceptions: underflow, overflow,
division by zero, invalid operation, and inexact. For example, by testing the flags it
is possible to check if an overflow is genuine or the result of division by zero.

Four rounding modes are supported by the standard. The default rounding mode
is round to nearest representable number, with round to even in case of a tie. (Some
computers in case of a tie round away from zero, i.e., raise the absolute value of
the number, because this is easier to realize technically.) Chopping (i.e., rounding
towards zero) is also supported, as well as directed rounding to ∞ and to −∞.
The latter modes simplify the implementation of interval arithmetic (see [48, 2008]),
Sect. 2.5.3. For more details on floating point arithmetic and the 1985 IEEE standard,
we refer to Sect. 2.2, [48, 2008] and references therein.

The standard specifies that all arithmetic operations should be performed as if
they were first calculated to infinite precision and then rounded to a floating-point
number according to one of the four modes mentioned above. This also includes
the square root and conversion between an integer and a floating-point number. This
can be achieved using extra guard digits in the intermediate result of the operation
before normalization and rounding. One reason for specifying precisely the results
of arithmetic operations is to improve the portability of software. If a program is
moved between two computers, both supporting the IEEE standard, intermediate
results should be the same.

The IEEE 754 standard was revised and a new standard IEEE 754–2008 approved
and published in August 2008.A comprehensive survey of this new standard is
found in Muller et al. [158, 2010]; see also http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=\&arnumber=4610935 Among the changes adopted is the inclusion of binary
quadruple precision using 128 bits. Also, a fused multiply-add operation a×x+ y
with only one rounding error at the end is standardized. The new standard does not
invalidate hardware that conforms to the old IEEE 754 standard. The characteristics

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935
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Table 1.2 IEEE 754–2008 binary floating-point formats

Format t e emin emax u

Single 32 24 8 −126 +127 5.96 · 10−8
Double 64 53 11 −1022 +1023 1.11 · 10−16
Quadruple 128 113 15 −16,382 +16,383 0.963 · 10−34

of the three binary arithmetic formats in the new IEEE standard are summarized in
Table1.2. Note that a “hidden bit” is included in the value of t , which explains why
the entry t in the table is the number of bits assigned plus one.

If x and y are floating-point numbers, we denote by

f l (x + y), f l (x − y), f l (x · y), f l (x/y)

the results of floating-point addition, subtraction, multiplication, and division, which
themachine stores inmemory (after rounding or choppi ng). If underflow or overflow
does not occur, then in IEEE floating-point arithmetic

f l (x op y) = (x op y)(1+ δ), |δ| ≤ u, (1.4.5)

where u is the unit roundoff and “op” stands for one of the four elementary operations
+, −, ·, and /. For the square root it holds that

f l (
√

x) = √x(1+ δ), |δ| ≤ u. (1.4.6)

Complex arithmetic can be reduced to real arithmetic as follows. Let x = a + ib
and y = c + id be two complex numbers, where y �= 0. Then we have:

x ± y = a ± c + i(b ± d),

x × y = (ac − bd)+ i(ad + bc),

x/y = ac + bd

c2 + d2 + i
bc − ad

c2 + d2 .

Complex addition (subtraction) needs two real additions. Multiplying two complex
numbers requires four real multiplications and two real additions, while division
requires six real multiplications, three real additions, and two real divisions.

Lemma 1.4.1 Assume that the standard model (1.4.5) for floating-point arithmetic
holds. Then, provided that no over- or under-flow occurs, and no subnormal numbers
are produced, the complex operations above satisfy

f l (x ± y) = (x ± y)(1+ δ), |δ| ≤ u,

f l (x × y) = x × y(1+ δ), |δ| ≤ √5u, (1.4.7)

f l (x/y) = x/y(1+ δ), |δ| ≤ √2γ4,
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where δ is a complex number and γn = nu/(1− nu).

Proof See Higham [129, 2002], Sect. 3.6. The result for complex multiplication is
due to Brent et al. [28, 2007]. �

The square root of a complex number v + iw = √x + iy is given by

v = (r + x/2)1/2 , w = (r − x/2)1/2 , r =
√

x2 + y2. (1.4.8)

When x > 0 there will be cancellation when computing w, which can be severe if
also |x | � |y| (cf. Sect. 2.3.4, [48, 2008]). To avoid this we note that

vw = 1

2

√
r2 − x2 = y

2
,

so w can be computed from w = y/(2v). When x < 0 we instead compute w from
(1.4.8) and set v = y/(2w).

1.4.2 Rounding Errors in Matrix Operations

Bounds for roundoff errors for basic vector and matrix operations can be found
in Wilkinson [205, 1963], pp. 23–25, and [206, 1965], pp. 114–118. We will use a
slightly different notation due to Higham [129, 2002].

Lemma 1.4.2 Let |δi | ≤ u and ρi = ±1, i = 1:n. If nu < 1, then

n∏
i=1

(1+ δi )
ρi = 1+ θn, |θn| < γn ≡ nu

1− nu
. (1.4.9)

Ifwemake the realistic assumption that nu < 0.1, then |θn | < 1.06nu. To simplify
the result of an error analysis, we will often assume that nu � 1 and use γn = nu.

Let the inner product xT y = x1y1 + x2y1 + · · · + xn yn be computed from left to
right. Then, by repeated use of (1.4.5), we get

f l (xT y) = x1y1(1+ δ1)+ x2y2(1+ δ2)+ · · · + xn yn(1+ δn),

where
|δ1| < γn, |δi | < γn+2−i , i = 2 :n.

Note that the errors depend on the order of evaluation. From this we obtain the
forward error bound

| f l (xT y)− xT y| < γn|x1||y1| +
n∑

i=2
γn+2−i |xi ||yi | < γn|xT ||y|, (1.4.10)
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where |x |, |y| denote the vectors with elements |xi |, |yi |. The last upper bound in
(1.4.10) is valid for any summation order and also for floating-point computation
with no guard digit rounding. The corresponding backward error bounds

f l (xT y) = (x+�x)T y = xT (y+�y), |�x | ≤ γn|x |, |�y| ≤ γn|y| (1.4.11)

also hold for any order of evaluation. For the outer product xyT of two vectors
x, y ∈ R

n we have f l (xi y j ) = xi y j (1+ δi j ), |δi j | ≤ u, and so

| f l (xyT )− xyT | ≤ u |xyT |. (1.4.12)

This is a satisfactory result for many purposes, but the computed result is not in
general a rank-one matrix and it is not possible to find perturbations�x and�y such
that f l(xyT ) = (x +�x)(y +�y)T .

From the error analysis of inner products, error bounds for matrix-vector and
matrix-matrix multiplications can easily be obtained. Let A ∈ R

m×n , x ∈ R
n , and

y = Ax . Then yi = aT
i x , where aT

i is the i th row of A. From (1.4.11) we have

f l (aT
i x) = (ai +�ai )

T y, |�ai | ≤ γn|ai |,

giving the backward error result

f l (Ax) = (A +�A)x, |�A| ≤ γn|A|, (1.4.13)

where the inequality is to be interpreted elementwise.
Now consider matrix multiplications, C = AB, where A ∈ R

m×n and B ∈ R
n×p

with columns b j , j = 1 : p. Then by (1.4.13), for the j th column c j of C we have

f l(c j ) = f l (Ab j ) = (A +� j A)b j , |� j A| ≤ γn|A|.

Hence, each computed column in C has a small backward error. Note that the same
cannot be said for C as a whole, since the perturbation of A depends on j . But we
have the forward error bound

| f l (AB)− AB| < γn|A||B|. (1.4.14)

Often we shall need bounds for some norm of the error matrix. From (1.4.14) it
follows that ‖ f l (AB)−AB‖ < γn‖ |A| ‖ ‖ |B| ‖. Hence, for any absolute norm, e.g.,
the 
1, 
∞, and Frobenius norms, we have

‖ f l (AB)− AB‖ < γn‖A‖ ‖B‖. (1.4.15)

But unless A and B have only nonnegative elements, for the 
2-norm we have the
weaker bound ‖ f l (AB)− AB‖2 < nγn‖A‖2 ‖B‖2.
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The rounding error results here are formulated for real arithmetic. Since the bounds
for complex arithmetic in Lemma 1.4.1 are of the same form as the standardmodel for
real arithmetic, these results are valid for complex arithmetic provided the constants
in the bounds are increased appropriately.

In many matrix algorithms there repeatedly occur expressions of the form

y =
(

c −
k−1∑
i=1

ai bi

)/
d.

A simple extension of the roundoff analysis of an inner product shows that if the
term c is added last, then the computed ȳ satisfies

ȳd(1+ δk) = c −
k−1∑
i=1

ai bi (1+ δi ), (1.4.16)

where |δ1| ≤ γk−1, |δi | ≤ γk+1−i , i = 2 : k − 1, |δk | ≤ γ2, and γk = ku/(1 − ku).
Note that in order to prove a backward error result for Gaussian elimination that does
not perturb the right-hand side vector b, we have formulated the result so that c is
not perturbed. It follows that the forward error satisfies

∣∣∣∣ȳd −
(

c −
k−1∑
i=1

ai bi

)∣∣∣∣ ≤ γk

(
|ȳd| +

k−1∑
i=1
|ai ||bi |

)
, (1.4.17)

and this inequality holds for any summation order. It is now straightforward to derive
a bound for the backward error in solving a triangular system of equations.

Theorem 1.4.1 If the lower triangular system Ly = b, L ∈ R
n×n, is solved by

substitution with the summation order in Algorithm 1.2.1, then the computed solution
y satisfies (L +�L)y = b, where, for i = 1 :n,

|�li j | ≤
{

γ2|li j |, j = i,

γ j−i |li j |, j = i + 1 :n.
(1.4.18)

Hence, |�L| ≤ γn|L| and this inequality holds for any summation order.

A similar result holds for the computed solution to an upper triangular systems.
We conclude the backward stability of substitution for solving triangular systems.
Note that it is not necessary to perturb the right-hand side.
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1.4.3 Error Analysis of Gaussian Elimination

In all cases examined, including the well-known Gaussian elimination process, it is found
that the errors are quite moderate; no exponential build-up need occur.
—Alan M. Turing25 [196, 1948].

GE was the first numerical algorithm to be subjected to a rounding error analysis.
In 1943 Hotelling [133, 1943] produced a priori bounds showing that the error in
the solution would be proportional to 4n . This suggested that it would be impossible
to solve even systems of modest order. A few years later John von Neumann and
Herman Goldstine [162, 1947] (reprinted in [190, 1963], pp. 479–557) published
more relevant error bounds. This paper can be said to have started modern numerical
linear algebra. It introduced the condition number of a matrix and treated all aspects
of modern scientific computing, such as mathematical analysis, the interaction of
algorithms and the computer, and the need to solve large and complex problems
from applications. Another important contribution in the same spirit was the paper
by Turing [196, 1948].

Amajor breakthrough in the understanding ofGE came in 1961with the backward
rounding error analysis of Wilkinson [204, 1961]. The analysis is sketched here in
a somewhat modified form due to Reid [167, 1971]. The following important result
shows that GE is backward stable provided the growth in the factors L and U is
bounded.

Theorem 1.4.2 Let L̄ and Ū be the computed triangular factors in the LU factor-
ization of A ∈ R

n×n obtained by GE. Assuming that the standard model (1.4.5)
for floating-point arithmetic holds and neglecting terms of order nu2, the computed
factors are the exact triangular factors of a perturbed matrix:

L̄Ū = A + E, E = (ei j ), |ei j | ≤ 3umin(i − 1, j)max
k
|ā(k)

i j |. (1.4.19)

Proof In the kth step of GE, the elements a(k)
i j , i, j = k + 1 : n, are transformed

according to
li,k = a(k)

i,k /a(k)
k,k, a(k+1)

i j = a(k)
i j − li,ka(k)

k, j .

In floating-point arithmetic the computed quantities will satisfy

l̄i,k = (1+δ1k)ā
(k)
i,k /ā(k)

k,k, ā(k+1)
i j = (ā(k)

i j − l̄i,k ā(k)
k, j (1+δ2k)

)
(1+δ3k), (1.4.20)

25 Alan Mathison Turing (1912–1954) English mathematician and fellow of Kings College, Cam-
bridge. For his work on undecidable mathematical propositions he invented the “Turing machine”,
which proved to be of fundamental importance in mathematics and computer science. DuringWW2
he led the group at Bletchley Park that broke the Enigma coding machine used by the German Luft-
waffe and Navy. After the end of the war, Turing worked at the National Physical Laboratory in
London on the design of the Pilot ACE computer. In 1948 he moved to Manchester to work on the
design of subroutines and numerical analysis and wrote a remarkable paper, in which he formulated
the LU factorization and introduced matrix condition numbers.
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where |δik | ≤ u, i = 1:3.We now seek perturbations ε
(k)
i j to ā(k)

i j , i, j = k:n, such that
if the exact operations are carried out on the perturbed elements, then the computed
quantities are obtained, i.e.,

l̄i,k =
(
ā(k)

i,k + ε
(k)
ik

)
/ā(k)

k,k, ā(k+1)
i j = (ā(k)

i j + ε
(k)
i j )− l̄i,k ā(k)

k, j . (1.4.21)

From (1.4.20) it follows that ε(k)
i j = a(k)

i j δ1k . Rewriting (1.4.20) as

l̄i,k ā(k)
k, j =
(
ā(k)

i j − ā(k+1)
k, j /(1+ δ3k)

)
/(1+ δ2k),

and substituting into (1.4.21), we obtain

ε
(k)
i j = ā(k+1)

i j

(
1− (1+ δ3k)

−1(1+ δ2k)
−1)− ā(k)

i j

(
1− (1+ δ2k)

−1).

Neglecting higher powers of u we get the estimates

|ε(k)
ik | ≤ u|ā(k)

i j |, |ε(k)
i j | ≤ 3umax

{|ā(k)
i j |, |ā(k+1)

i j |}, j = k + 1 :n.

We have l̄i i = lii = 1 and summing the second equation in (1.4.21) we obtain

ai j =
p∑

k=1
l̄i,k ā(k)

k j + ei j , ei j =
r∑

k=1
ε
(k)
i j , (1.4.22)

where p = min{i, j}, r = min{i − 1, j}. �

Note that upper bound for |E | = (|ei j |) in (1.4.19) holds without any assumption
about the size of the multipliers, and can be written

|E | ≤ 3ρnumax
i j
|ai j |F, fi, j = min{i − 1, j}, (1.4.23)

whereρn is the growth factor (seeDefinition 1.2.1, p. 47).This shows that the purpose
of any pivotal strategy is to avoid growth in the size of the computed elements ā(k)

i j ,
and that the size of the multipliers is of no consequence.

Strictly speaking, this is not correct unless we use the growth factor ρ̄n for the
computed elements. Since this quantity differs insignificantly from the theoretical
growth factor ρn in (1.2.15), this difference can be ignored. The next theorem gives
a normwise bound.

Theorem 1.4.3 Let L̄ and Ū be the computed triangular factors of A, obtained by
GE where floating-point arithmetic with unit roundoff u has been used. Then, there
is a matrix E such that

L̄Ū = A + E, ‖E‖∞ ≤ 1.5n2ρnu‖A‖∞. (1.4.24)
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Proof The normwise backward error bound is obtained from (1.4.23) by slightly
refining the simple estimate ‖F‖∞ ≤ (1+ 2 + · · · + n)− 1 ≤ 1

2n(n + 1)− 1 and
using maxi j |ai j | ≤ ‖A‖∞. �

These results hold for all variants of Gaussian elimination given in Sect. 1.2.4,
because each does the same operations with the same arguments. LU factorization
with pivoting is equivalent to LU factorization without pivoting on a permutedmatrix
Ã = P A. Therefore, we can assume that the pivoting has been carried out in advance,
and we conclude that the result holds also for pivoted LU factorization.

With both partial or complete pivoting the computed multipliers satisfy the
inequality |lik | ≤ 1, i = k + 1 :n. For partial pivoting it was shown that the growth
ratio is bounded by 2n−1. For complete pivoting, Wilkinson [204, 1961] proved the
much smaller bound

ρn ≤ (n · 2131/241/3 · · · n1/(n−1))1/2 < 1.8
√

nn
1
4 log n,

which gives, e.g., ρ50 < 530. It was long conjectured that for real matrices and
complete pivoting ρn ≤ n. This was disproved in 1991 when a matrix of order 13
was found for which ρn = 13.0205.

Although the worst-case behavior of LU factorization with partial pivoting is
not satisfactory, from decades of experience and extensive experiments it can be
concluded that substantial element growth occurs only for a tiny proportion of matri-
ces arising naturally. Why this is so is still not fully understood. Trefethen and
Schreiber [194, 1990] have shown that for matrices with certain random distribu-
tions of elements the average element growth is close to n2/3 for partial pivoting and
n1/2 for complete pivoting. Complete pivoting is seldom used in practice. When in
doubt, iterative refinement, to be discussed in Sect. 1.4.6, is a better way of checking
and improving the reliability.

For the Cholesky factorization of a real symmetric positive definite matrix A a
normwise error analysis was given by Wilkinson [207, 1968].

Theorem 1.4.4 Let A ∈ Rn×n be a symmetric positive definite matrix. The Cholesky
factor of A can be computed without breakdown provided that 2n3/2uκ(A) < 0.1.
The computed L satisfies

L L
T = A + E, ‖E‖2 < 2.5n3/2u‖A‖2, (1.4.25)

and hence is the exact Cholesky factor of a matrix close to A.

This is essentially the best normwise bound that can be obtained, although
Meinguet [155, 1983] has shown that for large n the constants 2 and 2.5 in
Theorem 1.4.4 can be improved to 1 and 2/3, respectively.

In Theorem 1.4.2, the quantities maxk |ā(k)
i j |, i, j, k = 1 : n play a key role. In

theory these can be observed andmonitored during the elimination. But in Doolittle’s
algorithms they are not available. A more suitable bound for the rounding errors in
Doolittle’s algorithm is given by Higham [129, 2002].
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Theorem 1.4.5 If the LU factorization of A ∈ R
n×n runs to completion, then the

computed factors L and U satisfy

A + E = L U , |E | ≤ γn|L| |U |, (1.4.26)

where γn = nu/(1− nu).

Proof We have lii = lii = 1 and by (1.2.11) the other elements in L and U are
computed from

ui j = ai j −
i−1∑
p=1

lipu pj , j ≥ i; li j =
(

ai j −
j−1∑
p=1

lipu pj

)
/u j j , i > j.

From the forward error bound given in (1.4.17) it follows that the computed elements
lip and u pj satisfy

∣∣∣ai j −
r∑

p=1
lipu pj

∣∣∣ ≤ γr

r∑
p=1
|lip| |u pj |, r = min(i, j),

where lii = lii = 1. Writing these inequalities in matrix form and using γr ≤ γn

gives (1.4.26). �

To estimate the error in the computed solution x of a linear system Ax = b,
we must also take into account the rounding errors performed in solving the two
triangular systems L y = b and U x = y. In [204, 1961] Wilkinson observed that if
partial pivoting is used, then L tends to be well-conditioned. Further, if U is scaled
so that its diagonal elements are one, then its smallest singular value is near one.
Therefore, these triangular systems are frequently solved more accurately than their
condition numbers warranted. A discussion of errors in the solution to triangular
systems is found in Sect. 8.2.

Theorem 1.4.6 Let x be the computed solution of the system Ax = b, using LU
factorization and substitution. Then x satisfies

(A +�A)x = b, |�A| ≤ (3γn + γ 2
n )|L| |U |. (1.4.27)

Proof From Theorem 1.4.1 it follows that the computed y and x satisfy

(
L + δL

)(
U + δU

)
x = b,

∣∣δL
∣∣ ≤ γn|L|,

∣∣δU
∣∣ ≤ γn|U |. (1.4.28)

From the upper bounds in (1.4.26) and (1.4.28), we obtain (1.4.27). �

Note that although the perturbation �A depends upon b, the bound on |�A|
is independent of b. The elements in U satisfy |ui j | ≤ ρn‖A‖∞, and with partial
pivoting |li j | ≤ 1. Hence,
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∥∥ ∣∣L∣∣ ∣∣U | ‖∞ ≤ 1
2n(n + 1)ρn,

and neglecting the term γ 2
n (which is of order O((nu)2)) in (1.4.28) we get

‖�A‖∞ ≤ 1.5n(n + 1)γnρn‖A‖∞. (1.4.29)

The residual for the computed solution is r = b− Ax = �Ax . From (1.4.29) we
get the estimate

‖r‖∞ ≤ 1.5n(n + 1)γnρn‖A‖∞‖x‖∞. (1.4.30)

Unless the growth factor γn is large, the quantity ‖b − Ax‖∞/(‖A‖∞‖x‖∞) will
in practice be of the order nu. Hence the LU factorization with partial pivoting is
guaranteed to give a computed solution to Ax = b with small relative residual even
when A is ill-conditioned.

Forsythe, Malcolm, and Moler [85, 1977] remark that

This is probably the single most important fact which people concerned with matrix com-
putations have learned in the last 15–20 years.

This property is not shared by other methods for solving linear systems. For example,
if we first compute the inverse matrix A−1 and then form x = A−1b, the correspond-
ing residual may be much larger even if the accuracy in x is about the same. Even
if A−1 is known exactly, the best possible bound for the rounding errors made in
forming A−1b is

|b − Ax | ≤ γn|A||A−1||x |,

where x is the computed solution. This leads to a much worse bound than (1.4.30).
In many cases there is no a priori bound for the matrix |L| |U | appearing in the

componentwise error analysis. It is then possible to compute its 
∞-norm in O(n2)

operations without forming the matrix explicitly, since

‖ |L| |U | ‖∞ = ‖ |L| |U |e ‖∞ = ‖ |L| (|U |e) ‖∞.

The error bound in Theorem 1.4.5 is instructive in that it shows that a particularly
favorable case is when |L| |U | = |LU |, which holds if L and U are nonnegative.
Then, by Theorem 1.4.5,

|L| |U | = |LU | ≤ |A| + γn|L| |U |,

and hence |L| |U | ≤ |A|/(1− γn). Inserting this in (1.4.27) and neglecting terms of
order O((nu)2), we find that the computed x satisfies

(A +�A)x = b, |�A| ≤ 3γn|A|. (1.4.31)
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A matrix A ∈ R
n×n is called totally positive if the determinant of every square

submatrix of A is positive. Linear systems with a totally positive matrix occur, e.g.,
in spline interpolation.

For a totally positive matrix A, L > 0 and U > 0 in the LU factorization
(see de Boor and Pinkus [23, 1977]). It can be deduced that for this class of matrices
the growth factor in GE without pivoting is ρn = 1. Since the property of a matrix
being totally positive is destroyed under row permutations, pivoting should not be
used when solving such systems. A survey of totally positive matrices is given by
Boros et al. [24, 1999] and Gasca and Peña [90, 1996].

The following componentwise bound the Cholesky factorization is similar to that
for LU factorization.

Theorem 1.4.7 Assume that the Cholesky factorization of a symmetric positive def-
inite matrix A ∈ R

n×n runs to completion and produces the computed factor L̄.
Then

A + E = L L
T
, |E | ≤ γn+1|L| |L|T . (1.4.32)

Furthermore, the computed solution x to L L
T

x = b satisfies

(A +�A)x = b, |�A| ≤ γ3n+1|L| |L|T . (1.4.33)

The quality of an approximation to the inverse matrix X ≈ A−1 can be measured
by the right and left residuals AX− I and X A − I and the forward error X − A−1.
Let Y = (A +�A)−1, where the perturbation �A is of elementwise small relative
size, such that |�A| ≤ ε|A|. Then

|AY − I | ≤ ε|A| |Y |, |Y A − I | ≤ ε|Y | |A|,

and since (A +�A)−1 = A−1 − A−1�AA−1 + O(ε2), it follows that

|A−1 − Y | = ε|A−1| |A| |A−1| + O(ε2).

For a backward stable matrix inversion method, all three of these bounds must hold
with ε equal to a small multiple of the unit roundoff u. But although the methods
described in Sect. 1.2.6 all achieve a small forward error, they only give either a small
right residual, or a small left residual, but not both.

Suppose the inverse matrix X = A−1 is computed by solving the n linear sys-
tems Ax j = e j , j = 1 : n, where e j is the j th column of the identity matrix. By
Theorem 1.4.6, the computed columns satisfy (A + �A j )x j = e j , where (1.4.27)
gives a bound for |�A j |. We obtain the estimate

‖AX − I‖∞ ≤ 1.5n(n + 1)γnρn‖A‖∞‖X‖∞. (1.4.34)

From AX − I = E it follows that X − A−1 = A−1E and
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‖X − A−1‖∞ ≤ ‖A−1‖∞‖E‖∞.

Together with (1.4.34) this can be used to get a bound for the error in the computed
inverse. We have written�A j to emphasize that the perturbation is different for each
column in X . It is important to note that we cannot say that the method computes
the exact inverse corresponding to some matrix A +�A.

In practice, we can expect backward errors much smaller than the upper bounds
derived in this section.

1.4.4 Estimating Condition Numbers

The perturbation analysis in Sect. 1.2.7 has shown that if ‖δA‖ ≤ ε‖A‖ and ‖δb‖ ≤
ε‖b‖, the norm of the perturbation in the solution x of the linear system Ax = b can
be bounded by

‖δx‖ ≤ ε‖A−1‖ (‖A‖‖x‖ + ‖b‖) (1.4.35)

if terms of order (ε‖A−1‖)2 are neglected. In case the perturbation satisfies the
componentwise bounds |δA| ≤ ωE , |δb| ≤ ω f , the corresponding bound is

‖δx‖ ≤ ω‖ |A−1| (E |x | + f ) ‖. (1.4.36)

Both these bounds contain the inverse A−1, which is costly to compute, even when
the LU factorization of A is known. In practice, it will suffice to use an estimate of
‖A−1‖ (or |A−1|), which need not be very precise.

Example 1.4.1 (Kahan [140, 1966], Example1) How small must the residual r =
b − Ax̄ of an approximate solution be, for us to have confidence in the accuracy of
x̄? The linear system Ax = b, where

A =
(
0.2161 0.1441
1.2969 0.8648

)
, b =

(
0.1440
0.8642

)
,

provides a cautionary example. Suppose we are given the approximate solution x̄ =
(0.9911,−0.4870)T . The residual vector corresponding to x̄ is very small,

r = b − A =̄ (−10−8, 10−8)T .

But not a single figure in x̄ is correct! The exact solution is x = (2,−2)T , as can
readily be verified by substitution.Although a zero residual implies an exact solution,
a small residual alone does not necessarily imply an accurate solution.

It should be emphasized that the system in this example is contrived and extremely
ill-conditioned. (This is revealed by computing the determinant of A.) In practice
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one would be highly unfortunate to encounter such an ill-conditioned 2× 2 matrix.
As remarked by a prominent expert in error analysis,

Anyone unlucky enough to encounter this sort of calamity has probably already been run
over by a truck. �

As the above example shows,without knowledge of the conditioning of the system
a small residual is not sufficient to give confidence in the solution. The first widely
used algorithm for estimating the condition number of a matrix was given by Cline,
Moler, Stewart, and Wilkinson [42, 1979]. It is based on performing one step of
inverse iteration y = (AT A)−1u for a suitably chosenvectoru. If theLU factorization
A = LU is assumed to be known, this is equivalent to solving

AT Ay = (LU )Y (LU )y = u. (1.4.37)

The vectors w and y can be computed by solving four triangular systems,

U T v = u, LT w = v, Lz = w, U y = z.

From this, the lower bound
‖A−1‖ ≥ ‖y‖/‖w‖. (1.4.38)

can be formed. The arithmetic cost for computing this bound is only O(n2) flops.
For (1.4.38) to be a reliable estimate, the vector u must be carefully chosen so

that y reflects any possible ill-conditioning of A. The unit lower triangular matrix L
tends to be well-conditioned, if the pivoting strategy keeps |li j | bounded. Hence, if A
is ill-conditioned, this is likely to be reflected in U . To enhance the growth of v one
takes ui = ±1, i = 1 :n, and chooses the sign to maximize |vi |. To avoid overflow
the final estimate is taken to be

1/κ(A) ≤ ‖w‖/(‖A‖‖y‖). (1.4.39)

A singular matrix is then signaled by zero rather than by∞. We stress that (1.4.39)
always underestimates κ(A). Usually the 
1-norm is chosen in (1.4.39), because the
matrix norm ‖A‖1 = max j ‖a j‖1 can be computed from the columns a j of A. This
is often referred to as the LINPACK condition estimator.

A detailed description of an implementation is given in the LINPACK Guide,
Dongarra et al. [62, 1979]. In practice it has been found that the LINPACK condition
estimator is seldom off by a factor more than 10. But counter examples have been
constructed showing that it can fail. However, this can be expected for any condition
estimator using only O(n2) operations.

Equation (1.4.37) can be interpreted as performing one step of the inverse power
method (see Sects. 3.3.3) on AT A using the special starting vector u. If iterated, this
method will converge to a singular vector corresponding to the largest singular value
of A−1. An alternative to starting with the vector u is to use a random starting vector
and perhaps carry out several steps of inverse iteration.

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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Boyd [26, 1974] devised amore general powermethod for estimating ‖A‖p . In the
following, p ≥ 1 and q ≥ 1 are such that 1/p + 1/q = 1. Then ‖ · ‖q is the dual
norm to ‖ · ‖p and the Hölder inequality xT y ≤ ‖x‖p‖y‖q holds. In the program
below, x0 �= 0 is an initial vector and dualp(x) denotes any vector y of unit 
q -norm
such that equality holds for x and y in the Hölder inequality.

For the case p = q = 2 this reduces to the usual power method applied to AT A.
A derivation of this algorithm is given by Higham [129, 2002], Sect. 15.2.

Algorithm 1.4.1 (Boyd’s 
p-norm Estimator)

x = x0/‖x0‖p;
repeat

y = Ax;
z = AT dualp(y);
if ‖z‖q ≤ zT x

γ = ‖y‖p; break

end

x = dualq(z);
end

For the 
1-norm this condition estimator was derived independently by Hager
[117, 1984]. In this case the dual norm is the 
∞-norm. For any matrix A ∈ R

n×n ,
this algorithm computes a lower bound for ‖A‖1, assuming that Ax and AT x can
be computed for arbitrary vectors x . Since ‖A‖∞ = ‖AT ‖1, it can be used also to
estimate the infinity norm. From the definition

‖A‖1 = max‖x‖1≤1
‖Ax‖1 = max

j

n∑
i=1
|ai j |, (1.4.40)

it follows that f (x) = ‖Ax‖1 is the maximum of a convex function over the convex
set S = {x ∈ R

n | ‖x‖1 ≤ 1}. This implies that the maximum is obtained at an
extreme point of S, i.e., one of the 2n points x = ±e j , j = 1 : n, where e j is
the j th column of the identity matrix. If yi = (Ax)i �= 0, i = 1 : n, then f (x) is
differentiable and by the chain rule the gradient is

∂ f (x) = ξ T A, ξi =
{
+1 if yi > 0,

−1 if yi < 0.

If yi = 0 for some i , then ∂ f (x) is a subgradient of f at x . Note that the subgradient
is not unique. Since f is convex, the inequality

f (y) ≥ f (x)+ ∂ f (x)(y − x) ∀x, y ∈ R
n
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is always satisfied. The algorithm starts with the vector

x = n−1e = n−1(1, 1, . . . , 1)T ,

which is on the boundary of the set S. We set ∂ f (x) = zT , where z = AT ξ , and
find an index j for which |z j | = maxi |zi |. By the convexity of f (x) and the fact
that f (e j ) = f (−e j ), we conclude that f (e j ) > f (x). After replacing x by e j we
repeat the process. It can be shown that if |z j | ≤ zT x , then x is a local maximum.
If this inequality is satisfied, then we stop. Since the estimates are strictly increasing,
each vertex of S is visited at most once. The iteration must therefore terminate in a
finite number of steps.

We now show that the final point generated by the algorithm is a local maximum.
Assume first that (Ax)i �= 0 for all i . Then f (x) = ‖Ax‖1 is linear in a neighborhood
of x . It follows that x is a local maximum of f (x) over S if and only if

∂ f (x)(y − x) ≤ 0 ∀y ∈ S.

If y is a vertex ofS, then ∂ f (x)y = ±∂ f (x)i for some i since all but one component of
y is zero. If |∂ f (x)i | ≤ ∂ f (x)x for all i , it follows that ∂ f (x)(y−x) ≤ 0whenever y is
a vertex ofS. SinceS is the convex hull of its vertices, it follows that ∂ f (x)(y−x) ≤ 0
for all y ∈ S. Hence, x is a local maximum. In case some component of Ax is zero
the above argument must be slightly modified; see Hager [117, 1984].

Algorithm 1.4.2 (Hager’s 
1-norm Estimator)

x = n−1e;
repeat

y = Ax; ξ = sign(y);
z = AT ξ ;
if ‖z‖∞ ≤ zT x;

γ = ‖y‖1; break;
end

x = e j , where |z j | = ‖z‖∞;
end

It has been observed that in practice the algorithm usually terminates after about four
iterations. The estimates produced are frequently exact or at least acceptable. But
the algorithm is not foolproof and fails for some classes of matrices. An improved
version has been developed by Higham [127, 1988] (see also Higham [129, 2002],
Sect. 15.3). This is used in LAPACK and is available in Matlab as the function
condest(A).

To use this algorithm to estimate ‖A−1‖1 = ‖ |A−1| ‖1 in each iteration, the
systems Ay = x and AT z = ξ have to be solved. If the LU factorization of A is
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known, this requires O(n2) flops. It is less obvious that Hager’s estimator can also
be used to estimate the componentwise relative error (1.4.36). The problem is then to
estimate an expression of the form ‖ |A−1|g‖∞ for a given vector g = E |x |+ f > 0,
such that |δA| ≤ ωE and |δb| ≤ ω f . This can be reduced to estimating ‖B‖1, where

B = (A−1G)T , G = diag(g1, . . . , gn) > 0.

Since g = Ge, where e = (1, 1, . . . , 1)T , it follows that

‖ |A−1|g‖∞ = ‖ |A−1|Ge‖∞ = ‖ |A−1G|e‖∞ = ‖ |A−1G|‖∞ = ‖(A−1G)T ‖1.

The last stepmakes use of the fact that the 
∞ norm is an absolute norm (seeDefinition
1.1.6). Here Bx and BT y can be found by solving linear systems involving AT and
A. The arithmetic cost involved is similar to that of the LINPACK estimator. Together
with ω, determined by (1.4.44), this gives an approximate bound for the error in a
computed solution x .

1.4.5 Backward Perturbation Bounds

When the data A and b are known only to a certain accuracy, the “exact” solution
to the linear system Ax = b is not well defined. In a backward error analysis we
are given an approximate solution y. If we can show that y satisfies a nearby system
(A +�A)y = b +�b, where the �A and �b are inside the domain of uncertainty
of the data, then y can be considered to be a satisfactory solution.

Usually, there is an infinite number of perturbations δA and δb for which (A +
�A)y = b + �b holds. Clearly �A and �b must satisfy �Ay − �b = r , were
r = b − Ay is the residual vector corresponding to y. In the following, the matrix
E and the vector f are tolerances against which the backward errors are measured.
We define the normwise backward error of a computed solution y to a linear system
Ax = b to be

ηE, f (y) = min{ε | (A +�A)y = b +�b, ‖�A‖ ≤ ε‖E‖, ‖�b‖ ≤ ε‖ f ‖},
(1.4.41)

where ‖ · ‖ is any vector norm and the corresponding subordinate matrix norm. The
particular choice E = |A| and f = |b| gives the normwise relative backward
error ηA,b(y). The following result is due to Rigal and Gaches [169, 1967]. (Similar
a posteriori bounds for the 
1-norm and 
∞-norm can be given; see Problem 1.4.4.)

Theorem 1.4.8 The normwise backward error of a purported solution y to a linear
system Ax = b is

ηE, f (y) = ‖r‖
‖E‖ ‖y‖ + ‖ f ‖ , (1.4.42)

where r = b − Ay and ‖ · ‖ is any compatible norm.
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Proof From r = �Ay −�b it follows that

‖r‖ ≤ ‖�A‖‖y‖ + ‖�b‖ ≤ ε(‖E‖‖y‖ + ‖ f ‖).

Hence, ε ≥ ‖r‖/(‖E‖‖y‖ + ‖ f ‖), which shows that (1.4.42) is a lower bound for
ηE, f (y). This lower bound is attained for the perturbations

�A = ‖E‖ ‖y‖
‖E‖ ‖y‖ + ‖ f ‖r zT , �b = ‖ f ‖

‖E‖ ‖y‖ + ‖ f ‖r,

where z is the vector dual to y (see Definition 1.1.5). Note that the optimal �A is a
rank-one matrix. �

In a similar way, the componentwise backward error ωE, f (y) of a computed
solution y is

ωE, f (y) = min{ε | (A +�A)y = b +�b, |�A| ≤ εE, |�b| ≤ ε f }, (1.4.43)

where E and f are now assumed to have nonnegative components. The following
theorem by Oettli and Prager [163, 1964] gives a simple expression for ω(y).

Theorem 1.4.9 Let the matrix E ∈ R
n×n and vector f be nonnegative and set

ω = max
i

|ri |
(E |y| + f )i

, (1.4.44)

where r = b−Ay and 0/0 is interpreted as 0. If ω �= ∞, then there are perturbations
�A and �b such that (A +�A)y = b +�b and

|�A| ≤ ωE, |�b| ≤ ω f. (1.4.45)

Furthermore, ω = ωE, f is the smallest number for which such perturbations exist.

Proof If �A and �b satisfy (1.4.45) for some ω, then

|r | = |b − Ay| = |�Ay −�b| ≤ ω(E |y| + f ).

Hence, ω ≥ |ri |/(E |y| + f )i , i = 1 : n, which shows that ω in (1.4.44) is a lower
bound for ωE, f . From (1.4.44) we have |ri | ≤ ω(E |y| + f )i , i = 1 :n. This implies
that r = D(E |y| + f ), where |D| ≤ ωI . It is then easily verified that

�A = DE diag
(
sign(y1), . . . , sign(yn)

)
, �b = −D f

attains this lower bound. �

The choice E = |A| and f = |b| corresponds to the componentwise relative
backward error. This can be used in (1.2.69) or (1.2.70) to compute a bound for
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‖�x‖. For this choice, ai j = 0 implies that �ai j = 0 and bi = 0 implies that
�bi = 0. Hence, if ω|A|,|b|(y) is small, then y is the solution to a slightly perturbed
problem with the same sparsity. Another attractive property of this choice is that it is
invariant under row and column scalings of the system. That is, if instead of Ax = b
and y we consider D1AD2(D−12 x) = D1b, and D−12 y, for any diagonal scalings
D1 > 0 and D2 > 0, then ω is unchanged.

Chang et al. [39, 2008] give a unified treatment of a posteriori backward errors
not only for linear systems, but also for different types of least squares problems.

1.4.6 Iterative Refinement of Solutions

Such programs (using iterative refinement) are quite simple to design and are efficient enough
to be widely usable. They produce results of extraordinary dependability.
—J. H. Wilkinson, Error analysis revisited [208, 1986] (1986).

So far we have considered ways of estimating the accuracy of computed solutions.
We now considermethods for improving the accuracy. Let x be any approximate solu-
tion to the linear systemof equations Ax = b and let r = b−Ax be the corresponding
residual vector. Then one can attempt to improve the solution by solving the system
Aδ = r for a correction δ and taking xc = x + δ as a new approximation. If no fur-
ther rounding errors are performed in the computation of δ, this is the exact solution.
Otherwise this refinement process can be iterated. In floating-point arithmetic with
base β this process of iterative refinement can be described as follows:

s := 1; x (s) := x;
repeat

r (s) := b − Ax (s); (in precision u2 = β−t2)

solve Aδ(s) = r (s); (in precision u1 = β−t1)

x (s+1) := x (s) + δ(s);
s := s + 1;

end

When x has been computed by GE this approach is attractive because we can use
the computed factors L and U to solve for the corrections:

L(Uδ(s)) = r (s), s = 1, 2, . . . .

The computation of r (s) and δ(s), therefore, only takes 2n2+2·n2 = 4n2 flops, which
is an order of magnitude less than the 2n3/3 flops required for the initial solution.

We note the possibility of using higher precision with unit roundoff u2 = 2−t2 ,
t2 > t1, for computing the residuals r (s); these are then rounded to precision u1
before solving for δ(s). Since x (s), A, and b are stored in precision u1, only the
accumulation of the inner product terms is in precision u2, and no multiplications
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in higher precision occur. This is also called mixed precision iterative refinement, as
opposed to fixed precision iterative refinement when t2 = t1.

Since the product of two t-digit floating-point numbers can be exactly represented
with at most 2t digits, inner products can be computed in precision 2t without much
extra cost. If f le denotes computation with extended precision and ue is the corre-
sponding unit roundoff, then the forward error bound for an inner product becomes

| f l ( f le(xT y))− xT y| < u|xT y| + nue

1− nue/2
(1+ u)|xT | |y|, (1.4.46)

where the first term comes from the final rounding. If |xT | |y| ≤ u|xT y|, then
the computed inner product is almost as accurate as the correctly rounded exact
result. But since computations in extended precision are machine dependent, it has
been difficult to make such programs portable.26 The development of extended and
mixed precision arithmetic (see [148, 2002]) has made this feasible. A portable
and parallelizable implementation of the mixed precision algorithm is described in
Demmel et al. [58, 2006].

Let L and U denote the computed LU factors of A. If the rounding errors com-
mitted in computing the corrections are neglected, we have

x (s+1) − x = (I − (LU )−1A)s(x − x).

Hence, the refinement process converges if ρ = ‖(I −(LU )−1A‖ < 1. This roughly
describes how the refinement behaves in the early stages, if extended precision is
used for the residuals. If L and U have been computed by GE using precision u1,
then by Theorem 1.4.3 we have

LU = A + E, ‖E‖∞ ≤ 1.5n2ρnu1‖A‖∞,

and ρn is the growth factor. It follows that an upper bound for the initial rate of
convergence is given by

ρ = ‖(LU )−1E‖∞ ≤ n2ρnu1κ(A).

When also rounding errors in computing the residuals r (s) and the corrections δ(s)

are taken into account, the analysis becomes much more complicated. The behavior
of iterative refinement, using t1-digits for the factorization and t2 = 2t1 digits when
computing the residuals, can be summed up as follows:

1. Assume that A is not too ill-conditioned, so that the first solution has some accu-
racy: ‖x − x‖/‖x‖ ≈ β−k < 1 in some norm. Then the relative error diminishes
by a factor of roughly β−k with each step of refinement until we reach a stage

26 Itwas suggested that the IEEE754 standard should require inner products to be precisely specified,
but that did not happen.
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at which ‖δc‖/‖xc‖ < β−t1 , when we may say that the solution is correct to
working precision.

2. In general, the attainable accuracy is limited tomin(k+t2−t1, t1) digits. Note that
although the computed solution improves progressively with each iteration, this
is usually not reflected in a corresponding decrease in the norm of the residual.

Iterative refinement can be used to compute a more accurate solution, in case A
is ill-conditioned. But unless A and b are exactly known, this may not make much
sense. The exact answer to a poorly conditioned problemmay be nomore appropriate
than one that is correct to only a few places. The development of iterative refinement
and some of its uses are reviewed in Björck [17, 1990].

If the initial solution has been computed by a backward stable method and the
system is well-scaled, the accuracy will be improved only if the residuals are com-
puted in higher precision. But iterative refinement using residuals in precision u1 can
improve the quality of the solution considerably when the system is ill-scaled, i.e.,
when χ(A, x) defined by (1.2.63) is large, or if the pivot strategy has been chosen
for the preservation of sparsity.

Example 1.4.2 As an illustration consider again the badly-scaled version of the sys-
tem in Example 1.2.4:

Ã =
⎛
⎝
3 2 1
2 2 · 10−6 2 · 10−6
1 2 · 10−6 10−6

⎞
⎠ , b̃ =

⎛
⎝
3+ 3 · 10−6
6 · 10−6
2 · 10−6

⎞
⎠ ,

with exact solution x̃ = (10−6, 1, 1)T . Using floating-point arithmetic with unit
roundoff u1 = 0.47 · 10−9, the solution computed by GEPP has only about four
correct digits. From the residual r = b̃ − Ãx , the Oettli–Prager backward error is
ω = 0.28810 · 10−4. The condition estimate computed by (1.4.39) is 3.00 · 106, and
wrongly indicates that the loss of accuracy should be blamed on ill-conditioning.

One step of iterative refinement with a residual in precision u1 gives

x̃ = x + d = (0.999999997 · 10−6, 1.000000000, 1.000000000)T .

This is almost as good as for GEPP applied to the system Ax = b. The Oettli–Prager
error bound for x̃ isω = 0.54328 ·10−9, which is close to machine precision. Hence,
one step of iterative refinement sufficed to correct for the bad scaling. If the ill-scaling
is worse, or the system is also ill-conditioned, then several steps of refinement may
be needed. �

It has been shown that, provided that the system is not too ill-conditioned or
ill-scaled, GEPP combined with iterative refinement in precision u1, gives a small
relative backward error. For more precise conditions under which this theorem holds,
see Skeel [179, 1980].
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Theorem 1.4.10 Assume that the product of cond(A) = ‖ |A| |A−1| ‖∞ andχ(A, x)

is sufficiently smaller than 1/u. Then, for s large enough,

(A + δA)x (s) = b + δb, |δai j | < 4nu|ai j |, |δbi | < 4nu|bi |. (1.4.47)

Moreover, the result is often true already for s = 2, i.e., after only one improvement.

As illustrated above, GE with partial or complete pivoting may not provide all
the accuracy that the data deserves. How often this happens in practice is not known.
G. W. Stewart remarks

Most people who use GE with partial pivoting do not scale their matrices. Yet they seem to
be generally satisfied with the results.

In cases where accuracy is important, the following scheme, which offers improved
reliability for a small cost, is recommended.

1. Compute the Oettli–Prager backward error

ω = max
i

|ri |
(E |x | + f )i

with E = |A|, f = |b|, by simultaneously accumulating r = b − Ax and
|A||x | + |b|. If ω is not sufficiently small, go to step 2.

2. Perform one step of iterative refinement using the residual r computed in step 1
to obtain the improved solution x̃ . Compute the backward error ω̃ of x̃ . Repeat
until ω̃ is sufficiently small.

1.4.7 Interval Matrix Computations

In interval arithmetic one assumes that all input values are given as intervals and
systematically calculates an inclusion interval for each intermediate result. Interval
arithmetic is a useful tool for computing validated answers tomathematical problems.
For a general introduction to interval arithmetic, see [48, 2008], Sect. 2.5.3.

In the following, an interval vector is denoted by [x] and has interval components
[xi ] = [xi , xi ]), i = 1 : n. Likewise, an interval matrix [A] = ([ai j ]) has interval
elements

[ai j ] = [ai j , ai j ], i = 1 :m, j = 1 :n.

Operations between intervalmatrices and interval vectors are defined in anobvious
manner. The interval matrix-vector product [A][x] is the smallest interval vector that
contains the set {Ax | A ∈ [A], x ∈ [x]}, but normally does not coincide with this
set. By the inclusion property,

{Ax | A ∈ [A], x ∈ [x]} ⊆ [A][x] =
( n∑

j=1
[ai j ][x j ]

)
. (1.4.48)
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As a consequence, there will usually be an overestimation in enclosing the image
with an interval vector, due to the fact that in general the image of an interval vector
under a transformation is not an interval vector. This phenomenon, intrinsic to
interval computations, is called the wrapping effect.

Example 1.4.3 Let A be a point matrix and

[A] = A =
(

1 1
−1 1

)
, [x] =

([0, 1]
[0, 1]
)

⇒ [A][x] =
( [0, 2]
[−1, 1]

)
.

Hence, b = (2, −1)T ∈ [A][x], but there is no x ∈ [x] such that Ax = b.
(The solution to Ax = b is x = (3/2, 1/2)T .) �

The magnitude of an interval vector or matrix is interpreted componentwise and
is defined by

| [x] | = (| [x1] |, | [x2] |, . . . , | [xn] |)T ,

where the magnitude of each component is defined by

| [xi ] | = max{ |xi |, |xi |}, ∀i. (1.4.49)

The 
∞-norm of an interval vector or matrix is defined as the 
∞-norm of their
magnitude:

‖ [x] ‖∞ = ‖ | [x] | ‖∞, ‖ [A] ‖∞ = ‖ | [A] | ‖∞. (1.4.50)

When implementing interval matrix multiplication it is important to avoid case
distinctions in the inner loops, because thatwouldmake it impossible to use fast vector
and matrix operations. We assume that the command setround(i), i = −1, 0, 1, sets
the rounding mode to −∞, to nearest, and to +∞, respectively. (Recall that these
rounding modes are supported by the IEEE standard.) Using interval arithmetic it is
possible to compute strict enclosures of the product of two intervalmatrices. Consider
first the case of the product of two pointmatrices A and B. Rounding errors will cause
this product to be an interval matrix [C]. The following simple code computes an
interval such that f l(A · B) ⊂ [C] = [Cinf , Csup] using two matrix multiplications:

setround(−1); Cinf = A · B;
setround(1); Csup = A · B;

We next consider the product of a point matrix A and an interval matrix
[B] = [Binf , Bsup]. The following code, suggested by Neumeier, performs this task
efficiently using four matrix multiplications:
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A− = min(A, 0); A+ = max(A, 0); setround(−1);
Cinf = A+ · Binf + A− · Bsup; setround(1);
Csup = A− · Binf + A+ · Bsup;

(Note that the commands A− = min(A, 0) and A+ = max(A, 0) act compo-
nentwise.) Rump [173, 1999] gives an algorithm for computing the product of two
interval matrices using eight matrix multiplications. He gives also several faster
implementations, provided a certain overestimation can be allowed.

A square interval matrix [A] is called nonsingular if it does not contain a singular
matrix. An interval linear system is a system of the form [A] x = [b], where A is
a nonsingular interval matrix and b an interval vector. The solution set of such an
interval linear system is the set

X = {x | Ax = b, A ∈ [A], b ∈ [b]}. (1.4.51)

Computing this solution set can be shown to be an intractable (NP-complete) prob-
lem. Even for a 2 × 2 linear system this set may not be easy to represent; see
Hansen [121, 1969].

An enclosure of the solution set of an interval linear system can be computed by
a generalization of GE adapted to interval coefficients. The solution of the resulting
interval triangular system will give an inclusion of the solution set. Realistic bounds
can be obtained in this way only for special classes of matrices, e.g., for diagonally
dominant matrices and tridiagonal matrices; see Hargreaves [122, 2002]. For general
systems this approach tends to give interval sizes that grow exponentially during the
elimination. For example, if [x] and [y] are intervals, consider the LU factorization
for a 2× 2 interval matrix:

[A] =
(
1 [x]
1 [y]

)
= LU, U =

(
1 [x]
0 [y] − [x]

)
.

If [x] ≈ [y], the size of the interval [y] − [x] will be twice the size of [x] and
will lead to exponential growth of the inclusion intervals. Even for well-conditioned
linear systems the elimination can break down prematurely, because all remaining
possible pivot elements contain zero.

A better way to compute verified bounds on a point or interval linear system uses
an idea that goes back to Hansen [120, 1965], in which an approximate inverse C is
used to precondition the system. Assume that an initial interval vector [x (0)] is known
such that [x (0)] ⊇ X , where X is the solution set (1.4.51). An improved enclosure
can then be obtained as follows. By the inclusion property of interval arithmetic, for
all Ã ∈ [A] and b̃ ∈ [b].

[x (1)] = Ã−1b̃ = Cb̃ + (I − C Ã) Ã−1b̃ ∈ C [b] + (I − C [A])[x (0)].
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This suggests the iteration known as Krawczyck’s method:

[x (i+1)] =
(

C [b] + (I − C[A])[x (i)]
)
∩ [x (i)], i = 0, 1, 2, . . . , (1.4.52)

for computing a sequence of interval enclosures [x (i)] of the solution. Here the inter-
val vector [c] = C [b] and interval matrix [E] = I − C [A] need only be computed
once. The dominating cost per iteration is one interval matrix-vector multiplication.

As an approximate inverse we can take the inverse of the midpoint matrix C =
(mid [A])−1. An initial interval can be chosen of the form

[x (0)] = Cmid [b] + [−β, β]e, e = (1, 1, . . . , 1),

where mid [b] = (b + b)/2 and β is sufficiently large. The iterations are termi-
nated when the bounds are no longer improving. A measure of convergence can be
computed as ρ = ‖[E]‖∞.

Rump [172, 1999] [173, 1999] has developed a Matlab toolbox called INT-
LAB27 (INTerval LABoratory), which is efficient and easy to use and includes many
useful subroutines. INTLAB uses a variant of Krawczyck’s method, applied to a
residual system, to compute an enclosure of the difference between the solution and
an approximate solution xm = Cmid [b]. Verified solutions of linear least squares
problems can also be computed.

Example 1.4.4 A method for computing an enclosure of the inverse of an interval
matrix can be obtained by taking [b] equal to the identity matrix in the iteration
(1.4.52) and solving the system [A][X ] = I . For the symmetric interval matrix

[A] =
( [0.999, 1.01] [−0.001, 0.001]
[−0.001, 0.001] [0.999, 1.01]

)

the identity C = mid [A] = I is an approximate point inverse. We find

[E] = I − C[A] =
( [−0.01, 0.001] [−0.001, 0.001]
[−0.001, 0.001] [−0.01, 1.001]

)
,

and as an enclosure for the inverse matrix we can take

[X (0)] =
( [0.98, 1.02] [−0.002, 0.002]
[−0.002, 0.002] [0.98, 1.02]

)
.

The iteration [X (i+1)] = (I + E[X (i)]) ∩ [X (i)], i = 0, 1, 2, . . . converges rapidly
in this case. �

27 INTLAB Version 8 is available from http://www.ti3.tuhh.de.

http://www.ti3.tuhh.de
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Exercises

1.4.1 Show that for the matrix A in Example 1.4.1 det(A) = 10−8 and

A−1 = 108 ·
(

0.8648 −0.1441
−1.2969 0.2161

)
.

Hence, the system is “perversely” ill-conditioned:

κ∞ = ‖A‖∞‖A−1‖∞ = 2.1617 · 1.5130 · 108 ≈ 3.3 · 108.
1.4.2 (Higham [129, 2002], p. 144.) Consider the triangular matrix

U =
⎛
⎝
1 1 0
0 ε ε

0 0 1

⎞
⎠ .

Show that cond(U ) = 5, but cond(U T ) = 1 + 2/ε, where cond(U ) = ‖ |U | |U−1| ‖∞ is
the Bauer–Skeel condition number. This shows that a triangular system can be much worse
conditioned than its transpose.

1.4.3 Let x be the solution to AT x = e, where A ∈ R
n×n is nonnegative and e = (1, 1, . . . , 1)T .

Show that ‖A−1‖1 = ‖x‖∞.
1.4.4 Let x be a computed solution and r = b − Ax the corresponding residual. Assume that δA

is such that (A + δA)x = b holds exactly. Show that the errors of minimum 
1-norm and

∞-norm are given by

δA1 = r(s1, . . . , sn)/‖x‖1,
δA∞ = r(0, . . . , 0, sm , 0, . . . , 0)/‖x‖∞,

respectively, where ‖x‖∞ = |xm | and si = sgn(xi ).
1.4.5 Sometimes it is desired to allow no perturbations in either A or b. This can be achieved by

taking E = α|A|, f = β|b|, α + β = 1 in Theorem 1.4.8. What bounds are obtained for
α = 0 (no perturbations in A) and β = 0 (no perturbations in b)?

1.4.6 Use the result in Theorem 1.2.4 to obtain the lower bound κ∞(A) ≥ 1.5|ε|−1 for the matrix

A =
⎛
⎝

1 −1 1
−1 ε ε

1 ε ε

⎞
⎠ , 0 < |ε| < 1.

(The true value is κ∞(A) = 1.5(1+ |ε|−1).)

1.5 Banded Linear Systems

A band matrix A is a matrix whose nonzero elements are located in a band centered
along the principal diagonal. For such matrices only a small proportion of the n2

elements are nonzero. A square matrix A has lower bandwidth r < n and upper
bandwidth s < n if r and s are the smallest integers such that

ai j = 0, i > j + r, ai j = 0, j > i + s, (1.5.1)

respectively. In other words, the number of nonzero diagonals below (resp., above)
the main diagonal is r (resp., s). For a symmetric matrix r = s. The maximum
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number of nonzero elements in any row is w = r + s + 1. For example, the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12
a21 a22 a23
a31 a32 a33 a34

a42 a43 a44 a45
a53 a54 a55 a56

a64 a65 a66

⎞
⎟⎟⎟⎟⎟⎟⎠

has r = 2, s = 1, and w = 4. Several frequently occurring classes of band matrices
have special names. A matrix for which r = s = 1 is called tridiagonal. If r = 0,
s = 1 (r = 1, s = 0) the matrix is called upper (lower) bidiagonal.

1.5.1 Band Matrices

Linear systems Ax = b where r + s � n arise in many applications. This means
that each variable xi is coupled only to a few other variables x j such that | j − i | is
small. Clearly, the bandwidth of a matrix depends on the ordering of its rows and
columns. An important but hard problem is to find an optimal reordering of rows and
columns that minimizes the bandwidth. However, there are heuristic algorithms that
give almost optimal results; see Sect. 1.7.4.

To avoid storing many zero elements the diagonals of a band matrix A ∈ R
n×n

can be stored either as columns in an array of dimension n×w or as rows in an array
of dimension w × n. For example, the matrix above can be stored as

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ a11 a12
∗ a21 a22 a23

a31 a32 a33 a34
a42 a43 a44 a45
a53 a54 a55 a56
a64 a65 a66 ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎣
∗ a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 ∗
a31 a42 a53 a64 ∗ ∗

⎤
⎥⎥⎦ .

Except for a few elements indicated by asterisks in the initial and final rows, only
nonzero elements of A are stored. Passing along a column in the first storage scheme
above moves along a diagonal of the matrix, and the rows are aligned.

It is convenient to introduce the following Matlab notation for manipulating
band matrices.

Definition 1.5.1 If a ∈ R
n is a vector, then A = diag(a, k) is a square matrix of

order n + |k| with the elements of a on its kth diagonal; k = 0 is the main diagonal;
k > 0 is above the main diagonal; k < 0 is below the main diagonal.

If A is a square matrix of order n, then diag(A, k) ∈ R
(n−k), |k| < n, is the

column vector consisting of the elements of the kth diagonal of A.
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For example, diag(A, 0) = (a11, a22, . . . , ann)T is the main diagonal of A and,
if 0 ≤ k < n, then

diag(A, k) = (a1,k+1, a2,k+2, . . . , an−k,n)T ,

diag(A,−k) = (ak+1,1, ak+2,2, . . . , an,n−k)
T

are the kth superdiagonal and subdiagonal of A, respectively.

1.5.2 Multiplication of Band Matrices

Clearly the product of two diagonal matrices D1 and D2 is another diagonal matrix
whose elements are equal to the elementwise product of the diagonals. What can said
more generally of the product of two band matrices? An elementary but very useful
result tells which diagonals in the product are nonzero.

Lemma 1.5.1 Let A1, A2 ∈ R
n×n have lower bandwidth r1 and r2 and upper

bandwidth s1 and s2, respectively. Then the sum A1 + A2 has lower bandwidth
r3 ≤ max{r1, r2} and upper bandwidth s3 ≤ max{s1, s2}. The products AB and
BA have lower bandwidth r4 ≤ min{n − 1, r1 + r2} and upper bandwidth s4 ≤
min{n − 1, s1 + s2}.
Proof The statement about the bandwidth of the sum A + B is obvious. Consider
the elements of C = AB:

ci j =
n∑

k=1
aikb jk .

By definition, aik = 0 if k > i + rA and bkj = 0 if j > k + r2. It follows that
aikb jk = 0 unless k ≤ i + r1 and j ≤ k + r2. But this implies that k + j ≤
i + r1 + k + r2, or j ≤ i + (r1 + r2), i.e., C has bandwidth at most r1 + r2. The
second case follows from the observation that if a matrix has lower bandwidth r ,
then AT has upper bandwidth r , and that (AB)T = BT AT . �

Assume that A and B are bandmatrices of order n and both have a small bandwidth
compared to n. Then, since there are few nonzero elements in the rows and columns
of A and B, the usual algorithms for forming the product AB are not effective on
vector computers. We now give an algorithm for multiplying matrices by diagonals,
which overcomes this drawback. The idea is to write A and B as a sum of their
diagonals and multiply crosswise.

Example 1.5.1 As an example, consider the case when A and B are tridiagonal
matrices of size n × n:
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A =

⎛
⎜⎜⎜⎜⎝

a1 c1

b1 a2
. . .

. . .
. . . cn−1

bn−1 an

⎞
⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎝

d1 f1

e1 d2
. . .

. . .
. . . fn−1

en−1 dn

⎞
⎟⎟⎟⎟⎠

Then C = AB will be a band matrix of upper and lower bandwidth two. The five
nonzero diagonals of C are

diag(C, 0) = a(1 :n). ∗ d(1 :n)+ [0, b(1 :n − 1). ∗ f (1 :n − 1)]

+ [c(1 :n − 1). ∗ e(1 :n − 1), 0];
diag(C, 1) = a(1 :n − 1). ∗ f (1 :n − 1)+ c(1 :n − 1). ∗ d(2 :n);

diag(C,−1) = b(1 :n − 1). ∗ d(1 :n − 1)+ a(2 :n). ∗ e(1 :n − 1);
diag(C, 2) = c(1 :n − 2). ∗ f (2 :n − 1);

diag(C,−2) = b(2 :n − 1). ∗ e(1 :n − 2);

The number of operations is exactly the same as in the conventional schemes, but
only 32 = 9 pointwise vector multiplications are required. �

We remark that Lemma 1.5.1 holds also for negative values of the bandwidths.
For example, a strictly upper triangular matrix A can be said to have lower bandwith
r = −1. It follows that A2 has lower bandwidth r = −2, and so on. Finally, An = 0.

1.5.3 LU Factorization of Band Matrices

Band matrices are well suited for LU factorization. If A is diagonally dominant
or Hermitian positive definite, then no pivoting is required. In this case the band
structure is preserved in the LU factors, although zeros within the band structure
may fill in.

Theorem 1.5.1 Let A be a band matrix with lower bandwidth r and upper bandwidth
s. If A has an LU factorization, then L has lower bandwidth r and U has upper
bandwidth s.

Proof The factors L andU are unique and can be computed by the borderingmethod
(1.2.22)–(1.2.25). Assume that the first k − 1 rows of U and columns of L have
bandwidth r and s, i.e., for p = 1 :k − 1,

lip = 0, i > p + r, u pj = 0, j > p + s. (1.5.2)
The proof is by induction in k. The assumption is trivially true for k = 1. Since
akj = 0 for j > k + s, (1.5.2) yields

ukj = akj −
k−1∑
p=1

lkpu pj = 0− 0 = 0, j > k + s.
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Similarly, it follows that lik = 0, i > k + r , which completes the induction step. �

It follows that if GE can be carried out without pivoting, then only elements within
the band are operated on. Let A ∈ R

n×n be a given matrix with upper bandwidth
r and lower bandwidth s. Algorithm 1.5.1 assumes that the matrix is stored in an
n × n array and computes the LU factorization of A by the row sweep method. The
element ai j is overwritten by li j if i > j and by ui j otherwise. A useful exercise for
the reader is to rewrite this algorithm for the case when A, L , and U are stored by
diagonals.

Algorithm 1.5.1 (Band LU Factorization)

function [L,U,p] = blu(A,r,s);

% BLU produces a unit lower triangular matrix L

% of bandwith r and an upper triangular matrix U

% of bandwidth s such that L*U = A.

% -----------------------------------------------

n = size(A,1);

for k = 1:n-1

for i = k+1:min(k+r,n)

A(i,k) = A(ik)/A(k,k);

for j = k+1:min(k+s,n)

A(i,j) = A(i,j) - A(i,k)*A(k,j);

end

end

end

L = eye(n) + tril(A,-1); U = triu(A);

An operation count shows that this algorithm requires t flops, where

t =

⎧⎪⎨
⎪⎩

2ns(r + 1)− sr2 − 1
3 s3 ifs ≤ r,

2ns(s + 1)− 4
3 s3 ifr = s,

2nr(s + 1)− rs2 − 1
3r3 ifr > s.

Whenever rs � n2 this is much less than the 2n3/3 flops required in the full case.
Analogous savings can be made in forward and back substitution. Let L and U be

the triangular factors computed by Algorithm 1.5.1. The solutions of the two band
triangular systems Ly = b and U x = y are obtained from

yi = bi −
i−1∑
j=p

li j y j , i = 1 :n, p = max(1, i − r),

xi =
(

yi −
q∑

j=i+1
ui j x j

)
/uii , i = n : (−1) : 1, q = min(i + s, n).
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These algorithms require (2n− r)r and (2n− s)(s+ 1) flops, respectively. They are
easily implemented so that y and x overwrites b in storage.

Let A be a symmetric positive definite band matrix with upper and lower band-
width r = s. Then a simple corollary of Theorem 1.5.1 is that in the Cholesky
factorization A = LLT the factor L has lower bandwidth s. Algorithm 1.5.2 com-
putes the Cholesky factor L using the column sweep ordering. If r � n, then this
algorithm requires about nr(r+3) flops and n square roots. Only the lower triangular
part of A is used. The algorithm has to be modified if A is stored by diagonals in an
n × (r + 1) array; see Problem 1.5.5.

Algorithm 1.5.2 (Band Cholesky Algorithm)

function L = bcholf(A,r);

% BCHOLF computes the lower triangular Cholesky

% factor L of a positive definite Hermitian

% matrix A of upper and lower bandwith r.

% --------------------------------------------

n = size(A,1); L = zeros(n,n);

for j = 1:n

p = min(j+r,n); q = (max(1,i-r);

ik = q:j-1; jn = j+1:p;

A(j,j) = sqrt(A(j,j) - A(j,ik)*A(j,ik)’);

A(jn,j) = (A(jn,j) - A(jn,ik)*A(j,ik)’)/A(j,j);

end

L = tril(A);

Unless A is diagonally dominant or symmetric positive definite, partial pivoting
should be used. The pivotingwill cause the introduction of elements outside the band.
This is illustrated below for the case when s = 2 and r = 1. The first step of the
elimination is shown, where it is assumed that a31 is chosen as pivot and therefore
rows 1 and 3 interchanged:

⎡
⎢⎢⎢⎢⎢⎢⎣

a31 a32 a33 a34
a21 a22 a23
a11 a12

a42 a43 a44 a45
a53 a54 a55 a56

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 u12 u13 u14

l21 a(2)
22 a(2)

23 a(2)
24

l31 a(2)
32 a(2)

33 a(2)
34

a42 a43 a44 a45
a53 a54 a55 a56

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where fill elements are shown in boldface. It can be shown that in general the upper
bandwidth of U will increase to r + s. The matrix L will still have only s elements
below the main diagonal in all columns, but no useful band structure. This can be
seen from the example above where, e.g., the elements l21 and l31 may be subject to
later permutations, destroying the band structure of the first column. Therefore, it is
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more convenient not to perform the permutations on previously computed elements
in L . Thus, we never form the permutation P and compute P A = LU . Instead, the
pivot sequence is stored in a vector p = (p1, p2, . . . , pn−1), where in step k rows k
and pk are interchanged. This is more like the original form of GE and means that
we are storing L−1 in product form. In matrix terms

L−1n−1Pn−1 · · · L−12 P2L−11 P1A = U,

where Pk = Ik,pk is a transposition and Lk an elementary elimination matrix.
The nontrivial elements in the elimination matrices can be stored in a lower tri-
angular band matrix with bandwidth s.

The inverse of a band matrix has a special structure related to low-rank matrices
and in general has no zero elements. It has been shownmore generally that the inverse
of any irreducible matrix is structurally full. This means that for such a matrix it is
always possible to find numerical values such that all entries in its inverse will be
nonzero; see Duff and Erisman [74, 1986]. Hence, for a band matrix it is particularly
important not to attempt to compute the inverse explicitly. Even storing the elements
in A−1 may be infeasible when the band matrix has large dimensions. The first to
study inverses of general band matrices was Asplund [6, 1959].

Of interest also are matrices whose lower (upper) triangular part is banded.
An important example is the class of matrices that are triangular except for one
extra diagonal, e.g.,

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

h11 h12 · · · h1,n−1 h1n

h21 h22 · · · h2,n−1 h2n

h32
. . .

...
...

. . . hn−1,n−1 hn−1,n
hn,n−1 hnn .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.5.3)

Such a matrix is called upper Hessenberg matrix.28Hessenberg matrices play a fun-
damental role in algorithms for solving unsymmetric matrix eigenvalue problems.
The first step of GE will only affect the first two rows of the matrix and the Hessen-
berg form will be preserved during the elimination. All remaining steps are similar
to the first.

With partial pivoting, either h11 or h21 will be chosen as pivot in the first step.
Since these rows have the same structure, the reduced matrix is again a Hessenberg
matrix. However, in this case the LU factorization of P A will not have a lower
bidiagonal L . When the row interchanges are applied to L , this may spread out its
elements. We can only say that L will be lower unit triangular with one nonzero
off-diagonal element in each column. Therefore, it is more convenient to leave the

28 Named after the German mathematician and engineer Karl Hessenberg (1904–1959). These
matrices first appeared in [126, 1940].
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elements in L in place. Only about t = n(n + 1) flops are needed to perform LU
factorization with partial pivoting for a Hessenberg matrix.

If A ∈ R
n×n is upper Hessenberg, then at the start of the kth step rows k+1, . . . , n

of the matrix have not changed. It follows that the pivot row has elements of modulus
at most k times the largest element of H . Hence, for partial pivoting the growth ratio
ρn is bounded by n.

1.5.4 Tridiagonal Linear Systems

A band matrix with r = s = 1 is called tridiagonal. Its (3n − 2) nonzero elements
can conveniently be stored in three vectors a, b, and c

A =

⎛
⎜⎜⎜⎜⎜⎝

a1 c2
b2 a2 c3

. . .
. . .

. . .

bn−1 an−1 cn

bn an

⎞
⎟⎟⎟⎟⎟⎠

. (1.5.4)

If bi ci �= 0, i = 2 :n, the matrix A is irreducible (see Definition 1.1.2, p. 11). If, say
ck = 0, then A is reducible and can be decomposed as

A =
(

A1 0
L1 A2

)
,

where A1 and A2 are tridiagonal. To solve a linear system Ax = b, we only need
to factorize A1 and A2. If A1 or A2 is reducible, then such a decomposition can
be applied again. This can be continued until a lower triangular block form with
irreducible diagonal blocks is obtained. Thus, it is no restriction to assume in the
following that A is irreducible.

We first consider the case when no pivoting is required. Then, by Theorem 1.5.1,
the factorization A = LU exists and

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
γ2 1

γ3
. . .

. . . 1
γn 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, U =

⎛
⎜⎜⎜⎜⎜⎝

d1 c2
d2 c3

. . .
. . .

dn−1 cn

dn

⎞
⎟⎟⎟⎟⎟⎠

. (1.5.5)

Equating elements in A and LU it follows that the upper diagonal in U equals that
in A. The other elements in L and U are obtained by the recursion

d1 = a1, γk = bk/dk−1, dk = ak − γkck, k = 2 :n. (1.5.6)
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The elements γk and dk can overwrite bk and ak , respectively. The solution to the
system Ax = L(U x) = f is obtained by solving Ly = f and U x = y:

y1 = f1, yi = fi − γi yi−1, i = 2 :n, (1.5.7)

xn = yn/dn, xi = (yi − ci+1xi+1)/di , i = n − 1 :−1 :1. (1.5.8)

The total number of flops is about 3n for the factorization and 2.5n for the solution
of the triangular systems. Note that the divisions in the substitution can be avoided
if (1.5.6) is modified to compute d−1k . This may be more efficient because on many
computers a division takes more time than a multiplication.

When A is symmetric positive definite and tridiagonal the factorization can be
written in the symmetric form

A = LDLT , D = diag(d1, . . . , dn), (1.5.9)

where the elements in D and L are obtained from

d1 = a1, γk = bk/dk−1, dk = ak − γkbk, k = 2 :n. (1.5.10)

Eliminating γk it follows that

dk = ak − b2k/dk−1, k = 2 :n. (1.5.11)

Sometimes it is more convenient to set L D = U T and write

A = U T D−1U, D = diag(d1, . . . , dn).

where U is as in (1.5.5) (with ck = bk).
When A is a symmetric indefinite tridiagonal matrix, then the pivoted block fac-

torization A = LDLT described in Sect. 1.3.4 with pivot size s = 1 or s = 2,
will not preserve the bandwidth. For this case, Bunch [29, 1974] devised a block
LDLT factorization with no pivoting and a special rule for choosing the pivot size.
In the first step a11 is taken as pivot if σ |a11| ≥ αa2

21, where

σ = max
i j
|ai j |, α = (

√
5− 1)/2 ≈ 0.62.

Otherwise the 2 × 2 pivot

(
a11 a12
a21 a22

)
is used. All remaining steps are similar.

The resulting factorization can be shown to be normwise backward stable; see
Higham [129, 2002], Theorem11.7.

A tridiagonal matrix A is a special case of a Hessenbergmatrix. If GEPP is applied
to A, then a factorization P A = LU is obtained, where L has at most one nonzero
element below the diagonal in each column and U has upper bandwidth two. It is
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easily proved by induction that ρn ≤ 2 with partial pivoting. This result is a special
case of the following more general result.

Theorem 1.5.2 (Bothe [25, 1975]) If A ∈ C
n×n has upper and lower bandwidth p,

then the growth ratio in GEPP satisfies

ρn ≤ 22p−1 − (p − 1)2p−2.

In particular, for a tridiagonal matrix (p = 1) we have ρn ≤ 2.

The recursion (1.5.6) for the LU factorization of a tridiagonal matrix is highly
serial. An algorithm for solving tridiagonal systems more suited for parallel comput-
ing is cyclic reduction, also called odd-even reduction. In this method a sequence
of tridiagonal systems is generated, each half the size of the previous system. These
are formed by eliminating the odd-indexed variables to obtain a reduced tridiagonal
system involving only even-indexed variables. This process is repeated recursively
until a system involving only a small order of unknowns remains. This is then solved
and the other variables successively computed by back substitution.

We illustrate the first step of cyclic reduction on a tridiagonal system Ax = f of
order n = 23−1 = 7. Let p = (1, 3, 5, 7, 2, 4, 6)T be the odd-even permutation and
P the corresponding permutation matrix. Then the permuted system PAPT (Px) =
PT f has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 c2
a3 b3 c4

a5 b5 c6
a7 b7

b2 c3 a2
b4 c5 a4

b6 c7 a6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x3
x5
x7
x2
x4
x6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f3
f5
f7
f2
f4
f6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.5.12)

It is easily verified that after the odd variables are eliminated from the even equations
the resulting system is again tridiagonal. Rearranging these as before gives

⎛
⎜⎝

a′2 c′4
a′6 b′6

b′4 c′6 a′4

⎞
⎟⎠ =
⎛
⎝

x2
x6
x4

⎞
⎠ =
⎛
⎜⎝

f ′2
f ′6
f ′4

⎞
⎟⎠ .

After elimination we are left with one equation:

a′′4 x4 = f ′′4 .

Solving this for x4, we can compute x2 and x6 from the first two equations in the
previous system. Substituting these in the first four equations in (1.5.12) the odd
unknowns x1, x3, x5, x7 can be determined. Clearly this scheme can be generalized.
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For a systemof dimension n = 2p−1, p steps are required in the reduction. However,
it is possible to stop at any stage, solve a tridiagonal system, and obtain the remaining
variables by substitution. Therefore, it can be used for also when n+1 is not a power
of 2.

Cyclic reduction has proved to be a powerful algorithm for solving many struc-
tured matrix problems. It has successfully been used for solving Poisson’s equation
in two dimensions and can be efficiently implemented on a large variety of computer
architectures. A short history of cyclic reduction and its applications is given by
Gander and Golub [86, 1997].

The derivation shows that cyclic reduction is equivalent to Gaussian elimination
without pivoting on a reordered system. Thus, it is stable if the matrix is diagonally
dominant or symmetric positive definite. In contrast to the conventional algorithm,
here some new nonzero elements are created during the elimination and about 2.7
times more operations are needed. For large systems, say n > 200, cyclic reduction
may still be faster than the sequential algorithm. The concept of reordering a system
to increase the inherent parallelism is useful in many other problems.

Example 1.5.2 Let A be a symmetric positive definite tridiagonalmatrix. Then A has
positive diagonal elements and the symmetrically scaled matrix Ã = DAD, where
D = diag(d1, . . . , dn), di = 1/

√
ai , has unit diagonal elements. After an odd-even

permutation the system Ãz = b will have the 2× 2 block form

(
I F

FT I

)(
x
y

)(
c
d

)
, (1.5.13)

with F lower bidiagonal. After elimination of x the Schur complement system
becomes

(I − FT F)y = d − FT c.

Since I − FT F is again a positive definite tridiagonal matrix, this process can be
repeated recursively. �

1.5.5 Envelope Methods

In some applications one encountersmatrices forwhich the bandwidth is not constant.
For this class of matrices, called variable-band matrices, we define

fi (A) = min{ j | ai j �= 0}, l j (A) = min{i | ai j �= 0}. (1.5.14)

Here fi is the column subscript of the first nonzero in the i-th row of A, and similarly
l j the row subscript of the first nonzero in the j th column of A. We assume here and
in the following that A has a zero-free diagonal. From the definition it follows that
fi (A) = li (AT ). For a symmetric matrix A we have fi (A) = li (A), i = 1 :n.
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Definition 1.5.2 The envelope (or profile) of A is the index set

Env(A) = {(i, j) | fi ≤ j ≤ i or l j ≤ i < j}. (1.5.15)

The envelope of a symmetric matrix is defined by the envelope of its lower triangular
part including the main diagonal.

Example 1.5.3 An example of a variable-band matrix is the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

× ×
× × ×

× × 0 × ×
× 0 0 × × 0

× × × 0
× 0 0 × ×

× × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here × denotes a nonzero element and 0 a zero element inside the envelope. We
have f (A) = (1, 1, 2, 1, 3, 3, 5) and l(A) = (1, 1, 3, 2, 3, 3, 6). �

For a variable-band matrix it is convenient to use a storage scheme in which only
the elements ai j for which (i, j) ∈ Env(A) are stored and operated on. This storage
scheme is convenient, because zeros outside the envelope will remain zero during
LU factorization without pivoting.

Theorem 1.5.3 Assume that the triangular factors L and U of A exist. Then

Env(L +U ) = Env(A),

i.e., the nonzero elements in L and U are contained in the envelope of A.

Proof The proof is similar to that of Theorem 1.5.1. Assume that the theorem is true
for matrices of order n−1. Let A ∈ R

n×n and A11 = L11U11 be the LU factorization
of the principal submatrix of order n − 1 of A. Then the LU factorization of A is

(
A11 a1n

aT
n1 dnn

)
=
(

L11 0

lT
n1 1

)(
U11 u1n

0 unn

)
,

where the vectors u1n and ln1 satisfy

L11u1n = a1n, U T
11ln1 = an1

(cf. the bordering method in Sect. 1.2.4). The solutions of these lower triangular
systems are obtained by forward substitution. Therefore, if an1 has fn leading zeros,
so will ln1. Similarly, if a1n has ln leading zeros, so will u1n . The theorem follows
by induction. �
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1.5.6 Diagonally Dominant Matrices

An important class of matrices for which a bound independent of n can be given for
the growth ratio ρn in GEwithout pivoting, is that of diagonally dominant matrices.

Definition 1.5.3 A matrix A is said to be diagonally dominant by rows, if

∑
j �=i

|ai j | ≤ |aii |, i = 1 :n. (1.5.16)

If (1.5.16) holds with strict inequality for all i , then A is said to be strictly diagonally
dominant by rows. A is (strictly) diagonally dominant by columns if AT is (strictly)
diagonally dominant by rows.

It can be shown that if A is strictly diagonally dominant, then it is nonsingular.

Theorem 1.5.4 Let A be nonsingular and diagonally dominant by rows or columns.
Then A has an LU factorization without pivoting and the growth ratio ρn(A) ≤ 2. If
A is diagonally dominant by columns, then the multipliers in this LU factorization
satisfy |li j | ≤ 1, for 1 ≤ j < i ≤ n.

Proof (Wilkinson [204, 1961], pp. 288–289). Assume that A is nonsingular and
diagonally dominant by columns. Then a11 �= 0, since otherwise the first column
would be zero and A singular. In the first stage of GE without pivoting we have

a(2)
i j = ai j − li1a1 j , li1 = ai1/a11, i, j ≥ 2, (1.5.17)

where
n∑

i=2
|li1| =

n∑
i=2
|ai1|/|a11| ≤ 1. (1.5.18)

For j = i , using the definition and (1.5.18), it follows that

|a(2)
i i | ≥ |aii | − |li1| |a1i | ≥

∑
j �=i

|a ji | −
(
1−
∑
j �=1,i

|l j1|
)
|a1i |

=
∑
j �=1,i

(|a ji | + |l j1||a1i |
) ≥
∑
j �=1,i

|a(2)
j i |.

Hence, the reducedmatrix A(2) = (a(2)
i j ) is also nonsingular and diagonally dominant

by columns. It follows by induction that all matrices A(k) = (a(k)
i j ), k = 2:n are

nonsingular and diagonally dominant by columns. From (1.5.17) and (1.5.18) we
have
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n∑
i=2
|a(2)

i j | ≤
n∑

i=2

(|ai j | + |li1||a1 j |
) ≤

n∑
i=2
|ai j | + |a1 j |

n∑
i=2
|li1|

≤
n∑

i=2
|ai j | + |a1 j | =

n∑
i=1
|ai j |, i ≥ 2.

Hence, the sum of themoduli of the elements of any column of A(k) does not increase
as k increases. Hence,

max
i, j,k

|a(k)
i j | ≤ max

i,k

n∑
j=k

|a(k)
i j | ≤ max

i

n∑
j=1
|ai j | ≤ 2max

i
|aii | = 2max

i j
|ai j |.

It follows that

ρn = max
i, j,k

|a(k)
i j |/max

i, j
|ai j | ≤ 2.

The proof for matrices that are row diagonally dominant is similar. (Notice that GE
with pivoting essentially treats rows and columns symmetrically.)

We conclude that for a row or column diagonally dominant matrix, GE without
pivoting is backward stable. If A is diagonally dominant by rows, then themultipliers
can be arbitrarily large, but this does not affect the stability.

Exercises

1.5.1 (a) Let A, B ∈ R
n×n have lower (upper) bandwidth r and s, respectively. Show that the

product AB has lower (upper) bandwidth r + s.
(b) What is the band structure of an upper Hessenberg matrix H? Using the result in (a)

find the band structure of the product of H and an upper triangular matrix.

1.5.2 Show that an irreducible tridiagonal matrix A can bewritten A = DT , where T is symmetric
tridiagonal and D = diag(dk) is diagonal with elements

d1 = 1, dk =
k∏

j=2
b j /c j , k = 2 :n. (1.5.19)

1.5.3 (a) Let A ∈ R
n×n be a symmetric tridiagonal matrix. Assume that

det(Ak) �= 0, k = 1 : p,

where Ak is the kth leading principal submatrix of A. Then the factorization Ak =
Lk Dk LT

k exists and can be computed by (1.5.11). Use this to derive a recursion formula
for det(Ak), k = 1:p.

(b) Determine the largest n for which the symmetric tridiagonal matrix
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An =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 1.01
1.01 2 1.01

1.01
. . .

. . .

. . .
. . . 1.01
1.01 2

⎞
⎟⎟⎟⎟⎟⎟⎠
∈ R

n×n

is positive definite.

1.5.4 (a) Write a Matlab function implementing the multiplication C = AB, where A =
diag(a, r) and B = diag(b, s) both consist of a single diagonal. Use the formulas in
Lemma 1.5.1.

(b) Let A and B be matrices of bandwidth w1 and w2, respectively. Write a function for
computing the product C = AB of two band which uses w1w2 calls to the function in
(a).

1.5.5 Modify the Matlab Algorithm 1.3.2 for Cholesky factorization so that it works for a
symmetric positive definite band matrix stored by diagonals.

1.5.6 Boundary value problems, where the solution is subject to periodic boundary conditions,
often lead to a linear system Ax = b, where A is a diagonally dominant matrix of the
bordered tridiagonal kind:

A =

⎛
⎜⎜⎜⎜⎜⎝

a1 c2 b1
b2 a2 c3 0

. . .
. . .

. . .
.
.
.

bn−1 an−1 cn
c1 0 . . . bn an

⎞
⎟⎟⎟⎟⎟⎠

. (1.5.20)

The matrix is tridiagonal except for the two corner elements b1 and c1.

(a) Show that
A = T + σuuT , u = (1, 0, . . . , 0,−1)T ,

where T is a certain symmetric tridiagonal matrix. Determine σ and T .
(b) Derive an algorithm for solving systemsof this formbasedon introducing a newvariable

α = uT x and solving (
T σu
uT −1

)(
x
α

)
=
(

b
0

)
.

1.6 Implementing Matrix Algorithms

Most amateur algorithmwriters, like most amateur scientists, seem to think that an algorithm
is ready for publication at the point where a professional should realize that the hard and
tedious work is just beginning.
—George E. Forsythe, Communications of the ACM (1966).

One of the first collections of high quality software was a series of algorithms
written in Algol 60 that appeared in 1971 in the Handbook for Automatic Compu-
tation, edited by Wilkinson and Reinsch [210, 1971]. It included eleven subroutines
for linear systems, linear least squares, and linear programming and eighteen rou-
tines for the algebraic eigenvalue problem. In 1974 EISPACK was released. This is
a collection of Fortran IV subroutines for computing eigenvalue and/or eigenvectors
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of matrices; see Smith et al. [181, 1976], Garbow et al. [89, 1977]. EISPACK was
based mainly on Algol procedures from the handbook collection mentioned above.

LINPACK, released in 1979, is a collection of Fortran subroutines for solving
linear systems of equations; see Dongarra et al. [62, 1979]. These subroutines were
developed from scratch and included several innovations. Important practical details
on implementation of algorithms can be found in the documentation of EISPACK
and LINPACK and software given in Smith et al. [181, 1976] and Dongarra et al.
[62, 1979].

1.6.1 BLAS for Linear Algebra Software

One of the most important features of LINPACK is that the subroutines were kept
machine independent by performing asmuch of the computations as possible by calls
to so called Basic Linear Algebra Subprograms (BLAS). These identify frequently
occurring vector operations such as scalar product, adding of a multiple of one vector
to another,

y = αx + y (Saxpy),

β = xT y (Sdot),

y = αx (Sscal),

β = ‖x‖2 (Snrm2),

where α, β are scalars, and x , y are vectors. Both single and double precision real
and complex operations are provided. One advantage of using BLAS are that they
lead to shorter and clearer code and increase modularity. More important is that
machine dependent optimization can be confined to the BLAS. This aids portability
and allows for tuned BLAS provided by the manufacturers.

The basic algorithms for matrix computations such as the solution of systems of
linear equations are at the core of the solution of most advanced problems on the
fastest available computers. In search of high performance it has been necessary to
adapt these codes to changes in the architectures of these computers. Between the
autoeditedlate 1970s and 2010 we have seen the following developments:

• Vector machines
• RISC computers with cache memories
• Parallel systems with distributed memory
• Multi-core computers

The original BLAS, now known as level 1 BLAS, were introduced in 1979 by
Lawson et al. [146, 1979]. Theywere found to be unsatisfactorywhen vector comput-
ers were introduced in the 1980s. This brought about the development of BLAS for
matrix-vector operations; see [65, 1988]. The level 2 BLAS are operations involving
one matrix and one or several vectors:
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y = αAx + βy,

y = αAT x + βy,

B = αxyT + A,

x = T x,

x = T−1x .

Here x and y are vectors, A a matrix and T an upper or lower triangular matrix. Level
2 BLAS involve O(n2) data, where n is the dimension of the matrix involved, and
the same number of arithmetic operations. When RISC-type microprocessors were
introduced, they failed to achieve adequate performance, because of delay in getting
data to the arithmetic processors.

Modern computer architectures make use of a hierarchical memory structure,
where large slow memories are backed up by fast smaller ones. When data are
referenced, the hardware determines where it is located. If it is not in the main
memory, then a block of contiguous data is fetched from backing store. Since this
process is slow, it is important that the code causes this to happen as infrequently
as possible. Computers also have a faster and smaller cache memory consisting of
smaller blocks that are swapped in and out of main memory. Data in cache memory
are moved in and out of the registers of the central processing unit. The key to
high efficiency with a hierarchical memory systems is locality of reference. This
requires the operations to be carefully sequenced. Contiguous memory locations are
likely to be located together, whereas referencing locations far removed from another
are likely to trigger data transfers. In recent multicore and heterogeneous computer
systems, communication costs may exceed arithmetic costs by orders of magnitude
and the gap is growing fast; see Graham et al. [113, 2004].

Level 3 BLAS, introduced in 1990, were derived from level 2 BLAS by replacing
vectorswithmatrices; see [63, 1990] and [64, 1990]). Some typical level 3BLAS are:

C = αAB+ βC,

C = αAT B + βC,

C = αABT + βC,

B = αT B,

B = αT−1B.

Level 3 BLAS use O(n2) data, but perform O(n3) arithmetic operations. This
gives a surface-to-volume effect for the ratio of data movement to operations, which
avoids excessive data movements between different parts of memory hierarchy. They
make it possible to achieve close to optimal performance on a large variety of com-
puter architectures.

Highly efficient machine-specific implementations of the BLAS are available for
many high-performance computers and provide a transportable way to achieve high
efficiency for codes. The matrix-matrix multiply routine (GEMM) is the kernel in
the level 3 BLAS that gets closest to peak performance. On most modern machines it
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will achieve over 90% of peak on matrices of order only a few hundred. The bulk of
the computation of other level 3 BLAS, such as symmetric matrix-matrix multiply
(SYMM), triangular matrix-matrix multiply (TRMM), and symmetric rank-k update
(SYRK) can be expressed as calls to GEMM; see Kågström et al. [139, 1998].

The BLAS technical forum was established in 1995 to consider formally the
extension of BLAS. In 2001 the formal definitions for the standard were published.
A description of part of this new standard is given in [20, 2002]. A current trend is
the use of vendor-supplied LAPACK/BLAS libraries such as Intel MKL and AMD
Core Math Library.

The LAPACK collection of subroutines [4, 1999] was released in 1992 and
designed to supersede and integrate the algorithms in LINPACK and EISPACK.
A number of algorithmic advances that have been made after LINPACK and EIS-
PACK were written have been incorporated. The subroutines are restructured to
achieve much greater efficiency on modern high-performance computers. This is
achieved by performing as many computations as possible using level 3 BLAS. This
enables the LAPACK routines to combine high performance with portable code and
is also an aid to clarity, portability and modularity. The LAPACK subroutines form
the backbone ofMatlab, which has simplified matrix computations tremendously.

Several special forms of matrices are supported by LAPACK:

General
General band
Positive definite
Positive definite packed
Positive definite band
Symmetric (Hermitian) indefinite
Symmetric (Hermitian) indefinite packed
Triangular
General tridiagonal
Positive definite tridiagonal

LAPACK is continually improved and updated and is available from netlib: http://
www.netlib.org/lapack/, where different versions and releases are listed. Information
on several related projects is also found there.

Although LAPACK is efficient on both vector processors and shared-memory
multiprocessors, it will generally not perform well on massively parallel Single
Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD)
machines. ScaLAPACK [19, 1997]) is an extension of the LAPACK software library
designed to be efficient on such machines. It builds on distributed memory versions
of the level 2 and level 3 BLAS and a set of Basic Linear Algebra Communication
Subprograms (BLACS) for executing communication tasks. This makes the top level
code of ScaLAPACK look quite similar to the LAPACK code.

LAPACK95 is a Fortran 95 interface to the Fortran 77 LAPACK library. It
improves upon the original user-interface to the LAPACK package, taking advan-
tage of the considerable simplifications that Fortran-95 allows. LAPACK95 Users’
Guide [9, 2001] provides an introduction to the design of the LAPACK95 package,

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
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a detailed description of its contents, reference manuals for the leading comments
of the routines, and example programs. It should be noted that LAPACK95 has not
been updated since 2000, whereas the original LAPACK is still updated regularly.

PLAPACK is a library infrastructure for parallel implementation of linear alge-
bra algorithms on distributed memory supercomputers; see van de Geijn [93, 1997].
A subset of LAPACK routines has been redesigned for distributed memory par-
allel computers, including message passing interface (MPI) and parallel virtual
machines (PVM); see the ScaLAPACK library [19, 1997]. The recursive algorithm
for LU factorization with partial pivoting is described in Gustavson [116, 1997] and
Toledo [192, 1997].

1.6.2 Block and Partitioned Algorithms

To achieve high performance on modern computer architectures, matrix algorithms
need to be rich in matrix-matrix multiplications. Because a matrix-matrix multi-
plication performs O(n3) flops on O(n2) data, this has the effect of reducing data
movement. The different versions of LU factorization we have considered so far use
only level 1 and level 2 BLAS.

In order to introduce matrix operations we need to consider block matrix algo-
rithms. In the following wemake a distinction between two different classes of block
algorithms, which have different stability properties. A blocked or partitioned algo-
rithm is a scalar algorithm in which the operations have been grouped and reordered
into matrix operations. Such algorithms have the same the stability properties as their
scalar counterparts. A block algorithm is obtained instead by substituting in a scalar
algorithm operations on blocks of partitioned matrices regarded as non-commuting
scalars. Such algorithms do not in general perform the same arithmetic operations
as the corresponding scalar algorithm. Therefore, it cannot be taken for granted that
a block algorithm has the same numerical stability properties.

As a first example of a block algorithm we consider the factorization of a block
tridiagonal matrix with square diagonal blocks:

A =

⎛
⎜⎜⎜⎜⎜⎝

A1 C2
B2 A2 C3

. . .
. . .

. . .

Bn−1 An−1 Cn

Bn An

⎞
⎟⎟⎟⎟⎟⎠

(1.6.1)

Note that any band matrix can be written in this form with triangular off-diagonal
blocks. Conversely, any block tridiagonal matrix is also a band matrix. If A is sym-
metric positive definite, then Ci = Bi , i = 2 : n, and the diagonal blocks Ai ,
i = 1 : n, are symmetric positive definite. The scalar recursion (1.5.11) then easily
generalizes to

D1 = A1, Dk = Ak − Bk D−1k−1BT
k , k = 2 :n. (1.6.2)
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This recursion computes the block Cholesky factorization as A = U T D−1U , where

U =

⎛
⎜⎜⎜⎜⎜⎝

D1 B2
D2 B3

. . .
. . .

Dn−1 Bn

Dn

⎞
⎟⎟⎟⎟⎟⎠

.

Here Dk is the Schur complement of a principal submatrix of a symmetric positive
definite matrix.Therefore, by Theorem 1.3.2 it is symmetric positive definite. The
inverses D−1k , k = 1 : n, are not computed. Using this factorization the solution to
a linear system Ax = b is x = U−1DU−T b and is obtained by block forward and
back substitution U T z = b,

U T z = b, U x = Dz.

A similar block LU factorization algorithm can be developed for the unsymmetric
block-tridiagonal case.

With slightly different notation, the block LU factorization for a 2 × 2 block
matrix is

A =
(

A11 A12
A21 A22

)
=
(

I 0
A21A−111 I

)(
A11 A12
0 S22

)
, (1.6.3)

where S22 = [A/A11] = A22 − A21A−111 A12 is the Schur complement. Since the
diagonal blocks in the block lower triangular factor in (1.6.3) are the identity matrix
this is a true block LU factorization algorithm. In a partitioned LU factorization
algorithm, the LU factors have the form

(
A11 A12
A21 A22

)
=
(

L11 0
L21 L22

)(
U11 U12
0 U22

)
,

where L11 and L22 and are unit lower triangular and U11 and U22 upper triangular.
This factorization can be computed as follows.

1. Compute the LU factorization A11 = L11U11.
2. Solve U T

11LT
21 = AT

21 and L11U12 = A12 for L21 and U12.
3. Form the Schur complement S22 = A22 − L21U12.
4. Compute the LU factorization S22 = L22U22.

The two triangular solves in step 2 involve multiple-right-hand and step 3 is a
matrix-matrix multiplication. Hence, all operations except the LU factorizations of
the diagonal blocks can be expressed as level 3 BLAS.

Now, let A = (Ai j ) ∈ R
n×n be a p × p block matrix with square diagonal

blocks Aii , i = 1 : p. Let L and U be partitioned conformally with A. Equating
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blocks in A = LU and assuming that all inverses exist gives Algorithm 1.6.1 for LU
factorization without pivoting.

Algorithm 1.6.1 (Partitioned LU Factorization)

for k = 1 : p

Skk = Akk −
k−1∑
i=1

LkiUik = LkkUkk;

for j = k + 1 : p

L jk =
(

A jk −
k−1∑
i=1

L jiUik

)
U−1

kk ;
end

for j = 1 : k − 1

U jk = L−1kk

(
A jk −

k−1∑
i=1

L jiUi j

)
;

end

end

Here the LU decompositions Skk = LkkUkk of the modified diagonal blocks are
computed by a level 2 BLAS LU factorization algorithm. The inverses of the trian-
gular matrices L−1kk andU−1

kk are not formed and the off-diagonal blocksUkj and L jk

(which in general are full matrices) are computed by triangular solves. Assuming that
all blocks are of equal size ni = n/p, the level 2 BLAS LU factorizations requires

p
2

3
n3

i =
2

3

n3

p2
flops.

Since the total number of flops is 2
3n3, it follows that the dominating part of

the work, namely (1 − 1/p2), is performed in BLAS 3 operations. Already for
p = 10 this is 99% of the computations. Pivoting can be used in the factorization
of the diagonal blocks. However, the algorithm does not allow for row interchanges
between blocks and therefore cannot be guaranteed to be stable. A partitioned LU
factorization algorithm that can be combined with row pivoting is described later.

A block LU factorization algorithm differs from the partitioned algorithm above
in that in the lower block triangular matrix L the diagonal blocks are identitymatrices
and those ofU are full square matrices. It has been shown that block LU factorization
can fail even for symmetric positive definite and row diagonally dominant matrices.
One class of matrices for which the block LU algorithm is known to be stable is
that of block tridiagonal matrices that are block-diagonally dominant; see Demmel
et al. [56, 1995].

Definition 1.6.1 A general matrix A ∈ R
n×n is said to be block diagonally domi-

nant by columns with respect to a given partitioning, if
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‖A−1j j ‖−1 ≥
∑
i �= j

‖Ai j‖, j = 1 :n. (1.6.4)

It is said to be strictly block diagonally dominant if (1.6.4) holdswith strict inequality.
Similarly, A is said to be (strictly) block diagonally dominant by rows if AT is
(strictly) diagonally dominant by columns.

The block tridiagonal LU factorization has the form (n = 4)

⎛
⎝

A1 C2
B2 A2 C3

B3 A3

⎞
⎠
⎛
⎝

I
L2 I

L3 I

⎞
⎠
⎛
⎝

U1 C2
U2 C3

U4

⎞
⎠ . (1.6.5)

It is easily verified that the recurrence relations for Lk and Uk are U1 = A1,

Lk = BkU−1
k , Uk = Ak − LkCk, k = 2 :n.

Then A is block diagonally dominant by rows if

‖A−1k ‖(‖Bk‖ + ‖Ck+1‖) ≤ 1, k = 1 :n.

where we assume that the blocks Ak are nonsingular and ‖B1‖ = ‖Cn‖ = 0. We can
also assume that Ci �= 0, because otherwise A is reducible.

Theorem 1.6.1 (Varah [202, 1972]) Let the block tridiagonal matrix A ∈ R
n×n

have the block LU factorization A = LU, where L and U are block bidiagonal
and normalized as in (1.6.5). If A is block diagonally dominant by rows, then the
decomposition is numerically stable and the computed blocks satisfy

‖Lk‖ ≤ ‖Bk‖ ‖Ck‖, ‖Uk‖ ≤ ‖Ak‖ + ‖Bk‖. (1.6.6)

These results can be extended to full block diagonally dominant matrices, by
using the key property that block diagonal dominance is inherited by the Schur
complements obtained in the factorizations. For the scalar case the usual property of
(point) diagonal dominance is obtained. For the 
1 and 
∞ norms diagonal dominance
does not imply block diagonal dominance. Nor do the reverse implications hold.

If A is Hermitian positive definite and partitioned into p × p blocks with square
diagonal blocks, the following partitioned block Cholesky algorithm is obtained.

The diagonal blocks Lkk are obtained by computing the level 2 BLAS Cholesky
factorizations of matrices of dimension n/p. The right multiplication with L−H

kk in
the computation of Lik is performed as the triangular solve Lkk L H

ik = SH
ik . Block

Cholesky factorizations appear to have been first proposed for block tridiagonal
systems which arise from discretization of elliptic partial differential equations; for
an example, see (1.7.1).

Algorithm 1.6.2 (Partitioned Cholesky Algorithm)
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for k = 1 : p

Skk = Akk −
k−1∑
i=1

Lki L H
ki = Lkk L H

kk;

for j = k + 1 : p

S jk = A jk −
k−1∑
i=1

L ji L H
ki ;

L jk = S jk L−H
kk ;

end

end

In deriving the block LU and Cholesky algorithms, we assumed that the block
sizes were determined in advance. This is by no means necessary and a more flexible
way is to use a dynamically partitioned algorithm where the size of the next pivot
block is decided at the beginning of each step. Consider a 3 × 3 block partitioned
LU factorization with square diagonal blocks

P

⎛
⎝

A11 A12 A13
A21 A22 A13
A31 A32 A33

⎞
⎠ =
⎛
⎝

L11
L21 L22
L31 L32 L33

⎞
⎠
⎛
⎝

U11 U12 U13
U22 U23

U33

⎞
⎠ = LU,

(1.6.7)
where P is a permutation matrix. Let the sizes of the first two column blocks be n1
and n2. This partitioning will change after each step.

If the LU factorization with row pivoting of the first n1 columns has been com-
puted, then the first block columns of L and U in (1.6.7) are known. Further, P1 is
the permutation matrix resulting from the row permutations made so far. To advance
the factorization one step, we perform the following operations.

1. Apply P = P1 to the second block of columns in A.
2. Obtain U12 by solving the triangular system L11U12 = A12.
3. Use level 3 BLAS to update A22 := A22 − L21U12, A32 := A32 − L31U12.
4. Compute the pivoted LU factorization of the updated matrix

P2

(
A22
A32

)
=
(

L22
L32

)
U22

using level 2 BLAS to allow for row pivoting, and set P = P2P1. Apply P2 also
to the blocks L21 and L31.
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This updated factorization then is

P2P1A =
⎛
⎝

L11
L21 L22
L31 L32 I

⎞
⎠
⎛
⎝

U11 U12 A13
U22 A23

A33

⎞
⎠ .

The system is now repartitioned so that the first two block-columns in L and U are
joined together in one block of size n1 + n2. The remaining columns are partitioned
into two blocks consisting of n3 and n− (n1+n2+n3) columns, and the next block-
step is performed. This describes the complete algorithm, since we can start the
algorithm by taking n1 = 0. Referring to the way in which the data are accessed, this
algorithm is called left-looking. It is a generalization of the column-sweep method
described in Sect. 1.2.4.

1.6.3 Recursive Matrix Multiplication

A faster method for matrix multiplication would give more efficient algorithms for
many linear algebra problems including solving linear systems and eigenvalue prob-
lems. The fast matrix multiplication by Strassen [187, 1969] is based on an algorithm
for multiplying 2× 2 block matrices. Let A and B be matrices of dimensions m × n
and n× p, respectively, where all dimensions are even. Partition A, B, and the product
C = AB into four equally sized blocks:

(
C11 C12
C21 C22

)
=
(

A11 A12
A21 A22

)(
B11 B12
B21 B22

)
. (1.6.8)

Then, as can be verified by substitution, the product C can be computed using the
following formulas:

(
C11 C12
C21 C22

)
=
(

P1 + P4 − P5 + P7 P3 + P5
P2 + P4 P1 + P3 − P2 + P6

)
, (1.6.9)

where

P1 = (A11 + A22)(B11 + B22), P2 = (A21 + A22)B11,

P3 = A11(B12 − B22), P4 = A22(B21 − B11), (1.6.10)

P5 = (A11 + A12)B22, P6 = (A21 − A11)(B11 + B12),

P7 = (A12 − A22)(B21 + B22)

The key property of Strassen’s algorithm is that only seven matrix multiplications
and eighteen matrix additions are needed, instead of the eight matrix multiplications
and four matrix additions required using conventional block matrix multiplications.
Since for large dimensions multiplication of two matrices is much more expensive
than addition, this will lead to a saving in operations.



138 1 Direct Methods for Linear Systems

If Strassen’s algorithm can be used recursively to multiply two square matrices
A and B of dimension n = 2k as follows. First the matrices are partitioned as in
(1.6.8). The seven products in (1.6.10) of matrices of dimension n/2 = 2k−1 can
in turn be computed by Strassen’s method. Continuing in this way, after k steps we
are left with only scalar multiplications. It can be shown in this way the number of
scalar multiplications is reduced from 2n3 flops to 4nlog2 7 = 4n2.807.... The number
of additions is of the same order. In practice, recursion is only performed down to
some level at which the gain in arithmetic operations is outweighed by overheads in
the implementation.

An implementation of Strassen’s algorithm as a recursive Matlab function is
given by Higham [129, 2002], Chap. 23. It uses the fast matrix multiplication as long
as n is a power of two and n > nmin, and then it switches to standard matrix mul-
tiplication. Strassen’s method was first believed to be numerically unstable. Brent
[27, 1970] showed that, although there is some loss of stability compared to con-
ventional matrix multiplication, this is not true. For a detailed discussion we refer to
Higham [129, 2002], Sect. 23.2.2.

Even with just one level of recursion, Strassen’s method is faster in practice when
n is larger than about 100; see Problem 1.6.2. For nmin = 1 the recursion produces
a complete binary tree of depth k + 1, where 2k−1 < n ≤ 2k . This tree is traversed
in preorder during the execution; see Knuth [144, 1997], Sect. 2.3.

Strassen’s algorithm reduces the number of multiplications for matrix multipli-
cation from n3 to nlog2 7 = n2.807.... It is still an open (difficult!) question what is the
minimum exponent ω, such that matrix multiplication can be done in O(nω) oper-
ations. The fastest known algorithm, devised in 1987 by Coppersmith and Wino-
grad [44, 1990], has ω < 2.376. Many believe that an optimal algorithm can be
found which reduces the number to essentially n2. For a review of recent efforts in
this direction using group theory, see Robinson [170, 2005]. (Note that for many of
the theoretically “fast” methods large constants are hidden in the O notation.)

1.6.4 Recursive Cholesky and LU Factorizations

To be efficient, matrix algorithms have to be continually adapted as computer archi-
tecture changes. For multi-core computers traditional partitioned algorithms have
poor performance. Algorithms, which like Strassen’s use a recursive blocking of the
matrix, have the advantage that several different levels of memory hierarchy are tar-
geted. Such algorithms can be developed also formatrix factorizations.We exemplify
this by looking at the Cholesky and LU factorizations.

Let the Hermitian positive definite matrix A ∈ R
n×n be partitioned into a 2 × 2

block matrix with square diagonal blocks A11 and A22 of order n1 and n2 = n− n1,
respectively. Equating blocks in the matrix equation

(
A11 AH

21

A21 A22

)
=
(

L11 0

L21 L22

)(
L H
11 L H

21

0 L H
22

)
(1.6.11)



1.6 Implementing Matrix Algorithms 139

gives the following matrix equations for computing the three nonzero blocks in the
Cholesky factor L:

L11L H
11 = A11 (n3/24 flops),

L H
21 = L−111 A12 (n3/8 flops),

Ã22 = A22 − L21L H
21 (n3/8 flops),

L22L H
22 = Ã22 (n3/24 flops).

The submatrices A11 and Ã22 are also positive definite. Here L11 is the Cholesky
factorization of a matrix of size n1 × n1. The block L21 is obtained by solving an
upper triangular matrix equation. Next the block A22 is modified by the symmetric
matrix L21L H

21. Finally, the Cholesky factorization of this modified block of size
n2 × n2 is computed. If n is even and n1 = n2 = n/2, then the two Cholesky
factorizations are of size n/2× n/2 and each requires n3/12 flops. This is 1/4 of the
total number of n3/3 flops. The triangular solve and the modification step each take
n/8 flops. (Note that only the upper triangular part of Ã22 needs to be computed.)

Algorithm 1.6.3 implements the recursive computation of the Cholesky factoriza-
tion. It does not take advantage of the symmetry in the matrices, e.g., in the modifi-
cation of the (2, 2) block. By using the block formulation recursively and Strassen’s
method for the matrix multiplication, it is possible to perform the Cholesky factor-
ization in O(nlog2 7) flops.

The algorithm assumes that the Cholesky factor is stored in a full matrix. If packed
storage is used (see p. 78), level 3 BLAS cannot be employed, resulting in low speed.
Thus, there is a choice between high speed with waste of memory, or low speed
and no waste of memory. The following recursive algorithm computes the Cholesky
factorization of a Hermitian positive definite matrix A ∈ C

n×n . We emphasize that
this and other Matlab codes given here are textbook programs and meant only for
illustration. They will work, but there are overheads in storage and operations. More
efficient implementations are possible in Fortran 90, which was the first Fortran
standard to allow recursive subroutines.

In the recursive algorithm all work is done in triangular solves and matrix mul-
tiplication. At level i , 2 calls to level 3 BLAS are made. In going from level i to
i + 1, the number of BLAS calls doubles and each problem size is halved. Hence,
the number of flops done at each level goes down in a geometric progression by a
factor of 4. Since the total number of flops must remain the same, this means that a
large part of the calculations are made at low levels. But since the Mflop rate goes
down with the problem size, the computation time does not quite go down by the
factor 1/4. For large problems this has little effect on the total efficiency. However,
for small problems, where most of the calls to level 3 BLAS have small problem
size, the efficiency deteriorates. This can be avoided by calling a standard Cholesky
routine if the problem size satisfies n ≤ nmin. A recursive algorithm for Cholesky
factorization of a matrix in packed storage format is described in Andersen et al.
[3, 2001]. For nmin = 1 Algorithm 1.6.3 is a purely recursive algorithm and we
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can substitute L = sqrt(A) for L = chol(A). For nmin > 1 the algorithm
is a hybrid between a recursive and a block algorithm.

Algorithm 1.6.3 (Recursive Cholesky Factorization)

function L = rchol(A,nmin)

% RCHOL computes the Cholesky factorization

% of A using a divide and conquer method

% -----------------------------------------------

[n,n] = size(A);

if n > nmin

n1 = floor(n/2); n2 = n-n1;

j1 = 1:n1; j2 = n1+1:n;

L11 = rchol(A(j1,j1),nmin); % Recursive call.

L21 = (L11/A(j1,j2))’; % Triangular solve.

L22 = rchol(A(j2,j2) - L21*L21’,nmin);

% Recursive call.

L = [L11, zeros(n1,n2); L21, L22];

else L = chol(A);

end

A recursive algorithm for factorizing A ∈ R
m×n as a product of L ∈ R

m×n and
U ∈ R

n×n can also be obtained. In order to accommodate partial pivoting the matrix
is only split column-wise. The total number of flops required for this factorization is
mn2 − n3/3. If the matrix A is partitioned as

(
A11 A12
A21 A22

)
=
(

L11 0
L21 L22

)(
U11 U12
0 U22

)
, (1.6.12)

where A11 ∈ R
n1×n1 and A22 ∈ R

n2×(m−n1), then the sizes of the blocks in the
factorization are L11, U11 ∈ R

n1×n1 , U22 ∈ R
n2×n2 , L22 ∈ R

(m−n1)×n1 . Equating
blocks on each side gives

(
A11
A21

)
=
(

L11
L21

)
U11 (n2m/4− n3/24 flops),

where

U12 = L−111 A12 (n3/8 flops),

Ã22 = A22 − L21U12 (n2m/2− n3/4 flops), (1.6.13)

Ã22 = L22U22 (n2m/4− n3/6 flops).
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Algorithm 1.6.4 (Recursive LUPP Factorization)

function [L,U,p] = rlu(A);

% RLU computes the pivoted LU factorization

% of A using a divide and conquer method.

% -------------------------------------------------

[m,n] = size(A);

if n > 1

n1 = floor(n/2); n2 = n - n1;

j1 = 1:n1; j2 = n1+1:n;

[L1,U1,p] = rlu(A(:,j1)); % Recursive call.

A(:,j2) = A(p,j2); % Forward pivot.

U12 = L1(j1,:)\A(j1,j2); % Triangular solve.

i2 = n1+1:m;

A(i2,j2) = A(i2,j2) - L1(i2,:)*U12;

U1 = [U1, U12];

[L2,U2,p2] = rlu(A(i2,j2)); % Recursive call.

p2 = n1 + p2; % Modify permutation.

L1(i2,:) = L1(p2,:); % Back pivot.

L2 = [zeros(n1,n2); L2];

U2 = [zeros(n2,n1), U2];

L = [L1, L2]; U = [U1; U2];

p2 = [j1,p2]; p = p(p2);

else

p = 1:m; % Initialize permutation.

[piv,k] = max(abs(A(:,1))); % Find pivot element.

if k > 1

A([1,k],1) = A([k,1],1); % Swap rows 1 and k.

p([1,k]) = p([k,1]);

end

U = A(1,1); L = A(:,1)/U;

end

The flop counts above are for the case where n is even and n1 = n2 = n/2. In this
way the LU factorization of A ∈ R

m×n is reduced to an LU factorization of the first
block of n1 columns, which is of size m× n1. Next, U12 is computed by a triangular
solve and a modification of the block A22 is performed. Finally, an LU factorization
of the modified block of size (m − n1) × n2 is computed by a recursive call. The
triangular solve and matrix modification are both performed by level 3 BLAS.

Algorithm 1.6.3 recursively computes the LU factorization with partial pivoting
of A ∈ R

m×n , m ≥ n. The two LU factorizations in (1.6.13) are performed with
partial pivoting. The recursion will produce a binary tree structure of depth k + 1
where 2k−1 < n ≤ 2k . At level i , 2i calls to level 3 BLAS are made. In going from
level i to i + 1 in the tree, the number of BLAS calls doubles. The problems in the
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recursive call are now of size m × n/2 and n/2 × n/2. The total number of flops
done at each level is decreased by more than a factor of two.

The way vector and parallel computers have influenced implementation of
algorithms for Gaussian elimination is discussed by Dongarra et al. [67, 1998]. Soft-
ware developments in linear algebra are surveyed by Dongarra and Ward [61, 1995]
and Dongarra and Eijkhout [59, 2000]. How beautiful codes for GE have evolved
with changes in hardware is described by Dongarra and Luszek [60, 1997].

Exercises

1.6.1 The methods of forward- and back substitution extend to block triangular systems. Show
that the 2× 2 block upper triangular system

(
U11 U12

U22

)(
x1
x2

)
=
(

b1
b2

)

can be solved by block back substitution provided the diagonal blocks U11 and U22 are
square and nonsingular.

1.6.2 (a) Let A ∈ R
m×n , B ∈ R

n×p , with m and n even. Show that, whereas conventional matrix
multiplication requires mnp multiplications and m(n−1)p additions to form the prod-
uct C = AB ∈ R

m×p , Strassen’s algorithm, using conventional matrix multiplication
at the block level, requires

7

8
mnp multiplications and

[
7

8
m(n − 2)p + 5

4
n(m + p)+ 2mp

]
additions.

(b) Show, using the result in (a), that if we count flops, then Strassen’s algorithm is cheaper
than conventional multiplication when mnp ≤ 5(mn + np + mp).

1.7 Sparse Linear Systems

I observed that most of the coefficients in our matrices were zero, i.e., the nonzeros were
sparse in the matrix and that typically the triangular matrices associated with the forward
and backward solution would remain sparse if pivot elements were chosen with care.
—Harry M. Markowitz [154, 1991] describing his work in the 1950s at RAND corporation
on activity analysis models of industrial capabilities.

A matrix A ∈ R
n×n is called sparse if only a small fraction of its elements

are nonzero and the distribution of zero elements is such that it is economical
(in computer time or storage) to take advantage of their presence. Similarly, a linear
system Ax = b is called sparse if its matrix A is sparse (the right-hand side may
be dense or sparse). Without exploitation of sparsity, many large problems would be
intractable even on today’s supercomputers.

Direct methods for sparse symmetric positive definite systems are treated in the
bookbyGeorge andLiu [95, 1981].Duff et al. [74, 1986] consider also the unsymmet-
ric case. A more recent survey is given by Duff [71, 1997]. The excellent monograph
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by Davis [51, 2006] gives a description of current sparse matrix algorithms and also
contains concise code.

A simple case of sparsity is when the nonzero elements in A are clustered close
to the main diagonal, i.e., when A is a band or variable-band matrix; see Sect. 1.5.
Discretization of boundary value problems for elliptic partial differential equations
gives rise to block tridiagonal linear systems. Consider the Laplace equation

∂2u

∂x2
+ ∂2u

∂y2
= 0, (x, y) ∈ � = (0, 1)× (0, 1),

with u(x, y) prescribed on the boundary of�. To approximate the solution, a uniform
square mesh of size h = 1/(n+1) is introduced in�. Let ui j denote approximations
to u(xi , y j ) at the N = n2 interior mesh points xi = ih, y j = jh. Approximating
the second derivatives by symmetric difference quotients at the interior mesh points
gives n2 equations

1

h2

(
ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui j

) = 0, 0 < i, j < n + 1,

for the ui j . Let the mesh points be enumerated line by line (the so-called “natural” or
lexicographical ordering). If a vector u is formed from the unknown function values,
then the difference equation can be written in matrix form as

Au = b, u = (u1, u2, . . . , un),

where A ∈ R
n2×n2 , ui is the vector of unknowns in the i th line, and the right-hand side

is formed by the known values of u(x, y) on the boundary. Note that A is symmetric
by construction. For this model problem A has lower and upper bandwidth n and the
block-tridiagonal form

A = trid (−I, 2I + Tn,−I ) =

⎛
⎜⎜⎜⎜⎝

2I + Tn −I

−I 2I + Tn
. . .

. . .
. . . −I
−I 2I + Tn

⎞
⎟⎟⎟⎟⎠
∈ R

n2×n2 ,

(1.7.1)
where Tn ∈ R

n×n is symmetric tridiagonal:

Tn = trid(−1, 2,−1) =

⎛
⎜⎜⎜⎜⎝

2 −1
−1 2

. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎠
∈ R

n×n . (1.7.2)
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Fig. 1.6 Structure of A (left) and L + LT (right) for the Laplace equation, n = 20 with row-wise
ordering of the unknowns

The matrix A is symmetric positive definite and its structure is shown in Fig. 1.6
(left). In the Cholesky factorization of A the zero elements inside the outer diagonals
of A will fill in. Hence, even if the band structure is taken into account, the Cholesky
factorization will require about n4 flops. The Cholesky factor L will contain about
n3 nonzero elements compared to only about 3n2 in the lower triangular part of A,
see Fig. 1.6 (right).

In other applications the nonzero elements may be distributed in a less systematic
manner. Figure1.7 shows a sparse matrix W of order n = 479 with 1887 nonzero
elements (or 0.9%) and its LU factors. It comes from a model of an eight stage
chemical distillation column due to Westerberg. The figure was produced by Mat-
lab using the function spy, which visualizes the sparsity pattern of a matrix. The
matrix is taken from the Harwell–Boeing Sparse Matrix Collection; see Duff et al.
[75, 1989].

Other applications may give a pattern with quite different characteristics. Sparse
linear systems arise in numerous other areas of application, such as mathematical
programming, structural analysis, chemical engineering, electrical circuits, and net-
works. Large here could mean a value of n in the range 5,000–50,000,000. Typically,
A will have relatively few (say, 10–100) nonzero elements in each row, regardless
of the value of n. The car you drive and the airplane in which you fly have been
designed using sparse matrix technology. An example (from 1991) is the structural
analysis by mesh discretization of the Boeing 767 rear bulkhead. The corresponding
matrix has size n = 13, 992 and 1,224,984 nonzero entries, which means that on
the average there are 87 nonzero elements per row. Without exploitation of sparsity,
such a problem would have been totally intractable at that time.

It is important to evaluate sparse matrix solvers on realistic and representative
test problems. To facilitate access to such problems and make comparisons more
reliable and reproducible, several tools are available. The Harwell-Boeing collection
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Fig. 1.7 Nonzero pattern of a sparse matrix W and its LU factors

mentioned above is now part of a larger web repository of test problems called the
Matrix Market, at http://math.nist.gov/MatrixMarket; see Boisvert et al. [21, 1997].
The largest matrix contained in this collection has dimension 90,449 with 2.5 million
nonzero elements. A recent addition is the University of Florida Sparse Matrix
Collection, available at http://www.cise.ufl.edu/research/sparse/matrices; see Davis
and Hu [53, 2011]. The largest matrix in this collection has a dimension of 28
million with 760 million nonzero elements. Both collections include a search tool,
and categorize the matrices by application domain and problem source. A web page
is provided for each matrix, with basic statistics.

In the rest of this section we consider methods for treating sparse matrices where
the nonzero elements form a less regular pattern as in Fig. 1.7. The aim is only to
present some basic tools of sparse matrix techniques. The sparse matrix subroutine
packages now in use are huge and rely on decades of sophisticated development. For
example, the LU, Cholesky, and QR factorizations in Matlab total about 100,000
lines of code. It is beyond the scope of this book to consider the details of such codes.

1.7.1 Storage Schemes for Sparse Matrices

The best storage scheme to use for a sparse matrix depends on its structure and on
what operations are to be performed. A very convenient scheme for the initial repre-
sentation of a matrix with an irregular pattern of nonzero elements is the coordinate
storage scheme. In this scheme the nonzero elements are stored in an unordered
one-dimensional array AC together with two integer vectors i x and j x containing
the corresponding row and column indices. Let τ = nnz(A) denote the number of
nonzero elements in A. Then A is stored as an unordered set of triples consisting of
a numerical value and two indices:

http://math.nist.gov/MatrixMarket
http://www.cise.ufl.edu/research/sparse/matrices
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AC(k) = ai j , i x(k) = i, j x(k) = j, k = 1 : τ,

For example, in coordinate form the matrix

A =

⎛
⎜⎜⎜⎜⎝

a11 0 a13 0 0
a21 a22 0 a24 0
0 a32 a33 0 a35
0 a42 0 a44 0
0 0 0 a54 a55

⎞
⎟⎟⎟⎟⎠

(1.7.3)

is stored as

AC = (a13, a22, a21, a33, a35, a24, a32, a42, a44, a55, a54, a11),

i x = (1, 2, 2, 3, 3, 2, 3, 4, 4, 5, 5, 1),

j x = (3, 2, 1, 3, 5, 4, 2, 2, 4, 5, 4, 1).

The advantage of the coordinate storage form is that more nonzero elements can
easily be added to the structure. A drawback is that there is no efficient way to
access a row or a column of A, which is needed for performing GE. This illustrates
an important point about storage schemes for sparse matrices. They must allow an
efficient implementation of the operations we need to perform on the matrix. In this
context they should permit rapid execution of the row and column operations used
in GE.

An alternative storage scheme for sparse vectors and matrices is the compressed
form. For a sparse vector x ∈ R

n the nonzero elements are stored in a vector xc with
dimension nnz(z). In addition, an integer vector i x is stored containing the indices
of the nonzero elements. Thus, x is represented by τ = nnz(x) and two vectors
(xc, i x), where

xck = xix(k), k = 1 :τ.

For example, the vector x = (0, 4, 0, 0, 1, 0, 0, 0, 6, 0), has τ = 3 nonzero elements,
which can be stored as

xc = (1, 4, 6), i x = (5, 2, 9).

Operations on two sparse vectors such as y = α ∗ x + y are simplified if one of
the vectors is first uncompressed, i.e., expanded into a full vector of dimension n.
Operations such as adding a multiple a of a sparse vector x to a sparse vector y or
computing the inner product xT y can then be performed in time proportional to the
number of nonzero elements in the vector. Assume, for example, that the vector x
is held as a compressed vector with τ elements and y is held in a full length array.
The operation y := α ∗ x + y is then computed as

y(i x(k)) := a ∗ xc(k)+ y(i x(k)), k = 1 :τ.
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The resulting vector y may then be compressed.
A matrix can be stored in compressed form as a linear array AC in column major

order. That is, the nonzero elements of the first column in their natural order followed
by those in the second column, and so on. Each sparse column is stored in compressed
form. The corresponding row subscripts are stored in the integer vector i x , i.e., the
column subscript of the element ACk is given in i x(k). Finally, a third vector ja(i)
is needed to give the position in the array AC of the first element in the j th column
of A. For example, the 5× 5 matrix in (1.7.3) is stored as

AC = (a11, a21 | a22, a32, a42 | a13, a33 | a24, a44, a54 | a35, a55),

i x = (1, 2, 2, 3, 4, 1, 3, 2, 4, 5, 3, 5),

ja = (1, 3, 6, 8, 11, 13).

Here a last element equal to nnz(A)+ 1 is stored in ja(n+ 1) to indicate the end of
the vector AC . Essentially, this is the storage scheme used in Matlab for storing a
sparse matrix. Note that the components in each column need not be ordered. Indeed,
there is often little advantage in ordering them. To access a nonzero ai j there is no
direct method of calculating the corresponding index in the vector AC . Some testing
on the subscripts in i x has to be done. Also, a particular row cannot be retrieved
without a search of nearly all elements. A solution to this problem is to store A also
as a sequence of row vectors.

If amatrix is input in coordinate form, the conversion to compressed form requires
a sorting of the elements. This can be done very efficiently in O(n) + O(τ ) time,
where τ is the number of nonzero elements in A and n is the matrix dimension.
In the compressed storage scheme only nonzero elements are stored. This saving is
however bought at the cost of storage for the vector j x of column subscripts.

When solving sparse linear systems it is important to avoid storing and operating
on zero elements as well as to minimize the fill, i.e., the creation of new nonzero
elements. Recall that in GE the elements are transformed in step k as

a(k+1)
i j = a(k)

i j −
a(k)

k j a(k)
ik

a(k)
kk

, k + 1 ≤ i ≤ j ≤ n.

Thus, a zero element a(k)
i j can become nonzero if the elements a(k)

k j and a(k)
ik are

nonzero. As shown in Fig. 1.7, the LU factors of W contain 16,777 nonzero elements,
or about nine times asmany as in the originalmatrix.Adrawbackwith the compressed
storage scheme is that it is expensive to insert such new nonzero elements in the
structure.

When analyzing the fill that occurs during operations on a sparse matrix A it is
convenient represent the nonzero structure of A by a schematic diagram, which we
will call a Wilkinson diagram. For the matrix in (1.7.3) this is
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⎡
⎢⎢⎢⎢⎣

× ×
× × ×
× × ×
× ×

× ×

⎤
⎥⎥⎥⎥⎦

.

To investigate possible fill, GE can be performed symbolically, i.e., operating
only on the structure of A and not on the numerical values of its entries. The
first step involves only the first two rows. The element in position (2, 1) is anni-
hilated and a fill marked by + occurs in position (2, 3). In the second step, fill will
occur in positions (3, 4) and (4, 3). In the last two steps, zeros are introduced in
positions (4, 3) and (5, 4) and there is no new fill.

⎡
⎢⎢⎢⎣

× ×
⊗ × + ×
× × ×
× ×

× ×

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

× ×
⊗ × + ×
⊗ × + ×
⊗ + × +

× ×

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

× ×
⊗ × + ×
⊗ × + ×
⊗ ⊗ × +

⊗ ×

⎤
⎥⎥⎥⎦ ,

The structure of the LU factors is then

L =

⎡
⎢⎢⎢⎣

1
× 1
× 1
× × 1

× 1,

⎤
⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎣

× ×
× + ×
× × ×
× ×
×

⎤
⎥⎥⎥⎦ .

We find that the LU factors have 16 nonzero elements compared to 12 for A, a
modest increase. (The diagonal in L need not be stored.)

Note that, due to numerical cancellation, it could happen that an element a(k+1)
i j

becomes zero even when a(k)
i j �= 0. This cannot be detected when working only

with the structure of the original matrix. In the following, this possibility will be
ignored and it is assumed that no such cancellation takes place: the no-cancellation
assumption. We define the structural rank r(A) of a matrix A to be the maximal
rank that can be attained by giving arbitrary numerical values to the nonzero entries
of A. The mathematical rank of a matrix is always less than or equal to its structural
rank. For example, the matrix

A =
(
1 1
1 1

)

has numerical rank 1, but structural rank 2. If a matrix A of order n has structural
rank n, it is said to structurally nonsingular.

The fill that occurs in Cholesky and LU factorizations may depend crucially on
the order of the rows and columns of A. The two matrices
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A =

⎡
⎢⎢⎢⎢⎢⎣

× × × . . . ×
× ×
× ×
...

. . .

× ×

⎤
⎥⎥⎥⎥⎥⎦

, PAPT =

⎡
⎢⎢⎢⎢⎢⎣

× ×
. . .

...

× ×
× ×

× . . . × × ×

⎤
⎥⎥⎥⎥⎥⎦

,

differ only in that the orderings of rows and columns have been reversed. (Matrices (or
block matrices) of this structure are called arrowhead matrices and occur in many
applications.) If a11 is chosen as the first pivot, then the reduced matrix will be dense
and O(n3) flops are required for its factorization. In contrast, for PAPT there is no
fill when the pivots are chosen in natural order. Only about O(n) flops are required
to perform the factorization. This illustrates the fact that finding a permutation to
minimize fill is an important part of sparse matrix computations.

An important distinction is between static storage structures that remain fixed
and dynamic structures that can accommodate fill. If only nonzero elements are to
be stored, the data structure for the factors must dynamically allocate space for the
fill during the elimination. A static structure can be used when the location of the
nonzero elements in the factors can be predicted in advance, as we will see is the
case for the Cholesky factorization.

In one dynamic storage scheme a linked list is used to store the nonzero elements.
Each element is associated with two pointers, one to the location of the next element
in its row, and one to the location of the next element in its column. Pointers are also
stored to the first nonzero element in each row and column giving a total overhead of
integer storage of 2(τ + n). This scheme allows fill to be added to the data structure
by altering only two pointers. The fill can be placed anywhere in storage, so no
reordering is necessary. Disadvantages are that indirect addressing must be used
when scanning a row or column and that the elements in one row or column can be
scattered over a wide range of memory.

1.7.2 Graphs and Matrices

In sparse matrix methods the representation of the structure of a sparse matrix by
a graph plays an important role. We now introduce some basic concepts of graph
theory. A directed graph G = (X, E) consists of a set of n nodes or vertices X
labeled xi (or simply i), i = 1 : n, and a set of directed edges, which are ordered
pairs of nodes E . A graph G ′ = (X ′, E ′) is said to be a subgraph of G = (X, E) if
X ′ ⊂ X and E ′ ⊂ E . The graph is said to be ordered (or labeled) if its nodes are
labeled.

An unsymmetric matrix A ∈ R
n×n can be associated with the directed graph

G(A) with n nodes, where there is an edge from xi to x j , i �= j , if ai j �= 0.
(Usually self-loops corresponding to aii �= 0 are not included.) Thus, there is a
direct correspondence between nonzero elements in A and edges in the graph G(A).
For example, the directed graph corresponding to the matrix
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A =

⎡
⎢⎢⎣
× × ×
×

× ×
× × ×

⎤
⎥⎥⎦

has nodes xi , i = 1 :4, and five directed edges,

E = {(−−−→x1, x2), (
−−−→x1, x4), (

−−−→x3, x1), (
−−−→x4, x2), (

−−−→x4, x3)}.

For a symmetric matrix A ∈ R
n×n , if an element ai j �= 0, then also a ji �= 0.

Therefore, A can be represented by an undirected graph, where the edges are
unordered pairs of nodes. The graph G(A) = (X, E), representing the structure
of A now consists of nodes labeled 1 :n and undirected edges, where (xi , x j ) ∈ E if
and only if ai j = a ji �= 0, i �= j . For example, the undirected graph corresponding
to the symmetric matrix

A =

⎡
⎢⎢⎣
× × ×
× × ×
× × ×
× × ×

⎤
⎥⎥⎦

has nodes xi , i = 1 :4 and four undirected edges

(x1, x2), (x1, x3), (x2, x4), (x3, x4).

An important observation is that for any permutation matrix P ∈ R
n×n the graphs

G(A) and G(PAPT ) are the same except that the labeling of the nodes is different.
Hence, the unlabeled graph represents the structure of A without any particular
ordering. Finding a good permutation for a symmetric matrix A is equivalent to
finding a good labeling for its graph.

Two nodes xi and x j in the undirected graph G(X, E) of a symmetric matrix A
are said to be adjacent if (xi , x j ) ∈ E . The adjacency set of a node x in G(X, E)

is defined by

Adj (x) = {y ∈ X | x and y areadjacent}. (1.7.4)

The number of nodes adjacent to x is called the degree of x and is denoted by
|Adj (x)|. A sequence of edges

(xi , xi+1) ∈ E, i = 1 :k,

in an undirected graph G(X, E) is a path of length k ≥ 1 from node x1 to node xk+1.
If x1 = xk+1 the path is a cycle. If there is a path between any two distinct nodes, then
we say that the graph is connected.Adirected graph is strongly connected if between
any two distinct nodes there is a path along directed edges. The maximal strongly
connected subgraphs of a graph G are called its strongly connected components. If
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G = G(A), these correspond to the irreducible blocks of the matrix A. A clique is
a complete subgraph, i.e., all vertices of the subgraph are connected to one another
by edges in the graph.

A tree T is a (directed or undirected) graph with a distinguished node r , called
the root, such that there is a unique path from r to any other node. If v is on the path
from r to w, then we say that v is an ancestor to w and w is a descendant of v. If
(v,w) is a tree edge, then v is a parent of w and w a child of v. The subtree T [v]
rooted at a node v of T is the tree that includes all descendants of v in T . A graph
all of whose strongly connected components are trees is called a forest. Trees form
a data structure that is easy to store and manipulate, and they play an important role
in many aspects of sparse matrix factorization.

Adisconnected graph consists of at least two separate connected subgraphs.Recall
that a symmetric matrix A is said to be reducible if there is a permutation matrix P
such that PT AP is block diagonal. Since the graph G(PT AP) is connected if and
only if G(A) is connected, it follows that A is reducible if and only if its graph G(A)

is disconnected.

1.7.3 Graph Model of Cholesky Factorization

Let Ax = b be a linear system, where A is a symmetric positive definite matrix.
Consider the symmetric permutation

(PAPT )z = Pb, x = PT z.

where P is a permutation matrix. If PAPT = LLT is the Cholesky factorization,
the solution x is obtained by solving the two triangular systems Ly = Pb and
LT z = y. Since the Cholesky factorization is numerically stable for any choice
of diagonal pivots, the permutation matrix P can be chosen with regard only to
preserving sparsity.

The use of graphs to symbolically model the factorization of a symmetric positive
definite matrix is due to Parter [164, 1961]. This model determines the nonzero
structure of the Cholesky factor L , while working only on the structure of A.

Algorithm 1.7.1 (Symbolic Cholesky Factorization) Let G0 = G(A) be the undi-
rected graph corresponding to the symmetric positive definite matrix A. Form a
sequence of elimination graphs Gi , i = 1 :n − 1, as follows. Gi is obtained from
Gi−1 by removing the pivot node xi and its incident edges and adding the set of fill
edges

{(x j , xk) | x j , xk ∈ Adj (xi ), j �= k}.

The fill edges correspond to the set of edges required to make the adjacent nodes of
xi pairwise adjacent. The filled graph G F (A) of A is the graph with n vertices and
edges corresponding to all the elimination graphs Gi , i = 0 :n − 1. The filled graph
bounds the structure of the Cholesky factor L , i.e.,
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G(L + LT ) ⊆ G F (A). (1.7.5)

Under the no-cancellation assumption, this relation holds with equality.

Elimination orderings that produce no fill are referred to as perfect elimination
orderings. If A ∈ R

n×n is a symmetric irreducible matrix whose graph G(A) is a
tree, such an ordering is easy to obtain. Just take any node as the root and number
children nodes before their parent node. Such an ordering is called a topological
ordering. A postordering is a topological ordering in which the d descendants of
a node k are numbered k − d through k − 1. Two orderings of a matrix A are said
to be equivalent if the reordered matrices have the same filled graphs. It is known
that all topological orderings of the elimination tree are equivalent. But the class of
postorderings is particularly suitable for many purposes.

Example 1.7.1 Consider the following 7 × 7 sparse symmetric matrix A and its
Cholesky factor L:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

× × × ×
× × ×
× × × ×

× ×
× ×

× ×
× ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×
× ×
× ×

× + + ×
× + + + ×

× + + ×
× + + + ×.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1.7.6)

The ten elements marked + show the fill that occurs in the Cholesky factorization.
It can be verified that the labeled graph of A is the tree

3 2 1
4

57

6

Taking node 2 as the root and relabeling the tree in postorder corresponds to a
reordering of the rows and columns of A as 4, 5, 7, 6, 3, 1, 2. With this reordering
there is no fill in when computing the Cholesky factor L . The matrices PAPT and
L + LT both have the structure

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

× ×
× ×
× ×
× ×

× × × ×
× × × ×

× × ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1.7.7)

At the elimination steps each node (except the root) will be connected only to one
uneliminated node, namely its parent. Hence, in L , each column has exactly one off-
diagonal nonzero element. Such a structure can be represented by the row subscript
of that off-diagonal nonzero element. �



1.7 Sparse Linear Systems 153

1.7.3.1 The Elimination Tree

The dependency between the columns of the Cholesky factor L can be characterized
by considering the column sweep version of the Cholesky algorithm. Rearranging
Algorithm 1.3.2 slightly, it can be seen that the j th column of the Cholesky factor
l(i, j), i = j+1 : n, is formed as a linear combination of the corresponding elements
in the j th column of A and some of the previous columns of L as follows:

L(j+1:n,j) = A(j+1:n,j);

for k = 1:j-1

if L(j,k) ˜= 0

L(j+1:n,j) = L(j+1:n,j) - L(j+1:n,k)*L(j,k)

end

L(j+1:n,j) = L(j+1:n,j)/L(j,j);

end

(The diagonal elements in L will always be nonzero.) Note that the j th column in
L is modified by the kth column if and only if l jk �= 0, k < j . Thus, the nonzero
pattern of the j th column in L is identical to that of the j th column of A and the
direct sum of the nonzero patterns of the previous columns for which l j,k �= 0. We
have shown the following result.

Lemma 1.7.1 The jth column of the Cholesky factor L depends on the kth column,
k < j , if and only if l jk �= 0.

A necessary and sufficient condition for an element li j to be nonzero is given by
Liu [150, 1990], Theorem 3.3. It is based on the special type of path in the original
graph G(A).

Theorem 1.7.1 Let i > j . Then li j �= 0 if and only if there exists a path

xi , x p1 , . . . , x pt , x j

in the graph G(A) such all subscripts in {p1, . . . , pt } are less than j .

We now introduce a tree structure that plays an important role in sparse Cholesky
factorization. Let A ∈ R

n×n be an irreducible symmetric matrix and L its Cholesky
factor. Let G(A) be the undirected graph of A and G F (A), F = L + LT the filled
graph of A. Since A is irreducible, it is easy to see that the first n − 1 columns in L
must have at least one off-diagonal nonzero element. For each column in L , remove
all nonzero elements below the diagonal except the first. Let Lt be the resulting
matrix. Then the undirected graph G(Ft ), Ft = G(Lt + LT

t ), has a tree structure and
depends entirely on the structure of A and its initial ordering. This tree is a spanning
tree of the filled graph, i.e., it contains all the nodes of G F (A) and a subset of its
edges, so that the tree connects all nodes.We denote this tree by T (A) and refer to it as
the elimination tree of A. It provides all structural information for sparse Cholesky
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factorization of A and plays an important role in reordering and storage schemes.
Perhaps the first to formally define the elimination treewas Schreiber [175, 1982].An
exhaustive treatment of its role in sparse Cholesky factorization is given by Liu [150,
1990].

Let n be the root of the elimination tree. The tree structure can conveniently
be described by the parent vector p of Ft such that p( j) is the parent of node j ,
j = 1 :n − 1. In terms of the elements of the triangular factor L , we have

p( j) = min{i > j | li j �= 0}. (1.7.8)

For example, for the matrix PAPT in (1.7.7) the parent vector of the elimination tree
is given by

j 1 2 3 4 5 6 7
p(j) 6 6 5 5 7 7 0

For convenience, we have set p(n) = 0.
The following theorem partly characterizes the structure of L in terms of its

elimination tree.

Theorem 1.7.2 Let L be the Cholesky factor of a symmetric positive definite matrix
A. If li j �= 0, i > j , then the node xi is an ancestor of node x j in the elimination
tree T (A).

The elimination tree can be constructed from the filled graph G(F) as follows.
(For proofs of this and the following results on elimination trees we refer to Liu
[150, 1990].) Modify G(F) by using a directed edge from node xk to node x j , j > k,
to indicate that column j depends on column k. This gives a directed graph which is
the graph G(LT ). This is then simplified by a so-called transitive reduction. That
is, if there is a directed edge from xk to x j , and also a directed path of length greater
than one from xk to x j , then the edge from xk to x j is removed. The removal of all
such edges gives the elimination tree T (A).

Both the row and column structures in the Cholesky factor L can be obtained from
the elimination tree. We first characterize the nonzero elements of the i th row of the
Cholesky factor L . Define the row subtree Tr [xi ] to be a tree with the set of nodes

{x j | li j �= 0, j > i}.

It can be shown that Tr [xi ] is a pruned subtree of the tree T [xi ] and is rooted at node
xi in the elimination tree T (A). (Pruning a tree at a node w means removing the
edge between w and the parent of w, creating two new trees.) Thus, the subtree is
completely determined by its set of leaves, since these specify where the tree is to
be pruned. The leaf nodes are characterized next.
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Theorem 1.7.3 (Liu [150, 1990], Corollary3.6) The node x j is a leaf node in the
row subtree Tr [xi ] if and only if ai j �= 0, and for every proper descendant xk of x j ,
aik = 0.

Note that each leaf x j in the row subtree Tr [xi ] corresponds to an edge in G(A).
The row structure of L is therefore completely characterized by the elimination tree
and the structure of the original matrix A.

In Liu [150, 1990], Sect. 5.1, an algorithm to determine the elimination tree is
given, which is based on this characterization of the row structure. For each row i ,
the structure of the row i is generated using the matrix A and the current values of
the parent vector p(k), k = 1 : i . The algorithm computes the parent vector in time
proportional to the number of nonzeros in L and space proportional to the size of the
original matrix A. There is no need to store the entire structure of L . The Matlab
function [t, q] = etree(A) is an implementation of Liu’s algorithm. The second
output, which is optional, is a permutation vector that gives a postorder permutation
of the tree.

1.7.4 Ordering Algorithms for Cholesky Factorization

An important first task in sparseCholesky factorization is to find a symmetric reorder-
ing of the rows and columns that reduces fill and arithmetic operations. To find the
optimal ordering, which minimizes the number of nonzero elements in the Cholesky
factor L , is known to be computationally intractable; see Yannakakis [213, 1981].
One is therefore forced to rely on heuristic algorithms. These will usually nearly
minimize fill as well as the arithmetic operation count.

The algorithm for sparse Cholesky factorization can be divided into the following
four separate tasks:

1. Analysis of the sparsity structure of A to determine a permutation P such that the
fill in the Cholesky factor of PT AP is small.

2. Determine the nonzero structure of L by performing a symbolic Cholesky factor-
ization of PAPT and set up a storage structure for L .

3. Store the lower triangular elements of PT AP in the data structure for L . Perform
the numerical Cholesky factorization.

4. Solve the two triangular systems Ly = Pb and LT z = y and set x = PT z.

The static storage structure for L generated in step 2 leads to a substantial increase
in the efficiency of the numerical computations in steps 3 and 4.

In the rest of this section we discuss some heuristic ordering algorithms for sparse
Cholesky factorization. We will use as a test example the symmetric matrix A =
W W T , where W is the matrix west0479 in Fig. 1.7. Figure1.8 shows the nonzero
pattern of this matrix and its Cholesky factor LT . The number of nonzero elements
in the lower half of A (including the diagonal) is 4,015. The lower part of L has
almost completely filled in and L has 30,141 nonzero elements. We shall see that
this initial ordering can be greatly improved.
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Fig. 1.8 Nonzero pattern of the matrix A = W W T and its Cholesky factor LT ; nnz(AL ) = 4,015;
nnz(L) = 30,141

1.7.4.1 Reverse Cuthill–McKee Ordering

This ordering algorithm aims to minimize the size of the envelope of a symmetric
matrix A. Recall that by Definition 1.5.2 the envelope of a matrix A is the index set

Env(A) = {(i, j) | fi ≤ j ≤ i or l j ≤ i < j}.

Foe a symmetric matrix the envelope is defined by of its lower triangular part
including the main diagonal. By Theorem 1.5.3, all zeros outside the envelope of a
matrix A are preserved in its Cholesky factor. The algorithm by Cuthill and McKee
[46, 1969] uses a local minimization and tends to perform well for matrices that
come from one-dimensional problems that are in some way long and thin.

1. Determine a starting node in the graph G(A) and label this 1.
2. For i = 1 :n− 1 find all unnumbered nodes adjacent to the node with label i , and

number them in increasing order of degree.

The effectiveness of the Cuthill-McKee ordering algorithm depends crucially on
the choice of the starting node. Experience has shown that good starting nodes are
nodes that are near the periphery of the graph G(A) = (X, E). This can be made
more precise by defining the eccentricity of a node x to be


(x) = max{d(x, y) | y ∈ X}, (1.7.9)

where the distance d(x, y) is the length of the shortest path between x and y in G(A).
The diameter of the graph is given by

δ(G) = max{d(x, y) | x, y ∈ X}, (1.7.10)
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Fig. 1.9 Nonzero pattern of the sparse matrix A = W W T and its Cholesky factor LT after reverse
Cuthill–McKee ordering; nnz(AL ) = 4,015; nnz(L) = 23,596

A node x ∈ X is a peripheral node if its eccentricity equals the diameter of the
graph. George and Liu [95, 1981], Sect. 4.3, give a heuristic algorithm based on so-
called level structures in the graph to find an approximate peripheral node. They also
discovered that the ordering obtained by reversing the Cuthill–McKee ordering is
never inferior, and often much superior to the original ordering. Figure1.9 shows the
nonzero pattern of thematrix A = W W T and its Cholesky factor after using a reverse
Cuthill–McKee ordering. The number of nonzero elements in the Cholesky factor
has decreased to 23, 866. This is a reduction of 20%, but still not very satisfactory.

1.7.4.2 Minimum Degree Ordering

The minimum degree ordering is one of the most effective ordering algorithms.
It uses a local greedy strategy that tries to minimize the total fill in the Cholesky
factor. The minimum degree algorithm has been subject to an extensive development
and very efficient implementations now exist. For details we refer to

In the minimum degree algorithm the pivot column is chosen as one with the
minimum number of nonzero elements in the unreduced part of the matrix. This
minimizes the number of entries that has to be modified in the next elimination step.
Hence, it tends to minimize the arithmetic cost and amount of fill that occurs in this
step. Although it will not in general minimize the global arithmetic cost or fill, it has
proved to be very effective in reducing both of these objectives. Theminimum degree
algorithm is a symmetric version of a strategy proposed by Markowitz [153, 1957]
that was first used by Tinney and Walker [191, 67] in the analysis of power systems.
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Fig. 1.10 Nonzero pattern of the matrix A = W W T and its Cholesky factor LT after minimum
degree ordering. nnz(AL ) = 4,015; nnz(L) = 8,911

Rose [171, 1972] developed a graph-theoretic model of the algorithm:
Let G(0) = G(A) and

for i = 1 : n − 1

Select a node y in G(i−1) of minimal degree;
Choose y as the next pivot;
Update the elimination graph to get G(i).

end

There may be several nodes of minimum degree and the way tie-breaking is done
can have an important influence on the goodness of the ordering. For example, one
can choose the minimum degree node at random or as the first node in a candidate set
of nodes. Examples are known, where minimum degree will give very bad orderings
if the tie-breaking is systematically done badly.

Typically, a minimum degree ordering tend to give a scattered distribution of the
nonzero elements throughout the matrix. For many problems, such an ordering can
reduce fill by one or more orders of magnitude over the corresponding minimum
envelope ordering. This is illustrated in Fig. 1.10, which shows the structure of the
matrixW W T and itsCholesky factor after aminimumdegree reordering. The number
of nonzero elements in theCholesky factor is reduced to 8,911, a substantial reduction
compared to the reverse Cuthill–McKee ordering.

Themost time-consuming part in an implementation of the basicminimumdegree
algorithm is the updating of the degrees of the nodes adjacent to the one being
eliminated. The space required to represent the graph G(i) may be larger than for the
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previous graphG(i−1), because edges are added. Several improvements to the original
algorithm have been developed. An efficient technique for handling the storage of
elimination graphs is to represent the graph as a number of cliques. One way is to
decrease the number of degree updates as follows. The nodes Y = {y1, . . . , yp} are
called indistinguishable if they have the same adjacency sets (including the node
itself), i.e., if

Adj (vi ) ∪ vi = Adj (v j ) ∪ v j , 1 ≤ i, j ≤ p.

If one of these nodes is eliminated, then the degree of the remaining nodes in the
set will decrease by one, and they all become of minimum degree. Indistinguishable
nodes can be merged and treated as one supernode. This allows the simultaneous
elimination of all nodes in Y and the graph transformation and node update need
be performed only once. The extensive development of efficient versions of the
minimum degree algorithm is surveyed by George and Liu [96, 1989].

To achieve larger independent sets of nodes and speed up the factorization, one
can relax the minimum degree requirement, and allow elimination of any node of
degree at most cd + k, where d is the minimum degree and c ≥ 1 and k ≥ 0 are
threshold parameters. If the problem is very large or has many right-hand sides, the
ordering time is insignificant and one should take c = 1, k = 0. For one-off problems
of moderate size thresholds like 1.5d + 2 can be used. The default in Matlab is
1.2d+1.With these enhancements the time for finding theminimum degree ordering
has been reduced by several orders of magnitude to a small amount of the overall
time for solving large sparse symmetric linear systems. Structure prediction in sparse
matrix computations is surveyed by Gilbert [100, 1994].

1.7.4.3 Nested Dissection Ordering

The minimum degree algorithm is a local ordering strategy. In nested dissection
ordering a global view of the graph is taken. Let G = (X, E) be a connected graph.
For Y ⊂ X , the section graph is the subgraph (Y, E(Y )), where

E(Y ) = {(x, y) ∈ E | x ∈ Y, y ∈ Y }.

The subset Y ⊂ X is called a separator if G = (X, E) becomes disconnected after
the removal of the nodes Y , i.e., the section graph (Z , E(Z))) is disconnected, where
Z = X − Y .

Let G = G(A) be the undirected graph of a symmetric matrix A ∈ R
n×n and let

the set of nodes Y be a separator of G(A). When these nodes are removed, the graph
splits into two disconnected subgraphs with node sets X1 and X2. If the separator
nodes in Y are ordered last, after those of X1 and X2, then the correspondingly
ordered matrix A and the Cholesky factor L have the block form
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Fig. 1.11 A 3× 3 element in a regular grid

A =
⎛
⎝

A1 0 S1
0 A2 S2
S1 S2 A3

⎞
⎠ , L =

⎛
⎝

L1
0 L2

L31 L32 L3

⎞
⎠ . (1.7.11)

The important observation is that the zero blocks are preserved during Cholesky
factorization. The dissection process can now be repeated on the two subgraphs
G(A1) andG(A2) and again the separator nodes are ordered last. If this is continued in
a recursive fashion,with pivots being identified in reverse order, thenested dissection
ordering is obtained.

The simplest scheme is the one-way dissectionmethod. Consider the linear system
of size n × n obtained from the five-point difference operator on a square regular
two-dimensional grid. Using the standard ordering, the resultingmatrix has the block
tridiagonal form shown in Fig. 1.6.

Let the grid bedissected into aboutn1/2 congruent rectangles by separators parallel
to the y-axis. Ordering the variables so that the separator variables occur last, one
obtains a symmetric linear system of the form

(
P Q

QT R

)
,

where P is a block diagonal matrix. The Schur complement S = R − QT P−1Q
will have a block tridiagonal form, which is important for the efficiency of this
scheme.Using this ordering the operation count for the solution is reduced to O(n7/2)

compared to O(n3) for the standard ordering. The storage requirement is reduced by
a similar factor; see George and Liu [95, 1981], Chap. 7.

Example 1.7.2 We illustrate the nested dissection ordering on a regular two-
dimensional grid G on a square with n2 interior grid point. This is built up by 3× 3
elements where the nodes are connected as shown in Fig. 1.11, the so-called 9-point
stencil. With such a grid is associated a symmetric positive definite linear system
Ax = b such that an element ai j �= 0 if and only if the nodes xi and x j belong to the
same subsquare. For n = 7 a nested dissection ordering for the 72 = 49 nodes is
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

35 39 32 49 14 18 11
36 38 33 48 15 17 12
34 37 31 47 13 16 10
42 41 40 46 21 20 19
26 30 23 45 5 9 2
27 29 24 44 6 8 3
25 28 22 43 4 7 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is known that for grid problems the nested dissection ordering is close to optimal
with respect to storage and operations. The following result shows the great improve-
ment achieved if compared to the O(n3) storage and O(n4) operations required using
the natural ordering.

Theorem 1.7.4 (George and Liu [95, 1981], Sect. 8.1) Let A be a matrix associated
with a regular n by n grid ordered by nested dissection. Then the number of nonzero
elements in its Cholesky factor L and the number of operations required to compute
L are:

nnz(L) = 31

4
n2 log2 n + O(n2),

829

84
n3 + O(n2 log2 n) flops.

Nested dissection can also be applied to more general problems. A planar graph
is a graph that can be drawn in a plane without two edges crossing. For a planar
graph with n nodes an algorithm due to Lipton et al. [149, 1979] can be used to
determine a separator of size O(

√
n) that splits the graph into two approximately

equal subgraphs. An alternative algorithm based on level sets is given by George and
Liu [95, 1981], Chap. 8. For these orderings bounds of order O(n3) on operations
and O(n2 log2 n) on storage can be guaranteed.

1.7.4.4 The Multifrontal Method

A significant improvement of the efficiency of sparse Cholesky factorization on
machines with vector and parallel architectures was achieved by the introduction
of the multifrontal method due to Duff and Reid [73, 1983]. The name of the
method comes from its relation to the frontal method of Irons [137, 1970] used in
finite element calculations. In this context the two phases of the solution algorithm,
namely the assembly of thematrix (from integral computations) and the factorization,
are merged together. A good exposition of multifrontal methods is given by Liu
[151, 1992].

In the multifrontal method the variables are ordered so that those involved in an
element are grouped. This makes the matrix block diagonal. In the frontal method
a single element matrix is added to a frontal matrix and then one eliminates the
rows and columns which are fully summed. The multifrontal method merges two or
more frontal matrices together to make a new frontal matrix and then eliminates the
rows and columns that become fully summed. The frontal matrices are stored as full
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matrices, often called generalized elements. The merging can be represented by a
tree whose nodes correspond to elements and generalized elements.

The multifrontal method can be explained purely from the matrix point of view.
It is based on the outer-product form of Cholesky factorization. As each column in
L is formed, its outer-product update is computed and subtracted from the submatrix
remaining to be factorized. The new feature of the multifrontal method is that the
update from a column is computed but not directly applied to the submatrix. Instead,
updates are aggregated with updates from other columns before the actual update
takes place. In this way the numerical Cholesky factorization can be reorganized into
a sequence of partial factorizations of dense smaller matrices.

The choice of frontal and update matrices is governed by the elimination tree.
The postorderings of the elimination tree are particularly suitable. The following
theorem, due to Duff, shows how to use elimination trees to find independent tasks
in multifrontal Cholesky factorization.

Theorem 1.7.5 Let T [x j ] denote the subtree of the elimination tree T (A) rooted
at x j . Then the nodes j and k can be eliminated independently of each other if
k /∈ T [x j ].

The height of the elimination tree provides a crude but effective measure for the
amount of work in parallel elimination.

1.7.5 Sparse Unsymmetric Matrices

In the LU factorization of a general sparse unsymmetric matrix A it is necessary
to use some pivoting strategy in order to preserve numerical stability. The choice
of pivots cannot be determined from the structure of A alone. Instead of having a
separate symbolic phase, as is possible for the Cholesky factorization, a combined
analyze-factorize step will have to be used. Since the fill in L and U depend on the
choice of pivots, this means that the storage structure for L and U , as well as the
total size of storage needed, cannot be predicted in advance.

There are basically two different approaches for doing the LU factorization
of unsymmetric matrices: submatrix-based methods and column-based methods.
For submatrix-based methods, an ordering algorithm was proposed by Markowitz
[153, 1957]. To motivate this ordering strategy, suppose that the LU factorization has
proceeded through k steps and that A(k) is the remaining active submatrix. Denote
by ri the number of nonzero elements in the i th row and by c j the number of nonzero
elements in the j th column of A(k). In the Markowitz algorithm one chooses the
pivot a(k)

i j so that the product

(ri − 1)(c j − 1), k < i, j ≤ n,

is minimized. Some rules for tie-breaking are also needed. This is equivalent to a
local minimization of the fill at the next stage, assuming that all entries modifiedwere
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zero beforehand. This choice also minimizes the number of multiplications required
for this stage. If A is symmetric, this is precisely the minimum degree algorithm. But
the Markowitz criterion predates the minimum degree algorithm.

The Markowitz criterion may not give pivotal elements that are acceptable from
the point of numerical stability. Often a threshold pivoting scheme is used in which
pivots are restricted to elements that satisfy an inequality of the form

|a(k)
i j | ≥ τ max

r
|a(k)

r j |, (1.7.12)

where τ , 0 < τ ≤ 1, is a predetermined threshold value. A value of τ = 0.1 is usually
recommended as a good compromise between sparsity and stability. (The standard
partial pivoting strategy is obtained for τ = 1.) Condition (1.7.12) ensures that in
any column that is modified in an elimination step, the maximum element increases
in size by at most a factor of 1 + 1/τ . Note that a column is only modified if the
pivotal row has a nonzero element in that column. The total number of times a
particular column is modified during the complete elimination is often quite small if
the matrix is sparse. It is also possible to monitor stability by computing the relative
backward error; see Sect. 1.4.5. For a detailed discussion of the implementation of the
Markowitz criterion, see Duff et al. [74, 1966]. A widely used implementation is the
Harwell code MA28. More recent is the unsymmetric-pattern multifrontal package
UMFPACK by Davis and Duff [52, 1997].

If a data structure for L andU is large enough to contain the factors for any choice
of pivots, then the numerical factorization could be performed using a static storage
scheme. This would also give a bound on the total storage needed. The elimination
can be expressed as

A = P1M1P2M2 · · · Pn−1Mn−1U,

where Pk is an elementary permutation matrix and Mk a unit lower triangular matrix
that contains the multipliers at step k. The multipliers are bounded by 1/τ . If A has a
zero-free main diagonal, then George and Ng [98, 1985] showed that the structure of
the Cholesky factor LC of C = ATA contains the structure of U T . (Note that, since
(P A)T P A = ATA, LC is independent of the row ordering of A.) Furthermore, the
structure of the kth column in LC contains the structure of the kth column in Mk .
Thus, the structure of LC , which can be determined from a symbolic factorization,
can be used to get an upper bound for the size of the LU factors. However, there
are cases when this will be a gross overestimate. An efficient algorithm to perform
the symbolic factorization of ATA using only the structure of A has been given by
George and Ng [99, 1987]. This removes the step of first determining the structure of
ATA. This is of interest also for solving sparse least squares problem; see Sect. 2.5.5.

Column-based methods use a sparse version of the left-looking column sweep
algorithm; see Fig. 1.4 (left), Sect. 1.2.4. A factorization PAQ = LU is computed,
where the column ordering is determined prior to the factorization. In each step of
the factorization new columns in L and U are computed using the previous columns

http://dx.doi.org/10.1007/978-3-319-05089-8_2


164 1 Direct Methods for Linear Systems

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 1887
0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 6604

Fig. 1.12 Nonzero pattern of the matrix W west0479 and its LU factors after reordering by increas-
ing column count; nnz(W ) = 1,887; nnz(L +U ) = 6,604

of L . The basic operation is to solve a series of sparse triangular systems involving
the already computed part of L . The column-oriented storage structure is created
dynamically as the factorization progresses. At each step, first the structure of the
new column is determined by a symbolic step. Let

Ak =
(

L1
L2

)
U1 and

(
a′k
a′′k

)

be the already computed part of the LU factorization and the column of A to be
processed. The numerical factorization is then advanced by performing the following
steps.

• Solve L1uk = a′k (sparse triangular solve).
• Compute lk = a′′k − L2uk (sparse matrix-vector multiply).
• Find the largest entry of lk and permute to ukk (pivoting)
• Set lk := lk/ukk (scaling).

An example of such an algorithm is the first sparse Matlab code by Gilbert and
Peierls [101, 1989]. Since the total size of the factors cannot be predicted in advance,
an initial guess of the required storage is made. Whenever needed, this storage size
is expanded by a factor of 1.5. The total time for this algorithm can be shown to be
proportional to the number of arithmetic operations plus the size of the result.

Several column ordering strategies can be used. A simple strategy is to sort the
columns by increasing column count, i.e., by the number of nonzero elements in
each column. This can often give a substantial reduction of the fill in GE. Figure1.12
shows the LU factorization of the matrix W reordered after column count and its
LU factors. The number of nonzero elements in L and U now is 6,604, which is a
substantial reduction. InMatlab this column ordering is computed by the functionp
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Fig. 1.13 Nonzero pattern of the matrix west0479 and its LU factors after columnminimum degree
reordering; nnz(W ) = 1,887; nnz(L +U ) = 5,904

= colperm(A). This computation can be expressed as follows (see Gilbert et al.
[102, 1992], Sect. 3.3.1.):

[i,j] = find(A); [ignore,p] = sort(diff(find(diff([0 j’ inf]))));

The vector j consists of the column indices of all the nonzero entries of A, in
column major order. The inner diff computes the first differences of j to give a
vectorwith ones at the starts of columns and zero elsewhere. The innerfind converts
this to a vector of column start indices and the outer diff then gives the vector of
column length. The final sort returns in its second argument the permutation vector
p that sorts this vector.

The reverse Cuthill–McKee ordering described for the Cholesky factorization
can be used for unsymmetric matrices by applying it to A + AT . In Matlab this
ordering is obtained by p = symrcm(A). The minimum degree ordering for the
columns of A can be obtained by applying the minimum degree algorithm to the
matrix ATA. This ordering is also useful for solving sparse least squares problems
minx ‖Ax − b‖2. The minimum degree ordering often performs much better than
colperm or symrcm. Results for this ordering applied to the matrix west0479 are
shown in Fig. 1.13. The LU factors of the reordered matrix now contains only 5904
nonzeros. The Matlab implementation of the column minimum degree ordering
has an option of using an “approximate minimum degree” instead of computing the
exact vertex degrees, which can be the slowest part of the code. Computing approx-
imate minimum degrees using p = symamd(A) takes only time proportional to
the size of A. For the many other features of this algorithm we refer to Gilbert et al.
[102, 1992], Sect. 3.3.1.

Several new features have been added in the sparse unsymmetric solver SuperLU
by Demmel et al. [57, 1999] to make it better suited for parallel machines. Dense
submatrices in the L and U factors are exploited by introducing supernodes in both
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the symbolic and numerical part of the factorization. This reduces inefficient indirect
addressing and allows the use of level 2 BLAS. Demmel et al. also give a dynamic
scheduling algorithm for assigning parallel tasks.

Most implementations of sparse Cholesky factorization use some variant of the
column sweep scheme. They include the Harwell series of routines, the Waterloo
SPARSPAK [94, 1980], and theYale sparsematrix package [79, 1982]. Sparse BLAS
have been developed to aid in implementing sparse linear algebra computations; see
Duff et al. [76, 2002]. An outline of design of the initial sparse matrix codes in
Matlab is given by Gilbert et al. [102, 1992] and Davis [51, 2006]. An up-to-
date overview by Davis of available software with links to high performance sparse
LU, Cholesky, and QR factorization codes is available at http://www.cise.ufl.edu/
research/sparse/codes. The new (2012) 3D imagery for Google Earth relies on the
sparse Cholesky factorization in the collection “SuiteSparse” of Davis via the Ceres
nonlinear least squares solver.

1.7.6 Permutation to Block Triangular Form

Let the matrix A ∈ R
n×n be nonsingular and reducible. Then there exist a row

permutation P and a column permutation Q such that PAQ has a nonzero diagonal
and the block upper triangular form

PAQ =

⎛
⎜⎜⎜⎝

A11 A12 . . . A1,t
A22 . . . A2,t

. . .
...

Att

⎞
⎟⎟⎟⎠ (1.7.13)

with square diagonal blocks A11, . . . , Att , t > 1. In the symmetric positive definite
case a similar reduction with Q = PT to block diagonal form can be considered.
Some authors reserve the term reducible for this case, and use the terms bi-reducible
and bi-irreducible for the general case. An example of an irreducible but bi-reducible
matrix is a matrix with the symmetric structure

(
0 ×
× 0

)
.

The linear system Ax = b becomes after a permutation of row and columns
PAQy = c, where x = Qy, c = Pb. If PAQ has the form (1.7.13) and the LU
factorizations of the diagonal blocks Aii . i = 1:t , are known, then block back
substitution

Aii yi = ci −
t∑

j=i+1
Ai j x j , i = t :−1 :1, (1.7.14)

http://www.cise.ufl.edu/research/sparse/codes
http://www.cise.ufl.edu/research/sparse/codes
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can be used to solve for yi . This can lead to significant savings. A block triangular
form similar to (1.7.13) for a rectangular matrix A ∈ R

m×n will be considered in
Sect. 2.5.6.

If the diagonal blocks are required to be irreducible, then the block triangular form
(1.7.13) can be shown to be essentially unique. Any block triangular form can be
obtained from any other one by applying row permutations that involve the rows of
a single block row, column permutations that involve the columns of a single block
column, and a symmetric permutation that reorder the blocks.

For the case when A is a structurally nonsingular matrix, a two-stage algorithm
for permuting A to block upper triangular form has been given by Tarjan [189, 1972].
In the first stage an unsymmetric permutation is used to find a zero-free diagonal. In
the second stage a symmetric permutation is used to find the block triangular form.
The diagonal blocks correspond to the irreducible blocks of the matrix. This can be
done using a depth-first search in O(n + τ) time; see Tarjan [189, 1972]. Note that,
although the maximum transversal in stage 1 is not unique, the final block diagonal
form is essentially independent of the first permutation.

The problemof finding a permutation that places themaximumnumber of nonzero
elements on the diagonal of a sparse matrix is of wider interest; see Duff [70, 1981].
The set of nonzero elements on the diagonal is referred to as a transversal. In the
matrix A this corresponds to a subset of nonzero elements, no two of which belong
to the same row or column. It can be represented by a column selection. A maximum
transversal is a transversal with a maximum number t (A) of nonzero elements. For
example, for the matrix A below the column selection {2, 1, 3, 5, 6, 4} gives the
matrix AQ which has a maximum transversal:

A =

⎡
⎢⎢⎢⎢⎢⎣

×
×

×
× ×

×
× ×

⎤
⎥⎥⎥⎥⎥⎦

, AQ =

⎡
⎢⎢⎢⎢⎢⎣

×
×
×
× ×

×
× ×

⎤
⎥⎥⎥⎥⎥⎦

.

If A has structural rankρ, then t (A) = ρ. In particular, if A is structurally nonsingular,
then t (A) = n.

Transversal selection is a well researched problem in combinatorics. Several
algorithms to perform this are known. The complexity of finding a maximal
transversal is O(nτ), where τ is the number of nonzeros in A and n its order. An
exception is the algorithm ofHopcroft andKarp, which has a complexity of O(

√
nτ).

However, these upper bounds are attained only in pathological cases. In practice, the
behavior is more like O(n+τ). The implementation of these algorithms is discussed
by Duff and Reid [72, 1978].

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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1.7.7 Linear Programming and the Simplex Method

The tremendous power of the Simplex method is a constant surprise to me. Consider the
impossibly vast computing powers that would be required to scan all permutations and
select the best assignment of 70 people to 70 jobs. With the simplex method this only takes
a moment to solve.
—George Dantzig, History of Mathematical Programming.

One of the major applications of sparse matrix techniques is in the implementa-
tion of the simplex method for linear programming (LP) problems; see Gill et al.
[105, 1984]. The LP problem arose from the need to plan logistics support during
WorldWar II. The somewhat strange name “linear program” comes from themilitary
use of the term “program” to refer to plans or schedules for deployment of logistical
supplies. LP problems come up in economics, strategic planning, transportation and
productions problems, telecommunications, and many other applications. Special
cases arise in approximation theory, e.g., data fitting in 
1 and 
∞ norms. The num-
ber of variables in linear optimization problems has become much larger than first
envisioned. Problems with several million variables are now routinely solved.

The LP problem is a convex optimization problemwith a linear objective function,
where the domain of the variables is restricted by a system of linear equations and
inequalities. Often the following formulation is used:

min
x∈Rn

cT x subject to Ax ≥ b, (1.7.15)

where A ∈ R
m×n is the constraint matrix, c ∈ R

n the cost vector, and cT x the objec-
tive function. (Note that the problem of minimizing cT x is equivalent to maximizing
−cT x .) The matrix A is typically huge but sparse and programs for LP problems
are important applications of sparse matrix factorizations and techniques for updat-
ing such factorizations. Therefore it can be argued that algorithms for LP problems
belong as much to matrix computations as to optimization.

A linear programming problem cannot be solved by setting certain partial deriv-
atives equal to zero. The deciding factor is the domain in which the variables can
vary. A single linear equality constraint aT

i x = bi defines a hyperplane in R
n . The

corresponding inequality constraint aT
i x ≥ bi restricts the variable x to lie on one

side, the feasible side, of this hyperplane. A point that satisfies all the inequality
constraints is said to be a feasible point. The set

F = {x ∈ R
n | Ax ≥ b} (1.7.16)

of all feasible points is called the feasible region. There are three possibilities:

• F is empty, in which case the LP problem has no solution.
• There is a feasible point x∗ at which the objective function is minimized.
• F is unbounded and the objective function unbounded below in the feasible region.
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The problem of determining if feasible points exist is usually posed and solved as
an auxiliary linear programming problem.

When F is not empty, it has the important property of being a convex set, i.e., if
x and y are any two points in F , then the line segment

{z ≡ (1− α)x + αy | 0 ≤ α ≤ 1}

joining x and y is also in F . It is easy to verify that F defined by (1.7.16) has this
property, since

Az = (1− α)Ax + αAy ≥ (1− α)b + αb = b.

If a feasible point x satisfies the constraint aT
i x ≥ bi with equality, i.e., ri (x) =

aT
i x − bi = 0, then the constraint is said to be active. The active set at a point x is
the subset of the constraints Ax ≥ b active at x .

Example 1.7.3 In a given factory there are three machines M1, M2, M3 used in
making two products P1, P2. One unit of P1 occupies M1 five minutes, M2 three
minutes, and M3 four minutes. The corresponding figures for one unit of P2 are: M1
one minute, M2 four minutes, and M3 three minutes. The net profit per unit of P1
produced is 30 dollars, and for P2 20 dollars. What production plan gives the most
profit in an hour?

If x1 units of P1 and x2 units of P2 are produced per hour, then the problem is to
maximize f = 30x1 + 20x2 subject to the constraints x1 ≥ 0, x2 ≥ 0, and

5x1 + x2 ≤ 60 for M1,

3x1 + 4x2 ≤ 60 for M2, (1.7.17)

4x1 + 3x2 ≤ 60 for M3.

The problem is illustrated geometrically in Fig. 1.14. The first of the inequalities
(1.7.17) requires that the solution lies on the left of or on the line AB, whose equation
is 5x1+x2 = 60. The other two can be interpreted in a similar way. Thus, for the point
(x1, x2) to be feasible, it must lie within or on the boundary of the pentagon OABCD.
The value of the function f to bemaximized is proportional to the orthogonal distance
between (x1, x2) and the dashed line f = 0. It takes on its largest value at the vertex B.
Since every vertex is the intersection of two lines, at least two of the inequalities must
be satisfied with equality. At the solution x∗ the inequalities for M1 and M3 become
equalities. These two constraints are active at x∗; the other are inactive. The active
constraints give two linear equations for determining the solution, x1 = 120/11,
x2 = 60/11. Hence, the maximal profit f = 4, 800/11 = 436.36 dollars per hour is
obtained by using M1 and M3 continuously, while M2 is used only 600/11 = 54.55
minutes per hour. �

The geometrical ideas in the introductory example are useful also in the general
case. Given a set of linear constraints, a vertex is a feasible point for which thematrix
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Fig. 1.14 Geometric illustration of a linear programming problem

formed by the active constraints has rank n. Thus, at least n constraints are active
at any vertex x . A vertex is an extreme point of the feasible region F . If exactly n
constraints are active at a vertex, the vertex is said to benondegenerate; ifmore thann
constraints are active at a vertex, the vertex is said to be degenerate. In Example 1.7.3
there arefivevertices O, A, B, C , and D, all ofwhich are nondegenerate. The vertices
form a polyhedron, or simplex in Rn .

Vertices are of central importance in linear programming sincemany LP problems
have the property that a minimizer lies at a vertex. The following theorem states the
conditions under which this is true.

Theorem 1.7.6 Consider the linear program

min
x∈Rn

cT x subject to Ax ≥ b,

where A ∈ R
m×n. If rank (A) = n and the optimal value of cT x is finite, a vertex

minimizer exists.

By convexity, an infinity of non-vertex solutions will exist if the optimal vertex
is not unique. For example, in Example 1.7.3 one could have an objective function
f = cT x such that the line f = 0 is parallel to one of the sides of the pentagon. Then
all points on the line segment between two optimal vertices in the polyhedron are
optimal points. If the linear program also includes the constraints xi ≥ 0, i = 1 :n,
then the constraint matrix has the form
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(
A
In

)
∈ R

(m+n)×n .

Since the rows include the identity matrix In , this matrix always has rank n. Hence,
if a feasible point exists, then a feasible vertex must exist

Let x be a feasible point in F . Then it is of interest to find directions p such that
x + αp remains feasible for some α > 0. If the constraint aT

i x ≥ bi is active at x ,
then all points y = x+αp, α > 0, will remain feasible with respect to this constraint
if and only if aT

i p ≥ 0. Clearly the feasibility of p depends only on the constraints
active at x∗. Hence, p is a feasible direction at the point x if and only if aT

i p ≥ 0
for all active constraints at x .

Given a feasible point x , the maximum step α that can be taken along a feasible
direction p depends on the inactive constraints. We need only consider the set of
inactive constraints i for which aT

i p < 0. For this set of constraints we have aT
i (x +

αp) = aT
i x + αaT

i p = bi . Thus, the constraint i becomes active when

α = αi = (bi − aT
i x)/(aT

i p).

The largest step we can take along p is given by max αi , where the maximum is
taken over the set of decreasing constraints.

We say that p �= 0 is adescent direction if cT p < 0, i.e., if the objective functions
decreases when we move in the direction of p. Furthermore, p is a feasible descent
direction at x∗ if for some positive τ we have

A(x∗ + αp) ≥ b ∀ 0 < α ≤ τ.

Let B be the matrix composed of rows of A that correspond to the active constraints.
Then p is a feasible descent direction if Bp ≥ 0 and cT p < 0. We conclude that a
feasible point x is a minimizer for the linear program

min
x∈Rn

cT x subject to Ax ≥ b,

if and only if cT p ≥ 0 for all p such that Bp ≥ 0.
To relate these necessary and sufficient conditions to properties of A and c, we

use a classical result published in 1902. Although part of this lemma is easy to verify,
the main result cannot be proved in an elementary way.

Lemma 1.7.2 ( Farkas’ Lemma) Let A ∈ R
m×n be a matrix and g ∈ R

n be a
nonzero vector. Then either the primal system

Ax ≥ 0 and gT x < 0

has a solution x ∈ R
n, or the dual system

AT y = g and y ≥ 0
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has a solution y ∈ R
m, but never both.

Proof See Gill et al. [104, 1991], Sect. 7.7. �

From Farkas’ lemma one can obtain the following fundamental result.

Theorem 1.7.7 Let x∗ be a feasible point to the linear program

min
x∈Rn

cT x subject to Ax ≥ b.

Then we have:

(a) If x∗ satisfies the conditions c = AT
actx

∗ + λ∗, λ∗ ≥ 0, where Aact is the active
constraint matrix at x∗, then cT x∗ is the unique minimum value of cT x in the
feasible region and x∗ is a minimizer.

(b) If the constraints Ax ≥ b are consistent, the objective function is unbounded
in the feasible region if and only if the conditions in (a) are not satisfied at any
feasible point.

It is convenient to adopt the following standard form of a linear programming
problem, slightly different from (1.7.15):

min
x∈Rn

cT x subject to Ax = b, x ≥ 0, (1.7.18)

where A ∈ R
m×n . Here the only inequality constraints are the simple bounds x ≥ 0.

The set F of feasible points consists of points x that satisfy Ax = b and x ≥ 0.
If A ∈ R

m×n , m < n, and the rows of A are linearly independent, then the m
equations Ax = b define a subspace ofRn of dimension n−m. Since the m equality
constraints are active at a feasible point, at least n−m of the bound constraints must
also be active at a vertex. It follows that a point x can be a vertex only if at least
n − m of its components are zero.

It is simple to convert the LP problem (1.7.15) to standard form. Many LP
software packages apply an automatic internal conversion to this standard form.
An upper bound inequality aT x ≤ β is converted into an equality aT x + s = β by
introducing a slack variable s subject to s ≥ 0. A lower bound inequality of the
form aT x ≥ β is changed to an upper bound inequality (−a)T x ≤ −β. When a
linear programming problem with inequality constraints is converted, the number of
variables will increase. If the original constraints are Ax ≤ b, A ∈ R

m×n , then the
matrix in the equivalent standard form will be

(
A Im

)
, and the number of variables

is n plus m slack variables.

Example 1.7.4 The problem in Example 1.7.3 can be brought into standard form
with the help of three slack variables, x3, x4, x5. We get
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A =
⎛
⎝
5 1 1
3 4 1
4 3 1

⎞
⎠ , b = 60

⎛
⎝
1
1
1

⎞
⎠ ,

cT = (−20 −30 0 0 0
)
.

The three equations Ax = b define a two-dimensional subspace (the plane in
Fig. 1.14) in the five-dimensional space of x . Each side of the pentagon OABCD
has an equation of the form xi = 0, i = 1 :5. At a vertex, two of the coordinates are
zero and the rest cannot be negative. �

For p �= 0 to be a feasible descent direction with respect to the compatible linear
equality constraints Ax = b, we must require that cT p < 0 and Ap = 0. The second
condition says that p belongs to the null space of A. Then if c = AT λ, it follows
that cT p = λT Ap = 0. On the other hand, if c is not in the range of AT , then a
vector p in the null space exists such that cT p < 0. The optimality conditions for a
linear program in standard form follow from a combination of this observation and
the previous result for inequality constrained linear programs.

Theorem 1.7.8 Let x∗ be a feasible point for a linear program

min
x∈Rn

cT x subject to Ax = b, x ≥ 0,

in standard form. Then x∗ is a minimizer if and only if there exist a y∗ and a z∗ ≥ 0
such that AT y∗ + z∗ = c, and the complementarity condition x∗j z∗j = 0, j = 1 :n,
holds.

Note that since both x∗ and z∗ are nonnegative, the complementarity condition
implies that if x∗j > 0, then z∗j = 0, and vice versa.

In the followingwe assume that there exist feasible points, and that cT x has a finite
minimum. Then an eventual unboundedness of the polyhedron does not give rise to
difficulties. These assumptions are as a rule satisfied in all practical problems that
are properly formulated. We have the following fundamental theorem, the validity
of which the reader can easily convince himself of for n − m ≤ 3.

Theorem 1.7.9 For an optimal feasible point x∗ to a linear programming problem in
standard form, at least n−m coordinates are zero; equivalently at most m coordinates
are strictly positive.

From Theorem 1.7.6 we know that the problem is solved if we can find out which
of the n coordinates x are zero at the optimal feasible point. In theory, one could
consider trying all the

(n
m

)
possible ways of setting n −m variables equal to zero. If

we remove those combinations which do not give feasible points, the rest correspond
to vertices of the feasible polyhedron. One can then look among these to find a vertex
at which f is minimized. But since the number of vertices increases exponentially,
this is intractable even for small values of n.
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Example 1.7.5 As a nontrivial example of the use of Theorem 1.7.6 we consider
the following transportation problem, which is one of the most well-known prob-
lems in optimization. Suppose that a business concern has I factories that produce
a1, a2, . . . , aI units of a certain product. This product is sent to J consumers, who
need b1, b2, . . . , bJ units, respectively. We assume that the total number of units
produced is equal to the total need, i.e.,

I∑
i=1

ai =
J∑

j=1
b j .

The cost to transport one unit from producer i to consumer j is ci j . The problem is
to determine the quantities xi j transported so that the total cost is minimized. This
can be formulated as a linear programming problem as follows:

minimize f =
I∑

i=1

J∑
j=1

ci j xi j

subject to xi j ≥ 0, and the constraints

J∑
j=1

xi j = ai , i = 1 : I,
I∑

i=1
xi j = b j , j = 1 : J.

There is a linear dependence between these equations, because

I∑
i=1

J∑
j=1

xi j −
J∑

j=1

I∑
i=1

xi j = 0.

Thenumber of linearly independent equations is thus (atmost) equal tom = I+J−1.
From Theorem 1.7.6 it follows that there exists an optimal transportation scheme,
where at most I+ J−1 of the I J possible routes between producer and consumer are
used. In principle, the transportation problem can be solved by the simplex method
described below; however, there are much more efficient methods that make use of
the special structure of the equations. �

Many problems can be formulated as transportation problems. One important
example is the personnel-assignment problem: Onewants to distribute I applicants
to J jobs, where the suitability of applicant i for job j is known. The problem to
maximize the total suitability is clearly analogous to the transportation problem.
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Until the late 1980s the simplex method, devised in 1947 by Dantzig,29 was the
only effective method for solving large linear programming problems.The simplex
method is now rivaled by so called interior-point methods (see Wright [212, 1997]),
but is still competitive for many classes of problems.

Consider an LP problem in standard form (1.7.18), where A ∈ R
m×n has full row

rank. We assume that an initial feasible point is known where the basic variables
are xB = (x j1 , . . . , x jm )T ≥ 0. The remaining n − m nonbasic variables xN are
zero. The columns of the matrix A = (a1, . . . , an) are split in a corresponding way.
We assume that B = (a j1 , . . . , a jm ) is nonsingular. The remaining columns in A
form the matrix N . The simplex method starts at a vertex (basic feasible point) and
proceeds from one vertex to an adjacent vertex with a lower value of the objective
function cT x . The basic simplex cycle can be formulated as follows:

1. Solve BxB = b. If xB ≥ 0, then xN = 0 corresponds to a basic feasible point
(vertex). If we allow xN to become nonzero, then the new xB must satisfy

BxB = b − N xN . (1.7.19)

2. Split the vector c into two subvectors cB and cN , where cB is the vector composed
from c by selecting the components belonging to the basic variables. Now suppose
BT d = cB . Then using (1.7.19) we have

f = cT
B xB + cT

N xN = dT BxB + cT
N xN = dT (b − MxN )+ cT

N xN

= dT b + ĉN xN ,

where the components of

ĉN = cN − N T d (1.7.20)

are known as the reduced costs for the nonbasic variables.
3. If ĉN ≥ 0, then xN = 0 corresponds to an optimal point, since f cannot decrease

by giving one (or more) nonbasic variables positive values (negative values are
not permitted). Otherwise, choose a nonbasic variable xr whose coefficient ĉr is
negative. Now determine the largest positive increment one can give xr , without
making any of the basic variables negative, while holding the other nonbasic
variables equal to zero. Let ar be the nonbasic column corresponding to xr . If we
take xr = θ > 0, then x̂B = xB − θy, where y is the solution of the linear system

29 George Dantzig (1914–2005) American mathematician, started graduate studies at UC Berkeley
in 1939. In 1941hewent toWashington to do statisticalwork for theAir Force at theCombatAnalysis
Branch. At the end of the war he becamemathematical adviser to the Defense Department, where he
worked onmechanizing planning processes. From 1952Dantzig worked for the RANDCorporation
with implementing the simplex method for computers. In 1960 he was appointed professor at the
Operations Research Center at UC Berkeley. In 1966 he moved to Stanford University, where he
was to remain for the rest of his career.
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By = ar . (1.7.21)

For any basic variable we have x̂i = xi − θyi . If no component of the vector y
is positive, then the objective function is unbounded and we stop. Otherwise, if
yi > 0, then xi remains positive for θ = θi ≤ xi/yi . The largest θ for which no
basic variable becomes negative is given by

θ = min
i

θi , θi =
{

xi/yi if yi > 0,

+∞ if yi ≤ 0.
(1.7.22)

4. Any basic variable xs that becomes zero for the maximum value of θ can now be
interchanged with xr , so xr becomes a basic variable and xs a nonbasic variable.
(Geometrically this corresponds to going to a neighboring vertex.) The new val-
ues of the basic variables can easily be found by updating the old values using
xi = xi − θyi , and xr = θ . Drop the vector ar from the basis and add the vector
as . The resulting set of m vectors are the new basic vectors. The associated basis
matrix B ′ can be constructed with any convenient column ordering.

In case an initial vertex cannot be trivially found, this task can be formulated as
an auxiliary LP problem, for which a feasible starting vertex is known. Hence, the
simplex method is generally carried out as a two-phase process in which each phase
is carried out by the simplex algorithm.

In practice Phase 1 is carried out as follows. A full identity matrix I is included
in A, but only to ensure that a nonsingular B always exists, perhaps containing a few
columns of I . Given any nonsingular basis B, Phase 1 solves BxB = b and checks
if xB lies within its bounds. If not, a temporary objective is constructed to move
infeasible variables toward their violated bounds, which are temporarily changed to
±∞. A single “normal” simplex iteration is then performed on themodified problem.
A new modified problem is then constructed in each iteration until feasibility is
achieved.

This technique for finding an initial basis may be quite inefficient. A signifi-
cant amount of time may be spent minimizing the sum of the artificial variables,
and may lead to a vertex far away from optimality. We note that it is desirable to
choose the initial basis so that B has a diagonal or triangular structure. Several such
basis selection algorithms, named “basis crashes”, have been developed; see Bixby
[16, 1992].

In case several components of the vector ĉN are negative in Step 3, we have to
specify which variable to choose. The so-called textbook strategy chooses r as the
index of the most negative component in ĉN . This can be motivated by noting that
cr equals the reduction in the objective function

f = cT
B x̂B + ĉT

N xN

produced by a unit step along xr . Hence, this choice leads to the largest reduction in
the objective function assuming a fixed length of the step. A defect of this strategy
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is that it is not invariant under scaling of the matrix A. A scaling invariant strategy
called the steepest edge strategy can lead to great gains in efficiency, see Gill et al.
[104, 1991], Chap. 8.

It is possible that even at a vertex that is not an optimal solution, one cannot
decrease f by exchanging a single variable without coming in conflict with the
constraints. This exceptional case occurs only when one of the basic variables is
zero at the same time that the nonbasic variables are zero. As mentioned previously,
such a point is called a degenerate vertex. In such a case one has to exchange a
nonbasic variable with one of the basic variables that is zero at the vertex, and a step
with θ = 0 occurs. In more difficult cases, it may even be required to make several
such exchanges.

Although theworst case behavior of the simplexmethod is very poor—the number
of iterations may be exponential in the number of unknowns—this is never observed
in practice. Computational experience indicates that the simplex method tends to
give the exact result after about 2m to 3m steps, and essentially independently of
the number of variables n. Note that the number of iterations can be decreased
substantially if one starts from an initial point close to an optimum. For example,
one could start from the optimal solution of a nearby problem. (This is sometimes
called “a warm start”.)

A proof that the simplex algorithm converges after a finite number of steps relies
on a strict decrease of the objective function in each step.When steps in which f does
not decrease occur in the simplex algorithm, there is a danger of cycling, i.e., the same
sequence of vertices are repeated infinitely often, which leads to non-convergence.
Techniques exist to prevent cycling by allowing slightly infeasible points, see Gill
et al. [104, 1991], Sect. 8.3.3. By perturbing each bound by a small arbitrary amount,
the possibility of a tie in choosing the variable to leave the basis is virtually eliminated.

Most of the computation in a simplex iteration is spent on solving the three linear
systems of equations

BxB = b, BT d = cB, By = ar , (1.7.23)

to compute the solution, reduced costs and update the basic solution. In the simplex
method the new basis matrix B is constructed from all but one of the columns
which formed the basis matrix in the preceding cycle. This can be used to make
significant savings. The original simplex algorithm accumulated the matrix inverse
and updated it by elementary row operations. This can be viewed as using Gauss–
Jordan elimination without pivoting. This is not numerically stable and therefore
periodic reinversions were performed to recalculate the inverse directly.

The dimension of the LP problems soon became much large than first envisioned.
At the same time the matrix B is often sparse. For such problems storing the matrix
inverse is very inefficient. The revised simplex algorithm uses amatrix factorization
instead. Let Bk be the basis matrix at the kth cycle. Suppose that Bk+1 is obtained
by dropping the r th column br in Bk and adding another column as . After such a
replacement we have
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Bk+1 = Bk + (as − br )e
T
r = Bk Tk,

where Bk ys = as and

Tk = I + ηr eT
r , ηk = ys − er .

Here Tk is an elementary elimination matrix completely defined by the column index
r and the vector ηr (see Sect. 1.2.5). Starting with B1, we have after k such updates
the factorization Bk+1 = B1T1T2 · · · Tk . Hence, solving the system Bk+1ys = b is
equivalent to solving the sequence of systems

B1z1 = b, T1z2 = z1, . . . , Tk ys = zk .

Solving a system like Tj z j+1 = z j is a simple operation:

z j+1 = (I − η j e
T
j )z j = z j − η j (e

T
j z j ).

As the number of steps increases, this solution process becomes progressively
slower and the storage needed for the updates increases. At some point, typically
for k ≤ 50, it becomes preferable to recompute a factorization of the basis matrix
B from scratch. This product form has two drawbacks. It is potentially unstable
because the matrices Tk can become ill-conditioned. It also uses more storage than
some alternative schemes.

An alternative implementation using a stabilized form of LU factorization where
L is is kept in product form but U is updated explicitly was suggested by Bartels and
Golub [10, 1969]. An initial factorization

P B1 = L1U1 (1.7.24)

is computed by GE using partial pivoting. The initial basis is chosen so that B has a
structure close to diagonal or triangular. Row and column permutations are used to
bring B into such a form. In each simplex step one column in B is deleted and a new
column added. At the kth step, replacing the r th column of Bk−1 gives

Bk = Lk−1Ûk−1,

where Ûk−1 is identical to Uk−1 except for its r th column. The new U matrix that
results from moving the r th column to the end of Ûk−1 is a Hessenberg matrix. If P
is the permutation matrix that permutes the r th column to the end, then PT Ûk−1P
will have its r th row at the bottom. For example, let m = 6, r = 3; the modified
matrix has the form
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PT Ûk−1P =

⎛
⎜⎜⎜⎜⎜⎜⎝

× × × × × ×
× × × × ×

× × × 0
× × 0

× 0
× × × ×

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The triangular form is restored using stabilized eliminations. To be numerically
stable, row interchanges must be allowed in this process. This is done in the sparse
implementation of the Bartels–Golub method by Reid [168, 1982] in LA05. Similar
techniques are used in LUSOL (Gill et al. [106, 1987]), which drives the large-scale
nonlinear optimization solvers MINOS and SNOPT [103, 2005].

Forrest and Tomlin’s method (see [83, 1972]) is similar, except no row inter-
changes are used during the eliminations. This makes the implementation much
easier using a sparse column-oriented data structure for U , but is potentially unsta-
ble. If any multipliers are large, the update is abandoned in favor of a fresh sparse LU
factorization of the new B. This is the version used by most commercial packages.

A classical text on linear optimization and the simplex method is Dantzig
[49, 1965]. An early Algol implementation of the Bartels–Golub revised simplex
method is given in [11, 1971]. Several modifications of this have been made in order
to address sparsity issues, e.g., by Saunders [174, 1976].

Exercises

1.7.1 Draw the graphs G(A), G(B), and G(C), where

A =
⎛
⎝
0 1 1
1 0 0
1 0 0

⎞
⎠ , B =

⎛
⎜⎜⎝
1 0 1 0
0 1 1 1
1 0 1 0
1 1 0 1

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝
1 0 1 0
0 0 0 1
0 1 0 0
1 0 0 1

⎞
⎟⎟⎠ .

Verify that A and C are irreducible, but B is reducible.

1.7.2 (a) Show that if A is reducible, so is AT . Which of the following matrices are irreducible?
(
1 0
0 1

) (
0 1
1 0

) (
1 1
0 1

) (
1 1
1 0

)
.

(b) Is it true that amatrix A, inwhich the elements take the values 0 and 1 only, is irreducible
if and only if the non-decreasing matrix sequence (I + A)k , k = 1, 2, . . . becomes a
full matrix for some value of k?

1.7.3 Let A, B ∈ R
n×n be sparse matrices. Show how the product C = AB can be computed

in
∑n

i=1 ηi θi multiplications, where ηi denotes the number of nonzero elements in the i th
column of A and θi the number of nonzeros in the i th row of B.

Hint: Use the outer product algorithm C =∑n
i=1 a.i bT

.i .
1.7.4 Show that the undirected graph of a symmetric arrowhead matrix is a tree.
1.7.5 Use the graph model of Cholesky factorization (Algorithm 1.14) to find the filled graph

of the matrix A given in (1.7.6), p. 152. Verify your result by comparing with the graph
G(L + LT ), where L is the Cholesky factor of A.
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1.7.6 (a) It is often required to add a multiple a of a sparse vector x to another sparse vector y.
Show that if the vector x is held in coordinate form as nx pairs of values and indices,
and y is held in a full length array, this operation may be expressed as

y(ix(k)) = a ∗ x(k)+ y(ix(k)), k = 1 :τ.
(b) Give an efficient algorithm for computing the inner product of two compressed vectors.

1.7.7 (a) If A is a symmetric positive definite tridiagonal matrix, then the natural ordering gives
no fill in theCholesky factorization.How is this revealed by the undirected graphG(A)?

(b) If two nonzero elements a1n and an1 are added to a symmetric tridiagonal matrix A,
then the band structure is destroyed. There will now be some fill in the Cholesky
factorization. How is the graph G(A) changed? Show that if the rows and columns are
permuted by an odd-even permutation 1, n, 2, n−1, 3, n−2, . . . , the permuted matrix
PAPT is a five-diagonal matrix.

1.7.8 Suppose there is a program that solves linear programming problems in standard form. One
wants to treat the problem of minimizing f = dT x , dT = (1, 2, 3, 4, 5, 1, 1), where xi ≥ 0,
i = 1 :7,

|x1 + x2 + x3 − 4| ≤ 12,

3x1 + x2 + 5x4 ≤ 6,

x1 + x2 + 3x3 ≥ 3,

|x1 − x2 + 5x7| ≥ 1.

Give A, b, and c in the standard form formulation for this problem.
1.7.9 Consider the LP problem in Example 1.7.4. Show that an initial feasible point is obtained

by taking xB = (x3, x4, x5)T and xN = (x1, x2)T . The corresponding splitting of A is

B =
⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ , N =

⎛
⎝
5 1
3 4
4 3

⎞
⎠ .

The optimality criterion is not fulfilled since cB = 0 and cT
N = (−30,−20) < 0. Solve the

problem using the simplex method.

1.8 Structured Linear Equations

In many applications linear systems arise where the matrix is dense, but has some
special structure. Vandermonde matrices are related to polynomial interpolation.
Other important examples are Toeplitz, Hankel, and Cauchy matrices, which come
from applications in signal processing, control theory, and linear prediction. In all
these instances the n2 elements in the matrix are derived from only O(n) quantities.
Such linear systems can often be solved in O(n2) operations rather than O(n3), as
usually required for LU factorization. This has important implications for the ability
to solve such problems. Sometimes, so called super-fast methods exist, which take
only O(n log n) operations. But, except for the FFT algorithm, the numerical stability
of such super-fast methods is either bad or unknown.
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1.8.1 Kronecker Products and Linear Systems

The Kronecker product30 arises in multidimensional data fitting and application
areas such as signal and image processing, photogrammetry, and computer vision.
Problems where the matrix is a Kronecker product can be solved with great savings
in storage and operations. Since the size of these systems is often huge and they
may involve several hundred thousand equations and unknowns, such savings may
be essential.

Definition 1.8.1 Let A ∈ R
m×n and B ∈ R

p×q be two matrices. Then the mp× nq
matrix

A ⊗ B =

⎛
⎜⎜⎜⎝

a11B a12B · · · a1n B
a21B a22B · · · a2n B

...
...

...

am1B am2B · · · amn B

⎞
⎟⎟⎟⎠ (1.8.1)

is the tensor product or Kronecker product of A and B.

The mnpq elements in A⊗ B are not independent, because they are generated by
only mn + pq elements in A and B. The Kronecker sum of A and B is the matrix

A ⊕ B = (Im ⊗ A)+ (B ⊗ In) ∈ R
nm×nm . (1.8.2)

We state without proofs some elementary facts about Kronecker products, which
easily follow from the definition (1.8.1):

(A + B)⊗ C = (A ⊗ C)+ (B ⊗ C),

A ⊗ (B + C) = (A ⊗ B)+ (A ⊗ C),

A ⊗ (B ⊗ C) = (A ⊗ B)⊗ C,

(A ⊗ B)T = AT ⊗ BT .

The last identity tells us that if the factors A and B are symmetric, then so is the
product A ⊗ B. We next show an important mixed-product relation.

Lemma 1.8.1 Let A, B, C, and D be matrices such that the matrix products AC
and BD are defined. Then

(A ⊗ B)(C ⊗ D) = AC ⊗ B D. (1.8.3)

Proof (After Horn and Johnson [131, 1991], Lemma4.2.10) Let A = (aik) ∈ R
m×n

and C = (ck j ). Partitioning according to the sizes of B and D, A⊗ B = (aik B) and
C ⊗ D = (ck j D). The (i, j)th block of (A ⊗ B)(C ⊗ D) is

30 Leopold Kronecker (1823–1891) Germanmathematician, is also known also for his remark “God
created the integers, all else is the work of man”.
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n∑
k=1

aik Bck j D =
( n∑

k=1
aikck j

)
BD,

But this is the (i, j)th element of AC times BD, which is the (i, j)th block of
AC ⊗ B D. �

An important fact for computational work is that in many cases the Kronecker
product inherits the structure of its factors. It follows directly from the definition that
if A ∈ R

m×m and B ∈ R
n×n are upper (lower) triangular matrices, then A ⊗ B is

upper (lower) triangular. If A and B are diagonal or banded, then A⊗ B is diagonal
or block banded. Similarly, if A and B are Toeplitz, then their Kronecker product is
block Toeplitz.

If A ∈ R
n×n and B ∈ R

p×p are nonsingular, then by Lemma 1.8.1,

(A−1 ⊗ B−1)(A ⊗ B) = In ⊗ Ip = Inp.

It follows that A ⊗ B is nonsingular and

(A ⊗ B)−1 = A−1 ⊗ B−1. (1.8.4)

Also, if U and V are unitary matrices, then

(U ⊗ Q)H (U ⊗ Q) = (U H ⊗ Q H )(U ⊗ Q) = (U H U ⊗ Q H Q) = In ⊗ In = In2 ,

i.e., U ⊗ V is also unitary.
The eigenvalue decomposition of A ⊗ B can be obtained from the eigenvalue

decompositions of A and B. Let A = X−1X and B = Y−1�Y be the eigenvalue
decompositions of A and B. Repeatedly using (1.8.3) gives

A ⊗ B = (X−1X)⊗ (Y−1�Y ) = (X ⊗ Y )−1(⊗ �)(X ⊗ Y ). (1.8.5)

It follows that if A and B are diagonalizable, then the matrix A⊗ B is diagonalizable
and the eigenvalues are given by the diagonal matrix  ⊗ �. The left and right
eigenvector matrices are (X ⊗Y )−1 and X ⊗Y , respectively. It is straightforward to
show a similar result for the SVD of A ⊗ B.

If Axi = λi xi , i = 1 :n, and By j = μ j y j , j = 1 :m, then for the Kronecker sum
of A and B

[
(Im ⊗ A)+ (B ⊗ In)

]
(y j ⊗ xi ) = y j ⊗ (Axi )+ (By j )⊗ xi

= (λi + μ j )(y j ⊗ xi ). (1.8.6)

Hence, the nm eigenvalues of the Kronecker sum are given by the sums of all pairs
of eigenvalues of A and B.
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In working with Kronecker products, matrices are sometimes unfolded as vectors
and vectors are sometimes made into matrices. We now introduce an operator that
makes this precise.

Definition 1.8.2 Given a matrix C = (c1, c2, . . . , cn) ∈ R
m×n we define

vec(C) =

⎛
⎜⎜⎜⎝

c1
c2
...

cn

⎞
⎟⎟⎟⎠ ∈ R

mn, (1.8.7)

i.e., vec(C) is the vector formed by stacking the columns of C into one long vector.

We now state an important result that shows how the vec operator is related to the
Kronecker product.

Lemma 1.8.2 If A ∈ R
m×n, B ∈ R

p×q , and X ∈ R
q×n, then

(A ⊗ B)vec(X) = vec(B X AT ). (1.8.8)

Proof Denote the kth column of a matrix M by Mk . Then

(BXAT )k = BX(AT )k = B
n∑

i=1
aki Xi

= (ak1B ak2B akn B
)
vec(X),

where A = (ai j ). But this means that vec(B X AT ) = (A ⊗ B)vec(X). �

Linear systems for which the matrix is a Kronecker product are ubiquitous in
applications. Let A ∈ R

n×n and B ∈ R
p×p be nonsingular, andC ∈ R

p×n . Consider
the Kronecker linear system

(A ⊗ B)x = c, c = vec(C), (1.8.9)

which is of order np. Solving this by LU factorization would require O(n3 p3) flops.
Using (1.8.4) the solution can be written as

x = (A ⊗ B)−1vec(C) = (A−1 ⊗ B−1)vec(C). (1.8.10)

Lemma 1.8.2 shows that this is equivalent to X = B−1CA−T , where x = vec(X).
Here X can be computed by solving the two matrix equations

BY = C, AT X = Y. (1.8.11)
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A consequence of this result is that linear systems of the form (1.8.9) can be solved
fast. The operation count is reduced from O(n3 p3) to O(n3 + p3) flops. Similar
savings can be made by using the Kronecker structure in many other problems.

The Kronecker product and its relation to linear matrix equations such as Lya-
punov’s equation are treated in Horn and Johnson [131, 1991], Chap. 4. See also
Henderson and Searle [124, 1981] and Van Loan [198, 2000].

1.8.2 Toeplitz and Hankel Matrices

AToeplitz31 matrix T = (ti j ) = (t j−i )1≤i, j≤n is amatrixwhose entries are constant
along each diagonal:

Tn =

⎛
⎜⎜⎜⎝

t0 t1 · · · tn−1
t−1 t0 · · · tn−2
...

...
. . .

...

t−n+1 t−n+2 · · · t0

⎞
⎟⎟⎟⎠ ∈ C

n×n . (1.8.12)

Tn is defined by the 2n−1 entries in its first row and column. If t j−i = t| j−i |, then Tn

is symmetric and specified by its first row. Toeplitzmatrices are fundamental in signal
processing and time series analysis. Their structure reflects invariance in time or in
space. Toeplitz matrices also arise directly from partial differential equations with
constant coefficients and from discretizations of integral equations with convolution
kernels. Symmetric positive definite Toeplitz matrices arise as covariance matrices
of stationary random processes.

Toeplitz linear systems are often large and dimensions of 100, 000 or more are
not uncommon. If a standard LU factorization method should be used, it may not be
feasible even to store the LU factors. Note that the inverse of a Toeplitz matrix is not
Toeplitz. Special algorithms that exploit the Toeplitz structure can be much faster
and require only O(n2) flops and O(n) storage.

A Hankel32 matrix is a matrix whose elements are constant along its antidiago-
nals, i.e., H = (hi j ) = (hi+ j−2)1≤i, j≤n :

H =

⎛
⎜⎜⎜⎝

h0 h1 · · · hn−1
h1 h2 · · · hn
...

...
...

hn−1 hn . . . h2n−2

⎞
⎟⎟⎟⎠ ∈ C

n×n,

31 Otto Toeplitz (1881–1940), German mathematician. While in Göttingen 1906–1913, influenced
by Hilbert’s work on integral equations, he studied summation processes and discovered what are
now known as Toeplitz operators. He emigrated to Palestine in 1939.
32 Hermann Hankel (1839–1873), German mathematician, studied determinants of the class of
matrices now named after him in his thesis [119, 1861].
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which is a complex symmetricmatrix.33 Reversing the rows (or columns) of aToeplitz
matrix gives a Hankel matrix. That is, if J = (en, en−1, . . . , e1), then J T (and T J )
areHankelmatrices, and vice versa.Hence, algorithmsdeveloped for solvingToeplitz
systems of equations apply also to Hankel systems. Fast algorithms can also exist
for the case when the system matrix is the sum of a Toeplitz and a Hankel matrix.

In 1947Levinson [147, 1947] considered the discrete case of linear filtering,which
yields a Toeplitz system of linear equations, and gave an O(n2) algorithm for solving
these. This was later improved by Durbin [77, 1959]) and others. Trench [195, 1964]
gave an O(n2) algorithm for computing the inverse of a Toeplitz matrix.

We now describe the Levinson–Durbin algorithm for solving a Toeplitz linear
system Tn x = y in about 2n2 flops. We assume that all principal submatrices of Tn

are nonsingular. Two sets of vectors are generated, called the forward vectors fk and
the backward vectors bk . These vectors are of length k and are solutions of the linear
systems

Tk fk = e1, Tkbk = ek, k = 1 :n, (1.8.13)

where e1 and ek are unit vectors of length k. The first forward and backward vectors
are simply f1 = b1 = 1/t0. Now assume that the vectors fk−1 and bk−1 have been
determined. Then, since Tk−1 is both the leading and trailing principal submatrix of
Tk , we have

Tk

(
fk−1
0

)
=
(

e1
εk

)
, Tk

(
0

bk−1

)
=
(

δk

ek−1

)
. (1.8.14)

The scalars εk and δk can be computed from

εk = (t−k+1, t−k+2, . . . , t−1) fk−1 = eT
k Tk

(
fk−1
0

)
, (1.8.15)

δk = (t1, t2, . . . , tk−1)bk−1 = eT
1 Tk

(
0

bk−1

)
. (1.8.16)

Taking a linear combination of the two equations in (1.8.14), we get

Tk

(
α

(
fk−1
0

)
+ β

(
0

bk−1

))
= α

(
e1
εk

)
+ β

(
δk

ek−1

)
.

If α and β can be chosen so that the right-hand side becomes e1, this will give us
the forward vector fk . Similarly, if α and β can be chosen so that the right-hand
side becomes ek , this will give us the vector bk . Denote these values by α f , β f and
αb, βb, respectively. Disregarding the zero elements in the right-hand side vectors,
it follows that these values should satisfy the 2× 2 linear system

33 Complex symmetric matrices have special properties. For example, they have a symmetric SVD,
which can be computed by an algorithm given by Bunse-Gernster and Gragg [34, 1988].



186 1 Direct Methods for Linear Systems

(
1 δk

εk 1

)(
α f αb

β f βb

)
=
(
1 0
0 1

)
. (1.8.17)

If εkδk �= 1 this system is nonsingular and then

(
α f αb

β f βb

)
=
(
1 δk

εk 1

)−1
= 1

1− εkδk

(
1 −δk

−εk 1

)
,

which allows us to compute the new vectors:

fk = 1

1− εkδk

((
fk−1
0

)
− δk

(
0

bk−1

))
,

bk = 1

1− εkδk

((
0

bk−1

)
− εk

(
fk−1
0

))
.

The cost of this recursion step is about 8k flops.
The solution to the linear system Tn x = y can be constructed as follows. Assume

that the vector x (k−1) ∈ R
k−1 satisfies the first k − 1 equations and set

Tk

(
x (k−1)
0

)
=

⎛
⎜⎜⎜⎝

y1
...

yk−1
ηk

⎞
⎟⎟⎟⎠ , ηk = eT

k Tk

(
x (k−1)
0

)
. (1.8.18)

Then the backward vector bk can be used to modify the last element in the right-hand
side. This gives the recursion

x (1) = y1/t0, x (k) =
(

x (k−1)
0

)
+ (yk − ηk)bk, k = 2 :n.

At any stage only storage for the three vectors fk, bk , and x (k) is needed.
When the Toeplitz matrix is symmetric there are important simplifications.

Then from (1.8.14)–(1.8.15) it follows that the backward and forward vectors are
the row-reversals of each other, i.e.

bk = Jk fk, Jk = (ek, ek−1, . . . , e1).

Since εk = δk , the auxiliary 2× 2 subsystem (1.8.17) is symmetric. Taking this into
account roughly halves the operation count and storage requirement.
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Even if theToeplitzmatrix Tn is nonsingular, a principal submatrix can be singular.
An example is the symmetric indefinite matrix

T3 =
⎛
⎝
1 1 0
1 1 1
0 1 1

⎞
⎠ ,

for which the principal submatrix T2 is singular. Likewise, even if Tn is
well-conditioned, its principal submatrices can be ill-conditioned. Many of the fast
algorithms for solving Toeplitz systems can only be proved to be stable for the sym-
metric positive definite case. The stability of the Levinson–Durbin algorithm has
been analyzed by Cybenko [47, 1980].

A number of “superfast” methods for solving Toeplitz systems have been devised,
e.g., the Schur method of Ammar and Gragg [2, 1988]. These use only O(n log2 n)

flops, but their stability properties are less well understood, except for the positive
definite case. A general discussion of stability of methods for solving Toeplitz sys-
tems is given by Bunch [30, 1985]. The theory of displacement structures and their
applications are surveyed by Kailath and Sayed [142, 1995]. A superfast algorithm
for Toeplitz systems of linear equations based on transformation to a Cauchy system
is given by Chandrasekaran et al. [38, 2007].

1.8.3 Vandermonde Systems

The problem of interpolating given function values fi at distinct points xi , i = 1 :n,
with a polynomial of degree ≤ n − 1, is related to the Vandermonde matrix.

V = [xi−1
j ]ni, j=1 =

⎛
⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xn
...

... · · · ...

xn−1
1 xn−1

2 · · · xn−1
n

⎞
⎟⎟⎟⎠ (1.8.19)

Indeed, the unique polynomial P(x) satisfying P(xi ) = fi , i = 1 : n, is given by
P(x) = (1, x, . . . , xn−1)a, where a satisfies the dual Vandermonde system

V T a = f. (1.8.20)

The primal Vandermonde system V x = b, is related to the problem of determining
coefficients in an interpolation formula.

In Newton’s interpolation method the interpolation polynomial is expressed as

P(x) = c1Q1 + c2Q1(x)+ · · · + cn Qn(x),
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where the coefficients ck are divided differences of the components of f . TheNewton
polynomials Qk(x) are generated by the recurrence relation

Q1 = 1, Qk+1(x) = (x − xk)Qk, k = 1 :n − 1. (1.8.21)

The polynomial P(x) can be expressed in terms of the monomials by using Horner’s
rule to get a recurrence for computing ak , k = 1 :n. This Newton–Horner algorithm
only requires 5

2n(n + 1) flops and no extra storage.
Björck–Pereyra [18, 1970] showed that the Newton–Horner algorithm for com-

puting a = V−T f can be expressed as a factorization of the matrix V−T as a product
of diagonal and lower bidiagonal matrices. For k = 1 : n − 1, let

Dk = diag
(
1, . . . , 1, xk+1 − x1, . . . , xn − xn−k

)
,

and

Lk(x) =
(

Ik−1 0
0 Bn−k+1(x)

)
, Bp(x) =

⎛
⎜⎜⎜⎝

1
−x 1

. . .
. . .

−x 1

⎞
⎟⎟⎟⎠ ∈ R p×p.

Then the Newton–Horner algorithm can be written in matrix terms as c = U T f ,
a = LT c, where

U T = D−1n−1Ln−1(1) · · · D−11 L1(1), (1.8.22)

LT = LT
1 (x1)LT

2 (x2) · · · LT
n−1(xn−1). (1.8.23)

Since a = V−T f = LT U T f , we have V−T = LT U T .
The primal Vandermonde system

V x = b, (1.8.24)

arises in problems of determining approximations of linear functionals. Note that
from (1.8.20) and (1.8.24) it follows that cT b = (V−T f )T b = f T V−1b = f T x .
An algorithm for solving the primal Vandermonde system is obtained by taking the
transpose of the matrix factorization V−T = LT U T , giving x = V−1b = U (Lb),
where

L = Ln−1(xn−1) · · · L2(x2)L1(x1). (1.8.25)

U T = LT
1 (1)D−11 · · · LT

n−1(1)D−1n−1 (1.8.26)

The primal and dual Björck–Pereyra algorithms have very good stability proper-
ties. If the points xi are positive andmonotonically ordered, 0 < x1 < x2 < · · · < xn ,
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then V (x1, x2, . . . , xn) is a totally positive matrix; see Demmel and Koev [55, 2005].
In this case the error in the solution of the primal Vandermonde system can be shown
to be bounded by

|a − a| ≤ 5u|V−1| |b| + O(u2). (1.8.27)

If the components of the right-hand side satisfy (−1)nbi ≥ 0, then |V−1| |b| =
|V−1b| and this bound reduces to |a−a| ≤ 5u|a|+O(u2). The solution is computed
with small relative error independent of the conditioning of V . A similar result holds
for the dual algorithm.

Fast Björck–Pereyra-type algorithms forVandermonde-likematrices of the form

V = (pi (x j ))
n
i, j=1,

where pi (x), i = 1 :n, are basis polynomials inPn that satisfy a three-term recurrence
relation, have also been developed; see Higham [129, 2002], Sect. 22.2.

1.8.4 Semiseparable Matrices

Semiseparablematriceswere first defined as inverses of irreducible tridiagonalmatri-
ces. It is possible to find a simple representation for such inverses. The following
result says that the lower triangular part of the inverse of an upper Hessenbergmatrix
has a very simple structure.

Theorem 1.8.1 (Ikebe [136, 1979]) Let H ∈ R
n×n be an upper Hessenberg matrix

with nonzero elements in the subdiagonal, hi+1,i �= 0, i = 1 :n − 1. Then there are
vectors p and q such that

(H−1)i j = pi q j , i ≥ j. (1.8.28)

A tridiagonal matrix A is both lower and upper Hessenberg. If A is irreducible,
then by Theorem 1.8.1 there are vectors u, v, p, and q such that the entries of
S = A−1 are

si j =
{

uiv j if i ≤ j,

pi q j if i < j.
. (1.8.29)

Note that u1 �= 0 and vn �= 0, since otherwise the entire first row or last column
of A−1 would be zero, contrary to the assumption of the nonsingularity of A. The
vectors u and v (as well as p and q) are unique up to scaling by a nonzero factor.
It can be shown that 3n − 2 parameters are needed to represent S, which equals the
number of nonzero elements in A. The matrix S is called a semiseparable matrix.
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Several alternative definitions of semiseparable matrices are discussed in Vandebril,
Van Barel and Mastronardi [199, 2005].

Thus, the matrix S can be represented by order O(n) information. In Matlab
notation, we write triu (A, k) for a matrix that is identical to A on and above the kth
diagonal. Similarly, tril (A, k) denotes a matrix that is identical to A on and below
the kth diagonal. With this notation the matrix S can be written as

S = triu (uvT , 0)+ tril (pqT ,−1). (1.8.30)

The vectors u, v and p, q are called the generators of the semiseparable matrix S.

Lemma 1.8.3 Let S ∈ R
n×n be the semiseparable matrix (1.8.30). Then the matrix-

vector product Sx can be computed in 7n flops.

Proof Write Sx = y + z, where y = triu (uvT , 0)x and z = tril (pqT ,−1)x . The
partial sums

sk =
n∑

i=k

vi xi , k = n :−1 :1,

can be computed in 2n flops. Then we have yi = ui si , so y can be computed in 3n
flops. Similarly, the vector z can be computed in 3n flops and added to y. �

Example 1.8.1 Let A be a symmetric, positive definite tridiagonal matrix with ele-
ments a1 = 1, ai = 2, bi = ci = −1, i = 2 :5. Although the Cholesky factor L of
A is bidiagonal, the inverse

A−1 =

⎛
⎜⎜⎜⎜⎝

5 4 3 2 1
4 4 3 2 1
3 3 3 2 1
2 2 2 2 1
1 1 1 1 1

⎞
⎟⎟⎟⎟⎠

is full. Here u = p, v = q, can be determined up to a scaling factor from the first
and last columns of A−1. �

A more general class of semiseparable matrices is the following: S is a semisep-
arable matrix of semiseparability rank r if

S = triu (U V T )+ tril (PQT ),

where U , V , P , and Q are n × r matrices of rank r .
Semiseparable matrices or matrices that are the sum of a semiseparable matrix

and a band matrix arise in several applications, such as integral equations, boundary
value problems, as covariance matrices in time-varying linear systems, etc. When
S is symmetric positive definite, then the structure can be fully exploited and the
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Cholesky decomposition can be computed in O(nr2) flops; see Gohberg et al. [107,
1985]. But when A is not symmetric positive definite, stable methods for computing
the LU factorization are not known.

For solving linear systems, where the matrix is the sum of a band and a semisep-
arable rank r matrix, Chandrasekaran and Gu [37, 2003] have given an algorithm of
complexity O(nr2) flops. In the simplest case when A is the sum of a diagonal and
a semiseparable rank-one matrix,

A = D + triu (uvT , 1)+ tril (pqT ,−1),

the storage requirement and operation count are of order O(n). The algorithm com-
putes a two-sided decomposition of the form A = WLH, where L is lower triangular
and W and H are products of Givens matrices. Since only orthogonal transforma-
tions are used, the method is backward stable. The full matrix is never formed and
only the diagonal elements and the generators u, v, p and q are transformed.

A comprehensive overview of mathematical and numerical properties of semi-
separable matrices is given by Vandebril et al. [200, 2007] (linear systems) and [201,
2008] (eigenvalues and singular values).

1.8.5 The Fast Fourier Transform

In many areas of application (digital signal processing, image processing, and
time-series analysis, to name a few) the fast Fourier transform (FFT) has caused a
complete change of attitude toward what can be done using discrete Fourier meth-
ods. Without the FFT many modern devices such as cell phones, digital cameras, CT
scanners, and DVD and Blueray discs would not be possible.

The modern usage of the FFT started in 1965 with the publication of [43, 1965]
by James W. Cooley of IBM Research and John W. Tukey, at Princeton University.
Tukey came up with the basic algorithm at a meeting of President Kennedy’s Science
Advisory Committee. One problem discussed at that meeting was that the ratification
of a US–Soviet nuclear test ban depended on a fast method to detect nuclear tests
by analyzing seismological time series. A good survey of the FFT is given by Van
Loan [197, 1992].

Let f (x) be a function, whose values f (xk) are known at the grid points
xk = 2πk/N , k = 0 : N − 1. Then the discrete Fourier transform (DFT),

f ∗(x) =
N−1∑
j=0

c j e
i j x , c j = 1

N

N−1∑
k=0

f (xk)e
−i j xk , j = 0 : N − 1. (1.8.31)

interpolates f (x) at the points xk . Setting ωN = e−2π i/N , this becomes
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c j = 1

N

N−1∑
k=0

ω
jk
N f (xk), j = 0 : N − 1, (1.8.32)

whereωN is an N th root of unity, (ωN )N = 1. From (1.8.32) it seems that computing
the N coefficients c j would require N 2 complexmultiplications and additions. Aswe
shall see, only about N log2 N complex multiplications and additions are required
using the FFT algorithm. In the following we will use the common convention not
to scale the sum in (1.8.32) by 1/N .

Definition 1.8.3 The DFT of the vector f ∈ CN is y = FN f , where Fn ∈ CN×N

is the DFT matrix with elements

(FN ) jk = ω
jk
N , ωN = e−2π i/N , j, k = 0 : N − 1. (1.8.33)

The DFT matrix FN is symmetric and a complex Vandermonde matrix. Further,
1
N F H

N FN = I , i.e., 1√
N

FN is a unitary matrix. It follows that the inverse transform
can be written in matrix form as

f = 1

N
F H

N y.

Example 1.8.2 For n = 22, we have ω4 = e−π i/2 = −i , and the DFT matrix is

F4 =

⎛
⎜⎜⎝
1 1 1 1
1 −i (−i)2 (−i)3

1 (−i)2 (−i)4 (−i)6

1 (−i)3 (−i)6 (−i)9

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞
⎟⎟⎠ . (1.8.34)

It is symmetric and its inverse is

F−14 = 1

4

⎛
⎜⎜⎝
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ .

The central idea of the FFT algorithm is based on the divide and conquer strategy.
Assume that N = 2p and set

k =
{
2k1 if k is even,

2k1 + 1 if k is odd,
0 ≤ k1 ≤ m − 1,

where m = N/2 = 2p−1. Split the DFT sum into an even and an odd part:
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y j =
m−1∑
k1=0

(ω2
N ) jk1 f2k1 + ω

j
N

m−1∑
k1=0

(ω2
N ) jk1 f2k1+1, j = 0 : N − 1.

Let β be the quotient and j1 the remainder when j is divided by m, i.e., j = βm+ j1.
Then, since ωN

N = 1,

(ω2
N ) jk1 = (ω2

N )βmk1(ω2
N ) j1k1 = (ωN

N )βk1(ω2
N ) j1k1 = ω

j1k1
m .

Thus if, for j1 = 0 : m − 1, we set

φ j1 =
m−1∑
k1=0

f2k1ω
j1k1
m , ψ j1 =

m−1∑
k1=0

f2k1+1ω
j1k1
m , (1.8.35)

then y j = φ j1 + ω
j
N ψ j1 . The two sums on the right are elements of the DFTs of

length N/2 applied to the parts of f with odd and even subscripts. The DFT of length
N is obtained by combining these two DFTs. Since ωm

N = −1, it follows that

y j1 = φ j1 + ω
j1
N ψ j1 , (1.8.36)

y j1+N/2 = φ j1 − ω
j1
N ψ j1 , j1 = 0 : N/2− 1. (1.8.37)

These expressions are called the butterfly relations because of the data flow
pattern.

The computation of φ j1 and ψ j1 is equivalent to two Fourier transforms with
m = N/2 terms instead of one with N terms. If N/2 is even the same idea can be
applied to these two Fourier transforms. One then gets four Fourier transforms, each
of which has N/4 terms. If N = 2p this reduction can be continued recursively until
we get N DFTs with one term. But F1 = I , the identity.

The number of complex operations (onemultiplication and one addition) required
to compute {y j } from the butterfly relationswhen {φ j1} and {ψ j1}havebeen computed
is 2p, assuming that the powers of ω are precomputed and stored. If we denote by qp

the total number of operations needed to compute the DFT when N = 2p, we have
qp ≤ 2qp−1 + 2p, p ≥ 1. Since q0 = 0, it follows by induction that

qp ≤ p · 2p = N · log2 N .

Hence, when N is a power of two, the FFT solves the problemwith at most N ·log2 N
complex operations. For example, when N = 220 = 1,048,576 the FFT algorithm is
theoretically a factor of 84,000 faster than the “conventional” O(N 2) algorithm. The
FFT algorithm not only uses fewer operations to evaluate the DFT, it also is more
accurate. When using the conventional method the roundoff error is proportional to
N . For the FFT algorithm the roundoff error is proportional to log2 N .
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Algorithm 1.8.1 by Moler and Eddins [157, 2001], demonstrates how the FFT
idea can be implemented in a simple but efficient recursive Matlab program. It
uses the fast recursion as long as n is a power of two. When it reaches an odd length
it sets up the Fourier matrix and uses matrix-vector multiplication.

In most implementations the explicit recursion is avoided. Instead, the FFT algo-
rithm is implemented in two stages.

• A reordering stage in which the data vector f is permuted in bit-reversal order.
• A second stage in which first N/2 FFT transforms of length 2 are computed on
adjacent elements, followed by N/4 transforms of length 4, etc. until the final
result is obtained by merging two FFTs of length N/2.

Each step of the recursion involves an even–odd permutation. In the first step
the points with last binary digit equal to 0 are ordered first and those with last digit
equal to 1 are ordered last. In the next step the two resulting subsequences of length
N/2 are reordered according to the second binary digit, etc. It is not difficult to see
that the combined effect of the reordering in stage 1 is a bit-reversal permutation
of the data points. For i = 0 : N − 1, let the index i have the binary expansion
i = b0 + b1 · 2+ · · · + bt−1 · 2t−1 and set

r(i) = bt−1 + · · · + b1 · 2t−2 + b0 · 2t−1.

That is, r(i) is the index obtained by reversing the order of the binary digits. If
i < r(i), then exchange fi and fr(i).

Algorithm 1.8.1 (The Fast Fourier Transform)

function y = fftx(x);

% FFTX computes the fast Fourier transform of x(1:n).

x = x(:);

n = length(x);

omega = exp(-2*pi*i/n);

if rem(n,2) == 0

% Recursive divide and conquer.

k = (0:n/2-1)

w = omega.ˆk;

u = fftx(x(1:2:n-1));

v = w.*fftx(x(2:2:n));

y = [u+v; u-v];

else

% Generate the Fourier matrix.

j = 0:n-1;

k = j’;

F = omega.ˆ(k*j);

y = F*x;

end
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We denote the permutation matrix performing the bit-reversal ordering by PN .
Note that if an index is reversed twice we end up with the original index. This means
that P−1N = PT

N = PN ,i.e., PN is symmetric. The permutation can be carried out “in
place” by a sequence of pairwise interchanges or transpositions of the data points. For
example, for N = 16 the pairs (1, 8), (2, 4), (3, 12), (5, 10), (7, 14), and (11, 13) are
interchanged. The bit-reversal permutation can take a substantial fraction of the total
time to do the FFT. Which implementation is best depends strongly on the computer
architecture.

The key observation to develop a matrix-oriented description of the second stage
is to note that the Fourier matrices FN after an odd-even permutation of the columns
can be expressed as a 2 × 2 block matrix, where each block is either FN/2 or a
diagonal scaling of FN/2.

Theorem 1.8.2 Let �T
N be the permutation matrix which applied to a vector groups

the even-indexed components first and the odd-indexed last.34 If N = 2m, then

FN �N =
(

Fm �m Fm

Fm −�m Fm

)
=
(

Im �m

Im −�m

)(
Fm 0
0 Fm

)
,

�m = diag(1, ωN , . . . , ωm−1
N ), ωN = e−2π i/N . (1.8.38)

Proof The proof essentially follows from the derivation of the butterfly relations
(1.8.36)–(1.8.37). �
Example 1.8.3 We illustrate Theorem 1.8.2 for N = 22 = 4. The DFT matrix F4 is
given in Example 1.8.2. After a permutation of the columns F4 can be written as a
2× 2 block-matrix

F4�
T
4 =

⎛
⎜⎜⎝
1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i

⎞
⎟⎟⎠ =
(

F2 �2F2
F2 −�2F2

)
,

where

F2 =
(
1 1
1 −1

)
, �2 =

(
1 0
0 i

)
.

When N = 2p the FFT algorithm can be interpreted as a sparse factorization of
the DFT matrix:

FN = Ak · · · A2A1PN , (1.8.39)

where PN is the bit-reversal permutation matrix and A1, . . . , Ak are block-diagonal
matrices,

34 Note that�T
N = �−1N is the so-called perfect shuffle permutation. in which the permuted vector

�T
N f is obtained by splitting f in half and then “shuffling” the top and bottom halves.
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Aq = diag(BL , . . . , BL︸ ︷︷ ︸
r

), L = 2q , r = N/L . (1.8.40)

Here the matrix Bk ∈ CL×L is the radix-2 butterfly matrix defined by

BL =
(

IL/2 �L/2
IL/2 −�L/2

)
, (1.8.41)

�L/2 = diag(1, ωL , . . . , ω
L/2−1
L ), ωL = e−2π i/L . (1.8.42)

This is usually referred to as the Cooley–Tukey FFT algorithm.

1.8.6 Cauchy-Like Matrices

A Cauchy35 matrix is a matrix with entries of the form

C(y, z)i j = 1

yi − z j
, yi , z j ∈ C, 1 ≤ i, j ≤ n, (1.8.43)

where we assume that the nodes yi and z j , 1 ≤ i, j ≤ n are pairwise distinct. Cauchy
matrices are encountered in many applications, including the solution of singular
integral equations, particle simulation, the pole placement problem in system theory,
etc. It is of interest to have fast and accurate methods for solving linear systems of
equations Cx = b, where C is a Cauchy matrix.

A well-known example of a Cauchy matrix, obtained by taking yi = −zi =
i − 1/2, is the Hilbert matrix Hn ∈ R

n×n with entries hi j = 1/(i + j − 1). The
Hilbert matrix is a symmetric positive definite Hankel matrix. Cauchy matrices are
also related to rational interpolation. Let function values fi , i = 1 : n be given at
distinct points yi . Find the coefficients a j of a rational function

r(y) =
n∑

j=1

a j

y − z j
,

such that r(yi ) = fi , i = 1 : n. This solution is obtained from the linear system
Ca = f , where C = C(y, z) is the Cauchy matrix in (1.8.43).

Manyalgebraic properties ofCauchymatrices are similar to those ofVandermonde
matrices. The problem of solving the associated linear Cauchy system was treated

35 Augustin Cauchy (1789–1857) is the father of modern analysis and the creator of complex
analysis. He defined a complex function of a complex variable for the first time in 1829. He
produced no less than 729 papers on all the then known areas of mathematics.
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in 1841 by Cauchy [36, 1841], who gave the following explicit expression for the
determinant:

det(C) =

∏
1≤i< j≤n

(y j − yi )(z j − zi )

∏
1≤i≤ j≤n

(y j − zi )
.

The inverse of a Cauchy-like matrix is also a Cauchy-like matrix. Gastinel [91, 1960]
describes how the inverse C−1 of a Cauchy matrix can be computed in only O(n2)

flops; see also Davis [50, 1975], p. 288. A modification of this inversion formula has
been given by Calvetti and Reichel [35, 1996]. Cauchy linear systems Cx = b, for
which the elements of C have the special form

ci j = 1/(xi + y j ), 1 ≤ i, j ≤ n,

can also be solved with an O(n2) Björck–Pereyra-type algorithm; see Boros et al.
[24, 1999].

Any row or column permutation of a Cauchy matrix is again a Cauchy matrix.
This property allows fast and stable versions of GEPP to be developed for Cauchy
systems. These methods, first suggested by Heinig [123, 2004], apply also for the
more general case of Cauchy-like systems, where the matrix has the form

C =
(

aT
i b j

yi − z j

)

1≤i, j≤n

, ai , b j ∈ R
r , r ≤ n. (1.8.44)

A Cauchy-like matrix C can alternatively be defined as the solution of the dis-
placement equation

�C − C = AT B, (1.8.45)

with A = (a1, . . . , an) ∈ R
r×n , B = (b1, . . . , bn) ∈ R

r×n , and

� = diag(ω1, . . . , ωn),  = diag(λ1, . . . , λn).

The matrix pair (A, B) is called the generator of C and r is the displacement rank.
C is said to have a displacement structure with respect to� and if r � n. Equation
(1.8.45) is a Sylvester equation. It has a unique solution C provided that ωi �= λ j ,
1 ≤ i, j ≤ n; see Theorem 3.1.14, p. 448. Multiplying (1.8.45) by e j , we obtain

�c j − c jλ j = (�− λ j In)c j = AT b j , j = 1 :n,
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where � − λ j In is a diagonal matrix. This shows that the j th column of C can be
computed in O(n) flops. Similarly, premultiplying by eT

i gives an expression for the
i th row of C .

We now show that the solution of a Cauchy-like system can be computed in O(n2)

flops using GEPP. The first step is to zero out elements in the first column below the
diagonal:

C =
(

γ1 uT
1

r1 C2

)
=
(
1 0
l1 I

)(
1 uT

1
0 S2

)
, (1.8.46)

where l = r/γ1 and S2 = C2 − l1uT
1 is the Schur complement. The key result that

allows a fast version of Gaussian elimination is that S2 is again a Cauchy-like matrix
with displacement rank r .

Theorem 1.8.3 Let C be a matrix with γ1 �= 0 that satisfies the displacement
equation (1.8.45) with � = diag(ω1,�2),  = diag(λ1,2), A = (a1, A2), and
B = (b1, B2). Then the Schur complement S2 = C2−l1uT

1 satisfies the displacement
equation

�2S2 − S22 = ÃT
2 B̃2,

where Ã2 = A2 − a1lT
1 and B̃2 = B2 − b1uT

1 /γ1.

The first step of GE involves computing the first row and column γ1, r1, and u1
of C from (1.8.45) and forming l1 = r1/γ1. The generator (A2, B2) of the Schur
complement is then computed as outlined in the theorem. Define

Zδ =
(

0 δ

In−1 0

)
∈ R

n×n

and let � = Z1 and  = Z−1. Then every Toeplitz matrix satisfies the displacement
equation (1.8.45) with G having nonzero entries only in its first row and last column,
Indeed, it is easy to verify that the Toeplitz matrix (1.8.12) satisfies

Z1T − T Z1 = e1

⎛
⎜⎜⎜⎝

tn−1 − t−1
...

t1 − t−n+1
t0

⎞
⎟⎟⎟⎠

T

+

⎛
⎜⎜⎜⎝

t0
t−n+1 + t1

...

t−1 + tn−1

⎞
⎟⎟⎟⎠ eT

n . (1.8.47)

It follows that the displacement rank is at most equal to 2.
A Toeplitz matrix can be transformed into a Cauchy-like matrix in O(n log n)

flops using the FFT.

Theorem 1.8.4 Let T ∈ C
n×n be a (complex) Toeplitz matrix satisfying a displace-

ment equation
Z1T − T Z−1 = AH B.
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Then C = FTD−10 FH is a Cauchy-like matrix satisfying the displacement equation

D1C − CD−1 = (F AH )(BD0FH ),

where

F = 1√
n

(
e
2π i

n (k−1)( j−1))
1≤k, j≤n

is the normalized inverse DFT matrix and

D1 = diag(1, e2π i/n, . . . , e(n−1)2π i/n),

D−1 = diag(eπ i/n, e2π i/n, . . . , e(2n−1)π i/n),

D0 = diag(1, eπ i/n, . . . , e(n−1)π i/n).

Proof The theorem follows from the well-known factorizations

Z1 = FHD1F , Z−1 = D−10 FHD−1FD0. �

The GKO algorithm of Gohberg, Kailath, and Olshevsky [108, 1995] uses this
transformation and fast GEPP to solve Toeplitz linear systems. Toeplitz-plus-Hankel
matrices canbe shown tohavedisplacement rank r ≤ 4. Superfast algorithms for such
matrices can be developed using similar techniques; seeGu [115, 1998]. (See also the
two-volume book Separable Type Representations of Matrices and Fast Algorithms
by Y. Eidelman, I. Gohberg, and I. Haimovici, Operator Theory: Advances and
Applications, Vols. 234 and 235, Birkhäuser, 2014.)

Exercises

1.8.1 (a) Verify the identity (A ⊗ B)T = AT ⊗ BT .
(b) Show the identity vec(A)T vec(B) = trace(AT B).
(c) Show that trace(A ⊗ B) = trace(A) trace(B).

1.8.2 Show that the Hadamard (elementwise) product A.∗B a submatrix of the Kronecker product
A ⊗ B?

1.8.3 Let A ∈ R
n×n and B ∈ R

m×m . Show that

det(A ⊗ B) = det(A)m det(B)n . (1.8.48)

Deduce that the Kronecker product A⊗ B is nonsingular if and only if A and B are nonsin-
gular.

1.8.4 (a) Show that the inverse of a Toeplitz matrix is persymmetric, i.e., is symmetric about its
antidiagonal.

(b) Show that if a matrix M is both symmetric and persymmetric, then all elements are
defined by those in a wedge, as illustrated here for n = 6:

⎛
⎝
× × × × × ×

× × × ×
× ×

⎞
⎠ .

Show that for n even the number of elements needed to define M is n2/4+ n/2.
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1.8.5 (a) The matrix

A =
⎛
⎝
0 1 0
1 0 0
0 0 1

⎞
⎠

is symmetric and orthogonal. Is the matrix A irreducible?
(b) Show that it is not possible to represent A−1 = A as

A−1 =
⎛
⎝

u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3

⎞
⎠ .

1.8.7 Suppose we want to compute the DFT for N = 210. Roughly how much faster is the FFT
algorithm compared to the straightforward O(N 2) algorithm?

1.8.8 Work out the details in the bit-reversal permutation of the vector 0 : N − 1 for the case
N = 24.

1.8.9 (a) Let the special Hessenberg matrix W ∈ R
(n+1)×n have the QR factorization

W =
(

vT

Dn

)
=

⎛
⎜⎜⎜⎜⎜⎝

v1 v2 · · · vn
d1 0 · · · 0
0 d2 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · dn

⎞
⎟⎟⎟⎟⎟⎠
= Q

(
R
0

)
.

Let the last row of Q be eT
n+1Q = (qT , γ ). Show that R is the sum of a diagonal and

a semiseparable matrix R = D + triu (qvT ).
(b) Show how the upper triangular system (D + triu (qvT ))x = b can be solved in O(n)

arithmetic operations.

1.9 Notes and Further References

Introduction to Matrix Analysis by Stewart [182, 1973] was a popular undergraduate
textbook for many years. In 1983 the first edition of Matrix Computations by Golub
andVan Loan [111, 1983] appeared and quickly became a classic textbook. This text-
book was based on a series of lectures by the authors at Johns Hopkins University.
It has since been revised several times and the fourth edition is now available [112,
2013]. Other essential books for anyone interested in matrix computations include
the two volumesBasic Decompositions [183, 1998] andEigensystems [185, 2001] by
Stewart, which contain detailed descriptions of implementations of important matrix
algorithms. The book by Higham [129, 2002] is an indispensable source of informa-
tion on the accuracy and stability of matrix algorithms. Other highly recommended
modern texts are Demmel [54, 1997], Watkins [203, 2002], and the more elementary
book by Trefethen and Bau [193, 1997]. The Test Matrix Toolbox for Matlab by
N. J. Higham contains a collection of M-files for generating 58 parametrized test
matrices and other miscellaneous routines for computing factorizations and visual-
izing matrices. It is available on the Web; see Appendix D in [129, 2002].

A comprehensive survey of numerical methods in linear algebra in use before the
advent of computers is found in Faddeev and Faddeeva [80, 1963]. Bellman [13,
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1960] and Gastinel [92, 1970] are of interest as complementary reading. House-
holder [134, 1964] was one of the first truly modern texts on the theory of matrices in
numerical analysis. Two volumes on introductory and advanced matrix analysis by
Horn and Johnson [132, 2012] (recently revised) and [131, 1991] contain a wealth
of information. Older but still excellent texts on matrix theory are Gantmacher [87,
1959], [88, 1959]. A comprehensive treatment of perturbation theory and related
topics is found in Stewart and Sun [186, 1990]. Marcus and Minc [152, 1964] is a
handy survey of matrix theory and matrix inequalities. Other interesting texts are
Lancaster and Tismenetsky [145, 1985], Fiedler [81, 2008], and Kiełbasiński and
Schwetlick [143, 1988]. The recent second edition of Handbook of Linear Algebra,
edited by Hogben [130, 2013] contains several new chapter and covers both basic
and advanced topics of combinatorial and numerical linear algebra.
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Chapter 2
Linear Least Squares Problems

Of all the principles that can be proposed, I think there is none
more general, more exact, and more easy of application, than
that which consists of rendering the sum of squares of the errors
a minimum.

—Adrien-Marie Legendre, Nouvelles Méthodes pour la
Détermination des Orbites des Comètes. Paris, 1805

2.1 Introduction to Least Squares Methods

A fundamental task in scientific computing is to estimate parameters in a mathematical
model from observations that are subject to errors. A common practice is to reduce
the influence of the errors by using more observations than the number of parameters.
Consider a model described by a scalar function y(t) = f (c, t), where

f (c, t) =
n∑

j=1

c jφ j (t) (2.1.1)

is a linear combination of a set of basis functions φ j (t), and c = (c1, . . . , cn)T ∈ R
n

is a parameter vector to be determined from measurements (yi , ti ), i = 1:m, m > n.
The equations yi = f (c, ti ), i = 1:m, form a linear system, which can be written
in matrix form as Ac = y, ai j = φ j (ti ). Due to of errors in the observations, the
system is inconsistent, and we have to be content with finding a vector c ∈ R

n such
that Ac in some sense is the “best” approximation to y ∈ R

m .
There are many possible ways of defining the “best” solution to an inconsistent

linear equation Ax = b. A natural objective is to make the residual vector r = b−Ax
small. A choice that can be motivated for statistical reasons (see Theorem 2.1.1,
p. 241) and leads to a simple computational problem is to take c to be a vector that
minimizes the sum of squares

∑m
i=1 r2

i . This can be written as

min
x
‖Ax − b‖2, (2.1.2)
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which is the linear least squares problem. The minimizer x is called a least squares
solution of the system Ax = b.

Many of the great mathematicians at the turn of the 19th century worked on meth-
ods for “solving” overdetermined linear systems. In 1799 Laplace used the principle
of minimizing the sum of the absolute residuals with the added condition that they
sum to zero. He showed that the solution must then satisfy exactly n out of the m
equations. Gauss argued that since greater or smaller errors are equally possible in all
equations, a solution that satisfies precisely n equations must be regarded as less con-
sistent with the laws of probability. He was then led to the principle of least squares.
Although the method of least squares was first published by Legendre in 1805, Gauss
claimed he discovered the method in 1795 and used it for analyzing surveying data
and for astronomical calculations. Its success in analyzing astronomical data ensured
that the method of least squares rapidly became the method of choice for analyzing
observations. Another early important area of application was Geodetic calculations.

Example 2.1.1 An example of large-scale least squares problems solved today, con-
cerns the determination of the Earth’s gravity field from highly accurate satellite
measurements; see Duff and Gratton [77, 2006]). The model considered for the
gravitational potential is

V (r, θ, λ) = GM

R

L∑
l=0

( r

R

)l+1 l∑
m=0

Plm(cos θ)
[
Clm cos mλ+ Slm sin mλ

]
,

where G is the gravitational constant, M is the Earth’s mass, R is the Earth’s reference
radius, and Plm are the normalized Legendre polynomials of order m. The normalized
harmonic coefficients Clm , and Slm are to be determined. For L = 300, the resulting
least squares problem, which involves 90,000 unknowns and millions of observations,
needs to be solved on a daily basis. Better gravity-field models are important for a
wide range of application areas. �

2.1.1 The Gauss–Markov Model

To describe Gauss’s theoretical basis for the method of least squares we need to
introduce some concepts from statistics. Let y be a random variable and F(x) be the
probability that y ≤ x . The function F(x) is called the distribution function for y
and is a nondecreasing and right-continuous function that satisfies

0 ≤ F(x) ≤ 1, F(−∞) = 0, F(∞) = 1.

The expected value and the variance of y are defined as the Stieltjes integrals

E(y) = μ =
∞∫

−∞
yd F(y) and E(y − μ)2 = σ 2 =

∞∫

−∞
(y − μ)2d F(y).
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If y = (y1, . . . , yn)T is a vector of random variables and μ = (μ1, . . . , μn)T ,
μi = E(yi ), then we write μ = E(y). If yi and y j have the joint distribution
F(yi , y j ) the covariance between yi and y j is

cov(yi , y j ) = σi j = E[(yi − μi )(y j − μ j )]

=
∞∫

−∞
(yi − μi )(y j − μ j )d F(yi , y j ) = E(yiy j )− μiμ j ,

and σi i is the variance of the component yi . The covariance matrix of the vector y is

V(y) = E
[
(y − μ)(y − μ)T

]
= E(yyT )− μμT .

Definition 2.1.1 In the Gauss–Markov model it is assumed that a linear relationship
Ax = z holds, where A ∈ R

m×n is a known matrix, x ∈ R
n is a vector of unknown

parameters, and z is a constant but unknown vector. Let b = z + e ∈ R
m be a vector

of observations, where e is a random error vector such that

E(e) = 0, V(e) = σ 2V . (2.1.3)

Here V ∈ R
m×m is a symmetric nonnegative definite matrix and σ 2 an unknown

constant. In the standard case the errors are assumed to be uncorrelated and with
the same variance, i.e., V = Im .

Remark 2.1.1 In statistical literature the Gauss–Markov model is traditionally writ-
ten Xβ = y + e. For consistency, a different notation is used in this book.

We now prove some properties that will be useful in the following.

Lemma 2.1.1 Let B ∈ R
r×n be a matrix and y a random vector with E(y) = μ and

covariance matrix σ 2V . Then the expected value and covariance matrix of By is

E(By) = Bμ, V(By) = σ 2BVBT . (2.1.4)

In the special case that V = I and B = cT is a row vector, V(cT y) = μ‖c‖2
2.

Proof The first property follows directly from the definition of expected value. The
second follows from the relation

V(By) = E
[
(B(y − μ)(y − μ)T BT

]

= BE
[
(y − μ)(y − μ)T

]
BT = BVBT . �

The linear function cT y of the random vector y is an unbiased estimate of a
parameter θ if E(cT y) = θ . When such a function exists, θ is called an estimable
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parameter. Furthermore, cT y is a minimum variance (best) linear unbiased estimate
of θ if V(cT y) is minimized over all such linear estimators.

Theorem 2.1.1 (The Gauss–Markov Theorem) Consider a linear Gauss–Markov
model Ax = z, where the matrix A ∈ R

m×n has rank n. Let b = z + e, where e is
a random vector with zero mean and covariance matrix σ 2 I . Then the best linear
unbiased estimator of x is the vector x̂ that minimizes the sum of squares ‖Ax−b‖2

2.
This vector is unique and equal to the solution to the normal equations

ATAx = AT b. (2.1.5)

More generally, cT x̂ is the best linear unbiased estimator of any linear functional
θ = cT x. The covariance matrix of x̂ is

V (̂x) = σ 2(ATA)−1. (2.1.6)

An unbiased estimate of σ 2 is given by

s2 = r̂ T r̂

m − n
,

where r̂ = b − Ax̂ is the estimated residual vector.

Proof Let θ̂ = dT b be an unbiased estimate of θ = cT x . Then, since

E(θ̂) = dT E(b) = dT Ax = cT x,

AT d = c and from Lemma 2.1.1 it follows that V(g) = σ 2‖d‖2
2. Thus, we wish to

minimize dT d subject to AT d = c. Set

Q = dT d − 2zT (AT d − c),

where z is a vector of Lagrange multipliers. A necessary condition for Q to be a
minimum is that

∂ Q

∂d
= 2(dT − zT AT ) = 0,

or d = Az. Premultiplying this by AT gives ATAz = AT d = c. Since the
columns of A are linearly independent, x �= 0 implies that Ax �= 0 and there-
fore xT ATAx = ‖Ax‖2

2 > 0. Hence, ATA is positive definite and nonsingular. We
obtain z = (ATA)−1c and the best unbiased linear estimate is

dT b = cT (ATA)−1 AT b = cT x̂,

where x̂ is the solution to the normal equations.
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It remains to show that the same result is obtained if the sum of squares
Q(x) = (b − Ax)T (b − Ax) is minimized. Taking derivatives with respect to x gives

∂ Q

∂x
= −2AT (b − Ax) = 0,

which gives the normal equations. One can readily show that this is a minimum by
virtue of the inequality ‖b − Ay‖2

2 = ‖b − Ax‖2
2 + ‖A(x − y)‖2

2 ≥ ‖b − Ax‖2
2,

which holds if x satisfies the normal equations. �

Remark 2.1.2 In the literature, the Gauss–Markov theorem is sometimes stated in
less general forms. In the theorem, errors are not assumed to be normally distributed,
nor are they assumed to be independent and identically distributed (only uncorrelated
and to have zero mean and equal variance—a weaker condition).

Remark 2.1.3 It is straightforward to generalize the Gauss–Markov theorem to the
complex case. The normal equations then become AHAx = AH b. This has applica-
tions, e.g., in complex stochastic processes; see Miller [208, 1973].

The residual vector r̂ = b̂ − Ax of the least squares solution satisfies AT r̂ = 0,
i.e., r̂ is orthogonal to the column space of A. This condition gives n linear relations
among the m components of r̂ . It can be shown that the residuals r̂ and therefore also

s2 = ‖̂r‖2
2/(m − n) (2.1.7)

are uncorrelated with x̂ , i.e., V (̂r , x̂) = 0 and V(s2, x̂) = 0. An estimate of the
variance of the linear functional cT x is given by s2(cT (ATA)−1c). In particular, for
the components xi = eT

i x ,

s2(eT
i (ATA)−1ei ) = s2(ATA)−1

i i , (2.1.8)

the i th diagonal element of (ATA)−1.
Gauss gave the first justification of the least squares principle as a statistical

procedure in [111, 1809]. He assumed that the errors were uncorrelated and normally
distributed with zero mean and equal variance. Later, Gauss gave the principle of
least squares a sound theoretical foundation in two memoirs Theoria Combinationis
[113, 1821] and [114, 1823]. Here the optimality of the least squares estimate is
shown without assuming a particular distribution of the random errors.

The recently reprinted text by Lawson and Hanson [190, 1974] contains much
interesting original material and examples, including Fortran programs. Numerical
methods for solving least squares problems are treated in more detail in Björck [27,
1996] and Björck [28, 2004]. For results on accuracy and stability of the algorithm
used the masterly presentation by Higham [162, 2002] is indispensable. Modern
computational methods with examples from practical applications are featured in
Hansen et al. [154, 2012].
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For more detailed accounts of the invention of the principle of least squares the
reader is referred to the excellent reviews by Placket [236, 1972], Stigler [275, 1981],
[276, 1986], and Goldstine [125, 1977]. Markov may have clarified some implicit
assumptions of Gauss in his textbook [204, 1912], but proved nothing new; see
Placket [235, 1949] and [236, 1972]. An English translation of the memoirs of Gauss
has been given by Stewart [112, 1995].

2.1.2 Projections and Geometric Characterization

The solution to the least squares problem minx ‖Ax − b‖2 has a geometric interpre-
tation that involves an orthogonal projection, which we now introduce.

A matrix P ∈ C
n×n such that P2 = P is called a projector. If P is a projector

and v ∈ C
n an arbitrary vector, then the decomposition

v = Pv + (I − P)v ≡ v1 + v2 (2.1.9)

is unique and v1 = Pv is the projection of v onto R(P). Furthermore, Pv2 =
(P − P2)v = 0 and

(I − P)2 = I + P2 − 2P = I − P,

which shows that I−P is a projection onto N (P). If λ is an eigenvalue of a projector
P , then there is a nonzero vector x such that Px = λx . But then P2x = λPx = λ2x
and it follows that λ2 = λ. Hence, the eigenvalues of P are either 1 or 0 and the rank
r of P equals the sum of its eigenvalues, i.e., r = trace(P).

If P is Hermitian, P H = P , then P is a unitary projector and

vH
1 v2 = (Pv)H (I − P)v = vH P(I − P)v = vH (P − P2)v = 0,

i.e., v2 ⊥ v1. Then we write P⊥ = I − P . It can be shown that the unitary projector
P onto a given subspace S is unique, see Problem 2.1.2. If S is real, then P is
real and called an orthogonal projector. If P is a unitary projector, then ‖v‖2

2 =
(v1+v2)

H (v1+v2) = ‖v1‖2
2+‖v2‖2

2, which is the Pythagorean theorem. It follows
that

‖Pv‖2 ≤ ‖v‖2 ∀ v ∈ C
m . (2.1.10)

Equality holds for all vectors in R(P) and thus ‖P‖2 = 1. The converse is also
true (but not trivial to prove); P is a unitary projection only if (2.1.10) holds. The
following property follows immediately from the Pythagorean theorem.

Lemma 2.1.2 Let z = Px ∈ S be the unitary projection of x ∈ C
n onto the

subspace S ⊂ C
n. Then z is the point in S closest to x.
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Ax

b b−Ax

R(A)

Fig. 2.1 Geometric characterization of least squares solutions

Let U = (U1 U2) be a unitary matrix and U1 a basis for the subspace S. Then the
unitary projectors onto S and S⊥ are

P = U1U H
1 , P⊥ = U2U H

2 = I −U1U H
1 . (2.1.11)

In particular, if q1 is a unit vector, then P⊥ = I − q1qT
1 is called an elementary

unitary projector.
A least squares solution x decomposes the right-hand side b into two orthogonal

components,

b = Ax + r, Ax ∈ R(A), r ∈ N (AH ), (2.1.12)

where R(A) is the column space of A. This simple geometrical characterization is
illustrated Fig. 2.1.

If rank (A) < n, then the solution x to the normal equations is not unique. But the
residual vector r = b− Ax is always uniquely determined by the condition (2.1.12).
Let PAb denote the unique orthogonal projection of b onto R(A). Then any solution
to the consistent linear system

Ax = PAb, (2.1.13)

is a least squares solution. The unique solution of minimum norm ‖x‖2 is called the
pseudoinverse solution and denoted by x†. It is a linear mapping of b, x† = A†b,
where A† is the pseudoinverse of A. A convenient characterization is:

Theorem 2.1.2 The pseudoinverse solution of the least squares problem
minx ‖Ax − b‖2 is uniquely characterized by the two conditions

r = b − Ax ⊥ R(A), x ∈ R(AH ). (2.1.14)

Proof Let x be any least squares solution and set x = x1 + x2, where x1 ∈ R(AH )

and x2 ∈ N (A). Then Ax2 = 0, so x = x1 is also a least squares solution. By the
Pythagorean theorem, ‖x‖2

2 = ‖x1‖2
2+‖x2‖2

2, which is minimized when x2 = 0. �
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The solution to the linear least squares problem minx ‖Ax−b‖2, where A ∈ R
m×n ,

is fully characterized by the two equations AT y = 0 and y = b − Ax . Together,
these form a linear system of n + m equations for x and the residual vector y:

(
I A

AT 0

)(
y
x

)
=
(

b
c

)
, (2.1.15)

with c = 0. System (2.1.15) is often called the augmented system. It is a special
case of a saddle-point system and will be used in the perturbation analysis of least
squares problems (Sect. 2.2.2) as well as in the iterative refinement of least squares
solutions (Sect. 2.3.8).

The following theorem shows that the augmented system gives a unified formu-
lation of two dual least squares problems.

Theorem 2.1.3 If the matrix A ∈ R
m×n has full column rank, then the augmented

system (2.1.15) is nonsingular and gives the first-order conditions for the following
two optimization problems:

1. The linear least squares problem:

min
x

1
2‖Ax − b‖2

2 + cT x . (2.1.16)

2. The conditional least squares problem:

min
y

1
2‖y − b‖2 subject to AT y = c. (2.1.17)

Proof The system (2.1.15) can be obtained by differentiating (2.1.16) to obtain
AT (Ax − b) + c = 0, and setting y = r = b − Ax . It can also be obtained by
differentiating the Lagrangian function

L(x, y) = 1

2
yT y − yT b + xT (AT y − c)

of (2.1.17) and equating to zero. Here x is the vector of Lagrange multipliers. �

The standard least squares problem is obtained by taking c = 0 in (2.1.15). If we
instead take b = 0, then by (2.1.17) the solution y is the minimum-norm solution
of the system AT y = c. We assume that AT has full row rank so this system is
consistent. The solution, which satisfies the normal equations

ATAx = AT b − c, (2.1.18)

can be written

y = b − A(ATA)−1(AT b − c) = P⊥A b + A(ATA)−1c, (2.1.19)

where P⊥A = I − A(ATA)−1 AT is the orthogonal projection onto N (AT ).
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Example 2.1.2 The heights h(tk) of a falling body at times tk = t0 + k�t lie on a
parabola, i.e., the third differences of h(tk) will vanish. Let h̄k be measured values of
h(tk), k = 1:m. Least squares approximations hk = h̄k−yk , where yk are corrections,
are found by solving the conditional least squares problem

min ‖y‖2 subject to AT y = c,

where c = AT h̄ and (m = 7)

AT =

⎛
⎜⎜⎝

1 −3 3 −1 0 0 0
0 1 −3 3 −1 0 0
0 0 1 −3 3 −1 0
0 0 0 1 −3 3 −1

⎞
⎟⎟⎠ .

Note that the corrected values satisfy h̄k − yk ⊥ R(A). �
Lanczos [184, 1958] used the augmented system for computing pseudoinverse

solutions of rectangular systems. At that time Lanczos was not aware of the connec-
tion with earlier work on the SVD and he developed the theory independently.

In many least squares problems the unknowns x can be naturally partitioned into
two groups, i.e.,

min
x1,x2

∥∥∥∥b − (A1 A2
) (x1

x2

)∥∥∥∥
2
, x1 ∈ R

n1 , x2 ∈ R
n2 , (2.1.20)

where A = (A1 A2
) ∈ R

m×n . Assume that A has full column rank and let PA1 be
the orthogonal projection onto R(A1). For any x2, the residual vector b− A2x2 can
be split into two orthogonal components,

r1 = PA1(b − A2x2), r2 = P⊥A1
(b − A2x2),

where P⊥A1
= I − PA1 . Problem (2.1.20) then becomes

min
x1,x2

∥∥∥(r1 − A1x1)+ P⊥A1
(b − A2x2)

∥∥∥
2
. (2.1.21)

Since r1 ∈ R(A1), the variables x1 can always be chosen so that A1x1 − r1 = 0. It
follows that in the least squares solution to (2.1.20), x2 is the solution to the reduced
least squares problem

min
x2
‖P⊥A1

(b − A2x2)‖2, (2.1.22)

where the variables x1 have been eliminated. Let x2 be the solution to this reduced
problem. Then x1 can be found by solving the least squares problem

min
x1
‖(b − A2x2)− A1x1‖2. (2.1.23)
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One application of this is in two-level least squares methods. Here n1 � n2 and the
projection matrix P⊥A1

is computed by a direct method. The reduced problem (2.1.22)
is then solved by an iterative least squares method.

2.1.3 The Method of Normal Equations

From the time of Gauss until the beginning of the computer age, least squares prob-
lems were solved by forming the normal equations and solving them by some vari-
ant of symmetric Gaussian elimination. We now discuss the details in the numerical
implementation of this method. Throughout this section we assume that the matrix
A ∈ R

m×n has full column rank.
The first step is to compute the symmetric positive definite matrix C = ATA and

the vector d = AT b. This requires mn(n+ 1) flops and can be done in two different
ways. In the inner product formulation A = (a1, a2, . . . , an) and b are accessed
columnwise. We have

c jk = (ATA) jk = aT
j ak, d j = (AT b) j = aT

j b, 1 ≤ j ≤ k ≤ n. (2.1.24)

Since C is symmetric, it is only necessary to compute and store the 1
2 n(n + 1)

elements in its lower (or upper) triangular part. Note that if m  n, then the number
of required elements is much smaller than the number mn of elements in A. In this
case forming the normal equations can be viewed as a data compression.

In (2.1.24) each column of A needs to be accessed many times. If A is held in
secondary storage, a row oriented outer product algorithm is more suitable. Denoting
the i th row of A by ãT

i , i = 1:m, we have

C =
m∑

i=1

ãi ã
T
i , d =

m∑
i=1

bi ãi . (2.1.25)

Here ATA is expressed as the sum of m matrices of rank one and AT b as a linear
combination of the transposed rows of A. This approach has the advantage that just
one pass through the rows of A is required, each row being fetched (possibly from
auxiliary storage) or formed by computation when needed. No more storage is needed
than that for the upper (or lower) triangular part of ATA and AT b. This outer product
form may also be preferable if A is sparse; see Problem 1.7.3.

To solve the normal equations, the Cholesky factorization

C = ATA = RT R, R ∈ R
n×n (2.1.26)

is computed by one of the algorithms given in Sect. 1.3.1. The least squares solution
is then obtained by solving RT Rx = d, or equivalently the two triangular systems

RT z = d, Rx = z (2.1.27)

Ham
Pencil

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Forming C and computing its Cholesky factorization requires (neglecting lower-order
terms) mn2 + 1

3 n3 flops. Forming d and solving the two triangular systems requires
mn + n2 flops for each right-hand side.

If b is adjoined as the (n + 1)st column to A, the corresponding cross product
matrix is (

AT

bT

) (
A b

) =
(

ATA AT b
bT A bT b

)
.

The corresponding Cholesky factor has the form

R̃ =
(

R z
0 ρ

)
,

where RT R = ATA, RT z = AT b, and zT z + ρ2 = bT b. It follows that the least
squares solution satisfies Rx = z. The residual vector satisfies r + Ax = b, where
Ax ⊥ r . By the Pythagorean theorem it follows that ρ = ‖r‖2.

Example 2.1.3 In linear regression a model y = α + βx is fitted to a set of data
(xi , yi ), i = 1:m. The parameters α and βx are determined as the least squares
solution to the system of equations

⎛
⎜⎜⎜⎝

1 x1
1 x2
...

...

1 xm

⎞
⎟⎟⎟⎠
(

α

β

)
=

⎛
⎜⎜⎜⎝

y1
y2
...

ym

⎞
⎟⎟⎟⎠ .

Using the normal equations and eliminating α gives the “textbook” formulas

β = (xT y − m ȳx̄
)/(

xT x − m x̄2), α = ȳ − β x̄ . (2.1.28)

where x̄ = 1
m eT x and ȳ = 1

m eT y are the mean values. The normal equations will
be ill-conditioned if xT x ≈ mx̄2.

This is an example where ill-conditioning can be caused by an unsuitable for-
mulation of the problem. A more accurate expression for β can be obtained by first
subtracting mean values from the data. The model then becomes y − ȳ = β(x − x̄)

for which the normal equation matrix is diagonal (show this!). We obtain

β =
m∑

i=1

(yi − ȳ)(xi − x̄i )
/ m∑

i=1

(xi − x̄)2. (2.1.29)

This more accurate formula requires two passes through the data. Accurate
algorithms for computing sample means and variances are given by Chan et al.
[47, 1983]. �
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Preprocessing the data by subtracting the means is common practice in data
analysis and called centering the data. This is equivalent to using the revised model

(
e A

) (ξ

x

)
= b, (2.1.30)

where as before e = (1, . . . , 1)T . Subtracting the means is equivalent to multiplying
A ∈ R

m×n and b ∈ R
m with the projection matrix (I − eeT /m), giving

A = A − 1

m
e(eT A), b = b − eT b

m
u. (2.1.31)

The solution is obtained by first solving the reduced least squares problem
minx ‖Ax − b‖2 and then setting

ξ = eT (b − Ax)/m.

Note that this is just a special case of the two-block solution derived in Sect. 2.1.2.
A different choice of parametrization can often significantly reduce the condition

number of the normal equation. In approximation problems one should try to use
orthogonal, or nearly orthogonal, basis functions. For example, in fitting a polynomial
P(x) of degree k, an approach (often found in elementary textbooks) is to set

P(x) = a0 + a1x + · · · + ak xk

and solve the normal equations for the coefficients ai , i = 0:k. Much better accuracy
is obtained if P(x) is expressed as a linear combination of a suitable set of orthog-
onal polynomials; see Forsythe [102, 1957] and Dahlquist and Björck [63, 2008],
Sect. 4.5.6. If the elements in A and b are the original data, ill-conditioning cannot
be avoided in this way. In Sects. 2.3 and 2.4 we consider methods for solving least
squares problems using orthogonal factorizations.

By Theorem 2.7.2, in a Gauss–Markov linear model with error covariance matrix
σ 2V , the unbiased estimates of the covariance matrix of x̂ and σ 2 are given by

Vx = s2(AT V−1 A)−1, s2 = 1

m − n
r̂ T V−1̂r . (2.1.32)

The estimated covariance matrix of the residual vector r̂ = b − Ax̂ is

σ 2Vr = σ 2 A(AT V−1 A)−1 AT . (2.1.33)

In order to assess the accuracy of the computed estimate of x it is often required to
compute the matrix Vx or part of it. Let R be the upper triangular Cholesky factor of
ATA. For the standard linear model (V = I , σ 2 = 1)

Vx = (RT R)−1 = R−1 R−T . (2.1.34)
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The inverse matrix S = R−T is again lower triangular and can be computed in n3/3
flops, as outlined in Sect. 1.2.6. The computation of the lower triangular part of the
symmetric matrix ST S requires another n3/3 flops.

Usually, only a selection of elements in Vx are wanted. The covariance of two
linear functionals f T x and gT x is

cov( f T x, gT x) = σ 2 f T Vx g = σ 2( f T R−1)(R−T g) = σ 2uT v. (2.1.35)

Here u and v can be calculated by solving the two lower triangular systems RT u = f
and RT v = g by forward substitution. The covariance of the components xi = eT

i x
and x j = eT

j x of the solution is obtained by taking f = ei and g = e j . In particular,
the variances of xi , i = 1:n, are

var(xi ) = σ 2‖ui‖2
2, RT ui = ei , i = 1:n. (2.1.36)

The vector ui is the i th column of the lower triangular matrix S = R−T . Thus, it has
i − 1 leading zeros. For i = n all components in ui are zero except the last, which
is 1/rnn .

If the error covariance matrix is correct, then the components of the normalized
residuals

r̃ = 1

s
(diagVr )

−1/2̂r (2.1.37)

should be uniformly distributed random quantities. In particular, the histogram of the
entries of the residual should look like a bell curve.1 The normalized residuals are
often used to detect and identify bad data, which correspond to large components in r̃ .

Example 2.1.4 Least squares methods were first applied in astronomic calculations.
In an early application Laplace [186, 1820] estimated the mass of Jupiter and Uranus
and assessed the accuracy of the results by computing the corresponding variances.
He made use of 129 observations of the movements of Jupiter and Saturn col-
lected by Bouvard.2 In the normal equations ATAx = AT b, the mass of Uranus
is (1+ x1)/19504 and the mass of Jupiter (1+ x2)/1067.09, where the mass of the
sun is taken as unity.

Working from these normal equations Laplace obtained the least squares solution
x1 = 0.0895435, x2 = −0.0030431. This gave the mass of Jupiter and Uranus as a
fraction of the mass of the sun as 1070.3 for Jupiter and 17,918 for Uranus. Bouvard
also gave the square residual norm as ‖b − Ax̂‖2

2 = 31,096. The covariance matrix

1 The graph of the probability density function of a normally distributed random variable with mean
value μ and variance σ 2 is given by f (x) = 1√

2πσ 2
e−(x−μ)2/(2σ 2). It is “bell” shaped and known

as a bell curve.
2 Alexis Bouvard (1767–1843), French astronomer and director of the Paris Observatory.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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of the solution is Vx = σ 2(RT R)−1, and s2 = 31096/(129 − 6) is an unbiased
estimate of σ 2. Laplace computed the first two diagonal elements

v11 = 0.5245452 · 10−2, v22 = 4.383233 · 10−6.

Taking square roots he obtained the standard deviations 0.072426 of x1 and 0.002094
of x2. From this Laplace concluded that the computed mass of of Jupiter is very reli-
able, while that of Uranus is not. He further could state that with a probability of
1− 10−6 the error in the computed mass of Jupiter is less than one per cent. A more
detailed discussion of Laplace’s paper is given by Langou [185, 2009]. �

2.1.4 Stability of the Method of Normal Equations

We first determine the condition number of the matrix C = AHA. Using the SVD of
A ∈ C

m×n , we obtain

AHA = V
(
 0

)
(U H U )

(


0

)
V H = V

(
2 0
0 0

)
V H . (2.1.38)

This shows that σi (C) = σi (A)2, i = 1:n, and

κ(C) = σmax(C)

σmin(C)
= σmax(A)2

σmin(A)2 = κ(A)2.

Hence, by explicitly forming the normal equations, the condition number is squared.
By Theorem 1.2.3 the relevant condition number for a consistent linear system is

κ(A). Thus, at least for small residual problems, the system of normal equations can
be much worse conditioned than the least squares problem from which it originated.
This may seem surprising, since this method has been used since the time of Gauss.
The explanation is that in hand calculations extra precision was used when forming
and solving normal equations. As a rule of thumb, it suffices to carry twice the number
of significant digits as in the entries in the data A and b.

The rounding errors performed in forming the matrix of the normal equations
ATA are not in general equivalent to small perturbations of the initial data matrix
A. From the standard model for floating point computation the computed matrix
C̄ = f l(ATA) satisfies

C̄ = f l(ATA) = C + E, |E | < γm |A|T |A|. (2.1.39)

where (see Lemma 1.4.2) |γm | < mu/(1−mu) and u is the unit roundoff. A similar
estimate holds for the rounding errors in the computed vector AT b. Hence, even the
exact solution of the computed normal equations is not equal to the exact solution to
a problem where the data A and b have been perturbed by small amounts. In other
words, although the method of normal equations often gives a satisfactory result
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it cannot be backward stable. The following example illustrates how significant
information in the data may be lost.

Example 2.1.5 Läuchli [188, 1961]: Consider the system Ax = b, where

A =

⎛
⎜⎜⎝

1 1 1
ε

ε

ε

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , |ε| � 1.

We have, exactly

ATA =
⎛
⎝

1+ ε2 1 1
1 1+ ε2 1
1 1 1+ ε2

⎞
⎠ , AT b =

⎛
⎝

1
1
1

⎞
⎠ ,

x = 1

3+ ε2

(
1 1 1

)T
, r = 1

3+ ε2

(
ε2 −1 −1 −1

)T
.

Now assume that ε = 10−4, and that we use eight-digit decimal floating point
arithmetic. Then 1 + ε2 = 1.00000001 rounds to 1, and the computed matrix ATA
will be singular. We have lost all information contained in the last three rows of A.
Note that the residual in the first equation is O(ε2), but O(1) in the others. �

To assess the error in the least squares solution x̄ computed by the method of nor-
mal equations, we must also account for rounding errors in the Cholesky factorization
and in solving the triangular systems. For A ∈ R

n×n , using the error bound given in
Theorem 1.4.4 a perturbation analysis shows that provided 2n3/2uκ(A)2 < 0.1, an
upper bound for the error in the computed solution x̄ is

‖x̄ − x‖2 ≤ 2.5n3/2uκ(A)2‖x‖2. (2.1.40)

In Sect. 1.2.8 we studied how the scaling of rows and columns of a linear sys-
tem Ax = b influenced the solution computed by Gaussian elimination. For a least
squares problem minx ‖Ax − b‖2 scaling the rows is not allowed. The row scaling
is determined by the error variances, and changing this will change the problem.
However, we are free to scale the columns of A. Setting x = Dx ′ gives the normal
equations

(AD)T (AD)x ′ = D(ATA)Dx ′ = DAT b.

Hence, this corresponds to a symmetric scaling of rows and columns in ATA. The
Cholesky algorithm is numerically invariant under such a scaling; cf. Theorem 1.2.8.
This means that even if this scaling is not carried out explicitly, the rounding error
estimate (2.1.40) for the computed solution x̄ holds for all D > 0, and we have

‖D(x̄ − x)‖2 ≤ 2.5n3/2uκ2(AD)‖Dx‖2.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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(Note that scaling the columns changes the norm in which the error in x is measured.)
Denote the minimum condition number under a symmetric scaling with a positive
diagonal matrix by

κ ′(ATA) = min
D>0

κ(DATAD). (2.1.41)

By (2.2.33), choosing D so that all columns in AD have equal 2-norm will overesti-
mate the minimum condition number by at most a factor n.

Example 2.1.6 Column scaling can reduce the condition number considerably. In
cases where the method of normal equations gives surprisingly accurate solution to
a seemingly very ill-conditioned problem, the explanation often is that the condition
number of the scaled problem is quite small. The matrix A ∈ R

21×6 with elements

ai j = (i − 1) j−1, 1 ≤ i ≤ 21, 1 ≤ j ≤ 6,

arises when fitting a fifth degree polynomial p(t) = c0 + c1t + c2t2 + · · · + c5t5 to
observations at points ti = 0, 1, . . . , 20. The condition numbers are

κ(ATA) = 4.10 · 1013, κ(DATAD) = 4.93 · 106,

where D is the column scaling in (2.2.33). Here scaling reveals that the condition
number is seven orders of magnitude smaller than the first estimate. �

Iterative refinement is a simple way to improve the accuracy of a solution x̄
computed by the method of normal equations; see Sect. 1.4.6.

Algorithm 2.1.1 (Iterative Refinement) Set x1 = x̄ , and for s = 1, 2, . . . until
convergence do

1. Compute the residual rs = b − Axs.
2. Solve for the correction RT Rδxs = AT rs .
3. Add correction xs+1 = xs + δxs .

Information lost by forming ATA and AT b is recovered in computing the residual.
Each refinement step requires only one matrix-vector multiplication each with A and
AT and the solution of two triangular systems. Note that the first step (i = 0) is iden-
tical to solving the normal equations. The errors will initially be reduced by a factor

ρ̄ = cuκ ′(ATA), (2.1.42)

even if no extra precision is used in Step 1. (Note that this is true even when no scal-
ing of the normal equations has been performed!) Here c depends on the dimensions
m, n, but is of moderate size. Several steps of refinement may be needed to get good
accuracy.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Example 2.1.7 If c ≈ 1, the error will be reduced to a backward stable level in p
steps if κ(A) ≤ u−p/(2p+1). (As remarked before, κ(A) is the condition number for
a small residual problem.) For example, with u = 10−16, the maximum value of
κ(A) for different values of p are

105.3, 106.4, 108, p = 1, 2,∞.

For moderately ill-conditioned problems the normal equations combined with itera-
tive refinement can give very good accuracy. For more ill-conditioned problems the
methods based on QR factorization described in Sect. 2.3 should be preferred. �

Exercises

2.1.1 (a) Show that if w ∈ R
n and wT w = 1, then the matrix P(w) = I − 2wwT is both

symmetric and orthogonal.
(b) Given two vectors x, y ∈ R

n , x �= y, ‖x‖2 = ‖y‖2, show that

P(w)x = y, w = (y − x)/‖y − x‖2.

2.1.2 Let S ⊆ R
n be a subspace, and let P1 and P2 be orthogonal projections onto S = R(P1) =

R(P2). Show that for any z ∈ R
n ,

‖(P1 − P2)z‖2
2 = (P1z)T (I − P2)z + (P2z)T (I − P1)z = 0

and hence P1 = P2, i.e., the orthogonal projection onto S is unique.
2.1.3 Let A ∈ R

m×n and rank (A) = n. Show that the minimum-norm solution of the underde-
termined system AT y = c can be computed as follows:

(i) Form the matrix ATA, and compute its Cholesky factorization ATA = RT R.
(ii) Solve the two triangular systems RT z = c, Rx = z, and compute y = Ax .

2.1.4 (a) Let A = (A1 A2) ∈ R
m×n be partitioned so that the columns in A1 are linearly

independent. Show that for the matrix of normal equations

ATA =
(

AT
1 A1 AT

1 A2

AT
2 A1 AT

2 A2

)

the Schur complement of AT
1 A1 in ATA can be written in factored form as

S = AT
2 (I − A1(AT

1 A1)
−1 AT

1 )A2,

where P1 = A1(AT
1 A1)

−1 AT
1 is the orthogonal projection onto R(A1).

(b) Consider the partitioned least squares problem

min
x1,x2

∥∥∥(A1 A2)

(
x1
x2

)
− b
∥∥∥2

2
.

Show that the solution can be obtained by first solving for x2 and then for x1:

min
x2
‖(I − P1)(A2x2 − b)‖2

2, min
x1
‖A1x1 − (b − A2x2)‖2

2.

2.1.5 (Stigler [275, 1981]) In 1793 the French decided to base the new metric system upon a unit,
the meter, equal to one 10,000,000th part of the distance from the north pole to the equator
along a meridian arc through Paris. The following famous data obtained in a 1795 survey
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consist of four measured sections of an arc from Dunkirk to Barcelona. For each section the
length S of the arc (in modules), the degrees d of latitude, and the latitude L of the midpoint
(determined by the astronomical observations) are given.

Segment Arc length S Latitude d Midpoint L
Dunkirk to Pantheon 62472.59 2.18910◦ 49◦ 56′ 30′′
Pantheon to Evaux 76145.74 2.66868◦ 47◦ 30′ 46′′
Evaux to Carcassone 84424.55 2.96336◦ 44◦ 41′ 48′′
Carcassone to Barcelona 52749.48 1.85266◦ 42◦ 17′ 20′′

If the earth is ellipsoidal, then to a good approximation it holds that

z + y sin2(L) = S/d,

where z and y are unknown parameters. The meridian quadrant then equals M = 90(z+y/2)

and the eccentricity e is found from 1/e = 3(z/y + 1/2). Use least squares to determine z
and y and then M and 1/e.

2.1.6 The Hald cement data (see [145, 1952]), p. 647, is used in several books and papers as an
example of regression analysis. The right-hand side is the heat evolved in cement during
hardening, and the explanatory variables are four different ingredients of the mix and a
constant term. There are m = 13 observations:

A = (e, A2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 7 26 6 60
1 1 29 15 52
1 11 56 8 20
1 11 31 8 47
1 7 52 6 33
1 11 55 9 22
1 3 71 17 6
1 1 31 22 44
1 2 54 18 22
1 21 47 4 26
1 1 40 23 34
1 11 66 9 12
1 1 68 8 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

78.5
74.3

104.3
87.6
95.9

109.2
102.7
72.5
93.1

115.9
83.8

113.3
109.4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.1.43)

(a) Solve the least squares problem ‖Ax − b‖2 by the method of normal equations. Show
that κ(A) ≈ 3.245 · 103.

(b) The first column of ones has been added to extract the mean values. Set x = (ξ, y)

and compute B = A2 − epT and c = b − βe, where p = (eT A2)/m, β = eT b/m, to
obtain the reduced problem minx ‖By = c‖2. Show that this problem is well conditioned:
κ(B) = 23.0. The intercept variable ξ can then be obtained from ξ + pT y = β.

(c) Show that for this problem, normalizing the column of B to have unit length only decreases
the condition number a negligible amount, κ(BD) = 19.6.

2.2 Least Squares Problems and the SVD

The SVD, introduced in Sect. 1.1.9, is a powerful tool for both analyzing and solving
linear least squares problems. The reason is that the unitary matrices that transform
A ∈ C

m×n to diagonal form do not change the �2-norm. The SVD also has a key

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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role in many algorithms for approximating a given matrix with a matrix of lower
rank. This has many important applications, e.g., in data compression and model
reduction. In this section we collect a number of results that will be used extensively
in the following.

One of the most important properties of the singular values is that they are char-
acterized by an extremal property. Related to this is that the best approximation of
a matrix A ∈ C

m×n by a matrix of lower rank is obtained by truncating the SVD
expansion of A. This is the basis for numerous applications.

2.2.1 SVD and the Pseudoinverse

We have the following fundamental result.

Theorem 2.2.1 Consider the least squares problem minx ‖Ax − b‖2, where A ∈
C

m×n and r = rank (A) ≤ min(m, n). Let A have the SVD

A = (U1 U2
) (1 0

0 0

)(
V H

1
V H

2

)
, (2.2.1)

where U1 and V1 have r columns and the diagonal matrix 1 > 0. Then the unique
pseudoinverse solution is

x = V1
−1
1 U H

1 b. (2.2.2)

Proof Setting x = V z, and using the unitary invariance of the spectral norm, we have

‖b − Ax‖2 = ‖U H (b − AV z)‖2

=
∥∥∥
(

c1
c2

)
−
(

1 0
0 0

)(
z1
z2

)∥∥∥
2
=
∥∥∥
(

c1 −1z1
c2

)∥∥∥
2
.

where ci = U H
i b, i = 1, 2. The residual norm will attain its minimum value equal

to ‖c2‖2 for z1 = −1
1 c1 and z2 arbitrary. Obviously the choice z2 = 0 minimizes

‖x‖2 = ‖V z‖2 = ‖z‖2. �

Note that Theorem (2.2.1) applies to the solution of both overdetermined and
underdetermined linear systems. The pseudoinverse of A is

A† = (V1 V2
) (−1

1 0

0 0

)(
U H

1

U H
2

)
= V1

−1
1 U H

1 ∈ C
n×m, (2.2.3)

which maps b to x and represents the SVD of A†. The pseudoinverse solution (2.2.3)
can also be written

x =
r∑

i=1

ci

σi
vi , ci = u H

i b. (2.2.4)
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Hence, x lies in a subspace of dimension less than or equal to r . Note that for
computing the pseudoinverse solution, we only need to compute the “thin” SVD,
i.e., the nonzero singular values, the matrix V1 and the vector U H

1 b. Methods for
computing the SVD are described in Sects. 3.5.3 and 3.6.3.

The pseudoinverse is relevant when it is reasonable to use the 2-norm. The same
is true for orthogonal transformations, the SVD, and even the notion of symmetric
and Hermitian matrices. If another inner product is more relevant, then the definition
of pseudoinverse should be modified accordingly.

The following definition generalizes the condition number (1.2.45) of a square
nonsingular matrix.

Definition 2.2.1 Let A ∈ R
m×n have rank r > 0 and singular values equal to

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then the 2-norm condition number of A is

κ2(A) = ‖A‖2‖A†‖2 = σ1/σr . (2.2.5)

From (2.2.4) it follows that for a particular right-hand side b the singular values
corresponding to uT

i b = 0 do not enter in the solution. Therefore, the effective
condition number of A with respect to b is obtained by taking the maximum and
minimum in (2.2.5) only over singular values for which ci �= 0. This concept has
been made more precise by Chan and Foulser [45, 1988].

The orthogonal projections onto the four fundamental subspaces (1.1.93)–(1.1.94)
of A have the following simple expressions in terms of the pseudoinverse:

PA = AA† = U1U H
1 , P⊥A = I − AA† = U2U H

2 , (2.2.6)

PAH = A† A = V1V H
1 , P⊥AH = I − A† A = V2V H

2 . (2.2.7)

The matrix A† is often called the Moore–Penrose inverse. Moore [210, 1920]
developed the concept of the general reciprocal, later rediscovered by Bjerhammar
[21, 1951]. Penrose [231, 1955] gave an elegant algebraic characterization and
showed that X = A† is uniquely determined by the four Penrose conditions:

(1) AXA = A, (2) XAX = X, (2.2.8)

(3) (AX)H = AX, (4) (X A)H = XA. (2.2.9)

It can be directly verified that X = A† given by (2.2.3) satisfies these four conditions.
In particular, this shows that A† does not depend on the particular choices of U and V
in the SVD. The following properties of the pseudoinverse easily follow from (2.2.3).

Theorem 2.2.2
1. (A†)† = A; 2. (A†)H = (AH )†;
3. (αA)† = α−1 A†, α �= 0; 4. (AHA)† = A†(A†)H ;
5. if U and V are unitary, then (U AV H )† = V A†U H ;
6. if A =∑i Ai , where Ai AH

j = 0, AH
i A j = 0, i �= j , then A† =∑i A†

i ;

http://dx.doi.org/10.1007/978-3-319-05089-8_3
http://dx.doi.org/10.1007/978-3-319-05089-8_3
http://dx.doi.org/10.1007/978-3-319-05089-8_1
http://dx.doi.org/10.1007/978-3-319-05089-8_1
http://dx.doi.org/10.1007/978-3-319-05089-8_1
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7. if A is normal (AAH = AHA), then A† A = AA† and (An)† = (A†)n;
8. A, AH , A†, and A† A all have rank equal to trace(A† A).

Although some properties of the usual inverse can be extended to the pseudoinverse,
it does not share all properties of the ordinary inverse. For example, in general

(AB)† �= B† A†, AA† �= A† A. (2.2.10)

The following theorem gives a useful sufficient conditions for the relation (AB)† =
B† A† to hold.

Theorem 2.2.3 If A ∈ C
m×r , B ∈ C

r×n, and rank (A) = rank (B) = r , then

(AB)† = B H (BBH )−1(AHA)−1 AH = B† A†. (2.2.11)

Proof The square matrices AHA and BBH have rank r and hence are nonsingular.
The result is verified by showing the Penrose conditions are satisfied. �

In some contexts it is sufficient to use a weaker form of generalized inverse than the
pseudoinverse. Any matrix A− satisfying the first Penrose condition AA−A = A is
called an inner inverse or {1}-inverse. If it satisfies the second condition A−AA− =
A− it is called an outer inverse or a {2}-inverse.

Let A− be a {1}-inverse of A. Then for all b such that the system Ax = b is
consistent, x = A−b is a solution. The general solution can be written

x = A−b + (I − A−A)y, y ∈ C
n . (2.2.12)

For any {1}-inverse of A

(AA−)2 = AA−AA− = AA−, (A−A)2 = A−AA−A = A−A.

This shows that AA− and A−A are idempotent and therefore (in general oblique)
projectors.

Let A ∈ C
m×n and b ∈ C

m . Then ‖Ax − b‖2 is minimized when x satisfies the
normal equations AHAx = AH b. Suppose that a generalized inverse A− satisfies

(AA−)H = AA−. (2.2.13)

Then AA− is the orthogonal projector onto R(A) and A− is called a least squares
inverse. We have

AH = (AA−A)H = AHAA−,

which shows that x = A−b satisfies the normal equations and therefore is a least
squares solution. Conversely, if A− ∈ C

n×m has the property that for all b ∈ C
m ,

‖Ax − b‖2 is minimized when x = A−b, then A− is a least squares inverse.
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The following dual result holds also: If A− is a generalized inverse, and (A−A)H =
A−A, then A−A is the orthogonal projector onto N (A) and A− is called a minimum-
norm inverse. If Ax = b is consistent, then the unique solution for which ‖x‖2 is
smallest satisfies the normal equations

x = AH z, AAH z = b.

For a minimum-norm inverse A− we have AH = (AA−A)H = A−AAH . Hence,
x = AH z = A−(AAH )z = A−b, which shows that x = A−b is the solution of
smallest norm. Conversely, let A− ∈ C

n×m be such that, whenever Ax = b has a
solution, then x = A−b is a minimum-norm solution. Then A− is a minimum-norm
inverse.

A good introduction to generalized inverses is given by Ben-Israel and Greville
[16, 1976]. A more complete and thorough treatment is given in the monograph
[17, 2003] by the same authors. A collection of papers on this subject appeared
in Nashed [214, 1976]. Generalized inverses should be used with caution, because
the notation tends to hide intrinsic computational difficulties associated with nearly
rank-deficient matrices.

2.2.2 Perturbation Analysis

We first derive some perturbation bounds for the pseudoinverse of a matrix A ∈
C

m×n . Let B = A + E be the perturbed matrix. The theory is complicated by the
fact that when the rank changes, the perturbation in A† may be unbounded when the

perturbation ‖E‖2 → 0. A trivial example of this is A(ε) =
(

σ 0
0 ε

)
, for which

rank (A) = 2, if ε �= 0, but rank (A(0)) = 1 and

‖(A + E)† − A†‖2 = |ε|−1 = 1/‖E‖2.

This example shows that formulas derived by operating formally with pseudoinverses
may have no meaning numerically.

The perturbations for which the pseudoinverse is well behaved can be character-
ized by the condition

rank (A) = rank (B) = rank (PR(A) B PR(AH )). (2.2.14)

The matrix B is said to be an acute perturbation of A if (2.2.14) holds; see Stewart
[265, 1977].

Theorem 2.2.4 If rank (A + E) = rank (A) = r and η = ‖A†‖2‖E‖2 < 1, then

‖(A + E)†‖2 ≤ 1

1− η
‖A†‖2. (2.2.15)
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Proof From the assumption and Theorem 2.2.8 it follows that

1/‖(A + E)†‖2 = σr (A + E) ≥ σr (A)− ‖E‖2 = 1/‖A†‖2 − ‖E‖2 > 0,

which implies (2.2.15). �

Let A, B ∈ C
m×n , and E = B − A. If A and B = A+ E are square nonsingular

matrices, then we have the well-known identity B−1 − A−1 = −B−1 E A−1. In the
general case Wedin’s identity holds:

B† − A† = −B† E A† + (B H B)† E H PN (AH ) + PN (B)E H (AAH )† (2.2.16)

(see [291, 1969] and [292, 1973]). This identity can be proved by expressing the
projections in terms of pseudoinverses using the relations in (2.2.6). Observe that if
A has full column rank, then the second term vanishes; if B has full row rank, then
the third term vanishes. If A and B have full column rank, we obtain from Wedin’s
identity

B† A − I = (B† − A†)A = −B† E + (B H B)† E H PN (AH ). (2.2.17)

Setting B = A(α) = A+αE , where α is a scalar parameter, we have E = d A/dα.
Letting α → 0 and assuming that A(α) has constant local rank, the following formula
for the derivative of the pseudoinverse A†(α) is obtained from Wedin’s identity:

d A†

dα
= −A† d A

dα
A† + (AHA)† d AH

dα
PN (AH ) + PN (A)

d AH

dα
(AAH )†. (2.2.18)

This formula is due to Wedin [291, 1969].

Theorem 2.2.5 If B = A + E and rank (B) = rank (A), then

‖B† − A†‖ ≤ μ‖B†‖ ‖A†‖ ‖E‖, (2.2.19)

where μ = 1 for the Frobenius norm ‖ · ‖F , and for the spectral norm.

μ =
{

(1+√
5)/2 if rank (A) < min(m, n),√

2 if rank (A) = min(m, n).

Proof For the spectral norm, see Wedin [292, 1973]. The result that μ = 1 for the
Frobenius norm is due to van der Sluis and Veltkamp [258, 1979]. �

We now give a first-order perturbation analysis for the least squares problem when
A has full column rank. The least squares solution x and the corresponding residual
r = b − Ax satisfy the augmented system (see (2.1.15))
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(
I A

AH 0

)(
r
x

)
=
(

b
c

)
. (2.2.20)

If rank (A) = n, this is a square nonsingular linear system. Hence, the same technique
as in Sect. 1.2.7 can be used for the perturbation analysis. Denote the perturbed data
by A + δA, b + δb, and c + δc and assume that δA is sufficiently small so that
rank (A+ δA) = n. Let the perturbed solution be x + δx and r + δr . The perturbed
solution satisfies the augmented system

(
I A + δA

(A + δA)H 0

)(
r + δr
x + δx

)
=
(

b + δb
c + δc

)
. (2.2.21)

Subtracting the unperturbed equations and neglecting second-order quantities gives

(
I A

AH 0

)(
δr
δx

)
=
(

δb − δAx
δc − δAH r

)
. (2.2.22)

From the Schur–Banachiewicz formula (see Sect. 1.1.6) it follows that the inverse of
the matrix in this system is

(
I A

AH 0

)−1

=
(

(I − A(AHA)−1 AH ) A(AHA)−1

(AHA)−1 AH −(AHA)−1

)

=
(

P⊥A (A†)H

A† −A†(A†)H

)
. (2.2.23)

We obtain

δx = A†(δb − δA x)+ A†(A†)H (δc − δAH r), (2.2.24)

δr = P⊥A (δb − δAx)(A†)H (δc − δAH r). (2.2.25)

Assuming that the perturbations δA and δb satisfy the componentwise bounds

|δA| ≤ ωE, |δb| ≤ ω f, |δc| ≤ ωg, (2.2.26)

and substituting into (2.2.24)–(2.2.25) yields the componentwise bounds

|δx | � ω
(
|A†|( f + E |x |)+ |A†||(A†)H | (g + E H |r |)

)
, (2.2.27)

|δr | � ω
(
|I − AA†|( f + E |x |)+ |(A†)H | (g + E H |r |)

)
, (2.2.28)

where terms of order O(ω2) have been neglected.
By setting g = 0, componentwise perturbation bounds for the linear least squares

problem minx ‖Ax −b‖2 are obtained. Note that if Ax = b is consistent, i.e., r = 0,
then the bound for |δx | is identical to that obtained for a square nonsingular linear

http://dx.doi.org/10.1007/978-3-319-05089-8_1
http://dx.doi.org/10.1007/978-3-319-05089-8_1
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system in Sect. 1.2.7. A perturbation bound for the minimum-norm solution x of a
consistent linear system is obtained by setting f = 0. Taking norms in (2.2.24) and
(2.2.25) and using

‖A†‖2 = ‖(A†)H‖2 = 1/σn, ‖(AHA)−1‖2 = 1/σ 2
n , ‖P⊥A ‖2 = 1,

gives normwise bounds for the least squares problem.

Theorem 2.2.6 Consider the linear least squares problem min ‖Ax − b‖2, with
A ∈ C

m×n, b ∈ C
m and rank (A) = n. Let A + δA, b + δb be perturbed data and

assume that δA is sufficiently small so that rank (A+δA) = n. Denote the perturbed
solution by x + δx and r + δr . If second-order terms can be neglected, then

‖δx‖2 � 1

σn
‖δb‖2 + 1

σn
‖δA‖2

(
‖x‖2 + 1

σn
‖r‖2

)
, (2.2.29)

‖δr‖2 � ‖δb‖2 + ‖δA‖2

(
‖x‖2 + 1

σn
‖r‖2

)
. (2.2.30)

Note that if r = P⊥A b �= 0, then a term proportional to σ−2
n is present in the bound

for ‖δx‖2. A more refined perturbation analysis (see Wedin [292, 1973]) shows that if

η = ‖A†‖2‖δA‖2 < 1,

then rank (A+ δA) = n, and there are perturbations δA and δb such that these upper
bounds are almost attained.

Assuming that x �= 0 and setting δb = 0, we get

‖δx‖2

‖x‖2
≤ κLS

‖δA‖2

‖A‖2
, κLS = κ(A)

(
1+ ‖r‖2

σn‖x‖2

)
, (2.2.31)

which is an upper bound for the normwise relative perturbation of the least squares
solution. Note that κLS depends not only on A but also on r = P⊥A b. If ‖r‖2 �
σn‖x‖2, then κLS ≈ κ(A), but if ‖r‖2 > σn‖x‖2, then the second term in (2.2.31)
dominates. A lower bound given by Malyshev [203, 2003] shows that κLS overesti-
mates the true condition number at most by a factor of

√
2.

As suggested by van der Sluis [257, 1975], the last term in (2.2.31) can be
rewritten as ‖r‖2

σn‖x‖2
= tan(θ)

‖Ax‖2

σn‖x‖2
, tan(θ) = ‖r‖2

‖Ax‖2
,

where θ is the angle between the right-hand side and the subspace R(A).

Example 2.2.1 The following simple example illustrates the perturbation analysis
above. Consider a least squares problem with

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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A =
⎛
⎝

1 0
0 δ

0 0

⎞
⎠ , b =

⎛
⎝

1
0
α

⎞
⎠ , δA =

⎛
⎝

0 0
0 0
0 δ/2

⎞
⎠ ,

and κ(A) = 1/δ  1. If α = 1, then x = (1, 0)T , r = (0, 0, 1)T and

δx = 2

5δ
(0, 1)T , δr = −1

5
(0, 2, 1)T .

For this right-hand side, ‖x‖2 = ‖r‖2 and κLS = 1/δ + 1/δ2 ≈ κ2(A). This is
reflected in the size of δx . For α = δ, a short calculation shows that ‖r‖2/‖x‖2 = δ

and κLS = 2/δ. The same perturbation δA now gives

δx = 2

5
(0, 1)T , δr = − δ

5
(0, 2, 1)T .

It should be stressed that for the normwise perturbation bounds in Theorem 2.2.6
to be realistic, A and b should be scaled so that perturbations are “well defined” by
bounds on ‖δA‖2 and ‖b‖2. It is not uncommon that the columns in A = (a1, . . . , an)

have widely differing norms. The residual vector r is independent of the column
scaling of A, since we can write

r = b − Ax = b − AD(D−1x).

A much improved error estimate may be obtained by applying (2.2.29) to the scaled
problem with D chosen so that the columns of AD have unit length:

D = diag(1/‖a1‖2, . . . , 1/‖an‖2). (2.2.32)

From Theorem 1.2.5, p. 56 it follows that if A ∈ R
m×n has full column rank, this

scaling comes within a factor of
√

n of achieving the minimum value of κ2(A), i.e.,

κ2(A) ≤ √
n min

D∈D
κ2(AD). (2.2.33)

If the rows in A differ widely in norm, then (2.2.31) may also considerably over-
estimate the perturbation in x . But scaling the rows in A is not allowed, because in
the Gauss–Markov model the scaling is determined by the covariance matrix of the
error. Methods for solving problems with widely different row norms are discussed
in Sect. 2.7.1.

The perturbation theory of pseudoinverses was developed by Wedin [292, 1973]
see also Stewart [265, 1977]. Björck [22, 1967] gave nearly optimal normwise per-
turbation bounds for the solution and residual. componentwise bounds are given
in Björck [25, 1991]. As pointed out by Grcar [140, 2010], several other bounds
in the literature can overestimate the true condition number by as much asa fac-
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tor κ(A). Notable recent works on the subject are due to Gratton [139, 1996] and
Malyshev [203, 2003].

2.2.3 SVD and Matrix Approximation

In the proof of Theorem 1.1.6 we showed that the largest singular value of A can
be characterized by σ1 = max‖x‖2=1 ‖Ax‖2. The other singular values can also be
characterized by an extremal property, the minimax characterization.

Theorem 2.2.7 Let A ∈ C
m×n have singular values σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0,

where p = min(m, n). Then, if S denotes a linear subspace of Cn, one has that

σi = max
dim(S)=i

min
x∈S‖x‖2=1

‖Ax‖2 (2.2.34)

= min
dim(S)=p−i+1

max
x∈S‖x‖2=1

‖Ax‖2, i = 1:p. (2.2.35)

Proof The result follows from a relationship that will be shown in Theorem 3.5.2 and
the corresponding result for the Hermitian eigenvalue problem; see Theorem 3.2.7
(Fischer’s theorem), p. 443. �

The minimax characterization of the singular values may be used to establish the
following relations between the singular values of two matrices A and B.

Theorem 2.2.8 Let A, B ∈ C
m×n have singular values σ1 ≥ σ2 ≥ · · · ≥ σp and

τ1 ≥ τ2 ≥ · · · ≥ τp respectively, where p = min(m, n). Then

max
i
|σi − τi | ≤ ‖A − B‖2, (2.2.36)

p∑
i=1

|σi − τi |2 ≤ ‖A − B‖2
F . (2.2.37)

Proof See Stewart [263, 1973], pp. 321–322. �

By inequality (2.2.36), no singular value of a matrix can be perturbed more than
the 2-norm of the perturbation matrix. In particular, perturbation of a single element
of a matrix A results in perturbations of the same, or smaller, magnitude in the
singular values. This result is important for the use of the SVD to determine the
“numerical rank” of a matrix; see Sect. 2.4.1.

If a matrix A is modified by appending a row or a column, the singular values of
the modified matrix can be shown to interlace those of A.

Theorem 2.2.9 The ordered singular values σi of A ∈ C
m×n interlace the ordered

singular values σ̂i of the bordered matrix Â =
(

A,

u H

)
as follows:
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σ̂1 ≥ σ1 ≥ σ̂2 · · · ≥ σ̂m ≥ σm ≥ σ̂m+1, m < n,

σ̂1 ≥ σ1 ≥ σ̂2 · · · ≥ σ̂n−1 ≥ σn−1 ≥ σ̂n ≥ σn, m ≥ n.

A similar result holds when A is bordered by a column.

Proof The theorem is a consequence of Cauchy’s interlacing theorem for Hermitian
matrices to be proved later in Chap. 3; see Theorem 3.2.9, p. 444. This says that the
eigenvalues of the leading principal minor of order n − 1 of a Hermitian matrix B
interlace those of B. Since

(
AH

u H

) (
A u

) =
(

AHA AH u
u H A u H u

)
,

(
A

vH

) (
AH v

) =
(

AAH Av

vH AH vH v

)
,

the result follows from the observation that the singular values of A are the positive
square roots of the eigenvalues of AHA and AAH . �

Lemma 2.2.1 Let A ∈ C
m×n and Bk = XkY H

k , where Xk, Yk ∈ C
m×k . Then

rank (Bk) ≤ k < min{m, n} and

σ1(A − Bk) ≥ σk+1(A), (2.2.38)

where σi (·) denotes the i th singular value of its argument.

Proof Let vi , i = 1:n be the right singular vectors of A. Since rank (Y ) = k < n,
there is a vector v = c1v1 + · · · + ck+1vk+1 such that ‖v‖2

2 = c2
1 + · · · + c2

k+1 and
Y H v = 0. It follows that

σ 2
1 (A − Bk) ≥ vH (A − Bk)

H (A − Bk)v = vH AHAv

= |c1|2σ 2
1 + · · · + |ck+1|2σ 2

k+1 ≥ σ 2
k+1. �

Theorem 2.2.10 Let A = B + C, where B, C ∈ C
m×n, m ≥ n, have ordered

singular values σ1(B) ≥ · · · ≥ σn(B) and σ1(C) ≥ · · · ≥ σn(C), respectively. Then
the ordered singular values of A satisfy

σi+ j−1(A) ≤ σi (B)+ σ j (C). (2.2.39)

Proof For i = j = 1 we have

σ1(A) = u H
1 Av1 = u H

1 Bv1 + u H
1 Cv1 ≤ σ1(B)+ σ1(C).

Now let Bi−1 and Ci−1 denote the SVD expansions truncated to i − 1 terms. Then
σ1(B−Bi−1) = σi (B) and σ1(C−Ci− j ) = σ j (C). Moreover, rank (Bi−1+Ci−1) ≤
i + j − 2. From these facts and Lemma 2.2.1 it follows that

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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σi (B)+ σ j (C) = σ1(B − Bi−1)+ σ1(C − C j−1)

≥ σ1(A − Bi−1 + C j−1) ≥ σi+ j−1(A). �

The best approximation of a matrix A ∈ C
m×n by a matrix of lower rank is

obtained by truncating the SVD expansion of A. It was proved in 1936 by Eckart and
Young [79, 1936] for the Frobenius norm. Mirsky [209, 1960] proved it for all uni-
tarily invariant norms, including the Schatten norms; see (1.1.96). This is one of the
most important properties of the SVD and is the basis for numerous applications. For
example, in signal processing, the matrix A is derived from data constituting a noisy
signal. Rank reduction is used to filter out the noise and reconstruct the true signal.

Theorem 2.2.11 (Eckart–Young–Mirsky theorem) Let Mm×n
k denote the set of

matrices in C
m×n of rank k. Assume that A ∈ Mm×n

r and consider the problem

min
B∈Mm×n

k

‖A − B‖, k < min{m, n},

where ‖ · ‖ is a unitarily invariant norm. Then the SVD expansion of A truncated to
k terms, X = Ak ≡ ∑k

i=1 σi uiv
H
i , solves this problem both for the spectral norm

and the Frobenius norm. The minimum distance is given by

‖A − Ak‖2 = σk+1, ‖A − Ak‖F = (σ 2
k+1 + · · · + σ 2

r )1/2.

The solution is unique if and only if σk �= σk+1

Proof For the spectral norm the result follows directly from Lemma 2.2.1. For the
Frobenius norm set B = A − Bk , where Bk has rank k. Then σk+1(Bk) = 0, and
setting j = k + 1 in (2.2.39) we obtain

σi (A − Bk) ≥ σk+1(A), i = 1, 2, . . . .

From this it follows that ‖A− Bk‖2
F ≥ σ 2

k+1(A)+· · ·+σ 2
n (A). For the general case,

see Stewart and Sun [273, 1990], Theorem IV. 4.18. �

The approximation in the above theorem generally differs in all elements of A.
Golub et al. [136, 1987] have proved a generalization that shows how to obtain a best
approximation when a specified set of columns in the matrix are to remain fixed.

Theorem 2.2.12 Any matrix A ∈ C
m×n, m ≥ n, has a polar decomposition

A = P H, (2.2.40)

with P ∈ C
m×n unitary, P H P = In, and H ∈ C

n×n Hermitian and positive
semidefinite. This decomposition is unique and H is positive definite if and only if
rank (A) = n.
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Proof Let A = U1V H , U1 ∈ C
m×n , be the “thin” SVD and set

P = U1V H , H = V V H . (2.2.41)

Then, since V H V = I , it follows that P H = U1V H V V H = U1V H = A. �

The theorem shows that the polar decomposition can be obtained from the SVD of
A. If the polar decomposition A = P H is given, then from a spectral decomposition
H = V V H one can construct the SVD A = (PV )V H . The polar decomposition
is also related to the matrix square root and sign functions; see Sect. 3.8.1.

The significance of the factor P in the polar decomposition is that it is the unitary
matrix closest to A. Its applications include factor analysis, satellite tracking, and the
Procrustes problem; see Sect. 2.7.8. Perturbation bounds for the polar decomposition
have been derived by Barrlund [13, 1990].

Theorem 2.2.13 Let A ∈ C
m×n be a given matrix and A = P H its polar decom-

position. Then for any unitary matrix U ∈ C
m×n,

‖A −U‖F ≥ ‖A − P‖F .

Proof This theorem was proved for m = n and general unitarily invariant norms by
Fan and Hoffman [98, 1955]. The generalization to m > n follows from the additivity
property of the Frobenius norm. �

Less well-known are the optimal properties of the Hermitian polar factor H . Let
A ∈ C

n×n be a Hermitian matrix with at least one negative eigenvalue. Consider the
problem of finding a perturbation E such that A + E is positive semidefinite.

Theorem 2.2.14 (Higham [161, 1986]) Let A ∈ C
n×n be Hermitian and A = UH

its polar decomposition. Set

B = A + E = 1

2
(H + A), E = 1

2
(H − A).

Then ‖A − B‖2 ≤ ‖A − X‖2 for any positive semidefinite Hermitian matrix X.

Expositions of the history of the SVD and the related polar decomposition are
given by Stewart [270, 1993] and Horn and Johnson [167, 1991], Sect. 3.0. Applica-
tions of SVD in signal processing are surveyed in Vaccaro [284, 1991] and De Moor
and Moonen [211, 1995]. The polar decomposition for a square nonsingular matrix
was first given by Autonne [5, 1902]. The generalization to singular and rectangular
matrices appeared in Autonne [6, 1915]. Both Beltrami and Jordan were concerned
with diagonalizing a finite-dimensional bilinear form P = xT Ay. Weyl [294, 1911]
developed a general perturbation theory and gave a more elegant proof.
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2.2.4 Backward Error Analysis

An algorithm for solving the linear least squares problem is said to be numerically
stable if for any data A and b, there exist small perturbation matrices and vectors δA
and δb such that the computed solution x̄ is the exact solution to

min
x
‖(A + δA)x − (b + δb)‖2, ‖δA‖ ≤ ε‖A‖, ‖δb‖ ≤ ε‖b‖, (2.2.42)

where ε is a small multiple of the unit roundoff u. Algorithms based on orthogonal
factorizations have been proved to be backward stable. On the other hand, algo-
rithms in which the normal equations are explicitly formed are not backward stable.
Many algorithms used for solving structured problems, such as Toeplitz least squares
problems, are also not backward stable.

Any computed solution x̄ is called a stable solution if it satisfies (2.2.42) for a
sufficiently small ε. This does not mean that x̄ is close to the exact solution x . If the
problem is ill-conditioned, then a stable solution can be very different from x . But
if ε is small compared to the uncertainty in A and b, the solution can be said to be
as good as the data deserves. Further, the error ‖x − x̄‖ can be estimated using the
perturbation results given in Sect. 2.2.2.

For a consistent linear system, a posteriori bounds for the backward error of a
computed solution were derived in Sect. 1.4.5. Such bounds are more difficult to
obtain for the linear least squares problem. Given an alleged solution x̃ , we would
like to be able to find perturbations E and e of smallest norm such that x̃ is the
exact solution to minx ‖(b+ e)− (A+ E)x‖2. This could be used to verify numer-
ically the stability of the solution. an algorithm. The following theorem is due to
Stewart [266, 1977], Theorem 3.1.

Theorem 2.2.15 Let x̃ be an approximate solution to the least squares problem
minx ‖Ax − b‖2 and r̃ = b − Ax̃ the corresponding residual. Then the vector x̃
exactly solves minx ‖b − (A + Ei )x‖2, where

E1 = −r̃(AT r̃)T/‖̃r‖2
2, E2 = (̃r − r )̃xT/‖x̃‖2

2 (2.2.43)

and r = b − Ax the residual corresponding to the exact solution x. The norms of
these matrices are equal to

‖E1‖2 = ‖AT r̃‖2/‖̃r‖2, (2.2.44)

‖E2‖2 =
√
‖̃r‖2

2 − ‖r‖2
2

/
‖x̃‖2 ≤ ‖̃r‖2/‖x̃‖2. (2.2.45)

Here ‖E1‖2 is small when r̃ is almost orthogonal to the column space of A and
‖E2‖2 is small when r̃ is almost equal to the residual r of the exact solution.

It is possible for x̃ to have a backward error much smaller than either ‖E1‖2 or
‖E2‖2. Since there is not much loss of generality to assume that δb = 0, we define
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the smallest backward error bound to be

ηF (̃x) = min
{
‖δA‖F | x̃ solves min

x
‖b − (A + δA)x‖2

}
. (2.2.46)

It can be found by first characterizing the set of all backward perturbations of x̃
and then finding the optimal bound, which minimizes the Frobenius norm of the
perturbation.

Theorem 2.2.16 Let x̃ be an approximate solution to the least squares problem
minx ‖Ax −b‖2 and set r̃ = b− Ax̃ �= 0. If x̃ = 0, then the optimal backward error
in the Frobenius norm is ηF (̃x) = ‖AT r̃‖2/‖̃r‖2. Otherwise

ηF (̃x) = min {η, σmin(B)} , (2.2.47)

where B = (A C
) ∈ R

m×(n+m) and

η = ‖̃r‖2/‖x̃‖2, C = I − (̃rr̃ T )/‖̃r‖2
2. (2.2.48)

Proof See Waldén et al. [290, 1995]. �

Computing σmin(B) is too expensive in practice. If the QR factorization of A is
available (see Sect. 2.3), then less costly lower and upper bounds for ηF (̃x) can be
computed in only O(mn) operations. Let r1 = PAr̃ be the orthogonal projection of
r̃ onto the range of A. If ‖r1‖2 ≤ α‖r‖2, then

√
5− 1

2
σ̃1 ≤ ηF (̃x) ≤

√
1+ α2 σ̃1, (2.2.49)

where
σ̃1 =

∥∥(ATA + ηI )−1/2 AT r̃
∥∥

2/‖x̃‖2. (2.2.50)

Since α → 0 for small perturbations, σ̃1 is an asymptotic upper bound.
How to find the optimal backward error for the linear least squares problem was

an open problem for many years. It was solved by Waldén et al. [290, 1995]; see also
[175, 1997]. Gu [142, 1998] gives several simple estimates of the optimal backward
error that deviate at most by a factor 2. Optimal backward perturbation bounds for
underdetermined systems are derived in [278, 1997]. The extension of backward
error bounds to the case of constrained least squares problems is discussed by Cox
and Higham [62, 1999].

2.2.5 Principal Angles Between Subspaces

In many applications the geometric relationship between two given subspaces needs
to be investigated. For example, one subspace could be an approximate null space of
A that we want to compare with the corresponding exact null space. The principal
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angles and related principal vectors between two subspaces were first introduced
by Jordan [173, 1875]. They are the invariants that best characterize their relative
position.

Let F andG be subspaces ofCn and assume that p = dim(F) ≥ dim(G) = q ≥ 1.
The smallest principal angle θ1 = θ1(F ,G) ∈ [0, π/2] between F and G is

θ1 = min
u∈F

min
v∈cG

∠(u, v).

Assume that the maximum is attained for u = u1 and v = v1. Then the next principal
angle θ2 is the smallest angle between the orthogonal complement of F with respect
to u1 and that of G with respect to v1. This can be continued until one of the subspaces
is empty.

Definition 2.2.2 The principal angles θk ∈ [0, π/2] between two subspaces of Cn

are recursively defined for k = 1:q by

θk = min
u∈F

min
v∈G

∠(u, v) = ∠(uk, vk), (2.2.51)

subject to the constraints u H u j = 0, vH v j = 0, j = 1:k − 1. The vectors uk and
vk , k = 1:q, are called principal vectors of the pair of subspaces.

Theorem 2.2.17 (Björck and Golub [30]) Assume that the columns of QF ∈ C
n×p

and QG ∈ C
n×q , p ≥ q, form unitary bases for two subspaces of Cn. Let the thin

SVD of the matrix M = Q H
F QG ∈ C

p×q be

M = Y C Z H , C = diag(σ1, . . . , σq), (2.2.52)

where Y H Y = Z H Z = Z Z H = Iq and σ1 ≥ σ2 ≥ · · · ≥ σq . Then the principal
angles are θk = arccos(σk) and the associated principal vectors are given by

U = QFY, V = QG Z . (2.2.53)

Proof The singular values and vectors of M can be characterized by the property

σk = max‖y‖2=‖z‖2=1
yH Mz = yH

k Mzk, (2.2.54)

subject to yH y j = zH z j = 0, j = 1:k. If we put u = QF y ∈ F and v = QGz ∈ G,
it follows that ‖u‖2 = ‖y‖2, ‖v‖2 = ‖z‖2, and

u H u j = yH y j , vH v j = zH z j .

Since yH Mz = yH Q H
F QGz = u H v, (2.2.54) is equivalent to

σk = max‖u‖2=‖v‖2=1
u H

k vk,
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subject to u H u j = 0, vH v j = 0, j = 1:k − 1. Now (2.2.53) follows directly from
Definition 2.2.2. �

The principal angles are always uniquely defined, but the principal vectors are
not. The vectors V = (v1, . . . , vq) form a unitary basis for G and the vectors U =
(u1, . . . , uq) can be complemented with p − q unitary vectors so that (u1, . . . , u p)

form a unitary basis for F and

u H
j vk = 0, j �= k, j = 1:p, k = 1:q.

The principal angles can be used to define the distance between two subspaces of
the same dimension.

Definition 2.2.3 The distance between two subspaces F and G ofCn , both of dimen-
sion p, is

dist(F ,G) = sin θmax(F ,G),

where θmax(F ,G) is the largest principal angle between F and G. Equivalently,

θmax(F ,G) = max
u∈F‖u‖2=1

min
v∈G‖v‖2=1

∠(u, v). (2.2.55)

where θ(u, v) = arccos(u H v) is the acute angle between u and v.

A unitary basis for the intersection of two subspaces is obtained by taking the
vectors uk that corresponds to θk = 0, i.e., σk = 1. Clearly 0 ≤ dist(F ,G) ≤ 1, and
dist(F ,G) = 0 if and only if F = G. Since small angles θk are not well defined by
cos θk , it is preferable to compute sin θk more directly. Changing notation slightly,
we write the SVD in (2.2.52) as M = Q H

F QG = YFCY H
G , and denote the principal

vectors by UF = QFYF , UG = QGYG . Then PF = QF Q H
F is the orthogonal

projector onto F and we have

PF QG = QF Q H
F QG = QF M = UFCYG . (2.2.56)

Squaring QG = PF QG + (I − PF )QG , using (2.2.56) and PF (I − PF ) = 0 gives

Q H
G (I − PF )2 QG = YG(I − C2)Y H

G .

This shows that the SVD of (I − PF )QG = QG − QF M can be written

(I − PF )QG = WF SY H
G ,

where S2 = I − C2, and thus S = ±diag(sin θk).
The distance between subspaces can also be expressed as

dist(F ,G) = ‖PF − PG‖2, (2.2.57)
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where PF and PG are the orthogonal projectors onto F and G, respectively; see
Golub and Van Loan [133, Theorem 2.6.1].

A remarkable complete analysis of the angles between subspaces was published in
1875 by Jordan [173, 1875]. Mixed stability of the Björck–Golub method is shown
by Drmač [75, 2000]. Knyazev and Argentati [179, 2002] survey sine and cosine
algorithms and prove basic perturbation theorems for principal angles.

Another applications of principal angles and vectors is in statistical modeling.
To measure how “close” two sets A and B of observations are, Hotelling [168,
1936] introduced the canonical correlations cos θk , where θk are the principal angles
between the subspaces spanned by A and B. These are used in a wide variety of
applications in econometrics, psychology, and geodesy. A perturbation analysis of
canonical correlations of matrix pairs was given by Golub and Zha [134, 1994].

Exercises

2.2.1 (a) Show that the pseudoinverse of a complex vector v is given by

v† =
{

0 if v = 0,

vH /‖v‖2 if v �= 0.

(b) Let v ∈ C
n , v �= 0, V2 ∈ C

n×(n−1), and V2V H
2 = I − vvH . Show that the matrix

V = (v/‖v‖2 V2
)

is unitary.

(c) For A = (1 0
)
, B = (1 1

)T , show that 1 = (AB)† �= B† A† = 1/2.
2.2.2 Show that, if A, B ∈ R

m×n and rank (B) �= rank (A), then it is not possible to bound the
difference between A† and B† in terms of the difference B − A. Hint: Use the following
example. Let ε �= 0, σ �= 0, take

A =
(

σ 0
0 0

)
, B =

(
σ ε

ε 0

)
,

and show that ‖B − A‖2 = ε, ‖B† − A†‖2 > 1/ε.
2.2.3 Show that for any matrix A ∈ R

m×n it holds that

A† = lim
μ→+0

(ATA + μ2 I )−1 AT = lim
μ→+0

AT (AAT + μ2 I )−1. (2.2.58)

2.2.4 Verify that the Penrose conditions uniquely define the matrix X .
Hint: Do it first for A =  = diag(σ1, . . . , σn), and then transfer the result to a general
matrix A.

2.2.5 (R. E. Cline) Let A and B be any matrices for which the product AB is defined, and set

B1 = A†AB, A1 = AB1 B†
1 .

Use the Penrose conditions to show that AB = AB1 = A1 B1 and that (AB)† = B†
1 A†

1.
2.2.6 (a) Show that the matrix A ∈ R

m×n has a left inverse AL ∈ R
n×m , i.e., AL A = I , if and

only if rank(A) = n. Although in this case Ax = b ∈ R(A) has a unique solution, the
left inverse is not unique. Find the general form of L and generalize the result to AL .

(b) Discuss the right inverse AR in a similar way.
2.2.7 Prove Bjerhammar’s characterization: Let A ∈ R

m×n have full column rank and B be any
matrix such that AT B = 0 and

(
A B

)
is nonsingular. Then A† = X T , where
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(
X T

Y T

)
= (A B

)−1
.

2.2.8 Let the singular values of A ∈ R
m×n be σ1 ≥ · · · ≥ σn . What relations hold between these

and the singular values of Ã = (A, u), and A =
(

A
vT

)
?

2.2.9 Give the best approximation of rank k < n of a matrix A ∈ R
m×n of rank n in terms of

the SVD of A. By “best” we mean that the distance ‖A − B‖ is minimized for both the
Frobenius norm and the 2-norm.

2.2.10 (a) Let A = (a1, a2), where ‖a1‖2 = ‖a2‖2 = 1. Then aT
1 a2 = cos θ , where θ is the

angle between the vectors a1 and a2. Determine the singular values and right singular
vectors v1, v2 of A by solving the eigenvalue problem for

ATA =
(

1 cos θ

cos θ 1

)
.

Then determine the left singular vectors u1, u2 from Avi = σi ui ,
i = 1, 2.

(b) Show that if θ � 1, then σ1 ≈ √
2 and σ2 ≈ θ/

√
2, u1 ≈ (a1 + a2)/2, and

u2 ≈ (a1 − a2)/θ .

2.3 Orthogonal Factorizations

The great stability of unitary transformations in numerical analysis springs from the fact that
both the �2-norm and the Frobenius norm are unitarily invariant. This means in practice that
even when rounding errors are made no substantial growth takes place in the norm of the
successive transformed matrices.

— J. H. Wilkinson, The Algebraic Eigenvalue Problem [295, 1965]

Orthogonality plays a key role in least squares problems, and a least squares
solution x is characterized by the property that the residual r = b− Ax is orthogonal
to R(A); see Theorem 2.1.2. By using methods directly based on orthogonality the
squaring of the condition number that results from forming the normal equations can
be avoided.

2.3.1 Elementary Orthogonal Matrices

In Sect. 1.2.5 elementary elimination matrices of the form L j = I + l j eT
j (see

(1.2.30)) were used to describe the Gaussian elimination. We now introduce elemen-
tary unitary matrices, which are unitary matrices equal to the unit matrix modified
by a matrix of rank one. Such transformations are versatile tools for constructing
stable algorithms for a variety of matrix problems.

We first consider elementary real orthogonal matrices of the form

H(u) = I − 2
uuT

uTu
∈ R

n×n . (2.3.1)

Clearly, H is symmetric (H T = H ) and with β = 2/uT u,

http://dx.doi.org/10.1007/978-3-319-05089-8_1
http://dx.doi.org/10.1007/978-3-319-05089-8_1
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H T H = H2 = I − 2βuuT + β2u(uT u)uT = I

shows that H is orthogonal and H−1 = H . For any vector x ∈ R
n , we have

H x = (I − βuuT )x = x − β(uT x)u

and it follows that H x ∈ span{x, u}. The effect of the transformation H x is to reflect
x in the (m − 1)-dimensional hyperplane with normal vector u; see Fig. 2.2. This is
equivalent to subtracting twice the orthogonal projection of x onto u. In particular,
Hu = −u, i.e., H reverses u, and if x ⊥ u then H x = x . Hence, H has one
eigenvalue equal to −1 and the remaining eigenvalues are all equal to +1. Note that
‖x‖2 = ‖H x‖2, and that the normal u is parallel to the vector x − H x .

The use of elementary reflectors in numerical linear algebra was introduced in
matrix computation in 1958 by Householder3 [169, 1958]. A matrix of the form
(2.3.1) is therefore often called a Householder reflection and is uniquely determined
by the vector u, called the Householder vector. Hence, the matrix H need never be
explicitly formed.

In applications of Householder reflectors the following standard task is central.
Given a nonzero vector x ∈ R

m , construct a plane reflection such that multiplication
by H zeros all components in x except the first. That is

H x = s1σe1, σ = ‖x‖2, s1 = ±1. (2.3.2)

Here e1 denotes the first unit vector and the second equation is a consequence of the
fact that H is orthogonal. Multiplying (2.3.2) from the left by H and using H2 = I ,
we find that He1 = ±x/σ . Hence, the first column in H is proportional to x . It is
easily seen that (2.3.2) is satisfied if we set

x =
(

ξ1
x2

)
, u =

(
ξ1 − s1σ

x2

)
. (2.3.3)

Fig. 2.2 Householder
reflection of a vector x

u

x

Px

span(u)⊥

3 Alston S. Householder (1904–1993), American mathematician at Oak Ridge National Labora-
tory and University of Tennessee at Knoxville. He pioneered the use of matrix factorization and
orthogonal transformations in numerical linear algebra.
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Note that u differs from x only in its first component. A short calculation gives

uT u = (x − s1σe1)
T (x − s1σe1) = (σ 2 − 2s1σξ1 + σ 2) = 2σ(σ − s1ξ1).

If x is close to a multiple of e1, then σ ≈ |ξ1| and cancellation in this formula may
lead to a large relative error in β. To avoid cancellation, we take s1 = −1, if ξ1 > 0,
and s1 = +1, if ξ1 ≤ 0, giving

u1 = s1(σ + |ξ1|), β = 1

σ(σ + |ξ1|) , (2.3.4)

This corresponds to a reflection in the outer bisector of the angle between x and
ξ1e1, not the inner bisector as shown in Fig. 2.2. In particular, the vector x = ±e1
will be mapped into ∓e1. (Note that the identity matrix I is not a reflector because
det(I ) = +1.)

A Householder reflector (2.3.1) is invariant under scaling: H(αu) = H(u) for
any α �= 0. Since by (2.3.4) ‖u‖∞ = |u1| we can rescale u so that u1 = 1. Then

u2 = s1x2/γ, γ = (σ + |ξ1|) β = 1+ |ξ1|
σ

. (2.3.5)

This has the advantage that β can be stably reconstructed from u2:

β = 2/(uT u) = 2/(1+ uT
2 u2).

The vector u2 can be stored in the locations for the zeroed entries in x . Note that
if ξ1 �= 0, then s1 = −sign(ξ1), but this relation is not true when ξ1 = 0. This
case occurs in the analysis of the modified Gram–Schmidt orthogonalization; see
Sect. 2.3.6. In Matlab sign(0) = 0, which can cause errors.

Algorithm 2.3.1 computes a Householder reflector H = I−βuuT , with uT e1 = 1,
such that for a given real vector x �= 0, H x = ±(ξ1)‖x‖2e1. If n = 1 or x(2 : n) = 0,
then β = 0 is returned.

Algorithm 2.3.1 (Construct real Householder reflector)

function [u,beta,sigma] = houseg(x)

% HOUSEG generates a real Householder reflector

% H = I - beta*u*u’, with u_1 = 1, such that

% H*x = sigma*e_1, sigma = ||x||_2.

% -------------------------------------------

u = x; sigma = norm(x);

u(1) = sigma + abs(x(1));

beta = u(1)/sigma;

if x(1) < 0, u(1) = -u(1);

else sigma = -sigma;

end

% Normalize the Householder vector

u = u/u(1);
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The Householder reflector described above is the one commonly used. It is stable
because it uses only additions of positive quantities. The choice of reflector in the
inner bisector is not stable if the expression (2.3.4) is used because it leads to numer-
ical cancellation when ξ1 ≈ σ . However, as shown by Parlett [229, 1971], this can
be avoided, by rewriting the formula as

σ − |ξ1| = ‖x‖2
2 − ξ2

1

σ + |ξ1| = ‖x2‖2
2

σ + |ξ1| . (2.3.6)

In many algorithms a matrix is to be premultiplied (or postmultiplied) by a
sequence of Householder reflectors. It is important to note that in these opera-
tions the Householder reflectors are never formed explicitly, but are implicitly repre-
sented. When premultiplying A = (a1, . . . , an) ∈ R

m×n by a Householder reflector
H ∈ R

m×m , the product H A = (Ha1, . . . , Han), is computes as

Ha j = (I − βuuT )a j = a j − β(uT a j )u, j = 1:n. (2.3.7)

Similarly, in postmultiplying A with H ∈ R
n×n , H acts on the row vectors of A.

Both operations,

H A = A − βu(uT A) and AH = A − β(Au)uT ,

require one matrix–vector product followed by a rank-one update and use 4mn flops.
In the complex case a Householder reflector has the form (see Wilkinson

[296, 1965], pp. 49–50).

H = I − βuuH , β = 2

u H u
, u ∈ C

n . (2.3.8)

It is easy to check that H is Hermitian and unitary (H = H H = H−1). Given x ∈ C
n

with xe1 = ξ1 = eiθ1 |ξ1|, we want to determine u such that

H x = ζσe1, |ζ | = 1, |σ | = ‖x‖2.

Since H is Hermitian, x H H x = ζσ x H e1 = ζ ξ̄1σ must be real. Hence, unless ξ1 is
real it is not possible to have ζ real. To avoid cancellation in the first component of
u = x − ζσe1, we take ζ = −eiθ1 , giving

u1 = ξ1 − ζσ = eiθ1(|ξ1| + σ).

Since |ζ |2 = 1, we have

u H u =
(
‖x‖2

2 + σ(ζ̄ ξ1 + ζ ξ̄1)+ |ζ |2σ |2
)
= 2σ(σ + |ξ1|). (2.3.9)
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For the constructed reflector H we have that −e−iθ1 H x = σe1 is real and positive.
Another useful class of elementary orthogonal transformations is that of plane

rotations, also called Givens rotations.4 A plane rotation clockwise through an
angle θ in R

2 is represented by the matrix

G =
(

cos θ sin θ

−sin θ cos θ

)
=
(

c s
−s c

)
. (2.3.10)

Note that G−1(θ) = G(−θ), and det G(θ) = +1. In R
n the matrix representing a

rotation in the plane spanned by the unit vectors ei and e j , i < j , is the following
rank-two modification of the unit matrix In :

Gi j (θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i j

1
. . .

i c s
. . .

j −s c
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.3.11)

In practice, neither the angle θ nor the matrix Gi j are explicitly constructed, only
the values c and s are computed. Once these are known, premultiplying a vector
a = (α1, . . . , αn)T by Gi j (θ) is achieved by

(
βi

β j

)
= Gi j

(
αi

α j

)
=
(

c αi + s α j

−s αi + c α j

)
. (2.3.12)

Only the components αi and α j are affected. The cost of multiplying a plane rotation
into a vector is four multiplications and two additions or 6 flops.

If α j �= 0, we can construct Gi j (θ) to make β j = 0 by setting

c = αi/σ, s = α j/σ, σ = (α2
i + α2

j )
1/2 > 0. (2.3.13)

4 Named after the American mathematician and pioneer of computer science Wallace Givens (1910–
1993), who used them in [123, 1958] to reduce matrices to simpler form. He got his PhD in 1936 at
Princeton University under Oscar Veblen, and later worked at University of Tennessee, Knoxville,
and Argonne National Laboratories.
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While a Householder transformation can be used to zero a large portion of a vector,
a Givens rotation zeros just a single entry.

Algorithm 2.3.2 constructs the plane rotation G in a way that guards against pos-
sible overflow. Note that c and s are only determined up to a common factor ±1. If
a nonnegative σ is required, we use −G. The algorithm requires five flops and one
square root.

Algorithm 2.3.2 (Construct Real Plane Rotation)

function [c,s,r] = givens(a,b)

% GIVENS computes c and s in a real plane rotation

% so that 0 = -s*a + c*b, and r = c*a + s*b

% -------------------------------------------------

if b == 0,

c = 1.0; s = 0.0; r = a;

return

end

if abs(b) > abs(a) % Make |t| <= 1.

t = a/b; tt = sqrt(1+t*t);

s = 1/tt; c = t*s; r = tt*b;

else

t = b/a; tt = sqrt(1+t*t);

c = 1/tt; s = t*c; r = tt*a;

end

Premultiplication of a given matrix A ∈ R
m×n with a plane rotation Gi j will only

affect the two rows i and j in A, which are transformed according to

aik := c aik + s a jk,

a jk := −s aik + c a jk,

k = 1:n. The product requires 4n multiplications and 2n additions or 6n flops.
Postmultiplying A with Gi j uses 6m flops and only affects columns i and j .

An arbitrary nonzero vector x ∈ R
n can be transformed into σe1 with σ =

‖x‖2 > 0 using a sequence of plane rotations. Let G1k , k = 2:m be a sequence of
plane rotations, where G1k zeros the kth component in x . Then G1n · · ·G13G12x =
σe1. Note that G1k will not destroy previously introduced zeros. Another possible
sequence is Gk−1,k , k = m : −1:2, with Gk−1,k chosen to zero the kth component.

The matrix G in (2.3.10) has determinant equal to +1. We could equally well
work with plane reflectors of the form

H =
(

cos θ sin θ

sin θ − cos θ

)
(2.3.14)
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and determinant equal to −1. The trigonometric identities

H = I − (I − H) = I − 2uuT , u =
(−sin(θ/2)

cos(θ/2)

)
,

show the relationship to a 2× 2 Householder reflector.

Example 2.3.1 An orthogonal matrix Q ∈ R
3×3 in three dimensions is a pure rota-

tion if det(Q) = 1. Such a matrix can be represented as a product of three successive
plane rotations or by the angles of these rotations. The classical choice is as a product
of the three plane rotations G23(φ)G12(θ)G23(ψ)Q = I , where φ, θ , and ψ are the
Euler angles:

⎛
⎝

1 0 0
0 c3 s3
0 −s3 c3

⎞
⎠
⎛
⎝

c2 s2 0
−s2 c2 0

0 0 1

⎞
⎠
⎛
⎝

1 0 0
0 c1 s1
0 −s1 c1

⎞
⎠
⎛
⎝

q11 q12 q13
q21 q22 q23
q31 q32 q33

⎞
⎠= I.

The first rotation G23(ψ) is used to zero the element q31. Next, G12(θ) zeros the
modified element q21. Finally, G23(φ) is used to zero q32. The angles can always be
chosen to make the diagonal elements positive. Since the final product is orthogonal
and upper triangular, it must be the unit matrix I3. By orthogonality, we have

Q = G23(−ψ)G12(−θ)G23(−φ).

A problem with this representation is that the Euler angles may not depend con-
tinuously on the data. If Q equals the unit matrix plus small terms, then a small
perturbation may change an angle as much as 2π . A different set of angles, based
on zeroing the elements in the order q21, q31, q32, yields a continuous representation
and is to be preferred. This corresponds to the product

G23(φ)G13(θ)G12(ψ)Q = I3.

For more details, see Hanson and Norris [156, 1981]. �

Complex unitary plane rotations have the form

G =
(

c̄ s̄
−s c

)
, c = eiγ cos θ, s = eiδ sin θ. (2.3.15)

From c̄c + s̄s = cos2 θ + sin2 θ = 1 it follows that G H G = I , i.e., G is unitary.
Given an arbitrary complex vector z ∈ C

2, we have

G

(
z1
z2

)
=
(

c̄z1 + s̄z2
−sz1 + cz2

)
=
(

σ

0

)
, (2.3.16)
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provided that

c = z1/σ, s = z2/σ, |σ |2 = ‖z‖2
2 = |z1|2 + |z2|2 > 0.

A vector z ∈ C
n can be transformed into σe1 by successive premultiplication with

n − 1 unitary plane rotations in the planes (1, 2), (1, 3), . . . , (1, n). The rotations
may be chosen so that σ is real and nonnegative.

It is essential to note that the matrix Gi j is never explicitly formed, but represented
by (i, j) and the two numbers c and s. When a large number of rotations need to
be stored it is more economical to store just a single number, from which c and s
can be retrieved in a numerically stable way. Since the formula

√
1− x2 is poor if

|x | is close to unity, a slightly more complicated method than storing just c or s is
needed. In a scheme devised by Stewart [264, 1976] one stores the number c or s of
smallest magnitude. To distinguish between the two cases one stores the reciprocal
of c. More precisely, if c �= 0 we store

ρ =
{

s, if |s| < |c|,
1/c, if |c| ≤ |s|. (2.3.17)

In case c = 0 we put ρ = 1, a value that cannot appear otherwise. To reconstruct the
plane rotation, if ρ = 1, we take s = 1, c = 0, and

s = ρ, c =
√

1− s2, if |ρ| < 1,

c = 1/ρ, s =
√

1− c2, if |ρ| > 1.

It is possible to rearrange the plane rotations so that only two instead of four multi-
plications per element are used and no square roots are required. These modified trans-
formations, called fast Givens transformations, are due to Gentleman [115, 1973]
and Hammarling [146, 1974]. The basic idea is to take out a scaling factor and write

G = cQ = c

(
1 s/c
−s/c 1

)
or G = s Q = s

(
c/s 1
−1 c/s,

)
(2.3.18)

depending on whether |c| > |s| or |c| ≤ |s|. In a product of rotations G1 · · ·Gk the
scaling factors ci and si are accumulated separately. A dynamic scaling has been
suggested by Anda and Park [1, 1994]. On modern processors the gain in speed is
modest. Because of this and the nontrivial amount of monitoring needed to avoid
overflow and underflow, the usefulness of fast Givens transformations appears to be
limited and LAPACK does not make use of them.

Plane rotations were used already by Jacobi [172, 1845] to achieve diagonal
dominance in systems of normal equations. He then applied a simple iterative scheme
that became known as Jacobi’s method; see Sect. 3.6.2. The reliable construction of
real and complex plane rotations are considered in great detail in Bindel, Demmel,
and Kahan [19, 2002].

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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Wilkinson [296, 1965] proved the backward stability of algorithms based on
sequences of Householder reflectors. Parlett [230, 1998] gives stable formulas also
for the choice of Householder reflector corresponding to the inner bisector. Dubrulle
[76, 2000] shows that the inner reflectors perform better in some eigenvalue algo-
rithms. Different implementations of complex Householder transformations are com-
pared by Lehoucq [191, 1996] and Demmel et al. [71, 2008].

2.3.2 QR Factorization and Least Squares Problems

We first show that any matrix A ∈ C
m×n with m ≥ n can be factored into the product

of a square unitary matrix and an upper triangular matrix with real positive diagonal
elements.
Theorem 2.3.1 (Full QR Factorization) Let A ∈ C

m×n with rank (A) = n. Then
there is a factorization

A = Q

(
R
0

)
= (Q1 Q2

) (R
0

)
(2.3.19)

such that Q ∈ C
m×m is a square unitary matrix and R ∈ C

n×n is upper triangular
with real positive diagonal elements. The matrices R and Q1 = AR−1 are uniquely
determined.

Proof The proof is by induction on n. For A = a1 ∈ R
m we set q1 = a1/ρ, where

ρ = ‖a1‖2 > 0. Then q1 is a unit vector and there is a unitary matrix U = (q1 U1
)

with q1 as its first column. Then U H a1 =
(

ρ

0

)
, which shows that the statement is

valid for n = 1. Assume now that the statement is true for n − 1. We will show that
it holds for any A = (a1 A2) ∈ C

m×n . Using the construction for n = 1, we have

U H A =
(

ρ q H
1 A2

0 U H
1 A2

)
=
(

ρ r
0 B

)
,

where B ∈ C
(m−1)×(n−1) and rank (B) = n − 1. By the induction hypothesis, there

is a unitary matrix Q̃ such that Ũ H B =
(

R̃
0

)
. Hence, if we define

Q = U

(
1 0
0 Q̃

)
, R =

(
ρ r
0 R̃

)
,

then (2.3.19) will hold. �

By (2.3.21), the columns of Q1 and Q2 form orthonormal bases for the range
space of A and its orthogonal complement, R(A) = R(Q1), N (AH ) = R(Q2).
The matrix Q2 in (2.3.21) is not uniquely determined. The corresponding orthogonal
projections are
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PA = Q1 Q H
1 , P⊥A = Q2 Q H

2 . (2.3.20)

Note that since Q in (2.3.19) is unitary, it follows that R has the same singular values
and right singular vectors as A.

The QR factorization can be written more compactly as

A = (Q1 Q2
) (R

0

)
= Q1 R, Q1 ∈ C

m×n, (2.3.21)

which is the thin QR factorization. A QR factorization can be computed also for a
rank-deficient matrix A. But then some of the diagonal elements in R must be zero.
A simple example is

A =
(

0 0
0 1

)
=
(

c −s
s c

)(
0 s
0 c

)
≡ Q R,

which holds for any s and c such as s2 + c2 = 1. Here, the columns of Q do not
give any information about R(A). Such a factorization is not useful, until it has been
further reduced. The remedy is to use column interchanges; see Sect. 2.4.2.

If rank (A) = m < n, then A has linearly independent rows and from
Theorem 2.3.1 it follows that AH has a unique QR factorization. Equivalently

A = (L 0
)

Q H = (L 0
) (Q H

1

Q H
2

)
, (2.3.22)

where L ∈ C
m×m is lower triangular with real positive diagonal elements.

Lemma 2.3.1 Let A ∈ C
m×n have the (thin) QR factorization A = Q1 R, where

R has positive diagonal elements. Then R = LT , where L is the unique lower
triangular Cholesky factor of AHA.

Proof Since diag(R) > 0, it follows that rank (AHA) = n. Then AHA has a unique
lower triangular Cholesky factor L with a positive diagonal. From the thin QR fac-
torization it follows that AHA = RH Q H

1 Q1 R = RH R, which shows that RH is the
Cholesky factor. �

The proof of Theorem 2.3.1 gives a way to compute Q and R, provided that we
can construct a unitary matrix U = (y, U1), given its first column. Several ways to
perform this construction using elementary orthogonal transformations were given in
Sect. 2.3.1. The matrix Q is implicitly defined as a product of Householder reflectors
or Givens rotations.

In developing the following algorithm, we assume that A ∈ R
m×n is a real matrix

with rank (A) = n. Then in (2.3.19) Q is real orthogonal and R real upper triangular
with nonzero diagonal. The QR factorization is computed by premultiplying A by a
sequence of n Householder reflectors. In the first step H1 = I−β1u1uT

1 is determined
so as to zero out the elements below the diagonal in the first column of A:
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H1 A = H1

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 an2 . . . ann

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

r11 r12 . . . r1n

0 a(1)
22 . . . a(1)

2n
...

...
...

0 a(1)
n2 . . . a(1)

nn

⎞
⎟⎟⎟⎠ . (2.3.23)

With a1 = Ae1, H1 is determined so that

H1a1 = H1

(
a11
ã1

)
=
(

r11
0

)
, r11 = −s11σ1, σ1 = ‖a1‖2,

where s11 = sign(a11), if a11 �= 0, and s11 = 1 if a11 = 0.
After the first step, as indicated by the notation in (2.3.23), the first row is the first

row in the final factor R. In the next step, a Householder transformation is chosen
to zero elements in the second column of H1 A. This transformation will only affect
the (m − 1) × (n − 1) block in the lower right corner of H1 A. All remaining steps
are similar. After step k, k < n, we have computed a matrix of the form

A(k) = Hk · · · H1 A =
(

R11 R12

0 Ã(k)

)
, k = 1:n. (2.3.24)

Here R11 ∈ R
k×k is upper triangular and the first k rows are rows in the final matrix

R. The next step is

A(k+1) = Hk+1 A(k), Hk+1 = diag(Ik, H̃k+1). (2.3.25)

Here the Householder transformation H̃k+1 is chosen to zero the elements below the
main diagonal in column k + 1 of A(k), H̃k+1 Ã(k)e1 = rkke1. This only affects the
trailing diagonal block Ã(k) ∈ R

(m−k)×(n−k). After n steps we have obtained the QR
factorization of A

Hn · · · H2 H1 A = QT A =
(

R
0

)
. (2.3.26)

Here Q is implicitly given in terms as Q = H1 H2 · · · Hn . Hence, Q is defined by
the Householder vectors ûk , which can overwrite the elements in the strictly lower
trapezoidal part of A. Thus, all information associated with the factors Q and R can
be fitted into the array holding A. The vector (β1, . . . , βn) of length n is usually
stored separately, but can be recomputed from βk = 1

2 (1+ ‖ûk‖2
2)

1/2.
Algorithm 2.3.3 computes the QR factorization of A ∈ C

m×n (m ≥ n) using
Householder transformations. Note that the diagonal elements rkk will be positive if
a(kk)

k is negative and negative otherwise. Negative diagonal elements may be removed
by multiplying the corresponding rows of R and columns of Q by −1.
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Algorithm 2.3.3 (Householder QR Factorization)

function [U,R,beta] = houseqr(A,ifq1)

% HOUSEQR Computes the Householder QR factorization

% of the m by n matrix A (m >= n). At return

% U and beta contain the Householder reflections,

% -------------------------------------------------

[m,n] = size(A);

u = zeros(m,1); beta = zeros(n,1);

for k = 1:n

if k < m,

% Construct and save Householder k:th reflector

[u(k:m),beta(k),A(k,k)] = houseg(A(k:m,k));

A(k+1:m,k) = u(k+1:m);

% Apply k:th Householder reflector

A(k:m,k+1:n) = A(k:m,k+1:n) - ...

beta(k)*u(k:m)*(u(k:m)’*A(k:m,k+1:n));

end

end

U = eye(m,n) + tril(A,-1); R = triu(A(1:n,:));

In step k the application of the Householder reflector to the active part of the
matrix requires 4(m − k + 1)(n − k) flops. Hence, the total flop count becomes

4
n−1∑
k=1

(m − k + 1)(n − k) = 4
n−1∑
p=1

((m − n)p + p(p + 1)) = 2(mn2 − n3/3).

For m = n this equals 4n3/3 flops.
It is usually not necessary to compute explicitly the full square orthogonal factor

Q ∈ R
m×m . But if needed, the product

Q = (Q1 Q2
) = H1 H2 · · · Hn(e1, . . . , en, en+1, . . . , em) ∈ R

m×m (2.3.27)

can be accumulated from right to left. By (2.3.25) the transformation Hk+1 leaves
the first k rows unchanged. It follows that

qk = H1 · · · Hpek, k = 1:m, p = min{k, n}. (2.3.28)

Algorithm 2.3.4 computes the matrix Q1 = (q1, . . . , qn) ∈ R
m×n (m ≥ n), giving

an orthogonal basis of R(A). This requires 2(mn2 − n3/3) flops, or for m = n is
4n3/3 flops.
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Algorithm 2.3.4 (Accumulating Q1 in Householder QR)

function Q = houseq1(U,beta)

% HOUSEQ1 generates the m by n orthogonal matrix

% Q from a given Householder QR factorization

% ----------------------------------------------

[m,n] = size(U);

Q = eye(m,n)

for k = n:-1:1

v = beta(k)*(U(k:m,k)’*Q(k:m,k:n));

Q(k:m,k:n) = Q(k:m,k:n) - U(k:m,k)*v;

end

The matrix Q2 = (qn+1, . . . , qm), which gives an orthogonal basis for N (AT ),
requires 2n(m− n)(2m− n) flops to generate. The total work for generating the full
matrix Q = (Q1, Q2) ∈ R

m×m is 4(mn(m − n)+ n3/3) flops,
For a complex matrix A ∈ C

m×n the QR factorization can be computed by using
a sequence of unitary Householder reflectors. As remarked in Sect. 2.3.1 this will in
general not give a factor R with real positive diagonal elements. This can be remedied
by a unitary scaling:

A = U

(
R
0

)
= (U D−1)

(
DR
0

)
, D = diag(eiα1 , . . . , eiαn ).

The following backward error result for Householder QR is due to Higham [162,
2002], Theorem 19.4.

Theorem 2.3.2 Let R̂ denote the upper triangular matrix computed by the House-
holder QR algorithm for A ∈ R

m×n. Then there exists an exactly orthogonal matrix
Q ∈ R

m×m such that

A +�A = Q

(
R̂
0

)
, ‖�a j‖2 ≤ γ̃mn‖a j‖2, j = 1:n, (2.3.29)

where c is a small constant. The matrix Q is given explicitly by

Q = (H1 H2 · · · Hn)T ,

where Hk is the Householder matrix that corresponds to the exact application of the
kth step to the matrix Â(k) computed after k − 1 steps.

The column-wise bound in Theorem 2.3.2 reflects the invariance of QR factor-
ization under column scaling. Often only the weaker form ‖�A‖F ≤ γ mn‖A‖F is
given, which easily follows from the column-wise bound and (1.1.69).

Note that the matrix Q̃ in Theorem 2.3.2, which is exactly orthogonal, is not
computed by the algorithm. Denote by Q̂ the matrix computed by (2.3.28). Then

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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‖Q̂ − Q‖F ≤ √
nγmn, (2.3.30)

which shows that Q̄ is very close to the exactly orthogonal matrix Q.
When the matrix to be factorized has some structure with zero elements it may

be advantageous to use a Givens QR factorization. In this algorithm, zero elements
below the main diagonal are introduced one at a time from bottom to top and from
left to right. An important example is the QR factorization of a Hessenberg matrix

Hn =

⎛
⎜⎜⎜⎜⎜⎜⎝

h11 h12 · · · h1,n−1 h1,n

h21 h22 · · · h2,n−1 h2,n

h32 · · · ...
...

. . . hn−1,n−1 hn−1,n

hn,n−1 hn,n

⎞
⎟⎟⎟⎟⎟⎟⎠
∈ R

n×n .

This occurs as a subproblem in computing the bidiagonal factorization and the SVD
(see Sect. 2.3.3) and in the QR algorithm for the unsymmetric eigenvalue problem.

Givens rotations are ubiquitous in matrix algorithms for transforming a matrix
to a more compact form. To illustrate the rotation pattern, it is convenient to use
a Wilkinson diagram. In a Wilkinson diagram × stands for a (potential) nonzero
element and ⊗ for a nonzero element that has been zeroed out and + for a nonzero
element that has been introduced in the computations (if any). The first two steps of
the Givens QR factorization of Hn are illustrated below for n = 5. First a rotation
G12 in rows (1,2) is applied to zero out the element h21. In the second step a rotation
G23 in rows (2,3) is applied to zero out the next subdiagonal element h32, etc.:

⎛
⎜⎜⎜⎜⎝

→ × × × × ×
→ ⊗ × × × ×

× × × ×
× × ×

× ×

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

× × × × ×
→ ⊗ × × × ×
→ ⊗ × × ×

× × ×
× ×

⎞
⎟⎟⎟⎟⎠

.

In the Wilkinson diagram the arrows point to the rows that took part in the last
rotation. After n − 1 steps all subdiagonal elements have been zeroed out and the
QR factorization

QT H = Q

(
R
0

)
, QT = Gn−1,n · · ·G23G12, (2.3.31)

has been obtained. The first step in the QR factorization takes 6n flops. All remaining
steps are similar, but work on smaller and smaller matrices. The total work of this QR
factorization is only about

∑n−1
k=1 6k ≈ 3n2 flops. An important special case is when

Hn is lower bidiagonal. Then only two diagonals are nonzero and the flop count for
the factorization is linear in n; see Sect. 2.6.3.
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As for Householder QR factorization, the factor Q is usually not explicitly formed.
It suffices to store the rotations in order to be able to perform operations with Q. If
the storage scheme described in Sect. 2.3.1 is used, then one (real) rotation can be
stored in just one number.

Some applications require the QR factorization of a skinny matrix A with many
thousands of rows but with much fewer columns. An example is provided by station-
ary video background subtraction, where the number of rows can exceed 100,000
and the number of columns is about 100; see Candès et al. [42, 2009].

We now show how to use the QR factorization to solve the linear least squares
problem (2.1.2).

Theorem 2.3.3 Let A ∈ R
m×n, rank (A) = n, have the QR factorization

A = Q

(
R
0

)
, Q = (Q1 Q2

)
. (2.3.32)

Then the unique solution x to minx ‖Ax−b‖2 and the corresponding residual vector
r = b − Ax are given by

(
d1
d2

)
= QT b, Rx = d1, r = Q

(
0
d2

)
, (2.3.33)

and hence ‖r‖2 = ‖d2‖2.

Proof Since Q is orthogonal we have

‖Ax − b‖2
2 =

∥∥QT (Ax − b)
∥∥2

2 =
∥∥∥∥
(

Rx
0

)
−
(

d1
d2

)∥∥∥∥
2

2
= ‖Rx − d1‖2

2 + ‖d2‖2
2.

Obviously the right-hand side is minimized if Rx = d1. Using the orthogonality of
Q we have b = Qd = Q1d1 + Q2d2 = Ax + r . Since Q1d1 = Q1 Rx = Ax it
follows that r = Q2d2. �

By Theorem 2.3.3, when R and the Householder reflectors H1, H2, . . . , Hn have
been computed by Algorithm 2.3.3, the least squares solution x and residual r can
be computed as follows:

(
d1
d2

)
= Hn · · · H2 H1b, Rx = d1, (2.3.34)

r = H1 · · · Hn−1 Hn

(
0
d2

)
, (2.3.35)

and ‖r‖2 = ‖d2‖2. Note that the matrix Q is not explicitly formed.
Algorithm 2.3.5 computes the least squares solution x and residual r using the

Householder QR factorization. The operation count for the Householder QR factor-
ization is 2n2(m−n/3) flops. To compute QT b and solve Rx = d1 requires a further
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4n(m− n/4) flops. If not only ‖r‖2, but also r is wanted, another 4n(m− n/2) flops
are needed. This can be compared to the operation count for the method of normal
equations, which requires (mn2+n3/3) flops for the factorization and 2n(m+n) for
each right-hand side. For m = n this is the same as for the Householder QR method,
but for m  n the Householder method is twice as expensive.

Algorithm 2.3.5 (Least Squares Solution by Householder QR)

function [x,r,rho] = housels(A,b);

% HOUSELS computes the solution x, the residual

% r and rho = ||r||_2 to the full rank linear

% least squares problem min||Ax - b||_2

% --------------------------------------------------

[m,n] = size(A);

[U,R,beta] = houseqr(A);

for k = 1:n

c = beta(k)*(U(k:m,k)’*b(k:m));

b(k:m) = b(k:m) - c*U(k:m,k);

end

x = R\b(1:n); r = [zeros(n,1); b(n+1:m)];

rho = norm(r);

for k = n:-1:1

c = beta(k)*(U(k:m,k)’*r(k:m));

r(k:m) = r(k:m) - c*U(k:m,k);

end

The Householder QR algorithm and the resulting method for solving the least
squares problem are backward stable and the following result holds.

Theorem 2.3.4 Let minx ‖Ax−b‖2 be a least squares problem where A ∈ R
m×n has

full column rank. Let x̂ be the solution computed using (2.3.33) and the Householder
QR algorithm. Then x̂ is the exact least squares solution to a slightly perturbed least
squares problem minx ‖(A + δA)x − (b + δb)‖2, where

‖δA‖F ≤ nγmn‖A‖F , ‖δb‖2 ≤ γmn‖b‖2. (2.3.36)

Proof The result follows from Theorems 19.5 and 20.3 Higham [162, 2002]. �

The backward stability means that the computed residual r̄ satisfies

(A + E)T r̄ = 0, ‖E‖2 ≤ cu‖A‖2, (2.3.37)

for some constant c = c(m, n). Hence, AT r̄ = −ET r̄ , and

‖AT r̄‖2 ≤ cu‖r̄‖2‖A‖2. (2.3.38)
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Note that this is a much better result than if the residual is computed as

r̃ = f l(b − f l(Ax)) = f l

((
b A

) ( 1
−x

))
,

even when x is the exact least squares solution. Since AT r = 0, we get from (1.4.10)

|AT r̃ | < γn+1|AT |(|b| + |A||x |).

From this follows the normwise bound

‖AT r̃‖2 ≤ n1/2γn+1‖A‖2(‖b‖2 + n1/2‖A‖2‖x‖2),

which is much weaker than (2.3.38), in particular when ‖r̄‖2 � ‖b‖2.
As shown in Sect. 2.1.2, a more general class of least squares problems are char-

acterized by the augmented system (2.1.15). The algorithm using QR factorization
given in Theorem 2.3.3 for the standard least squares problem can easily be gener-
alized to solve the augmented system (2.1.15).

Theorem 2.3.5 Assume that A ∈ R
m×n has full column rank and QR factorization

(2.3.32). Then the solution to the augmented system is given by

RT z1 = c,

(
d1
d2

)
= QT b, (2.3.39)

Rx = (d1 − z1), y = Q

(
z1
d2

)
. (2.3.40)

Proof Using the QR factorization, the subsystems y + Ax = b and AT y = c of the
augmented system can be written

y + Q

(
R
0

)
x = b,

(
RT 0

)
QT y = c.

Multiplying the first system by QT and defining z = QT y and d = QT b gives

(
z1
z2

)
+
(

R
0

)
x =

(
d1
d2

)
, RT z1 = c.

Hence, z2 = d2, Rx = d1 − z1, and y = Qz. �

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Setting b = 0 in (2.3.39)–(2.3.40) gives

RT z1 = c, y = Q

(
z1
0

)
, (2.3.41)

where y is the solution to the minimum-norm problem

min ‖y‖2, subject to AT y = c.

Note that either x or y can be computed without the other. Thus the algorithm
(2.3.39)–(2.3.40) can be used to solve either the linear least squares problem (2.1.16)
or the conditional least squares problem (2.1.17).

The systematic use of orthogonal transformations to reduce matrices to simpler
form was initiated in 1958 by Givens [123, 1958] and Householder [169, 1958].
The application of these transformations to the linear least squares problem is due to
Golub [126, 1965], who showed how to compute the QR factorization of a rectangular
matrix A using Householder reflectors and column pivoting. An Algol implementa-
tion of this method is given by Businger and Golub [39, 1965].

2.3.3 Golub–Kahan Bidiagonalization

We now show that any rectangular matrix A ∈ C
m×n , m ≥ n, can be reduced to real

bidiagonal form

U H AV =
(

B
0

)
, B =

⎛
⎜⎜⎜⎜⎜⎝

ρ1 θ2
ρ2 θ3

. . .
. . .

ρn−1 θn

ρn

⎞
⎟⎟⎟⎟⎟⎠

. (2.3.42)

by unitary transformations U ∈ C
m×m and V ∈ C

n×n from left and right. This
algorithm is due to Golub5 and Kahan [127, 1965].

In the Golub–Kahan Householder (GKH) bidiagonalization algorithm U and V
are constructed as products of Householder transformations (see Sect. 2.3.1)

5 Gene H. Golub (1932–2007), American mathematician and a pioneer in modern matrix compu-
tations. Golub studied at the University of Illinois, where he learned to program for the ILLIAC
computer from David Wheeler. His thesis on using Chebyshev polynomials for solving linear equa-
tions was supervised by Abe Taub. After a postdoc year at Cambridge, England, Golub was recruited
in 1962 by George Forsythe to Stanford University, where he remained for the rest of his life. His
influential book entitled Matrix Computations [133, 1996], coauthored with C. F. Van Loan and
now in its fourth edition, has sold more than 50,000 copies. For a more detailed biography of Golub
together with reprints of his most important papers, see [48, 2007].
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U = (u1, . . . , um) = Q1 Q2 · · · Qn,

V = (v1, . . . , vn) = P0 P1 · · · Pn−2, (2.3.43)

applied alternately from right and left. Here P0 can be chosen so that P0e1 = V e1 =
v1 is an arbitrary unit vector. In many cases one simply takes P0 = I , i.e., this transfor-
mation is skipped. The following transformations are uniquely defined. Q1 is chosen
to zero the elements below the diagonal in the first column of AP0 and P1 to zero the
last n − 2 elements in the first row of Q1 AP0. The key thing to note is that P1 will
leave the first column in Q1 A unchanged and thus will not affect the zeros introduced
by Q1. All later steps are similar. In the kth step, k = 1:min(m, n), we compute

A(k+1) = (Qk A(k))Pk,

where the Householder reflector Qk zeros the last m − k elements in the kth column
of A(k) and Pk zeros the last n − (k + 1) elements in the kth row of Qk A(k). This
determines the elements ρk and θk in the kth row of B. The process is continued until
there are no more rows or columns to be treated.

The reduction can always be carried through, although some of the elements θk ,
ρk in B may vanish. When m = n, the zero block in (2.3.42) is empty. Note that
from the construction it follows that

uk = Q1 · · · Qkek, vk = P0 · · · Pk−1ek, . (2.3.44)

As long as no zero bidiagonal elements occur, the bidiagonal matrix B and the first
n columns of U and V are uniquely determined by the choice of v1. In case m < n,
the decomposition will instead terminate with a bidiagonal matrix

(
B 0

)
, where

B =

⎛
⎜⎜⎜⎝

ρ1 θ2
ρ2 θ3

. . .
. . .

ρm−1 θm

⎞
⎟⎟⎟⎠ ∈ R

(m−1)×m

is rectangular. This upper bidiagonal matrix can be reduced to a square lower bidi-
agonal matrix by a sequence Givens rotations from the right, i.e., by flipping; see
Sect. 2.4.5.

The bidiagonal form is the closest to diagonal form that can be achieved for a
general matrix by a finite number of unitary transformations of A. An important use
of the decomposition (2.3.42) is as a preprocessing step in computing the SVD of
A; see Sect. 3.5.3. It is also a powerful tool for analyzing and solving various least
squares problems.

Algorithm 2.3.6 computes the upper bidiagonal decomposition of A = U H BV ∈
C

m×n (m ≥ n). For simplicity it assumes that m ≥ n and takes P0 = I . The
Householder vectors associated with U are stored in the lower triangular and those

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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associated with V in the upper triangular part of the array holding B. By applying
the algorithm to AT , A can be reduced to lower bidiagonal form.

Algorithm 2.3.6 (Upper Bidiagonal Decomposition)

function [A,rho,theta] = bidiagu(A)

% BIDIAGU computes the upper bidiagonal decomposition

% A = UˆTBV of the m by n, matrix A (m >= n).

% The diagonals are returned in rho and theta and the

% Householder reflectors of U and V stored in A.

% ---------------------------------------------------

[m,n] = size(A);

rho = zeroes(n,1); theta = zeroes(n-1,1);

for k = 1:n

% Apply left transformation

if k < m,

[u(k:m), beta, rho(k)] = houseg(A(k:m,k));

A(k:m,k+1:n) = A(k:m,k+1:n)- ...

beta*u(k:m)*(u(k:m)’*A(k:m,k+1:n));

A(k+1:m,k) = u(k+1:m); A(k,k) = beta;

elseif k == m, rho(m) = A(m,m);

end

% Apply right transformation

if k+1 < n,

[v(k+1:n), gamma, theta(k+1)] = houseg(A(k,k+1:n)’);

A(k+1:m,k+1:n) = A(k+1:m,k+1:n) - ...

gamma*(A(k+1:m,k+1:n)*v(k+1:n))*

v(k+1:n)’;

A(k,k+2:n) = v(k+2:n)’; A(k,k+1) = gamma;

elseif k +1 == n, theta(n) = A(n-1,n);

end

end

The bidiagonal reduction requires approximately 4(mn2 − 1
3 n3) flops when

m ≥ n. This is roughly twice as much as for a Householder QR factorization. If
U1 = (u1, . . . , un) and/or V = (v1, . . . , vn) are explicitly required, then the corre-
sponding products of Householder transformations can be accumulated at a cost of
2(mn2 − 1

3 n3) and 4
3 n3 flops, respectively. If A is square, m = n, these counts are

8
3 n3 for the reduction and 4

3 n3 for computing each of the matrices U and V .
The GKH algorithm is backward stable in the following sense. The computed B̄

can be shown to be the exact result of an orthogonal transformation from left and
right of a matrix A + E , where

‖E‖F ≤ cn2u‖A‖F (2.3.45)
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and c is a constant of order unity. Moreover, if we use the information stored to
generate U and V , the computed matrices are close to the exact matrices U and
V that reduce A + E . This will guarantee that the singular values and transformed
singular vectors of B̄ are accurate approximations to those of a matrix close to A.

When m  n it is more efficient to use a two-step procedure as originally
suggested by Lawson and Hanson [190, 1974] p. 119, and later analyzed by Chan
[43, 1982]. In the first step the QR factorization of A is computed (possibly using
column pivoting),

AP = Q

(
R
0

)
, R ∈ R

n×n,

which requires 2n2(m − 1
3 n) flops. In the second step the upper triangular matrix R

is transformed to bidiagonal form using the algorithm described above. Note that no
advantage can be taken of the triangular structure of R in the Householder algorithm.
Already the first postmultiplication of R with P1 will cause the lower triangular part
of R to fill in. Hence, the Householder reduction of R to bidiagonal form will require
8
3 n3 flops. The complete reduction to bidiagonal form then takes a total of 2n2(m+n)

flops. The flop counts for the two variants are equal when m + n = 2m − 2n/3,
or when m = 5/3n. When m/n > 5/3, Chan’s version is more efficient than the
original Golub–Kahan algorithm. It is potentially more accurate if column pivoting
is used in the initial QR factorization.

If Givens rotations are used, it is possible to take advantage of the zeros in the
bidiagonalization of R. The elements are zeroed by diagonals from outside in. In each
diagonal zeroes are introduced from top to bottom. An intermediate step is shown
below. The element (2,5) is zeroed by a rotation of columns (4,5). This introduces a
new nonzero element in position (5,4), which in turn is zeroed by a rotation of rows
(4,5). Next, the element (3,6) will be zeroed by a rotation of columns (5,6), etc.:

⎛
⎜⎜⎜⎜⎜⎜⎝

↓ ↓
× × × 0 0 0

× × × ⊗ 0
× × × ×

→ × × ×
→ ⊕ × ×

×

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This reduction is of more general interest, since it can also be used to reduce the
bandwidth of a triangular matrix. The cost of zeroing one element is 6n flops and the
operation count for the reduction 2n3 flops. This is lower than for the Householder
algorithm, but if the products of the left or right transformations are to be accumulated,
Givens method requires more work.

The upper bidiagonal decomposition can be used to solve the least squares problem
min ‖Ax − b‖2, where A ∈ R

m×n , m ≥ n. If A has full column rank, then the upper
bidiagonal matrix B in (2.3.42) has nonzero diagonal elements. Setting x = V y and
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using the orthogonal invariance of the 2-norm, we have

‖Ax − b‖2
2 = ‖U T AV y −U T b‖2

2 =
∥∥∥∥
(

B
0

)
y −

(
c1
c2

)∥∥∥∥
2

2

= ‖By − c1‖2
2 + ‖c2‖2

2,

where

c =
(

c1
c2

)
= U T b = Qn · · · Q2 Q1b, c1 ∈ R

n . (2.3.46)

Hence, the minimum of ‖Ax − b‖2
2 equals ‖c2‖2 and is obtained for x = V y, where

y satisfies the bidiagonal system By = c1 and

x = P0 P1 · · · Pn−2 y, r = Q1 Q2 · · · Qn

(
0
c2

)
. (2.3.47)

Forming c and x requires 4mn flops. Solving By = c1 by back substitution,

yn = cn/ρn, yk = (ck − θk+1 yk−1)/ρk, k = n − 1: − 1:1, (2.3.48)

requires only 3n−2 flops. If r is wanted this requires an additional 4mn−2n2 flops.
Since U and V are orthogonal, the singular values of R are equal to those of A,

and κ2(A) = κ2(R). An estimate of the smallest singular value can be obtained by
performing one or more steps of inverse iteration with BT B. Let u be a suitably
chosen vector and compute v and w from (cf. (2.3.83))

BT v = u, Bw = v (2.3.49)

by forward and backward substitution. Then σ−1
n ≈ ‖w‖∞/‖v‖∞ will usually be a

good estimate of σ−1
n at a cost of less than 6n flops.

Barlow et al. [9, 2002] and [11, 2005] give a potentially faster algorithm for
computing this decomposition.

2.3.4 Gram–Schmidt QR Factorization

Let {an} be a linearly independent sequence of elements of a finite- or infinite-
dimensional inner-product space. Gram-Schmidt orthogonalization67 is a process
that constructs a related orthogonal sequence {qn} by defining qn inductively as

6 Jørgen Pedersen Gram (1850–1916), Danish mathematician. Gram worked for Hafnia Insurance
Company and made contributions to probability and numerical analysis.
7 Erhard Schmidt (1876–1959) was born in Dorpat, Estonia. He obtained his doctoral degree from
the University of Göttingen in 1905 under Hilbert’s supervision. After holding positions in Zürich,
Erlangen, and Breslau he assumed a position at the University of Berlin in 1917. Here he was
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q1 = a1, qn = an −
n−1∑
k=1

(qk, an)

‖qk‖2
2

qk, n ≥ 2. (2.3.50)

Replacing each qn by qn/‖qn‖2
2 gives an orthonormal sequence. By construction,

span{q1, . . . , qk} = span{a1, . . . , ak}, k ≥ 1. (2.3.51)

Having an orthogonal basis for this nested sequence of subspaces simplifies many
operations and applications of the Gram-Schmidt process are ubiquitous in mathe-
matics.

Given a matrix A ∈ C
m×n with linearly independent columns a1, a2, . . . , an ,

the Gram–Schmidt process computes an orthonormal basis q1, q2, . . . , qn for the
column space of A. Then each column vector ak , k = 1:n, in A can be expressed as

ak = r1kq1 + r2kq2 + · · · + rkkqk, rkk �= 0, k = 1:n. (2.3.52)

Assume that q1, q2, . . . , qk−1 have been determined. Multiplying (2.3.52) by q H
j

from the left and using orthogonality it follows that q H
j ak = r jk , j = 1:k−1. If we set

q̂k ≡ rkkqk = ak −
k−1∑
j=1

r jkq j (2.3.53)

then q̂k �= 0, since otherwise ak would be a linear combination of a1, . . . , ak−1,
which contradicts our assumption. Hence,

qk = q̂k/rkk, rkk = ‖q̂k‖2 = (q̂ H
k q̂k)

1/2 (2.3.54)

is the desired vector.Note that the term r jkq j subtracted from ak is equal to Pj ak ,
where Pj = q j q H

j is the orthogonal projector onto the subspace spanned by q j . It

follows that P2
j = Pj and P⊥j = I − q j q H

j is the orthogonal projector onto the
orthogonal complement.

Theorem 2.3.6 Let the matrix A = (a1, a2, . . . , an) ∈ C
m×n have linearly inde-

pendent columns. Then the Gram–Schmidt algorithm computes a matrix Q1 ∈ C
m×n

with orthonormal columns Q H
1 Q1 = In and an upper triangular matrix R ∈ C

n×n

with real positive diagonal elements, such that

instrumental in setting up the Institute of Applied Mathematics and establishing Berlin as a leading
center for applied mathematics.
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A = (q1, q2, . . . , qn)

⎛
⎜⎜⎜⎝

r11 r12 · · · r1n

r22 · · · r2n
. . .

...

rnn

⎞
⎟⎟⎟⎠ ≡ Q1 R. (2.3.55)

Proof Combining (2.3.52) and (2.3.54) we obtain

ak = rkkqk +
k−1∑
i=1

rikqi =
k∑

i=1

rikqi , k = 1:n,

which is equivalent to (2.3.55). Since the vectors qk are mutually orthogonal by
construction, the theorem follows. �

In matrix terms the Gram–Schmidt process uses elementary column operations
to transform the matrix A into an orthogonal matrix Q. The matrix Q in the thin
QR factorization is formed explicitly. This is in contrast to the Householder QR
factorization, where A is premultiplied by a sequence of elementary orthogonal
transformations to produce R and Q (in product form) in the full QR factorization.

There are two mathematically equivalent variants of the Gram–Schmidt process.
(We say that two formulas or algorithms are mathematically equivalent if they pro-
duce the same result in exact arithmetic.) Although these variants differ only in the
order in which the operations are carried out, their numerical stability properties
differ greatly.

In the Classical Gram–Schmidt (CGS) algorithm, we set q1 = a1/r11, where r11 =
‖a1‖2, and for k = 2:n, orthogonalize ak against previous vectors q1, . . . , qk−1:

q̂k = ak −
k−1∑
i=1

rikqi , rik = q H
i ak . (2.3.56)

Here q̂k is the orthogonal projection of ak onto the complement of span{a1, . . . , ak−1}.
If rkk �= 0, we set qk = q̂k/rkk , where rkk = ‖q̂k‖2. The elements in R are generated
column by column. Algorithm 2.3.7 computes the factorization A = Q1 R by CGS,
provided rank (A) = n.
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Algorithm 2.3.7 (Classical Gram–Schmidt)

function [Q,R] = cgs(A);

% CGS computes the thin QR factorization

% of A using the CGS algorithm

% --------------------------------------

[m,n] = size(A);

Q = A; R = zeros(n);

for k = 1:n

R(1:k-1,k) = Q(:,1:k-1)’*A(:,k);

Q(:,k) = A(:,k)- Q(:,1:k-1)*R(1:k-1,k);

R(k,k) = norm(Q(:,k));

Q(:,k) = Q(:,k)/R(k,k);

end

In the Modified Gram–Schmidt (MGS) algorithm, we set A(1) = A, and for
k = 1:n compute

qk = a(k)
k /rkk, rkk = ‖a(k)

k ‖2.

We then orthogonalize a(k)
j , j > k, against qk : a(k+1)

j = (I − qkqT
k )a(k)

j , where

Pk = (I − qkqT
k ) is an elementary orthogonal projector:

a(k+1)
j = a(k)

j − rk j qk, rk j = qT
k a(k)

j , j = k + 1:n. (2.3.57)

After k steps we have computed

A(k) = (q1, . . . , qk, a(k+1)
k , . . . , a(k+)

n

)
,

where a(k+1)
k , . . . , a(k+1)

n are orthogonal to q1, . . . , qk . As described, the elements in
R are computed row by row. Given A ∈ R

m×n with rank (A) = n, Algorithm 2.3.8
computes the factorization A = Q1 R, by MGS.

Algorithm 2.3.8 (Row-Wise Modified Gram–Schmidt)

function [Q,R] = mgs(A);

% MGS computes the thin QR factorization

% using the MGS algorithm

% ------------------------------------------

[m,n] = size(A);

Q = A; R = zeros(n);

for k = 1:n

R(k,k) = norm(Q(:,k));

Q(:,k) = Q(:,k)/R(k,k);

R(k,k+1:n) = Q(:,k)’*Q(:,k+1:n);

Q(:,k+1:n) = Q(:,k+1:n) - Q(:,k)*R(k,k+1:n);

end
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Table 2.1 Condition number
and loss of orthogonality in
CGS and MGS

k κ(Ak) ‖Ik − QT
C QC‖2 ‖Ik − QT

M QM‖2

1 1.000e+00 1.110e-16 1.110e-16

2 1.335e+01 2.880e-16 2.880e-16

3 1.676e+02 7.295e-15 8.108e-15

4 1.126e+03 2.835e-13 4.411e-14

5 4.853e+05 1.973e-09 2.911e-11

6 5.070e+05 5.951e-08 3.087e-11

7 1.713e+06 2.002e-07 1.084e-10

8 1.158e+07 1.682e-04 6.367e-10

9 1.013e+08 3.330e-02 8.779e-09

10 1.000e+09 5.446e-01 4.563e-08

The CGS and MGS algorithms both require approximately 2mn2 flops. This is
2n3/3 flops more than for Householder QR factorization if Q is kept in product
form. The Gram–Schmidt algorithms also need extra storage for R. When m  n,
the extra work and storage are negligible. Such a matrix is often called “skinny”.

The difference in numerical stability between CGS and MGS is due to the fact
that in MGS the orthogonalizations are carried out using a product of elementary
orthogonal projectors:

rkkqk = (I − qk−1qT
k−1) · · · (I − q1qT

1 )ak . (2.3.58)

The projections rikqi (i = 1:k − 1) are subtracted from ak as soon as they are
computed, whereas in CGS

rkkqk = (I − Qk−1 QT
k−1)ak, Qk−1 = (q1, . . . , qk−1). (2.3.59)

For k > 2 the formulas (2.3.58) and (2.3.59) are identical only provided that
q1, . . . , qk−1 are exactly orthogonal. In floating point arithmetic the rounding errors
are different and MGS has superior numerical properties compared to CGS.

To illustrate the difference in stability between MGS and CGS, a matrix A ∈
R

50×10 with singular values σi = 10−i+1, i = 1:10, was generated by computing

A = U DV T , D = diag(1, 10−1, . . . , 10−9)

with U and V orthonormal matrices. Table 2.1 shows the condition number of
Ak = (a1, . . . , ak) and the loss of orthogonality in CGS and MGS after k steps
as measured by ‖Ik − QT

k Qk‖2. For MGS the loss of orthogonality is more gradual
than for CGS and proportional to κ(Ak). The loss of orthogonality in Gram–Schmidt
orthogonalization is studied in more detail in Sect. 2.3.5.
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An important property of all Gram–Schmidt algorithms is their invariance under
column scaling. The Gram–Schmidt algorithms applied to the scaled matrix Ã = AD
yield the factors Q̃ = Q and R̃ = RD for any positive diagonal matrix D. This is
true even in finite precision arithmetic, provided the scaling is done without error.

Let Q̄1 and R̄ be the computed factors from MGS. Then, by an elementary error
analysis, the following bound for the backward error can be established:

A + E = Q̄1 R̄, ‖E‖2 ≤ c0u‖A‖2, (2.3.60)

where the factor c0 roughly equals 2(mn)2. This ensures that the product Q̄1 R̄
represents A to working accuracy.

In Gram–Schmidt QR factorization one works with vectors of constant length,
which is not the case for Householder QR factorization. This is sometimes an advan-
tage for parallel implementation The implementation of MGS and CGS for a complex
matrix A ∈ C

m×n is straightforward, whereas the representation of complex House-
holder reflectors is less obvious; see Lehoucq [191, 1996].

The row-wise generation of R in MGS has the important advantage that it allows
for column interchanges (see Sect. 2.4.2). However, it cannot be used in applications,
where the columns ak are generated one at a time. Algorithm 2.3.9 implements a
column-wise version of MGS that is numerically equivalent to the row-wise version.
Although the sequencing of the operations is different, the rounding errors are the
same.

Algorithm 2.3.9 (Column-Wise Modified Gram–Schmidt) Given A ∈ R
m×n with

rank(A) = n the following algorithm computes the factorization A = Q1 R, where
R is generated by columns.

function [Q,R] = mgsc(A);

% MGSC computes the thin QR factorization

% of A using the column-wise MGS algorithm

% ---------------------------------------

[m,n] = size(A);

Q = A; R = zeros(n);

for k = 1:n

for i = 1:k-1

R(i,k) = Q(:,i)’*Q(:,k);

Q(:,k) = Q(:,k) - Q(:,i)*R(i,k);

end

R(k,k) = norm(Q(:,k));

Q(:,k) = Q(:,k)/R(k,k);

end

When MGS is used correctly it gives backwards stable solutions and residuals
to linear least squares problem. However, unless it is used correctly, the loss of
orthogonality in the computed Q1 can spoil the accuracy. An algorithm seen in some
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textbooks, computes c = QT
1 b and then solves Rx = c. This procedure should not be

used. Instead b should be treated as an (n+1)st column appended to A. Set b(1) = b,
and for k = 1:n, use elementary orthogonal projectors to compute c = (c1, . . . , n)T :

b(k+1) = (I − qkqT
k )b(k) = b(k) − ckqk, ck = qT

k b(k), (2.3.61)

and r = b(n). This will give the factorization

(
A b

) = (Q1 r
) (R c

0 1

)
. (2.3.62)

By (2.3.60) the product of the computed factors accurately reproduces the matrix
(A, b). It follows that

‖Ax − b‖2 =
∥∥∥∥
(

A b
) ( x
−1

)∥∥∥∥
2
= ‖Q1(Rx − c)− r‖2.

If QT
1 r = 0, the minimum of the last expression occurs when Rx − c = 0. It is not

necessary to require that Q1 is accurately orthogonal for this conclusion to hold; see
Björck [26, 1994].

Algorithm 2.3.10 (Linear Least Squares Solution by MGS)

function [x,r,rho] = mgsls(A,b);

% MGSLS uses MGS QR factorization of A to solve

% the least squares problem min||Ax - b||_2.

% It returns x, r, and rho = \|r\|_2.

% ---------------------------------------------

[m,n] = size(A); d = zeros(n,1);

[Q,R] = mgs(A); % Apply MGS to A.

for k = 1:n

d(k) = Q(:,k)’*b;

b = b - d(k)*Q(:,k);

end

x = R\d; r = b;

for k = n:-1:1 % Reorthogonalize r.

w = Q(:,k)’*r; r = r - w*Q(:,k);

end

rho = norm(r);

Algorithm 2.3.10 computes the solution x to the linear least squares problem
minx ‖Ax−b‖2, the residual r , and its Euclidean norm. It is assumed that A ∈ C

m×n

has full column rank and one uses MGS to compute Q and R. In the last loop the
computed residual is reorthogonalized against the vectors qk . Why this is done in
backward order is explained in Sect. 2.3.6. If only x and the residual norm ‖r‖ are
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needed, then the last loop can be skipped and only 2n(m + n) flops are needed for
each right-hand side.

Like the corresponding Householder algorithm, Algorithm 2.3.10 is backward sta-
ble also for computing the residual r . This means that the computed residual r̄ satisfies

‖AT r̄‖2 ≤ γmn‖r̄‖2‖A‖2. (2.3.63)

which is much better than if the residual is computed from its definition r = b− Ax
using the computed solution x . The proof of backward stability depends on a remark-
able connection between MGS and Householder QR factorization, which is described
in Sect. 2.3.6.

The different computational the variants of Gram–Schmidt procedure have an
interesting history. What is now called the “classical” Gram–Schmidt algorithm first
appeared explicitly in papers by Gram [138, 1879] and Schmidt [251, 1907]. Schmidt
treats the solution of linear systems with infinitely many unknowns and uses the
orthogonalization as a theoretical tool rather than a computational procedure. The
“modified” Gram–Schmidt algorithm is related to an algorithm used by Laplace in
1816. But Laplace did not interpret his algorithm in terms of orthogonalization, nor
did he use it for computing least squares solutions. In 1853 Bienaymé gave a similar
derivation of a slightly more general algorithm.

In the 1950s, algorithms based on Gram–Schmidt orthogonalization were fre-
quently used, although their numerical properties were not well understood at the
time. The superior properties of MGS compared to CGS were experimentally estab-
lished by Rice [243, 1966]. A roundoff analysis by Björck [22, 1967] proved the
forward stability of MGS for solving linear least squares problems.

2.3.5 Loss of Orthogonality and Reorthogonalization

We now analyze the loss of orthogonality in the Gram–Schmidt process when it
is used to orthogonalize two linearly independent vectors a1 and a2 in R

n . Since
rounding errors in the normalization of vectors have a negligible effect on the the loss
of orthogonality we assume, without loss of generality, that a1 and a2 have unit length.

By this assumption, q1 = a1, r11 = 1. Using the standard model for floating point
computation and the basic results in Sect. 1.4.2, an upper bound for the error in the
computed scalar product r̄12 = f l(qT

1 a2) is

|r̄12 − r12| < γm‖a2‖2, γm = mu
1− mu/2

,

where u is the unit roundoff. For the error in the computed unnormalized vector
q̄2 = f l(a2 − f l(r̄12q1)) we obtain

‖q̄2 − q̂2‖2 < γm+2|r̄12| < γm+2‖a2‖2 = γm+2

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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where q̄2 denotes the true result). Since qT
1 q̂2 = 0, it follows that |qT

1 q̄2| =
|qT

1 (q̄2 − q̂2)| < γm+2. Hence, if we set r22 = ‖q̄2‖2 the loss of orthogonality
can be bounded by

|qT
1 q̄2|
‖q̄2‖2

<
γm+2

r22
(2.3.64)

and can be severe when r22 � 1. Since r22 = sin ∠(a1, a2), this will be the case
when the angle between a1 and a2 is small. In general, we conclude that when

rkk = ‖ak)
k ‖2 � ‖ak‖2. (2.3.65)

a severe loss of orthogonality may have occured in the Gram–Schmidt process.

Example 2.3.2 Consider the extremely ill-conditioned matrix in Example 1.4.1:

A = (a1, a2) =
(

1.2969 0.8648
0.2161 0.1441

)
.

Applying the Gram–Schmidt algorithm in IEEE double precision to A gives

q1 =
(

0.98640009002732
0.16436198585466

)
, r12 = qT

1 a2 = 0.87672336001729.

Subtracting the orthogonal projection onto q1 we get q̄2 = a2 − r12q1 =(−0.12501091273265
0.75023914025696

)
10−8. Normalizing this vector gives

q2 =
(−0.1643619607147

0.9864000942164

)
, R =

(
1.3147809018996 0.8767233600173

0 0.0000000076058

)
.

Massive cancellation has taken place in computing q̄2, leading to a serious loss
of orthogonality between q1 and q2: qT

1 q2 = 2.5486557 · 10−8, which should be
compared with the unit roundoff u ≈ 1.11 ·10−16. Note that the loss of orthogonality
is roughly equal to a factor κ(A) ≈ 10−8. �

Due to round-off there will be a gradual (sometimes catastrophic) loss of orthog-
onality in Gram–Schmidt orthogonalization. In this respect CGS and MGS behave
very differently for n > 2. (Recall that for n = 2 MGS and CGS are the same.) For
MGS the loss of orthogonality occurs in a predictable manner and is proportional to
the condition number κ(A).

Theorem 2.3.7 Let Q̄ and R̄ denote the factors computed by the MGS algorithm.
Then for some c1 = c1(m, n),

‖I − Q̄T
1 Q̄1‖2 ≤ c1uκ2(A)

1− c1uκ2(A)
, (2.3.66)



276 2 Linear Least Squares Problems

provided that c1κ2(A)u < 1,

Proof See Björck [22, 1967]. �

No similar bound for the loss of orthogonality exists for the CGS algorithm given
above. Even computing Q1 = AR−1, where R is determined by the Cholesky fac-
torization of ATA, often gives better orthogonality than CGS. For a slightly altered
version of CGS an upper bound proportional to κ2 for the loss of orthogonality
has recently been proved. Usually, the diagonal entry rkk in the kth step of CGS is
computed as

q̄k = ak −
k−1∑
i=1

rikqi , rkk = ‖q̄k‖2.

From the Pythagorean theorem it follows that r2
kk + p2

k = s2
k , where

sk = ‖ak‖2, pk = (r2
1k + · · · + r2

k−1,k)
1/2.

In the altered version the diagonal entry rkk is computed as

rkk = (s2
k − p2

k )
1/2 = (sk − pk)

1/2(sk + pk)
1/2. (2.3.67)

Under the assumption that ATA is not too ill-conditioned, the bound

‖I − Q̄T Q̄‖2 ≤ c2(m, n)κ(A)2
2 (2.3.68)

was established by Smoktunowicz et al. [259, 2006] for this “Pythagorean variant”.
Using the invariance of the Gram–Schmidt algorithm under column scaling a

sharper upper bound for the loss of orthogonality is obtained. Let D is the set of all
positive diagonal matrices. Then in (2.3.66) we can replace κ2(A) by

κ̃2 = min
D∈D

κ2(AD). (2.3.69)

By (2.2.33), scaling A so that all column norms in A are equal will approximately
minimize κ2(AD).

In some applications it may be essential that the computed columns of Q are
orthogonal to working accuracy. For example, this is the case case in algorithms
for solving unsymmetric eigenproblems, such as simultaneous iteration and Arnoldi
methods. As we have seen, both the CGS and MGS algorithms fail to achieve this.
A remedy to this is to enforce orthogonality by reorthogonalization. In selective
reorthogonalization, a test is performed at each step to see whether or not it is nec-
essary to reorthogonalize. An indication that cancellation has occurred is that

‖q̄k‖2 < α‖ak‖2 (2.3.70)
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for some chosen tolerance α. Typically α is chosen in the range 0.1 ≤ α ≤ 1/
√

2.
Whenα is large, reorthogonalization will occur more frequently and the orthogonality
will be good. If α is small, reorthogonalization will be rarer, but the orthogonality less
good. Rutishauser [247, 1967] was the first to use a condition of the form (2.3.70).
He used α = 0.1, i.e., when at least one decimal digit of accuracy has been lost due
to cancellation reorthogonalization is applied. The choice α = 1/

√
2 used by Daniel

et al. [64, 1976] (see also Reichel and Gragg [240, 1990]) is most often recommended.
In principle, reorthogonalization can be applied several times. But if A has full

numerical column rank, then one reorthogonalization step suffices to achieve orthog-
onality to unit roundoff level. An analysis for the case n = 2 due to Kahan and pub-
lished by Parlett [230, 1998] shows that “twice is enough”. That is, unless the vectors
are linearly dependent to machine precision, full orthogonality will be achieved. A
similar result for the general case n > 2 is shown by Giraud et al. [122, 2005]. As
an example, consider reorthogonalizing the computed vector a(2)

2 in Example 2.3.2
against q1. This gives qT

1 q2 = 2.5486557 · 10−8 and

q̃2 =
(−0.16436198585466

0.98640009002732

)
,

where the vector q̃2 now is exactly orthogonal to q1.
The simplest option if full orthogonality is desired is to always perform a reorthog-

onalization, even if that doubles the cost. In the two-iteration CGS2 algorithm applied
to A(0) = A, the vectors a(0)

k , k ≥ 2, are orthogonalized against the computed basis
vectors Qk−1 = (q1, . . . , qk−1) as follows: For i = 1, 2,

a(i)
k = (I − Qk−1 QT

k−1)a
(i−1)
k = a(i−1)

k − Qk−1(QT
k−1a(i−1)

k ).

The new basis vector is then given as qk = a(2)
k /‖a(2)

k ‖2.

Algorithm 2.3.11 (CGS2)

function [Q,R] = cgs2(A);

% CGS2 computes the thin QR factorization of

% A using CGS with reorthogonalization.

% ------------------------------------------

[m,n] = size(A);

Q = A; R = zeros(n);

for k = 1:n

for i = 1:2

V = Q(:,1:k-1)’*Q(:,k);

Q(:,k) = Q(:,k) - Q(:,1:k-1)*V;

R(1:k-1,k) = R(1:k-1,k) + V;

end

R(k,k) = norm(Q(:,k));

Q(:,k) = Q(:,k)/R(k,k);

end
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A rounding error analysis of CGS2 by Giraud et al. [122, 2005] shows that if the
matrix A has full numerical rank, then CGS2 will guarantee that the orthogonality of
the computed basis vectors is close to the unit roundoff level. A similar algorithm for
column-wise MGS with reorthogonalization has the same operation count, and also
produces basis vectors with orthogonality close to unit roundoff. For column-wise
MGS2 the inner loop is a vector operation whereas in CGS2 it is a matrix-vector
operation. This means that CGS2 executes faster than MGS2 and it is therefore
usually the preferred choice.

If failure occurs in step k of CGS2, this means that to within machine precision
ak is a linear combination of q1, , . . . , qn−1, with coefficients given by the computed
r1k, . . . , rk−1,k . How to recover the orthogonalization is problem dependent. One
option is not to generate a new vector qk in this step, set rkk = 0, and proceed to
the next column. After a suitable permutation of columns this will generate a QR
factorization where Q is m × (n − p) and R is (n − p)× n upper trapezoidal with
nonzero diagonal entries. This factorization can be used to compute a pseudoinverse
solution to a least squares problem; see Sect. 2.4.2. Other options are discussed in
Daniel et al. [64, 1978] and Stewart [271, 1994].

Hoffman [165, 1989] reports extensive experiments with selective reorthogonal-
ization using a range of α values, specifically, α = 1/2, 0.1, …, 10−10. It is the
Pythagorean variant of CGS was used in 1962 by Davis [66, 1962].

2.3.6 MGS as a Householder Method

Evidence is accumulating that the modified Gram–Schmidt method gives better results than
Householder. The reasons for this phenomenon appear not to have been elucidated yet.

—G. Peters and J. H. Wilkinson [234, 1970]

A key observation for understanding the numerical stability of MGS algorithms
is the surprising result that it can be interpreted as a Householder QR factorization
of the matrix A extended with a square matrix of zero elements on top.8 This is true
not only in theory, but in the presence of rounding errors as well. We first look at the
theoretical result.

Let A ∈ R
m×n have rank n and consider the two QR factorizations

A = (Q1 Q2
) (R

0

)
, Ã =

(
O
A

)
=
(

P11 P12
P21 P22

)(
R̃
0

)
, (2.3.71)

where Q ∈ R
m×m and P ∈ R

(n+m)×(n+m) are orthogonal matrices. If the upper

8 This observation was made by Charles Sheffield, apparently when comparing FORTRAN code
for Householder and MGS QR factorization.



2.3 Orthogonal Factorizations 279

triangular matrices R and R̃ are chosen to have positive diagonal elements, then by
uniqueness R = R̃. Hence, in exact computation P21 = Q1. The last m columns of
P are arbitrary up to an m × m multiplier.

The important result is that the MGS QR factorization is also numerically equiv-
alent to Householder QR applied to the extended matrix. To see this, recall that the
Householder reflector Px = σe1 uses

P = I − 2vvT /‖v‖2
2, v = x − σe1, σ = ±‖x‖2.

If the second factorization in (2.3.71) is obtained using Householder reflectors, then

PT = Pn · · · P2 P1, Pk = I − 2v̂k v̂
T
k /‖̂vk‖2

2, k = 1:n, (2.3.72)

where the vectors v̂k are described below. Now, from MGS applied to A(1) = A,
r11 = ‖a(1)

1 ‖2, and a(1)
1 = q̂1 = q1r11. Hence, for the first Householder reflector

applied to the extended matrix

Ã(1) ≡
(

O
A(1)

)
, ã(1)

1 =
(

0
a(1)

1

)
,

the Householder vector is

v̂1 ≡
(−r11e1

q̂1

)
= r11v1, v1 =

(−e1
q1

)
.

Since ‖v1‖2
2 = ‖e1‖2

2 + ‖q1‖2
2 = 2, we have P1 = I − 2v̂1v̂

T
1 /‖̂v1‖2

2 = I − v1v
T
1

and

P1ã(1)
j = ã(1)

j − v1v
T
1 ã(1)

j =
(

0
a(1)

j

)
−
(−e1

q1

)
qT

1 a(1)
j =

(
r1 j e1

a(2)
j

)
,

so

P1 Ã(1) =

⎛
⎜⎜⎜⎜⎜⎝

r11 r12 · · · r1n

0 0 · · · 0
...

...
...

...

0 0 · · · 0
0 a(2)

2 · · · a(2)
n

⎞
⎟⎟⎟⎟⎟⎠

.

Clearly the first row is numerically the same as the first row in R produced in the
first step of MGS on A. Also the vectors a(2)

j , j = 2:n, are the same. The next

Householder reflector produces the second row of R and a(3)
j , j = 3 : n, just as in

MGS. All remaining steps are similar and we conclude that this Householder QR
is numerically equivalent to MGS applied to A. Note that every Pk is effectively
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defined by the columns of Q1, since

Pk = I − vkv
T
k , vk =

(−ek

qk

)
, k = 1:n. (2.3.73)

From the numerical equivalence it follows that the backward error analysis for
the Householder QR factorization of the extended matrix can also be applied to
the modified Gram–Schmidt algorithm on A. From the error analysis for Householder
QR factorization (see Theorem 2.3.4, p. 261) it follows that for R̂ computed by MGS,

(
E1

A + E2

)
= P̃

(
R̂
0

)
, P̂ = P̃ + E ′,

where

‖Ei‖2 ≤ ci u‖A‖2, i = 1, 2, ‖E ′‖2 ≤ c3u. (2.3.74)

Here ci are constants depending on m, n and the details of the arithmetic. Using this
result it can be shown (see Björck and Paige [31, 1992]) that there exists an exactly
orthonormal matrix Q̂1 and E such that

A + E = Q̂1 R̂, Q̂T
1 Q̂1 = I, ‖E‖2 ≤ c1u‖A‖2. (2.3.75)

If σ̄1 ≥ · · · ≥ σ̄n are the singular values of R̂ and σ1 ≥ · · · ≥ σn the singular values
of A, then it follows that

|σ̄i − σi | ≤ c2uσ1.

The result (2.3.75) shows that R̂ computed by MGS is comparable in accuracy to the
upper triangular matrix from the Householder QR factorization applied to A.

The relationship between MGS and Householder QR can be used to develop
algorithms for solving least squares problems with MGS. These will give results
comparable in accuracy with those obtained by the Householder QR algorithms.
We first derive the MGS algorithm for solving least squares problems. Clearly, the
problem minx ‖Ax − b‖2 and the extended problem

min
x

∥∥∥∥
(

0
A

)
x −

(
0
b

)∥∥∥∥
2

have the same solution. We apply the Householder algorithm (2.3.34)–(2.3.35) to the
extended problem, where the Householder reflector Pk , 1:n, is defined as in (2.3.73)
by the vector qk from MGS. To compute

(
d
h

)
= PT

(
0
b

)
, PT = Pn · · · P2 P1,



2.3 Orthogonal Factorizations 281

set d1 = 0, h1 = b, and for k = 1:n, compute

(
dk+1
hk+1

)
= Pk

(
dk

hk

)
=
(

dk

hk

)
−
(−ek

qk

) (−eT
k qT

k

) (dk

hk

)
.

Note that only the first k − 1 elements in dk are nonzero. Further, h = h(n+1) and
d = d(n+1) = (δ1, . . . , δn)T , where

δk := qT
k hk; hk+1 := hk − qkδk, k = 1:n.

The recursion for d and h is exactly the same for MGS applied to minx ‖Ax − b‖2.
This shows that the MGS algorithm is backward stable for computing x .

A backward stable approximation of the residual vector r is obtained from the
Householder algorithm by setting

(
0
r

)
= P

(
0

hn+1

)
, P = P1 · · · Pn−1 Pn,

where Pk is given by (2.3.73). More generally, P

(
z
h

)
is computed by setting

(
wn

yn

)
=
(

z
h

)
, and for k = n: − 1:1,

(
wk−1
yk−1

)
= Pk

(
wk

yk

)
=
(

wk

yk

)
−
(−ek

qk

) (−eT
k w(k) + qT

k yk
)
.

Hence, in this step only the kth element of wk is changed from ζk = eT
k z to ωk =

qT
k yk . The recurrence can be written as

yk−1 := yk − qk(ωk − ζk), ωk := qT
k yk, k = n: − 1:1, (2.3.76)

so y = y0, w = (ω1, . . . , ωn)T . In particular, setting z = 0 and h = hn+1,

yk−1 = yk − qkωk, ωk = qT
k yk k = n: − 1:1.

Note that w = (ω1, . . . , ωn)T is ideally zero, but can be significant when κ(A) is
large. The computation of y can be seen as reorthogonalization of hn+1 against the
vectors qk . It is interesting to note that this is to be done in backward order.

A backward stable MGS algorithm for solving the minimum-norm problem

min ‖y‖2 subject to AT y = c

can be developed using the same technique as above. Using the interpretation as a
Householder QR factorization the solution is obtained from
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RT z = c, y = Q

(
z
0

)
.

Suppose that MGS has been applied to A, giving R and Q1 = (q1, . . . , qn). Then
RT z = c is solved for z = (ζ1, . . . , ζn)T . Next, set yn = 0, and use the recursion
(2.3.76) to compute y = y0.

Assuming that MGS has been applied to A ∈ R
m×n , rank (A) = n, to compute

Q and R, Algorithm 2.3.12 computes the solution minimum-norm solution y to the
linear system AT y = c.

Algorithm 2.3.12 (Minimum-Norm Solution by MGS)

function [y,rho] = mgsmn(Q,R,c)

% MGSMN uses the MGS thin QR factorization

% of A to solve the minimum-norm problem and

% returns the solution y, and its norm rho.

% ---------------------------------------------

[m,n] = size(Q);

z = R’\c;

y = zeros(m,1);

for k = n:-1:1

w = Q(:,k)’*y;

y = y - (w - z(k))*Q(:,k);

end

rho = norm(y);

No derivation of this algorithm without using the interpretation as a Householder
QR factorization seems possible. A backward stable MGS algorithm can also be
developed for solving the augmented system (2.1.15), based on the Householder QR
algorithm given in Theorem 2.3.5.

2.3.7 Partitioned and Recursive QR Factorization

To obtain near-peak performance for large dense matrix computations on current
computing architectures requires code dominated by matrix-matrix operations, since
these involve less data movement per floating point operation. To achieve this, the QR
factorization can be organized in partitioned or blocked form, where the operations
are reordered and grouped into matrix operations.

Assume that the matrix A ∈ R
m×n (m ≥ n) is partitioned as

A = (A1, A2), A1 ∈ R
m×n1 , (2.3.77)
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where n1 � n is a suitable block size. In the first step, we compute the QR factor-
ization

QT
1 A1 =

(
R1
0

)
, Q1 = P1 P2 · · · Pn1, (2.3.78)

using Algorithm 2.3.3. Here Pi = I − ui uT
i , i = 1:n1, are Householder reflectors.

Next, the remaining columns A2 are updated:

QT
1 A2 = Pn1 · · · P2 P1

(
A12
A22

)
=
(

R12
B

)
. (2.3.79)

where R12 ∈ R
n1×(m−n1) is part of the final factor R. It now remains to compute the

QR factorization of B. In the next step the columns of B are partitioned so that

B = (B1, B2), B1 ∈ R
(m−n1)×n2 .

Then, as in the first step, the QR factorization of B1 is computed and B2 is updated.
This process is continued until the columns in A are exhausted.

In partitioned QR factorization the major part of the computation is spent in the
updating steps (2.3.79). As described, these steps are slowed down because they do
not use BLAS 3. To achieve high performance, it is essential to speed up this part. This
can be done by aggregating the Householder reflectors so that the updating can be
expressed as matrix-matrix operations. Since each Householder reflector performs a
rank-one modification, it should be possible to express the product of n1 Householder
reflectors as a rank-n1 modification. The following lemma shows how to generate
the latter representation, which is the one used in LAPACK.

Lemma 2.3.2 Let P1, P2, . . . , Pr be a sequence of Householder reflectors. Set r =
r1 + r2, and assume that

Q1 = P1 · · · Pr1 = I − Y1T1Y T
1 , Q2 = Pr1+1 · · · Pr = I − Y2T2Y T

2 ,

where T1, T2 ∈ R
r×r are upper triangular matrices. Then, the product Q1 Q2 can

be written as

Q = Q1 Q2 = (I − Y1T1Y T
1 )(I − Y2T2Y T

2 ) = (I − Y T Y T ), (2.3.80)

where

Y = (Y1, Y2), T =
(

T1 −T1(Y T
1 Y2)T2)

0 T2

)
. (2.3.81)

Note that Y is formed by concatenation, but computing the off-diagonal block in T
requires extra operations.
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For the special case that r2 = 1 and

I − Yk TkY T
k = (I − Yk−1Tk−1Y T

k−1)(I − τkukuT
k ),

Lemma 2.3.2 gives the recursion

Yk = (Yk−1, uk), Tk =
(

Tk−1 −τk Tk−1(Y T
k−1uk),

0 τk

)
. k = 2:n1. (2.3.82)

This is used to aggregate the Householder reflectors for each processed block. The
updating of A2 in (2.3.79) can then be written

(I − Yn1 T T
n1

Y T
n1

)A2 = A2 − Yn1(T
T

n1
(Y T

n1
A2)),

which involves only matrix-matrix operations. (Note the order of the operations on the
right-hand side is important.). The partitioned algorithm requires more storage and
operations than the point algorithm, namely those needed to compute and store the
T matrices. Using a fixed number p of columns in the partitioned algorithm requires
n/p T -matrices of size p to be formed and stored, giving a storage overhead of
1
2 12np. For large matrices this is more than offset by the increased rate of execution.

As mentioned in Sect. 1.6.4, recursive algorithms can execute efficiently on high
performance computers and are a viable alternative to partitioned algorithms. The
reason is that recursion leads to automatic variable blocking that dynamically adjusts
to an arbitrary number of levels of memory hierarchy. To develop a recursive QR
algorithm, let

A = (A1 A2
) = Q

(
R11 R12
0 R22

)
,

be a partitioned QR factorization, where A1 consists of the first �n/2� columns of
A. The QR factorization of A1 is computed and the remaining part A2 of the matrix
is updated:

QT
1 A1 =

(
R11
0

)
, QT

1 A2 = QT
1

(
A12
A22

)
=
(

R12
B

)
.

Next, the QR factorization of B is recursively computed, giving Q2, R22, and Q =
Q1 Q2. Algorithm 2.3.13 performs a recursive QR factorization of A ∈ C

m×n (m ≥
n). The matrix Q = I − Y T Y ′ is given in aggregated form, where Y ∈ C

m×n and
unit lower trapezoidal and T ∈ C

n×n is upper triangular.
A disadvantage of this algorithm is the overhead in storage and operations caused

by the T matrices. At the end of the recursive QR factorization a T -matrix of size n×n
is formed and stored. This is a much larger storage overhead than for the partitioned
QR algorithm. A better solution would be to use a hybrid of the partitioned and the
recursive algorithm, where the recursive QR algorithm is used to factorize the blocks
in the partitioned algorithm; see Elmroth and Gustavson [94, 2004].

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Algorithm 2.3.13 (Recursive QR Factorization)

function [Y,T,R] = recqr(A)

% RECQR computes recursively the QR factorization

% of the m by n matrix A (m >= n). Output is the

% n by n R and Q = (I - YTY’) in aggregated form.

% --------------------------------------------------

[m,n] = size(A);

if n == 1

[Y,T,R] = houseg(A);

else

n1 = floor(n/2);

n2 = n - n1; j = n1+1;

[Y1,T1,R1]= recqr(A(1:m,1:n1));

B = A(1:m,j:n) - (Y1*T1’)*(Y1’*A(1:m,j:n));

[Y2,T2,R2] = recqr(B(j:m,1:n2));

R = [R1, B(1:n1,1:n2); zeros(n-n1,n1), R2];

Y2 = [zeros(n1,n2); Y2];

Y = [Y1, Y2];

T = [T1, -T1*(Y1’*Y2)*T2; zeros(n2,n1), T2];

end

Two different schemes have been proposed for aggregating products of House-
holder transformations: the WY representation of Bischof and Van Loan [20, 1987]
and a more storage-efficient version by Schreiber and Van Loan [253, 1989].
Algorithms for QR factorization on parallel processing machines have been stud-
ied by many authors. O’Leary and Whitman [218, 1990] consider algorithms for
Householder and row-wise MGS on distributed MIMD machines using row-wise
partitioning schemes. Oliveira et al. [219, 2000] analyze pipelined implementations
using different partitioning schemes including block and block-cyclic column-wise
schemes. A parallel implementation of CGS with reorthogonalization is given by
Hernandez et al. [160, 2006]. Communication-avoiding parallel and sequential algo-
rithms for QR factorization are developed by Demmel et al. [69, 2008].

2.3.8 Condition Estimation and Iterative Refinement

A condition estimator based on inverse iteration and similar to that described in
Sect. 1.4.4 can be developed for the least squares problem. Let R be the upper tri-
angular factor in the QR factorization of A or alternatively the Cholesky factor of
ATA. Let u be a given vector, and compute v and w from

RT v = u, Rw = v. (2.3.83)

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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This requires about 2n2 flops and since w = R−1(R−T u) = (ATA)−1u, it is equiv-
alent to one step of inverse iteration with ATA (see Sect. 3.3.3). Provided that u is
suitably chosen,

σ−1
min ≈ ‖w‖2/‖v‖2

will usually be a good estimate. If A is ill-conditioned, then w is usually a good
approximation of the right singular vector corresponding to σn . If u is chosen as a
random vector, two or three steps of inverse iteration usually suffice.

Example 2.3.3 Inverse iteration will often detect near rank-deficiency even when it
is not revealed by a small diagonal element in R. The n × n upper triangular matrix

W =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 · · · −1 −1
1 · · · −1 −1

. . .
...

...

1 −1
1

⎞
⎟⎟⎟⎟⎟⎠

. (2.3.84)

has numerical rank n− 1 when n is large. If n = 50 and W is perturbed by changing
the w50,1 entry to −2−48, then the new matrix Ŵ will be exactly singular. If σ48 is
the smallest singular value of W , then

σ50 ≤ ‖W − Ŵ‖F = 1

248 ≈ 7.105·10−15.

The next smallest singular value is σ49 ≈ 1.5, so there is a well defined gap between
σ49 and σ50. But the computed QR factorization Q = I and R = W (which is
exact) gives no indication of the numerical rank-deficiency. (If column interchanges
are employed, the diagonals elements in R indicate rank 49.) Doing a single inverse
iteration on W T W using the Matlab commands

n = 50; W = eye(n) - triu(ones(n,n),1);

z = ones(n,1); x = W\(W’\z);

s = 1/sqrt(max(abs(x)));

gives an approximate smallest singular value s = 1.9323·10−15. A second inverse
iteration gives a value of 2.3666·10−30. �

Reliable estimates can be based on the componentwise error bounds (2.2.27)–
(2.2.28). In particular, if E = |A|, f = |b|, we obtain taking norms the estimates

‖δx‖ � ω
(
‖ |A†|(|b| + |A||x |)‖ + ‖ |(ATA)−1||A|T |r | ‖

)
, (2.3.85)

‖δr‖ � ω
(
‖ |I − AA†|(|A||x | + |b|)‖ + ‖ |(A†)T ||A|T |r | ‖

)
. (2.3.86)

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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For maximum norm the estimate for ‖δx‖ can be written as

‖δx‖∞ � ω(‖ |B1|g1‖∞ + ‖ |B2|g2‖∞), (2.3.87)

where

B1 = A†, g1 = |b| + |A||x |, B2 = (ATA)−1, g2 = |AT ||r |. (2.3.88)

The estimate for ‖δr‖∞ has a similar form.
Consider now a general expression of the form ‖ |B−1|d‖∞, where d > 0 is a

known nonnegative vector. Writing D = diag(d) and e = (1, 1, . . . , 1), we have

‖ |B−1|d‖∞ = ‖ |B−1|De‖∞ = ‖ |B−1 D|e‖∞ = ‖ |B−1 D|‖∞ = ‖B−1 D‖∞.

Using Hager’s 1-norm estimator (see Algorithm 1.4.2, p. 104), a reliable order-of-
magnitude estimate can be obtained of ‖CT ‖1 = ‖C‖∞, where C = B−1 D, at a
cost of a few matrix-vector products Cx and CT y for some carefully selected vectors
x and y. If A has full rank and a QR factorization of A is known, then

A† = R−1 QT , (A†)T = Q R−T

are known and the required matrix-vector products can be computed inexpensively.
For details we refer to Higham [162, 2002], Chap. 15.

In Sect. 1.4.6 we considered mixed precision iterative refinement to compute an
accurate solution x̄ to a linear system Ax = b. In this scheme the residual vector
r̄ = b − Ax̄ is computed in high precision. Then the system Aδ = r̄ is solved for
a correction δ to x̄ using a lower precision LU factorization of A. If this refinement
process is iterated we obtain a solution with an accuracy comparable to that obtained
by doing all computations in high precision. Moreover, the overhead cost of the
refinement is small. A similar process can be devised to compute highly accurate
solutions to the linear least squares problems minx ‖Ax − b‖2. Let x̄ be a computed
least squares solution and r̄ = b − Ax̄ the computed residual vector. Denote by
x = x̄ + e the exact solution. Then, since

‖b − Ax̄‖2 = ‖r̄ − Ae‖2,

the correction e is itself the solution to a least squares problem. If a QR factorization
of A has been computed, then it is cheap to solve for the correction vector e. This
observation can be used to devise an algorithm for the iterative refinement of a least
squares solution. But it turns out that this naive approach is satisfactory only if
the residual vector r is sufficiently small. In general, iterative refinement should be
applied to the augmented system (2.1.15) and both the solution x and the residual r
refined simultaneously. The process of iterative refinement in floating point arithmetic
with base β is described in Algorithm 2.3.14.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Algorithm 2.3.14 (Iterative Refinement with QR Factorization)

s := 0; x (0) := 0; r (0) := b;
repeat

f (s) := b − r (s) − Ax (s);
g(s) := c − AT r (s); (in precision u2 = β−t2)

solve augmented system (in precision u1 = β−t1)

x (s+1) := x (s) + δx (s);
r (s+1) := r (s) + δr (s);
s := s + 1;

end

To solve for the corrections in the algorithm, Theorem 2.3.5 is used with the
computed factors Q̄ and R̄:

z(s) = R̄−T g(s),

(
d(s)

e(s)

)
= Q̄T f (s), (2.3.89)

δr (s) = Q̄

(
z(s)

e(s)

)
, δx (s) = R̄−1(d(s) − z(s)). (2.3.90)

Computing the residuals and corrections takes 4mn flops in high precision. Com-
puting the solution from (2.3.89)–(2.3.90) takes 2n2 for operations with R̄ and takes
8mn − 4n2 for operations with Q̄. The total work for a refinement step is an order
of magnitude less than the 4n3/3 flops required for the QR factorization.

It can be shown (see Björck [23, 1967]) that initially the convergence rate of
iterative refinement is linear with rate

ρ = c1u min
D>0

κ2(AD),

where c1 is of modest size. This rate is independent of the right-hand side and hence
true also for large residual problems. Amazingly, the process converges if ρ < 1,
even though the first approximation may have no significant digits; see Björck and
Golub [29, 1967]. A portable and parallelizable implementation of the Björck–Golub
refinement algorithm using the extended precision BLAS is now being made available
in LAPACK; see Demmel et al. [70, 2009].

In contrast, when iterative refinement is applied to the normal equations (see
Algorithm 2.1.1), the rate of convergence is proportional to c2u minD>0 κ2

2 (AD).
This makes a huge difference for ill-conditioned problems.
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Exercises

2.3.1 The matrix H is an orthogonal reflector if H is Hermitian and H2 = I . Show that P =
(I − H)/2 is an orthogonal projector. Conversely, if P is an orthogonal projector show
that H = I − 2P is a reflector.

2.3.2 Show that the polar representation of a complex number z = x + i y can be computed by
a function call [c,s,r] = givens(x,y). This gives z = |r |eiθ , where eiθ = z/|r |,
and

z =
{

r(c + i s) if σ ≥ 0,

|r |(−c + i (−s)) if σ < 0.

2.3.3 Modify Algorithm 2.3.1 so that it works also for constructing a complex Householder
transformation P such that for a given complex vector x , Px = γ ‖x‖2e1 with |γ | = 1.

2.3.4 Show that the plane rotation (2.3.12) can be applied using three additions and three mul-
tiplications, by setting p = s/(1+ c) and computing

βi = c αi + s α j ,

β j = p (αi + βi )− α j .

These formulas can be used when multiplication is more expensive than addition.
2.3.5 Specialize the formulas in (2.3.5) for a Householder reflector P to the case n = 2. What

is the relation between this and the corresponding plane rotation? How many flops are
needed to apply the reflector P to a matrix of dimension 2 by n?

2.3.6 Show that if S ∈ R
n×n is skew-symmetric (ST = −S), then I − S is nonsingular and the

matrix

Q = (I − S)−1(I + S) (2.3.91)

is orthogonal. This is known as the Cayley transform, (b) Verify the special 2× 2 case

S =
(

0 tan θ
2− tan θ

2 0

)
, Q =

(
cos θ −sin θ

sin θ cos θ

)
,

where 0 ≤ θ < π .
2.3.7 Let a j = Ae j , j = 1:n, be the j th column of a matrix A ∈ R

n×n . Use the QR factorization
to show Hadamard’s determinant inequality

| det(A)| ≤
n∏

j=1

‖a j‖2, (2.3.92)

where equality holds only if ATA is a diagonal matrix or A has a zero column.
Hint: Use that det(A) = det(Q) det(R), where det(Q) = ±1.

2.3.8 Modify the Matlab code in Algorithm 2.3.3 for Householder QR factorization so it com-
putes and returns the matrix Q1 ∈ R

m×n .
2.3.9 (a) Derive a square root free version of the modified Gram–Schmidt orthogonalization

method, by omitting the normalization of the vectors q̃k . Show that this version com-
putes a factorization A = Q̃1 R̃, where R̃ is unit upper triangular.

(b) Modify Algorithm 2.3.5 for computing the least squares solution and residual when
the square root free version of modified Gram–Schmidt is used.

Comment: There is no square root free version of the Householder QR factorization.
2.3.10 Let Q = Q1 = (q1, q2, . . . , qn) ∈ R

n×n be a real orthogonal matrix.

(a) Determine a reflector P1 = I − 2v1v
T
1 such that P1q1 = e1 = (1, 0, . . . , 0)T , and

show that P1 Q1 = Q2 has the form
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Q2 =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0
.
.
. Q̃2
0

⎞
⎟⎟⎟⎠ ,

where Q̃2 = (̃q1, q̃2, . . . , q̃n) ∈ R
(n−1)×(n−1) is a real orthogonal matrix.

(b) Show, using the result in (a), that Q can be transformed to diagonal form with a
sequence of orthogonal transformations

Pn−1 · · · P2 P1 Q = diag(1, . . . , 1,±1).

2.3.11 Let Q = (Q1 Q2
) ∈ R

m×m be the orthogonal factor in the Householder QR factoriza-
tion of a real matrix A ∈ R

m×n . Verify the operation counts for the explicit computations
of the submatrices Q1 and Q2 given in Sect. 2.3.2: 2(mn2 − n3/3) flops for Q1 and
2n(m − n)(2m − n) flops for Q2.

2.3.12 (a) Show that a 3×3 upper triangular matrix can be brought to bidiagonal form using two
plane rotations. The element r13 is zeroed by a rotation from the left in the (1,2)-plane,
which introduces a new nonzero element in position (2,1). This is then zeroed by a
rotation from the right in the (1,2) plane.

(b) Use the idea in (a) to develop an algorithm using plane rotations to transform an upper
triangular matrix R ∈ R

n×n to bidiagonal form. How many flops does this require?
2.3.13 Trefethen and Bau [281, 1997], pp. 237–238, suggest a blend of the methods of Golub–

Kahan and Chan for bidiagonal reduction, which is more efficient when n < m < 2n. They
note that after k steps of the Golub–Kahan reduction the aspect ratio of the reduced matrix
is (m − k)/(n − k) and thus increases with k. Show that to minimize the total operation
count one should switch to the Chan algorithm when (m − k)/(n − k) = 2.

2.3.14 Consider the over-determined linear system Ax = b in Example 2.1.5. Assume that ε2 ≤ u
so that f l(1+ ε2) = 1.

(a) Show that the condition number of A is κ = ε−1
√

3+ ε2 ≈ ε−1
√

3.
(b) Show that, if no other rounding errors are made, then the maximum deviation from

orthogonality of the columns computed by CGS and MGS, respectively, are

CGS : |qT
3 q2| = 1/2, MGS : |qT

3 q1| = ε√
6
≤ κu

3
√

3
.

Note that for CGS orthogonality has been completely lost!

2.3.15 Show how to compute the QR factorization of the product A = Ap · · · A2 A1 without
explicitly forming the product matrix A.
Hint: For p = 2 first determine Q1 such that QT

1 A1 = R1, and form A2 Q1. Then, if Q2

is such that QT
2 A2 Q1 = R2 it follows that QT

2 A2 A1 = R2 R1.
2.3.16 Show that if the column operations in MGS are carried out also on a second block row in

the augmented matrix, the result can be written
(

A b
I 0

)
−→

(
Q1 r
R−1 −x

)
.

Hence, the MGS algorithm can be made to provide in a single sweep operation the solution
x , the residual r , and the matrix R−1, which is required for computing the covariance matrix.

2.3.17 Suppose n1 steps of MGS are performed on the least squares problem minx ‖Ax − b‖2,
yielding the partial factorization

(
A b

) = (Q1 Ã2 b̃
)
⎛
⎝

R11 R12 z1
0 I 0
0 0 1

⎞
⎠ , x =

(
x1
x2

)
,
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where x1 ∈ R
n1 and R11 ∈ R

n1×n1 is nonsingular. Show that x2 is the solution to the
reduced least squares problem minx2 ‖b̃− Ãx2‖2, and that with x2 known x1 can be com-
puted by back substitution from R11x1 = z1 − R12x2.
Hint: Show that r1 ⊥ r2, where r1 = Q1(z1 − R12x2 − R11x1) and r2 = b̃1 − Ã2x2.

2.3.18 (a) Test the recursive QR algorithm recqr(A) on some test matrices of your choice.
Do you obtain the same result as from the built-in function qr(A)?

(b) Write a recursive algorithm for computing the QR factorization by MGS.
Hint: Model it after Algorithm 2.3.13.

2.4 Rank-Deficient Problems

Rank-deficiency in least squares problems can arise in several different ways. In
statistics one often has one set of variables called the factors that are used to control,
explain, or predict another variable. The set of factors correspond to the columns of
a matrix A = (a1, a2, . . . , an). If these are highly collinear, then the numerical rank
of A is less than n and the least squares problem minx ‖Ax − b‖2 does not have a
unique solution. Often the rank is not known in advance and one wants the computed
factorization to reveal the rank. Another typical case occurs in discrete approxima-
tions to ill-posed problems, where the numerical rank is not well determined and is
usually much less than n. Problems of this type require special treatment.

2.4.1 Numerical Rank

The mathematical notion of rank is no longer appropriate when the ideal matrix A is
subject to inaccuracy of data and rounding errors made during computation. Suppose
A ∈ R

m×n is a matrix of rank r < n, whose elements are perturbed by a matrix E
of small random errors, e.g.,

A =
(

1 1
1 1

)
, E =

(
ε11 ε12
ε21 ε22

)
,

where |εi j | � 1. Then it is most likely that the perturbed matrix A + E has full
rank. But since A+ E is close to a rank-deficient matrix, it should be considered as
numerically rank-deficient. Failure to detect this when solving linear systems and
linear least squares problems can lead to a meaningless solution of very large norm,
or even to breakdown of the numerical algorithm.

The numerical rank assigned to a matrix should depend on some tolerance δ,
which reflects the error level in the data and/or the precision of the floating point
arithmetic used. A useful definition can be given in terms of the singular values of A.

Definition 2.4.1 A matrix A ∈ R
m×n has numerical δ-rank equal to k (k ≤

min{m, n}) if

σ1 ≥ · · · ≥ σk > δ ≥ σk+1 ≥ · · · ≥ σn,
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where σi , i = 1:n, are the singular values of A. If we write

A = UV T = U11V T
1 +U22V T

2 ,

where 2 = diag(σk+1, . . . , σn), then R(V2) = span{vk+1, . . . , vn} is called the
numerical null space of A.

It follows from Theorem 2.2.8 that if the numerical δ-rank of A equals k, then
rank (A + E) ≥ k for all perturbations such that ‖E‖2 ≤ δ, i.e., such perturbations
cannot lower the rank. Definition 2.4.1 is only useful when there is a well defined gap
between σk+1 and σk . This should be the case if the exact matrix A is rank-deficient
but well-conditioned. But it may happen that there does not exist a gap for any k,
e.g., if σk = 1/k. In such a case the numerical rank of A is not well defined.

The choice of the parameter δ in Definition 2.4.1 of numerical rank is not always
an easy matter. If the errors in ai j satisfy |ei j | ≤ ε, for all i, j , an appropriate choice is
δ = (mn)1/2ε. On the other hand, if the absolute size of the errors ei j differs widely,
then Definition 2.4.1 is not appropriate. One could then scale the rows and columns
of A so that the magnitude of the errors become nearly equal. (Note that any such
diagonal scaling DrADc will induce the same scaling Dr E Dc of the error matrix.)

2.4.2 Pivoted QR Factorizations

A QR factorization of a rank-deficient matrix may not serve any useful purpose unless
column pivoting is employed. In pivoted QR factorization, column interchanges
yield a QR factorization of A� for some permutation matrix �.

Assume that in the Gram–Schmidt QR factorization of a rank-deficient matrix A
the first k − 1 columns a1, . . . , ak−1 are linearly independent. Then the orthogonal
vectors q1, . . . , qk−1 can be computed without breakdown. If the column ak is a
linear combination of q1, . . . , qk−1, then a(k)

k = 0, and without pivoting the process
stops. However, if rank (A) ≥ k, then there must be a vector ap, for some p > k, that
is linearly independent on q1, . . . , qk−1. After columns k and p are interchanged,
the process can proceed.

We now describe the row-wise MGS algorithm with column interchanges. One
reason MGS was used in practice long before its superior numerical stability was
appreciated is that it is more suitable for pivoting and solving rank-deficient problems.
The standard pivoting strategy is to choose at step k the column that maximizes the
diagonal element |rkk |. Let p be the smallest index such that

‖a(k)
p ‖2 = max

k≤ j≤n
‖a(k)

j ‖2.

If this maximum is zero, then all remaining columns ak , . . . , an are linearly dependent
on q1, . . . , qk−1 and the factorization is complete. Otherwise, interchange columns p
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and k and proceed. If rank (A) = r , then in exact arithmetic, pivoted MGS computes
a factorization A� = Q R, where

Q = (q1, . . . , qr ) ∈ R
m×r , R = ( R11 R12

) ∈ R
r×n, (2.4.1)

and � is a permutation matrix and R11 upper triangular and nonsingular. In exact
arithmetic the computed R-factor corresponds to that obtained from pivoted Cholesky
factorization.

If the column norms ‖ã(k)‖2, j = k : n are recomputed at each stage, then
column interchanges will increase the operation count of the QR factorization by
50 %. It suffices to compute the initial column norms and then update these as the
factorization proceeds using the recursion

‖a(k+1)
j ‖2 =

(
‖a(k)

j ‖2
2 − r2

k j

)1/2 = ‖a(k)
j ‖2

[
1−

(
rk j

/
‖a(k)

j ‖2

)2
]1/2

, (2.4.2)

j = k + 1:n. To avoid overflow the last expression should be used. This reduces the
overhead of pivoting to O(mn) operations. Cancellation in the subtraction can cause
this to fail and therefore the new column norms are recomputed from scratch if

‖a(k+1)
j ‖2 = u1/2‖a(1)

j ‖2.

As shown by Golub [126, 1965], the same pivoting strategy can be used in House-
holder QR factorization. Assume that the first k − 1 steps have yielded the partial
QR factorization

A(k) = Pk−1 · · · P1 A �1 · · ·�k−1 =
(

R(k)
11 R(k)

12

0 Ã(k)

)
. (2.4.3)

Then the pivot column in the next step is chosen as a column of largest norm in the
submatrix Ã(k) = (ã(k)

k , . . . , ã(k)
n ). Let p be the smallest index such that

s(k)
p = max

k≤ j≤n
s(k)

j , s(k)
j = ‖ã(k)

j ‖2, j = k : n. (2.4.4)

If s(k)
p = 0, the algorithm terminates. Otherwise, columns p and k are interchanged.

It is easy to show that this pivoting rule is equivalent to maximizing the diagonal
element rkk . Since the column lengths are invariant under orthogonal transformations,
the quantities s(k)

j can be updated using

s(k+1)
j = s(k)

j

[
1−

(
r jk/s(k)

j )
)2
]1/2

, j = k + 1:n. (2.4.5)
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Without pivoting, the QR factorization is numerically invariant under column
scaling, provided the scaling does can be done exactly. This is no longer true for
pivoted QR factorization with the standard pivoting strategy described here because
scaling will influence the choice of pivots.

In the upper triangular factor R obtained from a pivoted QR factorization, certain
relations must hold between its entries.

Theorem 2.4.1 Suppose that R is computed by pivoted QR factorization. Then the
elements in R satisfy the inequalities

r2
kk ≥

j∑
i=k

r2
i j , j = k + 1:n. (2.4.6)

In particular, the diagonal elements form a non-increasing sequence

|r11| ≥ |r22| ≥ · · · ≥ |rnn|. (2.4.7)

If rank (A) = r < n, then in exact arithmetic Householder pivoted QR factoriza-
tion yields a factorization of A� of the form

A� = (Q1 Q2
) (R11 R12

0 0

)
, (2.4.8)

where R11 ∈ R
r×r is upper triangular with positive diagonal elements. The matrices

Q1 and Q2 form orthogonal bases for the two fundamental subspaces R(A) and
N (AT ), respectively. The factorization (2.4.8) is not unique, since there are many
ways to select r linearly independent columns of A.

If floating point arithmetic is used, then pivoted QR factorization yields a factor-
ization

A� = (Q1 Q2
) (R11 R12

0 R22

)

with R22 �= 0, but ‖R22‖ ≤ ε‖A‖ for some user specified tolerance ε. If ε is chosen
sufficiently small, deleting the block R22 corresponds to a small backward error.
Since only orthogonal transformations have been used, there is a perturbation E
with ‖E‖2 ≤ ε‖A‖2 such that A + E has rank r .

Example 2.4.1 Let A ∈ R
n×n , n = 100, be an ill-conditioned matrix obtained from

the discretization of an ill-posed integral equation. Figure 2.3 shows the singular
values σk(A) together with the diagonal elements rkk of R in the pivoted QR fac-
torization. The singular values are sufficiently well approximated to reveal the rank.

�
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Fig. 2.3 Diagonal elements of R (o) in pivoted QR factorization compared with singular values
(x) of the matrix A

For any QR factorization it holds that

σ1 = max‖x‖2=1
‖Rx‖2 ≥ ‖Re1‖2 = |r11|.

Hence, |r11| is a lower bound for the largest singular value σ1 of A. Since R and RT

have the same singular values, we also have

σn = min‖x‖2=1
‖RT x‖2 ≤ ‖RT en‖2 = |rnn|,

which gives an upper bound for σn . For a triangular matrix satisfying (2.4.6) we also
have the upper bound

σ1(R) = ‖R‖2 ≤ ‖R‖F =
(∑

i≤ j

r2
i j

)1/2 ≤ √
n|r11|.

From the interlacing property of singular values (Theorem 2.2.9), a similar argument
gives the upper bounds

σk(R) ≤ √
n − k + 1 |rkk |, 1 ≤ k ≤ n. (2.4.9)

Hence, after k steps in the pivoted QR factorization, if |rkk | ≤ (n−k+1)−1/2δ, then
σk(A) = σk(R) ≤ δ. Then A has numerical rank less than k, and the algorithm can
be terminated. The converse is not true, i.e., the rank may not always be revealed by
a small element |rkk |, k ≤ n. The best known lower bounds for the singular value of
R whose elements satisfy (2.4.6) are
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21−k |rkk | ≤ 3|rkk |
/√

4k + 6k − 1 ≤ σk, 1 ≤ k ≤ n. (2.4.10)

(These bounds were stated without proof in Faddeev et al. [97, 1968]. A proof is
given in Lawson and Hanson [190, 1974], Chap. 6.) The lower bound in (2.4.10) for
k = n can almost be attained, as shown in the example below. Then the pivoted QR
factorization may not reveal the rank of A.

Example 2.4.2 Pivoted QR factorization will detect the rank-deficiency of the matrix
in Example 2.3.3. The computed value (using Matlab) of r100,100 is 5.5511e−017.
Since this value is smaller than the tolerance τ = 100u‖W‖ ≈ 1.4e−012, we
conclude correctly that W has numerical rank 99. However, the computed value of
r100,100 is far greater than the exact value of σ100 = 3.1554e−030.

Even with column interchanges, QR factorization may not reveal rank deficiency.
The upper triangular Kahan matrix (see Kahan [174, 1966])

An = diag(1, s, . . . , sn−1)

⎛
⎜⎜⎜⎜⎜⎝

1 −c · · · −c −c
1 · · · −c −c

. . .
...

...

1 −c
1

⎞
⎟⎟⎟⎟⎟⎠

, s =
√

1− c3, (2.4.11)

has been chosen so that no column interchanges will occur. Therefore, Rn = An for
pivoted QR factorization. For n = 100 and c = 0.2, the last diagonal element of R
is rnn = sn−1 = 0.820. This is a large overestimate of the smallest singular value
σn = 0.368 · 10−8. QR factorization will reveal the correct rank if the columns are
reordered as (n, 1, 2, . . . , n − 1). �

To simplify notation, we assume in the following that � = I . (This is no restric-
tion, because the column permutation of A can be assumed to have been applied in
advance.) Using (2.4.8), we reduce the least squares problem minx ‖Ax − b‖2 to

min
x

∥∥∥∥
(

R11 R12
0 0

)(
x1
x2

)
−
(

c1
c2

)∥∥∥∥
2
, (2.4.12)

where c = QT b. Since R11 is nonsingular, the first r equations can be satisfied
exactly for any x2. Hence, the general least squares solutions satisfy

R11x1 = c1 − R12x2, (2.4.13)

where x2 can be chosen arbitrarily. By setting x2 = 0 and solving R11x1 = c1, we
obtain a particular solution x1 = R−1

11 c1 for which at most r = rank(A) components
are nonzero. Any least squares solution x such that Ax involves at most r columns
of A is called a basic solution. Such a solution is appropriate in applications where
it is required to fit the vector b using as few columns of A as possible.

For an arbitrary vector x2, we have



2.4 Rank-Deficient Problems 297

x1 = d − Cx2, R11d = c1, R11C = R12. (2.4.14)

The solution of minimum norm, i.e., the pseudoinverse solution, is obtained by
solving

min
x

∥∥∥∥
(

x1
x2

)∥∥∥∥
2
= min

x2

∥∥∥∥
(

d
0

)
− W x2

∥∥∥∥
2
, W =

(
C

−In−r

)
. (2.4.15)

This least squares problem for x2 always has full rank, and hence a unique solution.
To compute x2 we could form and solve the normal equations

(CT C + I )x2 = CT d.

It is preferable to compute the Householder QR factorization

QT
C W =

(
RC

0

)
, QT

C

(
d
0

)
=
(

d1
d2

)
,

taking into account the special structure of the matrix W . Since the pseudoinverse
solution x = A†b is the residual of the problem (2.4.15), we get

x = A†b = QC

(
0
d2

)
.

For any z ∈ R
n−r it holds that

A

(
C

−In−r

)
z = Q

(
R11 R12
0 0

)(
R−1

11 R12
−In−r

)
z = 0.

It follows that N (A) = R(W ).

2.4.3 Rank-Revealing Permutations

From Example 2.4.2 it follows that using pivoted QR factorization and setting
rank (A) = max|rkk |>τ k for some tolerance τ may not yield reliable results. Assume
that A has a well defined numerical rank k < n, i.e.,

σ1 ≥ · · · ≥ σk  τ > σk+1 ≥ · · · ≥ σn .

Consider now the partial QR factorization

A�k = Qk

(
Rk Sk

O Bk

)
, (2.4.16)
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where �k is a permutation matrix and Rk ∈ R
k×k is an upper triangular matrix.

By induction and the interlacing properties of singular values (Theorem 2.2.9), it
follows that for any factorization of the form (2.4.16)

σk(Rk) ≤ σk(A) and σ1(Bk) ≥ σk+1(A). (2.4.17)

The factorization (2.4.16) is called a rank-revealing QR factorization if it satisfies

σmin(Rk) ≥ σk(A)/p(k, n) and σ1(Bk) ≤ σk+1(A)p(k, n), (2.4.18)

where p(k, n) is a function bounded by a low-order polynomial in k and n. A QR
factorization such that (2.4.18) is satisfied will detect a rank-deficiency if σk and
σk+1 straddle a gap containing the tolerance τ used to judge the numerical rank and
is called a rank-revealing QR factorization. The term “rank-revealing” was first
used by Chan [44, 1987]. It is known (Hong and Pan [166, 1992]) that every matrix
A ∈ R

m×n , m ≥ n, has an rank-revealing QR factorization with

p(k, n) = √k(n − k)+min(k, n − k) . (2.4.19)

Although their proof is constructive, their algorithm is not computationally efficient
and is primarily of theoretical importance. The naive solution, to try all possible
permutations, is not feasible because the cost is prohibitive—it is exponential in the
dimension n. Indeed, to find such a permutation is an NP-hard problem. But there
are heuristic algorithms that almost always succeeds in practice.

There are two primary approaches for finding a pivoting strategy that gives a
rank-revealing QR factorization:

• Strategy 1. Find a pivoting strategy to maximize σk(Rk).
• Strategy 2. Find a pivoting strategy to minimize σ1(Bk).

These two strategies are in a certain sense dual; cf. Problem 2.4.1. Strategy 1 could
also be stated in terms of minimizing ‖R−1

k ‖2. Note that in the Strategy 2 approach
we are minimizing ‖R22‖2 rather than ‖R22‖(1,2), as with column interchanges.

The early rank-revealing algorithms (Foster [103, 1986], Chan [44, 1987]) follow
Strategy 2. The basic idea behind Chan’s algorithm is as follows: Let vn be the right
singular vector belonging to the smallest singular value σn . Then the index of the
largest component in vn indicates which column to permute into position n.

Theorem 2.4.2 Let v ∈ R
n be a vector with ‖v‖2 = 1 such that ‖Av‖2 = ε, and

let � be a permutation such that if �T v = w, then |wn| = ‖w‖∞. If A� = Q R is
the QR factorization of A�, then |rnn| ≤ n1/2ε.

Proof (Chan [44, 1987], Theorem 2.1) First we note that since |wn| = ‖w‖∞ and
‖v‖2 = ‖w‖2 = 1, we have |wn| = ‖w‖∞ ≥ n−1/2‖w‖2. Next we have

QT Av = QT A��T v = Rw =
(

...

rnnwn

)
.
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Therefore ε = ‖Av‖2 = ‖QT Av‖2 = ‖Rw‖2 ≥ |rnnwn|, from which the result
follows. �

In particular, if v = vn , the right singular vector corresponding to the smallest
singular value σn(A),

|rnn| ≤ σn(A) ≤ n−1/2|rnn|.

The algorithm starts with k = n, and Rk = R, where R is obtained from a pivoted QR
factorization of A. Estimates δn of the smallest singular value and the corresponding
right singular vector are obtained using the LINPACK condition estimator. These
estimates are then improved by inverse iteration (see Sect. 3.3.3) applied to RT R. If
δk = δn > τ , then the numerical rank is k = n. Otherwise, the columns of Rk are
permuted and P , Q, and R f are updated. This process is repeated on the leading
(n − 1) × (n − 1) principal submatrix of R, and so on. It stops when one of the
computed δk’s is greater than the tolerance τ .

The column subset selection problem is closely related to rank-revealing QR
factorization. In this problem we are given a matrix A ∈ R

m×n and want to determine
a subset A1 of k < n columns such that

‖A − (A1 A†
1)A‖2

is minimized over all

(
n

k

)
possible choices. In other words, we want to find a

permutation P such that the smallest singular value of the k first columns of AP is
maximized.

A comprehensive study of algorithms for rank-revealing QR factorizations is
found in Chandrasekaran and Ipsen [49, 1994]. They suggest hybrid algorithms
that in practice compute a rank-revealing QR factorization using a small number of
iterations even if the worst case is exponential in n. A survey of the use of RRQR
for solving discrete ill-posed problems is given by Hansen [150, 1998].

An efficient algorithm for solving rank-deficient problems of low rank r � n
using UTV and QR factorizations is given by Foster [104, 2004] and Foster and
Kommu [105, 2006]. This uses a truncated pivoted QR factorization where the rank
of the trailing diagonal block is estimated by a condition estimator.

2.4.4 Complete QR Factorizations

In some applications, e.g., signal processing, it is required to determine the rank of
A as well as the range R(A) (signal subspace) and the null space N (A). Moreover,
the data to be analyzed arrives in real time and these quantities have to be updated
at each time step. For such applications the SVD has the disadvantage that it cannot
be accurately updated in less than O(n3) operations, when a row and/or column is
modified. Rank-revealing QR factorizations are cheaper to update, but less suitable

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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when the null space N (A) of A is needed. The matrix W in (2.4.15) may be ill-
conditioned and cannot be easily updated.

Applications of this kind motivate the use of the complete QR factorization.
This factorization, due to Hanson and Lawson [155, 1969], is of the form

A = U

(
T 0
0 0

)
V T = U1T V T

1 , (2.4.20)

where T ∈ R
r×r , r = rank (A), is a triangular matrix with positive diagonal ele-

ments, and

U = (U1 U2
) ∈ R

m×m, V = (V1 V2
) ∈ R

n×n,

are square orthogonal matrices partitioned so that U1 ∈ R
m×r and V1 =∈ R

n×r . An
advantage of this decomposition is that, like the SVD, it gives orthogonal bases for
all four fundamental subspaces of A. In particular, U1 and V2 give orthogonal bases
for R(A) and N (A), respectively. From the orthogonal invariance of the spectral
norm it follows that the pseudoinverse of A is

A† = V

(
T−1 0

0 0

)
U T = V1T−1U T

1 . (2.4.21)

The factorization (2.4.20) can be computed starting from a rank-revealing QR
factorization (2.4.8)

A� = Q

(
R11 R12
0 0

)
.

Next, Householder reflectors Pk , k = r : (−1) : 1, are constructed such that

(
R11 R12

)
Pr · · · P1 =

(
T 0

)
.

Here Pk zeros elements in row k and only affects columns k, r + 1:n. Then (2.4.20)
holds with T upper triangular and U = Q and V = �Pr · · · P1. The diagram below
shows the reduction when r = 4 and n = 6 and the two last rows of R12 have been
annihilated:

⎛
⎜⎜⎝
× × ∗ ∗ ∗ ∗

× ∗ ∗ ∗ ∗
∗ ∗ ⊗ ⊗
∗ ⊗ ⊗

⎞
⎟⎟⎠ .

Here ∗ denotes a modified element and ⊗ an element that has been zeroed out. In
the next step the submatrix consisting of columns 2, 5, and 6 will be transformed by
a Householder reflector P2 to zero the elements in position (2,5) and (2,6). (Recall
that when applied from the right the Householder reflector will act on rows.) In step
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k a full matrix of size k× (n− r + 1) is transformed by a Householder reflector. The
transformations require a total of 2r2(n − r + 1) flops.

In practice, we work with a sequence of matrices whose numerical rank may
change at updates. Then it is convenient to use the more general URV decomposition,

A = U RV T = (U1 U2
) (R11 R12

0 R22

)(
V T

1

V T
2

)
, (2.4.22)

where
(‖R12‖2

F + ‖R22‖2
F

)1/2 ≤ cσr+1(A). (2.4.23)

Note that both submatrices R12 and R22 are required to have small elements. From
(2.4.22) we have

‖AV2‖2 =
∥∥∥∥
(

R12
R22

)∥∥∥∥
F
≤ cσr+1,

so that the orthogonal matrix V2 can be taken as an approximation to the numerical
null space Nr .

Related to the URV factorization is the ULV decomposition, which is of the form

A = U

(
L11 0
L21 L22

)
V T , (2.4.24)

where the middle matrix is lower triangular. For this factorization

‖AV2‖2 = ‖L22‖F ,

and hence the size of ‖L21‖ does not adversely affect the null space approximation.
Therefore, this factorization is more satisfactory for applications where an accurate
approximate null space is needed. On the other hand, the URV decomposition usually
gives a superior approximation for the numerical range space and is much simpler
to update.

Algorithms for computing an URV decomposition may start with a standard piv-
oted QR factorization. Next a rank-revealing stage follows, in which singular vectors
corresponding to the smallest singular values of R are estimated. Assume that w is
a unit vector such that ‖Rw‖ = σn . Let P and Q be a orthogonal matrices such that
QT w = en and PT RQ = R̂, where R̂ is upper triangular. Then

‖R̂en‖ = ‖PT RQ QT w‖ = ‖PT Rw‖ = σn,

which shows that the entire last column in R̂ is small. Given w, the matrices P and
Q can be constructed as a sequence of plane rotations; see Stewart [268, 1992].
Efficient algorithms can be given for updating an URV decomposition when a new
row is appended to A.
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Like the rank-revealing QR factorizations, the URV decomposition yields
approximations to the singular values. Mathias and Stewart [206, 1993] give the
following bounds:

f σi ≤ σi (R11) ≤ σi , i = 1:r,
σi ≤ σi−k(R22) ≤ σi/ f, i = r + 1:n,

where

f =
(

1− ‖R12‖2
2

σmin(R11)2 − ‖R22‖2
2

)1/2

.

Hence, the smaller the norm of the off-diagonal block R12, the better the bounds will
be. Similar bounds can be given for the angle between the range of V2 and the right
singular subspace corresponding to the smallest n − r singular values of A.

We finally mention that rank-revealing QR factorizations can be effectively com-
puted only if the numerical rank r is either high, r ≈ n or low, r � n. The low rank
case is discussed in Chan and Hansen [46, 1994].

2.4.5 The QLP Factorization

Let the pivoted QR factorization of A ∈ R
m×n be

A� = Q

(
R
0

)
, R ∈ R

n×n . (2.4.25)

Take the transpose RT of the R-factor and compute its QR factorization without
column interchanges,

RT = P LT , L ∈ R
n×n, (2.4.26)

giving R = L PT , where L is lower triangular. This is equivalent to postmultiply-
ing the matrix R by orthogonal transformations to get a lower triangular matrix L .
Combining these two factorizations gives

A� = Q

(
L
0

)
PT . (2.4.27)

This factorization was introduced by Stewart [272, 1999] and called the QLP fac-
torization of A. If Householder reflectors are used in the the second decomposition
(2.4.26), then no advantage can be taken of the triangular form of RT . If Givens
rotations are used, the triangular form can be exploited as follows. In the first step
a sequence of plane rotations is used to zero elements in the first column of RT by
rotating rows (1, 2), (1, 3), . . . , (1, n) in this order. This uses 2n2 flops and fills out
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the first row of the matrix, but preserves the other zeros. The elements in the second
column can now be zeroed similarly by rotations in the planes (2, i), i = 3 : n, etc.
In a typical intermediate step the matrix will have the form

⎛
⎜⎜⎜⎜⎜⎜⎝

× × × × × ×
× × × × ×

→ × +
→ ⊗ ×

× × ×
× × × ×

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This transformation, which requires a total of 2n3/3 flops, is called flipping the
triangular matrix RT . It can be considered as the first step in an iterative algorithm
outlined in Sect. 3.5.3 for computing the SVD of R. The QLP factorization is used
as a preprocessing step in the Jacobi SVD method; see Sect. 3.6.3.

Example 2.4.3 The diagonal elements of L often are quite good approximations to
the singular values of A, and can be used to estimate condition numbers. Figure 2.4
shows a plot of the singular values of the matrix in Example 2.4.1 together with the
diagonal elements of L in the QLP factorization. In the plot these values virtually
coincide. In this example the correct numerical rank is revealed in both the QR and
QLP factorizations. But the diagonal elements of L in the QLP factorization track
the singular values much better and more smoothly. �
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10
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Fig. 2.4 Diagonal elements of L (∗) in the QLP factorization compared with singular values (x)

of the matrix K

http://dx.doi.org/10.1007/978-3-319-05089-8_3
http://dx.doi.org/10.1007/978-3-319-05089-8_3


304 2 Linear Least Squares Problems

Suppose that after k steps of the Householder Algorithm 2.3.3 we have computed
the partial QR factorization

A(k+1) = (Hk · · · H1)A(�1 · · ·�k) =
(

R11 R12

0 Ã22

)
,

where
(
R11 R12

)
are the first k rows of R in the QR factorization of A. By

postmultiplying with k Householder reflectors we obtain

(
R11 R12

)
H1 · · · Hk =

(
L11 0

)
,

where L11 is the first k rows of L in the QLP factorization. Hence, to determine
the first k diagonal elements of L , which give the QLP approximations to the first
k singular values of A, it is only necessary to perform k steps in each of the two
factorizations.

The above observation shows that the two factorizations can be interleaved. That
is, in the kth step first the kth row of R is computed and then the kth row of L . This
is advantageous when, as in Example 2.4.1, the numerical rank is much less than n.
In particular, if

(
r11 r12

)
is the first row of R, then a good estimate of σ1 = ‖A‖2

is obtained in O(n2) operations from

σ1 ≈ l11 = (r2
11 + ‖r12‖2

2)
1/2.

For a lower or upper bidiagonal matrix B, flipping can be performed using a
sequence of n − 1 Givens rotations; the first two steps of which are shown below:

QT
1 B =

⎛
⎜⎜⎜⎜⎝

→ × +
→ ⊗ ×

× ×
× ×

× ×

⎞
⎟⎟⎟⎟⎠

,

Q2 QT
1 B =

⎛
⎜⎜⎜⎜⎝

× ×
→ × +
→ ⊗ ×

× ×
× ×

⎞
⎟⎟⎟⎟⎠

,

The cost is only 2n multiplications and the generation of n − 1 Givens rotations.
The use of flipping a triangular matrix is mentioned already by Faddeev et al.

[96, 1968]. The convergence of an iterated QLP algorithm for computing the SVD
is analyzed by Huckaby and Chan [171, 2003].
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2.4.6 Modifying QR Factorizations

Suppose that we have computed the solution to a least squares problem

min
x
‖Ax − b‖2, A ∈ R

m×n, m ≥ n.

It may often be required to solve a related least squares problem, where simple
modifications of A and b have been performed. For example, a problem already con-
sidered by Gauss is that one may want to add new observations or discard observations
with unacceptably large residuals, without starting from scratch. Such modifications
are often referred to as updating when (new) data are added and downdating when
(old) data are removed.

In various time-series problems, data are arriving sequentially and a related least
squares solution has to be updated at each time step. Applications in signal processing
often require real-time solutions, so efficiency is critical. Other applications arise in
active set methods for solving least squares problems with inequality constraints and
in optimization and statistics. In linear regression, efficient and stable procedures
for adding and/or deleting observations are often required. In stepwise regression,
different models are examined by adding or deleting variables.

The bidiagonal decomposition and hence the SVD cannot be cheaply updated
when A is modified by a rank-one matrix; see Bunch and Nielsen [38, 1978]. There-
fore, we consider algorithms for updating the full QR factorization of A ∈ R

m×n ,
where the square orthogonal factor Q ∈ R

m×m is explicitly known. We assume that
A and the modified matrix Ã have full column rank, so that the factorizations are
uniquely determined. These algorithms can be used also for updating a least squares
solution by considering the QR factorization of the matrix

(
A b

) = Q

(
R z
0 ρe1

)
. (2.4.28)

From this the solution and residual norm of the least squares problem minx ‖Ax−b‖2
can be obtained by

Rx = z, ‖r‖2 = ρ. (2.4.29)

In the following we derive algorithms for a general rank-one change of A as well as
the special cases of adding or deleting a row or a column of A.

By the interlacing property of singular values (Theorem 2.2.9) it follows that
when a row is added to A the smallest singular value of the modified matrix will
not decrease. When a row is deleted, the smallest singular value and the rank may
decrease and the problem can become singular. Similarly, when a column is deleted
the smallest singular value will not decrease, but when a column is added the modified
matrix may become singular. This observation indicates that adding a column or
deleting a row are more sensitive operations. In some applications a sliding window
method is used, where at each time step a new row of data is added and the oldest
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row of data deleted. Then, adding a new row should be performed before an old row
is deleted.

The updating algorithms given below are minor modifications of those given in
LINPACK; see Dongarra et al. [74, 1979], p. 10.2.

2.4.6.1 Appending a Row

It is no loss of generality to assume that the new row vT is appended as the last row.
Since

(
QT 0
0 1

)(
A
vT

)
=
⎛
⎝

R
0
vT

⎞
⎠ = In+1,m+1

⎛
⎝

R
vT

0

⎞
⎠ ,

where In+1,m+1 interchanges rows n + 1 and m + 1, this problem can be reduced to
appending vT as an (n+1)st row to R. Determine Givens rotations Gk,n+1, k = 1:n,
that annihilate the kth element in vT , giving

Gn,n+1 · · ·G1,n+1

(
R
vT

)
=
(

R̃
0

)
.

This requires 3n2 flops. Note that R can be updated without Q being available.
Updating Q using

Q̃ =
(

Q 0
0 1

)
In+1,m+1GT

1,n+1 · · ·GT
n,n+1,

requires 6mn flops.

2.4.6.2 Rank-One Change

Given u ∈ R
m and v ∈ R

n , it is required to compute the modified QR factorization

Ã = A + uvT = Q̃

(
R̃
0

)
. (2.4.30)

The following updating algorithm is mixed backward stable:

1. Compute the vector w = QT u ∈ R
m , so that

A + uvT = Q

[(
R
0

)
+ wvT

]
. (2.4.31)
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2. Determine an orthogonal transformation P such that

P

(
R
0

)
+ (Pw)vT =

⎛
⎝

R
zT

0

⎞
⎠+ βen+1v

T , β = ±‖w‖2. (2.4.32)

This is done in two steps. First, a Householder transformation is used to zero the
elements in w below row n+1. This will not change R. Next a sequence of Givens
transformations Gk,n+1, k = n : (−1) : 1, is used to zero the first n elements in
W from bottom up. These transformations will create a nonzero row zT below the
matrix R. Adding the second term in (2.4.32) will also just add to the same row.
The process is illustrated in the following Wilkinson diagram (m = 7, n = 4):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × ×
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 ×
0 0 0 ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × ×
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × 0
× × × 0
0 × × 0
0 0 × 0
× × × ×
0 0 0 0
0 0 0 0.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

3. Determine a sequence of plane rotations G̃k,k+1(φk) to zero the elements in row
n + 1 as described in the algorithm for adding a row. This gives the factor R̃.

4. Apply the transformations from previous steps to Q to obtain Q̃,

The work needed for of R is 6n2 flops. Applying the Householder transformations
to Q takes 4m(m − n) flops and applying the Givens transformations from steps 2
and 3 takes 12mn flops. This gives a total of 4m2 + 8nm + 4n2 flops.

Remark 2.4.1 In an earlier (LINPACK) version of this algorithm the matrix R was
modified into a Hessenberg matrix. The version given here is easier to implement
since the modified row can be held in a vector. This becomes even more important
for large sparse problems.

2.4.6.3 Deleting a Column

We first observe that deleting the last column of A is trivial. Assume that

A = (A1 an
) = Q

(
R
0

)
, R =

(
R11 u
0 rnn

)
,

where A1 = (a1, . . . , an−1). Then the QR factorization of A1 is obtained simply by
deleting the trailing column from the decomposition. Suppose now that we want to
compute the QR factorization
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Ã = (a1, . . . , ak−1, ak+1, . . . , an),

where the kth column of A is deleted, k < n. From the above observation it follows
that this decomposition can readily be obtained from the QR factorization of the
matrix

APL = (a1, . . . , ak−1, ak+1, . . . , an, ak) (2.4.33)

where PL is a permutation matrix that performs a left circular shift of the columns
ak, . . . , an . The matrix R PL is upper Hessenberg, but the matrix PT

L R PL is upper
triangular except in its last row. For example, if k = 3, n = 6, then it has the
structure

PT
L R PL =

⎛
⎜⎜⎜⎜⎜⎜⎝

× × × × × ×
0 × × × × ×
0 0 × × × 0
0 0 0 × × 0
0 0 0 0 × 0
0 0 × × × ×

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The task is now been reduced to constructing a sequence of Givens rotations Gi,n ,
i = k : n − 1, to zero out the off-diagonal elements in the last row. Only the trailing
principal submatrix of order n − k + 1 in PT

L R PL , which has the form

(
R22 0
vT rnn

)
,

participates in this transformation. Here the last column can be deleted. This remain-
ing update of R22 is precisely the same as already described for adding a row. Finally,
the updated Q factor is

Q̃ = Q PL GT
k,n · · ·GT

n−1,n .

By an obvious extension of the above algorithm, we obtain the QR factoriza-
tion of the matrix resulting from a left circular shift applied to a set of columns
(a1, . . . , ak−1, ak+1, . . . , ap, ak, ap+1, . . . an).

2.4.6.4 Appending a Column

Assume that the QR factorization

A = (a1, . . . , ak−1, ak+1, . . . , an) = Q

(
R
0

)
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is known. We want to insert the column ak , as the kth column, k �= n, and compute the
QR factorization of Ã = (a1, . . . , an). We start by appending ak as the last column,
which is straightforward. We first compute the vector

w = QT ak =
(

u
v

) } n
} m − n

.

If γ = ‖v‖2 = 0, then Ã is singular. Otherwise, a Householder reflector Hn is
constructed so that H T

n v = γ e1. We have now obtained the QR factorization

(
A ak

) = Q̃

(
R̃
0

)
, Q̃ = Q

(
In 0
0 Hn

)
, R̃ =

(
R u
0 γ

)
.

Let PR be the permutation matrix that performs a right circular shift on the columns
ak+1, . . . , an, ak , so that

Ã = (A ak
)

PR = Q̃

(
R̃ PR

0

)
, R̃ PR =

⎛
⎝

R11 u1 R12
0 u2 R22
0 γ 0

⎞
⎠ ,

where R11 ∈ R
(k−1)×(k−1) and R22 ∈ R

(n−k)×(n−k) are upper triangular, e.g., for
k = 4, n = 6:

R̃ PR =

⎛
⎜⎜⎜⎜⎜⎜⎝

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × 0 ×
0 0 0 × 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Next, Givens rotations Gi−1,i , i = n:−1:k, are determined to zero the last n− k+1
elements in the kth column of R̃ PR . Then

Gk−1,k · · ·Gn−1,n

(
u2 R22
γ 0

)
= R̃22

is upper triangular and the updated factors are

R =
(

R11 R̃12

0 R̃22

)
, R̃12 = (u1, R12) (2.4.34)

and Q = Q̃GT
n−1,n · · ·Gk−1,k .

The above method easily generalizes to computing the QR factorization of

(a1, . . . , ak−1, ap, ak, . . . , ap−1, ap+1, . . . , an+1),
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i.e., of the matrix resulting from a right circular shift of the columns ak, . . . , ap. Note
that when a column is deleted, the new R-factor can be computed without Q being
available. But when a column is added, it is essential that Q be known.

The algorithms given for appending and deleting a column correspond to the
Matlab functions qrinsert(Q,R,k,ak) and qrdelete(Q,R,k).

2.4.6.5 Deleting a Row

Modifying the QR factorization when a row is deleted is a more difficult task than
when a row is added. With no loss of generality we assume that it is the first row of
A which is to be deleted. Thus, we wish to obtain the QR factorization of the matrix
Ã ∈ R

(m−1)×n when the factorization

A =
(

aT
1

Ã

)
= Q

(
R
0

)
(2.4.35)

is known. This is a special case of the rank-one change algorithm, when we take
u = −e1, vT = aT

1 in (2.4.30).
Consider the QR transformation of (e1, A), where a dummy column e1 =

(1, 0, . . . , 0)T has been added. From (2.4.35) it follows that

QT (e1, A) =
(

q1 R
q2 0

)
, (2.4.36)

where qT = (qT
1 , qT

2 ) ∈ R
m is the first row of Q. First determine a Householder

transformation H such that Hq2 = βe1. Then Givens rotations Gk,n+1, k = n:−1:1,
can be determined so that

G1,n+1 · · ·Gn,n+1

(
q1
β

)
= αen+1, α = ±1.

Applying these transformations to (2.4.36) gives

G1,n+1 · · ·Gn,n+1 H

(
q1 R
q2 0

)
=
⎛
⎝

0 R̃
α vT

0 0

⎞
⎠ , (2.4.37)

where the matrix R̃ ∈ R
n×n is upper triangular and the row vT has been added.

Forming Q = QGT
n,n+1 · · · J GT

1,n+1, it follows from (2.4.36) that the last row will

be αeT
n+1. But since Q is orthogonal, it must have the form

Q =
(

Q̃ 0
0 α

)
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with |α| = 1 and Q̃ ∈ R
(m−1)×(m−1) orthogonal. Hence, we have obtained the

factorization

(
1 aT

1

0 Ã

)
=
(

α 0
0 Q̃

)⎛
⎝

α vT

0 R̃
0 0

⎞
⎠ .

Deleting the first row and column in this equation gives Ã = Q̃

(
R̃
0

)
, which is the

desired factorization. Note the essential role played by the first row of Q in this
algorithm.

The algorithms given above update the full QR factorization with Q ∈ R
m×m .

When m  n it is more economical to update the thin QR factorization A = Q1 R,
Q1 ∈ R

m×n . Such algorithms, which use the Gram–Schmidt method with reorthog-
onalization combined with plane rotations, are given in Daniel [64, 1976]. For-
tran subroutines implementing these algorithms are available in Reichel and Gragg
[240, 1990]. Sometimes only the factor R is known, e.g., when the initial prob-
lem is large and sparse or has been solved by the normal equations. For deleting
a row, Saunders [248, 1972] has given an algorithm that often is referred to as the
LINPACK algorithm. This algorithm, which computes the first row qT

1 of Q1 from
RT q1 = AT e1 and takes ‖qT

2 ‖2 = (1−‖qT
1 ‖2

2)
1/2, is less stable the more expensive

algorithm given above.
It is straightforward to extend the above updating algorithms to cases where a block

of rows/columns are added or deleted. Such block algorithms are more amenable to
efficient implementation on modern computers. Block methods for downdating have
been studied by Eldén and Park [90, 1994] and Olszansky et al. [220, 1994].

Updating algorithms for the URV and ULV decompositions are given by Stewart
in [268, 1992] and [269, 1993]. For recent work on updating UTV decompositions,
see [12, 2005] and [10, 2008]. Matlab templates for computing UTV decomposi-
tions are given by Fierro and Hansen [100, 2005]. Symmetric rank-revealing decom-
positions are studied by Hansen and Yalamov [153, 2001].

2.4.7 Stepwise Variable Regression

Consider a linear regression model

Ax = (a1, a2, . . . , an)x = b, A ∈ R
m×n .

In exploratory data analysis the number of variables may be large and some of them
closely correlated. It is not unusual for there to be more variables than data, n > m.
Limiting the model to a smaller number of variables gives a simpler model, which
may fit almost as well. Models using few variables are often preferred for the sake
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of simplicity and scientific insight. Stepwise regression is a greedy technique for
selecting a suitable subset of variables.

In forward stepwise regression the model is built sequentially by adding one
variable at a time. Initially, we set x (0) = 0, and r (0) = b. At each step, the variable
added is chosen so that the residual norm is maximally decreased. Assume that at
the current step k variables have entered the regression. Let the current least squares
solution be x (k). In the next step, a column ap is added that makes the smallest acute
angle with the residual r (k) = b − Ax (k). That is,

cos(a j , r (k)) =
∣∣aT

j r (k)
∣∣

‖a j‖2‖rk)‖2
,

is the maximized for j = p over all variables not yet in the model. This amounts
to using a different pivoting strategy in the QR factorization of A. Note that the
standard pivoting strategy for computing a rank-revealing QR factorization makes
no reference to b and therefore is not appropriate. Even when the given vector b is a
multiple of one column in A, the full pivoted QR factorization of A may be computed
before this is revealed.

Efroymson [82, 1960] gave an algorithm for stepwise regression based on Gauss–
Jordan elimination on the normal equations. Methods based on orthogonal transfor-
mations show better stability. We describe here an algorithm by Eldén [84, 1972]
that uses Householder QR factorization.

Assume that the data have been preprocessed by subtracting the mean values from
b and the columns of A so that the transformed data satisfy eT A = 0 and eT b = 0,
where e = (1, . . . , 1)T . To simplify notation, we further assume that the columns
are ordered initially so that it is the first k variables that have entered the regression.
At this step we have computed the partial QR factorization

QT
k (A, b) = (A(k), b(k)) =

(
R(k)

11 R(k)
12 c(k)

0 Ã(k)
k d(k)

)
, (2.4.38)

where R(k)
11 ∈ R

k×k is upper triangular. We do not assume that the matrix Qk is saved,
since if n  m, this could require too much storage space. The regression coefficients
are then obtained from the triangular system R(k)

11 xk = c(k). The sums of squares due
to the regression and the residual are ‖c(k)‖2

2 and ‖d(k)‖2
2, respectively, and

‖b‖2
2 = ‖c(k)‖2

2 + ‖d(k)‖2
2.

Hence, all information is available to perform partial F-tests for the significance of
a given variable in the regression.

Assume that in the next step column j , k < j ≤ n, is to be included. Then
we proceed as follows. Consider the submatrix Ã(k) = (ãk, . . . , ãn) in (2.4.38) and
construct a Householder transformation H̃k+1 such that
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H̃k+1ã(k)
j = σ j e1, σ j = ‖ã(k)

j ‖2 = rk+1,k+1. (2.4.39)

This determines the new column in R(k+1)
11 . The same orthogonal transformation is

applied to d(k), giving

H̃k+1d(k) =
(

c(k+1)
k+1

d(k+1)

)
.

The variable to enter the regression should be chosen to decrease the norm of the
residual as much as possible. By the Pythagorean theorem, the decrease in the squared

residual norm is
(

c(k+1)
k+1

)2
. Using (2.4.39) to eliminate H̃k+1 gives

c(k+1)
k+1 = eT

1 H̃k+1d(k) = ãT
j d(k)/‖ã j‖2, (2.4.40)

is the quantity to maximize. This can be interpreted as minimizing the angle between
the current residual and the reduced columns in the remaining part of A.

In regression analysis the covariance matrix of the regression coefficients Vx =
(RT R)−1 is also required. If the lower triangular matrix S = R−T is known, then
Vx = ST S is readily available. We now show how S is updated during the regression.
Assume that RT S = I and that a new variable is added to the model. Then the updated
matrices are determined from

(
RT 0
r T ρ

)(
S 0

sT σ

)
=
(

I 0
0 1

)
.

We obtain ρσ = 1 and r T S + ρsT = 0, giving σ = 1/ρ and s = −σ ST r . The cost
of this updating is just 2k2 flops.

The following lemma shows that when R is multiplied from left and right by
orthogonal transformations, the matrix S = R−T is transformed similarly. Therefore,
it is convenient to store S in the lower triangular part of the array used for storing R.

Lemma 2.4.1 Let R be a nonsingular matrix and R̃ = Q1 RQ2, where Q1 and Q2
are orthogonal. If RT S = I , then R̃T S̃ = I , where S̃ = Q1SQ2.

Proof Using the orthogonality of Q1 and Q2, we have QT
2 RT QT

1 Q1SQ2 =
QT

2 RT SQ2 = QT
2 Q2 = I . �

After a new variable has entered the regression, it may be that the contribution
of some other variable included in the regression is no longer significant. We now
consider deleting the j th column from the regression using a technique slightly
different from that described in Sect. 2.4.6. A product of k− j Givens transformations
Q are applied to R(k)

11 so that when excluding the j th column, the rest of the matrix
has triangular form. The rows j :k in R(k) and b(k) will be affected. In the Wilkinson
diagram below, the transformations of R(k)

11 and c(k) are illustrated for the case k = 5
and j = 3. Premultiplying with Q = G4,5G3,4, we obtain
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G4,5G3,4

⎛
⎜⎜⎜⎜⎝

× × × × × ×
× × × × ×

× × × ×
× × ×

× ×

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

× × × × × ×
× × × × ×

× × × ×
+ ⊗ × ×
+ ⊗ ∗

⎞
⎟⎟⎟⎟⎠

A circular permutation of columns j : k will bring the j th column into place k and
a repartitioning of rows and columns gives the updated submatrix R(k−1)

11 of order
k − 1. The same orthogonal transformations and repartitioning of rows are applied
to c(k). The increase in the norm of the residual will come from the last element in
Qkc(k) (marked ∗ in the diagram), i.e., eT

k Qkc(k).
By Lemma 2.4.1, when a variable is deleted by the process just outlined, the lower

triangular matrix S = R−T is transformed just like R:

G4,5G3,4

⎛
⎜⎜⎜⎜⎝

×
× ×
× × ×
× × × ×
× × × × ×

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

×
× ×
× × ⊗ +
× × ⊗ × +
× × × × ×

⎞
⎟⎟⎟⎟⎠

By Lemma 2.4.1, permuting the j th column to the last position must give a lower
triangular matrix. It follows that zeros are introduced in the j th columns as indicated.
Denote the j th column of S = R−T

11 by s j . Then, in the general case, the orthogonal
transformation Qk is such that

Qks j = τ j ek, τ j = ‖s j‖2.

Hence, s j = τ j QT
k ek , and the increase in residual norm caused by deleting the j th

variable, 1 ≤ j ≤ k in (2.4.38) equals

eT
k Qkc(k) = sT

j QT
k Qkc(k)/τ j = sT

j c(k)/τ j . (2.4.41)

A potential variable to delete is determined by finding the minimum value of

|sT
j c(k)|/τ j , j = 1:k.

If the increase in the residual norm for this j is not significant, then the j th variable
is deleted from the regression.

It may be desirable to add or delete rows to (A, b) when new information becomes
available without recomputing the regression from scratch. It is possible to add this
possibility to the stepwise algorithm described here using the tools described in
Sect. 2.4.6.

Stepwise regression will in general not find the subsets of size k, k = 1, 2, . . . , p,
that give the smallest residual sum of squares. In certain cases, it might make the
wrong choice in the first few steps and then waste much time in correcting this. There
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are no guarantees that the process will not cycle. Trying all possible combinations is
only feasible for small values of k. Furnival and Wilson [107, 1974] have developed
an algorithm based on “branch and bound” techniques that can be used for p as
large as 30.

Miller [207, 1982] surveys subset selection in regression and emphasizes the com-
putational and conceptual advantages of using methods based on QR factorization
rather than normal equations. Another approach based on the modified Gram–
Schmidt process with reorthogonalization is described in Gragg et al. [137, 1979].

Exercises

2.4.1 Consider a nonsingular 2× 2 upper triangular matrix and its inverse:

R =
(

a b
0 c

)
, R−1 =

(
a−1 a−1bc−1

0 c−1

)
.

(a) Suppose we want to choose the permutation � to maximize the (1, 1) element in the
QR factorization of R�. Show that this is achieved by taking

� =
{

I1,2 if |a| < √
b2 + c2,

I otherwise,

where I1,2 interchanges columns 1 and 2.
(b) Unless b = 0, the permutation chosen in (a) may not minimize the (2, 2) element in

the QR factorization of R�. Show that this is achieved by taking

� =
{

I if |c−1| ≥ √a−2 + b2(ac)−2,

�12 otherwise.

Hence, the test compares row norms in R−1 instead of column norms in R.

2.4.2 (a) The general solution to a rank-deficient least squares problem is obtained by solving
(see 2.4.13)

R11x1 = c1 − R12x2,

where x2 is arbitrary. To minimize ‖x‖2 is not always the best way to resolve the
rank-deficiency and the following approach is often more appropriate.
For a given matrix B ∈ R

p×n consider the problem

min
x∈S

‖Bx‖2, S = {x ∈ R
n | ‖Ax − b‖2 = min}.

Show that with R11C = R12, R11d = c1, this amounts to solving

min
x2
‖(BC)x2 − (Bd)‖2.

2.4.3 A rank-revealing LU factorization of A ∈ R
m×n with rank (A) = r has the form

�1 A�2 =
(

L11
L21

) (
U11 U12

)
,

where �1 and �2 are suitable permutation matrices and L11, U11 ∈ R
r×r are triangular and

nonsingular. Such a factorization can also be used to compute the pseudoinverse solution
x = A†b. Show, using Theorem 2.2.3, that
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A† = �2
(
Ir S

)†
U−1

11 L−1
11

(
Ir
T

)†

�1,

where T = L21 L−1
11 , S = U−1

11 U12. (Note that S is empty if r = n, and T empty if r = m.)
Remark: To obtain a rank-revealing LU factorization, complete or rook pivoting must be
used.

2.4.4 The QLP factorization of A ∈ R
m×n is the two-sided orthogonal factorization

QT
1 A� Q2 =

(
R
0

)
Q2 =

(
L
0

)
, (2.4.42)

where Q1 and Q2 are orthogonal matrices and L is lower triangular. Show that the trans-
formations from the left and right can be interleaved. What is the operation count then for
performing the first k steps?

2.4.5 (a) The normal equations for the least squares problem minx ‖Ax−b‖2 are ATAx = AT b,
with covariance matrix V = (ATA)−1. If an equation wT x = β is added, then the
updated solution x̃ satisfies (ATA + wwT )̃x = AT b + βw. Show that the updated
covariance matrix is

Ṽ = V − 1

1+ wT u
uuT , u = V w.

(b) Show that the modified least squares solution satisfies

(ATA + wwT )(̃x − x) = (β − wT x)w.

Use this and the result from (a) to show that the updated solution is

x̃ = x + (β − wT x )̃u, ũ = C̃w.

Comment: The simplicity and recursive nature of this updating algorithm has made it popular
for many applications, notably Kalman filtering. The main disadvantage of the algorithm is
its serious sensitivity to roundoff errors.

2.5 Structured and Sparse Least Squares

Kronecker structures arise in several application areas, including signal and image
processing, photogrammetry, and multidimensional approximation. It applies to least
squares fitting of multivariate data on a rectangular grid. Such problems can be solved
with great savings in storage and operations. Since A and B are often large, resulting
in models involving several hundred thousand equations and unknowns, such savings
may be essential; see Fausett and Fulton [99, 1994].

A useful technique called substructuring or dissection gives rise to problems of
block angular form. The idea is similar to (but preceded) the nested dissection method
presented in Sect. 1.7.4. It dates back to 1880, when Helmert [159, 1980] used it for
breaking down geodetic problems into geographically defined subproblems.

Another frequently occurring structure is when in each row all nonzero elements
in A are contained in a narrow band. Banded and block angular least squares problems

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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are the simplest examples of least squares problems where A is sparse. Often the spar-
sity pattern of A is irregular and techniques introduced in Sect. 1.7 have to be used.

2.5.1 Kronecker Products

Sometimes least squares problems have a highly regular block structure. Here we
consider problems of the form

min
x
‖(A ⊗ B)x − c‖2, c = vecC, (2.5.1)

where A⊗ B is the Kronecker product of A ∈ R
m×n and B ∈ R

p×q . This product
is the mp × nq block matrix

A ⊗ B =

⎛
⎜⎜⎜⎝

a11 B a12 B · · · a1n B
a21 B a22 B · · · a2n B

...
...

...

am1 B am2 B · · · amn B

⎞
⎟⎟⎟⎠ .

We recall from Sect. 1.8.1 the important rule (7.7.14) for the inverse of a Kronecker
product:

(A ⊗ B)−1 = A−1 ⊗ B−1.

In particular, if P and Q are orthogonal n × n matrices, then

(P ⊗ Q)−1 = P−1 ⊗ Q−1 = PT ⊗ QT = (P ⊗ Q)T ,

where the last equality follows from the definition. Hence, P ⊗ Q is an orthogonal
n2 × n2 matrix. The rule for the inverse holds also for pseudoinverses.

Lemma 2.5.1 Let A† and B† be the pseudoinverses of A and B. Then

(A ⊗ B)† = A† ⊗ B†.

Proof We can verify that X = A† ⊗ B† satisfies the four Penrose conditions in
(2.2.8)–(2.2.9). �

By Lemmas 1.8.1 and 2.5.1, the solution to the Kronecker least squares problem
(2.5.1) can be written

x = (A ⊗ B)†c = (A† ⊗ B†)vecC = vec(B†C (A†)T ). (2.5.2)

This formula leads to a great reduction in the cost of solving Kronecker least squares
problems. For example, if A and B are both m × n matrices, the cost of computing
is reduced from O(m2n4) to O(mn2).

http://dx.doi.org/10.1007/978-3-319-05089-8_1
http://dx.doi.org/10.1007/978-3-319-05089-8_1
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In some areas the most common approach to solving the least squares problems
(2.5.1) is to use the normal equations. If we assume that both A and B have full
column rank, we can use in (2.5.2)

A† = (ATA)−1 AT , B† = (BT B)−1 BT .

But in general an approach based on orthogonal factorizations should be preferred.
If we have computed the complete QR factors of A and B,

A�A = Q A

(
RA 0
0 0

)
V T

A , B�B = Q B

(
RB 0
0 0

)
V T

B ,

with RA, RB upper triangular and nonsingular, then (see Sect. 2.7.3) we have

A† = �AVA

(
R−1

A 0
0 0

)
QT

A, B† = �B VB

(
R−1

B 0
0 0

)
QT

B .

These expressions can be used in (2.5.2) to compute the pseudoinverse solution of
problem (2.5.1) even in the rank-deficient case.

The SVD of a Kronecker product A⊗ B can be simply expressed in terms of the
SVDs of A and B, say

A = UAAV T
A , B = UBB V T

B .

From Lemma 2.5.1 it follows that

A ⊗ B = (UA ⊗UB)(A ⊗B)(VA ⊗ VB)T . (2.5.3)

This is the SVD of A ⊗ B, except that the singular values in the diagonal matrix
A ⊗B are not necessarily in nondecreasing order. With c = vec(C), the solution
can be written as

x = vec(X), X = (B†C)(A†)T . (2.5.4)

2.5.2 Tensor Computations

In many applications the data structures encountered have more than two dimensions
and are represented by a multidimensional tensor or its coordinate representation,
i.e., a hypermatrix. Tensors will be denoted by calligraphic letters, e.g., we refer to

A = (ai1,...,id ) ∈ Rn1×···×nd (2.5.5)



2.5 Structured and Sparse Least Squares 319

as a d-mode tensor d > 2. The case d = 2 corresponds to matrices. In the following
discussion we emphasize the case d = 3, because the main difference between
matrices and hypermatrices comes from the transition from d = 2 to d = 3.

Tensor decompositions originated with Hitchcock [164, 1927] and were much
later taken up and used successfully to analyze data in psychometrics (Tucker
[283, 1966]). In the last decades the use of tensor methods has spread to other fields
such as chemometrics (Bro [36, 1997]), signal and image processing, data mining and
pattern recognition (Eldén [89, 2007]). Mathematical theory and new computational
methods are rapidly being developed. Here we can only give short introduction to
concepts. We caution the reader that notation is still in its infancy and varies between
different papers.

Subarrays are formed by keeping a subset of the indices constant. A 3-mode tensor
(2.5.5) can be thought of as being built up by matrix slices in three ways by fixing
one of the indices, e.g.,

(a:,:, j ) ∈ R
n1×n2 , j = 1:n3.

Similarly, fixing any two indices we get a vector, or fiber

(a:, j,k) ∈ R
n1, j = 1:n2 k = 1:n3.

A tensor is said to be symmetric if its elements are equal under any permutations
of the indices, i.e., for a 3-mode tensor

ai, j,k = ai,k, j = a j,k,i = a j,i,k = ak,i, j = ak, j,i , ∀ i, j, k.

see Comon et al. [57, 2008]. A tensor is diagonal if ai1,i2,...,id �= 0 only if i1 = i2 =
· · · = id .

Elementwise addition and scalar multiplication trivially extends to hypermatrices
of arbitrary order. The tensor or outer product is denoted by ◦ (not to be confused
with the Hadamard product of matrices). For example, if A = (ai j ) ∈ R

m×n and
B = (bkl) ∈ R

p×q are matrices, then

C = A ◦ B = (ai, j,k,l)

is a 4-mode tensor. The 1-mode contraction product of two 3-mode hypermatrices
A = (ai, j,k) ∈ Rn×n2×n3 and B = (bi,l,m) ∈ Rn×m2×m3 with conforming first
dimension is the 4-mode tensor C ∈ Rn2×n3×m2×m3 defined as

C = 〈A,B〉1, c j,k,l,m =
n∑

i=1

ai, j,kbi,l,m . (2.5.6)

Contractions need not be restricted to one pair of indices at a time. The inner prod-
uct of two 3-mode tensors of the same size and the Frobenius norm of a tensor are
defined as
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〈A,B〉 =
∑
i, j,k

ai jkbi jk, ‖A‖2
F = 〈A,A〉1/2 =

∑
i, j,k

a2
i jk . (2.5.7)

The matrix Hölder norm for p = 1,∞ is similarly generalized.
The columns of the matrix A can be stacked or unfolded into a column vector,

the operation vec(A). A second way would be to unfold its rows into a row vector.
Similarly, a 3-mode tensor A can be unfolded or matricized by stacking in some
order the matrix slices obtained by fixing one of its three modes. Following Eldén
and Savas [92, 2009], we use the notation

A(1) = (A:,1,:, A:,2,:, . . . , A:,n2,:) ∈ Rn1×n2n3,

A(2) = (AT:,:,1, AT:,:,2, . . . , AT:,:,n3
) ∈ Rn2×n1n3, (2.5.8)

A(3) = (AT
1,:,:, AT

2,:,:, . . . , AT
n1,:,:) ∈ Rn3×n1n2 ,

where a colon is used to indicate all elements of a mode. Different papers sometimes
use different orderings of the columns. The specific permutation is not important as
long as it is consistent.

A matrix C ∈ R
p×q can be multiplied from the left and right by other matrices

X ∈ R
m×p and Y ∈ R

n×q , and we write

A = XCY T , ai j =
p∑

α=1

q∑
β=1

xiα y jβcαβ.

The corresponding tensor-matrix multiplication of a 3-mode tensor C ∈ R
p×q×r by

three matrices X ∈ R
l×p, Y ∈ R

m×q , and Z ∈ R
n×r transforms C into the 3-mode

tensor A ∈ R
l×m×n with entries

ai jk =
p∑

α=1

q∑
β=1

r∑
γ=1

xi,α y j,β zkγ cαβγ , (2.5.9)

A convenient notation for this operation, suggested by Silva and Lim [256, 2008], is

C = (X, Y, Z) ·A, (2.5.10)

where the mode of each multiplication is understood from the ordering of the
matrices.

For a matrix A ∈ R
m×n there are three ways to define the rank r , which all yield

the same value. The rank is equal to the dimension of the subspace of Rm spanned
by its columns. It also equals the dimension of the subspace of Rn spanned by its
rows. Also, the minimum number of terms in the expansion of A as a sum of rank
one matrices is equal to r ; cf. the SVD expansion. For a tensor of mode d > 2 these
three definitions yield different results.

The column- and row-rank of a matrix are generalized as follows. For a 3-mode
tensor A =∈ Rn1×n2×n3 , let r1 be the dimension of the subspace of Rn1 spanned by
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the n2n3 vectors with entries

a:,i2,i3 , i2 = 1:n2, i3 = 1:n3.

In other words, r1(A) = rank (A(1)), with similar interpretations for r2 and r3. The
triple (r1, r2, r3) is called the multirank of A, and r1, r2, r3 can all be different.

The outer product of vectors x ∈ R
l , y ∈ R

m , and z ∈ R
n is the 3-mode

hypermatrix

T = x ◦ y ◦ z ∈ R
l×m×n, ti1i2i3 = xi1 yi2 zi3 . (2.5.11)

If nonzero, we call this a rank-one tensor. The tensor rank of A is the smallest
number r such that A may be written as a sum of rank-one hypermatrices,

A =
r∑

p=1

x p ◦ yp ◦ z p. (2.5.12)

When d = 2 this definition agrees with the usual definition of the rank of a matrix.
Generalization of this rank definition to higher order tensors is straightforward. How-
ever, for d ≥ 3 there is no algorithm for determining the rank of a given tensor and
this problem is NP-hard. Furthermore, de Silva and Lim [256, 2008] show that the
problem of finding the best rank-p approximation in general has no solution even
for d = 3.

In many applications one would like to approximate a given tensor A with a sum
of rank-one tensors so that

∥∥∥A−
p∑

i=1

λi xi ◦ yi ◦ zi

∥∥∥
F

(2.5.13)

is minimized. Here weights λi are introduced so that we can assume that the vectors
xi , yi , and zi are normalized to have length one. Since the problem of determining
the rank of a tensor is NP-hard, we assume that the number p < r factors is fixed. A
frequently used algorithms for computing such an approximate CP decomposition is
the alternating least squares (ALS) method. In the ALS method the vectors yi and zi

are first fixed and xi determined to minimize (2.5.13). Next, xi , zi are fixed and one
solves for yi , and then xi , yi are fixed and one solves for zi . Define the matrices

X = (x1, . . . , x p) ∈ R
n1×p, Y = (y1, . . . , yp) ∈ R

n2×p,

Z = (z1, . . . , z p) ∈ R
n3×p.

With yi , zi fixed, the minimizing problem can be written in matrix form as

min
X
‖A(1) − X̂(Z � Y )T ‖F .
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Here A(1) ∈ R
n1×n2n3 is the matrix obtained by unfolding A along the first

mode, and
Z � Y = (z1 ⊗ y1, . . . , z p ⊗ yp) ∈ R

n2n3×p

is the matching column-wise Kronecker product, also called the Khatri–Rao product,
of Z and Y . The solution can be written

X̂ = A(1)[(Z � Y )T ]†,

and then the columns of X̂ are normalized to give X̂ = Xdiag(λi ). Because of the
special form of the Khatri–Rao product, the solution can also be written as

X̂ = X(1)(Z � Y )(Z T Z . ∗ Y T Y )†,

where .∗ is the Hadamard (elementwise) matrix product. This version is not always
suitable due to the squaring of the condition number.

Similar formulas for the two other modes are easy to derive. At each inner iteration
a pseudoinverse must be computed. The ALS method can take many iterations to
converge and is not guaranteed to converge to a global minimum. The solution
obtained depends on the starting guess as well.

The idea of expressing a tensor as a sum of rank-one tensors has been pro-
posed by several authors under different names. In psychometrics the it was called
CANDECOMP (canonical decomposition) and PARAFAC (parallel factors); see
Kolda and Bader [180, 2009]. Here we call it the CP (CANDECOMP/PARAFAC)
decomposition (Leurgans et al. [192, 1993]).

In matrix computations an important role is played by the SVD

A = UV T =
r∑

i=1

σi uiv
T
i ∈ R

m×n, r ≤ min{m, n}. (2.5.14)

This expresses a matrix A of rank r as the weighted sum of rank-one matrices
uiv

T
i , where ui ∈ R

m and vi ∈ R
n , i = 1:r , are mutually orthogonal. The SVD

expansion has the desirable property that for any unitarily invariant norm, the best
approximation of A by a matrix of rank r < n is obtained by truncating the expansion;
see the Eckart–Young Theorem 2.2.11.

The high order SVD (HOSVD) is a generalization of the SVD decomposition to
3-mode hypermatrices

A = (U, V, W ) · C,

where the matrices U, V , and W are square and orthogonal and C has the same size as
A. Furthermore, the different matrix slices of C are mutually orthogonal (with respect
to the standard inner product on matrix spaces) and with decreasing Frobenius norm.
Due to the imposed orthogonality conditions, the HOSVD of A is essentially unique.
It is rank-revealing in the sense that if A has multirank (r1, r2, r3), then the last
n1− r1, n2− r2, and n3− r3 slices along the different modes of the core tensor C are
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zero matrices. Algorithms for computing the HOSVD are described by Lauthouwer
et al. [187, 2000]). The matrix U is obtained from the SVD of the l × mn matrix
obtained from unfolding A. V and W are obtained in the same way. Since U, V , and
W are orthogonal, C = (ci jk) is then easily computed from C = (U T , V T , W T ) ·A.

Suppose we want to approximate the tensor A by another tensor B of lower
multirank. Then we want to solve

min
rank (B)=(p,q,r)

‖A− B‖F , (2.5.15)

where the Frobenius tensor norm is defined in (2.5.7). This is the basis of the Tucker
model [283, 1966]. Unlike the matrix case, this problem can not be solved by trun-
cating the HOSVD of A. It is no restriction to assume that B = (U, V, W ) · C,
where U ∈ R

�×p, V ∈ R
m×q , and W ∈ R

�×p are orthogonal matrices. Due to the
orthogonal invariance of the Frobenius norm, U , V , and W are only determined up
to a rotation. Eliminating the core tensor C, problem (2.5.15) can be rewritten as a
maximization problem with the objective function

�(U, V, W ) = 1

2
‖(U T , V T , W T ) ·A‖2

F ,

subject to U T U = I , V T V = I , and W T W = I (compare with the correspond-
ing matrix problem for d = 2). It can be solved as an optimization problem on a
Stiefel manifold; see Eldén and Savas [92, 2009] and Savas and Lim [250, 2010]. A
framework of Newton algorithms with orthogonality constraints is given by Edelman
et al. [80, 1999].

An extensive survey of tensor methods is given by Kolda and Bader [180, 2009].
The theory of tensors and hypermatrices is surveyed by Lim [195, 2013]. Tensor rank
problems are studied by De Silva and Lim [256, 2008] and Comen et al. [56, 2009].
A tutorial on CP decomposition and its applications is given by Bro [36, 1997]).
The N -way Toolbox for Matlab (Andersson and Bro [3, 2000]) for analysis of
multiway data can be downloaded from http://www.models.kvl.dk/source/. Tools
for tensor computations in Matlab have also been developed by Bader and Kolda
[7, 2006] and [8, 2007]; see also the MATLAB Tensor Toolbox http://www.sandia.
gov/~tgkolda/TensorToolbox/index-2.5.html.

2.5.3 Block Angular Least Squares Problems

Consider a geodetic network consisting of geodetic stations connected through obser-
vations. To each station corresponds a set of unknown coordinates to be determined.
In substructuring a set of stations B are chosen that separates the other stations into
two regional blocks A1 and A2 such that station variables in A1 are not connected by
observations to those in A2. The variables are then ordered so that those in A1 appear

http://www.models.kvl.dk/source/
http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html
http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html
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first, A2 second, in B last. The equations are then ordered so that those including
only A1 come first, A2 next, and those only involving variables in B come last. The
dissection can be continued by dissecting each of the regions A1 and A2 into two
subregions, and so on in a recursive fashion.

The blocking of the region for one and two levels of dissection is pictured in
Fig. 2.5. The corresponding block structure induced in the matrix are

A =
(

A1 B1
A2 B2

)
, A =

⎛
⎜⎜⎝

A1 C1 B1
A2 C2 B2

A3 D3 B3
A4 D4 B4

⎞
⎟⎟⎠ .

The block of rows corresponding to Ai , i = 1, 2, . . ., can be processed independently.
The remaining variables are then eliminated, etc. There is a finer structure in A
not shown. For example, in one level of dissection most of the equations involve
variables in A1 or A2 only, but not in B. It is advantageous to perform the dissection
in such a way that in each stage the number of variables in the two partitions is
roughly the same. Also, the number of variables in the separator nodes should be as
small as possible. Nested dissection and orthogonal factorizations in geodetic survey
problems are studied by Golub and Plemmons [129, 1980].

We consider now least squares problems of the following bordered block diagonal
or block angular form:

A =

⎛
⎜⎜⎜⎝

A1 B1
A2 B2

. . .
...

AM BM

⎞
⎟⎟⎟⎠ , x =

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xM

xM+1

⎞
⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎝

b1
b2
...

bM

⎞
⎟⎟⎟⎠ , (2.5.16)

where Ai ∈ R
mi×ni , Bi ∈ R

mi×nM+1 , i = 1:M , and

m = m1 + m2 + · · · + m M , n = n1 + n2 + · · · + nM+1.

This is a special instance of the two-block form (2.1.20), where the first block has a
special structure. Note that the variables x1, . . . , xM are coupled only to the variables
xM+1, which reflects a “local connection” structure in the underlying physical prob-

A1 A2B

A2 A4

A1 3

C

A

DB

Fig. 2.5 One and two levels of dissection of a region
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lem. Applications where the form (2.5.16) arises naturally include photogrammetry,
Doppler radar, GPS positioning, and geodetic survey problems. The block matrices
Ai , Bi , i = 1:M , may also have some structure that can be taken advantage of, but
in the following we ignore this; see Cox [60, 1990].

The normal equations of the least squares problem where A and b have the form
(2.5.16) has the doubly bordered block diagonal form:

ATA =

⎛
⎜⎜⎜⎜⎜⎜⎝

AT
1 A1 AT

1 B1

AT
2 A2 AT

2 B2
. . .

...

AT
MAM AT

MBM

BT
1 A1 BT

2 A2 · · · BT
MAM C

⎞
⎟⎟⎟⎟⎟⎟⎠

, C =
M∑

k=1

BT
k Bk . (2.5.17)

If rank (A) = n, then the Cholesky factor of ATA is nonsingular and has a block
structure similar to that of A:

R =

⎛
⎜⎜⎜⎜⎜⎝

R1 S1
R2 S2

. . .
...

RM SM

RM+1

⎞
⎟⎟⎟⎟⎟⎠

. (2.5.18)

Identifying the blocks in the relation RT R = ATA, we get

RT
i Ri = AT

i Ai , RT
i Si = AT

i Bi ,

C = RT
M+1 RM+1 +

M∑
i=1

ST
i Si , i = 1:M.

We start by computing the Cholesky factors Ri ∈ R
ni×ni , of AT

i Ai and solving the
triangular systems RT

i Si = AT
i Bi , for Si , i = 1:M . Next, we form

C̃ = C −
M∑

i=1

ST
i Si

and compute its Cholesky factor, which is RM+1. The right hand side of the normal
equations is f = AT b, where

fi = AT
i bi , i = 1:M, fM+1 = AT

M+1bM+1 +
M∑

i=1

BT
i bi .
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The solution is then obtained by solving RT y = f and Rx = y:

RT
i yi = fi , i = 1:M, RT

M+1 yM+1 = fM+1 −
M∑

i=1

ST
i yi , (2.5.19)

RM+1xM+1 = yM+1, Ri x=yi − Si xM+1, i = M : − 1:1, (2.5.20)

using block forward and back substitution. Note that much of the computations can
be performed in parallel on M subsystems.

It is usually preferable to solve block angular least squares problems using QR
factorizations. This algorithm proceeds in three steps:

1. Initialize an upper triangular RM+1 of dimension nM+1, a vector cM+1 and a
scalar ρ to zero.

2. For i = 1:M
(a) Reduce the blocks (Ai , Bi ) and the right-hand side bi by orthogonal trans-

formations, yielding

QT
i (Ai , Bi ) =

(
Ri Si

0 Ti

)
, QT

i bi =
(

ci

di

)
, (2.5.21)

where Qi and Ri are the QR factors of Ai .
(b) Apply orthogonal transformations Pi to update

(
RM+1 cM+1

0 fi

)
:= Pi

(
RM+1 cM+1

Ti di

)
. (2.5.22)

(c) Update the residual norm ρ = (ρ2 + ‖ fi‖2
2)

1/2.

3. Solve by back substitution the triangular systems

RM+1xM+1 = cM+1, Ri xi = ci − Si xM+1, i = 1:M. (2.5.23)

There are alternative ways to organize this algorithm. When xM+1 has been com-
puted, then xi solves the least squares problem

min
xi
‖Ai xi − gi‖2, gi = bi − Bi xM+1, i = 1:M.

Hence, it is possible to discard the Ri , Si and ci in Step 1, provided that the QR
factorizations of Ai are recomputed in Step 3. In some practical problems this mod-
ification can reduce the storage requirement by an order of magnitude, while the
recomputation of Ri may only marginally increase the operation count.

In order to estimate the accuracy of the results, it is often required to estimate
elements of the covariance matrix
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ci j = eT
i Ce j = eT

i R−1 R−T e j .

Then ci j = uT
i u j , where ui and u j are the solutions of the triangular systems

RT uk = ek , k = i, j , and from (2.5.18),

RT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RT
1

RT
2

. . .

RT
M

ST
1 ST

2 · · · ST
M Rt

M+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

2.5.4 Banded Least Squares Problems

In many least squares problems, the matrix A has the property that in each row all
nonzero elements in A are contained in a narrow band.

Definition 2.5.1 The row bandwidth of a matrix A ∈ R
m×n is

w = max
1≤i≤m

(li − fi + 1), (2.5.24)

where

fi = min{ j | ai j �= 0}, li = max{ j | ai j �= 0}, (2.5.25)

are the column subscripts of the first and last nonzero in the i th row.

For a well-conditioned least squares problem the method of normal equations
may give sufficiently accurate results. In this approach the matrix C = ATA is
formed and its Cholesky factorization C = L LT computed. The Cholesky factor is
independent of the row ordering of A. For if B = P A, where P is a permutation
matrix, then

BT B = AT PT P A = ATA.

The least squares solution is then obtained by solving the triangular systems
Ly = AT b and LT x = y.

We now prove a relation between the row bandwidth of the matrix A and the
bandwidth of the corresponding symmetric nonnegative definite matrix ATA.

Theorem 2.5.1 Let A ∈ R
m×n have row bandwidth w. Then the symmetric matrix

ATA has lower (and upper) bandwidth r ≤ w − 1.
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Proof From Definition 2.5.1 it follows that

| j − k| ≥ w ⇒ ai j aik = 0 ∀ i = 1:m, (2.5.26)

and hence (ATA) jk =∑m
i=1 ai j aik = 0. �

Another proof of the lemma is obtained by using the expression

ATA =
m∑

i=1

ãi ã
T
i ,

where ãT
i , i = 1:m, is the i th row of A. Here ATA is expressed as the sum of m

symmetric matrices of rank one, each of which has lower (upper) bandwidth at most
equal to r = w − 1. Then the lower (upper) bandwidth of the sum is also bounded
by w − 1. Therefore, the normal equations of banded least squares problems can be
solved very efficiently using the band Cholesky Algorithm 1.5.2.

Unless A is well-conditioned, a method based on the QR factorization of A should
be preferred. Since the factor R equals the (unique) Cholesky factor of ATA, it
follows from Theorem 2.5.1 that only r = w − 1 diagonals in R will be nonzero.
This indicates that it should be possible to take advantage of the band structure also
in the QR factorization of A. This is indeed true, but less straightforward than for
the normal equations. Let A = Q1 R be the thin QR factorization of a banded matrix
A ∈ R

m×n of full column rank. Then R and Q1 = AR−1 are uniquely defined.
But the inverse R−1 of a banded upper triangular matrix is a full upper triangular
matrix. Therefore, Q1 will be less sparse than A and R. This rules out methods like
Gram–Schmidt orthogonalization that explicitly compute Q.

Householder or Givens QR factorizations represent Q implicitly and can still be
used. However, the required work and intermediate storage requirement can differ
considerably for different row orderings. A suitable initial row ordering is to sort the
rows of A by leading entry order, i.e., so that

i ≤ k ⇒ fi ≤ fk .

Such a band matrix is said to be in standard form. Note that such an ordering is not
unique.

We first consider Givens QR factorization of a matrix in standard form. The
orthogonalization proceeds row-by-row. In step i the row aT

i is merged with the
triangular matrix Ri−1 produced in earlier steps to give a triangular matrix Ri . In
Fig. 2.6 we show the situation before the elimination of the i th row. The basic step
is to merge a full triangular w×w matrix formed by rows and columns fi = fi (A)

to li = li (A) of R with a row of elements in columns fi to li . Note that only the
indicated w × w upper triangular part of Ri−1 is involved in this step. If A has
constant bandwidth and is in standard form, then the last n − li columns of R have
not been touched and are still zero as initialized. Further, the first fi − 1 rows of
R are already finished at this stage and can be read out to secondary storage. Very
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Fig. 2.6 The i th step of the
QR factorization of a banded
matrix

← w →

Ri−1
finished rows in R

fi li

row aT
i

large problems can be handled because primary storage is needed only for the active
triangular part. The following two cases can occur when merging a row (w = 4):

case (i)

⎡
⎢⎢⎢⎢⎣

× × × ×
× × ×

× ×
×

⊗ ⊗ ⊗ ⊗

⎤
⎥⎥⎥⎥⎦
; case (ii)

⎡
⎢⎢⎢⎢⎣

× × × ×
× × × +

× × +
× +

⊗ ⊗ ⊗ ×

⎤
⎥⎥⎥⎥⎦

.

In case (ii) the first row does not participate and the active triangular matrix is shifted
one step down.

If R is initialized as an n×n upper triangular band matrix of zeros, the description
above is also valid for the processing of the initial n rows of A. Note that if at some
stage r j j = 0, then the whole j th row in Ri−1 must be zero and the remaining part
of the current row aT

i can be inserted in row j of Ri−1. (This is a special case of a
Givens rotation with c = 0, s = 1.) The number of rotations needed to process row
aT

i is at most min(i − 1, w). A matrix A ∈ R
m×n in standard form of bandwidth w

can conveniently be stored in an m × w array, together with a vector p of pointers,
where pi points to the first row in A with fi (A) = i , i = 1 : n. The factor R ∈ R

n×n

can be stored in an n ×w array. For a more detailed discussion; see Cox [59, 1981].
It is clear from the above that the processing of row aT

i requires at most 3w2

flops if Givens rotations are used. Hence, the complete orthogonalization requires
about 3mw2 flops, and can be performed in 1

2w(w+3) locations of primary storage.
We remark that if the rows of A are processed in random order, then we can only
bound the operation count by 3mnw flops, which is a factor of n/w worse. Thus,
it almost invariably pays to sort the rows. The algorithm can be modified to handle
problems with variable row bandwidth wi . In this case an envelope data structure
(see Definition 1.5.2) is used in which the factor R will fit.
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If the Givens rotations are saved, they can be applied later to extra right-hand
sides b to produce

ci = QT bi =
(

ci

di

)
, ci ∈ Rn .

The least squares solution Xi is then obtained from Rxi = ci by back substitution.
If only the residual norm is needed, the vector di need not be stored, but used to
accumulate the residual sum of squares ‖ri‖2

2 = ‖di‖2
2. Each Givens rotation can be

represented by a single floating point number as in (2.3.17). Since at most w rotations
are needed to process each row, Q can be stored in no more space than allocated for A.

If Householder QR factorization is applied to an overdetermined banded matrix
A ∈ R

m×n with m > n, the Householder vectors tend to fill-in just as in MGS.
An efficient Householder QR algorithm for banded least squares problems was first
given by Reid [241, 1967]. To avoid unnecessary fill-in, the Householder reflections
are split as follows. Assume that the matrix A is in standard form and partition A
into blocks of rows as

A =

⎛
⎜⎜⎜⎝

A1
A2
...

Aq

⎞
⎟⎟⎟⎠ , q ≤ n, (2.5.27)

where in Ak each row has its first nonzero element in column k. In the QR factorization
the blocks are processed sequentially in q major steps. In the first step the Householder
QR factorization of the first block A1 is computed, giving an upper trapezoidal matrix
R1. Next, Rk−1, k = 2:q, is merged with the block of rows Ak , yielding

(
Rk

0

)
= QT

k

(
Rk−1
Ak

)
, k = 2:q.

Since the rows of block Ak have their first nonzero elements in column k, the first
k − 1 rows of Rk−1 will not be affected in this and later steps. The matrix Q can be
implicitly represented in terms of Householder vectors of the factorization of the sub-
blocks. This sequential Householder algorithm requires (2m + 3n)w(w + 1) flops,
or about twice the work of the less stable Cholesky approach. In order to understand
how the algorithm proceeds, the reader is encouraged to work through the following
example. A detailed description of the algorithm is given in Lawson and Hanson
[190, 1974], Chap. 11.

Example 2.5.1 Consider the least squares approximation of a discrete set of data
(yi , ti ), i = 1:m, by a linear combination s(t) = ∑n

j=1 x j B j (t), where B j (t),
j = 1:n are normalized cubic B-splines, with support on the interval [t j , t j+4] (see
Dahlquist and Björck [63, 2008], Sect. 4.4.3). This leads to the least squares problem
to minimize
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m∑
i=1

(s(ti )− yi )
2 = ‖Ax − y‖2

2.

Since B j (t) = 0 for t /∈ [t j , t j+4], the matrix A will be banded with w = 4. After
the first three blocks have been reduced by Householder reflectors P1, . . . , P9, the
matrix has the form ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × ×
1 × × × +
1 2 × × + +

3 4 × × +
3 4 5 × +

6 7 8 ×
6 7 8 9
6 7 8 9
× × × ×
× × × ×

× × × ×
× × × ×
× × × ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Elements annihilated by Pj are denoted by j and fill elements by+. In later steps
only the lower right part of the matrix is involved. �

The algorithms given in this section can easily be modified to work also for
augmented band matrices of the form A = (A1 A2

)
, where A1 is a band matrix

and A2 is a set of full columns. These columns could correspond to multiple right-
hand sides. For the standard linear model the covariance matrix is

Vx = (RT R)−1 = R−1 R−T . (2.5.28)

The inverse matrix R−T will be a full lower triangular matrix even when R is banded,
and explicitly computing Vx should be avoided. The covariance of two linear func-
tionals f T x and gT x ,

cov( f T x, gT x) = σ 2 f T Vx g = σ 2( f T R−1)(R−T g) = σ 2uT v,

can be calculated from the lower triangular systems RT u = f and RT v = g by
forward substitution. Here full advantage can be taken of the band structure RT . The
covariance of the components xi = eT

i x and x j = eT
j x is obtained by taking f = ei

and g = e j . Setting i = j gives the variance of xi .
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2.5.5 Sparse Least Squares Problems

We now consider methods for least squares problems where the sparsity pattern of
A is more irregular. If the method of normal equations is to be used, then many well
developed techniques (see Sect. 1.7.4) for solving sparse symmetric positive definite
systems can be applied to ATAx = AT b.

The first step in computing the Cholesky factorization of C = ATA is a symbolic
analyze phase. In this, the nonzero pattern of C is used to determine a fill reducing
symmetric permutation P of C . Simultaneously, a storage scheme for the Cholesky
factor of PCPT is set up. To compute the nonzero pattern of ATA, the matrix A is
partitioned by rows. Let aT

i = eT
i A be the i th row of A, so that

ATA =
m∑

i=1

ai a
T
i . (2.5.29)

This expresses ATA as the sum of m rank-one matrices. Invoking the no-cancellation
assumption, this shows that the nonzero pattern of ATA is the direct sum of the
patterns of ai aT

i , i = 1:m. Note that the nonzeros in any row aT
i will generate a full

submatrix in ATA. In the graph G(ATA) this corresponds to a subgraph where all pairs
of nodes are connected. Such a subgraph is called a clique. Also note that the nonzero
pattern of ATA is not changed by dropping any row of A whose nonzero pattern is a
subset of another row. This observation can often speed up the algorithm considerably.

It is possible to perform the symbolic factorization of ATA operating directly on
the structure of A. This algorithm due to George and Ng [119, 1987] removes the
need for determining the structure of ATA.

For ill-conditioned or stiff problems, methods based on the QR factorization
should be preferred. Since the factor R in the QR factorization of A is mathematically
equivalent to the upper triangular Cholesky factor R of ATA, the nonzero structure is
the same. But, because of the no-cancellation assumption, predicting the structure of
R by performing the Cholesky factor symbolically may be too generous in allocating
space for nonzeros in R. To see this, consider the structure of the left matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
×

×
×

×
×

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

× × × × ×
×

×
×

×
×

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.5.30)

For this matrix R = A, since A is already upper triangular. But, because the first
row of A is full, ATA will be full and the algorithm above will predict R to be
full. In the Cholesky factorization of ATA cancellation will occur irrespective of the
numerical values of the nonzero elements in A. We call this structural cancellation,
in contrast to numerical cancellation , which occurs only for certain values of the

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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nonzero elements in A. Structural cancellation cannot predicted from the nonzero
structure of ATA alone.

Another approach to predicting the structure of R is to perform the Givens or
Householder algorithm symbolically, working on the structure of A. It can be shown
that the structure of R as predicted by symbolic factorization of ATA includes the
structure of R, as predicted by the symbolic Givens method, which includes the
structure of R.

Definition 2.5.2 A matrix A ∈ R
m×n , m ≥ n, is said to have the strong Hall

property if for every subset of k columns, 0 < k < m, the corresponding submatrix
has nonzero elements in at least k + 1 rows. (Thus, when m > n, every subset of
k ≤ n columns has the required property, and when m = n, every subset of k < n
columns has the property.)

For matrices with the strong Hall property it can be proved that structural can-
cellation will not occur. Then the structure of ATA will correctly predict that of R,
excluding numerical cancellations. (If A is orthogonal, then ATA = I is sparse, but
this is caused by numerical cancellation.) Obviously, the matrix on the left in (2.5.30)
does not have the strong Hall property since the first column has only one nonzero
element. But the matrix on the right in (2.5.30), obtained by deleting the first column,
does have this property.

The next step before performing the numerical phase of the sparse QR factoriza-
tion is to find a suitable row permutation Pr. Since

(Pr A)T (Pr A) = AT (PT
r Pr)A = ATA,

it follows that the resulting factor R is independent of the row ordering. But the
intermediate fill and the operation count will depend on the row ordering. This
fact was stressed already in the discussion of QR factorization of banded matrices.
Provided the rows of A do not have widely differing norms, a reordering of the rows
will not affect the numerical stability. Hence, the ordering can be chosen based on
sparsity consideration only. The following heuristic row ordering algorithm is an
extension of that used for banded sparse matrices.

Algorithm 2.5.1 (Row Ordering Algorithm) Denote the column index for the first
and last nonzero elements in the i th row of A by fi (A) and li (A), respectively. First
sort the rows by increasing fi (A), so that fi (A) ≤ fk(A) if i < k. Then, for each
group of rows with fi (A) = k, k = 1, . . . , maxi fi (A), sort all the rows by increasing
li (A).

An alternative row ordering, that has been found to work well is obtained by
ordering the rows by increasing values of li (A). With this ordering only the columns
fi (A) to li (A) of Ri−1 will be involved when row aT

i is being processed, since all
previous rows only have nonzero elements in columns up to at most li (A). Hence,
Ri−1 will have zeros in column li+1(A), . . . , n, and no fill will be generated in row
aT

i in these columns.
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We now discuss the numerical phase of sparse QR factorization. For dense prob-
lems, the most effective serial method for computing is to use a sequence of House-
holder reflectors. In this we put A(1) = A and compute A(k+1) = Pk A(k), k = 1:n,
where Pk is chosen to annihilate the subdiagonal elements in the kth column of A(k).
In the sparse case this method will cause each column in the remaining unreduced
part of the matrix, which has a nonzero inner product with the column being reduced,
to take on the sparsity pattern of their union. Hence, even though the final R may be
sparse, a lot of intermediate fill may take place with consequent cost in operations
and storage. But as shown in Sect. 2.5.4, the Householder method can be modified to
work efficiently for sparse banded problems, by applying the Householder reductions
to a sequence of small dense subproblems.

The problem of intermediate fill in the factorization can be avoided by using
instead a row sequential QR algorithm employing plane rotations. Initialize R0 to
have the structure of the final factor R with all elements equal to zero. The rows aT

k of
A are processed sequentially, k = 1:m, and we denote by Rk−1 the upper triangular
matrix obtained after processing the first k − 1 rows. Let the kth row be

aT
k = (ak1, ak2, . . . , akn).

This is processed as follows (see Fig. 2.7): we uncompress this row into a full vector
and scan the nonzero elements from left to right. For each akj �= 0, a plane rotation
involving row j in Rk−1 is used to annihilate akj . This may create new nonzero
elements both in Rk−1 and in the row aT

k . We continue until the whole row aT
k has

been annihilated. Note that if r j j = 0, this means that this row in Rk−1 has not yet
been touched by any rotation and hence the entire j th row must be zero. When this
occurs, the remaining part of row k is inserted as the j th row in R.

To illustrate this algorithm we use an example taken from George and Ng
[118, 1983]. Assume that the first k rows of A have been processed to generate
R(k). In Fig. 2.7 nonzero elements of R(k−1) are denoted by ×; nonzero elements
introduced into R(k) and aT

k during the elimination of aT
k are denoted by +; all the

elements involved in the elimination of aT
k are circled. Nonzero elements created in

aT
k during the elimination are of course ultimately annihilated. The sequence of row

Fig. 2.7 Row-sequential
sparse Givens QR
factorization; circled elements
⊗ in Rk−1 are involved in the
elimination of aT

k ; fill
elements are denoted by ⊕ Rk−1

aTk
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 × 0 0 × 0 0 0 0
⊗ 0 ⊕ ⊗ 0 0 0 0 0

× 0 × 0 0 0 × 0
⊗ ⊕ 0 ⊗ 0 0 0

⊗ ⊕ 0 0 0 0
× 0 0 × 0

⊗ ⊗ 0 0
⊗ 0 0

× ×
0 ×

0 ⊗ 0 ⊗ ⊕ 0 ⊕ ⊕ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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indices involved in the elimination are {2, 4, 5, 7, 8}, where 2 is the column index of
the first nonzero in aT

k .
Note that, unlike in the Householder method, intermediate fill now only takes

place in the row being processed. It can be shown that if the structure of R has
been predicted from that of ATA, then any intermediate matrix Ri−1 will fit into the
predicted structure.

For simplicity, we have not included the right-hand side in Fig. 2.7, but the plane
rotations should be applied simultaneously to b to form QT b. In the implementation
by George and Heath [116, 1980], the plane rotations are not stored, but discarded
after use. Hence, only enough storage to hold the final R and a few extra vectors for
the current row and right-hand side(s) is needed in main memory.

The row sequential sparse QR algorithm employing plane rotations is due to
George and Heath [116, 1980]. Liu [196, 1986] introduces the notion of row merge
tree for sparse QR factorization by plane rotations. This row merging scheme can
be viewed as implicitly using the multifrontal method on ATA. George and Liu
[117, 1987] give a modified version of Liu’s algorithm using Householder reflectors
instead of plane rotations. Recent work is surveyed by Davis [67, 2006].

The explicit orthogonal factor Q is often much less sparse than R. Therefore, Q
is often discarded in sparse QR factorization. This creates a problem if additional
right-hand sides have to be treated at a later stage, since we cannot form QT b. Saving
the plane rotations separately requires far less storage and fewer operations than
computing and storing Q explicitly. The analysis of sparsity of the factor Q in sparse
QR factorizations includes some subtle considerations; see Hare et al. [157, 1993]
and Gilbert, Ng and Peyton [120, 1997].

If A is available, another method to deal with this problem is to use the seminormal
equations

RT Rx = AT b, (2.5.31)

with R from the QR factorization. The accuracy of the solution x̄ computed from
(2.5.31) is not much better than for the method of normal equations. Rounding errors
committed when computing AT b will lead to an error δx bounded in magnitude by

‖δx‖2 ≤ mu‖(ATA)−1‖2‖A‖2‖b‖2 ≤ mu κ(A)2‖b‖2/‖A‖2.

In the corrected seminormal equations (CSNE), a corrected solution xC = x̄ + δx is
computed from

r̄ = b − Ax̄, RT Rδx = AT r̄ . (2.5.32)

This is similar to one step of iterative refinement for the normal equations (see
Algorithm 2.1.1), except that here R from the QR factorization is used. The error
bound for the xC from CSNE is usually no worse and often better than that for a
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Fig. 2.8 Nonzero pattern of a sparse matrix A and the factor R in its QR factorization using
Matlab’s colamd reordering

backward stable method; see [27, 1996], Sect. 6.6.5. No extra precision for computing
r̄ is needed for this to be true.

For solving the minimum-norm problem

min ‖y‖2, subject to AT y = c.

the algorithm using Q given in (2.3.41) is solve RT z1 = c, and set y = Q1z1. If Q
is not available, an approach suggested by Saunders [248, 1972] is to compute

RT Rw = c, y = Aw. (2.5.33)

As proved by Paige [225, 1973], this algorithm is quite satisfactory without adding
a correction step, and the bound on the error is proportional to κ .

Example 2.5.2 To illustrate the effect of different column orderings we use a model
by Elfving and Skoglund [93, 2007] for substance transport in rivers. In this time
series data

Li j , i = 1:n, j = 1:m,

are observed. Here n is the length of the study period expressed in years and m
is the number of samples from each year. The unknown parameters are split into
two sets xT = (x1, x2) and a regularization matrix is added. Figures 2.9 and 2.8
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Fig. 2.9 Nonzero pattern of a sparse matrix A and the factor R in its QR factorization using
Matlab’s colperm reordering

show the location of nonzero elements in the matrix AP and its R-factor after using
two different column orderings available in Matlab. The first (colperm) is a
reordering according to increasing count of nonzero entries in columns. For this
nnz(R) = 32 355. The second (colamd is an approximate minimum degree ordering
for ATA. For this nnz(R) = 15 903, a greatimprovement. �

In multifrontal methods the QR factorization is reorganized into a sequence of
independent partial QR factorizations of small dense matrices. Since these subprob-
lems can be can solved in parallel, this can lead to a significant reduction in fac-
torization time at a modest increase in working storage. The good data locality of
the multifrontal method gives fewer page faults on paging systems, and out -of-core
versions can be developed.

Fig. 2.10 The graph G(ATA)

of a matrix arising from a
3× 3 mesh problem and a
nested dissection ordering

3 6 4

7 8 9

1 5 2
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Example 2.5.3 We illustrate the multiple front idea on the QR factorization of a 12×9
matrix A taken from Liu [196], shown below before and after the first elimination
stage in the QR factorization:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × ×
× × × ×
× × × ×

× × × ×
× × × ×
× × × ×

× × × ×
× × × ×
× × × ×

× × × ×
× × × ×
× × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This matrix arises from a 3 × 3 mesh problem using a nested dissection ordering,
and its graph G(ATA) is shown in Fig. 2.10.

First a QR factorization of rows 1–3 is performed. Since these rows have nonzero
elements only in columns {1, 5, 7, 8}, this operation can be carried out as a QR
factorization of a small dense matrix of size 3× 4 by leaving out the zero columns.
The first row equals the first of the final R of the complete matrix and can be stored
away. The remaining two rows form an update matrix F1 and will be processed
later. The other three block rows 4–6, 7–9, and 10–12 can be reduced in a similar
way. Moreover, these tasks are independent and can be done in parallel. After this
step the matrix A(2) has the form shown below. The first row in each of the four
blocks are final rows in R and can be removed, which leaves four upper trapezoidal
update matrices, F1–F4.

A(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × ×
× × ×

× ×
× × × ×

× × ×
× ×

× × × ×
× × ×

× ×
× × × ×

× × ×
× ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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In the second stage we can simultaneously merge F1, F2 and F3, F4 into two upper
trapezoidal matrices by eliminating columns 5 and 6. In merging F1 and F2 we need
to consider only the set of columns {5, 7, 8, 9}. We first reorder the rows by the index
of the first nonzero element, and then perform a QR factorization:

QT

⎛
⎜⎜⎝
× × ×
× × ×

× ×
× ×

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
× × × ×

× × ×
× ×

×

⎞
⎟⎟⎠ .

The merging of F3 and F4 is performed similarly. Again, the first row in each reduced
matrix is a final row in R, and is removed. In the final stage, working on columns
7, 8, and 9, we merge the remaining two upper trapezoidal (here triangular) matrices
into a triangular matrix. �

The organization of the multifrontal method is based on the elimination tree. Nodes
in the tree are visited in turn following a postordering, i.e., a topological ordering in
which a parent node j always has node j − 1 as one of its children. Each node x j in
the tree is associated with a frontal matrix Fj , which consists of the set of rows A j

in A with the first nonzero in location j , together with one update matrix contributed
by each child node of x j . After eliminating the variable j in the frontal matrix, the
first row in the reduced matrix is the j th row of the upper triangular factor R. The
remaining rows form a new update matrix U j , which is stored in a stack until needed.
An important advantage of using a postordering is that data management is simplified,
since the update matrices can be managed in a stack on a last-in-first-out basis.

A formal outline of the multifrontal sparse QR algorithm goes as follows: For
j := 1 to n do

1. Form the frontal matrix Fj by combining the set of rows A j and the update matrix
Us for each child xs of the node x j in the elimination tree T (ATA).

2. By an orthogonal transformation, eliminate variable x j in Fj to get Ū j . Remove
the first row in Ū j , which is the j th row in the final matrix R. The rest of the
matrix is the update matrix U j .

In many implementations of multifrontal algorithms the orthogonal transforma-
tions are not stored, and the seminormal equations are used for treating additional
right-hand sides. If Q is needed, it should not be stored explicitly, but represented
by the Householder vectors of the frontal orthogonal transformations. For a K by K
grid problem with n = K 2, m = s(K − 1)2, it is known that nnz(R) = O(n log n),
but nnz(Q) = O(n

√
n). Lu and Barlow [200] show that the frontal Householder

vectors only require O(n log n) storage.
Multifrontal algorithms for QR factorization were first developed by Liu

[196, 1986] and George and Liu [117, 1987]. Supernodes and other modifications of
the multifrontal method are discussed by Liu [197, 1990]. The latest sparse QR algo-
rithm included in Matlab 7.9 is the multithreaded multifrontal QR in SuiteSparse
by Davis [68, 2011]; see also http://www.cise.ufl.edu/research/sparse/SuiteSparse.

http://www.cise.ufl.edu/research/sparse/SuiteSparse
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Fig. 2.11 The coarse block
triangular decomposition of a
rectangular matrix
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2.5.6 Block Triangular Form

As shown in Sect. 1.7.6, it can be advantageous to permute a square matrix A into
block triangular form (1.7.13) before solving the linear system Ax = b. An arbitrary
rectangular matrix A ∈ R

m×n can be permuted into a similar block triangular form,
called the Dulmage–Mendelsohn form

PAQ =
⎛
⎝

Ah Uhs Uhv

As Usv

Av

⎞
⎠ . (2.5.34)

The first diagonal block Ah may have more columns than rows, the middle block As

is square, and the last Av may have more rows than columns. These blocks both have
the strong Hall property. The middle diagonal block is square with nonzero diagonal
entries. One or two of the blocks in (2.5.34) may be absent. The off-diagonal blocks
are possibly nonzero matrices of appropriate dimensions. An example of the coarse
block triangular decomposition of a rectangular matrix is given in Fig. 2.11.

It may be possible to further decompose some of the diagonal blocks in (2.5.34)
to obtain a finer decomposition. Each of the blocks Ah and Av may be further
decomposable into block diagonal form, where the blocks Ah1, . . . , Ahp are under-
determined and the blocks Av1, . . . , Avq are overdetermined. The square submatrix
As may be further decomposable into block upper triangular form. The resulting
decomposition can be shown to be essentially unique. Any such block triangular
form can be obtained from any other by applying row permutations that involve the
rows of a single block row, column permutations that involve the columns of a single
block column, and symmetric permutations that reorder the blocks.

The block triangular form is called the Dulmage–Mendelsohn form, because it
is based on a canonical decomposition of a bipartite graph discovered by Dulmage
and Mendelsohn. The bipartite graph of a rectangular matrix A ∈ R

m×n is denoted

http://dx.doi.org/10.1007/978-3-319-05089-8_1
http://dx.doi.org/10.1007/978-3-319-05089-8_1
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by G(A) = {R, C, E}. Here R = (r1, . . . , rm) is a set of vertices corresponding to
the rows of A and C = (c1, . . . , cn) is a set of vertices corresponding to the columns
of A. E is the set of edges, where {ri , c j } ∈ E if and only if ai j �= 0. A bipartite
matching in G(A) is a subset of its edges with no common end points (Fig. 2.11).

The algorithm by Pothen and Fan [237, 1990] for computing the Dulmage–
Mendelsohn decomposition consists of the following steps:

1. Find a maximum matching in the bipartite graph G(A) with row set R and column
set C .

2. According to the matching, partition R into the sets VR, SR, HR and C into the
sets V C, SC, HC corresponding to the horizontal, square, and vertical blocks.

3. Find the diagonal blocks of the submatrices Av and Ah from the connected com-
ponents in the subgraphs G(Av) and G(Ah). Find the block upper triangular form
of the submatrix As from the strongly connected components in the associated
directed subgraph G(As), with edges from columns to rows.

The algorithm by Pothen and Fan is available in Matlab through the function
[p,q,r,s,cc,rr] = dmperm(A). The result is row and column permutations
vectors p and q, respectively, such that A(p, q) has Dulmage–Mendelsohn block
triangular form. The vectors r and s are index vectors indicating the block boundaries
for the fine decomposition, while the vectors cc and rr indicates the boundaries of
the coarse decomposition.

The reordering to block triangular form in a preprocessing phase can save work
and intermediate storage in solving least squares problems. If A has structural rank
equal to n, then the first block row in (2.5.34) must be empty, and the original least
squares problem can after reordering be solved by a form of block back substitution.
First compute the solution of

min
x̃v

‖Av x̃v − b̃v‖2, (2.5.35)

where x̃ = QT x and b̃ = Pb have been partitioned conformally with PAQ in
(2.5.34). The remaining part of the solution x̃k, . . . , x̃1 is then determined by

Asi x̃i = b̃i −
k∑

j=i+1

Ui j x̃ j , i = k:G − 1:1. (2.5.36)

Finally, we have x = Qx̃ . The subproblems in (2.5.35) and (2.5.36) can be solved
by computing the QR factorizations of Av and As,i , i = 1:k. Since As1, . . . , Ask

and Av have the strong Hall property, the structures of the matrices Ri are correctly
predicted by the structures of the corresponding normal matrices.

The block triangular form of a sparse matrix is based on a canonical decomposition
of bipartite graphs discovered by Dulmage, Mendelsohn, and Johnson in a series of
papers; see [78, 1963].
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Exercises
2.5.1 A frequent task in multifrontal methods is to compute the QR factorization of a matrix

A =
(

R1
R2

)
, where R1 and R2 are square upper triangular matrices. Show how to compute

the QR factorization of A in 2n3/3 flops using suitably chosen Householder reflectors that
do not introduce any nonzero elements outside the triangular structures.
Hint: In step k a full submatrix of size (k + 1)× (n − k + 1) consisting of selected rows is
operated on. Below is a picture of the reduction when n = 4 and the two first columns have
been processed ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗

× ×
×

⊗ ⊗ ∗ ∗
⊗ ∗ ∗

× ×
×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here ∗ denotes a modified element and ⊗ an element that has been zeroed out. In the next
step the submatrix consisting of rows 3,5,6, and 7 will be operated on.

2.5.2 Assume that the matrix A ∈ R
m×n of bandwidth w is in standard form and stored in an

m × w array, together with a vector p of pointers, where pi points to the first row of A
with fi (A) = i , i = 1 : n. Write a Matlab program that computes R ∈ R

n×n in the QR
factorization and stores it in an n × w array. The rows of A are to be merged into R one at
a time using Givens rotations.

2.6 Regularization of Ill-Posed Linear Systems

A Fredholm9 integral equation of the first kind has the form

1∫

0

k(s, t) f (s) ds = g(t), −1 ≤ t ≤ 1. (2.6.1)

When the kernel k(s, t) is smooth, this equation is known to be ill-posed in the sense
that the solution f does not depend continuously on the right-hand side g. This is
related to the fact that there are rapidly oscillating functions f (t) that come arbitrarily
close to being annihilated by the integral operator.

In order to solve the Eq. (2.6.1) numerically it must first be discretized. Introducing
a uniform mesh for s and t on [−1, 1] with step size h = 2/(n + 1), si = −1+ ih,
t j = −1+ jh, i, j = 0 : n + 1 and approximating the integral with the trapezoidal
rule gives

h
n∑

i=0

wi k(si , t j ) f (ti ) = g(t j ), j = 0 : n + 1, (2.6.2)

9 Erik Ivar Fredholm (1866–1927), a Swedish mathematician and a student of Mittag-Leffler, got
his doctorate from the University of Uppsala in 1898. Much of his main contributions on integral
equations were accomplished during a visit to Paris in 1899. Fredholms work was extended by
Hilbert and led to the theory of Hilbert spaces.



2.6 Regularization of Ill-Posed Linear Systems 343

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

σ k

Fig. 2.12 Singular values of a matrix with ill-defined rank

where wi = 1, i �= 0, n and w0 = wn = 1/2. These equations form a linear system
K f = g, K ∈ R

n×n , and f, g ∈ R
n .

The discretized problem is not ill-conditioned in the original sense of Hadamard.
However, the inherent difficulty in solving the continuous ill-posed problem carries
over to the discrete problem. This becomes evident by looking at the singular valuesσi

of K . For k(s, t) = e−(s−t)2
, and n = 100, these were computed using IEEE double

precision. The result is displayed in logarithmic scale in Fig. 2.12. For i > 30, σi

are close to roundoff level and the numerical rank of K is certainly smaller than 30.
This means that the linear system K f = g has a meaningful solution only for special
right-hand sides g. Following Hansen [148, 1990] we call such problems discrete
ill-posed problems.

If the right-hand side g is restricted to lie in a subspace spanned by the left singular
vectors corresponding to a small set of the largest singular values, the linear system
is effectively well-conditioned; see Varah [287, 1973]. This concept is made more
precise by Chan and Foulser [45, 1988].

2.6.1 TSVD and Tikhonov Regularization

The solution to a discrete ill-posed linear system K f = g (or, more generally,
least squares problem minx ‖K f − g‖2), can be expressed in terms of the SVD of
K =∑n

i=1 uiσivi as

f =
n∑

i=1

ci

σi
vi , ci = uT

i g. (2.6.3)
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Fig. 2.13 Relative error ‖ fk − f ‖2/‖ f ‖2 (solid line) and relative residual ‖K fk − g‖2/‖g‖2
(dashed line) for TSVD solutions truncated after k steps

In the continuous case, (2.6.1) can be written K f = g, where K is a compact
operator with singular value expansion

∑∞
i=1 uiσivi . For this to have a square inte-

grable solution f , it is necessary and sufficient that the right-hand side g satisfies the
Picard condition (Groetsch [141, 1984], Theorem 1.2.6).

∞∑
i=1

|uT
i g/σi |2 < ∞ (2.6.4)

A consequence of this is that for the exact right-hand side g the coefficients ci

in the SVD expansion must eventually decrease faster than σi . However, if g is
contaminated by a random noise vector η, all coefficients ci are affected more or
less equally. This will cause the computed solution for a perturbed right-hand side
ĝ = g + η to blow up.

To obtain a stable and accurate approximate solution to the discretized problem,
the SVD expansion (2.6.3) can be truncated after a small number k � n of terms.
This restricts the solution to lie in a low-dimensional subspace spanned by the right
singular vectors corresponding to the large singular values. Equivalently, we seek a
regularized solution as a linear combination of the first k left singular vectors,

fk = Vk zk, Vk = (v1, . . . , vk),

giving zk = −1
k (U T

k g). This is known as a truncated SVD (TSVD) solution. The
value of the truncation index k is chosen so that a large reduction in the norm of the
residual is achieved without causing the norm of the approximate solution to become
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too large. In statistics this approach is known as principal components regression
(PCR).

Example 2.6.1 For n = 100 and a given solution f , a perturbed right-hand side
g = K f + η for (2.6.2) was computed with η normally distributed with zero mean
and variance 10−4. Figure 2.13 shows the relative error ‖ fk − f ‖2/‖ f ‖2 and the
relative residual ‖K fk − g‖2/‖g‖2 for the TSVD solutions as a function of k. The
smallest error occurs for k = 12. For larger values of k the error increases very rapidly,
although the residual norm is almost constant. In practice, the error is unknown and
only the residual can be observed. �

In TSVD the solution is orthogonally projected onto a lower dimensional subspace
spanned by k < n of the right singular vectors. Another method for the regulariza-
tion of discrete ill-posed problems is due to Tikhonov [280, 1963]10 and called
Tikhonov regularization. In this approach the linear system Ax = b is replacedby
the minimization problem

min
x
‖Ax − b‖2

2 + μ2‖Lx‖2
2. (2.6.5)

Here μ is a regularization parameter, which governs the balance between a small
residual norm ‖b−Ax(μ)‖2 and a smooth solution as measured by ‖Lx(μ)‖2. A sim-
ilar technique was used already by Levenberg [193, 1944] and Marquardt [205, 1963]
to stabilize solutions to nonlinear least squares problems. In statistics, Tikhonov reg-
ularization is known as ridge regression and used to stabilize regression estimates.

Typically L in (2.6.5) is taken to be a discrete approximation of some derivative
operator. For example, except for a scaling factor,

L =

⎛
⎜⎜⎜⎝

1 −1
1 −1

. . .
. . .

1 −1

⎞
⎟⎟⎟⎠ ∈ R

(n−1)×n (2.6.6)

approximates the first derivative operator.
It is easy to show that the solution to (2.6.5) is the solution to the generalized

normal equations

(ATA + μ2 LTL)x = AT b. (2.6.7)

These equations have a unique solution if rank

(
A
L

)
= n or, equivalently, if the null

spaces of A and L intersect only trivially, i.e., N (A) ∩ N (L) = {0}. Forming the
normal equations requires computing the cross-product matrices ATA and LTL and

10 Andrei Nicholaevich Tikhonov (1906–1993), Russian mathematician, who made deep contribu-
tions in topology and functional analysis. In the 1960’s he introduced the concept of “regularizing
operator” for ill-posed problems, for which he was awarded the Lenin medal.
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will square the condition number. This can be avoided by noticing that (2.6.7) are
the normal equations for the least squares problem

min
x

∥∥∥∥
(

A
μ L

)
x −

(
b
0

)∥∥∥∥
2
. (2.6.8)

Hence, for any given value of μ > 0, (2.6.7) can be solved by QR factorization of
the augmented matrix in (2.6.8).

In the standard case of Tikhonov regularization L = In . Then the singular values

of the augmented matrix in (2.6.8) are σ̃i =
√

σ 2
i + μ2, i = 1:n, and the regularized

solution becomes

x(μ) =
n∑

i=1

ci

σ̃i
vi =

n∑
i=1

fi
ci

σi
vi , fi = σi√

σ 2
i + μ2

. (2.6.9)

The quantities fi are called filter factors or, in statistical applications, shrinkage
factors. As long as μ � σi , we have fi ≈ 1, and if μ  σi , then fi � 1.
This establishes a relation to the TSVD solution, where the filter factors are step
functions: fi = 1 if σi > δ and fi = 0 otherwise. In practice, the solutions obtained
via Tikhonov regularization with L = In and an appropriate value of μ is very close
to the TSVD solution.

For a given value of μ, the solution x(μ) can in the standard case be computed
using the Cholesky factorization of ATA + μ2 I , or more reliably from the QR
factorization

Q(μ)T
(

A
μ I

)
=
(

R(μ)

0

)
,

(
c(μ)

d(μ)

)
= Q(μ)T

(
b
0

)
. (2.6.10)

Then x(μ) is obtained from the triangular systems

R(μ)x(μ) = c(μ). (2.6.11)

Problem LSQI with L �= I can be transformed to standard form. If L is square and
nonsingular, this is achieved by the change of variables Lx = y, giving the problem

min
y

∥∥∥∥
(

AL−1

μI

)
y −

(
b
0

)∥∥∥∥
2
. (2.6.12)

The matrix Ã = AL−1 can be formed by solving the upper triangular matrix equation
LT ÃT = AT . In practice it is often the case that L ∈ R

(n−t)×n with full row rank.
Let the QR factorization of LT be

LT = (V1 V2
) (RL

0

)
∈ R

n×(n−t).
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Then L = RT
L V1, where RL nonsingular V1 and V2 span R(LT ) and N (L), respec-

tively. For example, if L as in (2.6.6) approximates the first derivative operator, then
the dimension of N (L) is t = 1. The transformation to standard form can be achieved
using the pseudoinverse L† = V1 R−T

L . The solution x is split into two orthogonal
components x = L† y + V2w, so that

Ax = AV1 R−T
L y + AV2w = Ãy + AV2w. (2.6.13)

For details we refer to Björck [24, 1988]. The general case with no restrictions on L
has been treated by Eldén [86, 1982].

If the “noise level” in the right-hand side is known, the expansion can be truncated
as soon as the residual norm has dropped below this level. This criterion is known as
the discrepancy principle and is due to Morozov [212, 1984]. In Example 2.6.1 the
noise was normally distributed with variance 10−4. In Fig. 2.13 the relative residual
norm touches this value for k = 10, which is close to k = 12 for which value the
minimum error norms occurs. However, it gives a slightly oversmoothed solution,
which means that all the information present in the data has not been recovered. This
behavior is typical for the discrepancy principle.

When no a priori information about the noise level is available, the determination
of a suitable value of μ is a major difficulty. In the generalized cross-validation
(GCV) of Golub et al. [135, 1979], the basic idea is as follows: Let xμ,i be the solution
of the regularized problem when the i th equation is left out. If this solution is a good
approximation, then the error in the prediction of the i th component of the right-hand
side should be small. This is repeated for all equations i = 1:m. Assume that the
regularized solution is a linear function of the right-hand side x(μ) = A†(μ)b. Then
the GCV function is

G(μ) = n−1‖b − Ax(μ)‖2
2

(n−1trace(I − AA†(μ)))2 . (2.6.14)

Note that the GCV function is invariant under orthogonal transformations. For the
standard Tikhonov regularization I − AA(μ)† = I − A(ATA + μ2 I )−1 AT , and
using the SVD A = UV T we get

1

n
trace(I − AA(μ)†) = 1

n

n∑
i=1

μ2

σ 2
i + μ2

.

For some problems the GCV function can have a very flat minimum and hence be
difficult to localize numerically; see Varah [288, 1983]. Another popular method,
when the norm of the error is not explicitly known, is based on the L-curve

L = {( log ‖b − Ax(μ)‖, log ‖x(μ)‖)} (2.6.15)
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For a large class of problems this curve is shaped as the letter L. Such a plot is
used by Lawson and Hansen [190, 1974], Chap. 26, to analyze an ill-conditioned
least squares problem. Hansen and O’Leary [152, 1993] propose to choose μ as
the vertex point on the L-curve, i.e., the point where the curvature has the largest
magnitude. For advantages and shortcomings of this method, see Hansen [149, 1992]
and [150, 1998]. For large problems it may be too expensive to compute sufficiently
many points on the L-curve. Calvetti et al. [40, 2002] show how to compute cheap
upper and lower bounds in this case.

Regularization methods for linear and nonlinear ill-posed problems are admirably
surveyed by Engl et al. [95, 1996]. A Matlab regularization toolbox for analysis
and solution of discrete ill-posed problems has been developed by P. C. Hansen. The
latest version 4.0 for Matlab 7.3 is described in [151, 2007]. The toolbox can be
downloaded from Netlib at http://ftp.irisa.fr/pub/netlib/numeralgo/.

2.6.2 Least Squares with Quadratic Constraints

Closely related to Tikhonov regularization is the least squares problem subject to a
quadratic inequality constraint:
Problem LSQI: Given A ∈ R

m×n , L ∈ R
p×n , and γ > 0, solve

min
x
‖Ax − b‖2

2 subject to ‖Lx − d‖2
2 ≤ γ 2. (2.6.16)

Conditions for existence and uniqueness and properties of solutions to problem LSQI
are given by Gander [108, 1981]. Let an L-generalized solution xA,L of minx ‖Ax−
b‖2 be defined as the solution to

min
x∈S

‖Lx − d‖2, S = {x ∈ R
n | ‖Ax − b‖2 = min}. (2.6.17)

Then either xA,L solves problem LSQI, or ‖LxA,L − d‖2
2 > γ 2 and the constraint is

binding and the solution occurs on the boundary of the constraint region.

Theorem 2.6.1 Assume that the solution x of problem LSQI occurs on the boundary
of the constraint region. Let x(μ) be the solution to the generalized normal equations

(ATA + μ2LTL)x = AT b + μ2LT d. (2.6.18)

Then x = x(μ), where the parameter μ > 0 is determined by the so called secular
equation11

‖Lx(μ)− d‖2
2 = γ 2. (2.6.19)

11 This terms comes from celestial mechanics, where a similar equation appears in the computation
of secular, i.e., long-term perturbations of orbiting bodies.

http://ftp.irisa.fr/pub/netlib/numeralgo/
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Proof Using the method of Lagrange multipliers we consider the function

ψ(x, μ) = ‖Ax − b‖2
2 + μ2

(
‖Lx − d‖2

2 − γ 2
)

. (2.6.20)

where μ2 is a Lagrange multiplier. Setting the gradient of ψ(x, μ) with respect to x
equal to zero gives (2.6.18) and μ is obtained by solving the secular equation. �

Note that (2.6.18) are the normal equations for

min
x

∥∥∥∥
(

A
μ L

)
x −

(
b

μ d

)∥∥∥∥
2
, μ > 0. (2.6.21)

The solution to problem LSQI will be unique if the constraint in (2.6.16) is binding

and rank

(
A
L

)
= n.

In the standard case L = I and d = 0, the secular equation can be written as

f (μ) = ‖x(μ)‖2 − γ = 0, γ > 0, (2.6.22)

where x(μ) = (ATA + μ2 I )−1 AT b solves the least squares problem (2.6.8).
Newton’s method, which approximates f (μ) with a linear function, is not suitable
for solving (2.6.22), because f (μ) can have a singularity for μ = 0. A rational
approximation can be used, but a similar effect is achieved by applying Newton’s
method to the equation

g(μ) = 1

‖x(μ)‖2
− 1

γ
= 0. (2.6.23)

Taking the derivative with respect to μ of ‖x(μ)‖−1
2 = (x(μ)T x(μ))−1/2 gives

dg(μ)

dμ
= − xT (μ)

‖x(μ)‖3
2

dx(μ)

dμ
.

From the formula for the derivative of an inverse matrix we obtain

x(μ)T dx(μ)

dμ
= −x(μ)T (ATA + μ2 I )−1x(μ) ≡ −‖z(μ)‖2

2. (2.6.24)

This gives the iteration method due to Reinsch [242, 1971]12:

μk+1 = μk +
(‖x(μk)‖2

γ
− 1

) ‖x(μk)‖2
2

‖z(μk)‖2
2

. (2.6.25)

12 In optimization literature this method is usually credited to Hebden [158, 1973].
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The asymptotic rate of convergence for this method is quadratic. Furthermore, if
the initial approximation satisfies 0 < μ < μ∗, where μ∗ is the solution, then the
iterates μk converge monotonically from below.

Algorithm 2.6.1 (Reinsch’s Algorithm)

function [x,nx] = reinsch(A,b,gamma)

% REINSCH performs <= p iterations to solve

% min_x||A x - b||_2 subject to ||x||_2 = gamma

% ---------------------------------------------------

[m,n] = size(A);

mu = m*eps*norm(A,1);

for k = 1:p

% Compute thin QR.

[Q,R] = qr([A; mu*eye(n)], 0);

c = Q’*b;

x = R\c; nx = norm(x);

if nx <= gamma, break end

% Perform Newton step.

z = R’\x; nz = norm(z);

dmu = (nx/gamma - 1)*(nx/nz)ˆ2;

mu = mu + dmu;

end

The main cost in this method is for computing the QR factorizations for solving
(2.6.21) in each iteration step. Then x(μ) and z(μ) are obtained from the triangular
systems

R(μ)x(μ) = c(μ), R(μ)T z(μ) = x(μ). (2.6.26)

Hence, computing the derivative (2.6.26) costs only one more triangular solve.

Example 2.6.2 When computing the Householder QR factorization one can take
advantage of the special structure of the matrix. The shape of the transformed matrix
after k = 2 steps for m = n = 5 is shown below

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×
0 0 + + +

0 + + +
×

×
×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Note that only the first two rows of D have filled in, and the remaining rows of μI
are still untouched. In each step of the QR factorization there are m elements in the
current column to annihilate, and the operation count is 2mn2 flops. If A = R already
is in upper triangular form the flop count for the QR factorization is reduced to 2n3.
(Show this!) Hence, unless A is sparse, it is more efficient to start by computing the
QR factorizations of A at a cost of 2(mn2 − n3/3) flops. In practice ≈ 6 iterations
usually suffice to achieve full accuracy. Further savings are possible by initially
transforming A to bidiagonal form; see Eldén [87, 1984] and Problem 2.6.2.

2.6.3 Bidiagonalization and Partial Least Squares

The partial least squares (PLS) method is due to Wold [297, 1966] and originated in
statistical applications, specifically economics. It is also an alternative technique for
regularization of linear least squares problems. The PLS method generates a sequence
of approximations, which consists of orthogonal projections of the pseudoinverse
solution A†b onto low dimensional Krylov subspaces.

Definition 2.6.1 The PLS approximation xk , k = 1, 2, . . . to the pseudoinverse
solution of minx ‖Ax − b‖2 are the solutions to the subproblem

min
xk
‖Axk − b‖2, subject to xk ∈ Kk(ATA, AT b), k = 1, 2, . . . , (2.6.27)

where Kk(ATA, AT b) is the Krylov subspace

span{AT b, (ATA)AT b, . . . , (ATA)k−1 AT b}. (2.6.28)

Since the Krylov subspaces are nested, Kk(ATA, AT b) ⊆ Kk+1(ATA, AT b),
the sequence of residual norms ‖rk‖2 = ‖b − Axk‖ of the PLS approximations is
nonincreasing. The PLS method terminates for k = p, where p is the grade of AT b
with respect to ATA. Then xk = x p, for k > p, is the pseudoinverse solution x†.
Using the SVD of A, the Krylov vector (ATA)k−1 AT b can be written

yk = (ATA)k−1 AT b =
p∑

i=1

ciσ
2k−1
i vi , ci = uT

i b, k ≥ 1. (2.6.29)

Let σ1 > σ2 > · · · > σn be the singular values and ui , vi the left and right singular
vectors. If σi is a simple singular value, then ui and vi are uniquely determined and
we set ci = uT

i b. For a multiple singular value ci is the norm of the projection of
b onto the left singular subspace corresponding to σi . In this case the left and right
singular vectors can be chosen as an arbitrary basis for the singular subspaces. It is
therefore no restriction to assume that the right-hand side b has a nonzero projection
onto only one particular singular vector ui in the invariant subspace. Denote the
unique corresponding right singular vector by vi . Deleting the terms in (2.6.29) for
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which ci = 0 and renumbering the singular values accordingly, it follows that the
Krylov vectors yk , k ≥ 1, are linear combinations of v1, . . . , vs . Therefore, the grade
of ATA with respect to ATA is at most equal to s.

We now show a relation between the Krylov vectors (2.6.28) and the subset of
the right singular vectors vi chosen as described above, that is fundamental for the
understanding of the PLS method.

Theorem 2.6.2 Let σ1 > σ2 > · · · > σp be the distinct nonzero singular values of
A. Let ci be the norm of the orthogonal projection of b onto the corresponding left
singular subspaces. Then the grade of AT b with respect to ATA equals the number
s ≤ p of nonzero coefficients ci .

Proof Setting zi = ciσivi , and using (2.6.29), we have (y1, y2, . . . , ys) =
(z1, z2, . . . , zs)W , where

W =

⎛
⎜⎜⎜⎜⎝

1 σ 2
1 · · · σ

2(s−1)
1

1 σ 2
2 · · · σ

2(s−1)
2

...
... · · · ...

1 σ 2
s · · · σ

2(s−1)
s

⎞
⎟⎟⎟⎟⎠
∈ R

s×s . (2.6.30)

Since σi �= σ j , i �= j , the Vandermonde matrix W is nonsingular. It follows that the
Krylov vectors (y1, y2, . . . , ys) are linearly independent and the grade is s. �

Setting k = 0 in (2.6.29) gives the pseudoinverse solution

x† =
s∑

i=1

ciσ
−1
i vi ∈ Ks(ATA, AT b). (2.6.31)

It follows that the PLS method always terminates with the pseudoinverse solution.
The PLS approximations can be computed using the GKH algorithm for upper

bidiagonal reduction of A, with P0 chosen so that

P0(AT b) = θ1e1 ∈ R
n, (2.6.32)

or equivalently θ1 P0e1 = AT b. We assume that AT b �= 0, since otherwise x† = 0.
After k steps of the bidiagonalization algorithm we have

Qk · · · Q2 Q1 AVk =
(

Bk

0

)
, Vk = P0 P1 · · · Pk−1

(
Ik

0

)
, (2.6.33)

where
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Bk =

⎛
⎜⎜⎜⎜⎜⎝

ρ1 θ2
ρ2 θ3

. . .
. . .

ρk−1 θk

ρk

⎞
⎟⎟⎟⎟⎟⎠
∈ R

k×k (2.6.34)

is upper bidiagonal. After Pk is applied, the first k rows of A are in upper bidiagonal
form and

U T
k A P0 P1 · · · Pk =

(
B̂k 0

)
, Uk = Q1 Q2 · · · Qk

(
Ik

0

)
, (2.6.35)

where B̂k =
(
Bk θk+1ek

)
. From (2.6.33) and (2.6.35), we get the two fundamental

relations

AVk = Uk Bk, (2.6.36)

AT Uk = Vk+1 B̂T
k = Vk BT

k + θk+1vk+1eT
k . (2.6.37)

Lemma 2.6.1 Assume that the matrix Bk in (2.6.34) has nonzero bidiagonal ele-
ments. Then all its singular values are simple.

Proof The singular values of Bk are the positive square roots of the eigenvalues
of the symmetric tridiagonal matrix Tk = BT

k Bk . The matrix Tk is unreduced if
and only if Bk has nonzero bidiagonal elements. The lemma now follows from the
result of Lemma 3.5.1 that an unreduced symmetric tridiagonal matrix has simple
eigenvalues. �

From the choice of P0 it follows that θ1v1 = AT b. Equating the j th columns
in Eqs. (2.6.36) and (2.6.37) yields the Lanczos-type recurrence relations ρ1u1 =
Av1, and

AT u j = ρ jv j + θ j+1v j+1 j = 1, 2, . . . , (2.6.38)

Av j+1 = θ j u j + ρ j+1u j+1, j = 1, 2, . . . . (2.6.39)

These equations yield the recurrence relations

θ j+1v j+1 = AT u j − ρ jv j , (2.6.40)

ρ j+1u j+1 = Av j+1 − θ j+1u j . (2.6.41)

for computing the vectors v j+1, u j+1. The elements θ j+1 and ρ j+1 in Bn are obtained
as normalization conditions ‖u j+1‖2 = ‖v j+1‖2 = 1. The resulting algorithm is also
due to Golub and Kahan [127, 1965]. Its numerical properties are further studied in
Sect. 4.5.4.

Theorem 2.6.3 As long as no bidiagonal element in Bk is zero, the matrices
Uk = (u1, . . . , uk) and Vk = (v1, . . . , vk) are unique orthonormal bases for the

http://dx.doi.org/10.1007/978-3-319-05089-8_4
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two sequences of Krylov subspaces

R(Vk) = Kk(ATA, AT b), R(Uk) = Kk(AAT , AAT b), (2.6.42)

generated by the symmetric matrices ATA and AAT .

Proof The columns of the matrices Uk and Vk are orthonormal by construction. Since
θ1v1 = AT b and ρ1u1 = Av1 = AAT b/θ1, the theorem is true for k = 1. The proof
proceeds by induction in k. From (2.6.38)–(2.6.39) it follows that

θk+1vk+1 ∈ AT Kk(AAT , AAT b) ⊂ Kk+1(ATA, AT b).

ρk+1uk+1 ∈ AKk+1(ATA, AT b) = Kk+1(AAT , AAT b).

The bases can also be obtained by applying the Gram–Schmidt orthogonalization
to the respective sequence of Krylov vectors. The uniqueness of the bases is a con-
sequence of the uniqueness (up to a diagonal scaling with elements ±1) of the QR
factorization of a real matrix of full rank. �

From Theorem 2.6.3 it follows that any vector xk ∈ Kk(ATA, AT b) can be
written as

xk = P1 · · · Pk

(
yk

0

)
= Vk yk, (2.6.43)

and the PLS approximation is obtained by solving minyk ‖AVk yk − b‖2
2. From the

orthogonal invariance of the �2-norm we obtain

‖AVk yk − b‖2
2 = ‖Qk · · · Q1 (AVk yk − b)‖2

2 = ‖Bk yk − ck‖2
2 + ‖dk‖2

2,

where (
ck

dk

)
= Qk · · · Q1b = Qk

(
ck−1
dk−1

)
(2.6.44)

and the first k − 1 elements in ck are ck−1. Hence, the minimizing yk is the solution
to the upper bidiagonal system Bk yk = ck ∈ R

k , and the residual norm is ‖dk‖2.
Since the matrices Uk and Vk are never explicitly formed, they are orthogonal by
construction. In step k the arithmetic cost for applying the transformations to the
active part of A is 8(m − k)(n − k) flops. The flop counts for the additional scalar
products and final back substitution are negligible in comparison.

The algorithm will terminate with θk+1 = 0 for some k ≤ rank (A) when
the subspaces Kk(ATA, AT b) have reached maximum rank. Then the subspaces
Kk(AAT , AAT b) = AKk(ATA, AT b) have also reached maximal rank and
ρk+1 = 0. Hence,

xk = A†b = P1 P2 · · · Pk

(
yk

0

)
= Vk yk .
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Fig. 2.14 Relative error norm ‖xk − x‖2/‖x‖2 (solid line) and residual norm ‖Axk − b‖2/‖b‖2
(dashed line) after k steps of PLS

is the pseudoinverse solution.

Example 2.6.3 Like the TSVD method, PLS can be used as a regularization method.
Both methods work by orthogonally projecting the least squares solution onto a
sequence of subspaces of dimension k � n. They differ in the way the subspaces
are chosen. In TSVD the subspaces are spanned by the first k right singular vectors.
For PLS the truncated subspaces depend (nonlinearly) on the right-hand side b.

In Example 2.6.1, the TSVD method was used to compute a sequence of approx-
imate solutions to the ill-posed linear system (2.6.2). In Fig. 2.13 the relative errors
‖xk − x‖2/‖x‖2 and ‖Axk − b‖2/‖b‖2 are shown as functions of the number k of
terms used in the SVD expansion. Similar results for GKH are shown in Fig. 2.14,
where k now is the number of steps in GKH. The results are almost identical for
PLS and TSVD although PLS only requires a partial bidiagonalization of A and
generation of Vk . �

2.6.4 The NIPALS Algorithm

The NIPALS (Nonlinear Iterative PArtial Least Squares) PLS algorithm, due to Wold
et al. [299, 1984], is frequently used in statistical computing, in particular in chemo-
metrics. It uses a sequence of elementary orthogonal projections and generates the
orthogonal basis vectors explicitly.

Set A0 = A and b0 = b and for i = 1:n,

(a) Generate unit vectors ui , vi by

v̂i = AT
(i−1)bi−1, ûi = Ai−1vi . (2.6.45)
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If ‖̂vi‖2 = 0 or ‖ûi‖2 = 0, terminate the process. Otherwise, normalize these
vectors

vi = v̂i/‖̂vi‖2, ui = ûi/‖ûi‖2. (2.6.46)

(b) Deflate the data matrix Ai−1 and right-hand side bi−1 by subtracting the orthog-
onal projections onto ui :

(Ai , bi ) = (I − ui u
T
i )(Ai−1, bi−1) = (Ai−1, bi−1)− ui (pT

i , ζi ),(2.6.47)

pi = AT
i−1ui , ζi = uT

i bi−1. (2.6.48)

Summing the equations in (2.6.47) for i = 1:k gives

A = Uk PT
k + Ak, b = Uk zT

k + bk, (2.6.49)

where Uk = (u1, . . . , uk), Pk = (p1, . . . , pk), zk = (ζ1, . . . , ζk)
T , and

Uk PT
k =∑k

i=1 ui pT
i is a rank k approximation to the data matrix A.

Lemma 2.6.2 The vectors {v1, . . . , vk} and {u1, . . . , uk} generated in exact arith-
metic by PLS are orthonormal.

Proof Assume that {u1, . . . , ui } and {v1, . . . , vi } are orthogonal. Since uT
1 u1 = 1,

using exact arithmetic in (2.6.47) gives

uT
1 u2 = c1uT

1 A1v2 = c1uT
1 (I − u1uT

1 )Av2 = 0,

vT
1 v2 = c3v

T
1 AT

1 b1 = c3v
T
1 AT (I − u1uT

1 )b = c4uT
1 (I − u1uT

1 )b = 0.

(Here and in the following c1, c2, . . . are generic constants.) This shows that the
assumptions hold for i = 2. Using (2.6.47)) and the induction assumptions again we
obtain

uT
j ui+1 = c2uT

j Aivi+1 = c2uT
j (I − ui u

T
i ) · · · (I − u j u

T
j )A j−1vi+1 = 0,

0 ≤ j ≤ i . Similarly

vT
j vi+1 = c5v

T
j AT

i bi = c5v
T
j AT

j−1(I − u j u
T
j ) · · · (I − ui u

T
i )bi

= c6uT
j (I − u j u

T
j ) · · · (I − ui u

T
i )bi = 0. �

The equivalence of the MGS and the Householder algorithms for PLS follows
from the following result.

Theorem 2.6.4 The vectors {v1, . . . , vk} and {u1, . . . , uk} generated by PLS form
orthonormal bases for Kk(ATA, AT b) and Kk(AAT , AAT b), respectively.

In exact arithmetic these vectors are the same as those computed by the upper bidi-
agonal GKH algorithm with v1 = AT b/‖AT b‖2. The same holds for the sequence
of approximate solutions x1, . . . , xk .
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Proof Assume now that vi ∈ Ki (ATA, AT b), ui ∈ Ki (AAT , AAT b), and pi ∈
Ki (ATA, (ATA)AT b). Clearly, this is true for i = 1. Now,

vi+1 = c7 AT
i bi = c7(AT

i−1bi − (uT
i b)pi ) = c8vi − c9 pi .

From the induction assumptions, it follows that vi+1 ∈ Ki+1(ATA, AT b). Similarly,

ui+1 = c10 Aivi+1 = c10

(
A −

i∑
j=1

u j pT
j

)
v j+1 = c10

(
Avi+1 −

i∑
j=1

(pT
j v j+1)u j

)
,

and from the induction assumptions, we find that ui+1 ∈ Ki+1(AAT , AAT b). �

The two algorithms generate orthonormal bases for the same sequences of Krylov
subspaces. Hence, the equivalence of the two algorithms follows from the uniqueness
of such bases. The second statement follows from the uniqueness of the solution to
the full rank least squares subproblems. �

It is important to remember that, as in Gram–Schmidt orthogonalization, there will
be a gradual loss of orthogonality in the u and v vectors, if floating point arithmetic is
used. Therefore, the implememtation of the NIPALS algorithm is more delicate than
for the PLS algorithm using Householder transformations, where the basis vectors are
orthogonal by construction. However, relations (2.6.49) do not rely on orthogonality
and will hold to working precision.

The kth approximation of the solution is of the form xk = Vk yk , where Vk =
(v1, . . . , vk). By (2.6.49), the residual can be written as

b − AVk yk = r1 + r2, r1 = Uk(zk − PT
k Vk yk), r2 = bk − Ak Vk yk .

The first term r1 lies in R(Uk) and vanishes if yk satisfies the linear system (PT
k Vk)yk

= zk . In exact computation Bk = PT
k Vk is upper bidiagonal and, by uniqueness, is

the matrix in (2.6.34). Hence, the solution yk can be computed by back substitution
as for GKH. Assuming orthogonality of Uk , it follows that

Table 2.2 Condition number
of Pk and loss of
orthogonality in MGS-PLS:
γ (Vk) = ‖Ik − V T

k Vk‖2 and
γ (Uk) = ‖Ik −U T

k Uk‖2 left:
with deflation of b; right:
without deflation

k κ(PT
k Vk) γ (Uk) γ (Vk) γ (Uk) γ (Vk)

1 1.000+00 6.661-16 2.222-16 6.661-16 0

2 1.000+01 1.256-15 2.222-16 1.254-15 7.200-14

3 1.000+02 1.258-15 5.562-15 1.255-15 7.187-12

4 1.000+03 2.746-14 4.576-14 2.772-14 7.186-10

5 1.000+04 2.746-14 2.871-13 2.772-14 7.186-08

6 1.000+05 1.667-13 1.024-12 1.674-13 7.186-06

7 1.000+06 1.775-13 8.975-12 5.172-13 7.186-04

8 1.000+07 6.000-11 6.541-11 5.158-10 7.167-02
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bk − Ak Vk yk = bk − (I −UkU T
k )AVk yk = bk .

Example 2.6.4 To study the loss of orthogonality in Vk and Uk , we take A to be an
ill-conditioned matrix with singular values σi = 10−i+1, i = 1:8, and set

A = UDVT ∈ R
50×8, D = 1, 0.1, . . . , 10−7,

where U and V are random orthogonal matrices.13 The right-hand side is chosen as
b = Ae, where e = (1, . . . , 1)T .

The NIPALS algorithm uses three matrix-vector products and one rank-one defla-
tion, which together require 8mn flops per PLS factor. The flop counts for the addi-
tional scalar products and final back substitution are negligible in comparison. This
is the same number of flops per step as required by the GKH algorithm as long as
the number of factors k � min(m, n).

The numerical results were obtained using Algorithm 2.6.2. Table 2.2 shows the
condition number κ(Pk) and the loss of orthogonality in Uk and Vk measured by
‖Ik − U T

k Uk‖2 and ‖Ik − V T
k Vk‖2. With deflation of b the loss of orthogonality is

proportional to κk in both U and V . The norm of the error ‖x̄ − x‖2 in the computed
solution x̄ is 1.149 · 10−10 for k = 8. This is of the same magnitude as the loss
of orthogonality in Vk and Uk . The corresponding error norm for the Householder
algorithm is 2.181 ·10−10. This strongly suggests forward stability of the MGS-PLS
algorithm.

It has been suggested that the deflation of b can be omitted, since in exact arithmetic

uT
i

(
b −

i−1∑
j=1

ζ j u j

)
= uT

i b.

The columns to the right in Table 2.2 show the effect of omitting the deflation of b.
Although the loss of orthogonality inUk is nearly unchanged, the loss of orthogonality
in Vk is now proportional to κ2

k . The norm of the error in the computed solution is also
of the same magnitude and equals 0.724 · 10−1. This loss of accuracy is similar to
that when MGS is incorrectly used to solve a least squares problem by computing the
right-hand side as c = QT b. We conclude that omitting the deflation of b destroys
the otherwise excellent numerical accuracy of the MGS-PLS. �
Algorithm 2.6.2 (NIPALS Algorithm)

function [x,U,P,V] = nipls(A,b,k)

% NIPLS computes at most k PLS factors for the

% least squares problem min||A x - b||_2.

% --------------------------------------------

[m,n] = size(A); x = zeros(n,1);

for i = 1:k

13 How to generate a random orthogonal matrix is described in Stewart [267, 1980].
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% Determine i’th column of B

v = A’*b; nv = norm(v);

if nv == 0, k = i-1; break end

v = v/nv; u = A*v;

rho(i) = norm(u); u = u/rho(i);

if i > 1, theta(i) = p’*v; end

% Deflate A and b

p = A’*u; z(i) = u’*b;

A = A - u*p’; b = b - u*z(i);

V(:,i) = v; U(:,i) = u; P(:,i) = p;

end

% Solve the bidiagonal system.

y(k) = z(k)/rho(k);

for i = k-1:(-1):1

y(i) = (z(i) - theta(i+1)*y(i+1))/rho(i);

end

x = V*y;

Several generalizations of the basic PLS algorithm have been devised; see Wold
et al. [298, 2001]. The relationship between the original PLS algorithm and the GKH
algorithm is analyzed by Eldén [88, 1984] and Bro and Eldén [37, 2008].

2.6.5 Least Angle Regression and l1 Constraints

A problem related to the standard case of LSQI is the least squares problem with a
bound on the sum of the absolute values of the coefficients

min
x
‖Ax − b‖2 subject to ‖x‖1 = eT x ≤ μ, (2.6.50)

where e = (1, . . . , 1)T . The use of (2.6.50) for variable selection in least squares
problems is due to Tibshirani [279, 1996]. He gave this procedure the colorful name
LASSO, which stands for “least absolute shrinkage and selection operator”. For a
fixed value of the regularization parameter μ (2.6.50) is an optimization problem,
whose objective function is strictly convex over a convex feasible region. Such a
problem has a unique minimizer. Let xLS be the unconstrained least squares solution
and set μLS = ‖xLS‖1. We shall see that for μ ∈ [0, μLS], the trajectory of the
solution is piecewise linear.

The use of the �1-norm instead of the the �2-norm norm for the regularization
term has a great influence on the character of the solution. For the spectral norm
the feasible region ‖x‖2 ≤ μ is a hyper-sphere. For the 1-norm the feasible region
‖x‖ ≤ μ is a diamond-shaped polyhedron, which unlike the sphere has many sharp
corners, edges and faces at which one or several parameters are zero. This structure
of the �1-norm favors solutions with few nonzero coefficients.
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Fig. 2.15 Least angle
regression for n = 2
variables. Here b̃ is the
orthogonal projection of b
onto span{a1, a2}

µ1 a1

a2

b

u2

Osborne et al. [224, 2000] proposed an algorithm for computing this trajectory
for the �1 constrained least squares problem based on standard methods for convex
programming. We describe here a more intuitive algorithm by Efron et al. [81, 2004],
derived by modifying a variable selection algorithm called least angle regression
(LAR).

Assume that A = (a1, . . . , an) has linearly independent columns, normalized so
that ‖a j‖2 = 1, j = 1:n. We start with x j = 0, j = 1:n and enter one variable at
each step. The first variable to enter the regression is chosen as the one making the
smallest angle with b. Since the columns of A are normalized to have unit length, this
is the variable x j with the largest correlation |aT

j b|. This maximizes the decrease in
residual norm for a fixed value of ‖x‖2. It is the same choice as in stepwise regression.
Let this variable be x1, so that

|aT
1 b| > |aT

j b|, j �= 1.

In stepwise regression the next iterate x1 = aT
1 b is the least squares solution, for

which the residual r = b − (aT
1 b)x1 is orthogonal to a1. In LAR a smaller step

x1 = γ (aT
1 b), 0 < γ ≤ 1,

is taken. As γ increases, the correlation between a1 and r(t) = b − γ s1a1 becomes
smaller. For some intermediate value γ = γ1, there is another column a j , such that
|aT

1 r(γ )| = |aT
j r(γ )|. At this point the residual r(1) = r(γ1) bisects the angle

between a1 and a j , and the variable x j joins the active set.
In the next step the solution moves towards the unconstrained solution for A =

(a1, a2) as illustrated in Fig. 2.15. It is apparent that the residual vector will change
in the direction of the bisector of a1 and a2, but a full step is not taken. From the
lemma below it follows that this will keep the correlations of the residual and the
active variables tied and decreasing.

Lemma 2.6.3 Consider a least squares problem minx ‖Ax−b‖2, where the columns
of A have unit length ‖a j‖2 = 1. Assume that b makes the same acute angle with
each column a j , j = 1:n. Set x(t) = t xL S, where t ∈ [0, 1] and xLS is the least
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squares solution. Then the residual r(t) = b− Ax(t) also makes equal angle to the
columns of A.

Proof Since b makes equal angles with each column of A, the correlations are equal,
i.e., |AT b| = ce, where e = (1, . . . , 1)T . Then the residual vector is r(t) = b −
t A(ATA)−1 AT b, and hence

AT r(t) = AT b − t AT b = (1− t)AT b.

It follows that |AT r(t)| = (1− t)|AT b| = c(1− t)e. �

The subsequent steps are similar. Let σ be the index set pointing to the current
nonzero components of x and σ ∪ σC = {1, 2, . . . , n}. Assume that a new variable
has just become active and is zero. Denote the current solution by x (k) and the residual
by r (k) = b − Ax (k). The correlations |aT

j r (k)|, j ∈ σ , are all equal. The solution
moves towards the least squares solution in the subspace corresponding to the active
set, which is x = x (k) + u(k), where u = u(k) solves minu ‖A(k)u − r (k)‖2. By
Lemma 2.6.3, this direction of change makes equal angles in the residual space with
all a,, j ∈ σ . The maximal reduction in residual norm is obtained by making the
residual orthogonal to a j , j ∈ σ , but a smaller step is taken, say

x = x (k) + γ u(k), γ ∈ (0, 1]. (2.6.51)

At the current point x (k) the correlations are

aT
j r (k) =

{
ĉ if j ∈ σ,

c j otherwise.

When the solution moves towards the least squares solution according to (2.6.51),
the correlations of the variables in the active set will change according to (1− γ )̂c.
The breakpoint will occur for the smallest value of γ for which

(1− γ )̂c = |c j − γβ j |, β j = aT
j Au(k), j /∈ σC .

It follows that LAR will use the stepsize

γ̂ = min
j∈σC

+
{

ĉ − c j

ĉ − β j
,

ĉ + c j

ĉ + β j

}
, (2.6.52)

where min+ indicates that the minimum is taken only over positive components for
each j . The sum of squares of the residuals in the above algorithm is monotonically
decreasing as μ increases. After n steps LAR will terminate with the full least squares
solution. In this discussion, we have assumed that only a single variable becomes
active at a time.
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By construction, the trajectory of the solution in LAR is piecewise linear with n
breakpoints. In many cases this trajectory coincides with that of the �1 constrained
least squares problem if we set μk = ∑ j∈Ak

|x |. Indeed, with the following small
modification the LAR algorithm can be used for solving the �1 constrained least
squares problem: When a nonzero variable becomes zero and is about to change
sign, the variable is removed from the active set and the least squares direction of
change recomputed.

Theorem 2.6.5 Let x(μ) be the solution of the �1 constrained least squares problem.
Then there exists a finite set of break points 0 = μ0 ≤ μ1 ≤ · · · ≤ μp = μLS, such
that x(μ) is a piecewise linear function

x(μ) = x(μk)+ (μ− μk)(x(μk+1)− x(μk)), μk ≤ μ ≤ μk+1. (2.6.53)

The �1 constrained least squares solution can be computed with about the same
arithmetic cost as a single least squares problem. As in stepwise regression, the
QR factorization of the columns in the active set is modified in each step. When a
new variable is added, the factorization is updated by adding the new column. In
case a variable becomes zero, the factorization is downdated. Although unlikely,
the possibility of a multiple change in the active set cannot be excluded. A brute
force method to cope with this is to make a small change in the right-hand side. It
follows from continuity that no index set σ can be repeated in the algorithm. There
are only a finite number of steps in the algorithm, usually not much greater than
min{m, n}.

If the linear system Ax = b is consistent, then problem (2.6.50) simplifies to

min
x
‖x‖1 subject to Ax = b. (2.6.54)

This formulation is used in Basis Pursuit, which is a principle for decomposing
a signal using a superposition of basis functions from some “dictionary” of, e.g.
wavelet packages; see Chen et al. [51, 2001]. Problem (2.6.54) is connected to an
LP program in standard form

min
u,v

cT y subject to By = b, y ≥ 0.

If we take

c =
(

e
−e

)
, y =

(
u
v

)
, B = (A −A

)
,

and y solves the LP program, then x = u − v solves (2.6.54).
An important application of �1 regularization is in signal processing. If the true

signal is known to be sparse, i.e., has few nonzero coefficients, then �1 regularization
will identify the correct predictor with high probability. This property is the basis
for compressive sensing in signal processing. To minimize the number of nonzero
entries in a signal x is equivalent to minimizing the �0 “norm”. This problem is
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known to be computationally intractable. The �1 norm can be seen as the closest
“convex” approximation. A general mathematical framework has been developed in
which the �1 approximation can be proved to recover sparse solutions exactly; see
Candès [41, 2006]. A matrix analogue of recovering a sparse vector is to minimize
the nuclear norm of a matrix, i.e., the sum of its singular values. As in the case of a
vector, this can be be viewed as a convex approximation of the rank of the matrix.
The literature on compressive sensing is huge and growing fast.

Exercises

2.6.1 Consider the (thin) QR factorization
(

A
μIn

)
=
(

Q1
Q2

)
R, μ > 0,

where A,∈ R
m×n and Q2 ∈ R

n×n . Show that ATA + μ2 In = RT R and that

A(ATA + μ2 In)−1 = 1

μ
Q1 QT

2 . (2.6.55)

2.6.2 Describe an efficient algorithm using Givens rotations for computing the QR factorization
of a matrix (

B
μD

)
, R ∈ R

n×n,

where B is upper triangular and D diagonal.
Hint: The number of flops required for the factorization is about 11n.

2.6.3 (Eldén [87, 1984]) An important special case of Tikhonov regularization is when A = K
and L are upper triangular Toeplitz matrices, i.e.,

K =

⎛
⎜⎜⎜⎜⎜⎝

k1 k2 . . . kn−1 kn
k1 k2 . . . kn−1

. . .
. . .

.

.

.

k1 k2
k1

⎞
⎟⎟⎟⎟⎟⎠

.

Such systems arise when convolution-type Volterra integral equations of the first kind are
discretized. Develop a method using Givens rotations for computing the QR factorization of(

K
μL

)
, which for a fixed value of μ only uses about 3n2 flops. Is the final triangular matrix

Toeplitz?
Hint: In the first step use Givens rotations in the planes (1, n + 1), (2, n + 1), . . . , (n, 2n)

to zero the main diagonal in L . Notice that the rotation angle is the same in all rotations and
that the Toeplitz structure is preserved.

2.6.4 Work out the details of the transformation to standard for Tikhonov regularization, when L
is the discrete approximation to the first derivative operator in (2.6.6). What is the null space
of L in this case?

2.6.5 Show that transforming A to lower bidiagonal form using an initial transformation Q0b =
βe1 gives the same result as transforming the matrix (b, A) to upper bidiagonal form using
P0 = I .

2.6.6 (a) Develop an algorithm using Givens rotations for transforming a lower bidiagonal matrix
B ∈ R

(n+1)×n into an upper bidiagonal matrix R ∈ R
n×n .
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(b) Extend the algorithm in (a) for solving a lower bidiagonal least squares problem
miny ‖By − β1e1‖2.

2.6.7 For a matrix A ∈ R
m×n of full column rank, the matrix B ∈ R

n×n in the bidiagonal
decomposition

A = (U1 U2
) (B

0

)
V T = U1 BV T

is nonsingular and the pseudoinverse is A† = V B−1U T
1 . This suggests the following method

to compute A†. Compute the bidiagonal factorization using Householder reflectors, and form
U1 by accumulating the left Householder reflectors. Solve the bidiagonal matrix equation
BY = U T

1 and compute A† = V Y . Determine the number of flops needed by this method.

2.6.8 (a) Consider the least squares problem minx ‖b − Ax‖2 where A ∈ R
m×n , m > n and

b /∈ R(A). Show that Householder QR factorization applied to the extended matrix(
b A

)
gives the factorization

(
b A

) = Q

(
βe1 H

0 0

)
,

where e1 is the first unit vector and H ∈ R
(n+1)×n a Hessenberg matrix with hk+1,k �= 0,

k = 1:n. Conclude that the least squares solution x is obtained by solving minx ‖H x−
β1e1‖2.

(b) Assume that standard pivoting is used in the QR factorization of
(
b A

)
, except that

b is fixed as first column. Show that b is a linear combination of a subset of k columns
in A if and only if hk+1,k = 0.

2.7 Some Special Least Squares Problems

In this section we treat a selection of least squares problems, that do not fit the standard
Gauss–Markov model and require special methods for their solution. Included are
problems involving linear equality or inequality constraints, as well as problems with
indefinite or more general covariance structure. In the “total least squares model”
errors are allowed in both the right-hand side b and in A. A special case of this is
orthogonal regression.

2.7.1 Weighted Least Squares Problems

For the standard Gauss–Markov model to be valid, the errors in the right-hand side
must be independently and identically distributed with covariance matrix σ 2 I . Con-
sider a least squares problem minx ‖Ax − b‖2, where the covariance matrix is the
positive diagonal matrix,

V = σ 2diag(v11, v22, . . . , vmm) > 0.
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Here the equations should be weighted so that the errors have equal variance. This
is achieved by a rescaling

min
x
‖D(Ax − b)‖2 = min

x
‖(DA)x − Db‖2. (2.7.1)

where D = diag(v
−1/2
i i ). Note that the smaller the variance vi i , the larger the weight

given to a particular equation.
Problems for which the error variances σ 2vi i have widely different magnitude,

i.e., dmax/dmin  1, are called stiff. For such problems DA in (2.7.1) can be ill-
conditioned even when A is well-conditioned. An example is Läuchli’s problem (see
Example 2.1.5, p. 225) in which the first equation x1+ x2+ x3 = 1 has a much larger
weight than the rest. Stiff least squares problems arise, e.g., in geodetic problems,
electrical networks, certain classes of finite element problems, and in interior point
methods for constrained optimization.

Special care may be needed when solving stiff least squares problems. We assume
in the following that the matrix A is row equilibrated, i.e.,

max
1≤ j≤n

|ai j | = 1, i = 1:m,

and that the weights D = diag(d1, d2, . . . , dm) have been ordered so that∞ > d1 ≥
d2 ≥ · · · ≥ dm > 0. Note that only the relative size of the weights influences the
solution.

The method of normal equations is not well suited for solving stiff problems. To
illustrate this, we consider the special case where only the first p < n equations are
weighted,

min
x

∥∥∥∥
(

γ A1
A2

)
x −

(
γ b1
b2

)∥∥∥∥
2

2
, (2.7.2)

A1 ∈ R
p×n and A2 ∈ R

(m−p)×n . For problem (2.7.2) the matrix of normal equations
becomes

B = (γ AT
1 AT

2

) (γ A1
A2

)
= γ 2 AT

1 A1 + AT
2 A2.

If γ > u−1/2 (u is the unit roundoff) and AT
1 A1 is dense, then B = ATA will be

completely dominated by the first term and the data contained in A2 may be lost. If
the number p of very accurate observations is less than n, this is a disaster, since the
solution depends critically on the less precise data in A2.

For a stiff problem κ(DA) is large. An upper bound is given by κ(DA) ≤
κ(D)κ(A) = γ κ(A). It is important to note that this does not mean that the problem
of computing x from given data {Dr , A, b} is ill-conditioned when γ  1. Note that
when γ →∞ (2.7.2) becomes the least squares problem minx ‖A2x − b2‖2 subject
to linear constraints A1x = b1; see Sect. 2.7.2.
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QR factorization can be used to stably solve weighted problems. However, the
example

A =
(

γ A1
A2

)
, A1 =

(
1 1 1
1 1 −1

)
,

where A2 arbitrary and γ  1, shows that it is essential to use column pivoting.
Since the first two columns of A1 are linearly dependent, stability will be lost in QR
factorization without interchanging the second and third columns. As the following
example shows, the ordering of the rows is also important.

Example 2.7.1 (Powell and Reid [238, 1969]) The pivoted Householder QR method
can also give poor accuracy for weighted problems. Consider the least squares prob-
lem with

DA =

⎛
⎜⎜⎝

0 2 1
γ γ 0
γ 0 γ

0 1 1

⎞
⎟⎟⎠ , Db =

⎛
⎜⎜⎝

3
2γ

2γ

2

⎞
⎟⎟⎠ .

The exact solution is x = (1, 1, 1). With exact arithmetic, after the first step of
Householder QR factorization of A, we obtain the reduced matrix

Ã(2) =
⎛
⎜⎝

1
2γ − 21/2 − 1

2γ − 2−1/2

− 1
2γ − 21/2 1

2γ − 2−1/2

1 1

⎞
⎟⎠ .

If γ > u−1 the terms −21/2 and −2−1/2 in the first and second rows are lost. But
this is equivalent to the loss of all information present in the first row of A. This loss
is disastrous, because the number of rows containing large elements is less than the
number of components in x , so there is a substantial dependence of the solution x
on the first row of A. (But compared to the method of normal equations, which fails
already when γ > u−1/2, this is an improvement!) �

Cox and Higham [61, 1998] show that provided an initial row sorting is per-
formed, the pivoted Householder QR method has very good stability properties for
weighted problems. The rows of Ã = DA and b̃ = Db should be sorted to give
decreasing �∞-norm:

max
j
|̃a1 j | ≥ max

j
|̃a2 j | ≥ · · · ≥ max

j
|̃amj |. (2.7.3)

(In Example 2.7.1 this will permute the two large rows to the top.) Row pivoting
could also be used, but row sorting has the advantage that after sorting the rows, any
library routine for pivoted QR factorization can be used.

We now consider some hybrid methods that are suitable for solving stiff prob-
lems. In a first step Gaussian elimination is applied to reduce A ∈ R

m×n to upper
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trapezoidal form U . In general, column interchanges are needed to ensure numerical
stability. Usually it will be sufficient to use partial pivoting combined with a check
for linear independence. After p steps, let ãq,p+1 be the element of largest magnitude
among the entries p + 1:m of column p + 1. If |̃aq,p+1| < tol, then column p + 1
is considered to be linearly dependent and is placed last. We then look for a pivot
element in column p + 2, etc. If the rank (A) = n, the resulting LDU factorization
becomes

�1 A�2 =
(

A1
A2

)
= LDU =

(
L1
L2

)
DU, (2.7.4)

where L1 ∈ R
n×n is unit lower triangular, D diagonal and U ∈ R

n×n is unit upper
triangular and nonsingular. Thus, the matrix L has the same dimensions as A and a
lower trapezoidal structure. This factorization requires n2(m − 1

3 n) flops.
Setting x̃ = �T

2 x and b̃ = �1b, the least squares problem minx ‖Ax − b‖2
becomes

min
y
‖Ly − b̃‖2, DUx̃ = y. (2.7.5)

If the initial LU factorization is computed with row and column interchanges, the
resulting factor L tends to be well-conditioned. and any ill-conditioning is usually
reflected in D. The least squares problem in (2.7.5) can then be solved using the
normal equations

LT Ly = LT b̃,

without substantial loss of accuracy. This is known as the Peters–Wilkinson method;
see [234, 1970]. Forming the symmetric matrix LT L = LT

1 L1 + LT
2 L2 requires

n2(m − 2
3 n) flops and the Cholesky factorization n3/3 flops. Hence, neglecting

terms of order n2, a total of 2n2(m − 1
3 n) flops is required. Although this is always

more than required by the standard method of normal equations, it is a more stable
method. In a variant of the Peters–Wilkinson method, problem (2.7.5) is solved by
computing an orthogonal factorization of the lower trapezoidal matrix L ,

QT L =
(

L̂
0

)
, L̂ y = QT b̃, (2.7.6)

where L̂ is square and lower triangular; see Cline [54, 1973].

Example 2.7.2 (Noble [215, 1976]) Consider the matrix A and the corresponding
(exact) normal equations matrix

A =
⎛
⎝

1 1
1 1+ ε−1

1 1− ε−1

⎞
⎠ , ATA =

(
3 3
3 3+ 2ε2

)
.

If ε ≤ √
u, then in floating point computation f l(3 + 2ε2) = 3, and the computed

matrix f l(ATA) has rank one. But the LDU factorization is
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A = LDU =
⎛
⎝

1 0
1 1
1 −1

⎞
⎠
(

1 0
0 ε

)(
1 1
0 1

)
,

where L and U are well-conditioned. Since L† = (LT L)−1LT , Theorem 2.2.3 shows
that the pseudoinverse is obtained from

A† = U−1 D−1L† =
(

1 −ε

0 ε

)(
1/3 0
0 1/2

)(
1 1 1
0 1 −1

)
.

Here there is no cancellation. �

A more complete treatment of weighted least squares and the general linear model
is given in Björck [27, 1996], Chap. 3. Methods for solving least squares problems
based on Gaussian elimination were used by Noble [215, 1976]. Sautter [249, 1979]
gives a detailed analysis of stability and rounding errors in the LU algorithm for
computing pseudoinverse solutions.

2.7.2 Linear Equality Constraints

In some least squares problems the unknowns are required to satisfy a system of
linear equations exactly. One source of such problems is in curve and surface fitting,
where the curve is required to interpolate certain data points.

Given matrices A ∈ R
m×n and C ∈ R

p×n , problem LSE is to find x ∈ R
n such

that

min
x
‖Ax − b‖2 subject to Cx = d. (2.7.7)

A solution exists if and only if the linear system Cx = d is consistent. A robust
algorithm should check for possible inconsistency of the constraints Cx = d. If
rank (C) = p, then Cx = d is consistent for any right-hand side d. In the inconsistent
case, problem LSE may be reformulated as a sequential least squares problem

min
x∈S

‖Ax − b‖2, S = {x | ‖Cx − d‖2 = min} . (2.7.8)

A solution to problem (2.7.7) is unique if and only if the null spaces of A and C
intersect trivially, i.e., N (A) ∩N (C) = {0}, or equivalently

rank

(
C
A

)
= n. (2.7.9)

If not, there is a vector z �= 0 such that Az = Cz = 0, and if x solves (2.7.8), x + z
is a different solution. In the following we therefore assume that rank (C) = p and
that (2.7.9) is satisfied.



2.7 Some Special Least Squares Problems 369

The most efficient way to solve problem LSE is to derive an equivalent uncon-
strained least squares problem of lower dimension. There are two different ways to
perform this reduction: direct elimination and the null space method. We describe
both these methods below.

In the method of direct elimination we start by reducing the matrix C to upper
trapezoidal form. It is essential that column interchanges be used in this step. In
order to be able to solve also the more general problem (2.7.8) we compute a QR
factorization of C such that

QT
C C�C =

(
R11 R12
0 0

)
, d̄ = QT

C d =
(

d̄1

d̄2

)
. (2.7.10)

Here R11 ∈ R
r×r is upper triangular and nonsingular, where r = rank(C) ≤ p.

Further, d̄2 = 0 if and only if the constraints are consistent. With this factorization
and x̄ = �T

C x , the constraints become

(
R11, R12

)
x̄ = R11 x̄1 + R12 x̄2 = d̄1. (2.7.11)

The permutation �C is also applied to the columns of A. Partitioning the resulting
matrix conformally with (2.7.10) gives A�C = ( Ā1 Ā2

)
. Solving R11 x̄1 = (d̄1 −

R12 x̄2) in (2.7.11) and substituting in Ax − b = Ā1 x̄1 + Ā2 x̄2 − b, it follows that
the original problem LSE is equivalent to the unconstrained least squares problem

min
x̄2
‖ Â2 x̄2 − b̂‖2, (2.7.12)

where
Â2 = Ā2 − Ā1 R−1

11 R12, b̂ = b − Ā1 R−1
11 d̄1.

Note that Â2 ∈ R
m×(n−r) is the Schur complement of R11 in

(
R11 R12

Ā1 Ā2

)
.

It can be shown that if condition (2.7.9) is satisfied, then rank (A2) = r . Hence,
the unconstrained problem has a unique solution, which can be computed from the
QR factorization of Â2. The resulting algorithm can be kept remarkably compact, as
exemplified by the Algol program of Björck and Golub [29, 1967].

In the null space method the LQ factorization C = L QT is computed, with L
lower triangular and Q orthogonal. (This is equivalent to the QR factorization of
CT .) If A is also postmultiplied by Q, we obtain

(
C
A

)
Q =

(
C
A

) (
Q1 Q2

) =
(

L 0
AQ1 AQ2

)
, L ∈ R

p×p. (2.7.13)
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Here Q2 is an orthogonal basis for the null space of C . The matrix Q can be con-
structed as a product of Householder reflectors. Set x = Qy and split the solution
into the sum of two orthogonal components by setting

x = x1 + x2 = Q1 y1 + Q2 y2, y1 ∈ R
p, y2 ∈ R

(n−p). (2.7.14)

Here Cx2 = C Q2 y2 = 0, i.e., x2 lies in the null space of C . From the assumption
that rank (C) = p, it follows that L is nonsingular and the constraints now give
Ly1 = d. The residual vector can be written

r = b − AQy = c − AQ2 y2, c = b − (AQ1)y1.

Hence, y2 is the solution to the unconstrained least squares problem

min
y2
‖(AQ2)y2 − c‖2. (2.7.15)

This reduced problem can be solved by computing the QR factorization of AQ2. If
(2.7.9) is satisfied, then rank (AQ2) = n − p and the solution to (2.7.15) is unique.
Let y2 be that unique solution. Since

‖x‖2
2 = ‖x1‖2

2 + ‖Q2 y2‖2
2 = ‖x1‖2

2 + ‖y2‖2
2,

it follows that x = Qy is the minimum-norm solution to problem LSE.
The representation in (2.7.14) of the solution x can be used as a basis for a

perturbation theory for problem LSE. A strict analysis is given by Eldén [86,
1982], but the result is too complicated to be given here. If the matrix C is well-
conditioned, then the sensitivity is governed by κ(AQ2), for which κ(A) is an upper
bound.

Both the direct elimination and the null space method have good numerical sta-
bility. If Gaussian elimination is used to derive the reduced unconstrained problem,
the operation count for the method of direct elimination is slightly lower.

2.7.3 Linear Inequality Constraints

Often linear least squares problems arise where the solution is subject to linear
inequality constraints. In this section we discuss a few simple special cases.

Problem LSI:

min
x
‖Ax − b‖2 subject to l ≤ Cx ≤ u, (2.7.16)
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where A ∈ Rm×n and C ∈ R p×n and the inequalities are to be interpreted compo-
nentwise. If cT

i denotes the i th row of the constraint matrix C then the constraints
can also be written

li ≤ cT
i x ≤ ui , i = 1:p.

The existence, uniqueness, and boundedness of solutions to problem LSI are
treated in Fletcher [101, 1987] and Lötstedt [198, 1983].

Theorem 2.7.1 (Lötstedt [198, Theorem 1]) Let the solution to Problem LSI be split
into mutually orthogonal components

x = xR + xN , xR ∈ R(AT ), xN ∈ N (A). (2.7.17)

If the set M = {l ≤ Cx ≤ u} is not empty, then there exists a bounded solution x∗
to (2.7.16). Further, Ax and xR = A† Ax are uniquely determined. In particular, if
rank (A) = n, then N (A) is empty and the solution x is unique

Proof The existence of a bounded solution follows from the fact that the objective
function ‖Ax − b‖2 is bounded below by 0 and the constraint set l ≤ Cx ≤ u is
convex and polyhedral. �

The case when the inequalities in problem LSI are simple bounds deserves separate
treatment:

Problem BLS:

min
x
‖Ax − b‖2 subject to l ≤ x ≤ u. (2.7.18)

Such bound-constrained least squares problems arise in many practical applica-
tions, e.g., reconstruction problems in geodesy and tomography, contact problems for
mechanical systems, and modeling of ocean circulation. Sometimes it can be argued
that the linear model is only realistic when the variables are constrained within mean-
ingful intervals. For reasons of computational efficiency such constraints should be
considered separately from general constraints.

In the special case when only one-sided bounds on x are specified in problem
BLS it is no restriction to assume that these are nonnegativity constraints.

Problem NNLS:

min
x
‖Ax − b‖2 subject to x ≥ 0. (2.7.19)

Stoer [277, 1971] gives an active set algorithm for problem LSI. At the solution of
(2.7.16) a certain subset of constraints l ≤ Cx ≤ u will be active, i.e., satisfied with
equality. If this subset is known, the LSI problem reduces to a problem with equality
constraints only and can be solved efficiently. In an active set algorithm a sequence of
equality-constrained problems are solved corresponding to a prediction of the correct
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active set, called the working set. The working set includes only constraints that are
satisfied at the current approximation, but not necessarily all such constraints.

Problem LSI is equivalent to the quadratic programming problem

min
x

(
1
2 xT Qx + cT x

)
subject to l ≤ Cx ≤ u, (2.7.20)

where Q = ATA, c = −2AT b. Since problem (2.7.20) arises as a subproblem in
general nonlinear programming algorithms, it has been studied extensively, and many
algorithms are available to solve it. For problem LSI the matrix Q in (2.7.20) is by
definition positive definite or semidefinite, and hence (2.7.20) is a convex program.
When A is ill-conditioned, the computed cross-product matrix Q may become indef-
inite due to rounding errors and cause slow and erratic convergence. Therefore, meth-
ods for quadratic programming should preferably be adapted to work directly with A.

In the case when A has full rank, problem LSI always has a unique solution.
Otherwise there may be an infinite manifold M of optimal solutions with a unique
optimal value. In this case we can seek the unique solution of minimum norm, which
satisfies minx∈M ‖x‖2. This is a least distance problem (LSD).

Problem LSD:

min
x
‖x‖2 subject to g ≤ Gx ≤ h. (2.7.21)

Several implementations of varying generality of active set methods for problem
BLS have been developed. Lötstedt [199] has developed a two-stage algorithm to
solve problem BLS. Lawson and Hanson [190] give a Fortran implementation of an
algorithm for problem NNLS. For large-scale BLS problems the classical approach
has two main disadvantages. One is that constraints are added/deleted one at a time
to the working set. The other is that the exact minimizer with the current working
set is required. To resolve these problems, methods based on gradient projection
combined with the CG method have been devised; see Friedlander et al. [106, 1995].
Similar features are implemented in the software package BCLS by M. Friedlander,
available at http://www.cs.ubc.ca/~mpf/bcls/.

Cline [55, 1975] showed how problem LSI can be transformed into a least distance
problem. Let

QT APV =
(

T 0
0 0

)

be a complete orthogonal factorization of A with T triangular and nonsingular. Then
(2.7.16) can be written

min
y
‖T y1 − c1‖2 subject to l ≤ Ey ≤ u,

where

E = (E1, E2) = C PV, y =
(

y1
y2

)
= V T Px

http://www.cs.ubc.ca/~mpf/bcls/
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are conformally partitioned, and y1 ∈ Rr . Making the further change of variables
z1 = T y1 − c1, z2 = y2, and substituting y1 = T−1(z1 + c1) in the constraints, we
arrive at an equivalent least distance problem:

min
z
‖z1‖2 subject to l̃ ≤ G1z1 + G2z2 ≤ ũ, (2.7.22)

where G1 = E1T−1, G2 = E2, l̃ = l −G1c1, and ũ = u−G1c1. Note that if A has
full column rank, then r = n and z = z1, so we get a least distance problem of the
form (2.7.21). Lawson and Hanson [190, 1974], Chap. 23, give a Fortran subroutine
for problem LSD with lower bounds only based on their active set method for NNLS.

LSSOL is a set of Fortran subroutines for convex quadratic programming and
problem LSI. A mixture of simple bounds and general linear constraints can be
handled; see Gill et al. [121, 1986]. LSSOL uses a two-phase active set method, and
a linear term can be added to the objective function.

2.7.4 Generalized Least Squares Problems

The generalized QR (GQR) factorization was introduced by Hammarling [147, 1987]
and Paige [227, 1990]. Let A ∈ R

m×n and B ∈ R
m×p be a pair of matrices with the

same number of rows. Then the GQR factorization is

A = Q R, B = QT Z , (2.7.23)

where Q ∈ R
m×m and Z ∈ R

p×p are orthogonal matrices and the factors R and T
have one of the forms

R =
(

R11
0

)
(m ≥ n), R = (R11 R12

)
(m < n), (2.7.24)

and

T = (0 T12
)

(m ≤ p), T =
(

T11
T21

)
(m > p). (2.7.25)

If B is square and nonsingular, GQR implicitly gives the QR factorization of B−1 A.
Explicitly forming B−1 A may result in a loss of precision when B is ill-conditioned.
There is also a similar generalized factorization related to the QR factorization of
AB−1. Routines for computing a GQR factorization are included in LAPACK. These
factorizations as well as the GSVD allow the solution of very general formulations
of least squares problems.

The systematic use of GQR as a basic conceptual and computational tool is
explored by Paige [227, 1990]. These generalized decompositions and their applica-
tions are discussed in Anderssen et al. [2, 1992].

Ham
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It is straightforward to generalize the Gauss–Markov model (see Definition 2.1.1)
to the case when the error vector e has a positive definite covariance matrix σ 2V .

Theorem 2.7.2 Consider a Gauss–Markov linear model with symmetric positive
definite error covariance matrix V(e) = σ 2V . If A ∈ R

m×n has full column rank,
then the best unbiased linear estimate x̂ minimizes (Ax − b)T V−1(Ax − b), and
satisfies the generalized normal equations

AT V−1 Ax = AT V−1b. (2.7.26)

The covariance matrix of the estimate x̂ is

V (̂x) = σ 2(AT V−1 A)−1 (2.7.27)

and an unbiased estimate of σ 2 is s2 = r̂ T V−1̂r/(m − n).

Proof Since V is positive definite, it has a unique Cholesky factorization V = L LT ,
with nonsingular L ∈ R

m×m . The transformed Gauss–Markov model is

(L−1 A)x = L−1b + f, f = L−1e, (2.7.28)

where f has covariance matrix σ 2L−1V L−T = σ 2 I . The proof now follows with
Ã = L−1 A and b̃ = L−1b replacing A and b in Theorem 2.1.1. �

The assumptions about the rank of A and V can be dropped. It is only necessary to
assume that A and V have the same number of rows. If V = L LT , where L ∈ R

m×k

and k ≤ m, then the Gauss–Markov model can be replaced by the equivalent model

Ax = b + Lv, V(v) = σ 2 I, (2.7.29)

which allows for rank-deficiency in both A and V . It must be required that the
consistency condition b ∈ R(A) ∪R(L) is satisfied, because otherwise b could not
have come from the linear model (2.7.29). The best unbiased linear estimate of x is
a solution to the constrained linear least squares problem

min
x,v

vT v subject to Ax = b + Lv. (2.7.30)

If the solution x̂ to (2.7.30) is not unique, then x̂ is chosen as the solution of minimum
norm. For simplicity, we consider here only the case when V is positive definite and
A ∈ R

m×n has full column rank.
A special case of the GQR factorization is used in Paige’s method for the general

linear model (2.7.29). In the first step the QR factorization

QT A =
(

R
0

) } n
} m − n

, QT b =
(

c1
c2

)
, (2.7.31)
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with R ∈ R
n×n nonsingular, is computed. The same orthogonal transformation is

applied also to L ∈ R
m×m , giving

QT L =
(

C1
C2

) } n
} m − n

.

From the nonsingularity of L it follows that rank (C2) = m − n. The constraints in
(2.7.29) can now be written in the partitioned form

(
R
0

)
x =

(
c1
c2

)
+
(

C1
C2

)
v. (2.7.32)

For any vector v, we can determine x so that Rx = c1 + C1v. Next, an orthogonal
matrix P ∈ Rm×m is determined so that C2 P = (0 S

) ∈ R
(m−n)×m , with S upper

triangular and nonsingular. With v = Pu, the second block of the constraints in
(2.7.32) becomes

c2 +
(
0 S

) (u1
u2

)
= 0.

Since P is orthogonal, ‖v‖2 = ‖u‖2 and the minimum in (2.7.30) is found from

Su2 = −c2, v = P

(
0
u2

)
. (2.7.33)

Finally, x is obtained by solving the triangular system Rx = c1 + C1v. It can be
shown that the computed solution is an unbiased estimate of x for the model (2.7.30)
with covariance matrix

σ 2 R−1 BT B R−T , BT = CT
1 P1. (2.7.34)

The algorithm can be generalized in a straightforward way to rank-deficient A and
L . The general case is analyzed by Paige [226, 1979] and Korouklis and Paige [182,
1981]. A perturbation and rounding error analysis shows that the algorithm is numer-
ically stable. If no advantage is taken of any special structure of A and L , Paige’s
method requires a total of about 4m3/3+ 2m2n flops.

A linear system of the form

Mz =
(

V A
AT 0

)(
y
x

)
= d =

(
b
c

)
, (2.7.35)

where V ∈ R
m×m is positive semidefinite and A ∈ R

m×n , is called a saddle-point
system. The augmented system for the standard least squares problem introduced in
Sect. 2.1.2 is the special case when V = I in (2.7.35).
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Lemma 2.7.1 Let V ∈ R
m×m be positive semidefinite. Then the system (2.7.35) is

nonsingular if and only if rank (A) = n and rank

(
V
AT

)
= m.

Proof The two conditions are necessary, because if they were not satisfied M would
have linearly dependent columns. We next show that if the two conditions are sat-
isfied, then the null space of M is empty and thus M is nonsingular. Suppose that
V y+ Ax = 0 and AT y = 0. Then V y ∈ R(A) and y ⊥ R(A), and thus yT V y = 0.
Since V is positive semidefinite, this implies that V y = 0 and hence Ax = 0. But
since rank (A) = n, it follows that x = 0. Finally, using the second condition shows
that V y = 0 and AT y = 0 implies that y = 0. �

When V is positive definite the system gives the conditions for the solution of the
generalized linear least squares (GLLS) problem

min
x

(Ax − b)T V−1(Ax − b)+ 2cT x . (2.7.36)

Problem GLLS is the general univariate linear model with covariance matrix V .
Eliminating y in (2.7.35) gives the generalized normal equations,

AT V−1 Ax = AT V−1b − c, y = V−1(b − Ax), (2.7.37)

also called the range space equations.
The system (2.7.35) also gives necessary conditions for y to solve the equality

constrained quadratic optimization (ECQO) problem (cf. Theorem 2.1.3)

min
y

1

2
yT V y − bT y subject to AT y = c. (2.7.38)

Any solution (x, y) is a saddle point for the Lagrangian function

L(x, y) = 1

2
yT V y − bT y + (AT y − c)T x,

i.e., miny maxx L(x, y) = maxx miny L(x, y).
Problem ECQO occurs as a subproblem in constrained optimization, where y

is a search direction and λ = −x a vector of Lagrange multipliers. The system
(2.7.38) represents the equilibrium of a physical system and occurs in numerous
applications. In the null space method for solving problem ECQO the solution y is
split as y = y1 + y2, where y1 ∈ R(A) and y2 ∈ N (AT ). Let the QR factorization
of A be

A = (Q1 Q2
) (R

0

)
.

Then Q2 is an orthogonal basis for N (AT ) and we set
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y = Qz = Q1z1 + Q2z2, z1 ∈ R
n×n, z2 ∈ R

m−n .

The solution can now be obtained as follows:

1. Compute the minimum-norm solution y1 of AT y = c from
RT z1 = c, y1 = Q1z1.

2. Find z2 by solving the projected system QT
2 V Q2z2 = QT

2 (b − V y1).

3. Compute y = Q

(
z1
z2

)
and solve Rx = QT

1 (b − V y) for x .

If the QR factorization is computed by Householder reflectors, then Q1 and Q2
can be represented by the Householder vectors and need not be explicitly formed.
If only y in problem ECQO is wanted, then x need not be formed. The null space
method is advantageous to use for solving a sequence of saddle-point systems where
A remains fixed but with varying V = Vk , k = 1, 2, . . .. In this case the null space
matrix Q2 needs only be computed once. In many applications V and A are large
and sparse and iterative methods are to be preferred.

Direct and iterative solution methods for saddle-point systems are described in
the comprehensive survey of Benzi et al. [18, 2005]. Arioli [4, 2000] gives an error
analysis of the null space method for problem ECQO.

2.7.5 Indefinite Least Squares

A matrix Q ∈ R
n×n is said to be J -orthogonal if

QT JQ = J, (2.7.39)

where the matrix J = diag(±1) is the signature matrix. This implies that Q is non-
singular. Multiplying (2.7.39) with Q J and using J 2 = I it follows that Q J QTJ = I ,
and hence QJQT = J . If Q1 and Q2 are J -orthogonal, then

QT
2 QT

1 J Q1 Q2 = QT
2 J Q2 = J,

i.e., a product of J -orthogonal matrices is J -orthogonal.
J -orthogonal matrices are useful in the treatment of problems with an underlying

indefinite inner product. To construct J -orthogonal matrices we consider the block
2× 2 system

Qx =
(

Q11 Q12
Q21 Q22

)(
x1
x2

)
=
(

y1
y2

)
. (2.7.40)

Solving the first equation for x1 and substituting in the second equation will exchange

x1 and y1. This can be written as

(
x1
y2

)
= exc (Q)

(
y1
x2

)
, where
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exc (Q) =
(

Q−1
11 −Q−1

11 Q12

Q21 Q−1
11 Q22 − Q21 Q−1

11 Q12

)
, (2.7.41)

is the exchange operator. The (2, 2) block is the Schur complement of Q11 in Q.

Theorem 2.7.3 Let Q ∈ R
n×n be partitioned as in (2.7.40). If Q is orthogonal and

Q11 nonsingular, then exc (Q) is J -orthogonal. If Q is J -orthogonal, then exc (Q)

is orthogonal.

Proof See Higham [163, 2003], Theorem 2.2. �

Consider the plane rotation

G =
(

c s
−s c

)
, c2 + s2 = 1,

where c �= 0. As a special case of Theorem 2.7.3 it follows that

H = exc (G) = 1

c

(
1 −s
−s 1

)
(2.7.42)

is J -orthogonal: H T J H = I , J = diag(1,−1). The matrix H is called a hyperbolic
plane rotation, because it can be written as

H =
(

c̆ −s̆
−s̆ c̆

)
, c̆2 − s̆2 = 1,

where s̆ = sinh θ , c̆ = cosh θ for some θ . A hyperbolic rotation H can be used to
zero a selected component in a vector. Provided that |α| > |β|, we have

H

(
α

β

)
= 1

c

(
1 −s
−s 1

)(
α

β

)
=
(

σ

0

)
,

where

s = β/α, σ = |α|
√

1− s2, c = σ/α. (2.7.43)

The elements of a hyperbolic rotation H are unbounded and such transformations
must be used with care. The direct computation of y = H x is not stable. Instead,
as first shown by Chambers [50, 1971], a mixed form should be used based on the
equivalence

H

(
x1
x2

)
=
(

y1
y2

)
⇔ G

(
y1
x2

)
=
(

x1
y2

)
,

where H = exc (G). First y1 is determined from the hyperbolic rotation and then y2
from the Givens rotation, i.e.,
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y1 = (x1 − sx2)/c, y2 = cx2 − sy1. (2.7.44)

An error analysis of Chambers’ algorithm is given by Bojanczyk et al. [34, 1987].
Given A ∈ R

m×n , m ≥ n, and b ∈ R
m , the indefinite least squares (ILS) prob-

lem is

min
x

(b − Ax)T J (b − Ax). (2.7.45)

A necessary condition for x to solve this problem is that the gradient be zero: AT J (b−
Ax) = 0. Equivalently, the residual vector r = b − Ax should be J -orthogonal to
the column space R(A). If AT J A is positive definite, then there is a unique solution.
This implies that m1 ≥ n and that A has full rank. The solution can be computed
from the normal equations AT J Ax = AT Jb. It is no restriction to assume that

A =
(

A1
A2

)
, b =

(
b1
b2

)
, J =

(
Im1 0
0 −Im2

)
, (2.7.46)

where m1 + m2 = m, m1m2 �= 0. Then the normal equations are

(AT
1 A1 − AT

2 A2)x = AT
1 b1 − AT

2 b2.

If the problem is ill-conditioned, then the explicit formation of ATA should be
avoided. Assume that the hyperbolic QR factorization

QT A =
(

R
0

)
, QT b =

(
c1
c2

)
(2.7.47)

where QT J Q = J exists. Then

(b − Ax)T J (b − Ax) = (b − Ax)T Q J QT (b − Ax)

=
(

c1 − Rx
c2

)T

J

(
c1 − Rx

c2

)
= ‖c1 − Rx‖2

2 − ‖c2‖2
2

and the ILS solution is obtained by solving Rx = c1.
We now describe a hyperbolic QR algorithm due to Bojanczyk, Higham, and

Patel [35, 2009]. The algorithm combines Householder reflectors and hyperbolic
rotations. In the first step two Householder reflectors are used. The first, P1,1, zeros
the elements 2:m1 in the first column of of A1. The second, P1,2, zeros the elements
1:m2 in A2. If the problem is positive definite, the remaining element in the first
column of A2 can be zeroed by a hyperbolic rotation in the plane (1, m1+1). The steps
in this reduction to triangular form are shown below for the case n = m1 = m2 = 3:
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P1,1

P1,2

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×

⎤
⎥⎥⎥⎥⎥⎥⎦

=⇒ H1,4

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
⊗ × ×
⊗ × ×
× × ×
⊗ × ×
⊗ × ×

⎤
⎥⎥⎥⎥⎥⎥⎦

=⇒
P2,1

P2,2

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× ×
× ×

⊗ × ×
× ×
× ×

⎤
⎥⎥⎥⎥⎥⎥⎦

H2,4

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× ×
⊗ ×
× ×
⊗ ×
⊗ ×

⎤
⎥⎥⎥⎥⎥⎥⎦

=⇒
P3,2

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× ×

×
⊗ ×

×
×

⎤
⎥⎥⎥⎥⎥⎥⎦

=⇒ H3,4

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× ×

×
×
⊗
⊗

⎤
⎥⎥⎥⎥⎥⎥⎦

The remaining steps are similar. In step k the last m1 − k elements in the kth
column of A1 are zeroed and the last m2 − 1 elements in the kth column of A2. A
hyperbolic rotation in the plane (k, m1) is then used to zero the remaining element in
the kth column of A2. If the process does not break down, an upper triangular matrix
R is obtained after n steps. In this case the problem must be positive definite. Note
that this can be combined with column interchanges so that at each step the diagonal
element in R is maximized. It suffices to consider the first step; all remaining steps are
similar. If in (2.7.46) A1 = (a1, . . . , an), A2 = (c1, . . . , cn), we use the following
modified column pivoting: Let p be the smallest index for which

sp ≥ s j , s j = ‖a j‖2
2 − ‖c j‖2

2, ∀ j = 1:n,

and interchange columns 1 and p in A and B.
The algorithm uses n hyperbolic rotations for the reduction. Since the operation

count for these is O(n2) flops, the total cost is about the same as for the usual
Householder QR factorization. The algorithm has been shown to be forward stable.

A perturbation analysis of the indefinite least squares problem can be obtained as
follows. The normal equations can be written in symmetric augmented form as

(
J A

AT 0

)(
s
x

)
=
(

b
0

)
. (2.7.48)

The inverse of the augmented matrix is

(
J A

AT 0

)−1

=
(

J − JAM−1 AT J JAM−1

M−1 AT J −M−1

)
, M = ATJA. (2.7.49)

This generalizes the corresponding result (2.2.23) for the standard least squares
problem. It can be used to show the components-wise perturbation bound

|δx | ≤ ω
(|M−1 AT |( f + E |x |)+ |M−1|ET |r |), (2.7.50)
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where |δA| ≤ ωE and |δb| ≤ ω f .
An early reference to the exchange operator is in network analysis; see the survey

by Tsatsomeros [282, 2000]. J -orthogonal matrices also play a role in the solu-
tion of certain structured eigenvalue problems; see Sect. 3.7. A systematic study of
J -orthogonal matrices and their many applications is given in Higham [163, 2003].
Linear algebra with an indefinite inner product and applications thereof are treated
by Gohberg et al. [124, 2005].

2.7.6 Total Least Squares Problems

In the standard linear model (2.1.3) it is assumed that the vector b ∈ R
m is related

to the unknown parameter vector x ∈ R
n by a linear relation Ax = b + e, where

A ∈ R
m×n is an exactly known matrix and e a vector of random errors. If the

components of e are uncorrelated and have zero means and the same variance, then
by the Gauss–Markov theorem (Theorem 2.1.1) the best linear unbiased estimate of
x is given by the solution of the least squares problem

min
x
‖r‖2 subject to Ax = b + r. (2.7.51)

The assumption that all errors are confined to b is frequently unrealistic and
sampling or modeling errors will often affect A as well. In the errors-in-variables
model it is assumed that a linear relation of the form

(A + E)x = b + r (2.7.52)

holds, where the rows of the error matrix
(
E r

)
are independently and identically

distributed with zero mean and the same variance. If this assumption is not satis-
fied, it might be possible to find diagonal scaling matrices D1 and D2 such that
D1
(

A b
)

D2 satisfies the assumption.
Optimal estimates of the unknown parameters x in this model can satisfy a total

least squares14 (TLS) problem

min
E, r

‖ (r E
) ‖F subject to (A + E)x = b + r, (2.7.53)

where ‖ · ‖F denotes the Frobenius matrix norm. The constraint in (2.7.53) implies
that b + r ∈ R(A + E). Thus, total least squares is equivalent to the problem of
finding the “nearest” compatible linear system, where the distance is measured by
the Frobenius norm. If a minimizing perturbation

(
E r

)
has been found for the

problem (2.7.53), then any x satisfying (2.7.52) is said to solve the TLS problem.

14 The term “total least squares problem” was coined by Golub and Van Loan [132, 1980]. The
model has independently been developed in statistics, where it is known as “latent root regression”.

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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The TLS solution will depend on the scaling of the data A and b. In the following
we assume that this scaling has been carried out in advance, so that any statistical
knowledge of the errors has been taken into account. In particular, the TLS solution
depends on the relative scaling of A and b. If we scale x and b by a factor γ we
obtain the scaled TLS problem

min
E, r

‖ (γ r E
) ‖F subject to (A + E)x = b + r.

Clearly, when γ is small perturbations in b will be favored. In the limit when
γ → 0, we get the ordinary least squares problem. Similarly, when γ is large
perturbations in A will be favored. In the limit when 1/γ → 0, this leads to the data
least squares (DLS) problem

min
E
‖E‖F subject to (A + E)x = b, (2.7.54)

where it is assumed that the errors in the data are confined to the matrix A.
The constraint in (2.7.53) can be written as

(
b + r A + E

) (−1
x

)
= 0. (2.7.55)

This is satisfied if the matrix
(
b + r A + E

)
is rank-deficient and

(−1 x
)T lies

in its null space. Hence, the TLS problem involves finding a perturbation of minimal
Frobenius norm that lowers the rank of the matrix

(
b A

)
.

The TLS problem can be analyzed in terms of the SVD

(
b A

) = UV T =
n+1∑
i=1

σi uiv
T
i , (2.7.56)

where σ1 ≥ · · · ≥ σn ≥ σn+1 ≥ 0 are the singular values of
(
b A

)
. If σn+1 = 0,

then the linear system Ax = b is consistent. Otherwise, by Theorem 2.2.11, the
unique perturbation of minimum Frobenius norm ‖ (r E

) ‖F = σn+1 that makes
(A + E)x = b + r consistent is the rank-one perturbation

(
r E

) = −σn+1un+1v
T
n+1, (2.7.57)

Multiplying this from the right with vn+1 and using (2.7.56) gives

(
r E

)
vn+1 = −σn+1un+1 = − (b A

)
vn+1. (2.7.58)

It follows that
(
b + r A + E

)
vn+1 = 0 and hence the TLS solution can be

expressed in terms of the right singular vector vn+1 as
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vn+1 =
(

ω

y

)
, x = −ω−1 y. (2.7.59)

If ω = 0, there is no solution. From (2.7.56) it follows that
(
b A

)T
U = V T ,

and equating the (n + 1)st columns in the two sides gives

(
bT

AT

)
un+1 = σn+1vn+1. (2.7.60)

Hence, if σn+1 > 0, then ω = 0 if and only if b ⊥ un+1. In this case the TLS problem
is called nongeneric.

By the minimax characterization of singular values (Theorem 2.2.9), the singular
values of σ̂i of A interlace those of

(
b A

)
, i.e.,

σ1 ≥ σ̂1 ≥ σ2 > · · · ≥ σn ≥ σ̂n ≥ σn+1. (2.7.61)

If σ̂n > σn+1, then rank (A) = n and by (2.7.61) σn > σn+1. The nongeneric case
can only occur when σ̂n = σn+1, since otherwise the TLS problem has a unique
solution. The nongeneric case can be treated by adding constraints on the solution;
see the discussion in Van Huffel and Vandewalle [286, 1991].

Example 2.7.3 For

A =
⎛
⎝

1 0
0 0
0 0

⎞
⎠ , b =

⎛
⎝

1
1
0

⎞
⎠ , E =

⎛
⎝

0 0
0 ε

0 0

⎞
⎠ , (2.7.62)

the system (A + E)x = b is consistent for any ε > 0. There is no smallest value of
ε and ‖x‖2 →∞ when ε → 0 and the TLS problem fails to have a finite solution.
Here A is singular, σ̂2 = σ3 = 0, and b ⊥ u3 = e3. �

Let σn+1 be a multiple singular value,

σp > σp+1 = · · · = σn+1, p < n,

and let V2z, z ∈ R
n−p+1, be any unit vector in the column subspace of V2 =

(vp+1, . . . , vn+1). Then any vector

x = −ω−1 y, V2z =
(

ω

y

)
,

is a TLS solution. A unique TLS solution of minimum-norm can be obtained as
follows. Since V2z has unit length, minimizing ‖x‖2 is equivalent to choosing the
unit vector z to maximize ω = eT

1 V2z. Set z = Qe1, where Q is a Householder
reflector such that



384 2 Linear Least Squares Problems

V2 Q =
(

ω 0
y V̂2

)
.

Then a TLS solution of minimum norm is given by (2.7.59). If ω �= 0, then there is
no solution and the problem is nongeneric. By an argument similar to the case when
p = n, this can only happen if b ⊥ u j , j = p : n.

We now consider the conditioning of the TLS problem and its relation to the
least squares problem. We denote those solutions by xTLS and xLS, respectively.
In Sect. 7.1.6 we showed that the SVD of a matrix A is related to the eigenvalue
problem for the symmetric matrix ATA. In the generic case the TLS solution can
also be characterized by

(
bT

AT

) (
b A

) (−1
x

)
= σ 2

n+1

(−1
x

)
, (2.7.63)

i.e.,

(−1
x

)
is an eigenvector corresponding to the smallest eigenvalue λn+1 = σ 2

n+1

of the matrix obtained by “squaring”
(
b A

)
. From the properties of the Rayleigh

quotient of symmetric matrices (see Theorem 3.2.12, p. 465) it follows that xTLS
minimizes

ρ(x) = (b − Ax)T (b − Ax)

xT x + 1
= ‖b − Ax‖2

2

‖x‖2
2 + 1

, (2.7.64)

Thus, whereas the LS solution minimizes ‖b − Ax‖2
2, the TLS solution minimizes

the “orthogonal distance” function ρ(x) in (2.7.64).
From the last block row of (2.7.63) it follows that

(ATA − σ 2
n+1 I )xTLS = AT b. (2.7.65)

The matrix ATA − σ 2
n+1 I is symmetric positive definite if σ̂n > σn+1, so this con-

dition ensures that the TLS problem has a unique solution. The system (2.7.65) can
be compared to the normal equations

ATAxLS = AT b (2.7.66)

for the corresponding least squares problem. In (2.7.65) a positive multiple of the
unit matrix is subtracted from ATA. Thus, TLS can be considered as a deregularizing
procedure for the least squares problem. (Compare with Tikhonov regularization (see
Sect. 2.2.3), where a multiple of the unit matrix is added to improve the conditioning
of the normal equations.) We conclude that the TLS problem is worse conditioned
than the corresponding LS problem. From a statistical point of view, this can be
interpreted as removing the bias by subtracting the error covariance matrix estimated
by σ 2

n+1 I from the data covariance matrix ATA.
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Example 2.7.4 Consider the overdetermined system

⎛
⎝

σ̂1 0
0 σ̂2
0 0

⎞
⎠
(

x1
x2

)
=
⎛
⎝

c1
c2
β

⎞
⎠ . (2.7.67)

Trivially, the LS solution is xLS = (c1/σ̂1, c2/σ̂2)
T , ‖rLS‖2 = |β|. If we take σ̂1 =

c1 = 1, σ̂2 = c2 = 10−6, then xLS = (1, 1)T is independent of β, and hence does
not reflect the ill-conditioning of A. But the condition number

κLS(A, b) = κ(A)

(
1+ ‖rLS‖2

‖σ̂1xLS‖2

)

will increase proportionally to β. The TLS solution is similar in size to the LS
solution as long as |β| ≤ σ̂2. For β > σ̂2 the condition number κTLS and ‖xTLS‖2
grow proportionally to β2. Setting c1 = c2 = 0 gives xLS = 0. If |β| ≥ σ2(A), then
σ2(A) = σ3(A, b) and the TLS problem is nongeneric. �

The TLS problem can also be posed as an indefinite least squares problem and
minimizes the function

‖b − Ax‖2
2 − σ 2

n+1‖x‖2
2 = s(x)T

(
Im 0
0 −In

)
s(x), (2.7.68)

where

s(x) =
(

b
0

)
−
(

A
σn+1 In

)
x . (2.7.69)

The first step toward the solution of the TLS problem is to use the Golub–Kahan
algorithm to reduce the matrix

(
b A

)
to bidiagonal form. This determines orthog-

onal matrices U and V such that

U T (b AV
) =

(
β1e1 Bn

0 0

)
, (2.7.70)

where Bn ∈ R
(n+1)×n is lower bidiagonal. For simplicity, we assume that a solution

exists and is unique. The solution is then obtained from the right singular vector cor-
responding to the smallest singular value σn+1 of the bidiagonal matrix

(
β1e1 Bn

)
.

There are several ways to compute this singular vector. The high cost of comput-
ing the full SVD should be avoided. Van Huffel [285, 1990] gives an algorithm for
computing a partial SVD for solving TLS problems. Another possibility is to apply
inverse iteration to the bidiagonal matrix. The cost of one inverse iteration is only
6n flops; see Sect. 2.3.3.

Example 2.7.5 If σn+1 has been determined, it remains to solve the indefinite least
squares problem (2.7.68)–(2.7.69). Setting x = V y and using the invariance of the
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Euclidean norm, we see that this is equivalent to minimizing

‖β1e1 − By‖2
2 − σ 2

n+1‖y‖2
2.

Because of the special structure of this problem, the method using hyperbolic rotation
simplifies. The first step in the transformation to upper bidiagonal form is pictured
here:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
× ×

× ×
×

×
×

×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

× +
⊗ ×

× ×
×

⊗ +
×

×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

× +
×
× ×

×
⊗ ⊕

×
×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the first step a Givens rotation of rows 1 and 2 is used to zero element (2, 1), and
then a hyperbolic rotation of rows 1 and 5 to zero element (5, 1). Next, a Givens
rotation in rows 5 and 6 is used to zero the fill-in element (5, 2). The reduction can
then continue on a reduced problem of the same structure.

The transformations of the upper part are also applied to the right-hand side. The
solution is finally obtained by solving an upper bidiagonal linear system. The cost
of the reduction and solution is about 21n flops, which is the same as for a simi-
lar regularization algorithm given by Eldén [85, 1977]. The total cost for obtaining
the TLS solution is dominated by the cost of the initial bidiagonalization, which is
4(mn2 − n3/3) flops. Note that the bidiagonalization (2.7.70) can terminate prema-
turely. In particular, this step will reveal if the system Ax = b is consistent; cf. the
PLS algorithm in Sect. 2.6.3. �

We now consider the more general TLS problem with d > 1 right-hand sides:

min
E, F

‖(E, F)‖F , (A + E)X = B + F, (2.7.71)

where B ∈ R
m×d . The consistency relations can be written

(B + F, A + E)

(−Id

X

)
= 0.

We now seek perturbations (F, E) that reduce the rank of the matrix (B, A) by d.
We call this a multidimensional TLS problem. As remarked before, for this problem
to be meaningful the rows of the matrix (B + F, A + E) should be independently
and identically distributed with zero mean and the same variance.

In contrast to the usual least squares problem, the multidimensional TLS problem
is different from separately solving d one-dimensional TLS problems with right-
hand sides b1, . . . , bd . This is because in the multidimensional problem we require
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that the matrix A be similarly perturbed for all right-hand sides. This should give
improved predictive power of the TLS solution.

The solution to the TLS problem with multiple right-hand sides can be expressed
in terms of the SVD

(
B A

) = UV T = U11V T
1 +U22V T

2 , (2.7.72)

where 1 = diag(σ1, . . . , σn), 2 = diag(σn+1, . . . , σn+d), and U and V parti-
tioned conformally with

(
B A

)
. If σn > σn+1, the minimizing perturbation is

unique and given by the rank-d matrix

(
F E

) = −U22V T
2 = −(B A

)
V2V T

2 ,

for which ‖ (F E
) ‖F =∑d

j=1 σ 2
n+ j and

(
B + F A + E

)
V2 = 0. Assume that

V2 =
(

V12
V22

)

with V12 ∈ R
d×d nonsingular. Then the solution to the TLS problem is unique:

X = −V22V−1
12 ∈ R

n×d .

We show that if σn(A) > σn+1
(
B A

)
, then V12 is nonsingular. From (2.7.72)

it follows that BV12 + AV22 = U22. Now, suppose that V12 is singular. Then
V12x = 0 for some unit vector x and hence U22x = AV12x . From V T

2 V2 =
V T

12V12 + V T
22V22 = I it follows that V T

22V22x = x and ‖V22x‖2 = 1. But then

σn+1
(
B A

) ≥ ‖U22x‖2 = ‖AV12x‖2 ≥ σn(A),

a contradiction. Hence, V12 is nonsingular.
In many parameter estimation problems, some of the columns are known exactly.

It is no loss of generality to assume that the error-free columns are in leading posi-
tions in A. In the multivariate version of this mixed LS–TLS problem one has a
linear relation

(
A1 A2 + E2

) (X1
X2

)
= B + F, A1 ∈ R

m×n1 ,

where A = (A1 A2
) ∈ R

m×n , n = n1 + n2. It is assumed that the rows of the
errors

(
E2 F

)
are independently and identically distributed with zero mean and

the same variance. The mixed LS–TLS problem can then be expressed as

min
E2,F

‖ (E2 F
) ‖F ,

(
A1 A2 + E2

) (X1
X2

)
= B + F. (2.7.73)
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When A2 is empty, this reduces to solving an ordinary least squares problem with
multiple right-hand sides. When A1 is empty, this is the standard TLS problem.
Hence, this mixed problem includes both extreme cases.

Let A = (A1 A2
) ∈ R

m×n , n = n1 + n2, m ≥ n, and B ∈ R
m×d . Assume that

the columns of A1 are linearly independent. Then the mixed LS–TLS problem can
be solved as follows. First compute the QR factorization

(
A1 A2

) = Q

(
R11 R12
0 R22

)
, B = Q

(
C1
C2

)
,

where Q ∈ R
m×m is orthogonal, R11 ∈ R

n1×n1 is upper triangular, and R22 ∈
R

(m−n1)×n2 . If n2 = 0, then the solution is obtained from R11 X = C1. Otherwise,
compute X2 as the solution to the TLS problem.

min
E,G

‖ (E G
) ‖F , (R22 + E)X = C2 + G. (2.7.74)

Finally, X1 is obtained by solving the triangular system

R11 X1 = C1 − R12 X2. (2.7.75)

For a full discussion of the details in the algorithm, see Van Huffel and Vandewalle
[286, 1991], Sect. 3.6.3.

The term “total least squares problem” coined by Golub and Van Loan [132, 1980]
renewed the interest in the “errors in variable model”. A rigorous treatment of the TLS
problem is given by Van Huffel and Vandewalle [286, 1991]. They outline the partial
SVD (PSVD) algorithm for computing the left/right singular subspaces associated
with smallest singular values. A Fortran 77 implementation of this algorithm is
available from Netlib. The important role of the core problem for weighted TLS
problems was discovered by Paige and Strakoš [228, 2006].

2.7.7 Linear Orthogonal Regression

Let Pi , i = 1:m, be a set of given points in R
n . In the linear orthogonal regression

problem we want to fit a hyperplane M to the points in such a way that the sum of
squares of the orthogonal distances from the given points to M is minimized.

We first consider the special case of fitting a straight line to points in the plane.
Let the coordinates of the points be (xi , yi ) and let the line have the equation

c1x + c2 y + d = 0, (2.7.76)

where c2
1 + c2

2 = 1. Then the orthogonal distance from the point Pi = (xi , yi ) to the
line is ri = c1xi + c2 yi + d. Thus, we want to minimize
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m∑
i=1

(c1xi + c2 yi + d)2, (2.7.77)

subject to the constraint c2
1 + c2

2 = 1. This problem can be written in matrix form:

min
c,d

∥∥∥∥
(
e Y

) (d
c

)∥∥∥∥
2

subject to c1 + c2 = 1,

where

(
e Y

) =

⎛
⎜⎜⎜⎝

1 x1 y1
1 x2 y2
...

...

1 xm ym

⎞
⎟⎟⎟⎠ , c =

(
c1
c2

)
.

By computing the QR factorization of
(
e Y

)
and using the invariance of the Euclid-

ean norm, we can reduce the problem to

min
d,c

∥∥∥∥R

(
d
c

)∥∥∥∥
2
, R =

⎛
⎝

r11 r12 r13
0 r22 r23
0 0 r33

⎞
⎠ .

For any values of c1 and c2, d can always be chosen so that r11d+r12c1+r13c2 = 0.
It remains to determine c so that ‖Bc‖2 is minimized, subject to ‖c‖2 = 1, where

Bc =
(

r22 r23
0 r33

)(
c1
c2

)
.

By the min-max characterization of the singular values (Theorem 2.2.7), the solution
is the right singular vector corresponding to the smallest singular value of B. Let the
SVD be

B =
(

r21 r22
0 r33

)
= (u1 u2)

(
σ1 0
0 σ2

)(
vT

1

vT
2

)
,

where σ1 ≥ σ2 ≥ 0. (A stable algorithm for computing the SVD of a two by two
upper triangular matrix is given in Sect. 3.6.3.) Then the coefficients in the equation
of the straight line are given by

(
c1 c2

) = vT
2 . If σ2 = 0, but σ1 > 0, the matrix B

has rank one. In this case the given points lie on a straight line. If σ1 = σ2 = 0, then
B = 0 and all points coincide, i.e., xi = x̄ , yi = ȳ for all i = 1:m. Note that v2 is
uniquely determined if and only if σ1 �= σ2. (It is left to the reader to discuss the case
σ1 = σ2 �= 0.) In Gander and Hřebiček [109, 2004], Chap. 6, a similar approach is
used to solve various other problems, such as fitting two parallel or orthogonal lines,
or fitting a rectangle or square.

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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We now consider the general problem of fitting m > n points Pi ∈ R
n to a

hyperplane M so that the sum of squares of the orthogonal distances is minimized.
The equation for the hyperplane can be written

cT z = d, z, c ∈ R
n, ‖c‖2 = 1,

where c ∈ R
n is the unit normal vector of M , and |d| is the orthogonal distance from

the origin to the plane. Then the orthogonal projection zi of the point yi onto M is
given by

zi = yi − (cT yi − d)c. (2.7.78)

It is readily verified that zi lies on M and that the residual zi − yi is parallel to c and
hence orthogonal to M . It follows that the problem is equivalent to minimizing

m∑
i=1

(cT yi − d)2 subject to ‖c‖2 = 1.

If we put Y T = (y1, . . . , ym) ∈ R
n×m and e = (1, . . . , 1)T ∈ R

m , this problem can
be written in matrix form as

min
c,d

∥∥∥∥
(−e Y

) (d
c

)∥∥∥∥
2

subject to ‖c‖2 = 1. (2.7.79)

For a fixed c, this expression is minimized when the residual vector Y c − de is
orthogonal to e, i.e., when eT (Y c − de) = eT Y c − deT e = 0. Since eT e = m, it
follows that

d = 1

m
cT Y T e = cT ȳ, ȳ = 1

m
Y T e, (2.7.80)

where ȳ is the mean of the given points yi . Hence, d is determined by the condition
that the mean ȳ lies on the optimal plane M . Note that this property is shared by the
solution to the usual linear regression problem.

We now subtract ȳ from each given point, and form the matrix

Y
T = (ȳ1, . . . , ȳm), ȳi = yi − ȳ, i = 1:m.

Since by (2.7.80)

(−e Y
) (d

c

)
= Y c − eȳT c = (Y − eȳT )c = Ȳ c,

problem (2.7.79) is equivalent to minc ‖Y c‖2 subject to ‖c‖2 = 1. By the min-max
characterization of the singular values (Theorem 2.2.7), a solution is c = vn , where
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vn is a right singular vector of Y corresponding to the smallest singular value σn . We
further have

c = vn, d = vT
n ȳ,

m∑
i=1

(vT
n yi − d)2 = σ 2

n .

The fitted points zi ∈ M are obtained from

zi = ȳi − (vT
n ȳi )vn + ȳ,

i.e., by first orthogonalizing the shifted points ȳi against vn , and then adding the
mean value back.

Note that the orthogonal regression problem always has a solution. The solution
is unique when σn−1 > σn , and the minimum sum of squares is σ 2

n . Further, σn = 0
if and only if the given points yi , i = 1:m, all lie on the hyperplane M . In the extreme
case, all points coincide. Then Ȳ = 0, and any plane going through ȳ is a solution.

The above method solves the problem of fitting an (n − 1)-dimensional linear
manifold to a given set of points in R

n . It is readily generalized to the fitting of an
(n− p)-dimensional linear manifold by orthogonalizing the shifted points y against
the p right singular vectors of Y corresponding to p smallest singular values.

2.7.8 The Orthogonal Procrustes Problem

Let A and B be given matrices in R
m×n . The orthogonal Procrustes problem15 is

min
Q
‖A − B Q‖F subject to QT Q = I. (2.7.81)

The solution to this problem can be computed from the polar decomposition of
BT A (see Theorem 2.2.12, p. 239) as shown by the following generalization of
Theorem 2.2.13.

Theorem 2.7.4 (Schönemann [252, 1966]) Let Mm×n denote the set of all matrices
in R

m×n with orthogonal columns. Let A and B be given matrices in R
m×n such that

rank (BT A) = n. Then
‖A − B Q‖F ≥ ‖A − B P‖F

for any matrix Q ∈ Mm×n, where BT A = P H is the polar decomposition.

Proof Recall from (1.1.67) that ‖A‖2
F = trace(ATA) and that trace(X T Y ) =

trace(Y X T ). Using this and the orthogonality of Q, we find that

15 Procrustes was a giant of Attica in Greece, who seized travelers, tied them to an iron bedstead,
and either stretched them or chopped off their legs to make them fit it.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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‖A − B Q‖2
F = trace(ATA)+ trace(BT B)− 2 trace(QT BT A).

It follows that the problem (2.7.81) is equivalent to maximizing trace(QT BT A). Let
the SVD of BT A be BT A = UV T and set Q = U Z V T , where Z is orthogonal.
Then ‖Z‖2 = 1 and hence the diagonal elements of Z must satisfy |zii | ≤ 1, i = 1:n.
Hence,

trace(QT BT A) = trace(V Z T U T BT A) = trace(Z T U T BT AV )

= trace(Z T ) =
n∑

i=1

ziiσi ≤
n∑

i=1

σi ,

where  = diag(σ1, . . . , σn). The upper bound is obtained for Q = U V T . If
rank (A) = n, this solution is unique. �

In many applications it is important that Q corresponds to a pure rotation, i.e.,
det(Q) = 1. If det(U V T ) = 1, the optimal is Q = U V T as before. Otherwise, if
det(U V T ) = −1, the optimal solution can be shown to be (see [156, 1981])

Q = U Z V T , Z = diag(1, . . . , 1,−1),

with det(Q) = +1. For this choice,

n∑
i=1

ziiσi = trace()− 2σn .

In both cases the optimal solution can be written as

Q = U Z V T , Z = diag(1, . . . , 1, det(U V T )).

The analysis of rigid body motions involves also a translation vector c ∈ R
n .

Then, we have the model A = B Q + ecT , e = (1, 1, . . . , 1)T ∈ R
m . To estimate

also c ∈ R
n we solve the problem

min
Q,c

‖A − B Q − ecT ‖F subject to QT Q = I, det(Q) = 1. (2.7.82)

For any Q, including the optimal Q not yet known, the best least squares estimate of
c is characterized by the condition that the residual be orthogonal to e. Multiplying
by eT we obtain

0 = eT (A − B Q − ecT ) = eT A − (eT B)Q − mcT = 0,

where eT A/m and eT B/m are the mean values of the rows in A and B, respectively.
Hence, the optimal translation is
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c = 1

m
((BT e)Q − AT e). (2.7.83)

Substituting this expression into (2.7.82), we can eliminate c and the problem
becomes minQ ‖ Ã − B̃ Q‖F , where

Ã = A − 1

m
eeT A, B̃ = B − 1

m
eeT B.

This is now a standard orthogonal Procrustes problem and the solution is obtained
from the SVD of ÃT B̃.

If A is close to an orthogonal matrix, an iterative method for computing the polar
decomposition can be used. Such methods are developed in Sect. 3.8.1. A perturbation
analysis of the orthogonal Procrustes problem is given by Söderkvist [260, 1993].

The orthogonal Procrustes problem arises, e.g., in factor analysis in statistics.
A large-scale application occurs in calculations of subspace alignment in molecular
dynamics simulation of electronic structure. Another application is in determin-
ing rigid body movements, which has important applications in radio-stereometric
analysis; see Söderkvist and Wedin [261, 1993]. Let A = (a1, . . . , am) be measured
positions of m ≥ n landmarks of a rigid body in R

n and B = (b1, . . . , bm) be the
measured positions after the body has been rotated. An orthogonal matrix Q ∈ R

n×n

is desired, which represents the rotation of the body; see Söderkvist and Wedin
[262, 1994]. Eldén and Park [91, 1999] study a more general unbalanced Procrustes
problem, where the number of columns in A and B differs and Q is rectangular.

Exercises

2.7.1 Work out the details of Cline’s variant of the Peters-Wilkinson method. Use Householder
transformations for the orthogonal factorization in (2.7.6). Compare the operation count and
storage requirement with the original method.

2.7.2 Prove that the exchange operator satisfies exc (exc (Q)) = Q.
2.7.3 (Stewart and Stewart [274, 1998]) If properly implemented, hyperbolic Householder reflec-

tors have the same good stability as the mixed scheme of hyperbolic rotations.

(a) Show that the hyperbolic rotations H can be rewritten as

H = 1

c

(
1 −s
−s 1

)
=
(

1 0
0 −1

)
+ 1

c

(
t

−s/t

) (
t −s/t

)
, t = √

1− c,

which now has the form of a hyperbolic Householder reflector. If H is
J -orthogonal, so is

J H =
(

1 0
0 1

)
+ 1

c

(
t

s/t

) (
t −s/t

)
, t = √

1− c.

(b) Show that the transformation can be computed from

SH

(
x
y

)
=
(

x
y

)
+ γ

(
1

s/(1− c)

)
, γ = 1

c
((1− c)x − sy).

2.7.4 Consider a TLS problem where n = 1 and

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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C = (A, b) =
(

1 0
0 2

)
.

The unique �C lowering the rank satisfies

C +�C = (A + E, b + r) =
(

0 0
0 2

)
,

so the perturbed system is not compatible. Show that an arbitrary small perturbation ε in the
(2,1) element will give a compatible system with solution x = 2/ε.

2.7.5 (Gander and Hřebiček [109, 2004])

(a) Write a Matlab program for fitting a straight line c1x + c2 y = d to given points
(xi , yi ) ∈ R

2, i = 1:m, so that the sum of orthogonal distances is minimized. The
program should handle all exceptional cases, such as c1 = 0 and/or c2 = 0.

(b) Suppose we want to fit two set of points (xi , yi ) ∈ R
2, i = 1:p and i = p + 1:m, to

two parallel lines

cx + sy = h1, cx + sy = h2, c2 + s2 = 1,

so that the sum of orthogonal distances is minimized. Generalize the approach in (a)
to write an algorithm for solving this problem.

(c) Modify the algorithm in (a) to fit two orthogonal lines.

2.8 Nonlinear Least Squares Problems

Nonlinear least squares problems are common in science and engineering. A classical
problem is fitting a sum of real exponential functions c j eλ j t with c j and λ j unknown.
This arises, e.g., in radioactive decay, compartment models, and atmospheric transfer
functions. A recent large-scale application is the construction of three-dimensional
models from photographs as in Google’s street view sensor fusion. For this Google
developed their own nonlinear least squares Ceres solver.

The nonlinear least squares problem is a simple special case of the optimization
problem to minimize a convex16 objective function φ, Rn → R. In practice the
parameters may be restricted to lie in some convex subset of Rn , but only methods
for unconstrained problems will be considered here. In the nonlinear least squares
problem the objective function has the special form

min
x∈Rn

φ(x), φ(x) = 1
2‖r(x)‖2

2 = 1
2r(x)T r(x), (2.8.1)

and φ : Rn → R
m , m ≥ n. When fitting observations (yi , ti ), i = 1:m, to a model

function y = h(x, t), the error in the model prediction for the i th observation is

ri (x) = yi − h(x, ti ), i = 1:m.

The choice of the least squares measure is justified, as in the linear case, by statistical
considerations. If the observations have equal weight, this leads to the minimization
problem (2.8.1).

16 A function φ(x), x ∈ R
n , is convex if φ(θx + (1− θ)y) ≤ θφ(x)+ (1− θ)φ(y), 0 ≤ θ ≤ 1.
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2.8.1 Conditions for a Local Minimum

A point x∗ is said to be a local minimizer of φ if φ(x∗) ≤ φ(y) for all y in a
sufficiently small neighborhood of x∗. If φ(x∗) < φ(y) for y �= x∗, then x∗ is a
strong local minimizer. In the following we assume that the φ is twice continuously
differentiable. The gradient of φ at x is the row vector

g(x) = (g1(x), . . . , gn(x)), gi (x) = ∂φ

∂xi
, (2.8.2)

and is normal to the tangent hyperplane of φ(x). A necessary condition for x∗ to be
a local minimizer is g(x∗) = 0. Then x∗ is called a stationary point of φ.

It is possible for a stationary point to be neither a maximizer nor a minimizer.
Such a point is called a saddle point. To determine if a stationary point is a local
minimizer, information about the second-order partial derivatives of φ(x) is needed.
These form an n × n matrix called the Hessian:

H(x) =
⎛
⎜⎝

h11 . . . h1n
...

...

hn1 . . . hnn

⎞
⎟⎠ ∈ R

n×n, hi j = ∂2φ

∂xi∂x j
. (2.8.3)

If the Hessian exists and is continuous, then it is symmetric. The Hessian can be
looked upon as the derivative of the gradient.

Theorem 2.8.1 Necessary conditions for x∗ to be a local minimizer of φ is that
x∗ is a stationary point, i.e., g(x∗) = 0, and that H(x∗) is positive semidefinite. If
g(x∗) = 0 and H(x∗) is positive definite, then x∗ is a strong local minimizer.

Proof The Taylor-series expansion of φ about x∗ is

φ(x∗ + εd) = φ(x∗)+ εdT g(x∗)+ 1

2
ε2dT H(x∗ + εθd)d,

where 0 ≤ θ ≤ 1, ε is a scalar, and d a vector. Assume that g(x∗) �= 0 and choose
d so that dT g(x∗) < 0. Then for sufficiently small ε > 0 the last term is negligible
and φ(x∗ + εd) < φ(x∗). �

For the nonlinear least squares problems, assume that r(x) is twice continuously
differentiable. Then it is easily shown that the gradient of φ(x) = 1

2r T (x)r(x) is
given by

g(x)T = ∇φ(x) = J (x)T r(x), (2.8.4)

where J (x) ∈ R
m×n is the Jacobian, with elements

J (x)i j = ∂ri (x)

∂x j
i = 1:m, j = 1:n. (2.8.5)
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A necessary condition for x∗ to be a local minimizer of φ(x) is that g(x∗)T =
J (x∗)T r(x∗) = 0 (cf. the normal equations). The Hessian matrix is

H(x) = ∇2φ(x) = J (x)T J (x)+ Q(x), Q(x) =
m∑

i=1

ri (x)Gi (x), (2.8.6)

where Gi (x) ∈ R
n×n is the Hessian of ri (x), with elements

Gi (x) jk = ∂2ri (x)

∂x j∂xk
, i = 1:m, j, k = 1:n. (2.8.7)

The special forms of the gradient g(x) and Hessian H(x) can be exploited by methods
for the nonlinear least squares problem. This is the main reason for studying such
problems separately from more general minimization problems.

2.8.2 Newton and Gauss–Newton Methods

There are two main ways to view problem (2.8.1). In Gauss–Newton methods one
thinks of the problem as arising from an overdetermined system of nonlinear equa-
tions r(x) = 0. It is then natural to use a linear model

r̃(x) = r(xk)+ J (xk)(x − xk) (2.8.8)

around a given approximate solution xk ∈ R
n . The solution pk to the linear least

squares problem
min

p
‖r(xk)+ J (xk)pk‖2 (2.8.9)

is used to derive a new (ideally improved) solution xk+1 = xk + pk . As the name
implies, the Gauss–Newton method was used by Gauss. This method has in general
only linear rate of convergence.

In the second approach, (2.8.1) is viewed as a special case of unconstrained opti-
mization in R

n . At a point xk , a quadratic model of φ is used:

φ̃q(x) = φ(xk)+ g(xk)
T (x − xk)+ 1

2
(x − xk)

T H(xk)(x − xk). (2.8.10)

The gradient and Hessian of φ(x) = 1
2r T (x)r(x) are given by (2.8.4) and (2.8.6).

The minimizer of φ̃q(x) is given by xk+1 = xk + pk , where

H(xk)pk = −J (xk)
T r(xk). (2.8.11)
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This method is equivalent to Newton’s method applied to (2.8.1). It is quadratically
convergent to a local minimizer x∗ as long as H(x) is Lipschitz continuous around
xk and H(x∗) is positive definite (see Dennis and Schnabel [72, 1983], p. 229).

The Gauss–Newton method can be thought of as arising from neglecting the
second-derivative term Q(x) in the Hessian (2.8.6). Note that Q(xk) will be small
close to the solution x∗ if either the residual norm ‖r(x∗)‖ is small, or r(x) is only
mildly nonlinear. The behavior of the Gauss–Newton method can then be expected to
be similar to that of Newton’s method. In particular, for a consistent problem where
r(x∗) = 0, the local convergence will be the same for both methods. But for moderate
to large residual problems, the local convergence rate for the Gauss–Newton method
can be much inferior to that of Newton’s method.

Let xk denote the current approximation in Gauss–Newton’s method. (Note that
here and in the following, k denotes the iteration index and not a component of a
vector.) Then dk is a solution to the linear least squares problem

min
dk
‖r(xk)+ J (xk)dk‖2, dk ∈ R

n, (2.8.12)

and the new approximation is xk+1 = xk + dk . The solution dk is unique if
rank(J (xk)) = n. Since J (xk) may be ill-conditioned or singular, dk should be
computed by a stable method using, e.g., the QR factorization or SVD of J (xk). The
Gauss–Newton step dk = −J (xk)

†r(xk) has the following important properties:

(i) dk is invariant under linear transformations of the independent variable x , i.e., if
x̃ = Sx , S nonsingular, then d̃k = Sdk .

(ii) if J (xk)
T r(xk) �= 0, then dk is a descent direction for φ(x) = 1

2r(x)T r(x).

The first property is easily verified. To prove the second property, we note that

dT
k g(xk) = −r(xk)

T J †(xk)
T J (xk)

T r(xk) = −‖PJk r(xk)‖2
2, (2.8.13)

where PJk = J (xk)J †(xk) = P2
Jk

is the orthogonal projection onto the range space

of J (xk). Further, if J (xk)
T r(xk) �= 0, then r(xk) is not in the null space of J (xk)

T

and it follows that PJk r(xk) �= 0. This proves (ii).
The Gauss–Newton method can fail at an intermediate point where the Jacobian is

rank-deficient or ill-conditioned. Formally, we can take dk to be the minimum-norm
solution

dk = −J (xk)
†r(xk).

In practice it is necessary to include some strategy to estimate the numerical rank
of J (xk), cf. Sects. 2.4.1 and 2.2.3. The assigned rank can have a decisive influence.
Usually it is preferable to underestimate the rank, except when φ(x) is close to an
ill-conditioned quadratic function. One could also switch to a search direction along
the negative gradient.

The geometrical interpretation of the nonlinear least squares problem (2.8.1) is
to find a point on the surface {r(x) | x ∈ R

n} in R
m closest to the origin. In case of
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data fitting ri (x) = yi − h(x, ti ), it is more illustrative to consider the surface

z(x) = (h(x, t1), . . . , h(x, tm))T ∈ R
m .

The solution (if it exists) is given by an orthogonal projection of y onto the surface
z(x). The rate of convergence of Gauss–Newton type methods can be analyzed
using differential-geometric concepts, as first suggested by Wedin [293, 1974]. Let
J †(x) denote the pseudoinverse of J (x) and assume that rank (J (x)) = n. Then
J †(x)J (x) = I , and the Hessian can be written in the form

H(x) = J (x)T (I − γ K (x))J (x), K (x) = J †(x)T Gw(x)J †(x), (2.8.14)

where γ = ‖r(x)‖2 �= 0 and

Gw(x) =
m∑

i=1

wi Gi (x), w(x) = − 1

γ
r(x). (2.8.15)

The matrix K (x) is symmetric and has a geometric interpretation. It is the normal
curvature matrix of the n-dimensional surface z(x) in R

m with respect to the unit
normal vector w(x). The quantities ρi = 1/κi , where

κ1 ≥ κ2 ≥ · · · ≥ κn,

are the nonzero eigenvalues of K (x), are called the principal radii of curvature of
the surface.

The Hessian H(x∗) is positive definite and x∗ a local minimizer if and only
if uT H(x∗)u > 0 for all u ∈ R

n . It follows that u �= 0 ⇒ J (x∗)u �= 0, and
hence H(x∗) is positive definite when I − γ K (x∗) is positive definite, i.e., when
1− γ κ1 > 0. It can be shown that the asymptotic rate of convergence of the Gauss–
Newton method in the neighborhood of a stationary point x∗ is

ρ = γ max(κ1,−κn), (2.8.16)

where κi are the eigenvalues of the normal curvature matrix K (x) in (2.8.14) eval-
uated at x∗, and γ = ‖r(x∗)‖2. In general convergence is linear, but if γ = 0, then
convergence becomes superlinear. Hence, the asymptotic rate of convergence of the
Gauss–Newton method is fast when either

(i) the residual norm γ = ‖r(x∗)‖2 is small, or
(ii) r(x) is mildly nonlinear, i.e., |κi |, i = 1:n, are small.

If 1 − γ κ1 ≤ 0, then the least squares problem has a saddle point at x∗, or if
also 1 − γ κn < 0, even a local maximum at x∗. If x∗ is a saddle point, then the
Gauss–Newton method is repelled from a saddle point. This is an excellent property,
because saddle points are not at all uncommon for nonlinear least squares problems.
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The rate of convergence for the Gauss–Newton method can be estimated during the
iterations by

ρest = ‖PJ (xk+1)rk+1‖2/‖PJ (xk)rk‖2 = ρ + O(‖xk − x∗‖2
2). (2.8.17)

Since PJ (xk)rk = J (xk)J (xk)
†rk = −J (xk)pk , the cost of computing this estimate

is only one matrix-vector multiplication. When ρest > 0.5 (say), one should consider
switching to a method using second derivative information, or perhaps evaluate the
quality of the underlying model.

2.8.3 Modifications for Global Convergence

The Gauss–Newton method can be modified for global convergence by using the
Gauss–Newton direction dk as a search direction. The next iteration is then taken to
be xk+1 = xk + tkdk , where tk solves the one-dimensional minimization problem

min
t
‖r(xk + tdk)‖2

2.

In general, it is not worthwhile solving this minimization accurately. It suffices taking
tk can be taken to be the largest number in the sequence 1, 1

2 , 1
4 , . . . for which

‖r(xk)‖2
2 − ‖r(xk + tkdk)‖2

2 ≥
1

2
tk‖PJk r(xk)‖2

2.

Here t = 1 corresponds to the full Gauss–Newton step. Since dk is a descent direction,
this modification of the Gauss–Newton method is locally convergent in almost all
nonlinear least squares problems. In fact, it is usually even globally convergent. For
large residual or very nonlinear problems, convergence may still be slow.

The rate of convergence for the Gauss–Newton method with exact line search can
be shown to be

ρ̃ = γ (κ1 − κn)/(2− γ (κ1 + κn)).

We have ρ̃ = ρ if κn = −κ1, and ρ̃ < ρ otherwise. Since γ κ1 < 1 implies ρ̃ < 1, we
always get convergence close to a local minimizer. This contrasts to the unmodified
Gauss–Newton method, which may fail to converge to a local minimizer.

Even with line search the Gauss–Newton method can have difficulties getting
around an intermediate point where the Jacobian matrix is rank-deficient. This can
be avoided either by taking second derivatives into account, or by further stabilizing
the Gauss–Newton method to overcome this possibility of failure. Methods using the
latter approach were first suggested by Levenberg [193, 1944] and Marquardt [205,
1963]. Here the search direction dk is computed from the problem (cf. Tikhonov
regularization)
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min
dk

{
‖r(xk)+ J (xk)dk‖2

2 + μk‖dk‖2
2

}
, (2.8.18)

where the parameter μk ≥ 0 controls the iterations and limits the size of dk . Note that
if μk > 0, then dk is well defined even when J (xk) is rank-deficient. As μk →∞,
‖dk‖2 → 0 and dk becomes parallel to the steepest descent direction. It can be shown
that dk is the solution to the least squares problem with quadratic constraint

min
dk
‖r(xk)+ J (xk)dk‖2, subject to ‖dk‖2 ≤ δk, (2.8.19)

where μk = 0 if the constraint in (2.8.19) is not binding and μk > 0 otherwise. The
set of feasible vectors dk , ‖dk‖2 ≤ δk , can be thought of as a trust region for the
linear model r(x) ≈ r(xk) + J (xk)(x − xk). Hence, these methods are known as
trust region methods.

The following trust region strategy has proved very successful in practice:
Let x0, D0 and δ0 be given and choose β ∈ (0, 1). For k = 0, 1, 2, . . . do

(a) Compute r(xk), J (xk), and determine dk as a solution to the subproblem

min
dk
‖r(xk)+ J (xk)dk‖2 subject to ‖Dkdk‖2 ≤ δk,

where Dk is a diagonal scaling matrix.
(b) Compute the ratio ρk =

(‖r(xk)‖2
2 − ‖r(xk + dk)‖2

2

)
/ψk(dk), where

ψk(dk) = ‖r(xk)‖2
2 − ‖r(xk)+ J (xk)dk‖2

2

is the model prediction of the decrease in ‖r(xk)‖2
2.

(c) If ρk > β the step is successful and we set xk+1 = xk + dk and δk+1 = δk ;
otherwise, set xk+1 = xk and δk+1 = βδk . Update the scaling matrix Dk .

The ratio ρk measures the agreement between the linear model and the nonlinear
function. After an unsuccessful iteration δk is reduced. The scaling Dk can be chosen
such that the algorithm is scale invariant, i.e., the algorithm generates the same
iterations if applied to r(Dx) for any nonsingular diagonal matrix D. It can be
proved that if r(x) is continuously differentiable, r ′(x) uniformly continuous and
J (xk) bounded, then this algorithm will converge to a stationary point.

A trust region implementation of the Levenberg–Marquardt method will give a
Gauss–Newton step close to the solution of a regular problem. Its convergence will
therefore often be slow for large residual or highly nonlinear problems. Methods
using second derivative information (see Sect. 2.8.4) are somewhat more efficient,
but also more complex.
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2.8.4 Quasi-Newton Methods

When the Gauss–Newton method converges slowly or has problems with a rank-
deficient Jacobian, Newton’s method can be tried. To ensure global convergence a
line search algorithm can be used, where the search direction dk is determined by
the quadratic model (2.8.10) and satisfies the linear system

H(xk)dk = −J (xk)
T r(xk). (2.8.20)

Note that the Hessian H(xk) must be positive definite in order for the Newton direc-
tion dk to be a descent direction.

Newton’s method is not often used because the second derivative term Q(xk) in the
Hessian is rarely available at a reasonable cost. However, for curve fitting problems,
ri (x) = yi − h(x, ti ) and the derivatives ∂2ri (x)/∂x j∂xk can be obtained from
the single function h(x, t). If h(x, t) is composed of, e.g., simple exponential and
trigonometric functions, then the Hessian can in some cases be computed cheaply.
Another case when it may be practical to store approximations to all Gi (x), i = 1:m,
is when every function ri (x) depends on a small subset of the n variables. Then both
the Jacobian J (x) and the Hessians Gi (x) will be sparse and special methods may
be applied.

Several methods have been suggested that partly take the second derivatives into
account, either explicitly or implicitly. An implicit way to obtain second derivative
information is to use a general quasi-Newton optimization routine, which builds
up a sequence of approximations of the Hessians H(xk). Let Bk−1 be a symmetric
approximation to the Hessian at step k. It is required that the updated approximation
Bk approximates the curvature along sk = xk − xk−1. This gives the quasi-Newton
conditions

Bksk = yk, yk = g(xk)− g(xk−1), (2.8.21)

and g(xk) = J (xk)
T r(xk). As starting value, B0 = J (x0)

T J (x0) is recommended.
The search directions dk are then computed from

Bkdk = −g(xk). (2.8.22)

The direct application of the quasi-Newton method to the nonlinear least squares
problem has not been so efficient in practice. A more successful approach takes
advantage of the special form J (xk)

T J (xk) + Qk of the Hessian and uses a quasi-
Newton approximation Sk only for the term Q(xk). With S0 = 0 the quasi-Newton
relations (2.8.21) can then be written as

Sksk = zk, zk =
(
J (xk)− J (xk−1)

)T
r(xk), (2.8.23)

where Sk is required to be symmetric. An update formula due to Dennis et al.
[73, 1981] and used in their subroutine NL2SOL is
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Sk = Sk−1 + wk yT
k + ykw

T
k

yT
k sk

− (wT
k sk)yk yT

k

(yT
k sk)2

, wk = zk − Sk−1sk . (2.8.24)

It can be shown (see Dennis and Schnabel [72, 1983], pp. 231–232) that this solution
to (2.8.23) minimizes the change from Sk−1 in a certain weighted Frobenius norm. In
some cases the update (2.8.24) gives inadequate results. This motivates the inclusion
of “sizing” in which the matrix Sk is replaced by ρk Sk , where

ρk = min{|sT
k zk |/|sT

k Sksk |, 1}.

This heuristic choice ensures that Sk converges to zero for zero residual problems,
which improves the convergence behavior.

Another way to obtain second derivative information is developed by Ruhe
[244, 1979]. It uses a nonlinear conjugate gradient (CG) acceleration of the Gauss–
Newton method with exact line searches. This method achieves quadratic conver-
gence and gives much improved results compared to the standard Gauss-Newton
method on difficult problems. When exact line searches are used, the CG acceler-
ation amounts to a negligible amount of extra work. However, for small residual
problems exact line search is a waste of time.

Outstanding textbooks on numerical methods for unconstrained optimization,
nonlinear systems, and nonlinear least squares are Dennis and Schnabel [72, 1983]
and Nocedal and Wright [216, 2006]). The much used quasi-Newton algorithm
NL2SOL for nonlinear least squares is due to Dennis et al. [73, 1981]. Trust region
methods are discussed by Conn et al. [58, 2000]. Methods for solving constrained
nonlinear least squares problems are treated by Gulliksson et al. [143, 1997].

2.8.5 Separable Least Squares Problems

In some structured nonlinear least squares problems it is advantageous to separate
the parameters into two sets. For example, suppose that we want to fit a linear
combination of functions φ j (z; t), nonlinear in the parameters z ∈ R

q , to given data
(gk, tk), k = 1:m, by minimizing ‖r(y, z)‖2

2, where

rk(y, z) = gk −
p∑

j=1

y jφ j (z; tk), k = 1:m. (2.8.25)

In this least squares problem, y ∈ R
p are linear and z ∈ R

q nonlinear parameters.
The full least squares problem is

min
y,z

‖g −�(z)y‖2, (2.8.26)
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where �(z) is a matrix whose j th column has elements φ j (z; tk), k = 1:m. For any
fixed value of z the problem (2.8.26) is an easily solved linear least squares problem
in y. A particularly simple case is when r(y, z) is linear in both y and z. Then we
also have

r(y, z) = g(y)−�(y)z, �(y) ∈ R
m×q .

We now describe a method for solving general separable least squares problems.
We first observe that the solution of (2.8.26) can be expressed as

y(z) = �†(z)g(z), (2.8.27)

where �†(z) is the pseudoinverse of �(z). If the linear parameters are eliminated in
(2.8.26), the original minimization problem can be cast in the form

min
z
‖(I − P�(z))g‖2, P�(z) = �(z)�(z)†, (2.8.28)

where P�(z) is the orthogonal projector onto the column space of �(z). This is a
pure nonlinear problem of reduced dimension. The variable projection method of
Golub and Pereyra [130, 1973] consists of solving (2.8.28), e.g., by a Gauss–Newton
method, obtaining the optimal vector z. The linear parameters are then computed
from y = �(z)†g. To use the Gauss–Newton method, we need a formula for the
derivative of an orthogonal projection P�(z) = �(z)�(z)†. The following formula,
due to Golub and Pereyra holds for any symmetric generalized inverse �−. Its proof
is a good exercise in differentiating matrix expressions.

Lemma 2.8.1 Let � = �(ζ) ∈ R
m×n be a matrix of local constant rank and �† its

pseudoinverse. Then

d

dζ
(P�) = P⊥�

d�

dζ
�† + (�†)T d�T

dζ
P⊥� , (2.8.29)

where P� = ��† is the orthogonal projector onto R(�) and P⊥� = I − P�.

We describe a version of the variable projection algorithm due to Kaufman
[176, 1975]. The j th column of the Jacobian of the reduced problem (2.8.28) can be
written as

J = −
[

P⊥�
d�

dz j
�† + (�†)T d�T

dz j
P⊥�
]

y.

Kaufman’s simplification consists in using an approximate Jacobian obtained by
dropping the second term in this formula. The effect is to reduce the work per iteration
at the cost of marginally increasing the number of iterations.

The algorithm contains two steps merged into one. Let xk = (yk, zk)
T be the

current approximate solution. The next approximation is determined as follows:
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(i) Compute the solution δyk to the linear subproblem

min
δyk

∥∥ f (zk)δyk −
(
g(zk)− f (zk)yk

)∥∥
2, (2.8.30)

and put yk+1/2 = yk + δk and xk+1/2 = (yk+1/2, zk)
T .

(ii) Compute dk as the Gauss–Newton step at xk+1/2 from

min
dk

∥∥C(xk+1/2)dk + r(yk+1/2, zk)
∥∥

2, (2.8.31)

where the Jacobian is C(xk+1/2) =
(

f (zk), rz(yk+1/2, zk)
)
. Take xk+1 = xk +

λkdk and go to (i).

In (2.8.31) we have used that, by (2.8.26), the first derivative of r with respect to
y is given by ry(yk+1/2, zk) = f (zk). The derivatives with respect to z are

rz(yk+1/2, zk) = B(zk)yk+1/2 − g′(zk), B(z)y =
(

∂ F

∂z1
y, . . . ,

∂ F

∂zq
y

)
,

where B(z)y ∈ R
m×q . Note that in case r(y, z) is linear also in y it follows from

(2.8.7) that C(xk+1/2) = ( f (zk), H(yk+1/2)). To be robust the algorithms for sep-
arable problems must employ a line search or trust region approach for the Gauss–
Newton steps as described in Sect. 2.8.3.

It can be shown that the Gauss–Newton algorithm applied to (2.8.28) has the
same asymptotic convergence rate as the ordinary Gauss–Newton method. Both
converge quadratically for zero residual problem, in contrast to the naive algorithm
of alternatively minimizing ‖r(y, z)‖2 over y and z, which always converges linearly.

The variable projection approach not only reduces the dimension of the parameter
space, but also leads to a better conditioned problem. One advantage of Kaufman’s
algorithm is that no starting values for the linear parameters have to be provided.
We can, e.g., take y0 = 0 and determine y1 = δy1, in the first step of (2.8.30). This
seems to make a difference in the first steps of the iterations. Several problems, for
which methods not using separability fail, have been solved by the variable projection
algorithm.

An important example of a separable problem is fitting a linear combination of
exponential functions

g(t) =
p∑

j=1

c j e
λ j t , (2.8.32)

to observations gk = g(tk)+ εk , made at equidistant times tk = kh, k = 0:m. Since
g(t) in (2.8.32) depends on p linear parameters c j and p nonlinear parameters λ j , at
least m = 2p observations are needed. If we set v j = eλ j h , then eλ j tk = eλ j hk = vk

j ,
and the model (2.8.32) becomes
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g(tk) =
p∑

j=1

c jv
k
j , k = 0 : m. (2.8.33)

For given v = (v1, . . . , vp), this is a linear least squares problem for c, which in
matrix form can be written as

min
c
‖M(v)c − g‖2

2, (2.8.34)

where (m ≥ 2p)

M(v) =

⎛
⎜⎜⎜⎝

1 1 · · · 1
v1 v2 · · · vp
...

... · · · ...

vm
1 vm

2 · · · vm
p

⎞
⎟⎟⎟⎠ , c =

⎛
⎜⎜⎜⎝

c1
c2
...

cp

⎞
⎟⎟⎟⎠ , g =

⎛
⎜⎜⎜⎝

g0
g1
...

gm

⎞
⎟⎟⎟⎠ .

Here the observed values gk have been substituted for g(tk). Note that M(v) is a
Vandermonde matrix.

Prony’s method17 uses the fact that g(tk) satisfies a homogeneous linear differ-
ence equation of order p with constant coefficients. (For properties of linear differ-
ence equations, see [63, 2008] Sect. 3.3.5).) The nonlinear parameters v1, . . . , vp are
the roots of the corresponding characteristic polynomial

P(v) = (v − v1)(v − v2) · · · (v − vp) = v p + s1v
p−1 + · · · + sp.

The coefficients s1, s2, . . . , sp can be obtained as follows. Multiplying the first p+1
equations in Mc = g in turn by sp, sp−1, . . . , s1, s0 = 1 and adding, we obtain

p∑
j=1

P(v j )c j =
p∑

k=0

sp−k gk = 0,

because P(v j ) = 0, j = 1:p. Repeating this with rows k, k + 1, . . . , k + p, k =
2:m − p, we obtain (m − p) equations

⎛
⎜⎜⎜⎝

gp−1 gp−2 · · · g0
gp gp−1 · · · g1
...

...
...

...

gm−1 gm−2 · · · gm−p

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

s1
s2
...

sp

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

gp

gp+1
...

gm

⎞
⎟⎟⎟⎠ ,

If m > 2p, this is a linear overdetermined Toeplitz system for the coefficients
s1, . . . , sp of the characteristic polynomial P(v). This can be solved by the method
of linear least squares. (Special methods for solving Toeplitz least squares problems

17 Developed by the French mathematician and engineer Gaspard de Prony in 1795; see [239, 1795].
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are discussed in Sect. 8.4, [27, 1996]; see also Nagy [213, 1993].) The roots v j =
eλ j h of the polynomial P(v) are then determined, e.g., as the eigenvalues of the
companion matrix of P(v); see Example 3.1.4. (This is how the Matlab functions
v = roots([1,s])works.) From this the λ j = h−1 log v j exponents in (2.8.32)
are obtained. Finally, c j are computed from the linear least squares problem (2.8.34).

The solution obtained by Prony’s method can be complex exponentials, damped
and undamped sinusoids, and real exponentials, depending on the roots of the poly-
nomial P(v). If the data vector g is real, then complex exponents must occur in
complex conjugate pairs.

Example 2.8.1 Fitting real exponentials occurs, e.g., in radioactive decay, compart-
ment models, and atmospheric transfer functions. This is a particularly difficult and
ill-conditioned problem, because the same data can be well approximated by dif-
ferent exponential sums. Lanczos [183, 1956], Chapter IV.23, shows that the three
exponential sums

f1(t) = 0.0951e−t + 0.8607e−3t + 1.5576e−5t ,

f2(t) = 0.305e−1.58t + 2.202e−4.45t ,

f3(t) = 0.041e−0.5t + 0.79e−2.73t + 1.68e−4.96t ,

approximate the same data to two decimals for 0 ≤ t ≤ 1.2. �

Osborne [221, 1975] shows how the linear parameters can be eliminated in sepa-
rable problems. Prony’s method is known to perform poorly when the signal is noisy,
and the method has been shown to be inconsistent. Osborne and Smyth [223, 1995]
develop a modified Prony’s method that does estimate exponentials, which best fits
the available data. Numerically stable variants of Prony’s method are discussed by
Pereyra and Scherer [233, 2010]. In many applications it is natural to restrict the
coefficients to be positive. A convex cone characterization is then possible and Ruhe
[245, 1980] proposes a special algorithm for this case.

Models and algorithms for general nonlinear parameter estimation are discussed
in Schwetlick [255, 1992]. An early analysis of the convergence of the Gauss-Newton
method is given by Pereyra [232, 1967]. The variable projection method is an exten-
sion of an idea in Guttman et al. [144, 1973].

The carefully written and documented program VARPRO implements the variable
projection algorithm, with the modification due to Kaufman. It also calculates the
covariance matrix. A version called VARP2 by LeVeque handles multiple right-hand
sides. Both VARPRO and VARP2 are available in the public domain at http://www.
netlib.org/opt/. Golub and LeVeque [128, 1979] extend the VARPRO algorithm to
the case when several data sets are to be fitted to the model with the same nonlin-
ear parameter vector; see also Kaufman and Sylvester [178, 1992]. Kaufman and
Pereyra [177, 1978] consider problems with nonlinear equality constraints. Ruhe
and Wedin [246, 1980] analyze several different algorithms for a more general class
of separable problems. A review of developments and applications of the variable

http://www.netlib.org/opt/
http://www.netlib.org/opt/
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projection approach for separable nonlinear least squares problems is given by Golub
and Pereyra [131, 2003].

2.8.6 Iteratively Reweighted Least Squares

In some applications it might be more adequate to consider the minimization problem

min
x
‖Ax − b‖p

p 1 ≤ p < ∞, (2.8.35)

where p �= 2. An illustrative example is estimating a scalar γ from a vector of
m observations y1 ≤ y2 ≤ · · · ≤ ym . The �p-norm estimates for p = 1, 2, and
∞ correspond to the median, mean, and midrange, respectively. Whereas the mean
value uses all data yi , i = 1:m, the median does not depend on the extreme values
of y1 and ym . On the other hand, the midrange (y1 + ym)/2 depends only on the
extreme data points. These observations are valid more generally. The �1 solution
to (2.8.35) is more robust than the least squares solution, i.e., a small number of
isolated large errors will have a large effect on the solution. The same holds for
solutions corresponding to values of p such that (1 < p < 2).

For solving problem (2.8.35) when p �= 2, the iteratively reweighted least
squares (IRLS) method (see Osborne [222, 1985]) is widely used. This approach
reduces the problem to the solution of a sequence of weighted least squares problems.
This is attractive since methods and software for weighted least squares are available.
Provided that |ri (x)| = |b−Ax |i > 0, i = 1, . . . , m, problem (2.8.35) can be restated
in the form

min
x

ψ(x), ψ(x) =
m∑

i=1

|ri (x)|p =
m∑

i=1

|ri (x)|p−2ri (x)2. (2.8.36)

This can be interpreted as a weighted least squares problem

min
x
‖D(r)(p−2)/2(b − Ax)‖2, D(r) = diag(|r(x)|). (2.8.37)

Here and in the following the notation diag(|r |), r ∈ Rm , denotes the diagonal matrix
with i th component |ri |.

The diagonal weight matrix D(r)(p−2)/2 in (2.8.37) depends on the unknown
solution x . In Algorithm 2.8.1 x (0) is an initial approximation, e.g., equal to the
unweighted least squares solution. It is assumed that r (0)

i = (b − Ax (0))i �= 0,
i = 1:m. Such an IRLS method was first used by Lawson [189, 1961]. Since r (k) =
b− Ax (k), x (k+1) solves the problem minx ‖Dk(b− Ax)‖2, but the implementation
above is to be preferred. The linear subproblem in each step of IRLS can be solved
by computing the QR factorization of Dk A or, if the normal equations are to be used,
the Cholesky factorization of ATD2

k A; see Sect. 2.7.1.
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Algorithm 2.8.1 (Iteratively Reweighted Least Squares)

for k = 0, 1, 2, . . .

r (k) = (b − Ax (k));
Dk = diag

(
(|r (k)|)(p−2)/2

)
;

solve min
δx

∥∥Dk(r
(k) − Aδx)

∥∥
2;

x (k+1) = x (k) + δx (k);
end

Cline [53, 1972] proved that the rate of convergence of IRLS is linear. Osborne
[222, 1985] shows that the IRLS method is convergent for 1 < p < 3, and that any
fixed point of the IRLS iteration satisfies the necessary conditions for a minimum of
ψ(x) in (2.8.36). IRLS converges for p = 1 provided that the problem has a unique
nondegenerate solution. If p < 2 and r (k)

i = 0, then the corresponding weight is
infinite. If this occurs for a component that does not have a zero residual in the
solution, there will be misconvergence. Li [194, 1993] suggests that zero residuals
be perturbed by a small amount, e.g., 100ue, where u is the machine precision.

We now compare IRLS with Newton’s method for the problem

min
x

ψ(x) = φ(r(x)), r(x) = b − Ax,

where ψ(x) is the function in (2.8.36). The gradient of φ(r) is

gT = −AT y, yi = p sign(ri )(|ri |)p−1, i = 1:m.

The Hessian matrix of second derivatives of ψ(x) is H = AT W A, where

W = diag(wi ), wi = p(p − 1)(|ri |)p−2, i = 1:m.

Hence the Newton step s satisfies Hs = −g. Apart from the factor p − 1 this is
just the normal equations for the weighted least squares problem (2.8.37). Hence,
the Newton step for minimizing ψ(x) is related to the IRLS step by

sk = (1/(p − 1))δx (k).

Since the Newton step is always a descent direction for the objective function ψ(x)

it follows that the same is true for the step obtained from IRLS. Hence, global
convergence and local quadratic convergence can be achieved by using a line search
procedure together with IRLS.

In robust linear regression, possible “outsiders” among the data points are iden-
tified and given less weight. Huber’s M-estimator [170, 1981] can be viewed as a
compromise between �2 and �1 approximation. It uses the least squares estimator for
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“normal” data but the �1 norm estimator for data points that disagree too much with
the normal picture. More precisely, the Huber M-estimate minimizes the objective
function

ψ(x) =
m∑

i=1

ρ(r j (x)/σ ), ρ(t) =
{

1
2 t2 if |t | ≤ γ,

γ |t | − 1
2γ 2 if |t | > γ,

(2.8.38)

where γ is a tuning parameter and σ a scaling factor that depends on the data to be
estimated. If σ is a constant, then it is no restriction to take σ = 1. Since the Huber
function is smooth near zero residuals, it can be expected that it is easier to minimize
than the �1 norm of the residual.

Methods for computing the Huber M-estimator are given by Clark and Osborne
[52, 1986], Ekblom [83, 1988], and Madsen and Nielsen [201, 1990]. O’Leary [217,
1990] studies different implementations of Newton-like methods. The Newton step s
for minimizing ψ(x) in (2.8.38) (σ = 1) is given by the solution of AT DAs = AT y,
where

yi = ρ′(ri ), D = diag(ρ′′(ri )), i = 1:m.

This is similar to the Newton method for �p approximation. O’Leary recommends
that at the initial iterations the cutoff value γ in the Huber function (2.8.38) is
decreased from a very large number to the desired value. This has the effect of
starting the iteration from the least squares solution and helps prevent the occurrence
of rank-deficient Hessian matrices.

For p = 1 convergence of IRLS can be slow. Madsen and Nielsen [202, 1993] give
a finite more efficient algorithm for this case. At each iteration the non-differentiable
function ψ(x), p = 1, in (2.8.36) is approximated by a Huber function (2.8.38) with
some threshold parameter γ . This parameter is successively reduced until, when
γ is small enough, the �1 solution can be detected. A similar strategy is used by
Daubechies et al. [65, 2010] in IRLS for sparse recovery.

Linear programming methods for solving minx ‖Ax−b‖1 are given by Barrodale
and Roberts [14, 1973]. Bartels et al. [15, 1978] use a projected gradient technique,
where a descent methods is used to find the correct subset of zero residuals.

IRLS can be used to solve other nonlinear regression problems. An important
case is logistic regression, used in binary classification. Let X ∈ R

m×n , y ∈ R
m ,

be a data set, where yi is a Bernoulli random variable that takes the value yi = 1
with probability μ(xi ) and the value yi = 0 with probability 1 − μ(xi ). Then the
variance of yi equals μ(xi )(1− μ(xi )). It is important to notice that the variance is
not constant, but depends on the experiment xi . The relation between the experiment
xi and the expected value of its outcome is modeled by the logistic function

μ(x, β) = 1/(e−βT x + 1). (2.8.39)
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If z varies from −∞ to ∞, then μ(z) varies from zero to one. Hence, μ(z) can be
interpreted as a probability. Thus the regression model is

y = μ(x, β)+ ε, (2.8.40)

where ε is the error term and β ∈ R
n is the parameter vector to be predicted. Using

the logit function g(μ) = μ/(1−μ), this model can be transformed into the model

g(y) = g(μ(x))+ ε̃ = βT + ε̃,

which is linear in the parameter vector β. Since the variance of the error ε̃ is not inde-
pendent of the mean, this is not a Gauss–Markov model and the least squares method
is not valid. Instead, the parameters are estimated using the maximum likelihood
method.

The outcome y is a Bernoulli random variable with mean μ(x, β). Therefore, the
probability of the outcome of an experiment can be written as

P(x, y | β) =
{

μ(x, β) if y = 1,

1− μ(x, β) if y = 0,

= μ(x, β)y(1− μ(x, β))1−y .

It follows that the log-likelyhood function L(X, y, β) of the data X, y under the
model with parameter β is

log(L(X, y, β)) =
n∑

i=1

(
yi log(μ(xi , β))+ (1− yi ) log(1− μ(xi , β))

)
.

The estimate of β is chosen as the value β̂ that maximizes this log-likelihood function.
Setting the gradient vector equal to zero gives the system of nonlinear equations

h(β) = X T (y − μ(X, β)
)
,

where μ(X, β) = (
μ(βT x1), . . . , μ(βT xm)

)T . Newton’s method for solving this
system is x (k+1) = x (k) + δx (k), where δx (k) solves the weighted least squares
problem

min
δx

∥∥Dk
(
μ(A, x (k))− b

)∥∥
2, Dk = diag(

√
w1, . . . ,

√
wm), (2.8.41)

and wi = μ(ai , x (k))(1−μ(ai , x (k))). The problem (2.8.41) can be solved by IRLS.
Logistic regression is often applied to large-scale data sets. Then iterative methods

may have to be used to solve the weighted linear least squares subproblems (2.8.41);
see Komarek [181, 2004].
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2.8.7 Nonlinear Orthogonal Regression

In Sect. 2.7.7 we considered the linear orthogonal regression problem of fitting a
hyperplane M to a set of given points Pi ∈ R

n , i = 1:m. The solution to this
problem was obtained from the SVD of a related matrix. In this section we consider
the case when a nonlinear model is to be fitted by minimizing the sum of squares of
the orthogonal distances from observations (yi , ti ), i = 1:m, to the curve

y = f (p, t), (2.8.42)

as illustrated in Fig. 2.16. In (2.8.42) f is a scalar nonlinear function, t a scalar
variable, and p ∈ R

n are parameters to be determined.
Assume that yi and ti are subject to errors ε̄i and δ̄i , respectively, so that

yi + ε̄i = f (p, ti + δ̄i ), i = 1:m,

where ε̄i and δ̄i are independent random variables with zero mean and variance σ 2.
Then the parameters p should be chosen so that the sum of squares of the orthogonal
distances from the observations (yi , ti ) to the curve in (2.8.42) is minimized, cf.
Fig. 2.16. Hence, p should be chosen as the solution to

min
p,ε,δ

m∑
i=1

(ε2
i + δ2

i ) subject to yi + εi = f (p, ti + δi ), i = 1:m.

Eliminating εi using the constraints we obtain the orthogonal distance problem

min
p,δ

m∑
i=1

[
( f (p, ti + δi )− yi

)2 + δ2
i

]
. (2.8.43)

t

y
y = f (p, t)

(yi, ti)

×

×

×

×
×

×

Fig. 2.16 Orthogonal distance regression
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Note that this is a nonlinear least squares problem even if f (p, t) is linear in p.
Problem (2.8.43) has m + n unknowns p and δ. In applications usually m  n

and accounting for the errors in ti will considerably increase the size of the problem.
Therefore, the use of standard methods will not be efficient unless the special structure
is taken into account to reduce the work. If we define the residual vector r(δ, p) =
(r T

1 (δ, p), r T
2 (δ)) by

r T
1 (δ, p)i = f (p, ti + δi )− yi , r T

2 (δ)i = δi , i = 1:m,

the Jacobian for problem (2.8.43) can be written in block form as

J̃ =
(

D1 J
Im 0

)
∈ R

2m×(m+n), (2.8.44)

where D1 = diag(d1, . . . , dm) and

di =
(

∂ f

∂t

)

t=ti+δi

, Ji j =
(

∂ f

∂p j

)

t=ti+δi

, i = 1:m, j = 1:n. (2.8.45)

Note that J̃ is sparse and highly structured. In the Gauss–Newton method we compute
search directions (�δk,�pk) from the linear least squares problem

min
�δ,�p

∥∥∥ J̃

(
�δ

�p

)
−
(

r1
r2

)∥∥∥
2
, (2.8.46)

where J̃ , r1, and r2 are evaluated at the current estimates of δ and p. To solve this
problem, we need the QR factorization of J̃ . This can be computed in two steps. First,
we apply a sequence of Givens rotations Q1 = Gm · · ·G2G1, where Gi = Ri,i+m ,
i = 1:m, to zero the (2, 1) block of J̃ :

Q1 J̃ =
(

D2 K
0 L

)
, Q2

(
r1
r2

)
=
(

s1
s2

)
,

where D2 is again a diagonal matrix. The problem (2.8.46) now decouples, and �pk

is determined as the solution to min�p ‖L�p−s2‖2. Here L ∈ R
m×n , so this problem

is of the same size as for the Gauss–Newton correction in the standard nonlinear least
squares problem. We then have

�δk = D−1
2 (s1 − K�pk).

So far we have assumed that y and t are scalar variables. More generally, if y ∈ R
ny

and t ∈ R
nt the problem becomes
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min
p,δ

m∑
i=1

(
‖ f (p, ti + δi )− yi‖2

2 + ‖δi‖2
2

)
.

The structure in this more general problem can be taken advantage of in a similar
manner.

The general orthogonal distance problem has not received the same attention as
the standard nonlinear regression problem, except for the case when f is linear
in x . One reason is that, if the errors in the independent variables are small, then
ignoring these errors will not seriously degrade the estimates of x . The algorithm
by Boggs et al. [32, 1987] and [33, 1989] uses a stabilized Gauss–Newton method
and incorporates a full trust region strategy. Schwetlick and Tiller [254, 1985] use a
partial Marquardt-type regularization where only the �x part of J̃ is regularized.

2.8.8 Fitting Circles and Ellipses

A special nonlinear least squares problem that arises in many applications is to fit
given data points to a geometrical element, which may be defined in implicit form.
We have already discussed fitting data to an affine linear manifold such as a line
or a plane. The problem of fitting circles, ellipses, spheres, and cylinders arises in
applications such as computer graphics, coordinate meteorology, and statistics.

Least squares algorithms to fit an implicitly defined curve in the x-y plane can be
divided into two classes. In algebraic fitting, a least squares functional is used that
directly involves the function f (x, y, p) = 0 to be fitted. If (xi , yi ), i = 1:n, are
given data points, the functional

�(p) =
m∑

i=1

f 2(xi , yi , p)

is minimized. The second method, geometric fitting, minimizes a least squares
functional involving the geometric distances from the data points to the curve; cf.
orthogonal distance regression. Often algebraic fitting leads to a simpler problem, in
particular when f is linear in the parameters p.

We first discuss algebraic fitting of circles. A circle has three degrees of freedom
and can be represented algebraically by

f (x, y, p) = a
(
x y
) (x

y

)
+ (b1 b2)

(
x
y

)
+ c = 0.

We define a parameter vector p and an m × 4 matrix S with rows sT
i by

p = (a, b1, b2, c)T , sT
i = (x2

i + y2
i , xi , yi , 1).
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The problem can now be formulated as

min
p
‖Sp‖2

2 subject to ‖p‖2 = 1. (2.8.47)

Note that p is defined only up to a constant multiple, which is why the constraint
is required. The solution is the right singular vector corresponding to the smallest
singular value of S. When p is known, the center z and radius ρ of the circle can be
obtained from

z = − 1

2a

(
b1
b2

)
, ρ = 1

2a

√
‖b‖2

2 − 4ac . (2.8.48)

We now discuss the algebraic fitting of ellipses. An ellipse in the (x, y)-plane can
be represented algebraically by

f (x, y, p) = (x y)

(
a11 a12
a12 a22

)(
x
y

)
+ (b1 b2)

(
x
y

)
+ c = 0. (2.8.49)

If we define

p = (a11, a12, a22, b1, b2, c)T , sT
i = (x2

i , 2xi yi , y2
i , xi , yi , 1), (2.8.50)

then we have �(p) = ‖Sp‖2
2, where S is an m × 6 matrix with rows sT

i . Obviously
the parameter vector is only determined up to a constant factor. Hence, we must
complete the problem formulation by including some constraint on p. Three such
constraints have been considered for fitting ellipses.
(a) SVD constraint:

min
p
‖Sp‖2

2 subject to ‖p‖2 = 1. (2.8.51)

Again, the solution of this constrained problem is the right singular vector corre-
sponding to the smallest singular value of S.

(b) Linear constraint:

min
p
‖Sp‖2

2 subject to dT p = 1, (2.8.52)

where d is a fixed vector such that ‖d‖2 = 1. Let H be an orthogonal matrix such
that Hd = e1. Then the constraint becomes eT

1 H p = 1 and we can write

Sp = SHT H p = SHT
(

1
q

)
= s + S2q,

where SHT = (s, S2). We have transformed (2.8.52) into the standard linear least
squares problem minq ‖S2q + s‖2

2.
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(c) Quadratic constraint:

min
p
‖Sp‖2

2 subject to ‖Bp‖2 = 1. (2.8.53)

The different constraints can lead to very different solutions, unless the errors in
the fit are small; see Varah [289, 1996]. Of particular interest is the choice B = (0, I )
in (c). With pT = (p1, p2), the constraint becomes ‖p2‖2

2 = 1, and the problem is
a generalized total least squares problem. Let

S = Q

(
R11 R12
0 R22

)

be the QR factorization of S. Then p2 is determined from the SVD of R22 and p1 is
obtained from R11 p1 = −R12 p2.

One desirable property of a fitting algorithm is that when the data are translated
and rotated, the fitted ellipse should be transformed in the same way. It can be seen
that to lead to this kind of invariance the constraint must involve only symmetric
functions of the eigenvalues of the matrix A. A disadvantage of the SVD constraint
is its non-invariance under translation and rotations. In case of a linear constraint the
choice d = (1, 0, 1, 0, 0, 0)T , which corresponds to

trace(A) = a11 + a22 = λ1 + λ2 = 1, (2.8.54)

gives the desired invariance. The constraint

‖A‖2
F = a2

11 + 2a2
12 + a2

22 = λ2
1 + λ2

2 = 1, (2.8.55)

attributed to Bookstein, also leads to this kind of invariance. Note that the Bookstein
constraint can be put in the form

(
0 I

)
by permuting the variables and scaling

by
√

2.
To construct and plot the ellipse, it is convenient to convert the algebraic form

(2.8.49) to the parametric form

(
x(θ)

y(θ)

)
=
(

xc
yc

)
+ Q(α)

(
a cos(θ)

b sin(θ)

)
, Q(α) =

(
cos α sin α

−sin α cos α

)
. (2.8.56)

The new parameters (xc, yc, a, b, α) can be obtained from the algebraic parameter
vector p in (2.8.50). Let A = Q�QT be the eigenvalue decomposition of the real
symmetric 2× 2 matrix A in (2.8.49). An algorithm for computing this accurately is
given in Sect. 3.6.2. If new coordinates z = Qz̃ + s are introduced in the algebraic
form (2.8.49), this equation becomes

z̃T �̃z + (2As + b)T Qz̃ + (As + b)T s + c = 0.

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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Here s can be chosen so that this equation reduces to λ1 x̃2 + λ2 ỹ2 + c̃ = 0. Hence,
the center s is

s =
(

xc
yc

)
= −1

2
A−1b = −1

2
A−1 Q�−1(QT b), (2.8.57)

and the axes (a, b) of the ellipse are given by

(
a
b

)
= √

c̃ diag�−1/2, c̃ = −c − 1

2
bT s = 1

2
b̃T �−1b̃. (2.8.58)

We now consider the geometric fitting of data (xi , yi ), i = 1:m, to a curve given
in the implicit form f (x, y, p) = 0. This problem is

min
p

m∑
i=1

d2
i (p), d2

i (p) = min
f (x,y,p)=0

(
(x − xi )

2 + (y − yi )
2), (2.8.59)

where di (p) is the orthogonal distance from each data point to the curve. For implic-
itly defined functions the calculation of the distance function di (p) is more compli-
cated than for explicit functions. When the curve admits a parametrization, as in the
case of the ellipse, the minimization problem for each point is only one-dimensional.

We consider first the orthogonal distance fitting of a circle written in parametric
form

f (x, y, p) =
(

x − xc − r cos φ

y − yc − r sin φ

)
= 0, (2.8.60)

where p = (xc, yc, r)T . The problem can be written as a nonlinear least squares
problem

min
p,φi

‖r(p, φ)‖2
2, φ = (φ1, . . . , φm), (2.8.61)

where

r =
⎛
⎜⎝

r1
...

rm

⎞
⎟⎠ ∈ R

2m, ri =
(

xi − xc − r cos φi

yi − yc − r sin φi

)
.

We have 2m nonlinear equations for m+3 unknowns φ1, . . . , φm and xc, yc, r . (Note
that at least 3 points are needed to define a circle.)

We now show how to construct the Jacobian of r(p, φ), which should be evaluated
at the current approximations to the m+3 parameters. We need the partial derivatives

∂ri

∂φi
= r

(
sin φi

− cos φi

)
,

∂ri

∂r
= −

(
cos φi

sin φi

)
,
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and

∂ri

∂xc
=
(−1

0

)
,

∂ri

∂yc
=
(

0
−1

)
.

After reordering of its rows, the Jacobian has the form

J =
(

r S A
−rC B

)
, A, B ∈ R

m×3.

where

S = diag(sin φi ), C = diag(cos φi ) (2.8.62)

are two m × m diagonal matrices. Here the first block column, which corresponds
to the m parameters φi , is orthogonal. Multiplying from the left by an orthogonal
matrix, we obtain

QT J =
(

r I SA− CB
0 CA+ SB

)
, Q =

(
S C
−C S

)
. (2.8.63)

To obtain the QR factorization of J , we compute the QR factorization of the m × 3
matrix CA + SB. Then a Gauss–Newton type method for nonlinear least squares
problems can be used to solve the problem. Good starting values for the parameters
may often be obtained using an algebraic fit, as described in the previously. Experi-
ence shows that the amount of computation involved in a geometric fit is at least one
order of magnitude larger than for an algebraic fit.

For the geometric fit of an ellipse, the parametric form

f (x, y, p) =
(

x − xc
y − yc

)
− Q(α)

(
a cos φ

b sin φ

)
= 0 (2.8.64)

can be used, where p = (xc, yc, a, b, α)T and Q(α) =
(

cos α sin α

−sin α cos α

)
. The

problem can be formulated as a nonlinear least squares problem of the form (2.8.61);
see Gander et al. [110, 1994].

The fitting of a sphere or an ellipsoid can be treated analogously. The sphere can
be represented in parametric form as

f (x, y, z, p) =
⎛
⎝

x − xc − r cos θ cos φ

y − yc − r cos θ sin φ

z − zc − r sin θ

⎞
⎠ = 0, (2.8.65)

where p = (xc, yc, zc, r)T . We get 3m nonlinear equations for 2m + 4 unknowns.
The first 2m columns of the Jacobian can easily be brought into upper triangular
form.
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When the data cover only a small arc of the circle or a small patch of the sphere,
the fitting problem can be ill-conditioned. An important application involving this
type of data is the fitting of a spherical lens. Likewise, the fitting of a sphere or an
ellipsoid to near planar data will lead to an ill-conditioned problem.

Exercises

2.8.1 (a) The general form for a quadratic function is

φ(x) = 1

2
xT Gx − bT x + c,

where G ∈ R
n×n is a symmetric matrix and b ∈ R

n . Show that the gradient of φ is
g = Gx − b and the Hessian is G. Also, show that if g(x∗) = 0, then

φ(x) = φ(x∗)+ 1

2
(x − x∗)T H(x − x∗).

(b) Suppose that G is symmetric and nonsingular. Using the result in (a), show that
Newton’s method will find a stationary point of φ in one step from an arbitrary
starting point x0. Under what condition is this a minimizer?

2.8.2 Let φ(x) be a quadratic function with Hessian G, which need not be positive definite.

(a) Let ψ(λ) = φ(x0 − λd). Show using Taylor’s formula that

ψ(λ) = ψ(0)− λgT d + 1

2
λ2dT Gd.

Conclude that if dT Gd > 0 for a certain vector d, then ψ(λ) is minimized when
λ = gT d/dT Gd, and

min
λ

ψ(λ) = ψ(0)− 1

2

(dT g)2

dT Gd
.

(b) Using the result from (a), show that if gT Gg > 0 and gT G−1g > 0, then the steepest
descent method d = g with optimal λ gives a smaller reduction of ψ than Newton’s
method if gT G−1g > (gT g)2/gT Gg.

(c) Suppose that G is symmetric and nonsingular. Using the result from (b), show that
Newton’s method will find a stationary point of φ in one step from an arbitrary starting
point x0. Under what condition is this a minimizer?

2.8.3 One wants to fit a circle with radius r and center (x0, y0) to given data (xi , yi ), i = 1:m.
The orthogonal distance from (xi , yi ) to the circle,

di (x0, y0, r) = ri − r, ri =
(
(xi − x0)

2 + (yi − y0)
2)1/2

,

depends nonlinearly on the parameters x0, y0. Thus, the problem

min
x0,y0,r

m∑
i=1

d2
i (x0, y0, r)

is a nonlinear least squares problem. An approximate linear model is obtained by writing
the equation of the circle (x − x0)

2 + (y − y0)
2 = r2 in the form

δ(x0, y0, c) = 2xx0 + 2yy0 + c = x2 + y2,
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which depends linearly on the parameters x0, y0 and c = r2− x2
0 − y2

0 . If these parameters
are known, then the radius of the circle can be determined by r = (c + x2

0 + y2
0 )1/2.

(a) Write the overdetermined linear system δi (x0, y0, c) = x2 + y2 corresponding to the
data (x, y) = (xi , yi ), where

xi 0.7 3.3 5.6 7.5 0.3 −1.1
yi 4.0 4.7 4.0 1.3 −2.5 1.3

(b) Describe, preferably in the form of a Matlab program, a suitable algorithm to calcu-
late x0, y0, c with the linearized model. The program should function for all possible
cases, e.g., even when m < 3.

2.8.4* Develop an algorithm for the orthogonal distance fitting of a sphere to three-dimensional
data (xi , yi , zi ), i = 1:m. Model the algorithm after the algorithm for a circle described
by (2.8.60)–(2.8.63).
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Chapter 3
Matrix Eigenvalue Problems

The eigenvalue problem has a deceptively simple formulation,
yet the determination of accurate solutions presents a wide
variety of challenging problems.

—J. H. Wilkinson, The Algebraic Eigenvalue Problem, 1965.

The eigenvalues and eigenvectors of a matrix play an important role in many settings
in physics and engineering. They are useful in analyzing resonance, instability,
and rates of growth or decay. Typical applications are vibrating systems, airplane
wings, ships, buildings, bridges, and molecules. Eigenvalues determine whether a
building or a bridge may collapse and whether the flow over a wing is laminar or
turbulent.

The matrix eigenvalue problem is inherently nonlinear and leads to several chal-
lenging computational problems. Any general method for determining the eigenval-
ues of a matrix must involve some kind of iteration. Methods developed in the 1930s
and 1940s by Krylov often aimed at bringing the characteristic equation to polyno-
mial form pA(λ) = 0. Since the roots of a polynomial can be extremely sensitive to
small perturbations in the coefficients, such methods are no longer used in numerical
computations.

There are many aspects to consider when solving a particular eigenvalue prob-
lem. The matrix may have some special property such as being Hermitian or unitary.
It may have some special structure, e.g., band structure, that can be taken advan-
tage of. One also has to consider if all or only some of the eigenvalues are wanted
and whether the corresponding eigenvectors are also required. In some large-scale
problems it may not be possible to store and operate on the matrix itself, but there
is an efficient way to multiply a vector by the matrix. For such problems iterative
methods are suitable; see Sect. 4.6. These usually depend on solving a sequence of
smaller eigenvalue problem, resulting from subspace projections. These subprob-
lems are often solved by a direct method, so the latter also play a role in iterative
algorithms.

It has been estimated that in about 80% of all eigenvalue problems solved, the
matrix is real symmetric or Hermitian. Such matrices have real eigenvalues and their
eigenvalues are always well-conditioned. This greatly simplifies the computational
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methods used. This applies also to singular values and vectors of amatrix A ∈ C
m×n ,

which are closely related to the eigenvalues and eigenvectors of the Hermitian
matrices AHA and AAH .

In Sect. 3.1 the basic theory of thematrix eigenvalue problem and canonical forms
are surveyed. Section3.2 is devoted to perturbation theory and methods for localiza-
tion of eigenvalues. The classical power method and its modifications are treated in
Sect. 3.3. The QR algorithm, which is the method of choice for small to medium size
eigenproblems, is developed in Sect. 3.4. The Hermitian QR algorithm as well as
some other special cases are treated in Sect. 3.5. Some useful alternative methods for
the Hermitian eigenvalue problem are treated in Sect. 3.6. In Sect. 3.7 generalized
and some structured eigenvalue problems are briefly discussed. Section3.8 deals
with matrix functions such as the square root, exponential and logarithm of a matrix.
Finally, nonnegative matrices, the Perron–Frobenius theory, and Markov chains are
surveyed in Sect. 3.9.

3.1 Basic Theory

3.1.1 Eigenvalues of Matrices

The eigenvalues λ of a matrix A ∈ C
n×n were introduced in Sect. 1.1.8 as the roots

of the characteristic equation

pA(λ) = det(λI − A) = λn + cn−1λ
n−1 + · · · + c1λ + c0 = 0. (3.1.1)

A matrix A ∈ C
n×n has exactly n eigenvalues λi , i = 1 :n, counting multiple roots

according to their multiplicities. The spectrum �(A) of A is the set {λ1, . . . , λn}
of all its eigenvalues. Depending on the context, �(A) may also denote the matrix
diag(λ1, . . . , λn). If λ is an eigenvalue of A and (A−λI )x = 0, then x �= 0 is a right
eigenvector. Similarly, y �= 0 is a left eigenvector if it satisfies yH (A − λI ) = 0.
The left eigenvector is often normalized so that yH x = 1. For a Hermitian matrix
AH = A the left and right eigenvectors can be chosen to coincide.

Clearly, the eigenvectors are determined only up to a multiplicative constant.
Usually they are normalized so that ‖x‖2 = 1. Note that even if A is real, its
eigenvalues and eigenvectors may be complex.

Theorem 3.1.1 Let λi and λ j be two distinct eigenvalues of A ∈ C
n×n, and let yi

and x j be left and right eigenvectors corresponding to λi and λ j , respectively. Then
yH

i x j = 0, i.e., yi and x j are orthogonal.

Proof By definition, we have

yH
i A = λi yH

i , Ax j = λ j x j , i, j = 1:n.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Multiplying the first equation by x j from the right and the second by yH
i from the

left and subtracting, we obtain (λi − λ j )yH
i x j = 0. Since λi �= λ j , the theorem

follows. �

The n equations Axi = λi xi , i = 1 : n, are equivalent to the single matrix
equation

AX = X�, � = diag(λ1, . . . , λn),

where the columns of X = (x1, . . . , xn) are right eigenvectors of A. If we assume
that X is nonsingular and set Y H = X−1, then Y H X = XYH = I . It follows that A
diagonalizable and

A = X�Y H =
n∑

i=1

λi Pi , Pi = xi yH
i , (3.1.2)

is the eigenvalue decomposition of A. We also have Y H A = �Y H , which shows that
the rows ofY H are left eigenvectors yH

i A = λi yH
i , i = 1 :n. FromY H X = XYH = I

it follows that

P2
i = xi (yH

i xi )yH
i = Pi ,

n∑
i=1

Pi = I. (3.1.3)

Hence, Pi = xi yH
i is an elementary projector. It is called the spectral projector for

λi . Pi is an orthogonal projector if and only if yi = xi .
If all the eigenvalues λi are simple, then the null space of A − λi I has dimension

one for all i = 1 :n. Then the decomposition (3.1.2) is essentially unique.

Theorem 3.1.2 Let x1, . . . , xk be eigenvectors of A ∈ C
n×n corresponding to dis-

tinct eigenvalues λ1, . . . , λk . Then the vectors x1, . . . , xk are linearly independent.
In particular, if all the eigenvalues of a matrix A are distinct, then A has a complete
set of linearly independent eigenvectors and is diagonalizable.

Proof Assume that only the vectors x1, . . . , x p, p < k, are linearly independent and
that x p+1 = γ1x1 + · · · + γpx p. Then Ax p+1 = γ1Ax1 + · · · + γp Ax p, or

λp+1x p+1 = γ1λ1x1 + · · · + γpλpx p.

It follows that
∑p

i=1 γi (λi −λp+1)xi = 0. Since γi �= 0 for some i and λi −λp+1 �= 0
for all i , this contradicts the assumption of linear independence. Hence, there must
be p = k linearly independent vectors. �

To every distinct eigenvalue corresponds at least one eigenvector. If the eigenvalue
λi is a root of multiplicity mi of the characteristic equation, then mi is called the
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algebraic multiplicity of the eigenvalue. The eigenvectors corresponding to λi form
a linear subspace L(λi ) of C

n of dimension

gi = dimN (A − λi I ). (3.1.4)

The integer gi is called the geometric multiplicity of λi and specifies the maximum
number of linearly independent eigenvectors associated with λi . The individual
eigenvectors corresponding to a multiple eigenvalue are not uniquely determined.

Theorem 3.1.3 The geometric and algebraic multiplicities of any eigenvalue λi

satisfy the inequality gi ≤ mi .

Proof Let λi be an eigenvalue with geometric multiplicity gi and let x1, . . . , xgi

be linearly independent eigenvectors associated with λi . Then AX1 = λi X1, where
X1 = (x1, . . . , xgi ). Now, let X2 = (xgi +1, . . . , xn) consist of n − gi more vec-
tors such that X = (X1 X2) is nonsingular. Then the matrix X−1AX has the
form

X−1AX =
(

λ̄i I B
0 C

)
,

and hence the characteristic polynomial of A is

pA(λ) = (λ − λi )
gi det(λI − C).

It follows that the algebraic multiplicity of λ̄i is at least equal to gi . �

If gi < mi , then λi is a defective eigenvalue. A matrix is defective if at least one
of its eigenvalues is defective. In this case its eigenvectors do not span C

n .
For any nonzero vector v ∈ C

n , define a sequence of vectors by v0 = v, vk =
Avk−1 = Akv, k = 1, 2, . . .. Since there are at most n linearly independent vectors
in C

n , there must be a first vector vm that can be expressed as a linear combination
of the preceding ones. Then

c0v0 + c1v1 + · · · + vm = (c0 I + c1A + · · · + Am)v = p(A)v = 0,

where p is a polynomial of degree m ≤ n and m is the grade of v with respect to
A. Of all vectors v ∈ C

n there is at least one for which the grade is maximal, and
equal to s ≤ n. If v is such a vector and q its minimal polynomial, it can be shown
that q(A)v = 0 for any vector v ∈ C

n , and hence

q(A) = γ0 I + γ1A + · · · + γs−1As−1 + As = 0.

This polynomial q is the minimal polynomial of A.

Ham
Rectangle

Ham
Highlight

Ham
Highlight



3.1 Basic Theory 435

Definition 3.1.1 Two matrices A ∈ C
n×n and B ∈ C

n×n are said to be similar if
there is a square nonsingular matrix S ∈ C

n×n such that

B = S−1AS. (3.1.5)

The transformation (3.1.5) is called a similarity transformation (or briefly a similar-
ity). It defines an equivalence transformation, characterized, among other things, by
transitivity: if A is similar to B and B is similar to C , then A is similar to C .

Theorem 3.1.4 Let A ∈ C
n×n and if B = S−1AS be similar to A. Then A and B

have the same characteristic polynomial and thus the same eigenvalues, with the
same multiplicities. If x is an eigenvector of A, then S−1x is an eigenvector of B for
the same eigenvalue λ.

Proof Using the product rule for determinants, we find

det(λI − B) = det(λI − S−1AS) = det(S−1(λI − A)S)

= det
(
S−1) det(λI − A

)
det(S) = det(λI − A).

From Ax = λx and A = SBS−1x it follows that λx = SBS−1x and hence By = λy,
with y = S−1x . �

If the matrix A represents a linear transformation, then the similarity transforma-
tion B = S−1AS corresponds to a change of the coordinate system. Similar matri-
ces represent the same linear transformation in different coordinate systems. Many
algorithms for computing eigenvalues and eigenvectors use a sequence of similarity
transformations:

A0 = A, Ak = S−1
k Ak−1Sk, k = 1, 2, . . . ,

to transform A into a matrix of simpler form. Since Ak is similar to A, it has the
same eigenvalues as A. If xk is an eigenvector of Ak , then x = S1S2 · · · Sk xk is an
eigenvector of A.

If A can be transformed by similarities to triangular form, then its eigenvalues are
the diagonal elements. For block upper triangular matrices the following result can
be proved by induction.

Theorem 3.1.5 Assume that A can be reduced by a similarity to block upper trian-
gular form

Ã = S−1AS =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1N

0 A22 · · · A2N
...

...
. . .

...

0 0 0 ANN

⎞
⎟⎟⎟⎠ , (3.1.6)
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where each diagonal block Aii is square. Then the spectrum of A is

�(A) =
N⋃

i=1

�(Aii ).

In particular, the eigenvalues of a triangular matrix are its diagonal elements.

Let A ∈ R
n×n have the factorization A = BC, where B ∈ R

n×n is nonsingular. Then
B−1AB = B−1(BC)B = CB = Ã and Ã is similar to A. A more general result is
the following.

Lemma 3.1.1 Let A ∈ C
n×p and B ∈ C

p×n be any matrices. Then the nonzero
eigenvalues of AB ∈ C

n×n and BA ∈ C
p×p are the same.

Proof Let

S =
(

I A
0 I

)
, S−1 =

(
I −A
0 I

)

and consider the identity

S−1
(

AB 0
B 0

)
S =

(
0 0
B BA

)
.

This shows that the two block triangular matrices above are similar and thus have the
same eigenvalues. The result now follows from the fact that for a block triangular
matrix with square diagonal blocks the set of eigenvalues (spectrum) is equal to the
union of the sets of eigenvalues (spectra) of the diagonal blocks. �

The equation Ax = λx says that the subspace spanned by an eigenvector is invariant
under multiplication by A. This concept can be generalized to subspaces.

Definition 3.1.2 Let A ∈ C
n×n and let X be a subspace of C

n . Then X is an
invariant subspace of A if

AX ≡ {Ax | x ∈ X } ⊂ X .

Clearly, any set of right eigenvectors spans an invariant subspace.

Eigenvectors that are not well defined individually can be brought together in a
well defined invariant subspace. This concept also plays a role in solving eigenprob-
lems for large matrices, where only a subset of the eigenvalues and eigenvectors can
be computed. We often use the shorter name eigenspace for an invariant subspace.

Let the columns of X1 ∈ C
n×k form a basis for an invariant subspace X1 of

dimension k of A. If X1 has full column rank, then there is a matrix Y H
1 such that

Y H
1 X1 = Ik . Definition3.1.2 implies that for any z ∈ C

k ,

AX1z = X1w ∈ X1,
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for some w ∈ C
k . Multiplying this by Y H

1 gives

L1z = w, L1 = Y H
1 AX1 ∈ C

k×k . (3.1.7)

We say that L1 is a representation of A on the invariant subspace X1. If (λ, z) is an
eigenpair of L1, then (λ, X1z) is an eigenpair of A. The matrix P1 = X1Y H

1 is the
spectral projector for X1 and

P1AP1 = X1Y H
1 AX1Y H

1 = X1L1Y H
1 .

Suppose that we want to find a matrix C for which p(λ) = λn + cn−1λ
n−1 +

· · ·+ c1λ+ c0 is the characteristic polynomial, i.e., p(λ) = det(λI − C). A solution
is the matrix

C =

⎛
⎜⎜⎜⎜⎜⎝

−cn−1 −cn−2 · · · −c1 −c0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

, (3.1.8)

which is called the companion matrix to p(λ). Sometimes this term is used for
slightly different matrices, in which the coefficients of the polynomial appear in the
last row or the last column.

Example 3.1.1 A famous example by Wilkinson [252, 1984] 1 illustrates the fact
that the roots of a polynomial can be extremely sensitive to perturbations in its
coefficients. Therefore, any method that attempts to compute eigenvalues from the
coefficients of the characteristic equation is doomed to failure.

Wilkinson considered the polynomial

p(z) = (z − 1)(z − 2) · · · (z − 20) = z20 − 210z19 + · · · + 20!, (3.1.9)

with zeros 1, 2, . . . , 20. Let p̂(z) be the polynomial that is obtained when the coef-
ficient a1 = −210 in p(z) is replaced by

−(210 + 2−23) = −210.000000119 . . . ,

while the rest of the coefficients remain unchanged. Even though the relative pertur-
bation in a1 is of order 10−10, many of the zeros of the perturbed polynomial p̂(z)

1 Wilkinson received the Chauvenet Prize of the Mathematical Association of America 1987 for
this exposition of the ill-conditioning of polynomial zeros.
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deviate greatly from those of p(z). In fact, correct to nine decimal places, the 20
perturbed zeroes are:

1.000000000 10.095266145 ± 0.643500904i
2.000000000
3.000000000 11.793633881 ± 1.652329728i
4.000000000
4.999999928 13.992358137 ± 2.518830070i
6.000006944
6.999697234 16.730737466 ± 2.812624894i
8.007267603
8.917250249 19.502439400 ± 1.940330347i

20.846908101

For example, the two zeros 16, 17 have not only changed substantially but have
become a complex pair. It should be emphasized that this behavior is quite typical of
polynomials with real coefficients and real roots. Indeed, many polynomials arising
in practice behave much worse than this.

If we assume that the coefficients ai of a polynomial are given with full machine
accuracy, then the error δ in computed values of p(x) (for real x) is bounded by

δ < u
n∑

i=0

|(2i + 1)an−i x i | < γ2n+1

n∑
i=0

|an−i ||x |i .

Hence, the limiting accuracy of a zero α is

εα = δ/|p′(α)| =
n∑

i=0

|(2i + 1)an−iα
i |/|p′(α)|.

In particular, for the root α = 14 in the above example we get εα = 1.89 · 1016. But
the changes in this example are so large that this linearized perturbation theory does
not apply! �

3.1.2 The Jordan Canonical Form

Any matrix A ∈ C
n×n is similar to a block diagonal matrix with almost diagonal

matrices, which reveals its algebraic properties. This the Jordan2 canonical form.

2 Marie Ennemond Camille Jordan (1838–1922), French mathematician, professor at École
Polytechnique and Collége de France. Jordan made important contributions to finite group theory,
linear and multilinear algebra, as well as differential equations. His paper on the canonical form
was published in 1870.
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Theorem 3.1.6 (Jordan Canonical Form) Any matrix A ∈ C
n×n is similar to a block

diagonal matrix

X−1AX = J =

⎛
⎜⎜⎜⎝

Jm1(λ1)

Jm2(λ2)

. . .

Jmt (λt )

⎞
⎟⎟⎟⎠ , (3.1.10)

where

Jmi (λi ) =

⎛
⎜⎜⎜⎜⎝

λi 1

λi
. . .

. . . 1
λi

⎞
⎟⎟⎟⎟⎠

= λi I + S ∈ C
mi ×mi , i = 1 : t, (3.1.11)

are Jordan blocks. The numbers m1, . . . , mt are unique and
∑t

i=1 mi = n. The form
(3.1.10) is unique up to the ordering of the Jordan blocks.

A full proof of this fundamental theorem can be found in Horn and Johnson
[131, 1985], Sect. 3.1. It is quite long and is therefore omitted here. A constructive
proof starts with a block diagonal decomposition of A given in Theorem3.1.13. The
more difficult part is the reduction of the diagonal blocks to Jordan form; see Fletcher
and Sorensen [80, 1983]. Pták [200, 1980] gives a short elegant proof, which involves
concepts that are not elementary; see comments by Boor [28, 2000].

The simplest example of a matrix that does not have a full set of linearly inde-
pendent eigenvectors is the 2 × 2 Jordan block

A =
(
1 1
0 1

)
,

with the eigenvalue λ = 1 of algebraic multiplicity two. The eigenvectors must
satisfy (A − I )x = 0, which implies that x2 = 0. Hence, up to a scalar factor there
can be only one eigenvector x1 = e1.

The Jordan canonical form displays all eigenvalues and eigenvectors of A explic-
itly. To each Jordan block Jmi (λi ) there corresponds exactly one eigenvector. Hence,
the number of Jordan blocks corresponding to a multiple eigenvalue λ equals the
geometric multiplicity of λ. The vectors x2, . . . , xm1 are called principal vectors of
A and form a chain

Ax1 = λ1x1, Axi+1 = λi xi+1 + xi , i = 1 :m1 − 1.

Note that the same eigenvalue may appear in several different Jordan blocks. If this
is the case A is called derogatory; otherwise it is called non-derogatory.
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Theorem 3.1.7 The kth power of a Jordan block Jm(λ) ∈ C
m×m is given by

(Jm(λ))k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λk
(k
1

)
λk−1

(k
2

)
λk−2 · · · ( k

m−1

)
λk−m+1

λk
(k
1

)
λk−1 · · · ( k

m−2

)
λk−m+2

λk . . .
...

. . .
(k
1

)
λk−1

λk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.1.12)

(k ≥ m). If |λ| < 1, then limk→∞ (Jm(λ))k = 0.

Proof Writing Jm(λ) = λI + N and using the binomial expansion, we get

(λI + N )k = λk I +
(

k

1

)
λk−1N +

(
k

2

)
λk−2N 2 + · · · + N k .

For j < m, N j is a diagonal of ones shifted to position j . For j ≥ m, N j = 0.
Hence, (3.1.12) holds. The second statement follows from the relation

lim
k→∞

(
k

j

)
λk = 0,

which holds for fixed j and |λ| < 1. This is a consequence of the well-known fact
that the exponential function grows faster than any polynomial of fixed degree. �

The minimal polynomial of A can be read off from its Jordan canonical form.
Consider a Jordan block Jm(λ) = λI + N of order m and put q(z) = (z −λ) j . Then
q(Jm(λ)) = N j = 0, j ≥ m. Hence, the minimal polynomial of a matrix A with
distinct eigenvalues λ1, . . . , λk has the form

q(z) = (z − λ1)
m1(z − λ2)

m2 · · · (z − λk)
mk , (3.1.13)

where m j is the highest dimension of any Jordan block corresponding to the eigen-
value λ j , j = 1 :k. The polynomials

πi (z) = det
(
z I − Jmi (λi )

) = (z − λi )
mi

are called elementary divisors of A. They divide the characteristic polynomial of
A. The elementary divisors of the matrix A are all linear if and only if the Jordan
canonical form is diagonal. As a corollarywe obtain theCayley–Hamilton theorem.

Theorem 3.1.8 Let pA(z) = det(z I − A) be the characteristic polynomial of a
matrix A. Then pA(A) = 0, i.e., A satisfies its own characteristic polynomial.

The Jordan canonical form of a non-diagonalizable matrix is not a continuous
function of A. For this reason, it is difficult to determine numerically.
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Example 3.1.2 Consider a Jordan block with its (n, 1) element perturbed:

Jn(β) + τ eneT
1 ∈ R

n×n .

For τ = 0 this matrix has a single eigenvalue β of multiplicity n, and is in Jordan
canonical form. For τ > 0 there are n distinct eigenvalues λi , i = 1 :n, equal to the
roots of the equation

(β − λ)n − (−1)nτ = 0.

The perturbed matrix is diagonalizable for any τ �= 0, and its eigenvalues βi satisfy
|λi − β| = |τ |1/n . For example, if n = 10 and τ = 10−10, then the perturbation in
the eigenvalues is of size 0.1. Note that, since the trace of the perturbed matrix is
unchanged, the mean value of the eigenvalues is not perturbed. �

Sometimes it is possible to avoid the complication of the Jordan canonical form
by noting that the class of diagonalizable matrices is dense in C

n×n . More precisely,
for A ∈ C

n×n and any ε > 0, there exists a matrix B with ‖A − B‖2 ≤ ε such that
B has n distinct eigenvalues. The proof is a slight extension of Example3.1.2.

One application of the Jordan canonical form of a matrix is to extending ana-
lytical functions to matrix arguments; see Definition3.8.1. The so-called staircase
algorithm of Kublanovskaya3 [160, 1966] for computing the Jordan structure of a
multiple eigenvalue was a milestone in this area. It has been further been developed
by Kågström and Ruhe [142, 1980] and [143, 1980].

3.1.3 The Schur Decomposition

The Jordan canonical form can be very sensitive to perturbations to A not only for
defective matrices, but also for matrices that are far from normal. In contrast, the
Schur decomposition (Schur [213, 1909]) can always be computed by a sequence
of numerically stable unitary similarities.

Theorem 3.1.9 (Schur Decomposition) Given A ∈ C
n×n, there exists a unitary

matrix U ∈ C
n×n such that

U H AU = T = D + N , (3.1.14)

3 Vera Nikolaevna Kublanovskaya (1920–2012), Russian mathematician, was one of the founders
of modern linear algebra. She came from a small village on the Lake Beloye east of Leningrad and
began studies in Leningrad to become a teacher. There she was encouraged to pursue a career in
mathematics by D. K. Faddeev. After surviving the siege of Leningrad, she graduated in 1948 and
joined the Steklov institute. Here she became responsible for selecting matrix algorithm for BESM,
the first electronic computer in the USSR. She is most widely known as one of the inventors of the
QR algorithm and her work on canonical forms.
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where T is upper triangular, N strictly upper triangular, D = diag(λ1, . . . , λn), and
λi , i = 1 : n, are the eigenvalues of A. Furthermore, U can be chosen so that the
eigenvalues appear in arbitrary order in D.

Proof The proof is by induction on the order n of A. For n = 1 the theorem is
trivially true. Assume the theorem holds for all matrices of order n − 1. We show
that it holds for any matrix A ∈ C

n×n .
Let λ be an arbitrary eigenvalue of A and u1 an eigenvector normalized so that

‖u1‖2 = 1. Then we can always find U2 ∈ C
n×n−1 such that U = (u1, U2) is a

unitary matrix. Since AU = A(u1, U2) = (λu1, AU2), we have

U H AU =
(

u H
1

U H
2

)
A(u1, U2) =

(
λu H

1 u1 u H
1 AU2

λU H
2 u1 U H

2 AU2

)
=

(
λ wH

0 B

)
.

Here B is of order n −1 and by the induction hypothesis there exists a unitary matrix
Ũ such that Ũ H BŨ = T̃ . Then

U
H

AU = T =
(

λ wH Ũ
0 T̃

)
, U = U

(
1 0
0 Ũ

)
,

where U is unitary. From the above it is obvious that we can choose U to get the
eigenvalues of A arbitrarily ordered on the diagonal of T . �

Because it depends on the ordering of the eigenvalues along the diagonal in T , the
Schur decomposition is not unique. Multiple eigenvalues are also a cause of non-
uniqueness of the decomposition.

If an eigenvector of A is known, then the construction in the proof can be used to
reduce the dimension of the eigenproblem by one, where that eigenpair is removed.
This is an important technique in the solution of eigenvalue problems and is known
as deflation.

In the Schur decomposition the eigenvalues of A are displayed on the diagonal.
The columns in U = (u1, u2, . . . , un) are the Schur vectors. It is easy to verify that
the nested sequence of subspaces

Sk = span[u1, . . . , uk], k = 1 :n,

consists of invariant subspaces, i.e., z ∈ Sk implies that Az ∈ Sk . Of the Schur
vectors, in general only the first, u1, is an eigenvector. But since the Schur basis is
orthogonal, it is often preferable to the eigenvector basis in many applications. If the
Schur triangular form of A is diagonal, then A is said to be normal.

Definition 3.1.3 A matrix A ∈ C
n×n is said to be normal if it satisfies

AHA = AAH . (3.1.15)
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Important classes of normal matrices in C
n×n are Hermitian matrices (AH = A),

skew-Hermitian matrices (AH = −A), and unitary matrices (AH = A−1). For
real matrices the corresponding terms are symmetric (AT = A), skew-symmetric
(AT = −A), and orthogonal (AT = A−1).

Theorem 3.1.10 A matrix A ∈ C
n×n is normal if and only if it has a complete set

of orthogonal eigenvectors, i.e., there exists a unitary matrix U ∈ C
n×n such that

U H AU = D = diag(λ1, . . . , λn). (3.1.16)

Proof If A is unitarily diagonalizable, then

AHA = U DH DUH = UDDH U H = AAH ,

and A is normal. On the other hand, if A is normal, then for unitary U ,

(U H AU)H U H AU = U H (AH A)U = U H (AAH )U = U H AU(U H AU)H ,

and hence U H AU is normal. It follows that the upper triangular matrix

T =

⎛
⎜⎜⎜⎝

λ1 t12 . . . t1n

λ2 . . . t2n
. . .

...

λn

⎞
⎟⎟⎟⎠

in the Schur decomposition is normal, i.e., T H T = TTH . Equating the (1, 1)-
elements on the two sides of the equation T H T = TTH we get

|λ1|2 = |λ1|2 +
n∑

j=2

|t1 j |2,

and thus t1 j = 0, j = 2 : n. In the same way it can be shown that all the other
off-diagonal elements in T vanish, and thus T is diagonal. �

If A is Hermitian (AH = A), then by (3.1.16) �̄ = �, i.e., the eigenvalues of a
Hermitian matrix are real. Hence, any Hermitian matrix may be decomposed as

A = UDUH =
n∑

i=1

λi ui u
H
i (3.1.17)

with λi real. In the special case where A is real and symmetric U can be taken to be
real and orthogonal. If A is Hermitian and positive semidefinite, then its eigenvalues
equal its singular values. For skew-Hermitian matrices (AH = −A) λ̄ = −λ, which
implies that the eigenvalues are zero or purely imaginary.
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If A is a unitary (real orthogonal) matrix, then A−1 = AH and hence λ−1 = λ̄.
Thus |λ|2 = 1, i.e., the eigenvalues of A lie on the unit circle. For a real orthogonal
matrix A the characteristic polynomial has real coefficients. Hence, any complex
eigenvalues must occur in complex conjugate pairs. If the dimension of A is odd,
there must be at least one real eigenvalue equal to 1 or −1.

The following relationship between unitary and Hermitian matrices is called the
Cayley parametrization; see also Problem2.3.6.

Theorem 3.1.11 (Cayley Transformation) Let U be a unitary matrix that does not
have −1 as an eigenvalue. Then we can write

U = (I + i H)(I − i H)−1, H = i(I − U )(I + U )−1, (3.1.18)

where H is a uniquely determined Hermitian matrix.

Example 3.1.3 It is often desired to reorder the diagonal elements of T in the Schur
decomposition. For example, one may want close eigenvalues to appear in adjacent
positions.Another application is in determining the invariant subspace corresponding
to a certain subset of eigenvalues of T . Then these have to be moved to the top
of the Schur form. Any such reordering can be achieved by a sequence of unitary
similarities, each of which swaps two adjacent diagonal elements. Consider the upper
triangular 2 × 2 matrix

A =
(

a11 a12
0 a22

)
, a11 �= a22.

We seek a Givens rotation U such that

A = U H AU =
(

a22 ā12
0 a11

)
, U =

(
c̄ s̄

−s c

)
,

where |s|2+|c|2 = 1. It can be verified that this holds if the elements inU are chosen
as c̄ = a12/ρ, s = (a11 − a22)ρ, where

ρ = (|a11 − a22|2 + |a12|2
)1/2

.

An arbitrary subset of eigenvalues can be moved to the upper left corner of T by a
sequence of such reorderings. �

As shown in the proof of the Schur decomposition, when an eigenvector is known,
the dimension of the eigenproblem can be reduced by one. More generally, if an
invariant subspace of dimension p > 1 is known, the dimension of the eigenproblem
can be reduced by p.
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Lemma 3.1.2 Let A, X ∈ C
n×n, where X = (

X1 X2
)

is unitary and X1 ∈ C
n×p

spans a right invariant subspace X1 of dimension p < n. Then

X H AX =
(

A11 A12
0 A22

)
, (3.1.19)

where A11 = X H
1 AX1 ∈ C

p×p. Further, X H
2 A = A22X H

2 , i.e., X2 spans a left
invariant subspace of A and the remaining eigenvalues of A are equal to those of
A22 = X H

2 AX2. If the sets of eigenvalues of A11 and A22 do not intersect, then the
invariant subspace X1 is said to be simple

Proof Since X1 spans a right invariant subspace, AX1 = X1A11. Hence A11 =
X H
1 AX1 and

X H AX = X H (AX1, AX2) =
(

X H
1

X H
2

)
(X1A11, AX2) =

(
A11 A12
0 A22

)
,

which proves (3.1.19). Similarly, X H
2 A = A22X H

2 follows from

(
X H
1

X H
2

)
A =

(
A11 A12
0 A22

)(
X H
1

X H
2

)
. �

If A is real, we would like to restrict ourselves to real similarities, because oth-
erwise complex elements are introduced in U−1AU. If A has complex eigenvalues,
then A obviously cannot be reduced to triangular form by a real orthogonal similarity.
For a real matrix A the eigenvalues occur in complex conjugate pairs. Therefore, it is
possible to reduce A to real quasi-triangular form T , with 1× 1 and 2× 2 diagonal
blocks. The 2× 2 blocks will correspond to pairs of complex conjugate eigenvalues.
This decomposition is often called the real quasi-Schur form.

Theorem 3.1.12 (Real Schur Decomposition) Given A ∈ R
n×n, there exists a real

orthogonal matrix Q ∈ R
n×n such that

QT AQ = T = D + N , (3.1.20)

where T is real block upper triangular, D is block diagonal with 1 × 1 and 2 × 2
blocks, and where all the 2 × 2 blocks have complex conjugate eigenvalues.

Proof Let λ �= λ be a complex eigenvalue of A and x the corresponding eigenvector.
Then, since Ax = Ax = λx , λ is an eigenvalue with eigenvector x̄ �= x . Thus,
R(x, x) is an invariant subspace of dimension two and X1 = (x1, x2), x1 = x + x ,
x2 = i (x − x) is a real basis for this subspace. It follows that AX1 = X1M , where
the matrix M ∈ R

2×2 has eigenvalues λ and λ. Let X1 = Q1R be the thin QR
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factorization of X1. Then AQ1R = Q1RM or AQ1 = Q1P , where P = RMR−1 ∈
R
2×2 is similar to M . From (3.1.19) with X = Q, we find that

QT AQ =
(

P W H

0 B

)
,

where P has eigenvalues λ and λ̄. An induction argument completes the proof. �

For the real Schur form it is possible to swap two adjacent diagonal blocks of size
1 × 1 or 2 × 2 using a real orthogonal similarity. The scheme described above for
swapping 1 × 1 complex diagonal elements can be generalized to handle this; see
Bai, Demmel, and McKenney [14, 1993].

InMatlab the command[U,T] = schur(A) computes a Schur form of A =
U T U H , where U H U = I . By itself T = schur(A) returns just T . If the matrix
is real, the real Schur form is returned. The function [V,S] = rsfcsf(U,T)
converts the real Schur form to complex form.

The matrix T in a Schur decomposition cannot be diagonal unless A is normal.
To transform T to a form closer to a diagonal matrix, we have to use non-unitary
similarities. By Theorem3.1.9 the eigenvalues can be ordered in the Schur
decomposition so that

D = diag(λ1, λ2, . . . , λn), |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

We now show how to obtain the following block diagonal form.

Theorem 3.1.13 (Block Diagonal Decomposition) Assume that A ∈ C
n×n has dis-

tinct eigenvalues λi , i = 1 :k, and let

Q H AQ = T =

⎛
⎜⎜⎜⎝

T11 T12 · · · T1k

0 T22 · · · T2k
...

...
. . .

...

0 0 · · · Tkk

⎞
⎟⎟⎟⎠

be a Schur decomposition of A, where diag(Tii ) = λi I . Then there exists a nonsin-
gular matrix Z such that

(U Z)−1AU Z = Z−1T Z = D, D = diag(λ1 I + N1, · · · , λk I + Nk),

where D is block diagonal and Ni , i = 1 :k, are strictly upper triangular matrices.
In particular, if A has n distinct eigenvalues, then D is diagonal.

Proof Consider first the 2 × 2 case and perform the similarity

M−1T M =
(
1 −m12
0 1

)(
λ1 t12
0 λ2

)(
1 m12
0 1

)
=

(
λ1 m12(λ1 − λ2) + t12
0 λ2

)
,
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where M is an upper triangular elementary elimination matrix; see Sect. 1.2.2. If
λ1 �= λ2, the off-diagonal element in T is annihilated by taking m12 = t12/(λ2−λ1).
In the general case, let ti j �= 0 be an element outside the block diagonal of T . Then
ti j can be annihilated by the similarity M−1

i j T Mi j , where Mi j differs from the unit
matrix only in the element mi j . Since T is upper triangular, this transformation
will not affect already annihilated off-diagonal elements in T with indices (i ′, j ′) if
j ′−i ′ < j −i . Hence, all elements ti j outside the block diagonal can be annihilated in
this way, by starting with the elements on the diagonal closest to the main diagonal
and working outwards. For example, in a case with 3 blocks of orders 2, 2, 1 the
elements are eliminated in the order

⎛
⎜⎜⎜⎜⎝

× × 2 3 4
× 1 2 3

× × 2
× 1

×

⎞
⎟⎟⎟⎟⎠

.

Further details of the proof are left to the reader. �
When A hasmultiple eigenvalues,we need to identify clusters of close eigenvalues

in order to compute the block diagonal form.Numerically it can be a very difficult task
to determine the Jordan block structure of the diagonal blocks containing multiple
eigenvalues.

3.1.4 Block Diagonalization and Sylvester’s Equation

We have seen that if AX − XB = 0, where A ∈ C
m×m , B ∈ C

n×n , X ∈ C
m×n ,

and n ≤ m, then X spans an invariant subspace of A. Furthermore, the eigenval-
ues of B are also eigenvalues of A. The corresponding nonhomogeneous matrix
equation

AX − XB = C, C ∈ C
m×n, (3.1.21)

is called a Sylvester equation. It is a special case of the linear matrix equation∑N
i=1 Ai XBi = C studied by Sylvester [225, 1884] in 1884. The Sylvester equation

can be recast as a linear system. From theKronecker identity (1.8.8), p. 161, it follows
that

⎛
⎜⎜⎜⎝

A − b11 I −b21 I · · · −bn1 I
−b12 I A − b22 I · · · −bn2 I

...
...

. . .
...

−b1n I A − b2n I · · · A − bnn I

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

c1
c2
...

cn

⎞
⎟⎟⎟⎠ , (3.1.22)

http://dx.doi.org/10.1007/978-3-319-05089-8_1
http://dx.doi.org/10.1007/978-3-319-05089-8_1
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where the matrix is the Kronecker sum of A and −B,

(I ⊗ A − BT ⊗ I ) ∈ C
mn×mn (3.1.23)

and xi and ci are the columns of X and C .

Example 3.1.4 Sylvester’s equation (3.1.21) arises in the similarity transformation
to block diagonal formof a block upper triangularmatrixwith square diagonal blocks.
Consider the similarity

(
Ik −X
0 In−k

)(
A11 A12
0 A22

)(
Ik X
0 In−k

)
=

(
A11 Y
0 A22

)
, (3.1.24)

where A11 and A22 are square matrices. Then forming the products in (3.1.24) gives
Y = A12 − XA22 + A11X . The result is a block diagonal matrix if and only if X is
satisfies

A11X − XA22 = −A12. (3.1.25)

�

Since the order of the linear system (3.1.22) is mn, solving this by Gaussian elim-
ination is not practical, except for small systems. More efficient methods for solving
Sylvester equations are based on the equivalence of (3.1.21) and the transformed
equation

(U−1AU)(U−1XV) − (U−1XV)(V −1BV) = U−1CV.

Theorem 3.1.14 The Sylvester equation AX − XB = C, where A ∈ C
n×n, B ∈

C
m×m, and C ∈ C

n×m, has a unique solution if and only if A and B have no
common eigenvalue i.e., if �(A) ∩ �(B) = ∅.

Proof Theorem3.1.9 yields the existence of the Schur decompositions

U H AU = S, V H BV = T, (3.1.26)

where S and T are upper triangular and U and V are unitary matrices. By (3.1.26),
Eq. (3.1.25) can be reduced to

SY − Y T = F, Y = U H XV, F = U H CV.

The kth column of this equation is

Syk − Y tk = fk, k = 1 :m,

where tk = T ek is the kth column of T . Since T is upper triangular, setting k = 1
gives (S − t11 I )y1 = f1. From V H BV = T it follows that t11 is an eigenvalue of T
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and by assumption not an eigenvalue of S. Thus, the upper triangular matrix S − t11 I
is nonsingular and a unique solution y1 can be computed by back substitution.

Now, suppose that we have found the columns y1, . . . , yk−1. From the kth column
of the system we have

(S − tkk I )yk = fk +
k−1∑
i=1

tik yi . (3.1.27)

Here the right-hand side is known and, by the argument above, the triangular matrix
is S − tkk I nonsingular. Hence, yk can be computed by back substitution. The proof
now follows by induction. �

The proof is constructive and essentially is the Bartels–Stewart algorithm
[17, 1972] for solving the Sylvester equation (3.1.21). It involves finding the Schur
decompositions of A and B, which takes roughly 20(n3 + m3) flops. The updating
of the right-hand side F = U H CV takes 2mn(m + n) flops. Finally, solving the m
triangular equations of order n takes mn2 flops once the right-hand side is known.

A more efficient algorithm has been proposed by Golub et al. [106, 1979], where
A is only reduced to Hessenberg form. This can be done in 10n3/3 flops, as will
be outlined in Sect. 3.4.3. This saving is particularly important when n � m, which
is often the case in practice. The linear systems (3.1.27) in the modified algorithm
are upper Hessenberg instead of triangular, and can be solved in O(mn2) flops. If
n < m, then the algorithm is instead applied to the transposed Sylvester equation
BT X T − X T AT = −CT .

If A and B are real, then to avoid complex arithmetic one should reduce A and
B to block triangular real Schur form. Then complex eigenvalues correspond to
2 × 2 blocks on the diagonal. In the modified Bartels–Stewart algorithm, if sk,k−1
is nonzero, one simultaneously solves for the two columns yk−1 and yk . This gives
a 2n × 2n linear system that after a suitable reordering of the variables is upper
triangular with two nonzero subdiagonals.

A more general form of Sylvester equation is

AXD − EXB = C, (3.1.28)

where D ∈ C
n×n and E ∈ C

m×m . If D and E are nonsingular, then premultiplying
by E−1 and postmultiplying by D−1 gives the equation

(E−1A)X − X (BD−1) = E−1CD−1,

which is of standard form. But the generalized Sylvester equation (3.1.28) may have
a unique solution even if D or E is singular. An algorithm to compute X without
inverting either D or E is given in [91, 1992] and implemented in a Fortran software
package; see [92, 1992]. It is advisable to use this algorithm if D or E is close to
being singular.
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An important special case of Sylvester’s equation is the Lyapunov equation

AX + XAH = C, (3.1.29)

which corresponds to setting B = −AH in (3.1.21). ByTheorem3.1.14, this equation
has a unique solution if and only if the eigenvalues of A satisfy λi + λ̄ j �= 0 for
all i and j . Further, if C H = C the solution X is Hermitian. In particular, if all
eigenvalues of A have negative real part, then all eigenvalues of −AH have positive
real part, and the assumption is satisfied; see Hammarling [118, 1982].

Several generalizations of Sylvester’s equation have applications in systems and
control theory. An example is the algebraic Riccati equation4

AX − XB + XG X = H, X ∈ R
n×m . (3.1.30)

This equation and its variations are central objects of study in control theory.
Several algorithms for solving Riccati equations have been developed. If an initial
approximation X0 is given, one can try the simple iteration

AXk+1 − Xk+1B = H + Xk G Xk, k = 0, 1, 2, . . . .

Each iteration step requires the solution of a Sylvester equation. If A and B have
been reduced to upper triangular/Hessenberg form, this can be solved cheaply. Con-
vergence is at best linear and a more rapidly convergent iteration is obtained by using
Newton’s method.

An important special case of (3.1.30) is obtained for m = n, AT = −B = F ,

FT X + X F + XG X = H, X ∈ R
n×n, (3.1.31)

where G and H are symmetric. This is commonly called the continuous-time alge-

braic Riccati equation. If

(
I
X

)
spans an invariant subspace of the matrix

H =
(

F G
H −FT

)
∈ C

2n×2n, (3.1.32)

then (
F G
H −FT

)(
I
X

)
=

(
F + G X

H − FT X

)
=

(
I
X

)
Z .

4 Jacopo Francesco Riccati (1676–1754), Italian mathematician. His works on hydraulics and dif-
ferential equations were used by the city of Venice in regulating the canals. The Riccati differential
equation y′ = c0(x)+ c1(x)y + c2(x)y2 is named after him. The algebraic Riccati equation, which
also is quadratic, is named in analogy to this.
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This gives F +G X = Z and H − FT X = X Z . Eliminating Z shows that X satisfies
the Riccati equation (3.1.31). AmatrixH of the form (3.1.32) is called a Hamiltonian
matrix; see Sect. 3.7.6.

The algebraic Riccati equation plays a fundamental role in systems theory, where
it is the main tool for solving the linear regulator problem and used to find the
stationary Kalman filter. It is also used for computing the optimal controller in more
modern systems. Due to the importance of this subject, several texts devoted to the
numerical solution of such matrix equations have been published, e.g., Arnold and
Laub [10, 1984], Mehrmann [177, 1991], Lancaster and Rodman [163, 1995], and
Abou-Kandil et al. [1, 2003]. High performance parallel algorithms for Sylvester-
type equations are given by Granat and Kågström [108, 2010].

Exercises

3.1.1 A matrix A ∈ R
n×n is called nilpotent if Ak = 0 for some k > 0. Show that a nilpotent

matrix must have 0 as an eigenvalue.

3.1.2 (a) Let A = xyT , where x and y are vectors in R
n , n ≥ 2. Show that 0 is an eigenvalue

of A with multiplicity at least n − 1, and that the remaining eigenvalue is λ = yT x .
(b) What are the eigenvalues of the Householder reflector P = I −2uuT , where u ∈ R

n ,
‖u‖2 = 1?

3.1.3 Show the useful corollary of Lemma3.1.1 that the eigenvalues of the outer product matrix
A = xyT ∈ C

n×n are λ1 = xT y and zero repeated n − 1 times.
3.1.4 Let X = (X1 X2) ∈ C

n×n be nonsingular, and let

X−1AX =
(

A11 A11
A12 A22

)
.

Prove that R(X1) is an invariant subspace of A if and only if A21 = 0.
3.1.5 Determine the eigenvalues of a Givens rotation

G(θ) =
(

cos θ sin θ

− sin θ cos θ

)
.

When are the eigenvalues real?

3.1.6 (a) Let C be the companion matrix in (3.1.8). Show, by expanding
det(λI − C) along the first row, that the characteristic polynomial of C is p(λ) =
λn + cn−1λ

n−1 + · · · + c1λ + cn .
(b) Show that C has only one eigenvector.

3.1.7 Show that if A is normal, Hermitian, or unitary, so is Ap for any integer p. (If p < 0,
then A is assumed to be nonsingular.) If p is odd and A is skew-Hermitian, then Ap is
skew-Hermitian.

3.1.8 Find a similarity X−1AX that diagonalizes the matrix

A =
(
1 1
0 1 + ε

)
, ε > 0.

How does the transformation X behave as ε tends to zero?
3.1.9 Let A be symmetric positive definite with characteristic polynomial

pA(z) =
n∏

i=1

(z − λi ).
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Show that the Newton approximation to the smallest eigenvalue of A, from the initial
approximation zero, is 1/trace(A−1). Hint: Show that −p′(0)/p(0) = trace(A−1).

3.1.10 Verify that Sylvester’s equation (3.1.25) can be written as an equation in standard matrix-
vector form: (

(I ⊗ A) + (−BT ⊗ I )
)
vecX = vecC,

Then use (1.8.6) to give an independent proof that Sylvester’s equation has a unique
solution if and only if the spectra of A and B do not overlap.

3.1.11 Generate a strictly upper triangular matrix A. Compute the rank of the
matrices in the sequence A, A2, A3, . . . by the Matlab command
rank(A,tol). Explain how you can reconstruct the Jordan form (theoretically) in this
way.

3.1.12 Let A ∈ R
m×n (m ≥ n) have singular values σi , i = 1 : n. Show that the related scaled

saddle point matrix

Bα =
(

α I A
AT 0

)
, α > 0, (3.1.33)

has 2n eigenvalues equal to α/2± (
α2/4 + σ 2

i

)1/2
, i = 1 :n, and the remaining m − n are

equal to α.
3.1.13 Let A ∈ C

n×n be a Hermitian matrix, λ an eigenvalue of A, and z the corresponding
eigenvector. Show that if A = S + i K , where S and K are real, then λ is a double
eigenvalue of the real symmetric matrix

(
S −K
K S

)
∈ R

2n×2n .

Determine two corresponding eigenvectors.
3.1.14 Show that the eigenvalues λi of a matrix A satisfy the inequalities

σmin(A) ≤ min
i

|λi | ≤ max
i

|λi | ≤ σmax(A).

Hint: Use the fact that the singular values of A and of its Schur decomposition U H AU =
diag(λi ) + N are the same.

3.1.15 Let Xk be an approximate solution to the Riccati equation

C0 + C1X + XC2 + XC3X = 0,

where C0, C1, C2,and C3 are rectangular matrices of appropriate size.

(a) Derive a Newton method for computing X that in each step requires the solution of
a Sylvester equation.

(b) Under what condition does such a linear equation have a unique solution?

Hint: Show that F(Xk + �Xk) = (C1 + XkC3)�Xk + �Xk(C2 + C3Xk) + O(�X2
k ).

3.2 Perturbation Theory

If the elements of a matrix are determined by measurements, then one has only an
approximation A + E of the true matrix A corresponding to exact data. Even if we
can consider the initial matrix to be exact, roundoff errors in the method used for
computing its eigenvalues and eigenvectors will introduce errors. Therefore, we need
to study the effects of perturbations of A on its eigenvalues and eigenvectors.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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In Example3.1.2 we showed that if the (m, 1) zero element in a Jordan block of
orderm wasperturbedby ε, the resultingperturbation in the corresponding eigenvalue
was of the order |ε|1/n . This shows that for defective eigenvalues the perturbation is
not a differentiable function of the elements in the matrix. However, the coefficients
in the characteristic polynomial pA(λ) are continuous (in fact polynomial) functions
of its elements. Since the eigenvalues are the zeros of pA(λ), they are also continuous
functions of the elements of A.

3.2.1 Geršgorin’s Theorems

The simple andpowerfulGeršgorin circle theorem5 canbeused to locate eigenvalues
of a matrix A ∈ C

n×n .

Theorem 3.2.1 (Geršgorin’s Circle Theorem) All the eigenvalues of the complex
matrix A ∈ C

n×n lie in the union of the Geršgorin disks in the complex plane:

Di = {z | |z − aii | ≤ ri }, ri =
n∑

j �=i

|ai j |, i = 1 :n. (3.2.1)

Proof Let λ be an eigenvalue of A with eigenvector x = (x1, . . . , xn)T �= 0. Then
Ax = λx , or equivalently (λ − aii )xi = ∑n

j �=i ai j x j , i = 1 : n. Choose an index i
such that |xi | = ‖x‖∞. Then, taking absolute values gives

|λ − aii | ≤
∑
j �=i

|ai j | |x j |
|xi | ≤ ri . (3.2.2)

This shows that for each eigenvalue λ there is a disk with center aii and radius ri

containing λ. Hence, all eigenvalues lie in the union of the disks. �

If A is strictly diagonally dominant, i.e., |aii | > ri , i = 1 :n, then the Geršgorin
disks do not contain the origin, and A is nonsingular. Geršgorin’s Theorem is useful
for estimating the location of eigenvalues, in particular for nearly diagonal matrices.
Since A and AT have the same eigenvalues, we can obtain, in the non-Hermitian
case, more information about the location of the eigenvalues simply by applying the
theorem also to AT .

From (3.2.2) it follows that if the i th component of the eigenvector is maximal,
i.e., |xi | = ‖x‖∞, then λi lies in the diskDi . Otherwise, Theorem3.2.1 does not tell
in which of the disks the eigenvalues lie. Sometimes it is possible to decide this, as
the following theorem shows.

5 SemyonAranovichGeršgorin (1901–1933), Russianmathematician,whoworked at the Leningrad
Mechanical Engineering Institute. He published his circle theorem 1931 in [93, 1931].
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Theorem 3.2.2 If the union M of k Geršgorin disks is disjoint from the remaining
disks, then M contains precisely k eigenvalues of A.

Proof Consider for t ∈ [0, 1] the family of matrices

A(t) = t A + (1 − t)DA, DA = diag(aii ) > 0.

Then A(0) = DA, A(1) = A, and λi (0) = aii , λi (1) = λi . For t = 0 there are
exactly k eigenvalues in M. For reasons of continuity an eigenvalue λi (t) cannot
jump to a subset that does not have a continuous connection with aii for t = 1.
Therefore, k eigenvalues of A = A(1) lie also inM. �

Example 3.2.1 The Geršgorin disks of

A =
⎛
⎝

2 −0.1 0.05
0.1 1 −0.2
0.05 −0.1 1

⎞
⎠ ,

with eigenvalues λ1 = 0.8634, λ2 = 1.1438, λ3 = 1.9928, are

D1 = {z | |z − 2| ≤ 0.15}, D2 = {z | |z − 1| ≤ 0.3}, D3 = {z | |z − 1| ≤ 0.15}.

Since the disk D1 is disjoint from the rest of the disks, it must contain precisely one
eigenvalue of A. The remaining two eigenvalues must lie in D2 ∪ D3 = D2. �

A useful sharpening of Geršgorin’s theorem is obtained from the fact that the
eigenvalues are invariant under a diagonal similarity

Â = D AD−1, D = diag(d1, . . . , dn) > 0.

From Theorem3.2.1 applied to Â, it follows that all the eigenvalues of A must lie in
the union of the disks

{z | |z − aii | ≤ ri }, ri = 1

di

n∑
j �=i

d j |ai j |, i = 1 :n. (3.2.3)

Example 3.2.2 The scaling D can be chosen to minimize the radius of one particular
disk (see also Problem3.2.3). Let

A =
⎛
⎝

2 10−4 10−4

10−4 1 10−4

10−4 10−4 1

⎞
⎠

and take D = diag(2 · 10−4, 1, 1). Then Ã = D AD−1 has the form
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Ã =
⎛
⎝

2 2 · 10−8 2 · 10−8

0.5 1 10−4

0.5 10−4 1

⎞
⎠ .

The Geršgorin disk D1 = {z | |z − 2| ≤ 4 · 10−8} is disjoint from the other two.
Therefore, A has one eigenvalue in the interval [2 − 2 · 10−8, 2 + 2 · 10−8]. �

Another useful sharpening of Geršgorin’s Theorem can be obtained if A is irre-
ducible; see Definition1.1.2.

Theorem 3.2.3 If A is irreducible, then each eigenvalue λ of A lies in the interior
of the union of the Geršgorin disks, unless it lies on the boundary of the union of all
the Geršgorin disks.

Proof If λ lies on the boundary of the union of the Geršgorin disks, then

|λ − aii | ≥ ri , i = 1 :n, (3.2.4)

with equality for at least one i . Let x be an eigenvector corresponding to λ and assume
that |xi1 | = ‖x‖∞. Then from the proof of Theorem3.2.1 and (3.2.4) it follows that
|λ − ai1i1 | = ri1 . But (3.2.2) implies that equality can only hold here if for any
ai1 j �= 0 it holds that |x j | = ‖x‖∞. If we assume that ai1i2 �= 0, then it follows that
|λ − ai2i2 | = ri2 . But since A is irreducible, there is a path i = i1, i2, . . . , i p = j ,
for any j �= i . It follows that λ must lie on the boundary of all Geršgorin disks. �

Original results and newer extensions of Geršgorin’s circle theorem are surveyed by
Varga [238, 2004].

Example 3.2.3 Consider the symmetric matrix

An =

⎛
⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠

∈ R
n×n .

Its Geršgorin disks are

{z | |z − 2| ≤ 2}, i = 2 :n − 1, {z | |z − 2| ≤ 1}, i = 1, n.

By Theorem3.2.1 all eigenvalues lie in the union of these discs and therefore λi ≥ 0,
i = 1 :n. Is A nonsingular? Zero is on the boundary of the union of these disks, but
not on the boundary of all disks. Since A is irreducible, zero cannot be an eigenvalue
of A. Hence, all eigenvalues are strictly positive and A is positive definite. �
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3.2.2 General Perturbation Theory

In this section we consider the following problem. Let A ∈ C
n×n be a given matrix

with eigenvalues λi , i = 1 : n, and Ã = A + E a perturbed matrix. How are the
eigenvalues λ̃i of Ã related to those of A? From Example3.1.2 we know that in the
worst case the perturbation of the eigenvalues can be of order ε1/k , where ε = ‖E‖2
and k is the highest dimension of any block in the Jordan normal form of A. But in
most cases, much better bounds can be shown.

Theorem 3.2.4 (Bauer–Fike’s Theorem) Let A ∈ C
n×n be diagonalizable:

Y H AX = � = diag(λ1, . . . , λn), Y H = X−1,

and let μ be an eigenvalue of the perturbed matrix A+E. Then there is an eigenvalue
λi of A such that for any Hölder p-norm,

min
1≤i≤n

|μ − λi | ≤ κp(X)‖E‖p, (3.2.5)

where κp(X) = ‖Y H ‖p ‖X‖p is the condition number of the eigenvector matrix.

Proof We can assume that μ is not an eigenvalue of A, because otherwise (3.2.5)
holds trivially. Since μ is an eigenvalue of A + E , the matrix A + E −μI is singular
and so is also

Y H (A + E − μI )X = (� − μI ) + Y H E X.

Then there is a vector z �= 0 such that (� − μI )z = −Y H E Xz. Solving for z and
taking norms, we obtain

‖z‖p ≤ κp(X)‖(� − μI )−1‖p‖E‖p‖z‖p.

The theorem follows by dividing by ‖z‖p and using the fact that ‖(�−μI )−1‖p = 1/
min
1≤i≤n

|λi − μ| for any Hölder norm. �

Bauer–Fike’s theorem shows that κp(X) is an upper bound for the condition num-
ber of the eigenvalues of a diagonalizable matrix A. From the Schur decomposition
we know that if A is normal, then X can be chosen to be unitary, so that κ2(X) = 1.
Hence, the eigenvalues of a normal matrix are perfectly conditioned, even when they
have multiplicity greater than one.

Example 3.2.4 If A is close to a defective matrix, then some eigenvalue must be very

ill-conditioned. Consider the matrix A =
(
1 1
ε 1

)
, ε > 0, with eigenvector matrix

X =
(

1 1√
ε −√

ε

)
, Y H = 0.5√

ε

(√
ε 1√
ε −1

)
.
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If ε � 1, then

κ∞(X) = ‖Y H ‖∞‖X‖∞ = 1√
ε

+ 1 � 1.

Note that in the limit when ε → 0, A is not diagonalizable. �

In general, a matrix may have a mixture of well-conditioned and ill-conditioned
eigenvalues. The individual eigenvectors to a nondefective eigenvalue λi of multi-
plicity p > 1 are not uniquely determined, only the eigenspace of dimension p. It
is therefore no surprise that the sensitivity of an eigenvector xi depends not only on
the sensitivity of λi , but also on the distance or gap

gap (λi , A) = min
j �=i

|λi − λ j | (3.2.6)

between the corresponding eigenvalue λi and the rest of the spectrum of A.
Let (λi , xi ) be a simple eigenpair of A ∈ C

n×n . Let A + t E be a one-parameter
family of perturbation of A. From the theory of algebraic functions it is known that the
elements of the eigenpair (λi (t), xi (t)) of A + t E are analytic functions of t ∈ C in
a neighborhood of the origin. Note that no assumption is made about the multiplicity
of the other eigenvalues. The following theorem gives first-order perturbation results
for λi and xi .

Theorem 3.2.5 Let (λ1, x1), be a simple eigenpair of A ∈ C
n×n with ‖x1‖2 = 1.

Then there is a nonsingular matrix X = (x1, X2) and Y = (y1, Y2) = X−1 such
that y1 is a left eigenvector of A and

Y H AX =
(

λ1 0
0 A2

)
,

Let A(t) = A+t E, E ∈ C
n×n, t ∈ C, be a one-parameter family of perturbation of A.

Then, in a neighborhood of the origin for t ∈ C, there exist analytic functions λ1(t),
x1(t), and y1(t) such that A(t)x1(t) = λ1(t)x1(t) and y1(t)H A(t) = λ1(t)y1(t).
Further,

λ1(t) = λ1 + t yH
1 Ex1 + O(t2), (3.2.7)

x1(t) = x1 + t X2(λ1 I − A2)
−1Y H

2 Ex1 + O(t2). (3.2.8)

Proof The existence of matrices X and Y with the properties stated in the theorem
follows from the Jordan canonical form. From Theorem3.2.2 it follows that for suf-
ficiently small values of t , the matrix A + t E has a simple eigenvalue λ1(t) with
eigenvector x1(t). Set λ1(t) = λ1 + tμ and assume that x1(t) is normalized so that
x1(t) = x1 + t X2 p. Substituting this in A(t)x1(t) = λ1(t)x1(t), we get

(A + t E)(x1 + t X2 p) = (λ + yμ)(x1 + t X2 p).
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Multiplying out and neglecting terms of order O(t2) gives

AX2 p + Ex1 ∼= λ1X2 p + μx1. (3.2.9)

To solve for μ, we multiply this by yH
1 and note that yH

1 AX2 p = λ1yH
1 X2 p = 0 to

get yH
1 Ex1 ∼= μ, which proves (3.2.7).

To show (3.2.8), multiply (3.2.9) by Y H
2 . Using Y H

2 A = A2Y H and Y H
2 x1 = 0,

we obtain A2 p + Y H
2 Ex1 ∼= λ1 p, or (A2 − λ1 I )p ∼= Y H

2 Ex1. Since λ1 I is not an
eigenvalue of A2 so (A2 − λ1 I )−1 exists. �

From Theorem3.2.5 we obtain the upper bound

|λ1(t) − λ1| ≤ |t | ‖E‖‖x1yH
1 ‖ + O(t2) (3.2.10)

for the perturbation of a simple eigenvalueλ1. There is no loss of generality to assume
that E is normalized so that ‖E‖2 = 1. Since yH

1 x1 = 1, the condition number of a
simple eigenvalue λ1 is

κ2(λ1, A) = ‖x1‖2‖y1‖2
|yH

1 x1|
, (3.2.11)

Hence, the reciprocal condition number of a simple eigenvalue λi is

si = 1/‖Pi‖2 = cos∠(xi , yi ), (3.2.12)

where Pi = xi yH
i is the spectral projector of λi and ∠(xi , yi ) is the acute angle

between the left and right eigenvectors corresponding to λi . The quantity si was
introduced by Wilkinson [250, p. 68–69].

For the eigenvector x1 we obtain from (3.2.8)

|x1(t) − x1|2 ≤ |t | ‖X2‖2‖Y2‖2
σmin(λ1 I − A2)

+ O(t2). (3.2.13)

�
Example 3.2.5 In the perturbed matrix

A + t E =
⎛
⎝
1 t 2t
t 2 1
t 2t 2

⎞
⎠ ,

A is block diagonal with a simple eigenvalue λ1 = 1 and left and right eigenvectors
equal to e1. Hence, yH

1 Ex1 = 0 and the first-order term in (3.2.7) for the perturbation
of the simple eigenvalue is zero. A also has a defective eigenvalue equal to 2 of
multiplicity 2. For t = 10−3 the eigenvalues of A + E are 0.999998, 1.955268, and
2.044733. As predicted by theory, the perturbation in the simple eigenvalue λ1 is of
order t2 and in the double eigenvalue of order t1/2. �
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An invariant subspace corresponding to a subset of the eigenvalues of A may be
much less sensitive to perturbations than the individual eigenvectors. We now gen-
eralize some of the concepts just introduced for a single eigenvector, to an invariant
subspace.

Definition 3.2.1 (Stewart [218, 1973]) The separation sep(A11, A22) of A11 and
A22 is the smallest singular value of the linear map that takes X to A11X −XA22, i.e.,

sep(A11, A22) = inf
X �=0

‖A11X − XA22‖F

‖X‖F
. (3.2.14)

�
Note that sep(A11, A22) = 0 if and only if A11 and A22 have a common eigen-

value. When both A11 and B are normal the separation equals the minimum distance
gap (�(A11),�(A22)) between the eigenvalues. By (3.1.23) it follows that

sep(A11, A22) = σmin(T ), T = In ⊗ A22 − AT
22 ⊗ Im .

It is easy to verify that in the special case where A11 = λ is a scalar, Definition3.2.1
reduces to

sep(λ1, A2) = min‖v‖2=1
‖(λ1 I − A2)v‖2 = σmin(λ1 I − A2), (3.2.15)

which is the quantity appearing in (3.2.13).
A useful property of sep(A11, A22) is that its norm can be estimated using the

1-norm estimator of Hager; see Algorithm1.4.2, p. 104. This estimates the norm
‖M‖1 of a linear operator M provided that the matrix-vector multiplications Mx
and M H y can be computed. In this case computing Mx is equivalent to solving a
Sylvester equation with a given right-hand side. Computing M H y means solving a
Sylvester equation where A11 and A22 are replaced by AH

11 and AH
22. If A is in Schur

form, both these tasks can be performed in O(n3) flops.
For non-normal matrices gap (�(A),�(B)) can be very sensitive to perturbations

in A and B. For sep(A, B) it holds that (see Stewart [218, 1973])

sep(A, B) − δ ≤ sep(A + E, B + F) ≤ sep(A, B) + δ, δ = ‖E‖2 + ‖F‖2.
(3.2.16)

This shows that sep(A, B) behaves stably under perturbations of A and B.
Suppose that A ∈ C

n×n has the block triangular form

A =
(

A11 A12
0 A22

)
, A11 ∈ C

k×k . (3.2.17)

This form can always be achieved by a unitary similarity (the Schur decomposition)
andwill not change the sensitivity of the eigenvalues and eigenvectors. Assuming that
�(A11)∩�(A22) = ∅, the Sylvester equation A11P− P A22 = −A12 is solvable and
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(
A11 A12
0 A22

)(
Ik P
0 In−k

)
=

(
Ik P
0 In−k

)(
A11 0
0 A22

)
.

Equating here the first block columns and the first block rows shows that

X1 =
(

Ik

0

)
, Y H

2 = (
0 In−k

)

span a right invariant subspace of the block A11 and a left invariant subspace of the
block A22, respectively. Similarly, equating the last block columns in

(
Ik −P
0 In−k

)(
A11 A12
0 A22

)
=

(
A11 0
0 A22

)(
Ik −P
0 In−k

)
.

we find that

Y H
1 = (

Ik −P
)
, X2 =

(
P

In−k

)

give bases for the left invariant subspace of A11 and right invariant subspace of A22,
respectively. It can be verified that Y H

1 X1 = Ik and Y H
2 X2 = In−k . We state without

proof the following theorem, which describes the behavior of an invariant subspace
under perturbation.

Theorem 3.2.6 (Stewart [218, Theorem 4.11]) Let A, E ∈ C
n×n. Let X = (X1 X2)

be unitary with X1 ∈ C
n×k , and span an invariant subspace of A. Partition X H AX

and X H E X conformally with X in the forms

X H AX =
(

A11 A12
0 A22

)
, X H E X =

(
E11 E12
E21 E22

)
.

Then if δ = sep(A11, A22) − ‖E11‖ − ‖E22‖ > 0 and

‖E21‖(‖A12‖ + ‖E12‖)/δ2 ≤ 1/4

there is a matrix P satisfying ‖P‖ ≤ 2‖E21‖/δ such that the columns of

X̃1 = (X1 + X2P)(I + P H P)−1/2

span an invariant subspace of A + E.

Example 3.2.6 (Varah [237], Example 1) When small perturbations of A ∈ R
n×n

and B ∈ R
m×m can make these matrices have a common eigenvalue, then sep(A, B)

is small. However, sep(A, B) can be very small even when the eigenvalues of A and
B are well separated. As an example, consider
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A =

⎛
⎜⎜⎜⎜⎝

1 −1

1
. . .

. . . −1
1

⎞
⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎝

1 − α 1

1 − α
. . .

. . . 1
1 − α

⎞
⎟⎟⎟⎟⎠

.

Then sep(A, B) = 3.4 · 10−4 for α = 1/2 and n = m = 4, and sep(A, B) =
1.3 ·10−10 for α = 1/8 and n = 6,m = 4. Further, it can be shown that sep(A, B) =
O(αm+n−1) as α → 0.

3.2.3 Perturbation Theorems for Hermitian Matrices

Hermitian matrices have real and perfectly conditioned eigenvalues. For this class of
matrices it is possible to derive more informative perturbation bounds. In the follow-
ing we give several classical theorems that are all related to each other. We assume in
the following that the eigenvalues of A are in decreasing order: λ1 ≥ λ2 ≥ · · · ≥ λn .
An important extremal characterization of the eigenvalues of a Hermitian matrix is
due to Fischer [79, 1905].

Theorem 3.2.7 (Fischer’s Theorem) Let the Hermitian matrix A ∈ C
n×n have

eigenvalues λ1, λ2, . . . , λn ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn. Then

λi = max
dim(S)=i

min
x∈S

x H x=1

x H Ax = min
dim(S)=n−i+1

max
x∈S

x H x=1

x H Ax, (3.2.18)

where S denotes a subspace of C
n.

Proof See Stewart and Sun [222, 1990], Sect. 4.2. �

The formulas (3.2.18) are called the max-min and the min-max characterization,
respectively. In particular, the extreme eigenvalues λ1 and λn are characterized by

λ1 = max
x∈Cn

x H x=1

x H Ax, λn = min
x∈Cn

x H x=1

x H Ax . (3.2.19)

The min-max characterization can be used to establish an important relation
between the eigenvalues of twoHermitianmatrices A and B and their sumC = A+B.

Theorem 3.2.8 Let A, B be Hermitian matrices with eigenvalues α1 ≥ · · · ≥ αn,
β1 ≥ · · · ≥ βn. Then the eigenvalues γi of C = A + B satisfy

αi + β1 ≥ γi ≥ αi + βn, i = 1 :n. (3.2.20)
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Proof Let x1, x2, . . . , xn be an orthonormal system of eigenvectors of A correspond-
ing to α1 ≥ α2 ≥ · · · ≥ αn , and let S be the subspace of C

n spanned by x1, . . . , xi .
Then, by Fischer’s theorem

γi ≥ min
x∈S
x �=0

x H Cx

x H x
≥ min

x∈S
x �=0

x H Ax

x H x
+ min

x∈S
x �=0

x H Bx

x H x
= αi + min

x∈S
x �=0

x H Bx

x H x
≥ αi + βn .

This is the last inequality of (3.2.20). The first inequality follows by applying this
result to A = C + (−B). �

The theorem implies that when B is added to A, all of its eigenvalues are changed
by an amount between the smallest and largest eigenvalues of B. If rank (B) < n,
the result can be sharpened; see Parlett [192, 1998], Sect. 10.3. An important case is
when B = zzH is a rank-one matrix. Then B has only one nonzero eigenvalue equal
to r = zH z = ‖z‖22, and the perturbed eigenvalues λ′

i satisfy

λ′
i − λi = δi r, δi ≥ 0,

n∑
i=1

δi = 1. (3.2.21)

Hence, the eigenvalues are shifted by an amount between zero and r . Note that this
result also holds for large perturbations.

The following theorem, due to Cauchy (1829), relates the eigenvalues of a prin-
cipal submatrix to the eigenvalues of the original matrix.

Theorem 3.2.9 (Cauchy’s Interlacing Theorem) Let B be a principal submatrix of
order m of a Hermitian matrix A ∈ C

n×n. Then the eigenvalues of B, μ1 ≥ μ2 ≥
· · · ≥ μm, interlace the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of A, i.e.,

λi ≥ μi ≥ λi+(n−m), i = 1 :m. (3.2.22)

Proof The theorem follows from Fischer’s theorem. Without loss of generality, we
assume that B is the leading principal submatrix of A,

A =
(

B C H

C D

)
.

Consider the subspace of S ′ of C
n spanned by the vectors x ⊥ ei , i = m + 1 : n.

Then for x ∈ S ′ we have x H Ax = (x ′)H Bx ′, where x H = ((x ′)H , 0). From the
minimax characterization (3.2.18) of the eigenvalue λi it follows that

λi = max
dim(S)=i

min
x∈S
x �=0

x H Ax

x H x
≥ max

dim(S ′)=i
min
x∈S′
x �=0

x H Ax

x H x
= μi .
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The proof of the second inequality μi ≥ λi+(n−m) is obtained by a similar argument
applied to −A. �

The interlacing property holds more generally. Let U = (
U1 U2

)
be a unitary

matrix, where U1 ∈ C
n×(n−k). Then B = U H

1 AU1 is called a section of A, and
the eigenvalues μi of B satisfy (3.2.22). It is sometimes desirable to determine the
eigenvalues of a diagonal matrix modified by a symmetric rank-one matrix; see
Sect. 3.6.4.

From the above results it follows that the perturbation in the eigenvalues λ′
i of a

perturbed matrix A + E , where A and E are Hermitian matrices. The perturbations
can be bounded by

|λi − λ′
i | ≤ max{|λ1(E)|, |λn(E)|} = ‖E‖2.

This agrees with the previous result that the eigenvalues of a Hermitian matrix are
perfectly conditioned. We state this together with a slightly sharper result in the
following theorem.

Theorem 3.2.10 Let A and A + E be Hermitian matrices with eigenvalues λi and
λ′

i , i = 1 :n. Then,

|λi − λ′
i | ≤ ‖E‖2 (3.2.23)

and √∑n
i=1 |λi − λ′

i |2 ≤ ‖E‖F . (3.2.24)

Proof The first result (3.2.23) is known as the Weyl–Lidskii Theorem. It follows
directly from (3.2.20). The second result (3.2.24) holds more generally for normal
matrices and is known as the Wielandt–Hoffman theorem. The proof is not simple
and we refer to [129, 1953] or [250, 1965], Sect. 2.48. �

Perturbation theory for eigenproblems is a well researched area and here we have
given only the most basic results. More information is found in the excellent treatise
by Stewart and Sun [222, 1990], which contains many historical comments and a
useful bibliography. The texts by Bhatia [21, 1997] and [22, 2007] has an emphasis
on Hermitian and normal matrices.

Classical perturbation theory for the Hermitian eigenvalue and singular value
problems bounds the absolute perturbations. These boundsmay grossly overestimate
the perturbations in eigenvalues and singular values of smallmagnitude. Ren-CangLi
[167, 1998] and [168, 1998] studies bounds for relative perturbations in eigenvalues
and singular values.
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3.2.4 The Rayleigh Quotient Bounds

We now consider some a posteriori error estimates for a computed eigenpair (μ, x),
‖x‖2 = 1 of a matrix A ∈ C

n×n . Let the corresponding residual vector be r =
Ax − μx . If r = 0, then (μ, x) is an exact eigenpair of A. By continuity, we can
therefore expect that the size of the residual norm ‖r‖ can be used as a measure of
the accuracy of the computed eigenpair of A. Indeed, the following simple backward
error bound is easy to prove.

Theorem 3.2.11 Let (μ, x), ‖x‖2 = 1, be a given approximate eigenpair of A ∈
C

n×n, and let r = Ax − μx be the corresponding residual vector. Then (μ, x) is an
exact eigenpair of Ã = A + E, where

E = −r x H , ‖E‖2 = ‖r‖2. (3.2.25)

Further, if there is a nonsingular matrix X such that X−1AX is diagonal, then there
is an eigenvalue λ of A such that

|λ − μ| ≤ κ2(X)‖r‖2. (3.2.26)

Proof Since ‖x‖22 = x H x = 1, we have

(A + E)x = (A − r x H )x = Ax − r = μx,

which proves the theorem. Combining this result with Bauer–Fike’s theorem
(Theorem3.2.4) proves the second result. �

We conclude that (μ, x), ‖x‖2 = 1, is a numerically acceptable eigenpair of A if
‖Ax − μx‖2 is of the order of ‖A‖ times the unit round-off.

Definition 3.2.2 For A ∈ C
n×n the Rayleigh6 quotient is defined by

μA(z) = zH Az

zH z
, z ∈ C

n . (3.2.27)

An important property of theRayleighquotient is homogeneity:μA(αz) = μA(z),
α �= 0. Hence, the Rayleigh quotient depends only on the one-dimensional subspace
defined by z.

6 JohnWilliam Strutt (1842–1919) succeeded his father as third Baron Rayleigh in 1873. Unable to
follow a conventional academic career, he performed scientific experiments at his private laboratory
for many years. In his major text The Theory of Sound he studied the mechanics of a vibrating string
and explained wave propagation. From 1879 to 1884 he held a position in experimental physics at
the University of Cambridge. He held many official positions, including President of the London
Mathematical Society and President of the Royal Society. In 1904 he and Sir William Ramsey were
awarded the Nobel prize for the discovery of the inert gas argon.
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Suppose we are given an approximate eigenvector x and have to choose the eigen-
value approximationμ. A natural objective is to chooseμ tominimize the error bound
‖Ax − μx‖2 in Theorem3.2.11.

Theorem 3.2.12 Let A ∈ C
n×n and x ∈ C

n be a given vector. Then the residual
norm ‖r(μ)‖2, r(μ) = Ax − μx, is minimized for the Rayleigh quotient:

μ = μA(x) = x H Ax

x H x
. (3.2.28)

Proof To minimize ‖Ax − μx‖2 is a linear least squares problem for the unknown
scalar μ. The minimum is achieved when (Ax − μx) ⊥ x , i.e., (x H x)μ = x H Ax ,
which gives (3.2.28). �

For non-Hermitian matrices one can also use the more general Rayleigh quotient

μA(x, y) = yH Ax

yH x
, yH x �= 0. (3.2.29)

When either x is a right eigenvector or y a left eigenvector, μA(x, y) equals the
corresponding eigenvalue λ. By continuity, when x or y is close to an eigenvector,
μA(x, y) is an approximation to the corresponding eigenvalue λ.

We now consider residual error bounds for Hermitian matrices. For this case the
non-Hermitian backward perturbation result of Theorem3.2.11 is not satisfactory.
We show that the backward perturbation E can be chosen to be Hermitian. This
allows the use of the powerful results shown previously.

Theorem 3.2.13 Let A be a Hermitian matrix, x a given unit vector, and μ = x H Ax
the Rayleigh quotient. Then (μ, x) is an exact eigenpair of the Hermitian matrix
Ã = A + E, where

E = −(r x H + xr H ), r = Ax − μx, ‖E‖2 = ‖r‖2. (3.2.30)

Proof The choice of μ makes r orthogonal to x . It follows that Ex = −r and
(A + E)x = Ax − r = μx . This shows that (μ, x) is an exact eigenpair of A + E .
Further, ‖E‖22 = ‖E H E‖2 is the largest eigenvalue of the rank-two matrix

E H E = rr H + ‖r‖22 xx H .

This shows that r and x are orthogonal eigenvectors of E H E , with eigenvalue equal
to r H r = ‖r‖22. The other eigenvalues are zero and hence ‖E‖2 = ‖r‖2. �

In the Hermitian case the Rayleigh quotient μA(x) may be a far more accu-
rate approximate eigenvalue than x is an approximate eigenvector. The gradient of
1
2μA(x) is
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1

2
∇μA(x) = Ax

x H x
− x H Ax

(x H x)2
x = 1

x H x
(Ax − μx). (3.2.31)

Hence, the Rayleigh quotient μA(x) is stationary if and only if x is an eigenvector of
A. The following theorem shows that if an eigenvector is known to precision ε, then
the corresponding Rayleigh quotient approximates the corresponding eigenvalue to
precision ε2.

Theorem 3.2.14 Let (xi , λi ) be an eigenpair of a Hermitian matrix A. If the unit
vector x satisfies

x = xi cos θ + u sin θ, (3.2.32)

where x H
i u = 0 and ‖xi‖2 = ‖u‖2 = 1, then

λ − ρ(x) = (λ − ρ(u)) sin2 θ. (3.2.33)

Proof Multiplying (3.2.32) by x H A gives

ρ(x) = λx H xi cos θ + x H Au sin θ

= λ cos2 θ + ρ(u) sin2 θ + x H
i Au sin θ cos θ.

Since A is Hermitian, x H
i A = λx H

i and the last term vanishes. �

Sharper error bounds can be obtained ifρ(x) is well separated from all eigenvalues
except λ. We first show a lemma.

Lemma 3.2.1 Let x̃ be an approximate eigenvector of unit norm of a Hermitian
matrix A and μ̃ = x̃ H Ax̃ the corresponding Rayleigh quotient. If the interval [α, β]
contains μ̃ but no eigenvalue of A, then

(β − μ̃)(μ̃ − α) ≤ ‖r‖22, r = Ax̃ − μ̃x̃ . (3.2.34)

Proof We can write

(A − α I )̃x = r + (μ̃ − α)̃x, (A − β I )̃x = r + (μ̃ − β)̃x,

where r = Ax̃ − μ̃x is the residual vector. Since r is orthogonal to x̃ , we have

x̃ H (A − α I )H (A − β I )̃x = ‖r‖22 + (μ̃ − α)(μ̃ − β).

Expanding x̃ in the orthogonal eigenvectors of A, x̃ = ∑n
i=1 ξi ui , we can write the

left-hand side as

x̃ H (A − α I )(A − β I )̃x =
n∑

i=1

ξ2i (λi − α)(λi − β).
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From the assumption on the interval [a, b] it follows that each term in the above sum
is positive. Therefore, ‖r‖22 + (μ̃ − α)(μ̃ − β) ≥ 0. �

This lemma can be used to obtain an improved error bound for the Rayleigh
quotient approximation in terms of a gap in the spectrum.Under the same assumption
a bound for the error in the eigenvector can be proved.

Theorem 3.2.15 Let A be a Hermitian matrix with eigenvalues λ j , j = 1 :n. Let x̃
be an approximate eigenvector of unit norm and μ̃ = x̃ H Ax̃ its Rayleigh quotient.
Assume that λi is the eigenvalue of A closest to μ and xi an eigenvector for λi . Then

|μ̃ − λi | ≤ ‖r‖22/δ, sin∠(̃x, xi ) ≤ ‖r‖2/δ, (3.2.35)

where δ = min j �=i |λ j − μ̃|.
Proof The result for the eigenvalue follows from Lemma3.2.1 and the fact that one
of the intervals [μ̃ − δ, μ̃] and [μ̃, μ̃ + δ] contains no eigenvalue of A. For a proof
of the result for the eigenvector, see Theorem3.9, Saad [211, 1992]. �

Often the δ in Theorem3.2.15 is not known and the bounds (3.2.35) only theo-
retical. But by the method of spectrum slicing (see Sect. 3.6.1) an interval around a
given value μ can be determined that contains no eigenvalues of A.

The correspondence between the SVD of A andHermitian eigenproblems enables
us to apply the residual bounds derived above to singular vectors and singular values.
It is no restriction to assume that A ∈ C

n×n is square, because if necessary zero rows
or columns can be adjoined to A. If A = U�V H , then by Theorem3.5.2,

Cx =
(

0 A
AH 0

)(
u

±v

)
= ±σ

(
u

±v

)
. (3.2.36)

This relates the singular vectors u and v and singular value σ to the eigenvectors and
eigenvalues of the Hermitian matrix C . If u, v are unit vectors, then the Rayleigh
quotient for the singular value problem of A is

μA(u, v) = 1√
2
(u H ,±vH )

(
0 A

AH 0

)
1√
2

(
u

±v

)
= u H Av ≥ 0, (3.2.37)

where the sign of v is chosen to give a real nonnegative value of μA(u, v). From
Theorem3.2.13 we obtain the following residual error bound.

Theorem 3.2.16 For any scalar α and unit vectors u, v there is a singular value σ

of A such that

|σ − α| ≤ 1√
2

∥∥∥∥
(

Av − uα

AH u − vα

)∥∥∥∥
2
. (3.2.38)

For fixed u, v this error bound is minimized by taking α equal to the Rayleigh quotient
μA(u, v) = �(u H Av) defined by (3.2.37).
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Assume that u and v approximate a pair of left and right singular vectors with an
error that is O(ε). Then, by Theorem3.2.14, u H Av approximates the corresponding
singular value with an error that is O(ε2). The following improved error bound is an
application of Theorem3.2.15.

Theorem 3.2.17 Let A have singular values σi , i = 1 :n. Let u and v be unit vectors,
μ = u H Av the corresponding Rayleigh quotient, and

δ = 1√
2

∥∥∥∥
(

Av − uμ

AH u − vμ

)∥∥∥∥
2

the residual norm. If σs is the closest singular value to μ and Aus = σsvs , then

|σs − μ(x)| ≤ δ2/gap (μ), (3.2.39)

were gap (μ) = mini �=s |σi − μ|. For the singular vectors us and vs it holds that

max{sin∠(us, u), sin∠(vs, v)} ≤ δ/gap (μ). (3.2.40)

The residual bounds given in Theorem3.2.11 can be generalized to invariant
subspaces. Suppose X1 ∈ C

n×p, X H
1 X1 = I , is an invariant subspace of A ∈ C

n×n .
Then, by Theorem3.1.2, there is a unique matrix B = A11 = X H

1 AX1 such that
R = AX1 − X1B = 0. The eigenvalues of B are a subset of the eigenvalues of A.

Definition 3.2.3 Let X1 ∈ C
n×p have full column rank. Then the matrix Rayleigh

quotient is

RA(X1) = Y H
1 AX1, Y1 = (X H

1 X1)
−1X1. (3.2.41)

If X1 has orthonormal columns, X H
1 X1 = Ip, this simplifies to RA(X1) = X H

1 AX1.

The matrix Rayleigh quotient generalizes several properties of the classical
Rayleigh quotient. It is homogeneous, in the sense that

RA(X1) = RA(X1M), (3.2.42)

for all nonsingular p × p matrices M . Further, RA(X1) is stationary if and only if
X1 spans an invariant subspace of A.

The residual norm and matrix Rayleigh quotient depend only on the subspace
spanned by X1, and not on the particular basis X1 chosen. Let X̃1 = X1P , where
P ∈ C

p×p is unitary. Then

B̃ = P H (X H
1 AX1)P, R̃ = AX1P − X1(P P H )B P = R P.

It follows that ‖R̃‖2 = ‖R‖2 and the matrix Rayleigh quotient B̃ is similar to B.
Therefore, it is no restriction to assume in the following that X1 is orthonormal.
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The minimum residual property of the scalar Rayleigh quotient (see Theo-
rem3.2.11), p. 464, is generalized in the following theorem.

Theorem 3.2.18 Given X1 ∈ C
n×p with orthonormal columns and B ∈ C

p×p, if
R = AX1 − X1B, then

(A + E)X1 = X1B, E = −R X H
1 , (3.2.43)

and ‖E‖p = ‖R‖p, p = 2, F. Hence, X1 is an exact invariant subspace of A + E1.
If A is Hermitian and B = X H

1 AX1, then

E = −(R X H
1 + X1RH )

is Hermitian, ‖E‖2 = ‖R‖2, and ‖E‖F = √
2‖R‖F .

Proof We have

(A − R X H
1 )X1 = AX1 − R = X1B,

which shows (3.2.43). From E H E = X1RH R X H
1 it follows that E H E has the same

nonzero eigenvalues as RH R, and hence ‖E‖p = ‖R‖p, p = 2, F . In the Hermitian
case,

X H R = X H
1 AX1 − X H

1 X1B = 0,

so that E X1 = −R X H
1 X1 − X1RH X1 = −R. Hence, (A + E)X1 = X1B and

because X H
1 R = 0, we have E H E = R RH + X1RH R X H

1 . Thus,

E H E X1 = X1RH R E H E R = R RH R,

which shows that X1 and R are invariant subspaces of E H E both with eigenvalues
equal to those of RH R. Since rank (E) is at most 2p, the other eigenvalues are zero.
From ‖E‖22 = ‖E H E‖2 and ‖E‖2F = trace(E H E), the result follows. �

Theorem 3.2.19 (Kahan [146, 1967]) Let A ∈ C
n×n and X1 ∈ C

n×p with ortho-
normal columns be given. Let X = (X1 X2) be unitary. Then any unitarily invariant
norm of the residual matrices

R = AX1 − X1B, S = X H
1 A − B X H

1

is minimized when B is the matrix Rayleigh quotient X H
1 AX1. The respective

minima are

‖R‖ = ‖X H
2 AX1‖, ‖S‖ = ‖X H

1 AX2‖.
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Proof Since X is unitary, we have

‖R‖ = ‖(X1 X2)
H R‖ =

∥∥∥∥∥

(
X H
1 AX1 − B

X H
2 AX1

)∥∥∥∥∥ .

By the monotonicity of a unitarily invariant norm, this is minimized when B =
X H
1 AX1. The proof for S is similar. �

For an non-Hermitian matrix A, a more general matrix Rayleigh quotient can be
useful. Let X1 be of full column rank and Y H

1 X1 be nonsingular. Then

B = (Y H
1 X1)

−1Y H
1 AX1 (3.2.44)

is a Rayleigh quotient of A. If Y H
1 X1 = I , this simplifies to B = Y H

1 AX1. The
residual error bounds in this section only make use of the norms of certain residuals.
More elaborate inclusion theorems for the Hermitian eigenvalue problem are found
in Parlett [192, 1998], Chap. 10.

3.2.5 Numerical Range and Pseudospectra

Whether or not a matrix happens to be exactly defective is of little practical importance and
indeed impossible to determine numerically.

— Lothar Reichel and Lloyd N. Trefethen [201], 1992.

The eigenvectormatrix of a normalmatrix is unitary and perfectly conditioned. By
contrast, for a non-normal matrix its condition number may be very large. Since use
of the eigendecomposition implies a transformation to eigenvector coordinates, this
may involve a large distortion. Formatrices that are far fromnormal, eigenvectors and
eigenvectors should be used with caution; see Sect. 3.2.5. The companion matrix to
theWilkinson polynomial (see Example3.1.1) is an example of a highly non-normal
matrix.

Although the Schur decomposition (3.1.14) is not unique, ‖N‖F is independent
of the choice of U . Henrici [120, 1962] defined the departure from normality of
A to be

�2
F (A) ≡ ‖N‖2F = ‖A‖2F −

n∑
i=1

|λi |2.

This is always an upper bound for the smallest distance to the set N of normal
matrices:

dN (A) ≤ inf
X∈N

‖A − X‖2,

which is much harder to determine; see Ruhe [205, 1987].
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For a non-normal matrix a complete set of linearly independent eigenvectors may
not exist, or can be far fromorthogonal and very ill-conditioned. The behavior of such
operators and matrices cannot be well described by using eigenvalues and eigenvec-
tors. For example, the transient behavior of ‖An‖ and eAt for a non-normal matrix
A is often very different from the asymptotic behavior as given by its eigenvalues.
This is of importance, e.g., for the analysis of convergence of iterative methods;
see Sect. 4.1.6. In applications in physics one often works with a family of matrices
indexed by a physical parameter such that the non-normality increases unboundedly
as the parameter approaches some limit.

The numerical range W (A) or field of values of a matrix A ∈ C
n×n is the set of

all possible Rayleigh quotients

F(A) = {zH Az | z ∈ C
n, ‖z‖2 = 1}. (3.2.45)

In general, the numerical range of a matrix A may contain complex values even
if its eigenvalues are real. For any unitary matrix U we have F(U H AU) = F(A).
From the Schur decomposition it follows that there is no restriction in assuming A
to be upper triangular, and if normal then diagonal. Hence, for a normal matrix A,

zH Az =
n∑

i=1

λi |ξi |2
/ n∑

i=1

|ξi |2,

i.e., any point in F(A) is a weighted mean of the eigenvalues of A. Thus, for a normal
matrix the numerical range coincides with the convex hull of the eigenvalues. In the
special case of a Hermitian matrix the field of values equals the segment [λ1, λn] of
the real axis. Likewise, for a skew-Hermitian matrix the numerical range equals a
segment of the imaginary axis.

It can be shown that for an arbitrary matrix, W (A) is a closed convex set that
contains the convex hull of the eigenvalues of A.7 The numerical radius of A is

r(A) = sup{|zH Az| | ‖z‖2 = 1}. (3.2.46)

It is always greater than or equal to the spectral radius ρ(A), and a more reliable
indicator of the rate of convergence of an iterative method (see Sect. 4.1.6). For a
diagonalizable matrix A = X DX−1 it holds that r(A) ≤ κ2(X)ρ(A), where ρ(A)

is the spectral radius. Thus, if the numerical radius is much bigger than the spectral
radius, then A must be far from normal.

The numerical abscissa

αW (A) = max
z∈W (A)

�(z), (3.2.47)

7 This result, first published by Toeplitz [228, 1918], is not trivial. Householder [132, 1964],
Sect. 3.3.2, gives a proof due to Hans Schneider (unpublished).

Ham
Highlight

http://dx.doi.org/10.1007/978-3-319-05089-8_4
http://dx.doi.org/10.1007/978-3-319-05089-8_4


472 3 Matrix Eigenvalue Problems

where W (A) is the numerical range of A. This is trivially at least as large as the
spectral abscissa α(A) = maxi �(λi ). A complex number z is an eigenvalue of a
matrix A ∈ C

n×n if and only if z I − A is singular. Hence, the resolvent

R(z) = (z I − A)−1, (3.2.48)

regarded as function of z has singularities precisely at the eigenvalues of A. Away
from these eigenvalues the resolvent is an analytic function of z.

When the matrix is far from normal and its eigenvalues are sensitive to per-
turbations, it is often more fruitful to consider pseudo-eigenvalues. Given ε > 0,
the number λ is called an ε-pseudo-eigenvalue of A ∈ C

n×n if, for some E with
‖E‖2 ≤ ε, λ is an eigenvalue of A + E . An equivalent condition is that there is a
unit vector u ∈ C

n such that ‖(λI − A)u‖2 ≥ ε. We give the following definition.

Definition 3.2.4 For ε > 0 the ε-pseudospectrum of a matrix A ∈ C
n×n is the

subset of the complex plane

�ε = {z ∈ C | ‖(z I − A)−1‖2 ≥ ε−1}. (3.2.49)

If A is normal, then �ε equals the set of points in C around the spectrum of A
at a distance less than or equal to ε. For a non-normal matrix it can be much larger.
The pseudospectrum of a matrix is closely related to the numerical range. It can be
used to deal with problems that are not suited for an analysis in terms of eigenvalues
and eigenvectors.

Other equivalent definitions are

�ε = {z ∈ C | z ∈ �(A + E), ‖E‖2 ≤ ε}. (3.2.50)

Thus, z belongs to the ε-pseudospectrum of A if and only if it is in the spectrum
of some perturbed matrix A + �A with ‖�A‖2 ≤ ε. A definition more suited to
computation is

�ε = {z ∈ C | σmin(z I − A) ≤ ε}. (3.2.51)

Example 3.2.7 Following Trefethen [229, 1992], we picture the ε-pseudospectrum
of A by plotting eigenvalues of 50 perturbed matrices A + E , where the entries of
E , ‖E‖2 = 10−3, are independent samples from a normal distribution with mean 0.
In Fig. 3.1 the result for the Grcar matrix (Grcar [110, 1989])

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
−1 1 1 1 1

−1 1 1 1
−1 1 1 1

−1 1 1
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠
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of dimension n = 32 are shown. This matrix is both Hessenberg and Toeplitz and
most of its eigenvalues are very sensitive to perturbations. For n = 32 the condition
number of the eigenvector matrix is 9.8 × 104 and increases exponentially with n.
The perturbed eigenvalues are contained in a region which surrounds but does not
contain the origin. �

To complexity of computing pseudospectra of A can be reduced by first computing
the Schur form A = U T U H , where T is triangular or quasi-triangular. Then the
pseudospectrum of A equals that of T , which is computed by evaluating σmin(z I −T )

for points z on a grid in the complex plane. For this, inverse iteration can be used (see
Sect. 3.3.3), which usually converges to the smallest singular value very swiftly. From
this level curves can be plotted. Since z I −T is upper triangular, each inverse iteration
only takes O(n2) flops. The complexity of this method is therefore O(n3)+ O(mn2)

flops, where m is the number of grid points.
The impact of high non-normality of a matrix on its eigenvalues is treated in

Chatelin [43, 2012]. For a detailed discussion of the numerical range, see Horn and
Johnson [130, 1991], Chap. 2. Using Lanczos method with continuation for comput-
ing pseudospectra is described by Braconnier and Higham [29, 1996]. A Matlab
routine for computing the numerical range is included in the matrix computation
toolbox of Higham [125, 2002].

Pseudospectra were used by Varah [237, 1979] to study the stability of invari-
ant subspaces for non-Hermitian matrices. Godunov and Ryabenkii [95, 1990] used
spectral portraits of matrices to determine the accuracy of computed eigenvalues.
Applications of pseudospectra in physics and engineering include fluid mechan-
ics and hydrodynamic stability; see Trefethen [231, 1999], Trefethen and Embree
[232, 2006], and the informative web site http://www.cs.ox.ac.uk/pseudospectra/.

−0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Fig. 3.1 Eigenvalues of a perturbed Grcar matrix for n = 32 and 50 different perturbations E , with
‖E‖2 = 10−3, from a normal distribution. Exact eigenvalues are denoted by x-marks

http://www.cs.ox.ac.uk/pseudospectra/
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The resolvent can also be defined for closed linear operators in a Banach space; see
Trefethen [230, 1997] and [231, 1999]. Kato [147, 1976] uses resolvent techniques
to treat many questions of matrix and operator theory. A useful tool for computing
pseudospectra is the Matlab package EigTool, developed by Wright [255, 2002].
This provides a graphical interface toMatlab’s built-in eigs routine (ARPACK).
EigTool is available from http://www.comlab.ox.ac.uk/pseudospectra/eigtool.

Exercises

3.2.1 An important problem in engineering is to decide if all the eigenvalues of a square matrix A
have strictly negative real part. Such a matrix is called stable. Show that if A is irreducible,
then

�(aii ) + ri ≤ 0, ri =
n∑

j=1
j �=i

|ai j |, i = 1 :n.

Further, show that if �(aii ) + ri < 0 for at least one i , then A is stable.
3.2.2 Assume that for a real matrix A all Geršgorin disks are distinct. Use

Theorem3.2.2 to show that all eigenvalues of A are real.
3.2.3 (Stewart [219, 1973], Sect. 6.4) Let A ∈ C

n×n have distinct diagonal elements and assume
that ε = maxi �= j |ai j | � 1. It is desired to choose the diagonalmatrix D = diag(μ, 1, . . . , 1)
so that the first Geršgorin disk of D AD−1 is as small as possible, without overlapping the
other disks. Show that as ε → ∞,

μ = ε

δ
+ O(ε2), δ = min

i �=1
|aii − a11|,

and hence the radius of the first Geršgorin disk is given approximately by
r1 = (n − 1)ε2/δ + O(ε3).

3.2.4 Use a suitable diagonal similarity and Geršgorin’s theorem to show that the eigenvalues of
the tridiagonal matrix

T =

⎛
⎜⎜⎜⎜⎜⎝

a b2
c2 a b3

. . .
. . .

. . .

cn−1 a bn
cn a

⎞
⎟⎟⎟⎟⎟⎠

satisfy the inequality |λ − a| < 2
√
maxi |bi | · maxi |ci |.

3.2.5 To illustrate Cauchy’s interlacing theorem for m = n − 1, show that the eigenvalues of A
and B interlace, where

A =
⎛
⎝
0 ε 0
ε 0 1
0 1 0

⎞
⎠ , B =

(
0 ε

ε 0

)
.

3.2.6 Let A and B be square Hermitian matrices and

H =
(

A C
C H B

)
.

Use the estimate in Theorem3.2.13 to show that for every eigenvalue �(B) of B there is an
eigenvalue �(H) of H such that

|�(H) − �(B)| ≤ ‖C H C‖1/22 .

http://www.comlab.ox.ac.uk/pseudospectra/eigtool
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3.2.7 (Ji-guang Sun)

(a) Compute the eigenvalues λi and the eigenvectors xi of A, where

A =

⎛
⎜⎜⎜⎝

0 0 0 0 1
2 1 0 0 −2

−2 2 2 0 3
2 −2 2 3 −4

−2 2 −2 2 9

⎞
⎟⎟⎟⎠ .

Compute the eigenvalues λ̃i of A + E , where E = 0.2eeT , eT = (1, 1, 1, 1, 1) is a
rank-one perturbation.

(b) Apply (3.2.7) to compute first-order estimates of the eigenvalues of A + E .
(c) Compute the condition numbers κ(λi , A) of the eigenvalues. Use these to give approx-

imate upper bounds of |̃λi − λi |, i = 1 :5 (Note that ‖E‖2 = ‖E‖F = 1.).

3.3 The Power Method and Its Generalizations

One of the oldest methods for computing eigenvalues and eigenvectors of a matrix
is the power method. Until the 1950s this method combined with deflation was the
method of choice for finding a few of the eigenvalues of an unsymmetric matrix.
Although the power method in its basic form is no longer competitive for most
problems, it has been used with a fewmodifications in Google’s PageRank algorithm
to compute an eigenvector of a matrix of order 2.7 billion; see [183, 2002] and
[32, 2006]. Since the power method also directly or indirectly serves as the basis of
many algorithms for dense eigenvalue problems, it is treated here and not in Chap.4.

3.3.1 The Simple Power Method

Let A ∈ C
n×n be a matrix with eigenvalues ordered so that

|λ1| > |λ2| ≥ · · · ≥ |λn|,

where λ1 is a unique eigenvalue of maximum magnitude. To simplify the fol-
lowing analysis, we assume that A has a set of linearly independent eigenvectors
x1, x2, . . . , xn of unit length associated with the eigenvalues.

Given an initial vector v0 = v, the power method forms the sequence of vec-
tors v1 = Av, v2 = A2v, v3 = A3v, . . . , using the recursion vk = Avk−1, k =
1, 2, 3, . . . .

Expanding the initial vector along the eigenvectors v0 = ∑n
j=1 α j x j , and assum-

ing that α1 �= 0, we obtain for k = 1, 2, . . . ,

http://dx.doi.org/10.1007/978-3-319-05089-8_4
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vk = Akv0 =
n∑

j=1

λk
jα j x j = λk

1

(
α1x1 +

n∑
j=2

(λ j

λ1

)k
α j x j

)
(3.3.1)

= λk
1α1x1 + O

(∣∣∣λ2
λ1

∣∣∣k
)

.

It follows that vk/‖vk‖2 converges to the normalized eigenvector x1. The convergence
is linear, with rate equal to |λ2|/|λ1|. One can show that this result also holds when A
is not diagonalizable, by writing v0 as a linear combination of the vectors associated
with the Schur decomposition of A; see Theorem3.1.9, p. 441.

An attractive feature of the power method is that it suffices to be able to form
the matrix-vector product Ax for a given vector x . The matrix powers Ak are never
computed and thematrix A is notmodified. Thismakes it suitable formatrices that are
large and sparse. A more systematic treatment of methods for large-scale eigenvalue
problems is given in Sect. 4.6.

In practice, the vectors vk have to be normalized in order to avoid overflow or
underflow. Choose an initial vector v0 such that ‖v0‖2 = 1, and modify the initial
recursion as follows:

v̂k = Avk−1, μk = ‖̂vk‖2, vk = v̂k/μk, k = 1, 2, . . . . (3.3.2)

Under the assumptions, vk from (3.3.2) converges to the normalized eigenvector x1.
Successive approximations to λ1 are obtained from the Rayleigh quotients

ρ(vk) = vH
k Avk = vH

k v̂k+1, (3.3.3)

andρk converges toλ1 with at least linear rate of convergenceρk = λ1+O(|λ2/λ1|k).
For a Hermitian matrix A the eigenvalues are real and the eigenvectors can be

chosen so that x H
i x j = 0, i �= j . From (3.3.1) it follows that the Rayleigh quotients

converge twice as fast:

ρ(vk) = λ1 + O
(
|λ2/λ1|2k

)
. (3.3.4)

Example 3.3.1 The eigenvalues of the symmetric 3 by 3 matrix

A =
⎛
⎝
2 1 0
1 3 1
0 1 4

⎞
⎠

are 4.732051, 3, and 1.267949 to 6 decimals. With initial vector v0 = (1, 1, 1)T ,
successive Rayleigh quotients ρk are:

4.333333, 4.627119, 4.694118, 4.717023, 4.729620.

http://dx.doi.org/10.1007/978-3-319-05089-8_4
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The ratio |λ1 − ρk+1|/|λ1 − ρk | of successive errors converge to (λ2/λ1)
2 =

0.402. �

The convergence of the power method can be shown only for almost all starting
vectors because it depends on the assumption that α1 �= 0. However, when α1 = 0,
rounding errors will tend to introduce a small component along x1 in Av0, and in
practice the method converges also in this case. Convergence of the power method
can also be shown under the weaker assumption that λ1 = · · · = λr , and

|λr | > |λr+1| ≥ · · · ≥ |λn|.

In this case the iterateswill converge toone particular vector in the invariant subspace
span[x1, . . . , xr ]. The limit vector will depend upon the initial vector v0.

If the eigenvalue λ of largest magnitude of a real matrix is complex, then the
complex conjugate λ̄must also be an eigenvalue. The power method can be modified
to work for this case. The key observation is that the subspace spanned by two
successive iterates vk and vk+1 will tend to the subspace spanned by the two complex
conjugate eigenvectors. No complex arithmetic is necessary and v0 can be chosen as
a real vector. A modification for the case when there are two dominant eigenvalues
of opposite sign, λ1 = −λ2, is given in Problem3.3.2.

A simple modification of the power method is to apply the power method to
A − μI , where μ is a shift of origin. Suppose that A and all its eigenvalues λi are
real and that λ1 > λ2 > · · · > λn . Then for the shifted matrix, either λ1 − μ or
λn − μ is the dominant eigenvalue. The rate of convergence is then governed by

|λ2 − μ|/|λ1 − μ|

For convergence toλ1, the shiftμ = 1
2 (λ2+λn) is optimal. Similarly, for convergence

to λn the shift μ = 1
2 (λ1 + λn−1) is optimal.

So far we have neglected the effect of rounding errors in the power method.
These errors will limit the attainable accuracy. Taking rounding errors in (3.3.2) into
account, we get μkvk = Avk−1 + fk , where fk is a small error vector. If Avk−1 is
computed in floating-point arithmetic, then by (1.4.13)

f l(Avk−1) = (A + Fk)vk−1, |Fk | < μn|A|.

Hence, after reaching a vector vk that is an exact eigenvector of some matrix A + E ,
where |E | < μn|A|, no progress can be guaranteed.

In the power method we compute the sequence of vectors v, Av, A2v, . . . one
by one. Each vector overwrites the previous one. This saves storage, but is wasteful
in other respects. For example, even for a two by two matrix the power method
will in general need an infinite number of iterations. But unless Av = λv, the
subspace span[v, Av] equals R

2. If we could find the best approximation from this
subspace, we would have the exact eigenvalue. The ill-conditioning can be repaired

http://dx.doi.org/10.1007/978-3-319-05089-8_1


478 3 Matrix Eigenvalue Problems

by constructing an orthogonal basis for the space span[v, Av]. This insight leads to
the Lanczos and Arnoldi methods; see Chap. 4.

A fairly complete treatment of the powermethod is found inWilkinson [250, 1965]
and references therein. As far as is known, Lord Rayleigh improved an approximate
eigenvector by solving (A − ρ(x1)I )y1 = e1, which is a simpler procedure.

3.3.2 Deflation of Eigenproblems

Suppose we have computed, e.g., by the power method, an eigenvalue λ1 and its
corresponding right eigenvector x1 of a matrix A ∈ C

n×n . How can we proceed if
we want to compute further eigenvalues and their eigenvectors? An old technique
for achieving this is to use deflation, i.e., forming a modified matrix A1 such that the
eigenvalue λ1 is eliminated without changing the other eigenvalues. Such a matrix
A1 can be constructed in a stable way by an orthogonal similarity; see (3.1.19).When
A is large and sparse, this has the drawback that A1 will in general be dense.

Suppose (λ1, x1), with x H
1 x1 = 1, is an eigenpair of a Hermitian matrix A. In

Hotelling’s deflation method A1 is taken to be

A1 = A − λ1x1x H
1 = (I − x1x H

1 )A = P1A. (3.3.5)

Then A1 is Hermitian and a rank-one modification of A and P1 is an orthogonal
projection. From the orthogonality of the eigenvectors xi , it follows that

A1xi = Axi − λ1x1(x H
1 xi ) =

{
0 if i = 1,

λi xi if i �= 1.

This shows that the eigenvalues of A1 are 0, λ2, . . . , λn , and the eigenvectors are
unchanged. If |λ2| > |λi |, i = 3 : n, the power method can now be applied to A1
to determine λ2. An important practical point is that A1 does not have to be formed
explicitly. Products y = A1v can be efficiently performed as

A1v = (A − λ1x1x H
1 )v = Av − λ1x1(x H

1 v).

Hence, only A, λ1, and the vector x1 need to be available. Hotelling’s deflation is a
special case of a more general deflation scheme due to Wielandt.8

8 Helmut Wielandt (1910–2001) was a student of Schmidt and Schur in Berlin. His initial work was
in group theory. In 1942 he became attached to the Aerodynamics Research Institute in Göttingen
and started to work on vibration theory. He contributed greatly to matrix theory and did pioneering
work on computational methods for the matrix eigenvalue problem; see [133, 1996].

http://dx.doi.org/10.1007/978-3-319-05089-8_4
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Theorem 3.3.1 (Wielandt [249]) Let A ∈ C
n×n have eigenvalues λi and left and

right eigenvectors yi , xi , i = 1 :n, respectively. Set

A1 = A − μx1zH , (3.3.6)

where z is an arbitrary vector such that zH x1 = 1. Then A1 has eigenvalues λ1 −μ,

λ2, . . . , λn.

Proof For i = 1 we have A1x1 = Ax1 − μx1(zH x1) = (λ1 − μ)x1, which shows
that λ1 − μ is an eigenvalue of A1. For i �= 1 the left eigenvectors yi satisfy

yH
i A1 = yH

i (A − μx1zH ) = yH
i A − μ(yH

i x1)z
H = λi yH

i ,

where the last step follows from the biorthogonality of the left and right eigenvectors
yH

i x1 = 0, i �= 1. �

From the proof it is clear that the right eigenvector x1 and the left eigenvectors
yi , i = 2 : n, of A are preserved in A1. To find the other right eigenvectors, set
x̂i = xi − μi x1. Since zH x1 = 1, it follows that

A1 x̂i = (A − μx1zH )(xi − μi x1) = λi xi − (μiλ1 + μ(zH xi ) − μμi )x1.

Hence, if we take

μi = μ(zH xi )

μ − (λ1 − λi )
, (3.3.7)

then x̂i , i �= 1, is an eigenvector of A1 associated with the eigenvalue λi .
As in the symmetric case, it is not necessary to form A1 explicitly. The operation

y = A1x is performed as

(A − μx1zH )x = Ax − μ(zH x)x1.

Hence, it suffices to have the vectors x1 and z available, as well as a procedure
for computing Ax for a given vector x . Obviously, this deflation procedure can be
performed repeatedly, to obtain A2, A3, . . . , but this has to be done with caution.
Errors will accumulate, which can be disastrous if the currently computed eigenvalue
is badly conditioned; see Wilkinson [250, 1965], pp. 584–601.

There are many ways to choose z. One of the most common is to take z = y1, the
left eigenvector, and setμ = λ1, A1 = A −λ1x1yH

1 . This is Hotelling’s deflation for
non-Hermitian matrices. This deflation preserves both left and right eigenvectors.
By (3.3.7), μi = 0, i = 1 :n, and

A1xi = Axi − λ1x1(yH
1 xi ) =

{
0 if i = 1,

λi xi if i �= 1.
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Another interesting choice is to take z = x1 in (3.3.6), which makes the modi-
fication Hermitian. This choice has the useful property that it preserves the Schur
vectors of A.

Theorem 3.3.2 Let x1, ‖x1‖2 = 1, be a right eigenvectors of A ∈ C
n×n with the

associated eigenvalue λ1, and set

A1 = A − μx1x H
1 . (3.3.8)

Then the eigenvalues of A1 are λ1 − μ, λ2, . . . , λn and the Schur vectors of A1 are
identical to those of A.

Proof Let AQ = QU be the Schur decomposition of A, where U is upper triangular,
Q H Q = I , and Qe1 = x1. Then we have

A1Q = (A − μx1x H
1 )Q = QU − μx1eH

1 = Q(U − μe1eH
1 ),

and the result follows. �
The preservation of the Schur form suggests an incremental form of deflation,

where a matrix Qk = (q1, . . . , qk) of Schur vectors is built up one column at a
time. Suppose that we have performed successive deflation with q1, . . . , qk , i.e.,
with A = A0, we have computed

A j = A j−1 − λ j q j q
H
j , j = 1 :k.

In the next step a new eigenvalue λk+1 of Ak and its corresponding eigenvector x̂k+1
are determined. Then, the next Schur vector is obtained by making x̂k+1 orthonormal
to previously computed Schur vectors. If A is real, this algorithm can be modified
to use real arithmetic, by working with the quasi-Schur form of A. This allows for
2×2 blocks on the diagonal of U ; see Theorem3.1.12, p. 445. Then, in a step where
a pair of complex conjugate eigenvalues are determined, two new columns will be
added to Qk .

3.3.3 Inverse Iteration

The power method has the drawback that convergence may be arbitrarily slow or
may not happen at all. We now discuss a way to overcome this difficulty. Let the
ordered eigenvalues of A be |λ1| ≥ · · · ≥ |λn−1| > |λn|. Then λ−1

n is the dominant
eigenvalue of A−1. If the power method is applied to the inverse matrix A−1,

VK+1 = A−1VK , K = 1, 2, 3, . . . ,

then vk will converge to the eigenvector xn corresponding to the eigenvalue of small-
est magnitude λn . This inverse power method was proposed in 1944 by Wielandt
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[249, 1944]. If the pivoted LU factorization P A = LU is known, each step involves
the solution of two triangular systems

LUvk+1 = Pvk, k = 1, 2, . . . .

By performing inverse iteration on a shifted matrix A−μI with a suitably chosen
shift, it is possible to focus on eigenvalues in a neighborhood of μ. The following
result is easy to verify.

Lemma 3.3.1 (Shift-and-Invert Transformation) Let A have eigenvalues λi , i = 1 :
n, and let μ �= λi be a chosen shift. Then the eigenvalues of B = (A − μI )−1 are

θi = 1

λi − μ
, λi = μ + 1

θi
, i = 1 :n. (3.3.9)

By this spectral transformation, eigenvalues close to the shiftμ are transformed
into large and well separated eigenvalues of B; see Fig. 3.2. Eigenvalues close to the
shift μ can then be found by applying the power method to B:

(A − μI )̂vk = vk−1, vk = v̂k/‖̂vk‖2, k = 1, 2, . . . . (3.3.10)

As in inverse iteration, this is accomplished by initially performing a pivoted LU
factorization P(A−μI ) = LU . Each step of (3.3.10) then requires only the solution
of two triangular systems. For a dense matrix A this is no more costly than one step
of the simple power method.
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Fig. 3.2 Spectral transformation with shift μ = 1
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The Rayleigh quotient is 1/(λi − μ) ≈ vT
k−1v̂k , where v̂k is computed by solving

(A − μI )̂vk = vk−1, and the approximation

λ̂i = μ + 1
/
(vT

k−1v̂k) (3.3.11)

to the eigenvalue λi of A is obtained. An a posteriori bound for the error in this
approximate eigenvalue can be obtained from the residual corresponding to (̂λi , v̂k),
which is

rk = Av̂k −
(
μ + 1/(vT

k−1v̂k)
)
v̂k = vk−1 − v̂k/(v

T
k−1v̂k).

By Theorem3.2.11, (̂λi , v̂k) is an exact eigenpair of a matrix A + E , where ‖E‖2 ≤
‖rk‖2/‖̂vk‖2. If A is real symmetric, then the error in the approximate eigenvalue λ̂i

of A is bounded by ‖rk‖2/‖̂vk‖2.
Note that even when A is symmetric positive definite, the shifted matrix A − μI

is in general indefinite. Therefore, a symmetric factorization

P(A − μI ) = LDLT

is used, where L is block lower triangular and D is block diagonal with 1 × 1 and
2 × 2 blocks; see Sect. 1.3.4.

Inverse iteration is a very effective method for computing an eigenvector for an
eigenvalue λi whose accurate approximation is known. Let λi be a simple eigenvalue
and choose the shift μ so that |λi − μ| � |λ j − μ|, λi �= λ j . Then (λi − μ)−1 is a
dominating eigenvalue of B:

|λi − μ|−1 � |λ j − μ|−1, λi �= λ j . (3.3.12)

This ensures that vk will converge rapidly to the associated eigenvector xi . Often
just one step of inverse iteration suffices. If μ equals λi up to machine precision,
then A − μI in (3.3.10) is numerically singular. Therefore, it may seem that inverse
iteration is doomed to failure if μ is chosen too close to an eigenvalue. Fortunately
a careful analysis shows that this is not the case!

Example 3.3.2 The matrix A =
(

1 1
0.1 1.1

)
has a simple eigenvalue λ1 =

0.7298438 and the corresponding normalized eigenvector is x1 = (0.9653911,
−0.2608064)T . We take μ = 0.7298 to be an approximation to λ1. Then one step
of inverse iteration starting with v0 = (1, 0)T gives

A − μI = LU =
(

1 0
0.37009623 1

)(
0.2702 1

0 0.0001038

)
,

v̂1 = 104(1.3202568,−0.3566334)T , v1 = (0.9653989,−0.2607777)T .

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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This agrees with the correct eigenvector to more than four decimals. From the back-
ward error bound it follows that (0.7298, v1) is an exact eigenpair for a matrix A+ E ,
where ‖E‖2 ≤ 1/‖̂v1‖2 = 0.73122 · 10−4. �

If Gaussian elimination with partial pivoting is used, the computed factorization
of A − μI will satisfy

P(A + E − μI ) = L̂Û , ‖E‖2/‖A‖2 = f (n)O(u),

where u is the unit roundoff, and f (n) is a modest function of n. Since the rounding
errors in the solution of the triangular systems usually are negligible, the computed
whatvk will nearly satisfy

(A + E − μI )̂vk = Pvk−1.

Hence, the inverse power method will give an approximation to an eigenvector of a
slightly perturbed matrix A + E , independent of the ill-conditioning of A − μI .

To decide when a computed vector is a numerically acceptable eigenvector corre-
sponding to an approximate eigenvalue, the aposteriori error bound inTheorem3.2.11
can be applied to inverse iteration. By (3.3.10), vk−1 is the residual vector
corresponding to the approximate eigenpair (μ, v̂k). Hence, v̂k is a numerically
acceptable eigenvector if

‖vk−1‖2/‖̂vk‖2 ≤ u‖A‖2. (3.3.13)

Inverse iteration works well for calculation of eigenvectors corresponding to well
separated eigenvalues for dense matrices. Often a random initial vector is used with
elements from a uniform distribution in [−1, 1]. In order to save work in the LU
or LDLT factorizations, the matrix is usually first reduced to Hessenberg or real
tridiagonal form, by algorithms that will be described in Sects. 3.4.3 and 3.5.1.

It is quite tricky to develop inverse iteration into a reliable algorithm unless the
eigenvalues are known to be well separated. When A is symmetric and eigenvectors
corresponding tomultiple or very close eigenvalues are required, special steps have to
be taken to ensure orthogonality of the eigenvectors. In particular, small residuals are
not sufficient to guarantee orthogonality to full working precision when eigenvalues
are clustered. As shown by Dhillon [62, 1998], both the EISPACK and LAPACK
implementations can fail.

Example 3.3.3 The eigenvalues of

A =
(
1 + ε 1

ε 1 + ε

)

are λ = (1+ ε) ± √
ε. Assume that |ε| ≈ u, where u is the machine precision. Then

the pair λ = 1, x = (1, 0)T is a numerically acceptable eigenpair of A because it is
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exact for A + E , where

E = −
(

ε 0
ε ε

)
, ‖E‖2 <

√
3u.

One step of inverse iteration starting from v0 = (1, 0)T gives

v̂1 = 1

1 − ε

(−1
1

)
.

No growth occurred and (1, v̂1) is not an acceptable eigenpair of A. However,
if one more step of inverse iteration is carried out an acceptable eigenvector is
obtained. �

Equation (3.2.25) gives an expression for the backward error E of the computed
eigenpair. An error bound can then be obtained by applying the perturbation analysis
of Sect. 3.2. In the Hermitian case the eigenvalues are perfectly conditioned, and the
error bound equals ‖E‖2. In general, the sensitivity of an eigenvalue λ is determined
by 1/s(λ) = 1/|yH x |, where x and y are right and left unit eigenvector corresponding
to λ; see Sect. 3.2.2. If the power method is applied also to AH (or in inverse iteration
to (AH − μI )−1), we can generate an approximation to y and hence estimate s(λ).

In the unsymmetric case the situation can be worse, particularly if there are
defective or very ill-conditioned eigenvalues. Then, unless a suitable initial vector
is used, inverse iteration may not produce a numerically acceptable eigenvector; see
Wilkinson and Reinsch [253, 1971], Contribution II/18. A survey of inverse iteration
for a single eigenvector is given by Ipsen [135, 1997].

3.3.4 Rayleigh Quotient Iteration

So far we have considered inverse iteration with a fixed shift μ. This is very effi-
cient, provided the shift is a sufficiently close to the desired eigenvalue(s). Using
a different shift in each iteration is considerably more costly, because it requires a
new factorization of the shifted matrix in each iteration step. In Rayleigh quotient
iteration (RQI), the shift is chosen as the Rayleigh quotient of the current eigen-
vector approximation. With this choice, quadratic or even cubic convergence can be
achieved. Note that in Algorithm3.3.1 Av = μkv + vk , which allows the Rayleigh
quotient to be updated by

μk+1 = vH Av/η2 = μk + vH
k+1vk/η.

The cost in RQI of computing a new triangular factorization of A − μk I can be
reduced by first transforming A to condensed form (Hessenberg or tridiagonal).
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Algorithm 3.3.1 (RQI) Let v0 ∈ C
n be an initial vector of unit length and for

k = 0, 1, 2, . . . , do:

1. Compute μk = vH
k Avk .

2. Solve (A − μk I )v = vk and set vk+1 = v/η, where η = ‖v‖2.
3. If η is sufficiently large, then accept eigenpair (μk, vk+1) and stop.

The convergence properties of Algorithm3.3.1 have been studied in depth for
both the symmetric and unsymmetric cases. RQI may converge to an eigenvalue that
is not closest to μ(v0). Therefore, it is not obvious how to choose the starting vector
to make it converge to a particular eigenpair. If RQI converges toward an eigenvector
corresponding to a simple eigenvalue, then it can be shown that convergence is at
least quadratic. More precisely,

rk ≤ ckr2k−1, rk = ‖Aqk − μkvk‖2,

where ck changes only slowly; see Stewart [219, 1973], Sect. 7.2. If A is real and sym-
metric (or Hermitian) the situation is even more satisfactory, because the Rayleigh
quotient is stationary at eigenvectors; see (3.2.31). This leads to local cubic conver-
gence of RQI for Hermitian matrices.

Theorem 3.3.3 Let (λ, x) be an eigenpair of a Hermitian matrix A. Let the current
iterate inRQI be vk = ck x+skuk , c2k +s2k = 1, where uk ⊥ x and ‖x‖2 = ‖uk‖2 = 1.
Then the error angles θk = arcsin sk satisfy

|θk+1| ≤ |θk |3, k → ∞, (3.3.14)

where equality holds almost always.

Proof See Parlett [192, 1998], Sect. 4.7. �
Note that the multiplicity of the eigenvalue and the gap to other eigenvalues do

not affect the cubic convergence rate itself, but can delay the onset of the asymptotic
range.

Example 3.3.4 ApplyingRQI to the symmetricmatrix inExample3.3.1with starting
vector v0 = 1√

3

(
1 1 1

)T yields μ0 = 4 + 1/3,

μ1 = 4.7074171797127, μ2 = 4.7320462724388, μ3 = 4.7320508075689.

The corresponding normalized eigenvector is

x = (
0.21132486540519 0.57735026918963 0.78867513459481

)T
.

The eigenvalue corresponding to the eigenvector closest to x0 produced by the
Matlab function eig is 4.732050807568877. Hence, even though the initial vector
is not close to the eigenvector, RQI gives full IEEE double precision accuracy in only
three iterations. �



486 3 Matrix Eigenvalue Problems

The residuals rk = Avk − μkvk are the best computable measure of the accuracy
of the RQI iterates (μk, vk) as an eigenpair. A key fact in the global analysis of RQI
is that the residual norms are monotonically decreasing. Thus, RQI can also be used
to solve the Hermitian eigenvalue problem from scratch.

Theorem 3.3.4 For a Hermitian matrix A the residual norms in RQI are monoton-
ically decreasing: ‖rk+1‖2 ≤ ‖rk‖2. Equality holds only if μk+1 = μk and vk is an
eigenvector of (A − μk I )2.

Proof By the minimum property of the Rayleigh quotient and the fact that vk is a
multiple of (A − μk I )vk+1, we have

‖rk+1‖2 ≡ ‖(A − μk+1 I )vk+1‖2 ≤ ‖(A − μk I )vk+1‖2
= |vH

k (A − μk I )vk+1|2
where equality holds only if μk+1 = μk . The Cauchy–Schwarz inequality gives

‖rk+1‖2 ≤ ‖(A − μk I )vk‖2‖vk+1‖2 = ‖rk‖2.

Here equality holds in the first inequality only if rk is a multiple of vk+1, i.e., only if
for some μk , (A − μk I )vk = μk(A − μk I )−1vk . The last equality follows because
A − μk I is Hermitian and ‖v j‖2 = 1 for all j . �

In the Hermitian case it is not necessary to assume that RQI converges to an
eigenvector corresponding to a simple eigenvalue. It can be shown that the iterates
vk will either converge to an eigenvector of A, or converge to the bisectors of a pair
of eigenvectors of A; see Parlett [192, 1998], Sect. 4.6. The latter situation is unstable
under small perturbations, so this will not occur in practice. Hence, for Hermitian
matrices RQI converges globally, i.e., from any starting vector v0. One reason why
the global convergence of RQI is of interest is that RQI is essentially equivalent to
the symmetric QR algorithm with shift equal to the last diagonal entry.

3.3.5 Subspace Iteration

In many cases an invariant subspace of dimension p > 1 is wanted rather than a
single eigenvector. Then a natural generalization of the power method can be used,
where one simultaneously iterates with several independent vectors.

Let S = (s1, . . . , sp) ∈ R
n×p be an initial matrix of rank p > 1. In subspace

iteration a sequence of matrices {Zk} is computed from

Z0 = S, Zk = AZk−1, k = 1, 2, . . . , (3.3.15)

giving Zk = Ak S = (Aks1, . . . , Aksp). In applications A is often a very large sparse
matrix and p � n. If A has a dominant eigenvalue λ1, then all columns of Zk will
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converge to a scalar multiple of the dominant eigenvector x1. Therefore Zk will be
close to a matrix of numerical rank one and it is not clear that much will be gained.

In subspace iteration one is really computing a sequence of subspaces. If S =
span(S), the iteration produces the subspaces AkS = span(Ak S). Hence, the basic
problem is that the basis Aks1, . . . , Aksp of the subspace AkS becomes more and
more ill-conditioned. To force the vectors to stay independent, Bauer [19, 1957]
suggested the following procedure called Treppeniteration (staircase iteration). At
the kth step the current basis is represented by the unit lower triangular matrix Lk .
Then ALk is formed and factored into the product Lk+1Rk+1.

Since orthogonal reduction techniques have superior stability, it is natural to con-
sider maintaining orthogonality between the basis columns. Starting with a matrix
Q0 with orthogonal columns, we compute

Zk = AQk−1, Zk = Qk Rk, k = 1, 2, . . . , (3.3.16)

where Qk Rk is the QR decomposition of Zk . Here Qk can be computed, e.g.,
by Gram–Schmidt orthogonalization of Zk . The iteration (3.3.16) is also called
orthogonal iteration. Note that Rk plays the role of a normalizing matrix. We have
Q1 = Z1R−1

1 = AQ0R−1
1 . By induction, it can be shown that

Qk = Ak Q0(Rk · · · R1)
−1. (3.3.17)

It is important to note that if Z0 = Q0, then (3.3.15) and (3.3.16) generate the
same sequence of subspaces, R(Ak Q0) = R(Qk). But in orthogonal iteration an
orthogonal basis for the subspace is calculated at each iteration. (Since the iteration
(3.3.15) is less costly, it is sometimes preferable to perform the orthogonalization in
(3.3.16) only occasionally, when needed.)

The method of orthogonal iteration overcomes several of the disadvantages of
the power method. Provided that |λp+1/λp| is small, it can be used to determine the
invariant subspace corresponding to the dominant p eigenvalues. Assume that the
eigenvalues of A satisfy |λ1| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn| and let

(
U H
1

U H
2

)
A(U1 U2) =

(
T11 T12
0 T22

)
(3.3.18)

be a Schur decomposition of A, where diag(T11) = (λ1, . . . , λp)
H . Then the sub-

space U1 = R(U1) is a dominant invariant subspace of A. It can be shown that in
orthogonal iteration the subspacesR(Qk) almost always converge to U1 as k → ∞.

The accuracy of an invariant subspace is measured by the distance to the exact
invariant subspace; see Definition2.2.3.

Theorem 3.3.5 Let U1 = R(U1) be a dominant invariant subspace of A, as defined
in (3.3.18). Let S be a p-dimensional subspace of C

n such that S ∩U⊥
1 = {0}. Then

there exists a constant C such that
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θmax(AkS,U1) ≤ C |λp+1/λp|k,

where θmax(X ,Y) denotes the largest angle between the two subspaces.

Proof See Golub and Van Loan [104, 1996], pp. 333. �

In subspace iteration on p vectors, we are simultaneously performing subspace
iteration on a nested sequence of subspaces

span(s1), span(s1, s2), . . . , span(s1, s2, . . . , sp).

This is also true for orthogonal iteration, because this property is not changed by the
orthogonalization procedure. Hence, Theorem3.3.5 shows that whenever |λq+1/λq |
is small for some q ≤ p, the convergence to the corresponding dominant invariant
subspace of dimension q will be fast. There is a duality between direct and inverse
subspace iteration.

Lemma 3.3.2 (Watkins [243]) Let S and S⊥ be orthogonal complementary sub-
spaces of C

n. Then for all integers k the spaces AkS and (AH )−kS⊥ are also
orthogonal.

Proof Let x ∈ S and y ∈ S⊥. Then (Ak x)H (AH )−k y = x H y = 0, and thus
Ak x ⊥ (AH )−k y. �

This duality property means that the two sequences of subspaces S, AS, A2S, . . . ,

and S⊥, (AH )−1S⊥, (AH )−2S⊥, . . . are equivalent in the sense that the orthogonal
complement of a subspace in one sequence equals the corresponding subspace in the
other sequence. This result will be important later in Sect. 3.4.1 for the understanding
of the QR algorithm.

In Algorithm3.3.2 the RQI iteration is generalized to work for subspace iteration.

Algorithm 3.3.2 (Subspace RQI) Let A ∈ C
n×n and Q0 ∈ C

n×p be unitary. For
k = 0, 1, 2, . . . , do

1. Compute the Rayleigh quotient Gk = Q H
k AQk .

2. Compute the solution Zk to the Sylvester equation AZk − Zk Gk = Qk .
3. Take Qk+1 to be the Q factor in the QR factorization of Zk .

For p = 1 the above algorithm reduces to the classical RQI of Algorithm3.3.1.
The main work in a step of subspace RQI is the solution of the Sylvester equation
in step 2. By Theorem3.1.14, p. 448, this has a unique solution if A and Gk have no
common eigenvalue. Otherwise, the algorithm has to be modified, e.g., by perturbing
an eigenvalue of Gk slightly.

An efficient method to solve the Sylvester equation when A is a dense matrix
was described in Sect. 3.1.4. Unitary matrices U ∈ C

n×n and Vk ∈ C
p×p are first
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determined to reduce A to Hessenberg form and Gk to upper triangular Schur form

Ã = U H AU, R̃k = V H
k Gk Vk, Z̃ = U H

k Z Vk .

Then the rows of Z̃k can be found by substitution. The reduction of A requires
O(n3) flops, but needs to be done only once. In the Hermitian case, A is reduced to
tridiagonal form and Gk to diagonal form.

Suppose that subspace RQI converges to an invariant subspace Y1 ∈ C
n×p of the

Hermitian matrix A, where Y H
1 Y1 = I and Y = (Y1, Y2) ∈ C

n×n is unitary. Then
we can write

Qk = Y Y H Qk = Y1Ck + Y2Sk, Ck = Y H
1 Qk, Sk = Y H

2 Qk .

It can be shown that there is a constant c such that ‖Sk+1‖2 ≤ c‖Sk‖32 for all Sk

sufficiently small, i.e., convergence for Hermitian matrices is cubic.
Problems defined on the set of n × p unitary matrices occur quite often in linear

algebra. This constraint surface is called the Stiefel manifold, after Eduard Stiefel,
who in 1932 considered its topology in his thesis. In subspace RQI, the unitarymatrix
Q is just one possible representation of the invariant subspace. Any other matrix Y =
QP, where P ∈ R

p×p is nonsingular, is an equally valid representation. The set of p-
dimensional subspaces in R

n is called the Grassmann manifold.9 This is a suitable
mathematical framework for analyzing subspace RQI and many other algorithms.

The convergence of RQI in both the symmetric and unsymmetric case is studied
by Ostrowski [188, 1958] and a several other papers. An Algol implementation of
RQI for symmetric matrices by Rutishauser [210, 1970] deserves to be studied.

The multiple relatively robust representation (MRRR) is a recent improvement
of inverse iteration. MRRR computes orthogonal eigenvectors to high accuracy in
only O(n2) time even when eigenvalues are tightly clustered. Theoretical properties
of MRRR are analyzed by Dhillon [61, 1997], and implementation issues in Dhillon
et al. [65, 2006], Dhillon and Parlett [63, 2004], and [64, 2004]. MRRR algorithms
for computing left and right singular vectors in O(n2) time are developed by Grosser
and Lang [111, 2003], [112, 2005], and Willems et al. [254, 2006].

Newton-based methods for computation of invariant subspaces are treated by
Chatelin [42, 1984] and Demmel [54, 1997]. An introduction to Grassmann and
Stiefel manifolds and a framework of Newton algorithms with orthogonality con-
straints is given by Edelman et al. [72, 1999]. Lundström and Eldén [171, 2002] use
Newton’s method on a Grassmann manifold for updating an invariant subspace of a
perturbed Hermitian matrix; see also Simonsson [214, 2006]. Absil et al. [3, 2002]

9 HermannGünterGrassmann (1809–1877),Germanmathematician,was born in Stettin.He studied
theology, languages, and philosophy atUniversity ofBerlin.As a teacher at theGymnasium inStettin
he took up mathematical research on his own. In 1844 he published a highly original textbook, in
which the symbols representing geometric entities such as points, lines, and planesweremanipulated
using certain rules. Later his work became used in areas such as differential geometry and relativistic
quantummechanics. Sadly, the leadingmathematicians of his time failed to recognize the importance
of his work.
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and [4, 2004] show that the Grassmann–Rayleigh quotient iteration for computing
invariant subspaces can achieve cubic convergence forHermitian problems. The book
by Absil et al. [2, 2007] surveys optimization algorithms on matrix manifolds and
shows how efficient algorithms can be constructed using insights from differential
geometry.

Exercises

3.3.1 Let A ∈ R
n×n be a symmetric matrix with eigenvalues satisfying λ1 > λ2 ≥ · · · ≥ λn−1 >

λn . Show that the choiceμ = (λ2+λn)/2 gives fastest convergence towards the eigenvector
corresponding toλ1 in the powermethod applied to A−μI .What is this rate of convergence?

3.3.2 Assume that A has two real eigenvalue λ = ±λ1 and that all remaining eigenvalues satisfy
|λ| < |λ1|. Generalize the simple power method so that it can be used for this case.

3.3.3 (a) Compute the residual vector corresponding to the last eigenpair obtained in Exam-
ple3.3.1, and give the corresponding backward error estimate.

(b) Perform Aitken extrapolation on the Rayleigh quotient approximations in Exam-
ple3.3.1 to compute an improved estimate of λ1.

3.3.4 The symmetric matrix

A =

⎛
⎜⎜⎝
14 7 6 9
7 9 4 6
6 4 9 7
9 6 7 15

⎞
⎟⎟⎠

has an eigenvalue λ ≈ 4. Compute an improved estimate of λ with one step of inverse
iteration using the factorization A − 4I = LDLT .

3.3.5 The singular values of a symmetric matrix A ∈ R
n×n are σi = |λi |, i = 1 : n. Use inverse

iteration with starting vector x = (1,−2, 1)T to compute with at least two significant digits
the smallest singular value of

A =
⎛
⎝
1/5 1/6 1/7
1/6 1/7 1/8
1/7 1/8 1/9

⎞
⎠

3.3.6 The matrix

A =
(
1 1
ε 1 + ε

)

has two simple eigenvalues close to 1 if ε > 0. For ε = 10−3 and ε = 10−6, first compute
the smallest eigenvalue to six decimals. Then perform inverse iteration to determine the
corresponding eigenvectors. Try as starting vectors both x = (1, 0)T and x = (0, 1)T .

3.3.7 Let A ∈ C
n×n be a Hermitian matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn . Show that the

invariant subspace corresponding to the p largest eigenvalues can be found by maximizing
the function F(X), X ∈ C

n×p , subject to X H X = I , where

F(X) = trace(X H AX). (3.3.19)

Hint: Use Fischer’s Theorem3.2.7.
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3.4 The LR and QR Algorithms

The precursor of the QR algorithm is the LR algorithm developed by Heinz
Rutishauser [207, 1958].10 The LR algorithm (L and R stand for “links” (left) and
“rechts” (right) in German) is related to a more general algorithm, the qd algorithm,
which can be used to find poles of rational functions or zeros of polynomials.

3.4.1 The Basic LR and QR Algorithms

Suppose that A ∈ C
n×n has the LU factorization A = LU . Then U = L−1A, and

multiplying the factors in reverse order performs the similarity transformation

Ã = U L = L−1AL .

In the LR algorithm this process is iterated. Setting A1 = A, and

Ak = LkUk, Ak+1 = Uk Lk, k = 1, 2, . . . (3.4.1)

gives a sequence of similar matrices. Repeated application of (3.4.1) gives

Ak = L−1
k−1 . . . L−1

2 L−1
1 A1L1L2 . . . Lk−1, (3.4.2)

or

L1L2 . . . Lk−1Ak = A1L1L2 . . . Lk−1. (3.4.3)

The two matrices defined by

Tk = L1 . . . Lk−1Lk, Sk = UkUk−1 . . . U1, k = 1, 2, . . . , (3.4.4)

are lower and upper triangular, respectively. Forming the product Tk Sk and using
(3.4.3), we obtain

Tk Sk = L1 . . . Lk−1(LkUk)Uk−1 . . . U1

= L1 . . . Lk−1AkUk−1 . . . U1

= A1L1 . . . Lk−1Uk−1 . . . U1 = ATk−1Sk−1.

10 Heinz Rutishauser (1918–1970) Swiss mathematician, a pioneer in computing, and the originator
ofmany important algorithms in ScientificComputing. In 1948 he joined the newly founded Institute
for Applied Mathematics at ETH in Zürich. He spent 1949 at Harvard with Howard Aiken and at
Princeton with John von Neumann to learn about electronic computers. Rutishauser was one of
the leaders in the international development of the programming language Algol. His qd algorithm
[206, 1954] had great impact on methods for eigenvalue calculations.
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Repeating this we obtain the basic relation

Tk Sk = Ak, (3.4.5)

which exhibits the close relationship between the LR algorithm and the power
method.

Under certain restrictions it can be shown that the sequence of matrices Ak in
(3.4.1) converges to an upper triangular matrix U∞, whose diagonal elements equal
the eigenvalues of A. To establish this result, several assumptions need to be made.
The LU factorization must exist at every stage. This difficulty can be resolved by
using row interchanges in the process. At each stage the matrix Ak is reduced to an
upper triangular matrix Uk using Gaussian elimination. We then postmultiply Us by
the inverses of the factors used in the reduction, giving Ak+1. Then

Ak+1 = L̃−1
k Ãk L̃k,

where L̃k is a unit lower triangular matrix and Ãk is Ak with its rows and columns
permuted. However, convergence of this modified process cannot be proved. If con-
vergence does take place and if none of the eigenvalues is zero, then interchanges
must ultimately cease, because the subdiagonal elements of Ak are tending to zero.
A more complete discussion of the LR algorithm is given by Wilkinson [250, 1965],
Chap. 8.

Example 3.4.1 To illustrate the non-convergence of the LR algorithm without row
interchanges Rutishauser used the matrix

A =
⎛
⎝
1 −1 1
4 6 −1
4 4 1

⎞
⎠ ,

with eigenvalues λ1 = 5, λ2 = 2, and λ3 = 1. Using three steps of the original and
modified LR algorithm gives

A4 =
⎛
⎝

1 −0.008 1
500 6 −125
4 0.032 1

⎞
⎠ , Ã4 =

⎛
⎝

5.032 3.008 −11.000
−0.033 2 1.968
0.032 0.032 1

⎞
⎠ ,

respectively. Clearly, the original process is divergent, but the modified LR algo-
rithm converges quite rapidly. The only interchange is between rows 1 and 2 in the
factorization of A = A1. �

When A is real symmetric and positive definite the Cholesky factorization A =
LLT can be used in the LR algorithm. The algorithm then takes the form

Ak = Lk LT
k , Ak+1 = LT

k Lk, k = 1, 2, . . . , (3.4.6)
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and we have

Ak+1 = L−1
k Ak Lk = LT

k Ak L−T
k . (3.4.7)

Clearly, all matrices Ak are symmetric and positive definite, and therefore the algo-
rithm is well defined. Repeated application of (3.4.7) gives

Ak = T −1
k−1A1Tk−1 = T T

k−1A1(T
−1
k−1)

T , (3.4.8)

where Tk = L1L2 . . . Lk . Further, we have

Ak = (L1L2 . . . Lk)(LT
k . . . LT

2 LT
1 ) = Tk T T

k . (3.4.9)

The rate of convergence of the LR algorithm depends on the ratio of eigenvalues.
By introducing shifts in the algorithm convergence can be improved. The shifted
matrix A − s I has the same invariant subspaces as A, but the eigenvalues are λi − s,
i = 1 :n. If the shift is varied at each iteration, then the shifted LR algorithmbecomes:
A1 = A,

Ak − sk I = LkUk, Ak+1 = Uk Lk + sk I, k = 1, 2, . . . . (3.4.10)

Since the shift is restored at the end of the step, it still holds that Ak+1 = L−1
k Ak Lk .

If in (3.4.10) the shifts sk approximate a simple eigenvalue λ of A, convergence to
this eigenvalue will be fast. In the positive definite case the Cholesky factorization
Ak − sk I = Lk LT

k always exists if the shifts sk are chosen smaller than the small-
est eigenvalue of A. Rutishauser [208, 1960] developed a shifting strategy for the
symmetric positive definite case giving cubic convergence.

Developing a general and robust implementation of the LR algorithm turns out to
be a difficult task. To avoid the problems with the LR algorithm, a similar algorithm
with unitary similarities can be used. In the QR algorithm the QR factorization of
Ak is computed:

Ak = QkUk, Ak+1 = Uk Qk, k = 1, 2, . . . , (3.4.11)

and the factors are multiplied in reverse order. The result is a matrix Ak+1 =
Q H

k Ak Qk similar to A1 = A. The successive iterates of the QR algorithm sat-
isfy relations similar to those derived for the LR algorithm. By repeated application
of (3.4.11) it follows that

Ak+1 = P H
k APk, Pk = Q1Q2 . . . Qk, (3.4.12)
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where Pk is unitary. Further,

PkUk = Q1 . . . Qk−1(Qk Rk)Uk−1 . . . R1

= Q1 . . . Qk−1Ak Rk−1 . . . R1

= A1Q1 . . . Qk−1Rk−1 . . . R1

= APk−1Uk−1,

where Uk = Rk . . . R2R1 is upper triangular. Since A = Q1R1 = P1U1, it follows
by induction that

PkUk = Ak, k = 1, 2, . . . . (3.4.13)

When A is real symmetric and positive definite there is a close relationship
between the LR and QR algorithms. For the QR algorithm we have AT

k = Ak =
RT

k QT
k and hence

AT
k Ak = A2

k = RT
k QT

k Qk Rk = RT
k Rk . (3.4.14)

This shows that RT
k is the lower triangular Cholesky factor of A2

k . For the Cholesky
LR algorithm we have from (3.4.9) and (3.4.14) that

A2
k = Lk Lk+1(Lk Lk+1)

T . (3.4.15)

By uniqueness, the Cholesky factorizations (3.4.14) and (3.4.15) of A2
k must be the

same and therefore RT
k = Lk Lk+1. Thus

Ak+1 = Rk Qk = Rk Ak R−1
k = LT

k+1LT
k Ak(LT

k+1LT
k )−1.

Comparing thiswith (3.4.8),wededuce that one stepof theQRalgorithm is equivalent
to two steps in the Cholesky LR algorithm. Hence, the matrix A2k+1 obtained by the
Cholesky LR algorithm equals the matrix Ak+1 obtained by the QR algorithm.

3.4.2 The Practical QR Algorithm

The QR algorithm is now considered to be the standard algorithm for comput-
ing all eigenvalues and eigenvectors of a dense matrix. It was published indepen-
dently by Kublanovskaya [159, 1961] and Francis11 [82, 1961] and [83, 1961].
Kublanovskaya’s contribution is more theoretical, whereas the second paper of

11 John Francis, born in London 1934, is an English computer scientist. In 1954 he worked for
the National Research Development Corporation (NRDC). In 1955–1956 he attended Cambridge
University, but did not complete a degree and returned to work for NRDC, now as an assistant to
Christopher Strachey. Here he developed the QR algorithm, but by 1962 left the field of numerical
analysis. He had no idea of the great impact the QR algorithm has had until contacted by Gene
Golub and Frank Uhlig in 2007.

Ham
Highlight

Ham
Highlight
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Francis is concerned with the practical implementation and contains crucial algo-
rithmic details. The story of the QR algorithm and its later developments is told by
Golub and Uhlig [103, 2009]. An exposition of Francis’s work on the QR algorithm
is given in Watkins [248, 2011].

We first show a relationship between the QR algorithm and orthogonal iteration.
In orthogonal iteration, given a unitary matrix Q̃0 ∈ C

n×n , a sequence of matrices
Q̃1, Q̃2, . . . , are computed as

Zk = AQ̃k−1 = Q̃k R̃k, k = 1, 2, . . . . (3.4.16)

The matrix Bk = Q̃ H
k−1AQ̃k−1 = Q̃ H

k−1Zk is similar to A and can be computed
directly. From (3.4.16) we obtain Bk = (Q̃ H

k−1 Q̃k)R̃k , which is the QR factorization
of Bk . Hence,

Bk+1 = Q̃ H
k AQ̃k = (Q̃ H

k AQ̃k−1)Q̃ H
k−1 Q̃k = R̃k(Q̃ H

k−1 Q̃k)

is obtained by multiplying the QR factors of Bk in reverse order, which is just one
step of the QR algorithm. In particular, setting Q̃0 = I , we have B1 = A, and by
induction it follows that Bk = Ak , k = 2, 3 . . . , where Ak is generated by the QR
iteration (3.4.11). From the definition of Bk and (3.4.11) we have Q̃k = Pk , k > 0,
and (compare (3.3.4))

Ak = Q̃k R̃k, R̃k = Rk . . . R2R1. (3.4.17)

We conclude that the first p columns of Q̃k form a unitary basis for the space spanned
by the first p columns of Ak , i.e., Ak(e1, . . . , ep).

It follows that in the QR algorithm subspace iteration takes place on the nested
sequence of subspaces spanned by (e1, . . . , ep), p = 1 : n. According to Theo-
rem3.3.5, inverse iteration by (AH )−1 takes place simultaneously on the orthogonal
complements, i.e., (ep+1, . . . , en), p = 0 : n − 1. In other words, in the QR algo-
rithm direct iteration takes place in the top left corner of A, and inverse iteration in
the lower right corner. The relationship between simultaneous iteration and the QR
algorithm is well explained by Watkins [247, 2008].

The QL algorithm is a variant of the QR algorithm that is based on the iteration

Ak = Qk Lk, Lk Qk = Ak+1, k = 1, 2, . . . , (3.4.18)

with Lk lower triangular. This is merely a reorganization of the QR algorithm. Let
J be a symmetric permutation matrix such that J A reverses the rows of A. Then
AJ reverses the columns of A and J AJ reverses both rows and columns. If R is
upper triangular, then J R J is lower triangular. It follows that if A = Q R is the
QR factorization of A, then J AJ = (J Q J )(J R J ) is the QL factorization of J AJ .
Hence, the QR algorithm applied to A is the same as the QL algorithm applied to
J AJ . Therefore, the convergence theory is the same for both algorithms. But in the
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QL algorithm inverse iteration is taking place in the top left corner of A, and direct
iteration in the lower right corner.

Let λi , i = 1 :n, be the eigenvalues of A, and assume that |λp| > |λp+1|. Let
(

U H
1

U H
2

)
A(U1 U2) =

(
T11 T12
0 T22

)

be a Schur decomposition of A, where diag(T11) = (λ1, . . . , λp)
H . Let Pk =

(Pk1 Pk2), Pk1 ∈ C
n×p, be defined by (3.4.12). By Theorem3.3.5, orthogonal

iteration converges: R(Pk1) → R(U1) with linear rate equal to |λp+1|/|λp|. The
orthogonal matrix U1 spans the dominant invariant subspace of dimension p of A.
It follows that Ak will tend to the reducible form

Ak =
(

A11 A12
0 A22

)
+ E, ‖E‖ = O

((|λp+1|/|λp|
)k

)
.

This result can be used to show that under rather general conditions, Ak in the QR
algorithm will converge to an upper triangular matrix; see Watkins [243, 1982].

Theorem 3.4.1 If the eigenvalues of A satisfy |λ1| > |λ2| > · · · > |λn|, then the
matrices Ak generated by the QR algorithm will converge to upper triangular form.
The lower triangular elements a(k)

i j , i > j , converge to zero with linear rate equal to
|λi/λ j |.

If the products of the transformations Pk , k = 1, 2, . . . , are accumulated, the
eigenvectors may be found by calculating the eigenvectors of the final triangular
matrix and transforming them back.

Since the convergence rate of subspace iteration depends on the ratio of eigenval-
ues, the convergence rate to an eigenvalue may be improved by using suitable shifts
in the QR algorithm. The shifted matrix A − τ I has the same invariant subspaces as
A, but the eigenvalues are shifted to λi − τ , i = 1 : n. If the shift is varied at each
iteration, then the shifted QR algorithm becomes: A1 = A,

Ak − τk I = Qk Rk, Ak+1 = Rk Qk + τk I, k = 1, 2, . . . . (3.4.19)

Since the shift is restored at the end of the step, it still holds that Ak+1 = Q H
k Ak Qk .

If τk approximates a simple eigenvalue λ j of A, then in general |λi − τk | �
|λ j − τk | for i �= j . Then, by Theorem3.4.1, the off-diagonal elements in the last
row of Ãk will approach zero very fast. The relationship between the shifted QR
algorithm and the power method is expressed in the next theorem.

Theorem 3.4.2 Let Q j and R j , j = 1 :k, be computed by the shifted QR algorithm
(3.4.19). Then

(A − τk I ) · · · (A − τ2 I )(A − τ1 I ) = PkUk, (3.4.20)
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where

Pk = Q1Q2 . . . Qk, Uk = Rk Rk−1 . . . R1. (3.4.21)

Proof For k = 1 the relation (3.4.20) is just the definition of Q1 and R1. Assume
now that the relation is true for k −1. From Ak+1 = Q H

k Ak Qk and the orthogonality
of Pk it follows that

Ak+1 − τk I = P H
k (A − τk I )Pk . (3.4.22)

Hence, Rk = (Ak+1 − τk I )Q H
k = P H

k (A − τk I )Pk Q H
k = P H

k (A − τk I )Pk−1.
Postmultiplying this equation by Uk−1 we get

RkUk−1 = Uk = P H
k (A − τk I )Pk−1Uk−1,

and thus PkUk = (A − τk I )Pk−1Uk−1. Using the inductive hypothesis, the proof is
complete. �

3.4.3 Reduction to Hessenberg Form

For amatrix A ∈ C
n×n one step of the QR algorithm requires O(n3) flops. This is too

much to make it a practical algorithm. We now make the important observation that
if A is upper Hessenberg, then this form is preserved by the QR algorithm. Hence,
the cost of one step of the QR algorithm is reduced to O(n2) flops.

Lemma 3.4.1 Consider one step of the QR algorithm for A ∈ C
n×n with shift τ

A − τ I = Q R, RQ + τ I = Â. (3.4.23)

If A = H is an upper Hessenberg matrix, then Â is also Hessenberg. More generally,
if A has lower bandwidth p, i.e., ai, j = 0 if i > j + p, then Â has the same form.

Proof If A is Hessenberg, this form is not changed by addition or subtraction of τ I .
It is no restriction to assume that the upper triangular matrix R is nonsingular. Then
the unitary matrix Q = (A − τ I )R−1 is the product of an upper Hessenberg and
an upper triangular matrix, and therefore is also a Hessenberg matrix (cf. Problem
1.5.1). By the same argument, RQ and Â are upper Hessenberg. A similar argument
proves the more general case. �

By Lemma3.4.1 it follows that for a matrix with lower bandwidth p the cost
of one step of the QR algorithm is O(pn2). In particular for a Hessenberg matrix
the cost is only O(n2) flops. This suggests that before the QR algorithm is applied,
A ∈ C

n×n should be transformed by a unitary similarity to upper Hessenberg form:
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Q H AQ = H =

⎛
⎜⎜⎜⎜⎜⎜⎝

h11 h12 · · · h1,n−1 h1n

h21 h22 · · · h2,n−1 h2n

h32
. . .

...
...

. . .
. . .

...

hn,n−1 hnn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.4.24)

The reduction can be performed in n − 2 steps, Q = P1P2 · · · Pn−2,

A(1) = A, A(k+1) = (P H
k A(k))Pk, k = 1 :n − 2, (3.4.25)

using complex Householder reflections

Pk = P H
k = I − 2uku H

k /μk, μk = u H
k uk .

The first k entries in the Householder vector uk are zero. The remaining entries
are chosen so that the elements in column k of Pk A(k) below the first subdiagonal
are annihilated. (Note the similarity to one step in Householder QR factorization.)
The similarity is completed by postmultiplying by Pk . In the postmultiplication the
elements in columns 1 :k will not be affected.

After the first step the transformed matrix has the form

A(2) = P1AP1 =

⎛
⎜⎜⎜⎜⎜⎝

h11 h12 ã13 . . . ã1n

h21 h22 ã23 . . . ã2n

0 ã32 ã33 . . . ã3n
...

...
...

...

0 ãn2 ãn3 . . . ãnn

⎞
⎟⎟⎟⎟⎟⎠

.

The subdiagonal element h21 can be made real positive by a simple scaling. We
assume that h21 = eiθ1 |h21|, multiply the second row by e−iθ1 , and the second
column by eiθ1 . This is a unitary similarity and makes the first subdiagonal element
equal to |h21|. All later steps, k = 2 :n − 2, are similar. In the final step the element
hn,n−1 is made real positive. This reduction can always be carried out so that the
subdiagonal elements h21, . . . , hn,n−1 are real.

An observation, that will turn out to be important, is that each of the Householder
matrices Pj , j = 1 :n, satisfies Pj e1 = e1. Therefore, we have

Qe1 = P1P2 . . . Pn−2e1 = e1.

It is easy to modify the algorithm so that the first column of Q is proportional to
any given nonzero vector z. Let P0 be a Householder reflector such that P0z = βe1,
β = ‖z‖2. Then, if P1, . . . , Pn−2 are generated from P H

0 AP0 instead of A, we have
Qe1 = P0P1 · · · Pn−2e1 = P0e1 = βz. Note that Pk is completely specified by uk

andμk , and that the required products of the form Pk A and APk are rank-one updates
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Pk A = A − uk(AH uk)
H /μk, APk = A − (Auk)u

H
k /μk .

A simple operation count shows that if A ∈ R
n×n is real, these updates require

4(n − k)2 flops, and hence the reduction costs 4
∑n

k=1(k
2 + nk) = 10n3/3 flops.

Assembling Q = P1P2 . . . Pn−2 adds another 4n3/3 flops.
As described, the reduction toHessenberg form involves level 2 BLAS operations.

Dongarra et al. [68, 1989] have shown how to speed up the reduction by introducing
level 3 BLAS operations. Blocked algorithms for the reduction to Hessenberg form
are analyzed by Kågström et al. [144, 2008]. Granat et al. [109, 2010] report having
computed the Schur decomposition of a matrix of dimension 105.

The reduction by Householder transformations is stable in the sense that the
computed H can be shown to be the exact result of an orthogonal similarity of a
matrix A + E , where

‖E‖F ≤ cn2u‖A‖F , (3.4.26)

and c is a constant of order unity. Moreover, if we explicitly generate the product
Q = P1P2 . . . Pn−2, then the computed result is close to the matrix that reduces
A + E . This guarantees that the eigenvalues and transformed eigenvectors of Ĥ are
accurate approximations to those of a matrix close to A.

It should be noted that backward stability does not imply that the computed Ĥ will
be close to H corresponding to the exact reduction of A. Indeed, the same algorithm
run on two computers with different floating-point arithmetic may produce very
different matrices H . Behavior of this kind is well-known and termed irrelevant
instability by Parlett [192, 1998]. The backward stability of the reduction ensures
that each different matrix Ĥ will be similar to A to working precision and will yield
approximate eigenvalues with as much absolute accuracy as is warranted.

Definition 3.4.1 An upper Hessenberg matrix H ∈ C
n×n is called unreduced if all

its subdiagonal elements hi+1,i , i = 1 : n − 1, are nonzero.

If H is an unreduced Hessenberg matrix then the submatrix H(2 : n, 1 :
n − 1) is triangular and its determinant nonzero. nonsingular. It follows that
rank (H − λI ) ≥ n − 1. Therefore, a multiple eigenvalue of H must be defective.
In the following we assume that H is unreduced. This is no restriction, since if there
is a zero subdiagonal entry, then H can be partitioned into block-diagonal form

H =
(

H11 H12
0 H22

)
.

This is beneficial, because then the eigenvalue problem for H decouples into two
smaller eigenproblems for H11 and H22. If these are not unreduced, then the eigen-
value problem for H can be split into even smaller pieces.

In the explicit-shift QR algorithm the matrix H − τ I is formed and then its QR
factorization computed. As shown in Sect. 2.3.2 this can be achieved by applying a

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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sequence of (unitary) Givens rotations G12, G23, . . . , Gn−1,n , so that

Q H (H − τ I ) = R, Q H = Gn−1,n . . . G23G12,

with R upper triangular. In a typical step (n = 6, j = 3), the partially reduced matrix
has the form ⎛

⎜⎜⎜⎜⎜⎜⎝

ρ11 × × × × ×
ρ22 × × × ×

ν33 × × ×
h43 × × ×

× × ×
× ×

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The rotation G3,4 is now chosen so that the element h43 is annihilated, which carries
the reduction one step further. To form Ĥ we must now compute

RQ + τ I = RG H
12G H

23 . . . G H
n−1,n + τ I.

The product RG H
12 affects only the first two columns of R, which are replaced by

linear combinations of the two columns. This adds a nonzero element in the (2, 1)
position. The rotationG H

23 will similarly affect the second and third columns in RG H
12,

and adds a nonzero element in the (3, 2) position. The final result is a Hessenberg
matrix, as by Theorem3.4.1 it must be.

3.4.4 The Implicit Shift QR Algorithm

The explicit subtraction of the shift from the diagonal elements may cause large
relative errors in any eigenvalue of much smaller magnitude than the shift. This type
of error can be avoided by using Francis implicit-shift QR algorithm. This is based
on the following important result.

Theorem 3.4.3 (Implicit Q Theorem) Given A ∈ C
n×n and a unitary matrix Q =

(q1, . . . , qn) such that H = Q H AQ is an unreduced upper Hessenberg matrix with
real positive subdiagonal entries. Then H and Q are uniquely determined by the first
column q1 = Qe1 in Q.

Proof Assume that the first k columns q1, . . . , qk in Q and the first k − 1 columns
in H have been computed. (Since q1 is known, this assumption is valid for k = 1.)
Equating the kth columns in Q H = AQ gives

h1,kq1 + · · · + hk,kqk + hk+1,kqk+1 = Aqk, k = 1 :n − 1.
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Multiplying this by q H
i , and using the orthogonality of Q gives hik = q H

i Aqk ,
i = 1 :k. Since H is unreduced, hk+1,k �= 0 and

qk+1 = h−1
k+1,k

(
Aqk −

k∑
i=1

hikqi

)
, ‖qk+1‖2 = 1,

This and the condition that hk+1,k is real positive determines qk+1 uniquely. �

We remark that the requirement that the subdiagonal elements in H be real positive
is not crucial. The columns of Q are still uniquely determined up to the sign. The
proof of the above theorem is constructive and gives an alternative algorithm for
generating Q and H , known as the Arnoldi process; see Sect. 4.3.1. This process
only requires matrix–vector products Aqk , which makes it attractive when A is large
and sparse. In practice, roundoff errorswill cause a loss of orthogonality in the vectors
q1, q2, q3, . . . generated by the Arnoldi process.

For simplicity, we drop the iteration index k in what follows and consider the
shifted QR-step

H − τ I = Q R, H̃ = RQ + τ I.

From this it follows that

y1 = (H − τ I )e1 = Q(Re1) = r11Qe1 = r11q1.

Hence, q1 = Qe1 is proportional to y1 = (h11 − τ, h21, 0, · · · , 0)T . If a unitary
Givens rotation G12 is chosen so that G H

12y1 = ±‖y1‖2e1, then G12e1 will be
proportional to q1. In the similarity transformation (n = 6)

G H
12H =

⎛
⎜⎜⎜⎜⎜⎜⎝

× × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

⎞
⎟⎟⎟⎟⎟⎟⎠

, G H
12H G12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

× × × × × ×
× × × × × ×
+ × × × × ×

× × × ×
× × ×

× ×

⎞
⎟⎟⎟⎟⎟⎟⎠

,

the multiplication from the right by G12 introduces a nonzero element in the (3, 1)
position. To preserve the Hessenberg form, a rotation G23 is chosen to zero this
element:

G H
23G H

12H G12G23 =

⎛
⎜⎜⎜⎜⎜⎜⎝

× × × × × ×
× × × × × ×

× × × × ×
+ × × × ×

× × ×
× ×

⎞
⎟⎟⎟⎟⎟⎟⎠

.

http://dx.doi.org/10.1007/978-3-319-05089-8_4
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The result of this similarity is to push the + element to position (4, 2). We continue
to chase the element + down the diagonal with rotations G34, . . . , Gn−1,n until it
disappears below the nth row. Since all rotations except the first have e1 as first
columns, we obtain a Hessenberg matrix QT H Q, where the first column in Q is

Qe1 = G12G23 . . . Gn−1,ne1 = G12e1.

By the Implicit Q Theorem3.4.3, this Hessenberg matrix is the result of a QR
step with shift τ , although it is not guaranteed to have positive subdiagonal entries.
Note that the information about the shift is contained in G12, but the shift is never
explicitly subtracted from the diagonal elements. In case H and τ are real, the cost
of one implicit QR iteration is 6n2 flops.

How should the shifts in the QR step be chosen to accelerate convergence? If
the shift τ is chosen as an exact eigenvalue of H , then H − τ I = Q R has a zero
eigenvalue and thus is singular. Since Q is orthogonal R must be singular. Moreover,
if H is unreduced then the first n − 1 columns of H − τ I are independent and
therefore it is the last diagonal element rnn that must vanish. Hence, the last row in
RQ is zero, and the elements in the last row of H ′ = RQ + τ I are h′

n,n−1 = 0 and
h′

nn = τ . This shows that if the shift is equal to an eigenvalue, then the Hessenberg
QR algorithm converges in one step to this eigenvalue. The shift

τk = hnn = eT
n Hken (3.4.27)

is called theRayleigh quotient shift, as it can be shown to produce the same sequence
of shifts as RQI starting with the vector q0 = en . With this shift convergence is
asymptotically quadratic.

An important question iswhen to accept an approximate eigenvalue.The following
criterion may be used. Let ε be a small constant times the unit roundoff. Then, hn,n−1
is considered negligible if

|hn,n−1| ≤ ε(|hn−1,n−1| + |hn,n|). (3.4.28)

When this happens, we set hn,n−1 = 0 and accept hnn as an eigenvalue. This crite-
rion can be justified because it corresponds to introducing a small backward error.
In practice, the size of all subdiagonal elements are monitored and all elements hi,i−1
such that

|hi,i−1| ≤ ε(|hi−1,i−1| + |hi,i |), 1 ≤ i < n, (3.4.29)

are set to zero. After this, the Hessenberg matrix is partitioned so that

H =
⎛
⎝

H11 H12 H13
0 H22 H23
0 0 H33

⎞
⎠ ,
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where H33 is upper triangular and H22 is unreduced. The QR iterations are then
continued on the submatrix H22.

It may be that, while no individual sub-diagonal element is negligible, the prod-
uct of two consecutive such elements is sufficiently small to allow deflation. This
automatic deflation is a great advantage of the QR algorithm. It increases the effi-
ciency, because the arithmetic work in a QR step is proportional to the square of the
dimension of the Hessenberg matrix.

Francis also noticed that if A is real, complex arithmetic could be avoided by
combining two QR steps with conjugate transpose shifts. This reduces the arithmetic
cost by a factor of 2–4. A good choice of shift is the eigenvalues of the 2×2 submatrix
of the current Hessenberg matrix

C =
(

hn−1,n−1 hn−1,n
hn,n−1 hn,n

)
. (3.4.30)

Convergence may be slow at first, but usually after a few iterations either the element
hn,n−1 or hn−1,n−2 will become small. Then quadratic convergence will take place
and soon one of these elements becomes negligible. If hn,n−1 is negligible, then hn,n

is taken as an eigenvalue and a deflation to a Hessenberg matrix of order n − 1 is
achieved by dropping the last row and column. If hn−1,n−2 is negligible, then the
two eigenvalues of the matrix in submatrix (3.4.30) are accepted as eigenvalues and
by dropping the last two rows and columns, the size of the active Hessenberg matrix
decreased by two. There is no theoretical proof that these shifts always works. On the
contrary, there are counterexamples; see Problem 3.4.2. In practice, if deflation has
not occurred in the last ten iterations (say), a small random shift can be used to
perturb any symmetry that hinders convergence.

Let C in (3.4.30) have the complex conjugate eigenvalues τ1 and τ2. In the double
implicit QR algorithm, we compute

Q Re1 = (H − τ2 I )(H − τ1 I )e1 = (H2 − (τ1 + τ2)H + τ1τ2 I )e1.

where τ1 + τ2 and τ1τ2 are real. Taking out a factor h21 �= 0, we can write Q Re1 =
h21(p, q, r, 0, . . . , 0)T , where

p = (h2
11 − (τ1 + τ2)h11 + τ1τ2)/h21 + h12, (3.4.31)

q = h11 + h22 − (τ1 + τ2), r = h32. (3.4.32)

Note that we do not even have to compute τ1 and τ2, because we only need

τ1 + τ2 = trace(C) = hn−1,n−1 + hn,n, τ1τ2 = det(C).

Substituting this into (3.4.31) and grouping terms to reduce roundoff errors, we get

p = [(hnn − h11)(hn−1,n−1 − h11) − hn,n−1hn−1,n]/h21 + h12,

q = (h22 − h11) − (hnn − h11) − (hn−1,n−1 − h11).
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The double implicit QR iteration can now be implemented by the chasing algorithm
described above.

An empirical observation is that on the average less than two QR iterations per
eigenvalue are required. The arithmetic cost of computing only the eigenvalues
of H ∈ R

n×n is approximately 10n3 flops. If the orthogonal transformations are
accumulated to give also the orthogonal matrix Q in the real Schur decomposition
H = QT T Q, this requires an extra 25n3 flops. If only eigenvectors for a subset of the
are wanted, these can be computed directly by inverse iteration (see Sect. 3.3.3). In
this case, there is no need to accumulate transformations in the QR algorithm. Since
LU factorization of matrices of the form H − λI only requires O(n2) flops, this is
very effective. Usually just one step of inverse iteration is needed. If U H AU = H
and z is an eigenvector of H , then x = U z is an eigenvector of A.

As remarked before, it is difficult to develop inverse iteration into a fully reliable
algorithm unless the eigenvalues are known to be well separated. A small residual is
not sufficient to guarantee orthogonality to full working precision when eigenvalues
are clustered. As shown by Dhillon [62, 1998], both the EISPACK and LAPACK
implementations can bemade to fail. It must be remembered that A may be defective,
in which case there is no complete set of eigenvectors. In practice, it is very difficult
to take this into account, because with any procedure that involves rounding errors
one cannot demonstrate that a matrix is defective.

Example 3.4.2 A classical example of a Hessenberg matrix whose eigenvalues are
ill-conditioned is the Frank matrix Fn ([84, 1958]), exemplified for n = 6 by

F6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

6 5 4 3 2 1
5 5 4 3 2 1

4 4 3 2 1
3 3 2 1

2 2 1
1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.4.33)

All eigenvalues of F6 are real, but the smaller ones have huge condition numbers and
cannot be computed accurately except by using high precision. �

Let U H AU = T be the Schur form obtained from the QR algorithm and consider
a partitioning such that

T =
(

T11 T12
T22

)
, U = (

U1 U2
)
,

where �(T11)∩�(T22) = 0. Then AU1 = U1T11, which shows that U1 is an unitary
basis for the unique invariant subspace associated with the eigenvalues in�(T11). As
shown in Sect. 3.1.3, a Schur decomposition can be rearranged so that an arbitrary
set of eigenvalues are permuted to the top position. This is achieved by performing
a sequence of similarities, where in each step two nearby eigenvalues are swapped;
see Example3.1.3. If T is a real Schur decomposition and has 2×2 diagonal blocks,
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the algorithm gets more complicated. Computing invariant subspaces from the Schur
form is a very stable process.

The EISPACK algorithm for computing eigenvectors by inverse iteration is
described in Peters and Wilkinson [198, 1971]. The reordering of the Schur decom-
position is discussed by Ruhe [203, 1970].

3.4.5 Enhancements to the QR Algorithm

An important case where the choice of either the QR or QL algorithm should be
preferred is when A is graded, i.e., when there is a gradual decrease or increase of the
magnitudeof its elements as oneproceeds from top to bottom.For example, thematrix

A =
⎛
⎝

1 10−4 10−8

10−4 10−8 10−12

10−8 10−12 10−16

⎞
⎠

shows a symmetric grading from large to small as one goes down the diagonal. For
matrices of this type the QR algorithm should be used. When the large elements
instead occur in the lower right corner, the QL algorithm is more stable. Then the
reduction to Hessenberg form should then be done from bottom up. The same effect
can be achieved by explicitly reversing the ordering of the rows and columns.

By (3.4.26), computed eigenvalues will usually have errors at least of order
u‖A‖F . Therefore, it is desirable to precede the eigenvalue calculation by a diago-
nal similarity Ã = D−1AD, which reduces its Frobenius norm. (Note that only the
off-diagonal elements are affected.) This can be achieved by balancing the matrix A.

Definition 3.4.2 A matrix A ∈ C
n×n is said to be balanced in the p-norm if

‖a:,i‖p = ‖ai,:‖p, i = 1 :n,

where a:,i denotes the ith column and a:,i the ith row of A.

Some classes of matrices do not need balancing, e.g., normal matrices are already
balanced in the 2-norm. If an eigenvalue algorithm is used that is invariant under
scaling, as for some vector iteration, there is no need to balance the matrix.

Example 3.4.3 Let D = diag(100, 1, 0.01) and consider the two similar matrices

A =
⎛
⎝

1 0 10−4

1 1 104

104 102 1

⎞
⎠ , Ã = D AD−1 =

⎛
⎝

1 0 1
10−2 1 1
1 1 1

⎞
⎠ .

The scaling has reduced the Frobenius norm from ‖A‖F ≈ 104 to ‖ Ã‖F ≈ 2.6. �
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We describe a slightly simplified balancing algorithm. Let A = D + A0, where
A0 is the off-diagonal part of A. A diagonal similarity leaves D unchanged. Starting
with A0 a sequence of matrices {Ak}, k = 1, 2, . . . is formed. The matrix Ak differs
from Ak−1 only in the i th row and column, where i is given by i − 1 ≡ k − 1 (mod
n). That is, the rows and columns are modified cyclically in the natural order. In
step k, let αk = ‖a:,i‖p and βk = ‖ai,:‖p. Usually the the 1-norm is used, because
this requires less work than the for 2-norm. Assume that αkβk �= 0 and set

D̂k = I + μkei e
T
i , μk = αk/βk,

and Dk = D̂k Dk−1. Then Ak = D̂k Ak−1 D̂−1
k = Dk A0D−1

k will be balanced in its
i th row and column. The above iterative process will under some conditions converge
to a balanced matrix. But convergence is linear and often slow.

An iterative algorithm for balancing a matrix has been given by Osborne
[187, 1960], which for any (real or complex) irreducible matrix A and p = 2 con-
verges to a balanced matrix Ã. For a discussion and an implementation of this, see
Contribution II/11 in [253, 1971] and Parlett and Reinsch [196, 1969]. A new fast
algorithm for balancing a matrix is given by Knight and Ruiz [153, 2012].

Although the QR algorithm is one of the most elegant and efficient algorithms in
linear algebra, it is basically a sequential algorithm and does not lend itself easily
to parallelization. However, recently great progress has made it possible to treat
much larger matrices than earlier thought possible. Braman, Byers,12 and Mathias
[30, 2002] have developed a multishift implicit QR algorithm, in which many shifts
τ1, . . . , τp, chosen to approximate a subset of p eigenvalues of A, are performed
simultaneously as follows. From

y1 = p(H)e1 ≡ (H − τm I ) · · · (H − τ1 I )e1 = Q Re1 = r11Qe1

the first column in Q can be computed cheaply. Since H is Hessenberg, it follows
that (H − τ1 I )e1 has nonzero entries in only its first two positions. Further, (H −
τ2 I )(H − τ1 I )e1 has nonzero entries only in its first three positions, and so on.
Hence, the vector y1 = Qe1 has nonzero entries only in its first m + 1 positions.
Choose a Householder reflector P0 such that P0y1 = βe1. Then y1 = β P0e1, i.e.,
the first column of P0 is proportional to y1. Forming P0H will only affect rows 1 :m
and create a triangular bulge of m(m + 1)/2 elements in columns 1 : m and rows
3 : m + 2 outside the Hessenberg structure. The similarity transformation is then
completed by forming (P0H)P0, which only involves columns 1 : m. For example,
taking m = 3, and n = 7 the resulting matrix has the structure

12 Ralph Byers (1955–2007) made a breakthrough in his PhD thesis from Cornell University in
1983 by finding a strongly stable numerical methods of complexity O(n3) for Hamiltonian and
symplectic eigenvalue problems. He was also instrumental in developing methods based on the
matrix sign function for the solution of Riccati equations for large-scale control problems. His
work on the multishift QR algorithm was rewarded with the SIAM Linear Algebra prize in 2003
and the SIAM Outstanding paper prize in 2005.

Ham
Highlight

Ham
Highlight
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P0H P H
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × × × × ×
× × × × × × ×
+ × × × × × ×
+ + × × × × ×
+ + + × × × ×

× × ×
× ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rest of the implicit QR step consists in restoring the Hessenberg form by a
sequence of unitary similarity transformations Pi , i = 1 : n − 2. Here P1 acts on
rows 2 : m + 2 and is chosen to zero the last m elements in the first column. The
similarity transformation is then completed by postmultiplying by P1. This operation
only acts on columns 2 : m + 2 and will add m nonzero entries in row m + 3. The
effect is to push the bulge one step down along the diagonal. In the above example
we have

P H
1 (P H

0 H P0)P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × × × × ×
× × × × × × ×

× × × × × ×
+ × × × × ×
+ + × × × ×
+ + + × × ×

× ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The remaining steps are similar. The transformations Pi , i = 2 :n − 2, are chosen to
zero elements in column i . In the last few steps the bulge will be forced out below
the bottom row.

For a matrix of order n = 1000 (say), typically about m = 50 shifts are computed
from the current trailing 50×50 principal submatrix. These eigenvalues are computed
by a standardQRalgorithmwith double implicit shifts. If these shifts are applied all at
once by chasing a large bulge, rounding errors will cause the shifts to become blurred.
Therefore, the shifts are used to perform a chain of implicit QR iterations, each of
degree two. Once one 2 × 2 bulge has been started to be chased down the diagonal,
another bulge can be introduced without disturbing the first. Pipelining the shifts in
this way makes it possible to perform the computations by highly efficient level 3
BLAS. The effect this has on convergence is discussed by Kressner [157, 2008] and
Watkins [246, 2007], pp. 202–204.

When chasing a sequence of bulges the simple convergence test (3.4.29) described
earlier does not work well. Another enhancement is a more aggressive deflation
option to detect already converged eigenvalues; see Braman et al. [31, 2002]. This
makes the algorithm terminate in fewer iterations. With enhancements described
here, the use of the QR algorithm can be extended to matrices of dimension 10,000
or even larger.
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Exercises

3.4.1 (a) Let L and U be the bidiagonal matrices (take n = 4)

L =

⎛
⎜⎜⎝
1
e2 1

e3 1
e4 1

⎞
⎟⎟⎠ , U =

⎛
⎜⎜⎝

q1 1
q2 1

q3 1
q4

⎞
⎟⎟⎠ .

Consider the matrix equation L̂Û = U L , where L̂ = (̂li j ) and Û = (̂ui j ) are two
new bidiagonal matrices of the same form. Show that both LU and Û L̂ are tridiagonal
matrices with all superdiagonal elements equal to one.

(b) Show that, setting e1 = ê5 = 0, the remaining nonzero elements in L̂ and Û are
determined by the relations

êm + q̂m−1 = em + qm , êm q̂m = emqm+1,

which are the rhombus rules in Rutishauser’s qd algorithm.

3.4.2 The circulant shift matrix Pn = (e2, e3, . . . , en, e1) has upper Hessenberg form. The eigen-
values of Pn are the n roots of unity ω j = e−2π j/n , j = 0 : n − 1. Show that Pn is
invariant under the QR algorithm with shifts taken as the eigenvalues of the trailing two by
two matrix. Conclude that the QR algorithm is not always globally convergent with shifts
chosen in this way.

3.4.3 Let A be thematrix in Example3.4.3. Apply the balancing procedure described in Sect. 3.4.5
to A. Use the 1-norm and terminate the iterations when A is balanced to a tolerance of 0.01.
How much is the Frobenius norm reduced?

3.4.4 The reduction to Hessenberg form can also be achieved by using elementary elimination
matrices of the form

L j = I + m j e
T
j , m j = (0, . . . , 0, m j+1, j , . . . , mn, j )

T

(see Sect. 1.2.5, p. 54). In these, only the elements below themain diagonal in the j th column
differ from the unit matrix. If a matrix A is premultiplied by L j , then

L j A = (I + m j e
T
j )A = A + m j (e

T
j A) = A + m j a

T
j ,

i.e., multiples of the row aT
j are added to the last n − j rows of A. The similarity

L j AL−1
j = ÃL−1

j is completed by postmultiplying

ÃL−1
j = Ã(I − m j e

T
j ) = Ã − ( Ãm j )e

T
j .

Show that in this operation a linear combination Ãm j of the last n − j columns is subtracted
from the j th column of Ã.

3.5 The Hermitian QR Algorithm

Westart by noting that a unitary similarity of aHermitianmatrix A is againHermitian,
because

(Q H AQ)H = Q H AH Q = Q H AQ.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Furthermore, by Lemma3.4.1, the Hessenberg form is preserved by the QR algo-
rithm. If A is both Hermitian and Hessenberg, then it must be tridiagonal. Hence, the
QR algorithm preserves Hermitian tridiagonal form, which reduces the arithmetic
cost of one step in the QR algorithm to just O(n) flops. The reduction to Hessenberg
form of a general matrix could be performed so that the subdiagonal entries of the
reduced matrix are real. When A is Hermitian, the same reduction will yield a real
symmetric tridiagonal matrix.

3.5.1 Reduction to Real Symmetric Tridiagonal Form

In the reduction of A to tridiagonal form

Q H AQ = T =

⎛
⎜⎜⎜⎜⎜⎝

α1 β2
β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn

⎞
⎟⎟⎟⎟⎟⎠

(3.5.1)

it is important to take advantage of symmetry in order to save storage and operations.
In the kth step we compute A(k+1) = Pk A(k) Pk , where Pk is chosen to zero the last
n − k − 1 elements in the kth column. By symmetry, the corresponding elements
in the kth row will be zeroed by the postmultiplication Pk . Since the intermediate
matrix Pk A(k) is not Hermitian, we should compute Pk A(k) Pk directly. Dropping the
subscripts k we can write

PAP =
(

I − 1

μ
uu H

)
A
(

I − 1

μ
uu H

)

= A − upH − pu H + 1

μ
u H puu H = A − uq H − qu H , (3.5.2)

where

p = 1

μ
Au, q = p − βu, β = u H p

2μ
. (3.5.3)

If the transformations are carried out in this fashion, the operation count for the
reduction to tridiagonal form is reduced to about 2n3/3 flops in the real case. Since
all matrices appearing in the reduction are Hermitian, the storage requirement is
roughly halved.

As the corresponding algorithm for the unsymmetric case, the reduction to tridi-
agonal is normwise backward stable. The computed tridiagonal matrix is the exact
result for amatrix A+E , where E satisfies ‖E‖F ≤ cn2u‖A‖F . Hence, the eigenval-
ues of T will differ from the eigenvalues of A by at most cn2u‖A‖F . Note, however,
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that the computed tridiagonal matrix can differ significantly from the matrix corre-
sponding to exact computation. The backward stability ensures that in spite of this
the computed eigenvalues will be very accurate.

If the Householder reduction is performed starting from the top row, then it is
important that the matrix be presented so that the larger elements occur in the top left
corner. Then the errors in the orthogonal reduction will correspond to small relative
errors in the elements of A, and the small eigenvalues will not be destroyed.

If the reduction to tridiagonal form is carried out for a banded matrix A, then the
band structure will be destroyed in the intermediate matrices. By annihilating pairs
of elements using Givens rotations in an ingenious order it is possible to perform the
reduction without increasing the bandwidth; see Parlett [193, 1980], Sect. 7.5.1 and
Wilkinson and Reinsch [253, 1971], Contribution II/8. An operation count shows
that the standard reduction is slower if the bandwidth is less than n/6. The reduction
of storage is often equally important.

A symmetric tridiagonal matrix T in (3.5.1) is unreduced if all its subdiagonal
elements βk are nonzero; see Definition3.4.1. If some element βk = 0, then T is the
direct sumof two smaller tridiagonalmatrices T = diag(T1, T2). Then the eigenvalue
decomposition of T = Q�QT is easily obtained from those of the matrices T1 and
T2. Since these are of lower dimension, the computational cost is reduced. Therefore,
we assume in the following that T is unreduced, i.e., βi �= 0, i = 2 :n.
Lemma 3.5.1 For an unreduced symmetric tridiagonal matrix T all eigenvalues are
simple.

Proof The determinant of the submatrix obtained by crossing out the first row and
last column of T −λI is β1β2 . . . βn−1. If T is unreduced, this is nonzero, and hence
rank (T − λI ) ≥ n − 1. It follows that λ can have only one linearly independent
eigenvector. Since T is diagonalizable any eigenvalue λ must be a simple. �

3.5.2 Implicit QR Algorithm for Hermitian Matrices

The following version of the implicit Q theorem is proved by a similar argument as
used to prove Theorem3.4.3.

Theorem 3.5.1 (Implicit Q Theorem) Let A be real symmetric, Q = (q1, . . . , qn)

be orthogonal, and T = QT AQ be an unreduced symmetric tridiagonal matrix. Then
Q and T are essentially uniquely determined by the first column q1 = Qe1 of Q.

This result shows how to develop an implicit-shift QR algorithm. Let T be a
symmetric tridiagonal matrix and consider one step of the QR algorithmwith shift τ :

T − τ I = Q R, T ′ = RQ + τ I. (3.5.4)
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Suppose we can find an orthogonal matrix Q with the same first column q1 as in
(3.5.4) such that T ′ = QT AQ is an unreduced tridiagonal matrix. Then, by Theo-
rem3.5.1, it must be the result of one step of the QR algorithm with shift τ . Equating
the first columns in T − τ I = Q R shows that r11q1 equals the first column t1 in
T − τ I . In the implicit shift algorithm a Givens rotation G12 is chosen so that

GT
12t1 = ±‖t1‖2e1, t1 = (α1 − τ, β2, 0, . . . , 0)

T .

Forming GT
12T G12 results in fill-in in positions (1, 3) and (3, 1), pictured here for

n = 5:

GT
12T =

⎛
⎜⎜⎜⎜⎜⎜⎝

× × +
× × ×

× × ×
× × ×

× × ×
× ×

⎞
⎟⎟⎟⎟⎟⎟⎠

, GT
12T G12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

× × +
× × ×
+ × × ×

× × ×
× × ×

× ×

⎞
⎟⎟⎟⎟⎟⎟⎠

.

To preserve the tridiagonal form a rotation G23 can be used to zero out the two fill-in
elements:

GT
23GT

12 T G12G23 =

⎛
⎜⎜⎜⎜⎜⎜⎝

× ×
× × × +

× × ×
+ × × ×

× × ×
× ×

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The two + elements are chased down the diagonal with further Givens rotations
G34, . . . , Gn−1,n until they disappear. At that point, a symmetric tridiagonal matrix
QT T Q has been obtained, and the first column in Q is

G12G23 . . . Gn−1,ne1 = G12e1.

By Theorem3.4.3 the result must be the matrix T ′ in (3.5.4). This implicit QR
algorithm can be generalized to work when several shifts are applied simultaneously.
As for the Hessenberg case, a bulge of m(m + 1)/2 nonzero entries will be created
below the tridiagonal structure. This is chased down and out below the bottom by a
sequence of Householder reflections.

There are several possible ways to choose the shift. Suppose that we are working
with the submatrix ending with row r , and that the current elements of the two by
two trailing matrix is

(
αr−1 βr

βr αr

)
. (3.5.5)
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The Rayleigh-quotient shift τ = αr yields the same result as Rayleigh Quotient
Iteration starting with er . This gives generic cubic convergence, but not guaranteed.
In practice, taking the shift to be the eigenvalue of the two by two trailing submatrix
(3.5.5) closest to αr has proved to be more efficient. One formula for computing this
Wilkinson shift is

τ = (αr−1 + αr )/2 − sign(δ)
√

δ2 + β2
r ,

where δ = (αr−1 − αr )/2. This can suffer from cancellation, and a better formula is

τ = αr − sign(δ)β2
r

/(
|δ| +

√
δ2 + β2

r

)
. (3.5.6)

In case of a tie (αr−1 = αr ) the shift αr − |βr | is chosen.
The Wilkinson shift can be shown to almost always give local cubic conver-

gence, although quadratic convergence cannot be ruled out. A great advantage of this
shift is that global convergence of the QR algorithm is guaranteed; see Wilkinson
[251, 1968] or Parlett [192, 1998], Chap. 8.)

Example 3.5.1 Consider an unreduced tridiagonal matrix of the form

T =
⎛
⎝

× × 0
× × ε

0 ε t33

⎞
⎠ .

Show that with the shift τ = t33, the first step in the reduction to upper triangular
form gives a matrix of the form

G12(T − s I ) =
⎛
⎝

× × s1ε
0 a c1ε
0 ε 0

⎞
⎠ .

If we complete this step of the QR algorithm, Q R = T − τ I , the matrix T̂ =
RQ+τ I has elements t̂32 = t̂23 = −c1ε3/(ε2+a2). Hence, if ε � 1 convergence is
cubic. �

As for the QR algorithm for unsymmetric matrices, it is important to check for
negligible subdiagonal elements using the criterion

|βi | ≤ ε (|αi−1| + |αi |).

When this criterion is satisfied for some i < n, we set βi equal to zero and the
problem decouples. At any step we can partition the current matrix so that
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T =
⎛
⎝

T11
T22

D3

⎞
⎠ ,

where D3 is diagonal and T22 is unreduced. The QR algorithm is then applied to T22.
If full account of symmetry is taken, then one QR iteration can be implemented

in only 9n multiplications, 2n divisions, n − 1 square roots and 6n additions. By
reorganizing the inner loop of the QR algorithm, it is possible to eliminate square
roots and lower the operation count to about 4n multiplications, 3n divisions and 5n
additions. This rational QR algorithm is a faster way to get the eigenvalues, but
does not directly yield the eigenvectors.

The Wilkinson shift may not give the eigenvalues in monotonic order. If some
of the smallest or largest eigenvalues are wanted, then it is usually recommended to
use Wilkinson shifts anyway and risk finding a few extra eigenvalues. To check if all
wanted eigenvalues have been found one can use spectrum slicing, see Sect. 3.6.1.
For a detailed discussion of variants of the symmetric tridiagonal QR algorithm we
refer to Parlett [192, 1998].

If T has been obtained by reducing a Hermitian matrix to real symmetric tridiago-
nal form,U H AU = T , then the eigenvectors are given by xi = UPei , i = 1 :n, where
P = Q0Q1Q2 . . . is the product of all transformations in the QR algorithm. Note
that the eigenvector matrix X = UP will by definition be unitary. If eigenvectors
are computed, the cost of a QR iteration goes up to 4n2 flops and the overall cost
to O(n3). To reduce the number of QR iterations where we accumulate transforma-
tions, we can first compute the eigenvalues without accumulating the product of the
transformations. Then the QR algorithm is performed again, now shifting with the
computed eigenvalues (the perfect shifts), convergence occurs in one iteration. This
may reduce the cost of computing eigenvectors by about 40%. As in the unsymmet-
ric case, if fewer than a quarter of the eigenvectors are wanted, then inverse iteration
should be used instead. The disadvantage of this approach is the difficulty of getting
accurately orthogonal eigenvectors for clustered eigenvalues.

For symmetric tridiagonal matrices one often uses the QL algorithm instead of
the QR algorithm. In the implicit QL algorithm the shift is chosen from the top of A
and the fill-in elements are chased from bottom to top. The reason for preferring the
QL algorithm is simply that in practice it is more often the case that the tridiagonal
matrix is graded with the large elements at the bottom. Since for reasons of stability
the small eigenvalues should be determined first, the QL algorithm is preferable in
this case. For matrices graded in the other direction, the QR algorithm should be
used, or rows and columns should be reversed before the QL algorithm is applied.

A new implementation of the symmetric QR algorithm that fuses multiple Givens
rotations to get vastly superior performance is described byVanZee et al. [236, 2011].
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3.5.3 The QR-SVD Algorithm

We first state some important connections between the SVD and related Hermitian
eigenvalue problems. These are useful both for proving perturbation bounds for
singular values and for the development of algorithms for computing the SVD. We
recall from Sect. 1.1.9 that the SVD A = U�V H ∈ C

m×n is closely related to the
spectral decompositions of the two Hermitian matrices

AHA = V �T �V H , AAH = U��T U H . (3.5.7)

The SVD of A is also related to the spectral decomposition of the Jordan–Wielandt
matrix

C =
(

0 A
AH 0

)
∈ C

(m+n)×(m+n). (3.5.8)

The following theorem is implicit in Jordan’s derivation of the SVD in [140, 1874].
Wielandt seems to be responsible for its widespread use today.

Theorem 3.5.2 (Jordan–Wielandt theorem) Let the SVD of A ∈ C
m×n, m ≥ n,

be A = U�V H , where U = C
m×m and V ∈ C

n×n are unitary. Let r = rank
(A) ≤ min(m, n) and �1 = diag(σ1, . . . , σr ) > 0 and set U = (

U1 U2
)
, U1 ∈

C
m×r , V = (

V1 V2
)
, V1 ∈ C

n×r . Then

(
0 A

AH 0

)
= Q

⎛
⎜⎜⎝

�1 0 0 0
0 0 0 0
0 0 −�1 0
0 0 0 0

⎞
⎟⎟⎠ Q H , (3.5.9)

where

Q = 1√
2

(
U1

√
2U2 U1 0

V1 0 −V1
√
2 V2

)
, (3.5.10)

is a matrix of unitary eigenvectors of the Jordan–Wielandt matrix C. The eigenvalues
of C are ±σ1,±σ2, . . . ,±σr and zero repeated m + n − 2r times.

Proof Form the product on the right-hand side of (3.5.9) and note that A = U1�1V H
1

and AH = V1�1U H
1 . �

The assumption m ≥ n is no restriction, because otherwise we can consider AH .
Note that the square of C in (3.5.9) has block diagonal form

C2 =
(

AAH 0
0 AHA

)
=

(
U��H U H 0

0 V �H �V H

)
. (3.5.11)

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Such a matrix C is called two-cyclic. This shows that the singular values of A are
equal to the positive square root of the eigenvalues of the Hermitian matrices AHA
and AAH .

The above relationships do not directly lead to a numerically stable method for the
SVD. The explicit computation of AHA and AAH must be avoided, since this may
lead to a severe loss of accuracy in the smaller singular values. Further, an application
of the QR algorithm to C in (3.5.9) would require a special shift strategy and double
the work. It is also desired to avoid the duplication of data in C where A appears
twice.

To reduce the work in the QR algorithm it is advantageous to first reduce A to
a condensed form. For the QR-SVD, a preliminary reduction to bidiagonal form is
appropriate. For this the GKH bidiagonalization algorithm (see Sect. 2.3.3) is used,
giving an upper bidiagonal matrix

QT
B R PB = B =

⎛
⎜⎜⎜⎜⎜⎝

q1 r2
q2 r3

. . .
. . .

qn−1 rn

qn

⎞
⎟⎟⎟⎟⎟⎠

∈ R
n×n, (3.5.12)

and

Q B = Q1 . . . Qn ∈ R
n×n, PB = P1 . . . Pn−2 ∈ R

n×n .

This reduction of R to bidiagonal form can be carried out in 8
3n3 flops. If Q B and PB

are explicitly required, they can be accumulated at a cost of 4(m2n − mn2 + 1
3n3)

and 4
3n3 flops, respectively. The singular values of B equal those of A and the left

and right singular vectors can be constructed from those of B. A complex matrix can
be reduced to real bidiagonal form by complex Householder transformations.

By Theorem3.5.2, it follows that the eigenvalues of the Jordan–Wielandt matrix
occur in pairs ±σi , i = 1 :n:

(
0 B

BT 0

)(
x

±y

)
= ±σ

(
x

±y

)
,

where σi are the singular values of B. By an odd-even permutation of rows and
columns, the Jordan–Wielandtmatrix canbe brought into the special tridiagonal form

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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T = P APT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 q1
q1 0 r2

r2 0 q2

q2
. . .

. . .

. . .
. . .

. . .

rn 0 qn

qn 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.5.13)

with zero diagonal elements. This shows the close connection between the bidiagonal
SVD and a tridiagonal eigenvalue problem with zero diagonal.

We notice that if in (3.5.12) ri = 0, then B breaks into two upper bidiagonal matri-
ces, for which the singular values can be computed independently. If qi = 0, then
B has a singular value equal to zero. Applying a sequence of Givens rotations from
the left, Gi,i+1, Gi,i+2, . . . , Gi,n , zeros out the i th row, and again the matrix breaks
up into two parts. Hence, without loss of generality, we may assume that none of the
elements q1, qi , ri , i = 2 : n, is zero. This assumption implies that the matrix BT B
has off-diagonal elementsαi+1 = qiri+1 �= 0, and hence is unreduced. It follows that
all eigenvalues of BT B are positive and distinct, and we have σ1 > · · · > σn > 0.

An implicitly shifted QR algorithm for computing the SVD from the reduced
bidiagonal matrix was developed independently around 1967 by Golub [100, 1968]
and Reinsch [102, 1970]. Since forming BT B (or B BT ) could lead to a severe loss
of accuracy in the smaller singular values and vectors, the algorithm has to work
directly with B. Hence, it is essential to find a way to stably transform Bk into Bk+1
so that BT

k+1Bk+1 corresponds to the matrix obtained by applying a QR iteration
with shift τk to the matrix BT

k Bk . This can be done by the bulge chasing technique,
due to Francis. Global convergence is ensured by using the Wilkinson shift, i.e., the
eigenvalue closest to q2

n of the trailing two by two submatrix in B BT .

(
q2

n−1 + r2n qnrn

qnrn q2
n

)
.

(Note that in the original Golub–Reinsch algorithm the symmetric QR algorithm is
instead applied to BT B, which leads to a slightly different shift.)

In the implicit shift QR algorithm for B BT we first determine a Givens rotation
T1 = G12 so that GT

12t1 = ±‖t1‖2e1,

t1 = (B BT − τ I )r1 =

⎛
⎜⎜⎜⎜⎜⎝

q2
1 + r22 − τ

q2r2
0
...

0

⎞
⎟⎟⎟⎟⎟⎠

, (3.5.14)
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where t1 is the first column in BT B − τ I and τ is the shift. Suppose we next apply
a sequence of Givens transformations such that

T T
n−1 . . . T T

2 T T
1 B BT T1T2 . . . Tn−1

is tridiagonal, but we wish to avoid doing this explicitly. Let us start by applying the
transformation T1 to B. Then we get (take n = 5),

BT1 =

⎛
⎜⎜⎜⎜⎝

→ × ×
→ + × ×

× ×
× ×

×

⎞
⎟⎟⎟⎟⎠

.

If we now premultiply by a Givens rotation ST
1 = G12 to zero out the + element,

this creates a new nonzero element in the (1, 3) position. To preserve the bidiagonal
form we then choose the transformation T2 = R23 to zero out the element +:

ST
1 BT1 =

⎛
⎜⎜⎜⎜⎝

→ × × +
→ ⊕ × ×

× ×
× ×

×

⎞
⎟⎟⎟⎟⎠

, ST
1 BT1T2 =

⎛
⎜⎜⎜⎜⎝

↓ ↓
× × ⊕

× ×
+ × ×

× ×
×

⎞
⎟⎟⎟⎟⎠

.

We can now continue to chase the element + down, with transformations alternately
from the right and left, until a new bidiagonal matrix

B̂ = (ST
n−1 . . . ST

1 )B(T1 . . . Tn−1) = U T B P

is obtained. But then

T̂ = B̂T B̂ = PT BT UU T B P = PT T P

is tridiagonal, where the first column of P equals the first column of T1. Hence, if T̂ is
unreduced, itmust be the result of oneQR iteration on T = BT B with shift equal to τ .

The subdiagonal entries of T equal qi ei+1, i = 1 :n − 1. If some element ei+1 is
zero, then the bidiagonal matrix splits into two smaller bidiagonal matrices

B =
(

B1 0
0 B2

)
.

If qi = 0, thenwe can zero the i th rowby premultiplicationwith a sequence ofGivens
transformations Ri,i+1, . . . , Ri,n . The matrix then splits as above. In practice, two
convergence criteria are used. After each QR step, if
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|ri+1| ≤ 0.5u(|qi | + |qi+1|),

we set ri+1 = 0. We then find the smallest p and the largest q such that B splits into
square sub-blocks

⎛
⎝

B1 0 0
0 B2 0
0 0 B3

⎞
⎠

of dimensions p, n − p − q and q, where B3 is diagonal and B2 has a nonzero
superdiagonal. Second, if diagonal elements in B2 satisfy

|qi | ≤ 0.5u(|ri | + |ri+1|),

set qi = 0, zero the superdiagonal element in the same row, and re-partition B.
Otherwise continue the QR algorithm on B2. A justification for these tests is that
roundoff in a rotation could make the matrix indistinguishable from one with a qi

or ri+1 equal to zero. Also, the error introduced by the tests is not larger than some
constant times u‖B‖2. When all the superdiagonal elements in B have converged to
zero, we have QT

S BTS = � = diag(σ1, . . . , σn). Hence,

U T AV =
(

�

0

)
, U = Q B

(
QS 0
0 Im−n

)
, V = TB TS (3.5.15)

is the singular value decomposition of A.
Usually, less than 2n iterations are needed in the second phase. One QR iteration

with shift requires 14n multiplications and the generation of 2n Givens rotations.
Accumulating the rotations into U requires 6mn flops. Accumulating the rotations
into V requires 6n2 flops. If both left and right singular vectors are desired, the cost
of one QR iteration increases to 4n2 flops and the overall cost to O(n3). Note that
if the SVD is to be used for solving a least squares problem minx ‖Ax − b‖2, then
if the left singular vectors U are applied directly to the right-hand side b, they need
not be saved or accumulated.

Asymptotic flop counts for GKH and Chan bidiagonalization are given in
Table3.1 (Chan [40, 1982], p. 79). Here case (i) arises in the computation of the
pseudoinverse, case (iii) in least squares applications, and case (iv) in the estimation
of condition numbers and rank determination.

The implicit QR–SVD algorithm uses a sequence of orthogonal similarities to A,
and hence is normwise backward stable. The computed singular values �̂ = diag(̂σk)

are the exact singular values of a nearby matrix A + E , where ‖E‖2 ≤ c(m, n) · uσ1
and c(m, n) depends on m and n. From (2.2.34) it follows that

|̂σk − σk | ≤ c(m, n) uσ1. (3.5.16)

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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Table 3.1 Approximate flop counts for the QR–SVD algorithm

Case Requires GKH bidiag Chan bidiag

(i) �, U1, V 12mn2 + (16/3)n3 6mn2 + 16n3

(ii) �, U1 12mn2 − 2n3 6mn2 + (26/3)n3

(iii) �, V 4mn2 + 6n3 2mn2 + (28/3)n3

(iv) � 4mn2 − (4/3)n3 2mn2 + 2n3

Thus, if A is nearly rank-deficient, this will always be revealed by the computed
singular values. The backward error bound (3.5.16) does not guarantee that small
singular values of A are computed with small relative accuracy. If A has rows and
columns of widely varying norm, then the accuracy can be improved by first sorting
the rows by decreasing norm. Then the QR factorization of the permuted matrix is
computed with column interchanges, the R factor is reduced to bidiagonal form, and
the QR–SVD algorithm applied.

An important implementation issue is that the bidiagonal matrix is often graded,
i.e., the elements may be large at one end and small at the other. After an initial QR
factorization of A with column interchanges, the bidiagonal matrix is usually graded
from large at upper left to small at lower right, such as

⎛
⎜⎜⎝
1 10−1

10−2 10−3

10−4 10−5

10−6

⎞
⎟⎟⎠ . (3.5.17)

The QR algorithm as described tries to converge to the singular values from smallest
to largest, and “chases the bulge” from top to bottom. Convergence will then be
fast. But if B is graded the opposite way, then the QR algorithm may require many
more steps. In this case the rows and columns of B could be reversed before the QR
algorithm is applied. Many algorithms check for the direction of grading. Note that
the matrix may break up into diagonal blocks graded in different ways. �

TheQR–SVDalgorithm is designed for computing all singular values andpossibly
also the corresponding singular vectors of amatrix. In some applications, like theTLS
problem, only the singular subspace associated with the smallest singular values is
needed. A QR–SVD algorithm, modified to be more efficient for this case and called
the PSVD algorithm, is given by Van Huffel and Vandewalle [233, 1991], Chap. 4.

Important enhancements of the QR–SVD algorithm were developed by Demmel
and Kahan [57, 1990]. With their modifications the algorithm computes all singular
values of a bidiagonal matrix to full relative precision independent of their magni-
tudes. Theorem3.5.3 below shows that this should be possible to achieve.
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Theorem 3.5.3 Let B ∈ R
n×n be an unreduced bidiagonal matrix with singular

values σ1 > · · · > σn and left singular vectors ui , vi , i = 1 :n. Consider a perturbed
bidiagonal matrix B̂ = B + δB such that |δB| ≤ ω|B|, η = (2n − 1)ω < 1. Let

gi = min
j �=i

|σi − σ j |
σi + σ j

be the relative gap of σi of B and assume that gi > η. Then the singular values
σ̂1 ≥ · · · ≥ σ̂n of B̂ and the singular vectors ûi , v̂i , i = 1 :n, satisfy

|̂σi − σi | ≤ η

1 − η
|σi |, (3.5.18)

max{sin∠(ui , ûi ), sin∠(vi , v̂i )} ≤
√
2η(1 + η)

gi − η
. (3.5.19)

Proof See Demmel and Kahan [57, 1990] �

To get full relative accuracy in the small singular values of A these are computed
by using the zero-shift QR–SVD algorithm. Let R = R1 be upper triangular and for
k = 1, 2, . . . , compute Rk+1, from the QR factorization

RH
k = Qk+1Rk+1, (3.5.20)

where RH
k is lower triangular. Then, RH

k Rk = Qk+1(Rk+1Rk) is theQR factorization
of RH

k Rk . Forming the product in reverse order gives

(Rk+1Rk)Qk+1 = Rk+1RH
k+1Q H

k+1Qk+1 = Rk+1RH
k+1

= RH
k+2Q H

k+2Qk+2Rk+2 = RH
k+2Rk+2.

Hence, two successive iterations of (3.5.20) are equivalent to one iteration of the basic
QR algorithm applied to RH R. One iteration of (3.5.20) is equivalent to one iteration
of the Cholesky LR algorithm applied to Ck = Rk RH

k . This follows because Ck has
the Cholesky factorization Ck = RH

k+1Rk+1 and multiplication of these factors in
reverse order givesCk+1 = Rk+1RH

k+1. (Recall that for a symmetric, positive definite
matrix two steps of the LR algorithm are equivalent to one step of the QR algorithm.)
From theorthogonality of Qk+1 and (3.5.20), it follows that Rk+1 = Q H

k+1RH
k .Hence

RH
k+1Rk+1 = Rk(Qk+1Q H

k+1)RH
k = Rk RH

k ,

and further,

Rk+2RH
k+2 = Rk+2Rk+1Qk+2 = Q H

k+2(Rk RH
k )Qk+2. (3.5.21)
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This shows that simultaneously an iteration on Rk RH
k is performed,without explicitly

forming this matrix.
An algorithm for the “flipping” of Rk from upper to lower triangular form was

given in Sect. 2.4.5. This simplifies when applied to an upper bidiagonal matrix. The
zero-shift QR algorithm given in Sect. 3.4.1 applied to B1 = B gives the iteration

BT
k = Qk+1Bk+1, k = 1, 2, . . . . (3.5.22)

In each step the lower bidiagonal matrix BT
k is transformed into an upper bidiagonal

matrix Bk+1. A typical step is illustrated here (n = 5):

⎛
⎜⎜⎜⎜⎝

→ × +
→ ⊗ ×

× ×
× ×

× ×

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

× ×
→ × +
→ ⊗ ×

× ×
× ×

⎞
⎟⎟⎟⎟⎠

.

Each iteration in (3.5.22) can be performedwith a sequence of n−1Givens rotations.
The first step is (

c s
−s c

)(
q1 0
r2 q2

)
=

(
q̃1 r̃2
0 q̃2

)
,

where q̃1 = σ =
√

q2
1 + r22 and

r̃2 = sq2 = r2(q2/σ), q̃2 = cq2 = q1(q2/σ).

Two iterations are equivalent to one step of the zero-shift QR algorithm. (Recall that
one step of the QR algorithm with nonzero shifts requires 12n multiplications and
4n additions.)

Algorithm 3.5.1 (Zero-shift Bidiagonal QR–SVD)

function [q,r] = bidqr(q,r,p)

% BIDQR performs p steps of the zero-shift

% QR algorithm on a bidiagonal matrix

% with elements q[1:n] and r[2:n]

% ---------------------------------------

n = length(q);

for k = 1:2*p

for i = 1:n-1

q(i) = sqrt(q(i)ˆ2 + r(i+1)ˆ2);

r(i+1) = r(i+1)*(q(i+1)/q(i));

q(i+1) = q(i)*(q(i+1)/q(i));

end

end

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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If two successive steps of the zero-shift QR–SVD algorithm are interleaved we
get the zero-shift QR algorithm. The zero shift algorithm is very simple. Further,
because no subtractions are used, each entry of the transformed matrix is computed
to high relative accuracy. This allows small singular values to be determined to
their full relative accuracy. Algorithm3.5.1 performs p steps of the zero-shift QR
algorithm on the bidiagonal matrix B in (3.5.12)

To achieve full accuracy for the smaller singular values, the convergence tests
used for standard shifted QR–SVD algorithm must be modified. This is a non-trivial
task, for which we refer to the original paper by Demmel and Kahan [57, 1990]. As
soon as the small singular values are determined, shifts are introduced.

Bounds on the relative change in the singular values and vectors of a real matrix
are given in Eisenstat and Ipsen [73, 1995]. For an insightful survey of classes of
matrices for which it is possible to compute singular values and singular vectors
with high relative accuracy, see Demmel et al. [59, 1999]. Further work on the basic
QR–SVD algorithm has been done by Chandrasekaran and Ipsen [41, 1995].

The QR–SVD algorithm can be considered as a special instance of a product
eigenvalue problem, where one wishes to find the eigenvalues of a matrix

A = Ak Ak−1 . . . A1 (3.5.23)

that is a product of two or more matrices. For stability reasons one wants to operate
on the factors A1, A2, . . . , Ak separately, without forming A explicitly. Bojanczyk
et al. [26, 1992] showed how the QR algorithm can be extended to products of a
large number of matrices. A unified treatment of such problems by the so-called
GR algorithm is given by Watkins [245, 2005]. This paper lists several applications
where product eigenvalues arise; see also [246, 2007]. A discussion of the product
eigenvalue problemwith applications to theQR–SVD algorithm is given byKressner
[156, 2005] and [155, 2005].

The differential qd (dqds) algorithm was developed by Fernando and Parlett
[77, 1994] for computing singular values of a bidiagonal matrix B with high relative
accuracy. It is considered to be the fastest algorithm for this task. It may also be used
to compute eigenvalues of tridiagonal matrices. The dqds algorithm evolved from a
square root free version of the zero-shift bidiagonal QR–SVD algorithm. Given an
upper bidiagonal matrix B, one step of dqds with shift τ ≤ σmin(B) computes B̃
such that

B̃T B̃ = B BT − τ 2 I. (3.5.24)

The choice of τ ensures that B̃ exists. This is a non-restoring orthogonal similarity
transformation. It can be performed without forming B BT − τ 2 I by a hyperbolic
QR factorization (see Sect. 2.7.5). Let

Q

(
BT

0

)
=

(
B̃
τ I

)
∈ R

2n×n .

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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Then B BT = B̃T B̃+τ 2 I , as required. In the first step aGivens rotation is constructed
that only affects rows (1, n + 1) and makes the element (n + 1, 1) equal to τ . This
is possible, because τ ≤ σmin(B) ≤ q1. This changes the first diagonal element to

t1 =
√

q2
1 − τ 2. Next, a rotation in rows (1, 2) is used to annihilate r2, giving

q̃1 =
√

q2
1 − τ 2 + r22

and changing q2 into q̂2. The first column and first row now have their final form:

⎛
⎜⎜⎜⎜⎜⎝

q1
r2 q2

. . .
. . .

rn qn

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

⇒

⎛
⎜⎜⎜⎜⎜⎝

t1
r2 q2

. . .
. . .

rn qn

τ 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

⇒

⎛
⎜⎜⎜⎜⎜⎝

q̃1 r̃2
0 q̂2

. . .
. . .

rn qn

τ 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

All remaining steps are similar. The kth step only acts on the last n − k + 1 rows and
columns and will produce an element τ in position (n + k, n + k). One can show
that this algorithm does not introduce large relative errors in the singular values. By
working instead with squared quantities, square roots can be eliminated, giving the
dqds algorithm. For more details we refer to Fernando and Parlett [77, 1994] and
Parlett [194, 1995]. Implementation issues, such as criteria for accepting a singular
value, for splitting the matrix, and for choosing the shift, are considered by Parlett
and Marques [195, 2000] and Li et al. [169, 2012]. The dqds algorithm is now much
used and available in LAPACK as the routine DLASQ.

3.5.4 Skew-Symmetric and Unitary Matrices

Skew-symmetric or skew-Hermitian eigenvalue problem occur in mechanical and
quantum-mechanical problems. From the definition of a skew-Hermitian matrix
AH = −A ∈ C

n×n , it follows that the diagonal elements must have zero real
part, e.g.,

A =
(

i −1 + i
1 + i 2i

)
(i = √−1)

is skew-Hermitian. Hence, a real skew-symmetric matrix A ∈ R
n×n , AT = −A, has

zero diagonal elements. Eigenvalues and eigenvectors of skew-symmetric matrices
are of interest, e.g., in nuclear physics. If A is skew-Hermitian and B = U H AU is a
unitary similarity, then

B H = U H AH U = −U H AU = −B,
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i.e., the skew-Hermitian (real skew-symmetric) form is preserved.
Any skew-Hermitian matrix can be transformed by a unitary similarity to tri-

diagonal form K = U H AU with real subdiagonal elements,

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

iβ1 α1
−α1 iβ2 α2

−α2
. . .

. . .

. . . iβn−1 αn−1
−αn−1 iβn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.5.25)

where αi and βi , i = 1 : n − 1, are real. It is easily verified that after the diagonal
similarity

DK D−1 = i T, D = diag(1, i, i2, . . . , in−1),

T is a real symmetric tridiagonal matrix with subdiagonal elements equal to αk ,
k = 1 :n −1. The eigenvalue problem for T can be solved by the standard symmetric
QR algorithm.

If K ∈ R
n×n is real and skew-symmetric, then its diagonal elements are zero.

The eigenvalues of a real skew-symmetric matrix K lie on the imaginary axis and
the nonzero eigenvalues occur in complex conjugate pairs. Hence, if n is odd, then
K has a zero eigenvalue.

Example 3.5.2 Any real orthogonal matrix Q ∈ R
n×n , with det(Q) = +1, can be

written as Q = eK , where K is a real skew-symmetric matrix. Then QT = eK T =
e−K = Q−1. In particular, for n = 3,

K =
⎛
⎝

0 k12 k13
−k12 0 k23
−k13 −k23 0

⎞
⎠ .

The eigenvalues of K are mapped into eigenvalues of Q on the unit circle. �

When n is odd, the zero eigenvalue can be deflated from K by an orthogonal sim-
ilarity consisting of a product of (n − 1)/2 plane rotations. The following Wilkinson
diagram illustrates the case n = 5. First rows and columns 3 and 5 are rotated to zero
out the (5, 4) and (4, 5) elements. This introduces two new nonzero elements. These
are next zeroed out by rotating rows and columns 1 and 5:

⎛
⎜⎜⎜⎜⎝

↓ ↓
0 ×
× 0 × +

→ × ×
× 0 ⊕

→ + ⊕ 0

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

↓ ↓
→ 0 ×

× 0 × ⊕
× 0 ×

× 0 ⊕
→ ⊕ ⊕ 0

⎞
⎟⎟⎟⎟⎠

.
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Note that skew-symmetry is preserved. We can now assume that the dimension of K
is even. Then K can be transformed by a permutation to the form

T =
(

0 B
−BT 0

)
, B =

⎛
⎜⎜⎜⎜⎝

α1 α2

α3
. . .

. . . αn−2
αn−1

⎞
⎟⎟⎟⎟⎠

. (3.5.26)

(Compare with the tridiagonal matrix (3.5.13)). It follows that the eigenvalues of K
are equal to ±i σi , where σi , i = 1 : n/2 are the singular values of the bidiagonal
matrix B.

Applications of the eigenvalue problem of a unitary (or real orthogonal) matrix U
include calculation of Gaussian quadrature formulas on the unit circle and Pisarenko
frequency estimates [199, 1973]. Such a matrix is normal and therefore unitarily
diagonalizable. Since U H = U−1, its eigenvalues satisfy λ̄ = λ−1, or |λ|2 = 1, i.e.,
they lie on the unit circle:

λk = eiθk = cos θk + i sin θk, k = 1 :n.

A straightforward way to proceed is to note that if U = Q H �Q, then U H =
Q H �H Q and thus

1

2
(U + U H ) = 1

2
Q H (� + �H )Q.

Thus, theHermitianmatrix 1
2 (U +U H ) has the same eigenvectors and its eigenvalues

are cos θi , i = 1 :n This approach does not be accurately determine sin θi when |θi | is
small. This can be handled by also computing the pure imaginary eigenvalues of the
skew-Hermitian matrix 1

2 (U − U T ), which are i sin θk . For a real orthogonal matrix
this approach involves solving one symmetric and one skew-symmetric eigenvalue
problem.

We now look at what simplifications arise if the Hessenberg QR algorithm is
applied to U . The first step then is to reduce U to Hessenberg form, as described
in Sect. 3.4.3. Since this is an orthogonal similarity, the result is a unitary (real
orthogonal) Hessenberg matrix H . This reduction can be carried out so that the
subdiagonal elements are real and nonnegative. If a subdiagonal element vanishes,
then the eigenvalue problem splits into two smaller ones. Therefore, we can assume
without loss of generality that the subdiagonal elements of H are positive.

The QR factorization is performed by a sequence of complex Givens reflec-
tions Gk ,

Gk =
(−ck sk

sk c̄k

)
, k = 1 :n − 1,
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with sk real and s2k + |ck |2 = 1, acting on the rows k, k + 1. In the first step the first
two rows are transformed:

G1

(
h11 h12 · · · h1n

h21 h22 · · · h2n

)
=

(
1 0 · · · 0
0 h̃22 · · · h̃2n

)
.

Since the transformed matrix is unitary, it follows that in the first row the diagonal
element equals one and the off-diagonal elements are zero. This also implies that
c1 = h21. All remaining steps are similar. The elements s1, s2, . . . , sn−1 equal the
(real) subdiagonal elements of H and ck are the so-called Schur parameters.13

Thus, H can be written as a product of Givens reflections:

Gn−1 . . . G2G1H = R =
(

In−1
cn

)
, |cn| = 1.

Hence, the factor R is a diagonal matrix with unit diagonal elements. It follows
that a unitary Hessenberg matrix with positive subdiagonal elements is completely
specified by the parameters ck and has the unique factorization

H = H(c1, c2, . . . , cn−1) = G1G2 · · · Gn−1.

For stability reasons it is essential to retain also the quantities s1, s2, . . . , sn−1.
Further, the parameters should be re-scaled at each minor step by computing
ρ = (s2k + c2k )

1/2 and setting sk := sk/ρ, ck := ck/ρ.
A step in the shifted QR algorithm performs the transformation

H − τ I = Q R, Ĥ = RQ + τ I = QT H Q,

where τ is usually a complex shift. Since Ĥ is a unitary Hessenberg matrix with real
subdiagonal elements, it has a representation Ĥ = Ĥ (̂c1, . . . , ĉn−1). By taking this
structure into account, it is possible to perform one step in the QRmethod with O(n)

flops instead of the O(n2) flops required by the general Hessenberg QR algorithm.
For a real orthogonal matrix Q ∈ R

n×n a more efficient algorithm was devel-
oped by Ammar et al. [6, 1986]. In a first step, the real eigenvalues λ = ±1 are
deflated, giving a deflated orthogonal matrix of even dimension n. Next, two bidi-
agonal matrices of dimension roughly n/2 are derived, whose singular values are
cos(θk) and sin(θk), where eiθk are the eigenvalues of Q.

The QR algorithm for the skew-symmetric eigenproblem is due toWard and Gray
[242, 1978]. Singer and Singer [215, 2005] give a qd algorithm for skew-symmetric
matrices. The QR algorithm for the unitary eigenvalue problems is due to Gragg
[107, 1986]. The original formulas by Gragg are unstable, but can be stabilized, as
shown by Watkins [245, 2005].

13 This name was chosen because of the connection with Schur’s work on bounded analytic
functions.
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Exercises

3.5.1 Perform a QR step without shift on

A =
(
cos θ sin θ

sin θ 0

)
.

Show that the off-diagonal elements are reduced to − sin3 θ .
3.5.2 Reduce the real symmetric matrix

A =

⎛
⎜⎜⎝

1
√
2

√
2

√
2√

2 −√
2 −1

√
2√

2 −1
√
2

√
2

2
√
2

√
2 −3

⎞
⎟⎟⎠

to tridiagonal form by an exact orthogonal similarity.

3.5.3 (a) Let Q ∈ R
3×3 be an orthogonal matrix. Assume that Q �= I and det(Q) = +1,

so that Q represents a pure rotation. Show that Q has a real eigenvalue equal to +1,
whose eigenvector corresponds to the screw axis of rotation. Show that the two other
eigenvalues are of the form λ = e±iφ .

(b) Show that the symmetric and skew-symmetric parts of Q, M = 1
2 (QT + Q) and K =

1
2 (Q − QT ), have the same eigenvectors as Q. What are their eigenvalues of M and K ?

(c) Show that an eigenvector corresponding to the zero eigenvalue of

K =
⎛
⎝

0 k12 k13
−k12 0 k23
−k13 −k23 0

⎞
⎠

is u1 = (k23,−k13, k12)T . Derive the characteristic equation det(λI −K ) = 0 and con-
clude that the two remaining eigenvalues are ±i sin φ, where sin2 φ = k212 + k213 + k223.

3.5.4 Suppose A ∈ R
n×n has the symmetric arrowhead form

A =

⎛
⎜⎜⎜⎝

d1 b2 · · · bn
b2 d2
.
.
.

. . .

bn dn

⎞
⎟⎟⎟⎠ .

Construct an orthogonal similarity that transforms A to symmetric tridiagonal form.Estimate
the number of flops needed for this similarity.

3.5.5 (a) To compute the eigenvalues of the symmetric pentadiagonal matrix

A =

⎛
⎜⎜⎜⎝

4 2 1 0 0
2 4 2 1 0
1 2 4 2 1
0 1 2 4 2
0 0 1 2 4

⎞
⎟⎟⎟⎠ ,

it is first reduced to tridiagonal form. Determine a Givens rotation G23 that zeros the
(3, 1) element in A and compute A(1) = G23 AGT

23.
(b) In A(1) a new nonzero element is created. Show how this can be zeroed by a new

rotation without introducing any new nonzero elements.
(c) Device a “zero chasing” algorithm to reduce a general real symmetric pentadiagonal

matrix A ∈ R
n×n to symmetric tridiagonal form. How many rotations are needed?

How many flops?
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3.5.6 Let B be the matrix in (3.5.12) and P the permutation matrix whose columns are those of the
identity matrix in the order (n +1, 1, n +2, 2, . . . , 2n, n). Show that PT C P is a tridiagonal
matrix T of the form in (3.5.13).

3.5.7 In Sect. 2.4.5 the observation is made that the two factorizations in QLP can be interleaved.
Modify Algorithm3.5.1 for the zero shift QR–SVDmethod so that the two loops are merged
into one.

3.5.8 Show that if the QR–SVD algorithm is based on the symmetric QR algorithm for BT B,
then the shift should be chosen from among the squares of the singular values of(

rn−1 qn−1 0
0 rn qn

)
or, equivalently, the eigenvalues of

(
q2

n−1 + r2n−1 qn−1rn

qn−1rn q2
n + r2n

)
.

3.5.9 (a) Show that the diagonal of a complex skew-Hermitian matrix K ∈ C
n×n is pure imag-

inary, but need not be null.
(b) Show that �(det(K )) = 0 if n is odd and �(det(K )) = 0 if n is even.

Hint: Show that if K is skew-Hermitian, then det(K ) = (−1)n det(K ).

3.6 Some Alternative Algorithms

Reduction to real symmetric tridiagonal form followed by the QR algorithm is the
standard method for solving the eigenvalue problem for a Hermitian matrix. How-
ever, the alternative methods described in this section may sometimes be faster or
more accurate.

3.6.1 The Bisection Method

The bisection method (or spectrum slicing) by Givens [94, 1954] is one of the most
efficient methods for computing selected eigenvalues of real symmetric tridiagonal
matrices. It is based on properties of the leading principal minors pk(λ) = det(Tk −
λI ) of order k of a real symmetric tridiagonal matrix T − μI ,

T = Tn =

⎛
⎜⎜⎜⎜⎜⎝

α1 β2
β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn

⎞
⎟⎟⎟⎟⎟⎠

. (3.6.1)

Expanding the determinant along the last row and defining p0 = 1, we obtain

p1(λ) = (α1 − λ)p0,

pk(λ) = (αk − λ)pk−1(λ) − β2
k pk−2(λ), k = 2 :n. (3.6.2)

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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For a given value of λ = τ , the so-called Sturm sequence p1(τ ), . . . , pn(τ ) can be
evaluated in 3n flops using (3.6.2).

Lemma 3.6.1 If the tridiagonal matrix Tk is irreducible, i.e., βi ne0, i = 2 :k, then
the zeros of pk−1(λ) strictly separate those of pk(λ).

Proof By the separation theorem (Theorem3.2.9), the zeros of each pk−1(λ) separate
those of pk(λ), at least in the weak sense. Suppose now thatμ is a zero of both pk(λ)

and pk−1(λ). Since βk �= 0, it follows from (3.6.2) that μ is also a zero of pk−2(λ).
Continuing in this way shows that μ is a zero of p0. This is a contradiction, because
p0 = 1. �

Theorem 3.6.1 Let s(τ ) be the number of agreements in sign of consecutive mem-
bers in the sequence p1(τ ), p2(τ ), . . . , pn(τ ). If pi (τ ) = 0 the sign is taken to be
opposite of that of pi−1(τ ). (Note that two consecutive pi (τ ) can be zero.) Then s(τ )

is the number of eigenvalues of T strictly greater than μ.

Proof See Wilkinson [250, 1965], pp. 300–301. �

A careful implementation of a spectrum slicing algorithm based on Sturm
sequences is given by Barth et al. [18, 1967]. A challenge is that the numerical
computation of the Sturm sequences is susceptible to underflow and overflow. We
now describe an alternative algorithm due to Kahan [145, 1966], which instead is
based on Sylvester’s law of inertia (Theorem1.3.7). For this a simple and very sat-
isfactory rounding error analysis can be carried through.

Theorem 3.6.2 Let A ∈ R
n×n be a symmetric matrix and τ a real number. Assume

that symmetric Gaussian elimination can be carried out for A − τ I , yielding the
factorization

A − τ I = LDLT , D = diag(d1, . . . , dn), (3.6.3)

where L is a unit lower triangular matrix. Since A − τ I is congruent to D, the
number ψ(D) of eigenvalues of A greater than τ equals the number of positive
diagonal elements in D.

For a symmetric tridiagonal matrix T the above procedure is particularly efficient
and reliable. In this case the diagonal elements are given by (see Sect. 1.5.4)

d1 = α1 − τ, dk = αk − τ − β2
k /dk−1, k = 2 :n. (3.6.4)

Example 3.6.1 Setting τ = 1, and computing the factorization T − τ I = LDLT ,
where L is unit lower bidiagonal gives

T =
⎛
⎝
2 2
2 3 −4

−4 −5

⎞
⎠ , T − τ I =

⎛
⎝
1
2 1

2 1

⎞
⎠

⎛
⎝
1

−2
2

⎞
⎠

⎛
⎝
1 2

1 2
1

⎞
⎠ .

This shows that A has two eigenvalues greater than 1.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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The LDLT factorization may fail to exist if A − τ I is not positive definite. For
the shift τ = 2 and the matrix above, a11 − τ = 0, and the first step cannot be
carried out. A closer analysis shows that the factorization will fail if and only if τ

is an eigenvalue of a leading principal submatrix of A. In a small interval around
each of these values, big growth of elements may occur, and the factorization may
give the wrong count. In such cases τ is simply perturbed by a small amount and the
factorization restarted from the beginning. If only over/underflow is avoided, then
element growth will not affect the accuracy of the slice.

For T in (3.6.1) a round-off error analysis of shows that the computed diagonal
elements d̂k satisfy

d̂k = f l
(
(αk − βk(βk/d̂k−1)) − τ

)

=
[(

αk − β2
k

d̂k−1
(1 + ε1k)(1 + ε2k)

)
(1 + ε3k) − τ

]
(1 + ε4k) (3.6.5)

≡ α̂k − τ − (β̂k)
2/d̂k−1, k = 1 :n,

where β1 = 0 and |εik | ≤ u. Hence, the computed number ψ̂(D) of positive diagonal
elements is the exact number of eigenvalues greater than τ of Â, where the elements
of Â satisfy

|̂αk − αk | ≤ u(2|αk | + |τ |), |β̂k − βk | ≤ 2u|βk |. (3.6.6)

This backward error boundwas further improved byKahan [145, 1966], who showed
that the term 2u|αk | in the bound can be dropped, see also Problem3.6.2. Hence,
the eigenvalues found by bisection differ by a factor of at most 1± u from the exact
eigenvalues of a matrix where only the off-diagonal elements are subject to a relative
perturbation of at most 2u. Clearly, this is a very satisfactory result. From the residual
error bound in Theorem3.2.13, it follows that

|̂λ j − λ j | ≤ ‖ Â − A‖2.

With the improved bound by Kahan, and the inequalities |τ | ≤ ‖A‖2, |αk | ≤ ‖A‖2,
we obtain the error bound

|̂λ j − λ j | ≤ 5u‖A‖2. (3.6.7)

This shows that the absolute error in the computed eigenvalues is always small.
To prevent breakdownof the recursion, a small pivot element is replaced by a small

quantity ω chosen as the square root of the underflow threshold. The recursion uses
only 2n flops, and it is not necessary to store the elements dk . The number of multipli-
cations can be halved by initially computingβ2

k , although thismay cause unnecessary
over/underflow. Assuming that no over/underflow occurs, Algorithm3.6.1 is back-
ward stable.
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Algorithm 3.6.1 (Tridiagonal Spectrum Slicing)

function psi = trislice(a,b,tau)

% TRISLICE determines the number psi of eigenvalues

% greater than a given number $tau$ for a symmetric

% tridiagonal matrix with elements a[1:n] and b[2:n].

% --------------------------------------------------

n = length(a);

d(1) = a(1) - tau;

if d(1) > 0

psi = 1; else psi = 0;

end

for k = 2:n

if abs(d(k-1)) < eps

d(k-1) = eps;

end

d(k) = a(k) - b(k)*(b(k)/d(k-1)) - tau;

if d(k) > 0

psi = psi + 1;

end

end

The above technique can be used to locate any individual eigenvalue λk of A.
Assume we have two values τl and τu such that for the corresponding diagonal fac-
tors we have ψ(Dl) ≥ k, and ψ(Du) < k. Then the eigenvalue λk lies in the inter-
val [τl, τu). With p steps of the bisection (or multisection) method (see [48, 2008],
Sect. 6.4) λk can be located in an interval of length (τu − τl)/2p. Note that from
Geršgorin’s theorem it follows that all the eigenvalues of the tridiagonal matrix Tn

are contained in the union of the intervals

αi ± (|βi | + |βi+1|), i = 1 :n,

where β1 = βn+1 = 0. This can be used to initialize the search.
When an interval containing a single eigenvalue λk has been located by bisection,

one can switch to a faster convergent method for determining λk to high precision.
For example, a safeguarded secant or Newton method (see [48, 2008], Sect. 6.2.4)
can be used to solve the equation p(λ) = det(A − λI ) = 0. If A has many close
eigenvalues, then superlinear convergence may not take place, and this method may
converge even slower than bisection.

Spectrum slicing can also be used to determine the singular values σi , i = 1: n,
of the bidiagonal matrix
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Bn =

⎛
⎜⎜⎜⎜⎜⎝

q1 r2
q2 r3

. . .
. . .

qn−1 rn

qn

⎞
⎟⎟⎟⎟⎟⎠

∈ R
n×n . (3.6.8)

As shown in Sect. 3.5.3, after a symmetric permutation the corresponding Jordan–
Wielandt matrix becomes the special symmetric tridiagonal matrix T2n ∈ R

2n×2n in
(3.5.13), with zero diagonal elements and off-diagonal elements

q1, r2, q2, r3, . . . , rn, qn .

By Theorem3.5.2, the eigenvalues of T2n are ±σi , i = 1 : n. Hence, by applying
spectrum slicing with τ ≥ 0 to T2n the number of singular values greater than
a given nonnegative number can be determined. If advantage is taken of the zero
diagonal in T to simplify the algorithm, then one slice requires only about 2n flops.
A rounding error analysis by Fernando [76, 1998] shows that high relative accuracy
can be achieved even for tiny singular values.

If many eigenvalues of a general real symmetric matrix A are to be determined
by spectrum slicing, then A should initially be reduced to tridiagonal form. But if
A is a banded matrix and only few eigenvalues are to be determined, then the Band
Cholesky Algorithm1.5.2 can be used to slice the spectrum. It is then necessary to
monitor the element growth in the factorization. Spectrum slicing is also applicable
to the generalized eigenvalue problem Ax = λBx , where A and B are symmetric
and either B or A is positive definite; see Sect. 3.7.2.

3.6.2 Jacobi’s Diagonalization Method

One of the oldest methods for solving the eigenvalue problem for real symmetric (or
Hermitian) matrices is Jacobi’s14 method. His diagonalization method, published
in 1846 [137, 1846], was used in the first step of a method for solving a symmetric
eigenvalue problem. After the introduction of the faster QR algorithm it fell out of
favor for a period. But Jacobi’s method sometimes gives more accurate results than
the QR algorithm, see [58, 1992]. Newer implementations of the Jacobi method for
computing the SVD can also compete in speed with the QR algorithm.

14 Carl Gustaf Jacob Jacobi (1805–1851), German mathematician, started teaching mathematics at
the University of Berlin already in 1825. In 1826 he moved to the University of Königsberg, where
Bessel held a chair. In the summer of 1829 he visited Gauss in Göttingen and Legendre and Fourier
in Paris and published a paper containing fundamental advances on the theory of elliptic functions.
In 1832 he was promoted to full professor. Like Euler, Jacobi was a proficient calculator who drew
a great deal of insight from immense computational work.
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There are special situations when Jacobi’s method is very efficient and should be
preferred. For example, when the matrix is nearly diagonal or when one has to solve
eigenvalue problems for a sequence of matrices differing only slightly from each
other. Jacobi’s method, with a proper stopping criterion, can be shown to compute
the eigenvalues of symmetric positive definite matrices with uniformly better rela-
tive accuracy than any algorithm that first reduces the matrix to tridiagonal form;
see Demmel et al. [58, 1992]. Although the QR algorithm is normwise backward
stable (see Sect. 3.5), high relative accuracy can only be guaranteed for the larger
eigenvalues (those near ‖A‖ in magnitude), unless special measures are taken.

The Jacobi method solves the eigenvalue problem for A ∈ R
n×n by performing a

sequence of similarities

A0 = A, Ak+1 = J T
k Ak Jk, (3.6.9)

such that Ak , k = 1, 2, . . . , converges to a diagonal matrix. Here Jk = G pq(θ) is
chosen as a rotation in the plane (p, q), p < q. The entries c = cos θ and s = sin θ

are determined so that

(
a′

pp 0
0 a′

qq

)
=

(
c −s
s c

)(
app apq

apq aqq

)(
c s

−s c

)
, (3.6.10)

i.e., the off-diagonal elements apq = aqp are reduced to zero. We assume in the
following that apq �= 0, because otherwise A is already in diagonal form. For sim-
plicity of notation we set Ak+1 = A′ and Ak = A. Only the entries in the pivot rows
and columns p and q of A will change. Since symmetry is preserved, only the upper
triangular part of each A needs to be computed.

The 2 by 2 symmetric eigenvalue problem (3.6.10) is a key subproblem in Jacobi’s
method. Equating the off-diagonal elements gives

(app − aqq)cs + apq(c2 − s2) = 0. (3.6.11)

Hence, τ ≡ cot 2θ = (aqq − app)/(2apq). From (3.6.11) and the trigonometric
formula tan 2θ = 2 tan θ/(1 − tan2 θ), it follows that t = tan θ is a root of the
quadratic equation t2 + 2τ t − 1 = 0. The root of smallest modulus is

t = tan(θ) = sign(τ )
/(

|τ | +
√
1 + τ 2

)
. (3.6.12)

This choice ensures that π/4 < θ ≤ π/4 and minimizes the difference ‖A′ − A‖F .
Note that a′

pp + a′
qq = trace(A). The eigenvalues are

a′
pp = app − t apq , a′

qq = aqq + t apq , (3.6.13)

and the eigenvectors are c = 1/
√
1 + t2 and s = tc; see Algorithm3.6.2.
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The computed transformation is applied also to the remaining elements in rows
and columns p and q of the full matrix A. With r = s/(1+ c) = tan(θ/2), these are
obtained from ( j �= p, q):

a′
j p = a′

pj = capj − saq j = apj − s(aq j + rapj ),

a′
jq = a′

q j = sapj + caq j = aq j + s(apj − raq j ).

These formulas are chosen to reduce roundoff errors; see Rutishauser [209, 1966].
If symmetry is exploited, then one Jacobi transformation takes about 8n flops. Note
that an off-diagonal element made zero at one step will in general become nonzero
at some later stage. The Jacobi method also destroys any band structure in A.

Algorithm 3.6.2 (Jacobi Transformation Matrix)

function [c,s,lamp,lamq] = jacrot(app,apq,aqq);

tau = (aqq - app)/(2*apq);

if tau == 0, then t = 1;

else

t = sign(tau)/(abs(tau) + sqrt(1 + tauˆ2));

end

c = 1/\sqrt(1 + t*t); s = t*c;

lamp = app - t*apq; lamq = aqq + t*apq;

The convergence of the Jacobi method depends on the fact that in each step the
quantity

S(A) =
∑
i �= j

a2
i j = ‖A − D‖2F ,

i.e., the Frobenius norm of the off-diagonal elements is reduced. To see this, note
that because the Frobenius matrix norm is unitarily invariant and a′

pq = 0,

(a′
pp)

2 + (a′
qq)2 = a2

pp + a2
qq + 2a2

pq .

We also have ‖A′‖2F = ‖A‖2F , and hence

S(A′) = ‖A′‖2F −
n∑

i=1

(a′
i i )

2 = S(A) − 2a2
pq .

The choice of t in (3.6.12) prevents the exchange of the diagonal elements app and
aqq , when apq is small. This is also essential for the convergence of Jacobi’s method.

There are various strategies for choosing the order in which the off-diagonal
elements are annihilated. Since S(A′) is reduced by 2a2

pq , the optimal choice is to
annihilate the off-diagonal element of largest magnitude. This is done in the classical
Jacobi method. Then 2a2

pq ≥ S(Ak)/N , N = n(n − 1)/2, and



3.6 Some Alternative Algorithms 535

S(Ak+1) ≤ (1 − 1/N )S(Ak).

This shows that for the classical Jacobi method Ak+1 converges at least linearly with
rate 1 − 1/N to a diagonal matrix. In fact, it can be shown that ultimately the rate
of convergence is quadratic, i.e., for k large enough, S(Ak+1) < cS(Ak)

2, for some
constant c. The iterations are repeated until S(Ak) < δ‖A‖F , where δ is a tolerance
that can be chosen equal to the unit roundoff u. Then it follows from the Bauer–Fike
Theorem3.2.4 that the diagonal elements of Ak approximate the eigenvalues of A
with an error less than δ‖A‖F .

In the classical Jacobi method a large amount of effort must be spent on searching
for the largest off-diagonal element. Even though it is possible to reduce this time
by taking advantage of the fact that only two rows and columns are changed at
each step, the classical Jacobi method is almost never used. Instead a cyclic Jacobi
method is used, where the N = 1

2n(n − 1) off-diagonal elements are annihilated
in some predetermined order. Each element is rotated exactly once in any sequence
of N rotations, called a sweep. Convergence of any cyclic Jacobi method can be
guaranteed if any rotation (p, q) is omitted for which

|apq | < tol (app aqq)1/2

for some threshold tol; see Forsythe and Henrici [81, 1960]. To ensure a good rate
of convergence, the threshold tolerance should be successively decreased after each
sweep.

For sequential computers themost popular cyclic ordering is the row-wise scheme,
i.e., the rotations are performed in the order

(1, 2), (1, 3), . . . (1, n),

(2, 3), . . . (2, n),

. . . . . .

(n − 1, n).

(3.6.14)

About 1
2 · 8n ≈ 4n3 flops are required for one sweep. In practice, the cyclic Jacobi

method needs no more than about 3–5 sweeps to obtain eigenvalues of more than
single precision accuracy, even when n is large. The number of sweeps grows
approximately as O(log n). About 10n3 flops are needed to compute all the eigen-
values of A. This is about 3–5 times more than for the QR algorithm.

An orthogonal system of eigenvectors of A is obtained by accumulating the prod-
uct of all the Jacobi transformations: Xk = J1 J2 · · · Jk . Then limk→∞ Xk = X . If
we put X0 = I , then we recursively compute

Xk = Xk−1 Jk, k = 1, 2, . . . . (3.6.15)

In each similarity the columns p and q of Xk−1 are rotated, which requires 8n flops.
Hence, computing the eigenvectors doubles the operation count.
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The Jacobi method is very suitable for parallel computation because several non-
interacting rotations, (pi , qi ) and (p j , q j ), where pi , qi are distinct from p j , q j , can
be performed simultaneously. If n is even, then n/2 Jacobi transformations can be
performed simultaneously. A sweep needs at least n − 1 such parallel steps. Several
parallel schemes that use this minimum number of steps have been constructed.
These can be illustrated in the n = 8 case by

(p, q) =

(1, 2), (3, 4), (5, 6), (7, 8)
(1, 4), (2, 6), (3, 8), (5, 7)
(1, 6), (4, 8), (2, 7), (3, 5)
(1, 8), (6, 7), (4, 5), (2, 3)
(1, 7), (8, 5), (6, 3), (4, 2)
(1, 5), (7, 3), (8, 2), (6, 4)
(1, 3), (5, 2), (7, 4), (8, 6)

.

The rotations associated with each row of the above array can be calculated
simultaneously. First the transformations are constructed in parallel; then the trans-
formations from the left are applied in parallel, and finally the transformations from
the right.

Thefirst detailed implementation of the Jacobimethodwas given by vonNeumann
et al. [99, 1959]. Goldstine andHorwitz [98, 1959] and Ruhe [202, 1967] generalized
a Jacobi method for normal matrices.

3.6.3 Jacobi SVD Algorithms

Jacobi-typemethods for computing theSVD A = U�V T of amatrixwere developed
in the 1950s. In some cases these algorithms compute the smaller singular values
more accurately than any algorithm based on a preliminary bidiagonal reduction.
There are two different ways to generalize the Jacobi method for the SVD problem.

In the one-sided Jacobi–SVD algorithm, Givens transformations are used to find
an orthogonal matrix V such that AV has orthogonal columns. Then AV = U�,
fromwhich the SVD of A ∈ R

m×n is readily obtained. The columns can be explicitly
interchanged so that the final columns of AV appear in order of decreasing norm.
The basic step rotates two nonzero columns:

(̂ap, âq) = (ap, aq)

(
c s

−s c

)
, p < q. (3.6.16)

The parameters c, s are determined so that the rotated columns are orthogonal, or
equivalently so that

(
c s

−s c

)T (‖ap‖22 aT
p aq

aT
q ap ‖aq‖22

)(
c s

−s c

)
=

(
λ1 0
0 λ2

)
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is diagonal. This two by two symmetric eigenproblem can be solved by a Jacobi
transformation. From (3.6.11) it follows that if aT

q ap �= 0 the rotation angle is
determined by

τ ≡ cot 2θ = ‖aq‖22 − ‖ap‖22
2(aT

q ap)

In practice, a rotation is carried only if |aT
q ap|/(‖ap‖2/‖aq‖2) > tol, where the

threshold tol is usually chosen in the interval (
√

m, m)u. Alternatively, we can first
compute the thin QR factorization

(ap, aq) = (q1, q2)

(
rpp rpq

0 rqq

)
≡ Q R,

and then the two by two SVD R = U�V T . Since RV = U�,

(ap, aq)V = (q1, q2)U�

will have orthogonal columns. It follows that V is the desired rotation in (3.6.16).
Clearly, the one-sided algorithm ismathematically equivalent to applying Jacobi’s

method to diagonalize C = ATA, and hence its convergence properties are the same.
Convergence of Jacobi’s method is related to the fact that in each step the sum of
squares of the off-diagonal elements

S(C) =
∑
i �= j

c2i j , C = ATA,

is reduced. The rate of convergence is ultimately quadratic, also for multiple singular
values. In the one-sided Jacobi-SVD method U will by construction be orthogonal
to working accuracy. A loss of orthogonality in V may occur, but this can be rectified
by reorthogonalizing the columns of V at the end.

The one-sided method applies to a general real (or complex) matrix A ∈ R
m×n .

We assume that m ≥ n; otherwise the algorithm is applied to AT . To speed up the
convergence of the Jacobi iterations, an initial pivoted QR factorization

AP = Q

(
R
0

)
(3.6.17)

is performed. The Jacobi-SVD algorithm is then applied to the lower triangular
matrix X = RT . The reason for this is that because the diagonal elements in R are
decreasing, R RT will be closer to a diagonal matrix than RT R. To see this, it suffices
to consider the example

R =
(
1 0.5
0 0.01

)
, RT R =

(
1 0.5
0.5 0.2501

)
, R RT =

(
1.25 0.005
0.005 0.0001

)
.
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The trace of the two matrices is the same, but R RT is much closer to a diagonal
matrix. In some cases it pays to perform a second QR factorization

RT = Q1

(
L
0

)
,

and then work with X = L , i.e., use the QLP factorization introduced in Sect. 2.4.5.
Assume that the rows of A are presorted by decreasing norm ‖ai,:‖∞ before the

QR factorization (3.6.17). Then it can be shown that high relative accuracy will be
achieved for matrices of the form A = D1B D2, where D1, D2 are diagonal and B
well-conditioned, i.e., for matrices that are diagonal scalings of a well-conditioned
matrix.

The one-sided Jacobi method can also be used to compute the eigenvalues and
eigenvectors of a Hermitian matrix A. Then the pivoted Cholesky factorization
P APT = LLT is first computed and the Jacobi–SVD algorithm applied to L . If
L = U�V T , then LLT = U�2U T is the eigenvalue decomposition of A.

By a careful choice of the rotation sequence the essential triangularity of the
matrix can be preserved during the Jacobi iterations. In a cyclic Jacobi method, the
off-diagonal elements are annihilated in some predetermined order, each element
being rotated exactly once in any sequence of N = n(n − 1)/2 rotations, called a
sweep. Parallel implementations can take advantage of the fact that non-interacting
rotations, (pi , qi ) and (p j , q j ), where pi , qi and p j , q j are distinct, can be performed
simultaneously. If n is even, n/2 transformations can be performed simultaneously;
cf. Sect. 3.6.3. A sweep needs at least n − 1 such parallel steps. In practice, with the
cyclic Jacobi method no more than about five sweeps are needed to obtain singular
values of more than single precision accuracy, even when n is large. The number of
sweeps grows approximately as O(log n).

In the two-sided Jacobi SVD algorithm for the SVD of a square matrix A, the
elementary step consists of two-sided Givens transformations

A′ = G pq(φ)AGT
pq(ψ), (3.6.18)

where G pq(φ) and G pq(ψ) are determined so that a′
pq = a′

qp = 0. Note that only
rows and columns p and q in A are affected by the transformation. The rotations
G pq(φ) and G pq(ψ) are determined by computing the SVD of a 2 × 2 submatrix

A =
(

app apq

aqp aqq

)
, app ≥ 0, aqq ≥ 0.

The assumption that the diagonal elements are nonnegative is no restriction, since
the sign of these can be changed by premultiplication with an orthogonal matrix
diag(±1,±1). Since the Frobenius norm is invariant under orthogonal similarities it

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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follows that

S(A′) = S(A) − (a2
pq + a2

qp), S(A) = ‖A − D‖2F .

This relation is the basis for a proof that the matrices generated by two-sided Jacobi
method converge to a diagonalmatrix containing the singular values of A. Orthogonal
systems of left and right singular vectors can be obtained by accumulating the product
of all the transformations.

Like for the one-sided Jacobi–SVD algorithm, the two-sided algorithm should not
be applied directly to A, but to the triangular matrix RT produced by a rank-revealing
QR factorization. If a proper cyclic rotation strategy is used, then at each step the
matrix will be essentially triangular. For example, if the column cyclic strategy

(1, 2), (1, 3), (2, 3), . . . , (1, n), . . . , (n − 1, n)

is used, an upper triangular matrix will be successively transformed into a lower
triangularmatrix. The next sweepwill transform it back to an upper triangularmatrix.
During the whole process the matrix can be stored in an upper triangular array. The
initial QR factorization also cures some global convergence problems present in the
two-sided Jacobi–SVD method.

Algorithm 3.6.3 (SVD of 2 by 2 Upper Triangular Matrix)

function [cu,su,cv,sv,sig1,sig2] = svd22(r11,r12,r22)

% SVD22 computes the SVD of an upper triangular

% 2 by 2 matrix with abs(r11) >= abs(r22).

% ---------------------------------------------------

q = (abs(r11) - abs(r22))/abs(r11);

m = r12/r11; t = 2 - q;

s = sqrt(t*t + m*m); r = sqrt(q*q + m*m);

a = (s + r)/2;

sig1 = abs(r11)*a; sig2 = abs(r22)/a;

t = (1 + a)*(m/(s + t) + m/(r + q));

q = sqrt(t*2 + 4);

cv = 2/q; sv = -t/q;

cu = (cv - sv*m)/a;

su = sv*(r22/r11)/a;

In both one- and two-sided Jacobi SVD the core computation is the SVD of a real
2 × 2 upper triangular matrix

(
cu su

−su cu

)(
r11 r12
0 r22

)(
cv −sv

sv cv

)
=

(
σ1 0
0 σ2

)
. (3.6.19)
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The singular values are the square roots of the eigenvalues of

RT R =
(

r211 r11r12
r11r12 r212 + r222

)
.

It follows that

σ 2
1 + σ 2

2 = trace(S) = r211 + r212 + r222,

(σ1σ2)
2 = det(S) = (r11r11)

2.

It is easily verified that these relations are satisfied by the singular values given by

σ1,2 = 1

2

∣∣∣∣
√

(r11 + r22)2 + r212 ±
√

(r11 − r22)2 + r212

∣∣∣∣. (3.6.20)

The largest singular value σ1 is computed using the plus sign. The smallest is then
obtained from σ2 = |r11r22|/σ1.

Algorithm3.6.3 computes the SVD in (3.6.19) assuming that |r11| ≥ |r22|. A
Fortran program based on the same formulas, but which guards against overflow
and underflow and always gives high relative accuracy in both singular values and
vectors is given by Demmel and Kahan [57, 1990]. A sketch of its error analysis is
given in an appendix of Bai and Demmel [11, 1993].

3.6.4 Divide and Conquer Algorithms

Thedivide and conquer algorithm for the symmetric tridiagonal eigenproblem is due
to Cuppen [46, 1981] and was later modified by Dongarra and Sorensen [67, 1987].
Such an algorithmcan competewith theQRalgorithm in terms of speed and accuracy.
The basic idea is to split the tridiagonal matrix T ∈ R

n×n into two smaller symmetric
tridiagonal matrices T1 and T2 by a rank-one modification,

T =
(

T1 0
0 T2

)
+ βuuT . (3.6.21)

If the eigenvalue decompositions of T1 and T2 were known, then the eigenvalue
decomposition of T can be found by solving an eigenproblem for a diagonal matrix
modified by a symmetric rank-one matrix. In the divide and conquer algorithm this
idea is used recursively. If the dimension of T1 or T2 is greater than one, then their
eigenvalue decomposition is found by a call to the divide and conquer algorithm.

The key to efficiently solving the eigenproblem of a diagonal matrix modified by
a symmetric rank-one is the following result.

Theorem 3.6.3 Consider D + μzzT , where D = diag(di ), μ > 0, and z ∈ R
n. If

zi = 0, then D + μzzT has an eigenvalue equal to di , so we assume that zi �= 0,
i = 1 :n. Then the eigenvalues λ j , i = 1 :n, are the roots of the secular equation
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ψ(λ) = 1 + μ

n∑
i=1

z2i
di − λ

= 0. (3.6.22)

The eigenvalues of D + μzzT interlace those of D:

d1 ≤ λ1 ≤ d2 ≤ λ2 ≤ · · · ≤ dn ≤ λn ≤ dn + μ‖z‖22. (3.6.23)

The eigenvector x j corresponding to λ j satisfies (D − λ j I )x j + μ(zT x j )z = 0 and
hence the eigenvectors of unit length are

x j = (D − λ j )
−1z

‖(D − λ j )−1z‖2 , j = 1 :n. (3.6.24)

Proof Assuming that D − λI is nonsingular, we have

det(D + μzzT − λI ) = det(D − λI ) det
(
I + (D − λI )−1μzzT )

.

Since det(D − λI ) �= 0 it follows that the eigenvalues satisfy det(I + yzT ) = 0 and
y = μ(D −λI )−1z. From the identity det(I + yzT ) = 1+ zT y we get (3.6.22). The
interlacing property (3.6.23) follows from Fischer’s Theorem3.2.8. �

We describe in detail a modified version of the divide and conquer algorithm due
to Gu and Eisenstat [113, 1995]. This uses the slightly different splitting

T =
⎛
⎝

T1 βkek−1 0
βkeT

k−1 αk βk+1eT
1

0 βk+1e1 T2

⎞
⎠ . (3.6.25)

where T1 ∈ R
(k−1)×(k−1) and T2 ∈ R

(n−k)×(n−k) are tridiagonal principal submatri-
ces of T . Substituting the eigenvalue decompositions of Ti = Qi Di QT

i , i = 1, 2,
into (3.6.25), we get

Pk T PT
k =

⎛
⎝

αk βkek−1 βk+1eT
1

βkeT
k−1 Q1D1QT

1 0
βk+1e1 0 Q2D2QT

2

⎞
⎠ = Q H QT , (3.6.26)

where Pk is the permutationmatrix that interchanges row k and the first block row, and

H =
⎛
⎝

αk βklT
1 βk+1 f T

2
βkl1 D1 0

βk+1 f2 0 D2

⎞
⎠ , Q =

⎛
⎝
1 0 0
0 Q1 0
0 0 Q2

⎞
⎠ .

Here l1 = QT
1 ek−1 is the last row of Q1 and f2 = QT

2 e1 is the first row of Q2. Hence,
T is reduced by the orthogonal similarity PT

k Q to the symmetric arrowhead form
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H =

⎛
⎜⎜⎜⎜⎜⎝

z1 z2 · · · zn−1 zn

z2 d2
...

. . .

zn dn−1
zn dn

⎞
⎟⎟⎟⎟⎟⎠

. (3.6.27)

If H = U�U T is the spectral decomposition of H , then

T = (PT
k QU)�(PT

k QU)T (3.6.28)

is the spectral decomposition of T . The splitting in (3.6.25) is applied recursively
until the original tridiagonal matrix T has been reduced to a desired number of small
subproblems. Since the divide and conquer algorithm is less efficient than the QR
algorithm for matrices of small dimension, a suitable value to switch has been found
to be about n = 25. The above relations are then applied from the bottom up to glue
the eigensystems together.

The problemof computing the eigenvalues and eigenvectors of a symmetric arrow-
head matrix H is discussed in detail in Wilkinson [250, 1965], pp. 95–96. It is no
restriction to assume that d2 ≤ d3 ≤ · · · ≤ dn , because this can be achieved by a
symmetric permutation. We make the following observations:

• If z j = 0, then one eigenvalue equals d j and the degree of the secular equation
can be decreased by one.

• If d j = d j+1 for some j , 2 ≤ j ≤ n − 1, then one eigenvalue of H equals d j , and
the degree of the secular equation can be decreased by one.

We illustrate these observations for the 3× 3 case. Suppose that z2 = 0 and permute
rows and columns 2 and 3. Then

P23

⎛
⎝

z1 0 z3
0 d2 0
z3 0 d3

⎞
⎠ P23 =

⎛
⎝

z1 z3 0
z3 d3 0
0 0 d2

⎞
⎠ .

Clearly, d2 is an eigenvalue and we can work with the deflated matrix.
To illustrate the second case, assume that d2 = d3. Then we can apply Givens

transformations from left and right to zero out the element z3. SinceG23d2 I GT
23 = d2

G23GT
23 = d2 I , we obtain

G23

⎛
⎝

z1 z2 z3
z2 d2 0
z3 0 d2

⎞
⎠ GT

23 =
⎛
⎝

z1 z′
2 0

z′
2 d2 0
0 0 d2

⎞
⎠ =

(
H ′ 0
0 d2

)
.

Again d2 is an eigenvalue and the problem deflates. Therefore, we can make the
assumption that the elements di are distinct and the elements z j are nonzero. In
practice, these assumptions must be replaced by
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d j+1 − d j ≥ τ‖H‖2, |z j | ≥ τ‖H‖2, j = 2 :n,

where τ is a small multiple of the unit roundoff.
Expanding det(λI − H) along the first row (see Sect. 1.1.5) the characteristic

polynomial of H is

det(λI − H) = (λ − z1)
n∏

i=2

(λ − di ) −
n∑

j=2

z2j

n∏
i �= j

(λ − di ).

If λ is an eigenvalue, the corresponding eigenvector satisfies the linear system
(λI − H)x = 0. With x1 = −1, the remaining components satisfy

−zi + (di − λ)xi = 0, i = 2 :n.

Thus, we find the following characterization of the eigenvalues and eigenvectors:

Lemma 3.6.2 The eigenvalues λi , i = 1 :n, of the arrowhead matrix H in (3.6.27)
satisfy the interlacing property λ1 ≤ d2 ≤ λ2 ≤ · · · ≤ dn ≤ λn, and are roots of the
secular equation

pH (λ) = λ − z1 +
n∑

j=2

z2j
d j − λ

= 0. (3.6.29)

For each eigenvalue λi of H, a corresponding unit eigenvector is ui = ũi/‖ũi‖2,
where

ui =
(

−1,
z2

d2 − λi
, . . . ,

zn

dn − λi

)T

, ‖ũi‖22 = 1 +
n∑

j=2

z2j
(d j − λi )2

. (3.6.30)

The roots of the secular equation are simple and isolated in a intervals (di , di+1)

where f (λ) is monotonic and smooth. However, constructing a foolproof algorithm
to accurately compute the roots is not easy. Newton’s method is unsuitable because
the function f has poles at di , . . . , di+1 and cannot be well approximated by a linear
function. Instead, a zero finder based on fitting a function of the form

h(λ) = c1
di − λ

+ c2
di+1 − λ

+ c3

can be used; see Bunch et al. [34, 1978] and Ren-Cang Li [166, 2004].
The main arithmetic work in the divide and conquer algorithm is in forming the

matrix products X = QU in (3.6.28). Since Q is essentially a block two by twomatrix
of order n, the work in forming X is approximately n3 flops. As in recursive Cholesky
factorization (see Sect. 1.3.2), at the next lower level there are two subproblems, each

http://dx.doi.org/10.1007/978-3-319-05089-8_1
http://dx.doi.org/10.1007/978-3-319-05089-8_1
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taking 1/23 as much work. Thus, the number of flops is reduced roughly by a factor
of four at each stage. Summing the geometric series, we find that the total work
equals

n3
(
1 + 1/4 + 1/42 + · · ·

)
= n3/(1 − 1/4) = 4n3/3 flops.

Also, these flops are spent in matrix multiplication and can use BLAS 3 subroutines.
While the eigenvalues are always well-conditioned with respect to small perturba-

tions, the eigenvectors can be extremely sensitive in the presence of close eigenvalues.
The formula for the eigenvectors in Lemma3.6.2 cannot be used directly, because
even if an approximation λ̂i is very close to λi , the approximate ratio z j/(d j − λ̂i )

can differ much from the exact ratio. These errors may lead to computed eigenvectors
of T that are accurately orthogonal. An ingenious solution to this problem is given
by Gu and Eisenstat [113, 1995]. They modify the vector z is rather than increasing
the accuracy of the λ̂i .

3.6.4.1 A Divide and Conquer Algorithm for the SVD

The bidiagonal singular value decomposition can also be computed with a divide
and conquer algorithm. Such an algorithm was given by Jessup and Sorensen [139,
1994] and later improved byGu andEisenstat [116, 1994]. A square upper bidiagonal
matrix B ∈ R

n×n can be recursively divided into subproblems as follows:

B =

⎛
⎜⎜⎜⎜⎜⎝

q1 r1
q2 r2

. . .
. . .

qn−1 rn−1
qn

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎝

B1 0
qkeT

k rkeT
1

0 B2

⎞
⎠ , (3.6.31)

where B1 ∈ R
k−1×k and B2 ∈ R

(n−k)×(n−k). Substituting the SVDs

B1 = U1
(
D1 0

)
V T
1 , B2 = U2D2V T

2

into (3.6.31) gives

B =
⎛
⎝

U1 0 0
0 1 0
0 0 U2

⎞
⎠

⎛
⎝

D1 0 0
qklT

1 qkλ1 rk f T
2

0 0 D2

⎞
⎠

(
V1 0
0 V2

)T

≡ UCVT . (3.6.32)

Here
(
lT
1 λ1

) = eT
k V1 is the last row of V1 and f T

2 = eT
1 V2 is the first row of

V2. If Pk is a permutation matrix that interchanges row k and the first block row,
then
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PkC PT
k = M =

⎛
⎝

qkλ1 qklT
1 rk f T

2
0 D1 0
0 0 D2

⎞
⎠ . (3.6.33)

Let M = X�Y T be the SVD of M . Then the SVD of B is

B = Q�W T , Q = UPT
k X, W = VPT

k Y. (3.6.34)

The matrix in (3.6.33) has the form

M =

⎛
⎜⎜⎜⎝

z1 z2 · · · zn

d2
. . .

dn

⎞
⎟⎟⎟⎠ = D + e1zT , (3.6.35)

where D = diag(d1, d2, . . . , dn) with d1 ≡ 0 contains the elements in D1 and D2.
Here d1 is introduced to simplify the presentation. We further assume that 0 = d1 ≤
d2 ≤ d3 ≤ · · · ≤ dn , which can be achieved by a reordering of rows and columns.

We note that:

• If zi = 0, then di is a singular value of M and the degree of the secular equation
may be reduced by one.

• If di = di+1 for some i , 2 ≤ i ≤ n − 1, then di is a singular value of M and the
degree of the secular equation may be reduced by one.

We can therefore assume that |zi | �= 0, i = 1 : n, and that di �= di+1, i = 1 : n − 1.
In practice, the assumptions above must be replaced by

d j+1 − d j ≥ τ‖M‖2, |z j | ≥ τ‖M‖2,

where τ is a small multiple of the unit roundoff.
In order to compute the SVD M = D + e1zT = X�Y T we use the fact that the

square of the singular values �2 are the eigenvalues and the right singular vectors Y
the eigenvectors of

MT M = X�2X T = D2 + zeT
1 e1zT = D2 + zzT .

This matrix has the same form as in Theorem3.6.3 with μ = 1 and Myi = σi xi .
Hence, if yi is a right singular vector, then Myi is a vector in the direction of the
corresponding left singular vector. This leads to the following characterization of the
singular values and vectors of M due to Jessup and Sorensen [139, 1994].

Lemma 3.6.3 Let the SVD of the matrix in (3.6.35) be M = X�Y T , with

X = (x1, . . . , xn), � = diag(σ1, . . . , σn), Y = (y1, . . . , yn).
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Then the singular values have the interlacing property

0 = d1 < σ1 < d2 < σ2 < · · · < dn < σn < dn + ‖z‖2,

where z = (z1, . . . , zn)T and are roots of the secular equation

f (σ ) = 1 +
n∑

k=1

z2k
d2

k − σ 2
= 0.

The singular vectors are xi = x̃i/‖x̃i‖2, yi = ỹi/‖ỹi‖2, i = 1 :n, where

ỹi =
(

z1
d2
1 − σ 2

i

, . . . ,
zn

d2
n − σ 2

i

)
, x̃i =

(
−1,

d2z2
d2
2 − σ 2

i

, . . . ,
dnzn

d2
n − σ 2

i

)
,

and

‖ỹi‖22 =
n∑

j=1

z2j
(d2

j − σ 2
i )2

, ‖x̃i‖22 = 1 +
n∑

j=2

(d j z j )
2

(d2
j − σ 2

i )2
.

In the divide and conquer algorithm for computing the SVD of B this process is
recursively applied to B1 and B2, until the sizes of the subproblems are sufficiently
small. This requires at most log2 n steps. The process has to be modified slightly
because, unlike B, B1 is not a square matrix.

The secular equation can be solved efficiently and accurately by the algorithm of
Li [166, 1994]. The singular values of M are always well-conditioned with respect
to small perturbations, but the singular vectors can be extremely sensitive in the pres-
ence of close singular values. To get accurately orthogonal singular vectors without
resorting to extended precision, an approach similar to that used for obtaining orthog-
onal eigenvectors can be used; see Gu and Eisenstat [114, 1995].

A divide and conquer algorithm for the unitary eigenvalue problems has been
given by Ammar et al. [7, 1992], [8, 1994] and improved by Gu et al. [115, 2003].
David and Watkins [49, 2006] develop a multishift QR algorithm.

The two-sided Jacobi–SVD algorithm is due to Kogbetliantz [154, 1955]; see also
Hari and Veselić [119, 1987]. Block versions of the Kogbetliantz method are studied
by Bojanovié and Drmač [27, 2012]. The one-sided algorithm was first proposed
by Hestenes [121, 1958]. Recent developments have made it competitive also in
terms of speed with the QR–SVD algorithm; see Drmač [70, 1997]. LAPACK cur-
rently (2010) contains subroutines implementing three different SVD algorithms:
SGESVD (bidiagonalization-based QR), SGESDD (divide and conquer). The one-
sided Jacobi–SVD algorithm based on Drmač and Veselić [71, 2008] was released
as part of LAPACK 3.2.1.
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Exercises

3.6.1 (a) Use one Givens rotation to transform

A =
⎛
⎝
1 2 2
2 1 2
2 2 1

⎞
⎠

to tridiagonal form.
(b) Compute the largest eigenvalue of A with spectrum slicing on the tridiagonal form

derived in (a). Then compute the corresponding eigenvector.
3.6.2 Show that the expression (3.6.3) for the error in spectrum slicing of a tridiagonal symmetric

matrix can be rewritten as

d̂k = αk − β2
k

d̂k−1

(1 + ε1k)(1 + ε2k)

(1 + ε3,k−1)(1 + ε4,k−1)
− τ

(1 + ε3k)
, k = 1 :n,

where d̃k = d̂k(1+ε3k)(1+ε4k) and |εik | ≤ u. Conclude that because sign(d̂k) = sign(d̃k),
the computed number ψ̂ is the exact number of eigenvalues of a tridiagonalmatrix A′,whose
elements satisfy

|α′
k − αk | ≤ u|τ |, |β ′

k − βk | ≤ 2u|βk |.
3.6.3 Let B be a bidiagonal matrix with diagonal elements qi , i = 1 :n and off-diagonal elements

ri , i = 2 :n. Write aMatlab algorithm that uses spectrum slicing to determine the number
of singular values σi of B greater than a given number τ .
Hint: Recall that a related tridiagonal matrix T has eigenvalues equal to ±σi . Modify the
Matlab Algorithm3.6.1 to take advantage of the zero diagonal elements in T .

3.6.4 Implement the cyclic Jacobi algorithm, with the stopping criterion

|apq | < 10−12(|appaqq |)1/2, 1 ≤ p, q ≤ n.

Use it to compute the eigenvalues of

A =
⎛
⎝

−0.442 −0.607 −1.075
−0.607 0.806 0.455
−1.075 0.455 −1.069

⎞
⎠ .

How many Jacobi sweeps are needed?
3.6.5 Suppose that at a certain step of the Jacobi algorithm the matrix

Ã =
⎛
⎝

1 10−2 10−4

10−2 2 10−2

10−4 10−2 4

⎞
⎠

has been obtained. Estimate the eigenvalues of Ã as accurately as possible using the
Geršgorin circles with a suitable diagonal similarity.

3.6.6 Jacobi-type methods can also be constructed for complex Hermitian matrices using ele-
mentary unitary rotations of the form

U =
(

cos θ α sin θ

−ᾱ sin θ cos θ

)
, |α| = 1.

Show that if we take α = apq/|apq |, then Eq. (3.6.11) for the angle θ becomes

τ = cot 2θ = (app − aqq )/(2|apq |), |apq | �= 0.

(Note that the diagonal elements app and aqq of a Hermitian matrix are real.)
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3.6.7 Let A ∈ C
2×2 be a given matrix, and U a unitary matrix of the form in Problem 3.6.6.

Determine U so that B = U−1AU is a Schur decomposition of A, i.e., so that B is upper
triangular. Use this result to compute the eigenvalues of

A =
(

9 10
−2 5

)
.

Outline a Jacobi-type method to compute the Schur decomposition of a general matrix A.
3.6.8 To compute the SVD of a matrix A ∈ R

m×2 we can first reduce A to upper triangular form
by a QR factorization

A = (a1, a2) = (q1, q2)

(
R
0

)
, R =

(
r11 r12
0 r22

)
.

Then, as outlined in Golub and Van Loan [104, 1996], Problem8.5.1, a Givens rotation G
can be determined such that B = G RGT is symmetric. Finally, B can be diagonalized by
a Jacobi transformation. Develop the details of this algorithm!

3.6.9 (a) Let σi be the singular values of the matrix

M =

⎛
⎜⎜⎜⎝

z1
z2 d2
.
.
.

. . .

zn dn

⎞
⎟⎟⎟⎠ ∈ R

n×n,

where the elements di are distinct and sorted as d2 < d3 · · · < dn . Show the interlacing
property 0 < σ1 < d2 < σ2 < d3 < · · · < dn < σn < dn + ‖z‖2.

(b) Show that σi satisfies the secular equation

f (σ ) = 1 +
n∑

k=1

z2k
d2

k − σ 2
= 0.

Give expressions for the right and left singular vectors of M .

Hint: See Lemma3.6.2, p. 543.
3.6.10 In the original divide and conquer algorithm for symmetric tridiagonal matrices by Cuppen

[46, 1981], a different splitting than in Sect. 3.6.4 is used. There the matrix is split into two
smaller matrices T1 and T2 as follows:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 β2
β2 α2 β3

. . .
. . .

. . .

βk αk βk+1

βk+1 αk+1 βk+2

. . .
. . .

. . .

βn−1 αn−1 βn
βn αn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

T1 βk+1ekeT
1

βk+1e1eT
k T2

)
.

(a) Let T̃1 be the matrix obtained from T1 by replacing the element αk by αk − βk+1. Let
T̃2 be the matrix T2 with the element αk+1 replaced by αk+1 − βk . Show that
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T =
(

T̃1 0
0 T̃2

)
+ βk+1

(
ek
e1

) (
eT

k eT
1

)
.

(b) The splitting in (a) is a rank-one splitting of the form T = D+μzzT , where D is block
diagonal. Use the results in Theorem3.6.3 to develop a divide and conquer algorithm
for the eigenproblem of T .

3.7 Some Generalized Eigenvalue Problems

Given a matrix pair A, B in C
n×n we consider the generalized eigenvalue problem

to find scalars λ and nonzero vectors x such that

Ax = λBx . (3.7.1)

In the case B = I the problem reduces to the standard eigenvalue problem. The
algebraic and analytic theoryof generalized eigenvalue problems ismore complicated
than for the standard problem. The family of matrices A − λB is called a matrix
pencil. (The word “pencil” comes from optics and geometry, and is used for any one
parameter family of curves, matrices, etc.) It is called a regular pencil if det(A−λB)

is not identically zero, else it is a singular pencil. If A − λB is a regular pencil, then
the eigenvalues λ are the solutions of the characteristic equation

p(λ) = det(A − λB) = 0. (3.7.2)

In contrast to the standard eigenvalue problem, here the characteristic polynomial
p(λ) can have degree less than n. For example, this is the casewhenever B is singular.
If the degree of the characteristic polynomial is n − p, then we say that A−λB has p
eigenvalues at ∞. If A and B have a null vector x in common, then (A − λB)x = 0
for any value of λ. Consider the pencil A − λB, where

A =
(
1 0
0 1

)
, B =

(
2 0
0 0

)
.

The characteristic polynomial det(A − λB) = 1 − 2λ has degree one. There is
one eigenvalue equal to λ = 1/2, with eigenvector e1. For the pencil B − μA the
characteristic polynomial is p(μ) = (2−μ)μ, with eigenvaluesμ1 = 2 andμ1 = 0.
The zero eigenvalue means that λ = ∞ can be said to be an eigenvalue of A − λB.

Ham
Highlight

Ham
Highlight
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3.7.1 Canonical Forms

For the ordinary eigenvalue problem eigenvalues are preserved under similarities.
The corresponding transformations for the generalized eigenvalue problem are called
equivalence transformations.

Definition 3.7.1 Let (A, B) be a matrix pencil and let S and T be nonsingular
matrices. Then the two matrix pencils A − λB and S AT − λSBT are said to be
equivalent.

Equivalent pencils have the same characteristic equation and hence the same
eigenvalues. This follows from the determinant relation

det(S AT − λSBT ) = det(S) det(A − λB) det(T ),

where by the nonsingularity assumption det(S) det(T ) �= 0. Furthermore, the eigen-
vectors of two equivalent pencils are simply related.

If A and B are Hermitian, this property is preserved under equivalence trans-
formations such that T = SH . The two pencils are then said to be congruent. Of
particular interest are unitary equivalence transformations, T = SH = U , where U
is unitary. Such transformations are stable because they preserve the 2-norm:

‖Q H AQ‖2 = ‖A‖2, ‖Q H B Q‖2 = ‖B‖2.

For regular matrix pencils there is a canonical form that corresponds to the Jordan
canonical form (see Theorem3.1.6, p. 439). We state this without proof.

Theorem 3.7.1 (Kronecker’s Canonical Form) Let A − λB ∈ C
n×n be a regu-

lar matrix pencil. Then there exist nonsingular matrices X, Z ∈ C
n×n such that

X−1(A − λB)Z = Â − λB̂, where

Â = diag(Jm1(λ1), . . . , Jms (λs), Ims+1 , . . . , Imt ), (3.7.3)

B̂ = diag(Im1 , . . . , Ims , Jms+1(0), . . . , Jmt (0)).

Here Jmi (λi ) are Jordan blocks and the blocks s + 1, . . . , t correspond to infinite
eigenvalues. The numbers m1, . . . , mt are unique and

∑t
i=1 mi = n.

Like in the standard eigenvalue problem, a disadvantage with the Kronecker
canonical form is that it depends discontinuously on A and B, and the transfor-
mations that produce it may be ill-conditioned. Of more computational interest is the
generalization of the Schur decomposition (Theorem3.1.9) that can be obtained by
a unitary equivalence.
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Theorem 3.7.2 (Generalized Schur Decomposition) Let A − λB ∈ C
n×n be a reg-

ular matrix pencil. Then there exist unitary matrices U and V such that

U H AV = TA, U H BV = TB (3.7.4)

are upper triangular. The eigenvalues of the pencil are the ratios of the diagonal
elements of TA and TB.

Proof (Stewart [221, 2001], Theorem 4.5) Let v be an eigenvector of the pencil.
Since the pencil is regular, at least one of the vectors Av and Bv must be nonzero.
Assume Av �= 0 and set u = Av/‖Av‖2. Let U = (u, U⊥) and V = (v, V⊥) be
unitary. Then

(
u H

U H⊥

)
A(v, V⊥) =

(
u H Av u H AV⊥
U H⊥ Av U H⊥ AV⊥

)
=

(
σ1 s H

12
0 Ã

)
.

Here the (2,1)-block is zero because Av is orthogonal to U⊥. Similarly

(
u H

U H⊥

)
B(v V⊥) =

(
u H Bv u H BV⊥
U H⊥ Bv U H⊥ BV⊥

)
=

(
τ1 t H

12
0 B̃

)
.

Here the (2,1)-block is zero, because if Bv �= 0 it must be proportional to Av. The
proof follows by induction. �

When A and B are real, then U and V can be chosen real and orthogonal if TA

and TB are allowed to have two by two diagonal blocks corresponding to complex
conjugate eigenvalues. Suppose that in the generalized Schur decomposition (3.7.4),

diag(TA) = diag(σ1, . . . , σn), diag(TB) = diag(τ1, . . . , τn).

If τi �= 0, then λi = σi/τi is an eigenvalue. If τi = 0 this corresponds to an infinite
eigenvalue. Since the eigenvalues can bemade to appear in any order on the diagonal,
it is no restriction to assume that zero eigenvalues appear first and infinite eigenvalues
appear last on the diagonal. This makes the symmetry between A and B apparent.
Infinite eigenvalues of the pencil A −λB correspond to zero eigenvalues of B −μA,
and vice versa. It is often convenient to represent the eigenvalues by the pair of
numbers (σi , τi ), although this is not a unique representation.

The measure of separation between two eigenvalues needs to be redefined for
matrix pencils. Since the roles of A and B are interchangeable it is natural to require
that the measure be invariant under reciprocation. The chordal metric

ξ(λ, μ) = |λ − μ|√
1 + λ2

√
1 + μ2

(3.7.5)
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is the appropriate choice. If the eigenvalues are represented by (α, β) and (γ, δ),
respectively, then the relative gap using the chordal metric (3.7.5) is

ξ = |αδ − βγ |√
α2 + β2

√
γ 2 + δ2

. (3.7.6)

This formula is valid in general, even when β or δ is zero.

3.7.2 Solving Generalized Eigenvalue Problems

When B is nonsingular the generalized eigenvalue problem Ax = λBx is formally
equivalent to the standard eigenvalue problem B−1Ax = λx . Such a reduction is not
possible when B is singular and may not be advisable when B is ill-conditioned. But
if there is a shift γ such that B + γ A is well-conditioned, then λ = μ/(1 + γμ),
where μ is an eigenvalue of the standard eigenvalue problem

(B + γ A)−1Ax = μx, (3.7.7)

Of particular interest is the case when the problem can be reduced to a Hermitian
eigenvalue problem of standard form. If A and B are Hermitian and B is positive
definite, such a reduction is possible. In this case A and B can simultaneously be
reduced to diagonal form.

Theorem 3.7.3 Let (A, B) be a Hermitian matrix pair with B positive definite. Then
there is a nonsingular matrix X such that

X H AX = �, X H B X = I, (3.7.8)

where � = diag(λ1, . . . , λn) are the eigenvalues of the pencil A − λB.

Proof Since B is positive definite, it has a Hermitian positive definite square root
C = B1/2. Let the spectral decomposition of the Hermitian matrix C−1AB−1 be
U�U H . Then X = C−1U is the required matrix. �

If neither A nor B is positive definite, then a reduction to a standard Hermitian
eigenproblem may not be possible. This follows from the somewhat surprising fact
that any real square matrix C can be written as C = AB−1 or C = B−1A, where
A and B are suitable Hermitian matrices. A proof is given in Parlett [192, 1998],
Sect. 15.2 (cf. also Problem 3.7.1). Thus, even if A and B are Hermitian, the general-
ized eigenvalue problems embodies all the difficulties of the unsymmetric standard
eigenvalue problem.
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More generally, we can shift both matrices A and B. The generalized eigenvalue
problem Ax = λBx = 0 can be transformed as

0 = (Ax,−Bx)

(
1
λ

)
= (Ax,−Bx)

(
c −s
s c

)(
c s

−s c

)(
1
λ

)

= (
(cA − s B)x,−(s A + cB)x

) ( c + sλ
−s + cλ

)
,

where and s = sin φ, c = cosφ. Here the rotated pencil (Aφ, Bφ) = (cA−s B, s A+
cB) has the same eigenvectors as (A, B), and the eigenvalues are related by

λφ = cλ − s

sλ + c
, λ = s + cλφ

c − sλφ

. (3.7.9)

For the reduction to a Hermitian standard eigenvalue problem to be applicable, it
suffices that Bφ be positive definite for some real φ.

Definition 3.7.2 TheHermitianpair (A, B) is adefinite pair if theCrawfordnumber

γ (A, B) = min
x∈Cn

‖x‖2=1

|x H (A + i B)x | ≡ min
x∈Cn

‖x‖2=1

√
(x H Ax)2 + (x H Bx)2 > 0. (3.7.10)

If the pair (A, B) is definite, then the generalized eigenproblem Ax = λBx is
definite.

Note that {x H (A + i B)x | x ∈ C
n} is the numerical range of the matrix A + i B

and that x H Ax and x H Bx are real numbers. Further, since

Aφ + i Bφ = eiφ(A + i B),

the Crawford number is the same for any rotated pair.

Theorem 3.7.4 Let (A, B) be a definite pair. Then there exists a real number φ, such
that Bφ = s A+cB, where eiφ = c+is, is positive definite and γ (A, B) = λmin(Bφ).

Proof The proof involves the geometry of the set over which the minimum is taken
in Definition3.7.2; see Stewart and Sun [222, 1990], Theorem VI.1.18. �

For a definite eigenvalue problem, perturbation bounds for the eigenvalues and
eigenvectors can be derived in which the Crawford number γ (A, B) plays a key role.
It can be shown that

γ (A + E, B + F) ≥ γ (A, B) − (‖E‖22 + ‖F‖22)1/2,

so the perturbed pair (A + E, B + F) is definite if (‖E‖22 + ‖F‖22)1/2 < γ (A, B).
If this condition is satisfied, then a number of perturbation theorems for Hermitian
matrices can be generalized to definite problems; see [222, 1990], Sect.VI.3.
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Let (A, B) be a real symmetric matrix pair with B positive definite. Then the
generalized eigenvalue problem can be solved by an explicit reduction to a standard
symmetric eigenvalue problem. The reduction can be achieved by computing the
Cholesky factorization, preferably using diagonal pivoting,

PT B P = L D2LT . (3.7.11)

Here P is a permutation matrix, L unit lower triangular, and D2 a positive diagonal
matrixwith nonincreasing diagonal elements. Then Ax = λBx is reduced to standard
form Cy = λy, where

C = D−1L−1PT AP L−T D−1, y = DLT PT x . (3.7.12)

(If instead A is positive definite, a similar reduction applies.) Anymethod for solving
a real symmetric eigenvalue problem can then be applied. The eigenvalues of the
generalized eigenvalue problem produced by this method will be real. Moreover, the
eigenvectors can be chosen to be B-orthogonal:

xT
i Bx j = 0, i �= j.

Computing the Cholesky decomposition of B and forming C takes about 5n3/12
flops if symmetry is used; see Martin and Wilkinson [176, 1968]. If eigenvectors are
not wanted, then L need not be saved.

The round-off errors made in the reduction to standard form are in general such
that they could be produced by perturbations in A and B such that

max {‖�A‖2/‖A‖2, ‖�B‖2/‖B‖2}

is bounded by a multiple of κ2(B)u. Often the error is much smaller; see Davies
et al. [51, 2001]. Tisseur [226, 2001] has shown how the accuracy of a computed
eigenpair can be enhanced by iterative refinement.

When B is ill-conditioned the eigenvaluesλmayvarywidely inmagnitude. Then a
small perturbation in B can correspond to large perturbations in the eigenvalues. Sur-
prisingly, large eigenvalues are often given accurately in spite of the ill-conditioning
of B. If diagonal pivoting is used in the factorization (3.7.11), then D has the property
that d2

1 ≥ · · · ≥ d2
n > 0. Hence, C is graded upwards, i.e., the large elements appear

in the lower right corner. Hence, a reduction to tridiagonal form of C should work
from bottom to top and the QL algorithm should be used.

Example 3.7.1 (Wilkinson and Reinsch [253, p. 310]) The matrix pencil A − λB,
where

A =
(
2 2
2 1

)
, B =

(
1 2
2 4.0001

)
,
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has one eigenvalue ≈ −2 and one of order 104. The true matrix

(L−1A)L−T =
(

2 −200
−200 10000

)

is graded, and the small eigenvalue is insensitive to relative perturbation in its
elements. �

Several related problems involving A and B that can also be reduced to standard
form; see Martin and Wilkinson [176, 1968]. For example, if A and B are real
symmetric and B = LLT positive definite, then the product eigenvalue problem
ABx = λx is equivalent to

(LT AL)y = λy, y = LT x . (3.7.13)

Although L inherits the bandwidth of A, the matrix C = (L−1A)L−T is in general
a full matrix. Hence, it is not practical to form C . Crawford [44, 1973] has devised
an algorithm for the reduction to standard form that interleaves orthogonal transfor-
mations in such way that C retains the bandwidth of A; see also Problem3.7.5.

The QZ algorithm by Moler and Stewart [184, 1973] is a generalization of the
implicit QR algorithm. In the first step of the QZ algorithm a sequence of equivalence
transformations is used to reduce A to upper Hessenberg form and simultaneously
B to upper triangular form. This corresponds to a reduction of AB−1 to upper Hes-
senberg form, without forming B−1. Householder and Givens transformations are
used in this step. First an orthogonal matrix Q is determined such that QT B is upper
triangular. The same transformation is applied also to A. Next, plane rotations are
used to reduce QT A to upper Hessenberg form, while preserving the upper triangular
form of QT B. This step produces

QT (A, B)Z = (QT AZ , QT B Z) = (HA, RB).

The elements in QT A are zeroed starting in the first columnworking from bottom up.
This process is then repeated on columns 2 : n. Infinite eigenvalues that correspond
to zero diagonal elements of RB can be eliminated at this step.

After this initial transformation, the implicit shift QR algorithm is applied to
HA R−1

B , but without forming the product explicitly. This is achieved by computing
unitary matrices Q̃ and Z̃ such that Q̃ HA Z̃ is upper Hessenberg and Q̃ HA Z̃ upper
triangular and choosing the first column of Q̃ proportional to the first column of
HA R−1

B − σ I . We show below how the (5, 1) element in QT A is eliminated by
premultiplication by a plane rotation:

⎛
⎜⎜⎜⎜⎝

a a a a a
a a a a a
a a a a a

→ a a a a a
→ 0 a a a a

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

b b b b b
b b b b

b b b
→ b b
→ b̂ b

⎞
⎟⎟⎟⎟⎠

.
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This introduces a new nonzero element b̂ in the (5, 4) position in B that is next zeroed
using multiplication by a plane rotation from the right

⎛
⎜⎜⎜⎜⎝

↓ ↓
a a a a a
a a a a a
a a a a a
a a a a a
0 a a a a

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

↓ ↓
b b b b b

b b b b
b b b

b b
b

⎞
⎟⎟⎟⎟⎠

.

All remaining steps in the reduction of A to upper Hessenberg form are similar. The
complete reduction requires about 34n3/3 flops. If eigenvectors are to be computed,
the product of the plane rotations must be accumulated, which requires another 3n
flops.

If A and B are real the Francis double shift technique can be used, where the shifts
are chosen as the two eigenvalues of the trailing two by two pencil

(
an−1,n−1 an−1,n
an,n−1 an,n

)
− λ

(
bn−1,n−1 bn−1,n

0 bn,n

)
.

The details of the QZ step are similar to the implicit QR algorithm and will not be
described in detail here. The first Householder transformation is determined by the
shift.When (HA, RB) is premultiplied by this, new nonzero elements are introduced.
This “bulge” is chased down the matrix by Householder and Givens transformations,
until the upper Hessenberg and triangular forms are restored. The matrix HA will
converge to upper triangular form and the eigenvalues of A − λB are obtained as
ratios of diagonal elements of the transformed HA and RB . For a more detailed
description of the algorithm, see Stewart [221, 2001], Sect. 4.3.

The total work in the QZ algorithm is about 15n3 flops for eigenvalues alone, 8n3

more for Q, and 10n3 for Z (assuming twoQZ iterations per eigenvalue). It avoids the
loss of accuracy related to explicitly inverting B. Although the algorithm is applicable
to the case when A is symmetric and B positive definite, the transformations do not
preserve symmetry and the method is just as expensive as for the general problem.
The Matlab function eig(A,B) is based on the QZ-algorithm.

The shift-and-invert iteration can easily be modified to work for generalized
eigenvalue problems. Subtracting μBx from both sides of Ax = λBx , we get
(A − μB)x = (λ − μ)Bx . Hence, assuming that (A − μB) is nonsingular, we have

(A − μB)−1Bx = (λ − μ)−1x, (3.7.14)

which is a standard eigenvalue problem for C = (A − μB)−1B. The eigenvalues
λ are related to the eigenvalues θ of the standard eigenvalue problem for C through
λ = μ + 1/θ . Starting with some initial vector v0, the shift and invert iteration
becomes
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(A − μB)v = Bvk−1, vk = v/‖v‖, k = 1, 2, . . . . (3.7.15)

Note that there is no need to explicitly transform the problem to a standard eigenvalue
problem. Only the factorization of A −μB is required to perform the shift and invert
iteration.

The Rayleigh quotient iteration (RQI) described for the standard eigenvalue prob-
lem in Algorithm3.3.1 can also be extended to the generalized eigenvalue problem
Ax = λBx . For simplicity, we consider only the case when A and B are Hermitian
and B = L H L is positive definite. Then for the equivalent standard eigenvalue
problem

Cy = λy, C = L−H AL−1, y = L−1x,

the Rayleigh quotient is

γ = yH Cy

yH y
= x H Ax

x H Bx
. (3.7.16)

This choice of shift minimizes ‖r‖22 = r H r , where r = (C −γ I )y is the residual for
the standard eigenvalue problem. This is related to the residual for the generalized
problem by s = (A − γ B)x = L H (C − γ I )Lx = L H r . Hence, the choice (3.7.16)
minimizes

r H r = s H L−1L−H s = s H B−1s = ‖s‖2B−1 .

RQI for the standard problem is described in Algorithm3.3.1. Applied to the
eigenvalue problem Cy = λy, the RQI is

(C − γk I )v = vk, vk+1 = v/‖v‖,

where γk is the Rayleigh quotient for vk . Since only the direction of the eigenvector
is of importance, the normalization of v can be chosen arbitrarily. This iteration is
equivalent to

(A − γk B)u = Buk, uk+1 = u/‖u‖, (3.7.17)

which is the generalized RQI iteration. Only the matrices A −γk B need to be factor-
ized. The transformation to a standard eigenvalue problem is here done implicitly. An
explicit reduction to standard form that would destroy the band structure is avoided.
This makes the generalized RQI attractive when A and B are banded. The proper-
ties of the generalized RQI follow directly from those for the standard eigenvalue
problem; see Sect. 3.3.4 and Parlett [192, 1998], Sect. 15.9. In the positive definite
case convergence is asymptotically cubic and the residual norms ‖(A −γk B)xk‖B−1

decrease monotonically.
For a definite pair (A, B) the method of spectrum slicing can be used to count

eigenvalues of A − λB in an interval.
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Theorem 3.7.5 Let A − μB be a symmetric pencil with positive definite B and

A − μB = LDLT , D = diag(d1, . . . , dn),

with L unit lower triangular. Then the number of eigenvalues of A greater than μ

equals the number of positive elements ψ(D) in the sequence d1, . . . , dn.

Proof The proof follows fromSylvester’s Lawof Inertia (Theorem1.3.7) and the fact
that A and B are congruent to DA and DB with � = DA D−1

B (Theorem3.7.1). �
Since an explicit transformation to standard form is not required, spectrum slicing

iswell suited to problemswhere A and B are banded and only some of the eigenvalues
are needed.

Stewart and Sun [222, 1990], Sect.VI, treat perturbation theory for generalized
eigenvalue problems. Determining whether a given matrix pair is definite is not an
easy problem. An algorithm by Crawford and Moon [45, 1983] for this has recently
been improved by Guo et al. [117, 2009]. Theory and available software for comput-
ing the generalized Schur decomposition of an arbitrary pencil A −λB are surveyed
by Demmel and Kågström in [55, 1993] and [56, 1993]. For a definite matrix pair
(A, B) a Jacobi algorithm has been developed by Veselić [239, 1991].

3.7.3 The CS Decomposition

The CS decomposition (CSD) is a decomposition of a square partitioned unitary
matrix that is related to the SVD. A trivial example is the CSD of a 2 by 2 real
orthogonal matrix

Q =
(

c −s
s c

)
, c = cos θ, s = sin θ.

This represents a plane rotation through an angle θ in R
2; see Sect. 2.3.1.

Theorem 3.7.6 (CS Decomposition) For an arbitrary partitioning of a unitary
matrix

Q =
( k1 k2

r1 Q11 Q12
r2 Q21 Q22

)
∈ C

m×m, (3.7.18)

where r1 + r2 = k1 + k2 = n, there are unitary matrices U1, U2, V1, V2 such that

U H QV =
(

U H
1 0
0 U H

2

)(
Q11 Q12
Q21 Q22

)(
V1 0
0 V2

)
=

(
D11 D12
D21 D22

)
, (3.7.19)

where Di j = U H
i Qi j Vj ∈ R

ci ×r j is real and diagonal,

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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D =
(

D11 D12
D21 D22

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

I Os

C S
Oc I

Os I
S −C

I O H
c

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.7.20)

where (unnamed blocks are zero)

C = diag(c1, . . . , cp), 1 > c1 ≥ · · · ≥ cr > 0,

S = diag(s1, . . . , sp), 0 < s1 ≤ · · · ≤ sr < 1,

and C2+ S2 = In. The blocks Oc and Os are zero blocks and may be empty matrices
having no rows or no columns. The unit matrices need not be equal and may be not
present.

Proof (Paige and Wei [190]) Note that Qi j = Ui CVH
j , i, j = 1, 2, are essentially

the SVD of the four blocks in the partitioned unitary matrix A. We take U1 and V1
so that Q11 = U1D11V H

1 is the SVD of Q11. Hence, D11 is a nonnegative diagonal
matrix with elements less than or equal to unity. Choose unitary U2 and V2 to make
U H
2 Q21V1 lower triangular and U H

1 Q12V2 upper triangular with real non-negative
elements on their diagonals. The orthonormality of columns shows that D21 must
have the stated form. The orthonormality of rows gives D12 except for the dimension
of the zero block denoted O H

s . Since each row and column has unit length, the last
block column must have the form

U2

(
Q12
Q22

)
V H
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

O12
S

I

[−8pt]K L
M N

O22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Orthogonality of the second and fourth blocks of columns shows that SM = 0, so
M = 0, because S is nonsingular. Similarly, from the second and fourth blocks of
rows L = 0. Next, from the fifth and second blocks of rows, SC + N S = 0, so
N = −C . Then we see that K K H = I and K H K = I , and can be transformed
to I without altering the rest of D. Finally, the unit matrices in the (1, 1) and (4, 4)
blocks show that O12 = O H

s and O22 = O H
c . �

There are trivial variants of the CSD that correspond to permutation and sign
changes. In some contexts, only the blocks corresponding to the first k1 columns of
Q are needed, which is the “thin” CSD. Our proof of the CSD is constructive andU1,
V1, and C can be computed by a standard SVD algorithm. But the above algorithm
is not stable for computing S and U2 when some singular values ci are close to 1.
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Davis and Kahan [52, 1969], [53, 1970] introduced the CSD for the analysis
of perturbation of eigenvectors of operators in Hilbert spaces. Stewart [220, 1977]
defines the CSD of a partitioned unitary matrix. The history of the CSD and its many
applications are well surveyed by Paige and Wei [190, 1994]. A stable two-phase
algorithm for computing the full CSD is given by Sutton [224, 2009]. Higham [126,
2003] gives an analogue of the CS-decomposition for J -orthogonal matrices.

3.7.4 Generalized Singular Value Decomposition

Let A ∈ C
m×n and B ∈ C

p×n be two matrices with the same number of columns.
The generalized SVD (GSVD) of A and B is related to the generalized eigenvalue
problems

AHAx = λB H Bx, AAH y = λB B H y. (3.7.21)

The GSVD has applications to, e.g., constrained least squares problems. As in the
case of the SVD, the formation of AHA and B H B should be avoided. In the theorems
below we assume for notational convenience that m ≥ n.

Theorem 3.7.7 (GSVD) Let A ∈ C
m×n, m ≥ n, and B ∈ C

p×n be given matrices.
Assume that

rank (M) = k ≤ n, M =
(

A
B

)
.

Then there exist orthogonal matrices UA ∈ C
m×m and UB ∈ C

p×p and a matrix
Z ∈ C

k×n of rank k such that

U H
A A =

(
DA

0

)
Z , U H

B B =
(

DB 0
0 0

)
Z , (3.7.22)

where DA = diag(α1, . . . , αk), DB = diag(β1, . . . , βq), and q = min(p, k). Fur-
ther, we have

0 ≤ α1 ≤ · · · ≤ αk ≤ 1, 1 ≥ β1 ≥ · · · ≥ βq ≥ 0,

α2
i + β2

i = 1, i = 1, . . . , q, αi = 1, i = q + 1, . . . , k,

and the singular values of Z equal the nonzero singular values of M.

Proof We now give a constructive proof of Theorem3.7.7 using the CS decomposi-
tion. Let the SVD of M be

M =
(

A
B

)
= Q

(
� 0
0 0

)
P H ,
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where Q and P are square orthogonal matrices of order (m + p) and n, respectively,
and � = diag(σ1, . . . , σk), σ1 ≥ · · · ≥ σk > 0. Partition Q and P as follows:

Q =
(

Q11 Q12
Q21 Q22

)
P = (P1, P2),

where Q11 ∈ C
m×k , and P1 ∈ C

n×k . The SVD of M can now be written

(
A
B

)
P =

(
AP1 0
B P1 0

)
=

(
Q11
Q21

) (
� 0

)
. (3.7.23)

Let

Q11 = UA

(
C
0

)
V H , Q21 = UB

(
S 0
0 0

)
V H ,

be the CS decomposition of Q11 and Q21. Substituting this into (3.7.23) we obtain

AP = UA

(
C
0

)
V H (

� 0
)
, B P = UB

(
S 0
0 0

)
V H (

� 0
)
,

and (3.7.22) follows with

DA = C, DB = S, Z = V H (
� 0

)
P H . �

When B ∈ C
n×n is square and nonsingular, the GSVD of A and B corresponds to the

SVD of AB−1. But when A or B is ill-conditioned, computing AB−1 would usually
lead to unnecessarily large errors, so this approach is to be avoided. It is important
to note that when B is not square, or is singular, then the SVD of AB† does not in
general correspond to the GSVD.

The GSVD was first proposed by Van Loan [234, 1976]. A form more suit-
able for numerical computation was suggested by Paige and Saunders [189, 1981].
The implementation used in LAPACK is described by Bai and Zha [13, 1993] and
Bai and Demmel [11, 1993].

3.7.5 Polynomial Eigenvalue Problems

Consider the nonlinear eigenvalue problem

F(λ)x = 0, (3.7.24)

where F(λ) ∈ C
n×n is a λ-matrix whose elements are analytic functions of a scalar

complex variable λ. The values of λ that make F(λ) singular are the eigenvalues
and x �= 0 is an eigenvector if it solves (3.7.24) of (3.7.24). The function F usually
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depends on some coefficient matrices and also on a vector of parameters. Often the
purpose of the solution of (3.7.24) is to optimize certain properties of the eigenvalues
with respect to these parameters.

The polynomial eigenvalue problem is P(λ)x = 0, where

P(λ) = λp Ap + λp−1Ap−1 + · · · + A0 ∈ C
n×n, (3.7.25)

is a matrix polynomial and Ap is nonsingular. The classical approach to the analysis
and solution of polynomial eigenvalue problems is linearization. The given polyno-
mial is transformed into a pn × pn linear matrix pencil L(λ) = λX + Y ,

E(λ)L(λ)F(λ) =
(

P(λ) 0
0 I(p−1)n

)
,

where the determinants of E(λ) and F(λ) are nonzero constants. This can be done
as follows. Let X = diag(Ap, In, . . . , In), and

Y1 =

⎛
⎜⎜⎜⎝

Ap−1 Ap−2 · · · A0
−In 0 · · · 0

0
. . .

. . . 0
0 0 −In 0

⎞
⎟⎟⎟⎠ , Y2 =

⎛
⎜⎜⎜⎝

Ap−1 −In 0
Ap−2 0 . . . 0

...
...

. . . −In

A0 0 · · · 0

⎞
⎟⎟⎟⎠ .

(3.7.26)

Then C1(λ) = λX + Y1 and C2(λ) = λX + Y2 are standard linearizations of block
companion matrix form. The linear eigenvalue problem can then be solved by, e.g.,
the QZ algorithm. For problems of moderate size this can be an efficient method. If
Ap is singular but A0 nonsingular, a variant of this technique can be used.

The most widely studied class of nonlinear problems is the quadratic eigenvalue
problem (QEP) with

A(λ)x = 0, A(λ) = λ2M + λC + K , (3.7.27)

where M, C, K ∈ C
n×n . It is related to the second-order differential equations

M
d2q(t)

dt2
+ C

dq(t)

dt
+ K q(t) = f (t),

where the solution q(t) and external force f (t) are vectors of order n. This equa-
tion arises from Lagrange’s equations of motion for mechanical systems and gov-
erns electrical and mechanical oscillations. The matrix M represents the mass, K
the resistance to displacements (stiffness), and C the damping. QEP also arise in
acoustics and in linear stability analysis of fluid mechanics. The characteristic equa-
tion det(A(λ)) = 0 of the QEP will in general have degree 2n and the eigenvalue
problem (3.7.27) has 2n eigenvalues, some of which may be infinite. There are at
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most 2n eigenvectors. If there are more than n, they clearly cannot form a linearly
independent set. The following properties of some special classes of the QEP can be
shown:

• If M is nonsingular, then there are 2n finite eigenvalues.
• If M, C , and K are real or Hermitian, then A(λ) is self-adjoint: A(λ) = A(λ)H

for all λ ∈ C. The eigenvalues are real or come in complex conjugate pairs.
• If M and K areHermitian, M positive definite, andC = −C H , then the eigenvalues
are purely imaginary or come in pairs λ,−λ̄.

• If M is Hermitian positive definite and Cand K Hermitian positive semidefinite,
then �(λ) ≤ 0.

Linearization of a generalized eigenvalue problem Ax − λBx = 0 can be done
by setting u = λx and rewriting the equation (λ2M + λC + K )x = 0 as λMu +
Cu + K x = 0, or

(−K −C
0 I

)(
x
u

)
− λ

(
0 M
I 0

)(
x
u

)
=

(
0
0

)
. (3.7.28)

Methods based on linearization and solving a generalized eigenvalue problem do
not yield backward stable algorithms. This is because the generalized solvers do not
respect the structure in the 2n by 2n matrices of the linearization. Sometimes this
can lead to large errors and unsatisfactory solutions.

Matrix polynomials and the polynomial eigenvalue problems are studied in
Lancaster [162, 1966] andGohberg et al. [96, 1982].Methods for the numerical treat-
ment of quadratic eigenvalue problems are surveyed byTisseur andMeerbergen [227,
2001]. Early work on methods for solving nonlinear eigenvalue problems include
Kublanovskaya [161, 1969] and Ruhe [204, 1973]. A shift and invert strategy is
described in the collection of templates [15, 2000]. A survey of numerical methods
for nonlinear eigenvalue problems is given by Mehrmann and Voss [178, 2004].
Arnoldi and so called rational Krylov methods have been adapted for large-scale
problems by Voss [240, 2004] and Jarlebring and Voss [138, 2005]. NLEVP is a
collection of nonlinear eigenvalue problems provided in the form of a Matlab
toolbox.

3.7.6 Hamiltonian and Symplectic Problems

Many eigenvalue problems have some form of symmetry that implies certain prop-
erties of the spectrum. For example, the eigenvalues of a Hermitian matrix must
lie on the real axis, or for a unitary matrix on the unit circle. Unless the algebraic
structure is preserved by the algorithm, the computed eigenvalues may not satisfy
such constraints and useless results may be produced. Ideally, the algorithm should
return computed eigenvalues that are the exact ones of a slightly perturbed eigenvalue
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problem of the same structure. Such algorithms are called strongly backward stable;
see Bunch [33, 1985].

We now present a few other important structured eigenvalue problems. In the
following, J is the 2n × 2n skew-symmetric matrix

J =
(

0 In

−In 0

)
∈ C

2n×2n . (3.7.29)

Note that J 2 = I and therefore det(J ) ± 1. One can easily check that that det(J ) =
+1 and its inverse equals J−1 = J T = −J .

Definition 3.7.3 A matrix A ∈ C
2n×2n is

• J -symmetric, if J A = (J A)T ;
• J -Hermitian or Hamiltonian,15 if J A = (J A)H .
• J -orthogonal or symplectic, if AT J A = J ;
• J -unitary or complex symplectic, if AH J A = J ;
• J -skew symmetric, if J A = −(J A)T .

A real matrix with n × n blocks

H =
(

A B
C D

)
∈ R

2n×2n (3.7.30)

is Hamiltonian provided that B and C are symmetric matrices and A + DT = 0. It
follows that trace(H) = 0. The transpose of H is again Hamiltonian. In the vector
space of all 2n × 2n matrices, Hamiltonian matrices form a subspace of dimension
2n2 + n.

The eigenvalues of a Hamiltonian matrix are symmetric about the imaginary axis
in the complex plane, i.e., they occur in pairs λ,−λ̄. The corresponding eigenvectors
are related by

H x = λx ⇒ (J x)H H = −λ̄(J x)H . (3.7.31)

Eigenvalue problems forHamiltonianmatrices occur, e.g., in linear quadratic optimal
control problems and are related to the solution of a Riccati equation (3.1.30).

A symplectic vector space is a 2n-dimensional vector space equipped with a
skew-symmetric bilinear form. The product of two symplectic matrices is again a
symplectic matrix. The set of all symplectic matrices forms a group of dimension
2n2 + n. The exponential of a Hamiltonian matrix is symplectic and the logarithm
of a symplectic matrix is Hamiltonian.

15 WilliamRowanHamilton (1805–1865), Irishmathematician, professor at TrinityCollege,Dublin.
He made important contributions to classical mechanics, optics, and algebra. His greatest contribu-
tion is the reformulation of classical Newton mechanics now called Hamiltonian mechanics. He is
also known for his discovery of quaternions as an extension of (two-dimensional) complex numbers
to four dimensions.
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If A is symplectic, AT J A = J , then AT J AJ T = J J T = I , and hence
(AJ T )−1 = AT J . It follows that every symplectic matrix is invertible and its
inverse is

A−1 = J−1AT J.

Hence, the eigenvalues of a symplectic matrix occur in reciprocal pairs (λ, λ−1)

(including 0 and ∞). The eigenvectors are related by

Ax = λx ⇒ (J x)T A = λ−1(J x)T . (3.7.32)

A generalized eigenvalue problem (A − λB)x = 0 such that B = −AT , i.e.,
(A + λAT )x = 0, is called a palindromic eigenvalue problem, because reversing
the order of the coefficients and taking the transpose leads back to the same matrix
equation. The symmetry xT (AT + λA) = 0 implies that the eigenvalues have sym-
plectic pattern.

Another class of structured polynomial eigenvalue problems are those for which
P(−λ) = P(λ)T . Such polynomials are called even and their eigenvalues come in
pairs (λ,−λ). Palindromic and even eigenvalue problems are related to each other
via the Cayley transform. This maps a generalized eigenvalue problem Ax = λBx
into

(A + B)x = λ + 1

λ − 1
(A − B)x .

The associated matrix pairs have the same eigenvectors and eigenvalues λ are trans-
formed into (λ + 1)/(λ − 1). Vice versa, the Cayley transform of an even problem
is palindromic.

The analysis of vibrations of rails excited by high-speed trains leads to a palin-
dromic eigenvalue problem of the form (see Ipsen [136, 2004])

(
λ−1AT

1 + A0 + λA1

)
x = 0.

Converting this problem to a polynomial eigenvalue problem gives

P(λ)y = 0, P(λ) = λ2AT
1 + λA0 + A1. (3.7.33)

Clearly, the eigenvalues have a symplectic structure. A standard linearization of the
quadratic eigenvalue problem (3.7.33) gives

(
0 I

−A1 −A0

)(
y
z

)
= λ

(
I 0
0 AT

1

)(
y
z

)
, A0 = AT

0 .

Since this transformation has destroyed the structure of the original problem the
computed eigenvalues will not have symplectic structure. A better approach is to use
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the palindromic form

(λZ + Z T )

(
z
y

)
= 0, Z =

(
AT
1 A0 − A1

AT
1 AT

1

)
.

The palindromic structure is preserved under congruence transformations:

(λZ + Z T ) �→ PT (λZ + Z T )P,

for P nonsingular. For numerical stability the choice P = U unitary is preferable.
Hence, we should look for condensed forms under the unitary consimilarity

(λM + MT ) �→ U
−1

(λZ + Z T )U,

withU ∈ C
n×n unitary. For the palindromic eigenvalue problem the anti-triangular

form M = (mi j ), where mi j = 0 whenever i + j ≤ n, plays an important role. The
existence of an anti-triangular Schur-like form for any square complex matrix is
given in the following theorem.

Theorem 3.7.8 (Mackey et al. [174, Theorem 2.3]) For any matrix Z ∈ C
n×n there

exists a unitary matrix U ∈ C
n×n such that

M = U T ZU =

⎛
⎜⎜⎜⎜⎝

0 · · · 0 m1n
... m2,n−1 m2n

0 mn−1,2
...

mn1 mn2 · · · mnn

⎞
⎟⎟⎟⎟⎠

, (3.7.34)

i.e., M is in anti-triangular form.

Note that the matrix obtained by reversing the columns of a lower triangular
matrix L has anti-triangular form. This can be expressed by Z = LPR , where PR

is the matrix PR = (en, . . . , e2, e1). The transpose of an anti-triangular matrix is
anti-triangular. Hence, if M is anti-triangular, so is λM + MT . The determinant
of an anti-triangular matrix is the product of its anti-diagonal elements. The basic
information about the spectrum of the pencil L Z (λ) = λZ + Z can be read off from
the anti-triangular form M of Z .

Theorem 3.7.9 (Mackey et al. [174])Let Z ∈ C
n×n with the associated palindromic

pencil L Z (λ) = λZ + Z and assume that M = U T ZU is anti-triangular. Then the
pencil L Z (λ) is singular if and only if M has a symmetrically placed pair of zeroes
on the anti-diagonal. If L Z (λ) is regular, then its spectrum is given by (with the
convention z/0 = ∞)

λ j = −mn− j+1, j

m j,n− j+1
, j = 1 : n. (3.7.35)
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Proof The pencils L Z (λ) and L M (λ) = λM + MT are unitarily congruent, so they
are either both singular, or both regular with the same spectrum. The anti-diagonal
elements of MT are obtained by reversing the order of those of M . Hence, the
eigenvalues of the matrix pencil L M (λ) are given by

λm j,n− j+1 + mn− j+1, j = 0, j = 1 : n.

The pencil is singular if and only if m j,n− j+1 = mn− j+1, j = 0 for some j . �

Suppose that U is a unitary matrix such that M = U T ZU is anti-triangular. Then
the first columns of M and MT are scalar multiples of en :

Me1 = (U T ZU )e1 = U T Zu1 = αen,

MT e1 = (U T Z T U )e1 = U T Z T u1 = βen .

It follows that U T (βZ − αZ T )u1 = 0, i.e., u1 is an eigenvector of L Z (λ) with
eigenvalue λ = −β/α. Note that since M is in anti-triangular form, the eigenvector
u1 satisfies m11 = uT

1 Zu1 = 0. It can be shown that any eigenvector of L Z (λ) with
either a finite eigenvalue or with the eigenvalue λ = ∞ has this property.

Let L Z (λ) be a regular palindromic pencil. Suppose W1 ∈ C
n×m , m = n/2 (n

even), has orthonormal columns which span a deflating subspace of L Z (λ). Then
there exists V1 ∈ C

n×m with orthonormal columns such that

(λZ + Z T )W1 = V1(λX11 + Y11). (3.7.36)

From the equality of ranks it follows that if λZ + Z T is regular, then λX11 + Y11 is
regular. Further, from W T

1 Z W1 = 0 it follows that

W T
1 V1(λX11 + Y11) = W T

1 (λZ + Z T )W1 = 0.

This implies that W T
1 V1 = 0, i.e., the columns of V1 are orthogonal to the columns

of W1. Then U = (W1, V1PR) ∈ C
n×n is unitary. From (3.7.36) it follows that

U T ZU =
(

0 Y T
11RP

RP X11 RP V H
1 Z V1RP

)

has block-anti-triangular form. The spectrum of λZ + Z T is then the union of the
spectra of the anti-diagonal blocks λX + Y and λY T + X T .

Algorithm3.7.1 uses the above structured deflation method is used to process the
output from the QZ algorithm for a palindromic matrix pencil. It is also known as
“Laub-trick method”.16

16 Laub [165, 1979] used a similar idea for computing theHamiltonianSchur formusing information
from an unstructured Schur form.
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Algorithm 3.7.1 (Schur Method for Palindromic Matrix Pencil) Assume that the
spectrum of the matrix pencil λZ + Z T is reciprocal-free. Compute the generalized
Schur decomposition

V H (λZ + Z T )W = λ

(
X11 X12

0 X22

)
+

(
Y11 Y12

0 Y22

)

with V = (V1, V2) and W = (W1, W2) unitary and X11 and Y11 upper triangular.
Order the eigenvalues so that λX11 + Y11 contains all eigenvalues with |λ| > 1. Set
U = (W1, V 1PR), where PR ∈ R

n×n is the permutation matrix that reverses the
order of the columns in X . Then U is unitary and U T ZU anti-triangular:

U T ZU =
(

0 Y T
11PR

PR X11 M22

)
, M22 = PR

(
V T
11 V T

21

)
Z

(
V11

V21

)
PR .

The cost of this algorithm is essentially the cost of the QZ algorithm with reorder-
ing. For eigenvalues close to the unit circle the algorithmmay compute the number of
eigenvalues inside the unit circle incorrectly. Note that this number may be important
in many applications.

Structured eigenvalue problems are surveyed by Bunse-Gerstner et al. [35, 1992].
A fast method for the Hamiltonian eigenvalue problem using orthogonal symplectic
similarities is given by Van Loan [235, 1982]. Byers [36, 1986] gave a strongly stable
explicit Hamiltonian QR algorithm that takes O(n3) flops. Hamiltonian Jacobi algo-
rithms are developed by Fassbender et al. [75, 2001]. Methods for Hamiltonian and
symplectic eigenvalue problems are treated inMackey et al. [172, 2003] andWatkins
[246, 2007]. Good linearizations for structured polynomial eigenvalue problems
are developed by Mackey et al. [173, 2006]. Numerical methods for palindromic
eigenvalue problems are treated in Mackey et al. [174, 2009]. PEPACK (Poppe,
Schröder, and Thies) is a package of Fortran 77 routines based on the Laub trick
method for the palindromic eigenvalue problem. Kressner, Schröder, and Watkins
[158, 2009] describe a strongly stable palindromicQR algorithm for anti-Hessenberg
matrices.

Exercises

3.7.1 Show that the matrix pencil A − λB, where

A =
(
0 1
1 0

)
, B =

(
1 0
0 −1

)

has complex eigenvalues, even though A and B are real and symmetric.
3.7.2 Show that the chordal metric

ξ(λ, μ) = |λ − μ|√
1 + λ2

√
1 + μ2

has the following geometric interpretation. Let S be a circle of diameter 1 passing trough
the points (0, 0) and (0, 1). Consider the line through the points (0, 1) and (0, λ) and let λ̃ be

Ham
Highlight
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the point where it intersects the circle. Define μ̃ similarly. Then the chordal distance equals
the shorter chord between the points λ̃ and μ̃.

3.7.3 (a) Show that for the chordal metric ξ(λ,∞) = 1/
√
1 + λ2.

(b) Show that when |λ|, |μ| ≤ 1 the chordal metric has the property that

ξ(λ,∞) ≤ |λ − μ| ≤ 2ξ(λ,∞).

3.7.4 Given two rectangular matrices A ∈ C
n×p and B ∈ C

n×q of full column rank, consider the
generalized eigenproblem

(
0 AH B

B H A 0

)(
yk
zk

)
= σk

(
AHA 0
0 B H B

)(
yk
zk

)
. (3.7.37)

Show that σk are the canonical correlations between the data A and B. Hint: Transform
(3.7.37) to an ordinary eigenvalue problem and then use the relation to a singular value
problem.

3.7.5 Let A and B be real symmetric tridiagonal matrices. Assume that B is positive definite and
let B = LLT , where the Cholesky factor L is lower bidiagonal.

(a) Show that L can be factored as L = L1L2 . . . Ln , where Lk differs from the unit matrix
only in the kth column.

(b) Consider the recursion

A1 = A, Ak+1 = Qk L−1
k Ak L−T

k QT
k , k = 1 :n.

Show that if Qk are orthogonal, then the eigenvalues of An+1 are the same as those for
the generalized eigenvalue problem Ax = λBx .

(c) Show how to construct Qk as a sequence of Givens rotations so that the matrices Ak are
all tridiagonal. (The general case, when A and B have symmetric bandwidth m > 1,
can be treated by considering A and B as block-tridiagonal.)

3.7.6 (Gander [88, 2008])

(a) Show that for any matrices A, B ∈ R
n×n it holds that

n∑
i=1

n∑
j=1

ai j bi j = trace(AT B). (3.7.38)

(b) Let C(λ) ∈ R
n×n be a nonsingular matrix whose elements ci j (λ) are differentiable

functions of a scalar parameter λ. Use the cofactor expansion (1.1.28) and the chain
rule of differentiation to show that

d

dλ
det(C(λ)) =

n∑
i=1

n∑
j=1

Ci j
dci j

dλ
,

where Ci j is the cofactor of the element ci j .
(c) From (3.7.38) and the relation adj (C) = det(C)C−1 it follows that

1

det(C(λ))

d

dλ
det(C(λ)) = trace

(
C−1 dC

dλ

)
, (3.7.39)

which is Jacobi’s identity. Show how this identity and LU factorization with partial
pivoting can be used to evaluate function and derivative values in Newton’s method for
solving the equation f (λ) = log(det(A − λB))=0.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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3.7.7 By (3.7.30), for n = 1 a Hamiltonian matrix has the form

H =
(

a b
c −a

)
.

Show that the eigenvalues of H are λ1,2 = ±√
a2 + bc. Hint: Form the matrix H2.

3.8 Functions of Matrices

Matrix function were studied already in 1858 by Cayley, who considered the square
roots of 2 × 2 and 3 × 3 matrices. Soon after, a general definition of f (A) was
introduced by Sylvester. Laguerre defined the exponential function using its power
series in 1867. The definition of f (A) by an interpolating polynomial was stated by
Sylvester in 1883 for the case of distinct eigenvalues.

Consider the expansion of a function into powers of a complex variable:

f (z) =
∞∑

k=0

ak zk . (3.8.1)

From complex analysis it is known that there is a circle of convergence |z| = r such
that the series converges absolutely for any |z| < r and diverges for any |z| > r . The
radius of convergence r can be 0 or ∞. For |z| = r the series may either converge
or diverge. The series converges uniformly on any circle with radius less than r .
In the interior of the circle of convergence formal operations, such as term-wise
differentiation and integration with respect to z are valid.

To the power series (3.8.1) there corresponds a matrix power series

f (A) =
∞∑

k=0

ak Ak . (3.8.2)

If this series converges, it defines a matrix function f (A) . If A is diagonalizable,
i.e., A = X DX−1, then Ak = X Dk X−1. It follows that

f (A) = X f (D)X−1, (3.8.3)

and A f (A) = f (A)A, i.e., f (A) commutes with A.
This result can be used to answer the important question of when a matrix power

series is convergent.

Lemma 3.8.1 Let the power series f (z) = ∑∞
k=0 ak zk have radius of convergence

r > 0. If A is diagonalizable, then the matrix power series (3.8.2) converges if
the spectral radius ρ(A) < r and diverges if ρ(A) > r . The case ρ(A) = r is a
“questionable case”.
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The assumption that A is diagonalizable in Lemma3.8.1 is not necessary. To show
this, assume that A ∈ C

n×n has the Jordan canonical form

A = X J X−1 = X diag
(
Jm1(λ1), . . . , Jmt (λt )

)
X−1. (3.8.4)

where J(mk ) is a Jordan block of index mk . The result now follows from the explicit
expression given in Theorem 3.1.7 for powers of a single Jordan block.

Definition 3.8.1 Let A have the Jordan canonical form (3.8.4). Assume that f (λ)

and its first mk − 1 derivatives are defined for λ = λk , k = 1 : t . Then the function
f (A) is said to be defined on the spectrum of A and

f (A) = X diag
(

f
(
Jm1(λ1)

)
, . . . , f

(
Jmt (λt )

))
X−1, (3.8.5)

where

f (Jmk ) = f (λk)I +
m−1∑
p=1

1

p! f (p)(λk)N p

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f (λk) f ′(λk) · · · f (mk−1)(λk)

(mk − 1)!
f (λk)

. . .
...

. . . f ′(λk)

f (λk)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.8.6)

By Theorem3.1.6, p. 439, the Jordan canonical form is unique up to the ordering
of the Jordan blocks. If f is a multivalued function and a repeated eigenvalue of A
occurs in more than one Jordan block, then the same branch of f and its derivatives
are usually taken. This choice gives a primary matrix function that is expressible
as a polynomial in A. In the following it is assumed that f (A) is a primary matrix
function, unless otherwise stated. Then the Jordan canonical form definition (3.8.5)
does not depend on the ordering of the Jordan blocks.

There are several other ways to define a function of a matrix. One definition, due
to Sylvester 1883, uses polynomial interpolation. Denote by λ1, . . . , λt the distinct
eigenvalues of A and let mk be the index of λk , i.e., the order of the largest Jordan
block containing λk . Assume that the function is defined on the spectrum �(A) of
A. Then f (A) = p(A), where p is the unique Hermite interpolating polynomial of
degree less than n = ∑t

k=1 mk that satisfies the interpolating conditions

p(i)(λk) = f ( j)(λk), j = 0 :mk − 1, k = 1 : t. (3.8.7)

Note that the coefficients of the interpolating polynomial depend on A and that f (A)

commutes with A. It is well-known that this interpolating polynomial exists. It can
be computed by Newton’s interpolation formula applied to matrix functions:
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f (A) = f (λ1)I +
n∗∑
j=1

f (λ1, λ2, . . . , λ j )(A − λ1 I ) · · · (A − λ j I ), (3.8.8)

where λ j , j = 1 : n∗ are the distinct eigenvalues of A, each counted with the same
multiplicity as in theminimal polynomial. Thus, n∗ is the degree of theminimal poly-
nomial of A. Formulas for complex Hermite interpolation are given in [48, 2008]),
Sect. 4.3.2. The definitions by the Jordan canonical form and polynomial interpola-
tion can be shown to be equivalent.

Let f (z) be analytic for z ∈ �, where � is a closed contour that contains the
spectrum of A in its interior. Then f (A) can equivalently be defined by the Cauchy
integral

1

2π i

∫

�

(z I − A)−1 f (z) dz = f (A). (3.8.9)

This representation was introduced by Frobenius in 1896 and Poincaré in 1899.
The theory of analytic functions of a complex variable generalizes to matrix

functions. If lim
n→∞ fn(z) = f (z) for z ∈ D and Jm(λi ),λi ∈ D, is a Jordan block, then

lim
n→∞ fn(J (λi )) = f (J (λi )).

Hence, if the spectrum of A lies in the interior of D, then lim
n→∞ fn(A) = f (A). This

allows us to deal with operations involving limit processes. The following important
theorem shows that Definition3.8.1 is consistent with the more restricted definition
used in Theorem3.8.1.

Theorem 3.8.1 All identities that hold for analytic functions of one complex variable
z for z ∈ D ⊂ C, where D is a simply connected region, also hold for analytic
functions of one matrix variable A if the spectrum of A lies in the interior of D.

We have, for example,

cos2A + sin2A = I, ∀A;
log(I − A) = −

∞∑
n=1

1

n
An, ρ(A) < 1;

∞∫

0

e−st eAt dt = (s I − A)−1, �(λi (A)) < �(s), ∀ i.

Given two arbitrary analytic functions f and g that satisfy the condition of
Definition3.8.1, we have f (A)g(A) = g(A) f (A). However, when several non-
commutative matrices are involved, one can no longer use the usual formulas for
analytic functions.
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Example 3.8.1 The identity e(A+B)t = eAt eBt holds for all t if and only if BA = AB.
We have

eAt eBt =
∞∑

p=0

Apt p

p!
∞∑

q=0

Bqtq

q! =
∞∑

n=0

tn

n!
n∑

p=0

(
n

p

)
Ap Bn−p.

This is in general not equivalent to

e(A+B)t =
∞∑

n=0

tn

n! (A + B)n .

If BA �= AB the difference between the coefficients of t2/2 in the two expressions is

(A + B)2 − (A2 + 2AB + B2) = BA − AB �= 0.

Conversely, if BA = AB, then it follows by induction that the binomial theorem holds
for (A + B)n , and the two expressions are equal. �

If the matrix power series (3.8.2) is rapidly convergent, then f (A) can be approxi-
mated by a truncated series. There are several expressions for the remainder when the
corresponding scalar power series is truncated after zn ; see [48, 2008], Sect. 3.1.2.
For the corresponding real-valued function, Lagrange’s formula

Rn(z) = f (n+1)(ξ)zn+1

(n + 1)! , ξ ∈ [0, z], (3.8.10)

holds. Matrix functions can also be approximated by a rational function of A. If
r(z) = p�(z)/qm(z), then

r(A) = p�(A)(qm(A))−1 = (qm(A))−1 p�(A)

provided that qm(A) is nonsingular. A Padé approximation of f (z) is a rational
function r�,m(z), with numerator of degree at most � and denominator of degree
at most m, such that its power series expansion agrees with that of f (z) as far as
possible. These approximations can be arranged in a doubly infinite array, called a
Padé table.17

Definition 3.8.2 The (�, m) Padé approximation of the power series f (z) = c0 +
c1z + c2z2 + · · · is, if it exists, a rational function

r�,m(z) = P�,m(z)

Q�,m(z)
≡

∑�
j=0 p j z j

∑m
j=0 q j z j

(3.8.11)

17 Henry Eugène Padé (1863–1953), French mathematician and student of Charles Hermite, gave
a systematic study of these approximations in his thesis 1892.
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that satisfies

f (z) − r�,m(z) = Rz�+m+1 + O(z�+m+2), z → 0. (3.8.12)

If a transformation B = XAX−1 can be found such that f (B) is more easily
evaluated, then the relation f (A) = X−1 f (B)X can be used for numerical com-
putation of f (A). But to achieve accurate results, it is important that X be not too
ill-conditioned. By the Schur decomposition Theorem3.1.9, any matrix A ∈ C

n×n

can be reduced by a unitary similarity A = QT Q H to upper triangular form T . In
particular, if A is normal, T is diagonal and the evaluation of f (B) is trivial.

Since F = f (T ) is a polynomial in T , it is upper triangular. Further, F commutes
with T , T F − FT = 0. The diagonal elements of F are equal to fii = f (tii ). In
the Schur–Parlett method the off-diagonal elements are computed from a recurrence
relation. Equating the (i, j)th elements, i < j on the two sides of the equation
T F = FT gives

∑ j
k=i (tik fk j − fik tk j ) = 0. Taking out the first and last terms in

the sum, we can rearrange the sum into Parlett’s recurrence [191, 1976]:

fi j (tii − t j j ) = ti j ( fii − f j j ) +
j−1∑

k=i+1

( fik tk j − tik fk j ). (3.8.13)

If tii �= t j j this equation can be solved for the element fi j provided the elements fik

and fk j are known for i < k < j . Assuming tii �= t j j , i �= j , the recurrence relation
(3.8.13) can be used to compute the off-diagonal elements in f (T ) one superdiagonal
at a time in 2n3/3 flops. This is the Schur–Parlett method; see Algorithm3.8.1.

Algorithm 3.8.1 (The Schur–Parlett Method)

for i = 1 :n fii = f (tii ); end

for j = 2 :n
for i = j − 1 :−1 :1
gi j = ti j ( fii − f j j ) +

j−1∑
k=i+1

( fik tk j − tik fk j );
fi j = gi j/(tii − t j j );

end
end

Setting j = i + 1, we get the entries of the first superdiagonal of F :

fi,i+1 = ti,i+1
fii − fi+1,i+1

ti,i − ti+1,i+1
, i = 1 : n − 1.

Note that this expression involves the first divided difference of the function f .
Parlett’s recurrence breaks down if tii = t j j and can give inaccurate results when T
has close diagonal entries. In this case a block version of the Schur–Parlett method
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due to Davies and Higham [50, 2003] is to be preferred. In this method the Schur
decomposition A = QT Q H is reordered into block triangular form, where eigen-
values within each diagonal block Tii are close and those of separate blocks are well
separated. The matrix F = f (T ) will have the same block structure. The diago-
nal blocks Fii = f (Tii ) of F are evaluated by some other technique that may be
specially adapted for the function f . The off-diagonal blocks Fi j , j > i , are then
computed by block diagonals from the Sylvester equation

Tii Fi j − Fi j Tj j = Fii Ti j − Ti j Fj j +
j−1∑

k=i+1

(Fik Tk j − Tik Fk j ), j > i. (3.8.14)

This equation has a unique solution, and because Tii and Tj j are upper triangular, Fi j

can be computed column by column, with each column obtained from a triangular
system solved by back substitution.

To minimize the error in the blocks of f (T ) computed by the block recurrence,
the diagonal blocks need to be well separated. It can be shown that the propagation
of rounding errors is inversely proportional to sep(Tii , Tj j ) (see Definition3.2.1, p.
459). This quantity approximately equals

gap (Tii , Tj j ) = min{|λ − μ| | λ ∈ �(Tii ), μ ∈ �(Tj j )}, i �= j.

But increasing the separation will increase the size of the diagonal blocks and make
the evaluation of the diagonal blocks f (Tii )more difficult. A compromise suggested
by Davies and Higham [50, 2003] is to require that for some tolerance δ, the block
structure satisfies:

1. separation between blocks: gap (Tii , Tj j ) > δ;
2. separation within blocks: for every block Tii of dimension larger than 1, for every

λ ∈ �(Tii ) there is a μ ∈ �(Tii ) with μ �= λ such that |λ − μ| ≤ δ.

The second property implies that for Tii ∈ C
p×p, p > 1,

max{|λ − μ| | λ,μ ∈ �(Tii ), λ �= μ} ≤ (p − 1)δ.

In practice the blocking parameter can be set to δ = 0.1. Since the QR algorithm
tends to order the eigenvalues by absolute values in the Schur form, finding such an
ordering is usually not difficult. The reordering is obtained by swapping adjacent
diagonal elements of T . Each such swapping requires 20n flops, plus another 20n
flops to update the Schur vectors.

If A is normal, then T = D is diagonal and we only need to compute f (D). On
the other extreme, if A has just one eigenvalue of multiplicity n, then there will be
just one block T11 = T . The total cost of this algorithm depends on the eigenvalue
distribution of A and is roughly between 28n3 flops and n4/3 flops.
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3.8.1 The Matrix Square Root

For a matrix A ∈ C
n×n , any matrix X such that X2 = A is called a square root of

A. If A has no eigenvalues on the closed negative real axis, then there is a unique
square root such that

−π/2 < arg(λ(X)) < π/2.

This is the principal square root of A and is denoted by A1/2. The principal square
root, when it exists, is a polynomial in the original matrix. If A is Hermitian and
positive definite, then the principal square root is the unique Hermitian and positive
definite square root. If A ∈ R

n×n has a square root, then A1/2 is real.
Unlike the square root of a scalar, the square root of a matrix may not exist. For

example, it is easy to verify that

A =
(
0 1
0 0

)

cannot have a square root; see Problem 3.8.5 (a). To ensure that a square root exists,
it suffices to assume that A has at most one zero eigenvalue. If A is nonsingular and
has s distinct eigenvalues, then it has precisely 2s square roots that are expressible
as polynomials in the matrix A. If some eigenvalues appear in more than one Jordan
block, then there are infinitely many additional square roots, none of which can be
expressed as a polynomial in A. For example, any Householder matrix is a square
root of the identity matrix.

Assume that A ∈ C
n×n has a principal square root and let Xk be an approximation

to A1/2. If Xk+1 = Xk + Hk , then

A = (Xk + Hk)
2 = X2

k + Xk Hk + Hk Xk + H2
k .

Ignoring the term H2
k gives

Xk+1 = Xk + Hk, Xk Hk + Hk Xk = A − X2
k . (3.8.15)

This iteration is expensive, because at each step a Sylvester equation has to be solved
for the correction Hk . This requires the Schur decomposition of Xk . But the principal
square root can be computed from just one Schur decomposition A = QT Q H . If S
is an upper triangular square root of T , then from T = S2 we obtain

tii = s2i i , ti j =
j∑

k=i

siksk j , 1 ≤ i < j ≤ n. (3.8.16)

Starting with sii = t1/2i i , i = 1 : n, off-diagonal entries can be computed from
(3.8.16):
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si j =
(

ti j −
j−1∑

k=i+1

siksk j

)/
(sii + s j j ), 1 ≤ i < j ≤ n. (3.8.17)

The elements are computed one diagonal at a time.When tii = t j j , we take sii = s j j ,
so this recursion does not break down. (Recall that we have assumed that at most
one diagonal element of T is zero.) The arithmetic cost of this algorithm, due to
Björck and Hammarling [25, 1983], is about n3/3 flops plus 25n flops for the Schur
decomposition. The method can be extended to compute cube roots and higher.
A modified algorithm by Higham [123, 1987] avoids complex arithmetic for real
matrices with some complex eigenvalues by using the real Schur decomposition.

If we let Ŝ be the computed square root of T , it can be shown that

Ŝ2 = T + E, ‖E‖ ≤ c(n)u(‖T ‖ + ‖S‖2),

where c(n) a small constant depending on n. Hence, we have

‖E‖ ≤ c(n)u(1 + α)‖T ‖, α = ‖A1/2‖2/‖A‖.

In applications where it is not possible to compute the Schur decomposition an
iterative method can be used. If in Newton’s method the initial approximation X0 is a
polynomial in A, e.g., X0 = I or X0 = A, then all subsequent iterates Xk commute
with A. Then the Newton iteration (3.8.15) simplifies to

Xk+1 = 1

2

(
Xk + X−1

k A
)

, (3.8.18)

which is the matrix version of the well-known scalar iteration zk+1 = (zk + a/zk)/2
for the square root of a. It iswell known that this iteration (3.8.18) is unstable, because
rounding errors will make the computed approximations fail to commute with A.
Indeed, iteration (3.8.18) converges only if A is very well-conditioned. Higham
[122, 1986] shows that the instability is mainly due to the postmultiplication of X−1

k
by A.

Several stable variants of the simple Newton iteration are known. Denman and
Beavers [60, 1976] rewrite (3.8.18) as

Xk+1 = 1

2

(
Xk + A1/2X−1

k A1/2
)

,

which setting Yk = A−1/2Xk A−1/2 gives the coupled iteration

Xk+1 = 1

2

(
Xk + Y −1

k

)
, Yk+1 = 1

2

(
Yk + X−1

k

)
, (3.8.19)

with initial conditions X0 = A, Y0 = I . This iteration is a special case of a method
for solving a Riccati equation and limk→∞ Xk = A1/2, limk→∞ Yk = A−1/2, with
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quadratic rate of convergence. The Denman–Beavers iteration needs the LU (or
Cholesky) factorization of Xk and Yk in each iteration. Another stable modification
of the Newton iteration has been given by Meini [179, 2004].

The principal pth root of A is the unique matrix that satisfies X p = A and whose
eigenvalues lie in the segment {z | −π/p < arg(z) < π/p}. The pth root of a matrix
is needed in the inverse method of scaling and squaring for computing the logarithm
of a matrix. The simple Newton iteration for the pth root is

Xk+1 = 1

p

(
(p − 1)Xk + X1−p

k A
)

. (3.8.20)

As for the square root, this iteration is unstable. A stable modification is obtained
by rewriting it as

Xk+1 = Xk

(
(p − 1)I + Nk

p

)
, Nk+1 =

(
(p − 1)I + Nk

p

)p

Nk, (3.8.21)

with initial values X0 = I and N0 = A; see Iannazzo [134, 2006]. Observe that,
while Xk converges to A1/p, Nk = X−p

k A converges to the identity matrix.
A related method is the Schulz iteration [212, 1933]

Xk+1 = Xk(2I − AXk) = (2I − AXk)Xk, k = 1, 2, . . . , (3.8.22)

for computing A−1. It can be shown that if A ∈ C
n×n is nonsingular and

X0 = α0AT , 0 < α0 < 2/‖A‖22,

then limk→∞ Xk = A−1. Convergence can be slow initially, but is ultimately
quadratic: Ek+1 = E2

k , where Ek = I − AXk . Since about 2 log2 κ2(A) (see [217,
1974]) iterations are needed for convergence, this method cannot in general compete
with direct methods for dense matrices. But a few steps of the iteration (3.8.22) can
be used to improve an approximate inverse. Another use is as an inner iteration in
methods for computing the matrix square root.

3.8.2 The Matrix Sign Function

For z ∈ C not on the imaginary axis, the sign function is defined by

sign(z) =
{

−1 if Re z < 0,

+1 if Rez > 0.
(3.8.23)
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The matrix sign function was introduced in control theory as a means of finding the
positive and negative invariant subspaces of a matrix A ∈ C

n×n with no eigenvalues
on the imaginary axis. The matrix sign function can be used in control theory for
solving the Riccati equation and many other problems.

Let the Jordan canonical form of A be

A = X J X−1, J =
(

J− 0
0 J+

)
, (3.8.24)

where the p eigenvalues of J− lie in the open left half-plane and the q eigenvalues
of J+ lie in the open right half-plane (p + q = n). From Definition3.8.1 and the fact
that the derivatives f (k), k ≥ 1, of the sign function are zero, it follows that

S = sign(A) = X

(−I 0
0 I

)
X−1. (3.8.25)

Hence, S is diagonalizablewith eigenvalues±1, and is real if A is real. If S = sign(A)

is defined, then S2 = I and S−1 = S. From (3.8.25) it follows that sign(A) =
A(A2)−1/2 and A = sign(A)(A2)1/2. Using this it is easy to show that if A has no
eigenvalues on the negative real axis, then

sign

(
0 A
I 0

)
=

(
0 A1/2

A−1/2 0

)
. (3.8.26)

The sign function can be computed from the Schur decomposition A = Q T Q H ,
giving

sign(A) = Q U Q H , U = sign(T ),

where U is upper triangular with diagonal elements equal to ±1. For simplicity, we
assume that the diagonal elements in the Schur decomposition are (re)ordered so that
sign(tii ) = −1, i = 1 : p, sign(tii ) = 1, i = p + 1 :n. Then

sign(T ) =
(

U11 U12
0 U22

)
=

(−I U12
0 I

)
.

Herewe have used thatU11 andU22 are upper triangularmatrices and satisfyU 2
11 = I

and U 2
22 = I . Therefore, they must equal ±I . Finally, the block U12 can be com-

puted by Parlett’s recurrence, because for its elements ui j the corresponding diagonal
elements satisfy tii − t j j �= 0.

For many applications the Schur method is too expensive. Then the iteration

X0 = A, Xk+1 = 1

2

(
Xk + X−1

k

)
, (3.8.27)
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Table 3.2 Padé approximations for the sign function

m = 0 m = 1 m = 2

� = 0 z
2z

1 + z2
8z

3 + 6z2 − z4

� = 1
z(3 − z2)

2

z(3 + z2)

1 + 3z2
4z(1 + z2)

1 + 6z2 + z4

� = 2
z(15 − 10z2 + 3z4)

8

z(15 + 10z2 − z4)

4(1 + 5z2)

z(5 + 10z2 + z4)

1 + 10z2 + 5z4

can be used, which is globally and quadratically convergent to sign(A), provided A
has no eigenvalues on the imaginary axis. The corresponding scalar iteration

λk+1 =
(
λk + λ−1

k

)
/2

is Newton’s iteration for the square root of 1. This converges with quadratic rate to
1 if �(λ0) > 0 and to −1 if �(λ0) < 0. For the matrix iteration (3.8.27), using
the block diagonal Jordan form (3.8.24) shows that the eigenvalues are decoupled
and obey the scalar iteration with λ

(0)
j = λ j (A). Ill-conditioning of a matrix Xk can

destroy the convergence or cause misconvergence.
The sign function satisfies the identity

sign(z) = z/(z2)1/2 = z(1 − ξ)−1/2, ξ = 1 − z2. (3.8.28)

Higher-order iteration methods for sign(z) can be derived from the Taylor series

h(ξ) = (1 − ξ)−1/2 = 1 + 1

2
ξ + 3

8
ξ2 + · · · , (3.8.29)

which is convergent for |ξ | < 1. Rational Padé approximations p�,m(ξ)/q�,m(ξ) of
h(ξ) can also be used. Since h(ξ) is a hypergeometric function, its Padé approxi-
mations are explicitly known; see Kenney and Laub [150, 1991]. The scalar Padé
iterations have the form

zk+1 = zk
P�,m(1 − z2k)

Q�,m(1 − z2k)
, k = 0, 1, 2, . . . . (3.8.30)

Table3.2 gives the right-hand side of (3.8.30) for 0 ≤ �, m ≤ 2.
The approximations obtained for � = m − 1 and � = m are called the principal

Padé approximations. They have the special property that

r�,m = (1 + z)p − (1 − z)p

(1 + z)p + (1 − z)p
,

where p = � + m + 1. That is, the numerator and denominator are, respectively, the
odd and even parts of (1+ ξ)p. This makes it easy to write down the corresponding
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rational approximations. For example, if � = m = 1, then (1−z)3 = 1−3z+3z2−z3

and −zp11 = −z(3 + z2) and q11 = 1 + 3z2. This gives Halley’s method. Among
other interesting properties of these Padé approximations the following result is
shown by Kenney and Laub [150, 1991], Theorem5.3.

Theorem 3.8.2 Assume that A has no purely imaginary eigenvalues and a Padé
approximation with � = m or � = m − 1 is used. Then the rational iteration
X0 = A, and

Xk+1 = Xk
p�,m(1 − X2

k )

q�,m(1 − X2
k )

, k = 0, 1, 2, . . . , (3.8.31)

converges to S = sign(A). Further, it holds that

(S − Xk)(S + Xk)
−1 = [

(S − A)(S + A)−1](�+m+1)k

.

The spectral projectors corresponding to the eigenvalues in the right and left half-
plane are

P− = 1

2
(I − S), P+ = 1

2
(I + S),

respectively. If the leading columns of an orthogonal matrix Q span the column space
of P+, then

Q H AQ =
(

A11 A12
0 A22

)
.

This is a spectral decomposition of A, where �(A11) contains the eigenvalues of A
in the right half-plane. By computing the sign function of aMöbius transformation of
A, we can split the spectrum along arbitrary lines or circles rather than the imaginary
axis.

To study the conditioning of the matrix sign function, we assume without loss of
generality that the matrix has been brought into the form

A =
(

A11 A12
0 A22

)
,

where�(A11) lies in the open right half-plane and�(A22) in the open left half-plane.
This can always be achieved by the Schur decomposition. Since A11 and A22 have no
common eigenvalues, there is a unique solution P to the Sylvester equation A11P −
P A22 = −A12. If we set X =

(
I P
0 I

)
, then A = Xdiag(A11, A22)X−1 and

sign(A) = Xdiag(I,−I )X−1 =
(

I −2P
0 −I

)
.
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The spectral projector corresponding to the eigenvalues of A11 is R =
(

I P
0 0

)
and

‖R‖2 = (1 + ‖P‖22)1/2. For the solution of the Sylvester equation,

‖P‖2 ≤ ‖A12‖2
sep(A11, A22)

.

When ‖P‖2 is large the condition number κ(S) = ‖S‖2 ‖S−1‖2 is approximately
equal to ‖P‖22; see Bai and Demmel [12, 1998].

3.8.3 The Polar Decomposition

The polar decomposition of a matrix A ∈ C
m×n , rank (A) = n, is the unique

factorization A = P H , with P ∈ C
m×n orthonormal (P H P = I ) and H ∈ C

n×n

Hermitian positive definite (see Theorem2.2.12). It is related to the square root by

P = A(AHA)−1/2, H = (AHA)1/2. (3.8.32)

Given P , the Hermitian factor can be computed as H = P H A. The significance of
this decomposition is that P is the unitary matrix closest to A. The polar decompo-
sition can be regarded as a generalization of the polar representation of a complex
number z = eiθ |z|, where eiθ corresponds to the factor P . We have

eiθ = z/|z| = z(1 − (1 − |z|2))−1/2 = z(1 − ξ)−1/2, ξ = 1 − |z|2. (3.8.33)

Thematrix power series corresponding to the Taylor series of the function (1−ξ)−1/2

given in (3.8.29) leads to a family of iterative algorithm for computing P . Put X0 = A,
and for k = 0, 1, 2, . . . , compute

Xk+1 = Xk

(
I + 1

2
Ek + 3

8
E2

k + · · ·
)
, Ek = I − X H

k Xk . (3.8.34)

If the corresponding scalar iteration converges for all singular values σi of A, then
limk→∞ Xk = P; see Björck and Bowie [24, 1971]. If A is not too far from a
unitary matrix, this is an effective method that only requires matrix multiplications.
In particular, the Newton iteration

Xk+1 = Xk
(
I + 1

2 Ek
)
,

converges with quadratic rate if 0 < σi <
√
3, i = 1 :n.
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In some applications it is desired to compute the polar decomposition for matrices
that may be ill-conditioned. For a square nonsingular matrix A the iterative method
X0 = A,

Xk+1 = 1

2

(
Xk + X−H

k

)
, k = 0, 1, 2, . . . , (3.8.35)

is Newton’s method for the equation X HX = I . This iteration is globally convergent
to P and the convergence is asymptotically quadratic. It also avoids the possible
loss of information associated with the explicit formation of AHA. The iteration
(3.8.35) cannot be directly applied to a rectangular matrix A. But this is easily
dealt with by initially computing a QR factorization A = Q R (preferably with
column interchanges), where R is square and nonsingular. If R = U H is the polar
decomposition of R, then A = (QU)H is the polar decomposition of A. Hence, the
iteration need only be applied to the square upper triangular matrix R.

Let X0 = A = UD0V H be the singular value decomposition of A, where D0 =
� = diag(σ1, . . . , σn). Then in (3.8.35) Xk = U Dk V H , where

Dk+1 = 1

2

(
Dk + (Dk)

−1), Dk = diag(d(k)
1 , . . . , d(k)

n ).

Thus, (3.8.35) is equivalent to the decoupled scalar iterations

d(0)
i = σi , d(k+1)

i = 1

2

(
d(k)

i + 1/d(k)
i

)
, i = 1 :n. (3.8.36)

This is the same scalar Newton iteration as (3.8.27) used for the matrix sign function.
From familiar relations for the Newton square root iteration we know that

d(k)
i − 1

d(k)
i + 1

=
(

d(k−1)
i − 1

d(k−1)
i + 1

)2

= · · · =
(

σi − 1

σi + 1

)2k

, i = 1 :n. (3.8.37)

If A is nonsingular, then σi > 0 and |σi − 1|/|σi + 1| < 1, i = 1 :n and the iteration
converges globally with quadratic rate.

If A is ill-conditioned the convergence of the Newton iteration can be very slow
initially. From (3.8.37), it follows that initially singular values σi � 1will be reduced
by a factor of two in each step. In the first iteration singular values σi � 1 are trans-
formed into a large singular value and then reduced by a factor of two. Convergence
can be accelerated by taking advantage of the fact that the orthogonal polar factor of
the scaled matrix γ A, γ �= 0, is the same as for A. The scaled version of the iteration
(3.8.35) is X0 = A,

Xk+1 = 1

2

(
γk Xk + 1

γk
X−H

k

)
, (3.8.38)
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where γk are scale factors. The optimal scale factors are determined by the condition
that γkσ1(Xk) = 1/(γkσn(Xk)), and so

γk = (σ1(Xk)σn(Xk))
−1/2.

Given Xk , these scale factors minimize the next error ‖Xk − P‖2. Since the singular
values are not known, we must use some cheaply computable approximation to these
optimal scale factors. The estimate σ1(A) = ‖A‖2 ≤ √‖A‖1‖A‖∞ ≤ √

n‖A‖2,
suggests using the scale factors γk = (αk/βk)

−1/2, where (see Higham [122, 1986]
and Kenney and Laub [151, 1992])

αk = √‖Xk‖1‖Xk‖∞, βk =
√

‖X−1
k ‖1‖X−1

k ‖∞.

With these scale factors, convergence to full working precision takes only nine
iterations even for matrices with condition number κ2(A) = 1016. Byers and Xu
[37, 2008] show that using the suboptimal scale factors

γ0 = 1/
√

ab, γ1 =
√
2
√

ab

a + b
, γk+1 = 1/

√
(γk + 1/γk)/2, k = 1, 2, . . . ,

where a = ‖A−1‖2 and b = ‖A‖2, works nearly as well. The same scaling has been
suggested independently by Kiełbasiński and Ziȩtak [152, 2003].

It is important that the inverses in the Newton iteration (3.8.35) are accurately
computed. It has been shown that the scaled iteration is backward stable provided
the inverses are computed from the GKH bidiagonalization, but not from LU or QR
factorization. If

A = UBVH ∈ C
n×n, B ∈ R

n×n,

is the bidiagonal decomposition of A, then A−1 = V B−1U H . Here U is explic-
itly computed by accumulating the Householder transformation. The bidiagonal
matrix equation BY = U H is then solved and finally A−1 = V Y computed; see
Problem2.6.10.

Higher order iterations for the orthogonal factor in the polar decomposition are
easily derived from the Padé approximations r�,m(ξ) for the function h(ξ) = (1 −
ξ)−1/2; see Sect. 3.8.2. If A ∈ C

m×n has rank n, then the iteration, X0 = A,

Xk+1 = Xk r�,m(I − X H
k Xk), k = 0, 1, 2, . . . ,

converges to P with order of convergence p = � + m + 1. In particular, � = m = 1
gives the third-order Halley’s method (Gander [87, 1990])

Xk+1 = Xk
(
3I + X H

k Xk)(I + 3X H
k Xk

)−1
.
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3.8.4 The Matrix Exponential and Logarithm

The matrix exponential eAt , where A is a constant matrix, can be defined by the
series expansion

eAt = I + At + 1

2! A2t2 + 1

3! A3t3 + · · · . (3.8.39)

This series converges for all A and t , because the radius of convergence of the
power series

∑∞
k=0 ‖A‖k tk/k! is infinite. The series (3.8.39) can be differentiated

everywhere and

d

dt
(eAt ) = A + A2t + 1

2! A3t2 + · · · = AeAt .

Hence, y(t) = eAt c ∈ R
n solves the initial value problem

dy(t)/dt = Ay(t), y(0) = c, (3.8.40)

for linear system of ordinary differential equations with constant coefficients. Since
such systems occur in many physical, biological, and economic processes, the matrix
exponential and its qualitative behavior have been studied extensively.

To study the growth of solutions to differential equations the logarithmic norm
can be used. This was introduced independently by Dahlquist [47, 1958] and
Lozinskii [170, 1958].

Definition 3.8.3 The logarithmic norm of A ∈ C
n×n is

μ(A) = lim
ε↓0

‖I + ε A‖ − 1

ε
. (3.8.41)

Note that μ(A) can be a negative number. In other respects the properties are
similar to those of a norm, e.g., |μ(A)| ≤ ‖A‖, μ(A + B) ≤ μ(A) + μ(B). It also
satisfies the inequality

μ(A) ≥ α(A) = max
i

�(λi (A)),

where α(A) is the spectral abscissa. An important bound (see [47, 1958]) is

‖et A‖ ≤ etμ(A), (3.8.42)

where for the �2-norm μ2(A) = max 1
2λ(A + AH ), which is the numerical abscissa

introduced in (3.2.47). The asymptotic behavior of et A depends on the spectral
abscissa α(A). In particular, limt→∞ ‖et A‖ = 0 if and only if α(A) < 0. On the
other hand, the growth of et A for small positive t depends on the logarithmic norm.
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Fig. 3.3 The matrix exponential ‖et A‖ as a function of t for the matrix in Example3.8.2

Example 3.8.2 The behavior of ‖et A‖2 may be very different in the initial, transient,
and asymptotic phase. Consider the matrix

A =
(−1 4

0 −2

)
, B = 1

2
(A + AT ) =

(−1 2
2 −2

)
.

Since α(A) = −1 < 0, it follows that limt→∞ ‖et A‖ = 0. Figure3.3 shows ‖et A‖2
plotted as a function of t . The curve has a hump illustrating that for small values of
t some of the elements in et A first increase as t increases, before they start to decay.
The logarithmic norm μ2(A) = (3+√

17)/2 ≈ 3.562 (the largest eigenvalue of the
symmetric matrix B) correctly predicts the initial growth. �

A wide variety of methods for computing eA have been proposed; see Moler and
Van Loan [186, 2003]. One difficulty can be illustrated by the exponential of a 2 by
2 upper triangular matrix, By Definition3.8.1,

et A =
⎛
⎝eλ1t eλ1t − eλ2t

λ1 − λ2
0 eλ2t

⎞
⎠ , A =

(
λ1 1
0 λ2

)
, λ1 �= λ2, (3.8.43)

but if λ1 = λ2, the off-diagonal element is teλ1t . When |λ1 − λ2| is small, but
not negligible, neither of these two expressions are suitable. Severe cancellation will
occur in computing the divided difference giving the off-diagonal element. Rewriting
this element as

eλ1t − eλ2t

λ1 − λ2
= e(λ1+λ2)/2 sinh((λ1 − λ2)/2)

(λ1 − λ2)/2
, (3.8.44)
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as suggested byHigham [128, 2008], p. 251, an accurate result is obtained.When this
type of difficulty occurs in more complex situations, the cure is by no means easy.

The best general purpose method to compute eA is the method of scaling and
squaring. This method is based on the fundamental relation ex = (ex/2)2 for
the exponential function and dates back to Briggs18 and Napier19; see Goldstine
[97, 1977]. Using this relation repeatedly and inserting a matrix argument, we obtain

eA = (
eA/2k )2k

. (3.8.45)

If the exponent k is chosen sufficiently large, then ‖A/2k‖ = ‖A‖/2k � 1. Then
eA/2k

can be reliably computed from a Taylor or Padé approximation. The result eA

is then formed by squaring this k times.
In general it is advantageous to use a diagonal Padé approximation of ex :

rm,m(z) = Pm,m(z)

Qm,m(z)
=

∑m
j=0 p j z j

∑m
j=0 q j z j

. (3.8.46)

The coefficients are known explicitly for all m (see [48, 2008], p. 349):

p j = (2m − j)! m!
(2m)! (m − j)! j ! , q j = (−1) j p j , j = 0 :m. (3.8.47)

Note that Pm,m(z) = Qm,m(−z) reflects the property that e−z = 1/ez . The coeffi-
cients can be computed from the recursion relation

p0 = 1, p j+1 = m − j

(2m − j)( j + 1)
p j , j = 0 :m − 1. (3.8.48)

To evaluate a diagonal Padé approximation of even degree 2m we write

P2m,2m(A) = p2m A2m + · · · + p2A2 + p0 I

+ A(p2m−1A2m−2 + · · · + p3A2 + p1 I ) = U + V .

This can be evaluated with m + 1 matrix multiplications by successive squaring:
A2, A4, . . . , A2m . Then Q2m,2m(A) = U − V needs no extra matrix multiplications.
The final division P2m,2m(A)/Q2m,2m(A) is performed using an LU factorization of

18 Henry Briggs (1561–1630), English mathematicians, fellow of St. John’s College, Oxford, was
greatly interested in astronomy, which involved much heavy calculations. He learned about log-
arithms by reading Napier’s text from 1614. Briggs constructed logarithmic tables to 14 decimal
places that were published in 1624.
19 JohnNapier (1550–1617) came from awealthy Scottish family and devotedmuch time to running
his estate and working on Protestant theology. He studied mathematics as a hobby and undertook
long calculations. His work on logarithms was published in Latin 1614. An English translation by
E. Wright appeared in 1616.
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Q2m,2m(A). An approximation of odd degree 2m +1 can be evaluated with the same
number of matrix multiplications.

For a scalar argument the error in the Padé approximation is

ez − Pm,m(z)

Qm,m(z)
= (−1)k (m!)2

(2m)!(2m + 1)! z2m+1 + O(z2m+2). (3.8.49)

From this it can be shown that rm,m(2−s A)2
s = eA+E , where

‖E‖
‖A‖ < 23(2−s‖A‖)2m (m!)2

(2m)!(2m + 1)! ,

see Moler and Van Loan [186, 2003], Appendix A. For IEEE double precision using
a scaling such that 2−s‖A‖ < 1/2 and the diagonal Padé approximation

P6,6(z) = 1 + 1

2
z + 5

44
z2 + 1

66
z3 + 1

792
z4 + 1

15840
z5 + 1

665280
z6

gives ‖E‖/‖A‖ < 3.4·10−16, which is close to the unit roundoff 2−53 = 1.11·10−16.
Note that this is a backward error and does not guarantee an accurate result. If the
problem is inherently sensitive to perturbations, the error can still be large.

Roundoff errors in the squaring phase is a weak point of this method that the
analysis above does not take into consideration. We have

‖A2 − f l(A2)‖ ≤ γn‖A‖2, γn = nu

1 − nu
.

But it is possible that‖A2‖ � ‖A‖2 and then this is not satisfactory.This shows the
danger in matrix squaring. The number of squarings can be reduced by using a higher
degree Padé approximation. In 2006Matlab introduced an improved version of the
scaling and squaring method with a Padé approximation of degree 13 and a scaling
such that 2−s‖A‖ < 5.4. This algorithm, due to Higham [127, 2005], is supported by
a new error analysis, giving sharper error bounds than before. Further improvements
of this implementation are suggested in Al-Mohy and Higham [5, 2009].

The logarithm of a matrix A is a solution to the matrix equation eX = A.
If A ∈ C

n×n has no eigenvalues λ with �λ < 0, then there exists a unique principal
logarithm X = log(A) such that −π < �(λ(X)) < π.

An efficient method to compute the principal logarithm is the method of inverse
scaling and squaring by Kenney and Laub [148, 1989]. In the scalar case this uses
the property log z = 2k log z1/2

k
.When k increases, z1/2

k → 1. Formatrix arguments
the identity becomes

log A = 2k log A1/2k = 2k log(I + X), (3.8.50)
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where X = A1/2k − I . The matrix A1/2k
is computed by repeatedly taking square

roots of A until ‖X‖ is sufficiently small. Then a diagonal Padé approximation is
used to approximate log(I + X). The result is finally obtained from (3.8.50).

Cancellation when forming X = A1/2k − I must be taken into account when
choosing k, and too many square roots can lead to a loss of accuracy. This source
of error is apparent already in the scalar case. The relative condition number for the
matrix logarithm can be shown to be κlog(A) = κ(A)/‖ log(A)‖.

The first few diagonal Padé approximations of Mercator’s series expansions

log(1 + x) = x − x2/2 + x3/3 − x4/4 + · · ·
are

r11 = 2x

2 + x
, r22 = 6x + 3x2

6 + 6x + x2
, r33 = 60x + 60x2 + 11x3

60 + 90x + 36x2 + 3x3
.

The numerator and denominator of rm,m(X) = pm,m(X)/qm,m(X) can be evaluated
using Horner’s rule. Then rm,m(X) ≈ log(I + X) is obtained by solving the matrix
equation qm,m(X)rm,m(X) = pm,m(X). Kenney and Laub [149, 1989], Corollary4,
show that the error in the Padé approximation evaluated at a matrix argument X is
bounded by the error in the scalar approximation with x = ‖X‖:

‖rm,m(X) − log(I − X)‖ ≤ |rm,m(x) − log(1 − x)|, (3.8.51)

provided that for any consistent matrix norm ‖X‖ < 1. Given rm,m , these error
bounds can be evaluated at negligible cost. Taking m = 7 and ‖X‖ ≤ 0.264 ensures
full IEEE double precision accuracy in the approximation.

Different methods for evaluating matrix Padé approximations have been analyzed
by Higham [124, 2001]. A potentially more efficient way is to use the partial fraction
form

rm,m(x) =
m∑

j=1

α
(m)
j x

1 + β
(m)
j

, (3.8.52)

where α
(m)
j > 0 are the weights and β

(m)
j ∈ (0, 1) are the nodes of the m-point

Gauss–Legendre quadrature rule. Each term involves solving a matrix equation
(1 + β

(m)
j )Y j = α

(m)
j X . Hence, the evaluation takes mn3 flops. A further advan-

tage is that the terms in (3.8.52) can be evaluated in parallel.
Let A = U T U H be a Schur normal form of A. Then A1/2k = U T 1/2k

U H , and
only square roots of triangular matrices need to be computed. The cost for computing
the Schur form is about 25n3 flops and each square root costs n3/3flops. The diagonal
elements log tii , i = 1 : n, of log(T ) are best obtained separately using the built-in
scalar logarithm function. If A is a normal matrix, then T is diagonal and no Padé
approximation is needed. A suitable choice for IEEE double precision is m = 16
and ‖X‖ < 0.99.
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There are cases when the parameter k needed to reduce ‖X‖ sufficiently for the
whole matrix is too large for some part of the matrix. Such an “over-scaling” can
lead to a loss of accuracy. If the Schur–Parlett method is used, then the method of
scaling and squaring need only be applied to the diagonal blocks and an over-scaling
can be avoided.

An alternative to the Mercator’s series is Gregory’s series

log

(
1 + z

1 − z

)
= 2z arctanh z = 2z(1 + z2/3 + z4/5 + z6/7 + · · · ), (3.8.53)

which contains only powers of even order. The Padé approximation sm,m(z) of
log((1 + z)(1 − z)) are related to rm,m(x) of log(1 + x) by

rm,m(x) = sm,m(z), z = x/(x + 2),

(see [16, 1996]), Theorem1.5.2. A suitable approximation for use with IEEE double
precision is

s8,8(z) = 2z(225 225 − 345 345z2 + 147 455z4 − 15 159z6)

225 225 − 420 420z2 + 242 550z4 − 441 200z6 + 1 225z8
;

see Cardoso and Leite [38, 2001], [39, 2006]. Setting (I + Z)/(I − Z) = A1/2k

we get

Z = (I + A1/2k
)−1(I − A1/2k

) = (X + 2I )−1X.

This shows that computing Z requires the LU factorization of A1/2k + I .
Kågström [141, 1977] gave an early method for computing a general matrix

function. It uses an initial similarity transformation to block diagonal form by the
algorithm of Kågström and Ruhe [142, 1980] and the scalar Parlett recurrence is
used, unless tii and t j j are too close. Since the mid 1980s the literature on matrix
functions has grown fast. An indispensable source for anyone interested in matrix
functions is the landmark monograph by Higham [128, 2008]. Earlier treatments are
found in Chapter V, Gantmacher [89, 1959], Lancaster [164, 1985], and Chap.6 in
Horn and Johnson [130, 1991].

Ward [241, 1977] analyzed the scaling and squaring method for computing the
exponential of a matrix and gave an a posteriori error bound. In one of the clas-
sic papers in numerical analysis, Moler and Van Loan [185, 1978] (republished as
[186, 2003]) survey “19 dubious ways” to compute the matrix exponential.



3.8 Functions of Matrices 591

Exercises

3.8.1 (a) Show that if λ1 �= λ2, then

A =
(

λ1 1
0 λ2

)
⇒ f (A) =

⎛
⎝ f (λ1)

f (λ1) − f (λ2)

λ1 − λ2
0 f (λ2)

⎞
⎠ .

Comment on the numerical use of this expression when λ2 ≈ λ1.
(b) Show that for

A =
(
0.5 1
0 0.6

)
, log(A) =

(−0.6931 1.8232
0 0.5108

)
.

3.8.2 Let C be a closed curve in the complex plane, and consider the function

φC (A) = 1

2π i

∫

C

(z I − A)−1dz.

If the whole spectrum of A is inside the contour C , then by (3.8.9), φC (A) = I . What is
φC (A) when only part of the spectrum (or none of it) is inside C?
Hint: First consider the case when A is a Jordan block.

3.8.3 (a) Let A ∈ R
n×n be a given nonsingular matrix. Prove that for the Schulz iteration

X (k+1) = X (k)(2I − AX(k)), k = 0, 1, 2, . . . ,

limk→∞ X (k) = A−1 if and only if ρ(I − AX(0)) < 1.
Hint: First show that I − AX(k+1) = (I − AX(k))2.

(b) Use the iteration in (a) to compute the inverse A−1, where

A =
(
1 1
1 2

)
, X (0) =

(
1.9 −0.9

−0.9 0.9

)
.

Verify that the rate of convergence is quadratic!

3.8.4 (a) Show that the relation (
a b
c d

)2

=
(
0 1
0 0

)

cannot hold for any a, b, c, and d.
(b) Show that X2 = A, where

A =
⎛
⎝
0 1 0
0 0 0
0 0 0

⎞
⎠ , X =

⎛
⎝
0 0 1
0 0 0
0 1 0

⎞
⎠ .

Can X be represented as a polynomial in A?

3.8.5 (a) The so-called Wilson matrix ([86, 1985], pp. 152–153)

W =

⎛
⎜⎜⎝
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

⎞
⎟⎟⎠

is symmetric positive definite, and has condition number κ2(W ) ≈ 2984.
Perform 12 iterations with the simplified Newton method
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X0 = I, Xk+1 = 1

2

(
Xk + X−1

k

)
.

For what value of k is the smallest residual norm ‖X2
k − W‖F obtained?

(b) Same as (a), but use the Denman–Beavers iteration (3.8.19).

3.8.6 Let A have the polar decomposition A = P H , where P is unitary. Show that
(

0 P
P H 0

)
= sign

(
0 A

AH 0

)
. (3.8.54)

Hint: Use the identity (3.8.26).
3.8.7 (Higham [122, 1986])

(a) Let A ∈ R
n×n be a symmetric and positive definite matrix. Show that if

A = LLT , LT = P H

are the Cholesky and polar decomposition, respectively, then A1/2 = H .
(b) The observation in (a) leads to an attractive algorithm for computing the square root

of A. Suppose s steps of the iteration (3.8.35) are needed to compute the polar decom-
position. How many flops are required to compute the square root if the triangular
form of L is taken into account?

3.8.8 Halley’s third-order method for the polar decomposition leads to the iteration

Xk+1 = Xk
(
3I + X H

k Xk)(I + 3X H
k Xk

)−1
.

Implement this method and test it on ten matrices A ∈ R
20×10 with random elements

uniformly distributed on (0, 1). (InMatlab such matrices are generated by the command
A = rand(20,10).) How many iterations are needed to reduce ‖I − X T

k Xk‖F to the
order of machine precision?

3.8.9 Show that, if ‖ · ‖ is a consistent matrix norm, then

lim
k→∞ ‖Ak‖1/k = ρ(A), lim

t→∞
log ‖eAt‖

t
= max

λ∈�(A)
�(λ), (3.8.55)

where ρ denotes the spectral radius. Hint: Assume, without loss of generality, that A is in
its Jordan canonical form.

3.8.10 Show that for ‖A‖∞ the logarithmic norm equals

μ∞(A) = max
i

(
�(aii ) +

∑
j �=i

|ai j |
)
.

3.8.11 Show that if ⊕ denotes the Kronecker sum, then eA ⊗ eB = eB⊕A.

3.8.12 (a) Compute eA, where

A =
(−49 24

−64 31

)
,

using the method of scaling and squaring. Scale A so that ‖A/2s‖∞ < 1/2 and
approximate the exponential of the scaled matrix by the Padé approximation

r3,3 = p3(x)/p3(−x), p3(x) = 1 + x

2
+ x2

10
+ x3

120
.
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(b) Compute the eigenvalue decomposition A = X�X−1 and obtain eA = Xe� X−1.
Compare the result with that obtained in (a).

3.8.13 (Dieci et al. [66, 1996]) (a) Let A =
(

a b
c d

)
be a real matrix with complex conjugate

eigenvalues θ ± iμ. Show that

log(A) = α I − 2βμ

4bc + (a − d)2

(
a − d 2b
2c −a + d

)
, (3.8.56)

where

α = log
(√

θ2 + μ2
)

, β = arccos(θ/ρ), 0 ≤ β < π.

(b) Specialize to the case when A is skew-symmetric, c = −b and a = d.

3.9 Nonnegative Matrices with Applications

We recall that a matrix A ∈ R
m×n is called nonnegative if ai j ≥ 0 for all i, j .

Similarly, it is called positive if ai j > 0 for all i, j . If A and B are nonnegative,
then so is their sum A + B and product AB. Hence, nonnegative matrices form a
convex set. Nonnegative matrices occur, e.g., in the study of convergence of iterative
methods and in applications such as queuing theory, stochastic processes, and input-
output analysis. We first state some simple observations that are useful as steps in the
derivation ofmore interesting results to follow. The proofs are suggested as exercises.

Lemma 3.9.1 Let A, B, and C be nonnegative n × n matrices with A ≤ B. Then

1. AC ≤ BC and CA ≤ CB.
2. Ak ≤ Bk, ∀k ≥ 0.
3. If x ≥ 0, x �= 0, and A > 0, then Ax > 0. (Note the strict inequality here.)
4. If A ≥ 0, u > 0, and Au = 0, then A = 0.
5. If A > 0 and square, then |Az| ≤ A|z|, with equality if and only if z = α|z|,

where α ∈ C, |α| = 1.

Example 3.9.1 Suppose there are n factories producing n different products. Let
ai j ≥ 0 be the amount of input from the i th factory to produce one unit of output
in the j th factory. (By a unit of input or output we mean one dollar’s worth of the
product.) We can assume that

∑n
i=1 ai j < 1, j = 1 : n, because otherwise it would

not be profitable to produce the j th product. Let xi represent the amount of output
of the i th product needed to meet the total demand. Only nonnegative values xi ≥ 0
make sense. Then it is required that

xi = a11x1 + a12x2 + · · · + a1n xn + di , i = 1 :n,

where di is the open market demand for the product.
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This model is called the Leontief20 input-output model. We obtain the linear
system

(I − A)x = d, A ≥ 0, d ≥ 0. (3.9.1)

We now show that this system always has a unique nonnegative solution. We have
‖A‖1 = max j

∑n
i=1 ai j < 1 and hence ρ(A) ≤ ‖A‖1 < 1. Therefore, the von

Neumann expansion (I − A)−1 = I + A + A2 + A3 + · · · is convergent and
I − A nonsingular. Since A ≥ 0 implies that Ak ≥ 0, each term in the expan-
sion is nonnegative and (I − A)−1 nonnegative. It follows that (3.9.1) has a unique
nonnegative solution x = (I − A)−1d. �

3.9.1 The Perron–Frobenius Theory

The nonnegative square matrices have remarkable spectral properties. These were
discovered in 1907 by Perron [197, 1907]21 for positive matrices and amplified and
generalized in 1912 by Frobenius [85, 1912] to nonnegative irreducible matrices.
The Perron–Frobenius theory is an important tool for analyzing Markov chains, the
convergence of stationary iterative methods, and many other applications.

Theorem 3.9.1 (Perron’s Theorem) A square matrix A > 0 has a real positive
simple eigenvalue r = ρ(A), the Perron eigenvalue, with the following properties:

(i) To the eigenvalue r corresponds a positive right eigenvector w > 0, the Perron
eigenvector. There is also a left eigenvector v > 0, such that vT A = rvT .

(ii) If λ is any other eigenvalue of A, then |λ| < r .

Proof We give a short proof due to Strang [223, 2009] of part of Perron’s theorem.
Consider all numbers t such that Aw ≥ tw for some nonnegative vector w �= 0.
For the largest value tmax (which is attained), we will show that equality holds,
Aw = tmaxw. Otherwise, if Aw ≥ tmaxw is not a strict equality, multiply by A.
Since A > 0 this produces a strict inequality A2w > tmaxAw, and tmax could be
increased. This contradiction forces the equality Aw = tmaxw to hold, and r = tmax
is an eigenvalue. Its eigenvector w is positive, because Aw is positive.

To see that no eigenvalue can be larger than r , suppose that Az = λz. Since
z and λ may involve complex numbers we take absolute values and obtain

20 Wassily Leontief (1905–1999) was a Russian–American economist and Nobel laureate 1973.
Educated first in St Petersburg, he left USSR in 1925 to earn his PhD inBerlin. In 1931 hewent to the
United States, where in 1932 he joined Harvard University. Around 1949 he used the computer Har-
vardMark II tomodel 500 sectors of theUSeconomy, one of the first uses of computers formodeling.
21 Oskar Perron (1880–1975), German mathematician held positions at Heidelberg and Munich.
His work covered a wide range of topics. He also wrote important textbooks on continued fractions,
algebra, and non-Euclidean geometry.
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|λ||z| = |Az| ≤ A|z|. Here |z| is nonnegative, so |λ| is one of the possible candidates
for t . Therefore, |λ| cannot exceed r , which therefore is the largest eigenvalue.

Let r be the Perron eigenvalue and v and w the left and right Perron eigenvector
of a positive matrix A corresponding to r . Strang proves that if Ax ≥ r x , x ≥ 0,
then Ax = r x , x > 0, but does not show that the Perron eigenvalue is simple. If r
were a multiple, non-defective eigenvalue, there would also exist another vector y
(not a multiple of w), such that Ay = r y. Then we can choose a scalar β such that
z = w − βy ≥ 0, while zi = 0 for at least one value of i . So z ≯ 0, but Az > 0 by
Lemma3.9.1, 3). This contradicts the equation Az = r z that follows from

Az = Aw − β Ay = rw − βr y = r z.

Hence, r cannot be a non-defective multiple eigenvalue. We shall see below (after
Theorem3.9.4) that it cannot be defective either. To prove statement (iii) in Perron’s
theorem, suppose on the contrary that Az = λz, λ �= r , |λ| = r . As mentioned
above, Strang shows that this implies A|z| ≥ |Az| = r |z|, and we showed above
(implicitly) that this implies that z has to be a multiple of the Perron vector w. �

The ideas in Strang’s proof also yield the result that there exists a positive left
eigenvector v > 0 to the Perron eigenvalue r . It is well-known that if Ax = λx ,
λ �= r , then vT x = 0. Hence, such an eigenvector cannot be positive. The spectral
projector P = vwT /wT v is called the Perron projector.

The Perron theorem may be thought of as a special case of the following theorem
due to Frobenius. The proof of this theorem in Gantmacher [89, 1959] needs seven
pages, and is too long to be included here. A full proof is also found in Berman and
Plemmons [20, 1994], pp. 27–32, and Fiedler [78, 2008], Sect. 4.2.

Theorem 3.9.2 (Perron–Frobenius Theorem)A nonnegative irreducible matrix A ∈
R

n×n has a real positive simple eigenvalue r = ρ(A), with the following properties:

(i) To r correspond positive right and left eigenvectors w > 0 and v > 0, respec-
tively.

(ii) The eigenvalues of modulus ρ(A) are all simple. If there are m eigenvalues of
modulus ρ, they must be of the form λk = ρe2kπ i/m, k = 0 :m − 1.

(iii) If m > 1, then there exists a permutation matrix P such that

P APT =

⎛
⎜⎜⎜⎜⎜⎝

0 A12 0 · · · 0
0 0 A23 · · · 0

0 0 0
. . . 0

0 0 0 · · · Am−1,m
Am1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

,

where the zero blocks down the diagonal are square. Such a matrix is called
cyclic of index m > 1. If m = 1, the matrix is called primitive.
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Since a nonnegative matrix can be the limit of a sequence of positive matrices,
and because the eigenvalues depend continuously on the matrix elements, it follows
that the Perron value r is the spectral radius also of a nonnegative matrix.

The Perron–Frobenius theorem tells us that w > 0 also for an irreducible non-
negative matrix. This is shown as follows. The passage to the limit referred to above
only shows that w ≥ 0. Now suppose that wi = 0 for i ∈ I (say) and wi > 0
otherwise. For i ∈ I we then have

∑
j ai jw j = rwi = 0. It follows that ai j = 0 for

j /∈ I , which contradicts the irreducibility. Hence, wi > 0 for all i . The same holds
for the left Perron eigenvector.

Theorem 3.9.3 Let r be the Perron eigenvalue of an irreducible nonnegative matrix
A. Then the inequality Ax > r x cannot be satisfied by any x. Similarly, the inequal-
ities Ax < r x and yT A < r yT are impossible.

Proof Suppose that r x < Ax .Multiplying by the left Perron vector vT gives rvT x <

vT Ax = rvT x . This contradiction shows the impossibility of the supposition. The
other cases are shown analogously. (Note that there are no nonnegativity restrictions
on x and y here.) �

An application of this theorem gives the following result. If x > 0, then

min
i

(Ax)i

xi
≤ r ≤ max

i

(Ax)i

xi
. (3.9.2)

This gives simple lower and upper bounds for the computation of the Perron eigen-
value by the power method, which can be a practical method when a crude estimate
is sufficient.

Theorem 3.9.4 If A is nonnegative and irreducible, then the Perron vector w defines
weights in a vector norm ‖x‖w = maxi |xi |

/
wi . For the induced matrix norm

ρ(A) = ‖A‖w.

Proof From Theorem3.9.3 we obtain

‖A‖w = max
i

∑
j

|ai j |w j

wi
= max

i

|(Aw)i |w j

wi
,

which equals the Perron value ρ(A). �

The use of this theorem yields a simple proof that the Perron eigenvalue is not
defective. Since ‖A‖w = r , it follows that ‖Ak‖w ≤ rk for any natural number k. On
the other hand, if the order of the maximal Jordan block Jp belonging to r is p > 1,
then J k

p , and hence Ak too, would behave like k p−1rk as k → ∞. Gantmacher’s
proof also includes the following lemma of more general interest.

Lemma 3.9.2 Let C be a complex matrix such that |C | ≤ A, where A is nonnegative
and irreducible. Then the spectral radii satisfies ρ(C) ≤ ρ(A), with equality if and
only if C = αD AD−1, where |α| = 1 and D is a diagonal matrix such that |D| = I .
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Proof The first part of this lemma follows directly from Theorem3.9.4:

ρ(C) ≤ ‖C‖w ≤ ‖A‖w = ρ(A) = r.

The proof of the second part is trickier, but rather amusing. Since ρ(C) = r , in the
case of equality, it follows that for some vector y, Cy = αr y, where |α| = 1. Hence

r |y| = |Cy| ≤ |C ||y| ≤ A|y|.

By Theorem3.9.3 we conclude that y = w, the Perron vector of A. Hence,
(A − |C |)w = rw − rw = 0. Then |C | = A by Lemma3.9.1 (4).

Since |y| = w, it follows that y = Dw for some diagonal matrix D with |D| =
I . The equation Cy = αr y can now be written in the form Fw = rw, where
F = α−1D−1CD. Note that |F | = |C | = A, hence |F |w = rw = Fw. It is left
as an exercise for the reader to deduce from this that F = |F | = A, and hence
C = αD AD−1. �

Much of the theory of positive and nonnegative matrices can be modified to the
case where the diagonal elements are unrestricted. This is of interest in differential
equations, where “infinitesimal matrices” I + ε A, 0 < ε � 1, arise in a natural
manner. Such matrices are positive even though the diagonal elements of A are
unrestricted. Note that ρ(I + ε A) = 1 + ε maxi �(λi (A)) + o(ε), and

‖I + ε A‖ = 1 + ε μ(A) + o(ε),

where μ(A) is the logarithmic norm; see Definition3.8.3. Perron’s theorem is valid
with the following modifications: r is a real eigenvalue only (not positive real), the
condition |λ| < r is to be replaced by |�(λ)| < r and μw(A) = max�(λ(A)).

3.9.2 Finite Markov Chains

A finite Markov chain22 is a stochastic process, i.e. a sequence of random variables
Xt , t = 0, 1, 2, . . . , in which each Xt can take on a finite number of different states
{si }n

i=1. The future evolution is completely determined by the present state and not
at all in the way it arose. In other words, the process has no memory. Such processes
have many applications in the physical, biological and social sciences.

At each time step t the probability that the system moves from state si to state s j

is independent of t and equals

22 Named after Andrei Andreevic Markov (1856–1922). Markov attended lectures by Chebyshev at
St Petersburg University, where graduated in 1884. His early work was in number theory, analysis,
and continued fractions. He introducedMarkov chains in 1908 (see also [175, 1912]), which started
a new branch in probability theory.
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pi j = Pr{Xt = s j | Xt−1 = si }.

The matrix P ∈ R
n×n of transition probabilities is nonnegative and must satisfy

n∑
j=1

pi j = 1, i = 1 :n, (3.9.3)

i.e., each row sum of P is equal to 1. Such a matrix is called row stochastic.
Let pi (t) ≥ 0 be the probability that a Markov chain is in state si at time t . Then

the probability distribution vector, also called the state vector, is

pT (t) = (p1(t), p2(t), . . . , pn(t)), t = 0, 1, 2, . . . .

The initial probability distribution is given by the vector p(0). Clearly we have
p(t + 1) = PT p(t) and p(t) = (Pt )T p(0), t = 1, 2, . . . . In matrix-vector form we
can write (3.9.3) as Pe = e, e = (1, 1, . . . , 1)T . Thus, e is a right eigenvector of
P corresponding to the eigenvalue λ = 1 and

Pke = Pk−1(Pe) = Pk−1e = · · · = e, k > 1.

That is Pk , k > 1 is also row stochastic and is the k-step transition matrix.
An important problem is to find a stationary distribution p of a Markov chain.

A state vector p of a Markov chain is said to be stationary if

pT P = pT , pT e = 1. (3.9.4)

Hence, p is a left eigenvector of the transition matrix P corresponding to the eigen-
value λ = 1 = ρ(P). Thus, p solves the singular homogeneous linear system

AT p = 0, subject to eT p = 1, A = I − P, (3.9.5)

and p lies in the null space of AT .
If the transition matrix P of a Markov chain is irreducible, the chain is said to be

ergodic. Then from the Perron–Frobenius theorem it follows that λ = 1 is a simple
eigenvalue of P and rank (A) = n−1. Further, there is a unique positive left eigenvec-
tor p with ‖p‖1 = 1 satisfying (3.9.4), and any subset of n − 1 columns (rows) of A
are linearly independent (otherwise p would have some zero component). If P > 0,
there is no other eigenvalue with modulus ρ(P) and we have the following result:.

Theorem 3.9.5 Let a Markov chain have a positive transition matrix P. Then, inde-
pendently of the initial state vector, limt→∞ p(t) = p, where p spans the null space
of AT = I − PT .

If P is not positive, then, as shown by the following example, the Markov chain
may not converge to a stationary state.
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Example 3.9.2 Consider aMarkov chain with two states, for which state 2 is always
transformed into state 1 and vice versa. The corresponding transition matrix is

P =
(
0 1
1 0

)
,

with two eigenvalues of modulus ρ(P): λ1 = 1 and λ2 = −1. Here P is symmetric
and its left eigenvector equals p = (0.5, 0.5)T . But for any initial state different
from p, the state will oscillate and not converge.

This example can be generalized by considering a Markov chain with m states
and taking P to be the permutation matrix corresponding to a cyclic shift. Then P
has m eigenvalues on the unit circle in the complex plane. �

Definition 3.9.1 The group inverse of the matrix A, when it exists, is the matrix
X = A‡ satisfying the three equations

AX A = A, X AX = X, AX = X A. (3.9.6)

Many results in the theory of Markov chains can be phrased in terms of the group
inverse of A = I −P . By the two first identities in (3.9.6) the group inverse is a (1, 2)-
inverse, i.e., it satisfies the Penrose conditions (1) and (2); see (2.2.9), p. 230. The last
identity says that X commutes with A. The group inverse of A exists and is unique if
and only if A has index one, i.e., rank (A2) = rank (A).23 This condition is satisfied
for every transition matrix (Meyer [180, 1975], Theorem2.1). Further, we have

I − epT = AA‡.

(Note that AA‡ is a projection matrix because (epT )2 = pT eepT = epT .)

Theorem 3.9.6 (Golub and Meyer [101] Let A = I − P ∈ R
n×n, where P is

the transition matrix of an ergodic Markov chain. Then the R-factor in the QR
factorization of A is uniquely determined and has the form

R =
(

U un

0 0

)
, un = −Ue, (3.9.7)

where U ∈ R
(n−1)×(n−1) is a nonsingular upper triangular matrix and e a column of

ones. The stationary distribution p can be recovered from the last column q = Qen

of p = q
/∑n

i=1 qi . Further, it holds that

A‡ = (I − epT )

(
U−1 0
0 0

)
QT (I − epT ). (3.9.8)

23 It is known that if this condition holds, A belongs to a set that forms a multiplicative group under
ordinary matrix multiplication.
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Proof From 0 = Ae = Q(Re), where e is a column of ones, it follows that Re = 0.
In particular, rnn = 0 and R must have the form given in (3.9.7).We have rank (A) =
rank (U ) = n−1, and henceU is nonsingular. Since the last rowof R = QT A is zero,
it is clear that qT A = 0, where q is the last column of en . By the Perron–Frobenius
theorem, q > 0 or q < 0 and it follows that p = q/eT q. If we set

A− =
(

U−1 0
0 0

)
QT ,

it can be verified that AA− A = A. From the definition of a group inverse

A‡ = A‡AA‡ = A‡(AA− A)A‡ = (A‡A)A−(AA‡)

= (I − epT )

(
U−1 0
0 0

)
QT (I − epT ). �

For an ergodic chain, the matrix M of mean first passage times has elements mi j

equal to the expected number of steps before entering state s j after the initial state si .
These matrices are useful in analyzing, e.g., safety systems and queuing models. The
matrix M is the unique solution of the linear equation

AX = eeT − P diag(X).

The mean first passage times matrix M can be expressed in terms of A‡ as

M = I − A‡ + eeT diag(A‡).

The theory ofMarkov chains for general reducible nonnegative transitionmatrices
P is more complicated. It is then necessary to classify the states. We say that a state
si has access to a state s j if it is possible to move from si to s j in a finite number
of steps. If also s j has access to si , then si and s j are said to communicate. This is
an equivalence relation on the set of states and partitions the states into classes. If a
class of states has access to no other class it is called final. If a final class contains a
single state, then the state is called absorbing.

Suppose that P has been permuted to its block triangular form

P =

⎛
⎜⎜⎜⎝

P11 0 . . . 0
P21 P22 . . . 0
...

...
...

Ps1 Ps2 . . . Pss

⎞
⎟⎟⎟⎠ (3.9.9)

where the diagonal blocks Pii are square and irreducible. Then these blocks cor-
respond to the classes associated with the corresponding Markov chain. The class
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associated with Pii is final if and only if Pi j = 0, j = 1 : i − 1. If P is irreducible,
then the corresponding matrix chain contains a single class of states.

Example 3.9.3 Suppose there is an epidemic in which every month 10% of those
who are well become sick and of those who are sick, 20% die, and the rest become
well. This can be modeled by the Markov process with three states dead, sick, well,
and transition matrix

P =
⎛
⎝

1 0 0
0.1 0 0.9
0 0.2 0.8

⎞
⎠ .

Then the left eigenvector is p = e1 = (
1 0 0

)T , i.e. in the stationary distribution
all are dead. Clearly the class dead is absorbing! �

We now describe a way to force a Markov chain to become irreducible.

Example 3.9.4 (Eldén [74, Chap.12]) Let P ∈ R
n×n be a row stochastic matrix

and set

Q = αP + (1 − α)
1

n
eeT , α > 0,

where e is a vector of all ones. Then Q > 0 and because eT e = n, we have
Pe = (1 − α)e + αe = 1, so Q is row stochastic. From the Perron–Frobenius
theorem it follows that there is no other eigenvalue of Q with modulus one. We now
show that if the eigenvalues of P are 1, λ2, λ3, . . . , λn , then the eigenvalues of Q
are 1, αλ2, αλ3, . . . , αλn . Proceeding as in the proof of the Schur decomposition
(Theorem3.1.9), Let U = (u1 U2) be an orthogonal matrix with u1 = e/

√
n. Then

U T PU = U T (
PT u1 PT U2

) = U T (
u1 PT U2

)

=
(

uT
1 u1 uT

1 PT U2

U T
2 u1 U T

2 PT U2

)
=

(
1 vT

0 T

)
.

This is a similarity transformation, so T has eigenvalues λ2, λ3, . . . , λn . Further,
U T e = √

ne1, so that U T eeT U = ne1eT
1 , and we obtain

U T QU = U T
(

αP + (1 − α)
1

n
eeT

)
U

= α

(
1 vT

0 T

)
+ (1 − α)

(
1 0
0 0

)
=

(
1 αvT

0 αT

)
.

This matrix is block upper triangular, so its eigenvalues are 1 and α times the eigen-
values of T . �

Norbert Wiener in 1923 was the first to rigorously treat continuous Markov
processes. The foundations of a general theory were laid during the 1930s by Andrei
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Kolmogorov. The group inverse is a special case of the Drazin inverse introduced in
[69, 1958]. The role of this inverse in analyzing finite Markov chains is surveyed in
Meyer [180, 1975]. Bini, Latouche, and Meini [23, 2005] give a modern introduc-
tion to the numerical treatment of structuredMarkov chains; see also the textbook by
Meyer [181, 2000]. Articles focusing on the use of linear algebra in treating Markov
chains and queuing models are collected in Meyer and Plemmons [182, 1993].

Exercises

3.9.1 Construct a nonnegative reducible matrix with a simple positive eigenvalue equal to the
spectral radius, where at least one component of the eigenvector is zero.

3.9.2 (a) Show that any permutation matrix is doubly stochastic.
(b) Suppose that P and Q are row stochastic matrices. Show that P Q and αP + (1−αQ)

are row stochastic matrices.

3.9.3 Show that the equality signs in (3.9.2) hold only if x = w, where w is the right Perron
eigenvector of A.

3.9.4 Give a graph interpretation of the structure of the block matrix in the Perron–Frobenius
Theorem3.9.2. Show also that P Am PT is a block diagonal matrix and that Am is reducible
although A is irreducible.

3.10 Notes and Further References

Excellent comprehensive texts on eigenvalue problems are Stewart [221, 2001] and
Watkins [244, 2002]. The modern developments of the QR algorithm and meth-
ods for structured eigenvalue problems are well covered by Watkins [246, 2007].
A major source of information on the symmetric eigenvalue problem is Parlett
[192, 1998]. The masterpiece from 1965 on the matrix eigenvalue problems by
Wilkinson [250, 1965] is still a valuable reference.

Bai et al. [15, 2000] give templates for the solution of various algebraic eigenvalue
problems. Further practical details on the implementation of eigenvalue algorithms
can be found in the Handbook [253, 1971] edited by Wilkinson and Reinsch and
in documentation of the EISPACK, LINPACK, and LAPACK software; see Smith
et al. [216, 1976], Garbow et al. [90, 1977], and Anderson et al. [9, 1999]. Golub and
van der Vorst [105, 2000] give a broad survey of recent developments in eigenvalue
computations.
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Chapter 4
Iterative Methods

While using iterative methods still requires know-how, skill, and
insight, it can be said that enormous progress has been made for
their integration in real-life applications.

—Yousef Saad and Henk A. van der Vorst, Iterative solution of
linear systems in the 20th century.

4.1 Classical Iterative Methods

Linear systems Ax = b of quite large size can be treated using the sparse matrix
factorizations described in Sect. 1.7. For some industrial applications such as
structural engineering and circuit simulation, which typically yield ill-conditioned
systems, direct methods are still preferred. As problem sizes grew so much in the
1970s that the matrix A could no longer be stored, interest in iterative methods grew.
An important feature of these is that A itself need not be generated and stored; it
suffices to be able to compute matrix-vector products Ax for arbitrary vectors x .

4.1.1 A Historical Overview

Iterative methods start from an initial approximation that is successively improved
until a sufficiently accurate solution is obtained. Such methods were used already
in the 19th century by Gauss and Jacobi. In the early 20th century relaxation meth-
ods were developed by Richardson [181, 1910] and later refined by Southwell [210,
1946] andothers. Thesemethods are particularly useful for solvingdiscretized elliptic
self-adjoint partial differential equations. These relaxationmethodsweremore appro-
priate for hand calculations and at first seemed difficult to mechanize. A drawback
of all these basic iterative methods is slow convergence, unless the matrix is strongly
diagonally dominant.
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614 4 Iterative Methods

When high speed computers emerged in the early 1950s, an intense development
of iterative methods started. The SOR method is a development of the Gauss–Seidel
method that uses overrelaxation with a factor of ω at each step. In 1954 Young pub-
lished his famous paper on SOR [235, 1954]. He showed that for a certain class of
problems with “property A” it was possible to find the optimal ω. SOR is simple to
program, uses little memory, and can improve the rate of convergence dramatically.
SOR became the workhorse of those times and was used extensively, e.g., in nuclear
diffusion codes, oil reservoir modeling, and weather prediction. Around the same
time, methods using properties of Chebyshev polynomials to accelerate the conver-
gence of basic iterative methods were developed by Frankel [79, 1950] and Golub
and Varga [96, 1961].

The second part of the centurywould be dominated by the invention of theLanczos
process by Lanczos [142, 1950] and the conjugate gradient method by Hestenes and
Stiefel [121, 1952] for symmetric positive definite systems. This started the era of
Krylov subspace methods. Initially, these methods were viewed as direct methods,
because in exact arithmetic they converge after at most n steps, where n is the number
of unknowns. When it was realized that in finite precision arithmetic convergence
could take much longer, these methods fell into disrepute. They were revived when
Reid [179, 1971] suggested that they should be considered as iterative methods and
showed that accurate solutions for well-conditioned problems could be found in
considerably less than n iterations.

Paige andSaunders [168, 1975] developed theKrylov subspacemethodsMINRES
and SYMMLQ for symmetric indefinite linear systems and LSQR [170, 1982] for
least squares problems. In the 1970s Krylovmethods for unsymmetric systems based
on a two-sided Lanczos process were developed. Problems with instabilities and
breakdowns first prevented their use. The GMRESmethod by Saad and Schultz [189,
1986] avoided these problems by instead using the Arnoldi process [4, 1951], at
the cost of using an increasing amount of arithmetic for each step as the iterations
proceed. Several more stable methods based on the two-sided Lanczos process have
since appeared. BiCGSTAB (van der Vorst [221, 1992]) and QMR (Freund and
Nachtigal [83, 1991]) are the most popular of these.

It was early realized that the rate of convergence of iterative methods depended
crucially on the conditioning of the system to be solved. An iterative method may
be applied to a so-called preconditioned system, where each iteration step involves
the solution of a simpler auxiliary system by a direct or another iterative method.
Finding a good preconditioner is as important as choosing the iterative method.
Preconditioners for symmetric positive definite systems started to be developed in
the 1970s. The incomplete Cholesky factorization of Meijerink and van der Vorst
[155, 1977] led to the ICCG method. This was the most used iterative solver for
symmetric positive definite systems for some time.

Krylov subspace methods for eigenvalue problems have evolved roughly in
parallel with those for linear systems. They are based on the Lanczos process for
symmetric (Hermitian) problems and the Arnoldi process for the general case, and
use the Rayleigh–Ritz method for extracting approximations to selected eigenvalues
and eigenvectors.
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The outline of this chapter is as follows. Classicalmethods includingRichardson’s
method, the Jacobi and Gauss–Seidel methods with the related SOR method and
Chebyshev acceleration, are described in Sect. 4.1. Krylov subspace methods, with
the conjugate gradient (CG) method and Lanczos methods for solving Hermitian lin-
ear systems as prime examples are described in Sect. 4.2.Methods for non-Hermitian
systems based on the the Arnoldi and bi-Lanczos processes are covered in Sect. 4.3.
Preconditioned iterative methods and techniques for the construction of precondi-
tioners for different classes of problems are treated in Sect. 4.4. Section4.5 treats
iterative methods and preconditioners for linear least squares problems. Section4.6
surveys the most important iterative methods for large-scale eigenvalue problems.

4.1.2 A Model Problem

Laplace’s equation uxx + uyy = 0, with u(x, y) prescribed on the boundary
� = (0, 1) × (0, 1), is frequently used as a model problem for iterative methods. In
Sect. 1.7 a simple finite difference approximation on an n ×n square grid was shown
to give a system of linear equations Ax = b, where A is symmetric positive definite
with the block-tridiagonal form

A = trid (−I, 2I + Tn,−I )

=

⎛
⎜⎜⎜⎜⎝

2I + Tn −I

−I 2I + Tn
. . .

. . .
. . . −I
−I 2I + Tn

⎞
⎟⎟⎟⎟⎠

∈ R
n2×n2 , (4.1.1)

where Tn = trid(−1, 2, −1) ∈ R
n×n .

In the Cholesky factorization of A the zero elements inside the outer diagonals
of A will fill-in and L will contain about n3 nonzero elements compared to only
about 5n2 in A. The Cholesky factorization will require about n4 flops. This can be
compared to 5n2 flops, the work required per iteration in many iterative methods.

The linear system arising from Laplace’s equation has several typical features
common to other boundary value problems for second-order linear partial differential
equations. One of these is that there are a fixed small number p ≈ 5–10 of nonzero
elements in each row of A. This means that only a tiny fraction of the elements are
nonzero and a matrix-vector multiplication Ax requires only about 2pn2 flops, or
equivalently 2p flops per unknown. Iterative methods take advantage of the sparsity
and other features and make the efficient solution of such systems possible.

The disadvantage of direct methods becomes even more accentuated for
three-dimensional problems. For Laplace’s equation in the unit cube a similar analy-
sis shows that for solving n3 unknowns we need O(n7) flops and about O(n5)

storage. When n grows this quickly becomes unfeasible. But basic iterative methods
still require only about 7n3 flops per iteration.
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The main concern is the number of iterations needed to get acceptable accuracy.
It turns out that this will depend on the condition number of the matrix, and more
especially the clustering of its eigenvalues. We now show that for Laplace’s equation
considered above this condition number will be about πh−2, where h is the distance
between adjacent grid points, i.e., h = 1/(n + 1).

The block-tridiagonal matrix A in (4.1.1) can be written in terms of the Kronecker
product as (see Sect. 1.8.1)

A = Tn ⊗ I + I ⊗ Tn, (4.1.2)

which is the Kronecker sum of Tn and I ; see Sect. 1.8.1. It follows that the n2

eigenvalues of A are

λi + λ j , i, j = 1 :n,

where λi is given by (4.1.3) below. Hence, the condition number of A is the same as
for T . For three and higher dimensions the matrix can also be expressed in terms of
a Kronecker sum; see Problem 4.1.1.

Lemma 4.1.1 Let Tn = trid(b, a, c) ∈ R
n×n be a tridiagonal matrix with constant

diagonals, and assume that a, b, c are real and bc > 0. Then the eigenvalues λ j and
eigenvectors v j , j = 1 :n, of Tn are given by

λ j = a + 2
√

bc cos( jπh),

vi j = (b/c) j/2 sin(k jπh), k = 1 :n.

where h = 1/(n + 1).

From Lemma 4.1.1 it follows that the eigenvalues of Tn = trid(−1, 2,−1) are

λi = 2 + 2 cos( jπh), j = 1 :n, (4.1.3)

and in particular, for n � 1, λmax = 2 + 2 cos(πh) ≈ 4, λmin = 2 − 2 cos(πh) ≈
π2/n2. We conclude that the spectral condition number of Tn = trid(−1, 2,−1) is
approximately equal to κ(Tn) = 4n2/π2.

4.1.3 Stationary Iterative Methods

The idea of solving systems of linear equations by iterative methods dates at least
back to Gauss (1823). In the days of “hand” computations the iterative methods used
were rather unsophisticated, so-called non-cyclic relaxation methods. One picked
an equation with a large residual |ri |, and adjusted the i th component of the current
approximation x (k) so that this equation became exactly satisfied.1

1 Gauss remarked that “The indirect (iterative) procedure can be done while half asleep or while
thinking of other things”.
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Non-cyclic relaxationmethods are less suitable for a computer, because the search
for the largest residual is time-consuming. In Richardson’s method,2 given x (k), the
next approximation is computed from

x (k+1) = x (k) + ω(b − Ax (k)), k = 0, 1, 2, . . . , (4.1.4)

where ω > 0 is a parameter. It follows easily from (4.1.4) that the residual r (k) =
b − Ax (k) and error satisfy the recursions

r (k) = (I − ωA)r (k−1), x (k) − x = (I − ωA)(x (k−1) − x). (4.1.5)

We now derive two other classical stationary iterative methods. Consider a linear
system Ax = b, where A has nonzero diagonal entries, aii �= 0, i = 1 : n. (If A is
nonsingular, it is always possible to reorder the equations so that this condition is
satisfied; see Sect. 1.7.6). Then the system can be written in component form as

xi = 1

aii

(
bi −

n∑
j=1, j �=i

ai j x j

)
, i = 1 :n. (4.1.6)

In Jacobi’s method one goes through the equations in a cyclic fashion. Given x (k),
the new approximation x (k+1) is

x (k+1)
i = x (k)

i + 1

aii
r (k)

i , r (k)
i = bi −

n∑
j=1

ai j x (k)
j , i = 1 :n. (4.1.7)

Note that all components of x (k) can be updated simultaneously and the result does
not depend on the sequencing of the equations. Jacobi’s method is therefore also
called the method of simultaneous displacements.

The method of successive displacements or Gauss–Seidel method3 differs from
the Jacobi method only by using new values x (k+1)

j as soon as they are available:

x (k+1)
i = x (k)

i + 1

aii
r (k)

i , r (k)
i = bi −

i−1∑
j=1

ai j x (k+1)
j −

n∑
j=i

ai j x (k)
j , i = 1 :n.

(4.1.8)

Here the components are successively updated and the sequencing of the equations
will influence the result. For both methods, the amount of work required in each iter-
ation is roughly proportional to the number of nonzero elements in A. If the iterations

2 Lewis Fry Richardson (1881–1953) English mathematician, who in 1922 was the first to use
mathematical methods for weather prediction.
3 It was noted by Forsythe that Gauss nowhere mentioned this method and Seidel never advocated
using it.
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converge, limk→∞ x (k) = x , then r = b − Ax = 0, i.e., x solves Ax = b. For the
Gauss–Seidelmethod, each newvalue x (k+1)

i can immediately replace x (k)
i in storage.

Therefore, the storage required for unknowns is halved compared to Jacobi’s method.
The Jacobi, Gauss–Seidel, and stationaryRichardsonmethods are all special cases

of the class of first-order stationary iterative methods. A general form of this class
of methods is defined to be a splitting A = M − N of A such that M is nonsingular.
Related to this splitting is the iterative method

Mx (k+1) = N x (k) + b, k = 0, 1, . . . . (4.1.9)

If the iteration (4.1.9) converges, i.e., limk→∞ x (k) = x , then Mx = N x + b and
because A = M − N , the limit vector x solves the linear system Ax = b. For the
iteration to be practical, it must be easy to solve linear systems with the matrix M .
This is the case, e.g., if M is chosen to be triangular.

Example 4.1.1 The model problem with n = 2 gives a linear system Ax = b, where

A =

⎛
⎜⎜⎝

4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝
1
2
0
1

⎞
⎟⎟⎠ .

The exact solution is x = (
0.5 0.75 0.25 0.5

)T . Taking x (0) = 0 and using
Jacobi’s method, we obtain the approximations

k x (k)
1 x (k)

2 x (k)
3 x (k)

4
1 0.25 0.5 0 0.25
2 0.375 0.625 0.125 0.375
3 0.4375 0.6825 0.1875 0.4375
4 0.46875 0.71875 0.21875 0.46875
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

The iteration converges, but slowly. If instead the Gauss–Seidel method is used, we
obtain:

k x (k)
1 x (k)

2 x (k)
3 x (k)

4
1 0.25 0.5625 0.0626 0.40625
2 0.40625 0.70312 0.20312 0.47656
3 0.47656 0.73828 0.23828 0.49414
4 0.49414 0.74707 0.24707 0.49854
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

As predicted, the convergence of the Gauss–Seidel method is about twice as fast. But
this is not always the case. It is even possible that the Gauss–Seidel method diverges,
while Jacobi’s method converges. �
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Equivalently, the iteration (4.1.9) can be written

x (k+1) = Bx (k) + c, k = 0, 1, . . . , (4.1.10)

where the iteration matrix is

B = M−1N = I − M−1A, c = M−1b. (4.1.11)

Richardson’s method (4.1.4) can, for fixed ωk = ω, be written in the form (4.1.9)
with the splitting A = M − N , where

M = (1/ω)I, N = (1/ω)I − A.

To write the Jacobi and Gauss–Seidel methods as a one-step stationary iterative
method we introduce the standard splitting

A = D − E − F, (4.1.12)

where D = diag(a11, . . . , ann) is diagonal and

E = −

⎛
⎜⎜⎜⎝

0
a21 0
...

. . .
. . .

an1 · · · an,n−1 0

⎞
⎟⎟⎟⎠ , F = −

⎛
⎜⎜⎜⎝

0 a12 · · · a1n
. . .

. . .
...

0 an−1,n
0

⎞
⎟⎟⎟⎠ . (4.1.13)

Assuming that D > 0, we also write

D−1A = I − L − U, L = D−1E, U = D−1F. (4.1.14)

With this notation Jacobi’s method (4.1.7) corresponds to the splitting M = D,
N = E + F . It can be written in two equivalent forms:

Dx (k+1) = (E + F)x (k) + b, (4.1.15)

x (k+1) = (L + U )x (k) + c, c = D−1b. (4.1.16)

The Gauss–Seidel method (4.1.8) corresponds to the splitting M = D − E , N = F
and becomes

x (k+1) = (D − E)−1Fx (k) + (D − E)−1b, (4.1.17)

x (k+1) = (I − L)−1U x (k) + d, d = (I − L)−1D−1b. (4.1.18)

The iteration matrices for the Jacobi and Gauss–Seidel methods are
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BJ = D−1(E + F) = L + U,

BGS = (D − E)−1F = (I − L)−1U.

The basic iterative methods described above are point iterative methods. They
can easily be generalized to block iterativemethods where A, x and b are partitioned
conformally:

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1n

A21 A22 · · · A2n
...

... · · · ...

An1 An2 · · · Ann

⎞
⎟⎟⎟⎠ , x =

⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

b1
b2
...

bn

⎞
⎟⎟⎟⎠ .

We assume that the diagonal blocks Aii are square and nonsingular and consider the
splitting A = D − E − F , D = diag(A11, A22, . . . , Ann), where

E = −

⎛
⎜⎜⎜⎝

0
A21 0
...

. . .
. . .

An1 · · · An,n−1 0

⎞
⎟⎟⎟⎠ , F = −

⎛
⎜⎜⎜⎝

0 A12 · · · A1n
. . .

. . .
...

0 An−1,n
0

⎞
⎟⎟⎟⎠ ,

(4.1.19)

are strictly lower and upper block triangular, respectively. The block Jacobi method
can then be written

Dx (k+1) = (E + F)x (k) + b,

or

Aii

(
x (k+1)

i − x (k)
i

)
= bi −

n∑
j=1

Ai j x (k)
j , i = 1 :n.

For this iteration to be efficient it is important that linear systems in the diagonal
blocks Aii can be solved efficiently. Block versions of the Gauss–Seidel method are
developed similarly.

Example 4.1.2 For the model problem in Sect. 4.1.3 the matrix A can naturally be
written in the block form, where the diagonal blocks Aii = 2I + T are tridiagonal
and nonsingular; see (4.1.1). The resulting systems can be solvedwith little overhead.
Note that the partitioning is such that xi corresponds to the unknowns at the mesh
points on the i th line. Hence, block methods are in this context known also as “line”
methods and the other methods as “point” methods . �
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4.1.4 Convergence of Stationary Iterative Methods

A stationary iterative method is called convergent if the sequence {x (k)}k=1,2,...
converges for all initial vectors x (0). Subtracting the equation x = Bx + c from
(4.1.9), we obtain the recurrence formula

xk − x = B(x (k−1) − x) = · · · = Bk(x (0) − x), (4.1.20)

for the error in successive approximations. We first give a sufficient condition for a
stationary method to be convergent.

Theorem 4.1.1 A sufficient condition for the stationary iterative method x (k+1) =
Bx (k) + c to be convergent for all initial vectors x (0) is that ‖B‖ < 1 for some
consistent matrix norm.

Proof Taking norms in (4.1.20) we have

‖x (k) − x‖ ≤ ‖Bk‖ ‖(x (0) − x)‖ ≤ ‖B‖k‖(x (0) − x)‖. (4.1.21)

Hence, if ‖B‖ ≤ 1, then limk→∞ ‖x (k) − x‖ = 0. �

Amatrix B ∈ R
n×n is said to be convergent if limk→∞ Bk = 0. It can be seen from

(4.1.20) that of fundamental importance in the study of convergence of stationary
iterative methods are conditions for a sequence of powers of a matrix B to converge
to the null matrix.

Theorem 4.1.2 Given a matrix A ∈ C
n×n with spectral radius ρ = ρ(A), denote

by ‖ · ‖ any �p-norm, 1 ≤ p ≤ ∞, and set ‖A‖T = ‖T −1AT ‖. Then for every
ε > 0, there exists a nonsingular matrix T (ε) such that ‖A‖T (ε) = ρ + ε.

Proof A proof using the Schur canonical form and a diagonal similarity A =
D−1T D is given by Stewart [211, 1973], p. 284. �

Theorem 4.1.3 A matrix B is convergent if and only if ρ(B) < 1, where

ρ(B) = max
1≤i≤n

|λi (B)|

is the spectral radius of B.

Proof We show that the following four conditions are equivalent:

(i) lim
k→∞ Bk = 0;

(ii) lim
k→∞ Bk x = 0, ∀x ∈ C

n ;

(iii) ρ(B) < 1;
(iv) ‖B‖ < 1 for at least one matrix norm.
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From the inequality ‖Bk x‖ ≤ ‖Bk‖ ‖x‖, which holds for any vector x , it follows
that (i) implies (ii). If ρ(B) ≥ 1, there is an eigenvector x ∈ C

n such that Bx = λx ,
with |λ| ≥ 1. Then the sequence Bk x = λk x , k = 1, 2, . . . , is not convergent when
k → ∞ and hence (ii) implies (iii). By Theorem 4.1.2, given a number ε > 0, there
exists a consistent matrix norm ‖ · ‖ depending on B and ε such that

‖B‖ < ρ(B) + ε.

Therefore, (iv) follows from (iii). Finally, by applying the inequality ‖Bk‖ ≤ ‖B‖k ,
we see that (iv) implies (i). �

It should be stressed that the above results are relevant only for the asymptotic
convergence. The initial behavior may be quite different if the iteration matrix is
far from being normal. Such effects of non-normality are discussed in Sect. 4.1.6.
Usually we are not only interested in convergence but also in the rate of convergence.
Let d(k) = x (k) − x be the error at step k. Then, from (4.1.21) it follows that

‖d(k)‖ ≤ ‖Bk‖ ‖d(0)‖.

This shows that on average, at least a factor (‖Bk‖)1/k per iteration is gained. The fol-
lowing nontrivial result can be proved using the Jordan normal form.

Lemma 4.1.2 For any consistent matrix norm,

lim
k→∞(‖Bk‖)1/k = ρ(B). (4.1.22)

The following result is useful for deriving bounds on the rate of convergence of
stationary iterative methods.

Theorem 4.1.4 Let A and B be matrices in C
n×n. If |A| ≤ B, then

ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Proof From the inequalities |Ak | ≤ |A|k ≤ Bk it follows that

‖Ak‖1/k F ≤ ‖ |A|k‖1/k
F ≤ ‖Bk‖1/k

F .

The result now follows from Lemma 4.1.2. �
To reduce the norm of the error by a factor of δ < 1, it suffices to perform k

iterations, where k is the smallest integer that satisfies ‖Bk‖ ≤ δ. Taking logarithms,
we obtain the equivalent condition k ≥ − log δ/Rk(B), where

Rk(B) = −1

k
log ‖Bk‖ (4.1.23)

is called the average rate of convergence. The limit R∞(B) = limk→∞ Rk

(B) = − log ρ(B) is the asymptotic rate of convergence.
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We now give some results on the convergence of the classical methods introduced
in Sect. 4.1.3.

Theorem 4.1.5 Jacobi’s method is convergent if A is row-wise strictly diagonally
dominant, i.e.,

|aii | >

n∑
j=1, j �=i

|ai j |, i = 1 :n.

Proof For the Jacobi method, the iteration matrix BJ = L + U has elements
bi j = −ai j/aii , i �= j , bi j = 0, i = j . From the assumption it then follows that

‖BJ ‖∞ = max
1≤i≤n

n∑
j=1, j �=i

|ai j |/|aii | < 1. �

A similar result for column-wise strictly diagonally dominant matrices can be
proved using ‖BJ ‖1. A slightly stronger convergence result than in Theorem 4.1.5 is
of importance in applications. (Note that, e.g., the matrix A in (4.1.1) is not strictly
diagonally dominant.)

For an irreducible matrix (see Definition 1.1.2) the row sum criterion in
Theorem 4.1.5 can be sharpened. The column sum criterion can be similarly
improved.

Theorem 4.1.6 Jacobi’s method is convergent if A is irreducible and

|aii | ≥
n∑

j=1
j �=i

|ai j |, i = 1 :n,

with inequality for at least one i .

The condition in Theorem 4.1.6 is sufficient also for convergence of the
Gauss–Seidel method. We consider only the case where A is strictly row-wise diag-
onally dominant. Let k be chosen so that

‖BGS‖∞ = ‖BT
GS‖1 = ‖BT

GSek‖1. (4.1.24)

From (I − L)BGS = U , it follows that BT
GSek = BT

GS LT ek + U T ek . Taking norms
and using (4.1.24), we get

‖BGS‖∞ ≤ ‖BGS‖∞‖LT ek‖1 + ‖U T ek‖1.

Since A is strictly row-wise diagonally dominant, we have ‖LT ek‖1 + ‖U T ek‖1 =
‖BJ ‖∞ < 1. It follows that

‖BGS‖∞ ≤ ‖U T ek‖1/
(
1 − ‖LT ek‖1

)
< 1.
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Hence, theGauss–Seidelmethod is convergent. The proof for the strictly columnwise
diagonally dominant case is similar, but estimates ‖BGS‖1.

It can be shown that if the matrix BJ = L + U is nonnegative, then the Gauss–
Seidel method converges faster than the Jacobi method, if the Jacobi method con-
verges at all. This condition is satisfied for most linear systems obtained by finite
difference approximations to partial differential operators.

In Sect. 4.1.3 it was shown that the eigenvalues of the block-tridiagonal matrix A
in (4.1.1) arising from the model problem are (λi + λ j ), i, j = 1 :n, where

λi = 2(1 + cos (iπh)), h = 1(n + 1).

Hence, the eigenvalues of the corresponding Jacobi iteration matrix BJ = L + U =
(1/4)(A − 4I ) are

μi j = 1
2 (cos iπh + cos jπh), i, j = 1 :n,

The spectral radius is obtained for i = j = 1:

ρ(BJ ) = cos(πh) ≈ 1 − 1
2 (πh)2.

This means that the low frequency modes of the error are damped most slowly,
whereas the high frequency modes are damped much more quickly.4 The same is
true for the Gauss–Seidel method, for which

ρ(BGS) = cos2(πh) ≈ 1 − (πh)2.

The corresponding asymptotic rates of convergence are R∞(BJ ) ≈ π2h2/2 and
R∞(BGS) ≈ π2h2, respectively. Hence, for the model problem the Gauss–Seidel
method converges asymptotically twice as fast as Jacobi’s method. The required
number of iterations is proportional to κ(A) for both methods. For a linear system
arising from a discretization on a fine grid, these rates of convergence are much too
slow for the methods to be of direct practical use.

Manymatrices arising from the discretization of partial differential equations have
the following property.

Definition 4.1.1 A nonsingular matrix A = (ai j ) ∈ R
n×n is said to be an M-

matrix5 if ai j > 0 if i = j and ai j ≤ 0 if i �= j and A is nonsingular and A−1 ≥ 0
(componentwise).

4 This is one of the basic observations used in the multigrid method, which uses a sequence of
different meshes to efficiently damp all frequencies.
5 This name was introduced in 1937 by Ostrowski as an abbreviation for “Minkowskische
Determinante”.
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We list some properties that are equivalent to A being anM-matrix. Let A ∈ R
n×n

have nonpositive off-diagonal entries. Then A is an M-matrix if one of the following
conditions holds (see Horn and Johnson [128, 1991], Sect. 2.5):

1. All eigenvalues of A have positive real parts.
2. All principal minors of A are M-matrices.
3. A has an LU factorization A = LU and all diagonal elements of L and U are

positive.
4. The diagonal entries of A are positive and AD is strictly row diagonally dominant

for some positive diagonal matrix D.

Condition 1 implies that a symmetric positive definite matrix with nonpositive
off-diagonal elements is an M-matrix. Such a matrix is also called a Stieltjes matrix.
For example, the matrix arising from the model problem in Sect. 4.1.2 is a symmetric
M-matrix.

It can be shown that if A is an M-matrix, then any splitting where M is obtained
by setting certain off-diagonal elements of A to zero gives a regular splitting,
and ρ(M−1N ) < 1. For the model problem, A has a positive diagonal and the
off-diagonal elements are non-negative. Clearly, this ensures that the Jacobi and
Gauss–Seidel methods both correspond to a regular splitting.

Of particular interest is the following class of splittings.

Definition 4.1.2 For a matrix A ∈ R
n×n , A = M − N is a regular splitting if M

is nonsingular, M−1 ≥ 0, and N ≥ 0.

For regular splittings several results comparing asymptotic rates of convergence can
be obtained; see Varga [225, 2000].

Theorem 4.1.7 If A = M − N is a regular splitting and A−1 ≥ 0, then

ρ(M−1N ) = ρ(A−1N )

1 + ρ(A−1N )
< 1. (4.1.25)

Thus, the iterative method (4.1.10) converges for any initial vector x (0).

From Theorem 4.1.7 and the fact that x/(1 + x) is an increasing function of x it
follows that if A = M1−N1 = M2−N2 are two regular splittingswith N1 ≤ N2, then

ρ(M−1
1 N1) ≤ ρ(M−1

2 N2).

4.1.5 Relaxation Parameters and the SOR Method

We first give conditions for the convergence of the stationary Richardson’s method
x (k+1) = x (k) + ω(b − Ax (k)).
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Theorem 4.1.8 Assume that all the eigenvalues λi of A are real and satisfy

0 < a ≤ λi ≤ b, i = 1 :n.

Then the stationary Richardson’s method is convergent if and only if 0 < ω < 2/b.

Proof The eigenvalues of the iteration matrix B = I −ωA areμi = 1−ωλi . By the
assumption, 1−ωb ≤ μi ≤ 1−ωa for all i . Hence, if 1−ωa < 1 and 1−ωb > −1,
then ρ(B) < 1 for all i . Since a > 0, the first condition is satisfied for all ω > 0,
while the second is satisfied if ω < 2/b. �

Assume first that A is symmetric positive definite with eigenvalues λi ∈ [a, b].
What value of ω will minimize the spectral radius

ρ(B) = max{|1 − ωa|, |1 − ωb|}

and thus maximize the asymptotic rate of convergence? The optimal ω lies in the
intersection of the graphs of |1−ωa| and |1−ωb|, ω ∈ (0, 2/b), which occurs when
1 − ωa = ωb − 1. Hence,

ωopt = 2/(b + a), ρopt(B) = b − a

b + a
.

Since κ2(A) = b/a is the condition number of A, we also have that

ρopt(B) = κ − 1

κ + 1
= 1 − 2

κ + 1
(4.1.26)

is inversely proportional to κ . This illustrates a typical property of iterative methods:
ill-conditioned systems require more work to achieve a certain accuracy.

A great improvement in the rate of convergence of the Gauss–Seidel method
(4.1.8) can be obtained by simply introducing a relaxation parameter ω. The iter-
ation then becomes

x (k+1)
i = x (k)

i + ω
1

aii

(
bi −

i−1∑
j=1

ai j x (k+1)
j −

n∑
j=i

ai j x (k)
j

)
, i = 1, 2, . . . , n.

(4.1.27)

For ω > 1 one speaks of over-relaxation and for ω < 1 of under-relaxation. With the
standard splitting (4.1.12) introduced in Sect. 4.1.3, the SOR method can be written
in matrix form as

Dx (k+1) = Dx (k) + ω
(

b + Ex (k+1) − (D − F)x (k)
)

(4.1.28)
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or, after rearranging, (D − ωE)x (k+1) = [
(1− ω)D + ωF

]
x (k) + ωb. The iteration

matrix for SOR therefore is

Bω = (D − ωE)−1[(1 − ω)D + ωF
] = (I − ωL)−1[(1 − ω)I + ωU

]
. (4.1.29)

The following result of Kahan [136, 1958] shows the SOR method can converge
only if 0 < ω < 2.

Lemma 4.1.3 Let L and U be strictly lower and upper triangular. Then we have

ρ(Bω) ≥ |ω − 1|, (4.1.30)

with equality only if all the eigenvalues of Bω are of modulus |ω − 1|. Hence the
SOR method can converge only for 0 < ω < 2.

Proof Since the determinant of a triangular matrix equals the product of its diagonal
elements, we have

det(Bω) = det(I − ωL)−1 det
[
(1 − ω)I + ωU

] = (1 − ω)n .

Also, det(Bω) = λ1λ2 · · · λn , where λi are the eigenvalues of Bω. It follows that

ρ(Bω) = max
1≤i≤n

|λi | ≥ |1 − ω|,

with equality only if all the eigenvalues have modulus |ω − 1|. �

From Lemma 4.1.3 it follows that ρ(Bω) < 1 implies 0 < ω < 2. It can be
shown that this is also a sufficient condition for convergence. The optimal value of
ω for an important class of problems was found in 1950 by Young.6This led to the
famous Successive Over Relaxation (SOR)method, which for a long time remained
an important “workhorse” in scientific computing.

We first introduce the class of matrices with property A.

Definition 4.1.3 Thematrix A is said to have propertyA if there exists a permutation
matrix P such that P APT has the form

(
D1 U1
L1 D2

)
, (4.1.31)

where D1, D2 are diagonal matrices.

6 DavidM. Young (1922–2008) was one of the pioneers of modern scientific computing. His classic
dissertation [234, 1950] under Garret Birkhoff at Harvard University established the framework of
SOR. He served in the U.S. Navy during part of World War II and spent most of his scientific career
at The University of Texas at Austin.
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Equivalently, A ∈ R
n×n has property A if the index set {1 :n} can be divided into

two non-void complementary subsets S and T such that ai j = 0 unless i = j or
i ∈ S, j ∈ T , or i ∈ T , j ∈ S.

Example 4.1.3 For the matrix A in the model problem we can choose S =
{1, 3, 5, . . .}, T = {2, 4, 6, . . .}. This corresponds to the so-called red-black order-
ing of the unknowns. Imagine coloring the grid points alternately with red and black.
For a 5 by 5 grid this would look like

r b r b r
b r b r b
r b r b r
b r b r b
r b r b r

.

Hence, for the five-point operator equations corresponding to red points will refer
only to black points and vice versa. It follows that this ordering gives a matrix
with property A. It also means that the Gauss–Seidel and the SOR method will be
completely parallel within the red and black points. �
Definition 4.1.4 A matrix A with the decomposition A = D(I − L − U ), D
nonsingular, is said to be consistently ordered if the eigenvalues of

J (α) = αL + α−1U, α �= 0, (4.1.32)

are independent of α.

A matrix of the form of (4.1.31) is consistently ordered. To show this we note that
because

J (α) =
(

0 −α−1D−1
1 U1

−αD−1
2 L1 0

)
=
(

I 0
0 α I

)
J (1)

(
I 0
0 α−1 I

)
,

the matrices J (α) and J (1) are similar and therefore have the same eigenvalues.
More generally, any block-tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

D1 U1
L2 D2 U2

L3
. . .

. . .

. . .
. . . Un−1
Ln Dn

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Di are nonsingular diagonal matrices, has property A and is consistently
ordered. To show this, permute the block rows and columns in odd-even order
1, 3, 5, . . . , 2, 4, 6, . . . .
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Theorem 4.1.9 If A = D(I −L−U ) be consistently ordered and μ is an eigenvalue
of the Jacobi matrix, so is −μ. Further, to any eigenvalue λ �= 0 of the SOR matrix
Bω, ω �= 0, there corresponds an eigenvalue μ of the Jacobi matrix, where

μ = λ + ω − 1

ωλ1/2
. (4.1.33)

Proof Since A is consistently ordered, the matrix J (−1) = −L − U = −J (1) has
the same eigenvalues as J (1). Hence, if μ is an eigenvalue, so is −μ. If λ is an
eigenvalue of Bω, then det(λI − Bω) = 0. Since det(I − ωL) = 1 for all ω, we
obtain using (4.1.29)

det[(λI − Bω)] = det[(I − ωL)(λI − Bω)]
= det[λ(I − ωL) − (1 − ω)I − ωU ] = 0.

If ω �= 0 and λ �= 0 we can rewrite this in the form

det

(
λ + ω − 1

ωλ1/2
I − (λ1/2L + λ−1/2U )

)
= 0,

and because A is consistently ordered it follows that det
(
μI − (L +U )

) = 0, where
μ given by (4.1.33). Hence μ is an eigenvalue of L + U . �

Forω = 1,which corresponds to theGauss–Seidelmethod, (4.1.33) givesλ = μ2.
Thus ρ(BGS) = ρ(BJ)

2, which shows that the Gauss–Seidel method converges twice
as fast as the Jacobi method for all consistently ordered matrices A. We now state an
important result due to Young [234, 1950].

Theorem 4.1.10 Let A be a consistently ordered matrix and assume that the eigen-
values μ of BJ = L + U are real and ρ(BJ) < 1. Then the optimal relaxation
parameter ω in SOR and the corresponding spectral radius are

ωb = 2

1 +
√
1 − ρ(BJ )2

, ρ(Bωb ) = ωb − 1. (4.1.34)

Proof (See also Young [236, 1971], Sect. 6.2.) For a given value of μ in the range
0 < μ ≤ ρ(L + U ) < 1, consider two functions of λ:

fω(λ) = (λ + ω − 1)/ω, g(λ, μ) = μλ1/2.

fω(λ) is a straight line passing through the points (1, 1) and (1 − ω, 0) and g(λ, μ)

is a parabola. Relation (4.1.33) can now be interpreted as the intersection of these
two curves. For given μ and ω, λ satisfies the quadratic equation

λ2 + 2
(
(ω − 1) − 1

2
μ2ω2

)
λ + (ω − 1)2 = 0, (4.1.35)
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Fig. 4.1 The functions fω(λ) and g(λ, μ) in the proof of Theorem 4.1.10 (μ = 0.99, ω = ωb =
1.7527)

with roots

λ1,2 = 1

2
μ2ω2 − (ω − 1) ± μω

(1
4
μ2ω2 − (ω − 1)

)1/2
.

The larger of these roots decreases with increasingω until eventually fω(λ) becomes
a tangent to g(λ, μ) when μ2ω2/4− (ω − 1) = 0 (see Fig. 4.1). Solving for the root
ω ≤ 2 gives

ωb = 2
(
1 − √

1 − μ2
)

μ2 = 2

1 + √
1 − μ2

= 1 +
(

μ

1 + √
1 − μ2

)2

. (4.1.36)

If ω > ωb, Eq. (4.1.35) has two complex roots λ. By Vieta’s formulas,

λ1λ2 = (ω − 1)2

and |λ1| = |λ2| = ω − 1 for 1 < ωb < ω < 2. It follows that the minimum value of
maxi=1,2 |λi | occurs for ωb. Since the parabola g(λ, ρ(L + U )) is the envelope of
all the curves g(λ, μ) for 0 < μ ≤ ρ(L + U ) < 1, the theorem follows. �

Example 4.1.4 By (4.1.34) for SOR, ωb = 2/(1 + sin πh), giving

ρ(Bωb ) = ωb − 1 = 1 − sin πh

1 + sin πh
≈ 1 − 2πh, (4.1.37)

and limn→∞ ωb = 2, R∞(Bωb ) ≈ 2πh. Hence for themodel problem, the number of
iterations for the SORmethod is proportional to n instead of n2 as in theGauss–Seidel
method. As illustrated in Table 4.1, this is a very important improvement.
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Table 4.1 Number of iterations needed to reduce the norm of the initial error by a factor of 10−3

for the model problem

n = 1/h 10 20 50 100 200

Gauss–Seidel 69 279 1,749 6,998 27,995

SOR 17 35 92 195 413

For some model problems the spectrum of the Jacobi iteration matrix is known.
But in practice, ρ(BJ) is seldom known a priori and its accurate determination is pro-
hibitively expensive. A simple scheme for estimating ωb is to first perform a fixed
number of iterations using ω = 1, and measure the rate of convergence. The succes-
sive corrections satisfy

δ(n+1) = BGSδ
(n), δ(n) = x (n+1) − x (n).

Hence, after a sufficient number of iterations we have

ρ(BJ)
2 = ρ(BGS) ≈ θn, θn = ‖δ(n+1)‖∞/‖δ(n)‖∞.

Substituting this value into (4.1.34) gives an estimate of ωb. But a closer analysis
shows that the number of iterations needed to obtain a good estimate of ωb is com-
parable to the number of iterations needed to solve the original problem by SOR.
The scheme can still be practical if one wishes to solve a number of systems involv-
ing the same matrix A. Several variations of this scheme are described by Young
[236, 1970], p. 210.

In more complicated cases when ρ(BJ) is not known, we have to estimate ωb in
the SOR method. In Fig. 4.2 the spectral radius ρ(Bω) is plotted as a function of
ω in a typical case, where the optimal value is ωb = 1.7527. We note that the left
derivative of ρ(Bω) at ω = ωb is infinite. For ω ≥ ωb, ρ(Bω) is a linear function
with slope (1 − ωb)/(2 − ωb). We conclude that it is better to overestimate ωb than
to underestimate it.

4.1.5.1 The SSOR Method

As remarked above, the iteration matrix Bω of the SORmethod is not symmetric and
in general its eigenvalues are not real. In fact, in case ω is chosen slightly larger than
optimal (as recommended when ρ(BJ) is not known) the extreme eigenvalues of Bω

lie on a circle in the complex plane. But a symmetric version of SOR, the SSOR
method, can be constructed as follows. One iteration consists of two half iterations,
where the first half is the same as the SOR iteration. The second half iteration is
the SOR method with the equations taken in reverse order. If, as usual, the matrix is
decomposed as A = D − E − F , the SSOR method for Ax = b can be written in
matrix form as
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Fig. 4.2 The spectral radius ρ(Bω) of the iteration matrix in SOR as a function of ω (ρ = 0.99,
ωb = 1.7527)

(D − ωE)x (k+1/2) = (1 − ω)Dx (k) + ωFx (k) + ωb,

(D − ωF)x (k+1) = (1 − ω)Dx (k+1/2) + ωEx (k+1/2) + ωb.

For ω = 1 the symmetric Gauss–Seidel (SGS) method is obtained. Eliminating
x (k+1/2), we can write the SSOR iteration as

x (k+1) = Bωx (k) + M−1
ω b, Bω = M−1

ω A,

where

M−1
ω = ω(D − ωF)−1

(
I + [(1 − ω)D + ωE](D − ωE)−1

)
.

The expression for Mω can be simplified by observing that

[(1 − ω)D + ωE](D − ωE)−1 = [(2 − ω)D − (D − ωE)](D − ωE)−1

= (2 − ω)D(D − ωE)−1 − I,

giving

Mω = 1

ω(2 − ω)
(D − ωE)D−1(D − ωF). (4.1.38)

SSOR was first studied by Sheldon [198, 1955]. In contrast to SOR, the rate of
convergence of SSOR is not very sensitive to the choice of ω. As shown by Axelsson
[7, 1994], provided ρ(LU ) < 1/4, a suitable value for ω is
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ωc = 2

1 + √
2(1 − ρ(BJ ))

, ρ(Mωc ) ≤ 1 − √
(1 − ρ(BJ ))/2

1 + √
(1 − ρ(BJ ))/2

.

This result does not assume that A is consistently ordered. In particular, for themodel
problem in Sect. 4.1.3,

ρ(Bωc) ≤ 1 − sin πh/2

1 + sin πh/2
≈ 1 − πh.

This gives half the rate of convergence for SOR with ω = ωb. If A is symmetric
positive definite, F = ET and then Mω is symmetric, positive definite. In this case
SSOR is convergent for all ω ∈ (0, 2).

Definition 4.1.5 Consider the stationary iterative method

x (k+1) = x (k) + M−1(b − Ax (k)), k = 0, 1, . . . , (4.1.39)

corresponding to the splitting A = M −N , andwith iterationmatrix B = I −M−1A.
The iterative method (4.1.39) is said to be symmetrizable if there is a nonsingular
matrix W such that W M−1AW −1 is symmetric and positive definite.

Example 4.1.5 If A = D − E − F is symmetric positive definite, then D > 0, and
the Jacobi method is symmetrizable with W = D1/2. From (4.1.38) it follows that
SSOR is also symmetrizable; see Young [236, 1971], p. 461. �

Let both A and the splitting matrix M be symmetric positive definite. Then there
is a matrix W such that M = W T W and

W (I − B)W −1 = W M−1AW −1 = W W −1W −T AW −1 = W −T AW −1

is positive definite. Hence, the iterative method is symmetrizable and Chebyshev
acceleration can be used to accelerate the convergence; see Sect. 4.1.7.

Block versions of SOR and SSOR can easily be developed. For SOR we have

Aii
(
x (k+1)

i − x (k)
i

) = ω

(
bi −

i−1∑
j=1

Ai j x (k+1)
j −

n∑
j=i

Ai j x (k)
j

)
, i = 1 :n,

and for ω = 1 this gives the Gauss–Seidel method. Typically the rate of convergence
is improved by a factor

√
2 compared to the point methods.

It can be verified that the SOR theory, as developed in Theorems 4.1.9 and 4.1.10,
is still valid in the block case. We have

Bω = (I − ωL)−1[(1 − ω)I + ωU
]
,

where L = D−1E and U = D−1F . Let A be a consistently ordered matrix with
nonsingular diagonal blocks Aii , 1 ≤ i ≤ n. Assume that the block Jacobi matrix
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BJ has spectral radius ρ(BJ) < 1. Then the optimal value of ω in the SOR method
is given by (4.1.34). Note that with the block splitting, any block-tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

D1 U1
L2 D2 U2

L3
. . .

. . .

. . .
. . . Un−1
Ln Dn

⎞
⎟⎟⎟⎟⎟⎟⎠

is consistently ordered. For point SOR thiswas true only if the diagonal blocks Di , i =
1 :n, are diagonal. In particular, we conclude that with the block splitting thematrix A
in (4.1.1) for the model problem is consistently ordered, and the SOR theory applies.

4.1.6 Effects of Non-normality and Finite Precision

By Lemma 4.1.2, a sufficient condition for lim Bk = 0, k → ∞, is that ρ(B) < 1.
However, this is an asymptotic result and may not predict well the behavior of Bk

for small values of k. The initial behavior of the powers Bk will be more influenced
by the norm ‖B‖. Even if ρ(B) < 1, ‖B‖ can be arbitrarily large for a nonnormal
matrix B. Consider the upper triangular 2 × 2 matrix

B =
(

λ α

0 μ

)
, 0 < μ ≤ λ < 1, (4.1.40)

for which ρ(B) < 1, and hence limk→∞ ‖Bk‖ = 0. If α � 1, then ‖B‖2 � ρ(B).
It is easily verified that

Bk =
(

λk αβk

0 μk

)
, βk =

⎧⎨
⎩

λk − μk

λ − μ
if μ �= λ,

kλk−1 ifμ = λ.

(4.1.41)

Initially, the off-diagonal element and ‖Bk‖2 increase with k. In the case that λ = μ

themaximumof |βk |will occurwhen k ≈ λ/(1−λ). Formatrices of larger dimension
the initial increase of ‖Bk‖2 can be huge, as shown by the following example.

Example 4.1.6 Consider the iteration x (k+1) = Bx (k), x (0) = (1, . . . , 1)T , where
B ∈ R

n×n is the bidiagonal matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

0.5 1
0.5 1

. . .
. . .

0.5 1
0.5

⎞
⎟⎟⎟⎟⎟⎠

. (4.1.42)
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Fig. 4.3 The “hump” phenomenon: Behavior of ‖x (k)‖2 when x (k+1) = Bx (k)

Here ρ(B) = 0.5, and hence the iteration should converge to the exact solution
x = 0 of the equation (I − B)x = 0. For n = 32, the plot of ‖x (k)‖2 in Fig. 4.3
shows a that ‖x (k)‖2 increases by more than a factor 108 before it starts to decrease
after 60 iterations. Asymptotically the norm is reduced by about a factor of 0.5 at
each iteration. However, the large initial increase in x (k) will cause cancellation and
a persistent error of size umaxk ‖x (k)‖2 will remain. �

A more reliable indicator of the rate of convergence of an iterative method than
the spectral radius is the numerical radius

r(A) = max‖z‖=1
|zH Bz|. (4.1.43)

This is always greater than or equal to the spectral radius ρ(A) (see (3.2.46). For any
B ∈ C

n×n and positive integer k it holds that

1

2
‖B‖2 ≤ r(B) ≤ ‖B‖2, r(Bk) ≤ r(B)k . (4.1.44)

In finite precision the convergence behavior is more complex and less easy to ana-
lyze. If B is nonnormal the iteration process can be badly affected by rounding errors.
Even asymptotic convergence is not guaranteed in finite precision when ρ(B) < 1.
This phenomenon is related to the fact that for a matrix of a high degree of non-
normality the spectrum can be extremely sensitive to perturbations. The computed
iterate x̄ (k) will at best be the exact iterate corresponding to a perturbed matrix. For
convergence in finite precision a stronger condition is needed, such as

max ρ(B + E) < 1, ‖E‖2 < u‖B‖2.

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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Trefethen and Embree [220, 2006] show that

‖Bk‖ ≤ ε−1ρε(B)k+1, ρε(B) = max
z∈�ε(B)

|z|, ε > 0.

whereρε(B) defines the ε-pseudospectral radius (see the discussion of pseudospectra
in Sect. 3.2.5). The following rule of thumb is suggested by Higham and Knight
[124, 1995], p. 356:

The iterative method with iteration matrix B can be expected to converge in finite precision
arithmetic if the spectral radius computed via a backward stable eigensolver is less than 1.

This is an instance when an inexact result is more useful than the exact result!

Example 4.1.7 The growth of ‖xk‖2 in the transient phase is revealed by the pseudo-
eigenvalues of the iteration matrix B in (4.1.42). Figure4.4 shows the eigenvalues of
20 perturbed matrices B + E , where the entries of E are independent samples from
a normal distribution with mean 0 and ‖E‖2 = 10−6. Note that pseudo-eigenvalues
of magnitude greater than 1 are present.

Iterative methods work with the original matrix and rounding errors are restricted
to the last iteration. For this reason, it may be thought that iterative methods are
less affected by rounding errors than direct solution methods. However, errors in
Gaussian elimination with partial pivoting direct methods do not accumulate, and
the total effect of rounding errors is equivalent to a perturbation in the elements of
the original matrix of the order of machine roundoff; see Sect. 1.4. In general, no
method can be expected to do better than that. Indeed, in exceptional cases some
iterative methods will do much worse!

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 4.4 Eigenvalues of 20 perturbed iteration matrices B + Ei , where Ei has random normal
entries and ‖Ei ‖2 = ε = 10−6

http://dx.doi.org/10.1007/978-3-319-05089-8_3
http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Consider a Gauss–Seidel iteration step performed in floating-point arithmetic.
Typically, in the first step an improved x1 will be computed from previous
x2, . . . , xn by

x1 = f l
((

b1 −
n∑

j=1

a1 j x j

)
/a11

)
=
(

b1(1 + δ1) −
n∑

j=1

a1 j x j (1 + δ j )
)
/a11,

with the usual bounds on δi , cf. Sect. 2.4.1. We can interpret this as performing
an exact Gauss–Seidel step for a perturbed problem with elements b1(1 + δ1) and
a1i (1 + δi ), i = 2 : n. The bounds for these perturbations are of the same order as
for the perturbations in Gaussian elimination. The idea that we have worked with the
original matrix is not correct! Indeed, a round-off error analysis of iterative methods
is in many ways more difficult to perform than for direct methods.

Example 4.1.8 (J. H.Wilkinson) Consider the (ill-conditioned) system Ax = b with

A =
(
0.96326 0.81321
0.81321 0.68654

)
, b =

(
0.88824
0.74988

)
.

The smallest singular value of A is 0.36 · 10−5. This system is symmetric, positive
definite and therefore the Gauss–Seidel method should converge, though slowly.
With x (0)

1 = 0.33116, x (0)
2 = 0.70000, the next approximation x (1)

1 is computed as

x (1)
1 = f l

(
(0.88824 − 0.81321 · 0.7)/0.96326) = 0.33116

(working with five decimals). This would be an exact result if the element a11 were
perturbed to be 0.963259 . . . , but no progress is made toward the true solution x1 =
0.39473 . . . , x2 = 0.62470 . . . . The ill-conditioning has affected the computations
adversely. Convergence is so slow that the modifications made in each step are less
than 0.5 · 10−5. �

An iterativemethod solving a linear system Ax = b is not completely specified
unless clearly defined criteria are given for when to stop the iterations. Ideally such
criteria should identify when the error x − x (k) is small enough and also detect if
the error is no longer decreasing, or decreasing too slowly. It is advisable always to
specify a maximum number of iterations so that an infinite loop can be avoided.

Normally, a user would like to specify an absolute (or a relative) tolerance ε for
the error, and stop as soon as ‖x − x (k)‖ ≤ ε is satisfied. Since x is unknown, such a
criterion cannot in general be implemented. Moreover, for an ill-conditioned system
it may never be satisfied. Usually a test involving the residual vector r (k) = b− Ax (k)

is employed, and the iterations are terminated when

‖r (k)‖ ≤ ε(‖A‖ ‖x (k)‖ + ‖b‖). (4.1.45)

Ham
Rectangle

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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Often this is replaced by the stricter criterion ‖r (k)‖ ≤ ε‖b‖, but this may be difficult
to satisfy if ‖b‖ � ‖A‖‖x‖. (To use r (0) instead of b in the criterion is not usually
recommended, because this criterion depends too much on the initial approximation
x (0)). Although such residual-based criteria are frequently used, it should be remem-
bered that if A is ill-conditioned, a small residual does not guarantee a small relative
error. Since x − x (k) = A−1r (k), we can only infer that ‖x − x (k)‖ ≤ ε‖A−1‖ ‖b‖,
and this bound is attainable.

Another possibility is to base the stopping criterion on theOettli–Prager backward
error; see Theorem 1.4.9. The idea is to compute the quantity

ω = max
i

|r (k)
i |

(E |x (k)| + f )i
, (4.1.46)

where E > 0 and f > 0, and stop when ω ≤ ε. Then, by Theorem 1.4.9 x (k) is the
exact solution to a perturbed linear system (A + δA)x = b + δb, where

|δA| ≤ ωE, |δb| ≤ ω f.

In (4.1.46)we could take E = |A| and f = |b|, which corresponds to componentwise
backward errors.However, it canbe argued that for an iterativemethod amore suitable
choice is

E = ‖A‖∞eeT , f = ‖b‖∞e, e = (1, 1, . . . , 1)T .

This gives a normwise backward error with

ω = ‖r (k)‖∞
‖A‖∞‖x (k)‖1 + ‖b‖∞

. (4.1.47)

An extreme case of blow-up of the SOR method is studied by Hammarling and
Wilkinson [111, 1976]. A componentwise error analysis for stationary iterativemeth-
ods has been given by Higham and Knight [122, 1993]. This is extended to singular
systems in [123, 1993]. The use of the numerical range for analyzing the rate of
convergence is discussed by Eiermann [65, 1993] and Axelsson et al. [11, 1994].

4.1.7 Polynomial Acceleration

The non-stationary Richardson iteration is (cf. (4.1.4))

x (k+1) = x (k) + ωk(b − Ax (k)), k = 0, 1, 2, . . . , (4.1.48)

where x (0) is a given initial vector and ωk > 0, k = 0, 1, 2, . . . , are parameters to
be chosen. It follows easily from (4.1.48) that the residual r (k) = b − Ax (k) and the
error vectors x (k) − x can be written as
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r (k) = qk(A)r (0), x (k) − x = qk(A)(x (0) − x), (4.1.49)

where

qk(λ) =
k−1∏
i=0

(1 − ωiλ), qk(0) = 1.

Definition 4.1.6 A polynomial qk(λ) of degree k is a residual polynomial if
qk(0) = 1. The set of all residual polynomials of degree at most k is denoted by �∗

k .

Clearly, any desired residual polynomial can be obtained by an appropriate choice
of the parameters {ωi }k−1

i=0 in (4.1.48). By a suitable choice, it may be possible
to improve the rate of convergence of the iteration (4.1.48). Because of relation
(4.1.49), such a process is called polynomial acceleration. From (4.1.49) we obtain
the estimate

‖r (k)‖2 ≤ ‖qk(A)‖2 ‖r (0)‖2.

Assume that A is Hermitian with eigenvalues {λi }n
i=1. Then qk(A) is Hermitian

with eigenvalues qk(λi )
n
i=1, and ‖qk(A)‖2 = ρ(qk(A)) = maxi |qk(λi )|. In general,

the eigenvalues λi are unknown. But on the basis of some assumption regarding
the distribution of eigenvalues, we may be able to select a set S such that λi ∈ S,
i = 1 :n. Then, after k steps of the accelerated method, the 2-norm of the residual is
reduced by at least a factor of

max
i

|qk(λi )| ≤ max
λ∈S

|qk(λ)|. (4.1.50)

Thus, finding a suitable residual polynomial qk is reduced to the approximation
problem

min
q∈�∗

k

max
λ∈S

|q(λ)|. (4.1.51)

Chebyshev acceleration is based on the properties of the Chebyshev7 polyno-
mials of the first kind. For z ∈ [−1, 1] these are defined by

Tp(z) = cos(pφ), z = cosφ (4.1.52)

(see [58, 2008], Sect. 3.2.3). The Chebyshev polynomials are a family of orthogonal
polynomials and satisfy the three-term recurrence relation T0(z) = 1, T1(z) = z,

Tk+1(z) = 2zTk(z) − Tk−1(z), k ≥ 1. (4.1.53)

7 Pafnuty Lvovich Chebyshev (1821–1894), Russian mathematician, pioneer in approximation
theory and the constructive theory of functions. His name has many different transcriptions, e.g.,
Tschebyscheff. This may explain why the polynomials that bear his name are denoted Tp(x). He
also made important contributions to probability theory and number theory.

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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By induction, it follows that the leading coefficient of Tp is 2p−1. From (4.1.52)
follows that |Tp(z)| ≤ 1 for z ∈ [−1, 1]. The Chebyshev polynomials have the
following important minimax property that makes them useful for convergence
acceleration. (For a proof, see [58, 2008], Lemma3.2.4.)

Lemma 4.1.4 The polynomial 2−n+1Tp(z) has the smallest magnitude, equal to
2−p+1 in [−1, 1], of all polynomials of degree p with leading coefficient 1.

For arbitrary complex z, we set z = 1
2 (w + w−1) and w = z ± √

z2 − 1. If
w = eiφ = cosφ + i sin φ, then

Tp(z) = 1
2 (w

p + w−p), w = z +
√

z2 − 1. (4.1.54)

For |z| > 1, we have |w| > 1, and (4.1.54) shows that outside the interval [−1, 1]
the Chebyshev polynomials Tp(z) grow exponentially with p.

If the eigenvalues of A are real and satisfy 0 < a ≤ λi ≤ b, then the relevant
minimization problem is (4.1.51) with S = [a, b].
Theorem 4.1.11 The solution of minq∈�∗

k
maxλ∈[a,b] |q(λ)|, where 0 < a < b, is

given by
qk(λ) = T̂k(λ) = Tk(z(λ))/Tk(z(0)), (4.1.55)

where

z(λ) = b + a − 2λ

b − a
= μ − 2

b − a
λ, μ = z(0) = b + a

b − a
. (4.1.56)

Proof The substitution z(λ) in (4.1.56) is linear andmaps the interval λ ∈ [a, b] onto
t ∈ [−1, 1]. (Note that λ = a is mapped onto t = +1 and λ = b onto t = −1.) It
follows that T̂k(λ) is a polynomial of degree k. By construction it satisfies T̂k(0) = 1
and therefore it is a residual polynomial. The proof now follows from the minimax
property of the Chebyshev polynomial. �

It follows that if p iterations in (4.1.48) are to be carried out, then the optimal
parameters ωk are the inverses of the zeroes of shifted Chebyshev polynomials Tp:

1

ωk
= b − a

2
cos θk + b + a

2
, θk = (2k + 1)π

2p
, k = 0 : p − 1. (4.1.57)

Unfortunately, this process is numerically unstable unless some particular ordering
of the parameters is used; see Lebedev and Finogenov [148, 1971]. It has also the
drawback of having to choose the number of iterations p in advance. A way to
eliminate both these drawbacks is as follows.

Chebyshev acceleration can be stably implemented by using the three-term recur-
rence relation (4.1.53). By (4.1.55), Tk(z(λ)) = Tk(μ)qk(λ). Hence, the residual
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polynomials qk also satisfy a three-term recurrence relation. Using (4.1.56), substi-
tuting A for λ, and using (4.1.53), we obtain

Tk+1(μ)qk+1(A) = 2
(
μI − 2

b − a
A
)

Tk(μ)qk(A) − Tk−1(μ)qk−1(A).

Multiplying this by x (0) − x from the right and using (4.1.49) we get

Tk+1(μ)(x (k+1) − x) = 2
(
μI − 2

b − a
A
)

Tk(μ)(x (k) − x) − Tk−1(μ)(x (k−1) − x).

Adding Eq. (4.1.53) with z = μ gives

Tk+1(μ)x (k+1) = 2μTk(μ)x (k) + 4Tk(μ)

b − a
r (k) − Tk−1(μ)x (k−1),

where r (k) = A(x − x (k)) is the residual. Substituting −Tk−1(μ) = −2μTk(μ) +
Tk+1(μ) and dividing by Tk+1(μ) we finally get

x (k+1) = x (k−1) + αωkr (k) + ωk(x (k) − x (k−1)), k ≥ 1,

where
α = 2/(b + a), ωk = 2μ Tk(μ)/Tk+1(μ).

This three-term recurrence can be used for computing the accelerated approximate
solution. A similar calculation for k = 0 gives x (1) = x (0)+α(b− Ax (0)). The result-
ing Chebyshev semi-iterative method is given in Algorithm 4.1.1. (The derivation of
the recursion for ωk is left as an exercise; see Problem 4.1.7).

Algorithm 4.1.1 (The Chebyshev Semi-Iterative Method) Assume that the eigen-
values {λi }n

i=1 of A are real and satisfy 0 < a ≤ λi < b. Set

μ = (b + a)/(b − a), α = 2/(b + a), (4.1.58)

and x (1) = x (0) + α(b − Ax (0)). For k = 1, 2, . . . , compute

x (k+1) = x (k−1) + ωk
(
α(b − Ax (k)) + x (k) − x (k−1)), (4.1.59)

where ω0 = 2 and

ωk =
(
1 − ωk−1

4μ2

)−1

, k ≥ 1. (4.1.60)

We now derive an estimate of the asymptotic rate of convergence for Chebyshev
acceleration. By (4.1.50), this is proportional to the spectral radius

ρ(qk(A)) ≤ 1/Tk(μ).
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From (4.1.56) it follows thatμ = (κ +1)/(κ −1), where κ = b/a is an upper bound
for the spectral condition number of A. An elementary calculation shows that

w = μ +
√

μ2 − 1 = κ + 1

κ − 1
+ 2

√
κ

κ − 1
=

√
κ + 1√
κ − 1

> 1.

From (4.1.54) it follows that ρ(qk(A)) ≤ 1/Tk(μ) < 2e−kγ , where

γ = log

(√
κ + 1√
κ − 1

)
>

2√
κ

. (4.1.61)

(Verify the last inequality!) Hence, to reduce the error norm at least by a factor of
δ < 1 it suffices to perform k iterations, where

k >
1

2

√
κ log

(
2

δ

)
. (4.1.62)

Hence, the number of iterations required for the Chebyshev accelerated method
to achieve a certain accuracy is proportional to

√
κ rather than κ . This is a great

improvement!
Chebyshev acceleration can be applied to accelerate any stationary iterative

method (4.1.39) provided it is symmetrizable. This often gives a substantial gain in
convergence rate. Jacobi and SSOR correspond to matrix splittings A = M − N with

MJ = D, Mω = ω

2 − ω

(
1

ω
D − E

)
D−1

(
1

ω
D − F

)
,

respectively. These methods, as well as their block versions, are symmetrizable. For
SOR the eigenvalues of the iterationmatrix of the Bωb are complex and havemodulus
|ωb|. Therefore, convergence acceleration cannot be applied. (A precise formulation
is given in Young [236, 1971], p. 375).

For Chebyshev acceleration to be effective, a fairly accurate knowledge of an
interval [a, b] enclosing the (real) spectrum of A is required. If this enclosure is
too crude the process loses efficiency. For a symmetric positive definite matrix the
upper bound λi ≤ ‖A‖p (with p = 1 or ∞) is sufficiently accurate. To estimate the
smallest eigenvalue is much more difficult. Therefore, it is an important advantage of
methods like the conjugate gradient method introduced in the following chapters that
they are parameter free. No a priori information about the location of the spectrum
is required; indeed, the methods generate this information as a byproduct.

Polynomial acceleration can be used in more general settings (even when A has
complex eigenvalues) if the polynomials are chosen correctly. This was well-known
in the Soviet Union; see Faddeev and Faddeeva [72, 1963]. The case when the
spectrum is bounded by an ellipse in the complex plane is treated by Manteuffel
[153, 1977]. In Axelsson [7, 1994], Sect. 5.4 this and other cases are discussed, e.g.,
when the spectrum is contained in two intervals [a, b]∪ [c, d], where a < b < 0 and
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d > c > 0. In Sect. 4.1.5 it is shown that the conjugate gradient method converges
at least as fast as Chebyshev semi-iteration and without any information about the
spectrum of A.

Exercises

4.1.1 Show that in three dimensions the discretized model problem gives a matrix that can be
expressed as the Kronecker sum

A = Tn ⊗ I ⊗ I + I ⊗ Tn ⊗ I + I ⊗ I ⊗ Tn, (4.1.63)

where λi is given by (4.1.3). Deduce that the n3 eigenvalues of A are λi + λ j + λk ,
i, j, k = 1 :n. What is the condition number of A?

4.1.2 Consider a stationary iterative method x (k+1) = Bx (k) +c, for which ‖B‖ ≤ β < 1. Show
that if ‖x (k) − x (k−1)‖ ≤ ε(1 − β)/β, then ‖x − x (k)‖ ≤ ε.

4.1.3 Show that the eigenvalues λ of the Jacobi iteration matrix BJ in (4.1.1) are 1/2, −1/2, 0,
0.

4.1.4 The matrix A in (4.1.1) is block-tridiagonal, but its diagonal blocks are not diagonal
matrices. Show that in spite of this the matrix is consistently ordered.
Hint: Perform a similarity transformation with the diagonal matrix

D(α) = diag
(
D1(α), D2(α), . . . , Dn(α)

)
,

where D1(α) = diag(1, α, . . . , αn−1), Di+1(α) = αDi (α), i = 1 :n − 1.
4.1.5 The linear system (

1 −a
−a 1

)
x = b,

where a is real, can under certain conditions be solved by the SOR iterative method
(

1 0
−ωa 1

)
x (k+1) =

(
1 − ω ωa
0 1 − ω

)
x (k) + ωb.

(a) Show that the eigenvalues of the corresponding iteration matrix Bω satisfy the
quadratic equation

λ2 − λ
(
2(1 − ω) + ω2a2) + (1 − ω)2 = 0.

(b) Show that for ω = 1 the eigenvalues are λ1 = 0 and λ2 = |a|2. Conclude that for
this choice the iteration converges for |a| < 1.

(c) For a = 0.5, find the value of ω ∈ {0.8, 0.9, 1.0, 1.1, 1.2} that minimizes the spectral
radius of Bω. (The exact minimum occurs for ω̂ = 4/(2 + √

3) ≈ 1.0718.)

4.1.6 Verify the recursion (4.1.60) for ωk in the Chebyshev semi-iterative method.
4.1.7 Use the Taylor expansion

log
(
(1 + s)/(1 − s)

) = 2(s + s3/3 + s5/5 + · · · ), 0 ≤ s < 1,

to prove (4.1.62).
4.1.8 Use the three-term recurrence relation for Chebyshev polynomials to derive the recursion

for ωk = 2μTk(μ)/Tk+1(μ) used in the Chebyshev semi-iterative method.
4.1.9 Assume that A is symmetric indefinite with its eigenvalues contained in the union of two

intervals of equal length,

S = [a, b] ∪ [c, d], a < b < 0, 0 < c < d.
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Then the Chebyshev semi-iterative method cannot be applied directly to the system Ax =
b. Consider instead the equivalent system

Bx = c, B = A(A − α I ), c = Ab − αb.

(a) Show that if α = d + a = b + c, then the eigenvalues of B are positive and real and
contained in the interval [−bc,−ad].

(b) Show that the matrix B has condition number

κ(B) = d

c
· |a|
|b| = d

c

d − c + |b|
|b| .

Use this to give estimates for the two special cases:

(i) Symmetric intervals with respect to the origin.
(ii) The case when |b| � c.

4.1.10 Let B be the 2×2matrix in (4.1.41), and take λ = μ = 0.99,α = 4. Verify that ‖Bk‖2 ≥ 1
for all k < 805.

4.1.11 Let B ∈ R
20×20 be an upper bidiagonal matrix with diagonal elements equal to

0.025, 0.05, 0.075, . . . , 0.5 and elements on the superdiagonal all equal to 5.

(a) Compute and plot ηk = ‖x (k)‖2/‖x (0)‖2, k = 0 : 100, where
x (k+1) = Bx (k), x (0) = (1, 1, . . . , 1)T .

Conclude that ηk > 1014 before it starts to decrease after k = 25 iterations. What is
the smallest k for which ‖x (k)‖2 < ‖x (0)‖2?

(b) Compute the eigenvalue decomposition B = X�X−1 and determine the condition
number κ = ‖X‖2‖X−1‖2 of the transformation.

4.2 Krylov Methods for Hermitian Systems

Krylov subspace methods are without doubt the most important class of iterative
methods for solving linear systems of equations Ax = b, A ∈ C

n×n . These methods
are based on two general ideas. First, approximate solutions are chosen in a sequence
of shifted Krylov subspaces

xk − x0 ∈ Kk(A, b) ≡ span{b, Ab, . . . , Ak−1b}, (4.2.1)

where x0 is a given initial approximation. Second, the k independent conditions
needed to determine xk are found by requiring that the residual rk = b − Axk is
orthogonal to all vectors in a subspace Lk of dimension k, i.e.,

b − Axk ⊥ Lk . (4.2.2)

If A is Hermitian it is natural to take Kk = Lk . The conditions (4.2.2) are known as
the Galerkin conditions.8 The generalization to Kk �= Lk is due to G. I. Petrov in
1946. A general theory of projection methods is given by Brezinski [33, 1997].

8 Boris Galerkin (1871–1945), Russian mathematician. In 1893 he entered Saint Petersburg Poly-
technic Institute to study mathematics and engineering. From 1909 he started teaching structural
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4.2.1 General Principles of Projection Methods

To find an approximate solution to a linear system Ax = b in a subspace Kk of
dimension k < n we use a matrix form of condition (4.2.2). Let Uk , Vk ∈ C

n×k be
matrices such thatKk = R(Uk), Lk = R(Vk). Then any vector inKk can written as
xk = Uk zk , where zk ∈ C

k , and condition (4.2.2) becomes

V H
k (b − AUk zk) = 0. (4.2.3)

Hence, the projected system is Bk zk = ck , where

Bk = V H
k AUk ∈ C

k×k, ck = V H
k b ∈ C

k . (4.2.4)

Solving this system gives an approximate solution xk = Uk zk . Usually k � n
and the projected system can be solved by a direct method. If Uk = Vk and Uk

has orthonormal columns, then the related projector Pk = Uk V H
k is an orthogonal

projector. IfUk �= Vk andUk and Vk are biorthogonal, V H
k Uk = I , then Pk = Uk V H

k
is an oblique projector, P2

k = Uk(V H
k Uk)V H

k = Pk .
In practice, a projection algorithm for solving Ax = b starts from an initial

approximations x0. We set x0 = 0, which is no restriction, because otherwise the
method can be applied to the system A(x − x0) = b − Ax0. A nested sequence of
subspaces R(Uk) and R(Vk) of increasing dimension k is used, where

Uk = (u1, . . . , uk) ∈ C
n×k, Vk = (v1, . . . , vk) ∈ C

n×k .

In the incremental form the projection method is applied to the shifted system A(x −
xk−1) = b − Axk−1, giving in step k (cf. (4.2.4))

xk = xk−1 + Uk zk, (V H
k AUk)zk = V H

k rk−1. (4.2.5)

(Note that here and in the rest of this chapter xk denotes the kth approximation and
not the kth component of x .)

Even though A is nonsingular the matrix Ck = V H
k AUk may be singular. For

example, with

A =
(
0 1
1 1

)
, U1 = V1 =

(
1
0

)
,

we have B1 = 0. Note that here the matrix A is symmetric and indefinite. In two
important special cases the matrix Bk can be guaranteed to be nonsingular. The
corresponding projection methods are:

mechanics at this institute and in 1920 he was promoted head of Structural Mechanics there. He was
involved in the construction of several large Soviet dams for hydroelectric stations. He developed
finite elements methods for solving boundary value problems in differential equations using the
variational principle.
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(i) Assume that A is symmetric positive definite and Vk = Uk , is orthogonal. Then
Bk = U H

k AUk is a symmetric positive definite section of A (see Sect. 9.2.4),
and hence nonsingular. Set x0 = 0, and for k = 0, 1, 2, . . . ,

xk = xk−1 + Uk zk, (U H
k AUk)zk = U H

k rk−1. (4.2.6)

(ii) Assume that A is nonsingular and let Vk = AUk , whereUk is unitary. Then Bk =
V H

k AUk = (AUk)
H (AUk) = U H

k (AHA)U is symmetric positive definite. In
this case set x0 = 0, and for k = 0, 1, 2, . . . ,

xk = xk−1 + Uk zk, (U H
k AHAUk)zk = U H

k AH rk−1. (4.2.7)

Note that in case (i) the eigenvalues of the projected matrix U H
k AUk interlace

those of A and the projected system is always better conditioned than the original.
This is not true in general. The second case is equivalent to applying the first case
to the symmetrized system AHAx = AH b. Hence, in case (ii) it sufficient to assume
that A ∈ C

m×n has full column rank.
We now derive optimality properties satisfied in the two special cases. For this

purpose we first define a new inner product and norm related to a symmetric positive
definite matrix A.

Definition 4.2.1 For a symmetric positive definite matrix A we define the A-inner
product and A-norm, also called the energy norm.

(u, v)A = u H Av, ‖u‖A = (u H Au)1/2. (4.2.8)

This namehas a physical relevance for somepartial differential equation problems.
It is easily verified that ‖u‖A satisfies the conditions in Definition 1.1.4 for a vector
norm.

Lemma 4.2.1 Let A be symmetric, positive definite matrix and Lk = Kk = R(Uk).
Then the energy norm of the error over all vectors x ∈ R(Uk) is minimized by

xk = Uk zk, zk = (U H
k AUk)

−1U H
k b, (4.2.9)

i.e., xk solves the problem minx∈R(Uk ) ‖x − x∗‖A. where x∗ = A−1b is the exact
solution.

Proof By (4.2.3), xk in (4.2.9) satisfies U H
k (b − Axk) = 0, ∀u ∈ R(Uk). Let

dk = xk − A−1b be the error in xk . Then for x = xk + u, u ∈ R(Uk), the error is
d = dk + u, where

‖d‖2A = d H
k Aek + u H Au + 2u H Adk .

But here the last term is zero because u H Adk = u H (b − Axk) = 0. It follows that
‖d‖A is minimum if u = 0. �
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Lemma 4.2.2 Let A be nonsingular and consider the case Vk = AUk. Then

xk = Uk zk, zk = (U H
k AHAUk)

−1U H
k AH b,

minimizes the 2-norm of the residual over all vectors x ∈ R(Uk), i.e., xk solves
minx∈R(Uk ) ‖b − Ax‖2.

Proof With xk = Uk zk we have ‖b − Axk‖2 = ‖b − AUk zk‖2, which is minimized
when zk satisfies the normal equations U H

k AHAUk z = U H
k AH b . �

4.2.2 The One-Dimensional Case

In the kth step of the projection methods (4.2.6) and (4.2.7) a linear system of
order k has to be solved. We now consider the simpler case when A is Hermitian
positive definite and in step k a projection is taken using a one-dimensional subspace
Lk = Kk = span(pk). Set x0 = 0 and update xk and rk = b − Axk by

xk+1 = xk + αk pk, rk+1 = rk − αk Apk . (4.2.10)

The Galerkin condition rk+1 ⊥ pk gives pH
k (rk − αk Apk) = 0 and

αk = pH
k rk/(pH

k Apk). (4.2.11)

Let x∗ = A−1b denote the exact solution. Then the energy norm of the error is

φ(x) = 1
2‖x − x∗‖2A = 1

2 (x − x∗)H A(x − x∗). (4.2.12)

Expanding the function φ(xk + αpk) with respect to α, we obtain

φ(xk + αpk) = φ(xk) − αpH
k rk + 1

2α
2 pH

k Apk . (4.2.13)

The line xk + αpk is tangent to the ellipsoidal level surface φ(x) = φ(xk+1), and
φ(xk + αk pk) < φ(xk) provided that pH

k rk �= 0. Hence, the choice (4.2.11) mini-
mizes the energy norm of the error for all vectors of the form x = xk + αk pk .

Example 4.2.1 For the Gauss–Seidel method in the i th minor step the i th component
of the current approximation xk is changed so that the i th equation is satisfied, i.e.,
we take

xk := xk − αkei , eH
i (b − A(xk − αkei )) = 0,

where ei is the i th unit vector. Hence, one step of the Gauss–Seidel method is
equivalent to a sequence of n one-dimensional projection steps onto the unit vectors
e1, . . . , en . �
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By (4.2.13), r = b− Ax is the negative gradient of φ(x)with respect to x . Hence,
φ decreases most rapidly in the direction of the residual rk = b − Axk at the point
xk . Setting pk = rk in (4.2.13) gives the method of steepest descent

xk+1 = xk + αkrk, αk = r H
k rk

r H
k Ark

. (4.2.14)

(This method is attributed to Cauchy, 1847, who developed it for solving nonlinear
systems of equations.) Note that φ(xk+1) < φ(xk) if and only if rk �= 0.

We now derive an expression for the rate of convergence of the steepest descent
method. Denoting the error in xk by dk = xk − x∗, we have

‖dk+1‖2A = d H
k+1Aek+1 = −r H

k+1dk+1 = −r H
k+1(dk + αkrk)

= −(rk − αk Ark)
H dk = d H

k Adk − αkr H
k rk,

where we have used that r H
k+1rk = 0. Noting that rk = Adk and using αk =

r H
k rk/r H

k Ark , we obtain

‖dk+1‖2A = ‖dk‖2A
(
1 − r H

k rk

r H
k Ark

r H
k rk

r H
k A−1rk

)
. (4.2.15)

To estimate the right-hand side we need the Kantorovich inequality.9

Lemma 4.2.3 Let A ∈ C
n×n be a Hermitian positive definite matrix with eigenval-

ues λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Then for any unit vector x, x H x = 1,

1 ≤ (x H Ax)(x H A−1x) ≤ 1

4

(
κ1/2 + κ−1/2

)2
, (4.2.16)

where κ = λ1/λn is the condition number of A.

Proof (after D. Braess) Let μ = (λ1λn)1/2 be the geometric mean of the extreme
eigenvalues and consider the symmetric matrix B = μ−1A+μA−1. The eigenvalues
of B satisfy

λi (B) = μ−1λi + μλ−1
i ≤ μ−1λ1 + μλ−1

n = κ1/2 + κ−1/2, i = 1:n.

Hence, by the Courant maximum principle, for any vector x it holds that

xT Bx = μ−1(xT Ax) + μ(xT A−1x) ≤ (κ1/2 + κ−1/2)(xT x).

9 LeonidV.Kantorovich (1912–1986), Russianmathematician. From 1934 to 1960 hewas professor
of mathematics at the University of Leningrad. From 1961 to 1971 he held the chair of mathematics
and economics at the Siberian branch of USSR Academy of Sciences. He was a pioneer in applying
linear programming to economic planning, for which he shared the 1975Nobel prize for economics.
He also made many contributions to functional analysis and numerical methods.
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The left-hand side can be bounded using the simple inequality

(ab)1/2 ≤ 1
2 (μ

−1a + μb), a, b > 0.

Squaring this and taking a = xT Ax and b = xT A−1x the lemma follows. �

From Kantorovich’s inequality (4.2.16) and (4.2.15) one gets the error estimate

‖x − xk‖A ≤
(

κ − 1

κ + 1

)k

‖x − x0‖A (4.2.17)

for the steepest descent method. Note that this bound depends only on the extreme
eigenvalues of A. If A is ill-conditioned the level surfaces of φ are very elongated
hyper-ellipsoids. Successive direction vectors are orthogonal and the iterates xk ,
will zigzag slowly toward the minimum x∗ = A−1b. The rate of convergence of
the steepest descent method is the same as for Richardson’s first-order stationary
method with optimal relaxation parameter. It can be shown that the bound (4.2.17)
is asymptotically sharp.

A more general method is obtained by taking p0 = r0 (the steepest descent
direction) and for k ≥ 0,

xk+1 = xk + αk pk, pk+1 = rk+1 + βk pk, (4.2.18)

where βk is a parameter to be determined (βk ≡ 0 gives the method of steepest
descent). From (4.2.13) it follows that φ(xk+1) < φ(xk) if and only if pH

k rk �= 0.
Replacing k + 1 by k in (4.2.18), multiplying by r H

k , and using that rk ⊥ pk−1,
gives

r H
k pk = r H

k rk + βk−1r H
k pk−1 = r H

k rk . (4.2.19)

It follows that pH
k rk = 0 implies rk = 0 and thus xk = A−1b. Hence, unless xk is the

solution, the next iteration step is always defined and φ(xk+1) < φ(xk), regardless of
the value of the parameter βk . From (4.2.19) we also obtain following the alternative
expression to (4.2.11):

αk = r H
k pk/(pH

k Apk). (4.2.20)

The choice of the parameters βk will be discussed in the next section.

Example 4.2.2 A relaxed one-dimensional projection method is obtained by multi-
plying αk in (4.2.11) by a relaxation parameter ω. From (4.2.13) it follows that
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φ(xk + ωαk pk) = φ(xk) − ρ(ω)
(pH

k rk)
2

pH
k Apk

, ρ(ω) = 1
2ω(2 − ω). (4.2.21)

This is a quadratic function of ω and if pH
k rk �= 0, then

φ(xk + ωαk pk) < φ(xk), 0 < ω < 2.

For the error in xk+1 = xk + ωαk pk we have

xk+1 − x∗ = (xk − x∗) − ω
pH

k rk

pH
k Apk

pk =
(

I − ω
pk pH

k

pH
k Apk

A

)
(xk − x∗).

Hence, the error in each step is transformed by a linear transformation. This result
can be used to prove the convergence for SOR when 0 < ω < 2.

4.2.3 The Conjugate Gradient (CG) Method

The conjugate gradient (CG) method was developed independently by Hestenes10

and Stiefel11 and published in the joint paper [121, 1952], written when both were at
the Institute for Numerical Analysis (INA). The INA was a section of the National
Applied Mathematics Laboratories of the National Bureau of Standards, located at
the campus of UCLA, and headed by J. H. Curtiss. Other prominent researchers at
the INAwere Barkley Rosser, George Forsythe, Cornelius Lanczos,WilliamKarush,
and Martin Stein. For an account of the history of INA; see Curtiss [57, 1951].

The CG method is a projection method of the form (4.2.6), obtained by choosing
the subspaces Uk as the Krylov subspaces (see (1.1.84)

Kk(A, b) = span{r0, Ar0, . . . , Ak−1r0}, k = 1, 2, . . . , (4.2.22)

where r0 = b− Ax0. The CGmethod computes a sequence of approximate solutions
using recurrences of the form (cf. (4.2.18))

10 Magnus Rudolph Hestenes (1906–1991), American mathematician. After his PhD from Univer-
sity of Chicago 1932 he worked on the calculus of variations and optimal control problems and
developed the concept of conjugacy. He was a professor at UCLA, Los Angeles during the period
1943–1974. He joined the INA in 1949.
11 Eduard I. Stiefel (1909–1978), Swiss mathematician. His PhD thesis in 1935 treated the theory
of vector fields on manifolds. In 1948 he founded the Institute for Applied Mathematics at ETH,
Zürich, in collaboration with Heinz Rutishauser and Ambros P. Speiser. On his initiative ETH
acquired in 1949 the Z4 computer designed by Konrad Zuse. His work on the conjugate gradient
(CG) method was done during a visit in 1951–52 to INA.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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xk+1 = xk + αk pk, pk+1 = rk+1 + βk pk, k = 0, 1, 2, . . . , (4.2.23)

where p0 = r0, and αk is chosen as in the steepest descent method (4.2.14). The
CG method is a Krylov subspace method. In step k, xk = x0 + pk−1(A)r0 for some
polynomial pk−1 of degree k − 1. Substituting b = Ax and subtracting x from both
sides gives

x − xk = (I − pk−1(A)A)(x − x0) = qk(A)(x − x0).

Since qk(0) = 1, qk is a residual polynomial of degree k.
A simple induction argument shows that rk and pk both lie in the Krylov subspace

Kk+1(A, r0). In the CG method the parameter βk in (4.2.23) is chosen to make pk+1
A-orthogonal or conjugate to the previous direction vector, i.e.,

pH
k+1Apk = 0. (4.2.24)

(This is the reason for the name “conjugate gradient method”.)
Multiplying (4.2.23) by pH

k A we have

βk = − pH
k Ark+1

pH
k Apk

. (4.2.25)

We now prove the important result that this choice makes pk+1 A-conjugate to all
previous direction vectors p j , j ≤ k.

Lemma 4.2.4 In the CG method the residual vector rk is orthogonal to all previous
direction vectors and residual vectors:

r H
k p j = 0, r H

k r j = 0, j = 0 :k − 1, (4.2.26)

and the direction vectors are mutually A-conjugate:

pH
k Ap j = 0, j = 0 :k − 1. (4.2.27)

Proof We prove relations (4.2.26) and (4.2.27) jointly by induction. Clearly, rk is
orthogonal to the previous direction vector pk−1, and (4.2.24) shows that also (4.2.27)
holds for j = k − 1. Hence, these relations are certainly true for k = 1.

Assume now that the relations are true for some k ≥ 1. From pH
k rk+1 = 0,

changing the index, and taking the scalar product with p j , 0 ≤ j < k we get

r H
k+1 p j = r H

k p j − αk pH
k Ap j .

By the induction hypothesis, this is zero, and because r H
k+1 pk = 0, it follows that

(4.2.26) holds for k + 1. From (4.2.18), the induction hypothesis, and Eq. (4.2.11)
and then using (4.2.18) again, we find that
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pH
k+1Ap j = r H

k+1Ap j + βk pH
k Ap j = α−1

j r H
k+1(r j − r j+1)

= α−1
j r H

k+1(p j − β j−1 p j−1 − p j+1 + β j p j ).

By Eq. (4.2.26) this is zero for 0 < j < k. For j = 0 we use b = p0 in forming the
last line of the equation. For j = k we use (4.2.24), which yields (4.2.27). Since the
vectors r0, . . . , rk−1 and p0, . . . , pk−1 span the same Krylov subspace Kk(A, b),
the second orthogonality relation in (4.2.26) also holds. �

From the recurrences for pk and rk it follows that both lie in the Krylov subspace
Kk+1(A, r0). Hence, Lemma 4.2.4 implies that the residual vectors r0, r1, r2, . . . ,
are the vectors that would be obtained from the sequence b, Ab, A2b, . . . , by Gram–
Schmidt orthogonalization. The vectors p0, p1, p2, . . . , may be constructed simi-
larly from the conjugacy relation (4.2.27).

Since xk ∈ Kk(A, b) and rk ⊥ Kk(A, b), the CG method implements the projec-
tion method for K = L = Kk(A, b). This choice yields a remarkable simplification
of the projection method. No linear subproblems of dimension k × k need to be
solved. By Lemma 4.2.1, the following minimization property holds.

Theorem 4.2.1 In the CG method the vector xk minimizes

φ(x) = (x − x∗)H A(x − x∗) = ‖x − x∗‖2A (4.2.28)

over all vectors x − x0 ∈ Kk(A, r0), where r0 = b − Ax0 and x∗ = A−1b denotes
the exact solution.

From the analysis of the method (4.2.18) it follows that (in exact arithmetic) as
long as rk �= 0, the “energy” norm ‖xk − x∗‖A is strictly monotonically decreasing.
It can be shown that this is also true for the error norm ‖xk − x∗‖2; see Hestenes and
Stiefel [121, 1952]. However, the residual norm ‖b − Axk‖2 normally oscillates and
may increase initially.

Relations (4.2.26) ensure that in exact arithmetic the CG method terminates after
at most n steps when A ∈ C

n×n . Indeed, suppose the contrary is true. Then rk �= 0,
k = 0 :n, and by (4.2.26) these n + 1 nonzero vectors in Cn are mutually orthogonal
and hence linearly independent. Since this is impossible, we have a contradiction.

An alternative expression for βk is obtained by multiplying the recursive expres-
sion for the residual rk+1 = rk −αk Apk by r H

k+1 and using the orthogonality relations
(4.2.26) to get r H

k+1rk+1 = −αkr H
k+1Apk . Relations (4.2.20) and (4.2.25) then give

βk = ‖rk+1‖22/‖rk‖22. (4.2.29)

This shows that in the CG method both αk = (r H
k rk)/(r H

k Ark) and βk are real. The
different formulas we have given for computing αk and βk are mathematically equiv-
alent, but differ with respect to accuracy, storage and arithmetic work. A comparison
(see Reid [180, 1971]) favors the expressions in (4.2.14) and (4.2.29), which are used
in Algorithm 4.2.1.
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Algorithm 4.2.1 (Conjugate Gradient Method)

function [x,r] = cgl(A,b,x0,maxit);

% CGL performs maxit CG iterations on the linear

% system Ax = b starting from x = x0.

% ----------------------------------------------

x = x0; r = b - A*x0;

p = r; rtr = r’*r;

for k = 1:maxit

q = A*p;

alpha = rtr/(p’*q);

x = x + alpha*p;

r = r - alpha*q;

rtrold = rtr; rtr = r’*r;

beta = rtr/rtrold;

p = r + beta*p;

end

Each iteration step in Algorithm 4.2.1 requires one matrix-vector product Ap.
If A is a sparse matrix, this operation will automatically be executed as a sparse
operation inMatlab. Often A is only accessible as a subroutine Aprod(p) (say),
which for given p computes q = Ap. Four vectors x, r, p and q = Ap need to be
stored and each iteration requires two vector inner products and three vector updates.
We remark that the computation of the inner products can be relatively expensive
because they are highly sequential operations.

Assume now that A is Hermitian positive semidefinite, but the system Ax = b
consistent. If we take x0 ∈ R(A), then by construction, xk ∈ R(A), k = 1, 2, . . ..
Hence, in this case the CG method converges to the unique pseudoinverse solution
x† ∈ R(A). In floating-point arithmetic, rounding errors will introduce a slowly
growing component inN (A) in the solution. Unless many iterations are carried out,
this component will remain small. The case when A is singular and the linear system
inconsistent is more difficult; see Sect. 4.2.6.

For special A and right-hand sides b the CG method may terminate in less than
n steps. With x0 = 0, the CG method terminates for k = s, where s is the smallest
integer for which Kk+1(A, b) = Kk(A, b). Then there is a polynomial ψs(λ) of
degree s such that ψs(A)v = 0. This polynomial is said to annihilate b and to be
minimal for b. From

AKs(A, b) ⊂ Ks(A, b)

it follows that Ks(A, b) is an invariant subspace of dimension s. Conversely, if the
vector b lies in an invariant subspace of A of dimension s, then its Krylov sequence
terminates for k = s. We say that the grade of b with respect to A is s.

Theorem 4.2.2 For any right-hand side b, the CG method converges in at most s
steps, where s ≤ n is the number of distinct eigenvalues of the positive definite matrix



654 4 Iterative Methods

A. Further, if the grade of b with respect to A is p < s, then the exact solution is
obtained after p steps.

Proof Let λi and vi , i = 1 : n, be the eigenvalues and orthonormal eigenvectors
of A. Then the right-hand side can be written as b = ∑n

i=1 γivi . For any residual
polynomial qk ∈ �∗

k , we have

‖rk‖2A−1 ≤ ‖qk(A)b‖2A−1 = bH qk(A)H A−1qk(A)b =
n∑

i=1

γ 2
i λ−1

i qk(λi )
2.

(4.2.30)
In particular, if we take

qn(λ) =
n∏

i=1

(1 − λ/λi ), (4.2.31)

then ‖rn‖A−1 = 0, and because A−1 is positive definite, rn = 0. If all eigenvalues
of A are distinct, qn(λ) is the minimal polynomial of A (see Sect. 3.1.2). If A has
s < n distinct eigenvalues λi , i = 1 : s, then qn(λ) is of degree s and, as before,
‖rs‖A−1 = 0 for any right-hand side b. For special right-hand sides, convergence
occurs faster. This will be the case if b is orthogonal to all eigenvectors corresponding
to some distinct eigenvalues. �

Algorithm 4.2.2 (Conjugate Residual Method)

function [x,r] = crl(A,b,x0,maxit);

% CRL solves the linear system Ax = b where A is

% symmetric positive definite by the CR method.

% -----------------------------------------------

x = x0; r = b - A*x0;

p = r; q = A*p; s = q;

str = s’*r;

for k = 1:maxit

alpha = str/(q’*q);

x = x + alpha*p;

r = r - alpha*q;

s = A*r;

strold = str; str = s’*r;

beta = str/strold;

p = r + beta*p;

q = s + beta*q;

end

The conjugate residual (CR) method (Stiefel [215, 1955]) is closely related to
the CG method. In each step of the CR method the Euclidean norm of the residual
is minimized by making the vectors Api , i = 0, 1, . . ., mutually orthogonal. The
residual vectors are A-orthogonal, i.e., conjugate. A simple way to derive the CR

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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method is to change the standard inner product 〈p, q〉 = pH q used in the CGmethod
to 〈p, q〉 = pH Aq. The same recurrence (4.2.23) is used, now with the parameters

αk = s H
k rk/s H

k sk, βk = s H
k+1rk+1/s H

k rk, (4.2.32)

where sk = Ark . An implementation of the CR method is given in Algorithm 4.2.2.
Note that the last line of this algorithm computes Apk+1 without an additionalmatrix-
vector product. The CR method requires five n-vectors of storage: x, r, s, p, and
q = Ap. This is one more vector of storage and one more vector update than the CG
method. This is one reasonwhy the CGmethod is usually preferred, when applicable.

4.2.4 Rate of Convergence of the CG Method

Originally the CGmethod was viewed primarily as a direct method; see, e.g., House-
holder [129, 1964], Sect. 5.7. It soon became evident that the finite termination prop-
erty shown above is valid only in exact arithmetic. In floating-point computation it
could take much more than n iterations before convergence occurred. This led to a
widespread disregard of themethod formore than a decade after its publication. Inter-
est was renewed in the 1970s, when Reid [179, 1971] showed that it could be highly
efficient if used as an iterative method for solving large, sparse, well-conditioned lin-
ear systems. Today CG and other Krylov subspace methods are one of the mainstays
of computational mathematics.

For use as an iterative method it is appropriate to consider the convergence prop-
erties of the CG method. Theorem 4.2.1 implies that the CG method will minimize
‖qk(A)(x − x0)‖A over all residual polynomials of degree k. Hence, an upper bound
for ‖rk‖2A−1 can be obtained by substituting any residual polynomial qk ∈ �∗

k . The
following theorem is basic for analyzing the rate of convergence of the CG method.

Theorem 4.2.3 Let A ∈ C
n×n be a Hermitian positive definite matrix with eigen-

values λi and eigenvectors vi , i = 1 : n. Assume that for some residual polynomial
q̃k ∈ �∗

k of degree k it holds that

max
λ∈S

|̃qk(λ)| ≤ Mk, (4.2.33)

where the set S contains all the eigenvalues of A. Set x0 = 0 and let xk be the kth
iterate of CG applied to the linear system Ax = b. Then an upper bound on the
energy norm of the error x − xk is given by

‖x − xk‖A ≤ Mk‖x − x0‖A. (4.2.34)

Proof The optimality property (4.2.28) gives

‖xk − x‖2A = ‖rk‖2A−1 ≤ M2
k

n∑
i=1

γ 2
i λ−1

i = M2
k ‖b‖2A−1 ,
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where b = ∑n
i=1 γivi . This yields (4.2.34). �

We now let S be a set that contains all the eigenvalues of A and seek a polynomial
q̃k ∈ �̃∗

k such that Mk = maxλ∈S |̃qk(λ)| is small. A natural choice is to take
S = [λ1, λn], and let q̃k ∈ �̃∗

k be the polynomial that minimizes

max
λ1≤λ≤λn

|qk(λ)|.

The solution to this problem is known to be a shifted and scaled Chebyshev poly-
nomial of degree k; see the analysis for Chebyshev semi-iteration in Sect. 4.1.7. It
follows that

‖xk − x∗‖A < 2

(√
κ − 1√
κ + 1

)k

‖x0 − x∗‖A, (4.2.35)

where κ = λn(A)/λ1(A). For the CR method a similar bound holds for the residual
norm ‖rk‖2.

The CG method is particularly effective when A is a low-rank perturbation of
the identity matrix: A = I + B B H ∈ C

n×n , where rank (B) = p � n. Let the
eigenvalues of B H B be λi , i = 1 : p. Then A has at most p + 1 distinct eigenvalues,
namely 1 + λi , i = 1 : p, and 1 with multiplicity n − p. Hence, in exact arithmetic,
CG needs at most p + 1 iterations to solve Ax = b. In many practical problems A
is a low-rank perturbation of the unit matrix plus a matrix of small norm. A fast rate
of convergence can again be expected after p + 1 iterations.

Example 4.2.3 Consider the linear system Au = b arising from the model problem
in Sect. 4.1.2 based on Laplace’s equation. The resulting symmetric positive definite
matrix A is given by (4.1.1) and has condition number
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Fig. 4.5 Error norm ‖x −xk‖2 (solid line) and residual norm ‖rk‖2 (dashed line) for the CGmethod
applied to a discretized Laplace equation on a 32 by 32 grid
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Fig. 4.6 Error norm ‖x −xk‖2 (solid line) and residual norm ‖rk‖2 (dashed line) for the CRmethod
applied to a discretized Laplace equation on a 32 by 32 grid

κ = 1 + cosπh

1 − cosπh
≈ 1

sin2 πh/2
≈ 4

(πh)2
.

For the mesh size h = 1/32 the dimension of A is 312 = 961. The solution was
chosen as a unit vector with components equal to uniformly distributed random
numbers. By (4.1.62), the number of iterations needed to reduce the initial error by
a factor of 10−3 is bounded by k ≈ 1

212
√

κ log(2 · 103) ≈ 77. This is about the
number of iterations needed by SOR using the optimal ωb to reduce the L2-norm by
the same factor. But the CG method is more general in that it does not require A to
have “property A”(see Definition 4.1.3).

Figure4.5 shows the error norm ‖x − xk‖2 and the norm ‖rk‖2 of the recursively
computed residual for the CG method with initial approximation x0 = 0. (Note that
rk may deviate from the true residual b− Axk as the iterations proceeds.) After an ini-
tial phase of slow convergence the error norm is reduced to 10−6 already after about
84 iteration. Note the strictly monotone convergence of the error norm. The curve
showing the residual norm ismonotonically decreasing except for a few small bumps.

Figure4.6 shows the same quantities for the CR method. The rate of convergence
is similar, but now the residual norms ‖rk‖2 converge monotonically. �

The error estimate (4.2.35) tends to describe the convergence well for matrices
with uniformly distributed eigenvalues. For more uneven distributions of eigenval-
ues it is pessimistic. As the iterations proceed, the effects of the smallest and largest
eigenvalues of A are eliminated and the convergence then behaves according to a
smaller “effective” condition number. This behavior is called superlinear conver-
gence. In contrast, for the Chebyshev semi-iterative method, which only takes the
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extreme eigenvalues of the spectrum into account, the error estimate (4.2.35) tends
to be sharp asymptotically.

It is well-known (see Axelsson [7]) that the CG method typically converges in
three phases, any of which can be absent in a particular case:

1. An initial phase where convergence depends essentially on the initial vector.
2. A middle phase, where the convergence is linear with a rate depending on the

spectral condition number.
3. A final phase, where the method converges superlinearly. This often takes place

after considerably less than n iterations.

We have seen that, in exact arithmetic, the conjugate gradient algorithm will
produce the exact solution to a linear system Ax = b in at most n steps. In the
presence of rounding errors, the orthogonality relations will no longer be satisfied
exactly. Indeed, orthogonality between residuals ri and r j , for |i − j | large, will
usually be completely lost. Because of this, the finite termination property does not
hold.

The behavior of CG in finite precision ismuchmore complex. It has been observed
that the bound (4.2.35) still holds to good approximation in finite precision. On the
other hand, a good approximate solution may not be obtained after n iterations,
even though a large drop in the error sometimes occurs after step n. It has been
observed that CG in finite precision behaves like the exact algorithm applied to a
larger linear system Bx̂ = c, where the matrix B has many eigenvalues distributed in
tiny intervals about the eigenvalues of A. This means that κ(B) ≈ κ(A) and explains
why the bound (4.2.35) still applies. It can also be shown that even in finite precision
‖rk‖2 → 0, where rk is the recursively computed residual in the algorithm. (Note
that the norm of the true residual ‖b − Axk‖2 cannot be expected to approach zero.)
This means that a stopping criterion ‖rk‖2 ≤ ε will eventually always be satisfied
even if ε ≈ u, where u is the machine precision.

The superlinear convergence of the CG method was analyzed by Van der Sluis
and Van der Vorst [206, 1986]. This property is shared by other Krylov subspace
methods; see Simoncini and Szyld [202, 2005].

4.2.5 The Lanczos Process

Lanczos [142, 1950] developed a method for computing selected eigenvalues and
eigenvectors of a matrix, which is closely related to the CG method. The method is
based on the Lanczos process12 for reducing a Hermitian matrix A ∈ C

n×n to real

12 Cornelius Lanczos (1893–1974), Hungarian mathematician who studied at the University of
Budapest, where he wrote his PhD thesis on relativity theory and also studied mathematics with
Féjer. Because of laws in Hungary against Jews, he left for Germany in 1921. When the political
situation there became unacceptable in 1931, he took up a position at the Department of Physics at
Purdue University, Indiana. In 1946 he moved to Boeing Aircraft Company and in 1949 he joined
the Institute of Numerical Analysis (INA) at UCLA, Los Angeles. When this was forced to close,
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symmetric tridiagonal form by a unitary similarity:

U H AU = Tn =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 β2
β2 α2 β3

β3
. . .

. . .

. . . αn−1 βn

βn αn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(Note that the αk and βk are not the same as in the CG method.) As shown in
Sect. 3.5.1, provided that all off-diagonal elements are nonzero, this decomposition
is uniquely determined once u1 = Ue1 has been chosen. Equating columns in

A(u1, u2, . . . , un) = (u1, u2, . . . , un)Tn

gives
Auk = βkuk−1 + αkuk + βk+1uk+1, k = 1 :n, (4.2.36)

where β1 = βn+1 = 0. The requirement that u j+1 ⊥ uk yields

αk = u H
k vk, vk = Auk − βkuk−1, k = 1 :n. (4.2.37)

In exact arithmetic uk ⊥ uk−1 and the last term can be dropped. Then αk = u H
k Auk

is real. In practice there will be a loss of orthogonality and (4.2.37) is preferred. This
corresponds to using the modified rather than the classical Gram–Schmidt orthogo-
nalization process. Solving for uk+1 gives

βk+1uk+1 = rk, rk = vk − αkuk .

If rk = 0 the process stops. Otherwise, this determines βk+1 and the next vector:

βk+1 = ‖rk‖2, uk+1 = rk/βk+1. (4.2.38)

Given the initial unit vector u1, Eqs. (4.2.37) and (4.2.38) can be used to compute
the elements in the tridiagonal matrix Tk and the unitary matrix Uk . The quantities
generated by the Lanczos process satisfythe Lanczos decomposition

AUk = Uk Tk + βk+1uk+1eT
k ≡ Uk+1T̂k, (4.2.39)

where

T̂k =
(

Tk

βk+1eT
k

)
. (4.2.40)

he became head of the Theoretical Physics Department at the Dublin Institute for Advanced Study
in Ireland.

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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The process stops when βk+1 = 0 for some k = � ≤ n. Then, by (4.2.39), AU� =
U�T�, i.e., U� is an invariant subspace of A and � is the grade of b with respect to
A. Hence, if the process runs to completion, then the eigenvalues (and condition
number) of Tk converge to those of A.

Algorithm 4.2.3 (The Lanczos Process)

function [U,alpha,beta,k] = lanczosp(A,u1,k);

% LANCZOSP performes k < n steps of the Lanczos process with

% starting vector u1. At exit U is an n by k unitary matrix

% with first column equal to u1 and alpha[1:k] and beta[2:k]

% are diagonals of the symmetric tridiagonal matrix T.

% -----------------------------------------------------------

n = length(u1);

U = zeros(n); U(:,1) = u1; u2 = u1;

alpha = zeros(n,1); beta = zeros(n,1);

for j = 1:k

v = A*u2 - beta(j)*u1;

alpha(j) = u2’*v;

v = v - alpha(j)*u2;

beta(j+1) = norm(v);

if beta(j+1) == 0 | j == k,

k = j; break;

end

u1 = u2; u2 = v/beta(j+1);

U(:,j+1) = u2;

end

There are several computational variants of the Lanczos process, with different
stability properties. The one given in Algorithm4.2.3 is the one recommended by
Paige [165, 1972] and [167, 1976]. Only storage for Tk and the three n-vectors uk−1,
uk , and Auk is needed. The algorithm can be rearranged to use only two vectors; see
Parlett [174, 1998], Exercise13.1.2.

Assume that the grade of u1 is n, and let Pn−1 be the space of polynomials of
degree at most n − 1, equipped with the inner product

〈p, q〉u1 = (p(A)u1)
H q(A)u1. (4.2.41)

Then the Lanczos process is just the Stieltjes algorithm for computing the corre-
sponding sequence of orthogonal polynomials (see, e.g., [58, 2008], Sect. 4.5.6).
The vectors uk are of the form qk−1(A)u1 and the orthogonality of these vectors
translates into the orthogonality of the polynomials with respect to the inner product
(4.2.41). The Lanczos recurrence computes the sequence of vectors qk(A)u1, where
qk is the characteristic polynomial of Tk .

Lanczos [143, 1952] showedhowhis process could also be used to solveHermitian
positive definite systems of linear equations. He called this the method of minimized
iterations. Since, in exact arithmetic, it computes the same sequence of approxima-
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tions xk ∈ Kk(A, b) as the CG method, we call it the Lanczos-CG method. In the
Lanczos process, we take

u1 = b/β1, β1 = ‖b‖2. (4.2.42)

The approximation xk is determined by the Galerkin condition

rk = b − Axk ⊥ Kk(A, b).

Since Uk is an orthonormal basis in Kk(A, b), we take xk = Uk yk and require that
U H

k (b − Axk) = 0. From the Lanczos decomposition (4.2.39) we obtain

rk = b − Axk = β1u1 − AUk yk = Uk+1(β1e1 − T̂k yk). (4.2.43)

If we choose yk from
Tk yk = β1e1, (4.2.44)

we see that rk = −(eT
k yk)βk+1uk+1, and in exact arithmeticU H

k+1rk = 0, as required.
Since A is positive definite, so is Tk . Hence, the Cholesky factorization Tk = Lk LT

k
exists, with

Lk =

⎛
⎜⎜⎜⎜⎜⎝

l11
l21 l22

l32 l33
. . .

. . .

lk,k−1 lkk

⎞
⎟⎟⎟⎟⎟⎠

lower bidiagonal. Since Lk is the k × k principal submatrix of Lk+1, the Cholesky
factorization can be cheaply updated. The solution yk to (4.2.44) is obtained from

Lk zk = β1e, LT
k yk = zk .

It follows that

zk =
(

zk−1
ξk

)
, ξk = −lk,k−1ξk−1/ lkk .

If we define Pk from Lk PT
k = U T

k , then

xk = Uk yk = Pk LT
k yk = Pk zk,

and lk−1,k pk−1 + lkk pk = uk . Hence,

xk = xk−1 + ζk pk, pk = (uk − lk,k−1 pk−1)/ lkk,

can be obtained without saving all the vectors u1, . . . , uk .
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The residual vectors r0, . . . , rk−1 in the CG method are mutually orthogonal and
form a basis for the Krylov spaceKk(A, b). Hence, the columns ofUk in the Lanczos
process are equal to these residual vectors, normalized to unit length. The tridiagonal
matrix Tk generated by the Lanczos method expressed in terms of the coefficients in
the CG method are

Tk = U H
k AUk = D−1

k Lk diag(pH
i Api ) LT

k D−1
k

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

α0

√
β0

α0√
β0

α0

1

α1
+ β0

α0

√
β1

α1√
β1

α1

. . .
. . .

. . .
. . .

√
βk−2

αk−2√
βk−2

αk−2

1

αk−1
+ βk−2

αk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is important to note that the scalars α j and β j in the CG method are different
from those in the Lanczos method. We remark that the CG method is more memory
efficient than Lanczos-CG and is therefore often the preferred algorithm.

We have discussed the Lanczos process in exact arithmetic. In practice, (4.2.43)
still holds to machine precision for any yk . But roundoff will cause the generated
vectors uk to lose orthogonality. A possible remedy is to reorthogonalize each new
vector uk against all previous vectors uk−1, . . . , u1. However, this is very costly, both
in terms of storage and operations. As for the CGmethod, the effect of finite precision
on the Lanczos method is to slow down convergence, but this does not prevent accu-
rate approximations from being found. The loss of orthogonality is closely related
to the convergence of eigenvalues of Tk to those of A. We comment further on this
topic later, when treating the use of the Lanczos process for computing eigenvalue
approximations.

The story of the development of the CG method is recounted by Hestenes
[120, 1990]. An annotated bibliography of the development of the CG and Lanc-
zos methods covering the period up to 1976 was compiled by Golub and O’Leary
[94, 1989].

4.2.6 Indefinite Systems

Indefinite Hermitian linear systems arise, e.g., when using shifted inverse iteration
(see Sect. 3.3.3):

(A − μI )v̂k = vk−1, vk = v̂k/‖v̂k‖2, k = 1, 2, . . . .

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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to solve a Hermitian eigenvalue problem. The CGmethod computes approximations
xk that are characterized by the minimization property

min
xk

‖x − xk‖A, xk ∈ Kk(A, b). (4.2.45)

In the indefinite case ‖ · ‖A is not a norm, and so the CG method is not applicable.
The vectors xk computed by the CR method are characterized by the minimization
property

min
xk

‖r − rk‖AH A, rk = b − Axk, xk ∈ Kk(A, b). (4.2.46)

Although these approximations xk are well defined for indefinite matrices A, their
computations by the original CR method may break down because the Cholesky
factorization of an indefinite subproblem may not exist; see Sect. 1.3.4.

The Lanczos process is still well defined in the indefinite case and generates
a unitary basis Uk for the Krylov subspace Kk(A, b). The SYMMLQ algorithm
computes vectors xk = Uk yk ∈ Kk(A, b) that are stationary values of ‖x̂ − xk‖2A.
These are characterized by the Galerkin condition

U H
k (b − AUk yk) = 0.

This leads again to the tridiagonal system (4.2.44). But when A is indefinite, the
Cholesky factorization of Tk may not exist.Moreover, Tk = U H

k AUk may be singular
at certain steps, and then yk is not defined. If the Lanczos process stops for some
k = � ≤ n, then AU� = U�T�. It follows that the eigenvalues of T� are a subset of
the eigenvalues of A, and thus if A is nonsingular, so is T�. Hence, a singular T� can
only occur at intermediate steps.

By Cauchy’s interlacing theorem (Theorem 3.2.9), the eigenvalues of Tk and
Tk±1 interlace. By Lemma 3.6.1, if Tk+1 has no zero subdiagonal entries, then the
eigenvalues of Tk−1 strictly interlace those of Tk . It follows that if Tk is singular, then
it has exactly one zero eigenvalue and Tk±1 are nonsingular.

In the SYMMLQ algorithm the subproblem Tk yk = β1e1 is solved using the LQ
factorization

Tk = L̄k Qk, Q H
k Qk = I, (4.2.47)

where L̄k is lower triangular and Qk is orthogonal. Such a factorization always exists
and can be computed by multiplying Tk on the right by a sequence of plane rotations:

Tk G12 · · · Gk−1,k = L̄k =

⎛
⎜⎜⎜⎜⎜⎝

γ1
δ2 γ2
ε3 δ3 γ3

. . .
. . .

. . .

εk δk γ̄k

⎞
⎟⎟⎟⎟⎟⎠

. (4.2.48)

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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The rotation Gk−1,k is defined by elements ck−1 and sk−1. The bar on the element
γ̄k is used to indicate that L̄k differs from Lk , the k × k leading part of L̄k+1, in the
(k, k) element only. In the next step the new elements in Gk,k+1 are given by

γk = (γ̄ 2
k + β2

k+1)
1/2, ck = γ̄k/γk, sk = βk+1/γk .

As in Lanczos-CG, yk will change fully with each increase in k. So we write

xk = Uk yk = (Uk Q H
k )z̄k = W̄k z̄k,

where

W̄k = (w1, . . . , wk−1, w̄k), z̄k = (ζ1, . . . , ζk−1, ζ̄k)
T = Qk yk .

Here quantities without bars will remain unchanged when k increases, and W̄k can
be updated with T̄k . The system (4.2.44) now becomes

L̄k z̄k = β1e1, xc
k = W̄k z̄k .

This formulation allows the ui and wi to be formed and discarded one by one. In the
algorithm the CG-point xc

k is not updated at each step. If γ̄k = 0, then z̄k and xc
k are

not defined. Instead, the auxiliary point

x L
k = Wk zk = x L

k−1 + ζkwk

is updated, where Lk is used rather than L̄k . When xc
k+1 exists, it can always be

obtained from

xc
k+1 = x L

k + ζ̄k+1w̄k+1.

In theory the algorithm will stop with βk+1 = 0, and then xc
k = x L

k = x . In practice
it has been observed that βk+1 will rarely be small and some other stopping criterion
based on the size of the residual must be used. Since xc

k+1 is often a much better
approximation than x L

k+1, a transfer to the CG-point is made when terminating the
iterations.

The MINRES (minimal residual) algorithm of Paige and Saunders [168, 1975]
computes in step k the solution to the least squares problem

min ‖Axk − b‖2, xk ∈ Kk(A, b) (4.2.49)

using the Lanczos decomposition (4.2.39). Hence, the MINRES algorithm can be
viewed as an extension of the CR method to Hermitian indefinite matrices. From
4.2.43) and the orthogonality of Uk+1, the least squares problem (4.2.49) is seen to
be equivalent to

min
yk

‖β1e1 − T̂k yk‖2.
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This subproblem can be solved by computing the QR factorization

Gk,k+1 · · · G23G12T̂k =
(

Rk

0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 δ2 ε3

γ2 δ3
. . .

γ3
. . . εk
. . . δk

γk

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(k+1)×k,

(4.2.50)

where the Givens rotations G j, j+1 annihilate the subdiagonal elements in T̂k . This
is the transpose of the factorization in (4.2.48). The same rotations are also applied
to the right-hand side, giving

Gk,k+1 · · · G23G12β1e1 =
(

tk
τ̄k+1e1

)
,

where tk = (τ1, . . . , τk)
T . The factorization (4.2.50) can be updated easily, as we

now show. In the next step a row and a column are added to T̂k . The only new nonzero
elements ⎛

⎝
βk+1
αk+1
βk+2

⎞
⎠ .

are in column k + 1 and rows k, k + 1, and k + 2. To get column k + 1 in Rk+1, the
two last rotations from the previous steps are first applied to column k + 1 and rows
k − 1, k, k + 1. The element βk+2 is then annihilated by a new rotation Gk+1,k+2.

We have xk = Uk yk , where yk satisfies the upper triangular system Rk yk = tk .
To be able to compute xk without having to save the vectors in Uk , we define Dk =
(d1, . . . , dk) from

RT
k DT

K = U T
k .

This yields the recurrence relation (d0 = d−1 = 0)

γkdk = uk − δkdk−1 − εkdk−2. (4.2.51)

Hence, xk can be updated using

xk = Uk yk = Uk R−1
k tk = (

Dk−1 dk
) (tk−1

τk

)
= xk−1 + τkdk . (4.2.52)

The SYMMLQ andMINRES algorithms of Paige and Saunders [168, 1975] were
the first extensions of the CG method beyond Hermitian positive definite matrices.
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SYMMLQ is related to an earlier method of Fridman [87, 1963]. This computes
iterates x M E

k that minimizes the error norm ‖A−1b − x‖2 over the Krylov subspace
Kn(A, Ar0). However, his algorithm is unstable. Fletcher [75, 1975] rediscovered
Fridman’s algorithm and showed that, in exact arithmetic, the iterate x M E

k coincides
with the auxiliary sequence x L

k in SYMMLQ. Hence, as a by-product, SYMMLQ
also gives a stable implementation of Fridman’s minimum error method. Stoer and
Freund [216, 1982] propose another way to stabilize Fridman’s algorithm.

SYMMLQ is reliable also when A is singular and the system Ax = b is con-
sistent. For an inconsistent system the iterates of SYMMLQ diverge to a multiple
of a null vector of A; see Choi [48, 2007]. MINRES computes a least squares solu-
tion to an inconsistent system, but not in general the pseudoinverse solution. The
recent algorithm MINRES-QLP (see Choi [48, 2007] and Choi et al. [49, 2011])
is an extension of MINRES designed to deal more reliably with symmetric singu-
lar or ill-conditioned systems. It converges to the pseudoinverse solution. Iterative
methods for symmetric linear systems are surveyed by Fischer [73, 2011]. MINRES
is of interest also because of its connection with harmonic Ritz values for eigen-
value approximations; see Sect. 4.6.3. Freely availableMatlab implementations of
Lanczos-CG, SYMMLQ, andMINRES are available from the SystemsOptimization
Laboratory (SOL) at Stanford University.

4.2.7 Block CG and Lanczos Processes

The Lanczos process was extended to a block form by Cullum and Donath [54, 1974]
and Golub and Underwood [95, 1977]. In the block Lanczos process one iterates
with a block of vectors and a block tridiagonal matrix is generated. The primary
motivation of this development was for use in algorithms for finding multiple or
clustered eigenvalues; see Sect. 4.6.3. Block methods can also be significantly more
effective because they form the product of A with several vectors at once.

The block Lanczos method for A ∈ C
n×n starts with an initial block of

p > 1 orthonormal n-vectors U1 = (u1, . . . , u p). A sequence U j+1 ∈ C
n×p,

j = 1, 2, 3, . . . , is generated by the recurrence (U0 = 0, B1 = 0)

R j+1 = AU j − U j M j − Ui−1B H
j = U j+1B j+1, j = 1, 2, 3, . . . , (4.2.53)

where M j = U H
j AU j ∈ C

p×p. The matrices U j+1 ∈ C
n×p, and B j+1 ∈ C

p×p

are obtained from the thin QR factorization of R j+1 ∈ C
n×p. The matrix M j is

Hermitian, and B j+1 is upper triangular. The algorithm produces a j p × j p block
tridiagonal matrix:
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Tj =

⎛
⎜⎜⎜⎜⎜⎝

M1 B H
2

B2 M2 B H
3

. . .
. . .

. . .

B j−1 M j−1 B H
j

B j M j

⎞
⎟⎟⎟⎟⎟⎠

, (4.2.54)

which is a band matrix with half-bandwidth p +1. In an implementation of the block
Lanczos method, R j and M j in (4.2.53) should be computed as

Vj = AU j − Ui−1B H
j , M j = U H

j U j , R j+1 = Vj − U j M j , (4.2.55)

where Vj is n × p. This is the form least susceptible to roundoff errors.
The first m steps of the block Lanczos method can be combined into

AUm = Um Tm + Um+1Bm+1E H
m , Um = (U1, U2, . . . , Um), (4.2.56)

where Um is an mp × mp matrix and Em an mp × p matrix, whose last p × p block
is the identity matrix Ip. This generalizes the Lanczos decomposition (4.6.26). In
theory, the columns of Um form an orthonormal set. Ruhe [184, 1979] has developed
an alternative band Lanczos process, which produces a block banded matrix T . In
this variant one Lanczos vector is added at a time. This simplifies the monitoring
of the reorthogonalization process. Block Lanczos methods are also described by
Meurant [156, 199].

Block versions of the CG algorithm have been developed by O’Leary [162, 1980].
These are useful for solving symmetric positive definite linear systems AX = B with
multiple right-hand sides B = (b1, . . . , p). If A has several extreme eigenvalues
widely separated from the others, they may converge much faster. Algorithm 4.2.4
gives an implementation of a block CG method.

Algorithm 4.2.4 (Block CG Method) Let X0 ∈ R
n×p, 1 ≤ p ≤ n, be a given

initial approximation. Set R0 = B − AX0, P0 = R0, and for k = 0, 1, 2, . . . , do

1. Solve PT
k (APk)ak = (RT

k Rk) and set
Xk+1 = Xk + Pkak , Rk+1 = Rk − (APk)ak .

2. Solve (RT
k Rk)bk = (RT

k+1Rk+1) and set
Pk+1 = Rk+1 + Pkbk .

In the block CG algorithm Pk and Rk have size n × p. Because it forms the
product APk with p vectors at once, the block algorithm is often more efficient. In
the algorithm Pk and Rk are assumed to have full column rank. If they become rank
deficient before the residual matrix Rk = 0, a reduction of the block size must be
made. The symmetric linear systems have size p × p, and can be solved by Cholesky
factorization.

The block CG algorithm will converge to the solution of the p systems in at most
�n/p� iterations. It is possible to modify Algorithm 4.2.4 so that it always terminates
successfully with a zero residual matrix.
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Theorem 4.2.4 In the block CG method RH
k APk = P H

k Pk, RH
k = RH

k Pk, and

RH
k R j = 0, P H

k APj = 0, RH
k APj = 0, j �= k.

Furthermore, Rk is orthogonal to Kk(A, R0), where R0 = B − AX0. Hence Xk

minimizes

trace
[
(X − X∗)H A(X − X∗)

]
(4.2.57)

over all X − X0 ∈ Kk(A, R0), where X∗ = A−1B.

Proof See O’Leary [162, 1980]. �
Exercises

4.2.1 (a) Let λi and vi be an eigenpair of the symmetric matrix A. Show that if vi ⊥ b, then
vi ⊥ K j (A, b), j > 1.

(b) Show that if b is orthogonal to p eigenvectors, then the maximum dimension of
K j (A, b) is at most n − p. Deduce that the CG method converges in at most n − p
iterations.

4.2.2 Write down explicitly the conjugate residualmethod. Show that for this algorithm the vectors
x , r , Ar , p, and Ap need to be stored.

4.2.3 SYMMLQ is based on solving the tridiagonal system (4.2.39) using an LQ factorization of
Tk . Derive an alternative algorithm that solves this system with Gaussian elimination with
partial pivoting.

4.2.4 Suppose that we have obtained two approximate solutions x1 and x2 to the linear system
Ax = b.

(a) Show that the linear combination y = αx1 + (1 − α)x2 that minimizes ‖b − Ay‖2 is
obtained by choosing α = r H

2 (r1 − r2)

‖r1 − r2‖22
.

(b) Show that for 0 < α < 1 the residual norm for y is strictly smaller than min
{‖r1‖2, ‖r2‖2}.

4.3 Krylov Methods for Non-Hermitian Systems

An ideal conjugate gradient-likemethod for non-Hermitian systemswould be charac-
terized by either theminimization property (4.2.28), or a Galerkin condition (4.2.43).
It should also be possible to base the implementation on a short vector recursion.
As shown independently by V. V. Voevodin [226, 1983],13 and Faber and Manteuf-
fel [71, 1984], such an ideal method can exist only for matrices of very special form.
In particular, a two-term recursion like in the CG method is possible only if A either
has a minimal polynomial of degree ≤ 1 or is of the form

13 Valentin V. Voevodin (1934–2007), leading Russian scientist in computational methods of linear
algebra and parallel computing. He started to work in 1957 for the Computer Center at Moscow
State University. Later he became a member of the Russian Academy of Sciences, where he worked
at the Institute of Numerical Mathematics. He is the author of several influential Russian textbooks.
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A = eiθ (T + σ I ), T = T H , (4.3.1)

where θ ∈ R and σ ∈ C. Hence, the class consists of shifted and rotated Hermitian
matrices. Real unsymmetric matrices of the form A = I − S, where S = −ST is
real, form an important subclass, which is obtained by setting eiθ = −σ = i and
T = i S in (4.3.1). The first orthogonal residual CG algorithms for this subclass were
given by Concus and Golub [51, 1976] and Widlund [229, 1978]. One of the first
minimum residual methods was given by Freund [80, 1983]

A straightforward approach for the solution of non-Hermitian systems would be
to apply the CG method to either one the Hermitian positive definite systems of
normal equations

AH Ax = AH b, or AAH y = b, x = AH y.

There are situations where this is the optimal approach. However, these methods
usually have very poor rate of converge and are therefore not satisfactory. We will
return to these CG methods in Sect. 4.5, where iterative methods for least squares
problems are addressed.

There is a huge variety of iterative methods for non-Hermitian linear systems
to choose from. In many practical situations it is not clear what method should be
selected. As shown by Nachtigal et al. [161, 1992], depending on the linear system
to be solved, each of several Krylov methods to be considered here can be a clear
winner or clear loser! This is radically different from the Hermitian case, where the
rate of convergence depends on the spectral properties of the matrix alone. Hence,
insight into the characteristics of the linear system is vital.

4.3.1 The Arnoldi Process

In Sect. 3.4.3 a method was given for reducing a matrix A ∈ C
n×n to upper Hessen-

berg form using a sequence of orthogonal similarity transformation. The Arnoldi
process [4, 1951] performs the same reduction, using only matrix-vector operations.
Starting with a unit vector v1, the Arnoldi process (which preceded the Lanczos
process) builds anorthogonal basis for theKrylov subspacesKk(A, v1), k = 1, 2, . . ..
Each new basis vector is orthogonalized against all previous basis vectors. After k
steps the Arnoldi process has generated a matrix

Vk+1 = (v1, v2, . . . , vk+1) = (Vk, vk+1)

with orthonormal columns, and a Hessenberg matrix

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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Hk =

⎛
⎜⎜⎜⎝

h11 h12 · · · h1k

h21 h22 · · · h2k
. . .

. . .
...

hk,k−1 hkk

⎞
⎟⎟⎟⎠ ∈ C

k×k, (4.3.2)

such that

AVk = Vk Hk + βkvk+1eT
k , k = 1, 2, . . . , (4.3.3)

which is the Arnoldi decomposition. To develop the recursion it is convenient to
introduce the rectangular Hessenberg matrix

Ĥk =
(

Hk

βkeT
k

)
∈ R

(k+1)×k, (4.3.4)

so that

AVk = Vk+1 Ĥk, βk = hk+1,k . (4.3.5)

Suppose we have computed Vk and Ĥk−1 ∈ R
k×(k−1) in (4.3.5). In the next step the

vector w = Avk is formed and orthogonalized against Vk , giving

rk = w − PVk w = w − Vkhk

If βk = ‖rk‖2 �= 0, we set vk+1 = rk/βk and update

Ĥk =
(

Ĥk−1 hk

0 βk

)
.

This construction ensures that (4.3.5) is satisfied. Otherwise, the process terminates.
This will happen if and only if Akv1 ∈ Kk(A, v1).

InAlgorithm4.3.1 the orthogonalization is performedbymodifiedGram–Schmidt
(MGS); see Sect. 2.3.5. This gives sufficiently good orthogonality for use in linear
solvers. For eigenvalue computations (see Sect. 4.6.2) orthogonality of Vk to working
precision is essential and reorthogonalization should be carried out.

Algorithm 4.3.1 (The Arnoldi Process)

function [H,V,beta,p] = arnoldi(A,v1,p,tol)

% ARNOLDI applies p steps of the Arnoldi process to

% A with starting vector v1. At exit H is a (p+1)*p

% Hessenberg matrix, V a matrix with p+1 orthogonal

% columns such that AV = VH + beta e_p.

% -----------------------------------------------------

V(:,1) = v1/norm(v1);

for k = 1:p

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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w = A*V(:,k);

for i = 1:k

H(i,k) = V(:,i)’*w;

w = w - H(i,k)*V(:,i);

end

beta = norm(w);

if beta < tol,

p = k; break;

end

v = w/beta; V = [V,v];

H = [H; zeros(1,k)];

H(k+1,k) = beta;

end

To compute an approximate solution to a linear system Ax = b, the Arnoldi
process is used with starting vector v1 = b/β1, β1 = ‖b‖2. At step k we seek an
approximate solution of the form

xk = Vk yk ∈ Kk(A, b), Vk = (v1, . . . , vk). (4.3.6)

In the generalized minimum residual method (GMRES) yk is chosen so that ‖rk‖2
is minimized, where rk = b − Axk . We have rk = Vk+1(β1e1 − Ĥk yk), where Ĥk is
the rectangular Hessenberg matrix given by (4.3.4). Since (in exact arithmetic) Vk+1
has orthogonal columns, it follows that ‖rk‖2 is minimized by taking xk = Vk yk ,
where yk solves the least squares problem

min
yk

‖β1e1 − Ĥk yk‖2. (4.3.7)

This ensures that in exact computation ‖rk‖2 is monotonically decreasing as the
iteration proceeds.

The Arnoldi process terminates at step k if and only if Akb ∈ Kk(A, b). Then zk

vanishes, βk = 0 and by (4.3.7), AVk = Vk Hk . Since rank (AVk) = rank (Vk) = k,
the matrix Hk must be nonsingular. Then

rk = Vk(β1e1 − Hk yk) = 0, yk = β1H−1
k e1,

and xk = Vk yk is the exact solution of Ax = b. This shows that (in exact arithmetic)
GMRES does not terminate before the exact solution is found. In floating-point
computation the MGS-Arnoldi vectors will lose orthogonality completely only after
the residual rk = b − Axk is reduced close to its final level; see Paige et al. [172,
2006].We now discuss the solution of the least squares subsystem (4.3.7) inGMRES.
To solve this the QR factorization

QT
k (Ĥk β1e1) =

(
Rk dk

0 ρk

)
, QT

k = Gk,k+1 · · · G23G12, (4.3.8)



672 4 Iterative Methods

is computed using a sequence of plane rotations, where Gk+1,k is chosen to zero the
subdiagonal element hk+1,k . The solution to (4.3.7) and its residual is then obtained
from

Rk yk = dk, ‖rk‖2 = |ρk |. (4.3.9)

The iterations can be stopped as soon as |ρk | is smaller than a prescribed tolerance.
Since Ĥk−1 determines the first k − 1 Givens rotations and Ĥk is obtained from

Ĥk−1 by adding the kth column, it is possible to save work by updating the QR
factorization (4.3.8) at each step of the Arnoldi process. To derive the updating
formulas for step k we write

QT
k Ĥk = Gk,k+1

(
QT

k−1 0
0 1

)(
Ĥk−1 hk

0 hk+1,k

)
=
⎛
⎝

Rk−1 ck−1
0 γk

0 0

⎞
⎠ ,

where the last column is obtained from

QT
k−1hk = Gk−1,k · · · G12hk =

(
ck−1
δk

)
. (4.3.10)

The rotation Gk,k+1 is then determined by

Gk,k+1

(
δk

hk+1,k

)
=
(

γk

0

)
(4.3.11)

and gives the last element in the kth column in Rk . Proceeding similarly with the
right-hand side, we have

QT
k e1 = Gk,k+1

(
QT

k−1e1
0

)
= Gk,k+1

⎛
⎝

dk−1
ρk−1
0

⎞
⎠ =

⎛
⎝

dk−1
τk

ρk

⎞
⎠ ≡

(
dk

ρk

)
. (4.3.12)

(Note that the different dimensions of the unit vectors e1 above is not indicated in
the notation.) The first k − 1 elements in QT

k e1 are not changed.
The residual norm ‖rk‖2 = |ρk | is available without forming the approximate

solution xk = Vk yk . Because the whole vector yk differs from yk−1, the expensive
operation of forming xk should be delayed until until GMRES has converged.

The steps in the resulting GMRES algorithm can now be summarized as follows:

1. Obtain the last column of Ĥk from the Arnoldi process and apply old rotations to
obtain gk = Gk−1,k · · · G12hk .

2. Determine the rotation Gk,k+1 and the new column in Rk , i.e., ck−1 and γk accord-
ing to (4.3.11). This also determines τk and |ρk | = ‖rk‖2.
Another way to choose the approximation xk in (4.3.6) is used in the full orthog-

onalization method (FOM), also called the Arnoldi method. Here xk is determined
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by the Galerkin condition

rk ⊥ Kk(A, b), rk = b − Axk .

From (4.3.3) the residual rk can be expressed as

rk = b − AVk yk = β1v1 − Vk Hk yk − βkvk+1eT
k yk . (4.3.13)

From the orthogonality of Vk+1, the Galerkin condition V T
k rk = 0 gives β1e1 −

Hk yk = 0. Assuming that Hk is nonsingular, we obtain yk as the solution of

Hk yk = β1e1.

In the Hermitian case FOM reduces to the Lanczos-CG method. The FOM and
GMRES methods are closely related. If one of the methods performs well on a
particular problem, then the other will also perform well. If Hk is singular, then the
kth FOM iterate does not exist. It can be shown that then the kth GMRES iterate does
not improve. Furthermore, if the residual norm is reduced by a significant amount in
step k, then the FOM residual will be approximately equal to the GMRES residual;
see Cullum and Greenbaum [55, 1996].

Example 4.3.1 Consider Ax = b with

A =
(
0 1
1 0

)
, b =

(
1
0

)
.

Then v1 = b, and because v2 = Av1 = x ⊥ v1, GMRES does not make any progress
in the first step. We also have h11 = 0 and the first FOM iterate does not exist.

The GMRES approximations minimize the Euclidean norm of the residual rk =
b − Axk in the Krylov subspace Kk(A, b). If A is diagonalizable, A = X�X−1,
� = diag(λi ), it follows that

||rk ||2 ≤ κ2(X)min
qk

max
i=1,2,...,n

|qk(λi )| ||b||2, (4.3.14)

where qk is a polynomial of degree ≤ k and qk(0) = 1. The proof is similar to the
convergence proof for the conjugate gradient method in Sect. 4.2.3. This result shows
that if A is diagonalizable and has p ≤ n distinct eigenvalues then, as for CG in the
symmetric case, GMRES converges in at most p steps. If the spectrum is clustered in
p clusters of sufficiently small diameters, then GMRES can be expected to provide
accurate approximations after about p iterations.

In the special case that A is normal we have κ2(X) = 1 and the convergence is
related to the complex approximation problem

min
qk

max
i=1,2,...,n

|qk(λi )|, qk(0) = 1.
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If the eigenvalues are contained in some disk or ellipse that does not contain the
origin, then one can find reasonably simple bounds; see Greenbaum [100, 1997],
Liesen and Strakoš [152, 2012].

Chebyshev polynomials can be defined for a complex argument z. If we set z =
1
2 (w + w−1) then w = z ± √

z2 − 1 and

Tk(z) = 1

2
(wk + w−k). (4.3.15)

It can be shown by the parallelogram law that |z +1|+|z −1| = |w|+|w|−1. Hence,
if R > 1, z = 1

2 (w + w−1) maps the annulus {w : R−1 < |w| < R} twice onto an
ellipse ER determined by the relation

ER = {z : |z − 1| + |z + 1| ≤ R + R−1}, (4.3.16)

with foci at 1 and −1. The axes are R + R−1 and R − R−1, respectively, and R is the
sum of the semi-axes. Note that as R → 1, the ellipse degenerates into the interval
[−1, 1]. As R → ∞, it becomes close to the circle |z| < 1

2 R. It follows from (4.1.54)

that this family of confocal ellipses are level curves of |w| = |z ± √
z2 − 1|. In fact,

we can also write

ER =
{

z : 1 ≤ |z +
√

z2 − 1| ≤ R
}

. (4.3.17)

A min-max result similar to Theorem 4.1.11 can be shown to hold asymptotically
in the complex case. Here the maximum of |p(z)| is taken over the ellipse boundary
and γ is a point not enclosed by the ellipse. Related questions are studied by Fischer
and Freund [74, 1990].

A famous result by Greenbaum et al. [101, 1996] states that any non-increasing
convergence curve for the residual norms is possible with GMRES. That is, given a
positive sequence

‖b‖2 = ρ0 ≥ ρ1 ≥ · · · ≥ ρn−1 > 0,

there exist a matrix A ∈ R
n×n and a vector b = r0, such that ‖rk‖ = ρk , k = 1 :n−1,

where rk is the residual at step k for GMRES. Moreover, A can be chosen to have
any desired eigenvalues. Hence, no useful bound for the rate of convergence can be
deduced from the spectrum {λi } of A alone. In particular, the GMRES iterations can
stagnate, i.e., the residual norm can be nondecreasing. Indeed, stagnation is possible
for n − 1 steps, so that “convergence” occurs in the last step. For example, GMRES
makes no progress until step n with initial vector x0 = e1 when A is a companion
matrix
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A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−cn−1 −cn−2 · · · −c1 −c0

⎞
⎟⎟⎟⎟⎟⎠

∈ R
n×n,

whose eigenvalues are the roots of zn + ∑n−1
j=0 c j z j .

It is often observed that GMRES (like the CG method) has superlinear conver-
gence, i.e., the rate of convergence improves as the iteration proceeds. It has been
proved that this is related to the convergence of Ritz values (see Sect. 4.6.1) to exte-
rior eigenvalues of A. When this happens, GMRES converges from then on as fast
as for a related system in which these eigenvalues and their eigenvector components
are missing. This superlinear convergence of GMRES is similar to that for the CG
method and has been analyzed by Vorst and Vuik [224, 1986].

The memory requirement of GMRES increases linearly with the number of steps
k and the cost for orthogonalizing the vector Avk is proportional to k2. The number
of steps taken by GMRES must therefore be limited. In practice, GMRES is usually
restarted after a fixed number m iterations, with m chosen between 10 and 30.
The corresponding algorithm, denoted GMRES(m), cannot break down (in exact
arithmetic) before the true solution has been produced, but for m < n GMRES may
never converge. Elman [69, 1982] shows that GMRES(m) converges for all m ≥ 1, if
A + AT is positive definite. Restarting GMRES in general slows down convergence
because information is lost.

If GMRES is applied to a real symmetric indefinite system, it can be implemented
with a three-term recurrence, which avoids the necessity to store all basis vectors
v j . The resulting method is equivalent to MINRES by Paige and Saunders; see
Sect. 4.3.1. Hence, GMRES can be viewed as a generalization of MINRES to non-
Hermitian systems.The application ofGMRES to singular or nearly singular systems
is studied by Brown and Walker in [35, 1997].

4.3.2 Two-Sided Lanczos and the BiCG Method

The GMRES method and related schemes give up the short recurrences of the CG
method. The work and storage requirements per iteration grow linearly and make
restarts necessary. However, when restarts are made, gathered information is thrown
away and this often slows down convergence. In this section we focus on methods
that can be implemented with roughly constant work and storage per iteration. These
methods all derive from a two-sided process proposed by Lanczos [142, 1950]. This
performs the reduction of a non-Hermitian matrix A ∈ C

n×n to tridiagonal form by
a similarity transformation
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W H
n AVn = Tn =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 β2
γ2 α2 β3

γ3
. . .

. . .

. . . αn−1 βn

γn αn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.3.18)

where W H
n = V −1

n ∈ C
n×n . It follows that W H

n Vn = I and W −H
n = V H

n . Setting
Vn = (v1, . . . , vn) and Wn = (w1, . . . , wn), we have

wH
i v j =

{
1 if i = j,

0 otherwise,
(4.3.19)

i.e, the vector sequences {v1, . . . , vn} and {w1, . . . , wn} are bi-orthogonal. Assum-
ing the reduction (4.3.18) exists, it follows that AVn = VnTn and AH

n Wn = T H
n Wn .

Comparing the kth columns in these equations gives

Avk = βkvk−1 + αkvk + γk+1vk+1, (4.3.20)

AH wk = γ̄kwk−1 + ᾱkwk + β̄k+1wk+1. (4.3.21)

Set v0 = w0 = 0, and let v1 and w1 be two initial vectors chosen so that wH v1 = 1.
Rearranging the Eqs. (4.3.20)–(4.3.21) we obtain the recurrence relations

γk+1vk+1 = ṽk+1 ≡ (A − αk I )vk − βkvk−1, (4.3.22)

β̄k+1wk+1 = w̃k+1 ≡ (AH − ᾱk I )wk − γ̄kwk−1. (4.3.23)

Multiplying equation (4.3.22) by wH
k and using the bi-orthogonality, we find that

αk = wH
k Avk . To satisfy the bi-orthogonality relation (4.3.19) for i = j = k + 1 it

suffices to choose γk+1 and β̄k+1 so that β̄k+1γk+1 = w̃H
k+1ṽk+1. Hence, there is some

freedom in choosing these scale factors. In the following algorithm the normalization
is done so that vk are unit vectors.

After k steps we have W H
k AVk = Tk , where Tk ∈ R

k×k is a principal submatrix
of Tn in (4.3.18) and Vk = (v1, . . . , vk) and Wk = (w1, . . . , wk). The recurrences
(4.3.22)–(4.3.23) can then be written in matrix form as

AVk = Vk Tk + γk+1vk+1eT
k , (4.3.24)

AH Wk = Wk T H
k + β̄k+1wk+1eT

k . (4.3.25)

By construction, these vector sequences form basis vectors for the twoKrylov spaces

R(Vk) = Kk(A, v1), R(Wk) = Kk(AH , w1). (4.3.26)
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Note that if AH = A and we take w1 = v1 and βk = γk , then the two sequences
generated will be identical and equal to those generated by the symmetric Lanczos
process.

Algorithm 4.3.2 (Lanczos Bi-Orthogonalization Process)

1. Choose two initial vectors v1, ‖v1‖2 = 1 and w1 such that wH
1 v1 �= 0.

Set v0 = w0 = 0.
2. for k = 1, 2, . . . ,

(a) Compute δk = wH
k vk ;

If δk = 0, set l = k − 1; stop;
(b) Compute αk = wH

k Avk ;
vk+1 = Avk − αkvk − βkvk−1;
wk+1 = AH wk − ᾱkwk − γ̄kwk−1;
If vk+1 = 0 or wk+1 = 0 stop.

(c) Set γk+1 = ‖vk+1‖2 and β̄k+1 = δk/γk+1;
vk+1 := vk+1/γk+1; wk+1 := wk+1/β̄k+1;

As indicated, there are two cases when the Algorithm 4.3.2 stops. The first occurs
when either vk+1 or wk+1 (or both) is zero. In this case it follows that an invariant
subspace has been found. If vk+1 = 0, then by (4.3.24) AVk = Vk Tk and R(Vk) is
an A-invariant subspace. Similarly, if wk+1 = 0, then by (4.3.24) AH Wk = Wk T H

k
andR(Wk) is an AH -invariant subspace. This is called a pivot breakdown or regular
termination. The second case, called serious breakdown, occurs when wH

k vk = 0,
with neither vk+1 nor wk+1 null. This means that the bi-orthogonality condition
required of the vectors vk+1 andwk+1 cannot be satisfied. However, it is still possible
that such vectors can be found in Krylov subspaces of higher dimensions.

We mention that in order to avoid complex conjugated recurrence coefficients,
the Lanczos bi-orthogonalization process can be formulated with AT instead of AH .
Conjugating the three-term recurrence (4.3.25) gives

βk+1w̄k+1 = (AT − αk I )w̄k − γkw̄k−1. (4.3.27)

The bi-orthogonalization process was originally proposed by Lanczos for com-
puting eigenvalues. It is also the basis for several iterative methods for solving non-
Hermitian linear systems. Given an approximation x0, we set r0 = b − Ax0 and

v1 = r0/β1, β1 = ‖r0‖2.

We take w1 = v1 and xk = x0 + Vk yk ∈ Kk(A, r0), where yk is determined by the
Galerkin condition

rk ⊥ Kk(AH , w1), rk = r0 − Axk, (4.3.28)

or equivalently W H
k rk = 0. From (4.3.24) and the bi-orthogonality conditions

W H
k Vk = I we obtain
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W H
k (β1v1 − AVk yk) = β1e1 − Tk yk = 0. (4.3.29)

If Tk is nonsingular, yk can be determined from the tridiagonal system Tk yk = β1e1,
and then xk = Vk yk . We remark that an iterate satisfying (4.3.29) may not exist for
each k. If A isHermitian, thismethodbecomes theSYMMLQmethod, seeSect. 4.3.1.

There can be a serious breakdown in the bi-orthogonalization process before a
good approximate solution to Ax = b is found. If this happens, the method has to be
restarted from the beginning with the new starting vector rk . The Krylov subspaces
that have been built are then discarded and the possibility of faster convergence
wasted.

The Lanczos bi-orthogonalization process can be written in a form more like the
conjugate gradient algorithm. In this the LU factorization without pivoting of Tk is
computed and updated in each step. This leads to a recursive update of the solution
vector and avoids the saving of intermediate vectors. This variant is called the bi-
conjugate gradient method, or BiCG method. It can be derived from the two-sided
Lanczos process in the same way as the CG method is derived from the Hermitian
Lanczos process. From Tk = LkUk we obtain

xk = x0 + Vk T −1
k (βe1) = x0 + Pk L−1

k (βe1),

where Pk = VkkU−1
k . Similarly, let P̃ H

k = L−1
k W H

k . Then the columns of Pk and
P̃k are A-conjugate, because

P̃ H
k APk = L−1

k (W H
k AVk)U

−1
k = L−1

k TkU−1
k = I.

Note that because the matrices Uk and Lk are upper bidiagonal, successive columns
in Pk and P̃ H

k can be obtained by two-term recursions. Further, xk can be obtained
by updating xk−1 as in the CG method. The BiCG algorithm without provision for
breakdown is given in Algorithm 4.3.3.

The vectors rk−1 and r̃k−1 are in the same direction as vk and wk , respec-
tively. Hence, they form a biorthogonal sequence. Note that in BiCG the most time-
consuming operations Apk−1 and AH p̃k−1 can be carried out in parallel.

An additional cause for breakdown of the BiCG algorithm is that the LU factor-
ization may fail to exist for some k. Such a breakdown of the second kind can be
avoided in the Bi-Lanczos process by using a block LU factorization with 2 by 2
block diagonal elements.

Compared to other methods for unsymmetric systems, the BiCG method is very
efficient, both with respect to computing time and memory requirements. One can
encounter convergence problems with BiCG. If r̃0 is chosen unfavorably, it may
occur that ρk−1 or ( p̃k−1, vk−1) is zero (or very small) without convergence having
taken place. Nothing isminimized in the BiCG and relatedmethods, and for a general
unsymmetric matrix A the convergence behavior can be very irregular. There is no
guarantee that the algorithm will not break down or be unstable. On the other hand,
it has been observed that sometimes convergence can be as fast as for GMRES.
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Algorithm 4.3.3 (BiCG Method)

1. p0 = r0 = b − Ax0;
Choose r̃0 = p̃0 such that ρ0 = r H

0 r̃0 �= 0.
2. for k = 1, 2, . . . , compute:

(a) σk−1 = p̃H
k−1Apk−1;

αk−1 = ρk−1/σk−1;
xk = xk−1 + αk−1 pk−1;
rk = rk−1 − αk−1Apk−1;
r̃k = r̃k−1 − ᾱk−1AH p̃k−1;

(b) ρk = r̃ H
k rk ;

βk−1 = ρk/ρk−1;
pk = rk + βk−1 pk−1;
p̃k = r̃k + βk−1 p̃k−1;
If ρk = 0 stop.

Although exact breakdowns are rare in practice, near breakdowns can slow down or
even prevent convergence. A way around breakdowns—except serious ones—is to
use a so-called look-ahead procedure. In this, several successive basis vectors for
the Krylov subspaces are taken together and made block-wise biorthogonal. Freund
has proposed a procedure that requires the same number of inner products per step
as the standard algorithm and reduces to the classical Lanczos algorithm in absence
of look-ahead steps. The resulting algorithms are too complicated to be discussed
here; for details; see Freund, Golub and Nachtigal [86, 1993], Sect. 3.2.

4.3.3 The Quasi-Minimal Residual Algorithm

The Quasi-Minimal Residual (QMR) method is related to BiCG in a similar way as
MINRES is related to CG. To solve the system Ax = b, the unsymmetric Lanczos
process is started with

v1 = b/‖b‖2, w1 = c/‖c‖2,

where AH y = c is a dual system. From (4.3.24) it follows that after k steps we have
obtained

AVk = Vk+1T̂k, T̂k =
(

Tk

γk+1eT
k

)
,

where T̂k is a (k +1)×k tridiagonal matrix. With β0 = ‖b‖2, the residual associated
with the approximation xk = Vk yk is

rk = b − AVk yk = βv1 − Vk+1T̂k yk = Vk+1(β0e1 − T̂k yk). (4.3.30)
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As Vk+1 is not unitary, the Euclidean norm of the residual vector cannot be easily
minimized. However, we have

‖rk‖2 ≤ ‖Vk+1‖2‖βe1 − T̂k yk‖2. (4.3.31)

Since the columns in Vk+1 have norm one, it follows that ‖Vk+1‖2 ≤ ‖Vk+1‖F ≤√
k + 1. InQMR yk is chosen in step k as the solution of the least squares subproblem

min
yk

‖βe1 − T̂k yk‖2. (4.3.32)

Since the subdiagonal elements of T̂k are nonzero, this problem always has a unique
solution, even when the tridiagonal matrix Tk is singular. This avoids the pivot break-
down in the BiCG algorithm.

The solution xk = Vk yk can be updated by the same algorithm as in MINRES.
The QR factorization of T̂k ∈ R

(k+1)×k is computed by a sequence of Givens trans-
formations, giving

Gk,k+1 · · · G23G12T̂k =
(

Rk

0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1 σ2 τ3

ρ2 σ3
. . .

ρ3
. . . τk
. . . σk

ρk

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.3.33)

This factorization can be updated exactly as described earlier for MINRES. The
right-hand side β0e1 is similarly transformed, giving

Gk,k+1 · · · G23G12βe1 =
(

zk

βke1

)
, (4.3.34)

where zk = (ζ1, . . . , ζk). To be able to compute the iterates xk = Vk yk with-
out having to save Vk , auxiliary vectors Pk = (p1, . . . , pk) = Vk R−1

k are intro-
duced. Since Pk Rk = Vk , it follows that these vectors satisfy the recurrence relation
p−1 = p0 = 0,

ρk pk = vk − σk pk−1 − τk pk−2, k = 1, 2, . . . ,

from which pk is obtained. The approximation xk is then given by

xk = Vk yk = Vk R−1
k tk = (Pk−1 pk)

(
zk−1
ζk

)
= xk−1 + ζk pk .

We refer to β0e1 − T̂k yk as the quasi-residual for the QMR method.
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We note that for QMR the quasi-residual norm cannot increase. The true residual
norm is usually of the same magnitude and can be estimated using (4.3.31). The loss
of optimality due to the quasi-optimal approach is quantified in the following result
due to Nachtigal [160, 1991]:

‖rQMR
k ‖2 ≤ κ2(Vk+1)‖rGMRES

k ‖2.

BiCG and QMR are both based on the Bi-Lanczos process. It is possible to obtain
the BiCG iterates, when they exist, from the QMR iterations using (Freund et al.
[85, 1992], Theorem 3.8):

xBiCGk = xBiCGk−1 + τk

ck
pk, ‖rBiCGk ‖2 = 1

ck
|s1 · · · sk | ‖b‖2, (4.3.35)

where ck and sk are the elements in the Givens rotation Gk,k+1 used in the fac-
torization of T̂k . Hence, QMR can be viewed as a more stable implementation of
BiCG. In absence of a breakdown, the convergence of QMR is roughly similar to
the BiCG method. It follows that if the QMR residual norm is reduced significantly
at step k, then the BiCG residual norm will be approximately equal. However, when
the QMR residual norm stagnates, then the BiCG residual norm can be orders of
magnitudelarger.

4.3.4 Transpose-Free Methods

Krylov methods based on the Arnoldi process only require matrix-vector products
with A. In contrast, methods based directly on the Lanczos bi-orthogonalization
process involve matrix-vector products with both A and AH . This can be a disad-
vantage for certain applications. If the data structure favors the calculation of Ax ,
it can be less favorable for the calculation of AH y. Moreover, for some problems
deriving from differential equations the rows of A arise naturally from a finite dif-
ference approximation and matrix products Ax are much more easily computed than
AH y. This consideration has led to the development of “transpose-free” Lanczos-
based iteration methods that are among the most efficient methods for solving large
unsymmetric linear systems.

The first of the transpose-free iterative methods is CGS, due to Sonneveld
[207, 1989]. CGS stands for “conjugate gradient squared” and is a modification
of the BiCG algorithm. Sonneveld observed that in BiCG the matrix-vector products
with AH appear only in formulas ρk = r̃ H

k rk and σk = p̃H
k vk . By rewriting these

products, we can eliminate the transpose while obtaining the iterates in a Krylov
subspace K2k−1(A, r0) of twice the dimension.

The vectors generated in the BiCG algorithm have the property p0 = r0 and

rk = φk(A) r0, r̃k = φk(AH ) r̃0,

pk = ψk(A) r0, p̃k = ψk(AH ) r̃0, k = 1, 2, . . . ,
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where φk(x) and ψk(x) are polynomials of degree k. That is, rk and r̃k are obtained
by premultiplication by the same polynomial φk(t) in A and AH , respectively. The
same is true for pk and p̃k for the polynomial ψk(t). Since φk(AH ) = φk(A)H and
ψk(AH ) = ψk(A)H , it follows that the inner products needed in the BiCG algorithm
can be expressed as

(̃rk, rk) = (̃r0, φ
2
k (A) r0), ( p̃k, Apk) = ( p̃0, ψ

2
k (A) r0).

If somehow φk(A)2r0 and ψk(A)2 p0 could be generated directly, then no products
with AH would be required. To achieve this, we note that from the BiCG algorithm
we have the relations φ0(A) = ψ0(A) = I ,

φk+1(A) = φk(A) − αk A ψk(A), (4.3.36)

ψk+1(A) = φk+1(A) + βkψk(A). (4.3.37)

Squaring these relations we obtain

φ2
k+1 = φ2

k − 2αk A φkψk + α2
k A2ψ2

k ,

ψ2
k+1 = φ2

k+1 + 2βkφk+1ψk + β2
k ψ2

k ,

where the argument A has been omitted. From (4.3.37) it follows that the first cross-
product term is

φkψk = φk(φk + βk−1ψk−1) = φ2
k + βk−1φkψk−1.

From this and (4.3.36) we get for the other cross-product term

φk+1ψk = (φk − αk A ψk)ψk = φkψk − αk A ψ2
k

= φ2
k + βk−1φkψk−1 − αk A ψ2

k .

Summarizing, we obtain the three recurrence relations

φ2
k+1 = φ2

k − αk A (2φ2
k + 2βk−1φkψk−1 − αk A ψ2

k ),

φk+1ψk = φ2
k + βk−1φkψk−1 − αk A ψ2

k ,

ψ2
k+1 = φ2

k+1 + 2βkφk+1ψk + β2
k ψ2

k ,

which are the basis of the CGS algorithm. With rk = φ2
k (A)r0, pk = ψ2

k (A)r0, and
qk = φk+1(A)ψk(A)r0, we get

rk+1 = rk − αk A (2rk + 2βk−1qk−1 − αk A pk),

qk = rk + βk−1qk−1 − αk A pk,

pk+1 = rk+1 + 2βkqk + β2
k pk .
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These recurrences can be simplified by introducing the auxiliary vector uk = rk +
βk−1qk−1, giving

qk = uk − αk Apk, pk+1 = uk+1 + βk(qk + βk pk). (4.3.38)

The resulting method is summarized in Algorithm 4.3.4.

Algorithm 4.3.4 (CGS)
Set r0 = b − Ax0 and choose r̃0 so that ρ0 = r̃ H

0 r0 �= 0.

p0 = u0 = r0; v0 = Ap0;
for k = 0, 1, 2, . . .

vk = Apk; σk = r̃ H
0 vk;

αk = ρk/σk;
qk = uk − αkvk;
xk+1 = xk + αk(uk + qk)

rk+1 = rk − αk A(uk + qk);
ρk+1 = r̃ H

0 rk+1; βk = ρk+1/ρk;
uk+1 = rk+1 + βkqk;
pk+1 = uk+1 + βk(qk + βk pk);

end

CGS uses two matrix-vector products with A in each step. When CGS converges
well it can be expected to converge about twice as fast as BiCG. Since the CGS
method is based on the Lanczos bi-orthogonalization process, it is susceptible to
breakdowns. Look-ahead strategies can be used to overcome this problem. A weak
point of BiCG is that the residual norm typically shows erratic convergence behavior.
Since the CGS residual polynomials are the squared BiCG polynomials, this erratic
behavior is magnified in CGS. Although the norm of the vector ψk(A)r0 is small, it
may happen that ‖ψ2

k (A)r0‖ is much bigger than ‖r0‖. This may even lead to such
severe cancellation that the accuracy of the computed solution is destroyed.

The sometimes erratic behavior of CGS has motivated the development of more
smoothly converging transpose-free methods. The first such method, due to van der
Vorst [221, 1992], is calledBiCGSTAB; see Algorithm 4.3.5. This method computes
iterates x2k ∈ K2k(A, r0) whose residual vectors are of the form

rk = χk(A)ψk(A)r0, χk(t) = (1 − ω1t)(1 − ω2t) · · · (1 − ωk t), (4.3.39)

where as before ψk(A) is the BiCG residual polynomial. The parameters ωk are
determined by a steepest descent step so that

‖rk‖2 = ‖(1 − ωk)(A)ψk(A)r0‖2
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is minimized as a function of ωk . From the orthogonality

(ψi (A)r0, χk(A)r0) = 0, k < i,

it follows that BiCGSTAB is a finite method, i.e., in exact arithmetic it will converge
in at most n steps. As for CGS, BiCGSTAB requires two matrix-vector products
with A per step. The steepest descent step gives BiCGSTAB a much smoother con-
vergence behavior than BiCG or CGS. The derivation of the recurrence relations for
BiCGSTAB is similar to that for CGS; see Saad [194, 2003], Sect. 7.4.2. BiCGSTAB
works well for many problems, but can still exhibit irregular convergence for difficult
problems. It can also converge much slower than CGS.

Algorithm 4.3.5 (BiCGSTAB)
Set r0 = b − Ax0, and choose r̃0 so that ρ0 = r̃ H

0 r0 �= 0.

p0 = u0 = r0;
for k = 0, 1, 2, . . .

vk = Apk; αk = ρk /̃r H
0 vk;

sk = rk − αkvk;
tk = Ask; ωk = t H

k sk/t H
k tk;

xk+1 = xk + αk pk + ωksk;
rk+1 = sk − ωk tk;
ρk+1 = r̃ H

0 rk+1;
βk = (ρk+1/ρk)(αk/ωk);
pk+1 = rk+1 + βk(pk − ωkvk);

end

In the CGS algorithm the iterates are updated as

xk = xk−1 + αk(uk−1 + qk−1) ∈ K2k+1(A, r0),

where uk−1 ∈ K2k−1(A, r0). Hence, in CGS two search directions uk−1 and qk−1
are available, but only their sum is used in the update. Freund [82, 1993] developed a
transpose-free method that instead of the one update in CGS produces two separate
updates corresponding to uk−1 and qk−1. Furthermore, the free parameter vector is
chosen so that the iterates satisfy a quasi-minimal residual property. For this reason
the algorithm is called TFQMR. In the description of TFQMR it is convenient to
double all subscripts in CGS. The derivation of the recurrence relations for TFQMR
is given in Saad [194, 2003], Sect. 7.4.3. TFQMR requires two matrix-vector prod-
ucts with A per (double) step. Note that the iterates generated by TFQMR differ in
general from those of QMR. The convergence test is usually based on the norm ‖rk‖
of the residual rk = b − Axk . This quantity is not directly available from TFQMR.
However, the upper bound

‖rk‖2 ≤ √
k + 1τk (4.3.40)
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is available at no extra cost. TFQMRandother transpose-freemethods are susceptible
to breakdowns in the underlying BiCG method.

Algorithm 4.3.6 (TFQMR) Let x0 be an initial guess, r0 = b − Ax0, and choose
r̃0 so that ρ0 = r̃ H

0 r0 �= 0.

w0 = u0 = r0; v0 = Au0; d0 = 0;
τ0 = ‖r0‖2; θ0 = η0 = 0;
for k = 0, 1, 2, . . .

if k is even,

αk+1 = αk = ρk /̃r H
0 vk; uk+1 = uk − αkvk;

end

sk = Auk; wk+1 = wk − αksk;
dk+1 = uk + (θ2k /αk)ηkdk;
θk+1 = ‖wk+1‖2/τk; ck+1 = 1/

√
1 + θ2k+1;

τk+1 = τkθk+1cm+1; ηk+1 = c2k+1αk;
xk+1 = xk + ηk+1dk+1;
if k is odd,

ρk+1 = r̃ H
0 rk+1; βk−1 = wk+1 + βk−1uk;

vk+1 = Auk+1 + βk−1(Auk + βk−1vk−1);
end

end

4.3.5 Complex Symmetric Systems

Most linear systems that occur in practice have real matrix A and right-hand side
b. However, there are several applications that lead to linear systems with complex
A, e.g., the study of damped vibrations. Another important problem (arising, e.g., in
the aeronautics industry) is the propagation of electromagnetic waves in conducting
media. This is governed by the complex Helmholz equation

−�u − σ1u + iσ2u = f,

where σ1 and σ2 are real coefficient functions. The resulting linear system has the
property that A = AT is complex symmetric.

There are several ways to solve such systems. An obvious method is to form the
positive definite normal equations and solve AH Ax = AH b with the CG method.
However, this squares the condition number of A and convergence can be very slow.
Another possibility is to rewrite the system as two real systems for the real and
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imaginary parts. With A = B + iC , b = c + id, and x = y + i z, the complex linear
system Ax = b is equivalent to the real linear system

(
B C
C −B

)(
y

−z

)
=
(

c
d

)
(4.3.41)

of twice the size. If AT = A this system is symmetric and indefinite. It can be solved
by SYMMLQ or MINRES. Neither of these methods exploit the special property
of A. The spectrum of the symmetric matrix in (4.3.41) is such that its eigenvalues
straddle the origin. This is normally an unfavorable situation for Krylov subspace
methods, which perform best if the matrix is definite.

We now consider the Bi-Lanczos process (Algorithm 4.3.2). As for the Hermitian
case, this reduces to only one recursion if A is complex symmetric. Hence, work and
storage are halved. Set Vk = (v1, v2, . . . , vk) and

Tk =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 β2
β2 α2 β3

β3
. . .

. . .

. . . αk−1 βk

βk αk

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.3.42)

The Lanczos vectors v1, v2, . . . , vk form an orthonormal basis for Kk(A, r0) with
respect to the indefinite bilinear form 〈y, x〉 = yT x, x, y ∈ C

n . We have

AVk = Vk Tk + (0, 0, . . . , ṽk+1).

If the process can be run to completion without breakdown, it ends when k is equal to
the smallest integer forwhich A−1b ∈ x0+Kk(A, r0). The algorithmwill break down
if a vector vk �= 0 inCn is encountered such that vT

k vk = 0. If no breakdown occurs,
the algorithm terminates with a basis containing the solution to A(x − x0) = r0.

Algorithm 4.3.7 (Bi-Lanczos for AT = A)

1. Choose an initial vector v1 = r0 = b − Ax0, and set v0 = 0.
2. for k = 1, 2, . . . ,

(a) βk = (vH
k vk)

1/2; If βk = 0, set l = k − 1; stop;
(b) vk := vk/βk ; αk = vH

k Avk ;
vk+1 = Avk − αkvk − βkvk−1;

The BiCGmethod for general linear systems can be modified in a similar way for
symmetric complex systems. If we make the choice r̃0 = r0, then work and storage
are halved.
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Algorithm 4.3.8 (BiCG Method for AT = A)

1. Set p0 = r0 = b − Ax0; ρ0 = r T
0 r0.

2. for k = 1, 2, . . . , compute:

(a) σk−1 = pH
k−1Apk−1;

If σk−1 = 0 or ρk−1 = 0, l = k − 1; stop;
αk−1 = ρk−1/σk−1;
xk = xk−1 + αk−1 pk−1;
rk = rk−1 − αk−1Apk−1;
ρk = r H

k rk ; βk−1 = ρk/ρk−1;
pk = rk + βk−1 pk−1;

If no breakdownoccurs, then in exact arithmeticAlgorithm4.3.8 generates vectors
xk and rk = b − Axk such that r T

k r j = 0, k �= j , and

(b − Axk)
T y for all y ∈ Kk(A, ro) = span{r0, r1, . . . , rk−1}. (4.3.43)

The vector vk−1 is parallel to the Lanczos vector vk in Algorithm 4.3.7. It can be
verified that

rk−1 = (−1)kρ1 · · · ρk−1β1 · · · βk−1βk .

The algorithm can break down in two different ways. The first happens when a
residual vector rk−1 occurs such that r H

k−1rk−1 = 0. This is equivalent to a breakdown
in the symmetric Bi-Lanczos process. The second cause of breakdown is when a
search direction pk−1 �= 0 is encountered such that pH

k−1Apk−1 = 0. This means
that no Galerkin iterate (4.3.43) exists.

Although closely related to BiCG, the CGS algorithm cannot exploit the complex
symmetry of A and therefore requires twice as much work per step. A version of
QMR for complex symmetric linear systems is given by Freund [81, 1992]. The
derivation is similar to that of SYMMLQ and MINRES for Hermitian indefinite
linear systems; see Sect. 4.2.6

The Bi-Lanczos process is discussed byWilkinson [230, 1965], pp. 388–394. The
occurrence of breakdowns can be shown to be equivalent to the occurrence of iden-
tical entries appearing in the Padé table of a function. Brezinski et al. [34, 1991]
give a modified CGS algorithm that avoids exact breakdowns. A theoretical analy-
sis of the Bi-Lanczos algorithm and look-ahead procedures are given by Gutknecht
[106, 1992], [107, 1994], and [108, 1997]. An implementation of the QMR method
with a look-ahead variant of the Bi-Lanczos process is given by Freund andNachtigal
[83, 1991]. QMRPACK is a package of QMR algorithms in Fortran 77 by Freund
and Nachtigal [84, 1996]. Functions implementing GMRES, QMR, TFQMR, and
BiCGSTAB are also available in Matlab.

Exercises

4.3.1 Modify the Arnoldi process (Algorithm 4.3.1) so that CGS with reorthogonalization is used
instead of MGS.
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4.3.2 Assume that the two-sided Lanczos algorithm does not break down before step k. Show that
Vk+1 and Wk+1 have full rank.

4.3.3 Consider using GMRES to solve the system Ax = b, where

A =
(

0 1
−1 0

)
, b =

(
1
1

)
,

with initial approximation x0 = 0. Show that x1 = 0, and therefore GMRES(1) will never
produce a solution.

4.4 Preconditioned Iterative Methods

Preconditioners are essential for the successful use of iterative methods for real-life
problems. The term “preconditioning” dates back to Turing in 1948, and is in general
taken to mean the transformation of a problem to a form that can be solved more
efficiently. The idea of preconditioning the CG method was mentioned in the early
paper by Hestenes and Stiefel [121, 1952], but was not widely used until the late
1970s. It was the development of effective preconditioners that helped bring the CG
method into more widespread use.

The rate of convergence of iterative methods depends, often in a complicated way,
on the eigenvalue distribution and the initial residual vector. If the iterative method
is applied to the modified system

P−1Ax = c, c = P−1x, (4.4.1)

the rate of convergence can be improved. This is the case if P−1A ≈ I , or more
generally if the eigenvalues of P−1A are tightly clustered at a point away from the
origin. A preconditioner P should satisfy the following conditions:

(i) The error norm ‖A − P‖ is small.
(ii) Linear systems of the form Pu = v should be easy to solve.

Condition (i) implies fast convergence; condition (ii) that the arithmetic cost of pre-
conditioning is reasonable. These conditionsmay be contradictory and a compromise
must be sought. For example, taking P = A is optimal in the sense of (i), but obvi-
ously this choice is ruled out by (ii). Even if (i) is not satisfied, the preconditioner
could work well, e.g., if the eigenvalues of P−1A are clustered.

System (4.4.1) is said to be left-preconditioned. We can also consider the right-
preconditioned system

AP−1y = b, y = Px . (4.4.2)

Note that the spectra of P−1A and AP−1 are the same. One difference between these
two approaches is that in the right-preconditioned case the actual residual norm is
available

In preconditioned iterativemethods the product P−1 A (or AP−1) is never formed.
Instead, matrix-vector products with A and P−1 are formed separately. Forming
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u = P−1v for an arbitrary vector v is equivalent to solving a linear system Pu = v.
Hence, the inverse P−1 is not explicitly computed either. If Pu = v is solved by a
direct method, the preconditioned method can be viewed as a compromise between
a direct and iterative solution method. Sometimes preconditioners can be formed
by constructing a sparse approximation C ≈ A−1 to the inverse matrix. When the
iterative method is applied to C Ax = Cb, then only matrix-vector multiplications
are needed instead of linear solves.

The choice of preconditioner is strongly problem and machine dependent. It is
possibly the most crucial component in the success of an iterative method. There is
no general theory that can be used, but the preconditioned matrix should somehow
approximate the unit matrix. Further, if thematrix can be split as A = A1+ A2, where
linear systems with A1 are easy to solve, then one can try taking P = A1. Ideally,
A2 should have low rank. Often the selection of a preconditioner for a given class
of problems is an educated guess based on trial and error. When the linear system is
formed by using a high-order discrete approximation, one can let P correspond to a
lower-order approximation.

Ideally, the cost of applying the preconditioner at each iteration should be of the
same order as the cost of a few matrix-vector multiplications. The cost of computing
the preconditioner is also an issue. A preconditioner that is expensive to construct
may become viable if it is to be used many times, e.g., when dealing with time-
dependent or nonlinear problems. The choice of preconditioner is also dependent
on the architecture of the computing system. A preconditioner that is efficient in a
scalar computing environment may show poor performance on vector and parallel
machines. It should be remembered that the goal is always to reduce the total CPU
time (and storage requirement) for the computation.

4.4.1 Some Preconditioned Algorithms

For the CG method the preconditioner P ∈ C
n×n should be Hermitian and positive

definite. Since the products P−1A and AP−1 are not Hermitian in general, the CG
method cannot be applied directly to the left- or right-preconditioned system. If
P = LLH is the Cholesky factorization of P , then a split preconditioner gives the
Hermitian preconditioned system

L−1AL−H x̃ = b̃, (4.4.3)

where L H x = x̃ , Lb̃ = b. Note that the spectrum of Ã = L−1AL−H is the same
as for L−H L−1A = P−1A. With the split preconditioner one needs in each step to
perform the operation q = L−1AL−H p. This is done in three stages:

solve L H p̂ = p, form z = A p̂, solve Lq = z.
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The extra work in using the preconditioner lies in solving two triangular linear sys-
tems per step.

If the CG method is applied directly to (4.4.3) the recursions are

x̃k+1 = x̃k + αk p̃k, αk = r̃ H
k r̃k

p̃H
k L−1AL−H p̃k

,

r̃k+1 = r̃k + αk L−1AL−H p̃k,

p̃k+1 = r̃k+1 + βk p̃k, βk = r̃ H
k+1̃rk+1

r̃ H
k r̃k

.

This preconditioned CG algorithm can easily be reformulated in terms of the original
variables x and residual r = b − Ax by setting

xk = L−H x̃k, rk = L−H r̃k, pk = L−H p̃k .

Algorithm 4.4.1 is the preconditioned CG algorithm (PCG). A surprising and impor-
tant feature is that the code depends only on P = LLH . The factored form of the
preconditioner P can be used, but is not required.

Algorithm 4.4.1 (Preconditioned CG Method)

function [x,r] = pccg(A,psolve,b,x0,tol,maxit)

% PCCG solves the symmetric positive definite system

% Ax = b. It assumes that psolve(r) returns the

% solution to Ps = r, where P is positive definite.

% --------------------------------------------------

x = x0; r = b - A*x; nrmr0 = norm(r);

s = psolve(r); p = s; str = s’*r;

for k = 1:maxit

q = A*p;

alpha = str/(p’*q);

x = x + alpha*p;

r = r - alpha*q;

nrmr = r’*r;

if nrmr < tol*nrmr0, break; end

s = psolve(r);

strold = str; str = s’*r;

beta = str/strold;

p = s + beta*p;

end

Note that the stopping criterion is formulated in terms of the residual norm of
the original system. Inspecting the code above, we note also that the only difference
compared to the ordinary CGmethod is that the P−1 scalar product and norm is used
instead of the 2-norm in the expressions for αk and βk . Since
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‖x̃ − x̃k‖2Ã = (̃x − x̃k)
H L−1AL−H (̃x − x̃k) = ‖x − xk‖2A,

the A-normof the error in x is stillminimized, although nowover theKrylov subspace
Kk(P−1A, P−1r0). The rate of convergence will depend on the spectrum of P−1A.
From the convergence analysis in Sect. 4.2.4 it follows that the PCG method will
converge rapidly if one or both of the following conditions are satisfied:

(i) The condition number of L−1AL−H is small.
(ii) P−1A has only a few distinct clusters of eigenvalues.

A slightly different implementation of PCG that is sometimes more efficient has
been developed by Eisenstat [66, 1981]. This is often referred to as Eisenstat’s trick.

Preconditioned versions of SYMMLQ and MINRES can be derived similarly
provided that the preconditioner P is positive definite. As before, the preconditioner
is assumed to have the form P = LLH and SYMMLQ or MINRES is applied
implicitly to the system

L−1AL−H w = L−1b.

Again the algorithms only requires solves with P . They accumulate approximations
to the the solution x = L−H w without approximating w.

For non-Hermitian systems there are two options for applying the preconditioner.
We can use either the left preconditioned system (4.4.1) or the right preconditioned
system (4.4.2). (If A is almost symmetric positive definite, then a split preconditioner
might also be considered.) With GMRES, a preconditioned matrix that is close to
normal and whose eigenvalues are tightly clustered around a point away from the ori-
gin gives fast convergence. With a left preconditioner P , only the following changes
in GMRES are needed. The recursion is started with

r0 = P−1(b − Ax0), β1 = ‖r0‖2; v1 = r0/β1,

where z j = P−1Av j j = 1 : k. The preconditioned residuals P−1(b − Axk) are
now computed, which may be a disadvantage if a stopping criterion uses the actual
residuals rk = b−Axk . The transformed residual norm‖P−1(b−Ax)‖2 isminimized
among all vectors of the form

x = x0 + Kk(P−1A, P−1r0). (4.4.4)

In right preconditioned GMRES the actual residual vectors can be used, but the
variables are transformed according to u = Px (x = P−1u). To obtain the untrans-
formed solution, an application of the preconditioner is needed. The kth approxima-
tion equals xk = x0 + P−1Vk yk , where yk solves minyk ‖β1e1 − Ĥk yk‖2. This can
be rewritten as

xk = xk−1 + β1τk P−1
k wk, wk = Rk yk,

see (4.5.48). In this version the residual norm ‖b − AP−1u‖2 will be minimized
among all vectors of the form u = u0 + Km(AP−1, r0). But this is equivalent to
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minimizing ‖b − Ax‖2 among all vectors of the form

x = x0 + P−1Kk
(

AP−1, r0
)
. (4.4.5)

Somewhat surprisingly the two affine subspaces (4.4.4) and (4.4.5) are the same.
The j th vectors in the two Krylov subspaces are w j = (

P−1A
) j

P−1r0 and w̃ j =
P−1(AP−1) j r0. By induction, it can be shown that

P−1(AP−1) j = (
P−1A

) j
P−1.

This is clearly true for j = 1, and the induction step follows from

(
P−1A

) j+1
P−1 = P−1A

(
P−1A

) j
P−1 = P−1AP−1(AP−1) j

= P−1(AP−1) j+1
.

It follows that w̃ j = w j , j ≥ 0 and thus the left and right preconditioned versions
generate approximations in the sameKrylov subspaces. They differ only with respect
to which error norm is minimized.

When A is diagonalizable, A = X�X−1, with � = diag(λi ), we have proved
the error estimate ‖rk‖2

‖r0‖2 ≤ κ2(X)min
qk

max
i=1,2,...,n

|qk(λi )|, (4.4.6)

where qk is a polynomial of degree ≤ k and qk(0) = 1. Because of the factor κ2(X)

in (4.4.6), the rate of convergence can no longer be deduced from the spectrum {λi }
of A alone. Since the spectra of P−1A and AP−1 are the same, we can expect the
convergence behavior to be similar if A is close to normal.

Since restarting destroys the accumulated information about the eigenvalues of
A, the superlinear convergence is usually lost. This loss can be compensated for
by extracting from the computed Arnoldi factorization an approximate invariant
subspace of A associated with the small eigenvalues. This is used to precondition
the restarted iteration, see [14, 1999].

In right preconditioned GMRES, one usually solves a system

AP−1y = b, Px = y,

with a fixed preconditioner. In many cases it can be advantageous to allow the pre-
conditioner to vary from step to step. Such flexible preconditioners were introduced
by Saad [192, 1993]. The possibility of changing preconditioners may improve effi-
ciency and enhance robustness. For example, any iterative method can now be used
as a preconditioner. Another motivation is that often the preconditioning equation
Pz = v is solved inexactly by an iterative method. GMRES is an outer iteration
and a different method may be used as an inner iteration. One can also consider
preconditioners that are improved using information from previous iterations.
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4.4.2 Gauss-Seidel and SSOR Preconditioners

Simple preconditioners can be constructed from the stationary iterative method

x (k+1) = x (k) + M−1(b − Ax (k)), k = 0, 1, . . . , (4.4.7)

analyzed in Sect. 4.1.4. This iteration corresponds to thematrix splitting A = M −N ,
and the corresponding iteration matrix is

B = M−1N = I − M−1A.

Iteration (4.4.7) can be considered as a fixed point iteration applied to the precon-
ditioned system M−1Ax = M−1b. The Jacobi and Gauss–Seidel methods are both
special cases of one-step stationary iterative methods. Using the standard splitting
A = D − E − F , where D is diagonal and E and F are strictly lower and upper
triangular, respectively, these methods correspond to the matrix splittings

MJ = D, and MGS = D − E .

If A is symmetric positive definite, then MJ = D is symmetric positive definite, but
MGS is unsymmetric and lower triangular.

The simplest preconditioner related to this splitting is M = D. This corresponds
to a diagonal scaling of the rows of A such that the scaledmatrix M−1A = D−1A has
a unit diagonal. For symmetric positive definite matrices, symmetry can be preserved
by using a split preconditioner with L = L H = D1/2. This is close to the optimal
diagonal preconditioning. By Theorem 1.2.7,

κ(D−1/2AD−1/2) ≤ q min
D>0

κ(D AD)

if A = D − E − E H has at most q ≤ n nonzero elements in any row. Although
diagonal scaling may give only a modest improvement in the rate of convergence, it
is cheap and trivial to implement. Therefore, it is recommended even when no other
preconditioning is carried out.

In Sect. 4.1.5 it was shown that for a symmetric positive definite matrix A the
SSOR iteration method corresponds to a splitting A = Mω − Nω with (see (4.1.38))

Mω = 1

ω(2 − ω)

(
D − ωE

)
D−1(D − ωE H ).

If 0 < ω < 2, Mω is symmetric positive definite and it has the form

Mω = 1

ω(2 − ω)
LLH , L = (D − ωE)D−1/2.
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The use of SSORpreconditioners forKrylov subspacemethodswasfirst suggested
by Axelsson [5, 1972]. The application of the SSOR preconditioner involves only
triangular solves and multiplication by a diagonal matrix. Further, Mω is defined in
terms of elements of the original matrix A, and hence does not require extra storage.
Taking ω = 1, SSOR gives the symmetric Gauss-Seidel (SGS) preconditioner. The
defect matrix

A − LLH = D − E − E H − (
D − E

)
D−1(D − E H ) = −E D−1E H .

shows howwell MSGS approximates A. The performance is usually fairly insensitive
forω > 1.An analysis of the optimal choice ofω ∈ (0, 2) in theSSORpreconditioner
is given in Axelsson and Barker [8, 1984]. For systems arising from second order
boundary value problems, like the model problem studied previously, the original
condition number κ(A) = O(h−2) is reduced to κ(M−1A) = O(h−1).

4.4.3 Incomplete LU Factorization

A broad class of preconditioners is based on an incomplete factorization of A with
certain entries ignored. For example, the off-diagonal elements in A may represent
a coupling between components of the solution, which can be particles or other
physical objects. A preconditioner can then be obtained from factors of a matrix Ã
obtained by omitting elements in A that correspond to small interactions. In sim-
ple cases this can mean letting P consist of a few diagonals of A near the main
diagonal.

An important class of preconditioners are the so-called incomplete LU factoriza-
tions (ILU). The idea is to compute a lower triangularmatrix L and anupper triangular
matrixU with a prescribed sparsity structure such that the defectmatrix R = A−LU
is small. Incomplete LU factorizations can be realized by performing a modified
Gaussian elimination on A, in which elements are allowed only in specified places
in the L and U factors. Assume that the nonzero pattern is given by the index set

P ⊂ Pn ≡ {(i, j) | 1 ≤ i, j ≤ n},

where the diagonal positions are always included in P . For example, if A has a
nonzero diagonal, we could take P = PA, the indices (i, j) for which ai j �= 0.

The elimination consists of n − 1 steps. In the kth step we first delete from the
current active part of the matrix the elements with indices (i, k) and (k, i) /∈ P
and place them in a defect matrix Rk . We then carry out the kth step of Gaussian
elimination on the so modified matrix. This process can be expressed as follows. Let
A0 = A and

Ãk = Ak−1 + Rk, Ak = Lk Ãk, k = 1 :n − 1.
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Applying this relation recursively we obtain

An−1 = Ln−1 Ãn−1 = Ln−1An−2 + Ln−1Rn−1

= Ln−1Ln−2An−3 + Ln−1Ln−2Rn−2 + Ln−1Rn−1

= Ln−1Ln−2 · · · L1A + Ln−1Ln−2 · · · L1R1

+ · · · + Ln−1Ln−2Rn−2 + Ln−1Rn−1.

We further note that because the first m − 1 rows of Rm are zero, Lk Rm = Rm if
k < m. Combining the above equations we find LU = A + R, where R is the defect
matrix and

U = An−1, L = (Ln−1Ln−2 · · · L1)
−1, R = R1 + R2 + · · · + Rn−1.

Algorithm 4.4.2 (Incomplete LU Factorization)

for k = 1 :n − 1

for i = k + 1, . . . , n

if (i, k) ∈ P lik = aik/akk; end

for j = k + 1 :n
if (k, j) ∈ P ai j = ai j − likak j ; end

end

end

end

Algorithm 4.4.2 can be improved by noting that any elements in the resulting
(n −k)× (n −k) lower part of the reduced matrix not inP need not be carried along,
but can be included in the defect matrix Rk . This is achieved simply by changing
line 5 in the algorithm to

if (k, j) ∈ P and (i, j) ∈ P, ai j = ai j − likak j .

In practice A is sparse and the algorithm should be specialized to take this into
account. In particular, the row sweep version of the LU factorization (see Sect. 1.2.4),
where A is processed a row at a time is more convenient for general sparse matrices.
This algorithm gives the same factors and can be derived by interchanging the k and
i loops in Algorithm 4.4.2.

Consider square matrices of order n, with nonzero elements only in the k-th upper
diagonal, i.e., of the form

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Mk =

⎛
⎜⎜⎜⎝

m1
. . .

mn−k

⎞
⎟⎟⎟⎠ , k ≥ 0. (4.4.8)

The proof of the following rule for multiplication by diagonals is left to the reader.

Lemma 4.4.1 Let Ak and Bl be matrices of the form (4.4.8). Then

Ak Bl =
{

Ck+l if k + l ≤ n − 1,

0, otherwise,

where the elements in Ck+l are a1bk+1, . . . , an−k−lbn−l .

Example 4.4.1 For themodel problem in Sect. 4.1.2with a five-point approximation,
the non-zero structure of the resulting matrix is given by

PA = {(i, j) | i − j = −n,−1, 0, 1, n}.

Let us write A as A = LU + R, where

L = L−n + L−1 + L0, U = U0 + U1 + Un,

where L−i (and Ui ) denote matrices with nonzero elements only in the i th lower
(upper) diagonal, i = 0,±1,±n. Then by Lemma 4.4.1,

Ak Bl = Ck+l if k + l ≤ n − 1,

and we can form the product

LU = (L−n + L−1 + L0)(U0 + U1 + Un) = (L−nUn + L−1U1 + L0U0)

+ L−nU0 + L−1U0 + L0Un + L0U1 + R,

where R = L−nU1+ L−1Un . Hence, the defect matrix R has nonzero elements only
in two extra diagonals.

The no-fill ILU preconditioners are simple to implement and quite effective for
significant problems such as low-order discretizations of elliptic partial differential
equations leading to M-matrices and diagonally dominant matrices. For more dif-
ficult problems these preconditioners may be too crude and it may be necessary to
include some fill outside the structure of A.

A hierarchy of preconditioners can be derived based on the “levels of fill-in”
formalized by Gustafsson [105, 1978]. The simplest choice is to take P equal to the
sparsity pattern of A. This is called a level 0 incomplete factorization and is denoted
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by ILU(0) (or IC(0) in the symmetric case). A level 1 incomplete factorization ILU(1)
is obtained by using the union ofP and the pattern of the defect matrix R = A−LLH .
Higher level incomplete factorizations are defined in a similar way. In many cases
ILU(1) is already a considerable improvement on ILU(0). It is rarely efficient to
consider higher level preconditioners, because of the rapidly increasing cost for their
construction and application.

An incomplete LU factorization may not exist even if A is nonsingular and has an
LU factorization. But if A is an M-matrix (see Definition 4.1.1, p. 624), the existence
of an incomplete factorization can be guaranteed. The following important result was
proved by Meijerink and van der Vorst [155, 1977].

Theorem 4.4.1 If A is an M-matrix, for every set P such that (i, j) ∈ P for i = j ,
there exist uniquely defined lower and upper triangular matrices L and U with
li j = 0 or ui j = 0 if (i, j) �∈ P , such that the splitting A = LU − R is regular.

Adrawback with ILU(k) and IC(k) preconditioners is that for matrices that are far
from diagonally dominant theymay contain many elements that are small in absolute
value and contribute little to the quality of the preconditioners. A simplemodification
is then to introduce a drop tolerance τ > 0, to be used in a dropping criterion. If an
absolute criterion is used, then a new fill-in is only accepted if the element is greater
than τ in absolute value. If the matrix is badly scaled a relative drop tolerance should
be used. For example, in eliminating row i a drop tolerance τ‖ai‖2 is used. Usually
a drop tolerance has to be determined by trial-and-error because the optimal value is
often highly problem dependent. Often a value of τ in the range 10−2–10−4 can be
chosen.

A successful dual threshold strategy is proposed by Saad [193, 1994]. It consists
of using a threshold τ , but also limiting the number of nonzero elements allowed in
each row of the triangular factors to p. First all fill-in smaller than τ times the 2-norm
of the current row are dropped. Of the remaining entries, only the p largest are kept.
The resulting preconditioner is called ILUT(τ, p). This strategy applies also to IC
factorizations.

4.4.4 Incomplete Cholesky Factorization

For a Hermitian positive definite matrix A ∈ C
n×n , it is natural to use an incomplete

Cholesky (IC) factorization as preconditioner. When A is a symmetric M-matrix, a
variant of Theorem 4.1.1 guarantees that for each set P of indices (i, j) with i > j
there exists a unique lower triangular matrix L with li j = 0 if i > j and (i, j) �∈ P
such that the splitting A = LLH − R is regular.

Definition 4.4.1 Amatrix A is called an H-matrix if the comparison matrix Â is an
M-matrix, where

âi j =
{

−|ai j | if i �= j,

aii if i = j.
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In particular, a diagonally dominantmatrix is anH-matrix.Manteuffel [154, 1980]
extended the existence of incomplete Cholesky factorizations to the class of H-
matrices.

Algorithm 4.4.3 (Incomplete Cholesky Factorization)

for j = 1 :n

l j j =
(

a j j −
j−1∑
k=1

l2jk

)1/2;
for i = j + 1 :n
if (i, j) �∈ P then li j = 0;

else li j = ai j −
j−1∑
k=1

likl jk;
end

end
end

When A is not an H-matrix, incomplete Cholesky factorization may break down
because of zero pivots, or the preconditioner may fail to be positive definite. A simple
fix suggested by Manteuffel is to increase the diagonal dominance of A by adding a
diagonal shift, i.e., the incomplete Cholesky factorization is applied to the modified
matrix A + α diag(A), for some α > 0. If this fails, α is increased and the process
repeated until the factorization terminateswithout breakdown.Clearly, there exists an
α∗ such that the incomplete Cholesky factorization exists for α ≥ α∗, because diag-
onally dominant matrices are H-matrices. But such a trial-and-error strategy can be
expensive. Further, ifα is chosen too large the quality of the preconditionerwill suffer.

In the diagonally compensated reduction by Axelsson and Kolotilina [9, 1994] the
matrix is modified before the factorization. In the simplest case, positive off-diagonal
entries are dropped and the corresponding diagonal elements modified. The result
is a positive definite matrix Ã = A + C , with nonpositive off-diagonal elements.
Hence, it is a Stieltjes matrix (symmetric M-matrix) and an incomplete Cholesky
factorization of Ã can be computed without breakdown.

Incomplete Cholesky preconditioners can be used alsowhen solving normal equa-
tions AHA = AH b. We emphasize that in this case there is no need to explicitly
compute AHA, except its diagonal elements. All that is required is to be able to
access one row at a time. Thus, the nonzero elements in the i th row of AHA can be
computed when needed and then discarded.

The performance of incomplete Cholesky and especially ILU preconditioners is
strongly affected by the ordering used. For example, the red-black ordering may be
advantageous for discretizations of elliptic equations. Orderings that work well for
direct solvers usually do not perform well when used for Krylov methods precondi-
tioned by incomplete factorizations.

Permuting large elements in a matrix to the diagonal can substantially enhance
the efficiency of many preconditioners based on incomplete Cholesky and LU fac-
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torizations; see Sect. 4.4.2. Finding such permutations is related to the the problem
of finding a maximum transversal; see Sect. 1.7.6. Duff and Koster [62, 1999] con-
sider algorithms that maximize the smallest element on the diagonal using repeated
applications of a depth-first search strategy. In [63, 2001] an algorithm is used that
maximizes the product (or sum) of the diagonal elements. This problem is known in
combinatorial optimization as the weighted bipartite matching problem.

Duff andMeurant [64, 1989] have studied the effect of different ordering strategies
on the convergence of the CG method when this is preconditioned by incomplete
Cholesky factorizations. They conclude that the rate of convergenceof theCGmethod
is not related to the number of fill-ins that are dropped, but is almost directly related
to ‖E‖, the norm of the defect matrix

E = A − LLT .

Several orderings that give a small number of fill-ins will not perform well when
used with a level-zero or level-one incomplete factorization. When a drop tolerance
is used to compute the incomplete factorization, good orderings for direct methods
like the minimum degree algorithm seem to perform well. With these orderings,
fewer elements need to be dropped.

Incomplete Cholesky factorization may break down because of zero or negative
pivots. This can be avoided by adding corrections to the diagonal elements when an
off-diagonal element is deleted. Suppose that the element ci j is to be deleted. This
can be achieved by adding a matrix Ei j with nonzero elements

(
cii −ci j

−c ji c j j

)
.

If the diagonal elements are chosen so that cii c j j − c2i j ≥ 0, then Ei j is positive
semidefinite and, by Theorem 3.2.8, the eigenvalues of C + Ei j cannot be smaller
than those of C . Hence, if C is positive definite and E is the sum of all modifications,
C + E is positive definite and its Cholesky factor exists and is nonsingular. Note that
the modifications are done dynamically as the incomplete factorization proceeds.

Instead of prescribing the sparsity structure of the incomplete factor R, elements
in the Cholesky factorization whose magnitude is smaller than a preset tolerance
τ are discarded. Suppose that rows 1, 2, . . . , i − 1 of the factorization have been
computed. Then the modified elements in the i th row

c∗
i j = ci j −

i−1∑
k=1

rki rk j , i < j ≤ n,

are first computed. Each nonzero element c∗
i j is then tested against the drop tolerance

τ . If it is to be rejected, then additions are made to the corresponding two diagonal
elements cii and c j j . The modifications are chosen so that equal relative changes are
made. After all elements in row i have been computed, all additions are made to cii

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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and we compute

rii =
(

cii −
i−1∑
k=1

r2ki

)1/2
, ri j = c∗

i j/rii , i < j.

Saunders has suggestedusing P = U�2 as right preconditioner,where�1A�2 =
LU is a sparse LU factorization with row and column permutations chosen to keep
L well-conditioned (with unit diagonals and bounded subdiagonals). The factor L
does not need to be saved.

4.4.5 Sparse Approximate Inverse Preconditioners

Preconditioners based on incomplete LU factorization have been successfully
employed in a great number of applications, but have one disadvantage. They are
implicit preconditioners, i.e., their application requires the solution of a linear system.
This can be difficult to implement efficiently onmodern high-performancemachines.
This leads to degradation in performance and limits their use. An alternative is to
use preconditioners based on an explicit approximation of the inverse A−1. Then
the application of the preconditioner is a matrix-vector operation and much more
amenable to parallelization.

It is not at all obvious that it is possible to find a sparse matrix P that is a good
approximation to A−1. It is known that the inverse of a sparse irreducible matrix
in general has no zero elements. For example, the inverse of an irreducible band
matrix is dense; see Sect. 1.5.4. But if A is a banded symmetric positive definite
matrix, then a classical result (see [61, 1984]) states that the entries of A−1 decay
exponentially along each row or column. This result is a discrete analogue of the
decay of the Green’s function of a second-order self-adjoint differential operator. In
particular, if A is strongly diagonally dominant, the entries in A−1 decay rapidly and
an approximate inverse consisting of the main diagonal and a few other diagonals of
A can be a very efficient preconditioner.

We now discuss a method to compute a sparse matrix P that approximately
minimizes the Frobenius norm of the error matrix I − AP . We first note that

‖I − AP‖2F =
n∑

k=1

‖ek − Amk‖22, (4.4.9)

where mk is the kth column of P . Therefore, the problem decouples into n indepen-
dent least squares problems

‖ek − Amk‖22, k = 1 :n, (4.4.10)

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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which can be solved in parallel. If mk is sparse, then (4.4.10) only involves a few
columns of A. Furthermore, A can be compressed by deleting all rows that are
identically zero in the selected columns. The result is a small least squares problems
that can be solved byQR factorization. Amajor difficulty is to select themain sparsity
structure of the inverse with as few nonzero elements as possible in mk . In the SPAI
algorithm by Grote and Huckle [104, 1997] a given initial sparsity structure in mk is
dynamically increased choosing the index of the new nonzero element to make the
decrease in norm as large as possible. A disadvantage with this approach is that there
is no guarantee that the approximate inverse will be positive definite even when A
is symmetric positive definite and a symmetric sparsity pattern is enforced. This can
cause the preconditioned CG method fail.

We now consider a different way to find a positive definite preconditioner in
factored form. If A has the Cholesky factorization A = U T U with U nonsingular,
then U−T AU−1 = I . We seek a preconditioner P = Z T Z , where Z ≈ U−1 is a
sparse lower triangular matrix that minimizes

‖I − Z T AZ‖2F . (4.4.11)

Since Z is triangular, P is symmetric positive definite if all diagonal elements of
Z are nonzero. Kolotilina and Yeremin [141, 1993] show how to compute Z using
only the entries of A. This approach is known as the factorized sparse approximate
inverse (FSAI) algorithm.

The previous methods were based on an optimization approach. Another possi-
bility is to base the procedure on a direct method of matrix inversion, performed
incompletely to enforce sparsity. Let

W = (w1, . . . , wn), Z = (z1, . . . , zn)

be two matrices whose columns are A-biconjugate, i.e., wT
i Az j = 0, i �= j . Then

W T AZ = D = diag(p1, . . . , pn), and if pi �= 0, i = 1 :n, then the inverse is

A−1 = Z D−1W T =
n∑

i=1

1

pi
ziw

T
i . (4.4.12)

The A-biconjugation algorithm (Fox [78, 1964], Chap. 6) can be regarded as a
generalized Gram-Schmidt orthogonalization process with respect to the bilinear
form associated with A. It can be applied to any nonsingular matrices W (0), Z (0) ∈
R

n×n . A convenient choice used in Algorithm 4.4.4 is to take W (0) = Z (0) = In .
The i th column of A is denoted by ai and the i th row of A by cT

i .
In exact arithmetic the above process can be completed without encountering zero

divisors if and only if all the leading principal minors of A are nonzero. In this case
the matrices Z and W are unit upper triangular and satisfy the identity

A = W −T DZ−1.
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Algorithm 4.4.4 (Biconjugation Algorithm)

for i = 1 :n, w
(0)
i = z(0)

i = ei ; end

for i = 1 :n
for j = i :n

p(i−1)
j = aT

i z(i−1)
j ; q(i−1)

j = cT
i w

(i−1)
j ;

end
for j = i + 1 :n

z(i)
j = z(i−1)

j − (p(i−1)
j /p(i−1)

i )z(i−1)
j ;

w
(i)
j = w

(i−1)
j − (q(i−1)

j /q(i−1)
j )w

(i−1)
j ;

end
end

for i = 1 :n
zi = z(n−1)

i ; wi = w
(n−1)
i ; pi = p(n−1)

i ;
end

By uniqueness, it follows that this is the LDU factorization of A, and W = L−T ,
Z = U−1. The process amounts to Gram–Schmidt orthogonalization of the unit
vectors with respect to the inner product 〈x, y〉 = xT Ay.

If A is symmetric, then W = Z and the process computes the LDLT factorization
of A−1. The number of operations can then be halved. If A is symmetric positive
definite no breakdown can occur in exact arithmetic. The columns of Z form a set
of conjugate directions for A.

Anapproximate inverse preconditionerAINV is constructedbydropping elements
in Z and W according to a drop tolerance in the above process. Incompleteness can
also be imposed by enforcing a prescribed nonzero structure on Z and W . Algo-
rithms for positive definite systems are analyzed by Benzi et al. [24, 1996]. The
general unsymmetric case is addressed by Benzi and Tůma in [22, 1998].

4.4.6 Block Incomplete Factorizations

Many matrices arising from the discretization of multidimensional problems have a
block structure. For such matrices block incomplete factorizations can be devel-
oped. In particular, we consider here symmetric positive definite block tridiagonal
matrices of the form
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A =

⎛
⎜⎜⎜⎜⎜⎜⎝

D1 AT
2

A2 D2 AT
3

A3
. . .

. . .

. . .
. . . AT

n
An Dn

⎞
⎟⎟⎟⎟⎟⎟⎠

= D − E − ET , (4.4.13)

with square diagonal blocks Di . The model problem in Sect. 4.1.2 with the natural
ordering of mesh points has this form with Ai = −I , Di = tridiag(−1 4 − 1). If
systems with Di can be solved efficiently, then a simple choice of preconditioner is
the block diagonal preconditioner

P = diag(D1, D2, . . . , Dn).

The case n = 2 is of special interest. For the system

(
D1 AT

2
A2 D2

)(
x1
x2

)
=
(

b1
b2

)
, (4.4.14)

the block diagonal preconditioner gives a preconditioned matrix of the form

P−1A =
(

I D−1
1 AT

2
D−1
2 A2 I

)
.

Note that this matrix is of the form (4.1.31) and therefore has property A (see Defin-
ition 4.1.3). Suppose that the CG method is used with this preconditioner and initial
approximation x (0)

1 . Then,

x (0)
2 = D−1

2 (b2 − A2x (0)
1 ),

with residual r (0)
2 = b2 − D2x (0)

1 A2x (0)
2 = 0. It can be shown that in the following

steps of the CG method, we alternately have

r (2k)
2 = 0, r (2k+1)

1 = 0, k = 0, 1, 2, . . . .

This can be used to save about half the work.
Eliminating x1 in (4.4.14), we obtain

Sx2 = b2 − A2D−1
1 b1, S = D2 − A2D−1

1 AT
2 , (4.4.15)

where S is the Schur complement of D1 in A. If A is symmetric positive definite,
then S is also symmetric positive definite, and hence the CG method can be used to
solve (4.4.15). This process is called Schur complement preconditioning. It is not
necessary to explicitly form the Schur complement S, becausewe only need the effect
of S on vectors. We can save some computation by writing the residual of (4.4.15) as



704 4 Iterative Methods

r2 = (b2 − D2x2) − A2D−1
1 (b1 − AT

2 x2).

Note that x1 = D−1
1 (b1 − AT

2 x2) is available as an intermediate result. The solution
of the system D1x1 = b1 − AT

2 x2 is cheap, e.g., when D1 is tridiagonal. In other
cases this systemmay be solved using an iterative method, i.e., we have both an outer
and an inner iteration.

Concus et al. [52, 1985] give a block incomplete Cholesky factorization that
has proved to be very useful. Assume that in (4.4.13) Di is tridiagonal and Ai is
diagonal, as in the model problem. From Sect. 1.6.2 we recall that the exact block
Cholesky factorization of a symmetric positive definite block-tridiagonal matrix can
be written as A = (� + E)�−1(� + ET ), where E is the lower block triangular
part of A, and � = diag(�1, . . . , �n), is obtained from the recursion

�1 = D1, �i = Di − Ai�
−1
i−1AT

i , i = 2 : n.

For the model problem, although D1 is tridiagonal, �i , i ≥ 2, are dense. Hence, the
exact block Cholesky factorization is not useful. Instead we consider computing an
incomplete block factorization from

�1 = D1, �i = Di − Ai�
−1
i−1AT

i , i = 2 : n. (4.4.16)

For each i , �i−1 is a sparse approximation to �i−1. The incomplete block Cholesky
factorization is then

P = (� + E)�−1(� + ET ), � = diag(�1, . . . ,�n).

The corresponding defect matrix is R = P − A = diag(R1, . . . , Rn), where R1 =
�1 − D1 = 0,

Ri = �i − Di − Ai�
−1
i−1AT

i , i = 2, . . . , n.

We have assumed that the diagonal blocks Di are diagonally dominant symmetric
tridiagonal matrices. We now discuss the construction of an approximate inverse of
such a matrix:

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 β1
γ1 α2 β2

γ2
. . .

. . .

. . . αn−1 βn−1
γn−1 αn

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where αi > 0, i = 1 :n and βi < 0, i = 1 :n−1. A sparse approximation of D−1
i can

be obtained as follows. First compute the Cholesky factorization T = LLT , where

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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L =

⎛
⎜⎜⎜⎜⎜⎜⎝

δ1
γ1 δ2

γ2
. . .

. . . δn−1
γn−1 δn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It can be shown that the elements of the inverse T −1 = L−T L−1 decrease strictly
away from the diagonal. This suggests that the lower triangular and dense inverse
matrix L−1 be approximated by a banded lower triangular matrix L−1(p), obtained
by taking only the first p + 1 lower diagonals of L−1. Note that the entries of

L−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/γ1
ζ1 1/γ2

η1 ζ2
. . .

...
. . .

. . . 1/γn−1
· · · ηn−2 ζn−1 1/γn

⎞
⎟⎟⎟⎟⎟⎟⎠

can be computed diagonal by diagonal. For example, we have

ζi = δi/(γiγi+1), ηi = δiζi+1/γi .

For p = 0 we get a diagonal approximate inverse. For p = 1 the approximate
Cholesky factor L−1(1) is lower bidiagonal, and the approximate inverse is a tridi-
agonal matrix. Since we have assumed that Ai are diagonal matrices, the approxi-
mations �i generated by (4.4.16) will in this case be tridiagonal.

4.4.7 Preconditioners for Toeplitz Systems

For many of the classes of structured matrices described in Sect. 1.8 there exist fast
algorithms for computing matrix-vector products. A Toeplitz matrix

Tn =

⎛
⎜⎜⎜⎝

t0 t1 . . . tn−1
t−1 t0 . . . tn−2
...

...
. . .

...

t−n+1 t−n+2 . . . t0

⎞
⎟⎟⎟⎠ ∈ R

n×n (4.4.17)

is defined by the 2n−1 values t−n+1, . . . , t0, . . . , tn−1. Thematrix-vector product T x
reduces to a convolution problem, and can be computed via the fast Fourier transform

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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in O(n log n) operations. Another example is Cauchy matrices with elements ai j =
1/(yi − z j ), for which matrix-vector products can be computed in O(n) operations
using the fast multipole method; see Greengard and Rokhlin [102, 1987]. In either
case the matrix elements need never be computed or stored. Since fast direct methods
for solving a Toeplitz linear system T x = b, T ∈ R

n×n , have complexity O(n2)

flops, iterative methods are of interest.
Boundary conditions are often a source of difficulties when solving physical prob-

lems. If the corresponding problem with periodic boundary conditions is simpler to
solve, this can be used as a preconditioner. We now consider a simple case where the
problem with periodic boundary conditions corresponds to a special Toeplitz matrix
of the form

Cn =

⎛
⎜⎜⎜⎝

c0 c1 · · · cn−1
cn−1 c0 · · · cn−2

...
...

. . .
...

c1 c2 · · · c0

⎞
⎟⎟⎟⎠ ∈ R

n×n . (4.4.18)

Such a matrix is called a circulant matrix. Each column in Cn is a cyclic up-shifted
version of the previous column. Let Pn be the circulant shift matrix,

Pn =
(
0 In−1

eT
1 0

)
=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0

. . . 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

. (4.4.19)

If ei is the i th unit vector, then

Pne1 = e2, . . . , Pnen−1 = en, Pnen = e1.

It follows that Pn
n ei = ei , i = 1 :n, and therefore Pn

n − I = 0. Since no polynomial
of degree n −1 in Cn vanishes, the characteristic polynomial of Pn is p(λ) = λn −1.
Hence, the eigenvalues of Pn are the n roots of unity ω j = e−2π j/n , j = 0 : n − 1.
It is readily verified that the eigenvectors are the Fourier vectors, i.e., the columns of
the matrix F with entries

f jk = 1√
n

e2π i jk/n, 0 ≤ j, k ≤ n (i = √−1).

The circulant matrix (4.4.18) can be written as a polynomial Cn = ∑n−1
k=0 ck Pk

n ,
where Pn is the (circulant) permutation matrix in (4.4.19). Hence, Cn has the same
eigenvectors as Pn . Its eigenvalues are given by the components of the Fourier trans-
form of its first column

F(c0, cn−1, . . . , c−1)
T = (

λ1 . . . λn
)T

. (4.4.20)
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The matrix C can thus be factorized as

C = F�F H , � = diag(λ1, . . . , λn). (4.4.21)

It follows that linear systems with a circulant matrix can be solved quickly using
FFT; see Sect. 1.8.5.

Any Toeplitz matrix T ∈ R
m×n can be embedded in a square circulant matrix

CT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0 t1 . . . tn−1 t−m+1 . . . t−1
t−1 t0 . . . tn−2 tn−1 . . . t−2
...

...
. . .

...
...

. . .
...

t−m+1 t−m+2 . . . t0 t1 . . . t−m+1

tn−1 t−m+1 . . . t−1 t0 . . . tn−2
...

...
. . .

...
...

. . .
...

t1 t2 . . . t−m+1 t−m+2 . . . t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
p×p,

where p = m + n − 1 and T corresponds to the (1, 1)-block. Hence, the product
y = T x , where x ∈ R

n+1 is an arbitrary vector, can be formed as follows. Pad the
given vector x with zeros and compute

z = CT

(
x
0

)
= F�F H

(
x
0

)
, y = T x = (

Im 0
)

z.

This can be donewith twoFFTs, and onematrix-vectormultiplicationwith a diagonal
matrix. The cost is O(n log2 n) operations.

Efficient iterative methods for solving symmetric positive definite Toeplitz sys-
tems have been developed that use the CG preconditioned with a suitable circulant
matrix. A possible choice is given in the following theorem.

Theorem 4.4.2 (Chan [44]) The circulant matrix C that minimizes ‖C − T ‖F for
a (not necessarily symmetric positive definite) Toeplitz matrix has elements given by

ck = kt−(n−k) + (n − k)tk
n

, k = 0 : (n − 1). (4.4.22)

Proof Forming the Frobenius norm elementwise we find that

‖C − T ‖2F =
n−1∑
k=0

(
k(ck − t−(n−k))

2 + (n − k)(ck − tk)
)
.

Setting the partial derivatives with respect to ck to zero proves the result. �

Example 4.4.2 The best approximation has a simple structure. It is obtained by
averaging the corresponding diagonal of T extended to length n by wraparound. For

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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a symmetric Toeplitz matrix of order n = 5 we obtain

T =

⎛
⎜⎜⎜⎜⎝

t0 t1 t2 t3 t4
t1 t0 t1 t2 t3
t2 t1 t0 t1 t2
t3 t2 t1 t0 t1
t4 t3 t2 t1 t0

⎞
⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎜⎜⎝

t0 α β β α

α t0 α β β

β α t0 α β

β β α t0 α

α β β α t0

⎞
⎟⎟⎟⎟⎠

,

where α = (4t1 + t4)/5, β = (2t3 + 3t2)/5.

Note that T = C if and only if t1 = t4 and t2 = t3. �

Large-scale problems involving Toeplitz matrices arise from the discretization
of convolution-type integral equations, e.g., image deblurring; see Hansen et al.
[118, 2006]. A general treatment of circulant matrices is given by Davis [60,
1994]. Circulant preconditioners for Toeplitz systems were first proposed by Strang
[217, 1986]. Interest in this approach took off after the paper by Chan [44, 1988].
More results are found in Chan and Strang [45, 1989], and Chan et al. [43, 1996].
Preconditioners for Toeplitz systems are surveyed in [42, 1996]. A survey of iterative
methods for solving Toeplitz methods is given by Chan and Jin [41, 2007].

A good general introduction to preconditioners for linear systems is given by
Saad [194, 2003], Chap. 10. The development up to 1985 is surveyed by Axelsson
[6, 1985].More recentlyBenzi [20, 2002] surveys algebraic preconditioningmethods
suitable for general sparse matrices.

Problems coming from multi-physics simulation, such as radiation transport,
magneto-hydraulics, etc., are complex and lead to systems of equations of very
large size. These problems require sophisticated strategies often consisting of sev-
eral levels of nested iterations. Techniques such as Krylov methods with vari-
able preconditioners are useful; see Axelsson and Vassilevski [10, 1991] and Saad
[192, 1993]. Simoncini and Szyld [203, 2007] review recent developments of Krylov
subspace methods, including flexible methods with variable preconditioners and
inexact preconditioners.

Exercises

4.4.1 Let B be a symmetric positive definite M-matrix of the form

B =
(

B1 −CT

−C B2

)
,

with B1 and B2 square. Show that the Schur complement S = B2 − C B−1
1 CT of B1 in B

is a symmetric positive definite M-matrix.
4.4.2 Implement in Matlab the Lanczos process for A with starting vector b and a Hermitian

positive definite preconditioner P = LLH . First apply Algorithm 4.2.3 to L−1 AL−H and
L−1b. Then modify the code to work with the original variables.

4.4.3 (a) The penta-diagonal matrix A ∈ R
n2×n2 of the model problem (see (1.7.1), p. 143) has

nonzero elements in positions

PA = {(i, j) | |i − j | = 0, 1, n}.

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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Show that A is an M-matrix and hence that an incomplete Cholesky factorization of A
exists.

(b) Show that the level 1 incomplete factorization has two extra diagonals corresponding
to |i − j | = n − 1.

4.4.4 The triangular solves needed for preconditioningwith an incomplete Cholesky factorizations
are inherently sequential and difficult to implement efficiently. If the factors are normalized
to be unit triangular, then the solution can be computed making use of one of the following
expansions:

(I − L)−1 =
{

I + L + L2 + L3 + · · · (Neumann expansion),

(I + L)(I + L2)(I + L4) · · · (Euler expansion).

Verify these expansions and prove that they are finite.
4.4.5 Show that the optimal circulant preconditioner given in Theorem 4.4.2 is symmetric if and

only if T is symmetric.

4.4.6 (a) Consider the model problem with A block tridiagonal:

A = tridiag(−I, T + 2I,−I ) ∈ R
n2×n2 , T = tridiag(−1, 2 − 1) ∈ R

n×n .

Write a MATLAB function that computes the level 0 incomplete Cholesky factor L0 of
A. (You should not write a general routine like Algorithm 4.4.3, but an efficient routine
that takes advantage of the special five diagonal structure of A!) Implement also the
preconditioned CG method in MATLAB, and a function that solves L0LT

0 z = r by
forward and backward substitution. Solve the model problem for n = 10 and 20 with
and without preconditioning, plot the error norm ‖x − xk‖2, and compare the rate of
convergence. Stop the iterations when the recursive residual is of the level of machine
precision. Discuss your results!

(b) Take the exact solution to be x = (1, 1, . . . , 1, 1)T . To investigate the influence of the
preconditioner M = LLT on the spectrum of M−1A, do the following. For n = 10
plot the eigenvalues of A and of M−1 A for level 0 and 1 preconditioners. You may
use, e.g., the built-in Matlab functions to compute the eigenvalues, and efficiency is
not essential here. (To handle the level 1 preconditioner you need to generalize your
incomplete Cholesky routine).

4.5 Iterative Methods for Least Squares Problems

Least squares problems can be solved by applying iterative methods to the normal
equations

AHAx = AH b, A ∈ C
m×n (4.5.1)

If these are written in product form as AH r = 0, r = b − Ax , we see that iterative
methods only require the ability to form AH v and Au for given vectors v and u.
Forming the normal equations is also a simple way to symmetrize a linear system.
The Hermitian positive semidefinite system (4.5.1) is by construction consistent
and can be solved by the CG or Lanczos-CG method. However, it is better to use
specialized forms of these methods, such as CGLS and LSQR.

Many applications lead directly to a least squares problem
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min
x

‖Ax − b‖2, A ∈ C
m×n . (4.5.2)

If A has full column rank, there is a unique solution that satisfies (4.5.1). Otherwise
there is a unique solution of minimum norm characterized by the two conditions

r = b − Ax ⊥ R(A), x ∈ R(AH ).

Iterative methods can also be used for computing a minimum-norm solution of a
consistent underdetermined system,

min
y

‖y‖2, AH y = c, c ∈ R(AH ). (4.5.3)

The unique solution of (4.5.3) is y = Az, where z satisfies the consistent normal
equations of the second kind:

AHAz = c. (4.5.4)

To apply an iterative method to solve such a system requires the product of AHA
with arbitrary vectors. Of course, the potentially costly explicit formation of AHA
can be avoided by using the factored form of the normal equations

AH (Ax − b) = 0. (4.5.5)

Working with A and AH separately has two important advantages. First, as has
been much emphasized for direct methods, a small perturbation in AHA, e.g., by
roundoff, may change the solution much more than perturbations of similar size in
A itself. Second, when A is sparse, the fill that can occur in the formation of AHA is
avoided. Such fill-in can make sparse direct methods prohibitively costly in terms of
storage and operations. But there are also applications where m � n and the number
of nonzero elements in AHA is much smaller than in A.

A serious drawback of using iterative methods for normal equations for solving
non-symmetric linear systems Ax = b is that convergence may be very slow. This
is due to the squaring of the condition number:

κ(AHA) = κ(AAH ) = κ2(A).

From (4.2.35) it follows that this can lead to a substantial decrease in the rate of
convergence. The good news is that if the factored form is used in the implementation,
then there are no negative effects on the numerical stability.

Example 4.5.1 For a dense matrix A ∈ R
m×n (m ≥ n) the number of elements in

the Cholesky factor of AHA and is always smaller than the mn elements of A. This
is not in general the case when A is sparse. A problem where A is sparse but AHA is
almost dense is shown in Fig. 4.7. In such a case the Cholesky factor will in general
also be nearly dense. This rules out the use of sparse direct methods based on QR
decomposition of A.
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Fig. 4.7 Structure of a sparse matrix A (left) and AHA (right) for an image reconstruction problem

For an example, consider the casewhen A has a random sparsity structure such that
an element ai j is nonzero with probability p < 1. Ignoring numerical cancellation,
it follows that (ATA) jk �= 0 with probability

q = 1 − (1 − p2)m ≈ 1 − e−mp2 .

Therefore, ATA will be almost dense when mp ≈ m1/2, i.e., when the average
number of nonzero elements in a column is about m1/2. This type of structure is
common in reconstruction problems. An example is the inversion problem for the
velocity structure for the Central California Micro-earthquake Network, for which
(in 1980) m = 500,000, n = 20,000, and A has about 107 nonzero elements with a
very irregular structure. The matrix ATA will be almost dense. �

4.5.1 Basic Least Squares Iterative Methods

The non-stationary Richardson iteration applied to the normal equations AHAx =
AH b can be written in the factored form

xk+1 = xk + ωk AH (b − Axk), k = 1, 2, . . . , (4.5.6)

where ωk > 0 are acceleration parameters. This method is often referred to as
Landweber’s method [144, 1951]. An important thing to notice in (4.5.6) is that
AHA is not explicitly computed. Only one matrix-vector product with A and one
with AH are required per step. As remarked earlier, this avoids numerical instability
and also possible fill-in. Landweber’s method is often used for systems originating
from discretized ill-posed problems; see Sect. 4.5.6.

In the stationary case,ωk = ω and the iterationmatrix of (4.5.6) is B = I −ωAHA,
with eigenvalues

λk(B) = 1 − ωσ 2
i , i = 1 :n,
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where σi are the singular values of A. From Theorem 4.1.1 it follows that the sta-
tionary Landweber method is convergent for all initial vectors x0 if and only if
maxi=1:n |1 − ωσ 2

i | < 1, or equivalently 0 < ω < 2/σ 2
1 . Conditions for conver-

gence in the non-stationary case are given in the following theorem.

Theorem 4.5.1 The iterates of (4.5.6) converge for all vectors b to a least squares
solution x̂ to minx ‖Ax − b‖2 if for some ε > 0 it holds that

0 < ε ≤ ωk ≤ (2 − ε)/σ 2
1 ∀k,

where σ1 is the largest singular value of A. If x0 ∈ R(AH ), then x̂ is the unique
minimum-norm solution.

When A is singular or rank-deficient, Landweber’s method will converge to the
pseudoinverse solution x = A†b provided x0 = 0. In exact arithmetic zero singular
values of A have no effect, but in floating-point arithmetic, rounding errors will
result in a small error component in N (A) that grows linearly with the number of
iterations k. This property is shared with many other iterative methods for the normal
equations.

A method related to Landweber’s method is Cimmino’s method, introduced in
1932 by Cimmino [50, 1938].14Let Ax = b be a linear system with A ∈ R

m×n and
let aH

i = eT
i A, i = 1:m, be the rows of A. A solution must lie on the m hyperplanes

aH
i x = bi , i = 1:m. (4.5.7)

In Cimmino’s method one computes the m vectors

x (0)
i = x (0) + 2

(bi − aH
i x (0))

‖ai‖22
ai , i = 1:m, (4.5.8)

where x (0) is an arbitrary initial approximation. Let μi be positive masses placed at
the points x (0)

i , i = 1:m. Then the next iterate x (1) is taken to be the center of gravity
of these masses, i.e.,

x (1) = 1

μ

m∑
i=1

μi x (0)
i , μ =

m∑
i=1

μi . (4.5.9)

This has a nice geometrical interpretation. The points x (0)
i are the orthogonal reflec-

tions of x (0) with respect to the hyperplanes (4.5.7). Cimmino noted that the initial

14 Gianfranco Cimmino (1908–1989), Italian mathematician, studied at the University of Naples
under Mauro Picone. From 1939 he held the chair of Mathematical Analysis at the University of
Bologna. Although his main scientific work was on (elliptic) partial differential equations, Cim-
mino’s name is todaymostly remembered for his early paper on solving linear systems; seeBenzi [21,
2005].
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point x (0) and its reflections with respect to the hyperplanes all lie on a hypersphere.
If A is square and nonsingular, the center of this is the unique solution of Ax = b.
Subtracting x from both sides of (4.5.8) and using bi = aH

i x , we find that

x (0)
i − x = Pi (x (0) − x), Pi = I − 2(ai a

H
i )

/‖ai‖22. (4.5.10)

Since Pi , i = 1 : m, are orthogonal reflections, it follows that ‖x (0)
i − x‖2 =

‖x (0) − x‖2. Since the center of gravity of the system of masses μi must fall inside
the hypersphere,

‖x (1) − x‖2 < ‖x (0) − x‖2,

that is, Cimmino’s method is an error reducing method. It can be written in matrix
form as

x (k+1) = x (k) + 2

μ
AH DH D(b − Ax (k)), (4.5.11)

where

D = diag(d1, . . . , dm), di = √
μi
/‖ai‖2. (4.5.12)

If A ∈ R
m×n , rank (A) > 2, Cimmino’s method will converge to a solution to the

weighted least squares problemminx ‖D(Ax−b)‖2. In particular, ifμi = ‖ai‖22, then
D = I and the method (4.5.11) is just Landweber’s method (4.5.6) with ω = 2/μ. If
A is rank-deficient and the initial approximation is x (0) = 0, the method converges
to the minimum-norm solution.

4.5.2 Jacobi and Gauss–Seidel Methods

We now look at applying the methods of Jacobi and Gauss–Seidel to the normal
equations AH (Ax − b) = 0. We assume that all columns in A = (a1, . . . , an) ∈
R

m×n are nonzero. In the j thminor step of Jacobi’smethod, the approximation x (k+1)
j

is determined so that the j th equation aH
j (Ax − b) = 0 is satisfied; see (4.1.7). One

major step of Jacobi’s method is given by

x (k+1)
j = x (k)

j + aH
j (b − Ax (k))/‖a j‖22, j = 1 :n. (4.5.13)

Jacobi’s method can be written in matrix form as

x (k+1) = x (k) + D−1AH (b − Ax (k)), D = diag(AHA). (4.5.14)

Note that Jacobi’s method is symmetrizable, because

D1/2(I − D−1AHA)D−1/2 = I − D−1/2AHAD−1/2.
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The Gauss–Seidel method for AHAx = AH b belongs to a class of residual
reducing projection methods studied by Householder and Bauer [130, 1960]. Let
p j �∈ N (A), j = 1, 2, . . . , be a sequence of nonzero n-vectors and compute a
sequence of approximations of the form

x ( j+1) = x ( j) + α j p j , α j = pH
j AH (b − Ax ( j))/‖Ap j‖22. (4.5.15)

It is easily verified that r ( j+1) ⊥ Ap j = 0, where r j = b− Ax ( j), and by Pythagoras’
theorem

‖r ( j+1)‖22 = ‖r ( j)‖22 − |α j |2‖Ap j‖22 ≤ ‖r ( j)‖22,

with strict inequality if α j �= 0. Hence this class of methods (4.5.15) is residual
reducing. For a square matrix A, method (4.5.15) is due to de la Garza [89, 1951].

If A = (a1, a2, . . . , an) has linearly independent columns, then the Gauss–Seidel
method for the normal equations is obtained by taking p j in (4.5.15) equal to the
unit vectors e j in cyclic order e1, e2, . . . , en . Then Ap j = Ae j = a j and an iteration
step in the Gauss–Seidel method consists of n minor steps:

z( j+1) = z( j) + e j a
H
j (b − Az( j))/‖a j‖22, j = 1 :n, (4.5.16)

with z(1) = x (k) and x (k+1) = z(n+1). In the j th minor step only the j th component
of z( j) is changed. Therefore, the residual r ( j) = b − Az( j) can be cheaply updated.

In the j thminor step of this algorithmonly the j th columnof A is accessed.Hence,
it can be implemented without explicitly forming AHA. The iteration is simplified
if the columns are pre-scaled to have unit norm. The ordering of the columns of
A will influence the convergence rate. The SOR method for the normal equations
AH (Ax − b) = 0 is obtained by introducing a relaxation parameter ω in the Gauss–
Seidel method (4.5.17).

Algorithm 4.5.1 (The SOR and SSOR methods for AHAx = AH b) Assume that
the columns a j = Ae j of A ∈ R

m×n are linearly independent. Let ω be a relaxation
parameter and x (k) the current iterate. Set r (k,1) = b − Ax (k) and compute

x (k+1)
j = x (k)

j + ωδ j , δ j = aH
j r (k, j)/‖a j‖22, (4.5.17)

r (k, j+1) = r (k, j) − ωδ j a j , j = 1 :n. (4.5.18)

The SSOR method is obtained by following each forward sweep with a backward
sweep j = n :(−1) :1.

The GS and SGS methods are obtained for ω = 1. The SOR and SSOR methods
have the advantage of simplicity and small storage requirements. They converge
when A has full column rank and ω satisfies 0 < ω < 2, but are less easily adapted
for parallel computation than the corresponding Jacobi methods.

Provided AH has linearly independent rows, the system AH y = c is consistent
and has a unique minimum-norm solution y = Ax that satisfies the system of normal
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equations AHAx = c of the second kind. In the j th minor step of Jacobi’s method,
x j is modified so that the j th equation aH

j Ax = c j is satisfied:

x (k+1)
j = x (k)

j + (
c j − aH

j (Ax (k))
)
/‖a j‖22, j = 1 :n. (4.5.19)

Multiplying by A and setting y(k) = Ax (k), we can write the iteration in matrix
form as

y(k+1) = y(k) + AD−1(c − AH y(k)), D = diag(AHA). (4.5.20)

The Gauss–Seidel method for solving the normal equations of the second kind
belongs to a family of error reducing methods defined as follows. Let pi , i =
1, 2, . . . , be a sequence of nonzero n-vectors and compute approximations of the
form

y( j+1) = y( j) + δ j Ap j , δ j = pH
j (c − AH y( j))/‖Ap j‖22. (4.5.21)

Denote the error by e( j) = y − y( j). Since by construction e( j+1) ⊥ Ap j , it follows
form Pythagoras’ theorem that

‖e( j+1)‖22 = ‖e( j)‖22 − |α j |2‖Ap j‖22 ≤ ‖e( j)‖22,

which shows that the error norm is non-increasing.
For the case of a square matrix, taking p j = e j in cyclic order gives the Gauss–

Seidel method where Ap j = a j .

Algorithm 4.5.2 (The SOR and SSOR methods for AH y = c, y = Ax) Assume
that the columns a j = Ae j of A ∈ R

m×n are linearly independent. Let ω be a
relaxation parameter and y(k) the current iterate. Set z(0) = y(k) and compute

z( j+1) = z( j) + ωa j (c j − aH
j z( j))/‖a j‖22, j = 1 :n. (4.5.22)

Take y(k+1) = z(n+1). The SSOR method is obtained by following each forward
sweep with a backward sweep j = n :(−1) :1.

The Gauss–Seidel method is obtained for ω = 1. For the case of a square matrix
this method is due to Kaczmarz15 [135, 1937]. Kaczmarz’s method can be shown to
converge even if the system AH y = c is not consistent; see Tanabe [218, 1971].

In many problems arising from multidimensional models, A can be partitioned in
a natural way as

A = (A1, A2, . . . , As), A j ∈ R
m×n j , (4.5.23)

15 Stefan Kaczmarz, Polish mathematician and professor at the Technical University of Lwów.
Kaczmarzwas a close collaborator of StefanBanach andHugoSteinhaus.Hismethodwas published
1937. He was killed in action in September 1939, when German troops invaded Poland.
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where A has linearly independent columns. The unknowns are partitioned confor-
mally as

x H = (x H
1 , x H

2 , . . . , x H
s ), x j ∈ R

n j .

For the matrix of normal equations we consider the splitting AH A = D − E − F ,
where

D = diag(AH
1 A1, . . . , AH

s As),

and

E = −

⎛
⎜⎜⎜⎝

0
AH
2 A1 0
...

. . .
. . .

AH
s A1 · · · AH

s As−1 0

⎞
⎟⎟⎟⎠

is strictly lower block triangular and F = E H . The explicit formation of D, E , and
F should be avoided. Block versions of the Jacobi, Gauss–Seidel, and other related
methods can be implemented in a straightforward manner.

First consider the block Jacobi method for the normal equations AH (b− Ax) = 0.
In the j th minor step, x (k+1)

j is determined so that AH
j (b − Ax (k)) = 0. Thus

x (k+1)
j = x (k)

j + A†
j (b − Ax (k)), j = 1 :s, (4.5.24)

where A†
j is the pseudoinverse of the the j th blockof columns. If theQRfactorizations

A j = Q j R j are available, then

A†
j = (AH

j A j )
−1AH

j = R−1
j Q H

j ∈ R
n j ×m . (4.5.25)

Note that the correction δ j = x (k+1)
j − x (k)

j in (4.5.24) is the solution to the problem

min ‖A jδ j − (b − Ax (k))‖2

and that these problems can be solved in parallel. For the case n j = 1, the pseudoin-
verse equals a†

j = aH
j /‖a j‖2 and we retrieve the point-Jacobi method (4.5.13).

The block Gauss–Seidel method is obtained by using the new approximation to
x (k+1)

j for the residual as soon as it has been computed. After introducing an accel-
eration parameter ω, we obtain the following block SOR algorithm. It is convenient
to write A j = AE j , where E j is the corresponding block of the unit matrix I .
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Algorithm 4.5.3 (Block SOR and SSOR methods for y = Ax , AHAx = AH b)
Assume that A ∈ R

m×n is partitioned into blocks of linearly independent columns
A j = AE j as in (4.5.23). Letω be a relaxation parameter and x (k) the current iterate.
Set r (k,1) = b − Ax (k) and compute

x (k+1)
j = x (k)

j + ωd j , d j = A†
j r

(k, j), (4.5.26)

r (k, j+1) = r (k, j) − ωA j d j , j = 1 :s. (4.5.27)

The block SSORmethod is obtained by adding a backward iteration j = s : (−1) : 1.
Now consider the minimum-norm solution of a consistent system AH y = c,

which corresponds to the normal equations AHAx = c with y = Ax . In the j th
minor step in block Jacobi, x (k+1)

j is computed from

A j (x (k+1)
j − x (k)

j ) = (A†
j )

H (c j − AH
j y(k)),

where (A†
j ) is given by (4.5.25). It follows that

y(k+1) = y(k) +
s∑

i=1

(A†
j )

H (c j − AH
j y(k)). (4.5.28)

Algorithm 4.5.4 (Block SOR and SSOR methods for AH Ax = c) Assume that
the columns a j = Ae j of A ∈ R

m×n are linearly independent. Let ω be a relaxation
parameter and y(k) the current iterate. Set y(k,1) = y(k) and compute

y(k, j+1) = y(k, j) + ω(A†
j )

H (c j − AH
j y(k, j)), j = 1, n. (4.5.29)

Take y(k+1) = y(k,n+1). The block SSOR method is obtained by adding a backward
iteration j = s : (−1) : 1.

Iterative methods that (like Cimmino’s method) require access to only one only
row of A at each step are called “row-action methods”. A survey of the class of
row action methods is given by Censor [38, 1981]. The geometrical interpretation of
Cimmino’s method has inspired many generalizations. It forms the basis for algo-
rithms used to solve the so-called linear feasibility problem, i.e., systems of linear
inequalities

aH
i x ≤ bi , i = 1:m, x ∈ R

n .

This important problem occurs, e.g., in computerized tomography (CT), radiation
treatment planning, medical imaging; see Censor and Elfving [39, 1982]. Byrne [36,
2007] treats iterative methods and applications in tomography and imaging.

Kaczmarz’s method was rediscovered around 1970 by Gordon et al. [99, 1970]
and given the name ART (Algebraic Reconstruction Technique). Experience shows
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that in the first few iterations it tends to converge fast. For this reason ART was used
in the first CT scanner patented by Houndsfield in 1972. It is still extensively used for
this purpose; see Censor and Zenios [40, 1997], Chap. 10.4 and Herman [119, 2009].

More general block-iterative methods have been studied by Elfving [68, 1980].
Block iterative methods can achieve better efficiency by allowing some degree of
parallelism. Kamath and Sameh [32, 1992] show that for a three-dimensional grid
problem with n3 unknowns, each iteration can be split into n2/9 subproblems. Arioli
et al. [2, 1992] give a related block projection method for accelerating the block
Cimmino method.

4.5.3 Krylov Subspace Methods

Krylov subspacemethods for solving least squares problems can be derived by apply-
ing the CG (or Lanczos-CG) method to (4.5.2) and (4.5.3). However, specialized
forms of these algorithm should be preferred for two reasons:

• As remarked in Sect. 4.5, the matrix AHA should not be formed explicitly but kept
in product form.

• To improve the stability, the residuals rk = b − Axk should be recurred instead of
the residuals sk = AH rk of the normal equations.

The resultingKrylov subspace algorithm for solving the normal equations is called
CGLS16; see Algorithm 4.5.5.

Let x denote the exact solution of the normal equation and r = b − Ax the cor-
responding residual vector. By the minimization property of the CG method (Theo-
rem 4.2.1, p. 652) it follows that iterate xk minimizes the norm

‖x − xk‖2AHA = ‖A(x − xk)‖22 = ‖r − rk‖22
in the Krylov subspace (4.5.30). The residual vector can be split in two orthogonal
components

rk = b − Axk = (b − Ax) + A(x − xk),

where b − Ax ∈ N (AH ) and A(x − xk) ∈ R(A). By Pythagoras’ theorem ‖rk‖22 =
‖r − rk‖22 + ‖r‖22. Hence, the variational property implies that ‖r − rk‖2 and ‖rk‖2
will decrease monotonically. As remarked earlier, a result by Hestenes and Stiefel
shows that also the error ‖x − xk‖2 decreases monotonically. This is not only true
in exact arithmetic, but holds also in practice before the limiting precision has been
attained. But the norm ‖sk‖2 of the residual sk = AH rk of the normal equations can
show large oscillations for ill-conditioned problems. We stress that this behavior is
not a result of rounding errors.

In each step CGLS needs to compute the twomatrix-vector products Ap and AH r .
Storage space is required for two n-vectors x, p and two m-vectors r, q. (Note that

16 This algorithm has been given several different names in the literature. Saad [194, 2003] calls it
CGNR, Axelsson [7, 1994] GCG-LS and Hanke [113, 1995] CGNE.



4.5 Iterative Methods for Least Squares Problems 719

s can share the same workspace with q.) Each step also requires 6n + 4m flops for
scalar products and updates. The quantities ‖xk‖2 and ‖rk‖2, which are often used
in stopping rules, require another 2m + 2n flops.

Algorithm 4.5.5 (CGLS)

function [x,r] = cgls(A,b,x0,maxit);

% CGLS solves the normal equation A’Ax = A’b

% ------------------------------------------

x = x0; r = b - A*x;

s = A’*r; p = s;

sts = s’*s;

for k = 1:maxit

q = A*p;

alpha = sts/(q’*q);

x = x + alpha*p;

r = r - alpha*q;

s = A’*r;

stsold = sts; sts = s’*s;

beta = sts/stsold;

p = s + beta*p;

end

It is easily verified that the CGLS iterates lie in the shifted Krylov subspace

xk ∈ x0 + Kk(AHA, AH r0). (4.5.30)

The convergence properties of CGLS can be deduced from those of the CG
method; see Sect. 4.2.4. The rate of convergence depends only on the nonzero part
of the spectrum of AHA, and we have the upper bound

‖r − rk‖22 ≤ 2

(
κ − 1

κ + 1

)k

‖r0‖2, κ = κ(A). (4.5.31)

The three phases of convergence described for the CG method occur also for CGLS.
Since κ2(AH A) = κ(A)2, the rate of convergence can be very slow. Therefore,
finding a good preconditioner is especially important. But there are cases when these
methods converge much faster than alternative methods. For example, when A is
unitary, AHA = AAH = I , converge takes place in one step.

Example 4.5.2 We tested CGLS on the least squares problem WELL1850 in sur-
veying available from Matrix Market; see [31]. The size of the matrix is m = 1850,
n = 712, and κ2(A) ≈ 2.1 × 102. The true solution was taken to be the unit vector
x = n−1/2(1, 1, . . . , 1, 1)T and the right-hand side was set to b = Ax . Hence, the
system is consistent and thus the condition number of the least squares problem is
κLS = κ(A); see (2.2.31).

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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Fig. 4.8 Error norm‖x−xk‖2 (solid line), residual norm‖rk‖2 (dashed line), and‖AT rk‖2 (dashdot
line) for CGLS applied to the least squares problem WELL1850 with a consistent right-hand side

Figure4.8 shows plots of the error norm ‖x − xk‖2, residual norm ‖rk‖2, and
‖AT rk‖2 for CGLS. Although A is relatively well-conditioned, initial convergence
is slow. The upper bound (4.5.31) for the rate of convergence shows that gaining one
decimal digit of accuracy may take about 126 iterations. After about 300 iterations,
superlinear convergence sets in after little more than 500 iterations CGLS achieves
a final relative accuracy in the solution better than 10−14. Note that for this imple-
mentation of CGLS only the rate of convergence is affected by the squaring of the
condition number, not the final accuracy.

Thematrix ILLC1850 is of the same size, but more ill-conditionedwith κ ≈ 3.8×
103. Figure4.9 shows results from running this on a similar consistent problem with
the same true solution. The error and residual norms are monotonically decreasing
but at a much slower rate of convergence. The erratic behavior of ‖AH rk‖2 is clearly
visible. Despite the finite convergence property in exact arithmetic, many more than
n = 712 iteration are needed before superlinear convergence sets in. �

As shown in Sect. 4.2.3 the CG method works also for consistent semidefinite
linear systems. Since the normal equations are always consistent, CGLS can be
used also for rank-deficient A CGLS will converge to the pseudoinverse solution
x = A†b if x0 = 0. The rate of convergence of the CGLS also depends on the
distribution of the singular values of A and on the right-hand side b. If A has only
t ≤ n distinct singular values, then (in exact arithmetic) the solution is obtained in
at most t steps. Thus, if rank (A) = p � n and the initial approximation is chosen
to be x0 = 0, CGLS converges to the minimum-norm solution in at most p steps.
This is important for application to discretized ill-posed problems, where A often
is well approximated by a low-rank matrix. In practice, CGLS still converges to an
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Fig. 4.9 Error norm‖x−xk‖2 (solid line), residual norm‖rk‖2 (dashed line), and‖AT rk‖2 (dashdot
line) for CGLS applied to the least squares problem ILLC1850 with a consistent right-hand side

approximate minimum-norm least squares solution when rank (A) < n. However, if
the iterations are allowed to continue, a component in the nullspace will grow.

If the system Ax = b is consistent, then the unique solution of minimum norm is
of the form x = AH y ⊥ N (A). Hence, y satisfies the positive semidefinite system
AAH y = b. (For convenience, we have slightly changed the previous notation here.)
This system of normal equations can be solved by substituting AAH for A in the CG
method. Eliminating yk gives an algorithm due to Craig [53, 1955].17 The CGME
method converges to the unique solution of

min
x

‖x − x0‖2, subject to Ax = b. (4.5.32)

The iterates minimize the error norm ‖AH (y − yk)‖22 = ‖x − xk‖22 over the same
Krylov subspaces (4.5.30) as for CGLS. Hence, CGME is an error reducing method.
An upper bound for the rate of convergence is given by

‖x − xk‖22 ≤ 2

(
κ − 1

κ + 1

)k

‖x − x0‖2.

The CGME method needs storage space for two n-vectors x, q and three m-vectors
r, p, s. Each step requires 4n+6m flops for scalar products and updates. For a square
nonsingular linear system Ax = b both CGLS and CGME can be applied. In contrast
to CGLS, for CGME the residual norm ‖rk‖2 does not decrease monotonically, and

17 Craig’s method is known under several different names. Following Hanke [113, 1995], we call
it CGME for minimal error. Saad [194, 2003] calls it CGNE.
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can fluctuate wildly if A is ill-conditioned. If the stopping criteria are based on the
residual norm, this behavior is a disadvantage.

Algorithm 4.5.6 (Craig’s Method (CGME))

function [x,r] = cgme(A,b,x0,maxit);

% CGME performs maxit steps of Craig’s algorithm

on a consistent linear system Ax = b.

% ---------------------------------------------

x = x0; r = b - A*x;

p = r; rtr = r’*r;

for k = 1:maxit

q = A’*p; s = A*q;

alpha = rtr/(q’*q);

x = x + alpha*q;

r = r - alpha*s;

rtrold = rtr; rtr = r’*r;

beta = rtr/rtrold;

p = r + beta*p;

end

For CGLS the residual norm ‖rk‖2 converges monotonically to a strictly positive
limit unless the system is consistent. The norm of the residual sk = AH rk of the
normal equations converges to zero. Convergence of ‖sk‖2 is notmonotone, but tends
to stabilize for larger values of k. For CGME, neither ‖rk‖2, nor ‖sk‖2 converges
monotonically.

Ideally the iterations should be stopped when the backward error of the computed
solution is small. Two approximate estimates of the backward error were given in
Theorem 2.2.15. Let xk be an approximate solution to the least squares problem and
rk = b − Axk its residual. Then xk solves the perturbed problem minx ‖b − (A +
Ei )x‖2, i = 1, 2, where

E1 = −r̃(AT r̃)H/‖r̃‖22, E2 = (r̃ − r)x̃ H/‖x̃‖22,

and r is the residual corresponding to the exact solution x . The norms of these
backward errors satisfy

‖E1‖2 = ‖AH r̃‖2/‖r̃‖2, ‖E2‖2 ≤ ‖r̃‖2/‖x̃‖2,

which motivates the stopping criteria: Terminate the iterations as soon as one of the
following two conditions are satisfied:

‖rk‖2 ≤ ε(‖A‖‖xk‖2 + ‖b‖2), ‖AH rk‖2 ≤ α‖A‖ ‖rk‖2, (4.5.33)

where ‖A‖ has to be estimated. The first condition is a test for consistent systems.
The parameters ε and α are set according to the accuracy of the data or as a small
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multiple of the unit roundoff. But the computed solution can be acceptable without
any of these conditions being satisfied.

The CGLS extension of the CG method is given in Hestenes and Stiefel [121,
1952]; see also Stiefel [214, 1952]. Läuchli [146, 1959] considers a preconditioned
CGmethod for solving least squares problems arising from geodetic networks. Early
discussions of CG least squares methods are found in Lawson [147, 1973] and
Chen [47, 1975]. Paige [166, 1976] derived a method called LSCG based on the
GKL bidiagonalization, but this was found to be unstable.

4.5.4 GKL Bidiagonalization and LSQR

It was shown in Sect. 2.3.3 that any rectangularmatrix A ∈ R
m×n , can be transformed

into upper or lower bidiagonal form using a sequence of orthogonal similarity trans-
formations. If m > n, then there are orthogonal matrices Um = (u1, u2, . . . , um) ∈
R

m×m and Vn = (v1, v2, . . . , vn) ∈ R
n×n such that U H

m AVn is lower bidiagonal:

U H AV =
(

B̃n

0

)
, B̃k =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1
β2 α2

β3
. . .

. . . αk

βk+1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
(k+1)×k . (4.5.34)

As shown in Sect. 2.3.3, this decomposition is essentially unique once the first column
u1 in U has been chosen.

In the GKH algorithm, U and V are chosen as products of Householder trans-
formations applied alternately from the left and right. This algorithm is not suitable
for large sparse problems. Golub and Kahan [92, 1965] also gave a Lanczos-type
process for computing the decomposition (4.5.34). This plays the same role for
iterative methods for least squares problems as the usual Lanczos process does for
symmetric positive definite linear systems. From the orthogonality of U and V , we
get the equations

A(v1, v2 . . . , vn) = (u1, u2, . . . , un+1)Bn,

AH (u1, u2, . . . , un+1) = (v1, v2, . . . , vn)BT
n .

Equating columns in these two matrix equations gives AH u1 = α1v1, and

Av j = α j u j + β j+1u j+1, (4.5.35)

AH u j+1 = β j+1v j + α j+1v j+1, j = 1, 2, . . . . (4.5.36)

http://dx.doi.org/10.1007/978-3-319-05089-8_2
http://dx.doi.org/10.1007/978-3-319-05089-8_2
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Given a unit vector u1, these relations can be used to generate the sequence
v1, u2, v2, u3, . . . ,, together with the elements in B̃. We set α1v1 = AH u1, and
for j = 1, 2, . . . ,

β j+1u j+1 = Av j − α j u j , (4.5.37)

α j+1v j+1 = AH u j+1 − β j+1v j , (4.5.38)

Here α j and β j+1 are determined by the normalization conditions ‖v j+1‖2 =
‖u j+1‖2 = 1, and can be chosen real and positive.

It is easily shown by induction that the vectors generated by these recurrence
relations satisfy uk ∈ Kk(AAH , u1), vk ∈ Kk(AHA, AH u1). Hence, setting
Uk = (u1, . . . , uk), Vk = (v1, . . . , vk), we have

R(Uk) = Kk(AAH , u1), R(Vk) = Kk(AHA, AH u1), k = 1 :n.

The recurrence relations (4.5.35)–(4.5.36) can be rewritten in matrix form as

AVk = Uk+1 B̃k, AH Uk+1 = Vk B̃T
k + αk+1vk+1eT

k+1. (4.5.39)

These two decompositions associated with the bidiagonalization process will hold
to machine precision even when there is a loss of orthogonality in Uk+1 and Vk .
The GKL bidiagonalization process is related to the Lanczos process applied to the
matrix AH A. If we multiply the first equation in (4.5.39) by AH on the left, we can
use the second to get the Lanczos decomposition

AH AVk = AH Uk+1 B̃k = Vk B̃T
k B̃k .

It is also related to the Lanczos process applied to the Jordan–Wielandt matrix with
a specially structured starting vector:

(
0 A

AH 0

)
, u1 =

(
b
0

)
.

We therefore call this the Golub–Kahan–Lanczos (GKL) process to distinguish it
from the GKH bidiagonalization algorithm. In the GKL process only matrix-vector
multiplications with A and AH are required. Since the bidiagonal decomposition is
unique, it follows that in exact arithmetic theGKLprocess generates the samedecom-
position as the GKH algorithm. But, as in other Lanczos-type processes, roundoff
will cause a gradual loss of orthogonality in uk and vk .

The bidiagonalization process can be used for developing methods related to
CGLS and CGME. The starting vector u1 is then chosen as

u1 = b/β1, β1 = ‖b‖2, (4.5.40)
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i.e., b = β1u1 = β1Uk+1e1. We seek an approximate solution xk = Vk yk ∈
Kk(AHA, AH b). Multiplying (4.5.39) by yk gives Axk = AVk yk = Uk+1 B̃k yk .
From (4.5.40) it follows that

b − Axk = Uk+1tk+1, tk+1 = β1e1 − B̃k yk, (4.5.41)

and these relations hold to working accuracy. From the orthogonality of Uk+1, it
follows that ‖b − Axk‖2 is minimized over all xk ∈ span(Vk) by taking xk = Vk yk ,
where yk is the solution to the least squares problem

min
yk

‖B̃k yk − β1e1‖2. (4.5.42)

This forms the basis for the algorithm LSQR by Paige and Saunders [170, 1982] and
[169, 1982]. (The right-hand side has the special formβ1e1 because the starting vector
is taken to be b.) Now xk = Vk yk solves min ‖Ax − b‖2, with x ∈ Kk(AHA, AH b).
Thus, in exact arithmetic LSQR generates the same sequence of approximations as
CGLS (see Algorithm 4.5.5).

An efficient and stablemethod to solve (4.5.42) is to compute theQRfactorizations

Q̃ H (B̃k | β1e1) =
(

Bk fk

0 φ̄k+1

)
≡

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ1 θ2 φ1

ρ2
. . . φ2
. . . θk

...

ρk φk

0 φ̄k+1,

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.5.43)

k = 2, 3, . . . , using a product of Givens rotations. The solution to (4.5.42) is then
obtained from the upper bidiagonal system Bk yk = fk . The computation of the
factorization (4.5.43) can be interleaved with the bidiagonalization.

To zero out the first subdiagonal element β2 in B̃k , the two first rows are premul-
tiplied by a Givens rotation

(
c1 s1

−s1 c1

)(
α1 0 β1
β2 α2 0

)
=
(

ρ1 θ2 φ1

0 ρ̄2 φ̄2

)
, (4.5.44)

giving y1 = φ1/ρ1 with residual norm φ̄2. This creates ρ1, θ2, and φ1, which are
the final elements in the first row. The elements ρ̄2 and φ̄2 will be transformed into
ρ2 and φ2 in the next step. In step k = 2, 3, . . . , a rotation Gk,k+1 is used to zero
out βk+1:

(
ck sk

−sk ck

)(
ρ̄k 0 φ̄k

βk+1 αk+1 0

)
=
(

ρk θk+1 φk

0 ρ̄k+1 φ̄k+1

)
, (4.5.45)



726 4 Iterative Methods

where only elements affected by the current rotation are shown. The new elements
in this step are given by

φk = ck φ̄k, φ̄k+1 = −sk φ̄k,

θk+1 = skαk+1, ρ̄k+1 = ckαk+1.

The rotations Gk,k+1 can be discarded as soon as they have been used.
The vector yk and tk = β1e1 − Bk yk are obtained from

Bk yk = fk, tk = QT
k

(
0

θ̄k+1

)
(4.5.46)

by back substitution. It follows that rk = Uk+1tk+1 = θ̄k+1Uk+1QT
k ek+1. Assuming

that the columns in Uk+1 are orthogonal, this gives

‖rk‖2 = θ̄k+1 = β1sksk−1 · · · s1. (4.5.47)

This is consistentwith the fact that the residual norm is a non-increasing function of k.
The vector yk in general differs in all entries from yk−1. Therefore, an updating

formula for xk = Vk yk is constructed. If we set Dk = Vk B−1
k , then

xk = Vk yk = Vk B−1
k fk = Dk fk, Dk = (d1, d2, . . . , dk). (4.5.48)

Hence, setting x0 = 0, we have xk = xk−1 + φkdk . From Dk Bk = Vk , we obtain

(Dk−1, dk)

(
Bk−1 θkek−1
0 ρk

)
= (Vk−1, vk).

Equating the first block columns gives Dk−1Bk−1 = Vk−1. This shows that the first
k −1 columns of Dk equal Dk−1. Equating the last columns and solving for dk gives
the recursion

d1 = v1/ρ1, dk = (vk − θkdk−1)/ρk, k > 1.

Only the most recent iterations need to be saved. These updating formulas can be
slightly simplified by introducing the vectors wk = ρkdk , giving w1 = v1,

xk = xk−1 + (φk/ρk)wk, wk+1 = vk+1 − (θk+1/ρk)wk . (4.5.49)

Assuming that all elements generated in Bk are nonzero, Algorithm 4.5.7 performs
k steps of the LSQR algorithm.
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Algorithm 4.5.7 (LSQR)

function [x,nr,ns] = lsqrc(A,b,k)

% LSQR performs k steps of the LSQR for the least

% squares problem min_x||b - Ax||_2 and returns

% x = x_k, nr = ||r_k||_2, and ns = ||A’r_k||_2

% ----------------------------------------------------

% Initialize

[m,n] = size(A); x = zeros(n,1);

beta = norm(b); u = (1/beta)*b;

v = A’*u; alpha = norm(v); v = (1/alpha)*v;

w = v; rhobar = alpha; phibar = beta;

% Continue bidiagonalization

for i = 1:k

u = A*v - alpha*u;

beta = norm(u); u = (1/beta)*u;

v = A’*u - beta*v;

alpha = norm(v); v = (1/alpha)*v;

% Construct and apply i:th Givens rotation

rho = norm([rhobar,beta]);

c = rhobar/rho; s = beta/rho;

theta = s*alpha; rhobar = -c*alpha;

phi = c*phibar; phibar = s*phibar;

% Update the solution and residual norms

x = x + (phi/rho)*w;

w = v - (theta/rho)*w;

nr = phibar;

ns = nr*alpha*abs(c);

end

The same stopping criteria (4.5.33) as for CGLS are used in LSQR. Note that
LSQR does not have the residuals rk and sk = AH rk explicitly present. However,
assuming that the columns of Uk+1 are orthogonal, ‖rk‖2 = |φ̄k+1|. Furthermore,
the relation

‖AH rk‖2 = φ̄k+1αk+1|ck | (4.5.50)

can be derived without using orthogonality; see Paige and Saunders [170, 1982].
An estimate of ‖xk‖2 is computed in LSQR as follows. By (4.5.46) we have

xk = Vk B−1
k fk . If the upper triangular matrix Bk is reduced to lower bidiagonal

form by a product of plane rotations

Bk Q̄T
k = L̄k,

then B−1
k = Q̄T

k L̄−1
k . If we define z̄k as the solution to L̄k z̄k = fk , we obtain
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xk = Vk Q̄k L̄−1
k fk = Vk z̄k . (4.5.51)

Hence, assuming the orthogonality of the columns of Vk , we have ‖xk‖2 = ‖z̄k‖2.
Since the leading part of L̄k and z̄k do not change, the cost of updating this estimate
is small.

The singular values of Bk are bounded above and below by the largest and smallest
singular values of A. Hence, the inequality κ(Bk) ≤ κ(A) holds. This leads to a third
stopping criterion, namely if 1/κ(Bk) is smaller than a given tolerance. This can be
considered as a regularization condition for ill-conditioned or singular problems.

As remarked in connection with the CGLS algorithm, these stopping criteria
are sufficient, but not necessary for the computed solution to be acceptable. More
elaborate stopping criteria for LSQR are discussed by Chang et al. [46, 2009], Jiránek
and Titley-Peloquin [134, 2010], and Arioli and Gratton [1, 2012].

Algorithm 4.5.7 was tested on the same two least squares problems as used for
CGLS in Example 4.5.2. The convergence of the error and residual norms were
virtually identical. The numerical stability of the CGLS and LSQR methods for is
analyzed in Björck et al. [30, 1998]. These two methods were found to have similar
excellent numerical stability. The attainable accuracy in xk were compatible with
normwise backward stability. For some very ill-conditioned problems LSQR will
converge more quickly. However, for such problem neither method is suitable.

For consistent systems Ax = b, Craig’s method (CGME) can be expressed in
terms of the GKL process. Let Lk be the square lower bidiagonal matrix formed by
the first k rows of B̃k .

Lk =

⎛
⎜⎜⎜⎜⎜⎝

α1
β2 α2

β3 α3
. . .

. . .

βk αk

⎞
⎟⎟⎟⎟⎟⎠

∈ R
k×k . (4.5.52)

The relations (4.5.39) can now be rewritten as

AVk = Uk Lk + βk+1uk+1eT
k , AH Uk = Vk LT

k . (4.5.53)

The iterates in Craig’s method can be computed as

Lk zk = β1e1, xk = Vk zk . (4.5.54)

By (4.5.53) and (4.5.40) the residual vector satisfies

rk = b − AVk zk = b − Uk(Lk zk) − βk+1uk+1(e
T
k zk) = −βk+1ζkuk+1,
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and it follows that U H
k rk = 0. It can be shown that if rk−1 �= 0, then αk �= 0. Hence,

the vectors zk and xk can be formed recursively from ζ0 = −1,

ζk = −(βk/αk)ζk−1, xk = xk−1 + ζkvk,

The LSMR algorithm by Fong and Saunders [77, 2011] uses the GKL bidiagonaliza-
tion process tominimize ‖AH rk‖2, rather than ‖rk‖2, as in LSQR. In exact arithmetic
this computes the same approximations and the conjugate residual method applied
to the normal equations AH Ax = AH b. In LSMR, both ‖AH rk‖2 and ‖rk‖2 are
reduced monotonically. In practice, ‖rk‖2 is often not much larger than for LSQR.
This often allows LSMR to be stopped significantly sooner than LSQR or CGLS. An
advantage with LSMR is that it yields a more satisfactory estimate for the backward
error, which can be used as a stopping criterion. Freely availableMatlab implemen-
tations of LSQR and LSMR can be obtained from Systems Optimization Laboratory
(SOL), Stanford University.

4.5.5 Generalized LSQR

In some applications one is interested not only in the solution of a linear system but
also of its adjoint

Ax = b, AH y = c, A ∈ R
m×n, m ≥ n. (4.5.55)

Giles and Süli [90, 2002] give many applications such as design optimization, aero-
nautics, weather prediction and signal processing. In signal processing one is also
interested in finding the scattering amplitude cH x = bH y.

The two systems in (4.5.55) can be reformulated as one system

(
0 A

AH 0

)(
y
x

)
=
(

b
c

)
, (4.5.56)

where the matrix is the symmetric indefinite Jordan–Wielandt matrix with eigenval-
ues ±σi (A); see Theorem 3.5.2. The generalized LSQR (GLSQR) algorithm for
solving this system is based on the orthogonal tridiagonalization

(
1 0
0 U H

)(
0 cH

b A

)(
1 0
0 V

)
=
(

0 cH V
U H b U H AV

)
. (4.5.57)

for simultaneously solving the two systems (4.5.55). This orthogonal tridiagonaliz-
tion can be computed using a sequence of Householder transformations as follows.
The first columns in U and V are chosen so that

U H b = β1e1, cH V = γ1eT
1 .



730 4 Iterative Methods

Proceeding in the same way as in Householder bidiagonalization, we alternately
multiply by Householder transformations from left and right so that A is transformed
into tridiagonal form

U H AV =
(

Tn,n+1
0

)
, Tn,n+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 γ1
β1 α2 γ2

. . .
. . .

. . .

βn−2 αn−1 γn−1
βn−1 αn

βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(n+1)×n,

(4.5.58)

with positive offdiagonal entries. (If m = n, the last row in Tn,n+1 is zero.) Note that
this transformation preserves the singular values of A.

Knowing the existence of the factorization (4.5.58), an iterative algorithm for
computing the nonzero entries in Tn+1,n and the columns inU and V can be derived.
Recall that u1 = b/‖b‖2 and v1 = c/‖c‖2 and write

A(v1, . . . , vk) = (u1, . . . , uk, uk+1)Tk+1,k,

AH (u1, . . . , uk) = (v1, . . . , vk, vk+1)T
H

k,k+1.

Comparing the last columns on both sides and solving for the vectors uk+1 and vk+1,
respectively, gives

βk+1uk+1 = Avk − αkuk − γk−1uk−1 (4.5.59)

γkvk+1 = AH uk − αkvk − βkvk−1. (4.5.60)

(Elements not present in Tn,n+1 are set to zero.) These relations can be used to
compute the columns uk and vk , k > 1. By orthogonality αk = u H

k Avk and the
elements βk > 0 and γk > 0 are determined as normalization constants.

Approximate solutions of the system Ax = b and its adjoint system can be
obtained from the GLSQR process as follows. We seek solutions of the form

xk = Vk zk, yk = Ukwk .

We can express the norm of the residuals rk = b − AVk zk and sk = c − AH Ukwk

at step k as

‖rk‖2 = ‖b − Uk+1Tk+1,k zk‖2 = ‖β1e1 − Tk+1,k zk‖2 (4.5.61)

‖sk‖2 = ‖c − Vk+1Tk+1,kwk‖2 = ‖γ1e1 − T H
k,k+1wk‖2 (4.5.62)

Determining zk and wk so that these residual norms are minimized is equivalent to
solving two tridiagonal least squares problems.
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To compute the QR factorizations of Tk+1,k and T H
k,k+1 a sequence of Givens rota-

tions is used to eliminate the elements belowmain diagonal. Let the QR factorization
of Tk+1,k be Qk R̂k , where R̂k is upper triangular with three nonzero diagonals. As in
LSQR the QR factorization can be updated so that only one Givens transformation
is needed in each step. The rotations are applied also to the right-hand side and the
least squares solution is obtained by back substitution. Storing the whole basis Uk

and Vk can be avoided as follows. Define Ck = (c0, c1, . . . , ck−1) = Vk R̂−1
k , where

c0 is a multiple of v1. Successive columns in Ck can be computed from Ck R̂k = Vk

and then the solution updated using

xk = β1Ck(Q H
k e1) = xk−1 + ak−1ck−1,

where ak−1 is the kth entry of β1Q H
k e1. The least squares problem for the adjoint

system is treated similarly.
From the recursion formulas (4.5.59) and (4.5.60) it can be seen that the vectors

uk and vk lie in the union of two Krylov subspaces:

u2k ∈ Kk(AAH , b) ∪ Kk(AAH , Ac), u2k+1 ∈ Kk+1(AAH , b) ∪ Kk(AAH , Ac),

v2k ∈ Kk(AHA, c) ∪ Kk(AHA, AH b), v2k+1 ∈ Kk+1(AHA, c) ∪ Kk(AHA, AH b).

The process can be continued as long as no element βk of γk becomes zero.
As in LSQR, if βk = 0, this signals the solution of Ax = b can be recovered
from the computed partial decomposition. Similarly, if γk = 0, we the solution of
AH y = c can be obtained. Thus, these breakdowns are benign. Indeed, the process
can be continued simply as follows. If βk = 0, then in the recurrence (4.5.60) we set
β j = 0, j > k. Similarly, if γk = 0, then in (4.5.59) we set γ j = 0, j > k.

Parlett observed in 1987 that GLSQR is equivalent to block Lanczos on AHA
with starting block

(
c AH b

)
. Alternativey, it can be interpreted as a block Lanczos

process for the Jordan–Wielandt matrix (4.5.56) with the two initial vectors

(
0
b

)
and

(
c
0

)
.

It can be verified that setting c = AH b gives LSQR.
The GLSQR method for square unsymmetric linear systems is due to Saunders

et al. [197, 1988]. The presentation here closely follows that inGolub et al. [97, 2008],
who considered the simultaneous solution of a rectangular system and its adjoint.
They also discovered the interpretation as a block Lanczos method for the Jordan–
Wielandt matrix. The also give an algorithm for computing the scattering amplitude
cH x using Gauss quadrature and the theory of moments; see Golub and Meurent
[93, 1994]. The GLSQR algorithm was independently derived by Reichel and Ye
[178, 2008]. They consider the special choice c = x̂ , where x̂ is an approximation to
x obtained by some other means. It is shown that this choice can give much improved
rate of convergence for discrete ill-posed linear systems.
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4.5.6 Regularization by Iterative Methods

Discretization of an ill-posed problem leads to a linear system Ax = b, or more
generally, a linear least squares problem

min
x

‖Ax − b‖2, A ∈ R
m×n . (4.5.63)

We recall from Sect. 2.6.1 some typical properties of such systems. The singular
values σi of A cluster at zero, giving rise to huge condition numbers. The exact
right-hand side b is such that in the expansion of the solution in terms of the SVD of
A = U�V H ,

x =
n∑

i=1

ci

σi
vi , ci = u H

i b, (4.5.64)

the coefficients ci decrease faster than σi . Therefore, in spite of the large condition
number of A, the problem with the exact right-hand side is in some sense well-
conditioned. But in practice, the right-hand side is contaminated by noise. This
will affect all coefficients ci in (4.5.64) more or less equally. Unless some sort of
regularization is introduced, the computed solution may be useless.

One of the earliest methods for iterative regularization is Landweber’s method
(4.5.6). With starting vector x0 = 0, and a fixed parameter ωk = ω, this iteration is

xk+1 = xk + ωAH (b − Axk), k = 1, 2, . . . . (4.5.65)

From AH (b − Ax) = 0 it follows that the error satisfies

x − xk = (I − ωAHA)(x − xk−1) = (I − ωAHA)k(x − x0).

From the SVD expansion (4.5.64), we obtain

x − xk =
n∑

i=1

(
1 − ωσ 2

i

)k ci

σi
vi . (4.5.66)

This can be written in the form

xk =
n∑

i=1

ϕk(σ
2
i )

ci

σi
vi , ϕk(λ) = 1 − (1 − ωλ)k,

where ϕk are the filter factors for Landweber’s method. With ω = 1/σ 2
1 in (4.5.66),

it follows that after k iterations the error component along the right singular vector
vi is multiplied by the factor

(1 − (σi/σ1)
2)k .

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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Hence, components corresponding to large values of σi decrease quickly, whilemany
iterations are needed before the components of the solution corresponding to small
singular values have converged to any extent. For an ill-posed problem, the iterates xk

will start to converge to the true solution before the effect of the noisy components
of the data comes into play and the solution deteriorates. This behavior is called
semiconvergence.

Semiconvergence is shared by many other iterative methods, such as LSQR and
CGLS. The iterates at first seem to converge to the true solution. Later, the effect of
perturbations in the right-hand side sets in and the iterative process starts to diverge
from the true solution. Thus, as is typical for many iterative methods, Landweber’s
method produces a sequence of less and less regularized solutions. Regularization
is achieved by terminating the iterations before the unwanted irregular part of the
solution interferes. It can be deduced that for Landweber’s method, terminating the
process after k iterations is roughly similar to truncating the SVD expansion for
σi ≤ k−1/2; see Hanke [112, 1991].

A related method is the iterated Tikhonov method

xk+1 = xk + (AHA + μ2 I )−1AH (b − Axk). (4.5.67)

With the initial approximation x0 = 0, the first iterate x1 = (AHA + μ2 I )−1AH b,
is the standard Tikhonov regularized solution. For the kth iterate xk the filter factors
have the form

ϕk = 1 −
(
1 − σ 2

i

σ 2
i + μ2

)k

.

Taking k > 1 gives a slightly sharper cutoff than standard Tikhonov regularization.
Projection methodsin general have a regularizing effect because they restrict the

solution to lie in a subspace of low dimension. In TSVD the approximate solutions
lie in the subspaces Vk spanned by the first k right singular vectors. LSQR and CGLS
are also projection methods for which (with x0 = 0) the approximate solutions xk

lie in the Krylov subspaces Kk(AHA, AH b) of dimension k.

Example 4.5.3 Consider the ill-posed linear system Ax = b, A ∈ R
n×n , in

Example 2.6.3. Figure4.10 shows the relative error ‖x − xk‖2/‖x‖2 and residual
‖b − Axk‖2/‖b‖2 after k steps of LSQR. In exact arithmetic these should be iden-
tical to Partial Least Squares (PLS); see Example 2.6.3 and Figure2.14. Indeed, the
minimal error and residual norms are nearly the same as for PLS, but achieved after
13 iterations instead of 10. The divergence after this step is slower than for PLS
and characterized by a sequence of plateaus. These differences are caused by loss of
orthogonality due to roundoff errors and are typical for methods using the Lanczos
process. �

The LSQR (CGLS) and CGME methods in general converge much faster than
Landweber’s method to the optimal solution of an ill-posed problem. Under appro-
priate conditions convergence can be dramatically fast. On the other hand, after the

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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optimal number of iterations have been completed, the error component tends to
increase much more rapidly than for other methods. Hence, it is essential to stop the
iterations before divergence caused by noise in the data sets in. If the noise level is
known a stopping criterion based on the discrepancy principle can be used. Other
typical techniques use the L-curve and its curvature, or cross-validation.

Aneffectiveway to avoidmisconvergence is to apply theKrylov subspacemethods
to a regularized problem. For example, LSQR is used to solve

min
x

∥∥∥∥
(

A
μIn

)
x −

(
b
0

)∥∥∥∥
2
, (4.5.68)

where μ is a regularization parameter. The larger μ is chosen, the more the solution
is regularized. Such iterative methods are called hybrid methods. In the original
implementation of LSQR a fixed regularization parameter μ can be included as an
option; see [170, 1982]. An underdetermined system AH y = c can be regularized
by solving

min
y,z

(‖y‖22 + ‖z‖22
)

subject to
(

AH μIn
) (y

z

)
= b. (4.5.69)

Forμ > 0 this linear system is always consistent. In a variant of such hybridmethods,
a regularizing algorithm is applied instead to the subproblems being solved in each
step of the Krylov subspace method.

Stopping rules for CGLS and other Krylov subspacemethods for solving ill-posed
systems are surveyed by Hanke and Hansen [115, 1993] and Hansen [116, 1998].
Hanke [113, 1995] studies these methods in a Hilbert space setting. Hybrid regular-
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Fig. 4.10 Relative error ‖x − xk‖2/‖x‖2 (solid line) and residual ‖b − Axk‖2/‖b‖2 (dashed line)
for LSQR when applied to a discrete ill-posed problem
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ization methods have been suggested by Björck and Eldén [27, 1979], O’Leary and
Simmons [163, 1981], and Hanke [114, 2001]. The performance of hybrid methods
is studied by Hansen [117, 2010]. Hnětynková et al. [125, 2009] show how infor-
mation from the bidiagonalization can be used for the estimation of noise level and
construction of stopping criteria.

4.5.7 Preconditioned Methods for Normal Equations

Since the CGLS and CGME algorithms often converge very slowly, an efficient
preconditioner is particularly important. When Ax = b is inconsistent, a left pre-
conditioner would change the problem. Hence, for CGLS it is natural to use a right
preconditioner P ∈ R

n×n by setting Px = y and solve

min
y

‖b − (AP−1)y‖2. (4.5.70)

The corresponding normal equations are

P−H AHAP−1y = P−H AH b.

It is straightforward to applyCGLSorLSQR to (4.5.70). Algorithm4.5.8 implements
the preconditioned CGLS method, formulated in terms of the original variables x
instead of y = Px .

Algorithm 4.5.8 (Preconditioned CGLS Method)

function [x,r] = pcgls(A,b,P,x0,maxit);

% PCGLS solves the normal equation A’Ax = A’b with

% the CG method and right preconditioner P.

% ------------------------------------------------

x = x0; r = b - A*x;

s = P’\(A’*r);

p = s; sts = s’*s;

for k = 1:maxit

t = P\p; q = A*t;

alpha = sts/(q’*q);

x = x + alpha*t;

r = r - alpha*q;

s = P’\(A’*r);

stsold = sts; sts = s’*s;

beta = sts/stsold;

p = s + beta*p;

end

In practice the preconditioner is given in the form of functionsy = psolve(x)
and s = ptsolve(t), which solve the systems Py = x and P H s = t , respec-
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tively. Preconditioned CGLSminimizes the same error functional ‖r̂ −rk‖22, but over
a different Krylov subspace

xk = x0 + Kk((P H P)−1AHA, (P H P)−1AH r0). (4.5.71)

An upper bound on the rate of convergence is given by

‖r − rk‖2 < 2

(
κ − 1

κ + 1

)k

‖r − r0‖2, κ = κ(AP−1).

When applied to a rank-deficient problem, preconditioned CGLS converges to a least
squares solution, but in general not to the minimum-norm solution.

For computing the minimum-norm solution of a consistent linear system Ax = b,
a left preconditioned version of CGME (Craig’s method) can be used. CGME is
applied to solve

min ‖x‖2 such that P−1Ax = P−1b. (4.5.72)

In the preconditioned CGMEmethod the residual vectors are transformed. However,
it can be formulated in terms of the original residuals r = b− Ax (see Problem 4.5.6).
The error functional ‖x − xk‖22 is minimized over the Krylov subspace

xk = x0 + Kk(AH (P P H )−1A, AH (P P H )−1r0). (4.5.73)

An upper bound on the rate of convergence is given by

‖x − x (k)‖2 < 2

(
κ − 1

κ + 1

)k

‖x − x0‖2, κ = κ(P−1A).

Preconditioners for CGME are constructed using the same techniques as for CGLS.
Among the preconditioners based on matrix splittings the SSOR preconditioner

is of particular interest. With the standard splitting, ATA = D − E − ET , where

(D) j j = d j = ‖a j‖22, (E)i j = −aT
i a j , i > j,

the SSOR preconditioner is

Pω = D−1/2(D − ωET ), 0 ≤ ω ≤ 2. (4.5.74)

For ω = 0 this is equivalent to scaling the columns in A to have unit norm, which
is close to the optimal diagonal scaling. Let t = (τ1, . . . , τn)T satisfy the upper
triangular system (D − ωET )t = D1/2 p. This can be written componentwise as

d jτ j = d1/2
j p j − ωaT

j h j , h j =
n∑

i= j+1

τi ai , j = n : (−1) : 1.
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Hence, t = P−1
ω p and q = At = h0 can be computed from the following recursion:

Put hn = 0 and for i = n : (−1) : 1 compute

τ j = d−1/2
j

(
p j − ωd−1/2

j aT
j h j

)
, h j−1 = h j + τ j a j . (4.5.75)

Similarly, let the vector s = (σ1, . . . , σn)T = P−T
ω (AT r) satisfy the lower triangular

system (D−ωE)D−1/2s = AT r , or D1/2s = AT r+ωE D−1/2s. The j th component
of this equation is

σ j = d−1/2
j aT

j

(
r − ω

j−1∑
i=1

d−1/2
i σi ai

)
.

Thus, s can be computed by the recursion: Set h1 = r , and for j = 1 :n compute

σ j = d−1/2
j aT

j h j , h j+1 = h j − ωd−1/2
j σ j a j . (4.5.76)

With these recursions the SSOR preconditioned CGLS method can be implemented
with two sweeps through the columns of A and no extra storage.

Block SSOR preconditioning can also be implemented efficiently. Assume that
the thin QR factorizations of the column blocks are known:

A = (A1, . . . , An), A j = Q j R j ∈ R
m×n j , j = 1 :n.

Given the vectors p = (pT
1 , . . . , pT

n )T ∈ R
n and r ∈ R

m , the vectors q = AP−1
ω p ∈

R
m and s = P−T

ω AT r ∈ R
n can be efficiently computed as follows.

Set hn = 0, and compute q = q0 ∈ R
m and t = P−1

ω p = (t T
1 , . . . , t T

n )T ∈ R
n by

t j = R−1
j

(
p j − ωQT

j q j
)
, q j−1 = q j + A j t j , j = n : (−1) : 1. (4.5.77)

Then, put r1 = r and compute s = (sT
1 , . . . , sT

n )T by

s j = QT
j r j , h j+1 = h j − ωQ j s j , j = 1:n. (4.5.78)

If only the Cholesky factors R j but not Q j are available, then Q j can be replaced
by A j R−1

j in the equations above.
Taking ω = 0 corresponds to a block diagonal scaling such that the diagonal

blocks in the normal equation are QT
j Q j = I . The case n = 2 is of special interest.

Then the matrix of the preconditioned normal equation equals

(
I K

K T I

)
, K = QT

1 Q2,

which is a two-cyclic matrix. This preconditioner is called the cyclic Jacobi precon-
ditioner. For the two-block case the choice ω = 0 gives the optimal preconditioner.
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The preconditioners developed above are cheap to apply, but can only be expected
to give a moderate improvement of the convergence. More efficient precondition-
ers are obtained as follows. We note that if R is the Cholesky factor of AHA,
then R−T AT AR−1 = I . Therefore, an incomplete Cholesky factorization (Algo-
rithm 4.4.3) of ATA can be expected to be a good choice. There is no need to
explicitly form ATA, because the elements in the i th row can be computed when
needed, and then discarded.

It is also possible to use a preconditioner based on an incomplete MGS factor-
ization (IMGS) of A = (a1, a2, . . . , an), and di = ‖ai‖2. Off-diagonal elements
ri j in R such that |ri j | < τdi are then discarded. At each stage in the incomplete
MGS factorization it holds that A = Q̂ R̂, where R̂ is upper triangular with positive
diagonal. Hence

span{̂q1, . . . , q̂n} = span{a1, . . . , an},

and if A has full column rank this algorithm cannot break down.

Algorithm 4.5.9 (Incomplete MGS Factorization)

for i = 1 :n
rii := ‖ai‖2; qi = ai/rii ;
for j = i + 1 :n

ri j = qT
i a j ;

if ri j < τ ∗ di then ri j = 0; end

a j = a j − ri j qi ;
end

end

An alternative dropping criterion is used by Saad [190, 1988]. Here the pR largest
elements in a row of R and the pR largest elements in a column of Q are kept. The
sparsity structure P of R can also be prescribed in advance, so that ri j = 0 when
(i, j) �∈ P . Wang [227, 1993] (see alsoWang et al. [228, 1997]) give a more compact
algorithm (CIMGS) for computing the IMGS preconditioner one need not store Q.
This produces the same incomplete factor R as IMGS, and therefore inherits the
robustness of IMGS.

An alternativemethod for computing an incomplete QR decomposition is to apply
the sequential sparse Givens QR factorization described in Sect. 2.5.5. To get an
incomplete factorization, the rotation to eliminate any element in A is skipped, if its
magnitude is small compared to the norm of the column in which it lies. Jennings
and Ajiz [132, 1984] use the test |ai j | < τ‖a j‖2, where a j is the j th column of
A and τ a tolerance. The rows aT

i of A are processed sequentially, i = 1 : m. The
nonzero elements in the i th row aT

i = (ai1, ai2, . . . , ain) are scanned, and each
nonzero element with |ai j | ≥ τ‖a j‖2 is annihilated by a Givens rotation involving
row j in R. If elements with |ai j | < τ‖a j‖2 were just neglected, then the final
incomplete factor R could become singular even if AT A is positive definite. Instead,

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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these elements are rotated into the diagonal element: r j j =
(

r2j j + a2
i j

)1/2
. This

guarantees that R is nonsingular and that the residual matrix E = AT A − RT R has
zero diagonal elements.

A similar approach is taken by Zlatev and Nielsen [237, 1988]. They compute
a sparse incomplete orthogonal factorization of A, neglecting all elements that in
the course of computations become smaller than a certain drop tolerance τ ≥ 0.
This can sometimes substantially reduce the number of nonzero elements during
the factorization process. The drop tolerance τ = 2−3 is recommended, and τ is
successively reduced if the iterations fail to converge. This approach can be very
efficient for some classes of problems, in particular when storage is a limiting factor.

The circulant preconditioners described in Sect. 4.4.7 can also be used when solv-
ing Toeplitz least squares problem min ‖T x − b‖2. The normal equations are

T H T x = T H b, T =
⎛
⎜⎝

T1
...

Tq

⎞
⎟⎠ ∈ R

m×n, (4.5.79)

where each block Tj , j = 1 :q, is a square Toeplitz matrix. (Note that if T itself is a
rectangular Toeplitz matrix, then each block Tj is necessarily Toeplitz.)

A circulant approximationC j is first constructed for each block Tj . Each circulant
C j is then diagonalized by the Fourier matrix F , C j = F� j F H , where � j is
diagonal and F H the conjugate transpose of the complex Fourier matrix F . The
eigenvalues � j can be found from the first column of C j ; cf. (4.4.20). Hence, the
spectra of C j , j = 1 :q, can be computed in O(m log n) operations via the FFT. The
preconditioner for T is then defined as a square circulant matrix C , such that

CT C =
q∑

j=1

CT
j C j = F H

q∑
j=1

(�H
j � j )F.

Thus, CT C is also circulant, and its spectrum can be computed in O(m log n) oper-
ations. Now C is taken to be the symmetric positive definite matrix

C ≡ F H
( q∑

j=1

�H
j � j

)1/2

F. (4.5.80)

The preconditioned CGLSmethod (Algorithm 4.5.8) is then applied with S = C and
A = T . Note that to use the preconditioner C we need only know its eigenvalues,
because the right-hand side of (4.5.80) can be used to solve linear systems involvingC
andCT . Preconditioners formultidimensional problems can be constructed similarly.

Björck [25, 1979], and Björck and Elfving [28, 1979] developed the SSOR
preconditioned conjugate gradient method for computing pseudoinverse solutions.
This method has since been combined with block projection techniques. Point and
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block preconditioners for linear least squares problems are surveyed in Björck
[26, 1996], Sects. 7.2–7.3. Of special interest is the two-block case studied by
Elfving [68, 1980]. Bramley and Sameh [32, 1992] developed row projection meth-
ods for large unsymmetric linear systems related to Kaczmarz’s method. An accel-
erated block Cimmino algorithm is given by Arioli et al. [2, 1992] and [3, 1995].
A robust and efficient solver for elliptic equations by Gordon and Gordon [98, 2008]
is based on a similar technique.

A survey of methods and theory of incomplete QR factorization is given by Bai
et al. [15, 2001]. Papadoupolos et al. [173, 2005] discuss implementations and give
practical results. A multilevel incomplete QR preconditioner MIQR for large sparse
least squares problems iss developed by Na and Saad [151, 2006].

4.5.8 Saddle Point Systems

An important class of symmetric indefinite linear systems have the special form

(
H A
AT 0

)(
y
x

)
=
(

b
c

)
, (4.5.81)

where H ∈ R
m×m is symmetric positive definite and A ∈ R

m×n (m ≥ n) has full
column rank. Applying the congruence transform

(
H A
AT 0

)
=
(

H 0
AT I

)(
H−1 0
0 −AT H−1A

)(
H A
0 I

)

shows that the matrix has m positive and n negative eigenvalues. Any solution x, y
is a saddle point for the Lagrangian function

L(x, y) = 1

2
yT H y − bT y + xT (AT y − c).

If H and A are large and sparse, iterative methods are more suitable than the direct
methods of Sect. 2.7.4. Since the system is symmetric indefinite, MINRES is a suit-
able method to use. If H = I and c = 0, (4.5.81) is the augmented system for the
least squares problem minx ‖Ax − b‖2 and CGLS or LSQR can be applied.

A stationary iterative method for solving (4.5.81) is Uzawa’s method

H yk+1 = b − Axk, (4.5.82)

xk+1 = xk + ω(AT yk+1 − c), (4.5.83)

where ω > 0 is a relaxation parameter. It requires some method for solving the
symmetric positive definite system (4.5.82). Using the first equation to eliminate

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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yk+1 from the second equation gives

xk+1 = xk + ω(AT H−1(b − Axk) − c)). (4.5.84)

This shows that Uzawa’s method is equivalent to the stationary Richardson iteration
method applied to the Schur complement of H in (4.5.81). A convergence result is
obtained from the analysis of Richardson’s method in Theorem 4.1.8.

Corollary 4.5.1 Assume that H is symmetric positive definite and A has full column
rank. Then S = AT H−1A is also symmetric positive definite and Uzawa’s method
converges if and only if 0 < ω < 2/λmax(S).

If the Cholesky factorization H = LLT is known, the Schur complement system
becomes

AT L−H L−1Ax = AT L−H L−1b − c. (4.5.85)

If c = 0, an iterative method such as CGLS or LSQR can be applied to the problem
minx ‖L−1Ax − L−1b‖2. Each iteration requires triangular solves with L and LT .

If the QR factorization

A = (
Q1 Q2

) (R
0

)

is known, then Q2 is a basis for the null space of A. In the null space method (see
Sect. 2.7.4) the solution y is split into two orthogonal components

y = u + Q2z, u = Q1R−H c,

where z is the solution to the projected symmetric positive definite system

QT
2 H Q2z = QT

2 d, d = b − Hu. (4.5.86)

This approach has the advantage that the inverse of H is not needed. If (4.5.86) is a
well-conditioned system (after a diagonal scaling), then it can be solved efficiently
by the CGLS or LSQR. The matrix QT

2 H Q2 is kept in factored form and each step
requires only matrix-vector multiplications with H , QT

2 and Q2.
Much work has been done on preconditioners for solving the saddle point system

(4.5.81). The following interesting result is due to Murphy et al. [159, 2000].

Theorem 4.5.2 Let the indefinite system (4.5.81) be preconditioned by

M =
(

H A
AT 0

)
, P =

(
H 0
0 AT H−1A

)
, (4.5.87)

where AT H−1A, the Schur complement of H in M, is nonsingular. Then the pre-
conditioned matrix T = P−1M satisfies

http://dx.doi.org/10.1007/978-3-319-05089-8_2
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T (T − I )(T 2 − T − I ) = 0. (4.5.88)

Hence, the minimal polynomial of T has degree at most 3 and T has at most three
distinct eigenvalues 1, 1/2 ± √

5/2.

Proof Simple calculations show that

T =
(

I H−1A
(AT H−1A)−1AT 0

)

and (
T − 1

2
I

)2

= 1

4
I +

(
H−1A(AT H−1A)−1AT 0

0 I

)
.

Since H−1A(AT H−1A)−1AT is a projection matrix, we have

[(
T − 1

2
I

)2

− 1

4
I

]2

=
(

T − 1

2
I

)2

− 1

4
I.

Simplifying this shows that T satisfies (4.5.88). �
Since M is nonsingular, so is T . From Theorem 4.5.2 it follows that for any vector

v, theKrylov subspace span{v, T v, T 2v, T 3v, . . .} for the preconditioned systemhas
at most dimension three. Hence, a Krylov subspace method such as MINRES will
terminate after at most three iterations with the exact solution. The result is of interest
also when systems Pw = v arising in preconditioned MINRES are solved inexactly
by an iterative method. Then the eigenvalues of the inexactly preconditioned matrix
tend to cluster around the three points 1, 1/2±√

5/2 and rapid convergence can still
be expected.

A great variety of algorithms for solving saddle point systems have been devel-
oped; the survey by Benzi et al. [23, 2005] contains over 500 references. Much work
has been done on preconditioners for saddle point systems. In general, better results
are obtained by exploiting information about the original problem rather than by
using a general-purpose preconditioner.

Exercises

4.5.1 Consider the stationary Landweber’s method

x (k+1) = x (k) + ωAT (b − Ax (k)),

where A ∈ Rm×n is a rank-deficientmatrix. Split the vector x (k) into orthogonal components:

x (k) = x (k)
1 + x (k)

2 , x (k)
1 ∈ R(AT ), x (k)

2 ∈ N (A).

Show that the orthogonal projection of x (k) − x (0) onto N (A) is zero. Conclude that in
exact arithmetic the iterates converge to the unique least squares solution that minimizes
‖x − x (0)‖2.

4.5.2 (a) The two-block case A = (A1 A2) is of particular interest. Let A j = Q j R j , j = 1, 2, be
theQR factorizations of the blocks. Show thatwith the preconditioner S = diag(R1 R2),
the preconditioned matrix of normal equations is
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(AS−1)T (AS−1) =
(

I K
K T I

)
, K = QT

1 Q2. (4.5.89)

(b) The preconditioned matrix is the identity plus a block two-cyclic matrix. Since the
matrix has property A (see Definition 4.1.3), the SOR theory holds. Show that the
spectral radius of the Jacobi matrix equals σmax(K ) and that the optimal ω in the block
SOR iteration is given by

ωb = 2/(1 + sin θmin), cos θmin = σmax(K ), (4.5.90)

where θmin is the smallest principal angle between the column spaces of A1 and A2.

4.5.3 Consider a saddle point problem where B = LLT and A has full rank. Develop an algorithm
based on CGLS for the solution of the related system

(L−1 A)H L−1(Ax − b) + c = 0.

4.5.4 In Uzawa’s method the linear system H yk+1 = b− Axk , needs to be solved in each iteration
step. Assume that an iterative method is used for this purpose and is terminated when the
norm of the residual

ek = (b − Axk) − H yk+1

is less than a threshold εk . Show that if εk converges to zero as k → ∞ and ω satisfies the
condition of Corollary 4.5.1, then the resulting algorithm converges to the solution.

4.5.5 Show that the Golub-Kahan bidiagonalization described in Sect. 4.5.4 is mathematically
equivalent to the symmetric Lanczos process applied to the matrix

(
0 A

AH 0

)
∈ C

(m+n)×(m+n), (4.5.91)

with the special starting vector

(
u1
0

)
. Show that this halves the work compared to applying

the Lanczos method to (4.5.91) with an arbitrary starting vector.
4.5.6 To compute the minimum-norm solution of a consistent linear system Ax = b, a left

preconditioned version of CGME (Craig’s method) is used. CGME is then applied to solve

min ‖x‖2 such that P−1 Ax = P−1b.

Modify Algorithm 4.5.6 to solve this preconditioned problem. The algorithm should be
formulated in terms of the original residuals r = b − Ax .

4.6 Iterative Methods for Eigenvalue Problems

Many applications involve eigenvalue problems with matrices so large that they can-
not conveniently be treated by methods using similarities, such as the QR algorithm.
For such problems, it is not reasonable to ask for a complete set of eigenvalues and
eigenvectors. Usually only some of the eigenvalues (often at one end of the spectrum)
and the corresponding eigenvectors are required. In the 1980s typical valueswould be
to compute 10 eigenpairs of a matrix of order 10,000. Nowadays, some problems in
material science require the computation of 20,000 eigenpairs of a Hermitian matrix
of size several millions.



744 4 Iterative Methods

In some applications the eigenproblem A(x)x = λx is nonlinear and will require
the solution of a sequence of related linear eigenvalue problems. Then one needs
to use a set of computed eigenpairs (λ, x) for one matrix A(x) to quickly find the
corresponding eigenpairs for a matrix A(x + �x).

4.6.1 The Rayleigh–Ritz Procedure

Most methods for large eigenvalue problems work by generating a sequence of sub-
spaces containing increasingly accurate approximations of the desired eigenvector.
A projection method described in Sect. 4.2.1 is then used to extract the approximate
eigenvalues.

Let A ∈ C
n×n have eigenvalues λi and eigenvectors xi , i = 1 : n. Let Kk be a

k-dimensional subspace (k � n). An approximate eigenpair (θ, y), where y ∈ Kk ,
is determined by imposing the Galerkin conditions that the residual (A − θ I )y be
orthogonal to all vectors in Kk :

(A − θ I )y ⊥ Kk . (4.6.1)

Let Uk be an orthonormal basis in Kk = R(Uk). With y = Uk z, the projected
eigenvalue problem becomes U H

k (A − θ I )Uk y = 0, or equivalently

(Bk y − θ I )y = 0, Bk = U H
k AUk . (4.6.2)

The matrix Bk is the matrix Rayleigh quotient of A; see Definition 3.2.3. Note that
the condition of the projected eigenvalue problem is not degraded. If A is Hermitian,
then (4.6.2) is a Hermitian eigenvalue problem. The small eigenvalue problem (4.6.2)
can be solved by one of the direct methods developed in Chap. 3. The solution yields
k approximate eigenvalues and eigenvectors of A.

This approach to computing approximate eigenvalues is called theRayleigh–Ritz
procedure.18

Algorithm 4.6.1 (The Rayleigh–Ritz Procedure)
Let Um = (u1, . . . , um) be an orthonormal basis for a given subspace of Cn .

1. Compute the matrix AUm = (Au1, . . . , Aum) and the Rayleigh quotient matrix

Bm = U H
m (AUm) ∈ R

m×m . (4.6.3)

2. Compute theRitz values, i.e., the eigenvalues of Bm , and select from them k ≤ m
desired approximate eigenvalues θi , i = 1 :k.

18 WaltherRitz (1878–1909), Swissmathematician and theoretical physicist. After studies inZürich,
his thesis was submitted in Göttingen in 1902. His work revolutionized variational calculus and laid
the foundation for modern computational mathematics. He died from tuberculosis at the young age
of 31.

http://dx.doi.org/10.1007/978-3-319-05089-8_3


4.6 Iterative Methods for Eigenvalue Problems 745

3. Compute the corresponding eigenvectors zi of Bm ,

Bm zi = θi zi , i = 1 :k. (4.6.4)

The Ritz vectors yi = Um zi are the approximate eigenvectors of A.
4. Compute the residuals

ri = Ayi − yiθi = (AUm)zi − yiθi , i = 1 :k. (4.6.5)

An important note is that in the non-Hermitian case, the eigenvectors in step 3
can be replaced by Schur vectors, which are less sensitive to perturbations.

From the residuals computed in step 4 of the Rayleigh–Ritz procedure, we obtain
backward error bounds for the approximate eigenvalues θi , i = 1 : k. By Theo-
rem 3.2.11, there is a a matrix A + Ei , with ‖Ei‖2 ≤ ‖ri‖2, for which the Ritz value
θi is an exact eigenvalue. The corresponding forward error bound is

|θi − λi | ≤ κ(X)‖ri‖2,

where κ(X) is the condition number of the eigenvector matrix X . In the Hermitian
case κ(X) = 1. By Theorem 3.2.11, the residual norm ‖AUm −Um Bm‖ is minimized
for all unitarily invariant norms by taking Bm equal to the Rayleigh quotient matrix.
In this sense the Rayleigh–Ritz method is optimal.

In practice, A is often large and we are only interested in approximating some
part of its spectrum. Clearly the procedure will only work ifR(Um) contains a good
approximation to the corresponding invariant subspaces. But there is also another
difficulty. Let (λi , xi )be an eigenpair of A.Assume that theRitz value θi is an accurate
approximation to the eigenvalue λi and that R(Um) contains a good approximation
yi = Um zi of the eigenvector xi . Unless the Ritz values are well separated, this is
not sufficient to guarantee that the Ritz vector yi is a good approximation to xi . The
difficulty arises because B may have spurious eigenvalues bearing no relation to the
spectrum of A.

Example 4.6.1 (Stewart [212, Example 4.4.2]) Let A = diag(0, 1, −1) be diagonal
with well separated eigenvalues. The corresponding eigenvectors are the columns of
the unit matrix e1, e2, e3. Suppose

U =
⎛
⎝
1 0
0 1/

√
2

0 1/
√
2

⎞
⎠ ,

which has orthonormal columns. Then

B = U T AU =
(
0 0
0 0

)
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has a double eigenvalue equal to 0 that coincides with the eigenvalue λ1 = 0 of A.
Any vector is an eigenvector of B. Choosing z = (1, 1)T /

√
2 gives the eigenvector

approximation x = (1/
√
2, 1/2, 1/2)T . This is far from the correct answer x =

Ue1. In practice, B would have distinct but small eigenvalues of magnitude O(u),
but the difficulty would still remain.

It is readily verified that the smallest singular value of AU is σ = 0, with the
corresponding right singular vector e1. Furthermore, y = Ue1 = e1 is the eigenvector
of A corresponding to λ = 0. �

The problemwith badRitz vectors can be resolved as follows. Let θ be a computed
Ritz value and compute a refined Ritz vector y as the solution to the problem

min‖y‖2=1
‖Ay − θy‖2, y = Um z, (4.6.6)

which is equivalent to minimizing ‖(AUm − θUm)z‖2 subject to ‖z‖2 = 1. The
solution is given by a right singular vector z corresponding to the smallest singular
value of thematrix AUm −θUm . Since AUm must be formed anyway in theRayleigh–
Ritz procedure, the extra cost is that of computing the SVD of a matrix of size n × k.

In the oblique projection method a subspace Lm different from Km is chosen
and a Petrov-Galerkin condition is imposed:

(A − θ I )y ⊥ Lm, ∀y ∈ Km . (4.6.7)

The bases Vm = (v1, . . . , vm) and Um = (u1, . . . , um) for Lm and Km are now
chosen to be biorthogonal: V H U = I . This is always possible if no vector in L is
orthogonal to K. The projected eigenvalue problem becomes

V H
m (A − λ̃I )Um y = (B − λ̃I )y = 0, (4.6.8)

where B = V H
m AUm . Note that the eigenvalue problem for B potentially can be

much worse conditioned than the original.
Of particular interest is when A is nonsingular and we take Lm = AK. If we take

Vm = AUm as basis vectors in Lm , the projected problem becomes

(AUm)H (A − θ I )Um z = 0.

This is a generalized eigenvalue problem for which the left-hand side matrix is
Hermitian positive definite. Let the basis matrix Um be chosen so that Vm = AUm

is orthonormal, i.e., (AUm)H AUm = I . Then (4.6.9) becomes (AUm)H (AUm −
θUm)z = 0, or because Um = A−1Vm ,

(θ−1 I − V H
m A−1Vm)y = 0. (4.6.9)

This is a standard eigenvalue problem for A−1. The corresponding eigenvalue approx-
imations are called harmonic Ritz values, because they are harmonic averages of
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Ritz values of A−1. Therefore they are more appropriate for determining interior
eigenvalues of A.

In the Hermitian case κ(X) = 1 the Ritz vectors can be chosen so that Z =
(z1, . . . , zm) is unitary and the projected matrix B is Hermitian. Then, for each Ritz
value θi there is an eigenvalue λi of A such that

|θi − λi | ≤ ‖ri‖2, j = 1 :k. (4.6.10)

No residual bound for the error in a Ritz vector yi can be given without more
information. This is to be expected, because if there is another eigenvalue close to
the Ritz value, then the eigenvector is very sensitive to perturbations. If the Ritz value
θi is known to be well separated from all eigenvalues except the closest one, then
a bound on the error in the Ritz vector can be obtained and also an improved error
bound for the Ritz value.

We define the gap in the spectrum with respect to an approximate eigenvalue θi to
be gap (θi ) = min j �=i |λ j − θi |, where λi is the eigenvalue of A closest to θi . From
Theorem 3.2.15 we have the improved bound

|θi − λi | ≤ ‖ri‖22/gap (θi ). (4.6.11)

Further, if xi is an eigenvector of A associated with λi , we have

sin θ(yi , xi ) ≤ ‖ri‖2/gap (θi ). (4.6.12)

If some of the intervals [θi − ‖ri‖2, θi + ‖ri‖2], i = 1 :k, overlap, we cannot be
sure to have an eigenvalue of A in each of the intervals. When the Ritz values are
clustered, the following theorem provides useful bounds for individual eigenvalues
of A in the Hermitian case.

Theorem 4.6.1 (Kahan [137]) Let A ∈ C
n×n be Hermitian and Um ∈ C

n×k have
orthonormal columns and set

B = U H
m AUm, R = AUm − Um B.

Then to the eigenvalues θ1, . . . , θk of B there correspond eigenvalues λ1, . . . , λk of
A such that |λi − θi | ≤ ‖R‖2, i = 1 :k. Further, there are eigenvalues λi of A such
that

k∑
i=1

(λi − θi )
2 ≤ ‖R‖2F .

Proof See Parlett [174, 1998], Sect. 11.5. �

An account of the historical development of the variational calculus and its rela-
tion to the Rayleigh–Ritz method is given by Gander and Wanner [88, 2012]. In
[182, 1908], published just a year before his death, Ritz gave a complete description
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of his method to solve variational problems. His work was immediately picked up
in Russia by mathematicians like Timoshenko and Galerkin. Lord Rayleigh incor-
rectly claimed in 1911 that all the ideas in Ritz work were present in his earlier
paper [177, 1899]. Not until the 1940s, when interest in computational methods
were awakened, was the importance of the work by Ritz recognized by Courant and
other mathematicians in Western Europe.

4.6.2 The Arnoldi Eigenvalue Algorithm

An obvious choice of subspaces for the Rayleigh–Ritz procedure are the Krylov
subspaces

Km(A, v) = span{v, Av, . . . , Am−1v}, m = 1, 2, . . . , .

These subspaces are nested:Km(A, v) ⊆ Km+1(A, v). In exact arithmetic the dimen-
sion increases by one until Amv ⊂ Km(A, v), when the sequence terminates. The
efficiency of the Rayleigh–Ritz procedure is dramatically improved when applied
to these Krylov subspaces. Using the Arnoldi process (Algorithm 4.3.1), a Hessen-
berg matrix Hm = (hi j ) and a matrix Vm = (v1, . . . , vm) with orthogonal columns
spanning Km(A, v1) are computed. At each step the Arnoldi decomposition

AVm = Vm Hm + hm+1,mvm+1eT
m (4.6.13)

holds (cf. (4.3.3), p. 670). The Hessenberg matrix Hm = V H
m AVm is the orthogonal

projection of A onto span(Vm).
If Hm is unreduced, i.e., if its subdiagonal elements are nonzero, then by

Theorem 3.4.3 this decomposition is uniquely determined by the starting vector
v1 = Vme1. The Ritz values are the eigenvalues of Hm ,

Hm zi = θi zi , i = 1 :m, (4.6.14)

and the corresponding Ritz vectors are yi = Vm zi . From (4.6.13) and (4.6.14) it
follows that the residual norm satisfies

‖Ayi − yiθi‖2 = ‖(AVm zi − Vm ziθi‖2 = ‖(AVm − Vm Hm)zi‖2
= hm+1,m |eT

m zi |.

If the Arnoldi process breaks down at step m, then hm+1,m = 0 and AVm = Vm Hm .
Hence, the residual vector Ayi − yiθi vanishes, R(Vm) is an invariant subspace of
A, and θi , i = 1 :m, are eigenvalues of A.

In GMRES for solving a linear system of equations, using MGS in the Arnoldi
process will give a sufficient level of orthogonality for backward stability. But for
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eigenvalue computations, orthogonality to working precision in the Arnoldi vec-
tors should be enforced. This can be achieved, e.g., by performing CGS twice;
see [91, 2002].

Example 4.6.2 Amatrix of order 100wasgeneratedwith entries normally distributed
with zero mean and standard deviation one. Figure4.11 shows the eigenvalues of A
and the Ritz values obtained after 30 steps of the Arnoldi method with a random
starting vector. Some exterior eigenvalues are already well approximated by Ritz
values. Convergence to the interior eigenvalues is much slower. �

Ideally the starting vector should be a linear combination of the eigenvectors of
interest. If this could be achieved, the Arnoldi process would stop with hk+1,k = 0
and the exact solution. In the absence of any such knowledge, a random vector can
be used as starting vector.

In the Arnoldi process, each new vector vk+1 must be orthogonalized against all
previous Arnoldi vectors. When k increases, this becomes costly in terms of both
storage, and operations, O(nk2) flops. One remedy is to limit the Arnoldi process to
a fixed number of (say) m steps. Then a new improved starting vector v+

1 is chosen
and the Arnoldi method is restarted. A new Arnoldi decomposition of size m is then
computed.

Let A ∈ C
n×n and v, ‖v‖2 = 1, be a given starting vector. We recall that any

vector x ∈ Km(A, v) can be written in the form

x =
m−1∑
i=0

ci Aiv = Pm−1(A)v,

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Fig. 4.11 Eigenvalues (∗) and Ritz values (o) for a 100 × 100 matrix with normally distributed
entries after 30 steps of Arnoldi’s method
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where Pm−1 is a polynomial of degree less than m. This provides a link between
polynomial approximation and Krylov subspace methods. A natural way to choose a
new starting vector is to select the current k ≤ m Ritz vectors yi that best approximate
the wanted eigenvalues and take

v+
1 =

k∑
i=1

γi yi , (4.6.15)

where γi are suitable weights. The Ritz vectors in the Arnoldi method are of the form
yi = φi (A)v1, where φi is a polynomial. Therefore, if the method is restarted with
a vector of the form (4.6.15), we have v+

1 = ψ(A)v1 for some polynomial ψ . This
choice is therefore called polynomial restarting. A related restarting technique is to
sort theRitz values into awanted set {θ1, . . . , θk} and an unwanted set {θk+1, . . . , θm}.
The restart polynomial is then chosen as the polynomial of degree m − k with the
unwanted Ritz values as its roots:

ψ(z) =
m∏

i=k+1

(z − θi ).

This choice of ψ is called using exact shifts. We then have

Km(A, v+
1 ) = ψ(A)Km(A, v1).

In general, if the shifts are chosen to lie in the part of the spectrum that is not of
interest, the corresponding eigenvalues will be suppressed by the restart.

Already converged eigenvalues should be deflated, i.e., eliminated from the rest
of the process. The matrix A can be deflated explicitly as discussed in Sect. 3.3.2.
If k eigenvalues and the corresponding Schur vectors Vk = (v1, . . . , vk) are known,
then the process is continued with the deflated matrix

A − Vk�k V H
k .

Another possibility is to integrate the deflation process in the Arnoldi algorithm. The
partial Schur factorization and orthogonal basis obtained from the Krylov subspace
method can be used to construct an efficient and stable method for deflation. If a
Ritz pair (λ, x) has converged and belongs to the desired set, it is locked and not
changed in future iterations. At a restart, locking involves moving already converged
eigenvalues to the top of the triangular Schurmatrix Tk . Supposeweworkwith a basis
v1, . . . , vk, vk+1, . . . , vm . Then the new starting vector is chosen to be orthogonal
to the Schur vectors and m − k − 1 Arnoldi steps are taken before next restart. For
example, if k = 2 and m = 6, the Hessenberg matrix will have the form

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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⎛
⎜⎜⎜⎜⎜⎜⎝

× × × × × ×
× × × × ×

× × × ×
× × × ×

× × ×
× ×

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The 2×2 upper triangular block is fixed in the remaining steps and only eigenvalues
not associated with the first two diagonal elements are considered.

If the converged pair (λ, x) does not belong to the desired set, it might be purged
from the current subspace. This is done by moving λ to the bottom corner of the
partial Schur matrix Tk and removing the corresponding Schur vector. The Krylov–
Schur method by Stewart [213, 2001] makes the locking and purging processes in
Arnoldi’s method easier.

A less expensive and more stable way to implement the restarted Arnoldi method
is to use an implicit restart. We now outline this implicitly restarted Arnoldi method
(IRAM). Suppose that we have computed anArnoldi decomposition (4.6.13) of order
m, that cannot be further expanded because of lack of storage. For simplicity, we
first consider how to apply one shift θ . The generalization to several shifts is straight
forward. Let us perform one step of the implicit QR algorithm (see Sect. 3.4.3) to the
Hessenberg matrix Hm in the Arnoldi decomposition. This generates an orthogonal
matrix Q such that H̃m = Q H Hm Q is again a Hessenberg matrix. Here Q =
G12G23 · · · Gm−1,m , where G12 is a Givens rotation chosen so that

GT
12h1 = ±‖h1‖2e1, h1 = (h11 − θ, h21, 0, . . . , 0)

T .

The Arnoldi decomposition is then transformed according to

A(Vm Q) = (Vm Q)Q H Hm Q + hm+1,mvm+1eT
m Q,

or, with H̃m = Q H Hm Q and Ṽm = Vm Q,

AṼm = Ṽm H̃m + hm+1,mvm+1eT
m Q, (4.6.16)

where Ṽm is unitary and H̃m Hessenberg. Further, since

eT
m Q = eT

m Gm−1,m = smeT
m−1 + cmeT

m,

only the last two components of eT
m Q are nonzero. If the last column of each term in

(4.6.16) is dropped, we obtain the truncated decomposition

AṼm−1 = Ṽm−1 H̃m−1 + ĥm,m−1v̂meT
m−1, (4.6.17)

where H̃m−1 is the leading principal submatrix of H̃m of order m − 1. From the
Hessenberg structure of H̃m we have

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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ĥm,m−1v̂m = h̃m,m−1ṽm + smhm+1,mvm+1.

Since vm+1 and ṽm are both orthogonal to Ṽm−1, so is v̂m . Hence, (4.6.17) is a valid
Arnoldi decomposition of order m − 1.

We recall that an Arnoldi decomposition is uniquely determined by its starting
vector. We now derive an expression for ṽ1 = Ṽm−1e1 = Vm Qe1. Subtracting θVm

from both sides of the Arnoldi decomposition gives

(A − θ I )Vm = Vm(Hm − θ I ) + hm+1,mvm+1eT
m .

Equating the first column on each side we get

(A − θ I )v1 = Vm(Hm − θ I )e1 = Ṽm Q H (Hm − θ I )e1.

From the first step of the QR algorithm we have

Q H (H − θ I )e1 = Re1 = r11e1

and it follows that (A − θ I )v1 = r11ṽ1. This shows that the restart generates the
unique Arnoldi decomposition of dimension m − 1 corresponding to the modified
starting vector (A − θ I )v1.

The restart procedure can be repeated. For each shift the dimension of the Arnoldi
decomposition is reduced by one. If shifts θk+1, . . . , θm are used, the transformed
starting vector satisfies

ṽ1 = p(A)v1

‖p(A)v1‖2 , p(z) = (z − θk+1) · · · (z − θm−k). (4.6.18)

The normal procedure in implicitly restartedArnoldi is as follows. Initiallym = k+p
steps of anArnoldi decomposition are computed.An implicit restart is thenperformed
using p shifts. Next p more steps of Arnoldi are performed, giving a new Arnoldi
decomposition of order m = k + p. This process is repeated until convergence.

Using exact shifts results in H̃k having the k wanted Ritz values as its spectrum.
As the restart process is repeated, the successive subdiagonals of H̃k will tend to zero
and converge to a partial Schur decomposition of A with the corresponding Schur
vectors given by Ṽk .

4.6.3 The Lanczos Algorithm

For a Hermitian matrix A, the Lanczos process (Algorithm 4.2.3) can be used instead
of theArnoldi process.Given a unit starting vectoru1, this yields after k steps a unitary
matrixUk = (u1, u2, . . . , uk), whose columns span the Krylov subspaceKk(A, u1).
The vectors u j , j = 2, 3, . . . , are generated by the three-term recurrence
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β j+1u j+1 = r j , r j = Au j − β j u j−1 − α j u j .

The new vector is u j+1 = r j/β j+1, where

α j = u H
j (Au j − β j u j−1), β j+1 = ‖r j‖2.

The scalars β j and α j form a real symmetric tridiagonal matrix

Tk = U H
k AUk =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 β2
β2 α2 β3

β3
. . .

. . .

. . . αk−1 βk

βk αk

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.6.19)

that is the generalized Rayleigh quotient matrix corresponding to Kk(A, b). From
the recursion we obtain the Lanczos decomposition

AUk = Uk Tk + βk+1uk+1eT
k . (4.6.20)

If βk+1 = 0, the Lanczos process terminates with AUk = Uk Tk , and then Uk

spans an invariant subspace of A and the eigenvalues of Tk are exact eigenvalues
of A. For example, if u1 happens to be an eigenvector of A, the Lanczos process
stops after one step and α1 is an eigenvalue. The remaining eigenvalues of A can be
determined by restarting the Lanczos process with a vector orthogonal to u1, . . . , uk .

The eigenvalues and eigenvectors of Tk can be computed efficiently using the
symmetric QR algorithm. If (θ, z) is an eigenpair of Tk , then θ is a Ritz value and
y = Uk z a Ritz vector and then they approximate an eigenpair of A. In principle,
the k Ritz values θi and Ritz vectors yi , i = 1 :k, can be computed at each step. The
accuracy of the eigenvalue approximations can then be assessed from the residual
norms

‖Ayi − yiθi‖2
to decide when the process should be stopped.

Theorem 4.6.2 Suppose k steps of the symmetric Lanczos method have been per-
formed without termination. Let the Ritz values be θi and the Ritz vectors yi = Uk zi ,
i = 1 :k. Then we have

‖Ayi − yiθi‖2 = ξki , ξki = βk+1|eT
k zi |, (4.6.21)

and a bound for the error in the Ritz values is

min
μ∈λ(A)

|μ − θi | ≤ ξki . (4.6.22)
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Proof Substituting yi = Uk zi and using (4.6.20) gives

Ayi − yiθi = AUk zi − Uk ziθi = (AUk − Uk Tk)zi = βk+1uk+1eT
k zi .

Taking norms gives (4.6.21) and then (4.6.22) follows from Theorem 3.2.13,
p. 465. �

Hence, the residual norm can be computed from the bottom element of the normal-
ized eigenvectors of Tk . If only eigenvalue approximations are desired, the matrix
Uk need not be saved . The matrix Uk is needed for computing Ritz vectors, but
then needs to be accessed only after the process has converged. The vectors uk can
be stored on secondary storage, or often better, regenerated at the end. The result
(4.6.21) also explains why some Ritz values can be very accurate approximations
even when βk+1 is not small.

From Cauchy’s interlacing property (Theorem 3.2.9, p. 462), it follows that the
Ritz values θ

(k)
i , i = 1 : k, interlace θ

(k+1)
i , i = 1 : k + 1. Disregarding rounding

errors, θ(n)
i , i = 1 : n, are the eigenvalues of A. We conclude that in theory the Ritz

values approach the eigenvalues of A monotonically from the inside out.
When the Lanczos method has started to converge, there comes a time when it is

very unlikely that undetected eigenvalues remain hidden between the approximations
θi . Then the improved bounds of (4.6.11)–(4.6.12) can be applied, with the gap
estimated by

gap (θi ) ≥ min
θi �=θ j

(|θi − θ j | − ‖ri‖2).

The harmonic Ritz values θ̃
(k)
i are Ritz values for A−1 computed on the subspace

AKk(A, b). They are determined by (4.6.9), p. 722.With Tk = U H
k AUk this becomes

(AUk)
H (A − λ̄I )Uk yk = (

(AUk)
H (AUk) − λ̄Tk

)
yk = 0. (4.6.23)

Squaring the Lanczos decomposition (4.6.20) and using U H
k uk+1 = 0 and the sym-

metry of Tk gives

(AUk)
H (AUk) = T T

k U H
k Uk Tk + β2

k+1eku H
k+1uk+1eT

k = T 2
k + β2

k+1ekeT
k .

Substituting this in (4.6.23) we find that

(
T 2

k + β2
k+1ekeT

k − λ̄Tk
)
yk = 0.

Finally, multiplying by T −1
k shows that the harmonic Ritz values and Ritz vectors

are the eigenpairs of the matrix

Tk + β2
k+1T −1

k ekeT
k . (4.6.24)
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This is a tridiagonal matrix modified by an unsymmetric rank-one matrix. With
Tk = Lk LT

k , this matrix is similar to the symmetric matrix

LT
k Lk + β2

k+1ukuT
k , uk = L−1

k ek .

Hence, by Theorem 3.6.3, the harmonic Ritz values interlace the standard Ritz values
and can be computed by solving a secular equation.

Eigenvalues of A close to zero are mapped onto positive or negative eigenvalues
of large magnitude of A−1. The harmonic Ritz values converge to the eigenvalues of
A monotonically from the outside in. In particular, the largest positive eigenvalues
are now approximated from above, and the largest negative eigenvalues from below.
It follows that any interval containing zero and free from eigenvalues of A is also
free from harmonic Ritz values.

By the shift invariance of Krylov subspace methods, the Lanczos process applied
to the shifted matrix A − μI generates the same Lanczos vectors independent of μ.
The Ritz values will just be shifted the same amount. The harmonic Ritz values are
affected in a more complicated way by the shift, because they are the eigenvalues of
the matrix

(Tk − μI ) + β2
k+1(Tk − μI )−1ekeT

k . (4.6.25)

The Ritz values together with the harmonic Ritz values of the shifted matrix form the
so-called Lehmann intervals. These can be shown to be optimal inclusion intervals
for eigenvalues of A.

Although the Lanczos process only involves the three last Lanczos vectors, all
Lanczos vectors are needed to compute the Ritz vectors. It can take a large number
of iterations before approximations to the desired eigenvalues have converged. Also
the number of operations associated with the Rayleigh–Ritz method grows as the
number of vectors increases. Therefore, restarts are usually needed also in the Lanc-
zos method. The implicitly restarted Lanczos method (IRLM) avoids difficulties
with storage and loss of orthogonality by maintaining and updating a numerically
orthogonal set of basis vectors of fixed size.

After m steps of the Lanczos process the Lanczos decomposition

AUm = Um Tm + βm+1um+1eT
m (4.6.26)

has been computed. Here Tm is a real symmetric tridiagonal matrix and Um a matrix
with orthogonal columns spanning the Krylov subspaceKm(A, u1). We assume that
all Lanczos vectors (u1, . . . , um) have been retained. If one step of the symmetric QR
algorithm with shift μ is applied to Tm , the Lanczos decomposition is transformed
according to

AŨm = Ũm T̃m + βm+1vm+1eT
m Q, (4.6.27)

where T̃m = QT
m Tm Q and Ũm = Um Q and Q = G12G23 · · · Gm−1,m are Givens

rotations. Furthermore, only the last two components in eT
m Q will be nonzero:
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eT
m Q = eT

m Gm−1,m = smeT
m−1 + cmeT

m .

Hence, deleting the last column gives a truncated decomposition of the form

AŨm−1 = Ũm−1Tm−1 + β̂mûmeT
m−1, (4.6.28)

where T̃m−1 is the leading principal submatrix of T̃m of order m − 1. From the
tridiagonal structure of T̃m , we obtain

β̂mûm = β̃mũm + smβm+1um+1.

It follows that ûm is orthogonal to Ũm−1 and thus (4.6.28) is a valid Lanczos decom-
position of orderm−1. In IRLM p = m−k shiftsμ1, . . . , μk are selected and p steps
of the symmetric QR algorithm performed on Tm . The “bulge chasing” implicit algo-
rithm should be used. This gives a truncated Lanczos decomposition of order k. Then
p additional Lanczos steps are applied giving a new m-step Lanczos decomposition.

A different restarting method, called the thick-restart Lanczos process, uses an
explicit restarting scheme that is simpler to implement. The following description
follows that in Wu and Simon [231, 2000]. Suppose that m is the maximum number
of steps in the Lanczos method allowed before restarting. At this step the vectors ui ,
i = 1 :m + 1, satisfy the Lanczos decomposition (4.6.26) with

Um = (u1, . . . , um), Tm = U H
m AUm,

where ti,i = αi and ti,i+1 = ti+1,i = βi+1. The Lanczos method is then restarted
with k selected Ritz vectors in the current Krylov subspace. Thus, k eigenvectors of
Tm forming the matrix Y are chosen and the method restarted with the Ritz vectors
Ûk = UmY . (Quantities after the restart are distinguished by a hat.) Immediately
after the restart the new basis vectors satisfy the decomposition

AÛk = Ûk T̂k + βm+1ûk+1s H , (4.6.29)

where

T̂k = Y H TmY, ûk+1 = um+1, s = Y H em . (4.6.30)

Because Y are eigenvectors of Tk , the matrix T̂k is diagonal with diagonal elements
equal to the k selected Ritz values. Note that the residual vector of every Ritz vector
in Ûk is orthogonal to ûk+1. As in the ordinary Lanczos process, we now extend the
basis with ûk+1. To continue, we form Aûk+1 and orthogonalize this vector using
the Gram–Schmidt process:

β̂k+2ûk+2 = Aûk+1 − Ûk+1Û H
k+1Aûk+1 (4.6.31)

= Aûk+1 − ûk+1(̂u
H
k+1Aûk+1) − Ûk(Û

H
k Aûk+1).

Here α̂k+1 = û H
k+1Aûk+1 and the scalar β̂k+2 is to be determined so that ûk+2 has unit

norm. The vectorU H
k Aûk+1 can be computed efficiently by noting from (4.6.29) that
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(U H
k Aûk+1) = (AUk)

H ûk+1 = (Ûk T̂k + βm+1ûk+1s H )H ûk+1

= βm+1s (̂uk+1s H ûk+1) = βm+1s.

Hence, the vector ûk+2 can be computed as

β̂k+2ûk+2 = Aûk+1 − α̂k+1ûk+1 − βm+1

k∑
j=1

s j û j . (4.6.32)

At the same step the diagonal matrix T̂k = D̂k is extended by one column and one
row to form an arrowhead matrix T̂k+1. After this step the Lanczos decomposition
becomes

AÛk+1 = Ûk+1T̂k+1 + β̂k+2ûk+2eT
k+1.

Further steps can now be carried out using the three-term recurrence just as in the
original Lanczos method. The matrix T̂k+i , i = 1, 2, 3, . . . , will have the form

T̂k+i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D̂k βm+1s

βm+1s H α̂k+1 β̂k+2

β̂k+2 α̂k+2 β̂k+3

β̂k+3
. . .

. . .

. . . α̂k+i−1 β̂k+i−1

β̂k+i α̂k+i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6.33)

Themethod can be restarted several times in the samemanner. Although T̂k+i is no
longer tridiagonal, after the restart the number of nonzero elements is not increased
by a restart. The Rayleigh–Ritz projection step needs to be modified. The rows that
are not tridiagonal can easily be reduced to this form by Givens transformations.
Then, e.g., the standard QR eigenvalue algorithm can be used to compute Ritz pairs.
It can be shown that the thick-restart Lanczos method generates an orthogonal basis
for a Krylov subspace for some (unknown) starting vector. Hence, it is a proper
Krylov subspace method.

The Lanczos process always stops with an unreduced tridiagonal matrix. Since by
Lemma 3.5.1 such a matrix can have only simple eigenvalues, the Lanczos process
is not able to find multiple and clustered eigenvalues. Block Lanczos methods,
described in Sect. 4.2.7, cope with this problem by iterating with a block of p > 1
vectors and generating a block tridiagonal matrix. The choice of block size p may be
a difficult decision for the user, since it can significantly affect the performance of the
block Lanczos algorithm. To be able to find multiple and clustered eigenvalues, the
block size should be chosen no less thanmaximumcluster size. On the other hand, the
computational complexity is generally increased by increasing the block size. Often
a small block size p = 2 or 3 is most efficient. Ye [233, 1996] describes an adaptive
block Lanczos algorithm which can increase the block size when found inadequate.
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4.6.4 Reorthogonalization of Lanczos Vectors

So far we have only described the Lanczos method when carried out in exact
arithmetic. In finite precision, roundoff will occur and the basic three-term relation
between the Lanczos vectors becomes

β j+1u j+1 = Au j − α j u j − β j u j−1 − f j ,

where f j is the roundoff error. As is well-known by now, this will cause the Lanczos
vectors to gradually lose their orthogonality. Taking rounding errors into account,
the Lanczos decomposition becomes

AU j = U j Tj + β j+1u j+1eT
j + Fj ,

where ‖Fj‖2 ≤ cu‖A‖2 and c is a small generic constant. Note that once an error
occurs that causes u j+1 to lose orthogonality this error is propagated to all future
Lanczos vectors.

Example 4.6.3 We consider the 6 × 6 symmetric matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

8 6 8 2 11 2
6 2 17 13 11 1
8 17 6 10 8 1
2 13 10 6 20 5
11 11 8 20 16 15
2 1 1 5 15 20

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.6.34)

and the initial vector r = (1, 1, 1, 1, 1, 1)T . The results below show the loss of
orthogonality of U and how well AU matches U T after 6 Lanczos iterations in
IEEE double precision (u = 1.11 · 10−16):

‖AU − U T ‖2 = 2.7382 · 10−9, ‖U T U − I‖2 = 3.8905 · 10−11.

About five digits have been lost in this small example. If the starting vector had been
chosen closer to an eigenvector of A, the loss of orthogonality would have been even
worse. �

A satisfactory analysis of the numerical properties of the Lanczos process was not
given until 1971 by Paige [164, 1971]. Paige observed that the loss of orthogonality
in the Lanczos process is related to the convergence of a Ritz pair to an eigenpair of
A. A fundamental result by Paige shows that after k steps of the Lanczos process,
the newly generated Lanczos vector satisfies

|uT
k+1yi | ≈ u

‖A‖2
|βk+1||eT

k zi |
.

A comparison with the estimate of the residual error given by (4.6.21) shows that,
as a result of roundoff errors, the computed Lanczos vector tends to have unwanted
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large components in the direction of already converged Ritz vectors. The behavior
can be summarized as follows:

1. Orthogonality among the Lanczos vectors u1, . . . , u j is well maintained until one
of the Ritz values is close to an eigenvalue of A.

2. Each new Lanczos vector uk , k > j , has a significant component along the
converged Ritz vectors.

In the simple Lanczos method no reorthogonalization is carried out. The loss
of orthogonality delays convergence and causes re-introduction of components of
converged eigenvectors. Therefore “ghost” or “spurious” eigenvalues may occur in
the reduced tridiagonal matrix. In spite of this problem, the simple Lanczos method
can be very effective for accurately computing exterior eigenvalues of A, even after
a total loss of orthogonality. If eigenvectors are not needed, there is no need to access
earlier Lanczos vectors and storage requirement can be kept at a minimum. However,
it may be difficult to decide if a converging Ritz value is a new close eigenvalue or a
copy of an eigenvalue already found. The convergence of the Ritz values can become
quite irregular and sometimes almost stagnate. The problemof identifying and coping
with ghost eigenvalues is discussed byCullum andWilloughby [56, 1985] and Parlett
and Reid [175, 1981].

The commonly used remedy for the loss of orthogonality is reorthogonalization
using the Gram–Schmidt procedure. Several possible schemes for carrying out this
have been suggested. In full reorthogonalization the Lanczos vector uk+1 is reorthog-
onalized against all previous vectors u j , . . . , u1. This requires that all Lanczos vec-
tors be stored, so this option is clearly costly both in terms of storage and operations.
An alternative is to employ selective reorthogonalization. In this the loss of orthog-
onality among vectors in the matrix Uk ∈ R

n×k is measured by

ω = max
i �= j

|ωi j |, � = (ωi, j ) = U T
k Uk .

It is possible to monitor this loss of orthogonality using simple recurrences without
forming inner products. If the loss of orthogonality in Uk is bounded by ω ≤ √

u/k,
we say that semiorthogonality holds. A key result from the error analysis says that as
long as this condition is satisfied, the Lanczos process will behave sufficiently closely
to its exact counterpart. By this we mean that the computed tridiagonal matrix Tk is
close to the orthogonal projection of A onto span(Uk). That is,

Tj = P H
j APj + Vj ,

where the elements of Vj are O(u‖A‖2). The aim of a reorthogonalization process
is to maintain semiorthogonality.

Selective reorthogonalization was first suggested by Parlett and Scott [176, 1979].
Several schemes that maintain semiorthogonality have been suggested. Simon
[199, 1984] and [200, 1984] gives an analysis applicable to several reorthogonal-
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ization schemes in Lanczos methods and suggests a more effective scheme, called
partial reorthogonalization.

Paige [164, 1971] proved that the Lanczos method could be used to compute
accurate eigenvalues, even in the face of total loss of orthogonality. How to locate
spurious copies of eigenvalues in the simple Lanczos method is discussed by Parlett
and Reid [175, 1981]. The use of explicit restarts of the Lanczos algorithm was sug-
gested in 1951 by Karush [139, 1951]. Implicit restarts for the Arnoldi and Lanczos
methods were introduced by Sorensen [208, 1992]; see also Lehoucq [149, 2001],
Sorensen [209, 2002], and Beattie et al. [19, 2005]. Implicitly restarted Lanczos
methods for computing a few eigenpairs of large Hermitian eigenvalue problems
are treated in Calvetti et al. [37, 1994] and [13, 1996]. For a description of a
Matlab implementation, seeBaglama et al. [12, 2003]. Formore details on the thick-
restart Lanczos method, see Wu and Simon [231, 2000]. Yamazaki et al. [232, 2010]
describe an implementation of the thick-restart Lanczos method TRLan.

4.6.5 Convergence of Arnoldi and Lanczos Methods

Practical experience has shown that, in the Hermitian case, one can expect rapid
convergence of the Ritz values approximating the extreme (algebraically smallest
and largest) eigenvalues of A. The interior eigenvalues in general converge more
slowly. We now show that this observation can be supported by an a priori error
analysis.

A basic question in the convergence analysis of Krylov subspace methods is:
How well can an eigenvector xi of A be approximated by a vector in Kk(A, v)?
More precisely, we would like to bound the distance ‖xi − Pk xi‖2, where Pk is the
orthogonal projector onto the Krylov subspaceKk(A, v). The answer will depend on
quantities like the angle between v and xi and the spread of the spectrum of A. As the
following theorem shows, the problem is closely related to the theory of polynomial
approximation.

Theorem 4.6.3 (Saad [191], Lemma 6.2) Assume that A ∈ C
n×n is diagonalizable

and that the initial vector v in Arnoldi’s method has the expansion

v =
n∑

j=1

α j x j , α j �= 0, (4.6.35)

where x j , j = 1 : n, are unit eigenvectors of A. Let Pk be the orthogonal projector
onto Kk(A, v) and �∗

k−1 denote the set of polynomials p of degree at most k − 1,
normalized so that p(λi ) = 1. Then the following inequality holds:

‖xi − Pk xi‖2 ≤ ξiε
(k)
i , ξi =

∑
j �=i

|α j |/|αi |, (4.6.36)
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ε
(k)
i = min

p∈�∗
k−1

max
λ∈�(A)\{λi }

|p(λ)|, (4.6.37)

and �(A) denotes the spectrum of A.

Proof From the relation between Kk(A, v) and Pk we have

‖(I − Pk)αi xi‖2 = min
p∈�k−1

‖xi − p(A)v‖2 ≤ min
p∈�∗

k−1

‖xi − p(A)v‖2.

Using the expansion (4.6.35) of v it follows that for any polynomial p ∈ Pk−1 with
p(λi ) = 1 we have

‖(I − Pk)αi xi‖2 ≤
∥∥∥
∑
j �=i

α j p(λ j )x j

∥∥∥
2

≤ max
j �=i

|p(λ j )|
∑
j �=i

|α j |.

The last inequality is obtained by noticing that the component in the eigenvector xi

is zero and using the triangle inequality. The result is then established by dividing
both sides by |αi |. �

The minimization problem in (4.6.37) is in general too hard to solve. Therefore,
we now specialize to the case when A is a Hermitian matrix. We assume that the
eigenvalues of A are simple and ordered so that λ1 > λ2 > · · · > λn . For the largest
eigenvalue λ1, (4.6.37) can be relaxed to a minimax problem on the interval [λ2, λn].

The linear transformation

z1(λ) = 1 + 2
λ − λ2

λ2 − λn
, γ1 = z1(λ1) = 1 + 2

λ1 − λ2

λ2 − λn
, (4.6.38)

maps the interval [λ2, λn] onto [−1, 1], and γ1 > 1. If we take

p(λ) = Tk−1(z1(λ))

Tk−1(γ1)
, (4.6.39)

where Tk(z) is the Chebyshev polynomial of the first kind, then p(λ1) = 1, as
required. By the minimax property (Theorem 4.1.11, p. 640), the polynomial p(λ)

in (4.6.39) solves the required minimization problem. When k is large we have

ε
(k)
1 ≤ max

λ∈�(A)\{λ1}
|p(λ)| ≤ 1

Tk−1(γ1)
≈ 2

(
γ1 +

√
γ 2
1 − 1

)1−k

. (4.6.40)

The steep climb of the Chebyshev polynomials outside the interval [−1, 1] explains
the powerful approximation properties of the Krylov subspaces. The approximation
error tends to zero with a rate depending on the gap λ1 − λ2, normalized by the
spread of the rest of the eigenvalues λ2 − λn . Note that this result has the correct
form with respect to the invariance properties of the Krylov subspaces. It indicates
that the Lanczos method can be used to find eigenvalues at both ends of the spectrum.
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But often the distribution of the eigenvalues is such that only those at one end of the
spectrum can be found.

Example 4.6.4 Consider a matrix with eigenvalues λ1 = 20, λ2 = 19, and λn = 0.

In this case we have γ1 = 1+2/19, γ1 +
√

γ 2
1 − 1 = (21+√

80)/19 ≈ 1.576. This
indicates that as the dimension k of the Krylov space increases, the error bound for
the best approximation converges linearly with rate ρ = 0.635. This is much better
than the convergence rate 0.95 for the power method. The analysis does not take into
account that Krylov subspace methods show superlinear convergence, which is not
the case for the power method. �

Analogous convergence results for the rightmost eigenvalue λn of A are obtained
by considering the matrix −A. More generally, for λi , i = 2, 3, . . . , similar but
weaker results can be proved using polynomials of the form

p(λ) = �i−1(λ)q(λ), �i−1(λ) =
i−1∏
j=1

λ j − λ

λ j − λi
, (4.6.41)

where �i−1 is the Lagrange interpolation polynomial of degree i − 1, for which
�i−1(λi ) = 1 and �i−1(λ j ) = 0, j = 1 : i − 1. We now take

p(λ) = �i−1(λ)
Tk−i (zi (λ))

Tk−i (γi )
,

where

zi (λ) = 1 + 2
λ − λi+1

λi+1 − λn
, γi = 1 + 2

λi − λi+1

λi+1 − λn
. (4.6.42)

When k is large, (4.6.36) holds with

ε
(k)
i ≤ Ci/Tk−i (γi ) ≈ 2Ci

(
γi +

√
γ 2

i − 1

)1−k

(4.6.43)

Ci = max
λ∈λ(A)

�i−1(λ) = �i−1(λn). (4.6.44)

This indicates that interior eigenvalues and eigenvectors can be expected to be less
well approximated by Krylov-type methods.

Here we have only shown that a sequence of Krylov subspaces contain increas-
ingly accurate approximations to the eigenvectors of A. Since the Rayleigh–Ritz
method will only produce approximations to these best approximations from the
Krylov subspaces, there is a second level of approximation to analyze; see Saad
[191, 1992].

The first to take advantage of the approximating power of Krylov subspaces was
Lanczos in his seminal paper [142, 1950], where he used the Rayleigh–Ritz proce-
dure. A priori error bounds for the Lanczosmethod based on Chebyshev polynomials
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were given by Kaniel [138, 1966]. In his seminal thesis Paige [164, 1971] corrected
and refined these bounds. Interest in the Arnoldi method was revived in the 1980s by
Saad [188, 1980]. He showed that better bounds could be obtained by first analyzing
the approximations contained in the Krylov sequences. How to find approximate
solutions and eigenvalue bounds from Krylov subspaces is discussed by Paige et al.
[171, 1995].

4.6.6 Spectral Transformation

Krylov subspace methods work best for finding the exterior part of the spectrum,
in particular for finding the eigenvalues of largest magnitude and the corresponding
eigenvectors. For eigenvalues in the interior of the spectrum, convergence can be very
slow indeed. The shift-and-invert spectral transformation introduced in Sect. 3.3.3 is
a key technique for solving such problems. This transformation works also for the
generalized eigenvalue problem Ax = λBx . Subtracting μBx from both sides gives
(A − μB)x = (λ − μ)Bx . If the shift μ is chosen so that A − μB is nonsingular,
this is equivalent to the standard eigenvalue problem

Cx = θx, C = (A − μB)−1B. (4.6.45)

The eigenvalues λ for the problem Ax = λBx are related to the eigenvalues θ of C
in (4.6.45) by

θ = (λ − μ)−1, λ = μ + 1/θ.

Since eigenvalues near the shift μ are mapped onto extremal and well separated
eigenvalues, rapid convergence of Arnoldi and Lanczos methods can be expected for
these eigenvalues. On the other hand, eigenvalues far from the shift μ are clustered
near zero and damped out. With several shifts, eigenvalues in different regions of the
complex plane can be obtained.

To apply the Arnoldi or Lanczos method to the eigenvalue problem (4.6.45), we
need to be able to form matrix-vector products v = Cx . These are computed in two
steps as

y = Bx, (A − μB)v = y.

The solution of the linear system assumes that an LU factorization of A − μB can
be computed.

In the following we assume that A and B are real symmetric and B positive
definite. Then all eigenvalues are real. To preserve symmetry, a small modification of
the above procedure is necessary. With B = W W T being the Cholesky factorization
of B, the transformed eigenvalue problem can be written in symmetric form as

Cy = θy, C = W T (A − μB)−1W, y = W T x . (4.6.46)

http://dx.doi.org/10.1007/978-3-319-05089-8_3
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The Lanczos method is implicitly applied to the symmetric matrix C in (4.6.46).
Matrix-vector products v = Cu are performed in three steps:

(i) Compute W u; (ii) Solve (A − μB)z = W u. (iii) Compute v = W T z.

Note that the matrix A−μB is in general indefinite. To solve the linear system in the
second step, a symmetric factorization L DLT is used. By Sylvester’s Law of Inertia
(see Sect. 1.3.4), information about the number of eigenvalues λ < μ is obtained
as a useful by-product. Since Bx = W y, the eigenvectors of A corresponding to a
converged eigenvalue μ are obtained by solving

(A − μB)x = W y.

If all eigenvalues in an interval [a, b] are desired, usually several shifts in μ ∈ [a, b]
are used, because this leads to fewer iterations steps. This has to be balanced against
the cost of computing several factorizations.

The spectral transformation has been used for a long time in engineering appli-
cations, usually combined with simultaneous iteration. The spectral transformation
Lanczos (STLM)methodwas developedbyEricsson andRuhe [70, 1980].Variants of
their codehavebeen incorporated into several software packages for thefinite element
method such as NASTRAN. A spectral transformation Arnoldi method developed
by Ruhe [185, 1993] is part of the PDE toolbox of Matlab and COMSOL.

If the shift is changed and the Arnoldi or Lanczos method is used, a new Krylov
subspace has to be built and information gained from the old shift is lost. A robust
shift selection strategy for the block Lanczos method is described by Grimes et al.
[103, 1994] describe a state-of-the-art implementation and discuss strategies for full
and selective reorthogonalization. In the rational Krylov method several different
shifts and factorizations are combined without building a new Krylov subspace;
see [185, 1994] and [186, 1998]. This can be interpreted in terms of a rational
function r(A), where

r(λ) = p j (λ)

(λ − μ1)(λ − μ2) · · · (λ − μ j )

and p j is a polynomial operating on a starting vector. The rational Krylov method is
effective to use when many eigenvalues are requested and the eigenvalue problem is
ill-conditioned.

4.6.7 The Lanczos–SVD Algorithm

The GKL bidiagonalization process described in Sect. 4.5.4 can be used also for
computing selected singular values and singular vectors of a matrix A ∈ C

m×n . This
process is mathematically equivalent to applying the symmetric Lanczos process to
the Jordan–Wielandt matrix

http://dx.doi.org/10.1007/978-3-319-05089-8_1
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(
0 A

AH 0

)
∈ C

(m+n)×(m+n), (4.6.47)

with the special unit starting vector

(
u1
0

)
; see Problem 4.5.5. The work is halved

compared to applying the Lanczos method to (4.6.47) using an arbitrary starting
vector. It gives a simple way of realizing the Ritz–Galerkin projection process on the
subspaces K j (AHA, v1) and K j (AAH , Av1).

Let Bk ∈ R
(k+1)×k be the bidiagonal matrix obtained after k steps of the bidiag-

onalization process applied to A, and Uk and Vk be the Lanczos vectors. If the SVD
of Bk is

Bk = Pk+1�k QT
k , � = diag(σ1, . . . , σk), (4.6.48)

then the Ritz values σi , i = 1 :k, and the Ritz vectors

Ûk = Uk Pk+1, V̂k = Vk Qk,

approximate singular values and singular vectors of A. The extreme (largest and
smallest) singular values of A tend to be quite well approximated by the correspond-
ing Ritz values for k � n. If the smaller singular values are clustered, convergence
for this part of the spectrum will be delayed.

An implicitly restarted Lanczos method can also be applied to the GKL bidiag-
onalization process. Strategies similar to those used in implicitly restarted Arnoldi
methodmay be invoked in order to determine a fixed number p of the largest singular
values and vectors. In particular, the “exact” shifts can be adapted in a straightforward
fashion.

Recall (see (4.5.39) in Sect. 4.5.4) that the GKL process yields the two decompo-
sitions

AVk = Uk+1Bk, (4.6.49)

AH Uk+1 = Vk BT
k + αk+1vk+1eT

k+1. (4.6.50)

The Golub and Reinsch bulge chasing implicit shift QR–SVD algorithm19 can now
be applied to the lower bidiagonal matrix Bk ∈ R

(m+1)×m .
We now describe the application of one shift in the implicitly restarted SVD

method. Given a shift μ2, a Givens rotation G12 is determined such that

(
c1 s1

−s1 c1

)(
α2
1 − μ2

α1β1

)
=
(

τ

0

)
.

19 Note that in Sect. 3.5.3 we worked with an upper bidiagonal matrix (3.5.12). This gives rise to
certain minor differences in the QR–SVD algorithm.

http://dx.doi.org/10.1007/978-3-319-05089-8_3
http://dx.doi.org/10.1007/978-3-319-05089-8_3
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The matrix G12Bk is then brought back to bidiagonal form by applying further
rotations alternately from left and right in a bulge chasing step. The result is a new
bidiagonal matrix B̂k = QT Bk P such that the tridiagonal matrix

T̂k = B̂T
k B̂k = PT BT

k Q QT Bk P = PT Tk P

is the result of one QR step applied to Tk = BT
k Bk with shift equal to μ.

The QR-SVD step transforms the two decompositions in (4.6.49)–(4.6.50) into

AṼk = Ũk+1 B̃k, (4.6.51)

AH Ũk+1 = Ṽk B̃T
k + αk+1vk+1eT

k+1Q, (4.6.52)

where Ṽk = Vk P and Ũk+1 = Uk+1Q. By construction, only the last two elements
of eT

k+1Q are nonzero: eT
k+1Q = eT

k+1Gk−1,k = skeT
k + ckeT

k+1. Deleting the last
column of each term in (4.6.51) and in (4.6.52) gives

AṼk−1 = Ũk B̃k−1, (4.6.53)

AH Ûk = Ṽk−1 B̃T
k−1 + α̂k v̂keT

k , (4.6.54)

where α̂k v̂k = α̃k ṽk + skαk+1vk+1. Since v̂k is orthogonal to V̂k−1, (4.6.53) and
(4.6.54) constitute a pair of valid Lanczos decompositions for the SVD. By unique-
ness, the updated quantities are what would have been obtained from m − 1 steps
of the GKL bidiagonalization process with starting vector û1 = (AAH − μ2 I )u1.
If this is repeated for p shifts μ1, . . . , μp, the result corresponds to m − p steps of
the GKL process using the starting vector

p∏
i=1

(AAH − μ2
i I )u1.

The shifts in the implicitly restarted Lanczos SVD method are used to enhance
the convergence to the desired part of the SVD spectrum. Often the k largest (or
smallest) singular triples are wanted. Then the shifts μ1, . . . , μp can be taken as the
p smallest (largest) singular values of Bk and the restart process repeated cyclically.
In applications, typically, the 100–200 largest singular values and vectors formatrices
having up to 300,000 rows and 200,000 columns are required.

An important application of GKL bidiagonalization process is for computing
low-rank approximations of A. Then it is desirable to avoid the spurious singular
values that appear when orthogonality is lost. If just a few triplets are wanted, full
reorthogonalization can be used. Otherwise a selective reorthogonalization scheme
is preferable. Such a scheme, which ensures semiorthogonality of the left and right
Lanczos vectors, has been developed by Simon and Zha [201, 2000]. An interesting
aspect of this work is that the loss of orthogonality of the vectors in Vk and that inUk

are closely coupled. It suffices if the columns of either Vk orUk are reorthogonalized.
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If m � n this gives considerable savings in storage and operations. That one-sided
reorthogonalization is sufficient has been confirmed by experiments of Fong and
Saunders [77, 2011]. Barlow [17, 2013] has recently given a careful error analysis
and backward error bounds of GKL with one-sided reorthogonalization.

Implicitly restarted Lanczos bidiagonalization was introduced by Björck et al.
[29, 1994]. A software package for GKL bidiagonalization called PROPACK that
incorporates both selective reorthogonalization and implicit restarts has been devel-
oped byMunkLarsen [145, 1998].20 As shownbyHochstenbach [126, 2004], the har-
monic Ritz values in Lanczos bidiagonalization are easily obtained from the square
bidiagonal matrices in the process. Kokiopoulou and Gallopoulos [140, 2004] use
implicit restarts with harmonic Ritz values to compute the smallest singular triplets.
Methods for computing a partial SVD are also discussed by Jia and Niu [133, 2004].

4.6.8 Subspace Iteration for Hermitian Matrices

In Sect. 3.3.5 subspace iteration was introduced as a block version of the power
method. Subspace iteration, also called simultaneous iteration, has long been one of
the standard methods for solving large sparse eigenvalue problems. It has been used,
particularly in structural engineering, and developed to a high standard of refinement.
An early implementation by Rutishauser [187, 1970] merits special mention.

Simple subspace iteration starts with an initial matrix Q0 ∈ R
n×p with p � n

orthogonal columns. A sequence of matrices {Qk} are computed from

Zk = AQk−1, Qk Rk = Zk, k = 1, 2, . . . , (4.6.55)

where Qk Rk is the QR decomposition of Zk . Only an algorithm for computing the
matrix-vector product Aq for an arbitrary vector q is required.

The iteration (4.6.55) generates a sequence of subspaces

Sk = R(Qk) = R(Ak Q0)

containing approximate eigenvectors of A. It can be shown (see Sect. 3.3.5) that if A
has p dominant eigenvalues λ1, . . . , λp, i.e.,

|λ1| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn|,

then the subspaces Sk , k = 0, 1, 2, . . . converge almost always to the corresponding
dominating invariant subspace: span{x1, . . . , x p}. Convergence is linear with rate
|λp+1/λp|. For individual eigenvalues |λi | > |λi+1|, i ≤ p, it holds that

|r (k)
i i − λi | = O(|λi+1/λi |k), i = 1 : p, (4.6.56)

20 http://soi.stanford.edu/~rmunk/PROPACK/.

http://dx.doi.org/10.1007/978-3-319-05089-8_3
http://dx.doi.org/10.1007/978-3-319-05089-8_3
http://soi.stanford.edu/~rmunk/PROPACK/
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where r (k)
i i are the diagonal elements of Rk . This rate of convergence is often unaccept-

ably slow. We can improve this by including the Rayleigh–Ritz procedure in orthog-
onal iteration. For the real symmetric (Hermitian) case this leads to Algorithm 4.6.2.

Algorithm 4.6.2 (Orthogonal Iteration, Hermitian Case) Set Q0 ∈ R
n×p and

compute the sequence of matrices Qk , k = 1, 2, . . ., as follows:

1. Compute Zk = AQk−1.
2. Compute the QR decomposition Zk = Q̄k Rk .
3. Form the (matrix) Rayleigh quotient Bk = Q̄T

k (AQ̄k).
4. Compute the eigenvalue decomposition Bk = Uk�kU T

k and the matrix of Ritz
vectors Qk = Q̄kUk .
It can be shown that if �k = diag(θ(k)

1 , . . . , θ
(k)
p ), then

|θ(k)
i − λi | = O(|λp+1/λi |k), i = 1 : p. (4.6.57)

This is a much more favorable rate of convergence than that in (4.6.57) without the
Rayleigh–Ritz procedure. The columns of Qk are the Ritz vectors, and they will
converge to the corresponding eigenvectors of A.

The work in step 1 of Algorithm 4.6.2 consists of p products Aqi . Orthogonaliza-
tion byMGS in step 2 requires p(p+1)n flops. To form the Rayleigh quotient matrix
requires p matrix-vector products and p(p + 1)n/2 flops, taking the symmetry of
Bk into account. Finally, steps 4 and 5 take about 5p3 and p2n flops, respectively.

Example 4.6.5 Let A have the eigenvalues λ1 = 100, λ2 = 99, λ3 = 98 λ4 = 10,
and λ5 = 5. With p = 3 the asymptotic convergence ratios for the i th eigenvalue
with and without Rayleigh–Ritz acceleration are:

i without R-R with R-R
1 0.99 0.100
2 0.99 0.101
3 0.99 0.102

Note that the rather costly orthogonalization and Rayleigh–Ritz acceleration need
not be carried out at every step. To check convergence to the individual eigenvalue
approximations, the residuals of the Rayleigh–Ritz approximations are needed. Each
interval [θi − ‖ri‖2, θi + ‖ri‖2], where

ri = Aq(k)
i − q(k)

i θi = (AQk)u
(k)
i − q(k)

i θi , (4.6.58)

will contain an eigenvalue of A. Algorithm 4.6.2 can be generalized to unsymmetric
matrices by substituting in step 4 the Schur decomposition Bk = Uk SkU H

k , where
Sk is upper triangular. The vectors qi then converge to the Schur vector ui of A.
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4.6.9 Jacobi–Davidson Methods

Suppose we have a subspace Uk of dimension k. Let (θk, yk) be a Ritz pair over Uk ,
approximating an eigenpair of interest of a matrix A. Davidson’s method, proposed
in [59, 1975], is a projection algorithm in which the space Uk is enlarged until it
contains an acceptable approximation to the desired eigenvalue. Let

rk = Ayk − θk yk

be the residual of the current Rayleigh–Ritz approximation. Then Uk is enlarged by
a vector determined by the (diagonal) linear system

(D − θk I )v = rk, D = diag(A). (4.6.59)

The new vector uk+1 is taken to be the projection of v orthogonal to Uk . New
Rayleigh–Ritz approximations are then computed using the extended subspace Uk+1
spanned by u1, . . . , uk, uk+1. Davidson’s method originated in computational chem-
istry, where it was used to find dominant eigenvalues of large symmetric, diagonally
dominant matrices. For this it frequently works well, but on other problems it can
fail completely.

It is tempting to view D−θk I in (4.6.59) as an approximation to A−θk I . However,
attempts to improve the method by using a better approximation will in general not
work. This is not surprising, because using the exact inverse (A − θk I )−1 will map
rk to the vector yk , and not expand the subspace.

The Jacobi–Davidson method, proposed in 1996 by Sleijpen and van der
Vorst [204, 1996], is a great improvement over Davidson’s method. In this method
the vector v is required to lie in the orthogonal complement of the last Ritz vector yk .
(The idea to restrict the expansion of the current subspace to vectors orthogonal to yk

was used in a method by Jacobi; see [131, 1846].) The basic equation to determine
the update v now uses the orthogonal projection of A onto the subspace y⊥

k . This
leads to the equation

(I − yk yH
k )(A − θk I )(I − yk yH

k )v = −rk, v ⊥ yk, (4.6.60)

where, as before, rk = Ayk − θk yk is the residual of the current Rayleigh–Ritz
approximation. If θk is a good approximation to a simple eigenvalue, then A − θk I
is almost singular, but the projected matrix in (4.6.60) is not. Since v ⊥ yk , we have
(I − yk yH

k )v = v, and hence (I − yk yH
k )(A − θk I )v = −rk . It follows that the

update satisfies

v = (A − θk I )−1(αyk − rk), (4.6.61)

where α = yH
k (A − θ I )v can be determined using the condition v ⊥ yk . An approx-

imate solution ṽ to (4.6.61) orthogonal to yk can be constructed as follows. Let
M ≈ A − θk I be an approximation and take
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ṽ = αM−1yk − M−1rk, (4.6.62)

where the condition ṽ ⊥ yk gives

α = yH
k M−1rk

yH
k M−1yk

. (4.6.63)

If M = A − θk I , then (4.6.62) reduces to v = α(A − θk I )−1yk − yk . Since
v is made orthogonal to yk the last term can be discarded. Hence, this choice is
mathematically equivalent to the RQI. Since (A − θk I )−1yk may make a very small
angle with yk , it is not worthwhile to accelerate it further in the manner of Davidson.

Another approach is to use a preconditioned iterative method to solve (4.6.60).
Let M ≈ A − θk I be a preconditioner and

Md = (I − yk yH
k )M(I − yk yH

k )

the corresponding projected matrix. Then in each step of the iteration an equation
of the form Md z = u, where z, u ⊥ yk , has to be solved. This can be done as in
(4.6.62) by computing

z = αM−1yk − M−1u, α = yH
k M−1u

yH
k M−1yk

.

Here M−1yk and yH
k M−1yk need only be computed in the first iteration step. Only

one application of the preconditioner M is needed in later steps.
The Jacobi–Davidsonmethod is among the most effective methods for computing

a few interior eigenvalues of a large sparse matrix, in particular when a precondi-
tioner is available or generalized eigenvalue problems are considered. Other methods
like “shift-and-invert” variants of Lanczos and Arnoldi require factorization of the
shifted matrix. Moreover, the resulting linear systems need to be solved accurately.
Therefore, these methods are not well suited to combinations with iterative methods
as solvers for the linear systems. In Jacobi–Davidson methods, such expensive fac-
torizations can be avoided. Efficient preconditioned iterative solvers can be used in
inner iterations.

The Jacobi–Davidson method was introduced by Sleijpen and van der Vorst
[204, 1996] and [205, 2000]. For a recent survey of variations and applications of
this method, see Hochstenbach and Notay [127, 2006]. Jacobi–Davidson algorithms
for the generalized eigenvalue problem are given in Fokkema et al. [76, 1998].
Variable preconditioners for eigenproblems are studied by Eldén and Simoncini
[67, 2002].

ARPACK is an implementation of the implicitly restarted Arnoldi method. It
has become the most successful and best known public domain software package
for solving large-scale eigenvalue problems. ARPACK can be used for finding a
few eigenvalues and eigenvectors of large symmetric or unsymmetric standard or
generalized eigenvalue problem; see the user guide [150, 1998]. In Matlab the
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eigs function is an interface to ARPACK. The block Lanczos code of Grimes
et al. [103, 1994] and its updates are much used for structural analysis problems in
industrial applications.A selection of severalmore software packages freely available
are listed in Sorensen [209, 2002]. An ARPACK based iterative method for solving
large-scale quadratic problems with a quadratic constraint is developed in Rojas
et al. [183, 2008].

Exercises

4.6.1 In the Lanczos method the harmonic Ritz values are the eigenvalues of the matrix Tk +
βk+1T −1

k ekeT
k . The tridiagonal matrix

T̃k =
(

Tk βk+1ek

eT
k βk+1 skβ

2
k+1

)
, sk = eT

k T −1
k eT

k , (4.6.64)

is Tk+1 with its last diagonal entry modified. Show that T̃k has zero as a simple eigenvalue
and the remaining eigenvalues are the harmonic Ritz values.
Hint: What is the Schur complement of Tk in (4.6.64)?

4.7 Notes and Further References

Classical iterative methods are analyzed by Varga [225, 2000] in a revised and
enlarged edition of a book originally published in 1962. Other prominent classical
textbooks are Young [236, 1971] and Hageman and Young [110, 1981]. Axelsson [7,
1994] contains a wealth of information on iterative methods and preconditioning.
The recent comprehensive text by Saad [194, 2003] describes the state of the art of
iterative methods for linear systems. Additional reading include van der Vorst [222,
2002] and [223, 2003].

An instructive survey of the development of iterative methods for solving linear
systems during the previous century is given by Saad and van der Vorst [196, 2000].
Templates for implementation of many iterative methods for linear systems are given
in Barret et al. [18, 1993]. A pdf version of the second edition of this book can be
downloaded from http://www.netlib.org/templates/templates.pdf. Implementations
of many of the methods described in this book are available in Matlab. Domain
decomposition methods, not covered in this book, are surveyed by Toselli and Wid-
lund [219, 2005].

Modern treatments of the Lanczos and CG methods are found in Greenbaum
[100, 1997], Meurant [157, 2006], Meurant and Strakoš [158, 2006], and Liesen and
Strakoš [152, 2012]. How to use Krylov subspace methods for linear systems with
multiple right-hand sides is discussed by Gutknecht [109, 2007].

Numerical methods for large-scale eigenvalue problems are treated in Saad
[195, 2011], which is a much modified revision of [191, 1992]. Bai et al. [16, 2000]
give surveys and templates for the solution of different eigenvalue problems.

http://www.netlib.org/templates/templates.pdf


772 4 Iterative Methods

References

1. Arioli, M., Gratton, S.: Linear regression models, least-squares problems, normal equations,
and stopping criteria for the conjugate gradient method. Comput. Phys. Commun. 183(11),
2322–2336 (2012)

2. Arioli, M., Duff, I.S., Noailles, J., Ruiz, D.: A block projection method for sparse matrices.
SIAM J. Sci. Comput. 13(1), 47–70 (1992)

3. Arioli, M., Duff, I.S., Ruiz, D., Sadkane, M.: Block Lanczos techniques for accelerating the
block Cimmino method. SIAM J. Sci. Comput 16(1), 1478–1511 (1995)

4. Arnoldi, W.E.: The principle of minimized iteration in the solution of the matrix eigenvalue
problem. Quart. Appl. Math. 9, 17–29 (1951)

5. Axelsson, O.: A generalized SSOR method. BIT 12(4), 443–467 (1972)
6. Axelsson, O.: A survey of preconditioned iterative methods for linear systems of algebraic

equations. BIT 25(1), 166–187 (1985)
7. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, New York (1994)
8. Axelsson, O., Barker, V.A.: Finite element solution of boundary value problems. Theory and

computation. Computer Science and Applied Mathematics. Academic Press, Orlando (1984)
9. Axelsson,O., Kolotilina, L.Y.: Diagonally compensated reduction and related preconditioning

methods. Numer. Linear Algebra Appl. 1(2), 155–177 (1994)
10. Axelsson, O., Vassilevski, P.: A black box generalized conjugate gradient solver with inner

iterations and variable-step preconditioning. SIAM J. Matrix Anal. Appl. 12(4), 625–644
(1991)

11. Axelsson, O., Lu, H., Polman, B.: On the numerical range of matrices and its application to
iterative solution methods. Linear Multilinear Algebra 37(4), 225–238 (1994)

12. Baglama, J., Calvetti, D., Reichel, L.: A MATLAB program for computing a few eigenpairs
of a large sparse Hermitian matrix. ACM Trans. Math. Softw. 29(3), 337–348 (2003)

13. Baglama, J., Calvetti, D., Reichel, L.: Iterative methods for the computation of a few eigen-
values of a large symmetric matrix. BIT 36(3), 400–421 (1996)

14. Baglama, J., Calvetti, D., Golub, G.H., Reichel, L.: Adaptively preconditioned GMRES algo-
rithm. SIAM J. Sci. Comput. 20(2), 243–269 (1999)

15. Bai, Z.-Z., Duff, I.S., Wathen, A.J.: A class of incomplete orthogonal factorization methods
I: Methods and theories. BIT 41(1), 53–70 (2001)

16. Bai, Z.,Demmel, J.W.,Dongarra, J.J.,Ruhe,A., vanderVorst,H.A.:Templates for theSolution
of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA (2000)

17. Barlow, J.L.: Reorthogonalization for the Golub-Kahan-Lanczos bidiagonal reduction.
Numer. Math. 124, 237–278 (2013)

18. Barret, R., Berry, M.W., Chan, T.F., Demmel, J.W., Donato, J., Dongarra, J., Eijkhout, V.,
Pozo, R., Romine, C., van der Vorst, H.A. (eds.) Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 2nd edn (1993)

19. Beattie, C.A., Embree, M., Sorensen, D.C.: Convergence of polynomial restart Krylov meth-
ods for eigenvalue computations. SIAM Rev. 47(3), 492–515 (2005)

20. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys.
182(3–6), 418–477 (2002)

21. Benzi, M.: Gianfranco Cimmino’s contribution to Numerical Mathematics. In: Conferenzo
in Memoria di Gianfranco Cimmino, pp. 87–109, Bologna, Tecnoprint (2005)
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Mathematical Symbols

Matrices are generally denoted by upper case and vectors by lower case Roman
letters A, B, x . The corresponding lower case letters with subscripts i j refer to the
(i, j) entry of the matrix (e.g., ai j , bi j ). Greek letters α, β, . . . are used to denote
scalars.

A = (ai, j ) matrix with elements ai, j

A ∈ R
m×n m × n matrix with real elements

A ∈ C
m×n m × n matrix with complex elements

.∗ A. ∗ B elementwise product a(i, j)b(i, j)

./ A./B elementwise division a(i, j)/b(i, j)
A ≥ 0 nonnegative matrix A
A ≥ B A − B is nonnegative
A ⊗ B Kronecker product of A and B
i :k same as i, i + 1, . . . , k and empty if i > k
i : j :k same as i, i + j, i + 2 j, . . . , k
fl (x + y) floating-point operations
u unit roundoff (u ≈ 1.11 × 10−16 in IEEE d.p.)
z̄ complex conjugate of complex number z
�z real part of complex number z
�z imaginary part of complex number z
|z| modulus of number z
[a, b] closed interval (a ≤ x ≤ b)

(a, b) open interval (a < x < b)

sign(x), x ∈ R +1 if x > 0, −1 if x < 0
sign(z), z ∈ C sign function z/(z2)1/2 (z 
= 0)
f (n) = O(g(n)) | f (n)/g(n)| is bounded as n → ∞
f (n) = o(g(n)) limn→∞ f (n)/g(n) = 0
In n × n identity
ei i th column of a unit matrix
e column vector of all ones
rank (A) rank of the matrix A
R(A) range space of the matrix A
N (A) null space of the matrix A
span{v1, . . . , vk} vector space spanned by v1, . . . , vk
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784 Mathematical Symbols

A:,k kth column of A
Ai,: i th row of A
xT , AT transpose of x, A
zH , AH conjugate transpose of z, A
〈y, z〉, y, z ∈ C scalar product x H y = ∑n

i=1 ȳi zi

A matrix of complex conjugate elements of A
|A| matrix of absolute values of elements of A
Ā complex conjugate of A
PA the orthogonal projector onto R(A)

P⊥
A the orthogonal projector onto N (AT )

S⊥ orthogonal complement of linear subspace S
A† pseudoinverse of A
�(A) spectrum, i.e., the set of eigenvalues λi of A
Jm(λ) Jordan block of order m with diagonal elements λ

trace(A) sum of eigenvalues of A
ρ(A) spectral radius of A
r(A) numerical radius of A
det(A) determinant of A
κ(A) condition number ‖A‖‖A−1‖ of A
κ|A|(A) Bauer–Skeel condition number ‖ |A−1| |A| ‖
χ(A, x) measure of ill-scaling of a linear system Ax = b
‖ · ‖p p-norm of a vector or the subordinate matrix norm
‖ · ‖F Frobenius norm of a matrix
G(X, E) graph with set of nodes X and set set of edges E
pA(λ) characteristic polynomial det(λI − A) of matrix A
σ(A) set of singular values σ1 ≥ σ2 ≥ · · · ≥ σn of A
u unit roundoff (u ≈ 1.11 × 10−16 in IEEE d.p.)
γn nu/(1 − nu), nu < 1, where u is unit roundoff
�∗

k set of all polynomials qk(z) of degree ≤ k with qk(0) = 1.



Flop Counts

The table below gives approximate flop counts for a number of frequently used
matrix operations and factorizations are collected.

Method Matrix (m ≥ n) Operation Flops
Multiplication A, B ∈ R

n×n C = AB 2n3

Inverse A ∈ R
n×n A−1 2n3

LU factorization A ∈ R
n×n PA = LU 2n3/3

H ∈ R
n×n , Hess. PH = LU 2n2

B ∈ R
n×n , Trid. PB = LU 3n

Cholesky A ∈ R
n×n A = LLT n3/3

Triangular solve L ∈ R
n×n Lx = b n2

Triangular L ∈ R
n×n L−1 2n3/3

Normal equations A ∈ R
m×n AT A = RT R mn2 + n3/3

Householder QR A ∈ R
m×n A = (Q1, Q2)

(
R
0

)

2(mn2 − n3/3)

Accumulate Q1 Q1 ∈ R
m×n 2(mn2 − n3/3)

MGS A ∈ R
m×n A = QR 2mn2

Bidiagonalization A ∈ R
m×n A = (U1, U2)

(
B
0

)

V T 4(mn2 − n3/3)

Accumulate U1 U1 ∈ R
m×n 2(mn2 − n3/3)

Accumulate V V ∈ R
n×n 4n3/3
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A
A-norm, 646
Adjacency set, 150
Adjoint matrix, 8, 17
Algorithm

1-norm estimator, 104
back substitution, 38, 39

band, 118
band Cholesky, 119
band LU, 118
Bi-Lanczos, 686
BiCG, 679, 687
BiCGSTAB, 684
block

Cholesky factorization, 135
LU factorization, 134

CG, 652
CGLS, 719
CGME, 722
CGS, 683
classical Gram–Schmidt, 269
column-wise Cholesky, 77
conjugate residual, 654
forward substitution

band, 118
Gaussian elimination, 42
Householder

for least squares, 261
QR, 256
reflector, 248

incomplete
Cholesky, 698
LU, 695

iterative refinement, 287
normal equations, 226

Jacobi transformation, 533
Lanczos, 660, 677

LDLH factorization, 73
least squares by MGS, 273–282
LSQI, 350
LSQR, 727
LU factorization, 47
mathematically equivalent, 269
minimum-norm solution by MGS, 282
modified Gram–Schmidt, 270, 272
orthogonal iteration, 768
p-norm estimator, 103
plane rotation, 251
preconditioned CG, 690
preconditioned CGLS, 735
Rayleigh–Ritz procedure, 744
recursive Cholesky factorization, 140
recursive LU factorization, 140
strongly stable, 564
TFQMR, 685
tridiagonal spectrum slicing, 530

Angles between subspaces, 242–245
Anti-triangular matrix, 566
Arithmetic

complex, 91
floating-point, 89–94
standard model, 91

Arnoldi
decomposition, 670, 748
method, 748–752

polynomial restarting, 749–752
process, 669–675

Array operations, 5
Arrowhead matrix, 148, 325, 527, 541
ART, 717
Artificial ill-conditioning, 70, 367
Augmented system, 218, 233, 234, 282
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B
Back substitution, 38

for band matrix, 118
Backward

error, 241–242
componentwise analysis, 106
normwise, 105
optimal, 242

Balancing a matrix, 505
Band matrix, 114–127

standard form of, 330
Banded matrix

QR factorization, 328–331
Bandwidth

of LU factors, 117
row, 327

Bandwidth reduction, 266
Bauer–Fike’s theorem, 456
Bi-conjugate gradient, see BiCG
Bi-Lanczos, 677
BiCG, 678
BiCGSTAB, 683–684
Biconjugation algorithm, 701–702
Bidiagonal

reduction, 263–266
Biographical note

Banachiewicz, 20
Beltrami, 35
Bouvard, 223
Briggs, 587
Byers, 506
Cauchy, 196
Cayley, 2
Chebyshev, 639
Cholesky, 76
Cimmino, 712
Dantzig, 175
Forsythe, 37
Francis, 494
Frobenius, 26
Galerkin, 644
Geršgorin, 453
Golub, 263
Grassmann, 489
Hamilton, 564
Hankel, 184
Hessenberg, 120
Hestenes, 650
Householder, 247
Jacobi, 532
Jordan, C., 438
Jordan, W., 56
Kaczmarz, 715

Kantorovich, 648
Krylov, A. N., 31
Kublanovskaya, 441
Lanczos, 658
Leontief, 593
Markov, 597
Minkowksi, 22
Napier, 587
Neumann,von, 28
Padé, 573
Perron, 594
Rayleigh, Lord, 464
Riccati, 450
Richardson, 617
Ritz, 744
Rutishauser, 491
Schur, 19
Sluis, van der, 64
Stiefel, 650
Sylvester, 1
Toeplitz, 184
Turing, 95
Voevodin, 668
Wielandt, 478
Wilkinson, 48
Young, 627

Bipartite graph, 340
Bisection method, 528–532
BLAS, 129–131

extended precision, 108
Block

algorithms, 132–135
angular form, 323–327
angular problem

QR algorithm, 327
bordered matrix, 325
CG method, 667–668
cyclic matrix, 595
diagonally dominant, 134
Lanczos process, 666–667
triangular form, 166–167, 340–341
tridiagonal matrix, 134, 702–705

Bordered matrix, 52, 237
Bordering method, 51
Butterfly relations, 193

C
Cancellation, 332
CANDECOMP, 322
Canonical correlation, 245, 569
Canonical form

Jordan, 438–441
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Kronecker, 550
Cauchy

interlacing theorem, 462
matrix, 196
systems, 196–199

Cauchy–Schwarz inequality, 23
Cayley

transform, 289, 444
Cayley transform, 565
Cayley–Hamilton theorem, 440
Centering data, 222
Ceres solver, 394
CG method, 650–658

block, 667–668
preconditioned, 689–738
rate of convergence, 656

CGS, see Classical Gram–Schmidt
Characteristic

equation, 29, 432
polynomial, 29, 30, 432

Chebyshev
acceleration, 639–643
polynomial, 639–642

complex, 674
semi-iterative method, 641

Cholesky
factorization, 220

backward error, 97, 100
band, 76–119
block incomplete, 704
complex, 73
incomplete, 697–699
sparse, 332
symbolic, 157

Cimmino’s method, 712
Circulant matrix, 706
Clique, 151, 158, 332
Cofactor, 16
Cofactor expansion, 16
Colon notation, 10
Column pivoting, 292, 297

in QR factorization, 292
Column space, see Range
Column subset selection, 299
Communication cost, 13
Commuting matrices, 3
Companion matrix, 437
Companion matrix form, 562
Complementarity condition, 173
Complete QR factorization, 302–304
Complex

arithmetic, 91
Cholesky factorization, 73

QR factorization, 258
symmetric matrix, 85

Componentwise perturbation bound, 68
Compressive sensing, 362
Computer memory, 130
Condition estimation, 101–105, 285–287

Hager’s, 103, 459
LINPACK’s, 102

Condition number, 60
effective, 230
general matrix, 230
least squares problem, 235
of matrix, 60

Conditional adjustment, 218
Conditional least squares problem, 218
Conjugate

residual method, 654, 663
Conjugate gradient, see CG
Conjugate residual, see CR
Consistentlyordered, 628
Constrained least squares, 342–359

linear inequality, 370–373
quadratic inequality, 348–351

Contraction product, 319
Convergence

asymptotic rate, 622
average rate, 622
conditions for, 621
of iterative method, 621–625
of matrix power series, 570
of vectors and matrices, 27

Convergent matrix, 621
Convex

function, 23, 32
set, 169

Cost vector, 168
Covariance matrix, 213, 214, 316, 374, 375

computation of, 222–224
CP decomposition, 322
CR, 654
Craig’s method, 722, 728–729
Cramer’s rule, 2, 17
Crawford number, 553
Crout’s algorithm, 50
CS decomposition, 558–560
Cuthill–McKee ordering, 156–157
Cycle in graph, 150
Cyclic Jacobi preconditioner, 738
Cyclic reduction, 123

D
Data least squares problem, 382
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Decomposition
block diagonal, 446
CS, 558–560
Schur, 441–446
SVD, 32

Defect matrix, 694, 704
Deflation, 750

of eigenpair, 442
of eigenproblem, 444, 478–480

Degenerate vertex, 170, 177
Denormalized number, 89
Derivative

of inverse, 349
of orthogonal projector, 403
of pseudoinverse, 233

Determinant, 16–19
product rule, 18
triangular matrix, 18

DFT matrix, 192
Diagonal scaling

optimal, 693
Diagonalizable matrix, 433
Diagonally dominant matrix, 126
Differential qd algorithm, 522
Direct elimination

method of, 369
Discrepancy principle, 347
Displacement equation, 197
Distance

between subspaces, 244, 487
to singularity, 63

Distribution function, 212
Divide and conquer

for SVD, 544–546
for tridiagonal eigenproblem, 540–544

Domain decomposition, 689
Dominant

eigenvalue, 30
invariant subspace, 487

Doolittle’s algorithm, 50
Downdating, 305
Dqds algorithm, 522
Drop tolerance, 697
Dual norm, 23
Dual vector, 23
Dulmage–Mendelsohn form, 340

E
Eckart–Young–Mirsky theorem, 239
Effective condition number, 230
Effectively well-conditioned, 343
Eigenvalue, 29, 432

algebraic multiplicity, 433
by spectrum slicing, 528–532
condition number, 457
defective, 434
geometric multiplicity, 434
large problems, 743–770
locking, 751
of Kronecker

product, 182
sum, 181

perturbation, 456–467
power method, 475–482
problem

generalized, 549–568, 763–764
symmetric 2 by 2, 533
unsymmetric, 670, 748

purging, 751
residual error bound, 464–470
subspace iteration, 486–489

Eigenvalue decomposition, 433
Eigenvector, 29, 432

perturbation, 456–467
Eisenstat’s trick, 691
EISPACK, 128, 602
Element growth, 46, 97
Elementary

elimination matrices, 54–56
orthogonal matrix, 246–254
orthogonal projector, 217, 270
unitary rotation, 547

Elimination graphs, 151
Elimination tree, 154–155
Elliptic norm, 24
Empty matrix, 559, 671
Energy norm, 646
Envelope

method, 124–125
of matrix, 125, 156

Equivalence transformation, 550
Equivalent orderings, 152
Error analysis, 88

backward, 88
forward, 88

Error bounds
a posteriori, 105, 106
backward, 105

Error estimate, 287
Errors-in-variable model, 381
Estimable parameter, 214
Euclidean norm, 7
Euler

angles, 252
expansion, 28, 709
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Exchange operator, 377
Expansion

Euler, 709
Neumann, 709

Expected value, 213
Exponential

fitting, 404–407
of matrix, 585–588

Extended precision, 107
Extended precision BLAS, 108

F
Factorization

skew-symmetric matrix, 86
Farkas’ Lemma, 171
Feasible

direction, 171
point, 168

basic, 173
region, 168

Field of values, 471
Fill, 147
Filled graph, 151
Filter factor, 346, 732
Fischer’s theorem, 237, 461
Fitting exponentials, 404–407
Flexible GMRES, 692
Floating-point

number, 89
Flop count

LDLT factorization, 73
band back substitution, 119
band LU, 118
Gauss–Jordan elimination, 57
Gaussian elimination, 43
Gram-Schmidt, 271
Hessenberg system, 121
Householder QR, 290
inverse matrix, 58
normal equations, 221
QR algorithm for SVD, 518
QR factorization, 257

banded, 329, 330
reduction to

bidiagonal form, 265
Hessenberg form, 499
tridiagonal form, 509

triangular system, 43
tridiagonal system, 122

Forest, 151
Forward substitution, 39

band, 118

Fourier matrix, 192
Fréchet derivative, 59
Frank matrix, 504
Fredholm, 342
Fredholm integral equation, 342
FSAI algorithm, 701
Fundamental subspaces, 34, 230

G
Gap in spectrum, 457, 459, 747
Gauss–Jordan elimination, 56–57, 177
Gauss–Markov’s theorem, 214
Gauss–Newton method, 396–400

rate of convergence, 398
Gauss–Seidel method, 617, 647
Gaussian elimination, 39–57

backward error, 96
compact schemes, 50–51
rounding error analysis, 95–101

GE, see Gaussian elimination
Generalized

eigenvalue problem, 549–568, 763–764
inverse, 231–232
QR factorization, 373
SVD, 560–561

Generalized cross-validation, 347
Generalized least squares, 374–377
Generalized LSQR, see GLSQR
Generalized normal equations, 374
Geometric fitting, 416
GEPP, see GE with partial pivoting
Geršgorin

disks, 453
theorem, 453–455

Givens, 250
Givens QR factorization, 259–260

banded problems, 328–331
Givens rotation, 250–254
Givens transformation

fast, 253
GKH, see Golub–Kahan bidiagonalization
GLSQR, 729–731
GMRES, 671–675

preconditioned, 691
preconditioning

flexible, 692
restarted, 675
stagnation, 674

Golub–Kahan bidiagonalization, 263–266,
723–724

Google, 475
GQR, see Generalized QR factorization
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Grade of vector, 434
Graded matrix, 505
Gram, 267
Gram–Schmidt

classical, 269
flop count, 271
modified, 270
orthogonalization, 267–282

Graph
bipartite, 340
clique in, 158, 332
connected, 150, 166
cycle in, 150
directed, 149
elimination, 151
filled, 151
labeled, 149
ordered, 149
path in, 150
planar, 161
representation of matrix, 151–153
separator, 159
strongly connected, 150
undirected, 150

Grassmann manifold, 489
Group inverse, 599
Growth ratio, 46, 126
GSVD, see Generalized SVD
Guard digits, 90

H
H-matrix, 697
Hölder inequality, 23
Hadamard product, 6
Hadamard’s inequality, 87, 289
Hall property, 333
Hamiltonian matrix, 564
Hankel

matrix, 184
Harmonic Ritz value, 746, 754–755
Hermitian

definite pair, 553
matrix, 8, 71
singular systems, 666

Hessenberg
form

reduction to, 449, 497–499
matrix, 120

unreduced, 499
Hessian matrix, 395
Hierarchical memory, 130
Hilbert matrix, 61, 74, 196

condition of, 61
HOSVD, 323
Hotelling, 478
Householder

reflector, 246–250
vector, 246

Householder QR
banded matrix, 330

Hyperbolic rotation, 378
Hypermatrix, 318–323

unfolding, 320

I
Identity matrix, 4
Ill-conditioned

artificial, 70, 367
polynomial roots, 437–438

Ill-posed problem, 342–348, 732
ILU, see Incomplete LU factorization
ILUT factorization, 697
IMGS, see Incomplete MGS
Implicit Q theorem, 500, 510
Implicit shift, 500
Incomplete

block factorization, 702–705
Cholesky factorization, 697–699
LU factorization, 694–697

Incomplete QR decomposition, 738–740
Indefinite least squares, 377–381
Inertia

of matrix, 80–82
Initial basis, 176
Inner

inverse, 231
iteration, 704
product

accurate, 108
error analysis, 92
standard, 7

Instability
irrelevant, 499

Interlacing theorem, 462
INTLAB, 113
Invariant subspace, 436

perturbation of, 458–461
simple, 445

Inverse
approximate, 28
generalized, 231–232
group, 599
inner, 231
iteration, 480–484
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shifted, 481
left, 245
matrix, 4, 58–59, 578

product form of, 57
sparse, 700–702

of band matrix, 120, 189–190
outer, 231

IRLS, see Iteratively reweighted least
squares

Irreducible matrix, 11, 121
Iteration matrix, 619

Gauss–Seidel, 619
Jacobi, 619
SOR, 627

Iterative method
block, 620, 633–634
error reducing, 714
least squares, 709–718
preconditioned, 688–708
residual reducing, 714
rounding errors in, 634–637
semiconvergent, 733
symmetrizable, 633
termination of, 634–638
Toeplitz system, 705–708

Iterative refinement
error bound, 110
normal equations, 226
of solutions, 107–110
with QR factorization, 288

Iterative regularization, 732–735
Iteratively reweighted least squares, 407–

410

J
J -orthogonal, 377
Jacobi’s identity, 569
Jacobi’s method, 532–536, 617, 713

classical, 534
cyclic, 535
for SVD, 536–540
sweep, 535
threshold, 535

Jacobi–Davidson’s method, 769–770
Jacobian matrix, 395
Jordan canonical form, 438–441
Jordan–Wielandt matrix, 514, 724, 764

K
Kaczmarz’s

method, 715, 717
Kahan matrix , 296

Kantorovich inequality, 648
Kernel, see null space
Krawczyck’s method, 113
Kronecker, 181

canonical form, 550
least squares problem, 317–318
product, 181, 182
sum, 181, 616, 643
system, 181–184

Krylov
matrix, 31
sequence, 31
subspace, 31–32, 354, 748

method, 650, 718–729

L
L-curve, 347
Lagrange multipliers, 218
Lanczos, 658

bi-orthogonalization, 675–677, 686
bi-orthogonalization process, 677
bidiagonalization, 764
block process, 666–667
decomposition, 659, 755
process, 658–662

loss of orthogonality, 758
reorthogonalization, 758–760
thick-restart, 756

Lanczos-CG method, 660–662
Landweber’s method, 711–712, 732
LAPACK, 131, 283, 373, 546, 561, 602
Laplace expansion, 16
Laplace’s equation, 143, 615, 656
LAR, see least angle regression
Latent root regression, 381
Laub-trick method, 567
Least squares

banded problem, 327–331
basic solution, 296
characterization of solution, 216–220
constrained, 342–359
indefinite, 377–381
linear equality constrained, 368–370
minimum-norm solution, 229
principle of, 211
problem, 212
solution, 212
total, 381–388
weighted, 364–368

Least squares fitting
of circles, 413–418
of ellipses, 413–418
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Least squares problem
indefinite, 379
Kronecker, 317–318
nonlinear, 394–413
separable, 402–407
stiff, 365

Left-preconditioned system, 688
Leontief

input-output model, 593
Levenberg–Marquardt method, 399
Levinson–Durbin algorithm, 185
Linear inequality constraints, 370–373
Linear model

general univariate, 374
standard, 213

Linear optimization
standard form, 172

Linear programming, 168
Linear system

consistent, 41
ill-scaling, 67
overdetermined, 42
scaling, 64–68
underdetermined, 41

Linearly independent vectors, 6
LINPACK, 102, 128, 602
Local minimum, 395
Logarithm of matrix, 588–590
Logarithmic norm, 585
Logistic function, 409
Logistic regression, 409–410
Logit function, 410
Look-ahead procedure, 679
LSMR, 729
LSQI, see Quadratic inequality constraint

standard case of, 346
LSQR, 723–728
LU factorization, 44–46, 367

Doolittle’s algorithm, 50, 51
incomplete, 694–697
of rectangular matrix, 53
theorem, 46

Lyapunov’s equation, 184, 450

M
M-matrix, 624, 697
Markov

chain, 597–601
Matrix

adjoint, 8
anti-triangular, 566
approximation, 391

arrowhead, 148
band, 114–127
block, 10
block-tridiagonal, 132–134, 702–705
bordered, 52, 237, 325
complex symmetric, 72, 85
congruent, 80
consistently ordered, 628
defective, 434
derogatory, 439
diagonally dominant, 126–127, 134, 623
eigenvalue of, 29, 432
eigenvector of, 29, 432
elementary divisors, 440
elementary elimination, 54
elementary orthogonal, 246
empty, 671
exponential, 585–588
function, 570–582

primary, 571
graded, 505
Hamiltonian, 564
Hankel, 184
Hermitian, 8, 71
Hessenberg, 120
idempotent, 216
identity, 4
ill-conditioned, 60, 61
indefinite, 71
inverse, 4, 28, 58–59
irreducible, 11, 121, 623
logarithm, 588–590
multiplication, 13–14

error bound, 93
Strassen’s algorithm, 137

non-negative irreducible, 594
nonnegative, 5, 593–597
normal, 8, 442
orthogonal, 8
pencil, 549

congruent, 550
equivalent, 550
regular, 549
singular, 549

permutation of, 15
persymmetric, 199
positive definite, 71–75
primitive, 595
property A, 627
quasi-triangular, 445
rank-deficient, 6
Rayleigh quotient, 468, 470
reducible, 11, 151, 166
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row stochastic, 598
section of, 463
self-adjoint, 9
semidefinite, 71
semiseparable, 189–191
sign function, 578–582
skew-Hermitian, 8
skew-symmetric, 4, 86, 524
skinny, 271
sparse, 142, 615
square root, 576–577
stable, 474
structured, 563–568
symmetric, 4
symplectic, 564–565
totally positive, 99
trace, 30
trapezoidal, 41, 49
tridiagonal, 115
two-cyclic, 515, 743
unitary, 8, 36
unreduced, 353, 499, 510
variable-band, 124
well-conditioned, 60

Matrix approximation, 237–240
Maximum likelihood method, 410
Maximum transversal, 167
Method

of steepest descent, 648–650
MGS, see Modified Gram–Schmidt
MGS factorization

backward stability, 275
Minimal polynomial, 434, 440

of vector, 434
Minimal residual algorithm, see MINRES
Minimax characterization

of eigenvalues, 461
of singular values, 237

Minimum degree ordering, 157–159
Minimum distance

between matrices, 239
Minimum-norm solution, 218, 282
Minor, 16
MINRES, 664–666
Modified Gram–Schmidt, 270
Modified QR factorizations, 304–311
Moore–Penrose inverse, 230
MRRR algorithm, 489
Multifrontal method, 161–162, 337–339

for QR factorization
data management, 339

update matrix, 338
Multirank of tensor, 321

N
Nested dissection, 159–161
Netlib, 131, 388, 771
Neumann expansion, 28, 709
Newton’s interpolation formula

for matrix functions, 571
NIPALS algorithm, 355
No-cancellation assumption, 148, 152
Node(s)

adjacent, 150
connected, 150
degree, 150
indistinguishable, 159

Nonlinear least squares, 394–413
Nonnegative least squares, 371
Nonnegative matrix, 5, 593–597
Norm

compatible, 25
dual, 23
Frobenius, 26
Hölder, 22
logarithmic, 585
matrix, 24
operator, 25
scaled, 24
Schatten, 35
spectral, 26
submultiplicative, 25
subordinate, 25
unitarily invariant, 26
vector, 22
weighted, 24

Normal
matrix, 442

Normal curvature matrix, 398
Normal equations

factored form, 710
generalized, 376
iterative refinement, 226
method of, 220–222
modified, 218
of second kind, 710, 714
scaling of, 225

Normality
departure from, 470

Normalized residuals, 223
Nuclear norm, 35
Null space, 34

method, 369, 376–377, 741
numerical, 292

Numerical
abscissa, 471, 585
cancellation, 332
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null space, 292
radius, 471, 635
range, 471–474, 553
rank, 237, 291–292

O
Oblique projection method, 746
Odd-even

permutation, 15
reduction, 123

Oettli–Prager error bounds, 106, 110
One-sided Jacobi SVD, 536–538
One-way dissection method, 160
Operation count, 13
Ordering

Markowitz, 162
minimum degree, 157–159
nested dissection, 159–161
reverse Cuthill–McKee, 156–157

Orthogonal, 7
basis problem, 276
complement, 8
distance, 384, 411
iteration, 487, 768
matrix, 8

eigenvalues of, 526
projection, 230
projector, 216
regression, 388–391

Orthogonality
loss of, 274–278

Orthonormal, 7
Outer

inverse, 231
Outer product, 319
Overdetermined, 42

P
Packed storage, 78
Padé approximation, 580–581, 584, 587
Padé table, 573
Paige’s method, 374–375
PARAFAC, 322
Parlett’s recurrence, 574
Partial

least squares, 351–359
ordering, 5
pivoting, 45

Partitioned
algorithms, 132–135
matrix, 9

Path, 150
PCG, see Preconditioned CG
PCGLS, see Preconditioned CGLS
PCR, see Principal components regression
Penrose conditions, 230
Perfect ordering, 152
Permutation, 14–16

bit-reversal, 194
odd-even, 15, 515
perfect shuffle, 195
sign of, 16

Perron
eigenvalue, 594
eigenvector, 594
projector, 595

Perron–Frobenius theorem, 594, 595
Personnel-assignment problem, 174
Perturbation

componentwise, 69, 234
of eigenvalue, 456–467
of eigenvector, 456–467
of invariant subspaces, 458–461
of least squares solution, 233–237
of linear system, 59–70
of pseudoinverse, 232–233

Peters–Wilkinson method, 367
Petrov–Galerkin conditions, 644, 746
Picard condition, 343
Pivot, 40

threshold, 163
Pivoting

Bunch–Kaufman, 85
for sparsity, 162–166
partial, 45
rook, 48

Planar graph, 161
Plane rotation, 250–254

hyperbolic, 378
unitary, 252

PLS, see Partial least squares
Polar decomposition, 239–240, 391, 582–

584, 592
optimality, 240

Polynomial
acceleration, 639
restarting, 750

Positive definite matrix, 8
Positive semidefinite matrix, 8, 78–80
Postordering, 152
Power method, 475–482
Preconditioned

CG, 690
CGLS, 735
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Preconditioner
incomplete MGS, 738
incomplete QR decompositions, 738–
740

Preconditioning, 688–708
for saddle point system, 741–742
Schur complement, 703

Primary matrix function, 571
Primitive matrix, 595
Principal

angles, 243
radius of curvature, 398
vectors, 243, 434

Principal components regression, 345
Principal minor, 16
Procrustes problem, 391–393
Projection, 216–217

method
eigenvalue problem, 744–762
linear systems, 645–723
oblique, 746

Projector
orthogonal, 216
unitary, 216

Prony’s method, 405–407
Property A, 627, 703
Pseudoinverse, 217, 229

Bjerhammar, 245
derivative, 233
Kronecker product, 317
Penrose conditions, 230
solution, 217, 229

Pseudospectrum, 472–474
PSVD algorithm, 519
Pythagorean theorem, 216

Q
QLP factorization, 538
QMR, 679–681
QR algorithm, 491–519

aggressive deflation, 507
explicit-shift, 500
for SVD, 514–519
Hessenberg matrix, 500–507
implicit shift, 500
multishift, 506
perfect shifts, 513
rational, 513
Rayleigh quotient shift, 502
symmetric tridiagonal matrix, 510–513
unitary, 526
Wilkinson shift, 512

QR factorization, 254, 268
and Cholesky factorization, 255
appending a column, 308–310
appending a row, 306–310
backward stability, 258, 261
complete, 302–304
complex, 258
deleting a column, 307–308
deleting a row, 310–311
flop count, 257
generalized, 373
hyperbolic, 379
Kronecker product, 318
modified , 304–311
multifrontal, 337–339
pivoted, 292, 312
rank-one change, 306–307
rank-revealing, 292–297
recursive, 284
row ordering for, 333, 335
row pivoting, 366
row sequential, 334–337
row sorting, 366

QR–SVD algorithm
zero-shift, 515

Quadratic inequality constraints, 348–351
Quasi-minimal residual method, see QMR
Quasi-Newton

condition, 401
method, 401–402

QZ algorithm, 555

R
Radius of convergence, 570
Range, 34
Rank, 6

numerical, 291–292
of tensor, 321
structural, 148, 167

Rational Krylov method, 764
Rayleigh quotient, 464–470

iteration, 484–486, 488–489, 557–558
matrix, 468, 470, 744, 753
singular value, 467

Rayleigh–Ritz procedure, 744–747
Red-black ordering, 628
Reducible matrix, 11, 121, 151, 166
Reduction to

Hessenberg form, 497–499
standard form, 552–553
tridiagonal form, 508–510

Regression
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least angle, 360–362
logistic, 409–410
orthogonal distance, 388–391, 411–413
principal components, 345
robust, 408–409
stepwise, 311–315

Regular splitting, 625, 697
Regularization

filter factor, 346, 732
filter function, 732
hybrid method, 734
iterated, 733
Krylov subspace methods, 733–735
Landweber, 732
semiconvergence, 733
Tikhonov, 345

Regularization methods, 343–348
Relaxation methods, 616
Relaxation parameter, 626
Reorthogonalization, 276, 670, 758, 760

full, 759
selective, 759, 766

Residual
normalized, 223
polynomial, 638
reducing method, 714

Residual polynomial, 639
Resolvent, 472
Riccati equation, 450–451

algebraic, 450
Newton’s method, 452

Richardson’s method, 616, 711
Ridge estimate, 345
Ridge regression, 345
Right-preconditioned system, 688
Rigid body movements, 392, 393
Ritz value, 745, 748

harmonic, 666, 746, 754–755
Ritz vector, 745, 748

refined, 746
Robust regression, 408–409
Rook pivoting, 48
Rotation

three dimensional, 252
Rounding error

floating-point, 94
Rounding error analysis, 92–94
Row bandwidth, 327
Row stochastic matrix, 598
Row-action methods, 717
RQI, see Rayleigh quotient iteration

S
Saddle point

matrix, 81
system, 218, 375–377, 740–742

preconditioner, 741–742
Scaled total least squares, 382
Scaling

invariance under, 66
least squares problem, 236
linear system, 64–68
normal equations, 225

Schatten norms, 35
Schmidt, 267
Schulz iteration, 578, 591
Schur

complement, 19, 227, 369, 377, 378
decomposition, 441–446

generalized, 551
real, 445, 480
reordering, 444

vectors, 442
Schur–Parlett method, 574, 590
Section of matrix, 463
Secular equation, 348, 540, 543
Self-adjoint matrix, 9
Semi-iterative method

Chebyshev, 641
Semiconvergence, 733
Seminormal equations, 335
Semiorthogonality, 759
Semiseparable matrix, 189–191

generator of, 190
sep(A, B), see separation of matrices
Separable least squares problem, 402–407
Separation of matrices, 459–461
Sherman–Morrison formula, 21
Shift matrix, 706
Shift of origin, 477
Shift-and-invert iteration, 481, 556
Sign function

of matrix, 578–582
Signature matrix, 377
Similarity transformation, 435
Simplex, 170
Simplex method, 168–179

cycling, 177
optimality criterion, 175
pricing, 175
reduced costs, 175
steepest edge strategy, 177
textbook strategy, 176

Simultaneous iteration, 767–768
Singular value, 32
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by spectrum slicing, 531–532
decomposition, 32–35, 229–240
relative gap, 520

Singular vector, 32
Skew-Hermitian matrix, 8
Skew-symmetric

eigenproblem, 523–525
matrix, 4, 524, 525

factorization, 86
Skinny matrix, 271
Sliding window method, 305
SOR method, 625–631

optimal relaxation parameter, 629
SPAI, 701
Sparse matrix, 615

block angular form, 323–327
block triangular form, 166–167, 340–
341

Spectral
abscissa, 30, 472, 585
norm, 25
projector, 433, 458
radius, 30, 621
transformation, 481, 763–770

Spectrum slicing, 528–532
Split preconditioner, 689
Splitting

regular, 625, 697
standard, 619

Square root of matrix, 576–577
SSOR method, 631–634
Stability

backward, 88
forward, 88
mixed forward-backward, 88

Stable matrix, 474
Standard basis, 6
Stationary

iterative method, 618–625
point, 395

Steepest descent method, 648
Stepwise regression, 311–315
Stiefel manifold, 323, 489
Stieltjes matrix, 625, 698
Stiff

least squares problem, 365
Storage scheme

compressed form, 146
dynamic, 149
static, 149

Strassen’s algorithm, 137
Structural

cancellation, 332

rank, 148, 167
Structural rank, 148
Structure

of Cholesky factor, 333
prediction of, 151–155, 332–337

Structured matrix, 563–568
Sturm sequence, 529
Subgraph, 149
Submatrix, 9

principal, 9
Subnormal number, 89
Subspace

dimension, 6
invariant, 436

Successive overrelaxation method, see SOR
method

Superlinear convergence, 657
SuperLU, 165
Supernode, 159
SVD, see Singular value decomposition

and pseudoinverse, 229–231
compact form, 33
computation of, 514–519
generalized, 560–561
of Kronecker product, 318
of tensor, 323
of two by two, 539

SVD–QR algorithm
zero shift, 521

Sweep method, 52
Sylvester

criterion, 75
equation, 197, 447–451, 575, 581

generalized, 449
law of inertia, 81, 529, 558

Symmetric
gauge functions, 35
indefinite matrix, 82–87
matrix, 4
pivoting, 79

Symmetrizable iterative method, 633
SYMMLQ, 663–666
Symplectic matrix, 564–565

T
Tensor, 318–323
Tensor rank, 321
Tensor SVD, 323
TFQMR, 684–685
Thick-restart

Lanczos process, 756
Threshold pivoting, 163
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Tikhonov, 345
method iterated, 733
regularization, 345

TLS, see Total least squares
Toeplitz

circulant preconditioner, 707–708, 739
iterative solver, 705–708
least squares, 739
matrix, 184

fast multiplication, 707
upper triangular, 363

preconditioner, 705–708
system, 184–187

Topological ordering, 152
Total least squares, 381–388

by SVD, 382–384
conditioning, 384
generalized, 386–388
mixed, 387
multidimensional, 386, 387
scaled, 382

Totally positive matrix, 99, 189, 196
Transformation

congruence, 80
similarity, 435

Transportation problem, 174
Transpose (of matrix), 3
Transposition, 15

matrix, 15, 55
Transversal

maximum, 167
Trapezoidal matrix, 41, 49
Tree, 151

elimination, 154–155
postordered, 162

Treppeniteration, 487
Triangular

factorization, see LU factorization
matrix, 5, 38
systems of equations, 38–39

Tridiagonal matrix, 115, 474
periodic, 128
reduction to, 508–510
symmetric indefinite, 122

Truncated SVD, 343–345
Trust region method, 399–400
TSVD, see truncated SVD
Two-cyclic matrix, 515, 737, 738, 743
Two-level method, 220

Two-sided Jacobi SVD, 538–540

U
ULV decomposition, 301–304
Unbiased estimate, 214, 222
Under-determined system, 41, 218

minimum-norm solution, 263, 281
Unitary matrix, 8

eigenvalues, 525–526
QR algorithm, 526

Unreduced matrix, 353, 499, 510
Updating, 305

QR factorization, 306–310
Uzawa’s method, 740

V
Vandermonde matrix, 187–189, 192
Variable projection algorithm, 403
Variance, 213
Vector

bi-orthogonal, 676
grade of, 32
orthogonal, 7
orthonormal, 7
principal, 434

Vector norm
absolute, 27
monotone, 27

Vertex
degenerate, 177
of polyhedron, 173

Volterra integral equation, 363

W
Wedderburn rank reduction, 36
Wedin’s identity, 233
Weighted least squares, 364–368

condition number, 365
Wielandt–Hoffman theorem, 463
Wilkinson

diagram, 147, 259
matrix, 286
shift, 512

Wilson matrix, 591
Woodbury formula, 20
Wrapping effect, 111
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