




Solutions Manual to Accompany

AN INTRODUCTION TO
NUMERICAL METHODS
AND ANALYSIS

epperson2 solutions-fm_fitzmmaurice-fm.qxd  7/12/2013  1:30 PM  Page i



epperson2 solutions-fm_fitzmmaurice-fm.qxd  7/12/2013  1:30 PM  Page ii



Solutions Manual to Accompany

AN INTRODUCTION TO
NUMERICAL METHODS
AND ANALYSIS
Second Edition

JAMES F. EPPERSON 
Mathematical Reviews

epperson2 solutions-fm_fitzmmaurice-fm.qxd  7/12/2013  1:30 PM  Page iii



Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved. 

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited
to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic formats. For more information about Wiley products, visit
our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Epperson, James F., author.
An introduction to numerical methods and analysis / James F. Epperson, Mathematical Reviews. —

Second edition.
pages cm

Includes bibliographical references and index.
ISBN 978-1-118-36759-9 (hardback)

1.  Numerical analysis.  I. Title. 
QA297.E568 2013
518—dc23                                                                                                                         2013013979

10 9 8 7 6 5 4 3 2 1

epperson2 solutions-fm_fitzmmaurice-fm.qxd  7/12/2013  1:30 PM  Page iv



CONTENTS

1 Introductory Concepts and Calculus Review 1

1.1 Basic Tools of Calculus 1
1.2 Error, Approximate Equality, and Asymptotic Order Notation 12
1.3 A Primer on Computer Arithmetic 15
1.4 A Word on Computer Languages and Software 19
1.5 Simple Approximations 19
1.6 Application: Approximating the Natural Logarithm 22
1.7 A Brief History of Computing 25

2 A Survey of Simple Methods and Tools 27

2.1 Horner’s Rule and Nested Multiplication 27
2.2 Difference Approximations to the Derivative 30
2.3 Application: Euler’s Method for Initial Value Problems 40
2.4 Linear Interpolation 44
2.5 Application — The Trapezoid Rule 48
2.6 Solution of Tridiagonal Linear Systems 56
2.7 Application: Simple Two-Point Boundary Value Problems 61

v



vi CONTENTS

3 Root-Finding 65

3.1 The Bisection Method 65
3.2 Newton’s Method: Derivation and Examples 69
3.3 How to Stop Newton’s Method 73
3.4 Application: Division Using Newton’s Method 77
3.5 The Newton Error Formula 81
3.6 Newton’s Method: Theory and Convergence 84
3.7 Application: Computation of the Square Root 88
3.8 The Secant Method: Derivation and Examples 92
3.9 Fixed Point Iteration 96
3.10 Roots of Polynomials (Part 1) 99
3.11 Special Topics in Root-finding Methods 102
3.12 Very High-order Methods and the Efficiency Index 114

4 Interpolation and Approximation 117

4.1 Lagrange Interpolation 117
4.2 Newton Interpolation and Divided Differences 120
4.3 Interpolation Error 132
4.4 Application: Muller’s Method and Inverse Quadratic

Interpolation 139
4.5 Application: More Approximations to the Derivative 141
4.6 Hermite Interpolation 142
4.7 Piecewise Polynomial Interpolation 145
4.8 An Introduction to Splines 149
4.9 Application: Solution of Boundary Value Problems 156
4.10 Tension Splines 159
4.11 Least Squares Concepts in Approximation 160
4.12 Advanced Topics in Interpolation Error 166

5 Numerical Integration 171

5.1 A Review of the Definite Integral 171
5.2 Improving the Trapezoid Rule 173
5.3 Simpson’s Rule and Degree of Precision 177
5.4 The Midpoint Rule 187
5.5 Application: Stirling’s Formula 190
5.6 Gaussian Quadrature 192
5.7 Extrapolation Methods 199
5.8 Special Topics in Numerical Integration 203



CONTENTS vii

6 Numerical Methods for Ordinary Differential Equations 211

6.1 The Initial Value Problem — Background 211
6.2 Euler’s Method 213
6.3 Analysis of Euler’s Method 216
6.4 Variants of Euler’s Method 217
6.5 Single Step Methods — Runge-Kutta 225
6.6 Multi-step Methods 228
6.7 Stability Issues 234
6.8 Application to Systems of Equations 235
6.9 Adaptive Solvers 240
6.10 Boundary Value Problems 243

7 Numerical Methods for the Solution of Systems of Equations 247

7.1 Linear Algebra Review 247
7.2 Linear Systems and Gaussian Elimination 248
7.3 Operation Counts 254
7.4 The LU Factorization 256
7.5 Perturbation, Conditioning and Stability 262
7.6 SPD Matrices and the Cholesky Decomposition 269
7.7 Iterative Methods for Linear Systems – A Brief Survey 271
7.8 Nonlinear Systems: Newton’s Method and Related Ideas 273
7.9 Application: Numerical Solution of Nonlinear BVP’s 275

8 Approximate Solution of the Algebraic Eigenvalue Problem 277

8.1 Eigenvalue Review 277
8.2 Reduction to Hessenberg Form 280
8.3 Power Methods 281
8.4 An Overview of the QR Iteration 284
8.5 Application: Roots of Polynomials, II 288

9 A Survey of Numerical Methods
for Partial Differential Equations 289

9.1 Difference Methods for the Diffusion Equation 289
9.2 Finite Element Methods for the Diffusion Equation 293
9.3 Difference Methods for Poisson Equations 294



viii CONTENTS

10 An Introduction to Spectral Methods 299

10.1 Spectral Methods for Two-Point Boundary Value Problems 299
10.2 Spectral Methods for Time-Dependent Problems 301
10.3 Clenshaw-Curtis Quadrature 303



Preface to the Solutions Manual

This manual is written for instructors, not students. It includes worked solutions for
many (roughly 75%) of the problems in the text. For the computational exercises I
have given the output generated by my program, or sometimes a program listing. Most
of the programming was done in MATLAB, some in FORTRAN. (The author is well
aware that FORTRAN is archaic, but there is a lot of “legacy code" in FORTRAN,
and the author believes there is value in learning a new language, even an archaic
one.) When the text has a series of exercises that are obviously similar and have
similar solutions, then sometimes only one of these problems has a worked solution
included. When computational results are asked for a series of similar functions or
problems, only a subset of solutions are reported, largely for the sake of brevity. Some
exercises that simply ask the student to perform a straight-forward computation are
skipped. Exercises that repeat the same computation but with a different method are
also often skipped, as are exercises that ask the student to “verify” a straight-forward
computation.

Some of the exercises were designed to be open-ended and almost “essay-like.”
For these exercises, the only solution typically provided is a short hint or brief outline
of the kind of discussion anticipated by the author.

In many exercises the student needs to construct an upper bound on a derivative
of some function in order to determine how small a parameter has to be to achieve a

ix
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desired level of accuracy. For many of the solutions this was done using a computer
algebra package and the details are not given.

Students who acquire a copy of this manual in order to obtain worked solutions to
homework problems should be aware that none of the solutions are given in enough
detail to earn full credit from an instructor.

The author freely admits the potential for error in any of these solutions, especially
since many of the exercises were modified after the final version of the text was
submitted to the publisher and because the ordering of the exercises was changed
from the Revised Edition to the Second Edition. While we tried to make all the
appropriate corrections, the possibility of error is still present, and undoubtedly the
author’s responsibility.

Because much of the manual was constructed by doing “copy-and-paste” from
the files for the text, the enumeration of many tables and figures will be different. I
have tried to note what the number is in the text, but certainly may have missed some
instances.

Suggestions for new exercises and corrections to these solutions are very welcome.
Contact the author at jfe@ams.org or jfepperson@gmail.com.

Differences from the text The text itself went through a copy-editing process
after this manual was completed. As was to be expected, the wording of several
problems was slightly changed. None of these changes should affect the problem in
terms of what is expected of students; the vast majority of the changes were to replace
“previous problem” (a bad habit of mine) with “Problem X.Y” (which I should have
done on my own, in the first place). Some puncuation was also changed. The point of
adding this note is to explain the textual differences which might be noticed between
the text and this manual. If something needs clarification, please contact me at the
above email.



CHAPTER 1

INTRODUCTORY CONCEPTS AND
CALCULUS REVIEW

1.1 BASIC TOOLS OF CALCULUS

Exercises:

1. Show that the third order Taylor polynomial for f(x) = (x + 1)−1, about
x0 = 0, is

p3(x) = 1− x+ x2 − x3.

Solution: We have f(0) = 1 and

f ′(x) = − 1

(x+ 1)2
, f ′′(x) =

2

(x+ 1)3
, f ′′′(x) = − 6

(x+ 1)4
,

so that f ′(0) = −1, f ′′(0) = 2, f ′′′ = −6. Therefore

p3(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) +

1

6
x3f ′′′(x)

= 1 + x(−1) +
1

2
x2(2) +

1

6
x3(−6)

= 1− x+ x2 − x3.
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2 INTRODUCTORY CONCEPTS AND CALCULUS REVIEW

2. What is the third order Taylor polynomial for f(x) =
√
x+ 1, about x0 = 0?

Solution: We have f(x0) = 1 and

f ′(x) =
1

2(x+ 1)1/2
, f ′′(x) = − 1

4(x+ 1)3/2
, f ′′′(x) =

3

8(x+ 1)5/2
,

so that f ′(0) = 1/2, f ′′(0) = −1/4, f ′′′ = 3/8. Therefore

p3(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) +

1

6
x3f ′′′(x)

= 1 + x(1/2) +
1

2
x2(−1/4) +

1

6
x3(3/8)

= 1− (1/2)x− (1/8)x2 + (1/16)x3.

3. What is the sixth order Taylor polynomial for f(x) =
√

1 + x2, using x0 = 0?
Hint: Consider the previous problem.

4. Given that

R(x) =
|x|6

6!
eξ

for x ∈ [−1, 1], where ξ is between x and 0, find an upper bound for |R|, valid
for all x ∈ [−1, 1], that is independent of x and ξ.

5. Repeat the above, but this time require that the upper bound be valid only for
all x ∈ [− 1

2 ,
1
2 ].

Solution: The only significant difference is the introduction of a factor of 26

in the denominator:

|R(x)| ≤
√
e

26 × 720
= 3.6× 10−5.

6. Given that

R(x) =
|x|4

4!

(
−1

1 + ξ

)
for x ∈ [− 1

2 ,
1
2 ], where ξ is between x and 0, find an upper bound for |R|, valid

for all x ∈ [− 1
2 ,

1
2 ], that is independent of x and ξ.

7. Use a Taylor polynomial to find an approximate value for
√
e that is accurate

to within 10−3.

Solution: There’s two ways to do this. We can approximate f(x) = ex and
use x = 1/2, or we can approximate g(x) =

√
x and use x = e. In addition,

we can be conventional and take x0 = 0, or we can take x0 6= 0 in order to
speed convergence.



BASIC TOOLS OF CALCULUS 3

The most straightforward approach (in my opinion) is to use a Taylor polyno-
mial for ex about x0 = 0. The remainder after k terms is

Rk(x) =
xk+1

(k + 1)!
eξ.

We quickly have that

|Rk(x)| ≤ e1/2

2k+1(k + 1)!

and a little playing with a calculator shows that

|R3(x)| ≤ e1/2

16× 24
= 0.0043

but

|R4(x)| ≤ e1/2

32× 120
= 4.3× 10−4.

So we would use

e1/2 ≈ 1 +
1

2
+

1

2

(
1

2

)2

+
1

6

(
1

2

)3

+
1

24

(
1

2

)4

= 1.6484375.

To fourteen digits,
√
e = 1.64872127070013, and the error is 2.84 × 10−4,

much smaller than required.

8. What is the fourth order Taylor polynomial for f(x) = 1/(x + 1), about
x0 = 0?

Solution: We have f(0) = 1 and

f ′(x) = − 1

(x+ 1)2
, f ′′(x) =

2

(x+ 1)3
, f ′′′(x) = − 6

(x+ 1)4
, f ′′′′(x) =

24

(x+ 1)5

so that f ′(0) = −1, f ′′(0) = 2, f ′′′ = −6, f ′′′′(0) = 24. Thus

p4(x) = 1+x(−1)+
1

2
x2(2)+

1

6
x3(−6)+

1

24
x4(24) = 1−x+x2−x3+x4.

9. What is the fourth order Taylor polynomial for f(x) = 1/x, about x0 = 1?

10. Find the Taylor polynomial of third order for sinx, using:

(a) x0 = π/6.

Solution: We have

f(x0) =
1

2
, f ′(x0) =

√
3

2
, f ′′(x0) = −1

2
, f ′′′(x0) = −

√
3

2
,



4 INTRODUCTORY CONCEPTS AND CALCULUS REVIEW

so

p3(x) =
1

2
+

√
3

2

(
x− π

6

)
− 1

4

(
x− π

6

)2
−
√

3

12

(
x− π

6

)3
.

(b) x0 = π/4;

(c) x0 = π/2;

11. For each function below construct the third-order Taylor polynomial approx-
imation, using x0 = 0, and then estimate the error by computing an upper
bound on the remainder, over the given interval.

(a) f(x) = e−x, x ∈ [0, 1];

(b) f(x) = ln(1 + x), x ∈ [−1, 1];

(c) f(x) = sinx, x ∈ [0, π];

(d) f(x) = ln(1 + x), x ∈ [−1/2, 1/2];

(e) f(x) = 1/(x+ 1), x ∈ [−1/2, 1/2].

Solution:

(a) The polynomial is

p3(x) = 1− x+
1

2
x2 − 1

6
x3,

with remainder
R3(x) =

1

24
x4e−ξ.

This can be bounded above, for all x ∈ [0, 1], by

|R3(x)| ≤ 1

24
e

(b) The polynomial is

p3(x) = x− 1

2
x2 +

1

3
x3,

with remainder
R3(x) =

1

4
x4

1

(1 + ξ)4

We can’t bound this for all x ∈ [−1, 1], because of the potential division
by zero.

(c) The polynomial is

p3(x) = x− 1

6
x3
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with remainder

R3(x) =
1

120
x5 cos ξ.

This can be bounded above, for all x ∈ [0, π], by

|R3(x)| ≤ π5

120
.

(d) The polynomial is the same as in (b), of course,

p3(x) = x− 1

2
x2 +

1

3
x3,

with remainder

R3(x) =
1

4
x4

1

(1 + ξ)4

For all x ∈ [−1/2, 1/2] this can be bounded by

R3(x) ≤ 1

4
(1/24)

1

(1− (1/2))4
=

1

4
.

(e) The polynomial is

p3(x) = 1− x+ x2 − x3,

with remainder

R3(x) = x4
1

(1 + ξ)5

This can be bounded above, for all x ∈ [−1/2, 1/2], by

|R3(x)| ≤ (1/2)4
1

(1− 1/2)5
= 2.

Obviously, this is not an especialy good approximation.

12. Construct a Taylor polynomial approximation that is accurate to within 10−3,
over the indicated interval, for each of the following functions, using x0 = 0.

(a) f(x) = sinx, x ∈ [0, π];

(b) f(x) = e−x, x ∈ [0, 1];

(c) f(x) = ln(1 + x), x ∈ [−1/2, 1/2];

(d) f(x) = 1/(x+ 1), x ∈ [−1/2, 1/2];

(e) f(x) = ln(1 + x), x ∈ [−1, 1].
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Solution:

(a) The remainder here is

Rn(x) =
(−1)n+1

(2n+ 1)!
x2n+1 cos c,

for c ∈ [0, π]. Therefore, we have

|Rn(x)| ≤ 1

(2n+ 1)!
|π|2n+1 ≤ π2n+1

(2n+ 1)!
.

Simple manipulations with a calculator then show that

max
x∈[0,π]

|R6(x)| ≤ .4663028067e− 3

but
max
x∈[0,π]

|R5(x)| ≤ .7370430958e− 2.

Therefore the desired Taylor polynomial is

p11(x) = 1− x+
1

6
x3 − 1

120
x5 − 1

7!
x7 +

1

9!
x9 +

1

11!
x11.

(b) The remainder here is

Rn(x) =
(−1)n+1

(n+ 1)!
xn+1e−c,

for c ∈ [0, 1]. Therefore, we have

|Rn(x)| ≤ 1

(n+ 1)!
|x|n+1 ≤ 1

(n+ 1)!
.

Simple manipulations with a calculator then show that

max
x∈[0,1]

|R6(x)| ≤ .0001984126984

but
max
x∈[0,1]

|R5(x)| ≤ .1388888889e− 2

Therefore the desired Taylor polynomial is

p6(x) = 1− x+
1

2
x2 − 1

6
x3 +

1

24
x4 − 1

120
x5 +

1

720
x6.

(c) f(x) = ln(1 + x), x ∈ [0, 3/4].
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Solution: The remainder is now

|Rn(x)| ≤ (1/2)n+1

(n+ 1)
,

and n = 8 makes the error small enough.
(d) f(x) = ln(1 + x), x ∈ [0, 1/2].

13. Repeat the above, this time with a desired accuracy of 10−6.

14. Since
π

4
= arctan 1,

we can estimate π by estimating arctan 1. How many terms are needed in
the Gregory series for the arctangent to approximate π to 100 decimal places?
1,000? Hint: Use the error term in the Gregory series to predict when the error
gets sufficiently small.

Solution: The remainder in the Gregory series approximation is

Rn(x) = (−1)n+1

∫ x

0

t2n+2

1 + t2
dt,

so to get 100 decimal places of accuracy for x = 1, we require

|Rn(1)| =
∣∣∣∣∫ 1

0

t2n+2

1 + t2
dt

∣∣∣∣ ≤ ∫ 1

0

t2n+2dt =
1

2n+ 3
≤ 10−100,

thus, we have to take n ≥ (10100 − 3)/2 terms. For 1,000 places of accuracy
we therefore need n ≥ (101000 − 3)/2 terms.

Obviously this is not the best procedure for computing many digits of π!

15. Elementary trigonometry can be used to show that

arctan(1/239) = 4 arctan(1/5)− arctan(1).

This formula was developed in 1706 by the English astronomer John Machin.
Use this to develop a more efficient algorithm for computing π. How many
terms are needed to get 100 digits of accuracy with this form? How many
terms are needed to get 1,000 digits? Historical note: Until 1961 this was the
basis for the most commonly used method for computing π to high accuracy.

Solution: We now have two Gregory series, thus complicating the problem a
bit. We have

π = 4 arctan(1) = 16 arctan(1/5)− 4 arctan(1/239);

Define pm,n ≈ π as the approximation generated by using an m term Gre-
gory series to approximate arctan(1/5) and an n term Gregory series for
arctan(1/239). Then we have

pm,n − π = 16Rm(1/5)− 4Rn(1/239),
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where Rk is the remainder in the Gregory series. Therefore

|pm,n − π| ≤

∣∣∣∣∣16(−1)m+1

∫ 1/5

0

t2m+2

1 + t2
dt− 4(−1)n+1

∫ 1/239

0

t2n+2

1 + t2
dt

∣∣∣∣∣
≤ 16

(2m+ 3)52m+3
+

4

(2n+ 3)2392n+3
.

To finish the problem we have to apportion the error between the two series,
which introduces some arbitrariness into the the problem. If we require that
they be equally accurate, then we have that

16

(2m+ 3)52m+3
≤ ε

and
4

(2n+ 3)2392n+3
≤ ε.

Using properties of logarithms, these become

log(2m+ 3) + (2m+ 3) log 5 ≥ log 16− log ε

and
log(2n+ 3) + (2n+ 3) log 239 ≥ log 4− log ε.

For ε = (1/2) × 10−100 these are satisfied for m = 70, n = 20. For
ε = (1/2)× 10−1000 we get m = 712, n = 209. Changing the apportionment
of the error doesn’t change the results by much at all.

16. In 1896 a variation on Machin’s formula was found:

arctan(1/239) = arctan(1)− 6 arctan(1/8)− 2 arctan(1/57),

and this began to be used in 1961 to compute π to high accuracy. How many
terms are needed when using this expansion to get 100 digits of π? 1,000
digits?

Solution: We now have three series to work with, which complicates matters
only slightly more compared to the previous problem. If we define pk,m,n ≈ π
based on

π = 4 arctan(1) = 24 arctan(1/8) + 8 arctan(1/57) + 4 arctan(1/239),

taking k terms in the series for arctan(1/8), m terms in the series for
arctan(1/57), and n terms in the series for arctan(1/239), then we are led to
the inequalities

log(2k + 3) + (2k + 3) log 8 ≥ log 24− log ε,

log(2m+ 3) + (2m+ 3) log 57 ≥ log 8− log ε,
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and
log(2n+ 3) + (2n+ 3) log 239 ≥ log 4− log ε.

For ε = (1/3) × 10−100 we get k = 54, m = 27, and n = 19; for ε =
(1/3)× 10−1000 we get k = 552, m = 283, and n = 209.

Note: In both of these problems a slightly more involved treatment of the error
might lead to fewer terms being required.

17. What is the Taylor polynomial of order 3 for f(x) = x4 + 1, using x0 = 0?

Solution: This is very direct:

f ′(x) = 4x3, f ′′(x) = 12x2, f ′′′(x) = 24x,

so that

p3(x) = 1 + x(0) +
1

2
x2(0) +

1

6
x3(0) = 1.

18. What is the Taylor polynomial of order 4 for f(x) = x4 + 1, using x0 = 0?
Simplify as much as possible.

19. What is the Taylor polynomial of order 2 for f(x) = x3 + x, using x0 = 1?

20. What is the Taylor polynomial of order 3 for f(x) = x3 + x, using x0 = 1?
Simplify as much as possible.

Solution: We note that f ′′′(1) = 6, so we have (using the solution from the
previous problem)

p4(x) = 3x2 − 2x+ 1 +
1

6
(x− 1)3(6) = x3 + x.

The polynomial is its own Taylor polynomial.

21. Let p(x) be an arbitrary polynomial of degree less than or equal to n. What is
its Taylor polynomial of degree n, about an arbitrary x0?

22. The Fresnel integrals are defined as

C(x) =

∫ x

0

cos(πt2/2)dt

and

S(x) =

∫ x

0

sin(πt2/2)dt.

Use Taylor expansions to find approximations to C(x) and S(x) that are 10−4

accurate for all x with |x| ≤ 1
2 . Hint: Substitute x = πt2/2 into the Taylor

expansions for the cosine and sine.
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Solution: We will show the work for the case of S(x), only. We have

S(x) =

∫ x

0

sin(πt2/2)dt =

∫ x

0

pn(t2)dt+

∫ x

0

Rn(t2)dt.

Looking more carefully at the remainder term, we see that it is given by

rn(x) = ±
∫ x

0

(t2(2n+3)

(2n+ 3)!
cos ξdt.

Therefore,

|rn(x)| ≤
∫ 1/2

0

(t2(2n+3)

(2n+ 3)!
dt =

(1/2)4n+7

(4n+ 7)(2n+ 3)!
.

A little effort with a calculator shows that this is less than 10−4 for n ≥ 1,
therefore the polynomial is

p(x) =

∫ x

0

(t2 − (1/6)t6)dt = −x
7

42
+
x3

3
.

23. Use the Integral Mean Value Theorem to show that the “pointwise” form (1.3)
of the Taylor remainder (usually called the Lagrange form) follows from the
“integral” form (1.2) (usually called the Cauchy form).

24. For each function in Problem 11, use the Mean Value Theorem to find a value
M such that

|f(x1)− f(x2)| ≤M |x1 − x2|

is valid for all x1, x2 in the interval used in Problem 11.

Solution: This amounts to finding an upper bound on |f ′| over the interval
given. The answers are as given below.

(a) f(x) = e−x, x ∈ [0, 1]; M ≤ 1.

(b) f(x) = ln(1+x), x ∈ [−1, 1];M is unbounded, since f ′(x) = 1/(1+x)
and x = −1 is possible.

(c) f(x) = sinx, x ∈ [0, π]; M ≤ 1.

(d) f(x) = ln(1 + x), x ∈ [−1/2, 1/2]; M ≤ 2.

(e) f(x) = 1/(x+ 1), x ∈ [−1/2, 1/2]. M ≤ 4.

25. A function is called monotone on an interval if its derivative is strictly positive
or strictly negative on the interval. Suppose f is continuous and monotone
on the interval [a, b], and f(a)f(b) < 0; prove that there is exactly one value
α ∈ [a, b] such that f(α) = 0.

Solution: Since f is continuous on the interval [a, b] and f(a)f(b) < 0, the
Intermediate Value Theorem guarantees that there is a point c where f(c) = 0,
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i.e., there is at least one root. Suppose now that there exists a second root, γ.
Then f(c) = f(γ) = 0. By the Mean Value Theorem, then, there is a point ξ
between c and γ such that

f ′(ξ) =
f(γ)− f(c)

γ − c
= 0.

But this violates the hypothesis that f is monotone, since a monotone function
must have a derivative that is strictly positive or strictly negative. Thus we
have a contradiction, thus there cannot exist the second root.

A very acceptable argument can be made by appealing to a graph of the
function.

26. Finish the proof of the Integral Mean Value Theorem (Theorem 1.5) by writing
up the argument in the case that g is negative.

Solution: All that is required is to observe that if g is negative, then we have∫ b

a

g(t)f(t)dt ≤
∫ b

a

g(t)fmdt = fm

∫ b

a

g(t)dt

and ∫ b

a

g(t)f(t)dt ≥
∫ b

a

g(t)fMdt = fM

∫ b

a

g(t)dt.

The proof is completed as in the text.

27. Prove Theorem 1.6, providing all details.

28. Let ck > 0, be given, 1 ≤ k ≤ n, and let xk ∈ [a, b], 1 ≤ k ≤ n. Then, use the
Discrete Average Value Theorem to prove that, for any function f ∈ C([a, b]),∑n

k=1 ckf(xk)∑n
k=1 ck

= f(ξ)

for some ξ ∈ [a, b].

Solution: We can’t apply the Discrete Average Value Theorem to the problem
as it is posed originally, so we have to manipulate a bit. Define

γj =
cj∑n
k=1 ck

;

Then
n∑
j=1

γj = 1

and now we can apply the Discrete Average Value Theorem to finish the
problem.
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29. Discuss, in your own words, whether or not the following statement is true:
“The Taylor polynomial of degree n is the best polynomial approximation of
degree n to the given function near the point x0.”

/ • • • .

1.2 ERROR, APPROXIMATE EQUALITY, AND ASYMPTOTIC ORDER
NOTATION

Exercises:

1. Use Taylor’s Theorem to show that ex = 1 + x + O(x2) for x sufficiently
small.

2. Use Taylor’s Theorem to show that 1−cos x
x = 1

2x + O(x3) for x sufficiently
small.

Solution: We can expand the cosine in a Taylor series as

cosx = 1− 1

2
x2 +

1

24
x4 cos ξ.

If we substitute this into (1− cosx)/x and simplify, we get

1− cosx

x
=

1

2
x− 1

24
x3 cos ξ,

so that we have∣∣∣∣1− cosx

x
− 1

2
x

∣∣∣∣ =

∣∣∣∣ 1

24
x3 cos ξ

∣∣∣∣ ≤ 1

24
|x3| = C|x3|

where C = 1/24. Therefore, 1−cos x
x = 1

2x+O(x3).

3. Use Taylor’s Theorem to show that

√
1 + x = 1 +

1

2
x+O(x2)

for x sufficiently small.

Solution: We have, from Taylor’s Theorem, with x0 = 0,

√
1 + x = 1 +

1

2
x− 1

8
x2(1 + ξ)−3/2,

for some ξ between 0 and x. Since∣∣∣∣18x2(1 + ξ)−3/2
∣∣∣∣ ≤ C|x2|
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for all x sufficiently small, the result follows. For example, we have∣∣∣∣18x2(1 + ξ)−3/2
∣∣∣∣ ≤ 1

8
× 2
√

2|x2|

for all x ∈ [−1/2, 1/2].

4. Use Taylor’s Theorem to show that

(1 + x)−1 = 1− x+ x2 +O(x3)

for x sufficiently small.

Solution: This time, Taylor’s Theorem gives us that

(1 + x)−1 = 1− x+ x2 − x3/(1 + ξ)4

for some ξ between 0 and x. Thus, for all x such that |x| ≤ m,∣∣(1 + x)−1 − (1− x+ x2)
∣∣ =

∣∣x3/(1 + ξ)4
∣∣ ≤ |x|3/(1−m)4 = C|x|3,

where C = 1/(1−m)4.

5. Show that
sinx = x+O(x3).

6. Recall the summation formula

1 + r + r2 + r3 + · · ·+ rn =
n∑
k=0

rk =
1− rn+1

1− r
.

Use this to prove that

n∑
k=0

rk =
1

1− r
+O(rn+1).

Hint: What is the definition of the O notation?

7. Use the above result to show that 10 terms (k = 9) are all that is needed to
compute

S =
∞∑
k=0

e−k

to within 10−4 absolute accuracy.

Solution: The remainder in the 9 term partial sum is

|R9| =
∣∣∣∣ e−10

1− e−1

∣∣∣∣ = 0.000071822 < 10−4.
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8. Recall the summation formula

n∑
k=1

k =
n(n+ 1)

2
.

Use this to show that
n∑
k=1

k =
1

2
n2 +O(n).

9. State and prove the version of Theorem 1.7 which deals with relationships of
the form x = xn +O(β(n)).

Solution: The theorem statement might be something like the following:

Theorem: Let x = xn+O(β(n)) and y = yn+O(γ(n)), with bβ(n) > γ(n)
for all n sufficiently large. Then

x+ y = xn + yn +O(β(n) + γ(n)),

x+ y = xn + yn +O(β(n)),

Ax = Axn +O(β(n)).

In the last equation, A is an arbitrary constant, independent of n.

The proof parallels the one in the text almost perfectly, and so is omitted.

10. Use the definition of O to show that if y = yh + O(hp), then hy = hyh +
O(hp+1).

11. Show that if an = O(np) and bn = O(nq), then anbn = O(np+q).

Solution: We have
|an| ≤ Ca|np|

and
|bn| ≤ Cb|nq|.

These follow from the definition of the O notation. Therefore

|anbn| ≤ Ca|np||bn| ≤ (Ca|np|)(Cb|nq|) = (CaCb)|np+q|

which implies that anbn = O(np+q).

12. Suppose that y = yh + O(β(h)) and z = zh + O(β(h)), for h sufficiently
small. Does it follow that y − z = yh − zh (for h sufficiently small)?

13. Show that

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2)
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for all h sufficiently small. Hint: Expand f(x ± h) out to the fourth order
terms.

Solution: This is a straight-forward manipulation with the Taylor expansions

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) +

1

24
h4f ′′′′(ξ1)

and

f(x− h) = f(x)− hf ′(x) +
1

2
h2f ′′(x)− 1

6
h3f ′′′(x) +

1

24
h4f ′′′′(ξ2).

Add the two expansions to get

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) +
1

24
h4(f ′′′′(ξ1) + f ′′′′(ξ2)).

Now solve for f ′′(x).

14. Explain, in your own words, why it is necessary that the constant C in (1.8) be
independent of h.

/ • • • .

1.3 A PRIMER ON COMPUTER ARITHMETIC

Exercises:

1. In each problem below, A is the exact value, and Ah is an approximation to A.
Find the absolute error and the relative error.

(a) A = π, Ah = 22/7;

(b) A = e, Ah = 2.71828;

(c) A = 1
6 , Ah = 0.1667;

(d) A = 1
6 , Ah = 0.1666.

Solution:

(a) Abs. error. ≤ 1.265× 10−3, rel. error ≤ 4.025× 10−4;

(b) Abs. error. ≤ 1.828× 10−6, rel. error ≤ 6.72× 10−7;

(c) Abs. error. ≤ 3.334× 10−5, rel. error ≤ 2.000× 10−4;

(d) Abs. error. ≤ 6.667× 10−5, rel. error ≤ 4× 10−4.

2. Perform the indicated computations in each of three ways: (i) Exactly; (ii)
Using three-digit decimal arithmetic, with chopping; (iii) Using three-digit
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decimal arithmetic, with rounding. For both approximations, compute the
absolute error and the relative error.

(a) 1
6 + 1

10 ;
(b) 1

6 ×
1
10 ;

(c) 1
9 +

(
1
7 + 1

6

)
;

(d)
(
1
7 + 1

6

)
+ 1

9 .

3. For each function below explain why a naive construction will be susceptible
to significant rounding error (for x near certain values), and explain how to
avoid this error.

(a) f(x) = (
√
x+ 9− 3)x−1;

(b) f(x) = x−1(1− cosx);
(c) f(x) = (1− x)−1(lnx− sinπx);
(d) f(x) = (cos(π + x)− cosπ)x−1;
(e) f(x) = (e1+x − e1−x)(2x)−1;

Solution: In each case, the function is susceptible to subtractive cancellation
which will be amplified by division by a small number. The way to avoid the
problem is to use a Taylor expansion to make the subtraction and division both
explicit operations. For instance, in (a), we would write

f(x) = ((3+(1/6)x−(1/216)x2+O(x3))−3)x−1 = (1/6)−(1/216)x+O(x2).

To get greater accuracy, take more terms in the Taylor expansion.

4. For f(x) = (ex − 1)/x, how many terms in a Taylor expansion are needed to
get single precision accuracy (7 decimal digits) for all x ∈ [0, 12 ]? How many
terms are needed for double precision accuracy (14 decimal digits) over this
same range?

5. Using single precision arithmetic, only, carry out each of the following com-
putations, using first the form on the left side of the equals sign, then using the
form on the right side, and compare the two results. Comment on what you
get in light of the material in 1.3.

(a) (x+ ε)3 − 1 = x3 + 3x2ε+ 3xε2 + ε3 − 1, x = 1.0, ε = 0.000001.
(b) −b+

√
b2 − 2c = 2c(−b−

√
b2 − 2c)−1, b = 1, 000, c = π.

Solution: “Single precision” means 6 or 7 decimal digits, so the point of the
problem is to do the computations using 6 or 7 digits.

(a) Using a standard FORTRAN compiler on a low-end UNIX workstation,
the author got

(x+ ε)3 − 1 = 0.2861022949218750E − 05
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but

x3 + 3x2ε+ 3xε2 + ε3 − 1 = 0.2980232238769531E − 05.

(b) Using a standard C compiler on a low-end UNIX workstation, the author
got

−b+
√
b2 − 2c = −0.003

but
2c(−b−

√
b2 − 2c)−1 = −0.00314160.

6. Consider the sum

S =
m∑
k=0

e−14(1−e
−0.05k)

where m = 2 × 105. Again using only single precision, compute this two
ways: First, by summing in the order indicated in the formula; second, by
summing backwards, i.e., starting with the k = 200, 000 term and ending with
the k = 0 term. Compare your results and comment upon them.

7. Using the computer of your choice, find three values a, b, and c, such that

(a+ b) + c 6= a+ (b+ c).

Repeat for your pocket calculator.

Solution: The key issue is to get an approximation to the machine epsilon,
then take a = 1, b = c = (2/3)u or something similar. This will guarantee
that (a + b) + c = a but a + (b + c) > a. Using a standard C compiler on
a low-end UNIX workstation, the author was able to determine that a = 1,
b = 2 × 10−7, and c = 3 × 10−7 will work. On an elderly Sharp calculator,
the author found that a = 1, b = 4× 10−10, and c = 4× 10−10 worked.

8. Assume we are using 3-digit decimal arithmetic. For ε = 0.0001, a1 = 5,
compute

a2 = a0 +

(
1

ε

)
a1

for a0 equal to each of 1, 2, and 3. Comment.

9. Let ε ≤ u. Explain, in your own words, why the computation

a2 = a0 +

(
1

ε

)
a1

is potentially rife with rounding error. (Assume that a0 and a1 are of compa-
rable size.) Hint: See previous problem.

Solution: This is just a generalization of the previous problem. If ε is small
enough, then a2 will be independent of a0.
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10. Using the computer and language of your choice, write a program to estimate
the machine epsilon.

Solution: Using MATLAB on a moderately old personal computer, the author
got a value of u = 1.1016e− 16. The code is given below.

x = 1.e-10;

for k=1:6000

y = 1 + x;

if y <= 1

disp(’macheps = ’)

disp(x)

break

end

x = x*.99;

end

11. We can compute e−x using Taylor polynomials in two ways, either using

e−x ≈ 1− x+
1

2
x2 − 1

6
x3 + . . .

or using

e−x ≈ 1

1 + x+ 1
2x

2 + 1
6x

3 + . . .
.

Discuss, in your own words, which approach is more accurate. In particular,
which one is more (or less) susceptible to rounding error?

Solution: Because of the alternating signs in the first approach, there is some
concern about subtractive cancellation when it is used.

12. What is the machine epsilon for a computer that uses binary arithmetic, 24 bits
for the fraction, and rounds? What if it chops?

Solution: Recall that the machine epsilon is the largest number x such that
the computer returns 1 + x = x. We therefore need to find the largest number
x that can be represented with 24 binary digits such that 1 + x, when rounded
to 24 bits, is still equal to 1. This is perhaps best done by explicitly writing out
the addition in binary notation. We have

1 + x = 1.000000000000000000000002

+0.00000000000000000000000dddddddddddddddddddddddd2.

If the machine chops, then we can set all of the d values to 1 and the computer
will still return 1 + x = 1; if the machine rounds, then we need to make the
first digit a zero. Thus, the desired values are

uround =
23∑
k=1

2−k−24 = 0.596× 10−7,
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and

uchop =
24∑
k=1

2−k−23 = 0.119× 10−6

13. What is the machine epsilon for a computer that uses octal (base 8) arithmetic,
assuming it retains 8 octol digits in the fraction?

/ • • • .

1.4 A WORD ON COMPUTER LANGUAGES AND SOFTWARE

(No exercises in this section.)

1.5 SIMPLE APPROXIMATIONS

Exercises:

1. Consider the error (1.11) in approximating the error function. If we restrict
ourselves to k ≤ 3, then over what range of values of x is the approximation
accurate to within 10−3?

Solution: We have the inequality

|x8| ≤ 9× 12
√
π × 10−3

which implies that x ∈ [−.19, .19].

2. If we are interested only in x ∈ [0, 12 ], then how many terms in the error
function approximation do we need to take to get an accuracy of 10−4?

3. Repeat the above for x ∈ [0, 1].

Solution: We now have to use k = 6.

4. Assume that x ∈ [0, 1] and write the error in the approximation to the error
function using the asymptotic order notation.

5. For

f(x) =

∫ x

0

t−1 sin tdt, x ∈ [−π/4, π/4],

construct a Taylor approximation that is accurate to within 10−4 over the
indicated interval.

Solution: Expand the sine function in a Taylor series

sinx = x− 1

6
x3 + . . .+

x2n+3

(2n+ 3)!
cos ξ
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and substitute into the integral, then carry out the integration. We concentrate
on the remainder term first, in order to find out how many terms we have to
take. We have

rn(x) =

∫ x

0

t2n+3

(2n+ 3)!
cos ξtdt

so that

|rn(x)| ≤
∣∣∣∣∫ x

0

t2n+3

(2n+ 2)!
cos ξtdt

∣∣∣∣ ≤ ∫ |x|
0

t2n+2

(2n+ 3)!
dt =

|x|2n+3

(2n+ 3)(2n+ 3)!
.

Since we are interested in x ∈ [−π/4, π/4], we have

Rn = max |rn(x)| ≤ (π/4)2n+3

(2n+ 3)(2n+ 3)!
.

Trial and error with a calculator shows that R2 = 0.52 × 10−5 so n = 2 is
good enough. Thus the polynomial is

p2(x) =

∫ x

0

(1− 1

6
t2 +

1

120
t4)dt = x− 1

18
x3 +

1

600
x5.

Note that the way we have done the indexing means that n = 2 is not the
second order polynomial.

6. Repeat the above for

f(x) =

∫ x

0

e−t
2

dt, x ∈
[
−1

2
,

1

2

]
.

7. Construct a Taylor approximation for

f(x) =

∫ x

0

t−pe−t
2

dt, 0 ≤ p < 1, x ∈
[
0,

1

2

]
that is accurate to within 10−3 for all values of p in the indicated range.

8. Does it make a difference in Problem 7 if we restrict p to p ∈ [0, 14 ]?

Solution: It makes a difference because now the error is slightly less, and we
are not covering the entire range for p.

9. What is the error in the Taylor polynomial of degree 5 for f(x) = 1/x, using
x0 = 3/4, for x ∈ [ 12 , 1]?

10. How many terms must be taken in the above to get an error of less than 10−2?
10−4?

Solution: The remainder, in the general case, is bounded according to

|Rn(x)| ≤ (1/4)n+1 × 2n+2 = (1/2)n.
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So we require n = 7 for 10−2 error, and n = 14 for 10−4 error.

11. What is the error in a Taylor polynomial of degree 4 for f(x) =
√
x using

x0 = 9/16, for all x ∈ [1/4, 1]?

Solution: The remainder is given by

R4(x) =
(x− 9/16)5

5!
× f (5)(ξ),

where
f (5)(z) =

105

32
z−9/2.

Therefore, for all x ∈ [1/4, 1],

|R5(x)| ≤ 105× (7/16)5

32× 120
× (1/4)−9/2 = .2243976594.

This is a very conservative estimate. If you actually plot the difference between
p4 and

√
x the error is seen to be less than 0.003.

12. Consider the rational function

r(x) =
1 + 1

2x

1− 1
2x

;

carry out the indicated division to write this as

r(x) = p(x) +R(x),

where p(x) is a polynomial, and R1(x) is a remainder term in the form R1 =
x2R(x), where R is a proper rational function, i.e., one with the degree of the
numerator strictly less than the degree of the denominator. Can you relate p(x)
to a Taylor expansion for the exponential function? Bound the error |ex−r(x)|,
assuming that x ≤ 0, if you can.

Solution: We have

r(x) =
1 + 1

2x

1− 1
2x

=
1− 1

2x+ x

1− 1
2x

= 1 +
x

1− 1
2x

= 1 +
x+ 1

2x
2 − 1

2x
2

1− 1
2x

= 1 + x+
1

2
x2

1

1− 1
2x

This matches the first two terms in the Taylor approximation to the exponential,
and so it is not hard to show that

|ex − r(x)| = O(x2)

13. Repeat the above analysis for the rational function

r(x) =
1 + 1

2x+ 1
12x

2

1− 1
2x+ 1

12x
2
.
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Can you get a better error in this case?

Solution: A similar computation in both this exercise and the next one shows
the error is now O(x4).

14. Finally, consider the rational function1

r(x) =
1 + 1

3x

1− 2
3x+ 1

6x
2
.

By dividing out the rational function into a polynomial p(x) plus a remainder,
bound the error |ex − r(x)| for all x ≤ 0. Try to get as high an accuracy as
you can in terms of powers of x.

/ • • • .

1.6 APPLICATION: APPROXIMATING THE NATURAL LOGARITHM

Exercises:

1. Write each of the following in the form x = f × 2β for some f ∈ [ 12 , 1].

(a) x = 13;

(b) x = 25;

(c) x = 1
3 ;

(d) x = 1
10 .

Solution:

(a) x = 13 = (13/16)× 24;

(b) x = 25 = (25/32)× 25;

(c) x = 1
3 = (2/3)× 2−1;

(d) x = 1
10 = (8/10)× 2−3.

2. For each value in the previous problem, compute the logarithm approximation
using the degree 4 Taylor polynomial from (1.12). What is the error compared
to the logarithm on your calculator?

3. Repeat the above for the degree 6 Taylor approximation.

1The functions in these exercises are all examples of what are known as Padé approximations.
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Solution: The polynomial is

p6(x) = −2.737682073 + 7.999999999x− 13.33333334x2

+15.80246914x3 − 11.85185185x4 + 5.056790124x5

−.9364426155x6.

For each case we get:

(a) p6(25/32) + 5 ln 2 = 3.218875825; ln 25 = 3.218875825;

(b) p6(13/16) + 4 ln 2 = 2.564949354; ln 13 = 2.564949357;

(c) p6(2/3)− ln 2 = −1.098612256; ln 1/3 = −1.098612289;

(d) p6(8/10)− 3 ln 2 = −2.302585094; ln 1/10 = −2.302585093.

4. Repeat the above for the degree 10 Taylor approximation.

5. Implement (as a computer program) the logarithm approximation constructed
in this section. Compare it to the intrinsic logarithm function over the interval
[ 12 , 1]. What is the maximum observed error?

Solution: A MATLAB script is given, below, which implements the logarithm
approximation. It is not especially efficient. When this is used to compute
lnx for 1000 values of x uniformly distributed on the interval [1/2, 1], the
maximum absolute error observed is about 3.33×10−16. This does not meet the
theoretical standard imposed for the problem, probably because of limitations
on the accuracy of MATLAB computations. When the approximation was
implemented in Maple, taking advantage of the higher precision computations
in Maple, the desired accuracy was observed.

function y = taylog(x)

N = 33;

a = 0.75;

r = log(a);

z = (x - a)/a;

for k=1:N

zL(k) = -(-z)^k;

rL(k) = 1/k;

end

y = sum(zL.*rL) + r;

6. Let’s consider how we might improve on our logarithm approximation from
this section.

(a) Compute the Taylor expansions, with remainder, for ln(1+x) and ln(1−
x) (use the integral of the geometric series, to get the remainder term).
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(b) Combine the two to get the Taylor expansion for

f(x) = ln

(
1− x
1 + x

)
.

What is the remainder in this expansion?

(c) Given z ∈ [ 12 , 1] show how to compute x such that z = (1−x)(1+x)−1.
What interval contains x?

(d) Use this to construct an approximation to ln z that is accurate to within
10−16.

7. Use the logarithm expansion from the previous problem, but limited to the
degree 5 case, to compute approximations to the logarithm of each value in the
first problem of this section.

Solution: The polynomial is

p5(x) = −2x− (2/3)x3 − (2/5)x5,

and we have that
ln z ≈ p5(x)

whenever z = (1− x)(1 + x)−1 ⇒ x = (1− z)/(1 + z). We have, then, that

• ln 25 ≈ p5(7/57) + 5 ln 2 = 3.218875947; ln 25 = 3.218875825;

• ln 13 ≈ p5(3/29) + 4 ln 2 = 2.564949394; ln 13 = 2.564949357;

• ln(1/3) ≈ p5(1/5)− ln 2 = −1.098608514; ln 1/3 = −1.098612289;

• ln(1/10) ≈ p5(1/9)− 3 ln 2 = −2.302585033;
ln 1/10 = −2.302585093.

8. Repeat the above, using the degree 10 approximation.

9. Implement (as a computer program) the logarithm approximation constructed
in Problem 6. Compare it to the intrinsic logarithm function over the interval
[ 12 , 1]. What is the maximum observed error?

Solution: A MATLAB script is given, below, which implements the new
logarithm approximation. It is not especially efficient. When this is used to
compute lnx for 1000 values of x uniformly distributed on the interval [1/2, 1],
the maximum absolute error observed is about 4×10−16. This does not meet the
theoretical standard imposed for the problem, probably because of limitations
on the accuracy of MATLAB computations. When the approximation was
implemented in Maple, taking advantage of the higher precision computations
in Maple, the desired accuracy was observed.
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function y = taylog2(z)

x = (1-z)/(1+z);

c = [1:(2):33];

a = -2./c;

y = sum(a.*(x.^c));

10. Try to use the ideas from this section to construct an approximation to the
reciprocal function, f(x) = x−1, that is accurate to within 10−16 over the
interval [ 1

2 , 1].

/ • • • .

1.7 A BRIEF HISTORY OF COMPUTING

(No exercises in this section.)





CHAPTER 2

A SURVEY OF SIMPLE METHODS AND
TOOLS

2.1 HORNER’S RULE AND NESTED MULTIPLICATION

Exercises:

1. Write each of the following polynomials in nested form.

(a) x3 + 3x+ 2;

(b) x6 + 2x4 + 4x2 + 1;

(c) 5x6 + x5 + 3x4 + 3x3 + x2 + 1;

(d) x2 + 5x+ 6.

Solution:

(a) x3 + 3x+ 2 = 2 + x(3 + x2);

(b) x6 + 2x4 + 4x2 + 1 = 1 + x2(4 + x2(2 + x2));

(c) 5x6 +x5 + 3x4 + 3x3 +x2 + 1 = 1 +x2(1 +x(3 +x(3 +x(1 + 5x))));

Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis,
Second Edition. By James F. Epperson
Copyright c© 2013 John Wiley & Sons, Inc.
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(d) x2 + 5x+ 6 = 6 + x(5 + x).

2. Write each of the following polynomials in nested form, but this time take
advantage of the fact that they involve only even powers of x to minimize the
computations.

(a) 1 + x2 + 1
2x

4 + 1
6x

6;

(b) 1− 1
2x

2 + 1
24x

4.

3. Write each of the following polynomials in nested form.

(a) 1− x+ x2 − x3;

(b) 1− x2 + 1
2x

4 − 1
6x

6;

(c) 1− x+ 1
2x

2 − 1
3x

3 − 1
4x

5.

Solution:

(a) 1− x+ x2 − x3 = 1 + x((−1) + x(1− x));

(b) 1− x2 + 1
2x

4 − 1
6x

6 = 1 + x2((−1) + x2((1/2)− (1/6)x2));

(c) 1 − x + 1
2x

2 − 1
3x

3 − 1
4x

5 = 1 + x((−1) + x((1/2) + x((−1/3) +
x(−1/4)))).

4. Write a computer code that takes a polynomial, defined by its coefficients, and
evaluates that polynomial and its first derivative using Horner’s rule. Test this
code by applying it to each of the polynomials in Problem 1.

Solution: The following is a MATLAB script which does the assigned task,
using the less efficient approach to computing the derivative.

function [y, yp] = horner1(a,x)

n = length(a);

y = a(n);

for k=(n-1):(-1):1

y = a(k) + y*x;

end

%

yp = (n-1)*a(n);

for k=(n-1):(-1):2

yp = (k-1)*a(k) + yp*x;

end

5. Repeat the above, using the polynomials in Problem 2 as the test set.

Solution: The same script can be used, of course.

6. Repeat the above, using the polynomials in Problem 3 as the test set.



HORNER’S RULE AND NESTED MULTIPLICATION 29

7. Consider the polynomial

p(x) = 1 + (x− 1) +
1

6
(x− 1)(x− 2) +

1

7
(x− 1)(x− 2)(x− 4).

This can be written in “nested-like” form by factoring out each binomial term
as far as it will go, thus:

p(x) = 1 + (x− 1)

(
1 + (x− 2)

(
1

6
+

1

7
(x− 4)

))
.

Write each of the following polynomials in this kind of nested form.

(a) p(x) = 1 + 1
3x−

1
60x(x− 3);

(b) p(x) = −1+ 6
7 (x−1/2)− 5

21 (x−1/2)(x−4)+ 1
7 (x−1/2)(x−4)(x−2);

(c) p(x) = 3 + 1
5 (x− 8)− 1

60 (x− 8)(x− 3).

Solution:

(a) p(x) = 1 + 1
3x−

1
60x(x− 3) = 1 + x((1/3)− (1/60)(x− 3));

(b) p(x) = −1+ 6
7 (x−1/2)− 5

21 (x−1/2)(x−4)+ 1
7 (x−1/2)(x−4)(x−

2) = −1 + (x− (1/2))((6/7) + (x− 4)((−5/21) + (1/7)(x− 2)));

(c) p(x) = 3 + 1
5 (x − 8) − 1

60 (x − 8)(x − 3) = 3 + (x − 8)((1/5) −
(1/60)(x− 3)).

8. Write a computer code that computes polynomial values using the kind of
nested form used in the previous problem, and test it on each of the polynomials
in that problem.

9. Write a computer code to do Horner’s rule on a polynomial defined by its
coefficients. Test it out by using the polynomials in the previous problems.
Verify that the same values are obtained when Horner’s rule is used as when a
naive evaluation is done.

10. Write out the Taylor polynomial of degree 5 for approximating the exponential
function, using x0 = 0, using the Horner form. Repeat for the degree 5 Taylor
approximation to the sine function. (Be sure to take advantage of the fact that
the Taylor expansion to the sine uses only odd powers.)

Solution: For the exponential function, we get

p5(x) = 1 + x(1 + x((1/2) + x((1/6) + x((1/24) + (1/120)x))));

for the sine function we get

p5(x) = x(1 + x2((−1/6) + (1/120)x2)).
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11. For each function in Problem 11 of 1.1, write the polynomial approximation
in Horner form, and use this as the basis for a computer program that approxi-
mates the function. Compare the accuracy you actually achieve (based on the
built-in intrinsic functions on your computer) to that which was theoretically
established. Be sure to check that the required accuracy is achieved over the
entire interval in question.

12. Repeat the above, except this time compare the accuracy of the derivative
approximation constructed by taking the derivative of the approximating poly-
nomial. Be sure to use the derivative form of Horner’s rule to evaluate the
polynomial.

/ • • • .

2.2 DIFFERENCE APPROXIMATIONS TO THE DERIVATIVE

Exercises:

1. Use the methods of this section to show that

f ′(x) =
f(x)− f(x− h)

h
+O(h).

Solution: We have, for any a, that

f(x+ a) = f(x) + af ′(x) +
1

2
a2f ′′(ξ).

Therefore, taking a = −h,

f(x+ a) = f(x− h) = f(x)− hf ′(x) +
1

2
h2f ′′(ξ)

⇒ f ′(x) =
f(x)− f(x− h)

h
+

1

2
hf ′′(ξ).

2. Compute, by hand, approximations to f ′(1) for each of the following functions,
using h = 1/16 and each of the derivative approximations contained in (2.1)
and (2.5).

(a) f(x) =
√
x+ 1;

(b) f(x) = arctanx;

(c) f(x) = sinπx;

(d) f(x) = e−x;
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(e) f(x) = lnx;

3. Write a computer program which uses the same derivative approximations as
in the previous problem to approximate the first derivative at x = 1 for each
of the following functions, using h−1 = 4, 8, 16, 32. Verify that the predicted
theoretical accuracy is obtained.

(a) f(x) =
√
x+ 1;

(b) f(x) = arctanx;
(c) f(x) = sinπx.
(d) f(x) = e−x;
(e) f(x) = lnx;

Solution: I wrote a simple FORTRAN program to do this for the single case
of (b). The results I got, using double precision, are in Table 2.1. Note that the

Table 2.1 Derivative Approximations

h−1 D1(h) Error Ratio D2(h) Error Ratio
4 0.44262888 0.573711E-01 0.000 0.50510855 0.510855E-02 0.000
8 0.47004658 0.299534E-01 1.915 0.50129595 0.129595E-02 3.942
16 0.48470016 0.152998E-01 1.958 0.50032514 0.325139E-03 3.986
32 0.49226886 0.773114E-02 1.979 0.50008136 0.813564E-04 3.996
64 0.49611409 0.388591E-02 1.990 0.50002034 0.203436E-04 3.999

128 0.49805196 0.194804E-02 1.995 0.50000509 0.508617E-05 4.000
256 0.49902471 0.975291E-03 1.997 0.50000127 0.127156E-05 4.000
512 0.49951204 0.487963E-03 1.999 0.50000032 0.317891E-06 4.000
1024 0.49975594 0.244061E-03 1.999 0.50000008 0.794728E-07 4.000

error goes down by a factor of 2 for D1(h), and a factor of 4 for D2(h), thus
confirming the theoretical accuracy.

4. Use the approximations from this section to fill in approximations to the missing
values in Table 2.2 (Table 2.4 in the text).

5. Use the error estimate (2.5) for the centered difference approximation to the
first derivative to prove that this approximation will be exact for any quadratic
polynomial.

Solution: We have that

f ′(x)− f(x+ h)− f(x− h)

2h
= Ch2f ′′′(ξ),

for some ξ between x−h and x+h. If f is a quadratic, then it has the general
form

f(x) = ax2 + bx+ c,
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Table 2.2 Table for Problem 4.

x f(x) f ′(x)

1.00 1.0000000000
1.10 0.9513507699
1.20 0.9181687424
1.30 0.8974706963
1.40 0.8872638175
1.50 0.8862269255
1.60 0.8935153493
1.70 0.9086387329
1.80 0.9313837710
1.90 0.9617658319
2.00 1.0000000000

for given constants a, b, and c. But the third derivative of this kind of function
will always be identically zero.

6. Find coefficients A, B, and C so that

(a) f ′(x) = Af(x) +Bf(x+ h) + Cf(x+ 2h) +O(h2);

(b) f ′(x) = Af(x) +Bf(x− h) + Cf(x− 2h) +O(h2).

Hint: Use Taylor’s theorem.

Solution: Write out Taylor expansions for f(x+ h) and f(x+ 2h), thus:

f(x+ h) = f(x) + hf ′(x) + (h2/2)f ′′(x) +O(h3)

and
f(x+ 2h) = f(x) + 2hf ′(x) + 2h2f ′′(x) +O(h3).

Multiply the first one by 4, and subtract the two of them, to get

4f(x+ h)− f(x+ 2h) = 3f(x) + 2hf ′(x) +O(h3);

solve this for f ′ to get

f ′(x) = (−3/2h)f(x) + (2/h)f(x+ h) + (−1/2h)f(x+ 2h) +O(h2)

so that A = −3/2h, B = 2/h, and C = −1/2h. A similar approach works
for (b), with A = 3/2, B = −2/h, and C = 1/h.

7. Fill in the data from Problem 4 using methods that are O(h2) at each point.
Hint: See the previous problem.
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8. Use Taylor’s Theorem to show that the approximation

f ′(x) ≈ 8f(x+ h)− 8f(x− h)− f(x+ 2h) + f(x− 2h)

12h

is O(h4).

Solution: We have

f(x+ h) = f(x) + hf ′(x) + (h2/2)f ′′(x) + (h3/6)f ′′′(x)

+(h4/24)f ′′′′(x) +O(h5),

f(x+ 2h) = f(x) + 2hf ′(x) + 2h2f ′′(x) + (4h3/3)f ′′′(x)

+(2h4/3)f ′′′′(x) +O(h5),

f(x− h) = f(x)− hf ′(x) + (h2/2)f ′′(x)− (h3/6)f ′′′(x)

+(h4/24)f ′′′′(x) +O(h5),

and

f(x− 2h) = f(x)− 2hf ′(x) + 2h2f ′′(x)− (4h3/3)f ′′′(x)

+(2h4/3)f ′′′′(x) +O(h5).

Therefore,

8f(x+ h)− 8f(x− h) = 16hf ′(x) + (8h3/3)f ′′′(x) +O(h5)

and

f(x+ 2h)− f(x− 2h) = 4hf ′(x) + (8h3/3)f ′′′(x) +O(h5).

Hence,

8f(x+ h)− 8f(x− h)− f(x+ 2h) + f(x− 2h) = 12hf ′(x) +O(h5),

so that, solving for f ′, we get the desired result.

9. Use the derivative approximation from Problem 8 to approximate f ′(1) for the
same functions as in Problem 3. Verify that the expected rate of decrease is
observed for the error.

10. Use the derivative approximation from Problem 8 to fill in as much as possible
of the table in Problem 4.

Solution: Because this formula uses more points that are farther from the
point of interest than did the previous formulas, we cannot do as much of the
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table as before. We get:

f ′(1.2) ≈ −.2652536725

f ′(1.3) ≈ −.1517629626

f ′(1.4) ≈ −.05441397741

f ′(1.5) ≈ .03237018117

f ′(1.6) ≈ .1126454212

f ′(1.7) ≈ .1895070563

f ′(1.8) ≈ .2654434511

11. Let f(x) = arctanx. Use the derivative approximation from Problem 8 to
approximate f ′( 1

4π) using h−1 = 2, 4, 8, . . .. Try to take h small enough that
the rounding error effect begins to dominate the mathematical error. For what
value of h does this begin to occur? (You may have to restrict yourself to
working in single precision.)

12. Use Taylor expansions for f(x±h) to derive anO(h2) accurate approximation
to f ′′ using f(x) and f(x±h). Provide all the details of the error estimate. Hint:
Go out as far as the fourth derivative term, and then add the two expansions.

Solution: We have

f(x+ h) = f(x) + hf ′(x) + (h2/2)f ′′(x) + (h3/6)f ′′′(x) +O(h4),

and

f(x− h) = f(x)− hf ′(x) + (h2/2)f ′′(x)− (h3/6)f ′′′(x) +O(h4),

so that
f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) +O(h4).

Thus, solving for the second derivative yields

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2).

13. Let h > 0 and η > 0 be given, where η = θh, for 0 < θ < 1. Let f be some
smooth function. Use Taylor expansions for f(x + h) and f(x − η) in terms
of f and its derivatives at x in order to construct an approximation to f ′(x)
that depends on f(x+ h), f(x), and f(x− η), and which is O(h2) accurate.
Check your work by verifying that for θ = 1⇒ η = h you get the same results
as in the text.

Solution: We write the two Taylor expansions

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(c1)
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and
f(x− η) = f(x)− ηf ′(x) +

1

2
η2f ′′(x)− 1

6
η3f ′′′(c2).

If we simply subtract these, the second derivative terms will not cancel out
(because h 6= η), so we have to multiply the first expansion by η2 and the
second one by h2 to get

η2f(x+ h) = η2f(x) + η2hf ′(x) +
1

2
η2h2f ′′(x) +

1

6
η2h3f ′′′(c1)

and

h2f(x− η) = h2f(x)− h2ηf ′(x) +
1

2
h2η2f ′′(x)− 1

6
h2η3f ′′′(c2).

Now subtract to get

η2f(x+ h)− h2f(x− η) = (η2 − h2)f(x) + (η2h− h2η)f ′(x)

+ +
1

6
(η2h3f ′′′(c1) + h2η3f ′′′(c2)).

Solve for f ′(x) to get

f ′(x) =
η2f(x+ h)− (η2 − h2)f(x)− h2f(x− η)

η2h− h2η

−1

6

η2h3f ′′′(c1) + h2η3f ′′′(c2)

η2h− h2η
.

Because we assumed η = θh there is substantial simplification that we can do
to get

f ′(x) =
θ2f(x+ h)− (θ2 − 1)f(x)− f(x− η)

θ2h− hθ

−1

6

θ2h2f ′′′(c1) + h2θ3f ′′′(c2)

θ2 − θ
,

which is sufficient to establish the O(h2) estimate for the error.

14. Write a computer program to test the approximation to the second derivative
from Problem 12 by applying it to estimate f ′′(1) for each of the following
functions, using h−1 = 4, 8, 16, 32. Verify that the predicted theoretical
accuracy is obtained.

(a) f(x) = e−x;

(b) f(x) = cosπx;

(c) f(x) =
√

1 + x;

(d) f(x) = lnx;
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15. Define the following function:

f(x) = ln(e
√
x2+1 sin(πx) + tanπx).

Compute values of f ′ over the range [0, 14 ] using two methods:

(a) Using the centered-difference formula from (2.5);
(b) Using ordinary calculus to find the formula for f ′.

Comment.

Solution: The function f is designed to make direct computation of f ′ a
difficult task for the average undergraduate student, thus highlighting that
there are times when being able to approximate the derivative as was done in
this section might be preferable to doing the exact computation.

16. Let f(x) = ex, and consider the problem of approximating f ′(1), as in the
text. LetD1(h) be the difference approximation in (2.1). Using the appropriate
values in Table 2.1, compute the new approximations

∆1(h) = 2D1(h)−D1(2h);

and compare these values to the exact derivative value. Are they more or
less accurate that the corresponding values of D1? Try to deduce, from your
calculations, how the error depends on h.

Solution: For the sake of completeness we have reproduced the table from
the text. Using those values we can compute

∆1(.25) = 2D1(.25)−D1(.5) = 2.649674415

e1 −∆1(.25) = 0.068607413;

∆1(.125) = 2D1(.125)−D1(.25) = 2.702717782

e1 −∆1(.125) = 0.015564046;

∆1(.0625) = 2D1(.0625)−D1(.125) = 2.714572906

e1 −∆1(.0625) = 0.003708922;

∆1(.03125) = 2D1(.03125)−D1(.0625) = 2.717372894

e1 −∆1(.03125) = 0.00090834.

The error appears to be going down by a factor of 4 as h is cut in half.

17. Repeat the above idea for f(x) = arctan(x), x = 1 (but this time you will
have to compute the original D1(h) values).

18. By keeping more terms in the Taylor expansion for f(x + h), show that the
error in the derivative approximation (2.1) can be written as

f ′(x)−
(
f(x+ h)− f(x)

h

)
= −1

2
hf ′′(x)− 1

6
h2f ′′′(x)− ... (2.1)
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Table 2.3 (Table 2.1 in text.) Example of derivative approximation to f(x) = ex at
x = 1.

h−1 D1(h) E1(h) = f ′(1)−D1(h) D2(h) E2(h) = f ′(1)−D2(h)

2 3.526814461 -0.8085327148E+00 2.832967758 -0.1146860123E+00
4 3.088244438 -0.3699626923E+00 2.746685505 -0.2840375900E-01
8 2.895481110 -0.1771993637E+00 2.725366592 -0.7084846497E-02

16 2.805027008 -0.8674526215E-01 2.720052719 -0.1770973206E-02
32 2.761199951 -0.4291820526E-01 2.718723297 -0.4415512085E-03
64 2.739639282 -0.2135753632E-01 2.718391418 -0.1096725464E-03
128 2.728942871 -0.1066112518E-01 2.718307495 -0.2574920654E-04

Use this to construct a derivative approximation involving f(x), f(x+h), and
f(x + 2h) that is O(h2) accurate. Hint: Use (2.6) to write down the error in
the approximation

f ′(x) ≈ f(x+ 2h)− f(x)

2h

and combine the two error expansions so that the terms that are O(h) are
eliminated.

Solution: We have

f(x+ h) = f(x) + hf ′(x) + (1/2)h2f ′′(x) +O(h3)

so that we can get

f ′(x) =
f(x+ h)− f(x)

h
− (1/2)hf ′′(x) +O(h2),

or, equivalently,

D1(h) =
f(x+ h)− f(x)

h
= f ′(x) + (1/2)hf ′′(x) +O(h2).

Therefore

D1(2h) =
f(x+ 2h)− f(x)

2h
= f ′(x) + (1/2)(2h)f ′′(x) +O(h2).

Thus,

2D1(2h)−D1(h) = 2
(
f ′(x) + (1/2)(2h)f ′′(x) +O(h2)

)
−

(
f ′(x) + (1/2)hf ′′(x) +O(h2)

)
so that

2D1(2h)−D1(h) = f ′(x) +O(h2).
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19. Apply the method derived above to the list of functions in Problem 3, and
confirm that the method is as accurate in practice as is claimed.

20. Let f(x) = ex, and consider the problem of approximating f ′(1), as in the
text. LetD2(h) be the difference approximation in (2.5). Using the appropriate
values in Table 2.3, compute the new approximations

∆2(h) = (4D2(h)−D2(2h))/3;

and compare these values to the exact derivative value. Are they more or
less accurate that the corresponding values of D2? Try to deduce, from your
calculations, how the error depends on h.

Solution: The D2(h) values are

D2(1/2) = 2.832967758

D2(1/4) = 2.746685505

D2(1/8) = 2.725366592

D2(1/16) = 2.720052719

D2(1/32) = 2.718723297

D2(1/64) = 2.718391418

D2(1/128) = 2.718307495

from which we get that

∆2(1/4) = 2.717924754

∆2(1/8) = 2.718260288

∆2(1/16) = 2.718281428

∆2(1/32) = 2.718280156

∆2(1/64) = 2.718280792

∆2(1/128) = 2.718279521.

These values are, initially, much more accurate thanD2(h), although rounding
error begins to corrupt the computation. It can be shown that this approximation
is O(h4).

21. Repeat the above idea for f(x) = arctan(x), x = 1 (but this time you will
have to compute the original D2(h) values).

22. The same ideas as in Problem 18 can be applied to the centered difference
approximation (2.5). Show that in this case the error satisfies

f ′(x)− f(x+ h)− f(x− h)

2h
= −1

6
h2f ′′′(x)− 1

120
h4f ′′′′′(x)− ... (2.2)
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Use this to construct a derivative approximation involving f(x ± h), and
f(x± 2h) that is O(h4) accurate.

Solution: Since

f(x+ h) = f(x) + hf ′(x) + (1/2)h2f ′′(x) + (1/6)h3f ′′′(x)

+(1/24)h4f ′′′′(x) +O(h5)

and

f(x− h) = f(x)− hf ′(x) + (1/2)h2f ′′(x)− (1/6)h3f ′′′(x)

+(1/24)h4f ′′′′(x) +O(h5),

we have that

f(x+ h)− f(x− h) = 2hf ′(x) + (1/3)h3f ′′′(x) +O(h5)

or,

f ′(x)− f(x+ h)− f(x− h)

2h
= (1/6)h2f ′′′(x) +O(h4).

Therefore,

f ′(x)− f(x+ 2h)− f(x− 2h)

4h
= (4/6)h2f ′′′(x) +O(h4),

so that

4

(
f ′(x)− f(x+ h)− f(x− h)

2h

)
−
(
f ′(x)− f(x+ 2h)− f(x− 2h)

4h

)
= O(h4).

We can manipulate with the left side to get that

3f ′(x)− 8(f(x+ h)− f(x− h))− (f(x+ 2h)− f(x− 2h))

4h
= O(h4),

so that finally we have

f ′(x)− 8(f(x+ h)− f(x− h))− (f(x+ 2h)− f(x− 2h))

12h
= O(h4).

This is simply an alternate derivation of the method from Exercise 8.

23. Apply the method derived above to the list of functions in Problem 3, and
confirm that the method is as accurate in practice as is claimed.

/ • • • .
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2.3 APPLICATION: EULER’S METHOD FOR INITIAL VALUE
PROBLEMS

Exercises:

1. Use Euler’s method with h = 0.25 to compute approximate solution values for
the initial value problem

y′ = sin(t+ y), y(0) = 1.

You should get y4 = 1.851566895 (be sure your calculator is set in radians).

Solution:

y1 = y0 + (0.25) sin(0 + y0) = 1 + 0.25(.8414709848) = 1.210367746

y2 = y1 + (0.25) sin(h+ y1) = 1.458844986

y3 = y2 + (0.25) sin(2h+ y2) = 1.690257280

y4 = y3 + (0.25) sin(3h+ y3) = 1.851566896

2. Repeat the above with h = 0.20. What value do you now get for y5 ≈ y(1)?

3. Repeat the above with h = 0.125. What value do you now get for y8 ≈ y(1)?

Solution:

y1 = y0 + (0.125) sin(0 + y0) = 1 + 0.125(.8414709848) = 1.105183873

y2 = y1 + (0.125) sin(h+ y1) = 1.223002653

y3 = y2 + (0.125) sin(2h+ y2) = 1.347405404

y4 = y3 + (0.125) sin(3h+ y3) = 1.470971572

y5 = y4 + (0.125) sin(4h+ y4) = 1.586095664

y6 = y5 + (0.125) sin(5h+ y5) = 1.686335284

y7 = y6 + (0.125) sin(6h+ y6) = 1.767364012

y8 = y7 + (0.125) sin(7h+ y7) = 1.827207570

4. Use Euler’s method with h = 0.25 to compute approximate solution values for

y′ = et−y, y(0) = −1.

What approximate value do you get for y(1) = 0.7353256638?

5. Repeat the above with h = 0.20. What value do you now get for y5 ≈ y(1)?
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Solution: We have the computation

yn+1 = yn + hetn−yn

where h = 0.2, t0 = 0, and y0 = −1. Hence

y1 = y0 + het0−y0 = −1 + (0.2)e0−(−1) = −0.4563436344,

y2 = y1 + het1−y1 = −0.4563436344 + (0.2)e0.2−(−0.4563436344)

= −0.0707974456,

y3 = y2 + het2−y2 = −0.0707974456 + (0.2)e0.4−(−0.0707974456)

= 0.2494566764,

y4 = y3 + het3−y3 = 0.2494566764 + (0.2)e0.6−(0.2494566764)

= 0.5334244306,

y5 = y4 + het4−y4 = 0.5334244306 + (0.2)e0.8−(0.5334244306)

= 0.7945216786.

6. Repeat the above with h = 0.125. What value do you now get for y8 ≈ y(1)?

7. Use Euler’s method with h = 0.0625 to compute approximate solution values
over the interval 0 ≤ t ≤ 1 for the initial value problem

y′ = t− y, y(0) = 2,

which has exact solution y(t) = 3e−t + t− 1. Plot your approximate solution
as a function of t, and plot the error as a function of t.

Solution: The plots are given in Figures 2.1 and 2.2.
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Figure 2.1 Exact solution for
Exercise 2.3.7.
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Figure 2.2 Error plot for
Exercise 2.3.7.

8. Repeat the above for the equation

y′ = et−y, y(0) = −1,
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which has exact solution y = ln(et − 1 + e−1).

9. Repeat the above for the equation

y′ + y = sin t, y(0) = −1,

which has exact solution y = (sin t− cos t− e−t)/2.

Solution: The plots are given in Figures 2.3 and 2.4.
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Figure 2.3 Exact solution for
Exercise 2.3.9.
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Figure 2.4 Error plot for Exercise
2.3.9.

10. Use Euler’s method to compute approximate solutions to each of the initial
value problems below, using h−1 = 2, 4, 8, 16. Compute the maximum error
over the interval [0, 1] for each value of h. Plot your approximate solutions for
the h = 1/16 case. Hint: Verify that your code works by using it to reproduce
the results given for the examples in the text.

(a) y′ = t− y, y(0) = 2; y(t) = 3e−t + t− 1.

(b) y′ + 4y = 1, y(0) = 1; y(t) = 1
4 (3e−4t + 1).

(c) y′ = −y ln y, y(0) = 3; y(t) = e(ln 3)e−t

.

11. Consider the approximate values in Tables 2.5 and 2.6 in the text. Let y8k
denote the approximate values for h = 1/8, and y16k denote the approximate
values for h = 1/16. Note that

y8k ≈ y(k/8)

and
y162k ≈ y(2k/16) = y(k/8) ≈ y8k,

thus y8k and y162k are both approximations to the same value. Compute the set
of new approximations

uk = 2y162k − y8k
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and compare these to the corresponding exact solution values. Are they better
or worse as an approximation?

Solution: Table 2.4 shows the new solution and the error, which is much
smaller than that obtained using Euler’s method directly.

Table 2.4 Solution values for Exercise 2.3.11.

tk uk y(tk)− uk

0.000 -1.00000000000000 0
0.125 -0.87500508526970 -0.00000483294465
0.250 -0.75013901623461 -0.00001560652915
0.375 -0.62573474516817 -0.00002744064045
0.500 -0.50230696317037 -0.00003687832904
0.625 -0.38052202438375 -0.00004161315812
0.750 -0.26116806849085 -0.00004026230490
0.875 -0.14512551018440 -0.00003217761850
1.000 -0.03333809297284 -0.00001728814300

12. Apply the basic idea from the previous problem to the approximation of solu-
tions to

y′ = et−y, y(0) = −1,

which has exact solution y = ln(et − 1 + e−1).

13. Assume that the function f satisfies

|f(t, y)− f(t, z)| ≤ K|y − z|

for some constantK. Use this and (2.9)-(2.10) to show that the error |y(tn+1)−
yn+1| satisfies the recursion

|y(tn+1)− yn+1| ≤ (1 +Kh)|y(tn)− yn|+
1

2
h2Y2

where
Y2 = max

t
|y′′(t)|.

Solution: If we take t = tn and subtract (2.10) from (2.9) we get

y(tn + h)− yn+1 = y(tn)− yn + h(f(tn, y(tn))− f(tn, yn)),

from which we have

|y(tn+1)− yn+1| ≤ |y(tn)− yn|+ hK|y(tn)− yn)|,

and the desired result follows immediately.

/ • • • .
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2.4 LINEAR INTERPOLATION

Exercises:

1. Use linear interpolation to find approximations to the following values of the
error function, using the table in the text. For each case, give an upper bound
on the error in the approximation.

(a) erf(0.56);

(b) erf(0.07);

(c) erf(0.34);

(d) erf(0.12);

(e) erf(0.89).

Solution: For Part (a), we have x0 = 0.5 and x1 = 0.6, so

p1(x) =

(
x− 0.5

0.6− 0.5

)
(0.60385609084793)+

(
0.6− x

0.6− 0.5

)
(0.52049987781305),

thus

p1(0.56) =

(
0.06

0.1

)
(0.60385609084793) +

(
0.04

0.1

)
(0.52049987781305)

= 0.5705136056.

The upper bound on the error comes straight from the error theorem on page
59. We have

|erf(x)− p1(x)| ≤ 1

8
(0.1)2 max |f ′′(t)|,

where the maximum of the second derivative is computed over the interval
[0.5, 0.6]. We have

(erf(x))′′ =
−4x√
π
e−x

2

so that
|(erf(x))′′| ≤ 4× 0.6√

π
e−0.25 = 1.05...

Hence the error satisfies

|erf(0.56)− p1(0.56)| ≤ 0.01× 1.05...

8
= 0.00132...

2. The gamma function, denoted by Γ(x), occurs in a number of applications, most
notably probability theory and the solution of certain differential equations. It
is basically the generalization of the factorial function to non-integer values,
in that Γ(n + 1) = n!. Table 2.5 (Table 2.8 in the text) gives values of Γ(x)
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for x between 1 and 2. Use linear interpolation to approximate values of Γ(x)
as given below.

(a) Γ(1.290) = 0.8990415863;

(b) Γ(1.005) = 0.9971385354;

(c) Γ(1.930) = 0.9723969178;

(d) Γ(1.635) = 0.8979334930.

Table 2.5 (Table 2.8 in the text) Table of Γ(x) values.

x Γ(x)

1.00 1.0000000000
1.10 0.9513507699
1.20 0.9181687424
1.30 0.8974706963
1.40 0.8872638175
1.50 0.8862269255
1.60 0.8935153493
1.70 0.9086387329
1.80 0.9313837710
1.90 0.9617658319
2.00 1.0000000000

3. Theorem 2.1 requires an upper bound on the second derivative of the function
being interpolated, and this is not always available as a practical matter. How-
ever, if a table of values is available, we can use a difference approximation to
the second derivative to estimate the upper bound on the derivative and hence
the error. Recall, from Problem 12 of 2.2,

f ′′(x) ≈ f(x− h)− 2f(x) + f(x+ h)

h2
.

Assume the function values are given at the equally spaced grid points xk =
a+ kh for some grid spacing, h. Using the estimate

max
xk≤x≤xk+1

|f ′′(x)| ≈

max

{
f(xk−1)− 2f(xk) + f(xk+1)

h2
,
f(xk)− 2f(xk+1) + f(xk+2)

h2

}
to approximate the derivative upper bound, estimate the error made in using
linear interpolation to approximate each of the following values of Γ(x), based
on the same table as in the previous problem.

(a) Γ(1.290) = 0.8990415863;
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(b) Γ(1.579) = 0.8913230181;
(c) Γ(1.456) = 0.8856168100;
(d) Γ(1.314) = 0.8954464400;
(e) Γ(1.713) = 0.9111663772.

Solution: We do Part (d), only. This is a “two-stage” problem. First, we
compute an approximate value for Γ(1.314) using linear interpolation. Then
we estimate the error using the suggested device for approximating the second
derivative.

The interpolation is straight-forward:

p1(x) =

(
x− 1.3

1.4− 1.3

)
(0.8872638175) +

(
1.4− x

1.4− 1.3

)
(0.8974706963),

so that

Γ(1.314) ≈ p1(1.314) =

(
0.014

.1

)
(0.8872638175)

+

(
0.086

.1

)
(0.8974706963)

= 0.8960417333.

Now, the error is bounded according to

|Γ(x)− p1(x)| ≤ 1

8
(x1 − x0)2 max |(Γ(t))′′|

where the maximum is taken over the interval [x0, x1]. We don’t have a formula
for Γ(x), so we can’t get one for the second derivative. But we do have the
approximation (for any function)

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2

so we use this to estimate the second derivative of Γ(x):

Γ′′(1.3) ≈ 0.8872638175− 2(0.8974706963) + 0.9181687424

0.01
= 1.049...

Γ′′(1.4) ≈ 0.8862269255− 2(0.8872638175) + 0.8974706963

0.01
= 0.917...

max |Γ′′(t)| ≈ max{1.049..., 0.917...} = 1.049...

Therefore the estimate on the error is

|Γ(1.314)− p1(1.314)| ≤ 1

8
(0.1)2(1.049...) = 0.00131...

According to MATLAB, the exact value (to 15 places) is

Γ(1.314) = 0.89544644002887,
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so our interpolation error is −5.95 × 10−4, so our estimate is a tad high, but
certainly it is within the range of acceptable estimation.

4. Construct a linear interpolating polynomial to the function f(x) = x−1 using
x0 = 1

2 and x1 = 1 as the nodes. What is the upper bound on the error over
the interval [ 12 , 1], according to the error estimate?

5. Repeat the above for f(x) =
√
x, using the interval [ 14 , 1].

Solution: The polynomial is

p1(x) =
x− 1/4

1− 1/4
(1) +

1− x
1− 1/4

(1/2) = (2x+ 1)/3.

The error bound is given by

|f(x)− p1(x)| ≤ 1

8
(3/4)2 max

t∈[1/4,1]
|(−1/4)t−3/2|

= (9/128)× (1/4)× (1/4)−3/2 = 9/64 = 0.140625.

This is again a conservative estimate, since a simple plot of the difference√
x− p1(x) shows that the maximum absolute error is about 0.04.

6. Repeat the above for f(x) = x1/3, using the interval [ 18 , 1].

7. If we want to use linear interpolation to the sine function and obtain an accuracy
of 10−6, how close together do the entries in the table have to be? What if we
change the error criterion to 10−3?

Solution: This amounts to asking how small does x1−x0 have to be to make
the upper bound in the error estimate less than the specified tolerance. For
convenience set h = x1 − x0. We have, then, for f(x) = sinx,

|f(x)− p1(x)| ≤ 1

8
h2(1)

so that making the error less than 10−6 requires taking h ≤
√

8 × 10−3 =
.2828427124e−2. For an error less than 10−3 we need h ≤ .8944271912e−1.

8. Repeat the above for f(x) = tanx, for x ∈ [−π/4, π/4].

9. If we try to approximate the logarithm by using a table of logarithm entries,
together with linear interpolation, to construct the approximation to ln(1 + x)
over the interval [− 1

2 , 0], how many points are required to get an approximation
that is accurate to within 10−14?

Solution: The error estimate is

|f(x)− p1(x)| ≤ 1

8
h2 max

t∈[−1/2,1]
| − 1/(1 + t)2| = 1

8
h2(4) = h2/2.
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So we require h ≤ .1414213562e− 6 for 10−14 accuracy; this means we need
n = (1/2)/h ≈ 3.5× 106 points.

10. Construct a piecewise linear approximation to f(x) =
√
x over the interval

[ 14 , 1] using the nodes 1
4 ,

9
16 , 1. What is the maximum error in this approxima-

tion?

11. Repeat the above for f(x) = x1/3 over the interval [ 18 , 1], using the nodes
1
8 ,

27
64 , 1.

Solution: The polynomials are

Q1(x) =
x− 1/8

27/64− 1/8
(3/4) +

27/64− x
27/64− 1/8

(1/2) = (32x+ 15)/38,

Q2(x) = (16x+ 21)/37.

The maximum errors are given by

|f(x)−Q1(x)| ≤ 1

8
(19/64)2 max

t∈[1/8,27/64]
|(−2/9)t−5/3|

=
361

32768
× 2

9
× 32 =

361

4608
= .7834201389e− 1

and

|f(x)−Q2(x)| ≤ 1

8
(37/64)2 max

t∈[27/64,1]
|(−2/9)t−5/3|

=
1369

32768
× 2

9
× 1024

243
=

1369

34992
= .3912322817e− 1,

so the overall error bound is about 0.078.

/ • • • .

2.5 APPLICATION — THE TRAPEZOID RULE

Exercises:

1. Use the trapezoid rule with h = 1
4 to approximate the integral

I =

∫ 1

0

x3dx =
1

4
.

You should get that T4 = 17/64. How small does h have to be to get that the
error is less than 10−3? 10−6?
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2. Use the trapezoid rule and h = π/4 to approximate the integral

I =

∫ π/2

0

sinxdx = 1.

How small does h have to be to get that the error is less than 10−3? 10−6?

3. Repeat the above with h = π/5.

4. Apply the trapezoid rule with h = 1
8 , to approximate the integral

I =

∫ 1

0

1√
1 + x4

dx = 0.92703733865069.

How small does h have to be to get that the error is less than 10−3? 10−6?

Solution: It’s a fairly direct (if tedious) computation to get

T8 =
1/8

2

(
1√

1 + 04
+

2√
1 + (1/8)4

+
2√

1 + (2/8)4

+
2√

1 + (3/8)4
+

2√
1 + (4/8)4

+
2√

1 + (5/8)4
+

2√
1 + (6/8)4

+
2√

1 + (7/8)4
+

1√
1 + 14

)

=
1

16
(1 + 1.99975590406939 + 1.99610515696578

+1.98051315767607 + 1.94028500029066 + 1.86291469895924

+1.74315107424910 + 1.58801110913806 + 0.70710678118655)

= 0.92611518015843

Now, for the accuracy, we have

|I(f)− Tn(f)| = b− a
12

h2|f ′′(ξh)|.

The second derivative is

f ′′(x) =
6x2(x4 − 1)

(1 + x4)5/2
,

and we can bound this (for all x ∈ [0, 1]) as follows

|f ′′(x)| ≤
∣∣6(x4 − 1)

∣∣ ≤ 6.

A better upper bound would come from

|f ′′(x)| ≤
∣∣6x2(x4 − 1)

∣∣ ≤ 2.31...
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Therefore, to get 10−3 accuracy requires (using the weaker upper bound)

h ≤
√

(12/6)× 10−3 = 0.0447...

To get 10−6 accuracy requires

h ≤
√

(12/6)× 10−6 = 0.00141...

5. Apply the trapezoid rule with h = 1
8 , to approximate the integral

I =

∫ 1

0

x(1− x2)dx =
1

4
.

Feel free to use a computer program or a calculator, as you wish. How small
does h have to be to get that the error is less than 10−3? 10−6?

Solution: The approximation is T8(f) = .2460937500. The error bound
gives us

|I(f)− Tn(f)| ≤ (1/12)h2 max
t∈[0,1]

| − 6t| = h2/2,

so we requireh ≤ .4472135955e−1 for 10−3 accuracy, andh ≤ .1414213562e
−2 for 10−6 accuracy.

6. Apply the trapezoid rule with h = 1
8 , to approximate the integral

I =

∫ 1

0

ln(1 + x)dx = 2 ln 2− 1.

How small does h have to be to get that the error is less than 10−3? 10−6?

Solution: The approximation is T8(f) = .3856439099. The error bound
yields

|I(f)− Tn(f)| ≤ (1/12)h2 max
t∈[0,1]

| − 1/(1 + t)2| = h2/12,

so we need h ≤ .1095445115 to get 10−3 accuracy, and h ≤ .3464101615e
−2 to get 10−6 accuracy.

7. Apply the trapezoid rule with h = 1
8 , to approximate the integral

I =

∫ 1

0

1

1 + x3
dx =

1

3
ln 2 +

1

9

√
3π.

How small does h have to be to get that the error is less than 10−3? 10−6?

8. Apply the trapezoid rule with h = 1
8 , to approximate the integral

I =

∫ 2

1

e−x
2

dx = 0.1352572580.
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How small does h have to be to get that the error is less than 10−3? 10−6?

Solution: We have

I8 =
1/8

2

(
e−1 + 2e−(81/64) + 2e−(100/64) + 2e−(121/64) + 2e−(144/64)

+ 2e−(169/64) + 2e−(196/64) + 2e−(225/64) + e−(256/64)
)

=
1

16
(0.56412590338763 + 0.41922277430220 + 0.30195483691183

+ 0.21079844912373 + 0.14263336539552 + 0.09354124476792

+ 0.05945843277232)

= 0.13612063042008.

To get the accuracy, we note that

f ′′(x) = (4x2 − 2)e−x
2

,

so that, over the interval [1, 2],

|f ′′(x)| ≤ |4x2 − 2|e−1 ≤ (16 + 2)e−1 = 18e−1 = 6.62...

Therefore, to get an error less than 10−3 we take h to satisfy

h ≤
√

(12/6.62)× 10−3 = 0.0426...

To get an error less than 10−6 we take h to satisfy

h ≤
√

(12/6.62)× 10−6 = 0.00135...

9. Let I8 denote the value you obtained in the previous problem. Repeat the
computation, this time using h = 1

4 , and call this approximate value I4. Then
compute

IR = (4I8 − I4)/3

and compare this to the given exact value of the integral.

10. Repeat the above for the integral

I =

∫ 1

0

1

1 + x3
dx =

1

3
ln 2 +

1

9

√
3π.

Solution: We get
I4 = .8317002443,

I8 = .8346696206,

and
IR = .8356594123.
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The exact value is I(f) = .8356488485, so we see that IR is much more
accurate than either of the trapezoid rule values.

11. For each integral below, write a program to do the trapezoid rule using the
sequence of mesh sizes h = 1

2 (b − a), 14 (b − a), 18 (b − a), . . . , 1
128 (b − a),

where b− a is the length of the given interval. Verify that the expected rate of
decrease of the error is obtained.

(a) f(x) = x2e−x, [0, 2],I(f) = 2− 10e−2 = 0.646647168;

(b) f(x) = 1/(1 + 25x2), [0, 1], I(f) = 1
5 arctan(5);

(c) f(x) =
√

1− x2, [−1, 1], I(f) = π/2;

(d) f(x) = lnx, [1, 3], I(f) = 3 ln 3− 2 = 1.295836867;

(e) f(x) = x5/2, [0, 1], I(f) = 2/7;

(f) f(x) = e−x sin(4x), [0, π], I(f) = 4
17 (1− e−π) = 0.2251261368.

12. For each integral in Problem 11, how small does h have to be to get accuracy,
according to the error theory, of at least 10−3? 10−6?

Solution: For the single case of (d), since f(x) = lnx, we have f ′′(x) =
−1/x2, so

|f ′′(x)| ≤ 1

for all x on [1, 3]. We therefore have

|I(f)− Tn(f)| ≤ b− a
12

h2|f ′′(ξh)| ≤ 1

6
h2.

We therefore get 10−3 accuracy by imposing 1
6h

2 ≤ 10−3 which implies
h ≤ 0.077... For 10−6 accuracy we have h ≤ 0.0024...

13. Apply the trapezoid rule to the integral

I =

∫ 1

0

√
xdx =

2

3

using a sequence of uniform grids with h = 1
2 ,

1
4 , . . .. Do we get the expected

rate of convergence? Explain.

14. The length of a curve y = g(x), for x between a and b, is given by the integral

L(g) =

∫ b

a

√
1 + [g′(x)]

2
dx.

Use the trapezoid rule with h = π/4 and h = π/16 to find the length of one
“arch” of the sine curve.

Solution: We get
L(sin) ≈ 3.819943644
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(using h = π/4), and
L(sin) ≈ 3.820197788

(using h = π/16).

15. Use the trapezoid rule to find the length of the logarithm curve between a = 1
and b = e, using n = 4 and n = 16.

16. What should h be to guarantee an accuracy of 10−8 when using the trapezoid
rule for each of the following integrals.

(a)

I(f) =

∫ 1

0

e−x
2

dx;

Solution: The error bound gives us

|I(f) − Tn(f)| ≤ (1/12)h2 max
t∈[0,1]

|(4t2 − 2)e−t
2

| ≤ (h2/12)(2)(1) =

h2/6,

so we require h ≤ .2449489743e− 3.

(b)

I(f) =

∫ 3

1

lnxdx;

Solution: The error bound gives us

|I(f)− Tn(f)| ≤ (2/12)h2 max
t∈[1,3]

| − 1/t2| ≤ (h2/6)(1) = h2/6

so we require h ≤ .2449489743e− 3.

(c)

I(f) =

∫ 5

−5

1

1 + x2
dx;

Solution: The error bound gives us

|I(f)− Tn(f)| ≤ (10/12)h2 max
t∈[−5,5]

|(6x2 − 2)/(x2 + 1)3|

≤ (5h2/6)(2) = 5h2/3

so we require h ≤ .7745966692e− 4.

(d)

I(f) =

∫ 1

0

cos(πx/2)dx.

Solution: The error bound gives us

|I(f)− Tn(f)| ≤ (1/12)h2 max
t∈[0,1]

| − (π/2)2 cos(πx/2)| ≤ π2h2/48
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so we require h ≤ .2205315581e− 3.

17. Since the natural logarithm is defined as an integral,

lnx =

∫ x

1

1

t
dt (2.3)

it is possible to use the trapezoid rule (or any other numerical integration rule)
to construct approximations to lnx.

(a) Show that using the trapezoid rule on the integral (2.3) results in the series
approximation (for x ∈ [1, 2])

lnx ≈ x2 − 1

2nx
+
n−1∑
k=1

x− 1

n+ k(x− 1)
.

Hint: What are a and b in the integral defining the logarithm?

(b) How many terms are needed in this approximation to get an error of less
than 10−8 for all x ∈ [1, 2]? How many terms are needed for an error of
less than 10−15 over the same interval?

(c) Implement this series for a predicted accuracy of 10−8 and compare it
to the intrinsic natural logarithm function on your computer, over the
interval [1, 2]. Is the expected accuracy achieved?

(d) If we were only interested in the interval [1, 3/2], how many terms would
be needed for the accuracy specified in (b)?

(e) Is it possible to reduce the computation of lnx for all x > 0 to the
computation of ln z for z ∈ [1, 3/2]? Explain.

18. How small must h be to compute the error function,

erf(x) =
2√
π

∫ x

0

e−t
2

dt,

using the trapezoid rule, to within 10−8 accuracy for all x ∈ [0, 1]?

Solution: The error estimate implies that

|erf(x)− Tn| ≤ (x/12)h2 max
t∈[0,1]

|(2/
√
π(4t2 − 2)e−t

2

| ≤ xh2√
π

where h = x/n and we have used a very crude upper bound on the second
derivative. Since we want to achieve the specified accuracy for all x ∈ [0, 1],
we use x = 1 (since this maximizes the upper bound) and therefore solve the
inequality

h2√
π
≤ 10−8
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to get h ≤ .1331335364e− 3.

19. Use the data in Table 2.8 to compute

I =

∫ 2

1

Γ(x)dx

using h = 0.2 and h = 0.1.

20. Use the data in Table 2.7 to compute

I =

∫ 1

0

erf(x)dx

using h = 0.2 and h = 0.1.

Solution: Using h = 0.2 we get∫ 1

0

erf(x)dx ≈ .4836804793;

using h = 0.1 we get ∫ 1

0

erf(x)dx ≈ .4854701356.

21. Show that the trapezoid rule is exact for all linear polynomials.

22. Prove Theorem 2.4.

Solution: Let hi = xi − xi−1; then we can apply Theorem 2.2 to get that

I(f)− Tn(f) =
n∑
i=1

−h3i
12

f ′′(ξi),

where ξi ∈ [xi−1, xi]. Therefore,

|I(f)− Tn(f)| ≤

(
n∑
i=1

h3i
12

)
max
x∈[a,b]

|f ′′(x)|

=

(
n∑
i=1

h2i (xi − xi−1)

12

)
max
x∈[a,b]

|f ′′(x)|

≤ h2

12

(
n∑
i=1

(xi − xi−1)

)
max
x∈[a,b]

|f ′′(x)|

=
h2(b− a)

12
max
x∈[a,b]

|f ′′(x)|.
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23. Extend the discussion on stability to include changes in the interval of integra-
tion instead of changes in the function. State and prove a theorem that bounds
the change in the trapezoid rule approximation to

I(f) =

∫ b

a

f(x)dx

when the upper limit of integration changes from b to b+ ε, but f remains the
same.

24. Consider a function f̃(x) which is the floating point representation of f(x); thus
f−f̃ is the rounding error in computing f . If we assume that |f(x)−f̃(x)| ≤ ε
for all x, show that

|Tn(f)− Tn(f̃)| ≤ ε(b− a).

What does this say about the effects of rounding error on the trapezoid rule?

Solution:

Tn(f)− Tn(f̃) = (h/2)
n∑
i=1

(
f(xi)− f̃(xi) + f(xi−1)− f̃(xi−1)

)
,

so

|Tn(f)− Tn(f̃)|leq(h/2)
n∑
i=1

(e(xi) + e(xi−1))) ,

where e(x) = f(x)− f̃(x). The result follows by simple manipulation.

/ • • • .

2.6 SOLUTION OF TRIDIAGONAL LINEAR SYSTEMS

Exercises:

1. Use the tridiagonal algorithm in this section to compute the solution to the
following system of equations:

4 2 0 0

1 4 1 0

0 1 4 1

0 0 2 4



x1
x2
x3
x4

 =


π/9√
3/2√
3/2

−π/9

 .
Solution: After the elimination step is completed, the triangular system is

4 2 0 0

0 3.5 1 0

0 0 3.7143 1

0 0 0 3.4615



x1
x2
x3
x4

 =


0.3491

0.7788

0.6435

−0.6956

 .
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and the solution is 
x1
x2
x3
x4

 =


0.0085

0.1575

0.2274

−0.2009

 .
2. Write a computer code to solve the previous problem.

Solution: The following is a MATLAB script that produced the previous
solution

function [delta, f, x] = trisol(l,d,u,b)

n = length(d);

x = zeros(n,1);

for k=2:n

d(k) = d(k) - u(k-1)*l(k)/d(k-1);

b(k) = b(k) - b(k-1)*l(k)/d(k-1);

end

x(n) = b(n)/d(n);

for k=(n-1):(-1):1

x(k) = (b(k) - u(k)*x(k+1))/d(k);

end

delta = d;

f = b;

3. Use the algorithm of this section to solve the following system of equations:
6 1 0 0

2 4 1 0

0 1 4 2

0 0 1 6



x1
x2
x3
x4

 =


8

13

22

27

 .
You should get the solution x = (1, 2, 3, 4)T .

4. Write a computer code to solve the previous problem.

5. The diagonal dominance condition is an example of a sufficient but not nec-
essary condition. That is, the algorithm will often work for systems that are
not diagonally dominant. Show that the following system is not diagonally
dominant, but then use the tridiagonal algorithm in this section to compute the
solution to it: 

1 1
2 0 0

1
2

1
3

1
4 0

0 1
4

1
5

1
6

0 0 1
6

1
7



x1
x2
x3
x4

 =


2

23/12

53/30

15/14

 .
You should get the solution x = (1, 2, 3, 4)T .
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Solution: The matrix fails to be diagonally dominant because of the values
in the second, third, and fourth rows. However, if we apply the algorithm we
get the triangular system

1 1
2 0 0

0 0.0833 1
4 0

0 0 −0.5500 1
6

0 0 0 0.1934



x1
x2
x3
x4

 =


2.0000

0.9167

−0.9833

0.7734

 ,
and then the correct values for the solution, x.

6. Use the tridiagonal algorithm in this section to compute the solution to the
following system of equations:

1 1
2 0 0

1
2

1
3

1
4 0

0 1
4

1
5

1
6

0 0 1
6

1
7



x1
x2
x3
x4

 =


2

2

53/30

15/14

 .
Note that this is a very small change from the previous problem, since the only
difference is that b2 has changed by only 1/12. How much has the answer
changed?

Solution: The solution is now
x1
x2
x3
x4

 =


1.0037

1.9925

3.3358

3.6082

 .
Considering the small change in the problem, this is a substantial change in the
solution.

7. Write a computer code to do the previous two problems.

8. Verify that the following system is diagonally dominant and use the algorithm
of this section to find the solution.

1
2

10
21 0 0

1
4

1
3

1
13 0

0 1
5

1
4

1
21

0 0 1
6

1
5



x1
x2
x3
x4

 =


61
42
179
156
563
420
13
10

 .
9. Use the algorithm of this section to find the solution to this system.

1
2

10
21 0 0

1
4

1
3

1
13 0

0 1
5

1
4

1
21

0 0 1
6

1
5



x1
x2
x3
x4

 =


61
42
180
156
563
420
13
10

 .
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Note that the right side here is different from that in the previous problem by
only a small amount in the b2 component. Comment on your results here as
compared to those in the previous problem.

Solution: The solution is now
x1
x2
x3
x4

 =


0.7236

2.2902

2.7240

4.2300

 .
Again, this is a very large change in the solution for so modest a change in the
problem.

10. Write a computer code to do the previous two problems.

11. Write a code that carries out the tridiagonal solution algorithm, and test it on
the following system of equations:

Tx = b

where T is 10× 10 with

tij =


1, |i− j| = 1;

j + 1, i = j;

0, otherwise.

and bi = 1 for all i. Check your results by computing the residual r = b−Tx.
What is the largest component (in absolute value) of r? (You could also check
your results by using MATLAB’s backslash operator to solve the system.)

12. Extend the tridiagonal algorithm to a pentadiagonal matrix, i.e., one with five
non-zero diagonals. Write a program to carry out this solution algorithm, and
apply it to the system

4 2 1 0

1 4 1 1

1 1 4 1

0 1 2 4



x1
x2
x3
x4

 =


1

1

1

1

 .
Check your results by again computing the residual vector, or by using MAT-
LAB’s backslash operation.
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Solution: A MATLAB script for doing this is given below. On the example
in the exercise it returns the (exact) solution x = (1/7, 1/7, 1/7, 1/7)T .

function [delta, f, x] = pentasol(k,l,d,u,v,b)

n = length(d);

x = zeros(n,1);

d(2) = d(2) - l(2)*u(1)/d(1);

u(2) = u(2) - l(2)*v(1)/d(1);

b(2) = b(2) - l(2)*b(1)/d(1);

for j=3:n

l(j) = l(j) - k(3)*u(j-2)/d(j-2);

d(j) = d(j) - k(j)*v(j-2)/d(j-2);

b(j) = b(j) - k(j)*b(j-2)/d(j-2);

d(j) = d(j) - l(j)*u(j-1)/d(j-1);

if j < n

u(j) = u(j) - l(j)*v(j-1)/d(j-1);

end

b(j) = b(j) - l(j)*b(j-1)/d(j-1);

end

delta = d;

f = b;

x = f;

%

x(n) = f(n)/d(n);

x(n-1) = (b(n-1) - u(n-1)*x(n))/d(n-1);

for j=(n-2):(-1):1

x(j) = (b(j) - u(j)*x(j+1) - v(j)*x(j+2))/d(j)

end

13. Consider the family of tridiagonal problems defined by the matrixKn ∈ Rn×n,
with

Kn = tridiag(−1, 2,−1)

and a randomly defined right-hand side vector. (Use rand to generate the
random vectors.) Solve the system over the range 4 ≤ n ≤ 100; use the flops
command to estimate the number of operations required for each case, and plot
the result as a function of n.

Solution: You should get a nearly perfect straight line graph, since the cost
is linear in the problem size.

/ • • • .
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2.7 APPLICATION: SIMPLE TWO-POINT BOUNDARY VALUE
PROBLEMS

Exercises:

1. Solve, by hand, the two-point BVP (2.28)-(2.29) when f(x) = x, using h = 1
4 .

Write out the linear system explicitly prior to solution. You should get the
following 3× 3 system: 2.0625 −1 0

−1 2.0625 −1

0 −1 2.0625

 U1

U2

U3

 =

 0.015625

0.03125

0.046875



Solution: The approximate solution is U1

U2

U3

 =

 0.0349

0.0563

0.0500


2. Repeat the above, this time using h = 1

5 . What is the system now?

3. Repeat it again, this time using h = 1
8 . What is the system now? (For this

problem, you probably will want to use a computer code to actually solve the
system.)

Solution: The approximate solution is

U1

U2

U3

U4

U5

U6

U7


=



0.0173

0.0331

0.0459

0.0540

0.0556

0.0486

0.0309


4. Write a program which solves the two-point BVP (2.28) - (2.29) where f is as

given below.

(a) f(x) = 4e−x − 4xe−x, u(x) = x(1− x)e−x;

(b) f(x) = (π2 + 1) sinπx, u(x) = sinπx;

(c) f(x) = π(π sinπx+ 2 cosπx)e−x, u(x) = e−x sinπx;

(d) f(x) = 3− 1
x − (x2 − x− 2) log x, u(x) = x(1− x) log x.
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The exact solutions are as given. Using h−1 = 4, 8, 16, . . ., do we get the same
kind of accuracy as in Table 2.10? Explain why or why not.

Solution: The approximate solutions will display the kind ofO(h2) accuracy
suggested in the text, except for (d); in this case the singularity in the logarithm
function in the solution affects the accuracy of the approximation.

5. Try to apply the ideas of this section to approximating the solution of the two
point boundary value problem

−u′′ + u′ + u = 1, x ∈ [0, 1]

u(0) = 0, u(1) = 0.

Can we get a tridiagonal system that Algorithm 2.6 can be applied to? Hint:
Consider some of the approximations from 2.2; use the most accurate ones
that can be easily used.

Solution: Use the approximation

u′(x) ≈ u(x+ h)− u(x− h)

2h

to construct the approximation. Using the approximation

u′(x) ≈ u(x+ h)− u(x)

h

will result in a loss of accuracy.

6. Solve the two point boundary value problem problem

−u′′ + 64u′ + u = 1, x ∈ [0, 1]

u(0) = 0, u(1) = 0,

using a range of mesh sizes, starting with h = 1/4, 1/8, and going as far as
h = 1/256. Comment on your results.

Solution: For larger values of h, the approximate solution is erratic and
wildly oscillatory. It isn’t until about h ≤ 32 or so that the solution begins to
settle down.

7. Generalize the solution of the two point boundary value problem to the case
where u(0) = g0 6= 0 and u(1) = g1 6= 0. Apply this to the solution of the
problem

−u′′ + u = 0, x ∈ [0, 1]

u(0) = 2, u(1) = 1
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which has exact solution

u(x) =

(
e− 2

e2 − 1

)
ex +

(
2e− 1

e2 − 1

)
e−x.

Solve this for a range of values of the mesh. Do we get the expected O(h2)
accuracy?

8. Consider the problem of determining the deflection of a thin beam, supported
at both ends, due to a uniform load being placed along the beam. In one simple
model, the deflection u(x) as a function of position x along the beam satisfies
the boundary value problem

−u′′ + pu = qx(L− x), 0 < x < L;

u(0) = u(L) = 0.

Here p is a constant that depends on the material properties of the beam, L is
the length of the beam, and q depends on the material properties of the beam
as well as the size of the load placed on the beam. For a six foot long beam,
with p = 7× 10−6 and q = 4× 10−7, what is the maximum deflection of the
beam? Use a fine enough grid that you can be confident of the accuracy of
your results. Note that this problem is slightly more general than our example
(2.28)-(2.29); you will have to adapt our method to this more general case.

Solution: See Figure 2.5.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10−5

Figure 2.5 Exact solution for Exercise 2.7.8.

9. Repeat the above problem, except this time use a three foot long beam. How
much does the maximum deflection change, and is it larger or smaller?

10. Repeat the beam problem again, but this time use a 12 foot long beam.

11. Try to apply the ideas of this section to the solution of the nonlinear boundary
value problem defined by

−u′′ + eu = 0, 0 < x < 1;

u(0) = u(1) = 0.
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Write out the systems of equations for the specific case of h = 1
4 . What goes

wrong? Why can’t we proceed with the approximate solution?

Solution: The problem is that the system of equations that is produced by the
discretization process is nonlinear, so our inherently linear algorithm won’t
work.

/ • • • .



CHAPTER 3

ROOT-FINDING

3.1 THE BISECTION METHOD

Exercises:

1. Do three iterations (by hand) of the bisection method, applied to f(x) = x3−2,
using a = 0 and b = 2.

Solution: We have f(a) = −2, f(b) = 6. The first iteration gives us

c = 1, f(c) = −1,

so the new interval is [a, b] = [1, 2]. The second iteration then gives us

c = 3/2, f(c) = 11/8,

so the new interval is [a, b] = [1, 3/2]. Finally, the third iteration then gives us

c = 5/4, f(c) = −3/64,

so the new interval is [a, b] = [5/4, 3/2].

Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis,
Second Edition. By James F. Epperson
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2. For each of the functions listed below, do a calculation by hand (i.e., with a
calculator) to find the root to an accuracy of 0.1. This will take at most 5
iterations for all of these, and fewer for several of them.

(a) f(x) = x− e−x2

, [a, b] = [0, 1];

(b) f(x) = lnx+ x, [a, b] = [ 1
10 , 1];

(c) f(x) = x3 − 3, [a, b] = [0, 3];

(d) f(x) = x6 − x− 1, [a, b] = [0, 2];

(e) f(x) = 3− 2x, [a, b] = [0, 2];

3. Write a program which uses the bisection method to find the root of a given
function on a given interval, and apply this program to find the roots of the
functions below on the indicated intervals. Use the relationship (3.2) to de-
termine a priori the number of steps necessary for the root to be accurate to
within 10−6.

(a) f(x) = x3 − 2, [a, b] = [0, 2];

(b) f(x) = ex − 2, [a, b] = [0, 1];

(c) f(x) = x− e−x, [a, b] = [0, 1];

(d) f(x) = x6 − x− 1, [a, b] = [0, 2];

(e) f(x) = x3 − 2x− 5, [a, b] = [0, 3];

(f) f(x) = 1− 2xe−x/2, [a, b] = [0, 2];

(g) f(x) = 5− x−1, [a, b] = [0.1, 0.25];

(h) f(x) = x2 − sinx, [a, b] = [0.1, π].

Solution: The solutions for some of the functions in this list are given in Table
3.1. For the sake of brevity we give only the number of iterations required plus
the final answer.

Table 3.1 Solutions to Problem 3.1.3

f(x) n c

ex − 2 20 0.69314670562744
x3 − 2x− 5 22 2.09455132484436
x2 − sinx 22 0.87672686579500

4. Use the bisection algorithm to solve the nonlinear equation x = cosx. Choose
your own initial interval by some judicious experimentation with a calculator.

5. Use the bisection algorithm to solve the nonlinear equation x = exp−x. Again,
choose your own initial interval by some judicious experimentation with a
calculator.
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6. If you borrow L dollars at an annual interest rate of r, for a period of m years,
then the size of the monthly payment, M , is given by the annuity equation

L =
12M

r
[1− (1 + (r/12)−12m].

The author needs to borrow $150,000 to buy the new house that he wants, and
he can only afford to pay $600 per month. Assuming a 30 year mortgage,
use the bisection method to determine what interest rate he can afford to pay.
(Should the author perhaps find some rich relatives to help him out here?)

Solution: This amounts to a root-finding problem for

f(r) = L− 12M

r
[1− (1 + (r/12)−12m]

where L = 150, M = 0.6, and m = 30. The interest rate turns out to be
r = 0.02593381500244, or, about 2.6%. The author is already checking for a
rich relative.

7. What is the interest rate that the author can afford if he only has to borrow
$100,000?

8. Consider the problem of modeling the position of the liquid-solid boundary
in a substance that is melting due to the application of heat at one end. In a
simplified model,2 if the initial position of the interface is taken to be x = 0,
then the interface moves according to

x = 2β
√
t

where β satisfies the nonlinear equation

(TM − T0)k

λ
√
π

e−β
2/k = βerf(β/

√
k).

Here TM is the melting temperature (absolute scale), T0 < TM is the applied
temperature, k and λ are parameters dependent on the material properties of
the substance involved, and erf(z) is the error function defined by

erf(z) =
2√
π

∫ z

0

e−t
2

dt.

MATLAB has an intrinsic error function, erf. If you are not using MATLAB,
the error function can be accurately approximated by

E(z) = 1− (a1ξ + a2ξ
2 + a3ξ

3)e−z
2

2See L.I. Rubinstein, The Stefan Problem, American Mathematical Society, Providence, RI, 1971.
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where ξ = 1/(1 + pz) and

p = 0.47047, a1 = 0.3480242, a2 = −0.0958798, a3 = 0.747856.

(a) Show that findingβ is equivalent to finding the rootα of the one-parameter
family of functions defined by

f(z) = θe−z
2

− zerf(z). (3.1)

What is θ? How is α related to β?

(b) Find the value of α corresponding to θ = 0.001, 0.1, 10, 1000. Use the
bisection method, and E(z) to approximate the error function.

Solution:

(a) Make the change of variable z = β/
√
k, θ = (TM − T0)k/λ

√
π.

(b) For θ = 0.001, α = 0.0297; for θ = 0.1, α = 0.2895; for θ = 10,
α = 1.4149; for θ = 1000, α = 2.4519.

9. A variation on the bisection method is known as regula falsi, or, the method
of false position. Given an interval [a, b], with f(a)f(b) < 0, the new point c
is defined by finding where the straight line connecting (a, f(a)) and (b, f(b))
crosses the axis. Show that this yields

c = b− f(b)(b− a)/(f(b)− f(a)).

10. Do three iterations (by hand) of regula-falsi (see Problem 9), applied to f(x) =
x3 − 2, using a = 0 and b = 2. Compare to your results for Problem 1.

Solution: Regula-falsi produces the results shown in Table 3.2. Note that
after three iterations, the interval is reduced to [1.0696, 2], whereas bisection
would have reduced the interval to [1.25, 1.50], which is shorter. Thus bisection
appears to be superior to regula-falsi, at least on this example.

Table 3.2 Solutions to Problem 3.1.10

c f(c) a b

0.5000 -1.8750 0.5000 2.0000
0.8571 -1.3703 0.8571 2.0000
1.0696 -0.7763 1.0696 2.0000

11. Modify the bisection algorithm to perform regula falsi (see Problem 9), and
use the new method to find the same roots as in Problem 3. Stop the program
when the difference between consecutive iterates is less than 10−6, i.e., when
|xk+1 − xk| ≤ 10−6, or when the function value satisfies |f(ck)| ≤ 10−6.
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12. Repeat Problem 8(b), using your regula-falsi program.

Solution: Regula-falsi finds the same values as bisection, but more slowly.

13. The bisection method will always cut the interval of uncertainty in half, but
regula falsi might cut the interval by less, or might cut it by more. Do both
bisection and regula falsi on the function f(x) = e−4x − 1

10 , using the initial
interval [0, 5]. Which one gets to the root the fastest?

14. Apply both bisection and regula-falsi to the following functions on the indicated
intervals. Comment on your results in the light of how the methods are
supposed to behave.

(a) f(x) = 1/(x− 1), [a, b] = [0, 3];

(b) f(x) = 1/(x2 + 1), [a, b] = [0, 5].

Solution: This is kind of a trick question. Neither function has a root on the
interval in question, but both methods will try to find it. Regula falsi lands on
the singularity for f(x) = 1/(x − 1), but bisection doesn’t, so keeps happily
computing away.

/ • • • .

3.2 NEWTON’S METHOD: DERIVATION AND EXAMPLES

Exercises:

1. Write down Newton’s method as applied to the function f(x) = x3 − 2.
Simplify the computation as much as possible. What has been accomplished
if we find the root of this function?

Solution:

xn+1 = xn −
f(xn)

f ′(xn)

= xn −
(
x3n − 2

3x2n

)
= (2/3)(xn + (1/x2n)).

When we find the root of this function, we have found 21/3, the cube root of 2.

2. Write down Newton’s method as applied to the function f(x) = x2 − 2.
Simplify the computation as much as possible. What has been accomplished
if we find the root of this function?
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3. Generalize the preceeding two problems by writing down Newton’s method as
applied to f(x) = xn − a.

Solution:

xn+1 = xn −
f(xn)

f ′(xn)

= xn −
(
xNn − a
NxN−1n

)
= (1/N)((N − 1)xn + (1/xN−1n )).

When we find the root of this function, we have found a1/N , theN th root of a.

4. Write down Newton’s method as applied to the function f(x) = a − x−1.
Simplify the resulting computation as much as possible. What has been ac-
complished if we find the root of this function?

5. Do three iterations of Newton’s method (by hand) for each of the following
functions:

(a) f(x) = x6 − x− 1, x0 = 1;

Solution: We get:

x1 = 1− f(1)/f ′(1) = 1− −1

5
= 1.2;

x2 = 1.2− f(1.2)/f ′(1.2) = 1− 0.785984

13.92992
= 1.143575843;

x3 = 1.143575843− f(1.143575843)/f ′(1.143575843)

= 1.143575843− 0.93031963

10.73481139
= 1.134909462.

(b) f(x) = x+ tanx, x0 = 3;

(c) f(x) = 1− 2xe−x/2, x0 = 0;

(d) f(x) = 5− x−1, x0 = 1
2 ;

(e) f(x) = x2 − sinx, x0 = 1
2 ;

(f) f(x) = x3 − 2x− 5, x0 = 2;

Solution: We get:

x1 = 2− f(2)/f ′(2) = 2.1;

x2 = 2.1− f(2.1)/f ′(2.1) = 2.094568121;

x3 = 2.094568121− f(2.094568121)/f ′(2.094568121)

= 2.094551482;
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(g) f(x) = ex − 2, x0 = 1;

Solution: We get:

x1 = 1− f(1)/f ′(1) = .7357588825;

x2 = .7357588825− f(.7357588825)/f ′(1.7357588825)

= .6940422999;

x3 = .6940422999− f(.6940422999)/f ′(.6940422999)

= .6931475811;

(h) f(x) = x3 − 2, x0 = 1;

Solution: We get:

x1 = 1− f(1)/f ′(1) = 1.333333333;

x2 = 1.333333333− f(1.333333333)/f ′(1.333333333)

= 1.263888889;

x3 = 1.263888889− f(1.263888889)/f ′(1.263888889)

= 1.259933493;

(i) f(x) = x− e−x, x0 = 1;

Solution: We get:

x1 = 1− f(1)/f ′(1) = .5378828427;

x2 = .5378828427− f(.5378828427)/f ′(.5378828427)

= .5669869914;

x3 = .5669869914− f(.5669869914)/f ′(.5669869914)

= .5671432860;

(j) f(x) = 2− x−1 lnx, x0 = 1
3 .

6. Do three iterations of Newton’s method for f(x) = 3 − ex, using x0 = 1.
Repeat, using x0 = 2, 4, 8, 16. Comment on your results.

7. Draw the graph of a single function f which satisfies all of the following:

(a) f is defined and differentiable for all x;

(b) There is a unique root α > 0;

(c) Newton’s method will converge for any x0 > α;

(d) Newton’s method will diverge for all x0 < 0.

Note that the requirement here is to find a single function that satisfies all of
these conditions.
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Figure 3.1 Solution for Problem 3.2.7

Solution: Figure 3.1 shows a possible solution.

8. Draw the graph of a single function f which satisfies all of the following:

(a) f is defined and differentiable for all x;

(b) There is a single root α ∈ [a, b], for some interval [a, b];

(c) There is a second root, β < a;

(d) Newton’s method will converge to α for all x0 ∈ [a, b];

(e) Newton’s method will converge to β for all x0 ≤ β.

Note that the requirement here, again, is to find a single function that satisfies
all of these conditions.

9. Write down Newton’s method for finding the root of the arctangent function.
From this formulate an equation which must be satisfied by the value x = β,
in order to have the Newton iteration cycle back and forth between β and −β.
Hint: If xn = β, and Newton’s method is supposed to give us xn+1 = −β,
what is an equation satisfied by β?

Solution: Newton’s method applied to the arctangent function is

xn+1 = xn − (x2n + 1)(arctanxn).

What we want to happen is that x0 = β leads to x1 = −β. This means we
have

−β = β − (β2 + 1)(arctanβ),
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or,

2β − (β2 + 1)(arctanβ) = 0.

Graphing this function shows three roots: one at β = 0, and two at β ≈ ±1.39.
We want one of these last two.

10. Compute the value of β from the previous problem. Hint: Use bisection to
solve the equation for β.

11. Use Newton’s method on the computer of your choice to compute the root
α = 0 of the arctangent function. Use the value of β from the previous
problem as your x0 and comment on your results. Repeat using x0 = β/2 and
x0 = β − ε where ε is O(u).

Solution: Table 3.3 shows the first five iterates using the value of β found
in Problem 10. Note that the iteration is not exactly cycling back and forth
between β and −β. This is because of rounding error in the computation. If
we use x0 = β/2, then the computation converges to the root at x = 0 very
quickly: x3 ≈ 10−7. Taking x0 closer to β only slows down this convergence.
For example, taking x0 = (0.999)β yields x5 ≈ 0.36.

Table 3.3 Solution to Problem 3.2.11

k xk

1 -1.39174467908955
2 1.39174382537168
3 -1.39174157322777
4 1.39173563198669
5 -1.39171995883655

/ • • • .

3.3 HOW TO STOP NEWTON’S METHOD

Exercises:

1. Under the assumption that f ′(α) 6= 0 and xn → α, prove (3.10); be sure to
provide all the details. Hint: Expand f and f ′ in Taylor series about x = α.
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Solution: We have

Cn =

(
f(xn)

f(xn−1)

)(
f ′(xn−1)

f ′(cn)

)
=

(
f(xn)− f(α)

f(xn−1)− f(α)

)(
f ′(α) + (xn−1 − α)f ′′(ξ3)

f ′(α) + (cn − α)f ′′(ξ4)

)

=

 f(xn)−f(α)
xn−α

f(xn−1)−f(α)
xn−1−α

(f ′(α) + (xn−1 − α)f ′′(ξ3)

f ′(α) + (cn − α)f ′′(ξ4)

)

=

(
f ′(ηn)

f ′(ηn−1)

)(
f ′(α) + (xn−1 − α)f ′′(ξ3)

f ′(α) + (cn − α)f ′′(ξ4)

)

where ηn is between xn and α, ηn−1 is between xn−1 and α, ξ3 is between
xn−1 and α, and ξ4 is between cn and α. Therefore, as n → ∞, we have
ηn → α, ηn−1 → α, ξ3 → α and ξ4 → α. Thus

Cn →
(
f ′(α)

f ′(α)

)(
f ′(α)

f ′(α)

)
= 1,

so long as f ′′ is bounded.

2. We could also stop the iteration when |f(xn)| was sufficiently small. Use
the Mean Value Theorem plus the fact that f(α) = 0 to show that, if f ′ is
continuous and non-zero near α, then there are constants c1 and c2 such that

c1|f(xn)| ≤ |α− xn| ≤ c2|f(xn)|.

Comment on this result.

3. Write a computer program that uses Newton’s method to find the root of a given
function, and apply this program to find the root of the following functions,
using x0 as given. Stop the iteration when the error as estimated by |xn+1−xn|
is less than 10−6. Compare to your results for bisection.

(a) f(x) = 1− 2xe−x/2, x0 = 0;

(b) f(x) = 5− x−1, x0 = 1
2 ;

(c) f(x) = x3 − 2x− 5, x0 = 2;

(d) f(x) = ex − 2, x0 = 1;

(e) f(x) = x− e−x, x0 = 1;

(f) f(x) = x6 − x− 1, x0 = 1;

(g) f(x) = x2 − sinx, x0 = 1
2 ;

(h) f(x) = x3 − 2, x0 = 1;

(i) f(x) = x+ tanx, x0 = 3;
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Table 3.4 Solutions to Problem 3.3.3

f(x) n c

x3 − 2x− 5 4 2.0946
ex − 2 4 0.6931
x6 − x− 1 5 1.1347
x2 − sinx 8 0.8767

(j) f(x) = 2− x−1 lnx, x0 = 1
3 .

Solution: The results, obtained from a mid-range personal computer using
MATLAB, are summarized for some functions in Table 3.4.

4. Figure 3.2 shows the geometry of a planetary orbit3 around the sun. The
position of the sun is given by S, the position of the planet is given by P . Let
x denote the angle defined by P0OA, measured in radians. The dotted line is
a circle concentric to the ellipse and having a radius equal to the major axis of
the ellipse. Let T be the total orbital period of the planet, and let t be the time
required for the planet to go fromA to P . Then Kepler’s equation from orbital
mechanics, relating x and t, is

x− ε sinx =
2πt

T
.

Here ε is the eccentricity of the elliptical orbit (the extent to which it deviates
from a circle). For an orbit of eccentricity ε = 0.01 (roughly equivalent to
that of the Earth), what is the value of x corresponding to t = T/4? What is
the value of x corresponding to t = T/8? Use Newton’s method to solve the
required equation.

Solution: For t = T/4, Newton’s method yielded x = 1.580795827 in 3
iterations; for t = T/8, we get x = .7925194063, also in 3 iterations. Both
computations used x0 = 0.

5. Consider now a highly eccentric orbit, such as that of a comet, for which ε = 0.9
might be appropriate. What is the value of x corresponding to t = T/4? What
is the value of x corresponding to t = T/8?

6. Consider the problem of putting water pipes far enough underground to avoid
frozen pipes should the external temperature suddenly drop. Let T0 be the
initial temperature of the ground, and assume that the external air temperature

3For the background material for this and the next problem, the author is indebted to the interesting new
calculus text by Alexander J. Hahn, Basic Calculus; From Archimedes to Newton to its Role in Science,
published in 1998 by Springer-Verlag.
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Figure 3.2 Orbital geometry for Problems 4 and 5

suddenly drops to a new value T < T0. Then a simple model of how the
underground temperature responds to the change in external temperature tells
us that

u(x, t)− T
T0 − T

= erf

(
x

2
√
at

)
.

Here u(x, t) is the temperature at a depth x feet and time t seconds after the
temperature change, and a is the thermal conductivity of the soil. Suppose that
a = 1.25 × 10−6ft2/sec and that the initial ground temperature is T0 = 40
degrees. How deep must the pipe be buried to guarantee that the temperature
does not reach 32 degrees Fahrenheit for 30 days after a temperature shift to
T = 0 degrees Fahrenheit? If your computing environment does not have an
intrinsic error function, use the approximation presented in Problem 8 of 3.1.

7. In the previous problem, produce a plot of temperature u at depths of 6 feet
and 12 feet, as a function of time (days), in response to a temperature shift of
40 degrees for the following initial temperatures (in degrees Fahrenheit):

(a) T0 = 40;

(b) T0 = 50;

(c) T0 = 60.

Solution: This really is not a root-finding problem. Simply plot

U(t) = u(6, t) = 40 + (T0 − 40)erf

(
6

2
√
at

)
and similarly for u(12, t), over the interval 0 ≤ t ≤ 86, 400. This produces
a plot in which time is measured in seconds; it is an easy change of scale to
convert it to days.
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8. Use Newton’s method to solve Problem 6 from 3.1.

9. Repeat the above, assuming that the mortgage is only 15 years in length.

Solution: This amounts to a root finding problem for

f(r) = L− 12M

r
[1− (1 + (r/12))−12m]

for L = 150, M = 0.6, and m = 15. Newton’s method finds a negative
value of r, which implies that there is no interest rate which meets the specified
conditions.

/ • • • .

3.4 APPLICATION: DIVISION USING NEWTON’S METHOD

Exercises:

1. Test the method derived in this section by using it to approximate 1/0.75 =
1.333..., with x0 as suggested in the text. Don’t write a computer program,
just use a hand calculator.

Solution: We get the following sequence of values:

x1 = 1.312500

x2 = 1.333007812

x3 = 1.333333254

x4 = 1.333333333

x5 = 1.333333333

2. Repeat the above for a = 2/3.

3. Repeat the above for a = 0.6.

Solution: This time we get:

x1 = 1.656

x2 = 1.6665984

x3 = 1.666666664

x4 = 1.666666667
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x5 = 1.666666667

4. Based on the material in this section, write each of the following numbers in
the form

a = b× 2k

where b ∈ [ 12 , 1], and then use Newton’s method to find the reciprocal of b and
hence of a.

(a) a = 7;

Solution: We have
a = (7/8)× 23,

so b = 7/8. Newton’s method produces b−1 = 1.142857143 in four
iterations, therefore a−1 = b−1 × 0.125 = 0.1428571429.

(b) a = π;

(c) a = 6;

(d) a = 5;

Solution: We have
5 = (5/23)× 23 = 5/8× 8,

so b = 5/8 = 0.625. From the text we take

x0 = 3− 2(0.625) = 1.75.

We get the results in Table 3.5. Notice that we converge must faster than
expected, and that we have

1/5 = 1/1.6× 8 = 0.2,

which is the correct result.

Table 3.5 Newton iteration for Problem 4c, Sec. 3.4.

n xn

1 0.158594E+01
2 0.159988E+01
3 0.160000E+01
4 0.160000E+01
5 0.160000E+01
6 0.160000E+01

(e) a = 3.

Solution: We have
a = (3/4)× 22,
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so b = 3/4. Newton’s method produces b−1 = 1.333333333 in four
iterations, therefore a−1 = b−1 × 0.25 = 0.333333333.

Be sure to use the initial value as generated in this section and only do as many
iterations as are necessary for 10−16 accuracy. Compare your values to the
intrinsic reciprocal function on your computer or calculator. Note this can be
done on computer or hand calculator.

5. Test the method derived in this section by writing a computer program to
implement it. Test the program by having it it compute 1/0.75 = 1.333...,
with x0 as suggested in the text, as well as 1/(2/3) = 1.5.

Solution: The following is a MATLAB script that accomplishes the desired
task.

function r = recip(a)

x = 3 - 2*a;

for k=1:6

x = x*(2 - a*x);

end

r = x;

6. How close an initial guess is needed for the method to converge to within a
relative error of 10−14 in only three iterations?

Solution: To get the relative error after 3 iterations less than 10−14, we need
to have ∣∣∣e3

α

∣∣∣ =
(e0
α

)8
≤ 10−14.

Therefore, the initial error |e0| must satisfy

|e0| ≤ α10−14/8 = 10−14/8 = 0.0178.

7. Consider the quadratic polynomial

q2(x) = 4.328427157− 6.058874583x+ 2.745166048x2.

What is the error when we use this to generate the initial guess? How many
steps are required to get 10−20 accuracy? How many operations?

8. Repeat Problem 7, this time with the polynomial

q3(x) = 5.742640783− 12.11948252x+ 11.14228488x2 − 3.767968453x3.

Solution: This time we are looking at the difference

g(x) =
1

x
− q3(x) =

1

x
− 5.742640783 + 12.11948252x− 11.14228488x2

+3.767968453x3.
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The derivative is therefore

g′(x) = (−1/x2) + 12.11948252− 22.28456976x+ 11.30390x2.

Setting this equal to zero and solving leads us to the polynomial equation

−1 + 12.11948252x2 − 22.28456976x3 + 11.30390x4 = 0.

Plotting this shows there are three roots on the interval [1/2, 1]: α1 ≈ 0.56,
α2 ≈ 0.73, and α3 ≈ 0.92. Using Newton’s method to refine each of these
values gives us

α1 = .5621750583, α2 = .7285533588, α3 = .9163783254.

These are our critical points, at which we need to evaluate the error g(x) (along
with the endpoints). We get

g(1/2) = .0025253136

g(1) = .002525310

g(α1) = −.0025253184

g(α2) = .002525312

g(α3) = −.002525321

thus showing that the maximum value of |g(x)|— hence, the maximum value
of the initial error using q3 to compute x0 — is about 0.0025. To get 10−20

accuracy now requires only 3 iterations, and a total of 15 operations, again.

9. Modify your program from Problem 5 to use each of p2, q2, and q3 to compute
1/a for a = 0.75 and a = 0.6. Compare to the values produced by ordinary
division on your computer. (Remember to use Horner’s rule to evaluate the
polynomials!)

10. Modify the numerical method to directly compute the ratio b/a, rather than
just the reciprocal of a. Is the error analysis affected? (Note: Your algorithm
should approximate the ratio b/a without any divisions at all.)

11. Test your modification by using it to compute the value of the ratio 4/5 = 0.8.

/ • • • .
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3.5 THE NEWTON ERROR FORMULA

Exercises:

1. If f is such that |f ′′(x)| ≤ 3 for all x and |f ′(x)| ≥ 1 for all x, and if the initial
error in Newton’s method is less than 1

2 , what is an upper bound on the error
at each of the first three steps? Hint: Use the Newton error formula from this
section.

Solution: We have, from the Newton error formula,

α− xn+1 = − f ′′(ξn
2f ′(xn)

so that, using en = |α− xn|,

e1 ≤ e20
3

2× 1
≤ (1/4)(3/2) = 3/8;

e2 ≤ e21
3

2× 1
≤ (9/64)(3/2) = 27/128;

e3 ≤ e22
3

2× 1
≤ (729/16384)(3/2) = 2187/32768 = 0.0667...

2. If f is now such that |f ′′(x)| ≤ 4 for all x but |f ′(x)| ≥ 2 for all x, and if the
initial error in Newton’s method is less than 1

3 , what is an upper bound on the
error at each of the first three steps?

3. Consider the left-hand column of data in Table 3.6 (Table 3.4 in the text.).
Supposedly this comes from applying Newton’s method to a smooth function
whose derivative does not vanish at the root. Use the limit result (3.14) to
determine whether or not the program is working. Hint: Use α ≈ x7.

Solution: Use α ≈ x7 from the table, and compute values of the ratio

rn =
α− xn+1

(α− xn)2

If the method is converging according to the theory, this ratio should approach
a constant value. For the data in this table we get

r1 = −0.09523809523810, r2 = −0.16122840690979,

r3 = −0.21215771728295, r4 = −0.22329830363589,

r5 = −0.22031852835393

(Because our approximate α is x7 we can’t use r6.) Since these values are
settling down around −0.22 we are confidant that the program is working
properly.
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Table 3.6 Data for Problems 3 and 4.

n xn (Prob. 3) xn (Prob. 4)
0 10.0 0.000000000000
1 5.25 0.626665778573
2 3.1011904761905 0.889216318667
3 2.3567372726442 0.970768039664
4 2.2391572227372 0.992585155212
5 2.2360701085329 0.998139415613
6 2.2360679775008 0.999534421170
7 2.2360679774998 0.999883578197
8 N/A 0.999970892852
9 N/A 0.999992723105

10 N/A 0.999998180783

4. Repeat the previous exercise, using the right-hand column of data in Table 3.6.

5. Apply Newton’s method to find the root of f(x) = 2− ex, for which the exact
solution is α = ln 2. Perform the following experiments:

(a) Compute the ratio

Rn =
α− xn+1

(α− xn)2

and observe whether or not it converges to the correct value as n→∞.

(b) Compute the modified ratio

Rn(p) =
α− xn+1

(α− xn)p

for various p 6= 2, but near 2. What happens? Comment, in the light of
the definition of order of convergence.

Solution: For p = 2 the ratio will converge to the theoretical value of
r∞ = −f ′′(α)/2f ′(α) = −0.5 For p > 2, the denominator goes to zero too
fast so the ratio will “blow up.” For p < 2, the denominator will not go to zero
fast enough, so the ratio will go to zero.

6. Consider applying Newton’s method to find the root of the function f(x) =
4x− cosx. Assume we want accuracy to within 10−8. Use the Newton error
estimate (3.12) to show that the iteration will converge for all x0 ∈ [−2, 2].
How many iterations will be needed for the iteration to converge? Compare
with the corresponding results for bisection, using an initial interval of [−2, 2].
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7. Verify by actual computation that your results in the previous problem were
correct, i.e., apply Newton’s method to f(x) = 4x − cosx; do you converge
to the specified accuracy in the correct number of iterations, and does this
convergence appear to be occurring for all choices of x0?

Solution: What should be done here is to compute the root of f for a variety
of x0 values on the interval [−2, 2] to verify that the convergence does occur
as fast as predicted for all x0 ∈ [−2, 2].

8. Consider now the function f(x) = 7x− cos(2πx). Show that a root exists on
the interval [0, 1], and then use the Newton error estimate to determine how
close x0 has to be to the root to guarantee convergence.

9. Investigate your results in the previous problem by applying Newton’s method
to f(x) = 7x−cos(2πx), using several choices of x0 within the interval [0, 1].
Comment on your results in light of the theory of the method. Note: This can
be done by a very modest modification of your existing Newton program.

Solution: We first observe that f(0) = −1 and f(1) = 6, so a root exists
on [0, 1]. To test how close we have to be for convergence, I first used my
bisection code to find this root. I then modified my Newton program to cycle
through different values of x0, printing out the error α − x1 as a fraction of
α − x0, and also recording whether or not the iteration ultimately converged.
My output is given in Table 3.7. Note that if the initial guess was far from the
actual root of 0.110047 then convergence was certainly delayed. In particular,
for x0 ∈ [0.5, 0.9], x1 was not in [0, 1]. While the iteration did eventually
converge for most choices of x0, for x0 = 0.6 and x0 = 0.8 the iteration has
not yet converged after 20 iterations and I would hazard the guess that it is
unlikely to converge, ever.

Table 3.7 Newton iteration for f(x) = 7x− cos 2πx.

x0 x1 x5 x20

0.000000E+00 0.142857E+00 0.110047E+00 0.110047E+00
0.100000E+00 0.110195E+00 0.110047E+00 0.110047E+00
0.200000E+00 0.115921E+00 0.110047E+00 0.110047E+00
0.300000E+00 0.114343E+00 0.110047E+00 0.110047E+00
0.400000E+00 0.624931E-01 0.110047E+00 0.110047E+00
0.500000E+00 -0.142857E+00 -0.290451E+00 0.110047E+00
0.600000E+00 -0.914746E+00 -0.145064E+00 -0.159073E+01
0.700000E+00 -0.438526E+01 0.201481E+00 0.110047E+00
0.800000E+00 -0.436528E+01 0.378386E+02 0.544820E+03
0.900000E+00 -0.760494E+00 -0.262859E+00 0.110047E+00
0.100000E+01 0.142857E+00 0.110047E+00 0.110047E+00
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10. Show that if xn is a sequence converging linearly to a value α, then the
constant C in (3.16) must satisfy |C| < 1. Hint: Assume |C| > 1 and prove a
contradiction to the convergence assumption.

Solution: If |C| > 1 then, for all n sufficiently large, we have |α− xn+1| >
|α− xn|, which means convergence cannot occur.

11. Explain, in your own words, why the assumptions f ′(xn) ≈ f ′(α) and
f ′′(ξn) ≈ f ′′(α) are valid if we have xn → α.

Solution: If f ′ and f ′′ are continuous, then we have that

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
and similarly for f ′′.

/ • • • .

3.6 NEWTON’S METHOD: THEORY AND CONVERGENCE

Exercises:

1. Consider a function f which satisfies the properties:

(a) There exists a unique root α ∈ [0, 1];

(b) For all real x we have f ′(x) ≥ 2 and 0 ≤ f ′′(x) ≤ 3.

Show that for x0 = 1
2 , Newton’s Method will converge to within 10−6 of the

actual root in four iterations. How long would bisection take to achieve this
accuracy?

Solution: The Newton error formula, together with the given bounds on the
derivatives, tells us that

|α− xn+1| ≤
(

3

4

)
|α− xn|2.

Therefore, for x0 = 1
2 , we have |α− x0| ≤ 1

2 and hence

|α− x1| ≤ (3/4)(1/2)2 = 3/16;

|α− x2| ≤ (3/4)(3/16)2 = 27/1024;

|α− x3| ≤ (3/4)(27/1024)2 = 0.000521421;

|α− x4| ≤ (3/4)(0.000521421)2 = 0.204× 10−6.
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Bisection would take 20 iterations to obtain this accuracy, based on the formula
(3.2).

2. Consider a function f which satisfies the properties:

(a) There exists a unique root α ∈ [2, 3];

(b) For all real x we have f ′(x) ≥ 3 and 0 ≤ f ′′(x) ≤ 5.

Using x0 = 5/2, will Newton’s method converge, and if so, how many itera-
tions are required to get 10−4 accuracy?

Solution: We have

|α− xn+1| ≤
(

5

6

)
|α− xn|2.

For x0 = 5/2, we have |α− x0| ≤ 1
2 and hence

|α− x1| ≤ (5/6)(1/2)2 = 5/24;

|α− x2| ≤ (5/6)(5/24)2 = .3616898148e− 1;

|α− x3| ≤ (5/6)(.3616898148e− 1)2 = .1090162684e− 2;

|α− x4| ≤ (5/6)(.1090162684e− 2)2 = .9903788983e− 6.

So the iteration does converge, and four iterations are enough to obtain the
desired accuracy.

3. Repeat the above, this time aiming for 10−20 accuracy.

Solution: Continuing the calculation in the above problem, we see that

|α− x6| ≤ 7.2936e− 028

so that the sixth iterate will have error less than 10−20.

4. Consider a function f which satisfies the properties:

(a) There exists a unique root α ∈ [−1, 3];

(b) For all real x we have f ′(x) ≥ 4 and −6 ≤ f ′′(x) ≤ 3.

Using x0 = 1, will Newton’s method converge, and if so, how many iterations
are required to get 10−4 accuracy?

Solution: The Newton error formula gives us

|α− xn+1| ≤
6

2× 4
(α− xn)2 =

3

4
(α− xn)2.



86 ROOT-FINDING

Since the initial error is bounded above by 2, we have

|α− x1| ≤
3

4
× 4 = 3 ≥ |α− x0|,

therefore we do not know if convergence follows.

5. Repeat the above, this time aiming for 10−20 accuracy.

Solution: There’s nothing to repeat, since we don’t know if the iteration
converges or not.

6. Consider a function that satisfies the following properties:

(a) f is defined and twice continuously differentiable for all x;

(b) f has a unique root α ∈ [−1, 1];

(c) |f ′(x)| ≥ 2 for all x;

(d) |f ′′(x)| ≤ 5 for all x;

Can we conclude that Newton’s method will converge for all x0 ∈ [−1, 1]?
If so, how many iterations are required to get 10−6 accuracy? If not, how
many steps of bisection must we do to get the initial interval small enough
so that Newton’s method will converge? (For any choice of x0.) How many
total function evaluations (bisection plus Newton) are required to get 10−6

accuracy?

Solution: We have e0 = |α− x0| ≤ 2 and

en+1 ≤ (1/2)e2n(5/2) = (5/4)e2n

Therefore,
e1 ≤ (5/4)(22) = 5 > e0,

so we cannot conclude that convergence will occur. If we do a single step of
bisection, the initial Newton error will now be 1, and we will have

e1 ≤ (5/4)(12) = 5/4 > e0,

so we need a second bisection step to get the e0 for Newton less than 1/2. Now
we have

e1 ≤ (5/4)(1/4) = 5/16

e2 ≤ (5/4)(5/16)2 = 125/1024

and so on. We get 10−6 accuracy after 5 iterations. Thus it takes a total of 12
function evaluations.

7. Repeat the above for a function satisfying the properties:

(a) f is defined and twice continuously differentiable for all x;
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(b) f has a unique root α ∈ [−1, 2];

(c) f ′(x) ≤ −3 for all x;

(d) |f ′′(x)| ≤ 4 for all x;

Solution: We have e0 ≤ 3 and

en+1 ≤
1

2
e2n(4/3) =

2

3
e2n.

Thus
e1 ≤

2

3
(32) = 6 > e0.

After a single step of bisection we have e0 ≤ 3/2 and

e1 ≤
2

3
(9/4) = 3/2 ≥ e0.

So we need to take a second bisection step, in which case we have e0 ≤ 3/4
and

e1 ≤
2

3
(9/16) = 3/8.

We converge to 10−6 accuracy in 5 Newton iterations, again using a total of
12 function evaluations.

8. Consider the function f(x) = x−a sinx−b, where a and b are positive param-
eters, with a < 1. Will the initial guess x0 = b always lead to convergence? If
not, what additional condition on a or the initial guess needs to be made?

Solution: The Newton error formula, applied to this function, gives us

|α− xn+1| =
1

2
(α− xn)2

∣∣∣∣ a sin ξn
1− a cosxn

∣∣∣∣ .
Since a < 1 this becomes

|α− xn+1| ≤
1

2
(α− xn)2

a

1− a
.

Convergence is implied by

1

2
|α− x0|

a

1− a
=

1

2
|α− b| a

1− a
≤ 1,

which obviously will not be satisfied under all circumstances.

9. Write a program using Newton’s method to find the root of f(x) = 1− e−x2

;
the exact value is α = 0. Compute the ratio

Rn =
α− xn+1

(α− xn)2
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as the iteration progresses and comment (carefully!) on your results, in the
light of the material in this section.

Solution: The iteration will converge, but slowly, and the quadratic conver-
gence will be lost (thus the value ofRn will not converge). This occurs because
f ′(α) = 0, thus a major condition of our theory does not hold.

10. A monotone function is one whose derivative never changes sign; the function is
either always increasing or always decreasing. Show that a monotone function
can have at most one root.

Solution: Suppose a monotone function has two roots, α1 and α2. Then
Rolle’s Theorem implies that there is a point ξ between the roots where f ′(ξ) =
0, and this violates the monotonicity requirement. Thus there cannot be more
than one root.

11. If f is a smooth monotone function with a root x = α, will Newton’s method
always converge to this root, for any choice of x0? (Either provide a counter-
example or a valid proof.)

Solution: The arctangent function discussed earlier in Chapter 3 is a coun-
terexample. It is monotone, and there exist values of x0 such that Newton’s
method will not converge to the root α = 0.

/ • • • .

3.7 APPLICATION: COMPUTATION OF THE SQUARE ROOT

Exercises:

1. Based on the material in this section, write each of the following numbers in
the form

a = b× 2k

where b ∈ [ 1
4 , 1] and k is even, and then use Newton’s method to find the

square root of b and hence of a.

(a) a = π;

(b) a = 5;

(c) a = 7;

(d) a = 3;

(e) a = 6.
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Be sure to use the initial value as generated in this section and only do as many
iterations as are necessary for 10−16 accuracy. Compare your values to the
intrinsic square root function on your computer or calculator. Note this can be
done on computer or hand calculator.

Solution: For the single case of (c), we have

7 =
7

16
× 24

so we will be finding the square root of 7/16 = 0.4374. The initial guess is
given by

x0 = (2(7/16) + 1)/3 = 0.625.

Newton’s method then gives us

x1 = 0.5× (0.625 + 0.4375/0.625) = 0.6625;

x2 = 0.5× (0.6625 + 0.4375/0.6625) = 0.66143867924528;

x3 = 0.5× (0.66143867924528 + 0.4375/0.66143867924528)

= 0.66143782776670;

x4 = 0.5× (0.66143782776670 + 0.4375/0.66143782776670)

= 0.66143782776615;

x5 = 0.5× (0.66143782776615 + 0.4375/0.66143782776615)

= 0.66143782776615.

Thus,
√

7 =
√

7/16× 22 = 0.66143782776615× 4 = 2.64575131106459.

On my old calculator the value is
√

7 = 2.645751311. MATLAB on my PC
at home reports a value identical to what we got here.

2. In the example of this section, how many iterations are required for the absolute
error to be less than 2−48?

Solution: The absolute error satisfies

|
√
b− xn+1| ≤

1

2
√
b
|
√
b− xn|2 ≤ |

√
b− xn|2.

So it is easy to show that, with an initial error of no more than 9/64, we will
converge to the specified accuracy in 5 iterations.

3. How accurate is the result in only 3 iterations, using the initial guess used here?

Solution: We have∣∣∣∣∣
√
b− x1√
b

∣∣∣∣∣ ≤ 1

2

∣∣∣∣9/64√
b

∣∣∣∣2 ≤ 1

2
(9/32)2 = 81/2048 ≤ 0.04.
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Thus ∣∣∣∣∣
√
b− x2√
b

∣∣∣∣∣ ≤ 1

2
(0.04)2 = 0.0008

and ∣∣∣∣∣
√
b− x3√
b

∣∣∣∣∣ ≤ 1

2
(0.0008)2 = 0.32× 10−6.

4. What does the initial error have to be for the relative error after only two
iterations to be less than 10−14?

Solution: We require that

2

(√
b− x0√
b

)4

≤ 10−14.

Thus the initial relative error has to be less than (2× 10−14)1/4 = 0.0003761.
Since the relative error is bounded above by as much as twice the absolute
error, we have to have |

√
b− x0| ≤ 0.0001880.

5. Extend the derivation and analysis of this section to the problem of computing
cube roots by solving for the roots of f(x) = x3 − a. Be sure to cover all the
major points that were covered in the text. Is using linear interpolation to get
x0 accurate enough to guarantee convergence of the iteration?

Solution The iteration is easily found to be

xn+1 =
1

3

(
2xn +

a

x2n

)
where we now assume that a ∈ [1/8, 1], perhaps by using some more exponent
shifting. The Newton error formula gives us that∣∣∣∣α− xn+1

α

∣∣∣∣ ≤ 1

2

∣∣∣∣α− xnα

∣∣∣∣2 ∣∣∣∣6αξn3x2n

∣∣∣∣ =

∣∣∣∣αξnx2n
∣∣∣∣ ∣∣∣∣α− xnα

∣∣∣∣2 ,
where ξn is between xn and α = a1/3. The same argument as used in the text
shows that, for n ≥ 1, xn ≥ α, therefore we have∣∣∣∣α− xn+1

α

∣∣∣∣ ≤ ∣∣∣∣α− xnα

∣∣∣∣2 .
The initial guess polynomial is the linear interpolate connecting (1/8, 1/2) and
(1, 1), and works out to be

p1(a) = (4a+ 3)/7.
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The error in this approximation can be bounded according to

|x0 − p1(a)| ≤ (1/8)(7/8)2 max
t∈[1/8,1]

|(2/9)t−5/3

≤ (1/8)(49/64)(2/9)(8)5/3 = 0.681.

Using this as an upper bound on the initial error, we find that∣∣∣∣α− x1α

∣∣∣∣ ≤ (0.681)2 = .4631558643,

and we get convergence (to 10−14 accuracy) in 7 iterations.

The error estimate for the initial guess is very conservative here. Looking at a
plot of x1/3 − p1(x) shows that the largest error is on the order of 0.09; using
this leads to convergence in 4 iterations.

6. Consider using the polynomial

p2(x) =
9

35
+

22

21
x− 32

105
x2

to generate the initial guess. What is the maximum error in |
√
x− p2(x)| over

the interval [ 14 , 1]? How many iterations (and hence, how many operations) are
needed to get accuracy of 10−16? (Feel free to compute the maximum value
experimentally, but you must justify the accuracy of your value in this case
with some kind of argument.)

Solution: Experimentally, the error |
√
x− p2(x)| is bounded above by about

0.006. This can be confirmed using ordinary calculus by finding the extreme
values of the function g(x) =

√
x − p2(x). With this as the initial absolute

error, we have that the relative error behaves as follows.∣∣∣∣∣
√
b− x1√
b

∣∣∣∣∣ ≤ 1

2

∣∣∣∣0.006√
b

∣∣∣∣2 ≤ 1

2
(0.012)2 = 0.0000720,

∣∣∣∣∣
√
b− x2√
b

∣∣∣∣∣ ≤ 2.6e− 8

∣∣∣∣∣
√
b− x3√
b

∣∣∣∣∣ ≤ 0.336e− 17.

∣∣∣∣∣
√
b− x4√
b

∣∣∣∣∣ ≤ 0.564e− 35.

The total number of operations to get this accuracy is 4 to get the initial guess
plus 3 in each of 4 iterations, for a total of 16 operations.
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7. Repeat the above using

q2(x) = 0.2645796916 + 1.0302824818x− 0.2983646911x2.

Solution: The empirical error is about 0.0036, leading to convergence within
10−16 in 4 iterations, for a total of 16 operations, again.

8. Repeat again, using

q1(x) = 0.647941993t+ 0.3667102689.

Solution: The empirical error is about 0.03, leading to convergence within
10−16 in 4 iterations, for a total of 15 operations, because computing the initial
guess is cheaper this time.

9. Re-implement your program using p2, q2, and q1 to generate the initial guess,
applying it to each of the values in Problem 1. Compare your results to the
square root function on your system.

10. If we use a piecewise linear interpolation to construct x0, using the nodes 1
4 ,

9
16 , and 1, what is the initial error and how many iterations are now needed to
get 10−16 accuracy? How many operations are involved in this computation?

Solution: This is, to great extent, the same as Exercise 10 of Section 2.4.
The maximum initial error is now 0.0244, which leads to convergence in 4
iterations, and a total of 15 operations (plus one comparison to decide which
of the two polynomial pieces to use).

/ • • • .

3.8 THE SECANT METHOD: DERIVATION AND EXAMPLES

Exercises:

1. Do three steps of the secant method for f(x) = x3 − 2, using x0 = 0, x1 = 1.

Solution: We get x2 = 2, x3 = 1.142857143, and x4 = 1.209677419.

2. Repeat the above using x0 = 1, x1 = 0. Comment.

Solution: We get x2 = 2, x3 = 0.5, x4 = 0.8571; note that simply switching
x0 and x1 resulted in substantially different results.

3. Apply the secant method to the same functions as in Problem 3 of 3.1, using
x0, x1 equal to the endpoints of the given interval. Stop the iteration when the
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error as estimated by |xn − xn−1| is less than 10−6. Compare to your results
for Newton and bisection in the previous problems.

Solution: For the particular case of (d), Table 3.8 shows the results of my
program; note that we find a different root than Newton or bisection found.
This can happen with root-finding methods. If we reverse x1 and x0 then we
find the same root as the other methods did.

Table 3.8 Secant iteration for f(x) = x6 − x− 1.

n xn |xn − xn−1|
0 0.000000000000 N/A
1 2.000000000000 2.000000000000
2 0.032258064516 0.032258064516
3 -1.000000034929 1.032258099446
4 -0.492063446441 0.507936588488
5 -0.659956919149 0.167893472708
6 -0.842841677613 0.182884758464
7 -0.762579762950 0.080261914663
8 -0.776093797503 0.013514034553
9 -0.778152697560 0.002058900057

10 -0.778089343144 0.000063354416
11 -0.778089598646 0.000000255502

4. For the secant method, prove that

α− xn+1 = Cn(xn+1 − xn)

where Cn → 1 as n → ∞, so long as the iteration converges. (Hint: follow
what we did in 3.3 for Newton’s Method.)

Solution: We have

α− xn = − f(xn)

f ′(cn)
,

= − f(xn)

f ′(cn)

f(xn)− f(xn−1)

xn − xn−1
xn − xn−1

f(xn)− f(xn−1)

= −f(xn)f ′(ξn)

f(xn)f ′(cn)
(xn+1 − xn)

= Cn(xn+1 − xn)

where

Cn = −f
′(ξn)

f ′(cn)
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where ξn is between xn and xn−1 and cn is between xn and α.

5. Assume (3.29) and prove that if the secant method converges, then it is super-
linear.

Solution: We have

α− xn+1 = −1

2
(α− xn)(α− xn−1)

f ′′(ξn)

f ′(ηn)

so that
α− xn+1

(α− xn)
= −1

2
(α− xn−1)

f ′′(ξn)

f ′(ηn)
.

As xn → α we also have xn−1 → α and ηn, ξn → α. Therefore

α− xn+1

(α− xn)
→ 0,

which means the method is superlinear.

6. Assume (3.29) and consider a function f such that

(a) There is a unique root on the interval [0, 4];

(b) |f ′′(x)| ≤ 2 for all x ∈ [0, 4];

(c) f ′(x) ≥ 5 for all x ∈ [0, 4].

Can we prove that the secant iteration will converge for any x0, x1 ∈ [0, 4]? If
so, how many iterations are required to get an error that is less than 10−8? If
convergence is not guaranteed for all x ∈ [0, 4], how many steps of bisection
are needed before convergence will be guaranteed for secant?

Solution: We have
en+1 ≤

1

2
enen−1(2/5).

Since the initial errors are no worse than 4, then, we have

e2 ≤
1

2
(16)(2/5) = 16/5;

e3 ≤
1

2
(16/5)(4)(2/5) = 16/25

and we converge to the desired accuracy in 10 iterations.

7. Repeat the above problem under the assumptions:

(a) There is a unique root on the interval [0, 9];

(b) |f ′′(x)| ≤ 6 for all x ∈ [0, 9];

(c) f ′(x) ≥ 2 for all x ∈ 0, 9].
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Can we prove that the secant iteration will converge for any x0, x1 ∈ [0, 9]? If
so, how many iterations are required to get an error that is less than 10−8? If
convergence is not guaranteed for all x ∈ [0, 9], how many steps of bisection
are needed before convergence will be guaranteed for secant?

Solution: We have
en+1 ≤

1

2
enen−1(2/5).

Since the initial errors are no worse than 9, then, we have

e2 ≤
1

2
(81)(3) = 243/2;

so we will not converge. Doing one step of bisection reduces the original
secant interval to length 4.5, so we then have

e2 ≤
1

2
(9/2)2(3) = 243/8,

still too large. Another step of bisection give us

e2 ≤
1

2
(9/4)2(3) = 243/32,

and a third bisection yields

e2 ≤
1

2
(9/8)2(3) = 243/128

still not small enough. Finally, a fourth bisection step gives an initial interval
of length 9/16 and a first step error of

e2 ≤
1

2
(9/16)2(3) = 243/512.

Convergence then occurs in 10 secant iterations.

8. Repeat Problem 8 of 3.1, except this time find α for the set of θ values defined
by

θk = 10k/4,

for k ranging from −24 all the way to 24. Construct a plot of α vs. log10 θ.

Solution: For k = −24, α = 0.00094129631308, for k = −23, α =
0.00125518056472, for k = 1, α = 0.92775227544590, for k = 2, α =
1.09242933874440. The plot is given in Figure 3.3.

9. Comment, in your own words, on the differences between the secant method
and regula-falsi (see Problem 9 of 3.1).

Solution: Regula-falsi chooses the two approximate values in order to guar-
antee that the root is “bracketed,” whereas the secant method chooses the most
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Figure 3.3 Solution for Problem 3.8.10

accurate (i.e., most recent) approximations, regardless of whether or not they
bracket the root.

/ • • • .

3.9 FIXED POINT ITERATION

Exercises:

1. Do three steps of each of the following fixed point iterations, using the indicated
x0.

(a) xn+1 = cosxn, x0 = 0 (be sure to set your calculator in radians);

Solution: x1 = 1, x2 = .5403023059, x3 = .8575532158

(b) xn+1 = e−xn , x0 = 0;

(c) xn+1 = ln(1 + xn), x0 = 1/2;

Solution: x1 = 4054651081, x2 = .3403682857, x3 = .2929444165

(d) xn+1 = 1
2 (xn + 3/xn), x0 = 3.

2. Let Y = 1/2 be fixed, and take h = 1
8 . Do three steps of the following fixed

point iteration

yn+1 = Y +
1

2
h (−Y lnY − yn ln yn)

using y0 = Y .

Solution: y1 = .5433216988, y2 = .5423768123, y3 = .5423997893
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3. Let Y0 = 1/2 and Y1 = 0.54332169878500 be fixed, and take h = 1
8 . Do

three steps of the fixed point iteration

yn+1 =
4

3
Y1 −

1

3
Y0 − 2hyn ln yn

using y0 = Y1.

Solution: y1 = .6406261163, y2 = .6290814526, y3 = .6306562188.

4. Consider the fixed-point iteration xn+1 = 1 + e−xn . Show that this iteration
converges for any x0 ∈ [1, 2]. How many iterations does the theory predict it
will take to achieve 10−5 accuracy?

Solution: We have g(x) = 1 + e−x, and therefore 1 ≤ g(x) ≤ 2 for all
x ∈ [1, 2]. In addition, g(x) = −e−x so |g(x)| ≤ e−1 for all x ∈ [1, 2]. We
can now apply Theorem 3.5 to get that a unique fixed point exists, and the
iteration xn+1 = g(xn) converges, with the error satisfying

|α− xn| ≤
e−n

1− e−1
|x1 − x0| ≤ 1.6× e−n.

It therefore takes n = 12 iterations to converge to the specified accuracy.

5. For each function listed below, find an interval [a, b] such that g([a, b]) ⊂ [a, b].
Draw a graph of y = g(x) and y = x over this interval, and confirm that a
fixed point exists there. Estimate (by eye) the value of the fixed point, and use
this as a starting value for a fixed point iteration. Does the iteration converge?
Explain.

(a) g(x) = 1
2 (x+ 2

x );

Solution: [a, b] = [1, 3/2]

(b) g(x) = cosx;

Solution: [a, b] = [0, 1]

(c) g(x) = 1 + e−x;

Solution: [a, b] = [1, 2]

(d) g(x) = x+ e−x − 1
4 ;

(e) g(x) = 1
2 (x2 + 1).

6. Let h(x) = 1− x2/4. Show that this function has a root at x = α = 2. Now,
using x0 = 1/2, do the iteration xn+1 = h(xn) to approximate the fixed point
of h. Comment on your results.

Solution: Since 1 − x2/4 = 0 ⇒ x = 2, h obviously has a root at x = 2.
On the other hand, the iteration xn+1 = h(xn)converges to α = .8284271247.
The point is that α is a fixed point of h, not a root of h.
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7. Let h(x) = 3 − e−x. Using x0 = 2, perform as many iterations of Newton’s
method as are needed to accurately approximate the root of h. Then, using
the same initial point, do the iteration xn+1 = h(xn) to approximate the fixed
point of h. Comment on your results.

Solution: This is essentially making the same point as the previous problem.
The root is−1.098612289 (approximately), but the fixed point is 2.947530903
(approximately).

8. Use fixed point iteration to find a value of x ∈ [1, 2] such that 2 sinπx+x = 0.

9. For a > 0, consider the iteration defined by

xn+1 =
x3n + x2n − xna+ a

x2n + 2xn − a

(a) For x0 = 3/2 experiment with this iteration for a = 4 and a = 2. Based
on these results, speculate as to what this iteration does. Try to prove
this, and use the theorems of this section to establish a convergence rate.

(b) Now experiment with this iteration using x0 = 2 and a = 5. Compare
your results to Newton’s method.

10. Consider the iteration

xn+1 =
(N − 1)xN+1 + ax

NxN

Assume that this converges for integer N and any a > 0. What does it
converge to? Use the theorems of this section to determine a convergence rate.
Experiment with this iteration when N = 3 and a = 8, using x0 = 3/2.

11. Consider the iteration defined by

xn+1 = xn − f(xn)

[
f(xn)

f(xn + f(xn))− f(xn)

]
.

This is also sometimes known as Steffenson’s method. Show that it is (locally)
quadratically convergent.

Solution: This is a somewhat tricky application of Theorem 3.7. We have

g(x) = x− f(x)

[
f(x)

f(x+ f(x))− f(x)

]
,

so that

g′(x) = 1− f ′(x)

[
f(x)

f(x+ f(x))− f(x)

]
− f(x)

[
f(x)

f(x+ f(x))− f(x)

]′
.
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Now, for x = α the last term vanishes (because f(α) = 0), so we can ignore
it. The second term becomes indeterminate (it naively evaluates to 0/0) so we
have to employ L’Hôpital’s rule to get g′(α) = 0. We then have to show that
g′′(α) 6= 0.

12. Apply Steffenson’s method to find the root of f(x) = 2 − ex, using x0 = 0.
Compare your convergence results to those in the text for Newton and the
secant method.

Solution: The first 4 iterates are

x1 = .5819767070, x2 = .6876240766,

x3 = .6931320121, x4 = .6931471806

Clearly the iteration is converging to the same root as for Newton and secant,
and with comparable speed.

13. Apply Steffenson’s method to f(x) = x2 − a for the computation of
√
a. For

the following values of a, how does the performance compare to Newton’s
method?

(a) a = 3;

(b) a = 2;

Solution: Usingx0 = 2, the first three Newton iterates arex1 = 1.500000000,
x2 = 1.416666667, and x3 = 1.414215686; the first three Steffenson
iterates (using the same x0) are x1 = 1.666666667, x2 = 1.477477478,
and x3 = 1.419177338.

(c) a = π.

/ • • • .

3.10 ROOTS OF POLYNOMIALS (PART 1)

Exercises:

1. Use the Durand-Kerner algorithm to find all the roots of the polynomial

p(x) = x4 − 10x3 + 35x2 − 50x+ 24.

You should get ζ1,2,3,4 = (1, 2, 3, 4).
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Solution: The author’s code (below) converged in 11 iterations; Here are
the ζ values for the first three iterations, using the roots of unity as the initial
guesses:

ζ
(1)
j = −10.0000 + 3.5000i, −2.7694− 4.0214i, 0.5263− 0.6208i,

1.0000− 0.0000i

ζ
(2)
j = 9.0724 + 11.2615i, 0.9705− 3.5225i, 0.6181− 0.2987i,

1.0000− 0.0000i

ζ
(3)
j = 6.1229 + 3.0728i, 3.0670− 2.0642i, 1.1368− 0.0148i,

1.0000 + 0.0000i

Using the roots of unity as initial guesses actually simplified the problem a bit,
since the initial guess for ζ4 was exact!

The following code is set up as a function which returns the converged values
of the roots.

Algorithm 3.1 Code for Durand-Kerner

function r = DKroots(p)

np = length(p);

n = np-1;

q = p/p(1);

k = [1:n];

zeta = exp(2*pi*i*k/n);

for j=1:20

old = zeta;

for k=1:n

qp = polyval(q,zeta(k));

denom = 1.0;

for kk=1:n

if k ~= kk

denom = denom*(zeta(k) - zeta(kk));

end

end

zeta(k) = zeta(k) - qp/denom;

end

zeta %Delete this line to avoid excess output

if abs(zeta - old) <= 1.e-14

break

end

end

r = zeta;
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2. Use the Durand-Kerner algorithm to find all the roots of the following polyno-
mials (Feel free to use MATLAB’S roots command to check your results):

(a) p(x) = x6 + x5 + x4 + x3 + x2 + x+ 1;

(b) p(x) = x6 − x5 − 1;

(c) p(x) = x9 − x8 − 1;

(d) p(x) = x5 − 1;

Solution: For (a) we get ζ = 0.6235+0.7818i, −0.2225+0.9749i, −0.9010+
0.4339i, −0.2225− 0.9749i, 0.6235− 0.7818i, −0.9010− 0.4339i.

3. Use Durand-Kerner to find all the roots of the polynomial

p(x) = x7 − x− 1.

Solution: We get ζ = 0.6171 + 0.9009i, −0.3636 + 0.9526i, −0.8099 +
0.2629i, −0.8099−0.2629i, −0.3636−0.9526i, 0.6171−0.9009i, 1.1128+
0.0000i.

4. Use Durand-Kerner to find all the roots of the polynomial

p(x) = x8 − x− 1.

5. Consider now the polynomial

p(x) = x6 − ax− 1,

where a is a real parameter. We want to investigate how the roots depend on
a. For various values of a ∈ [−2, 2], compute the roots of p and observe how
they change as a changes. Can you plot the real roots as a function of a? Try
to extend the range of values of a. Does anything interesting happen?

Solution: For both a = −2 and a = 2 there are two real roots, as follows:

a = −2 : ζR = −1.2298, 0.4928;

a = 2 : ζR = −0.4928, 1.2298.

Solution: What you need to do is wrap a loop structure around your Durand-
Kerner routine, and add some additional code to correctly save the two real
roots to make the curves shown in Fig. 3.4.

However, interesting things can indeed happen. If we take 40 points to construct
our curves we get the picture in Fig. 3.5. What has happened?

The short answer is that polynomial roots can be very sensitive to changes in
the coefficients. Specifically, in the 40 point case, some of the roots on the
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Problem 5, using 40 points.

upper curve were converged to from the initial value used for the lower curve,
and vice-versa. A more sophisticated routine for the selection of the roots
might be able to circumvent this problem.

6. Repeat the above for the polynomial

p(x) = x6 − x− b,

where now b ∈ [−2, 2] is a parameter.

7. Use MATLAB’s rand function to generate a random polynomial of degree 10.
(Remember to make it monic!) Use Durand-Kerner to find the roots of this
polynomial, and check your results by using MATLAB’s roots function.

/ • • • .

3.11 SPECIAL TOPICS IN ROOT-FINDING METHODS

Exercises:

1. Consider the fixed-point iteration xn+1 = 1 + e−xn , with x0 = 0. Do four
steps (by hand) and apply both of the Aitken acceleration algorithms to speed
up the convergence of the iteration.

Solution: The original iteration produces x1 = 2.0000, x2 = 1.1353, x3 =
1.3213, and x4 = 1.2668. The first acceleration method produces y2 =
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1.3963, y3 = 1.2884, and y4 = 1.2791. The second acceleration method
produces z1 = 1.3963, z2 = 1.2789, z2 = 1.27854, z4 = 1.2785.

2. Repeat the above for the iteration xn+1 = 1
2 ln(1 + xn), using x0 = 1/2.

Solution: The basic iteration produces x1 = 0.2027, x2 = 0.09230, x3 =
0.04414, and x4 = 0.02160; the first Aitken method produces y2 = 0.02702,
y3 = 0.006906, and y4 = 0.001754; the second Aitken method produces
z1 = 0.02702, z2 = 0.1720e − 3, z3 = 0.7392e − 8, and z4 = 0.0000; the
exact value of the fixed point is α = 0.

3. Consider the iteration xn+1 = e−x. Show (by computational experiment) that
it coverges for x0 = 1/2; then use both Aitken acceleration algorithms to speed
up the convergence. What is the gain in terms of function calls to the iteration
function?

Solution: The second Aitken method converges to 14 digit accuracy in 5
iterations, which involves a total of 10 function calls. Neither the original
iteration nor the first Aitken method converge to comparable accuracy in 20
iterations (involving 20 function calls in each case), although both are clearly
close to convergence.

4. Write the second Aitken iteration in the form

xk+1 = G(xk)

Hint: Take
x1 = g(x0), x2 = g(x1) = g(g(x0))

and use this to write the updated value of x0 in Algorithm 3.5 entirely in terms
of x0, g(x0), and g(g(x0)).

Solution: We have that

xn+1 = g(g(xn)) + γ
g(g(xn))− g(xn)

1− γ

where

γ =
g(g(xn))− g(xn)

g(xn)− xn
,

therefore,

xn+1 = g(g(xn)) +

(
g(g(xn))−g(xn)
g(xn)−xn

)
(

1− g(g(xn))−g(xn)
g(xn)−xn

) (g(g(xn))− g(xn)).

5. Consider the iteration
xk+1 = G(xk),
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where

G(x) = g(g(x)) +
H(x)

1−H(x)
(g(g(x))− g(x))

for

H(x) =
g(g(x))− g(x)

g(x)− x
.

Assume that α = g(α) is a fixed point for g.

(a) Use L’Hôpital’s Rule to show that

H(α) = g′(α).

Solution: We have

H(α) = lim
x→α

g(g(x))− g(x)

g(x)− x

= lim
x→α

g′(g(x))g′(x)− g′(x)

g′(x)− 1

= g′(α) lim
x→α

g′(g(x))− 1

g′(x)− 1

= g′(α)
g′(α)− 1

g′(α)− 1

= g′(alpha)

(b) Use Theorem 3.7 to show that the fixed point iteration for G is quadratic.

Solution: This is a direct consequence of (a) and Exercise 4. Exercise 4
implies that we can write the second Aitken algorithm as xn+1 = G(xn),
where

G(x) = g(g(x)) +

(
g(g(x))−g(x)
g(x)−x

)
(

1− g(g(x))−g(x)
g(x)−x

) (g(g(x))− g(x)).

Writing this in the suggested form

G(x) = g(g(x)) +
H(x)

1−H(x)
(g(g(x))− g(x)),

where

H(x) =
g(g(x))− g(x)

g(x)− x
,

we get that G′(α) = 0 if H(α) = g′(α), which is what (a) gives us.
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6. Apply the chord method to each of the functions in Problem 3 of 3.1, using
the midpoint of the interval as x0. Compare your results to what you got for
bisection, Newton, and/or the secant method.

Solution: Table 3.9 shows results for three of the functions. Note that two
of them appear to be converging nicely, but one is cycling between two values.

Table 3.9 Solutions to Problem 3.10.6

n f(x) = x3 − 2x+ 5 f(x) = ex − 2 f(x) = x2 − sinx

1 2.47368421052632 0.71306131942527 0.99684921393812
2 1.38118185096799 0.68866210956491 0.93255022118475
3 2.46066264395747 0.69409059303710 0.90477130225958
4 1.41273756576147 0.69294563585428 0.89126892528421
5 2.46661014403290 0.69319009730508 0.88438120641796
6 1.39839029026513 0.69313803554445 0.88078618703716
7 2.46412393132776 0.69314912895829 0.87888794624203
8 1.40440122265335 0.69314676542932 0.87787960220180
9 2.46521002552796 0.69314726900812 0.87734227505178
10 1.40177773347679 0.69314716171506 0.87705546338566
11 2.46474386296717 0.69314718457506 0.87690223386659
12 1.40290421128725 0.69314717970448 0.87682033179961
13 2.46494551887643 0.69314718074221 0.87677654353423
14 1.40241699456030 0.69314718052111 0.87675312931651
15 2.46485857585776 0.69314718056822 0.87674060848644
16 1.40262707133957 0.69314718055818 0.87673391267114
17 2.46489611528813 0.69314718056032 0.87673033184832
18 1.40253636927138 0.69314718055987 0.87672841685606
19 2.46487991697665 0.69314718055996 0.87672739272910
20 1.40257550786620 0.69314718055994 0.87672684503010

7. Repeat the above, except this time apply both of the Aitken acceleration algo-
rithms to improve the convergence of the iteration. Compute the values of the
ratio

Rn =
α− xn+1

(α− xn)2
,

where α is the best value for the root, as found by previous methods. Does the
sequence of Rn values appear to be converging to a limit? What does this tell
you?

Solution: Table 3.10 gives the results for the same selection of examples as
in the previous problem, using Algorithm 3.5. Note that all three iterations
converge to 14 digits of accuracy in only 6 iterations. The ratios Rn should
converge to a limit since the accelerated methods are quadratic.
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Table 3.10 Solutions to Problem 3.10.7

n f(x) = x3 − 2x+ 5 f(x) = ex − 2 f(x) = x2 − sinx

1 1.95884575747166 0.69116914281208 0.91662728491450
2 2.08251651168641 0.69314676598240 0.87767216265286
3 2.09444289173521 0.69314718055993 0.87672680857003
4 2.09455147258292 0.69314718055995 0.87672621539530
5 2.09455148154233 0.69314718055995 0.87672621539506
6 2.09455148154233 0.69314718055995 0.87672621539506

8. Repeat Problem 6, but this time update the value used to compute the derivative
in the chord method every other iteration. Comment on your results.

Solution: Table 3.11 gives the results for the same selection of functions as
in the previous two exercises. Note that the convergence is much faster than
for the pure chord method.

Table 3.11 Solutions to Problem 3.10.8

n f(x) = x3 − 2x+ 5 f(x) = ex − 2 f(x) = x2 − sinx

1 2.47368421052632 0.71306131942527 0.99684921393812
2 2.15643299612282 0.69334415731550 0.89073569652677
3 2.09660460386192 0.69314719995859 0.87696243819377
4 2.09455385074497 0.69314718055995 0.87672628471248
5 2.09455148154549 0.69314718055995 0.87672621539507
6 2.09455148154233 0.69314718055995 0.87672621539506
7 2.09455148154233 0.69314718055995 0.87672621539506

9. Show that both Halley method iterations are of third order. Hint: write them
as fixed point iterations

xn+1 = g(xn)

and write the iteration function as g(x) = f(x)G(x). The fact that f(α) = 0
will make the derivative computations easier.

Solution: This is a straightforward application of Theorem 3.7. For the
method (3.44), we have

g(x) = x− 2f(x)f ′(x)

2[f ′(x)]2 − f(x)f ′′(x)
= x− f(x)G(x)

for

G(x) =
2f ′(x)

2[f ′(x)]2 − f(x)f ′′(x)
.
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Then
g′(x) = 1− f ′(x)G(x)− f(x)G′(x).

Hence,

g′(α) = 1− f ′(α)G(α) = 1− f ′(α)
2f ′(α)

2[f ′(α)]2
= 0.

Further,

g′′(x) = −f ′′(x)G(x)− 2f ′(x)G′(x)− f(x)G′′(x),

so that
g′′(α) = −f ′′(α)G(α)− 2f ′(α)G′(α)

which we can again show is 0.

10. Apply the Halley iteration (3.44) to f(x) = x2 − a, a > 0, to derive a cubic
method for finding the square root. Test this by using it to find

√
5.

Solution: The iteration is

xn+1 =
x(x2 + 3a)

3x2 + a
.

11. Repeat the above for f(x) = xN−a. Test this out by finding the cubic, quartic,
and quintic roots of 2, 3, 4, and 5.

Solution: The iteration for the cube root is

xn+1 =
x(x3 + 2a)

2x3 + a
.

For the quintic root it is

xn+1 =
x(2x5 + 3a)

3x5 + 2a
.

12. Apply Halley’s second method to f(x) = a− ex to show that

xn+1 = xn + 2

(
ae−xn − 1

ae−xn + 1

)
is a cubic convergent iteration for α = log a. Analyze the convergence of this
iteration, under the assumption that a ∈ [ 12 , 1]. Comment on this as a practical
means of computing the logarithm of an arbitrary a.

Solution: If a ∈ [1/2, 1], then ln a ∈ [−.7, 0]. One can show that, for any
a ∈ [1/2, 1], the iteration function

g(x) = x+ 2

(
ae−x − 1

ae−x + 1

)
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satisfies g(x) ∈ [−0.7, 0] as well. One can then apply Theorem 3.5 to establish
convergence. The only problem with this as a practical method for computing
the logarithm is that it depends on having an accurate method for computing
the exponential.

13. Use the secant method withx0 = 0 andx1 = 1 to find the root of f(x) = 2−ex,
which has exact solution α = ln 2. Compute the ratio

R =
α− xn+1

(α− xn)p

for p = (1 +
√

5)/2. Do we get convergence to the appropriate value?

Solution: The ratio begins to converge to the correct value but when the
iteration itself converges there is massive subtractive cancellation in the com-
putation of R, so the theoretical limit is not actually achieved. Doing the
computation in a high precision environment will solve this problem.

14. Repeat the above experiment, except use values of p just a bit above and below
the correct value. What happens?

Solution: If you don’t use the correct value of p, then the ratio will either go
off to infinity or zero. This isn’t a result of rounding error, but is caused by
having the wrong exponent in the computation of R.

15. Consider applying the secant method to find the root of the function f(x) =
4x − cosx. Assume we want accuracy to within 10−8. Use the secant error
estimate (3.50) to show that the iteration will converge for all x0 ∈ [−2, 2].
How many iterations will be needed for the iteration to converge?

Solution: We have
en+1 ≤

1

6
enen−1,

with both e0 ≤ 4 and e1 ≤ 4. Therefore

e2 ≤
1

6
× 16 =

8

3
;

e3 ≤
1

6
× 8

3
× 4 =

16

9

e4 ≤
1

6
× 16

9
× 8

3
=

64

81
.

We get convergence to the specified accuracy in 8 iterations.

16. Verify by actual computation that your results in the previous problem were
correct, i.e., apply the secant method to f(x) = 4x − cosx; do your results
converge to the specified accuracy in the correct number of iterations, and does
this convergence appear to be occurring for all choices of x0?
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Solution: Testing the computation for a range of values for x0 and x1, all in
the interval [−2, 2], will confirm the prediction.

17. Prove Lemma 3.1. Hint: Expand f in a Taylor series about α.

Solution: The proof follows directly from the hint.

18. Let f(x) = 1− xe1−x. Write this function in the form (3.57). What is F (x)?
Use Taylor’s Theorem or L’Hôpital’s Rule to determine the value of F (α).

Solution: We have

f(x) = (x− 1)2
(

1− xe1−x

(x− 1)2

)
,

so

F (x) =
1− xe1−x

(x− 1)2
.

Applying L’Hôpital’s Rule to F shows that F (α) = 1/2.

19. For u(x) as defined in (3.60), where f has a k-fold root at x = α, show that
u(α) = 0 but u′(α) 6= 0.

Solution: Since f is assumed to have a multiple root, we can write f(x) =
(x− α)kF (x) for some F . Then

u(x) =
f ′(x)

f(x)
=
k(x− α)k−1F (x) + (x− α)kF ′(x)

(x− α)kF (x)
=
kF (x) + (x− α)F ′(x)

(x− α)F (x)

so that u(α) = 0 but u′(α) won’t.

20. Use the modified Newton method (3.59) to find the root α = 1 for the function
f(x) = 1− xe1−x. Is the quadratic convergence recovered?

Solution: The iteration converges much more quickly than without the mod-
ification, but the computed value of the root is not as accurate as we have seen
in simple root examples.

21. Let f have a double root at x = α. Show that the Newton iteration function

g(x) = x− f(x)/f ′(x)

is such that g′(α) 6= 0. Provide all details of the calculation.

Solution: Since f has a double root we can write

f(x) = (x− α)2F (x).
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Then

g(x) = x− (x− α)2F (x)

2(x− α)F (x) + (x− α)2F ′(x)
= x− 2(x− α)F (x)

F (x) + (x− α)F ′(x)

= x− (x− α)

(
2F (x)

F (x) + (x− α)F ′(x)

)
so that

g(α) = α.

Also

g′(x) = 1−(1)

(
2F (x)

F (x) + (x− α)F ′(x)

)
−(x−α)

(
2F (x)

F (x) + (x− α)F ′(x)

)′
.

Therefore

g′(x) = 1− 2F (α)

F (α)
− 0 = −1 6= 0.

22. Using a hand calculator, carry out six iterations of the hybrid method for the
function

f(x) = 2xe−15 − 2e−15x + 1.

You should be able to match the values generated for x2 and x3 in the text. In
addition, x6 = 0.04146407478711.

Solution: x1 = 0.500000,x2 = 0.250000,x3 = 0.125069,x4 = 0.0625346,
x5 = 0.0369239, x6 = 0.0414641

23. Write a computer code to implement the hybrid method described in Section
3.10.5. Apply it to each of the functions given below, using the given interval
as the starting interval. On your output, be sure to indicate which iteration
method was used at each step.

(a) f(x) = x1/19 − 191/19, [1, 100];

(b) f(x) = 2xe−5 − 2e−5x + 1, [0, 1];

(c) f(x) = x2 − (1− x)20, [0, 1];

(d) f(x) = 2xe−20 − 2e−20x + 1, [0, 1];

Solution: Table 3.12 gives the results from my program, applied to the case
of (d). Note that we do cycle back and forth between secant and bisection at
the beginning of the iteration.
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Table 3.12 Hybrid iteration for f(x) = 2xe−20 − 2e−20x + 1.

n xn f(xn) xn − xn−1 ln |xn − xn−1| an bn Method
1 0.39540563 0.99926451 -0.3954056E+00 -0.403 0.010 0.395 S
2 0.20270282 0.96529631 0.1927028E+00 -0.715 0.010 0.203 B
3 0.08664329 0.64644583 0.1160595E+00 -0.935 0.010 0.087 S
4 0.04832164 0.23912462 0.3832164E-01 -1.417 0.010 0.048 B
5 0.03786785 0.06219184 0.1045379E-01 -1.981 0.010 0.038 S
6 0.03419335 -0.00932344 0.3674505E-02 -2.435 0.034 0.038 S
7 0.03467239 0.00030061 -0.4790448E-03 -3.320 0.034 0.035 S
8 0.03465743 0.00000139 0.1496305E-04 -4.825 0.034 0.035 S
9 0.03465736 0.00000000 0.6965962E-07 -7.157 0.035 0.035 S
10 0.03465736 0.00000000 -0.1047069E-10 -10.980 0.035 0.035 S

I have included the Fortran code that I used to get the table.

c

c Code for global root-finding routine

c based on bisection and secant

c

implicit real*8 (a-h,o-z)

character*1 step,bisect,secant

data bisect,secant / ’B’,’S’ /

c

f(x) = 2.0d0*x*dexp(-20.0d0)

* - 2.0d0*dexp(-20.0d0*x) + 1.0d0

c

a = 0.01d0

b = 1.00d0

x0 = a

x1 = b

alpha = 0.0d0

c

fa = f(a)

fb = f(b)

f0 = fa

f1 = fb

c

do 100 n=1,100

xold = x

c

c take secant step

c

dd = f1*(x1 - x0)/(f1 - f0)

x = x1 - f1*(x1 - x0)/(f1 - f0)

c

c if secant prediction is outside bracketing interval,

c do one step of bisection

c

if((x .lt. a) .or. (x .gt. b)) then

x = 0.5d0*(a + b)
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fx = f(x)

if(fa*fx .lt. 0.0d0) then

b = x

fb = fx

else

a = x

fa = fx

endif

x0 = a

x1 = b

f0 = fa

f1 = fb

error = xold - x

step = bisect

else

c

c otherwise, update bracketing interval

c

fx = f(x)

if(fa*fx .lt. 0.0d0) then

b = x

fb = fx

else

a = x

fa = fx

endif

error = xold - x

step = secant

x0 = x1

x1 = x

f0 = f1

f1 = fx

endif

e10 = dlog10(dabs(error))

write(6,91) n,x,fx,error,e10,a,b,step

91 format(1h ,i5,’ & ’,2(f12.8,’ & ’),e16.7,’ & ’,

* 3(f8.3,’ & ’),1x,a1 ’\\\\ \\hline’)

if(dabs(error) .le. 1.e-8) stop

100 continue

c

stop

end

24. In Problem 9 of 3.1 we introduced the regula-falsi method. In this problem
we demonstrate how the hybrid method (Algorithm 3.6) is different from
regula-falsi. Let

f(x) = e−4x − 1

10
.

(a) Show that f has a root in the interval [0, 5].

Solution: f(0) = 1− (1/10) > 0, and f(5) = e−20 − (1/10) < 0.

(b) Using this interval as the starting interval, compute five iterations of
regula-falsi; be sure to tabulate the new interval in addition to the new
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approximate root value predicted by the method at each step. A graph
showing the location of each approximate root might be useful.

Solution: Table 3.13 shows five iterations of regula falsi for this function.
Note that the value of an remains the same for the entire computation.

Table 3.13 Regula-falsi iteration for f(x) = e−4x − (1/10).

n cn f(cn) an bn

1 4.5000 -0.1000 0 4.5000
2 4.0500 -0.1000 0 4.0500
3 3.6450 -0.1000 0 3.6450
4 3.2805 -0.1000 0 3.2805
5 2.9525 -0.1000 0 2.9525

(c) Using the same interval as the starting interval, compute five iterations
of the hybrid method given in this section. Again, note the new interval
as well as the new approximate root value at each step. A graphical
illustration might be instructive.

Solution: Table 3.14 shows the results.

Table 3.14 Hybrid iteration for f(x) = e−4x − (1/10).

n cn f(cn) an bn Method
1 4.5000 -0.1000 0 4.5000 S
2 2.2500 -0.0999 0 2.2500 B
3 2.0250 -0.0997 0 2.0250 S
4 1.0125 -0.0826 0 1.0125 B
5 0.9115 -0.0739 0 0.9115 S
6 0.6222 -0.0170 0 0.6222 S

(d) Based on your results, comment on the difference between regula falsi
and the hybrid method.

Solution: The obvious difference revealed by this exercise is that the addition
of the bisection step speeds up the convergence compared to regula falsi,
by cutting the interval in half. A more subtle difference, which is not
revealed well by this example, is that in the hybrid method we use the most
recent computations to compute the secant approximation, not necessarily
the bracket values. This will serve to speed up the computation.



114 ROOT-FINDING

25. Write a computer program that evaluates the polynomial p(x) = (x−1)5 using
the following three forms for the computation:

p(x) = (x− 1)5,

p(x) = x5 − 5x4 + 10x3 − 10x2 + 5x− 1,

p(x) = −1 + x(5 + x(−10 + x(10 + x(−5 + x)))).

Use this to evaluate the polynomial at 400 equally spaced points on the interval
[0.998, 1.002]. Comment on the results.

Solution: Using the first form will almost surely not produce the “cloud
effect” seen in the text, while the other two probably will (exactly what happens
depends a lot on the platform and language used, and the precision, of course).

/ • • • .

3.12 VERY HIGH-ORDER METHODS AND THE EFFICIENCY INDEX

Exercises:

1. Write a program to employ both Chun-Neta and Super Halley to find the root
of a given function. Test it on the following examples, using the given values
of x0.

(a) f(x) = sinx − 1
2x, x∗ = 1.8954942670339809471440357381; x0 =

2, 2.5, 3;

(b) f(x) = ex
2+7x−30 − 1, x∗ = 3, x0 = 4, 5, 6;

(c) f(x) = ex sinx+ ln (1 + x2), x∗ = 1, x0 = 0,−1,−2;

Solution: What follows is a MATLAB “code segment” to do 10 iterations
of the two methods; froot is a MATLAB function which returns the function
value and its first two derivatives at the argument.

for k=1:10

[fx,fpx,fpxx] = froot(xsuper);

u = fx/fpx;

uL = u*fpxx/fpx;

y = xsuper - 2*u/3;

xsuper = xsuper - (1 + 0.5*uL/(1 - uL))*u;

%

[fx,fpx,fpxx] = froot(xneta);

w = xneta - fx/fpx;
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[fw,dfw,d2w] = froot(w);

z = w - fw/(fpx*(1 - fw/fx)^2);

[fz,dfz,d2z] = froot(z);

%

xneta = z - fz/(fpx*(1 - (fw/fx) - (fz/fx))^2);

%

end

2. In 3.7 we employed (and analyzed) Newton’s method as an approximator for√
a by using it to find the positive root of the function f(x) = x2 − a. In

this and some of the following exercises we will try to apply our high order
methods to this task.

(a) Apply Halley’s method to finding the root of f(x) = x2 − a. Construct
an iteration function, as simplified as possible, so the the iteration is
xn+1 = GH(xn). Verify that your construction works by testing it on
a = 0.5, for which the exact value is

√
0.5 = 0.70710678118655. Note

the number of arithmetic operations required by your function during
each iteration.

Solution: You should get

gH(x) =
x(x2 + 3a)

3x2 + a
.

(b) Repeat the above for Super Halley, obtaining the iteration xn+1 =
GSH(xn) for as simple a GSH as possible.

Solution: You should get

gSH(x) =
6ax2 + 3a2 − x4

8ax
.

3. Recall that in 3.7 we were able to restrict our attention to values in the interval[
1
4 , 1
]
, and therefore construct an initial guess by linear interpolation. Modify

your codes from the above problem to reflect this, and use them to approximate√
a for a = 0.3, 0.6, and 0.9. In addition, write a code that uses Newton’s

method (or simply use your code from 3.7), and test it on the same values of
a. Which method achieves full accuracy (as measured by MATLAB’s sqrt
function) in the fewest operations for each a?

4. Modify your codes to step from a = 0.25 to a = 1 in increments of 0.001,
finding

√
a for each a using each of the three methods. Thus you will first find√

0.25, then
√

0.251, etc., all the way to a = 1.00. What is the average number
of operations used by each method to obtain full accuracy, as measured by the
flops command?
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5. Repeat the above using some of the alternate initial value generators from
Problems 6, 7, and 8 of 3.7.

6. This is more of an essay-type question: As part of your job, you are going to
be given a series of difficult root-finding problems that require highly accurate
solutions. Of all the methods we have studied in this chapter, including the new
methods in this section, which one would you choose? Justify your answer.

7. Think about combining one of these high-order methods with a global method
as we did in 3.11.5. Can you design an algorithm that is better (faster, more
efficient) than the one in that section?

/ • • • .



CHAPTER 4

INTERPOLATION AND
APPROXIMATION

4.1 LAGRANGE INTERPOLATION

Exercises:

1. Find the polynomial of degree 2 that interpolates at the datapoints x0 = 0,
y0 = 1, x1 = 1, y1 = 2, and x2 = 4, y2 = 2. You should get p2(t) =
− 1

4 t
2 + 5

4 t+ 1.

Solution:

p2(t) = L0(t)y0 + L1(t)y1 + L2(t)y2

=
(t− x1)(t− x2)

(0− 1)(0− 4)
(1) +

(t− x0)(t− x2)

(1− 0)(1− 4)
(2) +

(t− x0)(t− x1)

(4− 0)(4− 1)
(2)

=
(t− 1)(t− 4)

4
− 2(t− 0)(t− 4)

3
+

(t− 0)(t− 1)

6

= −1

4
t2 +

5

4
t+ 1.

Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis,
Second Edition. By James F. Epperson
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2. Find the polynomial of degree 2 that interpolates to y = x3 at the nodes x0 = 0,
x1 = 1, and x2 = 2. Plot y = x3 and the interpolating polynomial over the
interval [0, 2].

Solution:

p2(t) = L0(t)y0 + L1(t)y1 + L2(t)y2

=
(t− x1)(t− x2)

(0− 1)(0− 2)
(1) +

(t− x0)(t− x2)

(1− 0)(1− 2)
(4) +

(t− x0)(t− x1)

(2− 0)(2− 1)
(8)

= 3t2 − 2t.

3. Construct the quadratic polynomial that interpolates to y = 1/x at the nodes
x0 = 1/2, x1 = 3/4, and x2 = 1.

Solution:

p2(t) = L0(t)y0 + L1(t)y1 + L2(t)y2

=
(t− 3/4)(t− 1)

(1/2− 3/4)(1/2− 1)
(2) +

(t− 1/2)(t− 1)

(3/4− 1)(3/4− 1/2)
(4/3)

+
(t− 1/2)(t− 3/4)

(1− 1/2)(1− 3/4)
(1)

= (8/3)t2 − 6t+ (13/3).

4. Construct the quadratic polynomial that interpolates to y =
√
x at the nodes

x0 = 1/4, x1 = 9/16, and x2 = 1.

Solution:

p2(t) = L0(t)y0 + L1(t)y1 + L2(t)y2

=
(t− x1)(t− x2)

(1/4− 9/16)(1/4− 1)
(1/2) +

(t− x0)(t− x2)

(9/16− 1/4)(9/16− 1)
(3/4)

+
(t− x0)(t− x1)

(1− 1/4)(1− 9/16)
(1)

= (−32/105)t2 + (22/21)t+ (9/35).

5. For each function listed below, construct the Lagrange interpolating polynomial
for the set of nodes specified. Plot both the function and the interpolating
polynomial, and also the error, on the interval defined by the nodes.

(a) f(x) = lnx, xi = 1, 32 , 2;

(b) f(x) =
√
x, xi = 0, 1, 4;

(c) f(x) = log2 x, xi = 1, 2, 4;

(d) f(x) = sinπx, xi = −1, 0, 1.
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Solution:

(a) p2(x) = −.235566072x2 + 1.39984540x− 1.164279325;

(b) p2(x) = (7x− x2)/6;

(c) p2(x) = −(1/6)x2 + (3/2)x− (4/3);

(d) p2(x) = 0.

6. Find the polynomial of degree 3 that interpolates y = x3 at the nodes x0 = 0,
x1 = 1, x2 = 2, and x3 = 3. (Simplify your interpolating polynomial as
much as possible.) Hint: this is easy if you think about the implications of the
uniqueness of the interpolating polynomial.

Solution: You should get p3(x) = x3; interpolation to a polynomial repro-
duces the polynomial if enough nodes are used.

7. Construct the Lagrange interpolating polynomial to the function f(x) = x2 +
2x, using the nodes x0 = 0, x1 = 1, x2 = −2. Repeat, using the nodes
x0 = 2, x1 = 1, x2 = −1. (For both sets of nodes, simplify your interpolating
polynomial as much as possible.) Comment on your results, especially in light
of the uniqueness part of Theorem 4.1, and then write down the interpolating
polynomial for interpolating to f(x) = x3 +2x2 +3x+1 at the nodes x0 = 0,
x1 = 1, x2 = 2, x3 = 3, x4 = 4, and x5 = 5. Hint: You should be able to do
this last part without doing any computations.

Solution: In all three cases the interpolating polynomial will be identical to
the original polynomial.

8. Let f be a polynomial of degree ≤ n, and let pn be a polynomial interpolant
to f , at the n + 1 distinct nodes x0, x1, . . . , xn. Prove that pn(x) = f(x) for
all x, i.e., that interpolating to a polynomial will reproduce the polynomial, if
you use enough nodes. Hint: Consider the uniqueness part of Theorem 4.1.

Solution: Let q(x) = f(x) − pn(x). Since both f and pn are polynomials
of degree ≤ n, so is q. But q(xk) = 0 for the n+ 1 nodes xk. The only way a
polynomial of degree≤ n can have n+ 1 roots is if it is identically zero, hence
f(x) = pn(x) for all x.

9. Let p be a polynomial of degree ≤ n. Use the uniqueness of the interpolating
polynomial to show that we can write

p(x) =
n∑
i=0

L
(n)
i (x)p(xi)

for any distinct set of nodes x0, x1, . . . , xn. Hint: See the previous problem.
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Solution: Define

q(x) = p(x)−
n∑
i=0

L
(n)
i (x)p(xi).

Since everything on the right side is a polynomial of degree ≤ n, so is q. But,
again, q(xk) = 0 for the n + 1 nodes xk, therefore q(x) = 0 for all x, which
proves the desired result.

10. Show that
n∑
i=0

L
(n)
i (x) = 1

for any set of distinct nodes xk, 0 ≤ k ≤ n. Hint: This does not require any
computation with the sum, but rather a perceptive choice of polynomial p in
the previous problem.

Solution: Let p(x) = 1, and note that this is a polynomial of degree 0. By
the previous problem, we have that

1 = p(x) =
n∑
i=0

L
(n)
i (x)p(xi) =

n∑
i=0

L
(n)
i (x),

and we are done.

/ • • • .

4.2 NEWTON INTERPOLATION AND DIVIDED DIFFERENCES

Exercises:

1. Construct the polynomial of degree 3 that interpolates to the data x0 = 1,
y0 = 1, x1 = 2, y1 = 1/2, x2 = 4, y2 = 1/4, and x3 = 3, y3 = 1/3. You
should get p(t) = (50− 35t+ 10t2 − t3)/24.

Solution: The divided difference coefficients are 1, −1/2, 1/8, and −1/24,
so the polynomial is

p(t) = 1−(1/2)(x−1)+(1/8)(x−1)(x−2)−(1/24)(x−1)(x−2)(x−4),

which simplifies as indicated.

2. For each function listed below, use divided difference tables to construct the
Newton interpolating polynomial for the set of nodes specified. Plot both the
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function and the interpolating polynomial, and also the error, on the interval
defined by the nodes.

(a) f(x) =
√
x, xi = 0, 1, 4;

Solution: The divided difference coefficients are a0 = 0, a1 = 1, and
a2 = −1/6.

(b) f(x) = lnx, xi = 1, 32 , 2;

(c) f(x) = sinπx, xi = 0, 14 ,
1
2 ,

3
4 , 1;

(d) f(x) = log2 x, xi = 1, 2, 4;

Solution: The divided difference coefficients are a0 = 0, a1 = 1, and
a2 = 1/6, so the polynomial is

p(t) = 0 + (1)(x− 1) + (1/6)(x− 1)(x− 2),

which simplifies to

p(t) = (1/6)(x2 + 3x− 4).

(e) f(x) = sinπx, xi = −1, 0, 1.

3. Let f(x) = ex. Define pn(x) to be the Newton interpolating polynomial for
f(x), using n + 1 equally spaced nodes on the interval [−1, 1]. Thus we are
taking higher and higher degree polynomial approximations to the exponential
function. Write a program that computes pn(x) for n = 2, 4, 8, 16, 32, and
which samples the error f(x)− pn(x) at 501 equally spaced points on [−1, 1].
Record the maximum error as found by the sampling, as a function of n, i.e.,
define En as

En = max
0≤k≤500

|f(tk)− pn(tk)|

where tk = −1 + 2k/500, and plot En vs. n.

Solution: Using MATLAB on a low-end personal computer, the author got

E2 = 7.8525e− 2, E4 = 1.1244e− 3, E8 = 5.8000e− 8,

E16 = 1.5321e− 14, E32 = 3.6471e− 10.

Note that the error started to actually increase as we added more nodes. This
is explained, in part, by the material in Section 4.11.1.

4. In 3.7 we used linear interpolation to construct an initial guess for Newton’s
method as a means of approximating

√
a. Construct the quadratic polynomial

that interpolates the square root function at the nodes x0 = 1
4 , x1 = 4

9 , x2 = 1.
Plot the error between p2 and

√
x over the interval [ 14 , 1] and try to estimate

the worst error. What impact will this have on the use of Newton’s method for
finding

√
a?
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Solution: The polynomial is

p(t) = −12

35
t2 +

23

21
t+

26

105
.

The worst absolute error, |
√
t−p(t)|, appears to be, from looking at a plot, about

0.01. This is significantly smaller than the error due to linear interpolation, so
the Newton iteration for computing

√
a will converge faster. See some of the

exercises in Section 3.7.

5. Prove Corollary 4.1.

Solution: A straight-forward inductive argument works.

6. Write and test a computer code that takes a given set of nodes, function
values, and corresponding divided difference coefficients, and computes new
divided difference coefficients for new nodes and function values. Test it by
recursively computing interpolating polynomials that approximate f(x) = ex

on the interval [0, 1].

Solution: A set of MATLAB scripts that accomplish this are given below.
The first script (polyterp) is the“main program.” The second one (divdif)
computes divided difference coefficients. The third one (intval) evaluates an
interpolating polynomial from nodal data and divided difference coefficients.

%

n = input(’Initial degree? ’);

m = input(’Maximum degree? ’);

np = n + 1;

mp = m + 1;

%

xn = [0:n]/n

yn = exp(xn);

x = [0:500]/500;

a = divdif(xn,yn);

y = intval(x,xn,a);

figure(1)

plot(x,y)

figure(2)

plot(x,y - exp(x));

max(abs(y - exp(x)))

%

for k=np:mp

xx = input(’New node value? ’);

yy = exp(xx);

pn = intval(xx,xn,a);

w = xx - xn;
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w = prod(w);

xn = [xn xx];

yn = [yn yy];

aa = (yy - pn)/w;

a = [a aa];

y = intval(x,xn,a);

max(abs(y - exp(x)))

check = sum(abs(yn - intval(xn,xn,a)))

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function a = divdif(x,y)

n = length(x)-1;

a = y;

for i=1:n

for j=n:(-1):i

a(j+1) = (a(j+1) - a(j))/(x(j+1) - x(j-i+1));

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = intval(x,xx,d)

%

% evaluates polynomial using divided difference

% coefficients d, and interpolation data xx

%

m = length(x);

n = length(d);

%

y = d(n)*ones(1,m);

for i=(n-1):(-1):1

y = d(i) + (x - xx(i)*ones(1,m)).*y;

end

7. In 1973, the horse Secretariat became the first (and, so far, only) winner of
the Kentucky Derby to finish the race in less than two minutes, running the
1 1
4 mile distance in 1 : 59.4 seconds4. Remarkably, he ran each quarter mile

faster than the previous one, as the following table of data shows. Here t is the
elapsed time (in seconds) since the race began and x is the distance (in miles)
that Secretariat has travelled.

4During the final preparation of the First Edition of the text, in May, 2001, the horse Monarchos won the
Kentucky Derby in a time of 1 : 59.8 seconds, becoming the second winner of the race to finish in less
than two minutes. Ironically, the only other horse to run the Derby in less than two minutes was Sham,
who finished second to Secretariat.
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Table 4.1 Data for Problem 7.

x 0.0 0.25 0.50 0.75 1.00 1.25
t 0.0 25.0 49.4 73.0 96.4 119.4

(a) Find the cubic polynomial that interpolates this data at x = 0, 1/2,
3/4, 5/4.

Solution:

T (x) = p3(x) = 2.986666666x3 − 9.599999999x2 + 102.8533333x

(b) Use this polynomial to estimate Secretariat’s speed at the finish of the
race, by finding p′3(5/4).

Solution: We need to use a little calculus here. We have t = P3(x), but the
speed of the horse comes from computing dx/dt, not dt/dx. But we
know that

dx

dt
=

1
dt
dx

,

so the speed of the horse at x = 5/4 is given by

S =
1

p′3(5/4)
= .1076967261e− 1.

Unfortunately, this is in miles per second and we wanted miles per hour.
To convert, we simply multiply by 3600 seconds per hour to get

S = 38.77082140.

(c) Find the quintic polynomial that interpolates the entire dataset.

Solution:

p5(x) = −13.65333333x5 + 42.66666667x4 − 44.80000001x3

+ 13.33333333x2 + 98.85333333x.

(d) Use the quintic polynomial to estimate Secretariat’s speed at the finish
line.

Solution: This time we get S = 40.51620641 miles per hour.

8. The data in Table 4.2 (Table 4.7 in the text) gives the actual thermal conductivity
data for the element mercury. Use Newton interpolation and the data for
300◦K, 500◦K, and 700◦K to construct a quadratic interpolate for this data.
How well does it predict the values at 400K and 600K?
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Table 4.2 Data for Problem 8.

Temperature (◦K), u 300 400 500 600 700
Conductivity (watts/cm ◦K), k 0.084 0.098 0.109 0.12 0.127

Solution: The polynomial is

p2(T ) = −0.0000000875T 2 + 0.000195T + 0.033375.

Since p2(400) = .97375e − 1 and p2(600) = .118875 it is apparent that the
interpolating polynomial does a good job of matching the data.

9. The gamma function, denoted by Γ(x), is an important special function in
probability, combinatorics, and other areas of applied mathematics. Because it
can be shown that Γ(n+ 1) = n!, the gamma function is considered a general-
ization of the factorial function to non-integer arguments. Table 4.3 (Table 4.8
in the text) gives the values of Γ(x) on the interval [1, 2]. Use these to construct
the fifth degree polynomial based on the nodes x = 1, 1.2, 1.4, 1.6, 1.8, 2.0,
and then use this polynomial to estimate the values atx = 1.1, 1.3, 1.5, 1.7, 1.9.
Plot your polynomial and compare it to the intrinsic gamma function on your
computing system or calculator.

Table 4.3 Table of Γ(x) values.

x Γ(x)

1.00 1.0000000000
1.10 0.9513507699
1.20 0.9181687424
1.30 0.8974706963
1.40 0.8872638175
1.50 0.8862269255
1.60 0.8935153493
1.70 0.9086387329
1.80 0.9313837710
1.90 0.9617658319
2.00 1.0000000000

Solution: We get

p5 = −.09270377605x5 + .8632574013x4 − 3.199846710x3

+6.287123228x2 − 6.537486675x+ 3.679656532.
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and

p5(1.1) = .951439127, p5(1.3) = .897445725, p5(1.5) = .886242424,

p5(1.7) = .908619509, p5(1.9) = .961817632,

which is pretty good agreement.

10. The error function, which we saw briefly in Chapters 1 and 2, is another impor-
tant special function in applied mathematics, with applications to probability
theory and the solution of heat conduction problems. The formal definition of
the error function is as follows.

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

Table 4.4 (Table 4.9 in the text) gives values of erf(x) in increments of 0.1,
over the interval [0, 1].

Table 4.4 Table of erf(x) values for Problem 10.

x erf(x)

0.0 0.00000000000000
0.1 0.11246291601828
0.2 0.22270258921048
0.3 0.32862675945913
0.4 0.42839235504667
0.5 0.52049987781305
0.6 0.60385609084793
0.7 0.67780119383742
0.8 0.74210096470766
0.9 0.79690821242283
1.0 0.84270079294971

(a) Construct the quadratic interpolating polynomial to the error function
using the data at the nodes x0 = 0, x1 = 0.5, and x2 = 1.0. Plot
the polynomial and the data in the table and comment on the observed
accuracy.

Solution: The divided difference coefficients are

a0 = 0, a1 = 1.0410e+ 0, a2 = −3.9660e− 1

and the plot of the interpolating polynomial is given in Figure 4.1. This
is very good agreement.
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Figure 4.1 Solution plot for Exercise 4.2.11a.

(b) Repeat the above, but this time construct the cubic interpolating polyno-
mial using the nodes x0 = 0.0, x2 = 0.3, x2 = 0.7, and x3 = 1.0.

Solution: The divided difference coefficients are

a0 = 0, a1 = 1.0954e+0, a2 = −3.1784e−1, a3 = −1.4398e−1

and the plot of the interpolating polynomial is given in Figure 4.2. This
is slightly better than in (a).
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Figure 4.2 Solution plot for Exercise 4.2.11b.
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11. As steam is heated up, the pressure it generates is increased. Over the temper-
ature range [220, 300] (degrees Fahrenheit) the pressure, in pounds per square
inch, is given in Table 4.5.5 (This is Table 4.10 in the text.)

Table 4.5 Temperature-pressure values for steam; Problem 11

T 220 230 240 250 260 270 280 290 300
P 17.188 20.78 24.97 29.82 35.42 41.85 49.18 57.53 66.98

(a) Construct the quadratic interpolating polynomial to this data at the nodes
T0 = 220, T1 = 260, and T2 = 300. Plot the polynomial and the data in
the table and comment on the observed accuracy.

Solution: The divided difference coefficients are

a0 = 17.1880, a1 = 0.4558, a2 = 0.0042

and the plot of the interpolating polynomial is given in Figure 4.3. This
is very good agreement.

220 230 240 250 260 270 280 290 300
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20

30

40

50

60

70

Figure 4.3 Solution plot for Exercise 4.2.11a.

(b) Repeat the above, but this time construct the quartic interpolating poly-
nomial using the nodes T0 = 220, T1 = 240, T2 = 260, T3 = 280, and
T4 = 300.

5Taken from tables in Introduction to Thermodynamics: Classical and Statistical, by Sonntag and Van
Wylen, John Wiley & Sons, New York, 1971.



NEWTON INTERPOLATION AND DIVIDED DIFFERENCES 129

Solution: The divided difference coefficients are

a0 = 1.7188e+ 1, a1 = 3.8910e− 1, a2 = 3.3350e− 3,

a3 = 1.3375e− 5, a4 = 2.2917e− 8

and the plot of the interpolating polynomial is given in Figure 4.4.
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Figure 4.4 Solution plot for Exercise 4.2.11b.

(c) Which of the two polynomials would you think is best to use to get values
for P (T ) that are not on the table?

Solution: Both plots look very good, actually.

12. Similar data for gaseous ammonia is given in Table 4.6 (Table 4.11 in the text).

Table 4.6 Temperature-pressure values for gaseous ammonia; Problem 12

T 0 5 10 15 20 25 30 35 40
P 30.42 34.27 38.51 43.14 48.21 53.73 59.74 66.26 73.32

(a) Construct the quadratic interpolating polynomial to this data at the nodes
T0 = 0, T1 = 20, and T2 = 40. Plot the polynomial and the data in the
table and comment on the observed accuracy.

Solution: The divided difference coefficients are

a0 = 3.0420e+ 1, a1 = 8.8950e− 1, a2 = 9.1500e− 3.

(b) Repeat the above, but this time construct the quartic interpolating poly-
nomial using the nodes T0 = 0, T1 = 10, T2 = 20, T3 = 30, and
T4 = 40.
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Solution: The divided difference coefficients are

a0 = 3.0420e+ 1, a1 = 8.0900e− 1, a2 = 8.0500e− 3, a3 = 3.6667e− 5,

a4 = 1.7279e− 20

(c) Which of the two polynomials would you think is best to use to get values
for P (T ) that are not on the table?

13. In Problem 8 of 3.1 and Problem 8 of 3.8 we looked at the motion of
a liquid/solid interface under a simplified model of the physics involved, in
which the interface moved according to

x = 2β
√
t

for β = α/
√
k. Here k is a material property and α is the root of f(z) =

θe−z
2 − zerf(z), where θ also depends on material properties. Figure 4.5

shows a plot of α vs. log10 θ, based on finding the root of f(z). Some of the
data used to create this curve is given in Table 4.7 (Table 4.12 in the text).

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

log10θ

α

Figure 4.5 Figure for Problem 13.

(a) Use the data at the nodes {−6,−4,−2, 0, 2, 4, 6} to construct an inter-
polating polynomial for this table. Plot the polynomial and compare to
the actual graph in Figure 4.5. Use the polynomial to compute values at
log10 θ = −5,−3, . . . , 3, 5. How do these compare to the actual values
from the table?
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Table 4.7 Data for Problem 13.

log10 θ α

-6.0000 0.944138E-03
-5.0000 0.298500E-02
-4.0000 0.941277E-02
-3.0000 0.297451E-01
-2.0000 0.938511E-01
-1.0000 0.289450E+00
0.0000 0.767736E+00
1.0000 0.141492E+01
2.0000 0.198151E+01
3.0000 0.245183E+01
4.0000 0.285669E+01
5.0000 0.321632E+01
6.0000 0.354269E+01

Solution: The divided difference coefficients are

a0 = 9.4414e−4, a1 = 4.2343e−3, a2 = 9.4962e−3, a3 = 1.0697e−2,

a4 = −1.4662e− 3, a5 = −6.9243e− 5, a6 = 4.6066e− 5

We get p6(x) = .0001600x6 + .00066298x5− .007638x4− .03204x3 +
.09548x2 + .5895x+ .7677, for x = log10 θ.

(b) Compute the higher-degree Newton polynomial based on the entire table
of data. Plot this polynomial and compare it to the one generated using
only part of the data.

Solution: Figure 4.6 shows the nodes and both interpolating polynomials.
Note that the interpolations have much more “wiggle” to them than is
present in the raw data.

14. Write a computer program to construct the Newton interpolating polynomial
to f(x) =

√
x using equally spaced nodes on the interval [0, 1]. Plot the error

f(x)− pn(x) for n = 4, 8, 16 and comment on what you get.

Solution: Figure 4.7 shows the three error plots. Note the large “spike” in the error
near x = 0. Section 4.3 will explain why this occurs.

/ • • • .



132 INTERPOLATION AND APPROXIMATION

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4.6 Solution plot for Exercise 4.2.13.
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Figure 4.7 Solution plot for Exercise 4.2.14.

4.3 INTERPOLATION ERROR

Exercises:

1. What is the error in quadratic interpolation to f(x) =
√
x, using equally spaced

nodes on the interval [ 14 , 1]?



INTERPOLATION ERROR 133

Solution: We have

|f(x)− p2(x)| ≤ 1

9
√

3
(3/8)3 max

t∈[1/4,1]
|(3/8)t−5/2|

=
1

9
√

3
× 81

4096
× 45/2 = .4059494081e− 1.

2. Repeat the above for f(x) = x−1 on [ 1
2 , 1].

Solution: We have

|f(x)− p2(x)| ≤ 1

9
√

3
(1/4)3 max

t∈[1/2,1]
|6x−4|

=
1

9
√

3
× 1

64
× 6× 16 = .9622504490e− 1.

3. Repeat the previous two problems, using cubic interpolation.

Solution: This time we have

|
√
x− p3(x)| ≤ 1

24
(1/4)4 max

t∈[1/4,1]
|(15/16)x−7/2|

=
1

24
× 1

256
× 15

16
× 47/2 = .1953125e− 1

and

|x−1−p3(x)| ≤ 1

24
(1/6)4 max

t∈[1/2,1]
|24x−5| = 1

24
× 1

362
×24×32 = .2469135802e−1.

4. Show that the error in third degree polynomial interpolation satisfies

‖f − p3‖∞ ≤
1

24
h4‖f (4)‖∞,

if the nodes x0, x1, x2, x3 are equally spaced, with xi − xi−1 = h. Hint: Use
the change of variable t = x− x1 − 1

2h.

Solution: We have

f(x)− p4(x) =
w4(x)

24
f (4)(ξx),

for some value ξx in the interval defined by the nodes and x. Therefore

‖f − p3‖∞ ≤
1

24
max

x∈[x0,x3]
|w4(x)|‖f (4)‖∞,

where we have assumed the nodes are ordered x0 < x1 < x2 < x3. The
change of variable reduces

W = max
x∈[x0,x3]

|w4(x)|
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to
W = max

t∈[−3h/2,3h/2]
|(t2 − 9h2/4)(t2 − h2/4)|

and ordinary calculus shows that W = h4.

5. Show that the error in polynomial interpolation using six equally spaced points
(quintic interpolation) satisfies

‖f − p5‖∞ ≤ Ch6‖f (6)‖∞

where C ≈ 0.0235. Hint: See previous problem.

Solution: The basic outline from the previous exercise shows us that

‖f − p5‖∞ ≤ 1

720
max

t∈[−5h/2,5h/2]

|(t2 − 25h2/4)(t2 − 9h2/4)(t2 − h2/4)|‖f (6)‖∞.

Applying ordinary calculus to the problem of finding

W = max
t∈[−5h/2,5h/2]

|(t2 − 25h2/4)(t2 − 9h2/4)(t2 − h2/4)|

shows that W = 16.90089433h6, thus C = 16.90089433/720 = 0.0235.

6. Generalize the derivation of the error bound (4.12) for quadratic interpolation
to the case where the nodes are not equally spaced. Take x1 − x0 = h and
x2 − x1 = θh for some θ > 0.

Solution: The issue is obtaining an upper bound for

|w2(x)| = |(x− x0)(x− x1)|.

Ordinary calculus, coupled with the same kind of variable shift as used in the
text, can be used to show that

|w2(x)| ≤ (h3/27)g(θ),

where

g(θ) = −
(
θ − 2 +

√
θ2 − θ + 1

)(
θ + 1 +

√
θ2 − θ + 1

)
×
(

2 θ − 1−
√
θ2 − θ + 1

)
for θ ∈ [0, 1/2], and

g(θ) = −
(
θ − 2−

√
θ2 − θ + 1

)(
θ + 1−

√
θ2 − θ + 1

)
×
(

2 θ − 1 +
√
θ2 − θ + 1

)
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for θ ∈ [1/2, 1].

This looks messy, but the graph of g shows a simple V-shaped curve, ranging
from 4 at θ = 0 to slightly more than 1 at θ = 1/2, and then back up as θ
continues to increase.

7. Apply your result for the previous problem to the error in quadratic interpolation
to f(x) =

√
x using the nodes x0 = 1

4 , x1 = 9
16 , and x2 = 1.

Solution: We have that h = x1 − x0 = 5/16, and θ = 7/5. Thus the error
is bounded according to

|
√
x− p2(x)| ≤ (h3/27)g(θ) max

t∈[0,1]
|(−1/4)t−3/2|

= (5/16)3 × (1/27)× 6.488878750× (1/4)× 43/2

= .1466850846e− 1.

8. If we want to use a table of exponential values to interpolate the exponential
function on the interval [−1, 1], how many points are needed to guarantee 10−6

accuracy with linear interpolation? Quadratic interpolation?

Solution: We have, for the linear case,

‖f − pn‖∞ ≤
1

8
h2‖f ′′‖∞ =

e

8
h2.

Therefore we get 10−6 accuracy when h ≤ .1715527770e− 2, which implies
n ≥ 1166 points on the interval [−1, 1].

For the quadratic case, we have

‖f − pn‖∞ ≤
1

9
√

3
h3‖f ′′′‖∞ =

e

9
√

3
h3.

Therefore we get 10−6 accuracy when h ≤ .1789930706e− 1, which implies
n ≥ 112 points.

9. If we want to use a table of values to interpolate the error function on the
interval [0, 5], how many points are needed to get 10−6 accuracy using linear
interpolation? Quadratic interpolation? Would it make sense to use one grid
spacing on, say, [0, 1], and another one on [1, 5]? Explain.

Solution: For the linear case, we have

‖f − pn‖∞ ≤
1

8
h2‖f ′′‖∞ =

h2

2
√
pi

(1).

Therefore we get 10−6 accuracy when h ≤ .1882792528e− 2, which implies
n ≥ 2656 points on the interval [0, 5]
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For the quadratic case, we have

‖f − pn‖∞ ≤
h3

9
√

3
‖f ′′′‖∞ =

2.256758334h3

9
√

3
.

Therefore we get 10−6 accuracy when h ≤ .1904463677e− 1, which implies
n ≥ 263 points on the interval [0, 5]

Breaking the table up into two regions [0, 1] and [1, 5] makes sense because the
error function is nearly flat for large arguments, and so we can get away with
a much larger h on [1, 5] and probably many fewer overall points.

10. If we want to use a table of values to interpolate the sine function on the interval
[0, π], how many points are needed for 10−6 accuracy with linear interpolation?
Quadratic interpolation? Cubic interpolation?

Solution: We get n ≥ 1111 for the linear case, n ≥ 144 for the quadratic
case, n ≥ 45 for the cubic case.

11. Let’s return to the computation of the natural logarithm. Consider a computer
which stores numbers in the form z = f · 2β , where 1

2 ≤ f ≤ 1. We want
to consider using this, in conjunction with interpolation ideas, to compute the
natural logarithm function.

(a) Using piecewise linear interpolation over a grid of equally spaced points,
how many table entries would be required to accurately approximate ln z
to within 10−14?

(b) Repeat the above, using piecewise quadratic interpolation.

(c) Repeat it again, using piecewise cubic interpolation.

Explain, in a brief essay, the importance here of restricting the domain of z to
the interval [ 12 , 1].

Solution: For the linear case, we have

| lnx− p1(x)| ≤ (1/8)h2 max
t∈[1/2,1]

| − 1/t2| = h2/2,

so we need h ≤ .1414213562e − 6 and hence n ≥ 3535533.907 points. For
the quadratic case, we have

| lnx− p2(x)| ≤ (1/(9
√

3))h3 max
t∈[1/2,1]

|2/t3| = 16h3/(9
√

3)

so we need h ≤ .2135802307e − 4 and hence n ≥ 23410.40640 points.
Finally, for the cubic case, we have

| lnx− p3(x)| ≤ (1/24)h4 max
t∈[1/2,1]

| − 6/t4| = 96h4/24 = 4h4
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so we need h ≤ .2236067977e− 3 and hence n ≥ 2236.067978 points.

12. Assume that, for any real c,

lim
n→∞

cn

n!
= 0.

Use this to prove that, if pn is the polynomial interpolate to f(x) = sinx on
the interval [a, b], using any distribution of distinct nodes xk, 0 ≤ k ≤ n, then
‖f − pn‖∞ → 0 as n → ∞. Hint: Can we justify |wn(x)| ≤ cn+1 for some
c?

Solution: We have

‖f − pn‖∞ ≤
‖wn‖∞
(n+ 1)!

‖f (n+1)‖∞ ≤
‖wn‖∞
(n+ 1)!

,

but

‖wn‖∞ = max
x∈[a,b]

n∏
k=0

|x− xn| ≤
n∏
k=0

|b− a| = (b− a)n+1.

Therefore,

‖f − pn‖∞ ≤
(b− a)n+1

(n+ 1)!
→ 0,

according to the assumed hypothesis.

13. Can you repeat the above for f(x) = ex? Why/why not?

Solution: A similar argument will work for the exponential function, since
the derivative term is again bounded by a constant.

14. Define the norms
‖f‖∞ = max

x∈[0,1]
|f(x)|

and

‖f‖2 =

(∫ 1

0

[f(x)]2dx

)1/2

.

Compute ‖f‖∞ and ‖f‖2 for the following list of functions:

(a) sinnπx, n integer;

(b) e−ax, a > 0;

(c)
√
xe−ax

2

, a > 0;

Solution: If a > 1/4 then ‖f‖∞ = (
√

2/2)e−1/4a−1/4; if a ≤ 1/4, then
‖f‖∞ = e−1. ‖f‖2 = (1/2)

√
(1− e−2a)/a.

(d) 1/
√

1 + x.
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Solution: ‖f‖∞ = 1, ‖f‖2 = .9101797207.

15. Define

fn(x) =

{
1− nx, 0 ≤ x ≤ 1

n ;

0 1
n ≤ x ≤ 1.

Show that

lim
n→∞

‖fn(x)‖∞ = 1

but

lim
n→∞

‖fn(x)‖2 = 0.

Hint: Draw a graph of fn(x).

Solution: This can be done by direct computation but a graph of fn is
revealing. It shows that max |fn| = 1 for all n, but the support of |fn| goes to
zero, thus forcing the integral norm to vanish while the pointwise norm remains
at 1.

16. Show that

‖f‖1,[a,b] =

∫ b

a

|f(x)|dx

defines a function norm.

Solution: We have, for any constant c,

‖cf‖1,[a,b] =

∫ b

a

|cf(x)|dx = |c|
∫ b

a

|f(x)|dx = |c|‖f‖1,[a,b],

and

‖f + g‖1,[a,b] =

∫ b

a

|f(x) + g(x)|dx ≤
∫ b

a

|f(x)|dx+

∫ b

a

|g(x)|dx

= ‖f‖1,[a,b] + ‖g‖1,[a,b].

This establishes two of the three conditions. To establish the remaining condi-
tion requires an argument to the effect that the integral of the absolute value of
a non-zero function must be greater than zero. Doing this precisely is probably
beyond the analysis skills of most students, but good students ought to be able
to construct a reasonable argument.

/ • • • .
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4.4 APPLICATION: MULLER’S METHOD AND INVERSE QUADRATIC
INTERPOLATION

Exercises:

1. Do three steps of Muller’s method for f(x) = 2 − ex, using the initial points
0, 1/2, 1. Make sure you reproduce the values in the table in the text.

2. Repeat the above for inverse quadratic interpolation.

Solution: We get x3 = .7087486790, x4 = .692849951, x5 = .692849951.

3. Let f(x) = x6 − x− 1; show that this has a root on the interval [0, 2] and do
three steps of Muller’s method using the ends of the interval plus the midpoint
as the initial values.

Solution: f(0) = −1 and f(2) = 61, so a root exists on [0, 2]. We get
x3 = 1.0313, x4 = 1.1032, x5 = 1.1258.

4. Repeat the above using inverse quadratic interpolation.

Solution: We getx3 = 1.017357687,x4 = 1.032876088,x5 = 1.174008963.

5. Let f(x) = ex and consider the nodes x0 = −1, x1 = 0, and x2 = 1. Let
p2 be the quadratic polynomial that interpolates f at these nodes, and let q2
be the quadratic polynomial (in y) that inverse interpolates f at these nodes.
Construct p2(x) and q2(y) and plot both, together with f(x).

Solution:

p2(x) = 0.543080635x2 + 1.175201193x+ 1.0

q2(y) = −0.4254590638 y2 + 2.163953414 y − 1.738494350

6. Repeat the above using f(x) = sinπx and the nodes x0 = 0, x1 = 1
4 , and

x2 = 1
2 .

Solution: We get p2(x) = −3.31370850x2+3.656854248x, q2(x) = y2/2.

7. Show that the formulas (4.15) and (4.16) for the divided-difference coefficients
in Muller’s Method (4.14) are correct.

Solution: Direct computation.

8. Show that the formulas (4.17) and (4.18) for the coefficients in inverse quadratic
interpolation are correct.

Solution: Direct computation.
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9. Apply Muller’s method and inverse quadratic interpolation to the functions in
Exercise 3 of 3.1, and compare your results to those obtained with Newton’s
method and/or the secant method.

Solution: See Table 4.8 for the Muller’s method results.

Table 4.8 Solutions to Exercise 4.4.9

n f(x) = x3 − 2x+ 5 f(x) = ex − 2 f(x) = x2 − sinx

1 2.00000000000000 0.68725936775341 0.87590056539793
2 2.09020134845606 0.69308784769077 0.87670226627220
3 2.09451837842307 0.69314716126932 0.87672621454247
4 2.09455148276226 0.69314718055995 0.87672621539506
5 2.09455148154233 0.69314718055995 0.87672621539506

10. Refer back to the discussion of the error estimate for the secant method in
Section 3.10.3. Adapt this argument to derive an error estimate for Muller’s
method.

Solution:
Muller’s method is based on finding the exact root of a quadratic polyno-
mial which interpolates the original function f . Let m be this interpolating
polynomial, so that we have

m(x) = f(xn) + a1(x− xn) + a2(x− xn)(x− xn−1)

where a1 and a2 are divided difference coefficients and the next iterate is
defined by solving 0 = m(xn+1). Then the quadratic interpolation error
estimate implies that

f(x)−m(x) =
1

6
(x− xn)(x− xn−1)(x− xn−2)f ′′′(ξn)

for all x; here ξn is in the interval defined by xn, xn−1,xn−2, and α. Set x = α
so that we have

f(α)−m(α) =
1

6
(α− xn)(α− xn−1)(α− xn−2)f ′′′(ξn)

But f(α) = 0 so we have

−m(α) =
1

6
(α− xn)(α− xn−1)(α− xn−2)f ′′′(ξn)

On the other hand we know that m(xn+1) = 0, so we can substitute this in to
get

m(xn+1)−m(α) =
1

6
(α− xn)(α− xn−1)(α− xn−2)f ′′′(ξn).
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The Mean Value Theorem then implies that there exists a value ηn between α
and xn+1 such that m(xn+1)−m(α) = m′(ηn)(xn+1 − α); therefore,

m′(ηn)(xn+1 − α) =
1

6
(α− xn)(α− xn−1)(α− xn−2)f ′′′(ξn)

or

xn+1 − α =
1

6
(α− xn)(α− xn−1)(α− xn−2)

f ′′′(ξn)

m′(ηn)
.

To really tidy up the final result we need to relate m′(ηn) to f ′.

/ • • • .

4.5 APPLICATION: MORE APPROXIMATIONS TO THE DERIVATIVE

Exercises:

1. Apply the derivative approximations (4.21) and (4.23) to the approximation of
f ′(x) for f(x) = x3 + 1 for x = 1 and h = 1

8 .

Solution: Using both of (4.21) and (4.23) we get

f ′(x) ≈ 2.968750000

2. Apply the derivative approximations (4.21) and (4.23) to the same set of func-
tions as in Exercise 3 of Section 2.2, using a decreasing sequence of mesh
values, h−1 = 2, 4, 8, . . . . Do we achieve the expected rate of accuracy as h
decreases?

3. Derive a version of (4.24) under the assumption that x1−x0 = h, but x2−x1 =
η = θh for some real, positive, θ. Be sure to include the error estimate as part
of your work, and confirm that when θ = 1 you get the same results as in the
text.

Solution:

f ′(x0) =
−θ(2 + θ)f(x0) + (1 + 2θ + θ2)f(x1)− f(x2)

θ(1 + θ)h
+

1

6
(1+θ)h2f ′′′(ξ)

4. Repeat the above for (4.25).

Solution:

f ′(x1) = (−η/(h(h+ η)))f(x0)− ((h− η)/(hη))f(x1) + (h/(η(h+ η)))f(x2)

− (hη/6)f ′′′(ξ)
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5. Repeat the above for (4.26).

Solution:

f ′(x2) =
θ2f(x0)− (1 + 2θ + θ2)f(x1) + (2θ + 1)f(x2)

θ(1 + θ)h
+

1

6
(1+θ)h2f ′′′(ξ)

6. Use the derivative approximations from this section to construct a table of
values for the derivative of the gamma function, based on the data in Table 4.3
(Table 4.8 in the text).

Solution: Γ′(1) ≈ −.5638283100, Γ′(1.5) ≈ .3125765900e − 1, Γ′(2) ≈
.4216022150.

7. Try to extend the ideas of this section to construct an approximation to f ′′(xk).
Is it possible? What happens?

Solution: You can’t eliminate all the terms that depend on the derivative with
respect to x of ξx.

/ • • • .

4.6 HERMITE INTERPOLATION

Exercises:

1. Show that H2, as defined in (4.28), is the cubic Hermite interpolate to f at the
nodes x = a and x = b.

Solution: Clearly H2(a) = f(a) and H ′2(a) = f ′(a). In addition,

H2(b) = f(a)+f ′(a)(b−a)+(A−f ′(a))(b−a) = f(a)+A(b−a) = f(b),

and

H ′2(b) = f ′(a) + 2B(b− a) +D(b− a)2 = f ′(a) + 2A− 2f ′(a)

+ (C −B)(b− a)

= f ′(a) + 2A− 2f ′(a) + [(f ′(b)−A)− (A− f ′(a))]

= f ′(a)− 2f ′(a) + f ′(a) + 2A− 2A+ f ′(b)

= f ′(b).

H2 is a cubic polynomial and it reproduces the function and derivative values
at the nodes. Therefore, by the uniqueness part of Theorem 4.4, H2 must be
the Hermite interpolant.
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2. Construct the cubic Hermite interpolate to f(x) = sinx using the nodes a = 0
and b = π. Plot the error between the interpolate and the function.

Solution: H2(x) = −(1/π)x2 + x.

3. Construct the cubic Hermite interpolate to f(x) =
√

1 + x using the nodes
a = 0 and b = 1. Plot the error between the interpolate and the function.

Solution:

H2(x) = 1.0+0.5000000000x−0.085786438x2+0.025126266x2 (x− 1.0)

The maximum absolute error over [0, 1] is about 0.0007.

4. Show that the error in cubic Hermite interpolation at the nodes x = a and
x = b is given by

‖f −H2‖∞ ≤
(b− a)4

384
‖f (4)‖∞.

Solution: This is a direct application of Theorem 4.5, using n = 2.

5. Construct the cubic Hermite interpolate to f(x) =
√
x on the interval [ 14 , 1].

What is the maximum error on this interval, as predicted by theory? What
is the maximum error that actually occurs (as determined by observation; no
need to do a complete calculus max/min problem)?

Solution:

H2(x) = 0.2037037037 + 1.388888889x− 0.8888888889x2

+0.2962962963x3

The error theory predicts that the error is bounded according to

|
√
x−H2(x)| ≤ (3/4)4

384
max

x∈[1/4,1]
|(15/16)x−7/2|

=
81

256
× 1

384
× 15

16
× 47/2

= .9887695312e− 1.

The actual error, looking at a computer plot, is about 0.0065.

6. Construct the cubic Hermite interpolate to f(x) = 1/x on the interval [ 12 , 1].
What is the maximum error as predicted by theory? What is the actual (ob-
served) maximum error?



144 INTERPOLATION AND APPROXIMATION

Solution: H2(x) = 6− 13x+ 12x2− 4x3, the predicted error is≤ 1/8, the
observed error is ≤ 0.022.

7. Construct the cubic Hermite interpolate to f(x) = x1/3 on the interval [ 1
8 , 1].

What is the maximum error as predicted by theory? What is the actual (ob-
served) maximum error?

Solution:

H2(x) = 0.3090379009 + 1.732750243x− 1.725947522x2

+0.6841593780x3

with maximum observed error about 0.036.

8. Construct the cubic Hermite interpolate to f(x) = lnx on the interval [ 12 , 1].
What is the maximum error as predicted by theory? What is the actual (ob-
served) maximum error?

Solution: H2(x) = −2.227411278 + 4.364467670x − 3.046701500x2 +
.9096451100x3, the predicted error is≤ 1/64, the observed error is≤ 0.0037.

9. Extend the divided difference table for cubic Hermite interpolation to quintic
Hermite interpolation, using three nodes x = a, x = b, and x = c.

Solution: We get a table like Table 4.9. Here A, B, C, and D are as in the
text, and

α =
f(b)− f(c)

b− c
β =

α− f ′(c)
b− c

γ =
f ′(b)− α
b− c

δ =
γ − β
b− c

E =
C − γ
a− c

F =
D − E
a− c

θ =
E − δ
a− c

G =
F − θ
a− c

10. Construct the quintic Hermite interpolate to f(x) = lnx on the interval [ 12 , 1];
use x = 3/4 as the third node.

Solution: We get

H2(x) = −2.64516010 + 7.1200353x+ 9.160601x3 − 9.971884x2

−4.659891x4 + 0.9962986x5.

11. What is the error in quintic Hermite interpolation?
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Table 4.9 Table for divided differences for quintic Hermite interpolation.

k xk f0(xk) f1(xk) f2(xk) f3(xk) f4(xk) f5(xk)

1 a f(a)

f ′(a)

1 a f(a) B

A D

2 b f(b) C F

f ′(b) E G

2 b f(b) γ θ

α δ

3 c f(c) β

f ′(c)

3 c f(c)

Solution: We get something like

f(x)−H3(x) =
1

720
ψ3(x)f (6)(ξ)

where ψ3(x) = (x − x1)2(x − x2)2(x − x3)2. This can be bounded above
according to

‖f −H3‖∞ ≤ Ch6‖f (6)‖∞,

where C = .0002057613167, approximately. This value comes from using
ordinary calculus to find the extreme values of ψ3.

12. Extend the ideas of Section 4.5 to allow us to compute second derivative
approximations using Hermite interpolation.

Solution: Becauseψn(x) involves terms of the form (x−xk)2 for each node,
the basic idea from Section 4.5 can be used to get derivative approximation
formulas for the second derivative, based on Hermite interpolation.

/ • • • .

4.7 PIECEWISE POLYNOMIAL INTERPOLATION

Exercises:

1. Use divided difference tables to construct the separate parts of the piece-
wise quadratic polynomial q2(x) that interpolates to f(x) = cos 1

2πx at
x = 0, 14 ,

1
2 ,

3
4 , 1. Plot the approximation and the error sin 1

2πx− q2(x).
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2. Repeat the above using f(x) =
√
x with the nodes x = 1

5 ,
2
5 ,

3
5 ,

4
5 , 1.

Solution: This requires that we construct the two divided difference tables that are
required here. We have the results in Table 1, thus the piecewise polynomial
is given by

q2(x) =

{
0.4472 + 0.9262(x− 0.2)− 0.5388(x− 0.2)(x− 0.4) 0.2 ≤ x ≤ 0.6

0.7746 + 0.5992(x− 0.6)− 0.1782(x− 0.6)(x− 0.8) 0.6 ≤ x ≤ 1.

Table 4.10 Divided difference table.

k xk f0(xk) f1(x) f2(x)

0 0.2 0.4472
0.9262

1 0.4 0.6325 -0.5388
0.7107

2 0.6 0.7746

k xk f0(xk) f1(x) f2(x)

0 0.6 0.7746
0.5992

1 0.8 0.8944 -0.1782
0.5279

2 1.0 1.0000

3. Confirm that (4.30) is the correct piecewise quadratic approximation to f(x) =
1/(1 + 25x2) using the nodes x0 = −1, x1 = −2/3, x2 = −1/3, x3 = 0,
x4 = 1/3, x5 = 2/3, and x6 = 1.

Solution: Since the each polynomial piece matches the nodal data it must be
correct, because of the uniqueness of polynomial interpolation.

4. Using the data in Table 4.3, construct a piecewise cubic interpolating poly-
nomial to the gamma function, using the nodes x = 1.0, 1.2, 1.3, 1.5 for one
piece, and the nodes x = 1.5, 1.7, 1.8, 2.0 for the other piece. Use this approx-
imation to estimate Γ(x) for x = 1.1, 1.4, 1.6 and 1.9. How accurate is the
approximation?

Solution:

q3(x) = −.3427614666x3 + 1.873584557x2

− 3.283390574x+ 2.752567484, for 1 ≤ x ≤ 3/2

= (0.1596133333e− 2)x3 + .3766571466x2

− 1.105518098x+ 1.691638542, for 3/2 ≤ x ≤ 2
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5. Using the results of Exercise 6 from Section 4.6, together with the data of
function values from Exercise 9 of Section 4.2, construct a piecewise cubic
Hermite interpolating polynomial for the gamma function, using the nodes
x = 1.0, 1.3, 1.7, 2.0. Test the accuracy of the interpolation by using it to
approximate Γ(x) for x = 1.1, 1.2, 1.4, 1.5, 1.6, 1.8, 1.9.

Solution: We get

q3(x) = 2.663132928− 3.038661703x+ 1.651752931x2

− .2762241567x3 for 1 ≤ x ≤ 1.3

= 2.072404716− 1.800684259x+ .7983854147x2

− (0.8343915950e− 1)x3 for 1.3 ≤ x ≤ 1.7

= 1.582234466− .9241759694x+ .2766990121x2

+ (0.1991517800e− 1)x3 for 1.7 ≤ x ≤ 2

Moreover, we have

Γ(1.1)− q3(1.1) = −.2209795e− 3

Γ(1.2)− q3(1.2) = .2209792e− 3

Γ(1.4)− q3(1.4) = −.612948e− 4

Γ(1.5)− q3(1.5) = .885788e− 4

Γ(1.6)− q3(1.6) = .1055826e− 3

Γ(1.8)− q3(1.8) = .159327e− 4

Γ(1.9)− q3(1.9) = −.159317e− 4

6. Construct a piecewise cubic interpolating polynomial to f(x) = lnx on the
interval [ 12 , 1], using the nodes

xk =
1

2
+

k

18
, 0 ≤ k ≤ 9.

Compute the value of the error lnx− p(x) at 500 equally spaced points on the
interval [ 12 , 1], and plot the error. What is the maximum sampled error?

Solution: This is a fairly simple program to write, building upon previous
modules. The maximum error which I got was 2.282428148858706e− 5.

7. Repeat the above, using piecewise cubic Hermite interpolation over the same
grid.

Solution: The maximum error is about 1.9254e− 6.

8. Construct piecewise polynomial approximations of degree d = 1, 2, 3 to the
data in Table 4.7, using only the nodes log10 θk = −6,−4,−2, 0, 2, 4, 6. Plot
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the resulting curve and compare it to the ordinary interpolating polynomial
found in Problem 13 of 4.2. Test how well this approximation matches the
tabulated values at log10 θ = −5,−3,−1, 1, 3, 5.

9. Show that the error in piecewise cubic Hermite interpolation satisfies

‖f −H2‖∞ ≤
1

384
h4‖f (4)‖∞

where we have assumed uniformly spaced nodes with xk − xk−1 = h.

10. Given a grid of points

a = x0 < x1 < x2 < · · · < xn = b

define the piecewise linear functions φhk , 1 ≤ k ≤ n− 1, according to

φhk(x) =


x−xk−1

xk−xk−1
xk−1 ≤ x ≤ xk;

xk+1−x
xk+1−xk

xk ≤ x ≤ xk+1;

0 otherwise.

Define the function space

Sh0 = {f ∈ C([a, b]), f(a) = f(b) = 0, f is piecewise linear on the given grid}.

Show that the φhk are a basis for Sh0 , i.e., that every element of the space Sh0
can be written as a linear combination of the φhk functions.

11. Implement a routine for approximating the natural logarithm using piecewise
polynomial interpolation, i.e., a table look-up scheme. Assume the table of
(known) logarithm values is uniformly distributed on the interval [ 12 , 1]. Choose
enough points in the table to guarantee 10−10 accuracy for any x. Use

(a) Piecewise linear interpolation;

(b) Piecewise cubic Hermite interpolation.

Test your routine against the intrinsic logarithm function on your computer
by evaluating the error in your approximation at 5, 000 equally spaced points
on the interval [ 1

10 , 10]. Use the way that the computer stores floating point
numbers to reduce the logarithm computation to the interval [ 12 , 1], so long as
ln 2 is known to high accuracy.

/ • • • .
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4.8 AN INTRODUCTION TO SPLINES

Exercises:

1. Given the set of nodes x0 = 0, x1 = 1/2, x2 = 1, x3 = 3/2, and x4 = 2, we
construct the cubic spline function

q3(x) = 0.15B−1(x) + 0.17B0(x) + 0.18B1(x) + 0.22B2(x) + 0.30B3(x)

+ 0.31B4(x) + 0.32B5(x),

where each Bk is computed from the exemplar B spline according to (4.39).
Compute q3 and its first derivative at each node.

Solution: We have

q3(x0) = 0.15B−1(x0)+0.17B0(x0)+0.18B1(x0) = 0.15+0.17×4+0.18 = 1.01

and

q′3(x0) = 0.15B′−1(x0) + 0.17B′0(x0) + 0.18B′1(x0) = 0.15(−3/h) + 0.17(0)

+ 0.18(3/h) = 0.15(−6) + 0.18(6) = 0.18

The others follow similarly.

2. Is the function

p(x) =



0, x ≤ 0;

x2, 0 ≤ x ≤ 1;

−2x2 + 6x+ 3, 1 ≤ x ≤ 2;

(x− 3)2, 2 ≤ x ≤ 3;

0, x ≥ 3

a spline function? Why/why not?

Solution: No, it is not, because it is not continuous at x = 1.

3. For what value of k is the following a spline function?

q(x) =

{
kx2 + (3/2), 0 ≤ x ≤ 1;

x2 + x+ (1/2), 1 ≤ x ≤ 2.

Solution: There is no k that will make this a spline. Taking k = 1 makes the
function continuous, but the derivative is not continuous.

4. For what value of k is the following a spline function?

q(x) =

{
x3 − x2 + kx+ 1 0 ≤ x ≤ 1;

−x3 + (k + 2)x2 − kx+ 3 1 ≤ x ≤ 2.
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Solution: k = 3.

5. For what value of k is the following a spline function?

q(x) =

{
x3 + 3x2 + 1, −1 ≤ x ≤ 0;

−x3 + kx2 + 1, 0 ≤ x ≤ 1.

Solution: k = 3.

6. Construct the natural cubic spline that interpolates to f(x) = 1/x at the nodes
1/2, 5/8, 3/4, 7/8, 1. Do this as a hand calculation. Plot your spline function
and f on the same set of axes, and also plot the error.

Solution: The coefficients are

c = [0.4052, 0.3333, 0.2615, 0.2207, 0.1889, 0.1667, 0.1445]

7. Repeat the above using the complete spline.

Solution: The coefficients are

c = [0.4180, 0.3299, 0.2624, 0.2204, 0.1893, 0.1653, 0.1496]

8. Construct a natural spline interpolate to the mercury thermal conductivity data
(Table 4.2, Table 4.7 in the text), using the 300◦K, 500◦K, and 700◦K values.
How well does this predict the values at 400◦K and 600◦K?

Solution: The spline coefficients are c−1 = 0.0095, c0 = 0.0140,
c1 = 0.0185, c2 = 0.0212, c3 = 0.0239; the spline predicts that the con-
ductivity at 400◦K = 0.0972 and at 600◦K = 0.1157. Both values are
accurate, but not exact.

9. Confirm that the function B(x), defined in (4.35), is a cubic spline.

Solution: It obviously is piecewise cubic; to confirm that it is a spline simply
show that the one-sided limits at the interior knots are equal.

10. Construct a natural cubic spline to the gamma function, using the data in Table
4.3, and the nodes x = 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. Use this approximation
to estimate Γ(x) at x = 1.1, 1.3, 1.5, 1.7, and 1.9.

Solution: Since this is a natural spline construction, we have the following system
of equations to solve.

4 1 0 0

1 4 1 0

0 1 4 1

0 0 1 4



c0
c1
c2
c3

 =


0.7515020757

0.8872638175

0.8935153493

0.7647171043
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Thus 
c0
c1
c2
c3

 =


0.1511220252

0.1470139748

0.1480858929

0.1541578028


The natural spline construction then tells us the rest of the coefficients:

c0 = Γ(x0)/6 = 1/6, c5 = Γ(x5)/6 = 1/6;

and

c−1 = 2c0−c1 = 0.18221130811994, c6 = 2c5−c4 = 0.17917553048357.

Thus the spline is

q(x) = 0.1822113081B−1(x) + 0.1666666667B0(x)

+0.1511220252B1(x) + 0.1470139748B2(x)

+0.1480858929B3(x) + 0.1541578028B4(x)

= 0.1666666667B5(x) + 0.1791755304B6(x).

We can test this by computing

tk = ck−1 + 4ck + ck+1;

we should get tk = f(xk), and we do. Just for example,

t2 = c1 + 4c2 + c3 = 0.1511220252 + 0.1470139748× 4 + 0.1480858929

= 0.8872638173,

which matches Γ(x2) to nine digits, and probably would match the tenth digit
if I had been more careful with my rounding here. Similar results hold at the
other points.

We can use this to approximate Γ at the indicated points by computing as
follows.

q(1.1) = 0.1822113081B−1(1.1) + 0.1666666667B0(1.1)

+0.1511220252B1(1.1) + 0.1470139748B2(1.1),

q(1.3) = 0.1666666667B0(1.3) + 0.1511220252B1(1.3)

+0.1470139748B2(1.3) + 0.1480858929B3(1.3)

and so on for the other points.

11. Repeat the above using the complete spline approximation, and use the deriva-
tive approximations from Section 4.5 for the required derivative endpoint val-
ues.
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Solution: The spline coefficients are

c = [0.1872, 0.1653, 0.1515, 0.1469, 0.1481, 0.1544, 0.1658, 0.1824].

Moreover, q3(1.1) = 0.95256719297015, which is a good approximation to
Γ(1.1) = 0.95135076986687.

12. Repeat Problem 6 of 4.7, except this time construct the complete cubic spline
interpolate to f(x) = lnx, using the same set of nodes. Plot the approximation
and the error. What is the maximum sampled error in this case?

Solution: The spline coefficients are

c = [−0.1345, −0.1153, −0.0977, −0.0819, −0.0674, −0.0541,

−0.0417, −0.0303, −0.0195, −0.0094, 0.0001, 0.0090]

13. Recall Problem 7 from 4.2, in which we constructed polynomial interpolates
to timing data from the 1973 Kentucky Derby, won by the horse Secretariat.
For simplicity, we repeat the data in Table 4.11. Here t is the elapsed time (in

Table 4.11 Data for Problem 13.

x 0.0 0.25 0.50 0.75 1.00 1.25
t 0.0 25.0 49.4 73.0 96.4 119.4

seconds) since the race began and x is the distance (in miles) that Secretariat
has travelled.

(a) Construct a natural cubic spline that interpolates this data.

(b) What is Secretariat’s speed at each quarter-mile increment of the race?
(Use miles per hour as your units.)

(c) What is Secretariat’s “initial speed,” according to this model? Does this
make sense?

Note: It is possible to do this problem using a uniform grid. Construct the
spline that interpolates t as a function of x, then use your knowledge of calculus
to find x′(t) from t′(x).

Solution: (a) Again, the fact that we are asked to do a natural spline tells us
the linear system is

4 1 0 0

1 4 1 0

0 1 4 1

0 0 1 4



c1
c2
c3
c4

 =


25.0

49.4

73.0

76.5
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Thus, the first four spline coefficients are
c1
c2
c3
c4

 =


4.1842105263

8.2631578947

12.1631578947

16.0842105263

 ,
and the remaining coefficients are

c0 = 0, c−1 = −4.1842105263, c5 = 19.9, c6 = 23.71578947368422

(b) Our spline, as constructed, gives us the time, t (in seconds) as a function
of the distance, x (in miles). But velocity is the derivative of distance with
respect to time. We use the calculus to tell us that

dx

dt
=

(
dt

dx

)−1
.

Thus we can compute q′(1.25) and from that get the horse’s speed. We get

q′(1.25) = (−3/h)(16.0842105263) + (3/h)(23.7157894736) =

so
dx

dt
= 0.0109195402.

This seems a little low, but then we remember that the units are such that this
is miles per second. Converting to miles per hour we get

dx

dt
= 39.3103448279,

which is a much more reasonable speed

(c) The same kind of computation gives us an initial speed of 35.84905660390886.
I suspect the horse took a few seconds to get up to full speed, so this is probably
a bit high.

14. Show that the complete cubic spline problem can be solved (approximately)
without having an explicit expression for f ′ at the endpoints. Hint: Consider
the material from Section 4.5.

Solution: Simply use the approximations

f ′(b) ≈ 3f(b)− 4f(b− h) + f(b− 2h)

2h

and

f ′(a) ≈ −f(a+ 2h) + 4f(a+ h)− 3f(a)

2h
.



154 INTERPOLATION AND APPROXIMATION

15. Construct the natural cubic spline that interpolates the data in Table 4.7 (Table
4.12 in the text) at the nodes defined by log10 θ = −6,−4, . . . , 4, 6. Test
the accuracy of the approximation by computing q3(x) for x = log10 θ =
−5,−3, . . . , 3, 5 and comparing to the actual data in the table.

Solution: The spline coefficients are c−1 = −0.0029, c0 = 0.0002, c1 =
0.0032, c2 = −0.0037, c3 = 0.1056, c4 = 0.3492, c5 = 0.4793, c6 = 0.5904,
c7 = 0.7016.

16. Construct the exemplar quadratic B-spline; i.e., construct a piecewise quadratic
function that is C1 over the nodes/knots x = −1, 0, 1, 2, and which vanishes
for x outside the interval [−1, 2].

Solution: A quadratic spline is a piecewise quadratic function with first derivative
continuity at the knots; to be the exemplar B-spline we also need the local
definition property, thus we need our function to be zero for x ≤ −1 and
x ≥ 2. This leads us to try something like

B(x) =



0, x ≤ −1;

(x+ 1)2, −1 ≤ x ≤ 0;

Ax2 +Bx+ C; 0 ≤ x ≤ 1;

(x− 2)2; 1 ≤ x ≤ 2;

0, 2 ≤ x.

We need to choose A, B, and C so that B ∈ C1, i.e., so that

lim
x→0−

B(x) = lim
x→0+

B(x),

lim
x→1−

B(x) = lim
x→1+

B(x),

and similarly for B′. This quickly leads, after a modest amount of manipula-
tion, to the values

C = 1, B = 2, A = −2.

So the exemplar quadratic B-spline is

B(x) =



0, x ≤ −1;

(x+ 1)2, −1 ≤ x ≤ 0;

−2x2 + 2x+ 1; 0 ≤ x ≤ 1;

(x− 2)2; 1 ≤ x ≤ 2;

0, 2 ≤ x.

17. Construct the exemplar quintic B-spline.

Solution: This is lengthy but not hard. Based on the cubic construction, we
are going to need to use nodes at x = −3, x = −2, x = −1, x = 0, x = 1,
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x = 2, and x = 3. In order to get the proper derivative continuity at the nodes
x = ±3 we will need the exemplar quintic to have the basic form

B(x) =



0, x < −3

(x+ 3)5, −3 < x ≤ −2

q1(x), −2 < x ≤ −1

q2(x), −1 < x ≤ 0

q3(x), 0 < x ≤ 1

q4(x), 1 < x ≤ 2

(x− 3)5, 2 < x ≤ 3

0, 3 < x

Here we have to choose the individual quintics q1, q2, etc., to maintain conti-
nuity and smoothness. For example, we have to have that

q1(−2) = 1, q′1(−2) = 5, q′′1 (−2) = 20, q′′′1 (−2) = 60.

Therefore, we have to have

q1(x) = 1 + 5(x+ 2) + 10(x+ 2)2 + 10(x+ 2)3 +A1(x+ 2)4 +B1(x+ 2)5.

Similarly, we can get that

q4(x) = −1+5(x−2)−10(x−2)2 +10(x−2)3 +A4(x−2)4 +B4(x−2)5.

Corresponding relationships hold for q2 and q3. Algebraic equations for A1,
B1, etc., can then be derived by setting q1(−1) = q2(−1) and so forth.

18. For a linear spline function we have d = 1 which forces N = 0. Thus a linear
spline has no derivative continuity, only function continuity, and no additional
conditions are required at the endpoints. Show that the exemplar B-spline of
first degree is given by

B(x) =


0, x ≤ −1;

x+ 1, −1 ≤ x ≤ 0;

1− x, 0 ≤ x ≤ 1;

0, 1 ≤ x.

Write out, in your own words, how to construct and evaluate a linear spline
interpolant using this function as the basic B-spline.

Solution: What makes this spline basis so appealing is that the coefficients
can be shown to be the nodal values. That is, we construct the spline approxi-
mation to a function f as

q1(x) =
n∑
i=0

f(xi)Bi(x).
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19. Discuss, in your own words, the advantages or disadvantages of spline approx-
imation compared to ordinary piecewise polynomial approximation.

Solution: The main difference is the smoothness of the spline approximation,
compared to the ordinary piecewise polynomial one.

20. Write an essay which compares and contrasts piecewise cubic Hermite inter-
polation with cubic spline interpolation.

Solution: The main point of comparison would be that the Hermite process
requires derivative values.

21. The data below gives the actual thermal conductivity data for the element
nickel. Construct a natural spline interpolate to this data, using only the data
at 200◦K, 400◦K, ..., 1400◦K. How well does this spline predict the values
at 300◦K, 500◦K, etc.?

Table 4.12 Data for Problem 21.

Temperature (K), u 200 300 400 500 600
Conductivity (watts/cm K), k 1.06 0.94 0.905 0.801 0.721

Temperature (K), u 700 800 900 1000
Conductivity (watts/cm K), k 0.655 0.653 0.674 0.696

Solution: The spline coefficients are c−1 = 0.2002, c0 = 0.1767, c1 =
0.1532, c2 = 0.1156, c3 = 0.1053, c4 = 0.1160, c5 = 0.1267.

22. Construct a natural spline interpolate to the thermal conductivity data in the
table below. Plot the spline and the nodal data.

Temperature (◦K), u 200 300 400 500 600 700
Conductivity (watts/cm ◦K), k 0.94 0.803 0.694 0.613 0.547 0.487

/ • • • .

4.9 APPLICATION: SOLUTION OF BOUNDARY VALUE PROBLEMS

Exercises:

1. Set up the linear system for solving the boundary value problem

−u′′ + u = 1, u(0) = 1, u(1) = 0,
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using h = 1
4 . You should get 196 −95 0

−95 196 −95

0 −95 196

 c1
c2
c3

 =

 101/6

1

671/576



Solution: Since tii = 12h−2 + 4a2 and h = 1/4, a = 1, we quickly have

tii = 12× 16 + 4 = 196.

The off-diagonal elements are

ti,i+1 = −6h−2 + a2 = −6× 16 + 1 = −95.

The values for the right side vector follow in an equally straightforward manner.

2. Solve the system in the previous problem and find the coefficients for the spline
expansion of the approximate solution. The exact solution is

u(x) = 1− e

e2 − 1
ex +

e

e2 − 1
e−x;

plot your approximation and the error.

Solution: The spline coefficients are c−1 = 0.2021, c0 = 0.1667, c1 =
0.1312, c2 = 0.0936, c3 = 0.0513, c4 = 0.0017, c5 = −0.0582.

3. Use the algorithm from this section to approximate the solution to each of
the following boundary value problems using h−1 = 8, 16, 32. Estimate the
maximum error in each case by sampling the difference between the exact and
approximate solutions at 200 equally spaced points on the interval.

(a) −u′′ + u = (π2 + 1) sinπx, u(0) = u(1) = 0; u(x) = sinπx;

(b) −u′′ + u = π(π sinπx + 2 cosπx)e−x, u(0) = u(1) = 0; u(x) =
e−x sinπx;

(c) −u′′ + u = 3 − 1
x − (x2 − x − 2) log x, u(0) = u(1) = 0; u(x) =

x(1− x) log x.

(d) −u′′ + u = 4e−x − 4xe−x, u(0) = u(1) = 0; u(x) = x(1− x)e−x;

(e) −u′′ + π2u = 2π2 sin(πx), u(0) = 1, u(1) = 0, u(x) = sin(πx)

(f) −u′′ + u = x2+2x−1
(1+x)3 , u(0) = 1, u(1) = 1/2, u(x) = (1 + x)−1.

Solution: For (a), with h = 1/8, the spline coefficients are c−1 = −0.0647,
c0 = 0, c1 = 0.0647, c2 = 0.1195, c3 = 0.1562, c4 = 0.1690, c5 = 0.1562,
c6 = 0.1195, c7 = 0.0647, c8 = 0, c9 = −0.0647. For (e), with h = 1/8, the
spline coefficients are c−1 = −0.0650, c0 = 0, c1 = 0.0650, c2 = 0.1201,



158 INTERPOLATION AND APPROXIMATION

c3 = 0.1570, c4 = 0.1699, c5 = 0.1570, c6 = 0.1201, c7 = 0.0650, c8 = 0,
c9 = −0.0650.

4. Try to extend the method from this section to the more general two point
boundary value problem defined by

−a(x)u′′ + u = f(x),

u(0) = u(1) = 0

Is the resulting linear system diagonally dominant for all choices of a(x)?

Solution: The components of the linear system now depend on the coefficient
function a. In particular, we get

tii = 12h−2a(xi) + 4

while the off-diagonal elements are

ti,i+1 = −6h−2a(xi) + 1.

The system is diagonally dominant if tii > |ti,i−1|+ |ti,i+1|. If a is such that
min a(x) > h2/6, then, for all xi,

|ti,i−1| = 6h−2a(xi)− 1

and similarly for |ti,i+1|. Therefore,

|ti,i−1|+ |ti,i+1| = 12h−2a(xi)− 2 < 12h−2a(xi) + 4 = tii

so the system is diagonally dominant, if min a(x) > h2/6.

5. Try to extend the method from this section to the more general two point
boundary value problem defined by

−u′′ + bu′ + u = f(x),

u(0) = u(1) = 0

Is the resulting linear system diagonally dominant for all values of b?

Solution: The system ceases to be symmetric because of the first derivative
term in the differential equation, and this impacts the diagonal dominance. We
now have a diagonally dominant system only if h is “sufficiently small.”

/ • • • .
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4.10 TENSION SPLINES

Exercises:

1. Show that the piecewise function defined in (4.56) is, indeed, continuous and
has continuous first and second derivatives.

Solution: This is a straight-forward, if tedious, calculus exercise. Simply
show that the function values plus the first two derivatives are continuous at
the knots ±2, ±1, 0, i.e., the limits from the left and right are equal. This is a
good exercise to use something like Maple or Mathematica on.

2. Fill in the details of the natural spline construction. In particular, confirm the
expressions for δ2,0(p) and δ2,1(p) (and that τ ′′(1) = τ ′′(−1)) as well as the
form of the final linear system (4.59).

3. Derive the linear system for construction of a complete taut spline, by following
what was done in 4.8.

4. Consider the following dataset:

x 600 650 700 750 800 850 900 950 1000 1050 1100
y 0.64 0.65 0.66 0.69 0.91 2.2 1.2 0.62 0.6 0.61 0.61

Plot the data, and construct a (natural) polynomial spline fit to it. Note the
“wiggles” to the left of the peak, which appear to be contrary to the sense of
the data, which is increasing monotonically towards the peak near x = 850.
Find the smallest value of p in a taut natural spline fit to this data which yields
a monotone curve to the left of the peak.

Solution: The plots below show the polynomial spline (on the left) and a
tension spline with p = 4 (on the right. Note that the wiggles have been
smoothed out.



160 INTERPOLATION AND APPROXIMATION

600 650 700 750 800 850 900 950 1000 1050 1100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 4.8 Polynomial (natural) spline
fit to the data in Problem 4.
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Figure 4.9 Tension spline fit (p = 4) to
the data in Problem 4.

5. Repeat the previous problem using complete splines. Use a simple finite
difference approximation based on the data to get the necessary derivative
values.

/ • • • .

4.11 LEAST SQUARES CONCEPTS IN APPROXIMATION

Exercises:

1. Modify the methods of Section 4.11.1 to compute the linear function of two
variables that gives the best least-squares fit to the data in Table 4.14.

Solution: We are looking for a linear fit in two variables so the model equation
is z = ax+ by + c. Then we want to minimize the function

F (a, b, c) =
n∑
k=1

(zk − (axk + byk + c))2.

The critical point is defined by the three equations

dF

da
= −2

n∑
k=1

(zk − (axk + byk + c))(−xk) = 0

dF

db
= −2

n∑
k=1

(zk − (axk + byk + c))(−yk) = 0
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dF

dc
= −2

n∑
k=1

(zk − (axk + byk + c))(1) = 0

from which we get the 3× 3 system

n∑
k=1

zkxk =

(
n∑
k=1

x2k

)
a+

(
n∑
k=1

xkyk

)
b+

(
n∑
k=1

xk

)
c

n∑
k=1

zkyk =

(
n∑
k=1

xkyk

)
a+

(
n∑
k=1

y2k

)
b+

(
n∑
k=1

yk

)
c

n∑
k=1

zk =

(
n∑
k=1

xk

)
a+

(
n∑
k=1

yk

)
b+

(
n∑
k=1

1

)
c

which can be solved to produce the coefficients.

2. The data in Table 4.13 (Table 4.24 in the text) gives the actual thermal con-
ductivity data for the element iron. Construct a quadratic least squares fit to
this data and plot both the curve and the raw data. How well does your curve
represent the data? Is the fit improved any by using a cubic polynomial?

Table 4.13 Data for Problem 2.

Temperature (K), u 100 200 300 400 500
Conductivity (watts/cm K), k 1.32 0.94 0.835 0.803 0.694

Temperature (K), u 600 700 800 900 1000
Conductivity (watts/cm K), k 0.613 0.547 0.487 0.433 0.38

Solution: p2(T ) = 1.3873−0.00186222727273T +0.00000088863636T 2,
and p3(T ) = 1.5755 − 0.00353175602176T + 0.00000450850816T 2

−0.00000000219386T 3. While the two curves are close together, the cubic
one has a concavity change that appears to be present in the raw data.

3. Repeat Exercise 2, this time using the data for nickel from Exercise 21 in 4.8.

Solution: The quadratic polynomial is

p2(T ) = 1.36016190476191−0.00163075324675T +0.00000095562771T 2

and the cubic polynomial is

p3(T ) = 1.19442857142860− 0.00053271284271T

−0.00000109891775T 2 + 0.00000000114141T 3.

Figure 4.10 shows both curves and the actual data.
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Figure 4.10 Solution plot for Exercise 4.10.3.

4. Modify the methods of Section 4.11.1 to compute the quadratic polynomial
that gives the best least-squares fit to the data in Table 4.14.

Solution: The general quadratic is y = ax2 + bx + c, so the least squares
function that we want to minimize is

F (a, b, c) =
n∑
k=1

(yk − (ax2k + bxk + c))2.

The critical point is defined by the three equations

dF

da
= −2

n∑
k=1

(yk − (ax2k + bxk + c))(−x2k) = 0

dF

db
= −2

n∑
k=1

(yk − (ax2k + bxk + c))(−xk) = 0

dF

dc
= −2

n∑
k=1

(yk − (ax2k + bxk + c))(1) = 0
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which simplifies to the 3× 3 system

n∑
k=1

ykx
2
k =

(
n∑
k=1

x4k

)
a+

(
n∑
k=1

x3k

)
b+

(
n∑
k=1

x2k

)
c

n∑
k=1

ykxk =

(
n∑
k=1

x3k

)
a+

(
n∑
k=1

x2k

)
b+

(
n∑
k=1

xk

)
c

n∑
k=1

yk =

(
n∑
k=1

x2k

)
a+

(
n∑
k=1

xk

)
b+

(
n∑
k=1

1

)
c

which can then be solved to get the coefficients.

Table 4.14 Data for exercises.

Problem 4 Problem 1
xn yn xn yn zn

-1 0.9747 0 0 0.9573
0 0.0483 0 1 2.0132
1 1.0223 1 0 2.0385
2 4.0253 1 1 1.9773
3 9.0152 0.5 0.5 1.9936

5. An astronomical tracking station records data on the position of a newly dis-
covered asteroid orbiting the Sun. The data is reduced to measurements of the
radial distance from the Sun (measured in millions of kilometers) and angular
position around the orbit (measured in radians), based on knowledge of the
Earth’s position relative to the Sun. In theory, these values should fit into the
polar coordinate equation of an ellipse, given by

r =
L

2(1 + ε cos θ)

where ε is the eccentricity of the elliptical orbit and L is the width of the
ellipse (sometimes known as the latus rectum of the ellipse) at the focus. (See
Figure 4.11.) However, errors in the tracking process and approximations in
the transformation to (r, θ) values perturb the data. For the data in Table 4.15,
find the eccentricity of the orbit by doing a least squares fit to the data. Hint:
Write the polar equation of the ellipse as

2r(1 + ε cos θ) = L

which can then be written as

2r = ε(−2r cos θ) + L.
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Table 4.15 Data for Problem 5.

θn rn

-0.1289 42895
-0.1352 42911
-0.1088 42851
-0.0632 42779
-0.0587 42774
-0.0484 42764
-0.0280 42750
-0.0085 42744
0.0259 42749
0.0264 42749
0.1282 42894

S

Figure 4.11 Figure for Problem 5. The closed curve is the elliptical orbit, and the vertical
line has length L.

So yk = 2rk and xk = −2rk cos θk.

Solution: b = L = 149670,m = ε = 0.750825, so the polar equation of the
orbit is

r =
149670

2(1 + 0.750825 cos θ)

6. Prove Theorem 4.8.
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Solution: All three required properties follow directly from the hypotheses,
the properties of the definite integral, and the definition of (·, ·)w.

7. Let w(x) = x on the interval [0, 1]; compute ‖f‖w for each of the following
functions:

(a) e−x;

Solution: ‖f‖w = (1/2)
√

1− 3e−2 = .3853550799, ‖f‖2 = .6575198540

(b) 1/
√
x2 + 1;

Solution: ‖f‖w = .5887050110, ‖f‖2 = .8862269255

(c) 1/
√
x.

Solution: ‖f‖w = 1, ‖f‖2 =undefined.

Compare to the values obtained using the unweighted 2-norm.

8. Derive the linear system (4.61) as the solution to the least squares approxima-
tion problem.

Solution: Take the derivative of Rn with respect to each Ck.

9. Provide the missing details to show that the family of polynomials defined in
(4.63) is, indeed, orthogonal.

Solution: Directly compute the inner product (φk, φi) for some i < k.

10. Let {φk} be a family of orthogonal polynomials associated with a general
weight function w and an interval [a, b]. Show that the {φk} are independent
in the sense that

0 = c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x)

holds for all x ∈ [a, b] if and only if ck = 0 for all k.

Solution: Take the inner product of the given relation with each φk. The
result is the equation

0 = ck(φk, φk) =⇒ ck = 0

11. Prove the expansion formula (4.64) for a polynomial.

Solution: This is really an exercise in linear algebra more than anything else.
Since the {φk} are a basis for polynomials, it follows that we can write any
polynomial as a linear combination of the φk. Thus

qk =
k∑
i=0

Ckφk
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for some coefficientsCk. The precise form of the coefficient comes from using
the orthogonality of the polynomials.

12. Construct the second degree Legendre least-squares approximation to f(x) =
cosπx over the interval [−1, 1].

Solution: p2(x) = −2.279726631x2 + .7599088770; this is not especially
accurate.

13. Construct the second degree Laguerre least-squares approximation to f(x) =
ex on the interval [0,∞).

14. Construct the third degree Legendre least-squares approximation to f(x) =
sin 1

2πx over the interval [−1, 1].

Solution:

p3(x) = 60
x
(
−4π2 + 7x2π2 − 70x2 + 42

)
π4

/ • • • .

4.12 ADVANCED TOPICS IN INTERPOLATION ERROR

Exercises:

1. Use your computer’s random number function to generate a set of random
values rk, 0 ≤ k ≤ 8, with |rk| ≤ 0.01. Construct the interpolating polynomial
to f(x) = sinx on the interval [−1, 1], using 9 equally spaced nodes; call this
p8(x). Then construct the polynomial that interpolates the same function at
the same nodes, except perturb the function values using the rk values; call
this p̂8(x). How much difference is there between the divided difference
coefficients for the two polynomials? Plot both p8 and p̂8 and comment on
your results. Note: It is important here that you look at x values between the
nodes. Do not produce your plots based simply on the values at the nodes.
Repeat using a 16 degree interpolation and 16 random perturbation values.

Solution: The precise results will depend on the random perturbations, but it
should happen that the interpolant to the perturbed data is substantially different
from the interpolant to the original data, especially for the higher degree case.

2. Repeat the above, using f(x) = ex.

Solution: The precise results will depend on the random perturbations, but it
should happen that the interpolant to the perturbed data is substantially different
from the interpolant to the original data, especially for the higher degree case.
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3. Use the Newton interpolating algorithm to construct interpolating polynomials
of degree 4, 8, 16, and 32 using equally spaced nodes on the interval [−1, 1], to
the function g(x) = (1 + 4x2)−1. Is the sequence of interpolates converging
to g throughout the interval?

Solution: I got that ‖g − pn‖∞ went from 0.1618 (for n = 4) to 0.0671 for
n = 32. The sequence of polynomials appears to be converging.

4. Use the Newton interpolating algorithm to construct interpolating polynomials
of degree 4, 8, 16, and 32 using equally spaced nodes on the interval [−1, 1], to
the function g(x) = (1+100x2)−1. Is the sequence of interpolates converging
to g throughout the interval?

Solution: I got that ‖g − pn‖∞ went from 0.6149 (for n = 4) to 2.5× 105

for n = 32. The sequence of polynomials appears to be diverging.

5. Write up a complete proof of Theorem 4.10, providing all the details left out
in the text.

Solution: This is straightforward. Simply go through the induction argument
to establish the three-term recurrence, from which everything else follows.

6. Construct interpolating polynomials of degree 4, 8, 16, and 32 on the interval
[−1, 1] to f(x) = ex using equidistant and Chebyshev nodes. Sample the
respective errors at 500 equally spaced points and compare your results.

Solution: The Lagrange errors go like

e4 = 1.124354920726489e− 003, e8 = 5.799995905775290e− 008

e16 = 1.532107773982716e− 014, e32 = 3.647070978551880e− 010

and the Chebyshev errors go like.

e4 = 6.396994825514923e− 004, e8 = 1.219007073061107e− 008

e16 = 8.881784197001252e− 016, e32 = 8.881784197001252e− 016.

Clearly the Chebyshev errors are smaller.

7. The Chebyshev nodes are defined on the interval [−1, 1]. Show that the change
of variable

tk = a+
1

2
(b− a)(xk + 1)

will map the Chebyshev nodes to the interval [a, b].

Solution: Since xk are the Chebyshev nodes, they are cosine values and hence
|xk| ≤ 1. Therefore

tk ≤ a+
1

2
(b− a)(2) = b,
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and
tk ≥ a+

1

2
(b− a)(0) = a.

Thus tk ∈ [a, b]. Note that we could have used any transformation that carried
[−1, 1] into [a, b], but obviously we want to keep things simple, which is why
we chose the linear transformation that did the job.

8. Use the above to find the Chebyshev nodes for linear interpolation on the
interval [ 14 , 1]. Use them to construct a linear interpolate to f(x) =

√
x. Plot

the error in this interpolation. How does it compare to the error estimate used
in 3.7?

Solution: The original Chebyshev nodes for linear interpolation are

x0 =
1

2

√
2

and
x1 = −1

2

√
2.

The transformed values for [1/4, 1] become

t0 =
1

4
+

1

2
× 3

4
× 2 +

√
2

2
= 0.890165043

and

t1 =
1

4
+

1

2
× 3

4
× 2−

√
2

2
= 0.359834957.

The linear interpolate is then

p1(x) = 1.7790534738× (x− 0.359834957)

+1.131111480× (0.890165043− x).

9. Repeat the above for f(x) = x−1 on the interval [ 12 , 1].

Solution: The Chebyshev nodes for linear interpolation are

x0 = cos(π/4) =

√
2

2
,

and

x1 = cos(3π/4) = −
√

2

2
.

Applying the transformation into the interval [ 12 , 1] results in the new values

t0 =
1

2
+

1

2
× 1

2
× (x0 + 1) =

1

2
+

1

4

(
2 +
√

2

2

)
= 0.9267766953,
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and

t1 =
1

2
+

1

2
× 1

2
× (x1 + 1) =

1

2
+

1

4

(
2−
√

2

2

)
= 0.5732233047,

so the interpolate is easily computed as

p1(x) =
x− t0
t1 − t0

(1/t1) +
t1 − x
t1 − t0

(1/t0)

= 3.051897118(x− 0.9267766953)

+4.934250059(0.5732233047− x).

This gives a much better approximation than the simple interpolate using the
endpoints that we used in Sec. 3.4.

10. What is the error estimate for Chebyshev interpolation on a general interval
[a, b]? In other words, how does the change of variable impact the error
estimate?

Solution: Let f(x) be the function on [a, b] that we wish to interpolate. To
do this with the Chebyshev nodes, we construct the new function

F (z) = f(ξ(z))

where ξ(z) = a+ (b− a)(z+ 1)/2. Then the interpolation error is controlled
by the derivative (with respect to z) F (n+1). But the chain rule says that

F (n+1)(z) = f (n+1)(ξ(z))[(b− a)/2]n+1.

Therefore, the error goes like

‖f − pn‖∞ ≤
(b− a)n+1

4n(n+ 1)!
‖f (n+1)‖∞.

The factor of 2−n is replaced by

(b− a)n+1

4n
.

/ • • • .





CHAPTER 5

NUMERICAL INTEGRATION

5.1 A REVIEW OF THE DEFINITE INTEGRAL

Exercises:

1. Basic properties of the definite integral show that it is a linear operator, i.e., it
distributes across sums and multiplication by constants:

I(αf + βg) = αI(f) + βI(g).

Prove that if

In(f) =
n∑
i=0

wif(xi)

then In is also linear:

In(αf + βg) = αIn(f) + βIn(g).

Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis,
Second Edition. By James F. Epperson
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Solution: This is a straight-forward computation:

In(αf + βg) =
n∑
i=0

wi(αf(xi) + βg(xi))

=
n∑
i=0

wiαf(xi) +
n∑
i=0

βg(xi)

= α
n∑
i=0

wif(xi) + β
n∑
i=0

g(xi)

= αIn(f) + βIn(g).

2. Assume that the quadrature rule In integrates all polynomials of degree less
than or equal to N exactly:

In(p) = I(p)

for all p ∈ PN . Use this to prove that, for any integrand f , the error I − In is
equal to the error in integrating the Taylor remainder:

I(f)− In(f) = I(RN )− In(RN )

where f(x) = pN (x) + RN (x). Does it really matter that we are using the
Taylor polynomial and remainder? In other words, will this result hold for any
polynomial approximation and its associated error?

Solution: The previous problem established the linearity of In, which is the
important issue. We have

I(f)− In(f) = I(pN +RN )− In(IN +RN )

= I(pN ) + I(RN )− In(pN )− In(RN )

= I(RN )− In(RN ).

3. Use Problem 1 to prove the following: If a quadrature rule In is exact for all
powers xk for k ≤ d, then it is exact for all polynomials of degree less than or
equal to d.

Solution: Let p be an arbitrary polynomial of degree less than or equal to d,
and let ξk(x) = xk. Then we can write

p(x) =
d∑
k=0

akξk(x).

The linearity that was proved in Problem 1 allows us to write

In(p) = In

(
d∑
k=0

akξk

)
=

d∑
k=0

akIn(ξk).
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Therefore, I(p) = In(p) if and only if I(xik) = In(ξk) for all k.

/ • • • .

5.2 IMPROVING THE TRAPEZOID RULE

Exercises:

1. Apply the trapezoid rule and corrected trapezoid rule, with h = 1
4 , to approxi-

mate the integral

I =

∫ 1

0

x(1− x2)dx =
1

4
.

Solution: We have

T4(f) = (.25/2)(0 + 2(.234375) + 2(.375) + 2(.328125) + 0) = 0.234375.

We have
f ′(x) = 1− 3x2,

so f ′(0) = 1 and f ′(1) = −2. Therefore,

TC4 (f) = T4(f)− (.252/12)(−2− 1) = .25,

which is exact.

2. Apply the trapezoid rule and corrected trapezoid rule, with h = 1
4 , to approxi-

mate the integral

I =

∫ 1

0

1√
1 + x4

dx = 0.92703733865069.

Solution: The trapezoid rule gives us

T4(f) = (0.25/2)(1 + (2/
√

1.00390625) + (2/
√

1.0625)

+(2/
√

1.31640625) + (1/
√

2))

= 0.9233310015.

The corrected trapezoid value is then computed from this very simply:

TC4 (f) = 0.9233310015− (0.0625/12)(f ′(1)− f ′(0))

= 0.9233310015− (5.208333333× 10−3)(−2/23/2)

= 0.9270138493,
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which is much more accurate than the original T4 value.

3. Apply the trapezoid rule and corrected trapezoid rule, with h = 1
4 , to approxi-

mate the integral

I =

∫ 1

0

ln(1 + x)dx = 2 ln 2− 1.

Solution: We have

T4(f) = (.25/2)(0 + 2(.2231435513) + 2(.4054651081)

+2(.5596157879) + .6931471806)

= .3836995094.

We have
f ′(x) = 1/(1 + x),

so f ′(0) = 1 and f ′(1) = 1/2. Therefore,

TC4 (f) = T4(f)− (.252/12)(.5− 1)

= .3836995094 + (.0625/24)

= .3863036761.

The exact value is .386294361.

4. Apply the trapezoid rule and corrected trapezoid rule, with h = 1
4 , to approxi-

mate the integral

I =

∫ 1

0

1

1 + x3
dx =

1

3
ln 2 +

1

9

√
3π.

Solution: We have

T4(f) = (.25/2)(1 + 2(.9846153846) + 2(.8888888889)

+2(.7032967033) + .5)

= .8317002443.

Then we have
f ′(x) = −3x2/(1 + x3)2,

so f ′(0) = 0 and f ′(1) = −3/4. Therefore,

TC4 (f) = T4(f)− (.252/12)(−0.75− 0) = .8356064943.

The exact value is .8356488485.
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5. Apply the trapezoid rule and corrected trapezoid rule, with h = 1
4 , to approxi-

mate the integral

I =

∫ 2

1

e−x
2

dx = 0.1352572580.

Solution: We have

T4(f) = (.25/2)(.3678794412 + 2(.2096113872) + 2(.1053992246)

+ 2(.4677062238e− 1) + .1831563889e− 1)

= .1387196936.

We have
f ′(x) = −2xe−x

2

,

so f ′(1) = −1/e and f ′(2) = −1/e4. Therefore,

TC4 (f) = T4(f)− (.252/12)(−e−4 + e−1) = .1352691919.

The exact value is .1352572580.

6. For each integral below, write a program to do the corrected trapezoid rule using
the sequence of mesh sizes h = 1

2 (b−a), 14 (b−a), 18 (b−a), . . . , 1
2048 (b−a),

where b− a is the length of the given interval. Verify that the expected rate of
decrease of the error is observed.

(a) f(x) = x2e−x, [0, 2], I(f) = 2− 10e−2 = 0.646647168;

(b) f(x) = 1/(1 + x2), [−5, 5], I(f) = 2 arctan(5);

(c) f(x) = lnx, [1, 3], I(f) = 3 ln 3− 2 = 1.295836867;

(d) f(x) = e−x sin(4x), [0, π], I(f) = 4
17 (1− e−π) = 0.2251261368;

(e) f(x) =
√

1− x2, [−1, 1], I(f) = π/2.

Solution: For the single case of (c), my program produced the following
output.

7. Apply the trapezoid rule and corrected trapezoid rule to the approximation of

I =

∫ 1

0

x2e−2xdx = 0.0808308960...

Compare your results in the light of the expected error theory for both methods,
and comment on what occurs. How does the error behave in each case, as a
function of h? How should it have behaved?

Solution: When doing the computation we find that f ′(0)− f ′(1) = 0, thus
the “correction term” will be zero, thus the original trapezoid rule will be just
as accurate as the corrected rule.
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Table 5.1 Data for Problem 6.

n Tn TC
n Tn − TC

n I − TC
n Ratio

2 1.24245332 1.29800888 0.555556E-01 -0.217201E-02 0.0000

4 1.28210458 1.29599347 0.138889E-01 -0.156605E-03 13.8694

8 1.29237491 1.29584713 0.347222E-02 -0.102642E-04 15.2574

16 1.29496946 1.29583752 0.868056E-03 -0.650071E-06 15.7894

32 1.29561989 1.29583691 0.217014E-03 -0.407687E-07 15.9453

64 1.29578262 1.29583687 0.542535E-04 -0.255025E-08 15.9862

128 1.29582330 1.29583687 0.135634E-04 -0.159425E-09 15.9965

256 1.29583348 1.29583687 0.339084E-05 -0.996447E-11 15.9994

512 1.29583602 1.29583687 0.847711E-06 -0.623501E-12 15.9815

1024 1.29583665 1.29583687 0.211928E-06 -0.384137E-13 16.2312

8. Repeat the above for

I =

∫ π

0

sin2 xdx =
1

2
π.

Solution: The same thing happens.

9. The length of a curve y = g(x), for x between a and b, is given by the integral

L(g) =

∫ b

a

√
1 + [g′(x)]

2
dx.

Use the corrected trapezoid rule to find the length of one “arch” of the sine
curve.

Solution: This amounts to using the corrected trapezoid rule to evaluate the
integral

L =

∫ π

0

√
1 + cos2(x)dx.

Using 16 trapezoids we get L ≈ 3.820197788, which is accurate to all digits
displayed.

10. Use the corrected trapezoid rule to find the length of the exponential function
from x = −1 to x = 1. How small does h have to be for the computation to
converge to within 10−6?

11. Repeat the above for the tangent function, from x = −π/4 to x = π/4.

12. Define the function

F (t) =

∫ t

a

f(x)dx
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and note that

F (b) = I(f) =

∫ b

a

f(x)dx.

Use Taylor expansions of F and f about x = a to show that

I(f)− 1

2
(b− a)(f(b) + f(a))− 1

12
(b− a)2(f ′(b)− f ′(a)) = O((b− a)5).

Use this to show that the corrected trapezoid rule is O(h4) when applied over
a uniform grid of length h.

13. Construct a version of the “quasi-corrected” trapezoid rule that uses the deriva-
tive approximations

f ′(a) ≈ f(a+ h)− f(a)

h
, f ′(b) ≈ f(b)− f(b− h)

h
.

Explain why we should expect this to be less accurate than the rule using the
approximations (5.2) and (5.3), and demonstrate that this is the case on the
integral

I =

∫ 1

0

x(1− x2)dx =
1

4
.

Solution: The approximations in (5.2) and (5.3) areO(h2) accurate, whereas
the approximations suggested in this exercise are onlyO(h). We thus expect to
get less accuracy when using these approximations in the corrected trapezoid
rule, and this is borne out by actual experiment. For the example in this
exercise, the corrected trapezoid rule using the O(h2) formulas is exact, but
the approximation using the less accurate formulas suggested in this exercise
still shows some error for h = (1/2)5.

/ • • • .

5.3 SIMPSON’S RULE AND DEGREE OF PRECISION

Exercises:

1. Apply Simpson’s rule with h = 1
4 , to approximate the integral

I =

∫ 1

0

x(1− x2)dx =
1

4
.

Solution: We have

S4(f) = (.25/3)(0 + 4(.2343750000) + 2(.3750000000)

+4(.3281250000) + 0) = 0.25,
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which is exact.

2. Apply Simpson’s rule with h = 1
4 , to approximate the integral

I =

∫ 1

0

1√
1 + x4

dx = 0.92703733865069.

Solution: We have

S4(f) = (.25/3)(1 + 4(.9980525784) + 2(.9701425000)

+4(.8715755371) + 0.7071067810)

= .9271586870.

3. Apply Simpson’s rule with h = 1
4 , to approximate the integral

I =

∫ 1

0

ln(1 + x)dx = 2 ln 2− 1.

How small does the error theory say that h has to be to get that the error is
less than 10−3? 10−6? How small does h have to be for the trapezoid rule to
achieve this accuracy?

Solution: For h = 1/4, we get S4(f) = .3862595628. To get the error less
than 10−3 we need

h4

180
× 6

(1 + 0)4
≤ 10−3,

which implies that h ≤ .4161791450. To get 10−6 accuracy, we need h ≤
.7400828045e− 1. Using the trapezoid rule, we need to have

h2

12
× 1

(1 + 0)2
≤ 10−3,

so that we need h ≤ .1095445115 and h ≤ .3464101615e− 2.

4. Apply Simpson’s rule with h = 1
4 , to approximate the integral

I =

∫ 1

0

1

1 + x3
dx =

1

3
ln 2 +

1

9

√
3π.

Solution: We have

S4(f) = (.25/3)(1 + 4(.9846153846) + 2(.8888888889)

+4(.7032967033) + 0.5)

= .8357855108.
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The exact value is .8356488485.

5. Apply Simpson’s rule with h = 1
4 , to approximate the integral

I =

∫ 2

1

e−x
2

dx = 0.1352572580.

Solution: We have

S4(f) = (.25/3)(.3678794412 + 4(.2096113872) + 2(.1053992246)

+ 4(.4677062238e− 1) + .1831563889e− 1)

= .1352101306.

6. For each function below, write a program to do Simpson’s rule using the
sequence of mesh sizes h = 1

2 (b − a), 14 (b − a), 18 (b − a), . . . , 1
2048 (b − a),

where b − a is the length of the given interval. Verify that the expected rate
of decrease of the error is observed. Comment on any anomolies that are
observed.

(a) f(x) = lnx, [1, 3], I(f) = 3 ln 3− 2 = 1.295836867;

(b) f(x) = x2e−x, [0, 2],I(f) = 2− 10e−2 = 0.646647168;

(c) f(x) = 1/(1 + x2), [−5, 5], I(f) = 2 arctan(5);

(d) f(x) =
√

1− x2, [−1, 1], I(f) = π/2;

(e) f(x) = e−x sin(4x), [0, π], I(f) = 4
17 (1− e−π) = 0.2251261368.

Solution: My program produced the output (for (a) - (d), only) in Table
5.2. Note that the accuracy is as it should be for all but the single case of
(d), for which the error theory does not apply because of the singularity in the
derivative at each endpoint.

7. For each integral in the previous problem, how small does h have to be to get
accuracy, according to the error theory, of at least 10−3? 10−6? Compare to
the value of h required by the trapezoid rule for this accuracy. (Feel free to use
a computer algebra system to help you with the computation of the derivatives.)

Solution:

(a) For f(x) = lnx we have

|I(f)− Sn(f)| ≤ 2h4

180
max
x∈[1,3]

∣∣∣∣−6

x4

∣∣∣∣ ≤ h4

90
× 6 =

h4

15
.

Therefore we require h ≤ .3499635512 for 10−3 accuracy and h ≤
.6223329773e− 1 for 10−6.
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Table 5.2 Results for Exercise 5.3.6

n (c) (b) (a) (d)

2 6.79487179487180 0.67095296587741 1.29040033696930 1.33333333333333

4 2.65030946065429 0.64863368605631 1.29532166828621 1.48803387171258

8 2.61738281929855 0.64678014940774 1.29579834986087 1.54179757747348

16 2.73331903435335 0.64665562384530 1.29583431135754 1.56059458488771

32 2.74671071699175 0.64664769843876 1.29583670367239 1.56719883449230

64 2.74680148839078 0.64664720084510 1.29583685581508 1.56952610894680

128 2.74680153128328 0.64664716971014 1.29583686536681 1.57034753804027

256 2.74680153372702 0.64664716776365 1.29583686596447 1.57063770946780

512 2.74680153387984 0.64664716764198 1.29583686600184 1.57074025657205

1024 2.74680153388940 0.64664716763438 1.29583686600417 1.57077650465356

2048 2.74680153388999 0.64664716763390 1.29583686600432 1.57078931890607

(b) For f(x) = x2e−x we have

|I(f)− Sn(f)| ≤ 2h4

180
max
x∈[0,2]

∣∣(x2 − 8x+ 12)e−x
∣∣ ≤ h4

90
× 12 =

2h4

15
.

Therefore we require h ≤ .2942830956 for 10−3 accuracy and h ≤
.5233175697e− 1 for 10−6.

(c) For f(x) = 1/(1 + x2), we have

|I(f)−Sn(f)| ≤ 10h4

180
max

x∈[−5,5]

∣∣∣∣24(5x4 − 10x2 + 1)

(1 + x2)5

∣∣∣∣ ≤ 4h4

3
×24 = 32h4.

Therefore we require h ≤ .7476743906e − 1 for 10−3 accuracy and
h ≤ .1329573974e− 1 for 10−6.

(d) For f(x) =
√

1− x2 we have that the fourth derivative is not bounded
on [−1, 1] so the error theory does not apply.

(e) For f(x) = e−x sin(4x) we have

|I(f)− Sn(f)| ≤ πh4

180
max
x∈[0,π]

∣∣(161 sin 4x+ 240 cos 4x)e−x
∣∣

≤ πh4

180
× 260 =

13πh4

9
.



SIMPSON’S RULE AND DEGREE OF PRECISION 181

Therefore we require h ≤ .1218392792 for 10−3 accuracy and h ≤
.2166642816e− 1 for 10−6.

8. Since the area of the unit circle is A = π, it follows that

π

2
=

∫ 1

−1

√
1− x2dx.

Therefore we can approximateπ by approximating this integral. Use Simpson’s
rule to compute approximate values of π in this way and comment on your
results.

Solution: Using the sequence of h values h = 1, 1/2, 1/4, 1/8, . . ., we get
following table of approximate values of π. Clearly the values are converging

Estimate of π
2.666666667
2.976067744
3.083595156
3.121189170
3.134397670
3.139052218
3.140695076
3.141275419
3.141480514
3.141553009
3.141578638
3.141587698

to π, but not as rapidly as we would expect from Simpson’s rule. The reason is
that the integrand is not smooth at either endpoint, thus the error estimate for
Simpson’s rule does not apply.

9. If we wanted to use Simpson’s rule to approximate the natural logarithm
function on the interval [ 12 , 1] by approximating

lnx =

∫ x

1

1

t
dt

how many points would be needed to obtain an error of less than 10−6? How
many points for an error of less than 10−16? What are the corresponding values
for the trapezoid rule?

Solution: The error using Simpson’s rule is bounded above according to

E ≤ (1/2)h4

180
max

x∈(1/2),1

24

x5
=

32h4

15
.
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Therefore, to get 10−6 accuracy requires imposing

32h4/15 ≤ 10−6

which implies h ≤ 0.026166, therefore the number of required points is
n = 20. To get 10−16 accuracy requires h ≤ .8274377295e−4 and n = 6043.
For the trapezoid rule we get h ≤ 0.0049 and n ≥ 103, and h ≤ 0.4899×10−7

and n ≥ 10206208. Clearly Simpson’s rule is more efficient.

10. Use Simpson’s rule to produce a graph of E(x), defined to be the length of the
exponential curve from 0 to x, for 0 ≤ x ≤ 3. See Problem 14 of 2.5.

Solution: If we use a fixed number of points, say n = 128, for any value of
x, then we get the plot shown in Figure 5.1.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20

Figure 5.1 Solution for Exercise 5.3.10.

11. Let f(x) = |x|; use the trapezoid rule (with n = 1), corrected trapezoid rule
(with n = 1), and Simpson’s rule (with n = 2), to compute

I(f) =

∫ 1

−1
f(x)dx

and compare your results to the exact value. Explain what happens in the light
of our error estimates for the trapezoid and Simpson’s rules.

Solution: Because the function is piecewise linear, and one grid point matches
the “kink” in the graph, the trapezoid rule will produce the exact value of the
integral, but neither Simpson’s rule nor the corrected trapezoid rule will be
exact.
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12. Write out the expression for Simpson’s rule when c is not the midpoint of the
interval [a, b]. To simplify matters, take c− a = h, b− c = θh.

Solution: We get

S2(f) = (h/6)(Af(a) + Cf(c) +Bf(b)),

where

A = 2 + θ − θ2, C = (3θ2 + 1 + θ3 + 3θ)/θ, B = (2θ2 + θ − 1)/θ.

13. What is the degree of precision of the corrected trapezoid rule, TC1 ? What
about the n subinterval version, TCn ?

Solution: Let ξk(x) = xk, and consider the computation

Ik = TC1 (ξk) =
1

2
(b− a)

(
ak + bk

)
− b− a

12

(
kbk−1 − kak−1

)
=

1

2
(b− a)(bk + ak)− 1

12
(b− a)2(kb(k − 1)− ka(k − 1)).

When simplified, and compared to the exact values of

I =

∫ b

a

ξk(x)dx

we get that Ik = I for k = 0, 1, 2, 3, but not for k = 4, thus showing that
the degree of precision is p = 3. The same result holds for the n subinterval
version.

14. Prove that if we want to show that the quadrature rule In(f) has degree of
precision p, it suffices to show that it will exactly integrate xk, 0 ≤ k ≤ p over
the integral (0, 1).

Solution: Let q(x) be an arbitrary polynomial of degree p. Then

q(x) =

p∑
k=0

akx
k,

so

I(q) =

p∑
k=0

∫ b

a

xkdx.

Therefore, we need only concern ourselves with exactly integrating simple
powers instead of general polynomials. A change of variable can now be
employed to transform the interval of interest to [0, 1] from the more general
[a, b].
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15. Construct the analogue of Simpson’s rule based on exactly integrating a cubic
interpolate at equally spaced points on the interval [a, b].

Solution: This yields what is sometimes known as Simpson’s three-eighths
rule:

I3(f) =
3h

8
(f(a) + 3f(a+ h) + 3f(a+ 2h) + f(a+ 3h)) .

16. Show that I(q3) = S2(f).

Solution: This is actually a straight-forward (if lengthy) computation with
q3(x) as defined here:

q3(x) = f(a) +

(
f(c)− f(a)

h

)
(x− a)

+

(
f ′(c)− f(c)−f(a)

h

h

)
(x− a)(x− c) +A(x− a)(x− c)2,

where

A = h−2
(
f(b)− f(c)

h
− 2f ′(c) +

f(c)− f(a)

h

)
and

h = c− a = b− c.

17. Consider the quadrature rule defined by exactly integrating a cubic Hermite
interpolate:

I1(f) = I(H2).

Write down the quadrature formula for both the basic and composite settings,
and state and prove an error estimate, using the error results for Hermite
interpolation from the previous chapter.

Solution: The Hermite cubic interpolant can be written as

H2(x) = ha(x)f(a) + hb(x)f(b) + h̃a(x)f ′(a) + h̃b(x)f ′(b),

where the h and h̃ functions are given in Section 4.6 as follows:

ha(x) =

(
1− 2

(
x− a
a− b

))(
x− b
a− b

)2

hb(x) =

(
1− 2

(
x− b
b− a

))(
x− a
b− a

)2

h̃a(x) = (x− a)

(
x− b
a− b

)2
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h̃b(x) = (x− b)
(
x− a
b− a

)2

Then the integration rule is

I1(f) = Af(a) +Bf(b) + αf ′(a) + βf ′(b),

where

A =

∫ b

a

ha(x)dx =
1

2
(b− a)

B =

∫ b

a

hb(x)dx =
1

2
(b− a)

α =

∫ b

a

h̃a(x)dx =
1

12
(b− a)2

β =

∫ b

a

h̃a(x)dx = − 1

12
(b− a)2

The n interval rule is easily derived from the single interval rule. The error
estimate is found as follows:

I(f)− I1(f) =

∫ b

a

(f(x)−H2(x)) dx

=
1

24

∫ b

a

(x− a)2(x− b)2f (4)(ξx)dx

=

(
1

24

∫ b

a

(x− a)2(x− b)2dx

)
f (4)(ξ)

=
(b− a)5

720
f (4)(ξ)

18. Consider a quadrature rule in the form

In(f) =
n∑
k=1

akf(xk)

where the coefficients ak > 0 and the grid points xk are all known. Assume
that In integrates the trivial function w(x) = 1 exactly:

In(w) =
n∑
k=1

ak = I(w) =

∫ b

a

dx = b− a,

and that this holds for all intervals (a, b). Consider now the effects of rounding
error on integrating an arbitrary function f . Let f̂(x) = f(x) + ε(x) be f
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polluted by rounding error, with |ε(x)| ≤ Cu for some constant C > 0, for all
x ∈ [a, b]. Show that

|In(f)− In(f̂)| ≤ Cu(b− a).

Comment on this in comparison to the corresponding result for numerical
differentiation, as given in 2.2.

Solution: The point is that numerical integration is much less affected by
rounding error than is numerical differentiation.

19. The normal probability distribution is defined as

p(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

where µ is the mean, or average, and σ is the variance. This is the famous
bell-shaped curve that one hears so much about; the mean gives the center of
the bell and the variance gives the width of it. If x is distributed in this fashion,
then the probability that a ≤ x ≤ b is given by the integral

P (a ≤ x ≤ b) =

∫ b

a

p(x)dx.

(a) Use the change of variable z = (x− µ)/σ to show that

P (−mσ ≤ x ≤ mσ) =
1√
2π

∫ m

−m
e−z

2/2dz.

(b) Compute values of P (−mσ ≤ x ≤ mσ) for m = 1, 2, 3, using Simp-
son’s rule.

Solution: For m = 1, P (−mσ ≤ x ≤ mσ) ≈ .6826908120; for m = 2,
P (−mσ ≤ x ≤ mσ) ≈ .9544947255; and m = 3, P (−mσ ≤ x ≤
mσ) ≈ .9972830690.

20. Use Simpson’s rule to solve Problem 9 from 5.2.

21. Use Simpson’s rule to solve Problem 10 from 5.2.

/ • • • .
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5.4 THE MIDPOINT RULE

Exercises:

1. Apply the midpoint rule with h = 1
4 , to approximate the integral

I =

∫ 1

0

x(1− x2)dx =
1

4
.

How small does h have to be to get that the error is less than 10−3? 10−6?

Solution: We have, for f(x) = x(1− x2),

M4(f) = (1/4)(f(1/8) + f(3/8) + f(5/8) + f(7/8)) = .2578125000.

The error estimate is

|I(f)−Mn(f)| ≤ h2

24
max
x∈[0,1]

| − 6x| = h2

4
,

so we require h ≤ .6324555320e − 1 for 10−3 accuracy, and h ≤ 0.002 for
10−6.

2. Apply the midpoint rule with h = 1
4 , to approximate the integral

I =

∫ 1

0

1√
1 + x4

dx = 0.92703733865069.

How small does h have to be to get that the error is less than 10−3? 10−6?

Solution:
M4(f) = .9288993588,

and h ≤ .1312709324 for 10−3 accuracy, h ≤ .4151151371e− 2 for 10−6.

3. Apply the midpoint rule with h = 1
4 , to approximate the integral

I =

∫ 1

0

ln(1 + x)dx = 2 ln 2− 1.

How small does h have to be to get that the error is less than 10−3? 10−6?

Solution:
M4(f) = .3875883105,

and h ≤ .1549193338 for 10−3 accuracy, h ≤ .4898979486e− 2 for 10−6.

4. Apply the midpoint rule with h = 1
4 , to approximate the integral

I =

∫ 1

0

1

1 + x3
dx =

1

3
ln 2 +

1

9

√
3π.
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How small does h have to be to get that the error is less than 10−3? 10−6?

Solution:
M4(f) = .8376389970,

and h ≤ .1175282713 for 10−3 accuracy, h ≤ .3716570267e− 2 for 10−6.

5. Apply the midpoint rule with h = 1
4 , to approximate the integral

I =

∫ 2

1

e−x
2

dx = 0.1352572580.

How small does h have to be to get that the error is less than 10−3? 10−6?

Solution:
M4(f) = .1335215673,

and h ≤ .1095445115 for 10−3 accuracy, h ≤ .3464101615e− 2 for 10−6.

6. Show that the midpoint rule can be derived by integrating, exactly, a polynomial
interpolate of degree zero.

Solution: Take p0(x) = f(c) where c = (a + b)/2 is the midpoint of the
interval. Then

I(p0) =

∫ b

a

p0(x)dx = f(c)(b− a) = M1(f).

7. Apply the midpoint rule to each of the following functions, integrated over
the indicated interval. Use a sequence of grids h = (b − a), (b − a)/2, (b −
a)/4, . . . and confirm that the approximations are converging at the correct
rate. Comment on any anomolies that you observe.

(a) f(x) = lnx, [1, 3], I(f) = 3 ln 3− 2 = 1.295836867;

(b) f(x) = x2e−x, [0, 2],I(f) = 2− 10e−2 = 0.646647168;

(c) f(x) =
√

1− x2, [−1, 1], I(f) = π/2;

(d) f(x) = 1/(1 + x2), [−5, 5], I(f) = 2 arctan(5);

(e) f(x) = e−x sin(4x), [0, π], I(f) = 4
17 (1− e−π) = 0.2251261368.

Solution: The output is in Table 5.3 ((a) - (d), only). The approximation
performed as expected, with two notable exceptions: For f(x) =

√
1− x2,

we did not achieve the expected rate of decrease for the error, because the
second derivative of f is unbounded on [−1, 1]. For f(x) = x2e−x, we
achieved higher accuracy than expected. This occurs because f ′(0) = f ′(2)
and there is an effect similar to the corrected trapezoid rule.

8. For each integral in the previous problem, how small does h have to be to get
accuracy, according to the error theory, of at least 10−3? 10−6?
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Table 5.3 Results for Exercise 5.4.7

n (d) (b) (a) (c)

2 1.37931034482759 0.65367552526213 1.32175583998232 1.73205080756888

4 2.28316971966400 0.64711384088491 1.30264523357222 1.62968366431800

8 2.70773386697212 0.64667678393337 1.29756401303372 1.59196461030595

16 2.74701026646563 0.64664902575751 1.29627032524886 1.57834346564915

32 2.74692176145878 0.64664728387795 1.29594533728055 1.57347590396326

64 2.74683162099652 0.64664717490087 1.29586399050904 1.57174570134112

128 2.74680905737720 0.64664716808809 1.29584364754886 1.57113233600677

256 2.74680341486880 0.64664716766226 1.29583856141662 1.57091518675892

512 2.74680200414141 0.64664716763565 1.29583728985904 1.57083836124104

1024 2.74680165145330 0.64664716763398 1.29583697196811 1.57081119017919

2048 2.74680156328087 0.64664716763388 1.29583689249528 1.57080158214194

Solution: For (b), we have

|I(f)−Mn(f)| ≤ 10h2

24
max

x∈[−5,5]

∣∣∣∣ 6x2 − 2

(1 + x2)3

∣∣∣∣ =
5h2

6
,

therefore we need h ≤ .3464101615e − 1 to get 10−3 accuracy, and h ≤
.1095445115e− 2 for 10−6 accuracy.

9. State and prove a formal theorem concerning the error estimate for the midpoint
rule over n subintervals. You may want to state and prove a formal theorem for
the single subinterval rule first, and then use this in the more general theorem.

Solution: The theorem would go something like this:

Theorem: Let f ∈ C2([a, b]); then there exists a point ξ ∈ [a, b] such that

I(f)−Mn(f) = −b− a
24

h2f ′′(ξ).

The proof is almost identical to the developments used for Simpson’s rule and
the trapezoid rule.

10. Let T1 be the trapezoid rule using a single subinterval,M1 be the midpoint rule
using a single subinterval, and S2 be Simpson’s rule using a single quadratic
interpolant (hence, a single pair of subintervals). Show that, for any continuous
function f , and any interval [a, b],

S2(f) =
1

3
T1(f) +

2

3
M1(f).
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Solution: Let c denote the midpoint of the interval [a, b], so that we have

T1(f) =
1

2
(b− a)(f(b) + f(a))

S2(f) =
(b− a)/2

3
(f(a) + 4f(c) + f(b))

M1(f) = (b− a)f(c).

Then a direct computation shows

1

3
T1(f) +

2

3
M1(f) =

1

6
(b− a)(f(b) + f(a)) +

2

3
(b− a)f(c)

=
(b− a)/2

3
(f(a) + 4f(c) + f(b)) = S2(f).

/ • • • .

5.5 APPLICATION: STIRLING’S FORMULA

Exercises:

1. Use Stirling’s formula to show that

lim
n→∞

(
xn

n!

)
= 0

for all x.

Solution: We have∣∣∣∣xnn!

∣∣∣∣ ≤ |xn|
Cn
√
n(n/e)n

=

(
1

Cn
√
n

)(
|x|e
n

)n
.

Forn sufficiently large, the second factor will be less than one, which completes
the proof.

2. For x = 10 and ε = 10−3, how large does n have to be for∣∣∣∣xnn!

∣∣∣∣ ≤ ε
to hold? Repeat for ε = 10−6. Use Stirling’s formula here, don’t just plug
numbers into a calculator.



APPLICATION: STIRLING’S FORMULA 191

Solution: We have, for all n ≥ 1,

10n

n!
=

10nen

Cn
√
nnn

≤ 1

2

(
10e

n

)n
.

For all n ≥ 30, we then have

10n

n!
≤ 1

2

(
10e

30

)n
,

so that taking

n =
− ln 10−3

ln 3− 1
= 70.05

ought to suffice. For 10−6 we need to have n = 140.1 These are both
conservative estimates, because the ratio 10e/n is of course decreasing as n
increases, and we took it as the fixed value r = 10e/30 ≈ 0.9061. Using a
program like Maple we can find that the precise values are 32 and 38.

3. Use Stirling’s formula to determine the value of

lim
n→∞

(n!)p

(pn)!

where p ≥ 2 is an integer.

Solution: We have
(n!)p

(pn)!
=

[Cn
√
n(n/e)n]p

Cpn
√
pn(pn/e)pn

=

(
Cpn

Cpn
√
p

)(√
np−1
√
p

)(
1

pp

)n
=

(√
np−1

Cpn
√
p

)(
Cn
pn

)p
.

It is a simple exercise with L’Hôpital’s rule to show that the second factor goes
to zero much faster than the first one goes to infinity. Thus the limit is zero.

4. Use Stirling’s formula to get an upper bound on the ratio

Rn =
1 · 3 · 5 · · · (2n− 1)

2n+1n!

as a function of n.

Solution: The idea is to insert factors of 2 into the numerator and denominator
so that the product of odd terms can be treated as a factorial:

1 · 3 · 5 · · · (2n− 1)

2n+1n!
=

1 · 2 · 3 · 4 · 5 · · · (2n− 1) · (2n)

[2 · 4 · 6 · · · (2n)]2n+1n!

=
(2n)!

2n(n!)2n+1n!
=

(2n)!

2(2nn!)2
.
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Using Stirling’s formula we get

Rn ≤
C2n

√
2n(2n/e)2n

2c2nn(2n/e)2n
=
C2n

√
2n

2c2nn
=
C2n

2c2n
n−1/2,

where Ck ≤ 2.501 and ck ≥ 2.37, for all k. Thus we have

Rn ≤
0.2226

n1/2
.

/ • • • .

5.6 GAUSSIAN QUADRATURE

Exercises:

1. Apply Gaussian quadrature with n = 4 to approximate each of the following
integrals.

(a)

I =

∫ 1

−1
ln(1 + x2)dx = 2 ln 2 + π − 4.

Solution:

G4(f) = (0.3478548451374476) ln[1 + (−0.8611363115940526)2]

+ (0.6521451548625464) ln[1 + (−0.3399810435848563)2]

+ (0.6521451548625464) ln[1 + (0.3399810435848563)2]

+ (0.3478548451374476) ln[1 + (0.8611363115940526)2]

= .5286293488

(b)

I =

∫ 1

−1
sin2 πxdx = 1.

Solution:

G4(f) = (0.3478548451374476) sin2[π(−0.8611363115940526)]

+ (0.6521451548625464) sin2[π(−0.3399810435848563)]

+ (0.6521451548625464) sin2[π(0.3399810435848563)]

+ (0.3478548451374476) sin2[π(0.8611363115940526)]

= 1.125732289
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(c)

I =

∫ 1

−1
(x8 + 1)dx = 20/9.

Solution:

G4(f) = (0.3478548451374476)((−0.8611363115940526)8 + 1)

+ (0.6521451548625464)((−0.3399810435848563)8 + 1)

+ (0.6521451548625464)((0.3399810435848563)8 + 1)

+ (0.3478548451374476)((0.8611363115940526)8 + 1)

= 2.210612246

(d)

I =

∫ 1

−1
e−x

2

dx = 1.493648266.

Solution:

G4(f) = (0.3478548451374476)e−(−0.8611363115940526)
2

+ (0.6521451548625464)e−(−0.3399810435848563)
2

+ (0.6521451548625464)e−(0.3399810435848563)
2

+ (0.3478548451374476)e−(0.8611363115940526)
2

= 1.493334622

(e)

I =

∫ 1

−1

1

1 + x4
dx = 1.733945974.

Solution:

G4(f) = (0.3478548451374476)
1

1 + (−0.8611363115940526)4

+ (0.6521451548625464)
1

1 + (−0.3399810435848563)4

+ (0.6521451548625464)
1

1 + (0.3399810435848563)4

+ (0.3478548451374476)
1

1 + (0.8611363115940526)4

= 1.735966736

2. Apply Gaussian quadrature with n = 4 to approximate each of the following
integrals. Remember that you have to do a change of variable to [−1, 1] first.
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(a)

I =

∫ 1

0

ln(1 + x)dx = 2 ln 2− 1.

(b)

I =

∫ 1

0

1√
1 + x4

dx = 0.92703733865069.

Solution: G4(f) = .9270388618

(c)

I =

∫ 1

0

x(1− x2)dx =
1

4
.

(d)

I =

∫ 1

0

1

1 + x3
dx =

1

3
ln 2 +

1

9

√
3π.

Solution: G4(f) = .8356239692

(e)

I =

∫ 2

1

e−x
2

dx = 0.1352572580.

3. Show that (5.8) is both necessary and sufficient to make the quadrature exact
for all polynomials of degree less than or equal to 2N − 1.

Solution: Suppose (5.8) holds, and let q(x) be an arbitrary polynomial of
degree ≤ 2N − 1. Then

q(x) =
2N−1∑
i=0

aix
i

and ∫ 1

−1
q(x)dx =

2N−1∑
i=0

ai

∫ 1

−1
xidx.

Since Gaussian quadrature is exact for this range of degree of polynomials, we
then have

I(q) =
2N−1∑
i=0

ai

(
n∑
k=1

w
(n)
k [x

(n)
k ]i

)
= Gn(q).

The steps are entirely reversible, so we can easily prove the other direction of
the implication.

4. Write a program that does Gaussian quadrature, using the weights and Gauss
points given in the text. Apply this to each of the integrals below, and com-
pare your results to those for the other quadrature methods in the exercises.
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Remember that you will have to do a change of variable if the interval is not
[−1, 1]. Be sure to run your program for more than one value of n.

(a) f(x) =
√

1− x2, [−1, 1], I(f) = π/2;

(b) f(x) = x2e−x, [0, 2],I(f) = 2− 10e−2 = 0.646647168;

Solution: G4(f) = .6466426358

(c) f(x) = lnx, [1, 3], I(f) = 3 ln 3− 2 = 1.295836867;

(d) f(x) = 1/(1 + x2), [−5, 5], I(f) = 2 arctan(5);

(e) f(x) = e−x sin(4x), [0, π], I(f) = 4
17 (1− e−π) = 0.2251261368.

5. Let P (x) = 6x3 + 5x2 + x, and let P2(x) = 3x2 − 1 (this is the quadratic
Legendre polynomial). Find linear polynomials Q(x) and R(x) such that
P (x) = P2(x)Q(x) +R(x). Verify that I(P ) = I(R).

Solution: Simple division shows that Q(x) = 2x + (5/3) and R(x) =
3x+ (5/3). It is then easily verified that

(3x2 − 1)(2x+ (5/3)) + (3x+ (5/3)) = P (x).

6. Let P (x) = x3 + x2 + x− 1, and repeat the above.

Solution: This time Q(x) = (1/3)(x+ 1) and R(x) = (4/3)x− (2/3).

7. Let P (x) = 3x3 + x2 − 6, and repeat the above.

Solution: This time Q(x) = x+ (1/3) and R(x) = x− (17/3).

8. Verify that the weights for the n = 2 Gaussian quadrature rule satisfy the
formula (5.9).

Solution: This amounts to showing that∫ 1

−1

x− 0.5773502691896257

−0.5773502691896257− 0.5773502691896257
dx = 1

which it does, and similarly for the other Gauss point and weight.

9. Repeat the above for the n = 4 rule.

Solution: This involves the same kind of computation, with the same result.

10. Show, by direct computation, that the n = 2 and n = 4 Gaussian quadrature
rules are exact for the correct degree of polynomials.

Solution: Direct computation does the trick.

11. The quadratic Legendre polynomial is P2(x) = (3x2 − 1)/2. Show that it is
orthogonal (over [−1, 1]) to all linear polynomials.
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Solution: Let L(x) = Ax + B be an arbitrary linear polynomial; then we
have ∫ 1

−1
P2(x)L(x)dx =

1

2

∫ 1

−1

(
3Ax3 + 3Bx2 −Ax−B

)
dx = 0

for any A and B.

12. The cubic Legendre polynomial is P3(x) = (5x3 − 3x)/2. Show that it is
orthogonal (over [−1, 1]) to all polynomials of degree less than or equal to 2.

Solution: Essentially the same proof as the above.

13. The quartic Legendre polynomial is P4(x) = (35x4−30x2 +3)/8. Show that
it is orthogonal (over [−1, 1]) to all polynomials of degree less than or equal
to 3.

Solution: Essentially the same proof, again, only longer.

14. The first two Legendre polynomials are

P0(x) = 1, P1(x) = x,

and it can be shown that the others satisfy the recurrence relation

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

Use this to show (by induction) that the leading coefficient for the Legendre
polynomials satisfies

kn =
(2n)!

2n(n!)2

and the 2-norm of the Legendre polynomials satisfies

‖Pn‖22 =
2

2n+ 1
.

Solution: Since k0 = 1 and k1 = 1, the formula works for the first two
Legendre polynomials. The recurrence then implies that

(n+ 1)kn+1 = (2n+ 1)kn ⇒ kn+1 =

(
2n+ 1

n+ 1

)(
(2n)!

2n(n!)2

)
kn+1 =

(
2n+ 2

2n+ 2

)(
2n+ 1

n+ 1

)(
(2n)!

2n(n!)2

)
=

(2n+ 2)!

2n+1((n+ 1)!)2

A similar direct computation establishes the norm result.

15. Let

I(f) =

∫ b

a

f(x)dx.
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Show that the change of variable x = a+ 1
2 (b− a)(z + 1) gives that

I(f) =

∫ 1

−1
F (z)dz

for F (z) = 1
2 (b− a)f(a+ 1

2 (b− a)(z + 1)).

Solution: Direct computation.

16. Show that the error for Gaussian quadrature applied to

I(f) =

∫ b

a

f(x)dx

is O([(b− a)(e/8n)]2n).

Solution: Apply Stirling’s formula to the error estimate.

17. Prove Theorem 5.5. Hint: Simply generalize what was done in the text for the
special case of

I(f) =

∫ 1

−1
f(x)dx.

Solution: This is a routine adaptation of the exposition in the text to the situ-
ation in which the polynomials φk are orthogonal with respect to the weighted
inner product defined by w and [a, b].

18. Once again, we want to consider the approximation of the natural logarithm
function, this time using numerical quadrature. Recall that we have

lnx =

∫ x

1

1

t
dt.

Recall also that it suffices to consider x ∈ [ 12 , 1].

(a) How many grid points are required for 10−16 accuracy using the trapezoid
rule? Simpson’s rule?

(b) How many grid points are required if Gauss-Legendre quadrature is used?

Solution: Using the formula for the Gaussian quadrature error over a general
interval, we get (assuming x is near 1 to maximize the b− a factor):

| lnx−Gn| =
(1/2)2n+1(n!)4

(2n+ 1)[(2n)!]3
× (2n− 1)!

(1/2)2n

=
(1/2)

(2n+ 1)(2n)
× (n!)4

[(2n)!]2

≤ 1

8n2
× (n!)4

[(2n)!]2
.
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We use Stirling’s formula to estimate the factorials. We have

(n!)4 ≤ (2.501)4n2(n/e)4n

and
[(2n)!]2 ≥ (2.3)2(2n)(2n/e)4n

Therefore

| lnx−Gn| ≤
(2.501)4n2

16(2.3)2n3
× (1/2)4n =

(0.46)(1/2)4n

n
.

This achieves the desired accuracy for n ≥ 13.

19. Write a computer program that uses Gaussian quadrature for a specified num-
ber of points to compute the natural logarithm over the interval [ 12 , 1], to within
10−16 accuracy. Compare the accuracy of your routine to the intrinsic loga-
rithm function on your system.

Solution: A MATLAB script is given below. The maximum error on [1/2, 1]
was about 4 × 10−15. This is larger than the specified accuracy, but this is
probably due to rounding error within MATLAB itself.

function y = loggauss(x)

a = [0.9501250983763744E-01 0.1894506104550685E+00

0.2816035507792589E+00 0.1826034150449236E+00

0.4580167776572274E+00 0.1691565193950024E+00

0.6178762444026438E+00 0.1495959888165733E+00

0.7554044083550030E+00 0.1246289712555339E+00

0.8656312023878318E+00 0.9515851168249290E-01

0.9445750230732326E+00 0.6225352393864778E-01

0.9894009349916499E+00 0.2715245941175185E-01];

xg = a(:,1);

wg = a(:,2);

xg = [-xg; xg];

wg = [wg; wg];

%

xg = 1 + 0.5*(x-1)*(xg + 1);

wg = 0.5*(x-1)*wg;

%

y = sum(wg./xg);

20. Write a brief essay, in your own words, of course, which explains the impor-
tance of the linearity of the integral and quadrature rule in the development of
Gaussian quadrature.

Solution: The linearity is vital because of the role played by inner products
and orthogonality in the construction and accuracy of the Gaussian quadrature.

/ • • • .
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5.7 EXTRAPOLATION METHODS

Exercises:

1. Apply Simpson’s rule with h = 1
2 and h = 1

4 to approximate the integral

I =

∫ 1

0

1√
1 + x4

dx = 0.92703733865069,

and use Richardson extrapolation to obtain the improved value of the approxi-
mation. What is the estimated value of the error in S4, compared to the actual
error?

Solution:

S2(f) = .9312794637, S4(f) = .9271586870, R4(f) = .9268839688,

E4(f) = .27471844e− 3, I(f)−R4 = .1533703e− 3

2. Repeat the above, for

I =

∫ 1

0

x(1− x2)dx =
1

4
.

Solution: For this exercise, everything is exact.

3. Repeat the above, for

I =

∫ 1

0

ln(1 + x)dx = 2 ln 2− 1.

Solution:

S2(f) = .3858346022, S4(f) = .3862595628, R4(f) = .3862878936,

E4(f) = −.2833071e− 4, I(f)−R4 = .6467e− 5

4. Repeat the above, for

I =

∫ 1

0

1

1 + x3
dx =

1

3
ln 2 +

1

9

√
3π.

Solution:

S2(f) = .8425925926, S4(f) = .8357855108, R4(f) = .8353317056,
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E4(f) = .45380545e− 3, I(f)−R4 = .3171429e− 3

5. Repeat the above, for

I =

∫ 2

1

e−x
2

dx = 0.1352572580.

Solution:

S2(f) = .1346319964, S4(f) = .1352101306, R4(f) = .1352486730,

E4(f) = −.38542280e− 4, I(f)−R4 = .85850e− 5

6. Write a trapezoid rule program to compute the value of the integral

I =

∫ 1

0

e−x
2

dx

Take h small enough to justify a claim of accuracy to within 10−6, and explain
how the claim is justified. (There are several ways of doing this.)

Solution: There are three primary ways of doing this: (1) use the error
estimate to predict how small h must be to theoretically guarantee an error of
less than 10−6; (2) use the correction term from the corrected trapezoid rule
as an error estimator, and stop when that estimate is less than 10−6 in absolute
value; (3) use the Richardson estimate of the error , and stop when that estimate
is less than 10−6 in absolute value. The exercise was written with (3) in mind,
but the other two are equally correct.

7. Define

I(f) =

∫ 1

0

exdx

and consider the approximation of this integral using Simpson’s rule together
with extrapolation. By computing a sequence of approximate values S2, S4,
S8, etc., determine experimentally the accuracy of the extrapolated rule

R2n = (16S2n − Sn)/15.

Solution: You should be able to show that I(f)−R2n = O(h6).

8. Consider the integral

I(f) =

∫ π

0

sin2 xdx =
1

2
π.

Write a trapezoid rule or Simpson’s rule program to approximate this integral,
using Richardson extrapolation to improve the approximations, and comment
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on your results. In particular, comment upon the rate at which the error
decreases as h decreases, and on the amount of improvement obtained by
extrapolation.

Solution: You shouldn’t see much improvement, because you are integrating
a periodic function over an integer multiple of the period. We shall see in
Section 5.8 that this kind of computation will be super-accurate. For example,
for n > 2 Simpson’s rule was exact to 14 digits, so the Richardson process
didn’t really need to be invoked.

9. Repeat the above, this time for the integral

I(f) =

∫ 3π/4

0

sin2 xdx =
1

4
+

3

8
π.

Solution: Since the interval of integration is not an integer multiple of the
period of the integrand, the super-accuracy is lost, and we see the kind of
behavior we expect from the usual theory.

10. The following table of values supposedly comes from applying the midpoint
rule to a smooth, non-periodic function. Can we use this data to determine
whether or not the program is working properly? Explain.

n Mn(f)

4 -0.91595145
8 -0.95732875
16 -0.97850187
32 -0.98921026
64 -0.99459496
128 -0.99729494
256 -0.99864683
512 -0.99932326

1024 -0.99966159

Solution: If we compute the estimated exponent p, we get that p ≈ 1, but
for the midpoint rule we expect p = 2, so we conclude that the program has an
error.

11. The error function, defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt

is an important function in probability theory and heat conduction. Use Simp-
son’s rule with extrapolation to produce values of the error function that are
accurate to within 10−8 for x ranging from 0 to 5 in increments of 1/4. Check
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your values against the intrinsic error function on your computer or by looking
at a set of mathematical tables such as Handbook of Mathematical Functions.

Solution: For the range of values of interest, the extrapolated estimate is
sufficiently accurate with at most n = 64 subintervals.

12. Bessel functions appear in the solution of heat conduction problems in a circular
or cylindrical geometry, and can be defined as a definite integral, thus:

Jk(x) =
1

π

∫ π

0

cos(x sin t− kt)dt.

Use Simpson’s rule plus extrapolation to produce values of J0 and J1 that are
accurate to within 10−8 over the interval [0, 6] in increments of 1/4. Check
your values by looking at a set of tables such as Handbook of Mathematical
Functions.

Solution: Again, taking n = 64 yields sufficient accuracy for the extrapo-
lated value over this range of arguments. Sometimes we need only n = 16.

13. Apply the trapezoid rule to approximate the integral

I =

∫ π2/4

0

sin
√
xdx = 2.

Use Richardson extrapolation to estimate how rapidly your approximations
are converging, and comment on your results in the light of the theory for the
trapezoid rule.

Solution: The estimated exponent p goes to 1.5 instead of the expected 2. In
other words, the approximation is not as accurate as it should be. This occurs
because of the square root in the integrand.

14. Show that, for any function f ,

S2(f) = (4T2(f)− T1(f))/3.

Comment on the significance of this result in light of this section.

Solution: The result is proved by a direct computation. We have

T1(f) =
b− a

2
(f(a) + f(b))

and

T2(f) =
(b− a)/2

2
(f(a) + 2f((a+ b)/2) + f(b)).

Simply add these up, as indicated, to get S2(f).
The significance of this is that it shows that Richardson extrapolation applied
to the trapezoid rule yields Simpson’s rule.

/ • • • .
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5.8 SPECIAL TOPICS IN NUMERICAL INTEGRATION

Exercises:

1. Use the Euler-Maclaurin formula to state and prove a formal theorem that the
corrected trapezoid rule, TCn , is O(h4) accurate.

Solution: For N = 1, the Euler-Maclaurin formula says

I(f)− Tn(f) = − 1

12
h2(f ′(b)− f ′(a)) +

(b− a)

720
h4f (4)(ξ), (5.1)

from which
I(f)− TCn (f) = O(h4)

follows immediately.

2. Using a hand calculator, compute T (0)
1 (f), T (0)

2 (f), T (0)
4 (f), and T (0)

8 (f) for
each of the following functions, then use Romberg integration to compute
Θ3(f). Note: Be sure to use Theorem 5.8 to minimize the work in computing
the first column of the Romberg array.

(a)

I =

∫ 1

0

ln(1 + x)dx = 2 ln 2− 1.

(b)

I =

∫ 1

0

1√
1 + x4

dx = 0.92703733865069.

Solution: The Romberg array is

.8535533905

.9118479454 .9312794632

.9233310016 .9271586869 .9268839688

.9261151802 .9270432395 .9270355433 .9270379494

(c)

I =

∫ 1

0

x(1− x2)dx =
1

4
.

(d)

I =

∫ 1

0

1

1 + x3
dx =

1

3
ln 2 +

1

9

√
3π.

Solution: Θ3(f) = .8356560744
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(e)

I =

∫ 2

1

e−x
2

dx = 0.1352572580.

Solution: Θ3(f) = .1352573547.

3. Write a program to do Romberg integration. Be sure to use Theorem 5.8 in
order to minimize the number of function evaluations. Test your program by
applying it to the following example problems.

(a) f(x) = lnx, [1, 3], I(f) = 3 ln 3− 2 = 1.295836867;

(b) f(x) = x2e−x, [0, 2], I(f) = 2− 10e−2 = 0.646647168;

(c) f(x) =
√

1− x2, [−1, 1], I(f) = π/2;

(d) f(x) = 1/(1 + x2), [−5, 5], I(f) = 2 arctan(5).

(e) f(x) = e−x sin(4x), [0, π], I(f) = 4
17 (1− e−π) = 0.2251261368;

For each example, compute

Nf =
Number of function evaluations

− log10 |error|
.

This measures the number of function evaluations needed to produce each
correct decimal digit in the approximation.

Solution: A MATLAB script for Romberg integration is given below. It is
easily modified to computeNf , which can behave erratically for some of these
examples.

function r = romberg(m,a,b)

Tnew = zeros(1,m+1);

Told = Tnew;

T0 = 0.5*(b-a)*(romf(b) + romf(a));

Told(1) = T0;

for k=1:m

n = 2^k;

hn = (b-a)/n;

x = a + [1:2:(n-1)]*hn;

y = romf(x);

T0 = Told(1);

T1 = 0.5*T0 + hn*sum(y);

Tnew(1) = T1;

for j=1:k

R = (4^j*Tnew(j) - Told(j))/(4^j - 1);

Tnew(j+1) = R;

end



SPECIAL TOPICS IN NUMERICAL INTEGRATION 205

Told = Tnew;

end

r = Tnew(m+1);

4. Write a computer program that uses Romberg integration for a specified num-
ber of points to compute the natural logarithm over the interval [ 12 , 1], to within
10−16 accuracy. Compare the accuracy of your routine to the intrinsic loga-
rithm function on your system.

Solution: The romberg script can be easily modified to do this. The trick
is to use the Richardson error estimate to terminate the computation when the
specified accuracy is achieved.

5. Show that the change of variable x = φ(t), where φ is as given in Section
5.8.2, transforms the integral

I(f) =

∫ b

a

f(x)dx

into the integral

I(f) =

∫ 1

−1
f(φ(t))φ′(t)dt.

Solution: This is a straight forward calculus exercise.

6. Apply the singular integral technique of Section 5.8.2, with n = 4, to estimate
the value of each of the following integrals. Do this with a hand calculator,
using the values in Table 5.14.

(a)

I(f) =

∫ 1

0

lnx

1− x2
dx = −π

2

8
.

Solution: I4 = −1.28351724985458

(b)

I(f) =

∫ 1

0

lnx

1− x
dx = −π

2

6
;

Solution: I4 = −1.68916522566720

(c)

I(f) =

∫ 1

0

x ln(1− x)dx = −3

4
;

Solution: I4 = −0.79940423863966
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(d)

I(f) =

∫ 1

0

(
ln

1

x

)−1/2
dx =

√
π;

Solution: I4 = 1.83057018789044

None of these is especially accurate, but recall we are only using n = 4.

7. Repeat the previous problem, except this time use a computer program together
with the values in Table 5.14 to compute the n = 16 approximations.

(a)

Solution: I16 = −1.23368545936076

(b)

Solution: I16 = −1.64491714791208

(c)

Solution: I16 = −0.74998668656848

(d)

Solution: I16 = 1.77212889191835

These are substantial improvements over the n = 4 values.

8. We have looked at the gamma function in a number of exercises in previous
chapters. The formal definition of Γ(x) is the following:

Γ(x) =

∫ ∞
0

e−ttx−1dt.

Use the infinite interval algorithm from Section 5.8.2 to construct a table of
values for the gamma function over the interval [1, 2]. Compare your results
to the values you get for Γ(x) on your computer or from a standard book of
tables.

Solution: Using the n = 16 version gives a maximum error of about 10−3.

9. Modify your Romberg integration program to compute values of Ψ(tk)/Ψ(1)
for tk ∈ [−1, 1], and use this to extend the values in Table 5.14 to the n = 64
case.

Solution: A partial table of Ψ(tk)/Ψ(1) values for n = 64 is in Table 5.4.
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Table 5.4 Table of Ψ(tk)/Ψ(1) for −1 ≤ tk ≤ 1.

tk Ψ(tk)/Ψ(1)

-0.250000 0.20043174541744
-0.218750 0.23268738852437
-0.187500 0.26694920180823
-0.156250 0.30298089532632
-0.125000 0.34052262810721
-0.093750 0.37929519918613
-0.062500 0.41900410866588
-0.031250 0.45934349927578

0.0 0.50000000000000
0.031250 0.54065650072422
0.062500 0.58099589133412
0.093750 0.62070480081387
0.125000 0.65947737189279
0.156250 0.69701910467368
0.187500 0.73305079819177
0.218750 0.76731261147563
0.250000 0.79956825458256

10. Apply the trapezoid rule to each of the following functions, integrated over the
indicated intervals, and interpret the results in terms of the Euler-Maclaurin
formula.

(a) f(x) = 1 + sinπx, [a, b] = [0, 2];

(b) f(x) = sin2 x, [a, b] = [0, π].

Solution: In both cases, the trapezoid rule produces the exact value for
n = 2, which is remarkable accuracy. This is because we are integrating
periodic functions over an interval that is an integer multiple of the period. The
Euler-Maclaurin formula predicts that this will result in exceptional accuracy,
and it does.

11. Using a hand calculator and τ as indicated, perform the adaptive quadrature
scheme outlined in Section 5.8.3 on each of the following integrals. Be sure to
present your results in an orderly fashion so that the progress of the calculation
can be followed.

(a) τ = 5× 10−6;

I =

∫ 1

0

ln(1 + x)dx = 2 ln 2− 1.
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(b) τ = 10−5;

I =

∫ 1

0

1

1 + x3
dx =

1

3
ln 2 +

1

9

√
3π.

(c) τ = 10−5;

I =

∫ 2

1

e−x
2

dx = 0.1352572580.

(d) τ = 10−4;

I =

∫ 1

0

1√
1 + x4

dx = 0.92703733865069.

Solution: In the first step we get

S1 = .9312794637, S2 = .9271586870, R = .9268839688,

E = .2747184467e− 3.

Since E > τ we do not accept the value. In the second step, we compute

S1 = .4302959524, S2 = .4300938322, R = .4300803577,

E = .1347468000e− 4.

This time, we have E ≤ τ/2 so we accept R as the partial integral of f
to the specified accuracy:∫ 1

1/2

f(x)dx = .4300803577.

We then continue the process, trying to approximate the rest of the inte-
gral.

12. Apply the MATLAB routines quad, quadl, and quadgk to each of the fol-
lowing integrations, with a tolerance τ = 1.e− 8 in each case, then repeat the
computations over the left half of the interval, only.

(a)

I =

∫ 1

0

1

1 + 1023e−16t
dt = 0.56679020695363;

(b)

I =

∫ 2π

0

esin 4πxdx = 8.11767960946423;

(c)

I =

∫ 1

0

sin (eπx)dx = 0.20499307668744;



SPECIAL TOPICS IN NUMERICAL INTEGRATION 209

(d)

I =

∫ 1

0

1

1 + x3
dx =

1

3
ln 2 +

1

9

√
3π;

(e)

I =

∫ 1

0

1√
1 + x4

dx = 0.92703733865069.

13. This is an experimental/research problem. Try to find a specific quadrature
problem

I =

∫ b

a

f(x)dx

such that quad outperforms quadl consistently as the tolerance τ decreases.
Then try to find a different one such that quadl outperforms quad.

14. Show that the trapezoid rule T1(f) is exact for all functions of the form
f(x) = Ax+B.

Solution: If f(x) = Ax+B, then

T1(f) =
b− a

2
(Aa+B +Ab+B) =

1

2
A(b2 − a2) +B(b− a) = I(f).

15. Show that
I(αf + βg) = αI(f) + βI(g)

for constants α and β, and similarly for Tn(αf + βg).

Solution:

I(αf + βg) =

∫ b

a

(αf(x) + βg(x))dx =

∫ b

a

αf(x)dx+

∫ b

a

βg(x)dx

= α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx = αI(f) + βI(g),

and the same argument holds for Tn, of course.

16. Show that the data in Table 5.13 confirms that the trapezoid and Simpson’s
rules applied to f(x) =

√
x are both O(h) accurate.

Solution: Using Richardson extrapolation we get that (for both rules) the
exponent p ≈ 1.5 which suggests that both rules are actually O(h3/2).

17. Confirm that (5.28) is the correct Peano kernel for the composite trapezoid
rule.

Solution: Write the integral as

I(f) =
n∑
k=1

∫ tk

tk−1

f(t)dt
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and apply the Peano kernel to each integral over [k−1, tk].

18. Show that if f ′ is integrable over [a, b], but f ′′ is not, then the trapezoid rule is
O(h) accurate.

Solution: We have

I(f)− Tn(f) =

∫ b

a

K(t)f ′′(t)dt.

Integration by parts can be carefully used to rewrite this as

I(f)− Tn(f) = −
∫ b

a

K′(t)f ′(t)dt.

(The additional terms from integration by parts involve K(xi) and therefore
vanish.) Hence,

|I(f)− Tn(f)| ≤ max
a≤t≤b

|K ′(t)|
∫ b

a

|f ′(t)|dt.

19. Show that the Peano Theorem implies an error estimate for the trapezoid rule
of the form

|I(f)− Tn(f)| ≤ 1

8
h2
∫ b

a

|f ′′(t)|dt.

Be sure to provide all details missing from the development in the text.

Solution: The only detail left out of the discussion in the text is to show that

max
a≤t≤b

|K(t)| ≤ 1

8
h2,

but this is done the same way as the linear interpolation error estimate back in
Chapter 2.

20. Derive the Peano kernel for Simpson’s rule.

Solution: Following the development in the text, we get

K(t) =

{
(b− t)4 − c−a

18 (b− t)3 − b−a
9 (c− t)3 a ≤ t ≤ c

1
24 (b− t)4 − c−a

18 (b− t)3 c ≤ t ≤ b

}

/ • • • .



CHAPTER 6

NUMERICAL METHODS FOR
ORDINARY DIFFERENTIAL EQUATIONS

6.1 THE INITIAL VALUE PROBLEM — BACKGROUND

Exercises:

1. For each initial value problem below, verify (by direct substitution) that the
given function y solves the problem.

(a) y′ + 4y = 0, y(0) = 3; y(t) = 3e−4t.

(b) y′ = t2/y, y(0) = 1; y(t) =
√

1 + 2
3 t

3.

(c) ty′ − y = t2, y(1) = 4; y(t) = 3t+ t2.

Solution: This is simply a matter of ordinary computation. For (a), we have,
for instance,

d

dt

(
3e−4t

)
+ 4

(
3e−4t

)
= −12e−4t + 12e−4t = 0,

and y(0) = 3e0 = 3, therefore the given solution is correct.

Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis,
Second Edition. By James F. Epperson
Copyright c© 2013 John Wiley & Sons, Inc.
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2. For each initial value problem in Problem 1, write down the definition of f .

Solution: The function f is simply the right side of the differential equation
when put into the standard form used in the text. Thus, for (a), f(t, y) = −4y,
for (b) f(t, y) = (y + t2)/t, and for (c), f(t, y) = t2/y.

3. For each scalar equation below, write out explicitly the corresponding first
order system. What is the definition of f?

(a) y′′ + 9y = e−t.

(b) y′′′′ + y = 1.

(c) y′′ + sin y = 0.

Solution: For (a), we have w(t) = (y(t), y′(t))T and the system is

d

dt

(
w1(t)

w2(t)

)
=

d

dt

(
y(t)

y′(t)

)
=

(
y′(t)

e−t − 9y(t)

)
=

(
w2(t)

e−t − 9w1(t)

)
,

therefore

f(t, w) =

(
w2(t)

e−t − 9w1(t)

)
.

Similarly, for (b) we get

d

dt


w1(t)

w2(t)

w3(t)

w4(t)

 =
d

dt


y(t)

y′(t)

y′′(t)

y′′′(t)

 =


y′(t)

y′′(t)

y′′′(t)

1− w1(t)

 =


w2(t)

w3(t)

w4(t)

1− w1(t)

 ,

therefore

f(t, w) =


w2(t)

w3(t)

w4(t)

1− w1(t)

 .

Finally, for (c) we get

d

dt

(
w1(t)

w2(t)

)
=

d

dt

(
y(t)

y′(t)

)
=

(
y′(t)

− sin y(t)

)
=

(
w2(t)

− sinw1(t)

)
,

therefore

f(t, w) =

(
w2(t)

− sinw1(t)

)
.

4. For each initial value problem below, verify (by direct substitution) that the
given function y solves the problem.

(a) y′′ + 4y′ + 4y = 0, y(0) = 0, y′(0) = 1; y(t) = te−2t.
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(b) t2y′′ + 6ty′ + 6y = 0, y(1) = 1, y′(1) = −3; y(t) = t−3.
(c) y′′ + 5y′ + 6y = 0, y(0) = 1, y′(0) = −2; y(t) = e−2t.

Solution: This is a straight-forward calculus exercise.

5. For each initial value problem below, determine the Lipschitz constant, K, for
the given rectangle.

(a) y′ = 1− 3y, y(0) = 1, R = (−1, 1)× (0, 2);
(b) y′ = y(1− y), y(0) = 1

2 , R = (−1, 1)× (0, 2);
(c) y′ = y2, y(0) = 1, R = (−1, 1)× (0, 2).

Solution: In general, we get the Lipschitz constant by computing fy and
maximizing it over the rectangle of interest. Therefore,

(a) fy(t, y) = −3 for all (t, y), hence K = 3;
(b) fy(t, y) = 1− 2y for all t and all y ∈ (0, 2), hence K = 3;
(c) fy(t, y) = 2y, hence K = 4.

6. Are any of the initial value problems in the previous exercise smooth and
uniformly monotone decreasing over the given rectangle? If so, determine the
values of M and m.

Solution: The ODE in (a) is smooth and uniformly monotone decreasing
because fy < 0 for all (t, y) of interest. In fact, since fy(t, y) = −3 for all
(t, y), we have m = M = 3.

/ • • • .

6.2 EULER’S METHOD

Exercises:

1. Use Euler’s method with h = 1
4 to compute approximate values of y(1) for

each of the following initial value problems. Don’t write a computer program,
use a hand calculator to produce an orderly table of (tk, yk) pairs.

(a) y′ = y(1− y), y(0) = 1
2 ;

Solution:

y1 = y0 + hf(t0, y0) = (1/2) + (1/4)y(1− y) = 0.5625

y2 = y1 + hf(t1, y1) = 0.6240

y3 = y2 + hf(t2, y2) = 0.6827

y4 = y3 + hf(t3, y3) = 0.7368
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(b) ty′ = y(sin t), y(0) = 2.

Solution: We have to use the limiting value of 1 for sin t
t at t = 0:

y1 = y0 + hf(t0, y0) = 2 + (1/4)y = 2.5

y2 = y1 + hf(t1, y1) = 3.1185

y3 = y2 + hf(t2, y2) = 3.8661

y4 = y3 + hf(t3, y3) = 4.7445

(c) y′ = y(1 + e2t), y(0) = 1;

Solution:

y1 = y0 + hf(t0, y0) = 1 + (1/4)y(e+ e2t) = 1.5

y2 = y1 + hf(t1, y1) = 2.4933

y3 = y2 + hf(t2, y2) = 4.8109

y4 = y3 + hf(t3, y3) = 11.404

(d) y′ + 2y = 1, y(0) = 2;

Solution:

y1 = y0 + hf(t0, y0) = 2 + (1/4)(1− 2y) = 1.25

y2 = y1 + hf(t1, y1) = 0.875

y3 = y2 + hf(t2, y2) = 0.6875

y4 = y3 + hf(t3, y3) = 0.59375

2. For each initial value problem above, use the differential equation to produce
approximate values of y′ at each of the grid points, tk, k = 0, 1, 2, 3, 4.

Solution:

(a) y′(t0) = f(t0, y0) = 0.25, y′(t1) = 0.2461, y′(t2) = 0.2346, y′(t3) =
0.2166, y′(t4) = 0.1939.

(b) y′(t0) = f(t0, y0) = 2, y′(t1) = 2.474, y′(t2) = 2.990, y′(t3) = 3.514,
y′(t4) = 3.992.

(c) y′(t0) = f(t0, y0) = 2, y′(t1) = 3.973, y′(t2) = 9.271, y′(t3) = 26.37,
y′(t4) = 95.67.

(d) y′(t0) = f(t0, y0) = −3, y′(t1) = −1.5, y′(t2) = −0.75, y′(t3) =
−0.375, y′(t4) = −0.1875.

3. Write a computer program that solves each of the initial value problems in
Problem 1, using Euler’s method and h = 1/16.

Solution: Below is a MATLAB script that does this for one specific example.
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function [tc,yc] = euler1(h,n,y0)

tc = [0];

yc = [y0];

yn = y0;

tn = 0;

for k=1:n

y = yn + h*yn*(1 + exp(2*tn));

t = k*h;

tc = [tc t];

yc = [yc y];

yn = y;

tn = t;

end

tc = tc’;

yc = yc’

exact = exp(-0.5)*exp(tc + 0.5*exp(2*tc));

%

figure(1)

plot(tc,yc)

figure(2)

plot(tc,exact - yc)

4. For each initial value problem below, approximate the solution using Euler’s
method using a sequence of decreasing grids h−1 = 2, 4, 8, . . .. For those
problems where an exact solution is given, compare the accuracy achieved
over the interval [0, 1] with the theoretical accuracy.

(a) y′ + 4y = 1, y(0) = 1; y(t) = 1
4 (3e−4t + 1).

(b) y′ = −y ln y, y(0) = 3; y(t) = e(ln 3)e−t

.

(c) y′ + y = sin 4πt, y(0) = 1
2 .

(d) y′ + sin y = 0, y(0) = 1.

Solution: By making a slight modification to the euler1 script we can
easily solve the two examples for which exact solutions are given, producing
the results shown in Table 6.1.

/ • • • .
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Table 6.1 Solutions to Exercise 6.2.4.

h−1 Max. error for (b) Max. error for (a)
2 0.8515 0.5950
4 0.2759 0.1940
8 0.0884 0.0846

16 0.0386 0.0399
32 0.0182 0.0194
64 0.0089 0.0096
128 0.0044 0.0048

6.3 ANALYSIS OF EULER’S METHOD

Exercises:

1. Use Taylor’s Theorem to prove that

(1 + x)n ≤ enx

for all x > −1. Hint: expand ex in a Taylor series, throw away the unnecessary
terms, and then take powers of both sides.

Solution: We have

ex = 1 + x+
1

2
x2eξ,

therefore
1 + x ≤ ex,

therefore
(1 + x)n ≤ enx.

2. For each initial value problem below, use the error theorems of this section to
estimate the value of

E(h) =
maxtk≤1 |y(tk)− yk|

‖y′′‖∞,[0,1]

using h = 1/16, assuming Euler’s method was used to approximate the solu-
tion.

(a) y′ + 4y = 1, y(0) = 1;

Solution: E(h) ≤ 6.70h.

(b) y′ = y(1− y), y(0) = 1/2;
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Solution: We have

E(h) =
eK−1

2K
h,

where K is the Lipschitz constant for f(t, y) = y(1 − y). We have
K = max |fy| = max |1 − 2y|, so we need to know the solution to
actually complete the estimation. We find y = (1+e−t)−1, soK = 0.46,
which implies that

E(h) = 0.635h.

(c) y′ = sin y, y(0) = 1
2π.

3. Consider the initial value problem

y′ = e−t − 16y, y(0) = 1.

(a) Confirm that this is smooth and uniformly monotone decreasing in y.
What is M? What is m?

Solution: Since f(t, y) = e−t − 16y and therefore fy(t, y) = −16 the
ODE is indeed smooth and uniformly monotone decreasing in y, with
M = m = 16.

(b) Approximate the solution using Euler’s method and h = 1
8 . Do we get

the expected behavior from the approximation? Explain.

Solution: Since this value of h does not satisfy the condition h < M−1 we
do not expect to get the kind of accuracy described in the theorem.

/ • • • .

6.4 VARIANTS OF EULER’S METHOD

Exercises:

1. Using the approximation

y′(tn) ≈ y(tn+1)− y(tn−1)

2h

derive the numerical method (6.20) for solving initial value problems. What is
the residual? What is the truncation error? Is it a consistent method?

Solution: We have

y′(t) =
y(t+ h)− y(t− h)

2h
− 1

6
h2y′′′(θt,h)
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so that
y(t+ h)− y(t− h)

2h
− 1

6
h2y′′′(θt,h) = f(t, y(t))

or
y(t+ h) = y(t− h) + 2hf(t, y(t)) +

1

3
h3y′′′(θt,h).

The residual is
Rn =

1

3
h3y′′′(θt,h)

and the truncation error is

Tn =
1

3
h2y′′′(θt,h).

The method is consistent so long as y′′′ is continuous.

2. Using the approximation

y′(tn−1) ≈ −y(tn+1) + 4y(tn)− 3y(tn−1)

2h

derive the numerical method (6.21) for solving initial value problems. What is
the residual? What is the truncation error? Is it a consistent method?

Solution: The method is consistent, with truncation error (h2/3)y′′′(ξ);

3. Using the approximation

y′(tn+1) ≈ 3y(tn+1)− 4y(tn) + y(tn−1)

2h

derive the numerical method (6.22) for solving initial value problems. What is
the residual? What is the truncation error? Is it a consistent method?

Solution: Using the material in Section 4.5 we have

y′(tn+1) =
3y(tn+1)− 4y(tn) + y(tn−1)

2h
+

1

3
h2y′′′(ξn)

so that the differential equation becomes

3y(tn+1)− 4y(tn) + y(tn−1)

2h
+

1

3
h2y′′′(ξn) = f(tn+1, y(tn+1)),

or

3y(tn+1)− 4y(tn) + y(tn−1) = 2hf(tn+1, y(tn+1))− 2

3
h3y′′′(ξn).

Thus

y(tn+1) =
4

3
y(tn)− 1

3
y(tn−1) +

2

3
hf(tn+1, y(tn+1))− 2

9
h3y′′′(ξn).
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The residual is
Rn = −2

9
h3y′′′(ξn)

and the truncation error is

Tn = −2

9
h2y′′′(ξn).

The method is consistent so long as y′′′ is continuous.

4. Use the trapezoid rule predictor-corrector with h = 1
4 to compute approximate

values of y(1) for each of the following initial value problems. Don’t write a
computer program, use a hand calculator to produce an orderly table of (tk, yk)
pairs.

(a) y′ = y(1 + e2t), y(0) = 1;

Solution: y(1) ≈ 42.71053582.

(b) y′ + 2y = 1, y(0) = 2;

(c) y′ = y(1− y), y(0) = 1
2 ;

Solution: y(1) ≈ .7303809855.

(d) ty′ = y(sin t), y(0) = 2.

5. Repeat the above, using the method (6.23) as a predictor-corrector, with Euler’s
method as the predictor. Also use Euler’s method to produce the starting value,
y1.

Solution: For (b), y(1) ≈ .7299429169; for (c), y(1) ≈ 42.82307269.

6. Write a computer program that solves each of the initial value problems in
Problem 4, using the trapezoid rule predictor-corrector and h = 1/16.

Solution: A MATLAB script which is slightly more general than required is
given below.

function [tc,yc] = trappc(h,n,y0)

tc = [0];

yc = [y0];

yn = y0;

tn = 0;

for k=1:n

yp = yn + h*yn*(1-yn);

y = yn + 0.5*h*(yp*(1-yp) + yn*(1-yn));

t = k*h;

tc = [tc t];

yc = [yc y];
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yn = y;

tn = t;

end

tc = tc’;

yc = yc’

exact = 1./(1 + exp(-tc));

%

figure(1)

plot(tc,yc)

figure(2)

plot(tc,exact - yc)

7. For each initial value problem below, approximate the solution using the
trapezoid rule predictor-corrector with a sequence of decreasing grids h−1 =
2, 4, 8, . . .. For those problems where an exact solution is given, compare the
accuracy achieved over the interval [0, 1] with the theoretical accuracy.

(a) y′ + y = sin 4πt, y(0) = 1
2 .

(b) y′ + sin y = 0, y(0) = 1.

(c) y′ + 4y = 1, y(0) = 1; y(t) = 1
4 (3e−4t + 1).

(d) y′ = −y ln y, y(0) = 3; y(t) = e(ln 3)e−t

.

Solution: The previous MATLAB script can be easily modified to do this.

8. In this problem, we will consider a tumor growth model based on some work
of H.P. Greenspan in J. Theor. Biology, vol. 56 (1976), pp. 229-242. The
differential equation is

R′(t) = −1

3
SiR+

2λσ

µR+
√
µ2R2 + 4σ

, R(0) = a.

Here R(t) is the radius of the tumor (assumed spherical), λ and µ are scale
parameters, both O(1), Si measures the rate at which cells at the core of the
tumor die, and σ is a nutrient level. Take λ = µ = 1, a = 0.25, Si = 0.8, and
σ = 0.25. Use the trapezoid rule predictor corrector to solve the differential
equation, usingh = 1/16, and show that the tumor radius approaches a limiting
value as t→∞.

Solution: By about t = 5 it is apparent that the limiting radius is about 0.416.

9. Repeat the previous problem, but this time with Si = 0.90, σ = 0.05, and
a = 0.50. What happens now?

Solution: The limiting size of the tumor is about 0.171.
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10. Now solve the differential equation using a variety of Si, σ, and a values (your
choices). What happens?

Solution: For Si sufficiently small (or σ sufficiently large) the tumor grows
in size, instead of shrinking.

11. Now let’s model some treatment for our mathematical tumor. In the previous
three problems, we assumed that the nutrient level was constant. Suppose we
are able to decrease the nutrient level according to the model

σ(t) = σ∞ + (σ0 − σ∞)e−qt.

Here σ0 is the initial nutrient level, σ∞ is the asymptotic nutrient level, and
q measures the rate at which the nutrient level drops. Investigate the effect
of various choices of these parameters on the growth of the tumor, based on
your observations from the previous problems. Again, use the trapezoid rule
predictor corrector with h = 1/16 to solve the differential equation.

Solution: Generally, the same kind of results occur. The faster and farther
the nutrient level is reduced, the more the tumor shrinks.

12. Verify by direct substitution that (6.43) satisfies the recursion (6.39) for all
n ≥ 2.

Solution: Straight forward computation.

13. For the midpoint method (6.21), show that if λ < 0, then 0 < r1 < 1 and
r2 < −1.

Solution: The key issues are that
√
ξ2 + 1 > |ξ| and

√
ξ2 + 1

≤
√
ξ2 + 2|ξ|+ 1 = |ξ|+ 1. Then

r1 > −|ξ|+ |ξ| > 0

and
r1 ≤ −|ξ|+ |ξ|+ 1 = 1.

Similarly,

r2 = −|ξ| −
√
|ξ|2 + 1 < −|ξ| −

√
|ξ|2 − 2|ξ|+ 1 = −|ξ| −

√
(|ξ| − 1)2

= −|ξ| −
√

(1− |ξ|)2 = −|ξ| − (1− |ξ|) = −1.

We assumed at the end that h was small enough that 1 − |ξ| > 0; this should
have been an assumption in the problem statement.

14. Show that (6.44) is valid. Hint: First, show that C1 = 1 − C2. Next, use
Taylor expansions to write

ξ − eξ√
ξ2 + 1

=
−1− 1

2ξ
2 +O(ξ3)

1 + 1
2ξ

2 +O(ξ4)
.
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Solution: Showing C1 = 1− C2 is fairly routine. We then have that

eξ = 1 + ξ +
1

2
ξ2 +O(ξ3)⇒ ξ − eξ = −1− 1

2
ξ2 +O(ξ3),

and √
ξ2 + 1 = 1 +

1

2
ξ2 +O(ξ4).

Both of these follow from routine Taylor series computations. Finally, we have

−1− 1
2ξ

2 +O(ξ3)

1 + 1
2ξ

2 +O(ξ4)
=
−1− 1

2ξ
2 −O(ξ4) +O(ξ4) +O(ξ3)

1 + 1
2ξ

2 +O(ξ4)

= −1 +
O(ξ4) +O(ξ3)

1 + 1
2ξ

2 +O(ξ4)

= −1 +O(ξ4) +O(ξ3)

= −1 +O(ξ3)

15. Use the midpoint rule predictor-corrector method (6.35)-(6.36) to solve each
of the IVP’s given in Problem 4.

Solution: A MATLAB script that does the job is given below.

function [tc,yc] = midpc(h,n,y0)

tc = [0];

yc = [y0];

yn = y0;

tn = 0;

for k=1:n

yp = yn + 0.5*h*fmid(tn,yn);

y = yn + h*fmid(tn+0.5*h,yp);

t = k*h;

tc = [tc t];

yc = [yc y];

yn = y;

tn = t;

end

tc = tc’;

yc = yc’

exact = 0.5*(1 + 3*exp(-2*tc));

%

figure(1)

plot(tc,yc)

figure(2)

plot(tc,exact - yc)
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16. Show that the residual for the midpoint rule predictor-corrector is given by

R = y(t+ h)− y(t)− hf(t+ h/2, y(t) + (h/2)f(t, y(t))).

Then use Taylor’s theorem to show thatR = O(h3) and hence that the midpoint
rule predictor-corrector is a second order method.

Solution: We have

y(t+h)−y(t) = hy′(t)+
1

2
h2y′′(t)+O(h3) = hf(t, y(t))+

1

2
h2y′′(t)+O(h3),

so

R = hf(t, y(t)) +
1

2
h2y′′(t) +O(h3)−hf(t+h/2, y(t) + (h/2)f(t, y(t))).

For notational simplicity write Y (t) = y(t) + (h/2)f(t, y(t)) so that we have

R = hf(t, y(t)) +
1

2
h2y′′(t)− hf(t+ h/2, Y (t)) +O(h3).

The problem can be done from this point quite simply using Taylor’s Theorem
for two variable functions, but it can also be done using single variable calculus,
carefully. We have

f(t+ h/2, Y (t)) = f(t, Y (t)) + (h/2)ft(t, Y (t)) +O(h2),

so R becomes

R = h(f(t, y(t))− f(t, Y (t))) + (h2/2)(y′′(t)− ft(t, Y (t))) +O(h3).

The first term simplifies as follows:

h(f(t, y(t))− f(t, Y (t))) = hfy(t, ηt)(y(t)− Y (t))

= −(h2/2)fy(t, ηt)f(t, y(t)),

where ηt is a value between y(t) and Y (t). Now, since

y′(t) = f(t, y(t))

it follows that

y′′(t) =
d

dt
f(t, y(t))

= ft(t, y(t)) + fy(t, y(t))y′(t)

= ft(t, y(t)) + fy(t, y(t))f(t, y(t)).

Therefore,

R = (h2/2)(fy(t, y(t))f(t, y(t))− fy(t, ηt)f(t, y(t))

+ft(t, y(t))− ft(t, Y (t))) +O(h3).
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Hence,

R = (h2/2)(fy(t, y(t))f(t, y(t))− fy(t, ηt)f(t, y(t))

+ft(t, y(t))− ft(t, Y (t))) +O(h3)

= (h2/2)f(t, y(t))[fy(t, y(t))− fy(t, ηt)]

+(h2/2)[ft(t, y(t))− ft(t, Y (t))] +O(h3)

= (h2/2)f(t, y(t))fyy(t, µt)[y(t)− ηt]
+(h2/2)fty(t, νt)[y(t))− Y (t)] +O(h3)

where µt is a value between y(t) and ηt and νt is a value between y(t) and
Y (t). Since

y(t)− Y (t) = −(h/2)f(t, y(t))

this quickly becomes

R= (h2/2)f(t, y(t))fyy(t, µt)[y(t)− ηt]− (h3/4)fty()f(t, y(t)) +O(h3)

= (h2/2)f(t, y(t))fyy(t, µt)[y(t)− ηt] +O(h3).

Finally, since ηt is between y(t) and Y (t) and y(t)− Y (t) = O(h), it follows
that y(t)− ηt = O(h) which implies that R = O(h3).

17. Assume that f is differentiable in y and that this derivative is bounded in
absolute value for all t and y:

|fy(t, y)| ≤ F.

Show that using fixed point iteration to solve for yn+1 in the trapezoid rule
method will converge so long as h is sufficiently small. Hint: Recall Theorem
3.6.

Solution: The iteration function is

g(y) = Y + (h/2)(f(t, Y ) + f(t+ h, y))

where we regard Y (which is equal to yn) as a fixed value. From Theorem 3.6
we see that the convergence of the iteration depends on g′ being less than one
in absolute value. But

g′(y) = (h/2)
∂f

∂y
(t+ h, y).

Under the given assumptions, we therefore have that

|g′(y)| ≤ hF/2 < 1

for h sufficiently small.
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18. Derive the numerical method based on using Simpson’s rule to approximate
the integral in

y(t+ h) = y(t− h) +

∫ t+h

t−h
f(s, y(s))ds.

What is the order of accuracy of this method? What is the truncation error? Is
it implicit or explicit? Is it a single step or multistep method?

Solution: We get

y(t+ h) = y(t− h) +
h

3
(f(t− h, y(t− h)) + 4f(t, y(t))

+f(t+ h, y(t+ h)))− h5

2880
y(5)(ξt),

which suggests the numerical method

yn+1 = yn−1 +
h

3
(f(t− h, yn−1) + 4f(t, yn) + f(t+ h, yn+1)) .

The method is an implicit multistep method, with order of accuracy 4; the
truncation error is

τ(t) = − h4

2880
y(5)(ξt).

/ • • • .

6.5 SINGLE STEP METHODS — RUNGE-KUTTA

Exercises:

1. Use the method of Heun with h = 1
4 to compute approximate values of y(1) for

each of the following initial value problems. Don’t write a computer program,
use a hand calculator to produce an orderly table of (tk, yk) pairs.

(a) y′ = y(1− y), y(0) = 1
2 ;

Solution:

y0 = .5, y1 = .5620117188, y2 = .6221229509,

y3 = .6786683489, y4 = .7303809855

(b) y′ = y(1 + e2t), y(0) = 1;
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Solution:

y0 = 1, y1 = 1.746635238, y2 = 3.674304010,

y3 = 10.24009564, y4 = 42.71053582

(c) y′ + 2y = 1, y(0) = 2;

Solution:

y0 = 2, y1 = 1.4375, y2 = 1.0859375,

y3 = .8662109375, y4 = .7288818360

(d) ty′ = y(sin t), y(0) = 2.

2. Repeat the above, using fourth order Runge-Kutta.

Solution:

(a)

y0 = 2, y1 = 1.410156250, y2 = 1.052256267,

y3 = .8350929950, y4 = .7033246558

(b)

y0 = 1, y1 = 1.775386270, y2 = 3.886047491,

y3 = 11.97099553, y4 = 63.69087556

(c)

y0 = .5, y1 = .5621763730, y2 = .6224590537,

y3 = .6791782275, y4 = .7310578607

3. Write a computer program that solves each of the initial value problems in
Problem 1, using the method of Heun, and h = 1/16.

Solution: Below is a MATLAB script that does this task.

function [tc, yc] = heun(y0,h,n)

yc = [y0];

tc = [0];

y = y0;

t = 0;

for k=1:n

k1 = h*fheun(t,y);

k2 = h*fheun(t+2*h/3,y+(2/3)*k1);
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yn = y + 0.25*(k1 + 3*k2);

y = yn;

t = t + h;

yc = [yc yn];

tc = [tc t];

end

plot(tc,yc)

4. Write a computer program that solves each of the initial value problems in
Problem 1, using fourth order Runge-Kutta, and h = 1/16.

Solution: Below is a MATLAB script that does this task.

function [tc, yc] = rk4(y0,h,n)

yc = [y0];

tc = [0];

y = y0;

t = 0;

for k=1:n

k1 = h*frk(t,y);

k2 = h*frk(t + 0.5*h,y + 0.5*k1);

k3 = h*frk(t + 0.5*h,y + 0.5*k2);

k4 = h*frk(t + h,y + k3);

yn = y + (k1 + 2*k2 + 2*k3 + k4)/6;

y = yn;

t = t + h;

yc = [yc yn];

tc = [tc t];

end

plot(tc,yc)

5. For each initial value problem below, approximate the solution using the
method of Heun with a sequence of decreasing grids h−1 = 2, 4, 8, . . .. For
those problems where an exact solution is given, compare the accuracy achieved
over the interval [0, 1] with the theoretical accuracy.

(a) y′ + sin y = 0, y(0) = 1.

(b) y′ + 4y = 1, y(0) = 1; y(t) = 1
4 (3e−4t + 1).

(c) y′ + y = sin 4πt, y(0) = 1
2 .

(d) y′ = −y ln y, y(0) = 3; y(t) = e(ln 3)e−t

.

Solution: The script given above can be used to do this problem.

6. Repeat the above, using fourth order Runge-Kutta as the numerical method.
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Solution: The rk4 script given above can be used to do this problem.

7. Repeat Problem 8 from 6.4, except this time use fourth order Runge Kutta to
solve the differential equation, with h = 1/8.

Solution: The same general results are obtained as previously.

8. Repeat Problem 9 from 6.4, except this time use fourth order Runge Kutta to
solve the differential equation, with h = 1/8.

Solution: The same general results are obtained as previously.

9. Repeat Problem 11 from 6.4, except this time use fourth order Runge Kutta
to solve the differential equation, with h = 1/8.

Solution: The same general results are obtained as previously.

10. Repeat Problem 10 from 6.4, except this time use fourth order Runge Kutta
to solve the differential equation, with h = 1/8.

Solution: The same general results are obtained as previously.

/ • • • .

6.6 MULTI-STEP METHODS

Exercises:

1. Use second order Adams-Bashforth withh = 1
4 to compute approximate values

of y(1) for each of the following initial value problems. Don’t write a computer
program, use a hand calculator to produce an orderly table of (tk, yk) pairs.
Use Euler’s method to generate the needed starting value.

(a) y′ + 2y = 1, y(0) = 2;

Solution:

y0 = 2, y1 = 1.25, y2 = 1.0625, y3 = .828125, y4 = .7226562500

(b) y′ = y(1 + e2t), y(0) = 1;

Solution:

y0 = 1, y1 = 1.5, y2 = 2.739905715,

y3 = 6.063673588, y4 = 17.25489584
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(c) ty′ = y(sin t), y(0) = 2.

(d) y′ = y(1− y), y(0) = 1
2 ;

Solution:

y0 = .5, y1 = .5625, y2 = .6235351563,

y3 = .6808005870, y4 = .7329498843

2. Verify that the λk values and ρp are correct for second order Adams-Bashforth.

Solution: We have

λ0 =

∫ tn+1

tn

L0(s)ds =

∫ tn+1

tn

s− tn−1
tn − tn−1

ds =

∫ h

0

u+ h

h
ds =

3

2
h

and

λ1 =

∫ tn+1

tn

L1(s)ds =

∫ tn+1

tn

s− tn
tn−1 − tn

ds =

∫ h

0

u

−h
ds = −1

2
h

and

ρ1 =

∫ tn+1

tn

(s− tn)(s− tn−1)

2
ds =

1

2

∫ h

0

u(u+ h)ds =
5

12
h3

3. Write a computer program that solves each of the initial value problems in
Problem 1, using second order Adams-Bashforth and h = 1/16. Use Euler’s
method to generate the starting value.

Solution: A MATLAB script that does this is given below.

function [tc, yc] = AB2(y0,h,n)

yc = [y0];

tc = [0];

y = y0;

t = 0;

%

fy = fAB2(t,y);

yn = y + h*fy;

tn = h;

tc = [tc tn];

yc = [yc yn];

%

for k=2:n

fyn = fAB2(tn,yn);

yp = yn + 0.5*h*(3*fyn - fy);
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y = yn;

fy = fyn;

yn = yp;

tn = k*h;

tc = [tc tn];

yc = [yc yp];

end

plot(tc,yc)

4. Write a computer program that solves each of the initial value problems in
Problem 1, using fourth order Adams-Bashforth, with fourth order Runge-
Kutta to generate the starting values.

Solution: A MATLAB script which does this is given below.

function [t,y] = AB4(y0,h,n)

t0 = 0;

y = [y0];

t = [0];

%

k1 = fAB4(t0,y0);

k2 = fAB4(t0+0.5*h,y0+0.5*h*k1);

k3 = fAB4(t0+0.5*h,y0+0.5*h*k2);

k4 = fAB4(t0+h,y0+h*k3);

ya = y0 + (h/6)*(k1 + 2*k2 + 2*k3 + k4);

ta = t0 + h;

y = [y ya];

t = [t ta];

%

k1 = fAB4(ta,ya);

k2 = fAB4(ta+0.5*h,ya+0.5*h*k1);

k3 = fAB4(ta+0.5*h,ya+0.5*h*k2);

k4 = fAB4(ta+h,ya+h*k3);

yb = ya + (h/6)*(k1 + 2*k2 + 2*k3 + k4);

tb = ta + h;

y = [y yb];

t = [t tb];

%

k1 = fAB4(tb,yb);

k2 = fAB4(tb+0.5*h,yb+0.5*h*k1);

k3 = fAB4(tb+0.5*h,yb+0.5*h*k2);

k4 = fAB4(tb+h,yb+h*k3);

yc = yb + (h/6)*(k1 + 2*k2 + 2*k3 + k4);

tc = tb + h;

y = [y yc];



MULTI-STEP METHODS 231

t = [t tc];

%

for k=4:n

yn = yc + (h/24)*(55*fAB4(tc,yc) - 59*fAB4(tb,yb) ...

+ 37*fAB4(ta,ya) - 9*fAB4(t0,y0));

y0 = ya;

ya = yb;

yb = yc;

yc = yn;

t0 = ta;

ta = tb;

tb = tc;

tn = tc + h;

tc = tn;

y = [y yn];

t = [t tn];

end

figure(1)

plot(t,y);

ye = 1./(1+exp(-t));

figure(2)

plot(t,ye - y)

ee = max(abs(ye - y))

5. For each initial value problem below, approximate the solution using the fourth
order Adams-Bashforth-Moulton predictor-corrector, with fourth order Runge-
Kutta to generate the starting values. Use a sequence of decreasing grids
h−1 = 2, 4, 8, . . .. For those problems where an exact solution is given,
compare the accuracy achieved over the interval [0, 1] with the theoretical
accuracy.

(a) y′ + sin y = 0, y(0) = 1.

(b) y′ + 4y = 1, y(0) = 1; y(t) = 1
4 (3e−4t + 1).

(c) y′ + y = sin 4πt, y(0) = 1
2 .

(d) y′ = −y ln y, y(0) = 3; y(t) = e(ln 3)e−t

.

Solution: A MATLAB script that does this is given below. It is not especially
efficient.

function [t,y] = ABAM4(y0,h,n)

t0 = 0;

y = [y0];

t = [0];

%
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k1 = fABAM4(t0,y0);

k2 = fABAM4(t0+0.5*h,y0+0.5*h*k1);

k3 = fABAM4(t0+0.5*h,y0+0.5*h*k2);

k4 = fABAM4(t0+h,y0+h*k3);

ya = y0 + (h/6)*(k1 + 2*k2 + 2*k3 + k4);

ta = t0 + h;

y = [y ya];

t = [t ta];

%

k1 = fABAM4(ta,ya);

k2 = fABAM4(ta+0.5*h,ya+0.5*h*k1);

k3 = fABAM4(ta+0.5*h,ya+0.5*h*k2);

k4 = fABAM4(ta+h,ya+h*k3);

yb = ya + (h/6)*(k1 + 2*k2 + 2*k3 + k4);

tb = ta + h;

y = [y yb];

t = [t tb];

%

k1 = fABAM4(tb,yb);

k2 = fABAM4(tb+0.5*h,yb+0.5*h*k1);

k3 = fABAM4(tb+0.5*h,yb+0.5*h*k2);

k4 = fABAM4(tb+h,yb+h*k3);

yc = yb + (h/6)*(k1 + 2*k2 + 2*k3 + k4);

tc = tb + h;

y = [y yc];

t = [t tc];

%

for k=4:n

yp = yc + (h/24)*(55*fABAM4(tc,yc) - 59*fABAM4(tb,yb) ...

+ 37*fABAM4(ta,ya) - 9*fABAM4(t0,y0));

yn = yc + (h/24)*(9*fABAM4(tc+h,yp) + 19*fABAM4(tc,yc) ...

- 5*fABAM4(tb,yb) + fABAM4(ta,ya));

y0 = ya;

ya = yb;

yb = yc;

yc = yn;

t0 = ta;

ta = tb;

tb = tc;

tn = tc + h;

tc = tn;

y = [y yn];

t = [t tn];

end

figure(1)

plot(t,y);

ye = (16*exp(-t)*pi^2-8*pi*cos(4*pi*t)+8*exp(-t)*pi...

+exp(-t)+2*sin(4*pi*t))/(32*pi^2+2);

figure(2)
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plot(t,ye - y)

ee = max(abs(ye - y))

6. Derive the second order Adams-Bashforth method under the assumption that
the grid is not uniform. Assume that tn+1 − tn = h, and tn − tn−1 = η, with
η = θh. What is the truncation error in this instance?

Solution: yn+1 = yn + (h/2θ)((1 + 2θ)f(tn, yn) − f(tn−1, yn−1)). The
truncation error is

ρ(θ) = h3
(

1

6
+

1

4
θ

)
7. Repeat Problem 8 from 6.4, this time using second order Adams-Bashforth

with h = 1/16. Use simple Euler to generate the starting value y1. If you did
the earlier problems of this type, compare your results now to what you got
before.

Solution: The same general results are obtained as previously.

8. Repeat Problem 9 from 6.4, this time using second order Adams-Bashforth
with h = 1/16. Use simple Euler to generate the starting value y1. If you did
the earlier problems of this type, compare your results now to what you got
before.

Solution: The same general results are obtained as previously.

9. Repeat Problem 11 from 6.4, this time using second order Adams-Bashforth
with h = 1/16. Use simple Euler to generate the starting value y1. If you did
the earlier problems of this type, compare your results now to what you got
before.

Solution: The same general results are obtained as previously.

10. Repeat Problem 10 from 6.4, this time using second order Adams-Bashforth
with h = 1/16. Use simple Euler to generate the starting value y1. If you did
the earlier problems of this type, compare your results now to what you got
before.

Solution: The same general results are obtained as previously.

/ • • • .
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6.7 STABILITY ISSUES

Exercises:

1. Determine the residual and the truncation error for the method defined by
yn+1 = 4yn − 3yn−1 − 2hf(tn−1, yn−1). Try to use it to approximate
solutions of the IVP y′ = −y ln y, y(0) = 2. Comment on your results.

Solution: The truncation error for this method will indicate it is an O(h2)
method, yet the actual computation will be horribly inaccurate, because the
method is unstable.

2. Show that the method defined by yn+1 = 4yn − 3yn−1 − 2hf(tn−1, yn−1) is
unstable.

Solution: The stability polynomial is σ(r) = r2 − 4r + 3, which has roots
r0 = 1 and r1 = 3, so the method fails to be stable.

3. Consider the method defined by

yn+1 = yn−1 +
1

3
h [f(tn−1, yn−1) + 4f(tn, yn) + f(tn+1, yn+1)]

which is known as Milne’s method. Is this method stable or strongly stable?

Solution: The stability polynomial is σ = r2 − 1, which has roots r0 = 1
and r1 = −1, so it is only weakly stable, like the midpoint method.

4. Show for backward Euler and the trapezoid rule methods, that the stability
region is the entire left half-plane.

Solution: We do this only for the trapezoid rule method.

We have
yn+1 = yn + (h/2)(λyn + λyn+1)

so that

yn+1 =

(
1 + (hλ)/2

1− (hλ)/2

)
yn.

If <(λ) < 0, then |yn+1| = γ|yn|, where γ < 1, so yn → 0 as n→∞, hence
the stability region is the entire left half-plane.

5. Show that all four members of the BDF family are stable.

Solution: The stability polynomials are

r = 1,

r2 =
4

3
r − 1

3
,
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r3 =
18

11
r2 − 9

11
+

2

11

and
r4 =

48

25
r3 − 36

25
r2 +

16

25
− 3

25
.

Simple computations show that all four cases satisfy the root condition, and
hence are stable.

6. Show that the stability region for the fourth order BDF method contains the
entire negative real axis.

Solution: The stability region is that part of the complex plane for which the
method is relatively stable when applied to the ODE y′ = λy. Thus we look
at the recursion

yn+1 =
48

25
yn −

36

25
yn−1 +

16

25
yn−2 −

3

25
yn−3 +

12

25
hλyn+1

To say that the stability region for the method contains the entire negative real
axis is equivalent to saying that the roots of the polynomial

r4 =
48

25
r3 − 36

25
r2 +

16

25
r − 3

25
+

12

25
hλr4

are less than one in absolute value for all negative real λ. We thus look at the
polynomial equation

(25 + 12ξ)r4 − 48r3 + 36r2 − 16r + 3 = 0,

where ξ = −hλ > 0. For specific values of ξ > 0, we can compute the
maximum absolute value of the roots of this polynomial. Since the maximum
absolute value is always less than one, the negative real axis is within the
stability region of the method.

/ • • • .

6.8 APPLICATION TO SYSTEMS OF EQUATIONS

Exercises:

1. Using a hand calculator and h = 1
4 , compute approximate solutions to the

initial value problem

y′1 = −4y1 + y2, y1(0) = 1;

y′2 = y1 − 4y2, y2(0) = −1.
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Compute out to t = 1, using the following methods:

(a) Euler’s method;

Solution: y1,4 = .00390625, y2,4 = −.00390625

(b) RK4;

(c) AB2 with Euler’s method for the starting values;

Solution: y1(1) ≈ 1.310058594, y2(1) ≈ −1.310058594.

(d) Trapezoid rule predictor-corrector.

Solution: y1,4 = .07965183255, y2,4 = −.07965183255

Organize your computations and results neatly to minimize mistakes.

2. Consider the second order equation

y′′ + sin y = 0, y(0) =
1

8
π, y′(0) = 0;

write this as a first order system and compute approximate solutions using a
sequence of grids and the following methods:

(a) Second order Adams-Bashforth;

(b) Fourth order Runge-Kutta;

(c) The method of Heun.

The solution will be periodic; try to determine, experimentally, the period of
the motion.

Solution: As a system, the problem becomes

dy1
dt

= y2,
dy2
dt

= − sin y1

Using Heun’s method and h = 1/32 we get that the period of the motion is
about 6.3.

3. Show that backward Euler and the trapezoid rule methods are both A-stable.

Solution: We do this for backward Euler, only. We apply the method to the
ODE y′ = λy, where <(λ) < 0 is assumed. This yields

yn+1 = yn + hλyn+1

so that

yn+1 =

(
1

1− hλ

)
yn = γyn.
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Since <(λ) < 0 it follows that γ < 1 so yn → 0, thus the method is A-stable.
A similar argument works for the trapezoid rule method.

4. Show that the second-order BDF method is A-stable.

5. Apply the third order BDF method, using the trapezoid method to obtain the
starting values, to the stiff example in the text. Compare your results to the
exact solution and those obtained in the text.

Solution: At each step we have to solve the system(
I − 6

11
hA

)
yn+1 =

18

11
yn −

9

11
yn−1 −

2

11
yn−2

where

yn =

(
y1,n
y2,n

)
and

A =

[
198 199

−398 −399

]
Since we are using a third order method instead of a second order method, we
expect better results and we get them. The maximum error for this method is
substantially smaller than for the trapezoid rule.

6. Consider the following system of differential equations:

y′1(t) = ay1(t)− by2(t)y1(t), y1(0) = y10

y′2(t) = −cy2(t) + dy1(t)y2(t), y2(0) = y20

Solve this system for a sequence of mesh sizes, using the data a = 4, b =
1, c = 2, d = 1, with initial values y10 = 3/2 and y20 = 4. Use (a) Second
order Adams-Bashforth, with Euler’s method providing the starting value; and,
(b) Fourth order Runge-Kutta. Plot the solutions in two ways: As a single plot
showing y1 and y2 versus t; and as a phase plot showing y1 versus y2. Note:
The solutions should be periodic. Try to determine, experimentally, the period.
(Note: This problem is an example of a predator-prey model, in which y1
represents the population of a prey species and y2 represents the population of
a predator which uses the prey as its only food source. See Braun [3] for an
excellent discussion of the dynamics of such systems, as well as the history
behind the problem.)

Solution: Using AB2 with h = 1/32 you should get that the period of the
solution is about 2.2.

7. Consider now a situation in which two species, denoted x1 and x2, compete
for a common food supply. A standard model for this is

x′1(t) = ax1(t)− (bx1(t) + cx2(t))x1(t)

x′2(t) = Ax2(t)− (Bx1(t) + Cx2(t))x2(t)
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with initial conditions x1(0) = x01, x2(0) = x02. Using any of the methods
in this chapter, solve this system for x01 = x02 = 10, 000, using a = 4, b =
0.0003, c = 0.004, A = 2, B = 0.0002, C = 0.0001. Vary the parameters of
the problem slightly and observe what happens to the solution.

8. An interesting and somewhat unusual application of systems of differential
equations is to combat modeling. Here, we denote the force levels of the two
sides at war by x1 and x2, and make various hypotheses about how one side’s
force level affects the losses suffered by the other side. For example, if we
hypothesize that losses are proportional to the size of the opposing force, then
(in the absence of reinforcements) we get the model

x′1 = −ax2
x′2 = −bx1

If we hypothesize that losses are proportional to the square of the opposing
force, we get the model

x′1 = −αx22
x′2 = −βx21

The constants α, β, a, b represent the military efficiency of one side’s forces.

Using any of the methods of this section, consider both models with

a = 1, α = 1, x1(0) = 120, x2(0) = 40

and observe how changing b and β affects the long-term trend of the solutions.
In particular, can you find values of b and β such that the smaller force anni-
hilates the larger one? Combat models such as this are known as Lanchester
models after the British mathematician F. W. Lanchester who introduced them.

Solution: Using Euler’s method with ∆t = 0.05, the author found that, in
the linear model, the smaller force needed to be have b = 11 to annihilate the
larger force, while for the squared model it required β = 37 for the smaller
force to win. (In the squared model the author used a much smaller time step,
∆t = 0.0005, to avoid one side eliminating the other in a single step.)

9. Consider the following system of ODEs:

x′ = σ(y − x),

y′ = x(ρ− z)− y,
z′ = xy − βz.

Use two different second order methods (your choice) to approximate solutions
to this system, for σ = 10, β = 8/3, and ρ = 28. Take x(0) = y(0) = z(0) =
1 and compute out to t = 5. Plot each component.
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10. Consider the second order equation:

x′′ − µ(1− x2)x′ + x = 0, x(0) = 0.5, x′(0) = 0.

First, write this as a system. Then, as in the previous problem, choose two
different second order methods and use each to solve the system for µ = 0.1
and µ = 10. Compute out to t = 20.

11. One simple but important application of systems of differential equations is
to the spread of epidemics. Perhaps the simplest model is the so-called SIR
model, which models an infectious disease (like measles) that imparts immunity
to those who have had it and recovered. We divide the population into three
categories:

• S(t): These are the people who are susceptible, i.e., they are well at time
t but might get sick at some future time;

• I(t): These are the people who are infected, i.e., sick;

• R(t): These are the people who have recovered and are therefore pro-
tected from getting the disease by being immune.

Under a number of simplifying assumptions6 the SIR model involves the
following system, sometimes known as the continuous Kermack-McKendrick
model.

dS

dt
= −rSI,

dI

dt
= rSI − aI,

dR

dt
= aI,

The parameters r and a measure the rate at which susceptible people become
sick upon contact with infectives, and the rate at which infected people are
cured.

(a) For the case I0 = 1, S0 = 762, R0 = 0, a = 0.44, and r = 2.18× 10−3,
solve the system using the numerical method and step size of your choice,
and plot the solutions. This data is taken from a study of an influenza
epidemic at an English boys school; the time scale here is in days.

(b) Now consider the case where S0 = 106, R0 = 0, a = 1.74, r =
.3× 10−5. Solve the system (again, using the method of your choice) for
a range of values of I0 > 0. Is there a critical value of I0 beyond which
the disease spreads to almost all of the population? This data is taken,

6See J.D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989, pp. 611ff.
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roughly, from a study of a plague epidemic in Bombay; the time scale is
weeks.

Solution: Using the trapezoid rule predictor-corrector with h = 1/16,
the epidemic dies out in about 5 weeks, regardless of the size of I0, and
does not spread throughout the population.

(c) In the previous data set, take I0 = 104 and vary the value of r. Try to
find the critical value of r such that, for r < rcrit the number of infected
drops monotonically, and for r > rcrit the number of infected rises to a
peak before falling off.

/ • • • .

6.9 ADAPTIVE SOLVERS

Exercises:

1. Use Algorithm 6.4 to solve the following IVP using the local error tolerance
of ε = 0.001:

y′ = y2, y(0) = 1.

Do this as a hand calculation. Compute 4 or 5 steps. Compare the computed
solution to the exact solution y = (1− t)−1.

Solution: The algorithm settles on h1 = h2 = h3 = h4 = h5 = 0.0078125
and produces the approximate values

y1 = 1.00785339019122, y2 = 1.01583078044887, y3 = 1.02393512571904,

y4 = 1.03216947546184, y5 = 1.04053697745659

2. Apply one of the MATLAB routines to each of the following ODEs:

(a) y′ + 4y = 1, y(0) = 1;

(b) y′ + sin y = 0, y(0) = 1;

(c) y′ + y = sin 4πt, y(0) = 1
2 ;

(d) y′ = y−t
y+t , y(0) = 4.

Use both τ = 1.e− 3 and τ = 1.e− 6, and compute out to t = 10. Plot your
solutions. You may need to adjust MaxStep.

Solution: For (b), using an old version of ode45, the author got the graph in
Fig. 6.1.
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Figure 6.1 Solution to Problem 2b.

3. The MATLAB ODE routines can be applied to systems. Use each of ode23,
ode45, and ode113 to solve the system in Problem 9 of 6.8, using τ = 1.e−3
and also τ = 1.e− 6.

Solution: Using an old version of ode23, and plotting each component as
a coordinate in 3-space, we get the graph in Fig. 6.2 (computing out to
Tmax = 65). This system is known as the “Lorenz attractor,” and is one of the
first examples of a so-called chaotic dynamical system.

4. Apply ode45 to the system in Problem 10 of 6.8, using µ = 10. Compute
out to t = 60, and plot both solution components. Comment.

Solution: Using the version of ode45 from the 1994 MATLAB, the author
got the plot in Figure 6.3. This equation is known as the van der Pol oscillator;
it is an example of a nonlinear oscillator. Note to instructors: Advise the
students to plot the solution components on separate axes; otherwise the large
values of the derivative will distort the scales.

5. The three routines we used in this section are not designed for stiff ODEs, but
that does not mean we can’t try it! Apply ode23 to the system

y′1 = 198y1 + 199y2, y1(0) = 1;

y′2 = −398y1 − 399y2, y2(0) = −1;

using τ = 10−6. Plot the solution components over the interval (0, 5).

/ • • • .
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6.10 BOUNDARY VALUE PROBLEMS

Exercises:

1. Use a mesh size of h = 1
4 (n = 4) to solve the boundary value problem

−u′′ + u = sinx, 0 < x < 1;

u(0) = u(1) = 0.

Don’t bother to write a computer program; do this as a hand calculation.

Solution: The system is 33 −16 0

−16 33 −16

0 −16 33

 u1
u2
u3

 =


√

2/2

1/2√
2/2


which has solution

u1 = 0.05430593375937,

u2 = 0.06781181455454,

u3 = 0.05430593375937.

2. Repeat the above for the BVP

−u′′ + (2− x)u = x, 0 < x < 1;

u(0) = u(1) = 0.

Don’t bother to write a computer program; do this as a hand calculation.

Solution: u(1/4) ≈ 0.0329, u(1/2) ≈ 0.0538, u(3/4) ≈ 0.0484.

3. Repeat the above for the BVP

−u′′ + u = e−x, 0 < x < 1;

u(0) = u(1) = 0.

Solution:
u1 = 0.0572, u2 = 0.0694, u3 = 0.0480

4. Consider the linear boundary value problem

−u′′ + (10 cos 2x)u = 1

u(0) = u(π) = 0
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Solve this using finite difference methods and a decreasing sequence of grids,
starting with h = π/16, π/32, . . . . Do the approximate solutions appear to be
converging to a solution?

Solution: Using h = π/8, we get

u = (0.0601, 0.0316,−0.1511,−0.3233,−0.1511, 0.0316, 0.0601)T

as the solution vector; the approximate solutions do converge as h→ 0.

5. Consider the nonlinear boundary value problem

−u′′ + eu = 1

u(0) = 0, u(1) = 1

Use shooting methods combined with the trapezoid rule predictor-corrector
to construct solutions to this equation, then use a fourth order Runge-Kutta
scheme and compare the two approximate solutions. Are they nearly the
same?

Solution: To do this problem we first have to cast it into a first order system:(
w1(t)

w2(t)

)′
=

(
w2(t)

ew1(t) − 1

)
We then solve this system using the initial values w1(0) = 0, w2(t) = p, and
find the value of p such that w1(1) = 0. Using the trapezoid rule predictor-
corrector we get that p = 0.8172, and a similar value is obtained with the
fourth order Runge-Kutta method.

6. Write a program to use the finite element method to solve the BVP

−u′′ + u = e−x, 0 < x < 1;

u(0) = u(1) = 0.

using a sequence of grids, h−1 = 4, 8, 16, . . . , 1024.

Solution: Using n = 256, the author got the plot in Fig. 6.4; the values for
n = 16 are marked by the circles.

7. Repeat the above, using the different boundary conditions u(0) = 0, u(1) = 1.

8. No exact solution was provided for either of the previous two exercises (al-
though anyone having completed a sophomore ODE course—or with access
to a symbolic algebra program like Maple or Mathematica—ought to be able
to produce a solution). Write an essay addressing the following question: On
what basis are you confidant that your codes are producing the correct solution?
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Figure 6.4 Solution plot for Problem 6.

Solution: If the sequence of solutions are not varying wildly from each other,
if the results appear to be converging to a single solution, then we are justified
in thinking—but by no means certain—that our code is correct. The fact that
our solutions for n = 16 and n = 256 match as well as they do in Problem 6
gives us confidence that we are getting good results.

/ • • • .





CHAPTER 7

NUMERICAL METHODS FOR THE
SOLUTION OF SYSTEMS OF
EQUATIONS

7.1 LINEAR ALGEBRA REVIEW

Exercises:

1. Assume Theorem 7.1 and use it to prove Cor. 7.1.

Solution: If A is singular, then Part 2 of the theorem says that the columns
of A are a dependent set. Therefore, there exists a set of constants c1, c2, . . .,
cn, not all zero, such that

0 = c1a1 + c2a2 + . . .+ cnan

where the ai are the columns of A written as vectors. But this is equivalent to
saying Ac = 0, where c ∈ Rn has components ck. Therefore there exists at
least one non-zero vector c such that Ac = 0. Now, let β be an arbitrary real
number; then A(βc) = βAc = 0, so there must be infinitely many non-zero
vectors x such that Ax = 0.

2. Use Theorem 7.1 to prove that a triangular matrix is nonsingular if and only if
the diagonal elements are all non-zero.

Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis,
Second Edition. By James F. Epperson
Copyright c© 2013 John Wiley & Sons, Inc.
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Solution: Let T be the triangular matrix. Then detT =
∏
tii, so detT is

non-zero if and only if all the diagonal elements are non-zero.

3. Suppose that we can writeA ∈ Rn×n as the product of two triangular matrices
L ∈ Rn×n and U ∈ Rn×n where the diagonal elements of L and U are all
non-zero. Prove that A is nonsingular.

Solution: Since L and U are triangular with non-zero diagonal elements,
they are non-singular. Therefore

Ax = b⇔ LUx = b⇔ Ux = L−1b⇔ x = U−1L−1b;

thus the system has a unique solution for any b, thus A is non-singular.

/ • • • .

7.2 LINEAR SYSTEMS AND GAUSSIAN ELIMINATION

Exercises:
For the sake of simplicity here, we will define at the outset several families of

matrices, parameterized by their dimension. These will be referred to in several of
the exercises throughout the chapter.

Hn = [hij ], hij =
1

i+ j − 1
.

Kn = [kij ], ki,j =


2, i = j;

−1, |i− j| = 1;

0, otherwise.

Tn = [tij ], ti,j =


4, i = j;

1, |i− j| = 1;

0, otherwise.

An = [aij ], ai,j =


1, i = j;

4, i− j = 1;

−4, i− j = −1;

0, otherwise.

Even if we do not know the solution to a linear system, we can check the accuracy
of a computed solution xc by means of the residual r = b − Axc. If xc is the exact
solution, then each component of r will be zero; in floating point arithmetic, there
might be a small amount of rounding error, unless the matrix is “nearly singular,” a
concept that we will discuss in detail in 7.5.
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1. Write a naive Gaussian elimination code and use it to solve the system of
equations Ax = b where

A =


14 14 −9 3 −5

14 52 −15 2 −32

−9 −15 36 −5 16

3 2 −5 47 49

−5 −32 16 49 79


and b = [−15,−100, 106, 329, 463]T . The correct answer isx = [0, 1, 2, 3, 4]T .

Solution: A MATLAB script which does this is given below.

function x = naive(a,b)

n = length(b);

x = b;

for i=1:(n-1)

for j=(i+1):n

m = a(j,i)/a(i,i);

for k=(i+1):n

a(j,k) = a(j,k) - m*a(i,k);

end

b(j) = b(j) - m*b(i);

end

end

%

x(n) = b(n)/a(n,n);

for i=(n-1):(-1):1

s = 0;

for j=(i+1):n

s = s + a(i,j)*x(j);

end

x(i) = (b(i) - s)/a(i,i);

end

2. Write a naive Gaussian elimination code and use it to solve the system of
equations

T5x = b

where b = [1, 6, 12, 18, 19]T . The correct answer is x = [0, 1, 2, 3, 4]T .
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Solution: The previous script will work.

3. Write a naive Gaussian elimination code and use it to solve the system of
equations

H5x = b

where b = [5.0, 3.550, 2.81428571428571, 2.34642857142857, 2.01746031746032]T .
The correct answer is x = [1, 2, 3, 4, 5]T .

Solution: The same script works, of course.

4. Repeat the above problem, except now use b1 = 5.0001; how much does the
answer change?

Solution: Now we get

x = [1.00249999999970, 1.96999999999926, 3.10500000002115,

3.85999999994903, 5.06300000003183]T .

This is more change in the answer than we perhaps would have expected, given
the small change in b.

5. Write your own naive Gaussian elimination code, based on the material in this
chapter, and test it on the indicated families, over the range of 4 ≤ n ≤ 20.
Take b to be the vector of appropriate size, each of whose entries is 1.

(a) Hn;

(b) Kn;

(c) Tn.

For each value of n, compute the value of max1≤i≤n |ri|, where r = b−Ax.

Solution: For the second and third cases, the naive script returns a residual
that is identically zero for all components. For the first case — known as
the Hilbert matrix — the maximum element in the residual is still small, but
non-zero. The author got 2.288243194925598e − 8 as the largest element in
the residual for n = 20.

6. Modify the Gaussian elimination algorithm to handle more than a single right
hand side. Test it on a 5× 5 example of your own design, using at least 3 right
hand side vectors.

Solution: A MATLAB script which does this is given below. It is a modest
change from the previous one.

function x = naive(a,b)

[n,p] = size(b);

x = b;
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for i=1:(n-1)

for j=(i+1):n

m = a(j,i)/a(i,i);

for k=(i+1):n

a(j,k) = a(j,k) - m*a(i,k);

end

for k = 1:p

b(j,k) = b(j,k) - m*b(i,k);

end

end

end

%

for ii=1:p

x(n,ii) = b(n,ii)/a(n,n);

for i=(n-1):(-1):1

s = 0;

for j=(i+1):n

s = s + a(i,j)*x(j,ii);

end

x(i,ii) = (b(i,ii) - s)/a(i,i);

end

end

7. Use the naive Gaussian elimination algorithm to solve (by hand) the following
system. You should get the same results as in (7.1).[

ε 1

1 1

] [
x1
x2

]
=

[
1

2

]
.

Solution: We have[
ε 1 1

1 1 2

]
∼
[
ε 1 1

0 1− (1/ε) 2− (1/ε)

]
so that

x2 =
2− (1/ε)

1− (1/ε)
=

2ε− 1

ε− 1
=

1− 2ε

1− ε
= 1− ε

1− ε

and

x1 =
1

ε
(1− x2) =

1

ε

(
1− 1 +

ε

1− ε

)
=

1

1− ε
= 1 +

ε

1− ε
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8. Write a Gaussian elimination code that does partial pivoting and use it to solve
the system of equations Ax = b where

A =


9 3 2 0 7

7 6 9 6 4

2 7 7 8 2

0 9 7 2 2

7 3 6 4 3


and b = [35, 58, 53, 37, 39]T . The correct answer is x = [0, 1, 2, 3, 4]T .

Solution: A MATLAB script that does the assigned task is given below.

function x = naivep(a,b)

n = length(b);

x = b;

for i=1:(n-1)

am = abs(a(i,i));

p = i;

for j=(i+1):n

if abs(a(j,i)) > am

am = abs(a(j,i));

p = j;

end

end

if p > i

for k=i:n

hold = a(i,k);

a(i,k) = a(p,k);

a(p,k) = hold;

end

hold = b(i);

b(i) = b(p);

b(p) = hold;

end

for j=(i+1):n

m = a(j,i)/a(i,i);

for k=(i+1):n

a(j,k) = a(j,k) - m*a(i,k);

end

b(j) = b(j) - m*b(i);

end

end

%

x(n) = b(n)/a(n,n);
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for i=(n-1):(-1):1

s = 0;

for j=(i+1):n

s = s + a(i,j)*x(j);

end

x(i) = (b(i) - s)/a(i,i);

end

9. Write a naive Gaussian elimination code and use it to solve the system of
equations Ax = b where

A =

 1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5


and b = [7/6, 5/6, 13/20]T . The correct answer is x = [0, 1, 2]T .

Solution: The previous script will work.

10. Use the naive Gaussian elimination algorithm to solve (by hand) the follow-
ing system, using only 3 digit decimal arithmetic. Repeat, using Gaussian
elimination with partial pivoting. Comment on your results.[

0.0001 1

1 1

] [
x1
x2

] [
1

2

]

Solution: This has to be done carefully, and it is important to remember that
the restriction as to 3 digit arithmetic applies to all the computations. So we
can’t just apply the formulas from the previous problem.

If we don’t pivot, then the elimination goes like this (assuming the machine
chops): [

0.0001 1 1

1 1 2

]
∼
[

0.0001 1 1

0 −9990 −9990

]
So, x2 = 1 and x1 = 0, not a very accurate result.

If we do pivot, then the elimination goes like this:[
0.0001 1 1

1 1 2

]
∼
[

1 1 2

0.0001 1 1

]
∼
[

1 1 2

0 0.999 0.999

]
So, x2 = 1 (again) but x1 = 2−x2 = 1, which is a much more accurate result.

11. Write a code to do Gaussian elimination with partial pivoting, and apply it to
the system A5x = b, where b = [−4,−7,−6,−5, 16]T and the solution is
x = [0, 1, 2, 3, 4]T .
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Solution: The naivep script will work.

12. Use MATLAB’s rand function to generate A, a random 10 × 10 matrix, and
a random vector b ∈ R10; solve the system Ax = b two different ways: (1)
By using your own code; (2) By using MATLAB’s backslash command: x =

A\b. Obviously, you should get the same results both times.

Solution: Using the naivep script, the author solved a random system in
888 flops. Using the backslash command for the same system produced the
same results but took 1350 flops. The author is amused by this result.

13. Repeat the above, this time using a 20 × 20 random matrix and appropriate
random right-hand side.

/ • • • .

7.3 OPERATION COUNTS

Exercises:

1. Determine the operation count for the tridiagonal solution algorithm of 2.6.

Solution: About C1 = 4n for the elimination step, and C2 = 2n for the
solution phase, for a total cost of C = 6n.

2. What is the operation count for computing the dot product x ·y of two vectors?

Solution: C = n

3. Create a pair of random vectors in R10 and compute their dot product using the
MATLAB command dot. What is the estimated operations count, according
to flops? Repeat for a pair of vectors in R20 and a pair in R100. Comment
on your results, compared to your answer in the previous problem.

4. What is the operation count for computing the matrix-vector product Ax?

Solution: For A ∈ Rm×n and x ∈ Rn, we get C = mn.

5. Repeat the above, assuming that A is tridiagonal.

Solution: C = 3n+O(1)

6. What is the operation count for a matrix-matrix product, AB?

Solution: For A ∈ Rm×n and B ∈ Rn×p we get C = mnp.

7. Repeat the above, assuming that A is tridiagonal.
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Solution: This is easier to figure out by breaking into diagonal parts, so that
we have A = D1 +D2 +D3 where D2 is the main diagonal and D1 and D3

are the upper and lower diagonals. Then AB = D1B + D2B + D3B, and
each individual product costs roughly np ifB ∈ Rn×p, so the total cost is 3np.

8. Repeat the above, assuming now that both A and B are tridiagonal.

Solution: This time we have

AB = (D1 +D2 +D3)(D4 +D5 +D6),

so the cost is roughly C = 9n+O(1), assuming n is the length of the longest
diagonal.

9. What is the operation count for the outer product xyT ?

Solution: C = n2

10. Determine the operation count for the backward solution algorithm.

Solution:

C =
n−1∑
i=1

 n∑
j=i+1

1

 =
1

2
n2 +O(n)

11. Repeat the above for the Gaussian elimination code you wrote in the previous
section.

12. Repeat the above for the tridiagonal solver you wrote back in 2.6.

13. Use the rand command to create a sequence of linear system problems of
increasing size, say 4 ≤ n ≤ 100. Use the backslash operator to solve each
problem, and estimate the operations count using flops. Plot the estimated
cost as a function of n.

Solution: The figure below shows a partial solution (for 4 ≤ n ≤ 32) as well
as the discrete values 2n3/3, which is a rough estimate of what flops should
be producing. Note that the two curves are rather close in general trend.

14. Use the diag command to form a sequence of tridiagonal systems, similar
to what you did in Problem 13, and solve these using the backslash operator.
What is the estimated cost of solving these systems, according to flops?

Solution: The backslash command will not take advantage of the tridiagonal
structure of the system, so the result should be a lot like the above.

15. Assume that you are working on a computer that does one operation every
10−9 seconds. How long, roughly, would it take such a computer to solve a
linear system for n = 100, 000, using the cost estimates derived in this section
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Figure 7.1 Partial solution to Problem 13.

for Gaussian elimination? What is the time estimate if the computer only does
one operation every 10−6 seconds?

Solution: About 92.6 hours for the fast computer, and 92, 592.6 hours (over
10 years) for the slow one.

/ • • • .

7.4 THE LU FACTORIZATION

Exercises:

1. Do, by hand, an LU factorization of the matrix

A =

[
2 1

1 2

]
and use it to solve the system Ax = b, where b = (1, 2)T . The exact solution
is x = (0, 1)T . Verify that LU = A.
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Solution: We get

A =

[
2 1

1 2

]
=

[
1 0

1/2 1

] [
2 1

0 3/2

]
so

y =

[
1

3/2

]
and

x =

[
0

1

]
as expected.

2. Repeat the above for

A =

[
4 1

1 5

]
and b = (2, 10)T ; here the exact solution is x = (0, 2)T .

Solution: We get

A =

[
4 1

1 5

]
=

[
1 0

1/4 1

] [
4 1

0 15/4

]
.

Then y = (2, 19/2)T and x = (0, 2)T , as expected.

3. Write an LU factorization code and use it to solve the system of equations
Ax = b where

A =


14 14 −9 3 −5

14 52 −15 2 −32

−9 −15 36 −5 16

3 2 −5 47 49

−5 −32 16 49 79


and b = [−15,−100, 106, 329, 463]T . The correct answer isx = [0, 1, 2, 3, 4]T .

Solution: It is an easy modification to the naive script to do this. You get

L =


1.0000 0 0 0 0

1.0000 1.0000 0 0 0

−0.6429 −0.1579 1.0000 0 0

0.2143 −0.0263 −0.1103 0.9140 1.0000

−0.3571 −0.7105 0.2912 1.0000 0
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and

U =


14.0000 14.0000 −9.0000 3.0000 −5.0000

0 38.0000 −6.0000 −1.0000 −27.0000

0 0 29.2669 −3.2293 8.5226

0 0 0 50.3013 55.5483

0 0 0 0 −0.4689


4. Write an LU factorization code and use it to solve the system of equations

T5x = b

where b = [1, 6, 12, 18, 19]T . The correct answer is x = [0, 1, 2, 3, 4]T .

Solution: You get
L = 1.0000 0 0 0 0

0.2500 1.0000 0 0 0

0 0.2667 1.0000 0 0

0 0 0.2679 1.0000 0

0 0 0 0.2679 1.0000


and 

U = 4.0000 1.0000 0 0 0

0 3.7500 1.0000 0 0

0 0 3.7333 1.0000 0

0 0 0 3.7321 1.0000

0 0 0 0 3.7321


5. Write an LU factorization code and use it to solve the system of equations

H5x = b

where b = [5.0, 3.550, 2.81428571428571, 2.34642857142857,
2.01746031746032]T . The correct answer is x = [1, 2, 3, 4, 5]T .

6. Write up your ownLU factorization code, based on the material in this chapter,
and test it on the following examples. In each case have your code multiply
out the L and U factors to check that the routine is working.

(a) K5x = b, b = [−1, 0, 0, 0, 5]T ; the solution is x = [0, 1, 2, 3, 4]T ;
(b) A5x = b, b = [−4,−7,−6,−5, 16]T ; the solution is x = [0, 1, 2, 3, 4]T .

Solution: For (a) you get

L =


1.0000 0 0 0 0

−0.5000 1.0000 0 0 0

0 −0.6667 1.0000 0 0

0 0 −0.7500 1.0000 0

0 0 0 −0.8000 1.0000
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and

U =


2.0000 −1.0000 0 0 0

0 1.5000 −1.0000 0 0

0 0 1.3333 −1.0000 0

0 0 0 1.2500 −1.0000

0 0 0 0 1.2000


7. Determine the operation count for computing the inverse of a matrix, as outlined

in this section.

Solution: If CGE is the cost of naive Gaussian elimination, and Cs is the
cost of the backsolve steps, then the obvious cost of computing the inverse is

CI = CGE + nCs =
1

3
n3 +O(n2) +

1

2
n3 +O(n2) =

5

6
n3 +O(n2).

But there are extra costs associated with the elimination process (because the
right side now has n vectors instead of only 1) and this is where the figure of
(4/3)n3 + O(n2) comes from. Some costs can be saved (roughly (1/3)n3

operations) by carefully taking advantage of the fact that the right side vectors
are all initially ones or zeroes.

8. Show that

(a)
E−1k = I +Rk (7.1)

for all k;

Solution:
(I +Rk)(I −Rk) = I +Rk −Rk −R2

k

But R2
k = 0, because of the special position of the non-zero elements,

thus E−1k = I +Rk.

(b)
E−1k E−1k−1 = I +Rk +Rk−1 (7.2)

for all k;

Solution:

(I +Rk)(I +Rk−1) = I +Rk +Rk−1 +RkRk−1.

Again, the cross product term is zero because of the placement of the
non-zero terms.

(c) L = I +R1 +R2 + . . .+Rn−1.

Solution: This follows from the two previous parts.
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9. Modify the tridiagonal solution algorithm from Chapter 2 to produce an LU
decomposition. Be sure to maintain the simple storage of the matrix that was
used in Chapter 2, and assume that no pivoting is required.

Solution: A MATLAB script for doing this follows.

function [l1, d1, u1] = trifact(l,d,u)

n = length(d);

u1 = u;

d1 = d;

l1 = u1;

l1(1) = 0;

for k=2:n

l1(k) = l(k)/d1(k-1);

d1(k) = d(k) - u(k-1)*l(k)/d1(k-1);

end

10. Write an LU factorization code with partial pivoting, and apply it to the
system A5x = b, where b = [−4,−7,−6,−5, 16]T and the solution is x =
[0, 1, 2, 3, 4]T .

Solution: We get the factors

L =


1 0 0 0 0

0.25 1 0 0 0

0 0 1 0 0

0 −0.9412 0.4853 1 0

0 0 0 −0.8918 1


and

U =


4 1 −4 0 0

0 −4.25 1 0 0

0 0 4 1 −4

0 0 0 −4.4853 1.9412

0 0 0 0 2.7311


so the product is

A′ = LU =


4 1 −4 0 0

1 −4 0 0 0

0 0 4 1 −4

0 4 1 −4 0

0 0 0 4 1
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11. Write an LU factorization code that does partial pivoting and use it to solve
the system of equations Ax = b where

A =


9 3 2 0 7

7 6 9 6 4

2 7 7 8 2

0 9 7 2 2

7 3 6 4 3


and b = [35, 58, 53, 37, 39]T . The correct answer is x = [0, 1, 2, 3, 4]T .

Solution: This is a simple implementation of the pseudocode in the text. We
get the factors

L =


1 0 0 0 0

0 1 0 0 0

0.7778 0.4074 1 0 0

0.2222 0.7037 0.3548 1 0

0.7778 0.0741 0.8548 −0.1222 1


and

U =


9 3 2 0 7

0 9 7 2 2

0 0 4.5926 5.1852 −2.2593

0 0 0 4.7527 −0.1613

0 0 0 0 −0.6810


so the product is

A′ = LU =


9 3 2 0 7

0 9 7 2 2

7 6 9 6 4

2 7 7 8 2

7 3 6 4 3

 ,

which, as expected, is the same as the original matrix with the rows re-ordered.

12. Compare your LU factorization-and-solution code to MATLAB’S linsolve

command by creating a random 10×10 system and solving with both routines.
(They should produce exactly the same solution.) Use flops to estimate the
operation count for each.

13. Again, generate a random 10 × 10 linear system (matrix and right-hand side
vector). Then solve this system four ways:

(a) Using your LU factorization-and-solution code;



262 NUMERICAL METHODS FOR THE SOLUTION OF SYSTEMS OF EQUATIONS

(b) Using MATLAB’s linsolve command;

(c) Using the MATLAB backslash operation;

(d) Using MATLAB’s inv command to compute the inverse of the matrix,
and then multiply this by the right-hand side vector.

Use flops to estimate the cost of each solution technique, and rank the methods
for their efficiency in this regard.

14. Repeat the above for the matrixK20 defined at the end of 7.2, using a random
right-hand side vector. Then apply the tridiagonal solver from Chapter 2 to
this problem, and again get the flops estimate. Comment on your results.

/ • • • .

7.5 PERTURBATION, CONDITIONING AND STABILITY

Exercises:

1. Let

A =

 1 2 −7

4 −8 0

2 1 0


Compute ‖A‖∞.

Solution: ‖A‖∞ = max{10, 12, 3} = 12.

2. Let

A =

 5 6 −9

1 2 3

0 7 2


Compute ‖A‖∞.

Solution: ‖A‖∞ = max{20, 6, 9} = 20.

3. Let

A =

 −8 0 −1

3 12 0

1 2 3


Compute ‖A‖∞.

Solution: ‖A‖∞ = max{9, 15, 6} = 15.
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4. Show that
‖A‖? = max

i,j
|aij |

does not define a matrix norm, according to our defintion. Hint: show that one
of the conditions fails to hold by finding a specific case where it fails.

Solution: Let

A = B =

[
1 1

1 1

]
Then

AB =

[
2 2

2 2

]
so ‖AB‖∗ = 2, but ‖A‖∗ = ‖B‖∗ = 1 so the inequality ‖AB‖∗ ≤ ‖A‖∗‖B‖∗
doesn’t hold.

5. Let

A =

 1 1
2 0

1
2

1
3

1
4

0 1
4

1
5


Compute, directly from the definition, κ∞(A). You should get κ∞(A) = 18.

Solution: We get

A−1 =
1

11

 −1 24 −30

24 −48 60

−30 60 −20

 ,
so ‖A−1‖∞ = 132/11 = 12. Since ‖A‖∞ = 3/2, we get the expected result.

6. Repeat the above for

A =

 4 1 0

1 4 1

0 1 4


for which κ∞(A) = 2.5714.

Solution: We get

A−1 =
1

56

 15 −4 1

−4 16 −4

1 −4 15

 ,
so ‖A−1‖∞ = 3/7. Since ‖A‖∞ = 6, we get the expected result.
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7. Consider the linear system[
1.002 1

1 0.998

] [
x1
x2

]
=

[
0.002

0.002

]
which has exact solution x = (1,−1)T (verify this). What is the residual
b−Axc for the “approximate” solution

xc = (0.29360067817338,−0.29218646673249)T .

Explain.

Solution: We have r = 10−5 × (−0.1413, 0.1416)T . Note that an “approx-
imate solution” which is not very close to the actual solution produced a very
small residual, thus demonstrating that a small residual does not always mean
the computed solution is close to accurate.

8. Consider the linear system problem

Ax = b

where

A =

 4 2 0

1 4 1

0 2 4

 , b =

 8

12

16

 ,
for which the exact solution is x = (1, 2, 3)T . (Check this.) Let xc =
x + (0.002, 0.01, 0.001)T be a computed (i.e., approximate) solution to this
system. Use Theorem 7.8 to find the perturbation matrix E such that xc is the
exact solution to Axc = b.

Solution: We get

E =

 −0.0020 −0.0040 −0.0060

−0.0031 −0.0062 −0.0092

−0.0017 −0.0034 −0.0051

 .
9. Compute the growth factor for Gaussian elimination for the matrix in the

previous problem.

Solution: We get

A(1) =

 4 2 0

0 3.5 1

0 2 4



A(2) =

 4 2 0

0 3.5 1

0 0 3.4286
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so ρ = 2/3.

10. Let

A =

 2 1 0

1 2 1

0 1 2


This has exact condition number κ∞(A) = 8. Use the condition number
estimator in this section to approximate the condition number.

Solution: κ∗ = 7.1178. This value will of course be affected by different
random initial guesses for the iteration.

11. Repeat the above for

A =

 1 1
2 0

1
2

1
3

1
4

0 1
4

1
5


for which κ∞(A) = 18.

Solution: κ∗ = 13.3186.

12. Use the condition number estimator to produce a plot of κ∗ versus n for each
of the following matrix families:

(a) Tn, 4 ≤ n ≤ 20;

(b) Kn, 4 ≤ n ≤ 20;

(c) Hn, 4 ≤ n ≤ 20.

(d) An, 4 ≤ n ≤ 20.

Compare your estimates with the exact values from cond and the estimates
from rcond.

Solution: Figure 7.2 shows the plots. Note that the scales are very different,
and that theHn matrices have enormous condition numbers forn as small as 10.

13. Produce a plot of the growth factor for Gaussian elimination for each matrix
family in the above problem, as a function of n.

Solution: Figure 7.3 shows the plots.

14. Given a matrix A ∈ Rn×n, show that

µ(A) =
maxx6=0

‖Ax‖
‖x‖

minx6=0
‖Ax‖
‖x‖

is equivalent to the condition number as defined in (7.10).
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Solution: We have

µ(A) =
maxx6=0

‖Ax‖
‖x‖

minx6=0
‖Ax‖
‖x‖

=
‖A‖

minx6=0
‖Ax‖
‖x‖

so it remains only to show that the denominator is equivalent to 1/‖A−1‖.
Since

1

minX
= max

1

X
,

we have

1

minx6=0
‖Ax‖
‖x‖

= max
x6=0

‖x‖
‖Ax‖

= max
y 6=0

‖A−1y‖
‖y‖

= ‖A−1‖

and we are done.

15. Prove that (7.8) and (7.9) follow from the definition of matrix norm.

Solution: We have that

‖A‖ = maxx 6= 0
‖Ax‖
‖x‖

so that, for any particular choice of x,

‖A‖ ≥ ‖Ax‖
‖x‖

which proves (7.9). To get (7.8), we simply apply (7.9):

‖AB‖ = maxx 6= 0
‖ABx‖
‖x‖

≤ maxx 6= 0
‖A‖‖Bx‖
‖x‖

= ‖A‖‖B‖.

16. Prove Theorem 7.10.

Solution: Theorem 7.8 says that there exists a perturbation matrix E such
that xc is the exact solution to (A + E)xc = b. Theorem 7.6 says that if
κ(A)‖E‖ ≤ ‖A‖, then the relative error is bounded above according to

‖x− xx‖
‖x‖

≤ θ

1− θ
,

where

θ = κ
‖E‖
‖A‖

.

The function f(θ) = θ/(1 − θ) is an increasing function, so replacing κ‖E‖‖A‖
with something larger preserves the inequality. Returning to Theorem 7.8, we
have that

‖E‖2
‖A‖2

≤ ‖r‖2
‖A‖2‖xc‖2

≤ ‖r‖2
‖Axc‖2

.
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But
b− r = b− (b−Axc) = Axc,

so we are done.

17. Give an argument to support the validity of the “rule of thumb” following
Theorem 7.10.

Solution: Follows by applying the given assumptions to Theorem 7.6. We
have that

‖x− xx‖
‖x‖

≤ θ

1− θ
,

where

θ = κ
‖E‖
‖A‖

,

but
θ ≤ (C4 × 10t)(C1C2 × 10−s) = C × 10t−s.

18. Prove Theorem 7.5.

Solution: We have r = b − Axc = Ax − Axc so x − xc = A−1r and the
result follows along the same lines as Theorem 7.4.

19. Consider the linear system problem Ax = b for

A =

[
1 1

2
1
2

1
3

]
, b =

[
2

7/6

]
.

Note that the exact solution is x = (1, 2)T .

(a) Represent the exact factorization ofA using only four decimal digits, and
solve the system.

(b) Do two steps of iterative refinement to improve your solution.

Solution: The factorization is

L =

[
1.0000 0

0.5000 1.0000

]

U =

[
1.0000 0.5000

0 0.0833

]
which multiplies out to

LU =

[
1.0000 0.5000

0.5000 0.3333

]
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The uncorrected solution is

xc =

(
0.9996

2.0008

)
and the refined solution (after two iterations) is

x =

(
0.99999999993592

2.00000000012816

)
20. Do two more steps of refinement for the problem in Example 7.9.

Solution:

x(3) = (0.99999999999999, 2.00000000000004, 2.99999999999996)T .
/ • • • .

7.6 SPD MATRICES AND THE CHOLESKY DECOMPOSITION

Exercises:

1. Show that a matrix with one or more non-positive diagonal elements cannot be
SPD. Hint: Try to find a vector x such that xTAx = aii.

Solution: If aii is the non-positive diagonal element, take x = ei. Then
eTi Aei = aii.

2. For a 2 × 2 SPD matrix, show that a22 − a221/a11 > 0. Hint: Consider the
positive definite condition with x = (a21,−a11)T .

Solution: For x as suggested, we have

xTAx = a211a22 − a11a221 = a11
(
a22 − a221/a11

)
3. Let A ∈ Rn×n be partitioned as

A =

[
A11 A21

A21 A22

]
where A11 and A22 are square matrices. Show that both A11 and A22 must be
SPD if A ∈ SPD.

Solution: Suppose A11 is not SPD. Then take x = (y, 0)T , partitioned
conformably with A, and with y such that yTA11y ≤ 0. Then, since

xTAx = yTA11y,

A cannot be SPD.
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4. In the proof of the Cholesky theorem, show that akk − gT g > 0 must hold, or
else there is a vector x such that xTAx ≤ 0. Hint: Use Problem 2 as a starting
point.

Solution: Follows from the hint and Exercise 1.

5. Derive the operation count given in the text for the Cholesky decomposition.

Solution: Follows from the formulas in the text and a direct computation.

6. Prove the following: If A ∈ SPD, then there exists a unit lower triangular
matrix L, and a diagonal matrix D with positive elements, such that A =
LDLT .

Solution: Let D1 = diag(G), where G is the usual Cholesky factor. Define
L = GD−11 and D = D2

1 . Then

LDLT = (GD−11 )D2
1(D−11 GT ) = GGT = A.

7. Derive an algorithm for the LDLT factorization that does not require any
square roots. Hint: Look at the 3 × 3 case, explicitly. Multiply out LDLT

and set the result equal to A, and from this deduce the relationships that are
necessary. In other words, if 1 0 0

l21 1 0

l31 l32 1

 d11 0 0

0 d22 0

0 0 d33

 1 l21 l31
0 1 l32
0 0 1

 =

 a11 a12 a13a21 a22 a23
a31 a32 a33


what is the relationship between the components of L, D, and A? Then
generalize to a problem of arbitrary size. Don’t forget that A is symmetric!

8. The Tn and Kn families of matrices are all positive definite. Write up a code
to do the Cholesky factorization and test it on these matrices over the range
3 ≤ n ≤ 20. Use a right-side vector that is all ones, and confirm that the code
is working by computing ‖r‖∞, where r is the residual vector.

Solution: For both families, the norm of the residual is on the order of 10−12

or smaller, for the entire range of problem sizes given here.

9. If A is tridiagonal and SPD, then the Cholesky factorization can be modified
to work only with the two distinct non-zero diagonals in the matrix. Construct
this version of the algorithm and test it on the Tn and Kn families, as above.

Solution: A MATLAB script that does this is given below.

function [l,d] = chol3(l,d)

n = length(d);
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d(1) = sqrt(d(1));

for k=2:n

l(k) = l(k)/d(k-1);

d(k) = sqrt(d(k) - l(k)^2);

end

10. The Hn family of matrices is also SPD, but ill-conditioned. Try to apply
chol, over the range 4 ≤ n ≤ 20. What happens? Can you explain this?

Solution: For n ≤ 13 everything is fine, but for n = 14 the routine reports
that the matrix is no longer SPD. In terms of the computation, the argument
to the square root in the computation of gii becomes negative.

/ • • • .

7.7 ITERATIVE METHODS FOR LINEAR SYSTEMS – A BRIEF SURVEY

Exercises:

1. Let

A =


4 −1 0 0

−1 4 −1 0

0 −1 4 −1

−1 0 −1 4


and b = (−4, 2, 4, 10)T .

(a) Verify that the solution to Ax = b is x = (0, 1, 2, 3)T .

(b) Do three iterations (by hand) of the Jacobi iteration for this matrix, using
x(0) = (0, 0, 0, 0)T .

Solution: x(3) = (−0.0781, 0.9062, 1.8438, 2.9062)T

(c) Do three iterations (by hand) of the Gauss-Seidel iteration for this prob-
lem, using the same initial guess.

Solution: x(3) = (−0.0645, 0.9500, 1.9702, 2.9764)T

2. Do three iterations of SOR for the previous example, using ω = 1.05.

Solution: x(3) = (−0.0959, 0.9430, 1.6624, 2.9908)T

3. Solve the same system using SOR for a wide set of values of ω ∈ (0, 2). For
each ω, compute r(ω) = ‖b−Ax(k)‖∞. Graph r(ω) for k = 1, 3, 5, 10.
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Figure 7.4 Solution plots for Exercise 7.7.3.

Solution: For ω = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, and 1.75 we get the
plots in Figure 7.4. Note that the residual gets very large away from the critical
value of ω, which appears to be slightly larger than 1.

4. Write a computer code that does Jacobi for the previous example, for a specified
number of iterations. How many iterations does it take to get convergence, in
the sense the consecutive iterates differ by less than 10−6?

Solution: Convergence occurs in 18 iterations.

5. Repeat the above for Gauss-Seidel.

Solution: Convergence occurs in 12 iterations.

6. Repeat the above for SOR. Make sure your code can accept different values
of ω as an input parameter.

Solution: For ω = 1.25, convergence occurs in 16 iterations; note that this
is better than Jacobi, but worse than Gauss-Seidel. However, for ω = 1.05, we
get convergence in 11 iterations, which is better than Gauss-Seidel.

7. Let A be the 16× 16 matrix given at the beginning of this section. Take

b = (5, 11, 18, 21, 29, 40, 48, 48, 57, 72, 80, 76, 69, 87, 94, 85)T .

Write a computer code to do Jacobi, Gauss-Seidel, and SOR on this system of
equations. Write the code to only store the non-zero diagonals ofA, and make
the code as efficient as possible.
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Solution: Jacobi converges in about 80 iterations, Gauss-Seidel in about 43,
and SOR (with ω = 1.25) in about 20.

8. Prove that the spectral radius of A, ρ(A), is bounded above by ‖A‖ for any
norm such that ‖Ax‖ ≤ ‖A‖‖x‖.

Solution: Let λ be the eigenvalue which generates the spectral radius. Then
λx = Ax and so

‖λx‖ = ‖Ax‖ ⇒ ρ =
‖Ax‖
‖x‖

≤ ‖A‖

/ • • • .

7.8 NONLINEAR SYSTEMS: NEWTON’S METHOD AND RELATED
IDEAS

Exercises:

1. Consider the nonlinear system

2x1 − x2 +
1

9
e−x1 = −1, (7.3)

−x1 + 2x2 +
1

9
e−x2 = 1. (7.4)

Take x(0) = (1, 1)T and do two iterations of Newton’s method; you should get

x(2) = (−0.48309783661427, 0.21361449746996)T .

Solution: This is fairly straight-forward. As an intermediate check, you
should get

x(1) = (−0.42317280134882, 0.25270278130481)T .

2. Write a computer code to solve the system in the preceding problem, using

(a) Newton’s method;

(b) The chord method;

(c) The chord method, updating every 3 iterations.

Solution: Below is a MATLAB script for the Newton iteration.

function z = newt2(x1,x2,n)
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for k=1:n

y1 = 2*x1 - x2 + (1/9)*exp(-x1) + 1;

y2 = -x1 + 2*x2 + (1/9)*exp(-x2) - 1;

df = [2 - exp(-x1)/9 -1; -1 2 - exp(-x2)/9];

dfi = inv(df);

z = [x1 x2]’ - dfi*[y1 y2]’

x1 = z(1);

x2 = z(2);

end

3. Re-write the system in Problem 1 as

Kx+ φ(x) = b,

where K is the 2× 2 matrix

K =

[
2 −1

−1 2

]
,

φ(x) is defined by

φ(x) =

(
1
9e
−x1

1
9e
−x2

)
,

and b = (−1, 1)T .

(a) Do two iterations (by hand) of the fixed-point iteration

x(k+1) =
1

2
(b− φ(x(k) −Kx(k) + 2x(k))

for this system, using x(0) = (1, 1)T .

Solution:

x(1) = (−0.02043774673175, 0.97956225326825)T

x(2) = (−0.06692154156532, 0.46892138074399)T

(b) Do two iterations (by hand) of the fixed-point iteration

x(k+1) = K−1(b− φ(x(k))

for this system, using x(0) = (1, 1)T .

(c) Which one do you think is going to converge faster?

4. Write a computer code to implement the fixed point iterations outlined in the
previous problem. Compare the total “cost to convergence” with your results
for Newton’s method and the chord iterations.
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Solution: The MATLAB script below converges in 24 iterations to the fixed
point

α = (−0.48336323789790, 0.21344115515536)T .

function y = fixed2(x)

K = [2 -1; -1 2];

b = [-1 1]’;

for k = 1:100

k

y = 0.5*(b - (1/9)*exp(-x) - K*x + 2*x);

if abs(x - y) < 1.e-6

break

end

x = y;

end

/ • • • .

7.9 APPLICATION: NUMERICAL SOLUTION OF NONLINEAR BVP’S

Exercises:

1. Set up the nonlinear system for the example (7.36)-(7.37), and verify that the
result given in the text (7.38)-(7.40) is correct.

2. Apply Newton’s method and the chord method, to the approximate solution
of the nonlinear BVP (7.36)-(7.37). Compare the number of iterations to
converge and the overall cost of convergence. Use the sequence of grids
h−1 = 4, 8, . . . , 1024.

Solution: For Newton’s method with h = 1/8 and u(0) = 0, we get conver-
gence in 10 iterations to

u = (0.1267, 0.2529, 0.3787, 0.5039, 0.6287, 0.7529, 0.8767)T .

3. Consider the nonlinear BVP

−u′′ + e−u = 1,

u(0) = u(1) = 1.

Use finite difference techniques to reduce this (approximately) to a system
of nonlinear algebraic equations, and solve this system using several of the
methods discussed in this chapter of the text. Test the program on the sequence
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of grids h−1 = 4, 8, . . . , 1024 (and further, if practical on your system).
Compare the cost of convergence for each method, in terms of the number
of iterations and in terms of the number of operations.

Solution: The system of equations is defined by

−uk−1 + 2uk − uk+1 + h2e−uk = h2,

for 1 ≤ k ≤ n− 1, with u0 = un = 1. This leads to a nonlinear system of the
form

F (u) = Ku+ h2φ(u)− h2 − g
where K = tridiag(−1, 2,−1), φ(u) = e−u, and

g = (1, 0, 0, . . . , 0, 0, 1)T .

Table 3 shows the number of iterations to convergence for several of the
methods discussed in this section of the text, as a function of h. All of the
methods used u(0 = 0 as the initial guess.

h−1 Newton Chord Fixed point
4 4 7 6
8 4 7 6
16 4 7 6
32 4 7 6

4. Now consider the nonlinear BVP

−u′′ =
u

u+ 1
,

u(0) = 0, u(1) = 1.

Repeat the kind of study required in the previous problem.

Solution: For Newton’s method with h = 1/8 and u(0) = 0, we get conver-
gence in 7 iterations to

u = (0.1398, 0.2777, 0.4122, 0.5421, 0.6666, 0.7847, 0.8961)T .

5. Verify that (7.41) gives the correct gradient for (7.38)-(7.40).

Solution: This is a direct computation. We have that

[φ′(u)]ij =
∂φi
∂uj

,

from which (7.41) directly follows.

/ • • • .



CHAPTER 8

APPROXIMATE SOLUTION OF THE
ALGEBRAIC EIGENVALUE PROBLEM

8.1 EIGENVALUE REVIEW

Exercises:

1. For each matrix below, find the characteristic polynomial and the eigenvalues
by a hand calculation. For some of the exercises, the correct eigenvalues are
given, to four decimal places, so you can check your work.

(a)

A =

 4 1 0

1 4 1

0 1 4


for which σ(A) = {5.4142, 4.0000, 2.5858};

Solution: p(λ) = −λ3 + 12λ2 − 46λ+ 56.

Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis,
Second Edition. By James F. Epperson
Copyright c© 2013 John Wiley & Sons, Inc.
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(b)

A =

 1 2 0

0 4 5

0 5 7


for which σ(A) = {1.0000, 0.2798, 10.7202};

Solution: p(λ) = −λ3 + 12λ2 − 14λ+ 3.

(c)

A =

 6 −2 0

2 6 −2

0 2 4


for which σ(A) = {5.5698± 2.6143i, 4.8603};

Solution: p(λ) = −λ3 + 16λ2 − 92λ+ 184.

(d)

A =

 4 2 0

1 4 2

0 1 4


for which σ(A) = {2, 4, 6};

Solution: p(λ) = −λ3 + 12λ2 − 44λ+ 48.

(e)

A =

 6 −1 0

2 6 −1

0 2 4

 ;

(f)

A =

 0 2 0

2 7 1

0 1 4

 .
2. Prove that similar matrices have identical eigenvalues and related eigenvectors.

Solution: If A = P−1BP , then we have

Ax = λx⇔ P−1BPx = λx⇔ B(Px) = λ(Px)⇔ By = λy.

3. Apply Gerschgorin’s Theorem to the matrices in Problem 1 and determine the
intervals or disks in which the eigenvalues must lie.

Solution: For (a), λ ∈ {z ∈ C | |z − 4| ≤ 3}.
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4. Show that the matrix

A =

 3 2 −1

0 2 2

0 −2 7

 ;

has repeated eigenvalues and is defective, but that the matrix

A =

 −1 −1 2

−2 0 2

−4 −2 5

 ;

which also has repeated eigenvalues, is not defective.

Solution: For the first matrix, we get σ(A) = {3, 3, 6}, but the only eigen-
vector for λ = 3 is parallel to x = (1, 0, 0)T ; for the second matrix, we get
σ(A) = {2, 1, 1}, and there are two independent eigenvectors for λ = 1.

5. Let A and B be similar matrices of size n× n, with

B =

[
λ aT

0 A22

]
where λ ∈ R, a ∈ Rn−1, and A22 ∈ Rn−1×n−1.

(a) Prove that λ ∈ σ(A). Hint: What is the product Be1, where e1 is the
first standard basis vector?

Solution: Since Be1 = λe1, it follows that λ ∈ σ(B), but the similarity
then implies that λ ∈ σ(A).

(b) Prove that each eigenvalue of A22 is also an eigenvalue of A.

Solution: Let µ ∈ σ(A22), with eigenvector y. Then it is easy to show that

x =

[
0

y

]
is an eigenvector of B, corresponding to the same eigenvalue. The
similarity of A and B then proves that µ ∈ σ(A).

6. Generalize the above; let A and B be similar matrices of size n× n, with

B =

[
D aT

0 A22

]
where D ∈ Rp×p is diagonal, a ∈ Rn−p, and A22 ∈ Rn−p×n−p. Prove that
each diagonal element ofD is an eigenvalue ofA: dii ∈ σ(A), 1 ≤ i ≤ p, and
that each eigenvalue of A22 is also an eigenvalue of A.

Solution: This is an obvious extension of the argument in Problem 5.
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7. Let A be given by

A =

[
2 0

a A22

]
.

Prove that 2 ∈ σ(A).

8. Let A1 = BC and A2 = CB for given B,C. Show that any non-zero
eigenvalue of A1 is also an eigenvalue of A2, and vice-versa.

Solution: Let µ be an eigenvalue of A1. Then we have A1x = µx for an
eigenvector x. Now multiply by C to get

CA1x = µCx⇒ CBCx = µCx⇒ A2Cx = µCx⇒ A2y = µy

for y = Cx. Therefore µ is an eigenvalue of A2. A similar proof works for
the other direction.

/ • • • .

8.2 REDUCTION TO HESSENBERG FORM

Exercises:

1. Show that in the Householder construction, if we use c = −‖x‖2 then we get
Qx = −‖x‖2e1, and that this will work just as well to construct the Hessenberg
matrix.

2. Compute (by hand) the Hessenberg form of the matrix

A =


6 1 1 1

1 6 1 1

1 1 6 1

1 1 1 6


You should get

AH =


6.0000 1.7321 0 0

1.7321 8.0000 −0.0000 0

0 −0.0000 5.0000 0

0 0 0 5.0000


3. Complete the computation in Example 8.6 by finding the matrix P such that
A = PAHP

T .

4. Use the hess command to compute the Hessenberg form for each of H4, H8,
and H10. Verify that the original matrix can be recovered from AH .

/ • • • .
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8.3 POWER METHODS

Exercises:

1. Explain, in your own words, why it is necessary to scale the power iterations.
Hint: What happens if we don’t scale the iteration?

Solution: If the iteration is not scaled, then (unless the dominant eigenvalue
has absolute value equal to 1) the vector iterates will either go off to infinity or
down to zero. Either way, the iteration quickly becomes useless.

2. Use an inductive argument to show that, in the basic power method (Theorem
8.5) we have

z(k) = ckA
kz(0).

What is ck?

Solution: We have
z(k) =

1

µk
Az(k−1)

so
z(k) =

1

µkµk−1
Az(k−2)

and
z(k) =

1

µkµk−1 . . . µ1
Az(0).

So
ck =

1

µkµk−1 . . . µ1
.

3. Consider the iteration defined by

y(k+1) = Az(k),

z(k+1) = y(k+1)/σk+1

where σk+1 is some scaling parameter. Assume that the iteration converges in
the sense that z(k) → z; prove that σk must also converge, and that therefore
(σ, z), where σ is the limit of the σk, must be an eigenpair of A.

Solution: We have
z(k+1) =

1

σk
Az(k)

so that
Az(k) = σkz

(k+1),

therefore,
Az +A

(
z(k) − z

)
= σkz + σk

(
z(k+1) − z

)
.
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Since the two differences go to zero, it follows that σk converges to a limit,
and we are essentially done.

4. Fill in the details of the eigenvalue error estimate in Theorem 8.5. In particular,
show that there is a constant C such that

|λ1 − µk| ≤ C
(
λ2
λ1

)k
.

5. Prove Theorem 8.7.

6. Write a program that does the basic power method. Use it to produce a plot of
the largest eigenvalue of the Tn family of matrices, as a function of n, over the
range 2 ≤ n ≤ 20.

7. Write a program that does the inverse power method. Use it to produce a plot
of the smallest eigenvalue of the Hn family of matrices, as a function of n,
over the range 2 ≤ n ≤ 20.

8. Write a program that does inverse power iteration on a symmetric matrix. As-
sume the matrix is tridiagonal, and store only the necessary non-zero elements
of the matrix. Test it on the Tn andKn families, and on your results from find-
ing the Hessenberg forms for the Hn matrices. Produce a plot of the smallest
eigenvalues of each of these matrices, as a function of n.

9. Add shifts to your inverse power iteration program. Test it on the same
examples, using a selection of shifts.

10. Let λ and x be an eigenvalue and corresponding eigenvector for A ∈ Rn×n,
and let Q be an orthogonal matrix such that Qx = e1. Assume that ‖x‖2 = 1.
Show that

B = QAQT =

[
λ aT

0 A2

]
.

Hint: Consider each of the inner products (ei, Bej), using the fact thatQx = e1
and that Q is symmetric.

Solution: Following the hint, we have

(ei, Bej) = (ei, QAQ
T ej) = (QT ei, AQ

T ej).

Now, Qx = e1 implies that x = QT e1, therefore, the (1, 1) element of B is
(e1, Be1) = (QT e1, AQ

T e1) = (x,Ax) = λ. The rest follows with a little
attention to detail.

11. An alternate deflation for symmetric matrices is based on the relationship

A′ = A− λ1x1xT1 .
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If A ∈ Rn×n is symmetric, λ1 ∈ σ(A) with corresponding eigenvector x1,
and if ‖x1‖2 = 1, show that A′ has the same eigenvalues as A, except that λ1
has been replaced by zero. In other words, if

σ(A) = {λ1, λ2, . . . , λn},

then
σ(A′) = {0, λ2, . . . , λn}.

Solution: Since A is symmetric, the eigenvectors can be assumed orthonor-
mal, thus

A′xk = Axk − λ1x1xT1 xk = Axk − λδ1k = λk − λδ1k.

which is sufficient.

12. Show how to implement the deflation from the previous problem (known as
Hotelling’s deflation) without forming the product x1xT1 . Hint: What isA′z for
any vector z? Can we write this in terms of the dot product xT1 z? (According
to Wilkinson [6], this deflation is prone to excessive rounding error and so is
not of practical value.)

13. What is the operation count for one iteration of the basic power method applied
to a symmetric matrix? Compute two values, one for the matrix in Hessenberg
form, one for the full matrix.

Solution: The iteration is

(a) Compute y(k) = Az(k−1);

(b) µk = y
(k)
i , where ‖y(k)‖∞ = |y(k)i |;

(c) Set z(k) = y(k)/µk.

This amounts to a single matrix-vector multiplication, followed by a scalar-
vector multiplication. (We will ignore the cost of determining the maximum.)
So the cost of each iteration is

C = n2 + n

multiplications. If the matrix is in Hessenberg form, then the matrix-vector
multiplication only takes 3n operations, for a much cheaper iteration.

14. What is the cost of the basic power method for a symmetric matrix if it runs
for N iterations. Again, compute two values depending on whether or not
a Hessenberg reduction is done. Is it always the case that a reduction to
Hessenberg form is cost-effective?

15. Repeat Problems 13 and 14 for the inverse power method.
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16. Consider the family of matrices T defined by

tij =


a, i− j = 1

b, i = j

c, i− j = −1

0, otherwise

Thus T is tridiagonal, with constant diagonal elements a, b, and c. It is
commonplace to abbreviate such a matrix definition by saying

T = tridiag(a, b, c).

Write a computer program that uses the power method and inverse power
method to find the largest and smallest (in absolute value) eigenvalues of such
a matrix, for any user-specified values of a, b, and c. Test the program on the
following examples; note that the exact values are given (to four places).

(a) a = c = 4, b = 1, n = 6, λ1 = −6.2708, λ6 = −0.7802;

(b) a = b = c = 6, n = 7, λ1 = 17.0866, λ6 = 1.4078;

(c) a = 2, b = 3, c = 4, n = 5, λ1 = 7.8990, λ6 = 0.1716;

(d) a = c = 1, b = 10, n = 9, λ1 = 11.9021, λ6 = 8.0979;

(e) a = c = 1, b = 4, n = 8, λ1 = 5.8794, λ6 = 2.1206;

17. Modify the program from the previous problem to do the inverse power method
with shifts. Test it on the same examples by finding the eigenvalue closest to
µ = 1.

/ • • • .

8.4 AN OVERVIEW OF THE QR ITERATION

Exercises:

1. Show that the product of two orthogonal matrices, Q1 and Q2, is also orthog-
onal.

Solution:

(Q1Q2)T (Q1Q2 = QT2Q
T
1Q1Q2 = QT2 (I)Q2 = I.

2. Let A ∈ Rn×n have the partioned form

A

[
A11 a

0 λ

]
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where A11 ∈ R(n−1)×(n−1) and λ ∈ R. Show that λ must be an eigenvalue
of A. How are the eigenvalues of A and A11 related?

Solution: For A as given, let en = (0, 0, 0, . . . , 0, 1)T . Then

Aen = λen

so λ must be an eigenvalue of A. Now let z be an arbitrary eigenvector of A11

and form x = (z, 0)T . Then

Ax =

(
A11z

0

)
so all the eigenvalues of A11 are also eigenvalues of A.

3. Assume that the iteration in Algorithm 8.5 converges, in the sense that Rk →
R∞ which is upper triangular, and Qk → Q∞ which is orthogonal.

(a) Prove that the matrices Ak, defined in (8.5), must also converge to R∞.

Solution: We have

Ak = QTkQk+1Q
T
k+1AQk = QTkQk+1Rk+1

The rest of the proof should be easy.

(b) Prove then that the eigenvalues of A can be recovered from the diagonal
elements of Ak, in the limit as k →∞.

Solution: Since Ak → R∞, and Ak is similar to A, it should be easy to
construct a formal argument.

4. Show that the matrices in the shiftedQR iteration all have the same eigenvalues.

Solution: We have
QkRk = Ak−1 − µk−1I

so that
QkRkQk = Ak−1Qk − µk−1Qk;

thus,
Qk(Ak − µk−1I) = Ak−1Qk − µk−1Qk,

or,
QkAk = Ak−1Qk

and we are done.

5. Consider the matrix

A =

[
0 1

1 0

]
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(a) Find the exact eigenvalues of A;

(b) Show that

Q =

[
0 1

1 0

]
, R =

[
1 0

0 1

]
is a valid QR decomposition of A;

(c) Use this to show that the shifted QR iteration for A, using the Rayleigh
shift, will not converge.

Solution: (a) The eigenvalues are easily shown to be λ1 = 1, λ2 − −1. (b)
QR = A, therefore we are done. (c) The Rayleigh shift is a22 = 0, therefore
the first step of QR using this shift simply reproduces the original matrix:
A1 = RQ = A. Hence the iteration fails to converge; in fact, it fails to do
much of anything!

6. The QR factorization is usually carried out for the QR iteration by means of
Givens transformations, defined in part (a), below. In this exercise we will
introduce the basic ideas of this kind of matrix operation.

(a) Show that the matrix

G(θ) =

[
cos θ − sin θ

sin θ cos θ

]
is an orthogonal matrix for any choice of θ.

(b) Show that we can always choose θ so that

G(θ)A =

[
cos θ − sin θ

sin θ cos θ

] [
a11 a12
a21 a22

]
=

[
r11 r12
0 r22

]
= R

(c) Use a Givens transformation to perform one step of the basicQR iteration
for the matrix [

4 1

1 4

]
7. (a) If G(θ) is a Givens transformation, show that

Ĝ(θ) =

[
1 0

0 G(θ)

]
is orthogonal.

(b) Show how to use a sequence of two Givens transformations to do a single
QR step for the matrix  4 1 0

1 4 1

0 1 4
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8. Write a MATLAB code that automates the kind of computation we did in
Examples 8.17 and 8.18: Take an input matrix (square), and perform “naive”
QR by executing the commands:

[q, r] = qr(A);

A = r ∗ q;

Stop when A is triangular. Use no shifts. Test your code by forming a random
symmetric matrix7 and using your routine to find its eigenvalues. Remember
to reduce the matrix to Hessenberg form! Use the flops command to measure
the cost of your routine, and compare this to what MATLAB’s eig command
costs.

Solution: Here is a MATLAB code that does this on a 6× 6 example:

B = rand(6,6);

A = (B + B’)/2

AH = hess(A);

Asave = AH;

offdiag = 1;

k = 0;

flops(0)

while offdiag > 1.e-6

k = k + 1;

[Q,R] = qr(AH);

AH = R*Q;

AH;

v = diag(AH,-1);

offdiag = norm(v)

pause

end

flops

diag(AH)

flops(0)

lambda = eig(A)

flops

When the author ran this, it took about 37 iterations and 64, 000 flops to find
the eigenvalues, whereas eig found them in about 540 flops. Obviously, a
good shifting strategy (and deflation) helps a lot!

9. Repeat the above, this time using the Rayleigh shift. (You should save the ran-
dom matrix from the previous problem so a flops comparison is meaningful.

7Recall that S = A+AT is always symmetric.
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10. Repeat the above, this time using the Wilkinson shift. (Again, use the same
matrix and do a flops cost comparison.

/ • • • .

8.5 APPLICATION: ROOTS OF POLYNOMIALS, II

Exercises:

1. For the polynomial p(x) = x3−2x2+5x+1, construct the companion matrix,
then use a cofactor expansion to confirm that the characteristic polynomial is,
indeed, p(λ).

2. For each polynomial in Problem 2 of 3.10, construct the companion matrix
and use MATLAB’s eig to find the roots. Use flops to compare the costs
with the Durand-Kerner method from 3.10.

Solution: For (b), the companion matrix is

C =



0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1


The author’s Durand-Kerner routine from Chapter 3 found the roots in 6130
flops. MATLAB’s eig routine found the same values in 5220 flops, a slight
savings.

3. Consider the polynomial p(x) = x4 − 10x3 + 35x2 − 50x+ 24 and form its
companion matrix. Using MATLAB’s qr command, do several iterations of
the unshifted QR iteration. Are the roots being isolated? Is the structure of
the companion matrix being maintained? Comment.



CHAPTER 9

A SURVEY OF NUMERICAL METHODS
FOR PARTIAL DIFFERENTIAL
EQUATIONS

9.1 DIFFERENCE METHODS FOR THE DIFFUSION EQUATION

Exercises:

1. Write a program to use the explicit method to solve the diffusion equation

ut = uxx, t > 0, 0 < x < 0.1;

u(0, t) = 0;

u(1, t) = 0;

u(x, 0) = sinπx.

which has exact solution

u(x, t) = e−π
2t sinπx

(The student should check that this is indeed the exact solution.) Use h−1 =
4, 8, . . ., and take ∆t as large as possible for stability. Confirm that the
approximate solution is as accurate as the theory predicts. Compute out to
t = 1.
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Solution: The following MATLAB script will solve the problem. The author
makes no claims of being the most sophisticated MATLAB programmer.

clear

n = input(’number of points? ’)

h = 1/n;

dt = 0.5*h^2;

%

% Index shift since Matlab doesn’t allow zero subscripts

%

np = n+1;

x = h*[0:n];

uo = sin(pi*x);

nt = floor(0.1/dt);

disp(nt)

disp(’steps’)

r = dt/(h*h);

pause

for k=1:nt

t = k*dt;

u(1) = 0;

ue(1) = 0;

for j=2:n

u(j) = uo(j) + r*(uo(j-1) - 2*uo(j) + uo(j+1));

ue(j) = exp(-pi*pi*t)*sin(pi*(j-1)*h);

error(j) = ue(j) - u(j);

end

u(np) = 0;

ue(np) = 0;

uo = u;

errmax = norm(error,inf);

disp([t,errmax])

if k == 4

figure(1)

plot(x,u)

figure(2)

plot(x,ue)

pause

end

if k == nt

figure(3)

plot(x,u)

figure(4)

plot(x,ue)

pause
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end

end

2. Repeat the above problem, but this time take ∆t 10% too large to satisfy the
stability condition, and attempt to compute solutions out to t = 1. Comment
on what happens.

Solution: With ∆t too large, the solution will quickly blow up.

3. Apply Crank-Nicolson to the same PDE as in Problem 1. For each value of h,
adjust the choice of ∆t to obtain comparable accuracy in the pointwise norm
to what was achieved above. Comment on your results. Try to estimate the
number of operations needed for each computation.

4. Write a program to use the explicit method to solve the diffusion equation

ut = uxx, t > 0, 0 < x < 1;

u(0, t) = 0;

u(1, t) = e−π
2t/4;

u(x, 0) = sinπx/2.

which has exact solution

u(x, t) = e−π
2t/4 sinπx/2.

(The student should check that this is indeed the exact solution.) Use h−1 =
4, 8, . . ., and take ∆t as large as possible for stability. Confirm that the
approximate solution is as accurate as the theory predicts. Compute out to
t = 1.

Solution: The previous MATLAB script, appropriately modified to reflect
the changes in boundary and initial conditions, should work.

5. Modify the three algorithms for the diffusion equation to handle non-homogeneous
boundary conditions, i.e., to handle problems of the form

ut = uxx + f(x, t), t > 0, 0 < x < 1;

u(0, t) = g0(t);

u(1, t) = g1(t);

u(x, 0) = u0(x);

where g0(t) and g1(t) are not identically zero.

f(x, t) = −2ex−t; g0(t) = e−t; g1(t) = e1−t; u0(x) = ex,

for which the exact solution is u(x, t) = ex−t.
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Solution: Using the explicit method, h = 1/16, and ∆t = 90% of the
maximum allowed for stability, the author got the graph in Fig. 9.1 for the
maximum error at each time step (the horizontal axis is the number of time
steps).
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Figure 9.1 Maximum error as a function of time step number for Problem 5.

6. Recall the definition of the matrix 2-norm:

‖A‖2 = max
u 6=0

‖Au‖2
‖u‖2

where ‖ · ‖2 is the usual vector 2-norm. If D is an n× n diagonal matrix, use
this definition to show that

‖D‖2 = max
1≤k≤n

|dii|,

where dii are the diagonal elements of D.

7. Let Q be an arbitrary n× n orthogonal matrix; show that ‖Q‖2 = 1.

8. Compute the number of operations needed to compute out to t = T using the
explicit method, as a function of n, the number of points in the spatial grid.
Assume that the time step is chosen to be as large as possible to satisfy the
stability condition.

Solution: Taking the time step as large as possible means

∆t = h2/2a,

where a is the diffusion coefficient. So, to reach t = T requires

NT = T/∆t = 2Ta/h2 = 2Tan2
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time steps. Each time step involves 3n multiplications, so the total cost is

C = 6Tan3.

9. Compute the number of operations needed to compute out to t = T using
Crank-Nicolson, taking ∆t = ch for some constant c > 0, again as a function
of n, the number of points in the spatial grid.

Solution: This time the number of time steps is

NT = T/(ch) = Tn/c.

The cost of each step is the cost of forming, factoring, and solving the tridiag-
onal linear system, so the total cost is

C = (6n)(Tn/c) = (6/c)Tn2

10. Consider the nonlinear equation

ut = uxx + V uux

Take u0(x) = sinπx and homogeneous boundary data, and solve this usinge
the explicit method, taking ∆t to be 90% of the maximum value allowed for
stability. Compute out to t = 1, and plot your solution, for V = 1, 5, 10.

11. Write down the nonlinear system that results from applying the implicit method
to the previous problem, using h = 1

8 . How might you try to solve this system?

12. One way to attack this kind of nonlinear system would be to treat the uxx term
as usual in the implicit method, but treat the nonlinear term explicitly, i.e., use
(uux)(xi, tn) in the discretization. Write a program to do this approximation
and compare your results to the fully explicit method in Problem 10

/ • • • .

9.2 FINITE ELEMENT METHODS FOR THE DIFFUSION EQUATION

Exercises:

1. Use a finite element approach to solve the problem

ut = auxx, 0 ≤ x ≤ 1, t > 0 (9.1)
u(0, t) = 0, (9.2)
u(1, t) = 0, (9.3)
u(x, 0) = u0(x) = sinπx+ sin 4πx; (9.4)
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For a = 1/π2, this has exact solution u(x, t) = e−t sinπx + e−16t sin 4πx.
(Confirm this8.)

2. Use a finite element approach to solve the problem

ut = auxx + 1, 0 ≤ x ≤ 1, t > 0 (9.5)
u(0, t) = 0 (9.6)
u(1, t) = 0 (9.7)
u(x, 0) = u0(x) = φhM (x), (9.8)

where φhM (x) is the “hat function” centered nearest the middle of the interval.
Solve the problem for a range of (positive) values of a, and compute out to
t = 1. How does the value of a affect the results?

3. Discuss how you know your code is working in the above problem, given that
we have no exact solution.

4. Use a finite element approach to solve the problem

ut = uxx, 0 ≤ x ≤ 1, t > 0 (9.9)
u(0, t) = 1 (9.10)
u(1, t) = 0 (9.11)
u(x, 0) = u0(x) = sinπx (9.12)

For various values of h, solve this using the finite element method. Plot your
solutions for several values of t.

5. Repeat the previous problem, this time using different values of a, the diffusion
coefficient.

/ • • • .

9.3 DIFFERENCE METHODS FOR POISSON EQUATIONS

Exercises:

1. Show that the Jacobi iteration (9.43) is equivalent to the matrix iteration (7.19)
from Chapter 7.

8The author is chagrined to admit that several exercises in the Revised Edition had very “inexact exact
solutions.” He would like to try to claim it was all done deliberately, in order to catch unwary students
who failed to check these things, but that would be a claim of dubious honesty. So, be advised!
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2. Show that the Gauss-Seidel iteration (9.44) is equivalent to the matrix iteration
(7.20) from Chapter 7.

3. Show that the SOR iteration (9.45) is equivalent to the matrix iteration (7.22)
from Chapter 7.

4. What is the truncation error in the approximation defined by (9.39)?

Solution: Each derivative approximation is O(h2) so the truncation error is
O(h2).

5. Let x1, x2, . . . , xn−1, xn be orthogonal vectors in a vector space V of di-
mension n. Show that if z ∈ V is orthogonal to each one of the xk, then
z = 0.

Solution: Let x be an arbitrary vector, and expand it in terms of the xj as
follows:

x =
n∑
j=1

ξjxj

Then

(z, x) =
n∑
j=1

ξj(z, xj) = 0.

But the only vector that is orthogonal to all other vectors is the zero vector.

6. For an iteration of the form

u(k+1) = Tu(k) + c,

show that
‖u(k+1) − u(k)‖∞
‖u(k) − u(k−1)‖∞

≤ ‖T‖∞.

Can we use this to estimate ρJ and therefore ω∗? Hint: Recall Exercise 8 from
Section 7.7.

Solution: We have that

u(k+1 = Tu(k) + c

and
u(k = Tu(k−1) + c,

therefore,
u(k+1 − u(k) = T (u(k) − u(k−1)).

Hence,
‖u(k+1 − u(k)‖∞ ≤ ‖T‖∞‖(u(k) − u(k−1))‖∞,
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or,
‖u(k+1) − u(k)‖∞
‖u(k) − u(k−1)‖∞

≤ ‖T‖∞.

We know that ‖T‖ ≥ ρ(T ); therefore, we use this as an estimate for ρJ by
running a few iterations of the Jacobi method, then using this in the formula
for ω∗.

7. Write programs to do

(a) banded Cholesky;

(b) CG;

Test your program on the example problem defined by

−∆u = π2 sinπx sinπy, (x, y) ∈ (0, 1)× (0, 1);

with u = 0 on the boundary, using h = 1
8 .

8. Discretize the Poisson equation

−uxx − uyy + bux = f ; (x, y) ∈ (0, 1)× (0, 1);

u(x, 0) = u(x, 1) = 0;x ∈ (0, 1);

u(0, y) = u(1, y) = 0; y ∈ (0, 1);

in the case h = 1
3 , b 6= 0. Is the resulting system symmetric?

9. Consider the linear system problem

Au = f

whereA is not symmetric. Modify the CG algorithm to solve the symmetrized
system

ATAu = AT f

without explicitly forming the matrix ATA.

Solution: The only place the matrix appears is in step 2a of Algorithm 9.7:

w = Ap(k−1)

which would naively become

w = ATAp(k−1);

however, we can split this into two operations:

z = Ap(k−1),

w = AT z
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so that we never have to compute ATA.

10. Write a code to implement the algorithm you wrote in the previous problem.
Test it on the system obtained by discretizing the PDE

−uxx − uyy + ux = π cosπx cosπy + 2π2 sinπx sinπy; (x, y) ∈ (0, 1)× (0, 1);

u(x, 0) = u(x, 1) = 0;x ∈ (0, 1);

u(0, y) = u(1, y) = 0; y ∈ (0, 1);

for h = 1
4 and h = 1

8 . The exact solution is u(x, y) = sinπx sinπy; use this
to make sure your algorithm is working properly.

11. How does the discretization change when boundary data is non-homogeneous
(i.e., non-zero)? Demonstrate by writing down the discrete system for the PDE

−uxx − uyy = −2ex−y; (x, y) ∈ (0, 1)× (0, 1);

u(x, 0) = ex; u(x, 1) = ex−1; x ∈ (0, 1);

u(0, y) = e−y; u(1, y) = e1−y; y ∈ (0, 1);

for h = 1
4 . Hint: It will help to write the values of the approximate solution

at the grid points in two vectors, one for the interior grid points where the
approximation is unknown; and one at the boundary grid points where the
solution is known.

12. Apply the following solution techniques to the system in the previous example,
this time using h = 1

8 . Use the exact solution of u(x, y) = ex−y to verify that
the code is working properly.

(a) Jacobi iteration;

(b) Gauss-Seidel iteration;

(c) SOR iteration, using ω = 1.4465;

(d) Conjugate gradient iteration.

/ • • • .





CHAPTER 10

AN INTRODUCTION TO SPECTRAL
METHODS

10.1 SPECTRAL METHODS FOR TWO-POINT BOUNDARY VALUE
PROBLEMS

Exercises:

1. Write a program to solve the boundary value problem (BVP)

−u′′ + 5u′ + u = 1, −1 ≤ x ≤ 1

u(−1) = 0

u(1) = 1

using the spectral method, with either “boundary bordering” or “basis recom-
bination.” The exact solution is

u(x) = Aer1x +Ber2x + 1

for r1 = 5.19258, r2 = −0.19258, and

A = 0.003781 B = −0.824844
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(confirm this); plot the solution and the error, and produce a table of maximum
absolute errors, for 4 ≤ N ≤ 32.

Solution: The author got the solution and error plots in the figures below for
N = 8.
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Figure 10.1 Solution to Problem 1,
N = 8.
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Figure 10.2 Error for Problem 1,
N = 8.

2. Solve the BVP in Example 10.2, for 4 ≤ N ≤ 32, but take advantage of the
fact that the solution is even by looking for an approximation that uses only
the even Chebyshev polynomials.

3. It has been suggested that a better way to do “basis recombination” would be
as follows:

C2N (x) = C2N (x)− C2N−2(x)

C2N−1(x) = C2N−1(x)− C2N−3(x)

Repeat Problem 1 using this basis. In addition to the same plots as requested
in Problem 1, plot the condition number of the matrix A as a function of N for
both methods.

4. Extend the work in Theorem 10.1 to include third and fourth derivatives.

Solution: This is a simple exercise in the calculus. You should get

d3Tn
dx3

=
−n3 sin2 t sinnt− 3n2 cos t sin t cosnt+ (3 cos2 t+ sin2 t)n sinnt

sin5 t
,

and

d4Tn
dx4

=
n4 sin3 t cosnt− 6n3 cos t sin2 t sinnt− n2A cosnt+ nB sinnt

sin7 t
,

where
A = (15 cos2 t sin t+ 4 sin3 t),
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and
B = (9 cos t sin2 t+ 15 cos3 t).

These formulas are taken from page 325 of Boyd’s book [2].

5. Use the formulas from the previous problem to approximate the solution to

u′′′′ = 1

u(−1) = u(1) = 0

u′(−1) = u′(1) = 0

Compute a spectral approximation for 4 ≤ N ≤ 32. Plot your solution for
N = 16.

6. Compute the condition number of the matrices in the previous exercise, as a
function of N .

7. As an alternative to the trigonometric formulas from Theorem 10.1, we could
use the three term recursion (10.2) as a basis for constructing the spectral
coefficient matrix. Show that

T ′n+1(x) = 2Tn(x) + 2xT ′n(x)− T ′n−1(x), T ′0(x) = 0, T ′1(x) = 1,

and similarly for the second derivative. Write a program to solve Problem 1 in
this way. Use MATLAB’s flops command to compare the costs of forming
the spectral coefficient matrix this way, compared to the procedure oulined in
the text.

/ • • • .

10.2 SPECTRAL METHODS FOR TIME-DEPENDENT PROBLEMS

Exercises:

1. Use spectral collocation with Crank-Nicolson time-stepping to solve the fol-
lowing PDE:

ut = uxx,

u(−1, t) = 0,

u(1, t) = 0,

u(x, 0) = cosπx/2− sin 4πx.

The exact solution is u(x, t) = e−π
2t/4 cosπx/2−e−16π2t sin 4πx. Compute

out to t = 1; use a sequence of values of N ; plot your approximation and the
error for one of them at t = 1.
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2. Use your spectral code to solve the problem

ut = auxx,

u(−1, t) = 1,

u(1, t) = 1,

u(x, 0) = (x2 − 1)8.

Assume a = 1 and compute out to t = 1, using a sequence of values of N .
Plot the solution profile as the computation advances. Now vary a (you must
keep it positive, of course) and investigate how this affects the solution.

Solution: The initial condition approximates a “pulse” in the center of the
interval. As the system evolves, the pulse will spread out and decay. Higher
values of a (the diffusion coefficient) will speed up this process.

3. Now change the initial condition to u(x, 0) = (x4 − 1)8 and repeat the above
problem.

Solution: This is essentially the same as the previous problem, but with a
more sharply defined “pulse.”

4. Consider how to implement spectral collocation with variable coefficients.
Construct the general linear system that would result from solving the problem

ut = a(x)uxx,

u(−1, t) = 0,

u(1, t) = 0,

u(x, 0) = u0(x).

5. Apply your results from the above problem to approximate solutions to

ut = a(x)uxx,

u(−1, t) = 0,

u(1, t) = 0,

u(x, 0) = cosπx/2,

for the following choices of a:

(a) a(x) = (1 + x2);

(b) a(x) = e−x
2

;

(c) a(x) = (1 − x2) (because a vanishes at the boundary, this problem is
known as degenerate but you should be able to compute solutions);
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6. Consider the nonlinear problem

ut = uxx + V uux

u(−1, t) = 0,

u(1, t) = 0,

u0(x) = sinπx

Use spectral collocation to attack this problem as suggested in Problem 12 of
9.1, by treating the nonlinearity explicitly (at time t = tn) and the differential

equation implicitly (at time t = tn+1). Compare your spectral solution to the
explicit solution computed in Problem 10 of 9.1. Comment on your results.

/ • • • .

10.3 CLENSHAW-CURTIS QUADRATURE

Exercises:

1. Use the appropriate change of variable to show how to apply Clenshaw-Curtis
quadrature to an integral over an arbitrary interval [a, b].

Solution: The change of variable is the same as obtained in 5.6 for Gaussian
quadrature: ∫ b

a

g(x)dx =

∫ 1

−1
f(z)dz,

for

f(z) =
1

2
(b− a)g

(
a+

1

2
(b− a)(z + 1)

)
.

2. Write a program to do Clenshaw-Curtis quadrature on each of the integrals
in Problem 4 of 5.6. Compare your results to those obtained with Gaussian
quadrature. Produce a log-log plot of the error as a function of N for each
integral.

Solution: We will do (b) and (c). The results are summarized in the Ta-
ble 10.1.

3. Looking at the plots in Fig. 10.24, we see that most of them show a very rapid
decrease of the error, and a “rounding error plateau” is reached for most of
the examples. The exception is the last one, where the integrand is given by
f(x) =

√
1− x2. Explain why this example is the one that displays this kind

of sub-optimal performance.
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Table 10.1 Solution for 10.3.2(b) and (c).

N 10.3.2(b) Error 10.3.2(c) Error
2 0.65367552526213 -0.00702835762825 1.32175583998232 -0.02591897397799
4 0.64425803338082 0.00238913425305 1.29638987827887 -0.00055301227455
8 0.64664682519792 0.00000034243595 1.29583765211218 -0.00000078610785
16 0.64664716763387 0.00000000000000 1.29583686600986 -0.00000000000553
32 0.64664716763387 0.00000000000000 1.29583686600433 0.00000000000000

Solution: The integrand is singular at the endpoints of the interval (the deriva-
tives blow up) so this slows the convergence.

4. LetCN =
∑N
k=1 w

(N)
k f(ξ

(N)
k ) ≈

∫ 1

−1 f(x)dx be the Clenshaw-Curtis quadra-
ture operator. Show that C2N uses some of the same function values as CN .
Why is this important?

/ • • • .
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