REVIEW

The Global Prevalence of Seroma After Abdominoplasty: A Systematic Review and Meta-Analysis

Nader Salari¹ · Behnaz Fatahi² · Yalda Bartina³ · Mohsen Kazeminia² · Mohammadbagher Heydari⁴ · Masoud Mohammadi⁵ · Mahvan Hemmati² · Shamarina Shohaimi⁶

Received: 22 February 2021 / Accepted: 17 May 2021

© Springer Science+Business Media, LLC, part of Springer Nature and International Society of Aesthetic Plastic Surgery 2021

Abstract

Background Abdominoplasty is one of the most common cosmetic surgeries performed worldwide. Seroma is also the most common local complication associated with abdominoplasty, which increases care costs, reduces patient satisfaction, and has serious complications for patients. Results of previous studies report different levels of seroma prevalence after abdominoplasty. The aim of this study is to standardize the statistics of the prevalence of seroma after abdominoplasty using meta-analysis.

Methods In this systematic review and meta-analysis study, data from studies conducted on the global prevalence of seroma after abdominoplasty was extracted using the keywords "Prevalence, Epidemiology, Complications, Abdominoplasty, Seroma, and Lipo abdominoplasty" in the databases of Science, Scientific Information Database, MagIran, Embase, Scopus, PubMed, Web of Science, and

Masoud Mohammadi Masoud.mohammadi1989@yahoo.com

Nader Salari n_s_514@yahoo.com

Behnaz Fatahi behnaz.fatahi.ir@gmail.com

Yalda Bartina yalda.bartina@ogr.iu.edu.tr

Mohsen Kazeminia mohsenkaz221@gmail.com

Mohammadbagher Heydari mb_heydari@kums.ac.ir

Mahvan Hemmati mahvashkashkoli50@gmail.com

Shamarina Shohaimi shamarina@upm.edu.my Google Scholar search engine without time limit until October 2020. The random-effects model was used to analyze the eligible studies, and the heterogeneity of the studies was investigated with the I^2 index. Data analysis was performed using Comprehensive Meta-Analysis software (Version 2).

Results In reviewing 143 studies (five studies related to Asia, 55 studies related to Europe, three studies related to Africa, and 80 studies related to the Americas) with a total sample size of 27834 individuals, the global prevalence of seroma after abdominoplasty was obtained as 10.9% (95% CI: 9.3-3.6.6%) and the highest prevalence of seroma was related to the Europe continent with 12.8% (95% CI: 10.15-3.9%). The results from meta-regression showed a declining trend in the global prevalence of seroma after abdominoplasty with an increase in the sample size, age of study participants, and the year of study (p < 0.05).

- ¹ Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- ² Student research committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- ³ Department of Translation Studies, Faculty of Literature, Istanbul University, Istanbul, Turkey
- ⁴ Department of General Surgery, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- ⁵ Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
- ⁶ Department of Biology, Faculty of Science, University Putra Malaysia, Serdang, Selangor, Malaysia

Conclusions This study shows that the prevalence of seroma after abdominoplasty is high globally. Therefore, physicians and specialists must consider its importance and take the controlling and treatment measures seriously.

Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine Ratings, please refer to Table of Contents or online Instructions to Authors www.springer.com/00266.

Keywords Seroma · Abdominoplasty · Systematic review · Meta-analysis

Abbreviations

SID	Scientific information database
WoS	Web of science
STROBE	Strengthening the reporting of observational
	studies in epidemiology
PRISMA	Preferred reporting items for systematic

PRISMA Preferred reporting items for systematic reviews and meta-analysis

Background

Abdominoplasty is one of the most common cosmetic surgeries performed worldwide [1]. The purpose of this surgery is to restore the natural anatomical structure of the lower abdominal skin and address abdominal contour abnormalities. Abdominoplasty involves removing extra fat and skin from the middle and lower abdomen and tightening muscles and fascia of the abdominal wall [2]. Patients with evident skin and loose muscular-aponeurotic layer, with or without hernia or extra abdominal fat, are considered good candidates for abdominal plastic surgery [3]. Although men are increasingly undergoing this type of surgery, it is mainly performed on women [4], especially for women who have lost a significant amount of weight or have experienced multiple pregnancies [5]. Severe weight loss leads to extra skin that in turn damages the patient's quality of life. Loose and sagging skin causes frequent recurrence, integrated fungal infections, abscesses, malodor, and pain or physical discomfort, and disrupts physical activity. Body contouring surgery seeks to remove these problems and improve the patient's quality of life and increase the patient's body image and physical and mental well-being [6–9].

It is estimated that more than 800,000 people in the world undergo this operation every year [1]. Abdominoplasty is one of the best cosmetic surgeries, which was recognized as the fourth most popular technique worldwide in 2012 [10] and was ranked as the fourth most popular in 2018 (888712 operations) [11, 12]. As reported by the American Society of Plastic Surgeons (ASPS), abdominoplasty was the sixth most common cosmetic surgery performed by surgeons in 2016. It was also the most common body contouring technique after severe weight loss [13].

Although abdominoplasty is widely performed, it carries the highest risk of complications among all cosmetic procedures [14]. Complications observed in these patients include bleeding, skin or fat necrosis, wound destruction, surgical site infection, hematoma, pulmonary embolism, and seroma [14].

Despite the popularity of abdominoplasty surgery, patients are at a high risk of developing a complication of surgery that the most common one is seroma occurring in approximately 5 to 30% of patients [15–18]. The pathophysiology of seroma formation is thought to be due to extensive dissection in soft tissue, disruption of lymphatic and vascular ducts, and accumulation of fluids in the dead space between the flap of abdominal skin and the rectus muscle sheath [16, 19].

Seroma is the most common local complication associated with abdominoplasty, with an incidence rate of 1 to 57% and an average incidence of 10% [16, 20]. Although progress in abdominoplasty surgery has improved dramatically, the risk of complications remains high. Among these complications, seroma formation has the highest prevalence (5% - 43%) [15 and 23–21].

Seroma formation not only causes discomfort to the patient [24], but it also often requires multiple aspirations through the skin as well as additional surgical procedures [25]. This increases the care cost and reduces patient satisfaction [26, 27]. If left untreated, large seromas can cause other serious complications such as flap loss and necrosis, infection, and pseudo cist [28–30].

Body mass index (BMI), additional weakening, and a combination of other techniques such as liposuction are the most important predicting factors of seroma formation after abdominoplasty [31]. Several preventive measures have been proposed to reduce the rate of postoperative seroma, including drains, using compression garments, tissue adhesives, and progressive tension sutures (PTS) [32]. Seroma often develops between 10 and 20 days after abdominoplasty, so using a drain in the first 48 hours does not affect its formation. Drains immediately placed after surgery is only effective in preventing hematoma, not seroma [33].

Various studies have reported different prevalence of seroma after abdominoplasty. However, a comprehensive study was not found that generally shows the results of these studies worldwide. Therefore, due to the importance of this complication resulted from this common surgery and its negative effects on patients' quality of life, as well as the lack of general statistics about it worldwide, this study aims to determine the global prevalence of seroma after abdominoplasty through a systematic review and meta-analysis study.

Methodology

In this systematic review and meta-analysis study, Scientific Information Database (SID), MagIran, ScienceDirect, Embase, Scopus, PubMed, Web of Science (WoS) databases and Google Scholar search engines were searched to find related studies. To access the target articles, the search strategy was determined for each database using the keywords "Prevalence, Epidemiology, Complications, Abdominoplasty, Seroma, Lipo abdominoplasty" and all their possible combinations. No time limitation was considered in the search process, and all related studies were identified, and the information of these studies was transferred to the information management software (EndNote X8). All possible related articles published by October 2020 were identified, and their information was transferred to EndNote. To maximize the comprehensiveness of the search, the list of sources used in all relevant articles found in the above search was manually reviewed.

Inclusion Criteria

Criteria for inclusion of studies include studies that examined the prevalence of seroma after abdominoplasty in the world, studies that were observational (non-interventional studies) and studies whose full texts were available.

Exclusion Criteria

Criteria for exclusion include unrelated studies, studies without sufficient data, repetitive studies, and unclear methodology.

Selection Process of Studies

Initially, the studies repeated in various searched databases were excluded from this study. The researchers compiled a list of the titles of all the remaining articles to obtain eligible articles by evaluating the articles in this list. In the first stage, i.e., screening, the title and abstract of the remaining articles were carefully studied, and irrelevant articles were removed according to the inclusion and exclusion criteria. In the second stage, i.e., evaluating the studies' competency, the full texts of the possible relevant articles remaining from the screening stage were examined according to the inclusion and exclusion criteria and irrelevant studies were also excluded in this stage. To avoid bias, all steps of reviewing sources and extracting data were independently performed by two researchers. If the articles were not included, the reason for their exclusion was mentioned. In cases where there was disagreement between two researchers, the article was reviewed by a third researcher.

Qualitative Evaluation of the Studies

In order to validate and evaluate the quality of articles (i.e., the validity of methodology and results), a checklist appropriate to the type of study was used. The STROBE checklist is commonly used to critically evaluate observational studies such as the present study. The STROBE checklist consists of six general scales/sections, including title, abstract, introduction, methods, results, and discussion. Some of these scales have subscales, and this statement consists of 32 items. In fact, these 32 items describe different methodological aspects of the study, including title, statement of the problem, the purpose of the study, type of study, statistical population of the study, sampling method, determination of appropriate sample size, definition of variables and procedures, data collection tools, statistical methods of analysis, and findings. Accordingly, the maximum score obtained from the qualitative evaluation in the STROBE checklist will be 32. Considering the score of 16 as the cut-off point, the articles with scores of 16 and above will be considered as articles with good and average methodological quality. In contrast, articles with scores under 16 are considered articles with poor methodological quality, and therefore they are excluded from the study [34].

Data Extraction

Information related to all final articles entered into the static review and meta-analysis process was extracted using a pre-prepared checklist. This checklist included the title of the article, name of the first author, year of publication, place of study, sample size, the prevalence of seroma after abdominoplasty in the world, type of operation, and age.

Statistical Analysis

To evaluate the heterogeneity of the selected studies, the I^2 index test was used (heterogeneities were divided into three categories: less than 25% (low heterogeneity), 25–75% (moderate heterogeneity) and more than 75% (high heterogeneity). In order to investigate the publication bias, the Egger test with a significance level of 0.05 and its corresponding Funnel plot was used. A sensitivity analysis

test was used to evaluate the effect of individual studies on the final result. In this study, meta-regression was used for additional analyses, which examines the relationship between the prevalence of seroma after abdominoplasty with the sample size and year of the study. Data analysis was performed using Comprehensive Meta-Analysis software (Version 2).

Results

In this study, systematic review and meta-analysis of data from studies on the global prevalence of seroma after abdominoplasty were systematically reviewed according to PRISMA guidelines. Based on the initial search in the target database, 814 possible related articles were identified and transferred to the information management software (EndNote). Twenty-six studies were also added through other resources. Out of a total of 840 studies identified, 95 were repetitive and were thus excluded. In the screening phase, out of 745 studies, the remaining 290 articles were excluded by studying their titles and abstracts based on inclusion and exclusion criteria. In the competency evaluation stage, out of 455 studies, the remaining 309 articles were excluded due to their irrelevance by studying the full texts of the articles based on inclusion and exclusion criteria. In the qualitative evaluation stage, by reading the full texts of the articles and based on the scores obtained from the STROBE checklist, out of the remaining 146 studies, three studies were excluded due to their low methodological quality, i.e., from a total of 32 scores that each article can get from the STROBE checklist. If the score is less than 16, the article is considered to have poor methodological quality. Therefore, 143 articles published between 1998 and October 2020 were entered in the final analysis (Fig. 1).

Based on the results obtained from the test (I^2 : 99.9) and considering the heterogeneity of selected studies, a random-effects model was used to combine the studies and estimate the prevalence. The heterogeneity between studies might be due to the differences in sample size, sampling error, year of study, and or place of the study. Out of 143 articles entered into the systematic review and meta-analysis with a sample size of 27,834, five studies were conducted in Asia, 55 studies in Europe, three studies in Africa and 80 studies in America. The smallest and highest sample sizes were related to the studies conducted by Hersant et al. (2016) (eight patients) [54] and Vieira-2 et al. (2018) (9638 patients), respectively [99]. The characteristics of the eligible studies included in the meta-analysis are given in Table 1.

The probability of publication bias in the spread of the outcomes of the global prevalence of seroma after abdominoplasty by funnel diagram and Egger test at a significant level of 0.05 indicated no bias of spread in the present study (p = 0.298) (Fig. 2).

Based on the results of this study, the global prevalence of seroma after abdominoplasty was obtained as 10.9% (95% CI: 9.3-3.6.6%) that the midpoint of each line segment shows the prevalence in each study, and the rhombic shape shows the prevalence in the population for the whole study (Fig. 3).

Meta-Regression Test

To investigate the effects of potential factors in the heterogeneity of seroma prevalence after abdominoplasty in the world, meta-regression was used for three factors: sample size, age of study participants and year of study (Figs. 4, 5, 6). According to Fig. 4, the global prevalence of seroma after abdominoplasty decreases with an increase in the sample size, which is statistically significant (p < 0.05). Moreover, in Fig. 5, it was reported that the global prevalence of seroma after abdominoplasty decreases with an increase in the year of the study. This difference was also statistically significant (p < 0.05). In Fig. 6, it was reported that with the increase in the age of study participants, the global prevalence of seroma after abdominoplasty decreases, which was also statistically significant (p < 0.05).

Analysis of Subgroups

Table 2, which presents the prevalence of seroma after abdominoplasty by continents, reports these changes in Asia, Europe, Africa, America, and Australia, with the highest prevalence of seroma (12.8%) in the European continent (95% CI:10.9-3.9% (Table 2).

Discussion

Abdominoplasty is a popular surgical procedure in which extra skin and abdominal fat are removed to improve the contouring of the abdomen [88–95]. Extensive weight loss (MWL) causes the excess soft tissue in several places in the body, especially in the abdominal wall. Extra skin can lead to various complaints such as integrated skin infections, unpleasant odors, problems in the back, neck, and pain during work and exercise. Abdominoplasty usually helps to improve the quality of life and performance of patients with the transformation of body contour through reducing excess fat and skin tissue [96–111]. This surgery can be beneficial for anyone who has a lot of skin and fat tissue in the lower abdomen, a condition that is commonly seen in female patients after pregnancy, obesity or ageing

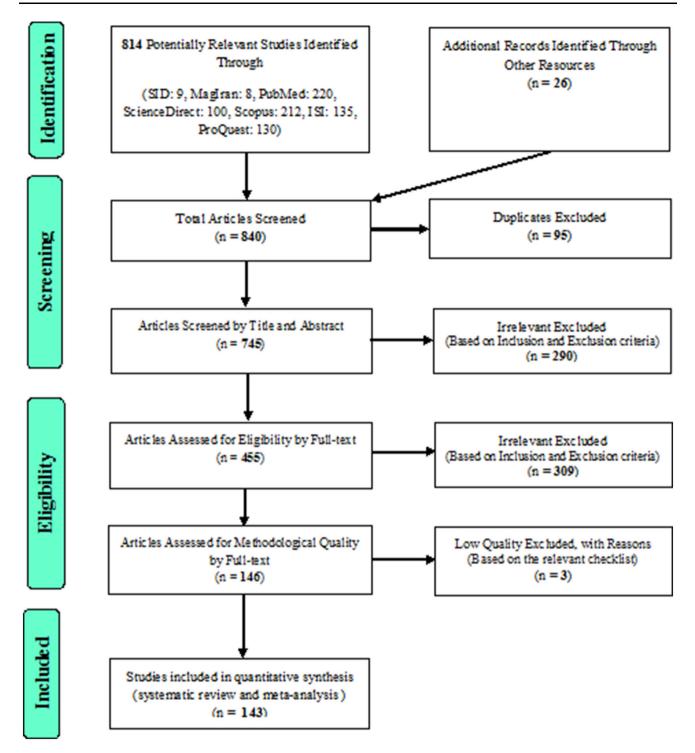


Fig. 1 Flowchart on the stages of including the studies in the systematic review and meta-analysis (PRISMA 2009).

[112–128]. Despite updated evidence, new clinical trials and technical advances, there are still high complications associated with abdominoplasty surgery [129–135]. These complications include seroma, hematoma, flap necrosis, infection, fat necrosis, and wound destruction [136–143]. These complications lead to dissatisfaction, long-term recovery, unexpected costs, physical and mental suffering, and it might be dangerous or fatal [137, 144, 145].

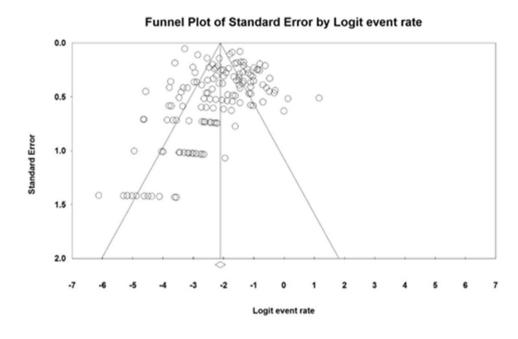
Irrespective of outpatient or inpatient care, abdominoplasty procedures typically last longer than one hour and therefore have at least a "moderate" risk for developing thromboembolic complications. When patients undergoing

 Table 1
 Characteristics of included studies prevalence of seroma after abdominoplasty

Author [references]	Publication date	Country	Age (year)	Sample size	Prevalence (%)	Type of abdominoplasty
Omranifard [35]	2011	Iran	34.3±8.5	100	3.5	_
Chang [36]	2013	Taiwan	32	88	3.4	Videoendoscopy
Bhave [37]	2018	India	-	204	1	-
Cohen [38]	2018	Israel	41	218	9.6	_
Jabaiti [<mark>39</mark>]	2009	Jordan	40.8	116	12.9	_
Batac [40]	2019	Island	43.7	83	20.5	_
Brito [41]	2020	Portugal	43.1±10.4	191	20.9	_
Marsh-1[42]	2015	UK	_	44	20.5	sharp dissection
Marsh-2 [42]	2015	UK	_	58	17.2	electrocautery dissection
Dillerud [43]	1990	Norway	49	487	1	Lipo/Abdominoplasty
Gonçalves-1 [44]	2017	Portugal	39.1±8.9	21	19	classic
Gonçalves-2 [44]	2007	Portugal	38.3±7.8	30	6.7	Scarpa fascia preservation
Sozer [45]	2018	Turkey	_	1000	19	circumferential lipoAbdominoplasty
Grieco[46]	2015	Italy	51	25	36	-
Persichetti[47]	2005	Italy	52.5	42	7.1	_
Jones[48]	2008	UK	46.2	16	25	_
Dini[49]	2008	Italy	43.6	41	26.5	_
Koller[50]	2000	UK	40	50	8	
Schlosshauer[51]	2012	Germany	45.3±11.6	26	15.4	Conventional electrosurgery
Garcia [52]	2019	Spain	43.5 ± 10.7	20 72	23.6	Conventional electrosurgery
Momeni[53]	2014 2009	Germany	43.3±10.7 42.8	139	23.0	-
	2009	UK	42.8 46	278	20.9 5	-
Stewart[15]						_
Hersant[54]	2016	France	47.5±10.9	8	12.5	-
Dutot[55]	2018	France	41	1128	2.7	-
Bracaglia[56]	2012	Italy	42.15±8.1	16	6.3	-
Giordano[57]	2020	UK	40.5 ± 9.9	37	13.5	-
Hauck[58]	2019	Germany	46.3	12	16.7	
Khan-1[59]	2008	UK	39.5 ± 9.5	96	27.1	without progressive tension suture
Khan-2[59]	2008	UK	37±6.7	50	1	with PTS
Khan-3[59]	2008	UK	39.5±9.5	96	22.9	lipoabdominoplasty without PTS
Khan-4[59]	2008	UK	37±6.7	50	8	lipoabdominoplasty with PTS
Ferreira-1[60]	2013	Portugal	38.50 ± 9.27	80	18.8	without preservation of the Scarpa fascia
Ferreira-2[60]	2013	Portugal	40.64±8.31	80	2.5	with preservation of the Scarpa fascia
Swedenhammar-1 [61]	2018	Sweden	41.4	69	11.6	operated in 2011
Swedenhammar-2 [61]	2018	Sweden	38.6	70	7.1	operated in 2010-2012
Swedenhammar-3 [61]	2018	Sweden	46.8	70	8.6	operated in 2013-2014
Quaba[62]	2015	UK	45	271	7.7	-
Mayer[63]	2018	Argentina	27	22	4.5	_
Sforza-1[64]	2015	UK	41.2±7.98	100	12	no quilting sutures+ two drains
Sforza-2[64]	2015	UK	40.2±8.28	226	0.2	with quilting sutures $+$ two drains
Sforza-3[64]	2015	UK	41.5±8.13	88	0.6	with quilting sutures+one drain
Breiting[65]	2011	Denmark	42	21	4.8	
Khan-5[66]	2012	UK	39.5±9.5	53	26.4	With Liposuction without PTS
Khan-6[66]	2012	UK	37±6.7	24	8.3	With liposuction and PTS
Khan-7[66]	2012	UK	40.6 ± 10.9	44	1.1	With liposuction+PTS entire wall
isiidii-7[00]	2012	UK	-r0.0±10.7	-11	1.1	abdomen

Table 1 continued

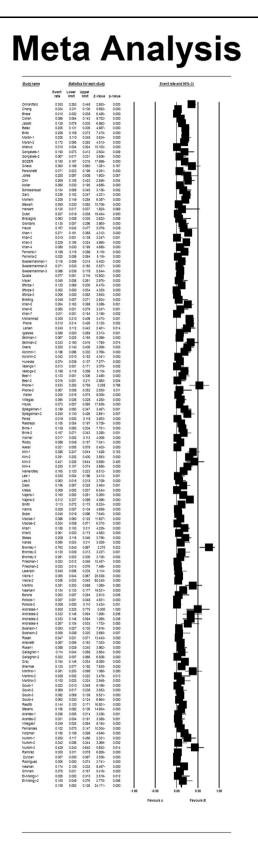
Author [references]	Publication date	Country	Age (year)	Sample size	Prevalence (%)	Type of abdominoplasty	
Mohammad[21]	1998	Germany	55	80	30	-	
Pilone[67]	2020	Italy	-	71	31	-	
Larsen[68]	2007	Netherland	-	25	24	-	
Iglesias[69]	2015	Mexico	-	25	8	-	
Skillman-1[24]	2014	UK	-	60	6.7	ligation by clip or suture	
Skillman-2[24]	2014	UK	-	30	33.3	Use of diathermy	
Ovens[70]	2009	UK	-	40	25	with quilting sutures	
Korchin-1[71]	2005	Puerto Rico	-	43	18.6	without Fibrin Sealant	
Korchin-2[71]	2005	Puerto Rico	-	48	4.2	with Fibrin Sealant	
Hunecke[72]	2019	Germany	43.7	121	7.4	-	
Valença-1[73]	2015	Portugal	$41.03 {\pm} 8.07$	39	1.3	With scalpel	
Valença-2[73]	2015	Portugal	$38.50{\pm}~9.2$	80	18.8	With Diathermocoagulation	
Beer-1[74]	2010	Switzerland	45±10	30	13.3	in a private clinic	
Beer-2[74]	2010	Switzerland	43 ± 16	30	1.6	in a public hospital	
Pilone-1[75]	2015	Italy	35 ± 9.5	15	53.3	traditional circular lipo/abdominoplasty	
Pilone-2[75]	2015	Italy	38 ± 11.6	15	6.7	slow-clotting version of fibrin sealant	
Weiler[76]	2010	USA	41.53	173	3.5	Lipoabdominoplasty	
Villegas[77]	2014	Canada	47 ± 12	42	9.5	TULUA Modifications	
Hoyos[78]	2018	Colombia	-	736	7.3	circumferential lipoabdominoplasty	
Spiegelman- 1[79]	2006	Canada	41.2± 7.7	37	18.9	Inpatient Population	
Spiegelman- 2[79]	2006	Canada	37.5±10.4	32	25	Outpatient Population	
Perez[80]	2012	USA	46.4	55	1.8	With Fibrin Sealant	
Restrepo[81]	2004	Colombia	51	76	10.5	lipoAbdominoplasty With Anchor Plication	
Brink-1[82]	2009	USA	-	151	13.9	Abdominoplasty	
Brink-2[82]	2009	USA		30	16.7	with flank liposuction	
Warner[83]	2009	USA	42	58	1.7	+ProgressiveTension +Barbed Suture	
Rodby[27]	2011	USA	50	113	8.8	lipoAbdominoplasty+Plication Superficial Fascia - Drains	
Avelar[84]	2002	Brazil	-	97	2.1	-	
Kim-1[22]	2006	USA	42.7	39	35.5	abdominoplasty	
Kim-2[22]	2006	USA	42.6	79	29.1	with flankliposuction	
Kim-3[<mark>22</mark>]	2006	USA	-	19	42.1	with Ultrasound Liposuction	
Kim-4[22]	2006	USA	-	60	25	lipoAbdominoplasty	
Nemerofsky[85]	2006	USA	-	200	16.5	-	
Lee-1[86]	2012	USA	47.6	33	3	with fibrin sealant	
Lee-2[86]	2012	USA	51.4	32	6.3	without fibrin sealant	
Dabb[87]	2004	USA	-	32	15.6	_	
Matos[<mark>88</mark>]	2006	Brazil	-	211	0.9	Lipoabdominoplasty	
Najera-1[<mark>89</mark>]	2011	USA	41.6	75	16	Abdominoplasty-Only	
Najera-2[89]	2011	USA	44	125	31.2	Abdominoplasty +Flank Liposuction	
Smith[90]	2008	USA	43 ± 8.3	159	11.3	_	
Hamra[91]	2016	USA	53	72	2.8	-	
Sozer[92]	2007	Brazil	42 ± 9	151	4	_	
Macias-1[93]	2016	USA	44.3	324	8.6	with PTS	
Macias-2[93]	2016	USA	44.1	127	2.4	with drains	
Khan-1[94]	2006	USA	42.4 ±11.6	54	18.5	Abdominoplasty	


Table 1 continued

Author [references]	Publication date	Country	Age (year)	Sample size	Prevalence (%)	Type of abdominoplasty	
Khan-2[<mark>94</mark>]	2006	USA	37.7 ± 7.7	49	6.1	PTS Abdominoplasty	
Stokes[95]	2007	USA	45.2	48	20.8	-	
Nahas[<mark>16</mark>]	2007	Brazil	43.7	21	9.5	_	
Bromley-1[96]	2018	Brazil	46.7	21	76.2	abdominoplasty	
Bromley-2[<mark>96</mark>]	2018	Brazil	45.6	25	12	with the use of 11 PTS and drains	
Bromley-3[<mark>96</mark>]	2018	Brazil	48.3	22	9.1	with theuse of 22 PTS and drains	
Friedman-1[97]	2010	USA	45.13	345	2.3	Abdominoplasty	
Friedman-2[97]	2010	USA	47.84	154	3.2	Fleur-de-Lis Abdominoplasty	
averson[98]	2006	USA	_	25	4	-	
/ieira-1[99]	2018	USA	-	1553	5.5	_	
/ieira-2[99]	2018	USA	$43.58{\pm}12.23$	9638	3.6	Lipo/Abdominoplasty	
/lartino[100]	2015	Brazil	34.8	21	35.1	_	
Neaman[23]	2013	USA	44	1008	15.4	_	
Barone[101]	2007	USA	43	19	5.3	_	
Pollock-1[102]	2012	USA	46.5	142	0.7	Lipo/Abdominoplasty	
Pollock-2[103]	2004	USA	42	65	0.8	abdominoplasty with PTS	
Andrades-1[104]	2007	Chile	40.7 ± 5.8	10	50	no drains no PTS	
Andrades- 2[104]	2007	Chile	38.5 ± 4.6	15	33.3	with PTS alone	
Andrades-3[104]	2007	Chile	40.1 ± 9.5	15	33.3	with drains alone	
Andrades- 4[104]	2007	Chile	39.7 ± 6.1	15	26.7	with PTS and drains	
Swanson-1[105]	2013	USA	43.38	150	5.3	Lipo/Abdominoplasty	
Swanson-2[105]	2013	USA	40.57	17	5.9	Abdominoplasty only	
Rosen[106]	2020	USA	45	445	4.7	_	
Antonetti[107]	2010	USA	_	124	9.7	_	
Rosen[108]	2011	USA	43.6	34	8.8	_	
Gallagher-1[109]	2018	USA	43.4	35	11.4	thepost-bariatric surgery MWL	
Gallagher-2[109]	2018	USA	46.4	137	2.2	normal-weight without MWL or bariatric surgery	
Gray[110]	2012	USA	40	206	19.4	_	
Shermak[111]	2008	USA	42	150	12	_	
/artino-1[112]	2010	Brazil	34.8	21	35.1	without quilting sutures	
Martino-2[112]	2010	Brazil	34.7	17	2.8	with quilting sutures	
Aartino-3[112]	2010	Brazil	34.9	20	10	lipoabdominoplasty	
Gould-1[113]	2018	USA	44.8 ± 11.2	270	2.2	lipo-abdominoplasty with PTS	
Gould-2[113]	2018	USA	48.3± 9.8	29	6.9	with PTS without liposuction	
Gould-3[113]	2018	USA	43.8±10.1	207	9.2	with drain and liposuction	
Gould-4[113]	2018	USA	44.4±10.2	113	6.2	with drain without liposuction	
Restifo[114]	2019	USA	42.48	723	14.4	-	
Stevens[115]	2007	USA	43	519	10.6	-	
Arantes-1[116]	2010	Brazil	_	28	3.6	with adhesion sutures	
arantes-2[116]	2010	Brazil	_	32	3.1	with adhesion sutures + drains	
/illegas[117]	2010	Colombia	40.6	32 164	4.9	TULUA Lipoabdominoplasty	
Fernandes[118]	2020	Brazil	43	245	10.2	-	
Holzman[119]	2013	USA	45.2	65	18.5	_	
Nurkim-1[120]	2013	Brazil	4 <i>5</i> .2 35.6	03 24	25	– used a latex drain	
Nurkim-2[120]	2001	Brazil	35.6	24 24	4.2	used a rigid suction drain tube	
Nurkim-2[120] Nurkim-3[120]	2001 2001	Brazil	35.6 35.6	24 21	4.2 42.9	did not use any drains	

 Table 1
 continued

Author [references]	Publication date	Country	Age (year)	Sample size	Prevalence (%)	Type of abdominoplasty
Ramirez[121]	1999	USA	-	132	3	-
Duncan[122]	2007	USA	-	75	0.7	lipoabdominoplasty without panniculus undermining
Rodriguez[123]	2011	USA	_	100	0.5	Lipoabdominoplasty
Neaman[17]	2007	USA	43	207	17.4	_
Ghnnam[124]	2016	Egypt	36± 4.9	67	7.5	_
El-Meligy-1[125]	2018	Egypt	35.20±9.07	18	2.6	Scarpa's fasciapreservation
El-Meligy-2[125]	2018	Egypt	35.50 ±9.57	20	15	classic abdominoplasty


Fig. 2 Funnel plot of results for the global prevalence of seroma after abdominoplasty

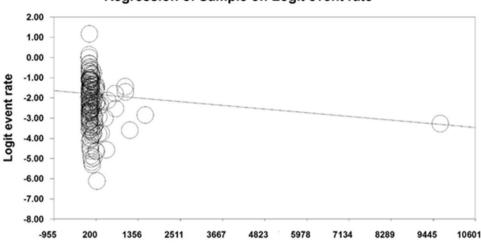
an abdominoplasty are older than 40 years of age and have additional predisposing risk factors, the risk of thromboembolic complications increases to "high" or "highest" [74, 136–145]. One of the exposing risk factors is the length of immobilization [146].

Beer and et al. reported a significant difference in the rate of seroma across the two groups. It seems plausible that reducing the rate of seroma after abdominoplasties may be achieved by increasing the duration of postoperative immobilization by up to 48 h. After being appropriately informed about the advantages and drawbacks of this regime, the patient should perhaps be invited to decide between a justifiable longer stay in bed under mechanical and chemical thromboembolism prophylaxis or a shorter stay in bed that is accompanied by a significantly higher risk of developing a seroma [74]. The most common types of surgery that result in seromas include body contouring, such as liposuction or arm, breast, thigh, or buttocks lifts, breast augmentation or mastectomy hernia repair, abdominoplasty, or a tummy tuck [74, 136–145], the surgical team will place drainage tubes in and around the incision to try to prevent a seroma. The drainage tubes may remain in the body for a few hours or a few days after the surgery to prevent fluid buildup. In many cases, the use of drainage tubes will be sufficient for preventing a seroma. However, that is not always the case, and a week or two after the procedure, there may be signs of fluid buildup near the incision [140–145].

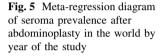
Several factors increase the risk of developing a seroma after a surgical procedure. These risk factors include extensive surgery, a procedure that disrupts large amounts of tissue, a history of seromas following surgical procedures [74].

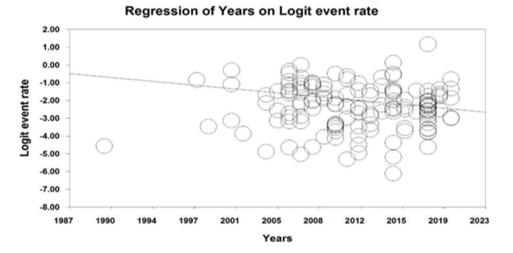
Meta Analysis

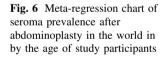
Fig. 3 Seroma prevalence after abdominoplasty in the world and 95% confidence interval.


Seroma is the most common early complication after abdominoplasty [16, 28, 146], which forms the abdominal rectus muscle in the dead space between the flap and fascia and often requires frequent outpatient visits for aspiration, that in turn increases the risk of infection, long-term recovery, and additional surgical treatment [134, 146]. Due to the importance of this disease and the lack of a worldwide meta-analysis study that shows general statistics in this regard, the present study was aimed to determine the prevalence of seroma after abdominoplasty in a systematic review and meta-analysis study using studies conducted worldwide.

According to this systematic review study and metaanalysis, the global prevalence of seroma after abdominoplasty was 10.9% (95% confidence interval: 9.6-3.6-3.6%). The highest prevalence of seroma after abdominoplasty was related to the study by Bromley et al. [96] with 76.2%. The lowest prevalence was reported in the study by Sforza et al. [64] with 0.2%. According to the meta-analysis and systematic review conducted by Seretis et al. (2017), the prevalence of seroma after abdominoplasty in nine studies was reported to be 0.26% [145]. The reason for the differences between our study and this study is that the number of articles studied in the present study is higher (143 articles in the present study versus nine articles in the study by Seretis et al.). Also, the present study examined patients of different races and geographical areas worldwide.


Regarding the change in population structure in different countries of the world, it seemed necessary to carefully study the prevalence of seroma after abdominoplasty in different continents to attract the attention of planners to this process and its consequences. Therefore, considering the analysis of subgroups in different continents, the highest prevalence of seroma is related to the European continent with 12.8% (95% confidence interval: 10.3-3.9%). The lowest is related to the Asian continent with 8.3%. (95% confidence interval: 3.8–1.8%).


The most comprehensive study in terms of sample size was a study conducted by Vieira-2 et al. (2018) in the USA [99], which reported a 3.6% prevalence of seroma after abdominoplasty, which differs from the overall results of the present study. However, it is consistent with the results of meta-regression, which decreases with an increase in sample size and year of the prevalence of seroma after abdominoplasty in the world.


Considering the results obtained from meta-regression, the global prevalence of seroma after abdominoplasty decreases with an increase in the year of the study. This declining trend might be related to appropriate preventive measures and basic surgical techniques in different parts of the world. However, care measures are necessary to be taken in this regard. Several surgical strategies have been Fig. 4 Meta-regression diagram of seroma prevalence after abdominoplasty in the world by sample size

Sample

Regression of Age on Logit event rate 2.00 1.00 0.00 -1.00 Logit event rate -2.00 -3.00 -4.00 -5.00 -6.00 -7.00 -8.00 -5.50 1.10 7.70 14.30 20.90 27.50 34.10 40.70 47.30 53.90 60.50 Age

proposed to reduce the rate of seroma, such as progressive tension sutures (PTS), preservation of scarp fascia, lipo abdominoplasty, various dissection methods, and using adhesives and fibrin seals [135–140]. Although using drain is associated with a significant increase in postoperative pain and complications such as reverse migration and **Table 2** Prevalence of seromaafter abdominoplasty inpopulation by differentcontinents

Continents	Number of articles	Sample size	I^2	Egger Test	Prevalence % (95 % CI)
Asia	5	726	93.1	0.132	8.3 (95 % CI: 3.1-20.8)
Europe	55	5945	84.5	0.052	12.8 (95 % CI: 10.3-15.9)
America	80	21058	91.6	0.071	10.1 (95 % CI: 8.3-12.4)
Africa	3	105	0	0.723	8.9 (95 % CI: 4.6-16.5)

bacterial infection, the closed suction drain has been considered a standard of care for preventing seroma for decades [141, 142].

Abdominoplasty surgery is one of the most common methods, after which between 5 and 50% of seroma may occur for more than five years. While Baroudi and et al. reported in their study report that using the quilting suture technique in 130 patients, serum complications did not occur after abdominoplasty [137].

This study also reports that for the prevention and treatment of seroma after abdominoplasty. Patients are instructed to rest at home during the first week of the postoperative period in a supine position with the trunk slightly elevated, alternating with a standing position or semi-upright on a sofa. They should avoid long hours of sitting straight because this position folds the flap, thereby compromising the adhesion between the two surfaces [137].

Baroudi et al. reported that in patients treated with topical stimulants or revision surgery with removal of the pseudobursa or local suction, the bursa was opened, and the solder was sutured without cutting the pseudomembrane, as well as using a bandage and pressure for ten days there was no recurrence of serum [137].

The funnel plot was used to show publication bias in studies included in the meta-analysis process and showed that the possibility of bias is rejected.

The increasing number of body contouring procedures such as abdominoplasty surgery has probably been related to more obesity surgeries and extra weight loss. It increases the relationship between self-esteem and body image by patients and social media [17, 143]. Patient satisfaction is the primary goal of elective cosmetic surgery, and postoperative seroma dissatisfaction bothers plastic surgeons and patients because, in addition to the increased risk of infection and impaired wound healing in patients with seroma, the need for additional visits to the clinic and the possibility of reoperation carry a heavy burden for patients [144]. Although seroma can generally be aspirated after diagnosis in the office, it can lead to subsequent anxiety for both the patient and the surgeon [138].

Since seroma formation following abdominoplasty has many negative consequences for the patient, supportive actions and treatments are considered useful to achieve better treatment techniques and reduce the symptoms of the disease. Also, in recent years, the evaluation of the patient's postoperative condition has been considered an important issue in health care because these studies can provide useful information to health-care providers, enrich health care interventions, improve the quality of services, and ultimately improve the quality of life of these people.

Limitations

One of the limitations of this study is that some samples were not based on random selection. Also, non-uniform reporting of articles, non-uniform implementation method, and the lack of matching and unavailability of the full texts of the articles presented at the conference can be mentioned as another limitation. Additionally, due to the limited number of articles in some continents and the lack of uniform distribution of articles in different parts of the world, subgroup analysis was performed in different continents or racial groups with a limited number of articles. Therefore, more studies are suggested to be conducted on different racial groups in different parts of the world in order to better show the prevalence of seroma after abdominoplasty in different populations.

Conclusions

This study shows that the prevalence of seroma after abdominoplasty is high globally, so physicians and specialists must consider its importance and take controlling and treatment measures seriously.

Acknowledgements The authors thank the Student Research Committee of Kermanshah University of Medical Sciences.

Author Contributions NS and BF and MK contributed to the design, MM involved in statistical analysis, and participated in most of the study steps. MBH and MH and SHSH and YB prepared the manuscript. All authors have read and approved the content of the manuscript

Funding By Deputy for Research and Technology, Kermanshah University of Medical Sciences (IR) (990788). This deputy has no role in the study process

Availability of Data and Materials Datasets are available through the corresponding author upon reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical Approval Ethics approval was received from the ethics committee of deputy of research and technology, Kermanshah University of Medical Sciences (IR.KUMS.REC.1399.804).

Informed Consent Informed consent is not applicable to this type of study.

References

- 1. International Society of Aesthetic Plastic Surgery (2014) Interna-tional study on aesthetic/cosmetic procedures performed in 2013. International Society of Aesthetic Plastic Surgery, Hanover
- Rosenfield LK, Davis CR (2019) Evidence-based abdominoplasty review with body contouring algorithm. Aesthet Surg J 39(6):643–661
- Ramirez OM (2000) Abdominoplasty and abdominal wall rehabilitation: a comprehensive approach. Plast Reconstr Surg 105:425–435
- The American Society for Aesthetic Plastic Surgery (2016) Cosmetic surgery national data bank statistics. Aesthet Surg J 36(Suppl 1):1–29
- Cossta-Ferreira A, Rebelo M, Vásconez LO (2010) Scarpa fascia preservationduring abdominoplasty: a prospective study. Plast Reconstr Surg 125:1233–1239
- an der Beek ES, Te Riele W, Specken TF, et al. The impact ofreconstructive procedures following bariatric surgery on patientwell-being and quality of life. Obes Surg. 2010; 20(1):36–41.
- Song AY, Rubin JP, Thomas V et al (2006) Body image and quality of lifein post massive weight loss body contouring patients. Obesity (Silver Spring, MD). 14(9):1626–36
- Modarressi A, Balague N, Huber O et al (2013) Plastic surgery aftergastric bypass improves long-term quality of life. Obes Surg 23(1):24–30
- 9. Klassen AF, Cano SJ, Scott A et al (2012) Satisfaction and quality-of-lifeissues in body contouring surgery patients: a qualitative study. ObesSurg. 22(10):1527–1534
- Surgery ISoAP (2015) ISAPS International survey on aesthetic/cosmetic: Procedures performed in 2014. International Society of Aesthetic Plastic Surgeons (ISAPS) Hanover
- International Society of Aesthetic Plastic Surgery. ISAPS International survey on aesthetic/cosmetic procedures performed in 2018. https://www.isaps.org/wp-content/uploads/2019/12/ ISAPS-Global-Survey-Results-2018-new.pdf. Accessed16 Jan 2020.
- ASAPS (2018) Cosmetic Surgery National Data Bank statistics. Aesthet Surg J 38:1–24
- The American Society of Plastic Surgeons (2018) Plastic SurgeryStatistics Report. Available at:https://www. plasticsurgery.org/documents/News/Statistics/2018/plasticsurgery-statistics-full report-2018.pdf. Accessed 16 Jan 2020.
- Murshid M, Khalid KN, Shakir A, Bener A (2010) Abdominoplasty in obese and in morbidly obese patients. J Plast Reconstr Aesthet Surg 63:820–825

- Stewart K, Stewart D, Coghlan B, Harrison D, Jones B, Waterhouse N (2006) Complications of 278 consecutive abdominoplasties. J Plast Reconstr Aesthet Surg 59(11):1152–1155
- Nahas FX, Ferreira LM, Ghelfond C (2007) Does quilting suture prevent seroma in abdominoplasty? Plast Reconstr Surg 119(3):1060–1064
- Neaman KC, Hansen JE (2007) Analysis of complications from abdominoplasty: a review of 206 cases at a university hospital. Ann Plast Surg 58(3):292–298
- Araco A, Gravante G, Araco F, Sorge R, Cervelli V (2009) Postoperative seromas after abdominoplasty: a retrospective analysis of 494 patients and possible risk factors. Plast Reconstr Surg 123(4):158e-e159
- Andrades P, Prado A, Danilla S et al (2007) Progressive tension su-tures in the prevention of postabdominoplasty seroma: a prospective, randomized, double-blind clinical trial. Plast Reconstr Surg 120(4):935e46
- Stocchero IN (1993) Ultrasound and seromas. Plast Reconstr Surg 91:198
- 21. Mohammad JA, Warnke PH, Stavraky W (1998) Ultrasound in the diagnosis and management of fluid collection complications following abdominoplasty. Ann Plast Surg 41(5):498–502
- Kim J, Stevenson TR (2006) Abdominoplasty, liposuction of the flanks, and obesity: analyzing risk factors for seroma formation. Plast Reconstr Surg 117(3):773–779
- 23. Neaman KC, Armstrong SD, Baca ME, Albert M, Vander Woude DL, Renucci JD (2013) Outcomes of traditional cosmetic abdominoplasty in a community setting: a retro-spective analysis of 1008 patients. Plast Reconstr Surg 131(3):403e–410e
- 24. Skillman JM, Venus MR, Nightingale P, Titley OG, Park A (2014) Ligating perforators in abdominoplasty reduces the risk of seroma. Aesthetic Plast Surg 38(2):446–450
- 25. Titley OG, Spyrou GE, Fatah MF (1997) Preventing seroma in the latissimus dorsi flap donor site. Br J Plast Surg 50:106–108
- 26. Saldanha OR (2011) Discussion: abdominoplasty with suction undermining and plication of the superficial fascia without drains: a report of 113 consecutive patients. Plast Reconstr Surg 128:982–983
- 27. Rodby KA, Stepniak J, Eisenhut N, Lentz CW III (2011) Abdominoplasty with suction undermining and plication of the superficial fascia without drains: a report of 113 consecu-tive patients. Plast Reconstr Surg 128(4):973–981
- Zimman OA, Butto CD, Ahualli PE (2001) Frequency of seromain abdominal lipectomies. Plast Reconstr Sur 108:1449–1451
- 29. Kargi E, Akduman D, Dokuzoguz B (2003) Late complication ofabdominoplasty in an obese patient: systemic inflammatoryresponse syndrome and seroma. Plast Reconstr Surg 111:1568–1571
- Zecha PJ, Missotten FE (1999) Pseudocyst formation afterabdominoplasty: extravasations of Morel-Lavallee. Br J Plast Surg 52:500–502
- Matarasso A (1995) Liposuction as an adjunct to a fullabdominoplasty. Plast Reconstr Surg 95:829–836
- 32. Jabbour S, Awaida C, Mhawej R, Bassilios Habre S, Nasr M (2017) Does the addition of progressive tension sutures to drainsreduce seroma incidence after abdominoplasty? A systematicreview and meta-analysis. Aesthet Surg 37(4):440–447
- Chaouat M, Levan P, Lalanne B, Buisson T, Nicolau P, Mimoun M (2000) Abdominal dermolipectomies: early postoperativecomplications and long-term unfavorable results. Plast Reconstr Surg 106:1614–1618
- 34. Ramke J, Palagyi A, Jordan V, Petkovic J, Gilbert CE (2017) Using the STROBE statement to assess reporting in blindness prevalence surveys in low and middle income countries. PLoS ONE 12(5):e0176178

- Omranifard M, Kheirkhah E, Kooshki AM (2011) Complication of Abdominolpasty; A six years survey. J Isfahan Med Sch 28(124):2023–2031
- Chang CJ (2013) Assessment of videoendoscopy-assisted abdominoplasty for diastasis recti patients. Biomed J 36(5):252
- 37. Bhave MA (2018) Can drains be avoided in lipo-abdominoplasty? Indian J Plast Surg Offi Publ Assoc Plast Surg India 51(1):15
- Cohen B, Meilik B, Weiss-Meilik A, Tarrab A, Matot I (2018) Intraoperative factors associated with postoperative complications in body contouring surgery. J Surg Res 221:24–9
- Jabaiti SK (2009) Risk factors for wound complications following abdominoplasty. Am J Appl Sci 6(5):897
- Batac J, Hamade M, Hamade H, Glickman L (2019) Abdominoplasty in the obese patient: risk versus reward. Plast Reconstr Surg 143(4):721e-e726
- Brito ÍM, Meireles R, Baltazar J, Brandao C, Sanches F, Freire-Santos MJ (2020) Abdominoplasty and patient safety: the impact of body mass index and bariatric surgery on complications profile. Aesthet Plast Surg. https://doi.org/10.1007/s00266-020-01725-y
- 42. Marsh DJ, Fox A, Grobbelaar AO, Chana JS (2015) Abdominoplasty and seroma: a prospective randomised study comparing scalpel and handheld electrocautery dissection. J Plast Reconstr Aesthet Surg 68(2):192–196
- 43. Dillerud E (1990) Abdominoplasty combined with suction lipoplasty: a study of complications, revisions, and risk factors in 487 cases. Ann Plast Surg 25(5):333–343
- 44. Correia-Gonçalves I, Valença-Filipe R, Carvalho J, Rebelo M, Peres H, Amarante J et al (2017) Abdominoplasty with scarpa fascia preservation–comparative study in a bariatric population. Surg Obes Relat Dis 13(3):423–428
- 45. Sozer SO, Basaran K, Alim H (2018) Abdominoplasty with circumferential liposuction: a review of 1000 consecutive cases. Plast Reconstr Surg 142(4):891–901
- 46. Grieco M, Grignaffini E, Simonacci F, Raposio E (2015) Analysis of complications in postbariatric abdominoplasty: our experience. Plast Surg Int. https://doi.org/10.1155/2015/209173
- 47. Persichetti P, Simone P, Scuderi N (2005) Anchor-line abdominoplasty: a comprehensive approach to abdominal wall reconstruction and body contouring. Plast Reconstr Surg 116(1):289–294
- Jones B, Toft N (2008) Bodylifting: indications, technique and complications. J Plast Reconstr Aesthet Surg 61(7):730–735
- Dini M, Mori A, Cassi LC, Russo GL, Lucchese M (2008) Circumferential abdominoplasty. Obes Surg 18(11):1392–1399
- Koller M, Hintringer T (2012) Circumferential superficial fascia lift of the lower trunk: Surgical technique and retrospective review of 50 cases. J Plast Reconstr Aesthet Surg 65(4):433–437
- 51. Schlosshauer T, Kiehlmann M, Riener MO, Sader R, Rieger UM (2019) Comparative analysis on the effect of low-thermal plasma dissection device (PEAK PlasmaBlade) vs conventional electrosurgery in post-bariatric abdominoplasty: a retrospective randomised clinical study. Int Wound J 16(6):1494–1502
- 52. García-García ML, Martín-Lorenzo JG, Campillo-Soto A, Torralba-Martínez JA, Liron-Ruiz R, Miguel-Perello J et al (2014) Complications and level of satisfaction after dermolipectomy and abdominoplasty post-bariatric surgery. Cirugía Española (English Edition). 92(4):254–260
- Momeni A, Heier M, Bannasch H, Stark GB (2009) Complications in abdominoplasty: a risk factor analysis. J Plast Reconstr Aesthet Surg 62(10):1250–1254
- 54. Hersant B, SidAhmed-Mezi M, La Padula S, Niddam J, Bouhassira J, Meningaud JP (2016) Efficacy of autologous platelet-rich plasma glue in weight loss sequelae surgery and

breast reduction: a prospective study. Plast Reconstr Surg Global Open 4(11):e871

- 55. Dutot MC, Serror K, Al Ameri O, Chaouat M, Mimoun M, Boccara D (2018) Improving safety after abdominoplasty: a retrospective review of 1128 cases. Plast Reconstr Surg 142(2):355–362
- 56. Bracaglia R, Tambasco D, D'Ettorre M, Gentileschi S (2012) "Inverted-Y": a modified vest-over-pants abdominoplasty pattern following bariatric surgery. Aesthet Plast Surg 36(5):1179–1185
- 57. Giordano S, Uusalo P, Oranges CM, di Summa PG, Lankinen P (2020) Local anesthetic pain catheters to reduce opioid use in massive weight loss patients undergoing abdominoplasty: a comparative study. J Plast Reconstr Aesthet Surg JPRAS 73(4):770–776
- 58. Hauck T, Schmitz M, Horch RE, Arkudas A, Boos AM, Cai A et al (2019) Operating on the edge? body contouring procedures in patients with body mass index greater 35. Obes Surg 29(5):1563–1570
- 59. Khan UD (2008) Risk of seroma with simultaneous liposuction and abdominoplasty and the role of progressive tension sutures. Aesthet Plast Surg 32(1):93–99 (discussion 100)
- Costa-Ferreira A, Rebelo M, Silva A, Vásconez LO, Amarante J (2013) Scarpa fascia preservation during abdominoplasty: randomized clinical study of efficacy and safety. Plast Reconstr Surg 131(3):644–651
- 61. Swedenhammar E, Stark B, Hållstrand AH, Ehrström M, Gahm J (2018) Surgical training and standardised management guidelines improved the 30-day complication rate after abdominoplasty for massive weight loss. World J Surg 42(6):1647–1654
- Quaba AA, Conlin S, Quaba O (2015) The no-drain, no-quilt abdominoplasty: a single-surgeon series of 271 patients. Plast Reconstr Surg 135(3):751–760
- 63. Mayer HF, Loustau HD (2018) The suprapubic dermoadipose flap for aesthetic reshaping of the postpregnancy abdomen. Aesthet Surg J 38(6):635–643
- 64. Sforza M, Husein R, Andjelkov K, Rozental-Fernandes PC, Zaccheddu R, Jovanovic M (2015) Use of quilting sutures during abdominoplasty to prevent seroma formation: are they really effective? Aesthet Surg J 35(5):574–580
- Breiting LB, Lock-Andersen J, Matzen SH (2011) Increased morbidity in patients undergoing abdominoplasty after laparoscopic gastric bypass. Dan Med Bull 58(4):A4251
- 66. Khan UD (2012) Seroma formation following abdominoplasty: a retrospective clinical review following three different techniques. Eur J Plast Surg 35(4):299–308
- Pilone V, Tramontano S, Cutolo C, Vitiello A, Brongo S (2020) Abdominoplasty after bariatric surgery: comparison of three different techniques. Minerva Chir 75(1):37–42
- Larsen M, Polat F, Stook FP, Oostenbroek RJ, Plaisier PW, Hesp WL (2007) Satisfaction and complications in post-bariatric surgery abdominoplasty patients. Acta Chir Plast 49(4):95–98
- 69. Iglesias M, Butrón P, López-Méndez A, Del Carmen I, Camacho-Palma FF, Osuna A (2015) Abdominoplasty in massive weight loss patients with body mass index greater than 35: report of 25 cases. J Am Coll Surg 221(4):e116
- Ovens L, Pickford MA (2009) Effect of quilting sutures on seroma formation post-abdominoplasty. Eur J Plast Surg 32(4):177–180
- 71. Cruz-Korchin N, Korchin L (2005) The use of fibrin sealant (Tisseel) in abdominoplasty. Plast Reconstr Surg 116:23
- 72. Hunecke P, Toll M, Mann O, Izbicki JR, Blessmann M, Grupp K (2019) Clinical outcome of patients undergoing abdominoplasty after massive weight loss. Surg Obes Relat Dis 15(8):1362–1366

- Valença-Filipe R, Martins A, Silva Á, Vásconez LO, Amarante J, Costa-Ferreira A (2015) Dissection technique for abdominoplasty: a prospective study on scalpel versus diathermocoagulation (coagulation mode). Plast Reconstr Surg Global Open 3(1):e299
- 74. Beer GM, Wallner H (2010) Prevention of seroma after abdominoplasty. Aesthet Surg J 30(3):414–417
- 75. Pilone V, Vitiello A, Borriello C, Gargiulo S, Forestieri P (2015) The use of a fibrin glue with a low concentration of thrombin decreases seroma formation in postbariatric patients undergoing circular abdominoplasty. Obes Surg 25(2):354–359
- 76. Weiler J, Taggart P, Khoobehi K (2010) A case for the safety and efficacy of lipoabdominoplasty: a single surgeon retrospective review of 173 consecutive cases. Aesthetic Surg J 30(5):702–713
- 77. Villegas FJ (2014) A novel approach to abdominoplasty: TULUA modifications (transverse plication, no undermining, full liposuction, neoumbilicoplasty, and low transverse abdominal scar). Aesthet Plast Surg 38(3):511–520
- Hoyos A, Perez ME, Guarin DE, Montenegro A (2018) A report of 736 high-definition lipoabdominoplasties performed in conjunction with circumferential VASER liposuction. Plast Reconstr Surg 142(3):662–675
- 79. Spiegelman JI, Levine RH (2006) Abdominoplasty: a comparison of outpatient and inpatient procedures shows that it is a safe and effective procedure for outpatients in an office-based surgery clinic. Plast Reconstr Surg 118(2):517–522
- Perez JA, Thau M (2012) Abdominoplasty seroma prevention with fibrin sealant. Am J Cosmet Surg 29(3):208–213
- Restrepo JCC, Gutiérrez MMG (2004) Abdominoplasty with anchor plication and complete lipoplasty. Aesthet Surg J 24(5):418–422
- Brink RR, Beck JB, Anderson CM, Lewis AC (2009) Abdominoplasty with direct resection of deep fat. Plast Reconstr Surg 123(5):1597–1603
- Warner JP, Gutowski KA (2009) Abdominoplasty with progressive tension closure using a barbed suture technique. Aesthet Surg J 29(3):221–225
- Avelar JM (2002) Abdominoplasty without panniculus undermining and resection: analysis and 3-year follow-up of 97 consecutive cases. Aesthet Surg J 22(1):16–25
- Nemerofsky RB, Oliak DA, Capella JF (2006) Body lift: an account of 200 consecutive cases in the massive weight loss patient. Plast Reconstr Surg 117(2):414–430
- Lee JC, Teitelbaum J, Shajan JK, Naram A, Chao J (2012) The effect of fibrin sealant on the prevention of seroma formation after postbariatric abdominoplasty. Can J Plast Surg 20(3):178–180
- Dabb RW, Hall WW, Baroody M, Saba AA (2004) Circumferential suction lipectomy of the trunk with anterior rectus fascia plication through a periumbilical incision: an alternative to conventional abdominoplasty. Plast Reconstr Surg 113(2):727–732
- Matos WN Jr, Ribeiro RC, Marujo RA, da Rocha RP, da Silva Ribeiro SM, Carrillo Jiminez FV (2006) Classification for indications of lipoabdominoplasty and its variations. Aesthet Surg J 26(4):417–431
- Najera RM, Asheld W, Sayeed SM, Glickman LT (2011) Comparison of seroma formation following abdominoplasty with or without liposuction. Plast Reconstr Surg 127(1):417–422
- 90. Smith MM, Hovsepian RV, Markarian MK, Degelia AL, Paul MD, Evans GR et al (2008) Continuous-infusion local anesthetic pain pump use and seroma formation with abdominal procedures: is there a correlation? Plast Reconstr Surg 122(5):1425–1430

- Hamra ST, Small KH (2016) Cosmetic body lift. Plast Reconstr Surg 137(2):453–461
- Sozer SO, Agullo FJ, Santillan AA, Wolf C (2007) Decision making in abdominoplasty. Aesthet Plast Surg 31(2):117–127
- 93. Macias LH, Kwon E, Gould DJ, Spring MA, Stevens WG (2016) Decrease in seroma rate after adopting progressive tension sutures without drains: a single surgery center experience of 451 abdominoplasties over 7 years. Aesthet Surg J 36(9):1029–1035
- 94. Khan S, Teotia SS, Mullis WF, Jacobs WE, Beasley ME, Smith KL et al (2006) Do progressive tension sutures really decrease complications in abdominoplasty? Ann Plast Surg 56(1):14–21
- 95. Stokes RB, Williams S (2007) Does concomitant breast surgery add morbidity to abdominoplasty? Aesthet Surg J 27(6):612–615
- 96. Bromley M, Marrou W, Charles-de-Sa L (2018) Evaluation of the number of progressive tension sutures needed to prevent seroma in abdominoplasty with drains: a single-blind, prospective, comparative randomized clinical trial. Aesthet Plast Surg 42(6):1600–1608
- 97. Friedman T, O'Brien Coon D, Michaels J, Purnell C, Hur S, Harris DN et al (2010) Fleur-de-Lis abdominoplasty: a safe alternative to traditional abdominoplasty for the massive weight loss patient. Plast Reconstr Surg 125(5):1525–1535
- Laverson S (2006) Improving abdominoplasty results: reconstruction of the linea alba sulcus by direct fat excision. Aesthet Surg J 26(6):682–686
- 99. Vieira BL, Chow I, Sinno S, Dorfman RG, Hanwright P, Gutowski KA (2018) Is there a limit? A risk assessment model of liposuction and lipoaspirate volume on complications in abdominoplasty. Plast Reconstr Surg 141(4):892–901
- 100. Di Martino M, Nahas FX, Kimura AK, Sallum N, Ferreira LM (2015) Natural evolution of seroma in abdominoplasty. Plast Reconstr Surg 135(4):691e-e698
- 101. Barone CM, Okoro SA, Chatter-Cora D, Helling ER (2007) Outpatient extended abdominoplasty in the patient with massive weight loss. Aesthet Surg J 27(2):129–136
- Pollock TA, Pollock H (2012) Progressive tension sutures in abdominoplasty: a review of 597 consecutive cases. Aesthet Surg J 32(6):729–742
- Pollock T, Pollock H (2004) Progressive tension sutures in abdominoplasty. Clin Plast Surg 31(4):583–589
- 104. Andrades P, Prado A, Danilla S, Guerra C, Benitez S, Sepulveda S et al (2007) Progressive tension sutures in the prevention of postabdominoplasty seroma: a prospective, randomized, doubleblind clinical trial. Plast Reconstr Surg. 120(4):935–46 (discussion 47-51)
- 105. Swanson E (2013) Prospective clinical study of 551 cases of liposuction and abdominoplasty performed individually and in combination. Plast Reconstr Surg Glob Open 1(5):e32
- 106. Rosen AD, Gutowski KA, Hartman T (2020) Reduced seroma risk in drainless abdominoplasty using running barbed sutures: a 10-year multicenter retrospective analysis. Aesthet Surg J. 40(5):531–537
- 107. Antonetti JW, Antonetti AR (2010) Reducing seroma in outpatient abdominoplasty: analysis of 516 consecutive cases. Aesthet Surg J 30(3):418–425
- Rosen A, Hartman T (2011) Repair of the midline fascial defect in abdominoplasty with long-acting barbed and smooth absorbable sutures. Aesthet Surg J 31(6):668–673
- 109. Gallagher S, Soleimani T, Wang C, Tholpady S, Jones C, Sando W (2018) Safety and utility of the drainless abdominoplasty in the post-bariatric surgery patient. Ann Plast Surg 80(2):96–99
- Gray S, Gittleman E, Moliver CL (2012) Safety in office-based full abdominoplasty. Aesthet Surg J 32(2):200–206
- 111. Shermak MA, Rotellini-Coltvet LA, Chang D (2008) Seroma development following body contouring surgery for massive

weight loss: patient risk factors and treatment strategies. Plast Reconstr Surg 122(1):280–288

- 112. Di Martino M, Nahas FX, Barbosa MV, Montecinos Ayaviri NA, Kimura AK, Barella SM et al (2010) Seroma in lipoabdominoplasty and abdominoplasty: a comparative study using ultrasound. Plast Reconstr Surg 126(5):1742–1751
- 113. Gould DJ, Macias LH, Saeg F, Dauwe P, Hammoudeh Z, Grant SW (2018) Seroma rates are not increased when combining liposuction with progressive tension suture abdominoplasty: a retrospective cohort study of 619 patients. Aesthet Surg J 38(7):763–769
- 114. Restifo RJ (2019) Sub-scarpa's lipectomy in abdominoplasty: an analysis of risks and rewards in 723 consecutive patients. Aesthet Surg J 39(9):966–976
- 115. Stevens WG, Spring MA, Stoker DA, Cohen R, Vath SD, Hirsch EM (2007) Ten years of outpatient abdominoplasties: safe and effective. Aesthet Surg J 27(3):269–275
- 116. Arantes HL, Rosique RG, Rosique MJ, Mélega JM (2010) The use of quilting suture in abdominoplasty does not require aspiratory drainage for prevention of seroma. Aesthet Plast Surg 34(1):102–104
- 117. Villegas F (2020) TULUA lipoabdominoplasty no supraumbilical elevation combined with transverse infraumbilical plication, video description and experience with 164 patients. Aesthet Surg J. https://doi.org/10.1093/asj/sjaa183
- 118. Fernandes JW, Damin R, Holzmann MVN, Ribas GGO (2018) Use of an algorithm in choosing abdominoplasty techniques. Revista do Colegio Brasileiro de Cirurgioes. 45(2):e1394
- 119. Holzman NL, Singh M, Caterson SA, Eriksson E, Pomahac B (2015) Use of tumescence for outpatient abdominoplasty and other concurrent body contouring procedures: a review of 65 consecutive patients. Eplasty 15:e38
- 120. Nurkim M, Mendonça L, Martins P, Silva J (2001) Incidence of hematoma and seroma in abdominoplasty with and without the use of drains. Revista Brasileira de Cirurgia Plástica 17(1):69–74
- Ramirez OM (1999) UM abdominoplasty. Aesthetic Surg J 19(4):279–286
- 122. Duncan TD, Mangubat AE (2007) P120: a new abdominoplasty approach for patients following massive weight loss surgery. Surg Obes Relat Dis 3(3):339
- 123. Rodriguez F, Borsand MA (2011) One hundred consecutive lipoabdominoplasty procedures: modified avelar technique for full abdominoplasty without panniculus undermining—advances, morbidity, and complications. Am J Cosmet Surg 28(4):241–250
- 124. Ghnnam W, Elrahawy A, Moghazy ME (2016) The effect of body mass index on outcome of abdominoplasty operations. World J Plast Surg 5(3):244–251
- 125. Shahin MA, Hagag MG, El-Meligy MH (2018) Outcome after preservation of Scarpa's fascia in abdominoplasty. Egypt J Surg 37(2):260
- 126. Gunnarson GL, Frøyen JK, Sandbu R, Thomsen JB, Hjelmesæth J (2015) Plastic surgery after bariatric surgery. Tidsskr Nor Laegeforen 135(11):1044–1049
- 127. Savage RC (1983) Abdominoplasty following gastrointestinal bypass sur-gery. Plast Reconstr Surg 71(4):500–509
- Jacobs JMS, Schechner S, Jacobs JS (2006) Abdominoplasty followingmassive weight loss. Semin Plast Surg 20(1):15–23

- 129. The American Society for Aesthetic Plastic Surgery (2017) Cosmetic surgery national data bank statistics. Aesthet Surg J 37(suppl 2):1–29
- Pitanguy I. (2016) Cirurgia Plástica: Uma visão de sua amplitude. Atheneu, Rio de Janeiro, Brazil. pp. 67-70
- 131. Alderman AK, Collins ED, Streu R, Grotting JC, Sulkin AL, Neligan P et al (2009) Benchmarking outcomes in plastic surgery: national complication rates for abdominoplasty and breast augmentation 'outcomes article. Plast Reconstr Surg 124(6):2127–2133
- Brauman D, Capocci J (2009) Liposuction abdominoplasty: an advanced body contouring technique. Plast Reconstr Surg 124(5):1685–1695
- 133. Zuelzer HB, Ratliff CR, Drake DB (2010) Complications of abdominal contouring surgery in obese patients: current status. Ann Plast Surg 64(5):598–604
- 134. Baxter RA (2001) Controlled results with abdominoplasty. Aesthet Plast Surg 25(5):357–364
- Le Louarn C (1996) Partial subfascial abdominoplasty. Aesthet Plast Surg 20(2):123–127
- 136. Saldanha OR, De Souza Pinto EB, Mattos WN Jr et al (2003) Lipoabdominoplasty with selective and safe undermin-ing. Aesthet Plast Surg 27(4):322–327
- 137. Baroudi R, Ferreira CA (1998) Seroma: how to avoid it and how to treat it. Aesthet Surg J 18(6):439–441
- 138. Pollock H, Pollock T (2000) Progressive tension sutures: a technique to reduce local complications in abdominoplasty. Plast Reconstr Surg 105(7):2583–2586
- 139. Araco A, Sorge R, Overton J, Araco F, Gravante G (2009) Postbariatric patients undergoing body-contouring abdom-inoplasty: two techniques to raise the flap and their influence on postoperative complications. Ann Plast Surg 62(6):613–617
- 140. Bercial ME, Sabino Neto M, Calil JA, Rossetto LA, Ferreira LM (2012) Suction drains, quilting sutures, and fibrin sealant in the prevention of seroma formation in abdominoplasty: which is the best strategy? Aesthet Plast Surg 36(2):370–373
- 141. Drapeau CM, D'Aniello C, Brafa A, Nicastri E, Silvestri A, Nisi G et al (2007) Surgical site infections in plastic surgery: an Italian multicenter study. J Surg Res 143(2):393–397
- 142. Durai R, Ng PC (2010) Surgical vacuum drains: types, uses, and complications. AORN J 91(2):266–274
- 143. Winocour J, Gupta V, Ramirez JR, Shack RB, Grotting JC, Higdon KK (2015) Abdominoplasty: risk factors, complication rates, and safety of combined procedures. Plast Reconstr Surg 136(5):597e–606e
- 144. di Summa PG, Wettstein R, Erba P, Raffoul W, Kalbermatten DF (2013) Scar asymmetry after abdominoplasty: the unexpected role of seroma. Ann Plast Surg 71(5):461–463
- 145. Seretis K, Goulis D, Demiri EC, Lykoudis EG (2017) Prevention of seroma formation following abdominoplasty: a systematic review and meta-analysis. Aesthetic Surg J 37(3):316–323
- 146. Patronella CK, Ruiz-Razura A, Newall G et al (2008) Thromboembolism in high-risk aesthetic surgery: experience with 17 patients in a review of 3871 consecutive case. Aesthet Surg J. 28:648–655

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.