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ABSTRACT
The use of wireless devices with accelerometers and gyro-
scopes to measure the movements of humans and objects is
a growing area of interest. Applications range from simple
activity detection to detailed full-body motion capture us-
ing networks of sensors worn on the body. A variety of algo-
rithms have been proposed for these applications, but oppor-
tunities for accurate evaluation and comparison have been
limited due to the many difficulties with performing rigorous
experiments. We present a simulation environment, specifi-
cally for inertial sensing applications, designed to tackle this
problem. We simulate sensor readings based on continuous
trajectory models, and show how suitable models can be
generated from existing motion capture or other sampled
data. We show a good match between our simulated data
and real sensor data for human movements. We also model
a wide range of real-world issues such as non-ideal sensors,
magnetic field distortions, timing factors and radio packet
losses. To demonstrate the capabilities of our simulator, we
present new results comparing four existing orientation es-
timation algorithms for human motion capture.

Categories and Subject Descriptors
I.6.4 [Simulation and Modelling]: Model Validation and
Analysis

General Terms
Theory, Algorithms, Experimentation

1. INTRODUCTION
Accelerometers and gyroscopes–collectively known as in-

ertial sensors–measure linear accelerations, the effects of grav-
ity, and angular velocities. These parameters can be used in
various ways to monitor many aspects of movement. In par-
ticular, they can be used to estimate and track orientation.
Devices which combine multi-axis inertial sensors to do this
are known as Inertial Measurement Units (IMUs), and often

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’11, April 12–14, 2011, Chicago, Illinois.
Copyright 2011 ACM 978-1-4503-0512-9/11/04 ...$10.00.

also include magnetometers to provide a heading reference
from the Earth’s magnetic field. With 3-axis measurements
from all three types of sensor, the complete 3D spatial ro-
tation of an IMU relative to the Earth can be estimated,
albeit subject to a number of ambiguities dependent on the
environment, sensors and nature of the motion.

Historically these sensors were primarily used for aircraft
and missile guidance, but reductions in size, cost and power
have made them usable in other applications. Many con-
sumer devices now include accelerometers for simple motion
and orientation detection, and some recent smartphones in-
clude a full IMU sensor suite. Inertial sensors have also been
integrated into wireless sensor devices, for various purposes
but particularly for detecting, classifying and tracking hu-
man movements with devices worn on the body, in fields in-
cluding healthcare, sports and human-computer interaction.
The sensing and analysis techniques used range from simple
activity detection, through movement classification, to de-
tailed full-body motion capture using networks of wireless
IMUs worn on different parts of the body, driving a model
of the subject’s body structure. The examples given in this
paper relate to the latter application, but the simulator pre-
sented can be used to simulate IMUs for any purpose.

Full-body motion capture using IMUs has many potential
advantages over other capture technologies, but many real-
world issues make system design difficult, and ambiguities in
the sensed data present a challenge to algorithm design. Nu-
merous algorithms have been proposed [1–8], yet evaluation
of the accuracy of these has been quite limited, due to the
cost and difficulty of full system development, and the many
problems with performing rigorous experiments on realistic
motions.

We believe that although real-world validation will al-
ways ultimately be essential, in this particular field there
is a great deal still to be gained through better simulations
at the design stage. Comparisons between algorithms and
other aspects of system design have been hindered to date
by the lack of any common framework within which they
can be meaningfully tested. Existing wireless sensor net-
work (WSN) simulators do not address the specific needs of
IMU algorithm design, and no previous work has addressed
these needs. We present a simulation environment targeted
specifically at IMUs. Our contributions in this paper are:

1. Description of the IMU simulation environment, in-
cluding: IMU trajectory requirements and generation,
magnetic field modelling, and sensor models.

2. Validation of the simulation against real IMU measure-
ments for human motion.
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3. Empirical modelling of a real world motion capture en-
vironment, and validation of simulated magnetic field
model.

4. New results comparing four orientation estimation al-
gorithms using the simulation environment.

2. RELATED WORKS

2.1 WSN Simulators
There have been a large number of WSN simulators [9]

developed, however none addresses the task of accurately
simulating the sensed data of an IMU undergoing complex
movements such as those of the human body.

WSN simulators have generally concentrated on the be-
haviour of large scale networks, and the communications be-
tween nodes. Application level simulation of WSNs is pro-
vided by simulators such as TOSSIM [10], and Castalia [11],
while COOJA [12] and Avrora [13] provide more detailed
simulation of node hardware. While these simulators sup-
port node mobility and environment models, the provided
implementations are generally simplistic since detailed mod-
els are not required. In contrast, as will be shown in this
paper, the motion and environment models are crucial in
IMU simulation, and the requirements for physical accuracy
and consistency are stringent.

As our simulation framework concentrates mainly on the
accurate physical simulation of IMU data, it should be seen
as complementary, rather than competitive, to the existing
simulators. Indeed, nothing prevents the models proposed in
this paper from being added to existing simulators should
this be desired, or existing models of e.g. node hardware
or radio channels being used in our simulator. Our code is
specifically designed to facilitate this.

2.2 IMU Accuracy Testing
The use of multiple IMU systems for motion capture of

human subjects has often been demonstrated qualitatively
by presenting images of subject posture and reconstructed
posture [2,4,5,8,14]. These qualitative demonstrations pro-
vide no scientific basis for algorithm comparison.

In order to assess the accuracy of IMU algorithms quan-
titatively it is necessary to have access to a true reference
of the device orientation and position. It is possible to per-
form experiments with both IMUs and optical motion cap-
ture [3, 6, 15], however given the costs of the respective sys-
tems, and the expertise required to operate them, this is
not always a viable option. Furthermore, accounting for the
sources of error between the two systems can be challenging,
requiring careful data pre-processing, and giving potentially
ambiguous results.

As combined optical/inertial capture is so challenging,
studies often use computer controlled systems, such as pan
and tilt units, to generate device motion [4, 5, 16, 17]. This
approach allows the static and dynamic accuracy of IMUs to
be assessed over long periods, but it is difficult to generate
realistic motions such as might be experienced during human
motion capture. The movements of mechanical systems are
subject to many more constraints than those of a human
body, with fewer degrees of freedom and limits on speeds,
accelerations and variation of motions. Building a mechan-
ical system able to accurately reproduce human movement
would be prohibitively expensive, as can be seen from the

cost of present humanoid robots which still fall far short of
human freedom of movement.

For these reasons, the authors began work on generating
simulated IMU data based on optical capture data of hu-
man movements. Some evaluations of IMU algorithm per-
formance based on early simulation work were published by
Young [7, 18]. These papers did not give full details of the
simulation methods, which have since been revised, and the
simulated data was not validated against real measurements.

3. IMU MOTION CAPTURE THEORY
As the examples in this paper focus on IMU-based human

motion capture, we provide here an introduction to this area.
An IMU-based motion capture system requires the subject

to wear one IMU on each segment of the body [2]. A segment
in this sense is any part of the body which surrounds a rigid
section of bone structure and must therefore move predom-
inantly as a unit, e.g. the forearm, upper leg, or head. The
orientation of each IMU, and hence the segment to which
it is attached, is estimated from its sensor data. When the
orientation of all segments of the body is known at a given
moment, the complete posture can be reconstructed. This
whole process is repeated at high frequency to achieve mo-
tion capture.

On its own, this method only estimates relative positions
between parts of the body. If the absolute movements of
the subject are required, these can be estimated by dead-
reckoning approaches, or measured separately with the aid
of external infrastructure such as GPS, computer vision sys-
tems or ultra-wideband (UWB) radio range finding.

There are therefore several stages to the processing re-
quired: orientation estimation of each IMU, which is in turn
often divided into vector observation, gyroscope integration
and data fusion steps; reconstruction of the posture; and, op-
tionally, translation estimation. Some of these stages may
be combined in some methods, and some may be distributed
in various ways into a wireless network of IMUs.

3.1 Vector Observation
The orientation of an IMU equipped with 3-axis accelerom-

eters and magnetometers can be estimated from the locally
measured directions of two global vectors: magnetic north,
and acceleration due to gravity. The measurement of both
is subject to various sources of noise and interference. The
task of estimating orientation from imperfect measurements
of reference vectors is called vector observation, and requires
two or more non-zero, non-collinear, vectors in the rotated
co-ordinate frame that have known directions in a reference
co-ordinate frame. Vector observation algorithms attempt
to find a rotation matrix R that minimises Wahba’s loss
function [19]:

L (R) =
1

2

nX
i=1

ai‖bi −Rwi‖2, (1)

where bi are the observed vectors in the rotated co-ordinate
frame (acceleration and magnetic field vectors), wi are the
reference vectors in the reference co-ordinate frame (grav-
ity and magnetic north), and ai are a set of non-negative
weights applied to each vector to account for individual ac-
curacy. Numerous solutions to Wahba’s loss function have
been proposed [20]. Some are shown to find the optimal R,
others sacrifice optimality for speed.
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Vector observation allows for absolute estimation of IMU
orientation but is sensitive to noise in the vector observa-
tions, particularly the non-gravitational linear accelerations
of the IMU which can be thought of as noise superimposed
on the observation of gravity.

3.2 Gyroscope Integration
Using a 3-axis gyroscope the complete angular rate vector

of an IMU can be measured. Since angular rate is the deriva-
tive of orientation it can be integrated to find an IMU’s cur-
rent orientation, working from a known initial orientation at
a previous time. To do this accurately requires a sampling
rate at least in the region of 100-200Hz. In practice, this
integrated estimate will still drift from the truth with each
step due to noise, bias, and numerical integration errors.

3.3 Data Fusion
By combining gyroscope integration and vector observa-

tion, a more accurate orientation estimate can be obtained
which exploits both the angular rate accuracy obtainable
from gyroscope data and the absolute, but noisy, orienta-
tion estimates provided by vector observation. This requires
a method to fuse the two sources into a single state estimate.

A common tool for this form of data fusion task is the
Kalman filter model, which provides the optimal recursive
estimator for linear systems with well specified state dynam-
ics. Extensions to the standard Kalman filter, such as the
Extended and Unscented Kalman filters, allow estimation of
non-linear systems. A number of Kalman filters have been
proposed specifically for tracking IMU orientation [1,3,4,21].
Due to the matrix operations required to propagate system
state and estimated covariance, the complexity of these fil-
ters is O(n3) where n is the size of the state vector.

Complementary filters provide an alternative and simpler
method, which has the advantage of being more practical to
implement in situ on a low-power wireless IMU [15]. Com-
plementary filtering exploits the complementary properties
of multiple observations of a signal corrupted by noise with
different frequency properties. Gyroscope integration suffers
from drift, i.e. low frequency noise, whilst vector observa-
tion suffers from acceleration noise at higher frequencies.
By selecting suitable frequency cut-offs a composite filter
can be constructed that passes the signal of interest with
unity gain and zero latency while blocking the majority of
the noise. The major disadvantage of complementary filters
is that they do not provide any estimate of uncertainty in
their results.

3.4 Posture Reconstruction
Reconstruction of subject motion from IMU data is gen-

erally performed by combining estimated IMU orientation
with a forward kinematic rigid body model of the subject [2].
Estimated orientations of IMUs attached to the subject limb
segments can directly drive the body model, or a further
level of data fusion can be applied to model subject dynam-
ics and bio-mechanical kinematic constraints [14,22].

To obtain the orientation of a body segment from that
of an IMU attached to it, it is necessary to first know the
orientation of the IMU relative to that segment. This can
be achieved by deliberate alignment of the IMUs as they
are attached, or by observing the orientations of all IMUs
while the subject is in a known calibration posture such as
a T-stance.

3.5 Translation Estimation
Estimation of IMU translation through integration of esti-

mated IMU linear acceleration is prone to extreme drift with
time. Double integration of acceleration is required, leading
to quadratic growth in bias errors. As gravitational accelera-
tion must be removed from accelerometer data prior to inte-
gration the orientation estimation accuracy is of paramount
importance. An error as low as 1 mrad, significantly less
than typical static accuracy measurements of existing IMUs,
results in an acceleration of approximately 0.01 m/s2 which,
left uncorrected, would result in an error of 4.5 m after
30 s [23].

As direct integration of IMU acceleration is so prone to
error it is common to apply additional processing, such as
using Zero Velocity Update, to reset velocity estimates to
zero when an IMU is expected to be stationary, for example
during the stance phase of a walking gait [24, 25]. Alterna-
tively, the subject posture can be used to estimate position
based on tracking expected ground contact [7].

3.6 Summary of Problem
The full reconstruction of subject motion from IMU data

is a challenging problem, requiring fusion of data from many
different sources and at different levels of abstraction.

A range of methods have been proposed for each aspect of
the task, however it is hard to meaningfully compare their
performance. Results can be highly dependent on sensor
hardware and on the nature of individual motions. Real-
world experiments are difficult and time-consuming to con-
duct rigorously for realistic motions, and results can be hard
to analyse meaningfully.

For these reasons, we believe a good common simulation
environment is the key to improving work in this field. To be
relevant however, a simulation must be capable of generating
truly representative sensor data for realistic human move-
ments and environments, modelling IMU-specific problems
such as sensor noise, bias, misalignment, cross-axis effects
and field distortions as well as supporting models of more
general sensor network issues such as time synchronisation
and packet losses.

4. SIMULATION ENVIRONMENT
Our simulation environment is designed to support mod-

elling all aspects of IMU operation in an extensible fash-
ion. The simulator is implemented in the Python scripting
language, making use of the strong set of existing libraries
including NumPy, SciPy, SimPy, Cython and matplotlib.
These tools provide an environment that will also be familiar
to users of Matlab. The decision to implement in Python was
driven by the strong high level support for complex mathe-
matical systems that these libraries provide, and the ease of
interfacing with other code in future.

An overview of the simulation environment is shown in
Figure 1. The key functionality of the simulator is the gen-
eration of realistic inertial sensor data from models of the
environment, sensor hardware, and the position and rotation
trajectories that simulated IMUs take through the course of
the simulation. IMUs can have independent clocks, allowing
for the simulation of timing skew between samples.

The gravitational and magnetic fields in the environment
are modelled as continuous vector fields. Ideal simulated
sensor values at a given instant are obtained by evaluating
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Figure 1: Block diagram of simulation framework showing main components involved in generating simulated
IMU data from existing motion capture data.

trajectory derivatives at that moment along with the envi-
ronmental vector fields at the sensors’s position, rotated into
its local co-ordinate frame. These ideal values are processed
by a sensor subsystem which models the imperfections of the
sensor and analogue-to-digital convertor (ADC).

Algorithms to run on the IMUs are written out directly in
normal Python code, with access through a platform object
to the simulated IMU hardware, including the sensor subsys-
tems and a radio model to communicate with other IMUs or
a simulated host system. The wireless channel model used
for the radio can also make use of the position and orien-
tation information from the IMU trajectories at the time a
transmission attempt is made.

The simulator is primarily designed for offline simulation,
with correct behaviour and clarity of code overriding con-
cerns of performance. However, the performance is sufficient
to simulate a single IMU in real time on a typical 2GHz PC.

4.1 IMU Trajectory Functions
In order for the simulator to generate the sensor mea-

surements of an IMU, its trajectory through space must be
known. Two functions must be defined for each IMU giving
its position:

p : T → R3, T ∈ [0, tmax], p ∈ C2, (2)

and its rotation, represented as a quaternion:

θ : T → SO(3), T ∈ [0, tmax], θ ∈ C2. (3)

The velocity, acceleration, rotational rate and rotational
acceleration vectors in the IMU local frame may be evalu-
ated as:

v(t) = θ∗(t)⊗ p′(t)⊗ θ(t), (4)

a(t) = θ∗(t)⊗ p′′(t)⊗ θ(t), (5)

ω(t) = 2θ∗(t)⊗ θ′(t), (6)

α(t) = 2θ∗(t)⊗ θ′′(t), (7)

respectively, where ⊗ is the quaternion multiplication oper-
ator, and ∗ indicates the quaternion conjugate.

The position and rotation functions must be continuous,
so that readings can be taken at any point in time, and
twice differentiable, so that linear and angular accelerations
can be obtained. Although any suitable functions can be
used, the simulator includes tools to generate interpolating
trajectory functions from discrete time trajectory data.

For sampled position data, p is defined by fitting three in-
dependent spline functions to the x, y, z components of the

data. Cubic splines are used to give the required C2 continu-
ity. Defining θ from sampled rotations is more complicated
as the most common forms of quaternion interpolation, the
SLERP [26] and SQUAD [27] algorithms, are only C0 and
C1 continuous respectively. The quaternion B-spline algo-
rithm of Kim et al. [28] provides the necessary continuity.

In order to perform realistic experiments, IMU simula-
tions should be based on motions representative of the sys-
tem’s intended usage. For the most accurate simulations
possible for a given application, these motions should be ob-
tained through capture of target motions using other meth-
ods such as optical capture. While potentially costly and
time consuming, the benefits of an accurate simulation in
reducing the risk of IMU system design may make this ef-
fort worthwhile. Alternatively, for simple or well-modelled
motions the trajectory functions could be defined directly.

Generation of IMU data from pre-existing motion data
offers a useful compromise solution. Use of existing data
ensures that test motions are realistic without incurring the
costs of performing dedicated experiments, and the use of
freely available data allows for simplified comparisons be-
tween competing algorithms. For human motion the Carnegie
Mellon University motion capture corpus1 is a suitable and
valuable resource.

4.1.1 Trajectories from rigid body models
In human motion the trajectories of individual points on

the body are not independent, since they are constrained by
the structure of the skeleton. For this reason human mo-
tion is normally modelled as movements of a jointed rigid
body model. An example of a rigid body model is shown
in Figure 2. Most human motion capture data is processed
to fit this type of model, and interchange formats such as
BioVision Hierarchy (BVH) files include the model structure
along with sampled positions of the root joint and rotations
of all joints. To simulate an IMU attached at some offset rel-
ative to a segment in this model, we require trajectory func-
tions which maintain the physical constraints of the skeleton.
The functions must take into account the kinematic chain of
joints connecting the IMU position to the root of the model.

Given a body model, its root position and joint rotations
as C2 continuous functions of time, and Equations 2–7, then
the positions, linear velocities, and linear accelerations of
any point attached to the model can be calculated in a re-
cursive manner. The position of a point, p, offset from a
joint, Jk, by an offset vector in joint local co-ordinates, o,

1Data available from http://mocap.cs.cmu.edu. The
database was created with funding from NSF EIA-0196217.
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Figure 2: Rigid body model example, showing joint
tree structure and sensors attached at offsets.

at time, t, can be calculated as:

p(o, Jk, t) = p(0, Jk, t) +RJk (t) ·o, (8)

where RJk (t) is the rotation of joint Jk at time t.
The positions of the joints, p(0, Jk, t) can in turn be cal-

culated by applying Equation 8 recursively:

p(0, Jk, t) =

(
pJ0

(t), k = 0

p(oJk , Jk−1, t), otherwise,
(9)

where: oJk is the offset of the of the joint Jk, in its parent’s
local co-ordinate frame; joint Jk−1 is the parent of joint Jk

in the body model tree; and joint J0 is the root.
The velocity of a point in the model can be calculated as:

v(o, Jk, t) = v(0, Jk, t) +RJk (t) · (ω × o) , (10a)

v(0, Jk, t) =

(
p′J0

(t), k = 0

v(oJk , Jk−1, t), otherwise,
(10b)

the acceleration of a joint as:

a(0, Jk, t) =

(
p′′J0

(t), k = 0

a(oJk , Jk−1, t), otherwise.
(11)

and the acceleration of an offset point as [6]:

a(o, Jk, t) = a(0, Jk, t) +

RJk (t) ·
`
α× o+ (o ·ω)ω − o‖ω‖2

´
(12)

where ω and α are the rotational rate and acceleration of
joint Jk at time t.

Figure 3 shows the visualisation of an example motion
taken from the CMU motion capture corpus. The trajec-
tory generation functions allow the source motion data to
be arbitrarily resampled, allowing for the effects of timing
factors such as IMU synchronisation error and delay between
ADC samples to be accurately modelled. This would not be
possible with a discrete time approach.

4.1.2 Trajectory Filtering
Source motion data captured by optical motion capture

systems, while highly accurate, can often suffer from high
frequency noise. This noise, if left unfiltered, results in sub-
stantial noise in derivative values that completely masks the
underlying form of the functions. In order to perform useful
simulations it is necessary to filter the raw source data to
remove this noise.

Figure 3: Visualisation of motion trajectories for a
walking subject. Source data at 120 Hz converted
to continuous time, model posture displayed at 5 Hz
and the velocity vector of the right foot displayed at
50 Hz.

For position data the simulation environment makes use of
smoothing splines rather than pure interpolating splines to
mitigate the effects of random residual errors in the source
motion capture. The smoothing spline has the property that
it minimises the second derivative, the acceleration, while
still maintaing the overall form of the observations. The
default standard deviation is 1 mm, based on the typical
residual errors reported for the popular Vicon and Qualisys
optical capture systems.

Rotational data is more complex to process as the cur-
rent quaternion B-spline implementation does not support
smoothing directly. We therefore acheive smoothing by ap-
plying a smoothing spline to each quaternion component
individually before the quaternion spline is generated. As
quaternions capture three degrees of freedom in four com-
ponent values, simple filtering of individual components in-
troduces distortions when sampled at low frequencies. How-
ever, with source motion capture gathered at high sample
rates, this effect is minimal.

4.2 Vector Field Modelling
The gravitational and magnetic fields of the Earth form

vector fields and can therefore be modelled respectively by
the functions:

g : R3 → R3, (13)

b : R3 → R3. (14)

For a simulation confined to an area which is miniscule com-
pared to the curvature of the Earth’s surface, the gravita-
tional and magnetic fields can be considered to be effectively
parallel vector fields, and thus:

g(x, y, z) = (gx, gy, gz)T = (0, 0, g0)T , (15)

b(x, y, z) = (bx, by, bz)T = b0

0@cos(φ) cos(θ)
cos(φ) sin(θ)

sin(φ)

1A , (16)

where g0 ≈ 9.81m/s2 is the local gravitational acceleration;
and b0 ≈ 50µT, θ, φ, the local magnetic field strength, dec-
lination and inclination respectively.

While ideally the required vector fields could be modelled
by Equations 15 and 16, both fields can be distorted by
nearby objects. Therefore we consider the causes and effects
of distortions to each of the modelled fields.

4.2.1 Gravitational Field Distortions
The Earth’s gravitational field varies with latitude, height,

the tidal effect of the moon and the sun, and variations in
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the local distribution of mass [29]. The effect of variation
with latitude can be estimated by the International Gravity
Formula while the effects of other variations on experienced
acceleration can be estimated by applying Newton’s laws of
gravitation and motion:

F =
Gm1m2

‖r‖2
r

‖r‖ , (17)

F = ma. (18)

The global variation experienced due to latitude and height,
about 0.5% and 0.3% of the nominal field strength respec-
tively, can be ignored for simulations within a small area.
Furthermore, these parameters affect only the magnitude of
the experienced acceleration and not its direction. The tidal
pull of the moon and sun results in a acceleration of up to
approximately 0.003% of the Earth field. This amount of ac-
celeration results in a maximum possible error of less than
0.02◦ [17].

The effect of variation in distribution of mass in the area
around an IMU is more complex to analyse. The gravi-
tational acceleration measured is determined by the vector
sum of all forces generated by surrounding masses:

a =

NX
i=0

Gmi

‖ri‖2
ri

‖ri‖
. (19)

While this could be evaluated for each point in an IMU tra-
jectory, it would present a significant computational over-
head, dependent on the granularity of the environment model.
As the mass of surrounding objects is so small relative to the
mass of the Earth, these effects can generally be ignored and
the simple model of Equation 15 used. As illustration, the
point mass required to introduce a significant error, on the
order of 0.1◦ at a distance of one metre, is equivalent to a
sphere of lead thirty-five meters in diameter [17].

4.2.2 Magnetic Field Distortions
The Earth’s magnetic field is commonly approximated

as a magnetic dipole with a magnetic south pole near the
Earth’s north pole, however this model is not accurate on a
local level. Variations in the surrounding materials, such as
iron rich mineral deposits in natural settings, or steel used
in building construction, cause distortions in the observed
field. These distortions can be easily observed using a nor-
mal magnetic compass and can result in heading errors of
up to 180◦.

Accurate modelling of magnetic fields using Maxwell’s equa-
tions is extremely complicated, relying on exact knowledge
of geometry and electro-magnetic properties. Therefore, for
the purposes of simulation magnetic field modelling is ap-
proximated in two ways: firstly, through simplified models
of ideal solenoids; and secondly, through empirical measure-
ments of real world environments.

Modelling of ideal solenoids is possible using the Biot-
Savart law and the theory of superposition. The magnetic
field of each solenoid is estimated using the model proposed
by Derby and Olbert [30]. This model allows for the efficient
calculation of the magnetic field at a point due to a single
solenoid. By simulating multiple parameterised solenoids,
with various translations and rotations, and combining their
fields through superposition complex fields can be created.

While simulation using ideal solenoid models allows for
generation of physically accurate fields, these are not neces-

sarily realistic, as they exclude many complex interactions
with surrounding materials. Use of empirically measured
fields provides greater realism, at the expense of an initial
investment in time.

Generating a vector field model from observations of the
field is a complex process. The accuracy of the field model
depends on the resolution of the observations, with more
observations leading to increased fidelity. Taking many field
observations in a structured manner, for example a regu-
lar three dimensional grid, is a laborious process. Taking a
large number of unstructured readings, using an optical mo-
tion capture system for position and orientation of a three-
dimensional magnetometer, is a far faster proposition. In
either case, once empirical data has been gathered, an inter-
polation algorithm must be used to generate the complete
field model. Field interpolation is performed using the nat-
ural neighbour interpolation algorithm by Hemsley [31].

4.3 Sensor Subsystem Modelling
Modelling of IMU sensor hardware is important as the

physical properties that the IMU senses must pass through
various transformations before being rendered as digital val-
ues within a micro-processor. The current framework mod-
els three main properties of the IMU hardware: the sensor
transfer function, relating physical properties to voltages;
injection of sensor noise; and ADC quantisation.

Transfer functions for individual sensors are based on man-
ufacturer information provided in device datasheets. These
transfer functions are generally specified as linear functions
from physical quantities to voltages. Three-dimensional mea-
surements are provided by sensor triads, either in monolithic
integrated packages or composed of multiple devices. To
model cross-axis sensitivity and non-orthogonal axis align-
ment a transform matrix is applied. Additional realism
may be added through the use of temperature dependency
and sensitivity to other physical parameters, for instance
the effects of linear acceleration on rotational rate gyro-
scopes. Further empirical characterisation, such as non-
linearity measurements or time varying bias conditions, could
be used to increase simulation accuracy for specific sensors.

As an example, Equation 20 shows the transfer function
of the Analog Devices ADXRS300 rotational rate gyroscope,
configured for a sensitivity of 1200◦/s [32]. The transfer
function relates the rotational rate in radians per second,
ω, to the analogue voltage at the ADC input, V gyro, in-
cluding the contributions of: linear acceleration sensitivity,
A; offset voltage, O; rotational rate sensitivity, S; and non-
orthogonality modelling matrix, T .

V gyro = ST (ω +Aa) +O

≈ 1.25× 10−3π

180
T

„
ω +

0.2

g0
a

«
+ 2.5 (20)

Practical sensors all suffer from some level of noise in out-
put signals. As observed sensor noise, n, is caused by many
independent sources it can generally be modelled as an ad-
ditive zero mean white Gaussian process with standard de-
viation σ:

n = N (0, σ). (21)

This can be confirmed, and a suitable value of σ deter-
mined experimentally, by measurement of the sensor output
while static. For example, Figure 4 shows a normal distri-
bution quantile-quantile plot for the noise from a Freescale
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Figure 4: Quantile-quantile plot of accelerometer
noise (ADC points) for Freescale MMA7260Q at
1.5 g sensitivity.

MMA7260Q tri-axial accelerometer. The high r2 correla-
tion value indicates a good fit to the normal distribution.
Autocorrelation or power spectral density plots can be used
to confirm frequency properties.

Filtered sensor values, derived from IMU trajectories, are
calculated as double precision floating point values to pro-
vide maximal consistency with analogue signals. To emu-
late the effects of analogue to digital conversion these values
are quantised to discrete values. Voltages are converted to
signed ADC values by the parametric ADC transfer func-
tion:

ADC (V, b, Vref) =

8>><>>:
−2b−1, V < −Vref,—
V

Vref
2b−1 +

1

2

�
− 2b−1,

2b−1 − 1, V ≥ Vref,

(22)
where, b is the number of bits in the ADC output and Vref

is the ADC reference voltage, generally taken to be Vcc/2.
As the sensor sub-system is modelled as a composite func-

tion of individual transfer functions, increased fidelity can be
added by substituting empirical characterisations of compo-
nents. This allows the simulator to be adapted in the future
to support more complex models including details such as
sensor non-linearities.

4.4 Wireless Communications Modelling
Because our simulations include the trajectories taken by

each IMU, and in the case of human movements also the
motion of the body, the opportunity exists to model in de-
tail the effects on wireless communications between IMU
devices. This could be of particular value in the design of
worn or carried wireless devices, which experience time vary-
ing obstruction by the user’s own body, leading to markedly
different channel properties compared to traditional WSN
applications [33].

At present however, we are not aware of channel mod-
els which could be easily plugged in to fulfil this function.
Traditional radio channel models, such as the model used
in the Castalia WSN simulator [11], model packet reception
probability as a stochastic function of transmission distance
and transmitter power. These models generally do not take
into account the specifics of local environmental obstruc-
tions. More recent models have begun to consider the effects
of environmental obstructions such as walls [34]. However,
all of these models are based on static deployments of nodes

within static environments. Development of body sensor
network specific radio models, dealing explicitly with the ef-
fects of the human body on radio propagation [35, 36], are
still in their infancy. Such models can be integrated easily
into the simulator when ready.

For the results in Section 6, a simple stochastic packet
reception model was used. A constant bit error rate prob-
ability, Pr(e), was assumed for all transmissions, and the
presence of one or more bit errors results in packet loss.
The probability of a packet of length l bits being lost, Pr(l)
is therefore simply:

Pr(l) = 1− (1− Pr(e))l . (23)

This model has the advantage that, having only a single
parameter, it is easy to tune for varying degrees of packet
throughput.

5. VALIDATION OF SIMULATOR
In order to test the accuracy of our simulations, we have

conducted some experiments to directly compare our sim-
ulated sensor values to those measured by real IMUs. To
achieve this, we used an optical motion capture system to
capture the movements of a subject who was also wearing
wireless IMUs. In addition to the normal markers on the
subject, the positions and rotations of the IMUs themselves
were tracked using three markers attached to each IMU. The
overall methodology was similar to that in [6], although un-
like that experiment we did not adjust sensor calibration
based on the optical capture.

We sampled the magnetic field in the capture area, us-
ing the magnetometer of an IMU swept around the capture
volume whilst being tracked by the optical system. These
measurements were later used to generate an interpolated
field model of the capture area. A subset of the samples
are illustrated in Figure 5a, for the region near the floor
where there was strongest distortion from steel structures
below. The median of the field vectors has been subtracted
to illustrate the distortions alone.

We collected capture data from a subject with three IMUs
on the left upper leg (femur), lower leg (tibia) and foot of
the subject. The subject was first captured in a standing
pose. The positions and rotations of the body segments at
a single moment in this pose were used to obtain the con-
stant offset parameters of the rigid body model described
in Section 4.1.1. The subject was then captured perform-
ing various movements. For each movement, the positions
of the root joint (hip) marker and the rotations of each seg-
ment were then used as source data for the position and
rotation splines of the model. We then ran simulations of
IMUs attached to this model. The constant position and ro-
tation offsets of these simulated IMUs relative to their joints
were taken again from the single standing reference frame;
the IMU marker data in the movements themselves were not
used to obtain our results.

Figure 6 displays complete sensor data comparisons for a
test motion in which the subject swings their leg forward
and back, thus generating accelerations along the chain of
joints. In general there is very strong correlation between the
simulated and real values, indicating correct behaviour of
the trajectory generation and rigid body modelling. Similar
results were obtained for other motions such as walking.

Note that no noise has been added to the simulated sig-
nals in this example; these are the idealised values to which
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(a) Magnetic field distortion samples near the floor of the
capture area. The volume shown is approx. 2× 2× 0.2 m.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time (s)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

F
ie

ld
st

re
ng

th
(b

0
)

(b) Effect of using interpolated field. Faded lines from real
data, dotted lines from simulation with constant field, solid

lines from simulation with interpolated field.

Figure 5: Magnetic field distortions and their effects on IMU data.

random noise can be added according to the parameters of
individual sensors. The generation of noise to given sta-
tistical parameters is a well understood task; it is the low
frequency information from the trajectory model which is
challenging to obtain and hence of interest here.

The importance of magnetic field modelling is illustrated
in Figure 5b, showing real and simulated values, with and
without distortion, for the magnetometer at the foot. As
the foot passes close to the floor at the bottom of the swing
there is a substantial change in the measured field vector.
If the magnetic field is modelled as a constant, there is a
large error between the simulated and real values. By using
an interpolated model of the field, a much closer match is
achieved.

6. DEMONSTRATION OF SIMULATION EN-
VIRONMENT

In order to demonstrate the application of IMUSim to the
development and testing of wireless inertial motion capture
algorithms we have implemented four algorithms:

Complementary Filter (CF) an implementation of the
original complementary orientation filter by Bachmann [2],
with the original Gauss-Newton iterative vector obser-
vation replaced by the FQA algorithm [37] as in later
work.

Gated Complementary Filter (GCF) a modification of
Bachmann’s original filter by Young [15], to use Gram-
Schmidt ortho-normalisation for vector observation, and
to reject clearly erroneous gravitational field measure-
ments.

Extended Kalman Filter (EKF) an implementation of
an Extended Kalman filter design by Yun et al. [4],
using FQA for vector observation.

Linear Acceleration Estimation Filter (LAEF) an im-
plementation of the distributed linear acceleration es-
timation filter proposed by Young et al. [6].

The source motion capture data for simulations was sub-
ject 16 trial 15 from the CMU motion capture corpus. No
gravitational or magnetic field distortions were included in
the simulation. All algorithms were simulated at a sam-
pling rate of 100 Hz; realistic sensor models including bias,
cross-axis sensitivity and noise; and a 12 bit ADC. For the
Linear Acceleration algorithm a lossy wireless channel with
a bit error rate probability of 10−3 was used for inter-IMU
communication.

6.1 Effects of Linear Acceleration
The implemented algorithms all have a similar structure

with rotational rate gyroscope data being fused with vector
observations of the gravitational and magnetic field. For a
moving subject the IMU accelerometers measure the vec-
tor sum of the gravitational field and the subject’s linear
acceleration. The effect of this is highly significant to the
observations of the gravitational field as illustrated by Fig-
ure 9. For clarity we have selected a single IMU, attached
to the top of the right tibia, for analysis, however, the same
effects are seen for all IMUs in the model.

The large variation in observed gravitational vector mea-
surements has a great effect on the accuracy of vector ob-
servation, and hence on filtered orientation accuracy, as il-
lustrated in Figures 7 and 8.

In the CF and EKF implementations, whose designs as-
sume that the gravitational acceleration vector is measured
with Gaussian noise, the corruption of the vector observa-
tion leads to substantial error. The particularly poor per-
formance of the EKF implementation is due to the poor
tuning of the measurement noise covariance matrix. Yun et
al. [4] estimate the covariance of the vector observation pro-
cess from measurements of a static IMU. This leads to far
greater confidence in the output of the vector observation
than is reasonable for an IMU undergoing substantial linear
accelerations, as in the case of a walking subject.

The GCF implementation, that detects linear acceleration
based on the magnitude of the measured acceleration, has
little opportunity to perform drift correction, and the vec-
tor observations that are made are frequently inaccurate,
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(a) Femur Accelerometer
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(b) Tibia Accelerometer
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(c) Foot Accelerometer
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(d) Femur Magnetometer
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(e) Tibia Magnetometer
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(f) Foot Magnetometer
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(g) Femur Gyroscope
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(h) Tibia Gyroscope
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(i) Foot Gyroscope
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Figure 6: Comparison of measured and simulated data for swinging leg motion. Solid lines in time series
plots are simulated data, faded lines are real IMU measurements.
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(a) Accelerometer x-axis
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(b) Accelerometer y-axis
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(c) Accelerometer z-axis

Figure 9: Comparison of gravitational acceleration (black line) and total acceleration (grey line) for a realistic
IMU model attached to the top of the right tibia. The total acceleration shows much greater variation due
to the effects of linear acceleration caused by subject motion.
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(d) Linear Acceleration Estimation Filter

Figure 7: Vector observation quaternion compo-
nents (solid lines) and true orientations (dotted
lines) for realistic IMU model attached to the top
of the right tibia.
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Figure 8: Estimated IMU orientation quaternion
components (solid lines) and true orientations (dot-
ted lines) for realistic IMU model attached to the
top of the right tibia.
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Table 1: Packet delivery rate and estimated orienta-
tion accuracy for the LAEF algorithm with varying
BER.

BER=10−3 BER=10−4

Joint DR(%) RMSE(◦) DR(%) RMSE(◦)

root — 4.1± 0.6 — 4.1± 0.6
rfemur 88.3± 1.4 3.4± 1.8 98.4± 0.5 3.5± 1.8
rtibia 78.1± 2.3 3.3± 1.7 97.1± 0.8 3.7± 2.1
rfoot 69.3± 2.6 3.6± 1.5 96.0± 1.1 4.4± 1.7
lfemur 87.7± 1.5 3.4± 2.0 98.1± 0.5 3.6± 2.1
ltibia 77.6± 2.0 3.4± 1.8 97.0± 0.6 3.7± 2.1
lfoot 68.7± 2.1 3.9± 1.7 95.8± 0.7 5.0± 2.1

leading to corruption of estimated state.
The LAEF implementation, that is specifically designed

to estimate linear accelerations due to rigid body motion,
shows much less variation in the accuracy of vector observa-
tion, directly leading to its markedly better performance.

6.2 Effect of Packet Loss on Linear Accelera-
tion Estimation Filter

The CF, GCF, and EKF, algorithms operate solely on lo-
cally sensed data to estimate orientation, In contrast, the
distributed LAEF algorithm requires estimated linear accel-
eration data to be transferred between IMUs. The original
paper on the LAEF [6] acknowledges that packets will be
lost, but does not present any results regarding what hap-
pens in this case.

To test the sensitivity of the LAEF algorithm to packet
loss simulations were performed with Bit Error Rates (BER)
of 10−3 and 10−4. Fifty independent simulations were per-
formed for each BER, the results of which are shown in
Table 1.

Two points are evident from the simulation results: orien-
tation accuracy is a function of kinematic chain length, and
increased BER does not adversely affect algorithm accuracy.

Investigation of the simulation results yielded the likely
cause for the increase of error with kinematic chain length.
Due to the numerical differentiation required by the LAEF
algorithm, to estimate angular acceleration from rate gyro-
scope data, minor numerical errors result even when using
floating point numbers and perfect sensors. These minor
errors are amplified as the length of the kinematic chain in-
creases. When using realistic sensor models with noise, as in
the presented results, the accuracy of linear acceleration es-
timation is substantially reduced compared to the behaviour
with ideal sensor models.

Increased BER reduces the possibility to perform gyro-
scope drift correction. However, provided the time between
drift corrections is sufficiently small, no large error can ac-
cumulate. With the simple BER channel model used in the
current simulations packet loss is not temporally correlated
so typically there are no long periods without reception. Fur-
ther work is required to investigate the effects of temporal
packet loss correlation on orientation accuracy.

7. CONCLUSIONS
A new simulation environment targeted specifically at in-

ertial sensing applications has been developed, that can sim-
ulate IMU measurements from trajectory definitions for any
application. It allows continuous trajectories to be synthe-

sised from existing discrete time trajectory data or rigid
body motion capture, reducing the barriers to realistic ex-
perimentation, and allowing comparisons to be performed
using commonly available data sets.

The generated IMU sensor data has been validated against
real IMU measurements for simulations based on captured
human motions and an empirical environmental model. The
use of the simulator in obtaining new results in orientation
algorithm comparison has also been demonstrated. The sim-
ulations have revealed problems with proposed algorithms
that were not recognised in the original publications due to
the lack of realistic test scenarios.

The simulator is available at http://www.imusim.org/

under an open source license. It is designed to be easy
to extend with new models and algorithms, allowing it to
continuously evolve as a common tool for research and de-
velopment in a wide range of inertial sensing applications.
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