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C H A P T E R

1
RAY OPTICS

1.1 POSTULATES OF RAY OPTICS

EXERCISE 1.1-1
Proof of Snell’s Law
The pathlength is given by n1d1 sec θ1 + n2d2 sec θ2. (1)

The pathlength is a function of θ1 and θ2, which are related by

d1 tan θ1 + d2 tan θ2 = d . (2)

The pathlength is minimized when ∂
∂θ1

[n1d1 sec θ1 + n2d2 sec θ2] = 0,

i.e., when n1d1 sec θ1 tan θ1 + n2d2 sec θ2 tan θ2(∂θ2/∂θ1) = 0. (3)

From (2), we have ∂
∂θ1

[d1 tan θ1 + d2 tan θ2] = 0,

so that d1 sec2 θ1 + d2 sec2 θ2(∂θ2/∂θ1) = 0 and
∂θ2

∂θ1

= −d1 sec2 θ1

d2 sec2 θ2

.

Substituting into (3), we have n1d1 sec θ1 tan θ1 − n2
d1 sec2 θ1 tan θ2

sec θ2

= 0,

whereupon n1 tan θ1 = n2 sec θ1 sin θ2, from which n1 sin θ1 = n2 sin θ2, which is Snell’s
law.

1.2 SIMPLE OPTICAL COMPONENTS

EXERCISE 1.2-1
Image Formation by a Spherical Mirror

z
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2
)

y
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θ2
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ϕ
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1
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1
)

A ray originating at P1 = (y1, z1) at angle θ1 meets the mirror at height
y ≈ y1 + θ1z1. (1)

The angle of incidence at the mirror is φ = ψ − θ1 ≈
y

−R
− θ1.

The reflected ray makes angle θ2 with the z axis:

θ2 = 2φ+ θ1 = 2

[
y

−R
− θ1

]
+ θ1 =

2y

−R
− θ1 =

2(y1 + θ1 z1)

−R
− θ1.

Substituting f = −R
2

, we have θ2 =
y1 + θ1 z1

f
− θ1. (2)

The height y2 can be determined from y + (−y2)
z2

≈ θ2. (3)

1



Saleh & Teich Fundamentals of Photonics, Third Edition: Exercise Solutions ©2019 page 2

Substituting from (1) and (2) into (3), we have y1 + θ1z1 − y2 = z2

[
y1 + θ1 z1

f
− θ1

]
and y2 = y1 −

z2 y1

f
+ θ1

[
z1 −

z1 z2

f
+ z2

]
.

If
[
z1 −

z1 z2

f
+ z2

]
= 0, or 1

z1
+ 1
z2

= 1
f

, we have

y2 = y1

(
1− z2

f

)
, (4)

which is independent of θ1.
From (4) it is clear that

z2

f
= 1− y2

y1

, so that y2 = −z2

z1

y1.

EXERCISE 1.2-2
Image Formation

P
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y

n
1

θ
1

P
2

n
2

−θ
2

R

ϕ

ϕ

a) From Snell’s law, we have n1 sin (θ1 + φ) = n2 sin [φ− (−θ2)]. Since all angles are
small, the paraxial version of Snell’s Law is n1(θ1 + φ) ≈ n2(φ+ θ2), or
θ2 ≈ (n1/n2)θ1 + [(n1 − n2)/n2]φ.

Because φ ≈ y/R, we obtain θ2 ≈
n1

n2

θ1 −
n2 − n1

n2R
y, which is (1.2-8).

b) Substituting θ1 ≈ y/z1 and (−θ2) ≈ y/z2 into (1.2-8),

we have −y/z2 ≈
(n1/n2) y

z1

− n2 − n1

n2R
y, from which (1.2-9) follows.

c) With reference to Fig. 1.2-13(b), for the ray passing through the origin 0, we have
angles of incidence and refraction given by y1/z1 and −y2/z2, respectively, so that
the paraxial Snell’s Law leads to (1.2-10). Rays at other angles are also directed
from P1 to P2, as can be shown using a derivation similar to that followed in Exer-
cise 1.2-1.

EXERCISE 1.2-3
Aberration-Free Imaging Surface In accordance with Fermat’s principle, we require
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z
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z

y

y

z

that the optical path length obey n1d1+n2d2 = constant = n1z1+n2z2. This constitutes
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an equation defining the surface, which can be written in Cartesian coordinates as
n1

√
(z + z1)2 + y2 + n2

√
(z2 − z)2 + y2 = n1z1 + n2z2. (1)

Given z1 and z2, (1) relates y to z and thus defines the surface.

EXERCISE 1.2-4
Proof of the Thin Lens Formulas

A ray at angle θ1 and height y refracts at the first surface in accordance with (1.2-8)
and its angle is altered to θ = θ1

n
− n− 1

nR1

y , (1)

where R1 is the radius of the first surface (R1 < 0).

At the second surface, the angle is altered again to θ2 = nθ − 1− n
R2

y , (2)

where R2 is the radius of the second surface (R2 > 0). We have assumed that the ray
height is not altered since the lens is thin.

Substituting (1) into (2) we obtain:

θ2 = n

[
θ1

n
− n− 1

nR1

y

]
− 1− n

R2

y = θ1 − (n− 1) y

[
1
R1

− 1
R2

]
.

Using (1.2-11), we invoke θ2 = θ1 − (y/f). (3)

If θ1 = 0, then θ2 = (−y/f), and z2 ≈ (y/−θ2) = f , where f is the focal length. In
general θ1 ≈ y

z1
and −θ2 =

y
z2

. Therefore from (3), −y
z2

=
y
z1
− y
f
, from which (1.2-

13) follows. Equation (1.2-14) can be proved by use of an approach similar to that used
in Exercise 1.2-1.

EXERCISE 1.2-5
Numerical Aperture and Angle of Acceptance of an Optical Fiber

Applying Snell’s law at the air/core surface:
sin θa = n1 sin θc = n1 cos θc (1)

n
1

n
2

θc

θa

θc

1

Since sin θc = n2/n1, cos θc =
√

1− (n2/n1)2 .

Therefore, from (1), NA ≡ sin θa = n1

√
1− (n2/n1)2 =

√
n2

1 − n2
2 .

For silica glass with n1 = 1.475 and n2 = 1.460, the numerical aperture NA = 0.21 and
the acceptance angle θa = 12.1◦.
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EXERCISE 1.2-6
Light Trapped in a Light-Emitting Diode

a) The rays within the six cones of half angle θc =
sin−1(1/n) ( = 16.1◦ for GaAs) are refracted into air
in all directions, as shown in the illustration. The rays
outside these six cones are internally reflected. Since
θc < 45◦, the cones do not overlap and the reflected
rays remain outside the cones and continue to reflect
internally without refraction. These are the trapped rays.

θc

b) The area of the spherical cap atop one of these cones is A =
∫ θc

0
2πr sin θ r dθ =

2πr2(1 − cos θc), while the area of the entire sphere is 4πr2. Thus, the fraction of
the emitted light that lies within the solid angle subtended by one of these cones is
A/4πr2 = 1

2
(1 − cos θc) (see Sec. 18.1B). Thus, the ratio of the extracted light to the

total light is 6 × 1
2
(1 − cos θc) = 3(1 − cos θc) ( = 0.118 for GaAs). Thus, 11.8% of the

light is extracted for GaAs.
Note that this derivation is valid only for θc < 45◦ or n >

√
2.

1.3 GRADED-INDEX OPTICS

EXERCISE 1.3-1
The GRIN Slab as a Lens
Using (1.3-11) and (1.3-12), with θ0 = 0 and z = d , we have y(d) = y0 cos (αd) and
θ(d) = −y0α sin (αd). Rays refract into air at an angle θ ′ ≈ n0|θ(d)| = n0y0α sin (αd).

Therefore, AF ≈ y(d)

θ′
=

y0 cos (αd)

noy0α sin (αd)
= 1

n0α tan (αd)
and

f =
y0

θ′
= 1

n0α sin (αd)
, so that

AH = f − AF = 1
n0α

[
1

sin (αd)
− 1

tan (αd)

]
= 1

n0α
1− cos (αd)

sin (αd)

= 1
n0α

2 sin2(αd/2)

2 sin (αd/2) cos (αd/2)
= 1

n0α
tan (αd/2).

Trajectories:

f

H A F

y
0

θ '

d = π/α d = π/2α
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EXERCISE 1.3-2
Numerical Aperture of the Graded-Index Fiber
Using (1.3-11) with y0 = 0, we obtain y(z) = (θ0/α) sin(αz). The ray traces a sinusoidal
trajectory with amplitude θ0/α that must not exceed the radius a. Thus θ0/α = a.
The acceptance angle is therefore θa ≈ n0θ0 = n0αa.

For a step-index fiber (Exercise 1.2-5),
θa =

√
n2

1 − n2
2 =

√
(n1 + n2)(n1 − n2).

If n1 ≈ n2, θa ≈
√

2n1(n1 − n2).
If n1 = n0 and n2 = n0(1− α2a2/2),

θa ≈
√

2n0(α2a2n0/2) = αan0 , which is the
same acceptance angle as for the graded-index fiber.

θ
a

a

θ
0

1.4 MATRIX OPTICS

EXERCISE 1.4-1
Special Forms of the Ray-Transfer Matrix
Using the basic equations
y2 = Ay1 + B θ1 and θ2 = C y1 + D θ1, we obtain:

• If A = 0, then y2 = B θ1, i.e., for a given θ1, we
see that y2 is the same regardless of y1.
This is a focusing system.

θ
1

y
2

• If B = 0, then y2 = A y1, i.e., for a given y1, we
see that y2 is the same regardless of θ1.
This is an imaging system.

y
2

y
1

• If C = 0, then θ2 = D θ1, i.e., we see that all
parallel rays remain parallel.

θ
1 θ

2

• If D = 0, then θ2 = C y1, i.e., we see that all rays
originating from a point become parallel. θ

2

y
1
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EXERCISE 1.4-2
A Set of Parallel Transparent Plates

The first plate has ray transfer matrix:
[
1 d1

0 1

] [
1 0
0 1/n1

]
=

[
1 d1/n1

0 1/n1

]
.

The second plate has ray transfer ma-
trix:

[
1 d2

0 1

] [
1 0
0 n1/n2

]
=

[
1 d2n1/n2

0 n1/n2

]
.

The first and second plates together have a ray transfer matrix:[
1 d2n1/n2

0 n1/n2

] [
1 d1/n1

0 1/n1

]
=

[
1 d1/n1 + d2/n2

0 1/n2

]
.

Similarly N plates have a ray transfer
matrix:

[
1

∑
i d i/ni

0 1/nN

]
.

Including the interface between the N th plate and air, the overall ray transfer matrix
becomes:[
1 0
0 nN

] [
1

∑
i d i/ni

0 1/nN

]
=

[
1

∑
i d i/ni

0 1

]
.

The ray transfer matrix of an inhomogeneous plate with refractive index n(z) and width
d is:1

d∫
0

dz/n(z)

0 1

.

EXERCISE 1.4-3
A Gap Followed by a Thin Lens

M =

[
1 0
−1/f 1

] [
1 d
0 1

]
=

[
1 d
−1/f 1− d/f

]
.

EXERCISE 1.4-4
Imaging with a Thin Lens

M =

[
1 d2

0 1

] [
1 d1

−1/f 1− d1/f

]
=

[
1− d2/f d1 + d2(1− d1/f)
−1/f 1− d1/f

]
.

For imaging, the matrix element B must vanish (see Exercise 1.4-1),
so that d1 + d2(1− d1/f) = 0. Dividing this by d1d2 yields 1/d2 + 1/d1 − 1/f = 0.

For all parallel rays to be focused onto a single point, the matrix element A must vanish
(see Exercise 1.4-1), so that 1− d2/f = 0 or d2 = f .
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EXERCISE 1.4-5
Imaging with a Thick Lens

a) This system is composed of 5 subsystems:
1) A distance d1 in air, followed by
2) An air/glass refracting surface, followed by
3) A distance d in glass, followed by
4) An glass/air refracting surface, followed by
5) A distance d2 in air.

The ray transfer matrix of subsystem 2) is:[
1 0

−(n− 1)/nR 1/n

]
=

[
1 0

−1/nf1 1/n

]
, where f1 = R/(n− 1).

The ray transfer matrix of subsystems 2) and 3) is:[
1 d
0 1

] [
1 0

−1/nf1 1/n

]
=

[
1− d/nf1 d/n
−1/nf1 1/n

]
.

The ray transfer matrix of subsystems 2), 3), and 4) (the lens) is:[
1 0

−(n− 1)/R n

] [
1− d/nf1 d/n
−1/nf1 1/n

]
=

[
1− d/nf1 d/n

−(1− d/nf1)/f1 − 1/f1 −d/nf1 + 1

]
.

The ray transfer matrix of the entire system is:[
1 d2

0 1

] [
1− d/nf1 d/n

−2/f1 + d/nf 2
1 1− d/nf1

] [
1 d1

0 1

]
.

For this system to be an imaging system, the B element of its ray transfer matrix must
vanish, i.e., B = d1(1− d/nf1) + d/n+ d2 [d1(−2/f1 + d/nf 2

1 ) + (1− d/nf1)] = 0.

Grouping together the terms proportional to d1, d2, and d1d2, we have
(d1 + d2)(1− d/nf1)− d1d2(2/f0 − d/nf 2

1 ) + d/n = 0. (1)

Using the definitions
1/f = 2/f1 − d/nf 2

1 (2)
and h = (fd/nf1), (3)

(1) becomes: (d1 + d2)(1− h/f)− d1d2/f + d/n = 0. (4)

We now rewrite (4) in terms of z1 and z2 by substituting d1 = z1 − h and d2 = z2 − h.
The results is: z1 + z2 − z1z2/f + b = 0, (5)

where b = d/n− h2/f − 2h(1− h/f) = d/n+ h2/f − 2h
= d/n+ (h/f)(h− 2f).

(6)

If b = 0, (5) gives the desired result, 1/z1 + 1/z2 = 1/f . To prove that b = 0, we use
(2) and (3) to write 1/f = (2f − h)/f1f , from which 2f − h = f1. Substituting this
into (6), we obtain b = d/n − hf1/f . We now use (3) to write d/n = hf1/f , so that
b = hf1/f − hf1/f = 0, as promised.

b) We show below that a ray parallel to the optical axis at height y1 must pass through
the point F2, a distance f − h from the right surface of the lens, regardless of the
height y1. This can be easily shown if we consider the ray transfer matrix of the system
composed of the thick lens (subsystems 2, 3, and 4 above) followed by a distance
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f − h in air. This composite system has ray transfer matrix[
1 f − h
0 1

] [
1− d/nf1 d/n

−2/f1 + d/nf 2
1 1− d/nf1

]
.

If the element A = 0, then y2 = B θ1 so that for θ1 = 0 (for rays parallel to the optical
axis), we have y2 = 0, i.e., the rays pass through the point F2.

We now examine A = (1− d/nf1) + (f − h)(−2/f1 + d/nf 2
1 ), and show that it is 0.

Using (2), we have A = (1−h/f)+(f − h)(−2 + h/f)/f1. Using the relation 2f−h = f1,
we obtain A = (1− h/f) + (f − h)/(−f) = 0, as promised.

EXERCISE 1.4-6
A Periodic Set of Pairs of Different Lenses

Here, the unit cell is composed of 2 subsystems, each comprising a distance d of free
space followed by a lens. The ray transfer matrix of the unit cell is therefore given by
the product [

1 d
−1/f2 1− d/f2

] [
1 d

−1/f1 1− d/f1

]
.

The A and D elements of this product are:

A = 1− d/f1, D = −d/f2 + (1− d/f2)(1− d/f1)

so that

b = (A + D)/2 = 1− d/f1 − d/f2 + d2/2f1f2 = 2(1− d/2f1)(1− d/2f2)− 1.

The condition |b| ≤ 1 is equivalent to −1 ≤ b ≤ 1 or 0 ≤ b+ 1 ≤ 2, which leads to the
desired condition

0 ≤ (1− d/2f1)(1− d/2f2) ≤ 1.

EXERCISE 1.4-7
An Optical Resonator

The resonator may be regarded as a periodic system whose unit system is a single
round trip between the pair of mirrors. In a resonator of length d , a paraxial ray starting
at the position y0 travels a distance d in free space, is reflected from the mirror 2,
then travels again backward through the same distance of free space, and finally
is reflected from the mirror 1 at position y1. The process is repeated periodically.
The unit cell therefore consists of a cascade of two subsystems, each comprising
propagation in free space followed by reflection from a mirror. The condition of stability
may determined by writing the ray transfer matrix of the unit cell, as in the previous
exercise. Since a mirror with radius of curvature R has the same ray transfer matrix
as a lens with focal length f , if f = −R/2, the stability condition determined for the
periodic set of pairs of lenses considered in the previous exercise may be directly used
to obtain:

0 ≤ (1 + d/R1)(1 + d/R2) ≤ 1.

The same result is set forth in (11.2-5).
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C H A P T E R

2
WAVE OPTICS

2.2 MONOCHROMATIC WAVES

EXERCISE 2.2-1
Validity of the Fresnel Approximation

Given: λ = 633× 10−9 m, d = 1 m.

The Fresnel approximation is valid when NFθ
2
m

4
� 1, where NF = a2

λd
and θm = a

d
.

The condition is, therefore, a4

4λd 3 � 1 or a �
(

4λd 3
)1/4

= 0.04 m. Thus the radius a

must be much smaller than 4 cm. When a = 4 cm, NF = a 2

λd
= 2514 and θm = a

d
=

0.04 rad.

EXERCISE 2.2-2
The Paraboloidal Wave and the Gaussian Beam

A = (A0/z) exp[−jk(x2 + y2)/2z], (1)

∂A
∂x

= −jxA k
z

,

∂ 2A
∂x2

= −j k
z

(
x ∂A
∂x

+A
)

= −j k
z

(
−jx2A k

z
+A

)
= −jA k

z
−
(
k
z

)2
x 2A.

Similarly, ∂
2A
∂y2

= −jA k
z
−
(
k
z

)2
y2A,

so that ∇ 2
TA = −j2A k

z
−
(
k
z

)2
(x2 + y2)A. (2)

Now,
∂A
∂z

= −A0

z2
exp

[
−jk (x2 + y2)

2z

]
+ A0

z

[
jk
2z2

(x2 + y2)
]

exp

[
−jk (x2 + y2)

2z

]
= −A

z
+

jk
2z2

(x2 + y2)A. (3)

Substituting (2) and (3) into the paraxial Helmholtz equation, we see that
∇2
TA− j2k ∂A∂z

= 0, so that (1) does indeed satisfy this equation.

Replacing z by q(z) = z+ jz0 in (1) does not alter the validity of the paraxial Helmholtz
equation since jz0 is a constant and therefore [∂/∂q](·) = [∂/∂z](·).

At z = 0, we have q = jz0, whereupon (1) gives: A(r) = A0

jz0
exp

[
−k (x2 + y2)

2 z0

]
,

whence the intensity is written as |A(r)|2 =
(
A0

z0

)2

exp

[
−k (x2 + y2)

z0

]
.

This is a Gaussian function of x and y that has its peak at x = y = 0 and that decreases
as the radial coordinate ρ =

√
x2 + y2 increases. It reaches 1/e2 of its peak value at

ρ =
√
λz0/π [see (3.1-11)].

9
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2.4 SIMPLE OPTICAL COMPONENTS

EXERCISE 2.4-1
Transmission Through a Prism

Substituting d(x, y) ≈ αx into (2.4-5) leads to the desired result.

EXERCISE 2.4-2
Double-Convex Lens

t(x, y) = t1(x, y) t2(x, y) = h 01 exp

[
jko (x2 + y2)

2f1

]
h 02 exp

[
jko (x2 + y2)

2f2

]
where

f1 =
R1

n− 1
and f2 =

−R2

n− 1
and h 01 and h 02 are constants.

Thus t(x, y) = h0 exp

[
jko (x2 + y2)

2f

]
, where 1

f
= 1

f1

+ 1
f2

=

(n− 1)(1/R1 − 1/R2) and h0 = h 01 h 02 is a constant. Note that R2 is negative.

EXERCISE 2.4-3
Focusing of a Plane Wave by a Thin Lens

U1(x, y) = exp (−jkz), and t(x, y) = h0 exp [jk (x2 + y2) /2f ].
Therefore, U2(x, y) = U1(x, y) t(x, y) = h0 exp {−jk [z − (x2 + y2) /2f ]}.

The wavefronts of this wave are paraboloids of revolution, defined by z−(x2 + y2) /2f =
constant, with radius of curvature −f , i.e., they approximate a spherical wave focused
at a point a distance f to the right of the lens.

If the incident wave is a plane wave at a small angle θ, U1(x, y) ≈ exp [−jk(z + θx)],
then

U2(x, y) = U1(x, y) t(x, y) ≈ h0 exp
{
−jk

[
z + θx−

(
x2 + y2

)
/2f

]}
.

= h0 exp
{
−jk

[
z −

(
x2 − 2fθx+ y2

)
/2f

]}
.

= h0 exp
{
−jk

[
z −

(
(x− fθ)2

+ y2
)
/2f

]}
.

This is a paraboloidal wave centered about the point (fθ, 0, f), as illustrated below.

f

θ
θf
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EXERCISE 2.4-4
Imaging Property of a Lens

Choose a coordinate system with z = 0 at the lens. The incident wave is a spherical
wave centered at z = −z1, i.e., U1(x, y) ≈ exp [−jk (x2 + y2) /2z1] so that

U2(x, y) ≈ exp
[
−jk

(
x2 + y2

)
/2z1

]
exp

[
jk
(
x2 + y2

)
/2f

]
≈ exp

[
jk
(
x2 + y2

)
/2z2

]
,

where 1
z2

= 1
f
− 1
z1

or 1
z1

+ 1
z2

= 1
f

.

The transmitted wave is, therefore, a spherical wave centered at the point z = z2.

EXERCISE 2.4-5
Transmission Through a Diffraction Grating

a) d(x)=
d0

2

[
1 + cos

2πx

Λ

]
t(x) = exp (−jkod0) exp [−j (n− 1) kod(x)]

= h0 exp [−j (n− 1) (kod0/2) cos (2πx/Λ)], where
h0 = exp [−j (n+ 1) (kod0/2)].

b) Since t(x) is a periodic function of x with period Λ, it can be expanded in a Fourier
series: t(x) =

∑
q Cq exp (−jq2πx/Λ), where Cq are the Fourier coefficients. If the

incident wave is a plane wave at a small angle θi, i.e., U1(x) = exp [−jko (z + θi x)],
the transmitted wave has amplitude:

U2(x) = t(x)U(x)
= exp [−j (koz + koθi x+ q2πx/Λ)] = exp [−jko (z + θq x)],

where θq = θi + q2π/koΛ = θi + qλ/Λ. Thus the transmitted wave is composed of
plane waves at angles θq.

EXERCISE 2.4-6
Graded-Index Lens

Substituting n = n0 [1− α2 (x2 + y2) /2] into (2.4-14), we obtain

t = exp (−jnkod0) = h0 exp [jn0α
2kod0 (x2 + y2) /2], with h0 = exp (−jn0kod0).

Thus, t = h0 exp [jko (x2 + y2) /2f ], where 1/2f = n0α
2d0/2 so that f = 1/n0α

2d0.

This is the amplitude transmittance of a lens of focal length f .
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2.5 INTERFERENCE

EXERCISE 2.5-1
Interference of a Plane Wave and a Spherical Wave

I = I1 + I2 + 2
√
I1I2 cosϕ, where I1 = |A1|2, I2 = |A2|2, and

ϕ = k (x2 + y2) /2z = π (x2 + y2) /λd .

Therefore I(x, y, d) = I1 + I2 + 2
√
I1I2 cos [π (x2 + y2) /λd ].

This locus of constant I are circles (x2 + y2) = constant. The function cos (πx2) is
plotted in Table A.1-1. It is a sinusoidal function, called the chirp function, whose
frequency increases as x increases. This is why the rings in the interference pattern
become closer and closer as x2 + y2 increases.

EXERCISE 2.5-2
Interference of Two Spherical Waves

U1 = A
z

exp {−jkz} exp
{
−jk

[
(x− a)

2
+ y2

]
/2z
}

and

U2 = A
z

exp {−jkz} exp
{
−jk

[
(x+ a)

2
+ y2

]
/2z
}

.

At z = d , I = 2I0 + 2I0 cosϕ, where I0 = |A/d |2 and
ϕ = (k/2d)

{[
(x+ a)

2
+ y2

]
−
[
(x− a)

2
+ y2

]}
= (π/λd) (4ax) = 4πax/λd .

Therefore, I = 2I0 [1 + cos (2πxθ/λ)], where θ = 2a/d .

EXERCISE 2.5-3
Bragg Reflection

The phase difference between two reflections is ϕ = k (Λ2 − Λ1).
But Λ2 = Λ/ sin θ and Λ1 = Λ2 cos 2θ = Λ cos 2θ/ sin θ.

Therefore, ϕ = k (Λ/ sin θ) (1− cos 2θ) = k (Λ/ sin θ) 2 sin2 θ = k (2Λ sin θ).

For ϕ = 2π, we have kΛ sin θ = π so that 2Λ sin θ/λ = 1, or equivalently,

sin θ = λ/2Λ.

Λ

θ θ

θ

θ

Λ
1

Λ
2
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2.6 POLYCHROMATIC AND PULSED LIGHT

EXERCISE 2.6-1
Optical Doppler Radar

a) The two waves have a phase shift ϕ = 2πν1t−2πν2t = 2π (ν1 − ν2) t = 2π (2v/c) νt.
The intensity of their superposition is I = I1 +I2 +2

√
I1I2 cos [2π (2v/c) νt]. This is a

sinusoidal function of time with frequency 2 (v/c) ν. The velocity v can be observed
by monitoring I as a function of time.

b) ϕ = k (z2 − z1) = k (2vt) = (2πν/c) 2vt = 2π
(
2 v
c
ν
)
t, so that the beat frequency is

±2 v
c
ν.
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C H A P T E R

3
BEAM OPTICS

3.1 THE GAUSSIAN BEAM

EXERCISE 3.1-1
Parameters of a Gaussian Laser Beam

Given: λ = 633 nm = 633× 10−9 m; P = 10−3 W; W0 = 0.05× 10−3 m

a) θ0 = λ/ (πW0) = 4.03× 10−3 rad = 4.03 mrad.
z0 = W0/θ0 = 0.012.
Depth of focus = 2z0 = 0.025 m = 2.5 cm.

At z = 3.5× 105 km = 3.5× 108 m, W (z) = W0

√
1 + (z/z0)

2
= 1.41× 106 m.

Diameter = 2821 km.

b) At z = 0, R =∞.
At z = z0, R = 2z0 = 2.5 cm.
At z = 2z0, R = z

[
1 + (z0/z)

2
]

= 0.031 m = 3.1 cm.

c) At beam center, I = I0 = 2P/πW 2
0 = 2.546× 105 W/m2 = 25.46 W/cm2.

On beam axis at z = z0, I = I0 [W0/W (z0)]
2

= I0/2 = 12.73 W/cm2.
A spherical wave of power P = 100 W at z = z0 = 2.5 cm has intensity I =
P/ (4πz2) = 5.169× 104 = 5.169 W/cm2.

EXERCISE 3.1-2
Validity of the Paraxial Approximation for a Gaussian Beam

The condition (2.2-21) is ∂A/∂z � kA.

In accordance with (3.1-4), A = A1

q
exp
−jkρ2

2q
where q = z + jz0. Therefore,

∂A

∂z
= −

(
A1

q2

)
q ′ exp

[
−jkρ2

2q

]
+

(
A1

q

)[
jkρ2q ′

2q2

]
exp

[
−jkρ2

2q

]
= −q

′A

q
+A

[
jkρ2q ′

2q2

]
where q ′ =

∂q

∂z
= 1.

The condition ∂A/∂z � kA is therefore equivalent to
−A/q + [jkρ2/2q2]A� kA, or −1/kq + [jρ2/2q2]� 1.
Substituting 1/q = 1/R− j2/kW 2, we then have
(1/kR) [1 + 2ρ2/W 2] + j [− (2/k2W 2) (1 + ρ2/W 2) + (ρ2/W 2) / (2R2/W 2)]� 1.

Assuming that ρ is not much greater than W , i.e., for points not far outside the beam
width, this condition is satisfied if
a) kR� 1;
b) kW � 1; and
c) R�W .

14
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Condition a) signifies that the radius of curvature R� λ. Because the minimum radius
of curvature is z0, condition a) is satisfied if z0 � λ. Similarly, condition b) is satisfied
if W0 � λ, or θ0 = λ/πW0 � 1. However, condition c) is also satisfied if θ0 � 1: for
small z, R � W0; for z = z0, R = z0 � W =

√
2W0 because θ0 = W0/z0 � 1; for

large z, R ≈ z and W = θ0z so that R/W = 1/θ0 � 1.

In summary, the conditions z0 � λ, W0 � λ, and θ0 � 1 guarantee that ∂A/∂z � kA
and, therefore, that the paraxial approximation is satisfied.

EXERCISE 3.1-3
Determination of a Beam with Given Width and Curvature

Use
W 2 = W 2

0

[
1 + (z/z0)

2
]

(1)

R = z
[
1 + (z0/z)

2
]

(2)

to obtain W 2/R = (z/z0)W 2
0 /z0 = (z/z0) (λ/π), from which

(z/z0) = (π/λ)W 2/R. (3)

Substituting (3) into (1) and (2) we obtain (3.1-26) and (3.1-25).

EXERCISE 3.1-4
Determination of the Width and Curvature at One Point Given the Width and
Curvature at Another Point

Given: λ = 10−6 m; At position 1, R1 = 1 m and W1 = 10−3 m.
Find: R2 and W2 at position 2, z2 = z1 + d , d = 0.1 m.

We use the relations: q2 = q1 + d

1/q1 = 1/R1 − jλ/πW 2
1

1/q2 = 1/R2 − jλ/πW 2
2 .

Thus, 1/q1 = 1− j0.32 and q1 = 0.91 + j0.29.

Therefore q2 = 1.01 + j0.29 and 1/q2 = 0.92− j0.26, so that R2 = 1/0.92 = 1.09 m
and λ/πW 2

2 = 0.26, from which W2 = 1.11× 10−3 m = 1.11 mm.

EXERCISE 3.1-5
Identification of a Beam with Known Curvatures at Two Points

Using (3.1-9) and z2 = z1 + d , we obtain R1 = z1

[
1 + (z0/z1)

2
]
,

from which z2
1 −R1z1 + z2

0 = 0. (1)

We also obtain R2 = (z1 + d)
{

1 + [z0/ (z1 + d)]
2
}

,

from which (z1 + d)
2 −R2 (z1 + d)

2
+ z2

0 = 0. (2)

Equations (1) and (2) form a pair of equations in two unknowns: z0 and z1, that can be
manipulated algebraically to obtain (3.1-27) and (3.1-28).
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3.2 TRANSMISSION THROUGH OPTICAL COMPONENTS

EXERCISE 3.2-1
Beam Relaying

Considering a lens and substituting z = z′ = d/2 in (3.2-6) we obtain M = 1.
From (3.2-9a), r = z0/(d/2− f) and Mr = |f/ (d/2− f) |.

Inserting M = 1 into (3.2-9) we obtain M2
r = 1 + r2, so that

f2/ (d/2− f)
2

= 1 + [z0/ (d/2− f)]
2,

from which f2 = (d/2− f)
2

+ z2
0 , or z2

0 = f2 − (d/2− f)
2

= fd − (d/2)
2

i.e., z2
0 = d (f − d/4).

Since z0 is real, this last equation requires that f ≥ d/4 or d ≤ 4f .

EXERCISE 3.2-2
Beam Collimation

a) Substituting (3.2-9) and (3.2-9a) into (3.2-6), we obtain

(z′ − f) =
(z − f) [f/ (z − f)]

2[
1 + z2

0/ (z − f)
2
]

=
(z − f) f2[

(z − f)
2

+ z2
0

] ,

from which
z′

f
− 1 =

z/f − 1

(z/f − 1)2 + (z0/f)2
follows. (1)

b) Let a = z0/f , x = z/f − 1, and y = z′/f − 1.
Then (1) becomes y = x/ [x2 + a2].

For a fixed value of a and allowing x to vary, y achieves its maximum value if
dy

dx
=

1

[x2 + a2]
− 2x2

[x2 + a2]
2 = 0.

This occurs at [x2 + a2] = 2x2 or x = a,
i.e., if z/f − 1 = z0/f or z = f + z0.

c) z0 = 1 cm, f = 50 cm, a = z0/f = 0.02.

Optimum z = f + z0 = 51 cm,

Distance z′ :
x = z/f − 1 = 51/50− 1 = 0.02 = a.
y = x/ [x2 + a2] = 1/2x = 25.

But y = z′/f − 1.
Therefore, z′ = f (1 + y) = 50× 26 = 1300 cm.

Magnification: Mr = f/ (z − f) = 1/x = 50.

r = z0/ (z − f) = a/x = 1.

M = Mr/
√

1 + r2 = Mr/
√

2 = 50/
√

2 = 35.4.

Width: W ′0 = MW0 = 35.4W0.
W0 =

√
λz0/π ≈ 56 µm, W ′0 ≈ 2 mm.
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EXERCISE 3.2-3
Beam Expansion

Imaging at the first lens:
Since z � f1 and z − f1 � z0, applying (3.2-11) and (3.2-12) we obtain:

M1 = f1/ (z − f1) ≈ f1/z,

W ′′
0 = [f1/ (z − f1)]W0 ≈ (f1/z)W0,

z ′′0 = M 2
1 z0 ≈ (f1/z)

2
z0,

z1 ≈ f1.

Imaging at the second lens:
Based on the results of Exercise 3.2-2, the optimal distance is
z2 = z ′′0 + f2, so that d = z1 + z2 = z1 + z ′′0 + f2 ≈ f1 + (f1/z)

2
z0 + f2.

Also the magnification at this optimal distance is
M2 = [f2/ (z2 − f2)] /

√
2 = f2/z

′′
0

√
2 = f2/M

2
1 z0

√
2.

The overall magnification of the system is
M = M2M1 = f2/M1z0

√
2 = (f2/f1)

(
z/
√

2z0

)
.

This is a large magnification since f2 � f1 and z � z0.

EXERCISE 3.2-4
Variable-Reflectance Mirrors

The complex amplitude reflectance of this mirror is exp (−jkρ2/R) exp (−ρ2/W 2
m).

Therefore, upon reflection, the phase of a Gaussian beam increases by −kρ2/R, so
that the radius of curvature becomes R2 where 1/R2 = 1/R1 + 2/R.

In addition, the amplitude of the beam is multiplied by the factor exp (−ρ2/W 2
m) and

becomes exp (−ρ2/W 2
2 ), where 1/W2 = 1/W1 + 1/Wm.

The reflected beam remains Gaussian and has width W2 and radius of curvature R2,
as provided by the above equations.

EXERCISE 3.2-5
Transmission of a Gaussian Beam Through a Transparent Plate

From (1.4-11), the elements of the ABCD matrix of the plate are: A = 1, B = d/n,
C = 0, D = 1. Therefore, q2 = (Aq1 + B) / (Cq1 + D) = q1 +d/n, from which z2 +jz02 =
z1 + jz01 + d/n so that z02 = z01 and z2 = z1 + d/n. It follows that the transmitted
beam has the same depth of focus and its center is displaced by a distance d/n, as
illustrated in the figure.

d
n

d

d
n

d
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3.4 LAGUERRE–GAUSSIAN BEAMS

EXERCISE 3.4-1
Laguerre–Gaussian Beam as a Superposition of Hermite–Gaussian Beams

The Laguerre–Gaussian beam LG10 is identical to the superposed Hermite–Gaussian
beams 1√

2
(HG01 + jHG10), as is ascertained from the absolute square of (3.4-1) [see

also the illustration in Fig. 3.4-1(a)].

At the beam waist, the Hermite–Gaussian beams may be expressed as

I1, 0 = |A1, 0| 2 G2
1

(√
2x/W0

)
G2

0

(√
2y/W0

)
I0, 1 = |A0,1| 2 G2

0

(√
2x/W0

)
G2

1

(√
2y/W0

)
,

where G2
0(u) = exp (−u2) and G2

1(u) = 4u2 exp (−u2).

In the absence of interference, and if |A1,0|2 = |A0,1|2 = I0, the total intensity is the
sum of the intensities:

I = 8I0

[(
x2 + y2

)
/W 2

0

]
exp

[
−2
(
x2 + y2

)
/W 2

0

]
= 8I0

[
ρ2/W 2

0

]
exp

[
−2ρ2/W 2

0

]
,

where ρ2 = x2 + y2.

The peak intensity occurs at the value of ρ for which dI/dρ = 0, i.e., at ρ = W0/
√

2
or ρW0 ≈ 0.707. The intensity is 0 at ρ = 0, as shown in the figure below, and the
1/e2 points occur at ρ ≈

(
0.23/

√
2
)
W0 and at ρ ≈

(
2.12/

√
2
)
W0. Since the beam

is circularly symmetric, it takes the form of a “donut” and hence is often colloquially
referred to as the “donut beam.”

1.0

1 2 3

0.8

0.6

0.4

0.2

0

0.0

ρ/W0

I/Imax
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C H A P T E R

4
FOURIER OPTICS

4.1 PROPAGATION OF LIGHT IN FREE SPACE

EXERCISE 4.1-1
Binary-Plate Cylindrical Lens

Near the position x, cos (πx2/λf) is approximately a harmonic function with lo-
cal frequency νx = (1/2π) (∂/∂x) (πx2/λf) = x/λf . Its rectified version, f(x) =
U[cos(πx2/λf)], is approximately a periodic function with local frequency λf/x near
the position x. The periodic function f(x) can be analyzed as a sum of harmonic
functions with spatial frequencies νx = qx/λf , where q = 0, ±1, ±3, ±5 . . . . This
structure therefore acts as a diffraction grating that bends the light by the approximate
angles λνx = λ (qx/λf) = x/ (f/q). All rays deflected by the approximate angle
x/ (f/q) meet at the position f/q. Thus, the transparency acts as a cylindrical lens with
focal lengths∞,±f,±f/3,±f/5, . . . .

EXERCISE 4.1-2
Gaussian Beams Revisited

Given: U(x, y, 0) = f(x, y) = A exp [− (x2 + y2) /W 2
0 ] at the input (z = 0) plane,

Find: U(x, y, z) = g(x, y) at the distance z.

We shall use the Fourier-domain method.
The Fourier transform of f(x, y) is obtained by using the fact that the Fourier transform
of exp (−πt2) is exp (−πν2) (see Table A.1-1) and the scaling property of the Fourier
transform (see Appendix A). Thus:

F (νx, νy) = AπW 2
0 exp

[
−π2W 2

0

(
ν2
x + ν2

y

)]
.

G(νx, νy) = F (νx, νy)H(νx, νy)

where H(νx, νy) = H0 exp
[
jπλz

(
ν2
x + ν2

y

)]
, H0 = exp (−jkz)

G(νx, νy) = AπW 2
0 exp

[
−π2W 2

0

(
ν2
x + ν2

y

)]
· exp (−jkz) · exp

[
jπλz

(
ν2
x + ν2

y

)]
= B exp

[
−π2Q2

(
ν2
x + ν2

y

)]
,

B = AπW 2
0 exp (−jkz), where π2Q2 = π2W 2

0 − jπλz.

The inverse Fourier transform is g(x, y) = (B/πQ2) exp [− (x2 + y2) /Q2].

Defining 1/Q2 = jk/2q = jπ/λq, we write
g(x, y) = B (j/λq) exp

[
−jk

(
x2 + y2

)
/2q
]

= A
(
jπW 2

0 /λq
)

exp (−jkz) exp
[
−jk

(
x2 + y2

)
/2q
]
.

The parameter q = (jπ/λ)Q2 = (j/πλ) (π2W 2
0 − jπλz) =

jπW 2
0 /λ+ z = z + jz0 where z0 = πW 2

0 /λ. Substituting, we obtain
g(x, y) = A (jz0/q) exp (−jkz) exp [−jk (x2 + y2) /2q], where q = z + jz0.

This is the equation of the Gaussian beam.
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4.2 OPTICAL FOURIER TRANSFORM

EXERCISE 4.2-1
Conditions of Validity of the Fresnel and Fraunhofer Approximations:
A Comparison

Givens: λ = 0.5 µm = 0.5× 10−6 m, , a = 2× 10−2 m, b = 10−2 m .

As shown in (4.1-13), the validity condition for the Fresnel approximation is NFθ
2
m

4
� 1 ,

where NF = a2/λd and θm = a/d , so that a4/4λd 3 � 1 or d � (a4/4λ)
1/3

= 0.43 m.

As shown in (4.2-2), the validity conditions for the Fraunhofer approximation are
NF � 1 or a2/λd � 1 or d � a2/λ = 800 m; AND N ′F � 1 or b2/λd � 1 or
d � b2/λ = 200 m.

Thus, the Fresnel approximation is applicable for distances much greater than 43 cm;
and the Fraunhofer approximation is applicable for distances much greater than 800 m.

EXERCISE 4.2-2
The Inverse Fourier Transform

By examining (A.3-1) and (A.3-2) of Appendix A, we see that if F (νx, νy) is the Fourier
transform of f(x, y), then F (−νx,−νy) is the inverse Fourier transform of f(x, y). Thus
reversal of the coordinate system replaces the Fourier transform with the inverse
Fourier transform.

4.3 DIFFRACTION OF LIGHT

EXERCISE 4.3-1
Fraunhofer Diffraction from a Rectangular Aperture

Using Table A.1-1 and the scaling property of the Fourier transform, the Fourier
transform of the aperture function p(x, y) = rect (x/Dx) rect (y/Dy) is P (νx, νy) =
DxDy sinc(Dxνx) sinc(Dyy). Substituting into (4.3-5) we obtain (4.3-6). The first zero
of the function sinc(·) occur when its argument is ±1, i.e., at x = ±λd/Dx and
y = ±λd/Dy.

EXERCISE 4.3-2
Fraunhofer Diffraction from a Circular Aperture

Using (A.3-5), the Fourier transform of an aperture function in the form of a circle of
radius 1 is P (νx, νy) = J1 (2πνρ) /νρ.

For a radius D
2

, P (νx, νy) =
(
D
2

)2 J1 (2πνρD/2)

νρD/2
=
(
D
2

) J1 (πνρD)

νρ
.

Substituting into (4.3-5) we obtain (4.3-8).
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EXERCISE 4.3-3
Spot Size of a Focused Optical Beam

Equation (4.3-10) can be obtained by using the Fourier transform property of the lens,
given in (4.2-7). Because (4.2-7) is identical to (4.3-5) with d = f , the focused beam
has intensity given by (4.3-8) with d = f .

In accordance with (3.1-12) and (3.2-15) the focused Gaussian beam has intensity
distribution I(x, y) = I0 exp (−2π2W 2

0 ρ
2/λ2f2) , where W0 is the waist radius of the

incident beam. To compare this distribution with that in (4.3-10), we take 2W0 = D,
assume that πD/λf = 1, and plot the two functions exp (−ρ2/2) and [2J1(ρ)/ρ]

2:

1

0
0 10ρ

exp(-ρ2/2)

[2J1(ρ)/ρ]
2
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C H A P T E R

5
ELECTROMAGNETIC OPTICS

5.5 ABSORPTION AND DISPERSION

EXERCISE 5.5-1
Dilute Absorbing Medium

Let χ0 be the susceptibility of the host medium so that n2
0 = 1+χ0. When impurities are

present, the susceptibility of the host medium together with its suspension of impurities
is characterized by χ = χ0 + χ′ + jχ′ ′, with χ′ � 1 and χ′′ � 1. The overall refractive
index and absorption coefficient are thus given by [see (5.5-5)]:

n− jα

2ko
=
√

1 + χ0 + χ′ + jχ′ ′ =

[
(1 + χ0)

(
1 +

χ′ + jχ′ ′

1 + χ0

)]1/2

≈ n0

[
1 +

χ′ + jχ′ ′

2 (1 + χ0)

]
= n0

[
1 +

χ′ + jχ′ ′

2n2
0

]
so that n = n0 +

χ′

2n0

and α =
−koχ′ ′

n0

.
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C H A P T E R

6
POLARIZATION OPTICS

6.1 POLARIZATION OF LIGHT

EXERCISE 6.1-1
Measurement of the Stokes Parameters

The expressions for S0 and S1 follow directly from the definition. The expression for S2

is verified by substituting for A45 and A135 from (6.1-12). Similarly, the expression for
S3 is verified by substituting for AR and AL from (6.1-13).
The Stokes parameters can be measured if the absolute values (or the intensities) of
components of the Jones vector are measured in three bases: the linearly polarized
basis in the (x, y) directions, the linearly polarized basis in the (45◦, 135◦) directions,
and the circularly polarized basis (R,L). All six measurements are intensity measure-
ments.

EXERCISE 6.1-2
Cascaded Wave Retarders

a) Parallel fast axes

T =

[
1 0
0 e−jπ/2

] [
1 0
0 e−jπ/2

]
=

[
1 0
0 e−jπ

]
= A half-wave retarder

b) Orthogonal fast axes

T =

[
1 0
0 e−jπ/2

] [
e−jπ/2 0

0 1

]
= e−jπ/2

[
1 0
0 1

]
= A phase shifter

EXERCISE 6.1-3
Jones Matrix of a Rotated Half-Wave Retarder

The Jones matrix of a half-wave retarder at angle 0 is T =

[
1 0
0 −1

]
. The Jones matrix

of a half-wave retarder at angle θ is

T =

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
cos θ sin θ
− sin θ cos θ

]
, (6.1-1)

which gives rise to

T =

[
cos θ sin θ
− sin θ cos θ

]
, (6.1-2)

from which

T =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
. (6.1-3)

If θ = 22.5◦, then T can be written as

T =

[
1 1
1 −1

]
, (6.1-4)

so that the output waves are proportional to the sum and difference of the input waves.
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EXERCISE 6.1-4
Normal Modes of Simple Polarization Systems

a) T =

[
1 0
0 0

]
. Eigenvectors are

[
1
0

]
and

[
0
1

]
;

Eigenvalues are 1 and 0.

b) T =

[
1 0
0 e−jΓ

]
. Eigenvectors are

[
1
0

]
and

[
0
1

]
;

Eigenvalues are 1 and e−jΓ.

c) T =

[
cos θ − sin θ
sin θ cos θ

]
. Eigenvectors are

[
1
j

]
and

[
0
−j

]
;

Eigenvalues are e−jθ and ejθ.

6.2 REFLECTION AND REFRACTION

EXERCISE 6.2-1
Brewster Windows

Reflection does not occur at the first surface
when θ1 is the Brewster angle, θ1 = tan−1 n.
Snell’s law provides sin θ2 = (1/n) sin θ1 =

(1/n)
[
n/
√

1 + n2
]

= 1/
√

1 + n2 , so that
tan θ2 = 1/n, i.e., θ2 is also a Brewster angle
for the second surface.
For n = 1.5, we have θ1 = tan−1 n = 56.3◦.

θ
1

θ
1

θ
2

θ
2

6.4 OPTICAL ACTIVITY AND MAGNETO-OPTICS

EXERCISE 6.4-1
Rotatory Power of an Optically Active Medium

If G� n0, n± =
√
n2

0 ±G = n0

√
1±G/n2

0 ≈ n0 ±G/2n0.

Therefore, ρ = π (n− − n+) /λo = −πG/λon0.
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C H A P T E R

7
PHOTONIC-CRYSTAL OPTICS

7.1 OPTICS OF DIELECTRIC LAYERED MEDIA

EXERCISE 7.1-1
Quarter-Wave Film as an Anti-Reflection Coating

The M matrix for the problem at hand is readily obtained by cascading the M matrix
for a single dielectric boundary (see Example 7.1-2) and the M matrix for propagation
followed by a boundary, in reverse order as usual. The result is:

M =
1

2n3

[
(n3 + n2) e−jϕ (n3 − n2) ejϕ

(n3 − n2) e−jϕ (n3 + n2) ejϕ

]
1

2n2

[
n2 + n1 n2 − n1

n2 − n1 n2 + n1

]
,

with ϕ = n2kod = 2πd/λ and λ = λo/n2.

The B element of this matrix is

B =
1

4n2n3

[
(n3 + n2)(n2 − n1) e−jϕ + (n3 − n2)(n2 + n1) ejϕ

]
.

The reflection coefficient can be made to vanish if B = 0, i.e., if

(n3 + n2)(n2 − n1) + (n3 − n2)(n2 + n1) ej2ϕ = 0.

This requires that ej2ϕ be real, i.e., that 2ϕ be an integer multiple of π.

The value 2ϕ = 4πd/λ = π leads to d = λ/4 and

(n3 + n2)(n2 − n1)− (n3 − n2)(n2 + n1) = 0,

whereupon we obtain n2
2 = n1n3 or n2 =

√
n1n3.

The choice 2ϕ = 2π, or any even multiple of π, leads to

(n3 + n2)(n2 − n1) + (n3 − n2)(n2 + n1) = 0,

which gives the trivial solution n1 = n3.
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C H A P T E R

9
GUIDED-WAVE OPTICS

9.1 PLANAR-MIRROR WAVEGUIDES

EXERCISE 9.1-1
Optical Power
In accordance with (5.3-10), the power flow is determined by the Poynting vector
S = 1

2
E × H∗. For the TE mode, we have Ey = Ez = Hx = 0. The component of

S in the z direction is therefore Sz = 1
2
ExH

∗
y . Also, from Maxwell’s equation (5.3-13),

∇×E = −jωµoH, we have −jωµoHy = ∂Ex/∂z, so that Sz = (1/2jωµo)Ex ∂E
∗
x/∂z.

Substituting Ex = amum(y) exp(−jβmz), we obtain Sz = (βm/2ωµo)|am|2|um(y)|2.

The total power flow in the z direction is the integral of Sz with respect to y. Since the
integral of |um(y)|2 is unity, the power flow is (βm/2ωµo)|am|2. Furthermore, because
βm = k cos θm = (ω/c) cos θm, we can write the power flow as (1/2µoc)|am|2 cos θm =
(1/2η)|am|2 cos θm.

EXERCISE 9.1-2
Optical Power in a Multimode Field

In accordance with Exercise 9.1-1, the power flow in the z direction is the integral
of Sz = (1/2jωµo)Ex ∂E

∗
x/∂z with respect to y. Making use of the substitution

Ex =
∑

m amum(y) exp (−jβmz), we obtain

Sz = (βm/2ωµo)
∑

m amum(y) exp (−jβmz)
∑

n a
∗
nu
∗
n(y) exp (jβnz).

Because the integral of um(y)u∗n(y) with respect to y is unity for n = m and zero
otherwise, the total power is∑

m (βm/2ωµo) |am|2 =
∑

m (1/2η) |am|2 cos θm.

9.2 PLANAR DIELECTRIC WAVEGUIDES

EXERCISE 9.2-1
Confinement Factor

Since the waveguide is symmetric we consider confinement only for y > 0.
For y < d/2, um(y) = Am cos (k sin θmy), m even (1a)

= Am sin (k sin θmy), m odd.

For y > d/2, um(y) = Bm exp (−γmy), (1b)

where γm = n2ko

√
(n1/n2)

2
cos2 θm − 1 . (2)
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Because um(y) must be continuous at y = d/2 ,
Am cos (k sin θmd/2) = Bm exp (−γmd/2), m even (3a)
Am sin (k sin θmd/2) = Bm exp (−γmd/2), m odd. (3b)

The power in the region y < d/2 is P1 =
∫ d/2

0
u2
m(y)dy .

Substituting from (1a) and integrating, we have
P1 = A2

m(d/4) [1 + (−1)m sin(kd sin θm)/kd sin θm] . (4)

Similarly, the power in the region y > d/2 is:
P2 = B2

m(1/2γm) exp (−γmd). (5)

The confinement ratio Γm =
P1

P1 + P2

=
1

1 + P2/P1

(6)

can be obtained by substituting from (4) and (5) and using (3) to substitute for Bm/Am:

P2

P1

=
(1/γmd) [1 + (−1)m cos(kd sin θm)]

1 + (−1)m sin(kd sin θm)/kd sin θm
. (7)

It is convenient to write the result in terms of the variable M =
sin θc
λ/2d

(8)

by writing kd = 2πd/λ = πM/ sin θc , (9)

γmd = kd (n2/n1)

√
(n1/n2)

2
cos2 θm + 1

= kd
√

cos2 θm − cos2 θc = kd
√

sin2 θc − sin2 θm

= πM

√
1− sin2 θm/ sin2 θc . (10)

It is also convenient to define the ratio: sm = sin θm/ sin θc
and write γmd = πM

√
1− sm. (11)

Using (10) and (11) in (7) then leads to

P2

P1

=
sm√

1− s2
m

1 + (−1)m cos (πMsm)

πMsm + (−1)m sin (πMsm)
. (12)

This provides an expression for the confinement ratio Γm = 1/ (1 + P2/P1) as a
function of the parameter M , which represents the number of modes, and the
parameter sm = sin θm/ sin θc , which is determined by the normalized angles of
the modes.

As an example, consider the case M = 8. The parameters sm are determined from the
characteristic equation (9.2-4), which can be written in terms of M and sm as:

tan (Msmπ/2−mπ/2) =
√

1/s2
m − 1 .

Solutions of this equation are displayed in Fig. 9.2-2 for M = 8. For m = 0, the
first intersection point occurs at sin θ0 = 0.933(λ/2d), or s0 ≈ 0.933/M . Similarly,
s1 ≈ 1.86/M ; s2 ≈ 2.778/M ; and so on.

Substituting these values into (12) and (6) leads to the following confinement ratios:
Γ0 ≈ 0.999; Γ1 ≈ 0.996; and Γ2 ≈ 0.990. The lowest-order mode therefore has the
highest power confinement factor, as promised.
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EXERCISE 9.2-2
The Asymmetric Planar Waveguide

Let the complements of the critical angles for reflection from the substrate and the cover
be θc2 = cos−1(n2/n1) and θc3 = cos−1(n3/n1), respectively. Since n2 > n3, θc2 < θc3.
Therefore, a guided ray must be inclined at an angle θ smaller than the smaller of θc2
and θc3, i.e., θ < θc2.

a) Since the numerical aperture is governed by θc2, NA =
√
n2

1 − n2
2 .

b) The self-consistency condition in the symmetric waveguide (9.2-1) is thus modified
to:

2π

λ
2d sin θ − ϕr2 − ϕr3 = 2πm , m = 0, 1, 2, . . . ,

where ϕr2 and ϕr3 are, respectively, the phase shifts introduced by total internal
reflection at the substrate and cover boundaries. These phases are given by the
general formula in (9.2-3), making use of the appropriate critical angles θc2 and θc3.

c) The number of modes is governed by the critical angle of reflection at the substrate.
It is therefore given by M .

= (2d/λo) NA, where NA =
√
n2

1 − n2
2 .
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C H A P T E R

10
FIBER OPTICS

10.3 ATTENUATION AND DISPERSION

EXERCISE 10.3-1
Optimal Grade Profile Parameter

The group velocities are vq = (dβq/dω)
−1, where βq = n1ko [1− (q/M)

s
∆];

M = sn2
1k

2
oa

2∆; s = p/(p+ 2); and ko = ω/co.

To simplify the process of taking the derivative we write
βq = (n1ω/co) [1− xq] where xq = (q/M)

s
∆.

dβq/dω = (1/co) [d (n1ω) /dω] (1− xq)− n1 (ω/co) dxq/dω

= (N1/co) (1− xq)n1 (ω/co) dxq/dω

= (N1/co) [1 + xqφ] ,

where N1 = d (n1ω) /dω is the group refractive index and
φ = −1− (n1/N1) (ω/xq) dxq/dω. (1)

If φxq is small, the group velocity is
vq = (dβq/dω)

−1
= (co/N1) [1 + xqφ]

−1 ≈ (co/N1) [1− xqφ]. (2)

We now proceed to determine φ:

dxq/dω = s(q/M)s−1q
[(
−1/M2

)
dM/dω

]
∆ + (q/M)sd∆/dω

= −sxq(1/M)dM/dω + xq(1/∆)d∆/dω ; (3)

dM/dω = 2sn1ko [d (n1ko) /dω] a2∆ + s (n1ko)
2
a2d∆/dω

= 2M (1/n1ko) d (n1ko) /dω +M(1/∆) d∆/dω

= M [(2/n1ko)N1/co + (1/∆) d∆/dω] . (4)

Substituting into (3), we have:
(1/xq) dxq/dω = −s [(2/n1ko)N1/co + (1/∆)d∆/dω] + (1/∆)d∆/dω

= −2sN1/n1ω + (1− s)(1/∆)d∆/dω.

We now use (1) to obtain φ = −1 + 2s− (1− s)ps/2 with ps = 2 (n1/N1) (ω/∆) d∆/dω.

Thus φ = −1 + 2p/(p+ 2)− ps/(p+ 2) = (p− 2− ps)/(p+ 2), which, when substituted
into (2), gives (10.3-10).
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EXERCISE 10.3-2
Differential Group Delay in a Two-Segment Fiber

a) If L = 500 m is the length of a segment, then the group delays of the x and y
components at the end of the first segment are:
Tx = LNx/c = 2.4367 µs and Ty = LNy/c = 2.4383 µs.

Each of these components can be analyzed into two components of equal magni-
tudes along the principal axes x′ and y′ of the second segment. These components
travel to the end of the second segment with group delays Tx′ and Ty′ . The
overall delay may therefore take four values: Tx + Tx′ , Ty + Ty′ , Tx + Ty′ , and
Ty + Tx′ . Since Tx = Tx′ and Ty = Ty′ , we actually have three possible delays:
2Tx = 4.8733 µs, 2Ty = 4.8767 µs, and Tx + Ty = 4.873 µs. Since the pulse with
the delay Tx + Ty results from two possibilities, its amplitude depends on the phase
shifts encountered, which are sensitive to the phase velocities and the exact lengths
of the fiber segments, and is sensitive to any slight disturbance in the system. This
middle pulse will therefore have random polarization.

The differential delays between the fastest pulse and the slowest pulse is 2Ty −
2Tx = 3.4 ns. To determine whether this differential delay will be visible, we examine
the pulse broadening due to GVD. For a single segment, the GVD broadening is
DσλL = 20 × 50 × 0.5 = 500 ps, so that the width of each pulse is broadened from
an initial value of 100 ps to a value of 1 ns. The shape of the received pulses will
therefore appear as shown below:

3.4 ns

t

1 ns1 ns

b) The two fiber segments are equivalent to two cascaded identical retarders with their
principal axes rotated by 45◦. The Jones matrix of this system is the product of the
matrices

T =

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 e−jϕ

] [
cos θ sin θ
− sin θ cos θ

] [
1 0
0 e−jϕ

]
,

where ϕ = (Nx −Ny)2πL/λ is the retardation introduced by a segment and θ is the
angle of rotation. Since θ = 45◦,

T =
1√
2

[
1 −1
1 1

] [
1 0
0 e−jϕ

]
1√
2

[
1 1
−1 1

] [
1 0
0 e−jϕ

]
and therefore

T =
1

2

[
1 + e−jϕ e−jϕ(1− e−jϕ)
1− e−jϕ e−jϕ(1 + e−jϕ)

]
.

The eigenvalues and eigenvectors of this matrix may be determined for any value
of ϕ. Since the matrix is unitary, the eigenvalues will always be phase factors. For

example, if ϕ = π then the eigenvalues are ±j and the eigenvectors are
[

1
∓j

]
, rep-

resenting circularly polarized modes. In any case, a pulse in one of the polarization
modes travels with a single group velocity so that it arrives as a single pulse instead
of two.
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C H A P T E R

11
RESONATOR OPTICS

11.1 PLANAR-MIRROR RESONATORS

EXERCISE 11.1-1
Resonance Frequencies of a Traveling-Wave Resonator

a) Three-mirror ring resonator : At resonance, the round trip phase shift, 3kd + 3π,
is equal to a multiple of 2π. Thus, 3kd + π = q2π, where q is an integer, so that
3kd = (2q − 1)π or 3(2πν/c)d = (2q − 1)π. Consequently νq = (2q − 1)(c/6d) so
that the allowed frequencies are odd multiples of c/6d . Two consecutive resonances
are therefore separated by a frequency νF = 2(c/6d) = c/3d .

b) Four-mirror bow-tie resonator : At resonance, the round trip phase shift, (4 +

2
√

5)kd + 4π, is equal to a multiple of 2π, i.e., (4 + 2
√

5)kd + 4π = q2π, where
q is an integer. Thus, (4 + 2

√
5)kd = q2π, or (4 + 2

√
5)(2πν/c)d = q2π, from which

νq = q[c/(4 + 2
√

5)d ]. Two consecutive resonances are therefore separated by a
frequency νF = [c/(4 + 2

√
5)d ].

EXERCISE 11.1-2
Resonator Modes and Spectral Width

Given: R1 = 0.98, R2 = 0.99, d = 1 m, n = 1, c = co/n = co = 3× 108 m/s.
Frequency spacing between modes is νF = c/2d = 1.5× 108 Hz = 150 MHz.
Loss coefficient αr = (1/2d) ln(1/R1R2) = 0.015.
Using (11.1-28), the Finesse F ≈ π/αrd = 207.7.
The spectral linewidth is δν = νF /F = 7.22× 105 Hz = 722 kHz.
This approximation is appropriate since αrd = 0.015� 1.

11.2 SPHERICAL-MIRROR RESONATORS

EXERCISE 11.2-1
Maximum Resonator Length for Confined Rays

The confinement condition is 0 ≤ (1 + d/R1) (1 + d/R2) ≤ 1. SubstitutingR1 = −0.5 m
and R2 = −1 m, we obtain 0 ≤ (1− 2d) (1− d) ≤ 1. Letting x = (1 − 2d)(1 − d), the
confinement condition becomes 0 ≤ x ≤ 1. The figure below shows a plot of x versus
d . Based on this figure, the maximum value of d for which the resonator is stable is
d = 1.5 m.

1

0

0 0.5 1 1.5

x

d
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EXERCISE 11.2-2
A Plano-Concave Resonator

For a plano-concave resonator, R1 =∞ and R2 = −|R|. Substituting z1 = 0 and z2 = d
into (11.2-13) we have |R| = d + z2

0/d , from which z2
0 = d(|R| − d). For confinement,

z2
0 > 0 so that |R| > d .

From (11.2-10), we have
W 2

0 = λz0/π = (λ/π) [d(|R| − d)]
1/2 and

W1 = W0 = (λd/π)
1/2

(|R|/d − 1)
1/4

. Using (11.2-16), this leads to

W 2
2 = W 2

0 (1 + d 2/z2
0) = W 2

0 [1 + d/(|R| − d)] = W 2
0 |R|/(|R| − d),

from which

W2 =
(λd/π)

1/2
(|R|/d − 1)

1/4
(|R|/d)

1/2

(|R|/d − 1)
1/2

= (λd/π)
1/2

[
(|R|/d)2

(|R|/d − 1)

]1/4

.

The quantities W1 and W2 are plotted versus d/|R| below:

0 1

W2

d

|R|

W1

λd
π

2

λd
π

EXERCISE 11.2-3
Resonance Frequencies of a Confocal Resonator

Given: d = 30 cm = 0.3 m; c = co/n = co.
z1 = −z0 and z2 = z0.
νF = c/2d = 5× 108 Hz = 500 MHz.
∆ζ = tan−1(z2/z0)− tan−1(z1/z0)

= tan−1(1)− tan−1(−1)
= π/4− (−π/4)
= π/2.

(∆ζ/π)νF = ∆νF /2 = 250 MHz.
νq = qνF + νF /2 = (q + 1/2)νF .

At the central frequency q ≈ ν/νF = (5× 1014)/(5× 108) = 106,
for
q = 106: νq = 5× 1014 + 2.5× 108 Hz
q = 106 + 1: νq = 5× 1014 + 7.5× 108 Hz
q = 106 + 2: νq = 5× 1014 + 12.5× 108 Hz
q = 106 + 3: νq = 5× 1014 + 17.5× 108 Hz

q = 106 − 1: νq = 5× 1014 − 2.5× 108 Hz
q = 106 − 2: νq = 5× 1014 − 7.5× 108 Hz
q = 106 − 3: νq = 5× 1014 − 12.5× 108 Hz
q = 106 − 4: νq = 5× 1014 − 17.5× 108 Hz

Thus, there are 8 modes within the band 5× 1014 ± 2× 109 Hz.



Saleh & Teich Fundamentals of Photonics, Third Edition: Exercise Solutions ©2019 page 33

EXERCISE 11.2-4
Resonance Frequencies of the Symmetrical Confocal Resonator

For confocal symmetric resonators, we have (∆ζ/π)νF = νF /2.
From (11.2-33), we see that ν l,m, q = [q + (l +m+ 1)/2] νF .

The set of modes for which l + m + 1 is even are spaced at frequency intervals νF .
Modes for which l + m + 1 is odd are also spaced at frequency intervals νF , but are
displaced from the even modes by frequency νF /2.

11.3 TWO- AND THREE-DIMENSIONAL RESONATORS

EXERCISE 11.3-1
Density of Modes in a Two-Dimensional Resonator

a) The number of modes with frequency between 0 and ν is the same as the number
of modes with wavenumber between 0 and k = 2πν/c.

In accordance with Fig. 11.3-2, this number is approximated by the area of a
quadrant in k space (πk2/4) divided by the area per mode (π/d )

2, and then
multiplied by a factor of two to account for the two polarizations per mode. This
number is thus 2 (πk2/4) / (π/d )

2
= k2d 2/2π = (2πν/c)

2 d 2/2π = 2πν2d 2/c2.
Consequently, the number of modes per unit area, in the frequency band 0 to ν, is
Nν = 2πν2/c2.

b) The density of modes per unit area per unit frequency interval is therefore
M(ν) = dNν/dν = 4πν/c2.
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C H A P T E R

12
STATISTICAL OPTICS

12.1 STATISTICAL PROPERTIES OF RANDOM LIGHT

EXERCISE 12.1-1
Coherence Time

a) Coherence time =
∫∞
−∞ |g(τ)|2dτ =

∫∞
−∞exp

(
−2|τ |
τc

)
dτ = 2

∫∞
0

exp

(
−2τ

τc

)
dτ = τc.

|g(τ)| decreases by a factor 1/e = 0.368 at τ = τc.

b) Coherence time =
∫∞
−∞ |g(τ)|2dτ =

∫∞
−∞ exp

(
−πτ2

τ2
c

)
dτ = τc.

|g(τ)| decreases by a factor of exp (−π) = 0.043 at τ = τc.

EXERCISE 12.1-2
Relation Between Spectral Width and Coherence Time

Since S(ν) is the Fourier transform of G(τ), we have∫∞
0

S(ν)dν = G(0). (1)

From Parseval’s theorem, we write∫∞
0

S2
(ν)dν =

∫∞
−∞ |G(τ)|2dτ . (2)

Squaring both sides of (1) and dividing by the two sides of (2), while making use of
the definitions of ∆νc, τc, and g(τ), we obtain
∆νc = |G(0)|2/

∫
|G(τ)|2dτ = 1/

∫
|g(τ)|2dτ = 1/τc.

EXERCISE 12.1-3
Differential Equations Governing the Mutual Coherence Function

G = 〈U∗(r1, t)U(r2, t+ τ)〉.
Therefore, ∇2

1G = 〈[∇2
1U
∗(r1, t)]U(r2, t+ τ)〉.

Since U obeys the wave equation, ∇2U = (1/c2)∂2U/∂t2, and
∇2

1G = (1/c2)〈[(∂2/∂t2)U∗(r1, t)]U(r2, t+ τ)〉. (1)

We now proceed to prove that 〈[(∂2/∂t2)U∗(r1, t)]U(r2, t+ τ)〉 = (∂2/∂τ2)G,
so that ∇2

1G = (∂2/∂τ2)G:

Proof: 〈[(∂/∂t)U∗(r1, t)]U(r2, t+ τ)〉
= 〈 lim

∆t→0
(1/∆t) [U∗(r1, t+ ∆t)− U∗(r1, t)]U(r2, t+ τ)〉

= lim
∆t→0

(1/∆t) [G(r1, r2, τ −∆t)−G(r1, r2, τ)]

= −(∂/∂τ)G(r1, r2, τ)

Similarly, 〈[(∂2/∂t2)U∗(r1, t)]U(r2, t+ τ)〉 = (∂2/∂τ2)G.
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12.4 PARTIAL POLARIZATION

EXERCISE 12.4-1
Partially Polarized Light

The coherency matrix for the superposition of unpolarized light whose intensity is given
by (Ix + Iy)(1− P), and linearly polarized light of intensity (Ix + Iy)P at angle θ, is

G = (1− P)

[
Ix + Iy

2

] [
1 0
0 1

]
+ P (Ix + Iy)

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]
.

The four elements of this matrix are

Gxx = (Ix + Iy) (1− P)/2 + (Ix + Iy)P cos2 θ, (1)

Gyy = (Ix + Iy) (1− P)/2 + (Ix + Iy)P sin2 θ, (2)

Gxy = Gyx = (Ix + Iy)P sin θ cos θ. (3)

We wish to show that for some θ,
Gxx = Ix, (4)

Gyy = Iy, (5)

Gxy = Gyx = (IxIy) |gxy|2. (6)

From (4) and (1) we have

cos2 θ =
Ix − (Ix + Iy) (1− P)/2

(Ix + Iy)P
, (7)

while from (5) and (2) we have

sin2 θ =
Iy − (Ix + Iy) (1− P)/2

(Ix + Iy)P
. (8)

Adding (7) and (8) we obtain cos2 θ + sin2 θ = 1, so that if (7) is satisfied, (8) is
automatically satisfied.

Let us now verify (6). From (3), we find

G2
xy = (Ix + Iy)

2 P2 sin2 θ cos2 θ. (9)

Substituting (7) and (8) into (9) yields

G2
xy = [Ix − (Ix + Iy)(1− P)/2] [Iy − (Ix + Iy)(1− P)/2]

= IxIy + 1
4
(Ix + Iy)

2(1− P)2 − 1
2
(Ix + Iy)

2(1− P)

= IxIy + 1
4
(Ix + Iy)

2(1− P)[(1− P)− 2]

= IxIy − 1
4
(Ix + Iy)

2(1− P2). (10)

From the definition of P provided in (12.4-13), we find

1− P2 =
4 (1− |gxy|2) IxIy

(Ix + Iy)2
, so that (10) gives

G2
xy = IxIy − IxIy(1− |gxy|2) = IxIy|gxy|2, indicating that (6) is also satisfied.
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C H A P T E R

13
PHOTON OPTICS

13.1 THE PHOTON

EXERCISE 13.1-1
Photon in a Gaussian Beam

a) In accordance with (3.1-12), the intensity of a Gaussian beam at z = 0 is I(ρ, 0) ∝
exp (−2ρ2/W 2

0 ). The probability p of detecting the photon within a circle of radius
W0 is thus given by the ratio

p =

∫W0

0
I(ρ, 0)2πρ dρ∫∞

0
I(ρ, 0)2πρ dρ

.

Transforming the integration variable to x =
ρ2

W 2
0

, so that dx =
2ρ dρ

W 2
0

, we have

p =

∫ 1

0
exp (−2x)dx∫∞

0
exp (−2x)dx

=
(1− e−2)

(1− 0)
= 0.86.

Indeed, recall from the discussion following (3.1-17) that the power contained within
a circle of radius W0 is 86% of the total power in the beam.

b) The average number of photons is pn = 0.86 n.

EXERCISE 13.1-2
Photon-Momentum Recoil

Photon momentum = }k = }ω/c = E/c. The recoil momentum p = Mv , where M is
the mass of the 198Hg atom and v is its velocity, so that v = E/M c.
Substituting E = 4.88 eV = 4.88× 1.6× 10−19 J; M = 198× 1.66× 10−27 kg;
and c = 3× 108 m/s, we obtain v = 7.9× 10−3 m/s.

The RMS thermal velocity of the atom is v thermal =
√

3kT/M .
At T = 300◦K, kT = 1.38 × 10−23 × 300, so that v thermal = 194 m/s, which is much
larger than the recoil velocity.

EXERCISE 13.1-3
Single Photon in a Mach–Zehnder Interferometer
Using the interference formula for the Mach–Zehnder
interferometer (2.5-6), the intensity in the detector
branch is
I ∝ I0 [1 + cos (2πd/λ)] ∝ I0 cos2 (πd/λ), where 2I0 is
the total incident intensity. If the wave contains a single
photon, the probability of its detection by the detector
is 1 + cos (2πd/λ) ∝ cos2 (πd/λ), as shown in the
figure. The probability of finding the photon in the other
output branch of the interferometer is 1−cos (2πd/λ) ∝
sin2 (πd/λ), which is also shown in the figure. The
probability of finding the photon in either of the two
branches is the sum cos2(πd/λ) + sin2(πd/λ) = 1, as
expected.

1

0
0 0.5 1

d /λ

sin2(πd /λ) cos2(πd /λ)
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EXERCISE 13.1-4
Single Photon in a Gaussian Wavepacket

a) The Gaussian function f(t) = |a(t)|2 = exp (−t2/2τ2) has an RMS width, as defined
by Equation (A.2-1), that is σt = τ . Since z = ct, the time uncertainty of the function
a(t− z/c) is σt and the positional uncertainty is σz = cσt.

b) The Fourier transform of a(t) is also Gaussian, A(ν) = (1/2
√
πσν) exp (−ν2/4σ2

ν),
where σν = 1/4πσt. The RMS width of |A(ν)|2 is σν . Since the energy E = hν, the
energy uncertainty is σE = hσν = h/4πσt = }/2σt, from which (13.1-20) follows.
Because the momentum p = h/λ = (h/c)ν, the momentum uncertainty is σp =
(h/c)σν = h/4cπσt = }/2cσt. Therefore, σzσp = (cσt)(}/2cσt) = }/2, from
which (13.1-21) follows.

13.2 PHOTON STREAMS

EXERCISE 13.2-1
Average Energy of a Resonator Mode in Thermal Equilibrium

The average number of photons n for a single mode of thermal light is given by (13.2-
21). The average energy E = hνn so that E = hν/ [exp (hν/kT )− 1]. A plot of E
versus hν for two values of kT is shown below. In the limit hν/kT � 1, i.e., when
the photon energy is much smaller than the unit of thermal energy, exp (hν/kT ) ≈
1+(hν/kT ) so that E ≈ kT . In this limit, the average energy is what would be obtained
if the light were not quantized.

0

0.052

0.026

10-3 10-2 10-1 1

E

kT = 0.026

kT = 0.052

hν (eV)
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C H A P T E R

14
LIGHT AND MATTER

14.3 INTERACTIONS OF PHOTONS WITH ATOMS

EXERCISE 14.3-1
Frequency of Spontaneously Emitted Photons

In accordance with (14.3-1) the probability density of spontaneous emission into a
single prescribed mode is psp = (c/V )σ(ν). The probability density of spontaneous
emission into any of the modes in the band ν to ν + dν is therefore Psp dν =
(c/V )σ(ν) M(ν)V dν, where M(ν) = 8πν2/c3 is the density of modes per unit volume.

Using M(ν) = 8πν2/c3, σ(ν) = Sg(ν), and S = λ2/8πtsp, we thus obtain
Psp dν = (1/tsp) g(ν) dν. The probability that the emitted photon has a frequency be-
tween ν and ν+dν is therefore proportional to g(ν)dν. Hence, when many photons are
emitted the distribution of their frequencies is proportional to g(ν).

EXERCISE 14.3-2
Doppler-Broadened Lineshape Function

a) The average lineshape function is g(ν) =
∫∞
−∞ g(ν − vν0/c) p(v) dv . It is convenient

to transform the integration variable from v to x = (ν0/c)v , which gives rise to
g(ν) =

∫∞
−∞ g(ν − x) px(x) dx, (1)

where px(x) = (c/ν0) p(cv/ν0). This result follows because transforming a random
variable v to another random variable av , where a is a constant, modifies the
probability density function to (1/a) p(v/a). Since p(v) is a Gaussian function of
width σv , px(x) is a Gaussian function of width σx = (ν0/c)σv . Note that x has units
of frequency. Equation (1) is the convolution of a Lorentzian function g(ν) of width
∆ν with a Gaussian function of width σx.

b) If ∆ν � ν0σv/c, then ∆ν � σx, i.e., the Lorentzian function g(ν) in the convolution
integral (1) is much narrower than the Gaussian function. Since g(ν) is a narrow
function of unit area, it can be treated for the purposes of integration as a delta
function δ(ν). Thus (1) gives: g(ν) ≈

∫∞
−∞ δ(ν − x) px(x) dx = p(ν), i.e., g(ν) is

approximately Gaussian with width σD = σx = (ν0/c)σv = σv/λ =
√

kT/M / λ.

c) At T = 300◦ K, for the Ne transition we substitute the following into (14.3-43)
and (14.3-44): λ ≈ λo = 632.8 × 10−9 m, M ≈ 20mp = 20(1.67 × 10−27 kg)
so that ∆νD = 2.35σD = 1.3 × 109 Hz = 1.3 GHz. For the CO2 transition,
λ ≈ λo = 10.6 × 10−6 m, M ≈ 44mp = 44(1.67 × 10−27 kg), so that ∆νD =
5.3× 107 Hz = 53 MHz.

d) The maximum value of σ(ν) is
σ0 = σ(ν0) = (λ2/8πtsp) g(ν0) = (λ2/8πtsp)

[
1/
√

2πσD

]
= (λ2/8πtsp)

[
2.35/

√
2π∆νD

]
≈ 0.94(λ2/8π)

tsp∆νD
.

For the Lorentzian lineshape σ0 =
(2/π)(λ2/8π)

tsp ∆ν
=

0.64(λ2/8π)

tsp ∆ν
, which is similar to

the Gaussian result. Note, however, that ∆νD is typically much greater than ∆ν so
that σ0 is much smaller in the Doppler-broadened-Gaussian case.
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14.4 THERMAL LIGHT

EXERCISE 14.4-1
Frequency of Maximum Blackbody Energy Density

Defining x = hν/kT , (14.4-9) gives %(ν) =
[8π(kT )3/c3h2]x3

[ex − 1]
.

The frequency at which %(ν) is maximum is obtained by equating d%/dx to zero.

This yields 3x2[ex − 1] − x3[ex] = 0, or 3(ex − 1) = xex, from which x = 3(1 − e−x).
Numerical solution of this nonlinear equation provides x ≈ 2.821. For T = 300◦ K, we
thus have ν = νp = xkT/h = 1.76× 1013 = 17.6 THz, which is consistent with the plot
presented in Fig. 14.4-4.
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C H A P T E R

15
LASER AMPLIFIERS

15.1 THEORY OF LASER AMPLIFICATION

EXERCISE 15.1-1
Attenuation and Gain in a Ruby Laser Amplifier
Parameters: λo = 694.3×10−9 m; n = 1.76; λ = λo/n; T = 300◦ K; ∆ν = 330×10 9 Hz;
tsp = 3×10−3s; Na = N1 +N2 = 1028 m−3; h = 6.62×10−34 J-s; k = 1.38×10−23 J/◦K.

a) In thermal equilibrium
N2/N1 = exp [−(E2 − E1)/kT ] = exp (−hν/kT ) = exp (−hco/λokT ) ≈ 10−30.
Therefore N2 � N1 so that N1 ≈ Na, i.e., almost all the atoms are in the lower-
level energy state. The attenuation coefficient at the central frequency = α(ν0) =
−γ(ν0) = −N(λ2/8πtsp) g(ν0) = −N(λ2/8πtsp) (2/π∆ν), where N = N2 − N1 ≈
−Na. Therefore, α(ν0) = Na(λ

2/8πtsp) (2/π∆ν) = 3.98× 104 m−1 = 398 cm−1.

b) For γ(ν0) = N(λ2/8πtsp) (2/π∆ν) = 50 m−1, the population becomes inverted
for N = N2 − N1 = (50)(4)π2tsp∆ν/λ2 = 1.254× 1025 m−3 = 1.254× 1019 cm−3.

c) To attain a gain G = exp [γ(ν0)d ] = 4, we require d = ln(4)/γ(ν0) = 2.77 cm.

15.2 AMPLIFIER PUMPING

EXERCISE 15.2-1
Optical Pumping
The populations of the three energy levels (2, 1, and the ground state) are N2,N1, and
Ng, respectively. The total population is N1 +N2 +Ng = Na. Since level 1 is short lived,
N1 ≈ 0, so that N2 + Ng ≈ Na and
Ng ≈ Na − N2. (1)

The system is pumped by transitions between the ground state and level 2, so that
R2 = (Ng − N2)W . Using (1), we therefore obtain R2 = (Na − 2N2)W . In this case,
it is apparent that the rate R2 is dependent on N2. Now, from (15.2-7) the population
difference N0 ≈ R2tsp = (Na − 2N2)W tsp. But N0 = N2 − N1 ≈ N2. Thus N0 =
(Na − 2N0)W tsp. Solving for N0 we have N0 = NatspW/(1 + 2tspW ). In the limit
where W � 1/2tsp, we obtain N0 ≈ NatspW , which is proportional to W . However for
larger W , in the domain where it is not negligible in comparison with 1/2tsp, saturation
sets in and N0 loses its proportionality to W .

EXERCISE 15.2-2
Saturation Time Constant

If tsp � τnr (i.e., nonradiative transitions are slow), and

tsp � τ20 (i.e., decay to levels other than level 1 is slow), and

tsp � τ1 (i.e., decay from level 1 is fast, i.e., level 1 is short-lived),

then 1/τ2 = 1/τ20 +1/tsp +1/τnr ≈ 1/tsp, so that τ2 ≈ tsp; furthermore 1/τ21 = 1/tsp +
1/τnr ≈ 1/tsp, so that τ21 ≈ tsp. Under these conditions, it follows that the saturation
time constant provided in (15.2-11) can be approximated as τs = τ2 + τ1(1− τ2/τ21) ≈
tsp + τ1(1− tsp/tsp) ≈ tsp, thereby demonstrating that τs ≈ tsp.
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EXERCISE 15.2-3
Pumping Power in Three- and Four-Level Systems

3-level laser amplifier:
For a three-level scheme, in accordance with (15.2-30), when N0 = 0 we have tspW = 1
so that W = 1/tsp. Now, when the pumping transition probability is twice as large, as
assumed in the problem for the three-level scheme, namely W = 2/tsp, (15.2-30)
yields N0 = 1

3
Na. The pumping power is then P = hν31R, where R = (N1 − N3)W .

Since N3 ≈ 0, we obtain R ≈ N1W . Because N2 + N1 = Na and N2 − N1 = N0, by
subtraction we obtain 2N1 = Na −N0 = Na − 1

3
Na = 2

3
Na, so that N1 = 1

3
Na. It follows

that R = 1
3
NaW = 1

3
Na(2/tsp) = 2

3
Na/tsp, which leads to P = 2

3
hν31Na/tsp.

4-level laser amplifier:
For a four-level scheme, in accordance with (15.2-20), when N0 = 0 we have W = 0.
Now, when the pumping transition probability is W = 1/2tsp, as assumed in the
problem for the four-level scheme, (15.2-20) yields N0 = 1

3
Na. The pumping power

is then P = hν30R, where R = (Ng − N3)W ≈ NgW . But since Ng = Na − N0 =
Na − 1

3
Na = 2

3
Na, we have R = 2

3
Na(1/2tsp) = 1

3
Na/tsp, from which P = 1

3
hν30Na/tsp.

Comparison:
Under these special conditions, and assuming that the two systems have the same
values of Na and tsp, the ratio of the 4-level to 3-level pumping powers required to
achieve this population difference is ν30/2ν31.

15.4 AMPLIFIER NONLINEARITY

EXERCISE 15.4-1
Saturation Photon-Flux Density for Ruby

Parameters: λo = 694.3× 10−9 m; n = 1.76; τs = 2tsp; ∆ν = 3.3× 1011 Hz; co = 3× 108

m/s; h = 6.63× 10−34 J-s.
From (15.4-2), we have 1/φs(ν0) = (λ2/8π) (τs/tsp) g(ν0) = (λ2/8π)(2)(2/π∆ν) =
(λo/n)2/2π2∆ν, where we have made use of (15.1-8) for g(ν0). Inserting the numer-
ical parameter values leads to φs(ν0) = 4.186 × 1025 m−2s−1. This corresponds to a
saturation intensity Is = hν0 φs(ν0) = (coh/λo)φs(ν0) = 1.2×107 W/m2 = 1200 W/cm2.

EXERCISE 15.4-2
Spectral Broadening of a Saturated Amplifier
Making use of (15.4-2), (15.4-3), (15.4-4), and (15.1-8), we have:

γ(ν) = γ0(ν)/[1 + φ/φs], where γ0(ν) = ag(ν), a = N0λ
2/8πtsp,

and 1/φs = bg(ν), b = (λ2/8π)(τs/tsp),

and g(ν) = (∆ν/2π)/[(ν − ν0)2 + (∆ν/2)2].

Therefore,

γ(ν) =
ag(ν)

1 + bφ g(ν)

=
a (∆ν/2π)

(ν − ν0)2 + (∆ν/2)2 + bφ∆ν/2π
=

a (∆ν/2π)

(ν − ν0)2 + (∆νs/2)2
,

where
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(∆νs/2)2 = (∆ν/2)2 + bφ∆ν/2π

= (∆ν/2)2[1 + bφ (2/π∆ν)]

= (∆ν/2)2[1 + bφ g(ν0)]

= (∆ν/2)2[1 + φ/φs(ν0)].

Taking the square-root of both sides of this equation yields the desired result:
∆νs = ∆ν

√
1 + φ/φs(ν0).

15.5 AMPLIFIER NOISE

EXERCISE 15.5-1
Amplified Spontaneous Emission (ASE)

a) In the unsaturated case γ(ν) ≈ γ0(ν), whereupon the differential equation (15.5-
3) becomes dφ/dz = γ0(ν)φ + ξsp(ν). To solve this differential equation, we
use a trial solution of the form φ(z) = A exp [γ0(ν)z] + B. Substitution yields
γ0(ν)A exp [γ0(ν)z] = γ0(ν)A exp [γ0(ν)z] + γ0(ν)B + ξsp(ν), from which it is
clear that B = −ξsp(ν)/γ0(ν). The initial condition φ(0) = 0 is satisfied if
A + B = 0, or A = −B = ξsp(ν)/γ0(ν). It follows that the solution is φ(z) =
φsp {exp [γ0(ν)z]− 1}, where φsp(ν) = ξsp(ν)/γ0(ν). At z = d , we therefore find
φ(d ) = φsp {exp [γ0(ν)d ]− 1}.

b) Following (15.1-9) for spontaneous emission with a Lorentzian profile, the unsatu-
rated gain coefficient is

γ0(ν) =
γ0(ν0)(∆ν/2)2

(ν − ν0)2 + (∆ν/2)2
.

The frequency dependence of this gain coefficient, normalized to unity height, is
then

g1(ν) =
γ0(ν)

γ0(ν0)
=

(∆ν/2)2

[(ν − ν0)2 + (∆ν/2)2]
.

This quantity differs from the Lorentzian lineshape function provided in (15.1-8),
which is normalized to unit area. The function g1(ν) is plotted in the figure below for
∆ν = ν0/100.

In the same figure, we present the frequency
dependence of the equivalent function applicable
for ASE, also normalized to unit height :

g2(ν) =
{exp [γ0(ν)d ]− 1}
{exp [γ0(ν0)d ]− 1}

=
{exp [ag1(ν)]− 1}
{exp (a)− 1}

,

with a = γ0(ν0)d = 5.
0

1

g2(ν)

ν0 ν

g1(ν)

It is clear that g2(ν) is narrower than g1(ν), indicating that the amplification of spon-
taneous emission is accompanied by spectral narrowing.
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C H A P T E R

16
LASERS

16.1 THEORY OF LASER OSCILLATION

EXERCISE 16.1-1
Threshold of a Ruby Laser

Parameters: λo = 694.3× 10−9 m; n = 1.76; λ = λo/n; ∆ν = 330× 10 9 Hz;
Na = N1 + N2 = 1.58× 1019 cm−3; h = 6.62× 10−34J-s; k = 1.38× 10−23 J/◦K;
co = 3× 108 m/s; c = co/n; α(ν0) = −γ0(ν0) ≈ 0.2 cm−1; d = 10 cm; A = 1 cm2.

a) γ0(ν) = N0 σ(ν), where N0 = N2 − N1.
At thermal equilibrium at T = 300◦ K, N2/N1 = exp (−hν/kT ) = exp (−hco/λokT ) ≈
10−30 (see Exercise 15.1-1). Therefore N2 � N1 and N1 ≈ Na, i.e., almost all of
the atoms are in the lower energy state. In this case N0 = N2 − N1 ≈ −Na. The
gain coefficient, γ0(ν0) = N0σ(ν0) ≈ −Naσ(ν0), is then negative and corresponds
to an absorption coefficient α(ν0) ≈ Naσ(ν0). Since α(ν0) ≈ 0.2 cm−1, σ(ν0) ≈
α(ν0)/Na = 1.27× 10−20 cm2.

b) The resonator has parameters d = 0.1 m, R1 = R2 = 0.8, and αs = 0. Its loss
coefficient is αr = αs + (1/2d) ln(1/R1R2) = 2.231 m−1 = 0.0223 cm−1. The photon
lifetime is thus τp = (αrc)

−1 = 1.49× 10−9 = 1.49 ns.

c) The threshold population difference is Nt = αr/σ(ν0) = (0.0223 cm−1)/(1.27 ×
10−20 cm2) = 1.76× 1018 cm−3.

16.2 CHARACTERISTICS OF THE LASER OUTPUT

EXERCISE 16.2-1
Number of Modes in a Gas Laser

a) The gain coefficient is given by γ0(ν) = γ0(ν0) exp [−(ν − ν0)2/2σ2
D] with ∆νD =√

8 ln 2 σD. The allowed oscillation band is obtained from equating the gain coeffi-
cient γ0(ν) to the loss coefficient αr:

γ0(ν0) exp [−(ν − ν0)2/2σ2
D] = αr or (ν − ν0)2/2σ2

D = ln [γ0(ν0)/αr], so that
(ν − ν0)2 = 2σ2

D ln [γ0(ν0)/αr] or (ν − ν0) = ±σD
√

2 ln [γ0(ν0)/αr] .

Thus B = 2σD
√

2 ln [γ0(ν0)/αr] , from which we obtain
B = 2∆νD(8 ln 2)−1/2 [2 ln (γ0(ν0)/αr)]

1/2. (1)

b) ∆νD = 1.5× 109 Hz; γ0(ν0) = 2× 10−3 cm−1; d = 100 cm; R1 = 1; R2 = 0.97; and
αs = 0, so that αr = αs + (1/2d) ln (1/R1R2) = 1.52× 10−4 cm−1.

Bandwidth: From (1) above, we have B = 2.89× 109 Hz = 2.89 GHz.
Modal spacing: νF = c/2d = (co/n)/2d . Using n = 1, d = 100 cm, and
co = 3× 1010 cm/s, we obtain νF = 1.5× 108 Hz = 0.15 GHz.
Number of modes: M = B/νF = 19.3, corresponding to a maximum of 19 modes.
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16.4 PULSED LASERS

EXERCISE 16.4-1
Population-Difference Rate Equation for a Four-Level System

Since τ1 � τsp , level 1 is short lived and we may therefore assume that N1 ≈ 0 so that
N = N2 − N1 ≈ N2. Substituting N1 = 0 and N2 = N into (15.2-8), and assuming that
τ2 ≈ tsp, we obtain
dN/dt = R2 − N/tsp − NW i. (1)

Under steady-state conditions (dN/dt = 0), with W i = 0, (1) yields R2 − N/tsp = 0
so that the steady-state population difference in the absence of amplifier radiation is
N0 = R2tsp. Substituting R2 = N0/tsp into (1), we obtain
dN/dt = N0/tsp − N/tsp −W iN. (2)

Equation (2) is identical to (16.4-5) except for the factor of two in the W i term. This can
be understood as follows: In the 3-level laser system, a photon emitted from level 2
decreases N2 by unity and simultaneously increases N1 by unity, so that the population
difference N = N2 − N1 decreases by two.

In the 4-level system, on the other hand, level 1 is short-lived and cannot maintain any
additions to its population. Thus, a photon emitted from level 2 decreases N2 by unity
but entails no change in N1, which is 0 at all times. The result is a decrease of N by
unity and the absence of the factor of two.

EXERCISE 16.4-2
Pulsed Ruby Laser
Given: λo = 694.3× 10−9 m; n = 1.76; σ(ν0) = 1.27× 10−24 m2;

h = 6.62× 10−34 J-s; co = 3× 108 m/s; and Ni/Nt = 6.
Resonator: The resonator has parameters d = 0.1 m; A = 1 cm2; R1 = R2 = 0.8;

and αs = 0. Its loss coefficient is αr = αs + (1/2d) ln(1/R1R2) = 2.231 m−1 =
0.0223 cm−1. The photon lifetime is thus τp = (αrc)

−1 = 1.49× 10−9 = 1.49 ns.
Threshold population difference: Nt = αr/σ(ν0) = 1.76× 1024 m−3.
Peak Pulse Power: Using (16.4-14), together with Nt/Ni = 1

6
, we have

np = 1
2
· 6Nt[1 + 1

6
ln 1

6
− 1

6
] = 3× 1.76× 1024 × [1 + 1

6
ln 1

6
− 1

6
] = 2.82× 1024 m−3.

Furthermore, np/Nt = 3[1 + 1
6

ln 1
6
− 1

6
] = 1.604, which is consistent with the

curve labeled Ni/Nt = 6 in Fig. 16.4-8. From (16.4-15), the peak power is Pp =
hν T (c/2d)V np. Substituting c = co/n, ν = co/λo, T = 1 − R1, and taking the
resonator cross-sectional area to be A = 1 cm2 so that the resonator volume is
V = 10−4d = 10−5 m3, we obtain Pp = 1.38× 109 W = 1.38 GW.

Pulse Energy: The energy of the pulse is determined from (16.4-23), which in turn
requires knowledge of the final population difference Nf . To determine Nf , (16.4-
22) can be rewritten in the form Y exp (−Y ) = X exp (−X) where X = Ni/Nt

and Y = Nf/Nt. Given that X = Ni/Nt = 6, we have X exp (−X) = 6 exp (−6) =
0.015. It follows that Y exp (−Y ) = 0.015, which has the solution Y = 0.015, so
that Nf = 0.015Nt. Using (16.4-23), we obtain E = 1

2
hν T (c/2d)V τp (Ni − Nf ) =

3.83 J.
Duration and Shape of Laser Pulse: The shape of the laser pulse is provided by the

curve labeled Ni/Nt = 6 in Fig. 16.4-8. From this figure the pulse width at half
maximum value is roughly estimated to be 1.5 τp. An approximate calculation for
the duration of the pulse can be obtained by dividing the energy [3.83 J as obtained
from (16.4-23)] by the peak pulse power [1.38 GW as obtained from (16.4-15)].
This leads to τpulse ≈ E/Pp = 2.78 × 10−9 s = 2.78 ns. This calculation, which
yields τpulse ≈ 1.87τp, assumes that the pulse is square and thus provides only a
rough approximation for τpulse.
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EXERCISE 16.4-3
Demonstration of Pulsing by Mode Locking

a) When the magnitudes and phases are equal, the intensity can be obtained from
(16.4-31), with the substitutions A = 1 and M = 11:

I(t) = |A(t)|2 = |A|2
[

sin (Mπt/TF )

sin (πt/TF )

]2
=

[
sin (11πt/TF )

sin (πt/TF )

]2
.

This function is plotted as a function of t/TF in Fig. (a) below. It is a periodic set of
narrow pulses of height M2 = 121.

b) When the magnitudes are exp (−q2/50) and the phases are equal (say 0), the total
complex amplitude, from (16.4-28), is:
A(t) =

∑5
q=−5 exp (−q2/50) exp (jq2πt/TF )

= 1 +
∑5

q=1 2 exp (−q2/50) cos (q2πt/TF ).
The function I(t) = |A(t)|2 is plotted as a function of t/TF in Fig. (b) below. Again,
this is a periodic set of narrow pulses. Note the reduction of the side lobes in
comparison with Fig. (a).

c) Here, the magnitudes are equal and the phases are random so that A(t) =∑5
q=−5 exp (jq2πt/TF + jϕq), where the ϕq are random variables chosen from a

uniformly distributed probability density function between 0 and 2π. A MATLAB pro-
gram was written to compute I(t) = |A(t)|2. The random phases ϕq were generated
using the random-number generator in MATLAB. The result, plotted as a function
of t/TF in Fig. (c) below, is a random periodic function whose values typically lie
between 0 and 50.
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C H A P T E R

17
SEMICONDUCTOR OPTICS

17.1 SEMICONDUCTORS

EXERCISE 17.1-1
Energy–Momentum Relation for a Free Electron

a) The one-dimensional time-independent Schrödinger equation for a particle of mass
m0 in a potential V = 0 (which is appropriate for a free particle) is

−}2

2m0

∂2ψ(x)

∂x2
= E ψ(x) .

Substituting a plane-wave trial solution of the form ψ(x) = A exp(−jkx), where A is
a constant, leads to

−}2

2m0

(−jk)2 e−jkx = E e−jkx,

so that E =
}2k2

2m0

.

b) The relativistic energy–momentum relation for a free particle of mass m0 is
E2 = p2c2 +m2

0c
4. (1)

For a free electron of mass m0, the rest energy m0c
2 has a value 0.511 MeV.

For a nonrelativistic electron, it is thus convenient to carry out a Taylor-series
expansion for the energy E , retaining the first term. Recalling that

√
1 + x ≈ 1+x/2

for x� 1, we have

E =
√
p2c2 +m2

0c
4 =

[
m2

0c
4

(
1 +

p2c2

m2
0c

4

)]1/2

≈ m0c
2

(
1 +

p2c2

2m2
0c

4

)
= m0c

2 +
p2

2m0

.

Since m0c
2 is the rest energy of the particle, the kinetic energy of a free nonrelativis-

tic electron of mass m0 is E = p2/2m0. With p = }k, this becomes E = }2k2/2m0,
which varies quadratically with k, in accordance with (17.1-1).

A free photon, on the other hand, is massless so that m0 = 0, whereupon (1)
becomes E = pc. Substituting p = }k, this becomes E = c}k, which varies linearly
with k, in accordance with (17.1-2).

The distinction results in different behavior for the dispersion diagrams of electrons
in semiconductors (Fig. 17.1-5) and photons in photonic crystals (Fig. 7.2-5).
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EXERCISE 17.1-2
Exponential Approximation of the Fermi Function

For E − Ef � kT , (17.1-9) becomes the exponential function
f(E) ≈ exp [−(E − Ef )/kT ]. (1)

Substituting (1) into (17.1-11), and making use of (17.1-7) and (17.1-10), we obtain:
n =

∫∞
Ec
A(E − Ec)

1/2 exp [−(E − Ef )/kT ] dE , (2)
where A = (2mc)

3/2/2π2}3 is a constant. To perform the integral in (2) we use the
transformation u = (E−Ec)/kT , with du = dE/kT , whereupon exp [−(E − Ef )/kT ] =
exp (−u) exp [−(Ec − Ef )/kT ], and the integral becomes:

n = A(kT )3/2 exp

[
−Ec − Ef

kT

] ∫ ∞
0

u1/2 exp (−u) du

=
4π(2mckT )3/2

h3

√
π

4
exp

[
−Ec − Ef

kT

]
,

from which (17.1-12) follows. A similar analysis leads to (17.1-13), and (17.1-14)
follows by multiplication.

If mv = mc, then Nc = Nv, whereupon (17.1-12) and (17.1-13) provide
n/p = exp [+(Ef − Ev)/kT − (Ec − Ef )/kT ]. Thus, if (Ec − Ef ) < (Ef − Ev), the
argument of the exponent is positive and therefore so is n/p, i.e., if Ef is closer to the
conduction band than to the valence band, then n > p, and vice versa.

EXERCISE 17.1-3
Determination of the Quasi-Fermi Levels Given the Electron and Hole Concen-
trations

a) At T = 0◦ K, the Fermi function fc(E) = 1 for E < Efc and 0 otherwise. When this
is used together with (17.1-7) and (17.1-10) to evaluate the integral in (17.1-11),
we obtain:
n =

∫ Efc

Ec
A(E − Ec)

1/2 dE = 2
3
A(Efc − Ec)

3/2, where A = (2mc)
3/2/2π2}3 is a

constant. It follows that Efc − Ec = (3n/2A)2/3 from which (17.1-18a) follows.
Equation (17.1-18b) can be similarly obtained.

b) The concentration n is the area under the function %c(E)fc(E). When T > 0◦ K,
fc(E) no longer assumes the values 1 and 0 with a transition at Efc (see middle
panel of figure below). However, if the quasi-Fermi level lies deep within the con-
duction band, for T > 0◦ K the product function %c(E)fc(E) will be a smooth curve
with an area close to that for the T = 0◦ K case, as is evident in the right panel of
the figure below. In that case the expression in (17.1-18a) will be approximately ap-
plicable. A parallel argument for the valence band leads to the approximate validity
of (17.1-18b).

E E E

fc(E )ϱc (E ) ϱc (E ) fc (E )

Ec

T > 0
T = 0

T > 0 T = 0
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EXERCISE 17.1-4
Electron–Hole Pair Injection in GaAs

Parameters for GaAs: Eg = 1.42 eV; mc = 0.07m0; mv = 0.5m0; m0 = 9.11× 10−31 kg,
r = 10−11 cm3/s; T = 300◦ K.
a) Using the value of n i = 1.8 × 106 cm−3 from Table 17.1-3, together with n0 =

1016 cm−3, we obtain p0 = n2
i/n0 = 3.24× 10−4 cm−3. In this case n0 � p0.

b) With injection at a rate R = 1023 cm−3s−1, the steady-state concentrations can be
determined from (17.1-22), which provides: R = r(np − n0p0) = r∆n(n0 + p0 +
∆n) ≈ r∆n(n0 + ∆n), so that ∆n2 + n0∆n − R/r = 0. Solving this quadratic
equation for ∆n yields: ∆n = 1

2

[
−n0 + (n2

0 + 4R/r)1/2
]

= 9.5 × 1016 cm−3. Thus,
∆n is about 9.5 times greater than n0.

c) Since ∆n = 9.5× 1016 cm−3 � n0, we use (17.1-24) to obtain τ ≈ 952 ns.

d) The separation between the quasi-Fermi levels at T = 0◦ K may be determined by
subtracting (17.1-18b) from (17.1-18a):
Efc − Efv = Eg + (3π2)2/3(}2/2)

[
n2/3/mc + p2/3/mv

]
.

Converting the values for n = n0 +∆n and p = p0 +∆n ≈ ∆n obtained above from
units of cm−3 to m−3 by multiplying by them by 106, and dividing by the electronic
charge e to convert from J to eV, substitution yields the following:

Efc − Efv = Eg +
(3π2)2/3

2

}2

m0e

[
(n× 106)2/3

0.07
+

(p× 106)2/3

0.5

]

= Eg +
(3π2)2/3

2

}2

m0e

[
(10× 1021 + 95× 1021)2/3

0.07
+

(95× 1021)2/3

0.5

]

= Eg +
(3π2)2/3

2

}2

m0e

[
22.3× 1014

0.07
+

20.8× 1014

0.5

]
= Eg + 4.785 · 43.8× 10−68

5.74× 10−48

[
22.3× 1014

0.07
+

20.8× 1014

0.5

]
= Eg + 0.013 eV .

Thus, Efc−Efv is 0.013 eV greater than the bandgap energy Eg so that Efc−Efv =
1.433 eV. Using (17.1-18a) and (17.1-18b) separately, we find Efc − Ec ≈ 0.011 eV
and Ev −Efv ≈ 0.002 eV, so that the quasi-Fermi levels lie within, but very near the
edges of, the conduction and valence bands.

However, neither Efc − Ec nor Ev − Efv are � kT = 0.026 eV at T = 300◦ K, so
that (17.1-18a) and (17.1-18b) should not be used for this carrier concentration at
T = 300◦ K (see Exercise 17.1-3); hence T = 0◦ K was expressly specified for this
part of the problem.

EXERCISE 17.1-5
Energy Levels of a Quantum Well
Inside the well (0 < x < d), V = 0 and the one-dimensional time-independent
Schrödinger equation is (−}2/2m) d 2ψ/dx2 = Eψ or d 2ψ/dx2 + k2ψ = 0, where
k2 = 2mE/}2. This equation has the general solution ψ(x) = A sin(kx) +B cos(kx).

At the boundaries of the infinite well (x = 0 and x = d), we require ψ(x) = 0. Therefore,
B = 0 and sin(kd) = 0. This is possible if kd = qπ , q = 1, 2, 3, ..., so that k must
have one of the values kq = qπ/d , just as for the standing waves in a Fabry–Perot
resonator [see (11.1-2) and (11.1-3)]. The corresponding energy E = (}2/2m)k2
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is thus quantized to the values Eq = (}2/2m)(qπ/d)2. The first three energy levels
(q = 1, 2, 3) are therefore: E1 = 4.9}2/md 2, E2 = 19.7}2/md 2, and E3 = 44.4}2/md 2.

By comparison, a quantum well of finite depth V 0 = 32}2/md 2 has energies: E1 =

3.2}2/md 2, E2 = 11.9}2/md 2, and E3 = 25.9}2/md 2, as illustrated in Fig. 17.1-26(b).
Finiteness of the well depth is seen to compress the energy-level spacings and to yield
a continuum of energy levels above V 0.

17.2 INTERACTIONS OF PHOTONS WITH CHARGE CARRIERS

EXERCISE 17.2-1
Requirement for the Photon Emission Rate to Exceed the Absorption Rate

a) In thermal equilibrium Efc = Efv = Ef and, in accordance with (17.1-9), f(E) =
1/ {exp [(E − Ef )/kT + 1]}. The difference between the emission and absorption
conditions, given by (17.2-10) and (17.2-11), respectively, is fe(ν)−fa(ν) = fc(E2)−
fv(E1). Since fc(E) = fv(E) = f(E) in thermal equilibrium, we have fe(ν)−fa(ν) =
f(E2)−f(E1). Because f(E) is a monotonically decreasing function of E , we obtain
f(E2) < f(E1) so that fe(ν) − fa(ν) < 0. Thus, fe(ν) < fa(ν), which indicates that
the rate of emission is smaller than the rate of absorption.

b) In quasi-equilibrium, we have fe(ν)− fa(ν) = fc(E2)− fv(E1) =
(1/ {1 + exp [(E2 − Efc)/kT ]})− (1/ {1 + exp [(E1 − Efv)/kT ]}).
This is a positive quantity if exp [(E2 − Efc)/kT ] < exp [(E1 − Efv)/kT ], or equiva-
lently if (E2−Efc) < (E1−Efv), or if E2−E1 < Efc−Efv. Since E2−E1 = hν, the
emission rate is greater than the absorption rate if hν < Efc − Efv, or equivalently
if Efc − Efv > hν. This implies that the separation between the two Fermi levels
is greater than the bandgap energy, namely, that Efc and Efv must lie within the
conduction and valence bands, respectively.

EXERCISE 17.2-2
Wavelength of Maximum Interband Absorption

In accordance with (17.2-29), α(ν) is proportional to (hν −Eg)
1/2 (hν)−2. This function

has its maximum value, νp, when its derivative with respect to ν is 0. This occurs when
−2(hνp − Eg)

1/2 + 1
2
hνp(hνp − Eg)

−1/2 = 0 or 1
4
hνp = (hνp − Eg) so that hνp = 4

3
Eg.

To find the maximum value of the wavelength, λp, however, we need to write α(ν) as
α(λo) instead, and then take the derivative with respect to λo. Since ν = co/λo, we have
α(λo) ∝ (hco/λo − hco/λg)1/2

(λo/hco)
2 ∝ (1/λo − 1/λg)

1/2
(λo)

2. Setting the deriva-
tive of α(λo) equal to zero yields 2 (1/λp − 1/λg)

1/2
λp− 1

2
(1/λp − 1/λg)

−1/2
(λ2

p/λ
2
p) =

0 so that 4 (1/λp − 1/λg)λp = 1, which leads to λp = 3
4
λg or λp (µm) = 3

4
· 1.24/Eg

(eV).

For GaAs, Eg = 1.42 eV so that λp = 3
4
· 1.24/1.42 = 0.65 µm, which lies in the red.

In view of the results obtained in Prob. 14.4-5, we know that λp cannot necessarily
be evaluated as co/νp. In this case, however it turns out that evaluating λp in terms of
co/νp also leads to 3

4
coh/Eg, so that both approaches yield the same result.
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C H A P T E R

18
LEDS AND LASER DIODES

18.1 LIGHT-EMITTING DIODES

EXERCISE 18.1-1
Quasi-Fermi Levels of a Pumped Semiconductor

a) At T = 0◦ K, the Fermi function fc(E) = 1 for E < Efc, and 0 otherwise. This
expression may be used together with (17.1-7) and (17.1-10) to evaluate the
integral in (17.1-11). Using the substitution x = (E − Ec) to evaluate the integral,
we obtain

∆n =
∫ Efc

Ec
A(E − Ec)

1/2dE = 2
3
A(Efc − Ec)

3/2,

where A = (2mc)
3/2/2π2}3 is a constant. Thus, Efc − Ec = (3/2A)2/3 ∆n2/3, from

which (18.1-12a) follows. Equation (18.1-12b) is similarly obtained, and (18.1-12c)
follows from simple subtraction, where 1/mr = 1/mc + 1/mv [see (17.2-5)]. The
calculation is the same as that provided in Exercise 17.1-3.

b) From (18.1-5)–(18.1-7), we have fe(ν) = fc(E2)[1 − fv(E1)], where E2 = Ec +
(mr/mc)(hν − Eg) and E1 = E2 − hν. At T = 0◦ K, the Fermi function fc(E2) is
unity as long as E2 < Efc and is 0 otherwise. Similarly, the Fermi function fv(E1) is
unity for E1 < Efv and is 0 otherwise. For hν > Eg, as hν increases, we see that
E2 increases and E1 decreases. But as long as these two values lie below Efc and
above Efv, respectively, fc(E2) = 1 and 1− fv(E1) = 1, so that fe(ν) = 1. When hν
exceeds the value Efc − Efv, we see that E2 exceeds Efc and E1 lies below Efv,
so that fc(E2) = 0 and 1− fv(E1) = 0, indicating that fe(ν) = 0. The function fe(ν)
is therefore a rectangular function with value 1 for Eg < hν < Efc−Efv , and value
0 otherwise, as shown in Fig. (a) below.

According to (18.1-3), the rate of spontaneous emission r sp is proportional to
%(ν)fe(ν), where %(ν) ∝ (hν − Eg)

1/2. Therefore, the dependence of r sp on ν is as
illustrated in Fig. (a) below for T = 0◦ K. The effect of increasing the temperature
(T > 0◦ K) is to smooth the Fermi function so that the functions fe(ν) and r sp(ν)
take the forms shown in Fig. (b) below.

fe(ν)

ϱ(ν)

rsp(ν)

T = 0° K T > 0° K

Eg Efc-Efν
hν Eg Efc-Efν

hν

(a) (b)
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EXERCISE 18.1-2
Spectral Intensity of Injection Electroluminescence under Weak Injection

From (18.1-3)–(18.1-5), we have r sp(ν) = τ−1
r %(ν)fe(ν), where

%(ν) = [(2mr)
3/2/π}2](hν − Eg)

1/2 and fe(ν) = fc(E2)[1− fv(E1)].

When the Fermi distributions are approximated by their tails, we have

fc(E2) ≈ exp[−(E2 − Efc)/kT ] and 1− fv(E1) ≈ exp[−(Efv − E1)/kT ]

whereupon fe(ν) ≈ exp [(Efc − Efv)/kT ] · exp [−(E2 − E1)/kT ]
= exp [(Efc − Efv)/kT ] · exp (−hν/kT ).

Substituting this approximate expression for fe(ν) into the above expression for r sp(ν)
leads to (18.1-13a) and (18.1-13b).

EXERCISE 18.1-3
Electroluminescence Spectral Linewidth

a) Equation (18.1-13a) may be written in the form r sp(ν) = D(kT )1/2u1/2 exp(−u),
where u = (hν − Eg)/kT . The function u1/2 exp(−u) has its peak value when its
derivative with respect to u vanishes, i.e., when −u1/2 exp(−u) + 1

2
u−1/2 exp(−u) =

0, from which we obtain u = 1
2
, i.e., (hν − Eg)/kT = 1

2
or hν = Eg + 1

2
kT .

b) The peak of the function u1/2e−u occurs at u = 1
2
, where the function has the value

( 1
2
)1/2e−1/2. The function reaches half its peak value where

u1/2e−u = 1
2
× ( 1

2
)1/2e−1/2, i.e., where u1/2e−u = ( 1

2
)3/2e−1/2. Squaring both

sides of this equation leads to ue−2u = ( 1
2
)3e−1 = 0.046. Computation shows

that the roots of this equation are approximately u1 = 0.051 and u2 = 1.84.
The difference between these values, u2 − u1 = 1.79 ≈ 1.8, corresponds to
[(hν2 − Eg)/kT − (hν1 − Eg)/kT ] ≈ 1.8 so that h(ν2 − ν1) ≈ 1.8 kT . The FWHM
spectral width is, therefore, ∆ν ≈ 1.8 kT/h, confirming (18.1-15). Note that ∆ν is
independent of ν.

c) Since ν = c/λ, we have ∆ν = −(c/λ2)∆λ. The magnitude of the wavelength
spectral width ∆λ that corresponds to the frequency spectral width ∆ν ≈ 1.8 kT/h
is therefore ∆λ ≈ (λ2

p/c)∆ν = (λ2
p/c)(1.8 kT/h) = 1.8 (λ2

p/hc) kT . If we express λ in
µm, and kT in eV, the foregoing equation becomes
∆λ (inµm)× 10−6 ≈ 1.8 · [λ2

p (inµm2)× 10−12/hc] · [kT (in eV) · e] or
∆λ (inµm) ≈ [1.8/(106 × hc/e)] · [λ2

p (inµm2)] · [kT (in eV)].
Now, since (106 × hc/e) = 1.24 and 1.8/1.24 ≈ 1.45, we obtain the final result
∆λ (inµm) ≈ 1.45 · [λ2

p (inµm2)] · [kT (in eV)], in agreement with (18.1-16).

In contrast with the frequency spectral width ∆ν, which is independent of ν, the
wavelength spectral width ∆λ increases as λ2

p.

d) At T = 300◦ K, we have kT = 0.026 eV. The frequency spectral width is given by
∆ν = 1.8 kT/h = 1.8 · 0.026 · 1.6 × 10−19/6.6 × 10−34 = 11.3 × 1012 Hz = 11.3 THz.
It is independent of the wavelength λp.

The wavelength spectral width is ∆λ (inµm) ≈ 1.45 · [λ2
p (inµm2)] · [kT (in eV)]. For

λp = 0.8 µm, we have ∆λ ≈ 1.45 · [0.82] · [0.026] ≈ 0.024 µm = 24 nm. For λp =
1.6 µm, on the other hand, we have ∆λ ≈ 1.45 · [1.62] · [0.026] ≈ 0.096 µm = 96 nm,
confirming that ∆λ increases as λ2

p (doubling the wavelength, from 0.8 to 1.6 µm,
results in quadrupling of the wavelength spectral width, from 24 to 96 nm).
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EXERCISE 18.1-4
Extraction of Light from a Planar-Surface LED

a) We begin with η3 = 1
2
(1− cos θc) and make use of Snell’s law for the critical angle:

sin θc = 1/n and therefore cos θc =
√

1− sin2 θc

so that η3 = 1
2

(
1−

√
1− 1/n2

)
.

Since
(

1− 1

n2

)1/2

≈ 1− 1

2n2
for

1

n2
� 1, we have

η3 ≈ 1
2

(
1

2n2

)
=

1

4n2
.

b) θc = sin−1(1/n) and η3 ≈ 1/4n2 so

θc(GaAs) = sin−1(1/3.6) = 16.1◦ and η3(GaAs) = 0.019

θc(GaN) = sin−1(1/2.5) = 23.6◦ and η3(GaN) = 0.040

θc(polymer) = sin−1(1/1.5) = 41.8◦ and η3(polymer) = 0.111.

c) From GaAs (n1 = 3.6) to polymer (n2 = 1.5), the critical angle θc1 is obtained from
n1 sin θc1 = n2 so that θc1 = sin−1(1.5/3.6) = 24.6◦. Thus, η3 = 1

2
[1− cos(24.6◦)] =

0.045. As shown in part b) above, light escaping from GaAs into air has η3(GaAs) =
0.019 so the enhancement in the fraction of extracted light is 0.045/0.019 ≈ 2.4.

d) From n1 = 3.6 to n2 = 1.5, using generalizations of (18.1-21) and (18.1-22) we have:

η2 η3 =

[
1− (n1 − n2) 2

(n1 + n2) 2

]
· 1

2

1−

√
1−

(
n2

n1

) 2


≈ 4n1n2

(n1 + n2) 2
· 1

4

n2
2

n2
1

=
n3

2

n1(n1 + n2)2
.

Similarly, from n2 = 1.5 to n3 = 1, we have:

η′2 η
′
3 ≈

n3
3

n2(n2 + n3)2
.

The product η2 η3 η
′
2 η
′
3 is maximized for

∂(η2 η3 η
′
2 η
′
3)

∂n2

= 0 or

∂

∂n2

(
n3

2

n1(n1 + n2) 2
· n3

3

n2(n2 + n3) 2

)
=
n3

3

n1

∂

∂n2

(
n2

2

(n1 + n2) 2 (n2 + n3) 2

)
= 0.

Thus, (n1+n2) 2 (n2+n3) 2 ·2n2−n2
2[(n1+n2) 2 ·2(n2+n3)+(n2+n3) 2 ·2(n1+n2)] = 0,

which provides n2 = n1, indicating that the introduction of an intermediate layer of
arbitrary thickness is not helpful in maximizing the fraction of light emitted from the
LED into air if Fresnel reflection is accommodated.

The use of an intermediate-index material in the form of a quarter-wave film can be
useful in this connection, however, as shown in Exercise 7.1-1.
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C H A P T E R

19
PHOTODETECTORS

19.6 NOISE IN PHOTODETECTORS

EXERCISE 19.6-1
Signal-to-Noise Ratio of a Resistance-Limited Receiver

Parameters: η = 1; RL = 50Ω; T = 300◦ K; B = 100 MHz = 108 Hz; e = 1.6× 10−19 C;
λ = 1.55 µm = 1.55× 10−6 m; h = 6.63× 10−34 J · s; k = 1.38× 10−23 J/◦K.

Resistor thermal-noise current variance: σ2
i = 4kT/RL.

Photoelectron-noise current variance: 2eıB = 2e2ΦB.

When the two variances are equal, we have 4kT/RL = 2e2ΦB, so that the
Photon flux Φ = 2kT/e2RLB = 6.5× 107 photons/sec, and the
Optical power P = hνΦ = hcΦ/λ = 8.3× 10−12 W = 8.3 pW.

EXERCISE 19.6-2
Sensitivity of an Analog APD Receiver

From (19.6-39), we have SNR0 = G
2
m2

0/(G
2
Fm0 + σ2

q ), from which we obtain

m 2
0 − SNR0 F m0 − SNR0 σ

2/G
2

= 0.

This is a quadratic equation in m0 whose positive solution is

m0 = 1
2

[
F · SNR0 +

√
F 2 SNR2

0 + 4σ2
q SNR0/G

2
]

= F · SNR0

[
1
2

+

√
1
4

+ σ2
q/F

2 G
2

SNR0

]
.

In the limit as σ2
q → 0, this reduces to m0 = F · SNR0 as promised.

EXERCISE 19.6-3
Effect of Quantum Efficiency and Background Noise on Receiver Sensitivity

a) State 0: Neither signal nor background photons are present. Hence, the probability
is unity that zero photoelectrons are detected in this OOK system; there is thus
no possibility for error and p 0 = 0.

State 1: An average of n photons is present in a receiver counting time T . This gives
rise to an average of m = ηn photoelectrons, which follow the Poisson distribu-
tion p(m) = mm

exp(−m)/m! . An error (a “miss”) occurs if zero photoelectrons
are observed in the receiver counting time T ; this occurs with probability
p1 = p (0) = exp(−m) = exp(−ηn).

The bit error rate for this system is thus BER = 1
2
(p1 + p 0) = 1

2
exp(−ηn) =

1
2

exp(−2ηn0) since ηn0 = 1
2
ηn. For a BER = 10−9, we thus have ηn0 = 10,

corresponding to m0 = 10 photoelectrons per bit and to n0 = 10/η photons per bit.
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b) State 0: The number of photons n is Poisson distributed with mean nB associated
with the background, and so too is the number of photoelectrons m since the
quantum efficiency η is assumed to be unity.

State 1: The number of photons n is Poisson distributed with mean nB + n, where
n represents the mean number of signal photons.

Decision rule: Select a threshold nth; If n > nth, decide 1; otherwise decide 0.

Error probabilities:
p0 = probability that n > nth if p(n) is Poisson distributed with mean nB .
p1 = probability that n ≤ nth if p(n) is Poisson distributed with mean nB + n.

BER = 1
2
p0 + 1

2
p1

= 1
2

∞∑
n=nth

nn
B exp[−nB ]/n! + 1

2

nth∑
n=0

(nB + n)n exp[−(nB + n)]/n!.

The expression for the BER is a function of nB , n, and nth. The required plots
can be generated numerically; for given values of nB and n, we can determine the
value of nth that minimizes the BER. The optimal threshold turns out to be nth =
n/ ln(1 + n/nB) as shown, for example, in B. E. A. Saleh, Photoelectron Statistics,
Springer-Verlag, 1978, p. 315 (in this reference, BER is denoted Pe, nB is denoted
nb, and n is denoted ns).
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C H A P T E R

20
ACOUSTO-OPTICS

20.2 ACOUSTO-OPTIC DEVICES

EXERCISE 20.2-1
Parameters of Acousto-Optic Modulators

Modulator 1
n = 1.46; vs = 6×103 m/s; f = 50 MHz = 5×107 Hz; λo = 633×10−9 m; δθ = 10−3 rad;
λ = λo/n = 433× 10−9 m; Λ = vs/f = 1.2× 10−4 m.
Bragg Angle θB = sin−1(λ/2Λ) = 1.8 mrad.
Bandwidth B = vs/D = vs/(λ/δθ) = 13.9 MHz.

Modulator 2
n = 4.8; vs = 2.2× 103 m/s; f = 100 MHz = 108 Hz; λo = 10.6× 10−6 m; D = 10−3 m;
λ = λo/n = 2.2× 10−6 m; Λ = vs/f = 22× 10−6 m.
Bragg Angle θB = sin−1(λ/2Λ) = 50 mrad.
Bandwidth B = vs/D = 2.2 MHz.

EXERCISE 20.2-2
Parameters of an Acousto-Optic Scanner

Parameters: vs = 6 × 103 m/s; n = 1.46; λo = 633 × 10−9 m; fmin = 4 × 107 Hz;
fmax = 6× 107 Hz; N = 100.

Beam width D: From (20.2-8) we have N = TB = (D/vs)B, where B = fmax−fmin =
2× 107 Hz. Therefore, D = Nvs/B = 3 cm.

Scan angle ∆θ: Since N = ∆θ/δθ and δθ = λ/D, we have ∆θ = Nλ/D. This
is the angle within the medium. The corresponding angle outside the medium is
nNλ/D = Nλo/D = 2.11 mrad = 0.12◦.

Slower sound: We have N = (D/vs)B, which is inversely proportional to vs. Thus,
if vs is reduced from 6 to 3.1 km/s, with all other parameters remaining the same, N
increases from 100 to 100× 6/3.1 = 193.5.

EXERCISE 20.2-3
Resolving Power of an Acousto-Optic Filter

Let θB = sin−1(λ/2Λ) be the Bragg angle at wavelength λ. Consider the consequences
of fixing the angle θ at the value θB and altering the wavelength λ. The Bragg angle
is then altered and since θ is no longer the Bragg angle, the reflection efficiency
decreases. Considering small angles, it is evident from Fig. 20.1-3 that when θ differs
from θB by λ/2L, where L is the length of the cell, the reflection efficiency diminishes
to zero. This occurs when λ/2Λ− λ/2Λ ≈ λ/2L. Defining ∆λ = λ− λ as the minimum
resolvable wavelength difference, we thus have ∆λ/2Λ ≈ λ/2L, so that ∆λ/λ ≈ Λ/L =
(1/f)(vs/L) = 1/fT , where T is the transit time. It follows that the spectral resolving
power of the acousto-optic filter is given by λ/∆λ = fT .
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20.3 ACOUSTO-OPTICS OF ANISOTROPIC MEDIA

EXERCISE 20.3-1
Transverse Acoustic Wave in a Cubic Crystal

As indicated in Example 20.3-2, all strain components of the transverse acoustic
wave vanish except s13 = s31 = S0 cos(Ωt − qz). In accordance with Table 21.2-1 for
contracted indices, this component is denoted s5.

The photoelasticity matrix for the cubic crystal is provided in (20.3-4) so that the
components of the impermeability tensor η are given by

∆


η11

η22

η33

η32

η31

η12

 =


p11p12p12 0 0 0
p12p11p12 0 0 0
p12p12p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44




0
0
0
0
s5

0

 .

The sole nonzero component is therefore ∆η31 = ∆η13 = p44s5.
Moreover, since the crystal is cubic, η11 = η22 = η33 = 1/n2.
The index ellipsoid, given by

∑
ij ηij xixj = 1, i, j = 1, 2, 3, may therefore be written in

the form

(x2
1 + x2

2 + x2
3)/n2 + 2p44s5x1x3 = 0, or

x2
2/n

2 + [(x2
1 + x2

3)/n2 + 2p44s5x1x3] = 0.

The transformation u1 = (x1 − x3)/
√

2; u3 = (x1 + x3)/
√

2; u2 = x2 yields the ellipsoid
u2

1/n
2
1 + u2

2/n
2
2 + u2

3/n
2
3 = 1, with

1/n2
1 = 1/n2 + p44s5 (1)

n2 = n (2)
1/n2

3 = 1/n2 − p44s5. (3)

For p44s5 � 1, Taylor-series expansions of (1) and (3) provide the desired results.
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C H A P T E R

21
ELECTRO-OPTICS

21.1 PRINCIPLES OF ELECTRO-OPTICS

EXERCISE 21.1-1
Coupling-Efficiency Spectral Response
According to (21.1-22), the switching voltage at wavelength λ0 is V0 =

√
3Cλ0 d/πn3r.

The coupling efficiency at V = V0 for light at wavelength λ0 is 0. However, at a different
wavelength, say λ0, the coupling efficiency is given by (21.1-23):
T = (π/2)2 sinc2

{
1
2
[1 + 3(V/V01)2]1/2

}
, where V01 =

√
3Cλ0 d/πn3r is the appropriate

switching voltage at the wavelength λ0. Fixing the applied voltage at V = V0 and
substituting (V0/V01) = (λ0/λ0) leads to T = (π/2)2 sinc2

{
1
2
[1 + 3(λ0/λ0)2]1/2

}
.

The distance between λ0 and λ0 is conveniently framed in terms of the relative deviation
u ≡ (λ0−λ0)/λ0, so that λ0/λ0 = 1/(1+u). Expressing the coupling efficiency in terms
of u provides T = (π/2)2 sinc2

{
1
2
[1 + 3/(1 + u)2]1/2

}
, which is plotted below. For u = 0

the coupling efficiency is 0, as expected. As |u| increases, representing increasing
wavelength deviation, T increases so that light is coupled by the device. At u = 0.1,
for example, we obtain T = 0.0127, indicating that a 10% relative wavelength deviation
away from λ0 results in a 1.27% coupling efficiency.

T

0.2

0
-0.5 0.50

λ
0
 - λ

0

λ
0

u =

21.2 ELECTRO-OPTICS OF ANISOTROPIC MEDIA

EXERCISE 21.2-1
Intensity Modulation Using the Kerr Effect
When an electric field E is applied to an isotropic material exhibiting the Kerr electro-
optic effect, the material becomes uniaxial with the optic axis along the direction of the
electric field, and with refractive indices given by (21.2-23) and (21.2-24), respectively:
no(E) = n − 1

2
n3s12E

2 and ne(E) = n − 1
2
n3s11E

2. For a longitudinal electro-optic
modulator, the light propagates along the direction of the electric field so the refractive
index is no(E). For a cell of length d with an applied voltage V , we have E = V/d .

Phase Shift:

ϕ =

(
2π

λo

)
no(E)d =

(
2π

λo

)
nd −

(
π

λo

)
n3s12

(
V

d

)2

d = ϕ0 − π
(
V

Vπ

)2

,

where ϕ0 = (2π/λo)nd and Vπ = (λod/n3s12)1/2.

Phase Retardation: Since the light is traveling along the optic axis there is no phase
retardation (Vπ =∞).
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C H A P T E R

22
NONLINEAR OPTICS

22.1 NONLINEAR OPTICAL MEDIA

EXERCISE 22.1-1
Intensity of Light Required to Elicit Nonlinear Effects

a) The ratio of the second to first terms in (22.1-2) is 2dE/εoχ, which is chosen to
be 0.01 and therefore requires E = εoχ/200d = εo(n

2 − 1)/200d. Substituting
εo = 8.85 × 10−12 F/m, along with n = 1.5 and d = 6.8 × 10−24 C/V2 for
ADP (NH4H2PO4), we obtain E = 8.13 × 109 V/m. This corresponds to an
intensity I = E2/η, where η = ηo/n and ηo =

√
µo/εo = 377 Ω. This in turn gives

I = 2.63× 1017 W/m2 = 2.63× 1013 W/cm2, which is very large.

b) The ratio of the third term to the first in (22.1-2), 4χ(3)E2/εoχ, is also taken to be
0.01, which requires E2 = εoχ/400χ(3) = εo(n

2−1)/400χ(3). Substituting εo = 8.85×
10−12 F/m, along with n = 1.6 and χ(3) = 4.4 × 10−32 Cm/V3 for CS2, leads to
E = 8.86 × 108 V/m. The corresponding intensity is I = E2/η = nE2/ηo = 3.33 ×
1015 W/m2 = 3.33× 1011 W/cm2.

22.2 SECOND-ORDER NONLINEAR OPTICS

EXERCISE 22.2-1
Non-Collinear Type-II Second-Harmonic Generation (SHG)

From (22.2-26) we have

no(ω) sin θ1 = n(θ + θ2, ω) sin θ2 (1)

no(ω) cos θ1 + n(θ + θ2, ω) cos θ2 = 2n(θ, 2ω). (2)

Therefore

n2
o(ω) sin2 θ1 = n2(θ + θ2, ω) sin2 θ2 (3)

n2
o(ω) cos2 θ1 = [2n(θ, 2ω)− n(θ + θ2, ω) cos θ2]2. (4)

ω

ω

2ωθ1

θ2

θ
Optic Axis

e

e

o

Adding (3) and (4), we obtain

n2
o(ω) = n2(θ + θ2, ω) + 4n2(θ, 2ω)− 4n(θ, 2ω)n(θ + θ2, ω) cos θ2

so that

n2
o(ω) =

[
cos2(θ + θ2)

n2
o1

+
sin2(θ + θ2)

n2
e1

]−1

+ 4

[
cos2 θ

n2
o2

+
sin2 θ

n2
e2

]−1

− 4 cos θ2

[
cos2 θ

n2
o2

+
sin2 θ

n2
e2

]−1/2 [
cos2(θ + θ2)

n2
o1

+
sin2(θ + θ2)

n2
e1

]−1/2

. (5)
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For a KDP crystal, λ1 = 1.06 µm and λ2 = λ1/2, and we have no1 = 1.494, ne1 = 1.4599,
no2 = 1.5123, ne2 = 1.4707.

The procedure for solving (5) is as follows:
a) Substitute no1 , no2 , ne1 , ne2 into (5).
b) Substitute θ from 0→ 90◦.
c) Use a Matlab program to solve for the value of θ2 that satisfies (5).
d) Use (1) to compute θ1

A plot of the resultant values of θ1 and θ2

versus the angle between the optic axis θ and
the direction of the SH wave is shown in the
figure.
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22.3 THIRD-ORDER NONLINEAR OPTICS

EXERCISE 22.3-1
Third-Order Nonlinear Optical Media Exhibit the Kerr Electro-Optic Effect

PNL = 4χ(3)E3 = 4χ(3)[E(0) + 1
2
E(ω)ejωt + 1

2
E(ω)∗e−jωt]3.

Carrying out the expansion shows that the term proportional to ejωt has amplitude
1
2
PNL(ω), where PNL(ω) = 4χ(3)[3E2(0)E(ω) + 1

2
|E(ω)|2E(ω)].

If |E(ω)| � E(0), the second term above is negligible and PNL(ω) ≈ 12χ(3)E2(0)E(ω),
which can be cast in the form εo ∆χE(ω) with ∆χ ≈ 12χ(3)E2(0)/εo.

Since χ = n2−1, we have ∆χ = 2n∆n and ∆n = ∆χ/2n. Thus, ∆n ≈ 6χ(3)E2(0)/εon,
which is equivalent to a refractive-index change associated with the Kerr electro-optic
effect given by ∆n = − 1

2
sn2 E2(0), provided that s = −12χ(3)/εo n

4.

EXERCISE 22.3-2
Optical Kerr Lens

The intensity I ≈ I0[1 − (x2 + y2)/W 2] induces a nonlinear refractive index n(I) =
n + n2I = n + n2I0[1 − (x2 + y2)/W 2] in a thin sheet of material that exhibits the
optical Kerr effect. The result is a medium whose complex amplitude transmittance
is given by exp[−jko d n(I)] = exp[−jkod (n + n2I0)] · exp[jkod n2 I0(x2 + y2)/W 2] =
h0 exp[jko(x

2 + y2)/2f ], where h0 = exp[−jkod (n + n2I0)] and 1/2f = n2I0d/W 2.
Hence, f = W 2/2n2I0d , revealing that the medium acts as a lens whose focal length
f is inversely proportional to I0.
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EXERCISE 22.3-3
Optical Kerr Effect in the Presence of Three Waves

PNL = 4χ(3)E3

= 1
2
χ(3)[E(ω1) exp(jω1t) + E∗(ω1) exp(−jω1t)

+E(ω2) exp(jω2t) + E∗(ω2) exp(−jω2t)

+E(ω3) exp(jω3t) + E∗(ω3) exp(−jω3t)]
3.

The term that varies as exp(jω1t) has an amplitude 1
2
PNL(ω1) where

PNL(ω1) = χ(3) [ 3|E(ω1)|2 E(ω1) + 6|E(ω2)|2 E(ω1) + 6|E(ω3)|2 E(ω1) ].

Substituting I1 = |E(ω1)|2/2η, I2 = |E(ω2)|2/2η, and I3 = |E(ω3)|2/2η, we obtain
PNL(ω1) = 2ηχ(3)[ 3I1 + 6I2 + 6I3 ]E(ω1) = 2εon∆nE(ω1), where
∆n = n2I, n2 = 3ηχ(3)/εon = 3ηoχ

(3)/εon
2, and I = I1 + 2I2 + 2I3.

The wave travels with a velocity co/(n+∆n) = co/(n+n2I) controlled by the intensities
of the three waves.

22.4 SECOND-ORDER NONLINEAR OPTICS: COUPLED WAVES

EXERCISE 22.4-1
SHG as Degenerate Three-Wave Mixing

As in the non-degenerate 3-wave mixing case, we make use of (22.4-1), (22.4-2),
and (22.4-3), but here we have only two waves at frequencies ω1 = ω and ω3 = 2ω.
Substituting E = 1

2
{E1 exp(jωt) + E∗1 exp(−jωt) + E3 exp(j2ωt) + E∗3 exp(−j2ωt)}

into (22.4-3), we obtain
PNL = 1

2
{P1 exp(jωt) + P ∗1 exp(−jωt) + P3 exp(j2ωt) + P ∗3 exp(−j2ωt)}, where

P1 = 2dE3E
∗
1 and P3 = dE1E1. Substituting this in turn into (22.4-2) then leads to

SNL = 1
2
{S1 exp(jωt) + S∗1 exp(−jωt) + S3 exp(j2ωt) + S∗3 exp(−j2ωt)}, where

S1 = µoω
2P1 = 2µoω

2dE3E
∗
1 and S3 = µo(2ω)2P3 = µoω

2
3dE1E

∗
1 , from which (22.4-16)

follow.

EXERCISE 22.4-2
Photon-Number Conservation: The Manley–Rowe Relations
These results follow directly from (2a), (2b), and (2c) in the solution to Exercise 22.4-3.

EXERCISE 22.4-3
Energy Conservation

Multiply (22.4-20a) by a∗1:
a∗1da1/dz = −jga∗1a∗2a3 exp(−j∆kz). (1)

Add (1) to its conjugate and note that a∗1da1/dz + a1da
∗
1/dz = (d/dz)|a1|2, to obtain:

(d/dz)|a1|2 = −jga∗1a∗2a3 exp(−j∆kz)+ c.c. (2a)
Similarly,
(d/dz)|a2|2 = −jga∗1a∗2a3 exp(−j∆kz)+ c.c. (2b)
(d/dz)|a3|2 = −jga1a2a

∗
3 exp(j∆kz)+ c.c.

= jga∗1a
∗
2a3 exp(−j∆kz)+ c.c. (2c)

Now multiply (2a) by }ω1, (2b) by }ω2, and (2c) by }ω3 and add the three equations:
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(d/dz)[ }ω1|a1|2 +}ω2|a2|2 +}ω3|a3|2 ] = −jg}(ω1 +ω2−ω3)a∗1a
∗
2a3 exp(−j∆kz)+ c.c.

(3)
Because ω3 = ω1 + ω2, the right-hand side of (3) vanishes and we obtain:
(d/dz)[ }ω1|a1|2 + }ω2|a2|2 + }ω3|a3|2 ] = (d/dz)(I1 + I2 + I3) = 0. (4)

EXERCISE 22.4-4
Coupled-Wave Equations for SHG

Write E1 and E3 as E1 = (2η}ω)1/2a1 exp (−jk1z) and E3 = (2η}2ω)1/2a3 exp (−jk3z),
respectively, and insert these formulas into (22.4-16a). Use of the slowly varying
envelope approximation in (22.4-19) on the resulting equation then leads to

(2η}ω)1/2(−j2k1)(da1/dz) exp (−jk1z) =
− 2µoω

2d(2η}ω)1/2(4η}ω)1/2a3 exp (−jk3z)a
∗
1 exp (jk1z),

whence (da1/dz) = (µoω
2d/jk1)(4η}ω)1/2a3a

∗
1 exp (−j∆kz) = −jga3a

∗
1 exp (−j∆kz),

where ∆k = k3 − 2k1 and g = (µoω
2d/k1)(4η}ω)1/2, or g2 = (µoc ωd)2(4η}ω) =

(ηωd)2(4η}ω) = 4}ω3η3d2.

Equation (22.4-27b) can be similarly obtained.

EXERCISE 22.4-5
Infrared Up-Conversion
Parameters: d = 1.5 × 10−22 C/V2; n = 2.6; λ1 = 10.6 × 10−6 m; λ2 = 1.06 × 10−6 m;
P2 = 1 W; A = 10−8 m2; L = 10−2 m.

Wavelengths: Since ω3 = ω1 +ω2, we have 1/λ3 = 1/λ1 +1/λ2 or λ3 = λ1λ2/(λ1 +λ2).
Hence, λ3 = 0.9636× 10−6 m = 963.6 nm.

Up-conversion efficiency: As provided in (22.4-43), the up-conversion efficiency is
expressed as ηOFC = 2η3

o ω
2
3(d2/n3)(L2/A)P2. Substituting ηo = 377 Ω; ω3 = 2πco/λ3 =

1.96× 1015 rad/s; d2/n3 = 1.3× 10−45 C2/V4; L2/A = 104; and co = 3× 108 m/s, leads
to ηOFC ≈ 5.4× 10−3 = 0.54%.

EXERCISE 22.4-6
Gain of an OPA
Parameters: λ1 = 2.5 µm; λ3 = 1.064 µm; L = 2 cm; G = 3 dB;
For KTP: n = 1.75 and d = 2.3× 10−23 C/V2.

a) Since ω2 = ω3 − ω1, we have 1/λ2 = 1/λ3 − 1/λ1 or λ2 = λ3λ1/(λ1 − λ3). Thus,
λ2 = 1.85 µm.

b) From (22.4-47), C =

√
2ω1ω2 η3

o

d2

n3
= 2πcod

√
2

λ1λ2

(ηo
n

)3
= 9.0× 10−5 W−1/2.

c) A gain of 3 dB signifies that G = cosh2(γL/2) = 2 so that
√

2 = cosh(γL/2) and
γL/2 = cosh−1

√
2 = ln(1 +

√
2). Thus,

γ = (2/L) ln(1 +
√

2) = 88 m−1. Also, from (22.4-47) we have

γ = 2C
√

P3/A, so that

P3

A
=
( γ

2C

)2
= 2.39× 1011 W/m2.

d) If the laser power is 2.39 W, then the beam cross-sectional area is A = 10 µm2.
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22.5 THIRD-ORDER NONLINEAR OPTICS: COUPLED WAVES

EXERCISE 22.5-1
THG in the Undepleted-Pump Approximation

We begin with the Helmholtz equations (22.5-4) at the fundamental and third-harmonic
frequencies,

(∇2 + k 2
q )Eq = −Sq, q = 1, 3,

where (22.5-23) provides

S1 = µoω
2
1χ

(3)
[
3E3E

∗2
1 + 3E1

(
|E1|2 + 2|E3|2

)]
S3 = µoω

2
3χ

(3)
[
E3

1 + 3E3

(
|E3|2 + 2|E1|2

)]
.

Using the relations Eq = Aq exp(−jkqz), q = 1, 3, and the slowly varying envelope
approximation (22.4-19), (∇2 + k2

q )[Aq exp(−jkqz)] ≈ −j2kq(dAq/dz) exp(−jkqz), the
Helmholtz equations become

dA1

dz
= −j 3

2
ηω1χ

(3)
[
A3A

∗2
1 exp(j∆k z) +A1

(
|A1|2 + 2|A3|2

)]
dA3

dz
= −j 1

2
ηω3χ

(3)
[
A3

1 exp(−j∆k z) + 3A3

(
|A3|2 + 2|A1|2

)]
,

where ∆k = 3k1 − k3.

Under the undepleted pump approximation (|A3| � |A1|), the amplitude of the funda-
mental wave A1 is assumed to be approximately constant (i.e., it does not vary with z),
so the only equation of interest is

dA3

dz
= −j 1

2
ηω3χ

(3)
[
A3

1 exp(−j∆k z) + 3A3

(
|A3|2 + 2|A1|2

)]
.

The first term on the right-hand side of this equation represents third-harmonic
generation while the second term represents the optical Kerr effect.

This equation may simplified since |A3| � |A1|. The term |A3|2 in the sum |A3|2+2|A1|2
may therefore be neglected. The term 6A3|A1|2, which is much smaller than A3

1, may
also be neglected. In any case, since A1 is constant, the term 6A3|A1|2 represents
a constant change of the refractive index due to the optical Kerr effect, and may be
ignored in the context of third-harmonic generation.

Thus, the final outcome is

dA3

dz
≈ −j 1

2
ηω3χ

(3)A3
1 exp(−j∆k z).

With the substitution Aq =
√

2η}ωq aq, this result may be written as

da3

dz
= −jga3

1 exp(−j∆k z) with g = }
√
ω3

1ω3 η
2χ(3).
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22.7 DISPERSIVE NONLINEAR MEDIA

EXERCISE 22.7-1
Polarization Density for an Anharmonic-Oscillator Medium

In accordance with Newton’s law, F = ma, we have
eE− (κx+ κ2x

2)−mζ dx/dt = md2x/dt2.

Dividing by m, reordering terms, and substituting κ/m = ω2
0 ,

we obtain d2x/dt2 + ζ dx/dt+ ω2
0 x+ (κ2/m)x2 = (e/m)E. (1)

For a medium containing N atoms per unit volume, the polarization density is P = Nex.
Substituting x = P/Ne into (1), we obtain
d2P/dt2 + ζ dP/dt+ ω2

0 P + (κ2/m)P2/Ne = (Ne2/m)E. (2)

Defining two parameters, χ0 and b, such that
ω2

0ε0χ0 = Ne2/m (3)
and
ω2

0ε0χ0b = κ2/mNe, (4)
respectively, leads to (22.7-8).

Equation (3) provides that χ0 = Ne2/mω2
0ε0 while (4) gives b = κ2/(mNeω2

0ε0χ0).
Finally, inserting (3) into (4) yields b = κ2/e

3N2, as promised.

EXERCISE 22.7-2
Miller’s Rule

Consider the superposed waves E = Re {E(ω1) exp(jω1t) + E(ω2) exp(jω2t)}.
The first iteration (ignoring the nonlinear effect) gives a polarization density
P = Re {P (ω1) exp(jω1t) + P (ω2) exp(jω2t)}, where

P1(ω1) = ε0χ(ω1)E(ω1) (1a)
P1(ω2) = ε0χ(ω2)E(ω2) (1b)

In the second iteration, we have a driving force F = E− b P 2, i.e.,
F = Re {E(ω1) exp(jω1t) + E(ω2) exp(jω2t)}

− b [Re {P1(ω1) exp(jω1t) + P1(ω2) exp(jω2t)}]2.

This force has many components, including a component Re {F (ω3) exp(jω3)} of fre-
quency ω3 = ω1 + ω2 and complex amplitude F (ω3) = −(b/2)P1(ω1)P1(ω2). This
force creates a polarization density at frequency ω3 with complex amplitude P2(ω3) =
ε0χ(ω3)F (ω3) = ε0χ(ω3)(−b/2)P1(ω1)P1(ω2). Substitution from (1) yields
P2(ω3) = ε30(−b/2)χ(ω1)χ(ω2)χ(ω3), from which (22.7-14) follows.
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C H A P T E R

23
ULTRAFAST OPTICS

23.3 PULSE PROPAGATION IN OPTICAL FIBERS

EXERCISE 23.3-1
Dispersion Compensation in Optical Fibers

a) The dispersion length z0 = πτ2
0 /Dν , where Dν = −(λ2

o/co)Dλ, so that z0 =
πτ2

0 co/λ
2
oDλ. For the first fiber segment we have:

Dλ = 20 ps/km-nm = 2× 10−5 s/m
2,

τ0 = 10 ps = 10−11 s, and
λo = 1.55 µm = 1.55× 10−6 m,
so that z0 = 1.96 km.
At a distance d1 = 100 km, the chirp parameter and the pulse width are, respec-
tively,
a = d1/z0 = 51

τ1 = τ0

√
1 + (d1/z0)2 ≈ 510 ps.

b) The dispersion compensation condition is d1Dλ + d2D
′
λ = 0 so that d2 =

−d1Dλ/D
′
λ. If the dispersion coefficient of the second fiber segment is D′λ = −100

ps/km-nm, we have d2 = 100 km · (20/100) = 20 km.

EXERCISE 23.3-2
Dispersion Compensation by Use of a Periodic Sequence of Phase Modulators

The effect of GVD on pulse propagation over the distance d between its minimum
width (where it is unchirped) and its maximum width is described by the following
equations (see Table 23.3-1):

Pulse width: τ = τ0

√
1 + a2 (1)

Chirp parameter: a = z/z0 (2)

Dispersion length: zo = πτ2
o /Dν . (3)

The quadratic phase modulator does not alter the pulse width, but it changes the chirp
parameter. A change by a factor of −2a is obtained if

−2a = ζτ2 . (4)

This change guarantees that the pulse is modified periodically, as shown in Fig. 23.3-7.
Substituting (1), (2), and (3) into (4) leads to (23.3-23).
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C H A P T E R

24
OPTICAL INTERCONNECTS AND
SWITCHES

24.1 OPTICAL INTERCONNECTS

EXERCISE 24.1-1
Interconnection Capacity

Assume that the hologram is divided into L sub-holograms, each of which contains M
spatial harmonic functions (M1/2 in the x direction and M1/2 in the y direction). The
incident ray on each sub-hologram is directed into M simultaneous directions, so that
each of L points is connected toM points. If a×a is the area of the hologram, then a2/L
is the area of the sub-hologram. A width a/L1/2 corresponds to a spatial frequency
uncertainty ∆ν = L1/2/a (or angular uncertainty λL1/2/a). The M harmonic functions
on a sub-hologram must be separated from one another by a spatial frequency equal
to the uncertainty (L1/2/a) in each direction, so that the spatial bandwidth B in one
direction must be at least M1/2L1/2/a. It follows that B ≥M1/2L1/2/a or (Ba)2 ≥ML.

If B = 1000 lines/mm and a = 1 mm, then (Ba)2 = 1000. If every point at the input
plane is connected to every point at the output plane, i.e., if L = M , then M2 ≤ (Ba)2

or M ≤
√

(Ba)2 = 31.6. Thus, at most, each of 31 points at the input are connected to
each of 31 points at the output.

EXERCISE 24.1-2
The Logarithmic Map

The local spatial frequencies are
νx = (1/2π)∂ϕ/∂x = (1/λd)(lnx+ 1− 1− x) = (1/λd)(lnx− x),
νy = (1/2π)∂ϕ/∂y = (1/λd)(ln y − y).

The angles of deflection are therefore
θx = λνx = (1/d)(lnx− x), θy = λνy = (1/d)(ln y − y).

Rays originating at location (x, y) at the hologram thus reach the location (x′, y′) in
a plane a distance d away via x′ = x + θxd = lnx, y′ = y + θyd = ln y, thereby
indicating that the transformation x′ = lnx and y′ = ln y is implemented.

The phase function ϕ(x, y) specified in (24.1-9) is obtained by recognizing that∫
ln(x) dx = x ln(x)− x.
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24.4 PHOTONIC LOGIC GATES

EXERCISE 24.4-1
Nonlinear Transmittance Functions that Exhibit Bistability

100

0
0 2

x

T(x)

a) T(x) = 1/[(x -1)2 + a2],  a = 0.1.

1

0
0 3

x

T(x)

b) T(x) = 1/[1 + a2sin2(x+θ)],  a = 5,  θ = π/4 .

2

0
0 1

I
i
 = I

o /T(I
o
)

I
o

I
i
 = I

o /T(I
o
)

3

0
0 40

I
o

1

0
0 6

x

T(x)

c) T(x) = (1/2)[1 + cos(x+θ)],  θ = 3π/4.

0.02

0
0 3

x

T(x)

d) T(x) = sinc2[(a2+x2)1/2],  a = 2.

4

0
0 3

x

T(x)

e) T(x) = (x+1)2/(x+a)2,  a = -5.

6

0
0 30

I
o

3

0
0 1000

I
o

3

0
0 5

I
i
 = I

o /T(I
o
)

I
i
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o /T(I
o
)

I
i
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o
)

I
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