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CHAPTER

RAY OPTICS

1.1 POSTULATES OF RAY OPTICS

EXERCISE 1.1-1

Proof of Snell’s Law
The pathlength is given by n;d; sec 6; + nods sec 5. (1)

The pathlength is a function of §; and 6, which are related by
d1 tan 91 + d2 tan 92 = d (2)

The pathlength is minimized when %[nldl sec 01 4+ nady sec 6] = 0,
1
i.e., when Tlldl sec 6 tan 6y + Tl/gdg sec 0y tan Oy (892/891) =0. (3)

From (2), we have a%[dl tan 6y + ds tany] = 0,
1

00 d, sec? 6,
SO that dl SeC2 01 + d2 sec2 92(802/601) =0 and 8791 = —m

d; sec? 6, tan 0,

Substituting into (3), we have n,d; secf; tan; — n, —r. 0,

2
whereupon n; tan 6; = ny sec 6, sin 6o, from which n; sin#; = ns sin 6,, which is Snell’s
law.

1.2 SIMPLE OPTICAL COMPONENTS

EXERCISE 1.2-1
Image Formation by a Spherical Mirror

Wy 2yt

Y, 2,)

A ray originating at P, = (y1, 1) at angle 6; meets the mirror at height

y%y1+9121. (1)
The angle of incidence at the mirroris ¢ = ¢ — 6, = %R — 0.
The reflected ray makes angle 6, with the z axis: '
2 2(y; + 61 2
02:2¢+91 =2 |:_LR_01:| +01 = _7?:5_01 = (yl_i]%ll)—el.
Substituting f = <, we have 0, = %"121 —0,. @)

The height y, can be determined from %2_3/2) ~ 0y. (3)
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Substituting from (1) and (2) into (3), we have y; + 6121 — y2 = 2o {

Y1 +f91 2 01}

291 21 %
and y, = y; — 241 + 0, {21—17.24'22 .

f f
21 22 1 1 1
If[zl—T+zQ}:O, or Z—1+Z—2:7,wehave
z

= (1-2), @
which is independent of 6;.

L ) Y2 22
From (4) itis clear that —— =1 — ==, so that yo = —— ;.

f Y1 Z1

EXERCISE 1.2-2
Image Formation

a)

S

From Snell’s law, we have n, sin (6, + ¢) = nosin [¢ — (—62)]. Since all angles are
small, the paraxial version of Snell's Law is ny(0; + ¢) =~ na(¢ + 62), or
02 ~ (nl/ng)ﬁl + [(nl — ’flg)/’flg](ﬁ

. n Nog — N
Because ¢ ~ y/R, we obtain f, ~ — 0 — ———
Ny

y, which is (1.2-8).

Substituting 6; = y/z; and (—6;) ~ y/z; into (1.2-8),

(m/na)y _ m2=m g which (1.2-9) follows.
z1 TLQR

we have —y/z ~

With reference to Fig. 1.2-13(b), for the ray passing through the origin 0, we have
angles of incidence and refraction given by y; /21 and —y, /22, respectively, so that
the paraxial Snell's Law leads to (1.2-10). Rays at other angles are also directed
from P; to P», as can be shown using a derivation similar to that followed in Exer-
cise 1.2-1.

EXERCISE 1.2-3
Aberration-Free Imaging Surface In accordance with Fermat'’s principle, we require

that the optical path length obey n,d; +n,d> = constant = n, z; +ns2,. This constitutes
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an equation defining the surface, which can be written in Cartesian coordinates as

niy/(z +21)%2 + 92 + n2/(22 — 2)2 + 42 = ny2z1 + naza. (1)

Given z; and z, (1) relates y to z and thus defines the surface.

EXERCISE 1.2-4
Proof of the Thin Lens Formulas

A ray at angle 6, and height y refracts at the first surface in accordance with (1.2-8)

and its angle is altered to 0 = 0 _n—1 Y, (1)
n nk,
where R; is the radius of the first surface (R; < 0).
At the second surface, the angle is altered again to 6, = nf — 1§ By, (2)
2

where R, is the radius of the second surface (R, > 0). We have assumed that the ray
height is not altered since the lens is thin.

Substituting (1) into (2) we obtain:

_ ﬁin—l l—-n, _p 1 1
02—n[n oy y 7 y=6—(n—1y 7 ik
Using (1.2-11), we invoke 6, = 6, — (y/f). (3)

If 6, = 0, then 6; = (—y/f), and z» = (y/—62) = f, where f is the focal length. In

general 6, ~ L and —6, = L. Therefore from (3), =% = X — X from which (1.2-
z1 Vo) 22 21 f

13) follows. Equation (1.2-14) can be proved by use of an approach similar to that used

in Exercise 1.2-1.

EXERCISE 1.2-5
Numerical Aperture and Angle of Acceptance of an Optical Fiber

Applying Snell’s law at the air/core surface:

sinf, = n; sinf, = n; cosf, (1) _)7

Since sinf, = na/ny, cosl, = /1 — (na/n1)?.

Therefore, from (1), NA = sinf, = ny/1 — (na/n1)2 = \/n? —n3.

For silica glass with n; = 1.475 and n, = 1.460, the numerical aperture NA = 0.21 and
the acceptance angle 6, = 12.1°.
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EXERCISE 1.2-6

Light Trapped in a Light-Emitting Diode

a) The rays within the six cones of half angle 6. =
sin™'(1/n) (= 16.1° for GaAs) are refracted into air
in all directions, as shown in the illustration. The rays
outside these six cones are internally reflected. Since
0. < 45°, the cones do not overlap and the reflected
rays remain outside the cones and continue to reflect
internally without refraction. These are the trapped rays.

b) The area of the spherical cap atop one of these cones is A = foe“ 2rrsinfrdf =
27r2(1 — cosf.), while the area of the entire sphere is 4rr2. Thus, the fraction of
the emitted light that lies within the solid angle subtended by one of these cones is
A/4mr? = 1(1 — cosd.) (see Sec. 18.1B). Thus, the ratio of the extracted light to the
total light is 6 x £ (1 — cosf.) = 3(1 — cosf.) (= 0.118 for GaAs). Thus, 11.8% of the

light is extracted for GaAs.
Note that this derivation is valid only for 6. < 45° or n. > /2.

1.3 GRADED-INDEX OPTICS

EXERCISE 1.3-1

The GRIN Slab as a Lens
Using (1.3-11) and (1.3-12), with , = 0 and z = d, we have y(d) = y, cos (ad) and
0(d) = —yoarsin (ad). Rays refract into air at an angle 6’ = ny|0(d)| = noyoasin (ad).

Therefore, AF ~ 9) _ _wncos(ad) .
erefore, 0’ neyoa sin (ad) noa tan (ad) and
% __ 1 h
f= o m———y so that
e 11 ]_ 1 1-cos(ad)
f noa | sin(ad)  tan(ad) Mo sin (ad)
o 2sin®(ad/2) =1 tan(ad/2).

~ o 2sin (d/2) cos (ad/2)  moc

Trajectories:

RN
M

F d = 7fa d = n2a
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EXERCISE 1.3-2

Numerical Aperture of the Graded-Index Fiber

Using (1.3-11) with yo = 0, we obtain y(z) = (6y/a) sin(az). The ray traces a sinusoidal
trajectory with amplitude 6,/ that must not exceed the radius a. Thus 6y/a = a.

The acceptance angle is therefore 6, =~ ng6y = noaa.

For a step-index fiber (Exercise 1.2-5), N
0o = /i —n3 = /(1 + na) (1 — ). ‘f %,

If ny ~ ng, 9(1 ~ \/277,1(711 — nz). 0

If ny = no and ny = ne(1 — a?a?/2),

0, = /2n0(a?a?ny/2) = aang , which is the

same acceptance angle as for the graded-index fiber.

1.4 MATRIX OPTICS

EXERCISE 1.4-1

Special Forms of the Ray-Transfer Matrix
Using the basic equations
Yo = Ay1 + Bgl and 0y, = Cyl + DGI, we obtain:

e If A= 0, then y, = B4, i.e., for a given 6, we

see that y, is the same regardless of y; .
This is a focusing system. ?‘

e If B =0, then y» = Ay, i.e., for a given y;, we % ?yz
see that y, is the same regardless of 6.
This is an imaging system.

e If C =0, then 0, = D¢, i.e., we see that all
parallel rays remain parallel.

/4

o If D=0, then 6, = Cy;, i.e., we see that all rays Y,
originating from a point become parallel. §
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EXERCISE 1.4-2
A Set of Parallel Transparent Plates
. .o 1 d1 1 0 _ 1 dl/nl
The first plate has ray transfer matrix: {0 1} {0 1/n1} = {0 1y |-

The second plate has ray transfer ma- |1 da] (1 0 | _[1 dani/ne
trix: 0 1 0 nl/ng 0 nl/nz ’

The first and second plates together have a ray transfer matrix:

{1 din/nQ} {1 dl/nl} _ {1 dl/n1+d2/n2} .

0 ni/my | |0 1/my 0 1/ns
Similarly N plates have a ray transfer |1 >, di/n;
matrix: 0 1/nyn ’

Including the interface between the N*'" plate and air, the overall ray transfer matrix
becomes:

0 nn 0 1/7’11\] 10 1 '

The ray transfer matrix of an inhomogeneous plate with refractive index n(z) and width
dis:

d
[1 bfdz/n(z)] _

0 1

EXERCISE 1.4-3
A Gap Followed by a Thin Lens

w=Lhe U =T %]

EXERCISE 1.4-4
Imaging with a Thin Lens
1 d, 1 dy _[1=d2/f di+da(1—-di/f)
0 1][-1/f 1-di/f -1/f 1—di/f '

For imaging, the matrix element B must vanish (see Exercise 1.4-1),
so that d; + d2(1 — d1/f) = 0. Dividing this by d,d- yields 1/d> +1/d; —1/f = 0.

For all parallel rays to be focused onto a single point, the matrix element A must vanish
(see Exercise 1.4-1), sothat1 —d,/f =0 or d, = f.
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EXERCISE 1.4-5
Imaging with a Thick Lens

a) This system is composed of 5 subsystems:
1) A distance d; in air, followed by
2) An air/glass refracting surface, followed by
3) A distance d in glass, followed by
4) An glass/air refracting surface, followed by
5) A distance d, in air.

The ray transfer matrix of subsystem 2) is:

1 0 1 0
|—(n—1)/nR 1/n} - [—1/77,f1 1/41 where fi = R/(n —1).

The ray transfer matrix of subsystems 2) and 3) is:

| BTy R v A

The ray transfer matrix of subsystems 2), 3), and 4) (the lens) is:

1 0} {l—d/nfl d/n} _ { 1—d/nf d/n
_—(n—l)/R n —1/nf; 1/n|~ |- —-d/nfi)/fi—1/fi —d/nfi+1|"

The ray transfer matrix of the entire system is:

[ e

For this system to be an imaging system, the B element of its ray transfer matrix must
vanish, i.e., B=d:(1 —d/nfi1) + d/n+ds [d1(=2/f1 + d/nf?)+ (1 —d/nf1)] = 0.

Grouping together the terms proportional to di, d», and d;d», we have

(di +do)(1 —d/nf1) — dida(2/fo — d/nf?) +d/n =0. (1)
Using the definitions

1/f=2/fi—d/nf? (2)
and h = (fd/nf1), 3)
(1) becomes: (d; + d2)(1 — h/f) — did>/f +d/n=0. (4)
We now rewrite (4) in terms of z; and z, by substituting d; = 2; — h and d; = 2z, — h.
The results is: z; + 22 — z122/f + b =10, (5)

b=d/n—h2/f—2h(1 —h/f)=d/n+h?/f—2h

where " g+ b/ 1) - 21). ' (©)

If b = 0, (5) gives the desired result, 1/z + 1/2;, = 1/f. To prove that b = 0, we use
(2) and (3) to write 1/f = (2f — h)/f1f, from which 2f — h = f;. Substituting this
into (6), we obtain b = d/n — hf,/f. We now use (3) to write d/n = hf1/f, so that
b=~hf1/f—hf1/f =0, as promised.

b) We show below that a ray parallel to the optical axis at height y; must pass through
the point Fy, a distance f — h from the right surface of the lens, regardless of the
height ;. This can be easily shown if we consider the ray transfer matrix of the system
composed of the thick lens (subsystems 2, 3, and 4 above) followed by a distance
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f — hin air. This composite system has ray transfer matrix

1 f—hl[ 1—d/nf d/n
0 1 ||-2/fi+d/nf2 1—d/nfi|"

If the element A = 0, then y, = B#, so that for ; = 0 (for rays parallel to the optical
axis), we have y, = 0, i.e., the rays pass through the point F,.

We now examine A= (1 —d/nf1)+ (f — h)(—2/f1 + d/nf?), and show that it is 0.
Using (2), we have A= (1—-h/f)+(f — h)(—2+ h/f)/ f1. Using the relation 2f —h = f,
weobtain A= (1—-h/f)+ (f —h)/(—f) =0, as promised.

EXERCISE 1.4-6
A Periodic Set of Pairs of Different Lenses
Here, the unit cell is composed of 2 subsystems, each comprising a distance d of free

space followed by a lens. The ray transfer matrix of the unit cell is therefore given by
the product

1 d 1 d
=1/fa 1=d/fs| |-1/f 1-d/fi]"
The A and D elements of this product are:

A=1-d/fi, D=—d/fa+(1—d/f)(1—d/f1)

so that
b=(A+D)/2=1-d/fi —d/fo+d*/2f1f>=2(1—d/2f1)(1 - d/2f>) — 1.

The condition |b] < 1is equivalentto -1 <b<1 or 0<b+1 < 2, which leads to the
desired condition

0<(1—d/2f)(1—d/2f) < 1.

EXERCISE 1.4-7
An Optical Resonator

The resonator may be regarded as a periodic system whose unit system is a single
round trip between the pair of mirrors. In a resonator of length d, a paraxial ray starting
at the position y, travels a distance d in free space, is reflected from the mirror 2,
then travels again backward through the same distance of free space, and finally
is reflected from the mirror 1 at position y,. The process is repeated periodically.
The unit cell therefore consists of a cascade of two subsystems, each comprising
propagation in free space followed by reflection from a mirror. The condition of stability
may determined by writing the ray transfer matrix of the unit cell, as in the previous
exercise. Since a mirror with radius of curvature R has the same ray transfer matrix

as a lens with focal length f, if f = —R/2, the stability condition determined for the
periodic set of pairs of lenses considered in the previous exercise may be directly used
to obtain:

0<(1+d/Ry)(1+d/Rs) <1
The same result is set forth in (11.2-5).
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CHAPTER

2

WAVE OPTICS

2.2 MONOCHROMATIC WAVES

EXERCISE 2.2-1
Validity of the Fresnel Approximation

Given: A =633 x107°m, d =1m.

The Fresnel approximation is valid when me < 1, where Ny = % and 0,, = % .
The condition is, therefore, —&— 4)\d <lora< <4>\d3) = 0.04 m. Thus the radius a
must be much smaller than 4 cm. When ¢ = 4 cm, Ny = ;\L—d = 2514 and 6,, = % =
0.04 rad.

EXERCISE 2.2-2
The Paraboloidal Wave and the Gaussian Beam
A= (Ag/z) exp[—jk(z® +y?)/22], (1)
A _joslk,
82A k(. 0A ik 24k k_ (kY 2
o2 7 ( O +A) (]1‘14 +A) jA <Z>a: A.

- O2A _ 4k _ (kY2
Similarly, o ]AZ (zzy A,

sothat Vid = —j24 % — (§> (22 + %) A @)
Now,
A _ Ay o [ZiR@ YY) | Ay [k —jk (@ +y?)
0z 22 P { 2z + z [22 (2% +y )] xp 2z
= gr @A ®)

Substituting (2) and (3) into the paraxial Helmholtz equation, we see that
VZA - j2k%—’j = 0, so that (1) does indeed satisfy this equation.

Replacing z by ¢(z) = z + jzo in (1) does not alter the validity of the paraxial Helmholtz
equation since jz, is a constant and therefore [0/9,](-) = [0/0.](-).

_ 2 2
At z = 0, we have ¢ = jz,, whereupon (1) gives: A(r) = A—Oexp {M} ,
JZo 2 2o
2 _ 2 2
whence the intensity is written as | A(r)|? = <%) exp {w}
0 0

This is a Gaussian function of = and y that has its peak at x = y = 0 and that decreases
as the radial coordinate p = /22 + y2 increases. It reaches 1/¢? of its peak value at

p=/Az /7 [see (3.1-11)].

©
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2.4 SIMPLE OPTICAL COMPONENTS

EXERCISE 2.4-1
Transmission Through a Prism

Substituting d(z, y) = ax into (2.4-5) leads to the desired result.

EXERCISE 2.4-2
Double-Convex Lens

'k(] 2 2 .ko 2 2
t(z,y) = ti(x,y) ta(z,y) = hor exp [‘77(20—'— y )} h o2 exp {j7(2f+ y )} where
1 2

R —R
fi=—2and f, = 21 and ho, and h, are constants.

n—1 n—

- 2 2
ko (x +y)},wherel—i 1 _

2f A

Thus t(z,y) = ho exp{
(n—1)(1/Ry — 1/Rs) and hg = hoy h2 is a constant. Note that R, is negative.

EXERCISE 2.4-3
Focusing of a Plane Wave by a Thin Lens

Ui (z,y) = exp (—jkz), and t(x,y) = hoexp [jk (2 + 32) /2f].
Therefore, Us(x,y) = Uy (x,y) t(z,y) = hoexp{—jk [z — (z* + 3?) /2f]}.

The wavefronts of this wave are paraboloids of revolution, defined by z— (22 + y?) /2f =
constant, with radius of curvature —f, i.e., they approximate a spherical wave focused
at a point a distance f to the right of the lens.

If the incident wave is a plane wave at a small angle 6, U, (z,y) =~ exp [—jk(z + 0z)],
then

Us(z,y) = Ur(z,y) t(z,y) = ho exp{—jk [z—f—@x - (x2 +y2) /Zf]}
= hg exp{—jk [z — (z2 — 2f¢9z+y2) /Qf]}
= hoexp{—jk [z — ((z— f9)2 +y2) /Qf]}

This is a paraboloidal wave centered about the point (6,0, f), as illustrated below.
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EXERCISE 2.4-4
Imaging Property of a Lens

Choose a coordinate system with z = 0 at the lens. The incident wave is a spherical
wave centered at z = —z, i.e., Uy (z,y) = exp [—jk (22 + y?) /221] so that

Us(z,y) =~ exp [fjk (Jc2 + y2) /221] exp [jk (x2 + yz) /Zf]
~ exp [jk (:c2 + yz) /2z2],

where 1 1 141 1 _ 1

72_]” z1 R f

The transmitted wave is, therefore, a spherical wave centered at the point z = z,.

EXERCISE 2.4-5
Transmission Through a Diffraction Grating

a) d(z)= % {1 + cos ZWTI
t(x) = exp (—jkodo) exp [—j (n — 1) k,d(x)]
= hgexp[—j (n — 1) (k,do/2) cos (2mx/A)], where
ho =exp[—j (n+ 1) (kodo/2)].

b) Since t(z) is a periodic function of = with period A, it can be expanded in a Fourier
series: t(z) = >, C,exp (—jg2mz/A), where C, are the Fourier coefficients. If the
incident wave is a plane wave at a small angle 6;, i.e., U1 (z) = exp [—jk, (z + 0; z)],
the transmitted wave has amplitude:

Us(z) = t(z)U(x)
=exp [—] (koz + kob; x + q2mx /A)] = exp [—jk, (2 + 0, )],
where 0, = 0; + ¢27/k,A = 6, + ¢\/A. Thus the transmitted wave is composed of
plane waves at angles 0,.
EXERCISE 2.4-6

Graded-Index Lens

Substituting n = ng [1 — o2 (2% + y?) /2] into (2.4-14), we obtain

t = exp (—jnk,dy) = hg exp [inoa®k,do (22 + y?) /2], with hy = exp (—jnok,do).
Thus, t = hg exp [k, (2® + y?) /2f], where 1/2f = noa’dy/2 sothat f=1/nya’do.

This is the amplitude transmittance of a lens of focal length f.
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2.5 INTERFERENCE

EXERCISE 2.5-1
Interference of a Plane Wave and a Spherical Wave

I=1 +1,+2VI Iy cos o, where I = |A;|?, I, = | A5|?, and

¢ =k(2®+y?) /22 =7 (2 +y?) /Ad.

Therefore I(z,y,d) = I, + I + 2y/T, I cos [r (2* + y?) /\d].

This locus of constant I are circles (z* + y?) = constant. The function cos (7z?) is
plotted in Table A.1-1. It is a sinusoidal function, called the chirp function, whose

frequency increases as x increases. This is why the rings in the interference pattern
become closer and closer as 22 + y? increases.

EXERCISE 2.5-2
Interference of Two Spherical Waves

Uy = 4 exp {~jkz} exp {—jkz [(x —a)?+ y2] /2z} and
U, = % exp{—jkz}exp {—jk [(z +a) + yQ} /22}.
Atz =d, I = 2I, + 21, cos ¢, where I, = |A/d|* and
o= k/2d) {[@+a) +9?] - [@ - ) + ] }

= (7/Ad) (4az) = dmaz/\d.

Therefore, I = 21, [1 + cos (2rz8/))], where 6§ = 2a/d.

EXERCISE 2.5-3
Bragg Reflection

The phase difference between two reflections is ¢ = k (Ay — Ay).
But As = A/sinf and A; = Ay cos20 = Acos26/sin6.

Therefore, ¢ = k (A/sinf) (1 — cos20) = k (A/sinf) 2sin® 6 = k (2A sin f).
For ¢ = 27, we have kAsinf =« so that 2Asinf/\ = 1, or equivalently,

sinf = A/2A.
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2.6 POLYCHROMATIC AND PULSED LIGHT

EXERCISE 2.6-1
Optical Doppler Radar

a) The two waves have a phase shift ¢ = 21t —27vot = 27 (1] — 19) t = 27 (2V/c) VL.
The intensity of their superposition is I = I + I, +2+/I;I; cos 27 (2v/c) vt]. This is a
sinusoidal function of time with frequency 2 (v/c) v. The velocity v can be observed
by monitoring I as a function of time.

b) ¢ = k(22— z1) = k(2vt) = (2mv/c) 2vt = 27 (2¥v) ¢, so that the beat frequency is
+2Yy.
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CHAPTER

3

BEAM OPTICS

3.1 THE GAUSSIAN BEAM

EXERCISE 3.1-1
Parameters of a Gaussian Laser Beam

Given: A =633 nm=633x10""m; P=10"°W; W,;=0.05x10"3m

a) 6y =M/ (7Wy) = 4.03 x 1073 rad = 4.03 mrad.
zZy0 = W0/90 = 0.012.
Depth of focus = 2z, = 0.025 m = 2.5 cm.

Atz =3.5x10° km = 3.5 x 103 m, W (z) = Wyy/1 + (2/2)° = 1.41 x 10° m.

Diameter = 2821 km.
b) Atz =0,R = cc.
Atz =z, R =2z, = 2.5cm.
Atz=2:z,R==2 [1 + (zo/z)Q] —0.031 m = 3.1 cm.
c) Atbeam center, I = Iy = 2P/7Wg = 2.546 x 10° W/m? = 25.46 W/cm?.
On beam axis at z = zy, I = I [Wo/W (20)]° = Io/2 = 12.73 W/cm2.

A spherical wave of power P = 100 W at 2 = 2, = 2.5 cm has intensity I =
P/ (4m2%) = 5.169 x 10* = 5.169 W/cm?.

EXERCISE 3.1-2
Validity of the Paraxial Approximation for a Gaussian Beam

The condition (2.2-21) is 0A4/0z < kA.
1 2
In accordance with (3.1-4), A = % exp % where ¢ = z + jzo. Therefore,

oA _ (AN [k (A ke*a' ] [ =ike?
0z ¢ )T T q 2¢* Y
_ q'A ikp*q’
g +A{ 2¢?

,_9q _
where ¢’ = o 1.
The condition 9A/0z < kA is therefore equivalent to
—A/q+ [jkp*2¢") A < kA, o —1/kq + [jp*/2¢°] < 1.
Substituting 1/¢ = 1/R — j2/kW?, we then have
(1/kR) [L+2p°/W?] +j [ (2/F*W?) (1 + p?/W?) + (p*/W?) | 2R?/W?)] < 1.

Assuming that p is not much greater than W, i.e., for points not far outside the beam
width, this condition is satisfied if

a) kR > 1;

b) kW > 1; and

C)R>W.
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Condition a) signifies that the radius of curvature R > \. Because the minimum radius
of curvature is zy, condition a) is satisfied if z, > A. Similarly, condition b) is satisfied
if Wo > A\, or 0y = \/7mW, < 1. However, condition c) is also satisfied if 6, < 1: for

small z, R > Wy; for z = 25, R = 20 > W = v/2W, because 6, = Wy/z < 1; for
large z, R~ zand W = 6z so that R/W = 1/6, > 1.

In summary, the conditions zy > A\, W, > A, and 6, < 1 guarantee that 94/0z <« kA
and, therefore, that the paraxial approximation is satisfied.

EXERCISE 3.1-3
Determination of a Beam with Given Width and Curvature

Use

W2 =W [1 + (z/zo)Q} (1)
R==: [1 + (20 /z)Q] 2

to obtain W2/R = (2/20) W2 /20 = (2/20) (\/7), from which
(2/20) = (7/X) W?/R. 3)

Substituting (3) into (1) and (2) we obtain (3.1-26) and (3.1-25).

EXERCISE 3.1-4

Determination of the Width and Curvature at One Point Given the Width and
Curvature at Another Point

Given: )\ =10"%m; Atposition1, R, =1mand W; =10"3 m.
Find: R, and W, at position 2, 2o =z; +d, d=0.1m.

We use the relations: Gp=q+d

1/qi = 1/Ry — jA/7W?
1/g2 = 1/Ry — jA/7W3.
Thus, 1/¢; =1 —50.32 and ¢ = 0.91 + 50.29.

Therefore g, = 1.01 +j0.29 and 1/gs = 0.92 — j0.26, so that R, = 1/0.92 = 1.09 m
and \/7W2 = 0.26, from which W, = 1.11 x 107* m = 1.11 mm.

EXERCISE 3.1-5
Identification of a Beam with Known Curvatures at Two Points

Using (3.1-9) and 2, = 2, + d, we obtain R, = 2, [1 + (zo/zlﬂ,
from which 22 — Rz, + 22 = 0. (1)

We also obtain Ry = (z; + d) {1 + [20/ (21 + d)]2},
from which (z; + d)* — Ry (21 + d)* 4 22 = 0. )

Equations (1) and (2) form a pair of equations in two unknowns: z, and z;, that can be
manipulated algebraically to obtain (3.1-27) and (3.1-28).
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3.2 TRANSMISSION THROUGH OPTICAL COMPONENTS

EXERCISE 3.2-1
Beam Relaying

Considering a lens and substituting z = 2’ = d/2in (3.2-6) we obtain M = 1.
From (3.2-9a), r = 20/(d/2 — f)and M,. = |f/(d/2 — [)].

Inserting M = 1 into (3.2-9) we obtain M2 = 1 + 72, so that
F2d2 =) =1+1z/(d/2- NI,

from which f2 = (d/2 — f)? + 22, 0r 22 = f2 — (d/2 — f)* = fd — (d/2)
ie.,z2=d(f—d/4).

Since 2 is real, this last equation requires that f > d/4 or d <4f.

EXERCISE 3.2-2
Beam Collimation
a) Substituting (3.2-9) and (3.2-9a) into (3.2-6), we obtain
(= GNP
[14+23/ (== 1]
(z— 1) f?
(= )P+ 28]
i z/f—1
from which ?—1_ /T =10+ (ol f)

b) Leta=z/f, z=z/f-1, and y=2'/f—1.
Then (1) becomes y = x/ [22 + a?].

5 follows. (1)

For a fixed value of a and allowing x to vary, y achieves its maximum value if
dy 1 222

dr — [22 4 a?] [22 + a2)? -

This occurs at [z? + a?] = 222 or z =a,

ie,ifz/f—1=2z20/f or z=f+z.

Cc) zmo=1cm, f=50cm, a=z/f=0.02.

Optimum z = f 4 2z, = 51 cm,

Distance =’ :
v=z/f—1=51/50—1=0.02 = a.
y=uz/[z* +a?] =1/2z = 25.
Buty==z/f—1.
Therefore, 2’ = f (14 y) = 50 x 26 = 1300 cm.
Magnification: M,=f/(z—f)=1/x=50.

r=z/(z—f)=a/z =1
M = M,/V1+71%=M,/vV2=50/V/2=354.

Width: Wi = MW, = 35.4W,.
Woz\/m%56um,w(§z2mm.
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EXERCISE 3.2-3
Beam Expansion

Imaging at the first lens:
Since z > f; and z — f; > zy, applying (3.2-11) and (3.2-12) we obtain:

My = fi/(z = fi) = f1/z,

W' = [f1/ (z = )] Wo = (fi/2) W,
2 = M2 ~ (f1/2)" 2,
21 =~ fi.

Imaging at the second lens:
Based on the results of Exercise 3.2-2, the optimal distance is

zo=2)+ fa,s0thatd =21+ 20 =21+ 2)' + fa= f1 + (fl/z)zzo + f.
Also the magnification at this optimal distance is

My = [fa/ (22 = f2)] [V2 = fa) 2{ V2 = fo/M?2V/2.

The overall magnification of the system is

M = MM, = fo/Miz0V2 = (f2/ 1) (2/V220).

This is a large magnification since f, > f; and z > z.

EXERCISE 3.2-4
Variable-Reflectance Mirrors

The complex amplitude reflectance of this mirror is exp (—jkp?/R)exp (—p%/W,2).
Therefore, upon reflection, the phase of a Gaussian beam increases by —kp?/R, so
that the radius of curvature becomes R, where 1/R, = 1/R; + 2/R.

In addition, the amplitude of the beam is multiplied by the factor exp (—p?/W,2) and
becomes exp (—p?/W.2), where 1/W, = 1/W; + 1/W,,.

The reflected beam remains Gaussian and has width W, and radius of curvature R,
as provided by the above equations.

EXERCISE 3.2-5
Transmission of a Gaussian Beam Through a Transparent Plate

From (1.4-11), the elements of the ABCD matrix of the plate are: A= 1, B = d/n,
C =0, D = 1. Therefore, ¢ = (Aq1 + B) / (Cq1 + D) = ¢1 +d/n, from which z5+ jzp2 =
z1 + jzo1 + d/n so that zp2 = zo; and z, = z; + d/n. It follows that the transmitted
beam has the same depth of focus and its center is displaced by a distance d/n, as
illustrated in the figure.

—1_— —

S S It
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3.4 LAGUERRE-GAUSSIAN BEAMS

EXERCISE 3.4-1
Laguerre-Gaussian Beam as a Superposition of Hermite—Gaussian Beams

The Laguerre—Gaussian beam LG is identical to the superposed Hermite—Gaussian
beams %(HGM + jHG ), as is ascertained from the absolute square of (3.4-1) [see

also the illustration in Fig. 3.4-1(a)].
At the beam waist, the Hermite—Gaussian beams may be expressed as

Lo = 41,01 G} (V3a/Wo ) GE (Vay/Wo)
Io.1 = 40,112 G (V20/Wo ) GF (Vay/ Wy ),
where GZ(u) = exp (—u?) and G3(u) = 4u? exp (—u?).

In the absence of interference, and if |41 0|> = |401|> = I, the total intensity is the
sum of the intensities:

I =8Iy [(a®+y?) /Wi ] exp [-2 (2® + y*) /W(] = 81y [p* /W] exp [—2p% /W],
where p? = 22 + 12,

The peak intensity occurs at the value of p for which dI/dp = 0, i.e., at p = Wy/V/2
or pWy ~ 0.707. The intensity is 0 at p = 0, as shown in the figure below, and the
1/e? points occur at p ~ (0.23/v2) W, and at p ~ (2.12/v/2) W. Since the beam
is circularly symmetric, it takes the form of a “donut” and hence is often colloquially
referred to as the “donut beam.”

I/Imax
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CHAPTER

4

FOURIER OPTICS

4.1 PROPAGATION OF LIGHT IN FREE SPACE

EXERCISE 4.1-1

Binary-Plate Cylindrical Lens

Near the position z, cos(wz?/\f) is approximately a harmonic function with lo-
cal frequency v, = (1/2n)(0/0z) (ma®/\f) = =z/\f. Its rectified version, f(z) =
Ulcos(rx?/\f)], is approximately a periodic function with local frequency Af/z near
the position z. The periodic function f(xz) can be analyzed as a sum of harmonic
functions with spatial frequencies v, = qz/\f, where ¢ = 0, +1, +3, &5 .... This
structure therefore acts as a diffraction grating that bends the light by the approximate
angles \v, = A(qz/Af) = z/(f/q). All rays deflected by the approximate angle
x/ (f/q) meet at the position f/q. Thus, the transparency acts as a cylindrical lens with
focal lengths co, +f, +f/3,£f/5,....

EXERCISE 4.1-2
Gaussian Beams Revisited

Given: U(z,y,0) = f(z,y) = Aexp [~ (2% + y*) /W] at the input (z = 0) plane,
Find: U(z,y, z) = g(z,y) at the distance z.

We shall use the Fourier-domain method.

The Fourier transform of f(x,y) is obtained by using the fact that the Fourier transform
of exp (—nt?) is exp (—mv?) (see Table A.1-1) and the scaling property of the Fourier
transform (see Appendix A). Thus:

F(va,vy) = AnWg exp [—-m°W5 (v +v;)].
G(vg,vy) = F(vy,vy)H(ve, vy)
where H(v,,v,) = Hoexp [jmAz (v +1v;)], Ho = exp(—jkz)
G(vy,vy) = ArWi exp [-m° W5 (v2 + 115)] -exp (—jkz) - exp [jmAz (V2 + 1/5)}
= Bexp [*71'2@2 (lli + 1/5)],
B = AnW¢ exp (—jkz), where 72Q* = m?W¢ — jn)z.
The inverse Fourier transform is g(z, y) = (B/7Q?) exp [— (z® + 3?) /Q?].
Defining 1/Q? = jk/2q = jm/\q, we write
g(z,y) = B (j/ ) exp [~jk (z° +y*) /24]
= A (jnW5 /Aq) exp (—jkz) exp [—jk (2° + y*) /2q].
The parameter ¢ = (jm/\) Q? = (j/m\) (m2WE — jmAz) =
JTWE/A + 2 = z + jzo Where 2o = W /). Substituting, we obtain
9(z,y) = A(jzo/q) exp (—jkz) exp [~jk (¢* +y*) /2q], where g = z + jz.
This is the equation of the Gaussian beam.

I
19
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4.2 OPTICAL FOURIER TRANSFORM

EXERCISE 4.2-1
Conditions of Validity of the Fresnel and Fraunhofer Approximations:
A Comparison
Givens: A\ =05um=05x10"°m,, a=2x10"2m, b=10"2m.
2
As shown in (4.1-13), the validity condition for the Fresnel approximation is NFTHW <1,
where Ny = a?/Ad and §,, = a/d, so that a®/4X\d® < 1 or d > (a'/4\)"* = 0.43 m.

As shown in (4.2-2), the validity conditions for the Fraunhofer approximation are
Np <1 or a?/Add<1 or d>a2/A=800m; AND N, <1 or ¥¥/Ad< 1 or
d > b*/X\ =200 m.

Thus, the Fresnel approximation is applicable for distances much greater than 43 cm;

and the Fraunhofer approximation is applicable for distances much greater than 800 m.
EXERCISE 4.2-2

The Inverse Fourier Transform

By examining (A.3-1) and (A.3-2) of Appendix A, we see that if F'(v,,v,) is the Fourier
transform of f(z,y), then F(—v,, —v,) is the inverse Fourier transform of f(x,y). Thus
reversal of the coordinate system replaces the Fourier transform with the inverse
Fourier transform.

4.3 DIFFRACTION OF LIGHT

EXERCISE 4.3-1
Fraunhofer Diffraction from a Rectangular Aperture

Using Table A.1-1 and the scaling property of the Fourier transform, the Fourier
transform of the aperture function p(z,y) = rect(xz/D,)rect(y/D,) is P(v,,v,) =
D, D, sinc(D,v,) sinc(D,y). Substituting into (4.3-5) we obtain (4.3-6). The first zero
of the function sinc(-) occur when its argument is +1, i.e., at x = +Ad/D, and
y=+Ad/D,.

EXERCISE 4.3-2
Fraunhofer Diffraction from a Circular Aperture

Using (A.3-5), the Fourier transform of an aperture function in the form of a circle of
radius 1is P(v,,v,) = J1 (27v,) [v,.

D _ (D\?*/1(2m,D/2) _ (p\ Ji(7v,D)
For a radius 5 P (vy,vy) = (2) D2 (2 ) Y,

Substituting into (4.3-5) we obtain (4.3-8).
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Equation (4.3-10) can be obtained by using the Fourier transform property of the lens,
given in (4.2-7). Because (4.2-7) is identical to (4.3-5) with d = f, the focused beam
has intensity given by (4.3-8) with d = f.

In accordance with (3.1-12) and (3.2-15) the focused Gaussian beam has intensity
distribution I(z,y) = Iyexp (—2m2WZp?/ 2 f?), where W, is the waist radius of the
incident beam. To compare this distribution with that in (4.3-10), we take 2W, = D,
assume that 7D /A f = 1, and plot the two functions exp (—p?/2) and [2.;(p)/p]’:

Y

\
\

exp(-p?/2)

\ [2],(p)/p]?

10
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CHAPTER

o

ELECTROMAGNETIC OPTICS

5.5 ABSORPTION AND DISPERSION

EXERCISE 5.5-1
Dilute Absorbing Medium

Let o be the susceptibility of the host medium so that n2 = 1+ .. When impurities are
present, the susceptibility of the host medium together with its suspension of impurities
is characterized by x = xo + X’ + jx'/, with X’ < 1 and x” <« 1. The overall refractive
index and absorption coefficient are thus given by [see (5.5-5)]:

ja — X +ix"\1"?
n—a =vV1I+xo+x +ix'=|(1+x0) [1+=—"
o

1+ xo0
X +ix" X +ix"
~n |1+ | =no |1+ ~—FF5F—
0{ 2(1+ xo) 0 2n2
’ —koA!
so thatn =ng + X and a:i.
2n0 un)
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CHAPTER

6

POLARIZATION OPTICS

6.1 POLARIZATION OF LIGHT

EXERCISE 6.1-1
Measurement of the Stokes Parameters

The expressions for Sy and s; follow directly from the definition. The expression for s,
is verified by substituting for A4s and A;35 from (6.1-12). Similarly, the expression for
S3 is verified by substituting for Az and A, from (6.1-13).

The Stokes parameters can be measured if the absolute values (or the intensities) of
components of the Jones vector are measured in three bases: the linearly polarized
basis in the (z,y) directions, the linearly polarized basis in the (45°,135°) directions,
and the circularly polarized basis (R, L). All six measurements are intensity measure-
ments.

EXERCISE 6.1-2
Cascaded Wave Retarders

a) Parallel fast axes
1 0 1 0 1 0
T= {0 e_jﬂ/z} {0 e_jﬂ/Q} = [0 e—f"} = A half-wave retarder
b) Orthogonal fast axes

1 0 e—Im/2 el 0 .
T= {0 efjw/2:| { 0 1} = e I/2 {0 1] = A phase shifter

EXERCISE 6.1-3
Jones Matrix of a Rotated Half-Wave Retarder

The Jones matrix of a half-wave retarder at angle 0 is T = {1

0 .
0 _1} . The Jones matrix

of a half-wave retarder at angle 6 is

cosf) —sinf| |1 0 cosf) sinf
T= [sin€ cos@} [O —1} {—sinf) COSQ} ’ 6.1-)
which gives rise to
cosf) sinf
T= {f sinf cos 6’] ’ (6.1-2)
from which
cos 20 sin 26
= {sin 20 —cos 29} ’ (6.1-3)
If & = 22.5°, then T can be written as
1 1
T= [1 71} , (6.1-4)

so that the output waves are proportional to the sum and difference of the input waves.
23
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EXERCISE 6.1-4
Normal Modes of Simple Polarization Systems

a) T= [é 8} Eigenvectors are H and m;

Eigenvalues are 1 and 0.

1

b) T:[o e

,Ojr}. Eigenvectors are H and m

Eigenvalues are 1 and eI,

sinf  cosf

cosf) —sinf
c) T= =

} . Eigenvectors are m and [ 0 } ;

Eigenvalues are e =79 and e’’.

6.2 REFLECTION AND REFRACTION

EXERCISE 6.2-1
Brewster Windows

Reflection does not occur at the first surface
when 6, is the Brewster angle, §; = tan™! n.
Snell’s law provides sinfy = (1/n)sinf; =
(1/n) [n/vV14+n2] = 1/V/1+n?, so that
tanfy = 1/n, i.e., 0 is also a Brewster angle
for the second surface.

For n = 1.5, we have 6; = tan™' n = 56.3°.

6.4 OPTICAL ACTIVITY AND MAGNETO-OPTICS

EXERCISE 6.4-1
Rotatory Power of an Optically Active Medium

If G < ng, ne. = /n3 £G =no\/1 £ G/n ~ny + G/2ny.

Therefore, p = m (n_ —ny) /Ao = =G/ Aono.
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CHAPTER

7

PHOTONIC-CRYSTAL OPTICS

7.1 OPTICS OF DIELECTRIC LAYERED MEDIA

EXERCISE 7.1-1
Quarter-Wave Film as an Anti-Reflection Coating
The M matrix for the problem at hand is readily obtained by cascading the M matrix
for a single dielectric boundary (see Example 7.1-2) and the M matrix for propagation
followed by a boundary, in reverse order as usual. The result is:
M — 1 [(ng+mn2)e™® (ng—mnp)e®] 1 [na+n; ng—mn
©2n3 |(ns—ng)e 7Y (ng +ng)el?] 2ny (ng—ny mo g’
with ¢ = nak,d = 2rd/X and X = A,/na.
The B element of this matrix is

1 . )
B= [(ng-l—nz)(ng —n1)67]“0+(n;;—ng)(ng—o—nl)ew} .
4nons

The reflection coefficient can be made to vanish if B =0, i.e., if
(ng +1n2)(n2 —n1) + (n3 —na)(na +n1) €% = 0.

This requires that e/2¢ be real, i.e., that 2¢ be an integer multiple of .
The value 29 = 4rd/A =7 leadsto d = )\/4 and

(n3 +n2)(n2 —n1) — (n3 — n2)(n2 +n1) =0,
whereupon we obtain n3 = nyng or n, = \/nins.
The choice 2¢ = 27, or any even multiple of 7, leads to

(n3 +n2)(ng — ny) + (n3 — na)(n2 +ny) =0,

which gives the trivial solution n; = ns.
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CHAPTER

9

GUIDED-WAVE OPTICS

9.1 PLANAR-MIRROR WAVEGUIDES

EXERCISE 9.1-1

Optical Power
In accordance with (5.3-10), the power flow is determined by the Poynting vector
S = 1E x H*. For the TE mode, we have E, = E. = H, = 0. The component of

S in the z direction is therefore S, = %EZH;. Also, from Maxwell’'s equation (5.3-13),
V x E = —jwu,H, we have —jwpu,H, = 0E,/0z, so that S, = (1/2jwpu,) E, OE}/0z.

Substituting £, = @,y (y) exp(—78mz), we obtain S, = (B /2wite)|am|? [um (y)|*.

The total power flow in the = direction is the integral of S, with respect to y. Since the
integral of |u,,(y)|? is unity, the power flow is (3,,/2wi,)|a,|?. Furthermore, because
Bm = kcosb,, = (w/c)cosb,,, we can write the power flow as (1/2u,c)|am|? cosb,, =
(1/2n)]an|? cos Oy,

EXERCISE 9.1-2
Optical Power in a Multimode Field
In accordance with Exercise 9.1-1, the power flow in the z direction is the integral

of S. = (1/2jwp.) B, E;/0z with respect to y. Making use of the substitution
E, =3, Gnlm(y)exp(—jBmz), We obtain

S, = (Bm/2who) 22, Amtian () €xp (—=jBm2) D, anws(y) exp (jBnz).

Because the integral of w,,(y)u’(y) with respect to y is unity for n = m and zero
otherwise, the total power is
Zm (ﬁM/QWﬂO) ‘am|2 = Zm (1/2n) ‘am|2 08 Oy«

9.2 PLANAR DIELECTRIC WAVEGUIDES

EXERCISE 9.2-1
Confinement Factor

Since the waveguide is symmetric we consider confinement only for y > 0.

Fory < d/2, u,(y) = A,, cos (ksinb,,y), m even (1a)
= A, sin (ksinb,,y), m odd.

Fory > d/2, u,(y) = B exp (—ymy), (1b)

where v,, = ngk,,\/(nl/nQ)2 cos?6,, — 1. (2)
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Because u,,(y) must be continuous aty = d/2,

A, cos (ksinb,,d/2) = B, exp (—yd/2), m even (3a)
A, sin (ksin6,,d/2) = B,, exp (—y»d/2), m odd. (3b)
The power in the region y < d/2is P, = fod/Q uZ, (y)dy .

Substituting from (1a) and integrating, we have

P = A2(d/4) 1+ (-1)™sin(kdsiné,,)/kdsin,,] . (4)

Similarly, the power in the region y > d/2 is:

Py = B}, (1/27n) exp (—ymd). (5)
P 1

The confinement ratio T',,, = = 6
P+P 1+P/P ®)

can be obtained by substituting from (4) and (5) and using (3) to substitute for B,,,/A,,:

Py (1/3md) [L + (=)™ cos(kd sin6,,)]
P, 1+ (—1)msin(kdsinf,,)/kdsin6,,

sin 6.
N/2d
by writing kd = 2rd/\ = nM/sin 6, , (9)

It is convenient to write the result in terms of the variable M =

Ymd = kd (n2/ny) \/(nl/n2)2 cos20,, +1

— hdy/cos? O — cos? B, = kdlysin? B, — sin® 6,

= 7r]V[\/1 —sin”0,,/sin’ 0, . (10)

It is also convenient to define the ratio: s, = siné,,/sin .
and write v,,d = tM+/1 — s,,. (11)

Using (10) and (11) in (7) then leads to
P sm 14 (—1)™cos (mMs,,) (12)
P /1= 52 TM sy, + (=1)™ sin (TMs,,) ’
This provides an expression for the confinement ratio I',,, = 1/(1+ P»/P;) as a
function of the parameter M, which represents the number of modes, and the
parameter s,, = sin#,,/sinf., which is determined by the normalized angles of
the modes.

As an example, consider the case M = 8. The parameters s,, are determined from the
characteristic equation (9.2-4), which can be written in terms of M and s,, as:

tan (Msp,m/2 —mm/2) = \/1/s3, — 1.

Solutions of this equation are displayed in Fig. 9.2-2 for M = 8. For m = 0, the
first intersection point occurs at sinf, = 0.933(\/2d), or so ~ 0.933/M. Similarly,
s1 %~ 1.86/M; sy =~ 2.778/M; and so on.

Substituting these values into (12) and (6) leads to the following confinement ratios:
To = 0.999; T'; =~ 0.996; and T'; =~ 0.990. The lowest-order mode therefore has the
highest power confinement factor, as promised.
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EXERCISE 9.2-2
The Asymmetric Planar Waveguide

Let the complements of the critical angles for reflection from the substrate and the cover
be 6.5 = cos™'(ny/n1) and O3 = cos~'(ns/n1), respectively. Since ny > ng, O < O.3.
Therefore, a guided ray must be inclined at an angle 6 smaller than the smaller of 6.,
and 0.3, i.e., 0 < 0.

a) Since the numerical aperture is governed by 0.5, NA = \/n? —n3.
b) The self-consistency condition in the symmetric waveguide (9.2-1) is thus modified
to:

2
%Qd sinf — 0 — rg = 2TM, m=0,1,2,...,

where ¢,» and ¢,3 are, respectively, the phase shifts introduced by total internal
reflection at the substrate and cover boundaries. These phases are given by the
general formula in (9.2-3), making use of the appropriate critical angles 6., and ...

¢) The number of modes is governed by the critical angle of reflection at the substrate.
It is therefore given by M = (2d/),) NA, where NA = /n? — n3.
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FIBER OPTICS

10.3 ATTENUATION AND DISPERSION

EXERCISE 10.3-1
Optimal Grade Profile Parameter

The group velocities are v, = (df,/dw) ™", where §, = nik, [1 — (¢/M)° Al;
M = sn?k2a®>A; s =p/(p+2); and k, = w/c,.

To simplify the process of taking the derivative we write
B, = (mw/c,) [1 — x,] where z, = (¢/M)° A.
dB,/dw = (1/c,) [d (mw) /dw] (1 — z4) — n1 (w/c,) dzy/dw

= (N1/co) (1 —xg)n1 (w/eo) dag/dw

= (N1/co) [1 4+ z49],
where N; = d (nyw) /dw is the group refractive index and
b =—1— (/M) (w/,) dry/dw. )
If ¢z, is small, the group velocity is
Vg = (dﬁq/dw)71 = (co/N1) [1 + xq¢}71 ~ (co/N1) [1 = 244 )
We now proceed to determine ¢:
drg/dw = s(q/M)*'q [(=1/M?) dM/dw] A + (q/M)*dA/dw

= —sx,(1/M)dM /dw + z,(1/A)dA /dw; (3

=

dM /dw = 2sn1k, [d (n1k,) /dw] a?A + s (n1k,)? a*dA /dw
=2M (1/n1k,) d (nyk,) /dw + M(1/A) dA/dw
= M [(2/n1k,) N1/c, + (1/A) dA /dw)] . (4

~

Substituting into (3), we have:
(1/zy) day/dw = —s[(2/n1k,) N1/co + (1/A)dA/dw] + (1/A)dA /dw
= —2sN;/njw+ (1 — 8)(1/A)dA/dw.
We now use (1) to obtain ¢ = —1 +2s — (1 — s)p,/2 with p; = 2 (n;/N1) (w/A) dA/dw.

Thus ¢ = —1+2p/(p+2) —ps/(p+2)=(p—2—ps)/(p+ 2), which, when substituted
into (2), gives (10.3-10).
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EXERCISE 10.3-2
Differential Group Delay in a Two-Segment Fiber

a)

If L = 500 m is the length of a segment, then the group delays of the = and y
components at the end of the first segment are:
T, = LN, /c=2.4367 us and T, = LN, /c = 2.4383 pus.

Each of these components can be analyzed into two components of equal magni-
tudes along the principal axes x’ and ¢’ of the second segment. These components
travel to the end of the second segment with group delays 7,» and T,. The
overall delay may therefore take four values: T, + T,s, T, + T,, T, + T,/, and
T, + T,. Since T, = T,» and T, = T,,, we actually have three possible delays:
2T, = 4.8733 us, 2T, = 4.8767 us, and T, + T, = 4.873 us. Since the pulse with
the delay T, + T, results from two possibilities, its amplitude depends on the phase
shifts encountered, which are sensitive to the phase velocities and the exact lengths
of the fiber segments, and is sensitive to any slight disturbance in the system. This
middle pulse will therefore have random polarization.

The differential delays between the fastest pulse and the slowest pulse is 27}, —
2T, = 3.4 ns. To determine whether this differential delay will be visible, we examine
the pulse broadening due to GVD. For a single segment, the GVD broadening is
Do, L =20 x 50 x 0.5 = 500 ps, so that the width of each pulse is broadened from
an initial value of 100 ps to a value of 1 ns. The shape of the received pulses will
therefore appear as shown below:

34ns

t

The two fiber segments are equivalent to two cascaded identical retarders with their
principal axes rotated by 45°. The Jones matrix of this system is the product of the

matrices
T — |co8 0 —sinf| |1 0 cosf sinf| |1 0
T |sinf cos@ | |0 e 7P| |—sin® cosf| |0 e IP|°

where ¢ = (N, — N,)27L/\ is the retardation introduced by a segment and 6 is the
angle of rotation. Since 6 = 45°,

1 I P - B |

T— 11+ 6_J:QD e‘]:*”(l — e‘J:V’)
2 |1—e7% e 7?(1+e7¥)

and therefore

The eigenvalues and eigenvectors of this matrix may be determined for any value
of . Since the matrix is unitary, the eigenvalues will always be phase factors. For
example, if o = « then the eigenvalues are +; and the eigenvectors are T
resenting circularly polarized modes. In any case, a pulse in one of the polarization
modes travels with a single group velocity so that it arrives as a single pulse instead
of two.

3
|, rep-



Saleh & Teich Fundamentals of Photonics, Third Edition: Exercise Solutions ©2019 page 31

CHAPTER

11

RESONATOR OPTICS

11.1 PLANAR-MIRROR RESONATORS

EXERCISE 11.1-1
Resonance Frequencies of a Traveling-Wave Resonator

a) Three-mirror ring resonator: At resonance, the round trip phase shift, 3kd + 3,
is equal to a multiple of 2x. Thus, 3kd + m = ¢2x, where ¢ is an integer, so that
3kd = (2¢ — 1)m or 3(2mv/c)d = (2¢ — 1)m. Consequently v, = (2¢q — 1)(c¢/6d) so
that the allowed frequencies are odd multiples of ¢/6d. Two consecutive resonances
are therefore separated by a frequency vr = 2(¢/6d) = ¢/3d.

b) Four-mirror bow-tie resonator: At resonance, the round trip phase shift, (4 +
2v/5)kd + 4, is equal to a multiple of 2r, i.e., (4 + 2v/5)kd + 47 = ¢27, where
q is an integer. Thus, (4 4+ 2v/5)kd = 27, or (4 + 2v/5)(27v/c)d = ¢2x, from which
vy = qlc/(4 + 2+/5)d]. Two consecutive resonances are therefore separated by a
frequency vy = [¢/(4 + 2/5)d].

EXERCISE 11.1-2
Resonator Modes and Spectral Width

Given: R; =0.98, R, =0.99, d=1m, n=1, c=c,/n=c, =3 x 108 m/s.
Frequency spacing between modes is vr = ¢/2d = 1.5 x 108 Hz = 150 MHz.
Loss coefficient o, = (1/2d) In(1/R;R2) = 0.015.

Using (11.1-28), the Finesse ¥ ~ 7/a,.d = 207.7.

The spectral linewidth is v = vp /F = 7.22 x 10° Hz = 722 kHz.

This approximation is appropriate since «,.d = 0.015 < 1.

11.2 SPHERICAL-MIRROR RESONATORS

EXERCISE 11.2-1
Maximum Resonator Length for Confined Rays

The confinement conditionis 0 < (1 + d/R;) (1 + d/R») < 1. Substituting R; = —0.5m
and R, = —1 m, we obtain 0 < (1 —2d) (1 —d) < 1. Letting z = (1 — 2d)(1 — d), the
confinement condition becomes 0 < z < 1. The figure below shows a plot of x versus
d. Based on this figure, the maximum value of d for which the resonator is stable is
d=15m.

31
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EXERCISE 11.2-2
A Plano-Concave Resonator

For a plano-concave resonator, R; = oo and Ry = —|R|. Substituting z; = 0and z; = d
into (11.2-13) we have |R| = d + 22/d, from which 22 = d(|R| — d). For confinement,
22 > 0 sothat |R| > d.

From (11.2-10), we have
W2 = A\zo/m = (A7) [d(|R| — d)]'/* and

Wy =W, = (\d/m)"* (|R|/d — 1)"/*. Using (11.2-16), this leads to
W3 = Wg(1+d?/z5) = Wg [1+ d/(|R| — d)] = W§|R|/(|R| - d),
from which
W2 ==

(\d/m)"* (|R|/d — 1)V* (|R|/a)"/* e [ (IR 7Y*
(R/d 1) = (Ad/m) [(\R\/dfn} :

The quantities W, and W, are plotted versus d/|R| below:

2 |Ad
™ W2

nd

I
0 d 1
IRI
EXERCISE 11.2-3

Resonance Frequencies of a Confocal Resonator

Given: d=30cm=0.3m; c¢=c,/n=c,.
Z1 = —%2o and Z2 = Z0-
vp =c/2d =5 x 108 Hz = 500 MHz.
AC = tan"(zp/20) — tan~1(21/20)
=tan"'(1) — tan~'(-1)
=x/4— (—m/4)
=m/2.
(AC/TF)VF = Al/F/Q = 250 MHz.
vg=qup +vr/2=(q+1/2)vp.

At the central frequency ¢ ~ v/vr = (5 x 10'4)/(5 x 10%) = 109,
for

q = 10%: v, =5x 10" + 2.5 x 108 Hz

q=10+1: v, =5x 10" +7.5 x 10® Hz

q=10°+2: v, =5x10"+12.5 x 10° Hz

¢g=10°+3: v, =5x10"+17.5 x 108 Hz

g=10°—1: v, =5x10" —25x 10° Hz
=105 -2 v, =5x10" — 7.5 x 10° Hz
g=10°—3: v, =5x10" —12.5 x 10° Hz
q=105—4: v, =5x 10" — 17.5 x 10° Hz

Thus, there are 8 modes within the band 5 x 10 + 2 x 10° Hz.
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EXERCISE 11.2-4
Resonance Frequencies of the Symmetrical Confocal Resonator

For confocal symmetric resonators, we have (A({/m)vp = vp/2.
From (11.2-33), we seethat vy, ,=[¢+({(+m+1)/2]vp.

The set of modes for which | + m + 1 is even are spaced at frequency intervals vp.
Modes for which [ + m + 1 is odd are also spaced at frequency intervals v, but are
displaced from the even modes by frequency vr /2.

11.3 TWO- AND THREE-DIMENSIONAL RESONATORS

|
EXERCISE 11.3-1
Density of Modes in a Two-Dimensional Resonator

a)

The number of modes with frequency between 0 and v is the same as the number
of modes with wavenumber between 0 and k& = 27v/c.

In accordance with Fig. 11.3-2, this number is approximated by the area of a
quadrant in k space (wk2?/4) divided by the area per mode (7/d)? and then
multiplied by a factor of two to account for the two polarizations per mode. This
number is thus 2 (rk2/4) / (x/d)* = k2d*/2n = (2nv/c)>d?/2n = 2m2d?/c2.
Consequently, the number of modes per unit area, in the frequency band 0 to v, is
N, =2mv? /2.

The density of modes per unit area per unit frequency interval is therefore
M(v) = dN, /dv = 47v/c?.
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CHAPTER
12.1 STATISTICAL PROPERTIES OF RANDOM LIGHT
EXERCISE 12.1-1
Coherence Time
a) Coherence time = [~ _|g(7)[?dT = [ exp <_2|T|> dr =2 [exp (_27) dr = 1..
Te Te
|g(7)| decreases by a factor 1/e = 0.368 at 7 = ..
oo oo 771'7'2
b) Coherence time = [~ |g(7)[?dT = [~__exp o | dr =T
TC
|g(7)| decreases by a factor of exp (—7) = 0.043 at 7 = 7.
EXERCISE 12.1-2
Relation Between Spectral Width and Coherence Time
SLgce S(v) is the Fourier transform of G(7), we have
Jo S(v)dv = G(0). (1)
From Parseval’'s theorem, we write
[ S (w)dv = [7|G(1)|*dr. )
Squaring both sides of (1) and dividing by the two sides of (2), while making use of
the definitions of Av,, 7., and g(7), we obtain
Ave = |G(O)P?/ [|G(r)]?dr =1/ [|g(r)]?dr = 1/7..
EXERCISE 12.1-3
Differential Equations Governing the Mutual Coherence Function
G= <U*(T'1,t)U(’I"Q,t+ T)>
Therefore, VG = ([V2U*(r1,t)|U(re, t +7)).
Since U obeys the wave equation, V2U = (1/c?)9?U/dt%, and
V3G = (1/A){[(0°/0) U (i, D] U (o, t + 7). )

We now proceed to prove that ([(8%/0t?) U*(r1, )] U(rq, t + 7)) = (8%/072) G,

so that V2G = (9%/072) G-

Proof: ([(0/0t)U*(r1,t)] U(ra,t + 7))

= {lim (1/A8) [U*(r1, t 4+ A8) = U (1, D] Ura, t + 7))

= A1210(1/AL‘) [G(r1,7re, 7 — At) — G(r1,72,T)]
= —(08/01)G(r1,72,T)

Similarly, ([(82/0¢2)U* (r1, )] U(ra, t + 7)) = (8%/972) G.

|
34
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12.4 PARTIAL POLARIZATION

EXERCISE 12.4-1
Partially Polarized Light

The coherency matrix for the superposition of unpolarized light whose intensity is given
by (I, + I,)(1 — IP), and linearly polarized light of intensity (I, + I,)P at angle 6, is

c=0-p [EEE] [ ] eraen [,

The four elements of this matrix are

Gew = (I, + I,) 1 = P)/2+ (I, + I,) Pcos? 0, (1)
Gyy = (I, + 1) (1 = P)/2 + (I, + I,) Psin® 6, 2
Gay = Gyo = (I, + I,) Psin 0 cos 6. (3)
We wish to show that for some 6,

Goo = I, 4)
Gyy =1y, (5)
Gy = Gy = (L1,) |92y . (6)
From (4) and (1) we have

cos? ) = L (szjf—ygy();’ P)/Q, (7)
while from (5) and (2) we have

gnzg o = (L+1,)(1-P)/2 @®)

(I, + I,)P

Adding (7) and (8) we obtain cos?# + sin*0 = 1, so that if (7) is satisfied, (8) is
automatically satisfied.

Let us now verify (6). From (3), we find
G2, = (I, + 1,)* P*sin® 0 cos? 6. (9)
Substituting (7) and (8) into (9) yields
G2, =L — (I + I,)A — P)/2|[I, — (I, + I,)(1 — P) /2]

=LI,+ Y1, +1,)°(1-P)° — 3(L, + 1,)*’(1 - P)

= LI, + YL +1,*(1 - P)[1-P) - 2|

= L1, — (I + 1,)*(1 - P?). (10)
From the definition of P provided in (12.4-13), we find

g A0 L,
(Lo + I))?
G? =11, — I,I,(1 — |g.y|*) = I.1,]g.,|? indicating that (6) is also satisfied.

zy

, so that (10) gives
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PHOTON OPTICS

13.1 THE PHOTON

EXERCISE 13.1-1
Photon in a Gaussian Beam

a) In accordance with (3.1-12), the intensity of a Gaussian beam at z = 0 is I(p,0)
exp (—2p?/W2). The probability p of detecting the photon within a circle of radius
W, is thus given by the ratio

W
_ "o: 1(p,0)2mpdp
Iy~ 1(p,0)2mp dp
? 2p dp

Transforming the integration variable to 2 = —, so that dz = 5, we have
WO WO

_ fol exp (—2x)dz _(1-e?)
fooc exp (—2z)dz (1-0)
Indeed, recall from the discussion following (3.1-17) that the power contained within
a circle of radius W, is 86% of the total power in the beam.

= 0.86.

b) The average number of photons is p n = 0.86 n.

EXERCISE 13.1-2
Photon-Momentum Recoil

Photon momentum = fik = hw/c = E/c. The recoil momentum p = Mv, where M is
the mass of the '%®Hg atom and v is its velocity, so that v = E/Mec.

Substituting £ = 4.88 eV = 4.88 x 1.6 x 10729 J; M =198 x 1.66 x 10727 kg;

and ¢ =3 x 103 m/s, we obtain v =7.9 x 1073 m/s.

The RMS thermal velocity of the atom is Vipermal = /3KT/M..
At T = 300°K, kT = 1.38 x 10723 x 300, S0 that Vihermal = 194 m/s, which is much
larger than the recoil velocity.

EXERCISE 13.1-3

Single Photon in a Mach-Zehnder Interferometer

Using the interference formula for the Mach-Zehnder

interferometer (2.5-6), the intensity in the detector

branch is

T o Iy [1+cos(2rd/N)] o Iycos? (xd/)), where 21, is

the total incident intensity. If the wave contains a single

photon, the probability of its detection by the detector <9 2

is 1 + cos(2md/\) o cos? (wd/A), as shown in the sin®(rg/) - cosi(rd/\)
figure. The probability of finding the photon in the other
output branch of the interferometer is 1—cos (2rd /)
sin? (md/\), which is also shown in the figure. The
probability of finding the photon in either of the two
branches is the sum cos?(rd/\) + sin®(7d/)\) = 1, as
expected.

36
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EXERCISE 13.1-4
Single Photon in a Gaussian Wavepacket

a) The Gaussian function f(¢) = |a(t)|> = exp (—t?/272%) has an RMS width, as defined
by Equation (A.2-1), that is o, = 7. Since 2z = ct, the time uncertainty of the function
a(t — z/c) is oy and the positional uncertainty is o, = coy.

b) The Fourier transform of a(t) is also Gaussian, A(v) = (1/2y/70,) exp (-2 /402),
where o, = 1/4rc;. The RMS width of |A(v)|? is o,. Since the energy E = hv, the
energy uncertainty is og = ho, = h/4wo, = h/20,, from which (13.1-20) follows.
Because the momentum p = h/X = (h/c)v, the momentum uncertainty is o, =
(h/c)o, = h/4cmo, = h/2coy. Therefore, o.0, = (co.)(h/2co.) = /2, from
which (13.1-21) follows.

13.2 PHOTON STREAMS

EXERCISE 13.2-1
Average Energy of a Resonator Mode in Thermal Equilibrium

The average number of photons 7 for a single mode of thermal light is given by (13.2-
21). The average energy E = hvn so that E = hv/ [exp (hv/KT) — 1]. A plot of E
versus hv for two values of kT is shown below. In the limit hv/kT < 1, i.e., when
the photon energy is much smaller than the unit of thermal energy, exp (hv/kT) ~
1+ (hv/KT) so that E =~ KT. In this limit, the average energy is what would be obtained
if the light were not quantized.

0052777 LT
\ !(T =0.052
E \\
\\\
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LIGHT AND MATTER

14.3 INTERACTIONS OF PHOTONS WITH ATOMS

EXERCISE 14.3-1
Frequency of Spontaneously Emitted Photons

In accordance with (14.3-1) the probability density of spontaneous emission into a
single prescribed mode is py, = (¢/V)o(v). The probability density of spontaneous
emission into any of the modes in the band v to v + dv is therefore P,,dv =
(c/V)a(v) M(v) Vdv, where M(v) = 87?2/ is the density of modes per unit volume.

Using M(v) = 8mv?/c3, o(v) = Sg(v), and S = \?/8rty,, we thus obtain

P, dv = (1/ts,) g(v) dv. The probability that the emitted photon has a frequency be-
tween v and v + dv is therefore proportional to g(v)dv. Hence, when many photons are
emitted the distribution of their frequencies is proportional to ¢g(v).

EXERCISE 14.3-2
Doppler-Broadened Lineshape Function

a) The average lineshape function is g(v) = f_“; g(v — vig/c) p(v) dv. It is convenient
to transform the integration variable from v to « = (v, /c)v, which gives rise to
g(v) = |7 9(v — 2) pu(2) da, (1)
where p,.(z) = (¢/vo) p(ev/vg). This result follows because transforming a random
variable v to another random variable av, where a is a constant, modifies the
probability density function to (1/a)p(v/a). Since p(v) is a Gaussian function of
width oy, p,(z) is a Gaussian function of width o, = (v9/c)ov. Note that = has units
of frequency. Equation (1) is the convolution of a Lorentzian function g(v) of width
Av with a Gaussian function of width o.

b) If Av < vyov/c, then Av <« o, i.e., the Lorentzian function g(v) in the convolution
integral (1) is much narrower than the Gaussian function. Since g(v) is a narrow
function of unit area, it can be treated for the purposes of integration as a delta
function 6(v). Thus (1) gives: g(v) ~ [* 6(v — ) p.(x)dz = p(v), i.e., g(v) is

approximately Gaussian with width o, = 0, = (vo/c)ov = oy /A = /KT /M ] \.

c) At T = 300° K, for the Ne transition we substitute the following into (14.3-43)
and (14.3-44): X ~ )\, = 6328 x 107 m, M ~ 20m, = 20(1.67 x 10~%" kg)
so that Avp = 2.350p, = 1.3 x 10° Hz = 1.3 GHz. For the CO, transition,
A& =106 x 107 m, M =~ 44m, = 44(1.67 x 107%7 kg), so that Avp =
5.3 x 10" Hz = 53 MHz.

d) The maximum value of 5(v) is
7o = 7(ve) = (\/87te,) (1) = (A*/8rty) [1/v/2700

= (3 /8rtey) [2:35/V2mAwp | 0.94(\*/8m)

tspAl/D

2 2
For the Lorentzian lineshape 74 = (2/m)(A°/8) = 0.64(\"/8) , Which is similar to
tsp Av tep Av
the Gaussian result. Note, however, that Avp, is typically much greater than Av so

that 7 is much smaller in the Doppler-broadened-Gaussian case.
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14.4 THERMAL LIGHT

. _________________________________________________________________________________________________________________|
EXERCISE 14.4-1
Frequency of Maximum Blackbody Energy Density
8w (kT)? /]
a e —1]
The frequency at which ¢(v) is maximum is obtained by equating do/dz to zero.

Defining x = hv /KT, (14.4-9) gives o(v)

This yields 3z2[e* — 1] — 23[e®] = 0, or 3(e® — 1) = ze®, from which z = 3(1 — e7%).
Numerical solution of this nonlinear equation provides x ~ 2.821. For T' = 300° K, we
thus have v = v, = kT /h = 1.76 x 103 = 17.6 THz, which is consistent with the plot
presented in Fig. 14.4-4.
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LASER AMPLIFIERS

15.1 THEORY OF LASER AMPLIFICATION

EXERCISE 15.1-1

Attenuation and Gain in a Ruby Laser Amplifier
Parameters: A, = 694.3 x 107" m; n = 1.76; A = \,/n; T = 300° K; Av = 330 x 10° Hz;
typ = 3X 10738; Ny = Ni+ Ny =108 m=3;, h = 6.62x 10734 J-s; k = 1.38 x 10723 J /°K.

a) In thermal equilibrium
Ny/N; = exp[—(Eay — E1)/KT] = exp (—hv/KT) = exp (—hc, /A KT) ~ 10730,
Therefore N, < N, so that N, =~ N,, i.e., almost all the atoms are in the lower-
level energy state. The attenuation coefficient at the central frequency = a(vy) =
—v(w) = —N(A\?/87ts,) g(vo) = —N(N?/87ts,) (2/mAv), where N = Ny — N; =
—N,,. Therefore, a(vy) = N, (A\?/87typ,) (2/7Av) = 3.98 x 10* m~! = 398 cm~*.

b) For y(vg) = N(N\?/8xty,) (2/7Av) = 50 m~!, the population becomes inverted
for N = Ny — Ny = (50)(4)72t, Av/A% = 1.254 x 10%° m—3 = 1.254 x 10" cm—3,

¢) To attain a gain G = exp [y(vp)d] = 4, we require d = In(4) /v (o) = 2.77 cm.

15.2 AMPLIFIER PUMPING

EXERCISE 15.2-1

Optical Pumping
The populations of the three energy levels (2, 1, and the ground state) are N,, N;, and
N,, respectively. The total population is N; + N, + N, = N,. Since level 1 is short lived,
N, =0, sothat N, + N, =~ N, and

N, ~ N, — Ns. (1

~

The system is pumped by transitions between the ground state and level 2, so that
Ry = (N, — No)W. Using (1), we therefore obtain R, = (N, — 2N,)W. In this case,
it is apparent that the rate R, is dependent on N,. Now, from (15.2-7) the population
difference NO ~ Rgtsp = (Na - 2N2)Wtsp. But NO = N2 - Nl ~ N2. ThUS N() =
(N, — 2No)Wtg,. Solving for N, we have Ny = N,t,, W/(1 + 2t,, W). In the limit
where W < 1/2t,,, we obtain Ny ~ N,ts, W, which is proportional to W. However for
larger W, in the domain where it is not negligible in comparison with 1/2¢,,, saturation
sets in and N, loses its proportionality to W.

EXERCISE 15.2-2
Saturation Time Constant

sps

If ts, < T (i.€., Nnonradiative transitions are slow), and
tsp < Ty (i.€., decay to levels other than level 1 is slow), and

typ > 7 (i.e., decay from level 1 is fast, i.e., level 1 is short-lived),

then 1/7m = 1/m00+1/tsp + 1/ &~ 1/ts,, SO that 7o = ts,; furthermore 1/791 = 1/ts, +
1/me = 1/, S0 that 7, ~ tg,.  Under these conditions, it follows that the saturation
time constant provided in (15.2-11) can be approximated as 7, = 72 + 11 (1 — 72 /721) &
top + (1 — tep/tsp) = tsp, thereby demonstrating that 7, ~ t,.
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EXERCISE 15.2-3
Pumping Power in Three- and Four-Level Systems

3-level laser amplifier:

For a three-level scheme, in accordance with (15.2-30), when Ny, = 0 we have t,, W =1
so that W = 1/t,,. Now, when the pumping transition probability is twice as large, as
assumed in the problem for the three-level scheme, namely W = 2/t,,, (15.2-30)
yields Ny = +N,. The pumping power is then P = hu3 R, where R = (N, — N5)W.
Since N3 ~ 0, we obtain R ~ N, W. Because Ny + N, = N, and N, — N; = N,, by
subtraction we obtain 2N, = N, — Ny = N, — :N, = 2N,, so that N; = 1 N,,. It follows
that R = s N, W = N, (2/tsp) = 2N, /ts,, which leads to P = 2husi N, /tsp.

4-level laser amplifier:

For a four-level scheme, in accordance with (15.2-20), when N, = 0 we have W = 0.
Now, when the pumping transition probability is W = 1/2t,,, as assumed in the
problem for the four-level scheme, (15.2-20) yields N, = $N,. The pumping power
is then P = husoR, where R = (N, — N3)W =~ N,W. But since N, = N, — Ny =
N, — 1N, = 2N,, we have R = 2N,(1/2ty,) = 3N, /tsp, from which P = LhusoN, /s,
Comparison:

Under these special conditions, and assuming that the two systems have the same
values of N, and t,, the ratio of the 4-level to 3-level pumping powers required to
achieve this population difference is v3q/2v3;.

15.4 AMPLIFIER NONLINEARITY

EXERCISE 15.4-1
Saturation Photon-Flux Density for Ruby

Parameters: A\, = 694.3 x 107° m; n = 1.76; 75 = 2t,; Av = 3.3 x 10! Hz; ¢, = 3 x 108
m/s; h = 6.63 x 10734 J-s.

From (15.4-2), we have 1/¢,(vo) = (A2/87) (Ts/t) 9(v0) = (A2/87)(2)(2/nAv) =
(X\o/n)?/272 Av, where we have made use of (15.1-8) for g(vy). Inserting the numer-
ical parameter values leads to ¢,(vy) = 4.186 x 10*® m~2s~!. This corresponds to a
saturation intensity I, = hvo ¢s(v0) = (coh /o) (1) = 1.2x 107 W/m? = 1200 W/cm?2.

EXERCISE 15.4-2
Spectral Broadening of a Saturated Amplifier
Making use of (15.4-2), (15.4-3), (15.4-4), and (15.1-8), we have:
Y(v) = Yo(v)/[1 + ¢/¢s], where vo(v) = ag(v), a= NoA*/8rt,,

and 1/(253 = bg(”)v b= (>‘2/87r)(7_5/tsp)7
and g(v) = (Av/27)/[(v — n)* + (Av/2)?].

Therefore,

_ag(v)
v(w) = 1+bpg(v)
a(Av/27) a(Av/27)

(=) 4 (Ar/2)2 - bp Av/2r (v — 1) + (Av/2)2 ]

where
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(Av,/2)? = (Av/2)* + bo Av /27
= (Av/2)*[1 4 bg (2/TAV)]
= (Av/2)*[1+bg g(10)]

)

= (Av/2)*[1 + ¢/¢s(10)].

Taking the square-root of both sides of this equation yields the desired result:

Al/s = Al/\/ 1+ ¢/¢5(V0)'

15.5 AMPLIFIER NOISE

EXERCISE 15.5-1
Amplified Spontaneous Emission (ASE)

a)

S

In the unsaturated case y(v) =~ vo(v), whereupon the differential equation (15.5-
3) becomes d¢/dz = vo(v)¢ + &p(v). To solve this differential equation, we
use a ftrial solution of the form ¢(z) = Aexp[yo(v)z] + B. Substitution yields
Yo(v)Aexp[yo(v)z] = vo(v)Aexpyo(v)z] + vo(v)B + &p(v), from which it is
clear that B = —&,(v)/vo(v). The initial condition ¢(0) = 0 is satisfied if
A+ B =0,0r A = —B = &,(v)/vo(v). It follows that the solution is ¢(z) =
bsp {exp [vo(v)z] — 1}, where ¢, (v) = &, (v)/vo(v). At z = d, we therefore find
¢(d) = ¢sp {exp [yo(v)d] - 1}.

Following (15.1-9) for spontaneous emission with a Lorentzian profile, the unsatu-
rated gain coefficient is

_ Yolw)(Av/2)?
Yo(v) = =10 1 (Avj2E
The frequency dependence of this gain coefficient, normalized to unity height, is
then

~ Yov) (Av/2)?

V)= = .
9= ) ~ T =)+ (Bv/2)

This quantity differs from the Lorentzian lineshape function provided in (15.1-8),
which is normalized to unit area. The function g, (v) is plotted in the figure below for
Av = 14/100.

In the same figure, we present the frequency
dependence of the equivalent function applicable
for ASE, also normalized to unit height:

_ {epod] -1} _ {explagi(v)] - 1)
{epho(o)d] — 1} {exp(a) -1} ' |

ga(v)

with a = 'Y()(V())d = 5.

It is clear that g»(v) is narrower than g, (v), indicating that the amplification of spon-
taneous emission is accompanied by spectral narrowing.
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16.1 THEORY OF LASER OSCILLATION

EXERCISE 16.1-1
Threshold of a Ruby Laser

Parameters: \, = 694.3 x 107 m; n = 1.76; A = \,/n; Av = 330 x 10° Hz;
N, =Ny 4+ Ny = 1.58 x 101 cm™3; h = 6.62 x 10-%4J-s; k = 1.38 x 10723 J/°K;
co =3 x108m/s; c=c,/n; a(vy) = —y() ~02cm~!; d=10cm; A=1cm?.

a) 'Y(](V) = NO O'(l/), where NO = N2 — Nl-
At thermal equilibrium at 7" = 300° K, No/N; = exp (—hv/KT) = exp (—hc, /AKT) ~
1073% (see Exercise 15.1-1). Therefore N, < N; and N; =~ N,, i.e., almost all of
the atoms are in the lower energy state. In this case Ng = Ny — N; = —N,. The
gain coefficient, yo(vo) = Noo(vp) ~ —N,o(vp), is then negative and corresponds
to an absorption coefficient a(vy) ~ N,o(vp). Since a(vy) ~ 0.2 em™!, o(vy) =~
a(vg) /N, = 1.27 x 10720 cm?.

S

The resonator has parameters d = 0.1 m, R; = R, = 0.8, and «, = 0. Its loss
coefficient is o, = o + (1/2d) In(1/R1R2) = 2.231 m~! = 0.0223 cm~!. The photon
lifetime is thus 7, = (a,.c)™! = 1.49 x 107 = 1.49 ns.

¢) The threshold population difference is N, = «,/o(v9) = (0.0223 cm™')/(1.27 x
10729 cm?) = 1.76 x 108 cm~3.

16.2 CHARACTERISTICS OF THE LASER OUTPUT

EXERCISE 16.2-1
Number of Modes in a Gas Laser

a) The gain coefficient is given by vo(v) = vo(vo) exp [~ (v — 10)?/202] with Avp =
v81n2 o,. The allowed oscillation band is obtained from equating the gain coeffi-
cient yo(v) to the loss coefficient .

Yo(vo) exp [—(v — 19)?/202] = o OF (v —1p)?/20% = In[yo(vp)/c], SO that

(v —1)? =202 In[yo(v)/a,] Of (v —1y) = Fop+/2In[ye(vo)/a]

Thus B = 20p+/21n [yo(v0)/] , from which we obtain
B =2Avp(81n2)7* [21n (vo(v0)/a,)]'/>. (1

S

Avp =1.5x10° Hz; yo(ry) =2x 1072 cm~1; d = 100 cm; R; = 1; R, = 0.97; and
as =0, sothat a, = a, + (1/2d) In (1/R;Ry) = 1.52 x 1074 ecm~1L.

Bandwidth: From (1) above, we have B = 2.89 x 10° Hz = 2.89 GHz.

Modal spacing: vr = c¢/2d = (¢,/n)/2d. Usingn =1, d =100 cm, and

¢, = 3 x 10'° cm/s, we obtain vy = 1.5 x 108 Hz = 0.15 GHz.

Number of modes: M = B/vr = 19.3, corresponding to a maximum of 19 modes.

43
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16.4 PULSED LASERS

EXERCISE 16.4-1
Population-Difference Rate Equation for a Four-Level System

Since 7y <« 7, , level 1 is short lived and we may therefore assume that N; ~ 0 so that
N = N, — N; =~ N,. Substituting N; = 0 and N, = N into (15.2-8), and assuming that
Ty R tsp, We obtain

dN/dt = Ry — N/ts, — NW,. (1)

Under steady-state conditions (dN/dt = 0), with W, = 0, (1) yields R, — N/t,, = 0
so that the steady-state population difference in the absence of amplifier radiation is
Ny = Rats,. Substituting R, = Ny /1, into (1), we obtain

dN/dt = Ny /ts, — N/ts, — WiN. @)

Equation (2) is identical to (16.4-5) except for the factor of two in the W; term. This can
be understood as follows: In the 3-level laser system, a photon emitted from level 2
decreases N, by unity and simultaneously increases N; by unity, so that the population
difference N = N, — N, decreases by two.

In the 4-level system, on the other hand, level 1 is short-lived and cannot maintain any
additions to its population. Thus, a photon emitted from level 2 decreases N, by unity
but entails no change in Ny, which is 0 at all times. The result is a decrease of N by
unity and the absence of the factor of two.

EXERCISE 16.4-2
Pulsed Ruby Laser

Given: )\, =0694.3x 107 m; n = 1.76; o(p) = 1.27 x 10724 m?;
h=6.62 x 1073 J-s; ¢, =3 x 108 m/s;and N;/N, = 6.

Resonator:  The resonator has parameters d = 0.1 m; A= 1cm?; R; = R, = 0.8;
and «ay = 0. lts loss coefficient is o, = a + (1/2d) In(1/RRy) = 2.231 m~! =
0.0223 cm~*. The photon lifetime is thus 7, = (a,.c) ™' = 1.49 x 10 9 = 1.49 ns.

Threshold population difference: N, = /o (1) = 1.76 x 10* m

Peak Pulse Power:  Using (16.4-14), together with N;/N; = 1, we have
n,=3-6N[l+3Ilng—2]=3x176x10" x [1+¢In} — 1] =2.82x 10* m~3.
Furthermore n,/Ny = 3[1 + gIng — £] = 1.604, WhICh is consistent with the
curve labeled N;/N; = 6 in F|g 16 14-8. From (16.4-15), the peak power is P, =
hv T (¢/2d) Vn,,. Substituting ¢ = ¢,/n, v = ¢,/A,, T = 1 — Ry, and taking the
resonator cross-sectional area to be A = 1 cm? so that the resonator volume is
V =10"*d = 10~° m?, we obtain P, = 1.38 x 10° W = 1.38 GW.

Pulse Energy: The energy of the pulse is determined from (16.4-23), which in turn
requires knowledge of the final population difference N;. To determine N, (16.4-
22) can be rewritten in the form Yexp (-Y) = Xexp(—X) where X = N;/N;
andY = N;/N,. Given that X = N, /N, = 6, we have X exp (—X) = 6exp (—6) =
0.015. It follows that Y exp (—Y) = 0.015, which has the solution Y = 0.015, so
that Ny = 0.015N,. Using (16.4-23), we obtain £ = $hv T (¢/2d) VT, (N; — Ny) =
3.83 J.

Duration and Shape of Laser Pulse: The shape of the laser pulse is provided by the
curve labeled N;/N; = 6 in Fig. 16.4-8. From this figure the pulse width at half
maximum value is roughly estimated to be 1.5 7,,. An approximate calculation for
the duration of the pulse can be obtained by dividing the energy [3.83 J as obtained
from (16.4-23)] by the peak pulse power [1.38 GW as obtained from (16.4-15)].
This leads to Tpuse ~ E/P, = 2.78 x 107° s = 2.78 ns. This calculation, which
yields 7,5 &~ 1.877,, assumes that the pulse is square and thus provides only a
rough approximation for 7.
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EXERCISE 16.4-3
Demonstration of Pulsing by Mode Locking

a) When the magnitudes and phases are equal, the intensity can be obtained from

150
(a)
100
S i
0 1 | . | 1
0 0.5 1 15 2 25 3
11T,
100 ‘ ®
50 .

I(n)

(16.4-31), with the substitutions A = 1 and M = 11:

O] - [

This function is plotted as a function of ¢/ Tr in Fig. (a) below. It is a periodic set of
narrow pulses of height M2 = 121.

1(t)

A2 = AP [

b) When the magnitudes are exp (—¢?/50) and the phases are equal (say 0), the total
complex amplitude, from (16.4-28), is:
A(t) = Y0_ 5 exp (—¢*/50) exp (g2t / Tr)
=1+ 22:1 2exp (—q?/50) cos (g27t/ Tr).
The function I(t) = |A(¢)|? is plotted as a function of ¢/ Tr in Fig. (b) below. Again,
this is a periodic set of narrow pulses. Note the reduction of the side lobes in
comparison with Fig. (a).

c) Here, the magnitudes are equal and the phases are random so that A(t) =

22:75 exp (jg2nt/Tr + jo,), where the o, are random variables chosen from a
uniformly distributed probability density function between 0 and 27. A MATLAB pro-
gram was written to compute I(¢) = |A(¢)|*>. The random phases ¢, were generated
using the random-number generator in MATLAB. The result, plotted as a function
of t/Tr in Fig. (c) below, is a random periodic function whose values typically lie
between 0 and 50.
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SEMICONDUCTOR OPTICS

17.1 SEMICONDUCTORS

EXERCISE 17.1-1
Energy—-Momentum Relation for a Free Electron

a) The one-dimensional time-independent Schrédinger equation for a particle of mass
mg in a potential V = 0 (which is appropriate for a free particle) is
—h? 9*)(x)

2mg  Ox?

=Ey(z).
Substituting a plane-wave trial solution of the form ¢ (z) = A exp(—jkz), where A is
a constant, leads to

—h?
2mg

(_jk;)Zefjkz —_ Ee*jkz7

21.2
so that E = Wk .
2m0

b) The relativistic energy—momentum relation for a free particle of mass my is
E? = p* + m3ct. (1

For a free electron of mass my, the rest energy moc®> has a value 0.511 MeV.
For a nonrelativistic electron, it is thus convenient to carry out a Taylor-series
expansion for the energy E, retaining the first term. Recalling that /1 + =z =~ 1+ /2
for z <« 1, we have

1/2
E =/p?c2 +m3ct = |m3c* [ 1+ re '
méct

0

22

2 pc

~moc” | 1+ ——
0 ( 2m§c4)

2
= m002 + L .
2m0

Since myc? is the rest energy of the particle, the kinetic energy of a free nonrelativis-
tic electron of mass my is E = p?/2m¢. With p = #ik, this becomes E = /2k2/2my,
which varies quadratically with k, in accordance with (17.1-1).

A free photon, on the other hand, is massless so that my, = 0, whereupon (1)
becomes E = pc. Substituting p = hk, this becomes E = chk, which varies linearly
with &, in accordance with (17.1-2).

The distinction results in different behavior for the dispersion diagrams of electrons
in semiconductors (Fig. 17.1-5) and photons in photonic crystals (Fig. 7.2-5).
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EXERCISE 17.1-2
Exponential Approximation of the Fermi Function

For E — E; > KT, (17.1-9) becomes the exponential function

f(E) =~ exp[—(E — E;)/KT]. (1)
Substituting (1) into (17.1-11), and making use of (17.1-7) and (17.1-10), we obtain:
n:f,:‘fjA(E—Ec)l/zexp[—(E—Ef)/kT]dE, )
where A = (2m.)%/?/2n%h® is a constant. To perform the integral in (2) we use the

transformation v = (E—E.)/KT, with du = dE /KT, whereupon exp [—(E — E;)/kT]| =
exp (—u) exp [—(E. — E)/kT], and the integral becomes:

KT

4r(2mkT)*?  [m E.-E;
- he i I

from which (17.1-12) follows. A similar analysis leads to (17.1-13), and (17.1-14)
follows by multiplication.

n = A(KT)%? exp[—ﬂ} / u*/? exp (—u) du
Jo

If m, = m,, then N. = N,,, whereupon (17.1-12) and (17.1-13) provide
n/p = exp[+(E; — E,)/KT — (E. — Ef)/kT]. Thus, if (E. — Ef) < (E; — E,), the
argument of the exponent is positive and therefore so is n/p, i.e., if E is closer to the
conduction band than to the valence band, then n > p, and vice versa.

EXERCISE 17.1-3

Determination of the Quasi-Fermi Levels Given the Electron and Hole Concen-
trations

a) At T = 0° K, the Fermi function f.(E) =1 for E < E;. and 0 otherwise. When this
is used together with (17.1-7) and (17.1-10) to evaluate the integral in (17.1-11),
we obtain:

n = _féfCA(E — E.)'/2dE = 2A(E;. — E.)*?, where A = (2m,.)*?/2x°1® is a
constant. It follows that E;. — E. = (3n/2A)?/3 from which (17.1-18a) follows.
Equation (17.1-18b) can be similarly obtained.

b) The concentration n is the area under the function ¢.(E) f.(E). When T > 0° K,
fe(E) no longer assumes the values 1 and 0 with a transition at E. (see middle
panel of figure below). However, if the quasi-Fermi level lies deep within the con-
duction band, for T' > 0° K the product function o.(E) f.(E) will be a smooth curve
with an area close to that for the T = 0° K case, as is evident in the right panel of
the figure below. In that case the expression in (17.1-18a) will be approximately ap-
plicable. A parallel argument for the valence band leads to the approximate validity
of (17.1-18b).

E E E

0.(E) JE) 0. (E) f.(E)
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EXERCISE 17.1-4
Electron-Hole Pair Injection in GaAs

Parameters for GaAs: E, = 1.42 eV; m, = 0.07mg; m, = 0.5mg; mo = 9.11 x 1073! kg,

r=10"" cm3/s; T = 300° K.

a) Using the value of n; = 1.8 x 10° cm—2 from Table 17.1-3, together with n, =
101 cm=3, we obtain p, = n?/ny = 3.24 x 10=% cm~3. In this case ng > py.

b) With injection at a rate R = 1023 cm~3s~1, the steady-state concentrations can be
determined from (17.1-22), which provides: R = r(np — nopg) = rAn(ng + pg +
An) =~ rAn(ng + An), so that An? + ngAn — R/r = 0. Solving this quadratic
equation for An yields: An = 1 [—ng + (n2 +4R/x)"/?] = 9.5 x 10'¢ cm~3. Thus,
An is about 9.5 times greater than nj.

¢) Since An = 9.5 x 108 cm~3 >> ng, we use (17.1-24) to obtain 7 ~ 952 ns.

d) The separation between the quasi-Fermi levels at T = 0° K may be determined by
subtracting (17.1-18b) from (17.1-18a):
Ejc — Epy = Eg+ (372)3(h%/2) [n?/3 /m. + /3 /m,].
Converting the values for n = np+An and p = py+An ~ An obtained above from
units of cm~3 to m~2 by multiplying by them by 10°, and dividing by the electronic
charge e to convert from J to eV, substitution yields the following:

2\2/3 g2 T 612/3 6y2/3
EfoEfv:Eng(?m) h* [(nx10°) (p x 10°%) }

2 moe | 0.07 0.5

_ g, BT B [0 10% 495 107)22 (95 x 10)
Y 2 mee | 0.07 05

—E, -
sty mee | 0.07 0.5

43.8 x 10758 [22.3 x 10 20.8 x 1014]

(372)¥/3 K2 [22.3 x 10 20.8><1014]

=E,+4.785-
st 5.74 x 10—48 0.07 + 0.5

= E, +0.013eV.

Thus, E;.—E/, is 0.013 eV greater than the bandgap energy E, so that E;.—E;, =
1.433 eV. Using (17.1-18a) and (17.1-18b) separately, we find E;. — E. = 0.011 eV
and E, — E;, = 0.002 eV, so that the quasi-Fermi levels lie within, but very near the
edges of, the conduction and valence bands.

However, neither E;. — E. nor E, — E;, are > kT = 0.026 eV at T' = 300° K, so
that (17.1-18a) and (17.1-18b) should not be used for this carrier concentration at
T = 300° K (see Exercise 17.1-3); hence T' = 0° K was expressly specified for this
part of the problem.

EXERCISE 17.1-5

Energy Levels of a Quantum Well

Inside the well (0 < 2z < d), V = 0 and the one-dimensional time-independent
Schrodinger equation is (—#2/2m) d%*yp/dx? = Evy or d?¢/dx? + k*yp = 0, where
k? = 2mE/K2. This equation has the general solution ¢(x) = Asin(kx) + B cos(kx).

At the boundaries of the infinite well (z = 0 and = = d), we require ¢ (x) = 0. Therefore,
B = 0 and sin(kd) = 0. This is possible if kd = g, ¢ = 1,2,3,..., so that k£ must
have one of the values k, = ¢n/d, just as for the standing waves in a Fabry—Perot
resonator [see (11.1-2) and (11.1-3)]. The corresponding energy E = (h?/2m)k?
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is thus quantized to the values E, = (#%/2m)(qn/d)?. The first three energy levels
(¢ =1,2,3) are therefore: E, = 4.9%%/md”, E; = 19.7h%/md”, and E; = 44.4h% /md>.

By comparison, a quantum well of finite depth V, = 321%/md? has energies: E; =
3.2l /md?, E; = 11.9h%/md?, and E5 = 25.94%/md?, asillustrated in Fig. 17.1-26(b).
Finiteness of the well depth is seen to compress the energy-level spacings and to yield
a continuum of energy levels above V.

17.2 INTERACTIONS OF PHOTONS WITH CHARGE CARRIERS

|
EXERCISE 17.2-1
Requirement for the Photon Emission Rate to Exceed the Absorption Rate

a) In thermal equilibrium E;. = E;, = E; and, in accordance with (17.1-9), f(E) =
1/{exp [(E — E;)/KT + 1]}. The difference between the emission and absorption
conditions, given by (17.2-10) and (17.2-11), respectively, is f.(v)— fo(v) = fo(E2)—
fu(Ey1). Since f.(E) = f,(E) = f(E) in thermal equilibrium, we have f.(v)— f,(v) =
f(E2)— f(E,). Because f(E) is a monotonically decreasing function of E, we obtain
f(E3) < f(E;) so that f.(v) — f.(v) < 0. Thus, f.(v) < f.(v), which indicates that
the rate of emission is smaller than the rate of absorption.

b) In quasi-equilibrium, we have f.(v) — fo(v) = fo(Ea) — fu(E1) =

(1/{1+ exp [(E2 — E ) /KT1}) — (1/ {1+ exp [(Ey — Ey,)/KTT}).
This is a positive quantity if exp [(E> — E.)/KT] < exp [(E1 — Ey,)/KT], or equiva-
lently if (Eo—Ey.) < (E1—Ey,), orif Ea—Ey < Ef.—Ejy,. Since E;—E; = hv, the
emission rate is greater than the absorption rate if hv < E;. — Ey,, or equivalently
if E;. — Ef, > hv. This implies that the separation between the two Fermi levels
is greater than the bandgap energy, namely, that E;. and E;, must lie within the
conduction and valence bands, respectively.

EXERCISE 17.2-2
Wavelength of Maximum Interband Absorption

In accordance with (17.2-29), a(v) is proportional to (hv — E,)*/? (hv)~2. This function
has its maximum value, v,,, when its derivative with respect to v is 0. This occurs when
—2(hvp — EQ)V2 + £ hwy(hwy, — Eg)~Y/2 =0 or $huy, = (hy, — E,) so that hy, = 5E,.

To find the maximum value of the wavelength, \,, however, we need to write a(v) as
a(),) instead, and then take the derivative with respect to \,. Since v = ¢,/\,, we have

a(No) o (hco/Ao — heo/Ag)""? (Mo/hco)? o (1/A, — 1/A0)"% (A,)?. Setting the deriva-
tive of a(,) equal to zero yields 2 (1/x, — 1/A,)"/* A\, — L (1/A, — 1/A,) /> (\2/A2) =
0sothat4(1/A, —1/A;) A\, = 1, which leads to A, = 2X, or A, (um) = 2.1.24/E,
(eV).

For GaAs, E, = 1.42 eV so that A, = 2 - 1.24/1.42 = 0.65 um, which lies in the red.

In view of the results obtained in Prob. 14.4-5, we know that X, cannot necessarily
be evaluated as co/'up. In this case, however it turns out that evaluating A, in terms of
¢,/v, also leads to gcoh/E{,, so that both approaches yield the same result.
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LEDS AND LASER DIODES

18.1 LIGHT-EMITTING DIODES

EXERCISE 18.1-1
Quasi-Fermi Levels of a Pumped Semiconductor

a) At T = 0° K, the Fermi function f.(E) = 1 for E < E., and 0 otherwise. This
expression may be used together with (17.1-7) and (17.1-10) to evaluate the
integral in (17.1-11). Using the substitution x = (E — E..) to evaluate the integral,
we obtain

An = fEECf A(E - Ec)l/QdE = %A(Efc _ EC)S/Q’

where A = (2m.)%?/27?#% is a constant. Thus, E;. — E. = (3/24)%/3 An?/3, from
which (18.1-12a) follows. Equation (18.1-12b) is similarly obtained, and (18.1-12c)
follows from simple subtraction, where 1/m, = 1/m. + 1/m, [see (17.2-5)]. The
calculation is the same as that provided in Exercise 17.1-3.

b) From (18.1-5)—(18.1-7), we have f.(v) = f.(E2)[1 — f,(E;)], where E; = E. +
(m./m.)(hv — E;) and E; = E; — hv. At T = 0° K, the Fermi function f.(E>) is
unity as long as E, < E. and is 0 otherwise. Similarly, the Fermi function f,(E;) is
unity for E; < Ej, and is 0 otherwise. For hv > E,, as hv increases, we see that
E; increases and E; decreases. But as long as these two values lie below E . and
above Ey,, respectively, f.(E2) =1and 1— f,(E,) =1, so that f.(v) = 1. When hv
exceeds the value E;. — E;,, we see that E, exceeds E. and E, lies below Ej,,
so that f.(Ez) =0and 1 — f,(E;) = 0, indicating that f.(v) = 0. The function f.(v)
is therefore a rectangular function with value 1 for E, < hv < E;.— Ey,, and value
0 otherwise, as shown in Fig. (a) below.

According to (18.1-3), the rate of spontaneous emission rg, is proportional to
o(v) f.(v), where o(v) o< (hv — E,)'/2. Therefore, the dependence of r,, on v is as
illustrated in Fig. (a) below for T = 0° K. The effect of increasing the temperature
(' > 0° K) is to smooth the Fermi function so that the functions f.(v) and rg,(v)
take the forms shown in Fig. (b) below.

T=0"K T>0"K
Jf.v) ‘
I
-1
I
) .
EH Ef(«' E/V hv Ey Ef(: E/z/ hv
(@) (b)
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EXERCISE 18.1-2
Spectral Intensity of Injection Electroluminescence under Weak Injection

From (18.1-3)—(18.1-5), we have ry,(v) = 7,7 o(v) f.(v), where
o(v) = [(2m,)** /xh?](hv — Eg)'* and f(v) = fo(E2)[1 — fu(Ey)].

When the Fermi distributions are approximated by their tails, we have

fe(E2) = exp|—(Ez — Ef.)/KT] and 1— f,(E1) ~ exp[—(Ef, — E1)/KT]

whereupon f.(v) = exp [(Eyc — Ey,)/KT] - exp [—(E2 — E1)/KT]
= exp [(Efc - Efv)/kT}  eXp (—hV/kT).

Substituting this approximate expression for f.(v) into the above expression for ry,(v)
leads to (18.1-13a) and (18.1-13b).

EXERCISE 18.1-3
Electroluminescence Spectral Linewidth

a)

Equation (18.1-13a) may be written in the form ry,(v) = D(KT)Y?u!/2 exp(—u),
where u = (hv — E,)/KkT. The function u'/2 exp(—u) has its peak value when its
derivative with respect to u vanishes, i.e., when —u'/2 exp(—u) + Ju~"/? exp(—u) =
0, from which we obtain u = 1, i.e., (w — E,)/kT =1 or hv=E, + L1kT.

The peak of the function u'/2¢~" occurs at v = 1, where the function has the value
(1)'/2e=1/2. The function reaches half its peak value where

u'Zemv = L x (3)2e71/2 ie., where u'/2e = (1)3/2¢71/2. Squaring both
sides of this equation leads to ue™?* = (3)%~! = 0.046. Computation shows
that the roots of this equation are approximately w; = 0.051 and u, = 1.84.
The difference between these values, v, — u; = 1.79 =~ 1.8, corresponds to
[(hvy — E,)/KT — (hvy — E,)/KT] ~ 1.8 so that h(v. —11) = 1.8 kT. The FWHM
spectral width is, therefore, Av =~ 1.8 kKT'/h, confirming (18.1-15). Note that Av is
independent of v.

Since v = ¢/)\, we have Av = —(c/\?)A)X. The magnitude of the wavelength
spectral width A that corresponds to the frequency spectral width Av ~ 1.8 kT'/h
is therefore A\ = (A2 /c)Av = (A2 /¢)(1.8 KT /h) = 1.8 (X2 /hc) KT If we express X in
um, and kT in eV, the foregoing equation becomes

AX(inpm) x 107% = 1.8 - [AZ (in pm?) x 107'? /he] - [KT (in eV) - e] or

A (inpm) ~ [1.8/(10° x he/e)] - [AZ (inpum?)] - [KT (in eV))].

Now, since (10° x hc/e) = 1.24 and 1.8/1.24 =~ 1.45, we obtain the final result
AX(inpm) ~ 1.45 - [X2 (in pm?)] - [KT (in eV)], in agreement with (18.1-16).

In contrast with the frequency spectral width Av, which is independent of v, the
wavelength spectral width AX increases as Ai.

At T = 300° K, we have kT = 0.026 eV. The frequency spectral width is given by
Av =18KT/h =1.8-0.026-1.6 x 107'2/6.6 x 1073* = 11.3 x 102 Hz = 11.3 THz.
It is independent of the wavelength .

The wavelength spectral width is A\ (in um) ~ 1.45 - [A2 (in um?)] - [KT (in eV)]. For
Ap = 0.8 um, we have A\ ~ 1.45 - [0.82] - [0.026] ~ 0.024 um = 24 nm. For )\, =
1.6 um, on the other hand, we have A) ~ 1.45 - [1.6%] - [0.026] ~ 0.096 pm = 96 nm,
confirming that A\ increases as Af, (doubling the wavelength, from 0.8 to 1.6 um,
results in quadrupling of the wavelength spectral width, from 24 to 96 nm).
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EXERCISE 18.1-4
Extraction of Light from a Planar-Surface LED

a) We begin with 3 = 1(1 — cosf.) and make use of Snell’s law for the critical angle:
sinf, = 1/n and therefore cosf, = /1 —sin 6,
sothat 73 =3 (1 — /1= 1/n2) )

1\ 1 1
Since (1- — ~1—-— for — <1, wehave
n? 2n? n?

(1) 1
BE2\on2 ) T apr

RS>
\ |

sin~'(1/n) and n3 ~1/4n® so

0.(GaAs ) =sin"'(1/3.6) =16.1° and  n3(GaAs) = 0.019

0.(GaN) = sin~'(1/2.5) = 23.6° and  n3(GaN) = 0.040
(

0.(polymer) = sin™*(1/1.5) = 41.8° and n3(polymer) = 0.111.

c) From GaAs (n; = 3.6) to polymer (ny = 1.5), the critical angle 6., is obtained from
nysinf. = ny sothat @, =sin '(1.5/3.6) = 24.6°. Thus, s = %[1 — c0s(24.6°)] =
0.045. As shown in part b) above, light escaping from GaAs into air has 73(GaAs) =
0.019 so the enhancement in the fraction of extracted light is 0.045/0.019 ~ 2.4.

d) Fromn; = 3.6to ny = 1.5, using generalizations of (18.1-21) and (18.1-22) we have:

(n17n2)2] 1 (n2)2
=1 —- = .1 —4/1= =
T2 M3 { (m +n2)2 2 "
o dmm_ 1nd
T (np+ny)? 4n2
Similarly, from n, = 1.5 to n3 = 1, we have:

3
n3

o~y ———3

]2 773 7'L2(TZ2+TL3)2

O(n2 s 13) -0
N2

The product 1, n3 14 1% is maximized for or

i( n3 n; )_nﬁ@( n2 )_0
Ony \ni(ni +n2)2 na(na+n3)2)  my Ong \ (n1 +m2)2(na+1n3)2)

Thus, (n1+n2) 2 (na+n3) 2-2ne —n2[(ny +ns) 2-2(na+n3) + (n2+n3) 2-2(ny +n2)] = 0,
which provides ny = n4, indicating that the introduction of an intermediate layer of
arbitrary thickness is not helpful in maximizing the fraction of light emitted from the
LED into air if Fresnel reflection is accommodated.

The use of an intermediate-index material in the form of a quarter-wave film can be
useful in this connection, however, as shown in Exercise 7.1-1.
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PHOTODETECTORS

19.6 NOISE IN PHOTODETECTORS

EXERCISE 19.6-1
Signal-to-Noise Ratio of a Resistance-Limited Receiver

Parameters: n = 1; Ry, = 50Q; T = 300° K; B = 100 MHz = 10® Hz; e = 1.6 x 10~'° C;
A=155pm=155x10"5m;h=6.63x1073* J.s; k= 1.38 x 102 J/°K.

Resistor thermal-noise current variance: o7 = 4kT/Ry..
Photoelectron-noise current variance: 2eiB = 2e*®B.

When the two variances are equal, we have 4kT/ Ry, = 2¢2®B, so that the

Photon flux & = 2kT'/e*R;, B = 6.5 x 107 photons/sec, and the
Optical power P = hv® = he® /) = 8.3 x 10712 W = 8.3 pW.

EXERCISE 19.6-2
Sensitivity of an Analog APD Receiver

From (19.6-39), we have SNR, = G 2ﬁ3/(§ “Fro + o?), from which we obtain
mZ — SNRy F Ty — SNR, 02/G * = 0.

This is a quadratic equation in m, whose positive solution is

g = 1 {F -SNR, + 1/ F2 SNR? + 402 SNR, /G * }

= F-SNR, {§+\/§+03/F2§23NR0 } .

In the limit as aj — 0, this reduces to my, = F' - SNR, as promised.

EXERCISE 19.6-3
Effect of Quantum Efficiency and Background Noise on Receiver Sensitivity

a) State 0: Neither signal nor background photons are present. Hence, the probability
is unity that zero photoelectrons are detected in this OOK system; there is thus
no possibility for error and po = 0.

State 1: An average of i photons is present in a receiver counting time T. This gives
rise to an average of m = nn photoelectrons, which follow the Poisson distribu-
tion p(m) = m" exp(—m)/m!. An error (a “miss”) occurs if zero photoelectrons
are observed in the receiver counting time T; this occurs with probability

p1 = p(0) = exp(—m) = exp(—nn).

The bit error rate for this system is thus BER = L1(p; + po) = Lexp(—nn) =
1 exp(—2nny) since nn, = 3nn. For a BER = 1077, we thus have nn, = 10,
corresponding to my, = 10 photoelectrons per bit and to n, = 10/n photons per bit.

53
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b) State 0: The number of photons n is Poisson distributed with mean ng associated
with the background, and so too is the number of photoelectrons m since the
quantum efficiency 7 is assumed to be unity.

State 1: The number of photons n is Poisson distributed with mean ng + n, where
n represents the mean number of signal photons.

Decision rule: Select a threshold n.,; If n > n.;,, decide 1; otherwise decide 0.
Error probabilities:

po = probability that n > ny, if p(n) is Poisson distributed with mean ng.
p1 = probability that n < ny, if p(n) is Poisson distributed with mean ng + n.

BER = jpo + 311

Nen

> Ahexpl-ngl/nl+ 1> (g + )" exp[—(7ip + )]/

n=n, n=0

D=

The expression for the BER is a function of ng, n, and ny,. The required plots
can be generated numerically; for given values of ng and n, we can determine the
value of ny, that minimizes the BER. The optimal threshold turns out to be n,;, =
n/In(1+ n/ng) as shown, for example, in B. E. A. Saleh, Photoelectron Statistics,
Springer-Verlag, 1978, p. 315 (in this reference, BER is denoted P,, np is denoted
n,, and n is denoted n;).
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ACOUSTO-OPTICS

20.2 ACOUSTO-OPTIC DEVICES

EXERCISE 20.2-1
Parameters of Acousto-Optic Modulators

Modulator 1

n=1.46;v, = 6x10°m/s; f = 50 MHz = 5x 107 Hz; A\, = 633 x107° m; §6 = 1073 rad;
A=X/n=433x107°m; A = v,/f = 1.2 x 1074 m.

Bragg Angle 65 = sin*(\/2A) = 1.8 mrad.

Bandwidth B = v,/D = v,/()\/30) = 13.9 MHz.

Modulator 2

n=4.8;v, =22 x 10® m/s; f = 100 MHz = 10® Hz; A, = 10.6 x 107° m; D = 10~2 m;
A=XA/n=22x105m;A=uv,/f =22x10"6m.

Bragg Angle 65 = sin~'(\/2A) = 50 mrad.

Bandwidth B = v,/D = 2.2 MHz.

EXERCISE 20.2-2
Parameters of an Acousto-Optic Scanner

Parameters: v, = 6 x 10° m/s; n = 1.46; A, = 633 x 107° M; fum = 4 x 107 Hz;
fmax = 6 x 107 Hz; N = 100.

Beam width D: From (20.2-8) we have N = TB = (D/v,)B, where B = fiax — fmin =
2 x 107 Hz. Therefore, D = Nv,/B = 3 cm.

Scan angle Af: Since N = A#/§0 and 60 = \/D, we have A§ = NA/D. This
is the angle within the medium. The corresponding angle outside the medium is
nNXA/D = NX,/D = 2.11 mrad = 0.12°.

Slower sound: We have N = (D/v,)B, which is inversely proportional to v,. Thus,
if v, is reduced from 6 to 3.1 km/s, with all other parameters remaining the same, N
increases from 100 to 100 x 6/3.1 = 193.5.

EXERCISE 20.2-3
Resolving Power of an Acousto-Optic Filter

Let 65 = sin™'(\/2A) be the Bragg angle at wavelength X. Consider the consequences
of fixing the angle ¢ at the value 5 and altering the wavelength \. The Bragg angle
is then altered and since 6 is no longer the Bragg angle, the reflection efficiency
decreases. Considering small angles, it is evident from Fig. 20.1-3 that when 6 differs
from 05 by /2L, where L is the length of the cell, the reflection efficiency diminishes
to zero. This occurs when A\/2A — \/2A ~ A\/2L. Defining A\ = X\ — X as the minimum
resolvable wavelength difference, we thus have A)N/2A =~ \/2L, sothat AN/A~ A/L =
(1/f)(vs/L) = 1/fT, where T is the transit time. It follows that the spectral resolving
power of the acousto-optic filter is given by \/AX = fT.

I
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20.3 ACOUSTO-OPTICS OF ANISOTROPIC MEDIA

EXERCISE 20.3-1
Transverse Acoustic Wave in a Cubic Crystal
As indicated in Example 20.3-2, all strain components of the transverse acoustic

wave vanish except s;3 = s3; = Sy cos(2t — ¢z). In accordance with Table 21.2-1 for
contracted indices, this component is denoted ss.

The photoelasticity matrix for the cubic crystal is provided in (20.3-4) so that the
components of the impermeability tensor n are given by

N1 p11P12p12 0 0 0 0
N22 p12P11p12 0 0 0O 0
A Mss | _ p12P12p11 0 0 0O 0
M32 0 0 Opss O O 0
N31 000 OpuaO S5
N2 00 0 0 O0py 0

The sole nonzero component is therefore Ans; = Aniz = passs.

Moreover, since the crystal is cubic, n1; = N2s =133 = 1/n.

The index ellipsoid, given by ZU iz =1, 4, § = 1,2,3, may therefore be written in
the form

(22 + 22 + 22) /n® + 2puassa1a3 = 0, OF
22 /0% + [(22 + 22) /n? + 2paassria3]) = 0.

The transformation u; = (x; — x3)/v/2; us = (z1 + x3)/v2; us = x, yields the ellipsoid
u2/n? +u/nk +ui/n3 =1, with
1/n? =1/n* + pass

Mg =N

1/n% =1/n® — passs. 3

—_
N —
= — —

For p4sss < 1, Taylor-series expansions of (1) and (3) provide the desired results.
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CHAPTER

21

ELECTRO-OPTICS

21.1  PRINCIPLES OF ELECTRO-OPTICS

EXERCISE 21.1-1

Coupling-Efficiency Spectral Response

According to (21.1-22), the switching voltage at wavelength X, is Vi, = v/3 €\ d/an’r.
The coupling efficiency at V' = 1} for light at wavelength )\, is 0. However, at a different
wavelength, say ), the coupling efficiency is given by (21.1-23):

T = (w/2)?sinc® { 1[1 + 3(V/V51)?]/?}, where Vi1 = V3 €\ d/mn’r is the appropriate
switching voltage at the wavelength \,. Fixing the applied voltage at V' = V4 and
substituting (Vo/Vo1) = (Ao/Ao) leads to T = (m/2)%sinc® { 1[1 + 3(Xo/A0)?]/?}.

The distance between )\, and ), is conveniently framed in terms of the relative deviation
u = (Ao—Ao)/ Ao, SO that \g/A\g = 1/(1+u). Expressing the coupling efficiency in terms
of u provides T = (m/2)%sinc® {£[1 + 3/(1 + u)*]*/2}, which is plotted below. For u = 0
the coupling efficiency is 0, as expected. As |u| increases, representing increasing
wavelength deviation, T increases so that light is coupled by the device. At v = 0.1,
for example, we obtain T = 0.0127, indicating that a 10% relative wavelength deviation
away from ), results in a 1.27% coupling efficiency.

02

21.2 ELECTRO-OPTICS OF ANISOTROPIC MEDIA

EXERCISE 21.2-1

Intensity Modulation Using the Kerr Effect

When an electric field E is applied to an isotropic material exhibiting the Kerr electro-
optic effect, the material becomes uniaxial with the optic axis along the direction of the
electric field, and with refractive indices given by (21.2-23) and (21.2-24), respectively:
no(E) = n — in’s;.E* and n.(E) = n — $n’s;1 E%. For a longitudinal electro-optic
modulator, the light propagates along the direction of the electric field so the refractive
index is n,(F). For a cell of length d with an applied voltage V', we have E = V/d.

Phase Shift: ) )

2 2 . 14 \%4
o= (50 rtmia= (55 ) na= (5 ) ion () == (57
where o = (27/X,)nd and V; = (\,d/n?s15)"/2.

Phase Retardation: Since the light is traveling along the optic axis there is no phase
retardation (V, = o).
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NONLINEAR OPTICS

22.1 NONLINEAR OPTICAL MEDIA

EXERCISE 22.1-1
Intensity of Light Required to Elicit Nonlinear Effects

a) The ratio of the second to first terms in (22.1-2) is 2d€/e,x, which is chosen to
be 0.01 and therefore requires & = ¢,x/200d = e€,(n? — 1)/200d. Substituting
€ = 885 x 1072 F/m, along with n = 1.5 and d = 6.8 x 10724 C/V? for

ADP (NH4H,PO,), we obtain &€ = 8.13 x 10° V/m. This corresponds to an

intensity I = &2/, where n = n,/n and n, = \/1./€, = 377Q. This in turn gives

I =263 x 10" W/m? = 2.63 x 10'* W/cm?, which is very large.

b) The ratio of the third term to the first in (22.1-2), 4x(®) €2 /e,, is also taken to be
0.01, which requires &2 = ¢,x/400x® = ¢,(n? —1)/400x®). Substituting ¢, = 8.85 x
10~'2 F/m, along with n = 1.6 and x® = 4.4 x 1032 Cm/V? for CS,, leads to
& = 8.86 x 10® V/m. The corresponding intensity is I = £2/n = n€?/n, = 3.33 x
10 W/m? = 3.33 x 10 W/cm?.

22.2 SECOND-ORDER NONLINEAR OPTICS

EXERCISE 22.2-1
Non-Collinear Type-Ill Second-Harmonic Generation (SHG)

From (22.2-26) we have
ny(w)sinf; = n(f + 6, w) sin Oy (1)
No(w) cos Oy + n(0 + b2,w) cos By = 2n(0, 2w). (2

) .
Therefore We\: E 9 2w
2 (w) sin? 0 = n?(0 + 65, w) sin? 6 3) . T ‘
ng,(w) sin® 0 ( 2, W) 2 ( i W/@O/ 91"."?3‘7'

n2(w) cos® O = [2n(0,2w) — n(0 + 02, w) cos o). (4

Adding (3) and (4), we obtain

n2(w) = n2(0 + 0y, w) + 4n* (6, 2w) — 4n(6, 2w) n(H + 03, w) cos By

so that . .
n2(w) = cos?(0 + 6,) N sin?(0 + 6,) 44 cos? 0 N sin? @
" “ AT
cos?0  sin?0]"* [cos? (0+65)  sin®(0 + 6s) e
—4 — . 5
s |8 ] [P e ®)
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Fora KDP crystal, A; = 1.06 pm and X, = X, /2, and we have n,, = 1.494, n., = 1.4599,
Ny = 1.5123, ne, = 1.4707.

The procedure for solving (5) is as follows:

a) Substitute n,, , oy, Ney ; N, INtO (5).

b) Substitute 6 from 0 — 90°.

c) Use a Matlab program to solve for the value of 6, that satisfies (5).
d) Use (1) to compute 6,

A plot of the resultant values of 6, and 6
versus the angle between the optic axis # and
the direction of the SH wave is shown in the -
figure.

0y, 6, (deg)

22.3 THIRD-ORDER NONLINEAR OPTICS

I
EXERCISE 22.3-1
Third-Order Nonlinear Optical Media Exhibit the Kerr Electro-Optic Effect

Par = XD E3 = 4B [E(0) + L E(w)e?™! + L E(w)*e w3,

Carrying out the expansion shows that the term proportional to ¢/~* has amplitude
1 Py (w), where Pyp,(w) = 4x®[3E?(0)E(w) + 3|E(w)[*E(w)].

If |E(w)| < E(0), the second term above is negligible and Py, (w) =~ 12x® E?(0)E(w),
which can be cast in the form ¢, Ax E(w) with Ay ~ 12x®) E2(0)/e,.

Since x = n? — 1, we have Ay = 2nAn and An = Ax/2n. Thus, An =~ 6x® E2(0)/e,n,
which is equivalent to a refractive-index change associated with the Kerr electro-optic
effect given by An = —1sn? E2(0), provided that s = —12x® /¢, n*.

EXERCISE 22.3-2
Optical Kerr Lens

The intensity I ~ Iy[1 — (22 + y?)/W?] induces a nonlinear refractive index n(I) =
n+nal = n+ nalo[l — (22 + y?)/W?] in a thin sheet of material that exhibits the
optical Kerr effect. The result is a medium whose complex amplitude transmittance
is given by exp[—jk, dn(I)] = exp[—jk.d (n + nalp)] - explikodno In(z? + y?)/W?] =
ho exp[jko(z? + y*)/2f], where ho = exp|[—jk,d (n + naly)] and 1/2f = nalod/W?2.
Hence, f = W?/2n,1,d, revealing that the medium acts as a lens whose focal length
f is inversely proportional to I,.
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EXERCISE 22.3-3
Optical Kerr Effect in the Presence of Three Waves

Py = 4X(3)83
= 5XVIB(wn) exp(jwit) + E*(w1) exp(—jwnt)
+E(wsy) exp(jwat) + E* (wa) exp(—jwat)
+E(ws) exp(jwst) + E* (ws) exp(—jwst)]>.

The term that varies as exp(jw:t) has an amplitude %PNL(wl) where
Pup(wr) = x® [3|E(w1)|? E(w1) + 6|E(ws)|* E(w1) + 6| E(ws)]* E(w:)]-

Substituting I, = |E(w)[?/2n, I, = |E(w2)|?/2n, and I3 = |E(w3)|?/2n, we obtain
Pup(w1) = 20x®[31, + 615 4 615 ] E(w;) = 2¢,n An E(w, ), where
An =nyl, ng = 3nx® Je,n = 3nox® Jeon?, and I =T, + 21, + 21I5.

The wave travels with a velocity ¢,/(n+ An) = ¢,/(n+n2I) controlled by the intensities
of the three waves.

22.4 SECOND-ORDER NONLINEAR OPTICS: COUPLED WAVES

EXERCISE 22.4-1
SHG as Degenerate Three-Wave Mixing

As in the non-degenerate 3-wave mixing case, we make use of (22.4-1), (22.4-2),
and (22.4-3), but here we have only two waves at frequencies w; = w and w; = 2w.
Substituting E = 1 {E exp(jwt) + Ef exp(—jwt) + E3 exp(j2wt) + B3 exp(—j2wt)}
into (22.4-3), we obtain

Pai = £ {Prexp(jwt) + Pf exp(—jwt) + Ps exp(j2wt) + P exp(—j2wt)}, where

P, =2dEsE7 and P; = dE; E,. Substituting this in turn into (22.4-2) then leads to
Sxi = 1 {S1 exp(jwt) + S exp(—jwt) + S exp(j2wt) + S exp(—j2wt)}, where

S1 = pew? Py = 2u,w?dE3E; and Sz = p,(2w)? Py = p,widEy By, from which (22.4-16)
follow.

EXERCISE 22.4-2

Photon-Number Conservation: The Manley—Rowe Relations
These results follow directly from (2a), (2b), and (2c) in the solution to Exercise 22.4-3.

EXERCISE 22.4-3
Energy Conservation

Multiply (22.4-20a) by a}:

ajda;/dz = —jgaiasaz exp(—jAkz). (1)
Add (1) to its conjugate and note that aida,/dz + a;da}/dz = (d/dz)|a;|?, to obtain:
(d/dz)|ai|* = —jgatasas exp(—jAkz)+ c.c. (2a)
Similarly,
(d/dz)|as|?* = —jgatasas exp(—jAkz)+ c.c. (2b)
(d/dz)|as|* = —jga;asa}exp(jAkz)+ c.c.

= jgajabasexp(—jAkz)+ c.c. (2¢)

Now multiply (2a) by Aw;, (2b) by Aiws, and (2c) by Aws; and add the three equations:
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(d/dz)[hw1|a1 ‘2 + hw2|a2\2 + ﬁw3|a3\2] = 7]9}72(0}1 —+ wsq 7&)3)(191‘(1;(13 GXp(fjAkZ)+ C.C.

(©)
Because w; = w; + wo, the right-hand side of (3) vanishes and we obtain:
(d/dz)[hw1|a1\2 + ﬁu)z‘(12|2 + hw3|(13|2] = (d/dZ)([l + 12 + ]3) =0. (4)

EXERCISE 22.4-4
Coupled-Wave Equations for SHG
Write E;, and Fs as E; = (2nfw)'/?a; exp (—jk12) and Es = (2nh2w)/?as exp (—jksz),

respectively, and insert these formulas into (22.4-16a). Use of the slowly varying
envelope approximation in (22.4-19) on the resulting equation then leads to

(2nhw)/?(=j2ky)(day /dz) exp (—jkyz) =
— 2u,w?d(2nhw) /2 (4nhw) /2 as exp (—jks2z)a} exp (k1 2),

whence (da,/dz) = (pow?d/jk;)(dnhiw) /2 aza} exp (—jAkz) = —jgazat exp (—jAkz),
where Ak = k3 — 2k, and g = (uow?d/ky)(dnfw)'/?, or g% = (p,cwd)?(dnhw) =
(nwd)?(4nhw) = 4hwn3a2.

Equation (22.4-27b) can be similarly obtained.

EXERCISE 22.4-5
Infrared Up-Conversion

Parameters: d = 1.5 x 1022 C/V*; n = 2.6; \; = 10.6 x 1075 m; )y = 1.06 x 10~¢ m;
P,=1W;A=10°m?,L=10"2m.

Wavelengths: Since w3 = wy +ws, we have 1/A3 = 1/ 4+1/Xy 0r A3 = A Aa/(A1+ A2).
Hence, A5 = 0.9636 x 10~® m = 963.6 nm.

Up-conversion efficiency: As provided in (22.4-43), the up-conversion efficiency is
expressed as nopc = 25 w?(d?/n®)(L?/A)P,. Substituting n, = 377 Q; ws = 27c, /A3 =
1.96 x 10 rad/s; d?/n® = 1.3 x 10745 C%*/V4; L?/A = 10%; and ¢, = 3 x 10® m/s, leads
t0 Norc ~ 5.4 x 1073 = 0.54%.

EXERCISE 22.4-6

Gain of an OPA
Parameters: \; = 2.5 ym; A3 =1.064 um; L=2cm; G =3dB;
For KTP: n=1.75 and d=2.3x 10723 C/V2.

a) Since wy = ws —wy, we have 1/xs = 1/A3 — 1/A; or Ay = A3A1/(A1 — A3). Thus,
A2 = 1.85 pum.

2 2 3 .
b) From (22.4-47), C = {/ 2w ws ngd—3 — 21¢,d ("—) —9.0x107° W2,
n >\1)\2 n

¢) A gain of 3 dB signifies that G = cosh?(yL/2) = 2 so that /2 = cosh(yL/2) and
yL/2 = cosh™' v/2 = In(1 + v/2). Thus,

v =(2/L) In(1+v?2)=88m™'. Also, from (22.4-47) we have

v =2C+/Ps/A, so that
Ps
A

d) If the laser power is 2.39 W, then the beam cross-sectional area is A = 10 um?.

7 )2 11 2
- <%) —2.39 x 10" W/m?.
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22.5 THIRD-ORDER NONLINEAR OPTICS: COUPLED WAVES

EXERCISE 22.5-1
THG in the Undepleted-Pump Approximation

We begin with the Helmholtz equations (22.5-4) at the fundamental and third-harmonic
frequencies,

(V2 + k,f)Eq =-S5, q=1,3,
where (22.5-23) provides

Si = pewix® [3E;E;* + 3B, (|Ev|? + 2| E3]?)]
Sy = powix¥ [Ef + 3E; (|Bs|* + 2|E1)?)] -
Using the relations £, = A, exp(—jk,z), ¢ = 1,3, and the slowly varying envelope

approximation (22.4-19), (V2 + k2)[A, exp(—jky2)] ~ —j2kq(dAg/dz) exp(—jkq=), the
Helmholtz equations become

dA , ‘ ) _
T; — —j%nwlx(d) [A3A12 exp(jAk z) + Ay (|A1\2 + 2\A3|2)]
dA . ; .

Where Ak = 3]61 - k/'g.

Under the undepleted pump approximation (|43;| < |A;|), the amplitude of the funda-
mental wave A, is assumed to be approximately constant (i.e., it does not vary with z),
so the only equation of interest is

dA . : .

TZS = —jinwsx® [A} exp(—jAk 2) + 345 (|As[* + 2|4, 7)] .
The first term on the right-hand side of this equation represents third-harmonic
generation while the second term represents the optical Kerr effect.

This equation may simplified since |A3| < |A;]. The term | A3|? in the sum |A3|?> 42| 4|2
may therefore be neglected. The term 6A43|A4;|?, which is much smaller than A%, may
also be neglected. In any case, since A, is constant, the term 6A43|A,|* represents
a constant change of the refractive index due to the optical Kerr effect, and may be
ignored in the context of third-harmonic generation.

Thus, the final outcome is

dA . . .
o~ iy @ Af exp(—jAk ).

With the substitution A, = \/2nfw, a,, this result may be written as

da . ) .
d—;:—jga‘fexp(—]Akz) with g = hiy/wws n?x®.
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22.7 DISPERSIVE NONLINEAR MEDIA

. _________________________________________________________________________________________________________________|
EXERCISE 22.7-1
Polarization Density for an Anharmonic-Oscillator Medium

In accordance with Newton’s law, ¥ = ma, we have
e€ — (kx + koz?) — mldz/dt = md>z/dt>.

Dividing by m, reordering terms, and substituting x/m = wZ,
we obtain d?z/dt? + (dz/dt + wi x + (k2/m) z? = (e/m) €. (1)

For a medium containing N atoms per unit volume, the polarization density is ? = Nezx.
Substituting z = P/Ne into (1), we obtain

d?P/dt* + CdP/dt + W2 P + (k2 /m) P?/Ne = (Ne? /m) €. (2)
Defining two parameters, xo and b, such that

wieoxo = Ne? /m ®)
and

wieoxob = Ka/mNe, 4)

respectively, leads to (22.7-8).

Equation (3) provides that xo = Ne?/mwiey, While (4) gives b = ka/(mNewieoxo)-
Finally, inserting (3) into (4) yields b = x,/e*N°, as promised.

EXERCISE 22.7-2
Miller’s Rule

Consider the superposed waves £ = Re { E(w; ) exp(jwit) + E(ws) exp(jwat)}.
The first iteration (ignoring the nonlinear effect) gives a polarization density
P = Re {P(w) exp(jwit) + P(ws) exp(jwat)}, where

Py (w1) = eox(wi) E(wr) (1a)
Pr(w2) = eox(we) E(w2) (1b)

In the second iteration, we have a driving force ¥ = &€ — bP?, i.e.,
F =Re{E(w;1)exp(jwit) + E(ws) exp(jwat)}
— b[Re { Py (w:) exp(jwit) + Py (ws) exp(jwst) .

This force has many components, including a component Re { F'(ws3) exp(jws)} of fre-
quency ws = w; + we and complex amplitude F(ws) = —(b/2)P;(w1)Pi(ws2). This
force creates a polarization density at frequency ws with complex amplitude P, (w3) =
eoX(w3)F(ws) = €ox(w3)(—b/2) Py (w1)P1(w2). Substitution from (1) yields

Py(ws) = €3(—b/2)x(w1)x(w2)x(w3), from which (22.7-14) follows.
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ULTRAFAST OPTICS

23.3 PULSE PROPAGATION IN OPTICAL FIBERS

EXERCISE 23.3-1
Dispersion Compensation in Optical Fibers

a) The dispersion length zy = #7Z/D,, where D, = —(A\2/c,)D,, so that z, =
nTéc,/A2Dy. For the first fiber segment we have:
Dy = 20 ps/km-nm = 2 x 107 s/m?,
To = 10 ps = 10! s, and
Ao = 1.55 ym = 1.55 x 1075 m,
so that zg = 1.96 km.
At a distance d; = 100 km, the chirp parameter and the pulse width are, respec-
tively,
a=di/z =51

T1 = To\/ 1+ (dl/Z())2 ~ 510 ps.

b) The dispersion compensation condition is d,D, + d;D), = 0 so that d; =
—d D, /Dj. If the dispersion coefficient of the second fiber segment is D} = —100
ps/km-nm, we have ds = 100 km - (20/100) = 20 km.

EXERCISE 23.3-2
Dispersion Compensation by Use of a Periodic Sequence of Phase Modulators
The effect of GVD on pulse propagation over the distance d between its minimum

width (where it is unchirped) and its maximum width is described by the following
equations (see Table 23.3-1):

Pulse width: T=7V1+a? (1)
Chirp parameter: a=2z/z (2)
Dispersion length: >, = n72/D,, . (3)

The quadratic phase modulator does not alter the pulse width, but it changes the chirp
parameter. A change by a factor of —2a is obtained if

—2a = (72. (4)

This change guarantees that the pulse is modified periodically, as shown in Fig. 23.3-7.
Substituting (1), (2), and (3) into (4) leads to (23.3-23).

L]
64
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CHAPTER

24

OPTICAL INTERCONNECTS AND
SWITCHES

24.1 OPTICAL INTERCONNECTS

EXERCISE 24.1-1
Interconnection Capacity

Assume that the hologram is divided into L sub-holograms, each of which contains M
spatial harmonic functions (M'/2 in the z direction and M'/? in the y direction). The
incident ray on each sub-hologram is directed into M simultaneous directions, so that
each of L points is connected to M points. If a x a is the area of the hologram, then a2 /L
is the area of the sub-hologram. A width a/L'/? corresponds to a spatial frequency
uncertainty Av = L'/?/a (or angular uncertainty AL'/?/a). The M harmonic functions
on a sub-hologram must be separated from one another by a spatial frequency equal
to the uncertainty (L'/2/a) in each direction, so that the spatial bandwidth B in one
direction must be at least M'/2L'/2 /a. It follows that B > M'/2L'/2/a or (Ba)? > ML.

If B = 1000 lines/mm and a = 1 mm, then (Ba)? = 1000. If every point at the input
plane is connected to every point at the output plane, i.e., if L = M, then M? < (Ba)?

or M < ./(Ba)? = 31.6. Thus, at most, each of 31 points at the input are connected to

each of 31 points at the output.

EXERCISE 24.1-2
The Logarithmic Map
The local spatial frequencies are
v, = (1/2m)0¢p/0x = (1/Ad)(Inz +1 -1 —2z) = (1/Ad)(Inz — z),
vy = (1/2m)0¢/0y = (1/Ad)(Iny — y).

The angles of deflection are therefore
0, =, = (1/d)(Inz — ), 0, =y, = (1/d)(Iny —y).

Rays originating at location (z,y) at the hologram thus reach the location (2/,y') in
a plane a distance d away via 2’ = =z + 0,d = Inz, ¢ =y + 6,d = Iny, thereby

indicating that the transformation 2’ = Inz and ¢ = Iny is implemented.

The phase function ¢(x,y) specified in (24.1-9) is obtained by recognizing that

JIn(z) dz = zln(z) — =.
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24.4 PHOTONIC LOGIC GATES

EXERCISE 24.4-1

Nonlinear Transmittance Functions that Exhibit Bistability

a) T(x) =1/[(x-1)2+a?], a=0.1.
100
. A
0
0 2
x

b) T(x) = 1/[1 + a®sin2(x+0)], a=5, 0 =7/4 .

1

T(x)

g

0

0

w

T

¢) T(x) = (1/2)[1 + cos(z+60)], 6 =37/4.
1

T(x)

5

0
0

N

=
d) T(x) = sinc?[(a®+22)12], a=2.
0.02

T(x)

0

=

0

e) T(x) = (x+1)2[(x+a)?, a=-5.
4

T(x)

(=]
w

<

1,71
S
1,/Td,) 40
C_
0 =1,/T(,) 30
k
0 —1tay 1000
>
0 5

1,[T(,)




