
APPROXIMATION THEORY

AND APPROXIMATION PRACTICE

Nick Trefethen, University of Oxford, June 2011

Contents

1. Introduction, 2
2. Chebyshev points and interpolants, 6
3. Chebyshev polynomials and series, 11
4. Interpolants, truncations, and aliasing, 22
5. Barycentric interpolation formula, 29
6. Weierstrass Approximation Theorem, 37
7. Convergence for differentiable functions, 41
8. Convergence for analytic functions, 48
9. Gibbs phenomenon, 55
10. Best approximation, 65
11. Hermite integral formula, 71
12. Potential theory and approximation, 79
13. Equispaced points, Runge phenomenon, 84
14. Discussion of high-order polynomial interpolation, 93
15. Lebesgue constants, 97
16. Best and near-best, 108
17. Legendre and other orthogonal polynomials, 114
18. Polynomial roots and colleague matrices, 122
19. Clenshaw–Curtis and Gauss quadrature, 132
20. Carathéodory–Fejér approximation, 144
21. Spectral methods, 153
22. Linear approximations: beyond polynomials, 165
23. Nonlinear approximations: why rational functions?, 178
24. Rational best approximation, 188
25. Two famous problems, 197
26. Rational interpolation and least-squares, 210
27. Padé approximation, 224
28. Extrapolation of sequences and analytic continuation, 224
References, 224

1

1. Introduction

Welcome to a beautiful subject! — the constructive approximation of functions.
And welcome to a rather unusual book.

Approximation theory is an established field, and our aim is to teach you some
of its most important ideas and results. The style of this book, however, is
quite different from what you will find elsewhere. Everything is illustrated com-
putationally with the help of the Chebfun software package in Matlab, from
Chebyshev interpolants to Lebesgue constants, from the Weierstrass Approxi-
mation Theorem to the Remez algorithm. Everything is practical and fast, so
we will routinely compute polynomial interpolants or Gauss quadrature weights
for tens of thousands of points. In fact, each chapter of this book is a single
Matlab M-file, and the book has been produced by executing these files with
Matlab’s “publish” facility. The chapters come from M-files called chap1.m,
chap2.m, . . . , and you can download them and use them as templates to be
modified for explorations of your own.

Beginners are welcome, and so are experts, who will find familiar topics ap-
proached from new angles and familiar conclusions turned on their heads. In-
deed, the field of approximation theory came of age in an era of polynomials
of degrees perhaps O(10). Now that O(1000) is easy and O(1,000,000) is not
hard, different questions come to the fore. For example, we shall see that “best”
approximants are hardly better than “near-best”, though they are much harder
to compute.

This is a book about approximation, not about Chebfun, and for the most part
we shall use Chebfun tools with minimal explanation. For information about
Chebfun, see www.maths.ox.ac.uk/chebfun. In the course of the book we shall
use Chebfun overloads of the following Matlab functions, among others:

CONV, CUMSUM, DIFF, INTERP1, NORM, POLY, POLYFIT, ROOTS, SPLINE

as well as additional Chebfun commands such as

CF, CHEBELLIPSEPLOT, CHEBPADE, CHEBPOLY, CHEBPOLYPLOT,

CHEBPOLYVAL, CHEBPTS, LEBESGUE, LEGPOLY, LEGPTS, RATINTERP,

REMEZ.

There are quite a number of excellent books on approximation theory. Three
classics are [Cheney 1966], [Davis 1963], and [Meinardus 1967], and a more
recent computationally oriented classic is [Powell 1981]. The first approximation
theory text was perhaps [Borel 1905].

A good deal of our emphasis will be on ideas related to Chebyshev points and
polynomials, whose roots go back a century or more to mathematicians including
Chebyshev (1821–1894), de la Vallée Poussin (1866–1962), Bernstein (1880–
1968), and Dunham Jackson (1888–1946). In the computer era, some of the early

2

figures who developed “Chebyshev technology,” in approximately chronological
order, were Lanczos, Clenshaw, Specht, Good, Babenko, Fox, Elliott, Mason,
Lebedev, and Orszag. Three books on Chebyshev polynomials are by Fox and
Parker [1968], Rivlin [1990], and Mason and Handscomb [2003]. One reason we
emphasize Chebyshev technology so much is that in practice, for working with
functions on intervals, these methods are unbeatable. For example, we shall see
in Chapter 16 that the difference in approximation power between Chebyshev
and “optimal” interpolation points is utterly negligible. Another reason is that
if you know the Chebyshev material well, this is the best possible foundation
for work on other approximation topics.

Our style is conversational, but that doesn’t mean the material is all elementary.
The book aims to be more readable than most, and the numerical experiments
help achieve this. At the same time, theorems are stated and proofs are given,
often rather tersely, without all the details spelled out. It is assumed that the
reader is comfortable with rigorous mathematical arguments and familiar with
ideas like continuous functions on compact sets, Lipschitz continuity, contour
integrals in the complex plane, and norms of operators. If you are a student, I
hope you are an advanced undergraduate or graduate who has taken courses in
numerical analysis and complex analysis. If you are a seasoned mathematician,
I hope you are also a Matlab user!

Each chapter has a collection of exercises, which span a wide range from math-
ematical theory to Chebfun-based numerical experimentation. Do not skip the
numerical exercises! If you are going to do that, you might as well put this book
aside and read one of the classics from the 1960s.

The book was produced using publish in LATEX mode: thus this chapter, for
example, can be generated with the command publish(’chap1’,’latex’). To
achieve the desired layout we begin by setting a few default parameters:

set(0,’defaultfigureposition’,[380 320 540 200],...

’defaultaxeslinewidth’,0.9,’defaultaxesfontsize’,8,...

’defaultlinelinewidth’,1.1,’defaultpatchlinewidth’,1.1,...

’defaultlinemarkersize’,15), format compact, format long

FS=’fontsize’; MS=’markersize’; LW=’linewidth’; CO=’color’;

chebfunpref(’factory’); x = chebfun(’x’);

To make the chapters independently executable, it is necessary to include these
statements at the beginning of each. This would lead to a clutter of text, so
instead, at the beginning of each chapter we execute the command

ATAPformats

which calls an M-file containing the code above that is included in the standard
distribution of Chebfun. For the actual production of the printed book, publish
was executed not chapter-by-chapter but on a big file concatenating all the

3

chapters, and a few tweaks were made to the resulting LATEX file, including the
elimination of the ATAPformats calls so that they do not appear in this printed
book.

The Lagrange interpolation formula was discovered by Waring, the Gibbs phe-
nomenon was discovered by Wilbraham, and the Hermite integral formula is
due to Cauchy. These are just some of the instances of Stigler’s Law in ap-
proximation theory, and I have taken special pains in this book to try to cite
the originator of each of the main ideas. Thus the entries in the references
section stretch back several centuries, and each has an editorial comment at-
tached. Often the original papers are surprisingly readable and insightful, at
least if you are comfortable with French or German, and in any case, it seems
particularly important to pay heed to original sources in a book like this that
aims to reexamine material that has grown too standardized in the textbooks.
Another reason for looking at original sources is that in the last few years it has
become far easier to track them down, thanks to the digitization of journals,
though there are always difficult special cases like [Wilbraham 1848], which I
finally found in an elegant leather-bound volume in the Balliol College library.
No doubt I have missed originators of certain ideas, and I would be glad to be
corrected on such points by readers.

Perhaps I may add a further personal comment. As an undergraduate and
graduate student in the late 1970s and early 1980s, one of my main interests
was approximation theory. I regarded this subject as the foundation of my wider
field of numerical analysis, but as the years passed, research in approximation
theory came to seem dry and academic, and I moved into other areas. Now
times have changed, computers have changed, and my perceptions have changed.
I now again regard approximation theory as exceedingly close to computing,
and in this book we shall discuss many practical numerical problems including
interpolation, quadrature, rootfinding, analytic continuation, extrapolation of
sequences and series, and the solution of differential equations.

Why is approximation theory useful? The answer goes much further than the
rather tired old fact that your computer relies on approximations to evaluate
functions like sin(x) and exp(x). For my personal answer to the question, take a
look at the last three pages of Chapter 23, beginning with the quotes of Runge
and Kirchberger from the beginning of the 20th century.

In summary, here are some distinctive features of this book:

• The emphasis is on topics close to numerical algorithms.

• Everything is illustrated numerically with Chebfun.

• Each chapter is a publishable M-file, available online.

• There is a bias toward theorems and methods for analytic functions, which
appear so often in applications, rather than on functions at the edge of

4

discontinuity with their seductive theoretical challenges.

• Original sources are cited wherever possible, and each item in the bibliog-
raphy is listed with an editorial comment.

At the more detailed level, virtually every chapter contains mathematical and
scholarly novelties. Examples are the use of barycentric formulas in Chapter
5 and elsewhere, the tracing of barycentric formulas and the Hermite integral
formula back to Jacobi in 1825 and Cauchy in 1826, Theorem 7.1 on the size
of Chebyshev coefficients, the introduction to potential theory in Chapter 12,
the discussion in Chapter 14 of prevailing misconceptions about interpolation,
the presentation of colleague matrices for rootfinding in Chapter 18 with Jacobi
matrices for quadrature as a special case in Chapter 19, Theorem 19.5 show-
ing that Clenshaw–Curtis quadrature often converges about as fast as Gauss
quadrature, the first textbook presentation of Carathódory–Fejér approxima-
tion in Chapter 20, the explanation in Chapter 22 of why polynomials are not
optimal functions for linear approximation, the extensive discussion in Chap-
ter 23 of the uses of rational approximations, and the SVD-based derivation of
robust rational interpolation and Padé approximation in Chapters 26 and 27.

All in all, we shall see that there is scarcely an idea in classical approximation
theory that cannot be illustrated compellingly in a few lines of Chebfun code,
and as I first imagined around 1975, anyone who wants to be expert at numerical
computation really does need to know this material.

Exercise 1.1. Chebfun download. Download Chebfun from www.maths.ox.ac.uk/

chebfun and install it in your Matlab path as instructed at the web site. Execute the
command chebtest to make sure things are working, and note the time taken. Execute
chebtest again and see how much speedup there is now that various files have been
brought into memory. Now read Chapter 1 of the Chebfun Guide.

Exercise 1.2. The publish command. Execute help publish and doc publish

in Matlab to learn the basics of how the publish command works. Then download the
files chap1.m and chap2.m from www.maths.ox.ac.uk/chebfun/ATAP and publish them
with publish(’chap1’,’latex’) followed by appropriate LATEX commands. (You
will probably find that chap1.tex and chap2.tex appear in a subdirectory on your
computer labeled html.) If you are a student taking a course for which you are expected
to turn in writeups of the exercises, I recommend that you make it your habit to
produce them with publish.

Exercise 1.3. Textbook X. Buy or borrow a copy of an approximation theory
textbook, which we shall call X ; good examples are the books of Achieser, Cheney,
Davis, Lorentz, Natanson, Meinardus, Powell, Rice, Rivlin, and Timan listed in the
References. As you work through Approximation Theory and Approximation Practice,
keep X at your side and get in the habit of comparing treatments of each topic between
ATAP and X . (a) What are the author, title, and publication date of X ? (b) Where
did/does the author work and what were/are his/her dates? (c) Look at the first three
theorems in X and write down one of them that interests you. You do not have to
write down the proof.

5

2. Chebyshev points and interpolants

Any interval [a, b] can be scaled to [−1, 1], so most of the time, we shall just
talk about [−1, 1].

Let n be a positive integer:

n = 16;

Consider n+ 1 equally spaced angles {θj} from 0 to π:

tt = linspace(0,pi,n+1);

We can think of these as the arguments of n+1 points {zj} on the upper half of
the unit circle in the complex plane. These are the (2n)th roots of unity lying
in the closed upper half-plane:

zz = exp(1i*tt);

hold off, plot(zz,’.-k’), axis equal, ylim([0 1.1])

title(’Equispaced points on the unit circle’)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Equispaced points on the unit circle

The Chebyshev points associated with the parameter n are the real parts of
these points,

xj = Re zj =
1

2
(zj + z−1

j), 0 ≤ j ≤ n : (2.1)

xx = real(zz);

Some authors use the terms Chebyshev–Lobatto points, Chebyshev ex-
treme points, or Chebyshev points of the second kind, but as these are
the points most often used in practical computation, we shall just say Chebyshev
points.

Another way to define the Chebyshev points is in terms of the original angles:

xj = cos(jπ/n), 0 ≤ j ≤ n, (2.2)

6

xx = cos(tt);

There is also an equivalent Chebfun command chebpts:

xx = chebpts(n+1);

Actually this result isn’t exactly equivalent, as the ordering is left-to-right rather
than right-to-left. Concerning rounding errors when these numbers are calcu-
lated numerically, see Exercise 2.3.

Let us add the Chebyshev points to the plot:

hold on

for j = 2:n

plot([xx(n+2-j) zz(j)],’k’,LW,0.7)

end

plot(xx,0*xx,’.r’), title(’Chebyshev points’)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Chebyshev points

They cluster near 1 and −1, with the average spacing as n → ∞ being given by
a density function with square root singularities at both ends (Exercise 2.2).

Let {fj}, 0 ≤ j ≤ n, be a set of numbers, which may or may not come from
sampling a function f(x) at the Chebyshev points. Then there exists a unique
polynomial p of degree n that interpolates these data, i.e., p(xj) = fj for each
j. When we say “of degree n,” we mean of degree less than or equal to n, and
we let Pn denote the set of all such polynomials:

Pn = {polynomials of degree at most n}. (2.3)

As we trust the reader already knows, the existence and uniqueness of polyno-
mial interpolants applies for any distinct set of interpolation points. In the case
of Chebyshev points, we call the polynomial the Chebyshev interpolant.

Polynomial interpolants through equally spaced points have terrible properties,
as we shall see in Chapters 11–15. Polynomial interpolants through Chebyshev

7

points, however, are excellent. It is the clustering near the ends of the interval
that makes the difference, and other sets of points with similar clustering, like
Legendre points (Chapter 17), have similarly good behavior. The explanation
of this fact has a lot to do with potential theory, a subject we shall introduce in
Chapter 12. Specifically, what makes Chebyshev or Legendre points effective is
that each one has approximately the same distance from the others, on average
as measured in the sense of the geometric mean. On the interval [−1, 1], this
distance is about 1/2 (Exercise 2.6).

Chebfun is built on Chebyshev interpolants. For example, here is a certain step
function:

x = chebfun(’x’);

f = sign(x) - x/2;

hold off, plot(f,’k’), ylim([-1.3 1.3])

title(’A step function’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

A step function

By calling chebfun with a second explicit argument of 6, we can construct the
Chebyshev interpolant to f through 6 points, that is, of degree 5:

p = chebfun(f,6);

hold on, plot(p,’.-’), ylim([-1.3 1.3])

title(’Degree 5 Chebyshev interpolant’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Degree 5 Chebyshev interpolant

8

Similarly, here is the Chebyshev interpolant of degree 25:

hold off, plot(f,’k’)

p = chebfun(f,26);

hold on, plot(p,’.-’), ylim([-1.3 1.3])

title(’Degree 25 Chebyshev interpolant’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Degree 25 Chebyshev interpolant

Here are a more complicated function and its Chebyshev interpolant of degree
100:

f = sin(6*x) + sign(sin(x+exp(2*x)));

hold off, plot(f,’k’)

p = chebfun(f,101);

hold on, plot(p), ylim([-2.4 2.4])

title(’Degree 100 Chebyshev interpolant’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

Degree 100 Chebyshev interpolant

Another way to use the chebfun command is by giving it an explicit vector of
data rather than a function to sample, in which case it interprets the vector as
data for a Chebyshev interpolant of the appropriate order. Here for example is
the interpolant of degree 99 through 100 random data values in [−1, 1]:

p = chebfun(2*rand(100,1)-1);

hold off, plot(p,’-’)

9

hold on, plot(p,’.k’)

ylim([-1.7 1.7]), grid on

title(’Chebyshev interpolant through random data’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

Chebyshev interpolant through random data

This experiment illustrates how robust Chebyshev interpolation is. If we had
taken a million points instead of 100, the result would not have been much
different mathematically, though it would have been a mess to plot. We shall
return to this figure in Chapter 15.

For illustrations like these it is interesting to pick data with jumps or wiggles,
and Chapter 9 discusses such interpolants systematically. In applications where
polynomial interpolants are most useful, however, the data will typically be
smooth.

Summary of Chapter 2. Polynomial interpolants in equispaced points

in [−1, 1] have very poor approximation properties, but polynomial inter-

polants in Chebyshev points, which cluster near ±1, are excellent.

Exercise 2.1. Chebyshev interpolants through random data. (a) Repeat the
experiment of interpolation through random data for 10, 100, 1000, and 10000 points.
In each case use minandmax(p) to determine the minimum and maximum values of
the interpolant and measure the computer time required for this computation (e.g.
using tic and toc). You may find it helpful to increase Chebfun’s standard plotting
resolution with a command like plot(p,’numpts’,10000). (b) In addition to the four
plots over [−1, 1], use plot(p,’.-’,’interval’,[0.9999 1]) to produce another plot
of the interpolant through 10000 values in the interval [0.9999, 1]. How many of the
10000 grid points fall in this interval?

Exercise 2.2. Limiting density as n → ∞. (a) Suppose x0, . . . , xn are n + 1
points equally spaced from −1 to 1. If −1 ≤ a < b ≤ 1, what fraction of the n + 1
points fall in the interval [a, b] in the limit n → ∞? Give an exact formula. (b) Give
the analogous formula for the case where x0, . . . , xn are the Chebyshev points. (c) How
does the result of (b) match the number found in [0.9999, 1] in the last exercise for
the case n = 9999? (d) Derive the following formula for the density of the Chebyshev

10

points near x ∈ (−1, 1) in the limit n → ∞: µ(x) = (π
√
1− x2)−1 (see equation

(12.8)).

Exercise 2.3. Rounding errors in computing Chebyshev points. On a com-
puter in floating point arithmetic, the formula (2.2) for the Chebyshev points is not
so good because it lacks the expected symmetries. (a) Write a Matlab program that
finds the smallest even value n ≥ 2 for which, on your computer as computed by this
formula, xn/2 6= 0. (You will probably find that n = 2 is the first such value.) (b)
Find the line in the code chebfun/chebpts.m in which Chebfun computes Chebyshev
points. What alternative formula does it use? Explain why this formula achieves
perfect symmetry for all n in floating point arithmetic. (c) Show that this formula is
mathematically equivalent to (2.2).

Exercise 2.4. Chebyshev points of the first kind. The Chebyshev points of
the first kind, also known as Gauss–Chebyshev points, are obtained by taking the
real parts of points on the unit circle mid-way between those we have considered, i.e.
xj = cos((j+ 1

2
)π/(n+1)) for integers 0 ≤ j ≤ n. Call help chebpts and help legpts

to find out how to generate these points in Chebfun and how to generate Legendre
points for comparison (these are roots of Legendre polynomials — see Chapter 17). For
n + 1 = 100, what is the maximum difference between a Chebyshev point of the first
kind and the corresponding Legendre point? Draw a plot to illustrate as informatively
as you can how close these two sets of points are.

Exercise 2.5. Convergence of Chebyshev interpolants. (a) Use Chebfun to
produce a plot on a log scale of ‖f − pn‖ as a function of n for f(x) = ex on [−1, 1],
where pn is the Chebyshev interpolant in Pn. Take ‖ · ‖ to be the supremum norm,
which can be computed by norm(f-p,inf). How large must n be for accuracy at the
level of machine precision? What happens if n is increased beyond this point? (b)
Same questions for f(x) = 1/(1+25x2). Convergence rates like these will be analyzed
in Chapters 7 and 8.

Exercise 2.6. Geometric mean distance between points. Write a code
meandistance which takes as input a vector of points x0, . . . , xn in [−1, 1] and pro-
duces a plot with xj on the x axis and the geometric mean distance of xj to the other
points on the y axis. (That Matlab command prod may be useful.) (a) What are the
results for Chebyshev points with n = 5, 10, 20? (b) Same for Legendre points (see
Exercise 2.4). (c) Same for equally spaced points from x0 = −1 to xn = 1.

Exercise 2.7. Chebyshev points scaled to an interval [a, b]. (a) Use
chebpts(10) to print the values of the Chebyshev points in [−1, 1] for n = 9. (b)
Use chebfun(@sin,10) to compute the degree 9 interpolant p(x) to sin(x) in these
points. Make a plot showing p(x) and sin(x) over the larger interval [−6, 6], and also
a semilog plot of |f(x) − p(x)| over that interval. Comment on the results. (c) Now
use chebpts(10,[0 6]) to print the values of the Chebyshev points for n = 9 scaled
to the interval [0, 6]. (d) Use chebfun(@sin,[0 6],10) to compute the degree 9 inter-
polant to sin(x) in these points, and make the same two plots as before over [−6, 6].
Comment.

3. Chebyshev polynomials and series

One good way to specify a polynomial p ∈ Pn on [−1, 1], as we saw in the
last chapter, is by its values at n + 1 Chebyshev points. Another is by its

11

coefficients in a Chebyshev expansion, that is, a linear combination of the
Chebyshev polynomials T0, . . . , Tn. Depending on the application, one or the
other of these two representations may be most useful, and one can go back and
forth between them quickly with an algorithm based on the Fast Fourier Trans-
form (FFT). This duality is analogous to the well-known relationship between
“function space” and “Fourier space” in discrete Fourier analysis.

In (2.1) and (2.2) we defined Chebyshev points as the real parts of equally
spaced points on the unit circle. Similarly, the kth Chebyshev polynomial
can be defined as the real part of the function zk on the unit circle:

x = Re(z) = 1
2 (z + z−1) = cos θ, θ = cos−1 x, (3.1)

Tk(x) = Re(zk) = 1
2 (z

k + z−k) = cos(kθ). (3.2)

Chebyshev polynomials were introduced by Chebyshev in the 1850s, though
without the connection to the variables z and θ [Chebyshev 1854 & 1859]. The
reason they are labelled by the letter T is probably that Chebyshev, de la Vallée
Poussin, Bernstein, and other early experts published in French, and the French
transliteration of the Russian name is Tchebychef. The Chebyshev polynomials
are a family of orthogonal polynomials with respect to a certain weight function
(Exercise 3.7), but we shall not make much use of orthogonality until Chapters
17–19.

It follows from (3.2) that Tk satisfies −1 ≤ Tk(x) ≤ 1 for x ∈ [−1, 1] and takes
alternating values ±1 at the k+1 Chebyshev points. What is not so obvious is
that Tk is a polynomial. We can verify this property by induction. For example,
we can calculate T2(x) like this:

T2(x) =
1
2 (z

2 + z−2) = 1
2 (z + z−1)2 − 1 = 2x2 − 1.

Similarly we calculate

T3(x) =
1
2 (z

3 + z−3) = 1
2 (z + z−1)(z2 + z−2)− 1

2 (z
1 + z−1) = 2xT2(x)− T1(x),

so T3(x) = 4x3 − 3x. A further similar calculation gives the general formula

Tk+1(x) = 2xTk(x)− Tk−1(x), (3.3)

implying that for each k ≥ 1, Tk is a polynomial of degree exactly k with leading
coefficient 2k−1. In Chapter 18 the coefficients of this 3-term recurrence relation
will be taken as the entries of a “colleague matrix” whose eigenvalues can be
computed to find roots of polynomials or quadrature nodes.

The Chebfun command chebpoly(n) returns the chebfun corresponding to Tn.
1

Here for example are T1, . . . , T6:

1The name of the software system is Chebfun, with a capital C. A representation of a
particular function in Chebfun is called a chebfun, with a lower-case c.

12

for n = 1:6

T{n} = chebpoly(n);

subplot(3,2,n)

plot(T{n}), axis([-1 1 -1 1])

end

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

These plots do not show the Chebyshev points, which are the extremes of each
curve: thus the numbers of Chebyshev points in the six plots are 2, 3, 4, 5, 6,
and 7.

Here are the coefficients of these polynomials with respect to the monomial basis
1, x, x2, As usual, Matlab orders coefficients from highest degree down to
degree zero.

for n = 1:6

disp(poly(T{n}))

end

1 0

2 0 -1

4 0 -3 0

8 0 -8 0 1

16 0 -20 0 5 0

32 0 -48 0 18 0 -1

So, for example,
T5(x) = 16x5 − 20x3 + 5x.

The monomial basis is familiar and comfortable, but you should never use it for
numerical work with functions on an interval. Use the Chebyshev basis instead
(Exercise 3.8). (If the domain is [a, b] rather than [−1, 1], the Chebyshev poly-
nomials must be scaled accordingly, and Chebfun does this automatically when
one works on other intervals.) For example, x5 has the Chebyshev expansion

x5 =
5

80
T5(x) +

5

16
T3(x) +

5

8
T1(x).

We can calculate such expansion coefficients by using the command
chebpoly(p), where p is the chebfun whose coefficients we want to know:

13

format short

chebpoly(x.^5)

ans =

0.0625 0 0.3125 0 0.6250 0

Any polynomial p can be written uniquely like this as a finite Chebyshev series:
the functions T0(x), T1(x), . . . , Tn(x) form a basis for Pn. Since p is determined
by its values at Chebyshev points, it follows that there is a one-to-one linear
mapping between values at Chebyshev points and Chebyshev expansion coef-
ficients. As mentioned at the beginning of this chapter, this mapping can be
applied in O(n logn) operations with the aid of the Fast Fourier Transform
(FFT) or the Fast Cosine Transform, an observation perhaps first made by
Ahmed and Fisher and Orzsag around 1970 [Ahmed & Fisher 1970, Orszag
1971a and 1971b, Gentleman 1972b, Geddes 1978]. That is what Chebfun does
when you type chebpoly. We shall not give details of the FFT in this book;
see for example [Trefethen 2000, Chap. 8].

Just as a polynomial p has a finite Chebyshev series, a more general function f
has an infinite Chebyshev series. Exactly what kind of “more general function”
can we allow? For an example like f(x) = ex with a rapidly converging Taylor
series, everything will surely be straightforward, but what if f is merely differ-
entiable rather than analytic? Or what if it is continuous but not differentiable?
Analysts have studied such cases carefully, identifying exactly what degrees of
smoothness correspond to what kinds of convergence of Chebyshev series. We
shall not concern ourselves with trying to state the sharpest possible result but
will just make a particular assumption that covers almost every application.
We shall assume that f is Lipschitz continuous on [−1, 1]. Recall that this
means that there is a constant C such that |f(x) − f(y)| ≤ C|x − y| for all
x, y ∈ [−1, 1]. Recall also that a series is absolutely convergent if it remains
convergent if each term is replaced by its absolute value, and that this implies
that one can reorder the terms arbitrarily without changing the result. Such
matters are discussed in books of advanced calculus such as [Kreyszig 2007].

Here is our basic theorem about Chebyshev series and their coefficients.

Theorem 3.1: Chebyshev series. If f is Lipschitz continuous on [−1, 1], it
has a unique representation as an absolutely and uniformly convergent series

f(x) =

∞
∑

k=0

akTk(x), (3.4)

and the coefficients are given for k ≥ 1 by the formula

ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx, (3.5)

and for k = 0 by the same formula with the factor 2/π changed to 1/π.

14

Proof. Throughout this book, our approach to all kinds of results involving
Chebyshev polynomials will always be the same: transplant them to the unit
circle in the complex plane, where they become results involving powers of z.
Integrals over [−1, 1] transplant to integrals over the unit circle, where one can
generally get the results one wants from the Cauchy integral formula. This
method of dealing with Chebyshev mathematics has the advantage that one
never has to remember any trigonometric identities!

Here is how it goes for Chebyshev series and their coefficients. We are given a
function f(x) on [−1, 1]. We transplant f by defining a function F on the unit
circle whose value at a point z on the circle is the same as the value of f at the
corresponding point x ∈ [−1, 1]. In other words, F (z) = F (z−1) = f(x), where
x = Re z = (z + z−1)/2. Notice that each value x ∈ (−1, 1) corresponds to two
different values z on the unit circle, one on the upper semicircle and the other
on the lower semicircle.

To convert between integrals in x and z, we have to convert between dx and dz.
We can do this by differentiating the formula for x to get

dx = 1
2 (1− z−2) dz = 1

2z
−1(z − z−1) dz.

Since
1
2 (z − z−1) = i Im z = ±i

√
1− x2,

this implies

dx = ±i z−1
√

1− x2 dz.

In these equations the plus sign applies for Im z ≥ 0 and the minus sign for
Im z ≤ 0.

These formulas have implications for smoothness. Since
√
1− x2 ≤ 1 for all

x ∈ [−1, 1], they imply that if f(x) is Lipschitz continuous, then so is F (z).
By a standard result in complex variables, this implies that F has a unique
representation as an absolutely and uniformly convergent Laurent series on the
unit circle,

F (z) =
1

2

∞
∑

k=0

ak(z
k + z−k) =

∞
∑

k=0

akTk(x).

Recall that a Laurent series is an infinite series in both positive and negative
powers of z, and that such series in general converge in the interior of an annulus.
A good treatment of Laurent series can be found in [Markushevich 1985]; see
also complex variables texts such as [Priestley 2003, Saff & Snider 2003]. Or one
can derive results about F by converting them to results about Fourier series,
for the Laurent series for F is equivalent to a Fourier series in the variable θ if
z = eiθ.

The kth Laurent coefficient of an analytic function G(z) =
∑∞

k=−∞ bkz
k on the

15

unit circle can be computed by the Cauchy integral formula,

bk =
1

2πi

∫

|z|=1

z−1−kG(z) dz.

(We shall make more substantial use of the Cauchy integral formula in Chapters
11–12.) The notation |z| = 1 indicates that the contour consists of the unit
circle traversed once in the positive (counterclockwise) direction. Here we have
a function F with the special symmetry property F (z) = F (z−1), and we have
also introduced a factor 1/2 in front of the series. Accordingly in the case of F
we can compute the coefficients ak from either of two contour integrals,

ak =
1

πi

∫

|z|=1

z−1+kF (z) dz =
1

πi

∫

|z|=1

z−1−kF (z) dz, (3.6)

with πi replaced by 2πi for k = 0.

In particular, we can get a formula for ak that is symmetric in k and −k by
combining the two integrals like this:

ak =
1

2πi

∫

|z|=1

(z−1+k + z−1−k)F (z) dz =
1

πi

∫

|z|=1

z−1 Tk(x)F (z) dz,

with πi replaced by 2πi for k = 0. Replacing F (z) by f(x) and z−1dz by
−i dx/(±

√
1− x2) gives

ak = − 1

π

∫

|z|=1

f(x)Tk(x)

±
√
1− x2

dx,

with π replaced by 2π for k = 0. We have now almost entirely converted to the x
variable, except that the contour of integration is still the circle |z| = 1. When z
traverses the circle all the way around in the positive direction, x decreases from
1 to −1 and then increases back to 1 again. At the turning point z = x = −1,
the ± sign attached to the square root switches from + to −. Thus instead
of cancelling, the two traverses of x ∈ [−1, 1] contribute equal halves to ak.
Converting to a single integration from −1 to 1 in the x variable multiplies the
integral by −1/2, hence multiplies the formula for ak by −2, giving (3.5).

Chebfun represents functions by their values at Chebyshev points. How does
it figure out the right value of n? Given a set of n + 1 samples, it converts
the data to a Chebyshev expansion of degree n and examines the resulting
Chebyshev coefficients. If several of these in a row fall below a relative level of
approximately 10−15, then the grid is judged to be fine enough. For example,
here are the Chebyshev coefficients of the chebfun corresponding to ex:

f = exp(x);

a = chebpoly(f);

format long

a(end:-1:1)’

16

ans =

1.266065877752008

1.130318207984970

0.271495339534077

0.044336849848664

0.005474240442094

0.000542926311914

0.000044977322954

0.000003198436462

0.000000199212481

0.000000011036772

0.000000000550590

0.000000000024980

0.000000000001039

0.000000000000040

0.000000000000001

Notice that the last coefficient is about at the level of machine precision.

For complicated functions it is often more interesting to plot the coefficients
than to list them. For example, here is a function with a number of wiggles:

f = sin(6*x) + sin(60*exp(x));

clf, plot(f), title(’A function with wiggles’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
A function with wiggles

If we plot the absolute values of the Chebyshev coefficients, here is what we
find:

a = chebpoly(f);

semilogy(abs(a(end:-1:1)),’m’)

grid on, title(’Absolute values of Chebyshev coefficients’)

17

0 20 40 60 80 100 120 140 160
10

−15

10
−10

10
−5

10
0

Absolute values of Chebyshev coefficients

One can explain this plot as follows. Up to degree about k = 80, a Chebyshev
series cannot resolve f accurately, for the oscillations occur on too short wave-
lengths. After that, the series begins to converge rapidly. By the time we reach
k = 150, the accuracy is about 15 digits, and the computed Chebyshev series is
truncated there. We can find out exactly where the truncation took place with
the command length(f):

length(f)

ans = 151

This tells us that the chebfun is a polynomial interpolant through 151 points,
that is, of degree 150.

Without giving all the engineering details, here is a fuller description of how
Chebfun constructs its approximation. First it calculates the polynomial inter-
polant through the function sampled at 9 Chebyshev points, i.e., a polynomial
of degree 8, and checks whether the Chebyshev coefficients appear to be small
enough. For the example just given the answer is no. Then it tries 17 points,
then 33, then 65, and so on. In this case Chebfun judges at 257 points that
the Chebyshev coefficients have finally fallen to the level of rounding error. At
this point it truncates the tail of terms deemed to be negligible, leaving a se-
ries of 151 terms. The corresponding degree 150 polynomial is then evaluated
at 151 Chebyshev points via FFT, and these 151 numbers become the data
defining this particular chebfun. Engineers would say that the signal has been
downsampled from 257 points to 151.

For another example we consider a function with two spikes:

f = 1./(1+1000*(x+.5).^2) + 1./sqrt(1+1000*(x-.5).^2);

clf, plot(f), title(’A function with two spikes’)

18

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
A function with two spikes

Here are the Chebyshev coefficients of the chebfun. This time, instead of
chebpoly and semilogy, we execute the special command chebpolyplot, which
does the same thing.

chebpolyplot(f,’m’), grid on

title(’Absolute values of Chebyshev coefficients’)

0 100 200 300 400 500 600 700 800 900 1000
10

−20

10
−15

10
−10

10
−5

10
0

Absolute values of Chebyshev coefficients

Note that although it is far less wiggly, this function needs six times as many
points to resolve as the previous one.

Chebyshev interpolants are effective for complex functions (still defined on a
real interval) as well as real ones. Here for example is a complex function that
happens to be periodic, though the Chebyshev representation does not take
advantage of this fact.

f = (3+sin(10*pi*x)+sin(61*exp(.8*sin(pi*x)+.7))).*exp(1i*pi*x);

A plot shows the image of [−1, 1] under f , which seems to the eye quite com-
plicated:

plot(f,LW,0.6,CO,[0 .8 0]), axis equal, axis off

19

Yet the degree of the polynomial is not so high:

length(f)

ans = 617

People often ask, is there anything special about Chebyshev points and Cheby-
shev polynomials? Could we equally well interpolate in other points and expand
in other sets of polynomials? From an approximation point of view, the answer
is yes, and in particular, Legendre points and Legendre polynomials have much
the same power for representing a general function f , as we shall see in Chap-
ters 17–19. Legendre points and polynomials are neither better than Chebyshev
for approximating functions, nor worse; they are essentially the same. One can
improve both Legendre and Chebyshev — by a factor of up to π/2 — but to do
so one must leave the class of polynomials. See Chapter 22.

Nevertheless, there is a big advantage of Chebyshev over Legendre points, and
this is that one can use the FFT to go from point values to coefficients and
back again. There are algorithms that make such computations practicable in
the Legendre case too [Dutt, Gu & Rokhlin 1996, Potts, Steidl & Tasche 1998,
Iserles 2010], but Chebyshev remains the lightning fast and easy case.

[To be added: (1) Original references for Chebyshev polynomials and Theorem
3.1. (2) In particular, pin down where the notation Tk comes from and confirm

20

the claim about transliteration. (3) Exercise on Chebyshev coeffs of exp(x). (4)
Mention Dini–Lipschitz. This is also an exercise in Chap 14. (5) Exercise 3.6.
(6) Exercise on Chebyshev polynomials in the complex plane.]

Summary of Chapter 3. The Chebyshev polynomial Tk(x) is an ana-

logue for [−1, 1] of the monomial zk on the unit circle. Each Lipschitz con-

tinuous function f on [−1, 1] has an absolutely and uniformly convergent

Chebyshev series, that is, an expansion f(x) = a0T0(x) + a1T1(x) +

Exercise 3.1. Monomial and Chebyshev coefficients. Let p ∈ Pn have coeffi-
cient vectors a = (a0, a1, . . . , an)

T for a Chebyshev series and b = (b0, b1, . . . , bn)
T for

a series in the monomials 1, x, . . . , xn. Show that a and b are related by Aa = b, where
A is an upper-triangular matrix, whose entries you should describe. Prove that any
p ∈ Pn has uniquely defined coefficient vectors a and b for both representations.

Exercise 3.2. An expansion coefficient. Determine numerically the coefficient of
T5 in the Chebyshev expansion of tan−1(x) on [−1, 1].

Exercise 3.3. Chebyshev coefficients and “rat”. (a) Use Chebfun to determine
numerically the coefficients of the Chebyshev series for 1 + x3 + x4. By inspection,
identify these rational numbers. Use the Matlab command [n,d] = rat(c) to confirm
this. (b) Use Chebfun and rat to make good guesses as to the Chebyshev coefficients
of x7/7 + x9/9.

Exercise 3.4. Dependence on wave number. (a) Calculate the length Lk of the
chebfun corresponding to f(x) = sin(kx) on [−1, 1] for k = 1, 2, 4, 8, . . . , 210. (You
can do this elegantly by defining a Matlab anonymous function f = @(k).) Make a
loglog plot of Lk as a function of k and comment on the result. (b) Do the same for
g(x) = 1/(1 + (kx)2).

Exercise 3.5. Chebyshev series of a complicated function. (a) Make
chebfuns of the three functions f(x) = tanh(x), g(x) = 10−5 tanh(10x), h(x) =
10−10 tanh(100x) on [−1, 1], and call chebpolyplot to show their Chebyshev coef-
ficients. Comment on the results. (b) Now define s = f + g + h and comment on
the result of chebpolyplot applied to s. Chebfun does not automatically chop the
tail of a Chebyshev series, but applying the simplify command will do this. What
happens with chebpolyplot(simplify(s))? (c) Repeat (b) but with the function
t = f+10−5g+10−10h. What does chebpolyplot reveal about the difference between
simplify(t) and simplify(s)?

Exercise 3.6. Chebyshev series of |x|. Show that for f(x) = |x|, the Chebyshev
coefficients are ak = 0 for k odd, a0 = 2/π, and for k ≥ 2 even, ak = (−1)(k/2)/(1−k2).
[This exercise is not yet finished and may be moved to a later chapter. See Bernstein
1914.]

Exercise 3.7. Orthogonality of Chebyshev polynomials. Equation (3.5) gives
the Chebyshev coefficient ak of f by integration of f against just the single Chebyshev
polynomial Tk. This formula implies an orthogonality property for {Tj} involving a
weighted integral. State exactly what this orthogonality property is and show carefully
how it follows from the equations of this chapter.

21

Exercise 3.8. Conditioning of the Chebyshev basis. Although the Chebyshev
polynomials are not orthogonal with respect to the standard unweighted inner prod-
uct, they are close enough to provide a well-behaved basis. Set T = chebpoly(0:10)

and explore the Chebfun “quasimatrix” that results with commands like size(T),
spy(T), plot(T), svd(T). Explain the meaning of T (you may find Chapter 6 of
the Chebfun Guide helpful) and determine the condition number of this basis with
cond(T). (b) Now construct the corresponding quasimatrix of monomials by execut-
ing x = chebfun(’x’); M = T; for j = 0:10, M(:,j+1) = x.^j; end. What is the
condition number of M? (c) Produce a plot of these two condition numbers for matri-
ces whose columns span Pn for n = 0, 1, . . . , 10. (d) What happens to the condition
numbers if M is constructed from monomials on [0, 1] rather than [−1, 1] via x =

chebfun(’x’,[0,1])?

Exercise 3.9. Derivatives at endpoints. Prove from (3.3) that the derivatives of
the Chebyshev polynomials satisfy T ′

n(1) = n2 for each n ≥ 0. (Markov’s inequality
asserts that for any p ∈ Pn, ‖p′‖ ≤ n2‖p‖, where ‖ · ‖ is the supremum norm.)

Exercise 3.10. Odd and even functions. Show that if f is an odd function on
[−1, 1], its Chebyshev coefficients of even order are zero; similarly if f is even its odd
coefficients are zero.

Exercise 3.11. A function neither even nor odd. Apply chebpolyplot to the
function f(x) = exp(x)/(1 + 10000x2). Why does the plot have the appearance of a
stripe? Can you explain quantitatively the height of the stripe?

Exercise 3.12. Extrema and roots of Chebyshev polynomials. Give formulas
for the extrema and roots of Tn in [−1, 1].

Exercise 3.13. chebpoly on other intervals. [Not yet written.]

4. Interpolants, truncations, and aliasing

Suppose f(x) is a Lipschitz continuous function on [−1, 1] with Chebyshev ex-
pansion coefficients {ak} as in Theorem 3.1:

f(x) =
∞
∑

k=0

akTk(x). (4.1)

One approximation to f in Pn is the polynomial obtained by interpolation in
Chebyshev points:

pn(x) =

n
∑

k=0

ckTk(x). (4.2)

Another is the polynomial obtained by truncation of the series at term n,
whose coefficients through degree n are the same as those of f itself:

fn(x) =
n
∑

k=0

akTk(x). (4.3)

The relationship of the Chebyshev coefficients of fn to those of f is obvious,
and in a moment we shall see that the Chebyshev coefficients of pn have simple

22

expressions too. In computational work generally, and in particular in Chebfun,
the polynomials {pn} are usually almost as good approximations to f as the
polynomials {fn}, and easier to work with, since one does not need to evaluate
the integral (3.5). The polynomials {fn}, on the other hand, are also interesting
and have received a great deal of attention over the years. In this book, most
of our computations will make use of {pn}, but many of our theorems will
treat both cases. A typical example is Theorem 8.2, which asserts that if f is
analytic on [−1, 1], then both ‖f − fn‖ and ‖f − pn‖ decrease geometrically to
0 as n → ∞.

The key to understanding {ck} is the phenomenon of aliasing, a term which
originated with radio engineers early in the 20th century. On the (n + 1) -
point Chebyshev grid, it is obvious that any function f is indistinguishable
from a polynomial of degree n. But something more is true: any Chebyshev
polynomial TN , no matter how big N is, is indistinguishable on the grid from a
single Chebyshev polynomial Tk for some k with 0 ≤ k ≤ n. We state this as a
theorem.

Theorem 4.1: Aliasing of Chebyshev polynomials. For any n ≥ 1 and
0 ≤ k ≤ n, the following Chebyshev polynomials take the same values on the
(n+ 1)-point Chebyshev grid:

Tk, T2n−k, T2n+k, T4n−k, T4n+k, T6n−k,

Equivalently, for any k ≥ 0, Tk takes the same value on the grid as Tk̃ with

k̃ = |(k + n− 1)(mod2n)− (n− 1)|. (4.4)

Proof. Recall from (2.1) and (3.2) that Chebyshev polynomials on [−1, 1] are
related to monomials on the unit circle by Tk(x) = (zk+z−k)/2, and Chebyshev
points are related to (2n)th roots of unity by xk = (zk + z−1

k)/2. It follows that
the assertion of the theorem is equivalent to the statement that the following
functions take the same values at the (2n)th roots of unity:

zk + z−k, z2n−k + zk−2n, z2n+k + z−2n−k,

Inspection of the exponents shows that in every case, modulo 2n, we have one
exponent equal to +k and the other to −k. The conclusion now follows from
the elementary phenomenon of aliasing of monomials on the unit circle: at the
(2n)th roots of unity, z2νn = 1 for any integer ν.

Here is a numerical illustration of Theorem 4.1. Taking n = 4, let X be the
Chebyshev grid with n + 1 points, and let T{1}, . . . , T{10} be the first ten
Chebyshev polynomials:

n = 4; X = chebpts(n+1);

for k = 1:10

23

T{k} = chebpoly(k);

end

Then T3 and T5 are the same on the grid:

disp([T{3}(X) T{5}(X)])

-1.000000000000000 -1.000000000000000

0.707106781186548 0.707106781186547

0 0

-0.707106781186548 -0.707106781186547

1.000000000000000 1.000000000000000

So are T1, T7, and T9:

disp([T{1}(X) T{7}(X) T{9}(X)])

-1.000000000000000 -1.000000000000000 -1.000000000000000

-0.707106781186547 -0.707106781186548 -0.707106781186547

0 0 0

0.707106781186547 0.707106781186548 0.707106781186547

1.000000000000000 1.000000000000000 1.000000000000000

As a corollary of Theorem 4.1, we can now derive the connection between {ak}
and {ck}. The following result can be found in [Clenshaw & Curtis 1960].

Theorem 4.2: Aliasing formula for Chebyshev coefficients. Let f be
Lipschitz continuous on [−1, 1] and let pn be its Chebyshev interpolant in Pn,
n ≥ 1. Let {ak} and {ck} be the Chebyshev coefficients of f and pn, respectively.
Then

c0 = a0 + a2n + a4n + . . . , (4.5)

cn = an + a3n + a5n + . . . , (4.6)

and for 1 ≤ k ≤ n− 1,

ck = ak + (ak+2n + ak+4n + . . .) + (a−k+2n + a−k+4n + . . .). (4.7)

Proof. By Theorem 3.1, f has a unique Chebyshev series (3.4), and it converges
absolutely. Thus we can rearrange the terms of the series without affecting con-
vergence, and in particular, each of the three series expansions written above
converges, so these formulas do indeed define certain numbers c0, . . . , cn. Tak-
ing these numbers as coefficients multiplied by the corresponding Chebyshev
polynomials T0, . . . , Tn gives us a polynomial of degree n. By Theorem 4.1, this
polynomial takes the same values as f at each point of the Chebyshev grid.
Thus it is the unique interpolant pn ∈ Pn.

We can summarize Theorem 4.2 as follows. On the (n + 1)-point grid, any
function f is indistinguishable from a polynomial of degree n. In particular, the

24

Chebyshev series of the polynomial interpolant to f is obtained by reassigning
all the Chebyshev coefficients in the infinite series for f to their aliases of degrees
0 through n.

As a corollary, the theorem gives us formulas for f − fn and f − pn, which we
shall exploit in Chapters 7 and 8:

f(x)− fn(x) =
∞
∑

k=n+1

akTk(x), (4.8)

f(x)− pn(x) =
∞
∑

k=n+1

ak(Tk(x)− Tk̃(x)), (4.9)

where k̃ is given by (4.4).

To illustrate Theorem 4.2, here is the function tanh(4x−1) (solid) and its degree
4 Chebyshev interpolant (dashed):

f = tanh(4*x-1);

n = 4; pn = chebfun(f,n+1);

hold off, plot(f), hold on, plot(pn,’.--r’)

title(’A function f and its degree 4 interpolant p_4’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

A function f and its degree 4 interpolant p
4

The first 5 Chebyshev coefficients of f ,

a = chebpoly(f); a = a(end:-1:1)’; a(1:n+1)

ans =

-0.166584582703135

1.193005991160944

0.278438064117869

-0.239362401056012

-0.176961398392888

are different from the Chebyshev coefficients of pn,

25

c = chebpoly(pn); c = c(end:-1:1)’

c =

-0.203351068209675

1.187719968517890

0.379583465333916

-0.190237989543227

-0.178659622412174

As asserted in (4.5) and (4.6), the coefficients c0 and cn are given by sums of
coefficients ak with a stride of 2n:

c0 = sum(a(1:2*n:end))

c0 = -0.203351068209675

cn = sum(a(n+1:2*n:end))

cn = -0.178659622412174

And as asserted in (4.7), the coefficients c1 through cn−1 involve two sums of
this kind:

for k = 1:n-1

ck = sum(a(1+k:2*n:end)) + sum(a(1-k+2*n:2*n:end))

end

ck =

1.187719968517889

ck =

0.379583465333916

ck =

-0.190237989543227

Following up on the last figure, how does the truncated series fn compare with
the interpolant pn as an approximation to f? Chebfun includes a ’trunc’

option for computing fn, which we now add to the plot as a dot-dash line:

fn = chebfun(f,’trunc’,n+1);

plot(fn,’-.g’)

title(’Function f, interpolant p_4, truncated approximant f_4’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

Function f, interpolant p
4
, truncated approximant f

4

26

Here are the errors f − fn and f − pn:

hold off

subplot(1,2,1), plot(f-fn,’g’), ylim(.38*[-1 1])

title(’error in truncation f-f_4’)

subplot(1,2,2), plot(f-pn,’r’), ylim(.38*[-1 1])

title(’error in interpolant f-p_4’)

−1 −0.5 0 0.5 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

error in truncation f−f
4

−1 −0.5 0 0.5 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

error in interpolant f−p
4

Here is the analogous plot with n = 4 increased to 24:

n = 24; pn = chebfun(f,n+1);

fn = chebfun(f,’trunc’,n+1);

subplot(1,2,1), plot(f-fn,’g’), ylim(.0005*[-1 1])

title(’error in truncation f-f_{24}’)

subplot(1,2,2), plot(f-pn,’r’), ylim(.0005*[-1 1])

title(’error in interpolant f-p_{24}’)

−1 −0.5 0 0.5 1
−5

0

5
x 10

−4 error in truncation f−f
24

−1 −0.5 0 0.5 1
−5

0

5
x 10

−4 error in interpolant f−p
24

On the basis of plots like these, one might speculate that fn may often be a
better approximation than pn, but that the difference is small. This is indeed
the case, as we shall confirm in Theorems 7.2 and 8.2, both of which suggest a
difference of a factor of 2, and Theorem 16.1, which suggests a factor of π/2.

Let us summarize where we stand. We have considered Chebyshev interpolants
(Chapter 2) and Chebyshev expansions (Chapter 3) for a function f(x) defined

27

on [−1, 1]. Mathematically speaking, each coefficient of a Chebyshev expansion
is equal to the value of the integral (3.5). This formula, however, is not needed
for effective polynomial approximation, since Chebyshev interpolants are ap-
proximately as accurate as truncations. Chebfun readily computes Chebyshev
coefficients of polynomial interpolants, and this is done not by evaluating the
integral but by taking the FFT of the sample values in Chebyshev points. If
the degree of the interpolant is high enough that the polynomial matches f to
machine precision, then the Chebyshev coefficients will match too.

[To be added: (1) Aliasing plots from NCN. (2) The projection/orthogonality
interpretation.]

Summary of Chapter 4. Two excellent methods of approximating a

function f on [−1, 1] by a polynomial are truncation of its Chebyshev se-

ries and interpolation in Chebyshev points. The Chebyshev interpolant is

the polynomial obtained by reassigning contributions of degree > n in the

Chebyshev series to their aliases of degree ≤n. The two approximations

are typically within a factor of 2 of each other in accuracy.

Exercise 4.1. Aliasing. (a) On the (n+1)-point Chebyshev grid with n = 20, which
Chebyshev polynomials Tk take the same values as T5? (b) Use Chebfun to draw plots
illustrating some of these intersections.

Exercise 4.2. Aliasing in roots of unity. For each n ≥ 0, let pn ∈ Pn be the
degree n polynomial interpolant to the function f(z) = z−1 at the (n + 1)st roots
of unity on the unit circle in the z-plane. Use the aliasing observation at the end of
the proof of Theorem 4.1 to prove that pn does not converge to f on the unit disk as
n → ∞, even though f is analytic there. (This example comes from [Méray 1884].)

Exercise 4.3. Fooling the Chebfun constructor. (a) Construct the anony-
mous function f = @(M) chebfun(@(x) 1+exp(-(M*(x-0.4)).^4)) and plot f(10)

and f(100). This function has a narrow spike of width proportional to 1/M . Con-
firm this by comparing sum(f(10)) and sum(f(100)). (b) Plot length(f(M)) as a
function of M for M = 1, 2, 3, . . . , going into the region where the length becomes
1. What do you think is happening? (c) Let Mmax be the largest integer for which
the constructor behaves normally and execute semilogy(f(Mmax)-1,’interval’,[.3

.5]). Superimpose on this plot information to show the locations of the points re-
turned by chebpts(9), which is the default initial grid on which Chebfun samples a
function. Explain how this result fits with (b). (d) Now for np taking values 17, 33,
65, 129 execute chebfunpref(’minsamples’,np) and length(f(np)), and plot the
Chebyshev points on your semilog plot of (c). The minsamples flag forces Chebfun to
sample the function at the indicated number of points. How do these results match
your observations of (b) and (c)? When you’re done, be sure to return Chebfun to its
default state with chebfunpref(’factory’).

Exercise 4.4. Relative precision. Try Exercise 4.3 again but without the “1+” in
the definition of f. The value of Mmax will be different, and the reason has to do with

28

Chebfun’s aim of constructing each function to about 15 digits of relative precision,
not absolute. Can you figure out what is happening and explain it quantitatively?

Exercise 4.5. Chebfun computation of truncations. In the text we computed
Chebyshev truncations of f(x) = tanh(4x− 1) using the ’trunc’ flag in the Chebfun
constructor. Another method is to compute all the Chebyshev coefficients of f and
then truncate the series. Compute f4 by this method and verify that the results agree
to machine precision.

Exercise 4.6. Least-squares projection. [not yet written]

5. Barycentric interpolation formula

How does one evaluate a Chebyshev interpolant? One good approach, involving
O(n logn) work for a single point evaluation, is to compute Chebyshev coeffi-
cients and use the Chebyshev series. However, there is a direct method requiring
just O(n) work, not based on the series expansion, that is both elegant and nu-
merically stable. It also has the advantage of generalizing to sets of points other
than Chebyshev. It is called the barycentric interpolation formula, intro-
duced by Salzer [1972], with an earlier closely related formula by Marcel Riesz
[1916]. The more general barycentric formula for arbitrary interpolation points,
of which Salzer’s formula is an exceptionally simple special case, was developed
earlier by Taylor [1945] and Dupuy [1948], with origins at least as early as Ja-
cobi [1825]. For a survey of variations of barycentric formulas, though without
references before 1945, see [Berrut & Trefethen 2004].

The study of polynomial interpolation goes back a long time; the word “inter-
polation” may be due to Wallis in 1655. In particular Newton addressed the
topic and devised a method based on divided differences. Many textbooks claim
that it is important to use this approach for reasons of numerical stability, but
this is not true, and we shall not discuss the Newton approach here.

Instead, the barycentric formula is in the alternative Lagrange form, where
the interpolant is written as a linear combination of Lagrange or cardinal or
fundamental polynomials:

p(x) =

n
∑

j=0

fj ℓj(x). (5.1)

Here we have a set of distinct interpolation points x0, . . . , xn, which could be real
or complex, and ℓj(x), the jth Lagrange polynomial, is the unique polynomial
in Pn that takes the value 1 at xj and 0 at the other points xk:

ℓj(xk) =

{

1 k = j,
0 k 6= j.

(5.2)

For example, here is a plot of ℓ5 on the equispaced 7-point grid (i.e., n = 6):

29

d = domain(-1,1);

s = linspace(-1,1,7);

y = [0 0 0 0 0 1 0];

p = interp1(s,y,d);

clf, plot(p), hold on, plot(s,p(s),’.k’), grid on

title(’Lagrange polynomial l_5 on 7-point equispaced grid’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Lagrange polynomial l
5
 on 7−point equispaced grid

It is easy to write down an explicit expression for ℓj :

ℓj(x) =

∏

k 6=j(x− xk)
∏

k 6=j(xj − xk)
. (5.3)

Since the denominator is a constant, this function is a polynomial of degree n
with zeros at the right places, and clearly it takes the value 1 when x = xj .
Equation (5.3) is very well known and can be found in many textbooks as a
standard representation for Lagrange interpolants. Lagrange worked with (5.1)
and (5.3) in 1795, and his name is firmly attached to these ideas, but the same
formulas were published earlier by Waring [1779] and Euler [1783].

Computationally speaking, (5.1) is excellent but (5.3) is not so good. It requires
O(n) operations to evaluate ℓj(x) for each value of x, and then O(n) such
evaluations must be added up in (5.1), giving a total operation count of O(n2)
for evaluating p(x) at a single value of x.

By a little rearrangement we can improve the operation count. The key obser-
vation is that for the various values of j, the numerators in (5.3) are the same
except that they are missing different factors x− xj . To take advantage of this
commonality, we define the node polynomial ℓ ∈ Pn+1 for the given grid by

ℓ(x) =

n
∏

k=0

(x− xk). (5.4)

Then (5.3) becomes the elementary but extremely important identity

ℓj(x) =
ℓ(x)

ℓ′(xj)(x− xj)
. (5.5)

30

(We shall use this equation to derive the Hermite integral formula in Chapter
11.) Equivalently, let us define

λj =
1

∏

k 6=j(xj − xk)
, (5.6)

that is,

λj =
1

ℓ′(xj)
. (5.7)

Then (5.3) becomes

ℓj(x) = ℓ(x)
λj

x− xj
, (5.8)

and the Lagrange formula (5.1) becomes

p(x) = ℓ(x)

n
∑

j=0

λj

x− xj
fj . (5.9)

These formulas were derived by Jacobi in his PhD thesis in Berlin [Jacobi 1825],
and they appeared in 19th century textbooks.2

Equation (5.9) has been called the “modified Lagrange formula” (by N. J.
Higham) and the “first form of the barycentric interpolation formula” (by H.
Rutishauser). What is valuable here is that the dependence on x inside the
sum is so simple. If the weights {λj} are known, (5.9) produces each value p(x)
with just O(n) operations. Computing the weights from (5.8) requires O(n2)
operations, but this computation only needs to be done once and for all, inde-
pendently of x ; and for special grids {xj} such as Chebyshev, as we shall see in
a moment, the weights are known analytically and don’t need to be computed
at all. (For Legendre and other grids associated with orthogonal polynomials,
see Theorem 19.6.)

However, there is another barycentric formula that is more elegant. If we add
up all the Lagrange polynomials ℓj , we get a polynomial in Pn that takes the
value 1 at every point of the grid. Since polynomial interpolants are unique,
this must be the constant polynomial 1:

n
∑

j=0

ℓj(x) = 1.

Dividing (5.8) by this expression enables us to cancel the factor ℓ(x), giving

ℓj(x) =
λj

x− xj

/

n
∑

k=0

λk

x− xk
. (5.10)

2I am grateful to Folkmar Bornemann for drawing this history to my attention.

31

By inserting these representations in (5.1), we get the “second form of the
barycentric interpolation formula” for polynomial interpolation in an arbitrary
set of n+ 1 points {xj}.

Theorem 5.1: Barycentric interpolation formula. The polynomial inter-
polant through data {fj} at n+ 1 points {xj} is

p(x) =

n
∑

j=0

λjfj
x− xj

/

n
∑

j=0

λj

x− xj
, (5.11)

with the special case p(x) = fj if x = xj for some j, where the weights {λj} are
defined by

λj =
1

∏

k 6=j(xj − xk)
. (5.12)

Proof. Given in the discussion above.

If you look at (5.11), it is obvious that the function it defines interpolates the
data. As x approaches one of the values xj , one term in the numerator blows
up and so does one term in the denominator. Their ratio is fj , so this is clearly
the value approached as x approaches xj . On the other hand if x is equal to
xj , we can’t use the formula: that would be a division of ∞ by ∞. That is why
the theorem is stated with the qualification for the special case x = xj .

What is not obvious is that the function defined by (5.11) is a polynomial, let
alone a polynomial of degree n: it looks like a rational function. The fact that it
is actually a polynomial depends on the special values (5.12) of the weights. For
choices of weights that differ from (5.12), (5.11) will still interpolate the data,
but in general it will be a rational function that is not a polynomial. These
rational barycentric interpolants are extremely useful in certain applications,
especially for work on irregular grids [Tee & Trefethen 2006], but they are not
discussed in this book.

Chebfun’s overload of Matlab’s interp1 command, which was illustrated at the
beginning of this chapter, contains an implementation of (5.11)–(5.12). We shall
make use of interp1 again in Chapters 13 and 15. Now, however, let us turn
to the special case that is so important in practice.

For Chebyshev points, the weights {λj} are wonderfully simple: they are equal
to (−1)j times the constant 2n−1/n, or half this value for j = 0 and n. This
formula was worked out by Marcel Riesz in 1916 [Riesz 1916]. The constant
cancels in the numerator and denominator when we divide by the constant 1 in
(5.11), giving Salzer’s amazingly simple result from 1972 [Salzer 1972]:

Theorem 5.2: Barycentric interpolation in Chebyshev points. The

32

polynomial interpolant through data {fj} at n+ 1 Chebyshev points {xj} is

p(x) =

n
∑

j=0

′ (−1)jfj
x− xj

/

n
∑

j=0

′ (−1)j

x− xj
, (5.13)

with the special case p(x) = fj if x = xj. The primes on the summation signs
signify that the terms j = 0 and j = n are multiplied by 1/2.

Equation (5.13) is scale-invariant: for interpolation in Chebyshev points scaled
to any interval [a, b], the formula is exactly the same.

Proof. Equation (5.13) is a special case of (5.11). To prove it, we will show that
for Chebyshev points, the weights (5.12) reduce to (−1)j times the constant
2n−1/n, and half this value for j = 0 or n.

To do this, we begin by noting that for Chebyshev points, the node polynomial
ℓ of (5.4) can be written

ℓ(x) = 2−n(Tn+1(x)− Tn−1(x)). (5.14)

To verify this formula we note first that it is certainly a polynomial of degree
n+ 1, and since Tn+1 has leading coefficient 2n, the polynomial is monic. Now
by Theorem 4.1, Tn−1 and Tn+1 take the same values on the (n + 1)-point
Chebyshev grid. Thus Tn+1 − Tn−1 has roots at all the nodes of that grid,
confirming that (5.14) is exactly the polynomial (5.4).

Equations (5.8) and (5.14) imply that

ℓj(x) = 2−nλj
Tn+1(x)− Tn−1(x)

x− xj
,

and from (5.7) we have

λj =
1

ℓ′(xj)
=

2n

T ′
n+1(xj)− T ′

n−1(xj)
.

Now it can be shown that

T ′
n+1(xj)− T ′

n−1(xj) = 2n(−1)j , 1 ≤ j ≤ n− 1,

with twice this value for j = 0 and n (Exercise 5.3). So we have

λj =
2n−1

n
(−1)j , 1 ≤ j ≤ n− 1, (5.15)

with half this value for j = 0 and n, as claimed.

The formula (5.13) is extraordinarily effective, even if n is in the thousands or
millions, even if p must be evaluated at thousands or millions of points. As a
first example, let us construct a rather wiggly chebfun:

33

f = tanh(20*sin(12*x)) + .02*exp(3*x).*sin(300*x);

length(f)

ans = 5184

We now plot f using 10000 sample points and note the time required:

hold off

tic, plot(f,LW,.5,’numpts’,10000), toc

Elapsed time is 0.605590 seconds.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

In this short time Chebfun has evaluated a polynomial interpolant of degree
about 5000 at 10000 sample points.

Raising the degree further, let p be the Chebyshev interpolant of degree 106 to
the function sin(105x) on [−1, 1]:

ff = @(x) sin(1e5*x);

p = chebfun(ff,1000001);

How long does it take to evaluate this interpolant at 100 points?

xx = linspace(0,0.0001);

tic, pp = p(xx); toc

Elapsed time is 1.316492 seconds.

Not bad for a million-degree polynomial! The result looks fine:

clf, plot(xx,pp,’.’,MS,10)

axis([0 0.0001 -1 1])

title(’A polynomial of degree 10^6 evaluated at 100 points’)

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

−1

−0.5

0

0.5

1
A polynomial of degree 106 evaluated at 100 points

and it matches the target function closely:

format long

for j = 1:5

r = rand;

disp([ff(r) p(r) ff(r)-p(r)])

end

-0.953922024875663 -0.953922024881650 0.000000000005988

-0.924684248370759 -0.924684248367095 -0.000000000003665

-0.700448855358137 -0.700448855360117 0.000000000001980

-0.814666653387460 -0.814666653397518 0.000000000010058

-0.239538284491439 -0.239538284487261 -0.000000000004178

The apparent loss of 4 or 5 digits of accuracy is to be expected since the deriva-
tive of this function is of order 105: each evaluation is the correct result for a
value of x within about 10−16 of the correct one (Exercise 5.5).

Experiments like these show that barycentric interpolation in Chebyshev points
is a robust process in practice: it is numerically stable, untroubled by rounding
errors on a computer. This may seem surprising if you look at (5.9) or (5.13)
— won’t cancellation errors on a computer cause trouble if x is close to one of
the Chebyshev points xj? In fact they do not, and these formulas have been
proved stable in floating point arithmetic for all x ∈ [−1, 1] [Rack & Reimer
1982, Higham 2004]. This is in marked contrast to the more familiar algorithm
of polynomial interpolation via solution of a Vandermonde linear system of
equations, which is exponentially unstable (Exercise 5.2).

More precisely, Higham [2004] showed that for Chebyshev points, (5.13) has the
property that numerical analysts call forward stability, whereas (5.9), with the
Chebyshev weights {λj}, has the stronger property known as backward stability.
This suggests that (5.9) has advantages, but it also has at least one disadvantage:
it is not scale-invariant, and the weights scale inverse-exponentially as functions
of the length of the interval of interpolation. We see this in (5.15), where the
weights have size 2n, and would in fact overflow on a computer in standard

35

IEEE double precision arithmetic for n bigger than about 1000. We shall have
more to say about these matters in Chapters 11–15.

For interpolation in equispaced points or other sets that are far from the Cheby-
shev distribution, Higham showed that the forward stability of (5.13) is lost and
it becomes more important to use the form (5.9). However, as we shall discuss
in Chapters 13–14, in these cases the interpolation problem is so ill-conditioned
that one should probably not be trying to solve it in the first place.

[To be added: (1) Concerning barycentric formulas Salzer recommends Winrich,
Computer J. 12, 154–155. (2) Possible new exercises on weights for Cheb pts of
the 1st kind. (3) More about interp1. (4) Does Exercise 5.2 mix discrete and
continuous improperly? (5) Read Stiefel, Einfuehrung in die Numer Math]

Summary of Chapter 5. Polynomial interpolants can be evaluated fast

and stably by the barycentric formula, even for thousands or millions of

interpolation points. The barycentric formula has the form of a rational

function but reduces to a polynomial because of the use of specially deter-

mined weights.

Exercise 5.1. Barycentric coefficients by hand. (a) Work out on paper the
barycentric interpolation coefficients {λj} for the case n = 3 and x0 = −1, x1 = 0,
x2 = 1/2, x3 = 1. (b) Confirm that (5.9) gives the right value p(−1/2) for the
polynomial interpolant to data 1, 2, 3, 4 in these points.

Exercise 5.2. Instability of Vandermonde interpolation. The best-known
numerical algorithm for polynomial interpolation, unlike the barycentric formula, is
unstable. This is the method implemented in Matlab’s polyfit command, which
forms a Vandermonde matrix of sampled powers of x and solves a corresponding linear
system of equations. (In [Trefethen 2000], to my embarrassment, this unstable method
is used throughout, forcing the values of n used for plots in that book to be kept
small.) (a) Explore this instability by comparing a Chebfun evaluation of p(0) with
the result of polyval(polyfit(xx,f(xx),n),0) where f = @(x) cos(k*x) for k =
10, 20, . . . , 90, 100, n is the degree of the corresponding chebfun, and xx is a fine grid.
(b) Examining Matlab’s polyfit code as appropriate, construct the Vandermonde
matrices V for each of these 11 problems and compute their condition numbers. (You
can also use Matlab’s vander command.) By contrast, the underlying Chebyshev
interpolation problem is well-conditioned.

Exercise 5.3. Calculating derivatives for the proof of Theorem 5.2. Derive
the following identities used in the proof of Theorem 5.2. (a) For 1 ≤ j ≤ n − 1,
T ′

n+1(xj) − T ′

n−1(xj) = 2n(−1)j . (b) For j = 0 and j = n, T ′

n+1(xj) − T ′

n−1(xj) =
4n(−1)j . One can derive this formula directly, or indirectly by a symmetry argument.

Exercise 5.4. Interpolating the sign function. Use x = chebfun(’x’), f =

sign(x) to construct the sign function on [−1, 1] and p = chebfun(’sign(x)’,10000)

to construct its interpolant in 10000 Chebyshev points. Explore the difference in the

36

interesting region by defining d = f-p, d = d{-0.002,0.002}. What is the maximum
value of p? In what subset of [−1, 1] is p smaller than 0.5 in absolute value?

Exercise 5.5. Accuracy of point evaluations. (a) Construct the chebfun g corre-
sponding to f(x) = sin(exp(10x)) on [−1, 1]. What is the degree of this polynomial?
(b) Let xx be the vector of 1000 linearly spaced points from −1 to 1. How long does it
take on your computer to evaluate f(xx)? g(xx)? (c) Draw a loglog plot of the vector
of errors |f(xx) − g(xx)| against the vector of derivatives |f ′(xx)|. Comment on why
the dots line up as they do.

Exercise 5.6. Equispaced points. [Not yet finished] Show that for equispaced
points with spacing h the weights are λj = (−1)n−j

(

n
j

)

/hnn!, or after canceling com-

mon factors, λj = (−1)j
(

n
j

)

.

Exercise 5.7. Adpative interpolation grids. [to be written – interpolate |x| and
keep adding worst point.]

Exercise 5.8. Peturbed Chebyshev grids. [perturb the grid and compare rational
and polynomial interpolants]

Exercise 5.9. Barycentric formula for Chebyshev polynomials. Derive an
elegant formula for Tn(x) from (5.13) [Salzer 1972].

Exercise 5.10. Barycentric interpolation in roots of unity. Derive the barycen-
tric weights {λj} for polynomial interpolation in (a) {±1}, (b) {1, i,−1,−i}, (c) The
(n+ 1)st roots of unity for arbitrary n ≥ 0.

Exercise 5.11. Barycentric weights for a general interval. (a) How does the
formula for Chebyshev barycentric weights on [−1, 1] change for weights on an interval
[a, b]? (b) The capacity of [a, b] (see Chapter 12) is equal to c = (b− a)/4. How do the
barycentric weights behave as n → ∞ for an interval of capacity c? As a function of
c, what is the maximal value of n for which they can be represented in IEEE double
precision arithmetic without overflow or underflow? (You may assume the overflow
and underflow limits are 10308 and 10−308. The overflow/underflow problem goes away
with the use of the divided form (5.13).)

6. Weierstrass Approximation Theorem

Every continuous function on a bounded interval can be approximated to arbi-
trary accuracy by polynomials. This is the famous Weierstrass Approximation
Theorem, proved by Karl Weierstrass when he was 70 years old [Weierstrass
1885]. The theorem was independently discovered at about the same time,
in essence, by Carl Runge: as pointed out in 1886 by Phragmén in remarks
published as a footnote stretching over four pages in a paper by Mittag-Leffler
[1900], it can be derived as a corollary of results Runge published in a pair of
papers in 1885 and 1886 [Runge 1885 & 1885/1886] (Exercise 6.3).

Here and throughout this book, except where otherwise indicated, ‖ · ‖ denotes
the supremum norm on [−1, 1].

Theorem 6.1: Weierstrass Approximation Theorem. Let f be a continu-
ous function on [−1, 1] and let ε > 0 be arbitrary. Then there exists a polynomial

37

p such that
‖f − p‖ < ε.

Proof. We shall not spell out a proof in detail. However, here is an outline
of the beautiful proof from Weierstrass’s original paper. First, extend f(x) to
a continuous function f̃ with compact support on the whole real line. Now,
take f̃ as initial data at t = 0 for the diffusion equation ∂u/∂t = ∂2u/∂x2

on the real line. It is known that by convolving f̃ with the Gaussian kernel
φ(x) = e−x2/4t/

√
4πt, we get a solution to this partial differential equation that

converges uniformly to f as t → 0, and thus can be made arbitrarily close to f
on [−1, 1] by taking t small enough. On the other hand, since f̃ has compact
support, for each t > 0 this solution is an integral over a bounded interval of
entire functions and is thus itself an entire function, that is, analytic throughout
the complex plane. Therefore it has a convergent Taylor series on [−1, 1], which
can be truncated to give polynomial approximations of arbitrary accuracy.

For a fuller presentation of the argument just given as “one of the most amusing
applications of the Gaussian kernel,” where the result is stated for the more
general case of a function of several variables approximated by multivariate
polynomials, see Chapter 4 of [Folland 1995]. Many other proofs are also
known, including these early ones:

Runge (1885/86)
Picard (1891)
Lerch (1892 and 1903)
Volterra (1897)
Lebesgue (1898)
Mittag-Leffler (1900)
Fejér (1900)
Landau (1908)
de la Vallée Poussin (1908)
Jackson (1911)
Bernstein (1912)
Montel (1918)

For example, Bernstein’s proof has a probabilistic flavor, and Lebesgue’s proof,
which appeared in his first paper published at age 23, is based on reduc-
ing approximation of general continuous functions to the approximation of |x|
[Lebesgue 1898]. This long list gives an idea of the great amount of mathemat-
ics stimulated by Weierstrass’s theorem and the significant role it played in the
development of analysis in the early 20th century. For a fascinating discussion
of this piece of mathematical history, see [Pinkus 2000].

Weierstrass’s theorem establishes that even extremely non-smooth functions
can be approximated by polynomials, functions like x sin(x−1) or even
sin(x−1) sin(1/ sin(x−1)). The latter function has an infinite number of points
near which it oscillates infinitely often, as we begin to see from the plot below

38

over the range [0.07, 0.4]. In this calculation Chebfun is called with a user-
prescribed number of interpolation points, 30000, since the usual adaptive pro-
cedure has no chance of resolving the function to machine precision with a
practicable number of points.

f = chebfun(@(x) sin(1./x).*sin(1./sin(1./x)),[.07 .4],30000);

plot(f), xlim([.07 .4])

title(’A continuous function that is far from smooth’)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
A continuous function that is far from smooth

We can illustrate the idea of Weierstrass’s proof by showing the convolution
of this complicated function with a Gaussian. Here is the same function f
recomputed over a subinterval extending from one of its zeros to another:

a = 0.2885554757; b = 0.3549060246;

f2 = chebfun(@(x) sin(1./x).*sin(1./sin(1./x)),[a,b],2000);

plot(f2), xlim([a b]), title(’Close-up’)

0.29 0.3 0.31 0.32 0.33 0.34 0.35
−0.3

−0.2

−0.1

0

0.1

0.2
Close−up

Here is a narrow Gaussian.

t = 1e-7;

phi = chebfun(@(x) exp(-x.^2/(4*t))/sqrt(4*pi*t),.003*[-1 1]);

plot(phi), xlim(.035*[-1 1])

title(’A narrow Gaussian kernel’)

39

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

200

400

600

800

1000
A narrow Gaussian kernel

Convolving the two gives a smoothed version of the close-up of f . Notice how
the short wavelengths vanish while the long ones are nearly undisturbed.

f3 = conv(f2,phi);

plot(f3), xlim([a-.003,b+.003])

title(’Convolution of the two’)

0.29 0.3 0.31 0.32 0.33 0.34 0.35
−0.3

−0.2

−0.1

0

0.1

0.2
Convolution of the two

This is an entire function, which means it can be approximated by polynomials
merely by truncating the Taylor series.

For all its beauty, power, and importance, Weierstrass’s theorem has in some
respects served as an unfortunate distraction. Knowing that even troublesome
functions can be approximated by polynomials, we naturally ask, how can we
do it? A famous result of Faber and Bernstein asserts that there is no set
of interpolation points, Chebyshev or otherwise, that achieves convergence as
n → ∞ for all continuous f [Bernstein 1919, Faber 1914]. So it becomes tempt-
ing to look at approximation methods that go beyond interpolation, and to
warn people that interpolation is dangerous, and to try to characterize exactly
what minimal properties of f suffice to ensure that interpolation will work after
all. A great deal is known about these subjects. The trouble with this line of
research is that for almost all the functions encountered in practice, Chebyshev
interpolation works beautifully! Weierstrass’s theorem has encouraged math-
ematicians over the years to give too much of their attention to pathological

40

functions at the edge of discontinuity, leading to the bizarre and unfortunate
situation where many books on numerical analysis caution their readers that
interpolation may fail without mentioning that for functions with a little bit of
smoothness, it succeeds outstandingly. For a discussion of the history of such
misrepresentations and misconceptions, see Chapter 14.

[To be added: (1) Can we speed up conv? (2) Runge & Mergelyan theorems.]

Summary of Chapter 6. A continuous function on a bounded interval

can be approximated arbitrarily closely by polynomials.

Exercise 6.1. A pathological function of Weierstrass. Weierstrass was one of
the first to give an example of a function continuous but nowhere differentiable on
[−1, 1], and it is one of the early examples of a fractal [Weierstrass 1872]:

w(x) =

∞
∑

k=0

2−k cos(3kx).

(a) Construct a chebfun w7 corresponding to this series truncated at k = 7. Plot w7,
its derivative (use diff), and its indefinite integral (cumsum). What is the degree of
the polynomial defining this chebfun? (b) Prove that w is continuous. (You can use
the Weierstrass M-test.)

Exercise 6.2. Taylor series of an entire function. In illustrating the proof of the
Weierstrass Approximation Theorem we plotted a Gaussian kernel. The key point of
the proof is that this kernel is entire, so its Taylor series converges for all x. (a) For
x = 1 at the given time t = 10−7, how many terms of the Taylor series about x = 0
would you have to take before the terms fall below 1? Estimate the answer at least to
within a factor of 2. You may find Stirling’s formula helpful. (b) Also for x = 1 and
t = 10−7, approximately how big is the biggest term in the Taylor series?

Exercise 6.3. Runge’s proof. [to be written]

Exercise 6.4. Resolving a difficult function. [Figure out how many points it
would take in fact to resolve the wiggly function. To be written.]

7. Convergence for differentiable functions

The principle mentioned at the end of the last chapter might be regarded as
the central fact of approximation theory: the smoother a function, the faster its
approximants converge as n → ∞. Connections of this kind were explored in
the early years of the 20th century by three of the founders of approximation
theory: Charles de la Vallée Poussin (1866–1962), a mathematician at Lou-
vain in Belgium, Sergei Bernstein (1880–1968), a Ukrainian mathematician who
had studied with Hilbert in Göttingen, and Dunham Jackson (1888–1946), an
American student of Landau’s also at Göttingen. (Henri Lebesgue in France

41

(1875–1941) also proved some of the early results. For remarks on the history
see [Goncharov 2000, Steffens 2006].) Bernstein made the following comment
concerning best approximation errors En(f) = ‖f − p∗n‖∞ (see Chapter 10) in
his summary article for the International Congress of Mathematicians in 1912
[Bernstein 1912a].

The general fact that emerges from this study is the existence of a most inti-
mate connection between the differential properties of the function f(x) and the
asymptotic rate of decrease of the positive numbers En[f(x)].

3

In this and the next chapter our aim is to make the smoothness–approximability
link precise in the context of Chebyshev truncations and interpolants. Every-
thing here is analogous to results for Fourier analysis of periodic functions,
and indeed, the whole theory of Chebyshev interpolation can be regarded as
a transplant to nonperiodic functions on [−1, 1] of the theory of trigonometric
interpolation of periodic functions on [−π, π].

Suppose a function f is ν times differentiable on [−1, 1], possibly with jumps in
the νth derivative, and suppose you look at the convergence of its Chebyshev
interpolants as n → ∞, measuring the error in the ∞-norm. You will typically
see convergence at the rate O(n−ν). We can explore this effect readily in Cheb-
fun. For example, the function f(x) = |x| is once differentiable with a jump
in the first derivative at x = 0, and the convergence curve nicely matches n−1

(shown as a straight line). Actually the match is more than just “nice” in this
case — it is exact, with pn taking its maximal error at the value p(0) = 1/n for
odd n. (For even n the error is somewhat smaller.)

f = abs(x);

nn = 2*round(2.^(0:.3:7))-1;

ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

end

hold off, loglog(nn,1./nn,’r’)

text(5,0.07,’n^{-1}’,FS,12)

grid on, axis([1 300 1e-3 2])

hold on, loglog(nn,ee,’.’)

title(’Linear convergence for a differentiable function’)

3“Le fait général qui se dégage de cette étude est l’existence d’une liaison des plus intimes
entre les propriétés différentielles de la fonction f(x) et la loi asymptotique de la décroissance
des nombres positifs En[f(x)].”

42

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

n−1

Linear convergence for a differentiable function

Similarly, we get cubic convergence for

f(x) = | sin(5x)|3, (7.1)

which is three times differentiable with jumps in the third derivative at x = 0
and ±π/5.

f = abs(sin(5*x)).^3;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

end

hold off, loglog(nn,nn.^-3,’r’)

text(4,.0015,’n^{-3}’,FS,12)

grid on, axis([1 300 2e-6 10])

hold on, loglog(nn,ee,’.’)

title(’Cubic convergence for a 3-times differentiable function’)

10
0

10
1

10
2

10
−4

10
−2

10
0

n−3

Cubic convergence for a 3−times differentiable function

Encouraged by such experiments, you might look in a book to try to find theo-
rems about O(n−ν). If you do, you’ll run into two difficulties. First, it’s hard to
find theorems about Chebyshev interpolants, for most of the literature is about
other approximations such as best approximations (see Chapters 10 and 16) or
interpolants in Chebyshev polynomial roots rather than extrema. Second, you
will probably fall one power of n short! In particular, the most commonly quoted

43

of the Jackson theorems asserts that if f is ν times continuously differentiable
on [−1, 1], then its best polynomial approximations converge at the rate O(n−ν)
[Jackson 1911; Cheney 1966, sec. 4.6]. But the first and third derivatives of the
functions we just looked at, respectively, are not continuous. Thus we must
settle for the zeroth and second derivatives, respectively, if we insist on conti-
nuity, so this theorem would ensure only O(n0) and O(n−2) convergence, not
the O(n−1) and O(n−3) that are actually observed. And it would apply to best
approximations, not Chebyshev interpolants.

We can get the result we want by recognizing that most functions encountered in
applications have a property that is not assumed in most theorems: bounded
variation. A function, whether continuous or not, has bounded variation if its
total variation is finite. The total variation is the 1-norm of the derivative
(as defined if necessary in the distributional sense; see [Ziemer 1989, chap. 5] or
[Evans & Gariepy 1991, sec. 5.10]). We can compute this number conveniently
with Chebfun by writing an anonymous function:

tv = @(f) norm(diff(f),1);

Here are the total variations of x and sin(10πx) over [−1, 1]:

disp([tv(x) tv(sin(10*pi*x))])

2.000000000000000 40.000000000000007

Here is the total variation of the derivative of |x|:

tv(diff(abs(x)))

ans = 2

Here is the total variation of the third derivative of the function f of (7.1):

tv(diff(f,3))

ans = 1.652783663432566e+04

It is the finiteness of this number that allowed the Chebyshev interpolants to
this function f to converge as fast as O(n−3).

To get to a precise theorem we begin with a bound on Chebyshev coefficients, an
improvement (in the definition of the quantity V) of a similar result in [Trefethen
2008]. The condition of absolute continuity is a standard one which we shall not
make detailed use of, so we will not discuss. An absolutely continuous function
is equal to the integral of its derivative, which exists almost everywhere and is
Lebesgue integrable.

Theorem 7.1: Chebyshev coefficients of differentiable functions. For
an integer ν ≥ 0, let f have an absolutely continuous (ν− 1)st derivative f (ν−1)

44

on [−1, 1] (if ν > 0) and a νth derivative f (ν) of bounded variation V . Then
for k ≥ ν + 1, the Chebyshev coefficients of f satisfy

|ak| ≤
2V

πk(k − 1) · · · (k − ν)
≤ 2V

π(k − ν)ν+1
. (7.2)

Proof. As in the proof of Theorem 3.1, setting x = 1
2 (z + z−1) with z on the

unit circle gives

ak =
1

πi

∫

|z|=1

f(12 (z + z−1)) zk−1 dz,

and integrating by parts with respect to z converts this to

ak =
−1

πi

∫

|z|=1

f ′(12 (z + z−1))
zk

k

dx

dz
dz ; (7.3)

the factor dx/dz appears since f ′ denotes the derivative with respect to x rather
than z. Suppose now ν = 0, so that all we are assuming about f is that it is of
bounded variation V = ‖f ′‖1. Then we note that this integral over the upper
half of the unit circle is equivalent to an integral in x ; the integral over the lower
half gives another such integral. Combining the two gives

ak =
1

πi

∫ 1

−1

f ′(x)
zk − z−k

k
dx =

2

π

∫ 1

−1

f ′(x) Im
zk

k
dx,

and since |zk/k| ≤ 1/k for x ∈ [−1, 1] and V = ‖f ′‖1, this implies |ak| ≤ 2V/πk,
as claimed.

If ν > 0, we replace dx/dz by 1
2 (1− z−2) in (7.3), obtaining

ak = − 1

πi

∫

|z|=1

f ′(12 (z + z−1))

[

zk

2k
− zk−2

2k

]

dz.

Integrating by parts again with respect to z converts this to

ak =
1

πi

∫

|z|=1

f ′′(12 (z + z−1))

[

zk+1

2k(k + 1)
− zk−1

2k(k − 1)

]

dx

dz
dz.

Suppose now ν = 1 so that we are assuming f ′ has bounded variation V =
‖f ′′‖1. Then again this integral is equivalent to an integral in x,

ak =
−2

π

∫ 1

−1

f ′′(x) Im

[

zk+1

2k(k + 1)
− zk−1

2k(k − 1)

]

dx.

Since the term in square brackets is bounded by 1/k(k − 1) for x ∈ [−1, 1] and
V = ‖f ′′‖1, this implies |ak| ≤ 2V/πk(k − 1), as claimed.

45

If ν > 1, we continue in this fashion with a total of ν + 1 integrations by parts
with respect to z, in each case first replacing dx/dz by 1

2 (1− z−2). At the next
step the term that appears in square brackets is

[

zk+2

4k(k + 1)(k + 2)
− zk

4k2(k + 1)
− zk

4k2(k − 1)
+

zk−2

4k(k − 1)(k − 2)

]

,

which is bounded by 1/k(k − 1)(k − 2) for x ∈ [−1, 1]. And so on.

From Theorems 3.1 and 7.1 we can derive consequences about the accuracy
of Chebyshev truncations and interpolants. The estimate (7.5) can be found
as Corollary 2 in [Mastroianni & Szabados 1995], though with a bound of the
form O(n−νV) rather than an explicit constant, whose appearance here so far
as we know is new. The analogous result for best approximations as opposed to
Chebyshev interpolants or truncations was announced in [Bernstein 1911] and
proved in [Bernstein 1912c].

Theorem 7.2: Convergence for differentiable functions. If f satisfies
the conditions of Theorem 7.1, with V again denoting the total variation of f (ν)

for some ν ≥ 1, then for any n > ν, its Chebyshev truncations satisfy

‖f − fn‖ ≤ 2V

πν(n− ν)ν
(7.4)

and its Chebyshev interpolants satisfy

‖f − pn‖ ≤ 4V

πν(n− ν)ν
. (7.5)

Proof. For (7.4), Theorem 7.1 applied to equation (4.8) gives us

‖f − fn‖ ≤
∞
∑

k=n+1

|ak| ≤
2V

π

∞
∑

k=n+1

(k − ν)−ν−1

and this sum can in turn be bounded by

∫ ∞

n

(s− ν)−ν−1ds =
1

ν(n− ν)ν
.

For (7.5), we use (4.9) instead of (4.8) and get the same bound except with
coefficients 2|ak| rather than |ak|.

In a nutshell: a ν th derivative of bounded variation implies convergence at the
algebraic rate O(n−ν). Here is a way to remember this message. Suppose we
try to approximate the step function sign(x) by polynomials. There is no hope
of convergence, since polynomials are continuous and sign(x) is not, so all we
can achieve is accuracy O(1) as n → ∞. That’s the case ν = 0. But now, each

46

time we make the function “one derivative smoother,” ν increases by 1 and so
does the order of convergence.

How sharp is Theorem 7.2 for our example functions? In the case of f(x) = |x|,
with ν = 1 and V = 2, it predicts ‖f − fn‖ ≤ 4/π(n − 1) and ‖f − pn‖ ≤
8/π(n−1) ≈ 2.55/(n−1). As mentioned above, the actual value for Chebyshev
interpolation is ‖f − pn‖ = 1/n for odd n. The minimal possible error in poly-
nomial approximation, with pn replaced by the best approximation p∗n (Chapter
10), is ‖f − p∗n‖ ∼ 0.280169 . . . n−1 as n → ∞ [Varga & Carpenter 1985]. So we
see that the range from best approximant, to Chebyshev interpolant, to bound
on Chebyshev interpolant is less than a factor of 10. The approximation of |x|
was a central problem studied by Lebesgue, de la Vallée Poussin, Bernstein, and
Jackson a century ago, and we shall consider it further in Chapter 24.

The results are similar for the other example, f(x) = | sin(5x)|3, whose third
derivative, we saw, has variation V ≈ 16528. Equation (7.5) implies that the
Chebyshev interpolants satisfy ‖f − pn‖ < 7020/(n − 1)3, whereas in fact, we
have ‖f − pn‖ ≈ 309/n3 for large odd n and ‖f − p∗n‖ ≈ 80/n3.

We close with a comment about Theorem 7.2. We have assumed in this theorem
that f (ν) is of bounded variation. A similar but weaker condition would be
that f (ν−1) is Lipschitz continuous (Exercise 7.2). This weaker assumption is
enough to ensure ‖f − p∗n‖ = O(n−ν) for the best approximations {p∗n}; this
is one of the Jackson theorems. On the other hand it is not enough to ensure
O(n−ν) convergence of Chebyshev truncations and interpolants. The reason
we emphasize the stronger implication with the stronger conclusion is that in
practice, one rarely deals with a function that is Lipschitz continuous while
lacking a derivative of bounded variation, whereas one constantly deals with
truncations and interpolants rather than best approximations.

Incidentally it was de la Vallée Poussin [1908] who first showed that the strong
hypothesis is enough to reach the weak conclusion: if f (ν) is of bounded vari-
ation, then ‖f − p∗n‖ = O(n−ν) for the best approximation p∗n. Three years
later Jackson [1911] sharpened the result by weakening the hypothesis as just
indicated.

[To be added: (1) Converse of Thm 7.2. (2) Jackson and other literature? (3)
Check case ν = 0 in Theorem 7.1 and make comment about Gibbs phenomenon.
(4) Re Thm 7.2, check paper recommended by Tadmor: Canuto & Q, Approx
results for orthog polys in Sobolev spaces, Math Comp 38 (1982), 67–82.]

47

Summary of Chapter 7. The smoother a function f defined on [−1, 1] is,
the faster its approximants converge. In particular, if the νth derivative of

f is of bounded variation V , then the Chebyshev coefficients {ak} of f are

bounded in absolute value by 2π−1V (k−ν)−ν−1. It follows that the degree

n Chebyshev truncation and interpolant of f have accuracy O(V n−ν).

Exercise 7.1. Total variation. (a) Determine numerically the total variation of
f(x) = sin(100x)/(1 + x2) on [−1, 1]. (b) It is no coincidence that the answer is close
to 100, and indeed the total variation of sin(Mx)/(1 + x2) on [−1, 1] is asymptotic to
M as M → ∞. Explain why.

Exercise 7.2. Lipschitz continuous vs. derivative of bounded variation. (a)
Prove that if the derivative f ′ of a function f has bounded variation, then f is Lipschitz
continuous. (b) Give an example to show that the converse does not hold.

Exercise 7.3. Convergence for Weierstrass’s function. Exercise 6.1 considered
a “pathological function of Weierstrass” w(x) which is continuous but nowhere differ-
entiable on [−1, 1]. (a) Make an anonymous function in Matlab that evaluates w(xx)
for a vector xx to machine precision by taking the sum to 53 terms. (b) Use Chebfun
to produce a plot of ‖w − pn‖ accurate enough and for high enough values of n to
confirm that convergence appears to take place as n → ∞. Thus w is not one of the
functions for which interpolants fail to converge, a fact we shall prove in Chapter 15
while also showing how such troublesome functions can be constructed.

Exercise 7.4. Sharpness of Theorem 7.2. Consider the functions (a) f(x) = |x|,
(b) f(x) = |x|5, (c) f(x) = sin(100x). In each case plot as functions of n the error
‖f − pn‖ in Chebyshev interpolation on [−1, 1] and the bound on this quantity from
(7.5). How close are the bounds? In cases (a) and (b) take ν as large as possible, and
in case (c) take ν = 2, 4, and 8.

8. Convergence for analytic functions

Suppose f is not just k times differentiable but infinitely differentiable and in
fact analytic on [−1, 1]. (Recall that this means that for any s ∈ [−1, 1], f has a
Taylor series about s that converges to f in a neighborhood of s.) Then without
any further assumptions we may conclude that the Chebyshev truncations and
interpolants converge geometrically, that is, at the rate O(C−n) for some
constant C > 1. This means the errors will look like straight lines (or better)
on a semilog scale rather than a loglog scale. This kind of connection was first
announced by Bernstein in 1911, who showed that the best approximations to
a function f on [−1, 1] converge geometrically as n → ∞ if and only if f is
analytic [Bernstein 1911 & 1912c].

For example, for Chebyshev interpolants of the function (1+25x2)−1, known as
the Runge function (Chapter 13), we get steady geometric convergence down
to the level of rounding errors:

48

f = 1./(1+25*x.^2);

nn = 0:10:200; ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

end

hold off, semilogy(nn,ee,’.’), grid on, axis([0 200 1e-17 10])

title([’Geometric convergence of Chebyshev ’ ...

’ interpolants -- analytic function’])

0 20 40 60 80 100 120 140 160 180 200

10
−15

10
−10

10
−5

10
0

Geometric convergence of Chebyshev interpolants −− analytic function

If f is analytic not just on [−1, 1] but in the whole complex plane — such
a function is said to be entire — then the convergence is even faster than
geometric. Here, for the function cos(20x), the dots are not approaching a fixed
straight line but a curve that gets steeper as n increases, until rounding errors
cut off the progress.

f = cos(20*x);

nn = 0:2:60; ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

end

semilogy(nn,ee,’.’), grid on, axis([0 60 1e-16 100])

title(’Convergence of Chebyshev interpolants -- entire function’)

0 10 20 30 40 50 60

10
−15

10
−10

10
−5

10
0

Convergence of Chebyshev interpolants −− entire function

There are elegant theorems that explain these effects. If f is analytic on [−1, 1],
then it can be analytically continued to a neighborhood of [−1, 1] in the complex

49

plane. (The idea of analytic continuation is explained in complex variables
textbooks; see also Chapter 28.) The bigger the neighborhood, the faster the
convergence. In particular, for polynomial approximations, the neighborhoods
that matter are the regions in the complex plane bounded by ellipses with foci
at −1 and 1. We call these Bernstein ellipses, for they were introduced
into approximation theory by Bernstein [1912b, 1912c, 1913a & 1914a]. It is
easy to plot these ellipses: pick a number ρ > 1 and plot the image in the
complex x-plane of the circle of radius ρ in the z-plane under the Joukowsky
map x = (z+z−1)/2. We let Eρ denote the open region bounded by this ellipse.
Here, for example, are the Bernstein ellipses corresponding to the parameters
ρ = 1.1, 1.2, . . . , 2:

z = exp(2i*pi*x);

for rho = 1.1:0.1:2

e = (rho*z+(rho*z).^(-1))/2;

plot(e), hold on

end

ylim([-.9 .9]), axis equal

title(’Bernstein ellipses for \rho = 1.1, 1.2, ..., 2’)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

Bernstein ellipses for ρ = 1.1, 1.2, ..., 2

It is not hard to verify that the length of the semimajor axis of Eρ plus the
length of the semiminor axis is equal to ρ (Exercise 8.1).

Here is the basic bound on Chebyshev coefficients of analytic functions from
which many other things follow. It first appeared in Section 61 of [Bernstein
1912c].

Theorem 8.1: Chebyshev coefficients of analytic functions. Let a func-
tion f analytic in [−1, 1] be analytically continuable to the open ρ-ellipse Eρ,
where it satisfies |f(z)| ≤ M for some M . Then its Chebyshev coefficients
satisfy

|ak| ≤ 2Mρ−k, (8.1)

with |a0| ≤ M in the case k = 0.

50

Proof. As in the proofs of Theorems 3.1, 4.1, and 7.1, we make use of the
transplantation from f(x) and Tk(x) on [−1, 1] in the x-plane to F (z) and
(zk + z−k)/2 on the unit circle in the z-plane, with x = (z+ z−1)/2 and F (z) =
F (z−1) = f(x). The ellipse Eρ in the x-plane corresponds under this formula in
a 1-to-2 fashion to the annulus ρ−1 < |z| < ρ in the z-plane. By this we mean
that for each x in Eρ\[−1, 1] there are two corresponding values of z which are
inverses of one another, and both the circles |z| = ρ and |z| = ρ−1 map onto
the ellipse itself. (We can no longer use the formula x = Re z, which is valid
only for |z| = 1.) The first thing to note is that if f is analytic in the ellipse,
then F is analytic in the annulus since it is the composition of the two analytic
functions z 7→ (z + z−1)/2 and x 7→ f(x). Now we make use of the contour
integral formula (3.6),

ak =
1

πi

∫

|z|=1

z−1−kF (z) dz,

with πi replaced by 2πi for k = 0. Suppose for a moment that F is analytic not
just in the annulus but in its closure ρ−1 ≤ |z| ≤ ρ. Then we can expand the
contour to |z| = ρ without changing the value of the integral, giving

ak =
1

πi

∫

|z|=ρ

z−1−kF (z) dz,

again with πi replaced by 2πi for k = 0. Since the circumference is 2πρ and
|F (z)| ≤ M , the required bound now follows from an elementary estimate. If F
is analytic only in the open annulus, we can move the contour to |z| = s for any
s < ρ, leading to the same bound for any s < ρ and hence also for s = ρ.

Here are two of the consequences of Theorem 8.1. Equation (8.2) first appeared
in [Bernstein 1912c, Sec. 61]. I do not know where (8.3) may have appeared,
though similar slightly weaker bounds can be found in (4.13) and (4.16) of
[Tadmor 1986].

Theorem 8.2: Convergence for analytic functions. If f has the properties
of Theorem 8.1, then for each n ≥ 0 its Chebyshev truncations satisfy

‖f − fn‖ ≤ 2Mρ−n

ρ− 1
(8.2)

and its Chebyshev interpolants satisfy

‖f − pn‖ ≤ 4Mρ−n

ρ− 1
. (8.3)

Proof. Equation (8.2) follows from Theorem 8.1 and (4.8), and (8.3) follows
from Theorem 8.1 and (4.9).

We can apply Theorem 8.2 directly if f is analytic and bounded in Eρ. If it is
analytic but unbounded in Eρ, then it will be analytic and bounded in Es for
any s < ρ, so we still get convergence at the rate O(s−n) for any s < ρ.

51

For example, the Runge function (1 + 25x2)−1 considered above has poles at
±i/5. The corresponding value of ρ is (1 +

√
26)/5 ≈ 1.220, and the errors in

Chebyshev interpolation match this rate beautifully:

f = 1./(1+25*x.^2);

nn = 0:10:200; ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1);

ee(j) = norm(f-fn,inf);

end

rho = (1+sqrt(26))/5;

hold off, semilogy(nn,rho.^(-nn),’-r’)

hold on, semilogy(nn,ee,’.’)

grid on, axis([0 200 1e-17 10])

title(’Geometric convergence for the Runge function’)

0 20 40 60 80 100 120 140 160 180 200

10
−15

10
−10

10
−5

10
0

Geometric convergence for the Runge function

Here is a more extreme but entirely analogous example: tanh(50πx), with poles
at ±0.01i. These poles are so close to [−1, 1] that the convergence is much
slower, but it is still robust. The only difference in this code segment is that
norm(f-fn,inf), a relatively slow Chebfun operation that depends on find-
ing zeros of the derivative of f-fn, has been replaced by the default 2-norm
norm(f-fn), which is quick. This makes little difference to the figure, as the
exponential decay rates are the same. (In the ∞-norm, the dots in the figure
would appear just above the red line instead of just below it.)

f = tanh(50*pi*x);

nn = 0:200:4000; ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn);

end

rho = (1+sqrt(10001))/100;

hold off, semilogy(nn,rho.^(-nn),’-r’)

hold on, semilogy(nn,ee,’.’)

grid on, axis([0 4000 1e-16 10])

title([’Geometric convergence for a function ’ ...

’analytic in a narrow region’])

52

0 500 1000 1500 2000 2500 3000 3500 4000

10
−15

10
−10

10
−5

10
0

Geometric convergence for a function analytic in a narrow region

For another example, the function
√
2− x has a branch point at x = 2, corre-

sponding to ρ = 2 +
√
3. Again we see a good match, with the curve gradually

bending over to the expected slope as n → ∞.

f = sqrt(2-x);

nn = 0:30; ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

end

rho = 2+sqrt(3);

hold off, semilogy(nn,rho.^(-nn),’-r’)

hold on, semilogy(nn,ee,’.’)

grid on, axis([0 30 1e-17 10])

title([’Geometric convergence for an analytic ’ ...

’function with a branch point’])

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Geometric convergence for an analytic function with a branch point

We conclude this chapter by stating a converse of Theorem 8.2, also due to
Bernstein [1912c, Section 9]. The converse is not quite exact: Theorem 8.2
assumes analyticity and boundedness in Eρ, whereas the conclusion of Theorem
8.3 is analyticity in Eρ but not necessarily boundedness.

Theorem 8.3: Converse of Theorem 8.2. Suppose f is a function on [−1, 1]

53

for which there exist polynomial approximations {qn} satisfying

‖f − qn‖ ≤ Cρ−n, n ≥ 0

for some constants ρ > 1 and C > 0. Then f can be analytically continued to
an analytic function in the open ρ-ellipse Eρ.

Proof. The assumption implies that the polynomials {qn} satisfy ‖qn− qn−1‖ ≤
2Cρ1−n on [−1, 1]. Since qn − qn−1 ∈ Pn, it can be shown that this implies
‖qn − qn−1‖Es

≤ 2Csnρ1−n for any s > 1, where ‖ · ‖Es
is the supremum norm

on the s-ellipse Es. (This estimate is one of Bernstein’s inequalities, from
Section 9 of [Bernstein 1912c]; see Exercise 8.6.) For s < ρ, this gives us a
representation for f in Es as a series of analytic functions,

f = q0 + (q1 − q0) + (q2 − q1) + · · · ,

which according to the Weierstrass M test is uniformly convergent. According
to another well-known theorem of Weierstrass, this implies that the limit is a
bounded analytic function [Ahlfors 1953, Markushevich 1985]. Since this is true
for any s < ρ, the analyticity applies throughout Eρ.

Note that Theorem 8.2 and 8.3 together establish a simple fact: a function
defined on [−1, 1] can be approximated by polynomials with geometric accuracy
if and only if it is analytic.

[To be added: (1) What did Bernstein 1912 (Sur l’ordre...) show about geom
conv for Cheb pts of the 1st kind? (2) Can we prove Bernstein’s inequality
from the barycentric formula, following Riesz 1916? (3) Make it clearer how
you work out ρ, given a function. In particular there should be more exercises
giving practice finding singularities in the complex plane. (4) Exercise exploring
convergence in the complex plane, in a Bernstein ellipse. (5) Fix reference
Bernstein 1913a. (6) Exercise about sqrt(kappa) convergence of CG.]

Summary of Chapter 8. If f is analytic, its Chebyshev coefficients {ak}
decrease geometrically. In particular, if f is analytic and bounded by M
in the Bernstein ρ-ellipse about [−1, 1], then |ak| is bounded by 2Mρ−k. It

follows that the degree n Chebyshev truncation and interpolant of f have

accuracy O(Mρ−n).

Exercise 8.1. Bernstein ellipses. Verify that for the Bernstein ellipse Eρ for any
ρ > 1, the length of the semimajor axis plus the length of the semiminor axis is equal
to ρ.

Exercise 8.2. A Chebyshev series. With x = chebfun(’x’), execute the com-
mand chebpolyplot(sin(100*(x-.1))+.01*tanh(20*x)). Explain the various fea-
tures of the resulting plot as quantitatively as you can.

54

Exercise 8.3. Interpolation of an entire function. The function f(x) =
exp(−x2) is analytic throughout the complex x-plane, so Theorem 8.2 can be ap-
plied for any value of the parameter ρ > 1. Produce a semilog plot of ‖f − pn‖ as a
function of n together with lines corresponding to the upper bound of the theorem for
ρ = 1.1, 1.2, 1.4, 2, 3, 5, 8. Be sure to use the right value of M in each case. How well
do your bounds fit the data?

Exercise 8.4. Convergence rates for different functions. Based on the theorems
of this chapter, what can you say about the convergence as n → ∞ of the Chebyshev
interpolants to (a) log((x+ 3)/4)/(x− 1), (b)

∫ x

−1
cos(t2)dt, (c) tan(tan(x)), (d) (1 +

x) log(1 + x) ? In each case compare theoretical bounds with numerically computed
results. Which is the case that converges much faster than the theorems predict? Can
you speculate as to why?

Exercise 8.5. Total variation. Let f be a smooth function defined on [0, 1] and
t(x) its total variation over the interval [0, x]. What is the total variation of t over
[0, 1]?

Exercise 8.6. Proof of Bernstein inequality. Prove Bernstein’s inequality used
in the proof of Theorem 8.3: if p is a polynomial of degree d, then ‖p‖Eρ ≤ ρd ‖p‖,
where ‖ · ‖Eρ is the ∞-norm over the ρ-ellipse and ‖ · ‖ is the ∞-norm over [−1, 1].
Hint: Show that if the branch cut is taken to be the unit interval [−1, 1], the function
q(z) = p(z)/(z + (z2 − 1)1/2)d is analytic throughout the region consisting of the
complex plane plus the point z = ∞ minus [−1, 1]. Apply the maximum modulus
principle.

Exercise 8.7. Absolute value function. The function |x − i| is analytic for
x ∈ [−1, 1]. Write it in another equivalent form that makes it clear exactly what
form of singularities it has in the complex plane.

Exercise 8.8. Chebyshev polynomials on the Bernstein ellipse. Show that
for any ρ > 1 and any z on the boundary of the ellipse Eρ, limn→∞ |Tn(z)|1/n = ρ.

Exercise 8.9. You can’t judge smoothness by eye. Define f(x) = 2 + sin(50x)
and g(x) = f(x)1.0001 and construct chebfuns for these functions on [−1, 1]. What are
their lengths? Explain this effect as quantitatively as you can using the theorems of
this chapter.

9. Gibbs phenomenon

Polynomial interpolants and truncations oscillate and overshoot near disconti-
nuities. We have observed this Gibbs phenomenon already in Chapter 2, and
now we shall look at it more carefully. We shall see that the Gibbs effect for
interpolants can be regarded as a consequence of the oscillating inverse-linear
tails of Lagrange polynomials, i.e., interpolants of Kronecker delta functions.
Chapter 15 will show that these same tails, combined together in a different
manner, are also the origin of Lebesgue constants of size O(logn), with impli-
cations throughout approximation theory.

To start, let us consider the function sign(x), which we interpolate in n+1 = 10
and 20 Chebyshev points. We take n to be odd to avoid having a gridpoint at

55

the middle of the step.

f = sign(x);

subplot(1,2,1), hold off, plot(f,’k’), hold on, grid on

f9 = chebfun(f,10); plot(f9,’.-’)

title(’Gibbs overshoot, n = 9’)

subplot(1,2,2), hold off, plot(f,’k’), hold on, grid on

f19 = chebfun(f,20); plot(f19,’.-’)

title(’Gibbs overshoot, n = 19’)

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
Gibbs overshoot, n = 9

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
Gibbs overshoot, n = 19

Both of these figures show a substantial overshoot near the jump. As n increases
from 9 to 19, the overshoot gets narrower, but not shorter, and it will not go
away as n → ∞. Let us zoom in, using the {·, ·} feature to construct chebfuns
on subintervals:

subplot(1,2,1), hold off, plot(f,’k’), hold on, grid on

plot(f9,’.’), plot(f9{0,0.8}), axis([-.2 .8 .5 1.5])

title(’Gibbs overshoot, n = 9’)

subplot(1,2,2), hold off, plot(f,’k’), hold on, grid on

plot(f19,’.’), plot(f19{0,0.4}), axis([-.1 .4 .5 1.5])

title(’Gibbs overshoot, n = 19’)

−0.2 0 0.2 0.4 0.6 0.8
0.5

1

1.5
Gibbs overshoot, n = 9

−0.1 0 0.1 0.2 0.3 0.4
0.5

1

1.5
Gibbs overshoot, n = 19

We now zoom in further with analogous plots for n = 99 and 999.

56

subplot(1,2,1), hold off, plot(f,’k’), hold on

f99 = chebfun(f,100); plot(f99,’.’)

title(’Gibbs overshoot, n = 99’)

plot(f99{0,0.08}), grid on, axis([-.02 .08 .5 1.5])

subplot(1,2,2), hold off, plot(f,’k’), hold on

f999 = chebfun(f,1000); plot(f999,’.’)

title(’Gibbs overshoot, n = 999’)

set(gca,’xtick’,-.002:.002:.01)

set(gca,’xticklabel’,{’-0.002’,’0’,’0.002’,’0.004’,’0.006’,’0.008’})

plot(f999{0,0.008}), grid on, axis([-.002 .008 .5 1.5])

−0.02 0 0.02 0.04 0.06 0.08
0.5

1

1.5
Gibbs overshoot, n = 99

−0.002 0 0.002 0.004 0.006 0.008
0.5

1

1.5
Gibbs overshoot, n = 999

Notice that in these figures, the vertical scale is always fixed while the horizon-
tal scale is adjusted proportionally, confirming that the Gibbs overshoot gets
narrower but approaches a constant height in the limit n → ∞.

What is this height? We can measure it numerically with the max command:

disp(’ n Gibbs amplitude’)

for n = 2.^(1:8)-1

gibbs = max(chebfun(f,n+1));

fprintf(’%7d %17.8f\n’, n, gibbs)

end

n Gibbs amplitude

1 1.00000000

3 1.18807518

7 1.26355125

15 1.27816423

31 1.28131717

63 1.28204939

127 1.28222585

255 1.28226917

Clearly as n → ∞, the maximum of the Chebyshev interpolant to the sign func-
tion converges to a number bigger than 1. The total variation of the interpolant,
meanwhile, diverges slowly to ∞, at a rate proportional to log n:

57

disp(’ n variation’)

for n = 2.^(1:8)-1

tv = norm(diff(chebfun(f,n+1)),1);

fprintf(’%7d %14.2f\n’, n, tv)

end

n variation

1 2.00

3 2.75

7 3.64

15 4.56

31 5.47

63 6.37

127 7.26

255 8.15

The following theorem summarizes the Gibbs phenomenon for Chebyshev in-
terpolants. Well, perhaps it is not right to call it a “theorem”, since it is not
clear that a proof has ever been written down. The formulas necessary to rep-
resent the interpolant (in the equivalent trigonometric case — see Exercise 9.4)
can be found in various forms in [Runck 1962] and [Helmberg & Wagner 1997],
which relates the interpolating polynomial to the beta function and reports the
numbers 1.282 and 1.066 to three digits of accuracy. The more precise results
presented here have been privately communicated to us by Wagner based on
calculations to more than 500 digits.

Theorem 9.1. Gibbs phenomenon for Chebyshev interpolants. Let pn
be the degree n Chebyshev interpolant of the function f(x) = sign(x) on [−1, 1].
Then as n → ∞,

lim
n→∞, n odd

‖pn‖ = c1 = 1.28228345577542854813 . . . , (9.1)

lim
n→∞, n even

‖pn‖ = c2 = 1.06578388826644809905 (9.2)

(The case of n even differs in having a gridpoint at the middle of the jump.)

Although we are not going to prove Theorem 9.1, we do want to indicate where
the fixed-overshoot effect comes from. Everything falls into place when we
consider the Lagrange polynomials introduced in Chapter 5. Recall from (5.2)
that the jth Lagrange polynomial ℓj(x) for the (n+ 1)-point Chebyshev grid is
the unique polynomial in Pn that takes the values 1 at xj and 0 at the other grid
points xk. On the 20-point grid, i.e. n = 19, here are the Lagrange polynomials
ℓ10 and ℓ11, with a dashed line marked at x = −0.15, which will be our point
of special interest.

clf, yl = [-0.3 1.3];

xc = -0.15*[1 1];

58

p10 = chebfun([zeros(1,10) 1 zeros(1,9)]);

p11 = chebfun([zeros(1,11) 1 zeros(1,8)]);

subplot(1,2,1), plot(p10,’.-’)

hold on, plot(xc,yl,’--r’), ylim(yl)

title(’Lagrange polynomial l_{10}’)

subplot(1,2,2), plot(p11,’.-’)

hold on, plot(xc,yl,’--r’), ylim(yl)

title(’Lagrange polynomial l_{11}’)

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lagrange polynomial l
10

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lagrange polynomial l
11

Here are ℓ12 and ℓ13:

p12 = chebfun([zeros(1,12) 1 zeros(1,7)]);

p13 = chebfun([zeros(1,13) 1 zeros(1,6)]);

subplot(1,2,1), hold off, plot(p12,’.-’)

hold on, plot(xc,yl,’--r’), ylim(yl)

title(’Lagrange polynomial l_{12}’)

subplot(1,2,2), hold off, plot(p13,’.-’)

hold on, plot(xc,yl,’--r’), ylim(yl)

title(’Lagrange polynomial l_{13}’)

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lagrange polynomial l
12

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lagrange polynomial l
13

Following (5.1), we note that the by taking the sum of a sequence of such
Lagrange functions, we get the interpolant to the function that jumps from 0
for x < 0 to 1 for x > 0. Here is the sum of the four just plotted, which is
beginning to look like a square wave:

59

clf, plot(p10+p11+p12+p13,’.-’)

hold on, plot(xc,yl,’--r’), ylim(yl)

title(’l_{10} + l_{11} + l_{12} + l_{13}’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

l
10

 + l
11

 + l
12

 + l
13

If we went all the way to the last grid point we would get the interpolant

p(x) =
n
∑

j=(n+1)/2

ℓj(x).

Note that for any fixed x < x(n−1)/2, this is an alternating series of small terms
whose amplitudes decrease inverse-linearly to zero. The finite but nonzero sum
of such a series in the limit n → ∞ is what gives rise to the fixed overshoot
Gibbs effect in polynomial interpolation.

In particular, suppose we focus on the dashed line at x = −0.15 in the figures.
Notice the alternating signs of the values of ℓ10, ℓ11, ℓ12, ℓ13 at this point. In the
figure for ℓ10 + ℓ11+ ℓ12+ ℓ13 we accordingly see the Gibbs overshoot beginning
to converge to its asymptotic amplitude ≈ 0.141. This number is half of the
value 0.282 . . . of Theorem 9.1, since the jump for this function is of amplitude
1 instead of 2.

In Chapter 15 we shall consider the same alternating series but with signs multi-
plied by (−1)j . This eliminates the alternation, so that we have approximately
a harmonic series of inverse-linear terms. The partial sums of such a series grow
at a logarithmic rate, as we saw above with the calculation of the variation.

Our discussion so far has concerned interpolants, but there is a parallel theory
of the Gibbs phenomenon for truncations — in the notation of this book, poly-
nomials fn rather than pn. (The required Chebyshev coefficients are defined by
the same integral (3.5) of Theorem 3.1, even though we are now dealing with
functions f that are not Lipschitz continuous as in the assumption stated for
that theorem.) As always, though the interpolants are closer to practical com-
putation, the truncations may appear to be more fundamental mathematically.
Historically speaking, it was the case of Fourier (trigonometric) truncation that
was analyzed first. The original discoverer was not Gibbs but Henry Wilbraham,

60

a 22-year-old fellow of Trinity College, Cambridge, in 1848, who unfortunately
made the mistake of publishing his fine paper in the short-lived Cambridge and
Dublin Journal of Mathematics [Wilbraham 1848]. Fourier series for certain
functions with jumps were already long known in Wilbraham’s day — in fact
they go back to Euler, half a century before Fourier. The particular series
studied by Wilbraham, originally due to Euler in 1772, is

cos(t)− 1

3
cos(3t) +

1

5
cos(5t)− · · · , (9.3)

which, as we can readily verify numerically, approximates a square wave of
height ±π/4:

t = chebfun(’t’,[-6,6]);

f = (pi/4)*sign(cos(t));

clf, plot(f,’k’)

f9 = cos(t) - cos(3*t)/3 + cos(5*t)/5 - cos(7*t)/7 + cos(9*t)/9;

hold on, plot(f9), xlim([-6 6])

title(’Partial sum of a Fourier series’)

−6 −4 −2 0 2 4 6
−1

−0.5

0

0.5

1
Partial sum of a Fourier series

Wilbraham worked out the magnitude of the overshoot, and thus the following
analogue of Theorem 9.1 is due to him.

Theorem 9.2. Gibbs phenomenon for Chebyshev truncations. Let fn
be the degree n Chebyshev truncation of the sign function f(x) = sign(x) on
[−1, 1]. Then as n → ∞,

lim
n→∞

‖fn‖ =
2

π

∫ π

0

sin x

x
dx = 1.178979744472167 (9.4)

(The function Si(x) =
∫ x

0
t−1 sin tdt is known as the sine integral ; see Exercise

9.6.) To see this number experimentally we can use the ’trunc’ option in the
Chebfun constructor. The overshoots look similar to what we saw before, but
with smaller amplitude.

f = sign(x);

61

subplot(1,2,1), hold off, plot(f,’k’), hold on, grid on

f9 = chebfun(f,’trunc’,10); plot(f9,’-’)

title(’Gibbs truncation overshoot, n = 9’)

subplot(1,2,2), hold off, plot(f,’k’), hold on, grid on

f19 = chebfun(f,’trunc’,20); plot(f19,’-’)

title(’Gibbs truncation overshoot, n = 19’);

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
Gibbs truncation overshoot, n = 9

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
Gibbs truncation overshoot, n = 19

The numbers behave as predicted:

disp(’ n Gibbs amplitude’)

for np = 2.^(4:7)

g = chebfun(f,’trunc’,np);

fprintf(’%7d %17.8f\n’, np, max(g{0,5/np}))

end

limit = (2/pi)*sum(chebfun(’sin(x)./x’,[0 pi]))

n Gibbs amplitude

16 1.18028413

32 1.17930541

64 1.17906113

128 1.17900009

limit =

1.178979744472167

In all the experiments of this chapter we have worked with polynomials rather
than trigonometric series, but the effects are the same (Exercise 9.4).

It is worth commenting on a particular property of series such as (9.3) that we
have taken for granted throughout this discussion: even though each partial sum
is continuous, a series may converge pointwise to a discontinuous limit, every-
where except at the points of discontinuity themselves. This kind of behavior
seems familiar enough nowadays, but in the century beginning with Fourier’s
work in 1807, it often seemed paradoxical and confusing to mathematicians.
The same pointwise convergence to discontinuous functions can also occur with
interpolants, as in Theorem 9.1.

62

In this chapter we have focussed on the height of the overshoot of a Gibbs os-
cillation, because this is the effect so readily seen in plots. Perhaps the most
important property of Gibbs oscillations for practical applications, however, is
not their height but their slow decay as one moves away from the point of dis-
continuity. If f has a jump, the oscillations at a distance k gridpoints away
must be expected to be of size O(k−1); if f ′ has a jump we expect oscillations
of size O(k−2), and so on. This algebraic rate of decay of information in poly-
nomial interpolants can be contrasted with the exponential decay that one gets
with spline approximations, which is the the key advantage of splines for certain
applications. Chebfun responds to this problem by representing functions with
discontinuities by piecewise polynomials rather than global ones, with break-
points at the discontinuities. For example, the location of the discontinuity in
the function exp(|x− 0.1|3) will be determined automatically in response to the
command

f = chebfun(@(x) abs(x-0.1).^3,’splitting’,’on’);

The result is a chebfun consisting of two pieces each of degree 3, and the break
in the middle appears at the right place:

f.ends(2)

ans = 0.099999999999999

Let us return to 22-year-old Mr. Wilbraham. Unfortunately, his published pa-
per had little impact, and the effect was rediscovered and discussed in the pages
of Nature during 1898–1899 by James Michelson, A. E. H. Love, and J. Willard
Gibbs. These authors got more attention for a number of reasons. First, they
were leading scientists. Second, their problem arose in a practical application
(a mechanical graphing machine called a “harmonic analyser” used by Michel-
son and Stratton). Third, they published their observations in a major journal.
Fourth, they failed to get it right at first, so several publications appeared in
succession! Other mathematicians got involved too, notably Poincaré. Finally,
they were lucky enough to have “Gibbs’s phenomenon” named and highlighted
a few years later in a major research article on Fourier analysis by the mathe-
matician Maxime Bôcher [1906].

For a fascinating discussion of the history of the Gibbs phenomenon (for trunca-
tion, not interpolation), which they more properly call the Gibbs–Wilbraham
phenomenon, see [Hewitt & Hewitt 1979]. Hewitt and Hewitt end their article
with a charming coda.

Gibbs’s phenomenon, while not a fundamental part of mathematics, displays
in parvo a number of central features of the development of mathematics. We
find forgotten pioneers. We encounter shocking disputes over priority. We
study brilliant achievements, some . . . never properly appreciated. We discover
a remarkable succession of blunders, which could hardly have arisen save through
copying from predecessors without checking.

63

In short, Gibbs’s phenomenon and its history offer ample evidence that mathe-
matics, for all of its majesty and austere exactitude, is carried on by humans.

[To be added: (1) Check books on Gibbs phenomenon by Atreas and Karanikas,
Abdul Jerri. (2) Exercise with moving midpoint following Helmber andWagner.]

Summary of Chapter 9. Chebyshev truncations and interpolants, as well

as other polynomial and trigonometric approximations, tend to oscillate

near discontinuities. The oscillations decay algebraically with distance from

the discontinuity, not exponentially.

Exercise 9.1. Calculations for larger n. We measured the height of the Gibbs
overshoot for a step function for n = 1, 3, 7, . . . , 255. Larger values of n get a bit slow,
but knowing that the maximum occurs around x = 3/n, compute these numbers up
to n = 4095 using a command of the form max(g{0,5/n}). How great a speedup does
this trick produce?

Exercise 9.2. A function with many jumps. Use Chebfun to pro-
duce an attractive plot of the degree 200 Chebyshev interpolant to the function
round(exp(sin(2*pi*x))) on [−1, 1].

Exercise 9.3. Lagrange polynomials. Take n ≥ 2 to be even and let p be the
degree n Chebyshev interpolant to the Kronecker delta function at x = xn/2 = 0. (a)
Use the barycentric formula of Theorem 5.2 to obtain a simple formula for p. (b) Derive
a formula for the values of p at the “Chebyshev midpoints” defined by the usual formula
xj = cos(jπ/n) of Chapter 2 except with half-integer values of j. (c) For n = 100,
use Chebfun to produce an elegant plot showing the inverse-linear amplitudes of these
values. (You can get the Chebyshev midpoints from x=chebpts(2*n), x=x(2:2:end).)

Exercise 9.4. Fourier and Chebyshev Gibbs phenomena. We have repeat-
edly made the connection between Chebyshev polynomials Tn(x) on the unit interval,
Laurent polynomials (zn + z−n)/2 on the unit circle, and trigonometric polynomials
cos(nθ) on [−π, π]. Use these connections to show that the Gibbs overshoot in Cheby-
shev interpolation of sign(x) on [−1, 1], with n even, is identical to the overshoot for
a certain problem of trigonometric interpolation in θ.

Exercise 9.5. Local minima of a truncated sine series. (a) Plot φn with
n = 10, 100, 1000 for a sum going back to Euler in 1755,

φn(x) =

n
∑

k=1

sin(kx)

x
.

What function does the sum evidently converge to? Is the Gibbs overshoot of the
same relative magnitude as for (9.3)? (b) For each case, determine the first four local
minimum values of φn(x) in (0, π). (c) Write an elegant Chebfun program that deter-
mines the smallest value of n for which these minima are not monotoncally decreasing.
(This effect was investigated by Gronwall [1912].)

64

Exercise 9.6. Sine integral. (a) Construct and plot a chebfun for the sine integral
Si(x) =

∫ x

0
t−1 sin t for x ∈ [0, 10]. What is its length? (b) Same for x ∈ [0, 100]. (c)

Same for x ∈ [0, 1000].

Exercise 9.7. Decay at points away from the discontinuity. [To be written.]

10. Best approximation

An old idea, going back to Chebyshev himself and earlier to Poncelet, is to look
for a polynomial p∗ of specified degree n that is the best approximation to
a given continuous function f in the sense of minimizing the ∞-norm of the
difference on an interval [Chebyshev 1854 & 1859]. (A best approximation is
also called a Chebyshev approximation, but we shall avoid this usage to
minimize confusion. A third term is minimax approximation.) It is known
that p∗ exists and is unique, as we shall prove below. There is a Chebfun
command remez for computing these approximants, due to Ricardo Pachón:
if f is a chebfun, then remez(f,n) is the chebfun corresponding to its best
approximation of degree n. For details see [Pachón & Trefethen 2009].

We shall argue in Chapter 16 that best approximations are not always in fact
very useful; Chebyshev interpolants are often as good or even better. Neverthe-
less, they represent an elegant and fundamental idea and a line of investigation
going back more than 150 years. So for the moment, let us enjoy them.

For example, here are the best approximants of degree 2 and 4 to |x|, together
with their error curves (f − p∗)([−1, 1]):

f = abs(x);

for n = 2:2:4

subplot(1,2,1), hold off, plot(f,’k’), grid on

[p,err] = remez(f,n); hold on

plot(p,’b’), axis([-1 1 -.2 1.2])

title([’Function and best approx, n = ’ int2str(n)])

subplot(1,2,2), hold off, plot(f-p), grid on

hold on, axis([-1 1 -.15 .15]), title(’Error curve’)

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

snapnow

end

65

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Function and best approx, n = 2

−1 −0.5 0 0.5 1

−0.1

−0.05

0

0.05

0.1

0.15
Error curve

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Function and best approx, n = 4

−1 −0.5 0 0.5 1

−0.1

−0.05

0

0.05

0.1

0.15
Error curve

Notice the equioscillation property: the error curve takes on its extreme value
with alternating signs at a succession of values of x. Chebyshev knew this in
the 1850s, though he seems not to have written down a proof that would satisfy
modern standards of rigor. More systematic treatments came at the beginning
of the 20th century with work by Blichfeldt [1901], Kirchberger [1902,1903],
and Borel [1905]. It seems to have been Kirchberger, in a PhD thesis written
under Hilbert, who first stated and proved the characterization theorem that
is now so well known [Kirchberger 1902]. Note that in the characterization
part of this theorem, f is assumed to be real, whereas most of the discussion
in this book allows f to be real or complex. Existence and uniqueness in the
complex case were established by Tonelli [1908]. Complex generalizations of the
characterization originate with [Kolmogorov 1948, Remez 1951]. Many further
generalizations can also be found in the approximation theory literature, for
example with the set of polynomials on an interval replaced by a more general
set of functions satisfying a property known as the Haar condition.

Theorem 10.1: Equioscillation characterization of best approximants.
A continuous function f on [−1, 1] has a unique best approximation p∗ ∈ Pn. If
f is real, then p∗ is real too, and in this case a polynomial p ∈ Pn is equal to p∗

if and only if f − p equioscillates in at least n+ 2 extreme points.

Proof. To prove existence of a best approximation, we note that ‖f − p‖ is a
continuous function of p ∈ Pn. Since one candidate approximation is the zero
function, we know that if p∗ exists, it lies in {p ∈ Pn : ‖f − p‖ ≤ ‖f‖}. This

66

is a closed and bounded subset of a finite-dimensional space, hence compact
(the Bolzano–Weierstrass property), and thus the minimum is attained. This
argument originates with F. Riesz [1918].

Next we show that equioscillation implies optimality. Suppose f and p are real
and (f − p)(x) takes equal extreme values with alternating signs at n+2 points
x0 < x1 < · · · < xn+1, and suppose ‖f − q‖ < ‖f − p‖ for some real polynomial
q ∈ Pn. Then p − q must take nonzero values with alternating signs at the
equioscillation points, implying that it takes the value zero in at least n + 1
points in-between. This implies that p− q is identically zero, a contradiction.

The third step is to show that optimality implies equioscillation (this part of the
argument was given in Blichfeldt [1901]). Suppose f − p equioscillates at fewer
than n + 2 points, and set E = ‖f − p‖. Without loss of generality suppose
the leftmost extremum is one where f − p takes the value −E. Then there are
numbers −1 < x1 < · · · < xk < 1 with k ≤ n such that (f − p)(x) < E for x ∈
[−1, x1]∪[x2, x3]∪[x4, x5]∪· · · and (f−p)(x) > −E for x ∈ [x1, x2]∪[x3, x4]∪· · · .
If we define δp(x) = (x1 − x)(x2 − x) · · · (xk − x), then (p − εδp)(x) will be a
better approximation than p to f for all sufficiently small ε > 0.

Finally, to prove uniqueness of best approximations (this part of the theorem
was proved by Chebyshev [1859] — we treat the real case only), we refine
the argument that equioscillation implies optimality. Suppose p is a best ap-
proximation with equioscillation extreme points x0 < x1 < · · · < xn+1, and
suppose ‖f − q‖ ≤ ‖f − p‖ for some real polynomial q ∈ Pn. Then (with-
out loss of generality) (p − q)(x) must be ≤ 0 at x0, x2, x4, . . . and ≥ 0 at
x1, x3, x5, This implies that p− q has roots in each of the n+1 closed inter-
vals [x0, x1], [x1, x2], . . . , [xn, xn+1]. We wish to conclude that p− q has at least
n + 1 roots in total, counted with multiplicity, implying that p = q. To make
the argument we prove by induction that p − q has at least k roots in [x0, xk]
for each k. The case k = 1 is easy. For the general case, suppose p − q has at
least j roots in [x0, xj] for each j ≤ k− 1 but only k− 1 roots in [x0, xk]. Then
there must be a simple root at xk−1. By the induction hypothesis, p − q must
have exactly k − 2 roots in [x0, xk−2] with a simple root at xk−2, k − 3 roots
in [x0, xk−3] with a simple root at xk−3, and so on down to 1 root in [x0, x1],
a simple root at x1. It follows that p − q must be nonzero at x0 and at xk,
and since the sign of p− q changes at each of the simple roots x1, . . . xk−1, the
signs at x0 and xk must be the same if k is odd and opposite if k is even. On
the other hand from the original alternation condition we know that p− q must
take the same signs at x0 and xk if k is even and opposite signs if k is odd.

Note that the error curve for a best approximation may have more than n + 2
points of equioscillation, and indeed this will always happen if f and n are both
even or both odd (Exercise 10.4). For example, for the function f(x) = |x|
considered above, the degree 2 approximation equioscillates at 5 points, not 4,
and the degree 4 approximation equioscillates at 7 points, not 6.

67

Here is another example, the degree 10 best approximation to exp(x). There
are 12 points of equioscillation.

f = exp(x);

[p,err] = remez(f,10);

clf, plot(f-p), grid on, hold on

title(’Error curve, degree 10’)

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3
x 10

−11 Error curve, degree 10

And here is another. The Chebfun cumsum command returns the indefinite
integral, producing in this case a zigzag function.

f = cumsum(sign(sin(20*exp(x))));

clf, plot(f,’k’), hold on

[p,err] = remez(f,20);

plot(p), grid on, title(’Function and best approximation’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Function and best approximation

The corresponding error curve reveals 20 + 2 = 22 points of equioscillation:

hold off, plot(f-p), grid on, hold on, axis([-1 1 -.06 .06])

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

title(’Error curve, degree 20’)

68

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
Error curve, degree 20

Here’s the analogous curve for degree 30, plotted on the same scale.

[p,err] = remez(f,30);

hold off, plot(f-p), grid on, hold on, axis([-1 1 -.06 .06])

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

title(’Error curve, degree 30’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
Error curve, degree 30

The algorithm underlying remez goes back to the Soviet mathematician Evgeny
Remez in 1934 [Remez 1934a, 1934b, 1957]. We shall not give details here, but
in fact, Chebfun is an excellent platform for such computations since the algo-
rithm depends on repeatedly finding the local extrema of trial error curves, an
operation carried out easily in Chebfun via the roots command (see Chapter
18). Also crucial to the success of remez is the use of the barycentric repre-
sentation (5.11) for all polynomials, based not at Chebyshev points but at the
points of the so-called “reference set” that gets adjusted in the course of the
iteration. See [Pachón & Trefethen 2009].

The history of the Remez algorithm is interesting, or perhaps we should say
the sociology. It stands out as one of the preeminent examples of a nontrivial
algorithm for a challenging computational problem that was developed before
the invention of computers. Perhaps in part because of this early appearance,
it became remarkably well known, a fixture in numerical analysis courses world-
wide. One might imagine, based on its fame, that the Remez algorithm must

69

be very important in practice, used all the time, but in fact it seems there is
not much software and just a moderate amount of use of these ideas. The best
known area of application is the field of digital signal processing, where special
variants of the Remez ideas were developed by Parks and McClellan beginning
in the 1970s with tremendous success for designing low-pass, high-pass, and
other digital filters [Parks & McClellan 1972]. Parks and McClellan too found
that the use of a barycentric representation was crucial.

Chapter 16 will show that Chebyshev interpolants are usually as good as best
approximations in practice, and this fact surely has something to do with why
the Remez algorithm is used rather little. Chapter 20 will show that if you
really want a best approximation, it may be more practical to compute it by
CF approximation than by the Remez algorithm, at least if f is smooth.

[To be added: (1) See de Vore and Lorentz for possible further history of
equioscillation theorem. (2) Give details of Remez algorithm? (See Powell.)
(3) Follow up on Chebyshev’s history with communications from Bogatyrev.]

Summary of Chapter 10. Any f ∈ C[−1, 1] has a unique best approxi-

mation p∗ ∈ Pn with respect to the ∞-norm. If f is real, p∗ is characterized

by having an error curve that equioscillates in at least n+ 2 points.

Exercise 10.1. A function with spikes. Compute numerically the degree 10
polynomial best approximation to sech2(5(x+0.6))+sech4(50(x+0.2))+sech6(500(x−
0.2)) on [−1, 1] and plot f together with p∗ as well as the error curve. What is the error?
How does this compare with the error in 11-point Chebyshev interpolation? (Hint: for
these Chebfun computations to be practical, be sure to use ’splitting’,’on’.)

Exercise 10.2. Best approximation of |x|. (a) Use Chebfun to determine the
errors En = ‖f − pn‖ in degree n best approximation of f(x) = |x| on [−1, 1] for
n = 2, 4, 8, . . . , 256, and make a table of the values βn = nEn as a function of n. (b)
Use Richardson extrapolation to improve your data. How many digits can you appear
to find for the limiting number β = limn→∞ βn? (We shall discuss this problem in
detail in Chapter 24.)

Exercise 10.3. de la Vallée Poussin lower bound. Suppose an approximation
p ∈ Pn to f ∈ C[−1, 1] approximately equioscillates in the sense that there are points
−1 ≤ s0 < s1 < · · · < sn+1 ≤ 1 at which f−p alternates in sign with |f(sj)−p(sj)| ≥ ε
for some ε > 0. Show that ‖f − p∗‖ ≥ ε.

Exercise 10.4. Best approximation of even functions. Let f ∈ C[−1, 1] be an
even function, i.e., f(−x) = f(x) for all x. (a) Prove as a corollary of Theorem 10.1
that for any n ≥ 0, the best approximation p∗n is even. (b) Prove that for any n ≥ 0,
p∗2n = p∗2n+1. (c) Conversely, suppose f ∈ C[−1, 1] is not even. Prove that for all
sufficiently large n, its best approximations p∗n are not even.

Exercise 10.5. An invalid theorem. The first two figures of this chapter appear
to confirm the following principle: if f is an even function on [−1, 1] and p∗ is its

70

best approximation of some degree n, then one of the extreme points of |(f − p∗)(x)|
occurs at x = 0. Find the flaw in the following “proof”. By Exercise 10.4(b), p∗ is the
best approximation to f for all n in some range of the form even ≤ n ≤ odd, such as
4 ≤ n ≤ 5 or 10 ≤ n ≤ 13. By Theorem 10.1, the number of equioscillation points of
f − p∗ must accordingly be of the form odd + 2, that is, odd. By symmetry, 0 must
be one of these points.

Exercise 10.6. Nonlinearity of best approximation operator. We have men-
tioned that for given n, the operator that maps a function f ∈ C[−1, 1] to its best
approximation p∗n is nonlinear. Prove this (on paper, not numerically) by finding two
functions f1 and f2 and an integer n → 0 such that the best approximation of the sum
in Pn is not the sum of the best approximations.

Exercise 10.7. Weierstrass function again. Exercise 6.1 considered a function
of Weierstrass, continuous but nowhere differentiable. A variant of the same function
based on Chebyshev polynomials would be

f(x) =

∞
∑

k=0

2−kT3k(x).

Show that the truncation

f3K (x) =

K
∑

k=0

2−kT3k(x)

is the best approximation to f in the spaces Pn for certain n. What is the complete
set of n for which this is true? What is the error?

Exercise 10.8. Continuity of best approximation operator. For any n ≥ 0, the
mapping from functions f ∈ C[−1, 1] to their best approximants p∗ ∈ Pn is continuous
with respect to the usual ∞-norm in C[−1, 1]. Prove this by an argument combining
the uniqueness of best approximations with compactness. (In fact the mapping is not
just continuous but Lipschitz continuous, a property known as strong uniqueness, but
this is harder to prove.)

Exercise 10.9. Approximation of ex. (a) Prove using the de la Vallée Poussin
bound of Exercise 10.3 that asymptotically as n → ∞, the best approximation errors
for f(x) = ex on [−1, 1] satisfy En ∼ n!/2nn!(n + 1)!. (b) Make a table comparing
this estimate with the actual numbers En for 0 ≤ n ≤ 10.

11. Hermite integral formula

If there is a single most valuable mathematical tool in the analysis of poly-
nomial approximations, it is contour integrals in the complex plane.4 From a
contour integral one can see why some approximations are extraordinarily ac-
curate, like interpolation in Chebyshev points, and others are impossibly bad,
like interpolation in equispaced points. This chapter presents the basics of the
contour integrals, and the next applies them to take some first steps toward
the subject of potential theory, which relates the accuracy of approximations to

4This and the next chapter are probably the hardest in the book, with a good deal of
mathematics presented in a few pages and heavy use of complex variables. Later chapters get
easier again.

71

equipotential or minimal-energy problems for electrostatic charge distributions
in the plane.

The starting ingredients have already appeared in Chapter 5. Following the
formulation there, let x0, . . . , xn be a set of n+1 distinct interpolation or “grid”
points, which may be real or complex, and define the node polynomial ℓ ∈ Pn+1

as in (5.4) by

ℓ(x) =

n
∏

k=0

(x− xk). (11.1)

Repeating (5.5), the function

ℓj(x) =
ℓ(x)

ℓ′(xj)(x− xj)
(11.2)

is the Lagrange polynomial associated with xj , that is, the unique polynomial in
Pn that takes the value 1 at xj and 0 at the other points xk. Following (5.1), a
linear combination of these functions gives the interpolant in Pn to an arbitrary
function f defined on the grid:

p(x) =
n
∑

j=0

f(xj)ℓj(x). (11.3)

We now make a crucial observation. Let Γj be a contour in the complex x-
plane that encloses xj but none of the other grid points, nor the point x. (By
“encloses” we always mean that it winds around the specified set once in the
counterclockwise direction, in the usual sense of complex variables.) Then the
expression on the right in (11.2) can be written

ℓ(x)

ℓ′(xj)(x− xj)
=

1

2πi

∫

Γj

ℓ(x)

ℓ(t)(x− t)
dt. (11.4)

To verify this formula we ignore the ℓ(x) term on both sides, which has nothing
to do with the integral, and use the fact that 1/(ℓ′(xj)(x − xj)) is the residue
of the function 1/(ℓ(t)(x− t)) at the pole t = xj .

From (11.2) and (11.4) we thus have an expression for ℓj(x) as a contour integral:

ℓj(x) =
1

2πi

∫

Γj

ℓ(x)

ℓ(t)(x− t)
dt, (11.5)

where Γj encloses xj . Now let Γ′ be a contour that encloses all of the grid points
{xj}, but still not the point x, and let f be a function analytic on and interior
to Γ′. Then we can combine together these integrals to get an expression for
the interpolant p to f in {xj}:

p(x) =
1

2πi

∫

Γ′

ℓ(x)f(t)

ℓ(t)(x− t)
dt. (11.6)

72

Note how neatly this formula replaces the sum of (11.3) by a contour integral
with contributions from the same points xj .

Now suppose we enlarge the contour of integration to a new contour Γ that
encloses x as well as {xj}, and we assume f is analytic on and inside Γ. The
residue of the integrand of (11.6) at t = x is −f(x), so this brings in a new con-
tribution −f(x) to the integral, yielding an equation for the error in polynomial
interpolation:

p(x)− f(x) =
1

2πi

∫

Γ

ℓ(x)f(t)

ℓ(t)(x− t)
dt. (11.7)

And thus we have derived one of the most powerful formulas in all of approxi-
mation theory, the Hermite interpolation formula. This name comes from
Hermite [1878], but the same result had been stated 52 years earlier by Cauchy
[1826]. (Hermite, however, generalized the formulation significantly to non-
distinct or “confluent” interpolation points and corresponding interpolation of
derivatives as well as function values; see Exercise 11.2.)

Theorem 11.1. Hermite interpolation formula. Let f be analytic in
a region Ω containing distinct points x0, . . . , xn, and let Γ be a contour in Ω
enclosing these points in the positive direction. The polynomial interpolant p ∈
Pn to f at {xj} is

p(x) =
1

2πi

∫

Γ

f(t)(ℓ(t)− ℓ(x))

ℓ(t)(t− x)
dt, (11.8)

and if x is enclosed by Γ, the error in the interpolant is given by

f(x)− p(x) =
1

2πi

∫

Γ

ℓ(x)

ℓ(t)

f(t)

(t− x)
dt. (11.9)

Proof. Equation (11.9) is the same as (11.7). For (11.8), we note that if Γ
encloses x, then f(x) can be written

f(x) =
1

2πi

∫

Γ

ℓ(t)f(t)

ℓ(t)(t− x)
dt,

and combining this with (11.7) gives the result. But the integrand of (11.8) has
no pole at t = x, so the same result also applies if Γ does not enclose x.

It is perhaps interesting to sketch Cauchy’s slightly different derivation from
1826, outlined in [Smithies 1997, p. 117], which may have been influenced by
Jacobi’s thesis a year earlier [Jacobi 1825]. Cauchy started from the observation
that p(x)/ℓ(x) is a rational function with denominator degree greater than the
numerator degree. This implies that it must be equal to the sum of the n + 1
inverse-linear functions rj/(x−xj), where rj is the residue of p(t)/ℓ(t) at t = xj

(a partial fraction decomposition, to be discussed further in Chapter 23). Since

73

p interpolates f at {xj}, rj is also the residue of f(t)/ℓ(t) at t = xj . By residue
calculus we therefore have

p(x)

ℓ(x)
=

1

2πi

∫

Γ′

f(t)

ℓ(t)(x− t)
dt

if Γ′ is again a contour that encloses the points {xk} but not x itself, or equiv-
alently, (11.6).

Now let us see how Theorem 11.1 can be used to estimate the accuracy of
polynomial interpolants.

Suppose f and x are fixed and we want to estimate f(x) − p(x) for various
degrees n and corresponding sets of n + 1 points {xj}. On a fixed contour Γ,
the quantities f(t) and t− x in (11.9) are independent of n. The ratio

ℓ(x)

ℓ(t)
=

∏n
j=0(x− xj)

∏n
j=0(t− xj)

, (11.10)

however, is another matter. If Γ is far enough from {xj}, then for each t ∈ Γ,
this ratio will shrink exponentially as n → ∞, and if this happens, we may
conclude from (11.9) that p(x) converges exponentially to f(x) as n → ∞. The
crucial condition for this argument to work is that it must be possible for f to
be analytically continued as far out as Γ.

Here is a warm-up example mentioned in [Gaier 1987, p. 63]. Suppose the in-
terpolation points {xj} lie in [−1, 1] for each n and x ∈ [−1, 1] also. Let S be
the “sports ground” in the complex x-plane consisting of all numbers x lying at
a distance ≤ 2 from [−1, 1], and suppose f is analytic in a larger region Ω that
includes a contour Γ enclosing S. We can sketch the situation like this:

hold off, plot(real(x),imag(x),’r’)

semi = 2*exp(0.5i*pi*x);

S = [x-2i; 1+semi; 2i-x; -1-semi];

hold on, plot(S,’k’), axis equal off

z = exp(1i*pi*x);

Gamma = (2.8+.2i)*(sinh(z)+.5*real(z));

plot(Gamma,’b’)

text(4.2,2,’\Gamma’,CO,’b’,FS,12)

text(3.1,.7,’S’,FS,12)

text(.9,-.3,’1’,CO,’r’)

text(-1.4,-.3,’-1’,CO,’r’)

74

Γ

S

1−1

Under these assumptions, there is a constant γ > 1 such that for every t ∈ Γ
and every xj , |t− xj | ≥ γ|x− xj |. This implies

|ℓ(x)/ℓ(t)| ≤ γ−n−1

and thus by (11.9),
‖f − p‖ = O(γ−n).

Note that this conclusion applies regardless of the distribution of the interpo-
lation points in [−1, 1]. They could be equally spaced or random, for example.
(At least that is true in theory. In practice, such choices would be undone by
rounding errors on a computer, as we shall see in the next chapter.)

So convergence of polynomial interpolants to analytic functions on [−1, 1] is all
about how small ℓ(x) is on [−1, 1], compared with how big it is on a contour
Γ inside which f is analytic. From this point of view we can begin to see
why Chebyshev points are so good: because a polynomial with roots at the
Chebyshev points has approximately uniform magnitude on [−1, 1]. Suppose
for example we consider the polynomial ℓ ∈ P8 with roots at 8 Chebyshev
points. On [−1, 1] it has size O(2−8), roughly speaking, but it grows rapidly for
x outside this interval. Here is a plot for x ∈ [−1.5, 1.5]:

np = 8; xj = chebpts(np);

d = domain([-1.5,1.5]);

ell = poly(xj,d);

hold off, plot(ell), grid on

hold on, plot(xj,ell(xj),’.k’), ylim([-.5 1.5])

title(’A degree 8 polynomial with roots at Chebyshev points’)

75

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5
A degree 8 polynomial with roots at Chebyshev points

With Matlab’s contour command we can examine the size of ℓ(x) for complex
values of x. The following code plots contours at |ℓ(x)| = 2−6, 2−5, . . . , 1.

hold off, plot(xj,ell(xj),’.k’,MS,10)

hold on, ylim([-0.9,0.9]), axis equal

xgrid = -1.5:.02:1.5; ygrid = -0.9:.02:0.9;

[xx,yy] = meshgrid(xgrid,ygrid); zz = xx+1i*yy;

ellzz = ell(zz); levels = 2.^(-6:0);

contour(xx,yy,abs(ellzz),levels,’k’)

title([’Curves |l(x)| = 2^{-6}, 2^{-5}, ..., 1 ’...

’for the same polynomial’])

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

Curves |l(x)| = 2−6, 2−5, ..., 1 for the same polynomial

We can see a great deal in this figure. On [−1, 1], it confirms that ℓ(x) is small,
with maximum value |ℓ(x)| = 2−6 at x = 0. Away from [−1, 1], |ℓ(x)| grows
rapidly and takes constant values on curves that look close to ellipses. For t
on the outermost of the curves plotted, the ratio |ℓ(x)/ℓ(t)| will be bounded by
2−6 for any x ∈ [−1, 1].

Let us compare this to the very different behavior if we take points that are
not close to the Chebyshev distribution. To make a specific and quite arbitrary
choice, let us again take 8 points, four of them at −1 and four at 1. Here is the
plot on the real axis.

76

xj = [-1 -1 -1 -1 1 1 1 1];

ell = poly(xj,d);

hold off, plot(ell), grid on

hold on, plot(xj,ell(xj),’.k’), ylim([-.5 1.5])

title(’A degree 8 polynomial with roots at 1 and -1’)

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5
A degree 8 polynomial with roots at 1 and −1

And here are the contours in the complex plane.

hold off, plot(xj,ell(xj),’.k’), hold on

ylim([-0.8,0.8]), axis equal, ellzz = ell(zz);

contour(xgrid,ygrid,abs(ellzz),levels,’k’)

title([’Curves |l(x)| = 2^{-6}, 2^{-5}, ..., 1 ’...

’for the same polynomial’])

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Curves |l(x)| = 2−6, 2−5, ..., 1 for the same polynomial

These figures show that the size of ℓ(x) on [−1, 1] is not at all uniform: it is far
smaller than 2−6 for x ≈ ±1, but as big as 1 at x = 0. Now, for x ∈ [−1, 1] and t
on the outermost curve shown, the maximum of the ratio |ℓ(x)/ℓ(t)| is no better
than 1 since that curve touches [−1, 1]. If we wanted to achieve |ℓ(x)/ℓ(t)| ≤ 2−6

as in the last example, Γ would have to be a much bigger curve — closer to the
“sports ground”:

xgrid = -2:.04:2; ygrid = -1.5:.04:1.5;

[xx,yy] = meshgrid(xgrid,ygrid); zz = xx+1i*yy;

77

ellzz = ell(zz); levels = 2.^(-6:0); levels = [2^6,2^6];

hold on, contour(xgrid,ygrid,abs(ellzz),levels,’r’)

ylim([-1.5 1.5]), axis equal

title(’Another contour added at level 2^6’)

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5
Another contour added at level 26

The function f would have to be analytic within this much larger region for the
bound (11.9) to apply with a ratio |ℓ(x)/ℓ(t)| as favorable as 2−6.

[To be added: (1) Hermite formula and points per wavelength for equispaced
interpolation, following T & Weideman eigenvalues paper. Or put that in Chap.
13. (2) Find a way to shrink and center the contours figure.]

Summary of Chapter 11. Polynomial interpolants and their errors can

be represented by a contour integral in the complex plane, the Hermite

integral formula. This provides the standard method for showing geometric

convergence for certain approximations of analytic functions.

Exercise 11.1. Chebfun computation of Cauchy integrals. (a) Figure out
(on paper) the polynomial p ∈ P2 that takes the values p(−1) = 1, p(1/2) = 2,
and p(1) = 2. What is p(2)? (b) Read about the numerical computation of Cauchy
integrals in Chapter 5 of the online Chebfun Guide. Write a program to confirm
Theorem 11.1 by computing p(2) numerically by a Cauchy integral for the function
f(x) = (x+1)(x−0.5)(x−1)ex+11/6+x/2−x2/3. Take both |x| = 3/2 and |x| = 3 as
contours to confirm that it does not matter whether or not Γ encloses x. (c) Write an
anonymous function p = @(x) ... to apply the above calculation not just for x = 2
but for arbitrary x, and construct a chebfun on [−1, 1] from this anonymous function.
Do its coefficients as reported by poly match your expectations?

Exercise 11.2. Confluent interpolation points. Modify the above problem to
require p(−1) = 1, p(1) = 2, and p′(1) = 0. This is a Hermite interpolation
problem, in which some interpolation points are specified multiply with corresponding
values specified for derivatives. What is the analytic solution to this interpolation
problem? Do the computations involving contour integrals and anonymous functions
deliver the right result?

78

Exercise 11.3. Interpolation in a disk. Suppose a function f is interpolated
by polynomials in arbitrary points of the disk |x| ≤ r′ and we measure the accuracy
f(x)− p(x) for x in the disk |x| ≤ r. Show that geometric convergence is assured (in
exact arithmetic, ignoring rounding errors) if f is analytic in the disk |x| ≤ r + 2r′.
Give the constant ρ for convergence at the rate O(ρ−n). (This result originates with
[Méray 1884].)

Exercise 11.4. A contour integral. [Practice problem as found in complex vari-
ables books – to be written.]

12. Potential theory and approximation

The explorations of the last chapter are glimmerings of potential theory, a
centuries-old subject that has been closely connected to approximation the-
ory since the work of Walsh in the early 20th century [Walsh 1969]. Let us now
outline how this subject works. A general treatment of potential theory in the
complex plane is [Ransford 1995], and surveys of applications to approximation
theory can be found in [Finkelshtein 2006, Levin & Saff 2006].

We begin by looking more carefully at (11.10), the formula giving the ratio of
the size of the node polynomial ℓ at an approximation point x to its size at
a point t on a contour Γ. Suppose we define γ(x, t) to be the inverse of the
(n+ 1)st root of this ratio,

γ(x, t)−1 =

(

∏n
j=0 |x− xj |

)1/(n+1)

(

∏n
j=0 |t− xj |

)1/(n+1)
. (12.1)

Then the magnitude of the quotient in (11.10) is

∣

∣

∣

∣

ℓ(x)

ℓ(t)

∣

∣

∣

∣

= γ(x, t)−(n+1). (12.2)

Equation (12.1) has an interesting interpretation. The numerator is the geomet-
ric mean distance of x to the grid points, and the denominator is the geometric
mean distance of t to the grid points. With a slight abuse of notation, suppose
now that γ = minx,t γ(x, t), where x ranges over [−1, 1] and t ranges over a
contour Γ. Thus (11.9), (12.1) and (12.2) tell us that p(x) is guaranteed to
converge to f(x) at the rate O(γ−n) if f is analytic in the region bounded by Γ
and each x ∈ [−1, 1] is at least γ times closer to the grid points, on average in
the geometric mean sense, than to every point t ∈ Γ.

Now we linearize the products by taking logarithms. From (12.1) we find

− log γ =
1

n+ 1

n
∑

j=0

log |x− xj | −
1

n+ 1

n
∑

j=0

log |t− xj |. (12.3)

79

We define a discrete potential function by

un(x) =
1

n+ 1

n
∑

j=0

log |x− xj |. (12.4)

Note that un is a harmonic function throughout the complex x-plane away from
the points xj , that is, a solution of the Laplace equation. We may think of each
point xj as a point charge like an electron and un as the harmonic potential
generated by all these charges, whose gradient would define an “electric” field. A
difference from the electrical case is that whereas electrons are points in 3-space
that repel one another with an inverse-square force whose potential function is
inverse-linear, here in the plane the repulsion is inverse-linear and the potential
is logarithmic. (Some authors put a minus sign in front of (12.4), so that the
potential approaches ∞ rather than −∞ as x → xj , making un an energy rather
than the negative of an energy.)

With the new definition of γ, (12.2) becomes

∣

∣

∣

∣

ℓ(x)

ℓ(t)

∣

∣

∣

∣

= exp(−(n+ 1)[un(t)− un(x)]). (12.5)

If the minimum of un on Γ is stritly larger than its maximum on [−1, 1],

min
t∈Γ

un(t) ≥ max
x∈[−1,1]

un(x) + α

for some α > 0 and all sufficiently large n, then together with (11.9) this implies

‖f − p‖ = O(e−αn).

Notice the flavor of this result: the accuracy of interpolants depends exponen-
tially on the difference of a potential function — the difference being taken
between the interpolation point and a contour inside which f is analytic.

We now take the step from discrete to continuous potentials. Another way to
write (12.4) is

u(x) =

∫ 1

−1

log |x− t|dµ(t), (12.6)

where µ is a measure consisting of a sum of Dirac delta functions,

µ(t) =
1

n+ 1

n
∑

j=0

δ(t− xj).

This is the potential or logarithmic potential associated with the measure
µ. The same formula (12.6) also applies if µ is a continuous measure, which will
typically be obtained from discrete measures in the limit n → ∞. (The precise

80

notion of convergence appropriate for this limit is known as weak* convergence.)
Equally spaced grids in [−1, 1] converge to the limiting measure

µ(x) =
1

2
. (12.7)

Chebyshev grids in [−1, 1] converge to the measure identified in Exercise 2.2,

µ(x) =
1

π
√
1− x2

. (12.8)

So do pretty much all grids associated with zeros and/or extrema of orthogonal
polynomials on [−1, 1], such as Legendre, Jacobi, or Gegenbauer polynomials.

And now we can identify the crucial property of this Chebyshev measure
(12.8): the potential (12.6) it generates is constant on [−1, 1]. The measure is
known as an equilibrium measure for [−1, 1], and physically, it corresponds to
one unit of charge adjusting itself into an equilibrium, minimal-energy distribu-
tion. Given a unit charge distribution µ with support on [−1, 1], the associated
energy is the integral

I(µ) = −
∫ 1

−1

u(x)dµ(x) = −
∫ 1

−1

∫ 1

−1

log |x− t|dµ(t)dµ(x). (12.9)

It is clear physically, and can be proved mathematically, that for I(µ) to be
minimized u(x) must be constant, so the gradient of the potential is zero and
there are no net forces on the points in (−1, 1).

We thus find ourselves with the following problem related to Green’s functions:
find a function u(x) in the complex x-plane that is harmonic outside [−1, 1],
approaches a constant value as x → [−1, 1], and is equal to log |x| + O(x−1)
as x → ∞. We can solve this problem by introducing a conformal map to
transplant the exterior of the interval to the exterior of a disk, where the solution
is trivial. Such a mapping is the function

z = φ(x) =
1

2
(x+ i

√

1− x2), (12.10)

which maps the exterior of [−1, 1] in the x-plane onto the exterior of the disk
|z| ≤ 1/2 in the z-plane. There, the solution of the potential problem is log |z|.
Mapping back to x, we find that the Chebyshev potential is given by u(x) =
log |φ(x)|, that is,

u(x) = log |x+ i
√

1− x2 | − log 2, (12.11)

with constant value u(x) = − log 2 on [−1, 1]. For values u0 > − log 2, the
equipotential curve u(x) = u0 is the ρ-ellipse Eρ with ρ = 2 exp(u0). Here is
a contour plot of (12.11), confirming that the contours looks the same as the
ellipses plotted in Chapter 8. The factor sign(imag(x)) is included to make u
return the right branch of the square root when Imx < 0.

81

u = @(x) log(abs(x+1i*sign(imag(x)).*sqrt(1-x.^2))) - log(2);

xgrid = -1.5:.02:1.5; ygrid = -0.9:.02:0.9;

[xx,yy] = meshgrid(xgrid,ygrid); zz = xx+1i*yy;

uzz = u(zz);

levels = -log(2) + log(1.1:0.1:2);

hold off, contour(xgrid,ygrid,uzz,levels,’k’)

ylim([-0.9,0.9]), axis equal

title(’Equipotential curves for the Chebyshev distribution’)

Equipotential curves for the Chebyshev distribution

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

The capacity (or logarithmic capacity or transfinite diameter) of [−1, 1]
is the radius of that equivalent disk,

c =
1

2
.

The associated minimal energy is the Robin constant of [−1, 1]:

min
µ

I(µ) = − log(c) = log 2.

The fact that the capacity of [−1, 1] is 1/2 has the following interpretation. For
Chebyshev or other asymptotically optimal grids, in the limit n → ∞, each grid
point lies at a distance 1/2 from the others in the geometric mean sense.

All these ideas of equilibrium measure, minimal energy, Robin constant and
capacity generalize to other compact sets E in the complex plane. If E is
connected, then µ and u can be obtained from a conformal map of its exterior
onto the exterior of a disk, whereas if it is disconnected, a more general Green’s
function problem must be solved. In any case, the equilibrium measure, which is
supported on the outer boundary of E, describes a good asymptotic distribution
of interpolation points as n → ∞, and the limiting geometric mean distance from
one point to the others is the capacity, which is related to the Robin constant
by c(E) = exp(−minµ I(µ)).

Having discussed the continuous limit, let us return to the finite problem of
finding good sets of n+ 1 points {xj} for interpolation by a polynomial p ∈ Pn

82

on a compact set E in the complex plane. Three particular families of points
have received special attention. We say that {xj} is a set of Fekete points for
the given n and E if the quantity

(

∏

j 6=k

|xj − xk|
)2/n(n+1)

, (12.12)

which is the geometric mean of the distances between the points, is as large
as possible, that is, the points are exactly in a minimal-energy configuration.
As n → ∞, these maximal quantities decrease monotonically to c(E), the fact
which gives rise to the expression “transfinite diameter”. As a rule Fekete
points have some of the cleanest mathematical properties for a given set E but
are the hardest to compute numerically. Next, if E is connected and φ(x) is
a map of its exterior to the exterior of a disk in the z-plane centered at the
origin, a set of Fejér points is a set φ−1({zj}), where {zj} consists of n + 1
points equally spaced around the boundary circle. Fejér points are more readily
computable since it is often possible to get one’s hands on a suitable mapping
φ. Finally, Leja points are approximations to Fekete points obtained by a
“greedy algorithm”. Here, one starts with an arbitrary first point x0 ∈ E
and then computes successive points x1, x2, . . . by an incremental version of the
Fekete condition: with x0, . . . , xn−1 known, xn is chosen to maximize the same
quantity (12.12), or equivalently, to maximize

n−1
∏

j=0

|xj − xn|. (12.13)

All three of these families of points can be shown, under reasonable assumptions,
to converge to the equilibrium measure as n → ∞, and all work well in practice
for interpolation.

In Chapter 8 we proved a very precise theorem (Theorem 8.2): if f is analytic
and bounded by M in the ρ-ellipse Eρ, then ‖f − pn‖ ≤ 4Mρ−n/(ρ− 1), where
pn ∈ Pn is the interpolant in n+1 Chebyshev points. The proof made use of the
Chebyshev expansion of f and the aliasing properties of Chebyshev polynomials
at Chebyshev points. By the methods of potential theory and the Hermite
integral formula discussed in this chapter one can derive the following less sharp
but much more general theorem to similar effect.

Theorem 12.1: Interpolation in asymptotically optimal points. Let f
be analytic in [−1, 1] but not entire, let ρ be the parameter of the largest ρ-ellipse
Eρ to which f can be analytically continued, and let {pn} be the interpolants to f
in any sequence of sets {xn} of n+1 points in [−1, 1] asymptotically distributed
according to the Chebyshev distribution (12.8). Then the errors satisfy

lim
n→∞

‖f − pn‖1/n = ρ−1. (12.14)

83

Proof. [Reference to be given.]

So Chebyshev points, Legendre points, Jacobi points and the like all give the
same exponential convergence factors for analytic functions — the convergence
rates differ only at the margins, in possible algebraic factors like n or log n.

[To be added: (1) Explain where the O(x−1) condition for the Green’s function
comes from. (2) Clarify the branch in (12.10). (3) Who first made the connec-
tions between potentials and approximation – was it Walsh? (4) In the mention
of general complex sets above (12.12), cite some references such as Smirnov &
Lebedev, Walsh, Gaier, Levin & Saff, Finkelshtein. (5) Call Theorem 12.1 the
Bernstein-Walsh theorem? Or is that name just for its generalization to a set E?
(6) Reference to proof for Theorem 12.1. (7) Exercise 12.3. (8) Mention that
barycentric weights grow at the rate capacity−n. (9) Make the whole discussion
more leisurely–indeed, rework this chapter.]

Summary of Chapter 12. Polynomial interpolants to analytic func-

tions converge geometrically if the grids are asymptotically ditributed like

Chebyshev grids.

Exercise 12.1. Fekete points in an interval. It can be shown that the equilibrium
configuration for n+1 points in [−1, 1] consists of the roots of (x2−1)J

(1,1)
n−1 (x), where

J
(1,1)
n−1 is the degree n − 1 Jacobi polynomial with parameters (1, 1) [Stieltjes 1885].

(An equivalent statement is that the points lie at the local extrema in [−1, 1] of the

Legendre polynomial of degree n + 1 — see Chapter 16.) Thus (x2 − 1)J
(1,1)
n−1 (x) is

the degree n − 1 Fekete polynomial in [−1, 1]. Verify numerically using the Chebfun
jacpts command that in the case n = 10, the net forces on the 9 interior points are
zero.

Exercise 12.2. Capacity of an ellipse. Let E be an ellipse in the complex plane
of semiaxis lengths a and b. Show that c(E) = (a+ b)/2.

Exercise 12.3. Leja points in an interval. [to be written — are they known
explicitly for [−1, 1]?]

13. Equispaced points, Runge phenomenon

So far in this book, we have considered three good methods for approximating
functions by polynomials: Chebyshev interpolation, Chebyshev truncation, and
best approximation. Now we shall look at a catastrophically bad method! —
interpolation in equally spaced points. This procedure is so bad that for gener-
ations, it has unjustly tainted people’s views of the whole subject of polynomial
interpolation. The mathematical tools we will need to understand what is going
on are the Hermite integral formula and potential theory, as discussed in the
last two chapters.

84

As mentioned in Chapter 5, polynomial interpolation was an established tool by
the 19th century. The question of whether or not polynomial interpolants would
converge to an underlying function as n → ∞ was not given much attention.
Presumably many mathematicians would have supposed that if the function was
analytic, the answer would be yes. In 1884 and 1896, Méray published a pair of
papers in which he identified the fact that certain interpolation schemes do not
converge [Méray 1884 & 1896]. In the first paper he writes,

It is rather astonishing that practical applications have not yet turned up any
cases in which the interpolation is illusory.5

Méray’s derivations had the key idea of making use of the Hermite integral
formula. However, the examples he devised were rather contrived, and his id-
iosyncratically written papers had little impact. It was Runge in 1901 who made
the possibility of divergence famous by showing that divergence of interpolants
occurs in general even for equispaced points in an real interval and evaluation
points in the interior of that interval [Runge 1901].

Runge illustrated his discovery with an example that has become known as the
Runge function: 1/(1 + x2) on [−5, 5], or equivalently on [−1, 1],

f = 1./(1+25*x.^2);

We already know from Chapter 8 that there is nothing wrong with this function
for polynomial interpolation in Chebyshev points: f is analytic, and the poly-
nomial interpolants converge geometrically. Now, however, let us follow Runge
and look at interpolants in equally spaced points, which we can compute using
the Chebfun overload of Matlab’s interp1 command.

Here is what we get with 8 points:

s = linspace(-1,1,8);

p = interp1(s,f);

hold off, plot(f), hold on, plot(p,’r’), grid on

plot(s,p(s),’.r’), axis([-1 1 -1 3])

title(’Equispaced interpolation of Runge function, 8 points’)

5“Il est assez étonnant que les hasards de la pratique n’aient encore fait connâıtre aucun
cas dans lequel l’interpolation soit illusoire.” By illusory, Méray means nonconvergent.

85

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3
Equispaced interpolation of Runge function, 8 points

Here is the result for 16 points:

s = linspace(-1,1,16);

p = interp1(s,f);

hold off, plot(f), hold on, plot(p,’r’), grid on

plot(s,p(s),’.r’), axis([-1 1 -1 3])

title(’Equispaced interpolation of Runge function, 16 points’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3
Equispaced interpolation of Runge function, 16 points

Is this going to converge as n → ∞? Things look pretty good in the middle,
but not so good at the edges. Here is the result for 20 points:

s = linspace(-1,1,20);

p = interp1(s,f);

hold off, plot(f), hold on, plot(p,’r’), grid on

plot(s,p(s),’.r’), axis([-1 1 -1 3])

title(’Equispaced interpolation of Runge function, 20 points’)

86

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3
Equispaced interpolation of Runge function, 20 points

What is happening is exponential convergence in the middle of the interval but
exponential divergence near the ends. The next figure shows the maximum error
over [−1, 1] as a function of the number of equally spaced points. We get a hint
of convergence at first, but after n = 10, things just get worse. Note the log
scale.

ee = []; nn = 2:2:50;

for np = nn

s = linspace(-1,1,np);

p = interp1(s,f);

ee = [ee norm(f-p,inf)];

end

hold off, semilogy(nn,ee,’.-’), grid on, axis([0 50 5e-2 2e6])

title(’Divergence as n+1 -> \infty’)

xlabel(’n+1’)

0 5 10 15 20 25 30 35 40 45 50

10
0

10
5

Divergence as n+1 −> ∞

n+1

By now the reader may have suspected that what is going wrong here can be
understood by looking at potentials, as in the last two chapters. Here is an
adaptation of a code segment from Chapter 11 to plot equipotential curves for
n+ 1 = 8 and 20.

d = domain([-1.5,1.5]);

xgrid = -1.5:.02:1.5; ygrid = -1:.02:1;

87

[xx,yy] = meshgrid(xgrid,ygrid); zz = xx+1i*yy;

for np = [8 20]

xj = linspace(-1,1,np);

ell = poly(xj,d);

hold off, plot(xj,ell(xj),’.k’,MS,8)

hold on, ylim([-1.2 1.2]), axis equal

ellzz = ell(zz);

levels = ((1.25:.25:3)/exp(1)).^np;

contour(xx,yy,abs(ellzz),levels,’k’)

title([’Level curves of |l(x)| for ’...

int2str(np) ’ equispaced points’])

snapnow

end

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Level curves of |l(x)| for 8 equispaced points

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Level curves of |l(x)| for 20 equispaced points

What we see here is that [−1, 1] is very far from being a level curve for equispaced
interpolation points. From the last two chapters, we expect serious consequences
of this irregularity. In the second plot just shown, for example, it is the fourth
curve (from inside out) that approximately touches the endpoints ±1. For
Theorem 11.1 to be of any use in such a landscape, f will have to be analytic
in a region larger than the “football” enclosed by that curve. Analyticity on
[−1, 1] is not enough for convergence; we will need analyticity in a much bigger
region of the complex plane. This is what Runge discovered in 1901.

Following the method of the last chapter, we now consider the limit n → ∞,

88

where the distribution of interpolation points approaches the constant measure
(12.7),

µ(x) =
1

2
. (13.1)

The potential (12.6) associated with this measure is

u(z) = −1 +
1

2
Re [(z + 1) log(z + 1)− (z − 1) log(z − 1)] . (13.2)

Here is a code that plots just one level curve of this potential, the one passing
through ±1, where the value of the potential is −1 + log 2.

x1 = -1.65:.02:1.65; y1 = -0.7:.02:0.7;

[xx,yy] = meshgrid(x1,y1); zz = xx+1i*yy;

u = @(z) -1 + 0.5*real((z+1).*log(z+1)-(z-1).*log(z-1));

hold off

contour(x1,y1,u(zz),(-1+log(2))*[1 1],’k’,LW,1.4)

set(gca,’xtick’,-2:.5:2,’ytick’,-.5:.5:.5), grid on

ylim([-.9 .9]), axis equal

hold on, plot(.5255i,’.k’)

text(0.05,.63,’0.52552491457i’)

title([’Runge region for equispaced interpolation ’ ...

’in the limit n -> \infty’])

0.52552491457i

Runge region for equispaced interpolation in the limit n −> ∞

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

For the interpolants to a function f in equispaced nodes to converge as n → ∞
for all x ∈ [−1, 1], f must be analytic, not just on [−1, 1], but throughout
this Runge region, which crosses the real axis at ±1 and the imaginary axis
at ±0.52552491457 . . . i. Runge reports this number correctly to 4 digits, and
writes

The curve has somewhat the shape of an ellipse. At the ends of the long axis,
however, our curve is more pointed than an ellipse.6

6“Die Kurve. . . hat etwa die Gestalt einer Ellipse. . . . An den Enden der grossen Achse ist
unsere Kurve aber spitzer als eine Ellipse.”

89

Here are the values of (13.2) at the endpoints and the middle:

u(±1) = −1 + log 2, u(0) = −1,

and thus

exp(u(±1)) =
2

e
, exp(u(0)) =

1

e
.

These numbers indicate that in the limit n → ∞, the endpoints of an equispaced
grid in [−1, 1] lie at an average distance 2/e from the other grid points, in the
geometric mean sense, whereas the midpoint lies at an average distance of just
1/e. As emphasized in the last chapter, for example in equation (11.15), the
effect of such a discrepancy grows exponentially with n.

Here are some examples. Equispaced interpolation will converge throughout
[−1, 1] for f(x) = exp(−x2), which is analytic everywhere, and for f(x) =
(1 + x2)−1, which has poles at ±i. On the other hand it will not converge
for f(x) = (1 + 16x2)−1, which has poles at ±i/4. It will converge slowly for
f(x) = (1 + (x/0.53)2)−1, and diverge slowly for f(x) = (1 + (x/0.52)2)−1

(Exercise 13.3).

The worst-case rate of divergence is 2n, and this rate will always appear if f is
not analytic on [−1, 1]. To be precise, for such a function the errors will be of
size O(2n) as n → ∞ but not of size O(Cn) for any C < 2. Here, for example,
we take f to be a hat function, with just one derivative of bounded variation.
The dots show errors in Chebyshev interpolation, converging at the rate O(n−1)
in keeping with Theorem 7.2, and the crosses show errors in equispaced inter-
polation, with a dashed line parallel to 2n for comparison.

f = max(0,1-2*abs(x));

eequi = []; echeb = []; nn = 2:2:60;

for n = nn

s = linspace(-1,1,n+1);

pequi = interp1(s,f); eequi = [eequi norm(f-pequi,inf)];

pcheb = chebfun(f,n+1); echeb = [echeb norm(f-pcheb,inf)];

end

hold off, semilogy(nn,2.^(nn-12),’--r’)

hold on, axis([0 60 1e-4 1e14]), grid on

semilogy(nn,eequi,’x-r’,MS,8), semilogy(nn,echeb,’.-b’)

text(47,3e6,’equispaced’,CO,’r’)

text(41,0.8,’Chebyshev’,CO,’b’)

text(32,4e8,’C 2^n’,FS,12,CO,’r’)

xlabel np, ylabel Error

title(’Chebyshev vs. equispaced points’)

90

0 10 20 30 40 50 60

10
0

10
5

10
10

equispaced

Chebyshev

C 2n

np

E
rr

or

Chebyshev vs. equispaced points

All of the above remarks about equispaced interpolation concern the ideal math-
ematics of the problem. On a computer in floating point arithmetic, however,
a further complication arises: even if convergence ought to take place in the-
ory, rounding errors will be amplified by O(2n), causing divergence in practice.
Here, for example, are the errors in equispaced and Chebyshev interpolation of
exp(x):

f = exp(x);

eequi = []; echeb = []; nn = 2:2:80;

for n = nn

s = linspace(-1,1,n+1);

pequi = interp1(s,f); eequi = [eequi norm(f-pequi,inf)];

pcheb = chebfun(f,n+1); echeb = [echeb norm(f-pcheb,inf)];

end

hold off, semilogy(nn,2.^(nn-50),’--r’)

hold on, axis([0 80 1e-17 1e4]), grid on

semilogy(nn,eequi,’x-r’,MS,8), semilogy(nn,echeb,’.-b’)

text(22,6e-6,’C 2^n’,FS,12,CO,’r’)

text(42,3e-7,’equispaced’,CO,’r’)

text(51,6e-14,’Chebyshev’,CO,’b’)

xlabel np, ylabel Error

title(’The effect of rounding errors’)

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

C 2n
equispaced

Chebyshev

np

E
rr

or

The effect of rounding errors

In exact arithmetic we would see convergence for both sets of points, but on a

91

computer the divergence for equispaced points sets in early. The rate is cleanly
O(2n) until we reach O(1). Notice that the line of crosses, if extended backward
to n = 0, meets the y axis at approximately 10−18, i.e., a digit or two below
machine precision.

The 2n divergence of equispaced polynomial interpolants is a fascinating subject,
and we must remind ourselves that one should only go into so much detail in
analyzing a method that should never be used! But perhaps we should qualify
that “never” in one respect. As Runge himself emphasized, though interpolants
in equispaced points do not converge on the whole interval of interpolation, they
may still do very well near the middle. In the numerical solution of differential
equations, for example, higher order centered difference formulas are successfully
used based on 5 or 7 equally spaced grid points. A less happy example would
be Newton–Cotes quadrature formulas, based on polynomial interpolation in
equally spaced points, where the O(2n) effect is unavoidable and causes serious
problems for larger n and divergence as n → ∞, as first proved by Pólya [1933].
We shall discuss quadrature in Chapter 19.

We close this chapter with an observation that highlights the fundamental na-
ture of the Runge phenomenon and its associated mathematics. Suppose you
want to persuade somebody that it’s important to know something about the
complex plane, even for dealing with real functions. I still remember the argu-
ment my calculus teacher explained to me: to understand why the Taylor series
for 1/(1 + x2) only converges for −1 < x < 1, you need to know that Taylor
series converge within disks in the complex plane and this function has poles at
±i.

Runge’s observation is precisely a generalization of this fact to interpolation
points equispaced in an interval rather than all at x = 0. The convergence or
divergence of polynomial interpolants to a function f again depends on whether
f is analytic in a certain region; the change is only that the region is not a disk
but more elongated. Even the phenomenon of divergence in floating-point arith-
metic for functions whose interpolants “ought” to converge is a generalization
of familiar facts about Taylor series. Just try to evaluate exp(x) on a computer
for x = −20 using the Taylor series!

[To be added: (1) Discuss phenomenon of convergence on a subinterval, which
also goes back to Runge. (2) Where does (13.2) come from? (It’s an exercise in
SMIM.) (3) Exercise 13.5. (4) Compute 0.5255i with ROOTS.]

92

Summary of Chapter 13. Polynomial interpolation in equispaced points

is exponentially ill-conditioned: the interpolant pn may have oscillations

near the edge of the interval nearly 2n times larger than the function f
being interpolated, even if f is analytic. In particular, even if f is analytic

and the interpolant is computed exactly without rounding errors, pn need

not converge to f as n → ∞.

Exercise 13.1. Three examples. Draw plots comparing accuracy of equispaced
and Chebyshev interpolants as functions of n for exp(x2), exp(−x2), exp(−1/x2).

Exercise 13.2. Computing geometric means in Chebfun. (a) What output is
produced by the program below? (b) Why?

x = chebfun(’x’,[0 1]);

f = chebfun(@(y) prod(abs(x-1i*y)),[0.1 1],’vectorize’);

roots(f-2/exp(1))

Exercise 13.3. Borderline convergence. The claim was made in the text
that equispaced polynomial interpolants on [−1, 1] will converge for f(x) = (1 +
(x/0.53)2)−1 and diverge for f(x) = (1 + (x/0.52)2)−1. Can you observe this dif-
ference numerically? Run appropriate experiments and discuss the results.

Exercise 13.4. Approaching the sinc function. The sinc function is defined for
all x by S(x) = sin(πx)/(πx) (and S(0) = 1). For any n ≥ 1, an approximation to S
is given by

Sn =

n
∏

k=1

(1− x2/k2).

Construct S20 in Chebfun on the interval [−20, 20] and compare it with S. On what
interval around x = 0 do you find |S20(x) − S(x)| < 0.1? (It can be shown that for
every x, limn→∞ Sn(x) = S(x).)

Exercise 13.5. Barycentric weights and ill-conditioning. [Exercise 5.6 showed
weights (−1)j

(

n
j

)

for equispaced points. Relate this to Runge phenomenon. Not yet
written.]

14. Discussion of high-order polynomial interpolation

As mentioned at various points in this book, high-order polynomial interpolation
has a bad reputation. For equispaced points this is entirely appropriate, as
shown in the last chapter, but for Chebyshev points it is entirely inappropriate.
Here are some illustrative quotes from numerical analysis textbooks, which we
present anonymously.

We cannot rely on a polynomial to be a good approximation if exact matching at
the sample points is the criterion used to select the polynomial. The explanation
of this phenomenon is, of course, that the derivatives grow too rapidly. (1962)

93

However, for certain functions the approximate representation of f(x) by a sin-
gle polynomial throughout the interval is not satisfactory. (1972)

But there are many functions which are not at all suited for approximation by
a single polynomial in the entire interval which is of interest. (1974)

Polynomial interpolation has drawbacks in addition to those of global conver-
gence. The determination and evaluation of interpolating polynomials of high
degree can be too time-consuming for certain applications. Polynomials of high
degree can also lead to difficult problems associated with roundoff error. (1977)

We end this section with two brief warnings, one against trusting the interpo-
lating polynomial outside [the interval] and one against expecting too much of
polynomial interpolation inside [the interval]. (1980)

Although Lagrangian interpolation is sometimes useful in theoretical investiga-
tions, it is rarely used in practical computations. (1985)

Polynomial interpolants rarely converge to a general continuous function. Poly-
nomial interpolation is a bad idea. (1989)

While theoretically important, Lagrange’s formula is, in general, not as suitable
for actual calculations as some other methods to be described below, particularly
for large numbers n of support points. (1993)

Unfortunately, there are functions for which interpolation at the Chebyshev
points fails to converge. Moreoever, better approximations of functions like
1/(1 + x2) can be obtained by other interpolants — e.g., cubic splines. (1996)

Increasing the number of interpolation points, i.e., increasing the degree of the
polynomials, does not always lead to an improvement in the approximation. The
spline interpolation that we will study in this section remedies this deficiency.
(1998)

The surprising state of affairs is that for most continuous functions, the quantity
‖f − pn‖∞ will not coverge to 0. (2002)

By their very nature, polynomials of a very high degree do not constitute rea-
sonable models for real-life phenomena, from the approximation and from the
handling point-of-view. (2004)

Because its derivative has n−1 zeros, a polynomial of degree n has n−1 extreme
or inflection points. Thus, simply put, a high-degree polynomial necessarily has
many “wiggles,” which may bear no relation to the data to be fit. (2004)

The oscillatory nature of high degree polynomials, and the property that a fluc-

94

tuation over a small portion of the interval can induce large fluctuations over
the entire range, restricts their use. (2005)

A great deal of confusion underlies remarks like these. Some of them are lit-
erally correct, but they are all misleading. In fact, polynomial interpolants in
Chebyshev points are problem-free when evaluated by the the barycentric in-
terpolation formula. They have the same behavior as discrete Fourier series
for periodic functions, whose practicability nobody worries about. The men-
tion of splines is a red herring: the true advantage of splines, as mentioned in
Chapter 9, is not that they converge where polynomials fail to do so, but that
they are more easily adapted to irregular point distributions and more localized,
giving errors that decay exponentially away from singularities rather than just
algebraically.

It is interesting to speculate as to how the distrust of high-degree polynomials
became so firmly established. I think the crucial circumstance is that not one
but several combined problems affect certain computations with polynomials, a
situation complex enough to have obscured the truth from easy elucidation. If
working with polynomials had been the central task of scientific computing, the
truth would have been worked out nonetheless, but over the years there were
always bigger problems pressing upon the attention of numerical analysts, like
matrix computations and differential equations. Polynomial computations were
always a sideline.

At the most fundamental level there are the two issues of conditioning and
stability: both crucial, and not the same (see [Trefethen & Bau 1997] for a
general discussion of conditioning and stability).

(1) Conditioning of the problem. The interpolation points must be properly
spaced (e.g. Chebyshev or Legendre) for the interpolation problem to be well-
conditioned. This means that the interpolant should depend not too sensitively
on the data. The Runge phenomenon for equally spaced points is the well-known
consequence of extreme ill-conditioning, with sensitivities of order 2n. The next
chapter makes such statements precise through the use of Lebesgue constants.

(2) Stability of the algorithm. The interpolation algorithm must be stable (e.g.
barycentric interpolation formula) for a computation to be accurate, even when
the problem is well-conditioned. This means that in the presence of rounding
errors, the computed solution should be close to an exact solution for some inter-
polation data close to the exact data. In particular, the best-known algorithm
of all, namely solving a Vandermonde linear system of equations to find the
coefficients of the interpolant expressed as a linear combination of monomials,
is exponentially unstable (Exercise 5.2).

These facts would be enough to explain a good deal of confusion, but another
consideration has muddied the water further, namely crosstalk with the notori-

95

ously troublesome problem of finding roots of a polynomial from its coefficients
(to be discussed in Chapter 18). The difficulties of polynomial rootfinding were
widely publicized by Wilkinson beginning in the 1950s, who later wrote an ar-
ticle called the “The perfidious polynomial” that won the Chauvenet Prize of
the Mathematical Association of America [Wilkinson 1984]. Undoubtedly this
negative publicity further discouraged people from the use of polynomials, even
though interpolation and rootfinding are different problems. They are related,
with related widespread misconceptions about accuracy: just as interpolation
on an interval is trouble-free for a stable algorithm based on Chebyshev points,
rootfinding on an interval is trouble-free for a stable algorithm based on expan-
sions in Chebyshev polynomials (Chapter 18). But very few numerical analysis
textbooks tell readers these facts.

[To be added: (1) Concerning Newton-Cotes quadrature, see [Trefethen 2008],
refs 18,46,47.]

Summary of Chapter 14. Generations of textbooks have warned readers

that polynomial interpolation is dangerous. In fact, if the interpolation

points are clustered and a stable algorithm is used, it is bulletproof.

Exercise 14.1. Convergence as n → ∞. The 1998 quote asserts that increasing n
“does not always lead to an improvement”. Based on the theorems of this book, for
interpolation in Chebyshev points, for which functions f do we know that increasing
n must lead to an improvement?

Exercise 14.2. Too many wiggles. Using Chebfun’s roots(f,’all’) option,
plot all the roots in the complex plane of the chebfun corresponding to f(x) =
exp(x) tanh(2x− 1) on [−1, 1]. What is the error in the argument in the second 2004
quote used to show that “a high-degree polynomial necessarily has many wiggles”?

Exercise 14.3. Your own textbook. Find a textbook of numerical analysis and ex-
amine its treatment of polynomial interpolation. (a) What does it say about behavior
for large n? If it asserts that this behavior is problematic, is this conclusion based on
the assumption of equally spaced points, and does the text make this clear? (b) Does
it mention interpolation in Chebyshev points? Does it state that such interpolants
converge exponentially for analytic functions? (c) Does it mention the barycentric
formula? (d) Does it claim that one should use a Newton rather than a Lagrange
interpolation formula for numerical work? (This is a myth.)

Exercise 14.4. Spline interpolants. (a) Look up Matlab’s spline command
and use it to interpolate f(x) = 1/(1 + 25x2) in n + 1 equally spaced points on
[−1, 1]. Compare the ∞-norm error as n → ∞ with that of polynomial interpolation
in Chebyshev points. You may find it convenient to construct a chebfun from the
spline with a command like f = chebfun(@(x) spline(nodes,f(nodes),x),nodes).
(b) Same problem for f(x) = |x + 1/π|. (c) Same problem for f(x) = |x + 1/π|, but
measuring the error by the ∞-norm over the interval [0, 1].

96

15. Lebesgue constants

There is a well developed theory that quantifies the convergence or divergence
of polynomial interpolants. A key notion is that of the Lebesgue constant, Λ,
for interpolation in a given set of points. The Lebesgue constant is the ∞-norm
of the linear mapping from data to interpolant:

Λ = sup
f

‖p‖
‖{fj}‖

, (15.1)

where ‖ · ‖ denotes the ∞-norm on [−1, 1] (in the numerator) or Cn+1 (in the
denominator). In words, if you have data values on an (n+ 1)-point grid, and
the data are no greater than 1 in absolute value, what is the largest possible
value of the interpolant p somewhere in [−1, 1]?

In the plots of Chapter 13 for interpolation of Runge’s function, for example, we
saw that the interpolants grew much bigger than the data. Thus the Lebesgue
constants must be large for equispaced interpolation. For example, for n = 50,
the data are bounded by 1 for all n, yet the interpolant is bigger than 105. Thus
the Lebesgue constant for interpolation in 50 equispaced points must be greater
than 105. (In fact it is about 4.2× 1012.)

From the basic Lagrange formula (5.1) for polynomial interpolation,

p(x) =

n
∑

j=0

fj ℓj(x), (15.2)

we can get a formula for Λ in terms of the Lagrange polynomials {ℓj}. At any
point x ∈ [−1, 1], the maximum possible value of |p(x)| for data bounded by 1
in absolute value will be

λ(x) =

n
∑

j=0

|ℓj(x)|. (15.3)

This sum of absolute values is known as the Lebesgue function for the given
grid, and the Lebesgue constant is its maximum value,

Λ = sup
x∈[−1,1]

λ(x). (15.4)

The reason Lebesgue constants are interesting is that interpolants are guaran-
teed to be good if and only if the Lebesgue constants are small. We can make
this statement precise as follows. Let Λ be the Lebesgue constant for interpola-
tion in a certain set of points. Without loss of generality, suppose the samples
have absolute value 1. If p is the interpolant in these points to a function f , we
know that ‖p‖ might be as great as Λ; yet ‖f‖ might be as small as 1. Thus
‖f − p‖ might be as great as Λ − 1, showing that a large Lebesgue constant
rigorously implies the possibility of a large interpolation error.

97

Conversely, let p∗ be the best approximation to f in the ∞-norm. If p is the
polynomial interpolant to f in the given points, then p − p∗ is the polynomial
interpolant to f − p∗. By the definition of the Lebesgue constant, ‖p − p∗‖ is
no greater than Λ‖f − p∗‖. Since f − p = (f − p∗)− (p− p∗), this implies that
‖f − p‖ is no greater than (Λ + 1)‖f − p∗‖. Thus a small Lebesgue constant
implies that interpolation will be close to best.

Actually, the discussion of the last two paragraphs is not limited to interpolation.
What is really in play here is any approximation process that is linear and a
projection, of which Chebyshev projection (truncation of the Chebyshev series)
would be an example as well as interpolation. Suppose we let L denote the
operator that maps a function f ∈ C[−1, 1] to its approximation by a polynomial
p ∈ Pn. For L to be linear means that L(f1 + f2) = Lf1 + Lf2 for any f1, f2 ∈
C[−1, 1] and L(αf) = αLf for any scalar α, and for L to be a projection means
that if p ∈ Pn, then Lp = p. By the argument above we have established the
following result applicable to any such approximation operator.

Theorem 15.1: Near-best approximation and Lebesgue constants. Let
Λ be the Lebesgue constant for a linear projection L of C[−1, 1] onto Pn. Let f
be a function in C([−1, 1]), p = Lf the corresponding polynomial approximant
to f , and p∗ the best approximation. Then

‖f − p‖ ≤ (Λ + 1)‖f − p∗‖. (15.5)

Proof. Given in the paragraphs above.

So it all comes down to the question, how big is Λ? According to the theorem of
Faber mentioned in Chapter 6 [Faber 1914], no set of interpolation points can
lead to convergence for all f , so it follows from Theorems 6.1 and 15.1 that

lim
n→∞

Λn = ∞ (15.6)

for interpolation in any sets of points. However, for well chosen sets of points,
the growth of Λn as n → ∞ may be exceedingly slow. Chebyshev points turn
out to be nearly optimal, whereas equispaced points are very bad.

The following theorem summarizes a great deal of knowledge accumulated over
the past century about interpolation processes. At the end of the chapter an
analogous theorem is stated for Cheybshev projection. As always in this book,
by “Chebyshev points” we mean Chebyshev points of the second kind, defined
by (2.2).

Theorem 15.2: Lebesgue constants for polynomial interpolation. The
Lebesgue constants Λn for degree n ≥ 0 polynomial interpolation in any set of
n+ 1 distinct points in [−1, 1] satisfy

Λn ≥ 2

π
log(n+ 1) + 0.52125 . . . ; (15.7)

98

the number 0.52125 . . . is (2/π)(γ + log(4/π)), where γ ≈ 0.577 is Euler’s con-
stant. For Chebyshev points, they satisfy

Λn ≤ 1 +
2

π
log(n+ 1) and Λn ∼ 2

π
log n, n → ∞. (15.8a, b)

For equispaced points they satisfy

Λn >
2n−2

n2
and Λn ∼ 2n+1

en log n
, n → ∞, (15.9a, b)

with the inequality (15.9a) applying for n ≥ 1.

Proof. The fact that Lebesgue constants for polynomial interpolation always
grow at least logarithmically goes back to Bernstein [1912c], Jackson [1913],
and Faber [1914]. Bernstein knew that (2/π) logn was the appropriate asymp-
totic behavior for interpolation in an interval, and the proof of (15.7) in this
sharp form is due to Erdős [1961], who got a constant C, and Brutman [1978],
who improved the constant to 0.52125 Equation (15.8a) is a consequence
of Theorem 4 of [Ehlich & Zeller 1966]; see also [Brutman 1997] and [McCabe
& Phillips 1973]. Equation (15.8b) follows from this together with Erdős’s re-
sult. (Bernstein [1918] did the essential work, deriving this asymptotic result for
Chebyshev points of the first kind, i.e., zeros rather than extrema of Chebyshev
polynomials — see Exercise 15.2.) Equation (15.9b) is due to Turetskii [1940]
and independently Schönhage [1961], and for (15.9a) and a discussion of related
work, see [Trefethen & Weideman 1991].

Equation (15.8a) shows that Lebesgue constants for Chebyshev points grow
more slowly than any polynomial: for many practical purposes they might as
well be 1. It is interesting to relate this bound to the interpolant through 100
random data points plotted at the end of Chapter 2. The Lebesgue constant
is the maximum amplitude this curve could possibly have attained, if the data
had been as bad as possible. For 100 points this number is about 3.94. In the
plot we see that random data have in fact come nowhere near even this modest
limit.

On the other hand, (15.9a) shows that Lebesgue constants for equispaced points
grow faster than any polynomial: for many practical purposes, unless n is very
small, they might as well be ∞.

Taking advantage again of the interp1 command, as in Chapter 13, we can
use Chebfun as a laboratory in which to see how such widely different Lebesgue
constants emerge. Consider for example the case of four equally spaced points.
Here are plots of the four Lagrange polynomials {ℓj}. In Chapter 9 we have
already seen plots of Lagrange polynomials, but on a grid of 20 Chebyshev
points instead of 4 equispaced points.

npts = 4; clear p

99

d = domain(-1,1); s = linspace(-1,1,4);

for k = 1:npts

subplot(2,2,k)

y = [zeros(1,k-1) 1 zeros(1,npts-k)];

p{k} = interp1(s,y,d);

hold off, plot(p{k}), grid on

hold on, plot(s,p{k}(s),’.’)

plot(s(k),p{k}(s(k)),’hr’,MS,9), ylim([-.3 1.3])

title([’Lagrange polynomial l_’ int2str(k-1)])

end

−1 −0.5 0 0.5 1

0

0.5

1

Lagrange polynomial l
0

−1 −0.5 0 0.5 1

0

0.5

1

Lagrange polynomial l
1

−1 −0.5 0 0.5 1

0

0.5

1

Lagrange polynomial l
2

−1 −0.5 0 0.5 1

0

0.5

1

Lagrange polynomial l
3

By taking the absolute values of these curves, we see the largest possible effect
at each point in [−1, 1] of data that is nonzero at just one point of the grid:

for k = 1:npts

subplot(2,2,k)

absp = abs(p{k});

hold off, plot(absp), grid on

hold on, plot(s,absp(s),’.’)

plot(s(k),absp(s(k)),’hr’,MS,9), ylim([-.3 1.3])

title([’Absolute value |l_’ int2str(k-1) ’(x)|’])

end

−1 −0.5 0 0.5 1

0

0.5

1

Absolute value |l
0
(x)|

−1 −0.5 0 0.5 1

0

0.5

1

Absolute value |l
1
(x)|

−1 −0.5 0 0.5 1

0

0.5

1

Absolute value |l
2
(x)|

−1 −0.5 0 0.5 1

0

0.5

1

Absolute value |l
3
(x)|

Now let us add up these absolute values as in (15.3):

100

L = 0*x;

for k = 1:npts, L = L + abs(p{k}); end

clf, plot(L), grid on

hold on, plot(s,L(s),’.’)

title(’Lebesgue function \lambda(x) for 4 equispaced points’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8
Lebesgue function λ(x) for 4 equispaced points

This is the Lebesgue function λ(x), a piecewise polynomial, telling us the largest
possible effect at each point x ∈ [−1, 1] of interpolating data of norm 1. The
Lebesgue constant (15.4) is the height of the curve:

Lconst = norm(L,inf)

Lconst = 1.631130309440899

A code lebesgue for automating the above computation (actually based on a
more efficient method) is included in Chebfun, and it optionally returns the
Lebesgue constant as well as the Lebesgue function. Here are the results for 8
equispaced points:

s = linspace(-1,1,8); [L,Lconst] = lebesgue(s);

hold off, plot(L), grid on, hold on, plot(s,L(s),’.’)

title(’Lebesgue function for 8 equispaced points’)

Lconst

Lconst = 6.929739656126465

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7
Lebesgue function for 8 equispaced points

101

And here they are for 12 points. Note that the Lebesgue constant has jumped
from 7 to 51.

s = linspace(-1,1,12); [L,Lconst] = lebesgue(s);

hold off, plot(L), grid on, hold on, plot(s,L(s),’.’)

title(’Lebesgue function for 12 equispaced points’)

Lconst

Lconst = 51.214223185730020

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Lebesgue function for 12 equispaced points

The function takes large values near ±1, as we expect from Chapter 13 since the
Runge phenomenon is associated with interpolants becoming very large near the
endpoints. In fact the Lebesgue function for interpolation in equispaced points
is more naturally displayed on a log scale. Here it is for n = 30:

s = linspace(-1,1,30); [L,Lconst] = lebesgue(s);

hold off, semilogy(L), grid on, hold on, semilogy(s,L(s),’.’)

title(’Lebesgue function for 30 equispaced points’)

Lconst

Lconst = 3.447738672687561e+06

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

10
6

10
8

Lebesgue function for 30 equispaced points

For comparison, here are the corresponding results for 4, 8, and 12 Chebyshev
points, now back again on a linear scale.

102

for npts = 4:4:12

s = chebpts(npts); [L,Lconst] = lebesgue(s);

hold off, plot(L), grid on, hold on, plot(s,L(s),’.’)

title([’Lebesgue function for ’ int2str(npts) ’ Chebyshev points’])

snapnow, Lconst

end

Lconst = 1.666666666666667

Lconst = 2.202214555205528

Lconst = 2.489430376881968

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8
Lebesgue function for 4 Chebyshev points

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5
Lebesgue function for 8 Chebyshev points

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5
Lebesgue function for 12 Chebyshev points

Here are 100 Chebyshev points, with a comparison of the actual Lebesgue con-
stant with the bound from Theorem 15.2:

103

npts = 100;

s = chebpts(npts); [L,Lconst] = lebesgue(s);

clf, plot(L,LW,0.7), grid on, ylim([0 5])

Lconst

Lbound = 1 + (2/pi)*log(npts)

title(’Lebesgue function for 100 Chebyshev points’)

Lconst =

3.887871431579913

Lbound =

3.931742395517711

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
Lebesgue function for 100 Chebyshev points

The low height of this curve shows how stable a process Chebyshev interpolation
is.

In Chapter 9 it was mentioned that combinations of Lagrange polynomials can
explain both the Gibbs phenomenon and the size of Lebesgue functions. Let
us now explain this remark. To analyze the Gibbs oscillations near a step,
we added up a succession of Lagrange polynomials with constant amplitude 1.
Since a single Lagrange polynomial has an oscillatory inverse-linear tail, the sum
corresponds to an alternating series that converges as n → ∞ to a constant.
Lebesgue functions, on the other hand, are defined by taking a maximum at
each point on the grid. The maximum is achieved by adding up Lagrange
polynomials with equal but alternating coefficients, so as to make the combined
signs all equal. For example, on the 20-point Chebyshev grid, the maximum
possible value of an interpolant is achieved at x = 0 by taking data with this
pattern:

s = chebpts(20);

d = (-1).^[1:10 10:19];

plot(s,d,’.k’), ylim([-2.5 3.5])

title(’Worst possible data for Chebyshev interpolant’)

104

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

Worst possible data for Chebyshev interpolant

Here is the Chebyshev interpolant:

p = chebfun(d);

hold on, plot(p)

title(’Interpolant through worst possible data’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

Interpolant through worst possible data

We readily confirm that the maximum of this interpolant is indeed the Lebesgue
constant for this grid:

max(p)

[L,Lconst] = lebesgue(s);

Lconst

ans = 2.837131699740443

Lconst = 2.837131699740441

We can now summarize why Lebesgue constants for Chebyshev points, and
indeed for any sets of interpolation points, must grow at least logarithmically
with n. The fastest a Lagrange polynomial can decay is inverse-linearly, and the
Lebesque function adds up those alternating tails with alternating coefficients,
giving a harmonic series.

Our discussion in this chapter has focussed on Chebyshev interpolation rather
than projection. However, as usual, there are parallel results for projection,

105

which historically were worked out earlier (for the Fourier case, not Chebyshev).
We record here a theorem analogous to Theorem 15.2.

Theorem 15.3: Lebesgue constants for Chebyshev projection. The
Lebesgue constants Λn for degree n ≥ 1 Chebyshev projection in [−1, 1] are
given by

Λn =
1

2π

∫ π

−π

∣

∣

∣

∣

sin((n+ 1/2)t)

sin(t/2)

∣

∣

∣

∣

dt. (15.10)

They satisfy

Λn ≤ 3 +
4

π2
log(n+ 1) and Λn ∼ 4

π2
log n, n → ∞. (15.11a, b)

Proof. See [Rivlin 1969]. Equation (15.11b) is due to Fejér in 1910 [Fejér 1910].

Related to Theorem 15.3 is another result concerning the norm of projection
operators, proved by Landau [1913]. If f is analytic in the unit disk and con-
tinuous on the boundary, and p ∈ Pn is the Taylor projection of f obtained
by truncating its Taylor series, how much bigger can p be than f on the unit
disk? Landau shown that these norms grow at the rate (1/π) logn as n → ∞,
a discovery which is perhaps the starting point of all results about logarithmic
growth of norms of approximation operators.

For details about Lebesgue constants, the outstanding source is the survey ar-
ticle by Brutman [1997].

[To be added: (1) Original references on everything. Look up Tietze 1917
(cf. also Brutman survey), Fejér 1916, Faber 1914, Luttman & Rivlin 1965,
Bernstein 1918, Cheney & Price 1970, Brutman, Powell, Smith. Get Bernstein
reference right for 1914. (2) Pin down (15.7) with a suitable reference. (3) Make
the discussion of worst possible data more leisurely. (4) Landau 1913 (Ex. 15.8)
may have only done Taylor projection. (5) Mention Landau’s constant? (6)
Mention that Taylor projections are minimal? (Mason and Geddes 1975). (7)
Is the logic around (15.6) backwards?]

Summary of Chapter 15. The Lebesgue constant for interpolation or

any other linear projection is the ∞-norm of the approximation opera-

tor. For interpolation in n+ 1 Chebyshev points the Lebesgue constant is

bounded by 1 + 2π−1 log(n+ 1), whereas for n + 1 equispaced points it is

asymptotic to 2n+1/en log(n).

Exercise 15.1. Plots of Lebesgue functions. Plot the Lebesgue functions for the
following distributions of interpolation points. (a) −0.9, −0.8, 0, 0.1, 0.2, 0.8. (b)
Same as in (a) but with additional points at a distance 0.01 to the right of the others.

106

Exercise 15.2. Chebyshev points of the first kind. The Lebesgue constants for
degree n Chebyshev interpolation are bounded by those for degree n interpolation in
Chebyshev points of the first kind, mentioned in the last exercise, with equality when n
is odd (Ehlich and Zeller [1966], McCabe and Phillips [1973]). Verify this numerically
for 0 ≤ n ≤ 20.

Exercise 15.3. Reproducing a table by Brutman. Page 698 of [Brutman 1978]
gives a table of various quantities associated with the Lebesgue function for interpo-
lation in Chebyshev points of the first kind. Track down this paper and write the
shortest, most elegant Chebfun program you can to duplicate this table. Are all of
Brutman’s digits correct?

Exercise 15.4. Omitting the endpoints. Suppose one performs polynomial in-
terpolation in the usual Chebyshev points (2.2), but omitting the endpoints x = ±1.
Perform numerical experiments to determine what happens to the Lebesgue constants
in this case. Does the growth appear to still be of order logn, or nα for some α, or
what?

Exercise 15.5. Optimal interpolation points. Starting from the n+1 Chebyshev
points, one could attempt to use one of Matlab’s optimization codes to adjust the
points to minimize the Lebesque constant. Do this and give the Lebesgue constant
and plot the Lebesgue function for (a) n = 4, (b) n = 5, (c) n = 6, (d) n = 7, and (e)
n = 8. How much improvement do you find in the Lebesgue constants as compared
with Chebyshev points?

Exercise 15.6. Improving Turetskii’s estimate. For interpolation in equi-
spaced points, Schönhage [1961] derived a more accurate estimate than (15.9b):
Λn ∼ 2n+1/en(logn + γ), where γ = 0.577 . . . is again Euler’s constant. Perform
a numerical study of Λn as a function of n and see what difference this correction
makes. For example it might be helpful to have a table showing the percentage errors
in both estimates as functions of n.

Exercise 15.7. Interpolating data with a gap. (a) Consider polynomial interpo-
lation in n + 1 points of a function f defined on [−1, 1], with half the points equally
spaced from −1 to −1/4 and the other half equally spaced from 1/4 to 1. Deter-
mine the Lebesgue constants for this interpolation process numerically for the cases
n + 1 = 20 and 40. (b) Suppose f is analytic and bounded by 1 in the ρ-ellipse Eρ

with ρ = 2. Carefully quoting theorems from this book as appropriate, give upper
bounds for the error |f(0)− p(0)| for these two cases.

Exercise 15.8. Smallest local minimum of the Lebesgue function. Inter-
polation in equispaced points is much better near the middle of an interval than at
the ends. In particular, the smallest local maximum of the Lebesgue function λ is
∼ logn/π as n → ∞ (Landau 1913). Make a plot of these minima as a function of n
to verify this behavior numerically.

Exercise 15.9. Convergence for Weierstrass’s function. Exercise 7.3 promised
that in Chapter 15, we would show that Chebyshev interpolants to Weierstrass’s
nowhere-differentiable function of Exercise 6.1 converge as n → ∞. Write down such
a proof based on combining various theorems of this book.

Exercise 15.10. Random interpolation points. (a) Compute Lebesgue functions
and constants numerically for degree n interpolation in uniformly distributed random
points in [−1, 1]. How does Λ appear to grow with n? (b) Same question for points
randomly distributed according to the Chebyshev density (11.18).

107

Exercise 15.11. Leja points. [to be written]

Exercise 15.12. Dini–Lipschitz continuity. [To be written. Show convergence in
this case from Lebesgue constants together with the Weierstrass theorem (see Natanson
book, 389–392). Early case may be Lebesgue, Sur les integrale singulieres, 1909.]

Exercise 15.13. A wiggly function. (a) Let f be the function Tm(x)+Tm+1(x)+
· · · + Tn(x) with m = 20 and n = 40, and let p∗ be the best approximation of f of
degree m − 1. Plot f and f − p∗. What are their ∞-norms and 2-norms? (b) Same
with m = 200 and n = 300.

16. Best and near-best

Traditionally, approximation theory has given a great deal of attention to best
approximations and rather less to alternatives such as Chebyshev interpolants.
One might think that this is because best approximations are much better than
the alternatives. However, this is not true.

In a moment we shall continue with Lebesgue constants to shed some light on
this matter, but first, let us do some experiments. We start with the extreme
case of a very smooth function, exp(x), and compare convergence of its Cheby-
shev interpolants p and best approximants p∗. (The difference between n and
n + 1 in this code is intentional, since chebfun takes as argument the number
of interpolation points whereas remez takes the degree of the polynomial.)

f = exp(x); nn = 0:15;

errbest = []; errcheb = []; i = 0;

for n = nn

i = i+1;

[p,err] = remez(f,n);

errbest(i) = err;

errcheb(i) = norm(f-chebfun(f,n+1),inf);

end

hold off, semilogy(nn,errbest,’h-b’,MS,6)

hold on, semilogy(nn,errcheb,’.-r’)

text(7,3e-12,’||f-p_n^*||’,FS,12)

text(9,2e-7,’||f-p_n||’,FS,12)

ylim([1e-16 10])

xlabel n, ylabel error

title([’Convergence of best approximation ’...

’vs. Chebyshev interpolation’])

108

0 5 10 15

10
−15

10
−10

10
−5

10
0

||f−p
n
* ||

||f−p
n
||

n

er
ro

r

Convergence of best approximation vs. Chebyshev interpolation

Clearly the stars for p∗ aren’t much better than the dots for p. The ratio of the
two converges toward 2 until the rounding errors set in for larger degrees:

format short

ratio = errcheb./errbest;

disp(’ n ratio’)

disp([nn’ ratio’])

n ratio

0 1.4621

1.0000 2.0000

2.0000 1.7444

3.0000 1.9681

4.0000 1.9499

5.0000 1.9819

6.0000 1.9818

7.0000 1.9886

8.0000 1.9910

9.0000 1.9922

10.0000 1.9947

11.0000 1.9913

12.0000 1.9629

13.0000 1.2731

14.0000 0.2723

15.0000 0.7545

At the other extreme of smoothness, consider |x|:

f = abs(x); nn = [0 2 4 10 20 40 100 200];

errbest = []; errcheb = []; i = 0;

for n = nn

i = i+1;

[p,err] = remez(f,n);

errbest(i) = err;

errcheb(i) = norm(f-chebfun(f,n+1),inf);

end

109

hold off, loglog(nn+1,errbest,’h-b’,MS,6)

hold on, loglog(nn+1,errcheb,’.-r’)

axis([1 300 .001 2])

text(5,.01,’||f-p_n^*||’,FS,12)

text(26,.06,’||f-p_n||’,FS,12)

xlabel n, ylabel error

title([’Convergence of best approximation ’...

’vs. Chebyshev interpolation’])

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

||f−p
n
* ||

||f−p
n
||

n

er
ro

r

Convergence of best approximation vs. Chebyshev interpolation

Again the stars are only a little bit better than the dots, by a constant factor
of about 2.13060:

ratio = errcheb./errbest;

disp(’ n ratio’)

disp([nn’ ratio’])

n ratio

0 2.0000

2.0000 2.0000

4.0000 2.1023

10.0000 2.1268

20.0000 2.1297

40.0000 2.1304

100.0000 2.1306

200.0000 2.1306

(For odd values of n the ratio is somewhat larger, approaching a constant of
about 3.57.)

So for these examples at least, you don’t buy much with best approximations.
And the cost in computing time is tremendous. Here is the time for computing
a Chebyshev interpolant p of degree 200 and evaluating it at 100 points:

xx = rand(100,1);

tic, p = chebfun(f,201); p(xx); toc

110

Elapsed time is 0.012117 seconds.

Here is the time for finding the best approximation p∗ and evaluating it at the
same points:

tic, p = remez(f,200); p(xx); toc

Elapsed time is 0.863739 seconds.

The reason computing p∗ is more expensive is that the mapping from f to p∗ is
nonlinear, hence requiring iteration in a numerical implementation, whereas the
mapping from f to p is linear (Exercise 10.5). It is perfectly feasible to compute
p for degrees in the millions, whereas for p∗ we would rarely attempt degrees
higher than hundreds.

Why has p∗ received so much more attention than p over the years? One
reason is that in the days before fast computers, the degrees were low, so small
differences in accuracy were more important. Another is that the theory of
best approximations is so beautiful! Indeed, their very nonlinearity makes best
approximations seemingly a richer field for research than the simpler Chebyshev
interpolants. Everybody remembers Theorem 10.1, the equioscillation theorem,
from the moment they first hear it. Perhaps there is a lesson here.

Yet in actual computation, true best approximations are not so often used, as
we have mentioned earlier (Chapter 10). This is a clue that the world of practice
has its own wisdom, independent of the theorists.

Now let us see what theoretical results might tell us about the difference be-
tween p and p∗. The first such results pertain to Theorems 7.2 and 8.2 given
earlier. Those theorems concerned convergence rates of pn to f , depending on
the smoothness of f . What about analogous theorems for p∗n? Apart from
constant factors, they turn out to be the same! For example, exactly the same
bound (8.3) was published by de la Vallée Poussin [1919, pp. 123–124], except
with the Chebyshev interpolant pn replaced by the best approximation p∗n. So
within the two classes of functions considered in Chapters 7 and 8 — f having
a kth derivative of bounded variation, or f being analytic — there is no clear
reason to expect p∗n to be much better than pn.

An observation for arbitrary functions f is the following consequence of Theo-
rems 15.1–15.3:

Theorem 16.1: Chebyshev truncations and interpolants are near-best.
Let f be continuous on [−1, 1] with degree n Chebyshev truncation fn, Chebyshev
interpolant pn and best approximant p∗n, n ≥ 1. Then

‖f − fn‖ ≤
(

4 +
4

π2
log(n+ 1)

)

‖f − p∗‖ (16.1)

111

and

‖f − pn‖ ≤
(

2 +
2

π
log(n+ 1)

)

‖f − p∗‖. (16.2)

Proof. Follows from Theorems 15.1, 15.2, and 15.3.

So the loss of accuracy in going from p∗n to pn, say, can never be larger than
a factor of 2 + (2/π) log(n + 1). It is interesting to examine the size of this
quantity for various values of n. For n = 105, for example:

2 + (2/pi)*log(100001)

ans = 9.3294

Since this number is less than 10, we see that in dealing with polynomials of
degree up to n = 100000, the non-optimality of Chebyshev interpolation can
never cost us more than one digit of accuracy. Here is the computation for
n = 1066:

2 + (2/pi)*log(1e66)

ans = 98.7475

So we never lose more than 2 digits for degrees all the way up to 1066 — which
might as well be ∞ for practical purposes. One can give a talk on these matters
with the title “1066 and All That”.

In fact, one might question whether best approximations are really better than
near-best ones at all! Of course they are better in a literal sense, as measured
in the ∞-norm. However, consider the following error curves, which are quite
typical for a function that is smoother in some regions than others.

f = abs(x-0.8);

tic, pbest = remez(f,100); toc

hold off, plot(f-pbest,’r’)

tic, pcheb = chebfun(f,101); toc

hold on, plot(f-pcheb)

axis([-1 1 -.008 .008]), grid on

title(’Best approximation vs. Chebyshev interpolation’)

Elapsed time is 0.288806 seconds.

Elapsed time is 0.002654 seconds.

112

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8
x 10

−3 Best approximation vs. Chebyshev interpolation

We see that pbest is worse than pcheb for almost all values of x, because the
damage done by the singularity at x = 0.8 is global. By contrast, the effect of
the singularity on pcheb decays with distance. Of course, pbest is better in the
∞-norm:

errcheb = norm(f-pcheb,inf)

errbest = norm(f-pbest,inf)

errcheb =

0.0060

errbest =

0.0017

In the 2-norm, however, it is a good deal worse:

errcheb2 = norm(f-pcheb,2)

errbest2 = norm(f-pbest,2)

errcheb2 =

4.3337e-04

errbest2 =

0.0017

One may seriously question how many applications there might be in which
pbest was truly better than pcheb as an approximation to this function f . To
echo a title of Corless and Watt [2004], minimax approximations are optimal,
but Chebyshev interpolants are better!

Li [2004] takes another angle on the near-optimality of Chebyshev interpolants,
pointing out that for applications to elementary functions, bounds on certain
derivatives usually apply that ensure that the error in interpolation in Cheby-
shev points of the first kind typically exceeds that of the best approximation by
less than a factor of 2, or as he calls it, “a fractional bit.”

Finally, we mention another kind of optimality that has received attention in the
approximation literature since Bernstein [Erdős 1961, de Boor & Pinkus 1978,

113

Kilgore 1978]: optimal interpolation points (Exercise 15.5). Chebyshev
points are very good, but they do not quite minimize the Lebesgue constant.
Optimal points minimize the Lebesgue constant (by definition), and they even
out the peaks of the Lebesgue function exactly (it has been proved) — but the
improvement is negligible. The first statement of Theorem 15.2 establishes that
like Chebyshev points, they lead to Lebesgue constants that are asymptotic to
(2/π) logn as n → ∞, which means they don’t even improve upon Chebyshev
points by a constant factor.

To be added: (1) References on limiting ratios 2, 2.13060, and 3.57? (2) Proper
discussion with references of the theorems analogous to Thms 7.2 and 8.2 alluded
to above Theorem 16.1. (3) Original refs on optimal interpolation points. (4)
For Cheb interp as near-best, see Fraser JACM 12 (1965), 310-313; Gavrilyuk &
Maz USSR Comp Math & Math Phys 6 (1966), 209–222; pp 72-74 of Meinardus
1967 book. (5) Check whether REMEZ is giving warning messages.]

Summary of Chapter 16. The ∞-norm error in degree n Chebyshev

interpolation is never greater than 2 + 2π−1 log(n + 1) times the ∞-norm

error in degree n best approximation, and in practice, the ratio of errors

rarely exceeds even a factor of 2. In the 2-norm, the interpolant is often

better than the “best” approximation.

Exercise 16.1. Speed of interpolation vs. Remez. (a) Repeat the experiment
of this chapter involving |x− 0.8| but for all the values n = 100, 200, 300, . . . , 1000. In
each case measure the computing times for Chebyshev interpolation and best approx-
imation, the L2 errors of both approximants, and the L∞ errors. Plot these results
and comment on what you find. (b) In particular, produce a plot of error curves like
that in the text. You may find it helpful to use a flag like ’numpts’,10000 in your
Chebfun plotting command.

Exercise 16.2. Approximation of a wiggly function. Define f(x) = T200(x) +
T201(x)+· · ·+T220(x). Construct the Chebyshev interpolant p and best approximation
p∗ of degree 199. Plot the errors and measure the ∞- and 2-norms.

Exercise 16.3. Rounding errors on a grid of 1066 points.

17. Legendre and other orthogonal polynomials

This book gives special attention to Chebyshev polynomials, since they are so
useful in applications. However, Chebyshev polynomials are just one example
of a family of orthogonal polynomials defined on the interval [−1, 1], and in
this chapter we note some of the other possibilities, especially Legendre poly-
nomials, which are the starting point for Gauss quadrature (Chapter 19). The
study of orthogonal polynomials was initiated by Jacobi [1826] and already well

114

developed by the end of the 19th century thanks to work by mathematicians
including Christoffel [1858], Darboux [1878], and Stieltjes [1884].

Let w ∈ C(−1, 1) be a weight function with w(x) > 0 for all x ∈ (−1, 1) and
∫ 1

−1
w(x) dx = 1; we allow w(x) to approach 0 or ∞ as x → ±1. The function

w defines an inner product for functions defined on [−1, 1]:

(f, g) =

∫ 1

−1

w(x)f(x)g(x)dx. (17.1)

(More precisely one can regard the inner product as applying in the Hilbert
space L2[−1, 1].) The family of orthogonal polynomials associated with w is
the family

p0, p1, p2, . . .

where p0 = 1, pn has degree exactly n for each n, and the polynomials satisfy
the orthogonality condition

(pj , pk) = δjk =

{

1 k = j,
0 k 6= j.

(17.2)

As we have seen in Chapter 3, Chebyshev polynomials come from the choice

w(x) =
2

π
√
1− x2

. (17.3)

The first three Chebyshev polynomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,

as we can confirm with the chebpoly command:

for j = 0:5

disp(fliplr(poly(chebpoly(j))))

end

1

0 1

-1 0 2

0 -3 0 4

1 0 -8 0 8

0 5 0 -20 0 16

Legendre polynomials come from the simplest weight function of all, a con-
stant function:

w(x) = 1.

If we normalize according to (17.1), the first three Legendre polynomials are

p0(x) =
√

1/2, p1(x) =
√

3/2x, p2(x) =
√

45/8x2 −
√

5/8,

as can confirm with the legpoly command:

115

format short

for j = 0:5

disp(fliplr(poly(legpoly(j,’norm’))))

end

0.7071

0 1.2247

-0.7906 0 2.3717

0 -2.8062 0 4.6771

0.7955 0 -7.9550 0 9.2808

0 4.3973 0 -20.5206 0 18.4685

However, it is more common to normalize Legendre polynomials by the condition
pj(1) = 1, in which case the first three are

p0(x) = 1, p1(x) = x, p2(x) =
3

2
x2 − 1

2
:

for j = 0:5

disp(fliplr(poly(legpoly(j))))

end

1

0 1

-0.5000 0 1.5000

0 -1.5000 0 2.5000

0.3750 0 -3.7500 0 4.3750

0 1.8750 0 -8.7500 0 7.8750

Given w, the family {pj} always exists and is unique.

The rest of this chapter is devoted to comparing Legendre and Chebyshev poly-
nomials. The comparison, and the consideration of orthogonal polynomials in
general, will continue into the next two chapters on roots (Chapter 18) and
quadrature (Chapter 19). For example, Theorem 19.6 presents a fast method
for calculating the barycentric weights for Legendre points, the zeros of Leg-
endre polynomials. On the whole, different families of orthogonal polynomials
have similar approximation properties, but Chebyshev points have the partic-
ular advantage that one can convert back and forth between interpolant and
expansion by the FFT.

We begin with a visual comparison of the Chebyshev and Legendre polynomials
of degrees 1–6. To avoid confusion with our notation Pn for the set of polyno-
mials of degree at most n, we denote Legendre polynomials in this book by L
rather than the standard letter P .

116

ax = [-1 1 -1 1]; T = []; L = [];

for n = 1:6

T{n} = chebpoly(n);

subplot(3,2,1), plot(T{n}), axis(ax), grid on

if n==1, title Chebyshev, end

L{n} = legpoly(n);

subplot(3,2,2), plot(L{n},’m’), axis(ax), grid on

if n==1, title Legendre, end

snapnow

end

−1 −0.5 0 0.5 1
−1

0

1
Chebyshev

−1 −0.5 0 0.5 1
−1

0

1
Legendre

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

For Legendre polynomials normalized by Lj(1) = 1, the orthgonality condition
turns out to be

∫ 1

−1

Lj(x)Lk(x)dx =







0 j 6= k,

2

2k + 1
j = k.

(17.4)

We can verify this formula numerically by constructing what Chebfun calls a
quasimatrix X, that is, a “matrix” whose columns are chebfuns, and then
taking inner products via the quasimatrix product XTX. One way to construct
X is like this:

X = [L{1} L{2} L{3} L{4} L{5} L{6}];

117

Another equivalent method is built in to legpoly:

X = legpoly(1:6);

Here is the quasimatrix product.

X’*X

ans =

0.6667 0 -0.0000 0 0.0000 0

0 0.4000 0 0.0000 0 -0.0000

-0.0000 0 0.2857 0 0.0000 0.0000

0 0.0000 0 0.2222 0.0000 0.0000

0.0000 0 0.0000 0.0000 0.1818 -0.0000

0 -0.0000 0.0000 0.0000 -0.0000 0.1538

This matrix of inner products looks diagonal, as it should, and we can confirm
the diagonal structure by checking the norm of the off-diagonal terms:

norm(ans-diag(diag(ans)))

ans = 1.6454e-16

The entries on the diagonal are the expected numbers 2/3, 2/5, 2/7,

Legendre polynomials satisfy the 3-term recurrence relation

(k + 1)Lk+1(x) = (2k + 1)xLk(x)− kLk−1(x). (17.5)

This may be compared with the recurrence relation (3.3) for Chebyshev poly-
nomials.

Chebyshev polynomials are not orthogonal in the standard inner product:

X = chebpoly(1:6);

X’*X

ans =

0.6667 0 -0.4000 0 -0.0952 0

0 0.9333 0 -0.3619 0 -0.0825

-0.4000 0 0.9714 0 -0.3492 0

0 -0.3619 0 0.9841 -0.0000 -0.3434

-0.0952 0 -0.3492 -0.0000 0.9899 -0.0000

0 -0.0825 0 -0.3434 -0.0000 0.9930

Nevertheless, Legendre and Chebyshev polynomials have much in common, as
is further suggested by plots of T50 and L50:

118

T50 = chebpoly(50); L50 = legpoly(50);

subplot(2,1,1), plot(T50), axis([-1 1 -2.5 2.5])

grid on, title(’Chebyshev polynomial T_{50}’)

subplot(2,1,2), plot(L50,’m’), axis([-1 1 -.3 .3])

grid on, title (’Legendre polynomial L_{50}’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

0

2

Chebyshev polynomial T
50

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

Legendre polynomial L
50

The zeros of the two families of polynomials are similar, as can be confirmed
by comparing Chebyshev (dots) and Legendre (crosses) zeros for degrees 10, 20,
and 50. (Instead of using the roots command here, one could achieve the same
effect with chebpts(n,1) and legpts(n) — see the next chapter.)

T10 = chebpoly(10); L10 = legpoly(10);

Tr = roots(T10); Lr = roots(L10);

clf, plot(Tr,.8,’.b’,MS,9), hold on

plot(Lr,0.9,’xm’,MS,4)

T20 = chebpoly(20); L20 = legpoly(20);

Tr = roots(T20); Lr = roots(L20);

plot(Tr,0.4,’.b’,MS,9), plot(Lr,0.5,’xm’,MS,4)

Tr = roots(T50); Lr = roots(L50);

plot(Tr,0,’.b’,MS,9), plot(Lr,0.1,’xm’,MS,4)

axis([-1 1 -.1 1.1]), axis off

Asymptotically as n → ∞, both sets of zeros cluster near ±1 with the same
density distribution nµ(x), with µ given by (11.18).

Another comparison between Chebyshev and Legendre points concerns their
Lebesgue functions and Lebesgue constants. Here we repeat a computation

119

of Lebesgue functions from Chapter 15 for 8 Chebyshev points and compare it
with the analogous computation for 8 Legendre points. Chebyshev and Legendre
points as we have defined them so far differ not just in which polynomials they
are connected with, but in that Chebyshev points come from extrema whereas
Legendre points come from zeros.

hold off

s = chebpts(8); [L,Lconst] = lebesgue(s);

subplot(1,2,1), plot(L), grid on, hold on, plot(s,L(s),’.’), Lconst

ylim([0,5]), title(’Chebyshev, n=7’)

s = legpts(8); [L,Lconst] = lebesgue(s);

subplot(1,2,2), plot(L), grid on, hold on, plot(s,L(s),’.’), Lconst

ylim([0,5]), title(’Legendre, n=7’)

Lconst =

2.2022

Lconst =

4.5135

−1 −0.5 0 0.5 1
0

1

2

3

4

5
Chebyshev, n=7

−1 −0.5 0 0.5 1
0

1

2

3

4

5
Legendre, n=7

The Lebesgue functions and constants for Legendre points are a little bigger
than for Chebyshev points, having size O(n1/2) rather than O(logn) because
of behavior near the endpoints [Szegő 1939, p. 338]. This small difference is of
little significance for most applications: the Lebesgue constants are still quite
small and either set of points will usually deliver excellent interpolants.

Moreover, an alternative is to consider Legendre extreme points — the n+1
points in [−1, 1] at which |Ln(x)| attains a local maximum. (The Legendre
extreme points in (−1, 1) are also the roots of the Jacobi polynomial J (1,1)(x).)
The Lebesgue function in this case looks very satisfactory:

clf

s = [-1; roots(diff(legpoly(7))); 1]; [L,Lconst] = lebesgue(s);

subplot(1,2,1), plot(L), grid on, hold on, plot(s,L(s),’.’), Lconst

ylim([0,5]), title(’Legendre extreme points, n=7’)

s15 = [-1; roots(diff(legpoly(15))); 1]; [L,Lconst] = lebesgue(s15);

subplot(1,2,2), plot(L), grid on, hold on, plot(s15,L(s15),’.’), Lconst

ylim([0,5]), title(’Legendre extreme points, n=15’)

120

Lconst =

1.9724

Lconst =

2.4303

−1 −0.5 0 0.5 1
0

1

2

3

4

5
Legendre extreme points, n=7

−1 −0.5 0 0.5 1
0

1

2

3

4

5
Legendre extreme points, n=15

The Legendre extreme points have a memorable property: as shown by Stielt-
jes [1885], they are the Fekete or minimal-energy points in [−1, 1], solving the
equipotential problem on that interval for a finite number of equal charges (Ex-
ercise 12.1). Here, for example, is a repetition of a figure from Chapter 11 but
now for 8 Legendre extreme points instead of 8 Chebyshev points. Again the
behavior is excellent.

ell = poly(s,domain(-1,1));

clf, plot(s,ell(s),’.k’,MS,10)

hold on, ylim([-0.9,0.9]), axis equal

xgrid = -1.5:.02:1.5; ygrid = -0.9:.02:0.9;

[xx,yy] = meshgrid(xgrid,ygrid); zz = xx+1i*yy;

ellzz = ell(zz); levels = 2.^(-6:0);

contour(xx,yy,abs(ellzz),levels,’k’)

title([’Curves |l(x)| = 2^{-6}, 2^{-5}, ..., 1 ’...

’for 8 Legendre extreme points’])

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

Curves |l(x)| = 2−6, 2−5, ..., 1 for 8 Legendre extreme points

[To be added: (1) Computation of Legendre series: see Piessens 1974, Alpert &
Rokhlin 1991, Iserles 2010. (2) Davis p. 313: bounds on Legendre coefficients.

121

(3) Talk about more general orthogonal polynomials and their 3-term recurrence
relations. (4) Discuss Szego’s explanation on p. 297 of the similarity between
L50 and T50 — the envelope is known. (Make this an exercise?) (5) Clarify µ
vs. µn vs. nµ vs. nµn in discussion of the measure. (6) Check normalization of
weight function w. For example, w = 1 doesn’t integrate to 1; the Chebyshev
weight seems wrong for T0.]

Summary of Chapter 17. Chebyshev polynomials are just one example

of a family of polynomials orthogonal with respect to a weight function

on [−1, 1]. If the weight function is a constant, one gets the Legendre

polynomials.

Exercise 17.1. Chebyshev and Legendre Lebesgue constants. Extend the
experiments of the text to a table and a plot of Lebesgue constants of Chebyshev,
Legendre, and Legendre extreme points for interpolation in n + 1 points with n =
1, 2, 4, . . . , 256. (To compute Legendre extreme points you can use the trick mentioned
in Exercise 12.4.) What asymptotic behavior do you observe as n → ∞? [The wording
of this exercise needs to be made more precise.]

Exercise 17.2. Chebyshev and Legendre interpolation points. [Not yet writ-
ten. Interpolate a particular function in Chebyshev and in Legendre points for various
n and show it doesn’t make much difference.]

Exercise 17.3. Orthogonal polynomials via QR decomposition. (a) Construct
a Chebfun quasimatrix A with columns corresponding to 1, x, . . . , x5 on [−1, 1]. Exe-
cute [Q,R] = qr(A) to find an equivalent set of orthonormal functions, the columns of
Q, and plot these with plot(Q). How do the columns of Q compare with the Legendre
polynomials normalized by (17.2)? (b) Write a for loop to normalize the columns of
Q in a fashion corresponding to Lj(1) = 1 and to adjust R correspondingly so that the
product Q*R continues to be equal to A, up to rounding errors, and plot the new quasi-
matrix with plot(Q). How do the columns of the new Q compare with the Legendre
polynomials normalized by Lj(1) = 1?

Exercise 17.4. Orthogonal polynomials via Gram–Schmidt. [Not yet writ-
ten. Construct orthog. polys. via Gram–Schmidt and/or Householder. Unweighted,

Chebyshev weight, e−10x2

weight.]

Exercise 17.5. Three-term recurrence relation. [Derivation of (17.5).]

Exercise 17.6. Jacobi polynomials. [To be written.]

Exercise 17.7. Gegenbauer polynomials. [To be written.]

18. Polynomial roots and colleague matrices

It is well known that if p is a polynomial expressed as a linear combination
of monomials xk, then the roots of p are equal to the eigenvalues of a certain
companion matrix formed from its coefficients (Exercise 18.8). Indeed, from

122

its beginning in the late 1970s Matlab has included a command roots that finds
roots of polynomials by using this identity. This method of zerofinding is effec-
tive and numerically stable, but only in a very narrow sense. It is a numerically
stable algorithm for precisely the problem just posed: given the monomial coef-
ficients, find the roots [Goedecker 1994, Toh & Trefethen 1994]. The trouble is,
this problem is an awful one! As Wilkinson made famous beginning in the 1960s,
it is exponentially ill-conditioned in general [Wilkinson 1984]. The roots tend
to be so sensitive to perturbations that even though the algorithm is stable in
the sense that it produces roots that are exactly correct for a polynomial whose
coefficients match the specified ones to a relative error on the order of machine
precision, this slight perturbation is enough to cause terrible inaccuracy.

There is an exception to this dire state of affairs. Finding roots from polynomial
coefficients is a well-conditioned problem in the special case of polynomials with
roots on or near the unit circle [Sitton, Burrus, Fox & Treitel 2003]. The trouble
is, most applications are not of this kind. Much more often, the roots of interest
lie in or near a real interval, and in such cases one should avoid monomials,
companion matrices, and Matlab’s roots command completely.

Fortunately, there is a well-conditioned alternative for such problems, and that
is the subject of this chapter. By now we are experts in approximating functions
on [−1, 1] by Chebyshev interpolants and Chebyshev series. Within this class of
tools, there is a natural way of computing the roots of a polynomial by solving
an eigenvalue problem. Here is the crucial result, due independently to Wilhelm
Specht [1960, p. 222] and Jack Good [1961].

Theorem 18.1: Polynomial roots and colleague matrix eigenvalues.
The roots of the polynomial

p(x) =
n
∑

k=0

akTk(x), an 6= 0

are the eigenvalues of the matrix

C =

























0 1
1
2 0 1

2
1
2 0 1

2

. . .
. . .

. . .
1
2

1
2 0

























− 1

2an

























a0 a1 a2 . . . an−1

























.

(Entries not displayed are zero.) If there are multiple roots, these correspond to
multiple eigenvalues with corresponding multiplicities.

123

Proof. Let x be any number, and consider the nonzero n-vector

v = (T0(x), T1(x), . . . , Tn−1(x))
T .

If we multiply C by v, then in every row but the first and last the result is

Tk(x) 7→ 1
2Tk−1(x) +

1
2Tk+1(x) = xTk(x),

thanks to the three-term recurrence relation (3.3) for Chebyshev polynomials,
Tk+1(x) = 2xTk(x)− Tk−1(x). In the first row we likewise have

T0(x) 7→ T1(x) = xT0(x)

since T0(x) = 1 and T1(x) = x. It remains to examine the bottom row. Here
it is convenient to imagine that in the difference of matrices defining C above,
the “missing” entry 1/2 is added in the (n, n + 1) position of the first matrix
and subtracted again from the (n, n + 1) position of the second matrix. Then
by considering the recurrence relation again we find

Tn−1(x) 7→ xTn−1(x)−
1

2an
(a0T0(x) + a1T1(x) + · · ·+ anTn(x)).

This equation holds for any x, but if x is a root of p, then the term in parentheses
on the right vanishes. In other words, if x is a root of p, then Cv is equal to
xv in every entry, making v is an eigenvector of C with eigenvalue x. If p has
n distinct roots, this implies that they are precisely the eigenvalues of C, and
this completes the proof in the case where p has distinct roots.

If p has multiple roots, we must show that each one corresponds to an eigenvalue
of C with the same multiplicity. For this we consider perturbations of the coeffi-
cients a0, . . . , an−1 of p with the property that the roots become distinct. Each
root must then correspond to an eigenvalue of the correspondingly perturbed
matrix C, and since both roots of polynomials and eigenvalues of matrices are
continuous functions of the parameters, the multiplicities must be preserved in
the limit as the amplitude of the perturbations goes to zero.

The matrix C is called a colleague matrix. Theorem 18.1 has been redis-
covered several times in the past half-century, for example by Day & Romero
[2005]. Since Specht [1957] there have also been generalizations to other families
of orthogonal polynomials besides Chebyshev polynomials, and the associated
generalized colleague matrices are called comrade matrices [Barnett 1975a &
1975b]. The generalization is immediate: one need only change the entries of
rows 1 to n to correspond to the appropriate recurrence relation.

For an example to illustrate Theorem 18.1, the polynomial

p = x.*(x-1/4).*(x-1/2);

clf, plot(p)

axis([-1 1 -.5 .5]), grid on

set(gca,’xtick’,-1:.25:1)

124

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
−0.5

0

0.5

obviously has roots 0, 1/4, and 1/2. The Chebyshev coefficients of p are
−3/8, 7/8,−3/8, 1/4:

format short

a = fliplr(chebpoly(p))

a =

-0.3750 0.8750 -0.3750 0.2500

As expected, the colleague matrix

C = [0 1 0; 1/2 0 1/2; 0 1/2 0] - ...

(1/(2*a(4)))*[0 0 0; 0 0 0; a(1:3)]

C =

0 1.0000 0

0.5000 0 0.5000

0.7500 -1.2500 0.7500

has eigenvalues that match the roots of p:

format long

eig(C)

ans =

0

0.500000000000002

0.249999999999999

In Chebfun, every function is represented by a polynomial (or a piecewise poly-
nomial). Thus Theorem 18.1 provides Chebfun with its method of numerical
rootfinding, implemented in the Chebfun roots command. For this polynomial
p, we can call roots to add the roots to the plot, like this:

r = roots(p);

hold on, plot(r,p(r),’or’,MS,7)

125

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
−0.5

0

0.5

In this example, p was a polynomial from the start. The real power of Theorem
18.1, however, comes when it is applied to the problem of finding the roots on
[−1, 1] of a general function f . To do this, we first approximate f by a polyno-
mial, then find the roots of the polynomial. This powerful idea is proposed in
Good’s original 1961 paper [Good 1961]. In a more numerical era, it has been
advocated in a number of papers by John Boyd, including [Boyd 2002], and it
is applied virtually every time Chebfun is used.

For example, here is the chebfun corresponding to cos(50πx) on [−1, 1]:

f = cos(50*pi*x); length(f)

ans = 253

It doesn’t take long to compute its roots,

tic, r = roots(f); toc

Elapsed time is 0.039600 seconds.

Inspecting a few of the computed results shows they are accurate to close to
machine precision:

r([1 2 51 99 100])

ans =

-0.990000000000000

-0.970000000000000

0.010000000000000

0.970000000000000

0.990000000000000

Changing the function to cos(500πx) makes the chebfun ten times longer,

f = cos(500*pi*x); length(f)

ans = 2045

126

One might think this would increase the rootfinding time enormously, since the
number of operations for an eigenvalue computation grows with the cube of
the matrix dimension. (The colleague matrix has special structure that can be
used to bring the operation count down to O(n2), but this is not done in a
straightforward Matlab call to eigs.) However, an experiment shows that the
timing is still quite good,

tic, r = roots(f); toc

Elapsed time is 0.600108 seconds.

and the accuracy is still outstanding

r([1 2 501 999 1000])

ans =

-0.999000000000000

-0.997000000000000

0.001000000000000

0.997000000000000

0.999000000000000

The explanation of this great speed in finding the roots of a polynomial of de-
gree in the thousands is that the complexity of the algorithm has been improved
to O(n2) by recursion. If a chebfun has length greater than 100, the interval is
divided recursively into subintervals, with a chebfun constructed on each subin-
terval of appropriately lower degree. Thus no eigenvalue problem is ever solved
of dimension larger than about 100. This idea of rootfinding based on recur-
sive subdivision of intervals and Chebyshev eigenvalue problems was developed
by John Boyd in the 1980s and 1990s and published by him in 2002 [Boyd
2002]. Details of the original Chebfun implementation of roots were presented
in [Battles 2006], and the algorithm was later speeded up substantially by Pedro
Gonnet.

These techniques are remarkably powerful for practical computations. For ex-
ample, how many zeros does the Bessel function J0 have in the interval [0, 5000]?
Chebfun finds the answer in less than a second:

tic, f = chebfun(@(x) besselj(0,x),[0,5000]);

r = roots(f); toc

length(r)

Elapsed time is 1.305023 seconds.

ans = 1591

What is the the 1000th zero?

r(1000)

127

ans = 3.140807295225079e+03

We readily verify that zero is an accurate one:

besselj(0,ans)

ans = 5.761964670423015e-17

This example is almost the first occasion in this book in which we have used
chebfuns on an interval other than [−1, 1]. The mathematics is the same;
[0, 5000] is reduced to [−1, 1] by a linear transformation.

Here is another illustration of recursive colleague matrix rootfinding for a high-
order polynomial. The function

f(x) = ex[sech(4 sin(40x))]exp(x) (18.1)

exhibits a sequence of narrower and narrower spikes. Where in [−1, 1] does it
take the value 1? We can find the answer by using roots to find the zeros of
the equation f(x)− 1 = 0:

ff = @(x) exp(x).*sech(4*sin(40*x)).^exp(x);

tic, f = ff(x); r = roots(f-1); toc

clf, plot(f), grid on

title(’Return to the challenging integrand (18.14)’)

hold on, plot(r,f(r),’or’,MS,4)

Elapsed time is 1.561658 seconds.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
Return to the challenging integrand (18.14)

Notice that we have found the roots here of a polynomial of quite high degree:

length(f)

ans = 3521

A numerical check confirms that the roots are accurate,

128

max(abs(ff(r)-1))

ans = 8.315570454442422e-14

and zooming in gives perhaps a more convincing plot:

xlim([-.1 .27])

title(’Close-up’)

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Close−up

Computations like this are examples of global rootfinding, a special case of global
optimization. They are made possible by the combination of fast methods of
polynomial approximation with the extraordinarily fast and accurate methods
for matrix eigenvalue problems that have been developed in the years since
Francis invented the QR algorithm in the very same year as Good proposed his
colleague matrices [Francis 1961].

Global rootfinding is a step in many other practical computations. It is used by
Chebfun, for example, in computing minima, maxima, 1-norms, and absolute
values.

It may be worth mentioning that as an alternative to eigenvalue problems based
on Chebyshev expansion coefficients, it is possible to relate roots of polynomials
to eigenvalue problems constructed from function values themselves at Cheby-
shev or other points. Mathematical processes along these lines are described
in [Fortune 1981] and [Amiraslani, et al. 2004], but there has not been much
numerical application, and whether such methods may one day compete with
the robustness and speed of colleague matrix methods is not known.

We close this chapter by clarifying a point that may have puzzled the reader. In
plots like the last two, we see only real roots of a function. Yet if the function is
a chebfun based on a polynomial representation, won’t there be complex roots
too? This is indeed the case, but the Chebfun roots command by default
returns only those roots in the interval where the function is defined. This
default behavior can be overridden by the use of the flags ’all’ or ’complex’
(see Exercise 14.2). For example, suppose we make a chebfun corresponding to
the function f(x) = (x− i) exp(x), which has just one complex root:

129

f = (x-1i).*exp(x);

length(f)

ans = 16

Typing roots alone gives an empty result,

roots(f)

ans = Empty matrix: 0-by-1

With roots(f,’all’) we get 15 complex roots, one of which is close to the
exact value i:

roots(f,’all’)

ans =

5.547449161867402 - 6.881939962715025i

5.549228934990555 + 6.742658291769258i

1.621208524576572 - 6.600976209539127i

1.622778153691944 + 6.459369547219920i

-0.862071641931589 - 5.672970550178491i

-0.863167878985637 + 5.529849812380652i

-2.549964559078775 - 4.444767251346623i

-3.664930599540194 - 3.055332374662211i

-2.554485468502298 + 4.303049289549812i

-4.305640171640882 - 1.579505420838914i

-3.670759826319950 + 2.917470067938329i

-4.516455458908681 - 0.066308326942409i

-4.309583570325588 + 1.445394701241379i

-0.000000000160410 + 0.999999999890419i

The other roots are meaningless from the point of view of the underlying func-
tion f ; they are an epiphenomenon that arises in the process of approximating f
on [−1, 1]. A plot reveals that they have a regular distribution, which is related
to potential theory and has been the subject of considerable interest by some
mathematicians [Saff & Varga 1978b]:

hold off, plot(ans,’.’,MS,14)

ylim([-8 8]), grid on, axis equal

−20 −15 −10 −5 0 5 10 15 20
−8

−6

−4

−2

0

2

4

6

8

130

With the roots(f,’complex’) option, Chebfun does its best to return just
those roots in the complex plane that are near the interval of approximation
and are considered reliable — that is, well within the Bernstein ellipse where
the Chebyshev series appears to be valid. For this example, it correctly singles
out x = i as the genuine root.

roots(f,’complex’)

hold on, plot(ans,’.r’,MS,8), plot(ans,’hr’,MS,7)

ans =

-0.000000000160410 + 0.999999999890419i

−20 −15 −10 −5 0 5 10 15 20
−8

−6

−4

−2

0

2

4

6

8

[To be added: (1) Discussion of stability. (2) Look up Barnett’s book. (3) Add
references to Boyd after “more numerical era”.]

Summary of Chapter 18. The roots of a polynomial are equal to the

eigenvalues of a colleague matrix formed from its coefficients in a Cheby-

shev series and the recurrence relation for Chebyshev polynomials. This

identity, combined with recursive subdivision, leads to a stable and effi-

cient numerical method for computing roots of a polynomial in an interval.

For orthogonal polynomials other than Chebyshev, the colleague matrix

generalizes to a comrade matrix.

Exercise 18.1. Four forms of colleague matrix. A matrix C has the same
eigenvalues and eigenvalue multiplicities as CT and also as SCS−1, where S is any
nonsingular matrix. Use these properties to derive three alternative forms of the
colleague matrix in which the Chebyshev coefficients appear in (a) the first row, (b)
the first column, (c) the last column.

Exercise 18.2. Some forms stabler than others. Mathematically, all the matrices
described in the last exercise have the same eigenvalues. Numerically, however, some
may suffer more than others from rounding errors, and in fact Chebfun works with the
first-column option for just this reason. (a) Determine the 11 × 11 colleague matrix
corresponding to roots −1,−0.8,−0.6, . . . , 1. Get the entries of the matrix exactly,

131

either analytically or by intelligent guesswork based on Matlab’s rat command. (b)
How does the accuracy of the eigenvalues of the four matrix variants compare? Which
one is best? Is the difference significant? (c) What happens if you solve the four
eigenvalue problems again using Matlab’s nobalance option in the eig command?

Exercise 18.3. Legendre polynomials. The Legendre polynomials satisfy L0(x) =
1, L1(x) = x, and for k ≥ 1, the recurrence relation (17.5). (a) Derive the “comrade
matrix” analogue of Theorem 18.1 for the roots of a polynomial expanded as a linear
combination of Legendre polynomials. (b) Verify numerically that the roots of the
particular polynomial L0 + L1 + · · ·+ L5 match the prediction of your theorem. (Try
sum(legpoly(0:5),2) to construct this polynomial slickly in Chebfun and don’t forget
roots(...,’all’).)

Exercise 18.4. Complex roots. Pick six quite varied functions defined on [−1, 1],
construct corresponding chebfuns, and plot all of their roots in the complex plane.
Comment on the patterns you observe. [This needs to be made more precise.]

Exercise 18.5. Polishroots. Explore rootfinding in Chebfun in the two modes
chebfunpref(’polishroots’,1) and chebfunpref(’polishroots’,0). When this
preference is set to 1, one step of Newton’s method is used to improve each real
root obtained from the colleague matrix eigenvalue problem. What is the effect on the
accuracy of the algorithm? The speed? [to be written more properly]

Exercise 18.6. Random polynomials. [To be written. Use Matlab roots for a
polynomial with random coeffs, and show the roots are near the unit circle. Similarly
in the Chebyshev basis. Then point to Shiffman & Zelditch 2003.]

Exercise 18.7. Wilkinson polynomial. [To be written.]

Exercise 18.8. Companion matrix. [To be written.]

19. Clenshaw–Curtis and Gauss quadrature

One thing that is famous about Legendre points and polynomials is their con-
nection with Gauss quadrature, invented by Gauss [1814]. Chebyshev points,
similarly, are the basis of Clenshaw–Curtis quadrature [Clenshaw & Curtis
1960]. Quadrature is the standard term for the numerical calculation of inte-
grals. It is one of the areas where approximation theory has an immediate link
to applications, as we shall see in Theorems 19.3–19.5.

In the basic quadrature problem, we are given a function f ∈ C[−1, 1] and wish
to calculate

I =

∫ 1

−1

f(x)dx. (19.1)

There is a standard idea for doing this which is the basis of the Gauss and
Clenshaw–Curtis formulas and many others besides. Given n ≥ 0, we sample f
at a certain set of n+ 1 distinct nodes x0, . . . , xn in [−1, 1]. Clenshaw–Curtis
quadrature uses Chebyshev points, and Gauss quadrature uses Legendre points.
We then approximate I by In, the exact integral of the degree n polynomial

132

interpolant pn of f at these nodes:

In =

∫ 1

−1

pn(x)dx. (19.2)

One might wonder, why use a polynomial rather than some other interpolant?
This is a very good question, and in Chapter 22 we shall see that other inter-
polants may in fact be up to π/2 times more efficient. Nevertheless polynomial
interpolants have been the standard idea in numerical quadrature since the 18th
century.

To integrate pn, we do not construct it explicitly. Instead, In is computed from
the formula

In =
n
∑

k=0

wkf(xk), (19.3)

where the numbers w0, . . . , wn are a set of n+1 weights that have been prede-
termined so that the value of In will come out right. From (5.1) it is clear that
the weights must be the integrals of the Lagrange polynomials,

wk =

∫ 1

−1

ℓk(x)dx. (19.4)

Another way to write (19.3) is to say that In is given by an inner product,

In = wTv, (19.5)

where w and v are column vectors of the weights wk and function values f(xk).
Any linear process of computing an approximate integral from n + 1 sample
points must be representable in this inner product form, and the integration of
polynomial interpolants is a linear process. The proper term is that the mapping
from {f(xk)} to In is a linear functional (Exercise 19.1).

The following exactness properties of the Clenshaw–Curtis and Gauss formulas
are very well known. (We say that a formula is “exact” when applied to f if the
result it gives is the exactly correct integral of f .) The proof we give, the stan-
dard one based on orthogonal polynomials, comes from [Jacobi 1826]. Gauss’s
original work twelve years earlier was based on continued fractions rather than
orthogonal polynomials.

Theorem 19.1: Polynomial degree of quadrature formulas. For any
n ≥ 0, the (n + 1)-point Clenshaw–Curtis formula is exact if f ∈ Pn, and the
(n+ 1)-point Gauss formula is exact if f ∈ P2n+1.

Proof. Since both formulas are constructed by integration of a polynomial in-
terpolant of degree n, it is immediate that they are exact for f ∈ Pn. The
nontrivial property to be established is that Gauss quadrature achieves more
than this, being exact for polynomials all the way up to degree 2n+ 1.

133

Suppose then that f ∈ P2n+1. Such a function can be written in the form
f(x) = Ln+1(x) qn(x)+ rn(x), where Ln+1 is the (n+1)st Legendre polynomial
and qn, rn ∈ Pn. This implies

I =

∫ 1

−1

f(x) dx =

∫ 1

−1

Ln+1(x) qn(x) dx +

∫ 1

−1

rn(x) dx.

The first of the integrals on the right is zero because of the orthogonality prop-
erty of Legendre polynomials, leaving us with

I =

∫ 1

−1

rn(x) dx.

Now consider In, the (n+ 1)-point Gauss quadrature approximation to I. The
nodes of this formula are the zeros of Ln+1(x). Accordingly, at each node xk

we have f(xk) = rn(xk). Thus the value In the Gauss formula gives for f will
be the same as the value it gives for rn. But rn ∈ Pn, so this value is exactly
the integral of rn, that is, In = I.

Theorem 19.1 is famous, but we shall see that it is misleading. It suggests that
Clenshaw–Curtis quadrature will typically need twice as many points as Gauss
to deliver a certain accuracy, but this is not true.

First let us give some more details of these quadrature formulas. For Clenshaw–
Curtis quadrature, one way to compute In is by constructing the weight vector
w explicitly. It can be shown that the weights are all positive and sum to 2 (the
same properties also hold for Gauss quadrature weights, whose computation we
discuss later in the chapter). From a practical point of view, this approach may
be advantageous for integrating a collection of functions on a single Chebyshev
grid. There is a classical formula for calculation of the weights with O(n2)
operations [Davis & Rabinowitz 1984, Trefethen 2000], and it is also possible to
compute the weights faster, in O(n logn) operations, using the FFT [Waldvogel
2006]. This fast algorithm is invoked by Chebfun when the command chebpts

is called with two arguments, as we illustrate with n+ 1 = 3:

[nodes,weights] = chebpts(3)

nodes =

-1

0

1

weights =

0.333333333333333 1.333333333333333 0.333333333333333

By increasing 3 to one million we see the speed of Waldvogel’s algorithm:

tic, [nodes,weights] = chebpts(1000000); toc

134

Elapsed time is 0.617872 seconds.

The other way to carry out Clenshaw–Curtis quadrature, simplest when just one
or a small number of integrands are involved, is to use the FFT to transform the
problem to coefficient space (see Chapter 3) at a cost of O(n logn) operations
per integrand. (This idea was not proposed by Clenshaw and Curtis, who wrote
before the rediscovery of the FFT in 1965, but by Morven Gentleman a few
years later [Gentleman 1972a, 1972b].) To see how this works, we observe that
the integral of the Chebyshev polynomial Tk from −1 to 1 is zero if k is odd
and

∫ 1

−1

Tk(x) dx =
2

1− k2
(19.6)

if k is even (Exercise 19.9). This gives us the following theorem, the basis of
the FFT realization of Clenshaw–Curtis quadrature:

Theorem 19.2: Integral of a Chebyshev series. The integral of a degree
n polynomial expressed as a Chebyshev series is

∫ 1

−1

n
∑

k=0

ckTk(x) dx =

n
∑

k=0, k even

2ck
1− k2

.

Proof. Follows from (19.6).

Chebfun applies Theorem 19.2 every time one types sum(f). Chebyshev co-
efficients of f are computed by the FFT using chebpoly, and then they are
summed with the factors 2/(1− k2).

By combining (19.6) with Theorems 8.1 and 19.1, we can now write down a theo-
rem about the geometric convergence of Clenshaw–Curtis and Gauss quadrature
for analytic integrands. For Gauss quadrature, this estimate is due to Rabi-
nowitz [1969], and the extension to Clenshaw–Curtis can be found in [Trefethen
2008]. This result is fundamental and very important. For analytic integrands,
the Gauss and Clenshaw–Curtis formulas converge geometrically. Every numer-
ical analysis textbook should state this fact.

Theorem 19.3: Quadrature formulas for analytic integrands. Let a
function f analytic in [−1, 1] be analytically continuable to the open ρ-ellipse
Eρ, where it satisfies |f(z)| ≤ M for some M . Then (n + 1)-point Clenshaw–
Curtis quadrature with n ≥ 2 applied to f satisfies

|I − In| ≤
64

15

Mρ1−n

ρ2 − 1
(19.7)

and (n+ 1)-point Gauss quadrature with n ≥ 1 satisfies

|I − In| ≤
64

15

Mρ−2n

ρ2 − 1
. (19.8)

135

The factor ρ1−n in (19.7) can be improved to ρ−n if n is even, and the factor
64/15 can be improved to 144/35 if n ≥ 4 in (19.7) or n ≥ 2 in (19.8).

Proof. If the constants 64/15 are increased to 8 and ρ2 − 1 is reduced to ρ− 1,
these conclusions can be obtained as corollaries of Theorem 8.2 by noting that
the error in integrating f will be the same as the error in integrating f − p∗.

To get the sharper results stated, we use an additional fact: both Gauss and
Clenshaw–Curtis formulas get the right answer when integrating an odd func-
tion, namely zero. In particular the error is zero in integration of Tk(x) for any
odd k. Now by Theorem 19.1, Gauss quadrature is exact through the term of
degree 2n + 1 in the Chebyshev expansion of f . Since odd terms do not con-
tribute, we see that the error in integrating f by (n+1)-point Gauss quadrature
will thus be the error in integrating

a2n+2T2n+2(x) + a2n+4T2n+4(x) + . . . ,

a series in which the smallest index that appears is at least 4. Now by (19.6),
the true integral of Tk for k ≥ 4 is at most 2/15. When Tk is integrated over
[−1, 1] by the Gauss quadrature formula, the result will be at most 2 since the
weights are positive and add up to 2. Thus the error in integrating each Tk is at
most 2+2/15 = 32/15. Combining this estimate with the bound |ak| ≤ 2Mρ−k

of Theorem 8.1 gives (19.8). The argument for (19.7) is analogous. For the
improvement from 64/15 to 144/35, see Exercise 19.6.

Just as Theorem 19.3 follows from the results of Chapter 8 for analytic inte-
grands, there is an analogous result for differentiable integrands based on the
results of Chapter 7.

Theorem 19.4: Quadrature formulas for differentiable integrands. For
an integer ν ≥ 1, let f have an absolutely continuous (ν− 1)st derivative f (ν−1)

on [−1, 1] and a νth derivative f (ν) of bounded variation V . Then (n+1)-point
Clenshaw–Curtis quadrature applied to f satisfies

|I − In| ≤
32

15

V

πν(n− ν)ν
(19.9)

for n > ν and (n+ 1)-point Gauss quadrature satisfies

|I − In| ≤
32

15

V

πν(n− 2ν − 1)2ν+1
(19.10)

for n > 2ν + 1.

Proof. Like the previous proof, but now based on Theorem 7.2.

Here is a numerical example, the integration of the function (18.1) with a se-
quence of spikes:

I =

∫ 1

−1

ex [sech(4 sin(40x))]exp(x)dx (19.11)

136

ff = @(x) exp(x).*sech(4*sin(40*x)).^exp(x);

f = ff(x);

clf, plot(f), grid on, title(’The spiky integrand (19.11)’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
The spiky integrand (19.11)

The corresponding chebfun is not exactly short:

length(f)

ans = 3521

Nevertheless, Chebfun computes its integral to 15 digits of accuracy in a fraction
of a second:

sum(f)

ans = 0.543384000907901

Now let us look at Gauss quadrature. The nodes for the n + 1-point Gauss
formula are the roots of the Legendre polynomial Ln+1(x). A good method for
computing these numbers is implicit in Theorem 18.1 and the comment after it.
According to that theorem, the roots of a polynomial expressed as a Chebyshev
series are equal to the eigenvalues of a colleague matrix whose structure is
tridiagonal apart from a nonzero final row. If the Chebyshev series reduces to the
single polynomial Tn+1, the matrix reduces to tridiagonal without the extra row.
Similarly the roots of a polynomial expressed as a series in Legendre polynomials
are the eigenvalues of a comrade matrix, which is again tridiagonal except for
a final row, and for the roots of Ln+1 itself, the matrix reduces to tridiagonal.
When symmetrized, this matrix is called a Jacobi matrix (Exercise 19.10).
The classic numerical algorithm for implementing Gauss quadrature formulas
comes from Golub and Welsch in 1969, who showed that the weights as well
as the nodes can be obtained by solving the eigenvalue problem for this Jacobi
matrix [Golub & Welsch 1969]. The Golub–Welsch algorithm can be coded in
six lines of Matlab (see gauss.m in [Trefethen 2000]), and the operation count
is in principle O(n2), though O(n3) in the simple implementation since Matlab
does not offer a command to exploit the tridiagonal structure.

137

For larger values of n, there is a much faster alternative due to Glaser, Liu,
and Rokhlin, based on numerical solution of certain linear ordinary differen-
tial equations [Glaser, Liu & Rokhlin 2007]. The operation count now shrinks
dramatically to O(n). The results of the Glaser–Liu–Rokhlin algorithm are
available in Chebfun when the legpts command is called with two output ar-
guments. Following the illustration of Clenshaw–Curtis quadrature earlier, here
are nodes and weights for Gauss quadrature with n+ 1 = 3:

[nodes,weights] = legpts(3)

nodes =

-0.774596669241484

0

0.774596669241484

weights =

0.555555555555555 0.888888888888889 0.555555555555555

And here is the time for one million points — much slower than for Clenshaw–
Curtis quadrature, but still doable.

tic, [nodes,weights] = legpts(1000000); toc

Elapsed time is 28.109859 seconds.

For example, here is the integral of exp(−100x2) computed by n-point Gauss
quadrature for various values of n. We write w*gg(s) rather than w’*gg(s)

since w as returned by legpts is a row vector, not a column vector.

gg = @(x) exp(-100*x.^2);

for n = 20:20:80

tic, [s,w] = legpts(n+1);

I = w*gg(s); t = toc;

fprintf(’n = %3d, I = %16.14f, time = %6.4f\n’,n,I,t)

end

n = 20, I = 0.18088674900834, time = 0.0024

n = 40, I = 0.17724541037977, time = 0.0007

n = 60, I = 0.17724538509055, time = 0.0011

n = 80, I = 0.17724538509055, time = 0.0099

For the more difficult integral (19.11), bigger values of n are required. Never-
theless the computing times remain very short.

for n = 500:500:2000

tic

[s,w] = legpts(n+1);

I = w*ff(s); t = toc;

fprintf(’n = %4d, I = %16.14f, time = %6.4f\n’,n,I,t)

end

138

n = 500, I = 0.54339275810622, time = 0.0174

n = 1000, I = 0.54338400182558, time = 0.0303

n = 1500, I = 0.54338400090784, time = 0.0452

n = 2000, I = 0.54338400090790, time = 0.0578

Gauss quadrature has not often been employed for numbers of nodes in the thou-
sands, because with traditional algorithms the computations are too expensive.
It is clear from this experiment that the Glaser–Liu–Rokhlin algorithm makes
such computations feasible after all.

So is Gauss quadrature the formula of choice? In particular, how does it compare
with Clenshaw–Curtis quadrature as n → ∞? As mentioned above, the tradi-
tional expectation, based on Theorem 19.1 and seemingly supported by Theo-
rems 19.3 and 19.4, is that Gauss should converge twice as fast as Clenshaw–
Curtis. However, numerical experiments show that the truth is not so simple.
We begin with the easy integrand exp(−100x2) just considered.

I = sum(chebfun(gg));

errcc = []; errgauss = [];

nn = 2:2:80;

for n = nn

Icc = sum(chebfun(gg,n+1));

errcc = [errcc abs(I-Icc)];

[s,w] = legpts(n+1);

Igauss = w*gg(s);

errgauss = [errgauss abs(I-Igauss)];

end

MS = ’markersize’;

hold off, semilogy(nn,errcc,’.-’,MS,10), grid on

hold on, semilogy(nn,errgauss,’h-m’,MS,4), grid on

title(’Gauss vs. Clenshaw-Curtis quadrature’)

0 10 20 30 40 50 60 70 80
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Gauss vs. Clenshaw−Curtis quadrature

This behavior is typical: for smaller values of n, Clenshaw–Curtis (dots) and
Gauss quadrature (stars) have similar accuracy, not a difference of a factor of
2. This effect was pointed out by Clenshaw and Curtis in their original paper

139

[1960]. Only at a sufficiently large value of n, if the integrand is analytic,
does a kink appear in the Clenshaw–Curtis convergence curve, whose further
convergence is then about half as slow as before. An explanation of this effect
based on ideas of rational approximation is given in Figures 4–6 of [Trefethen
2008], and another explanation based on aliasing can be derived from Theorems
4.2 and 19.2 and goes back to O’Hara and Smith [1968] (Exercise 19.5). For a
full analysis, see [Weideman & Trefethen 2007].

Here is a similar comparison for the harder integral (19.11):

I = sum(f);

errcc = []; errgauss = []; tcc = []; tgauss = [];

nn = 50:50:2000;

for n = nn

tic, Icc = sum(chebfun(ff,n+1)); t = toc;

tcc = [tcc t]; errcc = [errcc abs(I-Icc)];

tic, [s,w] = legpts(n+1); t = toc;

Igauss = w*ff(s);

tgauss = [tgauss t]; errgauss = [errgauss abs(I-Igauss)];

end

hold off, semilogy(nn,errcc,’.-’,MS,10), grid on

hold on, semilogy(nn,errgauss,’h-m’,MS,4)

title(’Gauss vs. Clenshaw-Curtis quadrature’)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−20

10
−15

10
−10

10
−5

10
0

Gauss vs. Clenshaw−Curtis quadrature

This time, for the values of n under study, the kink does not appear at all.
Clenshaw–Curtis has approximately the same accuracy as Gauss throughout,
and in particular, it obtains the correct integral to machine precision by around
n = 1800, which is about half the length of the chebfun, length(f), reported
earlier! This is typical of Clenshaw–Curtis quadrature: just as with Gauss
quadrature, the quadrature value often converges about twice as fast as the
underlying polynomial approximation, even though Theorems 19.1, 19.3, and
19.4 give no hint of such behavior.

There is a theorem that substantiates this effect. The following result, whose
proof we shall not give, comes from [Trefethen 2008].

140

Theorem 19.5: Clenshaw–Curtis quadrature for differentiable inte-
grands. Under the hypotheses of Theorem 19.4, the same conclusion (19.10)
also holds for (n+ 1)-point Clenshaw–Curtis quadrature:

|I − In| ≤
32

15

V

πν(n− 2ν − 1)2ν+1
. (19.12)

The only difference is that this bound applies for all sufficiently large n (depend-
ing on ν but not f) rather than for n > 2ν + 1.

Proof. See [Trefethen 2008]. Here, the definition of V is somewhat different
from the one in [Trefethen 2008], but this does not affect the argument leading
to (19.12).

In the for loop of the experiment above, we stored times as well as values. This
enables us to plot accuracy as a function of computing time, showing that Gauss
quadrature, at least in the Chebfun implementation, is much the slower of the
two methods.

hold off, semilogy(tcc,errcc,’.-’,MS,10)

hold on, semilogy(tgauss,errgauss,’h-m’,MS,4), grid on, ylim([3e-17,1])

a = axis;

text(mean(a(1:2)),2e-8,’Gauss’,CO,’m’)

text(a(1)+.1*(a(2)-a(1)),1e-15,’Clenshaw-Curtis’,CO,’b’)

xlabel(’time (secs)’), ylabel error

title(’Timing comparison for Gauss for Clenshaw-Curtis quadrature’)

0 0.01 0.02 0.03 0.04 0.05 0.06

10
−15

10
−10

10
−5

10
0

Gauss

Clenshaw−Curtis

time (secs)

er
ro

r

Timing comparison for Gauss for Clenshaw−Curtis quadrature

All in all, though Gauss quadrature is more celebrated than Clenshaw–Curtis,
and certainly has some beautiful properties, it is not clear how often it is superior
in practice.

For an extensive survey of many aspects of Gauss quadrature, see [Gautschi
1981], and for general information about numerical integration, see [Davis &
Rabinowitz 1984]. In practical applications it is common to use adaptive for-
mulas of low or moderate order rather than letting n increase toward ∞, though
Chebfun is an exception to this pattern.

141

As mentioned earlier, both Gauss and Clenshaw–Curtis quadrature grids can
be improved by a factor approaching π/2 by the introduction of a change of
variables, taking us beyond the realm of polynomial approximations. These
ideas are discussed in Chapter 22.

We close this chapter by mentioning an elegant application of Gauss quadrature
nodes and weights pointed out by Wang [2010].

Theorem 19.6: Barycentric weights for Legendre points. Let the num-
bers λ0, . . . , λk be defined by

λk = (−1)k
√

(1− x2
k)wk, (19.13)

where {xk} and {wk} are the nodes and weights for (n+1)-point Gauss quadra-
ture. If these numbers are taken as weights in the barycentric formula (5.11),
they yield the polynomial interpolant through Legendre points.

Proof. See [Wang 2010].

In view of the Glaser–Liu–Rokhlin algorithm for Gauss quadrature, this theorem
implies that polynomial interpolants in Legendre points, like Chebyshev points,
can be evaluated in O(n) operations.

[To be added: (1) Reference on the invention of the O(n2) clencurt formula
mentioned at the beginning. (2) Give the aliasing explanation of Theorem 19.5.
(3) Say something about Newton–Cotes quadrature and the proof of divergence
by Polya 1933. (4) Mention Evans and Kythe & Schäferkotter. (5) Mention Fejér
quadrature. (6) Mention hermpoly and lagpoly. (7) Give the fast algorithm
for C–C nodes and weights. (8) Is [Wang2010] really the first to do Theorem
19.6? (9) Mention Gauss-Chebyshev and other Gauss quadratures. For G-C,
the weights are π/n, half that at ends. See Chawla 1968 and 1970, Math Comp
and Computer J. (10) Reference on positivity of C-C and G weights. (11)
If you compute expansion coeffs using Gauss quad, you must get exactly the
expansion coeffs of the interpolant. (12) Say more about Glaser-Liu-Rokhlin—
solves standard linear ODE for roots, then gets weights from K2AM (20). (13)
Gauss converges if f is continuous: Stieltjes. (14) Make clear the old history
(19th C) of geometric convergence for analytic integrands. (15) Review the
proof of Theorem 18.3. Does the comment in the proof apply to Gauss as well
as C-C? (16) Example with a chebpts loop analogous to that with the legpts
loop.]

142

Summary of Chapter 19. Clenshaw–Curtis quadrature is derived by

interpolating a polynomial interpolant in Chebyshev points, and Gauss

quadrature from Legendre points. The nodes and weights for both fam-

ilies can be computed quickly and accurately, even for millions of points.

Though Guass has twice the polynomial order of accuracy of Clenshaw–

Curtis, their rates of convergence are approximately the same for non-

analytic integrands.

Exercise 19.1. Riesz Representation Theorem. (a) Look up the Riesz Rep-
resentation Theorem and write it down with a careful mathematical statement. (b)
Show that the computation of an approximate integral In from n + 1 samples of a
function f ∈ C[−1, 1] by integrating the degree n polynomial interpolant through a
fixed set of n+1 nodes in [−1, 1] is an example of the kind of linear functional to which
this theorem applies, provided we work in a finite-dimensional space rather than all
of C[−1, 1]. (c) In what sense is the Riesz Representation Theorem significantly more
general than is needed for this particular application to quadrature?

Exercise 19.2. quad, quadl, quadgk. Evaluate (19.11) with Matlab’s quad, quadl,
and quadgk commands. As a function of the specified precision, what is the actual
accuracy obtained and how long does the computation take? How do these results
compare with Chebfun sum?

Exercise 19.3. Gauss quadrature and Hermite interpolation. [to be written]

Exercise 19.4. Quadrature weights. (a) Use chebfun to illustrate the identity
(19.4) for Clenshaw–Curtis quadrature in the case n = 20, k = 7. (b) Same for Gauss
quadrature.

Exercise 19.5. Accuracy of Clenshaw–Curtis quadrature. (a) Using theorems
of Chapters 4 and 19, derive an exact expression for the error in Clenshaw–Curtis
quadrature applied to the function f(x) = Tk(x) for k > n. (b) [to be continued. See
eqs (9) and (9’) of Gentleman [1972a].]

Exercise 19.6. Sharpening Theorem 19.3. Suppose we assume n ≥ 2 instead of
n ≥ 1 in the Gauss quadrature bound of Theorem 19.3. Show why the constant 64/15
improves to 144/35. What is this actual “constant” as a function of n?

Exercise 19.7. Rates of convergence for particular integrands. [To be written.
Fresnel integral? Gamma function?]

Exercise 19.8. Clenshaw–Curtis applied to Chebyshev polynomials. [Exer-
cise to be written about these algebraically small errors.]

Exercise 19.9. Integral of a Chebyshev polynomial. Derive the formula (19.6)
for the integral of Tk(x) with k even. [Hint: Following the proof of Theorem 3.1,
replace Tk(x)dx by (zk + z−k)(dx/dz)dz.]

Exercise 19.10. Golub–Welsch algorithm. [To be written.]

143

20. Carathéodory–Fejér approximation

We have seen that Chebyshev interpolants are near-best approximations in the
sense that they come within a factor of at most O(logn) of best approximations,
usually even closer. For most applications, this is all one could ask for. But there
is another kind of near-best approximations that are so close to best that for
smooth functions, they are often indistinguishable from best approximations to
machine precision on a computer. These are CF (Carathéodory–Fejér) ap-
proximations, introduced by Gutknecht and Trefethen [1982]. Earlier related
ideas were proposed in [Darlington 1970, Elliott 1973, Lam 1972, Talbot 1976],
and the theoretical basis goes back to the early 20th century [Carathéodory &
Fejér 1911, Schur 1918].7

Before explaining the mathematics of CF approximants, let us illustrate the
remarkable degree of near-optimality they sometimes achieve. Here is the opti-
mal ∞-norm error in approximation of f(x) = ex on [−1, 1] by a polynomial of
degree 2:

x = chebfun(’x’); format long

f = exp(x); n = 2;

pbest = remez(f,n);

errbest = norm(f-pbest,inf)

errbest =

0.045017388402819

Here is the corresponding error for CF approximation computed by the Chebfun
cf command:

pcf = cf(f,n);

errcf = norm(f-pcf,inf)

errcf =

0.045017388414604

These two numbers agree to an extraordinary 9 significant digits. Comparing
the best and CF polynomials directly to one another, we confirm that they are
almost the same:

norm(pbest-pcf,inf)

ans = 1.178523945100096e-11

7Logically, this chapter could have appeared earlier, perhaps just after Chapter 10. We
have deferred it to this point of the book, however, since the material is relatively difficult
and none of the later chapters depend on it.

144

That was for degree n = 2, and the near-optimality of the CF approximants
grows stronger as n increases. Let us explore the dependence on n. On a
semilog plot, the upper curve in the next figure shows the accuracy of the
best polynomial as an approximation to f(x), while the lower curve shows the
accuracy of the CF polynomial as an approximation to the best polynomial.
The two errors are of entirely different orders, and for n > 3, the CF and best
polynomials are indistinguishable in floating point arithmetic.

nn = 0:10; err1 = []; err2 = [];

for n = nn

pbest = remez(f,n);

err1 = [err1 norm(f-pbest,inf)];

pcf = cf(f,n);

err2 = [err2 norm(pbest-pcf,inf)];

end

hold off, semilogy(nn,err1,’.-’), grid on

hold on, semilogy(nn,err2,’.-r’)

text(7.5,2e-6,’f-p_{best}’,CO,’b’,FS,10)

text(1.2,1e-14,’p_{best}-p_{CF}’,CO,’r’,FS,10)

ylim([1e-18,1e2]), xlabel n

title([’For smooth functions, ’ ...

’CF approx is almost the same as best approx’])

0 1 2 3 4 5 6 7 8 9 10

10
−15

10
−10

10
−5

10
0

f−p
best

p
best

−p
CF

n

For smooth functions, CF approx is almost the same as best approx

Here is the same experiment repeated for f(x) = tanh(4(x− 0.3)).

f = tanh(4*(x-.3));

nn = 0:30; err1 = []; err2 = [];

for n = nn

pbest = remez(f,n);

err1 = [err1 norm(f-pbest,inf)];

pcf = cf(f,n);

err2 = [err2 norm(pbest-pcf,inf)];

end

hold off, semilogy(nn,err1,’.-’), grid on

hold on, semilogy(nn,err2,’.-r’)

145

text(16,2e-2,’f-p_{best}’,CO,’b’,FS,10)

text(5.3,1e-13,’p_{best}-p_{CF}’,CO,’r’,FS,10)

ylim([1e-18,1e2]), xlabel n

title(’Same curves for another function f’)

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

f−p
best

p
best

−p
CF

n

Same curves for another function f

Again we see that pbest−pcf is much smaller than f−pbest, implying that the
CF approximant is for practical purposes essentially optimal. (Concerning the
erratic oscillations, see Exercise 20.3.) Yet it is far easier to compute:

tic, remez(f,20); tbest = toc

tic, cf(f,20); tcf = toc

tbest =

0.126213000000000

tcf =

0.009344000000000

Turning to a non-smooth function, here again is the jagged example from Chap-
ter 10 with its best approximation of degree 20:

f = cumsum(sign(sin(20*exp(x))));

hold off, plot(f,’k’), grid on

tic, [pbest,err] = remez(f,20); tbest = toc;

hold on, plot(pbest)

title(’Jagged function and best approximation’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Jagged function and best approximation

146

We saw the error curve before:

hold off, plot(f-pbest), grid on, hold on, axis([-1 1 -.08 .08])

plot([-1 1],err*[1 1],’--k’), plot([-1,1],-err*[1 1],’--k’)

title(’Best approximation error curve’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Best approximation error curve

In CF approximation, we must start from a polynomial, not a jagged function.
As a rule of thumb, truncating the Chebyshev series at 5 times the degree of
the desired approximation is usually pretty safe. Here is what we get:

f100 = chebfun(f,100);

tic, pcf = cf(f100,20); tcf = toc;

hold off, plot(f-pcf), grid on, hold on, axis([-1 1 -.08 .08])

plot([-1 1],err*[1 1],’--k’), plot([-1,1],-err*[1 1],’--k’)

title(’CF approximation error curve’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

CF approximation error curve

Evidently the error falls short of optimality by just a few percent. Yet again
the computation is much faster:

tbest

tbest =

1.505368000000000

147

tcf

tcf =

0.007593000000000

Here for comparison is the error in Chebyshev interpolation.

pinterp = chebfun(f,21);

hold off, plot(f-pinterp), grid on, hold on, axis([-1 1 -.08 .08])

plot([-1 1],err*[1 1],’--k’), plot([-1,1],-err*[1 1],’--k’)

title(’Chebyshev interpolation error curve’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Chebyshev interpolation error curve

The time has come to describe what CF approximation is all about. We shall
see that the hallmark of this method is the use of eigenvalues and eigenvec-
tors (or singular values and singular vectors) of a Hankel matrix of Chebyshev
coefficients.

We start with a real function f on [−1, 1], which we want to approximate by
a polynomial of degree n ≥ 0. Following Theorem 3.1, we assume that f is
Lipschitz continuous, so it has an absolutely convergent Chebyshev series

f(x) =

∞
∑

k=0

akTk(x).

Since our aim is polynomial approximation, it is no loss of generality to simplify
matters by supposing that a0 = a1 = · · · = an = 0, so that the Chebyshev series
of f begins at the term Tn+1. For technical simplicity, let us further suppose
that the series is a finite one, ending at the term TN for some N ≥ n+1. Then
f has the Chebyshev series

f(x) =
N
∑

k=n+1

akTk(x).

We now transplant f to a function F on the unit circle in the complex z-plane
by defining F (z) = F (z−1) = f(x) for |z| = 1, where x = Re z = (z + z−1)/2.

148

As in the proof of Theorem 3.1, this gives us a formula for F as a Laurent
polynomial,

F (z) =
1

2

N
∑

k=n+1

ak(z
k + z−k).

We can divide F into two parts, F (z) = G(z) +G(z−1), with

G(z) =
1

2

N
∑

k=n+1

akz
k.

The function G is called the analytic part of F , since it can be analytically
continued to an analytic function in |z| ≤ 1. Similarly G(z−1) is the coanalytic
part of F , analytic for 1 ≤ |z| ≤ ∞.

Now we ask the following question: what is the best approximation P̃ to G on
the unit circle of the form

P̃ (z) =
1

2

n
∑

k=−∞
bkz

k, (20.1)

where the series converges for all z with 1 ≤ |z| < ∞? In other words, P̃ must
be analytic in the exterior of the unit disk apart from a pole of order at most
n at z = ∞. This is the problem that Carathéodory and Fejér solved, and the
solution is elegant. First of all, P̃ exists, and it is unique. Secondly, G − P̃
maps the unit circle onto a perfect circle that winds counterclockwise around
the origin a number of times: the winding number is at least n + 1. Third, as
shown by Schur a few years after Carathéodory and Fejér [Schur 1918], P̃ can be
constructed explicitly by solving a certain matrix singular value problem. Let
H denote the (N−n)×(N−n) real symmetric matrix of Chebyshev coefficients
arranged like this,

H =









an+1 an+2 . . . aN
an+2

...
aN









, (20.2)

where the entries in the lower-right triangle are zero. A matrix with this struc-
ture, constant along diagonals so that aij depends only on i + j, is called a
Hankel matrix. Let λ be the largest eigenvalue of H in absolute value, let
u = (u0, u1, . . . , uN−n−1)

T be a corresponding real eigenvector, and define

u(z) = u0 + u1z + · · ·+ uN−n−1z
N−n−1.

Here is the theorem due to Carathéodory and Fejér and Schur.

Theorem 20.1: Carathéodory–Fejér–Schur theorem. The approximation
problem described above has a unique solution P̃ , and it is given by the error

149

formula

(G− P̃)(z) = λzn+1 u(z)

u(z)
. (20.3)

The function G − P̃ maps the unit circle to a circle of radius |λ| and winding
number ≥ n+1, and if |λ| > |µ| for all other eigenvalues µ, the winding number
is exactly n+ 1.

Proof. The result is due to Carathéodory and Fejér [1911] and Schur [1918].
See Theorem 1.1 of [Gutknecht & Trefethen 1982] and Theorem 4 of [Hayashi,
Trefethen & Gutknecht 1990].

Theorem 20.1 is a mathematical assertion about the approximation of a function
G on the unit circle by an infinite series. We use this result to construct the
polynomial CF approximant as follows. Since G − P̃ maps the unit circle to a
circle of winding number ≥ n+ 1, its real part

(G− P̃)(z) + (G− P̃)(z−1)

maps [−1, 1] to an equiscillating curve with at least n+2 extreme points. Thus
the function

p̃(x) = P̃ (z) + P̃ (z−1)

yields the equioscillatory behavior that characterizes a best approximation poly-
nomial of degree n to f(x) on [−1, 1] (Theorem 10.1). Unfortunately, p̃(x) is
not a polynomial of degree n. However, it will generally be very close to one.
The function P̃ will normally have Laurent series coefficients bk that decay as
k → −∞. We truncate these at degree −n to define

P
CF
(z) =

1

2

n
∑

k=−n

bkz
k,

with real part (times 2)

p
CF
(x) = P

CF
(z) + P

CF
(z−1) =

1

2

n
∑

k=−n

(bk + b−k)z
k.

If the truncated terms are small, f−p
CF

maps [−1, 1] to a curve that comes very
close to equioscillation with ≥ n+ 2 extrema, and thus p

CF
is close to optimal.

For more details on real polynomial CF approximation, with numerical exam-
ples, see [Gutknecht & Trefethen 1982], [Trefethen 1983], and [Hayashi, Tre-
fethen & Gutknecht 1990].

Our experiments in the opening pages of this chapter showed that CF approxi-
mants can be exceedingly close to best. The truncation described above gives an
idea of how this happens. In the simplest case, suppose f is an analytic function

150

on [−1, 1]. Then by Theorem 8.1, its Chebyshev coefficients decrease geomet-
rically, and let us suppose that this happens smoothly at a rate ak = O(ρk).
Then roughly speaking, the dominant degree n+1 term of f is of order ρ−n−1,
and the terms bn, bn−1, . . . , b−n are of orders ρ−n−2, ρ−n−3, . . . , ρ−3n−2. This
suggests that the truncation in going from p̃ to p

CF
will introduce an error of

order ρ−3n−3. This is usually a very small number, and in particular, much
smaller than the error ‖f − p∗‖ of order ρ−n−1.

In fact, the actual order of accuracy for polynomial CF approximation is one
order higher, ρ−3n−4 rather than ρ−3n−3. (The reason is that the first truncated
term is a multiple of T3n+3, the same Chebyshev polynomial that dominates the
error f−p∗ itself, and so it is not until the second truncated term, T3n+4, that the
equioscillation is broken.) On the other hand, to go from this rough argument
to a precise theorem is not so easy, because in fact, Chebyshev series need not
decay smoothly (Exericse 20.3). Here we quote without proof a theorem from
[Gutknecht & Trefethen 1982].

Theorem 20.2: Accuracy of polynomial CF approximation. For any
fixed m ≥ 0, let f have a Lipschitz continuous (3m+ 3)rd derivative on [−1, 1]
with a nonzero (m + 1)st derivative at x = 0, and for each s ∈ (0, 1], let p∗

and p
CF

be the best and the CF approximations of degree m to f(sx) on [−1, 1],
respectively. Then as s → 0,

‖f − p∗‖ = O(sm+1), 6= O(sm+2) (20.4)

and
‖p

CF
− p∗‖ = O(s3m+4). (20.5)

Proof. See Theorem 3.4 of [Gutknecht & Trefethen 1982].

We can verify this result numerically. The two plots below display norms for
m = 1 and m = 2 in the case of the function f(x) = e5x.

ff = @(x) exp(5*x);

for m = 1:2

ss = .8.^(0:20); errfp = []; errpp = [];

for s = ss

f = chebfun(@(x) ff(s*x));

pbest = remez(f,m); pcf = cf(f,m);

errfp = [errfp norm(f-pbest,inf)];

errpp = [errpp norm(pcf-pbest,inf)];

end

hold off, loglog(ss,errfp,’.-’)

hold on, loglog(ss,errpp,’.-r’)

loglog(ss,ss.^(m+1),’--’);

s = 0.025; text(s,.1*s^(m+1)/4,’s^{m+1}’,CO,’b’,FS,10)

loglog(ss,ss.^(3*m+4),’--r’)

text(s,.02*s^(3*m+4)*1e4,’s^{3m+4}’,CO,’r’,FS,10)

151

text(.015,.01+(2-m)*.5,’f-p_{best}’,CO,’b’,FS,10)

text(.25,1e-12+(2-m)*1e-8,’p_{best}-p_{CF}’,CO,’r’,FS,10)

axis([1e-2 1 1e-18 1e3])

xlabel s, ylabel error

title([’Convergence for m = ’ int2str(m)])

snapnow

end

10
−2

10
−1

10
0

10
−10

10
0

sm+1

s3m+4

f−p
best

p
best

−p
CF

s

er
ro

r

Convergence for m = 1

10
−2

10
−1

10
0

10
−10

10
0

sm+1

s3m+4

f−p
best

p
best

−p
CF

s

er
ro

r

Convergence for m = 2

In this chapter we have considered CF approximation in its simplest context
of approximation of one polynomial f of degree N by another polynomial p

CF

of degree n. In fact, the method is much more general. So long as f has
an absolutely convergent Chebyshev series, which is implied for example if it
is Lipschitz continuous, then Theorem 20.1 still applies [Hayashi, Trefethen &
Gutknecht 1990]. Now H is an infinite matrix which can be shown to represent
a compact operator on ℓ2 or ℓ1, its dominant eigenvector is an infinite vector,
and u(z) is defined by an infinite series. The error curve is still a continuous
function of winding number at least n+ 1.

Another generalization is to approximation by rational functions rather than
polynomials. Everything goes through in close analogy to what has been written
here, and now the other eigenvalues of the Hankel matrix come into play. The
theoretical underpinnings of rational CF approximation can be found in papers
of Takagi [1924], Adamjan, Arov and Krein [1971], and Trefethen and Gutknecht
[1983], as well as the article by Hayashi, Trefethen and Gutknecht cited above.
Quite apart from theory, one can compute these approximations readily by the

152

Chebfun cf command using capabilities introduced by Joris van Deun. For
details and examples see [Van Deun & Trefethen 2010].

[To be added: (1) Systems theory and Glover.]

Summary of Chapter 20. Carathéodory–Fejér approximation constructs

near-minimax approximations of a function f ∈ C[−1, 1] from the singular

values and vectors of a Hankel matrix of Chebyshev coefficients. If f is

smooth, CF approximants are often indistinguishable in machine precision

from true best approximants.

Exercise 20.1. Approximating the jagged function. Four of the figures of this
chapter concerned approximations of degree 20 to a jagged function. (a) How do the
L2 norms of the best and CF approximations compare? (b) The CF approximation
was based on truncation of the Chebyshev series at term N = 100. How does the
∞-norm of the error vary with N? (c) Draw a conclusion from this exploration: is
the imperfect equioscillation of the error curve in the figure given in the text for this
function mostly to the fact that CF approximation is not best approximation, or to
the fact that N < ∞?

Exercise 20.2. Complex approximation on the unit disk. (a) Suppose f is an
analytic function on the closed unit disk and p is a polynomial of degree n. Prove that
p is a best approximation to f in the ∞-norm on the disk |z| ≤ 1 if and only if it is
a best approximation on the circle |z| = 1. (b) Look up Rouché’s theorem and write
down a careful statement, citing your source. (c) Suppose f is an analytic function in
the closed unit disk and p is a polynomial of degree n such that f − p maps the unit
circle to a circle of winding number at least n+1. Prove that p is a best approximation
to f on the unit disk. (In fact it is unique, though this is not obvious.)

Exercise 20.3. Irregularity of CF approximation. The second figure of this
chapter showed quite irregular dependence of ‖pCF − p∗‖ on the degree n for the
function f(x) = tanh(4(x− 0.3)). In particular, n = 15 and n = 16 give very different
results. Following the derivation of ptiny CF in the text, investigate this difference

numerically. (a) For n = 15, how do the coefficients |bk| depend on k, and how big are
the truncated terms in going from p̃ to pCF? (b) Same for k = 16.

21. Spectral methods

Theorem 8.2 described the geometric convergence of Chebyshev truncations and
interpolants for an analytic function f defined on [−1, 1]. For such a function,
it is not just the polynomials that converge geometrically, but also their deriva-
tives. The following theorem makes this precise. An early publication containing
a result along these lines is [Tadmor 1986].

Theorem 21.1: Geometric convergence of derivatives. Let a function f
analytic in [−1, 1] be analytically continuable to the closed ρ-ellipse Eρ for some

153

ρ > 1. Then for any ν ≥ 0, the νth derivatives of the Chebyshev truncations fn
and interpolants pn satisfy as n → ∞

‖f (ν) − f (ν)
n ‖ = O(ρ−n), ‖f (ν) − p(ν)n ‖ = O(ρ−n). (21.1)

Proof. Here is an outline, to be filled in in Exercise 21.1. If f is analytic in the
closed ρ-ellipse, it is also analytic and bounded in the open ρ̃-ellipse for some ρ̃
with ρ̃ > ρ. From Theorem 8.1 it follows that the Chebyshev coefficients satisfy
ak = O(ρ̃−k). The bounds (21.1) follow by differentiating the Chebyshev series

for f (ν)−f
(ν)
n and f (ν)−p

(ν)
n term by term. The differentiations introduce powers

of n, since T ′
n is of size O(n2) on [−1, 1], for example, but since nαρ̃−n = O(ρ−n)

as n → ∞ for any fixed α, we still get O(ρ−n) convergence for any fixed ν.

The phenomenon captured in Theorems 8.2 and 21.1 is a general one in complex
analysis. When a bound holds for an analytic function, there is a good chance
that a similar bound holds for its derivatives too. The ultimate reason is that
both function and derivative can be related to Cauchy integrals, and indeed, an
alternative proof of Theorem 21.1 can be based on the Hermite integral formula
(Exercise 21.10).

The present chapter is a very practical one, devoted to outlining some of the
wide-ranging consequences of Theorem 21.1 for scientific computing: the whole
field of spectral methods for solving differential equations. Spectral methods
are noted for achieving spectral accuracy, which means accuracy that is lim-
ited not by the order of the numerical discretization, but only by the smooth-
ness of the function being approximated. This is in contrast to a traditional
finite difference or finite element method, which might achieve just O((∆x)2) or
O((∆x)4) accuracy as ∆x → 0, say, where ∆x is a grid spacing, even when the
function being approximated is C∞ or analytic. For a leisurely introduction to
spectral methods on Chebyshev grids, see [Trefethen 2000].

We now drop {fn} and focus on spectral collocation methods, based on
point values and polynomial interpolants, as opposed to spectral Galerkin
methods based on integrals.

The fundamental tool of spectral collocation methods is the notion of a dif-
ferentiation matrix. If p is a polynomial of degree n, it is determined by
its values on the (n + 1)-point Chebyshev grid in [−1, 1]. The derivative p′, a
polynomial of degree n − 1, is determined by its values on the same grid. The
spectral differentiation matrix associated with this grid is the (n+ 1)× (n+ 1)
matrix that represents the linear map from the vector of values of p on the grid
to the vector of values of p′.

For example, the function sin(x) can be represented to machine precision by a
Chebyshev interpolant p on a grid of 14 points:

154

p = sin(x);

length(p)

ans = 14

Suppose we wish to calculate the values of p′ on the same grid. In Chebfun we
can write

pp = diff(p);

x14 = chebpts(14);

pp14 = pp(x14)

pp14 =

0.540302305868163

0.564522388819887

0.632936510563863

0.732703188872980

0.842943722651217

0.937783753082982

0.992744245701781

0.992744245701781

0.937783753082982

0.842943722651217

0.732703188872979

0.632936510563863

0.564522388819890

0.540302305868169

But we can also get our hands on the differentiation matrix explicitly, with these
commands:

[d,x] = domain([-1 1]);

D = diff(d);

D14 = D(14);

If the matrix D14 is multiplied by the vector p(x14), the result is the same
vector pp14 of sampled derivatives, up to rounding errors:

norm(pp14-D14*p(x14))

ans = 2.216084139546628e-14

Above, we put a semicolon after D(14) to avoid printing a 14 × 14 matrix. To
give the idea while using up a little less space, here are the 3 × 3 and 5 × 5
Chebyshev differentiation matrices on [−1, 1]:

format short

D(3)

155

ans =

-1.5000 2.0000 -0.5000

-0.5000 0 0.5000

0.5000 -2.0000 1.5000

D(5)

ans =

-5.5000 6.8284 -2.0000 1.1716 -0.5000

-1.7071 0.7071 1.4142 -0.7071 0.2929

0.5000 -1.4142 0 1.4142 -0.5000

-0.2929 0.7071 -1.4142 -0.7071 1.7071

0.5000 -1.1716 2.0000 -6.8284 5.5000

Formulas for the entries of Chebyshev differentiation matrices were first pub-
lished by Gottlieb, Hussaini & Orszag [1984], and recurrence relations for com-
puting them fast and stably were given by Welfert [1997], based on earlier work
by Fornberg [1988]. Welfert’s paper in turn led to the influential MATLAB
Differentiation Matrix Suite by Weideman and Reddy [2000].

There is no need to stop at the first derivative. Here is the 5 × 5 Chebyshev
matrix corresponding to the second derivative on [−1, 1]:

D2 = diff(d,2);

D2(5)

ans =

17.0000 -28.4853 18.0000 -11.5147 5.0000

9.2426 -14.0000 6.0000 -2.0000 0.7574

-1.0000 4.0000 -6.0000 4.0000 -1.0000

0.7574 -2.0000 6.0000 -14.0000 9.2426

5.0000 -11.5147 18.0000 -28.4853 17.0000

Yes, D2(5) is the square of D(5):

norm(D2(5)-(D(5))^2)

ans = 5.5939e-15

The entries of this matrix can be interpreted as follows. The jth column
(0 ≤ j ≤ n) contains the second derivatives of the Lagrange polynomial ℓj(x)
evaluated at grid points x0, . . . , xn. That is, its (i, j) entry (with indexing from
0 to n) is ℓ′′j (xi). (We have seen Lagrange polynomials in Chapters 5, 9 and 15.)
For example, here is the Lagrange polynomial supported at x3:

p3 = chebfun([0 0 0 1 0]);

clf, plot(p3,’.-’)

title(’Lagrange polynomial l_3’)

156

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Lagrange polynomial l
3

Its second derivatives at the grid points are the values in the fourth column of
the matrix D(5) just shown:

p3pp = diff(p3,2);

x5 = chebpts(5);

p3pp(x5)

ans =

-11.5147

-2.0000

4.0000

-14.0000

-28.4853

In Chebfun, an object like D or D2 is called a linop. A linop is not a matrix,
but rather a prescription for how to construct matrices of arbitrary order. (The
computer science term for the process of filling such prescriptions is lazy evalu-
ation.) If D is applied to an integer argument, the matrix of that dimension is
produced,

size(D(33))

ans =

33 33

If D is applied to a chebfun, it has the effect appropriate to the length of that
chebfun:

f = sin(7*x).*exp(x).*tan(x);

norm(diff(f)-D*f)

ans = 0

Algebraic operations have been overloaded in Chebfun so that one can construct
differential operators by combining these operations. For example, here is the
linop corresponding to the map L : u 7→ u′′ + u′ + 100u on [−1, 1]:

157

L = diff(d,2) + diff(d) + 100;

An equivalent formulation, making explicit reference to the overloaded identity
operator, would be

L = diff(d,2) + diff(d) + 100*eye(d);

Here is the 5× 5 realization of this operator:

L(5)

ans =

111.5000 -21.6569 16.0000 -10.3431 4.5000

7.5355 86.7071 7.4142 -2.7071 1.0503

-0.5000 2.5858 94.0000 5.4142 -1.5000

0.4645 -1.2929 4.5858 85.2929 10.9497

5.5000 -12.6863 20.0000 -35.3137 122.5000

We can illustrate its use by applying it to the chebfun for ex:

f = exp(x);

Lf = L*f;

Lfexact = 102.*exp(x);

norm(Lf-Lfexact)

ans = 1.6795e-13

Now we come at last to spectral methods proper. If we just wanted to apply
differential operators to functions, we would not need matrices. To solve a differ-
ential equation, however, we need to invert the process of applying a differential
operator. We want to find a function u satisfying certain boundary conditions
such that Lu is equal to a prescribed function f . This is where the matrices
come in, for matrices can be inverted.

Suppose we ask, for example, what function u satisfies u′′ + u′ + 100u = x
on [−1, 1] with boundary conditions u(−1) = u(1) = 0? The matrix realization
above was in the absence of boundary conditions. Now we need to impose them,
and the standard way of doing this is to modify one or more initial or final rows
of the matrix, one row for each boundary condition (see Chapters 7 and 13 of
[Trefethen 2000]). For Dirichlet boundary conditions, we change the first and
last rows to correspond to rows of the identity:

L.bc = ’dirichlet’;

L(5)

ans =

50.1147 50.2700 -0.5000 0.1941 -0.0788

-0.5000 2.5858 94.0000 5.4142 -1.5000

-0.1147 0.2656 -0.5000 43.2703 57.0788

1.0000 0 0 0 0

0 0 0 0 1.0000

158

We can now use exactly this matrix to solve the ODE approximately with a
5 × 5 spectral discretization. The right-hand side of the matrix problem will
be the vector of x sampled at the Chebyshev points — except that the first
and last components of the vector will be changed to the appropriate Dirichlet
values at x0 and xn, which are zero by default.

x5 = chebpts(5); x5([1 end]) = 0;

u5 = L(5)\x5;

plot(chebfun(u5),’.-’)

title(’Spectral solution on 5-point grid’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
Spectral solution on 5−point grid

We have just computed our first solution of a boundary value problem with a
spectral method. From the picture it is not evident whether the result is close
to correct or not. In fact it is not, as increasing the resolution reveals:

x12 = chebpts(12); x12([1 end]) = 0;

u12 = L(12)\x12;

plot(chebfun(u12),’.-’)

title(’Spectral solution on 12-point grid’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
Spectral solution on 12−point grid

This curve, as it happens, is begining to get close to the true solution. How
fine a grid do we need to reach approximately machine precision? In Chebfun,
the appropriate grid is determined automatically when one solves the problem
without specifying dimensions, still with the backslash command:

159

u = L\x;

plot(u,’.-’)

title(’Spectral solution on automatically determined grid’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04
Spectral solution on automatically determined grid

To get this result, Chebfun has solved matrix problems of size 9, 17, 33 and so
on until its convergence criteria are satisfied. The final length is

length(u)

ans = 35

and we can verify that the accuracy is good:

norm(L*u-x)

ans = 1.0859e-13

Of course, homogeneous Dirichlet conditions at both ends are only the simplest
of innumerable possible boundary conditions for a boundary value problem. For
a full account of how various boundary conditions can be specified in Chebfun,
and how one can solve coupled systems of equations, see help linop and help

linop/and. We give here just one more example. To solve the same ODE
with homogeneous Neumann boundary conditions (i.e. u′(−1) = u′(1) = 0), the
first and last rows get replaced by the corresponding rows of the first derivative
matrix:

L.bc = ’neumann’;

format short

L(5)

ans =

50.1147 50.2700 -0.5000 0.1941 -0.0788

-0.5000 2.5858 94.0000 5.4142 -1.5000

-0.1147 0.2656 -0.5000 43.2703 57.0788

-5.5000 6.8284 -2.0000 1.1716 -0.5000

0.5000 -1.1716 2.0000 -6.8284 5.5000

160

Here is the solution, now plotted without dots:

u = L\x;

plot(u), ylim([-0.015 0.015])

title(’Same problem with Neumann BCs’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.015

−0.01

−0.005

0

0.005

0.01

0.015
Same problem with Neumann BCs

Spectral methods also solve problems with smooth variable coefficients. For
example, suppose we wish to solve the Airy equation boundary value problem

u′′ − xu = 0, x ∈ [−30, 30], x(−30) = 1, x(30) = 0.

The variable coefficient corresponds to a multiplier operator u 7→ xu, realized
in Chebfun by an overloaded diag command. Here is the solution:

[d,x] = domain(-30,30);

L = diff(d,2) - diag(x);

L.lbc = 1; L.rbc = 0;

u = L\0;

plot(u)

title(’Solution to Airy equation’)

−30 −20 −10 0 10 20 30
−8

−6

−4

−2

0

2

4

6
Solution to Airy equation

Spectral methods are good for nonlinear problems, too. Here one would nor-
mally use a Newton iteration or some variant. Chebfun allows nonlinear equa-
tions (and boundary conditions) to be prescribed in what is called a chebop,

161

specified via anonymous functions of the dependent variable. For example, the
equation

θ′′ + sin(θ) = 0, θ ∈ [0, 6]

describes a nonlinear pendulum situated at height

h = − cos(θ) ∈ [−1, 1].

If we prescribe boundary conditions

u(0) = −π/2, u(6) = π/2,

we can solve the system numerically with Chebfun like this. The backslash
command is used again in this nonlinear context, though we are very far now
from Matlab’s original notion of solving a square system of linear equations.

[d,t,N] = domain(0,6);

N.op = @(theta) diff(theta,2) + sin(theta);

N.lbc = -pi/2; N.rbc = pi/2;

theta = N\0;

plot(-cos(theta)), grid on, ylim([-1 1])

title(’Nonlinear pendulum’)

xlabel t, ylabel(’height -cos(\theta)’)

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1
Nonlinear pendulum

t

he
ig

ht
 −

co
s(

θ)

This solution corresponds to the pendulum first going up above height 0 for a
time, then swinging over to the other side, where it again goes above height 0.
On the other hand suppose we change the right boundary condition to 5π/2.
Then another solution appears, corresponding to the pendulum swinging once
around the top:

N.lbc = -pi/2; N.rbc = 5*pi/2;

theta = N\0;

plot(-cos(theta)), grid on, ylim([-1 1])

title(’Nonlinear pendulum’)

xlabel t, ylabel(’height -cos(\theta)’)

162

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1
Nonlinear pendulum

t

he
ig

ht
 −

co
s(

θ)

These solutions are not unique; see Exercise 21.9.

To compute solutions of nonlinear differential equations, Chebfun uses variants
of Newton’s method implemented for continuous functions rather than discrete
vectors. The required “Jacobian matrices” are actually Fréchet derivative op-
erators, which are constructed by a process of automatic differentiation. These
facilities are due to Ásgeir Birkisson and Toby Driscoll.

This is a book about approximation theory, and we began this chapter with a
fine approximation result, a theorem about the O(ρ−n) accuracy of derivatives.
It would be good if this theorem implied that spectral methods converge to
analytic solutions at the rate O(ρ−n), but it does not. Theorem 21.1 ensures
that if u is an analytic solution to a boundary value problem Lu = f , then the
Chebyshev interpolants to Lu would converge geometrically to f as n → ∞. In
spectral computations, however, we don’t have the exact solution available to
discretize, but must approximate it by solving matrix problems. One can hope
that the approximations will converge at the expected rate, and indeed they do
under many circumstances, but proving this requires further arguments, which
we shall not discuss here.

Some of the ideas behind spectral methods are as old as Fourier and Cheby-
shev expansions, and many people contributed in the early years of computers
including Lanczos, Elliott, Fox, and Clenshaw. But it was their application to
the partial differential equations of fluid mechanics by Orszag beginning around
1970 that made these methods famous, and it was Orszag whose coined the
term “spectral methods” [Orszag 1971a & 1971b]. Spectral methods divide into
Fourier methods, for periodic problems, and Chebyshev and related methods,
for nonperiodic problems. As always in this book we have emphasized the non-
periodic case, which is less obvious even though at bottom, mathematically, it is
much the same. In applications, Fourier and Chebyshev are often found mixed
together. For example, a 3D cylindrical geometry may be discretized by a non-
periodic Chebyshev grid for the radial variable, a periodic Fourier grid for the
circumferential variable, and another periodic grid serving as an approximation
to an ideal infinite Fourier grid for the longitudinal variable.

163

For details of the spectral methods incorporated in Chebfun, see [Driscoll,
Bornemann & Trefethen 2008] for the linear case and [Birkisson & Driscoll 2010]
for the nonlinear case. For information about spectral methods in general, see
textbooks and monographs such as [Boyd 2001], [Fornber 1996], [Trefethen 2000]
and [Canuto, Hussaini, Quarteroni and Zang 2006].

[To be added: (1) Tadmor says look up Sobolev inequality in Canuto and Quar-
teroni 1981. (2) Give barycentric formula for derivatives. (3) Give slick formula
for entries of differentiation matrix. (4) Look up tau method in Lanczos Ap-
plied Analysis book. (5) Cheb pts for nonlinear DEs: Clenshaw and Norton
1963, Computer J, also Norton, Comp J 7. Integral eqs: Elliott 1963 Comp J
6. Linear diffl eqs: Clenshaw, The numer soln of linear diffl eqs in Cheb series,
Proc Camb Phil Soc 53 (1957), 134–149. (6) Legendre diff matries: Berrut
says see Bellman/Kashef/Casti JCP 1972. (7) Modify text for the rectangular
differentiation matrices of Chebfun Version 4.]

Summary of Chapter 21. Spectral collocation methods are numerical

algorithms for solving differential equations based on polynomial or trigono-

metric interpolants. For problems with analytic solutions, they typically

converge geometrically as the grid is refined.

Exercise 21.1. Proof of Theorem 21.1. Write down a careful proof of Theorem
21.1 as a corollary of Theorems 3.1 and 8.1. Be sure to state precisely what properties
of the Chebyshev polynomials {Tk} your proof depends on.

Exercise 21.2. Differentation matrices. (a) The text displayed the 3× 3 matrix
D(3). Derive the entries of this matrix analytically. (b) Also displayed was the 5× 5
matrix D2(5). Derive the entries of the middle column of this matrix analytically.

Exercise 21.3. Linear boundary value problems. Solve the following linear ODE
boundary value problems numerically with Chebfun. In each case plot the solution
and report the value of u at the midpoint of the interval and the length of the chebfun
representing u.
(a) 0.001u′′ + xu′ − u = exp(−10x2), x ∈ [−1, 1], u(−1) = 2, u(1) = 1.
(b) 0.001u′′ + (1− x2)u = 1, x ∈ [−5, 5], u(−5) = 0, u(5) = 0.
(c) 0.001u′′ + sin(x)u = 1, x ∈ [−10, 10], u(−10) = 0, u′(10) = 0.

Exercise 21.4. Nonlinear boundary value problems. Find a solution numeri-
cally to each of the following nonlinear ODE boundary value problems. In each case
plot the solution and report the value u(0) at the midpoint of the interval.
(a) 0.05u′′ + (u′)2 − u = 1, x ∈ [0, 1], u(0) = 2, u(1) = 1.
(b) 0.03u′′ − uu′ − u = 0, x ∈ [−1, 1], u(−1) = 1, u(1) = 2.

Exercise 21.5. Convergence with n. The text solved the boundary value problem
u′′ + u′ + 100u = x on [−1, 1] with boundary conditions u(−1) = u(1) = 0 for grid
parameters n+ 1 = 5, 12, and 35. Perform a numerical study of the ∞-norm error of
the solution as a function of n, and comment on the results.

Exercise 21.6. Bessel equation. [to be written]

164

Exercise 21.7. Rectangular differentiation matrices. [to be written]

Exercise 21.8. eigs. [to be written]

Exercise 21.9. Nonunique solutions. (a) For each of the two nonlinear pen-
dulum problems solved at the end of the chapter, figure out on paper exactly how
many solutions there must be. (You can use physical reasoning, or phase plane anal-
ysis.) (b) Find them numerically with Chebfun by using initial guesses of the form
N.guess = f(theta) to start the iteration. Report the maximum heights − cos(θ) of
the pendulum in all cases, and the time(s) at which these heights are reached.

Exercise 21.10. Proof by Hermite integral formula.

22. Linear approximations: beyond polynomials

Several times in the previous chapters, we have hinted that polynomials are
not optimal functions for linear approximation. (Nonlinear approximations are
another matter and will make their appearance in the next chapter.) It is now
time to explain these hints and introduce alternative approximations that may
be up to π/2 times more efficient. One reason the alternatives are valuable is
that they have practical advantages in some applications, especially for spectral
methods in more than one space dimension. An equally important reason is
that they push us to think more deeply about what it means to approximate a
function and what may or may not be special about polynomials. The ideas of
this chapter originate in [Hale & Trefethen 2008]. Related ideas are the basis
of work on sinc function numerical methods [Stenger 1993 & 2010], tanh and
double exponential or tanh-sinh quadrature [Sag & Szekeres 1964, Takahasi &
Mori 1974, Mori & Sugihara 2001], and the transformed-grid spectral methods
introduced by Kosloff and Tal-Ezer [1993].

Recall from Chapter 8 that if f is analytic on [−1, 1], then to investigate its
polynomial approximations, we ask how large a Bernstein ellipse f can be an-
alytically continued to with foci ±1. We parametrize such an ellipse by the
sum of its semimajor and semiminor axis lengths, a quantity denoted by ρ > 1.
Here for example is the ellipse Eρ with ρ = 1.15. The words “Bernstein ellipse”
written inside will help in a moment to visualize a conformal map. (Mathe-
matically, these words are a piecewise linear complex function of a real variable
constructed by the Chebfun scribble command.)

w = exp(2i*pi*x);

z = @(rho) (rho*w+(rho*w).^(-1))/2;

clf, plot(z(1.15)), xlim([-1.1,1.1]), axis equal, grid on

title(’Bernstein ellipse for \rho=1.15’)

f = .01-.055i+.93*scribble(’Bernstein ellipse’);

hold on, plot(f,’k’,LW,1.2)

165

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

Bernstein ellipse for ρ=1.15

Bernstein ellipses are unavoidable if one works with polynomial interpolants,
but from the user’s point of view, they have an unfortunate property: they are
thicker in the middle than near the ends! For a function f to be analytic in
the region just shown, its Taylor series about a point x ≈ 0 must have radius
of convergence 0.15 or more. For x ≈ ±1, on the other hand, a radius of
convergence of 0.05 or less is sufficient. Thus the smoothness requirement on f
is nonuniform, and this is not an artifact of the analysis. Polynomials of a given
degree really can resolve rougher behavior of a function f near the endpoints
than in the middle. This phenomenon turns up in one form of another whenever
approximation theorists seek sharp results about polynomial approximation,
whether f is analytic or not. See for example [Timan 1951], [Lorentz 1986], and
[Ditzian & Totik 1987].

Of course, there are some functions that have most of their complexity near ±1,
and for these, the nonuniform approximation power of polynomials may be an
advantage. For example, functions of this kind arise in fluid mechanics problems
with boundary layers. More often, however, the nonuniform approximation
power of polynomials is a disadvantage from a practical point of view, as well
as being a complication conceptually. If only those ellipses had constant width
for all x ∈ [−1, 1] !

As soon as one frames the difficulty in this way, a possibility for a solution
suggests itself. The idea is to change variables by means of a function that con-
formally maps ellipses, approximately at least, to straight-sided ε-neighborhoods
of [−1, 1], while mapping [−1, 1] to itself. To explore this idea we shall use the
variable x for the domain where f is defined and introduce a new variable s
for the parameter domain, where the Chebyshev points and ellipses live. Our
conformal map will be x = g(s), and we shall approximate a function f(x) on
[−1, 1] by p(g−1(x)) = p(s), where p is a polynomial. Equivalently, we shall ap-
proximate f(g(s)) on [−1, 1] by a polynomial. In the remainder of this chapter
we explore the consequences of this idea, considering just one fixed example of
a map g,

g(s) =
1

53089
(40320s+ 6720s3 + 3024s5 + 1800s7 + 1225s9) (22.1)

166

g = chebfun(@(s) (40320*s+6720*s.^3+3024*s.^5+ ...

1800*s.^7+1225*s.^9)/53089);

See [Hale & Trefethen 2008] for an explanation of where this choice of g comes
from and an investigation of other possibilities, some of which (notably a confor-
mal map onto an infinite strip) come closer to realizing the maximum possible
improvement by a factor of π/2. See also Exercises 22.2 and 22.3.

To begin the discussion, let us look at how g transforms ellipses about [−1, 1].
Here is a plot of g(E1.15), the transformed version of the ellipse shown earlier.
Notice the much straighter sides.

hold off, plot(g(z(1.15)),’m’)

xlim([-1.1,1.1]), axis equal, grid on

title(’Transformation to a region with straighter sides’)

hold on, plot(g(f),’k’,LW,1.2)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

Transformation to a region with straighter sides

Following [Hale & Trefethen 2008], we call g a sausage map and g(E1.15)
a sausage region. The crucial property is that for most of its length, the
sausage is narrower than the ellipse, as the distorted “Bernstein ellipse” label
makes clear. The ellipse has half-width approximately ρ − 1, which is about
32% more than the half-width 0.76(ρ− 1) of the sausage:

format short

ellipse_width = max(imag(z(1.1)))

sausage_width = max(imag(g(z(1.1))))

ratio = ellipse_width/sausage_width

ellipse_width =

0.0955

sausage_width =

0.0724

ratio =

1.3187

167

We can learn more by looking at a family of ellipses. Following Chapter 8, here
is a plot of Eρ for ρ = 1, 1.2, . . . , 2.2:

w = exp(2i*pi*x);

hold off

for rho = 1.1:0.2:2.2

plot((rho*w+(rho*w).^(-1))/2), hold on

end

ylim([-1 1]), axis equal

title([’Bernstein ellipses in the s-plane’...

’ for \rho = 1.1, 1.2, ... , 2.2’])

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1
Bernstein ellipses in the s−plane for ρ = 1.1, 1.2, ... , 2.2

Here is the corresponding figure for the images g(Eρ):

hold off

for rho = 1.1:0.2:2.2

plot(g((rho*w+(rho*w).^(-1))/2),’m’), hold on

end

ylim([-1 1]), axis equal

title(’Transformed ellipses in the x-plane’)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1
Transformed ellipses in the x−plane

It is clear that near [−1, 1], the transformed ellipses are narrower and more
uniform in shape than the ellipses, but further away, their behavior is more

168

irregular. We shall see something of the implications of these shapes as we
explore the uses of this map.

Chapter 2 considered polynomial interpolants in Chebyshev points {sk}. With
the transformation g, f is interpolated by transformed polynomials p(g−1(x))
in the points {g(sk)}. We illustrate the difference between Chebyshev and
transformed Chebyshev points by adapting a code segment from Chapter 17.
The squares show the transformed points.

ss = chebpts(10);

clf, plot(ss,.9,’.b’,MS,8), hold on, plot(g(ss),.8,’sm’,MS,3)

ss = chebpts(20);

plot(ss,.5,’.b’,MS,8), plot(g(ss),.4,’sm’,MS,3)

ss = chebpts(50);

plot(ss,.12,’.b’,MS,8), plot(g(ss),0,’sm’,MS,3)

axis([-1 1 -.1 1.1]), axis off

Note that the squares are more evenly distributed than the dots, and in partic-
ular, they are denser in the middle, providing finer resolution.

Chapter 3 considered Chebyshev polynomials and series. We adapt another
code segment from Chapter 17 to illustrate how a Chebyshev polynomial Tn(x)
compares to the corresponding transformed polynomial Tn(g

−1(x)). For this we
need the inverse map g−1.

gi = inv(g);

T50 = chebpoly(50); subplot(2,1,1), plot(T50), axis([-1 1 -2 2])

title(’Chebyshev polynomial’)

grid on, subplot(2,1,2)

plot(T50(gi),’m’), axis([-1 1 -2 2])

grid on, title(’Transformed Chebyshev polynomial’)

169

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

0

2
Chebyshev polynomial

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

0

2
Transformed Chebyshev polynomial

Notice that the lower curves are more like uniform sine waves than the upper
ones.

Theorem 3.1 summarized some basic facts about Chebyshev series, and these
carry over immediately to a theorem for transformed Chebyshev series. The the-
orem as stated assumes g is analytic, though in fact, continuous differentiability
would be enough.

Theorem 22.1: Transformed Chebyshev series. Let g be an analytic
function on [−1, 1] mapping [−1, 1] to itself with g′(s) > 0. Then if f is Lipschitz
continuous on [−1, 1], it has a unique representation as an absolutely convergent
series

f(x) =
∞
∑

k=0

akTk(g
−1(x)), (22.2)

and the coefficients are given for k ≥ 1 by the formula

ak =
2

π

∫ 1

−1

f(g(s))Tk(s)√
1− s2

ds, (22.3)

and for k = 0 by the same formula with the factor 2/π changed to 1/π.

Proof. This is a straightforward consequence of Theorem 3.1.

For many functions f , the transformed series are about 30% more efficient than
the originals. For example, Chebyshev interpolation of (2 + cos(20x + 1))−1

requires about 520 terms for 15-digit accuracy:

f = 1./(2+cos(20*x+1));

clf, chebpolyplot(f), grid on, axis([0 600 1e-18 1])

title(’Chebyshev series coefficients’)

170

0 100 200 300 400 500 600

10
−15

10
−10

10
−5

10
0

Chebyshev series coefficients

For the transformed interpolants the figure is closer to 400:

chebpolyplot(f(g),’m’), grid on, axis([0 600 1e-18 1])

title(’Transformed Chebyshev series coefficients’)

0 100 200 300 400 500 600

10
−15

10
−10

10
−5

10
0

Transformed Chebyshev series coefficients

Chapter 7 considered convergence for differentiable functions. Theorem 7.2 can
readily be restated for the transformed context — see Exercise 22.1. For a
numerical illustration, here is a repetition of the experiment from Chapter 7
involving f(x) = |x|. On the loglog scale, the transformed approximants run
parallel to the same line as the Chebyshev interpolants, but lower.

f = abs(x); fg = f(g);

nn = 2*round(2.^(0:.3:7))-1;

ee = 0*nn; ee2 = 0*nn;

for j = 1:length(nn)

n = nn(j);

fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

fn2 = chebfun(fg,n+1); ee2(j) = norm(fg-fn2,inf);

end

hold off, loglog(nn,1./nn,’r’)

grid on, axis([1 300 1e-3 2])

hold on, loglog(nn,ee,’.’), loglog(nn,ee2,’sm’,MS,5)

ratio = ee(end-4:end)./ee2(end-4:end)

title([’Convergence of Chebyshev vs. ’...

171

’transformed Chebyshev interpolants’])

ratio =

1.3167 1.3167 1.3167 1.3167 1.3167

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Convergence of Chebyshev vs. transformed Chebyshev interpolants

Chapter 8 considered convergence for analytic functions. Here is the trans-
formed equivalent of Theorems 8.1 and 8.2.

Theorem 22.2: Transformed coefficients of analytic functions. For
given ρ > 1, let g and f be analytic functions on [−1, 1] that can be analytically
continued to Eρ and g(Eρ), respectively, with |f(z)| ≤ M for z ∈ g(Eρ). Then
the transformed Chebyshev coefficients of Theorem 22.1 satisfy

|ak| ≤ 2Mρ−n, (22.4)

the truncated transformed series satisfy

‖f − pn(g
−1(x))‖ ≤ 2Mρ−n

ρ− 1
, (22.5)

and the transformed Chebyshev interpolants satisfy

‖f − pn(g
−1(x))‖ ≤ 4Mρ−n

ρ− 1
. (22.6)

Proof. These results follow from Theorems 8.2 and 22.1.

Here is a repetition of the Chapter 8 experiment for the Runge function, now
with squares to show the transformed approximants.

f = 1./(1+25*x.^2); fg = f(g);

nn = 0:10:200;

ee = 0*nn; ee2 = 0:nn;

for j = 1:length(nn)

n = nn(j);

fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

172

fn2 = chebfun(fg,n+1); ee2(j) = norm(fg-fn2,inf);

end

hold off, semilogy(nn,ee,’.’)

hold on, semilogy(nn,ee2,’sm’,MS,5)

grid on, axis([0 200 1e-17 10])

title([’Convergence of Chebyshev vs. ’...

’transformed Chebyshev interpolants’])

0 20 40 60 80 100 120 140 160 180 200

10
−15

10
−10

10
−5

10
0

Convergence of Chebyshev vs. transformed Chebyshev interpolants

The speedup is clear. On the other hand, here is a repetition of the experiment
with cos(20x).

f = cos(20*x); fg = f(g);

nn = 0:2:60;

ee = 0*nn; ee2 = 0:nn;

for j = 1:length(nn)

n = nn(j);

fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

fn2 = chebfun(fg,n+1); ee2(j) = norm(fg-fn2,inf);

end

hold off, semilogy(nn,ee,’.’)

hold on, semilogy(nn,ee2,’sm’,MS,5)

grid on, axis([0 60 1e-16 100])

title([’Convergence of Chebyshev vs. ’...

’transformed Chebyshev interpolants’])

0 10 20 30 40 50 60

10
−15

10
−10

10
−5

10
0

Convergence of Chebyshev vs. transformed Chebyshev interpolants

173

Now the result is ambiguous: the transformed method starts out ahead, but the
standard Chebyshev method wins eventually. The explanation can be found in
the nested ellipses Eρ and their images plotted earlier. The function cos(20x) is
entire, and for larger n, the Chebyshev points take good advantage of its ana-
lyticity well away from [−1, 1]. The transformed points do not do as well. (The
advantage of the transformation becomes decisive again if we change cos(20x)
to cos(100x).)

We can see similar effects if we look at best approximations. For a non-smooth
function like |x|, transformed polynomials typically approximate better than
true ones. The following figures should be compared with those of Chapter 10,
and the variable ratio quantifies the degree of improvement.

f = abs(x);

subplot(1,2,1), hold off, plot(f,’k’), grid on

fg = f(g);

[p,err] = remez(fg,4);

hold on, plot(p(gi),’m’), axis([-1 1 -.2 1.2])

title Function, subplot(1,2,2), hold off

plot(g,f-p(gi),’m’), grid on, hold on, axis([-1 1 -.15 .15])

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

[p2,err2] = remez(f,4); ratio = err2/err, title(’Error curve’)

ratio =

1.2847

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Function

−1 −0.5 0 0.5 1

−0.1

−0.05

0

0.05

0.1

0.15
Error curve

On the other hand for a gentle entire function like exp(x), pure polynomials
converge very fast and transformed polynomials cannot compete. The following
error curve is seven orders of magnitude bigger than that of Chapter 10.

f = exp(x);

fg = f(g);

[p,err] = remez(fg,10);

clf, plot(g,fg-p,’m’), grid on, hold on

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

174

[p2,err2] = remez(f,10); ratio = err2/err

xlim([-1 1])

title(’Error curve for best transformed approximation’)

ratio =

2.9938e-07

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x 10

−4 Error curve for best transformed approximation

Our final application of transformed polynomial approximants is the one that
is the subject of the original paper [Hale & Trefethen 2008]: quadrature. As
described in Chapter 19, standard quadrature formulas are based on the idea
of integrating a function numerically by interpolating it by a polynomial, then
integrating the interpolant. This is the basis of all the well-known quadrature
formulas, including Gauss, Newton–Cotes, Simpson, and Clenshaw–Curtis. But
why should quadrature formulas be based on polynomials? This is not a ques-
tion often encountered in the quadrature literature. Some of the explanation
surely has to do with custom going back centuries, before the appearance of
computers, when the algebraic simplicity of polynomials would have been a
telling advantage. If one had to give a mathematical answer with still some
validity today, it would probably be that a polynomial formula is optimal if the
order is fixed while the grid size is decreased to zero. If the order increases to
∞, however, polynomial formulas are in no sense optimal.

In particular, a “transformed Gauss” quadrature formula can be obtained by
applying Gauss quadrature to the integral on the right in the formula

∫ 1

−1

f(x) =

∫ 1

−1

f(g(s))g′(s)ds. (22.7)

To illustrate this transplanted quadrature idea we pick a wiggly function,

f = cos(17*x)./(1+sin(100*x).^2);

clf, plot(f)

175

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Here is a code in which I represents Gauss quadrature and I2 is transformed
Gauss quadrature — and we see that the dots decrease about 30% more slowly
than the squares.

gp = diff(g);

Iexact = sum(f);

err = []; err2 = [];

nn = 50:50:2000;

for n = nn

[s,w] = legpts(n);

I = w*f(s); err = [err abs(I-Iexact)];

I2 = w*(f(g(s)).*gp(s)); err2 = [err2 abs(I2-Iexact)];

end

hold off, semilogy(nn,err,’.-’,MS,9), grid on

hold on, semilogy(nn,err2,’s-m’,MS,4), axis([1 2000 1e-16 1])

title(’Convergence of Gauss vs. transformed Gauss quadrature’)

200 400 600 800 1000 1200 1400 1600 1800 2000

10
−15

10
−10

10
−5

10
0

Convergence of Gauss vs. transformed Gauss quadrature

We emphasize: in the end a quadrature formula is just a quadrature formula,
as specified in (18.3):

In =
n
∑

k=0

wkf(xk). (22.8)

Gauss leads to one choice of nodes and weights, Clenshaw–Curtis leads to an-
other, transplanted Gauss leads to a third, transplanted Clenshaw–Curtis to a

176

fourth. Regardless of what concepts may have been employed in the derivation,
in the end the quadrature formula is just a linear combination of function val-
ues, and the transformed formulas usually outperform the classical ones. For
example, in [Hale & Trefethen 2008] it is proved that the transformed Gauss
formulas based on mapping E1.1 to an infinite strip converges 50% faster than
Gauss quadrature for the class of functions analytic in the ε-neighborhood of
[−1, 1], for any ε < 0.05.

This chapter has shown that polynomials are not the only effective general linear
class of approximants for general functions f on an interval and indeed are often
suboptimal. There is much more that can be said on this subject. For example,
there is the matter of how the mapping g was derived and what other maps
might be useful; an influential family of maps was introduced by Kosloff and Tal-
Ezer [1993]. Another topic we have not discussed is the application to spectral
methods, Kosloff and Tal-Ezer’s motivation, and it is here that transformations
of variables are perhaps most important in practice. Finally, there is the idea
of using the map g for rational functions rather than polynomials. The last
two ideas have been combined powerfully in Tee’s adaptive rational spectral
collocation method based on adaptively determined conformal maps [Tee &
Trefethen 2006, Hale & Tee 2009].

[To be added: (1) Read Timan 1951. (2) Explain the connection of sausages
to Taylor series for (2/π) sin−1(s). (3) Clarify 32% and half-width 0.76. (4)
Nearly-equispaced grids.]

Summary of Chapter 22. Though many numerical methods are based on

polynomial approximations of a function f ∈ C[−1, 1], such approximations

are not optimal in any natural sense, for polynomials have higher resolution

near the endpoints of the interval than near the middle. By a conformal

transplantation one can derive approximations that are up to π/2 times

more efficient.

Exercise 22.1. A challenging integrand. Repeat the Gauss vs. transformed Gauss
quadrature experiment for the “challenging integrand” (17.14). By approximately
what percentage is Gauss slower than transformed Gauss for this function? How do
you account for this behavior?

Exercise 22.2. Chebfun ’map’. Chebfun contains a ’map’ parameter
which enables one to explore some of the ideas of this chapter in an au-
tomatic fashion (see help chebfun/maps for information). To illustrate this,
construct f = 1./(1+25*x.^2) with both x = chebfun(’x’) as usual and also
x = chebfun(’x’,’map’,{’sausage’,9}). How do the chebpolyplot results com-
pare? (b) What if the parameter 9 is varied to 1, 3, 5, . . . 15? (This is the degree of the
expansion in (22.1).)

Exercise 22.3. Strip maps. [to be written, based on ’map’.]

177

Exercise 22.4. Sausage maps of different orders. [To be written.]

Exercise 22.4. Transplanted Clenshaw–Curtis quadrature. [To be written.]

23. Nonlinear approximations: why rational functions?

Up to now, this book has been about polynomials, or in the last chapter, their
transplants. The rest of the book is about rational functions, which have been
a mainstay of approximation theory from the beginning. Why do rational ap-
proximations occupy such a large place in the approximation theory literature?
Polynomials are familiar and comfortable, but rational functions seem compli-
cated and specialized. Is their position in approximation theory justified, or is
it an artifact of history, perhaps a holdover from the pre-computer era? In this
chapter we attempt to answer these questions, and in doing so we shall find
ourselves considering the broader question of what the uses are of the whole
subject of approximation theory.

I think the answer is this. Although rational functions indeed became an es-
tablished part of approximation theory long before computers and many of the
associated practical applications, their place in the subject is deserved. Their
importance stems from a conjunction of two facts. On the one hand, rational
functions are more powerful than polynomials at approximating functions near
singularities and on unbounded domains. On the other hand, for various rea-
sons related for example to partial fraction decompositions, they are easier to
work with than their nonlinearity might suggest — indeed, sometimes no more
complicated than polynomials.

A rational function is the ratio of two polynomials, and in particular, given
m ≥ 0 and n ≥ 0, we say that r is a rational function of type (m,n) if it can be
written as a quotient pm/qn with pm ∈ Pm and qn ∈ Pn. The set of all rational
functions of type (m,n) is denoted by Rmn, and any r ∈ Rmn can be written in
the form

r(z) =

m
∑

k=0

akz
k

/

n
∑

k=0

bkz
k (23.1)

for some real or complex coefficients {ak} and {bk}. The degrees need not be
exact, i.e., there is no requirement in general that am or bn must be nonzero.
Nor do we necessarily require that the numerator and denominator are relatively
prime, that is, that they have no common zeros.

Suppose, however, that for some nonzero r ∈ Rmn, we choose a representation
with relatively prime numerator and denominator. Define µ ≤ m to be the
index of the highest degree nonzero numerator coefficient and similarly ν ≤ n
for the denominator, and further normalize the coefficients by requiring bν = 1.

178

Then we can write

r(z) =

µ
∑

k=0

akz
k

/

ν
∑

k=0

bkz
k , aµ 6= 0, bν = 1. (23.2)

In this case r has exactly µ finite zeros and ν finite poles (counted with multi-
plicity): we say that r is of exact type (µ, ν). (If r is identically zero, it has
exact type (−∞, 0).) If µ > ν, it has a pole at z = ∞ of order µ−ν, and if ν > µ
it has a zero at z = ∞ of order ν − µ. Basic properties of rational functions
are described in books of complex analysis such as [Ahlfors 1953, Henrici 1974,
Markushevich 1985].

These representations highlight the nonlinearity of rational functions, but a
different perspective is reached when we represent them by partial fractions.
(An excellent general reference on this subject is Chapter 7 of [Henrici 1974].)
In the simplest situation, consider

r(z) =
n
∑

k=1

ck
z − ζk

, (23.3)

where {ζk} are distinct real or complex numbers. For any coefficients {ck},
this is a rational function of type (n− 1, n), and if the coefficients are nonzero,
then r is of exactly this type. The number ck is the residue of r at ζk. This
representation highlights the linear aspects of rational functions. For example,
whereas computing the integral of r written in the form p/q looks daunting, in
the partial fraction representation we have simply

∫ z

r(s)ds = C +
n
∑

k=1

ck log(z − ζk). (23.4)

In applications, it is interesting how often a formula like this turns out to be
crucial in making a rational function useful.

The partial fraction form (23.3) does not apply to all rational functions. One
limitation is that it always represents a rational function of exact type (ν−1, ν)
for some ν (assuming r is not identically zero). Another is that it does not
represent all functions of exact type (ν − 1, ν), since it cannot account for poles
of multiplicity greater than 1. The following theorem gives a partial fraction
representation for the general case.

Theorem 23.1. Partial fraction representation. Given m,n ≥ 0, let
r ∈ Rmn be arbitrary. Then r has a unique representation in the form

r(z) = p0(z) +

µ
∑

k=1

pk((z − ζk)
−1), (23.5)

where p0 is a polynomial of exact degree ν0 for some ν0 ≤ m (unless p = 0) and
{pk}, 1 ≤ k ≤ µ, are polynomials of exact degrees νk ≥ 1 with

∑µ
k=1 νk ≤ n.

179

Proof. See [ref?].

The function p0 is the polynomial part of r, and pk((z−ζk)
−1) is its principal

part at ζk.

This is all we shall say for the moment about the mathematics of rational
functions. Let us now turn to the main subject of this chapter, the discussion
of why these functions are useful in approximation theory and approximation
practice.

The right place to start is with a cautionary observation. Rational functions
are not always better than polynomials! Indeed, consider the most basic of all
situations, in which f is a function analytic in a ρ-ellipse Eρ for some ρ > 1.
For such a function, by Theorem 8.2, polynomial approximations will converge
at the rate O(ρ−n). It turns out that a typical convergence rate for type (n, n)
rational functions is O(ρ−2n). So, doubling the number of parameters to be
determined sometimes just approximately doubles the convergence rate. (In
fact, sometimes it does not increase the convergence rate at all [Szabados 1970].)
For applications of this kind, rational functions may outperform polynomials,
but usually by a rather modest factor.

For example, here are a pair of curves showing ‖f − p∗2n‖ (dots) and ‖f − r∗nn‖
(stars) as functions of n for f(x) = exp(−x4), where p∗2n and r∗nn are the best ap-
proximations to f in P2n and Rnn, respectively. (We shall discuss rational best
approximation and the Remez algorithm for computing them in Chapter 30.)
Both curves decrease geometrically, and there is not much difference between
them. [This code is a kluge based on cf, pending extension of the Chebfun
remez command to more robust rational approximation.]

f = exp(-x.^4);

warning off

nn = 0:20; errp = []; errr = [];

for n = nn

p2n = remez(f,2*n); errp = [errp norm(f-p2n,inf)];

[p,q,foo] = cf(f,n,n); rnn = p./q; errr = [errr norm(f-rnn,inf)];

end

clf, semilogy(nn,errp,’.-’,MS,12), grid on, ylim([1e-16 10])

hold on, semilogy(nn,errr,’h-r’,MS,4)

text(10.5,2e-8,’E_{2n,0}’,FS,10,CO,’b’)

text(9,1e-11,’E_{n,n}’,FS,10,CO,’r’)

title([’Convergence of polynomial and rational ’...

’best approximations to exp(-x^4) on [-1,1]’])

180

0 2 4 6 8 10 12 14 16 18 20

10
−15

10
−10

10
−5

10
0

E
2n,0

E
n,n

Convergence of polynomial and rational best approximations to exp(−x4) on [−1,1]

What makes rational functions important is that, in contrast to this example,
there are many problems where one wants to operate near singularities, or on
unbounded domains. For these problems, rational approximations may converge
much faster than polynomials. For example, here is an experiment like the last
one, but with f(x) = |x|. For this function, a type (n, n) rational approximant
with n = 150 gives 16-digit accuracy, whereas polynomial approximants would
need n = 1015 to do so well. [This code is another kluge.]

f = abs(x);

xx = linspace(-1,1,1000);

nn = 0:50; errp = [];

errr = [.5 4.37e-2 8.50e-3 2.28e-3 7.37e-4 2.69e-4 1.07e-4 ...

4.60e-5 2.09e-5 9.89e-6 4.88e-6 2.49e-6 1.30e-6 ...

6.3*exp(-pi*sqrt(26:2:max(nn)))];

errr = kron(errr,[1 1]); errr(end) = [];

for n = nn

p2n = remez(f,2*n); errp = [errp norm(f(xx)-p2n(xx),inf)];

end

hold off, semilogy(nn,errp,’.-’,MS,12), grid on

hold on, semilogy(nn,errr,’h-r’,MS,4)

text(37,3e-4,’E_{2n,0}’,FS,10,CO,’b’)

text(21,2e-7,’E_{n,n}’,FS,10,CO,’r’)

title([’Convergence of polynomial and rational ’...

’best approximations to |x| on [-1,1]’])

0 5 10 15 20 25 30 35 40 45 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
2n,0

E
n,n

Convergence of polynomial and rational best approximations to |x| on [−1,1]

181

The approximation of |x| by rational functions is one of the “two famous prob-
lems” to be considered in the next chapter. In 1964 Donald Newman proved
that whereas polynomial approximants to |x| converge just at the rate O(n−1),
for rational approximants the rate is exp(−C

√
n) with C > 1 [Newman 1964].

This result rigorously established the possibility of an exponential difference in
effectiveness of the two types of approximations.

The rest of this chapter is devoted to an outline of twelve applications in which
rational approximations are useful. In most of these examples, there is a singu-
larity or unbounded domain in the picture. The exceptions are applications #1
and #7, where rational functions outperform polynomials less decisively.

1. Elementary and special functions. Classically, approximation theory brings to
mind the problem of designing subroutines for computers to evaluate elementary
functions, like sinx, and special functions, like Airy or Bessel functions. For
some of these applications, especially when the number of digits of accuracy
required is known in advance, rational approximations prove to be the best
choice. A classic project in this line is the SPECFUN software package [Cody
1993], descendent of the earlier FUNPACK [Cody 1975], which uses rational best
approximations to evaluate Bessel functions, error functions, gamma functions
and exponential integrals to 18 digits of accuracy. For many years a driving force
behind these software products and a great expert on the matter of practical
rational approximations was W. J. Cody at the Argonne National Laboratory;
Cody’s version of the rational Remez algorithm is described in [Cody, Fraser &
Hart 1968]. For a presentation of some of the state of the art in the early 21st
century, see [Muller 2006].

2. Digital filters. In electrical engineering, the construction of low-pass, high-
pass, and other digital filters often involves approximation of functions with
jumps. (For these problems the approximation domain is usually the unit circle
in the complex plane.) Jumps amount to singularities on or near the domain
of approximation, and Theorem 8.3 implies that polynomials have no chance
of rapid convergence for such functions. As Newman’s theorem would lead us
to expect, rational approximations sometimes do much better. Engineers use
the term FIR (Finite Impulse Response) for polynomial filters and IIR (Infinite
Impulse Response) in the rational case [Oppenheim, Schafer & Buck 1999].

3. Extrapolation of sequences and series. The mathematical sciences are full of
problems of extrapolation. For example, one might be interested in limh→0 f(h),
where f(h) is a quantity computed numerically on a grid of spacing h. For such
a problem, f is often analytic at h = 0, in which case Richardson extrapolation,
based on interpolating the data by a polynomial, may be beautifully effective.
On the other hand, suppose we want to evaluate limn→∞ an for a sequence {an}.
We can regard this problem too as limh→0 f(h) with the definition f(1/n) = an,
but now, in many applications, f(h) will not be analytic at h = 0 and Richardson
extrapolation will be ineffective. The more powerful extrapolation methods that

182

have been developed for such problems, such as Aitken extrapolation and the
eta algorithm, are mostly based on rational approximations. See Chapter 26,
“Extrapolation of sequences and series”.

4. Determination of poles. Suppose a function f is analytic on [a, b] and has
some real or complex poles nearby whose positions and residues are of inter-
est. Classic examples of such problems arise in the study of phase transitions
in condensed matter physics. If we approximate f by polynomials on [a, b],
then by Theorem 8.3, the convergence fails outside a ρ-ellipse of analyticity,
so not much information about poles can be obtained. If we approximate by
rational functions, exponential convergence to some of the poles can often be
achieved. Specifically, a good strategy is to consider the poles of rmn for mod-
erate values of n, where rmn is a rational approximant to f obtained by Padé or
Chebyshev–Padé approximation or rational interpolation or least-squares. See
Chapter 31, “Determination of poles and analytic continuation”.

5. Analytic continuation. If f is analytic on [a, b], then in many applications it
can be analytically continued, in theory, to the rest of the complex plane, apart
from exceptional points and curves in the form of poles, other singularities, and
branch cuts. Computing such continuations numerically, however, is a difficult
problem. One could try approximating f by a polynomial, but this approach
will be useless outside a Bernstein ellipse of analyticity. Rational functions, by
contrast, may be effective for continuation much further out. Again see Chapter
31, “Determination of poles and analytic continuation”.

6. Eigenvalues and eigenvectors of matrices. Suppose we want to compute
an eigenvector of a matrix A. One approach, the power method, is to pick
a starting vector x and compute limn→∞ Anx, but the convergence of this
polynomial-based idea is very slow in general. A much faster method, inverse
iteration, is based on rational approximations: find an approximation µ to some
eigenvalue λ and compute limn→∞ (A − µI)−nx. The convergence gets faster
the closer µ is to the singularity λ, and exploitation of this effect leads to the
spectacularly effective QR algorithm for matrix eigenvalues and eigenvectors
[Francis 1961]. Experts in numerical linear algebra do not usually think about
rational approximations when discussing inverse iteration or the QR algorithm,
but such approximations come explicitly to the fore in the analysis of extensions
such as shift-and-invert Arnoldi or rational Krylov iteration [Güttel 2010].

7. Exponential of a matrix. A famous paper in numerical analysis is “Nineteen
dubious ways to compute the exponential of a matrix”, by Moler and Van Loan
in 1978, reprinted in expanded form 25 years later [Moler & Van Loan 2003].
These authors compared many algorithms for computing eA and reached the
conclusion that the most effective was a scaling-and-squaring method based on
Padé approximation [Ward 1977]. Here, first A is scaled so that its norm is
on the order of 1. Then eA is approximated by r(A), where r is a type (n, n)
Padé approximant to ez. This is an example where rational approximations

183

outperform polynomials not decisively but by a more or less constant factor.
A key point is that a type (n, n) approximant can be computed with little
more effort than a type (n, 0) approximant, because the work is dominated
by computing the powers A2, A3, . . . , An, and once these are known for the
numerator, they can be reused for the denominator. This approach is used by
the matrix exponential program expm in Matlab, which for many years was based
on type (6, 6) Padé approximation. A more careful analysis of the scaling-and-
squaring algorithm was later provided by Higham [2009], who concluded that
a better choice was type (13, 13), and the expm code was adjusted accordingly
in Matlab Version 8. In [Higham & Al-Mohy 2010, Appendix A] the authors
conclude that Padé approximants are up to 23% more efficient than Taylor
polynomials in this application.

8. Model reduction and optimal control. A major topic in numerical linear al-
gebra and control theory is the approximation of complicated input-output sys-
tems by simpler ones for more efficient computation. Via the Laplace transform,
problems of this kind (in the case of continuous as opposed to discrete time) can
in many cases be reduced to problems of approximation on the imaginary axis
in the complex plane. The unbounded domain makes rational approximations
a natural choice, and in fortunate cases, a system with hundreds of thousands
of degrees of freedom may be reduced to a model with just dozens or hundreds.
One set of methods for such problems goes by the name of H∞ approximation,
based on results by Adamjan, Arov and Krein [1971] and Glover [1984] that are
related to the CF approximation method discussed in Chapter 20. For more
information see [Antoulas 2005, Zhou, Doyle & Glover 1996].

9. Numerical solution of stiff PDEs. The Laplace operator ∆ on a spatial do-
main Ω with Dirichlet boundary conditions has an infinite set of negative real
eigenvalues diverging to −∞. To solve the heat equation ∂u/∂t = ∆u numeri-
cally on Ω with initial data u(x, 0) = u0, one would like to be able to compute
the matrix exponential product etAv0, where A is a matrix discretization of
∆ and v0 is a discretization of u0. The wide range of eigenvalues makes such
a problem “stiff”, posing challenges for numerical methods. One method for
coping with stiffness is to find a rational function r(x) that approximates ex

accurately on (−∞, 0], hence in particular at all of the eigenvalues of A, and
then to compute r(tA)v0. Polynomials cannot approximate a bounded function
on an infinite interval, but rational functions can. This problem of rational
approximation of ex on (−∞, 0] goes back to Cody, Meinardus & Varga [1969],
whose “1/9 conjecture”, eventually settled by Gonchar and Rakhmanov [1986],
is the other famous problem considered in the next chapter. Generalizations
have become important in scientific computing in recent years in the design of
exponential integrators for the fast numerical solution of stiff nonlinear ordinary
and partial differential equations [Hochbruck & Ostermann 2010, Kassam &
Trefethen 2005, Schmelzer & Trefethen 2007].

10. Quadrature formulas. As we have seen in Chapter 19, a quadrature for-

184

mula approximates an integral I =
∫ b

a
f(x)dx by a finite linear combination

In =
∑n

k=0wkf(xk). If the weights wk are interpreted as residues of a rational
function r(z) with poles at the nodes xk, then by estimation of a Cauchy integral
over a contour Γ enclosing [a, b] in the complex plane, one can show that the
error in I is bounded in terms of the size of f in the region enclosed by Γ times
the error in approximation of the analytic function log((z + 1)/(z − 1)) by r
over the same region. So every quadrature formula is connected with a rational
approximation problem. In fact, Gauss’s original derivation of the (n+1)-point
Gauss quadrature formula on [−1, 1] was based on exactly this connection: he
used type (n, n+1) Padé approximation of log((z+1)/(z−1)) at z = ∞ [Gauss
1814]. See Chapter 29, “Rational approximation and quadrature”.

11. Adaptive spectral methods for PDEs. The barycentric interpolation formula
has the form of a rational function that reduces to a polynomial for a special
choice of weights (Chapter 5). Regardless of the choice of weights, however, one
still gets an interpolant, and in some applications there is no compelling reason
to force the interpolant to be a polynomial. This opens up the possibility of
much more flexible rational interpolants, which have the particular advantage
of not being so sensitive to the distribution of the interpolation points. These
ideas originate with Salzer [1981] and Schneider and Werner [1986], building on
earlier work as far back as Jacobi [1846], and were later developed by Berrut
and Mittelmann [1997] and Floater and Hormann [2007]. For ordinary and
partial differential equations, they form the basis of adaptive spectral methods
for solving problems whose solutions have singularities close to the region of
approximation [Tee & Trefethen 2006, Hale & Tee 2009].

12. One-way wave equations. Our final application became well known in the
1970s and 1980s [Halpern & Trefethen 1988]. The usual wave equation permits
energy propagation in all directions, but there are applications where one would
like to restrict to half the permitted angles, a 180◦ range. For example, this
idea is useful in underwater acoustics [Tappert 1977], in geophysical migration
[Claerbout 1985], and in the design of absorbing boundary conditions for numer-
ical simulations [Lindman 1975, Engquist & Majda 1977]. How can we define a
system that behaves like utt = uxx+uyy for leftgoing waves, say, with negative x-
component of velocity, while not propagating rightgoing waves? (The subscripts
represent partial derivatives.) A Fourier transform shows that the dispersion re-
lation of such a system should be ξ = ω

√
1− s2, where s = η/ω and ω, ξ, η are

the dual variables to t, x, y. Only the positive branch of the square root should
be present, making this system a pseudodifferential operator. However, a ratio-
nal approximation

√
1− s2 ≈ r(s) simplifies this to a differential equation. For

example, the type (2, 2) Padé approximation r(s) = (1− 3
4s

2)/(1− 1
4s

2) leads to
the PDE uxtt − 1

4uxyy = uttt − 3
4utyy, sometimes known as the “45◦ equation”

because it has high accuracy approximately for angles up to 45◦.

We have now examined a list of twelve applications. In concluding this chapter
I would like to consider what light these may shed on the biggest question of

185

all, namely, what is the use of approximation theory?

To see some possible views, let us go back to 1901. That was the year of Runge’s
important paper (Chapter 13), whose title was8

“On empirical functions and interpolation between equidistant ordinates.”

In reading this today, one is struck by the word “empirical”. The empirical
theme is echoed in the opening sentence:

The relationship between two measurable quantities can, strictly speaking, not
be found by observation.

Runge goes on to mention “observations” six times more in the opening para-
graph. It would seem that his motivation is the processing of scientific data:
interpolation in the traditional sense of evaluating a function at points lying
between those at which it is listed in a table.

The next year, 1902, brought another landmark of approximation theory: Kirch-
berger’s PhD thesis under Hilbert in Göttingen, which included the first state-
ment and proof of the equioscillation theorem for polynomial approximation
(Theorem 10.1). Here is the first paragraph of Kirchberger’s paper a year later
[1903], which sets forth a clear motivation for approximation theory. Perhaps
we may imagine that this was also Hilbert’s view of the subject.9

The notion of a function entails the assumption that a numerical value of the
function can be calculated for any value of the independent variable. But since
the only operations that can really be carried out numerically are the four el-
ementary operations of addition, subtraction, multiplication and division, or
strictly speaking only the first three of these, it follows that we are really only
masters of more general functions insofar as we can replace them by rational
functions, that is, represent them approximately. This highlights the great signif-
icance of approximation problems for the whole of mathematics and the special
role of approximation by polynomials and rational functions. Indeed, for numer-

8Title: “Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordi-
naten.” First sentence: “Die Abhängigkeit zwischen zwei messbaren Grössen kann, strenge
genommen, durch Beobachtung überhaupt nicht gefunden werden.”

9“Mit dem Begriff der Funktion ist das Postulat der numerischen Berechnung der Funk-
tionswerte für irgendwelche Werte der unabhängigen Variabeln gegeben. Da aber die vier ele-
mentaren Spezies der Addition, Subtraktion, Multiplikation und Division, oder streng genom-
men nur die erste drei derselben, die einzigen numerisch ausführbaren Rechnungsarten, alle
andern aber nur insoweit durchführbar sind, als sie sich auf diese zurückführen lassen, so folgt
hieraus, daß wir sämtlichen Funktionen nur insoweit numerisch beherrschen, als sie sich durch
rationale Funktionen ersetzen, d. h. angenähert darstellen lassen. Hieraus erhellt die große
Bedeutung der Annäherungsprobleme für die gesamte Mathematik und die ausgezeichnete
Stellung, die die Probleme der Annäherung durch rationale order ganze rationale Funktionen
einnehmen. In der Tat setzt, wenigstens für die numerische Berechnung, jede Annäherung
durch andere, z. B. trigonometrische, Funktionen die annäherungsweise Ersetzbarkeit dieser
Funktionen durch rationale voraus.”

186

ical calculation at least, any use of other approximations such as trigonometric
functions presupposes that these can in turn be approximated by rational func-
tions.

Updated to 2011, we may say that Kirchberger’s justification of approximation
theory is all about machine arithmetic. Approximation by polynomials and
rational functions is important, he is saying, because ultimately computers can
only carry out polynomial and rational operations.

Both Runge’s emphasis on data and Kirchberger’s emphasis on arithmetic cap-
ture aspects of approximation theory that remain valid today. In particular,
Kirchberger’s paragraph seems a remarkably clear statement of a justification
of approximation theory that in a certain philosophical sense seems almost unar-
guable (although the line between “primitive” operations like + and “derived”
ones like sin(·) is not always so clear on actual computers, with their multiple
levels of hardware, software and microcode). The same argument is often seen
nowadays.

Nevertheless I do not think data analysis or machine arithmetic get at the heart
of why approximation theory is important and interesting. In fact I don’t think
Runge’s words even capture the truth of why he was interested in the subject!
(He becomes more of a mathematician in the second half of his paper.) What
these observations miss is the importance of algorithms.

Let us look again at the list of applications. Kirchberger’s motivation could
be said to be on target for #1 and #2 (evaluation of functions, digital filters),
and Runge’s for #3, #4, and #5 (extrapolation, determination of poles, ana-
lytic continuation). But the remaining seven items need to be accounted for in
other ways. It is noteworthy that applications #6 to #9 all involve matrices,
sometimes of very large dimension (eigenvalues and eigenvectors, exponentials
of matrices, model reduction, stiff PDEs). Applications #9 to #12 all involve
integrals and differential equations (stiff PDEs, quadrature, adaptive spectral
methods, one-way wave equations). In most of these problems we seem a long
way from scalars x and r(x): the polynomial and rational operations are applied
to matrices and operators.

Chebfun provides another interesting data point (for polynomials rather than
rational functions). Chebfun is built on a century of developments in polyno-
mial interpolation and approximation, and it makes it possible to work with
univariate functions numerically in almost unlimited ways. A particularly im-
portant Chebfun capability is finding roots of a function f(x), which enables
many further operations like computing maxima, absolute values, and 1-norms.
Chebfun finds the roots by the algorithm proposed by Good [1961] and Boyd
2002]: approximate f by polynomial interpolants, then find roots of the poly-
nomials by computing eigenvalues of colleague matrices (Chapter 18). This is
as powerful an application of approximation theory as one could ask for, but it

187

has little to do with data analysis or machine arithmetic.

Why are polynomial and rational approximations interesting? Not because r(x)
is easier to evaluate than exp(x), but because r(A) is easier to evaluate than
exp(A), and r(∂/∂x) is easier to evaluate than exp(∂/∂x)! Not because we can
evaluate p(x), but because we can find its roots !

[To be added: (1) Say something about the fundamental matter of stability
and implicitness, even of ODE formulas. (2) Mention the confusing fact that in
model reduction, the function to be approximated is often rational. (3) Connect
applications 7 and 9 better. (4) Fix up the kluge codes.]

Summary of Chapter 23. Rational functions are more powerful than

polynomials for approximating functions with singularities or on unbounded

integrals. This is the source of their importance in approximation theory

and approximation practice.

Exercise 23.1. Examples of partial fractions. Express the following functions in
partial fraction form: (a) x3/(1−x) (b) x/(x2−4), (c) x2/(x2−4)2, (d) (1−x3)/(1+x2).

Exercise 23.2. Uses of partial fractions. (a) Express the function r(x) = (x(x−
1)(x− 2))−1 in partial fractions. (b) What is its integral from 1 to t? (c) What is the
value of the infinite sum r(1) + r(2) + r(3) + · · · ?
Exercise 23.3. Another infinite sum. (a) Based on numerical experiments, con-
jecture a value of the infinite sum 1/(1 · 3 · 5) + 2/(3 · 5 · 7) + 3/(5 · 7 · 9) + · · · . (b)
Verify your conjecture with partial fractions.

Exercise 23.4. A trigonometric identity. Verify the identity 1/(1 · 3 · 5)− 1/(7 ·
9 · 11) + 1/(13 · 15 · 17)− · · · = π/48.

Exercise 23.5. Polynomial vs. rational experiments. Produce plots comparing
E2n,0(f) and En,n(f) for the following functions f defined on [−1, 1] : (a) log(1+ x2),
(b) tanh(5x), (c) exp(x)/(2− x).

24. Rational best approximation

Chapter 10 considered best or “minimax” approximation by polynomials, that
is, approximation in the ∞-norm, where optimality is characterized by an
equioscillating error curve. This chapter presents analogous results for approxi-
mation by rational functions. Much remains the same, but a crucial new feature
is the appearance of a number known as the defect in the equioscillation condi-
tion, which leads to the phenomenon of square blocks of degenerate entries in
the “Walsh table” of best approximations. This complication adds a fascinating
new ingredient to the theory, but it is a complication with destructive conse-
quences in terms of the fragility of rational approximations and the difficulty of
computing them numerically. An antidote to some such difficulties may be the

188

use of algorithms based on weighted linearized least-squares, a theme we shall
take up in Chapter 26.

Another new feature in rational approximation is that we must now be careful
to distinguish real and complex situations, because of a curious phenomenon:
best rational approximations to real functions are in general complex, and as
a corollary, nonunique. This effect is intriguing, but it has little relevance to
practical approximation, so for the most part we shall restrict our attention
to approximations in the space Rreal

mn consisting of functions in Rmn with real
coefficients.

We will first state the main theorem, then give some examples, and then present
a proof. To begin the discussion, we must define the defect. Suppose r ∈ Rmn,
that is, r is a rational function of type (m,n). As discussed in the last chapter,
this means that r can be written as a fraction p/q in lowest terms with p and
q having exact degrees µ ≤ m and ν ≤ n. The defect d of r in Rmn is the
number between 0 and n defined by

d = min{m− µ, n− ν} ≥ 0. (24.1)

Note that d is a measure of how far both the numerator and the denominator
degrees fall short of their maximum allowed values. Thus (1− x2)/(1 + x2), for
example, has defect 0 in R22 or R23 and defect 1 in R33.

A special case to be noted is the situation in which r = 0, that is, r is identically
zero. Recall that in this case we defined µ = −∞ and ν = 0, so that r is said
to have exact type (−∞, 0). The definition (24.1) remains in force in this case,
so if r = 0, we say that r has defect d = n in Rmn, regardless of m and n.

The reason why defects matter has to do with the counting of zeros. Suppose
r = p/q ∈ Rmn has exact type (µ, ν) and r̃ = p̃/q̃ is another function in Rmn.
Then we have

r − r̃ =
p

q
− p̃

q̃
=

pq̃ − p̃q

qq̃
,

a rational function of type (max{µ+ n,m+ ν}, n+ ν). By (24.1), this implies
that r− r̃ is of type (m+n− d, 2n− d). Thus r− r̃ can have at most m+n− d
zeros, and this zero count is a key to equioscillation and uniqueness results.

Here is our main theorem. Existence was first proved by de la Vallée Poussin
[1911] and by Walsh [1931]. The equioscillation idea goes back to Chebyshev
[1859].

Theorem 24.1: Equioscillation characterization of best approximants.
A real function f ∈ C[−1, 1] has a unique best approximation r∗ ∈ Rreal

mn , and
a function r ∈ Rreal

mn is equal to r∗ if and only if f − r equioscillates between at
least m+ n+ 2− d extreme points, where d is the defect of r in Rmn.

189

“Equioscillation” here is defined just as in Chapter 10. For f−r to equioscillate
in k points means that there exists a set of numbers −1 ≤ x1 < · · · < xk ≤ 1
such that

f(xj)− r(xj) = (−1)j+i‖f − r‖, 1 ≤ j ≤ k

with i = 0 or 1. Here and throughout this chapter, ‖ · ‖ is the supremum norm.

We now give some examples. To begin with, here is a function with a spike at
x = 0:

f = exp(-100*x.^2);

Polynomial approximations of this function converge rather slowly. For example,
it takes n = 20 to achieve one digit of accuracy:

[p,err] = remez(f,10);

subplot(1,2,1), hold off, plot(f-p), hold on

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

title(’Error in type (10,0) approx’), ylim(.3*[-1 1])

[p,err] = remez(f,20);

subplot(1,2,2), hold off, plot(f-p), hold on

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

title(’Error in type (20,0) approx’), ylim(.3*[-1 1])

−1 −0.5 0 0.5 1

−0.2

−0.1

0

0.1

0.2

0.3
Error in type (10,0) approx

−1 −0.5 0 0.5 1

−0.2

−0.1

0

0.1

0.2

0.3
Error in type (20,0) approx

Notice that the extreme points of these error curves are distributed all across
[−1, 1], even though the challenging part of the function would appear to be
in the middle. As discussed in Chapter 10, this is typical of polynomial best
approximations.

If we switch to rational approximations, which can also be computed by Cheb-
fun’s remez command, the accuracy improves. Here we see error curves for
approximations of types (2, 2) and (4, 4), with much smaller errors although the
degrees are low. Note that most of the extreme points are now localized in the
middle.

[p,q,rh,err] = remez(f,2,2);

190

subplot(1,2,1), hold off, plot(f-p./q), hold on

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

title(’Error in type (2,2) approx’), ylim(.1*[-1 1])

[p,q,rh,err] = remez(f,4,4);

subplot(1,2,2), hold off, plot(f-p./q), hold on

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

title(’Error in type (4,4) approx’), ylim(.1*[-1 1])

−1 −0.5 0 0.5 1
−0.1

−0.05

0

0.05

0.1
Error in type (2,2) approx

−1 −0.5 0 0.5 1
−0.1

−0.05

0

0.05

0.1
Error in type (4,4) approx

The error curves just plotted provide good examples of the role of the defect in
the characterization of best approximants. The function f is even, and so are its
best approximations (Exercise 24.1). Thus we expect that the type (2, 2), (3, 2),
(2, 3) and (3, 3) best approximations will all be the same function, a rational
function of exact type (2, 2) whose error curve has 7 points of equioscillation.
For (m,n) = (2, 2), the defect is 0 and there is one more equioscillation point
than the minimum m+ n+2− d = 6. For (m,n) = (3, 2) or (2, 3), the defect is
0 and the number of equiscillation points is exactly the minimum m+n+2−d.
For (m,n) = (3, 3), the defect is 1 and the number of equiscillation points is
again exactly the minimum m+ n+ 2− d.

Similarly, the error curve in the plot on the right, with 11 extrema, indicates
that this rational function is a best approximation not only of type (4, 4) but
also of types (5, 4), (4, 5), and (5, 5).

Here is another example, an odd function:

f = x.*exp(-5*abs(abs(x)-.3));

clf, plot(f), grid on, ylim(.4*[-1 1])

191

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

If we look for a best approximation of type (4, 5), we find that the numerator
has exact degree 3:

[p,q,rh,err] = remez(f,4,4);

format short, chebpoly(p)

ans =

0.0169 -0.0000 0.0575 -0.0000

and the denominator has exact degree 4:

chebpoly(q)

ans =

0.2146 -0.0000 0.7435 -0.0000 0.5493

The defect is 1, so there must be at least 4 + 5 + 2 − 1 = 10 extreme points in
the error curve. In fact, there are exactly 10:

plot(f-p./q), hold on, ylim(.04*[-1 1])

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

We conclude that r is the best approximation of types (4, 4), (4, 5), (3, 4) and
(3, 5).

Let us now turn to the proof of Theorem 24.1. For polynomial approximations,
our analogous theorem was Theorem 10.1, whose proof proceeded in four steps:

192

1. Existence proof via compactness.

2. Equioscillation ⇒ optimality.

3. Optimality ⇒ equisoscillation.

4. Uniqueness proof via equioscillation.

For rational functions, we shall follow the same sequence. The main novelty is
in step 1, where compactness must be applied in a subtler way.

Part 1 of proof: Existence via compactness. For polynomial approximation, in
Chapter 10, we noted that ‖f − p‖ is a continuous function on Pn, and since
one candidate approximation was the zero polynomial, it was enough to look in
the bounded subset {p ∈ Pn : ‖f − p‖ ≤ ‖f‖}. Since this set was compact, the
minimum was attained.

For rational functions, ‖f−r‖ is again a continuous function on Rmn, and again
it is enough to look in the bounded subset {r ∈ Rmn : ‖f − r‖ ≤ ‖f‖}, or more
simply, the larger bounded set {r ∈ Rmn : ‖r‖ ≤ 2‖f‖}. The difficulty is that
bounded sets of rational functions are not in general compact. To illustrate this
fact, consider the family of functions

rε(x) =
x3 + ε

x2 + ε
, (24.2)

where ε > 0 is a parameter. For each ε, rε(x) is a continuous function on [−1, 1].
As ε → 0, however, rε behaves discontinuously:

lim
ε→0

rε(x) =

{

1 x = 0,
x x 6= 0.

So we cannot find a limit function r0 by taking a limit as ε → 0. What saves us,
however, is that the spaces of numerators and denominators are both compact,
so we can argue that they separately approach limits p0 and q0, which in this
example would be x3 and x2. We then define a limiting rational function by
r0 = p0/q0 and argue by continuity that it has desirable properties. This kind
of reasoning is spelled out in greater generality in [Walsh 1931].

Suppose then that {rk} is a sequence of functions in Rreal
mn with ‖rk‖ ≤ 2‖f‖

and
lim
k→∞

‖f − rk‖ = E = inf
r∈Rreal

mn

‖f − r‖.

Write each rk in the form pk/qk with pk ∈ Pm, qk ∈ Pn, qk(x) 6= 0 for all
x ∈ [−1, 1], and ‖qk‖ = 1, hence ‖pk‖ ≤ ‖qk‖‖rk‖ ≤ 2‖f‖. Since {pk} and {qk}
lie in compact sets, we may assume by passing to a subsequence if necessary
that pk → p∗ and qk → q∗ for some p∗ ∈ Pm and q∗ ∈ Pn. Since ‖qk‖ = 1
for each k, ‖q∗‖ = 1 too, and thus q∗ is not identically zero but has at most a
finite set of zeros on [−1, 1]. Now define r∗ = p∗/q∗ ∈ Rreal

mn . For all x ∈ [−1, 1]
except perhaps the zeros of q∗, |f(x)− r∗(x)| = limk→∞ |f(x)− rk(x)| ≤ E. By

193

continuity, the same must hold for all x ∈ [−1, 1], with p∗ having zeros in [−1, 1]
wherever q∗ does. Thus r∗ is a best approximation to f .

Part 2 of proof: Equioscillation ⇒ optimality. Suppose f−r takes equal extreme
values with alternating signs at m+n+2−d points x0 < x1 < · · · < xm+n+1−d,
and suppose ‖f− r̃‖ < ‖f−r‖ for some r̃ ∈ Rreal

mn . Then r− r̃ must take nonzero
values with alternating signs at the equioscillation points, implying that it must
take the value zero in at least m + n + 1 − d points in-between. However, as
observed above, r − r̃ is of type (m + n − d, 2n − d). Thus it cannot have
m+ n+ 1− d zeros unless it is identically zero, a contradiction.

Part 3 of proof: Optimality ⇒ equisoscillation. Suppose f − r equioscillates
at fewer than m + n + 2 − d points, and set E = ‖f − r‖. Without loss of
generality suppose the leftmost extremum is one where f − r takes the value
−E. Then there are numbers −1 < x1 < · · · < xk < 1 with k ≤ m+ n− d and
ε > 0 such that (f − r)(x) < E − ε for x ∈ [−1, x1] ∪ [x2, x3]∪ [x4, x5]∪ · · · and
(f − r)(x) > −E+ ε for x ∈ [x1, x2]∪ [x3, x4]∪ · · · . Let r be written in the form
p/q, where p has degree µ ≤ m − d and q has degree ν ≤ n − d, with p and q
having no roots in common. The proof now consists of showing that r can be
perturbed to a function r̃ = (p + δp)/(q + δq) ∈ Rmn with the properties that
‖r̃−r‖ < ε and r̃−r is strictly negative for x ∈ (−1, x1)∪(x2, x3)∪(x4, x5)∪· · ·
and strictly positive for x ∈ (x1, x2)∪ (x3, x4)∪ · · · . Such a function r̃ will have
error less than E throughout the whole interval [−1, 1]. We calculate

p+ δp

q + δq
=

(p+ δp)(q − δq)

q2
+O(‖δq‖2)

and therefore

r̃ − r =
qδp− pδq

q2
+O(‖δp‖‖δq‖+ ‖δq‖2).

We are done if we can show that δp and δq can be chosen so that qδp− pδq is a
nonzero polynomial of degree exactly k with roots x1, . . . , xk. This can be shown
by the Fredholm alternative of linear algebra. The map from the (m+ n+ 2)-
dimensional set of choices of δp and δq to the (m + n + 1 − d)-dimensional
space of polynomials qδp − pδq is linear. To show the map is surjective, it is
enough to show that its kernel has dimension d+ 1 but no more. Suppose then
that qδp − pδq is zero, that is, qδp = pδq. Then since p and q have no roots
in common, all the roots of p must be roots of δp and all the roots of q must
be roots of δq. In other words we must have δp = gp and δq = gq for some
polynomial g. Since δp has degree no greater than m and δq has degree no
greater than n, g can have degree no greater than d. The set of polynomials of
degree d has dimension d+ 1, so we are done.

Part 4 of proof: Uniqueness via equioscillation. Finally, to prove uniqueness,
suppose r is a best approximation whose error curve equioscillates between
extreme points at x0 < x1 < · · · < xm+n+1−d, and suppose ‖f − r̃‖ ≤ ‖f − r‖
for some r̃ ∈ Rreal

mn . Then (without loss of generality) (r− r̃)(x) must be ≤ 0 at

194

x0, x2, x4, . . . and ≥ 0 at x1, x3, x5, This implies that r− r̃ has roots in each
of the m+n+1−d closed intervals [x0, x1], . . . , [xm+n−d, xm+n+1−d], and since
r − r̃ is a rational function of type (m+ n− d, 2n− d), the same must hold for
its numerator polynomial. We wish to conclude that its numerator polynomial
has at least m + n + 1 − d roots in total, counted with multiplicity, implying
that r = r̃. The argument for this is the same as given in the proof of Theorem
10.1.

We have now finished the substantial mathematics. It is time to look at some
of the consequences.

One of the recurring themes in the subject of rational approxmation is the
phenomenon of square blocks in the Walsh table. Suppose that a real function
f ∈ C[−1, 1] is given, and consider the set of all of its real rational best approx-
imations of type (m,n) for various m,n ≥ 0. We can imagine these laid out in
an array, with m along the horizontal and n along the vertical. This array is
called the Walsh table for f [Walsh 1934].

Generically, all the entries in the Walsh table for a given f will be distinct, and
in this case we say that f is normal. Sometimes, however, certain entries in
the table may be repeated, and in fact this is a frequent occurrence because
it happens whenever f is even or odd. If f is even, then for any nonegative
integers j and k, all of its rational approximations of types (2j, 2k), (2j+1, 2k),
(2j, 2k + 1) and (2j + 1, 2k + 1) must be the same. Similarly, if f is odd, then
all of its approximations of types (2j + 1, 2k), (2j + 2, 2k), (2j + 1, 2k + 1) and
(2j+2, 2k+1) must be the same. We have already seen a number of examples.

More generally, repeated entries or “degeneracies” in the Walsh table may take
complicated forms. Nevertheless the equioscillation condition imposes quite a
bit of structure on the chaos. Degeneracies always appear precisely in a pattern
of square blocks. The following statement of this result is taken from [Trefethen
1984], where a discussion of various aspects of this and related problems can be
found. We shall return to the subject of square blocks in Chapter 27, on Padé
approximation.

Theorem 24.2: Square blocks in the Walsh table. The Walsh table of
best real rational approximants to a real rational function f ∈ C[−1, 1] breaks
into precisely square blocks containing identical entries. (If f is rational, one
of these will be infinite in extent.) The only exception is that if an entry r = 0
appears in the table, then it fills all of the columns to the left of some fixed index
m = m0.

Proof. Given a nonrational function f , let r 6= 0 be a best approximation in
Rreal

µν of exact type (µ, ν). (The cases of rational f or r = 0 can be handled
separately.) By Theorem 24.1, the number of equioscillation points of f − r is
µ+ ν + 2 + k for some integer k ≥ 0. We note that r is an approximation to f

195

in Rreal
mn for any m ≥ µ and n ≥ ν, and the defect is min{m − µ, n− ν}. Thus

by Theorem 24.1, r is the best approximation to f precisely for those values of
(m,n) satisfying m ≥ µ, n ≥ ν, and µ+ν+2+k ≥ m+n+2−min{m−µ, n−ν}.
The latter condition simplifies to n ≤ ν + k and m ≤ µ + k, showing that r
is the best approximation to f precisely in the square block µ ≤ m ≤ µ + k,
ν ≤ n ≤ ν + k.

Within a square block in the Walsh table, the defect d is equal to zero precisely
in the first column and the first row. An approximation with d = 0 is sometimes
said to be nondegenerate. It can have more points of equioscillation than the
generic number m+ n+ 2, but never fewer.

As mentioned above, the theory of equioscillation and degeneracies is very ap-
pealing mathematically. As an example we note a result due to Werner [1964],
in completion of earlier work of Maehly and Witzgall: the type (m,n) best ap-
proximation operator, which maps functions f to their best approximations r∗mn,
is continuous at f with respect to the supremum norm if and only if f ∈ Rmn or
the corresponding function r∗mn is nondegenerate. As pointed out in [Trefethen
1984], the essential reason for this effect is that if a function r∗ is the best ap-
proximation to f in a nontrivial square block, then a small perturbation f → f̃
might fracture that block into pieces of size 1 × 1. If (m,n) corresponds to a
degenerate position in the block, with d > 0, then the best approximation r̃∗

for such an f̃ would need to have a higher equioscillation number than that of
r∗ for f , requiring r̃∗ to be far from r∗ if ‖f − r∗‖ is positive.

These complications hint at some of the practical difficulties of rational approx-
imation. For example, the Remez algorithm is based on explicit manipulation
of equioscillation sets, known as extremal sets. If the number of extremal points
is not known a priori, it is plausible that one may expect numerical difficulties
in certain circumstances. Indeed this is the case, and so far as I am aware, no
implementation of the Remez algorithm for rational approximation, including
Chebfun’s, can be called fully robust. Other methods may have better prospects.

We finish by returning to the matter of best complex approximations to real func-
tions. Nonuniqueness of certain complex rational approximations was pointed
out by Walsh in the 1930s. Later Lungu [1971] noticed, following a suggestion
of Gonchar, that the nonuniqueness can be seen even for approximation of a
real function f on [−1, 1], with examples as simple as type (1, 1) approximation
of |x|. (Exercise 24.3 gives another proof that there must exist such examples.)
These observations were rediscovered independently by Saff and Varga [1978a].
Ruttan [1981] showed that complex best approximations are always better than
real ones in the strict lower-right triangle of a square block, that is, when a
type (m,n) best approximation equioscillates in no more than m+n+1 points.
Trefethen and Gutknecht [1983] showed that for every (m,n) with n ≥ m + 3,
examples exist where the ratio of the optimal complex and real errors is arbi-
trarily small. Levin, Ruttan and Varga showed that the minimal ratio is exactly

196

1/3 for n = m + 2 and exactly 1/2 for 1 ≤ n ≤ m + 1 [Ruttan & Varga 1989].
None of this has much to do with practical approximation, but it is fascinating.

Summary of Chapter 24. Any real function f ∈ C[−1, 1] has a unique

best approximation r∗ ∈ Rreal

mn with respect to the ∞-norm, and r∗ is char-

acterized by having an error curve that equioscillates in at least m+n+2−d
extreme points, where d is the defect of r in Rmn. In the Walsh table of all

best approximations to f indexed by m and n, repeated entries, if any, lie

in exactly square blocks.

Exercise 24.1. Approximating even functions. Prove that if a real function
f ∈ C[−1, 1] is even, then its best approximations of all types (m,n) are even.

Exercise 24.2. Approximating the Gaussian. The first figures of this chapter
considered lower degree polynomial and rational approximations of exp(−100x2) on
[−1, 1]. Make a plot of the errors in approximations of types (n, 0) and (n, n), now
taking n as high as you can. (You may find that the CF command takes you farther
than REMEZ.) How do the polynomial and rational approximations compare?

Exercise 24.3. A quick proof of nonuniqueness. (a) Suppose a real function
f ∈ C[−1, 1] takes both the values 1 and −1. Prove that no real rational function
r ∈ Rreal

0n , for any n, can have ‖f − r‖ < 1. (b) On the other hand, show that for any
ε > 0, there is a complex rational function r ∈ R0n for some n with ‖f−r‖ < ε. (Hint:
perturb f by an imaginary constant and consider its reciprocal.) (c) Conclude that
type (0, n) complex rational best approximations in C[−1, 1] are nonunique in general
for large enough n.

Exercise 24.4. A function with a spike. Plot chebfuns of the function (24.2) for
ε = 1, 0.1, . . . , 10−6 and determine the polynomial degree n(ε) of the chebfun in each
case. What is the observed asymptotic behavior of n(ε) as ε → 0? How accurately
can you explain this observation based on the theory of Chapter 8?

Exercise 24.5. de la Vallée Poussin lower bound. Suppose an approximation
r ∈ Rreal

mn to f ∈ C[−1, 1] approximately equioscillates in the sense that there are
points −1 ≤ s0 < s1 < · · · < sm+n+1−d ≤ 1 at which f − r alternates in sign with
|f(sj) − r(sj)| ≥ ε for some ε > 0, where d is the defect of r in Rmn. Show that the
best approximation r∗ ∈ Rreal

mn satisfies ‖f − r∗‖ ≥ ε.

25. Two famous problems

In this chapter we discuss two problems of rational approximation that have been
the focus of special attention over the years: approximation of |x| on [−1, 1],
a prototype of approximation of non-smooth functions, and approximation of
ex on (−∞, 0], a prototype of approximation on unbounded domains. Both
stories go back many decades and feature initial theorems, later conjectures
based on numerical experiments, and eventual proofs of the conjectures based
on mathematical methods related to potential theory. We shall not present

197

the proofs of the sharpest results, but we shall show that the essential rates of
approximation can be achieved by using the trick that appears several times in
this book: if a function f(x) can be written as an integral with respect to a
variable s, then an approximation r(x) in partial fractions form is obtained by
applying a quadrature formula (19.3) to the integral.

The problem of approximation of |x| on [−1, 1] starts at the beginning of the
20th century, when polynomial approximations of this function were of interest
to Lebesgue, de la Vallée Poussin, Jackson, and Bernstein. This was an era
when the fundamental results of approximability were being developed, and |x|
served as a function from which many other results could be derived. Bernstein’s
prize-winning article on the subject ran for 57 pages [Bernstein 1912c]. Among
other things, Bernstein proved that in best polynomial approximation of |x| as
n → ∞, the errors decrease inverse-linearly but no faster, that is, at the rate
O(n−1) but not o(n−1).

Why inverse-linearly? This is an example of the fundamental fact of approx-
imation theory which we mentioned first in Chapter 7: the close connection
between the smoothness of a function and its rate of approximation. The func-
tion f(x) = |x| has a derivative of bounded variation V = 2 on [−1, 1], so by
Theorem 7.2, its Chebyshev truncations {fn} satisfy

‖f − fn‖ ≤ 4

π(n− 1)

for n ≥ 2, and its Chebyshev interpolants {pn} satisfy the same bound with 4
replaced by 8. Thus approximations to |x| converge at least at the rate O(n−1).
What Bernstein showed is that the rate is in fact no better than this: no ap-
proximations to |x| can beat Chebyshev truncation or interpolation by more
than a constant factor. Or to put it another way, convergence of polynomial
approximants to a function f at a rate faster than O(n−1) implies that f is
in some sense smoother than |x|. Such results in the direction approximability
=⇒ smoothness go by the general name of Bernstein theorems. In this book we
have presented one result of this kind: Theorem 8.3, asserting that geometric
convergence implies analyticity.

It is hard not to be curious about the constants. Bernstein in fact proved in
[Bernstein 1914b] that there exists a number β such that the best approximation
errors satisfy

En(|x|) ∼
β

n
(25.1)

as n → ∞, and he obtained the bound

0.278 < β < 0.286.

(Theorem 7.2 gives β ≤ 4/π ≈ 1.27.) He noted that 1/2
√
π ≈ 0.28209 . . . falls

in this range, a value which became known as Bernstein’s conjecture. Seventy

198

years later, Varga and Carpenter [1985] investigated the problem numerically to
great accuracy and found that Bernstein’s conjecture was false: the true value
is

β ≈ 0.28016949902386913303643649

(Of course the difference between 0.282 and 0.280 would have not the slightest
practical importance.) Along with this numerical result, which was based on
Richardson extrapolation, Varga and Carpenter established the rigorous bounds

0.2801685460 < β < 0.2801733791. (25.2)

For example, here are the values of nEn(|x|) for n = 1, 2, 4, . . . , 64, showing
quadratic convergence to the limit value. A comparison with the much more
accurate Table 2.1 of [Varga & Carpenter 1985] indicates that the Chebfun
results are accurate in all but the last digit or two.

f = abs(x);

limit = 0.280169499023869133;

for n = 2.^(0:6)

[p,err] = remez(f,n);

ss = ’n = %3d n*err = %16.14f n*err-limit = %10.2e\n’;

fprintf(ss,n,n*err,n*err-limit)

end

n = 1 n*err = 0.50000000000000 n*err-limit = 2.20e-01

n = 2 n*err = 0.25000000000000 n*err-limit = -3.02e-02

n = 4 n*err = 0.27048359711114 n*err-limit = -9.69e-03

n = 8 n*err = 0.27751782467506 n*err-limit = -2.65e-03

n = 16 n*err = 0.27948883759454 n*err-limit = -6.81e-04

n = 32 n*err = 0.27999815195641 n*err-limit = -1.71e-04

n = 64 n*err = 0.28012658713999 n*err-limit = -4.29e-05

Now all this is for polynomial approximation. What about rational approxi-
mation? As mentioned in Chapter 23, the dramatic discovery here came from
Donald Newman, fifty years after Bernstein: best rational approximants to |x|
converge “root-exponentially”. Newman’s bounds were these:

1

2
e−9

√
n ≤ Enn(|x|) ≤ 3e−

√
n. (25.3)

We have already seen in the second plot of Chapter 23 what a big speed-up this
is as compared with (25.1). For approximating non-smooth functions, rational
functions may be far more powerful than polynomials.

Again mathematicians could not resist trying to sharpen the constants. First
Vyacheslavov [1975] found that the correct exponent is midway between New-
man’s bounds of 1 and 9: it is π. Then Varga, Ruttan and Carpenter [1993]

199

performed computations with a version of the Remez algorithm to 200 decimal
places, leading to numerical evidence for the conjecture

Enn ∼ 8e−π
√
n

as n → ∞. Soon afterwards this result was proved by Stahl [1993]. Later Stahl
generalized the result to approximation of xα on [0, 1] for any α > 0 [Stahl
2003].

The following theorem summarizes the results we have mentioned.

Theorem 25.1. Approximation of |x| on [−1, 1]. The errors in best
polynomial and rational approximation of |x| on [−1, 1] satisfy

En0(|x|) ∼
β

n
, β = 0.2801 . . . (25.4)

and
Enn(|x|) ∼ 8e−π

√
n (25.5)

as n → ∞.

Proof. Equation (25.4) is due to Varga and Carpenter [1985] and (25.5) is due
to Stahl [1993].

Why can rational approximations of |x| achieve O(C−√
n) accuracy? The crucial

fact is that the poles of r can be chosen to cluster near the singular point x = 0.
In particular, a good choice is to make the poles approach 0 geometrically, for
each fixed n, with a geometric factor depending on

√
n.

Here is a derivation of a rational approximation that achieves the right root-
exponential convergence. (Arguments like this have been made by Stenger in
various publications; see for example [Stenger 1986].) We start from the identity

1

|x| =
2

π

∫ ∞

0

dt

t2 + x2
,

which is derived in calculus courses. Multiplying by x2 gives

|x| = 2x2

π

∫ ∞

0

dt

t2 + x2
. (25.6)

(This formula is perhaps due to Roberts [1971], though the essence of the matter
dates to Zolotarev in the 1870s.) The change of variables t = es, dt = esds
converts this to

|x| = 2x2

π

∫ ∞

−∞

esds

e2s + x2
, (25.7)

200

which is an attractive integral to work with because the integrand decays expo-
nentially as |s| → ∞. We now get a rational approximation of |x| by approxi-
mating this integral by the trapezoid rule with node spacing h > 0:

r(x) =
2hx2

π

(n−2)/4
∑

k=−(n−2)/4

ekh

e2kh + x2
. (25.8)

Here n is a positive even number, and there are n/2 terms in the sum, so
r(x) is a rational function of x of type (n, n). There are two sources of error
that make r(x) differ from |x|. The fact that the sum has been terminated
at a limit n < ∞ introduces an error on the order of e−nh/4, and the finite
step size h > 0 introduces an error on the order of e−π2/h. (The integrand is
analytic in the strip around the real s-axis of half-width a = π/2, correponding
to a convergence rate e−2πa/h.) Balancing these sources of error suggests the

condition e−nh/4 ≈ e−π2/h, that is,

h ≈ 2π/
√
n, (25.9)

with error of order
e−(π/2)

√
n. (25.10)

We can see these approximations with an experiment.

for n = 2:2:12

r = 0*x;

h = 2*pi/sqrt(n);

for k = -(n-2)/4:(n-2)/4

r = r + exp(k*h)./(exp(2*k*h)+x.^2);

end

r = (2*h/pi)*x.^2.*r;

subplot(3,2,n/2), plot(r), ylim([0 1])

err = norm(f-r,inf);

ss = sprintf(’(%1d,%1d) error = %5.3f’,n,n,err);

text(-.5,.78,ss,FS,8)

end

−1 −0.5 0 0.5 1
0

0.5

1
(2,2) error = 0.414

−1 −0.5 0 0.5 1
0

0.5

1
(4,4) error = 0.203

−1 −0.5 0 0.5 1
0

0.5

1
(6,6) error = 0.066

−1 −0.5 0 0.5 1
0

0.5

1
(8,8) error = 0.059

−1 −0.5 0 0.5 1
0

0.5

1
(10,10) error = 0.020

−1 −0.5 0 0.5 1
0

0.5

1
(12,12) error = 0.022

201

The poles of (25.8)–(25.9) in the x-plane lie at

±ie2πk/
√
n. (25.11)

Here are these numbers (those in the upper half-plane) for the six approxima-
tions plotted above, showing the wide range of amplitudes associated with the
exponential spacing.

disp(’Poles of rational approximants to |x|:’)

for n = 2:2:12

h = 2*pi/sqrt(n);

k = -(n-2)/4:(n-2)/4;

y = exp(k*h);

fprintf(’%8.2ei ’,y), disp(’ ’)

end

Poles of rational approximants to |x|:

1.00e+00i

2.08e-01i 4.81e+00i

7.69e-02i 1.00e+00i 1.30e+01i

3.57e-02i 3.29e-01i 3.04e+00i 2.80e+01i

1.88e-02i 1.37e-01i 1.00e+00i 7.29e+00i 5.32e+01i

1.07e-02i 6.58e-02i 4.04e-01i 2.48e+00i 1.52e+01i 9.32e+01i

The approximations aren’t optimal, but they are close. The convergence rate
(25.10) as n → ∞ is one-quarter the optimal rate (25.5) in the sense that we
need 4 times as large a value of n to achieve a certain accuracy in (25.10) as in
(25.5).

Above, we computed errors for best polynomial approximations to |x| with the
Chebfun command remez. In the rational case, remez does not succeed in
computing best approximations beyond a certain low order. This difficulty is
related to the exponential spacing of the oscillations of f − r∗ near x = 0.

It is worth noting that the problem of approximating |x| on [−1, 1] is equivalent
to certain other approximation problems. If r(x) is a type (m,n) approximation
to |x| on [−1, 1], then normally r will be an even function of x and m and n can
be taken to be even too. Thus r(x) = r̃(x2), where r̃ is a rational function of type
(m/2, n/2). Since r̃(x2) approximates |x| for x ∈ [−1, 1], r̃(x) approximates

√
x

for x ∈ [0, 1]. This reasoning holds for any approximations, and in particular,
by counting equioscillations one finds that best type (m,n) approximation of |x|
on [−1, 1] is equivalent to best type (m/2, n/2) approximation of

√
x on [0, 1].

The following pair of plots illustrates this equivalence. Notice that the error
curves are the same apart from the scaling of the x-axis.

f = abs(x);

[p,q,rh,err] = remez(f,2,2); clf

202

subplot(1,2,1), plot(f-p./q), hold on

ylim(.08*[-1 1])

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

title(’Error in type (2,2) approx to |x|’)

f = chebfun(’sqrt(x)’,[0,1],’splitting’,’on’);

[p,q,rh,err] = remez(f,1,1);

subplot(1,2,2), plot(f-p./q), hold on

axis([-.03 1 .08*[-1 1]])

plot([-.03 1],err*[1 1],’--k’), plot([0 1],-err*[1 1],’--k’)

title(’Error in type (1,1) approx to sqrt(x)’)

−1 −0.5 0 0.5 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Error in type (2,2) approx to |x|

0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Error in type (1,1) approx to sqrt(x)

For applications in scientific computing, the approximation of
√
x on an interval

[a, b] is particularly interesting because of the case in which x is a matrix A with
eigenvalues in [a, b], which might come from discretizing a differential operator.
Rational approximations of the square root lead to powerful algorithms for eval-
uating A1/2v for vectors v, as described in [Hale, Higham & Trefethen 2008] and
[Higham 2008].

We now turn to the second of the famous problems of this chapter: approx-
imation of ex on (−∞, 0]. This problem was introduced in a paper of Cody,
Meinardus, and Varga [1969], which drew attention to the connection of such ap-
proximations with the numerical solution of partial differential equations, since
a rational approximation can be used to compute the exponential of a matrix
arising from a numerical discretization [Moler & Van Loan 2003].10 Curiously,
despite that good motivation from applied mathematics, the influence of this
paper was mainly in theoretical approximation theory for quite a few decades,
until computers and numerical linear algebra had advanced to the point where
it became more practical to take advantage of algorithms based on rational
functions.

10The Cody–Meinardus–Varga paper was important in my life. As a graduate student in
the Numerical Analysis Group at Stanford, I happened to come across it one evening around
1980 in a pile of Gene Golub’s discarded reprints — “help yourself”. Its mix of theory and
numerical caluclations appealed to me intensely and led to my computation of the constant
9.28903 . . . a few years later [Trefethen and Gutknecht 1983].

203

The first thing we may note about approximation of ex on (−∞, 0] is that
polynomials cannot do the job at all. Since any non-constant polynomial p(x)
diverges to ±∞ as x → −∞, the only polynomials that can approximate ex

with finite error on (−∞, 0] are constants, so the minimax error can never be
less than 1/2.

Inverse-polynomials of the form 1/pn(x), however, can be chosen to converge
geometrically. This makes sense when you consider that ex on (−∞, 0] is the
same as 1/ex for x ∈ [0,∞). Cody, Meinardus and Varga noted that to achieve
geometric convergence, it is enough to consider 1/pn(x), where pn is the degree-
n truncation of the Taylor series for ex. They showed that these approximations
converge at a rate O(2−n), and then they improved this rate to O(2.298−n) by
a shift of origin. It was later proved by Schönhage [1973] that the optimal rate
for inverse-polynomials is O(3−n).

Since 1/pn(x) is a rational function of type (n, n), these observations tell us
that best rational type (n, n) approximations to ex on (−∞, 0] converge at least
geometrically. Newman [1974] proved that the convergence is no faster than
geometric. What is the optimal rate? With twice as many parameters to work
with as with inverse-polynomials, one might guess that it should be O(9−n),
and this idea became known in the 1970s as the “1/9 conjecture”. In fact,
the optimal convergence rate turned out to be O(Hn) with H ≈ 1/9.28903, a
number now known as Halphen’s constant, equal to the unique positive root of
the equation

h(s) =

∞
∑

k=1

ksn

1− (−s)n
=

1

8
. (25.12)

This number was conjectured numerically based on Carathéodory–Fejér sin-
gular values by Trefethen and Gutknecht [1983], verified to many digits by
high-precision Remes algorithms by Carpenter, Ruttan and Varga [1984], con-
jectured to have the exact value associated with a certain problem of elliptic
functions treated by Halphen [1886] by Magnus via the Carathéodory–Fejér
method [1985], and then proved using quite different methods of potential the-
ory by Gonchar and Rakhmanov [1989]. This work represents a fascinating and
important line of investigation in approximation theory, and for a summary of
many of the ideas with generalizations to related problems, a good place to
start is [Stahl & Schmelzer 2009]. Presentations of some of the potential theory
underlying results in this area can be found in [Stahl & Totik 1992] and [Saff &
Totik 1997].

Following the idea presented earlier for |x| on [−1, 1], it is interesting to see
what can be achieved for this problem by the trapezoid rule approximation
of a contour integral. Here is a derivation of a rational approximation that
achieves the rate O((2.849 . . .)−n), adapted from [Weideman & Trefethen 2007];
such approximations are discussed more generally in [Trefethen, Weideman &
Schmelzer 2006]. We begin with a Laplace transform identity that is easily

204

proved by residue calculus,

ex =
1

2πi

∫

etdt

t− x

for x ∈ (−∞, 0], where the integral is over any contour in the complex plane
that starts at −∞ below the t-axis, circles around t = 0, and finishes at −∞
above the t-axis. Choosing the contour to be a parabola, we convert this to an
integral over the real s-axis by the change of variables

t = (is+ a)2, dt = 2i(is+ a)ds

for some constant a > 0, which gives

ex =
1

π

∫

e(is+a)2(is+ a)ds

(is+ a)2 − x
. (25.13)

As in (25.8), we now approximate this integral by the trapezoid rule with node
spacing h > 0:

r(x) =
h

π

(n−1)/2
∑

k=−(n−1)/2

e(ikh+a)2(ikh+ a)

(ikh+ a)2 − x
. (25.14)

Here n is a positive even number, and since x rather than x2 appears in each
term we now take n terms in the sum rather than n/2 as in (25.8) to make r(x)
a rational function of x of type (n, n).

This time, the integral has square-exponential rather than just exponential de-
cay as s → ∞, so choosing h = O(1/

√
n) is enough to make the errors from

endpoint truncation exponentially small. We also have the parameter a to play
with. By taking a = O(

√
n), we can make the errors due to grid spacing expo-

nentially small too, and in this fashion we can achieve geometric convergence.
More precisely, the choices

a =

√

πn

24
, h =

√

3π

2n
(25.15)

lead to the convergence rate

‖f − rnn‖ = O(e−πn/3) ≈ O((2.849 . . .)−n). (25.16)

As before, we can see these approximations with an experiment, this time plot-
ting f − r rather than r itself.

x = chebfun(’x’,[-2,-.01]);

f = exp(x);

for n = 2:2:8

r = 0*x;

h = sqrt(3*pi/(2*n));

205

a = sqrt(pi*n/24);

for k = -(n-1)/2:(n-1)/2

r = r + exp((1i*k*h+a)^2)*(1i*k*h+a)./((1i*k*h+a)^2-x);

end

r = (h/pi)*real(r);

subplot(2,2,n/2), plot(f-r)

err = norm(f-r,inf);

ss = sprintf(’(%1d,%1d) error = %7.5f’,n,n,err);

axis([-2,0,1.3*err*[-1 1]])

text(-1.9,.85*err,ss,FS,8)

end

−2 −1.5 −1 −0.5 0

−0.2

0

0.2 (2,2) error = 0.23620

−2 −1.5 −1 −0.5 0

−0.02

0

0.02 (4,4) error = 0.02752

−2 −1.5 −1 −0.5 0
−4

−2

0

2

4
x 10

−3

(6,6) error = 0.00308

−2 −1.5 −1 −0.5 0
−4
−2

0
2
4

x 10
−4

(8,8) error = 0.00037

Let us summarize these results with a theorem, which goes further to include
the precise leading-order asymptotic behavior of the best approximation errors
as conjectured by Magnus [1994] and proved by Aptekarev [2002].

Theorem 25.2. Approximation of ex on (−∞, 0]. The errors in best type
(0, n) and (n, n) rational approximation of exp(x) on (−∞, 0] satisfy

lim
n→∞

E
1/n
0n =

1

3
(25.17)

and
Enn ∼ 2Hn+1/2, H = 1/9.2890254919208 . . . (25.18)

as n → ∞.

Proof. Equation (25.17) is due to Schönhage [1973] and (25.18) to Aptekarev
[2002], extending the earlier result on nth root asymptotics and the constant H
by Gonchar and Rakhmanov [1989].

We finish this chapter by showing that the numerical computation of these best
approximants is surprisingly easily. The crucial matter is to note that the change
of variables

x = a
s− 1

s+ 1
, s =

a+ x

a− x
(25.19)

where a is a positive parameter, maps the negative real axis (−∞, 0] in x to
the interval (−1, 1] in s. Since the mapping is a rational function of type (1, 1),

206

it transplants a rational function of type (n, n) in s or x to a rational function
of type (n, n) in the other variable. In particular, for the approximation of
f(x) = ex on (−∞, 0], let us define

F (s) = ea(s−1)/(s+1), s ∈ (−1, 1]. (25.20)

A good choice of the parameter is a = 9, which has an important effect for nu-
merical computation in improving the conditioning of the approximation prob-
lem. We now find we have a function that can be approximated to machine
precision by a Chebyshev interpolating polynomial p(s) of degree less than 50:

s = chebfun(’s’,[-1,1]);

F = exp(9*(s-1)./(s+1));

length(f)

ans = 15

The Chebyshev series of F decreases at a good exponential rate:

clf, chebpolyplot(F), grid on

title([’Convergence of Chebyshev polynomial’ ...

’ interpolants to transplanted e^x’])

0 5 10 15 20 25 30 35 40 45 50
10

−20

10
−15

10
−10

10
−5

10
0

Convergence of Chebyshev polynomial interpolants to transplanted ex

This gives us yet another way to compute rational approximations to ex on
(−∞, 0]: truncate this Chebyshev series in s, then transplant by (25.19) to get
rational functions in x.

Alternatively, we can get true best approximations from (25.19) by applying
the Chebfun REMEZ command. Here for example is the error for the best
approximation of type (8, 8) plotted in the s variable, showing 18 points of
equioscillation.

[P,Q,RH,err] = remez(F,8,8); R = P./Q;

hold off, plot(F-R), hold on

plot([-1 1],err*[1 1],’--k’), plot([-1 1],-err*[1 1],’--k’)

xlabel s, ylabel error, ylim(2e-8*[-1,1])

title([’Error in type (8,8) approximation’...

’ of transplanted e^x’])

207

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
x 10

−8

s

er
ro

r

Error in type (8,8) approximation of transplanted ex

If we plot the same curve in the x variable, it’s hard to see much because of the
varying scale:

s1 = -.999; s2 = .999;

s = chebfun(’s’,[s1 s2]);

x = 9*(s-1)./(s+1);

hold off, plot(x,F{s1,s2}-R{s1,s2}), hold on

xx = [-1e4 -1e-2];

plot(xx,err*[1,1],’--k’), plot(xx,-err*[1,1],’--k’)

xlim(xx)

xlabel x, ylabel error, ylim(2e-8*[-1,1])

title(’Error in type (8,8) approximation of e^x’)

−10000 −9000 −8000 −7000 −6000 −5000 −4000 −3000 −2000 −1000
−2

−1

0

1

2
x 10

−8

x

er
ro

r

Error in type (8,8) approximation of ex

Putting the x axis on a log scale, however, makes the plot informative again:

hold off, semilogx(x,F{s1,s2}-R{s1,s2}), hold on

semilogx(xx,err*[1,1],’--k’), plot(xx,-err*[1,1],’--k’)

xlim(xx)

xlabel x, ylabel error, ylim(2e-8*[-1,1])

title(’Error in type (8,8) approximation of e^x’)

208

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−2

−1

0

1

2
x 10

−8

x

er
ro

r

Error in type (8,8) approximation of ex

Here is the analogous plot for type (12, 12) approximation:

[P,Q,RH,err] = remez(F,12,12); R = P./Q;

hold off, semilogx(x,F{s1,s2}-R{s1,s2}), hold on

plot(xx,err*[1,1],’--k’), plot(xx,-err*[1,1],’--k’)

xlim(xx)

xlabel x, ylabel error, ylim(3e-12*[-1,1])

title(’Error in type (12,12) approximation of e^x’)

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−3

−2

−1

0

1

2

3
x 10

−12

x

er
ro

r

Error in type (12,12) approximation of ex

These plots are modeled after [Trefethen, Weideman & Schmelzer 2006], where
it is shown that Carathéodory–Fejér approximation is equally effective and even
faster than the Remes algorithm at computing these approximations.

[To be added: (1) A hint of Bernstein’s argument. (2) Ganelius and Green’s
functions? (3) n-width?]

Summary of Chapter 25. Two problems involving rational functions

have attracted special attention, highlighting the power of rational approx-

imations near singularities and on unbounded domains. For approximating

|x| on [−1, 1], best rational functions converge root-exponentially whereas

polynomials converge linearly. For approximating ex on (−∞, 0], best ratio-
nal functions converge geometrically whereas polynomials do not converge

at all. Both rates of approximation can be achieved by constructing partial

fractions from trapezoid rule approximations to certain integrals.

209

Exercise 25.1. [Richardson extrapolation of Bernstein data.]

Exercise 25.2. [Newman points.]

Exercise 25.3. Newton iteration for |x|. (This problem has roots in [Roberts
1971].) (a) Let x be a number, and suppose we want to solve the equation r2 = x2 for
the unknown r using Newton iteration. Show that the iteration formula is r(k+1) =
((r(k))2 + x2)/2r(k). (b) If the initial guess is r(0) = 1, then for k ≥ 1, what is the
smallest n for which the rational function r(k)(x) is of type (n, n)? (c) Use Chebfun to
compute and plot the approximations r(0)(x), ..., r(5)(x) on the interval [−1, 1]. What
is the sup-norm error ‖|x| − r(k)(x)‖, and where is it attained? (d) What rate of
convergence does this correspond to for ‖|x| − r(k)(x)‖ as a function of n? How does
this compare with the optimal rate given by Theorem 25.1? (e) Make a semilog plot
of | |x| − r(5)(x)| as a function of x ∈ [−1, 1] and comment further on the nature of
these rational approximations.

Exercise 25.4. An elementary argument for ex on (−∞, 0]. A degree n
polynomial p(s) on [−1, 1] can be transplanted to a type (n, n) rational function r(x)
on (−∞, 0] by the map (25.19). Combine this observation with Theorem 8.2 to show
that type (n, n) approximants to ex on (−∞, 0] exist with accuracy O(exp(−Cn−2/3))
for some C > 0 as n → ∞.

Exercise 25.5. Computing Halphen’s constant. Write a short Chebfun program
that computes Halphen’s constant to 10 or more digits based on the condition (25.12).

Exercise 25.6. Computing Halphen’s constant via elliptic functions.

Exercise 25.7. Best approximation errors for ex. (a) Using REMEZ and
the change of variables (25.20), compute best approximation errors in type (n, n)
approximation of ex on (−∞, 0] for n = 0, 1, . . . , 13. Plot the results on a log scale
and compare them with estimates from the asymptotic formula (25.18). Also on a
log scale, plot the difference between the estimates and the true errors, and comment
on the results. (b) Repeat the computation with CF instead of REMEZ. This time,
plot the different between the CF and true errors on a log scale, and comment on the
results.

Exercise 25.8. Approximation in the complex plane. It is stated in [Stahl &
Schmelzer 2009] that the poles of best type (n, n) approximations to ex on (−∞, 0]
move off to ∞ as n → ∞, and the convergence at nth-root rate governed by
h ≈ 1/9.28903 applies on any compact set in the complex plane. With this result
in mind, produce contour plots in the complex z-plane for the errors |ez − rnn(z)|
for the approximations (25.14)–(25.15) with n = 2, 4, 6, 8, 10. Do you think these
approximations converge on all compact sets in the plane?

26. Rational interpolation and least-squares

For polynomials, we have emphasized that although best approximations with
their equioscillating error curves are fascinating, Chebyshev interpolants or trun-
cations are just as good for most applications and simpler to compute since the
problem is linear. The same is true of rational functions. Best rational approxi-
mations are fascinating, but for practical purposes, it is usually a better idea to
use rational interpolants, and again an important part of the problem is linear

210

since one can multiply through by the denominator.

But there is a big difference. Rational interpolation problems are not entirely
linear, and unlike polynomial interpolation problems, they suffer from both
nonexistence and discontinuous dependence on data in some settings. To use
rational interpolants effectively, one must formulate the problem in a way that
bypasses such effects. The method we shall recommend for this, here and in
the next two chapters, makes use of the singular value decomposition (SVD)
and the generalization of the linearized interpolation problem to one of least-
squares fitting. This approach originates in [Pachón, Gonnet & van Deun 2011]
and [Gonnet, Pachón & Trefethen 2011]. The literature of rational interpolation
goes back to Cauchy [1821] and Jacobi [1846], but most of it is rather far from
computational practice.

Here is an example to illustrate the difficulties. Suppose we seek a rational
function r ∈ R11 satisfying the conditions

r(−1) = 2, r(0) = 1, r(1) = 2. (26.1)

Since a function in R11 is determined by three parameters, the count appears
right for this problem to be solvable. In fact, however, there is no solution, and
one can prove this by showing that if a function in R11 takes equal values at
two points, it must be a constant (Exercise 26.1). We conclude: solutions to
rational interpolation problems do not always exist.

Let us modify the problem and seek a function r ∈ R11 satisfying the conditions

r(−1) = 1 + ε, r(0) = 1, r(1) = 1 + 2ε, (26.2)

where ε is a parameter. Now there is a solution for any ε, namely

r(z) = 1 +
4
3εx

x− 1
3

. (26.3)

However, this is not quite the smooth interpolant one might have hoped for.
Here is the picture for ε = 0.1:

r = @(ep) 1 + (4/3)*ep*x./(x-(1/3));

ep = 0.1;

hold off, plot(r(ep)), ylim([0 3])

hold on, plot([-1 0 1],[1+ep 1 1+2*ep],’.k’)

title(’A type (1,1) rational interpolant through 3 data values’)

211

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
A type (1,1) rational interpolant through 3 data values

And here it is for ε = .001:

ep = 0.001;

hold off, plot(r(ep)), ylim([0 3])

hold on, plot([-1 0 1],[1+ep 1 1+2*ep],’.k’)

title(’Same, with the data values now nearly equal’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
Same, with the data values now nearly equal

Looking back at the formula (26.3), we see that for any nonzero value of ε, this
function has a pole at x = 1/3. When ε is small, the effect of the pole is quite
localized, and we may confirm this by calculating that the residue is (4/3)ε.
Another way to interpret the local effect of the pole is to note that r has a zero
at a distance just O(ε) from the pole:

pole: x = 1
3 , zero: x = 1

3/(1− 4
3ε).

For |x − 1
3 | ≫ ε, the pole and the zero will effectively cancel. This example

shows that even when a rational interpolation problem has a unique solution, the
problem may be ill-posed in the sense that the solution depends discontinuously
on the data. For ε = 0, (26.3) reduces to the constant r = 1, whereas for any
nonzero ε there is a pole, though it seems to have little to do with approximating
the data. Such poles are often called spurious poles. Since a spurious pole
is typically associated with a nearby zero that approximately cancels its effect
further away, another term is Froissart doublet, named after the physicist

212

Marcel Froissart, or we may say that the function has a spurious pole-zero
pair.

Here is an example somewhat closer to practical approximation. Define

f = cos(exp(x));

and suppose we want to construct rational interpolants of type (n, n) to f based
on samples at 2n + 1 Chebyshev points in [−1, 1]. Chebfun has a command
ratinterp that will do this, and here a is a table of the maximum errors ob-
tained by ratinterp for n = 1, 2, . . . , 6:

disp(’ (n,n) Error ’)

for n = 1:6

[p,q] = ratinterp(f,n,n);

err = norm(f-p./q,inf);

fprintf(’ (%1d,%1d) %7.2e\n’,n,n,err)

end

(n,n) Error

(1,1) 2.46e-01

(2,2) 7.32e-03

(3,3) Inf

(4,4) 6.11e-06

(5,5) 4.16e-07

(6,6) 6.19e-09

We seem to have very fast convergence, but what has gone wrong with the type
(3, 3) approximant? A plot reveals that the problem is a spurious pole:

[p,q] = ratinterp(f,3,3);

hold off, plot(p./q), hold on

xx = chebpts(7); plot(xx,f(xx),’.k’)

title([’Type (3,3) rational interpolant ’ ...

’to cos(e^x) in 7 Chebyshev points’])

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Type (3,3) rational interpolant to cos(ex) in 7 Chebyshev points

213

One might suspect that this artifact has something to do with rounding errors
on a computer, but it is not so. The spurious pole is in the mathematics, with
residue equal to about −0.0013.

In other examples, on the other hand, spurious poles do indeed arise from round-
ing errors. In fact, they appear very commonly when one aims for approxima-
tions with accuracy close to machine precision. Here, for example, is what
happens when ratinterp is called upon to compute the interpolant of type
(10, 10) of ex in 21 Chebyshev points:

[p,q] = ratinterp(exp(x),10,10);

hold off, plot(p./q), hold on

xx = chebpts(21); plot(xx,exp(xx),’.k’,MS,10)

title([’Type (10,10) interpolant to e^x, ’ ...

’not as good as it looks’])

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
Type (10,10) interpolant to ex, not as good as it looks

The picture looks fine, but that is only because Chebfun has failed to detect
that p/q has a spurious pole-zero pair:

spurious_zero = roots(p)

spurious_pole = roots(q)

spurious_zero =

-0.652038909870924

spurious_pole =

-0.652038909870924

The pole and zero differ at the level of rounding errors:

separation = spurious_pole - spurious_zero

separation =

4.440892098500626e-16

The proper response to this problem is not to strive to compute in exact arith-
metic, which would leave us with a terribly ill-conditioned problem and in any

214

case with spurious poles of the mathematically valid sort exemplified earlier.
Instead, we must adjust the formulation of the rational interpolation problem
so as to make it more robust. In this last example, it seems clear that a good
algorithm should be sensible enough to cancel the pole and zero and return a
function of exact type (9, 9) instead of (10, 10). We now show how this can be
done systematically with the SVD.

At this point, we shall change settings. Logically, we would now proceed to
develop a robust rational interpolation strategy on [−1, 1]. However, that route
would require us to combine new ideas related to robustness with the com-
plexities of Chebyshev points, Chebyshev polynomials, and rational barycentric
interpolation formulas. Instead, now and for the rest of the book we shall move
from the real interval [−1, 1] to the unit disk and switch variable names from
x to z. This will make the presentation simpler, and it fits with the fact that
many applications of rational interpolants and approximants involve complex
variables.

Specifically, here is the problem addressed in the remainder of this chapter,
following [Gonnet, Pachón & Trefethen 2011]. Suppose f is a function defined
on the unit circle in the complex plane and we consider its values f(zj) at the
(N + 1)st roots of unity for some N ≥ 0,

zj = e2πij/(N+1), 0 ≤ j ≤ N.

Using this information, how can we construct good approximations r ∈ Rmn?
We assume for the moment that m, n and N are related by N = m + n. The
parameter count is then right for an interpolant r = p/q satisfying

p(zj)

q(zj)
= f(zj), 0 ≤ j ≤ N, (26.4)

but as we have seen, such a function does not always exist.

Our first step towards greater robustness will be to linearize the problem and
seek polynomials p ∈ Pm and q ∈ Pn such that

p(zj) = f(zj)q(zj), 0 ≤ j ≤ N. (26.5)

By itself, this set of equations isn’t very useful, because it has the trivial solution
p = q = 0. Some kind of normalization is needed, and for this we introduce the
representations

p(z) =

m
∑

k=0

pkz
k, q(z) =

n
∑

k=0

qkz
k

with
p = (p0, . . . , pm)T , q = (q0, . . . , qn)

T .

Our normalization will be the condition

‖q‖ = 1, (26.6)

215

where ‖ · ‖ is the standard 2-norm on vectors,

‖q‖ =

(

n
∑

k=0

|qk|2
)1/2

,

and similarly for vectors of dimensions other than n+1. Our linearized rational
interpolation problem consists of solving the two equations (26.5)–(26.6).

We turn this into a matrix problem as follows. Given an arbitrary vector q, there
is a corresponding polynomial q ∈ Pn, which we may evaluate at the (N + 1)st
roots of unity {zj}. Multiplying by the values f(zj) gives a set of N+1 numbers
f(zj)q(zj). There is a unique polynomial p̂ ∈ PN that interpolates these data,

p̂(zj) = f(zj)q(zj), 0 ≤ j ≤ N.

Let p̂ be written as

p̂(z) =
N
∑

k=0

p̂kz
k, p̂ = (p̂0, . . . , p̂N)T .

Then p̂ is a linear function of q, and we may accordingly express it as the
product

p̂ = Ẑq,

where Ẑ is a rectangular matrix of dimensions (N+1)×(n+1) depending on f .
It can be shown that Ẑ is a Toeplitz matrix with entries given by the discrete
Laurent or Fourier coefficients

zjk =
1

N + 1

N
∑

ℓ=0

zk−j
ℓ f(zℓ). (26.7)

And now we can solve (26.5)–(26.6). Let Z̃ be the n× (n+1) matrix consisting
of the last n rows of Ẑ. Since Z̃ has more columns than rows, it has a nontrivial
null vector, and for q we take any such null vector normalized to length 1:

Z̃q = 0, ‖q‖ = 1. (26.8)

The corresponding vector p̂ = Ẑq is equal to zero in positions m + 1 through
N , and we take p to be the remaining, initial portion of p̂: pj = p̂j , 0 ≤ j ≤ m.
In matrix form we can write this as

p = Zq, (26.9)

where Z is the (m+1)× (n+ 1) matrix consisting of the first m+ 1 rows of Ẑ.
Equations (26.8)–(26.9) constitute a solution to (26.5)–(26.6).

In a numerical implementation of the algorithm just described, the operations
should properly be combined into a Matlab function, but for the sake of in-line

216

presentation, we shall achieve the necessary effect with a string of anonymous
functions.

The first step is to construct the Toeplitz matrix Ẑ using Matlab’s fft com-
mand. The real command below eliminates imaginary parts at the level of
rounding errors, and would need to be removed for a function f that was not
real on the real axis.

fj = @(f,N) f(exp(2i*pi*(0:N)’/(N+1)));

extract = @(A,I,J) A(I,J);

column = @(f,N) real(fft(fj(f,N)))/(N+1);

row = @(f,n,N) extract(column(f,N),[1 N+1:-1:N+2-n],1);

Zhat = @(f,n,N) toeplitz(column(f,N),row(f,n,N));

Next we extract the submatrices Z̃ and Z:

Ztilde = @(f,m,n,N) extract(Zhat(f,n,N),m+2:N+1,:);

Z = @(f,m,n,N) extract(Zhat(f,n,N),1:m+1,:);

Finally we compute the vector q using Matlab’s null command, which makes
use of the SVD, and multiply by Z to get p:

q = @(f,m,n,N) null(Ztilde(f,m,n,N));

p = @(f,m,n,N) Z(f,m,n,N)*q(f,m,n,N);

For example, here are the coefficients of the type (2, 2) interpolant to ez in the
5th roots of unity:

f = @(z) exp(z);

m = 2; n = 2; N = m+n;

pp = p(f,m,n,N)

qq = q(f,m,n,N)

pp =

-0.893131422200046

-0.446418130422149

-0.074390723603151

qq =

-0.891891822763679

0.446093473426966

-0.074361209330862

The zeros lie in the left half-plane and the poles in the right half-plane:

rzeros = roots(flipud(pp))

rpoles = roots(flipud(qq))

217

rzeros =

-3.000495954331878 + 1.732909565613550i

-3.000495954331878 - 1.732909565613550i

rpoles =

2.999503890813022 + 1.731191260767684i

2.999503890813022 - 1.731191260767684i

Here are the values of the interpolant at z = 0 and z = 2, which one can see are
not too far from e0 and e2:

r = @(z) polyval(flipud(pp),z)./polyval(flipud(qq),z);

approximation = r([0 2])

exact = exp([0 2])

approximation =

1.001389854021227 7.011719966971134

exact =

1.000000000000000 7.389056098930650

Now let us take stock. We have derived an algorithm for computing rational
interpolants based on the linearized formula (26.5), but we have not yet dealt
with spurious poles. Indeed, the solution developed so far has neither uniqueness
nor continuous dependence on data. It is time to take our second step toward
greater robustness, again relying on the SVD.

An example will illustrate what needs to be done. Suppose that instead of a
type (2, 2) interpolant to ez in 5 points, we want a type (10, 10) interpolant in
21 points. (This is like the type (10, 10) interpolant computed earlier, but now
in roots of unity rather than Chebyshev points.) Here is what we find:

m = 10; n = 10; N = m+n;

format short

pp = p(f,m,n,N)

qq = q(f,m,n,N)

pp =

0.7083 0.0888 0.5542 -0.4282

1.2484 0.5251 0.3191 0.2516

1.1840 0.5173 -0.7445 -0.0644

0.9629 -0.5332 -0.8487 -0.0012

0.3525 -0.3230 -0.3190 0.0156

0.0725 -0.0785 -0.0653 0.0052

0.0095 -0.0112 -0.0085 0.0008

0.0008 -0.0010 -0.0007 0.0001

0.0000 -0.0001 -0.0000 0.0000

0.0000 -0.0000 -0.0000 0.0000

0.0000 -0.0000 -0.0000 0.0000

218

qq =

0.7083 0.0888 0.5542 -0.4282

0.5401 0.4363 -0.2351 0.6798

0.2898 0.0366 -0.7864 -0.5301

0.2850 -0.8028 -0.0371 0.2604

-0.1970 0.3850 0.1274 -0.0751

0.0503 -0.0871 -0.0379 0.0137

-0.0073 0.0119 0.0059 -0.0017

0.0007 -0.0011 -0.0006 0.0001

-0.0000 0.0001 0.0000 -0.0000

0.0000 -0.0000 -0.0000 0.0000

-0.0000 0.0000 0.0000 -0.0000

Instead of the expected vectors p and q, we have matrices of dimension 11× 4,
and the reason is, Z̃ has a nullspace of dimension 4. This would not be true
in exact arithmetic, but it is true in 16-digit floating-point. If we construct
an interpolant from one of these vectors, it will have three spurious pole-zero
pairs. Here is an illustration, showing that the spurious poles (crosses) and zeros
(cricles) are near the unit circle, which is typical. The other seven non-spurious
poles and zeros have moduli about ten times larger.

rpoles = roots(flipud(pp(:,1)));

rzeros = roots(flipud(qq(:,1)));

hold off, plot(exp(2i*pi*x))

ylim([-1.4 1.4]), axis equal, hold on

plot(rpoles,’xk’,MS,7)

plot(rzeros,’or’,MS,9)

title([’Spurious pole-zero pairs in type ’ ...

’(10,10) interpolation of e^z’])

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Spurious pole−zero pairs in type (10,10) interpolation of ez

Having spotted the problem, we can fix it as follows. If Z̃ has rank n − d for
some d ≥ 1, then it has a nullspace of dimension d + 1. (We intentionally use
the same letter d as was used to denote the defect in the Chapter 24.) There
must exist a vector q in this nullspace whose final d entries are zero. We could
do some linear algebra to construct this vector, but a simpler approach is to

219

reduce m and n by d and N by 2d and compute the interpolant again. Here
is a function for computing d with the help of Matlab’s rank command, which
is based on the SVD. The tolerance 10−12 ensures that contributions close to
machine precision are discarded.

d = @(f,m,n,N) n-rank(Ztilde(f,m,n,N),1e-12);

We redefine q and p to use this information:

q = @(f,m,n,N,d) null(Ztilde(f,m-d,n-d,N-2*d));

p = @(f,m,n,N,d) Z(f,m-d,n-d,N-2*d)*q(f,m,n,N,d);

Our example now gives vectors instead of matrices, with no spurious poles.

pp = p(f,m,n,N,d(f,m,n,N)); qq = q(f,m,n,N,d(f,m,n,N));

format long

disp(’ pp qq’), disp([pp qq])

pp qq

-0.889761508243745 -0.889761508243590

-0.444881276261385 0.444880231982283

-0.101109523963195 -0.101109001823663

-0.013481293296605 0.013481177243185

-0.001123443568854 -0.001123429053771

-0.000056172338565 0.000056171300325

-0.000001337441819 -0.000001337407096

This type (7, 7) rational function approximates ez to approximately machine
precision in the unit disk. To verify this, we write a function error that mea-
sures the maximum of |f(z)− r(z)| over 1000 random points in the disk:

r = @(z) polyval(flipud(pp),z)./polyval(flipud(qq),z);

z = sqrt(rand(1000,1)).*exp(2i*pi*rand(1000,1));

error = @(f,r) norm(f(z)-r(z),inf);

error(f,r)

ans = 8.999729433362549e-13

Mathematically, in exact arithmetic, the trick of reducing m and n by d restores
uniqueness and continuous dependence on data, making the rational interpola-
tion problem well-posed. On a computer, we do the same but rely on finite tol-
erances to remove contributions from singular values close to machine epsilon.
A much more careful version of this algorithm can be found in the Matlab code
ratdisk presented in [Gonnet, Pachón & Trefethen 2011].

We conclude this chapter by taking our third step towards robustness. So far,
we have spoken only of interpolation, where the number of data values exactly
matches the number of parameters in the fit. In some approximation problems,

220

however, it may be better to have more data than parameters and perform
a least-squares fit. This is one of those situations, and in particular, a least-
squares formulation will reduce the likelihood of obtaining poles in the region
near the unit circle where one is hoping for good approximation. This is why we
have included the parameter N throughout the derivation of the last six pages.
We will now consider the situation N > m + n. Typicaly choices for practical
applications might be N = 2(m+ n) or N = 4(m+ n).

Given a vector q and corresponding function q, we have already defined ‖q‖ as
the usual 2-norm. For the function q, let us now define

‖q‖N = (N + 1)−1/2
N
∑

k=0

|q(zj)|2,

a weighted 2-norm of the values of q(z) over the unit circle. So long as N ≥ n,
the two norms are equal:

‖q‖N = ‖q‖.
The norm ‖ · ‖N , however, applies to any function, not just a polynomial. In
particular, our linearized least-squares rational approximation problem is this
generalization of (26.5)–(26.6):

‖p− fq‖N = minimum, ‖q‖N = 1. (26.10)

The algorithm we have derived for interpolation solves this problem too. What
changes is that the matrix Z̃, of dimension (N −m) × (n + 1), may no longer
have a null vector. If its singular values are σ1 ≥ · · · ≥ σn+1 ≥ 0, then the
minimum error will be

‖p− fq‖N = σn+1,

which may be positive or zero. If σn > σn+1, q is obtained from the correspond-
ing singular vector and that is all there is to it. If

σn−d > σn−d+1 = · · · = σn+1

for some d ≥ 1, then the minimum singular space is of dimension d+ 1, and as
before, we reduce m and n by d. The parameter N can be left unchanged, so f
does not need to be evaluated at any new points.

For example, let f be the function

f = @(z) log(1.44-z.^2);

with branch points at ±1.2, and suppose we want a type (40, 40) least-squares
approximant withN = 400. The approximation delivered by the SVD algorithm
comes out with exact type (18, 18):

m = 40; n = 40; N = 400;

pp = p(f,m,n,N,d(f,m,n,N)); qq = q(f,m,n,N,d(f,m,n,N));

mu = length(pp)-1; nu = length(qq)-1;

fprintf(’ mu = %2d nu = %2d\n’,mu,nu)

221

mu = 18 nu = 18

The accuracy in the unit disk is good (Exercise 26.4):

r = @(z) polyval(flipud(pp),z)./polyval(flipud(qq),z);

error(f,r)

ans = 4.218427953398217e-12

Here are the poles:

rpoles = roots(flipud(qq));

hold off, plot(exp(2i*pi*x))

ylim([-1.4 1.4]), axis equal, hold on

plot(rpoles+1e-10i,’.r’,MS,14)

title([’Poles in type (40,40) robust ’ ...

’approximation of log(1.44-z^2)’])

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Poles in type (40,40) robust approximation of log(1.44−z2)

For comparison, suppose we revert to the original definitions of the anonymous
functions p and q, with no removal of negligible singular values:

q = @(f,m,n,N) null(Ztilde(f,m,n,N));

p = @(f,m,n,N) Z(f,m,n,N)*q(f,m,n,N);

Now the computation comes out with exact type (40, 40), and half the poles are
spurious:

m = 40; n = 40; N = 400;

pp = p(f,m,n,N); pp = pp(:,end);

qq = q(f,m,n,N); qq = qq(:,end);

rpoles = roots(flipud(qq));

hold off, plot(exp(2i*pi*x))

ylim([-1.4 1.4]), axis equal, hold on

plot(rpoles+1e-10i,’.r’,MS,14)

title([’The same computed without robustness, ’ ...

’showing many spurious poles’])

222

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

The same computed without robustness, showing many spurious poles

The error looks excellent,

r = @(z) polyval(flipud(pp),z)./polyval(flipud(qq),z);

error(f,r)

ans = 2.775556849639900e-14

but it is not so good in fact. Because of the spurious poles, the maximum error
in the unit disk is actually infinite, but this has gone undetected at the 1000
random sample points used by the error command.

Summary of Chapter 26. Generically, there exists a unique type (m,n)
rational interpolant through m + n + 1 data points, but such interpolants

do not always exist, depend discontinuously on the data, and exhibit spu-

rious pole-zero pairs both in exact arithmetic and even more commonly

in floating point. Such interpolants can be computed by solving a linear

algebra problem involving a Toeplitz matrix of discrete Fourier coefficients.

Uniqueness, continuous dependence, and avoidance of spurious poles can

be achieved by reducing m and n when the minimal singular value of this

matrix is multiple.

Exercise 26.1. Nonexistence of certain interpolants. Show that if a function
in R11 takes equal values at two points, it must be a constant.

Exercise 26.2. An invalid argument. We saw that the type (3, 3) interpolant to
cos(ex) in 7 Chebyshev points has a pole near x = 0.6. What is the flaw in the following
argument? (Spell it out carefully, don’t just give a word or two.) The interpolant
through these 7 data values can be regarded as a combination of cardinal functions, i.e.,
type (3, 3) rational interpolants through Kronecker delta functions supported at each
of the data points. If the sum has a pole at x0, then one of the cardinal interpolants
must have a pole at x0. So type (3, 3) rational interpolants to almost every set of data
at these 7 points will have a pole at exactly the same place.

Exercise 26.3. Explicit example of degeneracy. [The type (1, 1) example from
the beginning of the chapter.]

223

Exercise 26.4. Rational vs. polynomial approximation. The final compu-
tational example of this chapter considered type (n, n) rational approximation of
f(z) = log(1.44 − z2) with n = 40, which was reduced to n = 18 by the robust
algorithm. For degree 2n polynomial approximation, one would expect accuracy of
order O(ρ−2n) where ρ is the radius of convergence of the Taylor series of f at z = 0.
How large would n need to be for this figure to be comparable to the observed accuracy
of 10−11?

27. Padé approximation

[Not yet written]

28. Extrapolation of sequences and analytic continuation

[Not yet written]

References

Each reference is followed by a note highlighting a contribution of that publication that
is relevant to this book. These notes are by no means exhaustive; in most cases the
references include other significant contributions too. Papers listed by authors such as
Chebyshev, Gauss, Jacobi, and Weierstrass can also be found in their collected works.

N. I. Achieser, Theory of Approximation, Ungar, 1956. [Major treatise by one of the
masters of the Soviet school.]

V. Adamjan, D. Arov and M. Krein, Analytic properties of Schmidt pairs for a Hankel
operator and the generalized Schur–Takagi problem, Math. USSR Sb. 15 (1971), 31–
73. [Major paper with a general extension of results of Carathéodory, Fejér, Schur and
Takagi to rational approximation on the unit circle.]

L. Ahlfors, Complex Analysis, McGraw-Hill, 1953. [A terse and beautiful complex
analysis text by one of the masters.]

N. Ahmed and P. S. Fisher, Study of algorithmic properties of Chebyshev coefficients,
Int. J. Computer Math. 2 (1970), 307–317. [Perhaps the first paper to point out that
Chebyshev coefficients can be computed by Fast Fourier Transform.]

B. K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expan-
sions, SIAM J. Sci. Stat. Comp. 12 (1991), 158–179.

A. Amiraslani et al., Polynomial algebra by values, TR-04-01, Ontario Research Cen-
ter for Computer Algebra, www.orcca.on.ca. [Outlines eigenvalue-based algorithms
for finding roots of polynomials from their values at sample points rather than from
coefficients in an expansion.]

A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, 2005. [Text-
book about model reduction, a subject making much use of rational approximation.]

A. I. Aptekarev, Sharp constants for rational approximations of analytic functions,
Math. Sbornik 193 (2002), 1–72. [Extends the result of Gonchar & Rakhmanov 1989

224

on rational approximation of ex on (−∞, 0] to give the precise asymptotic form Enn ∼
2Hn+1/2 first conjectured by Magnus 1994, where H is Halphen’s constant.]

N. S. Bakhvalov, On the optimal speed of integrating analytic functions, Comput.

Math. Math. Phys. 7 (1967), 63–75. [A theoretical paper that explains the idea of
going beyond polynomials to speed up Gauss quadrature by means of a change of
variables/conformal map, as in Hale and Trefethen 2008.]

S. Barnett (1975a), A companion matrix analogue for orthogonal polynomials, Lin.
Alg. Applics. 12 (1975), 197–208. [Generalization of Good’s colleague matrices to
orthogonal polynomials other than Chebyshev. Barnett apparently did not know that
Specht 1957 had covered the same ground.]

S. Barnett (1975b), Some applications of the comrade matrix, Int. J. Control 21 (1975),
849–855. [Further discussion of comrade matrices.]

Z. Battles, Numerical Linear Algebra for Continuous Functions, DPhil thesis, Oxford
University Computing Laboratory, 2006. [Presentation of the Chebfun, with emphasis
on quasimatrix algorithms.]

Z. Battles and L. N. Trefethen, An extension of Matlab to continuous functions and
operators, SIAM J. Sci. Comp. 25 (2004), 1743–1770. [First publication about Cheb-
fun.]

R. Bellman, B. G. Kashef and J. Casti, Differential quadrature: a technique for the
rapid solution of nonlinear partial differential equations, J. Comp. Phys. 10 (1972),
40–52. [Perhaps the first publication to give the formula for entries of a spectral
differentiation matrix.]

S. Bernstein, Sur l’approximation des fonctions continues par des polynômes, Compt.

Rend. 152 (1911), 502–504. [Announcement of some results proved in Bernstein 1912c.]

S. Bernstein (1912a), Sur les recherches récentes relatives à la meilleure approximation
des fonctions continues par des polynômes, Proc. 5th Intern. Math. Congress, v. 1,
1912, 256–266. [Announcement of the results of Bernstein and Jackson on polynomial
approximation, including a table summarizing theorems by Bernstein, Jackson and
Lebesgue linking smoothness to rate of convergence.]

S. Bernstein (1912b), Sur la valeur asymptotique de la meilleure approximation des
fonctions analytiques, Compt. Rend. 155 (1912), 1062–1065. [Perhaps the first appear-
ance of Bernstein ellipses, used here to analyze convergence of best approximations for
a function with a single real singularity on the ellipse.]

S. Bernstein (1912c), Sur l’Ordre de la Meilleure Approximation des Fonctions Con-

tinues par des Polynomes de Degré Donné, Mém. Acad. Roy. Belg., 1912. [Major work
establishing a number of the Jackson and Bernstein theorems on rate of convergence
of best approximations for differentiable or analytic f .]

S. Bernstein (1913), Sur la meilleure approximation des fonctions analytiques, Bull.
Acad. Roy. Belg., 1913.

S. Bernstein (1914a), Sur la meilleure approximation des fonctions analytiques
possédant des singularités complexes, Compt. Rend. 158 (1914), 467–469. [Gener-
alization of Bernstein 1913 to functions with a conjugate pair of singularities.]

S. Bernstein (1914b), Sur la meilleure approximation de |x| par des polynomes de
degrés donnés. Acta Math. 37 (1914), 1–57. [Investigates polynomial best approxima-
tion of |x| on [−1, 1] and conjectures the limiting error nEn → 1/2

√
π, later shown

225

false by Varga and Carpenter.

S. Bernstein (1919), Quelques remarques sur lnterpolation, Math. Annal. 79 (1919),
1–12. [Written in 1914 but delayed in publication by the war, this paper, like Faber
1914, pointed out that no set of nodes for interpolation could yield convergence for all
continuous functions.]

S. Bernstein, Leçons sur les Propriétés Extrémales et la Meilleure Approximation des

Fonctions Analytiques d’une Variable Réelle, Gauthier-Villars, Paris, 1926. [Summary
of early 20th century approximation theory.]

J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46
(2004), 501–517. [Review of barycentric formulas for polynomial and trigonometric
interpolation.]

A. Birkisson and T. Driscoll, Automatic Fréchet differentiation for the numerical so-
lution of boundary-value problems. ACM Trans. Math. Softw., submitted, 2010. [De-
scription of Chebfun’s method for solving nonlinear differential equation boundary
value problems, based on Newton or damped-Newton iteration of Chebfun Chebyshev
interpolants implemented via Automatic Differentiation.]

H. F. Blichfeldt, Note on the functions of the form f(x) ≡ φ(x) + a1x
n−1 + a2x

n−2 +
· · · + an which in a given interval differ the least possible from zero, Trans. Amer.

Math. Soc. 2 (1901), 100–102. [Blichfeldt proves a part of the equioscillation theorem:
that optimality implies equioscillation.]

M. Bôcher, Introduction to the theory of Fourier’s series, Annals Math. 7 (1906),
81–152. [The paper that named the Gibbs phenomenon.]

E. Borel, Leçons sur les Fonctions de Variables Réelles et les Développements en Series

de Polynômes, Gauthier-Villars, Paris, 1905. [The first textbook essentially about
approximation theory, including a proof of the equioscillation theorem which Borel
attributes to Kirchberger.]

J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., Dover, 2001. [A 668-page
treatement of the subject with a great deal of practical information.]

J. P. Boyd, Computing zeros on a real interval through Chebyshev expansion and
polynomial rootfinding, SIAM J. Numer. Anal. 40 (2002), 1666–1682. [Original pub-
lication proposing recursive Chebyshev expansions for finding roots of real functions,
the idea that is the basis of the —roots— command in Chebfun.]

D. Braess, On the conjecture of Meinardus on rational approximation to ex. II, J.
Approx. Th. 40 (1984), 375–379. [Establishes an asymptotic formula conjectured by
Meinardus for the best approximation error of ex on [−1, 1].]

L. Brutman, On the Lebesgue function for polynomial interpolation, SIAM J. Numer.

Anal. 15 (1978), 694–704. [Sharpening of a result of Erdős 1960 concerning Lebesgue
constants.]

L. Brutman, Lebesgue functions for polynomial interpolation—a survey, Ann. Numer.

Math. 4 (1997), 111–127. [Exceptionally useful survey, including detailed results on
interpolation in Chebyshev points.]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A Zang, Spectral Methods: Funda-

mentals in Single Domains, Springer, 2006. [A major monograph on both collocation
and Galerkin spectral methods.]

C. Carathéodory and L. Fejér, Über den Zusammenhang der Extremen von harmonis-

226

chen Funktionen mit ihrer Koeffizienten und über den Picard-Landauschen Satz, Rend.
Circ. Mat. Palermo 32 (1911), 218–239. [The paper that led, together with Schur
1918, to the connection of approximation problems with eigenvalues and singular val-
ues of Hankel matrices, later the basis of the Carathéodory–Fejér method for near-best
approximation.]

A. J. Carpenter, A. Ruttan, and R. S. Varga, Extended numerical computations on the
“1/9” conjecture in rational approximation theory, in P. Graves-Morris, E. B. Saff, and
R. S. Varga, eds., Rational Aprpoximation and Interpolation, Lect Notes Math. 1005,
Springer, 1984. [Calculation to 40 significant digits of the best rational approximations
to ex on (−∞, 0] of types (0, 0), (1, 1), . . . , (30, 30).]

Cauchy, Cour d’Analyse, 1821.

P. L. Chebyshev, Théorie des mécanismes connus sous le nom de parallélogrammes,
Mém. Acad. Sci. Pétersb. Series 7 (1854), 539–568. [Introduction of the idea of best
approximation by polynomials in the supremum norm.]

P. L. Chebyshev, Sur les questions de minima qui se rattachent à la représentation
approximative des fonctions, Mém. Acad. Sci. Pétersb. Series 7 (1859), 199–291.
[Continued discussion of best approximation.]

E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, 1966 (reprinted
by Chelsea, 1999). [Classic approximation theory text.]

Christoffel 1858.

J. F. Claerbout, Imaging the Earth’s Interior, Blackwell, 1985. [Text about the math-
ematics of migration for earth imaging by the man who developed many of these
techniques, based significantly on rational approximations of pseudodifferential oper-
ators.]

C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an auto-
matic computer, Numer. Math. 2 (1960), 197–205. [Introduction of the method of
quadrature by integration of a polynomial interpolant in Chebyshev points.]

W. J. Cody, The FUNPACK package of special function subroutines, ACM Trans.

Math. Softw. 1 (1975), 13–25. [Codes for evaluating special functions based on rational
approximations.]

W. J. Cody, Algorithm 715: SPECFUN—A portable FORTRAN package of special
function routines and test drivers, ACM Trans. Math. Softw. 19 (1993), 22–32. [De-
scendent of FUNPACK with greater portability.]

W. J. Cody, W. Fraser and J. F. Hart, Rational Chebyshev approximations using
linear equations, Numer. Math. 12 (1968), 242–251.

W. J. Cody, G. Meinardus and R. S. Varga, Chebyshev rational approximations to e−x

in [0,+∞) and applications to heat-conduction problems, J. Approx. Th. 2 (1969),
50–65. [Introduces the problem of approximation of e−x on [0,∞), or equivalently ex

on [−∞, 0), and shows that rational best approximants converge geometrically.]

Corless and Watt, 2004.

Darboux 1878.

S. Darlington, Analytical approximations to approximations in the Chebyshev sense,
Bell System Tech. J. 49 (1970), 1–32. [A precursor to the Carathéodory–Fejér
method.]

227

P. J. Davis, Interpolation and Approximation, 1963.

P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Academic
Press, 1984. [The leading reference on numerical integration, with detailed information
on many topics.]

D. M. Day and L. Romero, Roots of polynomials expressed in terms of orthogonal
polynomials, SIAM J. Numer. Anal. 43 (2005), 1969–1987. [A rediscovery of the
results of Specht, Good, Barnett and others on colleague and comrade matrices.]

C. de Boor and A. Pinkus, Proof of the conjectures of Bernstein and Erdős concerning
the optimal nodes for polynomial interpolation, J. Approx. Theory 24 (1978), 289–
303. [Together with Kilgore 1978, one of the papers solving the theoretical problem of
optimal interpolation.]

Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, New York, 1987.
[Careful analysis of smoothness and its effect on polynomial approximation on an
interval, including the effect of location in the interval.]

T. A. Driscoll, F. Bornemann, and L. N. Trefethen, The chebop system for automatic
solution of differential equations, BIT Numer. Math. 48 (2008), 701–723. [Introduction
of the chebop system for automatic Chebyshev spectral solution of differential and
integral equations.]

A Dutt, M. Gu and V. Rokhlin, Fast algorithms for polynomial interpolation, inte-
gration, and differentiation, SIAM J. Numer. Anal. 33 (1996), 1689–1711. [Using the
Fast Multipole Method to derive fast algorithms for non-Chebyshev points.]

M. Dupuy, Le calcul numérique des fonctions par l’interpolation, C. R. Acad. Sci. 226
(1948), 158–159. [The paper that coined the expression “barycentric interpolation”.]

H. Ehlich and K. Zeller, Auswertung der Normen von Interpolationsoperatoren, Math.

Ann. 164 (1966), 105–112. [Bound on Lebesgue constant for interpolation in Cheby-
shev points.]

D. Elliott, A direct method for “almost” best uniform approximation, in Error, Ap-

proximation, and Accuracy, eds. F. de Hoog and C. Jarvis, U. Queensland Press, St.
Lucia, Queensland, 1973, 129–143. [A precursor to the Carathéodory–Fejér method.]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical sim-
ulation of waves, Math. Comput. 31 (1977), 629–651. [Highly influential paper on
the use of Padé approximations to a pseudodifferential operator to develop numerical
boundary conditions.]

P. Erdős, Problems and results on the theory of interpolation. II, Acta Math. Hungar.

12 (1961), 235–244. [Shows that Lebesgue constants for optimal interpolation points
are no better than for Chebyshev points asymptotically as n → ∞.]

L. Euler, 1783 interpolation reference.

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,
CRC Press, 1991. [Includes a definition of the total variation in the measure theoretic
context.]

G. Faber, Über die interpolatorische Darstellung stetiger Funktionen, Jahresber.

Deutsch. Math. Verein. 23 (1914), 192–210. [Shows that no fixed system of points for
polynomial interpolation will lead to convergence for all continuous f .]

L. Fejér, Lebesguesche Konstanten und divergente Fourier-reihen, J. f. Math. 139

228

(1910), 22–53. [Shows that Lebesgue constants for Fourier projection are asymptotic
to (4/π2) logn as n → ∞.]

A. M. Finkelshtein, Equilibrium problems of potential theory in the complex plane, in
Orthogonal Polynomials and Special Functions, Lect. Notes Math. 1883, pp. 79–117,
Springer, 2006. [Survey article.]

M. S. Floater and K. Hormann, Barycentric rational interpolation with no poles and
high rates of approximation, Numer. Math. 107 (2007), 315–331. [Extension of earlier
results of Berrut to higher order barycentric rational interpolation.]

G. B. Folland, Introduction to Partial Differential Equations, Princeton University
Press, 1995. [An elegant advanced introduction to PDEs, including the Weierstrass
Approximation Theorem proved via the heat equation and generalized to multiple
dimensions.]

B. Fornberg, Generation of finite difference formulas on arbitrarily spaced grids, Math.

Comp. 31 (1988), 699–706. [Stable algorithm for generating finite difference formulas
on arbitrary grids.]

B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge U. Press, 1996.
[Practically-oriented textbook of spectral collocation methods for solving ordinary and
partial differential equations, based on Chebyshev interpolants.]

S. Fortune, Polynomial root finding using iterated eigenvalue computation, ISSAC
2001, B. Rourrain, ed., ACM, pp. 121–128, 2001. [An eigenvalue-based rootfinding
algorithm that works directly from data samples rather than expansion coefficients.]

L. Fox and I. B. Parker, Chebyshev Polynomials in Numerical Analysis, Oxford U.
Press, 1968. [A precursor to the work of the 1970s and later on Chebyshev spectral
methods.]

J. G. F. Francis, The QR transformation: a unitary analogue to the LR transformation,
parts I and II, Computer J. 4 (1961), 256–272 and 332–345. [Introduction of the QR
algorithm for numerical computation of matrix eigenvalues.]

D. Gaier, Lectures on Complex Approximation, Birkhäuser, 1987. [A shorter book
presenting some of the material considered at greater length in Smirnov & Lebedev
1968 and Walsh 1969.]

C. F. Gauss, Methodus nova integralium valores per approximationem inveniendi,
Comment. Soc. Reg. Scient. Gotting. Recent., 1814. [Introduction of Gauss
quadrature—via continued fractions, not orthogonal polynomials.]

K. O. Geddes, Near-minimax polynomial approximation in an elliptical region, SIAM

J. Numer. Anal. 15 (1978), 1225–1233. [Chebyshev expansions via FFT for analytic
functions on an interval.]

W. M. Gentleman (1972a), Implementing Clenshaw–Curtis quadrature I: Methodolo-
gies and experience, Comm. ACM 15 (1972), 337–342. [A surprisingly modern paper
that includes the aliasing formula for Chebyshev polynomials.]

W. M. Gentleman (1972b), Implementing Clenshaw–Curtis quadrature II: Computing
the cosine transformation, Comm. ACM 15 (1972), 343–346. [First connection of
Clenshaw–Curtis quadrature with FFT.]

A. Glaser, X. Liu and V. Rokhlin, A fast algorithm for the calculation of the roots
of special functions, SIAM J. Sci. Comp. 29 (2007), 1420–1438. [Introduction of an
algorithm for computation of Gauss quadrature nodes and weights in O(n) operations

229

rather than O(n2) as in Golub & Welsch 1969.]

K. Glover, All optimal Hankel-norm approximations of linear multivariable systems
and their L∞-error bounds, Int. J. Control 39 (1984), 1115–1193. [Hugely influential
article on rational approximations in control theory.]

S. Goedecker, Remark on algorithms to find roots of polynomials, SIAM J. Sci. Com-

put. 15 (1994), 1059–1063. [Emphasizes the stability of companion matrix eigenvalues
as an algorithm for polynomial rootfinding, given a polynomial expressed by its coef-
ficients in the monomial basis.]

G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23
(1969), 221–230. [Presentation of the famous O(n2) algorithm for Gauss quadrature
nodes and weights via a tridiagonal matrix eigenvalue problem.]

A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and degree of rational
approximation of analytic functions, Math. USSR Sbornik 62 (1989), 305–348. [A
landmark paper, first published in Russian in 1987, that applies methods of potential
theory to prove that the optimal rate of convergence for type (n, n) rational minimax
approximations of ex on (−∞, 0] is O((9.28903 . . .)−n) as n → ∞.]

V. L. Goncharov, The theory of best approximation of functions, J. Approx. Th.

106 (2000), 2–57. [Historical survey emphasizing contributions of Chebyshev and his
successors.]

P. Gonnet, R. Pachón and L. N. Trefethen, Robust rational interpolation and least-
squares, Elect. Trans. Numer. Anal., to appear. [A robust algorithm based on the
singular value decomposition for computing rational approximants without spurious
poles.]

I. J. Good, The colleague matrix, a Chebyshev analogue of the companion matrix,
Quart. J. Math. 12 (1961), 61–68. [Together with Specht 1960, one of the two original
independent discoveries of eigenvalues of colleague matrices for roots of polynomials
in Chebyshev form. Good recommends such matrices for numerical rootfinding.]

D. Gottlieb, M. Y. Hussaini and S. A. Orszag, Introduction: theory and applications
of spectral methods, in R. G. Voigt, D. Gottlieb, and M. Y. Hussaini, Spectral Meth-

ods for Partial Differential Equations, SIAM, 1984. [Early survey article on spectral
collocation methods, including the first publication of the formula for the entries of
Chebyshev differentiation matrices.]

T. H. Gronwall, Über die Gibbsche Erscheinung and die trigonometrischen Summen
sinx+ 1

2
sin 2x+ · · ·+ 1

n
sinnx, Math. Ann. 72 (1912), 228–243. [Investigates detailed

behavior of Fourier approximations near Gibbs discontinuities.]

M. H. Gutknecht and L. N. Trefethen, Real polynomial Chebyshev approximation by
the Carathéodory–Fejér method, SIAM J. Numer. Anal. 19 (1982), 358–371. [Intro-
duction of CF approximation on an interval.]

S. Güttel, Rational Krylov Methods for Operator Functions, PhD dissertation, TU
Bergakademie Frieberg, 2010. [Survey and analysis of advanced methods of numerical
linear algebra based on rational approximations.]

N. Hale, N. J. Higham and L. N. Trefethen, Computing Aα, log(A), and related matrix
functions by contour integrals, SIAM J. Numer. Math. 46 (2008), 2505–2523. [Derives
efficient algorithm for computing matrix functions from trapezoid rule or equivalently
rational approximations to contour integrals derived from conformal maps.]

230

N. Hale and T. W. Tee, Conformal maps to multiply slit domains and applications,
SIAM J. Sci. Comput. 31 (2009), 3195–3215.

N. Hale and L. N. Trefethen, New quadrature formulas from conformal maps, SIAM

J. Numer. Anal. 46 (2008), 930–948. [Shows that conformal mapping can be used to
derive quadrature formulas that converge faster than Gauss, as in Bakhvalov 1967.]

G. H. Halphen, Traité des Fonctions Elliptiques et de Leurs Applciations, Gauthier-
Villars, Paris, 1886. [A treatise on elliptic functions that contains a calculation to six
digits of the number ≈1/9.28903 that later became known as “Halphen’s constant” in
connection with the rational approximation of ex on (−∞, 0].]

J. F. Hart et al., Computer Approximations, Wiley, 1968. [A classic report on computer
evaluation of special functions containing explicit coefficients of rational approxima-
tions.]

E. Hayashi, L. N. Trefethen and M. H. Gutkencht, The CF table, Constr. Approx.

6 (1990), 195–223. [The most systematic and detailed treatment of the problem of
rational CF approximation of a function f on the unit disk, including cases where f
is just in the Wiener class or continuous on the unit circle.]

G. Helmberg and P. Wagner, Manipulating Gibbs’ phenomenon for Fourier interpola-
tion, J. Approx. Th. 89 (1997), 308–320. [Analyzes the overshoot in various versions
of the Gibbs phenomenon for trigonometric interpolation.]

P. Henrici, Applied and Computational Complex Analysis, vols. 1–3, Wiley, 1974 and
xxx and yyy. [An extensive and highly readable account of numerous parts of applied
complex analysis, full of details that are hard to find elsewhere.]

C. Hermite, Sur la formule d’interpolation de Lagrange, J. Reine Angew. Math. 84
(1878), 70–79. [Application of what became known as the “Hermite integral formula”
for polynomial interpolation, which had earlier been given by Cauchy, to problems of
interpolation with confluent data points.]

E. Hewitt and R. E. Hewitt, The Gibbs–Wilbraham phenomenon: an episode in
Fourier analysis, Arch. Hist. Exact Sci. 21 (1979), 129–160. [Discussion of the complex
and not always pretty history of attempts to analyze the Gibbs phenomenon.]

N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J.

Numer. Anal. 24 (2004), 547–556. [Proves that barycentric interpolation in Chebyshev
points is numerically stable, following earlier work of Rack & Reimer 1982.]

N. J. Higham, Functions of Matrices, SIAM, 2008. [The definitive treatment of the
problem of computing functions of matrices as of 2008. Many of the algorithms have
connections with polynomial or rational approximation.]

N. J. Higham, The scaling and squaring method for the matrix exponential revisited,
SIAM Review 51 (2009), 747–764. [Careful analysis of Matlab’s method of evaluating
eA leads to several improvements in the algorithm and the recommendation to use
Padé approximation of type (13, 13).]

M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer. 19 (2010),
209–286. [Survey of exponential integrators for the fast numerical solution of stiff
ODEs and PDEs.]

A. Iserles, Fast (and simple) algorithms for the computation of Legendre coefficients,
Numer. Math., submitted, 2010. [Fast algorithms making use of a numerical contour
integral in the complex plane.]

231

D. Jackson, Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze

rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ord-

nung, dissertation, Göttingen, 1911. [Jackson’s PhD thesis under Landau in Göttingen,
which together with Bernstein’s work at the same time established many of the funda-
mental results of approximation theory. Despite the German, Jackson was an Ameri-
can from Massachusetts, like me—Harvard Class of 1908.]

D. Jackson, On the accuracy of trigonometric interpolation, Trans. AMS, 1913.

D. Jackson, The Theory of Approximation, Amer. Math. Soc., 1930. [Summary book
with much material concerning the Jackson theorems, which assert that if a function
has a certain degree of smoothness, its best approximants converge at a certain rate.]

C. G. J. Jacobi, Disquisitiones Analyticae de Fractionibus Simplicibus, thesis, Berlin,
1825. [In his discussion of partial fractions Jacobi effectively states the “first form” of
the barycentric interpolation formula.]

C. G. J. Jacobi, Über Gauss’ neue Methode, die Werthe der Integrale näherungsweise
zu finden, J. Rein. Angew. Math. 1 (1826), 301–308. [Connection of Gauss quadrature
with orthogonal polynomials.]

C. G. J. Jacobi, Über die Darstellung einer Reihe gegebner Werthe durch eine ge-
brochne rationale Function, J. Reine Angew. Math. 30 (1846), 127–156. [Jacobi’s
major work on rational interpolation.]

T. A. Kilgore, A characterization of the Lagrange interpolating projection with min-
imal Tchebycheff norm, J. Approx. Th. 24 (1978), 273–288. [Together with de Boor
& Pinkus 1978, one of the papers solving the theoretical problem of optimal interpo-
lation.]

P. Kirchberger, Über Tchebychefsche Annäherungsmethoden, PhD thesis, Göttingen,
1902. [First full statement and proof of the equioscillation theorem.]

P. Kirchberger, Über Tchebychefsche Annäherungsmethoden, 509–540, 1903. [Extract
from his PhD thesis the year before, but without the equioscillation theorem.] **ref-
erence missing**

A. N. Kolmogorov, A remark on the polynomials of P. L. Chebyshev deviating the
least from a given function, Uspehi Mat. Nauk 3 (1948), 216–221 [Russian]. [Criterion
for best complex approximations.]

D. Kosloff and H. Tal-Ezer, A modified Chebyshev pseudospectral method with an
O(N−1) time step restriction, J. Comp. Phys. 104 (1993), 457–469. [Introduces a
change of variables as a basis for non-polynomial spectral methods.]

E. Kreyszig, Advanced Engineering Mathematics, 2007. [A hugely successful textbook.]

J. L. Lagrange, Leçons Elémentaires sur les Mathématiques, Paris, 1795. [Textbook
containing what became known as the Lagrange interpolation formula, earlier pub-
lished by Waring 1779.]

B. Lam, Some Exact and Asymptotic Results for Best Uniform Approximation, PhD
thesis, U. of Tasmania, 1972. [A precursor to the Carathéodory–Fejér method.]

H. Lebesgue, Sur l’approximation des fonctions, Bull. Sci. Math. 22 (1898), 278–287.
[In Lebesgue’s first published paper, he proves the Weierstrass approximation theorem
by approximating |x| by polynomials and noting that any continuous function can be
approximated by piecewise linear functions.]

232

R.-C. Li, Near optimality of Chebyshev interpolation for elementary function compu-
tations, IEEE Tans. Computers 53 (2004), 678–687. [Shows that although Lebesgue
constants for Chebyshev points grow logarithmically as n → ∞, for many classes of
functions of interest the interpolants come within a factor of 2 of optimality.]

G. G. Lorentz, Approximation of Functions, Holt, Rincehart & Winston, 1966 and
Chelsea, 1986. [A readable treatment including good summaries of Jackson theorems
for polynomial and trigonometric approximation.]

K. N. Lungu, Best approximations by rational functions, Math. Notes 10 (1971), 431–
433. [Shows that the best rational approximations to a real function on an interval
may be complex and hence also nonunique, with examples as simple as type (1, 1)
approximation of |x| on [−1, 1].]

A. P. Magnus, CFGT determination of Varga’s consant ’1/9’, unpublished manuscript,
1985. [First identification of the the exact value of Halphen’s constant C = 9.28903 . . .
for the optimal rate of convergence O(C−n) of best type (n, n) approximations to ex

on (−∞, 0], later proved correct by Gonchar and Rakhmanov 1989.]

A. P. Magnus, Asymptotics and super asymptotics of best rational approximation
error norms for the exponential function (the ‘1/9’ problem) by the Carathéodory–
Fejér method, in A. Cuyt, et al., eds., Nonlinear Methods and Rational Approximation

II, Kluwer, 1994.

A. A. Markov, 1890, proof of Markov inequality.

A. I. Markushevich, Theory of Functions of a Complex Variable, 2nd ed., 3 vols.,
Chelsea, 1985. [A highly readable treatise on complex variables, including chapters
on Laurent series, polynomial interpolation, harmonic functions, and rational approx-
imation.]

J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman and Hall/CRC,
2003. [An extensive treatment of four varieties of Chebyshev polynomials and their
applications.]

G. Mastroianni and J. Szabados, Jackson order of approximation by Lagrange inter-
polation. II, Acta Math. Hungar. 69 (1995), 73–82. [Contains a theorem on rate of
convergence of Chebyshev interpolants for functions whose kth derivative has bounded
variation.]

J. H. McCabe and G. M. Phillips, On a certain class of Lebesgue constants, BIT 13
(1973), 434–442. [Shows that the Lebesgue constant for polynomial interpolation in
n+ 1 Chebyshev points of the second kind is bounded by that of n Chebyshev points
of the first kind. The same result had been found earlier by Ehlich and Zeller 1966.]

G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer,
1967. [Classic approximation theory monograph.]

C. Méray, Observations sur la légitimité de l’interpolation, Annal. Scient. de l’Ecole

Normale Supérieure 3 (1884), 165–176. [Discussion of the possibility of nonconver-
gence of polynomial interoplants 17 years before Runge, though without so striking
an example or conclusion. It is particularly noteworthy that Méray uses just the right
technique, the Hermite integral formula, which he rightly attributes to Cauchy.]

C. Méray, Nouveaux exemples d’interpolations illusoires, Bull. Sci. Math. 20 (1896),
266–270. [Continuation of Méray 1884 with more examples.]

G. Mittag-Leffler, Sur la représentation analytique des fonctions d’une variable réelle,

233

Rend. Circ. Mat. Palermo (1900), 217–224. [Contains a long footnote by Phragmén
explaining how the Weierstrass Approximation Theorem follows from the work of
Runge.]

C. Moler and C. Van Loan, Nineteen dubious ways to computer the exponential of a
matrix, twenty-five years later, SIAM Review 45 (2003), 3–49. [Expanded reprinting
of 1978 paper summarizing methods for computing exp(A), the best method being
related to Padé approximation.]

M. Mori and M. Sugihara, The double-exponential transformation in numerical anal-
ysis, J. Comput. Appl. Math. 127 (2001), 287–296.

J.-M. Muller, Elementary Functions: Algorithms and Implementation, Birkhäuser,
2006. [A recent text on implementation of elementary functions on computers, includ-
ing a chapter on the Remez algorithm.]

I. P. Natanson, Constructive Theory of Functions, Atomic Energy Commission Trans-
lations, 1961.

D. J. Newman, Rational approximation to |x|, Mich. Math. J. (1964), 11–14. [Shows
that whereas polynomial approximants to |x| on [−1, 1] converge at the rate O(n−1),
for rational approximants the rate is O(exp(−C

√
n)).

D. J. Newman, Rational approximation to e−x, J. Approx. Theory 10 (1974), 301–
303. [Shows by a lower bound 1280−n that type (n, n) rational approximants to ex on
(−∞, 0] can converge no faster than geometrically as n → ∞ in the supremum norm.]

H. O’Hara and F. J. Smith, Error estimation in the Clenshaw–Curtis quadrature
formula, Comput. J., 11 (1968), 213–219. [Early paper arguing that Clenshaw–Curtis
and Gauss quadrature have comparable accuracy in practice.]

A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-time Signal Processing,
Prentice Hall, 1999. [The standard textbook on the subject, which is all about poly-
nomial and rational approximation.]

S. A. Orszag (1971a), Galerkin approximations to flows within slabs, spheres, and
cylinders, Phys. Rev. Lett. 26 (1971), 1100–1103. [Orszag’s first publication on
Chebyshev spectral methods.]

S. A. Orszag (1971b), Accurate solution of the Orr-Sommerfeld stability equation, J.
Fluid Mech. 50 (1971), 689–703. [The most influential of Orszag’s early papers on
Chebyshev spectral methods.]

R. Pachón, P. Gonnet and J. van Deun, Fast and stable rational interpolation in roots
of unity and Chebyshev points, SIAM J. Numer. Anal., to appear.

R. Pachón, R. Platte and L. N. Trefethen, Piecewise smooth chebfuns, IMA J. Numer.

Anal., 2009. [Generalization of chebfuns from single to multiple polynomial pieces,
including edge detection algorithm to determine breakpoints.]

R. Pachón and L. N. Trefethen, Barycentric-Remez algorithms for best polynomial
approximation in Chebfun, BIT Numer. Math. 49 (2009), 721–741. [Robust Chebfun
implementation of Remez algorithm for computing polynomial best approximations.]

T. W. Parks and J. H. McClellan, Chebyshev approximation for nonrecursive digi-
tal filters with linear phase, IEEE Trans. Circuit Theory 19 (1972), 189–194. [Pro-
poses what became known as the Parks–McClellan algorithm for digital filter design,
based on a barycentric formulation of the Remez algorithm for best approximation by
trigonometric polynomials.]

234

P. P. Petrushev and V. A Popov, Rational Approximation of Real Functions, Cam-
bridge U. Press, 1987. [Detailed presentation of a great range of results known up to
1987.]

R. Piessens, Algorithm 473: Computation of Legendre series coefficients [C6], Comm.

ACM 17 (1974), 25–25.

A. Pinkus, Weierstrass and approximation theory, J. Approx. Th. 107 (2000), 1–66.
[Extremely readable and detailed discussion of Weierstrass’s nowhere-differentiable
function and of the Weierstrass approximation theorem and its many proofs and gen-
eralizations.]

G. Pólya, Über die Konvergenz von Quadraturverfahren, Math. Zeit. ?? (1933), 264–
286. [Proves that the Newton–Cotes quadrature formula does not always converge as
n → ∞, even if the integrand is analytic.]

D. Potts, G. Steidl and M. Tasche, Fast algorithms for discrete polynomial transforms,
Math. Comp. 67 (1998), 1577–1590.

M. J. D. Powell, Approximation Theory and Methods, Cambridge University Press,
1981. [Approximation theory text with a computational emphasis.]

H. Priestley, Introduction to Complex Analysis, 2nd ed., Oxford U. Press, 2003. [Well
known introductory complex analysis textbook.]

P. Rabinowitz, Rough and ready error estimates in Gaussian integration of analytic
functions, Comm. ACM 12 (1969), 268–270. [Derives tight bounds on accuracy of
Gaussian quadrature by simple arguments.]

H.-J. Rack and M. Reimer, The numerical stability of evaluation schemes for polyno-
mials based on the Lagrange interpolation form, BIT 22 (1982), 101–107. [Proof of
stability for barycentric polynomial interpolation in well-distributed point sets, later
developed further by Higham 2004.]

T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press,
1995. [Perhaps the only book devoted to potential theory in one complex or two real
variables.]

E. Remes, Sur un procédé convergent d’approximations successives pour déterminer
les polynomes d’approximation, Compt. Rend. Acad. Sci. 198 (1934), 2063–2065. [One
of the original papers presenting the Remez algorithm.]

E. Remes, Sur le calcul effectif des polynomes d’approximation de Tchebichef, Compt.

Rend. Acad. Sci. 199 (1934), 337–340. [The other original paper presenting the Remez
algorithm.]

E. Y. Remes, On approximations in the complex domain, Dokl. Akad. Nauk SSSR 77
(1951), 965–968 [Russian].

E. Ya. Remez, General computational methods of Tchebycheff approximation, Atomic
Energy Commission Translation 4491, Kiev, 1957, pp. 1–85.

F. Riesz, Über lineare Funktionalgleichungen, Acta Math. 41 (1918), 71–98.
[First statement of the general existence result for best approximation from finite-
dimensional linear spaces.]

M. Riesz, Eine trigonometrische Interpolationsformel und einige Ungleichungen für
Polynome, Jahresber. Deutsch. Math.-Ver. 23 (1914), 354–368.

M. Riesz, Über einen Satz des Herrn Serge Bernstein, Acta. Math. 40 (1916), 43–

235

47. [Gives a new proof of a Bernstein inequality based on the barycentric formula
for Chebyshev points, in the process deriving the barycentric coefficients (−1)j half a
century before Salzer 1972.]

T. J. Rivlin, An Introduction to the Approximation of Functions, Dover, 1981.

T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and

Number Theory, 2nd ed., Wiley, 1990. [Classic book on Chebyshev polynomials and
applications.]

J. D. Roberts, Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function, Report CUED/B-Control/TR13, Cambridge University
Engineering Dept., 1971, later published in Int. J. Control 32 (1980), 677-687.

P. O. Runck, Über Konvergenzfragen bei Polynominterpolation mit äquidistanten
Knoten. II, J. Reine Angew. Math. 210 (1962), 175–204. [Analyzes the Gibbs over-
shoot for two varieties of polynomial interpolation of a step function as in Theorem
9.1.]

C. Runge, Zur Theorie der eindeutigen analytischen Functionen, Acta Math. 6 (1885),
229–244. [Publication of Runge’s theorem: a function analytic on a compact set in
the complex plane whose complement is connected can be uniformly approximated by
polynomials.] **check date and page numbers**

C. Runge, Über die Darstellung willkürlicher Functionen, Acta Math. 7 (1885/86),
387–392. [Shows that a continuous function on a finite interval can be uniformly
approximated by rational functions. It was later pointed out by Phragmén and Mittag-
Leffler that this and the previous paper by Runge together imply the Weierstrass
Approximation Theorem.] **check date**

C. Runge, Über empirische Funktionen and die Interpolation zwischen äquidistanten
Ordinaten, Z. Math. Phys. 46 (1901), 224–243. [Méray 1884 and 1896 had pointed
out that polynomial interpolants might fail to converge, but it was this paper that
focussed on equispaced sample points, showed that divergence can take place even in
the interval of interpolation, and identified the “Runge region” where analyticity is
required for convergence.]

A. Ruttan, The length of the alternation set as a factor in determining when a best
real rational apprxoimation is also a best complex rational approximation, J. Approx.

Th. 31 (1981), 230–243.

A. Ruttan and R. S. Varga, A unified theory for real vs. complex rational Chebyshev
approximation on an interval, Trans. AMS 312 (1989), 681–697.

E. B. Saff and A. D. Snider, Fundamentals of Complex Analysis with Applications to

Engineering, Science, and Mathematics, 3rd ed., Prentice Hall, 2003. [Well known
introductory complex analysis textbook.]

E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, 1997.
[Presentation of some of the potential theory used in recent progress in rational ap-
proximation theory.]

E. B. Saff and R. S. Varga (1978a), Nonuniqueness of best complex rational approxima-
tions to real functions on real intervals, J. Approx. Th. 23 (1978), 78–85. [Rediscovery
of results of Lungu 1971.]

E. B. Saff and R. S. Varga (1978b), On the zeros and poles of Padé approximants to
ez. III, Numer. Math. 30 (1978), 241–266. [Analysis of the curves in the complex

236

plane along which poles and zeros of these approximants cluster.]

T. W. Sag and G. Szekeres, Numerical evaluation of high-dimensional integrals, Math.

Comp. 18 (1964), 245–253. [Introduction of changes of variables that can speed up
Gauss and other quadrature formulas, even in one dimension.]

H. E. Salzer, Lagrangian interpolation at the Chebyshev points xn,ν = cos(νπ/n),
ν = 0(1)n; some unnoted advantages, Computer J. 15 (1972), 156–159. [Barycentric
formula for polynomial interpolation in Chebyshev points.]

H. E. Salzer, Rational interpolation using incomplete barycentric forms, Z. Angew.

Math. Mech. 61 (1981), 161–164.

T. Schmelzer and L. N. Trefethen, Evaluating matrix functions for exponential in-
tegrators via Carathéodory–Fejér approximation and contour integrals, Elect. Trans.
Numer. Anal. 29 (2007), 1–18. [Fast methods for evaluating the “ϕ functions” used
by exponential integrators for solving stiff ODEs and PDEs.]

C. Schneider and W. Werner, Some new aspects of rational interpolation, Math. Comp.

47 (1986), 285–299. [Extension of barycentric formulas to rational interpolation.]

A. Schönhage, Fehlerfortpflanzung bei Interpolation, Numer. Math. 3 (1961), 62–
71. [Independent rediscovery of results close to those of Turetskii 1940 concerning
Lebesgue constants for equispaced points.]

A. Schönhage, Zur rationalen Approximierbarkeit von e−x über [0,∞), J. Approx. Th.

7 (1973), 395–398. [Proves that in maximum-norm approximation of ex on (−∞, 0]
by inverse-polynomials 1/pn(x), the optimal rate is O(3−n).]

I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J.

Reine Angew. Math. 148 (1918), 122–145. [Solution of the problem of Carathéodory
and Fejér via the eigenvalue analysis of a Hankel matrix of Taylor coefficients.]

B. Shiffman and S. Zelditch, Equilibrium distribution of zeros of random polynomials,
2003.

G. A. Sitton, C. S. Burrus, J. W. Fox and S. Treitel, Factoring very-high-degree
polynomials, IEEE Signal Proc. Mag., Nov. 2003, 27–42. [Discussion of rootfinding
for polynomials of degree up to one million by the Lindsey–Fox algorithm.]

V. I. Smirnov and N. A. Lebedev, Functions of a Complex Variable: Constructive

Theory , MIT Press, 1968. [Major survey of problems of polynomial and rational
approximation in the complex plane.]

Smithies, Cauchy and the Creation of Complex Function Theory, Cambridge U. Press,
1997. [Detailed account of Cauchy’s almost single-handed creation of the field much
as we know it today.]

W. Specht, Die Lage der Nullstellen eines Polynoms. III, Math. Nachr. 16 (1947), 363–
389. [Development of comrade matrices whose eigenvalues are roots of polynomials
expressed in bases of orthogonal polynomials.]

W. Specht, Die Lage der Nullstellen eines Polynoms. IV, Math. Nachr. 21 (1960),
201–222. [Colleague matrices, the special case of comrade matrices for Chebyshev
polynomials. This work was discovered independentlhy by Good 1961.]

H. Stahl, Best uniform rational approximation of |x| on [−1, 1], Russian Acad. Sci.

Sb. Math. 76 (1993), 461–487. [Proof of the conjecture of Varga, Ruttan and
Carpenter that best rational approximations to |x| on [−1, 1] converge at the rate

237

∼ 8 exp(−π
√
n).]

H. R. Stahl, Best uniform rational approximation of xα on [0, 1], Acata Math. 190
(2003), 241–306. [Generalization of the results of the paper above to approximation
of xα on [0, 1], completing earlier investigations of Ganelius and Vyacheslavov.]

H. Stahl and T. Schmelzer, An extension of the ‘1/9’-problem, J. Comput. Appl. Math.

233 (2009), 821–834. [Summarizes decades of results on the rational approximation of
ex on (−∞, 0] and extends the main geometric convergence rate to related problems,
including the computation of “ϕ functions” for exponential integrators.]

H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge U. Press, 1992.
[Presentation of some of the mathematics underlying recent progress in rational ap-
proximation theory.]

F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, 1993.
[Comprehensive treatise by the leader in sinc function algorithms.]

F. Stenger, Sinc Numerical Methods, CRC Press, 2011. [A handbook of sinc methods
and their implementation by the author’s software package Sinc-Pack.]

K.-G. Steffens, The History of Approximation Theory: From Euler to Bernstein,
Birkhäuser, 2006. [Discussion of many people and results by a student of Natanson.]

Stieltjes, 1884

Stieltjes, 1885 paper on Legendre extreme points and minimal energy.

Stieltjes, paper on convergence of Gauss quadrature.

S. Stigler, Stigler’s law of eponymy, Trans. New York Acad. Sci. 39 (1980), 147–
157. [Enunciation of Stigler’s Law: “No scientific discovery is named after its original
discoverer.”]

J. Szabados, Rational approximation to analytic functions on an inner part of the
domain of analyticity, in A. Talbot, ed., Approximation Theory, Academic Press, 1970,
pp. 165–177. [Shows that for some functions analytic in a Bernstein ρ-ellipse, type
(n, n) rational best approximations are essentially no better than degree n polynomial
best approximations.]

G. Szegő, Orthogonal Polynomials, Amer. Math. Soc., 1939 (with later editions and
printings). [A classic monograph by the master, including chapters on polynomial
interpolation and quadrature.]

E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods,
SIAM J. Numer. Anal. 23 (1986), 1–10. [Presents theorems on exponential accuracy
of Chebyshev interpolants of analytic functions and their derviatives.]

T. Takagi, On an algebraic problem related to an analytic theorem of Carathéodory
and Fejér and on an allied theorem of Landau, Japan J. Math. 1 (1924), 83–91 and
ibid., 2 (1925), 13–17. [Beginnings of the generalization of Carathéodory & Fejér 1911
and Schur 1918 to rational approximation.]

H Takahasi and M. Mori, Double exponential formulas for numerical integration, Publ.
RIMS, Kyoto U. 9 (1974), 721–741. [Introduction of the double exponential or tanh-
sinh quadrature rule, in which Gauss quadrature is transformed by a change of vari-
ables to another formula that can handle endpoint singularities.]

A. Talbot, The uniform approximation of polynomials by polynomials of lower degree,
J. Approx. Th. 17 (1976), 254–279. [A precursor to the Carathéodory–Fejér method.]

238

F. D. Tappert, The parabolic approximation method, in J. B. Keller and J. S. Pa-
padakis, eds., Wave Propagation and Underwater Acoustics, Springer, 1977, pp. 224–
287. [Describes techniques for one-way acoustic wave simulation in the ocean, based
on polynomial and rational approximations of a pseudodifferential operator.]

W. J. Taylor, Method of Lagrangian curvilinear interpolation, J. Res. Nat. Bur. Stand.

35 (1945), 151–155. [The first use of a barycentric interpolation formula, for equidis-
tant points.]

T. W. Tee and L. N. Trefethen, A rational spectral collocation method with adap-
tively transformed Chebyshev grid points, SIAM J. Sci. Comp. 28 (2006), 1798–1811.
[Numerical solution of differential equations with highly nonuniform solutions based
on Chebyshev–Padé approximation, conformal maps, and spectral methods based on
rational barycentric interpolants.]

A. F. Timan, A strengthening of Jackson’s theorem on the best approximation of
continuous functions by polynomials on a finite interval of the real axis, Doklady 78
(1951), 17–20. [A theorem on polynomial approximation that recognizes the greater
approximation power near the ends of the inerval.]

A. F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan,
New York, 1963.

K.-C. Toh and L. N. Trefethen, Pseudozeros of polynomials and pseudospectra of
companion matrices, Numer. Math. 68 (1994), 403–425. [Analysis of stability of
companion matrix eigenvalues as an algorithm for polynomial rootfinding, given a
polynomial expressed by its coefficients in the monomial basis.]

L. Tonelli, I polinomi d’approssimazione di Tschebychev, Annali di Mat. 15 (1908),
47–119. [Extension of results on real best approximation to the complex case.]

L. N. Trefethen, Chebyshev approximation on the unit disk, in H. Werner et al., eds.,
Constructive Aspects of Complex Analysis, D. Riedel, 1983. [A very readable survey
containing the gentlest available introduction to several varieties of CF approximation.]

L. N. Trefethen, Square blocks and equioscillation in the Padé, Walsh, and CF tables,
in P. R. Graves-Morris, et al., eds., Rational Approximation and Interpolation, Lect.
Notes in Math, v. 1105, Springer, 1984. [Shows that square block structure in all
three tables of rational approximations arises from equioscillation-type characteriza-
tions involving the defect.]

L. N. Trefethen, Spectral Methods in MATLAB, SIAM, 2000. [Matlab-based textbook
on spectral methods for solving ODEs and PDEs.]

L. N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis?, SIAM Rev. 50
(2008), 67–87. [Shows that for most functions, the Clenshaw–Curtis and Gauss for-
mulas have comparable accuracy.]

L. N. Trefethen, Householder triangularization of a quasimatrix, IMA J. Numer. Anal.

2009, to appear. [Extends the Householder triangularization algorithm to quasimatri-
ces, i.e., “matrices” whose “columns” are functions rather than vectors.]

L. N. Trefethen and M. H. Gutknecht, The Carathéodory–Fejér method for real ratio-
nal approximation, SIAM J. Numer. Anal. 20 (1983), 420–436. [Introduction of real
rational CF approximation, and first numerical computation of the constant 9.28903 . . .
for minimax rational approximation of ex on (−∞, 0].]

L. N. Trefethen and J. A. C. Weideman, Two results concerning polynomial interpo-

239

lation in equally spaced points, J. Approx. Th. 65 (1991), 247–260. [Discussion of the
size of Lebesgue constants and “6 points per wavelength” for polynomial interpolation
in equispaced points.]

L. N. Trefethen, J. A. C. Weideman and T. Schmelzer, Talbot quadratures and rational
approximations, BIT Numer. Math. 46 (2006), 653-670. [Shows how integrals approx-
imated by the trapezoid rule correspond to rational approximations in the complex
plane, with particular attention to the approximation of ex on (−∞, 0].]

A. H. Turetskii, The bounding of polynomials prescribed at equally distributed
points, Proc. Pedag. Inst. Vitebsk 3 (1940), 117–127 (Russian). [Derivation of the
∼ 2n/en logn asymptotic size of Lebesgue constants for equispaced polynomial inter-
polation. This paper went largely unnoticed for fifty years and the main result was
rediscovered by Schönhage 1961.]

C. de la Vallée Poussin, Sur les polynômes d’approximation et la représentation ap-
prochée d’un angle, Acad. Roy. de Belg., Bulletins de la Classe des Sci. 12 (1912).

C. de la Vallée Poussin, Leçons sur l’Approximation des Fonctions d’une Variable

Réelle, Gauthier-Villars, Paris, 1919. **middle initial?**

J. Van Deun and L. N. Trefethen, A robust implementation of the Carathéodory–
Fejér method, BIT Numer. Math., to appear. [Twenty-five years after the original
theoretical papers, a paper describing the practical details behind the Chebfun cf

command.]

R. S. Varga and A. J. Carpenter, On the Bernstein conjecture in approximation theory,
Constr. Approx. 1 (1985), 333–348. [Shows that degree n best approximants to |x|
have asymptotic accuracy 0.2801 . . . n−1 rather than Bernstein’s conjectured value of
0.2820 . . . n−1.]

R. S. Varga, A. Ruttan, and A. J. Carpenter, Numerical results on best uniform
rational approximation of |x| on [−1, 1], Math. USSR Sbornik 74 (1993), 271–290.
[High-precision numerical calculations lead to the conjecture that best rational ap-
proximations to |x| on [−1, 1] converge asymptotically at the rate ∼ 8 exp(−π

√
n),

proved in Stahl 1993.]

N. S. Vyacheslavov, On the uniform approximation of |x| by rational functions, Sov.
Math. Dokl. 16 (1975), 100–104. [Sharpens the result of Newman 1964 by showing
that rational approximations to |x| on [−1, 1] converge at the rate O(exp(−π

√
n)).]

J. Waldvogel, Fast construction of the Fejér and Clenshaw–Curtis quadrature rules,
BIT Numer. Math. 46 (2006), 195–202. [Presentation of O(n logn) algorithms for
finding nodes and weights.]

J. L. Walsh, The existence of rational functions of best approximation, Trans. AMS

33 (1931), 668–689. [Shows that there exists a best rational approximation of type
(m,n) to a given continuous function f , not just on an interval such as [−1, 1] but also
on more general sets in the complex plane.]

J. L. Walsh, On approximation to an analytic function by rational functions of best
approximation, Math. Zeit. 38 (1934), 163–176. [Perhaps the first discussion of what
is now called the Walsh table, the table of best rational approximations to a given
function f for various types (m,n).]

J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex

Domain, 5th ed., American Mathematical Society, 1969. [An encyclopedic but hard-to-

240

read treatise on all kinds of material related to polynomial and rational approximation
in the complex plane.]

Wang, 2010

R. C. Ward, Numerical computation of the matrix exponential with accuracy estimate,
SIAM J. Numer. Anal. 14 (1977), 600–610. [Presentation of a scaling-and-squaring
algorithm for computing the exponential of a matrix by Padé approximation, which
evolved into Matlab’s expm command.]

E. Waring, Problems concerning interpolations, Phil. Trans. R. Soc. 69 (1779), 59–67.
[Presents the Lagrange interpolation formula 16 years before Lagrange.]

J. A. C. Weideman and S. C. Reddy, A MATLAB differentiation matrix suite, ACM
Trans. Math. Softw. 26 (2000), 465–519. [A widely-used collection of Matlab programs
for generating Chebyshev, Legendre, Laguerre, Hermite, Fourier, and sinc spectral
differentiation matrices of arbitrary order.]

J. A. C. Weideman and L. N. Trefethen, The kink phenomenon in Fejér and Clenshaw–
Curtis quadrature, Numer. Math. 102 (2007), 707–727. [Analysis of the effect that as
n increases, Clenshaw–Curtis quadrature initially converges at the same rate as Gauss
rather than half as fast as commonly supposed.]

J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for com-
puting the Bromwich integral, Math. Comput. 76 (2007), 1341–1356. [Derivation of
geometrically-convergent “Talbot contour” type rational approximations for problems
related to ex on (−∞, 0].]

K. Weierstrass, Über continuierliche Functionen eines reellen Arguments, die für keinen
Werth des letzteren einen bestimmten Differentialquotienten besitzen, Königliche

Akademie der Wissenschaften, 1872. [Weierstrass’s publication of an example (which
he had lectured on a decade earlier) of a continuous, nowhere-differentiable function.]

K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Func-
tionen einer reellen Veränderlichen, Sitzungsberichte der Akademie zu Berlin, 633–639
and 789–805, 1885. [Presentation of the Weierstrass Approximation Theorem.]

B. D. Welfert, Generation of pseudospectral differentiation matrices I, SIAM J. Numer.

Anal. 34 (1997), 1640–1657. [Derivation of stable recursive formulas for computation
of derivatives of interpolants.]

H. Werner, On the rational Tschebyscheff operator, Math. Zeit. 86 (1964), 317–326.
[Shows that the operator mapping a real function f ∈ C[−1, 1] to its best real rational
approximation of type (m,n) is continuous if and only if f is itself rational of type
(m,n) or its best approximation has defect 0 (“nondegenerate”).]

H. Wilbraham, On a certain periodic function, Cambridge and Dublin Math. J. 3
(1848), 198–201. [Analyzes the Gibbs phenomenon fifty years before Gibbs.]

J. H. Wilkinson, The perfidious polynomial, in G. H. Golub, ed., Studies in Numerical

Analysis, Math. Assoc. Amer., 1984. [Wilkinson’s major work on polynomials was
in the 1960s, but this entertaining review, which won the Chauvenet Prize, remains
noteworthy not least because of its memorable title.]

Xiang, 2010

K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice Hall,
1996. [A leading textbook on optimal control, with special attention to approximation
issues.]

241

W. P. Ziemer, Weakly Differentiable Functions, Springer, 1989. [Includes a definition
of total variation in the measure theoretic context.]

242

