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can it be learned without practice, and any book on

programming must use the order code of some par-
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the order code of the EDSAC lends itself well to the

purposes of a book on programming, being fairly

straightforward and relatively easily memorized.

Moreover, the EDSAC is a single-address binary

machine, and a recent survey shows that, of the types

of machines currently in use, about 50% use single-

address order codes and about 60% work in the
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PREFACE

When the first edition of this book was, published in 1951, very few

digital computers were in operation, and our own experience was confined

exclusively to the EDSAC. However, we pointed out in the Preface that

the methods described might be for the main part readily translated into

the order codes of machines other than the EDSAC, and we went on to

say: "It is hoped, therefore, that those who have charge of similar machines,

or who are faced with the task of putting a new machine into operation,

will find some of the ideas and methods presented here of assistance. It

is hoped also that the book will be of use to those who wish to know some-

thing about the form in which problems are presented to an automatic

digital calculating machine and who wish to assess the possibilities of the

application of such machines to their own subjects." Comments which

have reached us, and the continued demand for the book, have indicated

that these hopes have been to some extent fulfilled, and we have therefore

been encouraged to take advantage of the fact that reprinting would in

any case be necessary, and to prepare a new edition. This follows the same

plan as the first edition, but little of the original material has been taken

over unchanged. Much more attention is now paid to machines other than

the EDSAC, and the book is offered as a general introduction to program-

ming for any machine of the stored-program type.

Programming cannot be taught in the abstract, or learned without

practice, and any book on programming must use the order code of some

particular machine, real or hypothetical. Fortunately, the order code of

the EDSAC lends itself well to the purposes of a book on programming,

being fairly straightforward and relatively easily memorized. Moreover,

the EDSAC is a single-address binary machine, and a recent survey by

M. H. Weik (for reference see Bibliography) shows that, of the types of

machine currently in use, about 50% use single-address order codes and

about 60% work in the binary scale. The order code of the EDSAC con-

tains a few of the minor inconsistencies and complications invariably

found in the order codes of real machines; the order codes of hypothetical

machines especially designed for teaching may be free of these inconsist-

encies and complications, but are inevitably somewhat artificial in con-

sequence. One advantage of using the order code of an established

machine is that it is possible to draw on experience of programming and
of the teaching of programming. The first two chapters of Part 1 of this

edition are based on courses of programming given in this laboratory over

ix



X PREFACE

a period of years; they include several sets of examples to be worked by
the reader, and solutions are given to selected examples. Chapter 3 surveys

the various types of order code to be found in digital computers, and is

intended to give the reader some idea of what to expect when he meets a

new machine. Later chapters deal with input and output, the contents of

a library of subroutines, error diagnosis, and advanced methods. Parts 2

and 3 contain detailed information about the library of subroutines used

with the EDSAC.
Some attention is given in Chapter 3 to "minimum access" coding as

used in conjunction with many machines fitted with magnetic drums as

their main stores. This subject cannot be taken very far in a general book

on programming, however, since so much depends in the case of a particular

machine on the precise timing of the various operations. For somewhat

similar reasons, it is not possible to say very much about the use of storage

on more than one level. We have, however, included in Chapter 8 an

introduction to the problems encountered when an auxiliary store is used

to supplement a higher speed main store.

We would like to repeat the acknowledgements we made in the preface

to the first edition of the book to all the workers in the Mathematical

Laboratory who helped in the development of the methods described, and

to extend these acknowledgements to include those who have joined the

laboratory since the first edition was published. We are especially grateful

to Professor D. R. Hartree, F. R, S., for constant help and encouragement;

Chapters 1 and 2 owe a good deal to some material prepared by him, on

the basis of lecture notes by one of us, for a booklet issued in connection

with a Summer School on Program Design. We would like to say, once

again, how conscious we are of the heavy debt we owe to many colleagues

working in other laboratories who have freely shared their ideas with us.

We would like again to thank Mr. E. N. Mutch for undertaking the

heavy task of preparing Parts 2 and 3 for the press and for giving a great

deal of editorial assistance with the preparation of the book as a whole.

We are indebted to Mrs. M. O. Mutch and to Mr. J. Leech for reading

the manuscript and for making a number of helpful comments.

We would also like to make acknowledgement to the Council of the

Royal Society of Edinburgh for permission to reproduce a table, given in

Section 5-7, from a paper which appeared in Volume 62A of their Pro-

ceedings, and to Dr. Miller for giving similar permission on behalf of the

authors.

Cambridge, England M. V. W.

August 1957 D. J. W.

S. G.
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PART ONE

CHAPTER 1

THE ELEMENTS OF PROGRAM DESIGN

1-1 Introduction. A digital computing machine can perform only the

basic operations of arithmetic, such as addition, subtraction, multiplica-

tion, and division. In order to be able to solve a mathematical problem

such as the integration of a differential equation, it is first necessary to

express the problem as a sequence of such operations. This may call merely

for some expenditure of labor, or it may involve considerable mathematical

manipulation; for example, where derivatives or integrals are involved it

may be necessary to replace the continuous variables by variables which

change in discrete steps.

If the computation were to be performed by a human computer it

would be possible to communicate the problem to him in a series of in-

structions or orders, each specifying an elementary arithmetical operation.

It is convenient to use the same nomenclature when speaking of a machine,

but here the "instructions, " or "orders, " are groups of symbols punched

on a paper tape, or prepared in some other form which can be fed into a

machine. A sequence of orders for performing some particular calculation

is called a program. It must contain everything necessary to cause the

machine to perform the required calculations, and every contingency must

be foreseen. A human computer is capable of reasonable extension of his

instructions when faced with a situation which has not been fully envisaged

in advance, and he will have past experience to guide him. This is not the

case with a machine.

1-2 Types of automatic computing machine. In early automatic com-

puting machines which were mechanical or electromechanical in action,

the orders were usually punched in coded form on paper tape, one group of

holes corresponding to each order. These holes were read by a sensing

device, which caused the machine to perform the operation called for; the

tape was then advanced so that the next group of holes came under the

reading head, and the next order was similarly executed. In addition to a

sensing mechanism for the main program tape, several other sensing

mechanisms were usually provided. These could be used to read endless

loops of tape which contained orders for performing parts of the program
which had to be repeated a number of times. Control of the machine was

1



2 THE ELEMENTS OF PROGRAM DESIGN [CHAP. 1

passed from one tape to another as required. Examples of machines which

worked in this manner are the Automatic Sequence Controlled Calculator

at Harvard University, andj*elay calculators built by the Bell Telephone

Laboratories, and by Harvard University. The system just described,

while admirable for controlling a relay machine, would not be fast enough

for a machine in which the computation is performed by electronic means,

and in which it is desired to realize the very high speed which this makes
possible. The ENIAC, which was the first purely electronic machine to be

built, therefore used a system in which the various steps of the program

were initiated by "program pulses" passed from one unit of the machine

to another. For example, to cause a number standing in one register, or

"accumulator,'" to be added to the number standing in another accumu-

lator, both accumulators needed to be stimulated by a program pulse, one

to transmit and one to receive. When the operation was finished, both

accumulators emitted a pulse, and one of these (it did not matter which,

since they both occurred at the same time) was used to stimulate the next

action. Putting a problem on the machine consisted, therefore, of making

a large number of connections by means of plugs and sockets, and setting

a number of switches. The main objection to this system is that it takes

some time to change over from one problem to another. In all later ma-

chines the orders are expressed in a coded form, and placed in advance in a

quick-access store, or memory, from which they are subsequently taken

and executed one by one. The orders are usually passed into the machine

by means of a punched tape or some similar medium, but this is used simply

as an intermediary in the process of transferring the program to the store;

it does not control the computing action of the machine directly.

A store, or memory, is also needed in automatic computing machines

for the purpose of holding numbers, and in most machines the same store

is used to hold the orders; this is made possible by the device of expressing

the orders in a numerical code. Many machines working on these principles

are now in operation. The principles derive from a report, drafted by

J. Von Neumann in 1946, in which the design was outlined of a new machine

(the EDVAC) then projected by the Moore School of Electrical Engineer-

ing (University of Pennsylvania) where the ENIAC had been built. The

designers of the ENIAC, Dr. J. Presper Eckert and Dr. John W. Mauchly,

were closely associated with the origin of this new project. It was found

that machines designed along the lines laid down in this report were much
smaller and simpler than the ENIAC, and at the same time more powerful.

The methods by which programs are prepared for all machines of the

EDVAC type are, as might be expected, similar, although the details vary

according to the different order codes used. Anyone familiar with the use

of one machine will have no difficulty in adapting himself to another. In

this book we shall first describe in detail how programs are prepared for



1-3] THE EDSAC

the EDSAC, a machine used in the University Mathematical Laboratory,

Cambridge. Later, we shall turn our attention to other machines.

The EDSAC, like the EDVAC, uses the binary system for internal

calculation, but this is not an essential feature, and some other machines

use the decimal system. Even if the binary system is used inside the ma-

chine it is only rarely that the programmer needs to take notice of this

fact, since input and output are ordinarily performed in the decimal system,

the necessary conversion being done by the machine itself as part of the

program.

The following comparisons between the decimal and binary systems will

serve to explain the binary system to those unfamiliar with it.

Decimal Binary

0.1 represents
1

10
0.1 represents

1

2

0.01 a
1

10 2
0.01 it

1

22

0.001 (C
1

10 3
0.001 (C

1 ,

2~s
etc -

Thus, in the binary scale, all digits are either or 1, and, for example,

0.101 represents f

0.01101 13.
3 2

1-3 The EDSAC. In order to be able to construct programs, some
knowledge of the main units of the machine and their interconnection is

required, although it is not necessary to understand the precise mode of

functioning of the various electronic circuits. There are, from the point

of view of the programmer, four main parts to the machine: the store, or

memory, the arithmetical unit, and the input and output mechanisms.

There is also the control unit which emits the electrical signals that control

the action of the other units. Figure 1 shows the connections between the

various units.

The main things which a programmer needs to know about a machine
are:

(1) Its order code, that is, the different elementary operations the ma-
chine can carry out, and how each is specified to the machine.

(2) The forms in which numbers and orders are represented within the

machine.
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CONTROL
STORE

'

v f
1 \

>i ARITHMETICAL
UNIT

^ ACCUMULATOR

4? INPUT
V.

OUTPUT i*r

Fig. 1. Schematic diagram of the EDSAC

(3) Plow the machine, having carried out the operation specified by one

instruction, determines the next instruction.

(4) The form in which the program and any numerical data required

are supplied to the machine, and the form in which results are provided

by it.

In the following sections the order code of the EDSAC is introduced

gradually, so that the student can first, by practice, become accustomed to

the significance of some of the more commonly used orders, and does not

need to become familiar right from the start with the full order code. The
full order code is given for purposes of reference in Appendix 2. Inside the

machine, numbers and orders are expressed in the binary forms described

in Sections 1-6 and 1-7. However, as already mentioned, the programmer

need not be familiar with binary arithmetic; for most purposes, other than

shifting operations, he can forget that numbers are represented in this

form in the machine. Five-hole punched paper tape is used for both input

and output. The machine normally reads in the whole program, and then

proceeds to execute the orders it has read.
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1-4 Store. The store is divided into a number of registers or storage

locations; the content of a storage location is a sequence of O's and 1 's, and

may represent an order or a number. The term word is used for the content

of a storage location if it is desired to refer to it without specifying whether

it represents a number or an order.

In order to identify the storage locations, each is labelled by a number

called its address (or the address of its content). The notation C(n) will be

used for "the content of storage location n.

"

Each storage location in the EDSAC holds 17 binary digits. In words

representing numbers, the binary point is regarded as being to the right of

the extreme left-hand digit; this digit (the most significant digit) is used

as a sign indicator and is referred to as the sign digit.

1-5 Arithmetical unit. The central part of the arithmetical unit is a

register called the accumulator which plays the part of the result register

in a desk machine; it accumulates the sum of numbers added into it until

it is cleared. In order to provide facilities which will be explained later (in

Section 2-10) the capacity of the accumulator is 70 digits; there is, there-

fore, plenty of room to hold the full 33-digit product of two 17-digit num-

bers. As in a storage location, the conventional position of the binary point

is immediately to the right of the extreme left-hand digit.

The content of the accumulator will be written C(Acc). The arithmetical

unit has also a register for holding one of the factors in a multiplication;

this register is called the mtdtiplier register, and its content will be written

C(R).

At any stage in a calculation the most significant 17 digits of the content

of the accumulator can be placed in any specified storage location, say n,

by means of an appropriate order. When this is done, the previous content

of location n is destroyed and replaced by the word transferred from the

accumulator.

1-6 Form of numbers in the machine. Positive numbers inside the

machine are all less than 1, and have a as the sign digit. A negative

number —x (where < x < 1) is represented by a 1 in the sign-digit

position, followed by the digits of (1 — x); for example,

1.1100... represents —(1 — f) = —J.

(Note that the number does not represent If.) Another way of explaining

the representation of negative numbers is to regard the sign digit as an

ordinary numerical digit, and to say that —x is stored as the number

(2 — x). Note in particular that

1.0000... represents —1.
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The range of numbers which can be represented in the machine is therefore

— 1 < x < 1. Scale factors must be introduced in order to deal with

numbers outside this range (see Section 2-12.)

Any attempt to work with numbers outside the range just specified will

cause the capacity of the accumulator to be exceeded, and will usually

give a wrong answer; for example, addition of J (=0.10) and f (=0.11)

gives 1.01, which has a 1 in the sign-digit position, and will be treated by

the machine as — f and not as lj.

A storage location, or the accumulator, is said to be clear when its con-

tent is 0. An operation which makes the content is said to clear the

storage location, or accumulator.

1-7 Form of orders in the machine. Orders are of the one-address type;

that is, each order which refers to the store (some do not) refers to one

address only in the store.

In a word representing an order the significance of the digits is as

follows

:

Most significant end

"'

T

Function Address digits Special

c igi ts indication

B-digit

The first five digits (counting from the left-hand end) specify what kind

of operation (e.g., addition, subtraction, transfer to store) is to be carried

out; the next digit is the 5-digit, whose function will be explained in Sec-

tion 1-13, the next ten digits specify the address of the storage location

involved in the operation (e.g., address of addend, address in the store to

which the content of the accumulator is to be transferred). The last digit

is used for special indications, as will be explained later.

The function digits 00101, for example, specify the operation of trans-

ferring from the accumulator to the store, and 10101 is the binary form of

21; interpreted as an order, therefore, the word

0010 1, 0, 000001010 1,

means "transfer the content of the accumulator to storage location 21."

Note that the commas are written here to make clear the structure of the

word ; they do not represent anything in the store or in the accumulator of

the machine.

1-8 Storage of orders. Orders are normally placed in storage locations

numbered in the sequence in which the machine is required to carry out
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the operations specified. The control unit is designed so that the machine,

having carried out the operation specified by the order in m, automatically

takes C(m + 1) as the next order, unless the order in m specifies otherwise.

1-9 Written form of orders. When orders are written the function digits

are specified by a single letter, and the address is written in decimal form;

for example, the order given above is written T 21. The written forms for

some of the more important operations are:

A n

S n

T n

U n

H n

V n

Add C(ri) to C(Acc), placing the result in the accu-

mulator.

Subtract C(n) from C(Acc), placing the result in the

accumulator.

Transfer C(Acc) to storage location n, and clear the

accumulator.
t

Copy C(Acc) into storage location n, and retain in

the accumulator.

Replace C(R) by C(n).

Multiply C(n) by C(R), and add the result into the

accumulator.

Stop (no address required).

Other orders will be introduced later.

Note that the content of storage location n is not affected by the orders

A, S, H, or V, which may be thought of as taking a copy of the content of

the location, which is itself left undisturbed. The content of storage loca-

tion n is, however, destroyed, and is replaced by the current content of the

accumulator, as a result of the execution of a T- or [/-order. The content

of the multiplier register, set by an //-order, remains unchanged until it is

reset to a new value by another //-order.

1-10 Some simple examples. We shall now consider what orders are

required to carry out some simple calculations. These are to be thought

of as forming part of a larger calculation, and the numbers operated on are

to be thought of as having been calculated and placed where they are

stated to be, at an earlier stage in the work. Unless the contrary is specified,

it is supposed that the accumulator is initially clear, and is to be left clear

on the completion of each example.

Example 1. (7(10) = x (i.e., the number x is in storage location 10),

C(14) = y; to form x + y and place it in 8. The orders required, and the

content of the accumulator after each order has been carried out, are:
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Order

A 10

A 14

T 8

C(Acc)

x

x + y

o

Notes

Accumulator initially clear

the orders being taken in this sequence. Now the control unit takes the

orders from successive storage locations unless explicitly instructed to do

otherwise; hence we arrange for these orders to be placed in consecutive

storage locations, say 100, 101, 102, as follows:

Storage location

100

101

102

Content

A 10

A 14

T 8

Example 2. C(10) = a, C(ll) = b, C(20) = x, C(30) = y; to place

ax in 12 and ?/(a.r + by) in 13.

Storage

location Content C(Acc) Notes

100 H 20 — x to multiplier register

101 V 10 ax Accumulator initially clear

102 [/ 12 ax Place ax in 12, and retain in ac-

cumulator

103 H 30 — y to multiplier register

104 F 11 ax -j- by

105 T Place {ax -f- by) in

106 F {ax +by) • y

107 T
7

13

Notes: (1) Since the content of the multiplier register set by an //"-order

remains unaltered until reset by a further //-order, C{R), set equal to y by

the order in 103 and used by the F-order in 104, remains available for

further use by the F-order in 106.

(2) The multiplicand must be the content of a storage location; hence

the quantity {ax + by) formed in the accumulator must be moved out

into a storage location before it can be multiplied by y. Any spare storage

location may be used for such temporary storage of a number which is

going to be used again almost immediately afterwards, but it is often

convenient to use location for this purpose.
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(3) The result of a multiplication of two 17-digit numbers is a 33-digit

number, but only 17 of these digits are transferred to the store by a T- or

£7-order; the rest are cleared out by the T-order and lost. The products

should strictly be rounded off before being transferred to the store, but

this refinement will be ignored for the present.

Exercises A

1. Given x in 20 and y in 22, place (x + y) in 30 and (2x — y) in 32.

2. Replace C(0) by its square.

3. Replace C(0) by its cube.

4. Divide C(4) by ir
2

, returning the result to 4. It may be assumed that l/w 2

is in 10.

5. Given z = x + W, where x = C(4),y = C(6), place the real and imaginary

parts of z
2 in 8 and 10 respectively, and \z\

2 in 0.

6. Evaluate x 3 + x4 , where x = C(10), and place the result in 0.

7. Evaluate ab -f- cd + ef, where a, b, c, d, e, f are in 10, 11, 12, 13, 14, 15,

respectively. Place the result in 16.

8. a, b, c, and x are the contents of 100, 102, 104 and 60, respectively. Form
ax 2 + bx + c and place it in 4.

9. The dimensions in inches of a rectangular block are given in 50, 51, and 52.

Place its surface area (in square inches) in 100, and its volume (in cubic inches)

in 101.

1-11 Jump orders. The process of taking the next order out of the

sequence in which the orders are stored is known as a jump or transfer of

control. After a jump, orders are taken serially starting from the new
address, until another jump order is reached. Such a jump can be made
either unconditionally or conditionally, according to the value of some

quantity obtained in the course of the calculation. In the EDSAC, con-

ditional jumps are conditional on the sign of the content of the accumulator.

The written forms of three kinds of jump order (there are others which

will be introduced later) are:

F n

G n

E n

Take C(n) as the next order.

If C(Acc) is negative (i.e., has a 1 in the sign-digit

position), take C(ri) as the next order; otherwise

proceed serially (i.e., do not jump).

If C(Acc) is positive or zero (i.e., has a in the sign-

digit position), take C(n) as the next order; other-

wise proceed serially (i.e., do not jump).

F n gives an absolute transfer of control. E n and G n give conditional

transfers of control, and it will be observed that E n causes a jump to take
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place when G n would not do so, and vice versa. Conditional jump orders

enable the machine to choose between one course of action and another,

according to some specified criterion. Use of G- or ^-orders for this purpose

requires that any criterion used shall be expressed in such a form that it

depends on the sign digit of the number in the accumulator.

Note that the order F n, if placed in storage location n, is repeated

indefinitely once control has been sent to that location, so that the machine

is to all intents and purposes brought to a stop. This is known as adynamic

stop, and may be used instead of an ordinary stop brought about by a

Z-order.

It often happens that when a conditional jump has taken place the

content of the accumulator is no longer required, having perhaps only been

formed in order that its sign might provide the criterion for the jump. The
accumulator must then be cleared before the calculation can proceed.

This could always be done by a T-order, but both time and storage space

are saved, and programming is simplified, if this clearing operation is

incorporated in the jump order. This can be done (in the case of an E-

or a (7-order) by making the special indication digit (the extreme right-

hand digit) a 1. A digit in this position in an order is not normally used as

a numerical digit, and to emphasize this it is represented by a special

symbol -k in the written form of the order. Thus:

G n

E n

If C(Acc) is negative, take C(n) as the next order,

and clear the accumulator; otherwise proceed

serially (without clearing the accumulator).

If C(Acc) is positive or zero, take C(n) as the next

order, and clear the accumulator; otherwise

proceed serially (without clearing the accu-

mulator) .

Note that the accumulator is cleared only if a jump does occur.

Example 3. Replace C(4) by its modulus; that is, if C(4) is negative,

place —C(4) in 4, otherwise leave C(4) unaltered. Let x be written for the

original C(4).

Location Content C(Acc) Notes

100 8 4 —x Accumulator initially clear

101 G 103 7T —x Test sign of —x, jump and clear the

accumulator if negative

102 T 4 If x negative, place —x in 4

101 -> 103 Next order
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If x is negative, when the conditional jump order in 101 is encountered

the content of the accumulator is positive and equal to \x\, the quantity

required. The machine therefore proceeds serially and takes its next order

from 102 and plants |x| in 4. If x is positive, the content of the accumulator

is negative when the jump order is encountered; in this case location 4

already contains \x\ and all that is required is that the machine should

proceed to the next part of the program with the accumulator clear. This

is just the situation provided for by an order of the form G n ir. Note

the use of the arrow to indicate that control can arrive at' 103, having been

transferred from 101.-

Exercises B

1. Place — |C(4)| in 0.

2. Place |<?(4) - (7(6) |
in 0.

3. Given (7(0) > 0, place the larger of 0(0) and |(7(4)| in 0.

4. If C(4) and (7(6) have the same sign, place the product of (7(4) and (7(6) in 0;

if they differ in sign, place |C(4) — (7(6) |
in 0.

5. (7(6), (7(7), and (7(8) are all positive and less than \. Stop the machine if

it is not possible for these numbers to represent the lengths of the sides of a

triangle. (Note: the sum of any two sides of a triangle must be greater than the

third side.)

6. If (7(0) < 0, put (7(4) in 6, and if (7(0) > 0, put (7(8) in 6. In either case

reverse the sign of (7(0).

7. What happens in your program for question 6 if (7(0) =0? Modify your

program if necessary so that the machine stops in this case.

8. 50 contains either § or yq. Whichever it is, replace it by the other.

1-12 Repeated groups of orders. Most extensive calculations involve

performing the same, or clpsely similar, groups of operations repeatedly

on different sets of numbers. Such repeated groups of operations are

represented in a program by groups of orders which are executed a number
of times by the machine ; it will be seen later that minor modifications may
be made to the orders between successive uses. The number of repetitions

required is sometimes known in advance and is sometimes not known. In

any case a jump order is required to return control from the end of the

repeated group of orders to the beginning, and this jump must be condi-

tional in order that the machine may pass on to the next part of the pro-

gram after a sufficient number of repetitions.

Example 4. (7(4) is negative. Add (7(0) repeatedly to it until the result

becomes positive, and place the result in 4. Let (7(4) = —x (x is positive),

(7(0) = y.
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Storage

location Order C(Acc) Notes

100 A 4 —x
102 -» 101 A —x + ?/, —x -f 2y, —x + 3y

—x -f- 4y . . . successively

102 G 101 Test and jump if

C(Acc) <
103 T 4

Notes: (1) A procedure of this kind could be used for reducing a negative

angle 6 to the first or second quadrant, by successive addition of ir, as a

preliminary to calculating its sine or cosine. Since numbers in the machine

must lie in the range —1 < x < 1, it would be necessary to work with kd

and kir instead of 6 and x, where k is a scale factor chosen to bring both

quantities within the capacity of the machine.

(2) In this example the number of repetitions is not known in advance,

and is controlled by the sign of the number calculated.

Example 5. C(10) = a (<£), C(20) = y. To form

(a + ay + ay 2 + • • • + ay 9
)

and place it in 0.

There are several ways in which the required result could be evaluated.

We shall use the procedure represented by the formula

[{(a • y + a) • y + a) • y + a] • y + a . .

.

This is a special case of a standard general procedure for evaluating

polynomials. Thus we want repeatedly to multiply by y and add a, and to

carry out this pair of operations the right number of times. Since there is a

sequence of multiplications by y, let y be placed in the multiplier register.

If Sn is the partial result after n repetitions of the process, then

Sn+i = ySn + a.

Since the final result is required in 0, let each Sn , as it is formed, be placed

in 0. Then the repeated group of orders (y having been placed in the

multiplier register as part of the preliminary preparation) is

:

Order

(1)

V
A 10

T

C(Acc)

ySn

ySn + a = Sn+1

Notes

C(0) = s/l+l
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This has to be carried out 9 times starting with (7(0) = a, or 10 times

starting with (7(0) = 0; we shall adopt the first of these alternatives. It

is necessary to count the number of times this repeated group of orders

has been carried out, to provide a criterion for the completion of the

calculation.

The following is one method of counting. It depends on the use of a

storage location as a counting register or counter; the content of this

register is sometimes called the count. To count 9 repetitions, we arrange

to place —9 in the counter as part of the preliminary preparation, and to

increase this number by unity after each repetition; then

after first time, count

after second time, count 7,

after ninth time, count = 0.

In the EDSAC, counting is usually done in units of 2~ 15
; thus in the present

example the machine would start with — 9 •

2~~ 15
as the content of the

counter, and would add 1 •
2~ 15

after each repetition. The part of the

program concerned with counting is given below. Count is kept in storage

location 4, 1 •
2~ 15

is stored in 2, and 9 •
2~ 15

is stored in 5. n denotes the

number of times the sequence of orders has been repeated.

Location Content C(Acc) Notes

Numbers

2 1-2- 15

4 — (9 - n) -2~ 15 Count, initially

5 9-2- 15 —9-2~ 15

Orders

98 S 5 -9-2- 15 Set count

V + 102 -> 99 T 4

100 Orders to be re-

peated 9 times

(p in number)

p+ 100 A 4 -(9 - n) -2- 15

p+ 101 A 2 — (9 — n— 1)
-2- 15 Count and test

p+ 102 G 99 — (9 — n — 1) -2- 15 for completion

p+ 103 Next order of program.



14 THE ELEMENTS OF PROGRAM DESIGN [CHAP. 1

If, when the order in p + 102 is reached, an insufficient number of

repetitions have been performed, the content of the accumulator is nega-

tive, and is equal to the new value of the count; it is placed in the counter

by the action of the order in 99, which is reached by a jump from p -f- 102.

If, however, the full number of repetitions has been performed, the content

of the accumulator is zero, and the machine proceeds to take the next

order from p + 103.

Notes: (1) The process of counting and testing is carried out after the

operation to be counted, and leaves the accumulator clear.

(2) If more, or fewer, repetitions have to be made, only (7(5) has to be

changed.

(3) The above group of orders includes the initial setting of the count,

so it can be used any number of times in the course of a calculation; this

is expressed by calling it "self-resetting.

"

The complete program required for the example is as follows:

Location Content C(Acc) Notes

Numbers

2 l-2~ 15

4 -(9 - n) -2- 15 Initially — 9 •
2" 15

5 9-2- 15

Orders

95 H 20 Set C{R) = y

96 A 10 a 1 Set first multiplicand

97 T and clear accumu-
J lator

98 S 5 —9-2- 15
1 Set count

105 -> 99 T 4
J

100 V ySn

101 A 10 yS n + CL = Sn+\

102 T
103 A 4 -(9 - n) -2- 15

104 A 2 — (9 — n — 1) -2~ 15
1 Count and test for

105 G 99 — (9 — n — 1)
-2- 15 completion

106 Next order of program

This example illustrates the procedure which it is often convenient to

use in programming a repetitive process

:

(1) program the process to be repeated,

(2) program how to get out of the repetitive process,

(3) program how to enter it, and any preparatory steps.
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1-13 The use of the B-register. Situations in which a given group of

orders must be obeyed, exactly as they stand, a number of times before the

machine passes to the next part of the calculation are comparatively rare,

but it is very common to find a situation in which a group of orders must be

repeated a number of times with a slight modification each time. Usually

the modification concerns the addresses specified in certain of the orders.

Example 6. C(10) = a , C(ll) = «!,.,., (7(19) = a 9 ; (7(20) = y.

To form the polynomial (a y
9 + ctiy

8 + • • • + a 8y + a 9 ) and place it

in 0. This example is similar to, but more general than, the one considered

in the last section. The polynomial may be evaluated by repeated applica-

tion of the formula Sn +i = ySn + an , which differs from the corresponding

formula in the earlier case only by the occurrence of an instead of a. The
same group of orders from Section 1-12 can be used, provided that it is

arranged that the address of the number referred to by the second order

is increased by 1 on each repetition. This can be contrived by making use

of the B-register.*

The B-register is capable of holding a single integer which is placed

there by the order

B m Replace the content of the B-register by the number m
(N.B. not the content of location m).

It is possible for the programmer to arrange that the content of the B-

register is added to the address specified in any order, as that order is on its

way from the store to the control unit of the machine. He indicates that

this is to happen by writing the letter S after the function letter of the

order. If the B-register contains the number 10 the sequence of orders

V
AS
T

thus has precisely the same effect as that labelled (1) in Section 1-12. If,

however, the sequence is followed by an order which increases the number
in the B-register by 1, it will, if repeated, be equivalent to

V
A 11

T

* This device was originated at Manchester University and given the name
B-line; other names are index register and modifier register.
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The number in the i?-register can be increased by means of the order

BS m Increase the content of the 5-register by m (not by
the content of location m).

Here the letters BS are best regarded as being equivalent to a single func-

tion letter. It is sometimes necessary to decrease the content of the B-

register, for example to subtract m from it. This is indicated on the program

sheet by writing the letter S (which in this context stands for subtract)

after the address of the order. Thus we have

BS mS Decrease the content of the 5-register by m.

Similarly, we have

B mS Replace the content of the 5-register by — m.

It will be seen that the letter S is used in different senses according to the

type of order, and according to whether it follows the function letter or the

address. Inside the machine, orders which are punched with an S following

the function letter have a 1 in the position following the function digits;

those which have no S punched after the function letter have a in this

position. The digit or 1 is therefore called the B-digit. (See Section 1-7.)

It will now be seen that the formula given at the beginning of this

Section can be evaluated by the repetition, an appropriate number of times,

of the sequence of orders given below ; it is assumed that initially location

is clear, that the multiplier register contains y, and that the J5-register

contains the number 10.

Location Content Notes

101

102

103

104

V
AS
T
BS 1

Replace Sn in by Sn+1 = ySn + an

Increase number in B-register by 1

In order to arrange for these orders to be repeated the appropriate number
of times it would be quite possible to make use of a counting sequence

similar to that described in Section 1-12. However, a simpler method can

be used, since an order is provided in the order code of the EDSAC which

makes it possible to use the number in the 5-register for counting. This

order gives a conditional transfer of control, and is as follows:
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J n If the content of the J5-register is not zero take C(ri) as the

next order; otherwise proceed serially.

This order thus transfers control unless the content of the 5-register is zero.

It is therefore necessary to arrange that the number in the 5-register either

starts by being positive and decreases to zero, or starts by being negative

and increases to zero. The latter procedure is appropriate in the present

case and the orders, assuming location is initially clear, are as follows

:

105

100 B 10 S
101 BS 1

102 V
103 AS 19

104 T
105

106

J 101

Place —10 in J5-register

Increase number in 5-register by 1

Replace Sn in by Sn+1 = ySn + an

Jump unless number in 5-register is

zero

If the constants a , a i} a 2 , etc., were stored in reverse order, that is, a 9 in

storage location 10, a 8 in storage location 11, etc., it would be necessary

to use a decreasing count as follows:

105

100 B 10

101 BS 1 S
102 V
103 AS 10

104 T
105 J 101

106

1

Place 10 in 5-register

Decrease number in B-register by 1

Replace Sn in by £n+ i
= ySn + an

Jump unless number in B-register is

zero

Notes: (1) The same set of orders can be used if more terms are to be

included in the sum, or if the coefficients are to be taken from a different

set of (consecutive) storage locations, provided that the orders in 100 and

103 are suitably modified.

(2) The nonrepetitive sequence of orders V 0, A 19, T 0, V 0, A 18,

T 0, etc., would be faster in operation, but would take up much more

storage space and would lack the flexibility indicated in note (1).

(3) If the sum of the address in the order and the number in the B-

register exceeds 1024, the sum is formed mod 1024; overflow into the

B-digit position does not take place. It is only the address digits and the

special indication digit which may be modified by the use of the B-register.
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Exercises C

1. Clear storage locations 100 through 199.

2. Place in 4 the sum of the moduli of the contents of 100 through 199.

3. Place in 4 the sum of the squares of the contents of 100 through 199.

4. Place C(n + 2) in n, for n = 20 through 40.

5. Test the numbers in storage locations 150, 151, 152, . . . one after another

until a number x, satisfying T
3
g < x < £% is found; place x in 0.

6. Storage locations 200 through 249 contain a series of positive numbers. If

any one of these numbers is greater than jq, multiply all the numbers by j-q.

7. a, b, c are the contents of 100, 102, 104, respectively, and it is assumed that

a > 0, b > 0, (7(60) = h(>0), and that a quantity xn takes the values 0, h,

2h, Sh, .... Place in 4 the value of x n for which y = ax n
4— bx n + c is least,

and in 6 the corresponding value of y.

8. Given x = (7(10), place x 13 in 0,

(i) taking the shortest possible machine time,

(ii) using the fewest possible orders.

9. Given x = (7(4), place

(.x
9 + 2x8 + Sx7 + . . . + 9x + 10) •

2-6
in 6,

(i) using a table of coefficients 1 •
2~6

, 2 •
2~6

etc., and

(ii) forming each coefficient from the previous one as it is required.

Compare the machine times and the numbers of orders required.

1-14 Equivalence between orders and numbers; pseudo-orders. In

the machine a word which is intended to be used as an order consists of a

sequence of digits and 1, just as does a word intended to be used as a

number. There is thus an equivalence between orders and numbers.

Consider, for example, the order T 21 whose form inside the machine is

given in Section 1-7; we have

T 21 = 0.0101000000101010.

The first five digits represent the operation of transfer, and are, by them-

selves, equivalent to the number 5 • 2
-4

; the remaining digits represent

the address, and are equivalent to 21 •
2~ 15

. We thus have

T 21 = 5-2~ 4 + 21 -2~ 15
.

Every function letter similarly has its numerical equivalent ; if x is the nu-

merical equivalent of X, then

X n= x-2~ 4 + n-2" 15

The full list of numerical equivalents is given in Appendix 1 ; a few of the

more common are
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A -4
S 12

E 3

G -5

The B-digit has the value 2~ 5
,
and the "special indication digit" the

value 2
-16

; if one or both of these digits are l's, 2
-5

or 2~ 16
, or both, must

be added to the numerical equivalent of the order; for example,

TS 21 = 5-2~ 4 + 2~ 5 + 21 -2- 15

E 100 7T = 3 •
2" 4 + 100 •

2~ 15 + 2~ 16

It is sometimes convenient to use the equivalence between orders and

numbers to express as an order a word which in the course of a calculation

is going to be used as a number. For example, for — ^ we may write A 0.

This device is particularly useful when a few numbers have to be put

into the machine along with a sequence of orders; it is also useful when
the arithmetical unit is used to modify orders, as described in Section

1-15.

Numbers written as orders, but not intended to be treated as such by

the machine, are called pseudo-orders.

It will be observed that the list in Appendix 1 includes letters corre-

sponding to all numbers in the range —16 < x < 16, whether the letters

appear in the order code of the EDSAC or not. All these letters may be

used in pseudo-orders. Note, in particular, that the numerical equivalent

of P is 0, so that

P n= n-2' 15

Thus, in the program of Section 1-12, the constants 2 15 and 9-2 15
, in

2 and 5, could be written as pseudo-orders as follows:

Location Content

P 1

P 9

Pseudo-orders are conventionally indicated in written programs by the

vertical double lines as shown. Note that the constant 2~ 15 = P 1, which

is frequently required in programs, is usually kept permanently in 2.
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*1—15 Use of the arithmetical unit for constructing or modifying orders.

Use of the same form within the machine for numbers and for orders makes
it possible to use the facilities of the arithmetical unit for constructing or

modifying orders during the course of the calculation. Before the B-

register was fitted to the EDSAC, very extensive use indeed was made of

this facility by programmers, as a study of the first edition of this book

will show. A considerable amount of use is still made of it, even now that

the 5-register is available. For this reason, and because many machines

do not have a 5-register, a full treatment of the subject will be given.

Example 7. To add the numbers in storage locations 250, 251, 252,

. . . , 299, without using the ^-register.

The following orders add C(250) to the number in 0:

Location

100

101

102

Content

A
A 250

T

We first show how orders may be written which will increase the address

in the second order by 1.

If the words A 250 and P 1 are added as if they were numbers, the

result is A 251 ; for we have (since the numerical value of the function

digits corresponding to A is —4 2
-4

)

A 250 = -4 2~ 4 + 250 •
2~ 15

P 1= 0-2~ 4 + l-2~ 15

sum = -4-2 251 • 2 15 A 251.

The orders required to increase the address of the second order in the above

sequence by 1 are therefore (it being assumed that, as usual, C(2) = 2
-15

)

Location

103

104

105

Content

A 101

A 2

T 101

* This section may be omitted on first reading.
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These orders are shown as being placed in locations immediately following

those containing the original sequence. If the combined sequence of six

orders is operated repeatedly, the effect is to form in the sum of C(250),

(7(251), (7(252), etc. It is only necessary to provide some means of stopping*

the process at the right time in order to obtain a program for adding up the

given sequence of 50 numbers. This may be done by using a counting

sequence similar to the one described in Section 1-12. A simpler procedure

is to make use of the address in the variable order for counting; for this

purpose the T-order in 105 is replaced by a L
T

-order, so that the newly

modified order shall remain in the accumulator where it can be tested to

see whether the modification has been carried far enough. This is done by

subtracting the pseudo-order A 300 (stored in a convenient location,

say 50) and testing (by means of a (7-order) whether the remainder is

positive or negative. The complete program is given below. It is assumed

that initially (7(0) = 0. The entries in the column headed C(Acc) refer

to the first time the orders are executed.

Location Content C(Acc) Notes

50
||
A 300 Pseudo-order

107 -» 100 A
101 A 250 (7(250) Add next number to partial sum
102 T
103 A 101 A 250

104 A 2 A 251 Modify order in 101

105 U 101 A 251

106 S 50 -49 -2" 15 Test for end

107 G 100 x

108

Note that the (? 100 x order used for testing causes the accumulator to

be cleared when control is transferred, and that when this order is en-

countered on the 50th repetition the accumulator contains zero, so that

the machine passes to the next part of the program with the accumulator

clear.

When the process is complete, 101 contains A 300. If the orders are

to be used again later, means must be provided to reset (7(101) to its

original value, namely, A 250. This may be done by storing the pseudo-

order A 250 in 51, and preceding the orders by the following:
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Location Content C(Acc) Notes

98

99

A 51

T 101

A 250
Set C(101) = A 250

The sequence is then self-resetting.

There are various alternative ways in which a program for this example

could be written. It is not necessary to go into these in detail, since no

new principles are involved, but the following may be given as an example.

As before, the entries in the column headed C(Acc) refer to the first time

the orders are executed.

Location (Content C(Acc) Notes

50 A 300

51 A 301 Pseudo-orders

52 P 51

97 S 52 -51 -2~ 15

105 -> 98 A 51 A 250

99 T 101

100 A Add next number to partial

101 A 250 C(250) sum. A 250 planted by order

102 T in 99

103 A 101 A 250

104 S 50 -50 -2~ 15

105 G 98

106

In the example just given the machine was used to modify the address

in an order in the course of the calculation ; it is sometimes desired to alter

the function digits (and possibly the address as well)

.

Example 8. The accumulator contains A 100; to place E 102 in 150.

The numerical values of the function letters A and E are given by

a = -4-2" 4
, e = 3 •

2~4
;

for the difference of these, we have

e — a = 7 •
2" 4

,

and this is the numerical equivalent of U.
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Hence we have

A 100 = -4-2~ 4 + 100 -2~ 15

U 2 = 7-2~ 4 + 2-2~ 15

23

sum = 3-2—4 102-2-15 _ E 102.

We can thus construct the required order by adding the pseudo-order U 2

to the order A 100 in the accumulator. The orders required for this pur-

pose are

Location Content C(Acc) Notes

3 \\U 2 Pseudo-order

100

101

A 3

T 150

A 100

E 102

Initial content

Form E 102

Plant E 102 in 150

*1-16 The mix order. This order was added to the order code of the

EDSAC, shortly after the machine was completed, with a view to facilitat-

ing the modification of the functions of orders by rendering it unnecessary

for the programmer to have regard to the numerical values of function

letters. Many other machines have a similar facility. The mix order is as

follows

M n Clear the six most significant digits of the content of the

accumulator, and add C(n) to what remains in the

accumulator.

As normally used, the effect of this order is to replace the function digits

of C(Acc) by those of C{n), and to add the address digits of C(ri) to those

of C(Acc).

Example 9. To form the sum of products XC(n) • (7(100 + n) from

n = 200 through 249.

The general procedure is similar to that of the calculations considered in

earlier examples of this Section, except that there are now two orders in

which the addresses have to be advanced by unity for each repetition. The
program is as follows:

This section may be omitted on first reading.
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Location Content C(Acc) Notes

50

51

V 350

F 100 -
Pseudo-orders

110 -> 100 A
101 H 200 Add next number to partial

102 V 300 C(200) • C(300) sum
103 T
104 A 101 H 200

105 A 2 // 201 Modify orders in 101 and

106 U 101 tf 201 102

107 M 51 F301
108 U 102 V 301

109 £ 50 -99 -2" 15 Test for end

110 (7 100 7T

Note: The il/-order cannot easily be used to decrease the address in an

order in the accumulator; in this example the address in the //-order is

lower than that in the F-order, and the il/-order is therefore used to form

the F-order from the //-order, and not vice versa.

Exercises D

1. Given the number n • 2
_1 ° in location 4, clear location n.

2. Locations 300 through 399 contain a series of numbers ao, a\, . . . , (199,

respectively. Given the number n •
2~ 15 in location 4, replace a n by its modulus.

3. The quantity y is defined by the infinite series

V ao a\x ci2X' a-sx
1

The number x is given in 0, and n, the number of terms necessary to produce the

required degree of precision, is given by the number n • 2 -15 in 4. The coeffi-

cients ao, a\, . . . are in 150, 151, 152, . . . Place y in 6.

4. Modify your program for the last exercise so that the coefficients are

assumed to be in //?, m.+ 1, m + 2, . . . , where m is defined by the number

m • 2
-15

in 5, instead of in 150, 151, ...



CHAPTER 2

SUBROUTINES

2-1 Introduction. Since an automatic computing machine can perform

only a very limited number of basic operations, a mathematical calcula-

tion usually requires an extended sequence of orders. It is often convenient

to break up this sequence of orders into self-contained groups of orders

called subroutines. Each subroutine is responsible for a specific distinct

part of the calculation, such as the evaluation of a sine or a cosine, or the

extraction of a cube root. In simple calculations the subroutines can be

placed end to end, with perhaps a few additional orders introduced for the

purpose of connecting them, but in more complicated problems it is better

to make use of a master routine as described in Section 1-9.

The initial construction, the testing, and (if necessary) the correcting

of a program are all facilitated by the use of a master routine and sub-

routines. Further, the same subroutines can often be used over again in

other programs, and the labor of drawing up a program for a particular

problem is often greatly reduced if standard subroutines for performing the

more common computing operations are available. If it is intended that

an electronic computing machine shall be used on a wide variety of prob-

lems, it is, therefore, worth while to spend some effort on the establishment

of an adequate library of such subroutines. Many subroutines are, how-

ever, constructed for particular problems, and it is not intended that they

should be kept permanently in a library. Most of what is said in this

chapter applies to subroutines in general, but attention is also given to the

special requirements of subroutines intended for incorporation in a library.

A master routine is concerned with the over-all organization of the problem,

but it is prepared in the same way as a subroutine.

2-2 Relative numbering of addresses. To illustrate the techniques used

in constructing subroutines, we will take as an example a subroutine for

replacing the number in storage location 4 by its modulus. In practice,

this is much too simple an operation to be dealt with by a subroutine and,

indeed, some machines include in their order codes a special order for taking

a modulus. A sequence of orders, starting in location 100, for replacing

the number in 4 by its modulus has already been given in Example 3,

Section 1-11. It is as follows:

25
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Location Content

100 S 4

101 G 103 7T

102 T 4

Notes

|C(4)|to4

[chap. 2

These orders are not, however, written in a sufficiently general form to be

very useful in practice as a subroutine, since the address in the second order

depends on the first order of the group being placed in location 100, and it

might be required to place it somewhere else. In general, if the first order

of the group were in location 0, the orders required would be

Location

e

e+ l

(9 + 2

Content

S 4

G (6 + 3)

T 4

Examination of other programs, for example those given in Examples 4

through 7, will show that it very often happens that the addresses in

some of the orders depend on where the program as a whole is placed in the

store. In the system to be described, subroutines are written with addresses

specified relative to an arbitrary starting point, and the necessary adjust-

ments are made when the subroutines are read into the store. Such ad-

dresses are called relative addresses to distinguish them from true or

absolute addresses.

2-3 Internal and external forms of orders. The form in which orders

are written and punched on the input tape differs from the form they take

in the store of the machine. The written and punched form is called the

external form, and the form inside the machine the internal form. Con-

version from the external to the internal form takes place automatically,

in a way which will be described later, when the input tape is read by the

machine.

So far we have written orders in a form which corresponds directly to

the binary form which they take inside the machine, and which may be

regarded as being a shorthand notation for that form. This internal form

(as written) consists of a function letter (followed by an S if the 5-digit

is 1), an absolute address, and a t if the special indication digit is 1. The

external form differs in that the address can be either absolute or relative,

and that there is a terminal code letter at the end.
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The terminal code letter F is used to indicate that the address specified

in an order is an absolute address, and the terminal code letter 6 is used to

indicate that the address specified is relative to that of the first order of a

group of orders. The use of may be illustrated by showing how a sub-

routine for taking a modulus would be punched on the tape.

Example 10. |C(4)| to 4.

Location Content Tape entry

e

0+ 1

(9 + 2

8 4

G (d + 3) 7T

T 4

S 4 F
G 3 irS

T 4 F

An indication must be given to the machine of the address from which

the relative numbering, indicated by terminal code letter 6, starts. This

is done by punching the letters G K &s & marker symbol, or control com-

bination, at the head of the group of orders in which this value of 6 is to

be used. The tape is thus punched as follows:

G
S 4

G 3

T 4

K
F

F

When the control combination G K is read, the machine makes a note of

the number of the storage location into which the next order read from the

tape (S 4 F) is to be placed. Subsequently, when it encounters an order

terminated by 6, it adds this number to the address specified in that order

before the order is placed in its final location in the store. Note that the

symbols G K punched on the tape merely serve to mark the beginning of

a subroutine, and do not correspond to anything in the program when it

is placed in the store.

Terminal code letters serve two purposes. They act as markers on the

input tape to indicate the end of an order, and they indicate whether the

addresses are relative or absolute. All orders punched on the tape must

have a terminal code letter. In the case of a B-order, the letter S can act

as a terminal code letter and has the special significance described in

Section 1-13.

Example 11. Storage locations 200 through 249 contain a series of

positive numbers. To form, and place in 0, the sum of the cubes of those

numbers which are greater than or equal to 1000 •
2' 15
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Location Content Tap 2 entry

G K
0+0 T . y F
0+1 5 50 5 50 F

+ 15 -^0+2 BS IS 55 1 5

0+ 3 AS 200 AS 200 F

+ 4 S (0+7) S 7

0+ 5 G (0+ 15) 7T G 15 7T0

0+ 6 # (0 + 9) 7T # 9 7T0

0+ 7 1000 •
2~ 15 P 1000 F

0+ 8 a r
2 (P ^

+ 6 --> 0+ 9 i/£ 200 HS 200 F
0+10 VS 200 VS 200 F
0+ 11 7

1 (0+8) T 8

0+12 V (0 + 8) V 8

0+13 .1 A F
0+14 T T F

+ 5 --> 0+ 15 J (0+2) J 2

Notes

Clear initially

Place 50 in 5-register

Subtract 1 from number
in jB-register

Place selected number,

a r , into the accumula-

tor

Subtract 1000- 2
~ 15

Jump if

a r < 1000 -2- 15

Jump and clear

Pseudo-order

Temporary storage

Form a r
2 and store it in

(0+8)

Form a r
3 in accumulator

Accumulate in

Jump to (0 + 2) unless

^-register contains

zero

Notes: (1) (0 + 8) is used for temporary storage. Something in the form

of an order or pseudo-order to be placed in this location must be punched

on the tape, otherwise the order HS 200, represented by the next tape

entry, would be placed there. What is placed there is irrelevant, since it is

overwritten by the order in + 11 before being used. In the above, P F
is shown as the tape entry, but any other order or pseudo-order would do

equally well.

(2) In the written program it is convenient to indicate orders or pseudo-

orders which are altered during the course of the calculation by enclosing

them in brackets; the brackets are only for the assistance of the programmer

and are not punched. Similarly, the vertical lines conventionally used to

distinguish pseudo-orders are not punched.

Programming is normally done in terms of the external form of orders.

2-4 Reading of orders from the input tape. This is quite an elaborate

operation. It includes the conversion of the decimal form of the address as

punched to the binary form in which it is stored, and the conversion of

relative addresses to absolute addresses. The reader might assume that

the machine is provided with a complicated input unit designed to perform
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these functions. In fact, as will be seen later, the input circuits are very

simple, and the functions just mentioned are performed by a special sub-

routine known as the initial input routine. Full information about the

initial input routine will be found in Chapter 3, but it is not necessary for

the reader to master that chapter in order to be able to write programs.

All that is necessary is that he should understand clearly the nature and

significance of the translation process which takes place when orders are

read from the tape and converted from their external to their internal

form; it is not essential that he should understand the details of the method

by which the process is carried out. It will, however, be convenient, later

in this chapter, to make use of a piece of nomenclature from Chapter 3.

The individual rows of holes specifying an order are read from the tape

one by one, and the information they contain is assembled in the accumu-

lator to form the complete order. This order is then transferred to the

position it is destined to occupy in the store as part of the program. It is

convenient to have a name for the order (in fact, an ordinary T-order) in

the initial input routine which affects this transference, and it will be

referred to as "the Transfer Order.

"

The control combination G K causes the initial input routine to make a

note of the address currently specified in the Transfer Order; this it does

by placing a copy of that address in storage location 42. Subsequently

all addresses terminated by 6 have (7(42) added to them.

It is important to remember that in the machine the addresses in all

orders are absolute addresses and that there are no equivalents of the

terminating code letters F or 6. These, and the control combination

G K, occur on the input tape only.

2-5 Open and closed subroutines. A subroutine such as that given in

Example 11 (Section 2-3) is entered immediately after the execution of

the order coming before it in the store and, when the subroutine has done

its work, control passes to the order immediately following it. Such a

subroutine is called an open subroutine.

Another kind of subroutine is called a closed subroutine. This can be

placed anywhere in the store, and is entered by a jump order and left by
another jump order. The second jump order is referred to as the link order.

This separation of the subroutine from the rest of the program often

facilitates the construction of programs and their subsequent testing and,

if necessary, modification. It also enables the same subroutine to be used

at several points in the master routine.

2-6 Entering and leaving a closed subroutine. There are two alternative

standard procedures for entering a closed subroutine. Either of these

enables the machine automatically to form the link order required for
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returning control to the proper point in the master routine; formation of

the link order takes place as part of the operation of the subroutine. All

closed subroutines in the EDSAC library are drafted on the assumption

that they will be entered in one" of these two ways. The simplest method
to understand—and the one now favored—makes use of the 5-register,

and subroutines designed for this method of entry are called closed B sub-

routines. The other type are known as closed A subroutines, and were

exclusively used before the B-register was fitted to the machine ; the library

still contains many subroutines of this type.

2-7 Closed B subroutines. Let q be the address of the first order of a

closed B subroutine. The subroutine is then entered as follows:

Location

V

P + 1

Content

B p
F q

Notes

Record p in B-register

Transfer control to subroutine

The address p in the order B p is the address of the storage location in

which that order itself is placed (the corresponding tape entry on the input

tape is B p F or B p 6, according as p is an absolute address or an address

relative to the beginning of this group of orders). The machine then

enters the subroutine—by means of the jump order in (p + 1)—with

information in the ^-register regarding the point in the program from

which the subroutine was entered.

If the content of the J5-register is not disturbed during the action of the

subroutine, the link order can consist simply of the order FS 2 placed at

the end of the subroutine. Since the 5-register contains the number p,

this order will transfer control to p + 2, that is, to a point in the master

routine immediately after that at which control was sent to the subroutine.

Usually, however, the writer of the subroutine will wish to make use of

the B-register within the subroutine itself, for the purpose of modifying

orders and for counting. He can do this if he makes use of the following

order which enables the content of the 5-register to be stored, and sub-

sequently replaced:

K m F Place the order B b in storage location m, where b is

the content of the 5-register.

Note that the order placed in storage location m is one which will, when
executed, reinstate the original content of the B-register, namely b.

A closed B subroutine can now be constructed as follows:
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Location Content Tape entry Notes

+ K (0 + r) K r 6 Place B p in (0 + r)

+ 1 — —
• • Orders for the calculation car-

• • • ried out by the subroutine

+ r - 1 — —
+ r 5 p (Z F) B b planted by order in

(0 + 0)

+ r + 1 F£ 2 FS 2 F Link order

Note: The order Z F shown as punched on the tape to go into + r is

overwritten before it is reached, by the action of the order in + 0. As

pointed out in Example 11, Section 2-3 [Note (1)], something must be

punched on the tape to go into + r; the advantage of punching Z F is

that if, as a result of some error on the part of the programmer, the order

Z F does not get overwritten, the machine will stop at once. This could

happen if the subroutine were not called in correctly.

It will be noted that a closed subroutine can be called in from any part

of the program, without restriction. In particular, one subroutine can call

in another subroutine. Thus a division subroutine, for example, can be

used both by the master routine and by any subroutine which requires it.

*2-8 Closed A subroutines. A closed A subroutine may be entered in

the following manner (q is the address of the first order of the subroutine)

:

Location Content C(Acc) Notes

V

P+ 1

A p
F q

Zero

A p
A p

Place A p in accumulator

Transfer control to subroutine

The address p in the order A p is the address of the storage location in

which that order itself is placed (the corresponding tape entry on the input

tape is A p F or A p 0, according as p is an absolute or relative address)

.

This time, when the machine enters the subroutine after obeying the

jump order in (p + 1), the accumulator contains information, in the form

of the address in the order A p, regarding the point in the program from

which the subroutine was entered, and from this a link order can be con-

structed. The link order is conventionally E p -\- 2. F p + 2 would be

* This section may be omitted on first reading.
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better, but the F-order did not exist when the system now being described

was designed; a limitation imposed by the use of the E'-order is that

C(Acc) must be positive or zero when control is returned to the master

routine. The link order is produced by adding to the order A p in the

accumulator the pseudo-order U 2 [see Section 1-15, Example 8J.

Since that pseudo-order is required by all closed A subroutines, there is a

convention that it should be kept permanently in storage location 3,

where it is placed by the initial input routine.

A closed A subroutine is therefore constructed as follows

:

Location Content C(Acc) Tape entry

e + A 3

A p
E (p + 2)

G K

ASF

+ 1 T (6 + r) T r 6

(9 + 2 — —

<9 + r - 1

6 + r E (p + 2) (Z F)

Notes

On entry to subroutine

U 2 added to A p to

give E (p + 2) (link

order)

Plant link order in

(0 + r)

Orders for the calcula-

tion carried out by

the subroutine

Link order, planted by

order in (6 + 1)

Note: Closed A subroutines are normally designed to leave the accumu-

lator clear.

2-9 Use of library subroutines. In order to be able to use a library sub-

routine, it is not necessary to have an exact knowledge of how it is con-

structed or of the precise numerical process which it uses, provided that

there is available a concise specification of what it does and how it is to be

used. Given a library of subroutines, it is possible to program with very

little trouble some relatively elaborate calculations. All that is necessary

is to write a master routine to which control is sent at the start of the pro-

gram and which directs control to the various subroutines in turn.

Example 12. To read a number x < 0, calculate and punch e
x

.

Suppose we have, placed in advance in the store, three subroutines with

the following specifications:
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R

E

P

Reads one number from the tape and places it in the accumu-

lator. (Starts at address 100.)

If C(R) = x{<0), this subroutine places e
x
in the accumula-

tor. (Starts at address 150.)

Punches C(Acc) on the output tape. (Starts at address 200.)

A master routine for this calculation is as follows:

Location Content Tape entry

(relative

address)

1

B e

F 100

T
H

B (4 + 0)

F 150

B (6 + e)

F 200

Z

G K
B 6

F 100 F
R -»2

3

4

5

T OF
H OF
B 4 6

F 150 F
E -* 6

7

B 6 6

F 200 F
P->8 Z F

Notes

Call in R; x to accu-

mulator

x to multiplier register

ready for E
Call in E; places e

x
in

accumulator

Call in P; punches

C(Acc) = e
x

Stop

Note. In the written form of EDSAC programs, orders which transfer

control unconditionally are usually underlined, as in the above example.

Exercises E

Construct master routines tp carry out the following operations,

assume that these subroutines are available in the store:

You may

8
T
D
R

which replaces C(Acc) by its square root. (Starts in 70.)

which replaces C(Acc) by J cos 180 • C(Acc)°. (Starts in 110.)

which replaces C(Acc) by C(Ace) /C(R). (Starts in 160.)

which replaces C(Acc) by a number read in decimal form from the input

tape. (Starts in 200.)

which punches C(Acc) and destroys it. (Starts in 250.)

The master routine cannot be placed in any location less than 320. The sub-

routines are all of the closed B type, and are liable to change the content of the

multiplier register and the contents of locations 0, 1,4, 5, 6, and 7.

Numbers to be read by subroutine R should be punched as decimal fractions,

with the decimal point not punched but assumed to be at the left-hand end, and
with a + or — sign after the numbers. For example,
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+0.8571 should be punched as 8571+

and — J should be punched as 5

—

The number of decimal digits punched must not exceed 11.

1. Print the reciprocals of the numbers 2 through 10.

2. Print the values of the function \/n/(n + 1) for n = 0, 1, . . . , 10.

3. Print the inverse factorials l/(w!) of the numbers n = 2 through 10, and

their sum.

4. Read a number from the input tape and print its square.

5. Read a sequence of 20 numbers from the input tape and print the sum of

their squares.

6. Read a sequence of numbers, all less than J in modulus, and print the sum
of their squares. The last number of the sequence is indicated by being followed

by a number greater than J.

7. Read a sequence of numbers, as in exercise 6, and print the mean of their

squares and the square of their mean. (It may be assumed that the sum of the

numbers and the sum of their squares are both within capacity.)

8. Read two positive numbers, x and y, from the input tape, and print

i(x + y) and V xy. Assume that x + y < 1.

9. Read two positive numbers, x and y, from the input tape into two storage

locations. Replace them in these locations by i(x-\-y) and V xy. Carry out

this replacement repeatedly until the two numbers differ by not more than 2~ 15
,

then print either. Assume that x + y < 1.

10. Read a pair of numbers (r, 0) from the tape and print r • cos 1800° and

r • sin 1800°.

11. Solve the equation x = 100 cos x°, by the following method. Put a first

estimate (say t) of x/100 in a storage location. Replace it by the mean value of

a;/100 and cos x°. (Beware of overflow!) Repeat until the new value differs from

the old by not more than 2 -15 , then print it.

12. Read 17 numbers x n from the tape and print

16

^Xn- cos(180n/16)°.
n=0

13. Read three numbers a, b and C, where a and b are the lengths of two sides

of a triangle and 100C is the included angle in degrees. (You may place before

these numbers on the tape any constants that you require.) Print the length of

the third side.

14. Read a series of positive numbers followed by a negative number. The
positive numbers are the times in minutes, divided by 100, taken by a doctor to

deal with successive patients, who arrive promptly and regularly every five

minutes. The first patient is dealt with immediately; compute the time for which

each succeeding patient must wait, and print the greatest of these times.
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2-10 Long numbers. The EDSAC has a facility which enables an even-

numbered storage location and the following odd-numbered storage loca-

tion to be used as a single storage location holding 35 binary digits. Such

a double-length storage location is known as a "long" storage location,

and its content is known as a long number. An order referring to a long-

number is distinguished by having a 1 in the special indication position

(see Section 1-7). This is indicated in the written form of the order by

writing w after the address. For example, A 10 tt means add into the

accumulator the content of the long location formed by combining the

short locations 10 and 11. Note that the significance of x (and of a 1 in

the special indication position) in arithmetic orders is different from its

significance in jump orders.

x does not act as a terminal code letter and, in the external form of

orders as punched, must be followed by one of the regular terminal code

letters. For example, we could have A 10 tF or A 10 7r#, according as

10 indicates an absolute or relative address. wF is not often written,

since there exists an abbreviation for it Avhich is recognized by the initial

input routine. At the end of an order

D= tF.

Thus we would write A 10 D for A 10 irF.

The long location 2n may be referred to as 2mr and its content as C(2rnr) .

Alternatively, it may be referred to as 2nD and its content as C(2nD).

For distinctiveness, the short location 2n may be referred to as 2nF.

In a long number, the extreme left-hand digit is used as a sign digit

(referring to the long number as a whole), and the binary point is con-

ventionally taken as immediately following it, as in short numbers occupy-

ing single storage locations. Thus in a long number a unit in the least

significant digital position represents 2~ 34
. The content of a long storage

location relative to the two short storage locations of which it is formed is

indicated by the following diagram.
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There is one digital position between the end of the short location

(2m -f- 1) and the short location 2n; the digit in this position is known as

the "sandwich digit." Xo attention need be given to it except when form-

ing a long number from two short numbers.

The multiplier register of the arithmetical unit is of sufficient capacity

to hold a long number, and the accumulator is of sufficient capacity to

hold the complete (69 binary digit) product of two long numbers.

In some calculations, long numbers may not provide sufficient precision.

In such cases, the programmer may make use of what is known as double-

length or double-precision working, in which two long storage locations are

used to hold the digits of a single number. For example, a number x with

up to 09 binary digits (including the sign digit) may be expressed as

34
b,

where a and b are ordinary long numbers. The order code of the machine

does not enable such numbers to be handled directly, but operations on

them may be expressed in terms of operations on their single-length com-

ponents, and programmed in the ordinary way. Similarly, greater precision

still may be achieved by multi-length working, in which three or more

long storage locations are used to hold the digits of a single number.

2-11 Some further orders in the order code, (a) Shifting. With numbers

expressed in binary form, as they are in the machine, a left shift of p places

is equivalent to multiplying by 2 P
, and a right shift of p places is equivalent

to dividing by 2 P .

A shift is carried out on an operand already in the accumulator, and the

result remains in the accumulator, so that in a shift order there is no

reference to a storage location; the digits to the right of the function

digits can therefore be used to specify the amount of the shift. The ex-

ternal forms of the shift orders are:

Left-shift C(Acc) by p places (2 < p < 11) (i.e.,

multiply C(Acc) by 2 P ),

Right-shift C(Acc) by p places (2 < p < 11)

(i.e., divide C(Acc) by 2P);

L a 2p) F

R a 2 P
) F

for single shifts:

L D
R D

Multiply C(Acc) by 2,

Divide C(Acc) by 2.
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Example 13. To multiply (7(4) by 10 (a process required in binary-

decimal conversion).

The number 10 lies outside the range — 1 < x < 1, and cannot there-

fore be stored in the machine or placed in the multiplier register. Multi-

plication by 10 can, however, be effected by first multiplying by 10/16

and then shifting the result four places to the left, that is, multiplying it

by 16. Suppose C(6) = 10/16, and let C(4) = x. Then the orders re-

quired are:

Order C(Acc) Notes

H 6 F
V 4 F
L 4 F
T 4 F

(10/16)z

lO.r

10/16 to multiplier register

Wx to 4

(b) Rounding-off. To round off a number in the accumulator to 34

binary places it is necessary to add 2
-35

. A special order is provided for

this, since the smallest number which can be held in a long storage location

is 2
-34

. The special order is as follows:

Y F Round off C(Acc) to 34 binary places.

Note that the terminal code letter must be F.

(c) Overflow indication. It is sometimes convenient intentionally to

program a calculation so that the machine may, at some stage, carry out

operations of which the correct result would exceed the capacity of the

accumulator. But if this is not intended, then it is very useful to have some

indication of when such an overflow occurs, either as the result of an error

in programming or as a consequence of numbers exceeding the range of

values they were expected to have when the program was drawn up. If

such an indication is wanted, it is usually wanted before the numbers and

orders used in the part of the calculation which led to the overflow have

been lost by subsequent operations of the machine. An order for this

purpose has the written form:

n F
or n D

Transfer C(Acc) to location n (or mr) and clear the accu-

mulator. If an overflow has occurred since the

accumulator was last cleared, stop the machine, light

the "accumulator overflow " light on the control panel,

and give audible warning; otherwise proceed to the

next order.
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The machine can be restarted manually after stopping as the result of

a 0-order. The (/> is then equivalent to a 7"-order supplemented by an

indication of an overflow. Note that in the definition of this order, clearing

of the accumulator is intended to cover only deliberate clearing by an

order which makes the content of the accumulator zero, whatever its

previous value; for example, clearing by a T-order or by an E it order when
a jump takes place. It does not cover, for example, the reduction of the

content of the accumulator to zero by the addition of an equal and opposite

number.

(d) Jump if nonzero. The following order is especially useful when
numerical checks are being programmed (for an example see p. 77):

F n D
|

Jump to n if C(Acc) ^

The EDSAC order code contains a few futher orders which are not of

interest to the general reader, although they are included in the complete

order code given in Appendix 2.

2-12 Scale factors. Often some manipulation of the formulas occurring

in a problem is necessary in order that all numbers to be evaluated by the

machine may come within the range — 1 < x < 1 . This generally involves

the introduction of scale factors.

Example 14. Given a division subroutine which replaces C(Acc) by

C(Acc)/C(4D) [provided |C(Acc)| < \C(4D)\], to evaluate/ = x
2
/(l + x 3

),

where x may lie anywhere in the range < x < 3.

x cannot be used or stored in the machine, since it goes outside the

permitted range. However, y = \x is always within range, and we there-

fore work with y instead of x. In terms of y, we have/ = 16?/
2
/(l + 64?/

3
).

The maximum of/ occurs when x = 2 1/3
,
and is less than unity. The

condition of the subroutine |C(Acc)| < |C(4D)| can therefore always be

satisfied, and the result will not exceed capacity.

In the expression 16//
2
/(l + 64?/

3
), both numerator and denominator

are too large and need scaling down by a common factor. Their greatest

values in the relevant range of y are 9 and 28, so that it is convenient to

scale them both down by a factor of 32. This leads to the formula

/ = i'/7[l/32 + 2</\

as the formula to be evaluated. A program for doing this is given on

the opposite page.

Let y be the initial content of OD, let C(6F) = 1/32, and let the

division subroutine start at address 500.
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NotesLocation Tape entry C(Acc)

(relative

address)

G K
H D

1 V D y
2

2 Y F
3 T 8 D
4 V 8 D ?/

3

5 L D 2?/
3

6 A 6 F 1/32 + 2//
3

7 Y F
8 T 4 D
9 V D -^/

2

10 R D fc/
2

11 B 11 e

12 F 500 F

y to multiplier register

Round off

y
2
to 8Z)

Set divisor

Call in division subroutine to

place |2/7(l/32 + 2^/
3
)

the accumulator

in

Note: y
2

is computed a second time by multiplication rather than by

adding in the value in SD. If y is small, a more precise value of y
2

is thus

obtained. Advantage can therefore be taken of the fact that the division

subroutine uses as dividend the whole of the double-length accumulator.

2-13 Control combinations. One control combination has already been

mentioned. This is the marker symbol G K which indicates the point

from which relative numbering of orders is to start. Control combinations

are also needed for other purposes, for example :

(1) To specify the storage location into which the first order of a sub-

routine punched on the tape shall be placed when the tape is read by the

machine. When the first order has been placed in the location specified,

succeeding orders will be placed in the following locations, and this pro-

cedure will continue until another control combination is encountered

which breaks the sequence.

(2) To cause the machine to cease reading orders from the tape and to

begin carrying out the orders it has placed in the store. A few of the more

important control combinations are given below. All control combinations

may be distinguished from orders by the fact that they terminate with the

letters K or Z; this results in their being treated in a special way by
the initial input routine. They are concerned solely with the operation

of the initial input routine, and not with the performance of the calculation

which has been programmed; they have served their purpose once the
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orders are in the store and the calculations have started,

combination, G K, has already been given.

The first control

G K Place a copy in storage location 42 of the address cur-

rently specified in the Transfer Order

T q K Replace the address specified in the Transfer Order by q

E p K ) Cease reading orders from the input tape, and transfer

P F control to storage location p with the accumulator

clear

Z This is used after a "leader" of blank tape at the begin-

ning of a program tape, or in front of a subroutine,

and acts as a warning to the initial input routine that

the next entry on the tape will be a significant one.

(See Chapter 4.)

The reader is now in a position to draw up, in a form suitable for punch-

ing on the tape, a complete program for a simple calculation.

Example 15. To prepare the program tape for Example 12, including

the placing of the subroutine in the store.

The master routine for this example has already been given in Section

2-9. The subroutines are to be placed with their first orders in locations

100, 150, and 200, and we will suppose that it has been decided to place

the master routine with its first order in storage location 300. The tape is

then punched as follows

P Z
T 100 K

1*1
T 150 K

1*
1

T 200 K

\p
1

T 300 K

Master

routine

E 300 K P F

Exercises F

Prepare the control combinations and tape make-up for Exercises E.



2-15] EXTENSION OF THE USE OF RELATIVE ADDRESSES 41

2-14 Relative addresses in control combinations. When the address in

the Transfer Order has to be reset it may sometimes be convenient to

specify the value to which it is to be reset by a relative address rather than

by an absolute address. This is indicated by using the letter Z to terminate

the control combination, instead of K. The starting point from which the

relative address is reckoned is that specified by the current content of 42

when the control combination is read. Thus T q Z has the effect of

T (qd) K. That is: place in the Transfer Order the address which, in

relative form, is qd. It must not, however, be punched as T qd K, for

then the 6 would be interpreted as a terminal code letter.

In the above example, the control combination E 300 K P F at the

end of the master routine could be replaced by E Z P F.

2-15 Extension of the use of relative addresses. So far, a system of

relative numbering of addresses (indicated by the terminal code letter 0)

has been used for cross reference between orders and pseudo-orders within

a single group, the addresses within that group being specified relative to

the beginning of the group. It is convenient to extend this use of relative

addresses to provide cross referencing between different groups of orders

whose final positions in the store may not have been decided on at the stage

that has been reached in programming the calculation, and also for refer-

ence to numbers whose position in the store may be similarly undecided.

This may be done by making use of code letters other than 6 to indicate

different starting points from which relative addresses may be reckoned.

Example 16. a, b, c are the contents of h, h + 2, and h + 4, respec-

tively, and x = C(n) ; to put ax 2 + bx + c in 0.

It is assumed that this process forms part of a large program, and that

it has not been found convenient at this stage to fix the locations into which

the coefficients a, b, c, and x will finally go. It has, however, been decided

that a, b, and c should occupy successive even-numbered storage locations.

Although the addresses of these locations are undecided, it is necessary to

refer to them when drawing up the program. A possible procedure would

be to write them in algebraic form, with the letters h and n standing for

numbers which have yet to be determined. If this were done it would be

necessary to go through the whole program later and substitute for h and n

the values which it had been decided to give them. This substitution

process is, however, a systematic numerical procedure, and it can perfectly

well be done by the machine itself, h and n are regarded as specifying

starting points from which two separate systems of relative addresses are

reckoned, and the addresses are indicated by terminating them with the

code letters H and N, respectively. Conversion to absolute addresses takes

place automatically, under the control of the initial input routine, when
the tape is read.
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Orders for the above example are shown in three forms:

(1) internal form with specified values of h and n (namely h = 100,

n = GO),

(2) internal form with general addresses, and

(3) external form as punched on the tape.

Location Internal forin of orders External form of orders

(relative with specified with general (tape entries)

address) addresses addresses

H GO H n H N
1 V 100 V h V H
2 A 102 A (h + 2) A 2 H
3 T T T F
4 V V V F
5 .4 104 A (h + 4) A 4 H
6 T T T F

The order .4 2 H, for example, indicates that the address referred to is

address 2 relative to the origin indicated by the terminal code letter H.

It will be explained later how the starting points for the various systems

of relative addresses, specified by the different code letters, are com-

municated to the machine.

Notes: (1) Address 0, absolute or relative, can be omitted in the written

(and punched) external form of an order, as has been done in the last

column of the above example.

(2) The storage location whose relative address is p, in the system

specified by the terminal code letter H, is sometimes referred to as "loca-

tion p H" and its content written as C(pH), and similarly for other terminal

code letters.

The following example illustrates the use of terminal code letters in

cross references between a master routine and subroutines.

Example 17. To read a number x (<0) from the tape, and to evaluate

and punch e
x

,
given the subroutines

R

E

P

which reads one number from tape and places it in Oir; starts

at address h,

which places exp [C(R)] in the accumulator; starts at ad-

dress n,

which punches C(Acc) on the output tape; starts at ad-

dress m.



2-16] CONSTANTS TO BE ADDED BY TERMINAL CODE LETTERS 43

These subroutines are similar to those in Example 12 but now refer to

long numbers, and it is supposed that their positions in the store have not

been determined when the master routine is drawn up. The master routine

is given below in two forms, (1) as it is intended to appear in the store but

without numerical values being given to the parameters 6, h, n, and m,

and (2) as it is punched on the tape.

Location Content Tape entry

(relative

address)

1

B
F
T
H
B
F
B
F
Z

6

h

Ox

Ox

(4 + 0)

n

(6+0)
m

G K
B 8

F H
P-+2

3

4

5

T D
H D
B 4 6

F N

7

B Q 6

F M
P-^8 Z F

Notes

Call in R; x to accumulator

x to multiplier register

Call in E; places e
x
in accu-

mulator

Call in P; punches e
x on out-

put tape stop

This use of relative addresses may seem a complication in a short program

for a simple calculation such as this. But it is a very great simplification

in long or involved programs because it enables the different parts of the

program to be largely "uncoupled" from one another while the program is

being drawn up, and yet enables freedom of cross-referencing between

them to be fully maintained. Decisions as to where the various parts are

to be ultimately placed in the store can be considered separately, and later,

when it is known exactly how long each one will be.

2-16 Setting of the constants to be added by terminal code letters. It

has already been explained that the code letter 9, when used to terminate

an order, causes the content of location 42 to be added to the address

punched on the tape. Similarly, the code letters H, N, . . . cause the con-

tents of storage locations 45, 46, . . . to be added. Whereas, however, the

content of 42 is set automatically by the control combination G K, the con-

tents of 45 and 46 have to be set explicitly by entries punched on the

tape for that purpose. Suppose, for example, that it is desired to perform

the calculation of Example 16 with the parameters h and n set equal to
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100 and GO, respectively. Suppose, further, that it is decided to put the

program into the store with its first order in location 200. The program

tape is then punched as follows^

Tape entry

T 45 K
P 100 F
P 60 F
T 200 K
G K
H N
V H
A 2 H
T F
V F
A 4 H
T F

Notes

Set address in Transfer Order equal to 45

Pseudo-order read into 45

Pseudo-order read into 46

Set address in Transfer Order equal to 200

Orders of program; these go into 200, 201,

No control combination is shown punched at the end of the tape, since it

is assumed that the calculation concerned forms part of a larger calcula-

tion, the orders for which follow those given.

Notes: (1) Planting of the pseudo-orders P 100 F and P 60 F in 45

and 46 is a matter concerned solely with the process of reading the program

into the store, and has nothing to do with the process of performing the

calculation once the orders have been read in.

(2) Once the program tape has been read the pseudo-orders in 45 and

46 are no longer required, and these locations may be used again for other

purposes.

There is no reason why the same values should be set in 45, 46, etc.,

throughout the reading of the entire tape. It is perfectly permissible, for

example, to set certain values during the reading of the master routine,

and different values for the reading of each subroutine. Very often, as will

be seen later, library subroutines make use of the facilities offered by the

code letters H, N, etc., to enable the values of parameters to be set.

2-17 Complete table of terminal code letters. A complete table of the

terminal code letters available for use by the programmer is as follows:
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Code Location whose content Content of locations given in

letter is added to the order Column 2, i.e., number added

F 41 Zero

d 42 Variable, set by G K
D 43 2

-16

44

H 45

N 46

M 47

A 48

L 49 Variable, set during input

X 50

G 51

A 52

B 53

C 54

V 55

It will be observed that this table includes not only the terminal code letters

whose functions we have just been considering, but also the code letters

F, 6, D as well. The reason is that all code letters are treated by the initial

input routine in a similar manner, the only difference being that different

code letters cause the contents of different locations to be added. Location

41 (corresponding to F) always contains zero when a tape is being read,

and location 43 (corresponding to D) always contains 2
-16

; orders ter-

minated by these code letters, therefore, have the special indication digit

made equal to or 1, respectively, when they are read, the addresses them-

selves being unmodified. Note that the symbol w also causes 2~ 16
to be

added, but must be followed by another code letter which indicates the

end of the order. It is thus possible, by using t and another code letter,

to cause both 2
-16 and some other number to be added to the order before

it is put away in the store.

2-18 Parameters. For a subroutine to be useful for inclusion in a library

it must be drafted in a sufficiently general form so that it can be used in

different contexts without the user having to carry out internal modifica-

tions to it. It has already been shown how one important step in this

direction can be taken by using the terminal code letter 6 to make the

external form of a group of orders independent of their positions in the

store. A second step can be taken by drawing up subroutines with ad-
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justable parameters. In the EDSAC library parameters are of two kinds,

preset parameters and program parameters. The values of preset param-

eters are incorporated in the subroutine during the reading of orders from

the input tape, and cannot be changed during the subsequent execution

of the program. Program parameters, on the other hand, are given values

when the subroutine is called in, and may be given different values on

different occasions.

2-19 Preset parameters. Preset parameters are incorporated in library

subroutines by making use of the facilities offered by the code letters H,

N, etc.; the values of the parameters are placed in storage locations 45,

46, etc., and incorporated in the subroutine when the input tape is read.

In some cases this is simply an application of the relative addressing facility

previously discussed. For example, a subroutine may be designed to

perform some operation on a sequence of numbers placed in storage loca-

tions H onwards. In other cases the quantities placed in 45, or in one of

the other locations, may not be the first of a sequence of storage locations

at all, but may specify, for example, a scale factor. This use of a preset

parameter is illustrated by library subroutine EQ which computes the

value of exp (2
p
y), where y (less than 0) is the content of the multiplier

register, p is given by a preset parameter which is set by placing the

pseudo-order P p F in storage location 45 before the subroutine is read.

The reader will be able to see from the program of this subroutine, given

in Part 3, how the value of the parameter is incorporated in the subroutine.

It is to be noted that the whole of a pseudo-order placed in 45, and not

only the address, is added to an order terminated by the code letter H,

and similarly for other code letters. For example, if F n F is placed in 45,

then a tape entry punched as P H becomes F n F. This fact is made use

of in the case of certain subroutines, as an examination of Part 2 and

Part 3 will show.

2-20 Program parameters. Program parameters for closed subroutines

are conventionally punched in the form of pseudo-orders placed imme-

diately after the pair of orders calling in the subroutine. When the sub-

routine has done its work it automatically returns control to the order in

the program coming immediately after the last program parameter. The
subroutine contains orders which pick up the pseudo-orders representing

program parameters, and plant them where required within itself.

2-21 Standard procedure for setting preset parameters. Suppose the

preset parameter corresponding to H has to be set to a certain value by

placing the pseudo-order P 100 F in 45, and that the subroutine to which
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the parameter applies has to go with its first order in 500. This could be

done by punching on the tape:

T 45 K
P 100 F
T 500 K

followed by the subroutine. A slightly different form of punching is, how-

ever, adopted for general use. This makes use of the following control

combination

:

T Z Make the address specified in the Transfer Order equal to

that stored in 42

The tape is punched as follows:

T 500 K
G K

T 45 K
P 100 F
T Z

Set address specified in Transfer Order equal to 500

Store address specified in Transfer Order (i.e., 500)

in 42

Set address specified in Transfer Order equal to 45

Goes into 45

Copy address from 42 (i.e., 500) into Transfer Order

followed by the subroutine. This somewhat roundabout procedure has

certain minor advantages which led to its adoption when the procedure

for using library subroutine was being decided upon. All types of library

subroutine using preset parameters have T Z or some equivalent control

combination punched at their head.

2-22 Interpretive subroutines. The use of closed subroutines provides

the programmer with facilities additional to those which are built into the

machine and covered by the basic order code. Each subroutine provides

one such facility, and the pair of orders required for calling it in may be

regarded as equivalent to the single order which would be required if the

facility were covered by the basic order code. Interpretive subroutines

work on a slightly different principle, and enable the programmer to write

the whole, or part, of his program in an order code which may be quite

different from the basic order code of the machine. As an illustration, an

interpretive subroutine will be given which makes it possible to run on the

EDSAC a program for manipulating complex numbers written in terms of

the orders given below. These orders will be called interpretive orders.

They do not enter the control circuits of the machine but are extracted
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from the program, one by one, by the interpretive subroutine, which

examines them, and carries out the appropriate operations.

It will be assumed that the- real and imaginary parts of a complex

number are stored in consecutive long storage locations; thus the complex

number in nD and (n + 2)D means a complex number whose real part is

in nD and whose imaginary part is in (n -f 2)D. Two long locations 6D
and 8D are set aside to hold results; they will be referred to as the "complex

accumulator," and play a role similar to that played by the accumulator

in ordinary machine operation. The interpretive orders are as follows:

A n D

S n D

U n D

T n D

V n D

Add complex number in nD and (n + 2)D into com-

plex accumulator

Subtract complex number in nD and (n + 2)D from

complex accumulator

Transfer contents of complex accumulator to nD and

(n + 2)7)

Transfer contents of complex accumulator to nD and

(n + 2)Z) and clear complex accumulator

Multiply complex number in nD and (n + 2)D by C(R)

and add into the complex accumulator [C(R) is real]

When the programmer reaches the point in the master routine at which

he wishes to use interpretive orders, he writes down a pair of orders for

calling in the interpretive subroutine, similar to those he would use for

calling in a closed B subroutine. He then writes a sequence of interpretive

orders for performing the operations he requires. When he wishes to return

to ordinary coding in terms of machine orders, he writes the interpretive

order F n F, which causes control to be transferred from the interpretive

subroutine to storage location n.

The orders of the interpretive subroutine are given below. The notes

are written on the assumption that the subroutine has been called in by

entries in the master routine as shown, and that the first of the interpretive

orders, namely A 100 D, is being interpreted.

Master routine:

V B p F
p+ 1 F N
p + 2 A 100 D
p + 3
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Subroutine:

11 ON

1

2

3

4

5

6

9

10

11

12

G K
AS 2 F

U 5 e

A 12 e

T 8 e

A 6 D
(Z F)

T 6 D

A 8 D
(Z F)

T 8 D
BS 1 F
F d

\\P 2 F

Select next interpretive order (.4 100 D)

from master routine

Plant A 100 D in 50

Form A 102 D and plant in 86

Becomes A 100 D
Add real part into

complex accumu-

lator

Becomes A 102 D
Add imaginary part

into complex accu-

mulator

Increase number in 5-register by 1 and

jump to select next interpretive order

An example of an interpretive subroutine for performing a wider range

of operations with complex numbers is given in Part 3. Interpretive sub-

routines are also useful for performing operations with floating-binary or

floating-decimal numbers.

Exercises G

Construct complete programs to carry out the following calculations. Make
reasonable choices of the method to be used and the accuracy to be attained.

Any subroutines listed in Part 2 may be used. Prepare every detail required for

the punching of the tape and the running of the problem on the machine.

10 JO

1. Print ]T 1/n and ^ 1/w .

2. Print the values of z = sech
-1

// for values of y from 0.1(0.1)0.9. Use the

formula

. 1 - Vl - y 2

Z = l0g e

y

3. Evaluate and print J^
1
e~x2 dx.

4. Print the values of J
T/3

cos (x cos 6) dB for x = 0(0.2)5.

5. Read two numbers x and y, where 2 -32 < x < 1 and 2~32 < y < 1, and

print x y
.
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6. Tabulate Airy's integral Ai(—x) for x = 0(0.2)5 by solving the differential

equation d2ij/dx 2 + xy = with y = 0.35503, dy/dx = 0.25882 when x = 0.

7. A traffic census is taken using a tape punch as follows. Whenever a bicycle

passes a 5 is punched, and whenever a motor vehicle passes a V is punched.

Every minute an M is punched, except at every tenth minute, when a T is

punched. At the end of the tape an E is punched. Rows of blank tape, and

erase, carriage return, and line feed symbols may appear anywhere.

Prepare a program to process this tape as follows, (a) Check that apart from

rows of blank tape and erase, carriage return, and line feed symbols, only the

symbols B, V, M, T, E appear on the tape, (b) Check that exactly 9 M 's inter-

vene between consecutive T's. (c) Print the greatest number of bicycles that

pass within any 15 consecutive minutes, and the greatest number of motor

vehicles that pass within any 15 consecutive minutes.



CHAPTER 3

PROGRAMMING FOR OTHER MACHINES

3-1 Introduction. It is a general experience that anyone who is accus-

tomed to writing programs for a particular digital computer has very

little difficulty in learning to write programs for a different digital computer.

This is in spite of the fact that different machines can have order codes of

widely differing types. The reason is that the principles on which programs

are constructed are the same for all machines, and that the expedients and

devices appropriate to one order code are paralleled by corresponding-

expedients and devices in other order codes. A programmer faced with

an unfamiliar machine does not, therefore, need to learn programming

all over again; all he needs to do is to acquire experience with the new
order code.

The order code of the machine reflects the underlying logical design

of the machine itself. The designer of a machine may be predisposed

towards a certain type of logical design, or he may decide that one type

rather than another is indicated by his terms of reference. The logical

design will then determine the general nature of the order code, and the

designer will do his best, within the limitations thus imposed, to meet the

requirements of the programmers. The result is that the order codes of

machines fall into several fairly clearly defined classes.

Although, within each class, order codes are very similar in underlying

structure, there can be such wide differences in the ways in which orders

are written that it is not always easy to recognize this similarity when
looking at program sheets. EDSAC programs, for example, would look

entirely different if the numerical values of function letters and code

letters were written, instead of the letters themselves, although such a

difference would be a superficial one only. In some computing centers

addresses are conventionally written in the scales of 8, 16, or 32, instead

of in the decimal scale as is done for the EDSAC. If the scale of 1G is used

it is necessary to have 6 extra symbols, over and above the ten figures

through 9, to represent the digits ten through fifteen; for example, the

letters a through /, or u through z, may be used. In the scale of 32 it is

necessary to have 32 separate characters, and the whole teleprinter alpha-

bet, including $, @, and /, may be pressed into service. This is quite

effective, but it must be admitted that the resulting program sheets often

present a somewhat bizarre appearance.

Although the differences referred to in the last paragraph are super-

ficial rather than fundamental, they are not, in our view, without impor-
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tance. An arbitrary notation which is not easily memorized can act as a

serious stumbling block to a programmer who approaches an unfamiliar

machine. It would therefore appear to be desirable that, when a new type

of machine is first put into action, great care should be taken to choose a

satisfactory notation for orders. This is of special importance in the case

of a machine which is likely to be used by many different people.

Most of the remarks which follow apply equally well to both binary and

decimal machines. In the latter, since all large capacity stores presently

in use are binary in nature, it is usual to represent decimal digits, in num-
bers, by means of a binary code, and it is natural that the same code

should be used for addresses in orders. It may also be convenient to use

the same code for the function part of an order, allocating (say) two

decimal digits for the purpose; alternatively, the function part may be

treated purely as a set of binary digits, in the same way as in a binary

machine.

3-2 Single-address codes. The EDSAC is fairly typical of single-address

machines whose order codes contain between 16 and 32 orders, although

many machines also have an order for division. Apart from division, the

order codes of other machines may contain orders which are individually

slightly different from those in the EDSAC, but which, in the aggregate,

provide very similar facilities. For example, in the EDSAC it is usual to

clear the accumulator at the end of a sequence of operations, most often

by a J
7
- or a 0-order which transfers the result to the store, whereas many

order codes provide for the accumulator to be cleared at the beginning of

a sequence of operat ions by means of a clear and add order ; this first clears

the accumulator, and then causes the content of some storage location to

be added in. Again, instead of the H- and F-orders in the EDSAC order

code, some machines have an order which causes the number in the accu-

mulator to be multiplied by the content of a given storage location, and the

result to be left in the accumulator. It will readily be seen that these do

not amount to large differences. Differences in the facilities provided for

discrimination, that is, in the range and variety of conditional orders, are

slightly more significant. If only one or two conditional orders are pro-

vided, the programmer must, if he wants to make his program as short as

possible, plan ahead to make sure that all discriminations, when they arise,

will be in the exact form required by one of the available conditional

orders. If a wider variety of conditional orders is provided, the programmer

is spared some of this careful planning.

Quite apart from any question of convenience for the programmer, the

addition of new orders to the order code of a machine will have the effect

of increasing slightly its average speed, since there are bound to be some
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programs which could be shortened by using a new order. Orders which

enable some common operation to be performed more simply yield the

greatest returns in this respect. In the case of the EDSAC, an example

would be an order, similar to the one just mentioned, for multiplying the

number in the accumulator by a number from the store. Orders for per-

forming comparatively rare operations, such as the extraction of a cube

root, have little effect on the speed of the majority of programs, although

it is always possible to quote examples of situations in which they would

give a substantial increase in speed. It might be noted that slight variants

of orders already existing in a machine can often be added with little

increase in the amount of equipment in the machine; however, the number

of digits available in the order code to specify the function of an order may
impose a strict limitation on what is possible in this respect.

If plenty of function digits are available or, perhaps one should say, if

the designer of the machine chooses, as one of the innumerable decisions

he must make in fixing the logical design of the machine, to make them

available, it is possible to have a more direct relation between the individual

function digits and the function of the order. For example, a certain func-

tion digit might be a 1 if access to the store were required, and a other-

wise, while another digit might indicate whether the arithmetical unit was

to be set to perform an addition or a subtraction. An example of a machine

designed on these principles is the machine built at the Institute for

Advanced Study, Princeton, which has ten function digits in each order.

Such machines provide the programmer with a large number of different

orders to choose from, although not all the possible combinations of func-

tion digits correspond to valid or useful orders.

In most single-address machines, two orders are stored in a full word,

as is done in the EDSAC. Facilities for working with either short or long

numbers are not, however, i usually provided, all numbers occupying a

full word.

3-3 Multi-address codes. In the codes so far discussed, each order

makes reference, at most, to one location in the store. It is possible to

have order codes in which more than one such reference is made. Of these

the commonest are three-address codes, in which each order makes refer-

ence to three locations in the store. In a typical three-address code an

order for multiplication might be written as follows

:

M a (3 7 Form C(a) • C(/3) and place in y.

In a binary machine with a 35-digit word-length, the first five digits of

a word representing an order might define the function of the order (in
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this case multiplication), the next ten digits might define the first address,

the next ten digits the second address, and the remaining ten digits the

third address. The order would thus be equivalent in the machine to

the number

m •
2"4 + a •

2~ 14 + )8 •
2~ 24 + 7 2~ 34

.

It is assumed that the binary point comes immediately after the most

significant digit.

In a machine with a three-address code, orders may be modified by
performing arithmetic operations on them in a manner precisely similar to

that used in a machine with a single-address code. For example, if we add

to the order written above the pseudo-order

P 1 1 0,

which is equivalent to 2
-14 + 2~ 24

(it being assumed that the numerical

equivalent of P is zero), we obtain the order

M a + 1 + 1 y.

Other examples of arithmetic and conditional orders in a three-address

code are:

A a (3 7 Form C{a) + C(/3) and place in 7,

S a (3 7 Form C{a) — C(/3) and place in 7,

R a (3 7 Shift C(a) (3 digits to the right and place in 7,

E a (3 7 If C(a) > C((3) take next order from 7; other-

wise proceed serially.

Other conditional orders [for example, one which transfers control if

C(a) = C(/3)] and orders for performing logical operations can similarly

be included in a three-address code. It will be noted that in a machine

using this type of three-address code there is no accumulator or other

provision for the storage of numbers in the arithmetical unit between

the execution of orders.

Example 18. To form Xj 9
aA and place in 0, where a r = C(10 + r)

and b r = C(30 + r).
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105

100 £ Clear for sum
101 A 107 102 Set multiply order in 102

102 ( ) Form arb r

103 .4100 Add to sum in

104 A 102 109 102 Increase r by 1

105 E 108 102 102 Test for end

106 Z Stop

107 M 10 30 1-

108 M 30 50 1

109 P 1 1

This example will suffice to show that the principles on which programs

are constructed are exactly the same for a three-address code as for a

single-address code.

One order in a three-address code takes up more space in the store than

one order in a single-address code. If the EDSAC had been designed to

work with a three-address code, one long storage location would be re-

quired to hold each order, instead of one short storage location. One order

in a three-address code, however, causes a more complicated operation

to be performed than one order in a single-address code; for example, the

single order A a /3 y has the same effect as the group of order A a, A (3,

T 7, in the EDSAC order code, and would require one long storage loca-

tion instead of three short ones. However, use of a three address code

does not always enable a similar saving to be made; for example, to add

the four numbers in storage locations a, (3, y, 5 and to place the result in

storage location e, the following three orders are required :

A a 3 e

A e y e

A e 8 e

In the EDSAC, four ^-orders and one 7
7

-order would be required, and

would take up five short storage locations, instead of three long ones.

Thus, in this case, the orders in the single-address code actually take up
less space than those in the three address code, the reason being that when
using the single-address code the programmer can take advantage of the

fact that sums can be accumulated in the accumulator. Whether or not

there is any over-all saving in the amount of storage required to hold the

orders for a typical program in a given three-address code, compared with

a given one-address code, depends on the relative extents of the facilities

provided in the two codes. The remarks made below have some bearing

on this matter. The difference, in any case, would not be very great.
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3-4 Multiplication and division. A difficulty arises with the simplest

type of three-address code, illustrated above, because the result obtained

when two numbers are multiplied together is a double-length number,

whereas the location to which this result is to be sent can accommodate
only a single-length number. An exactly similar difficulty arises in connec-

tion with division, where there are a quotient and a remainder to be con-

sidered. One or two early machines were so constructed that the less

significant half of the product and the remainder after division were not

available to the programmer, but this is now recognized as imposing a

severe limitation on the utility of a machine.

One solution to the difficulty is to provide two multiplication orders,

one of which causes the more significant half of the product to be trans-

mitted to the store, and another which causes the less significant half to

be transmitted. This implies that when both halves of the product are

required the multiplication must be performed twice, with resulting waste

of time. In practice, in machines adopting this solution, a third multiplica-

tion order which transmits the product rounded-off to single length (rather

than merely truncated) is also provided.

An alternative solution is to have an extra address in each order, making

four addresses in all. In orders for multiplication, the extra address can

be used to specify the location to which the less significant half of the

product is to be transmitted, and in orders for division, to indicate the

address to which the remainder is to be transmitted. The number of

digits available in an order, however, would generally restrict the use of

this method to machines with small high-speed stores. Yet another method,

which has also been used in practice, is to arrange that an order for mul-

tiplication causes the more significant half of the product to be trans-

mitted to 7, the location specified in the order, and the less significant

half to 7 -f 1 ; a similar provision can be made in the case of orders for

division.

An alternative line of approach, which has been followed in a number of

later machines, is to provide storage in the arithmetical unit in which the

less significant half of a product, or a remainder, can be held for subsequent

transfer, if required, to the store. The minimum amount of storage required

can be provided by a single register. If, however, an accumulator (pref-

erably double-length) is used, it is possible also to provide facilities for

accumulating sums and products. This does away with the clumsiness

shown by the simpler forms of three-address order codes when a number

of sums or products must be added. A double-length accumulator is a

great convenience in any machine, since it enables a useful amount of

double-length working to be achieved without extra complication; this is

especially true if the machine is provided with /^-registers or with three-

address orders which enable counting and order modification to be done
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without clearing the accumulator. A double-length accumulator also

facilitates division with a double-length dividend (cf. Section 5-4).

Three-address machines usually have an order which performs one of the

logical operations (usually "and" or "or"), sometimes combined with a

shift of the result. There is sometimes an order for taking a number from

the store, shifting it a specified number of places, and planting it in an

order to replace one of the addresses already there.

3-5 Source-destination codes. In any digital computer, all basic

operations consist of the transfer of a number from one register or storage

location to another register or storage location, possibly with the per-

formance of some operation on the way or with the initiation of some

action which is to take place after the transfer is complete. For example,

in the EDSAC, the #-order causes a simple transfer of a number from a

storage location to the multiplier register, while the A -order causes the

transfer of a number from a storage location to the accumulator register

via the adder. Similarly, an O-order causes the five most significant digits

of a number in a storage location to be transferred to a special register

associated with the output punch, and initiates the operation of punching

a row of holes in the tape. The orders of machines with conventional

single-address order codes conceal this source-destination character of the

fundamental machine operations. Other machines, however, have orders

whose structure shows it explicitly.

In the purest form of source-destination coding, addresses are assigned

to all sources from which numbers may come and to all destinations to

which they may be sent. Sources include storage locations, the accumula-

tor, and input mechanisms. Destinations include storage locations, the

multiplier register, the accumulator register, and output mechanisms.

Some units of the machine have more than one destination associated with

them; for example, a number sent to one destination may pass into the

accumulator via an adding circuit, whereas if it is sent to another destina-

tion it may pass into the accumulator via a subtracting circuit. Addresses

may also be given to sources supplying frequently wanted constants, such

as the number zero and the number whose digits are all l's. The following

is a hypothetical example designed to illustrate source-destination coding.

Addresses through 7 are assigned in the manner indicated below, and will

be referred to as special addresses; addresses greater than or equal to 8 refer

to the store.

accumulator, via adder (destination)

1 accumulator, via subtractor (destination)

2 accumulator direct (source or

destination)
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3 multiplier register (source or

destination)

4 /^-register - (source or

destination)

5 output (destination)

6 input (source)

7 number zero (source)

Orders consist of a source followed by a destination ; for example

:

100.0 add (7(100) into accumulator

100.1 subtract C(100) from accumulator

100,5 transfer (7(100) to output mechanism and print (or punch)

2,100 transfer C(Aec) to 100

2.3 transfer C(Acc) to multiplier register

7.4 clear ^-register

An increased number of facilities may be provided, with a reduced

number of addresses, if a few extra binary digits are added to each order.

These digits, which may be regarded as rudimentary function digits,

specify an operation which is to be performed on the number as it is

transferred from the source to the destination; for example, they may
specify that the sign of the number shall be changed, or that its modulus

shall be taken. This type of order code was used in the Automatic Sequence

Controlled Calculator (Harvard Mark I), which, as explained in Chapter 1,

was an electromechanical machine in which the orders were stored on

(wide) punched tape. This simple form of source-destination coding is not,

however, very suitable for use in a machine in which the program is stored

in an electronic store, because of the large number of digits required in

each order in relation to the complexity of the operation performed.

The reason so many digits are required is that it must be possible for either

the source or the destination to be a location in the store, although it

would not be a serious restriction if one of these were always one of the

special sources or destinations whose addresses contain only a few binary

digits. An improvement can, therefore, be obtained by having an order

structure which allows for two addresses of unequal lengths, one (the short

address) having just enough binary digits to specify the address of a special

source or destination, and the other (the long address) having sufficient

binary digits to specify a location in the main store; which is the source



3-6] REPRESENTATION OF NEGATIVE NUMBERS 59

and which is the destination is indicated by means of an extra function

digit. It is to be observed, however, that such an order structure differs

in no material way from that used in a conventional single-address code,

since the function digits and the short-address digits can be grouped

together and regarded as specifying the function of the order, the operand

being given by the long-address digits. Whether this or the original point

of view should be taken is largely a matter of convenience.

Readers who are interested in the evolution of multi-address order

codes are advised to study the order codes of machines such as SEAC,
SWAC, DYSEAC, ERA 1103 (now Univac Scientific Computer),

RAYDAC, NORC, and the Harvard machines. Information about some

of these computers is given in publications listed in the Bibliography;

information about the others will be found in literature issued by the

manufacturers.

3-6 Representation of negative numbers. In many machines negative

numbers are represented by complements. Sometimes, however, instead

of true complements as used in the EDSAC, use is made of ones comple-

ments or, in a decimal machine, of nines complements. Ones complements

or nines complements can be converted to true complements by adding

one unit in the least significant place. When ones complements or nines

complements are used, there are two forms for zero, namely, a number
consisting entirely of 0's and a number consisting entirely of l's or 9's,

as the case may be. Occasionally the programmer may need to take account

of the existence of these two forms, but in a modern, well-designed machine

these occasions should be rare. The range in which numbers can lie is

slightly more restricted in a machine using ones or nines complements

than it would be in an otherwise similar machine using true complements,

being, for example, —1 < x < 1 instead of —1 < x < 1.

In some machines all numbers are represented on a "sign and modulus "

convention, similar to that used in ordinary writing. For example, in a

binary machine one digit would be a sign digit and would indicate whether

the number was positive or negative, while the remaining digits would

specify the modulus of the number. In this system the sign digit behaves

quite differently from other digits, whereas when complements are used

the sign digit is treated, during addition and subtraction, in exactly the

same way as the other digits, but acquires a special significance by reason

of the conventions adopted. Two forms of zero, namely, +0 and —0,

exist in this system also, but again, in a well-designed machine, no con-

fusion is likely to result. As regards the range in which numbers can lie,

a machine using the sign and modulus convention resembles one using ones

or nines complements, the range being rather more restricted than in a

machine using true complements.
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Although it is desirable that a programmer should understand the

system by which numbers are represented inside the machine, it is only on

rather special occasions that he need pay much heed to it.

3-7 Miscellaneous facilities. It will be convenient to mention here a

number of facilities which are provided in the order codes of various

machines. They all have their value, but it is not to be expected that

any one machine should provide them all.

Floating-point. Some machines automatically carry out operations on

numbers expressed in floating-decimal or floating-binary form. In such

machines numbers may be represented in the form 2P • a (or 10p • a in a

decimal machine) ; usually a single word is used to hold the number, some

of the digits being allocated to p and some to a. The programming of

many calculations is much simpler than when fixed-point working is used,

since scaling is rarely required.

Standardizing order. This order causes the number in the accumulator

to be shifted to the left as far as is possible without causing an overflow;

the number of places (binary or decimal) through which shifting has taken

place is recorded, either in one of the registers of the arithmetical unit or

in a location in the store. Standardizing orders are often found in ma-
chines which do not have built-in floating-point facilities, and their pur-

pose, for which they are very effective, is to facilitate the programming

of scaling operations and the construction of floating-point subroutines.

Multi-length working. An order is sometimes provided to facilitate the

addition of numbers whose digits occupy more than one storage location.

For example, an order might be fitted to the EDSAC which would cause

the following operations to be carried out: "Transfer the number in the

more significant half of the accumulator to the store (as is done by a

T-order) but make the sign digit a 0, whatever its original value ; if the sign

digit were originally a 1, leave the number 2~ 34
in the accumulator, but

otherwise leave the accumulator empty. " If the components of the multi-

length numbers are added in sequence, beginning with the least significant,

the use of this order enables the carry-over from less to more significant

components of the result to be programmed very simply. For example,

it will be found that two double-length numbers, each stored in two loca-

tions, can be added and the result put in two locations in the store, by

means of six orders.

Counting and repetition. ^-registers, the idea of which was originated at

Manchester University, provide the most flexible and most generally

useful means of facilitating the organization of repetitive loops and opera-

tions involving counting. Other systems in which the machine can be

made to execute an order a certain number of times with automatic modi-

fication of addresses are sometimes provided and, in some circumstances,
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can lead to very fast operation. In providing such systems the designer of a

machine usually has some special purpose in mind, such as the transfer

of information to and from a magnetic drum.

Entering of closed subroutines. It is quite common to find an order which

both records, in a register of the arithmetical unit or in the store, the point

reached in the program, and also transfers control to a closed subroutine.

Such an order would replace the pair of orders used for this purpose in the

EDSAC.
Logical orders. The collate order of the EDSAC performs the logical

operation "and." Sometimes the logical operations "or" and "not equiv-

alent to" are provided. In most applications one logical operation will

usually be found sufficient.

Manual input. Many machines are provided with a set of switches on

which a single word can be set up by hand and transferred to a selected

storage location. The EDSAC uses a telephone dial for a similar purpose.

Sometimes it is possible to read the number set up on the switches into the

machine during the course of a program, a special input order being pro-*

vided for the purpose. Facilities of this type are valuable, but should not

be used to such an extent that the speed of the machine is limited by that

of the operator.

The above list is not complete, and the reader may encounter other

facilities in particular machines, for example, facilities for taking a modulus

or for exchanging a number held in the accumulator with one in the store.

For the most part, however, the purpose and use of such facilities will be

sufficiently plain without further discussion here.

3-8 Minimum-access coding. In many machines the orders are exe-

cuted, as in the EDSAC, in the serial order in which they stand in the store,

except when transfer of control is brought about by the action of a jump
order. An alternative system is to include in each order a specification of

the location from which the next order is to be taken. This means that

each order must include an extra address, and Ave will speak of a 1 + 1

address code or a 3 + 1 address code, or as the case may be. This system

has advantages in the case of a machine which uses a magnetic drum for

its main store. Words stored on a drum are available only at certain times

in a fixed cycle. If a number or order is to be extracted from a location

chosen at random there will therefore be a delay equal, on the average, to

half the rotation time. If, however, the programmer has control over the

location from which the next word is to be obtained, he can reduce this

delay by placing the orders and numbers, so far as possible, in locations

chosen so that they become available at the moment they are required.

Such a procedure is known as minimum-access coding or, alternatively, as

optimum coding. This system has also been applied in the case of machines

which use ultrasonic tanks for the main store.
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Since both orders and numbers are stored on the same drum, the pro-

grammer is able to do very little towards arranging for both to become
available when required, unless he is provided with a number of special

storage registers which have an access-time short compared with that of

the main store. Usually such registers each hold a single word; in some

machines they can be used to hold either orders or numbers, while in other

machines they can be used for numbers only.

The procedure of minimum-access coding can best be explained by means

of an example. The order code used will be that of the EDSAC, with an

extra address written to specify the location of the next order.

In the machine used for the purpose of our example, it will be assumed

that all orders and numbers are of the same length, and that the store

consists of a magnetic drum with a number of tracks, each holding 64 words.

Addresses will be written in the form p,n where p is the number of the

track and n is the number of the word on the track. Locations 0,0 through

0,3 refer, not to the drum, but to four rapid-access registers. An example

of an order is

A p,n q,m add C(p,n) into the accumulator and take next

order from q,m.

The execution of orders with function letters A,S,H,T, etc., takes a

minimum of. two word-times, and the execution of orders with function

letters V,N takes a minimum of 36 word-times. These minimum times will

be exceeded if the machine has to wait for access to the storage locations

on the drum specified in the orders. The example taken will be to form

x(ay + bz + c) and leave the result in the accumulator. x,y,z are in 0,0,

0,1, 0,2; a,b,c are constants which can be placed on the drum in positions

chosen to minimize access time. The program, written to be placed on

track 1, is as follows:

1,0 H 1,1 1,2

1,1 a

1,2 V 0,1 1,38

1,12 A 1,13 1,14

1,13 c

1,14 T 0,3 1,16

1,15

1,16 H 0,0 1,18

1,17

1,18 V 0,3 1,54

Executed in first revolution

Executed in second revolution
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1,38

1,39

1,40

1,54

// 1,401,39

b

V 0,2 1,12

Executed in first revolution

Executed in second revolution

In the case of this simple program there is no difficulty in reducing to an

absolute minimum the effective access time of the store. In longer programs

it will often be found that a location into which it is desired to put an

order is already full, so that the order must be placed in a later location,

with consequent loss of time when the program is run. There is clearly

room for the exercise of some ingenuity in finding the best arrangement

of orders which will minimize access time. In minimum-access program-

ming there is a tendency to write out orders at length rather than to use

repetitive loops since, unless a loop occupies an integral number of drum
revolutions, some time is inevitably lost. It is convenient, if possible, to

confine each subroutine to one or two tracks, in order to facilitate program

assembly. Constants are usually placed on the drum in such positions that

they can be obtained with a minimum of delay when required; when the

same constant is required at more than one point, copies of it may be

placed in more than one location. The success of the programmer in

minimizing access time depends largely on the skill with which he can

make use of the rapid-access registers; it may sometimes be convenient to

transfer numbers from rapid-access registers into locations on the drum
where they will be subsequently useful, thus freeing the rapid-access

registers.

Although it is worth while optimizing as carefully as possible library

subroutines and those sections of calculations which account for a large

part of the running time, there is little advantage to be gained in optimizing

the remainder of the program. Unless this fact is clearly realized and acted

upon, a great deal of effort can be spent to little advantage.

3-9 The evaluation of an order code. There has been much discussion

among programmers as to the relative merits of different types of order

code. Many of the so-called arguments put forward are not arguments at

all, but expressions of taste. For example, some codes are said to be more
"natural" than others, but this clearly depends on the speaker's point

of view.

A proper evaluation of a machine must be made by forming an estimate

of its over-all effective speed on typical calculations, and relating this to
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the cost of installation and operation. Many things besides the order code

must be taken into account in forming such an estimate; these include

time to perform an operation, size and type of main store, size and type

of auxiliary store, reliability, speed of input and output, etc. On the whole,

a prospective purchaser of a machine will choose the one which gives him
the performance he requires at the least cost. Programmers have, however,

every right to demand that a machine shall be reasonably easy and straight-

forward to program and, indeed, the cost of operation depends to some

extent on this being the case. The authors believe that for a machine with

a random-access store, whatever the type of basic order code, provided

the order code has been designed with some intelligent regard to the

technical requirements of the programmer, then a satisfactory and easily

handled system of programming can be established by paying proper atten-

tion to the design of the initial input routine. The authors do not like

minimum-access coding, but are prepared to tolerate it so long as it

enables relatively cheap machines, fitted with magnetic drum stores, to

compete in speed with more expensive machines using random-access

stores. They look forward to the day, however, when technical advances

in the design of random-access stores will remove this economic advantage

in favor of the magnetic drum.

3-10 Use of an auxiliary store. Many modern machines, especially the

larger ones, are provided with auxiliary stores in addition to the main

store. An auxiliary store can take the form either of a magnetic drum or of

one or more magnetic tapes. Other machines have fast methods of input

and output which enable information to be temporarily put out of the

machine with a view to subsequent re-input, or which enable fresh blocks

of information to be taken in as required. Naturally, the manipulation of

an auxiliary store is a matter of much concern to the programmer, and the

efficiency with which calculations are performed frequently depends on

his skill in organizing the necessary transfers of information between it

and the main store. However, the subject is not one on which it is easy to

write in general terms, since so much depends on the type of auxiliary

store provided, the size of the blocks of information which are normally

transferred, the time taken for a transfer, the size of the main store, and

the over-all computing speed of the machine. All these factors must be

taken into account when planning a particular computation.

In some calculations, for example those arising in connection with partial

differential equations or with matrices, there may be very many numbers

to be handled, but relatively few orders. In these cases the natural thing

to do is to keep the program in the main store, and to transfer numbers to

and from the high-speed store in blocks. Since the transfer of a block of

information from the auxiliary store normally requires a time which is
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long compared with that required to execute a single order, it is desirable

to organize the calculation in such a way that as few transfers as possible

are required. This requirement may influence the programmer in his

choice between one numerical method and another. For example, it is

usually found that if a large matrix is so disposed in the auxiliary store

that rapid access can be obtained to all the elements of a single row, then

access to all the elements of a single column will be relatively slow; methods

which involve the alternate scanning of rows and columns of a large

matrix are therefore at a disadvantage compared with methods which

deal with rows or columns only.

In other problems the handling of numbers is relatively straightforward,

and the principal question confronting the programmer is how to deal

with a program which is too long to be accommodated entirely within the

main store. Here, much depends on the size of the block of information

which can be transferred from the auxiliary store in a single operation,

and on the time taken to make the transfer. At the one extreme is the case

of a machine with a high-speed magnetic drum from which a block of,

say, 50 words can be transferred to the main store in a single rotation time.

Here it may pay the programmer to transfer single subroutines from the

drum as he requires them. At the other end of the scale is a machine using

magnetic tape for auxiliary storage, in which the transfer of information

takes an appreciable fraction of a second, but in which the whole of the

main store, or as much of it as is required, can be replenished in a single

transfer operation. In using such a machine the programmer would tend

to divide his calculation into a number of stages, each of which was per-

formed by a separate program with its own master routine and subroutines.

Somewhat the same kind of method can be used in a machine which has

rapid punched-card input, the programs for the various stages being loaded

in the card reader and called for by the machine as required. The examples

given are extreme cases, and the best method to adopt in a particular case

would depend on the nature of the problem to be solved and on the facilities

provided by the machine available.



CHAPTER 4

INPUT" AND OUTPUT

4-1 Introduction. In the EDSAC, as in many other machines, punched

paper tape is used both for input (of orders and numbers) and for output.

Input and output are carried out by the machine as the result of orders in

the program, just as other operations are. The unit input operation, which

is performed as the result of a single input order, is the reading of one row

of holes on the input tape and, correspondingly, the unit output operation

is the punching of a single row of holes. To do anything more elaborate,

such as to read an order or a number composed of several decimal digits,

a subroutine is needed.

4-2 Input of numbers. The paper tape used for input is prepared by

means of a keyboard perforator. There are five positions across the tape

in which holes may, or may not, be punched, and one row of holes may
therefore be said to represent a five-digit binary number. The keyboard

perforator has 32 keys labelled with letters, figures, and other symbols,

as in the case of an ordinary teleprinter keyboard. Each key causes one

row of holes to be punched on the tape, according to the code given in

Appendix 1. The corresponding five-digit binary numbers are also given

in this appendix.* It will be seen that the figures through 9 are repre-

sented by their binary equivalents; for example, 5 is represented by 00101,

6 by 00110, etc. Most keys are marked both with a letter and with a figure

or other symbol. For example, the key marked T is also marked 5, so that

T and 5 both correspond to the same row of holes on the tape.

The input order of the EDSAC is given below. It is assumed that the

numerical equivalent of the row of holes standing under the reading head

of the tape reader is x.

I n Place x • 2
l G

in storage location n and advance the tape

by one row of holes.

The five binary digits read from the tape are thus transferred to the five

least significant positions of a short storage location.

Suppose that it is required to put the number 0.21973 into the machine.

The successive digits of this number are punched, in order, on the input

* A hole in the tape represents the binary digit 1, except in the case of the most
significant digit, where a 1 is represented by the absence of a hole. This is done

in order to avoid having to represent the number 00000 by blank tape.

66
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tape. When the tape is read by the machine, acting under the control of

a succession of / orders in the program, the binary equivalents of the

following numbers will be transferred to the store in succession :

2-2- 16

1-2- 16

9-27 16

7 . 2
-lG

3 -2- 1G

The program contains orders which cause the first of these numbers to be

multiplied by 10
4

, the second by 10 3
, the third by 10

2
, the fourth by 10,

the last by 1, and the results to be added. This calculation is carried out

in the binary scale, so that the binary equivalent of 21973 •
2~ 16

is now
to be found in the store. A further multiplication by 2 1G

• 10
-5

forms the

required number in its binary form. It will be seen that the decisive step

in the conversion of the number to the binary scale takes place in the

keyboard perforator, which converts the individual decimal digits of the

number to their binary form.

In practice, multiplication by successive powers of ten is not performed

exactly in the manner implied above but by making use of the cyclic

procedure for the evaluation of a polynomial, which was shown in Ex-

ample 6 of Section 1-13. In the notation of this example, y is taken equal

to ten, and a , ai, a 2 , ... are the decimal digits in decreasing order of

significance. Since it is necessary, in drawing up the program, to avoid the

use of numbers that lie outside the range — 1 < x < 1 , it is not possible

to multiply by 10 directly; instead, we multiply by 10/16 and shift the

result four places to the left in the manner illustrated in Example 13 of

Section 2-11. The detailed program of an input subroutine will be found

in Part 3 (see subroutine R 2).

4-3 Output of numbers. Conversion of numbers to their decimal form

during output is done in an analogous manner. However, certain complica-

tions have been introduced to reduce the likelihood of numbers correctly

computed being incorrectly printed owing to errors in the output mecha-

nism. Originally a teleprinter, directly connected to the machine, was
used for output. This accepted a five-digit binary number and printed

the corresponding character. As in the case of input, the code was so

chosen that the binary numbers through 9 were printed as the corre-

sponding decimal figures; for example, 00101 was printed as 5, 00110 as 6,

etc. It was realized that occasionally the wrong five-digit binary number
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might be set up on the teleprinter, and for this reason means were provided

whereby the programmer could cause the number so set up to be read

back into the store and used for checking purposes. This method of

checking, however, required the use of a nonstandard teleprinter, and it

was found that faults due to the reading-back system were common;
moreover, it could not readily be adapted for use with an output punch,

which it was proposed to substitute for the teleprinter. The system of

checking by reading back was therefore abandoned in favor of a "logical"

system using a "two-out-of-five " code.*

The code used for output is given in Appendix 1, along with that used

for input. It will be seen, in the output code, that each of the figures

through 9 is represented by a five-digit binary number in which two, and

only two, of the digits are l's. The corresponding rows of holes on the out-

put tape have two holes and three blanks, and the teleprinter used for

final printing of the results is arranged to accept this code. It will be seen

that a decimal digit can be replaced by another decimal digit only as a

result of the occurrence in the output system of two compensating

errors, one of which turns a hole into a blank and the other a blank into a

hole. The degree of security against error is therefore good and, moreover,

is not lost if output tapes are copied. The symbols +, — , and "space" are

represented on the tape by rows consisting of four holes and one blank.

These can be changed into rows representing decimal digits, and vice versa,

by two like errors. The inherent degree of security against this type of

error is not therefore quite so great but, on the other hand, such errors

would usually give rise to quite conspicuous irregularities of layout.

Output subroutines are slightly complicated by the use of the two-out-

of-five code. The procedure adopted is first to compute, in binary form,

the decimal digits to be printed, and then to convert these digits to the

output code by means of a ten-entry table included in the subroutine.

The output order of the EDSAC is as follows:

n Punch a row of holes corresponding to the five most sig-

nificant digits (including the sign digit) in storage loca-

tion n; a hole corresponds to a 1 and a blank to a 0.

The principle of the method by which the successive decimal digits are

computed is as follows. The number (assumed to be positive and less

* The order which caused the number set up on the teleprinter to be read back

into the store had function letter F. Some time after the facility provided by this

order had been removed from the EDSAC, the function letter F was re-used for

the present F-order, which gives an absolute transfer of control. Anyone referring

to the first edition of this book should avoid confusing the two orders.
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than unity) is multiplied repeatedly by ten, and the integral part removed

each time. If the number were expressed as a decimal fraction, this method

would clearly isolate the successive digits, beginning with the most sig-

nificant. The same is true if the number is expressed as a binary fraction

(the multiplication being by ten in its binary form, that is, by the binary

number 1010) except that the digits are then obtained in the form of the

corresponding binary numbers. When this method is programmed for the

EDSAC it is necessary, in order to avoid using numbers outside the range

— 1 < x < 1, to multiply by 10/16 instead of by ten, and to take the

four digits which come immediately after the binary point. The remainder

is shifted four places to the left before a further multiplication is performed.

An example of an output subroutine, which illustrates the above procedure

in detail, will be found in Part 3 (see subroutine P40).

4-4 Input of orders. The only way in which a symbol punched on the

tape can be read into the machine is by the operation of an /-order, which

reads a single row of holes. To enable a program tape to be read, therefore,

means are provided in the EDSAC whereby a short group of orders can be

placed in the store independently of the input mechanism. These orders,

which form the initial input routine referred to in Chapter 2, are wired in

binary form on a set of stepping switches (uniselectors) and are automati-

cally transferred to the store (and called into action) when the Start

button is pressed. The initial input routine is needed only while the

program tape is being read, and the space it occupies in the store may be

used again for other purposes during the course of the calculation.

It has already been explained that the translation of the orders, from

the external form in which they are written and punched to the internal

form which they take inside the machine, is performed by the initial input

routine. This translation includes the conversion of the address to decimal

form, the addition of any constant called for by the terminal code letter,

the assembly of the complete order, and its placing in the correct storage

location. It is important to realize that the relation between the form in

which orders are punched on the tape and the form in which they appear

in the store is determined solely by the initial input routine. By making

the two forms more similar (for example, by punching the address in the

scale of 8 or 16), or by omitting the facilities offered by the terminal code

letters, it would be possible to simplify the initial input routine. There

would, however, be no advantage in doing this, and it would mean that

more work would be left to the programmer. It is highly desirable that the

machine itself should carry out as much as possible of the clerical work
involved in drawing up the program; the chance of error is then reduced,

and the programmer is left free to concentrate his attention on the more
essential aspects of the program.
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It follows that the choice of the initial input routine, and thus of the

form in which orders are punched, is a matter for careful consideration,

since upon it depends the ease with which all programs are constructed.

Once the choice has been made, a library of subroutines formed, and a

number of large jobs begun, any change in the form of writing and punching

orders will entail a big reorganization. The form used with the EDSAC was

changed in September 1949, after only a few simple programs had been

run ; it was not long, however, before any further change would have been

practically out of the question, even if it had been desired.

The initial input routine used in the EDSAC is given in full in Appen-

dix 3. The action of the routine is, however, somewhat complicated to

follow, partly because of the complexity of the task it performs, and

partly because it was necessary to use every legitimate trick known to the

programmer in order to make the routine short enough to be accommodated

on the uniselectors. The reader may find it of assistance, therefore, to

study the simplified initial input routine given below. This provides for

the reading of orders and the interpretation of terminal code letters, but

does not provide for the recognition of control combinations. This omis-

sion would, of course, render the routine quite useless in practice, since

there would be no way of stopping the reading of the program tape and

causing control to be sent to the first order of the program. The order in

25, which places the assembled order in the correct location in the store,

is known as the 'Transfer Order.

"

Order Notes

T F Clear accumulator

1

2

3

A
T
T

30 F
43 F
41 F

Plant 2" 16
in 43

Clear 41

Later used for tem-

porary storage

29 -

4

-> 5

H
I

31 F
1 F

Set C{R) = 10/32

6 A 1 F Read, shift, and store

7

8

L
T

1024 F
2 F

function digits

9

-> 10

F 14 F Jump to 14

18- A 32 F
11 R 4 F
12

13

V
L

F
8 F

Decimal-binary conversion; address is

built up in

9 --* 14 T F
15

16

I

A
1 F
1 F

Read next characte

place x • 2_1G in

r, x say, from tape and

accumulator
{continued)
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17 S 32 F
18 G 10 F
19 L D
20 A 33 F
21 T 24 F
22 A 2 F
23 A F
24 ( )

25 (T 56 F)

26 A 25 F
27 A 34 F
28 T 25 F
29 F 5 F

30 P £
31 T F
32 P 5 F
33 A 34 F
34 P 1 F

Test and jump if x < 10

Form and plant order to add C(y) where

y is specified by code letter

Add function digits

Add address

Planted by 21; add C(y)

Transfer Order

Increase address in Transfer Order by

unity

Jump to read next order

= 2" 16

= 10/32

s 10- 2" 16

Base order

Pseudo-orders

Although the space occupied by the initial input routine of the EDSAC
may be used again for other purposes during the execution of the program,

it is usual, when writing programs, to arrange that locations 2 and 3,

which contain the pseudo-orders P 1 F, U 2 F, have their contents

undisturbed. These two pseudo-orders are frequently required, and

library subroutines are written on the assumption that they are in the

locations stated. It will be remembered that the pseudo-order U 2 F is

used by closed A subroutines for forming the link order.

The first few inches of,a program tape are always left blank, and the

tape is inserted in the tape reader with the reading head somewhere on

the blank portion. It is not necessary to set the first row of holes under

the reading head, since the initial orders are designed to have the property

of ignoring blank tape, in the sense that they do not erase anything of im-

portance from the store when it is read. It is, however, necessary to punch

a control combination at the end of the blank tape and immediately in

front of the orders. The usual control combination is P Z T m K,

which causes orders to go into the store starting at location m. It is often

convenient also to have a few rows of blank tape in front of each sub-

routine, in order to facilitate locating the subroutines when making cor-

rections to the tape. At least two such blank rows must be left and the

control combination P Z must be punched to follow them.

As explained earlier, the control combination E a K P F causes

control to be transferred to location a, which ordinarily contains the first
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order of the program. It may be that the programmer wishes further

orders to be read from the tape after the program has proceeded some
distance. He may do this by including in the program orders which place

10/32 in the multiplier register and transfer control to storage location 25.

This has the effect of calling the initial input routine in again. The accumu-

lator need not be empty when control is transferred to 25, but the first

group of symbols to be read from the tape must be a control combination

that will set the Transfer Order, for example, T n K. * If it is intended to

use the initial input routine again in this way, care must be taken to see

that its orders are not written over by numbers during the course of the

program. If the initial orders have been written over, they may be replaced

(after the machine has stopped) by pressing the Start button again; the

contents of other parts of the store will be left undisturbed.

4-5 Recognition of the code letter S. The initial input routine used with

the EDSAC was designed before the B-register was fitted, and does not

provide for the interpretation of the letter S (see Section 2-13). Therefore

a short subroutine which provides this extra facility is punched at the head

of each program tape which requires it. The subroutine (R30) is given in

Part 3, and it will be seen that, when it is read into the store, jump orders

are planted in 27F and 2SF so that R30 behaves as though it were an

integral part of the initial input routine.

4-6 Economy of input and output time. The EDSAC is so designed that

after an input order has been executed, calculation can proceed while the

tape is being advanced in the tape reader to bring the next row of holes

under the reading head. If another input order occurs before the tape is

fully advanced, however, the machine waits. The amount of calculation

required for binary-decimal conversion is not normally enough to take

full advantage of the time available between the reading of characters and,

when a series of numbers is being read, the speed of the machine is limited

by that of the tape reader. If, however, a sufficient amount of calculation

takes place between the reading of successive numbers, the method de-

scribed below may be used to remove this limitation. It will be supposed

that the numbers to be read all consist of n characters punched on the tape.

The programmer places in the program, at convenient points, n separate

input orders, each of which causes a character to be read from the tape

into one of a set of n consecutive storage locations. It does not matter

where these orders are placed, but they should be separated in time by

an amount sufficient for the tape reader to come to rest after advancing

the tape one row. If this is not done the full gain in speed offered by the

* Alternatively, the Transfer Order may be replaced by orders included in the

program, and control sent, with the accumulator clear, to 34.
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present method will not be obtained. The program is otherwise made up

in the ordinary way, but the input subroutine used must be specially

designed to take successive characters from the set of n locations in the

store, instead of from the input tape; a standard subroutine can be easily

modified for this purpose. The modified input subroutine runs at full

speed, and the over-all speed of the machine is limited by the speed at

which calculations can be performed^ and not by the speed of the tape

reader. A similar method may be used to economize output time.

4-7 Some features of input systems used with other machines. Many
machines use punched paper tape for input. Some use five-hole teleprinter

tape, as in the case of the EDSAC, and some seven-hole Flexowriter tape.

Many other machines use I.B.M. (Hollerith) punched cards. So far, few

machines use magnetic tape for input and output, although a good many
use it for auxiliary storage. We shall not attempt, in this section, to give

any general survey of the input systems used with digital computers, but

will mention a number of points of direct concern to the programmer.

4-8 Punched tape. In the EDSAC, the basic input operation—that

called for by a single input order— is to read a single row of holes on the

tape, and to place the resulting five digits in the store. In many other

machines, by contrast, the basic input operation is to read a number of

rows of holes, and to assemble the resulting digits side by side to form a

complete word; if this system were applied to the EDSAC the logical

arrangement would be for seven rows to be read, giving 35 binary digits

which would just form a complete long word. If it were necessary to choose

between one facility and the other, the authors would prefer the reading

of a single row of holes as the basic input operation, since this enables the

various facilities which have been described in this chapter and the pre-

ceding one to be secured with a minimum of complication in the program.

However, if both facilities can be provided, the possibility of reading a

complete word direct from the tape by a single order can be used to ad-

vantage. Perhaps the most important advantage is that it enables a

program tape to be read without the use of a permanently wired-in initial

input routine. This will be explained in relation to the EDSAC, it being

supposed that an order is provided which causes seven successive rows of

holes to be read, and the resulting 35 binary digits, arranged in a row, to

be transferred to the store as a long number. It will also be supposed that

means exist whereby, on pressing a button, the operator can cause such an

order to be introduced into storage location 0, and control to be sent to

that location.

The method of initial input to be described depends on the fact that the

order in storage location can call for the input of a long word, containing
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two orders, from the tape and that these two orders can each call for the

input of two further orders, and so on. Starting with the single order in 0,

it is thus possible to put in as many orders as are desired. In practice,

this method would be used to introduce into the machine a standard initial

input routine, which would then be used to read the program tape. Thus
every program tape would begin with the initial input routine punched in

this special way.

The input order need not actually be introduced into storage location 0,

provided that the pressing of the Start button sets up such connections in

the control unit of the machine that the machine behaves as if such an

order had been introduced. However, a simple method of achieving the

desired result without any extra apparatus whatever is to allocate to the

special input order function digits which are all zero; thus, in EDSAC
notation we should have

P n F Read a long word (seven rows) from the tape, and place

it in storage location nD.

The order P F (in which all the digits are 0) can then be introduced into

storage location (and into all other storage locations as well) by clearing

the store; if the register which holds the address of the next order to be

executed is cleared at the same time, control will be sent, on pressing the

Start button, to location 0. A tape punched in the manner shown below

will then be read; this tape has the orders of an initial input routine inter-

leaved with special input orders in such a way that they are placed in the

store in locations 4 through 41. When all the orders are in the store, con-

trol is sent to location 4. The orders are written here, for convenience, in

the standard form used for writing EDSAC orders but, in practice, it

would be necessary to punch them in binary form, with seven rows of

holes to each pair.

F
2 F
F
F

4 F
6 F

P 8 F
P 10 F

Order pair read into 0D

Order pair read into 2D

Order pair read into 0D

1st four orders of initial input routine;

read into 4D and 6Z)

(continued)
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P 40 F
F 4 F

2nd four orders of initial input routine;

read into SD and 10D

Order pair read into 0D

Last two orders of initial input routine

;

read into 407)

4-9 Punched cards. In all, or nearly all, digital computers which use

punched cards for input, the cards are read row by row by means of a

card reader similar to that used in ordinary tabulators. As each row is

read, the corresponding binary number—in which a 1 corresponds to a

hole and a to a blank—is placed in the store. Cards have 80 columns, but

in most machines it is not possible to read digits from all the columns

during a single passage of the card; most often the number of columns

which can be read in a single passage is equal to the number of digits in a

word, although in some machines it is possible to read twice this number.

It is customary to provide a plug-board which enables the operator to

select, in advance, the columns to be read.

When used for primary input of data to a binary machine, cards are

normally punched in the usual punched-card code, that is, one decimal

digit is punched in each column, in a one-out-of-ten code. However, when
information is put out of the machine on cards, with a view to subsequent

re-input, it can be punched in the binary system, each row of holes cor-

responding to a binary word (or to two binary words) in the machine.

Cards punched in this way provide a very efficient form of storage, and

are frequently used for subroutines, standard programs, and other often-

wanted data. There is little which need be said about the use of cards for

storing information in binary form, but the use of cards punched in decimal

code for input and output raises the problem of binary-decimal conversion.

Some machines are provided with an input order which causes a single

card to be read, and a set of twelve words, one corresponding to each row

of holes, to be placed in the store. For example, if the card has punched on

it the number 7896821..., the word corresponding to the bottom row of

holes (in which 9's are punched) will be 0010000..., that corresponding to

the bottom but one row of holes (in which 8's are punched) will be

0100100..., etc. The twelve words may be said to form an image of the card

in the store. In machines of this type, conversion of the numbers punched

on the card to the binary scale must take place after the whole card has
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been read. The conversion is best done by a method in which the decimal

digits are isolated in turn (by scanning the image, or by applying some

equivalent procedure) and the usual method based on the evaluation of a

polynomial applied. The following program in EDSAC code illustrates

one way in which a decimal-binary conversion subroutine may be written.

For simplicity, it will be assumed that positive numbers only are in-

volved. The card image consists of 12 long words in storage locations

100D through 122D, as shown in the example below.

00032310 (I^ard image\ Converted

Row Location Word card image

2
-34

i
DOD D

D X 100D ..00000 ...00000

D Y 102D ..00000 ...00000

D
104Z) ..00001 ...11110

1 106D ..00010 ...11100

2 108Z> ..01000 ...10100

3 HOD ..10100 ...00000

4 U2D ..00000 ...00000

5 1UD ..00000 ...00000

6 U6D ..00000 ...00000

7 USD ..00000 ...00000

8 120D ..00000 ...00000

9 122D ..00000 ...00000

Conversion takes place in two stages. During the first, the card image is

converted to the form shown on the right, in which the number of l's in

each column is equal to the decimal digit punched in the corresponding

column of the card. This stage carries with it a check against mispunching

or misreading of the card. During the second stage, the columns are

summed successively, and the binary form of the number built up.

The card image occupies digits 2~ 25 through 2"~ 34
of each of the storage

locations concerned. For the first stage a number consisting of l's in each

of the above digital positions, and 0's everywhere else, is placed in the

accumulator; C(1047)) is then subtracted from this number, and the result

placed back in 104D. This will have a 1 wherever C(104Z)) had a and a

where C(104Z)) had a 1. C(10GZ)) is next subtracted from the number
remaining in the accumulator, and the result placed back in 106Z). This

will have l's everywhere except in those positions where C(104Z)) or

C(106Z)) originally had l's. The process is repeated for C(108D) through

C(122D), after which C(Acc) is tested to see that it is zero. This will be so
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if each column of the card image had one and only one digit equal to 1.

A check of the correct punching and reading of the card is thus obtained.

At this point the converted card image is available in the original storage

locations.

The second stage consists of the summation of the individual columns

of the converted image, and, the building up of the binary form of the

number by a process which is equivalent to the usual process for the

evaluation of a power series. Both stages should be made clear by a study

of the program which will now be given; it assumes the presence of the

following three constants:

10D 2
-24

This is a number with a single 1 in the left-

hand column position

127) 2
-24 __ 2

"34
This is a number with a 1 in each column posi-

tion

UD 2
-24 __ 2

-33
This is a number with a 1 in each column ex-

cept the least significant

Order Notes

G K
B 20 S

5

1

-» 2

3

A
BS
ss

12 D
2 F

122 D

First stage (form new
card image)

4 us 122 D
5 J 2 e •

6 -* 6 F 6tt0 Dynamic stop if check fails

7 T D Clear 0D
8 A 10 D

20 -> 9 T 4 D Plant test digit in multi-

10 H 4 D plier register

11 B 20 F
16 -> 12 BS 4 S

13 cs 104 D Decimal-binary conver- Second stage

14 cs 106 D sion cycle (repeated 5 (form

15 A D times) converted

16 J 12 d integer in 0D)
17 T D
18 C 14 D Build up integer in 0D
19 R D Shift test digit

20 F 9wd Test for end of cycle
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The above method is applicable in machines in which a single input

order causes a whole card to be read. In other machines the card must
first be set in motion by a special order included in the program, and each

row of holes must be read, as it arrives under the reading brushes, by a

separate reading order. From the point of view of the programmer, the

card is then very much like a piece of broad paper tape with, however,

the important difference that once set in motion it cannot be arrested

until all the rows have passed the reading brushes. It is open to the

programmer to include orders, for any purpose connected with the program,

between the input orders which read successive rows of holes, but he must

take care that the execution of these orders does not take longer than the

time available. If an input order is encountered in the program before a

row of holes has arrived at the reading brushes, the machine will wait, but

if the row has passed the reading brushes when the order arrives, the

information contained in that row is irretrievably lost.

In a machine working on the principle just described, it is possible to

use some of the time between the reading of the rows of holes for per-

forming part of the decimal-binary conversion. Suppose that the first

row of holes to be read (which has holes punched where the corresponding

decimal digits are 9's) gives a binary word whose rth digit is ar , where

ar = or 1 . The contribution from this row of holes to the number being

read is then 92a r 10
r

. Similarly, if br is the rth digit of the word correspond-

ing to the second row of holes, the contribution from this row of holes is

82M0 r
; and so on. The various sums, of which 2ar 10

r
is typical, may be

evaluated immediately after the reading of the corresponding row of holes,

and a sequence of orders for doing this is given below. Given this sequence,

a subroutine for reading a decimal number from a card and converting it

to binary form may be constructed without difficulty. The sequence is

entered at its first order, with the binary word read from a row on the

card in 6D. It is assumed that the decimal numbers have ten digits, and

that the corresponding binary words occupy the ten binary positions

immediately to the right of the binary point. It is further assumed that

C(4£>) = 2~ 34 and C(R) = 10/16.

11

G K
B 10 F
T D
A 6 D
L D
U 6 D
E 8ird

T 8 F
A 4 D

Set count

Test next digit in binary word and

jump if it is a

Clear accumulator

Add unity

(continued)



4-9] PUNCHED CARDS 79

9

10

11

12

V
L 4

BS 1

J 1

D
F
S

Multiply partial result by ten

Count and test for end

It will be seen that this is yet another example of the evaluation of a

power series, the coefficients in this case being either or 1.

In the case of binary-decimal conversion performed as a preliminary to

output, it is necessary that the whole number should be converted to

decimal form before the first row of holes is punched, and there is not

much scope for saving time by performing part of the binary-decimal

conversion between the punching of the rows. Whatever the precise

method used in a particular machine for controlling the card, it will

usually be found that a convenient procedure is to form in the store an

image of the card to be punched, before punching starts.

Orders may be punched on cards in a notation similar to that used in

the EDSAC, use being made of the standard two-hole combinations used

to represent letters in ordinary punched-card practice. The number of

orders which can be accommodated on a card depends on the number of

columns which can be read during one passage. Programs punched in this

way are relatively bulky, and when a subroutine or program has been tested,

it is convenient to put it out of the machine in binary form onto a new set

of cards; these can then be preserved, and used for subsequent re-input.

Punching the original cards by hand in binary form is not to be recommended,

since punching and checking of programs is then a highly skilled operation.

If, as seems possible, fast card readers which read the card column by
column, instead of row by row, come into general use, the scheme of

punching one or two 6-digit characters in each column might commend
itself. If this were done each card would hold 160 characters, the equiv-

alent of 16 inches of 6-hole tape. Existing keyboard perforators, which are

designed to punch only one or two holes per column, would not, however,

lend themselves to this method of punching.

So far, while discussing punched cards, we have had binary machines in

mind. The most obvious arrangement likely to occur to the designer of a

decimal or alpha-numeric machine is to use cards punched in the standard

punched-card code, and to provide circuits for automatic conversion to

whatever binary code is used internally. The advantages of cards in pro-

viding compact storage and rapid input of subroutines and standard data,

however, are more fully realized if it is possible to punch and read back

information expressed in coded binary form. If automatic conversion to

and from standard punched-card code is not provided, the problem of

programming such conversion raises considerations very similar to those

raised by binary-decimal conversion in binary machines.



CHAPTER 5

THE LIBRARY OF SUBROUTINES

5-1 Introduction. A library will contain subroutines of different types.

Some will be subroutines of general utility and will be in constant use by

programmers. Others will be of more specialized interest and will have

been written for particular projects undertaken with the machine. These

subroutines are preserved in the library partly because they may be of

further use for the same or later projects, and partly because they embody
the result of experience which has generally been obtained by the expendi-

ture of much time and trouble. Intelligently used in this way, a library

can help to prevent the experience of a group being dissipated when
individual programmers leave, and can provide a source of information for

newcomers about the methods which have been found effective with the

particular machine in use.

This chapter is concerned primarily with the EDSAC library and with

subroutines of the former type, that is, those of general interest. However,

some attention is given to the special requirements of other machines where

these differ from those of the EDSAC.

5-2 Library catalog. The catalog of the library of the EDSAC is drawn

up in two sections. One gives a concise specification of the action of each

subroutine, together with sufficient information to enable a programmer to

make use of it; this includes information about operating time, precision,

and the storage space occupied. The other section gives the orders of the

subroutines in full. An abbreviated version of the first section of the cur-

rent catalog of the EDSAC library is given in Part 2 of this book, and an

abbreviated version of the second section in Part 3. New subroutines are

continually being added, and older subroutines displaced. Part 3 contains

the program of at least one subroutine of most types, and a number of

other subroutines which are thought to have points of special interest.

Some of the subroutines date from a time before the B-register was fitted

to the EDSAC.
In addition to subroutines, the library contains a number of complete

programs for well-defined problems which repeatedly recur, such as the

solution of linear algebraic equations. It also includes post-mortem

routines.

In a number of cases, it will be found that there are two or more sub-

routines which perform very similar operations. Usually they differ in

80
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time of operation and in storage space occupied. Normally, the one with

the shortest operating time would be chosen for any particular application,

but if the program occupies nearly all the main store, then storage space

may become the major consideration. Time of operation is of great im-

portance only if the subroutine is called in many times during the program,

thus consuming a large proportion of the total time.

Subroutines may also differ in numerical accuracy and in the number of

parameters which may be varied to suit particular applications. If a sub-

routine has many parameters it is sometimes useful to provide separate

versions to deal with cases that commonly arise.

5-3 Input subroutines. All input subroutines read numbers punched on

the tape in the scale of ten, convert them to the scale of two, and place

them in the store. Some subroutines read a single number only each time

they are called in, while others read a series of numbers and place them in

consecutive locations in the store. The subroutines may be further classi-

fied into those which read decimal fractions from the tape and those which

read integers; in the latter case, when an integer n is read from the tape,

n -
2~ 16

or n •
2~34

is put into the store, according as short or long numbers

are being used. Some input subroutines are designed to read numbers

punched in input code, and some to read numbers punched in output code;

the latter are useful for reading back into the machine information which

has earlier been put out. Most input subroutines are designed to ignore

blank tape and layout symbols such as "carriage return" and "line feed."

This makes it possible to punch information in such a way that it can be

printed on a page teleprinter for purposes of proofreading or record, and

yet be accepted by the machine.

Many subroutines contain numbers as well as orders. Short numbers

are easily put in as pseudo-orders. A sequence of long numbers requires the

use of an input subroutine, but if only one or two long numbers occur they

may be put in as pairs of pseudo-orders. It is, however, necessary that the

sandwich digit (see Section 2-10) should be zero, and this may make it

necessary to use the complement of a number instead of the number
itself. When a subroutine needs a series of constants, such as the coeffi-

cients of a power series, it is common practice to write it on the assumption

that subroutine R9 will be in the store when the subroutine is read.

5-4 Output subroutines. These convert numbers in the store to decimal

form and cause them to be punched, in output code, on the output tape.

Most output subroutines also punch layout symbols such as space, carriage

return, and line feed, different subroutines providing different page layouts.

Some output routines deal with fractions, and others with integers. The
most complicated output subroutine is P57, which offers a wide range of
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layouts and enables the programmer to change the layout in the course of

a calculation.

Subroutines which print fractions are normally arranged so that the

number to be printed is rounded off to the correct number of decimal

places. This is done by adding the round-off constant, J • 10~n
, where

n is the number of decimal places, to the modulus of the number before

printing, n is specified by means of a preset parameter, and the round-off

constant is calculated in the following manner during the reading of the

input tape, by means of what is known as an interlude. The short sequence

of orders used to calculate the round-off constant is first read from the tape

and placed in the store. Control is then set to the first order of this se-

quence, by means of a control combination punched on the tape. Finally,

when the calculation of the round-off constant is complete, the last order

of the sequence returns to the initial input routine, and the reading of the

tape is resumed (see Section 4-4). The orders of the interlude are then

overwritten by orders of the subroutine. Usually an output order which

causes a figure shift symbol to be punched on the output tape is included

in the interlude. Interludes are used for a variety of other purposes in

library subroutines, and further examples will be found in subroutines

such as (731, F7, and G12 in Part 3.

5-5 Division subroutines. The order code of the EDSAC does not in-

clude an order for division, which must therefore be carried out by means

of a division subroutine. Several division subroutines are included in the

library; the one most often used is Dll, which divides the double-length

(69-digit) number held in the accumulator by a single-length number.

This enables an expression of the type ab/c to be evaluated in a straight-

forward manner, even if ab is less than 2
-34

. If the only form of division

subroutine available is one which divides a single-length number by
another single-length number, it is not possible to write a program which

will evaluate ab/c without risk of serious loss of precision, unless use is

made of conditional operations; it is assumed that a, b, c and ab/c all lie

within the range required by the machine, but that a, b, and c are otherwise

unrestricted. The same difficulty arises in a machine with a built-in divider

which is not capable of handling a double-length dividend. Of the sub-

routines described in Parts 2 and 3 it might be noted that D6 uses an

iterative formula, and is designed to give the greatest accuracy. D7 and

Dll use a simpler repetitive formula.

5-6 Trigonometric and other functions. When values of trigonometric

and other functions are required for arbitrary values of the argument, it is

usually better to use a subroutine which calculates them from a power

series or other formula, rather than to place a table in the store and to
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interpolate into it. However, tables are of value if speed is important, if

storage space can be spared, and if the circumstances allow the interval of

tabulation to be chosen so that tabular values only are required ; interpola-

tion takes an appreciable time and, when it is necessary, the use of a table

is less attractive.

When values of a function are to be calculated from a formula, it is, in

many cases, quickest and simplest to use a power series economized by the

use of Chebyshev polynomials. A method of doing this is given in the next

section. It may be advantageous to express the power series in terms of

an auxiliary variable; for example, in the case of log x it is convenient to

use y = (1 — x)/(l + x). If the machine has a divider, use may be

made of formulas involving the ratio of two polynomials. The use of con-

tinued fractions is also sometimes convenient with such machines.

Approximations to functions suitable for use in a digital computer may
often be arrived at by semi-empirical methods. Useful information about

such approximations is given by C. Hastings (see Bibliography).

Sometimes repetitive methods, based on very simple formulas and

needing very few orders, are available; these are, however, usually slow.

An example is to be found in subroutine S3, in which the required answer

is built up digit by digit.

When a series of sines or cosines is required, with equal increments of the

argument, subroutines based on a recurrence formula may be used. This

situation occurs when a differential equation involving a sine or cosine of

the independent variable is being solved.

The above remarks apply also in the case of inverse trigonometrical

functions, and one or two subroutines for computing such functions should

be included in a library. A subroutine designed to convert cartesian

coordinates to polar coordinates may also be found useful.

5-7 The economization of a power series by the use of Chebyshev

polynomials. The first few Chebyshev polynomials, defined in the range

1 < x < 1, are as follows:

T (x) = 1,

Ti(x) = x,

T2 (x) = 2x 2 -- 1,

Tz (x) = 4x 3 - 3x.

(1)

This set of equations may be extended by use of the recurrence relation

Tn+1 (x) = 2xTn (x) - Tn-i(z). (2)

The Chebyshev polynomials have the property that their maximum and
minimum values in the range —1 < x < 1 are all 1 and —1, respectively;

thus \Tn (x)\ < 1.
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Suppose that it is known that the following power series represents the

function f(x) with sufficient accuracy in the range — 1 < x < 1

:

/(*) = J a rx\ (3)

o

By the use of Chebyshev polynomials it is often possible to obtain a new
power series, with fewer terms, which will give similar accuracy. The
principle of the method by which this is done ma}' be explained as follows.

Suppose that equations (1), extended as far as Tn (x), are used to eliminate

x from (3) ; we then have, instead of a power series, a series of Chebyshev

polynomials; i.e.,

/(*) = J a rx
r m J b rT r (x).

All that has been done so far is to make an algebraic transformation. It

will often be found, when numerical values are put into the Chebyshev

series, that the contributions from the last few terms are negligible to the

accuracy required. If these terms are dropped, and the resulting truncated

Chebyshev series reconverted to a power series, the required economized

power series is obtained. Since \Tr (x)\ < 1 in the given range, the condi-

tion for the term b rTr (x) to be negligible is simply that b r should be

negligible.

In practice, complete conversion of the power series to a Chebyshev

series is not necessary, and the economized series can be obtained directly

as follows. Evaluate \an/tn ,o\, where an is the coefficient of xn in the given

power series, and tn<0(= 2
n~ l

) is the coefficient of xn in Tn (x). If this

quantity is negligible to the accuracy required, subtract (an/tnt o)Tn (x)

from the given series; this gives an economized series of degree n — 1. If

Wn/tn ,o\ is not negligible, the given power series is not capable of econ-

omization.

The above procedure is repeated until further economization is not pos-

sible. When carrying out the economization process it is desirable to work

to slightly more accuracy than the given series itself warrants, in order to

control the effect of rounding-off errors. It is possible to program a digital

computer to perform the process of economization, and such a program is

included in the EDSAC library, although it is too long to be given in this

book.

A table of coefficients for the Chebyshev polynomials

for n < 20, taken from Jones, Miller, Conn and Pankhurst, 1946 (see

Bibliography), is given on page 85. More extensive tables are given by the

National Bureau of Standards in Applied Mathematics Series 9 (1952).
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Example. To economize the following series:

3 ,5

arc tan {\x) -

2 23. 3 ' 2*.

5

- 0.5x - 0.0417a;
3 + 0.0062r\

This series gives arc tan (Jz) to slightly less than 3-decimal accuracy in

the range — 1 < x < 1 . For this series, we have

|<*5/<5.o| = V(2
9
-5),

which is negligible to 3-decimal accuracy. An economized series can,

therefore, be obtained by subtracting from the given series the following

quantity

:

[l/(2
9

• 5)]TB (x) = [l/(2
9

• 5)](5aj - 20x 3 + 16.r
5
)

- 0.0020.C - 0.0078.T
3 + 0.0062.r

5
.

We then obtain

arc tan ftx) - OAQSOx - 0.0339.C
3

.

Since 0.0339/4 is not negligible, further economization is not possible.

5-8 Quadrature. Section Q of the EDSAC library contains subroutines

for computing definite integrals. When the integrand is given by an alge-

braic expression, a subroutine based on a Gauss formula is ordinarily to be

preferred. The desk computer's objection to Gauss formulas, namely,

that the function has to be computed for awkward values of the argument,

is of no account when using an automatic machine; this is an illustration

of the different considerations which apply when selecting methods for

automatic computing as compared with desk computing. Q3 is based on

the ordinary 6-point Gauss formula, and Q19 on a 6-point formula with an

exponential weighting function. In each case an auxiliary subroutine for

calculating values of the function to be integrated must be constructed

by the user; this is called in as required by the integration subroutine.

Other subroutines, based on formulas with larger numbers of points (up

to 14), are available in the library. Generally, however, it is perhaps safer

to cover an extended range of integration by the repeated application of,

say, a 6-point formula, rather than by the use of a single formula with

many points (see Hildebrand, pp. 79-82, 334).

In some cases, for example if the function to be integrated is obtained

by integrating a differential equation, a formula which uses equally spaced

ordinates may be more suitable than a Gauss formula. In these circum-
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stances Q20, which is based on Gregory's formula, may be used. A sub-

routine based on Simpson's rule was formerly included in the library, but

this method is so simply programmed with the aid of the B-register that a

library subroutine is hardly necessary.

5-9 Integration of ordinary differential equations. The EDSAC library

includes a number of subroutines for integrating ordinary differential

equations. (74 enables a second order differential equation with first

derivative absent to be integrated; this is based on a conventional iterative

method in which use is made in each interval of values of the function

calculated in previous intervals. Special methods are needed for starting

the integration.

(712 and (713 are subroutines for integrating sets of simultaneous, first-

order, differential equations, not necessarily linear, using methods of the

Runge-Kutta type. G13 uses the standard Runge-Kutta process, and (712

uses a variant due to Gill which has the advantage of requiring one less

storage location per variable. A description of the Runge-Kutta-Gill

method is given in Section 5-10.

Any differential equation or set of differential equations can be reduced

to a system of first-order equations; for example, the equation

may be written y' = z,

z' = [—xz — (n
2 — x 2

)y]/x
2

.

Subroutines (712 and (713, are thus of wide utility. On many occasions,

however, methods of the Runge-Kutta type are relatively slow in opera-

tion, although they have the advantage that a special starting procedure

is not necessary. (713 is somewhat faster than (712.

When particular functions occur in the coefficients of a set of differential

equations, it is often more convenient to add extra differential equations

than to make use of subroutines for the purpose. For example, in the case of

y' = sin y,

the set of differential equations to be solved may be taken as

y' = z,

z' = u,

u' = (1 - 2z
2
)z.
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(714 is a subroutine which will locate a zero of a function defined by a

differential equation. For this purpose it makes use of G12 or G13 as an

auxiliary subroutine.

5-10 Library subroutines G12 and G13 : Runge-Kutta processes.

These subroutines handle sets of simultaneous, first-order, differential

equations, in which each derivative is expressed in terms of the variables

Vi = fi(Ui, V2, • • • ,yn),

2/2 = Mvu 2/2, • • • , Un),

Vn = fn(Uu 2/2, ...
, Un).

The case in which the functions / involve the independent variable can

be treated by the methods described in Section 5-11.

The subroutine G12 or G13 carries out one step of the integration each

time it is called in. In doing so, it makes use of an auxiliary subroutine

which evaluates the functions flf . . .
, fn . The auxiliary subroutine must

be provided for the individual problem; it is called into play four times

during each step.

The auxiliary subroutine is asked to provide the quantities hy f
multi-

plied by a suitable scale factor 2m , where h is the length of the interval and

m is chosen to be as high as possible without exceeding capacity.

Apart from the 2n long storage locations used to store y and 2mhy f

, n
additional storage locations are used by G12 as temporary storage for the

quantities 2
m
q (see Section 5-12), and 2n additional storage locations are

needed by (713. The numbers left standing in the first n of these locations,

at the end of a step, are 3 • 2
m times the rounding-off errors of the quanti-

ties ij) they are taken into account during the following step, and serve to

prevent the rapid accumulation of rounding-off errors. As a result, the

effective numerical accuracy is m digits more than the capacity of the

storage locations. At the beginning of a range the locations used for

temporary storage must be cleared, otherwise the integration routine will

add spurious "corrections" to the variables. Apart from planting the

initial values of the variables, this is the only preparation required before

starting an integration. The truncation error in one step is of order h
5

.

5-11 The independent variable. If the independent variable occurs in

the functions /, it may be obtained by integrating the equation x' = 1.

x is treated as an additional dependent variable, for which the auxiliary

subroutine has to provide the quantity 2mhxf = 2mh. The latter may be

planted at the beginning of the integration and left there, so that the

auxiliary subroutine is relieved of the task. If the independent variable

does not appear in any of the /'s, but is merely wanted for indication pur-

poses, it is quicker to use a simple counter in the master routine.
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When x is generated by integrating x
f = 1 , the values which it assumes

during the four applications of the auxiliary subroutine within one step

are x
,
(x + %h), (x + %h), and (x + h), respectively, where x is the

beginning of the step. This has two implications. First, if time is of great

importance, x may be generated by using a binary switch in the auxiliary

subroutine, so that \ln is added every other time the subroutine is used;

x may then be used in calculating the fs but does not require the introduc-

tion of an additional dependent variable. Second, if the/'s involve a func-

tion of x which is tabulated at equal intervals, it will be necessary to employ

only the tabulated values, or values interpolated at simple fractions of

the tabular interval.

If h cannot be expressed exactly in binary form, there is a numerical

advantage in generating x by integrating x' = 1. Owing to the high

digital accuracy afforded by the "bridging" values of 2mq which are carried

over from one step to the next, the accumulation of rounding-off errors in

x occurs much less rapidly than it would if x were obtained by the repeated

addition of h.

5-12 Definition of the Runge-Kutta-Gill process. This process is defined

by the equations below. ?/ 2

- is the value of the ith. variable at the beginning

of a step; yu is its value at the end of the step. While the 2w/c;p 's for one

value of p are being calculated by the auxiliary subroutine, the corre-

sponding yip and 2mq ip (i = 1, . . . , n) are stored. The quantities r ip

are used only in the formation of the corresponding yiv and q ip , and do

not need to be carried over to the following value of p. Each r is rounded

off to the same number of places as y.

yu and g i4 become 2/10 and g i0 for the following step. The scale factor

2m employed in storing k and q is left out for simplicity.

ki0 = hfi(y00 , y10 , . . .)

Vn = Vio + r ix

Qn = Qio + 3r*i

fczi = hfi(yQ1 , 2/ii, . . .)

Ti2 = (1 — Vi) (kn — qn)

Vi2 = Vi\ + r i2

q%2 = qn + 3r
?

-

2 — (1 — Vi) kii

k i2 = hfi(y02, yi2, • •)

ris = (1 + Vi) (ki2 ~ qi2)

Viz = Vi2 + r i3

QiB = qi2 + 3r,- 3 — (1 + Vi) ki2

kiz = hfi(y03 , 2/13, . . .)

ru = i(k i3 — 2q i3 )

ViA = Viz + ru
q%± = qiz + 3r; 4 2^i'3

1 h2^20
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5-13 Taylor-series method. A program, too long to give in Part 3, has

been constructed for solving

P(*)S + <fa) fx + r{x)y = 0,

where p(x), q(x), r(x) are polynomials of degree two, with arbitrary coeffi-

cients. The program is based on the use of Taylor's formula, derivatives

being calculated by means of the recurrence formula

,(n+2) , / ,
|

>. A+D -
n(n — 1)

py
(n^ + W + q)y

{n^ l) + v '

v" +ntf + r\
n(n - I

L 2
y
{n)

The program is arranged to use as many terms of the Taylor series in each

step as are necessary to give the accuracy required. Automatic scaling

down, to prevent an overflow, is provided. Methods based on the use of

Taylor's series have the advantage that a very large interval in the inde-

pendent variable may be used if desired.

5-14 Interpretive subroutines. The use of interpretive subroutines (see

Section 2-21) effectively extends the order code of the machine by increas-

ing the complexity of the operations which may be performed in response

to a single order. However, the resulting gain in expediency of program-

ming is offset by the considerable increase in the time required by the

machine to carry out the calculation, because of the higher percentage of

orders concerned purely with organizing the calculations.

The EDSAC library contains interpretive subroutines for carrying out

arithmetical operations on complex numbers (subroutine 52) and on

double-length numbers (subroutine A^2) . The code of interpretive orders

used in connection with B2 closely resembles the basic order code of the

EDSAC.

5-15 Floating-point subroutines. All is an interpretive subroutine for

performing the operations of addition, subtraction, and multiplication on

numbers expressed in floating-decimal form. Each number is expressed in

the form a • 1(F, where — 10 < a < 10 and —63 < p < 63, and is

represented in the store by a • 2
-11 + p 2

-6
. ^49 and ^410 are input and

and output subroutines designed to be used in conjunction with All.

AS0 is an example of an interpretive subroutine which enables the

programmer to work with an order code quite different from the basic

order code of the machine; it provides him, in effect, with an entirely new
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machine. The action of ^430 is best described in terms of this hypothetical

machine.

Numbers are expressed in the form a • 10p
,
where a and p are packed

into a single storage location. The number of digits defining p may be

varied from 4 to 15 by means of a preset parameter, so that a suitable

value for the permissible range of variation of numbers may be selected

for a given calculation. The "arithmetical unit" contains an accumulator

and a multiplier register; the arithmetic orders provided are very similar

to those of the EDSAC except that they work with floating-point numbers.

There is a 5-register, and the interpretive orders may be jB-modified. The
facilities of ^430 may be extended by the use of special auxiliary sub-

routines which allow for input, output, the extraction of a square root, etc.

Assembly facilities for the subroutines are also provided, along the lines

described in Section 8-3.

Although the use of floating-point operation can simplify the pro-

grammer's task by relieving him of undue preoccupation with scaling, it

must not be thought that it solves all his difficulties. In particular, the loss

of significant digits resulting from the subtraction of a number from a

nearly equal number can have serious consequences unless proper precau-

tions are taken. In floating-point operation, effects of this kind can

present themselves in unfamiliar guise, and the programmer should be

on his guard.



CHAPTER 6

DIAGNOSIS OF ERRORS IN PROGRAMS

6-1 Introduction. Even a first-class computer will sometimes make a

mistake (although he will not allow it to remain undetected for long). In

the same way a programmer will sometimes make a mistake in the master

routine, in a subroutine, or in the make-up of a program tape. Some mis-

takes may cause the answer to be in error. Others may cause the machine

to obey a wrong sequence of orders, or to try to treat as an order some word
intended as a number or pseudo-order. In the latter case the machine will

perhaps stop on a meaningless order, or go into a closed loop—that is,

repeat a short sequence of instructions over and over again. The machine

may print a number of symbols, or it may print nothing at all.

Experience has shown that such mistakes are much more difficult to

avoid than might be expected. It is, in fact, rare for a program to work

correctly the first time it is tried, and often several attempts must be made
before all errors are eliminated. Since much machine time can be lost in

this way, some importance attaches to the adoption of efficient techniques

for avoiding errors, for detecting them before the program is put on the

machine, and for locating, with a minimum expenditure of machine time,

any which remain undetected up to that point.

Library subroutines are all checked on the machine before being put

into the library, and the programmer may regard them as being almost

certainly free from error. This in itself would be a sufficient reason for

having a library, quite apart from other considerations. When subroutines

are specially made for a particular program, it is good practice to test them

beforehand, by means of short programs constructed for the purpose.

It is easier to avoid and detect errors if the program is drawn up in an

orderly and logical manner. For example, if six quantities Xi, x 2 ,
x 3 ,

Vi, 2/2, 2/3 occur, they should be placed in consecutive storage locations, and

not scattered about the store. Similarly, orders and pseudo-orders used

for counting purposes should be arranged on some plan, and not placed at

random in the store. In the early stages of drawing up a complicated

program, the programmer should not hesitate to copy it out in a more

logical layout when necessary. The parallel case of hand computation will

suggest itself; good computers generally pay close attention to the arrange-

ment of their work sheets.

It is of great assistance, both to a programmer and to a person checking

the program, to provide notes describing the actions of the orders, as is

92
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done for the examples given in Part 1 of this book and for the library sub-

routines given in Part 3. The notation for entry points, pseudo-orders, etc.,

summarized at the beginning of Part 3, is also designed to help in under-

standing programs.

6-2 Proofreading of programs. Some idea of the types of mistake

which can occur in programs is given by the following list of points which

should be checked before a program is punched. Many of the mistakes

are of a purely clerical nature, and could be detected by a person without

great mathematical ability; others require an understanding of the par-

ticular calculation. Although many errors can be detected if the program

is checked by a second competent programmer, this usually requires so

much time as to be uneconomic in practice.

1. No two subroutines may occupy the same storage locations, unless

one is used only temporarily before the other is inserted.

2. All conditions contained in the specification of each library subroutine

used must be met. For example, if it is necessary that the subroutine

should start in an even location, this point should be checked. It should

also be made certain that all parameters have been correctly specified.

3. All subroutines should be correctly called in, according to the system

in use. For example, in the EDSAC, the accumulator must be clear when
closed A subroutines are called in.

4. When alterations have been made to programs, it should be verified

that any necessary renumbering has been correctly done.

5. Counting operations should give the correct number of repetitions.

6. The program should be prepared in such a way that locations are

left for any orders which are planted by the program itself. In the case of

the EDSAC this is usually done by writing a dummy order such as Z F,

or P F.

7. It should be verified that control is directed to the correct place to

start the program.

8. No item of information in the store should be overwritten unless it is

no longer required; in particular, no wanted information should be left in

locations that are used for temporary storage by a subroutine.

9. It must not be assumed that the content of the multiplier register is

unaltered by a subroutine.

The above list, which is based on EDSAC experience, is not exhaustive,

but will serve to indicate the type of error that anyone checking a program

should be on the lookout for.

6-3 Punching. A program once written and checked must be trans-

formed into a form which can be accepted by the machine. Usually, this
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means that it must be punched onto cards or paper tape. When cards are

used, ordinary punched card equipment is available for punching, verifying,

correcting, and copying. When tape is used, special equipment is required.

Corrections to a program punched on a deck of cards are easily made by
replacing one or more of the cards by new ones. When corrections have to

be made to a program punched on paper tape, it is best to copy the whole

tape with the aid of a device which enables corrections to be incorporated

in the copy. Sometimes small hand punches, which enable individual

holes or rows of holes to be punched, can be used. In some centers, correc-

tions are made by splicing tapes and by sticking patches over holes. We
feel that, if reliable tape duplicating equipment with adequate editing

facilities is available, programmers are likely to find such expedients

messy when used for correcting individual subroutines. When very long

program tapes are in use, however, the joining of longish sections by
splicing can save much tedious copying of tapes.

It is usual to reserve the combination in which a hole is punched in each

position across the tape for use as an "erase" symbol. If a punch operator

presses a wrong key, he backspaces and presses the "erase " key, and then

punches the correct symbol. The initial input routine can be designed to

ignore erase symbols, but in the EDSAC we use a specially designed tape

duplicator to remove erase symbols from program tapes before they are

read into the machine. Many of our number input subroutines, however,

ignore erase symbols.

Experience shows that tape editing and verifying equipment working at

telegraph speed (about 7 rows per second) is too slow for convenient use

in a digital computer laboratory; speeds of 12-15 rows per second are

acceptable, but still higher speeds are desirable.

6-4 Locating mistakes in a program. Most machines have a push

button by which the operator can make the machine execute a program

one order at a time. Many machines also have monitors, attached to the

arithmetic unit and the store, which display the numbers and orders con-

tained therein. It might be thought that a good way of finding errors in a

program would be to make the machine proceed order by order, and to

study the progress of the calculation by watching the monitors. This,

however, usually turns out to be a very slow and inefficient process,

especially in a machine in which the numbers are displayed in binary form.

Methods have therefore been developed in which the machine proceeds

unhindered by the operator, but prints a permanent record of the progress

of the calculation; this record can be studied at leisure and will assist in

understanding the nature of the mistake.

One such method is to wait until the machine has stopped (or to stop it

deliberately) and then, without clearing the whole store, to insert a small
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program which will print in suitable form the contents of part of the store.

This has come to be known as the post-mortem method. Various post-

mortem routines are available in the EDSAC library and copies of the

tapes are kept available near the EDSAC. Some of these print the numbers

standing in consecutive storage locations, starting from any desired point;

others print orders. A refinement of this method, which takes advantage

of the fact that much of the information in the store is unchanged by the

program, is known as the comparison post-mortem method. In this method

the program is read a second time into the machine, and only those orders

or numbers which have been changed during the course of the calculation

are printed. The second reading of the program may be avoided by placing

it at the outset in an auxiliary store.

Stopping of the program at a suitable point for the post-mortem method

to be applied is facilitated if the machine is provided with one or more

break-point orders or conditional-stop orders. Such an order causes the

machine to stop if a key on the control desk is in the depressed condition

;

if the key is in the normal position, the break-point order has no effect.

Break-point orders, if available, should be included at strategic points in

a program when it is first drawn up, with a view to facilitating the subse-

quent location of errors. The EDSAC has a break-point order, written as

Z D (see Appendix 2).

The post-mortem method yields only a static picture of the store as it

was when the calculation stopped. Other methods have been developed to

provide information about the whole course of the calculation. These

necessarily involve modifying the program to cause extra printing. This

may be done either by making alterations to the tape or cards on which the

program is punched, or by reading into the machine, when the program is

already there, a specially prepared sequence of orders which will modify

the original orders where necessary.

One simple plan is to place output orders at various points in the pro-

gram, for example at the beginning of the master routine and in front of

each subroutine, so that the completion of the various stages of the program

will be recorded by the printing of suitably chosen symbols. If, by reason

of a programmer's mistake, the machine stops in the middle of the program,

the symbols printed will enable the error to be localized. When a tele-

printer is used for output, letter and figure shifts must also be inserted if

letters are required for indication purposes and if it is desired that the

ordinary printing of numbers called for by the program shall take place

correctly. When the program has been made to work satisfactorily, the

extra printing orders may be removed. It is a good plan to include extra

printing orders of the type described here in new programs when they are

first drawn up, rather than to wait until the program has been tried and

found to fail.
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6-5 Subroutines for checking programs. In many cases the modifica-

tions to a program required for-error diagnosis are quite extensive. It has

been found possible to construct subroutines which make these modifica-

tions automatically, and which are sufficiently general to be applied to any

program. These form category C of the EDSAC library.

A particularly useful type of error-diagnosis subroutine is known as a

check-point subroutine. When such a subroutine is read into the store, it

causes a number of unconditional jump orders to be planted at specified

points in the program. During subsequent running of the program, control

is transferred, at these points, to the check-point subroutine, which causes

information required for diagnostic purposes to be printed; control is then

returned to the program, which runs in the normal way until another of the

planted jump orders is reached. The information printed by the check-

point subroutine may consist simply of symbols which indicate, for ex-

ample, that the various subroutines are being operated in the correct

order, and that repetitions are taking place the correct number of times.

Alternatively, it may cause the numbers or orders standing in specified

storage locations to be printed, and thus provide information which the

programmer can use to locate the point, if any, at which the program fails

to do what he intended it to do.

Error-diagnosis subroutines can also be constructed on the interpretive

principle. Such a subroutine is placed in the store along with the original

program, and control is sent to the subroutine. The subroutine treats the

original program as though it consisted of interpretive orders (see Sec-

tion 2-21) ; the subroutine extracts the orders from the program and causes

them to be executed, but at the same time it prints additional information.

A useful error-diagnosis subroutine of this type prints the function letters

of orders as they are executed, starting a new line of printing whenever a

transfer of control takes place. This provides a very convenient means by

which the programmer can locate with precision the point at which the

machine departs from the sequence of operations he intended to lay down
when he wrote the program. An example of the use of such a subroutine is

given in Chapter 7, Example 2. The printed sequence of function letters is

sometimes known as a trace.

An alternative form of trace consists of a list of locations to which, and

from which, control was transferred by jump orders during the running of

the program. Since most programs contain simple loops in which a sequence

of orders is repeatedly executed many times, it is a convenience if the

error-diagnosis subroutine is designed to detect such loops and to print

the information in abbreviated form; for example,

150 - 50 G7 - 53(100) 82 - 207

might indicate that control was transferred from 150 to 50 and that trans-
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fer from 67 to 53 took place 100 times, after which control was transferred

from 82 to 207.

Trace-printing subroutines can be designed to have a delayed start, for

example to start printing after control has passed through a specified loca-

tion a given number of times, or when control is first sent to a specified

location. They can also be designed in such a way that no trace is printed

of closed subroutines, which therefore run at full speed. Alternatively, a

subroutine can be arranged to store the trace, without printing, in a

limited number of storage locations, earlier information being progressively

overwritten by later information. Then, when the machine has stopped,

it is possible to obtain a printed record of, for example, the last twenty

occasions on which control was transferred or a single loop entered.

Although interpretive methods of error diagnosis are very powerful,

they suffer from the general disadvantage of all interpretive subroutines,

namely, that they slow down, very appreciably, the operation of the pro-

gram. Moreover, if the error is not encountered until the program has been

running for some time, a great deal of time is wasted in unnecessary print-

ing. For these reasons interpretive methods of error diagnosis have not

proved to be capable of such universal application as at one time seemed

likely. They are, however, extremely powerful, and are hard to beat

for finding errors in relatively short programs which contain intricate

switching.

A general point to bear in mind when assessing the value of procedures

for error diagnosis is that those which are simplest to use are likely to

become the most popular among programmers. What is potentially a good

method can be spoiled if the method of applying it has not been well

enough worked out. Even details of organization are important—for

example, the convenience \yith which an operator can lay his hands on the

right error-diagnosis subroutine when working under pressure on the

machine. The mistake of making error-diagnosis subroutines too com-

plicated in an attempt to make them of very general application should be

avoided.

6-6 The development of a program. Many mistakes in programs cause

the machine to stop or to proceed on some course of action which makes it

quite obvious that a mistake is present. These mistakes can be located by

the methods which have just been discussed. Some mistakes, however,

cause the numbers operated on to be in error, without immediately affecting

the sequence in which the orders are obeyed. It cannot, therefore, be as-

sumed that if a program apparently operates correctly it is giving correct

results, and careful numerical checks must always be applied.

A numerical fault may be due to a mistake in a single order or constant

or to a more fundamental mistake, such as a wrong choice of scale factors,
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that causes some numbers to take values outside the range permitted in

the machine. Such mistakes can be quite difficult to diagnose, although an

overflow alarm, such as that provided with the 0-order in the EDSAC, will

often pinpoint the error.

When a mistake in a program has been located the next task is to

correct it. It is best to do this in a way which will minimize the likelihood

of further errors being introduced in the process. Although it is worth

taking pains to see that programs, when first written, have a logical

layout, once the task of making a program work has been seriously under-

taken, the programmer should resist the temptation continually to rewrite

it in a more elegant form, since every time he does so he is likely to intro-

duce new mistakes. It is best to make corrections in such a way that as

little as possible of the program is disturbed. Suppose, for example, that

a correction involving the introduction of additional orders has to be made
at a certain point in the master routine. The existing order at that point

may be replaced by a jump order which will send control to another part

of the store, where the displaced order and the necessary correcting orders

can be placed; these are followed by another jump order which sends

control back to the master routine. Fewer mistakes are likely to be made
if this procedure is used than if the extra orders are inserted in the middle

of the routine and the subsequent orders renumbered.

When corrections to a program have been decided upon, the appropriate

alterations must be made in the tape or cards used for input. This may be

done either by correcting the errors where they occur and making any

necessary additions, or by adding at the end a short piece of tape or a few

extra cards on which the corrections are punched. These corrections are

read into the store after the original program and, where necessary, over-

write the original orders. It is common practice, when programs are being

developed for the EDSAC, to punch at the end of the program tape a con-

trol combination which will cause the machine to stop until the operator

presses the Reset button. This provides an opportunity for the insertion

of a correction tape if necessary. Later, when the program is fully devel-

oped, a fresh copy of the program tape is made, with the corrections added

at the end and with the control combination omitted.



CHAPTER 7

EXAMPLES OF COMPLETE PROGRAMS FOR THE EDSAC

Example 1. Calculation of e
_sin * This program calculates and punches

values of e~sin x
for various positive values of the argument x, which are

supplied on a data tape. The results, when printed, consist of two columns,

the left-hand column giving the argument and the right-hand column the

corresponding value of the function. The quantities in each column are

printed to nine decimal places. Each value of x is read and then punched

on the output tape, and the corresponding value of the function is calcu-

lated and punched before the next value of x is read. The program stops

when a negative number is read from the data tape.

Five library subroutines and a master routine specially written for this

problem are used; they are positioned in the store as follows:

Location of Number of storage

Routine first order locations occupied Type

R9 56 15 Special (used by E± and

T7 during input)

77 (sine) 72*
, 36 Closed A

E4: (exponential) 110* 36 Closed A

R37 (read

fraction) 150* 34 Closed B

P30 (punch

fraction) 190* 48 Closed A

Master 250 23

* First order must be in an even-numbered storage location.

99
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blaster routine

3

22

#37

P30

Tl

E\

P30

G K
Z F

1 B 1 e

2 F 150 F

3 G TTd

4 T 8 D
5 H 8 D
6 A G d

7 F 190 F

8 A 8 D
9 R D
10 T 4 D
11 A 11

12 F 72 F

13 S 4 D
14 L D
15 T D
16 H D
17 A 17 e

18 F 110 F

19 H D

20 A 20 e

21 F 192 F

22 F i e

Wait until data tape is inserted in reader and

Reset button pressed

Call in #37, which reads x and leaves it in

accumulator

Jump if x is negative, thus stopping program

Place x in SD
Place x in multiplier register ready for P30
Call in P30, at its first order, to print argument

on a new line

Place J x in 4/) ready for Tl

Call in Tl to place \ sin .r in 4D

Place —sin x in multiplier register

Call in P4 to place e~sin x
in 0P>

Place e
_sin * in multiplier register ready for

P30
Call in P30, at its third order, to print function

on same line as argument

Jump to read next value of x
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Make-up of program tape

P9

space

PZT 72 K

T7

space

PZT 110 K

E\

space

PZT 150 K

P37

space

PZT 190 K

GK

T 45 K

P 1568 F

P30

space

PZT 250 K

Master

routine

EZPF

R9 begins with PZT 50 K, so that it is automati-

cally placed in storage locations 5G through 70.

Places in 42 the address (190) currently specified in

the Transfer Order

Sets the Transfer Order so that the parameter fol-

lowing goes into 45

i7-parameter for P30; specifies a digit layout of

5 digits, space, 4 digits

P30 begins with TZ, so that the address stored in 42

is replaced in the Transfer Order. P30 is then

placed in 190-237

Transfers control to first order of master routine,

with accumulator clear.

Make-up of data tape

1234 +
986 +
74281079

1
-

Values of x; they are read one at a time, by P37,

when that subroutine is called in by the master

routine

When this (negative) number is read the program
will stop.
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Notes: (1) The word "space" in the description of the make-up of the

program tape denotes that a few rows of blank tape are left immediately

before a subroutine to facilitate tape handling and correction. These few

rows must always be followed immediately by the control combination PZ.

If desired, the blank tape may be omitted; in this case the PZ must also

be omitted.

(2) It is sometimes desired to place subroutines "head to tail" in the

store—that is, with the first order of one in the next storage location to

that containing the last order of the previous one. This can be done

automatically by omitting the T m K control combination following the

PZ before each subroutine. Care must then be taken to ensure that those

subroutines whose first orders must go into even storage locations are in

fact so treated. Note also that, in any case, the GKT 45 K preceding P30
cannot be omitted, since this control combination temporarily breaks the

regular sequence (of unit increments of address in the Transfer Order) in

order to plant the //-parameter for P30 in storage location 45.

(3) If desired, the data tape could be combined with the program tape.

The wait at the beginning of the program could then be by-passed by

starting the program with E 1 ZPF instead of EZPF.

(4) At the end of the program the machine stops on the Z-order at the

beginning of the master routine. If desired, another data tape could then

be inserted, and the program restarted by pressing the Reset button.

(5) The whole program has a total of 192 orders, but only 23 have been

specially written for this calculation, the rest being provided by library

subroutines.

Example 2. The evaluation of a definite integral. To evaluate

±[ (1 + x
2)- l

dx (=t).
Jo

In order that all the numbers concerned in the calculation shall be less

than 1, the formula is rewritten as

/.

1/2 _3_

Evaluation of this integral may be conveniently carried out by a Gauss

6-point quadrature formula, and library subroutine QS is chosen for the

purpose. For QS, an auxiliary, closed A subroutine must be constructed to

calculate the integrand for a given value of x, placed in 0D. The auxiliary

subroutine is called in automatically by QS, to which it returns control

after calculating the desired value of the integrand and placing it in QD.
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A division subroutine is required in the course of calculating the integrand

and library subroutine Dll is chosen. Two further library subroutines are

needed: R9, which is required while QS is being read into the store, and P30,

which punches the result on the output tape.

The master routine and the auxiliary subroutine make use of a number
of constants (pseudo-orders) . For convenience, these are all included in a

single sequence numbered with reference to the code letter M.

Allocation of storage locations

Routine

Location of

first order

Number of storage

locations occupied Type

R9 56 15 Special

Dll 72* 30 Closed B

P30 110* 48 Closed A

03 160* 48 Closed A

Auxiliary

subroutine 210 16 Closed A

Master

routine 230 9

M-sequence 240 3

M-sequence

i

M
1

2

R F
E F
K 2048 F

4

3

15

2'

2"

2"

-4

-4

-4

i

4

(See Note) **

* First order must be in an even-numbered storage location.
** Note: The quantity 15 • 2

-4
is represented by the pseudo-order K 2048 F,

rather than the more obvious "erase" F, for the following reason. It was pointed
out in Section 6-3 that the row of holes representing "erase" can be automatically
removed from a program tape by copying the tape in a special tape duplicator.
If "erase" is used as a function "letter" there is thus a danger of its being uninten-
tionally removed from the tape. For a similar reason, some subroutines represent
the quantity —1 by the pseudo-order K 4096 F, rather than by "blank" F, since
blank tape can also be removed when a tape is copied in the duplicator.
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Master routine

Q3

PZO

G K
A M

1 U H
2 T 2 H
3 A 3 e

4 F 160 F

5 H D

6 A o e

7 F 110 F

8 Z F

Set a and h for Q3 (see specification of Q3
in Part 2)

Call in Q3, which places integral in 0D

Place integral in multiplier register ready

for P30
Call in P30 to punch integral on output

tape

Stop

Auxiliary subroutine

Dll

G K
A 3 F

1 T 15 e

2 H D
3 V D
4 A M
5 Y F
6 T D
7 H D
8 V 2 M
9 Y F

10 T 4 D
11 A 1 M
12 B 12 e

13 F 72 F

14 T D
15 (Z F)

Form and plant link order

(x* + |) to 0D

15/,.2 I 1H(z 4 + i) to 4Z>

Add ft
Call in Dll to form C(Acc)/C(4Z))(= inte-

grand)

Integrand to OZ)

Becomes link order
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Make-up of program tape

K

K

F

K

R9 P9 begins with PZT 56 7v, so that it is automati-

space

PZT 72

cally placed in storage locations 56 through 70

DU .

space

PZT 11

GK
T 45 K
P 1568 //-parameter for P30; specifies a digit layout of

5 digits, space, 4 digits

P30

space

PZT 16

GK
T 45 K
P 10 D
P 210 /

P 240 /

//-parameter, specifies working space for Q3
iV-parameter for Q3 ; specifies location of auxiliary

subroutine

ill-parameter

Q3

space

PZT 210 K

Auxiliary

subroutine
i

space

PZT 230 K

Master

routine

space

PZT 24 /v

M-sequence

ZKPF
E 250 1CPfr

Stops machine until Reset button is pressed*

Transfers control to first order of master routine

with accumulator clear

* Most program tapes for the EDSAC include this control combination just

before the end. If a modification or checking tape has to be inserted this can be

done when the machine stops at this point.
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Example 2, with a check-point subroutine. By the use of the simple check-

point subroutine C27 the program of Example 2 can be modified to print

extra information to provide some record of its course of operation. The
details given below show how the letters Q, D, or A could be printed each

time the program calls in QS, Dll, or the auxiliary subroutine. The
printed result from this program would be

QADADADADADAD3 1415 9265.

This result is achieved by inserting in the reader a specially punched

check-point tape (see below) when the machine stops on the ZKPF imme-
diately before the final control combination on the program tape. If the

Reset button is then pressed, C27 will be read into the store, and will

modify the orders in the specified check points of the program. As a result,

when the program is started by the control combination at the end of the

check-point tape, it will punch the extra symbols required.

Make-up of check-point tape

PZT 400 K

C27

space

P Z
Q 160 S
D 72 S
A 210 S
IT 1 10 S

E 230 KPF

Q will be punched each time control passes through 160F

D will be punched each time control passes through 72F

A will be punched each time control passes through 21OF
Figure shift will be punched each time control passes

through U0F
Transfers control to first order of master routine, with

accumulator clear

Application of checking subroutine (731 to Example 2

A more detailed record of the course of action of the program of Example

2 can be obtained by the use of checking subroutine C31 to print a trace.

For this, a checking tape should be prepared (see below) and inserted into

the tape reader before pressing the Reset button after the machine has

stopped on the ZKPF near the end of the program tape. When C31 has

been read in, it will take control and start the program at the point speci-

fied by the final control combination on the checking tape. As each order
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of the program is executed, its function letter will then be punched on the

output tape. Carriage return and line feed symbols will also be punched

whenever a transfer of control occurs in the program.

Make-up of checking tape

Set //-parameter for C31, so that checking starts at the

order in 230F

Starts program at first order of master routine, with

accumulator clear.

space

PZT 400 K
G K
T 45 K
P 230 F

1
|
C31

E 230 KPF

Information printed by teleprinter Corresponding orders

AUTAF master routine through 4

ATTSAUATAHNYTAG Q3 through 14

ATHVAYTHVYTABF auxiliary subroutine through 13

F Dll

USAAE Dll 8 through 12

ASUSALUSAAE Dll 2 through 12

ASUSALUSAAEAG Dll 2 through 14

THNAYTNYG Dll 19 through 27

THNAYTNYG Dll 19 through 27

THNAYTNYG Dll 19 through 27

THNAYTNYGAF ' Dll 19 through 29

TE auxiliary subroutine 14 and 15

HVYATAAG 03 15 through 22

TAHVYTAG QS 7 through 14

ATHVAYTHVYTABF auxiliary subroutine through 13

F Dll

USAAE Dll 8 through 12

ASUSALUSAAEAG Dll 2 through 14

THNAY etc. Dll 19 through 27

*Note: Numerical results punched byP30 would be printed as the corresponding

letters, since the teleprinter is set to letter shift by P30.
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Example 3. Integration of an ordinary differential equation. The
equation considered is

dy = y(l + 2y - ±x)

dx x(y — x + 4)
'

where A is a constant. This equation occurs in theoretical astrophysics.

In the vicinity of the origin, a solution for any given value of A has the

behavior y = (Bx) llA
,
where B is arbitrary. Solutions are required for a

set of values of A and, for each value of A, for a set of values of B. Each
solution is to be tabulated at an interval of 0.01 in x until either y > 0.98

or dy/dx < — 1, values of y being correct to five decimals.

Method. The formula for dy/dx is formally indeterminate at x = 0. It

is therefore necessary to start the numerical integration from some small

value x of x, at which the value y of y can be evaluated from a series

expansion. This starting point can be taken as .r = 0.01 ; the correspond-

ing values of y Q , for different values of B, must be calculated separately,

and furnished to the machine as input data. The program is so arranged

that the machine evaluates automatically the whole set of solutions for a

given value of A and different values of y .

An input subroutine is needed to read in the values of x and A, and the

values of y for which solutions are required. Library subroutine R37 is

used for this purpose. Two other library subroutines, G12 and P31, are

used for carrying out the step-by-step integration and for printing the

results, respectively. G12 requires an auxiliary subroutine which must be

programmed in detail; it involves a division process, for which library

subroutine 2)11 is used. The auxiliary subroutine is required to calculate,

and place in 14D, the quantity

dx x{y — x -j-A)

The quantities x and y are in the range (0,1) and, for the solutions required,

A and 2mh are less than 1. However, 4x may exceed unity, so we must

introduce a scaling factor 2
-2

, and calculate

2
m
h

y(h + \y - x)

*ii(y-x)+iA]

The sequence of operations by which this quantity is evaluated must be

planned with care, to ensure that all the intermediate quantities remain

within the capacity of the accumulator. The method adopted is to mul-

tiply 2mh by y{\ -f iu ~~
-v), an^ divide the double-length product by

* lii'J - x) + iA].
'
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Mathematical checks. It is necessary to verify that the interval h is small

enough for the step-by-step integration process, and that the solution is

stable despite rounding-off errors. Mathematical checks are not built

into the program and must therefore be carried out separately. A suitable

check is to repeat selected runs with a smaller value of h. Another check

is to evaluate y'-, at selected points, from the differential equation and also

from a central-difference formula. Results for one special case, namely

A = 0.4, x = 0.074515, y = 0.049793, can be obtained from the

tabulated solution of Emden's equation.

Allocation of storage space

Location of Number of

Routine first order locations Type

G12 56 49 Closed B
Dll 105 30 Closed B
P31 136 61 Closed A
R37 198 34 Closed B

auxiliary subroutine 240 28 Closed B
master routine 270 40

//-sequence 315 3

R30 1014 10 Special

Location of constants and variables

10D y 18/) 2mqi
12/) X 20/) 2

m
q 2

14/) 2mhy f

22/) A
16/) 2mh 24/) Xq

H-sequence

K 3441 F ^ 0.98

1 L F Represents * in output code

2 R F 4 •
2~4 = i

Master routine. This calculates and prints the values of y at the end of

each interval until either y > 0.98 or dy/dx < — 1. The integration

then stops and the final value of x is printed on a new line, followed by an
asterisk.
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start

P37

R37

R37

15

39

R37

32

£12

P31

28

G K
B e

1 F 198 F
2 T 16 D
3 B 3 e

4 F 198 F

5 T 24 D
6 B 6 e

7 F 198 F

8 R 1 F
9 Y F

10 T 22 D
11 Z F
12 T 195 F

13 B 13

14 F 198 F
15 G 11tt0

16 T 10 D
17 A 24 D
18 T 12 D
19 T 18 D
20 T 20 D
21 B 21 e

22 F 56 F

23 H 10 D
24 A 24 e

25 F 136 F
26 A 14 D
27 A 16 D
28 G 33 6

29 T F
30 A 10 D
31 S H
32 G 217T0

33 T F
34 T 195 F
35 H 12 D
36 A 36

37 F 136 F
38 1 #
39 F 12 (9

Read constants from

end of program

tape

Call in #37

Plant 2mh in 16D

Call in R37

Plant x in 24D

Call in R37 to read A

Plant i4 in 22D

Wait while data tape is inserted

Reset layout counter (i.e., clear 60th location

of P31)

Call in R37 to read y Q

Jump to stop order if y is negative

Place !/o m 10-D

.r n to 12Z)

Prepare

for in-

tegra-

tion

Clear q\ and q 2 for integration

Call in (712 to carry out one step of integration

y to multiplier register

Call in P31 to print y

2mhy'

2mh

End integration if +1 < — y
f

Test if 2/ > 0.98

Reset layout counter of P31

Prepare to print xn

Call in P31 to print xn on a new line

Print asterisk

Repeat for a new value of y
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Auxiliary subroutine. This is a closed B subroutine which evaluates, and

places in 142), the quantity 2
3
h(dy/dx), where

dy y(i + iy — x)

dx XMy- X) + ±A
]

G12

2)11

T Z
A 10 D

1 S 12 D
2 R 1 F
3 A 22 D
4 Y F
5 T D
6 H D
7 V 12 D
8 Y F
9 T 4 D

10 A 10 D
11 R D
12 S 12 D
13 A 2 H
14 Y F
15 T D
16 H D
17 V 10 D
18 Y F
19 T D
20 H D
21 V 16 D
22 K 25 e

23 B 23 e

24 F 105 F
25 (P F)

26 T 14 D
27 FS 2 F

i(y - x) + \A to 0D

Denominator to 47)

(iy — x + i) to 02)

2/(i2/ -x + i) to 02)

Numerator

Store content of 2?-register

Call in 2)11

Restore content of 2?-register for link order

Place 2 3
hy' in 142)

Link order
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Make-up of program tape

mo
space

PZT

T
P
P
P
P
P
P

56 KGK

45 K
10 D
14 D
18 D

240 F
GV2

space

PZT 105 K

Dll

space

PZT 136 KGK

T 45 K
P 1024 F
P 25 F

P31

space

PZT 198 K

RS7

space

PZT 240 KGK

T 45 K
P 315 F

auxiliary

subroutine

space

PZT 270 K

master

routine

space

PZT 315 K

Placed in 1014-1023

Location of y

Location of 2mhy

Location of ^

2 variables

m = 3

Location of auxiliary subroutine

Set parameters

H, N, M, A, L, X
for G12

Set H- and iV-parameters for P3 1 , so that numbers

are printed to five digits in five columns

//-parameter for auxiliary subroutine and master

routine

(continued)
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//-sequence

E 270 KPF

08+
01+
4+

2m

Xq

A

Note: The data tape, which is also needed, contains the sequence of

values of y for which solutions are required. These values are punched in

the form required for reading by RS7. The last value is followed by 1—

,

which stops the program.

Example 4. Evaluation of a Fourier transform. Statement of problem.

The sums yn are to be calculated to five decimal places, for n = 1,2,...,

47. yn is defined as

4^ I nmir\
Vn= Ij X™ Sin \-g-) ,

where xm ,
(m = 1(1)47), is a group of fractions, each less than J, read

from a data tape.

Method, sin (nm7r/48) takes only 96 values, so that it is better to store

a table of 96 entries than to evaluate each sine by means of a subroutine.

The table is constructed, during a preliminary calculation, using the addi-

tion formula for sines and cosines. During the main calculation, the xm
are read into the store by means of subroutine R33, and tables of

xm + #48—m and xm — £48—m are calculated. The following summation

formulas can then be used

;

x^y • nmir
,
4^ • (48 — m) . nir

Vn= l_j
X™ S111 "48" + Lu X48-m SHI — 7lT + £24 Sin—

,

that is,

Ef I \ •
nm7r

/ jn
(Xm + x48-m) sin -jg- (m odd),

or

24
* / \ •

7
f.T™ - 3!jo ~ ) sin -

48
{xm — #48-m) sin -^- (n even),

where .r 2 4 has been redefined to have half its former value. To ensure that
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numbers remain within range, Y^yn is calculated and printed instead of yn .

This is done most conveniently by using a table of jq sin (nra7r/48)

instead of sin (nmir/48) . The results are printed by means of subroutine

P31.

Allocation of storage locations. It is convenient to make use of preset

parameters to specify the locations in which certain sets of quantities are

placed in the store.

xm is stored in location 2(m — l)H (m

xm + #48-m is stored in location 2(m — l)N (m

xm — ^48-w is stored in location 2(ra — l)M (m

Tit—- sin -r^r is stored in location 2rA (r
10 48

pseudo-orders are stored in locations 0L — 5L,

subroutine RS3 is stored in locations 56 — 101,

subroutine P31 is stored in locations 102 — 162.

1,2,.. , 47),

1,2,.. • , 24),

1, 2, . . • , 24),

0, 1, . . . , 95),

Values will not be finally assigned to the parameters associated with

H, N, M, A until the program is nearly complete, but it will be assumed

that the numbers xm -f- x48_ TO and xm — x±g—m occupy consecutive

sequences of locations in the store.

L-sequence

P 94 F
1 V 96 A
2 V A

3 HS 46 N
4 P 48 F
5 V 192 A
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Master routine

R33

17

76

R33

42

T z
B 10 D

1 A 1 d

2 F 56 F

3 T A
4 B 190 S
5 BS 2 F
6 H 12 D
7 V 14 D
8 HS 188 A
9 V 10 D

10 Y F
11 TS 190 A

12 N 12 D
13 H 10 D
14 V 14 D
15 Y F
16 T 14 D
17 J 5 d

18 Z D
19 T 161 F

20 B H
21 A 21 e

22 F 56 F

23 A 46 H
24 R D •

25 T 46 H
26 B 48 S
27 K 31 e

28 B 48 F
29 BS 2 S
30 K 36 e

31 (Z F)

32 BS 2 F
33 K 31 9

34 AS 92 #
35 U D
36 (Z F)

37 AS H
38 US N

Call in #33 to plant cos (tt/48), sin (tt/48),

and xo in locations 10D, 12D, and 14D,

respectively

TV sin 0, = 0, to 0A

Construct table of sines and cosines

Wait for data tape

Clear location 59 of P31 to start table of

results with a new block

Call in R33 to read xm into location

(2m - 2)H, (m = 1, . . . , 47)

Replace .r 2 4 by 4#24

Set counts in 310 and 360 to —48 and +46

%m + Z48+m to location 2(ra — l)iV

(continued)
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50

69

66

P31

39 S D
40 S D
41 TS M
42 J 29

43 S L
44 A 1 L
45 U 58 6

46 S 2 L
47 u 9 F
48 L 32 F
49 L 32 F
50 G 52tt0

51 M 4 L
52 A 3 L
53 T 57 6

54 T D
55 B 48 S
56 BS 2 F
57 (Z F)

58 (Z F)

59 A D
60 Y F
61 4> D
62 A 9 F
63 A 58 e

64 U 58 6

65 s 5 L
66 G 69tt0

67 A 2 L
68 T 58 e

69 J 56 d

70 H D
71 A 71 e

72 F 102 F

73 A F
74 S L
75 G 44 e

76 F 18 6

xm — .r48+m to location 2(ra — l)Af

Set V 2n A and P 2n F

Shift left 14 places to test whether n is odd

or even

Jump if n is odd

Set HS 46 JV or HS 46 M according as n

is odd or even

Clear 0D for sum
Set b = -48

Becomes F 2n A Add rth contribution

to sum in 0D

Increase argument by n7r/48

Modulo 2?r

Place result in multiplier register

Call in P31 to print result

Test whether n = 47
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The final allocation of storage space can now be made. The first order of

the master routine will be placed in 200 and the following values will be

given to the preset parameters

:

H P 300 D
N P 96 H
M P 48 N
A P 48 M
L P 280 F

Make-up of program tape

mo
space

PZT 56 K
#33

space

PZT 102 KGK
T 45 K
P 512 F
P 30 F

P31

space

PZT 200 KGK
T 45 K
P 300 D
P 96 H
P 48 N
P 48 M
P 280 F

master

routine

space

PZT 280 K
L-sequence

E 200 KPF
space

+99785892

+06540313

+171/

Placed in locations 1014-1023

Set H- and iV-parameters for P31, so that num-
bers will be printed to 6 decimals in 6

columns

Set parameters used by master routine

RS3 ignores blank tape automatically; PZ is

therefore not necessary

cos (tt/48)

sin (tt/48)
Read in by R33 for constructing

table of sines
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The data are supplied on separate tapes and are punched in simple

sequences of 47 numbers, the last being terminated by M.
Notes: (1) The method used here is crude. A more sophisticated program

would (a) check the numbers read with the aid of a check sum punched

on the data tape, (b) use a faster and more complicated routine, (c) allow

the number of coefficients (48) to be varied, and (d) include checks on the

accuracy of calculation.

(2) There is little scaling required in this problem, but it has been

assumed that max \y n \
< 10.

Example 5. Evaluation of a definite integral. Statement of problem.

The following integral, which occurs in the theory of the ionization of an

exponential atmosphere by solar radiation, is to be tabulated to seven

decimal places as a function of x and x, for x = 90° (— 1°) 50° and x =
200(20)280. The table is to be printed in five columns, each giving the

values of the integral for fixed x.

fJo
I sin x — sin A

I

2 . •,.

exp \ —x :—

r

f cosec X d\.
I sin X I

Method. The integral is written in the following form, in which all

quantities to be handled in the machine are numerically less than unity.

,0

\\ ex
JxJ2

.», exp (2
5
t/) • ^f^,

where

£ .

[
* rin 2t - * sin xl

and
2 5 L i sin 21 J

Although apparently |L
T

|
and f cosec

2
2t may exceed 1, the integrand is

negligibly small at these points and the program does not evaluate it.

The integration is performed by applying Gauss' 6-point formula

(subroutine Q?>) to a series of strips of equal width, starting with t =
and continuing until the integrand becomes so small that further contribu-

tions would be insignificant. The strip width is referred to as the interval

of integration and denoted by 2h. Since the optimum interval is difficult to

estimate in advance, the program is arranged to perform a sequence of

trial integrations starting with an interval known to be too large, and

halving it after each integration. The process is terminated when two

successive results, differing by less than 2 12
•
10*-8

, are obtained. Since
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the error depends on the 12th power of the interval, the last result to be

obtained probably does not differ from the true value of the integral by

more than about 10~8
.

To simplify the construction of the master routine, use is made of a

separate subroutine, B, designed to evaluate the integral for a specified

value of the interval 2h. Adjustment of the interval is performed by the

master routine. An auxiliary subroutine, ^4,, for Q3 is also required. The
following library subroutines are used: E6, P31, 77, Dll.

Allocation of storage space

Number of

Location of locations

Routine first order occupied Type

#9 56 15 Special

Dll 72 30 Closed B
EQ 102* 38 Closed B
P31 140* (31 Closed A
77 202* 36 Closed A
03 238* 48 Closed A
A (aux) 300 40 Closed A
B 350 29 Closed B

master routine 400 36

iV-sequence 440 9

^-sequence 450 20

N-sequence

N
1

2

3

4

5

6

7

8

p 200 F
(P 200 F)

p 20 F
p 300 F

Q F
P 90 F
P 50 F
R F
S F

Initial value of x •
2~ 15

Current value of x •
2~ 15

Increment of x •
2~ 15

Final value of x • 2
-15

2
-4

; starting value of h (radians)

Current value of x * 2

Final value of x • 2
-15

4-2~4

12 •
2~4

15 Where x is expressed

in degrees

First order must be in an even-numbered storage location.
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nations used by QS and subroutine B for temporary storage {H-sequence—
long locations)

H midpoint of interval

2 H h

4 H Used by QS

6 H i sin x

8 H Used by B
10 H 2 5

tt/180 (conversion constant read by R9 as 2 39tt/180)

nations u sed by master routine and subroutine A

6 D \ cosec 2t (subroutine A)

8 D \ (sin 2t — sin x) (subroutine A)

10 D Used in master routine

12 D Indicator; see below

When QS is called in by subroutine B, 12D contains —2h, and this quantity

remains there when the auxiliary subroutine, A, is called in by Q3. If

2 5U > -24, C{Y2D) is unaltered by A, but if 2 5
c7 < -24, so that

exp (2
5 U) is small enough to make the integrand negligibly small, C(\2D)

is replaced by zero. When control finally returns to subroutine B, the sign

of C(12D) is tested. If the sign is negative, a further step of integration is

performed; otherwise, the integration is terminated.

Master routine

start

29

aux, 21

B

G K
A N

1 T 1 N
2 A 4 N
3 T 2 H
4 B 4 e

5 F 350 F
G T 10 D
7 A 2 H
8 R D
9 T 2 H

10 B io e

11 F 350 F

12 U 4 D
13 s 10 D
14 G 17 e

15 T D
16 S D

Set x = 200

Set initial value of h = 2~4

Call in subroutine B to evaluate integral

Store result in 10D

Halve interval

Call in subroutine B to evaluate integral

Store new value in 4D
Subtract previous value

Form negative absolute value of differ-

ence

{continued)
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14

18

P31

17 A 2 F
18 E 22x0

19 T F
20 A 4 D
21 F 6 e

22 H 4 D
23 A 23 9

24 F 140 F

25 A 1 N
26 A 2 N
27 U 1 JV

28 S 3 N
29 G 2tt6

30 A 5 JV

31 S 2 F
32 u 5 iV

33 s 6 JV

34 E TVO

35 Z F

Add comparison value 2
-15 — 2

12 -10"

Jump if sufficiently accurate

Clear accumulator

Store new value for comparison and

repeat

Call in P31 to print result

Increase x

Jump to repeat until final value is

reached

Reduce y

Jump to repeat until final value reached

Stop

Subroutine B. Evaluates integral, using Q3, with given interval 2h.

Master

26

T7

G K
K 29 6

1 T 8 H
2 H 5 iV

3 V 10 H
4 L 128 f
5 Y F
6 U 4 D
7 s 2 H
8 T H
9 A 9 8

10 F 202 F
11 A 4 D
12 T 6 H
13 r 8 H
14 s 2 H
15 s 2 H
16 T 12 D
17 A 17 d

18 F 238 F

Store b for link order

X'2- 15

(tt/180) • 2 5

x/2

Convert % from degrees to

radians

h Obtain midpoint of first interval

Call in T\ to form J sin x

Store \ sin x in 67/

Clear 8//

Put —2h in 12D. Subroutine ^4 will re-

place C(12Z>) by zero when the inte-

grand becomes small

Call in Q3 to integrate over one strip

{continued)
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(?3

23

19 A D
20 A 8 H
21 T 8 H
22 A 12 D
23 E 27?r0

24 A H
25 T H
26 F 8 e

27 A 8 #
28 L 2 F
29 (P F)

30 FS 2 F

Add contribution to sum

Test C(12D) to find out if integrand is

small

Reduce argument by 21n before evalu-

ating next strip

Add total integral to accumulator

Link order

Q3

77

7)11

ary subroutine, A

T Z
A 3 F

1 T 39 d

2 A D
3 T 4 D
4 A 4 6

5 F 202 F

6 A 4 D
7 S 6 H
8 T 8 D
9 A 7 N
10 B io e

11 F 72 F

12 H 8 D
13 T 6 D
14 V 6 D
15 Y F

16 T D

17 H D
18 V 1 N
19 L 16 F
20 L 16 F
21 Y F
22 U D
23 A 8 iV

24 E 27tt0

25 T 12 D
26 T 12 D

Plant link order

t to 4D

Call in 77, * sin 2£ to 4Z>

J sin 2£

J sin x

| (sin 2t — sin x) to SD
i

4

Call in Dll, form ^/sin 2<

\ (sin 2t — sinx)

J/sin 2£

1 sin 2£ — sin x

4 sin 2t

x-2~ 15

Multiply by 2
12

,
giving U

Test whether £7 < -12 •
2~4

; if so,

make C(12D) =

(continued)
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24

E3

27 H D
28 B 28

29 F 102 F

30 T D
31 H 6 D
32 V 6 D
33 Y F
34 T 4 D
35 H 4 D
36 V D
37 Y F
38 T D
39 (P F)

Call in E6

Exp2 5 (7to0£>

i/sin
2
2t

Exp2 5U

Becomes link order

Make-up of program tape

Placed in locations 1014-1023mo
space

P Z

1

^9
1

Placed in locations 56-70

space

PZT 72 K
DU
space

PZT 102 KGK
r 45K
P 5 F //-parameter for subroutine EQ

\m\
space

PZT 140 KGK
T 45 K
P 1664 F //-parameter for digit layout : five

two digits

digits, space,

P 25 F JV-parameter for 5 columns

P31

space

PZT7

202 /C

|T7|
space

{continued)
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PZT 238 K
K

45 K
450 D
300 F

QS

space

PZT 300 KGK
T 46 K
P 440 F

auxiliary

subroutine A
space

PZT 350 K
subroutine B
space

PZT 400 K
master

routine

space

PZE G9 KT 10 H
9595049034tt

T 440 K
Af-sequence

space

PZZKPF
E 400 KPT

//-parameter; location of arguments for QS
A^-parameter ; location of auxiliary subroutine A

A^-parameter; location of constants for auxiliary

subroutine, and master routine

= 2 9
7r/180 (conversion constant)

Stops machine until Reset button is pressed

Transfers control to 400, i.e., to first order

master routine

of

Notes: (1) Since only one long constant, 2 5
7r/180, is needed, the use of a

subroutine to read fractions is avoided by using R9 to read it as the integer

2 39
tt/180.

(2) The scale factors used for x and x are such that increments can be

expressed exactly, and rounding-off errors do not accumulate.

(3) The whole program consists of 335 orders, of which 107 have been

specially written; the remaining 228 are provided by library subroutines.

(4) In integrations of this kind it is impossible to estimate the optimum
interval by any theoretical argument. Experience has shown that unless
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some form of automatic step adjustment is used, a good deal of time is

likely to be wasted in arriving, by trial and error, at optimum intervals

for the various values assumed by the argument. The penalty paid for

using, as a safety measure, an interval which is much smaller than the

optimum is that the time taken to perform the calculation is much longer

than it need be. However, the method of automatic step adjustment used

in this example is somewhat crude, since the optimum interval is deter-

mined afresh for each value of x and x, information available from previous

integrations being ignored.



CHAPTER 8

AUTOMATIC PROGRAMMING

8-1 Introduction. The subject matter of this chapter might be described

as "programming for programming's sake. " It concerns various methods

whereby a machine can be made to help with the task of drawing up its

own program. Naturally, a machine can help only with those tasks which

can be reduced to precise rules. These at present include everything con-

cerned with assembling the various subroutines and other sections of the

program, and with providing the necessary cross referencing; they exclude

anything that can be properly called Numerical Analysis, although auto-

matic methods of writing programs for evaluating quantities given by
explicit formulas have been developed, and we shall say something about

them in Section 8-5.

There has been much controversy about the value of the methods dis-

cussed in this chapter. From the time when its possibilities were first

fully appreciated, automatic programming has always had its enthusiasts.

On the other hand, there have been those who have felt that its advan-

tages were more apparent than real. Some went so far as to assert that

programmers should be compelled to write orders in a form as near as

possible to that which they take inside the machine, and that attempts to

make the machine assist with the clerical tasks of programming lead only

to a wasteful dissipation of effort. Our experience with the EDSAC led us

from the beginning to reject this extreme view. It has always been open

to workers with that machine to include at the beginning of their program

tapes a short routine which would replace the standard initial input routine

by a simple input routine designed to read programs punched in direct

binary form. No one, however, has ever done this, and in fact the facilities

provided by the initial input routine have always been taken for granted

and used by everybody. The controversy may now be said to have died

down and it is generally agreed that the work of programmers can be much
facilitated by the use of such techniques as are described in this chapter.

However, there still remains scope for discussion as to how elaborate the

system used in conjunction with any particular installation should be.

Initial input routines designed to provide the relatively elaborate facili-

ties with which we are concerned in this chapter will generally be referred

to as conversion routines. The first comprehensive conversion routine, for

reading programs in which the orders are punched in forms very different

from the internal binary form they ultimately take inside the machine,

was developed under the direction of C. W. Adams at M. I. T. Equally

126
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extensive schemes following somewhat different lines have been developed

under the direction of Dr. Grace Hopper at the Sperry Rand Corporation.

Readers who are interested in carrying the study of the subject further

than is done in this chapter should consult the reports of these organiza-

tions, some of which are listed in the bibliography.

8-2 Conversion versus interpretation. A number of schemes designed

to simplify programming have been based on the use of interpretive sub-

routines (see Section 2-22). Such schemes can provide the programmer

with an order code which is entirely different from the basic order code of

the machine; for example, he can be provided with a three-address code

even though the machine itself may have a single-address code. Although

such schemes have enjoyed a certain vogue, they suffer from two severe

disadvantages. In the first place, the time taken to interpret orders is

appreciable, with the result that the over-all effective speed of the machine

is reduced very considerably. In the second place, the interpretive sub-

routine, or a large part of it, must remain permanently in the high-speed

store during the execution of the program, with the result that the amount

of high-speed storage space available to the programmer is reduced. In

view of these disadvantages, it would appear that interpretive methods of

facilitating programming are of real value only when applied to relatively

simple problems in which the total running time is short. Interpretive

methods, however, have an application in making one machine simulate

another, for example, when it is desired to develop subroutines and pro-

grams for a new machine in advance of that machine being completed.

Conversion routines, as that term is used in this book, do not suffer

from the disadvantages mentioned above, since the program, as written,

is converted to a sequence of basic machine orders once and for all when
it is first read into the machine. Once converted, the program runs like

any other program, and the conversion routine is no longer needed. If

desired, the converted program can be taken out of the machine and put

back on subsequent occasions without further conversion.

8-3 Assembly of a program. A simple illustration will now be given of

the way in which a machine can be made to help with the clerical tasks

involved in drawing up a program. A program is composed of a master

routine and a number of subroutines and, in the ordinary way, the pro-

grammer must decide where these are to go in the store and provide the

necessary cross referencing between them; for example, he must insert

the correct addresses in those orders in the master routine which call in

the subroutines. Use of terminal code letters enables him to defer until a

later stage the decision as to where the various subroutines shall go, but he

still has, ultimately, to make the decision himself.
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The assembly subroutine given below allows the assembly of the master

routine and the subroutines to be performed automatically by the machine.

The assembly subroutine must be in the store when the program tape is

read. The master routine is given the identification number and the sub-

routines the numbers 1, 2, 3, etc. In what follows the word "routine" will

be used to indicate either the master routine or a subroutine.

In front of each routine on the program tape are punched control com-

binations which call in the assembly subroutine. Following these control

combinations, and immediately in front of the routines themselves, are

labels in the form T </>, T 1
<f>,

T 2
<f>, etc., giving the number of the

routine. is a terminal code letter (not normally used by programmers)

to which storage location 44 corresponds, and the assembly subroutine

establishes a directory composed of F-orders in storage locations 0, 1 0,

2 </>, etc. This directory remains in the store during the subsequent execu-

tion of the program. When one of the routines, say the third, is called in,

control is sent first to storage location 3 4>, and thence (by the F-order

planted by the assembly subroutine) to the first order of the routine. Thus

orders calling in the routines must be punched F <j>, F 1 <j>, F 2
<f>, etc.

Many subroutines in the EDSAC library must be placed in the store

with their first orders in even-numbered locations, and a practical assembly

subroutine designed for use with the EDSAC would need to take account

of this fact. For purposes of illustration, however, we shall assume that

subroutines can be placed in the store with their first orders in any loca-

tion, odd or even. An assembly subroutine constructed on this under-

standing is given below; it is entered with the label of the next routine

to be read from the taoe in the accumulator.

T Z
T56

1 A 42 F
2 A 8 e

3 U 22 F
4 M 7 6

5 (Z F)

6 F 34 F

7 F F
8 T F

Plant C(Acc) (label) in 50

Reinstate Transfer Order destroyedwhen assembly

subroutine Avas entered

Form and plant in directory an order F n F, where

n is address specified in Transfer Order

Return control to initial input routine

The following is an example of how a program tape would be punched for

use with the assembly subroutine just described. It is assumed that the

program consists of a master routine and two subroutines. The assembly

subroutine is placed in the store with its first order in location 100, and
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the directory starts in location 120. The program itself goes into the

store from location 200 onwards. Note that the control combination

E 100 K T n <j> sends control to 100 with T n
<f>

in the accumulator.

P Z
T 100 K
G K
T 44 K
P 120 F
assembly subroutine

space

P Z
T 200 K
G K
E 100 K
T 4>

Master routine

space

P Z
G K
E 100 K
T 1 </>

subroutine no. 1

space

P Z
G K
E 100 K
T 2 </>

subroutine no. 2

E 25 K
E
P F

Program to start at 200

Call in assembly subroutine

Label for master routine

Call in assembly subroutine

Label for subroutine No. 1

Call in assembly subroutine

Label for subroutine No. 2

Send control to master routine via directory

(See Appendix 4)

It should be noted that although the directory must remain in the store

during the execution of the program, the assembly subroutine itself may be

overwritten by the last subroutine to go into the store.

8-4 Floating addresses. In addition to cross references between the

master routine and subroutines, these routines themselves contain many
internal cross references to orders and pseudo-orders. In a machine which

takes its orders sequentially from the store, orders and pseudo-orders are
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referred to by the addresses of the storage locations in which they stand.

The various jump orders, orders which modify other orders, and orders

which refer to pseudo-orders as operands, make a subroutine into a very

closely knit entity, and it is not normally possible to insert extra orders

into it, or to make any modification, however trivial, without some re-

numbering becoming necessary. Not only is this renumbering a nuisance,

but it is also a source of mistakes whenever changes are made in a program.

In the system now described the programmer refers to orders and pseudo-

orders in the program, not by the addresses of the locations in which they

stand, but by labels arbitrarily assigned to them. These labels are referred

to as floating addresses, and may be written in orders instead of absolute

addresses. When the program comes to be read into the machine, the

initial input routine or conversion routine replaces the floating addresses

by absolute addresses. This is a process which cannot generally be com-

pleted until the whole program has been scanned, since some orders

punched near the beginning of the program may refer to other orders or

pseudo-orders punched near the end, and the latter will not have been

allocated addresses when the former are first read.

One method of proceeding is to arrange that the program shall be read

twice. During the first reading the orders are not placed in the store, but

are counted, and a list is formed of the locations into which the various

labelled orders and pseudo-orders will eventually go. During the second

reading the orders are placed in the store, and floating addresses, where

they occur, are replaced by absolute addresses from the list previously

formed. Reading a program tape twice would be a tiresome procedure,

but the same effect can be achieved by first reading the unconverted

program into an auxiliary store, and then transferring it to the main store

as required. An alternative procedure is to keep a record, during input, of

those orders which must have absolute addresses inserted into them, and

to carry out the necessary substitutions after the input of the program.

A third alternative is for absolute addresses to be inserted into orders to

replace floating addresses as soon as the absolute addresses are determined,

the reading of the program being halted for this purpose. If the absolute

address is known when an order containing a floating address is read, the

substitution takes place at once. A conversion routine constructed along

these latter principles is given below.

It is possible to establish, with the aid of sufficiently complex conversion

routines, very convenient and elegant systems of programming. These

may provide not only for the use of floating addresses, but also for the

automatic incorporation of subroutines. They may also provide powerful

facilities for error diagnosis; this may well be of some importance since, if a

program is written in a form very different from that which it takes inside

the machine, many of the ordinary methods used for error diagnosis may fail.
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We shall content ourselves in this chapter with illustrating one of the

ways in which a conversion routine for providing floating address facilities

can be constructed. The conversion routine given is.intended for purposes

of illustration, rather than for practical use. Readers who desire further

information on the subject should consult the papers and reports given in

the bibliography.

The conversion routine given below works in conjunction with the

initial input routine of the EDSAC. When read into the store it causes a

jump order to be planted in storage location 32, and this causes control

to be transferred to the conversion routine when certain symbols are read.

Floating addresses are indicated by having an asterisk punched after them.

This symbol, which does not appear in the ordinary input code of the

EDSAC, is here used to denote a row of blank tape. When floating ad-

dresses are used as labels they are prefixed by the letter L.

The following example shows how a program for use in conjunction with

the conversion routine would be punched. The program is designed to

illustrate the use of floating addresses; it is not the most efficient that

could be devised.
99

Example. Form and print 2^ aj where ay = (7(400 + j)F, given a
3=

print routine which prints C(R) and starts at 50*.

L3

LI*

L6 :

L5*

T 200 K
T F
S 5*

T 4 F
A 1*

A 2 F
T 1*

A t
(A 399 F)

T F
A 4 F
A 2 F
G 3*

H F
A 6*

F 50*

Z F
P 100 F

Clear OF initially

Set count in 4F

Increase address in A-order

Note: C(2F) == P 1 F.

Add contribution to sum in OF

Count

Print

Stop

The conversion routine is given below. As each label is read, a record of the

corresponding absolute location is made in a list whose first entry is in OH.
Whenever a floating address is encountered in an order, the list is consulted
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and, if the corresponding absolute value has already been placed there,

this absolute value is substituted for the floating address. If no entry has

been made in the list the order is placed in the store with a zero address,

and the number of the location in which it is placed is temporarily recorded

in the list. Subsequently, when the corresponding label is encountered, the

existence of this temporary record enables the absolute address to be

inserted in the order; at the same time the temporary entry in the list is

replaced by the absolute address. It may happen that the same floating

address occurs in a number of orders which are read before the correspond-

ing absolute address has been determined. The first of these is treated in

the way just described, being placed temporarily in the store with a zero

address and a record of where it has gone being inserted in the list. When
the second order with the same floating address is encountered, this is also

placed in the store, but use is made of its address section to hold the

quantity which was previously recorded in the list. The number of the

location into which this second order has gone is in its turn placed tempo-

rarily in the list. The same procedure is followed as each successive order

with the same floating address is encountered, so that, when the corre-

sponding label is read and the absolute address determined, there exists a

"chain " of references which enables the absolute address to be incorporated

in all the orders which require it. At the outset it is assumed that the

storage locations to be occupied by the directory are clear.

When a floating address, punched as ra*, has been read, the conversion

routine is entered at order 33 with m in storage location 0. If the floating

address occurs in a label, storage location 40 contains L. If the floating

address occurs in an order, this location contains the function letter of

that order; this function letter cannot be L, since a floating address cannot

occur in a left shift order.

Conversion routine

T Z
H 29 e

1 C F
2 A 26 e

3 T 4

4 (P F)

5 A 40 F
6 A 12 6

7 F 3Ott0

8 AS H
9 T 1 F

Form m (floating address with-

out 7r digit)

Becomes B m F

Test and jump if not label

Extract table entry i, say,

from m H and place in 1 F

{continued)
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25

16

31

Enter when
blank tape

read at end

of floating

address or

when nega-

tive control

combination

such as G K
is read

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

32F

A 22 F
S 8 F
u F
A 39 e

TS H
A 1 F
F 25 e

_

A 26

T 19 e

(P F)

HS F
a 42 e

A F
TS F
C 29 e

F 17tt<9

B F
H 8 F
F 34 F

\\P 1023 F
MS H
G 37 e

T 1 F
A 22 F
S 8 F
TS H
A 1 F
M 41 F
H 43 F
C F
H 8 F
F 21 F

II
v 1024 D
E ttB

A 22 F
F 33 F

T 32 K
F 43tt0

T 46 Z

P n F to F, where n is abso-

lute address

C F
C n F torn H

B F

Becomes B i F

Insert absolute address in next

order of "chain"

Use former address in order to

find next order in chain

Clear 5-register

Restore C(R)

Return to initial input routine

Jump if C n F, i.e., if absolute

address already inserted in

table

Plant former table entry in

1 F and new table entry in

m H

Clear function digits

2
-16 add 7r-digit if present

in order

Restore C(R) and return to ini-

tial input routine

= 11111100000000001

Return to initial input routine

if G K or similar negative

control combination is read

Modify initial input routine by

placing F 43 ird in 32 F
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The following table shows how conversion of the program for the example

given on p. 131 would proceed. The second and third columns refer to

words which will, if not overwritten, form part of the converted program,

while the fourth and fifth columns similarly refer to entries in the list of

absolute addresses.

I

Words placed in store ,

Characters read

from tape word location word location

T F T F 200

S 5* S F 201 P 201 F m
L 3* C 202 F SH
T 4 F T 4 F 202

A 1* A F 203 P 203 F 1H

A 2 F A 2 F 204

T 1* T 203 F 205 P 205 F 1H
A F A F 206

L 1* T 207 F
A 207 F

205

203

C 207 F 1H

A 199 F A 199 F 207

T F T F 208

A 4 F A 4 F 209

A 2 F A 2 F 210

G 3* G 202 F 211

H F H F 212

L 6* C 213 F m
A 6* A 213 F 213

F 50* F F 214 P 214 F 50H
Z F Z F 215

L 5* S 21G F 201 C 216 F m
P 100 F P 100 F 216

It is assumed that an absolute value will be assigned to the floating address

50* at a later stage when the print routine is read into the machine.

Conversion routines can be designed to provide a number of facilities

additional to those provided by the simple one just given. One obvious

extension is to provide for the explicit setting of floating addresses, as

well as for their implicit setting by means of labels; for example, it might

be possible to punch 5* = 50 to indicate that the absolute address cor-
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responding to 5* is 50. Another very useful facility is the automatic listing

of constants required in the program. Suppose, for example, that at some

stage in the program it were required to add 0.59574 to the number in the

accumulator; the programmer might punch A59574 on the input tape,

and the conversion routine would cause the constant 0.59574 to be placed

in the first unused location of a sequence of locations set aside for storing

such constants, and would cause an A-order, containing the address of

that location, to be placed in the converted program. Thus, if the sequence

of locations were to start at ON and the constant were to go into 6.V, the

order A 6 N would go into the program. There must be some means by

which the conversion routine can distinguish a constant from an ordinary

address. In the above example the presence of a decimal point enables

this to be done, but if necessary an extra symbol could be introduced for

the purpose.

A comprehensive conversion routine should contain facilities for reading

and converting numbers, so that the use of an input subroutine can be

avoided, so far as the input of constants along with the program is con-

cerned. In the case of a binary machine, it is convenient if powers of 2

and 10 can be punched after the numbers, and treated by the conversion

routine as multiplying factors. A number might then be punched in the

following form: .59574 10 3 2
-10

. The punching of indices may present

difficulties because of the limitation of the number of distinct characters

which can be punched on the tape; a device we have used successfully in

these circumstances is to arrange for 10 and 2 to appear as suffixes, so that

the above number would be punched as .59574i 32— 10. A further refine-

ment is to provide for the reading of numbers punched as fractions, for

example in the form 136/137.

If the library of subroutines is recorded on magnetic tape, the conversion

routine can be designed to incorporate open or closed subroutines as

required in a program. Very short open subroutines containing perhaps

no more than a few orders in all may be held in the high-speed store along

with the conversion routine itself, and copied into the program when re-

quired. In this way, operations not included among the basic operations

performed by the machine, for example the formation of a modulus or the

multiplication and division of complex numbers, can be handled by the

programmer as easily as if they were so included. This method of extending

the order code of a machine is, in principle, as flexible as the use of inter-

pretive subroutines, and since it does not bring about as great a reduction

in effective machine speed, its adoption is to be preferred wherever possible.

However, a serious restriction on its use is imposed by the fact that the

converted program may contain a very large number of orders. This is

particularly so in the case of floating-point operation, where the use of

conversion rather than interpretation would otherwise be of great value.
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In the case of the majority of fixed point machines there does not seem

to be any reasonable alternative to the use of interpretive subroutines, or

some equivalent procedure, for providing floating-point facilities when
these are required.

It is desirable that the rules for punching a program should be as straight-

forward and as easily memorized as possible. In practice, this almost cer-

tainly means that a program as punched contains more characters than

are absolutely necessary. This redundancy may be put to good use if the

conversion routine is designed to examine the program for any forbidden

sequences of characters, and to cause the machine to "report" if any occur.

The "report" may simply take the form of a machine stoppage with the

lighting of an indicator lamp, or it may include the printing of diagnostic

information for the assistance of the programmer.

8-5 Formula recognition. We have seen that by the use of a more or

less complicated conversion routine it is possible to make a computer

recognize special symbols punched on tape or cards, and to react in a

manner arbitrarily laid down. From this it is but a step to suggest that the

machine might accept formulas written in ordinary mathematical notation,

and punched on a specially designed keyboard perforator. This would

appear at first sight to be a very significant development, promising to

reduce greatly the labor of programming. A number of schemes of formula

recognition have been described or proposed, but on examination they are

found to be of more limited utility than might have been hoped.

The difficulty about making machines accept problems stated in mathe-

matical language is that all such statements do not lend themselves to

ready translation into a program. A program contains an explicit definition

of a process which the machine must carry out; a mathematical statement

of a problem also may contain a definition of a process, but it is more likely

to consist of a series of statements about the relationships between certain

quantities, some known and some unknown. Even if it can be shown that

these statements are sufficient to fix the values of the unknowns, it is quite

possible, and indeed likely, that the mathematical statement of the problem

will afford no clue as to how a process for evaluating the unknowns may be

established. The filling of this gap is the object of the branch of mathe-

matics known as numerical analysis. Therefore the best that one could

expect a general purpose formula-recognition routine to do, would be to

accept a statement of the problem after it had been examined, and if neces-

sary transformed, by a numerical analyst.

Consider, for example, the problem of finding the root of the equation

x 3 — 3.r +1 = which lies between and 1. This is a case in which the

statement of the problem gives no guide as to how a solution might be

obtained. It would, of course, be possible to solve the problem on a digital

computer if a program specially designed for solving polynomial equations
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were available. As it stands, however/the equation is not of suitable form

to be presented to a general purpose formula-recognition routine.

For the purpose of calculating the root in question, we can replace the

original equation by

x2 = x x - (x\ - 3xi + l)/3(s! -- 1).

This is understood to imply an iterative procedure in which a value is

assumed for X\ (say, x± = J), and the value of x 2 is calculated from the

formula. The next step is to take the value obtained for x 2 as a new value

for Xi, and to evaluate a new value for x 2 . If \x 2 — Xi\ is less than an

assigned quantity, the process is terminated; otherwise it is repeated.

Any of the systems of formula recognition which have been developed

would enable a program for calculating x 2 ,
given X\ to be formed auto-

matically; the quantities X\ and x 2 would be stored in locations assigned

by the routine. It will be seen, however, that there is a good deal more to

the complete program than a sequence of orders for calculating x 2 in terms

of X\ and, in fact, the construction of the iterative loop with means for

emerging from it is something which must be left to the programmer;

all that the formula-recognition routine can do is to enable him to give the

necessary instructions to the machine in a semi-algebraic language.

While the authors do not attach the same importance to formula-

recognition systems as to the other systems which have been discussed in

this chapter, they believe that they may often be of use in enabling people

who do not wish to spend much time studying the subject to write pro-

grams for simple problems. Their utility in this respect, in any particular

computing center, depends partly on how straightforward and easily

grasped the standard methods of programming used in that center are.

An important consideration is whether the basic order code of the machine

includes orders for floatingrpoint arithmetic; if it does not, then a formula-

recognition routine which makes good the deficiency may be, for this

reason alone, of overwhelming attraction to programmers. However, as

already pointed out, in such cases the use of interpretive methods will

usually be necessary, and there will, in consequence, be a serious price to

be paid by way of reduction in effective machine speed. Even in more

favorable cases, experienced programmers will be able to obtain greater

efficiency by using more conventional methods of programming.





PART TWO

SPECIFICATIONS OF EDSAC LIBRARY SUBROUTINES

Each subroutine is distinguished by a letter denoting its category, and

a serial number within that category. The categories are as follows.

Category Subject

A Floating-point arithmetic

B Arithmetical operations on complex numbers

C Error diagnosis

D Division

E Exponentials

F General subroutines relating to functions

G Differential equations

L Logarithms

M Miscellaneous

N Double-length arithmetic

P Print and layout

Q Quadrature

R Read (i.e., Input)

S nth root

T Trigonometric functions

X i Complete programs

Z Post-mortem routines

In the specifications on succeeding pages the following information is

given in abbreviated form immediately beneath the title of each subroutine

:

1. Type of subroutine, i.e., whether open, closed A, closed B, inter-

pretive, or special.

2. Restriction on address of first order. If the word "even" appears it

denotes that the first order must be placed in an even location. If no note

appears it indicates that the location may be either odd or even.

3. Total number of storage locations occupied by the subroutine.

4. Addresses of any storage locations needed as temporary storage by the

subroutine (other than OD, which is used by the majority of subroutines).

5. Approximate operating time (not possible to state in all cases).

139
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A. Subroutines to carry out floating-point arithmetic.

A9 Input of a sequence of numbers in floating decimal form during in-

put of orders (used with All).

Special; even; 31 storage locations.

The numbers are punched on a separate data tape in the following form:

character representing exponent; sign; numerical part (the decimal point

being after the first digit). For example,

512 would be punched as W + 512 or 2 + 512 = 10 2
(5.12),

-.0012 " " " B — 12 = 10~ 3
(1.2).

The first number in the sequence is preceded by Z T X. After the subrou-

tine, T m D is punched, followed by the data tape which is copied in the

reverse direction. The numbers are then placed in the store in floating

decimal form in storage locations mD, (m — 2)D, etc., so that mD is the

location of the number originally punched last.

Accuracy: The numerical part of each number is represented by 23 binary

digits—equivalent to almost 7 decimal digits.

Note: R9 must be in the store when A 9 is read.

A10 Print single floating decimal number (used with All).

Closed A; even; 63 storage locations; uses 4D.

Prints the signed exponent, followed by the signed numerical part, of the

number stored in floating decimal form in 0Z>. Each number is printed as

:

negative sign, or space; exponent (2 figures); 2 spaces; negative sign, or

space; integral part (1 figure); space; 6 decimal figures.

Accuracy: The number is rounded off to 7 figures (including integral part).

Notes: 1. The last order on the tape is the digit layout parameter for the

numerical part (as in P30), and may be altered if required.

2. Normally, before the number is printed, carriage return and line

feed will occur. They may be omitted by entering the subroutine at its

third order. One space only is printed after each number. Not more

than four numbers may be printed on one line.

All Arithmetical operations on real numbers expressed in floating

decimal form.

Interpretive; even; 128 storage locations; uses OH and 07V for

floating accumulator; time, see Note.
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Operations: All carries out the operations specified individually by

interpretive orders according to the following code:

Order Operation

A m F/D* Add to the number in the floating decimal accumulator

the number represented by C(m).

B m F/D* Subtract from the number in the floating decimal accu-

mulator the number represented by C(m).

V m F/D* Multiply the number in the floating decimal accumu-

lator by the number represented by C(m).

T m F/D Transfer the number in the floating decimal accumu-

lator to m, and clear the accumulator.

E m F Transfer control to m with accumulator clear.

*m< 511

Representation of numbers: Each number is expressed in the form a • 1(F,

where a is the numerical part and p the exponent (an integer). In the

store the number is represented by the long or short number a • 2—

u

+
p -

2~~ 6
. The routine uses positions OH (long) and (W (short) as a "floating

decimal accumulator," or "f.d.a.," in which the above numbers would

appear as —a • 2
-11

in OH and p •
2~ 14

in (W.

Range of values: In the f.d.a. \p\ < 16000 approx., and —2048 < a <
2048. In the store — 63 < p < 63 and \a\ < 10, but when a number is

transferred to the store from the f.d.a. it is always represented in such a

way that either 1 < \a\ < 10, or a = and p = —63.

Capacity of registers: If an interpretive T-order is encountered, and the

number in the f.d.a. exceeds 10 63 , the machine will normally come to a

dynamic stop. If this is undesirable, the preset L-parameter E 56 6 may
be replaced by any E'-order transferring control to a suitable point in the

store in the event of capacity being exceeded (the accumulator not being

empty).

If the number in the f.d.a. is less than or equal to 10
-63

, an interpretive

T^order will place the representation of zero in the store (0.10
-63

).

It is possible to exceed the capacity of the numerical part of the f.d.a.

without the number actually represented by the f.d.a. exceeding the range

of possible values. The rules for avoiding this are as follows:

After an interpretive T'-order, \a\ = 0; an interpretive A- or 5-order may
increase \a\ by ten, and an interpretive F-order may multiply |a| by ten, in

the worst cases; hence the sequence of interpretive orders should be such as

to ensure that a can never reach 2048.
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Accuracy: When using long numbers, a has between 23 and 27 binary digits,

that is, 7 or 8 decimal digits. When using short numbers, a has between

5 and 9 binary digits, that is, about 2 decimal digits.

Preset parameters:

45 H P s D Location of numerical part of f.d.a.

46 N P t F Location of exponent of f.d.a.

47 M P 103 e" Set and used internally by A 11

48 A P 6

49 L E 56 d_

Notes: 1. Times of operation are

Order

A
B
T

Time in seconds

0.066

0.066

0.05 + ra(0.015), where m is the number of decimal shifts

necessary to convert the number to the form required in the

store.

2. See Part 3 for detailed program.

^430 Operations on real numbers expressed in floating decimal form.

Interpretive; even; 298 storage locations.

This subroutine provides much more comprehensive facilities than ^411.

A short description will be found in Part 1, Section 5-15. The full details

are beyond the scope of this book.

B. Subroutines to perform arithmetical operations on complex numbers.

B2 Complex operations other than division.

Interpretive; even; 53 storage locations; uses OH to 10H; time

approx. 0.075 sec per operation.

When called in, 52 carries out the interpretive orders occurring in the

program immediately after the orders calling in B2. These interpretive

orders are in a special code; they specify operations on complex numbers.

The address n in an interpretive order specifies the complex number

C(nD) + i - C(n + 2)2). The operations which may be carried out cor-

respond to A, S, T, U, V, N, Y (round-off), and also right or left shift of

one or two places.
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Preset parameters: 45

46

H
N

PhD (h must be even)

Parameter is used internally by B2.

Notes: 1. There is no operation corresponding to an #-order. The role of

"complex multiplier register" is undertaken by storage locations OH
and 2H, which may be filled by the interpretive orders T H or U H.

2. Shifts of up to six places must be effected by a series of single or

double shifts. A shift of n places, where 7 < n < 14, may be obtained

by a pair of interpretive orders such as

L 2
n~ 5

F, L 2
n~ 5 -2 F.

3. Interpretive orders T D and U D must not be used, since they

would destroy the content of 2D.

4. Exit from B2 is made by an interpretive E'-order immediately

following an interpretive T-order; control is transferred to the address

specified in the E'-order.

5. Care should be taken to ensure that storage locations 4H to

10H, which are used as accumulators for the real and imaginary parts

of the complex numbers, are cleared before B2 is called in for the first

time.

6. See Part 3 for detailed program.

54 Division of complex numbers.

Closed B; 62 storage locations; uses 4Z), 6Z), and ^-register

;

time approx. (0.016m + 0.120) sec, where modulus of divisor

lies between 2 _r? and 2_m_1 .

Fo- C
*ff+5<g? and places the real and imaginary parts of the

result in 4H and 6H.

Accuracy: The maximum error in the real or imaginary part of the quotient

is 2~33
.

Preset parameter: 45
|
H

\

P h D (h must be even)

Notes: 1. If the modulus of either the real or imaginary part of the quotient

is > 1 , the subroutine will stop on a </>-order.

2. The accumulator should be clear on entering, and will be clear

on leaving the subroutine.

3. Uses an iterative process similar to that used in D6.
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C. Error-diagnosis subroutines.

(727 Check-point subroutine.

Special; 30 + 4r storage locations.

This is a simple check-point subroutine which causes extra indicating

symbols to be punched whenever control reaches certain specified check

points in a program. The r check points are specified by the addresses in a

series of r pseudo-orders (each terminated by S) which are punched imme-

diately after (727 on the input tape. When the program is carried out, each

time control reaches a check point the function letter of the corresponding

pseudo-order will be punched out.

Notes: 1. (727 plants an i^-order in each check point. These F-orders must

not be altered in any way, either during input or during the operation of

the program.

2. (727 does not automatically punch carriage return or line feed

symbols. If these are required the pseudo-orders

ft n S
A n + 1 S

should be included. Carriage return and line feed will then be punched

whenever control reaches n and n-f 1.

3. The first 28 orders of (727 may be overwritten after all the

pseudo-orders have been read in.

4. To save storage space and printing time, (727 may, if desired, be

written over the print subroutine of the program. In this case, when all

the pseudo-orders have been read in, a dummy print routine may be

written over the first few orders of (727. This can be of the following form

:

blank tape

P Z
T Z
A 3 F

1 T 3 e

2 4 e

3 (Z F) Link order

4 I! K 4096 F

Each time the program directs control to its print subroutine the symbol

for P will then be punched, instead of a number.
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5. The program should be started, at the order in storage location

m, by the usual control combination, E m K P F.

6. (727 modifies the initial input routine so that the letter S can be

used for terminating the pseudo-orders specifying the check points.

This is entirely different from the standard use of S by R30, in connec-

tion with the 5-register. (727 must therefore be placed in the store after

any part of the program which uses the normal S facility.

7. See Part 3 for detailed program.

(730 Numerical check-voint subroutine.

Special; 57 storage locations; even.

Punches (7(Acc), as a long signed decimal, at a specified check point in a

program.

Preset parameter: 45 \H
\

P h F (h is location of check point)

Notes: 1. (730 plants an F-order at the check point. This border must not

be altered in any way, either during input or during the operation of the

program.

2. Symbols for carriage return and line feed are punched before

C(Acc).

3. (7(Acc) is punched before the machine obeys the order which was

originally at the check point.

4. The less significant half of the accumulator is cleared at the

check point.

5. Since the accumulator is cleared during the operation of C30, it

is possible for a border following the check point not to indicate an over-

flow, even if it should have done so in the original program without (730.

6. The program should be started, at the order in location m, by
the usual control combination, E m K P F.

[Two further check-point subroutines, (728 and (729, exist in the EDSAC
library. They provide elaborate facilities for the optional printing of varied

information, in several different forms, at specified check points.]

(731 Trace of function letters, with delayed start.

Special; 66 storage locations.

May be applied to a program to punch out a trace of the progress of part

of the program. The program works at full speed until the order in h is

obeyed. (731 then takes control, obeys the rest of the program order by
order (at much reduced speed), and punches out the function letter of

each order as it is executed.
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Preset parameter: 45 \H\ P h F (trace starts at order in h)

Notes: 1. h must be so chosen that the accumulator is always empty before

C(h) is obeyed, and that C(h) is not used or altered in any way by the

program before checking begins. (731 must not be read into the machine

before that part of the original program which includes C(h) .

2. Carriage return and line feed symbols are punched immediately

after the function letter of any order which transfers control.

3. The symbol for a full stop is punched instead of </>.

4. On obeying Y, E, F, G, /-orders the least significant digit of the

accumulator (2
-69

) is converted into 0.

5. The program should be started, at the order in location m, by
the usual control combination, E m K P F.

6. A letter shift symbol is punched during input. Any numerical

information punched by the print subroutine of a program will, there-

fore, be printed as the corresponding letter-shift characters.

7. See Part 3 for detailed program.

D. Division subroutines.

D6 Division.

Closed A; 36 storage locations; uses 6D and SD; time =
(0.01m + 0.12) sec, where 2~m~ l < |(7(4Z>)| < 2_m .

Forms C(0D)/C(4D), where C(4D) ^ and ^ —1, and places result in

0D.

Accuracy: Maximum error is zb2~35
,
(quotient) ±2~ 34

.

Notes: 1. Uses the iterative process

0>n+l = an — Cn+ldn + Cn+i,

Cn+i = —anb + (b — 1),

where b is the shifted divisor, 1— an
—> 1/6, cn —> 0; an and cn are nega-

tive, a = 26 — 2\/2 + 1 ; cn is therefore negative until the process is

completed.

2. C(4Z>) is disturbed by the operation of D6.

3. If C(4D) = or —1 the program will go into a loop.

D7 Division

Closed A; 26 storage locations; time = (0.012m -f- 0.105) sec,

where 2~m_1 < \C(4D)\ < 2~m
.
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Forms C(0D)/C(4D), where C(4D) ^ and ^ — 1, and places result in

02).

Accuracy: Maximum error is 3(1 + |fc|) •
2~ 34

, where /c = quotient.

Notes: 1. Uses the repetitive process

an+ i
= — ancn + an (a = dividend, c + 1 = divisor)

2.

stop when cn = 0.

2. The less significant half of the accumulator is not cleared at the

end of the operation, that is, < C(Acc) < 2
-34

.

3. At the end of the process -2~34 > C(4D) > -2~ 17
.

4. If C(4D) = or —1 the program will go into a loop.

[Slightly less accurate than D6.]

Dll Division, with double-length dividend held in the accumulator.

Closed B; 30 storage locations; time (0.135 + 0.016n) sec,

where n is the number of times that the divisor must be doubled

before it exceeds J in magnitude.

Replaces both C(Acc) and C(0D) by C(Acc)/C(4Z)), where C(Acc) is a

double-length number held in the accumulator.

Accuracy: Maximum error is 3(1 + \k\) •
2~34

, where k is the quotient.

Notes: 1. If C(4Z)) is initially —2~p
, where p is an integer, the quotient

will be the shifted, truncated numerator, and the time taken will be

(0.044 + 0.016p) sec.

2. If (7(47)) is initially zero the program will go into a loop.

3. C(4Z>) is disturbed by the operation of Dll.

4. The capacity of the accumulator may legitimately be exceeded

during the operation of Dll. A subsequent Y m D order may therefore

transfer control unexpectedly.

5. See Part 3 for detailed program.
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E. Exponential subroutines.

E\ Exponential junction?

Closed A; 36 storage locations; even; time 0.13 sec.

Forms exp (x), where x = C(R), and places result in 0D. — 1 < x < 0.

R9 must be in the store when 2?4 is being read.

7

Accuracy: Maximum error is
2~ 34 + 2~35

J^ \x\
r

.

r=0

EG Exponential function, large range.

Closed B; 38 storage locations; even; time (0.09 + 0.015p) sec.

Forms exp (2
p
y), where y (<0) = C(R) and p > 1. The result is left in

the accumulator, which must be clear on entry to EG.

Preset parameter: 45
|

H
|

P p F (p is binary exponent of argument)

Accuracy: Maximum error is less than (2
P~ 1 + 1)2~ 34

; this occurs when
the result is nearly equal to unity. The error diminishes rapidly for smaller

values of the result, and for small values it is less than 3.2~ 35
.

Notes: 1. R9 must be in the store when EG is read.

2. See Part 3 for detailed program.

F. General subroutines relating to functions.

F2 Inverse interpolation, or solution of f(x) = (second-order

process)

.

Closed A ; 58 storage locations; uses 4D and 4H to 8//.

Places in OH a solution of f(x) = 0, where f(x) is defined by an auxiliary

subroutine. Two trial values, x 1 and x 2 , must be placed in OH and 2H
before F2 is called in; they must be such that/(xi) and/(.r 2 ) have opposite

signs. The solution will lie between x\ and x 2 .

PhD Defines locations of trial values and

of working space

P n F First order of auxiliary subroutine

is in n.

Parameter is used internally by F2

Notes: 1. The auxiliary subroutine must be of closed A type, and should

place f[C(0H)] in 0D, leaving C(0H) unaltered. It may use 4D, but not

2H through 8H.

Preset parameters: 45 H

46 N

47 M
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2. If f{x\) and/(x 2 ) have the same sign, F2 will place x2 in OH and

leave 2~35
in the accumulator.

3. If x is not required to an accuracy better than 2m
~ 33

,
where

to < 10, order 52 of F2 may be replaced by R 2m F. This will save

time, but the less significant half of the accumulator may not be empty

on exit from F2.

4. See Part 3 for detailed prog-ram. •

Fl Interpolation in a table, using Neville's process.

Closed B; 46 + 2n storage locations; even; uses 4Z) and OH,

2H, . . .
,
(2n - 2)#;timeapprox. (0.01ft

2 + .003ft + .005) sec.

Given, in consecutive long-storage locations, a table of values of a function

at interval 2~m of the argument, with the entry corresponding to zero

argument specified by a program parameter, Fl calculates the value of

/[(7(Acc)] and places it in the accumulator. The number of entries over

which interpolation is made is specified by a preset parameter.

Preset parameters: 45

46

47

Program parameter:

H

N
M

V

P+ 1

P + 2

D hD defines beginning

working space

of

p 2n F Fl uses n function values

p o 1 5—in J? The table is at interval 2~n

B
F

V
s

F
F

Orders calling in Fl

P 2a F 2aD is location correspond

ing to zero argument

Accuracy: Maximum rounding off error is ±2 36n(n + 1); rms value is

2~35
• n, where interpolation is made over n entries. Truncation error,

Rn = (x - c)(x - c - 2~m
) ... (x - c - (ft - l)2-m)/

w
(/v)/ft!, where

c is the argument corresponding to the first tabular value used, and

c < k < c + (ft - 1) •
2~m

.

Notes: 1. If the capacity of the accumulator is exceeded during Fl the

machine will stop on a </>-order.

2. The quantity (=q, say) in 416 causes the first function value used

to correspond to argument y, where (x — q) > y > (x — q — 2~~m
).

q is initially set (by an interlude) to (ft — 2) •
2~m~ 1

,
which causes the

subroutine to use function values as nearly as possible symmetrical

about x.

3. The subroutine fails unless 3 < to < 11.
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4. Care must be taken to avoid values of the argument that would

cause the subroutine to use function values outside the table.

5. The argument for which the value of the function is found can

also be thought of as (a — b)2~m + x, where P 2a F is the program

parameter and the location corresponding to zero argument is 2bD.

6. See Part 3 for detailed program.

G. Subroutines for the integration of ordinary differential equations.

(74 Integration of y" = f(x,y) by sixth order process.

Closed A; 47 storage locations; uses 4D, 10D, and OH to 22//.

Time = (0.175 + St) sec, where t = time of auxiliary sub-

routine.

Each time (74 is called in it advances the integration by one step. At the

beginning of the integration the following initial values must be planted:

OH Vi + 5
2
//i' '(/*

2
/240) 10H Xt

2H
52/J

12H h

4// 2/i UH h
2

m 8yi" 16# 1/12 (=0.083)

8H t2 "O o 18H /i
2/240

An auxiliary subroutine, of closed A type and starting in OiV, must be

provided to calculate f[C(10H), C(20H)] and place it in 22H. On exit from

£4, corresponding values of x and y will be found in 10H and 20H, re-

spectively.

Preset parameters: 45

46

H

N

P n D nD defines beginning of working

space

P m F Auxiliary subroutine begins in m

Accuracy: Truncation error may be taken approximately as

(yV - z/?)^7240,

over range y to yn .

Notes: 1. 5
2
//i

//
(/i

2
/240) is a small quantity, so an approximate value will

suffice.

2. The auxiliary subroutine may use 0D and 4D, but not 10D.



SUBROUTINES FOR DIFFERENTIAL EQUATIONS 151

G12 Integration of one or more simultaneous differential equations by

Runge-Kutta-Gill process.

Closed B; 49 storage locations; even; uses 4Z); time = (0.09 +
0.14ft + 42) sec, where n is number of variables and t is time

of auxiliary subroutine.

The variables y are stored in n consecutive long-storage locations, the first

of which is aD. Each time G12 is called in it will advance the values of

these variables by one step. An auxiliary subroutine must be provided to

calculate all the derivatives from given values of the variables. It should

be of closed B type, and have its first order in d. The quantities 2mhy f

,

calculated by the auxiliary subroutine, should be placed in n consecutive

long-storage locations, the first of which is bD. A further set of n consecu-

tive storage locations, the first of which is cD, must be provided to hold

the quantities 2mq; at the beginning of a range these must be cleared.

For a detailed description of the process see Part 1, Section 5-12.

Preset parameters:

aD is location of first variable, y

bD is location of first 2mhy'

cD is location of first 2mq
n is number of variables

(or P Diim = 1)

d is location of first order of auxiliary

subroutine

Accuracy: The truncation error in one step is of the order h 5
. For a small

set of well-behaved equations its magnitude is roughly 10~ 2h 5
. Rounding-

off errors accumulate at a rate corresponding to the keeping of 34 + m
binary digits.

Notes: 1. m should be chosen so that the largest 2mhy' is just within the

capacity of the accumulator, with the proviso that 1 < m < 11.

2. If a variable exceeds the capacity of the accumulator, the ma-
chine will stop on a 0-order.

3. The auxiliary subroutine may use 0D and 4Z).

4. The accumulator must be clear when G12 is entered, and also

when control is returned to G12 from the auxiliary subroutine; it will be

clear on returning to the master routine.

5. If the independent variable is required it may be treated as a

dependent variable with the corresponding 2mhy f = 2mh. The latter

quantity may be set once and for all at the beginning of the range; it

will not be disturbed.

6. See Part 3 for detailed program.

45 H
46 N
47 M
48 A
49 L
50 X

P a D
P b D
P c D
P 2n F
P 2m

~ 2 F
P d F
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(713 Integration of one or more simultaneous differential equations by

Runge-Kutta process.

Closed B; 47 storage locations; even; time = (0.07 -f- 0.08n -f 4t) sec,

where n is number of variables and t is time of auxiliary subroutine.

Similar to (712 but uses the faster, orthodox Runge-Kutta process, which

needs a further n consecutive long-storage locations, the first of which is

fD, to hold the variables within a step. At the beginning of a range the

initial values of the variables must be set both in these locations and in the

set starting in aD.

Preset parameters

45 H

50 X
51 G P f D

Same as for G12

fD is location of first variable, y

Accuracy: See (712.

Notes: 1. m should be chosen so that the largest 2
m
hy' is just within the

capacity of the accumulator, with the proviso that 1 < m < 10.

2. See also Notes 2, 4, and 5 of G12.

(714 Location of zero of variable, to specified accuracy, using G12 or

G1S.

Closed B; 33 storage locations; even; uses 4D; time—see Note 3.

#14 uses G12 or (713 to advance the integration of a set of ordinary dif-

ferential equations to a point at which the modulus of a specified variable,

yr , is less than or equal to a specified quantity of the form k • 10_s_1 .

(714 also uses Dll.

Preset parameters:

45 H
46 N
47 M
48 A

49 L
50 X
51 G

P h D
P p D
P q D
P g F
P 2»i-2 F
P e F

Location of variable yr which is to vanish

Location of 2mhy'
r

Location of j • 2mh

Location of first order of G12 or (713

m as in G12 or G1S

Location of first order of Dll

Accuracy required (see below)



SUBROUTINES FOR EVALUATING LOGARITHMS 153

Accuracy: The accuracy required is specified by the pseudo-order 2 s F
(where 2 stands for any function letter) in the (7-parameter position. (714

transfers control back to the master routine when yr < k • 10~s_1
, where

k is the decimal equivalent of the function letter 2 and < k, s < 9.

Notes: 1. The auxiliary subroutine provided for (712 or (713 must be so

designed that the quantity h is determined by the content of storage

location q. This number will be altered by (714 and must therefore be

reset before the integration is continued. (714 never increases the

modulus of C(q), however, so that if, on entering (714, this is sufficiently

small for accurate integration, it will remain so.

2. When (714 is entered, an approximately correct value of 2mhyr

must already be in place in pD. This will be the case if the integration

has already proceeded for at least one step; if not, the auxiliary sub-

routine must be called in once, independently of (712/(713, before

entering (714.

3. Until the specified variable comes within one step of the zero,

(714 will add 0.05 sec to the time taken by (712 or (713 for each step of

the integration. Thereafter it will also add the time taken by Dll. The
number of steps taken in this last part of the integration will be about

4 or 5 if k = 0, and less otherwise.

4. Integration proceeds in the direction of decreasing modulus of

yr . If a minimum of this modulus is encountered which has a value

greater than k • 10_s_1 , (714 will cycle indefinitely.

5. The approximate zero found may be on either side of the true

zero.

6. The accumulator should be clear on entering (714 and will be

clear on leaving it.
,

L. Subroutines for evaluating logarithms.

L4 Logarithm.

Closed B; 54 storage locations; even; time (0.12 + 0.003/0 sec,

where 2~n~ l < <7(Acc) < 2~n
.

Replaces C(Acc) by 2~ 5
logc C(Acc).

Accuracy: ±2~33
.

Notes: 1. R9 must be in the store when L4 is read.

2. See Part 3 for detailed program.
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M. Miscellaneous subroutines.

71/18 Store repetitive pattern of orders.

Special; 19 orders

This subroutine is intended for use on those occasions when it is desired,

for the sake of greater speed, to use a single, long sequence of orders for a
particular calculation, instead of a short sequence repeated, with modifica-

tion, a number of times, 71/18 allows input time to be saved by rendering it

unnecessary for the entire sequence to be punched on the tape. Orders for

the first two cycles are punched, and go into the store immediately before

71/18. 71/18 is called into action as soon as it is read, and plants the remain-

ing orders of the sequence, forming their addresses by linear extrapolation.

Parameters: The following must be punched immediately after 71/18:

c F c = number of orders in set

T t F Last order of last set to be copied into location t

E Z
T f F First order of first set to be copied into location /.

Notes: 1. Since 71/18 proceeds by linear extrapolation, different orders

may be increased by different steps. In particular, if desired, an order

may appear alternately as A and S, with regularly increasing address.

2. The copying process may be stopped in the middle of a set, if

required, by punching the second parameter appropriately.

3. At the end of the process 71/18 transfers control back to the

initial input routine. The Transfer Order must then be restored by a

suitable control combination punched on the input tape.

4. il/18 may be used more than once during the input of a program.

71/20 Set parameter value, by means of telephone dial, during input

of orders.

Special; uses no storage space.

If 71/20 is included at the appropriate point on the input tape, the //-param-

eter may be set to d • 2
-15 by dialing an integer d. As soon as the first few

rows of 71/20 have been read the machine stops on a Z-order. Exactly three

decimal digits should then be dialed to specify d.

Notes: 1. A preset parameter other than H may be set by changing the

control combination T 45 K near the end of the 71/20 tape.

2. If it is desired to dial more, or less, than three digits the central

section of 71/20 (marked on the program sheet) should be repeated an

appropriate number of times, or omitted, as the case may be.

3. See Part 3 for detailed program.
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M30 Sideways addition (Gillies-Miller method).

Open; 20 + 15 storage locations; time, see Note 3.

Counts the l's in C(R) and places the sum n in OF as P n F.

Preset parameter: 45 H P In F OH is the location of the first of a

set of 7 collating constants

Notes: 1. The accumulator must be clear at the start of il/30, and will be

clear at the end.

2. Times of operation are

0.035 sec if C(R) < 0, 0.033 sec if C(R) > 0.

3. See Part 3 for detailed program.

[If C(R) is known to be always positive, a faster subroutine may be written

by omitting the third and fourth orders.]

M31 Serial correlation

Closed B; 30 + 2m* storage locations; 1st location even;

time (0.006m/ + 0.014m + 0.018/ + 0.01) sec.

Adds into 2A, 4A, . . . , 2/A, in the form of long integers, the sums

m

4£ xai+j U = 0,l,...,(l- 1)),

where the sequence of short integers xi is stored in locations OH, 1H, . . .
,

and the sequence yi in locations OiV, liV, ....

I— 1 m
-4 J2 12 X iVi+J

is computed independently and added into 0A. This quantity is intended

to be used as a check sum.

Preset parameters:

45 H
46 N
47 M
48 A
49 L
50 X

P h F 1st set of numbers in OH, 1H, . . .

P n F 2nd set of numbers in OiV, IN, . . .

P m F m is number of products

P d D Check sum to 0A, products to 2A, 4A, . . .

P I F /is number of correlations used by
P x F subroutine.
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Notes: *1. In order to save computing time, this subroutine uses a se-

quence of m pairs of H- and F-orders, instead of a repetitive loop, to

compute the sum of products. These orders are planted, during input,

in storage locations 240, 250, . . .
,
(24 + 2m — 1)0, by means of an

interlude.

2. See Part 3 for detailed program.

N. Operations on double-length numbers.

N2 Arithmetical operations on real numbers, each occupying two

long-storage locations.

Interpretive; 43 storage locations; time, see Note 1.

N2 carries out the operations specified individually by interpretive orders

according to the code given below. The operations are carried out on real

numbers each occupying two consecutive long-storage locations. The
value of the number stored in C(mD) and C(m + 2)D is

2 n[C{mD) + 2~33
• C(m + 2)D],

where n can have any integral value such that < n < 13,

-1 < C(mD) < 1, and < C(m + 2)D < J.

The subroutine uses the adjacent long-storage locations OH and 2H as a

double-length accumulator, or d.l.a., in which numbers are. stored in the

same way.

Interpretive code:

A m D Add to C(d.l.a.) the number represented by C(mD) and

C(m + 2)D
5 m D Subtract from C(d.l.a.) the number represented by C(mD)

and C(m + 2)7)

G m D Multiply C(d.l.a.) by the number represented by C(mD) and

C(m + 2)D
6 m D Multiply C (d.l.a.) by —1 and by the number represented

by C(mD) and Cirn + 2)D
T m D Transfer C(d.l.a.) to mD and (m + 2)D and clear the d.l.a.

U m D Transfer C(d.l.a.) to mD and (m -f- 2)D and do not clear

the d.l.a.

E m F Transfer control to the order in (m + 2)F, with the content

of the less significant half of the d.l.a. in the accumulator.
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Preset parameters:

45 H

46 N

PhD hD and (h + 2)D form the

d.l.a.

E F If n =
L 2n_2 F If < n < 12

L F If n = 13

Accuracy: The operations are carried out to 67 binary places (about 20

decimal places).

Notes: 1 . Times of operation are as follows

:

rder Time (sec)

A 0.040

S 0.036

G 0.056

e 0.056

T 0.036

U 0.036

E 0.012

2. C(d.l.a.) may be doubled or squared by adding it to itself or

multiplying it by itself.

3. The interpretive orders can be modified, by the addition of the

content of the B-register, in the same way as ordinary EDSAC orders.

iV3 Input of one double-length signed decimal fraction (used with N2) .

Closed A; 35 storage locations; even.

iV3 reads one fraction of up to 20 decimal places and places it in 0A and 2A,

using the same representation for double-length numbers as N2, n being

zero. Any number of digits may be punched, but a code letter V must be

punched after the 10th decimal place, and a G or a after the 20th

—

G for a

positive number and 6 for a negative number.

Preset parameters:

45

46

47

48

H
N
M
A

PhD hD and (h + 2)D form d.l.a. 1 used by

H F n = J N2
P m F m is location of first order of iV2

P d D dD and (d + 2)D are locations into

which number read is placed

Notes: 1. The number is read starting from its more significant end.
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2. 2H must be clear when NS is entered. This will be so if 2H was
last used by N2 and control was transferred from N2 by an border
following a ^-order.

3. The P-register must be clear during the operation of N3.

P. Print subroutines.

Subroutines in this category should strictly be termed punch sub-

routines, since the output medium of the EDSAC is punched paper

tape. For convenience, however, they will be described in terms of the

final printed records which are obtained when the output tapes are

run through a tape reader connected to a teleprinter.

P30-47 Standard set of print subroutines.

Closed A ; use 4P.

Number

P30

P31

P32

P33

P34

P35

P36

P37

P38

P39

P40

P41

Description

Print C(R) as signed fraction, with

column layout

Print C(R) as signed fraction, with

page layout

Print C(R) as positive fraction,

with column layout

Print C(R) as positive fraction,

with page layout.

Print 2
34C(P) as long signed inte-

ger, with column layout

Print 2
34C(P) as long positive inte-

ger, with column layout

Print 2 16C(P) as short signed inte-

ger, with column layout

Print 2
16C(R) as short positive in-

teger, with column layout

Print C(R) as signed fraction, with

no layout

Print C(R) as positive fraction,

with no layout

Print 2
34C(P) as long signed inte-

ger, with no layout

Print 2
34C(P) as long positive inte-

ger, with no layout

Locations Preset

used parameters

48 (even) H

61 (even) H,N

43 (even) H

56 (even) H,N

50 (even) —

43 (even) —

40 —

34 —

44 (even) H

39 (even) H

46 (even) —

39 (even) —
(continued)
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Number

P42

P43

P44

P45

P46

P47

Description

Print 2 1GC(P) as short signed inte-

ger, with no layout

Print 2 10C(P) as short positive in-

teger, with no layout

Print 2
34C(P) as long signed inte-

ger, with page layout

Print 2
34
(7(P) as long positive inte-

ger, with page layout

Print 2
1GC(P) as short signed inte-

ger, with page layout

Print 2
16
(7(P) as short positive in-

teger, with page layout

Locations Preset

used parameters

36 —

30 —

63 (even) H

56 (even) H

53 H

48 H

Preset parameters: 45 H
46 N See Notes 2(iii) and 3(i).

Accuracy: Fractions are automatically rounded off before being punched,

the round-off number being calculated from the digit layout constant (see

Note 3) by an interlude. If the digit layout constant is such that more

than ten digits are punched, the round-off number is zero.

Notes: 1. The figure shift symbol is punched by an interlude while the

subroutine is being read.

2. Layout, (i) Subroutines giving no layout print the number on

the same line as, and immediately following, the last character to be

printed. Layout symbols (for spaces, carriage return, and line feed)

must be provided separately by the program, although the subroutines

automatically print one space at the end of each number.

(ii) Subroutines giving column layout print the numbers in a

single column at the left-hand margin of the paper. That is, each time

the subroutine is called in it punches out a single number preceded by a

carriage return and line feed. Note, however, that, if desired, the car-

riage return and line feed may be omitted by entering the subroutine at

its third order. Thus a subroutine giving column layout can be used to

give special types of page layout when desired.

(iii) Subroutines giving page layout print the numbers in n
columns, with two spaces between columns, and in blocks of five lines,

with one space between blocks. The value of n is determined by the

N-parameter, P 5n F, in subroutines P31 and P33, and by the H-
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parameter in subroutines P44 through P47. The two spaces between

columns may be supplemented, if necessary, by providing suitable out-

put orders in the program after leaving the subroutine. The number of

lines in the block may be altered, if desired, by changing the last pseudo-

order on the subroutine tape. This is normally P 5 F and should be

changed to P b F, where b is the desired number of lines. The N-
parameter must then be P n • b F. If it is desired to begin a new block

at a specific point in a program, the last location occupied by the sub-

routine should be cleared. (See Example 5 of Chapter 7.)

3. Digit layout, (i) In the case of subroutines which print fractions,

the digit layout (that is, the layout of the digits of a single number and

of the spaces separating them) is determined by the H-parameter P x F,

where x may be obtained in the following way. Imagine the printed

characters, including both digits and spaces (only single spaces being

permissible) to be laid out in the squares below, starting with the most

significant digit in the left-hand square, x is then the result of adding

the numbers below each space and the number above the right-hand digit.

CM co 00 ~v CM CO 00 Th CM CO 00 tH CM i—

I

OS OS -H CM i—i LQ CM co CO 1—

1

i—i o O o >-0 CM
00 TH CM 1—

1

co 00 <* CM O 00 TfH CM CO 00 -f CM CO
t^ 00 <* t^ CO CO 00 os os TjH CM i—

i

iO CM O *o l> CO r—

1

Tt< CM CO CO 1—

1

CM ^h

For example: (a) To print ten digit members with a space after the

fifth digit, x = 1536 + 16 = 1552; (b) to print ten digit numbers with

spaces after the third, sixth, and ninth digits,

x = 6144 + 384 + 24 6556.

(ii) In the case of subroutines which print integers, the digit

layout has been standardised so that a short integer is printed as a

single group of five digits, while a long integer is printed as two groups

of five digits separated by a single space, e.g., 12345 67890.

4. In the case of subroutines which print signed numbers, negative

numbers are preceded by a minus sign and positive numbers by a space.

5. No provision is made for the suppression of nonsignificant zeros

by subroutines which print integers.

6. See Part 3 for detailed programs of P31 and P40.
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P50 Print C{R) as signed fraction, with column layout and variable

digit layout.

Closed A; 50 storage locations; even.

Prints C(R) as a signed fraction rounded off to a preset number of decimal

places specified by the //-parameter. Numbers are printed in column lay-

out, but with a variable digit layout controlled by a program parameter.

Preset parameter: 45 H P h F Numbers are rounded off to h digits

by adding i •
10~~*

Program parameter: m
m + 1

m + 2

A m F
F p F
P x F

Orders calling in P50

x is digit layout parameter

(see Note 3).

Notes: 1. The figure shift symbol is punched by an interlude while P50
is being read.

2. Details of the column layout will be found in Note 2(h) of sub-

routines P30-47.

3. The digit layout parameter x is calculated from the rules given

in Note 3(i) of P30-47.

P56 Print C(Acc) as signed fraction, with digit and page layouts

controlled by adjustable parameters within the subroutine.

Closed P; 67 storage locations; uses 4D.

P56 will print C(Acc) correctly rounded off to d places of decimals. A
positive number will be preceded by a space and a negative one by a minus

sign. A space will be printed after the ith. digit and after every successive

sth digit other than the last. The numbers will be spaced across the page

in x columns, and an extra line feed will occur after every y lines. Each
number will be preceded by one, two, or three spaces according as P56 is

entered at order 2, 1, or 0.

Accuracy: The round-off constant is correct to four significant figures.

Parameters: x, y, d, i, and s are initially set so that P56 prints five columns

of ten figure numbers with five lines to a block. A space is printed after the

fifth digit of each number. The parameters are, in fact, a set of P-orders,

each of which is marked with an asterisk on the detailed program sheet.

These orders are also marked on the tape, and may therefore be changed

if the parameters need to be changed before input. During the program

they may be changed by using K-orders to plant the desired P-orders
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90 B y F y

120 B x F X

180 B d F d

270 B i F i

360 B s F s

within the subroutine. The locations and details of the 5-orders con-

cerned are as follows.

number of lines to a block

number of columns

number of digits

number of initial digits (before first space)

number of digits between spaces

Tf B F is planted in 30 the next number to be printed will begin a new line

and will set the column count to its initial value. Similarly, if B F is

planted in 60 the next number to be printed will begin a new block and will

set the line count to its initial value.

Note: See Part 3 for detailed program.

Q. Quadrature subroutines.

Q3 Quadrature, using Gauss' six-point formula.

Closed A; even; 48 storage locations; uses (m + 4)D; time =
(0.24 -f Qt) sec, where t is time of auxiliary subroutine.

Places in 0D an approximation I to the integral

•a+hra-ri

Ja-h
}{x) dx,

where a = C(0H), h = C(2H), and f(x) is computed by an auxiliary,

closed A subroutine, whose first order is in GW, and which places f[C(QD)]

inOD.

Preset parameters:

45

46

//

N
P m D m defines locations of a and h

P n F n is location of first order of

auxiliary subroutine.

Accuracy: The truncation error of the formula used is approximately

io-
15 /-12 13f\e).{2hy\

The rounding-off error in the worst case is

-3f>

[1 + lO/i + 10/i [max /'(x)}]; (a - h) < < a + h.
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Notes: 1. R9 must be in the store when Q3 is read.

2. The mean value of the integral (that is, I/2h) is placed in

(m + 4)D.

3. See Part 3 for detailed program.

Q19 Gauss-type quadrature, with exponential weighting function (uses

six-point formula) .

Closed A; even; 56 storage locations; uses 2H; time =
(0.2 + Qt) sec, where t = time of auxiliary subroutine.

Places in 0D an approximation I to the integral fa F(x) • dx, where

F(x) ~ f(x) • e~bx
, f(x) having polynomial behavior, 1/6 = C(0H), and

the quantity F[a + 2
4C(0D)/b] is computed, and placed in 0D, by an

auxiliary closed A subroutine whose first order is in ON.

Preset parameters: 45

46

H
N

PhD hD is location of 1/6

P n F n is location of first order of auxil-

iary subroutine.

Accuracy: 1. The rounding-off error is not more than 2
3

• (1 + 48/6).

2. The truncation error of the formula used is

O.O53e-
a6M/ (12)

(0)].

Notes: 1. R9 must be in the store when Q19 is read.

2. The modulus of the quantity 6/8 • fa \F(x)\ - dx must be less

than 1.

Q20 Quadrature by Gregory's method.

Closed B (see Note 1) ; even; 44 storage locations; uses 4Z), 6Z>;

time = (0.185 + 0.006n) sec.

Places in the accumulator an approximation / to the integral

•c+ (n— l)h

/;
fix) dx,

where f(x) is specified by a table of long numbers, fr — f(c + rh), being

stored in 2rH; h = C(0N). The formula used is

I = h

n— l

E /' + E Mfr + fn-r-l)
r=0 r=0
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Preset -parameters: 45

46

II

N

P a D aD is location of first entry in

table

PhD bD is location of h

Accuracy: Rounding-off error is less than (nh -f- 14)2~35 . For details of

truncation error, see Milne-Thomson, p. 191 (Bibliography p. 236).

Truncation error is zero for polynomials of seventh degree or less.

Notes: 1. The accumulator must contain B 2n F when Q20 is called in.

2. n must be >7.

3. If the capacity of the accumulator is exceeded during the opera-

tion of Q20 the machine may stop on a 0-order. However, since the final

answer is built up in the accumulator and left there without being

transferred to the store, it is possible for capacity to be exceeded without

an indication being given.

R. Input subroutines.

R2 Input of positive integers during input of orders.

Special; 15 storage locations (temporarily).

R2 is to be followed immediately on the input tape by the parameter

T m D and a sequence of positive integers . Control is automatically

transferred from the initial input routine to R2 which reads the numbers

from the tape, multiplies them by 2~34
, and places them in sequence in

mD, (m + 2)D, (m -\- 4)D, etc. Each integer is terminated by the letter F,

with the exception of the last of the sequence, which must be terminated by

7r T Z. When this control combination is read it will return control to the

initial orders. They will then read in the remainder of the program, part

of which will be written over the orders of R2.

Parameter: T m D must be punched immediately after R2.

Note: See Part 3 for detailed program.

R9 Input of positive integers during input of orders (standard form

for regular use).

Special; 15 storage locations.

The actual orders of this subroutine are identical with those of R2, but R9
is intended always to be placed in locations 56 to 70 inclusive, and to re-

main there throughout the input of a whole program, being used any

number of times. Each time it is used it will read a sequence of positive

decimal integers and place them in consecutive long storage locations.

Notes: 1. The subroutine tape commences with P K T 56 K, so that it

may be copied immediately at the head of a program tape. It does not

have E 13 Z at the end, so that it is not automatically obeyed after

being read.
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2. #9 is called in by the control combination E 09 K T m D.

This is followed by the integers, each terminated by F except the last,

which is terminated by ir to return control to the initial orders. After

this must be punched a control combination to restore the transfer order,

e.g., T Z. The integers will be placed in mD, (m + 2)D, (m + 4)Z), etc.

3. Negative integers may be read if 2 35 is added to each before

punching.

#23 Input of one short or long positive integer by means of telephone

dial.

Closed A; 17 storage locations.

When #23 is called in the machine stops on a Z-order. The required

integer (>0) may then be dialed, most significant digit first, and terminated

by pressing the Reset button. If a short integer (that is, one less than

65536) is dialed it will be placed in OF; a long integer will be placed in OD.

#29 Input of one positive integer punched in output code.

Closed A ; 33 storage locations.

Notes: 1. #29 is used to read back into the store results which have

previously been punched onto an output tape.

2. The symbol F is treated as if it were the digit 0; M is treated as

a decimal digit of value 15. These anomalies arise through the extreme

compactness of the subroutine; they do not give trouble in practice

since the symbols F and M are unlikely to be encountered on a normal

output tape.

3. When #29 is called in it ignores all symbols until a decimal digit

is encountered. It then reads digits until any symbol which is not a

digit (except, of course, F or M) is encountered; this terminates the

integer. Thus integers to be read by #29 must consist of continuous

sequences of digits and must not include spaces or other layout symbols.

4. See Part 3 for detailed program.

#30 Extension of the initial input routine to read code letter S.

Special; 10 storage locations.

The initial input routine wired into the EDSAC (see Appendix 3) does not

recognize the code letter S. #30 provides an extension to the initial input

routine so that this code letter is treated during input in the way described

in Part /, Section 1-13. The orders of #30 may be placed anywhere in the

store, although it is recommended that they should be placed in locations

1014 through 1023. The library tape begins with PZT 1014 K to facilitate

this. Every program using the S facility must begin by placing a copy of

#30 in the store.
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Notes: 1. The orders in 27F and 28F are modified as the orders of #30
read in.

2. An order with zero address must not be terminated by code

letter S.

3. See Part 3 for detailed program.

#33-36 Standard set of subroutines to read sequences of long numbers.

Number

#33

#34

#31

#36

Type

Special

Special

Special

Special

Description

Input of a sequence of signed long

decimal fractions. Called in by:

n B m D mD is to be

n-\- 1 A n -\- \ F location of

first num-
ber read

n + 2 F s F s is location

of first

order of

#33

Input of a sequence of signed long

decimal fractions during input of

orders. #34 is followed on the in-

put tape by T m D and the se-

quence of numbers, which will

then be read into mD, (m -f- 2)D,

etc.

Input of a sequence of signed long

integers. Called in by:

n B m D mD is to be

n + 1 A n + 1 F location of

first num-
ber read

n + 2 F s F s is location

of first

order of

#33

Input of a sequence of signed long

integers during input of orders.

#36 is followed on the input tape

by T m D and the sequence of

numbers, which will then be read

into mD, (m + 2)7), etc.

Locations

used

46 (even)

47 (even)

30

28

Working

space

4D, QF
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Accuracy: Decimal fractions having less than eleven digits are converted

to binary form with a maximum error of (0.55) •
2~34

.

Notes: 1. Each number is punched as sign followed by any number of

decimal digits. The last number of a sequence is terminated by the

character M.

2. #33-36 will recognize only symbols corresponding to decimal

digits, +, — , M, and also J, which is equivalent to the decimal number

10. All other symbols, occurring in any position on the input tape, will

be ignored. The correct reading of numbers will thus not be upset by

the occurrence of layout symbols on the tape. Note, however, that

C(m — 2)D will be destroyed unless a sign is punched in front of the

first decimal digit to be read.

3. If desired, #34 or #36 may be used more than once during input

of orders. After the first time they should be called in by transferring

control to the first order, with T m D in the accumulator.

#37 Input of one signed decimal fraction.

Closed B; even; 34 storage locations; uses 4Z), 6F.

Reads one signed decimal fraction and places it in the accumulator. The
fraction should be punched without a decimal point (which is assumed to

be at the left-hand end), and with a plus or minus sign after the last digit.

For example,

+0.8571 should be punched as 8571+

and

—J should be punched as 5— .

Any number of decimal digits may be punched, although digits after the

eleventh will have no effect.

Accuracy: See #33-36.

Notes: 1. Symbols for J, w, S, Z, K, "erase," F, d, and D, and also blank

tape, will be ignored.

2. Symbols for M, A, L, X, G, A, B, C, and V will cause errors if

they are read by #37.

3. </> will have the same effect as +.

4. If #37 is called in without the accumulator being clear, the

operation of the subroutine will not be impaired, although the initial

content of the accumulator will be discarded.

5. See Part 3 for detailed program.
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S. Subroutines for evaluating fractional powers.

S3 Cube root,

Closed A; 25 storage locations; uses 4D, SD; time, approx. 1 sec.

Forms cube root of C(QD) and places result in OD. C(QD) may be positive

or negative and is not changed by the action of the subroutine.

Accuracy: d=2
-34

.

Note: See Part 3 for detailed program.

[This subroutine is mainly included as an example of a digit-by-digit

process. Such processes are rather slow, but are very simply programmed.]

#10 Square root of double-length number held in the accumulator.

Closed B (see Note 1); 37 storage locations; uses 4Z); time =
(0.2 + O.Oln) sec, if C(Ace) is in the range 2~2n

,

2~2n~ 2
.

Replaces C(Acc) by V C(Acc), where C(Acc) is a double-length number.

Accuracy: 32-33 significant binary digits. If the answer is small many of

these digits may be in the less significant half of the accumulator.

Notes: 1. This is a normal closed B subroutine but, in order to deal cor-

rectly and quickly with the case C(Acc) = 0, it should be called in by

the orders

p B p F
p -f- 1 F m D (m is location of first order of #10).

#10 will then be by-passed if C(Acc) = 0, thus giving the correct

result with no waste of time.

2. If C(Acc) < the machine will come to a dynamic stop on the

third order of #10.

3. The answer, left in the accumulator, is not rounded off.

#1 1 Reciprocal square root of double-length number held in the accumu-

lator:

Closed B; 37 storage locations; uses 4Z); time = (0.2 + O.Oln)

sec, if C(Acc) is in the range 2~2n
,

2~2n- 2
, where < n < 33.

Forms, and places in 4D, the quantity C(0D)/V C(Acc), where C(Acc) is a

double-length number held in the accumulator.

Accuracy: Maximum error — 2" -33

Notes: 1. If C(Acc) < 0, the machine will come to a dynamic stop on the

third order of #11.
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2. If [C(0D)]
2 > C(Acc), the machine will stop on a 0-order in

storage location 160 or 276.

3. If C(Acc) = 0, the program will go into a loop.

4. See Part 3 for detailed program.

T. Subroutines for calculating trigonometric functions.

T7 Sine.

Closed A; even; 36 storage locations; time = 0.081 sec.

Forms and places in 4D the quantity \ sin [2 • C(4Z))], where |2 • C(4Z>)
|

<
7r/2. R9 must be in the store when T7 is read.

Accuracy: Maximum error is zb2~33
.

Note: See Part 3 for detailed program.

T9 Tangent.

Closed A; even; 46 storage locations; time = 0.155 sec.

Forms and places in 4D the quantity tan C(4D), where — 7r/4 < C(4Z>) <
7r/4. i£9 must be in the store when T9 is read.

Accuracy: Maximum error is
2~33

.

[This subroutine is based on the use of a Chebyshev series.]

Til Cosine.

Closed B; even; 44 storage locations; uses 4D; time = 0.12 sec.

Replaces C(Acc) by j- cos 7r[C(Acc)].

Accuracy: Maximum error has modulus < 2
-34

.

Notes: 1. The accuracy of the result is not affected if C(Acc) differs

from the required argument by a multiple of 2. Thus the function for a

large angle can be evaluated by deliberately exceeding the capacity of

the accumulator. For example, to calculate J cos 2nwx, where x =
C(0D), we may use

00 A D
1 L 2n

~ 2 F
2' B 2 e~
3 F ...

Orders calling in Til.

2. If it is required to calculate \ sin 7nr, (x — J) should be placed

in the accumulator before Til is called in.

3. See Part 3 for detailed program.
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Z. Post-mortem routines.

Z5 Standard set of post-mortem routines.

Form of post-mortem Storage

Routine information punched locations*

Z\ Short fractions 47

Z2 Long fractions 47

Z3 Short integers 57

Z\ Long integers 58

Z5 Orders 64

Location of

first order

odd or even

odd or even

even

even

odd or even

*Other than those required for the initial input routine.

Any of the above routines may be used to punch on the output tape, in

appropriate form, the contents of a sequence of storage locations, the first

of which is specified by dialing a two-figure integer. When sufficient

information has been punched the machine must be stopped manually

(see Note 9). The method of use is as follows:

Either (i) Place the post-mortem tape in the reader, beginning on the

initial blanks, and press the Start button. When the tape stops,

dial three digits to specify the location into which the first order of

the post-mortem routine is to be placed. When the tape stops

again, dial two digits to specify n/10, where n is the first location

for which post-mortem information is required. Note that n must

be a multiple of ten.

or (ii) Place the tape in the reader, beginning on the blanks preceding

the second section; press the Start button. The orders of the post-

mortem routine will then be placed in a sequence of storage loca-

tions beginning at 800. When the tape stops, dial two digits to

specify n/10 as described in (i).

Notes: 1. Post-mortem information cannot be obtained for parts of a

program occupying storage locations to 45 inclusive.

2. Long, or short, decimal fractions are printed (unrounded) as

eleven, or five, digits, preceded by the sign.

3. Integers, up to (2
34 — 1), are printed accurately; the first

significant digit is preceded by the sign, nonsignificant zeros being

completely omitted.

4. The quantities and — 1, whether treated as integers or as

fractions, are punched as + and — , respectively.

5. An order is punched as function letter followed directly by ad-

dress (in which nonsignificant zeros are suppressed), and terminated by
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a space if the order refers to a short location, or an asterisk if it refers

to a long location.

6. The information punched is preceded by the number of the

first storage location from which it is taken.

7. A space is punched after every item of information other than

an order terminated by an asterisk.

8. Carriage return and line feed symbols are punched after every

ten short items, or five long items."

Zl Universal post-mortem routine,

172 storage locations; even.

This routine may be used to punch post-mortem information in any of the

five forms described below. The method of use is similar to that described

for Zl through Z5, but the first location from which post-mortem informa-

tion is to be punched is not dialed, but is punched on a supplementary tape.

This supplementary tape must be inserted in the reader when the machine

stops at the end of the Zl tape.

The supplementary tape must be specially punched for each use of Zl

.

It contains a number of items, each specifying a series of locations and the

form in which the contents of those locations are to be punched. An item

consists of aXbZ, where a and b are absolute addresses specifying the

beginning and end of the sequence of storage locations from which post-

mortem information is required, and 2 is a code letter specifying the form

in which that information is to be printed, thus

:

Printed form of post-mortem

Code letter
,

information

S short fractions

7T long fractions

K short integer

Z long integer

J order

After an item is read, the addresses a and b will be punched, separated by
a space and followed by carriage return and line feed symbols. The post-

mortem information will then follow, with carriage return and line feed

symbols after every ten short numbers or orders, or every five long num-
bers. At the end of the information specified by the item, an extra line

feed will be punched. The next item will then be read and the process

repeated.
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ZS Comparison post mortem routine.

66 storage locations; even.

This may be used, after a program has stopped, to punch out those orders

which have changed during the course of the program. For use, the ZS
tape should be placed in the tape reader and the Start button pressed.

When the first few rows of tape have been read the machine will stop.

At this point a three-figure integer must be dialed to specify the location

into which the first order of ZS is to be placed. When the rest of the tape

has been read the machine will stop. The original program tape should

then be placed in the reader, and the Reset button pressed. The orders of

the program will then be read in again and compared with those in the

store. Each time there is a discrepancy, the number of the storage location

concerned will be punched together with the order in the store, which will

then be replaced by the order from the tape.

Notes: 1. When a program has been completely restored, under the con-

trol of ZS, it may be run again, if so desired.

2. If required, a post-mortem may be obtained for part of a pro-

gram, provided that this part is self-contained (e.g., provided that all

preset parameters are correct).

3. Orders referring to a long-storage location will be terminated

by an asterisk when printed out.

4. Since the address of the Transfer Order (in location 22) is used

to initiate each comparison, control combinations may cause useless

information to be punched. For example,

T n ttZ

a m F (where a is any function letter)

will compare Cinir) with m F. Thus, unless CinF) = 0, C(n -\- 1)F

will be punched out.

Also, E n K P F or Z n K P F

will punch out C(nF) unless C(nF) = 0,

but Z K P F

will not cause anything to be punched.

5. Interludes will cause many orders to be punched.
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PROGRAMS OF SELECTED EDSAC LIBRARY SUBROUTINES

The following notation is used on all library program sheets.

Entry points: If control may arrive at an order by being

transferred there by a jump order the location

of the latter (relative to the first order of the

subroutine) is shown on the extreme left, with

an arrow pointing to the location of the order to

which control is transferred, e.g.,

16 -> 23 T 6 6.

Unconditional transfers

of control:

Variable orders:

Pseudo-orders:

A horizontal line is drawn underneath every

jump order which is intended to produce a

transfer of control each time it is encountered.

Orders and pseudo-orders which are to be

changed during the course of the calculation

are shown in brackets.

A double vertical line is drawn on the left of

the contents of all storage locations which are

intended never to be obeyed as orders.

In the program sheets which follow, the code letter S is freely used, in

orders involving the B-register, in the way described in Part 1. To use a

subroutine in which this code letter occurs it would be necessary to have

subroutine R30 in the store at the time the subroutine was read. In prac-

tice, in the subroutines actually used on the EDSAC, this necessity has

been avoided by subtracting the address from 1024 in the case of an order

which would be terminated by code letter S, and by adding 1024 to the

address in an order in which the B-digit must be 1. For example,

TS 2 F would be written as T 102G F
B 2 S " " " B 1022 F
BS 2 S " " " " B 2046 F.

The content of the J5-register is sometimes denoted by b.

173
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All Arithmetical operations on real numbers expressed in floating decimal

forin.

For representation of numbers see Part 2. The number in the floating decimal

accumulator (f.d.a.) is here referred to as y • IO 9
, and the operand as x • 10 p

.

Parameters:

Preset: H
N

P s D
P t F

T ,. , f numerical parti , ,
,Location of

*
of f.d.a.

L exponent J

Preset by subroutine:

94

M
A
L

p 103 e

p e

E 56 6 D}'namic stop order

E 69 K
T 9ttM

9ttJ7 1 71798 69183

UttM ]L7179 86918

13ttJ/ 1717 98692

157rilf 171 79869

HtvM 17 17987

197ril/ 1 71799

21ttM 17180

23ttM 1718

T Z
A 46 e

-> 1 A 2 F
2 T 3 e

3 (H F)

4 C 9 M
5 E 20 e

6 R 256 F
7 A M
8 T 19 d

9 C 1 M
10 T ii e

11 (A F)
-1

12 U 22 e

13 L 32 F
1

14 R 32 F
\

15 U D
16 S 22 d

17 R 64 F
18 T 22 d

Call in RQ to read following

constants

1

io- 1

io- 2

io- 3

io-4

io- 5

io- 6

IO"7

Form and plant order 3

Place interpretive order in multiplier register

and in accumulator

Jump if interpretive E- or T-order

Form jump order specifying an address de-

pending on function of interpretive order

Form and plant A-order speci-

fying same address as inter-

pretive order

Select operand

Store more significant half

Remove exponent, p

X'2- 10 toOZ)

-2~ 14p to 220

Unpack
operand for

interpretive

,1-, B-, and

F-orders
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24

39

50

31,40

56

29,58

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

(E F)

U 22 e

T 64 e

(E F)

A H
G 30 e

T H
A 23 e

T 63 e

S H
E 6i e

A 2 M
E 49 e

II UttM
T H
A 5 M
A N
T N
V H
A 4 M
G 33

E 49 e

T H
S 5 M
A N
T N
A H
L 1 F
A H
L D
S 4

t

il/

E 41 d

S 3 M
Y F
T II

A N
S 6 M
P L

A 7 M
E 6i e

T ii

T ii

S 6 M
L 64 F
(S H)
(T D)

Interpretive order to 220 and 640

If number in f.d.a. is positive,

change sign and set order 63

to .4 H

Test if f.d.a. contains zero

Form (10 - y) •
2~n

1/10 to multiplier register

Cycle to

multiply

(10 - y)-2-^

Adjust exponent

Add 9-2 i i

Adjust exponent

Multiply by ten

Subtract 9- 2- 11

Subtract 2- 11

Final value of — y •

4-2- 14

Dynamic stop if

q > 63

Jump if q > —63
Set y = if

q < -63
Re-form q • 2 -14

q •
2-6

Addy-2-11
t

To store ft

y by neg-

ative

power of

10 if nec-

essary

Cycle to

multiply

y by pos-

itive

power of

10 if nec-

essary

2- 11 to0tf

Examine
exponent

Interpretive

^-orders

only
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19

19

19

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

75 -> 84

85

86

87

88

89

101,102 -> 90

69 -> 91

85 -> 92

93

94

76 -> 95

96

97

98

99

100

101

102

1

2

3

4

5

6

7

M

A 28 e

T 63 e

S 6 M,
T N
E 91 e

S D
T D
H D
A N
A 22 e

E 84 e

E 95

T 64 6

H H
A D
T H
S 22 e

T N
S 64

s 3 M
E 92 e

A 8 M
T 88 d

(V D)

A H
Y F
T H
T 64 6

A 3 6

G 1 d

S 22 d

A N
T N
H D
V H
L 512 F
E 90 6

G 90 d

E 78 6

A 1023 D
P 160 F
P 16 F
P 144 F
P 2 F
P 126 F
P 252 F
V 25tt21/

T 128 Z

Reset 630 f

Set q = -63

Interpretive

T-orders

only

1
Change sign of x if

to be added

Subtrahend to multiplier register

Form 2- 14
(g — p)

Jump if q > p

ttt
-2~ 14(g-p)to64

Interchange

numerical parts

Larger

number to

f.d.a.

Larger exponent

toOA/

2 _14 (g — p) to accumulator

Jump if smaller number

is negligible

Divide numerical part

of smaller number by

appropriate power of ten

Combine numbers

Sum of difference to OH
Clear accumulator

Prepare to change order 3

Interpre-

tive .4-

and

5-orders

only

Add exponents

Multiply numerical

parts

Interpretive

F-orders only

10-2- 11

2- 11

9-2- 11

2 -i4

63-2- 14

126 -2- 14
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* Order 19 transfers control to 700 in the case of an interpretive A-order,

to 720 " " " " " "
£-order,

and to 766 " " " " " "
F-order.

** 226 contains the interpretive order itself, if the function is E or T (in the

latter case the order plays no part in the calculation), otherwise 226 is used to

store —p • 2
-14

.

f Order 63 is always S H, unless an interpretive T-order is being obeyed and

y is negative, in which case it becomes A H.

ff 640 holds the interpretive order itself, if the function is E or T (in the

former case control does not reach 640); in the case of interpretive A- and
5-orders, 640 is used to hold — \q — p\ • 2

-14
. For all interpretive orders other

than E, 640 is used as a "dump" for order 92 to clear the accumulator.

Iff If control reaches order 76 from order 75, C(Acc) must be <0, and control

therefore proceeds to 77. If 76 is reached from 19, on the other hand, C(Acc)
must be zero, and control will be switched to 95.

B2 Complex operations other than division.

Performs operations (including multiplication) on complex numbers. Uses

as "multiplier register" OH (real part) and 2H (imaginary part).

46P

39

46

P 47

T 50ttZ

P F

T Z
A N

1 T 2 6

2 (A F)

3 U 16

4 U 26

5 A N
6 U 30

7 G 40

8 T F
9 A 17

10 U 26

11 T 18

12 A 4 //

13 H 3ttA/

14 V 6 //

15 II H
16 (V F)

17 II 2 II

18 (N F)

N parameter

These tape entries do not go into the store

as part of the program, but merely serve

to clear 5O7T0 to ensure that the "sand-

wich digit" is zero when the constants

PD and PF, appearing at the end of the

subroutine, are planted there

Form A n + 2 F

Select interpretive order and plant in 160

and 260

Increase address in interpretive order by 2

and plant in 300

Jump
Clear accumulator

Place ineffective order in 18, 26 for opera-

tions other than V or iV

Multiply by 2 -34 to "unpack" real accu-

mulator

Operation on real part
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41

N

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1

2

3

4

5

U 4 //

s 4 H
L F
L F
L 64 F
T 6 H
A 8 H
(V F)

H 3tN
V 10 H
H H
{V F)

u 8 H
s 8 H
L F
L F
L 64 F
T 10 H
A 2 F
A 2 e

G i e

A i n
E 45 e

A 2 N
E 8 e

A 5 iV

S 5 N
G ii e

P 2 F
Q F
I F
P D
P F
J F

'Pack" real accumulator

Unpack" imaginary accumulator and per-

form operations

"n_ l »Pack imaginary accumulator

Jump if interpretive F-order

Jump if not interpretive AT-order

Jump

(727 Check-point subroutine.

G K
O 40 L
V F
O 40 K
W F
T 27 K
F 28 e

F e

T z

Letter shift

Carriage return

Modify initial input routine to allow S to

be used to terminate a pseudo-order

specifying a check point
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28F

27F

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

A 19 F
U 14 e

M 8 F
T 21 e

A 22 F
U 13 6

A 2 F
U 15 e

A 2 F
U is e

A 2 F
U 22 F
S 19 F
(T F)

(A n
(T F)

A 14 d

M 26 e

(T F)

A 13 e

M 25 e

{T F)

A 40 F
A 27 e

F 22 F

F F
F 1 F
K 4096 F
A 43 F
F 8 F

(
,

)

( )

( )

( )

Form orders referring to check point

Form T-orders to plant

Required order and increase (7(22) by

P 4 F

Plant output order

Plant order to be replaced

Plant F-order for return

Plant blocking order

Return to initial input routine

7r facility of initial input routine

Becomes output order

Becomes order from n

Becomes F n + 1 F
Becomes symbol to be

printed

The contents of

these 4 storage loca-

tions refer to the

first check point, in

storage location n.

and so on, for further check points.

C31 Trace of function letters, with delayed start

T Z
(A H)

1 T e

2 A ii e

3 T H

06 later stores C(0H), stores C(Acc), and

is used as working space

Plant blocking order in OH
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38

43

21

24

45,49,61

9

10

11

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

8 e

9 e

10 e .

E 25 F

W F
I F
V F
F 37 e

E z
P F
T 3 Z

Q F
W F
I F

F
s F
K 4096 F
P 10 6

4 e

5 e

U e

s 6

A 2 e

A 2 e

A 62 e

U 19 e

S 19 e

(G 2047 //)

U 38 e

E 25 e

A 5 e

A 5 e

E 26 e

A 8 e

U i e

6 i e

E 44 e

A 6 e

E 63 e

A 3 e

E 52 e

A 4 e

G 50 e

U i e

S i e

Carriage return

Line feed

Letter shift

Return to initial input rou-

tine after interlude

Over-written

after interlude

Enter interlude

Carriage return

Line feed

Store C(Acc)

Enter from 38 if C(0H)

causes a jump

Change the select order if a jump occurs

Plant new select order

The select order (initially A (—1)7/)

Change sign digit and print function letter

without exceeding capacity

Jump if function is U,I,0,J,tt,S,Z,K, or

"erase"

Jump if function is Y

Jump if function is P,Q,W, or E

Clear accumulator
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Enter -* 37 A
from 38 (T H)

blocking

order 39 U e

40 s e

41 A 19 e

42 A 2 F
43

-» 44

F 17 e

28 S 7 e

64 -> 45 E 35 e

46 A 3 e

47 A 52 d

48 A 6 e

49 E 35 e

34 -> 50 A 3 e

51 -> 51 G 51 e

32,47 -> 52 R D
53 U 2 e

54 S 2 d

55 s 2 e

56 s 2 e

57 A 9

58 A 38 (9

59 U 38 d

60 L D
61

62

F 35

II
A F

30 -* 63 A 62

64 F 45

SELECTED SUBROUTINES

Later stores current order

181

Restore C(Acc)

(and C(0H)

initially)

Store C(Acc)

Increase address in select order

Jump if function is A,B,C,V,ir,S,Z,K, or

"erase"

Jump if function is G or /

Jump if function is

X,L,A,N,M,H,<t>,D,e,U,I, or

Dynamic stop if function is P,Q,W, or space

Change address to 100 if jump order

Dll Division, with double-length dividend held in the accumulator.

Replaces C(Acc) and C(0D) by C(Acc)/C(4D), where C(Acc) is a double-

length number held in the accumulator.

Repetitive process:

a n+i = —anc n -h an ,

Cn+l = —C n
2

',

Stop when c n = 0.

G
F

K
8

\\I F

(oo = dividend, (cq + 1) = divisor);

Jump into shift cycle

i
2
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12

14

27

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

A 4 D
S i e

u 4 D
s 4 D
A D
L D
U D
S D
A 4 D
A i e

E 2 e

A i e

G 19 e

T 4 D
S D
T D
S 4 D
T 4 D
H 4 D
N D
A D
Y F
T D
N 4 D
Y F
G 19 d

A D
FS 2 F

Double divisor in 4D

Double dividend in 0D and accumulator

Jump unless divisor > ^ or <

Test sign of (shifted divisor — 1)

Change signs of shifted dividend and divisor

Cn+l

Jump until r /(+i

Link order

Repetitive cycle

Z?6 Exponential function, large range.

Forms exp (2P • y), where y (<0) = C(R) and p > 1

2O7T0

227T0

247T0

267T0

287T0

3O7T0

32tt0

347T0

36tt(9

1

69 K
20 ird

2 60054

31 23906

235 85378

1430 07273

7157 73946

28633 01149

85899 33588

171798 69147

171798 69184

Z
18 e

16 S

Call in #9 to read in following coeffi-

cients in power series

Copy b for link order



10

17

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
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Last coefficient in power series

Sum power series two terms at a time

A 20 ird

BS 4 F
T D
V D
AS 34 ird

T D
V D
AS 36 ird

J 3 d

B H
BS 1 S
T D
H D
V D
Y F
J 12 e

(B F)

FS 2 F

Square result p times

Link order

F2 Inverse interpolation, or solution of f(x) = (second-order process).

Places in OH a solution of f(x) = 0, where f(x) is defined by an auxiliary,

closed A subroutine. Working space is allocated as follows.

OH (long) X c

2H X a

4H x bm —fix a) = —fa (say)

$H -f(x b ) or -2~mf(x b )
= —F b (say).

xa and xb are two values of x'such that fa and Fb have opposite signs. x c is a

value obtained by linear inverse interpolation between xa and xb . The auxiliary

subroutine places fc in 0D. If the sign of fc is opposite to that of fa , then Fb is

replaced by fa , fa by fc , Xb by xa ,
and xa by x c . If the sign of fc is the same as that

of fa , then fa is replaced by fc , xa is replaced by x c , and Fb is halved. This last

operation prevents Xb remaining unaltered for many cycles since, if it did, the

process would become a first-order one, or fail to converge altogether. At the

start, xa and x c are the given trial values x\ and X2, and 6H is cleared. This is to

ensure that, initially, fa and fc are treated as of opposite sign. The first two

function values to be calculated are f{x\) and f{x2). The process terminates

either when/c = or when \xa — xb \

< 2 -34 .

47F

1

A
r
A
T

F
Z

3 F
7 e

il/-parameter

Plant link order
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56

Aux

54

10

16

24

38

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

T 6 H
A 3 e

G N
H D
N D
(Z F)

T 4 D
V 6 //

G 17

TAD
A 2 H
T 4 H
A 6 //

T 8 H
e 21 e

TAD
A 8 //

R D
T 8 H
S D
U 6 H
S 8 H
E 29 e

TAD
S D
T D
SAD
A 57 9

TAD
Y F
HAD
N D
A D
T D
NAD
Y F
G 30 e

II D
A II

U 2 II

S A II

T D
A II

V D
V F
T II

Clear 611

Call in auxiliary subroutine

Test whether fc =
Link order

Clear accumulator

Test relative sign of fa and fc

Clear accumulator

xa to xb

fa tO Fb

Clear accumulator

Halve Fb

fc tO fa

Opposite signs

Same sign

Form fc
in OZ) by division process similar

fa -fc
to that used in Dl and Dll

Plant new xa

(Xa - Xb) tO 0Z)

New xc
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49

48

49

50

51

52

53

54

55

56

57

A D
G 52 e

T D
S D
R D
Y F
E 7 d

T D
E 3 d

II
A M

Test for \xa - xb \

< 2~34

Clear accumulator

Repeat

= —1

Fl Interpolation in a table, using Neville's process.

Replaces C(Acc) by /[C(Acc)]. The address of the storage location containing

/(0) is specified by a program parameter.

For a description of the interpolation process, see Milne's Numerical Calculus,

p. 72.

19

16

T Z
A 2044 N

1 TS 487T0

2 BS 2 S
3 A 41 F
4 A 42 d

5 U wd

6 u 41 F
7 A 43 e

8 T D
9 H D

10
,
N 7T0

11 A tt6

12 Y F
13 T 7T<9 l

14 N D
15 Y F
16 G 8

17 A ird

18 TS 48x0

19 J 2 d

20 A 47 F
21 R 2 F
22 A 44 6

23 T 6 8

24 H 47 F
25 V 46 F
26 N 46 d

27 L F
28 , T 47 d

B (2n - 4) F

Division cycle as

used in D7
and Dll

These orders place

r — 1/r in locations

[46 + 2(n - r)]wd, where

r = 1, 2, . . . ,
(n - 1)

R 2 l2 ~m F to 69

(n - 2): to 47(9
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33

29 S 47 F
30 U 46 e

31 A 2 F
32 L D
33 G 32 e

34 R 2 F
35 A 27 e

36 T 33 e

37 S 46 F
38 M 45 e

39 T 14 e

40 II 8 F
41 F 34 F

42 P 1024 F
43 K 5120 F
44 R F
45 B 2 F
46 P 4 F

E Z
P F

-2~m to 46(9

L 2m
~ 2 F to 330

B (1026 — 2n) F to 140

Restore C(R)

Return to initial input routine after interlude

Enter interlude

The above interlude calculates the constants and forms, and plants some of the

orders required. It is followed immediately on the tape by:

—

41

T Z
K 42 e

1 II 46 6

2 U 4 D
3 S 47 6

4 D
5 c D

T 7 Z
7 AS 2 F
8 A 45 e

9 U 15 d

10 T 25 e

11 C D
12 s 4 D
13 T 4 D

T 15 Z
15 (Z F)

16 BS 2 F
17 K 40 e

18 H

Plant link order
—2~m to multiplier register

(60 contains R 2 l2 ~m F)

Pick up program parameter

(140 contains B(l026-2n)F)

Becomes yl-order to pick out function value

from table
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39

19

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

36

37

38

39

40

41

42

43

44

45

46

47

S 40

M 44 e

T 37

A 4 D
S 46

4> 4 D
(Z F)

B 1022 N
BS 2 S
US 2 H
ss H

D
H D
N 4 D
T 34 Z
Y F
U D
H D
(Z F)

AS 2 H
J 27 d

(Z F)

J 16 e

(Z F)

FS 3 F

N 1072x0

A 10227TiV

Set order in 370

Modify the argument

Becomes .1-order

Linear interpolation cycle

(330 contains L 2m
~2 F)

Link order

(n - 2)2 .]
Planted by interlude

6rl2 Solution of one or more simultaneous differential equations by Runge-

Kutta-Gill process

Clear QD, 8D, and 10D to ensure that sand-

wich digits are zero when numbers are

later planted as pairs of orders.

46

T 6ttZ

P F
T 8ttZ

P F
T 12ttZ

P F
K 47

B 8 F
BS 2 S
K 16

B 14

F X

Copy b for link order

Set stage count

Reduce stage count by 2

Copy stage count in 160

Call in auxiliary subroutine so that it will

return control to 160
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6

7

8

9

Enter --> 10

inter- 11

lude 12

13

14

15

16

17

18

Aux

21

44

40

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

(US 42 6)

J 1 F

H 682 D
T 682 D
(A 6 d)

F 14 6

E 407 D
4> 1405 D
T 6 6

T 147T0

S 127T0

T 1O7T0

E 34 F

E 10 Z
P N
T 17 Z

( )

K 45 e

HS 8tt0

S 6tt(9

u bird

G 257T0

S 4O7T0

u 4O7T0

T 287T0

B A
BS 2 S

AS N
(R D)

ss M
u D
V D
R L
U 4 D
AS H
<f>S II

A 4 D
L D
A 4 D
L L
F 42 d

R D
S D
<t>s M
J 26 e

(B F)

After interlude this long location contains

the sura (F 42 6, R D) +
(N 1024 N, Y F)

-2/3

Becomes +l/\/2

-1/2

Becomes

+1A/2 tO 1O7T0

Return to initial input routine

Enter interlude with C(Acc) =

Interlude

P N

Stage count (B-ordev) planted by order in SO

Copy stage count

Set stage multiplier

Binary switch

.V 1024 N, Y F, or

F 42 6, R D to 4Ott0

Y F or R D to 286

Orders planted in

stages 2 and 4

Set 2n

Reduce by 2

Becomes Y F during stages 2 and 3

—
q n

tn

Tn

Vn

Vn

Sr n

Become N 1024 N
Y F

during stages 2 and 3

tn

qn

Cycle

Stage count
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47

48
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Cycle

Link order

189

J 2 e

{B F)

FS 2 F

24

TA Logarithm.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28x0

30x0

32ttI9

34x0

36tt(9

38x0

40x0

42x0

44x0

G K
K 25 d

B F
BS 4 F
L D
E 2 d

A 27 d

T D
K 50 d

H 28tt0

N 50 6

V 1 e

L F
A 3O7T0

T 5O7T0

H D
A 52x0

B 20 S
BS 4 F
T D
V D
AS 48x0

T D
V D
AS 50x0

'

J 17

(B F)

FS 2 F

I F
E 69 K
T 28x0

3721 30559 F
2176 82422 F

20 13466 F
3 43571 94535 F

43 67037 F
3 43518 74548 F

141 53462 F
3 43332 26603 F

530 23671 F

Store b for link order

Clear 5-register

Shift left until x ( = C(Acc)) > 1, counting

in units of 4 in the ^-register

y to 0D, where y = (2px — 3/2), and p =

number of places shifted

Record B 4p F in 500
2~5 log e 2 to multiplier register

(1/32) (log, 3/2+ p-logef)

y to multiplier register

Evaluate power series

Link order

Call in R9 to read following coefficients

2- 5 log e 2

loge 3/2

ao

as

a-

aG

a±

as
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467T0 3 42404 33717 F a2

487T0 3579 13950 F ai

5O7T0 F - Later contains g
1
^ (log c 3/2

527T0 3 43585 24506 tv

T 54 Z
aio

l0ge i)

Af18 Store repetitive pattern of orders

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

G K
u 9 e

s 17 e

u 6 e

s 17 e

M 16 e

T 8 d

(Z F)

L D
(Z F)

(Z F)

A 9 d

S is e

E 25 F
A is e

A 2 F
E e

S F
c F

T t F
E Z
T f F

Form and plant variable order;

Becomes A f — c -\- m F

Becomes S f — 2c -\- m F
Becomes T f + ?n F

Return to initial input routine when last order

copied into t

Increase order in 96

c = length of cycle

Last order copied into t

Enter M18 with T t F in Ace

First order will be copied into /

Punched

by

user

M20 Set parameter value, by means of telephone dial, during input of orders.

This subroutine consists largely of control combinations. It requires no

storage space, but uses 22F, A2F , and 43F, normally occupied by orders of the

initial input routine, as working space.

Tape entry

p Z
z K
M 2037 F
G K
P 10 K
P Z

T 43 K
P 6

Notes

Stop machine; when digit r is dialed set Transfer

Order to T(r — 10)

F

Copy address (r — 10) into 42

Set C(22) = P 10 F
Add (7(22) to 42 if (r — 10) < 0; if (r — 10) =

leave unaltered

Transfer C(42) to 43
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Tape entry

central

section

Z
M
G
P
P
T
P 7T

Z

K
2037 F

K
10 K

Z
43 K
o e

K
M 2037 F

K
10 K

Z
45 K
K

43 K
2 F
Q

Notes

Repeat for second digit dialed

Multiply C(43) by 10, add C(42), and place sum in 43

Repeat for final digit dialed

Multiply C(43) by 10, add C(42), and place sum in 45

Reset C(43) to P D, Transfer Order to T 46 F, and

resume normal action of initial input routine

Notes: 1. If it is desired to dial more, or less, than three digits, the central

section should be repeated an appropriate number of times, or omitted.

2. A preset parameter other than H may be set by suitably altering the

control combination T 45 K.

M30 Sideways addition by Gillies-Miller method.

Counts the l's in C(R) and places the count, as P n F, in OF. The method is

best explained by the example on page 190, which is given in full. The num-
bers in parentheses at the right of the example refer to the following notes:

Notes: 1. Consider C(R) as a series of triads of binary digits (the left-hand triad

being incomplete.)

2. Collate with C(wH) to examine the left-hand digit of each triad.

3. Shift one place to the right; the middle digit of each triad in the

accumulator may then be or 1, while the other digits are all zero.

4. Collate with C(2wH) to examine the middle digit of each triad of

C(R), including the sign digit; add the result to C(Acc).

5. Examine the sign digit; if it is a 1, subtract C(14//) which adds one

to the middle digit of the next triad to the right of the sign digit and makes
C(Acc) positive.

6. Shift one place to the right; the count in each triad will then be <2
in most cases, although it may be 3 in the next triad to the right of the sign digit.

7. Collate with C(iirH) to examine the right-hand digit of each triad

of C(R); add the result to C(Acc).

8. Place C(Acc) in the multiplier register and clear the accumulator.

Consider the digits of C(R) in groups of six, the left-hand group being in-

complete.
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C(R) 10 Oil Oil 111 101 001 100 000 011 111 010 001 (1)

C(tH) 00 100 100 100 100 100 100 100 100 100 100 100 (2)

C(Acc) 00 000 000 100 100 000 100 000 000 100 000 000

C(Acc) 00 000 000 010 010 000 010 000 000 010 000 000 (3)

C(2irH) 10 010 010 010 010 010 010 010 010 010 010 010 (4)

C(Acc) 10 010 010 100 010 000 010 000 010 100 010 000

C(UH) 01 110 000 000 000 000 000 000 000 000 000 000 (5)

C(Acc) 00 100 010 100 010 000 010 000 010 100 010 000

C(Acc) 00 010 001 010 001 000 001 000 001 010 001 000 (6)

C(4tt//) 01 001 001 001 001 001 001 001 001 001 001 001 (7)

C(Acc)

C(R)

00 Oil

00011

010 on

010011

010 001

010001

001 000

001000

010 on

010011

001 001

001001 (8)

C(StH) 01000 111000 111000 111000 111000 111000 (9)

C(Acc)

C(Acc)

C(GtH)

00000

00000

00111

010000

000010

000111

010000

000010

000111

001000

000001

000111

010000

000010

000111

001000

000001

000111

(10)

(11)

C(Acc)

->C(R)

C(lOirH)

00011

(a)

00010

000101

(b)

000010

000011

(c)

000010

000001

(d)

000010

000101

(e)

000010

000010

(0

000010

(12)

(13)

C(Acc) 00 000011

010011 OlOi
1 1

001000 001011 001100

001 001100 001011 001'

010110 011000 100010

000000 000000 000000

010001

000 000011

100110
1 1

00

C(Acc)

00110

00000

010000

000000

(14)

C(12rH) 111110 (15)

C(Acc) 00000 000000 000000 000000 000000 100110
1

19 F
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9. Collate with C(8irH) to examine the first three digits of each group.

10. Shift three places to the right to align with the last three digital

positions in each group.

11. Collate with C(QwH) to examine the last three digits in each group of

C(R); add the result to C(Acc), whose digits were aligned correctly in step 10.

12. Place C(Acc) in the multiplier register and clear the accumulator.

The sum of each group of six digits is now < 6. Call these sums a, b, c, d, e,

and /.

13. Multiply by C(IOttH). The groups of six digits in the accumulator

now represent the quantities

0, 2a, 2(o + b)
> i

2{a + 6 + c + d + e + /) i )
2{a + b), 2a.

None of the quantities in brackets exceeds 36, and the group of digits contain-

ing the desired sum; =22a = 2 (a + b -\- c + d + e + /), is scaled by 2 -38 .

14. Shift four places to the left to give 2 -33 • 2a as the six least significant

digits of the more significant half of the accumulator. Place C(Acc) in the

multiplier register and clear the accumulator.

15. Collate with C(12wH) to give 2~33 -2a in the accumulator. Plant

this sum in OF as the pseudo-order P 19 F.

The program is as follows (the six long, and one short, collating constants are

placed in OH through 14H by an interlude, details of which will be omitted).

Add left-hand digits of triads and shift one place to

right

Acid sign digit and middle digits of triads

Jump if sign digit is

Subtract C(14i/) if sign digit is 1

Shift one place to right

Add right-hand digits of triads

Place C(Acc) in multiplier register

Add first three digits of each group of six

Align groups of digits

Add last three digits of each group

Place C(Acc) in multiplier register

Cross multiply

Required sum in the form n • 2~33
is now represented

by the six digits from 2~28 to 2-33

Add required six digits

Place P n F in OF

G K
C irH

1 R D
2 C 2ttH

3 E 5 e

4 S 14 H
5 R D
6 C 4ttH

7 T D
8 H D
9 C 8wD

10 R 2 F
11 C QttH

12 T D
13 H D
14 V IOttH

15 L 4 F
16 T D
17 H D
18 C 12ttH

19 T D
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il/31 Serial correlation.

Enter

17

T 24ttZ

P - F
T Z
A 4 e

1 U 4 e

2 M 42 F
3 T 50 F
4 (B M)
5 A 267T0

6 BS 2 S

7 US 247T0

8 A 247T0

9 J 6 e

10 T F
11 A 47 F
12 A 22 e

13 T 4 e

14 A 23 e

15 A 49 F
16 T 13 e

17 A 21 e

18 A 49 F
19 T is e

20 F 34 F

21 B L
22 A 1023 N
23 S 1023 N
24 P 1 F
25 P 1 F
26 H H
27 V 1024 N

E Z
P M
T Z
K 28 X

1 B L
2 K 21 e

3 BS 1 s
T 5 Z

5 J 3 e

6 T F
7 B M
8 BS 1 s
9 II 1024 H

10 N F
11 A A
12 T .A

Clear 24tt0

Plant B 2m F

Set X = P(2w + 0)

Becomes 2? 2m F

Plant sequence of 77- and F-orders

in 24tt0, . . .

Clear accumulator

Plant AS(m + n — 1)F in 40

Plant SS(l -}- n — 1)F in 130

Plant B 21 F in 180

Return to initial input routine

Enter interlude with P m F in

accumulator

Plant link order

40 contains AS(m -\- n — l)F

planted by interlude

Add contribution to check sum
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Order

27X

(24 + 2m

T 14 Z
14 A 1023 N
15 A F
16 T F
17 J 8 e

T 19 Z

-> 19 BS 2 S
20 K 24 X
21 (P F)

22 BS 1 S
23 K 21

E 25 K
T 25 X

240 II (m - 1) //

VS (m - 1) N

H 1 //

VS 1 N
H H

- l)^ VS N
24X ( )

25X AS 2 A
26X TS 2 A
27X J 19 e

28X (P F)
29X FS 2 F

Notes

130 contains *SS(Z + n

planted by interlude

!)/<'

Compute check sum
180 contains B 21 F planted by

interlude

Becomes count

Set initial input routine to read re-

maining orders into 25X, . . .
,

29X.

Sequence of II- and F-orders planted

by interlude

Becomes count

Compute products

Link order

P31 Print signed fraction with page layout.

9,11

T 54xZ

I F
T ttZ

C 819 F
T Z — 1/10 tO7T0

L 1229 F
T 2 Z

2 II ttB — 1/10 to multiplier register

3 T F
4 N 547T0

5 Y F Round off cycle

6 T 547T0

Interlude

to calculate

round-off

quantity
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7 A F
8 L D
9 E 3 e

10 L D
11 G 3 e

12 H 8 F

13 ii e

14 E 25 F
E 2 Z
P II

T Z
A 3 F

1 T 48

2 A 59 e

3 G ii e

4 49 e

5 50 e

6 S 2 F
7 E io e

8 50

9 A 60 6

7 -> 10 S 58

3 —> 11 A 60

12 T 59 e

13 N 34

14 L 1 F
15 G 24 (9

16 51

17 E 27 e

18 A F
19 Y F
20 6 F
21 F F
22 J F
23 4> F

15 -> 24 T D
25 52 6

26 S D
17 -» 27 A 547T0

28 T D
29 II 56

30 A 57

,46 -> 31 T 4 F
32 V D
33 U F
34 A F

Examine digit layout constant

Restore multiplier for initial

input routine

Figure shift

Return to initial input routine

Enter interlude with digit lay-

out constant in accumulatoi

Plant link order

Interlude

to calculate

round-off

quantity

Page layout: n columns, and blocks of 5 rows

C{R) to accumulator

Test sign; jump if negative

Print space if positive

Table of

characters

Change sign and print minus

Add round-off quantity

10 • 2 -1G to multiplier register

Set digit layout constant

Convert and print digit
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35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

56

57

58

59

60

A 53 e

U 37 e

(0 F)

L F
L 2 F
T D
A 4 F
L D
E 31

51 9

L D
G 31 9

51

(E F)

W F
I F
c F
M F

17 9

T 56 Z
P 5 F
P H
P N
(P F)

P 5 F

Convert and print digit

Digit layout

Final space

Link order

Carriage return

Line feed

Space

Minus sign

Base order

(Round-off quantity is planted in 547T0)

10-2- 16

Digit layout constant

P 5n F, where n is number of columns

Column counter

Block counter

P40 Print long signed integer with no layout.

Prints 234 -'C(#).

1

2

3

4

5

6

7

8

9

10

G K
40 K

G F
T 6ttZ

9 524 D
T Z
A 3 F
T 32 9

N 6tt(9

G 8 9

42 9

E 11 9

P 610 D
T 8 Z

43 9

T 4 F
V 6tt(9

Figure shift

Plant more significant half of —

2

33/10 10

Plant link order

Multiply number by 233/10 10

Test sign; jump if negative

Print space if positive

_ 233/10 io

Print minus sign if negative

Clear accumulator

Multiply number by —

2

33/10 10
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5 ->

28,31

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Y F
L D
T D~

H 44 e

A 45 e

T 4 F
V D
U F
A F
A 40 e

U 22 e

(0 F)

L F
L 2 F
T D
A 4 F
L D
E 16 e

42 d

L D
G 16 e

(E F)

A F
Y F
e F
F F
j F
4> F
T F

32 e

S F
c F
M F
P 5 F
P 1552 F

Round off, shift and place in 0D

10 • 2
-16

to multiplier register

Set digit layout constant

Convert and punch digit

Digit layout

Link order

Table of characters

Base order

Space

Minus sign

10-2- 16

Digit layout constant

P56 Print C(Acc), as signed fraction, with digit and page layout control by

adjustable parameters within the subroutine.

The adjustable parameters are all J5-orders within the subroutine,

marked on the subroutine tape and are indicated below by asterisks.

Entry

points

They are

G K
O 31 d Space

1 O 31 e Space

2 K 52 e Copy b for link order
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26

3

4

5

6

7

8

* 9

7 -> 10

11

* 12

13

4 -» 14

15

16

17

63 ^ 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

30

34

(B F)

J 14 e

64 e

(B F)

J io e

65 e

B 5 F
BS 1 s
K 6 d

B 5 F
65

BS 1 s
K 3 e

G 60 e

31 e

B 10 F
K 47 e

H 57 e

T D
M 65 e

U 4 D
V 4 D
BS 1 £
J 23 e

B 5 F
A D
H 32

F 34 d

C F
P 5 F
(B F)

J si e

31 d

B 5 F
BS 1 S
K 33

T D
V D
U F
A F
A 66 6

U 50

L F
L 2 F
(B F)

BS 1 £
K 47

Column count

Carriage return

Line count

Line feed

Decrease line count

Line feed

Decrease column count

Jump if number is negative

Space

Page layout

9/10

Set to print five (or i) initial digits

Space

10- 2- 16

Count digits between spaces

Print space

every 5

Decrease count of digits be- ,.

digits
tween spaces

Plant fraction in 0D
Select digit, p, to be printed

Double, without shifting, so that 2~ 16 digit

is zero

Add base order of table of characters

Plant 0(p + 53)0 in 500

Multiply by 2 16

Digit count

Test for last digit
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16

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

(0 F)

J 33 e

(B Fy

E 1026 D
A F
Y F
e F
F 1229 F
J F

<t>
F

T D
22 e

s D
F is e

W F
I F

53 e

40 K
G F
T 67 Z

Print digit

Link order

Minus sign

Test for last digit

Change sign

and print

minus sign

Table of

characters

0to9

Carriage return

Line feed

Base order

Punch figure shift symbol during input of

orders

Reset Transfer Order

Q3 Quadrature using Gauss' six-point formula.

Computes
Ca+h

/ /(*
J a—h

)dx by the approximation

3

2hY,d i[f{a + b ih) +f(a - b {h)],

where c/ t
and b; are constants. This is equivalent to fitting a curve of the eleventh

degree.

a = C(0H), h = C(2H).

24

22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

T Z
A 3 F
T 30 e

T 4 H
S 31 e

A 32 e

U 16 e

A 33 e

T 10 e

A H
II 2 II

(V F)

Y F
T D
A 13

G N

Plant link order

Clear 4//

Plant orders

a ± bi • h

x to 0D

Call in auxiliary subroutine to calculate /(.r)
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Aux 15 # D f(x) to multiplier register

16 (P F) <W(s)
17 Y F
18 A 4 H 3

19 T 4 H E di[f(a + 6,-A) + /(a - bji)] to 4//

20 A 10 i=i

21 A 34 Test if F or N in 100

22 G 7

23 S 35

24 G 4

25 H 4 #
26 V 2 #
27 L D
28 Y F
29 T D
30 (E F) Link order

31 P 6 F
32 V 42x0

33 M 6 F
34 F
35 I 46x0

E
T

69 K
36x0

Call in #9 to read in following coeffie]

36x0 L4716 66184 F di

38tt(9 30989 18315 F d2

40x0 i10193 50093 F ds

42x0 1 (30197 04270 F 6i

44x0 1 13594 90762 F 62

46x0 t10994 46400 x &3

T 48 Z

7^2 Input of positive integers during input of orders.

9 ->

1

2

T 20 F
V D
L 8 F

14 -
3

» 4*

5

.1 40 Z)

(T D)

6

7

8

9

I 40 F
A 40 F
5 39 F
G

Multiply partial sum by ten (multiplier

register contains 10/32, set by initial

input routine)

Add new digit

New partial sum to 0D and

to final destination of

number

Read next symbol

Subtract 11 •
2~ 16

Jump if symbol is not F or x

Number
cycle

Digit

cycle

When obeyed for the first time in each number cycle this order clears 0D.



202 PROGRAMS OF SELECTED SUBROUTINES PART 3

Enter

10

11

12

13

14

s 2 F
G 23 F

A 5 e

T 5 e

E 4 e

E 13 Z

T m D

Subtract2-2- 16

Return to initial input rou-

tine if symbol is w
Increase address of order in

50 by 2

Number
cycle

Punched by user

Enter subroutine with

T m D in accumulator

(* - 1) ->

20

31

7?29 Input of one positive integer,

in output code.

(6 - 1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

13

30

24

G 1025 A'

F 2 d

W 1024 F
\P 4 F
A 3 F
T 27 e

L 6 F
T 1024 D
I ii e

A 11 d

L 1 D
A 16 e

T n e

(Z F)

c 6

F 24tt(9

C 23 6

R 1280 F
11 6

R F
V 1024 D
L 16 F
F 5 6

F 7 F
P 2 F
P 15 F
E 29*6

P 8 F
P 5 F
(E F)

\\P 9 F
S 1024 D
G 27w6

E 6tt6

of any length up to ten decimal digits, punched

zero whenever this subroutine is called in.

Place (7(22) - 1 in 42F

(4)

(3)

Plant link order

(6) No effect

(1)

Read symbol

Form and plant //-order

Becomes //-order

Test for digit

(+) Jump if not digit

(Space) Digit to accumulator

(Erase)

(Blank)

(Carriage return)

(0)

(7)

(2)

(Line feed)

(8)

(5)

Link

(9)

Multiply previous

digit by 10 and

add new digit
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R30 Extension of the initial input routine to read code letter S.

2SF(S)

1

27F

00

1

2

3

4

5

6

7

8

9

27F

28F

G ttK

S F
F 6 e

A 2 F
R 64 F
A 40 D
F 37 F

M 41 F
F 21 F

A 43 F
F 8 F

T 27 K
F 7tt0

E e

Complement address 1 Test whether initial

Becomes F 6 ird
J

or final S

Add 2
-5

•
2~ 18 to function digits of order,

which are stored in less significant half

of 40 £>

Remove surplus digits of complement

These orders add 2 -16 to an order contain-

ing code letter ir

Becomes F 8 6

Becomes E wO

Modify orders of initial

input routine

R37 Input of one signed decimal fraction.

15

3

17

G K
T 28ttZ

\\c 819 F
T SOttZ

\\e 524 D
T S2tZ

II

A

1125 F
T Z
T D

1 S' 32x0

2 T 4 D
3 F 11 e

4 H 4 D
5 N 287T0

6 Y F
7 T 4 D
8 V 6 F
9 L F

10 A D
11 T D
12 I 6 F
13 A 6 F
14 S 27 e

15 G 4tt0

16 S 27 e

17 G \2tt6

18 S 2 F
19 H D

Plant pseudo-orders, with sandwich digit zero, in

28tt0, 3Ott0 and 32tt(9 (i.e., in 296, 316 and 330)

Clear accumulator

8 • 109 •
2~34 to 4D

Replace C(4D) by ^ C(4D)

Multiply digit by 10 10
• 2

-34 and accumulate frac-

tion in 0D

Read symbol and jump if decimal digit

Jump if symbol should be ignored
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26

20

20 G 257T0

21 V 30tt(9

22 L D
23 Y F
24 FS 2 F

25 N 3O7T0

26 F 22 d

27 P 5 F
28 L 1229 F

T 30 Z
P 610 7)

T 32 Z
G F
T 34 Z

Jump if symbol is -f- or

Multiply fraction (negative) by -233 • 10- 10

Link order

Multiply fraction (positive) by 233 • 10

] -tV

] -233
- 10- 10

] -8 • 109 •
2~34

10

£3 Cube root.

Forms cube root of C(6D) and places result in 0D.

digit, using a shifting (negative) strobe.

Plant link order

Set first trial (i.e., zero)

Set test digit

The root is formed digit by

23

11

G K
A 3 F

1 T 20 e

2 T D
3 S 24 e

4 T 4 D
5 H D
6 V D
7 Y F
8 T 8 D
9 V 8 D

10 S 6 D
11 E 21 e

12 T 8 D
13 S 4 D
14 A D
15 T D
16 A 4 D
17 R D
18 Y F
19 G 4 e

20 (E F)

21 T 8 D
22 A 4 D
23 G 14 e

24 11/ F

Form (trial)
3 — C(6D)

Increase trial

Shift test digit

Link order

Decrease trial
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$11 Reciprocal square root of double-length number held in the accumulator.

Forms C(0D)/\/C(\qc), where C(Acc) is a double-length number held in the

accumulator.

Repetitive process:

-n+ 1

1

-> 2

3

4

-> 5

6

7

8

-> 9

10

11

12

-> 13

14

-> 15

16

17

-> 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

\^Cn'ft\4 -I)

G K
K 33

B F
G 2 d

S 35 6

E 9 e

L 1 F
A 36 e

BS 1 F
G 5

S 36 (9

T 4 D
A D
F 15

L D
BS 1 $
J 13 (9

D
A 4 D
U 4 D
H 4 D
R 1 F
S 36 6

T 4 Z)

N D
R D
A D
Y F
4> D
V 4 D
T 4 D
V 4 D
Y F
G 18 (9

(Z f)

ES 2 D
R F
S F

a

Co

C(OZ)),

C(4Z)) 1,

C(0D)/VC(Acc),

0.

Plant link order

Clear B-register

Dynamic stop if C(Acc) <

Jump if C(Acc) >

Shift left until >

Plant co

Shift (7(0 D) into position; stop if overflow occurs.

cn to multiplier register

(ken - f) to 4D

a„+i to 4Z)

Form c n +

1

Jump until cn+i

Link order

Repetitive process
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77 Sine.

1/2 sin [2C(4D)] to 4D

267T0

287T0

3Ott0

32tt0

34tt0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

G K
E 69 K
T 267T0

11 453 246

2 290 648

218 152

12 105

419

T Z
A 3 F
T 25 e

H 4 D
V 4 D
Y F
T D
H D
N 347T0

A 327T0

T D
N D
A 3O7T0

T D
N D
A 28tt0

T D
N D
A 26tt0

T D
N D
T D
H D
V 4 D
A 4 D
T 4 D
(E F)

T 36 Z

Call in R9 to read coefficients

086

539

390

378

996

Coefficients of power series

Plant link order

Form [C(4Z))] 2

Summation of power series

Link order
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Til Cosine.

Replaces C(Acc) by \ cos tt[C(Acc)]

21

Subroutine

R2

T 3O7T0

3Ott0 11,453,246,123 F
32tt0 2,290,649,225 F
34tt0 218,157,069 F
36tt0 12,119,837 F
38tt(9 440,721 F
4Ott0 11,144 F
42tt0 13,493,037,705 w

T Z
K 27 d

1 E 4

2 T D
3 S D

-> 4 S 29

5 T D
6 H D
7 N 427T0

8 L D
9 T 4 D
10 H 4 D
11 V 4 D
12 Y F
13 T D
14 H D
15 N 4O7T0

16 B 10 F
-> 17 BS 2 S

18 AS SOird

19 T D
20 N D
21 J 17 e

22 T D
23 H D
24 V 4 D
25 Y F
26 A 4 D
27 (B F)

28 FS 2 F

29 11/ F
7T 44 Z

Included on Til tape

«3

a-j Coefficients in power series

ag

an
ai3

Plant link order

Take modulus of argument

[|C(Acc)| — J] to multiplier register

Multiply by tt/4

x, = | [| C(Acc) |

-
i], to 4D

a;
2 to 0D

Cycle for power series; forms —a%x2 +
a5Z4 —- • • • + ai3£ 12

X — Cl3X
S + QoX'

- Link order

aizx 13



208 PROGRAMS OF SELECTED SUBROUTINES IPART 3

Z5 Post-mortem of orders

PZ Z K M20S7F GKP 10 K PZ T 43 K P 6

Z K M20S7F G K P 10 A P Z T 43 K P ir 6

Z K M20S7F G K P 10 K PZ T UK P ir 6

Space

PZP 800 F ZK M20S7F GK P10K PZT 4SK P 6

ZK M2037F GK P10K PZT 43Z P t 6

T 45K P tt 6

I 43 K P F Q E25 K T
<f>

"Dialing" subrou-

tines, based on M20,

to allow destination

of Z5 to be dialed

into O0(44F) (unless

Z5 is to start in

800F—see specifica-

tion), and start of

post-mortem to be

dialed into OH.

Order Notes

51

53

Start

11

52

23

G K
O 18 e Print space

1 (H H) Select order to be printed

2 A 1 6

3 A 2 F Increase address of order in 1 6

4 T 1 6

5 (H 39 0) Becomes count

6 J 14 6 /^-register contains zero at Start

7 64 e Carriage return

8 9 6 Line feed

9 I F Read character ("erase" first time)

10

11

s
G

F
8tt0

Test character read; jump if erase

12 (B 1015 F)

13 B 1034 F
14 B 2047 F b = first time

15 K 12 e

16 K 5 e

17 31 e Letter shift

18 c 65 d C{R) to accumulator

19 A 66 e Add — 1 (to convert function digits to output

code)

20 U F
21 F Print function letter

22 L 8 F Shift 5 places left

23 E 26 e Jump if 5-digit was

24 A 66 e Add —1 to remove sign digit by deliberate

overflow

25 2 6 Print S
26 H 60 e 32/100 to multiplier register

27 B 2 F B 2 F to 4F
28 K 4 F
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48

36

29 T D
30 ii e

31 V D
32 R 512 F
33 U F
34 A F
35 S 2 F
36 G 1063 e

37 A 61 e

38 U 39 e

39 (A H)
40 B 1022 F
41 L F
42 L 2 F
43 T D
44 A 4 F
45 S 31 d

46 H 67

47 U 4 F
48 G 317T0

49 A F
50 A 49

51 G ird

52 22 d

53 E lwd

54 A F
55 Y F
56 e F
57 F F
58 j F
59 F
60 T 246 F
61 54

62 s F
63 u F
64 w F
65 V 2047 D
66 K 4096 F
67 T F

E 5 Z
P F

Address 2
- 10 to 0D

Figure shift

Select most significant decimal digit of address

Jump to suppress initial zeros

Convert digit of- address

Becomes 0-order to print digit

Clear J5-register to end zero suppression

Shift next digit of address into position

Count

digits of

10-2 16
• 2 11 to multiplier register address

(not more

Cycle than three)

+
i
4

Jump if special indication digit not present

Print*

Cycle to select next order 0"

1

2

3

4

5

6

Table of

characters

32/100 7

Base order 8

9

10

This number has a 1 in every digital position

— 1

Enter Z5 at order 5

* At this point the special indication digit is in the 2~2 position in the

accumulator.
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APPENDIX 1

INPUT AND OUTPUT CODES OF THE EDSAC

INPUT OUTPUT

'On input Decimal Labels on ' 'On output Symbols printed'

tape equivalent keyboard tape and by teleprinter

(in EDSAC) Fig. Letter in EDSAC (Fig. (Letter

Shift) Shift)

10 • 000 P 00 • 000 No effect

10 • 001 1 1 Q 00 • 001 / F
10-010 2 2 w 00-010 Carriage return

10-011 3 3 E 00-011 D

10 • 100 4 4 R 00 • 100 .

10- 101 5 5 T 00- 101 7 II

10- 110 6 6 Y 00- 110 2 N
10- 111 7 7 U 00- 111 10 M

11 -000 8 8 I 01 • 000 Line feed

11-001 9 9 O 01 • 001 8 L
11 -010 10 J 01 • 010 5 X
11 -Oil 11 IT 01 -011 / G

11-100 12 s 01 • 100 9 A
11 • 101 13 z 01 • 101 ? B
11 • 110 14 K 01 • 110 C
11 • 111 15 E •ase 01 • 111 = V

00 • 000 -16 16 (Blank tape) 10 • 000 ( P
00 • 001 — 15 17 F 10 • 001 4 Q
00 • 010 -14 18 e 10-010 3 W
00-011 -13 19 D 10-011 ) E

00 • 100 — 12 20 <t>
10 • 100 6 R

00 • 101 — 11 21 + II 10- 101
1

T
00- 110 -10 22 — N 10- 110

>
Y

00- 111 -9 23 M 10- 111 — U

01 • 000 -8 24 A 11 -000 1 I

01 • 001 -7 25 L 11 -001 *

01 -010 -6 26 X 11 -010 V J
01 -011 -5 27 G 11 -011 Figure shift

(continued)
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INPUT OUTPUT

'On input Decimal Labels on ' 'On output Symbols printed'

tape equivalent keyboard tape and by teleprinter

(in EDSAC) Fig. Letter in EDSAC (Fig. (Letter

Shift) Shift)

01 • 100 -4 28 A 11 • 100 S
01 • 101 -3 29 B 11 • 101 + z
01 • 110 -2 30 C 11 • 110 Space K
01 • 111 -1 31 V 11 • 111 Letter shift

In the first and fifth columns above, the full stop represents the sprocket

hole, which is always punched. The first column gives the codes corre-

sponding to the keys labelled with the function letters in the fourth

column. Some of these keys are also labelled with decimal digits or a plus

or minus sign, as shown in the third column, so that, for example, letter T
is synonymous with figure 5. The remaining keys are also labelled with

punctuation or mathematical symbols, as well as with letters, but these

are not shown in the third column since they are irrelevant as far as the

EDSAC is concerned. In the second column the decimal equivalent of

each Input character is given, a scale factor of a suitable power of 2 being

assumed. In the lower part of this column two alternative decimal equiva-

lents are shown. The negative equivalent applies when the character

occurs as the five most significant digits in an order. The extreme left-

hand digit is then a 1 and, for numerical purposes, acts as a sign digit,

thus indicating a negative number.
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APPENDIX 2

ORDER CODE AND CONTROLS OF THE EDSAC

Orders which are shown below with address n can refer to either short-

or long-storage locations, that is, they can be terminated by either F or D.

n must lie in the range < n < 1023 and, if the order refers to a long-

storage location, n must be even. Orders shown with address m do not refer

to long-storage locations and use the "special indication" digit for other

purposes. They must therefore be terminated in such a way that the special

indication digit is zero unless otherwise specified below.

(1) Arithmetical and logical orders.

Add the content of location n into the accumulator.

Subtract the content of location n from the accumulator.

Transfer to location n the more significant part of the con-

tent of the accumulator, clear the accumulator and then,

if the capacity of the accumulator has been exceeded

since the accumulator was last cleared, stop the machine,

light the "accumulator overflow" lamp and give audible

warning.

U n Copy the more significant part of the content of the accu-

mulator into location n, but retain the whole content of

the accumulator.

T n Transfer the more significant part of the content of the

accumulator to location n and clear the accumulator.

// n Replace the content of the multiplier register by that of

location n.

V n Multiply the content of location n by that of the multiplier

register, and add the product into the accumulator.

N n Multiply the content of location n by that of the multiplier

register, and subtract the product from the accumulator.

Y m Round off the number in the accumulator to 34 binary

digits; that is, add 2
-35

to the accumulator. (The address

in this order is usually zero but it may be mF where

< m < 1023. It must not be mD. (Cf. order Y m D.)

C n Collate the content of location n with that of the multiplier

register; that is, add a 1 into the accumulator in those

(and only those) digital positions in which both C(n)

and C(R) have a 1.

M n Clear the six most significant digits of the accumulator and

then add the content of location n into the accumulator.

214
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(2) Shift orders.

R D

R i •2P F

R F

L D

L i •2P F

L F

(3) Jump orders,

In the following orders the address digits (including the special indication

digit) are used to specify the amount of shift.

Shift the content of the accumulator one place to the

right; that is, divide it by 2.

Shift C(Acc) p places to the right (2 < p < 11);

that is, divide it by 2P .

Shift C(Ace) 15 places to the right; that is, divide it

by2 15
.

Shift C(Acc) one place to the left; that is, multiply

it by 2.

Shift C(Acc) p places to the left (2 < p < 11); that

is, multiply it by 2P .

Shift C(Acc) 13 places to the left; that is, multiply

it by 2
13

.

In these orders the address m always refers to a short-storage location.

If the special indication digit is present it modifies the function of the order,

as is shown in each individual case.

F m F Take C(m) as the next order to be obeyed.

F m D If C(Acc) is not zero, take C(m) as the next order; other-

wise proceed serially.

E m F If C(Ace) is positive or zero, take C(m) as the next order;

otherwise proceed serially.

E m D If C(Acc) is positive or zero,' clear the accumulator, and

take C(m) as the next order; otherwise proceed serially.

G m F If C(Acc) is negative, take C(m) as the next order; other-

wise proceed serially.

G m D If C(Acc) is negative, clear the accumulator, and take

C(m) as the next order; otherwise proceed serially.

Y m D If the capacity of the accumulator has been exceeded

since the last Y m D order was encountered, clear the

accumulator and take C(m) as the next order; otherwise

proceed serially. (Cf. order Y m.)

J m F See below.

(4) Orders which concern the B-register.

B n Replace the content of the 5-register by the number n

(N.B.: not by the content of location n).
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J m F If the content of the ^-register is not zero, take C(m) as

the next order; otherwise proceed serially.

K in F Place the order B b F (where b is the content of the

^-register) in storage location m. (Note that this does

not clear the 5-register; the register can be cleared,

when necessary, by the order B F).

(5) Input and output orders.

I n F Place x • 2
-16

in storage location n, where x is the integer

represented in input code by the row of holes on the

input tape, and advance the tape by one row of holes.

m F Punch on the output tape a row of holes corresponding to

the five most significant digits (including the sign

digit) in storage location m; a hole corresponds to a 1

and a blank to a 0.

(6) Orders which stop the machine.

Z m F Stop the machine and light the "program stop" light on

the control panel.

Z m D (a) If the Z D switch on the control panel is on, this

order operates exactly like Z m F above.

(b) If the Z D switch is off, this order has no effect, and

the machine passes straight on to obey the next order.

Notes: 1. Z m D acts as a conditional stop order and is often of use in

diagnosing mistakes in programs.

2. The address, m, in a Z-order is usually zero.

3. If the machine has stopped on a Z-order in location p, say, it

may be restarted at the order in p + 1 by pressing the Reset button or

operating the telephone dial.

(7) Manual controls.

The manual controls used in normal operation of the EDSAC are as

follows

:

(a) The Clear Store button: this clears every storage location, and is

always pressed before starting a program.

(b) The Start button : this places the orders of the initial input routine

in storage locations through 40, and then begins to obey them, starting

at the order in 0.

(c) The Manual Stop button: this stops the machine, which may later

be started again by pressing the Reset button.
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(d) The Reset button : this causes the machine to resume working from

the point it had reached in the program when it was stopped by a Z-order,

by a </>-order if the capacity of the accumulator was exceeded, or by the

.operator pressing the Stop button.

(e) The telephone dial: this is used for the occasional insertion of small

amounts of numerical data. If any decimal digit n is dialed (1 < n < 10

—

note that the dial position labelled is equivalent to ten, and not to zero)

the number n • 2
-15

will be added into the accumulator as the dial returns

to rest. As soon as the rest position. is reached the machine will be reset,

just as if the Reset button were pressed. The dial is frequently used in

conjunction with the control combination Z K—see Appendix 4, and

subroutine M20 in Part 2 and Part 3.

(f) The Z D switch: this causes the machine to stop when an order

Z m D is encountered. If the switch is off, the order is ignored (see

Appendix 6).

Other manual controls exist (notably one which causes the machine,

when stopped, to obey one order of the program, each time the button is

pressed) but are rarely used except for investigating malfunctions of the

machine.
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THE INITIAL INPUT ROUTINE OF THE EDSAC

Location

20

21

Order

(F F)

1 (E 20 F)

2 P 1 F
3 U 2 F

11I -* 4 A 39 F
5 # 4 F
6 V F

28" 7 L 8 F
38_ -» 8 T F

9 I 1 F
10 A 1 F
11 5 39 F
12 G 4 F

13 L F>

14 /S 39 F
15 E 17 F
1G 5 7 F

U5 -* 17 A 35 F
18 F 20 F
19 A F

(H 8 F)

A 40 F

Notes

These orders cause control to be transferred

to 20. They are not used after the start,

but their locations are used as working

space.

These are constants which are intended to be

left here unaltered in any program.

Input of address. This group of orders is en-

tered at 8 with the accumulator empty, so

that is cleared. The next digit on the

tape is read and tested to see if it is less

than eleven; if so it is doubled and added

to ten times the content of 0, the sum being

sent back to 0. The next digit is read,

tested, etc., and this is continued until the

whole address has been formed; the next

digit read, x, is greater than ten and so cor-

responds to a code letter.

These test to see if x is greater than sixteen.

If it is, the order ^4(24 + x)F is formed

and planted in 20. If x is sixteen or less a

jump order F(16 -f- x)F is formed and

planted in 20.

This adds the address, which is always posi-

tive, into the accumulator.

This order places 10/32 in the multiplier reg-

ister during the start and is later replaced

by a manufactured one which either adds

to the accumulator the number determined

by x, or transfers control to an address

determined by x.

This adds in the function digits of the order,

so the accumulator now contains the order

from the tape plus the number selected

by x.

218
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Location Order

22 (T 43 F)

23 A 22 F
24 A 2 F

31 -> 25 T 22 F
26 E 34 F

20 -> 27 A 43 F
28 E 8 F

20 -> 29 A 42 F

20 -+30 A 40 F

31 E 25 F
20 -> 32 A 22 F

33 T 42 F

26 -> 34 I 40 D
35 A 40 D
36 R 16 F '

37 T 40 D
38 E 8 F
39 P 5 Z>

40 (P D)

Notes

This (the Transfer Order) transfers the as-

sembled order to its final place in the store.

These orders increase the address specified in

the Transfer Order by unity.

Transfers control to 34.

Control is transferred to these orders by the

order in 20 when ir has been read from the

tape. They add 2
_1

6

to the address (which

is in the accumulator) and transfer control

to 8. The address now refers to a long

storage location.

This adds the address in 42 to the accumu-

lator.

This adds the function digits of the order to

the accumulator. The result is that the

number in the accumulator is positive if

the order has function digits represented

by T or E, while it is negative in the case

of G.

If the content of the accumulator is positive,

the order in the accumulator replaces the

order in 22; if negative, the accumulator

contains the address specified in order 22

which is then put in 42 (the storage loca-

tion corresponding to 6).

These read the function digits, shift them to

their correct place, and transfer them to

40. The order in 35 is also used as a

constant.

A constant used in the input of the address.

It equals 11 •
2~ 16

.

A constant used during the start. It equals

2-i6

When the Start button is pressed, the initial input routine is placed in

storage locations 0-40, and control transferred to 0. The first orders to be

executed are the following:
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ion Order

T F
1 E 20 F

20 H S F
21 A 40 F
22 T 43 F

23 A 22 F
24 A 2 F
25 T 22 F

Notes

Clear accumulator

Transfer control to 20

Place 10/32 in multiplier register

Add 2~ 16
to accumulator

Transfer 2
-16

to 43 (the storage location cor-

responding to 7r)

Increase order 22 to T 44 F

The initial input routine is now ready to take in orders ; the first part of the

input tape is blank so that the first code letter is a space which corresponds

to 16; control is therefore switched from 20 to 32, and the content of 22 is

transferred to 42. This action will continue, the spaces being treated

alternately as function digits and code letters. The first symbols en-

countered will be P and Z. There are two possibilities, either

(1) the last space was treated as a function digit, in which case the word

read is "space" Z, which causes address (n — 1) to be placed in 42, where

n is the address in the Transfer Order; or

(2) the last space was treated as a code letter, in which case the word

read is PZ, which causes the address in 42 to be placed in the Transfer

Order.

In either case, the Transfer Order is unaltered and will place the first

order read from the tape in 44, unless a control combination to reset the

Transfer Order occurs first, as will usually be the case.
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CONTROL COMBINATIONS

E m K P F

E Z P F

E m Z P F

E m K
E Z
E m Z

Followed by

any positive*

order

E 25 K Followed by

any positive*

order

G K

G m K

T m K

T Z

T m Z

T m wK
T m wZ

Transfers control to the order in storage location

m, leaving the accumulator clear.

Transfers control to the first order of the last

subroutine to be read (i.e., to the order in

storage location 00), leaving the accumulator

clear.

Transfers control to the mth order of the last

subroutine to be read (i.e., to the order in m6),

leaving the accumulator clear.

These three control combinations transfer control

to the order in storage location mF, 06, or m6,

respectively, with the positive order following

the control combination left in the accumulator.

Transfers control to order 25 of the initial input

routine. This then causes the Transfer Order

(in 22F) to be replaced by the positive order

following the control combination.

Places a reference address, equal to the current

address in the Transfer Order, in storage loca-

tion 42 (corresponding to code letter 6) .

Places a reference address, equal to m plus the

current address in the Transfer Order, in

storage location 42.

Causes the next order (or pseudo-order) read

from the tape to be placed in storage location m.

This causes the address (p, say) held in storage

location 42 to replace that in the Transfer

Order, so that the next order read from the

tape will be placed in p.

This causes the address in the Transfer Order to

be replaced by (m + p) , where p is the address

held in 42.

These cause the Transfer Order to be replaced by

T m D or T m + p D, respectively. The
next order (or pseudo-order) read from the tape

will therefore be placed in the more significant

half (the odd-numbered half) of the long-

221
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storage location m or m + p, the least sig-

nificant half, including the sandwich digit,

being cleared. If the next item to be read is

P F, the whole long-storage location will be

cleared.

Z K P F This causes the Transfer Order to be replaced

by Z F, and leaves the accumulator clear. The
machine then stops when it obeys the Transfer

Order. The machine will resume reading the

tape when the Reset button is pressed, but the

next item read from the tape must be a control

combination to replace the Transfer Order,

otherwise the machine will stop again when the

Z F is encountered.

Z w K P F This behaves exactly as Z K P F provided that

the Z D switch is on. If the switch is off, the

control combination has no effect provided

that the next item read from the tape is a con-

trol combination to reset the Transfer Order.

40 K 2 F This causes the symbol corresponding, in output

code, to the binary equivalent of the character

2 to be punched on the output tape. This takes

place during the input of the program and does

not use up any storage space. The next item

to be read must be a control combination to

reset the Transfer Order.

P Z This resets the Transfer Order after a section of

blank tape has been read. In older literature on

the EDSAC, including the first edition of this

book, the control combination P K was some-

times used, but P Z is more general and is now
preferred.

* By "any positive order" is meant any order or pseudo-order whose numerical

representation in the machine is positive. In general, this means that the function

letter on the tape must be positive, but there may be exceptions. For example,

if the //-parameter is P(n -f- 1)F, a pseudo-order punched as V 2047 H will

appear in the machine as P n F.
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SPECIMEN SOLUTIONS TO PROGRAMMING EXERCISES

There are many possible solutions to each example, and the solutions

given here are not necessarily those which take the smallest number of

orders or the shortest amount of machine time. They are chosen for their

straightforwardness and to illustrate typical programming techniques.

It is assumed that the first order of each program is in location 400, and

that the constants are stored in locations 500 onward. The column headed

"operand" gives the quantity referred to by the order.

Exercises A (page 9)

Location Order Operand

1. 400 A 20 x

1 A 22 y

2 T 30 x + y
3 A 20 x

4 A 20

5 S 22 y

6 T 32 2x — y

2. 400 H x

1 V x

2 TO x 2

3. 400 H x

1 V x

2
,

T x 2

3 V x 2

4 TO x3

4. 400 H 4

1 V 10 1/tt
2

2 2
1 4

5. 400 H 6 y

1 F 6

2 tf 8 y
2

3 H ± x

4 7 4

5 L7 a;
2 + y

2
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Location Order Operand

6 S 8 y
2

7 s 8

8 T 8 x 2 — y
2

9 V 6 y

10 V 6

1 T 10 2xy

400 H 10 X

1 V 10

2 T x 2

3 V
4 U x 3

5 V
6 T x4 + x 3

400 H 10 a

1 V 11 b

2 H 12 c

3 V 13 d

4 H 14 e

5 V 15 f
6 T 16 ab -f- cd + ef

400 H 60 X

1 V 100 a

2 A 102 b

3 T 4 ax -f b

4 V 4

5 A 104 c

6 T 4 ax 2
-f- bx -\- c

nsions a, b and <

400 H 50 a

1 V 51 b

2 u 101 ab

3 V 52 c

4 H 52 c

5 V 51 b

6 U 100 ab + ac + be

7 A 100

8 T 100 2(ab + ac + <

9 V 101 ab

410 T 101 abc

be)
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Exercises B (page 11)

Location Order

1

401

400

1

2

3

404

A 4

G 404

T
S
T

Notes

Jump to 404 if (7(4) <

Change sign

Transfer |(7(4)| to

2.

402

400

1

2

3

4

405

£
r

# 405

T

Form (7(4) - (7(6)

Test sign

Change sign if negative

401

405

400

1

2

3

404

5

6

7

408

A 4

E 404

T
7

4

S 4

£
(7 408tt

A
r o

Form |C(4)|

Test if |(7(4)| > C(0)

402

406

400

1 V
4

6
Form C(4) • C(6)

2 E 409 Test sign

3 T Clear accumulat(

4 A
'

4

5 # 6

6 E 409 Form |(7(4) - C
7 r
8 ^

-> 409 7
1

8. 400

1

2

500

.4 500

£ 50

T 50

Z This pseudo-order represents the

constant 13/16 = 5/8 + 3/16
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Exercises C (page 18)

Location Order

1.

403

400

401

2

3

B 100

BS 1 S
TS 100

J 401

Notes

Set b = 100

This order clears locations 199, 198,

. . . , 100 in turn

2.

409

404

400

1

402

3

4

5

6

407

8

9

T
B
BS

4

100

1

AS 100

E 407

SS 100

ss 100

A 4

T 4

J 402

s

Clear 4

Form |C(100 + 6)1

Accumulate sum of moduli

404

400

401

2

3

4

5

B
BS

J
T

100

1

HS 100

VS 100

401

4

Accumulate sum of squares

6. Assume (7(500) = 1/10.

40G

405

413

407

400

401

2

3

4

5

6

7

408

9

410

1

2

3

414

B 50

BS 1 S
T
SS 200

A 500

G 408tt

J 401

F 414

S

H 500

5 50

BS 1

F£ 200

7\S 200

J 410

Next order

Clear accumulator

1/10

Test if C(200 + b) < 1/10

1/10

Multiply numbers by 1/10
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8. ( i) Taking shortest possible machine time

:

400 H 10 X

1 V 10

2 T X 2

3 H x
2

4 V
5 T X*

- 6 H 4X

7 V 10 -

8 T X 5

9 V
10 T X9

1 V
2 T X 13

227

Several other equally short solutions are possible.

(ii) Using the fewest possible orders:

400 H 10 X

1 B 12

401 -> 402 BS 1 S
3 V 10

4

5

U
T

10
Store xn

in and 10

6 J 402

Exercises D (page 24)

Location Order Notes

1. 400 A 500 T
1 A 4

2 T 403

403 (Z 0) Becomes T n

500
||
T

2. 400 A 500 B
1 A 4

2 T 403

403 (Z 0) Becomes B n
4 SS 300

5 G 407tt Replace C(300 + n) by |C(300 + n
6 TS 300

405 -» 407 Next order

500 \\B
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3.

410

APPENDIX

Ion Order Notes

400 A 500

1 A 4

2 T 40.1

403 (Z 0) Becomes B n + 1

4 T 6 Clear 6

5 H X

406 B 1 s
7 V 6

9 AS 150 Sum power series

9 T 6

10 J 406

500 \\B 1

Exercises E {page 33)

We give the solutions below as typical examples.

1. 410

/>

400 H 500

1 A 501

2

3

B
F

402

160
Call in D

404

5

B
F

404

250
Call in P

406 A 500 n/16

7 A 501 1/16

8 U 500 (n + 1)/16

9 s 502 11/16

10 G 400tt

500 W 2/16

1 Q 1/16

2 TV 11/16

Or, if terminating symbols F and are used, this becomes

10

G K
0(9 H 500 F
1

2

A
B

501 F
2 e

Master routine

Q F 160 F
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Location Order iVofcs

D-> 4 B 4 e

5 F 250 F

P-> 6 A 500 F
7 A 501 F Master routine

8 U 500 F
9 s 502 F

10 G 7T 9 _

500 W F
1 Q F Constants

2 TV

G K
40() = 00

1

A
T

500 F
604 F

Set n = 2 initially

2 T 602 D Clear sum
3 A 501 F Pick up initial value 1/n! = h

4 F 12 9

20 -^ 5 A 503 F
6 T 604 F
7 A 600 2)

8

9

R
H

4 F
604 F

1
t~\ r ; lDivide

f
,

16(n — 1)! <d

4"

10

11

-> 12

- 13

14

B
F

U
B
F

10 (9

160 F

600 Z>

13 9

250 F

Call in F>

Call in P

ft

by
l^

Print 1/ft!

O

1-4

I> -> 15 A
(

600 D Add 1/ft! to pre-

16 A ' 602 7) vious sum to re-

17 T 602 F> place it

18 A 604 F
19 S 502 F Test whether

20 G 5 9 n = 10; if not, re-

21 A 602 Z) place by ft + 1 ; if

22

23

B
F

22 9

250 F
Call in P so, print sum and

stop.

I> -» 24 Z F
500 w F 2/16 = initial value of ft/16

1 I F 1/2 = initial value of 1/ft!

2 J F 10/16

3 IT F 11/16
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Location

14. 400 = 00

1

Order

G K
B 6

F 200 F

R-> 2 T 500 F
21 -> 3 Z F

4 T 600 D
5 F 14 e

16 -> 6 A 600 F
7 S 500 F

8 G 9ird

8 -> 9 U 600 F
10 S 601 F
11 G 147T0

12 A 601 F
13 T 601 F

11 -> 14 B 14 d

15

16

F 200 F
#-> E 6

17 T F
18 A 601 F
19 B 19

20

21

F 250 F

P-> F 3

Notes

Call in R to read in constant

.05 (5 mins.)

Stop for insertion of data tape

Clear current (600 F) and

maximum (601 F) waiting

times

Add previous waiting time

Subtract 5 mins. to obtain

present waiting time

If negative, clear and replace

Subtract previous max. wait-

ing time. If result negative,

clear and jump; if positive,

replace previous max. by

present waiting time

Call in R to read in time occu-

pied by next patient

Jump if positive number read

If negative number read, clear

accumulator

Call in P and print out maxi-

mum waiting time

Return to program stop for

new data

Exercises F {page 40)

The three examples below use the typical master routines given in the

specimen solutions to programming Exercises E above.

Land 3. P Z
T 400 K

Master routine

Blank tape

P Z
T 500 K
Constants

K
F
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7.

14.

Blank tape

P Z
E 400 K
P F

P Z
T 400 K

Master routine .

Blank tape

P Z
T 500 K
Constants

Z K
P F
Blank tape

P Z
E 400 K
P F

Data tape

P Z
T 400 K

Master routine

Z K
P F
Blank tape

P Z
E 400 K
P F

Oo-f

Data tape or tapes
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Binary system, 3

Break-point order, 95

2?-register, 15-17

Chebyshev polynomials, 83-86

Check-point subroutine, 96, 106

Comparison post-mortem, 95

Complements, 59

Complex numbers, interpretive

subroutine for, 47-49

Conditional-stop order, 95

Constants, automatic listing of, 135

Control combination, 27, 39-40, 41

Conversion routines, 126-1,27, 130-136

Corrections to programs, 93-94, 98

Counting, 13, 16-17, 60-61

Decimal-binary conversion, 66-69,
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Directory, 128-129
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Dynamic stop, 10
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Flexowriter, 73

Floating-point operation, 60, 90-91,

135-137

Formula recognition, 136-137

Gauss formula, 86-87

Harvard University, 2, 58, 59

Index register, 15-17

Initial input routine, 29, 69-72, 126,

130

simplified form of, 70-71

Input, 3

economy of time in, 72-73

Integration, automatic step

adjustment in, 125

Interlude, 82

Interpretive methods, 127, 135-137

Jump, 9

Library of subroutines, 25, 30, 32-33,

80-91, 135

Link order, 29

Logical orders, 61

Long numbers, 35

Loop, 92

Magnetic drum, 61-63, 64-65

Magnetic tape, 64-65, 135

Manual input, 61
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