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ABSTRACT

Motivated by an availability gap for visual media, where gea
and videos are uploaded from mobile devices well after they a
generated, we explore tlselective, timely retrievadf media con-
tent from a collection of mobile devices. We envision thipafaili-

ty being driven bysimilarity-based querieposed to a cloud search
front-end, which in turn dynamically retrieves media olgeftom
mobile devices that best match the respective queriesmatlgiiv-

en time limit. Building upon a crowd-sensing framework, vaxé
designed and implemented a system called MediaScope that pr
vides this capability. MediaScope is an extensible frantkwioat
supports nearest-neighbor and other geometric querielseofea-
ture space (e.g., clusters, spanners), and contains neigval
algorithms that attempt to maximize the retrieval of retgvafor-
mation. From experiments on a prototype, MediaScope is 8how
to achieve near-optimal query completeness and low to rateler
overhead on mobile devices.
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H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.4lhformation Storage and Retrieval]: Sys-
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ed Systems
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1. INTRODUCTION

Cameras on mobile devices have given rise to signifishat-
ing of media sensor data (photos and videos). Users uploadi visua
media to online social networks like Facebook [2], as welt@as
dedicated sharing sites like Flickr [3] and Instagram [4dwtéver,
these uploads are often natmediate Camera sensors on mobile
devices have been increasing in both image and video resolut
far faster than cellular network capacity. More importantyre-
sponse to growing demand and consequent contention foleasre
spectrum, cellular data providers have imposed data useanife |
s, which disincentivize immediate photo uploading and terea
availability gap(the time between when a photo or image is taken
and when it is uploaded). This availability gap can be on tiueio
of several days.

If media data was available immediately, it might enablenace
ios where there is a need for recent (or fresh) informaticonster
the following scenario: users at a mall or some other locatie
pictures and video of some event (e.g., an accident or atiery.

An investigative team that wants visual evidence of the eveuld
have searched or browsed images on a photo sharing sereice su
as Flickr to retrieve evidence in a timely fashion.

To bridge this availability gap, and to enable this and othissed
opportunities, we consider a novel capability for on-dethae-
trieval of images from mobile devices. Specifically, we depea
system called MediaScope that permits concurrent gecnpteries
in feature space on that may be distributed across sevetaileno
devices.

Wireless bandwidth is limited and can vacgncurrent queries
might compete for limited bandwidth, and query results can b
large (since images are large and many images can matchyj.quer
These factors can result in unacceptably long query reggonss,
which can impede usability. In some cases, applicationsitmged
lower query response times for correctness; in the sceahove,
time may be of the essence in taking action (e.g., apprehgndi
suspects).

MediaScope addresses this challenge using an approactaties



off query completeness while meeting timeliness requirements  devices: existing data plan usage limits ensure that ussasthese
(measured by the time between the issue of the query and when adevices as similar to traditional cameras or camcorderns fitee
query result is returned). It incorporates a novel creggignment perspective of video and photo upload (i.e., as a devicenathet-
scheme that is used to weight queries as well as differergjiagry work connectivityj Furthermore, mobile device storage has been
results by their “importance”. A novel credit and timelisemwvare increasing to the point where multiple photos and videosbeas-
scheduling algorithm that also adapts to wireless bandivwielti- tored; a 64GB iPad can hold 10,000 photos which can takeaever
ability ensures that query completeness is optimized. Arsgan- months to upload with a 2GB/month data plan.
portant challenge is to enable accurate yet computatigifedisible This availability gap represents a missed opportunity éoietal
feature extraction. MediaScope addresses this challenfieding or commercial uses. For example,
sweet spots in the trade-off between accuracy and compohti
cost, for extracting features from images and frames frafeas.

An evaluation of MediaScope on a complete prototype (Sec-
tion 4), shows that MediaScope achieves upwards of 75% query

1. Consider arobbery in a mall in an area uncovered by sgcurit
cameras. The mall’'s security staff would like to be able to
access and retrieve images from mobile devices of users who

completeness even in adversarial settings. For the quewsmie
have experimented with, this completeness rate is neamalptan
omniscient scheduler that is aware of future query arrigflabss not
outperform MediaScope. Furthermore, MediaScope’s peidioce
is significantly different from other scheduling algorithithat lack
one of its features, namely timeliness-awareness, caggireness,

happen to be in the mall on that day in order to be able to
establish the identity of the thief .

. A sportswriter is writing a report on a sporting event and

would like to be able to include a perfect picture of a play
(e.g., a catch or a dunk). The newspaper’s staff photographe
happened to have been obscured when the play happened, so

and adaptivity to varying bandwidth. Finally, we find that sho
overheads associated with MediaScope components are abeder
suggesting that timeliness bounds within 10s can be adblieva

the sportswriter would like to be able to retrieve imagesiro
mobile devices of users who happened to be attending the
event.

The focus of this paper is the exploration of a capabilityldodg-

2. MOTIVATION AND CHALLENGES _ e : . e
ing the availability gap by enabling media retrieval in a man

In this section, we first motivate the need for on-demand gnag suggested by the above examples.
retrieval, then describe our approach and illustrate ttedleiges
facing on-demand image retrieval.

Motivation. With the increasing penetration of mobile devices
with high-resolution imaging sensors, point-and-shoate&s and
camcorders are increasingly being replaced by mobile de\iar
taking photos and videos. This trend is being accelerateahbig-
crease in the resolution of image sensors to the point whelglen
devices have image resolutions comparable to cameras.

The availability of high resolution image sensors has praahp
users to more pervasively share images and videos. In axdddi
giving birth to services like Instagram, it has prompted ynamage
and video sharing sites to develop a business strategy apevel
d on mobile devices. Beyond sharing media (photos and vjdeos
with one’s social network, this development has also beefet- port similarity searches on image feature space. Thereasge |
ly beneficial, e.g., in crime-fighting [1]. body of literature that seeks to suppedntent-based image re-

On the flip side, wireless bandwidth is scarce and has not beenyeyq| by defining appropriate features that characterize images:
able to keep up with increases in mobile device usage. Asudtres ImgSeek[17], CEDD [9] (Color and Edge Directivity Descap,
cellular operators limit data usage on mobile devices;dstethdata FCTH [10] (Fuzzy Color and Texture Histogram), Auto Color€o
plans come with fairly restrictivg data usage budget_s pertmeon relogram [16], and JCD [11] (Joint Composite DescriptorenG
the order of 1-2 GB). Users are increasingly becoming awklfe0 o 5)1y, these algorithms are based on 2 features: image aotb
implications of these limits and how media transmission cause texture description. Taking CEDD as an example, for texaire
users to exceed their monthly data usage limits. o pace, CEDD sub-divides an image into blocks and for eachémag

These conflicting trends will, we posit, lead to awailability block, sub-divides it into 4 sub-blocks, calculates therage gray
gap for media. The availability gap for a media item (an image or |g\g| of each sub-block, then computes the directional Gresi-

a video) is defined as the time between which the item is takdn a cal, horizontal, 45-degrees, 135-degrees and non-dire)i with
when it is shared (uploaded to a sharing site). We believaute- the sub-block parameters for this image block; thus, an ériag

s will be increasingly reluctant to use cellular networksstare —jyided to 6 regions by texture unit. For color space, it pot§ the
media, preferring instead to wait for available WiFi. Indeéhis color space into HSV (Hue, Saturation, Value) channels) thie

availability gap already exists. ORlickr [3], we randomly Se- \jges each channel into several preset areas Using coterdimic
lected 40 popular Flickr users and extracted about 50 rextestbs filters (CLF), so that the color space is divided to 24 suberes)

from each user’s gallery. We then plotted the CDF of the cifiee A histogram is drawn on these parameters, so that®?4 144 co-
between the day when each photo was taken, and when it was Up-fficients (ranging in value from 0 to 7) are output as the CEDD
loaded (the photo’s availability gap). As Figure 1 showsrertban feature vector. Finally, the image processing community éve

50% of the photos have an availability gap of greater thane}'d perimented with a wide variety of measures of similarity.t@fse,
We conjecture that this availability gap will persist wittohile

Approach. To bridge the availability gap, so that, in the scenar-
ios above, the security staff or the sportswriter can obtegen-
t information, we explore on-demand retrieval of imagesrira
collection of mobile devices. These devices belong to uséis
have chosen tparticipateand provide images on demand. In re-
turn, participating users may be incentivized by explicitropay-
ments; we do not discuss incentives and privacy issues st
per, but note that our approach is an instance of crowd-sghsiilt
on Medusa [23], which has explored these issues in the cootex
crowd-sensing. In what follows, we use the tgparticipating de-
viceto mean a mobile device whose user has chosen to participate
in image retrieval.

Our approach is inspired hiynage searchiechniques that sup-

2This may not be the only reason an availability gap existayant
is likely to persist — users may wait to process photos on ktdps
or laptop computer before uploading, for example.

'Completeness is intuitively defined as the proportion ofrdds
images uploaded before the timeliness bound, see Secfion 4.



we pick a popular measure [9, 10, 21], the Tanimoto dista24g [
which satisfies the properties for a metric space [20].

Since CEDD is popularly used and widely accepted, we have
developed our system (Section 3) using this algorithm. Foom
perspective, this algorithm has one important property: afcs-
ingle image, CEDD's feature vectors consist of 144 coeffitse
which require 54 bytes, a negligible fraction of the size aban-
pressed image, often 1-2MB. Moreover, CEDD is computatipna
lightweight relative to other feature extraction mechersisbut has
comparable accuracy. CEDD is defined for images; as we @escri
later, we are also able to derive features for video. Morergly,
our approach is agnostic to the specific choice of featurésianmi-
larity definition; other feature extraction algorithms daused, so
long as the features are compact relative to image sizes.

On top of this image similarity search primitive, we explae
query interface that supports several queries:

Top-K Given an image, this query outputs themost similar im-
ages among all images from all available participating de-
vices. A special case d& = 1 is the typical content based
image retrieval query that has been explored in the image
processing literature [17, 31, 6]. Our sportswriter cousé u
this query by presenting an image of a specific play (e.g., a
dunk) taken, say, at a different game.

Spanners This query returns a collection of images whose features
span the feature space of all images from all participating

these ideature extractionit turns out that feature extraction algo-
rithms for large images encounter memory limits even on-eigt
modern smartphones. Equally challenging is feature etiaéor
video, since the frame rate for video can overwhelm manyufeat
extraction algorithms.

The more central challenge in our work is the design of the
system thasatisfies the timeliness constraints multiple concurren-
t queries In general, this is a hard problem, primarily because of
the bandwidth limitations of wireless mobile devices; thgr@gate
guery result may need a throughput that may overwhelm thié ava
able bandwidth. There are two approaches to solve this gmabl
The first is admission control, whereby we restrict the nunde
concurrent queries such that the timeliness constraimslveays
be met. We did not consider this solution because of the hiitia
and unpredictability of wireless bandwidth availabilithe second
approach is taeliver maximal information within the given time-
liness bound, while adapting to variability in availablerizbvidth
Our work chooses the second approach, in the context of which
there is an interesting challenge: what does it mean toetatiax-
imal information?

In the next section, we describe the design of a system called
MediaScopéehat addresses these challenges.

3. MEDIASCOPE

MediaScope is a system that supports timely similarityedas
gueries on media objects stored on mobile devices. We begin b

devices. The mall security staff in the example above can yegcriping the MediaScope architecture and then discestetsign

use this query to understand the range of images available in

participating devices before deciding to drill down andiess
more specific queries (top-k) with retrieved images.

Clusters This query returns representatives from natural cluster-
s in the feature space and can effectively identify the most
common “topics” among images from participating mobile
devices. This query can also help in both scenarios to give
the querier an overview of the different classes of images in
participating devices, prior to drill down (as above).

and implementation of each component.

3.1 Architecture and Overview

Mediascope is conceptually partitioned across a cloud cemp
nent called MSCloud, and another component called MSMobile
that runs on mobile devices. This partitioned design leyesahe
computation and storage in clouds to support geometridegien
the feature space; mobile devices provide sensing andgstdoa
media objects.

These components interact as follows (Figure 2). Whenewer p

Our approach can be extended to support other kinds of guerie ticipants take photos or videos, tReature Extractorcomponent
(e.g., enclosingulls), as described later. While Top-K queries have  of MSMobile continuously extracts, in the background, imagd
been used with images, we are not aware of other work that hasyjdeo features and uploads them to #&CloudDB Users (e.g.,

proposed using Spanners and Cluster queries with imageasllyEi
our use of these queries in conjunction with a database gjesa
spread over mobile devices is, to our knowledge, novel.

Our queries can bgualifiedby severahttributes Attributes like
locationandtime constrain the set of objects that are considered in
computing the query result; the location attribute comstrane-
dia objects to those taken in the vicinity of a certain lomatand
the time attribute specifies when the corresponding photadeo
was taken. Users may also specifffeshnessittribute, which con-
strains the age of media objects selected to compute thg geter
sult.

The last, but perhaps the most interesting attributimsliness
Timeliness is a property of the query result, and specifiéma t
bound within which to return the result(s) of a query: if a gue
is issued at tim&" and the timeliness constraint isthe system
attempts to return query results befdfe+ ¢. The timeliness at-
tribute is motivated by the surveillance example discusdsale;
the security team might want results within a bounded tintaite
follow-up action. It may also be bounded by interactivityncern-
s: since wireless bandwidth is limited and can vary, imagey be
large, and multiple concurrent queries may compete for wati,
guery response times can be large and may vary significantly.

Challenges. Our approach faces several challenges. The first of

a security officer or a sportswriter) pose queries to MSClosd
ing a standard web interface, possibly on a mobile devicees&h
gueries are processed by thMSCloudQquery processing engine,
which uses the features stored in the MSCloudDB to compuate th
query results. The results of the queries identify the metjacts
that need to be retrieved from individual mobile devicessdme
cases, a media object may already have been retrieved aslia res
of an earlier query; query results are atschedin MSCloudDB

in order to optimize retrieval. MSCloudQ coordinates with@b-
ject Uploadercomponent on MSMobile in order to retrieve query
results. Once a query’s timeliness bound expires, MSCloiglQ
minates the corresponding Object Uploader and returngvett
results.

MediaScope uses a publicly available crowd sensing platfor
called Medusa [23]. Medusa was originally designed to penion
man users to pose crowd-sensing tasks. MediaScope’svedtoie
features and media objects from mobile devices leveragelsidées
support for “sensing” stored information on these devicBsen-
able programmed interaction between MSCloud and Medush, an
to support MediaScope’s timeliness requirements, we mexks al
modifications to the Medusa platform (discussed later).

MediaScope thus provides a high-level abstraction (qsesie
media objects) that hides many of the details of object eti
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from users. In the following subsections, we describe thertvast
challenging aspects of MediaScope desigupport for concurrent
gueries a functionality distributed between the MSCloudQ and the
Object Uploader; antkature extractionWe conclude with a brief
description of other design and implementation issues.

3.2 Design: Concurrent Queries

The most challenging component of MediaScope is support for
concurrent queries — MSCloudQ may receive one or more galerie
while other queries are being processed. In MediaScopeefutt
of a query is a list of media objects to be retrieved from a stibs
of the participating phones. Recall that each query haselitiess
constraint. In the presence of concurrent queries, MedigéSmay
need to upload all media objects before their timelinessdax-
pires. In general, this may be difficult to achieve becauseless
bandwidth can vary significantly over time, resulting inigaie
upload times for images.

To illustrate this, consider the example of two concurrerrees
Q1 and(Q- that arrive at the same time for media objects distribut-
ed across two phoneB; and P, in Figure 3. Also, assume that
both queries have a timeliness bound of 5 seconds, each chjec
upload 1 object per second, and all objects are of the sarae siz
If @1 needs to retrieve 3 objects from and 2 objects fron.,
while Q2 needs to retrieve 4 objects froly and 3 fromP,. Un-
der these circumstances, it is not possible to satisfy thelithess
requirements of one of the two queries. In practice, the lprob

C2DM Message

Figure 2—System Architecture Work Flowrigure3—lllustration of Concurrent Queries

get more credits for their queries) or other approachesderaio
assign credits to queries.

If a query is assigned credits, it divides up these credits among
its results (media objects) in a way that reflects the impaeeof
each object to the query. The key intuition here is that, fgivan
query, the importance of a result object to the query can be de-
termined by the feature space geometfpr example, consider a
guery@ which attempts to retrieve the two nearest photos in feature
space to a given phota If the resulting photos andb are each
20 units and 80 units distant fromin feature space, an@ has
been assigned 100 creditsandb each receive 80 and 20 credits
respectively (in inverse proportion to their distances)to

MediaScope uses this intuition to define credit assignneerg-t
sult objects. Once objects have been assigned credits;talge
loading is prioritized by credit in order to maximize thediotredit
retrieved across all concurrent queries. In what follows, first
describe the queries that MediaScope supports and howsesdi
assigned for each query. We then describe MediaScope’#-cred
based object scheduling technique and discuss its optimali

3.2.1 Queries and Credit Assignment

Our current instantiation of MediaScope supports thredi-qua
tatively different queries: nearest neighbor, clustensl spanner-
s. Below, we discuss the design of the query engine MSCloudQ
and how credits are assigned to query results. Recall thaiaich
guery, users can specify time, location and freshnes$uaiids: be-

is much harder because there may be more than two concurrentfore performing each of the queries described below, MS@@bu

gueries, many more participating devices, queries cameaatidif-
ferent times, media objects may have different sizes, anelegs
available bandwidth can vary dynamically. Especially lbseaof
the last reason, admission control cannot guarantee thianali-

ness constraints are met, or may severely underutilizevtible
bandwidth.

MediaScope uses a different approattading off query com-
pleteness for timelines$n MediaScope, not all query results may
be uploaded within the timeliness bound, but the challeage u-
pload the most relevant queries so as to maximize the amdunt o
informationretrieved. In doing this, there are two challenges: how
to differentiate between queries, and how to prioritize iaé&ms
for the retrieval in order to maximize the information retred.

MediaScope addresses these two challenges usargdit as-

signmentmechanism. Each query is assigned, by MediaScope, a

number of credits. The credits assigned to a query refledirhe
portance of that query and result in proportionally moreinfa-
tion being uploaded for that query (and therefore the priaoqmeeal
completeness of the query result). The specific credit assgt
mechanism for queries is beyond the scope of this paper, but M
diaScope may use monetary incentives (e.g., users who peg mo

filters all the feature vectors stored in MSCloudDB to sefeet

ture vectors that match these attributes. In our descripgfothe
queries below, we assume that this filtering step has bededpp

k-Nearest Neighbors. For this query, the user suppliestarget
image and the server attempts to returnkheearest images (from
photos or videos) in feature space to the target. The impitatien

of this query is straightforward: it is possible to build ées to
optimize the search for th& nearest neighbors, but our current
implementation uses a brute force approach.

Credit assignment for this query attempts to capture tregivel
importance of the query results. Thus, the assignment ditsre
each result is proportional to its similarity to the targetige. For
thei-th result, lets; be the similarity measure to the target; we then
assign credits to thith result proportional te; = (1 — f;—)

K Clustering. The second class of queries supported by MSCloudQ
is based on clustering in feature space. This query takespas i
the numberk as well as well as &peparameter which describes
the expected result and can have one of two values:

Cluster Representative With this parameter, the result contains
images, one from each cluster. For each cluster, our atgorit



m selects that image as the representative whose distance idnequalities 2 and 3 ensure that edgg;, is not selected if either

least to the centroid of the cluster. Intuitively, this quime
identifies different “topics” among images taken by pattici
pating users.

vertexi; or ji is not selected. Inequality 4 guarantees thaf, is
selected if both vertices andj; are selected. Inequality 5 ensures
that the number of vertices selected from claisss;.

The above problem is NP-hard so we us®@V|*) heuristic

Common Interest With this parameter, the result includes images (Algorithm 1) for solution. The idea behind this heuristictd se-
from that cluster which contains objects belonging to the et the set of vertices greedily i.e., add “qualified” vees whose

most number of users. Thus, if theh cluster contains im-

minimum weighted edge to the set selected thus far is maximum

ages fromu; users, the query returns images from that cluster «qyajified” vertices are vertices in the classes which haveyet

for which u; is the largest. Intuitively, this query identifies

met their constraint, and hence these vertices can stiltleeted.

the cluster that represents the maximal common interest be-\ye deal with the issue of which vertex should be selectedHist

tween participating users. Within the selected clustes, th

trying all possible vertices as being the first vertex in taeand

query returns one image for each participating user, select (aying the maximal such set.

ing that image of the user that is closest to the centroidef th
cluster.

These queries can be implemented by any standard algorghm f

k-means clustering.

For thecluster representativéype of query, we assign credits
proportional to the size of the cluster. Thus, if thh cluster’s
size isc;, the credit assigned to the image selected from clyster
is proportional toi—’cj

For thecommon interestype of query, we assign a credit to each
selected image that is inversely proportional to the imedistance
from the centroid of the cluster. The credit assignmentrislar to
k nearest neighbors above.

Spanner. The third, and qualitatively different query that MediaS-
cope supports is based on spanning the feature space. Th®mt
behind the query is to return a collection of images wiiphnthe
feature space. In computing the spanner, we assume thatisexth
contributes exactly, images, where, is derived from the query’s
timeliness bound and a nominal estimate of the average dip&ta
from the corresponding mobile devic®ur spanner maximizes the
minimum dissimilarity between all pairs.

We now express this problem mathematically. Assume khgt

Algorithm 1: MAXMIN HEURISTIC

1: Define a listl for storing best vertex set and a variableiz_min for
minimum weighted edge

2! 1+ [}, maz_min < 0

3:forall ie{1,...,V}do

4:  min = oo

5.  Define a temporary list; andi; < i

6:  whilenew item added té; do

7: for j € {1,...,V}andj ¢ L do
8: d(j) <+ min,e;, similarity_dist(o, j)
9: if 3 qualified vertexo then

10: li.add({v| max d(v)})

11: temp_min <+ d({v| maxd(v)})
12: if temp_min < min then

13: min = temp_min

14:  if min > maxz_min then

15: max_min = min

16: =1

OUTPUT: I andmaz_min

For this query, intuitively, credit assignment should givere
importance to dissimilar images. For thth query result, we com-

the complete graph on vertices (vertices represent images), has a puted;, the average distance from tixh image to all other im-

vertex setV partitioned intoC' classed/, ..., Vo (classes repre-
sent users). Let;, denote vertex in classV;. Lete;, ;, represent
the edge connecting;, with v;,. Assume edge;,;, has weight

wi,;, (Where the weight represents the dissimilarity between ob-

jectsi; andjy).

Assuming that exactly; vertices must be selected frov, we
need to select a set of vertices so that the minimum edge wefigh
the selected clique is maximized. This problem can be faatedl
as a mixed-integer program:

max z

Stz < Wiy, Vi, Vi, Ji st < gJi (1)
Yigjp < Tiy Vi, ji S.t. i < Ji 2)
Yiejp < Tjy Vi, ji S.t. i < Ji 3)
Tiy + T — Yig <1 Yie, ji stoie < ji - (4)
> wi = Vi=1,...,C (5
iteVE
zi, € {0,1} Vit
Yirjy € {07 1} Viujk s.t. by < Ji

In this mixed-integer program, variablg, is used as the indica-
tor variable for selecting vertex;, for the clique. Similarly, vari-
abley;, , is used as the indicator variable for selecting eelgg,
for the clique. Variable is used to achieve thain;, < j, ws, j, Yi, j, -

3As we describe later, the average upload rate is estimateshaly
ically by MSCloudQ.

ages. The credit assigned to this image is proportion%%e.

Extensibility of MSCloudQ. These are, of course, not the only
kinds of geometric queries that can be supported. Devedopish-

ing to extend MSCloudQ by adding new queries can do so quite
easily by: (a) defining the query syntax and semantics, (b) im
plementing the query algorithm, and (c) specifying a prtpoal
credit assignment based on the semantics of the query.

3.2.2 Credit-based Scheduling

In general, users can pose concurrent queries to MSCloudQ.
Queries may arrive at different times and may overlap tcedft
extents (we say one query overlaps with another when onesarri
while the other’s results are being retrieved). Furtheendiffer-
ent queries may have different timeliness constraints, reaieve
different numbers of objects (e.qg., for different valueskpbr d-
ifferent sizes of spanners), and the retrieved media abjeety be
of different sizes (images with different resolutions).these cas-
es, MSCloudQ needs an algorithm that schedules the rdtoéva
different objects subject to some desired goal.

In MediaScope, this goal is to maximize the total completene
of queries, defined as the sum of the credits of all the uplbade
images. To achieve this, recall that MSCloudQ assigns aitcred
budget to each query based on the importance of that quesy; th
using the proportions defined above, it assigns credit gdtueach
query result.

To mathematically define the completeness goal, we firsb-intr
duce some notation. L&p; denote the set of media objects that



form the result of the-th query, and let that query’s timeliness
constraint bel(Q;). Let g(o) be an indicator variable that denotes
whether a media objectis retrieved beforel(Q;). Then, for the
i-th query, the total credit for all uploaded media objectgii&n
by:

9@Q) =" g(0) - c(0)
0€Q;
Thus, given a series of concurrent quefizghe total number of
credits retrieved is given by:

@ =Y > g(0)-clo)

QREeQoeQ

Maximizing this quantity is the objective of MediaScopestrieval
scheduling algorithm.

It turns out that it is possible to decompose this objectite a
per-devicecredit maximization schedulinglgorithm. To see why
this is so, letP denote the set of participating devices, and khe
th device be denoted by.. Then, the above credit sum can be
written, for concurrent querieg:

@ =Y > glo)-clo)

QReQoeQ

=> > > 9(0)-co)

QeEQ PePoePNQ

=>.> 9(0)- (o)

PePoeP

This equality shows that, in order to maximize the total itred

s retrieved across a set of concurrent queri@3), it suffices to
maximize the total credits uploaded by each participatiegak:

> pepc(P). This is true under the following two assumptions:
(a) if two different queries retrieve the same object fréin then
the object will need to be uploaded at most once and (b) thaitcre
assigned to that object is the sum of the credits allocateealof
query to that object.

This finding has a nice property from the systems perspective

it suffices to run a local credit-maximizing scheduler ontepar-
ticipating device in order to achieve the overall objectilie gen-
eral, local schedulers have the attractive property theyt tan lo-
cally adapt to bandwidth variations without coordinatinghaM-
SCloudQ, and need only minimal coordination with MSCloudQ i
order to deal with new query arrivals. In MediaScope, thee®bj
Uploader component of MSMobile implements the schedulirg a
gorithm.

An Optimal Scheduler. We first describe a scheduling algorithm

that isoptimal under the assumption of fixed file sizes and fixed

wireless bandwidth per participating device. Under thesseiap-
tions, for each objeat, it is possible to compute the exact upload
time ¢(o) which is the same for all objects. If each object’s time-
liness bound igi(o) (different objects can have different bounds),
our goal is to find an uploading sequence such Fatg(o) - c(o)

is maximized.

First, we may assume that an optimal schedule orders thetsbje
by earliest timeliness bound first. Assume an optimal sdeethes
not order objects by earliest timeliness bound first. Thergtlexist
two objects: and j for which d(o;) > d(o;) but: is scheduled
beforej. By switching the order of objectsandj we can obtain
another optimal schedule.

However, merely scheduling by earliest timeliness bountbts
likely to maximize credit. To do this, the algorithm prepess-
es the schedule to obtain a set of scheduled objects in tlogvfog

way. It orders the objects by earliest timeliness bound firsen, it
adds objects to the schedule one right after another as bagah
object’s finish time does not exceed the timeliness bounain bb-
ject’s end time exceeds its timeliness bound, the algorigmoves
the object receiving the smallest credit of those objedtedaled
thus far (including current object) and shifts objects t® tight of
this object to the left by (o) to cover the gap. Intuitively, this step
maximizes the total credit uploaded: lower credit objemgard-
less of the query they belong to, are replaced. The algoritiem
selects the next object in order of timeliness.

Algorithm 2: OPTIMAL UPLOADING SCHEDULE

1: Arrange the pending objects li§t by earliest timeliness bound first,
schedulingS « ]

2:1+0

3: for o < Q. first do

4: S<«+o

5:  O.remove(o)

6: ifl+t(o) < d(o) then

7. 1+ 1+t(o)

8. dse

9: Remove the smallest credited objecSin

10: Shift all objects to the right of this object to left lsyo)

OUTPUT: schedulingS, uploading objecS|0]

The following example illustrates this algorithm. Supptisere
are 3 queries, each with one result object. Let their regetine-
liness bounds be 2, 3, and 5 and the credits they receive hafid8
6 respectively. Finally, suppogé¢o) is 2 time units. The algorith-
m would proceed in the following way. It would schedule thstfir
object initially. Since the second object would not be d&idd in a
timely manner if scheduled after the first object, and siheesec-
ond object receives more credits than the first, the firstrisored
and the second is scheduled from time 0-2. The third objebkis
scheduled from time 2-4 giving a maximal 14 total creditshe t
system.

This algorithm is a special case of an optimal pseudo-pahjab
algorithm discussed below, so we omit a proof of its optityali

Optimality under different object sizes. If object uploading times
are different, the scheduling problem is NP-hard; the singaise
of different object sizes with all objects having the sameeliness
bound is equivalent to the NP-Hard Knapsack problem [15]. We
can however give the following pseudo-polynomial time dyi@a

programming algorithm for this problem. L&Y, ¢] be the max-

imum credited schedule using only the fiistbjects, i.e., objects
o1,...,0;, taking upg time units. Lets[¢, ¢] be the corresponding
credit for such a schedule. Theft, ¢| is defined in the following
way:

(gl = max{s[i — 1,q — t(0;)] + c(0:),s[i — 1,q]} if ¢ < d(0;)
A= sl - 1,q) if ¢ > d(o:),

(6)
where the following initial conditions holds[0, ¢q] = s[i,q¢ <

t(o1)] = 0. If s[i—1,g—t(0s)]+c(0s) > s[i—1, ¢l andg < d(0;),
thenS[i, ¢] + S[i—1, g—t(0:)]U{o;}, elseS[i, q] < S[i—1,q].
The desired output iS(n, d(o,)) for an input ofr objects.

The running time of this algorithm ©(nd(o,)). The optimali-
ty of Algorithm 2 follows from the optimality of this dynamigro-
gramming algorithm for the general case [7].

Practical Considerations. In a practical system, the Object U-
ploader estimatego) continuously, and re-computes the schedule
after each upload is completed, in order to determine theaigect
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to upload. There are two reasons for this. Fir&t) can change be-
cause available wireless bandwidth can vary. Second, newesgu
may arrive at MSCloud; when a query arrives, MSCloud evalu-
ates the query, assigns credits to the query results, aifteadhe
relevant devices (those which contain one or more resuéobbj
s). Thus, at a given device, the set of objects to be uploaded c
vary dynamically, so the Object Uploader needs to re-etaltre
schedule after every upload. Finally, for large objectsidvédth
variability might cause their timeliness bounds to be \tiedia(e.qg.,
because the available bandwidth became lower than the tlztie
was used to compute the schedule); in this case, the Uplcader
abort in-progress transmission to reduce the bandwidtswuoed
and and thereby trade-off query completeness for timedin¥ge
have left this optimization to future work.

3.2.3 Feature extraction on the phone

In MediaScope, feature extraction is performed on the reobil
device by the Feature Extractor component of MSMdbil&his
component extracts features for photos, as well as imadesceed
from videos. Even for high-end smartphone platforms, trese
nontrivial computation tasks and some computation vs. racyu
trade-offs are required in order to achieve good performaite
now discuss these trade-offs.

Image Feature Extraction. The Samsung Galaxy S Il (a high-end
smartphone at the time of writing) can generate images veitiven
resolution of 3264x2448. At this resolution, our CEDD featu
extraction algorithm fails because of lack of memory on theick.
One way to overcome this limitation is to resize the image to a
smaller size and compute features on the smaller image.

by the total number of images. This error rate is less than &% f
a 1280x768 resolution, but jumps to 20% for the 816x612 tesol
tion. The error rate for K-nearest neighbor queries is ddfiag
the ratio of incorrect images (relative to the full size)estéd by
feature vectors computed on a resized imagefaraveraged over
different values ok. In this case, the knee of the error curve occurs
somewhere in between the resolution of 1280x960 and 1034x76
(figure omitted for space). Given these results, we use aingsi
resolution of 1024x768 in our implementation as the besletaiff
between computation time and accuracy.

Video frame extraction. The second major component of MSMo-
bile’s Feature Extractor is video frame extraction. Ildgdbr videos,
we would like to be able to extract every frame of the video and
compute features for it. This turns out also to be computatip
infeasible even on a high-end device, and one must perfoimma c
putation accuracy trade-off here as well, by subsamplieg/ttieo

to extract frames at a lower rate than full-motion video.

Figure 5 shows the total cost of frame extraction for videbs o
different durations. Clearly, for long videos, even areatigely
modest sampling rate of 4 fps can incur a total processing tifn
150 seconds! On the other hand, extracting a single franess tak
average 240 ms, regardless of frame rate or duration.

On the flip side, subsampling a video can introduce errors; su
cessive frames, if they are far apart from each other, mag imis
portant intervening content. Figure 6 shows the averagardie
in feature space between successive frames for videosfefetif
t durations and sampling frequencies. For context, ourteting
algorithms have generally found that cluster diametersaateast
about 20 units. At 0.5fps, the interframe distance is moaa tihis

As Figure 4(a) shows, the time to compute features (averaged Number, but at 1 fps, itis less. More generally, 1 fps seenbeta

over 300 images taken on the Galaxy Slll) can reduce significa
ly for different sizes, ranging from 4s for a resolution aba@iP
the native resolution to about 1s for 1/4 the native resofutiThe
cost of the resizing operation itself is about 250ms, as shiow
Figure 4(b), roughly independent of the resized image size.
However, computing features on a smaller image trades off ac
curacy for reduced computation time. To explore this trafige-
we evaluated two queries to see how accuracy varies withingsi
Figure 4(c) shows the results for K-means clustering, wieoser
rate is obtained by dividing the total number mis-classifiedges

4MSCloudQ also needs to implement the same feature extractio
algorithm for a Top-K query. Since mobile devices are mone-co
strained, we focus on feature extraction on these devices.

good choice in the trade-off between computation time acdrae
Cy, SO our current prototype uses this value.

An alternative approach to feature extraction for videosiio
have been teegment video on the mobile device and then select
frames from within the segment. A segment roughly corredpon
to a scene, so one might expect that frames within a segmeht mi
have similar feature vectors. We have left an exploratiothisfto
future work.

3.2.4 Leveraging a Crowd-Sensing Framework
MediaScope leverages an existing, publicly availableydreens-

ing programming framework called Medusa [23]. Medusa pfesi

high-level abstractions for specifying the steps requioetbmplete
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a crowd-sensing task: in our case, uploading the featutenrsecan
be modeled as a crowd-sensing task and so can the uploa@cif-sel
ed media objects. Medusa employs a distributed runtimessyst
that coordinates the execution of these tasks between endéil
vices and a cloud service. In MediaScope, MSCloud uses Medus
to distribute tasks and collect the results; MSMobile cstssdf ex-
tensions to Medusa’s runtime to implement the Feature Etdra
and the Object Uploader.

However, in order to support MediaScope, we needed to ex-
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Figure 6—Average Inter-frame Feature-Space Distance

tuition for the usefulness of MediaScope. Figures 7, 8, aslddv
the results of three different queries: a K nearest neighjbery, a
Cluster Representatives query and a Spanner on a set obsiggr
of photos: a university campus, a garden, a view of the skpdich
by trees, an athletics track, a supermarket, and a labgraito-
tice that the cluster representatives query identifiesesamtatives
from each of groups, while the Spanner extracts qualitigtiliéer-
ent pictures, while the K nearest neighbor query extractsmiray
images as we might expect.

tend the Medusa model, which was focused on tasks generated
by human users. We also needed to make several performanced.1 Query Completeness

modifications in Medusa. In the former category, we modified
Medusa’s programming language to selectively disable dadu
recruitment feature and data privacy opt-in: these feattequire
human interaction, and MediaScope assumes that partisipaue
been recruited and have signed a privacy policy out-of-baid
also added a data delivery notification system that woulowall
Medusa’s cloud runtime to deliver notification of data uplda
external servers, such as MSCloudDB. In the second categery
modified Medusa’s mobile device notification system, whieh o
riginally used SMSs, to use Google’s C2DM notification seeyi
which greatly reduced the latency of task initiation on nimloie-
vices. We also optimized several polling loops in Medusado b
interrupt-driven, so that we could hand-off data quicklyctompo-
nents within Medusa’s runtime as well as to external servers

4. EVALUATION

In this section, we evaluate the performance of MediaScape.
though MediaScope’s credit assignment algorithm is odtima
pseudo-polynomial sense, we are interested in its pragteréor-
mance under bandwidth variability. Furthermore, in pgtsince
query arrival cannot be predicted ahead of time, the pralgier-
formance of MediaScope may deviate from the optimal. Fynall
it is instructive to examine alternative scheduling medé$as to
guantify the performance benefits of MediaScope’s algorsthWe
are also interested in the overhead imposed by MediaScope s
timeliness is an essential attribute of many queries, syateffi-
ciencies can impact query completeness.

All our experiments are conducted on a prototype of MediaS-
cope. MSCloud is written mainly in Python; PHP and Python
are used for MSCloudQ web interface. The implementation of M
SCloud is about 4300 lines of PHP and Python code, and MSMo-
bile requires about 1150 lines of C and Java code (measuiegl us
SLOCCount [28]).

Our experiments use commodity hardware, both for MSCloud
and the mobile device. We use up to 8 Android phones, which
are either the Galaxy Nexus or the Galaxy Slll. MSCloud rums o
a Dell XPS 7100 (six-core AMD Phenom Il X6 1055T 2.8 GHz
processor and 6MB built-in cache).

Before describing our results, we give the reader some hisua

In this section, we evaluate query completeness in the pcese
of concurrent queries.

Metrics and Methodology. Our metric for query completeness
is the total credit associated with all the query resultcessful-

ly uploaded before their timeliness bounds. We evaluateraév
query mixegdescribed below), with different concurrent queries
of query types that arrive at different times and have diffietime-
liness bounds. These queries are all posed on 320 imagese@pt
on 8 mobile devices.

Our experiments are conducted as follows. For each query mix
we first compute the results of each query and the creditrzadimp
each result object. This computation yieldsace, on each mobile
device, of objects, their associated credits and the ativa. We
use this trace to replay the credit-based scheduling afgoiduring
repeated runs and report the average of 10 runs.

This trace-based methodology is also useful in comparing Me
diaScope’s credit-based scheduling algorithm (hendefdSC)
with several alternatives. For each alternative, we retilaytrace
for that particular scheduling algorithm. We consider tbkofv-
ing alternatives: a®mniscientalgorithm that knows about future
query arrivals; aviax Credit First (MCF)that always selects the
object with a maximum credit to upload;Round Robin (RRhat
allocates bandwidth fairly to each concurrent query sq thagach
round, the object with the highest credit from each queryps u
loaded; and arktarliest Deadline First (EDF)scheduler that al-
ways schedules that object with the earliest timelinesstddinst,
breaking ties by credit. The Omniscient algorithm demaitst
the benefits of lookahead, while each of the other algorithassat
most one of MSC'’s features (timeliness-, credit-, and badthw
awareness).

In our experiments, each mobile device contains a number of
images taken with its camera. These images are naturallyf-of d
ferent sizes because they have different levels of comipikiss
Furthermore, we make no attempt to control network vaviigbil
upload bandwidths in our experiments vary and MSC estimates
pload bandwidth by measuring the average speed of the lstdip
(MSC's algorithm needs uses this estimateti@r)).

Results. Our first experiment compares the performance of these
alternatives for three different query mixes with differéypes of
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queries. The first mix contains 4 queries, namely, 1 Top-K; 1 S
panner, 1 Cluster Representative and 1 Common Interestthéll
queries arrive at the same time but with different timelglesund-

s; thus, in this experiment there are no future arrivals aadiovnot
evaluate the Omniscient algorithm. The second mix adds @te m
Cluster Representative query to the first one, and the thiggn-
erated by adding one more Common Interest query. In eacly quer
mix, each query is assigned the same total credit.

Figure 10 shows the performance of various schemes.
achieves at least 75% completeness across all three qugeg,mi
and its performance improves by 5% as the number of queries in
creases from 4 to 6. Although a 75% completeness rate seems pe
simistic, we remind that reader than MSC is optinsad,no other
scheduling scheme could have done better thanithisther word-

s, for this query mix, this is the best result that could hagerb
achieved.

Furthermore, MSC outperforms other schemes significahtig.
superior performance of MSC comes from its timeliness-aness,
credit-awareness, and adaptivity to available bandwi@.con-
trast, approaches that lack one or more of the features hagh m
lower completeness rates. Thus, EDF does not take into aecou
t an object’s credit, and thus might waste bandwidth on dabjec
with an early deadline but small credit; on average, EDFe&s
55% completeness. RR is unaware of timeliness constrdnts,
uploads the result objects for each query in a round-rotshiden.

It is comparable in performance to EDF, achieving 52% coteple
ness on average. RR’s poor performance arises from twor§acto
first, because it ignores timeliness constraints, it usesstission
opportunities by sometimes transmitting objects whichddave
been deferred without violating data timeliness boundspiseé, RR
gives equal transmission opportunities to queries, eveuagth, on

a given mobile device, one query may contain objects witimfare
credit than another query. MCF improves upon RR in the second

Figure 12—Sample Schedule Timeline

aspect, in that it always transmits the object with the higleeedit
first; in so doing, it achieves an average completion rate98b 5
and is significantly better than EDF and RR. However, MCFiik st
noticeably worse than MSC, primarily because MCF ignomegi
liness constraints and sometimes transmits objects thdd t@ave
been deferred without violating timeliness bounds.

In order to get more insight into the relative performancthete
schemes, we consider variants of the 6-query mix which hdve d

MSC ferent combinations of arrival rates and deadlines. Figurelots

the results of these experiments.

In the first query mix, three of the six queries arrive firsthvitie
timeliness bound of 20 seconds. The remaining three quamnise
within three seconds, but have a relatively tight timelgesund of
6 seconds. In this sense, theyerrupt the first set of queries. This
query mix is designed to demonstrate the benefits of timedine
awareness. In this somewhat adversarial setting, MSstitler-
forms other schemes but has a much lower completeness rate of
about 60%. RR performs poorly, but EDF performs comparably t
MCEF; this is not surprising because EDF is timeliness-awaven
so, EDF does not perform as well as MSC because it ignoreg cred
values and uploads objects with lower credits unnecegsaril

In the second query mix, 6 queries with the same timeliness re
quirement arrive in a staggered fashion, with each queiyiagr
three seconds after the previous query. This illustratestiing
where queries arrive frequently but the arrivals are notkyo:
nized. In this setting, MSC achieves a completeness rateafyn
80%, and, not surprisingly, MCF comes quite close with a com-
pleteness rate of 71%. Since all queries have identicallitiess
bounds, it is not surprising that a credit-aware scheme MK&-
performs well.

The third query mix represents a complex pattern where gsieri
arrive at different times and have different deadlines. tRm mix,



Average Latency (ms)

MSCloud to Medusa 131
C2DM (send-to-receive) 150
Task Execution 67
Upload Scheduling 46
Medusa to MSCloud Image Transfer 67

Table 1—System Communication and App Running Overhead

the performance advantages of MSC are clear, since thisenix r
quires a scheduling scheme to be both credit and timeliaesse.

Finally, for all these query mixes (Figure 11), MSC is compa-
rable to the Omniscient scheme, which knows the arrival ife
different queries. Intuitively, because MSC continuoustiapts its
transmission schedules when new queries arrive, it can make
ifferent decision from Omniscient only at the times whenrigse
arrive. To be more precise, say a new query arrives at tinGam-
niscient might have scheduled an upload of an object for dve n
query starting at time, but MSC has to wait until the object being
uploaded at finishes, before it updates its schedule. This differ-
ence can be fixed by addimgeemptionto the scheduler, aborting
the current transmission if it does not have the highestipyiove
have left this to future work.

To get some more insight into the differences between thedsdh
ing algorithms, Figure 12 plots the timeline of decisiondmay
these algorithms for the 6-query mix when all queries araivthe
same time. The figure clearly shows that MSC is better ablsé¢o u
the available time to carefully schedule uploads so thatptete-
ness is maximized; MCF, having uploaded objects with higllits
is unable to utilize the available time because the timeSr®und
for the remaining objects has passed. EDF performs comigamb
MCEF, but, because it is credit-unaware, misses out on scems-tr
mission opportunities relative to MSC (e.g., MSC uploads9Q3
first, but EDF does not).

In summary, our approach bridges the availability gap by ex-
tracting relevant photos and images dynamically from pgoditing
devices. The approach hinges on the observation that é&spaice
similarity can be used to determine relevant media objecid that
image features are an extremely compact representatitie abin-
tents of an image. However, it is well-known that contentelias
information retrieval exhibits @emantic gag27]: feature-based
similarity matching is oblivious to the semantic structireithin

Average Latency (ms)

Query Parsing 24
Feature Vector Download 138
Medusa Server Interpretation 68
Spanner 89
K Clusters 52
K Nearest Neighbor 11
Query Result Response 54

Table 2—System Function Components Overhead

communication between MSCloud and Medusa takes about 1/8
second. Other components are under 70 ms.

Finally, latency within the MSCloudQ query engine is alsodno
erate (Table 2). Even in our relatively un-optimized impéta-
tion, most components of query processing take less tham4,00
with the only exception being the download of feature vecfoym
MSCloudDB; we plan to optimize this component by caching fea
ture vectors in memory.

These overhead numbers suggest that our current prototgpe m
be able to sustain timeliness bounds of 10s or lower. Indemde
of our experiments in the previous section have used 6sitigssd
bounds.

Energy. The other component of overhead is energy expenditure.
Frame extraction and feature extraction can take up to axdeco
more, of CPU time. The energy cost, on a Motorola Droid (mea-
sured using a power meter), of frame extraction is;@h, and

of feature extraction (including resizing) is 33Ah. We believe
these energy costs are still reasonable: for feature ereto con-
sume even 10% of the Droid’s battery capacity, a user wowe ha
to take more than 400 photos!

5. RELATED WORK

Perhaps the closest related piece of work to MediaScopesd=r
Search [29], which attempts to search for the closest matelgeé
generated on a mobile device from among a set of images stored
on a photo sharing service. lIts focus, however, is complésmgn
to MediaScope, and is on bridging the semantic gap inherent i
feature-based image searches; most feature extractidrodsetio
not understand the semantics of images, and CrowdSeanebefoc
on using human intelligence in near real-time to completece
tasks. MediaScope can use this capability to filter searstlte

an image, so the matching may not be perfect. In these cases, W to bridge the semantic gap, but its focus is on supportingte ri

rely on additional filtering by human intelligence (e.g.pur exam-
ples, the security officer, or the reporter). To put it anothay, our
approach may not always give the right answer, because akthe
mantic gap. To properly evaluate our approach, we need tumbn
a user study. This is because, for example, determininghehéte
results of a spanner query really span a given corpus carghéyhi
subjective. We have left this user study to future work.

4.2 System Overhead

L atency. Because MediaScope attempts to satisfy timeliness con-

straints, the efficiency of its implementation can impacetgucom-
pleteness; the less overhead incurred within the systengrtrater

er query interface and enabling tighter timeliness comggahan
might be possible with humans in the loop.

Also closely related is PhotoNet [25], which proposes aroopp
tunistic image sharing and transmission capability in aylébler-
ant network. PhotoNet uses similar image features to parfio-
to comparisons, but is otherwise very different from Medig® in
that the latter explicitly supports a query interface witheliness
constraints on queries.

MediaScope is informed and inspired by several pieces okwor
on techniques for content-based image retrieval, and irsagech
on mobile devices.

In the former category are systems like Faceted Image Search

the query completeness can be. To understand the efficigncy o [31], the Virage Image Search Engine [6] and ImgSeek [1 4t th

our system, we profiled the delays within the various comptme
of MediaScope (Table 1). In an earlier section, we have dsedl
the cost of feature and frame extraction: these operatimmaiat
performed in the object retrieval path, so do not affect ytiene-
liness.

As this table shows, the latency incurred for most companent
is modest; C2DM notifications take less than 1/6 second, laed t

support searches on a centralized database of images. $4edia
cope builds upon these search techniques, but unlike thgposts
timely geometric queries over a distributed database of@aand
videos on mobile devices. Other work in content-based inmage
trieval has proposed clustering [8, 12], but has not expldhe
mobile device setting.

A second category of work has explored support for imageckear



on a mobile device. For example, [19] discusses energy effici based image retrieval. Froc. of the 6th IASTED

t feature extraction on a mobile device but supports on thallo International Conferencevolume 134643, page 064, 2009.
searches on the device, as does [30]. Other pieces of woekéxav ~ [12] Y. Chen, J. Wang, and R. Krovetz. Content-based image
plored a client/server architecture for image search, theresthe retrieval by clustering. lProc. of the 5th ACM SIGMM
content is stored on the server [18, 14, 5]. By contrast, &gdope international workshop on Multimedia information retriy
supports searches on a cloud server, but where the contotésl pages 193—-200. ACM, 2003.
on the mobile devices and is retrieved on demand. [13] M. Davis, N. V. House, J. Towle, S. King, S. Ahern,
Finally, tangentially related to MediaScope is work on aud- C. Burgener, D. Perkel, M. Finn, V. Viswanathan, and
ed or semi-automated annotation of images with contextirdda M. Rothenberg_ Mmm2: mobile media metadata for media
from sensors [13, 26, 22]. MediaScope can use such annutatio sharing. InProc. of CHI'05 extended abstracts on Human
to support a broader range of queries, but we have left tHigtoe factors in computing systensages 1335-1338. ACM, 2005.
work. [14] M. Gabbouj, I. Ahmad, M. Amin, and S. Kiranyaz.
Content-based image retrieval for connected mobile dsvice
6. CONCLUSIONS In Proc. of Second International Symposium on
In this paper, we have discussed the MediaScope, a systém tha Communications, Control and Signal Processing (ISCCSP)
bridges the availability gap for visual media by supporttirge- Citeseer, 2006.
ly on-demand retrieval of images and video. MediaScope ases [15] M. R. Garey and D. S. Johnso@omputers and
credit-based timeliness-aware scheduling algorithmdpétnizes Intractability: A Guide to the Theory of NP-Completeness
query completeness, and its overheads are moderate. Mugh wo W.H. Freeman and Company, 1979.
remains, including optimizing the internals of the systeninh- [16] J. Huang, S. Kumar, M. Mitra, W. Zhu, and R. Zabih. Image
prove completeness, and supporting more geometric quaties indexing using color correlograms. Rroc. of IEEE
sual media. Larger scale experiments using more mobilecegvi Computer Society Conference on Computer Vision and
can help understand how well the system scales, and how rietwo Pattern Recognition(CVPR’'9/pages 762-768. IEEE, 1997.
variability can impact query completeness. Finally, a ustedy [17] C.Jacobs, A. Finkelstein, and D. Salesin. Fast
focused on understanding how well MediaScope’s query t®sul multiresolution image querying. IBroc. of the 22nd annual
bridge the semantic gap can help establish MediaScopefaluse conference on Computer graphics and interactive
ness. techniquespages 277-286. ACM, 1995.
[18] J.S.Hare and P. Lewis. Content-based image retriesmaga
7. REFERENCES mobile device as a novel interface.Ehectronic Imaging
[1] Cops using youtube to catch criminals. 2005 pages 64—75. International Society for Optics and
http://www.afterdawn.com/news/article.cfm/2007/@3/0 Photonics, 2005.
/cops_using_youtube_to_catch_criminals [19] K. Kumar, Y. Nimmagadda, Y. Hong, and Y. Lu. Energy
[2] Facebook. http://www.facebook.com. conservation by adaptive feature loading for mobile
[3] Flickr. http://www.flickr.com. content-based image retrieval. ACM/IEEE International
[4] Instagram. http://www.instagram.com. Symposium on Low Power Electronics and Design
[5] I. Ahmad, S. Abdullah, S. Kiranyaz, and M. Gabboui. (ISLPED’'08) pages 153-158. IEEE, 2008.
Content-based image retrieval on mobile device®roc. of [20] A. Lipkus. A proof of the triangle inequality for the tamoto
SPIE volume 5684, pages 255264, 2005. distance Journal of Mathematical Chemistry
[6] J. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, 26(1):263-265, 1999.
R. Humphrey, R. Jain, and C. Shu. The virage image search [21] M. Lux and S. Chatzichristofis. Lire: lucene image rexsl:
engine: An open framework for image managemenSmE an extensible java cbir library. IRroceeding of the 16th
Storage and Retrieval for Image and Video Databases IV ACM international conference on Multimediaages
pages 76-87, 1996. 1085-1088. ACM, 2008.
[7] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and [22] C. Qin, X. Bao, R. R. Choudhury, and S. Nelakuditi.
J. WeglarzHandbook on Scheduling: From Theory to Tagsense: a smartphone-based approach to automatic image
Applications Springer, 2007. tagging. InProc. of the 9th international conference on
[8] D. Cai, X. He, Z. Li, W. Ma, and J. Wen. Hierarchical Mobile systems, applications, and services(Mobisys'11)
clustering of www image search results using visual, tdxtua pages 1-14. ACM, 2011.
and link information. InProc. of the 12th annual ACM [23] M. Ra, B. Liu, T. L. Porta, and R. Govindan. Medusa: A
international conference on Multimedipages 952—-959. programming framework for crowd-sensing applications. In
ACM, 2004. Proc. of the 10th international conference on Mobile
[9] S. Chatzichristofis and Y. Boutalis. Cedd: color and edge systems, applications, and services(Mobisys’papes
directivity descriptor: a compact descriptor for image 337-350. ACM, 2012.
indexing and retrievalComputer Vision Systemsages [24] T. Tanimoto.An elementary mathematical theory of
312-322, 2008. classification and predictiarinternational Business
[10] S. Chatzichristofis and Y. Boutalis. Fcth: Fuzzy coloda Machines Corporation, 1958.
texture histogram-a low level feature for accurate image [25] M. Uddin, H. Wang, F. Saremi, G. Qi, T. Abdelzaher, and
retrieval. InNinth International Workshop on Image Analysis T. Huang. Photonet: a similarity-aware picture delivery
for Multimedia Interactive Services. WIAMIS'0ages service for situation awareness.|EEE 32nd Real-Time
191-196. IEEE, 2008. Systems Symposium (RTSS'phpges 317-326. IEEE, 2011.
[11] S. Chatzichristofis, Y. Boutalis, and M. Lux. Selectigfithe [26] W. Viana, J. B. Filho, J. Gensel, M. Villanova-Oliveiand

proper compact composite descriptor for improving content H. Martin. Photomap: from location and time to



[27]

(28]
[29]

context-aware photo annotatiodeurnal of Location Based
Services2(3):211-235, 2008.

C. Wang, L. Zhang, and H.J.Zhang. Learning to reduce the
semantic gap in web image retrieval and annotatiofrbt.
of the 31st annual international ACM SIGIR conference on
Research and development in information retriepalges
355-362, 2008.

D. Wheeler. Sloccount, 2001.

T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: expigiti
crowds for accurate real-time image search on mobile
phones. IrProc. of the 8th international conference on

[30]

[31]

Mobile systems, applications, and services(Mobisys'10)
pages 77-90. ACM, 2010.

J. Yang, S. Park, H. Seong, H. Byun, and Y. Lim. A fast
image retrieval system using index lookup table on mobile
device. In19th International Conference on Pattern
Recognition(ICPR’08)pages 1-4. IEEE, 2008.

K. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted
metadata for image search and browsing?tac. of the

SIGCHI conference on Human factors in computing systems
pages 401-408. ACM, 2003.



