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To avoide the tediouse repetition of these woordes: is

equalle to: I will sette as I doe often in woorke use, a paire of
paralleles, or gemowe lines of one lengthe:
noe .2. thynges, can be moare equalle.

, bicause

Robert Recorde, The Whetstone of Witte, 1557



Why Equations?

quations are the lifeblood of mathematics, science, and technology.

Without them, our world would not exist in its present form.
However, equations have a reputation for being scary: Stephen
Hawking's publishers told him that every equation would halve the sales
of A Brief History of Time, but then they ignored their own advice and
allowed him to include E = mc®> when cutting it out would allegedly have
sold another 10 million copies. 'm on Hawking’s side. Equations are too
important to be hidden away. But his publishers had a point too: equations
are formal and austere, they look complicated, and even those of us who
love equations can be put off if we are bombarded with them.

In this book, I have an excuse. Since it’s about equations, I can no more
avoid including them than I could write a book about mountaineering
without using the word ‘mountain’. I want to convince you that equations
have played a vital part in creating today’s world, from mapmaking to
satnav, from music to television, from discovering America to exploring
the moons of Jupiter. Fortunately, you don’t need to be a rocket scientist to
appreciate the poetry and beauty of a good, significant equation.

There are two kinds of equations in mathematics, which on the surface
look very similar. One kind presents relations between various
mathematical quantities: the task is to prove the equation is true. The
other kind provides information about an unknown quantity, and the
mathematician’s task is to solve it — to make the unknown known. The
distinction is not clear-cut, because sometimes the same equation can be
used in both ways, but it’s a useful guideline. You will find both kinds here.

Equations in pure mathematics are generally of the first kind: they
reveal deep and beautiful patterns and regularities. They are valid because,
given our basic assumptions about the logical structure of mathematics,
there is no alternative. Pythagoras’s theorem, which is an equation
expressed in the language of geometry, is an example. If you accept
Euclid’s basic assumptions about geometry, then Pythagoras’s theorem is
true.

Equations in applied mathematics and mathematical physics are
usually of the second kind. They encode information about the real
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world; they express properties of the universe that could in principle have
been very different. Newton’s law of gravity is a good example. It tells us
how the attractive force between two bodies depends on their masses, and
how far apart they are. Solving the resulting equations tells us how the
planets orbit the Sun, or how to design a trajectory for a space probe. But
Newton’s law isn’t a mathematical theorem; it’s true for physical reasons, it
fits observations. The law of gravity might have been different. Indeed, it is
different: Einstein’s general theory of relativity improves on Newton by
fitting some observations better, while not messing up those where we
already know Newton’s law does a good job.

The course of human history has been redirected, time and time again,
by an equation. Equations have hidden powers. They reveal the innermost
secrets of nature. This is not the traditional way for historians to organise
the rise and fall of civilisations. Kings and queens and wars and natural
disasters abound in the history books, but equations are thin on the
ground. This is wunfair. In Victorian times, Michael Faraday was
demonstrating connections between magnetism and electricity to
audiences at the Royal Institution in London. Allegedly, Prime Minister
William Gladstone asked whether anything of practical consequence
would come from it. It is said (on the basis of very little actual evidence, but
why ruin a nice story?) that Faraday replied: ‘Yes, sir. One day you will tax
it.” If he did say that, he was right. James Clerk Maxwell transformed early
experimental observations and empirical laws about magnetism and
electricity into a system of equations for electromagnetism. Among the
many consequences were radio, radar, and television.

An equation derives its power from a simple source. It tells us that two
calculations, which appear different, have the same answer. The key
symbol is the equals sign, =. The origins of most mathematical symbols are
either lost in the mists of antiquity, or are so recent that there is no doubt
where they came from. The equals sign is unusual because it dates back
more than 450 years, yet we not only know who invented it, we even know
why. The inventor was Robert Recorde, in 1557, in The Whetstone of Witte.
He used two parallel lines (he used an obsolete word gemowe, meaning
‘twin’) to avoid tedious repetition of the words ‘is equal to’. He chose that
symbol because ‘no two things can be more equal’. Recorde chose well. His
symbol has remained in use for 450 years.

The power of equations lies in the philosophically difficult
correspondence between mathematics, a collective creation of human
minds, and an external physical reality. Equations model deep patterns in
the outside world. By learning to value equations, and to read the stories
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they tell, we can uncover vital features of the world around us. In principle,
there might be other ways to achieve the same result. Many people prefer
words to symbols; language, too, gives us power over our surroundings. But
the verdict of science and technology is that words are too imprecise, and
too limited, to provide an effective route to the deeper aspects of reality.
They are too coloured by human-level assumptions. Words alone can’t
provide the essential insights.

Equations can. They have been a prime mover in human civilisation
for thousands of years. Throughout history, equations have been pulling
the strings of society. Tucked away behind the scenes, to be sure — but the
influence was there, whether it was noticed or not. This is the story of the
ascent of humanity, told through 17 equations.



The squaw on the hippopotamus
Pythagoras’s Theorem

squared

\ Plis equals
pRIAIE

right angle o
~ g g

What does it tell us?

How the three sides of a right-angled triangle are related.

Why is that important?

It provides a vital link between geometry and algebra, allowing
us to calculate distances in terms of coordinates. It also
inspired trigonometry.

What did it lead to?

Surveying, navigation, and more recently special and general
relativity — the best current theories of space, time, and gravity.






sk any school student to name a famous mathematician, and,

assuming they can think of one, more often than not they will opt
for Pythagoras. If not, Archimedes might spring to mind. Even the
illustrious Isaac Newton has to play third fiddle to these two superstars of
the ancient world. Archimedes was an intellectual giant, and Pythagoras
probably wasn'’t, but he deserves more credit than he is often given. Not for
what he achieved, but for what he set in motion.

Pythagoras was born on the Greek island of Samos, in the eastern
Aegean, around 570 BC. He was a philosopher and a geometer. What little
we know about his life comes from much later writers and its historical
accuracy is questionable, but the key events are probably correct. Around
530 BC he moved to Croton, a Greek colony in what is now Italy. There he
founded a philosophico-religious cult, the Pythagoreans, who believed that
the universe is based on number. Their founder’s present-day fame rests on
the theorem that bears his name. It has been taught for more than 2000
years, and has entered popular culture. The 1958 movie Merry Andrew,
starring Danny Kaye, includes a song whose lyrics begin:

The square on the hypotenuse
of a right triangle

is equal to

the sum of the squares

on the two adjacent sides.

The song goes on with some double entendre about not letting your
participle dangle, and associates Einstein, Newton, and the Wright
brothers with the famous theorem. The first two exclaim ‘Eureka!’; no,
that was Archimedes. You will deduce that the lyrics are not hot on
historical accuracy, but that’s Hollywood for you. However, in Chapter 13
we will see that the lyricist (Johnny Mercer) was spot on with Einstein,
probably more so than he realised.

Pythagoras’s theorem appears in a well-known joke, with terrible puns
about the squaw on the hippopotamus. The joke can be found all over the
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internet, but it’s much harder to discover where it came from.! There are
Pythagoras cartoons, T-shirts, and a Greek stamp, Figure 1.

Fig 1 Greek stamp showing Pythagoras’s theorem.

All this fuss notwithstanding, we have no idea whether Pythagoras
actually proved his theorem. In fact, we don’t know whether it was his
theorem at all. It could well have been discovered by one of Pythagoras’s
minions, or some Babylonian or Sumerian scribe. But Pythagoras got the
credit, and his name stuck. Whatever its origins, the theorem and its
consequences have had a gigantic impact on human history. They literally
opened up our world.

The Greeks did not express Pythagoras’s theorem as an equation in the
modern symbolic sense. That came later with the development of algebra.
In ancient times, the theorem was expressed verbally and geometrically. It
attained its most polished form, and its first recorded proof, in the writings
of Euclid of Alexandria. Around 250 BC Euclid became the first modern
mathematician when he wrote his famous Elements, the most influential
mathematical textbook ever. Euclid turned geometry into logic by making
his basic assumptions explicit and invoking them to give systematic proofs
for all of his theorems. He built a conceptual tower whose foundations
were points, lines, and circles, and whose pinnacle was the existence of
precisely five regular solids.

One of the jewels in Euclid’s crown was what we now call Pythagoras’s
theorem: Proposition 47 of Book I of the Elements. In the famous
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translation by Sir Thomas Heath this proposition reads: ‘In right-angled
triangles the square on the side subtending the right angle is equal to the
squares on the sides containing the right angle.’

No hippopotamus, then. No hypotenuse. Not even an explicit ‘sum’ or
‘add’. Just that funny word ‘subtend’, which basically means ‘be opposite
to’. However, Pythagoras’s theorem clearly expresses an equation, because
it contains that vital word: equal.

For the purposes of higher mathematics, the Greeks worked with lines
and areas instead of numbers. So Pythagoras and his Greek successors
would decode the theorem as an equality of areas: ‘The area of a square
constructed using the longest side of a right-angled triangle is the sum of
the areas of the squares formed from the other two sides.” The longest side
is the famous hypotenuse, which means ‘to stretch under’, which it does if
you draw the diagram in the appropriate orientation, as in Figure 2 (left).

Within a mere 2000 years, Pythagoras’s theorem had been recast as the
algebraic equation

a?+bh*=c*

where c is the length of the hypotenuse, a and b are the lengths of the other
two sides, and the small raised 2 means ‘square’. Algebraically, the square
of any number is that number multiplied by itself, and we all know that the
area of any square is the square of the length of its side. So Pythagoras’s
equation, as I shall rename it, says the same thing that Euclid said — except
for various psychological baggage to do with how the ancients thought
about basic mathematical concepts like numbers and areas, which I won't
go into.

Pythagoras’s equation has many uses and implications. Most directly,
it lets you calculate the length of the hypotenuse, given the other two
sides. For instance, suppose that a=3 and b=4. Then ¢*=a*+b*=3%+4%=9
+16=25. Therefore c=5. This is the famous 3-4-5 triangle, ubiquitous in
school mathematics, and the simplest example of a Pythagorean triple: a
list of three whole numbers that satisfies Pythagoras’s equation. The next
simplest, other than scaled versions such as 6-8-10, is the 5-12-13 triangle.
There are infinitely many such triples, and the Greeks knew how to
construct them all. They still retain some interest in number theory, and
even in the last decade new features have been discovered.

Instead of using a and b to work out ¢, you can proceed indirectly, and
solve the equation to obtain a provided that you know b and c. You can
also answer more subtle questions, as we will shortly see.
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Fig 2 Left: Construction lines for Euclid’s proof of Pythagoras. Middle and right: Alternative
proof of the theorem. The outer squares have equal areas, and the shaded triangles all have
equal areas. Therefore the tilted white square has the same area as the other two white
squares combined.

Why is the theorem true? Euclid’s proof is quite complicated, and it
involves drawing five extra lines on the diagram, Figure 2 (left), and
appealing to several previously proved theorems. Victorian schoolboys
(few girls did geometry in those days) referred to it irreverently as
Pythagoras’s pants. A straightforward and intuitive proof, though not the
most elegant, uses four copies of the triangle to relate two solutions of the
same mathematical jigsaw puzzle, Figure 2 (right). The picture is
compelling, but filling in the logical details requires some thought. For
instance: how do we know that the tilted white region in the middle
picture is a square?

There is tantalising evidence that Pythagoras’s theorem was known long
before Pythagoras. A Babylonian clay tablet? in the British Museum
contains, in cuneiform script, a mathematical problem and answer that
can be paraphrased as:

4 is the length and 5 the diagonal. What is the breadth?
4 times 4 is 16.

5 times 5 is 25.

Take 16 from 25 to obtain 9.

What times what must I take to get 9?

3 times 3 is 9.

Therefore 3 is the breadth.



Pythagoras’s Theorem

So the Babylonians certainly knew about the 3-4-5 triangle, a thousand
years before Pythagoras.

Another tablet, YBC 7289 from the Babylonian collection of Yale
University, is shown in Figure 3 (left). It shows a diagram of a square of side
30, whose diagonal is marked with two lists of numbers: 1, 24, 51, 10 and
42, 25, 35. The Babylonians employed base-60 notation for numbers, so
the first list actually refers to 1+24/60 +51/60%+10/60°, which in decimals
is 1.4142129. The square root of 2 is 1.4142135. The second list is 30 times
this. So the Babylonians knew that the diagonal of a square is its side
multiplied by the square root of 2. Since 12+12=2=(v/2)?, this too is an
instance of Pythagoras’s theorem.

vuCugr D P o
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Fig 3 Left: YBC 7289. Right: Plimpton 322.

Even more remarkable, though more enigmatic, is the tablet Plimpton
322 from George Arthur Plimpton’s collection at Columbia University,
Figure 3 (right). It is a table of numbers, with four columns and 15 rows.
The final column just lists the row number, from 1 to 15. In 1945 historians
of science Otto Neugebauer and Abraham Sachs® noticed that in each row,
the square of the number (say ¢) in the third column, minus the square of
the number (say b) in the second column, is itself a square (say a). It follows
that a®+b*=c?, so the table appears to record Pythagorean triples. At least,
this is the case provided four apparent errors are corrected. However, it is
not absolutely certain that Plimpton 322 has anything to do with
Pythagorean triples, and even if it does, it might just have been a
convenient list of triangles whose areas were easy to calculate. These could
then be assembled to yield good approximations to other triangles and
other shapes, perhaps for land measurement.

Another iconic ancient civilisation is that of Egypt. There is some
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evidence that Pythagoras may have visited Egypt as a young man, and
some have conjectured that this is where he learned his theorem. The
surviving records of Egyptian mathematics offer scant support for this idea,
but they are few and specialised. It is often stated, typically in the context
of pyramids, that the Egyptians laid out right angles using a 3—4-5 triangle,
formed from a length of string with knots at 12 equal intervals, and that
archaeologists have found strings of that kind. However, neither claim
makes much sense. Such a technique would not be very reliable, because
strings can stretch and the knots would have to be very accurately spaced.
The precision with which the pyramids at Giza are built is superior to
anything that could be achieved with such a string. Far more practical
tools, similar to a carpenter’s set square, have been found. Egyptologists
specialising in ancient Egyptian mathematics know of no records of string
being employed to form a 3-4-5 triangle, and no examples of such strings
exist. So this story, charming though it may be, is almost certainly a myth.

If Pythagoras could be transplanted into today’s world he would notice
many differences. In his day, medical knowledge was rudimentary, lighting
came from candles and burning torches, and the fastest forms of
communication were a messenger on horseback or a lighted beacon on a
hilltop. The known world encompassed much of Europe, Asia, and Africa —
but not the Americas, Australia, the Arctic, or the Antarctic. Many cultures
considered the world to be flat: a circular disc or even a square aligned with
the four cardinal points. Despite the discoveries of classical Greece this
belief was still widespread in medieval times, in the form of orbis terrae
maps, Figure 4.

Who first realised the world is round? According to Diogenes Laertius, a
third-century Greek biographer, it was Pythagoras. In his book Lives and
Opinions of Eminent Philosophers, a collection of sayings and biographical
notes that is one of our main historical sources for the private lives of the
philosophers of ancient Greece, he wrote: ‘Pythagoras was the first who
called the Earth round, though Theophrastus attributes this to Parmenides
and Zeno to Hesiod.” The ancient Greeks often claimed that major
discoveries had been made by their famous forebears, irrespective of
historical fact, so we can’t take the statement at face value, but it is not in
dispute that from the fifth century BC all reputable Greek philosophers and
mathematicians considered the Earth to be round. The idea does seem to
have originated around the time of Pythagoras, and it might have come
from one of his followers. Or it might have been common currency, based
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Fig 4 Map of the world made around 1100 by the Moroccan cartographer al-Idrisi for King
Roger of Sicily.

on evidence such as the round shadow of the Earth on the Moon during an
eclipse, or the analogy with an obviously round Moon.

Even for the Greeks, though, the Earth was the centre of the universe
and everything else revolved around it. Navigation was carried out by dead
reckoning: looking at the stars and following the coastline. Pythagoras’s
equation changed all that. It set humanity on the path to today’s
understanding of the geography of our planet and its place in the Solar
System. It was a vital first step towards the geometric techniques needed
for mapmaking, navigation, and surveying. It also provided the key to a
vitally important relation between geometry and algebra. This line of
development leads from ancient times right through to general relativity
and modern cosmology, see Chapter 13. Pythagoras’s equation opened up
entirely new directions for human exploration, both metaphorically and
literally. It revealed the shape of our world and its place in the universe.

Many of the triangles encountered in real life are not right-angled, so the
equation’s direct applications may seem limited. However, any triangle can
be cut into two right-angled ones as in Figure 6 (page 11), and any
polygonal shape can be cut into triangles. So right-angled triangles are the
key: they prove that there is a useful relation between the shape of a
triangle and the lengths of its sides. The subject that developed from this
insight is trigonometry: ‘triangle measurement’.
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The right-angled triangle is fundamental to trigonometry, and in
particular it determines the basic trigonometric functions: sine, cosine, and
tangent. The names are Arabic in origin, and the history of these functions
and their many predecessors shows the complicated route by which today’s
version of the topic arose. I'll cut to the chase and explain the eventual
outcome. A right-angled triangle has, of course, a right angle, but its other
two angles are arbitrary, apart from adding to 90°. Associated with any
angle are three functions, that is, rules for calculating an associated
number. For the angle marked A in Figure 5, using the traditional a, b, ¢ for
the three sides, we define the sine (sin), cosine (cos), and tangent (tan) like
this:

sinA=a/c cosA=b/c tanA=a/b

These quantities depend only on the angle A, because all right-angled
triangles with a given angle A are identical except for scale.

b

Fig 5 Trigonometry is based on a right-angle triangle.

In consequence, it is possible to draw up a table of the values of sin, cos,
and tan, for a range of angles, and then use them to calculate features of
right-angled triangles. A typical application, which goes back to ancient
times, is to calculate the height of a tall column using only measurements
made on the ground. Suppose that, from a distance of 100 metres, the
angle to the top of the column is 22°. Take A =22° in Figure 5, so that a is
the height of the column. Then the definition of the tangent function tells
us that

tan22°=a/100
so that
a=100tan 22°.

Since tan 22° is 0.404, to three decimal places, we deduce that a=40.4
metres.
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b

Fig 6 Splitting a triangle into two with right angles.

Once in possession of trigonometric functions, it is straightforward to
extend Pythagoras’s equation to triangles that do not have a right angle.
Figure 6 shows a triangle with an angle C and sides a, b, c. Split the triangle
into two right-angled ones as shown. Then two applications of Pythagoras
and some algebra® prove that

a® +b* —2abcos C=c?

which is similar to Pythagoras’s equation, except for the extra term —2ab
cos C. This ‘cosine rule’ does the same job as Pythagoras, relating c to a and
b, but now we have to include information about the angle C.

The cosine rule is one of the mainstays of trigonometry. If we know
two sides of a triangle and the angle between them, we can use it to
calculate the third side. Other equations then tell us the remaining angles.
All of these equations can ultimately be traced back to right-angled
triangles.

Armed with trigonometric equations and suitable measuring apparatus, we
can carry out surveys and make accurate maps. This is not a new idea. It
appears in the Rhind Papyrus, a collection of ancient Egyptian
mathematical techniques dating from 1650 BC. The Greek philosopher
Thales used the geometry of triangles to estimate the heights of the Giza
pyramids in about 600 BC. Hero of Alexandria described the same
technique in 50 AD. Around 240 BC Greek mathematician, Eratosthenes,
calculated the size of the Earth by observing the angle of the Sun at noon in
two different places: Alexandria and Syene (now Aswan) in Egypt. A
succession of Arabian scholars preserved and developed these methods,
applying them in particular to astronomical measurements such as the size
of the Earth.

Surveying began to take off in 1533 when the Dutch mapmaker
Gemma Frisius explained how to use trigonometry to produce accurate
maps, in Libellus de Locorum Describendorum Ratione (‘Booklet Concerning a

11
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Way of Describing Places’). Word of the method spread across Europe,
reaching the ears of the Danish nobleman and astronomer Tycho Brahe. In
1579 Tycho used it to make an accurate map of Hven, the island where his
observatory was located. By 1615 the Dutch mathematician Willebrord
Snellius (Snel van Royen) had developed the method into essentially its
modern form: triangulation. The area being surveyed is covered with a
network of triangles. By measuring one initial length very carefully, and
many angles, the locations of the corners of the triangle, and hence any
interesting features within them, can be calculated. Snellius worked out
the distance between two Dutch towns, Alkmaar and Bergen op Zoom,
using a network of 33 triangles. He chose these towns because they lay on
the same line of longitude and were exactly one degree of arc apart.
Knowing the distance between them, he could work out the size of the
Earth, which he published in his Eratosthenes Batavus (‘The Dutch
Eratosthenes’) in 1617. His result is accurate to within 4%. He also
modified the equations of trigonometry to reflect the spherical nature of
the Earth’s surface, an important step towards effective navigation.

Triangulation is an indirect method for calculating distances using
angles. When surveying a stretch of land, be it a building site or a country,
the main practical consideration is that it is much easier to measure angles
than it is to measure distances. Triangulation lets us measure a few
distances and lots of angles; then everything else follows from the
trigonometric equations. The method begins by setting out one line
between two points, called the baseline, and measuring its length directly
to very high accuracy. Then we choose a prominent point in the landscape
that is visible from both ends of the baseline, and measure the angle from
the baseline to that point, at both ends of the baseline. Now we have a
triangle, and we know one side of it and two angles, which fix its shape and
size. We can then use trigonometry to work out the other two sides.

In effect, we now have two more baselines: the newly calculated sides
of the triangle. From those, we can measure angles to other, more distant
points. Continue this process to create a network of triangles that covers
the area being surveyed. Within each triangle, observe the angles to all
noteworthy features — church towers, crossroads, and so on. The same
trigonometric trick pinpoints their precise locations. As a final twist, the
accuracy of the entire survey can be checked by measuring one of the final
sides directly.

By the late eighteenth century, triangulation was being employed
routinely in surveys. The Ordnance Survey of Great Britain began in 1783,
taking 70 years to complete the task. The Great Trigonometric Survey of
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India, which among other things mapped the Himalayas and determined
the height of Mount Everest, started in 1801. In the twenty-first century,
most large-scale surveying is done using satellite photographs and GPS (the
Global Positioning System). Explicit triangulation is no longer employed.
But it is still there, behind the scenes, in the methods used to deduce
locations from the satellite data.

Pythagoras’s theorem was also vital to the invention of coordinate
geometry. This is a way to represent geometric figures in terms of
numbers, using a system of lines, known as axes, labelled with numbers.
The most familiar version is known as Cartesian coordinates in the plane,
in honour of the French mathematician and philosopher René Descartes,
who was one of the great pioneers in this area — though not the first. Draw
two lines: a horizontal one labelled x and a vertical one labelled y. These
lines are known as axes (plural of axis), and they cross at a point called the
origin. Mark points along these two axes according to their distance from
the origin, like the markings on a ruler: positive numbers to the right and
up, negative to the left and down. Now we can determine any point in the
plane in terms of two numbers x and y, its coordinates, by connecting the
point to the two axes as in Figure 7. The pair of numbers (x, y) completely
specifies the location of the point.

A
positive

L T e

-« —_
. l positive
negative

Fig 7 The two axes and the coordinates of a point.

The great mathematicians of seventeenth-century Europe realised that,
in this context, a line or curve in the plane corresponds to the set of
solutions (x, y) of some equation in x and y. For instance, y=x determines a

13
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diagonal line sloping from lower left to top right, because (x, y) lies on that
line if and only if y=x. In general, a linear equation — of the form ax+by=c
for constants a, b, c — corresponds to a straight line, and vice versa.

What equation corresponds to a circle? This is where Pythagoras’s
equation comes in. It implies that the distance r from the origin to the
point (x, y) satisfies

P =x*+y?

and we can solve this for r to obtain

Since the set of all points that lie at distance r from the origin is a circle of
radius r, whose centre is the origin, so the same equation defines a circle.
More generally, the circle of radius r with centre at (a, b) corresponds to the
equation

(x—a)’+(y = b)*=r’

and the same equation determines the distance r between the two points
(a,b) and (x,y). So Pythagoras’s theorem tells us two vital things: which
equations yield circles, and how to calculate distances from coordinates.

Pythagoras’s theorem, then, is important in its own right, but it exerts even
more influence through its generalisations. Here I will pursue just one
strand of these later developments to bring out the connection with
relativity, to which we return in Chapter 13.

The proof of Pythagoras’s theorem in Euclid’s Elements places the
theorem firmly within the realm of Euclidean geometry. There was a time
when that phrase could have been replaced by just ‘geometry’, because it
was generally assumed that Euclid’s geometry was the true geometry of
physical space. It was obvious. Like most things assumed to be obvious, it
turned out to be false.

Euclid derived all of his theorems from a small number of basic
assumptions, which he classified as definitions, axioms, and common
notions. His set-up was elegant, intuitive, and concise, with one glaring
exception, his fifth axiom: ‘If a straight line falling on two straight lines
makes the interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side on which are
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the angles less than the two right angles.” It’s a bit of a mouthful: Figure 8
may help.

if these S
angles add then

to less than these lines

180° meet here

Fig 8 Euclid’s parallel axiom.

For well over a thousand years, mathematicians tried to repair what
they saw as a flaw. They weren’t just looking for something simpler and
more intuitive that would achieve the same end, although several of them
found such things. They wanted to get rid of the awkward axiom
altogether, by proving it. After several centuries, mathematicians finally
realised that there were alternative ‘non-Euclidean’ geometries, implying
that no such proof existed. These new geometries were just as logically
consistent as Euclid’s, and they obeyed all of his axioms except the parallel
axiom. They could be interpreted as the geometry of geodesics — shortest
paths - on curved surfaces, Figure 9. This focused attention on the meaning
of curvature.

Fig 9 Curvature of a surface. Left: zero curvature. Middle: positive curvature. Right: negative
curvature.

The plane of Euclid is flat, curvature zero. A sphere has the same
curvature everywhere, and it is positive: near any point it looks like a
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dome. (As a technical fine point: great circles meet in two points, not one
as Euclid’s axioms require, so spherical geometry is modified by identifying
antipodal points on the sphere — considering them to be identical. The
surface becomes a so-called projective plane and the geometry is called
elliptic.) A surface of constant negative curvature also exists: near any
point, it looks like a saddle. This surface is called the hyperbolic plane, and
it can be represented in several entirely prosaic ways. Perhaps the simplest
is to consider it as the interior of a circular disc, and to define ‘line’ as an arc
of a circle meeting the edge of the disc at right angles (Figure 10).

Fig 10 Disc model of the hyperbolic plane. All three lines through P fail to meet line L.

It might seem that, while plane geometry might be non-Euclidean, this
must be impossible for the geometry of space. You can bend a surface by
pushing it into a third dimension, but you can’t bend space because there’s
no room for an extra dimension along which to push it. However, this is
a rather naive view. For example, we can model three-dimensional
hyperbolic space using the interior of a sphere. Lines are modelled as
arcs of circles that meet the boundary at right angles, and planes are
modelled as parts of spheres that meet the boundary at right angles. This
geometry is three-dimensional, satisfies all of Fuclid’s axioms except the
Fifth, and in a sense that can be pinned down it defines a curved three-
dimensional space. But it’s not curved round anything, or in any new
direction.

It’s just curved.

With all these new geometries available, a new point of view began to
occupy centre stage — but as physics, not mathematics. Since space doesn’t
have to be Euclidean, what shape is it? Scientists realised that they didn’t
actually know. In 1813, Gauss, knowing that in a curved space the angles
of a triangle do not add to 180°, measured the angles of a triangle formed
by three mountains — the Brocken, the Hohehagen, and the Inselberg. He
obtained a sum 15 seconds of arc greater than 180°. If correct, this
indicated that space (in that region, at least) was positively curved. But
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you’d need a far larger triangle, and far more accurate measurements, to
eliminate observational errors. So Gauss’s observations were inconclusive.
Space might be Euclidean, and then again, it might not be.

My remark that three-dimensional hyperbolic space is ‘just curved’
depends on a new point of view about curvature, which also goes back
to Gauss. The sphere has constant positive curvature, and the hyperbolic
plane has constant negative curvature. But the curvature of a surface
doesn’t have to be constant. It might be sharply curved in some places, less
sharply curved in others. Indeed, it might be positive in some regions but
negative in others. The curvature could vary continuously from place to
place. If the surface looks like a dog’s bone, then the blobs at the ends are
positively curved but the part that joins them is negatively curved.

Gauss searched for a formula to characterise the curvature of a surface
at any point. When he eventually found it, and published it in his
Disquisitiones Generales Circa Superficies Curva (‘General Research on Curved
Surfaces’) of 1828, he named it the ‘remarkable theorem’. What was so
remarkable? Gauss had started from the naive view of curvature: embed the
surface in three-dimensional space and calculate how bent it is. But the
answer told him that this surrounding space didn’t matter. It didn’t enter
into the formula. He wrote: ‘The formula ... leads itself to the remarkable
theorem: If a curved surface is developed upon any other surface whatever,
the measure of curvature in each point remains unchanged.” By
‘developed’ he meant ‘wrapped round’.

Take a flat sheet of paper, zero curvature. Now wrap it round a bottle. If
the bottle is cylindrical the paper fits perfectly, without being folded,
stretched, or torn. It is bent as far as visual appearance goes, but it’s a trivial
kind of bending, because it hasn’t changed geometry on the paper in any
way. It's just changed how the paper relates to the surrounding space.
Draw a right-angled triangle on the flat paper, measure its sides, check
Pythagoras. Now wrap the diagram round a bottle. The lengths of sides,
measured along the paper, don’t change. Pythagoras is still true.

The surface of a sphere, however, has nonzero curvature. So it is not
possible to wrap a sheet of paper so that it fits snugly against a sphere,
without folding it, stretching it, or tearing it. Geometry on a sphere is
intrinsically different from geometry on a plane. For example, the Earth’s
equator and the lines of longitude for 0° and 90° to its north determine a
triangle that has three right angles and three equal sides (assuming the
Earth to be a sphere). So Pythagoras’s equation is false.

17
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Today we call curvature in its intrinsic sense ‘Gaussian curvature’.
Gauss explained why it is important using a vivid analogy, still current.
Imagine an ant confined to the surface. How can it work out whether the
surface is curved? It can’t step outside the surface to see whether it looks
bent. But it can use Gauss’s formula by making suitable measurements
purely within the surface. We are in the same position as the ant when we
try to figure out the true geometry of our space. We can’t step outside it.
Before we can emulate the ant by taking measurements, however, we need
a formula for the curvature of a space of three dimensions. Gauss didn’t
have one. But one of his students, in a fit of recklessness, claimed that he
did.

The student was Georg Bernhard Riemann, and he was trying to achieve
what German universities call Habilitation, the next step after a PhD. In
Riemann’s day this meant that you could charge students a fee for your
lectures. Then and now, gaining Habilitation requires presenting your
research in a public lecture that is also an examination. The candidate
offers several topics, and the examiner, which in Riemann’s case was
Gauss, chooses one. Riemann, a brilliant mathematical talent, listed several
orthodox topics that he knew backwards, but in a rush of blood to the
brain he also suggested ‘On the hypotheses which lie at the foundation of
geometry’. Gauss had long been interested in just that, and he naturally
selected it for Riemann’s examination.

Riemann instantly regretted offering something so challenging. He had
a hearty dislike of public speaking, and he hadn’t thought the mathematics
through in detail. He just had some vague, though fascinating, ideas about
curved space. In any number of dimensions. What Gauss had done for two
dimensions, with his remarkable theorem, Riemann wanted to do in as
many dimensions as you like. Now he had to perform, and fast. The lecture
was looming. The pressure nearly gave him a nervous breakdown, and his
day job helping Gauss’s collaborator Wilhelm Weber with experiments in
electricity didn’t help. Well, maybe it did, because while Riemann was
thinking about the relation between electrical and magnetic forces in the
day job, he realised that force can be related to curvature. Working
backwards, he could use the mathematics of forces to define curvature, as
required for his examination.

In 1854 Riemann delivered his lecture, which was warmly received,
and no wonder. He began by defining what he called a ‘manifold’, in the
sense of many-foldedness. Formally, a ‘manifold’, is specified by a system
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of many coordinates, together with a formula for the distance between
nearby points, now called a Riemannian metric. Informally, a manifold is a
multidimensional space in all its glory. The climax of Riemann’s lecture
was a formula that generalised Gauss’s remarkable theorem: it defined the
curvature of the manifold solely in terms of its metric. And it is here that
the tale comes full circle like the snake Orobouros and swallows its own
tail, because the metric contains visible remnants of Pythagoras.

Suppose, for example, that the manifold has three dimensions. Let the
coordinates of a point be (x, y, z), and let (x+dx, y+dy, z+dz) be a nearby
point, where the d means ‘a little bit of’. If the space is Euclidean, with zero
curvature, the distance ds between these two points satisfies the equation

ds? = dx* + dy* + dz?

and this is just Pythagoras, restricted to points that are close together. If the
space is curved, with variable curvature from point to point, the analogous
formula, the metric, looks like this:

ds?=Xdx*>+Ydy? +Zdz* + 2Udxdy + 2V dxdz 4+ 2W dy dz

Here X, Y, Z, U, V, W can depend on x, y and z. It may seem a bit of a
mouthful, but like Pythagoras’s equation it involves sums of squares (and
closely related products of two quantities like dxdy) plus a few bells and
whistles. The 2s occur because the formula can be packaged as a 3 x 3 table,

or matrix:
X U V
u v w
VvV W Z

where X, Y, Z appear once, but U, V, W appear twice. The table is
symmetric about its diagonal; in the language of differential geometry it
is a symmetric tensor. Riemann’s generalisation of Gauss’s remarkable
theorem is a formula for the curvature of the manifold, at any given point,
in terms of this tensor. In the special case when Pythagoras applies, the
curvature turns out to be zero. So the validity of Pythagoras’s equation is a
test for the absence of curvature.

Like Gauss’s formula, Riemann'’s expression for curvature depends only
on the manifold’s metric. An ant confined to the manifold could observe
the metric by measuring tiny triangles and computing the curvature.
Curvature is an intrinsic property of a manifold, independent of any
surrounding space. Indeed, the metric already determines the geometry, so
no surrounding space is required. In particular, we human ants can ask
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what shape our vast and mysterious universe is, and hope to answer it by
making observations that do not require us to step outside the universe.
Which is just as well, because we can'’t.

Riemann found his formula by using forces to define geometry. Fifty
years later, Einstein turned Riemann’s idea on its head, using geometry to
define the force of gravity in his general theory of relativity, and inspiring
new ideas about the shape of the universe: see Chapter 13. It's an
astonishing progression of events. Pythagoras’s equation first came into
being around 3500 years ago to measure a farmer’s land. Its extension to
triangles without right angles, and triangles on a sphere, allowed us to map
our continents and measure our planet. And a remarkable generalisation
lets us measure the shape of the universe. Big ideas have small beginnings.
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multiply add

|
log Xy = log x + log y

logarithm

What does it tell us?

How to multiply numbers by adding related numbers instead.

Why is that important?

Addition is much simpler than multiplication.

What did it lead to?

Efficient methods for calculating astronomical phenomena
such as eclipses and planetary orbits. Quick ways to perform
scientific calculations. The engineers’ faithful companion, the
slide rule. Radioactive decay and the psychophysics of human
perception.






umbers originated in practical problems: recording property, such as

animals or land, and financial transactions, such as taxation and
keeping accounts. The earliest known number notation, aside from simple
tallying marks like Illl, is found on the outside of clay envelopes. In 8000 BC
Mesopotamian accountants kept records using small clay tokens of various
shapes. The archaeologist Denise Schmandt-Besserat realised that each
shape represented a basic commodity — a sphere for grain, an egg for a jar of
oil, and so on. For security, the tokens were sealed in clay wrappings. But it
was a nuisance to break a clay envelope open to find out how many tokens
were inside, so the ancient accountants scratched symbols on the outside
to show what was inside. Eventually they realised that once you had these
symbols, you could scrap the tokens. The result was a series of written
symbols for numbers — the origin of all later number symbols, and perhaps
of writing too.

Along with numbers came arithmetic: methods for adding, subtracting,
multiplying, and dividing numbers. Devices like the abacus were used to
do the sums; then the results could be recorded in symbols. After a time,
ways were found to use the symbols to perform the calculations without
mechanical assistance, although the abacus is still widely used in many
parts of the world, while electronic calculators have supplanted pen and
paper calculations in most other countries.

Arithmetic proved essential in other ways, too, especially in astronomy
and surveying. As the basic outlines of the physical sciences began to
emerge, the fledgeling scientists needed to perform ever more elaborate
calculations, by hand. Often this took up much of their time, sometimes
months or years, getting in the way of more creative activities. Eventually
it became essential to speed up the process. Innumerable mechanical
devices were invented, but the most important breakthrough was a
conceptual one: think first, calculate later. Using clever mathematics,
you could make difficult calculations much easier.

The new mathematics quickly developed a life of its own, turning out
to have deep theoretical implications as well as practical ones. Today, those
early ideas have become an indispensable tool throughout science,
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reaching even into psychology and the humanities. They were widely used
until the 1980s, when computers rendered them obsolete for practical
purposes, but, despite that, their importance in mathematics and science
has continued to grow.

The central idea is a mathematical technique called a logarithm. Its
inventor was a Scottish laird, but it took a geometry professor with strong
interests in navigation and astronomy to replace the laird’s brilliant but
flawed idea by a much better one.

In March 1615 Henry Briggs wrote a letter to James Ussher, recording a
crucial event in the history of science:

Napper, lord of Markinston, hath set my head and hands a work with
his new and admirable logarithms. I hope to see him this summer, if it
please God, for I never saw a book which pleased me better or made me
more wonder.

Briggs was the first professor of geometry at Gresham College in London,
and ‘Napper, lord of Markinston’ was John Napier, eighth laird of
Merchiston, now part of the city of Edinburgh in Scotland. Napier seems
to have been a bit of a mystic; he had strong theological interests, but they
mostly centred on the book of Revelation. In his view, his most important
work was A Plaine Discovery of the Whole Revelation of St John, which led him
to predict that the world would end in either 1688 or 1700. He is thought
to have engaged in both alchemy and necromancy, and his interests in the
occult lent him a reputation as a magician. According to rumour, he
carried a black spider in a small box everywhere he went, and possessed a
‘familiar’, or magical companion: a black cockerel. According to one of his
descendants, Mark Napier, John employed his familiar to catch servants
who were stealing. He locked the suspect in a room with the cockerel and
instructed them to stroke it, telling them that his magical bird would
unerringly detect the guilty. But Napier’s mysticism had a rational core,
which in this particular instance involved coating the cockerel with a thin
layer of soot. An innocent servant would be confident enough to stroke the
bird as instructed, and would get soot on their hands. A guilty one, fearing
detection, would avoid stroking the bird. So, ironically, clean hands proved
you were guilty.

Napier devoted much of his time to mathematics, especially methods
for speeding up complicated arithmetical calculations. One invention,
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Napier’s bones, was a set of ten rods, marked with numbers, which
simplified the process of long multiplication. Even better was the
invention that made his reputation and created a scientific revolution:
not his book on Revelation, as he had hoped, but his Mirifici Logarithmorum
Canonis Descriptio (‘Description of the Wonderful Canon of Logarithms’) of
1614. The preface shows that Napier knew exactly what he had produced,
and what it was good for."

Since nothing is more tedious, fellow mathematicians, in the practice
of the mathematical arts, than the great delays suffered in the tedium
of lengthy multiplications and divisions, the finding of ratios, and in
the extraction of square and cube roots — and ... the many slippery
errors that can arise: I had therefore been turning over in my mind, by
what sure and expeditious art, I might be able to improve upon these
said difficulties. In the end after much thought, finally I have found an
amazing way of shortening the proceedings ... it is a pleasant task to set
out the method for the public use of mathematicians.

The moment Briggs heard of logarithms, he was enchanted. Like many
mathematicians of his era, he spent a lot of his time performing
astronomical calculations. We know this because another letter from
Briggs to Ussher, dated 1610, mentions calculating eclipses, and because
Briggs had earlier published two books of numerical tables, one related to
the North Pole and the other to navigation. All of these works had required
vast quantities of complicated arithmetic and trigonometry. Napier’s
invention would save a great deal of tedious labour. But the more Briggs
studied the book, the more convinced he became that although Napier’s
strategy was wonderful, he’d got his tactics wrong. Briggs came up with a
simple but effective improvement, and made the long journey to Scotland.
When they met, ‘almost one quarter of an hour was spent, each beholding
the other with admiration, before one word was spoken’.?

What was it that excited so much admiration? The vital observation,
obvious to anyone learning arithmetic, was that adding numbers is
relatively easy, but multiplying them is not. Multiplication requires many
more arithmetical operations than addition. For example, adding two ten-
digit numbers involves about ten simple steps, but multiplication requires
200. With modern computers, this issue is still important, but now it is
tucked away behind the scenes in the algorithms used for multiplication.
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But in Napier’s day it all had to be done by hand. Wouldn'’t it be great if
there were some mathematical trick that would convert those nasty
multiplications into nice, quick addition sums? It sounds too good to be
true, but Napier realised that it was possible. The trick was to work with
powers of a fixed number.

In algebra, powers of an unknown x are indicated by a small raised
number. That is, xx=x%, xxx =x>, xxxx=x* and so on, where as usual in
algebra placing two letters next to each other means you should multiply
them together. So, for instance, 10*=10x 10x 10x 10=10,000. You don’t
need to play around with such expressions for long before you discover an
easy way to work out, say, 10* x 10°. Just write down

10,000 x 1,000 = (10 x 10 x 10 x 10) x (10 x 10 x 10)
10 x 10 x 10 x 10 x 10 x 10 x 10
= 10,000,000

The number of Os in the answer is 7, which equals 4 + 3. The first step in the
calculation shows why it is 4+ 3: we stick four 10s and three 10s next to
each other. In short,

10* x 103 =10**3 =107

In the same way, whatever the value of x might be, if we multiply its ath
power by its bth power, where a and b are whole numbers, then we get the
(a+b)th power:

a b a+b

X X =X

This may seem an innocuous formula, but on the left it multiplies two
quantities together, while on the right the main step is to add a and b,
which is simpler.

Suppose you wanted to multiply, say, 2.67 by 3.51. By long
multiplication you get 9.3717, which to two decimal places is 9.37.
What if you try to use the previous formula? The trick lies in the choice of
x. If we take x to be 1.001, then a bit of arithmetic reveals that

(1.001)’% =2.67
(1.001)'%%¢ =3.51

correct to two decimal places. The formula then tells us that 2.87 x 3.41 is

(1'001)983+ 1256 _ (1.001)2239

which, to two decimal places, is 9.37.
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The core of the calculation is an easy addition: 983 +1256=2239.
However, if you try to check my arithmetic you will quickly realise that if
anything I've made the problem harder, not easier. To work out (1.001)°%3
you have to multiply 1.001 by itself 983 times. And to discover that 983 is
the right power to use, you have to do even more work. So at first sight this
seems like a pretty useless idea.

Napier’s great insight was that this objection is wrong. But to overcome
it, some hardy soul has to calculate lots of powers of 1.001, starting with
(1.001)* and going up to something like (1.001)'%°°°, Then they can
publish a table of all these powers. After that, most of the work has been
done. You just have to run your fingers down the successive powers until
you see 2.67 next to 983; you similarly locate 3.51 next to 1256. Then you
add those two numbers to get 2239. The corresponding row of the table
tells you that this power of 1.001 is 9.37. Job done.

Really accurate results require powers of something a lot closer to 1,
such as 1.000001. This makes the table far bigger, with a million or so
powers. Doing the calculations for that table is a huge enterprise. But it
has to be done only once. If some self-sacrificing benefactor makes the
effort up front, succeeding generations will be saved a gigantic amount of
arithmetic.

In the context of this example, we can say that the powers 983 and
1256 are the logarithms of the numbers 2.67 and 3.51 that we wish to
multiply. Similarly 2239 is the logarithm of their product 9.38. Writing log
as an abbreviation, what we have done amounts to the equation

logab=loga—+ loghb

which is valid for any numbers a and b. The rather arbitrary choice of 1.001
is called the base. If we use a different base, the logarithms that we calculate
are also different, but for any fixed base everything works the same way.

This is what Napier should have done. But for reasons that we can only
guess at, he did something slightly different. Briggs, approaching the
technique from a fresh perspective, spotted two ways to improve on
Napier’s idea.

When Napier started thinking about powers of numbers, in the late
sixteenth century, the idea of reducing multiplication to addition was
already circulating among mathematicians. A rather complicated method
known as ‘prosthapheiresis’, based on a formula involving trigonometric
functions, was in use in Denmark.® Napier, intrigued, was smart enough to
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realise that powers of a fixed number could do the same job more simply.
The necessary tables didn’t exist — but that was easily remedied. Some
public-spirited soul must carry out the work. Napier volunteered himself
for the task, but he made a strategic error. Instead of using a base that was
slightly bigger than 1, he used a base slightly smaller than 1. In
consequence, the sequence of powers started out with big numbers,
which got successively smaller. This made the calculations slightly more
clumsy.

Briggs spotted this problem, and saw how to deal with it: use a base
slightly larger than 1. He also spotted a subtler problem, and dealt with
that as well. If Napier's method were modified to work with powers of
something like 1.0000000001, there would be no straightforward relation
between the logarithms of, say, 12.3456 and 1.23456. So it wasn't entirely
clear when the table could stop. The source of the problem was the value of
log 10, because

log 10x = log 10 + log x

Unfortunately log 10 was messy: with the base 1.0000000001 the
logarithm of 10 was 23,025,850,929. Briggs thought it would be much
nicer if the base could be chosen so that log 10=1. Then log 10x=1 +1og x,
so that whatever log 1.23456 might be, you just had to add 1 to it to get log
12.3456. Now tables of logarithms need only run from 1 to 10. If bigger
numbers turned up, you just added the appropriate whole number.

To make log 10=1, you do what Napier did, using a base of
1.0000000001, but then you divide every logarithm by that curious
number 23,025,850,929. The resulting table consists of logarithms to base
10, which I'll write as logio x. They satisfy

log,o xy = 10g,o X+ logyo y
as before, but also
log,, 10x=log;o x+1

Within two years Napier was dead, so Briggs started work on a table of base-
10 logarithms. In 1617 he published Logarithmorum Chilias Prima
(‘Logarithms of the First Chiliad’), the logarithms of the integers from 1
to 1000 accurate to 14 decimal places. In 1624 he followed it up with
Arithmetic Logarithmica (‘Arithmetic of Logarithms’), a table of base-10
logarithms of numbers from 1 to 20,000 and from 90,000 to 100,000, to
the same accuracy. Others rapidly followed Briggs’s lead, filling in the large



Logarithms

gap and developing auxiliary tables such as logarithms of trigonometric
functions like log sin x.

The same ideas that inspired logarithms allow us to define powers x of a
positive variable x for values of a that are not positive whole numbers. All
we have to do is insist that our definitions must be consistent with the
equation x“x”=x"**, and follow our noses. To avoid nasty complications, it
is best to assume x is positive, and to define x” so that this is also positive.
(For negative x, it’s best to introduce complex numbers, as in Chapter 5.)

For example, what is x°? Bearing in mind that x' =x, the formula says
that x° must satisfy x°x=x""'=x. Dividing by x we find that xX°=1. Now

what about x'? Well, the formula says that x 'x=x"'*!
1

=x"=1. Dividing
by x, we get x ' =1/x. Similarly x ?=1/x% x >=1/x>, and so on.

It starts to get more interesting, and potentially very useful, when we
think about x'2. This has to satisfy x!/? x2=x1/2"12_x'=x So x!7?,
multiplied by itself, is x. The only number with this property is the square
root of x. So x1/2 = /x. Similarly, x/® = /x, the cube root. Continuing in this
manner we can define x”/7 for any fraction p/q. Then, using fractions to
approximate real numbers, we can define x” for any real a. And the
equation x“x”=x*** still holds.

It also follows that log \/x =1 log x and log /x=1 log x, so we can
calculate square roots and cube roots easily using a table of logarithms. For
example, to find the square root of a number we form its logarithm, divide
by 2, and then work out which number has the result as its logarithm. For
cube roots, do the same but divide by 3. Traditional methods for these
problems were tedious and complicated. You can see why Napier
showcased square and cube roots in the preface to his book.

As soon as complete tables of logarithms were available, they became an
indispensable tool for scientists, engineers, surveyors, and navigators. They
saved time, they saved effort, and they increased the likelihood that the
answer was correct. Early on, astronomy was a major beneficiary, because
astronomers routinely needed to perform long and difficult calculations.
The French mathematician and astronomer Pierre Simon de Laplace said
that the invention of logarithms ‘reduces to a few days the labour of many
months, doubles the life of the astronomer, and spares him the errors and
disgust’. As the use of machinery in manufacturing grew, engineers started
to make more and more use of mathematics — to design complex gears,
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analyse the stability of bridges and buildings, and construct cars, lorries,
ships, and aeroplanes. Logarithms were a firm part of the school
mathematics curriculum a few decades ago. And engineers carried what
was in effect an analogue calculator for logarithms in their pockets, a
physical representation of the basic equation for logarithms for on-the-spot
use. They called it a slide rule, and they used it routinely in applications
ranging from architecture to aircraft design.

The first slide rule was constructed by an English mathematician,
William Oughtred, in 1630, using circular scales. He modified the design in
1632, by making the two rulers straight. This was the first slide rule. The
idea is simple: when you place two rods end to end, their lengths add. If the
rods are marked using a logarithmic scale, in which numbers are spaced
according to their logarithms, then the corresponding numbers multiply.
For instance, set the 1 on one rod against the 2 on the other. Then against
any number x on the first rod, we find 2x on the second. So opposite 3 we
find 6, and so on, see Figure 11. If the numbers are more complicated, say
2.67 and 3.51, we place 1 opposite 2.67 and read off whatever is opposite
3.59, namely 9.37. It's just as easy.

f«———log(3)—>

1 2
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Fig 11 Multiplying 2 by 3 on a slide rule.

Engineers quickly developed fancy slide rules with trigonometric
functions, square roots, log-log scales (logarithms of logarithms) to
calculate powers, and so on. Eventually logarithms took a back seat to
digital computers, but even now the logarithm still plays a huge role in
science and technology, alongside its inseparable companion, the
exponential function. For base-10 logarithms, this is the function 10%
for natural logarithms, the function e*, where e=2.71828, approximately.
In each pair, the two functions are inverse to each other. If you take a
number, form its logarithm, and then form the exponential of that, you get
back the number you started with.

Why do we need logarithms now that we have computers?
In 2011 a magnitude 9.0 earthquake just off the east coast of Japan
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caused a gigantic tsunami, which devastated a large populated area and
killed around 25,000 people. On the coast was a nuclear power plant,
Fukushima Dai-ichi (Fukushima number 1 power plant, to distinguish it
from a second nuclear power plant situated nearby). It comprised six
separate nuclear reactors: three were in operation when the tsunami struck;
the other three had temporarily ceased operating and their fuel had been
transferred to pools of water outside the reactors but inside the reactor
buildings.

The tsunami overwhelmed the plant’s defences, cutting the supply of
electrical power. The three operating reactors (numbers 1, 2, and 3) were
shut down as a safety measure, but their cooling systems were still needed
to stop the fuel from melting. However, the tsunami also wrecked the
emergency generators, which were intended to power the cooling system
and other safety-critical systems. The next level of backup, batteries,
quickly ran out of power. The cooling system stopped and the nuclear fuel
in several reactors began to overheat. Improvising, the operators used fire
engines to pump seawater into the three operating reactors, but this
reacted with the zirconium cladding on the fuel rods to produce hydrogen.
The build-up of hydrogen caused an explosion in the building housing
Reactor 1. Reactors 2 and 3 soon suffered the same fate. The water in the
pool of Reactor 4 drained out, leaving its fuel exposed. By the time the
operators regained some semblance of control, at least one reactor
containment vessel had cracked, and radiation was leaking out into the
local environment. The Japanese authorities evacuated 200,000 people
from the surrounding area because the radiation was well above normal
safety limits. Six months later, the company operating the reactors,
TEPCO, stated that the situation remained critical and much more work
would be needed before the reactors could be considered fully under
control, but claimed the leakage had been stopped.

I don't want to analyse the merits or otherwise of nuclear power here,
but I do want to show how the logarithm answers a vital question: if you
know how much radioactive material has been released, and of what kind,
how long will it remain in the environment, where it could be hazardous?

Radioactive elements decay; that is, they turn into other elements
through nuclear processes, emitting nuclear particles as they do so. It is
these particles that constitute the radiation. The level of radioactivity falls
away over time just as the temperature of a hot body falls when it cools:
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exponentially. So, in appropriate units, which I won't discuss here, the
level of radioactivity N(t) at time t follows the equation

N(t)=Nge ¥

where Ny is the initial level and k is a constant depending on the element
concerned. More precisely, it depends on which form, or isotope, of the
element we are considering.

A convenient measure of the time radioactivity persists is the half-life,
a concept first introduced in 1907. This is the time it takes for an initial
level Ny to drop to half that size. To calculate the half-life, we solve the
equation

%N() = Noefkt
by taking logarithms of both sides. The result is

_log2  0.6931
Tk«

t

and we can work this out because k is known from experiments.

The half-life is a convenient way to assess how long the radiation will
persist. Suppose that the half-life is one week, for instance. Then the
original rate at which the material emits radiation halves after 1 week, is
down to one quarter after 2 weeks, one eighth after 3 weeks, and so on.
It takes 10 weeks to drop to one thousandth of its original level (actually
1/1024), and 20 weeks to drop to one millionth.

In accidents with conventional nuclear reactors, the most important
radioactive products are iodine-131 (a radioactive isotope of iodine) and
caesium-137 (a radioactive isotope of caesium). The first can cause thyroid
cancer, because the thyroid gland concentrates iodine. The half-life of
iodine-131 is only 8 days, so it causes little damage if the right medication
is available, and its dangers decrease fairly rapidly unless it continues to
leak. The standard treatment is to give people iodine tablets, which reduce
the amount of the radioactive form that is taken up by the body, but the
most effective remedy is to stop drinking contaminated milk.

Caesium-137 is very different: it has a half-life of 30 years. It takes
about 200 years for the level of radioactivity to drop to one hundredth of
its initial value, so it remains a hazard for a very long time. The main
practical issue in a reactor accident is contamination of soil and buildings.
Decontamination is to some extent feasible, but expensive. For example,
the soil can be removed, carted away, and stored somewhere safe. But this
creates huge amounts of low-level radioactive waste.
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Radioactive decay is just one area of many in which Napier's and
Briggs’s logarithms continue to serve science and humanity. If you thumb
through later chapters you will find them popping up in thermodynamics
and information theory, for example. Even though fast computers have
now made logarithms redundant for their original purpose, rapid
calculations, they remain central to science for conceptual rather than
computational reasons.

Another application of logarithms comes from studies of human
perception: how we sense the world around us. The early pioneers of the
psychophysics of perception made extensive studies of vision, hearing, and
touch, and they turned up some intriguing mathematical regularities.

In the 1840s a German doctor, Ernst Weber, carried out experiments to
determine how sensitive human perception is. His subjects were given
weights to hold in their hands, and asked when they could tell that one
weight felt heavier than another. Weber could then work out what the
smallest detectable difference in weight was. Perhaps surprisingly, this
difference (for a given experimental subject) was not a fixed amount. It
depended on how heavy the weights being compared were. People didn’t
sense an absolute minimum difference — 50 grams, say. They sensed a
relative minimum difference — 1% of the weights under comparison, say.
That is, the smallest difference that the human senses can detect is
proportional to the stimulus, the actual physical quantity.

In the 1850s Gustav Fechner rediscovered the same law, and recast it
mathematically. This led him to an equation, which he called Weber’s law,
but nowadays it is usually called Fechner’s law (or the Weber-Fechner law
if you're a purist). It states that the perceived sensation is proportional to
the logarithm of the stimulus. Experiments suggested that this law applies
not only to our sense of weight but to vision and hearing as well. If we look
at a light, the brightness that we perceive varies as the logarithm of the
actual energy output. If one source is ten times as bright as another, then
the difference we perceive is constant, however bright the two sources
really are. The same goes for the loudness of sounds: a bang with ten times
as much energy sounds a fixed amount louder.

The Weber-Fechner law is not totally accurate, but it's a good
approximation. Evolution pretty much had to come up with something
like a logarithmic scale, because the external world presents our senses
with stimuli over a huge range of sizes. A noise may be little more than a
mouse scuttling in the hedgerow, or it may be a clap of thunder; we need to
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be able to hear both. But the range of sound levels is so vast that no
biological sensory device can respond in proportion to the energy
generated by the sound. If an ear that could hear the mouse did that,
then a thunderclap would destroy it. If it tuned the sound levels down so
that the thunderclap produced a comfortable signal, it wouldn’t be able to
hear the mouse. The solution is to compress the energy levels into a
comfortable range, and the logarithm does exactly that. Being sensitive to
proportions rather than absolutes makes excellent sense, and makes for
excellent senses.

Our standard unit for noise, the decibel, encapsulates the Weber-
Fechner law in a definition. It measures not absolute noise, but relative
noise. A mouse in the grass produces about 10 decibels. Normal
conversation between people a metre apart takes place at 40-60 decibels.
An electric mixer directs about 60 decibels at the person using it. The noise
in a car, caused by engine and tyres, is 60-80 decibels. A jet airliner a
hundred metres away produces 110-140 decibels, rising to 150 at thirty
metres. A vuvuzela (the annoying plastic trumpet-like instrument widely
heard during the football World Cup in 2010 and brought home as
souvenirs by misguided fans) generates 120 decibels at one metre; a
military stun grenade produces up to 180 decibels.

Scales like these are widely encountered because they have a safety
aspect. The level at which sound can potentially cause hearing damage is
about 120 decibels. Please throw away your vuvuzela.
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What does it say?

To find the instantaneous rate of change of a quantity that
varies with (say) time, calculate how its value changes over a
short time interval and divide by the time concerned. Then let
that interval become arbitrarily small.

Why is that important?

It provides a rigorous basis for calculus, the main way scientists
model the natural world.

What did it lead to?

Calculation of tangents and areas. Formulas for volumes of
solids and lengths of curves. Newton'’s laws of motion,
differential equations. The laws of conservation of energy and
momentum. Most of mathematical physics.






n 1665 Charles II was king of England and his capital city, London, was

a sprawling metropolis of half a million people. The arts flourished, and
science was in the early stages of an ever-accelerating ascendancy. The
Royal Society, perhaps the oldest scientific society now in existence, had
been founded five years earlier, and Charles had granted it a royal charter.
The rich lived in impressive houses, and commerce was thriving, but the
poor were crammed into narrow streets overshadowed by ramshackle
buildings that jutted out ever further as they rose, storey by storey.
Sanitation was inadequate; rats and other vermin were everywhere. By the
end of 1666, one fifth of London’s population had been killed by bubonic
plague, spread first by rats and then by people. It was the worst disaster in
the capital’s history, and the same tragedy played out all over Europe and
North Africa. The king departed in haste for the more sanitary countryside
of Oxfordshire, returning early in 1666. No one knew what caused plague,
and the city authorities tried everything — burning fires continually to
cleanse the air, burning anything that gave off a strong smell, burying the
dead quickly in pits. They killed many dogs and cats, which ironically
removed two controls on the rat population.

During those two years, an obscure and unassuming undergraduate at
Trinity College, Cambridge, completed his studies. Hoping to avoid the
plague, he returned to the house of his birth, from which his mother
managed a farm. His father had died shortly before he was born, and he
had been brought up by his maternal grandmother. Perhaps inspired by
rural peace and quiet, or lacking anything better to do with his time, the
young man thought about science and mathematics. Later he wrote: ‘In
those days I was in the prime of my life for invention, and minded
mathematics and [natural] philosophy more than at any other time since.’
His researches led him to understand the importance of the inverse square
law of gravity, an idea that had been hanging around ineffectually for at
least 50 years. He worked out a practical method for solving problems in
calculus, another concept that was in the air but had not been formulated
in any generality. And he discovered that white sunlight is composed of
many different colours — all the colours of the rainbow.
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When the plague died down, he told no one about the discoveries he
had made. He returned to Cambridge, took a master’s degree, and became a
fellow at Trinity. Elected to the Lucasian Chair of Mathematics, he finally
began to publish his ideas and to develop new ones.

The young man was Isaac Newton. His discoveries created a revolution
in science, bringing about a world that Charles II would never have
believed could exist: buildings with more than a hundred floors, horseless
carriages doing 80 mph along the M6 motorway while the driver listens to
music using a magic disc made from a strange glasslike material, heavier-
than-air flying machines that cross the Atlantic in six hours, colour
pictures that move, and boxes you carry in your pocket that talk to the
other side of the world...

Previously, Galileo Galilei, Johannes Kepler, and others had turned up
the corner of nature’s rug and seen a few of the wonders concealed beneath
it. Now Newton cast the rug aside. Not only did he reveal that the universe
has secret patterns, laws of nature; he also provided mathematical tools to
express those laws precisely and to deduce their consequences. The system
of the world was mathematical; the heart of God’s creation was a soulless
clockwork universe.

The world view of humanity did not suddenly switch from religious to
secular. It still has not done so completely, and probably never will. But
after Newton published his Philosophice Naturalis Principia Mathematica
(‘Mathematical Principles of Natural Philosophy’) the ‘System of the
World’ — the book’s subtitle — was no longer solely the province of
organised religion. Even so, Newton was not the first modern scientist; he
had a mystical side too, devoting years of his life to alchemy and religious
speculation. In notes for a lecture' the economist John Maynard Keynes,
also a Newtonian scholar, wrote:

Newton was not the first of the age of reason. He was the last of the
magicians, the last of the Babylonians and Sumerians, the last great
mind which looked out on the visible and intellectual world with the
same eyes as those who began to build our intellectual inheritance
rather less than 10,000 years ago. Isaac Newton, a posthumous child
born with no father on Christmas Day, 1642, was the last wonderchild
to whom the Magi could do sincere and appropriate homage.

Today we mostly ignore Newton’s mystic aspect, and remember him for his
scientific and mathematical achievements. Paramount among them are his
realisation that nature obeys mathematical laws and his invention of
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calculus, the main way we now express those laws and derive their
consequences. The German mathematician and philosopher Gottfried
Wilhelm Leibniz also developed calculus, more or less independently, at
much the same time, but he did little with it. Newton used calculus to
understand the universe, though he kept it under wraps in his published
work, recasting it in classical geometric language. He was a transitional
figure who moved humanity away from a mystical, medieval outlook and
ushered in the modern rational world view. After Newton, scientists
consciously recognised that the universe has deep mathematical patterns,
and were equipped with powerful techniques to exploit that insight.

The calculus did not arise ‘out of the blue’. It came from questions in both
pure and applied mathematics, and its antecedents can be traced back to
Archimedes. Newton himself famously remarked, ‘If I have seen a little
further it is by standing on the shoulders of giants.’? Paramount among
those giants were John Wallis, Pierre de Fermat, Galileo, and Kepler. Wallis
developed a precursor to calculus in his 1656 Arithmetica Infinitorum
(‘Arithmetic of the Infinite’). Fermat’'s 1679 De Tangentibus Linearum
Curvarum (‘On Tangents to Curved Lines’) presented a method for finding
tangents to curves, a problem intimately related to calculus. Kepler
formulated three basic laws of planetary motion, which led Newton to
his law of gravity, the subject of the next chapter. Galileo made big
advances in astronomy, but he also investigated mathematical aspects of
nature down on the ground, publishing his discoveries in De Motu (‘On
Motion’) in 1590. He investigated how a falling body moves, finding an
elegant mathematical pattern. Newton developed this hint into three
general laws of motion.

To understand Galileo’s pattern we need two everyday concepts from
mechanics: velocity and acceleration. Velocity is how fast something is
moving, and in which direction. If we ignore the direction, we get the
body’s speed. Acceleration is a change in velocity, which usually involves a
change in speed (an exception arises when the speed remains the same but
the direction changes). In everyday life we use acceleration to mean
speeding up and deceleration for slowing down, but in mechanics both
changes are accelerations: the first positive, the second negative. When we
drive along a road the speed of the car is displayed on the speedometer - it
might, for instance, be 50 mph. The direction is whichever way the car is
pointing. When we put our foot down, the car accelerates and the speed
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increases; when we stamp on the brakes, the car decelerates — negative
acceleration.

If the car is moving at a fixed speed, it’s easy to work out what that
speed is. The abbreviation mph gives it away: miles per hour. If the car
travels 50 miles in 1 hour, we divide the distance by the time, and that’s
the speed. We don’t need to drive for an hour: if the car goes 5 miles in
6 minutes, both distance and time are divided by 10, and their ratio is still
50 mph. In short,

speed = distance travelled divided by time taken.
In the same way, a fixed rate of acceleration is given by
acceleration = change in speed divided by time taken.

This all seems straightforward, but conceptual difficulties arise when the
speed or acceleration is not fixed. And they can’t both be constant, because
constant (and nonzero) acceleration implies a changing speed. Suppose
you drive along a country lane, speeding up on the straights, slowing for
the corners. Your speed keeps changing, and so does your acceleration.
How can we work them out at any given instant of time? The pragmatic
answer is to take a short interval of time, say a second. Then your
instantaneous speed at (say) 11.30 am is the distance you travel between
that moment and one second later, divided by one second. The same goes
for instantaneous acceleration.

Except ... that’s not quite your instantaneous speed. It’s really an
average speed, over a one-second interval of time. There are circumstances
in which one second is a huge length of time — a guitar string playing
middle C vibrates 440 times every second; average its motion over an entire
second and you’ll think it’s standing still. The answer is to consider a
shorter interval of time — one ten thousandth of a second, perhaps. But
this still doesn’t capture instantaneous speed. Visible light vibrates one
quadrillion (10'°) times every second, so the appropriate time interval is
less than one quadrillionth of a second. And even then ... well, to be
pedantic, that’s still not an instant. Pursuing this line of thought, it seems
to be necessary to use an interval of time that is shorter than any other
interval. But the only number like that is O, and that’s useless, because now
the distance travelled is also 0, and 0/0 is meaningless.

Early pioneers ignored these issues and took a pragmatic view. Once
the probable error in your measurements exceeds the increased precision
you would theoretically get by using smaller intervals of time, there’s no
point in doing so. The clocks in Galileo’s day were very inaccurate, so he
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measured time by humming tunes to himself — a trained musician can
subdivide a note into very short intervals. Even then, timing a falling body
is tricky, so Galileo hit on the trick of slowing the motion down by rolling
balls down an inclined slope. Then he observed the position of the ball at
successive intervals of time. What he found (I'm simplifying the numbers
to make the pattern clear, but it’s the same pattern) is that for times O, 1, 2,
3,4,5,6, ... these positions were

01 4 9 16 25 36

The distance was (proportional to) the square of the time. What about the
speeds? Averaged over successive intervals, these were the differences

1 3 57 9 11

between the successive squares. In each interval, other than the first, the
average speed increased by 2 units. It’s a striking pattern — all the more
so to Galileo when he dug something very similar out of dozens of
measurements with balls of many different masses on slopes with many
different inclinations.

From these experiments and the observed pattern, Galileo deduced
something wonderful. The path of a falling body, or one thrown into the
air, such as a cannonball, is a parabola. This is a U-shaped curve, known to
the ancient Greeks. (The U is upside down in this case. I'm ignoring air
resistance, which changes the shape: it didn’t have much effect on
Galileo’s rolling balls.) Kepler encountered a related curve, the ellipse, in
his analysis of planetary orbits: this must have seemed significant to
Newton too, but that story must wait until the next chapter.

With only this particular series of experiments to go on, it’s not clear
what general principles underlie Galileo’s pattern. Newton realised that the
source of the pattern is rates of change. Velocity is the rate at which
position changes with respect to time; acceleration is the rate at which
velocity changes with respect to time. In Galileo’s observations, position
varied according to the square of time, velocity varied linearly, and
acceleration didn’t vary at all. Newton realised that in order to gain a
deeper understanding of Galileo’s patterns, and what they meant for our
view of nature, he had to come to grips with instantaneous rates of change.
When he did, out popped calculus.

You might expect an idea as important as calculus to be announced with a
fanfare of trumpets and parades through the streets. However, it takes time
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for the significance of novel ideas to sink in and to be appreciated, and so it
was with calculus. Newton’s work on the topic dates from 1671 or earlier,
when he wrote The Method of Fluxions and Infinite Series. We are unsure of
the date because the book was not published until 1736, nearly a decade
after his death. Several other manuscripts by Newton also refer to ideas that
we now recognise as differential and integral calculus, the two main
branches of the subject. Leibniz’s notebooks show that he obtained his first
significant results in calculus in 1675, but he published nothing on the
topic until 1684.

After Newton had risen to scientific prominence, long after both men
had worked out the basics of calculus, some of Newton'’s friends sparked a
largely pointless but heated controversy about priority, accusing Leibniz of
plagiarising Newton’s unpublished manuscripts. A few mathematicians
from continental Europe responded with counter-claims of plagiarism by
Newton. English and continental mathematicians were scarcely on
speaking terms for a century, which caused huge damage to English
mathematicians, but none whatsoever to the continental ones. They
developed calculus into a central tool of mathematical physics while their
English counterparts were seething about insults to Newton instead of
exploiting insights from Newton. The story is tangled and still subject to
scholarly disputation by historians of science, but broadly speaking it
seems that Newton and Leibniz discovered the basic ideas of calculus
independently — at least, as independently as their common mathematical
and scientific culture permitted.

Leibniz’s notation differs from Newton’s, but the underlying ideas are
more or less identical. The intuition behind them, however, is different.
Leibniz’s approach was a formal one, manipulating algebraic symbols.
Newton had a physical model at the back of his mind, in which the
function under consideration was a physical quantity that varies with time.
This is where his curious term ‘fluxion’ comes from — something that flows
as time passes.

Newton’s method can be illustrated using an example: a quantity y that
is the square x> of another quantity x. (This is the pattern that Galileo
found for a rolling ball: its position is proportional to the square of the time
that has elapsed. So there y would be position and x time. The usual symbol
for time is ¢, but the standard coordinate system in the plane uses x and y.)
Start by introducing a new quantity o, denoting a small change in x. The
corresponding change in y is the difference

(x+0)* —x?
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which simplifies to 2xo+0”. The rate of change (averaged over a small
interval of length o, as x increases to x+0) is therefore

2x0 + 0%
0

=2x+o0

This depends on o, which is only to be expected since we are averaging the
rate of change over a nonzero interval. However, if o becomes smaller and
smaller, ‘flowing towards’ zero, the rate of change 2x+o0 gets closer and
closer to 2x. This does not depend on o, and it gives the instantaneous rate
of change at x.

Leibniz performed essentially the same calculation, replacing o by dx
(‘small difference in x’), and defining dy to be the corresponding small
change in y. When a variable y depends on another variable x, the rate of
change of y with respect to x is called the derivative of y. Newton wrote the

dy

derivative of y by placing a dot above it: y. Leibniz wrote ar For higher
2

derivatives, Newton used more dots, while Leibniz wrote things like %
Today we say that y is a function of x and write y=f{x), but this concept
existed only in rudimentary form at the time. We either use Leibniz’s
notation, or a variant of Newton’s in which the dot is replaced by a dash,
which is easier to print: y’, y". We also write f'(x) and /" (x) to emphasise
that the derivatives are themselves functions. Calculating the derivative is
called differentiation.

Integral calculus - finding areas — turns out to be the inverse of
differential calculus - finding slopes. To see why, imagine adding a thin
slice on the end of the shaded area of Figure 12. This slice is very close to a
long thin rectangle, of width o and height y. Its area is therefore very close
to oy. The rate at which the area changes, with respect to x, is the ratio oy/o,
which equals y. So the derivative of the area is the original function. Both
Newton and Leibniz understood that the way to calculate the area, a
process called integration, is the reverse of differentiation in this sense.
Leibniz first wrote the integral using the symbol omn., short for omnia, or
‘sum’, in Latin. Later he changed this to [, an old-fashioned long s, also
standing for ‘sum’. Newton had no systematic notation for the integral.
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approximately
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Fig 12 Adding a thin slice to the area beneath the curve y=f(x).

Newton did make one crucial advance, however. Wallis had calculated
the derivative of any power x“: it is ax”~'. So the derivatives of x>, x*, x° are
3x?, 4x%, 5x*, for example. He had extended this result to any polynomial —
a finite combination of powers, such as 3x” — 25x*+ x* — 3. The trick is to
consider each power separately, find the corresponding derivatives, and
combine them in the same manner. Newton noticed that the same method
worked for infinite series, expressions involving infinitely many powers of
the variable. This let him perform the operations of calculus on many other
expressions, more complicated than polynomials.

Given the close correspondence between the two versions of calculus,
differing mainly in unimportant features of the notation, it is easy to see
how a priority dispute might have arisen. However, the basic idea is a fairly
direct formulation of the underlying question, so it is also easy to see how
Newton and Leibniz could have arrived at their versions independently,
despite the similarities. In any case, Fermat and Wallis had beaten them
both to many of their results. The dispute was pointless.

A more fruitful controversy concerned the logical structure of calculus, or
more precisely, the illogical structure of calculus. A leading critic was the
Anglo-Irish philosopher George Berkeley, Bishop of Cloyne. Berkeley had a
religious agenda; he felt that the materialist view of the world that was
developing from Newton’s work represented God as a detached creator
who stood back from his creation as soon as it got going and thereafter left
it to its own devices, quite unlike the personal, immanent God of Christian
belief. So he attacked logical inconsistencies in the foundations of calculus,
presumably hoping to discredit the resulting science. His attack had no
discernible effect on the progress of mathematical physics, for a
straightforward reason: the results obtained using calculus shed so much
insight into nature, and agreed so well with experiment, that the logical



Calculus

foundations seemed unimportant. Even today, physicists still take this
view: if it works, who cares about logical hair-splitting?

Berkeley argued that it makes no logical sense to maintain that a small
quantity (Newton’s o, Leibniz’s dx) is nonzero for most of a calculation,
and then to set it to zero, if you have previously divided both the
numerator and the denominator of a fraction by that very quantity.
Division by zero is not an acceptable operation in arithmetic, because it has
no unambiguous meaning. For example, Ox 1=0x 2, since both are 0, but if
we divide both sides of this equation by 0 we get 1=2, which is false.?
Berkeley published his criticisms in 1734 in a pamphlet The Analyst, a
Discourse Addressed to an Infidel Mathematician.

Newton had, in fact, attempted to sort out the logic, by appealing to a
physical analogy. He saw o not as a fixed quantity, but as something that
flowed — varied with time - getting closer and closer to zero without ever
actually getting there. The derivative was also defined by a quantity that
flowed: the ratio of the change in y to that of x. This ratio also flowed
towards something, but never got there; that something was the
instantaneous rate of change - the derivative of y with respect to x.
Berkeley dismissed this idea as the ‘ghost of a departed quantity’.

Leibniz too had a persistent critic, the geometer Bernard Nieuwentijt,
who put his criticisms into print in 1694 and 1695. Leibniz had not helped
his case by trying to justify his method in terms of ‘infinitesimals’, a term
open to misinterpretation. However, he did explain that what he meant by
this term was not a fixed nonzero quantity that can be arbitrarily small
(which makes no logical sense) but a variable nonzero quantity that can
become arbitrarily small. Newton’s and Leibniz’s defences were essentially
identical. To their opponents, both must have sounded like verbal trickery.

Fortunately, the physicists and mathematicians of the day did not wait
for the logical foundations of calculus to be sorted out before they applied
it to the frontiers of science. They had an alternative way to make sure they
were doing something sensible: comparison with observations and
experiments. Newton himself invented calculus for precisely this
purpose. He derived laws for how bodies move when a force is applied to
them, and combined these with a law for the force exerted by gravity to
explain many riddles about the planets and other bodies of the Solar
System. His law of gravity is such a pivotal equation in physics and
astronomy that it deserves, and gets, a chapter of its own (the next one).
His law of motion - strictly, a system of three laws, one of which contained
most of the mathematical content - led fairly directly to calculus.

Ironically, when Newton published these laws and their scientific
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applications in his Principia, he eliminated all traces of calculus and
replaced it by classical geometric arguments. He probably thought that
geometry would be more acceptable to his intended audience, and if he
did, he was almost certainly right. However, many of his geometric proofs
are either motivated by calculus, or depend on the use of calculus
techniques to determine the correct answers, upon which the strategy of
the geometric proof relies. This is especially clear, to modern eyes, in his
treatment of what he called ‘generated quantities’ in Book II of Principia.
These are quantities that increase or decrease by ‘continual motion or flux’,
the fluxions of his unpublished book. Today we would call them
continuous (indeed differentiable) functions. In place of explicit
operations of the calculus, Newton substituted a geometric method of
‘prime and ultimate ratios’. His opening lemma (the name given to an
auxiliary mathematical result that is used repeatedly but has no intrinsic
interest in its own right) gives the game away, because it defines equality of
these flowing quantities like this:

Quantities, and the ratios of quantities, which in any finite time
converge continually to equality, and before the end of that time
approach nearer to each other than by any given difference, become
ultimately equal.

In Never at Rest, Newton’s biographer Richard Westfall explains how radical
and novel this lemma was: ‘Whatever the language, the concept ... was
thoroughly modern; classical geometry had contained nothing like it.”*
Newton’s contemporaries must have struggled to figure out what Newton
was getting at. Berkeley presumably never did, because — as we will shortly
see — it contains the basic idea needed to dispose of his objection.

Calculus, then, was playing an influential role behind the scenes of the
Principia, but it made no appearance on stage. As soon as calculus peeped
out from behind the curtains, however, Newton’s intellectual successors
quickly reverse-engineered his thought processes. They rephrased his main
ideas in the language of calculus, because this provided a more natural and
more powerful framework, and set out to conquer the scientific world.
The clue was already visible in Newton'’s laws of motion. The question
that led Newton to these laws was a philosophical one: what causes a body
to move, or to change its state of motion? The classical answer was
Aristotle’s: a body moves because a force is applied to it, and this affects its
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velocity. Aristotle also stated that in order to keep a body moving, the force
must continue to be applied. You can test Aristotle’s statements by placing
a book or similar object on a table. If you push the book, it starts to move,
and if you keep pushing with much the same force it continues to slide
over the table at a roughly constant velocity. If you stop pushing, the book
stops moving. So Aristotle’s views seem to agree with experiment.
However, the agreement is superficial, because the push is not the only
force that acts on the book. There is also friction with the surface of the
table. Moreover, the faster the book moves, the greater the friction
becomes - at least, while the book’s velocity remains reasonably small.
When the book is moving steadily across the table, propelled by a steady
force, the frictional resistance cancels out the applied force, and the total
force acting on the body is actually zero.

Newton, following earlier ideas of Galileo and Descartes, realised this.
The resulting theory of motion is very different from Aristotle’s. Newton'’s
three laws are:

First law. Every body continues in its state of rest, or of uniform motion
in a right [straight] line, unless it is compelled to change that state by
forces impressed upon it.

Second law. The change of motion is proportional to the motive power
impressed, and is made in the direction of the right line in which that
force is impressed. (The constant of proportionality is the reciprocal of
the body’s mass; that is, 1 divided by that mass.)

Third law. To every action there is always opposed an equal reaction.

The first law explicitly contradicts Aristotle. The third law says that if you
push something, it pushes back. The second law is where calculus comes
in. By ‘change of motion’ Newton meant the rate at which the body’s
velocity changes: its acceleration. This is the derivative of velocity with
respect to time, and the second derivative of position. So Newton’s second
law of motion specifies the relation between a body’s position, and the
forces that act on it, in the form of a differential equation:

second derivative of position = force/mass

To find the position itself, we have to solve this equation, deducing the
position from its second derivative.

This line of thought leads to a simple explanation of Galileo’s
observations of a rolling ball. The crucial point is that the acceleration of
the ball is constant. 1 stated this previously, using a rough-and-ready
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calculation applied at discrete intervals of time; now we can do it properly,
allowing time to vary continuously. The constant is related to the force of
gravity and the angle of the slope, but here we don’t need that much detail.
Suppose that the constant acceleration is a. Integrating the corresponding
function, the velocity down the slope at time t is at+b, where b is the
velocity at time zero. Integrating again, the position down the slope is
%at2+bt+ ¢, where c is the position at time zero. In the special case a=2,
b=0, c=0 the successive positions fit my simplified example: the position
at time t is £%. A similar analysis recovers Galileo’s major result: the path of
a projectile is a parabola.

Newton’s laws of motion did not just provide a way to calculate how
bodies move. They led to deep and general physical principles. Paramount
among these are ‘conservation laws’, telling us that when a system of
bodies, no matter how complicated, moves, certain features of that system
do not change. Amid the tumult of the motion, a few things remain serenely
unaffected. Three of these conserved quantities are energy, momentum,
and angular momentum.

Energy can be defined as the capacity to do work. When a body is raised
to a certain height, against the (constant) force of gravity, the work done to
put it there is proportional to the body’s mass, the force of gravity, and the
height to which it is raised. Conversely, if we then let the body go, it can
perform the same amount of work when it falls back to its original height.
This type of energy is called potential energy.

On its own, potential energy would not be terribly interesting, but
there is a beautiful mathematical consequence of Newton’s second law of
motion leading to a second kind of energy: kinetic energy. As a body moves,
both its potential energy and its kinetic energy change. But the change in
one exactly compensates for the change in the other. As the body descends
under gravity, it speeds up. Newton'’s law allows us to calculate how its
velocity changes with height. It turns out that the decrease in potential
energy is exactly equal to half the mass times the square of the velocity. If
we give that quantity a name - kinetic energy — then the total energy,
potential plus kinetic, is conserved. This mathematical consequence of
Newton’s laws proves that perpetual motion machines are impossible: no
mechanical device can keep going indefinitely and do work without some
external input of energy.

Physically, potential and Kkinetic energy seem to be two different
things; mathematically, we can trade one for the other. It is as if motion
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somehow converts potential energy into kinetic. ‘Energy’, as a term
applicable to both, is a convenient abstraction, carefully defined so that it
is conserved. As an analogy, travellers can convert pounds into dollars.
Currency exchanges have tables of exchange rates, asserting that, say, 1
pound is of equal value to 1.4693 dollars. They also deduct a sum of money
for themselves. Subject to technicalities of bank charges and so on, the
total monetary value involved in the transaction is supposed to balance
out: the traveller gets exactly the amount in dollars that corresponds to
their original sum in pounds, minus various deductions. However, there
isn’t a physical thing built into banknotes that somehow gets swapped out
of a pound note into a dollar note and some coins. What gets swapped is
the human convention that these particular items have monetary value.

Energy is a new kind of ‘physical’ quantity. From a Newtonian
viewpoint, quantities such as position, time, velocity, acceleration, and
mass have direct physical interpretations. You can measure position with a
ruler, time with a clock, velocity and acceleration using both pieces of
apparatus, and mass with a balance. But you don’t measure energy using an
energy meter. Agreed, you can measure certain specific types of energy.
Potential energy is proportional to height, so a ruler will suffice if you know
the force of gravity. Kinetic energy is half the mass times the square of the
velocity: use a balance and a speedometer. But energy, as a concept, is not so
much a physical thing as a convenient fiction that helps to balance the
mechanical books.

Momentum, the second conserved quantity, is a simple concept: mass
times velocity. It comes into play when there are several bodies. An
important example is a rocket; here one body is the rocket and the other is
its fuel. As fuel is expelled by the engine, conservation of momentum
implies that the rocket must move in the opposite direction. This is how a
rocket works in a vacuum.

Angular momentum is similar, but it relates to spin rather than
velocity. It is also central to rocketry, indeed the whole of mechanics,
terrestrial or celestial. One of the biggest puzzles about the Moon is its large
angular momentum. The current theory is that the Moon was splashed off
when a Mars-sized planet hit the Earth about 4.5 billion years ago. This
explains the angular momentum, and until recently was generally
accepted, but it now seems that the Moon has too much water in its
rocks. Such an impact should have boiled a lot of the water away.’
Whatever the eventual outcome, angular momentum is of central
importance here.
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Calculus works. It solves problems in physics and geometry, getting the
right answers. It even leads to new and fundamental physical concepts like
energy and momentum. But that doesn’t answer Bishop Berkeley’s
objection. Calculus has to work as mathematics, not just agree with
physics. Both Newton and Leibniz understood that o or dx cannot be both
zero and nonzero. Newton tired to escape from the logical trap by
employing the physical image of a fluxion. Leibniz talked of infinitesimals.
Both referred to quantities that approach zero without ever getting there —
but what are these things? Ironically, Berkeley’s gibe about ‘ghosts of
departed quantities’ comes close to resolving the issue, but what he failed
to take account of — and what both Newton and Leibniz emphasised — was
how the quantities departed. Make them depart in the right way and you
can leave a perfectly well-formed ghost. If either Newton or Leibniz had
framed their intuition in rigorous mathematical language, Berkeley might
have understood what they were getting at.

The central question is one that Newton failed to answer explicitly
because it seemed obvious. Recall that in the example where y =x?, Newton
obtained the derivative as 2x + 0, and then asserted that as o flows towards
zero, 2x +o flows towards 2x. This may seem obvious, but we can’t set 0=0
to prove it. It is true that we get the right result by doing that, but this is a red
herring.® In Principia Newton slid round this issue altogether, replacing 2x
+0 by his ‘prime ratio’ and 2x by his ‘ultimate ratio’. But the real key to
progress is to tackle the issue head on. How do we know that the closer o
approaches zero, the closer 2x+o0 approaches 2x? It may seem a rather
pedantic point, but if I'd used more complicated examples the correct
answer might not seem so plausible.

When mathematicians returned to the logic of calculus, they realised
that this apparently simple question was the heart of the matter. When we
say that o approaches zero, we mean that given any nonzero positive
number, o can be chosen to be smaller than that number. (This is obvious:
let o0 be half that number, for instance.) Similarly, when we say that 2x+o0
approaches 2x, we mean that the difference approaches zero, in the
previous sense. Since the difference happens to be o itself in this case, that’s
even more obvious: whatever ‘approaches zero’ means, clearly o
approaches zero when o approaches zero. A more complicated function
than the square would require a more complicated analysis.

The answer to this key question is to state the process in formal
mathematical terms, avoiding ideas of ‘flow’ altogether. This breakthrough
came about through the work of the Bohemian mathematician and
theologian Bernard Bolzano and the German mathematician Karl
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Weierstrass. Bolzano’s work dates from 1816, but it was not appreciated
until about 1870 when Weierstrass extended the formulation to complex
functions. Their answer to Berkeley was the concept of a limit. I'll state the
definition in words and leave the symbolic version to the Notes.” Say that a
function f(h) of a variable h tends to a limit L as h tends to zero if, given any
positive nonzero number, the difference between f(h) and L can be made
smaller than that number by choosing sufficiently small nonzero values of
h. In symbols,
%lllI(l) f(hy=L

The idea at the heart of calculus is to approximate the rate of change of a
function over a small interval h, and then take the limit as /& tends to zero.
For a general function y=f{x) this procedure leads to the equation that
decorates the opening of this chapter, but using a general variable x instead
of time:

/ L fx+h) - ()
ro0 = g FEESEE
In the numerator we see the change in f; the denominator is the change in
x. This equation defines the derivative f'(x) uniquely, provided the limit
exists. That has to be proved for any function under consideration: the
limit does exist for most of the standard functions — squares, cubes, higher
powers, logarithms, exponentials, trigonometric functions.

Nowhere in the calculation do we ever divide by zero, because we never
set h=0. Moreover, nothing here actually flows. What matters is the range
of values that h can assume, not how it moves through that range. So
Berkeley’s sarcastic characterisation is actually spot on. The limit L is the
ghost of the departed quantity — my h, Newton’s 0. But the manner of the
quantity’s departure — approaching zero, not reaching it — leads to a perfectly
sensible and logically well-defined ghost.

Calculus now had a sound logical basis. It deserved, and acquired, a
new name to reflect its new status: analysis.

It is no more possible to list all the ways that calculus can be applied than
it is to list everything in the world that depends on using a screwdriver.
On a simple computational level, applications of calculus include finding
lengths of curves, areas of surfaces and complicated shapes, volumes of
solids, maximum and minimum values, and centres of mass. In
conjunction with the laws of mechanics, calculus tells us how to work
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out the trajectory of a space rocket, the stresses in rock at a subduction
zone that might produce an earthquake, the way a building will vibrate if
an earthquake hits, the way a car bounces up and down on its suspension,
the time it takes a bacterial infection to spread, the way a surgical wound
heals, and the forces that act on a suspension bridge in a high wind.

Many of these applications stem from the deep structure of Newton'’s
laws: they are models of nature stated as differential equations. These are
equations involving derivatives of an unknown function, and techniques
from calculus are needed to solve them. I will say no more here, because
every chapter from Chapter 8 onwards involves calculus explicitly, mainly
in the guise of differential equations. The sole exception is Chapter 15 on
information theory, and even there other developments that I don’t
mention also involve calculus. Like the screwdriver, calculus is simply an
indispensable tool in the engineer’s and scientist’s toolkits. More than any
other mathematical technique, it has created the modern world.



The system of the world

Newton’s Law of Gravity
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What does it say?

It determines the force of gravitational attraction between two
bodies in terms of their masses and the distance between
them.

Why is that important?

It can be applied to any system of bodies interacting through
the force of gravity, such as the Solar System. It tells us that
their motion is determined by a simple mathematical law.

What did it lead to?

Accurate prediction of eclipses, planetary orbits, the return of
comets, the rotation of galaxies. Artificial satellites, surveys of
the Earth, the Hubble telescope, observations of solar flares.
Interplanetary probes, Mars rovers, satellite communications
and television, the Global Positioning System.






ewton'’s laws of motion capture the relationship between the forces

that act on a body and how it moves in response to those forces.
Calculus provides mathematical techniques for solving the resulting
equations. One further ingredient is needed to apply the laws: specifying
the forces. The most ambitious aspect of Newton’s Principia was to do
precisely that for the bodies of the Solar System — the Sun, planets, moons,
asteroids, and comets. Newton’s law of gravitation synthesised, in one
simple mathematical formula, millennia of astronomical observations and
theories. It explained many puzzling features of planetary motion, and
made it possible to predict the future movements of the Solar System with
great accuracy. Einstein’s theory of general relativity eventually superseded
the Newtonian theory of gravity, as far as fundamental physics is
concerned, but for almost all practical purposes the simpler Newtonian
approach still reigns supreme. Today the world’s space agencies, such as
NASA and ESA, still use Newton’s laws of motion and gravitation to work
out the most effective trajectories for spacecraft.

It was Newton’s law of gravitation, above all else, that justified his
subtitle: The System of the World. This law demonstrated the enormous
power of mathematics to find hidden patterns in nature and to reveal
hidden simplicities behind the world’s complexities. And in time, as
mathematicians and astronomers asked harder questions, to reveal the
hidden complexities implicit in Newton’s simple law. To appreciate what
Newton achieved, we must first go back in time, to see how previous
cultures viewed the stars and planets.

Humans have been watching the night sky since the dawn of history. Their
initial impression would have been a random scattering of bright points of
light, but they would soon have noticed that across this background the
glowing orb of the Moon traced a regular path, changing shape as it did so.
They would also have seen that most of those tiny bright specks of light
remain in the same relative patterns, which we now call constellations.
Stars move across the night sky, but they move as a single rigid unit, as if
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the constellations are painted on the inside of a gigantic, rotating bowl."
However, a small number of stars behave quite differently: they seem to
wander around the sky. Their paths are quite complicated, and some
appear to loop back on themselves from time to time. These are the
planets, a word that comes from the Greek for ‘wanderer’. The ancients
recognised five of them, now called Mercury, Venus, Mars, Jupiter, and
Saturn. They move relative to the fixed stars at different speeds, with
Saturn being the slowest.

Other celestial phenomena were even more puzzling. From time to
time a comet would appear, as if from nowhere, trailing a long, curved tail.
‘Shooting stars’ would seem to fall from the heavens, as if they had become
detached from their supporting bowl. It is no wonder that early humans
attributed the irregularities of the heavens to the caprices of supernatural
beings.

The regularities could be summed up in terms so obvious that few
would ever dream of disputing them. The Sun, stars, and planets revolve
around a stationary Earth. That’s what it looks like, that’s what it feels like,
so that’s how it must be. To the ancients, the cosmos was geocentric —
Earth-centred. One lone voice disputed the obvious: Aristarchus of Samos.
Using geometrical principles and observations, Aristarchus calculated the
sizes of the Earth, the Sun, and the Moon. Around 270 BC he put forward
the first heliocentric theory: the Earth and planets revolve round the Sun.
His theory quickly fell out of favour and was not revived for nearly 2000
years.

By the time of Ptolemy, a Roman who lived in Egypt around 120 AD,
the planets had been tamed. Their movements were not capricious, but
predictable. Ptolemy’s Almagest (‘Great Treatise’) proposed that we live
in a geocentric universe in which everything literally revolves around
humanity in complex combinations of circles called epicycles, supported
by giant crystal spheres. His theory was wrong, but the motions that it
predicted were sufficiently accurate for the errors to remain undetected for
centuries. Ptolemy’s system had an additional philosophical attraction: it
represented the cosmos in terms of perfect geometric figures — spheres and
circles. It continued the Pythagorean tradition. In Europe, the Ptolemaic
theory remained unchallenged for 1400 years.

While Europe dawdled, new scientific advances were being made
elsewhere, especially in Arabia, China, and India. In 499 the Indian
astronomer Aryabhata put forward a mathematical model of the Solar
System in which the Earth spun on its axis and the periods of planetary
orbits were stated relative to the position of the Sun. In the Islamic world,
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Alhazen wrote a stinging criticism of the Ptolemaic theory, though this was
probably not focused on its geocentric nature. Around 1000 Abu Rayhan
Biruni gave serious consideration to the possibility of a heliocentric Solar
System, with the Earth spinning on its axis, but eventually plumped for
the orthodoxy of the time, a stationary Earth. Around 1300, Najm al-Din
al-Qazwini al-Katibi proposed a heliocentric theory, but soon changed his
mind.

The big breakthrough came with the work of Nicolaus Copernicus,
published in 1543 as De Revolutionibus Orbium Coelestium (‘On the
Revolutions of the Celestial Spheres’). There is evidence, notably the
occurrence of almost identical diagrams labelled with the same letters, to
suggest that Copernicus was, to say the least, influenced by al-Katibi, but
he went much further. He set out an explicitly heliocentric system, argued
that it fitted the observations better and more economically than Ptolemy’s
geocentric theory did, and laid out some of the philosophical implications.
Paramount among them was the novel thought that humans were not at
the centre of things. The Christian Church viewed this suggestion as
contrary to doctrine and did its best to discourage it. Explicit heliocentrism
was heresy.

It prevailed nevertheless, because the evidence was so strong. New and
better heliocentric theories appeared. Then the spheres were thrown away
altogether, in favour of a different shape from classical geometry: the
ellipse. Ellipses are oval shapes, and indirect evidence suggests they were
first studied in Greek geometry by Menaechmus around 350 BC, along with
hyperbolas and parabolas, as sections of a cone, Figure 13. Euclid is said to
have written four books on conic sections, though nothing has survived
if he did, and Archimedes investigated some of their properties. Greek
research on the topic reached its climax in about 240 BC with the eight-
volume Conic Sections by Apollonius of Perga, who found a way to define

ellipse parabola hyperbola

Fig 13 Conic sections.
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these curves purely within a plane, avoiding the third dimension.
However, the Pythagorean view that circles and spheres attained a higher
degree of perfection than ellipses and other more complex curves persisted.

Ellipses cemented their role in astronomy around 1600, with the work
of Kepler. His astronomical interests began in childhood; at the age of six
he witnessed the great comet of 1577,> and three years later he saw an
eclipse of the Moon. At the University of Tiibingen, Kepler showed great
talent for mathematics and put it to profitable use casting horoscopes. In
those days mathematics, astronomy, and astrology often went together.
He combined a heady level of mysticism with a level-headed attention
to mathematical detail. A typical example is his Mysterium Cosmographicum
(“The Cosmographic Mystery’), a spirited defence of the heliocentric
system published in 1596. It combines a clear grasp of Copernicus’s theory
with what to modern eyes is a very strange speculation relating the
distances of the known planets from the Sun to the regular solids. For a
long time Kepler regarded this discovery as one of his greatest, revealing
the Creator’s plan for the universe. He saw his later researches, which we
now consider to be far more significant, as mere elaborations of this basic
plan. At the time, one advantage of the theory was that it explained why
there were precisely six planets (Mercury through Saturn). Between these
six orbits lie five gaps, one for each regular solid. With the discovery of
Uranus and later Neptune and Pluto (until its recent demotion from
planetary status) this feature quickly became a fatal flaw.

Kepler’s lasting contribution has its roots in his employment by Tycho
Brahe. The two first met in 1600. After a two-month stay and a heated
argument Kepler negotiated an acceptable salary. Following a spate of
problems in his home city of Graz he moved to Prague, assisting Tycho in
the analysis of his planetary observations, especially of Mars. When Tycho
unexpectedly died in 1601 Kepler took over his employer’s position as
imperial mathematician to Rudolph II. His primary role was casting
imperial horoscopes, but he also had time to continue his analysis of the
orbit of Mars. Following traditional epicyclic principles he refined his
model to the point at which its errors, compared with observation, were
usually a mere two minutes of arc, the typical error in the observations
themselves. However, he didn’t stop there because sometimes the errors
were bigger, up to eight minutes of arc.

His search eventually led him to two laws of planetary motion,
published in Astronomia Nova (‘A New Astronomy’). For many years he had
tried to fit the orbit of Mars to an ovoid - an egg-shaped curve, sharper at
one end than the other — without success. Perhaps he expected the orbit to
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be more curved closer to the Sun. In 1605 it occurred to Kepler to try an
ellipse, equally rounded at both ends, and to his surprise this did a much
better job. He concluded that all planetary orbits are ellipses, his first law.
His second law described how the planet moves along its orbit, stating that
planets sweep out equal areas in equal times. The book appeared in 1609.
Kepler then devoted much of his effort to preparing various astronomical
tables, but he returned to the regularities of planetary orbits in 1619 in his
Harmonices Mundi (“The Harmony of the World’). This book had some ideas
we now find strange, for example that the planets emit musical sounds as
they roll round the Sun. But it also includes his third law: the squares of the
orbital periods are proportional to the cubes of the distances from the Sun.

Kepler's three laws were all but buried amid a mass of mysticism,
religious symbolism, and philosophical speculation. But they represented a
giant leap forward, leading Newton to one of the greatest scientific
discoveries of all time.

Newton derived his law of gravity from Kepler’s three laws of planetary
motion. It states that every particle in the universe attracts every other
particle with a force that is proportional to the product of their masses and
inversely proportional to the square of the distance between them. In
symbols,

mimsy

F=G=0

Here F is the attractive force, d is the distance, the ms are the two masses,
and G is a specific number, the gravitational constant.?

Who discovered Newton’s law of gravity? It sounds like one of those
self-answering questions, like ‘whose statue stands on top of Nelson’s
column?’. But a reasonable answer is the curator of experiments at the
Royal Society, Robert Hooke. When Newton published the law in 1687, in
his Principia, Hooke accused him of plagiarism. However, Newton provided
the first mathematical derivation of elliptical orbits from the law, which
was vital in establishing its correctness, and Hooke acknowledged this.
Moreover, Newton had cited Hooke, along with several others, in the book.
Presumably Hooke felt he deserved more credit; he had suffered similar
problems several times before and it was a sore point.

The idea that bodies attract each other had been floating around for a
while, and so had its likely mathematical expression. In 1645 the French
astronomer Ismaél Boulliau (Bullialdus) wrote his Astronomia Philolaica
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(‘Philolaic Astronomy’ — Philolaus was a Greek philosopher who thought
that a central fire, not the Earth, was the centre of the universe). In it he
wrote:

As for the power by which the Sun seizes or holds the planets, and
which, being corporeal, functions in the manner of hands, it is emitted
in straight lines throughout the whole extent of the world, and like the
species of the Sun, it turns with the body of the Sun; now, seeing that it
is corporeal, it becomes weaker and attenuated at a greater distance or
interval, and the ratio of its decrease in strength is the same as in the
case of light, namely, the duplicate proportion, but inversely, of the
distances.

This is the famous ‘inverse square’ dependency of the force on distance.
There are simple, though naive, reasons to expect such a formula, because
the surface area of a sphere varies as the square of its radius. If the same
amount of gravitational ‘stuff’ spreads out over ever-increasing spheres as
it departs from the Sun, then the amount of it received at any point must
vary in the inverse proportion to the surface area. Exactly this happens
with light, and Boulliau assumed, without much evidence, that gravity
must be analogous. He also thought that the planets move along their
orbits under their own power, so to speak: ‘No kind of motion presses upon
the remaining planets, [which] are driven round by individual forms with
which they were provided.’

Hooke’s contribution dates to 1666, when he presented a paper to the
Royal Society with the title ‘On gravity’. Here he sorted out what Boulliau
had got wrong, arguing that an attractive force from the Sun could
interfere with a planet’s natural tendency to move in a straight line (as
specified by Newton's third law of motion) and cause it to follow a curve.
He also stated that ‘these attractive powers are so much the more powerful
in operating, by how much the nearer the body wrought upon is to their
own Centers’, showing that he thought the force fell off with distance. But
he didn’t tell anyone else the mathematical form for this decrease until
1679, when he wrote to Newton: ‘The Attraction always is in a duplicate
proportion to the Distance from the Center Reciprocall.” In the same letter
he said that this implies that the velocity of a planet varies as the reciprocal
of its distance from the Sun. Which is wrong.

When Hooke complained that Newton had stolen his law, Newton was
having none of it, pointing out that he had discussed the idea with
Christopher Wren before Hooke had sent his letter. To demonstrate prior
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art, he cited Boulliau, and also Giovanni Borelli, an Italian physiologist and
mathematical physicist. Borelli had suggested that three forces combine to
create planetary motion: an inward force caused by the planet’s desire to
approach the Sun, a sideways force caused by sunlight, and an outward
force caused by the Sun’s rotation. Score one out of three, and that’s
generous.

Newton’s main point, generally considered decisive, is that whatever
else Hooke had done, he had not deduced the exact form of orbits from
inverse square law attraction. Newton had. In fact, he had deduced all
three of Kepler’s laws of planetary motion: elliptical orbits, sweeping out
equal areas in equal intervals of time, with the square of the period being
proportional to the cube of the distance. ‘Without my Demonstrations,’
Newton insisted, the inverse square law ‘cannot be believed by a judicious
philosopher to be anywhere accurate.” But he did also accept that ‘Mr Hook
is yet a stranger’ to this proof. A key feature of Newton’s argument is that it
applies not just to a point particle, but to a sphere. This extension, which is
crucial to planetary motion, had caused Newton considerable effort. His
geometric proof is a disguised application of integral calculus, and he was
justifiably proud of it. There is also documentary evidence that Newton
had been thinking about such questions for quite a while.

At any rate, we name the law after Newton, and this does justice to the
importance of his contribution.

The most important aspect of Newton'’s law of gravitation is not the inverse
square law as such. It is the assertion that gravitation acts universally. Any
two bodies, anywhere in the universe, attract each other. Of course you
need an accurate force law (inverse square) to get accurate results, but
without universality, you don’t know how to write down the equations for
any system with more than two bodies. Almost all of the interesting
systems, such as the Solar System itself, or the fine structure of the motion
of the Moon under the influence of (at least) the Sun and the Earth, involve
more than two bodies, so Newton’s law would have been almost useless if it
had applied only to the context in which he first deduced it.

What motivated this vision of universality? In his 1752 Memoirs of Sir
Isaac Newton’s Life, William Stukeley reported a tale Newton had told him
in 1726:

The notion of gravitation ... was occasioned by the fall of an apple, as
he sat in contemplative mood. Why should that apple always descend
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perpendicularly to the ground, thought he to himself. Why should it
not go sideways or upwards, but constantly to the Earth’s centre?
Assuredly the reason is, that the Earth draws it. There must be a
drawing power in matter. And the sum of the drawing power in the
matter of the Earth must be in the Earth’s centre, not in any side of the
Earth. Therefore does this apple fall perpendicularly or towards the
centre? If matter thus draws matter; it must be in proportion of its
quantity. Therefore the apple draws the Earth, as well as the Earth
draws the apple.

Whether the story is the literal truth, or a convenient fiction that Newton
invented to help him explain his ideas later on, is not entirely clear, but it
seems reasonable to take the tale at face value because the idea does not
end with apples. The apple was important to Newton because it made him
realise that the same law of forces can explain both the motion of the apple
and that of the Moon. The only difference is that the Moon also moves
sideways; this is why it stays up. Actually, it is always falling towards the
Earth, but the sideways motion causes the Earth’s surface to fall away as
well. Newton, being Newton, didn’t stop with this qualitative argument.
He did the sums, compared them with observations, and was satisfied that
his idea must be correct.

If gravity acts on the apple, the Moon, and the Earth, as an inherent
feature of matter, then presumably it acts on everything.

It is not possible to verify the universality of gravitational forces
directly; you would have to study all pairs of bodies in the entire universe,
and find a way to remove the influence of all the other bodies. But that’s
not how science works. Instead, it employs a mixture of inference and
observations. Universality is a hypothesis, capable of being falsified every
time it is applied. Every time it survives falsification — a fancy way to say it
gives good results — the justification for using it becomes a little stronger.
If (as in this case) it survives thousands of such tests, the justification
becomes very strong indeed. However, the hypothesis can never be proved
true: for all we know, the next experiment might produce incompatible
results. Perhaps somewhere in a galaxy far, far away there is one speck of
matter, one atom, that is not attracted to everything else. If so, we will
never find it; equally, it won’t upset our calculations. The inverse square
law itself is exceedingly difficult to verify directly, that is, by actually
measuring the attractive force. Instead, we apply the law to systems that we
can measure by using it to predict orbits, and then check whether the
predictions agree with observations.
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Even granting universality, it is not enough to write down an accurate
law of attraction. That just produces an equation describing the motion. In
order to find the motion itself, you have to solve the equation. Even for
two bodies, this is not straightforward, and even bearing in mind that he
knew in advance what answer to expect, Newton’s deduction of elliptical
orbits is a tour de force. It explains why Kepler’s three laws provide a very
accurate description of each planet’s orbit. It also explains why that
description is not exact: other bodies in the solar system, other than the
Sun and the planet itself, affect the motion. In order to account for these
disturbances, you have to solve the equations of motion for three or more
bodies. In particular, if you want to predict the motion of the Moon with
high precision, you have to include the Sun and the Earth in your
equations. The effects of the other planets, especially Jupiter, are not
entirely negligible either, but they show up only in the long term. So, fresh
from Newton’s success with the motion of two bodies under gravity,
mathematicians and physicists moved on to the next case: three bodies.
Their initial optimism dissipated rapidly: the three-body case turned out to
be very different from the two-body case. In fact, it defied solution.

It was often possible to calculate good approximations to the motion
(which often solved the problem for practical purposes), but there no
longer seemed to be an exact formula. This problem bedevilled even
simplified versions, such as the restricted three-body problem. Suppose
that a planet orbits a star in a perfect circle: how will a speck of dust, of
negligible mass, move?

Calculating approximate orbits for three or more bodies, by hand,
using pencil and paper, was just about feasible, but very laborious.
Mathematicians devised innumerable tricks and short cuts, leading to a
reasonable understanding of several astronomical phenomena. Only in the
late nineteenth century did the true complexity of the three-body problem
become apparent, when Henri Poincaré realised that the geometry
involved was necessarily extraordinarily intricate. And only in the late
twentieth century did the advent of powerful computers reduce the labour
of hand calculations, permitting accurate long-term predictions of the
motion of the Solar System.

Poincaré’s breakthrough - if it can be called that, since at the time it
seemed to be telling everyone that the problem was hopeless and it was
pointless to seek a solution — came about because he competed for a
mathematical prize. Oscar II, king of Sweden and Norway, announced a
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competition to celebrate his 60th birthday in 1889. Taking advice from the
mathematician Gosta Mittag-Leffler, the king chose the general problem of
arbitrarily many bodies moving under Newtonian gravitation. Since it was
well understood that an explicit formula akin to the two-body ellipse was
an unrealistic aim, the requirement was relaxed: the prize would be
awarded for an approximation method of a very specific kind. Namely, the
motion must be determined as an infinite series, giving results as accurate
as we please if enough terms are included.

Poincaré did not answer this question. Instead, his memoir on the
topic, published in 1890, provided evidence that it might not possess that
kind of answer, even for just three bodies — star, planet, and dust particle.
By thinking about the geometry of hypothetical solutions, Poincaré
discovered that in some cases the orbit of the dust particle must be
exceedingly complex and tangled. He then, in effect, threw up his hands in
horror and made the pessimistic statement that ‘When one tries to depict
the figure formed by these two curves and their infinity of intersections,
each of which corresponds to a doubly asymptotic solution, these
intersections form a kind of net, web or infinitely tight mesh... One is
struck by the complexity of this figure that I am not even attempting to
draw.’

We now see Poincaré’s work as a breakthrough, and discount his
pessimism, because the complicated geometry that led him to despair of
ever solving the problem actually provides powerful insights if it is
properly developed and understood. The complex geometry of the
associated dynamics turned out to be one of the earliest examples of
chaos: the occurrence, in non-random equations, of solutions so
complicated that in some respects they appear to be random, see
Chapter 16.

There are several ironies in the story. Mathematical historian June
Barrow-Green discovered that the published version of Poincaré’s
prizewinning memoir was not the one that won the prize.* This earlier
version contained a major error, overlooking the chaotic solutions. The
work was at proof stage when an embarrassed Poincaré realised his blunder,
and he paid for a new printing of a corrected version. Almost all copies of
the original were destroyed, but one remained tucked away in the archives
of the Mittag-Leffler Institute in Sweden, where Barrow-Green found it.

It also turned out that the presence of chaos does not, in fact, rule out
series solutions, but these are valid almost always rather than always. Karl
Frithiof Sundman, a Finnish mathematician, discovered this in 1912 for
the three-body problem, using series formed from powers of the cube root
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of time. (Powers of time won’t hack it.) The series converge — have a
sensible sum — unless the initial state has zero angular momentum, but
such states are infinitely rare, in the sense that a random choice of angular
momentum is almost always nonzero. In 1991 the Chinese mathematician
Qiudong Wang extended these results to any number of bodies, but did
not classify the rare exceptions when the series fail to converge. Such a
classification is likely to be very complicated: it must include solutions
where bodies escape to infinity in finite time, or oscillate ever faster, both
of which can happen for five or more bodies.

Newton’s law of gravity is routinely applied to design orbits for space
missions. Here even two-body dynamics is useful in its own right. In its
early days, the exploration of the Solar System mainly used two-body
orbits, segments of ellipses. By burning its rockets the spacecraft could be
switched from one ellipse to a different one. But as the aims of space
programmes got more ambitious, more efficient methods were needed.
They came from many-body dynamics, usually three bodies but
occasionally as great as five. The new methods of chaos and topological
dynamics became the basis of practical solutions to engineering problems.

@ c.;) Moon

Fig 14 Hohmann transfer ellipse from low-Earth orbit to lunar orbit.

It all started with a simple question: What is the most efficient route
from the Earth to the Moon or the planets? The classic answer, known as a
Hohmann transfer ellipse (Figure 14), starts from a circular orbit round the
Earth, and then follows part of a long, thin ellipse to join up with a second
circular orbit round the destination. This method was employed for the
Apollo missions of the 1960s and 1970s, but for many types of mission it
has one disadvantage. The spacecraft must be boosted out of Earth orbit
and slowed again to enter lunar orbit; this wastes fuel. There are
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alternatives involving many loops round the Earth, a transition through
the point between Earth and Moon where their gravitational fields cancel,
and many loops round the Moon. But trajectories like that take longer than
Hohmann ellipses, so they were not used for the manned Apollo missions
where food and oxygen, hence time, were of the essence. For unmanned
missions, however, time is relatively cheap, whereas anything that adds to
the overall weight of the spacecraft, including fuel, costs money.

By taking a fresh look at Newton’s law of gravity and his second law of
motion, mathematicians and space engineers have recently discovered a
new, and remarkable, approach to fuel-efficient interplanetary travel.

Go by tube.

It’s an idea straight out of science fiction. In his 2004 Pandora’s Star,
Peter Hamilton portrays a future where people travel to planets encircling
distant stars by train, running the railway lines through a wormhole, a
short cut through space-time. In his Lensman series from 1934 to 1948,
Edward Elmer ‘Doc’ Smith came up with the hyperspatial tube, which
malevolent aliens used to invade human worlds from the fourth
dimension.

Although we don’t yet have wormholes or aliens from the fourth
dimension, it has been discovered that the planets and moons of the Solar
System are tied together by a network of tubes, whose mathematical
definition requires many more dimensions than four. The tubes provide
energy-efficient routes from one world to another. They can be seen only
through mathematical eyes, because they are not made of matter: their
walls are energy levels. If we could visualise the ever-changing landscape of
gravitational fields that controls how the planets move, we would be able
to see the tubes, swirling along with the planets as they orbit the Sun.

Tubes explain some puzzling orbital dynamics. Consider, for example,
the comet called Oterma. A century ago, Oterma’s orbit was well outside
that of Jupiter. But after a close encounter with the giant planet, the
comet’s orbit shifted inside that of Jupiter. After another close encounter, it
switched back outside again. We can confidently predict that Oterma will
continue to switch orbits in this way every few decades: not because it
breaks Newton’s law, but because it obeys it.

This is a far cry from tidy ellipses. The orbits predicted by Newtonian
gravity are elliptical only when no other bodies exert a significant
gravitational pull. But the Solar System is full of other bodies, and they
can make a huge - and surprising — difference. It is here that the tubes enter
the story. Oterma’s orbit lies inside two tubes, which meet near Jupiter.
One tube lies inside Jupiter’s orbit, the other outside. They enclose special
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orbits in 3:2 and 2: 3 resonance with Jupiter, meaning that a body in such
an orbit will go round the Sun three times for every two revolutions of
Jupiter, or two times for every three. At the tube junction near Jupiter, the
comet can switch tubes, or not, depending on rather subtle effects of
Jovian and solar gravity. But once inside a tube, Oterma is stuck there until
the tube returns to the junction. Like a train that has to stay on the rails,
but can change its route to another set of rails if someone switches the
points, Oterma has some freedom to change its itinerary, but not a lot
(Figure 15).
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Fig 15 Left: Two periodic orbits, in 2:3 and 3 : 2 resonance with Jupiter, connected via
Lagrange points. Right: Actual orbit of comet Oterma, 1910-1980.

The tubes and their junctions may seem bizarre, but they are natural
and important features of the gravitational geography of the Solar System.
Victorian railway-builders understood the need to exploit natural features
of the landscape, running railways through valleys and along contour
lines, and digging tunnels through hills rather than taking the train over
the top. One reason was that trains tend to slip on steep gradients, but the
main one was energy. Climbing a hill, against the force of gravity, costs
energy, which shows up as increased fuel consumption, which costs
money.

It’s much the same with interplanetary travel. Imagine a spacecraft
moving through space. Where it goes next does not depend solely on where
it is now: it also depends on how fast it is moving and in which direction. It
takes three numbers to specify the spacecraft’s position — for example its
direction from the Earth, which requires two numbers (astronomers use
right ascension and declination, which are analogous to longitude and
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latitude on the celestial sphere, the apparent sphere formed by the night
sky), and its distance from the Earth. It takes a further three numbers to
specify its velocity in those three directions. So the spacecraft travels
through a mathematical landscape that has six dimensions rather than
two.

A natural landscape is not flat: it has hills and valleys. It takes energy to
climb a hill, but a train can gain energy by rolling down into a valley. In
fact, two types of energy come into play. The height above sea-level
determines the train’s potential energy, which represents work done
against the force of gravity. The higher you go, the more potential energy
you must create. The second kind is kinetic energy, which corresponds to
speed. The faster you go, the greater your kinetic energy becomes. When
the train rolls downhill and accelerates, it trades potential energy for
kinetic. When it climbs a hill and slows down, the trade is in the reverse
direction. The total energy is constant, so the train’s trajectory is analogous
to a contour line in the energy landscape. However, trains have a third
source of energy: coal, diesel, or electricity. By expending fuel, a train can
climb a gradient or speed up, freeing itself from its natural free-running
trajectory. The total energy still cannot change, but all else is negotiable.

It is much the same with spacecraft. The combined gravitational fields
of the Sun, planets, and other bodies of the Solar System provide potential
energy. The speed of the spacecraft corresponds to kinetic energy. And its
motive power — be it rocket fuel, ions, or light-pressure — adds a further
energy source, which can be switched on or off as required. The path
followed by the spacecraft is a kind of contour line in the corresponding
energy landscape, and along that path the total energy remains constant.
And some types of contour line are surrounded by tubes, corresponding to
nearby energy levels.

Those Victorian railway engineers were also aware that the terrestrial
landscape has special features — peaks, valleys, mountain passes — which
have a big effect on efficient routes for railway lines, because they
constitute a kind of skeleton for the overall geometry of the contours. For
instance, near a peak or a valley bottom the contours form closed curves.
At peaks, potential energy is locally at a maximum; in a valley, it is at a
local minimum. Passes combine features of both, being at a maximum in
one direction, but a minimum in another. Similarly, the energy landscape
of the Solar System has special features. The most obvious are the planets
and moons themselves, which sit at the bottom of gravity wells, like
valleys. Equally important, but less visible, are the peaks and passes of the
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energy landscape. All these features organise the overall geometry, and
with it, the tubes.

The energy landscape has other attractive features for the tourist,
notably Lagrange points. Imagine a system consisting only of the Earth and
the Moon. In 1772 Joseph-Louis Lagrange discovered that at any instant
there are precisely five places where the gravitational fields of the two
bodies, together with centrifugal force, cancel out exactly. Three are in line
with both Earth and Moon - L1 lies between them, L2 is on the far side of
the Moon, and L3 is on the far side of the Earth. The Swiss mathematician
Leonhard Euler had already discovered these around 1750. But there are
also L4 and L5, known as Trojan points, which lie in the same orbit as the
Moon but 60 degrees ahead of it or behind it. As the Moon rotates round
the Earth, the Lagrange points rotate with it. Other pairs of bodies also
have Lagrange points — Earth/Sun, Jupiter/Sun, Titan/Saturn.

The old-fashioned Hohmann transfer orbit is built from pieces of
circles and ellipses, which are the natural trajectories for two-body systems.
The new tube-based paths are built from pieces of the natural trajectories of
three-body systems, such as Sun/Earth/spacecraft. Lagrange points play a
special role, just as peaks and passes did for railways: they are the junctions
where tubes meet. L1 is a great place to make small course changes, because
the natural dynamics of a spacecraft near L1 is chaotic, Figure 16. Chaos
has a useful feature (see Chapter 16): very small changes in position or
speed can create large changes to the trajectory. So it is easy to redirect the
spacecraft in a fuel-efficient, though possibly slow, manner.

The first person to take this idea seriously was the German-born
mathematician Edward Belbruno, an orbital analyst at the Jet Propulsion
Laboratory from 1985 to 1990. He realised that chaotic dynamics in many-
body systems provided an opportunity for novel low-energy transfer orbits,
naming the technique fuzzy boundary theory. In 1991 he put his ideas into
practice. Hiten, a Japanese probe, had been surveying the Moon, and had
completed its intended mission, returning to orbit the Earth. Belbruno
designed a new orbit that would take it back to the Moon despite having
pretty much run out of fuel. After approaching the Moon as intended,
Hiten visited its L4 and L5 points to search for cosmic dust that might have
been trapped there.

A similar trick was used in 1985 to redirect the almost-dead
International Sun-Earth Explorer ISEE-3 to rendezvous with comet
Giacobini-Zinner, and it was used again for NASA’s Genesis mission to
bring back samples of the solar wind. Mathematicians and engineers
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Fig 16 Chaos near Jupiter. The diagram shows a cross-section of orbits. The nested loops are
quasiperiodic orbits and the remaining stippled region is a chaotic orbit. The two thin loops
crossing each other at the right are cross-sections of tubes.

wanted to repeat the trick, and to find others of the same kind, which
meant finding out what really made it work. It turned out to be tubes.
The underlying idea is simple but clever. Those special places in the
energy landscape that resemble mountain passes create bottlenecks that
would-be travellers cannot easily avoid. Ancient humans discovered, the
hard way, that even though it takes energy to climb a pass, it takes more
energy to follow any other route — unless you can go round the mountain
in a totally different direction. The pass makes the best of a bad choice.
In the energy landscape, the analogues of passes include Lagrange
points. Associated with them are very specific inbound paths, which are
like the most efficient way to climb up the pass. There are also equally
specific outbound paths, analogous to the natural routes down from the
pass. To follow these inbound and outbound paths exactly, you have to
travel at just the right speed, but if your speed is slightly different you can
still stay near those paths. In the late 1960s American mathematicians
Charles Conley and Richard McGehee followed up Belbruno’s pioneering
work, pointing out that each such path is surrounded by a nested set of
tubes, one inside the other. Each tube corresponds to a particular choice of
speed; the further away it is from the optimal speed, the wider the tube is.
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On the surface of any given tube, the total energy is constant, but the
constants differ from one tube to another. Much as a contour line is at a
constant height, but that height is different for each contour.

The way to plan an efficient mission profile, then, is to work out which
tubes are relevant to your choice of destination. Then you route your
spacecraft along the inside of the first inbound tube, and when it gets to
the associated Lagrange point you fire a quick burst on the motors to
redirect it along the most suitable outbound tube, Figure 17. That tube
naturally flows into the corresponding inbound tube of the next switching
point... and so it goes.

Fig 17 Left: Tubes meeting near Jupiter. Right: Close-up of region where the tubes join.

Plans for future tubular missions are already being drawn up. In 2000
Wang Sang Koon, Martin Lo, Jerrold Marsden, and Shane Ross used the
tube technique to find a ‘Petit Grand Tour’ of the moons of Jupiter, ending
with a capture orbit round Europa, which was very tricky with previous
methods. The path involves a gravitational boost near Ganymede followed
by a tube trip to Europa. A more complex route, requiring even less energy,
includes Callisto as well. It makes use of another feature of the energy
landscape - resonances. These occur when, say, two moons repeatedly
return to the same relative positions, but one revolves twice round Jupiter
while the other revolves three times. Any small numbers can replace 2 and
3 here. This route uses five-body dynamics: Jupiter, the three moons, and
the spacecraft.

In 2005, Michael Dellnitz, Oliver Junge, Marcus Post, and Bianca Thiere
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used tubes to plan an energy-efficient mission from the Earth to Venus. The
main tube here links the Sun/Earth L1 point to the Sun/Venus L2 point. As
a comparison, this route uses only one third of the fuel required by the
European Space Agency’s Venus Express mission, because it can use low-
thrust engines; the price paid is a lengthening of the transit time from 150
days to about 650 days.

The influence of tubes may go further. In unpublished work, Dellnitz
has discovered evidence of a natural system of tubes connecting Jupiter to
each of the inner planets. This remarkable structure, now called the
Interplanetary Superhighway, hints that Jupiter, long known to be the
dominant planet of the Solar System, also plays the role of a celestial Grand
Central Station. Its tubes may well have organised the formation of the
entire Solar System, determining the spacings of the inner planets.

Why were the tubes not spotted sooner? Until very recently, two vital
things were missing. One was powerful computers, capable of carrying out
the necessary many-body calculations. They are far too cumbersome by
hand. But the other, even more important, was a deep mathematical
understanding of the geography of the energy landscape. Without this
imaginative triumph of modern mathematical methods, there would be
nothing for the computers to calculate. And without Newton’s law of
gravity, the mathematical methods would never have been devised.
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The Square Root of Minus One
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What does it say?

Even though it ought to be impossible, the square of the
number i is minus one.

Why is that important?

It led to the creation of complex numbers, which in turn led to
complex analysis, one of the most powerful areas of
mathematics.

What did it lead to?

Improved methods to calculate trigonometric tables.
Generalisations of almost all mathematics to the complex
realm. More powerful methods to understand waves, heat,
electricity, and magnetism. The mathematical basis of
quantum mechanics.






enaissance Italy was a hotbed of politics and violence. The north of

the country was controlled by a dozen warring city-states, among
them Milan, Florence, Pisa, Genoa, and Venice. In the south, Guelphs and
Gibellines were in conflict as Popes and Holy Roman Emperors battled for
supremacy. Bands of mercenaries roamed the land, villages were laid waste,
coastal cities waged naval warfare against each other. In 1454 Milan,
Naples, and Florence signed the Treaty of Lodi, and peace reigned for the
next four decades, but the papacy remained embroiled in corrupt politics.
This was the time of the Borgias, notorious for poisoning anyone who got
in the way of their quest for political and religious power, but it was also
the time of Leonardo da Vinci, Brunelleschi, Piero della Francesca, Titian,
and Tintoretto. Against a backdrop of intrigue and murder, long-held
assumptions were coming into question. Great art and great science
flourished in symbiosis, each feeding off the other.

Great mathematics flourished as well. In 1545 the gambling scholar
Girolamo Cardano was writing an algebra text, and he encountered a new
kind of number, one so baffling that he declared it ‘as subtle as it is useless’
and dismissed the notion. Rafael Bombelli had a solid grasp of Cardano’s
algebra book, but he found the exposition confusing, and decided he could
do better. By 1572 he had noticed something intriguing: although these
baffling new numbers made no sense, they could be used in algebraic
calculations and led to results that were demonstrably correct.

For centuries mathematicians engaged in a love-hate relationship with
these ‘imaginary numbers’, as they are still called today. The name betrays
an ambivalent attitude: they’re not real numbers, the usual numbers
encountered in arithmetic, but in most respects they behave like them. The
main difference is that when you square an imaginary number, the result is
negative. But that ought not to be possible, because squares are always
positive.

Only in the eighteenth century did mathematicians figure out what
imaginary numbers were. Only in the nineteenth did they start to feel
comfortable with them. But by the time the logical status of imaginary
numbers was seen to be entirely comparable to that of the more traditional
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real numbers, imaginaries had become indispensable throughout
mathematics and science, and the question of their meaning hardly
seemed interesting any more. In the late nineteenth and early twentieth
centuries, revived interest in the foundations of mathematics led to a
rethink of the concept of number, and traditional ‘real’ numbers were seen
to be no more real than imaginary ones. Logically, the two kinds of
number were as alike as Tweedledum and Tweedledee. Both were
constructs of the human mind, both represented - but were not
synonymous with — aspects of nature. But they represented reality in
different ways and in different contexts.

By the second half of the twentieth century, imaginary numbers were
simply part and parcel of every mathematician’s and every scientist’s
mental toolkit. They were built into quantum mechanics in such a
fundamental way that you could no more do physics without them than
you could scale the north face of the Eiger without ropes. Even so,
imaginary numbers are seldom taught in schools. The sums are easy
enough, but the mental sophistication needed to appreciate why
imaginaries are worth studying is still too great for the vast majority of
students. Very few adults, even educated ones, are aware of how deeply
their society depends on numbers that do not represent quantities,
lengths, areas, or amounts of money. Yet most modern technology, from
electric lighting to digital cameras, could not have been invented without
them.

Let me backtrack to a crucial question. Why are squares always positive?

In Renaissance times, where equations were generally rearranged to
make every number in them positive, they wouldn’t have phrased the
question quite this way. They would have said that if you add a number to
a square then you have to get a bigger number — you can’t get zero. But
even if you allow negative numbers, as we now do, squares still have to be
positive. Here’s why.

Real numbers can be positive or negative. However, the square of any
real number, whatever its sign, is always positive, because the product of
two negative numbers is positive. So both 3 x3 and —3 x —3 yield the
same result: 9. Therefore 9 has two square roots, 3 and —3.

What about —9? What are its square roots?

It doesn’t have any.

It all seems terribly unfair: the positive numbers hog two square roots
each, while the negative numbers go without. It is tempting to change the
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rule for multiplying two negative numbers, so that, say, -3 x—-3=-09.
Then positive and negative numbers each get one square root; moreover,
this has the same sign as its square, which seems neat and tidy. But this
seductive line of reasoning has an unintended downside: it wrecks the
usual rules of arithmetic. The problem is that —9 already occurs as 3x —3
itself a consequence of the usual rules of arithmetic, and a fact that almost
everyone is happy to accept. If we insist that—3x —3 is also—9, then
—3x —3=3x —3. There are several ways to see that this causes problems; the
simplest is to divide both sides by —3, to get3=-3.

Of course you can change the rules of arithmetic. But now it all gets
complicated and messy. A more creative solution is to retain the rules of
arithmetic, and to extend the system of real numbers by permitting
imaginaries. Remarkably — and no one could have anticipated this, you just
have to follow the logic through - this bold step leads to a beautiful,
consistent system of numbers, with a myriad uses. Now all numbers except
0 have two square roots, one being minus the other. This is true even for
the new kinds of number; one enlargement of the system suffices. It took a
while for this to become clear, but in retrospect it has an air of inevitability.
Imaginary numbers, impossible though they were, refused to go away.
They seemed to make no sense, but they kept cropping up in calculations.
Sometimes the use of imaginary numbers made the calculations simpler,
and the result was more comprehensive and more satisfactory. Whenever
an answer that had been obtained using imaginary numbers, but did not
explicitly involve them, could be verified independently, it turned out to
be right. But when the answer did involve explicit imaginary numbers it
seemed to be meaningless, and often logically contradictory. The enigma
simmered for two hundred years, and when it finally boiled over, the
results were explosive.

Cardano is known as the gambling scholar because both activities played a
prominent role in his life. He was both genius and rogue. His life consists of
a bewildering series of very high highs and very low lows. His mother tried
to abort him, his son was beheaded for killing his (the son’s) wife, and he
(Cardano) gambled away the family fortune. He was accused of heresy for
casting the horoscope of Jesus. Yet in between he also became Rector of the
University of Padua, was elected to the College of Physicians in Milan,
gained 2000 gold crowns for curing the Archbishop of St Andrews’
asthma, and received a pension from Pope Gregory XIII. He invented the
combination lock and gimbals to hold a gyroscope, and he wrote a number
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of books, including an extraordinary autobiography De Vita Propria (‘The
Book of My Life’). The book that is relevant to our tale is the Ars Magna of
1545. The title means ‘great art’, and refers to algebra. In it, Cardano
assembled the most advanced algebraic ideas of his day, including new and
dramatic methods for solving equations, some invented by a student of his,
some obtained from others in controversial circumstances.

Algebra, in its familiar sense from school mathematics, is a system for
representing numbers symbolically. Its roots go back to the Greek
Diophantus around 250 AD, whose Arithmetica employed symbols to
describe ways to solve equations. Most of the work was verbal - ‘find two
numbers whose sum is 10 and whose product is 24’. But Diophantus
summarised the methods he used to find the solutions (here 4 and 6)
symbolically. The symbols (see Table 1) were very different from those we
use today, and most were abbreviations, but it was a start. Cardano mainly
used words, with a few symbols for roots, and again the symbols scarcely
resemble those in current use. Later authors homed in, rather haphazardly,
on today’s notation, most of which was standardised by Euler in his
numerous textbooks. However, Gauss still used xx instead of x* as late as
1800.

date author notation

c.250  Diophantus AV acpMoy

c.825  Al-Khowarizmi power plus twice side plus three [in Arabic]
1545  Cardano square plus twice side plus three [in Italian]
1572 Bombelli 3p-2Lipa1l

1585  Stevin 3+2°+1°

1591  Viéte x quadr.+x 2+3

1637 Descartes, Gauss xx +2x+3
1670  Bachet de Méziriac Q+2N+3
1765  Euler, modern x*+2x+3

Table 1 The development of algebraic notation.

The most important topics in the Ars Magna were new methods for
solving cubic and quartic equations. These are like quadratic equations,
which most of us meet in school algebra, but more complicated. A
quadratic equation states a relationship involving an unknown quantity,
normally symbolised by the letter x, and its square x*. ‘Quadratic’ comes
from the Latin for ‘square’. A typical example is

x> —-5x+6=0
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Verbally, this says: ‘Square the unknown, subtract 5 times the unknown,
and add 6: the result is zero.” Given an equation involving an unknown,
our task is to solve the equation - to find the value or values of the
unknown that make the equation correct.

For a randomly chosen value of x, this equation will usually be false.
For example, if we try x=1, then x> —-5x+6=1-5+6=2, which isn’t zero.
But for rare choices of x, the equation is true. For example, when x=2 we
have x*~5x+6=4—10+6=0. But this is not the only solution! When x=3
we have x> — 5x+6=9 — 15+ 6 =0 as well. There are two solutions, x=2 and
x=3, and it can be shown that there are no others. A quadratic equation
can have two solutions, one, or none (in real numbers). For example,
x* — 2x+1=0 has only the solution x=1, and x*+1=0 has no solutions in
real numbers.

Cardano’s masterwork provides methods for solving cubic equations,
which along with x and x* also involve the cube x* of the unknown, and
quartic equations, where x* turns up as well. The algebra gets very
complicated; even with modern symbolism it takes a page or two to derive
the answers. Cardano did not go on to quintic equations, involving x°,
because he did not know how to solve them. Much later it was proved that
no solutions (of the type Cardano would have wanted) exist: although
highly accurate numerical solutions can be calculated in any particular
case, there is no general formula for them, unless you invent new symbols
specifically for the task.

I'm going to write down a few algebraic formulas, because I think the
topic makes more sense if we don'’t try to avoid them. You don’t need to
follow the details, but I'd like to show you what everything looks like.
Using modern symbols, we can write out Cardano’s solution of the cubic
equation in a special case, when x* + ax + b =0 for specific numbers a and b.
(If x* is present, a cunning trick gets rid of it, so this case actually deals with
everything.) The answer is:

3/ b \/ﬂ 3/ b \/ﬂ
Va2 tVe TtV 2 Vet

This may appear a bit of a mouthful, but it's a lot simpler than many

algebraic formulas. It tells us how to calculate the unknown x by working
out the square of b and the cube of a, adding a few fractions, and taking a
couple of square roots (the ,/~ symbol) and a couple of cube roots (the 3~
symbol). The cube root of a number is whatever you have to cube to get
that number.
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The discovery of the solution for cubic equations involves at least three
other mathematicians, one of whom complained bitterly that Cardano had
promised not to reveal his secret. The story, though fascinating, is too
complicated to relate here.! The quartic was solved by Cardano’s student
Lodovico Ferrari. I'll spare you the even more complicated formula for
quartic equations.

The results reported in the Ars Magna were a mathematical triumph,
the culmination of a story that spanned millennia. The Babylonians knew
how to solve quadratic equations around 1500 BC, perhaps earlier. The
ancient Greeks and Omar Khayyam knew geometric methods for solving
cubics, but algebraic solutions of cubic equations, let alone quartics, were
unprecedented. At a stroke, mathematics outstripped its classical origins.

There was one tiny snag, however. Cardano noticed it, and several
people tried to explain it; they all failed. Sometimes the method works
brilliantly; at other times, the formula is as enigmatic as the Delphic oracle.
Suppose we apply Cardano’s formula to the equation x*> — 15x —4=0. The
result is

x:f/2+m+f/2—\/m

However, —121 is negative, so it has no square root. To compound the
mystery, there is a perfectly good solution, x=4. The formula doesn't give
it.

Light of a kind was shed in 1572 when Bombelli published L’Algebra.
His main aim was to clarify Cardano’s book, but when he came to this
particular thorny issue he spotted something Cardano had missed. If you
ignore what the symbols mean, and just perform routine calculations, the
standard rules of algebra show that

2+V-1)=2+v-121
Therefore you are entitled to write
V/2+v—121=2++v—1
Similarly,
/2 —v—-121=2—-+v—1
Now the formula that baffled Cardano can be rewritten as

2+V-1)+(2-V-1)
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which is equal to 4 because the troublesome square roots cancel out. So
Bombelli’s nonsensical formal calculations got the right answer. And that
was a perfectly normal real number.

Somehow, pretending that square roots of negative numbers made
sense, even though they obviously did not, could lead to sensible answers.
Why?

To answer this question, mathematicians had to develop good ways to
think about square roots of negative quantities, and do calculations with
them. Early writers, among them Descartes and Newton, interpreted these
‘imaginary’ numbers as a sign that a problem has no solutions. If you
wanted to find a number whose square was minus one, the formal solution
‘square root of minus one’ was imaginary, so no solution existed. But
Bombelli’s calculation implied that there was more to imaginaries than
that. They could be used to find solutions; they could arise as part of the
calculation of solutions that did exist.

Leibniz had no doubt about the importance of imaginary numbers. In
1702 he wrote: ‘The Divine Spirit found a sublime outlet in that wonder of
analysis, that portent of the ideal world, that amphibian between being
and non-being, which we call the imaginary root of negative unity.” But
the eloquence of his statement fails to obscure a fundamental problem: he
didn’t have a clue what imaginary numbers actually were.

One of the first people to come up with a sensible representation of
complex numbers was Wallis. The image of real numbers lying along a line,
like marked points on a ruler, was already commonplace. In 1673 Wallis
suggested that a complex number x +iy should be thought of as a point in a
plane. Draw a line in the plane, and identify points on this line with real
numbers in the usual way. Then think of x +iy as a point lying to one side
of the line, distance y away from the point x.

Wallis’s idea was largely ignored, or worse, criticised. Francois Daviet
de Foncenex, writing about imaginaries in 1758, said that thinking of
imaginaries as forming a line at right angles to the real line was pointless.
But eventually the idea was revived in a slightly more explicit form. In fact,
three people came up with exactly the same method for representing
complex numbers, at intervals of a few years, Figure 18. One was a
Norwegian surveyor, one a French mathematician, and one a German
mathematician. Respectively, they were Caspar Wessel, who published in
1797, Jean-Robert Argand in 1806, and Gauss in 1811. They basically said
the same as Wallis, but they added a second line to the picture, an
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imaginary axis at right angles to the real one. Along this second axis lived
the imaginary numbers i, 2i, 3i, and so on. A general complex number,
such as 3 +2i, lived out in the plane, three units along the real axis and two
along the imaginary one.

y
s 3i4
+Z1 3+2
0 S +2i
12 it :
N .
3-2-101 23 3241, 123 x
_2i+
_3i4+

Fig 18 The complex plane. Left: according to Wallis. Right: according to Wessel, Argand, and
Gauss.

This geometric representation was all very well, but it didn’t explain
why complex numbers form a logically consistent system. It didn’t tell us
in what sense they are numbers. It just provided a way to visualise them.
This no more defined what a complex number is than a drawing of a
straight line defines a real number. It did provide some sort of
psychological prop, a slightly artificial link between those crazy
imaginaries and the real world, but nothing more.

What convinced mathematicians that they should take imaginary
numbers seriously wasn’t a logical description of what they were. It was
overwhelming evidence that whatever they were, mathematics could make
good use of them. You don’t ask difficult questions about the philosophical
basis of an idea when you are using it every day to solve problems and you
can see that it gives the right answers. Foundational questions still have
some interest, of course, but they take a back seat to the pragmatic issues of
using the new idea to solve old and new problems.

Imaginary numbers, and the system of complex numbers that they
spawned, cemented their place in mathematics when a few pioneers
turned their attention to complex analysis: calculus (Chapter 3) but with
complex numbers instead of real ones. The first step was to extend all
the usual functions — powers, logarithms, exponentials, trigonometric
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functions - to the complex realm. What is sin z when z=x +iy is complex?
What is e” or log z?

Logically, these things can be whatever we wish. We are operating in a
new domain where the old ideas don’t apply. It doesn’t make much sense,
for instance, to think of a right-angled triangle whose sides have complex
lengths, so the geometric definition of the sine function is irrelevant. We
could take a deep breath, insist that sin z has its usual value when z is real,
but equals 42 whenever z isn’t real: job done. But that would be a pretty
silly definition: not because it’s imprecise, but because it bears no sensible
relationship to the original one for real numbers. One requirement for an
extended definition must be that it agrees with the old one when applied
to real numbers, but that’s not enough. It’s true for my silly extension of
the sine. Another requirement is that the new concept should retain as
many features of the old one as we can manage; it should somehow be
‘natural’.

What properties of sine and cosine do we want to preserve? Presumably
we’d like all the pretty formulas of trigonometry to remain valid, such as
sin 2z=2 sin z cos z. This imposes a constraint but doesn’t help. A more
interesting property, derived using analysis (the rigorous formulation of
calculus), is the existence of an infinite series:
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(The sum of such a series is defined to be the limit of the sum of finitely
many terms as the number of terms increases indefinitely.) There is a
similar series for the cosine:

2 4 6

z VA
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and the two are obviously related in some way to the series for the
exponential:

72 z3 z*
€Z=1+Z+ﬁ+m+m+

These series may seem complicated, but they have an attractive feature: we

know how to make sense of them for complex numbers. All they involve is

integer powers (which we obtain by repeated multiplication) and a

technical issue of convergence (making sense of the infinite sum). Both

of these extend naturally into the complex realm and have all of the
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expected properties. So we can define sines and cosines of complex
numbers using the same series that work in the real case.

Since all of the usual formulas in trigonometry are consequences of
these series, those formulas automatically carry over as well. So do the basic
facts of calculus, such as ‘the derivative of sine is cosine’. So does
e’ =e”e". This is all so pleasant that mathematicians were happy to settle
on the series definitions. And once they’d done that, a great deal else
necessarily had to fit in with it. If you followed your nose, you could
discover where it led.

For example, those three series look very similar. Indeed, if you replace
z by iz in the series for the exponential, you can split the resulting series
into two parts, and what you get are precisely the series for sine and cosine.
So the series definitions imply that

el” = cosz+isinz.
You can also express both sine and cosine using exponentials:

eiz + e—iz . eiz _ e—iz
cosz=———— sinz=——7pr—
This hidden relationship is extraordinarily beautiful. But you’d never
suspect anything like it could exist if you remained stuck in the realm of
the reals. Curious similarities between trigonometric formulas and
exponential ones (for example, their infinite series) would remain just
that. Viewed through complex spectacles, everything suddenly slots into
place.

One of the most beautiful, yet enigmatic, equations in the whole of
mathematics emerges almost by accident. In the trigonometric series, the
number z (when real) has to be measured in radians, for which a full circle
of 360° becomes 2z radians. In particular, the angle 180° is = radians.
Moreover, sin t=0 and cos n=—1. Therefore

e"= cost+isinnt=—1

The imaginary number i unites the two most remarkable numbers in
mathematics, e and =, in a single elegant equation. If you've never seen this
before, and have any mathematical sensitivity, the hairs on your neck raise
and prickles run down your spine. This equation, attributed to Euler,
regularly comes top of the list in polls for the most beautiful equation in
mathematics. That doesn’t mean that it is the most beautiful equation, but
it does show how much mathematicians appreciate it.
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Armed with complex functions and knowing their properties, the
mathematicians of the nineteenth century discovered something
remarkable: they could use these things to solve differential equations in
mathematical physics. They could apply the method to static electricity,
magnetism, and fluid flow. Not only that: it was easy.

In Chapter 3 we talked of functions — mathematical rules that assign, to
any given number, a corresponding number, such as its square or sine.
Complex functions are defined in the same way, but now we allow the
numbers involved to be complex. The method for solving differential
equations was delightfully simple. All you had to do was take some
complex function, call it f(z), and split it into its real and imaginary parts:

f(2)=u(z) +iv(2)

Now you have two real-valued functions u and v, defined for any z in the
complex plane. Moreover, whatever function you start with, these two
component functions satisfy differential equations found in physics. In a
fluid-flow interpretation, for example, u and v determine the flow-lines. In
an electrostatic interpretation, the two components determine the electric
field and how a small charged particle would move; in a magnetic
interpretation, they determine the magnetic field and the lines of force.

I'll give just one example: a bar magnet. Most of us remember seeing a
famous experiment in which a magnet is placed beneath a sheet of paper,
and iron filings are scattered over the paper. They automatically line up to
show the lines of magnetic force associated with the magnet — the paths
that a tiny test magnet would follow if placed in the magnetic field. The
curves look like Figure 19 (left).

Fig 19 Left: Magnetic field of bar magnet. Right: Field derived using complex analysis.

To obtain this picture using complex functions, we just let f(z)=1/z.
The lines of force turn out to be circles, tangent to the real axis, as in Figure
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19 (right). This is what the magnetic fields lines of a very tiny bar magnet
would look like. A more complicated choice of function corresponds to a
magnet of finite size: I chose this function to keep everything as simple as
possible.

This was wonderful. There were endless functions to work with. You
decided which function to look at, found its real and imaginary parts,
worked out their geometry ... and, lo and behold, you had solved a
problem in magnetism, or electricity, or fluid flow. Experience soon told
you which function to use for which problem. The logarithm was a point
source, minus the logarithm was a sink through which fluid disappeared
like the plughole in a kitchen sink, i times the logarithm was a point vortex
where the fluid spun round and round... It was magic! Here was a method
that could churn out solution after solution to problems that would
otherwise be opaque. Yet it came with a guarantee of success, and if you
were worried about all that complex analysis stuff, you could check directly
that the results you obtained really did represent solutions.

This was just the beginning. As well as special solutions, you could prove
general principles, hidden patterns in the physical laws. You could analyse
waves and solve differential equations. You could transform shapes into
other shapes, using complex equations, and the same equations
transformed the flow-lines round them. The method was limited to
systems in the plane, because that was where a complex number naturally
lived, but the method was a godsend when previously even problems in the
plane were out of reach. Today, every engineer is taught how to use
complex analysis to solve practical problems, early in their university
course. The Joukowski transformation z+ 1/z turns a circle into an aerofoil
shape, the cross-section of a rudimentary aeroplane wing, see Figure 20. It
therefore turns the flow past a circle, easy to find if you knew the tricks of
the trade, into the flow past an aerofoil. This calculation, and more realistic
improvements, were important in the early days of aerodynamics and
aircraft design.

This wealth of practical experience made the foundational issues moot.
Why look a gift horse in the mouth? There had to be a sensible meaning for
complex numbers — they wouldn’t work otherwise. Most scientists and
mathematicians were much more interested in digging out the gold than
they were in establishing exactly where it had come from and what
distinguished it from fools’ gold. But a few persisted. Eventually, the Irish
mathematician William Rowan Hamilton knocked the whole thing on the
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Fig 20 Flow past a wing derived from the Joukowski transformation.

head. He took the geometric representation proposed by Wessel, Argand,
and Gauss, and expressed it in coordinates. A complex number was a pair
of real numbers (x, y). The real numbers were those of the form (x, 0). The
imaginary i was (0, 1). There were simple formulas for adding and
multiplying these pairs. If you were worried about some law of algebra,
such as the commutative law ab=ba, you could routinely work out both
sides as pairs, and make sure they were the same. (They were.) If you
identified (x, 0) with plain x, you embedded the real numbers into the
complex ones. Better still, x +iy then worked out as the pair (x, y).

This wasn’t just a representation, but a definition. A complex number,
said Hamilton, is nothing more nor less than a pair of ordinary real
numbers. What made them so useful was an inspired choice of the rules for
adding and multiplying them. What they actually were was trite; it was
how you used them that produced the magic. With this simple stroke of
genius, Hamilton cut through centuries of heated argument and
philosophical debate. But by then, mathematicians had become so used
to working with complex numbers and functions that no one cared any
more. All you needed to remember was that i*=—1.

87






Much ado about knotting

Euler’s Formula for Polyhedra

number of number of number of
faces edges vertices

F_E+V=2

What does it say?

The numbers of faces, edges, and vertices of a solid are not
independent, but are related in a simple manner.

Why is that important?

It distinguishes between solids with different topologies using
the earliest example of a topological invariant. This paved
the way to more general and more powerful techniques,
creating a new branch of mathematics.

What did it lead to?

One of the most important and powerful areas of pure
mathematics: topology, which studies geometric properties
that are unchanged by continuous deformations. Examples
include surfaces, knots, and links. Most applications are
indirect, but its influence behind the scenes is vital. It helps us
understand how enzymes act on DNA in a cell, and why the
motion of celestial bodies can be chaotic.






s the nineteenth century approached its end, mathematicians began

to develop a new kind of geometry, one in which familiar concepts
such as lengths and angles played no role whatsoever and no distinction
was made between triangles, squares, and circles. Initially it was called
analysis situs, the analysis of position, but mathematicians quickly settled
on another name: topology.

Topology has its roots in a curious numerical pattern that Descartes
noticed in 1639 when thinking about Euclid’s five regular solids. Descartes
was a French-born polymath who spent most of his life in the Dutch
Republic, present-day Netherlands. His fame mainly rests on his
philosophy, which proved so influential that for a long time Western
philosophy consisted largely of responses to Descartes. Not always in
agreement, you appreciate, but motivated by his arguments nonetheless.
His sound bite cogito ergo sum - ‘1 think, therefore I am’ - has become
common cultural currency. But Descartes’s interests extended beyond
philosophy into science and mathematics.

In 1639 Descartes turned his attention to the regular solids, and this
was when he noticed his curious numerical pattern. A cube has 6 faces,
12 edges, and 8 vertices; the sum 6-12+ 8 equals 2. A dodecahedron has 12
faces, 30 edges, and 20 vertices; the sum 12-30+20=2. An icosahedron
has 20 faces, 30 edges, and 12 vertices; the sum 20-30+12=2. The same
relationship holds for the tetrahedron and octahedron. In fact, it applies to
a solid of any shape, regular or not. If the solid has F faces, E edges, and
V vertices, then F-E+ V=2. Descartes viewed this formula as a minor
curiosity and did not publish it. Only much later did mathematicians see
this simple little equation as one of the first tentative steps towards the
great success story in twentieth-century mathematics, the inexorable rise
of topology. In the nineteenth century, the three pillars of pure
mathematics were algebra, analysis, and geometry. By the end of the
twentieth, they were algebra, analysis, and topology.
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Topology is often characterised as ‘rubber-sheet geometry’ because it is the
kind of geometry that would be appropriate for figures drawn on a sheet of
elastic, so that lines can bend, shrink, or stretch, and circles can be
squashed so that they turn into triangles or squares. All that matters is
continuity: you are not allowed to rip the sheet apart. It may seem
remarkable that anything so weird could have any importance, but
continuity is a basic aspect of the natural world and a fundamental
feature of mathematics. Today we mostly use topology indirectly, as one
mathematical technique among many. You don’t find anything obviously
topological in your kitchen. However, a Japanese company did market a
chaotic dishwasher, which according to their marketing people cleaned
dishes more efficiently, and our understanding of chaos rests on topology.
So do some important aspects of quantum field theory and that iconic
molecule DNA. But, when Descartes counted the most obvious features of
the regular solids and noticed that they were not independent, all this was
far in the future.

It was left to the indefatigable Euler, the most prolific mathematician
in history, to prove and publish this relationship, which he did in 1750 and
1751. I'll sketch a modern version. The expression F—E+ V may seem fairly
arbitrary, but it has a very interesting structure. Faces (F) are polygons, of
dimension 2, edges (E) are lines, so have dimension 1, and vertices (V) are
points, of dimension 0. The signs in the expression alternate, +—+, with
+being assigned to features of even dimension and - to those of odd
dimension. This implies that you can simplify a solid by merging its faces
or removing edges and vertices, and these changes will not alter the
number F-E+ V provided that every time you get rid of a face you also
remove an edge, or every time you get rid of a vertex you also remove an
edge. The alternating signs mean that changes of this kind cancel out.

Now I'll explain how this clever structure makes the proof work. Figure
21 shows the key stages. Take your solid. Deform it into a nice round
sphere, with its edges being curves on that sphere. If two faces meet along a
common edge, then you can remove that edge and merge the faces into
one. Since this merger reduces both F and E by 1, it doesn’t change F-E+ V.
Keep doing this until you get down to a single face, which covers almost
all of the sphere. Aside from this face, you are left with only edges and
vertices. These must form a tree, a network with no closed loops, because
any closed loop on a sphere separates at least two faces: one inside it, the
other outside it. The branches of this tree are the remaining edges of the
solid, and they join together at the remaining vertices. At this stage only
one face remains: the entire sphere, minus the tree. Some branches of this
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tree connect to other branches at both ends, but some, at the extremes,
terminate in a vertex, to which no other branches attach. If you remove
one of these terminating branches together with that vertex, then the tree
gets smaller, but since both E and V decrease by 1, F-E+ V again remains
unchanged.

This process continues until you are left with a single vertex sitting on
an otherwise featureless sphere. Now V=1, E=0,and F=1.So F-E+V=1-
0+1=2. But since each step leaves F—E+ V unchanged, its value at the
beginning must also have been 2, which is what we want to prove.

Fig 21 Key stages in simplifying a solid. Left to right: (1) Start. (2) Merging adjacent faces. (3)
Tree that remains when all faces have been merged. (4) Removing an edge and a vertex from
the tree. (5) End.

It’s a cunning idea, and it contains the germ of a far-reaching principle.
The proof has two ingredients. One is a simplification process: remove
either a face and an adjacent edge or a vertex and an edge that meets it. The
other is an invariant, a mathematical expression that remains unchanged
whenever you carry out a step in the simplification process. Whenever
these two ingredients coexist, you can compute the value of the invariant
for any initial object by simplifying it as far as you can, and then
computing the value of the invariant for this simplified version. Because it
is an invariant, the two values must be equal. Because the end result is
simple, the invariant is easy to calculate.

Now I have to admit that I've been keeping one technical issue up my
sleeve. Descartes’s formula does not, in fact, apply to any solid. The most
familiar solid for which it fails is a picture frame. Think of a picture frame
made from four lengths of wood, each rectangular in cross-section, joined
at the four corners by 45° mitres as in Figure 22 (left). Each length of wood
contributes 4 faces, so F=16. Each length also contributes 4 edges, but the
mitre joint creates 4 more at each corner, so E=32. Each corner comprises
4 vertices, so V=16. Therefore F-E+ V=0.
What went wrong?
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Fig 22 Left: A picture frame with F—E+ V=0. Right: Final configuration when the picture
frame is smoothed and then simplified.

There’s no problem with F-E+V being invariant. Neither is there
much of a problem with the simplification process. But if you work
through it for the frame, always cancelling one face against one edge, or
one vertex against one edge, then the final simplified configuration is not a
single vertex sitting in a single face. Performing the cancellation in the
most obvious way, what you get is Figure 22 (right), with F=1, V=1, E=2.
I've smoothed the faces and edges for reasons that will quickly become
apparent. At this stage removing an edge just merges the sole remaining
face with itself, so the changes to the numbers no longer cancel. This is
why we stop, but we’re home and dry anyway: for this configuration, F—E
+ V=0. So the method performs perfectly. It just yields a different result for
the picture frame. There must be some fundamental difference between a
picture frame and a cube, and the invariant F-E+ V is picking it up.

The difference turns out to be a topological one. Early in my version of
Euler’s proof, I told you to take the solid and ‘deform it into a nice round
sphere’. But this is not possible for the picture frame. It’s not shaped like a
sphere, even after being simplified. It is a torus, which looks like an
inflatable rubber ring with a hole through the middle. The hole is also
clearly visible in the original shape: it’'s where the picture would go. A
sphere, in contrast, has no holes. The hole in the frame is why the
simplification process leads to a different result. However, we can wrest
victory from the jaws of defeat, because F—E + V is still an invariant. So the
proof tells us that any solid that is deformable into a torus will satisfy the
slightly different equation F—E+V=0. In consequence, we have the basis of
a rigorous proof that a torus cannot be deformed into a sphere: that is, the
two surfaces are topologically different.

Of course this is intuitively obvious, but now we can support intuition
with logic. Just as Euclid started from obvious properties of points and
lines, and formalised them into a rigorous theory of geometry, the
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mathematicians of the nineteenth and twentieth centuries could now
develop a rigorous formal theory of topology.

D O

Fig 23 Left: 2-holed torus. Right: 3-holed torus.

Where to start was a no-brainer. There exist solids like a torus but with
two or more holes, as in Figure 23, and the same invariant should tell us
something useful about those. It turns out that any solid deformable into a
2-holed torus satisfies F—E+ V=-2, any solid deformable into a 3-holed
torus satisfies F-E+ V=-4, and in general any solid deformable into a g-
holed torus satisfies F-E+ V=2-2g¢. The symbol g is short for ‘genus’, the
technical name for ‘number of holes’. Pursuing the line of thought that
Descartes and Euler began leads to a connection between a quantitative
property of solids, the number of faces, vertices, and edges, and a
qualitative property, possessing holes. We call F-E+V the Euler
characteristic of the solid, and observe that it depends only on which
solid we are considering and not on how we cut it into faces, edges, and
vertices. This makes it an intrinsic feature of the solid itself.

Agreed, we count the number of holes, a quantitative operation, but
‘hole’ itself is qualitative in the sense that it’s not obviously a feature of the
solid at all. Intuitively, it’s a region in space where the solid isn’t. But not
any such region. After all, that description applies to all of the space
surrounding the solid, and no one would consider it all to be a hole. And it
also applies to all of the space surrounding a sphere ... which doesn’t have a
hole. In fact, the more you start to think about what a hole is, the more you
realise that it’s quite tricky to define one. My favourite example to show
just how confusing it all gets is the shape in Figure 24, known as a hole-
through-a-hole-in-a-hole. Apparently you can thread a hole through
another hole, which is actually a hole in a third hole.

This way lies madness.

It wouldn’t much matter if solids with holes in them never turned up
anywhere important. But by the end of the nineteenth century they were
turning up all over mathematics — in complex analysis, algebraic geometry,
and Riemann’s differential geometry. Worse, higher-dimensional
analogues of solids were taking centre stage, in all areas of pure and
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Fig 24 Hole-through-a-hole-in-a-hole.

applied mathematics; as already noted, the dynamics of the Solar System
requires 6 dimensions per body. And they had higher-dimensional
analogues of holes. Somehow it was necessary to bring a modicum of
order into the area. And the answer turned out to be ... invariants.

The idea of a topological invariant goes back to Gauss’s work on
magnetism. He was interested in how magnetic and electrical field lines
could link with each other, and he defined the linking number, which
counts how many times one field line winds round another. This is a
topological invariant: it remains the same if the curves are continuously
deformed. He found a formula for this number using integral calculus, and
every so often he expressed a wish for a better understanding of the ‘basic
geometric properties’ of diagrams. It is no coincidence that the first serious
inroads into such an understanding came through the work of one of
Gauss’s students, Johann Listing, and Gauss’s assistant August Mobius.
Listing’s Vorstudien zur Topologie (‘Studies in Topology’) of 1847 introduced
the word ‘topology’, and Mobius made the role of continuous
transformations explicit.

Listing had a bright idea: seek generalisations of Euler’s formula. The
expression F—E+ V is a combinatorial invariant: a feature of a specific way
of describing a solid, based on cutting it into faces, edges, and vertices. The
number ¢ of holes is a topological invariant: something that does not
change however the solid is deformed, as long as the deformation is
continuous. A topological invariant captures a qualitative conceptual
feature of a shape; a combinatorial one provides a method for calculating
it. The two together are very powerful, because we can use the conceptual
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invariant to think about shapes, and the combinatorial version to pin
down what we are talking about.

In fact, the formula lets us sidestep the tricky issue of defining ‘hole’
altogether. Instead, we define ‘number of holes’ as a package, without
either defining a hole or counting how many there are. How? Easy. Just
rewrite the generalised version of Euler’s formula F-E+ V=2-2¢ in the
form

§=1—F/2+E/2-V)2

Now we can calculate ¢ by drawing faces and so forth on our solid,
counting F, E, and V, and substituting those values into the formula. Since
the expression is an invariant, it doesn’t matter how we cut the solid up: we
always get the same answer. But nothing that we do depends on having a
definition of a hole. Instead, ‘number of holes’ becomes an interpretation,
in intuitive terms, derived by looking at simple examples where we feel we
know what the phrase should mean.

It may seem like a cheat, but it makes significant inroads into a central
question in topology: when can one shape be continuously deformed into
another? That is, as far as topologists are concerned, are the two shapes the
same or not? If they are the same, their invariants must also be the same;
conversely, if the invariants are different, so are the shapes. (However,
sometimes two shapes might have the same invariant, but be different; it
depends on the invariant.) Since a sphere has Euler characteristic 2, but a
torus has Euler characteristic O, there is no way to deform a sphere
continuously into a torus. This may seem obvious, because of the hole...
but we've seen the turbulent waters into which that way of thinking can
lead. You don’t have to interpret the Euler characteristic in order to use it
to distinguish shapes, and here it is decisive.

Less obviously, the Euler characteristic shows that the puzzling hole-
through-a-hole-in-a-hole (Figure 24) is actually just a 3-holed torus in
disguise. Most of the apparent complexity stems not from the intrinsic
topology of the surface, but from the way I have chosen to embed it in
space.

The first really significant theorem in topology grew out of the formula for
the Euler characteristic. It was a complete classification of surfaces, curved
two-dimensional shapes like the surface of a sphere or that of a torus. A
couple of technical conditions were also imposed: the surface should have
no boundary, and it should be of finite extent (the jargon is ‘compact’).
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For this purpose a surface is described intrinsically; that is, it is not
conceived as existing in some surrounding space. One way to do this is to
view the surface as a number of polygonal regions (which topologically are
equivalent to circular discs) that are glued together along their edges
according to specified rules, like the ‘glue tab A to tab B’ instructions you
get when assembling a cardboard cut-out. A sphere, for instance, can be
described using two discs, glued together along their boundaries. One disc
becomes the northern hemisphere, the other the southern hemisphere. A
torus has an especially elegant description as a square with opposite edges
glued to each other. This construction can be visualised in a surrounding
space (Figure 25), which explains why it creates a torus, but the
mathematics can be carried out using just the square together with the
gluing rules, and this offers advantages precisely because it is intrinsic.

=

Fig 25 Gluing the edges of a square to make a torus.

Y

The possibility of gluing bits of boundary together leads to a rather
strange phenomenon: surfaces with only one side. The most famous
example is the Mobius band, introduced by Mobius and Listing in 1858,
which is a rectangular strip whose ends are glued together with a 180° turn
(usually called a half-twist, on the convention that 360° constitutes a full
twist). The Mobius band, see Figure 26 (left), has an edge, comprising the
edges of the rectangle that don’t get glued to anything. This is the only
edge, because the two separate edges of the rectangle are connected
together into a closed loop by the half-twist, which glues them end to end.

It is possible to make a model of a Mobius band from paper, because it
embeds naturally in three-dimensional space. The band has only one side,
in the sense that if you start painting one of its surfaces, and keep going,
you will eventually cover the entire surface, front and back. This happens
because the half-twist connects the front to the back. That’s not an
intrinsic description, because it relies on embedding the band in space, but
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there is an equivalent, more technical property known as orientability,
which is intrinsic.
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Fig 26 Left: Mobius band. Right: Klein bottle. The apparent self-intersection occurs because
the drawing embeds it in three-dimensional space.

There is a related surface with only one side, having no edges at all,
Figure 26 (right). It arises if we glue two sides of a rectangle together like a
Mobius band, and glue the other two sides together without any twisting.
Any model in three-dimensional space has to pass through itself, even
though from an intrinsic point of view the gluing rules do not introduce
any self-intersections. If this surface is pictured with such a crossing, it
looks like a bottle whose neck has been poked through the side wall and
joined to the bottom. It was invented by Felix Klein, and is known as a
Klein bottle — almost certainly a joke based on a German pun, changing
Kleinsche Fldche (Klein’s surface) to Kleinsche Flasche (Klein's bottle).

The Klein bottle has no boundary and is compact, so any classification
of surfaces must include it. It is the best known of an entire family of one-
sided surfaces, and surprisingly it is not the simplest. This honour goes to
the projective plane, which arises if you glue both pairs of opposite sides of
a square together, with a half-twist for each. (This is difficult to do with
paper because paper is too rigid; like the Klein bottle it requires the surface
to intersect itself. It is best done ‘conceptually’, that is, by drawing pictures
on the square but remembering the gluing rules when lines go off the edge
and ‘wrap round’.) The classification theorem for surfaces, proved by
Johann Listing around 1860, leads to two families of surfaces. Those with
two sides are the sphere, torus, 2-holed torus, 3-holed torus, and so on.
Those with only one side form a similar infinite family, starting with the
projective plane and the Klein bottle. They can be obtained by cutting a

99



100 Much ado about knotting

small disc out of the corresponding two-sided surface and gluing in a
Mobius band instead.

Surfaces turn up naturally in many areas of mathematics. They are
important in complex analysis, where surfaces are associated with
singularities, points at which functions behave strangely - for instance,
the derivative fails to exist. Singularities are the key to many problems in
complex analysis; in a sense they capture the essence of the function. Since
singularities are associated with surfaces, the topology of surfaces provides
an important technique for complex analysis. Historically, this motivated
the classification.

Most modern topology is highly abstract, and a lot of it happens in four or
more dimensions. We can get a feel for the subject in a more familiar
setting: knots. In the real world, a knot is a tangle tied in a length of string.
Topologists need a way to stop the knot escaping off the ends once it has
been tied, so they join the ends of the string together to form a closed loop.
Now a knot is just a circle embedded in space. Intrinsically, a knot is
topologically identical to a circle, but on this occasion what counts is how
the circle sits inside its surrounding space. This might seem contrary to the
spirit of topology, but the essence of a knot lies in the relation between the
loop of string and the space that surrounds it. By considering not just the
loop, but how it relates to space, topology can tackle important questions
about knots. Among these are:

How do we know a knot is really knotted?
How can we distinguish topologically different knots?
Can we classify all possible knots?

Experience tells us that there are many different types of knot. Figure 27
shows a few of them: the overhand or trefoil knot, reef knot, granny knot,
figure-8, stevedore’s knot, and so on. There is also the unknot, an ordinary
circular loop; as the name reflects, this loop is not knotted. Many different
kinds of knot have been used by generations of mariners, mountaineers,
and boy scouts. Any topological theory should of course reflect this wealth
of experience, but everything has to be proved, rigorously, within the
formal setting of topology, just as Euclid had to prove Pythagoras’s
theorem instead of just drawing a few triangles and measuring them.
Remarkably, the first topological proof that knots exist, in the sense that
there is an embedding of the circle that cannot be deformed into the
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Fig 27 Five knots and the unknot.

unknot, first appeared in 1926 in the German mathematician Kurt
Reidemeister’s Knoten und Gruppen (‘Knots and Groups’). The word
‘group’ is a technical term in abstract algebra, which quickly became the
most effective source of topological invariants. In 1927 Reidemeister, and
independently the American James Waddell Alexander, in collaboration
with his student G. B. Briggs, found a simpler proof of the existence of
knots using the ‘knot diagram’. This is a cartoon image of the knot, drawn
with tiny breaks in the loop to show how the separate strands overlap, as in
Figure 27. The breaks are not present in the knotted loop itself, but they
represent its three-