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Preface 

This book uses elementary analysis and linear algebra to investigate solutions to dif
ference equations. The reader likely will have encountered difference equations in 
one or more of the following contexts: the approximation of solutions of equations 
by Newton's Method, the discretization of differential equations, the computation of 
special functions, the counting of elements in a defined set (combinatorics), and the 
discrete modeling of economic or biological phenomena. In this book, we give ex
amples of how difference equations arise in each of these areas, as well as examples 
of numerous applications to other subjects. 

Our goal is to present an overview of the various facets of difference equations 
that can be studied by elementary mathematical methods. We hope to convince the 
reader that the subject is a rich one, both interesting and useful. The reader will not 
find here a text on numerical analysis (plenty of good ones already exist). Although 
much of the contents of this book is closely related to the techniques of numerical 
analysis, we have, except in a few places, omitted discussion of computation by 
computer. 

This book assumes no prior familiarity with difference equations. The first three 
chapters provide an elementary introduction to the subject. A good course in cal
culus should suffice as a preliminary to reading this material. Chapter 1 gives eight 
elementary examples, including the definition of the Gamma function, which will be 
important in later chapters. Chapter 2 surveys the fundamentals of the difference cal
culus: the difference operator and the computation of sums, introduces the concept 
of generating function, and contains a proof of the important Euler summation for
mula. In Chapter 3, the basic theory for linear difference equations is developed, and 
several methods are given for finding closed form solutions, including annihilators, 
generating functions, and z-transforms. There are also sections on applications of 
linear difference equations and on transforming nonlinear equations into linear ones. 

Chapter 4, which is largely independent of the earlier chapters, is mainly con
cerned with stability theory for autonomous systems of equations. The Putzer al
gorithm for computing At, where A is an n by n matrix, is presented, leading to 
the solution of autonomous linear systems with constant coefficients. The chapter 
covers many of the fundamental stability results for linear and nonlinear systems, 
using eigenvalue criteria, stairstep diagrams, Liapunov functions, and linearization. 
The last section is a brief introduction to chaotic behavior. The second edition con
tains two new sections: one on the behavior of solutions of systems of two linear 
equations (phase plane analysis) and one on the theory of systems with periodic co
efficients (Floquet Theory). Also new to this edition are discussions of the Secant 
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Method for finding roots of functions and of Sarkovskii's Theorem on the existence 
of periodic solutions of nonlinear equations. 

Approximations of solutions to difference equations for large values of the inde
pendent variable are studied in Chapter 5. This chapter is mostly independent of 
Chapter 4, but it uses some of the results from Chapters 2 and 3. Here, one will find 
the asymptotic analysis of sums, the theorems of Poincare and Perron on asymptotic 
behavior of solutions to linear equations, and the asymptotic behavior of solutions to 
nonlinear autonomous equations, with applications to Newton's Method and to the 
modified Newton's Method. 

Chapters 6 through 9 develop a wide variety of distinct but related topics involv
ing second order difference equations from the theory given in Chapter 3. Chapter 6 
contains a detailed study of the self-adjoint equation. This chapter includes gen
eralized zeros, interlacing of zeros of independent solutions, disconjugacy, Green's 
functions, boundary value problems for linear equations, Riccati equations, and os
cillation of solutions. Sturm-Liouville problems for difference equations are con
sidered in Chapter 7. These problems lead to a consideration of finite Fourier series, 
properties of eigenpairs for self-adjoint Sturm-Liouville probiems, nonhomogeneous 
problems, and a Rayleigh inequality for finding upper bounds on the smallest eigen
value. Chapter 8 treats the discrete calculus of variations for sums, including the 
Euler-Lagrange difference equation, transversality conditions, the Legendre neces
sary condition for a local extremum, and some sufficient conditions. Disconjugacy 
plays an important role here and, indeed, the methods in this chapter are used to 
sharpen some of the results from Chapter 6. In Chapter 9, several existence and 
uniqueness results for nonlinear boundary value problems are proved, using the con
traction mapping theorem and Brouwer fixed point theorems in Euclidean space. A 
final section relates these results to similar theorems for differential equations. 

The last chapter takes a brief look at partial difference equations. It is shown how 
these arise from the discretization of partial differential equations. Computational 
molecules are introduced in order to determine what sort of initial and boundary 
conditions are needed to produce unique solutions of partial difference equations. 
Some special methods for finding explicit solutions are summarized. 

This edition contains an appendix that illustrates how the technical computing 
system Mathematica can be used to assist in many of the computations that we en
counter in the study of difference equations. These examples can be easily adapted 
to other computer algebra systems, such as Maple and Matlah. 

This book has been used as a textbook at different levels ranging from middle 
undergraduate to beginning graduate, depending on the choice of topics. Many new 
exercises and examples have been added for the second edition. Answers to selected 
problems can be found near the end of the book. There is also a large bibliography 
of books and papers on difference equations for further study. 

We would like to thank the following individuals who have influenced the book 
directly or indirectly: C. Ahlbrandt, G. Diaz, S. Elaydi, P. Eloe, L. Erbe, D. Han
kserson, B. Harris, J. Henderson, J. Hooker, L. Jackson, G. Ladas, J. Muldowney, 



PREFACE ix 

R. Nau, W. Patula, T. Peil, J. Ridenhour, J. Schneider, and D. Smith. John Davis 
deserves a special word of thanks for providing the new figures in Chapter 4 for this 
edition. 



Chapter 1 
Introduction 

Mathematical computations frequently are based on equations that allow us to com
pute the value of a function recursively from a given set of values. Such an equation 
is called a "difference equation" or "recurrence equation." These equations occur 
in numerous settings and forms, both in mathematics itself and in its applications 
to statistics, computing, electrical circuit analysis, dynamical systems, economics, 
biology, and other fields. 

The following examples have been chosen to illustrate the diversity of the uses 
and types of difference equations. Many more examples will appear later in the 
book. 

Example 1.1. In 1626, Peter Minuit purchased Manhattan Island for goods worth 
$24. If the $24 could have been invested at an annual interest rate of 7% com
pounded quarterly, what would it have been worth in 1998? 

Let y(t) be the value of the investment after t quarters of a year. Then y(O) = 24. 
Since the interest rate is 1.75% per quarter, y(t) satisfies the difference equation 

y(t + 1) = y(t) + .0175y(t) 

= (1.0175)y(t) 

for t = 0, 1, 2, .... Computing y recursively, we have 

y(1) = 24(1.0175), 

y(2) = 24(1.0175)2, 

y(t) = 24(1.0175)1. 

After 372 years, or 1488 quarters, the value of the investment is 

y(1488) = 24(1.0175)1488 

::: 3.903 x 1012 

(about 3.9 trillion dollars!). 
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Example 1.2. It is observed that the decrease in the mass of a radioactive sub
stance over a fixed time period is proportional to the mass that was present at the 
beginning of the time period. If the half life of radium is 1600 years, find a formula 
for its mass as a function of time. 

Let m(t) represent the mass of the radium after t years. Then 

m(t + 1) - m(t) = -km(t), 

where k is a positive constant. Then 

m(t + 1) = (1 - k)m(t) 

for t = 0, 1,2, .. '. Using iteration as in the preceding example, we find 

m(t) = m(O)(I - k)t. 

Since the half life is 1600, 

m(1600) = m(O)(I - k)1600 = ~m(o), 

so 

and we have finally that 

( I)-doo m(t) = m(O) 2" . 

This problem is traditionally solved in calculus and physics textbooks by setting 
up and integrating the differential equation m'(t) = -km(t). However, the solution 
presented here, using a difference equation, is somewhat shorter and employs only 
elementary algebra. 

Example 1.3. (The Tower of Hanoi Problem) The problem is to find the min
imum number of moves y(t) required to move t rings from the first peg to the 
third peg in Fig. '1.1. A move consists of transferring a single ring from one peg to 
another with the restriction that a larger ring may not be placed on a smaller ring. 
The reader should find y(t) for some small values of t before reading further. 

We can find the solution of this problem by finding a relationship between 
y(t + 1) and y(t). Suppose there are t + 1 rings to be moved. An essential 
intermediate stage in a successful solution is shown in F~~. 1.2. Note that ,exactly 
y(t) moves are required to obtain this arrangement since the minimum number of 
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Fig. 1.1 Initial position of the rings 

Fig. 1.2 An intermediate position 

moves needed to move t rings from peg 1 to peg 2 is the same as the minimum 
number of moves to move t rings from peg 1 to peg 3. Now a single move places 
the largest ring on peg 3, and y(t} additional moves are needed to move the other 
t rings from peg 2 to peg 3. We are led to the difference equation 

y(t + I} = y(t} + 1 + y(t}, 

or 
y(t + I} - 2y(t} = 1. 

The solution that satisfies y (I) = 1 is 

y(t} = 2t - 1. 

(See Exercise 1.7.) Check the answers you got for t = 2 and t = 3. 

Example 1.4. (Airy equation) Suppose we wish to solve the differential equa
tion 

y"(x} = x y(x}. 

The Airy equation appears in many calculations in applied mathematics-for ~x
ample, in the study of nearly discontinuous periodic flow of electric current and in 



4 CHAPTER 1. INTRODUCTION 

the description of the motion of particles governed by the Schrodinger equation in 
quantum mechanics. One approach is to seek power series solutions of the form 

00 

y(x) = Lakxk. 
k=O 

Substitution of the series into the differential equation yields 

00 00 

L akk(k - l)xk- 2 = L akxk+1• 

k=2 k=O 

The change of index k -+ k + 3 in the series on the left side of the equation gives 
us 

00 00 

L ak+3(k + 3)(k + 2)xk+1 = L akxk+1• 

k=-l k=O 

For these series to be equal for an interval of x values, the coefficients of x k+1 

must be the same for all k = -1,0, .... For k = -1, we have 

so a2 = 0. For k = 0, I, 2, ... , 

or 

ak+3 = (k + 3)(k + 2) 

The last equation is a difference equation that allows us to compute (in principle) 
all coefficients ak in terms of the coefficients ao and al. Note that a3n+2 = ° for 
n = 0, I, 2, . .. since a2 = 0. 

Treating ao and al as arbitrary constants, we obtain the general solution of the 
Airy equation expressed as a power series: 

[ x3 x 6 ] [x4 x 7 ] y(x) = ao I + - + + . . . + al x + - + + . . . . 
3·2 6·5·3·2 4·3 7·6·4·3 

Returning to the difference equation, we have 

ak+3 = I -+ ° 
(k + 3)(k + 2) 

as k -+ 00, 

and the ratio test implies that the power series converges for all values of x. 
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Example 1.5. Suppose a sack contains r red marbles and g green marbles. The 
following procedure is repeated n times: a marble is drawn at random from the 
sack, its color is noted, and it is replaced. We want to compute the number of 
ways W(n, k) of obtaining exactly k red marbles among the n draws. 

We will be taking the order in which the marbles are drawn into account here. For 
example, if the sack contains two red marbles RI, R2 and one green marble G, 
then the possible outcomes with n = 2 draws are GG, GRI, GR2, RIRI, RIR2, 
RI G, R2RI, R2R2, and R2G, so W(2, 0) = 1, W(2, 1) = 4, and W(2, 2) = 4. 

There are two cases. In the first case, the kth red marble is drawn on the nth 
draw. Since there are W (n -1, k -1) ways of drawing k -1 red marbles on the first 
n -I draws, the total number of ways that this case canoccurisrW(n -1, k -1). 

In the second case, a green marble is drawn on the nth draw. The k red marbles 
were drawn on the first n - 1 draws, so in this case the total is g W (n - 1, k). 

Since these two cases are exhaustive and mutually exclusive, we have 

W(n, k) = rW(n - 1, k - 1) + gW(n - 1, k), 

which is a difference equation in two variables, sometimes called a "partial differ
ence equation." Mathematical induction can be used to verify the formula 

W(n, k) = (Vrkgn- k, 

where k = 0, 1, ... ,n and n = 1,2,3,···. The notation (~) represents the 
binomial coefficient n!/(k!(n - k)!). 

From the Binomial Theorem, the total number of possible outcomes is 

tG)rkgn-k = (r + g)n, 
k=O 

so the probability of drawing exactly k red marbles is 

(~)rkgn-k = (n) (_r )k (_g )n-k 
(r+g)n k r+g r+g 

a fundamental formula in probability theory. 

Example 1.6. Perhaps the most useful of the higher transcendental functions is 
the gamma function r(z), which is defined by 

r(z) = 1000 e-ttZ-Idt 

if the real part of z is positive. Formally applying integration by parts, we have 

r(z + 1) = 1000 e-ttZdt 
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= [_e-t tZ]~ - 100 (-e-t)z tZ-1dt 

= z 100 e-ttZ-1dt, 

so that r satisfies the difference equation 

r(z + 1) = zr(z). 

Note that here, as in Example 1.2, the independent variable is not restricted to 
discrete values. If the value of r(z) is known for some z whose real part belongs 
to (0, 1), then we can compute r(z + 1), r(z + 2), ... recursively. Furthermore, 
if we write the difference equation in the form 

r(z) = r(z + 1) , 
z 

r(z) can be given a useful meaning for all z, with the real part less than or equal 
to zero except z = 0, -1, -2,··· . 

Now, 

r(1) = 100 
e-tdt = 1, 

r(2) = r(1 + 1) = lr(1) 

r(3) = r(2 + 1) = 2r(2) 

r(4) = r(3 + 1) = 3r(3) 

= 1, 

=2, 

= 3 ·2, 

r(n + 1) = nr(n) = n(n - I)! = nL 

We see that the gamma function extends the factorial to most of the complex plane. 
In Fig. 1.3, r(x) is graphed for real values of x in the interval (-4,4), x =f. 0, -1, 
-2, -3. 

Many other higher transcendental functions satisfy difference equations (see Ex
ercise 1.15). A good reference, which contains graphs and properties of the special 
functions discussed in this book, is Spanier and Oldham [246]. 

Example 1.7. Euler's method for approximating the solution of the initial value 
problem 

x'(t) = !(t,x(t)), 

x(to) = Xo, 
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Fig. 1.3 Graph of r(x) for -4 < x < 4 

7 

x 

is obtained by replacing x' (t) with the difference quotient x(t+htx(t) for some 
small displacement h. We have 

x(t + hl- x(t) = f(t, x(t» 

or 

x(t + h) = x(t) + h f(t, x(t». 

To change this difference equation to a more conventional form, let Xn = x(to + 
nh) for n = 0,1,2, .... Then 

xn+! = Xn + h f(to + nh, xn) (n = 0,1,···), 

where Xo is given. The approximating values Xn can now be computed recursively; 
however, the approximations may be useful only for restricted values of n. For 
example, if f (t, x) = x 2 and to = 0, then the initial value problem has the solution 

Xo 
x(t) = --, 

1 - xot 

which "blows up" for t = do (xo -:F 0), while the solution of the corresponding 

difference equation xn+! = Xn + hx~, with xo given, exists for all n. This is our 
first example of a nonlinear difference equation. 
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Example 1.8. (The 3x + 1 problem) 
ence equations is 

{ 

Xn 

Xn+l = IX~+l 

CHAPTER 1. INTRODUCTION 

A second example of a nonlinear differ-

if Xn is even 

if Xn is odd 

for n ::: 0, where we choose Xo to be a positive integer so that every element in the 
sequence is a positive integer. Although the two-part description given above is 
the simplest one, we can also write the difference equation as a single expression 

1 2xn + 1 
Xn+l = Xn' + 4' - 4 cos(1rXn). 

To investigate the behavior of solutions of the difference equation, let's try a 
starting value of Xo = 23. The solution sequence is 

{Xn} = {23, 35, 53,80,40,20,10,5,8,4,2, 1,2, I, ... }. 

Note that once the sequence reaches the value 2, it alternates between 2 and 1 
from that point on. The famous 3x + 1 problem (also called the Collatz Problem) 
asks whether every starting positive integer eventually results in this alternating 
sequence. As of this writing, it is known that every starting integer between 1 and 
5.6 x 1013 does lead to the alternating sequence, but no one has been able to solve 
the problem in general. The articles by Lagarias [164] and Wagon [256] discuss 
what is known and unknown about the 3x + 1 problem. 
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Exercises 

1.1 We invest $500 in a bank where interest is compounded monthly at a rate of 6% 
a year. How much do we have in the bank after 10 years? How long does it take for 
our money to double? 

1.2 The population of the city of Sludge Falls at the end of each year is proportional 
to the population at the beginning of that year. If the population increases from 
50,000 in 1970 to 75,000 in 1980, what will the population be in the year 2000? 

1.3 Suppose the population of bacteria in a culture is observed to increase over a 
fixed time period by an amount proportional to the population at the beginning of 
that period. If the initial population was 10,000 and the population after two hours is 
100,000, find a formula for the population as a function of time. 

1.4 The amount of the radioactive isotope lead Pb-209 at the end of each hour is 
proportional to the amount present at the beginning of the hour. If the half life of 
Pb-209 is 3.3 hours, how long does it take for 80% of a certain amount of Pb-209 to 
decay? 

1.5 In 1517, the King of France, Francis I, bought Leonardo da Vinci's painting, the 
"Mona Lisa," for his bathroom for 4000 gold florins (492 ounces of gold). If the gold 
had been invested at an annual rate of 3% (paid in gold), how many ounces of gold 
would have accumulated by the end of this year? 

1.6 A body of temperature 80°F is placed at time t = 0 in a large body of water with 
a constant temperature of 50°F. After 20 minutes the temperature of the body is 70°F. 
Experiments indicate that at the end of each minute the difference in temperature 
between the body and the water is proportional to the difference at the beginning of 
that minute. What is the temperature of the body after 10 minutes? When will the 
temperature be 60°? 

1.7 In each of the following, show that y(t) is a solution of the difference equation: 
(a) y(t + 1) - 2y(t) = 1, y(t) = A2t - 1. 

(b) y(t + 1) - y(t) = t + 1, y(t) = !t2 + !t + A. 

(c) y(t + 2) + y(t) = 0, y(t) = A cos 2ft + B sin 2ft. 

(d) y(t + 2) - 4y(t + 1) + 4y(t) = 0, y(t) = A2t + Bt2t. 

Here A and B are constants. 

1.8 Let R(t) denote the number of regions into which t lines divide the plane if no 
two lines are parallel and no three lines intersect at a single point. For example, 
R(3) = 7 (see Fig. 1.4). 
(a) Show that R(t) satisfies the difference equation 

R(t + 1) = R(t) + t + 1. 

(b) Use Exercise 1.7 to find R(t). 
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Fig.1.4 Partition of the plane by lines 

1.9 
(a) Using substitution, find the difference equation satisfied by the coefficients ak of 

the series y (x) = L~Oakxk in order that y (x) satisfies the differential equation 
y"(x) = xy'(x). 

(b) Compute {ak}~2 in terms of ao and al and show that the infinite series con
verges for all x. 

1.10 Verify that W(n, k) = (~)rkgn-k satisfies the difference equation 

W(n, k) = r W(n - 1, k - 1) + g W(n - 1, k). 

1.11 Let D(n, k) be the number of ways that n distinct pieces of candy can be dis
tributed among k identical boxes so that there is some candy in each box. Show 
that 

D(n, k) = D(n - 1, k - 1) + k D(n - 1, k). 

(Hint: for a specific piece of candy consider two cases: (1) it is alone in a box or (2) 
it is with at least one other piece.) 

1.12 Suppose that n men, having had too much to drink, choose among n checked 
hats at random. 
(a) If W(n) is the number of ways that no man gets his own hat, show that 

W(n) = (n - 1)(W(n - 1) + W(n - 2)). 

(b) The probability that no man gets his own hat is given by P (n) = ;h W (n). Show 
that 

1 
P(n) = P(n - 1) + -(P(n - 2) - P(n - 1». 

n 
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(c) Show that 

1 1 (_l)n 
P(n) = 2' - -3' + ... + --,-. .. n. 

1.13 
(a) Show that 

[ 1 J2 ['>0 roo 2 2 
1(2) = 4 10 10 e-(X +y )dxdy. 

(b) Use part (a) to show 1(1) = ,Jli. 

(c) What are the values of 1 G) and 1 (-;3)? 
1.14 Verify 

= (2n - 1)(2n - 3) ... (3)(1), 

where n is an integer greater than zero. 

1.15 The exponential integral En (x) is defined by 

En(x) = roo e-xt dt 
11 t n 

(x > 0), 

where n is a positive integer. Show that En (x) satisfies the difference equation 

1 [ -x ] En+l(X)=- e -x En(x) . 
n 

11 

1.16 Use Euler's Method to obtain a difference equation that approximates the fol
lowing logistic differential equation 

x'(t) = ax(t)(1 - x(t)), 

where a is a constant. 

1.17 

(a) For the 3x + 1 problem discussed in Example 1.8, try a couple of different 
starting values to check that they eventually reach the alternating sequence 1, 2, 
1, 2, .. '. (Warning: some starting values, such as Xo = 31, require a lot of 
calculation!) 

(b) Write a computer or calculator program to compute the solution sequence for a 
given initial value. Have the program stop when it reaches the value Xn = 1 and 
report how many iterations were needed. 



Chapter 2 
The Difference Calculus 

2.1 The Difference Operator 
In Chapter 3, we will begin a systematic study of difference equations. Many of the 
calculations involved in solving and analyzing these equations can be simplified by 
use of the difference calculus, a collection of mathematical tools quite similar to the 
differential calculus. 

The present chapter briefly surveys the most important aspects of the difference 
calculus. It is not essential to memorize all the formulas presented here, but it is 
useful to have an overview of the available techniques and to observe the differences 
and similarities between the difference and the differential calculus. 

Just as the differential operator plays the central role in the differential calculus, 
the difference operator is the basic component of calculations involving finite differ
ences. 

Definition 2.1. Let y (t) be a function of a real or complex variable t. The "differ
ence operator" !1 is defined by 

!1y(t) = y(t + 1) - y(t). 

For the most part, we will take the domain of y to be a set of consecutive integers 
such as the natural numbers N = {I, 2, 3, ... }. However, sometimes it is useful to 
choose a continuous set of t values such as the interval [0, (0) or the complex plane 
as the domain. 

The step size of one unit used in the definition is not really a restriction. Consider 
a difference operation with a step size h > O-say, z(s +h) - z(s). Let y(t) = z(th). 
Then 

z(s + h) - z(s) = z(th + h) - z(th) 

= y(t + 1) - y(t) 

= !1y(t). 

(See also Example 1.7.) 
Occasionally we will apply the difference operator to a function of two or more 

variables. In this case, a SUbscript will be used to indicate which variable is to be 
shifted by one unit. For example, 

!1 t ten = (t + l)en - ten = en, 
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while 
/1nten = ten+! - ten = ten(e - 1). 

Higher order differences are defined by composing the difference operator with 
itself. The second order difference is 

/12y(t) = /1(/1y(t)) 

= /1(y(t + 1) - y(t)) 

= (y(t + 2) - y(t + 1)) - (y(t + 1) - y(t)) 

= y(t + 2) - 2y(t + 1) + y(t). 

The following formula for the nth order difference is readily verified by induction: 

n(n - 1) 
/1n y(t)=y(t+n)-ny(t+n-l)+ 2! y(t+n-2) 

+ ... + (-I)n y (t) (2.1) 

= t(-I)k(n)y(t+n-k). 
k=O k 

An elementary operator that is often used in conjunction with the difference op
erator is the shift operator. 

Definition 2.2. The "shift operator" E is defined by 

Ey(t) = y(t + 1). 

If I denotes the identity operator-that is, ly(t) = y(t)-then we have 

/1 = E -I. 

In fact, Eq. (2.1) is similar to the Binomial Theorem from algebra: 

/1n y (t) = (E - l)ny(t) 

= t G)(-llEn-ky(t) 
k=O 

= tG)(-I)ky(t+n-k). 
k=O 

These calculations can be verified just as in algebra since the composition of the 
operators I and E has the same properties as the mUltiplication of numbers. In much 
the same way, we have 

Eny(t) = t G)/1n-ky (t). 
k=O 

The fundamental properties of /1 are given in the following theorem. 
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Theorem 2.1 

(a) Llm(Llny(t)) = Llm+ny(t) for all positive integers m and n. 

(b) Ll(y(t) + z(t)) = Lly(t) + Llz(t). 

(c) Ll(Cy(t» = C Lly(t) if C is a constant. 
(d) Ll(y(t)z(t)) = y(t)Llz(t) + Ez(t)Lly(t). 
(e) Ll(y(t») _ z(t)8y(t)-y(t)8z(t) 

z(t) - z(t)Ez(t) • 

Proof. Consider the product rule (d). 

Ll(y(t)z(t)) = y(t + I)z(t + I) - y(t)z(t) 

= y(t + I)z(t + I) - y(t)z(t + I) 

+ y(t)z(t + I) - y(t)z(t) 

= Lly(t)Ez(t) + y(t)Llz(t). 

The other parts are also straightforward. 

15 

• 
The formulas in Theorem 2.1 closely resemble the sum rule, the product rule, and 

the quotient rule from the differential calculus. However, note the appearance of the 
shift operator in parts (d) and (e). 

In addition to the general formulas for computing differences, we will need a 
collection of formulas for differences of particular functions. Here is a list for some 
basic functions. 

Theorem 2.2. Let a be a constant. Then 

(a) Lla t = (a - I)a t . 

(b) Ll sin at = 2 sin ~ cosa(t + 1)' 
(c) Llcosat = -2 sin ~ sina(t + 1)' 
(d) Lllogat = 10g(1 + i). 
(e) Lllog i(t) = log t. 

(Here log t represents any logarithm of the positive number t.) 

Proof. We leave the verification of parts (a)-(d) as exercises. For part (e), 

Lllog i(t) = log i(t + 1) -log i(t) 

= 10 1(t + 1) 
g i(t) 

= logt (see Example 1.6). • 
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It is readily verified that all the formulas in Theorem 2.2 remain valid if a constant 
"shift" is introduced in the t variable. For example, 

Now the formulas in Theorems 2.1 and 2.2 can be used in combination to find the 
differences of more complicated expressions. However, it may be just as easy (or 
easier!) to use the definition directly. 

Example 2.1. Compute /1 sec 1r t. 

First, we use Theorem 2. 1 (e) and Theorem 2.2(c): 

1 
/1 seC1rt = /1-

cos 1rt 
(cos 1rt)(/11) - (1)(/1 cos 1rt) 

cos 1rt cos 1r(t + 1) 

2 sin 2f sin1r(t + !) 
cos 1rt cos 1r(t + 1) 

2(sin Jrt cos 2f + cos 1r t sin 2f) 
=----------~--------~~-

cos 1rt(cos 1rt cos 1r - sin1rt sin 1r) 
2cos1rt 

= -2 sec 1rt. 
(cos Jrt)( - cos 1rt) 

The definition of /1 can be used to obtain the same result more quickly: 

/1 sec 1rt = sec 1r(t + 1) - sec 1rt 

1 1 
= --------- - --

cos 1r(t + 1) cos Jrt 

1 1 
= ---

cos 1r t cos 1r - sin 1r t sin 1r cos 1r t 
1 1 

---------
-COS1rt COS1rt 

= -2sec1rt. 

One of the most basic special formulas in the differential calculus is the power 
rule 

d _tn = ntn- l . 
dt 

Unfortunately, the difference of a power is complicated and, as a result, is not very 
useful: 
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Our next definition introduces a function that will satisfy a version of the power 
rule for finite differences. 

Definition 2.3. The "falling factorial power" t!: (read "t to the r falling") is defined 
as follows, according to the value of r. 

(a) If r = 1,2,3, ... , then t!: = t(t - l)(t - 2) ... (t - r + 1). 

(b) If r = 0, then tQ. = 1. 

(c) If r = -1, -2, -3, ... , then t!: = (t+l)(t+~) ... (t r)' 

(d) If r is not an integer, then 

t!: = r(t + 1) 
r(t - r + 1) 

It is understood that the definition of t!: is given only for those values of t and r 
that make the formulas meaningful. For example, (_2)-3 is not defined since the 

3 
expression in part (c) involves division by zero and (!)1. is meaningless because 
r(O) is undefined. (Some books use the convention that r(x)j r(y) = 0 if r(x) is 
defined and y = 0, -1, -2,···.) 

The expression for t!: in part (d) can be shown to agree with the simpler expres
sions in parts (a), (b), and (c) if r is an integer, except for certain discrete values of t 
that make the gamma function undefined. Let r be a positive integer. Then 

r(t + 1) t r(t) t (t - l)r(t - 1) 
= = 

r(t - r + 1) r(t - r + 1) r(t - r + 1) 
t(t - 1) ... (t - r + l)r(t - r + 1) 

= ... = 
r(t - r + 1) 

= t(t - 1)· .. (t - r + 1), 

so (a) is a special case of (d). In a similar way, (b) and (c) are particular cases of (d). 
Notice that if nand k are positive integers with n ~ k, then nl!. counts the number 

of permutations of n objects taken k at a time. The number of combinations of n 
objects taken k at a time is given by the binomial coefficient 

n(n - 1) ... (n - k + 1) 

k! 



18 CHAPTER 2. THE DIFFERENCE CALCULUS 

35 

30 

25 

20 

15 

10 

5 

0 ~ 4 5 6 7 8 9 n 

Fig. 2.1 Binomial coefficients as functions of r 

so it follows immediately from Definition 2.3(a) that 

(n) n1£ 
k - f'(k + 1)' 

This relationship between the binomial coefficients and the falling factorial power 
suggests the following definition of an extended binomial coefficient: 

Definition 2.4. The "binomial coefficient" (~) is defined by 

(t) t~ 
r = f'(r + 1)' 

Graphs of some binomial coefficients are given in Figs. 2.1 and 2.2. 
The binomial coefficients satisfy many useful identities, such as 

(t) _ ( t) (symmetry), r - t-r 
(t) _ ~(t -1) (moving out of parentheses), r - r r-I 
(rt) -_ (t -r 1) + (rt -_ 11) (addition formula). 

These identities are easily verified by using Definition 2.3(d) and Definition 2.4 to 
write the binomial coefficients in terms of gamma functions and by using the gamma 
function properties. 

Now we have the following result, which contains a power rule for differences 
and closely related formulas for the difference of binomial coefficients. 
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·1 5 8 t 

Fig. 2.2 Binomial coefficients as functions of t 

Theorem 2.3 

(a) f:l. t tl: = rt r - 1• 

(b) f:l. t (~) = (r~l) (r i= 0). 

(c) f:l.t Cit) = (~~D. 

Proof. Before we consider the general case, let's prove (a) for a positive integer r. 

f:l. t tl: = (t + 1)1: - tl: 

= (t + l)(t) ... (t - r + 2) - t(t - 1) ... (t - r + 1) 

= t(t - 1) ... (t - r + 2)[(t + 1) - (t - r + 1)] 

= rt r- 1• 

Now let r be arbitrary. From (d) of Definition 2.3, we have 

r(t + 2) r(t + 1) f:l. t tl: = f:l. t 1(t + 1) 
r(t - r + 1) 

(t + l)r(t + 1) 

r(t - r + 2) r(t - r + 1) 

(t - r + l)r(t + 1) 

r(t - r + 2) r(t - r + 2) 

r(t + 1) r-l 
=r =rt-. 

r(t - r +2) 

Part (b) follows easily: 

(t) . tl: . rtr - 1 

f:l. t r = f:l. t r(r + 1) = -r-(r-+-l-) 
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tr - 1 (t) 
= r(r) = r -1 . 

Part (c) is a consequence of the addition formula. • 
Example 2.2. Find a solution to the difference equation 

y(t + 2) - 2y(t + 1) + y(t) = t(t - 1). 

The difference equation can be written in the form 

From Theorem 2.3, .£\2t1. = .£\4t1 = 12t£, so y(t) = ~; is a solution of the 
difference equation. 

2.2 Summation 

To make effective use of the difference operator, we introduce in this section its right 
inverse operator, which is sometimes called the "indefinite sum." 

Definition 2.5. An "indefinite sum" (or "antidifference") of y(t), denoted Ly(t), 
is any function so that 

.£\ (I:y(t») = y(t) 

for all t in the domain of y. 
The reader will recall that the indefinite integral plays a similar role in the differ

ential calculus: 

:t (/ y(t) dt) = y(t). 

The indefinite integral is not unique, for example, 

f cost dt = sint + C, 

where C is any constant. The indefinite sum is also not unique, as we see in the next 
example. 
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Example 2.3. Compute the indefinite sum L 6t . 

From Theorem 2.2(a), /16t = 5 . 6t , so we have /1 ~ = 6t . It follows that ~ is an 
indefinite sum of 6t . What are the others? 

Let C(t) be a function with the same domain as 6t so that /1C(t) = O. Then 

/1 (f + C(t)) = /1 (~) = 6t , 

so ~ + C(t) is an indefinite sum of 6t • Further, if f(t) is any indefinite sum of 6t , 

then 

/1 (f(t) - ~) = /1f(t) - /1 ~ = 6t - 6t = 0, 

so f(t) = ~ + C(t) for some C(t) with /1C(t) = O. It follows that we have found 
all indefinite sums of 6t , and we write 

6t L6t = S + C(t), 

where C(t) is any function with the same domain as 6t and /1C(t) = O. 

In a similar way, one can prove Theorem 2.4. 

Theorem 2.4. If z(t) is an indefinite sum of y(t), then every indefinite sum of 
y(t) is given by 

Ly(t) = z(t) + C(t), 

where C(t) has the same domain as y and /1C(t) = O. 

Example 2.3. (continued) What sort of function must C(t) be? The answer 
depends on the domain of y(t). Let's consider first the most common case where 
the domain is a set of integers-say, the natural numbers N = {I, 2, ... }. Then 

/1C(t) = C(t + 1) - C(t) = 0 

for t = 1,2,3,···, that is, C(1) = C(2) = C(3) = "', so C(t) is a constant 
function! In this case, we simply write 

where C is any constant. 

6t L6t = S+C, 

On the other hand, if the domain of y is the set of all real numbers, then the 
equation 

/1C(t) = C(t + 1) - C(t) = 0 

says that C(t + 1) = C(t) for all real t, which means that C can be any periodic 
function having period one. For example, we could choose C(t) = 2sin2.7l't, or 
C(t) = -5 cos4.7l'(t - .7l'), in Theorem 2.4 and obtain an indefinite sum. 
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Since the discrete case will be the most important case in the remainder of this 
book, we state the following corollary. 

Corollary 2.1. Let y(t) be defined on a set of the type {a, a + 1, a + 2, ... }, where 
a is any real number, and let z(t) be an indefinite sum of y(t). Then every indefinite 
sum of y(t) is given by 

Ly(t) = z(t) + C, 

where C is an arbitrary constant. 

Theorems 2.2 and 2.3 provide us with a useful collection of indefinite sums. 

Theorem 2.5. Let a be a constant. Then, for ~C(t) = 0, 

(a) L at = a~l + C(t), (a t= 1). 

" . cosa(t-!> (b) L..smat = - 2' a + C(t), sm:! 

" sina(t-!> 
(C) L..cosat = 2· a + C(t), sm 2 

(a t= 2mr). 

(a t= 2mr). 

(d) L log t = log r(t) + C(t), (t > 0). 

" ta+1 (e) L.. t~ = a+1 + C(t), (a t= -1). 

(1) L (!) = ~~1) + C(t). 

(g) L e-:-t ) = (~~D + C(t). 

Proof. Consider (b). From Theorem 2.2(c), 

~cosa (t -~) = -2sin~sinat, 

so by Theorem 2.4, 

-cosa(t- 1) 
LSinat = . a 2 + C(t). 

2sm 2 

The other parts are similar. • 
As in Theorem 2.2, the preceding formulas can be generalized somewhat by in

troducing a constant shift in the t variable. 
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Fig. 2.3 Partition into equilateral triangles 

Example 2.2. (continued) Find the solution of 

y(t + 2) - 2y(t + 1) + y(t) = t~, (t = 0, 1,2, ... ), 

so that y(O) = -1, y(l) = 3. 

Since L\2y(t) = t~, by Corollary 2.1 and Theorem 2.5(a), 

t~ 
L\y(t) = "3 + C 

and 

t! 
y(t) = 12 + Ct + D, 

23 

where C and D are constants. Using the values of y at t = 0 and t = I, we find 
D = -1 and C = 4, so the unique solution is 

t! 
y(t) = 12 + 4t - 1. 

Example 2.4. Suppose that each side of an upward pointing equilateral triangle 
is divided into n equal parts. These parts are then used to partition the original 
triangle into smaller equilateral triangles as shown in Fig. 2.3. How many upward 
pointing triangles y(n) of all sizes are there? 

First note that y(1) = I, y(2) = 4, y(3) = 10, and so forth. Consider the case 
that each side of the original triangle has been divided into n + 1 equal parts. If 
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we ignore the last row of small triangles, the remaining portion has y(n) upward 
pointing triangles. Now taking into account the last row, there are (n + 1) + n + 
(n - 1) + ... + 1 additional upward pointing triangles. Thus, 

y(n + 1) = y(n) + (n + 1) + ... + 1, 

or 
L\y(n) = (n + 1)(n + 2) = !(n + 2)~, 

2 2 
so 

1 
y(n) = (j(n + 2)I+ C. 

Since y(1) = 1, C = O. Hence there are 

upward pointing triangles. 

We can derive a number of general properties of indefinite sums from Theo
rem 2.1. 

Theorem 2.6 

(a) ~::<y(t) + z(t)) = Ly(t) + L z(t). 

(b) L Dy(t) = D Ly(t) if D is constant. 

(c) L(y(t)L\z(t)) = y(t)z(t) - L Ez(t)L\y(t). 

(d) L(Ey(t)L\z(t)) = y(t)z(t) - LZ(t)L\y(t). 

Remark. Parts (c) and (d) of Theorem 2.6 are known as "summation by parts" 
formulas. 

Proof. Parts (a) and (b) are immediate from Theorem 2.1. To prove (c), start with 

L\(y(t)z(t)) = y(t)L\z(t) + Ez(t)L\y(t). 

By Theorem 2.4, 

L(y(t)L\z(t) + Ez(t)L\y(t)) = y(t)z(t) + C(t). 

Then (c) follows from (a) and rearrangement. Finally, (d) is just a rearrangement and 
relabeling of (c). • 

The summation by parts formulas can be used to compute certain indefinite sums 
much as the integration by parts formula is used to compute integrals. Moreover, 
these formulas turn out to be of fundamental importance in the analysis of difference 
equations, as we will see later. 
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Example 2.5. Compute L tat (a i= 1). 

In Theorem 2.6(c), choose y(t) = t and ~z(t) = at; then z(t) = a~l' We have 

at at+1 
'" tat = t-- - L --~t + C(t) 
~ a-I a-I 

tat a 
= -- - __ "'at +C(t) 

a-I a-l~ 
tat a t 

= -a ---1 - (a _ 1)2 a + C(t), 

where ~C(t) = 0, and we have made use of Theorem 2.5(a). 

Example 2.6. Compute L mm. 
Let y(t) = m and ~z(t) = m in Theorem 2.6(c). By Theorem 2.5(f), we can 

take z(t) = (~). Then 

L G) G) = G) G) -L e~ I)G) +C(t). 

Now we apply summation by parts to the last sum with Yl (t) = (D, ~Zl (t) = 

e~l), and Zl (t) = e-:jl): 

where ~C(t) = O. 

For the remainder of this section, we will assume that the domain of y(t) is a 
set of consecutive integers, which for the sake of being specific we will take to be 
the natural numbers N = { 1, 2, 3, ... }. Sequence notation will be used for the 
function y(t): 

y(t) # {Yn}, 

where n EN. In later chapters, both functional and sequence notation will be uti
lized. 

In what follows it will be convenient to use the convention 
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whenever a > b. Observe that for m fixed and n 2:: m, 

and for p fixed and p 2:: n, 

Corollary 2.1 tells us that 

(
n-l ) 

ll.n LYk = Yn, 
k=m 

n-l 

LYn= LYk+ C (m:::s n) 
k=m 

for some constant C and, alternatively, that 

p 

LYn =- LYk+ D 
k=n 

(p 2:: n) 

(2.2) 

(2.3) 

for some constant D. Equations (2.2) and (2.3) give us a way of relating indefinite 
sums to definite sums. 

Example 2.7. Compute the definite sum L~:} (~)k . 

By Eq. (2.2) and Theorem 2.5(a), 

(n = 2,3,·,,), 

To evaluate C, let n = 2: 

~ = -3 (~r +C, 

2=C, 

so 

n-l(2)k (2)n E 3 = 2-3 3 (n = 2,3,···). 

There is a useful formula for computing definite sums, which is analogous to the 
fundamental theorem of calculus: 
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Theorem 2.7. If Zn is an indefinite sum of Yn, then 

n-l 

LYk = [zkl:!a = Zn - Zm· 
k=m 

Theorem 2.7 is an immediate consequence ofEq. (2.2) (see Exercise 2.26). 

Example 2.8. ComputeL:i=1 k2• 

Recall that kl = k and k'J. = k(k - I). Then k2 = kl + k'l.., so 

by Theorem 2.5(e). 

Lk2 = Lkl+ Lk'J. 

k'l.. k1 
=2+3+ C 

From Theorem 2.7, we have 

1 [2 3]1+1 ,,2 k- k-
~k = -+-
k=1 2 3 1 

(1+1)'l.. (1+1)1 1'J. 11 = + ----
2 323 

(1 + 1)1 (1 + 1)1(1 - 1) 
= 2 + 3 

1(1 + 1)(21 + 1) 
= 6 

The next theorem gives a version of the summation by parts method for definite 
sums. 

Theorem 2.8. If m < n, then 

n-l n-l 

L ak flbk = [akbkl:!a - L(flak) bk+l. 
k=m k=m 

Proof. Choose y(n) = an and z(n) = bn in Theorem 2.6(c): 

Lanflbn = anbn - L(flan)bn+l. 

From equation (2.2), we have 

n-l n-l 

L akflbk = anbn - L( flak)bk+l + C. 
k=m k=m 
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With n = m + 1, the preceding equation becomes 

It follows that C = -ambm, and the proof is complete. • 
Remark. An equivalent form of Theorem 2.8 isAbel's summationformula: 

n-l n-l n-l (k ) E Ckdk = dn E Ck - E ~ Cj D.dk; 

(see Exercise 2.24). 

Example 2.9. Compute L~:~ k3k • 

By Theorem 2.8 with ak = k and D.bk = 3k , 

n-l [3k Jn n-1 3k+l 

Lk3k = k"2 - L-2-· 
k=l 1 k=l 

From Theorem 2.7 and Theorem 2.5(a), 

Returning to our calculation, we have 

~ k _ n3n - 3 3 (3n - 3) 
~k3 - -- --
k=l 2 2 2 

(2n - 3)3n + 3 
= 4 

The same result can also be obtained from the calculation in Example 2.5: 

Then 

I:k3k = n3n _ 3n+l _ (~ _ 32 ) = (2n - 3)3n + 3. 
k=l 2 4 2 4 4 

The methods used in Example 2.9 allow us to compute any definite sum of se
quences of the form p(n)an , p(n) sin an, p(n) cos an, and p(n)C), where p(n) is a 
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polynomial in n. However, we must have as many repetitions of summation by parts 
as the degree of p. 

There is a special method of summation that is based on Eq. (2.1) for the nth 

difference of a function: 

..1.ny(O) = t(-I)k(n)y(n - k) 
k=O k 

= t(-I)n-i G)y(i), 
1=0 

where we have used the change of index i = n - k and the fact that (n~J = (7). It 
follows that 

t(-l)i G)Y(i) = (_1)n ..1.ny(O). 
1=0 

Example 2.10. ComputeI:7=0( _l)i (7) e~a). 
Let y(i) = e~a) in Eq. (2.4). From Theorem 2.3(b), ..1.ne~a) = 
Eq. (2.4) gives immediately 

t(-I)i G) C: a) = (_l)n(m ~ n). 
1=0 

(2.4) 

( i+a) so 
m-n' 

Other examples of indefinite and definite sums are contained in the exercises. 

2.3 Generating Functions and Approximate Summation 
In Section 2.2, we discussed a number of methods by which finite sums can be com
puted. However, most sums, like most integrals, cannot be expressed in terms of the 
elementary functions of calculus. There are functions such as y(t) = t that can be 
integrated exactly, 

l b 1 b 
-dt = log-, 

a t a 
(b > a> 0), 

but for which there is no elementary formula for the corresponding sum: 

n 1 6k' 
The main result of this section, called the Euler summation formula, will give us 

a technique for approximating a sum if the corresponding integral can be computed. 
To formulate this result, we will use a generating function, which is itself important 
in the analysis of difference equations, and a family of special functions called the 
Bernoulli polynomials. 
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Definition 2.6. Let {Yk (t)} be a sequence of (possibly constant) functions. 

(a) If there is a function g(t, x) so that 

00 

g(t, x) = LYk(t)Xk 

k=O 

for all x in an open interval about zero, then g is called the "generating func
tion" for {Yk(t)}. 

(b) If there is a function h (t , x) so that 

00 k 
h(t, x) = L Yk(t)X 

k=O k! 

for all x in an open interval about zero, then h is called the "exponential gen
erating function" for {Yk(t)}. 

Note that for each t, Yk(t) is the kth coefficient in the power series for g(t, x) with 
respect to x at x = O. Recall that these coefficients can be computed with the formula 

1 ak ak 
Yk(t) = k' -kg(t, 0) = -kh(t, 0) . . ax ax 

(2.5) 

One relationship between generating functions and difference equations is illus
trated by Example 1.4, in which the solutions of the Airy equation are generating 
functions for the sequences {ak} that satisfy the difference equation 

ak+3 = (k + 3)(k + 2) . 

This association of differential and difference equations will be used in Chapter 3 to 
solve certain difference equations. 

Example 2.11. Let Yk(t) = (f(t»k for some function f(t). To compute the 
generating function for Yk(t), we must sum the series 

00 00 

L(f(t)lxk = L(f(t)x)k. 
k=O k=O 

By using the methods of the previous section, or by simply recognizing this to be 
a geometric series, we obtain the sum 

1 
1 _ f(t)x = g(t, x) 
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for If(t)xl < 1. This result can be used to find other generating functions. Using 
differentiation, 

a( 1 ) a~ kk 
ax 1 - f(t)x = ax ~(f(t)) x , 

f(t) = f k(f(t)l x k- 1 

(1 - f(t)x)2 k=O ' 

xf(t) _ ~k t kxk 
(1 - f(t)x)2 - ~ (f(» , 

so (l~7g;X)2 is the generating function for the sequence {k(f(t»k}. The exponen

tial generating function for the sequence {(f(t»k) is 

Definition 2.7. The "Bernoulli polynomials" Bk(t) are defined by the equation 

in other words, :/:1 is the exponential generating function for the sequence Bk(t). 

Definition 2.S. The "Bernoulli numbers" Bk are given by Bk = Bk(O), the value 
of the kth Bernoulli polynomial at t = O. 

We could use Eq. (2.5) to compute the first few Bernoulli polynomials, but it is 
easier to use the equation in Definition 2.7 directly. First, multiply both sides of the 
equation by eX; I : 

etx = eX - 1 f Bk(t) xk. 

x k=O k! 

Then expand the exponential functions on each side in their Taylor series about zero 
and collect terms containing the same power of x: 

t 2x 2 t 3x 3 
l+tx+-+-+··· 

2! 3! 

= 1 + - + - + . . . Bo(t) + --x + --x + ... (
X x 2 ) ( Bl (t) B2(t) 2 ) 

2! 3! l! 2! 
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= B (t) (Bl(t) BO(t») (B2(t) Bl(t) BO(t»)X2 .... 
o + I! + 2! x + 2! + 2!1! + 3! + 

Equating coefficients of like powers of x, we have 

Bo(t) = 1, 

and so forth. The first few Bernoulli polynomials are given by 

Bo(t) = 1, 

332 1 
B3(t) = t - -t + -t, .... 

2 2 
Then the first four Bernoulli numbers are 

Bo = 1, 
1 

Bl = --, 
2 

Here are several properties of these polynomials. 

Theorem 2.9 

(a) Bk(t) = kBk-l(t) (k::: 1). 

(b) Il t Bk(t) = ktk- 1 (k::: 0). 

(c) Bk = Bk(O) = Bk(1) (k i= 1). 

(d) B2m+l = 0 (m::: 1). 

(2.6) 

(2.7) 

Proof. To prove (a), we apply differentiation with respect to t to both sides of the 
equation in Definition 2.7: 

or f Bk(t) x k+1 = f Bk(t) xk. 

k=O k! k=O k! 

Now make the change of index k -+ k - 1 in the left-hand sum: 

Equating coefficients, we obtain (a). 
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Next, take the difference of both sides of the equation in Definition 2.7: 

Then (b) follows immediately by equating coefficients. Parts (c) and (d) are left'as 
exercises. • 

Note that Theorem 2.9(a) implies that each Bk(t) is a polynomial of degree k. 
Also, from part (b) we have an additional summation formula. 

Corollary 2.2. If k = 0, 1, 2, ... , then 

" k 1 ~t = k + 1 Bk+1(t) + C(t), 

when D.C(t) = O. 
Additional information about Bernoulli polynomials and numbers is contained in 

the exercises .. 
The next theorem is the Euler summation formula. 

Theorem 2.10. Suppose that the 2mth derivative of y(t), y(2m) (t), is continuous 
on [1, n] for some integers m ?: 1 and n ?: 2. Then 

tY(k) = in y(t) dt + y(n) + y(l) + t,. B~i,[y(2i-l)(n) _ y(2;-I) (1)] 
k=1 1 2 ;=1 (2/). 

1 in - (2m)! 1 y(2m)(t)B2m(t - LtJ) dt, 

where Lt J = the greatest integer less than or equ~ to t (called the "floor function" 
or the "greatest integer function"). 
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t-(tl 

2 3 4 

Fig. 2.4 Graph of t - Lt J 

The graph of t - Lt J is sketched in Fig. 2.4. 

Example 2.12. Approximate Lk=1 ki. 
1 

Let y(t) = 0 and m = 1. From Theorem 2.10 and (2.7), 

n 1 

'""" 1 fn 1 n Z + 1 1 [ 1 ] ~k'i = t Z dt + --- + - n- Z - 1 
1 2 24 

k=1 

- ~ r (-~) B2(t - LtJ) dt 
211 4tz 
2311115 

= -n'i + -nz + -n-'i - -
3 2 24 24 
1 fn 3 + - t-ZB2(t - LtJ) dt. 
8 1 

Now B2(X) = x 2 - x + i, by Eq. (2.6), and an easy max-min argument shows 
that 

1 1 
-- < 1J2(X) < -

12 - - 6 

for 0 .:::; x .:::; 1. Since 0 .:::; t - Lt J .:::; 1 for all t, we have 

1 fn 3 1 fn 3 1 fn 3 -- t-Z dt .:::; - t-'i B2(t - LtJ) dt .:::; - t- Z dt, 
96 1 8 1 48 1 

or 

Using these inequalities in the earlier calculation, we finally arrive at the estimate 

2 3 1 1 1 1 11 L:n 1 2 3 1 1 1 
-n'i + -n'i + -n-'i - - < k'i < -n'i + -n'i --
3 2 16 48 - k=1 - 3 2 6· 
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Proof of Theorem 2.10. Integration by parts gives for each k 

l k+1 
(t - LtJ - ~) y'(t) dt = l k+1 

(t - k - ~) y'(t) dt 
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= y(k + 1) + y(k) _ (k+1 y(t) dt. (2.8) 
2 1k 

Note that in the first integral in Eq. (2.8), 

1 
t - LtJ - 2 = BI(t -ltJ)· 

Similarly, we have by Theorem 2.9 (a) and (c) 

for i = 1,··· ,2m - 1. 

(2.9) 

Summing Eq. (2.8) and Eq. (2.9) as k goes from 1 to n - 1, we have, respectively, 

in n 1 
BI(t - LtJ)y'(t) dt = Ly(k) - 2[y(l) + y(n)] 

I k=1 

(2.10) 

-in y(t) dt, 

in Bi(t - LtJ)y(i)(t) dt = :~~ [y(i)(n) - y(i)(1)] (2.11) 

- -. - Bi+l(t - LtJ)y(i+I)(t) dt. 1 in 
l + 1 I 

Finally, we begin with Eq. (2.10) and use Eq. (2.11) repeatedly to obtain 

n 1 r 
Ly(k) - 2 (y(1) + y(n» - 11 y(t) dt 
k=1 I 

= in BI(t - LtJ)y'(t) dt 

= - [y'(n) - y'(l)] - - B2(t - LtJ)y(2)(t) dt B2 1 in 
221 

= ... 
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where we have used Theorem 2.9(d). Rearrangement yields the Euler summation 
formula. • 

Theorem 2.10 will be fundamental to our discussion of asymptotic analysis of 
sums in Chapter 5. 
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Exercises 

Section 2.1 

2.1 Show that f). and E commute-that is, f).Ey(t) = Ef).y(t) for all y(t). 

2.2 Prove the quotient rule for differences (Theorem 2.1 ( e)). 

2.3 Derive the formula 

f).[x(t)y(t)z(t)] = f).x(t)Ey(t)Ez(t) + x(t)f).y(t)Ez(t) + x(t)y(t)f).z(t). 

Write down five other formulas of this type. 

2.4 Show that 

(a) f).a t = (a - l)a t if a is a constant. 
(b) f).ect = (eC - l)ect if c is a constant. 

2.5 Show that for any constant a, f). sinat = 2 sin ~ cosa(t + 1)' 
2.6 Verify the formula f). sinh at = 2 sinh ~ cosh a (t + 1), where a is a constant. 

2.7 Show that 
() A 2 tan I a u tan t = sec t I-tan I tan t . 

(b) f). tan- I t = tan- I C2+~+I). 

2.8 Compute f).(3 t cos t) by two methods: 

(a) Using Theorem 2.1(d) and Theorem 2.2(a) and (c). 
(b) Directly from the definition of f).. 

2.9 Compute f).nt'i and f).n t 3 for n = 1,2,3, .... 

2.10 Does the falling factorial power satisfy t~t~ = t r+s ? 

2.11 Ifr=-I,-2,-3,· .. ,showthat 

1 1(t + 1) 
(t + l)(t + 2) ... (t - r) - r(t - r + 1) , 

so that (c) and (d) of Definition 2.3 agree in this case. 

2.12 Use the formula t~ = (t+ I)(t+~) ... (t-r)' which is valid for r = -1, -2, ... , to 
show that f).t~ = r t r - I for those values of r. 

2.13 Find a solution of each of the following difference equations. 
(a) y(t + 1) - y(t) = t'i + Y. 
(b) y(t + 2) - 2y(t + 1) + y(t) = (D. 



38 CHAPTER 2. THE DIFFERENCE CALCULUS 

2.14 Verify the following properties of binomial coefficients. 

(a) (D = (t~k)' 

(b) (D = fG=D· 
(c) (D = ekl) + G=D· 
2.15 Let n be a positive integer. 

(a) Show that ("~;t) = (_l)ne+~-I). 

(b) Show that L\tt;t) = -(~~/). 

2.16 If f(t) is a polynomial of degree n, show that 

f(t) = f(O) + L\f(O) t1 + ... + L\n f(O) t!!. 
I! n! 

2.17 Use the formula in Exercise 2.15 to write t 3 in terms of t1, t£", and tl. 

Section 2.2 

2.18 Show that 
sina(t-l) 

(a) Lcosat = 2' 0 2 + C(t) (a i= 2mr). sm 2 

(b) L e~t) = (~~D + C(t), where L\C(t) = O. 

2.19 Let y(t) be the maximum number of points of intersection of t lines in the 
plane. Find a difference equation that y(t) satisfies and use it to find y(t). 

2.20 Suppose that t points are chosen on the perimeter of a disc and all line segments 
joining these points are drawn. Let z(t) be the maximum number of regions into 
which the disc can be divided by such line segments. Given that z(t) satisfies the 
equation L\4Z(t) = 1, find a formula for z(t). 

2.21 Use summation by parts to compute L t sint. 

2.22 Use summation by parts to compute 

t 

L (t + 1)(t + 2)(t + 3) . 

2.23 Use the summation by parts formula to evaluate each of the following. 

(a) Lt23t • 

(b) L G) . (~). 
(c) L (~)2. 
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2.24 Verify Abel's summation formula: if m < n, then 

2.25 Show that L (!)(~) = Lk=O(-I)k(m~i~k)(n~k) + C(t), where L\C(t) = 0 
and n is a positive integer. (Hint: use summation by parts.) 

2.26 Let Zn = L Yn. Show that 

n-l 

LYk = Zn -Zm· 
k=m 

2.27 Use Exercise 2.26 to show that 

I: (k + b) = (n + b) _ (m + b). 
~m a a+l a+l 

2.28 Show that 
n-l . ( 1) 

1 "" _ sm n - "2 a - + L..t cos ak - a· 
2 2 sin-2 k=l 

2.29 Compute L2=1 (k+l)(k!2)(k+3)· 

2.30 Compute Lk:} ~ using summation by parts. 

2.31 Use Theorem 2.8 to compute L~:J k2 (k - 1). 

2.32 Use summation by parts to show that if Z is a complex number with Izi = 1, 
Z i= 1, then L~l ~ converges. 

2.33 Let X be a random variable with values 1, ... ,n. 

(a) Let Pi be the probability that X = i, let fl, = L7=1 iPi be the mean value of X, 
and let qi = LJ=i P j be the probability that X ~ i. Use summation by parts to 

show that fl, = L7=1 qi· 
(b) Suppose that you draw one card at a time from a standard deck of 52 cards 

(without replacement) until you get an ace. Let X count the number of draws 
needed. Show that 

Then compute fl,. 
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2.34 The purpose of this problem is to prove a famous formula due to the great 
Swiss mathematician Leonhard Euler that is used to replace a slowly converging 
infinite series with a rapidly converging one. 

(a) Use induction on i and summation by parts to show 

for i = 0, ... ,00. 

(b) Use part (a), Eq. (2.4), and a switch in the order of summation to prove Euler's 
formula: 

2.35 Use Eq. (2.4) to show that L:7=o( _l)i (7) = 0 if n ::: 2. 

2.36 Use Eq. (2.4) to computeL:7=o (l~r (7). 

2.37 The Stirling numbers {Z} (of the second kind) are defined to be the solution of 
the partial difference equation 

with {~} = {~} = 1 for each n. {Z} is the number of ways to partition n objects into 
k nonempty sets (see Example 1.11). Show 

(Hint: use induction.) 

2.38 Use the result of Exercise 2.37 to computeL:~:: k3. 

Section 2.3 

2.39 Find the exponential generating functions of the sequences in parts (a) and (b), 
and find the generating functions of the sequences in parts (c) and (d): 

(a) Yk = 1. 

(b) {Y2i = (-l)i, 
Y2i+l = o. 

2k 
(c) Yo = 0, Yk = T for k ::: 1. 

(d) Yk = k2k. 
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2.40 Given that 

is the generating function for the Laguerre polynomials Ln(t), find Ln(t) for 0 .:s 
n .:s 3. 

2.41 Given that g(t, x) = (1 - 2tx + x2)-! is the generating function for the 
Legendre polynomials Pn (t), find Pn (t) for 0 .:s n .:s 3. 

2.42 The function g(t, x) = exp(2tx-x2) is the generating function for the Hermite 
polynomials Hn (t). Compute Hn (t) for 0 .:s n .:s 3. 

2.43 Find the generating function for Yk(t) = coskt. (Hint: one way to do this is to 
write cos kt = Re(eikt ) and use Example 2.11.) 

2.44 What is the generating function for 

(a) Yk = (~), (k = 0, ... , n), Yk = 0, (k > n)? 

(b) Use part (a) and differentiation to compute the sum Lk=O k(~). 
2.45 Show that Bo(t) = 1 using Eq. (2.5). 

2.46 Show that B3(t) = t 3 - ~t2 + it. 

2.47 Show that Bk(O) = Bk(1) for k =j:. 1. 

2.48 Show that B2i+! = 0, ; ~ 1. 

2.49 Prove that fd Bk(t) dt = 0 for k ~ 1. 

2.50 Use Corollary 2.2 to show that (k ~ 1): 

2.51 Use the result of Exercise 2.50 to compute L?::l ;2. 

2.52 Prove that Bk(t) = (_l)k Bk(1 - t) for all k and all t. 

2.53 Give an estimate for Lt~! k! . 
2.54 Use Theorem 2.10 with m = 1 to obtain the estimate 

nIl 1 7 L:- ~logn+- - - +-, 
k=l k 2n l2n2 12 

and show that the error is less than A. 
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2.55 Use Theorem 2.10 with m = 1 to derive the trapezoidal rule for approximating 
integrals: 

l xn [!(Xl) !(Xn )] !(x)dx = h -- + !(X2) + ... + !(Xn-l) + -- + E(h), 
~ 2 2 

where h = Xk - Xk-l for k = 2, ... ,n, and IE(h)1 :s Ch2 for some constant C. 



Chapter 3 
Linear Difference Equations 

In this rather long chapter, we examine a special class of difference equations, the so
called linear equations. The use of the terms linear and nonlinear here is completely 
analogous to their use in the field of differential equations. Furthermore, we restrict 
most of our discussion to equations that involve a single independent and a single 
dependent variable. Equations with several independent or dependent variables will 
receive more attention in later chapters. 

The study of linear equations is important for a number of reasons. Many types 
of problems are naturally formulated as linear equations (see Chapter 1, Section 3.4, 
and the related exercises). Also, certain subclasses of the class of linear equations, 
such as first order equations and equations with constant coefficients, represent large 
families of equations that can be solved explicitly. The class of linear equations has 
nice algebraic properties that permit the use of matrix methods, operational methods, 
transforms, generating functions, and other special techniques. Finally, certain meth
ods of analysis for nonlinear equations, such as establishing stability by linearization, 
depend on the properties of associated linear equations. 

Section 3.6 discusses circumstances under which nonlinear equations can be trans
formed into linear equations. 

3.1 First Order Equations 
Let p(t) and r(t) be given functions with p(t) # 0 for all t. The first order linear 
difference equation is 

y(t + 1) - p(t)y(t) = r(t). (3.1) 

Equation (3.1) is said to be of first order because it involves the values of y at t 
and t + 1 only, as in the first order difference operator ~y(t) = y(t + 1) - y(t). If 
p(t) = 1 for all t, then Eq. (3.1) is simply 

~y(t) = r(t), 

so from Chapter 2 the solution is 

y(t) = L r(t) + C(t), 

where ~C(t) = o. 
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For simplicity, let's assume that the domain of interest is a discrete set t = a, 
a + 1, a + 2, .... Consider first the "homogeneous" equation 

u(t + 1) = p(t)u(t), (3.1') 

which is easily solved by iteration: 

u(a + 1) = p(a)u(a), 

u(a + 2) = p(a + l)p(a)u(a), 

n-l 

u(a + n) = u(a) n p(a + k). 
k=O 

We can write the solution in the more convenient form 

t-l 

u(t) = u(a) n p(s) (t = a, a + 1, ... ), 
s=a 

where it is understood that TI~:~ p(s) == 1 and, for t ::: a + 1, the product is taken 
over a, a + 1, ... , t - 1. 

Now Eq. (3.1) can be solved by substituting y(t) = u(t)v(t) into Eq. (3.1), where 
v is to be determined: 

or 

so 

u(t + l)v(t + 1) - p(t)u(t)v(t) = r(t), 

L: r(t) 
v(t) = -- +C, 

Eu(t) 

[L: r(t) ] y(t) = u(t) -- + C . 
Eu(t) 

The last equation with C an arbitrary constant gives us a representation of all solu
tions ofEq. (3.1) provided u(t) is any nontrivial (i.e., nonzero) solution ofEq. (3.1'). 
Let's summarize these results in a theorem. 
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Theorem 3.1. Let pet) #- 0 and r(t) be given for t = a, a + 1, .... Then 

(a) The solutions ofEq. (3.1') are 

t-l 

u(t) = u(a) IT pes), (t = a + 1, a + 2, ... ). 
s=a 

(b) All solutions ofEq. (3.1) are given by 

[I: ret) ] yet) = u(t) -- + c , 
Eu(t) 

where C is a constant and u(t) is any nonzero function from part (a). 
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Remark. The method we used to solve Eq. (3.1) is a special case of the method of 
"variation of parameters," which will be described later in this chapter. 

Example 3.1. Find the solution yet) of 

yet + 1) - ty(t) = (t + I)!, 
so that y(l) = 5. 

(t = 1,2, ... ), 

First, note that the solutions of u(t + 1) - tu(t) = 0 are 

t-l 

u(t) = u(1) IT s = u(1)(t - I)!. 
s=1 

We can take u (1) = 1. Then 

yet) = (t - I)! [I: (t :! I)! + c] 
= (t - I)! [I:(t + 1) + c] 
= (t - I)! [B2 (t2+ I) + c] (from Corollary 2.2) 

= (t ~ I)! + D(t _ I)!. 

(We could have used a factorial power here.) To evaluate D, let t = 1: 

2! 
5 = y(1) = "2 + D ·O!, 

so D = 4. The solution is 

(t + I)! 
y(t) = 2 +4(t -I)! (t=I,2,···). 
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It's a good idea to check these answers: 

(t+2)! (t+l)! 
y(t + 1) - ty(t) = 2 + 4t! - t 2 - 4t! 

(t + I)! 
= 2 [t+2-t]=(t+1)!. 

Example 3.2. Suppose we deposit $2000 at the beginning of each year in an IRA 
that pays an annual interest rate of 8%. How much will we have in the IRA at the 
end of the tth year? 

Let y(t) be the amount of money in the IRA at the end of the tth year. Then 

y(t + 1) = y(t) + (y(t) + 2000)(0.08) + 2000 

= 1.08y(t) + 2160. 

A solution of the homogeneous equation u(t + 1) = 1.08u(t) is u(t) = (1.08)t. 
Then 

[ 2160 ] 
y(t) = (1.08)t L (1.08)t+1 + C 

= (1.08)t [~~~~ L (1.~8 Y + c] 
t [2160 C.~8 r ] 

= (1.08) 108 _1 _ + C 
. 1.08 1 

(from Theorem 2.5(a» 

= -27,000 + C(1.08)t. 

Since y(O) = 0, we have C = 27,000, so 

y(t) = 27, 000[(1.08)t - 1]. 

For example, at the end of twenty years we would have 

(See Fig. 3.1.) 

y(20) = 27, 000[(1.08)20 - 1] 

c::: $98, 845.84. 

Of course, it is always possible to compute solutions of difference equations by 
direct step-by-step computation from the difference equation itself. However, round
off error can be a serious problem. A simple but dramatic illustration of the possible 
effect of roundoff error is given by the following example due to Gautschi [90]: 

y(t + 1) - ty(t) = 1, y(l) = 1 - e. 
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y 
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o 
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Fig.3.1 Amount of money after t years 

By Exercise 3.8 the exact solution is 

y(t) = (t - I)! 1 - e + L ~! . [ t-l] 
k=1 

Since 
00 1 
Lk! =e-l, 
k=1 
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we must have y(t) < 0 for all t. Now let us attempt to compute y(8) directly, starting 
with the approximate initial value y(l) = -1.718: 

y(2) = y(1) + 1 = -.718 

y(3) = 2y(2) + 1 = -.436 

y(4) = 3y(3) + 1 = -.308 

y(5) = 4y(4) + 1 = -.232 

y(6) = 5y(5) + 1 = -.16 

y(7) = 6y(6) + 1 = .04 

y(8) = 7y(7) + 1 = 1.28. 

At this point in the computation it is clear that the computed values of y(t) are not 
close to the actual values and that the situation will deteriorate if we continue. Note 
that the only roundoff error occurs in the initial approximation since all of the other 
calculations are exact. For the actual behavior of the solution of this problem for 
large t, see Exercise 5.12. 

Now let's solve Eq. (3.1') and Eq. (3.1) for t in a discrete or continuous domain. 
For simplicity, we assume p(t) > O. Apply the natural logarithm to both sides of 
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Eq. (3.1'): 

log lu(t + 1)1 = log lu(t)1 + log p(t), 

~ log lu(t)1 = log p(t), 

where ~D(t) = O. Then 

log lu(t)1 = L)og p(t) + D(t), 

lu(t)1 = eD(t)eLlogp(t), 

u(t) = C(t)eLiogp(t) , (3.2) 

where ~C(t) = O. Equation (3.2) is useful because it gives the solution ofEq. (3.1') 
in terms of the indefinite sum. Once u(t) is found, the solution y(t) of Eq. (3.1) 
can be computed using Theorem 3.I(b) with the constant C replaced by an arbitrary 
function C(t) so that ~C(t) = O. 

Example 3.3. Solve the equation 

(t - rl) ... (t - rn) 
u(t + I) = a u(t), 

(t - Sl) ... (t - sm) 

where a, rl, ... , rn , Sl, ... , Sm are constants. 

For the moment, assume that all factors in the preceding expression are positive. 
Then 

u(t) = C(t)eL[loga+log(t-r\H··+log(t-rn)-log(t-S\)- ... -log(t-sm)) 

= C(t)e[t loga+log r(t-rd+log r(t-rn)-log r(t-S\)-···-log r(t-Sm)) 

by Theorem 2.5(d), so 

r(t - rl)· .. r(t - rn) 
u(t) = C(t)at , 

r(t - Sl) ... r(t - sm) 

where ~C(t) = O. By direct substitution, we can show that this expression for 
u(t) solves the difference equation for all values of t where the various gamma 
functions are defined (see Exercise 3.19). We can conclude that Eq. (3.1') is solv
able in terms of gamma functions if p(t) is a rational function. 

Consider, for example, 

t 
u(t + I) = 2 2 u(t). 

t + 3t + I 
The coefficient function factors as follows: 

t I t 

2t2 + 3t + I = 2 (t + l)(t + ~) , 
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so by the previous calculation the solution is 

( ) C()( I t r(t) 
u t = t"2) r(t + l)r(t + 1) 

1 t 1 
= C(t)("2) tr(t + 1)' 

There is an interesting relationship between Eq. (3.1) and ascending continued 
fractions. Let's rewrite Eq. (3.1) in the fractional form 

y(t) = -r(t) + y(t + 1) . 
p(t) 

Then 
( 1 -r(t + 1) + y(t + 2) 

y t + ) = p(t + 1) . 

Substituting, 
-r(t) + -r(t+1)+y(t+2) 

(t) = p(t+1) 
y p(t) 

Continuing in this way, we obtain the continued fraction 

y(t) = p(t) 

_ (1+2)+ -r(I+3)+· .. 
r £(1+3) 

() -r(t+ 1)+ p(l+i) 

-r t + p(t+1) 

If we formally divide out the continued fraction, we arrive at the infinite series 

( ) -r(t) -r(t + 1) 
yt =--+ +"', 

p(t) p(t)p(t + 1) 
or 

y(t) = f -r(t + k) . 
k=O p(t) ... p(t + k) 

(3.3) 

When this series converges, its sum must be a solution of Eq. (3.1), as can be verified 
by substitution. 

Example 3.4. For the equation 

y(t + 1) - ty(t) = _3t , 

Eq. (3.3) is 

~ 3t+k = 3t ~3kt-k, 
y(t) = to t(t + 1) ... (t + k) t to 

a "factorial series." The ratio test shows that this series converges for all t =1= 
0, -1, -2, ... , so the series represents one solution of the difference equation. 

Factorial series will be considered again later in this chapter. 
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3.2 General Results for Linear Equations 
The linear equation of the nth order is 

Pn(t)y(t + n) + ... + po(t)y(t) = r(t), (3.4) 

where po(t), ... , Pn(t) and r(t) are assumed to be known and po(t) i= 0, Pn(t) i= ° 
for all t. If r(t) ¢ 0, we say that Eq. (3.4) is "nonhomogeneous." As in Section 3.1, 
we will study Eq. (3.4) in association with the corresponding homogeneous equation 

Pn(t)u(t + n) + ... + po(t)u(t) = 0. (3.4') 

Note that Eq. (3.4) can also be written using the shift operator as 

(Pn(t)En + ... + po(t)EO) y(t) = r(t), 

where EO = I. Since E = f). + I, it is also possible to write Eq. (3.4) in terms of 
the difference operator. However, the following example shows that the order of the 
equation is not apparent in that case. 

Example 3.5. What is the order of the equation 

f).3 y (t) + 3f).2y(t) + f).y(t) - y(t) = r(t)? 

Let f). = E - I and expand the powers of f).: 

(E3 - 3E2 + 3E - I)y(t) + 3(E2 - 2E + I)y(t) 

+ (E - I)y(t) - y(t) = r(t) 

or 
y(t + 3) - 2y(t + 1) = r(t), 

which is of order two in an appropriate domain. 

Let's begin by observing the elementary fact that "initial value problems" for 
Eq. (3.4) have exactly one solution. 

Theorem 3.2. Assume that po(t), ... ,Pn (t), and r(t) are defined for t = a, a + 
1, ... and po(t) i= 0, Pn(t) i= ° for all t. Then for any to in {a, a + 1, ... } and 
any numbers YO, ... ,Yn-l, there is exactly one y(t) that satisfies Eq. (3.4) for 
t = a, a + 1, ... and y(to + k) = Yk for k = 0, ... ,n - 1. 

Proof. The proof follows from iteration. For example, 

( ) r(to) - Pn-l(tO)Yn-l - ... - po(to)YO 
Y to + n = --'-"'"'-~-'---'-"'"'-'--':""""-----='------''--

Pn(tO) 

since Pn (to) i= 0. Similarly, we can solve Eq. (3.4) for y(t) when t > to + n in terms 
of the n preceding values of y. Since Po(t) is never 0, we can also solve for y(t) 
when t < to. • 
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We will characterize the general solution of Eq. (3.4) through a sequence of theo
rems, beginning with the following basic result. 

Theorem 3.3 

(a) If Ul (t) and U2(t) solve Eq. (3.4'), then so does CUI (t) + DU2(t) for any 
constants C and D. 

(b) If u(t) solves Eq. (3.4') and y(t) solves Eq. (3.4), then u(t) + y(t) solves 
Eq. (3.4). 

(c) If Yl (t) and Y2(t) solve Eq. (3.4), then Yl (t) - Y2(t) solves Eq. (3.4') . 

Proof. All parts can be proved by direct substitution. • 
Corolklry 3.1. If z(t) is a solution ofEq. (3.4), then every solution y(t) ofEq. (3.4) 
takes the form 

y(t) = z(t) + u(t), 

where u(t) is some solution ofEq. (3.4'). 

Proof. This is just a restatement of Theorem 3.3( c). • 
As a result of Corollary 3.1 the problem of finding all solutions of Eq.(3.4) reduces 

to two smaller problems: 

(a) Find all solutions of Eq. (3.4'). 

(b) Find one solution ofEq. (3.4). 

This simplification is identical to that for linear differential equations. To analyze the 
first problem, we need some definitions. 

Definition 3.1. The set of functions (Ul(t),'" ,um(t)} is "linearly dependent" on 
the set t = a, a + 1, ... if there are constants Cl,'" ,Cm , not all zero, so that 

for t = a, a + 1, .... Otherwise, the set is said to be "linearly independent." 
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Example 3.6. The functions 2t , t2t , and t22t are linearly independent on every 
set t = a, a + 1, ... , for if 

(t = a, a + 1,···), 

then 
(t = a, a + 1, ... ), 

but this equation can have an infinite number of roots only if CI = C2 = C3 = o. 
On the other hand, the functions UI (t) = 2, U2(t) = l+cos rrt are linearly inde

pendent on the set t = 1, 2, 3, ... , but are linearly dependent for t = ~, ~, ~, ... 
since UI (t) - 2U2(t) = 0 for all such t. 

We will now define a matrix that is extremely useful in the study of linear equa
tions. 

Definition 3.2. The matrix of Casorati is given by 

[ 

UI(t) 
uI(t+l) 

W(t) = . 

Ut(t +·n - 1) 

Un(t) ] 
un(t + 1) 

un(t +:n - 1) , 

where UI, ... ,Un are given functions. The determinant 

w(t) = det W(t) 

is called the "Casoratian." 
It is not difficult to check that the Casoratian satisfies the equation 

[ 

UI (t) 
~UI (t) 

w(t) = det : 

~n-IUI(t) 

Un(t) ] 
~un(t) 

~n-I:un(t) . 

(3.5) 

(See Exercise 3.24.) The Casoratian plays a role in the study of linear difference 
equations similar to that played by the Wronskian for linear differential equations. 
For example, we have the following characterization of dependence. 

Theorem 3.4. Let UI (t), ... ,un(t) be solutions of Eq. (3.4') for t = a, a + 
1, .... Then the following statements are equivalent: 

(a) The set {UI(t),··· ,un(t)} is linearly dependent for t = a, a + 1,···. 
(b) w(t) = 0 for some t. 
(c) w(t) = 0 for all t. 
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Proof. First suppose that UI(t), U2(t),··· ,un(t) are linearly dependent. Then 
there are constants CI, C2, ... ,Cn, not all zero, so that 

CIUI (t) + C2U2(t) + ... + Cnun(t) = 0, 

CIUI (t + 1) + C2U2(t + 1) + ... + Cnun(t + 1) = 0, 

for t = a, a + 1, . . .. Since this homogeneous system has a nontrivial solution 
CI, C2, ... , Cn, the determinant of the matrix of coefficients w(t) is zero for t = 
a,a+ 1, ... . 

Conversely, suppose that w(to) = O. Then there are constants CI, C2, ... ,Cn, 
not all zero, so that 

Let 

CIUI(tO) + C2U2(tO) + ... + Cnun(tO) = 0 

CIUI(tO + 1) + C2U2(tO + 1) + ... + Cnun(tO + 1) = 0 

U(t) = CIUI (t) + C2U2(t) + ... + Cnun(t). 

Then U is a solution of Eq. (3.4') and 

U(to) = u(to + 1) = ... = u(to + n - 1) = O. 

It follows immediately from Theorem 3.2 that u(t) = 
lUI, U2, ... ,un} is linearly dependent. 

o for all t, hence the set 

• 
The importance of the linear independence of solutions to Eq. (3.4') is a conse

quence of the next theorem. 

Theorem 3.5. If UI(t),··· ,un(t) are independent solutions of Eq. (3.4'), then 
every solution u(t) ofEq. (3.4') can be written in the form 

for some constants CI, ... , Cn. 

Proof. Let u(t) be a solution of Eq. (3.4'). Since w(t) i= 0 for t = a, a + 1, ... , 
the system of equations 

CIUI (a) + ... + Cnun(a) = u(a), 
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CIUI (a + n - 1) + ... + Cnun(a + n - 1) = u(a + n - 1) 

has a unique solution C I, ... , Cn . Recall that a solution of Eq. (3.4') is uniquely 
determined by its values at t = a, a + 1, ... ,a + n - 1, so we must have 

U(t) = CIUI (t) + ... + Cnun(t) 

for all t. • 

Example 3.7. The equation 

U(t + 3) - 6u(t + 2) + llu(t + 1) - 6u(t) = 0 

has solutions 2t , 3t , 1 for all values of t. Their Casoratian is from Eq. (3.5) 

[
2t 3t 1] 

w(t)=det 2t 2·3t 0 =2t+13t , 
2t 4. 3t 0 

which does not vanish. Consequently, the set {2 t , 3t , I} is linearly independent, 
and all solutions of the equation have the form 

3.3 Solving Linear Equations 
We now turn to the problem of finding n linearly independent solutions of Eq. (3.4') 
in the case that the coefficient functions are all constants. Since Pn i= 0, we can 
divide through both sides of Eq. (3.4') by Pn and relabel the resulting equation to 
obtain 

U(t + n) + Pn-IU(t + n - 1) + ... + pou(t) = 0, (3.6) 

where PO, ... ,Pn-I are constants and Po i= O. 

Definition 3.3 

(a) The polynomial ')..n + Pn_I')..n-1 + ... + PO is called the "characteristic poly
nomial" for Eq. (3.6). 

(b) The equation').. n + ... + PO = 0 is the "characteristic equation" for Eq. (3.6). 
(c) The solutions ')..1, •.. ,')..k of the characteristic equation are the "characteristic 

roots." 
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If we introduce the shift operator E into Eq. (3.6), it takes on the form of its 
characteristic equation and has similar factors: 

(En + Pn_1 En- 1 + ... + po)u(t) = 0, 

or 

(3.7) 

where al + ... + ak = n and the order of the factors is immaterial. Note that each 
characteristic root is nonzero since PO i= O. 

Let's solve the equation 

(3.8) 

Certainly, any solution of Eq. (3.8) will also be a solution of Eq. (3.7). If al = 1, 
then Eq. (3.8) is simply u(t + 1) = AIU(t), which has as a solution u(t) = A~. If 
al > 1, let u(t) = A~ v(t) in Eq. (3.8): 

(E - Al)aIA~V(t) = ~ (~I)(_Al)al-i EiAiv(t), 

1=0 

= ~ (~1) (_Al)al-i A;+i Ei v(t), 

1=0 

= A~I+t ~ (~I)(_I)al-i Eiv(t), 

1=0 

= A~I +t (E - 1)001 v(t), 

= A~I+t ~alv(t) = 0 

if v(t) = 1, t, t 2 , ... ,tal -1. Consequently, Eq. (3.6) has al solutions A~ , t Ai, ... , 
tal-1A~. As in Example 3.6, these are easily seen to be linearly independent. By 
applying this argument to each factor ofEq. (3.7), we obtain n solutions ofEq. (3.6), 
which are linearly independent. (See Exercise 3.30 for the verification of indepen
dence in the case of distinct characteristic roots.) 

Theorem 3.6. Suppose that Eq. (3.6) has characteristic roots AI, ... ,Ak with 
multiplicities ai, ... ,ak, respectively. Then Eq. (3.6) has the n independent so-
l t · ,t tal-ht ,t ta2-ht ,t ak- 1,t U Ions 1\.1' ••• , 1\.1,1\.2' ••• , 1\.2' ••• ,I\.k' •.• , t I\.k. 
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Example 3.8. Find all solutions of 

u(t + 3) - 7u(t + 2) + 16u(t + 1) - 12u(t) = 0, (t = a, a + 1, ... ). 

The characteristic equation is 

)..3 _ 7A. 2 + 16)" - 12 = 0 

or 

Then Theorem 3.6 tells us that three independent solutions of the difference equa
tions are 

Ul (t) = 2t , 

Let's verify independence: 

w(t) = det [2~~1 (t +t;;2t+l 
2t+2 (t + 2)2t+2 

= 3t22t+l i= O. 

The general solution of the difference equation is 

where Cl, C2, C3 are arbitrary constants. 

t ~1] 2(t + 1) 
4(t + 2) 

If the characteristic roots include a complex pair).. = a ± ib, then real-valued 
solutions of Eq. (3.6) can be found by using polar form 

).. = re±iO = r(cose ± i sine), 

where a2 + b2 = r2 and tane = b/a. Then 

Since linear combinations of solutions are also solutions, we obtain the indepen· 
dent real solutions rt coset and rt sinBt. Repeated complex roots are handled ir 
a similar way. 
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Example 3.9. Find independent real solutions of 

U(t + 2) - 2u(t + 1) + 4u(t) = O. 

From the characteristic equation).. 2 - 2)" + 4 = 0, we have).. = 1 ± ./3i. 
The polar coordinates are r = .Jf+3 = 2 and () = tan- l ./3 = t. so two 

real solutions are 

UI(t) = 2t cos ~t, U2(t) = 2t sin ~t. 
3 . 3 

These are independent since w(t) = ./3 . 4t i= O. 

The general equation with constant coefficients, 

y(t + n) + Pn-Iy(t + n - 1) + ... + POy(t) = r(t), (3.9) 

can be solved by the "annihilator method" if r (t) is a solution of some homogeneous 
equation with constant coefficients. The central idea is contained in the following 
simple result. 

Theorem 3.7. Suppose that y(t) solves Eq. (3.9), that is, 

(En + Pn_IEn- 1 + ... + po)y(t),= r(t), 

and that r(t) satisfies 

(Em + qm_IEm- 1 + ... + qo)r(t) = O. 

Then y(t) satisfies 

(Em + ... + qo)(En + ... + po)y(t) = O. 

Proof. Simply apply the operator Em + ... + qO to both sides of Eq. (3.9). • 

The next ~x~ple illustrate~ tt,e use of the annihilator method. 

Example 3.10. y(t + 2) -7y(t + 1) + 6y(t) = t. 

First, rewrite the equation in operator form: 

(E2 - 7 E + 6)y(t) = t 

or 
(E - I)(E - 6)y(t) = t. 

Now t satisfies the homogeneous equation 

(E - 1)2t = f)h = o. 
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By Theorem 3.6, y(t) satisfies 

(E - 1)\E - 6)y(t) = O. 

(Here (E - 1)2 is the "annihilator," which eliminates the nonzero function from 
the righthand side of the equation.) 

From our discussion of homogeneous equations, we have 

The next step is to substitute this expression for y(t) into the original equation to 
determine the coefficients. Note that C16t + C2 satisifies the homogeneous portion 
of that equation, so it is sufficient to substitute y(t) = C3t + C4t2: 

C3(t + 2) + C4(t + 2)2 - 7C3(t + 1) - 7C4(t + 1)2 + 6C3t + 6C4t2 = t 

or 

t2[C4 - 7C4 + 6C4] + t[4C4 + C3 - 14C4 - 7C3 + 6C3] 

+ [4C4 + 2C3 -7C4 -7C3] = t. 

Equating coefficients, we have 

-IOC4 = 1, 

-5C3 - 3C4 = 0, 

so C4 = -1~ and C3 = /0. Then 

t 3 1 2 
y(t) = C1 6 + C2 + sot - lOt . 

Example 3.11. Solve ~y(t) = 3t sin ~t (t = a, a + I, ... ). 

The function 3' sin ~t must satisfy an equation with complex characteristic roots. 
From the discussion preceding Example 3.9, we see that the polar coordinates of 
these roots are r = 3, () = ±~, so A = 3e±1fi = ±3i. Then 3' sin ~t satisfies 

(E - 3i)(E + 3i)u(t) = (E2 + 9)u(t) = 0, 

so y(t) satisfies 
(E2 + 9)(E - l)y(t) = 0, 

which has the general solution 

y(t) = Cl + C23' sin it + C33t cos it. 
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By substituting this expression into the original equation, we find 

C23t (3 cos ~t - sin ~t) + C33t (-3 sin ~t - cos ~t) = 3t sin ~t. 

Then C2 = -l~' C3 = -lo, and finally 

3t (11: 11: ) y(t) = Cl - 10 sin it + 3 cos it , 

where Cl is arbitrary. 

Systems of linear difference equations with constant coefficients can be solved by 
the methods of this section equations in two unknowns: 

L(E)y(t) + M(E)z(t) = r(t), 

P(E)y(t) + Q(E)z(t) = s(t), 

where y(t) and z(t) are the unknowns and L, M, P, and Q are polynomials. Simply 
apply Q(E) to the first equation and M(E) to the second equation and subtract to 
obtain 

(Q(E)L(E) - M(E)P(E» y(t) = Q(E)r(t) - M(E)s(t), 

which is a single linear equation with constant coefficients. Once y(t) is found, it 
can be substituted into one of the original equations to produce an equation for z(t). 

Example 3.12. Solve the system 

y(t + 2) - 3y(t) + z(t + 1) - z(t) = 5t , 

y(t + 1) - 3y(t) + z(t + 1) - 3z(t) = 2. 5t . 

First, write the system in operator form: 

(E2 - 3)y(t) + (E - l)z(t) = 5t , 

(E - 3)y(t) + (E - 3)z(t) = 2 . 5t . 

Apply (E - 3) to the first equation and (E - 1) to the second equation and subtract: 

[(E2 - 3)(E - 3) - (E - 3)(E - 1)] y(t) = (E - 3)5t - (E - 1)2· 5t , 

or 
(E - 3)(E - 2)(E + l)y(t) = -6. 5t . 

By the annihilator method, an appropriate trial solution is y(t) = C5 t . Substitu
tion yields C = -!, so 
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If we substitute this expression for y into the second of the original equations, 
we have 

t t 7 t 
(E - 3)z(t) = C22 + 4C3( -1) + 3"5 . 

The annihilator method gives us 

Finally, substituting the expressions for y and z into the first of the original 
equations, we have 

(E2 - 3)y(t) + (E - l)z(t) = (6C13t + C22t - 2C3(-V - 1315t) 

( t t t 14 t) + 2C43 - C22 + 2C3(-I) + 35 

= (6CI + 2C4)3t + 5t 

= 5t , 

so C4 = -3CI. The general solution is 

t t t 5t 
y(t) = Cl3 + C22 + C3(-I) - 6' 

z(t) = -3C13t - C22t - C3(-V + ~5t. 

An alternate method for solving homogeneous systems with constant coefficients 
will be presented in Chapter 4. 

Now let's return to the general nonhomogeneous equation, 

Pn(t)y(t + n) + ... + po(t)y(t) = r(t), (3.4) 

and the homogeneous equation, 

Pn(t)y(t + n) + ... + po(t)u(t) = 0, (3.4') 

that were discussed in Section 3.2. The method of "variation of parameters" is a 
general procedure for solving Eq. (3.4). If we assume that n linearly independent 
solutions of Eq. (3.4') are known, then this method yields all solutions of Eq. (3.4) 
in terms of n indefinite sums. We will carry out the calculation for n = 2 since this 
case is representative of the general method. 

Let u 1, u2 be independent solutions of Eq. (3.4') with n = 2. We seek a solution 
ofEq. (3.4) of the form 
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where al and a2 are to be detennined. Then 

y(t + 1) = al (t + I)Ul (t + 1) + a2(t + l)u2(t + 1) 

= al(t)ul(t + 1) +a2(t)u2(t + 1) 

+ ~al (t)Ul (t + 1) + ~a2(t)u2(t + 1). 
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We eliminate the third and fourth terms of the last expression by choosing al and a2 
so that 

~al (t)Ul (t + 1) + ~a2(t)u2(t + 1) = O. 

Next, we have 

y(t + 2) = al (t + I)Ul (t + 2) + a2(t + l)u2(t + 2) 

= al (t)u 1 (t + 2) + a2(t)u2(t + 2) 

+ ~al (t)Ul (t + 2) + ~a2(t)u2(t + 2). 

(3.10) 

Now substitute the above expressions for y(t), y(t + 1), and y(t + 2) into Eq. (3.4) 
and collect terms involving al (t) and terms involving a2(t) to obtain 

P2(t)y(t + 2) + Pl(t)y(t + 1) + po(t)y(t) 

= al(t)[P2(t)Ul(t + 2) + Pl(t)Ul(t + 1) + PO(t)Ul(t)] 

+ a2(t)[P2(t)U2(t + 2) + Pl(t)U2(t + 1) + PO(t)U2(t)] 

+ P2(t)[Ul (t + 2)~al (t) + U2(t + 2)~a2(t)]. 
Since Ul and U2 satisfy Eq. (3.4'), the first two bracketed expressions are zero. Then 
y(t) satisfies Eq. (3.4) if 

r(t) 
Ul (t + 2)~al(t) + U2(t + 2)~a2(t) = --. (3.11) 

P2(t) 

To sum up, y(t) = al (t)Ul (t) + a2(t)u2(t) is a solution of Eq. (3.4) if ~al (t), 
~a2(t) satisfy the linear equations (3.10) and (3.11). This system oflinear equations 
has a unique solution since the matrix of coefficients is W(t+ 1), which has a nonzero 
detenninant by Theorem 3.4. 

The result for the nth order equation is as follows. 

Theorem 3.8. Let Ul (t), ... ,un(t) be independent solutions ofEq. (3.4'). Then 

is a solution of Eq. (3.4), provided al, ... ,an satisfy the matrix equation 

[~al (t)] [0] 
W(t + 1) : = : . 

~a (t) r(t) 
n Pn(t) 
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Example 3.13. Find all solutions of 

y(t + 2) - 7y(t + 1) + 6y(t) = t. 

We have already solved this problem by the annihilator method in Example 
3.10; now we apply the method of variation of parameters. Two independent 
solutions of the homogeneous equation are u 1 (t) = 1 and U2 (t) = 6t • Equations 
(3.10) and (3.11) are 

with solutions 

Then 

Aa1 (t),+ 6t+1 Aa2(t) = 0, 

Aa1 (t) + 6t+2 Aa2(t) = t, 

t 
Aa1(t) = --, 

5 

a1 (t) = L ( -i) + c, 

t'J. 
= -10 + C, (by Theorem 2.5(e» 

__ t(t - 1) C 
- 10 + , 

a2(t) = 3~ Lt (~y + D 

Finally, 

= 3~ [t (-~) (~y -L (-~) (~)t+1] + D, 

= 3~ [-~t (~y + (~) ~ (-~) (~YJ + D, 

= -;5 (~Y -1~5 (~Y +D. 

y(t) = a1 (t)(I) + a2(t)6t 

= _ t(t - 1) + C _ ..!...- __ 1_ + D6t 
10 25 125 

t t2 3t 1 
= C + D6 - 10 + 50 - 125 

t 2 3t 
=F+D6t --+-

10 50 
is the general solution of the difference equation. 
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For the case n = 2, Theorem 3.8 can be used to obtain an explicit representation 
of the solution y(t) of Eq. (3.4) with y(a) = y(a + 1) = o. 

Corollary 3.2. The unique solution y(t) of Eq. (3.4) with n = 2 satisfying y(a) = 
y(a + 1) = 0 is given by the variation of parameters formula 

t-I 
(t =" UI (k + l)u2(t) - u2(k + l)uI (t) r k 

y) t'a P2(k)w(k + 1) ( ), 

where UI and U2 are independent solutions ofEq. (3.4'). 

Note. To obtain y(a) = 0 from the preceding expression for y(t), we need the 
convention that a sum where the lower limit of summation is larger than the upper 
limit of summation is understood to be zero. This convention will be used frequently 
thoughout the book. 

For the proof of Corollary 3.2, see Exercise 3.48. Exercise 3.49 contains addi
tional information. 

3.4 Applications 
Even though linear equations with constant coefficients represent a very restrictive 
class of difference equations, they appear in a variety of applications. The follow
ing examples are fairly representative. Example 3.20 introduces constant coefficient 
equations of a different type, the so-called "convolution equations." Additional de
tails of those and other applications are contained in the exercises. 

Example 3.14. (the Fibonacci sequence) The Fibonacci sequence is 

1, 1, 2, 3, 5, 8, 13, 21, ... , 

where each integer after the first two is the sum of the two integers immediately 
preceding it. Certain natural phenomena, such as the spiral patterns on sunflowers 
and pine cones, appear to be governed by this sequence. These numbers also 
occur in the analysis of algorithms and are of sufficient interest to mathematicians 
to have a journal devoted to the study of their properties. 

Let Fn denote the nth term in the Fibonacci sequence for n = 1,2,···. Fn is 
called the "nth Fibonacci number" and satisfies the initial value problem 

Fn+2 - Fn+1 - Fn = 0, (n = 1,2,···) 
FI = 1, F2 = 1. 
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Fig. 3.2 Masses connected by springs 

The characteristic equation is )...2 - )... - 1 = 0, so )... = 1±f5. Then the general 
solution of the difference equation is 

(1+.J5)n (1_.J5)n 
Cl 2 + C2 2 

By using the initial conditions, we find Cl = -C2 = ..Is, so 

F. = _1 (1 + .J5)n __ 1 (1 -.J5)n 
n .J5 2 .J5 2 

for n = 1, 2, . . .. Although.J5 is predominant in this formula, all these numbers 
must be integers! 

Note that 

(t+2v'S) - (t-f5) C~9sr 
= --+ 

1 _ (l_v'S)n 1+v'S 
1 +.J5 

2 

as n --+ 00. The ratio l+2v'S is known as the "golden section" and was considered 
by the ancient Greeks to be the most aesthetically pleasing ratio for the length of a 
rectangle to its width. 

Example 3.15. (crystallatQ.ce) A crystal lattice is sometimes modeled mathe
matically by viewing it as an infinite collection of objects connected by springs. 
We consider vibrations along a fixed direction (see Fig. 3.2). Let Vn be the dis
placement of the nth object from eqUilibrium. Then the equations of motion are 

where mn is the mass of the nth object and the kn's are spring constants. 

By using the substitution 
-iwt 

Vn = Une , 
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we obtain a difference equation for the quantities Un: 

-mn+lu}Un+l = kn+l (U n+2 - un+d + kn(un - un+l). 

In an ideal crystal, we may assume that the coefficients are independent of n-say, 
kn = k and mn = m for all n. The difference equation becomes 

( uim ) 
Un+2 + -k- - 2 Un+l +un = 0, 

with characteristic roots 

We consider only the case w;;: < 1. Then these roots are a complex conjugate pair: 

Now 

= 1, 

so A = e±i8, for some (). The gener\il solution in complex form is then 

and 
Vn(t) = Cei(n8-wt) + Dei(-n8-wt) 

represents a linear combination of a wave moving to the right and a wave moving to 
the left. 

Example 3.16. (an owl-mouse model) In a certain agricultural delta, popula
tions of owls and mice exist under normal conditions in a predator-prey relation
ship, and there are stable populations of K thousand owls and L million mice. 
However, extreme winter conditions can reduce the owl population drastically. In 
the model below, the owl and mouse populations are gradually restored to their 
normal equilibria. 

Let x(t) and y(t) denote the deviations of the owl and mouse populations, 
respectively, from their usual levels atthe beginning of the tth year, so that K +x(t) 
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is the population of owls (in thousands) and L + yet) is the population of mice (in 
millions). Suppose that the model is 

.6.x(t) = -.lx(t) + .2y(t), 

.6.y(t) = -.lx(t) - .4y(t). 

Observe that a decrease in the owl population (x(t) < 0) translates into more food 
per owl and fewer owls to eat mice, so it has a positive effect on both populations 
(-.lx(t) > 0). On the other hand, a decrease in the mouse population (y(t) < 0) 
means less food per owl and less competition for food among mice, so it has a 
negative effect (.2y(t) < 0) on the owl population and a positive effect (-.4y(t) > 
0) on the mouse population. Let the initial deviations be x (0) = -5, yeO) = O. 

The above system has the operator form 

(E - .9)x(t) - .2y(t) = 0, 

.1x(t) + (E - .6)y(t) = O. 

Using the methods of Section 3.3, we find that yet) satisfies 

(E2 - 1.5E + .56)y(t) = 0 

or 

(E - .7)(E - .8)y(t) = O. 

Then 

yet) = A(.7)t + B(.8)t. 

Since 

x(t) = (-10E+6)y(t), 

we have that 

x(t) = -A(.7)t - 2B(.8)t. 

The initial conditions lead us to A = -5 and B = 5. The deviations in the 
populations after t years are then 

x(t) = 5(.7i - 1O(.8)t, 

yet) = -5(.7i + 5(.8i. 

In Fig 3.3, the deviations of owl and mouse populations are plotted for the firs 
fifteen years. 
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Fig. 3.3 Deviations of owl and mouse populations 

Example 3.17. (the Chebyshev polynomials) The nth Chebyshev polynomial 
of the first kind is 

Tn (x) = cos(n COS- 1 x) (n ~ 0). 

Note that To(x) = 1 and Tl (x) = x. Letting () = cos-1 (x), we have 

Tn+2(x) - 2xTn+l (x) + Tn(x) = cos(n + 2)() - 2cos() cos(n + 1)() + cosn() 

= cos n() cos 2() - sin () sin 2() 

- 2 cos n() cos2 () + 2 sin n() cos () sin () 

+ cosn() = 0, (n ~ 0) 

since cos 2() = 2 cos2 () - 1 and sin 2() = 2 cos () sin (). Consequently, Tn (x) (as 
a function of n with x fixed) satisfies a homogeneous linear difference equation 
with constant coefficients. 

The Chebyshev polynomials can be computed recursively from this equation, 

T2(X) = 2xTl(X) - To(x) 

= 2x2 -1, 

T3(X) = 2xT2(X) - Tl(X) 
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= 4x3 - 3x, 

and so forth. A simple induction argument shows that Tn(x) is a polynomial of 
degree n. 

Let 
1 

w(x) = r:;---? 

vl-x2 

With the change of variable () = cos-I x, we have 

I I Tn(x)Tm(x)w(x) dx = II cos(n cos-I x) cos(m cos-I x) ~, 
-I -I 1 - x 2 

= 1011: cos n() cos m() d(), 

= d(), 10
11: cos(n + m)() + cos(n - m)() 

o 2 
=0 

if m =1= n. We say that the Chebyshev polynomials are "orthogonal" on [-I, I] 
with "weight function" w(x). Because of this and several other nice properties, 
they are of fundamental importance in the branch of approximation theory that 
involves the approximation of continuous functions by polynomials. 

More generally, it can be shown (see Atkinson [22]) that every family {4>n} of or
thogonal polynomials satisfies a second order homogeneous linear difference equa
tion of the form 

so these equations are of general utility in the computation of orthogonal polynomi
als. 

Example 3.18. (water rationing) Because of water rationing, Al can water his 
lawn only from 9 P.M. to 9 A.M. Suppose he can add a quantity q of water to the 
topsoil during this period but that half of the total amount of water in the topsoil 
is lost through evaporation or absorption during the period from 9 A.M. to 9 P.M. 

Assume that the topsoil contains an initial quantity I of water at 9 P.M. on the 
first day of rationing. Let yet) be the amount of water in the soil at the end of the 
tth 12-hour period thereafter. 

Now if t is odd, 
1 

yet + 2) = "2 y (t) + q, 

and if t is even, 

yet + 2) = ~y(t) + ~, 
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In general, then 

1 q ( t) y(t+2)-2:y (t) = 4 3-(-1) . 

Since the homogeneous portion of this equation has characteristic roots )., = 
± )Z, it has solutions 

C (h)-t + D (_h)-t. 

By the annihilator method, a trial solution for the nonhomogeneous equation is 
A + B( _1)t. We find easily that A = 3i, B = -1' so the general solution is 

Finally, by using the initial values yeO) = I and y(l) = I + q, we have 

yet) = I ~ q (h)-t {h[l- (-V] + [1 + (-V]} 

+~[3-(-ln, 

where t = 0, 1,2, .. '. Note that for large values of t, yet) essentially oscillates 
between q and 2q. 

Example 3.19. (a tridiagonal determinant) Let Dn be the value of the determi
nant of the following n by n matrix: 

a b 0 0 0 0 0 
c a b 0 0 0 0 
0 c a b 0 0 0 
0 0 c a 0 0 0 

0 0 0 0 a b 0 
0 0 0 0 c a b 
0 0 0 0 0 c a 

If we expand the corresponding n + 2 by n + 2 determinant by the first row, we 
obtain 

Dn+2 = aDn+l - bcDn. 

This homogeneous difference equation has characteristic roots 

a ± .Ja2 - 4bc 
)"=---2---' 
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We consider here only the case a2 - 4be < 0. Then 

The polar coordinate r for these complex roots is 

Choose () so that 

so 

a 
cos() = --, 

2-/bC 
. ,J4be - a2 

slo() = IL:' 
2",be 

')., = ~(cos() ± i sin()). 

The general solution is 

Dn = (Cl cosn() + C2 sin n())(be) ! . 

Since Dl = a and D2 = a2 - be, the constants Cl and C2 can be computed, 
and we find 

Dn = (be) ! (cos n() + cot () sin n()) 

= (be)! sin(~ + 1)() , 
slo() 

(n 2: 1). 

Note that in certain cases, the values of Dn are periodic. For example, if a = 
b = e = 1, then 

2. 7r 
Dn = r;; slO(n + 1)-, 

",3 3 
(n 2: 1), 

which yields the sequence 1,0, -1, -1,0,1,1,0, -1, -1,···. 

Example 3.20. (epidemiology) If Xn denotes the fraction of susceptible indi
viduals in a certain population during the nth day of an epidemic, the following 
equation represents one possible model of the spread of the illness (see Lauwerier 
[170, Chapter 8]): 

(n 2: 0), 
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where Ak is a measure of how infectious the ill individuals are during the kth day 
and e is a small positive constant. If we let Xn = e-Zn , then the equation for Zn is 

n 

Zn+l = L(1 + e - e-Zn-k)Ak. 
k=O 

This is a nonlinear equation; note, however, that during the early stages of the 
epidemic Xn is near 1, so Zn is near O. Replacing e-Zn - k by the approximation 
1 - Zn-ko we obtain the linearized equation 

with YO = O. 

n 

Yn+l = L(e + Yn-k)Ak, 
k=O 

(n ~ 0), 

Even though this is a linear equation with constant coefficients, it is not of the 
type studied previously since each Yn+ 1 depends on all of the preceding members 
of the sequence Yo, . .. ,Yn. However, the method of generating functions is useful 
here because of the special form of the sum Lk=O Yn-kAk, which is called a sum 
of "convolution type." 

We seek a generating function Y(t) for {Yn}, 

00 

Y(t) = LYntn, 
n=O 

and also set 
00 

A(t) = L Antn+l. 

n=O 

By the usual procedure for multiplying power series (the "Cauchy" product), 

A(t)Y(t) = yoAot + (YIAo + YOAl)t2 + ... 

= t (t Yn-kAk) tn+l. 
n=O k=O 

Now we multiply both sides of the difference equation for Yn by tn+l and sum to 
obtain 

~ Yn+l tn+1 = e ~ (~Ak ) tn+1 + E (~Yn-kAk ) tn+l. 

The sum on the left is simply Y(t) since YO = 0 and the last sum is A(t)Y(t). The 
first sum on the right is the product of the series L~o An tn+ 1 and L~O tn = 
l~t. We have that 

1 
Y(t) = eA(t) 1 _ t + A(t)Y(t) 
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eA(t) 
y(t)-----

- (1 - t)(1 - A(t)) 

is the generating function for {Yn}. 
In a few special cases, the sequence {Yn} can be computed explicitly. For ex

ample, if Ak = eak , 0 < a < 1, then 

et eet 
A(t) = -- and Y(t) = . 

1 - at (1 - t)(1 - at - et) 

By partial fractions, 

(1 - t)(1 e~t(a + e)t) = 1 - (: + e) [1 ~ t - 1 - (~+ e)t J. 
so 

and finally 
ee [ n] Yn = 1 ( ) 1 - (a + e) . 

- a+e 

If a + e < 1, then Yn will remain small for all n, so the outbreak: does not reach 
epidemic proportions in that case. 

Example 3.21. (the hat problem) In this example, we will use exponential gen
erating functions to solve the hat problem that was introduced in Exercise 1.12. Let 
W (n) denote the number of ways that no man gets his own hat if n men choose 
among n hats at random. In other words, W(n) is the number of permutations of 
n objects so that no object is fixed. For each integer k, 0 ::s k ::s n, the number 
of permutations of n objects so that k of them are fixed is given by (~) W(n - k). 
Since the total number of permutations of n objects is n!, we have 

n! = t G)W(n - k). 
k=O 

Let h(x) be the exponential generating function for W(n): 

h(x) = f W(n) xn. 
n=O n! 

As in the previous example, we compute a Cauchy product: 

h(x)eX = (t W(~) xn) (t x:) 
n=O n. n=O n. 
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00 n W(n _ k)xn-k Xk 

= L,L (n -k)! k! 
n=Ok=O 

00 n 

=Ln!~ 
n=O n! 

1 
=--, 

I-x 

SO h(x) = e-x /(1 - x). Finally, we can extract a formula for W(n) from h(x) by 
multiplying out the Taylor series for e-x and 1/(1 - x): 

Since h is the exponential generating function for W(n), we conclude that 

n (_I)k 
W(n) = n! L --, 

k=O k! 

which agrees with Exercise 1.12. 

Example 3.22. (a tiling problem) In how many ways can the floor of a hallway 
that is three units wide and n units long be tiled with tiles, each of which is two 
units by one unit? We assume that n is even so that the tiling can be done without 
breaking any tiles. 

Let y(n) be the number of different arrangements of the tiles that will accomplish 
the tiling. There are three ways we can start to tile an n + 2 by 3 hallway (see 
Fig. 3.4). There are y(n) ways to complete the first hallway in the figure. Let 
z(n + 2) be the number of ways to finish the second hallway. By symmetry, there 
are also z(n + 2) ways to finish the third hallway. It follows that 

y(n + 2) = y(n) + 2z(n + 2). 
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l~t 1 
n+2 n n+1 

~ ~ ~ ..... 3....... '--__ ....I L.. __ --' 

Fig. 3.4 Three initial tiling patterns 

t~1. + 
1 ~ '------'n~1 
Fig. 3.5 Two secondary patterns 

From Fig. 3.5, we see that there are two ways to begin tiling the remainder of 
the second hallway in Fig. 3.4. Now there are y(n) ways to complete the first of 
these and z(n) ways to complete the second, so 

z(n + 2) = y(n) + z(n). 

We need to solve the system 

(E2 - l)y(n) - 2E2z(n) = 0 

-y(n) + (E2 - l)z(n) = O. 

Eliminating z(n), we obtain 

(E4 - 4E2 + l)y(n) = O. 

The characteristic roots of this equation are 

so since n is even, 

y(n) = A(2 + J3)! + B(2 - J3)z. 

From the initial conditions y(2) = 3, y(4) = 11, we have 

A(2 + J3) + B(2 - J3) = 3 
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The solutions of this system are 

v3 -1 
B= , 

2v3 
so 

y(n) = 1 +: (2 + v3)! + v3 ~ 1 (2 - v3)!. 
2 3 2 3 

For n = 2,4, .. " the second term is positive and less than one. Then y(n) is 
given by the integer part of the first term plus one. For example, there are 413,403 
ways to tile a 20 by 3 hallway! 

3.5 Equations with Variable Coefficients 
Second and higher order linear equations with variable coefficients cannot be solved 
in closed form in most cases. Consequently, our discussion in this section will not 
be a general one but will present several methods that are often useful and can lead 
to explicit solutions in certain cases. 

Recall that the nth order linear equation can be written in operator form as 

(Pn(t)En + ... + po(t») y(t) = r(t). 

If we are very lucky, the operator may factor into linear factors in a manner similar to 
the case of constant coefficients. Then the solutions can be found by solving a series 
of first order equations. We illustrate the procedure by considering the hat problem 
one last time (see Exercise 1.12 and Example 3.21). 

Example 3.23. Solve 

(E2 - (t + I)E - (t + 1») y(t) = O. 

The operator factors thus: 

(E + 1) (E - (t + 1» y(t) = O. 

(Check this!) Consider the first order equation 

(E + l)v(t) = O. 

The solution is v(t) = (-1)t e. To solve the original equation, set 

(E - (t + 1» y(t) = (-1) t e. 
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The homogeneous portion has the general solution D['(t + 1), so from Theo
rem 3.1, 

y(t) = D['(t + 1) + C['(t + 1)" (-1)t . 
~ ['(t + 2) 

If t takes on discrete values 0, 1, 2, ... , then 

t-l (_I)k 

y(t) = Dt! + Ct! t; (k + I)!' 

where C and D are arbitrary constants. The solution to the hat problem is obtained 
by using the initial values y(2) = 1 and y(3) = 2 to show that C = - ~ and D = 1. 

Note that the factors in this example do not commute. In fact, the solutions of 
the equation 

(E - (t + 1)) (E + l)y(t) = ° 
are quite different (see Exercise 3.78). 

ft:_ 

It sometimes happens that we can find one nonzero solution of a homogeneous 
equation. In this case, the order of the equation can be reduced by one. For a second 
order equation, it is then possible to find a second solution that is independent of the 
first and, consequently, to generate the general solution. 

As a first step, we show that the Casoratian satisfies a simple first order equation. 

Lemma 3.1. Let UI(t),···, un(t) be solutions of the equati<?n 

Pn(t)u(t + n) + ... + po(t)u(t) = 0, 

and let w(t) be the corresponding Casoratian. Then w(t) satisfies 

w(t + 1) = (_I)n po(t) w(t). 
Pn(t) 

Proof. The value of w(t + 1) is unchanged if we replace the last row by 

(nth row) + PI x (1st row) + ... + Pn-l X (n,- l)st row). 
Pn Pn 

The difference equation can then be used to show that the new last row is 

[ _POU1(t), ... , -poun(t)]. 
Pn Pn 

Then we have, by rearrangement, 

[ 

Ul (t + 1) 

w(t + 1) = det : 
ul(t+n-l) 

-.&Ul(t) 
Pn 

(3.12) 
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Now assume that UI (t) is a nonzero solution of 

P2(t)U(t + 2) + PI (t)U(t + 1) + po(t)U(t) = 0, 

and let U2(t) denote another solution. Recall that 

!:l. U2(t) = UI (t)!:l.u2(t) - U2(t)!:l.uI (t) 

UI(t) UI(t)UI(t+l) 
_ w(t) 

- UI (t)UI (t + 1) . 

Then 

'"' w(t) 
U2(t) = UI (t) ~ UI (t)UI (t + 1)' 

and we have 'the following theorem. 

77 

• 

(3.13) 

(3.14) 

Theorem 3.9. Iful (t) is a solution ofEq. (3.13) that is never zero and po(t) and 
P2(t) are not zero, then Eq. (3.14) yields an independent solution of Eq. (3.13), 
where w(t) is a nonzero solution ofEq. (3.12). 

Theorem 3.9 is known as the "reduction of order" method for a second order 
equation. A technique for reducing the order of a higher order equation is outlined 
in Exercise 3.83. 

Example 3.24. Solve the equation 

1 
u(t + 2) - u(t + 1) - --u(t) = O. 

t + 1 
By inspection, UI (t) = t + 1 is a solution. The Casoratian w(t) satisfies 

so we can choose 

Then 

The general solution is 

1 
w(t + 1) = ---w(t), 

t+l 

(-I)t 
w(t) = --. 

t! 

t-I (_I)k 
U2(t) = (t + 1) L . 

k=O (k + 2)! 

u(t) = (t + 1) C + D L (-1) . ( 
t-I k ) 

k=O (k + 2)! 
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Example 3.25. Let a and b be constants in the equation 

t(t + 1)~2u(t) + at~u(t) + bu(t) = 0, 

which-is similar to the Cauchy-Euler differential equation. By substituting the trial 
solution u(t) = (t + r - I)!:., we have 

t(t + l)r(r - 1)(t + r - W-2 + atr(t + r - It-I + b(t + r - 1)!:. = O. 

We need the following identities (see Exercise 3.87): 

t(t + r - or-I = (t + r - I)!:., 

t(t + 1)(t + r - l)r-2 = (t + r - I)!:.. 

Then we have 

r(r - l)(t + r - I)!:. + ar(t + r - I)!:. + b(t + r - 1)!:. = 0, 

or 

r2 + (a - l)r + b = O. 

(3.15) 

(3.16) 

(3.17) 

If Eq. (3.17) has distinct real roots rI, r2, then the difference equation has the 
independent solutions 

Uj(t) = (t + rj - 1)~, (i = 1,2). 

In the case of repeated roots, Theorem 3.9 can be applied to obtain a second 
solution. Consider 

t(t + 1)~2u(t) - 5t~u(t) + 9u(t) = O. 

Herer = 3, so 
UI(t) = (t +2)1 = (t + 2)(t + l)t 

is a solution. Rewritten in standard form, the equation is 

t(t + l)u(t + 2) - (2t2 + 7t)u(t + 1) + (t + 3)2u(t) = 0, 

so for Eq. (3.12) we have 

(t + 3)2 
w(t + 1) = ( w(t), 

t t + 1) 

and we can take w(t) = (t + 2)2(t + 1)2t . From Eq. (3.14), 

U (t) = (t + 2)1 ~ (t + 2)2(t + 1)2t 
2 ~ (t + 2)1(t + 3)1 
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The general solution is 

1 
= (t +2)1"-. 

~t+3 

U(t) = (t + 2)(t + l)t [ C + D L t ~ 3] . 
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If the coefficients PO, PI, P2 in Eq. (3.13) are polynomials, a generating function 
for a solution of Eq. (3.13) can be shown to satisfy a differential equation, which 
may be solvable in terms of familiar functions. This is a reversal of the procedure for 
finding power series solutions of differential equations (see Example 1.4). 

Example 3.26. Solve 

(n + 2)Un+2 - (n + 3)Un+1 + 2un = 0, 

where n = 0, 1, 2, .... 

Let a generating function be 

00 

g(x) = LUnxn. 
n=O 

First, mUltiply each term in the difference equation by xn and sum as n goes from 
o to 00: 

00 00 00 

L(n + 2)Un+2Xn - L(n + 3)Un+IXn + 2 LUnxn = O. 
n~ n~ n~ 

Next, make a change of index in the first two summations so that the index on U is 
n in each sum: 

00 00 00 

LnunXn- 2 - L(n + 2)unx n- 1 + 2 LUnxn = O. (3.18) 
n=2 n=! n=O 

Since g'(x) = L~! nunxn- l , the first sum in Eq. (3.18) is 

00 1 
LnunXn- 2 = - (g'(x) - UI). 
n=2 x 

The second sum in Eq. (3.18) is 

00 00 00 

L(n+2)unx n- 1 = LnunXn- 1 +2LunXn- 1 

n=l n=l n=l 
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, 2 
= g (x) + - (g(x) - Uo). 

x 

Substituting these expressions into Eq. (3.18), we have 

1(, )' 2 - g (x) - Ul - g (x) - - (g(x) - uo) + 2g(x) = 0, 
x x 

or 
Ul - 2uo 

g'(x) - 2g(x) = . 
I-x 

For Ul = 2uo, this last equation has the elementary solution 

g(x) = e2x 

00 2n 

= L-xn , 
n=O n! 

2n 
so Un = n!' (n = 0, 1, 2, ... ). 

In this calculation, it was necessary to introduce only the first derivative of g(x) 
since the coefficient functions are polynomials of degree at most one. More gener
ally, the order of the differential equation will equal the degree of the polynomial 
of highest degree. 

A second solution is easily found by using Theorem 3.9. By (3.12), 

2 
w(n + 1) = --w(n), 

n+2 

so we can choose w(n) = (nrl)!. A second solution is 

In Example 3.4, we saw that solutions of certain first order equations can be ex
pressed as factorial series. Higher order equations may also have such solutions. One 
approach is to substitute a trial series such as u(t) = L~o akt-k into the equation 
and try to determine the coefficients ak. Of course, it might tum out that all the ak's 
are zero, as we get only the zero solution for our efforts! In fact, the calculations are 
usually quite involved. See Milne-Thomson [194] for a thorough discussion of this 
topic. The following example is deceptively simple. 
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Example 3.27. Find a factorial series solution of 

2u(t + 2) + (t + 2)(t + 1)u(t + 1) - (t + 2)(t + 1)u(t) = 0, 

or 

2u(t + 2) + (t + 2)(t + 1)b.u(t) = O. 

Substitute u(t) = L:f:,oakt-k: 

00 00 

L2ak(t + 2)-k + (t + 2)(t + 1) I>k(-k)t-k- l = O. 
k=O k=l 

Since 

(t + 2)(t + 1)t-k- 1 = (t -+ 2)-k+l, 

we have 
00 00 

L2ak(t + 2)-k + Lak(-k)(t + 2)-k+1 = O. 
k=O k=l 

Make the change of index k ~ k + 1 in the second series and combine the series 
to obtain 

00 

L [2ak - (k + 1)ak+d (t + 2)-k = o. 
k=O 

Then ao is arbitrary and 

(k 2: 0), 

so 

A factorial series solution is 

and the series converges for all t except the negative integers. 
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3.6 Nonlinear Equations That Can Be Linearized 
As defined in Chapter 1, a difference equation is a relation, 

y(t + n) = f (t, y(t), ... ,y(t + n - 1», 

so that values of y can be computed recursively from known values. It is not expected 
that explicit formulas can be found for the solutions of these equations except in 
special cases. There are, however, a number of important examples of nonlinear 
equations that can be transformed into equivalent linear equations by a change of 
dependent variable. 

One class of equations for which this approach is successful is the Riccati equa
tion 

y(t + l)y(t) + p(t)y(t + 1) + q(t)y(t) + r(t) = 0. (3.19) 

Let y(t) = z~t)l) - p(t). Direct substitution ofthis expression into Eq. (3.19) yields 
the linear equation 

z(t + 2) + [q(t) - p(t + 1)] z(t + 1) + [r(t) - p(t)q(t)] z(t) = 0, (3.20) 

which may be solvable by one of the methods discussed earlier in the chapter. Then 
solutions ofEq. (3.19) are obtained from the relationship between y and z. 

Example 3.28. y(t + l)y(t) + 2y(t + 1) + 4y(t) + 9 = 0. 

The change of variable y(t) = z~t)l) - 2 gives us, from Eq. (3.20), 

z(t + 2) + 2z(t + 1) + z(t) = 0, 

which has the general solution 

z(t) = A(-I)t + Bt(-I)t. 

The general solution of the Riccati equation is 

A(_I)t+l + B(t + 1)(-ll+1 
y(t) - - 2 

- A(-I)t+Bt(-I)t 

-1-C(t+l) 
= -2 

1 + Ct 
-3 - C(3t + 1) 

= 
1 + Ct 

where C is arbitrary. Actually, this last form of the solution is not quite general 
since it omits the solution y (t) = - t~ 1 - 2, which results from A = 0. 

Sometimes the structure of a difference equation will suggest a substitution that 
makes the equation linear. 
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Example 3.29. y(t + 2) = Y~t)l). 

In this case, the equation can be simplified by applying a logarithm: 

log y(t + 2) = log y(t + 1) -log y(t). 

Let z(t) = log y(t) and rearrange to obtain 

z(t + 2) - z(t + 1) + z(t) = o. 

By the methods of Section 3.3, 

() A 7r+ B ·7r 
Z t = cos 3t sm 3t, 

so 
y(t) = CCos 1ft D sin 1ft 

for some constants C and D. Note that all solutions have period 6! Check this 
conclusion by iteration of the difference equation. 

Next, we consider a more systematic search for a change of dependent variable 
that may linearize an equation. This technique is based on Lie's transformation group 
method (see Maeda [182]). To make the discussion as clear as possible, we restrict 
our attention to the equation 

y(t + 1) = f (y(t)) , (3.21) 

in which there is no explicit t dependence. 
Let's begin by assuming that a solution ~(y) of the functional equation 

(3.22) 

is known for some constant D. Then we define a new dependent variable z by 

(3.23) 

for y belonging to an open interval I in which ~(y) is different from O. 
Using the chain rule, we have 

d dz df 
dy z (f(y)) = dy (f(y)) dy (y) 

1 df 
= ~ (f(y)) dy (y) (by Eq. (3.23)) 

D 
= ~(y) (by Eq. (3.22)) 
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dz 
= D-(y). 

dy 
(by Eq. (3.23» 

Now we integrate to obtain 

z (f(y» = Dz(y) + C, 

or 
Z (y(t + 1» = Dz (y(t» + C, 

which is a linear equation of first order with constant coefficients! 
In summary, we have shown that if ~(y) satisfies Eq. (3.22) for some constant D 

and if ~ (y) i= 0 for y in an open interval I, then the change of variable given by 
Eq. (3.23) produces a first order linear equation that is equivalent to Eq. (3.21) as 
long as y is in I. 

Example 3.30. y(t + 1) = ay(t) (1 - y(t». 

In biology this equation is known as the discrete logistic model. Such models 
occur in the study of populations that reproduce at discrete intervals, such as once 
a year. Here a is a constant and f(y) = ay(1 - y), so Eq. (3.22) is 

D~ (ay(1 - y» = ~(y)a(1 - 2y). 

The form of this last equation suggests that we try a linear expression for ~-say, 
~(y) = cy + d. We obtain 

-Dcay2 + Dcay + Dd = -2aci + (ac - 2ad)y + ad. 

Equating coefficients leads to 

D = a = 2 and c = - 2d. 

Let c = -1 and d = !; from Eq. (3.23) 

dz 1 
=--71 , 

dy -y + 2 

so we take 

z = -log (~ - y) 
or 

1 y = __ e-z 
2 

Now we substitute the last expression into 

y(t + 1) = 2y(t) (1 - y(t» 
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to obtain 

or 
e-z(r+l) = 2e-2z (t) 

or 
z(t + I) = 2z(t) -ln2. 

Then 
z(t) = C ·2t + In2, 

and finally 
I 21 

y(t) = "2(1 - A ), 

where A is arbitrary. 
Note that the choice of a linear ~ leads to a general solution only for the case 

a =2. 

An alternate approach is to start with a particular ~ in Eq. (3.22) and to solve 
that equation for f to discover which equations can be linearized by the change of 
variable Eq. (3.23). In this way, it is possible to catalog many nonlinear equations 
that are equivalent to first order linear equations with constant coefficients. 

Example 3.31. Choose ~(y) = Jy(1 - y) in Eq. (3.22): 

DJ f(l- f) = Jy(1- y)~;. 

This first order differential equation can be solved by separation of variables: 

f dy f df 
D Jy(1 - y) = J f(1 - f) 

or 
D· 2 sin-l Jy + C* = 2 sin-l 17. 

Then 
f(y) = sin2 (D sin- l Jy + C) , 

where C is an arbitrary constant. 
If D = I, we obtain the family offunctions 

f(y).= (JycosC + J!=Ysinct. 

For D = 2, we have 

f(y) = (2JyJ!=Y cos C + (I - 2y) sin C t ' 
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and the choice C = 0 gives 

f(y) = 4y(1 - y), 

which is the function in Example 3.30 with a = 4. Other values of D lead to more 
complicated expressions. 

Let's solve 
y(t + 1) = 4y(t) (1 - y(t)) . 

From Eq. (3.23), z = 2 sin- l .;y, so y = sin2~. This change of variable in the 
difference equation results in 

. 2 z(t + 1) 4. 2 z(t) 2 z(t) 
sm 2 = sm 2 cos 2' 

= sin2 z(t) 

or 
z(t + 1) = 2z(t). 

Then z(t) = A· 2t , so 

y(t) = sin2(B ·2t ), 

where B is an arbitrary constant. Of course, this solution is valid only for 0 ::: y ::: 
1. 

Additional examples using Eq. (3.22), as well as a generalization, are contained 
in the exercises. 

3.7 The z-Transform 
The z-transform is a mathematical device similar to a generating function which pro
vides an alternate method for solving linear difference equations as well as certain 
summation equations. In this section we will define the z-transform, derive several of 
its properties, and consider an application. The z-transform is important in the anal
ysis and design of digital control systems. Jury [146] is a good source of information 
on this topic. 

Definition 3.4. The "z-transform" of a sequence {Yk} is a function Y (z) of a com
plex variable defined by 

00 

Y(z) = Z(Yk) = L y~, 
k=O Z 

and we say that the z-transform "exists" provided there is a number R > 0 such 
that L~o ~ converges for Izl > R. The sequence {Yk} is said to be "exponentially 
bounded" if there is an M > 0 and a c > 1 such that 

IYkl ::: Mck 

for k :::: o. 
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I Theorem 3.10. If the sequence {Yk} is exponentially bounded, then the z
transform of {Yk} exists. 

Proof. Assume that the sequence {Yk} is exponentially bounded. Then there is an 
M > 0 and a c > 1 such that 

for k ~ O. We have 

and the last sum converges for Izl > c. It follows that the z-transform of the se
quence {Yk} exists. • 

In this section we will frequently use, without reference, the following theorem. 

Theorem 3.11. If the sequence Uk} is exponentially bounded, each solution of 
the nth order difference equation 

Yk+n + PIYk+n-l + P2Yk+n-2 + ... + PnYk = fk 

is exponentially bounded and hence its z-transform exists. 

Proof. We will give the proof of this theorem just for the case n = 2. Assume Yk 
is a solution of the second order equation 

Yk+2 + PIYk+l + P2Yk = !k 

and Uk} is exponentially bounded. Since Uk} is exponentially bounded, there is an 
M > 0 and a c > 1 such that 

for k ~ O. Since Yk is a solution of the above second order difference equation, we 
have that 

(3.24) 

Let 
B = max{lPll, IP21, IYol, IYll, M, c}. 

We now prove by induction that 

(3.25) 
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for k = 1,2,3· ... It is easy to see that the inequality (3.25) is true for k = 1. Now 
assume that ko 2: 1 and that the inequality (3.25) is true for 1 ::: k ::: ko. Letting 
k = ko - 1 in (3.24), we have that 

Using the induction hypothesis and the definition of B we get that 

Iy 1 < B3ko - 1 Bko + B3ko-2Bko-l + BBko-1 ko+l - . 

It follows that 

which completes the induction. From the inequality (3.25), 

for k = 1,2,3···, so Yk is exponentially bounded. By Theorem 3.10, the z
transform of Yk exists. • 

Example 3.32. Find the z-transform ofthe sequence {Yk = I}. 

00 1 
Y(z) = Z(1) = L k 

k=O Z 

1 
=--"7 

l-C1 

z 
= z -1' Izl > 1. 

Example 3.33. Find the z-transform ofthe sequence {Uk = ak }. 

00 k 
k ",a 

U(z) = Z(a ) = ~ k 
k=O Z 

_ f(~)k 
k=O Z 

Z 

z-a 

1-~ z 

Izl> lal. 



3.7. THE Z-TRANSFORM 

Example 3.34. Find the z-transform of {Vk = k}~o. 
00 k 

V(z) = Z(k) = L k 

so, by rearrangement, 

k=O Z 

00 k + 1 
= L zk+! 

k=O 

_~~k+l 
- ~ k 

Z k=O Z 

1 1 
= - V(z) + -Z(I), 

z z 

z - liz 
--V(z) = ---, 

z z z - 1 
V( ) _ z 

z - (z _ 1)2' 

Izl > 1, 

Izl > 1, 

Izl > 1. 
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These formulas for z-transforms along with some others are collected in Table 3.1 
at the end of this section. Of course, this table is easily converted into a table of 
generating functions by the substitution z = ~. 

Theorem 3.12. (Linearity Theorem) If a and b are constants, then 

for those z in the common domain of U (z) and V (z). 

Proof. Simply compute 

• 
Example 3.35. Find the z-transform of {sinak}~o. 

The following calculation makes use of the Linearity Theorem: 

Z(sinak) = Z (;i eiak _ ;/-iak) 
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-------.,--
2i z - eia 2i z - e-ia 

Z2 _ ze-ia - Z2 + zeia 
= 2i [Z2 - (eia + e-ia)z + 1] 

z sina 
= Z2 - 2(cosa)z + 1· 

Similarly, one can show that 

Z2 - zcosa 
Z(cosak) = . 

Z2 - 2z cos a + 1 

Theorem 3.13. If Y(z) = Z(Yk) for Izl > r, then 

for Izl > r. 

( n) n n dny 
Z (k + n - l)-Yk = (-1) z -(z) 

dzn 

Proof. By definition, 
00 00 

Y(z) = L Y~ = LYkZ-k 

k=O Z k=O 

for Izl > r. The nth derivative is 

Hence 

dny n Loo k n -(z)=(-l) k(k+1)···(k+n-1)Ykz--
dzn 

k=O 

_ (-l)n ~ (k + n -l)~Yk 
- zn ~ Zk . 

k=O 

( n) n n dny 
Z (k + n - l)-Yk = (-1) z -(z). 

dzn 

For n = 1 in Theorem 3.13 we get the special case 

Z(kYk) = -zY'(z). 

• 
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Example 3.36. Find Z(kak ). 

= (z - a)2· 

Example 3.37. Find Z(k2). 

Z(k2) = Z(k . k) 

d = -z-Z(k) 
dz 

= -z :z [(Z ~ 1)2 ] 

z(z + 1) 
= (z - 1)3· 

Define the unit step sequence u(n) by 

uk(n) = --10, 0< k < n-l 

1, n ~ k. 
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Note that the unit step sequence has a single "step" of unit height located at k = n. 
The following result is known as a "shifting theorem." 

Theorem 3.14. For n a positive integer 

n-i 

Z(Yk+n) = zn Z(Yk) - L YmZn- m, 
m=O 

In Fig. 3.6 the various sequences used in this theorem are illustrated. 

Proof. First observe that 

00 

Z(Yk+n) = LYk+nZ-k 

k=O 
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............ 
I I I I I I I I I I I • I I • I I • I I I I. k 
012 .' n .. . . . 
. . . . . . . . . . . . . . . . . . . . 

~~:~I~I~I~I~I~I~I~I~I~I~I~I~---------.. k 
012 n 

.... 
Yk~ Uk: ~O~1~2~1~1~1~1~1~1~1~1~~~----""""---'· k ..... 
Fig. 3.6 Sequences used in Theorem 3.14 

= Zn [f YkZ-k - I: Ymz-m] 
k=O m=O 

n-l 

= ZnZ(Yk) - LYmZn- m. 

m=O 

For the second part, we have 

00 

Z (Yn-kUk(n)) = LYk-nUk(n)z-k 

k=O 

Example 3.38. Find Z (uk(n)). 

00 

= LYk-nZ-k 

k=n 
00 

= LYkZ-k- n 

k=O 

= Z-n Z(Yk). 

Zl-n 

Z - I 

Example 3.39. Find Z(Yk) if Yk = 2, 0 ::s k ::s 99, Yk = 5, 100 ::s k. 

We write the given sequence in terms of Uk and apply Theorem 3.14. 

• 
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2z 3Z-99 

=--+-
z-1 z-1 

2z 1OO + 3 
= Z99(Z - 1) . 

Theorem 3.15. For any integer n 2: 0, 

n n!zn 
Z (k + n - 1)-) = ) +1 

(z - 1 n 

(kn) n!z 
Z - = (z _ 1)n+1 

for Izl > 1. 

Proof. Letting Yk = 1 in Theorem 3.13, we have 

Z (k + n - 1)~) = (_I)nzn~_z_ 
dzn (z-1) 

n n (_1)nn! 
= (-1) z (z _ 1)n+1 

n!zn 

= (z - 1)n+!' 

which is the first formula. Now using Theorem 3.14, we get 

n-2 

Z (k + n - 1)~) = zn-1 Z(k~) - L m~zn-1-m. 
m=O 

Hence 

Z (k~) __ 1_ ( n!zn ) 
- zn-1 (z - 1)n+1 

n!z 
= (z - 1)n+1 . 

Theorem 3.16. (initial value and final value theorem) 

(a) If Y(z) exists for Izl > r, then 

YO = lim Y(z). 
z--->oo 

(b) If Y(z) exists for Izl > 1 and (z - l)Y(z) is analytic at z = 1, then 

lim Yk = lim(z - l)Y(z). 
k--->oo z--->1 

93 

• 
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Proof. Part (a) follows immediately from the definition of the z-transform. To 
prove part (b), consider 

00 00 

Z(Yk+l - Yk) = LYk+lZ-k - LYkZ-k 

k=O k=O 

= 2~~ [tYk+l Z- k - t YkZ - k] 
k=O k=O 

= lim [-YO + Yl (1 - Z-l) + Y2(z-1 - z-2) 
n--+oo 

( -n+l -n) + -n] + ... + Yn z - Z Yn+1Z. 

Thus 

From the shifting theorem, 

lim [zY(z) - ZYO - Y(z)] = lim Yk - Yo· 
z--+ 1 k--+oo 

Hence 

lim Yk = lim(z - I)Y(z). 
k--+oo z--+l 

Example 3.40. Verify directly the last theorem for the sequence Yk = 1. 

1 = YO = lim Z(I) = lim _z_ = 1, 
z--+oo z--+oo z - 1 

1 = limYk = lim(z - I)Z(1) 
z--+ 1 

= lim (z - l)z = 1. 
z--+ 1 Z - 1 

Theorem 3.17. If Z(Yk) = Y(z) for Izl > r, then for constants a#- 0, 

for Izl > rial. 

Proof. Observe that 

• 

• 
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Example 3.41. Find Z(3k sin4k). 

Z(3k sin4k) = Z(sin4k)]i 

_ ~ sin 4 

- ~ - 2(cos4)~ + 1 

3z sin 4 
= Z2 - 6z cos 4 + 9· 

Example 3.42. Solve the following initial value problem using z-transforms: 

Yk+l - 3Yk = 4, 

YO = 1. 

Taking the z-transform of both sides of the difference equation, we have 

z 
zY(z) - ZYo - 3Y(z) = 4-

z -1 
4z Z2 + 3z 

(z - 3)Y(z) = z + -- = --
z-1 z-1 

Y( ) _. Z + 3 
z - z (z _ l)(z - 3) 

- z [-z -__ 2-1 + -z __ 3-3J 

z z 
=-2--+3--. 

z-1 z-3 

From Table 3.1 we find the solution 

Example 3.43. Solve the initial value problem 

Yk+l - 3Yk = 3k, 

YO =2. 
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Since 3k is a solution of the homogeneous equation, we expect the solution of this 
problem to involve the function k3k • 

zY(z) - 2z - 3Y(z) = _z_ 
z-3 

Z 2z2 - 5z 
(z - 3)Y(z) = 2z + -- = ---

z-3 z-3 
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2z -5 
Y (z) = z (z _ 3)2 

= Z [-z -~-3 + _(Z ___ 1_3)-=-2 ] 

=2_Z_+! 3z . 
z - 3 3 (z - 3)2 

k 1 k 
Yk = 2 . 3 + 3k3 . 

We can use the z-transform to solve some difference equations with variable co
efficients. 

Example 3.44. Solve the initial value problem 

(k + I)Yk+l - (50 - k)Yk = 0, Yo = 1. 

Taking the z-transform of both sides, 

ZZ(kYk) - 50Y(z) - zY'(z) = 0 

-Z2y '(Z) - zy'(z) = 50Y(z) 

Y'(z) -50 
=---

Y(z) z(z + I) 
50 50 

=--+--
z z + 1 

log Y(z) = -50 log z + 50log(z + I) + C 

By Exercise 3. 118(b), 

( z + 1)50 
Y(z) = -

z 

Example 3.45. Solve the second order initial value problem 

Yk+2 + Yk = 10· 3k 

YO = 0, YI = O. 

By the shifting theorem, 

2 2 10z 
z Z(Yk) - Yoz - YIZ + Z(Yk) = -

z-3 



3.7. THE z-TRANSFORM 

10z 
(Z2 + I)Z(Yk) = --3' 

z-

so we have 

Hence 

lOz 
Z(yd = (z - 3)(Z2 + 1) 

_Z[~+BZ+C] 
- z - 3 Z2 + 1 

[ 1 Z+3] 
= z z - 3 - Z2 + 1 

Z Z2 z 
-------3--
- z - 3 Z2 + 1 Z2 + 1 

Z Z2 - Z cos ~ z sin ~ 
- -3~----~---
- z - 3 - Z2 - 2z cos ~ + 1 Z2 - 2z cos ~ + 1 . 

k :rr :rr 
Yk = 3 - cos( -k) - 3 sin( -k). 

2 2 

Example 3.46. Solve the system 

Uk+l - Vk = 3k3k, 

Uk + Vk+l - 3Vk = k3k, 

UO = 0, VO = 3. 

By Theorem 3.12 

, 9z 
zU(z) - ZUO - V(z) = (z _ 3)2' 

3z 
U(z) + zV(z) - ZVO - 3V(z) = (z _ 3)2' 

or 

U( ) _ V( ) _ 9z 
z z z - (z _ 3)2 ' 

3z 
U (z) + (z - 3) V (z) = 3z + 2 . 

(z - 3) 

Multiplying both sides of the first equation by z - 3 and adding, we get 

2 3z 9z2 - 27z 
(z - 3z + I)U(z) = 3z + (z _ 3)2 + (z _ 3)2 

97 
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Fig. 3.7 A lmlder network 

3Z(Z2 - 3z + I) 
= 

(z - 3)2 

U( ) _ 3z 
z - (z _ 3)2' 

and one of the unknowns is given by 

Furthermore, the other unknown is 

Vk = Uk+l - 3k3k 

= (k + 1)3k+l - 3k3k 

= 3k+1• 

Example 3.47. Find the currents h, 0 ::: k ::: n, in the ladder network shown in 
Fig. 3.7. 

We begin by applying Kirchhoff's Law to the initial loop in Fig. 3.7: 

v = Rio + R(io - it). 

Solving for iI, we obtain 
. 2. V 
11 = 10--· 

R 

Now we apply Kirchhoff's Law to the loop corresponding to ik+l and obtain 

Simplifying, we have 
ik+2 - 3ik+l + h = 0 

for 0 ::: k ::: n - 2. If we apply the z-transform to both sides of the preceding 
equation, we get 
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or 
(Z2 - 3z + 1)I(z) = iOZ2 + (it - 3io)z. 

Using the equation for it, we have 

Z2 - (1 + .,Y...) z 
. loR 

l(z) = 10 2 . 
Z - 3z + 1 

Let a be the positive solution of cosh a = ~; then sinh a = 1. Note that 

z2-zcosha (iO V) 2 zsinha 
l(z) = io + - - - - . 

Z2 - 2z cosh a + 1 2 R ,J5 Z2 - 2z cosh a + 1 

It follows that 

ik = iocosh(ak) + (~ - ~) Js sinh(ak), 

for 0 :::: k :::: n. Using Kirchhoff's Law for the last loop in Fig. 3.6, we get that 
in-t = 3in. This additional equation uniquely determines io and hence all the h's 
forO:::: k:::: n. 

We now define the unit impulse sequence 8(n), n ::: 1, by 

8k (n)=/I, k=n 
0, k =1= n. 

It follows immediately from the definition of the z-transform that 

Example 3.48. Solve the initial value problem 

Taking the z-transform of both sides, we have 

3 
zY(z) - z - 2Y(z) = 4" 

z 
3 

(z - 2)Y(z) = z + 4" 
z 

YO = 1. 

z 3 
Y(z) = z - 2 + Z4(Z - 2) 

z 3 -5 z 
=--2+ z --2· z- z-
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An application of the inverse z-transform results in 

We can also write this in the form 

We define the convolution oftwo sequences, {ukl and {Vk}, by 

Briefly we write 

{ukl * (vkl = IE Uk-mVm ). 

k 

Uk * Vk = L Uk-mVm· 
m=O 

Theorem 3.18. (Convolution Theorem) If U (z) exits for Iz I > a and V (z) exists 
for Izl > b, then 

for Izl > max{a, b}. 

Proof. For Izl > max{a, b}, 

00 00 

U(z)V(z) = L u; L v; 
k=O Z k=O Z 

00 k 

= LL Uk-~Vm 
k=Om=O Z 

= Z(Uk * Vk). 

Since L~=O Ym = 1 * Yk. Theorem 3.18 gives us 

Z ct ym) = Z(1)Z(Yk) 

z 
= --IZ (Yk). z-

• 
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Corollary 3.3. If Z(Yk) exists for Izl > r, then 

for Izl > max{1, r}. 

Example 3.49. Find 

By Corollary 3.3, 

Z (i; 3m ) = z ~ 1 Z(Yk), 

Z2 
=-----

(z - l)(z - 3) , 
(Izl > 3). 

Now consider the Volterra summation equation of convolution type 

k-l 

Yk =!k + L Uk-m-IYm (k ::: 0), (3.26) 
m=O 

where!k and Uk-m-l are given. The term Uk-m-l is called the kernel of the sum
mation equation. The equation is said to be homogeneous if Ik == 0 and nonhomo
geneous otherwise. Such an equation can often be solved by use of the z-transform. 

To see this, replace k by k + I in Eq. (3.26) to get 

k 

Yk+l = Ik+l + L Uk-mYm 
m=O 

or 

Yk+l = Ik+l + Uk * Yk· 

Taking the z-transform of both sides and using the fact that YO = 10, we have 

zY(z) = zF(z) + U(z)Y(z). 

Hence 
Y(z) = zF(z) . 

z - U(z) 

The desired solution Yk is then obtained if we can compute the inverse transform. 
The next example is of this type. 
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Example 3.50. Solve the Volterra summation equation 

k-l 

Yk = 1 + 16 L(k - m - I)Ym, 
m=O 

Replacing k by k + 1, we have 

k 

Yk+l = 1 + 16 L(k - m)Ym 
m=O 

= 1 + 16k * Yk. 

Taking the z-transform of both sides, we obtain Y (z) as follows: 

Then 

z z 
zY(z) - z = z _ 1 + 16 (z _ 1)2 Y(z) 

[ 1 - (z ~61)2 ] Y(z) = 1 + z ~ 1 

Z2 - 2z - 15 z 
(z - 1)2 Y(z) = z - 1 

Y(z) = z(z - 1) 
(z - 5)(z + 3) 

-z --L+--L [ 1 1] 
z-5 z+3 

1 z 1 z =---+---. 
2z-5 2z+3 

Yk = ~5k + ~(_3)k. 
2 2 

A related equation is the Fredholm summation equation 

b 

Yk = !k + L Kk,mYm (a :s k :s b). 
m=a 

(3.27) 

Here a and b are integers, and the kernel Kk,m and the sequence !k are given. Since 
this equation is actually a linear system of b - a + 1 equations in b - a + 1 unknowns 
Ya, ... , Yb, it can be solved by matrix methods. If b - a is large, this might not be 
the best way to solve this equation. If Kk,m is separable, the following procedure 
may yield a more efficient method of solution. 

We say Kk,m is separable provided that 

p 

Kk,m = I>l!i(k).Bi(m), (a :s k, m :s b). 
i=l 
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Substituting this expression into Eq. (3.27) we obtain 

Hence 

P 

Yk = !k + :L:>iai(k), a :s k :s b, (3.28) 
i=l 

where 
b 

Ci = L fh(m)Ym. 
m=a 

By multiplying both sides of Eq. (3.28) by (3j (k) and summing from a to b, we 
obtain 

Hence 

p 

Cj = Uj + LajiCi, 
i=l 

1 :s j :s p, (3.29) 

where 
b 

Uj = L !k{3j(k) 
k=a 

and 
b 

aij = Laj(k){3i(k). 
k=a 

Let A be the p by p matrix A = (aij), let -; 
[Ul, ... , upf. Then Eq. (3.29) becomes 

But this equation is equivalent to 

-> -> 
(/ - A) C = u" 

T -> [Cj, ... , C p] , and let u 

(3.30) 

where I is the p by p identity matrix. We have essentially proved the following 
theorem. 
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Theorem 3.19. The Fredholm equation (3.27) with a separable kernel has a so

lution Yk if and only if Eq. (3.30) has a solution -;. If -; = (q, ... ,cp)T is a 
solution of Eq. (3.30), then a corresponding solution Yk of Eq. (3.27) is given by 
Eq. (3.28). 

Example 3.51. Solve the Fredholm summation equation 

19 

Yk = 1 + L(1 + km)Ym, Os k S 19. 
m=O 

Here we have the separable kernel 

Take 

Then 

Furthermore, 

Kk,m = 1 +km. 

a1(k) = 1, 

a2(k) = k, 

19 

fh(m) = 1, 

f32(m) = m. 

all = L 1 = 20 
k=O 
19 

al2 = a21 = L k = 190 
k=O 
19 

azz = L k2 = 2470. 
k=O 

19 

u1 = Ll =20 
k=O 
19 

u2 = Lk = 190. 
k=O 

Equation (3.30) in this case is 

[ -19 -190] [C1] [20] 
-190 -2469 C2 = 190 . 
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Solving for Cl and C2, we obtain 

-13,280 
Cl = 10,811 ' 

10 
C2 = 569' 

From Theorem 3.19 we obtain the unique solution 

_ 1 -13, 280 . 1 ~ . k 
Yk - + 10, 811 + 569 

-2469 10 
= 10,811 + 569 k , O::s k ::s 19. 
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Example 3.52. Solve the following Fredholm summation equation for all values 
oD.: 

29 

Yk = 2+>" L ;Ym, 
m=O 

o ::s k ::s 29. 

Take 

then 

Hence Eq. (3.30) is 

m 
f31(m) = 29; 

29 

all = L >.. m = 15>", 
m=O 29 

29 2 
Ul = L 2~ = 30. 

m=O 

(1 - 15>")c = 30. 

For >.. = l~ there is no solution of this summation equation. For >.. i= /5 
C = 1 !?5A' The corresponding solution is 

2 
Yk = 1 - 15>..' o ::s k ::s 29. 

Now consider the homogeneous Fredholm equation 

b 

Yk = >.. L Kk,mYm, a ::s k ::s b, (3.31) 
m=a 

where>.. is a parameter. We say that >"0 is an eigenvalue of this equation, provided 
that for this value of >.., there is a nontrivial solution Yk. called an eigensequence. We 
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say that (AO, Yk) is an eigenpair for Eq. (3.31). Note that A = 0 is not an eigenvalue. 
We say that Kk,m is symmetric provided that 

for a :s k, m :s b. Several properties of eigenpairs for Eq. (3.31) with a symmetric 
kernel are given in the following theorem. 

Theorem 3.20. If Kk,m is real and symmetric, then all the eigenValues of 
Eq. (3.31) are real. If (Ai, Uk) (A j, Vk) are eigenpairs with Ai =F A j, then Uk 

and Vk are orthogonal; that is, 

b 

LUkVk = o. 
k=a 

We can always pick a real eigensequence that corresponds to each eigenvalue. 

Proof. Let (f-L, Uk), (v, Vk) be eigenpairs of Eq. (3.31). Then f-L, v =F O. Since 
(f-L, Uk) is an eigenpair for Eq. (3.31), 

b 

Uk = f-L L Kk,mUm. 

m=a 

Multiplying by Vk and summing from a to b, we obtain 

b b b 

LUkVk = f-L L L Kk,mUmVk 

k=a k=am=a 

since (v, Vk) is an eigenpair for Eq. (3.31). It follows that 

b 

(v - f-L) L UkVk = O. 
k=a 

If f-L =F v, we get the orthogonality result 

b 

LUkVk = o. 
k=a 

(3.32) 
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If (Ai, Yk) is an eigenpair of Eq. (3.31), then (Ii, Yk) is an eigenpair of Eq. (3.31). 
With (/L, Uk) = (Ai, Yk) and (v, Vk) = (Ii, Yk)' Eq. (3.32) becomes 

b 

(I - A) LYkYk = O. 
k=a 

It follows that A = I, and hence every eigenvalue of Eq. (3.31) is real. The last 
statement of the theorem is left as an exercise. • 

Table 3.1. 

Sequence 

sin(ak) 

cos(ak) 

sinh(ak) 

cosh(ak) 

°k(n) 

uk(n) 

kYk 

Uk * Vk 

L~=oYm 
akYk 

z-Transforms 

z-transform 

z 
z-l 
_z_ 
z-a 

Z 
(Z-1)2 
z(z+l) 
(z-1)3 

n!z 
(z_l)n+l 

zsina 
z2-2z cos a+l 

z2-z cos a 
z2-2zcosa+l 

zsinha 
z2-2zcosha+l 

z2-zcosha 
z2-2zcosha+l 

1 
Z;; 

zl-n 
z-l 

-zy'(Z) 

U(Z)V(Z) 

z':'l Y(Z) 

y (~) 

Zn Y(Z) - L~-==~ Ym Zn-m 

Z-ny(Z) 
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Exercises 

Section 3.1 

3.1 Show that the equation ~y(t) + y(t) = et cannot be put in the form ofEq. (3.1) 
and so is not a first order linear difference equation. 

3.2 Solve by iteration for t = 1,2,3, ... : 

(a) u(t + 1) = t!1 u(t). 

(b) u(t + 1) = ~~!~u(t). 

3.3 Find all solutions: 
(a) u(t + 1) - e3I u(t) = o. 
(b) u(t + 1) - ecos2tu(t) = o. 
3.4 Show that a general solution of the constant coefficient first order difference 
equation u(t + 1) - cu(t) = 0 is u(t) = Act. Use this result to solve these nonho
mogeneous equations: 
(a) y(t + 1) - 2y(t) = 5. 
(b) y(t + 1) - 4y(t) = 3· 2t. 

(c) y(t + 1) - 5y(t) = 5t . 

3.5 Let y(t) represent the total number of squares of all dimensions on a t by t 
checkerboard. 
(a) Show that y(t) satisfies 

y(t + 1) = y(t) + t 2 + 2t + 1. 

(b) Solve for y(t). 

3.6 Suppose y(1) = 2 and find the solution of 

y(t + 1) - 3y(t) = / (t = 1,2,3, ... ). 

3.7 Solve for t = 1,2, ... : 

3t + 1 t 
y(t + 1) - 3t + 7 y (t) = (3t + 4)(3t + 7) 

3.8 Consider for t = 1,2, ... the equation y(t + 1) - ty(t) = 1. 

(a) Show that the solution is 

[
I-I ] 

y(t) = (t - I)! {; :! + y(l) . 

(b) Given that L~l b. = e - 1, derive another expression for y(t). 
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3.9 
(a) Show that the solutions of the equation Yn+ 1 (x) + ~ Yn (x) = e:x (n = 1, 2, ... ) 

are 

Yn(x) = -x C+e-x '""(-ll(k-l)! _ . ( )n-l [n-l (l)k] 
(n -I)! ~ x 

k=l 

(b) For what value of C is Yn(x) = En(x) the exponential integral? (See Exer-
cise 1.15.) 

3.10 Solve the following equations: 
(a) y(t + 1) - 3y(t) = t6t . 

(b) y(n + 1) - ~!iy(n) = (n + 2)~. 
(c) y(n + 1) - n~l y(n) = n~l . 
(d) y(n + 1) - (n + 2)y(n) = (n + 3)!. 

3.11 If we invest $1000 at an annual interest rate of 10% for 10 years, how much 
money will we have if the interest is compounded at each of the following intervals? 
(a) Annually. 
(b) Semiannually. 
(c) Quarterly. 
(d) Monthly. 
(e) Daily. 

3.12 Assume we invest a certain amount of money at 8% a year compounded annu
ally. How long does it take for our money to double? triple? 

3.13 What is the present value of an annuity in which we deposited $900 at the 
beginning of each year for nine years at the annual interest rate of 9%? 

3.14 A man aged 40 wishes to accumulate a fund for retirement by depositing $1200 
at the beginning of each year for 25 years until he retires at age 65. If the annual 
interest rate is 7%, how much will he accumulate for his retirement? 

3.15 In Example 3.2, suppose we are allowed to increase our deposit by 5% each 
year. How much will we have in the IRA at the end of the tth year? How much will 
we have after 20 years? 

3.16 Let Yn denote the number of multiplications needed to compute the determinant 
of an n by n matrix by cofactor expansion. 

(a) Show that Yn+l = (n + l)(Yn + 1). 
(b) Compute Yn. 

3.17 In an elementary economics model of the marketplace, the price Pn of a prod
uct after n years is related to the supply Sn after n years by Pn = a - bsn, where a 
and b are positive constants, since a large supply causes the price to be low in a given 
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year. Assume that price and supply in alternate years are proportional: kpn = Sn+l 
(k > 0). 

(a) Show that Pn satisfies Pn+l + bkpn = a. 

(b) Solve for Pn. 

(c) If bk < 1, show that the price stabilizes. In other words, show that Pn converges 
to a limit as n ~ 00. What happens if bk > I? 

3.18 Let y(x) = L~oanXn in the differential equation y'(x) = y(x) + eX. 

(a) Show that {an} satisfies the difference equation 

an 1 
an+l = n + 1 + (n + I)! 

(b) Use the solution of the equation in (a) to compute y(x). 

3.19 Show by substitution that the function 

r(t - rl) ... r(t - rn) 
u(t) = C(t)at , 

r(t - Sl) ... r(t - sm) 

with .6.C(t) = 0, satisfies the equation 

(t - rl) ... (t - rn) 
u(t + 1) = a u(t). 

(t - Sl) ... (t - sm) 

3.20 Solve u(t + 1) = 3(t2~31)2U(t) in terms ofthe gamma function. Simplify your 
answer. 

3.21 Here is an example of a "full history" difference equation: 

n-l 

Yn = n+ LYk 
k=l 

(n = 2,3,···). 

Solve for Yn, assuming Yl = 1. (Hint: compute Yn+l - Yn.) 

3.22 Find a solution of 
y(t + 1) - ty(t) = -t 

that has the form of a factorial series. Show that the series converges for all t :f:. 
0, -1, -2,···. 

Section 3.2 

3.23 What is the order of this equation 

.6.3y(t) + .6.2y(t) - .6.y(t) - y(t) = 0 

3.24 Give proofs of Theorem 3.3 and Corollary 3.1. 
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3.25 Show that Ul (t) = 21 and U2(t) = 31 are linearly independent solutions of 

U(t + 2) - 5u(t + 1) + 6u(t) = O. 

3.26 Use the result of Exercise 3.25 to find the unique solution of the following 
initial value problem, 

U(t + 2) - 5u(t + 1) + 6u(t) = 0, 

u(3) = 0, u(4) = 12, 

where t = 3,4,5, .... 

3.27 Verify that the Casoratian satisfies Eq. (3.5). 

3.28 
(a) Show that Ul (t) = t 2 + 2, U2(t) = t2 - 3t and U3(t) = 2t - 1 are solutions of 

~3u(t) = O. 
(b) Compute the Casoratian of the functions in (a) and determine whether they are 

linearly independent. 

3.29 Are Ul(t) = 21 cos 231 and U2(t) = 21 sin 231 linearly independent solutions 
of u(t + 2) +2u(t + 1) +4u(t) = O? 

Section 3.3 

3.30 In the case that the characteristic roots AI, . . . ,An are distinct, show that the 
solutions A~, ... ,A~ of Eq. (3.6) are linearly independent. (Hint: use the value of 
the Vandermonde determinant: 

1 1 1 
Cl C2 Cn 

det c2 
1 c2 

2 c2 
n = D(Cj -Cj).) 

n-l C1 
n-l C2 

3.31 Solve the following equations: 
(a) (E - 6)5 U (t) = O. 

(b) u(t + 2) + 6u(t + 1) + 3u(t) = O. 

n-l Cn 

(c) u(t + 3) - 4u(t + 2) + 5u(t + 1) - 2u(t) = O. 

(d) u(t + 4) - 8u(t + 2) + 16u(t) = O. 

3.32 Find all real solutions: 
(a) u(t + 2) + u(t) = O. 
(b) u(t + 2) - 8u(t + 1) + 32u(t) = O. 

(c) u(t + 4) + 2u(t + 2) + u(t) = O. 

(d) u(t + 6) + 2u(t + 3) + u(t) = O. 

j>j 
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3.33 Compute the sequence of coefficients {an}~o so that 

2 - 3t 00 

-1---3-t-+-2t--=-2 = L antn 

n=O 

on some open interval about t = O. Find the radius of convergence of the infinite 
series. 

3.34 Find a homogeneous equation with constant coefficients for which one solution 
is 
(a) (t + ,J2)2. 

(b) t 5 . 

(c) t(-W. 

(d) 
sin '2f 1 
-2'-

3.35 Find the total number of downward pointing triangles of all sizes in Exam
ple 2.4. 

3.36 Solve by the annihilator method 

(a) 8y(t + 2) - 6y(t + 1) + y(t) = 21. 

(b) y(t + 2) - 2y(t + 1) + y(t) = 3t + 5. 

(c) y(t + 2) + y(t + 1) - 12y(t) = t31• 

3.37 Solve by the annihilator method 

y(t + 2) + 4y(t) = cost. 

3.38 Solve the initial value problem 

3.39 Use the annihilator method to solve 

2 
Yl = 9' 

(E2 - E + 2)y(t) = 31 + t31 • 

3.40 Use the annihilator method to solve: 

(a) y(t + 2) -7y(t + 1) + 10y(t) = 41 • 

(b) y(t + 2) - 6y(t + 1) + 8y(t) = 41 • 

(c) y(t + 2) - y(t + 1) - 2y(t) = 4 + 21. 

(d) y(t + 2) - 4y(t + 1) + 4y(t) = 21. 

3.41 Solve the homogeneous system 

u(t + 1) - 3u(t) + v(t) = 0, 

1 
Y2 =-. 

9 
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-u(t) + v(t + 1) - v(t) = O. 

3.42 Find all u(t) and v(t) that satisfy 

u(t + 2) - 3u(t) + 2v(t) = 0, 

u(t) + v(t + 2) - 2v(t) = O. 

3.43 Use the annihilator method to solve 

u(t + 1) - 4u(t) - v(t) = 31 , 

u(t + 1) - 2u(t) + v(t + 1) - 2v(t) = 2. 

113 

3.44 Use the method of variation of parameters to solve the following equations: 

(a) y(t + 2) - 7y(t + 1) + lOy(t) = 41• 

(b) y(t + 2) - 5y(t + 1) + 6y(t) = 3. 

(c) y(n + 2) - y(n + 1) - 2y(n) = n2n. 

(d) y(n + 2) -7y(n + 1) + 12y(n) = 5n. 

3.45 Use Theorem 3.8 to solve the first order equation 

3.46 Find all solutions of 

y(t + 2) - 7y(t + 1) + 6y(t) = 2t - 1. 

3.47 Use variation of parameters to solve 

y(t + 3) - 2y(t + 2) - y(t + 1) + 2y(t) = 8 . 31 • 

3.48 

(a) Show that 
1-1 

ai (t) = _ L r(k) u2(k + 1) 

k=a P2(k) w(k + 1) 

and 
1-1 

a2(t) = L r(k) UI (k + 1) 
k=a P2(k) w(k + 1) 

are solutions of Eqs. (3.10) and (3.11). 
(b) Use part (a) to prove Corollary 3.2. 
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3.49 For n = 2, define the Cauchy function K(t, k) for Eq. (3.4) to be the function 
defined for t, k = a, a + 1, ... , such that for each fixed k, K (t, k) is the solution of 
Eq. (3.4'), satisfying K(k + 1, k) = 0, K(k + 2, k) = (p2(k»-I. 

(a) Show that 

-1 [Ul(t) U2(t) ] 
K(t,k) = P2(k)w(k+ 1) det ul(k+ 1) u2(k+ 1) , 

where U 1 (t), U2(t) are linearly independent solutions of Eq. (3.4') with Casora
tian wet). 

(b) Use Corollary 3.2 to show that the solution of the initial value problem in 
Eq. (3.4), yea) = yea + 1) = 0, is given by 

t-l . 

yet) = L K(t, k)r(k). 

k=a 

(A related formulation is given in Chapter 6.) 

3.50 Use Corollary 3.2 to solve 

yet + 2) - 5y(t + 1) + 6y(t) = 2t , 

Section 3.4 

y(1) = y(2) = 0. 

3.51 Find a formula for the sum of the first n Fibonacci numbers. 

3.52 Show that the generating function for the Fibonacci sequence is 1-:-x2 • 

3.53 If Fn is the nth Fibonacci number, show that 

(n :::: 1). 

3.54 Show that 

(a) Fn+k = FkFn+l + Fk-l Fn. 
(b) F mn is an integral mUltiple of Fn. 

3.55 A strip is one unit wide by n units long. We want to paint this strip with one 
by one squares that are red or blue. In how many ways can we paint the strip if we 
do not allow consecutive red squares? 

3.56 In how many ways can a 1 by n hallway be tiled if we use one by one blue tiles 
and one by two red tiles? 

3.57 
(a) Solve the difference equation in Example 3.15 for the case w:: > 1. 

(b) Show that most of the solutions in part (a) are unbounded as n --+ 00. 
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3.58 Solve the problem 

if x(O) = 2, y(O) = 5. 

3.59 

.6.x(t) = -.5x(t) - .3y(t) 

.6.y(t) = -.2x(t) - .6y(t) 

(a) Use the method of Section 3.3 to solve 

Un+2 - 2xun+! + Un = 0, Uo = 1, 

(b) Show that the Un obtained in part (a) is the same as Tn(x). 

3.60 Show that Tn (x) is a polynomial of degree n. 

UI = x. 

3.61 Show that the generating function for {Tn (x)} is I _~:~t2 . 
3.62 The Chebyshev polynomials of the second kind are defined by 

sin (n + 1) cos- I x) 
Un(x) = .Jl _ x 2 (n ::: 0). 

Show that Un (x) satisfies the same difference equation as Tn (x). 
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3.63 Show that the Chebyshev polynomials of the second kind are orthogonal on 
[-1, 1] with respect to the weight function ..Jf=X2. 
3.64 Suppose that in Example 3.18 we want to compute only the quantity of water 
in the topsoil at 9 P.M. each day. Find the solution by solving a first order equation. 

3.65 Solve Example 3.18 with the assumption that only a quarter of the total amount 
of water in the topsoil is lost between 9 A.M. and 9 P.M. 

3.66 Let Dn be the value of an n by n tridiagonal determinant with 4's down the 
diagonal, 3's down the superdiagonal, and l's down the subdiagonal. By solving an 
appropriate initial value problem, find a formula for Dn. 

3.67 Compute the determinant in Example 3.19 for the case a2 - 4bc > O. 

3.68 Compute the determinant in Example 3.19 for the case a2 = 4bc. 

3.69 Solve the equation Yn+! = Lk=O(e + Yn-k)Ak in Example 3.20 if Ao = Al = 
C > 0 and Ak = 0 for k ::: 2. 

3.70 Use the method of generating functions to solve this equation 

ifuO = 1. 

n 
"'" Un-k 

un+! = ~7 
k=O 
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3.71 A binary tree is a tree with a node at the top. such that each node is attached 
by line segments to at most two nodes below it. 

(a) Show that the number Tn of binary trees having n nodes satisfies 

n-l 

Tn = L 1iTn-i-l 
i=O 

where we use the convention To = 1. 

(b) Show that the generating function for Tn is 

(n ::: 1). 

1 -.Jl - 4x 
G(x) = . 

2x 

(c) Use the binomial series to show: 

and obtain a formula for Tn. 
(d) Show that the formula for Tn obtained in part (c) can be simplified to Tn = 

1 (2n) 
n+l n • 

3.72 Let f(x) be the exponential generating function for an and let g(x) be the 
exponential generating function for bn. Show that f(x)g(x) is the exponential gen
erating function for 

t (:)akbn- k. 
k=O 

3.73 Use an exponential generating function to solve this equation 

(n = 1.2.···) 

ifao = 1. 

3.74 Let x(n) be the number of ways a 4 by n hallway can be tiled using 2 by 1 
tiles. 

(a) Find a system of three equations in three unknowns (one of which is x(n)) that 
models the problem. 

(b) Use your equations iteratively to find the number of ways to tile a four by ten 
hallway. 
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3.75 Three products A, B, and C compete for the same (fixed) market. Let x(t), 
y(t), and z(t) be the respective percentages of the market for these products after t 
months. If the changes in the percentages are given by 

1 2 
~x(t) = -x(t) + 3 y (t) + 3z(t), 

111 
~y(t) = 3 x (t) - 3 y (t) + 3 z(t), 

2 
~z(t) = 3x(t) - z(t), 

and if initially product A has 50% of the market, product B has 30% of the market, 
and product C has 20% of the market, find the percentages for each product after t 
months. 

3.76 Consider a game with two players A and B, where player A has probability p 
of winning a chip from B and player B has probability 1 - P of winning a chip from 
A on each tum. The game ends when one player has all the chips. 
(a) Let u(t) be the probability that A will win the game given that A has t chips. 

Show that u(t) satisfies 

u(t) = pu(t + 1) + (1 - p)u(t - 1). 

(b) Suppose that at the beginning of the game A has a chips and B has b chips. Find 
the probability that A will win the game. 

3.77 Let 
-!on cos nO - cos n¢ d ll 

In - 17, 
o cosO - cos¢ 

(n=O,I,···). 

(a) Show that In satisfies the equation 

In+2 - 2(cos¢)In+l + In = 0, (n = 0,1,···). 

(b) Compute In for n = 0,1,2, .... 

Section 3.5 

3.78 Find the general solution of 

(E - (t + 1» (E + l)u(t) = O. 

3.79 Solve by the method of factoring 

(a) Un+2 - (2n + I)Un+l + n2un = o. 
(b) Un+2 - (en + I)Un+l + enun = o. 
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3.80 Solve each equation by factoring 
(a) y(t + 2) + (2t - l)y(t + 1) - 6ty(t) = O. 
(b) y(t + 2) - (2t + 4)y(t + 1) + 4ty(t) = O. 

(c) y(n + 2) + y(n + 1) - n2y(n) = O. 
(d) y(n + 2) - (n + 4)y(n + 1) + (2n + 2)y(n) = O. 

3.81 Factor and solve 

3n - 2 2n n 
Un+2 - --Un+l + --Un = n2 . 

n-l n-l 

3.82 Use the method of reduction of order to solve the difference equation U n+2 -
SUn+! + 6un = 0, given that Un = 3n is a solution. 

3.83 In the nth order equation Lk=O Pk(t)U(t + k) = 0, suppose a solution Ul (t) is 
known. Make the substitution U = Ul v and use Theorem 2.8 with ak = Pk(t)Ul (t + 
k), bk = v(t + k) to obtain an (n - l)st order equation with unknown Llv. 

3.84 Find general solutions of 
(a) 2t(t + I)Ll2U(t) + 8tilu(t) + 4u(t) = O. 
(b) t(t + I)Ll2U(t) - 3t ilu(t) + 4u(t) = O. 

3.85 Solve the following Euler-Cauchy difference equations: 
(a) t(t + I)Ll2y(t) -7tily(t) + 16y(t) = O. 
(b) t(t + I)Ll2y(t) - 3t.6.y(t) + 4y(t) = O. 

(c) t(t + I)Ll2y(t) + 3tyLly(t) + y(t) = O. 

3.86 Solve the equation 

t(t + l)il2u - 2tLlu + 2u = t. 

3.87 Verify Eqs. (3.15) and (3.16). 

3.88 Use the method of generating functions to solve 

3(n + 2)Un+2 - (3n + 4)Un+1 + Un = 0 

ifuo = 3U l. 

3.89 One solution of (n + I)Un+2 + (2n - I)Un+1 - 3nun = 0 is easy to find. What 
is the general solution? 

3.90 Check that Un = 2n solves 

nUn+2 - (1 + 2n)un+1 + 2un = 0, 

and find a second independent solution. 

3.91 Use generating functions to solve (n+2)(n+l)un+2-3(n+l)un+1 +2un = O. 
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3.92 Given the initial value U-l = 0, find solutions of the equation 

2(k + I)Uk+l - (1 + 2k)Uk + Uk-l = 0 (k :::: 0). 

3.93 In Example 3.14 we introduced the Fibonacci numbers Fn. 
(a) Compute the exponential generating function for Fn. (Note: it satisfies a second 

order differential equation.) 
(b) Use your answer in part (a) to rederive the formula for Fn obtained in Exam

ple 3.14. 

3.94 Find a factorial series solution of the form L~O akt-k for 

U(t + 2) - 3(t + 2)(t + l)u(t + 1) + 3(t + 2)(t + l)u(t) = O. 

3.95 ,,00 -k+! 1 
(a) Compute a formal series solution u(t) = ~k=O akt--2 for t ilu(t) - zu(t) = 

O. (Hint: Use the identity tt!:.. = t r+1 + rt!:...) 
(b) Show that the trial solution u(t) = L~o akt-k leads to the zero solution. 

Section 3.6 

3.96 Solve the Riccati equations 
(a) y(t + l)y(t) + 2y(t + 1) + 7y(t) + 20 = O. 
(b) y(t + l)y(t) - 2y(t) + 2 = O. 

3.97 For the following Riccati equations, write your answers in terms of only one 
arbitrary constant: 

(a) y(t + l)y(t) + 7y(t + 1) + y(t) + 15 = O. 
(b) y(t + l)y(t) + 3y(t + 1) - 3y(t) = O. 

(c) y(t + l)y(t) + y(t + 1) - 3y(t) + 1 = O. 

3.98 Use the change of variable v(t) = ytt) to solve the Riccati equation 

ty(t + l)y(t) + y(t + 1) - y(t) = O. 

3.99 Use a logarithm to solve 
1 

(a) Yt = 2y:. 

(b) Yn+2 = yn+1Y~. 

3.100 Solve (t + l)y2(t + 1) - ty2(t) = 1. 

3.101 Use the change of variable Yn = sinzn to solve Yn+l = 2YnJI - y;. 

3.102 Solve the equation 

y(t + 1) = y(t) (y2(t) + 3y(t) + 3) 
by trying ~(y) = cy + d in Eq. (3.22). 
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3.103 Find the most general equation y(t + 1) = ! (y(t» that can be solved using 
~(y) = cy + d in Eq. (3.22). 

3.104 Let a be a positive constant. Then Newton's Method for computing N = a 
is 

1 ( a2
) Yn+l = 2 Yn + Yn . 

2 
(a) Find D so that ~(y) = a - ~ solves Eq. (3.22) for this difference equation. 
(b) Use the change of variable Eq. (3.23) to solve the difference equation. 
(c) Show the solution Yn -+ a as n -+ 00. 

3.105 Solve the difference equation 

2 
(Hint: try ~(y) = -a - ~ .) 

3.106 Solve y(t + 1) = (1 - 2y(t»2. (Hint: see Example 3.31.) 

3.107 Consider the equation y(t + 1) = ! (t, y(t». Suppose that ~(t, y) and D(t) 
satisfy 

tial! 
D(t)~ (t + 1, !(t, y» = ~(t, y)-.-(t, y). 

tzaly 

Show that a change of variable transforms the difference equation into a first order 
linear equation. 

3.108 Solve the equation y(t + 1) = (y(t) + t - 1)t - t by choosing ~ = y + t - 1 
in the last exercise. 

3.109 Use ~ = ,Jy(t - y) to solve y(t) = 4(~it) y(t)(t - y(t». 

Section 3.7 

3.110 Find the z-transform of each ofthe following: 

(a) Yk = 2 + 3k. 
(b) Uk = 3k cos2k. 

(c) Vk = sin(2k - 3). 

(d) Yk = k 3. 

(e) Uk = 3Yk+3. 
(f) k k:rr: 

Vk = COST' 

(g) Yk = -b. 
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( 
(-l)~ k even 

(h) Uk = (k+l)!, 
0, k odd. 

3.111 Find Z(coshat) using Theorem 3.12. 

3.112 Find Z(cos at) using Theorem 3.12. 

3.113 Find the sequences whose z-transforms are 

(a) Y(z) = 2Z2-3z . 
z2-3z-4 

(b) U(z) = 3z2-4z . 
z2-3z+2 

(c) V(z) = 2Z2+Z. 
(z-l)2 

(d) Y(z) = 2zL 2Jzz+2. 

_ 2z2-z 
(e) U(Z)-2zL 2z+2. 

(f) V (z) = Z2+3Z. 
(z-3)2 

(g) W(z) = *. z 
1 

(h) Y(z) = e"i'i. 

3.114 Use Theorem 3.13 to show that 

Z(kn) = (_I)n (z~)n _z_ 
dz z-1 

Use this formula to find Z(k3 ). 

3.115 Use Theorem 3.15 to find Z(k2) and Z(k3 ). 
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3.116 Derive the formula for Z(8k(n» by expressing 8k(n) in terms of step func
tions. 

3.117 Find the z-transform of each of the following sequences: 

(a) YI = 1, Y3 = 4, Y5 = 2, Yk = ° otherwise. 
(b) Y2k+1 = 0, Y2k = 1, k = 0, 1,2, ... . 
(c) Y2k = 0, Y2k+l = 1, k = 0,1,2, ... . 

3.118 

(a) Use Theorem 3.15 to show that for n a positive integer 

IZI> 1. 

(b) Use the Binomial Theorem to show that 

Izl> 1. 
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3.119 Solve the following first order initial value problems using z-transforms. 

(a) Yk+l - 3Yk = 4k, Yo = 0. 

(b) Yk+l + 4Yk = 10, YO = 3. 
(c) Yk+l - SYk = Sk+l, YO = 0. 
(d) Yk+l-2Yk=3.2k, Yo=3. 

(e) Yk+l + 3Yk = 48k(2), YO = 2. 

3.120 Solve the following second order initial value problems using z-transforms: 

(a) Yk+2 - SYk+l + 6Yk = 0, Yo = 1, Yl = 0. 

(b) Yk+2 - Yk+l - 6Yk = 0, Yo = S, Yl = -S. 
(c) Yk+2 - 8Yk+l + 16Yk = 0, YO = 0, Yl = 4. 
(d) Yk+2 - Yk = 16 . 3k , Yo = 2, Yl = 6. 

(e) Yk+2 - 3Yk+l + 2Yk = uk(4), YO = 0, Yl = 0. 

3.121 Solve the following systems using z-transforms: 

(a) Uk+l - 2Vk = 2· 4k 

-4Uk + Vk+l = 4k+1 

Uo = 2, Vo = 3. 

(b) Uk+l - Vk = ° 
Uk + Vk+l = ° 

uo = 0, Vo = 1. 

(c) Uk+l - Vk = 2k 

-uk + Vk+l = 2k + 2 

Uo = 0, VO = 1. 

(d) Uk+l - Vk = -1 

-Uk + Vk+l = 3 

Uo = 0, VO = 2. 

3.122 Use Theorem 3.14 to prove Corollary 3.3. 

3.123 Prove that the convolution product is commutative (Uk * Vk = Vk * Uk) and 
associative «Uk * Vk) * Wk = uk * (Vk * Wk». 

3.124 Calculate the following convolutions: 

(a) 1 * 1. 
(b) l*k. 

(c) k * k. 

3.125 Solve the following summation equations for k ~ 0: 
(a) Yk = 3 . Sk - 4 L~~o sk-m-l ym . 

(b) Yk = k + 4 L~~o(k - m - l)Ym. 
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(c) Yk = 3 + 12 L~-:!o (2k- m- 1 - 1) Ym. 

3.126 Solve the following equations for k ~ 0: 
(a) Yk = 2k + L~-:!o2k-m-lYm. 
(b) Yk = 3 + 9 L~-:!o(k - m - I)Ym. 

(c) Yk = 2k + 12 L~-:!o (3k- m- 1 - 2k- m- 1) Ym· 

3.127 Solve 
24 k 

Yk = 2+>.. L 50Ym 
m=O 

for all values of >.. for which the equation has a solution. 

3.128 Solve the following Fredholm summation equations: 

(a) Yk = 10 + L~o=o kmYm. 

(b) Yk = k + L!;=l mYm· 

(c) Yk = k + L!;=l kYm. 

(d) Yk = >.. L!;=l kmYm. 

3.129 Solve the following Fredholm summation equations: 

(a) Yk = 1 + L!;=l (1 - km)Ym. 

(b) Yk = k + L!?=l (m2 + km)Ym. 

3.130 Prove the last statement in Theorem 3.20. 
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3.131 Find the currents in the ladder network obtained from Fig. 3.7 by replacing 
the resistor at the top of each loop with a resistor having resistance Ro =1= R. 



Chapter 4 
Stability Theory 

4.1 Initial Value Problems for Linear Systems 

Most of our discussion up to this point has been restricted to a single difference 
equation with one unknown function. However, mathematical models frequently 
involve several unknown quantities with (usually) an equal number of equations. We 
consider systems of the form 

Ul (t + 1) = all (t)Ul (t) + ... + aln (t)Un (t) + fr (t) 

U2(t + 1) = a21(t)Ul(t) + ... + a2n(t)un(t) + h(t) 

for t = a, a + 1, a + 2, .... This system can be written as an equivalent vector 
equation, 

U(t + 1) = A(t)u(t) + f(t), 

where 

[
Ul(t)] 

u(t) = : ' 

un(t) 

The study of Eq. (4.1) includes the nth order scalar equation 

Pn(t)y(t + n) + ... + po(t)y(t) = r(t) 

as a special case. To see this, let y(t) solve Eq. (4.2) and define 

Ui(t) = y(t + i-I) 

(4.1) 

[
fr (t)] 

f(t) = : . 

fn(t) 

(4.2) 

for 1 ::: i ::: n, t = a, a + 1, .... Then the vector function u(t) with components 



126 CHAPTER 4. STABILITY THEORY 

Ui(t) satisfies Eq. (4.1) if 

010 0 
001 0 

A(t) = 
000 
poet) PI (t) P2(t) Pn-I (t) 

- Pn(t) - Pn(t) - Pn(t) - Pn(t) 

f(t) = [ ~ ]. 
ret) 

Pn (t) 

(4.3) 

The matrix A(t) in Eq. (4.3) is called the "companion matrix" of Eq. (4.2). Con
versely, if u(t) solves Eq. (4.1) with A(t) and f(t) given in Eq. (4.3), then yet) = 
U 1 (t) is a solution of Eq. (4.2). 

Given an initial vector u(to) = Uo for some to in {a, a + 1, ... }, Eq. (4.1) can be 
solved iteratively for u(to + 1), u(to + 2), ... , so we have: 

I Theorem 4.1. For each to in {a, a + 1, ... } and each n-vector uo, Eq. (4.1) has 
a unique solution u(t) defined for t = to, to + 1, ... , so that u(to) = uo. 

Now assume that A is independent of t (i.e., all coefficients in the system are 
constants) and f(t) = O. Then the solution u(t) of 

u(t + 1) = Au(t), (4.4) 

satisfying the initial condition u(O) = uo, is u(t) = Atuo, (t = 0,1,2, ... ). Hence 
the solutions ofEq. (4.4) can be found by calculating powers of A. We have chosen 
to take the initial condition at t = 0 for simplicity since an arbitrary initial condition 
can be shifted to zero by translation along the t axis. The following example, due to 
Cullen [57], is a system ofthis type. 

Example 4.1. (population of American bison) Let 

be the population vector of American bison, where Ul (t), U2(t), and U3(t) denote 
the number of calves, yearlings, and adults, respectively, after t years. Assume 
that each year the number of newborns is 42% of the number of adults from the 
previous year. Assume further that each year 60% of the calves live to become 
yearlings, 75% of the yearlings become adults, and 95% of the adults survive to 
live the following year. The population vector u(t) then satisfies the linear system 

o .42] o 0 u(t) . 
. 75 .95 
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There are a number of concepts from linear algebra that will be needed in our 
calculations. The equation 

Au = AU, (4.5) 

where A is a parameter, always has the trivial solution U = 0. If Eq. (4.5) has a 
nontrivial solution U for some A, then A is called an eigenvalue of A and U is called 
a corresponding eigenvector of A. The eigenvalues of A satisfy the characteristic 
equation 

det(U - A) = 0, 

where I is the n by n identity matrix. An eigenvalue is said to be simple if its 
mUltiplicity as a root of the characteristic equation is one. The spectrum of A, de
noted u(A), is the set of eigenvalues of A, and the spectral radius of A is 

r(A) = max{lAI : A is in u(A)}. 

Example 4.2. Find the eigenvalues, eigenvectors, and spectral radius for 

The characteristic equation of A is 

or 
A2 + 3A + 2 = 0, 

so u(A) = {-2, -I}. To find the eigenvectors corresponding to A = -2, we solve 

(-21-A)u=0 

or 

The eigenvectors are all nonzero multiples of the vector with u 1 = 1, U2 = -2. 
Similarly, the eigenvectors corresponding to A = -1 are all nonzero multiples of 
the vector with u 1 = 1, U2 = -1. Finally, the spectral radius of A is 

r(A) = max{l- 21,1 - 11} = 2. 

Now let A be an eigenvalue of A and let u be a corresponding eigenvector. For 
t = 0, 1, 2, ... , we have 
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SO u(t) = )...tu satisfies Eq. (4.4) with initial vector u. More generally, if Uo can be 
written as a linear combination of the eigenvectors of A-say, 

where each ui is an eigenvector corresponding to Ai, then the solution of Eq. (4.4) is 

(4.6) 

As a result, if A has n linearly independent eigenvectors (this is necessarily the case 
if A has n distinct eigenvalues or if A is symmetric), then every solution of the system 
can be calculated in this way. 

Example 4.2. (continued) Solve Eq. (4.4) if A = [~2 ~3l 

Let Uo = [:~J be an initial vector and recall that [ ~2 ] is an eigenvector for 

A = -2 and [ ~ 1 ] is an eigenvector for A = -1. Now set 

The solution of this linear system is 

By Eq. (4.6), the solution ofEq. (4.4) with initial vector uo is 

u(t) = -(UI + u2)(-2)t [~2 ] + (2U I + u2)(-1)t [~lJ· 

Before solving Eq. (4.4) in general, we recall an important and beautiful result 
from linear algebra (see Grossman [99]). 

I The <?ayley-Hamilton Theorem. Every square matrix satisfies its characteristic 
equatlOn. 
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Example 4.3. Verify the Cayley-Hamilton Theorem for 

A=D ;]. 

The characteristic equation for A is 

[A - 1 -2] 2 
det -3 A-4 =A -5A-2=0. 

Now 

A2 - 5A - 2/ 

[7 10] [5 
= 15 22 - 15 

10] _ [2 0] 
20 0 2 

= [~ ~l 
and A does satisfy its characteristic equation. 

Remark. The Cayley-Hamilton Theorem implies that An can be written as a linear 
combination of I, A, A2, ... , An-I, if A is an n by n matrix. It follows that every 
power of A also can be written as a linear combination of I, A, A2, ... , A n-l . 

Let AI, . .. ,An be the (not necessarily distinct) eigenvalues of A, with each eigen
value repeated as many times as its multiplicity. Define 

Mo=I, 

Mi = (A - AiI)Mi-l, (1 :s i :s n). (4.7) 

It follows from the Cayley-Hamilton Theorem that Mn = O. 
Definition (4.7) implies that each Ai is a linear combination of Mo, ... , Mi for 

i = 0, ... ,n - 1, and by the remark above the same is true for every power of A. 
Then we can write 

n-l 
At = L ci+l (t)Mi 

i=O 

for t ~ 0, where the Ci+l (t) are to be determined. Since At+l = A . At, 

n-l n-l 

LCi+l(t + I)Mi = A LCi+l(t)Mi 
i=O i=O 

n-l 
= LCi+l(t) [Mi+l + Ai+lMi] 

i=O 

(from Eq. (4.7» 
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n-l n-l 

= ~:::>i(t)Mi + L::>i+l(t))'HI M i, 
i=1 i=O 

where we have replaced i by i-I in the first sum and used the fact that Mn = O. 
The preceding equation is satisfied if the C i (t), (i = 1, . .. ,n) are chosen to satisfy 
the system: 

Al 
I 
o 

o 

o 
o 

A3 

o 

o 
o 
o [Ci~t)] . 

cn(t) 

Since A O = 1 = CI (0)1 + ... + cn(O)Mn-l, we must have 

[
CI(O)] [1] C2(0) 0 

· - .. · . · . 
cn(O) 0 

(4.8) 

(4.9) 

By Theorem 4.1, the initial value problem (4.8), (4.9) has a unique solution. We 
have proved the following theorem: 

Theorem 4.2. (the Putzer algorithm) The solution ofEq. (4.4) with initial vector 
Uo is 

n-l 

u(t) = L::>i+I(t)MiUO = Atuo, 
i=O 

where the Mi are given by Eq. (4.7) and the Ci(t), (i = 1,··, ,n) are uniquely 
determined by Eqs. (4.8) and (4.9). 

Example 4.4. Use Theorem 4.2 to solve 

u(t + 1) = [~1 ~] u(t), u(O) = [~l 
The characteristic equation is 

[ A - 1 -1 ] 
det 1 A _ 3 = 0, or 

A 2 - 4A' + 4 = O. 
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The matrix has an eigenvalue A = 2 of multiplicity two. By Eq. (4.7), 

Mo=I, 

M1=A-2J=[=! 

From Eqs. (4.8) and (4.9), 

C1 (t + 1) = 2q (t), 

so C1 (t) = 2t. Using Eqs. (4.8) and (4.9) again, 

C2(t + 1) = 2C2(t) + 2t , 

which has the solution C2(t) = t2t-1. 
By Theorem 4.2, 

u(t) = (q (t)I + c2(t)M1) [~] 

= (2t [~ ~] +t2t- 1 [=! !D [~] 
= 2t [ 1 -=-~ ~ 1 i ~] [~ ] . 
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This problem cannot be solved using Eq. (4.6) since the matrix [~1 !] has 

only one independent eigenvector corresponding to A = 2. 

Example 4.5. Let 

A = [~1 !J. 
The matrix A has the complex eigenvalues A = 1 ± i. Then 

Mo= I, 

M1 = [ -i 
-1 

The initial value problem 

q (t + 1) = (1 + i)c1 (t), C1 (0) = 1 

has the solution q (t) = (1 + i)t, and 
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has the solution C2(t) = ! [(1 - i)t - (1 + in . By using the polar form of com
plex numbers, we find 

t 7r 7r 
ct (t) = 2'1 (cos '4t + i sin '4t), 

t • 7r 
C2(t) = 2'1 sm '4t. 

From Theorem 4.2, 

[ 
1f .1f] _ 2~ cos 'it sm'it 

- • 1f 1f. 
- sm 'it cos 'it 

Occasionally, it is possible to compute the powers of a matrix very quickly by 
writing the matrix as the sum of two commuting matrices, one of which is easy to 
raise to its powers (e.g., a diagonal matrix) and the other of which is nilpotent, that 
is, all of its powers beyond some point are the zero matrix. Our next example is of 
this type. 

Example 4.6. Compute all powers of 

Write 

Now, since [~ ~] is nilpotent and commutes with /, the Binomial Theorem 

yields 

At = 2t / + t2t- 1 [~ ~] 

~l 
Finally, we return to the nonhomogeneous system 

u(t + 1) = Au(t) + f(t). (4.10) 

The next theorem is a variation of parameters formula for solving Eq. (4.10). 
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Theorem 4.3. The solution of Eq. (4.10) satisfying the initial condition u(O) = 
Uo is 

t-I 
u(t) = Atuo + L A t- s- I f(s). (4.11) 

s=O 

Proof. By Theorem 4.1, it is enough to show that Eq. (4.11) satisfies the initial 
value problem. First we have 

-I 

LA-S-If(s) =0 
s=o 

by the usual convention, so u(O) = uo. 

For t 2: 1, 

t 

u(t + 1) = At+luO + L At- s f(s) 

s=o 
t-I 

= At+luo + L At- s f(s) + f(t) 

s=o 

[ 
t-I ] 

= A At Uo + ~ At- s- I f(s) + f(t) 

= Au(t) + f(t). 

4.2 Stability of Linear Systems 

• 

The solution of an initial value problem for a system of equations with n unknowns 
is represented geometrically by a sequence of points {(UI (t), ... ,un(t))}~o in nn. 
In many of the applications of this subject, it is useful to know the general location 
of those points for large values of t. Of course, there are numerous possibilities: the 
sequence could converge to a point or at least remain near a point; the sequence could 
oscillate among values near several points; the sequence might become unbounded; 
or the sequence might remain in a bounded set but jump around in a seemingly 
unpredictable fashion. 

The study of these matters is called stability theory. We will present some of the 
elements of this theory for homogeneous linear systems in the present section and 
generalize to nonlinear systems in Section 4.5. 

The first result is fundamental. 
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Theorem 4.4. Let A be an n by n matrix with r(A) < 1. Then every solution 
u(t) of Eq. (4.4) satisfies limHoo u(t) = O. Furthermore, if r(A) < 8 < 1, then 
there is a constant C > 0 so that 

(4.12) 

for t 2: 0 and every solution of u ofEq. (4.4). 

Proof. Fix 8 so that r(A) < 8 < 1. From Theorem 4.2, the solution of Eq. (4.4), 
u(O) = Uo, is 

n-I 

u(t) = L Ci+I (t)MiUO· 
i=O 

By Eq. (4.8), 
Ict(t + 1)1 ~ r(A)lcI(t)I· 

Iterating this inequality and using ct (0) = 1, we have 

(t 2: 0). 

Again, by Eq. (4.8), 

!c2(t + 1)1 ~ r(A)lc2(t)1 + ICI (t)1 

~ r(A)l c2(t)1 + (r(A))t. 

It follows from iteration and C2 (0) = 0 that 

IC2(t)1 ~ t . (r(A))t-I, 

L'Hospital's rule implies that 

(
r(A))t-I 

t -- ~O 
8 ' 

thus there is a constant BI > 0 so that 

Similarly, we can show that for t 2: 0 

(t 2: 0) 

(t ~ (0); 

(t 2: 0). 

1c3(t)1 ~ t(t; 1) r(A)t-2, 

from which it follows that there is a B2 so that 

IC3(t)1 ~ B28t • 
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Continuing in this way (by induction), we obtain a constant B* > 0 so that 

(t 2: 0) 

for i = 1,2, ... , n. 
Now, for any matrix M, there is a constant D > 0 so that 

IMvl::::: Dlvl 

for all v in Rn. Finally, the solution u(t) of Eq. (4.4), u(O) = Uo, satisfies 

n-i 

lu(t)1 ::::: L lci+i(t)IIMiU(O)1 

n-i 

::::: B*8t luol L Di 
i=O 

::::: C8 t luol 
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for C = B* L7~J Di. Consequently, Eq. (4.12) holds. Since 0 < 8 < 1, it follows 
that limHOO u(t) = O. • 

When all solutions of the system go to the origin as t goes to infinity, the origin is 
said to be "asymptotically stable." A more precise definition of asymptotic stability 
is given in Section 4.5. 

The next theorem shows that r(A) < 1 is a necessary condition for this type of 
stability. 

I Theorem 4.5. If r(A) 2: 1, some solution u(t) of Eq. (4.4) does not go to the 
origin as t goes to infinity. 

Proof. Since r(A) 2: 1, there is an eigenvalue A of A so that IAI 2: 1. Let v 
be a corresponding eigenvector. Then u(t) = Atv is a solution of Eq. (4.4) and 
lu(t)1 = IAltlvl fr 0 as t ~ 00. • 

Example 4.7. u(t + 1) = [i5 =iJ u(t). 

The characteristic equation for A = [i5 =iJ is A2 + ! = O. Then a(A) = 
{~, -~} and r(A) = !, so all solutions of this system converge to the origin as 

t ~ 00. Fig. 4.1 illustrates how the solution starting at [\OJ spirals in towards 

the origin. 

If the matrix A has spectral radius r(A) ::::: 1, then under certain conditions the 
system exhibits a weaker form of stability. 



136 CHAPTER 4. STABILITY THEORY 

Uz 

.--- • 

Fig. 4.1 A spiral solution portrait 

Theorem 4.6. Assume that 

(a) r(A):::: 1. 

(b) Each eigenvalue A of A with IAI = 1 is simple. 

Then there is a constant C > 0 so that 

lu(t)1 :::: Cluol 

for t 2: 0 and every solution u of Eq. (4.4). 

(4.13) 

Proof. Label the eigenvalues of A so that IAi I = 1 for i = 1,··· , k - 1, and 
IAi I < 1 for i = k, ... , n. From Eqs. (4.8) and (4.9), 

Cl (t) = Ai. 

Next, C2 satisfies 
C2(t + 1) = A2C2(t) + Ai, 

so (as in the annihilator method) 

C2(t) = B12Ai + B22A~ 
for some constants Bl2, B22. Continuing in this way, we have 

Ci(t) = BliAi + ... + BiiA~ 
for i = 1, ... , k - 1. Consequently, there is a constant D > 0 so that 

for i = 1, ... , k - 1 and t 2: O. 
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From Eq. (4.8), 

Ck(t + 1) = AkCk(t) + Ck-I (t), 

ICk(t + 1)1 ~ IAkllck(t)1 + D. 

Choose 8 = max{IAkl,··· , IAnl} < 1. Then 

ICk(t + 1)1 ~ 8ICk(t)1 + D. 

By iteration and the initial condition Ck(O) = 0, 

I-I 

ICk(t)1 ~ D I)j 
j=o 
D 

<--
- 1-8 

for t ::: O. In a similar manner, we find that there is a constant D* so that 

for i = 1, ... ,n and t ::: O. 

From Theorem 4.2, the solution ofEq. (4.4), u(O) = Uo, is given by 

n-I 

u(t) = I:>i+i (t)MiUO 
i=O 

and 

n-i 

lu(t)1 ~ D* L IMiUol 
i=O 

~ Cluol 

for t ::: 0 and some C > O. 
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• 
The preceding theorem is useful in the analysis of multistep methods for the nu

merical approximation of solutions of initial value problems for differential equa
tions (see Borden et. aI, [34]). A partial converse is given in Exercise 4.18. 



138 CHAPTER 4. STABILITY THEORY 

--~----~----~~~+-----~U1 

• • 

Fig. 4.2 Clockwise rotation through 9 = ! 

Example 4.8. Consider the system 

[ cose sine] 
u(t + 1) = . Ll Ll u(t), 

-SIno coSo 

where e is a fixed angle. The matrix A in this example is a rotation matrix. When 
it is multiplied by a vector u, the resulting vector has the same length as u but 
its direction is e radians clockwise from u. Consequently, every solution u of the 
system has all of its values on a circle centered at the origin of radius lu(O)I. (See 
Fig. 4.2 for the case that e = I.) 

The eigenvalues of the rotation matrix are A = cos e ±i sin e. Then the hy
potheses of Theorem 4.6 are satisfied and, in fact, Eq. (4.13) holds with C = 1. 

Next, we want to investigate the behavior of the solutions of a system in which 
some, but not all, of the eigenvalues have absolute value less than one. Some addi
tional concepts and results from linear algebra will be needed. (See, for example, 
Hirsch and Smale [133].) 

Let A be an eigenvalue of A of multiplicity m. Then the generalized eigenvectors 
of A corresponding to A are the nontrivial solutions v of 

Of course, every eigenvector of A is also a generalized eigenvector. The set of all 
generalized eigenvectors corresponding to A, together with the zero vector, is a gen
eralized eigenspace and is a vector space having dimension m. The intersection of 
any two generalized eigenspaces is the zero vector. Finally, A times a generalized 
eigenvector is a vector in the same generalized eigenspace. 
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Example 4.9. What are the generalized eigenvectors for 

[
3 1 0] 

A= 0 3 0 ? 
002 

A has eigenvalues Al = 3 (multiplicity two) and A2 = 2. The generalized eigen
vectors corresponding to Al = 3 are solutions of 

or 

The generalized eigenspace consists of all vectors with V3 = O. This is a two
dimensional space, and 

are basis vectors. 
Corresponding to A2 = 2, there is a one-dimensional (generalized) eigenspace 

spanned by the eigenvector 

Theorem 4.7. (the Stable Subspace Theorem) Let AI, ... ,An be the (not nec
essarily distinct) eigenvalues of A arranged so that AI, ... ,Ak are the eigenvalues 
with IAi I < 1. Let S be the k-dimensional space spanned by the generalized eigen
vectors corresponding to AI, ... ,Ak. If u is a solution ofEq. (4.4) with u(O) in S, 
then u(t) is in S for t ~ 0 and 

lim u(t) = O. 
t-'>oo 

Proof. Let u be a solution of Eq. (4.4) with u (0) in S. Since A takes every gener
alized eigenspace into itself, it also takes S into itself. Then u(t) is in S for t ~ O. 

Choose 8 so that 

max{IAIi,··· , IAkl} < 8 < 1. 

As in the proof of Theorem 4.4, there is a constant B > 0 such that 
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for t ::: 0, 1 ::: i ::: k. By Theorem 4.2 

n-l 

u(t) = L Ci+1 (t)MiU(O). 
i=O 

Recalling the definition of Mi, Eq. (4.7) and the fact that U (0) is a linear combination 
of generalized eigenvectors corresponding to AI, ... ,Ako we have, for i ::: k, 

Then 

k-l 

lu(t)1 ::: L lci+1(t)II MiU (O)1 
i=O 

k-l 

::: B8t L IMiU(O)1 
i=O 

(t ::: 0) 

for some constant C, so limt--+oo u(t) = O. • 
The set S in Theorem 4.7 is called the "stable subspace" for Eq. (4.4). It can be 

shown that every solution of the system that goes to the origin as t tends to infinity 
must have its initial point in S. Thus S can be described as the union of all sequences 
{u(t)}~ that solve the system and satisfy limHoo u(t) = O. 

Example 4.10. What is the stable subspace for the system 

[
.5 

u(t + 1) = ~ 

The characteristic equation is 

[
A -.5 0 

det -1 A -.5 
o -1 

~ ] = (A - .5)2(A - 2) = O. 
A-2 

The stable subspace has dimension two and consists of the solutions of 

(A - .51)2v = 0 

or 
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v.(4.6.9) 

~------~~--~U2 

Fig. 4.3 A stable subspace 

Thus S is the plane 
4Vl + 6V2 + 9V3 = o. 

(See Fig. 4.3.) From Theorem 4.7, every solution that originates in this plane 
remains in the plane for all values of t and converges to the origin as t ~ 00. 

Since [~] i, an eigenvecl'" crumponding (0). ~ 2, the ",lutions originating on 

the V3 axis are given by 

(t ::: 0). 

These remain on the V3 axis and approach infinity in the positive or negative di
rection, depending on whether V3 is positive or negative. 

If some of the eigenvalues A of A with IAI < 1 are complex numbers, then the cor
responding generalized eigenvectors will also be complex, and the stable subspace is 
a complex vector space. However, those generalized eigenvectors occur in conjugate 
pairs, and it is not difficult to verify that the real and imaginary parts of these vectors 
are real vectors that generate a real stable subspace of the same dimension. 

4.3 Phase Plane Analysis for Linear Systems 
In this section, we will describe the possible behavior of the solutions of the two

dimensional system 

u(t + 1) = Au(t), (4.14) 

where A is a two by two nonsingular matrix. The next theorem simplifies the analysis 
by associating with A a matrix J of one of three simple types. The matrix J is called 
the "real Jordan canonical form of A." 
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Theorem 4.8. Let A be a two by two real matrix. Then there is a nonsingular 
real matrix P so that 

A = PIP-I, 

where: 

(a) If A has real eigenvalues AI, A2, not necessarily distinct, with linearly inde
pendent eigenvectors, then 

I - [AI OJ - 0 A2 . 

(b) If A has a single eigenvalue A with a single independent eigenvector, then 

I = [~ ~J. 
(c) If A has complex eigenvalues ex ± if3, then 

I = [ ex f3J. -f3 ex 

Proof. First, assume that A has real eigenvalues A I, A2 (not necessarily distinct) 
with linearly independent eigenvectors vI, v2, respectively. Define P = [vI v2] to 
be the matrix with first column vector v I and second column vector v2. Since v I and 
v2 are linearly independent, P is nonsingular. 

Then 

AP = [Av l Av2] 

= [AIV I A2V2] 

= [vI v2] [~I ~2J. 
so A = PIP-I in this case. 

Now suppose A has just one eigenvalue A and A has a single independent eigen
vector vI. Let w be a vector in n2 that is independent of vI. By the Cayley-Hamilton 
Theorem, 

(A - A/)(A - A/)W = O. 

Consequently, 
(A - A/)W = cv l , 

with c =1= 0 since W is not an eigenvector. Define v2 = c-Iw and P to be the 
nonsingular matrix [vI v2]. Then 
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AV2 + VI] 

V2] [~ n 
and part (b) is established. 

Finally, assume that the eigenvalues of A are a ± i{J, with {J > O. The corre
sponding eigenvectors are of the form v I ± i v2, where v I , v2 are real, independent 
vectors. Since 

we have 

Av1 = av1 - {Jv2, 

Av2 = {Jv 1 +av2. 

AP = [Av 1 Av2] 

= [av 1 - {Jv2 {Jv 1 + av2] 

= [vI v2] [~{J ~J 
=PJ, 

where J is defined in part (c), and the proof is complete. • 
Theorem 4.8 is essentially a result about change of coordinates. The nonsingular 

matrix A in Eq. (4.14) represents a mapping from U = (Ul, U2) space (called the 
"phase plane") onto itself. The equation J = p- 1 AP means that under an appro
priate change of variable (induced by P) the mapping can be represented in one of 
three simple forms. 

The phase plane descrption of the behavior of the solutions of Eq. (4.14) breaks 
in a natural way into a number of cases, based on the values of the eigenvalues of A. 

Case la: 0 < Al < A2 < 1 (sink) 
From the discussion in Section 4.1, we know that all solutions ofEq. (4.14) have 

the form 
U(t) = CIAivl + C2A~v2, 

where vI, v2, are eigenvectors corresponding to AI, A2, respectively. If Cl = 0, then, 
for t ~ 00, u(t) ~ 0 along the line containing v2 (e.g., the sequences {yd and {xd 
in Fig. 4.4). Also, if C2 = 0, then u(t) ~ 0 along the line containing vI ({vd and 
{Wi}). Otherwise, 
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Fig. 4.4 A sink 

so 
u(t) C 2 
T~ 2V 

2 

as t ~ 00. Thus we see in the figure that solutions such as {~n} approach the 
origin at the same angle as the line containing v2• Alternatively, under the change of 
coordinates given by part (a) of Theorem 4.8, solutions have the form 

w(t) = ctA~ [~] + C2A~ [~] . 
Now we see that solutions that begin on a coordinate axis remain on that axis as they 
approach the origin. Other solutions approach the origin so that they are tangent to 
the vertical axis as t ~ 00. 

Case 1 b: 0 < A < 1 
In the exceptional case that A has a simple eigenvalue with one independent eigen

vector, under the change of coordinates given by part (b) of Theorem 4.8 we have 
the equation 

w(t + 1) = [~ ~] w(t), 

with solution 

[
At 

w(t) = 0 
tAt-I] 

At w(O). 
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Fig. 4.5 A source 

(See Example 4.6.) Once again, all solutions go to the origin as t ~ 00, but the 
pattern of solutions in the phase plane is somewhat different from that in Case la. 
(See Exercise 4.24.) 

Case 2: 1 < Al < A2 (source) 
This case is much the same as Case la, except that all solutions move away from 

the origin as t ~ 00. (See Fig. 4.5.) 

Case 3: -1 < Al < 0 < A2 < 1 (sink with reflection) 
As in Case 1 a, we have 

u(t) = cIAiv l + C2A~v2. 

Note that Ai has alternating signs, so solutions with CI =I 0 jump from one side of 
the line containing v2 to the other as they approach the origin. (See Fig. 4.6.) 

Case 4: Al < -1 < 1 < A2 (source with reflection) 
Figure 4.7 shows the phase portrait in this case with solutions moving away from 

the origin with increasing time. 
Before considering further cases, let's see how we can determine the behavior of 

solutions when the eigenvalues are complex. From part (c) in Theorem 4.8, a change 
of coordinates yields a matrix of form 

J = [ Ol f3] -f3 Ol ' 



Fig.4.6 A sink with reflection 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ • 

/11 

Fig. 4.7 A source with reflection 
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with f3 > O. Choose an angle e such that 

then we can write 

a 
cose = , 

Ja2 + f32 

J=Ja2+f32[co~e 
-sme 

== IAIRe. 

Sine] 
cose 
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Here Re is called a "rotation matrix" since it rotates vectors in the plane clockwise 
through an angle of e radians. (See also Example 4.8.) 

Case 5: a2 + f32 = 1 (center) 
In this case, a change of coordinates results in the matrix J = Re, and each 

solution moves clockwise around a circle centered at the origin, which is called a 
center. (See Fig. 4.8.) 

Case 6: a2 + f32 > 1 (unstable spiral) 
Since J = IAIRe and IAI > 1, with each iteration a solution moves further from 

the origin, always in a clockwise direction, creating an unstable spiral. (See Fig. 4.9.) 
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Fig. 4.9 An unstable spiral 

Case 7: a 2 + f32 < 1 (stable spiral) 
This case is similar to Case 6, except that solutions spiral inward toward the origin 

as t increases. (See Fig. 4.10.) 

Case 8: 0 < Al < 1 < A2 (saddle) 
This is a special case of part (a) of Theorem 4.8, and solutions have the fonn 

Consequently, solutions that start on the horizontal axis approach the origin along 
that axis (the stable subspace) as t increases, while those that start on the vertical 
axis move away from the origin along that axis (the unstable subspace). Since 

as t ~ 00, other solutions approach the vertical axis. (See Fig. 4.11.) 

Case 9: -1 < Al < 0 < 1 < A2 (saddle with reflection) 
The phase plane behavior is similar to that in Case 8, except that the presence of a 

negative eigenvalue causes the solutions to reflect in an axis with each iteration. (See 
Fig. 4.12.) 
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Fig. 4.11 A saddle 
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Fig. 4.12 A saddle with reflection 

The nine cases just discussed are not exhaustive, but they give many of the im
portant examples of phase plane behavior of the solutions of Eq. (4.14). There are 
transition cases where IAI = 1 (Case 5 is one of these) that are intermediate stages 
between two of the principal types. We often speak of a "bifurcation" occurring in 
such a case since there is a significant change in the nature of the phase diagram. We 
will see other types of bifurcations in our discussion of nonlinear equations. (See 
Sections 4.5 and 4.6.) 

4.4 Fundamental Matrices and Floquet Theory 
In this section, we will examine the properties of the system (4.1) with variable 
coefficients 

u(t + 1) = A(t)u(t) + /(t), (4.15) 

and the corresponding homogeneous system 

u(t + 1) = A(t)u(t), (4.16) 

where the matrix function A(t) will be assumed nonsingular for all integers t. With 
this assumption, initial value problems for Eq. (4.15) will have unique solutions de
fined on the set of all integers. We will be especially interested in the case in which 
the matrix function A(t) is periodic. 
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The matrix analogue ofEq. (4.16) is 

U(t + 1) = A(t)U(t), (4.17) 

where U (t) is an n by n matrix function. Note that U (t) is a solution of Eq. (4.17) if 
and only if each of its column vectors is a solution of Eq. (4.16). 

I Theorem 4.9. If <I>(t) is a solution ofEq. (4.17), then either det<l>(t) i= 0 for all 
integers t or det <I> (t) = 0 for all integers t. 

Proof. Since <I>(t) is a solution ofEq. (4.17) for all integers t, 

<I>(t + 1) = A(t)<I>(t). 

Therefore, 
det<l>(t + 1) = detA(t)det<l>(t) 

for all integers t. Since detA(t) i= 0 for all integers t, the conclusion of the theorem 
follows from this last equation. • 

Definition 4.1. We say that <I>(t) is a "fundamental matrix" ofEq. (4.16) provided 
that <I>(t) is a solution of Eq. (4.17) such that det <I>(t) i= 0 for all integers t. 

Example 4.11. If det A i= 0, then <I>(t) = At is a fundamental matrix for the 
linear system with constant coefficients 

u(t + 1) = Au(t). 

Now, for any nonsingular matrix Uo, the solution U(t) ofEq. (4.17) with U(to) = 
Uo is a fundamental matrix of Eq. (4.16), so there are always infinitely many fun
damental solutions. The following theorem characterizes fundamental matrices for 
Eq. (4.16). 

Theorem 4.10. If <I>(t) is a fundamental matrix for Eq. (4.16), then lI1(t) is an
other fundamental matrix if and only if there is a nonsingular matrix C such that 

lI1(t) = <I>(t)C 

for all integers t. 

Proof. Let lI1(t) = <I>(t)C, where <I>(t) is a fundamental matrix of Eq. (4.16) and 
C is nonsingular. Then 111 (t) is nonsingular for all integers t and 

lI1(t + 1) = <I>(t + I)C 

= A(t)<I>(t)C 
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= A(t)lI1(t). 

Therefore, lI1(t) is a fundamental matrix ofEq. (4.16). 
Conversely, assume that <I>(t) and lI1(t) are fundamental matrices of Eq. (4.16). 

For some integer to, let 
C = <I>-I(tO)II1(to). 

Then lI1(t) and <I>(t)C are both solutions of Eq. (4.17), satisfying the same initial 
condition. By uniqueness, 

lI1(t) = <I>(t)C 

for all t. • 
The proof of the following theorem is similar to that of Theorem 4.10 and is left 

as an exercise. 

Theorem 4.11. If <I>(t) is a fundamental solution ofEq. (4.16), the general solu
tion ofEq. (4.16) is given by 

u(t) = <I>(t)c, 

where c is an arbitrary constant column vector. 

Fundamental matrices can be used to solve the nonhomogeneous Eq. (4.15). The 
following theorem is a generalization of Theorem 4.3. 

Theorem 4.12. If <I>(t) is a fundamental solution of Eq. (4.16), the unique so
lution of Eq. (4.15) that satisfies the initial condition u(to) = uo is given by the 
variation of parameters formula 

1-1 
u(t) = <I> (t)<I>-1 (to)uo + <I>(t) L <I>-I(s + l)f(s) (4.18) 

s=/O 

for t ::: to. 

Proof. Let u(t) be given by Eq. (4.18) for t ::: to. Then 

I 

u(t + 1) = <I>(t + 1)<1>-1 (to)uo + <I>(t + 1) L <I>-I(s + l)f(s) 
s=/O 

1-1 
= <I>(t + 1)<1>-1 (to)uo + <I>(t + 1) L <I>-I(s + l)f(s) + f(t) 

S=/O 

1-1 
= A(t) <I>(t)<I>-1 (to)uo + A(t)<I>(t) L <I>-I(s + l)f(s) + f(t) 

s=/O 
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= A(t)u(t) + f(t). 

Consequently, u(t) defined by Eq. (4.18) is a solution of the nonhomogeneous equa
tion, and the fact that u(t) satisfies the initial condition follows from our usual con
vention on sums. • 

Example 4.12. Solve the system 

u(t + 1) = [~2 ~3J u(t) + (~y [~2J. 
u(O) = [~J . 

From Example 4.2, we can choose 

Then 

[ 
(-2)t 

<l>(t) = (_2)t+1 

-1 (-1)t [-1 
<l> (t) = ----;p- 2t+1 

From Eq. (4.18), we have for t 2: 1 

~1 J ([ -;2J + ~ [ -.5(~3)-SJ) 

~ 1 J ([ -;2J + [.375« _~)-t - 1)]) 
~1 J [ -.125«-~1-t + 19)J. 

Now we consider the case that A(t) is periodic with minimum period p. The 
system (4.16) is then called a "Floquet system." Here is a simple scalar example that 
is indicative of the behavior of general Floquet systems. 

Example 4.13. Since (-I)t is periodic with period 2, the equation 

u(t + 1) = (-I)tu(t) 

is a Floquet equation. The general solution is 

1(1;1) 
u(t) = a(-I) . 
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We can write this solution in the form 

u(t) = r(t)bt , 

where 
,2 

r(t) = a(-l)T 

is periodic with period 2 and b = -i. 

In preparation for the proof of Floquet's Theorem, we need a result on roots of 
matrices. 

Lemma 4.1. If C is a nonsingular matrix and p is a positive integer, then there is a 
nonsingular matrix B such that 

BP =C. 

Proof. We will prove this theorem only for two by two matrices. In Theorem 4.8, 
we obtained the real canonical form of a matrix. If the eigenvalues of the matrix are 
complex, then we can show, as in the case of distinct real eigenvalues, that there is a 
nonsingular matrix Q so that 

where 

J = [Ad ~2] 
and AI, A2 are the eigenvalues of C. Now if J is of the above form (with either 
complex or real eigenvalues), we want to find a matrix B such that 

BP = C = Q-IJQ. 

Equivalently, we want to pick B so that 

or 

Then we need to choose B so that 

so 
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Finally, we consider the case 

Repeating the same steps we used in the first case, we need to choose B to satisfy 

(4.19) 

Let's try to find a B of the form 

a ] I Q. 
(A.l)P 

(4.20) 

Substituting the expression in Eq. (4.20) into Eq. (4.19), we have 

where we used the Binomial Theorem. We want to choose a so that 

Solving for a and substituting into Eq. (4.20), we have 

• 



156 CHAPTER 4. STABILITY THEORY 

Theorem 4.13. (Discrete Floquet's Theorem) If <I>(t) is a fundamental matrix 
for the Floquet system (4.16), <I>(t + p) is also a fundamental matrix and <I>(t + 
p) = <I>(t)C, where 

C = A(p - I)A(p - 2) ... A(O). (4.21) 

Furthermore, there is a nonsingular matrix function P (t) and a nonsingular matrix 
B such that 

(4.22) 

where P(t) is periodic with period p. 

Proof. Assume <I>(t) to be a fundamental matrix for the Floquet system (4.16). If 
W(t) == <I>(t + p), then W(t) is nonsingular for all t and 

W(t + 1) = <I>(t + p + 1) 

= A(t + p)<I>(t + p) 

= A(t)W(t), 

so <I>(t + p) is a fundamental solution for Eq. (4.16). By Theorem 4.10, there is a 
nonsingular matrix C such that 

<I>(t + p) = <I>(t)C 

for all integers t. With t = 0, we have 

C = <I>-l(O)<I>(p). 

Iterating the equation 
<I>(t + 1) = A(t)<I>(t), 

we obtain 
<I>(p) = [A(p - I)A(p - 1) ... A (0)] <I> (0). 

Then 
C = <I>-l(O)<I>(p) = A(p - I)A(p - 2)··· A(O), 

so Eq. (4.21) holds. By Lemma 4.1, there is anonsingular matrix B so that BP = C. 
Let 

P(t) == <I> (t)B-t . 

Note that P(t) is nonsingular for all t and since 

P(t + p) = <I>(t + p)B-(t+p ) 

= <I>(t)CB-PB-t 

= <I> (t)B-t 

= P(t), 

P(t) has period p. Solving Eq. (4.23) for <I>(t), we get Eq. (4.22). 

(4.23) 

• 
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Definition 4.2. The eigenvalues fJ, of the matrix 

C == A(p - I)A(p - 2) ... A(O) 

are called the "Floquet multipliers" of the Floquet system (4.16). 

Here are some simple examples of Floquet multipliers. 

Example 4.14. For the scalar equation 

y(t + 1) = (_1)1 y(t), 

the coefficient function a (t) = (_1)1 has minimum period 2 and c = a (1)a (0) = 
-1, so fJ, = -1 is the Floquet multiplier. 

Example 4.15. Find the Floquet multipliers for the Floquet system 

The coefficient matrix A(t) is periodic with minimum period 2 so 

C = A(I)A(O) 

= [~1 ~] [~ ~] 
= [~ ~ll 

Consequently, fJ, 1 = 1, fJ,2 = -1 are the Floquet multipliers. 

The following theorem demonstrates why the term multiplier is appropriate. 

Theorem 4.14. Assume that fJ, is a Floquet multiplier for the Floquet system 
(4.16). Then there is a nontrivial solution y(t) ofEq. (4.16) such that 

y(t + p) = fJ,y(t) 

for all integers t. 

Proof. Assume that fJ, is a Floquet multiplier of Eq. (4.16). Then fJ, is an eigenvalue 
of the matrix C given by Eq. (4.21). Let y be an eigenvector of C corresponding to 
fJ, and <l>(t) be a fundamental matrix for Eq. (4.16). Define 

y(t) == <l>(t)y. 



158 CHAPTER 4. STABILITY THEORY 

Then y(t) is a nontrivial solution of Eq. (4.16) and, from Floquet's Theorem, <I>(t + 
p) = <I>(t)C, so we have 

for all integers t. 

y(t + p) = <I>(t + p)y 

= <I>(t)Cy 

= <I>(t)lkY 

= Iky(t) 

• 
In Example 4.15 we saw that 1 and -1 were Floquet multipliers. Theorem 4.14 

implies that there are linearly independent solutions that are periodic with periods 2 
and 4. The next theorem shows how a Floquet system can be transformed into an 
autonomous system. 

Theorem 4.15. Let <I>(t) = P(t)Bt as in Floquet's Theorem. Then y(t) is a 
solution of the Floquet system (4.16) if and only if 

z(t) = P- 1(t)y(t) 

is a solution of the autonomous system 

z(t + 1) = Bz(t). 

Proof. Assume that y(t) is a solution of the Floquet system (4.16). Then there is a 
column vector w so that 

Define 

y(t) = <I>(t)w 

= P(t)Btw. 

z(t) = P-1(t)y(t) 

=Btw. 

It follows immediately that z(t) is a solution of 

z(t + 1) = Bz(t). 

The converse can be proved by reversing the above steps. • 
The relationship between Floquet systems and autonomous systems permits us to 

use the results of Section 4.2 to give the stability properties of F10quet systems. 
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Theorem 4.16. (stability theorem for Floquet systems) 

(a) If IILI < 1 for all Floquet multipliers, then every solution y(t) of Eq. (4.16) 
satisfies limt .... Hxl y(t) = O. 

(b) If IILI :::: 1 for all Floquet multipliers and every multiplier IL with IILI = 1 is 
simple, then there is a constant D so that ly(t)1 :::: Dly(O)1 for t ~ O. 

(c) If some multiplier IL satisfies IILI > 1, then there is a solution y(t) of 
Eq. (4.16) so that ly(t)1 -+ 00 as t -+ 00. 

Proof. Let <l>(t) = P(t)B t as in Floquet's Theorem. From Theorem 4.15, y(t) is 
a solution of Eq. (4.16) if and only if z(t) = p-1 (t)y(t) is a solution of z(t + 1) = 
Bz(t). Since P(t) is periodic and nonsingular, the stability of the Floquet system is 
the same as the stability of the corresponding autonomous system. Futhermore, by 
the proof of Lemma 4.1, the eigenvalues of B are the pth roots of the eigenvalues of 
C, so the Floquet multipliers (i.e., the eigenvalues of C) determine the eigenvalues 
of the system z(t + 1) = Bz(t), and the conclusions of the theorem follow from the 
results on autonomous systems established in Section 4.2. • 

Example 4.16. Find the Floquet mutipliers for the Floquet system 

y(t + 1) = [2-(~1)1 2 y(t) 
2+(_1)/] 

o 

and use them to determine the stability of the system. 
For this system, p = 2 and 

C = A(1)A(O) 

= [~ tJ [1 ~J 
= [~ ~J . 

The Floquet multipliers are * and ~,and some solution y(t) satisfies ly(t)1 -+ 00 

as t -+ 00. However, notice that the eigenvalues of A(t) are ±1 for every t, 
so the fact that the eigenvalues have absolute value less than 1 for every t is no 
guarantee of stability for a nonautonomous system. 

4.5 Stability of Nonlinear Systems 
In keeping with our concept of a difference equation articulated in the first chapter, 
we assume that we can write such an equation so that the value of the unknown at 
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the largest value of the independent variable is isolated on one side of the equation. 
For example, 

y(t + 3) = y2(t + 2)y(t + 1) - 5 sin y(t). 

It is always possible to rewrite such an equation as an equivalent first order system. 
In the present example, set Ul (t) = y(t), U2(t) = y(t + 1), and U3(t) = y(t + 2) to 
obtain 

[~~] (t + 1) = [ ~~~~~ ] . 
U3 u~(t)u2(t)-5sinul(t) 

Note that t does not appear explicitly on the righthand side of the equation. In this 
case, the system is said to be "autonomous." For an autonomous system, u(t) is a 
solution for t ~ ° if and only if u(t - to) is a solution for t ~ to. (Verify this!) 

We will study stability theory for the general autonomous system 

u(t + 1) = f (u(t» (t = 0,1,2···), (4.24) 

where u is an n-vector and f is a function from R n into Rn. The domain of f 
need not be all of R n , but f should map its domain into itself so that Eq. (4.24) is 
meaningful for all initial points in the domain and all t. Of course, Eq. (4.4) is a 
special case ofEq. (4.24). 

Definition 4.3. A vector u in R n is a "fixed point" of f if f(u) = u. A vector 
vERn is a "periodic point" of f if there is a positive integer k so that fk(v) = v, 
and k is a "period" for v. Here fk(v) == f(··· (f(f(v)))···). 

'-,-' 

k times 
Note that fixed points of f represent constant solutions of Eq. (4.24) and periodic 

points yield periodic solutions. The period k is not unique since any integral multiple 
of k is also a period, but every periodic point has a least positive period (called the 
"prime" period). 

Example 4.17. 

(a) f(u) = 2u(1 - u) has fixed points u = ° and u = !. 
(b) f ([ ~~D = [U2u/ UJ with domain {[ ~~J : Ul # 0, U2 # o} . Every vector 

in the domain of f is a periodic point with period 6 (see Example 3.29). The 

only fixed point of f is Dl Three points have least period 3 (find them), but 

no points have least period 2. 

(c) f ([ ~~J) = [ ~~J. This function rotates every vector 90 degrees clockwise 

(see Fig. 4.2 and Example 4.8). Consequently, [~J is the only fixed point and 

every other point is periodic with least period 4. 
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(d) The following system has been proposed as a discrete predator-prey model: 

aUI (t)U2(t) 
UI(t + 1) = (1 +r)uI(t) - Ii ()' 

1 + pUI t 

U (t + 1) = (1 - d)u (t) + caUl (t)U2(t) . 
2 2 l+fjUI(t) 

(See Freedman [86].) Here UI and U2 denote the numbers of prey and predators, 
respectively; r is the birth rate minus the natural death rate of the prey, d is the 
death rate of the predators; and a, fj, and c are positive constants. The nonlin
ear term in the first equation represents the number of prey devoured, while the 
nonlinear term in the second equation is the number of predators born. 

The fixed points are found (with a little algebra) to be [~] and ca~df3 [! l 
The second of these is ecologically interesting if ca - dfj > 0 since it is then 
located in a region where U I and U2 are positive. 

Finding periodic points is in general not a simple matter since it involves solving 
nonlinear equations of the form fk(v) = v. 

The following definition introduces the fundamental concepts in stability theory. 

Definition 4.4. 

(a) Let U belong to nn and r > O. The "open ball centered at U with radius r" is 
the set 

B(u, r) = {v in nn : Iv - ul < r}. 

(b) Let v be a fixed point of f. Then v is "stable" provided that, given any ball 
B(v, E), there is a ball B(v, 8) sothatifu is in B(v, 8), then ft(u) is in B(v, E) 

for t ::: O. If v is not stable, it is "unstable." 

(c) If, in addition to the conditions in part (b), there is a ball B(v, r) so that 
F (u) ~ vas t ~ 00 for all u in B(v, r), then v is "asymptotically stable." 

(d) Let w be a periodic point of f with period k. Then w is "stable" ("asymptot
ically stable") if w, f(w), ... , fk-l(w) are stable (asymptotically stable) as 
fixed points of fk. 

Intuitively, a fixed point v is stable if points close to v do not wander far from v 
under all iterations of f. Asymptotic stability of v requires the additional condition 
that all solutions ofEq. (4.24) that start near v converge to v. 

In Theorems 4.4 and 4.5, we showed that r(A) < 1 is a necessary and sufficient 
condition for the origin to be an asymptotically stable fixed point for the homoge
neous linear system of Eq. (4.4). Actually, this is a strong type of asymptotic stabil
ity (called global asymptotic stability) since all solutions ofEq. (4.4) converge to the 
origin. Under the weaker conditions of Theorem 4.6, the origin is stable since the 
inequality (4.13) implies that if u(O) is in B(O, 8), then u(t) is in B(O, C8) for t ::: o. 
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There is an elementary graphical technique known as the "staircase method" that 
is useful for stability analysis in the case of a nonlinear scalar equation of first order. 

Example 4.18. u(t + I) = 2u(t) (I - u(t». 

First, we graph Y = 2u(1 - u) = f(u) and y = u on the same coordinate 
axes (see Fig. 4.13). The fixed points of f are the intersection points of the 
two graphs. Choose any initial value u (0) in (0, 1) and proceed vertically to the 
point (u(O), f(u(O») = (u(O), u(l» on the graph of f. Now move horizontally to 
(u(I), u(I» on the line y = u. Since u(2) = f(u(I», another vertical movement 
brings us to (u(1), u(2» on the graph of f. By alternating vertical motion to the 
graph of f with horizontal motion to the line in this way, we generate the solution 
sequence {u(t)}. 

In this case, Fig. 4.13 shows that the sequence rapidly converges to the fixed 
point 1. Similarly, if we begin with an initial value in (1,1), the solution con

verges to 1. It follows that 1 is asymptotically stable. 
Recall from Example 3.30 that a general solutionofu(t+l) = 2u(t) (I - u(t» 

is u(t) = 1(1 - A2'). Then A = 1 - 2u(0), so 

u(t) = ~ (I - (I - 2u(0»2') . 

If 0 < u(O) < I, then -1 < 1 - 2u(0) < 1 and limHoo u(t) = 1, in agreement 
with the result of the graphical analysis. The fixed point u = 0 is clearly unstable. 

Example 4.19. Use the staircase method to analyze solutions of u(t + I) = 
cosu(t). 

Figure 4.14 illustrates that the solution u(t) with initial value u(O) = 1.3 satisfies 
limHoo u(t) = YO, where YO :::::: 0.739 is the unique fixed point of cos u. This 
behavior is also easily demonstrated using a calculator, entering 1.3 (radians) and 
pushing the cosine button repeatedly. Try some other initial conditions. What 
happens if you use degrees instead of radians? 

The next result is an analytic method for checking asymptotic stability in the 
scalar case. 

Theorem 4.17. Suppose f has a continuous first derivative in some open interval 
containing a fixed point v. 

(a) If If'(v)1 < I, then v is asymptotically stable. 

(b) If If'(v)1 > 1, then v is unstable. 

Proof. (a) Assume that If'(v)1 < 1. By continuity of f', there is an ex so that 
If'(u)1 :::: ex < 1 on some interval I = (v - 8, v + 8), 8 > O. The Mean Value 



4.5. STABILITY OF NONLINEAR SYSTEMS 

.5 

U 
Uo U, Uz us .5 

Fig.4.13 Staircase method/or /(u) = 2u(l- u) 

Theorem gives 

y 

.739 

Fig.4.14 Staircase method/or /(u) = cosu 

I/(u) - l(w)1 = 11'(c)llu - wi 
::::alu-wl 

if u, w are in I. For each u in I, 

I/(u) - vi :::: alu - vi < 8, 

so 1 (u) is in I, and we can conclude that v is stable. Furthermore, 

I/t+1(u) - vi:::: aIP(u) - vi 

for each t ::: 0 and u in I, so by induction 

I/t(u) - vi:::: atlu - vi 

163 

for t ::: 0 and u in I. Since limHOO at = 0, each solution ofEq. (4.24) that originates 
in I converges to v as t --. 00 and v is asymptotically stable. 
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(b) Assume that 1/'(v)1 > 1. Choose A > 1 and I = (v - E, V + E) for some 
E > 0 so that 

I/(u) - l(w)1 = 1/'(c)llu - wi 
~ Alu - wi 

for all u, w in I. By induction, 

as long as F(u) is in I. Since A > 1, it follows that all solutions ofEq. (4.24) that 
originate in I, except for the constant solution u (t) = v, must leave I for sufficiently 
large t. Then v is unstable. • 

Example 4.20. 

(a) Let I(u) = 2u(1 - u). Then I'(u) = 2 - 4u, so 1'(0) = 2, !'(!) = O. As in 
Example 4.18, we find that 0 is unstable while! is asymptotically stable. 

(b) If I(u) = cos u, then I'(u) = - sin u, and 1/'(u)1 < 1 if u =1= 1- + 2mr. The 
fixed point v == 0.739 is asymptotically stable. 

If 1/'(v)1 = 1, then v might be asymptotically stable, merely stable, or unstable 
(see Exercise 4.42). 

Theorem 4.17 can also be used to test the stability of periodic points. For example, 
suppose that v is a point of period 2 for the function I. By the Chain Rule and 
Theorem 4.17, v is asymptotically stable if 

I (f2)'(V) I = 1/'(f(v)) 1'(v)1 < 1. 

Note that this calculation also implies that the periodic point I(v) is asymptotically 
stable. Similar remarks apply to points of higher periods. 

The most powerful method for establishing stability and asymptotic stability for 
nonlinear systems is due to the Soviet mathematician A.M. Liapunov. 

Definition 4.5. Let v be a fixed point of I. A real-valued continuous function 
V(u) defined for all u E nn is called a "Liapunov function" for 1 at v provided that 
V(v) = 0, V(u) > 0 for u =1= v, and that there is some ball B about v so that 

f:l. t V(u) == V (f(u)) - V(u) ::: 0 (4.25) 

for all u in B. If the inequality (4.25) is strict for u =1= v, then V is a "strict Liapunov 
function." 

Let u be a solution of Eq. (4.24) with u(O) in B. Then (4.25) requires that 
V (u(t)) be nonincreasing as a function of t as long as u(t) is in B. When 1 is 
continuous, the existence of a Liapunov function at v implies that v is stable. 
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Theorem 4.18. Let v be a fixed point of I, and assume that I is continuous on 
some ball about v. If there is a Liapunov function for I at v, then v is stable. If 
there is a strict Liapunov function for I at v, then v is asymptotically stable. 

Proof. (Note: the proof requires some topological methods that can be found in 
undergraduate textbooks on analysis or topology; see Bartle [23].) 

Let V be a Liapunov function for v; then Eq. (4.25) holds on a ball B about v. 
Suppose B(v, E) is properly contained in B and I is continuous on B(v, E). Then 

m == min{V(u) : lu - vi = E} 

is positive since V is positive and continuous on {u : lu - vi = E}, which is a closed 
and bounded set. 

Choose 8 > 0 small enough so that B(v, 8) is contained in the open set U == {u : 
V(u) < !f}. For each u in B(v, 8), 

m 
V (f(u)) :s V(u) < 2' (by Eq. (4.25)). 

Let W be the maximal open connected subset of U that contains v. Note that 
W ~ B(v, E). 

Let u E B(v,8). Since I is continuous and B(v, 8) is connected, I (B(v, 8)) is 
connected. Then I (B(v, 8)) ~ W, so I(u) is in B(v, E). In a similar way, we can 
show that It (u) belongs to B(v, E) for t 2: 2. Therefore v is stable. 

Suppose further that V is a strict Liapunov function. We assume that v is not 
asymptotically stable and seek to arrive at a contradiction. There is a w in B(v, 8) so 
that It (w) does not converge to v as t -+ 00. However, each p (w) is in B(v, E), so 
there is a subsequence pn (w) that converges to some v =F v in B(v, E) as n -+ 00. 
For each t, some tn > t, so 

(4.26) 

by Eq. (4.25) (with strict inequality) and the continuity of V. 
Again, by Eq. (4.25) V (f(V)) < V(V). Since V 0 I is continuous, there is a 

y > 0 so that 

V (f(u)) < V(V) 

for u in B(v, y). Choose n large enough that pn(w) in B(v, y). Then 

which contradicts Eq. (4.26). Thus, we conclude that v is asymptotically stable. • 
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Exercise 4.50 contains a generalization of the second portion of this theorem. 
In practice, the difficulty in making use of Theorem 4.18 is in finding a Liapunov 

function. However, if one can be found, we may gain, in addition to stability, further 
information about solutions of Eq. (4.24). For example, the following corollaries 
may allow us to locate solutions that converge to the fixed point. The proofs are 
similar to the last part of the proof of Theorem 4.18. 

Corollary 4.1. Suppose there is a strict Liapunov function for f at v so that (4.25) 
holds for u E B and f is continuous on B. Then every solution of Eq. (4.24) that 
remains in B for t 2: to must converge to v. 

Corollary 4.2. Suppose v is a fixed point for f and B is a ball about v so that 
If(u) - vi < lu - vi for u E B, u 1= v. Then every solution of Eq. (4.24) that 
originates in B must converge to v. 

Example 4.21. Use Theorem 4.18 to show that the origin is stable for 

[
COS f) sin f) ] 

u(t + 1) = . f) f) u(t). -sm cos 

Recall that stability was established in Example 4.8 by computing the eigenvalues. 
Here we define V on n2 by 

Then V ([~D = 0, V(u) > 0 otherwise, and 

d t V(u) =V ([ ~~lc~:~: :Z2s~~:f) D -V ([:~D 
=(u 1 cos f) + U2 sin f)2 + (-u 1 sin f) + U2 cos f)2 

2 2 
- ul - u2 

=0. 

Consequently, V is a Liapunov function and the origin is stable. 
Note that since V(u) is the square of the length of u, the equation d t V(u) = 0 

tells us that each solution of the system remains on a fixed circle centered at the 
origin. 
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Example 4.22. What can be said about the stability of the origin for 

u(t + 1) = [U2(t) - U2(t)(U!(t) + U~(t))]? 
Ul (t) - Ul (t)(U l (t) + U2(t)) 

Again, we try V(U) = ui + u~. Now 

~tV(U)=[U2(1-(Ui+u~»)r +[Ul(1-(Ui+u~»)r -ui-u~ 
= (u~ + ui) (1 - 2(ui + u~) + (ui + u~)2) - ui - u~ 

= (ui + u~)2 (-2 + (ui + u~») 
<0 
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when u is in B(O, ,J'i) and u i= O. It follows that V is a strict Liapunov function 
and the origin is asymptotically stable. 

Furthermore, since ~t V(u) < 0 is equivalent to If(u)1 < lui, Corollary 4.2 
implies that every solution originating in B(O, ,J'i) must converge to the origin. 

In many cases, a strict Lianpunov function is not available, but it is still possible 
to use a Liapunov-like function to obtain information about the behavior of solutions 
of Eq. (4.24). The following is a version of the LaSalle Invariance Theorem. 

Theorem 4.19. Assume that D C nn and there are real-valued functions V(u) 
and w(u) that are continuous, V is bounded below on D, w(u) ~ 0 for u E D, and 

~t V(u) :::: -w(u) (4.27) 

for u E D. If u(t) is a solution of Eq. (4.24) that lies in D for t > to, then 
w(u(t» ~ 0 as t ~ 00. 

Proof. Assume that u(t) is a solution of Eq. (4.24) that lies in D for t > to. 
Eq. (4.27) implies that 

{V(u(t»}~to (4.28) 

is a decreasing sequence. Since V is bounded below, the sequence in Eq. (4.28) must 
converge. Consequently, 

lim ~t V(u(t» = O. 
t--+oo 

From Eq. (4.27) we deduce that 

lim w(u(t» = O. 
t--+oo • 
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y 

Fig. 4.15 The Secant Method 

The next example illustrates the use of Theorem 4.19 in showing that the Secant 
Method, which is an important procedure for approximating the zero of a function, 
converges under favorable conditions. 

Example 4.23. (the Secant Method) Assume that h(t) is a function such that 
h(a) = 0, h'(a) =F 0, and h has a continuous second derivative on some open 
interval containing a. If Zn and Zn+1 are in the domain of h, then the equation of 
the secant line that passes through the points (Zn, h(zn)) and (Zn+1, h(zn+1)) is 

(See Fig. 4.15.) The t-intercept Zn+2 of this line satisfies 

Zn+l - Zn 
Zn+2 = Zn+l - h( ) h( )h(Zn+1). 

Zn+l - Zn 
(4.29) 

Consequently, if we start with initial approximations zo =F Zl near a, Eq. (4.29) 
will generate a sequence {Zn} of approximations of a. 

To test the convergence of this sequence, set 

Yn = Zn -a. 

From Eq. (4.29), we have that 

Yn+1 - Yn 
Yn+2 = Yn+1 - h( + ) h( + )h(a + Yn+1) a Yn+1 - a Yn 

Ynh(a + Yn+1) - Yn+lh(a + Yn) 
= 

h(a + Yn+d - h(a + Yn) 
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Define g(u) so that 
h(a + u) = h'(a)u + g(u)u2. 

Since h has a continuous second derivative, we have by Taylor's formula: 

1 
h(a + u) = h'(a)u + "2h"(c)u2 

for some c between u and u + a, so 

h"(c) h"(a) 
g(u) = -- -+--

2 2 

as u -+ 0, and g is continuous. Now 

We define 
H(u, v) = vg(v) - ug(u) 

h(a + v) - h(a + u) 

and obtain the difference equation 

Now set Un = Yn and Vn = Yn+1 to convert the equation to a system 

Un+I = Vn 

Vn+l = H(un, vn)unvn· 

Let 

for (u, v) E n2. Then 

.1.t V(u, v) = v2 + H2(u, v)u2v2 - u2 - v2 

= H2(u, v)u2v2 _ u2 

= -w(u, v), 
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where W == u2[1 - H2(u, v)v2]. Since H is continuous, it follows that on a small 
ball about (0,0), W is continuous, W ~ 0, and w(u, v) = 0 if and only if u = o. 
Since any solution that originates in such a ball remains in that ball, we can apply 
Theorem 4.19 to conclude that w(un, vn) -+ 0 as n -+ 00. As a result, Un = 
Yn -+ 0 as t -+ 00, so the Secant Method converges if the initial approximations 
are sufficiently near a. 
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In some cases, the asymptotic stability of a fixed point can be established by 
showing that the "linear" part of the function satisfies the condition for asymptotic 
stability of a linear system. Assume that I has the form 

I(u) = Au + g(u), 

where A is an n by n constant matrix and g satisfies 

lim Ig(u)1 = O. 
u~o lui 

(4.30) 

(4.31) 

Equation (4.31) implies that g(O) = 0 and that g contains no nontrivial linear terms. 
The conditions (4.30) and (4.31) mean that I is differentiable at u = O. This is 

necessarily the case if I has continuous first order partial derivatives at u = 0 (see 
Bartle [23]). The matrix A is the Jacobian matrix of I at 0 given by 

a
fl

] 
a~ an 
aUn 

. ' 

ML aUn 

where !I, ... , In are the components of I and all the partial derivatives are evalu
ated at the origin. 

I Theorem 4.20. If I is defined by Eq. (4.30) with r(A) < 1 and g satisfies 
Eq. (4.31), then the origin is asymptotically stable. 

Proof. From Theorem 4.4, there is a constant C > 0 so that 

IAt U I .:s Cot lui 

for t ::: 0, u in nn, if r(A) < a < 1. Since det(A - AI) = det(A - AI)T = 
det(AT - AI), A and AT have the same eigenvalues. 

Then there is a constant D > 0 so that 

for t ::: 0, u in nn. Now 

I(AT)t Atul .:s DotlAtul 

.:s DCo2t lui 

for all t and u. The geometric series L~0(o2)t converges, so by the comparison test 

00 

Bu == ~)AT)t Atu 
t=O 
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converges for each u. Since B is linear, we can represent it by an n by n matrix. 
Define V on nn by 

00 

V(u) = uT Bu = L IAt u1 2. 
t=O 

It is easily checked that V(O) = 0 and V(u) > 0 for u =f. O. Finally, consider 

I:l.t V(u) = V(Au + g(u)) - V(u) 

= (Au + g(u))T B(Au + g(u)) - uT Bu. 

Since B is symmetric, 

(x + y)T B(x + y) = x T Bx + 2xT By + yT By. 

Using this formula, we have 

Note that 

I:l.tV(u) =uT(A TBA)u+2uT ATBg(u) 

+ g(u)T Bg(u) - uT Bu. 

00 

AT BAu = LAT (AT)t At Au 

t=O 
00 

= L(AT)t+lAt+lu 

t=O 
00 

= L(AT)t Atu 

t=1 

= Bu - u, 

where we have used a change of index. Thus 

I:l. t V(u) =uT Bu - uT U + 2uT AT Bg(u) 

+ g(u)T Bg(u) - uT Bu 

=lul2 [-1 + 2uT AT Bg(u) + g(u)T Bg(U)]. 
lui lui lui lui 
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Using Eq. (4.31), I:l.t V(u) < 0 for lui sufficiently small and u =f. O. By Theorem 
4.18, the origin is asymptotically stable. • 
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In case r(A) > 1 and g satisfies Eq. (4.31), it can be shown that the origin is 
unstable for f given by Eq. (4.30)(see LaSalle [168]). Ifr(A) = 1, then linearization 
gives no infonnation and some other method must be used to investigate stability. For 
instance, the function f in Example 4.22 is 

Here the matrix A has spectral radius one and g satisfies Eq. (4.31) since 

Ig(u)1 __ (uI + u~)lul 2 2 ---''--:--'''--- = u 1 + u2 ---+ 0 
lui lui 

as [:~] ---+ 0. Even though linearization fails, we are able to establish asymptotic 

stability by use of a Liapunov function. 

Example 4.24. For arbitrary constants a and {J, consider the system 

Ul(t + 1) = 0.5Ul(t) +aul(t)U2(t), 

U2(t + 1) = -0.7U2(t) + {JUl(t)U2(t). 

The Jacobian matrix evaluated at the origin for this system is 

A = [°05 -~.7]' 
Note that r(A) = 0.7 < 1. Since the function f(u) for this system has continuous 
first partial derivatives with respect to Ul and U2, Theorem 4.20 implies that the 
origin is asymptotically stable. 

Now suppose that f has fixed point v =1= 0. Let w = u-v. The equation u(t+ 1) = 
f(u(t)) is transfonned into 

w(t + 1) = f(w(t) + v) - v = h(w(t». 

Then the origin is a fixed point for h, and the Jacobian matrix of hat ° is the same 
as the Jacobian matrix of fat v. Consequently, we can test v for asymptotic stability 
by computing the eigenvalues of the Jacobian matrix of fat v. 

Corollary 4.3. If v is a fixed point for f and the spectral radius of the Jacobian 
matrix of f at v is less than one, then v is asymptotically stable. 

Although we have concentrated on stability questions for fixed points in this sec
tion, the same methods can be used to test periodic points since, by Definition 4.3, 
periodic points have the stability properties of their iterates as fixed points of fk. We 
will examine periodic points more closely in the next section. 

Additional infonnation on stability theory for nonlinear systems can be found 
in LaSalle [168]. See Lakshmikantham and Trigiante [165] for the case of nonau
tonomous systems. 
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Fig.4.16 Chaotic behavior 

4.6 Chaotic Behavior 
In Examples 3.30 and 3.31, we showed that the equation 

u(t + 1) = au(t) (1 - u(t)) , (t=O,I,···) (4.32) 

can be solved explicitly for u(t) when a = 2 and a = 4. The solutions are 

u(t) = ~ [1 - (1 - 2u(0))2t
] , (a = 2) 

and 

u(t) = sin2 [21- 1 cos- 1 (1 - 2u(0))] , (a = 4), (4.33) 

where 0 :s u(O) :s 1. The behavior of these solutions is remarkably different. For 
a = 2, each solution u(t) of Eq. (4.32) with 0 < u(O) < 1 converges rapidly to the 
asymptotically stable fixed point u = 1. In the case a = 4, most solutions seem 
to jump randomly about the interval (0, 1) (see Fig. 4.16). However, there are also 
many periodic points such as u = ~ (period 1) and u = 1 (l - cos 2n (period 2). 

Let's investigate the nature of the solutions for intermediate values of a. Define 
feu) = au(1 - u). Setting feu) = u, we obtain the fixed points u = a:;-1 and 

u = O. Now f'(O) = a > 2 and f' (a~1) = 2 - a, so zero is unstable while a~1 
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is asymptotically stable for 2 ::s a < 3. Thus there is little change in the behavior of 
solutions as a increases from 2 to 3. 

Consider the composite function 

f (f(u» = a2u(1 - u)(l - au + au2 ). 

If we set f (f(u» = u, the roots are 

0, 
a-I 

a 

a + 1 ± J(a + 1)(a - 3) 
2a 

The first two roots are the fixed points of f, and the remaining two are points of 
period 2 for a > 3. Figure 4.17 (a and b) illustrates how these new periodic points 
occur as the slope of the tangent line to f (f(u» at u = a:;-1 increases beyond one 
when a passes through 3. 

These points of period 2 are asymptotically stable (see Exercise 4.55) as a ranges 
from 3 to about 3.45. A staircase diagram with a stable pair of periodic points is 
shown in Fig. 4.18. At the same value of a where these become unstable, stable 
points of period 4 appear. These remain stable over a short interval of a values 
before giving way to stable points of period 8. This phenomenon of period doubling 
continues with the ratio of consecutive lengths of intervals of stability approaching 
"Feigenbaum's number," 4.6692· . '. At approximately a = 3.57 all points whose 
periods are powers of 2 are unstable and the situation becomes complicated. For 
some values of a > 3.57, the motion of solutions appears random, while there are 
small a intervals on which asymptotically stable periodic solutions (having periods 
different from 2n) control the behavior of solutions. Near a = 4 most solutions 
bounce erratically around the interval (0, 1). 

Many of the properties associated with the special equation (4.32) have been ob
served for a variety of equations that exhibit a transition from stability to "chaotic" 
behavior. Even Feigenbaum's number and the order of occurrence of periods for pe
riodic points are quite generic phenomena (see Feigenbaum [80] and Devaney [62]). 

The study of chaos is a fairly new and rapidly evolving branch of mathematics, 
and there is no general agreement on its definition. In this section we will not be 
concerned with general results but will focus on some of the characteristics of chaos 
and on some of the methods for recognizing chaotic behavior. 

We begin by asking whether the motion of solutions of Eq. (4.32) with a = 4 is 
random (or more accurately pseudo-random) in some sense. Let 

O(t) = 2t - 1 cos-1 (1 - 2u(0» mod n 

= 2t - 10(1) mod n. 

This equation says that O(t) is in the interval [0, n) and that 2t - 10(I) - O(t) is an 
integral multiple of n. From Eq. (4.33), u(t) = sin2 O(t) since the square of the sine 
function has period n. 



Fig.4.17a f(f(u»fora > 3 

Fig.4.17b f(f(u»fora > 3 
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Fig.4.18 Stable points o/period 2 

A graph of (}(t) against (}(1) is shown in Fig. 4.19. We see that for large val
ues of t, small (}(1) intervals are linearly expanded into much larger intervals. It is 
reasonable to conjecture that as t grows large, (}(t) is approximately uniformly dis
tributed in the following sense: given a subinterval of [0, 1l') and a (}(1) chosen at 
random from that subinterval, the corresponding value of (}(t) has approximately the 
same chance of occurring in each subinterval of [0, 1l') of a prescribed length. 

Since u(t) = sin2 (}(t), the probability density function p for u(t) is given by 

f p (u(t)) du(t) = ~ f d(}(t), 

where the factor of 2 appears because sin2 () maps two points to one point in [0, 1]. 
Thus 

2 
p (u(t)) = du(t) 

1l'd6(t) 

2 
= -------------

1l'2 sin (}(t) cos (}(t) 
1 

= 1l' ..ju(t) (1 - u(t)) . 



4.6. CHAOTIC BEHAVIOR 177 

8 (t) 

J~ 1 1 1 f 1 1 1 ' 

I I I I I I I I ... 
I ,. 8 (1) 

Fig.4.19 8(t) as a/unction 0/8(1) 

It is easily checked that J~ p(u)du = 1, so P is a probability density function 
on [0,1]. 

If we use p to subdivide [0, 1] into subintervals of equal probability, we expect 
to find, after many iterations, about the same number of values of a solution in each 
subinterval. For example, to obtain four subintervals of equal probability, set 

from which it follows that 

(b ~;:::=;:;:1=~ = 0.25, 
10 rrJu(1 - u) 

b . 2 (0.25rr) = SIn --
2 

0.14645. 

The subintervals are [0, .14645], [.14645, .5], [.5, .85355], and [.85355,1]. As a 
rough check, we computed 600 iterations of Eq. (4.32) with a = 4 and u(O) = 0.2 
and obtained 158, 143, 155, and 144 points in the first, second, third, and fourth 
subintervals, respectively. 

Perhaps the most fundamental characteristic of chaotic motion is the property 
of sensitive dependence on initial conditions. From a practical point of view, this 
property implies that any small error in the initial condition can lead to much larger 
errors in the values of a solution as t increases. We give a precise definition for the 
equation 

u(t + 1) = f (u(t)) , (4.34) 

where f maps an interval I of real numbers onto itself. 
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Definition 4.6. The solutions of Eq. (4.34) have "sensitive dependence on initial 
conditions" if there is ad> 0 so that for each Uo in I and every open interval J 
containing uo, there is a Vo in J so that the solutions u and v of Eq. (4.34) with 
u(O) = Uo and v(O) = Vo satisfy lu(t) - v(t)1 > d for some t. 

The property of sensitive dependence on initial conditions is sometimes called the 
"butterfly effect" because if the laws of meteorology have this property, the motion 
of a butterfly's wings can have large-scale effects on the weather. 

The solutions ofEq. (4.32) with a = 4 have sensitive dependence on initial condi
tions because of the angle doubling that occurs in Eq. (4.33). To be specific, consider 
initial values Uo and vo, which lie near each other in (0, I). The corresponding angles 
8(1) = cos-1(1- 2uo) and <p(I) = cos-1(1- 2vo) are also close together (modn). 
For t ::: I, 

8(t) - <p(t) = 2t - 1 (8(1) - <p(l) mod n, 

so the difference doubles (modn) with each iteration. It follows that the solutions 
u(t) = sin2 8(t) and v(t) = sin2 <p(t) will not be near each other for most values 
of t. 

Note that this result casts some doubt on the validity of the experiment mentioned 
earlier, where 600 iterations were computed and sorted into four intervals. Since 
the computations necessarily contain roundoff errors after the first few steps, the 
computed solution is actually quite different from the exact solution! This example 
illustrates a difficulty in studying chaotic behavior computationally. 

Example 4.25. Let f be the "tent map" 

{
2U' 

f(u) = 2(1 - u), 

(See Fig. 4.20.) 

O:::u<! 

!:::u:::l. 

Consider intervals of the form (kz;.1 , fn ), where n is any nonnegative integer 

and k is an integer between I and 2n. It is easy to see that f maps each of these 
intervals (n > 0) onto another interval of the same type but with twice the original 
length. Thus solutions of Eq. (4.34) have sensitive dependence on initial condi
tions. 

Another characteristic of chaotic motion is the existence of many unstable peri
odic points. Consider again Eq. (4.33) written in the form u(t) = sin2 [2 t - 18(1)]. If 
there is an integer m so that 

for some t, then 8(1) yields a periodic point. We have 

8(1)= mn 
2t - 1 - 1 
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~--------~----------~~u o .5 

Fig. 4.20 The tent map 

for all integers t ::: 2 and integers m so that ° .:s m .:s 2t - 1 - 1. We conclude that not 
only are there infinitely many periodic points, but they are dense in the interval [0, 1]. 
All of them are unstable because of the butterfly effect. 

In order to study the periodic points of the tent map f in Example 4.25, we intro
duce the method of "symbolic dynamics." For each initial point Uo in [0, 1], define a 
sequence {b(t) }~o of zeros and ones as follows: 

b {
o if u(t) < -21 , 

(t) = 
1 if u(t) ::: !, 

where u(t) is the solution of Eq. (4.34) with u(o) = uo. Thus b(t) contains infor
mation about which half-interval holds the tth iterate of Uo under f. Because of the 
interval-doubling property of f, two distinct initial points must be associated with 
two different binary sequences. 

Definition 4.7. The "shift-operator" a acts on binary sequences as follows: 

a (b(t» = a(t), 

where a(t) = b(t + 1). 
The shift operator deletes the first number b(O) in the sequence and shifts every 

other number in the sequence one position to the left. If we denote by h the one
to-one function that maps each Uo in [0, 1] to the corresponding sequence b(t), we 
have 

h 0 f = a oh. 

This relation indicates that the action of a on the sequence space is equivalent to the 
action of f on [0, 1]. 
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A sequence b(t) is a periodic "point" for u if and only if it is repeating-that 
is, b(t + m) = b(t) for all t. Consequently, u has 2m periodic points of period m. 
Furthennore, each of these periodic sequences is associated with a unique point u in 
[0, 1] that is a periodic point for f of period m. 

For example, consider the periodic binary sequence 0,1,0,1,0,1,. ... Since b(O) = 
0, u is in [0, !]. Next, b(l) = 1 implies that u belongs to [i, !]. Since b(2) = 0, u 

must be in [i, !], and so forth. In fact, u is the unique point in the intersection of the 
resulting nested sequence of closed intervals. To see that u has period 2, note that 

f (f(u» = (hI 0 u 0 h) 0 (h- I 0 U 0 h) (u) 

= h- I (u 2(h(u») 

= h- I (h(u» 

=u. 

In this manner, one can show that f has 2m points of period m. Thus f has infinitely 
many periodic points. These points are dense in [0, 1] since there is exactly one point 
of period m in each of the intervals [0, 2~)' (2~' 2'1;,,),···, e~,;;-I, 1). 

In general, it is very difficult to compute the periodic points of a function or even 
to show that points of a given period exist. To present a sample of what is known 
about periodic solutions, we now define the Sarkovskii ordering >- of the natural 
numbers as follows. The usual order of the odd integers greater than 1 is reversed: 
3 >- 5 >- 7 >- .... Next, for each nonnegative integer n we define 2n 3 >- 2n5 >
... >- 2n+l3 >- 2n+l5 >- .... Finally, all powers of 2 are added to the order in 
decreasing powers so that 3 >- 5 >- ... >- 2n3 >- 2n5 >- ... >- 2n+l3 >- 2n+l5 >
. .. >- 2n+ I >- 2n >- ... >- 22 >- 2 >- 1. Here, without proof, is the famous theorem 
due to Sarkovskii [241]. 

Theorem 4.21. (Sarkovskii's Theorem) If f is a continuous real-valued function 
on an interval I C R and Eq. (4.34) has a periodic solution with least period p 
that stays in I, then Eq. (4.34) has a periodic solution ofleast period q that stays 
inIifp>-q. 

A remarkable result follows from Sarkovskii's Theorem, that if Eq. (4.34) has a 
periodic solution with least period 3, then Eq. (4.34) has a periodic solution of least 
period n for every positive integer n. T. Li and J. Yorke [175] have shown that there 
is a difference equation u(t + 1) = f (u(t)) that has a solution with least period 5 
but does not have a solution with least period 3. 

In the following theorem we give conditions under which there is no periodic 
solution of u(t + 1) = f (u(t)) that has least period p. For this result and its gener
alizations, see C. McCluskey and J. Muldowney [189]. They call the following result 
the Bendixson-Dulac criterion for difference equations. 
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Theorem 4.22. Assume that p is a positive integer and that a(u) is a continu
ously differentiable function on a real interval I such that 

:U [a(u) + a (f(u)) + ... + a (iP-1 (U))] ~ 0 (4.35) 

on I with strict inequality if I(u) i= u. Then there is no periodic solution of 
u(t + 1) = I (u(t)) that has least period p or greater, according to Sarkovskii's 
ordering, that stays in I. 

Proof. Assume that {uo, U1, ... u p-d c lis a periodic orbit of u(t+ 1) = I (u(t)) 
with least period p. Then, since Uo i= Up-1 and Eq. (4.35) holds, 

o i= (Up-l ~ [a(u) + a (f(u)) + ... a (IP-1(u))] du 
Juo du 

= [a(u p- d +a (J(Up-1)) + ... +a (IP-1(up_d)] 

- [a(uo) + a (f(uo)) + ... + a (IP- 1 (uo))] 

= [a(up-1) +a(uo) + ... +a(up-2)] - [a(uo) +a(u1) + ... +a(up-1)] 

=0, 

which is a contradiction. Hence u(t + 1) = I (u(t)) does not have a periodic orbit 
with least period p that stays in I. It follows from Theorem 4.21 that the difference 
equation u(t + 1) = I (u(t)) has no solution with least period q, q >- p that stays in 
I, and the proof is complete. • 

Corollary 4.4. Assume that a (u) is a continuously differentiable function on a real 
interval I such that 

a'(u) + a' (f(u)) I'(u) ~ 0 (4.36) 

on I with strict inequality if I(u) i= u. Then there is no periodic solution of u(t + 
1) = I (u(t)) that has least period 2 or more that stays in I. 

Proof. Since, by the Chain Rule of differentiation, 

d 
du [a(u) + a (f(u))] = a' (u) + a' (f(u)) I' (u), 

this result follows immediately from the above theorem. • 
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Example 4.26. Apply the above corollary to the difference equation 

U(t + 1) = - arctan U(t). 

If we take a(u) = u for u E I == (-00,00) in Eq. (4.36), then 

a'(u) + a' (f(u)) /'(u) = 1 + /'(u) 

1 
=1---

1 +u2 

::::0 

for u E I and the inequality is strict if u i= O. By Corollary 4.4, the difference 
equation in this example has no periodic solution with least period 2 or more. 

Systems of difference equations can exhibit the phenomena we have described 
for single equations as well as a variety of other intricate behavior. Consider first the 
system 

UI(t + 1) = 1 + U2(t) - aui(t), 

U2(t + 1) = bUI (t), 
(4.37) 

which was discovered by the astronomer Henon [127]. If b = 0, Eq. (4.37) reduces to 
the scalar equation UI (t + 1) = l-aui(t), which can be transformed into Eq. (4.32) 
by a linear change of variable. Thus Henon's example contains the quadratic equa
tion as a special case! For b i= 0 the function /(UI, U2) = (1 + U2 - aui, bUI) is 
truly two-dimensional, mapping the plane one to one onto itself. 

Fix b = 0.3 and let a increase from zero. The fixed points of / are 

-.7 ± J.49 + 4a U2 
UI = -2a -"}". (4.38) 

The Jacobian matrix for / is 

[-2au l 1] 
.3 0' 

with eigenvalues A = -aUI ± Ja2ui + 0.3. From Corollary 4.3, a fixed point 
is asymptotically stable if IAI < 1 for both eigenvalues. It follows that the fixed 
point in Eq. (4.38) obtained by selecting the plus sign is asymptotically stable for 
a < .3675. As a increases beyond .3675, a pair of asymptotically stable points of 
period 2 appear, and continue to attract nearby solutions until a = .9125, where we 
begin to observe asymptotically stable points of period 4. This doubling of period 
continues, as in the case of Eq. (4.32), up to a certain value of a, where behavior of 
solutions becomes more complex. 
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Fig. 4.21 The Henon attractor 

Around a = 1.4, an interesting phenomenon occurs. There is a set of points of 
parabolic shape (see Fig. 4.21) that attracts all nearby solutions (a strange attractor?). 
Some progress in the understanding of this attractor has been made by Benedicks and 
Carleson [27]. See also Coomes, Kocak, and Palmer [54] for a discussion of periodic 
points of large period. 

The Henon attractor in Fig. 4.21 appears to display the characteristics of a "frac
tal." Closer examination of the boxed region, which seems to contain three dotted 
lines, reveals that the lower line is single, the middle line is actually double, and the 
upper line is a triple of lines (see Fig. 4.22). Further magnification of the triple lines 
yields a similar structure. This similarity appears to extend to all scalings, provided 
that enough points are plotted. 

Henon's work was motivated by a famous system of three differential equations 
studied by Lorenz [181]: 

dx 
- = s(y -x), 
dt 
dy 
- =rx -y-xz, 
dt 
dz 
- = -bz+xy. 
dt 

These equations approximately model the motion of fluid in a horizontal layer that 
is heated from below. For the parameter values s = 10, b = ~, and r = 30, there 
is a complicated, double-lobed set that attracts nearby solutions (see Fig. 4.23). The 
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··1 ...... .... -... ~ .. 

Fig. 4.22 Enlargement of a portion of the attractor 

'. 

motion of solutions near this attractor can be studied by computing the successive 
intersections (in a fixed direction) of a solution with the plane z = 29. The resulting 
sequence of points, called the "Poincare map" after Henri Poincare, is plotted in 
Fig. 4.24. The intersection points form a pattern of numerous closely packed line 
segments much like those in the Henon attractor. Other characteristics of chaotic 
motion are also present. 

Another interesting example is the predator-prey model (Smith [243]): 

Ul(t + 1) = aUl(t)(1 - Ul(t» - Ul(t)U2(t), 

1 
U2(t + 1) = bUl (t)U2(t), 

(4.39) 

which reduces to Eq. (4.32) when U2 = O. Let b = .31 and let a increase from a 
value of one. Up to about a = 2.6, the system has an asymptotically stable fixed 
point. As a increases beyond 2.6, the fixed point expands into an "invariant circle," 
a set topologically like a circle which captures the points of a solution sequence 
(see Fig. 4.25). When a > 3.44, the invariant circle breaks up into a complicated 
attracting set (see Fig. 4.26). 

The study of chaotic behavior, strange attractors, and other geometrically compli
cated phenomena is an emerging branch of mathematics. Many of the terms associ
ated with these studies were coined in the 1970s and 1980s. The modem availability 
of small, powerful computers has made experimentation with systems of nonlinear 
equations possible for anyone who wishes to investigate these phenomena. In ad
dition, the importance of chaos in mathematical modeling is being recognized in 
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Fig. 4.23 The Lorenz attractor 
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Fig. 4.24 A Poincare section of the attractor 

fields ranging from business cycle theory to the physiology of the heart. As new 
methods for describing and analyzing chaotic behavior continue to be developed, we 
are beginning to come to a better understanding of the global behavior of nonlinear 
systems. 
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EXERCISES 

Exercises 

Section 4.1 

4.1 Convert the following second order system 

v(t + 2) - 6v(t + 1) + 4w(t + 1) - 3v(t) + w(t) = 0, 

w(t + 2) + w(t + 1) + 3v(t + 1) - 2w(t) = t3t 

into a first order system like Eq. (4.1). 

4.2 Show that the characteristic equation for 

y(t + 2) + ay(t + 1) + by(t) = 0 

is the same as the characteristic equation of the companion matrix. 

187 

4.3 Assume that a population is broken up into two classes: juveniles (those too 
young to have children) and adults. Let Ul (t), U2(t) be the number of juveniles and 
adults, respectively, after t years. Write an equation for the population vector, given 
that a is the fraction of juveniles that become adults, d is the fraction of adults that 
survive, and c is the average number of newborns that an adult produces each year. 

4.4 Find the spectrum and the spectral radius. 

(a) [; !1 J. (b) 

(c) [!s ~J. (d) 

Also find the eigenvectors in parts (a) and (b). 

4.5 Use Eq. (4.6) to solve u(t + 1) = Au(t) if 

(a) A is the matrix in Exercise 4.4(a). 

(b) A is the matrix in 4.4(b). 

[~ 
2 

~l 0 
2 

[ ~l 
-6 
1 

-6 

4.6 Verify the Cayley-Hamilton Theorem for A = [~ ~ ]. 
4.7 Use Theorem 4.2 to solve 

y(t + 2) + 3y(t + 1) + 2y(t) = 0, 

y(O) = -1, y(1) = 7. 

4.8 Find At, (t ~ 0) for each of the following matrices A. 

(a) [; !1]. 

-6] 2 . 
-7 
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[i 
0 

~l (b) 1 
1 

[~ 
1 

~l (c) 1 
1 

[~ 
1 

~l (d) 1 
1 

4.9 Use Theorem 4.2 to solve the initial value problems. 

(a) u(t + 1) = [~2 ~2] u(t), u(O) = [i] . 
(b) u(t + 1) = [!1 !] u(t), u(O) = [ ~ll 

4.10 If A is the block diagonal matrix A ~ [A' A, ". A,]' eaoh Ai is a square 

matrix, and all other entries in A are zero, then A' ~ [A\ Al ". At]' Using this 

fact and Theorem 4.2, find A' if A ~ [~ ~3 ;l 
4.11 Compute At, (t ~ 0) if 

(Note: A has complex eigenValues.) 

4.12 Solve, using Theorem 4.3. 

(a) u(t + 1) = [; !1] u(t) + [~] , u(O) = [~] . 

~) u(t + I) ~ [~ : ~] u(t)+ [H u(O) ~ m 
4.13 Use Theorem 4.3 to solve the system in Example 3.13. 
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Section 4.2 

4.14 For which of the following systems do all solutions converge to the origin as 
t ~ oo? 

(a) u(t + 1) = [~~1 :~] u(t). 

(b) u(t + 1) = [~ ~ ~] u(t). 
1 -3 3 

(e) U(I + t) = [~i it J}(I)' 
4.15 If r(A) > 1, show that some real solution u(t) ofEq. (4.4) is unbounded. 

4.16 For which of the following systems does Eq. (4.13) hold for every solution? 

(a) u(t + 1) = [!3 ~2] u(t). 

(b) u(t + 1) = [; ~] u(t). 

(c) u(t + 1) = [~ ~1 ~] u(t). 
00] 

4.17 Show that the converse of Theorem 4.6 is not true. (Hint: consider Exer
cise 4. 16(c).) 

4.18 Prove the following: if the characteristic equation for 

y(t + n) + Pn-Iy(t + n - 1) + ... + POy(t) = 0 

has a mUltiple characteristic root A with IAI = 1, then the difference equation has an 
unbounded solution. 

4.19 Determine the stability of the American bison population in Example 4.1. Is 
the answer good news for the bison? 

4.20 Find the stable subspace S for each of the following: 

(a) u(t + 1) = [~ ~i] u(t). 

[.1 1 0] 
(b) u(t + 1) = 0 .1 1 u(t). 

o 0 2 

(e) U(I + l) = [~ i !}(I). 
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4.21 For the system in Exercise 4.20(b), show that if u(O) is not in the stable sub
space, then lu(t)1 -+ 00 as t -+ 00. 

4.22 Find the dimension of the stable subspace in the American bison model, Ex
ample 4.1. 

4.23 Find the real two-dimensional stable subspace for 

u(t+l)~ [i 
Section 4.3 

1 
2: 
1 -1] 

~ u(t). 

4.24 Sketch a phase plane diagram for the system u(t+l)=Ju(t) if J has the form 
given in part (b) of Theorem 4.8 and A = !-. 
4.25 Sketch phase plane diagrams for each of the following systems, and identify 
which of the cases discussed in Section 4.3 is represented. 

(a) u(t + 1) = [~ :J u(t). 

(b) u(t + 1) = [~ ~J u(t). 

(c) u(t + 1) = [~1 it'] u(t). 

[-3 _2] 
(d) u(t + 1) = 5 1/ u(t). 

4.26 Each of the following systems has complex eigenvalues. Determine whether 
the system represents case 5, 6, or 7, and sketch a phase plane diagram. 

(a) u(t + 1) = [~2 -;IJ u(t). 

(b) u(t + 1) = !- [-~3 ~7 J u(t). 

(c) u(t + 1) = [!2 ~~ J u(t). 

4.27 For each of the following systems, the origin is a saddle. Sketch the phase 
diagrams and discuss the differences in the three systems. 

(a) u(t + 1) = [J5 ~~ J u(t). 

(b) u(t + 1) = [~9 _\3 J u(t). 

[ -13 3J (c) u(t + 1) = T ~ u(t). 
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4.28 For each of the following matrices, compute the real canonical form J, solve 
the system u(t + 1) = Ju(t), and sketch the phase diagram. 

(a) 1~ [; ;]. 

(b) ! [; iJ. 
4.29 Consider the system u(t + 1) = [~ -~9 ] u(t), which experiences a bifurca

tion at A = 1. Sketch a phase diagram for each of the following cases: 

(a) A < 1. 

(b) A = 1. 

(c) A> 1. 

Section 4.4 

4.30 Show that 

1 [ (J3)t + (-J3)t 
cI>(t) = 2t+1 (J3)t+1 + (-J3)t+1 

is a fundamental matrix for 

(J3)t+1 + (-J3)t+1] 
(J3)t + (-J3)t 

u(t + 1) = [2+(~l)' 
4.31 For the system in Exercise 4.30, 

2 u(t). 
2+(-1)' ] 

o 

(a) Compute explicitly the periodic matrix function P(t) and the non-singular ma
trix B so that cI>(t) = P(t)Bt , as in Theorem 4.13; 

(b) Determine the behavior of the solutions as t ~ 00. 

4.32 Compute the square root of [i ; l 
4.33 For the following system, compute the Floquet multipliers and determine the 
behavior of solutions as t ~ 00: 

[ 
0 cos 21ft] 

y(t + 1) = 21ft 0 3 y(t). 
-cosT 

Section 4.5 

4.34 Show that the real solutions to the following are not defined for all t 2: o. 
(a) u(t + 1) = 2u(t) + ",100 - u(t) with u(O) = 10. 
(b) u(t + 1) = l-;(t) with u(O) = 3. 
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4.35 Find all fixed points for the following functions: 

(a) f(u) = 4u(1 - u). 

(b) f(u) = u + sin8u. 

4.36 Find all periodic points and their periods. 
(a) f(u) = _u3 . 

(b) f(u) = u - u2 • 

(c) f ([:~D = ! [-1 ~] [:~]. 
4.37 Show that all solutions of 

I +xn 
Xn+l =-

Xn-l 

with initial conditions Xo > 0, Xl > 0, are periodic with period 5. 

4.38 Use the staircase method to investigate the asymptotic behavior of solutions of 
u(t + 1) = f(u(t)) for 

(a) f = u2 • 

(c) f = 3u + 2. 

(b)f=u3 . 

(d) f = -u + 1. 

4.39 Use Theorem 4.17 to test stability of the fixed points for the functions in Exer
cise 4.38. 

4.40 Show by the following methods that f = !(u3 + u) has one asymptotically 
stable fixed point and two unstable fixed points. 

(a) The staircase method. 

(b) Theorem 4.17. 

4.41 For the exponential population model 

U - u er (1-ur/K) 1+1 - t , 

find the fixed points and determine for what values of the parameters rand K they 
are asymptotically stable. 

4.42 Despite the fact that each of the functions u, u - u3 , and u + u3 has derivative 
1 at u = 0, show that their stability properties at u = ° are different. 

4.43 Show that the periodic points of 

f ([u I ]) = ~ [../2 ../2] [u I ] 
U2 2 -../2 ../2 U2 

are stable but not asymptotically stable. 
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4.44 Define 

f(u) = {~' 
0, 

u =1= 0 U2 
, and V(u) = --4' 

u=o l+u 
Show that V is a Liapunov function for f at 0 but 0 is not stable. Does this example 
contradict Theorem 4.18? 

4.45 Let Ol and f3 be any numbers and let n > 1. Use a Liapunov function to show 
that the origin is asymptotically stable for 

f [u 1] = [OluI ] . 
U2 f3uz 

For what initial points do the solutions converge to the origin? 

4.46 Carry out the instructions in Exercise 4.45 for the system in Example 4.23. 

4.47 
(a) Use the Secant Method to approximate the zero of the function h(x) = 2e-2x -

xlI' Specifically, let Zo = 0 and Zl = 1, and use Eq. (4.29) to compute Z2 

and Z3. 

(b) Use a graph to show that the Secant Method fails to find the zero of the function 
in part (a) if we choose zo = 2 and Zl = 3. 

4.48 Show that [~] is asymptotically stable for 

if 0l2, f32 < 1, using 

(a) Theorem 4.18. 
(b) Theorem 4.19. 

[ 
aU2(t) ] 

[ u1] (t + 1) = l+uT(t) 
U2 fJUI (t) 

l+u~(t) 

4.49 Use the remark following the proof of Theorem 4.19 to show that both of the 
fixed points of 

[ u 1] [2UI(t) - 2~~~~(~~t)] 
U2 (t + 1) = 2u) (t)U2(t) 

I+Ul (t) 

are unstable. (This is a special predator-prey model; see Example 4. 17(d).) 

4.50 Suppose that f ( v) = v, f is continuous in a ball B about v and V is a Liapunov 
function for f in B such that for each u =1= v in B there is a positive integer T so that 
V(fT (u)) - V(u) < O. Show that v is asymptotically stable. 

4.51 Use Exercise 4.50 to show that the origin is asymptotically stable for the system 
in Exercise 4.48 if 012 = 1 and f32 < 1, or 012 < 1 and f32 = 1. 

4.52 Use Theorem 4.19 to solve Exercise 4.51. 
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Section 4.6 
4.53 Find a periodic point ofleast period 4 for u(t + 1) = 4u(t)(1 - u(t». 

4.54 Show that u = a~l is unstable as a fixed point of f 0 f for a > 3 if f = 
au(1 - u). 

4.55 Show that the periodic points of least period 2 are asymptotically stable for 
Eq. (4.29) if 3 < a < 1 + -./6. 
4.56 
(a) Show that u(t) = cot(2tOo) solves the equation u(t + 1) = !(u(t) - utt». 
(b) Find a probability density function for u(t) and use it to break the real line into 

four intervals of equal probability. 
(c) Test your answer in part (b) by computing the first 500 iterations of u(t) for 

some initial value u(O) and sorting the values into the four subintervals. 

4.57 Show that the solutions in Exercise 4.56 have sensitive dependence on initial 
conditions. 

4.58 Consider u(t + 1) = g(u(t», where g is the "baker map": 

g(u) = !2U, 0.::: u .::: 0.5 
2u - 1, 0.5 < u .::: 1. 

Show that solutions exhibit sensitive dependence on initial conditions. 

4.59 For the tent map in Example 4.24, show that there is exactly one point of 
period 2 in each of the intervals [0, .25), (.25, .5), (.5, .75), and (.75,1). 

4.60 Prove that the function h defined for the tent map is not onto, in other words, 
that there is a binary sequence that is not associated with any initial point in [0, 1]. 

4.61 Show that the baker map in Exercise 4.58 has 2m points of period m. 

4.62 Show that the difference equation u(t + 1) = ~u\t) - u2 (t) + !u(t) has no 
solutions of least period 2 or more (in the Sarkovskii ordering). 

4.63 Another indication of the chaotic behavior of a function f is the presence of a 
"snap-back repellor." This is an unstable fixed point p such that the repelling domain 
for p (the set of u so that If(u) - pi > lu - pI) contains a point q so that ft (q) = p 
for some positive integer t. Show that Eq. (4.32) with a = 4 has two snap-back 
repellors. 

4.64 Verify that Eq. (4.37) with b = .3 has an asymptotically stable fixed point for 
0< a < .3675. 

4.65 Verify that Eq. (4.37) with b = .3 has asymptotically stable points of period 2 
if .3675 < a < .9125. 

4.66 Use a computer to check the claims made about the predator-prey system of 
Eq. (4.39). 



5.1 Introduction 

Chapter 5 
Asymptotic Methods 

In the last chapter we saw that it is often possible to predict the behavior of solu
tions of difference equations for large values of the independent variable, even for 
systems of nonlinear equations. We will go a step further in this chapter and try to 
find approximations of solutions that are accurate for large t. For simplicity, the dis
cussion will be limited to single equations. This introductory section does not deal 
with difference equations but does present a number of the basic concepts and tools 
of asymptotic analysis. 

Suppose we wish to describe the asymptotic behavior of the function (4t 2 + t) ~ 
as t -+ 00. Since 4t2 is much larger than t when t is large, a good approximation 

should be given by (4t2 ) ~ = 8t3 • The relative error, which determines the number of 
significant digits in the approximation, is given by 

By the Mean Value Theorem, 

(4t2 + t)~ - 8t3 

8t3 

3 3 1 
(I + x)2 = 1 + -(I + c)2x 

2 

for some 0 < c < x, so 

(4t2 + t)~ - 8t3 

8t3 

8t\1 + It)~ - 8t3 

8t3 

=(1+-)2-I=-(I+c)2 -, 13 3 1(1) 
4t 2 4t 

where 0 < c < Jr, and the relative error goes to zero as t -+ 00. This fact can also 
be expressed in the form 

. (4t2 + t)~ 
hm = 1. 

t--+oo 8t3 
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Definition 5.1. If limHOO ~g~ = 1, then we say that "y(t) is asymptotic to z(t) as 
t tends to infinity" and write 

y(t) '" z(t), (t ~ 00). 

We have (4t 2 + t) i '" 8t3, (t ~ 00). Some other elementary examples are 3t2~2t 
'" 3!2' (t ~ 00), and sinht '" ~, (t ~ 00). A famous nontrivial example is the 
Prime Number Theorem. Let 

n (t) = the number of primes less than t. 

Then 

(See Ribenboim [238].) 

t 
n(t) "'-, 

logt 
(t ~ 00). 

Definition 5.2. IflimHoo ~~g = 0, then we say that u(t) is much smaller than v(t) 
as t tends to infinity and write 

u(t) « v(t), (t ~ 00). 

The following expressions are equivalent: 

y(t) '" z(t), (t ~ 00) 

and 
y(t) - z(t) « z(t), (t ----+ 00). 

Also, if y(t) '" z(t), (t ~ 00), and if u(t) « z(t), (t ~ 00), then y(t) + u(t) '" 
z(t), (t ~ 00). For example, we have 

(t ~ 00) 

sincet2 logt« 8t3, (t ~ 00). 
Now let's return to our initial example and ask how we might display more precise 

information about the asymptotic behavior of (4t2 + t)L Since there is a constant 
M > o so that 

1 

(4t2 + t) i - 8t31 < M 
8t3 - t 

for t :::: I (M = ~~ will do), we say that the relative error goes to zero as t ~ 00 at 

a rate proportional to i. 
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Definition 5.3. If there are constants M and to so that lu(t)l::: Mlv(t)1 fort ~ to, 
then we say that u(t) is big oh of v(t) as t tends to infinity and write 

u(t) = 0 (v(t)) , (t ~ 00). 

We have 

_( 4_t_2 _+_t_)=-~ ___ 8_t_3 _ (~) 
8t3 - 0 t ' (t ~ 00), 

which is frequently written 

(t ~ 00). 

If a better approximation is desired, we first use Taylor's formula to find 

3 3 3 1 x 2 
(1 + x)2 = 1 + - x + - (1 + d) - ~ -

2 4 2 

for some d between 0 and x. Then 

3 ( 1 ) ~ (4t2 + t)2 = 8t3 1 + 4t 

3[ 3 3 11J = 8t 1 + 8t + 128(1 +d)-~ t 2 ' 

so 

(4t2 + t) ~ = 8t3 [ 1 + :t + 0 C~ ) J ' (t ~ 00). 

Since the "big oh" notation suppresses the constant M in Definition 5.3, we can 
in general deduce only that an O( ~) approximation is better than an O( t) approx
imation if t is "sufficiently large." Of course, in specific examples we can often be 
more precise. For instance, we have 

(4t2 + t)~ = 8t3 + 3t2 + ~(1 + d)-!t 
16 

>8t3 + 3t2 

>8t3 

for all t > 0, so the oeM estimate 8t3 + 3t2 is closer to (4t2 + t)~ than the oct) 
estimate 8t3 for all t > o. 
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Example 5.1. Recall from Exercise 1.15 that the exponential integral is 

En(x) = _e_dt , f oo -xt 

1 tn 
(x> 0). 

We can use integration by parts to analyze the asymptotic behavior of En(x) as 
x -+ 00: 

-dt=--- -dt. 100 e-xt e-X n 100 e-xt 

1 t n x x 1 tn+l 

Now, 

e +1 dt :::: e-xtdt = ~, f oo -xt fOO -x 

1 t n 1 x 

so for each fixed n, 

(x -+ 00). 

By using integration by parts repeatedly, we obtain for each positive integer k 

En(x) = e-x [1 _ ~ + n(n + 1) _ ... + (-ll n(n + 1) ... (n + k - 1) 
x x x 2 xk 

(x -+ 00). 

The series in brackets is called an "asymptotic series" since it gives improved 
information about asymptotic behavior with the addition of each new term. However, 
note that the infinite series 

Loo k n(n + 1) ... (n + k - 1) 
(-1) 

xk 
k=1 

diverges for each x by the ratio test. It follows that, for each fixed x, some finite 
number of terms yields an optimal estimate. 

Next, let's investigate the behavior of En(x) for large n. Using integration by 
parts with the roles of e-xt and In interchanged, we have 

-dt=--- ----dt. f oo e-xt e-x foo X e-xt 

1 t n n - lIn - 1 t n- 1 

Since 

looe~ looe~ e~ 
--dt :::: --dt = --, 

1 tn - 1 1 t n - 1 n - 2 
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(n --+ 00), 

where x is any fixed positive number. A second integration by parts gives 

En (x) = -- 1 - -- + 0 , e-X 
[ x ( 1 )] 

n - 1 n - 2 (n - 2)(n - 3) 
(n --+ 00), 

and the calculation can be continued to any number of terms. Note that we could 

write 0(*) instead of 0(n~2) and 0(n12 ) instead of 0 Cn-2)1(n-3») without any 
loss of information. 

5.2 Asymptotic Analysis of Sums 
Chapter 3 presented a number of methods for solving linear difference equations 
in which the solutions involved sums such as Lk=l f(k). Since these sums do not 
usually have an explicit closed form representation, it is of interest to find asymptotic 
approximations of sums for large n. In the next example, as in Section 5.1, Taylor's 
formula is an essential ingredient in the approximation. 

Example 5.2. The solution of the equation 

Yn+l - nYn = 1, (n = 1,2,3, ... ) 

is 

Yn = (n - I)! [Yl + E ~! ] , (n 2: 2). 

The sum in brackets is a partial sum of the Taylor series for i J with (J = 1. From 
Taylor's formula, 

n-l 1 eC 

e= Lkl +., . n. 
k=O 

(0 < c < 1), 

so 

Then 

Yn =. (n - I)! [Yl + e - 1 - :~] 

= (n - I)! [Yl + e - 1 + 0 (~!) J. (n --+ 00). 

We conclude that for large n, Yn is approximately (Yl + e - l)(n - I)!, and the 
relative error goes to zero like ~. n. 
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The procedure used to obtain an asymptotic approximation in this example was 
successful because the infinite series converged to a known quantity and an error 
estimate for the difference between the finite sum and the infinite sum was available. 
In contrast, the next example is a highly divergent series in which the largest term 
determines the asymptotic behavior. 

Example 5.3. What is the asymptotic behavior of 

We begin by factoring out the largest term: 

n k n [ {(n - l)n-1 (n - 2)n-2 1 I] "k =n 1+ + + ... +-. 
~ nn nn nn 
k=l 

The sum in braces is less than 

1 1 1 1 n-2 (l)k 
;; + n 2 + ... + nn-1 = ;; L ;; 

k=O 

( )
n-1 

11 - * = 
n 

l_(l)n-1 
Since the expression n I is bounded, we have 

1-. 

(n ~ 00). 

Then the asymptotic value of Lk=l kk is given by the largest term with a relative 
error that approaches zero like * as n ~ 00. 

In a similar way, it can be shown that 

(n ~ 00). 

Consequently, the two largest terms ofthe series yield an O(I/n2) asymptotic esti
mate. 

For sums that are not one of the extreme cases considered in the last two examples, 
asymptotic information is usually more difficult to obtain. The summation by parts 
method can be useful since it may separate out the dominant portion of the sum. 
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Example 5.4. 
n-l 
L2k logk. 
k=l 

We begin by applying summation by parts: 

n-l n-l 
L2klogk = L~(2k)10gk 
k=l k=l 

By the Mean Value Theorem, 

so 

n-l 
= 2n log n - L 2k+ 1 ~ log k. 

k=l 

1 
~logk < k' 

n-l n-l (1) 
L2k+l~10gk < L2k+1 k 
k=l k=l 

201 

(5.1) 

= 1+--·-+--·-+···+----
2n [ n - 1 1 n - 1 1 n - 1 1 ] 

(n - 1) n - 2 2 n - 3 4 1 2n- 2 

2n n-l n - 1 1 

= (n - 1) L n - k . 2k- 1 . 
k=l 

It is easily checked that ~=k .:::: k when 1 .:::: k .:::: n - 1, so 

n-l 2n n-l k 
'"' 2k+1 ~ log k < -- '"' -L. (n - 1) L. 2k- 1 
k=l k=l 

(5.2) 

and the last sum is bounded by the ratio test. Using Eq. (5.2) in Eq. (5.1), we 
finally have 

I:: 2k log k = 2n log n [1 + 0 ( 1 ) ] ' 
k=l (n-1)10gn 

(n ~ 00). 

In this example, the asymptotic behavior of the sum is given not by the largest 
term but rather by twice the largest term. 

For a sum in which the terms are more slowly varying, the Euler summation 
formula (Theorem 2.10) is a valuable tool in establishing asymptotic behavior. The 
following example is of particular importance since it gives a good approximation 
for n! when n is large. 
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Example 5.5. Consider the sum Lk=llogk. From Theorem 2.10, we have, for 
i ~ 1, 

~ logn 
L."logk = n10gn - n + 1 + -2-
k=l 

+ ~ B2j [(2j -:- 2)! _ (2 . _ 2)!] 
~ (2j)! n2J-1 J 
J=l 

1 1n (2i - I)! + -.- 2' B2i(X - [x])dx. 
(21)! 1 x I 

Simplifying and rearranging, we have 

n i 
'" log n '" B2j 1 
L."logk = n 10gn - n + -2- + L." (2 ')(2 . _ 1) 2j-1 
k=l j=l J J n 

( 
i B2j 1 100 B2i(X - [x]) } + 1- L +- . dx 

j=l (2j)(2j - 1) 2i 1 x 21 

_ ~ 100 B2i(X ~ [x]) dx. 
2i n x 21 

(5.3) 

The expression in braces is independent of n; let's give it the name y(i). Now 
by Eq. (5.3) 

(i + 1) _ (i) = 100 (B2i+2(X - ~x]) _ B2i(X -.[X])) dx 
y y n (2i + 2)X21 +2 2ix21 

B2(i+1) 1 
(2i + 2)(2i + 1) n2i+1 

-+ 0, (n -+ 00), 

so y is independent of i as well. 
Equation (5.3) gives asymptotic estimates ofLk=llogk for each i = 1,2,···. 

For i = 2, we have 

~ logn 1 ( 1 ) L." log k = n log n - n + -- + - + y + 0 3" ' 
k=l 2 12n n 

(n -+ 00). (5.4) 

Exponentiation gives 

(n)n 1 +o( 1 ) n! = eY -; "jiie un ;;J, (n -+ 00) 
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or by Taylor's fonnula 

n! = eY (~)n ,,;n (1 + _1 + _1 + 0 (~)) , 
e 12n 288n2 n3 

(n -+ 00). (5.5) 

It remains to compute y in Eqs. (5.4) and (5.5). We will make use of Wallis' 
fonnula 

~ = lim [ 2·4· ... ·2n ]2 
2 n-+oo 1· 3 ..... (2n - 1) 2n + 1 

(See Exercise 5.18.) Now 

[ 
2.4 .... . 2n]2 = 24n(n!)4 

1 ·3· .... (2n - 1) 2n + 1 «2n)!)2 2n + 1 ' 

and from Eq. (5.5) 

so by Wallis' fonnula 

and finally 

Then Eq. (5.5) is 

_1_24n(n!)4 '" ~ e4Y(~)4nn2 

2n + 1 «2n)!)2 2n + 1 e2ye;)4n2n 

(n -+ 00), 

4 2 

n! = J2rrn (; r (1 + l~n + 28~n2 + 0 (:3)) , (n -+ 00). (5.6) 

Equation (5.6) is called Stirling's fonnula, and it gives a good estimate for n!, 
even for moderate values of n. The asymptotic series 

1 1 
1+-+--+··· 

12n 288n2 

turns out to be a divergent series. It can be shown that the best approximation for n! 
is obtained if the series is truncated after the smallest tenn. However, a few tenns 
suffice for most calculations. If n = 5, then n! = 120, while 



204 CHAPTER 5. ASYMPTOTIC METHODS 

and 

.J2. rr . 5 (~)5 (1 + _1_) c:::: 119.986. 
e 12·5 

The numbers generated by Eq. (5.6) are extremely large when n is large, so 
Eq. (5.4) is preferable for such computations. 

Using the methods of Example 5.5 together with additional properties of the 
gamma function, it can be shown that Stirling's formula is also valid for the gamma 
function 

i(t + 1) = .J2m (;y (1 + l~t + 28~t2 +" C~)), (t -+ 00). (5.7) 

(See DeBruijn [59].) 
We saw in Chapter 3 that the solutions of some linear equations can be repre

sented in terms of the gamma function. Stirling's formula can then be used to obtain 
asymptotic information. 

Example 5.6. Consider the first order linear equation 

1 
ttiu(t) - '2u(t) = O. 

We rearrange this equation to read 

t+1 
u(t + 1) = __ 2 u(t) 

t 

and apply the method of Example 3.3 to find the general solution 

u(t) = C i(t + ~) 
i(t) 

By Eq. (5.7), 

(t -+ 00). 

Simplifying and using the fact that limHoo (t~! ) t =,,;e, we obtain 

1 
u(t) '" Ct'i, (t -+ 00). 

This relation motivates the choice of the factorial series representation 

00 

u(t) = I>kt<-k+!) 
k=O 
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in Exercise 3.85 since the lead tenn is 

(1) r(t + 1) 1 
aot 2 = ao ~ aot 2 , 

r(t +!) 
(t -+ 00). 

One of the special sequences that is useful in the analysis of algorithms is the 
sequence of hannonic numbers, defined by 

n 1 
Hn=L:-

k=1 k 

for n = 1, 2, .... The Euler summation fonnula yields the following asymptotic 
fonnula: 

1 1 ( 1 ) 
Hn = log n + y + 2n - 12n2 +" n4 ' (5.8) 

where . (1 1 ) y = hm 1 + - + ... + - - log n :::: 0.577 
n->oo 2 n 

is Euler's constant (see Exercises 5.24 and 5.25). 
The asymptotic analysis of sums is discussed by DeBruijn [59] and Olver [200]. 

5.3 Linear Equations 
Here we introduce the study of the asymptotic behavior of solutions of homogeneous 
linear equations. If the equation has constant coefficients, the asymptotic behavior 
is available from an expression for the exact solution. Nevertheless, we begin by 
considering this case since there is an aspect of the analysis that carries over to the 
more general setting. 

Let u (t) be any nontrivial solution of the equation 

u(t + 2) + PIU(t + 1) + pou(t) = 0, 

where PO, PI are constants and the characteristic roots AI, .1,.2 satisfy 1.1,.11 > 1.1,.21. 
Then u(t) = aAi + bA~ for some constants a, b. If a i= 0, then 

u(t + 1) 

u(t) aAi + bA~ 
Al + £.1,.1 (.1..2 )1+1 

a Al 

- --I-+-£-(--'A-2-')""'t - -+ AI, 
a Al 

(t -+ 00). 
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Ifa = 0, then 

u(t + 1) bAt+1 
-"'"---,-c---'- = _2_ = A2, 

u(t) bA~ 

SO in any case the ratio u~t)l) converges to a root of the characteristic equation as t 
goes to infinity. 

If IAII = IA21, this property may fail. The equation 

u(t + 2) - u(t) = 0 

has characteristic roots A = ±l (so IAII = IA21), and for the solution u(t) = 2 + 
(-1)t we find 

u(t + 1) 2 + (_l)t+1 

u(t) - 2 + (-l)t . 

This expression produces a sequence that alternates between 3 and ~. 
A fundamental result in the analysis of asymptotic behavior is a theorem due to 

H. Poincare, which states that certain linear homogeneous equations have the prop
erty of convergence of ratios of successive values. 

Definition 5.4. A homogeneous linear equation 

u(t + n) + Pn-I (t)u(t + n - 1) + ... + po(t)u(t) = 0 (5.9) 

is said to be of "Poincare type" iflimt-HJO pdt) = Pk for k = 0, 1,··· ,n - 1 (i.e., 
if the coefficient functions converge to constants as t goes to infinity). 

Theorem 5.1. (Poincare's Theorem) If Eq. (5.9) is of Poincare type and if the 
roots AI, ... ,An of An + Pn_IAn- 1 + ... + PO = 0 satisfy IAII > IA21 > ... > 
IAnl, then every nontrivial solution u ofEq. (5.9) satisifes 

for some i. 

lim u(t + 1) = Ai 
t-+oo u(t) 

Since the proof of Poincare's Theorem is rather technical, we delay giving it until 
the end of this section. 

Poincare's Theorem leaves unanswered a natural question: is it true that for every 
characteristic root Ai there is a solution u(t) so that u~t)l) -+ Ai, (t -+ oo)? The 
following result due to O. Perron gives an affirmative response. 
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Theorem 5.2. (Perron's Theorem) In addition to the assumptions of Theorem 
5.1, suppose that po(t) "1= ° for each t. Then there are n independent solutions 
UI, ... ,Un ofEq. (5.9) that satisfy 

lim Ui(t + 1) = Ai, 
1-+00 Ui (t) 

(i = 1, ... ,n). 

See [Meschkowski 190] for a proof of Perron's Theorem. 

Example 5.7. (t + 2)u(t + 2) - (t + 3)u(t + 1) + 2u(t) = 0. 

Dividing through by t + 2, we obtain 

t+3 2 
u(t + 2) - --u(t + 1) + --u(t) = 0, 

t+2 t+2 

and the equation is of Poincare type since :!~ -+ 1 and 1~2 -+ ° as t -+ 00. 

The associated characteristic equation is A 2 - A = 0, so Al = 1 and A2 = 0. 
By Perron's Theorem, there are independent solutions UI, U2 so that u~<:t)l) -+ 1, 

u2(t+I) -+ ° as t -+ 00 
U2 (t) . 

For most purposes, we would like to have information about the asymptotic be
havior of the solutions themselves. Knowing the limiting value of u~t)l) gives partial 
information but does not immediately yield an asymptotic agproximation for u(t). 
For example, some of the functions that satisfy lim/-+oo u~t)) = 1 are u(t) = 5, t, 

3 2 + 12 67 .ji -.ji 1 I t ,t ,e ,e '/3-7' ogt, etc. 

Theorem 5.3. Suppose u~t)l) -+ A (t -+ 00). 

(a) If A "1= 0, then u(t) = ±A1eZ(/) with z(t) « t, (t -+ 00). 

(b) If A = 0, then lu(t)1 = e-z(/) with z(t) »t, (t -+ 00). 

Proof. Let v(t) = 1 u~;) I. Then 

v(t + 1) = I ut!ll) I = 1 ~ u(t + 1) 1-+ 1 
v(t) ~ A u(t) , 

At 

(t -+ 00). 

Since v(t) is positive for t sufficiently large, we can let z(t) = log v(t). Then 

v(t + 1) 
z(t + 1) - z(t) = log -+ 0, 

v(t) 
(t -+ 00). 

Let E > ° and choose m so that Iz(t + 1) - z(t) I < E for all t > m. For t > m, 

1 

Iz(t) - z(m)l:::: L Iz(k) - z(k - 1)1 
k=m+l 
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< E(t - m), 

SO 

Iz(t)1 < E(t - m) + Iz(m)1 

or 

I z~) I < E (1 -7) + I z(~) I 
< 2E 

for t sufficiently large. Since E > 0 was arbitrary, z(t) « t, (t ~ (0), and the proof 
of (a) is complete. 

The proof of part (b) is left as an exercise. • 

If A = 0, then Theorem 5.3(b) implies that u(t) must tend to zero faster than 
e-C1 for every positive constant c. For A > 0, Theorem 5.3(a) is equivalent to the 
statement that (A - 8)1 « I u (t) I « (A + 8)1, (t ~ (0) for each small 8 > 0 (see 
Exercise 5.30). 

Example 5.7. (continued) In Example 3.26, we obtained one solution of 

(t + 2)u(t + 2) - (t + 3)u(t + 1) + 2u(t) = 0, 

1 () - 2' N th u(t+I) - 2 0 ak name y, u t - fT. ote at U(t) - 1+1 ~ as t ~ 00, so we can t e 
2' 

U2(t) = fT' 
Let's try to produce more information about UI (t). We know that 

UI (t + 1) --....:... = 1 +qJ(t), 
UI (t) 

where qJ(t) ~ 0 as t ~ 00. Writing the difference equation in the form 

(t+2)UI(t+2)_(t+3)+2 UI(t) =0 
uI(t+l) uI(t+l) 

and substituting Eq. (5.10), we have 

2 
(t + 2) (1 + qJ(t + 1)) - (t + 3) + ( ) = o. 

l+qJt 

By the Mean Value Theorem (applied to the function I';u)' 

2 
1 + qJ(t) = 2 + "(qJ(t)) , (t ~ (0), 

(5.10) 
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SO we have 

(t + 2) (1 + q;(t + 1)) - (t + 3) + 2 + 0 (q;(t)) = O. 

Rearranging, 

q;(t + 1) = -- + 0 - , 1 (q;(t)) 
t+2 t 

(t -+ 00). 

We conclude that 

q;(t) = __ 1_ + 0 (~) 
t + 1 t 2 ' 

(t -+ 00). 

Substitute this last expression into Eq. (5.10) to obtain 

ul(t+l)= t~1 (1+0C;))Ul(t). 

As in Section 3.1, we solve this equation by iteration, beginning with a value 
t = to so that Ul(tO) i= 0 and 1 + O(~) > 0 for t ~ to: 

Ul (t) = II S : III (1 + 0 C12 ) ) Ul (to) 

= 7Ul (to) II (1 + 0 CI2)) . 

In order to complete the calculation, we need the following theorem. 

Theorem 5.4. Assume that both L~to as and L~to a; converge and 1 +as > 0 

for S ~ to. Then limHoo TI~:: (1 + as) exists and is equal to a positive constant. 

The proof is outlined in Exercise 5.34. 
Returning to our calculation, we see that limt--->oo tUl (t) = C i= 0, so we finally 

have 
C 

Ul(t)~-
t ' 

(t -+ 00). 

Frequently, an equation that is not of Poincare type can be converted to one of 
Poincare type by a change of variable. 
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Example 5.8. u(t + 2) - (t + l)u(t + 1) + u(t) = O. 

If this equation has a solution that increases rapidly as t increases, then the terms 
u(t + 2) and (t + l)u(t + 1) will increase more rapidly than the term u(t), so 

u(t + 2) ,...., (t + l)u(t + 1), (t ---+ 00). 

This relation suggests that u(t) may grow as (t - 1) does! Consequently, we 
factor off this behavior by making the change of variable 

u(t) = (t - l)!v(t). 

The resulting equation for v is 

v(t) 
v(t + 2) - v(t + 1) + = 0, 

t(t + 1) 

which is of Poincare type with characteristic roots A = 0, 1. As in the previous 
example, set 

v(t + 1) 
---'-------'- = 1 + (t ) v(t) q;, 

where q;(t) ---+ 0 as t ---+ 00, and substitution yields an equation for q;: 

1 1 
q;(t + 1) + = O. 

t(t + 1) 1 + q;(t) 

Since l+~(t) = 1 + 0 (q;(t)) as t ---+ 00), 

1 
q;(t + 1) = - t(t + 1) (1 + 0 (q;(t))) , (t ---+ 00), 

so 

q;(t) = 0 C; ) , (t ---+ 00). 

Then 

v(t + 1) = (1 + 0 C; ) ) v(t), 

and Theorem 5.4 implies 

v(t) ,...., C, (t ---+ 00), 

for some constant C. Finally, we have 

Ul(t) ,...., C(t - I)!, (t ---+ 00). 

Next, set 
v(t + 1) _ () 

v(t) - 1/1 t , 
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where 1fr(t) --+ 0 as t --+ 00. Then 1fr satisfies 

1 
1fr(t) = t(t + 1) + 1fr(t)1fr(t + 1), 

or 

(t --+ 00). 

It follows that 

v(t+l)= 1 (1+0(;))V(t), 
t(t + 1) t 

Iteration and Theorem 5.4 yield a constant D so that 

D 
v(t) '" --

t!(t - I)!' 
(t --+ 00), 

and we obtain a second solution U2(t) that satisfies 

D 
U2(t) '" -

t! ' 
(t --+ 00). 

(t --+ 00). 

211 

We present a final example that is somewhat more complicated than the previous 
ones. 

Example 5.9. u(t + 2) - 3tu(t + 1) + 2t2u(t) = O. 

If we seek a rapidly increasing solution, it is not clear in this case that any term is 
asymptotically smaller than the others. In fact, a growth rate of t! would roughly 
balance the size of the three terms. Let 

u(t) = t!v(t). 

Then v(t) satisfies 

v(t + 2) - 3 - -- v(t + 1) + 2 1 - v(t) = 0, ( 6) (3t + 2 ) 
t + 2 (t + l)(t + 2) 

which is of Poincare type. By Perron's Theorem, there are independent solutions 
VI, V2 so that 

as t --+ 00. 

_V2_(;....t _+_1-,-) --+ 2 
V2(t) 

Let v1v<:t)I) = 1 + q;(t) so that limt-+oo q;(t) = O. A short computation leads to 

q;(t + 1) - 2q;(t) = - (t + l~t + 2) + 0 (q;;t)) + 0 (q;2(t)), (t --+ 00). 
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If we call the righthand side of the preceding equation r(t), then the general 
solution is (by Theorem 3.1) 

q;(t) = 21- 1 (c + I: r~:») . 
s=l 

To satisfy the condition lim(-+oo q;(t) = 0, choose C = - L~l ri:); then 

and 

or 

~ r(s) 
q;(t) = - ~ 2s- t+l 

s=1 

00 1 
Iq;(t) I ::::; ~~ Ir(s)1 L 2s-1+1 

s=1 

1q;(t)1 ::::; max Ir(s)l· 
s~t 

It follows that q;(t) = 0(1/t2) as t --+ 00, so by Theorem 5.4, V1(t) '" C1, 

(t --+ 00). A solution u 1 (t) of the original equation then satisfies 

Now set 

(t --+ 00). 

V2(t + 1) = 2 + 1/I(t), 
V2(t) 

with 1/I(t) « I (t --+ 00). We find 

t I _ 1/I(t) _ 3t + 4 0 ( 2 t ) 
1/1( +) 2 - (t + I)(t + 2) + 1/1 () , (t --+ 00). 

Since 
3t + 4 _ ~ + 0 (~) 

(t + I)(t + 2) - t t 2 ' 
(t --+ 00), 

the general solution is 

(t --+ 00). 

From Exercise 5.17, 

(t --+ 00). 
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Since 

(t --+ (0), 

we have 

(t --+ (0). 

Then V2 satisfies 

V2 (t + 1) = 2 ( t ~ 3) [1 + 0 (t~ ) J V2 (t), 

and we find by iteration 

V2(t) rv C2t32t-1, (t --+ (0), 

so finally 
U2(t) rv C22t-1(t + 3)!, (t --+ (0). 

For a summary of what is known about the asymptotic behavior of solutions of 
linear difference equations, see the appendix of Wimp [260]. Other useful refer
ences are Batchelder [24], Birkhoff and Trjitzinksy [29], Culmer and Harris [58], 
and Immink [141]. The method used in this section can also be applied in the case 
of repeated characteristic roots (Kelley [149]). 

Proof of Poincare's Theorem. Since the main ideas of the proof are evident in the 
case n = 2, we consider that case only and write Eq. (5.9) in the form 

u(t + 2) + (a + a(t» u(t + 1) + (b + f3(t» u(t) = 0, (5.11) 

where a(t), f3(t) --+ 0 as t --+ 00. Recall that the roots AI, A2 of the characteristic 
equation A 2 + aA + b = 0 satisfy IA11 > IA21. 

Let u(t) be a nontrivial solution ofEq. (5.11) and letx(t), y(t) be chosen to satisfy 

x(t) + y(t) = u(t), 

A1X(t) + A2y(t) = u(t + 1). 

The system (5.12) has for each t a unique nontrivial solution since 

det [:1 :2J = A2 - Al #: 0 

and either u(t) or u(t + 1) is not zero. 
Using Eqs. (5.11) and (5.12), we arrive at the system 

(5.12) 

x(t + 1) = A1X(t) + (A2 - A1)-1 [(A1a(t) + f3(t» x(t) (5.13) 



214 CHAPTER 5. ASYMPTOTIC METHODS 

+ ()"2a (t) + f3(t» y(t)] , 

yet + 1) = A2y(t) + (AI - A2)-1 [(A2a(t) + f3(t)) yet) (5.14) 

+ (Ala(t) + f3(t» x(t)]. 

(See Exercise 5.37.) 
Choose E > ° small enough that I~~I~: < 1, and choose N so large that 

(i=1,2) 

if t ::: N. 
Let t ::: N and suppose Ix(t)1 ::: ly(t)l. From Eq. (5.13), 

E 
Ix(t + 1)1::: IAlllx(t)1 -"2 (lx(t)1 + Iy(t)!) 

::: (IAII- E) Ix(t)l· 

From Eq. (5.14), 

E 
Iy(t + 1)1 :s IA21Iy(t)1 + "2 (ly(t)1 + Ix(t)l) 

:s (IA21 + E) Ix(t)l. 

Taking a ratio of these inequalities, we have 

I yet + 1) I IA21 + E < < 1, 
x(t + 1) - IAII - E 

so Ix(t + 1)1 > Iy(t + 1)1, and inductively we conclude that Ix(s)1 > ly(s)1 for all 
s > t. Consequently, there is a number M ::: N so that either 

Ix(t)1 > ly(t)1 for t ::: M (5.15) 

or 

ly(t)1 > Ix(t)1 for t ::: M. (5.16) 

Suppose that Eq. (5.15) is true. There is a number r in [0, 1] (the "limit superior") 
so that for each 8 > ° 

for sufficiently large t, and 

I yet) I < r + 8 
x(t) 

I yet) I > r - 8 
x(t) 

(5.17) 

(5.18) 
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for infinitely many values of t. 
From Eqs. (5.14) and (5.13), 

Iy(t + 1)1.:::: IA21Iy(t)1 + Elx(t)l, 

Ix(t + 1)1 ~ IAlllx(t)l- Elx(t)1 

for t ~ M, so by Eq. (5.18) 

Iy(t+ 1)1 IA211%t1 +E r - 8 < < ---'------''-----
x(t + 1) - IAll - E 

for infinitely many values of t. By Eq. (5.17) 

or 

IA21(r + 8) + E 
r-8<----

IA1I- E 

8(IAll + IA21- E) + E 
r< 

IAII-IA21- E 
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Since E and 8 may be chosen as small as we like, it follows that r = O. Thus if 

Eq. (5.15) is true, then limHoo ~m = O. From Eq. (5.12), ~~~~ --* 1 and u~t)l) --* 
, Th u(Hl) , 
11.1 as t --* 00. en """""iiTt) --* 11.1 as t --* 00. 

In a similar way, Eq. (5.16) implies lim Xy«~)) = 0 and lim (u(t + l)fu(t» = A2. 
t-+oo t-+oo • 

5.4 Nonlinear Equations 
In Section 4.5, we considered stability questions for the equation 

u(t + 1) = I (u(t» . (5.19) 

These equations are of great importance in numerical analysis, especially for approx
imating roots for nonlinear equations. For example, Newton's Method for solving 

g(y) = 0 is of this type, with I(u) = u - g/~~). We will analyze more closely 
the asymptotic behavior of solutions of Eq. (.1.19) as t --* 00 in this section. For 
simplicity, I will be a real-valued function of a real variable. Also, we assume that 
1(0) = 0 for most of the discussion since taking zero to be the fixed point simplifies 
calculations and the fixed point can always be translated to zero. 

We begin by examining the case that 0 < I I' (0) I < 1. If I' is continuous near 
zero, then there is a 8 > 0 and an 0 < a < 1 so that 1/'(u)1 .:::: a for lui.:::: 8. As in 
the proof of Theorem 4.17, 

lu(t)1 .:::: atlu(O)1 (t ~ 0) (5.20) 
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for every solution u ofEq. (5.19) with lu(O)1 ::::; 8, and u(t) ---+ 0 as t ---+ 00. 
From Taylor's formula, 

where c is between 0 and u, so 

u(t + 1) = 1'(0) [1 + I;~;(~~t) ] u(t). (5.21) 

If I(u) = 0 for some 0 < lui::::; 8, it is possible for a nontrivial solution to reach 
zero in a finite number of iterations. For solutions that do not reach zero in finitely 
many steps, inequality (5.20), Theorem 5.4, and iteration of (5.21) yield 

u(t) '" Cu(O) (I' (O))t , (t ---+ 00), 

where C i= 0 varies with u(O). It is convenient to use the convention u(t) '" 0, 
(t ---+ 00) when u reaches zero in finitely many steps so that the preceding asymptotic 
relation applies to all solutions u with lu(O)1 < 8. We have proved the following 
theorem: 

Theorem 5.5. Assume that f"(u) is bounded near u = 0, 1(0) = 0, 0 < 
11'(0)1 < 1, and 11'(y)1 < 1 for lui::::; 8. For each solution u of Eq. (5.19) with 
lu(O)1 ::::; 8, 

u(t) '" Cu(O) (I' (O))t , 

where C depends on u(O). 

(t ---+ 00), 

For a given initial value u(O), the constant C can be computed as accurately as 
desired by iteration. 

Example 5.10. u(t + 1) = 0.5u(t) (1 + u(t)). 

For this equation, I(u) = O.5u(1 + u), 1'(0) = 0.5, and 1f'(u)1 < 1 for -1.5 < 
u < 0.5. First, let u(O) = 0.2 and c(t) = .2~ci~§)t. Then c(t) satisfies the equation 

c(t + 1) = c(t) (1 +0.2(0.5ic(t)). 

By iteration, we find limHoo c(t) ~ 1.54, so by Theorem 5.5 the approxima-
tion 

u(t) ~ (1.54)(0.2)(0.5)1 

is accurate to about three significant digits for large t. 
If we begin instead with u(O) = -0.2, we find that C ~ 0.69. 
The type of convergence described in Theorem 5.5 is called "linear conver

gence" since u(t + 1) '" i' (O)u(t) as t ---+ 00. 
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Example 5.11. The modified Newton's Method for solving g(v) = 0 is given by 

vet + 1) = vet) _ g (v(t)) , 
g' (v(O)) 

(t :::: 0). (5.22) 

The advantage of this method over Newton's Method is that the derivative of g 
is computed only once at the initial point. Let z be the desired root-that is, let 
g(z) = O. We make the change of variables u = v - Z to translate the root to zero. 
Equation (5.22) becomes 

u(t + 1) = u(t) _ g (u(t) + z) 
g' (u(O) + z) 

== f (u(t)). 

Then f(O) = 0 and f'(u) = 1 - g~~rot~Z). If g'(z) i= 0 and g' is continuous, we 
can choose 8 > 0 so that 

1
1 g' (u + z) I 1 

- g' (u(O) + z) < 

for lui, lu(O)1 < 8. By Theorem 5.5, we expect to have linear convergence of 
Eq. (5.22) to the root z of g(O) = 0 if the initial point v(O) satisfies Iv(O) - zl < 8. 

Next, suppose f'(O) = O. In this case, solutions of Eq. (5.19) that start near 
zero will exhibit convergence to zero that is more rapid than linear convergence. 
If I" (0) i= 0, Taylor's formula yields 

u(t + 1) = f" (0) u2(t) [1 + fill (c) U(t)] 
2 31"(0) 

for some c between u(t) and O. Again Eq. (5.20) holds if lu(O)1 :::s 8, so 

fill (c) 
pet) == 3f"(0) u(t) = O(at), (t ~ 00), (5.23) 

where 0 < a < 1. 
Either u(t) goes to zero in a finite number of steps or 

1
1"(0) I log lu(t + 1)1 = 2 log lu(t)1 + log -2- (1 + pet)) . 

This is a first order linear equation with solution 

log lu(t)1 = 2t [lOg lu(O)1 + ~TS-lI0g I f';O) (1 + p(S))I] . 
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Let 

D = log lu(O)1 + I: T s - 1 log I f';0) (l + ,8(S))I· 
s=o 

Then 

log lu(t)1 = 21 [D - ~TS-lIOg I 1';0) (1 + ,8(S)) I] 
and 

lu(t)1 = __ 2_ (Cu(0))2' e-2'L~,2-S-11ogI1+.B(s)1 
1/"(0)1 ' 

where C = I:(~)I. Using Eq. (5.23), it can be shown that 

00 

lim 21 "'Ts-1log 11 + ,8(S) I = 0 
1~00 ~ 

s=1 

(see Exercise 5.43), so finally 

2 2' 
u(t) "" 1"(0) (Cu(O)) , (t ~ 00). (5.24) 

In a similar way, we can prove the following theorem: 

Theorem 5.6. Assume for some m ~ 2 that l(m+1) exists near zero, 1 (0) = 
1'(0) = ... = l(m-l)(O) = 0 and I(m) (0) i= O. Let 1/'(u)1 < 1 for lui.:::: 8. For 
each solution u ofEq. (5.19) with lu(O)1 .:::: 8, 

(t ~ 00), 

where C depends on u(O). 

Note that the proof for the case m = 2 shows that C is a bounded function of 
u(O). Furthermore, we must have ICu(O)1 < 1 when lu(O)1 .:::: 8 since Eq. (5.20) 
implies that u(t) ~ 0, (t ~ 00). We are again using the convention u(t) "" 0 as 
t ~ 00 for the case that u reaches zero in finitely many steps. 

A short calculation gives 

I u(t + 1) I "" I 1 (m>(o) I , 
(u(t))m m! 

(t ~ 00). 

Consequently, the type of convergence described by Theorem 5.6 is called "con
vergence of order m." The terms "quadratic convergence" for m = 2 and "cubic 
convergence" for m = 3 are also commonly used. 
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Example 5.12. Consider Newton's method, 

v(t + 1) = v(t) _ g (v(t)) , 
g' (v(t)) 

(t ::: 0), 

for approximating a root z of g(v) = O. Let u = v - z. Then 

g (u(t) + z) 
u(t + 1) = u(t) - , == 1 (u(t)) . 

We have 1 (0) = 0 and 

g (u(t) + z) 

!'(u) = g(u +z)g"(u +Z), 
gt2(u + z) 
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so 1'(0) = O. Now 1"(0) = fgj and Newton's method will converge quadrati

cally if g'(z) and g"(z) are not zero. By Theorem 5.6 and Eq. (5.24), 

provided that 

2g'(z) 21 
v(t) - Z '" g"(Z) (C(v(O) - z)), (t ~ 00) 

Ig(V)g"(V) 1< 1 
g'2(v) 

for 1 v - z 1 ~ 1 v (0) - z I. For a given equation g ( v) = 0, the staircase method pro
vides an elementary means of determining for which initial estimates v(O) New
ton's method will converge (see Exercise 5.46). 

It is also of interest to obtain asymptotic approximations of solutions ofEq. (5.19) 
that diverge to infinity as t ~ 00. As the following example shows, the analysis 
can sometimes be carried out using the substitution u = 1/ v. The variable v will 
converge to zero as t ~ 00, and its rate of convergence may be given by one of the 
previous theorems. An asymptotic estimate for u is then obtained by inversion. 

Example 5.13. Consider again the equation of Example 5.10: 

u(t + 1) = 0.5u(t) (1 + u(t)) . 

Letting v = l/u, we have 

2v2(t) 
v(t + 1) = == 1 (v(t)) . 

v(t) + 1 

Now 1(0) = 1'(0) = 0 and 1"(0) = 4. From Eq. (5.24), 

v(t) '" .5 (Cv(O)l , (t ~ 00) 

if v(O) is sufficiently near zero. It follows that 

u(t) '" 2 (Du(0))21 
, (t ~ 00) 

if u(O) is sufficiently large, where D depends on u(O). 
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In the next example, we consider a family of equations with solutions that diverge 
to infinity more slowly. 

Example 5.14. u(t + 1) = u(t) + a + g (u(t)). 

Assume that a is a positive constant and g(u) = O(llub), as u -+ 00 for some 
b > O. Choose Uo large enough so that g(u) 2: -~ for u 2: uo > O. Then 
u (t + 1) - u (t) 2: ~, (t 2: 0) if u (0) 2: uo, and it follows by iteration that 
u(t) > ¥, (t 2: 0). 

Now we have 

(t 2: 0) 

for some M > O. Since 

t.u(t) = a + O(t-b), (t -+ 00), 

summation yields 

(t -+ 00). 

By the Integral Test (or the Euler's summation formula), 

{
O(1) ifb> 1, 

Lt-b= O(logt) ifb=l, 

O(ti-b) if 0 < b < 1. 

Our final example makes use of Example 5.14 in analyzing the rate of convergence 
of solutions ofEq. (5.19) to zero in the case that 1'(0) = 1. 

Example 5.15. u(t + 1) = u(t) (1 - u2 (t)). 

Even though the derivative of u(1 - u2 ) at u = 0 is one, it is evident from a 
staircase diagram that solutions with initial values near zero will converge to zero 
as t -+ 00. 

Let u = 1/,.fV. The equation for v is 

v3 (t) 
v(t + 1) = ----;0-

(v(t) - 1)2 
3v(t) - 2 

= v(t) + 2 + 2' 
(v(t) - 1) 

From Example 5.14, 

v(t) = 2t + O(logt), (t -+ 00). 
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Then 

1 
U(t) = (2t + O(logt»-Z , (t ~ 00) 

1 

= _1_ (1 + 0 (IOgt))-Z , (t ~ 00). 
~ 2t 

By the Mean Value Theorem, 

1 1 3 
(1 + w)-Z = 1 - -(1 + c)-zw 

2 

for some c between 0 and w. Finally, 
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DeBruijn [59] gives a number of methods for computing additional terms in 
asymptotic approximations of solutions to nonlinear difference equations of first 
order. 
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Exercises 

Section 5.1 

5.1 Show that ""," is an "equivalence relation," that is, 

(a) f(t) '" f(t), (t --+ (0). 

(b) f(t) '" g(t) implies that g(t) '" f(t), (t --+ (0). 

(c) f(t) '" g(t) and g(t) '" h(t) imply that f(t) '" h(t), (t --+ (0). 

5.2 Verify the following asymptotic relations: 

(a) t2+~t-7 '" ~, (t --+ (0). 
t 

(b) cosh t '" ~, (t --+ (0). 

(c) sin t '" t, (t --+ (0). 

(d) tan- 1 t '" 1-, (t --+ (0). 

5.3 Verify 

(a) t2 10g t « t3 , (t --+ (0). 

(b) log log t «logt, (t --+ (0). 

(c) t 4 « et , (t --+ (0). 

(d) tan{1/t2)« 1,0, (t --+ (0). 

5.4 Show that if u(t) = O(w(t)) and v(t) = O(w(t)), (t --+ (0), then for any 
constants C and D we have Cu(t) + Dv(t) = O(w(t)), (t --+ (0). Does it also 
follow that u(t)v(t) = O(w(t)), (t --+ oo)? 

5.5 Verify 

(a) 5x2 sin3x = 0(x2 ), (x --+ (0). 

(b) x~2 = ~ [1 + O(~)], (x --+ (0). 

(c) x~2 = ~ [1 + ~ + 0(;2)]' (x --+ (0). 

5.6 

(a) Showthat.Jt2+! = t[1 + 2!2 +O(~)], (t --+ (0). 

(b) Use the equation in (a) to estimate.JIOI and .J10001. 

(c) What are the relative errors in the estimates in (b)? 

5.7 Prove that if f and g are continuous and have convergent integrals on [1, (0), 
then f(t) '" g(t) as t --+ 00 implies that ftoo f(x)dx '" ftoo g(x)dx, (t --+ (0). 

5.8 Give estimates of 

(a) f1°O et~~t dt. (b) f1°O e~~Ot dt. 

5.9 Find bounds on the errors for the estimates in Exercise 5.8. 
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5.10 Use integration by parts to show 

--dt = - 1 - - + 0 - , 100 e-t 1 ( 1 ( 1 )) 
o x + t x x x 2 

(x ~ 00). 

5.11 Complete the whole asymptotic series for the integral in Exercise 5.10. 

Section 5.2 

5.12 Show that the asymptotic estimate in Example 5.2 can be improved to 

Yn = (n - 1)! [Yl + e - 1 - ~! + 0 (n ~ 1)!) ] , (n ~ 00). 

5.13 Use Taylor's formula to obtain an asymptotic estimate for 

n-l 1 

L (2k)!' 
k=l 

(n ~ 00). 

. ,",00 (_l)k+l rr2 
5.14 GIven that L..,k=l ~ = IT' show that 

n-l (_I)k+l _ Jr2 (~) 
L k2 - 12 +0 2 ' 
k=l n 

(n ~ 00). 

5.15 Verify 

(a) L:k=l k! = n![1 + 0(*)], (n ~ 00). 

(b) L:k=l k! = n![1 + * + 0(n12 )], (n ~ 00). 

5.16 Generalize the calculation in Example 5.4 to find an asymptotic approximation 
for 

n-l 

Laklogk 
k=l 

as n ~ 00, if a > 1. 

5.17 Use summation by parts to show 

n-1 2k 2n[ (1)] L-=- 1+0 - , 
k=l k n n 

5.18 Verify Wallis' formula: 

(n ~ 00). 

~ = lim [ 2·4· ... ·2n ]2 1 
2 n--+oo 1· 3 ..... (2n - 1) 2n + 1 
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(Hint: first show that 

and 
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Io if . 2 -1 2·4 .. · (2n - 2) 
sm n xdx = -----

o 1 . 3 ... (2n - 1) 

10 if . 2n 1 . 3 ... (2n - 1) 7f 
sm xdx = -. 

o 2·4 .. · (2n) 2 

Next, integrate the inequalities sin2n+l x ::: sin2n x ::: sin2n- 1 x, which hold on the 
interval [0, ~ ].) 

5.19 What is the relative error if Eq. (5.6) is used to compute 6!? 

5.20 Find an asymptotic estimate like Eq. (5.4) for Lk=11og(2k + 1). 

5.21 Find the next term in the asymptotic series in Eq. (5.6). 

5.22 Use Stirling's formula to determine the asymptotic behavior of the solutions of 

the equation u(t + 1) = (t~:)2 u(t) as t ---+ 00. 

5.23 Show that tL ,...., tr , (t ---+ 00). 

5.24 Show that limn ---+ oo (Lk=1 i-log n) exists by using Euler's summation for

mula with m = 1. 

5.25 
(a) Use Euler's summation formula with m = 2 to verify Eq. (5.8). 

(b) Show that the error term in Eq. (5.8) is between 0 and 1/(120n4 ). 

(c) Compute the millionth harmonic number to 27 significant digits. 

Section 5.3 

5.26 If the second order equation with constant coefficients 

u(t + 2) + PIU(t + 1) + pou(t) = 0 

has a double characteristic root Al = A2 = A, show that each nontrivial solution u(t) 
. fi l' u(t+l) , saus es Imt--+oo ---u(i) = 11.. 

5.27 For the equation u(t +2) - (1 + (;;t )u(t) = 0, show that limHoo u~t)l) fails 
to exist for every solution u(t). (Hint: use iteration.) 

5.28 What information does Perron's Theorem give about the following equations? 

(a) (t + 2)u(t + 2) - (2t + 3)xu(t + 1) + (t + l)u(t) = O. 
(b) t(t + 1)~2u(t) - 2u(t) = O. 
(c) (2t2 - l)u(t + 3) + (2t2 + t)u(t + 2) - 4t2u(t + 1) + u(t) = O. (Note: x is a 

parameter in (a).) 



EXERCISES 225 

5.29 Prove Theorem 5.3(b). 

5.30 Show that if limHOO u~t)l) = A > 0, then for each 8 in (0, A), (A - 8)t « 
lu(t)l« (A +8)t, (t ---+ (0). 

5.31 If we did not know that U2 (t) = f in Example 5.7, show how we could obtain 

U2(t) ~ Cf, (t ---+ (0). (Hint: let u~~t)l) = 1/r(t) and show that 1/r(t) = (t~~)1t~4) 
(1 + O(~)) (t ---+ (0).) 

5.32 Show that (t + 1)u(t + 2) - (t + 4)u(t + 1) + u(t) = 0 has solutions Ul, U2 

satisfying u 1 (t) ~ t 2, U2 (t) ~ (t~2)!' (t ---+ (0). 

5.33 Use the results of Examples 3.24 and 5.7 to deduce L~:'~ 2:l1 ~ (t;/)!, (t ---+ 

(0). 

5.34 Prove Theorem 5.4. (Hint: by Taylor's Theorem, Ilog(l + as) - as I ::: a; if 
las I < 1· Then L~to (log(1 +as) -as) converges, so L~to log(l +as) converges.) 

5.35 The Bessel functions ft(x) and Yt(x) satisfy the equation 

2 
u(t + 2) - -(t + l)u(t + 1) + u(t) = O. 

x 

Using the procedure of Example 5.8, show that there are solutions u 1, U2 that satisfy 
Ul(t) ~ fr(~)t andu2(t) ~ D(t _l)!(~)t, (t ---+ (0). 

5.36 Show that u(t + 2) - (t + l)u(t + 1) + (t + l)u(t) = 0 has solutions Ul, U2 
so that Ul(t) ~ C(t - 2)!, U2(t) ~ Dt, (t ---+ (0). 

5.37 Verify Eq. (5.13). 

5.38 Investigate the asymptotic behavior of the solutions of 

t 2u(t + 2) - 3tu(t + 1) + 2u(t) = 0 

as t ---+ 00. 

Section 5.4 

5.39 Find all the solutions of u(t + 1) = 0.5u(t)(1 - u(t)) that reach zero in three 
or fewer steps. 

5.40 Find the asymptotic behavior of solutions of 

u(t + 1) = 0.5(u 3 (t) - 3u2(t) + 4u(t)) 

that start near a stable fixed point. 
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5.41 For the equation 

1 u2(t) + 3u(t) + 1 
u(t + ) = u2(t) + 4 ' 

show that u(t) -1 ,..., Cu(O)(~)I, (t --+ 00) ifu(O) is near 1. Estimate C ifu(O) = 2. 

5.42 

(a) Write a modified Newton's method for computing ,J2 and observe the linear 
convergence by computing five iterations. 

(b) Write a Newton's method for computing,J2 and observe the quadratic conver
gence by computing four iterations. 

5.43 Show that 
00 

lim 21 "'rS-llog 11 + ,8(s)1 = 0 
t--'>oo ~ 

s=t 

if,8 satisfies Eq. (5.23). (Hint: use the Mean Value Theorem to show 10g(1 +,8(s)) = 
O(aS ), (s --+ 00).) 

5.44 Compute an asymptotic approximation for solutions of 

that have initial values near u = 1. 

5.45 Show that certain solutions of 

( 1) u(t)(u2(t) + 3a) 
u t+ = , 

3u2 (t) + a 

exhibit cubic convergence to Ja. 
5.46 Use the staircase method to show that 
(a) Solutions u of 

u(t + 1) = u2(t) + a 
2u(t) 

(a> 0) 

converge to Ja if u(O) > 0 and to -Ja if u(O) < O. 
(b) All solutions of 

2u3(t) + 1 
u(t + 1) = 3u2(t) + 1 

converge to the unique solution of u3 + u - 1 = O. 

5.47 Consider the solution of tan u = u in the interval (Jr, 3;-). Find an interval of 
initial values so that Newton's method will converge to this solution. 
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5.48 Let u(t + 1) = u4 (t) + 2u(t), (t 2: 0). 

(a) Show u(t) --+ 00 as t --+ 00 if u(O) > O. 
(b) Give an asymptotic approximation for u(t) as t --+ 00 if u(O) > O. 

5.49 Consider u(t + 1) = u(t) + utt). 
(a) Show that u(t) --+ 00 as t --+ 00 if u(O) > O. 

(b) Find an asymptotic approximation for u(t). (Hint: let u = J'V.) 
5.50 Find the asymptotic behavior as t --+ 00 of solutions of 

u(t + 1) = u(t) - u2 (t) + u\t) 

that converge to zero. 
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5.51 Compute an asymptotic approximation for solutions of u(t + 1) = sinu(t) 
with initial values near zero. 



Chapter 6 
The Self-Adjoint Second Order 

Linear Equation 

6.1 Introduction 
In this section we will introduce the second order self-adjoint difference equation, 
which is the main topic of this chapter. We will show which second order linear dif
ference equations can be put in the self-adjoint form, and we will establish a number 
of useful identities. 

An important equation in applied mathematics is the second order linear self
adjoint differential equation 

(P(x)z'(x))' + Q(x)z(x) = 0, (6.1) 

where we assume that P(x) > 0 in [c, d] and that P(x), Q(x) are continuous 
on [c, d]. Let's show that Eq. (6.1) is related to a self-adjoint difference equation. 
Now, for small h = d-;;c, 

'() z(x) - z(x - h) z x ~ ----:---
h 

and 

( ')' 1 {P(X + h)[z(x + h) - z(x)] P(x)[z(x) - z(x - h)] } 
P(x)z (x) ~""it h - h ' 

so 

( ')' 1 P(x)z (x) ~ h2 {P(x + h)z(x + h) 

-[P(x + h) + P(x)]z(x) + P(x)z(x - h)}. 

Let 
x = c + th, 

where t is a discrete variable taking on the integer values 0 ::s t ::s n, and let 

y(t) = z(c + th), 

where z(x) is a solution ofEq. (6.1) on [c, d]. Then 

P (c + (t + l)h) z (c + (t + l)h) 
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If we set 

- [P (c + (t + I)h) + P(c + th)] z(c + th) 

+ P(c + th)z (c + (t - I)h) + h2 Q(c + th)z(c + th) ~ o. 

p(t - 1) = P(c + th), 

q(t) = h2 Q(c + th) 

for 1 :::: t :::: n and 1 :::: t :::: n - 1, respectively, then 

p(t)y(t + 1) - (p(t) + pet - 1)) yet) + pet - I)y(t - 1) + q(t)y(t) ~ o. 

Finally, we can write this in the form 

I::!. (p(t - I)l::!.y(t - 1)) + q(t)y(t) ~ 0, 

where 1 :::: t :::: n - 1. Note that yet) is defined for 0 :::: t :::: n. 
The linear second order self-adjoint difference equation is then defined to be 

I::!. (p(t - I)l::!.y(t - 1)) + q(t)y(t) = 0, (6.2) 

where we assume that pet) is defined and positive on the set of integers [a, b + 1] == 
{a, a + 1,··· ,b + I} and that q(t) is defined on the set of integers [a + 1, b + 1]. 
We can also write Eq. (6.2) in the form 

p(t)y(t + 1) + c(t)y(t) + pet - I)y(t - 1) = 0, (6.3) 

where 

c(t) = q(t) - pet) - pet - 1) (6.4) 

for t in [a + 1, b + 1]. 
Since Eq. (6.3) can be solved uniquely for yet + 1) and y(t - 1), the initial value 

problem (6.3), 

y(to) = A, 

y(to + 1) = B, 

where to is in [a, b + 1], A, B are constants, has a unique solution defined in all of 
[a, b + 2] (== (a, a + 1, ... ,b + 2}). Of course, a similar statement is true for the 
corresponding nonhomogeneous equation. 

Note that any equation written in the form ofEq. (6.3), where pet) > 0 on [a, b+ 
1], can be written in the self-adjoint form ofEq. (6.2) by taking 

q(t) = c(t) + pet) + pet - 1). (6.5) 
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Example 6.1. Write, in the self-adjoint fonn, 

2t y(t + 1) + (sin t - 3 . 2 t - 1)y(t) + 2t - 1 y(t - 1) = O. 

Here p(t) = 2t and c(t) = sin t - 3 . 2t-l. Hence by Eq. (6.5) 

q(t) = sint - 3. 2t - 1 + 2t + 2t - 1 

= sint. 

Then the self-adjoint fonn of this equation is 

tl (2t - 1 tly(t - 1)) + sin ty(t) = O. 

Actually, any equation of the fonn 

a(t)y(t + 1) + (J(t)y(t) + y(t)y(t - 1) = 0, 
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(6.6) 

where a(t) > 0 on [a, b + 1], y(t) > 0 on [a + 1, b + 1], can be written in the self
adjoint fonn of Eq. (6.2). To see this, multiply both sides of Eq. (6.6) by a positive 
function h(t) to be chosen later to obtain 

a(t)h(t)y(t + 1) + (J(t)h(t)y(t) + y(t)h(t)y(t - 1) = O. 

This would be of the fonn ofEq. (6.3), which we know we can write in self-adjoint 
fonn, provided that 

a(t)h(t) = p(t) 

y(t)h(t) = p(t - 1). 

Consequently, we want to pick a positive function h(t) so that 

or 

for t in [a, b]. Then 

a(t)h(t) = y(t + 1)h(t + 1) 

h(t + 1) = a(t) h(t) 
y(t + 1) 

t-l 
h(t) = A n a(s) , 

s=a y(s + 1) 

where A is any positive constant. If we choose 

and by Eq. (6.5) 

t-l a(s) 
p(t) = Aa(t) [! y(s + 1)' 

q(t) = (J(t)h(t) + p(t) + p(t - 1), 

then we have that Eq. (6.6) is equivalent to Eq. (6.2). 
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Example 6.2. Write the difference equation 

(t - l)y(t + 1) + ( t
2 

- t) y(t) + y(t - 1) = 0, (6.7) 
r(t - 1) 

t ::: 2, in self-adjoint fonn. 

Take 

t-l 

h(t) = TI (s - 1) 
s=2 

= (t - 2)! = r(t - 1). 

Then 

p(t) = (t - l)r(t - 1) = r(t) 

and 

q(t) = ( t
2 

_ t) r(t - 1) + r(t) + r(t - 1) 
r(t - 1) 

= t 2 - tr(t - 1) + (t - l)r(t - 1) + r(t - 1) 

= t 2 • 

A self-adjoint fonn of Eq. (6.7) is 

I::!. [r(t - l)l::!.y(t - 1)] + t 2y(t) = o. 

Let y(t), z(t) be solutions of Eq. (6.2) in [a, b + 2]. Recall that in Chapter 2 we 
defined the Casoratian of y(t) and z(t) by 

[ y(t) Z(t)] 
w(t) = w[y(t), z(t)] = y(t + 1) z(t + 1) 

[ y(t) z(t) ] 
= I::!.y(t) I::!.z(t) . 

Define a linear operator L on the set of functions y defined on [a, b + 2] by 

Ly(t) = I::!. (p(t - l)l::!.y(t - 1)) + q(t)y(t) 

for t in [a + 1, b + 1]. 
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Theorem 6.1. (Lagrange Identity) If y(t) and z(t) are defined on [a, b+2], then 

z(t)Ly(t) - y(t)Lz(t) = ~{p(t - l)w[z(t - 1), y(t - I)]} 

for t in [a + 1, b + 1]. 

Proof. For t in [a + 1, b + 1] consider 

z(t)Ly(t) = z(t)~ [p(t - 1)~y(t - 1)] + z(t)q(t)y(t) 

= ~ [z(t - l)p(t - 1)~y(t - 1)] 

- (~z(t - 1)) p(t - 1)~y(t - 1) 

+ z(t)q(t)y(t) 

= ~ [z(t - l)p(t - 1)~y(t - 1) - y(t - l)p(t - 1)~z(t - 1)] 

+ y(t)~ (p(t - 1)~z(t - 1)) + y(t)q(t)z(t) 

= ~ {p(t - l)w[z(t - 1), y(t - I)]} + y(t)Lz(t), 

which gives the desired result. • 
By summing both sides of the Lagrange Identity from a + 1 to b + 1, we get the 

following corollary. 

Corollary 6.1. (Green's Theorem) Assume that y(t) and z(t) are defined on [a, b + 
2]. Then 

b+l b+l 

L z(t)Ly(t) - L y(t)Lz(t) = {p(t)w[z(t), y(t)]}~+1 . 
t=a+l t=a+l 

Corollary 6.2. (Liouville's Formula) If y(t) and z(t) are solutions of Eq. (6.2), 
then 

C 
w[y(t), z(t)] = -

p(t) 

for t in [a, b + 1], where C is a constant. 

Proof. By the Lagrange Identity, 

~{p(t - l)w[y(t - 1), z(t - I)]} = 0 

for t in [a + 1, b + 1]. Hence 

p(t - l)w[y(t - 1), z(t - 1)] = C, 

where C is a constant, for t in [a + 1, b + 2]. Therefore, 

C 
w[y(t), z(t)] = -

p(t) 

for t in [a, b + 1]. • 
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It follows from Corollary 6.2 that if y(t) and z(t) are solutions ofEq. (6.2), either 
w[y(t), z(t)) = 0 for all t in [a, b+ 1] (y(t), z(t) are linearly dependent on [a, b+2]) 
or w[y(t), z(t)] is of one sign (y(t) and z(t) are linearly independent on [a, b + 2]). 
See also Theorem 3.4. 

Theorem 6.2. (Polya Factorization) Assume that z(t) is a solution of Eq. (6.2) 
with z(t) > 0 on [a, b + 2]. Then there exist functions Pi (t), i = 1,2, with 
PI(t) > 0 on [a, b+2], P2(t) > Oon [a + 1, b+2] such that for any function y(t) 
defined on [a, b + 2], for t in [a + 1, b + 1], 

Ly(t) = PI (t)~ [P2(t)~ (PI (t - l)y(t - 1))] . 

Proof. Since z(t) is a positive solution of Eq. (6.2) we have by the Lagrange Iden
tity that 

1 
Ly(t) = -~ (p(t - l)w[z(t - 1), y(t - I)]} 

z(t) 

for t in [a + 1, b + 1]. By Theorem 2.1(e) 

~ {y(t - 1) } = z(t - 1)~y(t - 1) - y(t - 1)~z(t - 1) 

z(t - 1) z(t - l)z(t) 

w[z(t - 1), y(t - I)) 
= 

z(t - l)z(t) 

Then 

1 [ (y(t - 1»)J Ly(t) = -~ p(t - l)z(t - l)z(t)~ 
z(t) z(t - 1) 

1 
PI (t) = - > 0, (t in [a, b + 2]) 

z(t) 

P2(t) = p(t - l)z(t - l)z(t) > 0, (t in [a + 1, b + 2]) 

so 
Ly(t) = PI (t)~ [P2(t)~ (PI (t - l)y(t - 1))] , 

(6.S) 

as desired. • 

Example 6.3. Find a Polya Factorization for 

y(t + 1) - 6y(t) + Sy(t - 1) = O. (6.9) 

The characteristic equation is (). - 2)()' - 4) = O. Hence z(t) = 2t is a positive 
solution of this equation. We can write this equation in self-adjoint form with 
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p(t) = (k) t. From Eq. (6.8) we obtain the Polya factorization of Eq. (6.9): 

Tt~ [(~r-I 2t-12t~ (Y~t=/))] = 0 

or 
~ [Tt ~ (Tty(t - 1))] = o. 

Check that 2t and 4t are solutions of this last equation. 

Definition 6.1. The Cauchy function y(t, s), defined for a :::: t :::: b + 2, a + 1 :::: 
s :::: b + 1, is defined as the function that, for each fixed s in [a + 1, b + 1], is the 
solution of the initial value problem (IVP) (6.2), y(s, s) = 0, y(s + 1, s) = pts). 

Example 6.4. Find the Cauchy function for 

~[p(t - 1)~y(t - 1)] = 0 

for t ::: s. 

Since for each fixed s the Cauchy function for this difference equation is a solution, 

Mp(t - 1)~y(t - 1, s)] = 0 

for t E [a + 1, b + 1]. Therefore, there is a constant a(s) such that 

p(t - 1)~y(t - 1, s) = a(s) 

for t E [a + 1, b + 2]. With t = s + 1, we find that a(s) = 1, so replacing t by 
t + 1 yields 

1 
~y(t,s) =-. 

p(t) 

Assuming that t ::: s and summing from s to t - 1, we obtain 

t-I 1 
y(t, s) - y(s, s) = L -(r)· 

'f=S p 

Then the Cauchy function is 

t-I 1 
y(t,s)=L

'f=S p(r) 

for t ::: s. As a special case, note that the difference equation ~2y(t - 1) = 0 has 
the Cauchy function y(t, s) = t - s. 
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Theorem 6.3. If ul (t), U2(t) are linearly independent solutions ofEq. (6.2), then 
the Cauchy function for Eq. (6.2) is given by 

[ Ul (s) U2(S)] 
Ul (t) U2(t) 

y(t, s) = [ ] , Ul (s) U2(S) 
p(s) Ul (s + I) U2(S + I) 

a :::: t :::: b + 2, a + I :::: s :::: b + 1. 

(6.10) 

Proof. Since Ul(t), U2(t) are linearly independent, W[Ul(t), U2(t)] i= 0 for t in 
[a, b + I]. Hence Eq. (6.10) is well defined. Note that by expanding y(t, s) in (6.10) 
by the second row in the numerator, we have that, for each fixed s in [a + I, b + I], 
y(t, s) is a linear combination of Ul (t) and U2(t) and so is a solution of Eq. (6.2). 
Clearly y(s, s) = 0 and y(s + I, s) = As). • 

Example 6.5. Use Theorem 6.3 to find the Cauchy function y(t, s) for the dif
ference equation 

~[p(t - I)~y(t - I)] = 0, 

fort~s. 

Take Ul (t) = I and U2(t) = L~:~ pt.); then 

t-l 

=L:-I 
'=s p(r) 

fort~s. 

The next two results show how the Cauchy function is used to solve initial value 
problems for a nonhomogeneous problem. Note that in the variation of constants 
formula we only need to know the Cauchy function for t ~ s. 
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Theorem 6.4. (Variation of constants formula) The solution of the initial value 
problem 

is given by 

Ly(t) = h(t), 

yea) = 0, 

yea + 1) = 0 

I 

(tin[a+1,b+1]) 

yet) = L y(t, s)h(s) 
s=a+I 

(6.11) 

for t in [a, b + 2], where yet, s) is the Cauchy function for Ly(t) = O. (Here, if 
t = b + 2, then the term y(b + 2, b + 2)h(b + 2) is understood to be zero.) 

Proof. Let yet) be given by Eq. (6.11). By convention yea) = O. Also, 

yea + 1) = yea + 1, a + l)h(a + 1) = 0, 

yea + 2) = yea + 2, a + l)h(a + 1) + yea + 2, a + 2)h(a + 2) 

h(a + 1) 

pea + 1) 

It follows that y(t) satisfies Ly(t) = h(t) for t = a + 1. 
Now assume that a + 2:::: t :::: b + 1. Then 

Ly(t) = pet - 1)y(t - 1) + c(t)y(t) + p(t)y(t + 1) 

I-I I 

= L pet - l)y(t - 1, s)h(s) + L c(t)y(t, s)h(s) 
s=a+1 s=a+1 

1+1 

+ L p(t)y(t + 1, s)h(s) 
s=a+1 

I-I 

L Ly(t, s)h(s) + c(t)y(t, t)h(t) 
s=a+I 

+ p(t)y(t + 1, t)h(t) + p(t)y(t + 1, t + l)h(t + 1) 

= h(t). • 

Corollary 6.3. The solution of the initial value problem 

Ly(t) = h(t), 

yea) = A, 

(tin[a+1,b+1]) 
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y(a + 1) = B 

is given by 
t 

y(t) = u(t) + L y(t, s)h(s), 
s=a+1 

where y(t, s) is the Cauchy function for Ly(t) = 0 and u(t) is the solution of the 
initial value problem Lu(t) = 0, u(a) = A, u(a + 1) = B. 

Proof. Since u(t) is a solution of Lu(t) = 0 and L~=a+1 y(t, s)h(s) is a solution 
of Ly(t) = h(t), we have that 

t 

y(t) = u(t) + L y(t, s)h(s) 
s=a+1 

is a solution of Ly(t) = h(t). Further, y(a) = u(a) = A and y(a + 1) = u(a + 1) = 
B. • 

Example 6.6. Use the variation of constants formula to solve the initial value 
problem 

t::.. 2y(t - 1) = t, 

y(O) = y(1) = O. 

By Theorem 6.4 and Example 6.4, the solution y(t) of this initial value problem 
is given by 

t 

y(t) = L(t - s)s 
s=l 

t t 

=tLs- Ls2. 
s=l s=l 

Here we could use summation formulas from calculus, but instead we use fac
torial powers: 

t t 

y(t) = t L sl- L [s~ + sl] 
s=l s=l 

~t[':r -[,: +~r 
(t + l)~ (t + 1)~ (t + 1)~ 

=t - ----
232 
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6.2 Sturmian Theory 

In this section we introduce the fundamental concept of the generalized zero, which 
is due to Philip Hartman [120]. This concept provides a mechanism for obtaining 
fundamental results about second order self-adjoint equations and also represents 
the best approach for extending these results to higher order equations. Our first 
objective is to present the Sturm separation theorem for the self-adjoint difference 
equation (6.2). It is believed that Sturm actually proved the Sturm separation theorem 
for difference equations before he proved the corresponding result for differential 
equations. In contrast to the differential equations case, the Sturm separation theorem 
does not hold for all second order homogeneous difference equations. The important 
concept of disconjugacy will be introduced in this section, and we will see that it is 
very important in proving comparison theorems. 

The following simple lemma shows that there is no nontrivial solution ofEq. (6.2) 
with y(to) = 0 and y(to - I)y(to + I) 2: 0, to > a. In some sense this lemma says 
that nontrivial solutions of Eq. (6.2) can have only "simple" zeros. 

Lemma 6.1. If y(t) is a nontrivial solution of Eq. (6.2) such that y(to) = 0, a < 
to < b + 2, then y(to - I)y(to + 1) < o. 

Proof. Since y(t) is a solution of Eq. (6.2) with y(to) = 0, a < to < b + 2, we 
obtain from Eq. (6.3) 

p(to)y(to + 1) = -p(to - l)y(to - 1). 

Since y(to + I), y(to - I) i= 0, and p(t) > 0, it follows that 

y(to - l)y(to + 1) < o. • 
Lemma 6.1 is fundamental in the Sturmian theory for difference equations as in 

the proof of the next theorem. Because of Lemma 6.1 we can define the generalized 
zero of a solution of Eq. (6.2) as follows. 

Definition 6.2. We say that a solution y(t) ofEq. (6.2) has a generalized zero at to 
provided that y(to) = 0 if to = a and if to > a either y(to) = 0 or y(to -1)y(to) < O. 
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Theorem 6.5. (Sturm separation theorem) Two linearly independent solutions 
of Eq. (6.2) cannot have a common zero. If a nontrivial solution of Eq. (6.2) has a 
zero at tl and a generalized zero at t2 > tl, then any second linearly independent 
solution has a generalized zero in (tl, t2]. If a nontrivial solution of Eq. (6.2) has 
a generalized zero at tl and a generalized zero at t2 > tl, then any second linearly 
independent solution has a generalized zero in [tl, t2]. 

Proof. Assume that two solutions y(t), z(t) ofEq. (6.2) have a common zero at to. 

Then the Casoratian w[y(t), z(t)] is zero at to, except that it is zero at b + 1 in case 
to = b + 2, and hence y(t) and z(t) are linearly dependent. 

Next assume that y(t) is a nontrivial solution of Eq. (6.2) with a zero at tl and a 
generalized zero at t2. Without loss of generality, t2 > tl + 1 is the first generalized 
zero of y(t) to the right of tl, y(t) > 0 in (tl, t2), and y(t2) :s o. Assume that 
z(t) is a second linearly independent solution with no generalized zeros in (tl, t2]. 

Without loss of generality, z(t) > 0 on [tl, t2]. Pick a constant T > 0 such that 
there is a to E (tl, t2) such that z(to) = Ty(to) but z(t) :::: Ty(t) on [tl, t2]. Then 
u(t) = z(t) - Ty(t) is a nontrivial solution with u(to) = 0, u(to - l)u(to + 1) :::: 0, 
to > a, which contradicts Lemma 6.1. 

The last statement in this theorem is left as an exercise. • 

The next example shows that the Sturm separation theorem does not hold for all 
second order linear homogeneous difference equations. 

Example 6.7. Show that the conclusions of Theorem 6.5 do not hold for the 
Fibonacci difference equation 

y(t + 1) - y(t) - y(t - 1) = O. 

The characteristic equation is A 2 - A-I = O. Hence characteristic values are 

i ± 1· Take y(t) = (i -1)' and z(t) = G + 1Y. Note that y(t) has 
a generalized zero at every integer while z(t) > 0 for all t. This of course does 
not contradict Theorem 6.5 because this equation can not be written in self-adjoint 
form. 

In Theorem 6.5 it was noted that two linearly independent solutions cannot have 
a common zero. The following example shows that this is not true for generalized 
zeros. 

Example 6.S. The difference equation 

y(t + 1) + 2y(t) + 2y(t - 1) = 0, 

which can be put in self-adjoint form, has y(t) = 2~ sin 3: t, z(t) = 2~ cos 3: t 
as linearly independent solutions. Note that both of these solutions have a gener
alized zero at t = 2. 
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Definition 6.3. We say that the difference equation (6.2) is "disconjugate" on [a, b+ 
2] provided that no nontrivial solution of (6.2) has two or more generalized zeros on 
[a, b + 2]. 

Of course, in any interval [a, b + 2] there is a nontrivial solution with at least one 
generalized zero. 

Example 6.9. The difference equation 

y(t + 1) - .J3y (t) + y(t - 1) = 0 

is disconjugate on any interval of a length less than six. 
This follows from the fact that any solution of this equation is of the form 

y(t) = A sin n/ + B). 

Example 6.10. The difference equation 

y(t + 2) - 7y(t + 1) + 12y(t) = 0 

is disconjugate on any interval. 

Using Theorem 6.4, we can prove the following comparison theorem. 

Theorem 6.6. Assume that Ly(t) = 0 is disconjugate on [a, b + 2] and u(t), 
v(t) satisfy 

Lu(t) ::: Lv(t), 

u(a) = v(a), 

u(a + 1) = v(a + 1). 

(t in [a + 1, b + 1]) 

Then u(t) ::: v(t) on [a, b + 2]. 

Proof. Set 
w(t) = u(t) - v(t). 

Then 

h(t) == Lw(t) 

= Lu(t) - Lv(t) 

:::0, (tin[a+l,b+l]). 

Hence w(t) solves the initial value problem 

Lw(t) = h(t), 

w(a) = 0, 
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w(a + 1) = o. 
By the variation of constants formula, 

t 

wet) = L yet, s)h(s), 
s=a+! 

where y(t, s) is the Cauchy function for Ly(t) = O. Since Ly(t) = 0 is disconjugate 
and yes, s) = 0, yes + 1, s) = ptS) > 0, we have that yet, s) > 0 for s + 1 :s t :s 
b + 2. It follows that wet) ::: 0 on [a, b + 2], which gives us the desired result. • 

Example 6.11. Find bounds on the solution yet) of the initial value problem 

/:l.2y(t _ 1) = _2_ 
1 + t 2 ' 

yeO) = 0, 

y(1) = 1. 

(t ::: 1) 

Let vet) be the solution of the initial value problem /:l.2v(t - 1) = 0, v(O) = 0, 
v(l) = 1, and let u(t) be the solution ofthe initial value problem /:l.2u(t - 1) = 1, 
u(O) = 0, u(1) = 1. Since Ly(t) == /:l.2y(t - 1) = 0 is disconjugate on any 
interval, 

2 
Lu(t) = 1 ::: Ly(t) = 1 + t 2 ::: 0 = L vet) 

for t ::: 1, and 

u(O) = yeO) = v(O), 

u(1) = y(1) = v(l), 

we have by Theorem 6.6 that 

u(t) ::: yet) ::: vet) 

for t ::: O. However, it is easy to show that vet) = t and u(t) = it2 + it. Hence 
y (t) satisfies 

1 1 
_t2 + -t > yet) > t 2 2 - -

for t = 0, 1, 2, .... 

Consider the boundary value problem (BVP) 

/:l.2y(t - 1) + 2y(t) = 0, 

yeO) = A, y(2) = B. 

If A = B = 0, this boundary value problem has infinitely many solutions. If A = 0, 
B "I- 0, it has no solutions. We show in the following theorem that with the assump
tion of disconjugacy this type of boundary value problem has a unique solution. 
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Theorem 6.7. If Ly(t) = 0 is disconjugate on [a, b + 2], then the BVP 

Ly(t) = h(t), 

y(tl) = A, y(t2) = B, 

where a ~ tl < t2 ~ b + 2, A, B constants, has a unique solution. 

Proof. Let YI (t), Y2(t) be linearly independent solutions of Ly(t) = 0 and let yp(t) 
be a particular solution of Ly(t) = h(t); then a general solution of Ly(t) = h(t) is 

y(t) = CJYI (t) + C2Y2(t) + yp(t). 

The boundary conditions lead to the system of equations 

ClYI (tl) + C2Y2(tl) = A - yp(tJ), 

ClYI (t2) + C2Y2(t2) = B - Yp(t2). 

This system of equations has a unique solution if and only if 

Assume that 

[ YI (tl) Y2 (tl)] ;to O. 
YI (t2) Y2 (t2) 

[ YI (tl) Y2(t1)] _ 0 
YI (t2) Y2 (t2) - . 

Then there are constants dl, d2, not both zero, such that the nontrivial solution 

y(t) = dl YI (t) + d2Y2(t) 

satisfies 
y(tl) = y(t2) = O. 

This contradicts the disconjugacy of Ly(t) 
complete. 

6.3 Green's Functions 

= 0 on [a, b + 2], and the proof is 

• 

In this section we introduce the Green's function for a two point conjugate boundary 
value problem. We do this in such a way that other BVP's for second order problems 
(see Exercises 6.15-6.18 for the development of the Green's function for a focal 
BVP) and Green's functions for nth order equations are analogous. It will follow that 
under certain conditions the solution of a nonhomogeneous BVP can be expressed 
in terms of Green's functions. The Green's function will also be used to prove an 
important comparison theorem for conjugate BVPs. 
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By Theorem 6.7, if Ly(t) = 0 is disconjugate on [a, b + 2], then the BVP 

Ly(t) = h(t), 

yea) = 0, 

y(b +2) = 0 

(t in [a + 1, b + 1]) (6.12) 

(6.13) 

(6.14) 

has a unique solution yet). We would like to have a formula like the variation of 
constants formula for yet). Let's begin by proving several results concerning what 
we will later define as the Green's function G(t, s) for the BVP Ly(t) = 0, (6.13), 
(6.14). 

First, assume that there is a function G(t, s) that satisfies the following: 

(a) G(t, s) is defined for a .:s t .:s b + 2, a + 1 .:s s .:s b + 1. 

(b) LG(t,s) = fits fora + 1 .:s t .:s b + 1, a + 1 .:s s .:s b + 1, where fits is the 
Kronecker delta (fits = 0 if t =f:. s fits = 1 if t = s). 

(c) G(a, s) = G(b + 2, s) = 0, a + 1 .:s s .:s b + 1. 

We set 
b+1 

yet) = L G(t, s)h(s); 
s=a+1 

then we claim that yet) satisfies Eqs. (6.12)-(6.14). First, by (c), 

b+1 

yea) = L G(a, s)h(s) = 0 
s=a+1 

and 
b+1 

y(b + 2) = L G(b + 2, s)h(s) = 0, 
a=s+1 

so Eqs. (6.13) and (6.14) hold. Next, 

b+1 

Ly(t) = L LG(t, s)h(s) 
s=a+1 

b+1 

= L fltsh(s) 
s=a+1 

= h(t), (a + 1 .:s t .:s b + 1). 

Thus we have shown that if there is a function G(t, s) satisfying (a)-(c), then 

HI 

yet) = L G(t, s)h(s) 
s=a+1 
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satisfies the BVP (6.12)-(6.14). 
We now show that if Ly(t) = 0 is disconjugate on [a, b + 2], then there is a func

tion G(t, s) satisfying (a)-(c). To this end, let Yl (t) be the solution of the IVP (6.2), 
Yl(a) = 0, Yl(a + 1) = 1, and let y(t, s) be the Cauchy function for Ly(t) = O. 
Define G (t , s) for a :s t :s b + 2, a + 1 :s s :s b + 1 by 

{ 
_ y(b+2,s)YI (t) 

_ ydb+2) , 
G(t, s) - y(t s) _ y(b+2,s)YI(t) 

, YI (b+2) , 

t :s s 

s :s t. 
(6.15) 

Since Ly(t) = 0 is disconjugate on [a, b + 2], Yl (b + 2) > 0, we are not dividing 
by zero in the definition of G(t, s). Also note that since y(s, s) = 0, we may write 
t :s s and s :s t in the definition of G (t, s). 

Since 

and 

G(a, s) = _ y(b + 2, S)Yl (a) = 0 
Yl(b + 2) 

G(b + 2 s) = (b + 2 s) _ y(b + 2, S)Yl (b + 2) = 0 
, y, Yl (b + 2) , 

we have that G(t, s) satisfies (c). 
Next we show that G(t, s) satisfies (b). If t ::=: s + 1, then 

y(b+2,s) 
LG(t,s) = Ly(t,s)- LYl(t) 

Yl(b + 2) 

= 0 = 8ts . 

If t :s s - 1, 

y(b+2,s) 
LG(t,s)=- LYl(t) 

Yl(b + 2) 

= 0 = 8ts • 

Finally, if t = s, 

LG(s, s) = p(s)G(s + 1, s) + c(s)G(s, s) + p(s - I)G(s - 1, s) 

y(b+2,s) 
= p(s)y(s + 1, s) - LYl(S) 

Yl(b + 2) 

=1=8ts . 

Hence G(t, s) satisfies (a)-(c). 
Let's show that if Ly(t) = 0 is disconjugate on [a, b + 2], there is a unique 

function satisfying (a)-(c). We know that G(t, s) defined by Eq. (6.15) satisfies (a)
(c). Assume that H(t, s) satisfies (a)-(c). Fix s in [a + 1, b + 1] and set 

y(t) = G(t, s) - H(t, s). 
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It follows from (b) that y(t) is a solution of Ly(t) = 0 on [a, b+2]. By (c), y(a) = 0, 
y(b + 2) = O. Since Ly(t) = 0 is disconjugate on [a, b + 2], we must have y(t) = 0 
on [a, b + 2]. Since s in [a + 1, b + 1] is arbitrary, it follows that G(t, s) = H(t, s) 
for a :s t :s b + 2, a + 1 :s s :s b + 1. 

Definition 6.4. If Ly(t) = 0 is disconjugate on [a, b + 2], we define the Green's 
function for the BVP Ly(t) = 0, (6.13), (6.14) to be the unique function G(t, s) 
satisfying (a)-(c). 

Theorem 6.S. If Ly(t) = 0 is disconjugate on [a, b + 2], the unique solution of 

Ly(t) = h(t), 

y(a) = 0 = y(b + 2) 

is given by 
b+l 

y(t) = L G(t, s)h(s). 
s=a+l 

Furthermore, 

G( ) _/- }~~tJ.~i Yl (t), 
t, s - y(b+2,s) 

y(t, s) - Yt (H2) Yl (t), 

and G(t, s) < 0 on the square a + 1 :s t, s :s b + 1. 

t:ss 

s :s t 

Proof. It remains to show that G(t, s) < 0 on the square a + 1 :s t, s :s b + 1. 
To see this, fix s in [a + 1, b + 1]. Since Ly(t) = 0 is disconjugate on [a, b + 2], 
Yl (t) > 0 for a < t :s b + 2 and y(t, s) > 0 for s < t :s b + 2. Hence 

for a + 1 :s t :s s. 
Ifs:s t:s b+2, 

y(b+2,s) 
G(t, s) = - Yl(t) < 0 

Yl(b + 2) 

y(b+2,s) 
G(t,s)=y(t,s)- Yl(b+2) Yl(t), 

which as a function of t is a solution of Ly(t) = 0 on [a, b+2]. Since G(b+2, s) = 0 
and G(s, s) < 0, we have that 

G(t,s) < 0 (for s :s t :s b + 1). 

Since s in [a + 1, b + 1] is arbitrary, we get the desired result. • 
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Example 6.12. Find the Green's function for the BVP 

-Mp(t - 1)~y(t - 1)] = 0 

y(a) = 0 = y(b + 2). 

By Example 6.4 the Cauchy function is 

t-I 1 
y(t,s) = L:

-r=s p(r) 

247 

for t ~ s, and consequently the solution that satisfies the initial conditions y(a) = 
0, y(a + 1) = 1, is 

t-I 1 
YI(t) == y(t, a) = L:-. 

-r=a p(r) 

By Theorem 6.8, we have for t ~ s 

y(b + 2, s) 
G(t,s) = - YI(b+2) YI(t) 

"I-I 1 "b+1 1 
~-r=a~~-r=s~ 

"b+1 1 
~-r=a p(-r) 

On the other hand, we have for s ~ t 

y(b+2,s) 
G(t,s) = y(t,s) - YI(b+2) YI(t) 

= 

= 

"t-I 1 "b+1 1 "I-I 1 "b+1 1 
~-r=s ~ ~-r=a ~ - ~-r=a ~ ~-r=s ~ 

"b+1 1 
~-r=a p(-r) 

"t-I 1 ("t-I 1 "b+1 1 ) ~-r=s~ ~-r=a ~ + ~-r=t ~ 
"b+1 1 
~-r=a p(-r) 

"I-I 1 ("b+1 1 "t-I I) ~-r=a~ ~-r=t ~ + ~-r=s ~ 
"b+1 1 
~-r=a p(-r) 

"s-I 1 "b+1 1 
~-r=a~~-r=t ~ 

"b+1 1 
~-r=a p(-r) 

In summary, the Green's function is given by 

{ 

~t-I 1 ~b+l 1 
_ Lo<=a p(r) Lo<=s p(r) 

~b+1 1 ' 
G(t s) - Lo<=a p!ri 
,- $-1 1 "-b+1 1 

L<=a P(T) L<=t P(T) 
- ~b+1 1 ' 

LoT=a p«) 

t ~ s, 

s ~ t. 
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Note that G(t, s) < 0 on the square a + 1 :s s, t :s b + 1, as guaranteed by 
Theorem 6.8, and that G(t, s) is also symmetric on this square. 

As a special case of this example, we have that the Green's function for the 
BVP 

is 

!:!!.2y(t - 1) = 0, 

y(a) = 0, y(b + 2) = 0 

{ 
- (t-a)(b+2-s) t < S 

b+2-a ' -G(t, s) = (s-a)(b+2-t) 
- b+2-a ' s:S t. 

Example 6.13. Use the appropriate Green's function to solve the BVP 

!:!!.2y(t - 1) = 12, 

y(O) = 0 = y(6). 

By Theorem 6.8, the solution of this BVP is given by 

5 

y(t) = L G(t, s)12. 

By Example 6.12, 

Therefore, 

s=1 

{ 
(6-s)(t) 

G(t, s) = = (6-~)(s)' 
6 ' 

t 5 

y(t) = 2 L(t - 6)s + 2 L t(s - 6) 
s=1 s=t+1 

t :s s 

s :s t. 

t(t + 1) [s (2) ]6 
= 2(t - 6) + 2t - - 6s 

2 2 t+1 

3 2 [(30) (t+1)t )] = t - 5t - 6t + 2t "2 - 36 - 2 - 6(t + 1) 

= t3 - 5t2 - 6t - t3 + 11t2 - 30t 

= 6t2 - 36t. 

The proof of the following corollary is left as an exercise. 
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Corollary 6.4. If Ly(t) = ° is disconjugate on [a, b + 2], the unique solution of 
the boundary value problem 

Ly(t) = h(t) 

yea) = A, y(b + 2) = B 

is given by 
b+l 

yet) = u(t) + L G(t, s)h(s), 
s=a+l 

where G(t, s) is the Green's function for the BVP Ly(t) = 0, yea) = ° = y(b + 2) 
and u(t) is the solution of the BVP Lu(t) = 0, u(a) = A, u(b + 2) = B. 

Example 6.14. Solve the BVP 

.D.2y(t -1) = 12, 

yeO) = 1, 

y(6) = 7. 

By Corollary 6.4 and Example 6.13, the desired solution is 

yet) = u(t) + 6t2 - 36t, 

where u(t) is the solution of the BVP .D.2y(t - 1) = 0, u(O) = 1, u(6) = 7. It 
follows that u(t) = 1 + t and consequently that 

yet) = 6t2 - 35t + l. 

Theorem 6.9. Assume that Ly(t) = ° is disconjugate on [a, b+2] and that u(t), 
vet) satisfy 

Lu(t) :s Lv(t), 

u(a) 2: v(a), 

u(b + 2) 2: v(b + 2); 

then u(t) 2: vet) on [a, b + 2]. 

(t in [a + 1, b + 1]), 

Proof. Set wet) = u(t) - vet) for t in [a, b + 2]. Then 

h(t) == Lw(t) = Lu(t) - Lv(t) :s ° 
for t in [a + 1, b + 1]. If A == u(a) - v(a) 2: 0, B == u(b + 2) - v(b + 2) 2: 0, then 
wet) solves the BVP 

Lw(t) = h(t), 
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By Corollary 6.4, 

w(a) = A, 

w(b+2) = B. 

b+l 
w(t) = y(t) + L G(t, s)h(s), 

s=a+l 

(6.16) 

where G(t, s) is the Green's function for the BVP Ly(t) = 0, y(a) = 0 = y(b + 2), 
and y(t) is the solution of the BVP Ly(t) = 0, y(a) = A, y(b + 2) = B. By 
Theorem 6.8, G(t, s) ~ O. Since Ly(t) = 0 is disconjugate on [a, b + 2] and 
y(a) ~ 0, y(b + 2) ~ 0, it follows that y(t) ~ O. By Eq. (6.16), w(t) ~ 0, which 
gives the desired result. • 

6.4 Disconjugacy 
In Section 6.2 we introduced disconjugacy and showed that it is important in obtain
ing a comparison result for solutions of initial value problems (Theorem 6.6) and 
an existence and uniqueness result for solutions of boundary value problems (The
orem 6.7). The existence and uniqueness of the Green's functions in Section 6.3 
also relied on disconjugacy. Theorem 6.9 used it to establish a comparison result for 
solutions of a two-point boundary value problem. 

Here we will develop several criteria for disconjugacy and discover further con
sequences of it. In Chapter 8 the role of disconjugacy in the discrete calculus of 
variations will be examined. In particular, we will see that disconjugacy is equiva
lent to the positive definiteness of a certain quadratic functional. 

I Theorem 6.10. The difference equation Ly(t) = 0 is disconjugate on [a, b + 2] 
if and only if there is a positive solution of Ly(t) = 0 on [a, b + 2]. 

Proof. Assume that Ly(t) = 0 is disconjugate on [a, b + 2]. Let u(t), v(t) be 
solutions of Ly(t) = 0, satisfying 

u(a) = 0, 

v(b+ 1) = 1, 

u(a+l)=I, 

v(b + 2) = o. 

By the disconjugacy, u(t) > 0 on [a + 1, b + 2] and v(t) > 0 on [a, b + 1]. It 
follows that y(t) = u(t) + v(t) is a positive solution of Ly(t) = O .. 

Conversely assume that Ly(t) = 0 has a positive solution on [a, b + 2]. It follows 
from the Sturm separation theorem that no nontrivial solution has two generalized 
zeros in [a, b + 2]. • 
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Corollary 6.5. The difference equation (6.2) is disconjugate on [a, b + 2] if and 
only if it has a Polya factorization on [a, b + 2]. 

Proof. If Eq. (6.2) is disconjugate, it has a positive solution by Theorem 6.10. By 
Theorem 6.2, Ly(t) = 0 has a Polya factorization. 

Conversely assume that Ly(t) = 0 has the Polya factorization 

Pl(t)b.{P2(t)b. (Pl(t - l)y(t -I))} = 0, 

where Pl(t) > 0 in [a, b + 2], P2(t) > 0 in [a + 1, b + 2]. It follows that y(t) = 
1/ Pl (t) is a positive solution. By Theorem 6.10, Ly(t) = 0 is disconjugate on 
[a, b + 2]. • 

Define the k by k tridiagonal determinants Dk(t), a + 1 S t S b + 1, 1 S k S 
b+2-ttobe 

c(t) p(t) 0 0 0 
p(t) c(t + 1) p(t + 1) 0 0 

0 p(t + 1) c(t + 2) p(t + 2) 0 

0 0 p(t + k - 3) c(t + k - 2) p(t +k - 2) 
0 0 0 p(t + k - 2) c(t + k - 1) 

where c(t) is given by Eq. (6.4). 

Theorem 6.11. The difference equation Ly(t) = 0 is disconjugate on [a, b + 2] 
if and only if the coefficients of Ly(t) = 0 satisfy 

(6.17) 

for a + 1 S t S b + 1, 1 S k S b + 2 - t. 

Proof. Assume that Ly(t) = 0 is disconjugate on [a, b + 2]. We will show that 
Eq. (6.17) holds for 1 S k S b - a + 1, a + 1 S t S b + 2 - k by induction on k. 

For k = 1 we now show that - Dl (t) = -c(t) > 0 for a + 1 S t S b + 1. To 
this end, fix to E [a + 1, b + 1] and let y(t) be the solution of Eq. (6.2), satisfying 
y(to - 1) = 0, y(to) = 1. Since Ly(to) = 0, we have from Eq. (6.3) that 

p(to)y(to + 1) + c(to)y(to) = 0, 

c(to) = -p(to)y(to + 1). 

Bythedisconjugacy,y(to+l) > O,soc(to) < O. Since to E [a+l,b+l] is arbitrary, 
c(t) < 0 for a + 1 S t S b + 1, and the first step of the induction is complete. Now 
assume that 1 < k S b - a + 1 and 

(_I)k-l Dk-l(t) > 0 (6.18) 
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for a + 1 ~ t ~ b + 3 - k. We will use this induction hypothesis to show that 
Eq. (6.17) holds. Fix tl E [a + 1, b+2-k] and let u(t) be the solution of Ly(t) = 0, 
U(tl - 1) = 0, U(tl + k) = 1. (Why do we know there is such a solution?) Using 
these boundary conditions and the equation Ly(t) = 0 for tl ~ t ~ tl + k - 1, we 
arrive at the equations 

c(tt)u(tt) + p(tt)U(tl + 1) = 0 

p(tt)u(tt) + C(tl + I)U(tl + 1) + p(tl + I)U(tl + 2) = 0 

p(tl + k - 3)U(tl + k - 3) + C(tl + k - 2)U(tl + k - 2) 

+p(tl +k - 2)U(tl +k - 1) = 0 

p(tl + k - 2)U(tl + k - 2) + C(tl + k - I)U(tl + k - 1) = - p(tl + k - 1). 

Note that the detenninant of the coefficients is Dk(tl). It is left as an exercise to show 
that Dk(tt) -:f:. O. We can use Cramer's rule to solve the above system for U(tl +k-l) 
to obtain 

U(tl + k _ 1) = _ p(tl + k - I)Dk-l (tl) . 
Dk(tl) 

By the disconjugacy, U(tl +k-l) > 0, so using Eq. (6.18) we have (-I)k Dk(tl) > O. 
Since tl E [a + 1, b + 2 - k] is arbitrary, Eq. (6.17) holds for t in [a + 1, b + 2 - k] . 

• 
The converse statement of this theorem is a special case of the following theorem. 

Theorem 6.12. If (_I)k Dk(a + 1) > 0 for 1 ~ k ~ b - a + 1, then Ly(t) = 0 
is disconjugate on [a, b + 2]. 

Proof. Let u(t) be the solution of Ly(t) = 0, satisfying u(a) = 0, u(a + 1) = 1. 
By the Sturm separation theorem it suffices to show that u(t) > 0 on [a + 1, b + 2]. 

We will show that u(a + k) > 0 for 1 ~ k ~ b - a + 2 by induction on k. For 
k = 1, u(a+l) = 1 > O. Assume that 1 < k ~ b-a+2and thatu(a+k-l) > O. 
Using Lu(t) = 0, a + 1 ~ t ~ a + k - 1 and u(a) = 0, we get the k - 1 equations 

c(a + l)u(a + 1) + p(a + l)u(a + 2) = 0 

p(a + l)u(a + 1) + c(a + 2)u(a + 2) + p(a + 2)u(a + 3) = 0 

p(a + k - 3)u(a + k - 3) + c(a + k - 2)u(a + k - 2) 

+p(a +k - 2)u(a +k -1) = 0 

p(a + k - 2)u(a + k - 2) + c(a + k - l)u(a + k - 1) 
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+p(a + k - l)u(a + k) = o. 

By Cramer's rule (here Do(a + 1) == I), 

u(a + k _ 1) = _p(a + k - l)u(a + k)Dk-2(a + 1). 
Dk-l(a + 1) 

It follows that u(a + k) > 0, so by induction u(t) > 0 in [a + I, b + 2]. Hence 
Ly(t) = 0 is disconjugate on [a, b + 2]. • 

We say that Ly(t) = 0 is disconjugate on an infinite set of integers [a, 00) pro
vided that no nontrivial solution has two generalized zeros on [a, 00). 

Example 6.15. Use Theorem 6.12 to show that f).2y(t - 1) = 0 is disconjugate 
on [0, 00). 

By Theorem 6.12 it suffices to show that (_I)k Dk(1) > 0 for k ::: 1. Here 
p(t) = I, c(t) = -2. Thus 

DI(1) = -2, 

[ -2 
D2(1) = 1 

Expanding Dk+2(1) along the first row, we get 

By solving the IVP 

Dk+2(1) + 2Dk+I (1) + Dk(1) = 0, 

Dl(1) = -2, D2(1) = 3, 

we obtain 

Then 

and so, by Theorem 6.12, f).2y(t - 1) = 0 is disconjugate on [0, 00). 
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Theorem 6.13. If Ly(t) = 0 is disconjugate on [a, b + 2], then there are the 
solutions u(t), v(t) such that u(t) > 0, v(t) > 0 on [a, b + 2] and 

whenever a ~ tl < t2 ~ b + 2. 

[ U(tl) V(tl)] > 0 
U(t2) v (t2) 

(6.19) 

Proof. By the disconjugacy, we have from Theorem 6.10 that there is a positive 
solution u(t) on [a, b + 2]. Let y(t) be a solution ofEq. (6.2) such that u(t), y(t) are 
linearly independent. By Liouville's formula the Casoratian w[u(t), y(t)] is of one 
sign on [a, b + 1]. If necessary, we can replace y(t) by -y(t), so we can assume that 

w[u(t), y(t)] > 0 

on [a, b + 1]. Pick C > 0 sufficiently large so that 

v(t) = y(t) + Cu(t) > 0 

on [a, b + 2]. Note that 

w[u(t), v(t)] = w[u(t), y(t)] > 0 (6.20) 

on [a, b + 1]. 
We will now show that Eq. (6.19) holds. To see this, fix tl in [a, b + 1]. We will 

show by induction on k that 

I u(tt) V(tl) I 0 
U(tl + k) V(tl + k) > 

for 1 ~ k ~ b + 2 - tl. For k = 1 this is true because of Eq. (6.20). Now assume 
that 1 < k ~ b + 2 - tl and 

I u(tt) v(tt) I 0 
U(tl + k - 1) V(tl + k - 1) > . 

The boundary value problem Lz(t) = 0, Z(tl) = 0, Z(tl + k - 1) = 1 has a unique 
solution z(t) by Theorem 6.7. Since z(t) is a linear combination of u(t) and v(t), 

z(tt) U(tl) v(tt) 
Z(tl + k - 1) U(tl + k - 1) V(tl + k - 1) = O. 

Z(tl + k) U(tl + k) V(tl + k) 

Expanding along the first column, we get 

I U(tl) V(tl) I I U(tl) V(tl) I 
U(tl + k) V(tl + k) = Z(tl + k) U(tl + k - 1) V(tl + k - 1) . 
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By the disconjugacy, Z(tl + k) > 0, so 

I u (tI) 
U(tl + k) 

V(tI) I 
V(tl + k) > O. 

It follows that Eq. (6.19) holds for a S tl < t2 S b + 2. 

255 

• 
Theorem 6.14. Assume that Ly(t) = 0 is disconjugate on [a, 00). Then there 
exists a nontrivial solution YI (t) such that if Y2(t) is any second linearly indepen
dent solution, then 

Furthermore, 

lim YI (t) = o. 
t-+oo Y2(t) 

00 1 

L p(S)YI(S)YI(S + 1) = 00, 

00 1 L <00. 
p(S)Y2(S)Y2(S + 1) 

Also, if Wi (t) = p(t~~{) (t) , i = I, 2, then WI (t) < W2 (t) for all sufficiently large 
t. 

Proof. Let u(t), vet) be linearly independent solutions of Ly(t) = O. Since 
Ly(t) = 0 is disconjugate on [a, 00), there is an integer T 2: a so that vet) is of 
one sign for t 2: T. For t 2: T consider 

ll. (U(t») = w[v(t), u(t)] 
vet) v(t)v(t + 1) 

C = , 
p(t)v(t)v(t + 1) 

where C is a constant, by Liouville's formula. It follows that ~g~ is either increasing 
or decreasing for t 2: T. Let 

. u(t) 
Y= hm --, 

t-+oo vet) 

where -00 S y S 00. If y = ±oo, then, by interchanging u(t) and v(t), we get 
that y = O. Then we may as well assume that -00 < y < 00. If y =1= 0, we can 
replace the solution u(t) by the solution u(t) - yv(t) to get 

We may assume that 

lim u(t) - yv(t) = y _ y = O. 
t-+oo vet) 

lim u(t) = O. 
t-+oo vet) 
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Set Yl (t) = u(t). If Y2(t) is a second linearly independent solution then Y2(t) = 
aYl (t) + {3v(t), {3 =F O. We have 

1· Yl (t) _ l' u(t) - 0 Im--- 1m -. 
1-+00 Y2(t) 1-+00 au(t) + {3v(t) 

Pick an integer Tl sufficiently large so that Y2(t) is of the same sign for t 2: Tl. 

Now consider for t 2: Tl 

I::!.. (Yl(t)) = W[Y2(t),Yl(t)] 

Y2(t) Y2(t)Y2(t + 1) 
D = , 

p(t)Y2(t)Y2(t + 1) 

where D is a constant, by Liouville's formula. Summing both sides of this equation 
from Tl to t - 1, we get 

t-l 
Yl(t) _ Yl(Td _ D L 1 
Y2(t) Y2(Td - p(S)Y2(S)Y2(S + 1) . 

s=TI 

It follows that 
00 1 
L <00. 
s=TI p(S)Y2(S)Y2(S + 1) 

Pick an integer T2 so that Yl (t) is of one sign for t 2: T2. In a similar way, 

I::!.. (Y2(t)) = W[Yl(t), Y2(t)] 

Yl (t) Yl (t)Yl (t + 1) 
D 

=-------
p(t)Yl(t)Yl(t + 1) 

Summing both sides of this equation from T2 to t - 1, we get 

t-l 
Y2(t) Y2(T2) '" 1 
Yl (t) - Yl (T2) = - D s~ p(S)Yl (S)Yl (s + 1) . (6.21) 

It follows that 
00 1 

s~ p(S)Yl (S)Yl (s + 1) = 00. 

To prove the last statement in the theorem, pick an integer T3 so that both Yl (t) 
and Y2(t) are of one sign for t 2: T3. Then with 

.( ) = p(t)I::!..Yi(t) 
WI t - ( ) , 

Yi t 
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i = 1,2, t 2: T3, we have that 

WI (t) _ W2(t) = p(t)L!lYI (t) _ p(t)L!lY2(t) 
YI (t) Y2(t) 

(6.22) 

p(t)W[Y2(t), YI (t)] 
= 

YI (t)n(t) 
D 

=----
YI (t)Y2(t) 

Since Wi (t) is not changed if we replace Yi (t) by -Yi (t), we can assume that Yi (t) > 

0, i = 1,2, t 2: T3. Using limHOO ~~~~ = 00 and Eq. (6.21), we get D < O. It then 
follows from Eq. (6.22) that WI (t) < W2(t) for t 2: T3. • 

A solution YI (t) as in Theorem 6.14 is called a recessive (first principal) solution 
of Eq. (6.2) at 00. It is a "smallest" solution at 00. A recessive solution is unique 
up to multiplication by a nonzero constant. A solution like Y2(t) in Theorem 6.14 
is called a dominant (second principal) solution of Eq. (6.2) at 00. The existence of 
these solutions is important in the computation of special functions using difference 
equations. Later we will see that a recessive solution corresponds to a minimum 
solution in a neighborhood of 00 of the Riccati equation associated with Ly(t) = O. 

Example 6.16. Find a recessive solution YI (t) and a dominant solution Y2(t) of 
the disconjugate equation 

y(t + 1) - 6y(t) + 8y(t - 1) = 0, (t 2: I), 

and verify directly that the conclusions of Theorem 6.14 are true for these solu
tions. 

The characteristic equation is 

(A - 2)(A - 4) = o. 

Take YI (t) = 2t , n(t) = 4t. Then 

lim YI (t) = lim (!)t = O. 
t~oo n(t) t~oo 2 

If we write this equation in self-adjointforrn, we get p(t) = (1)t, q(t) = 3(1)t. 
Hence 
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and 

00 1 1 00 (1)/ 
L p(t)Y2(t)Y2(t + 1) = 4 L 2 < 00. 
/=0 /=0 

Finally, note that 

Wl(t) = 8-1 < W2(t) = 3.8-1 , (t 2: 0). 

6.5 The Riccati Equation 
In this section we introduce the Riccati equation associated with Ly(t) = O. We 
will find that the disconjugacy of Ly(t) = 0 is closely related to conditions on the 
associated Riccati equation. In Section 6.6 we will see that the Riccati equation is 
very important in oscillation theory. 

Theorem 6.15. The difference equation Ly(t) = 0 has a solution of one sign on 
[a, b + 2] {on [a, co)} if and only the Riccati equation 

. z2(t) 
Rz(t) == b.z(t) + q(t) + = 0 

z(t) + p(t - 1) 

has a solution z(t) on [a + 1, b + 2] {on [a + 1, co)} with z(t) + p(t - 1) > 0 on 
[a + 1, b + 2] {on [a + 1, co)}. 

Proof. We will prove the theorem for the finite interval case. Assume that y(t) is a 
solution of Ly(t) = 0 of one sign on [a, b + 2]. 

Set (the Riccati substitution) 

p(t - 1)b.y(t - 1) 
(t) = u(a + 1 < t < b + 2) z y(t _ 1) , q --

= p(t - 1) [ y(t) - 1] . 
y(t - 1) 

Then 

z(t) + p(t - 1) = p(t - 1) y(;~ 1) > 0 

on [a + 1, b + 2]. To show that z(t) satisfies the Riccati equation, consider 

b.z(t) = _1_b. [p(t - 1)b.y(t - 1)] + p(t - 1)b.y(t - 1)b. [ ( 1 1)] 
y(t) . y t -

= -q(t) + z(t)y(t - 1) [y~t) - y(t ~ 1)] 
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= -q(t) + z(t) [yet - 1) - IJ 
yet) 

= -q(t) + z(t) [ pet - 1) - IJ 
z(t) + pet - 1) 

Z2(t) 
= -q(t) - ----

z(t) + pet - 1) 

Hence Rz(t) = 0 for t in [a + 1, b + 1]. 
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Conversely, assume that z(t) is a solution of the Riccati equation Rz(t) = 0 with 
z(t) + pet - 1) > 0 in [a + 1, b + 2]. Let yet) be the solution of the initial value 
problem 

(t) = z(t) + pet - 1) (t _ 1) 
y p(t - 1) Y (6.23) 

yea) = 1. 

It follows that yet) > 0 on [a, b + 2]. From Eq. (6.23) we have that 

z(t)y(t - 1) 
lly(t - 1) = . 

pet - 1) 

Hence 

pet - l)lly(t - 1) = z(t)y(t - 1), 

and so 

II [pet - l)lly(t - 1)] = y(t)llz(t) + z(t)lly(t - 1) 

() () Z2(t)y(t) Z2(t)y(t - 1) 
= -q t Y t - + --'-'----

z(t) + pet - 1) pet - 1) 

= -q(t)y(t) 

by Eq. (6.23). Then yet) is a positive solution of Ly(t) = o. • 
Corollary 6.6. The Riccati difference equation has a solution z(t) on [a + 1, b + 2] 
with z(t) + pet - 1) > 0 on [a + 1, b + 2] if and only if Ly(t) = 0 is disconjugate 
on [a, b + 2]. 

Proof. This corollary follows from Theorems 6.15 and 6.10. • 
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Example 6.17. Solve the Riccati equation 

(l)t Z2(t) 
~z(t) + 2 -6 + 1 1 = O. 

z(t) + (7»t-

Here q(t) = 2(i)t, p(t) = (i)t. The associated self-adjoint equation is 

~ [(~y-I ~y(t -1)] +2 (~y y(t) = 0 

or, after simplifying, 

y(t + 1) - 5y(t) + 6y(t - 1) = o. 
A general solution of this equation is 

so 

y(t) = A2t + B3t , 

z(t) = p(t - 1)~y(t - 1) 
y(t - 1) 

= (~)t-I A2t-1 + 2B3t- 1 . 
6 A2t - 1 + B3t - 1 

For A -:f. 0 we get the solutions 

(
1 )t-I 1 + 2C(~y-1 

z(t) = 6 1 + cd)t-I . 

For A = 0 we have 

(
1 )t-I 

z(t) = 2 6 
Consider an initial value problem for the Riccati equation 

We can rewrite this as 

Rz(t) = 0, 

z(a + 1) = ZOo 

Z2(t) 
z(t + 1) = z(t) - q(t) - () ( 1) 

zt +pt-

Note that we want z(a + 1) + p(a) = Zo + p(a) -:f. 0 so that z is defined 
at a + 2. If we want to continue our solution to t = a + 3, we also need that 
z(a + 2) + p(a + 1) -:f. O. Hence a solution of an NP for a Riccati equation may 
not exist on the whole interval [a + 1, b + 2]. In the proof of the next theorem we 
will consider such an NP. 
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Theorem 6.16. The difference equation Ly(t) = 0 is disconjugate on [a, b + 2] 
if and only if the Riccati inequality Rw(t) ::: 0 has a solution w(t) on [a+ 1, b+2] 
with w(t) + p(t - 1) > 0 on [a + 1, b + 2]. 

Proof. If Ly(t) = 0 is disconjugate on [a, b + 2], then by Corollary 6.6 the Riccati 
equation (and hence the Riccati inequality) has a solution w(t) on [a + 1, b+2] with 
w(t) + p(t - 1) > 0 on [a + 1, b + 2]. 

Conversely, assume that the Riccati inequality Rw(t) ::: 0 has a solution w(t) 
on [a + 1, b + 2] with w(t) + p(t - 1) > 0 on [a + 1, b + 2]. Let z(t) be the 
solution of the IVP Rz(t) = 0, z(a + 1) = w(a + 1). We will show by mathematical 
induction that z(t) ~ w(t) for a + 1 ::: t ::: b + 2. Since z(t) ~ w(t) implies 
that z(t) + p(t - 1) ~ w(t) + p(t - 1) > 0, we have simultaneously that z(t) is a 
solution on [a, b + 2]. For t = a + 1 we have z(a + 1) = w(a + 1). Assume that 
a + 1 ::: t ::: b+ 1 and z(t) ~ w(t). We will use this to show that z(t + 1) ~ w(t + 1). 
Now, 

Hence 

w2(t) o ~ Rw(t) = ..:lw(t) + + q(t). 
w(t) + p(t - 1) 

w(t + 1) < p(t - l)w(t) _ q(t). 
- w(t) + p(t - 1) 

Since f(x) = xC;c' (c > 0) is an increasing function of x for x + c > 0, 

w(t + 1) < p(t - l)z(t) - q(t) 
- z(t) + p(t - 1) 

= z(t + 1). 

It follows that Rz(t) = 0 has a solution z(t) on [a+ 1, b+2] with z(t)+ p(t -1) > 0 
on [a + 1, b + 2]. • 

Corollary 6.7. If q(t) ::: 0 on [a + 1, b + 1] {on [a + 1, oo)}, then Ly(t) = 0 is 
disconjugate on [a, b + 2] {on [a, oo)}. 

Proof. If q(t) ::: 0, then w(t) == 0 solves Rw(t) ::: 0 and w(t) + p(t - 1) > O. The 
result follows from Theorem 6.16. • 

An important relation between the self-adjoint operator L and the Riccati opera-
tor R is given by the following lemma. ' 
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Lemma 6.2. If y(t) > 0 on [a, b + 2] and z(t) = P(t-:ltll.W- 1) on [a + 1, b + 2], 
then z(t) + p(t - 1) > 0 on [a + 1, b + 2] and 

Ly(t) = y(t)Rz(t) (6.24) 

for t in [a + 1, b + 1]. 

Proof. By the quotient rule, 

y(t - 1)~ [p(t - 1)~y(t - 1)] - p(t - 1) [~y(t - 1)]2 
y(t)~z(t) = y(t _ 1) 

= Ly(t) _ q(t)y(t) _ [P(t - 1)~y(t - 1)]2 y(t - 1) . 
y(t - 1) p(t - 1) 

Since z(t) + p(t - 1) = p(t - 1) y[r<:!l) , z(t) + p(t - 1) > 0 and 

Ly(t) = y(t)~z(t) + y(t)q(t) + z2(t) y(t) 
z(t) + p(t - 1) 

Hence 
Ly(t) = y(t)Rz(t) 

for t in [a + 1, b + 1]. • 
Now we can prove the following theorem. 

Theorem 6.17. There is a function y(t) with y(t) > 0 on [a, b + 2] and Ly(t) ::: 
0, t in [a + 1, b + 1] if and only if Ly(t) = 0 is disconjugate on [a, b + 2]. 

Proof. Set 
w(t) _ p(t - 1)~y(t - 1) 

- y(t - 1) , 

t in [a + 1, b + 2]. Then by Lemma 6.2 

and 

w(t) + p(t - 1) > 0 in [a + 1, b + 2] 

1 
Rw(t) = -Ly(t) 

y(t) 

::: 0, (a + 1 ::: t ::: b + 1). 

Hence by Theorem 6.16, Ly(t) = 0 is disconjugate on [a, b + 2]. The converse 
statement is left to the reader. • 
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Corollary 6.8. Assume that there is a number r > 0 such that 

p(t)r2 + c(t)r + pet - 1) ::; 0 

for t in [a + 1, b + 1]. Then Ly(t) = 0 is disconjugate on [a, b + 2]. 

Proof. Set 

yet) = rt, (a::; t ::; b + 2). 

Then yet) > 0 in [a, b + 2] and, for t in [a + 1, b + 1], 

Ly(t) = p(t)rt+1 + c(t)rt + pet - l)r t - 1 

= r t - 1 [p(t)r2 + c(t)r + pet - 1)] 
::; o. 

By Theorem 6.17, Ly(t) = 0 is disconjugate on [a, b + 2]. 

Corollary 6.9. The difference equation 

yet + 1) + cx(t)y(t) + f3(t)y(t - 1) = 0, 
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• 

where f3(t) > 0 in [a + 1, b + 1], is disconjugate on [a, b + 2] provided that there is 
a positive number r so that 

r2 + cx(t)r + f3(t) ::; 0 

for t in [a + 1, b + 1]. 

Proof. Since f3(t) > 0 on [a + 1, b + 1], there is a positive function pet) so that 

pet) [yet + 1) + cx(t)y(t) + f3(t)y(t - 1)] 

= p(t)y(t + 1) + c(t)y(t) + pet - l)y(t - 1). 

Then for t in [a + 1, b + 1] 

p(t)r2 + c(t)r + pet - 1) = pet) [r2 + cx(t)r + f3(t)] ::; O. 

By Corollary 6.8, Ly(t) = 0 is disconjugate on [a, b + 2]. • 
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Example 6.18. Show that the equation 

y(t + 1) - y(t) + (! - ~) y(t - 1) = 0 
4 t 2 

is disconjugate on [2, (0). 

Consider 

h(r) = r2 - r + (~ - t; ) . 
Since h(lj2) = -~ ~ 0 in [1, (0), we have by Corollary 6.9 that this difference 
equation is disconjugate on [2, (0). 

We can generalize Corollary 6.7 in the following manner. 

Theorem 6.18. If Ly(t) = 0 is disconjugate on [a, b + 2] and k(t) ~ 0 for t in 
[a + 1, b + 1], then 

Ly(t) + k(t)y(t) = 0 (6.25) 

is disconjugate on [a, b + 2]. 

Proof. Since Ly(t) = 0 is disconjugate on [a, b + 2], it has a Polya factorization. 
In particular, 

where 

Ly(t) = Pl(t)Mpz(t)d(Pl(t - l)y(t - 1»], 

Pl (t) > 0 in [a, b + 2] 

pz(t) > 0 in [a + 1, b + 2]. 

Equation (6.25) becomes 

Pl (t)d {pz(t) [d (Pl (t - l)y(t - I»)]} + k(t)y(t) = O. 

Letz(t) = Pl(t)y(t) to get 

k(t) 
d [pz(t)dz(t - 1)] + -2-Z(t) = O. 

Pl (t) 

By Corollary 6.7 this last equation is disconjugate on [a, b + 2]. Since y(t) has 
a generalized zero at some point if and only if z(t) does at the same point, we have 
that Eq. (6.25) is disconjugate on [a, b + 2]. • 

Now we can prove the following comparison theorem. In Chapter 8 we will give 
an improvement of this theorem. 
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Theorem 6.19. (Sturm comparison theorem) If Ly(t) +qI (t)y(t) = 0 is discon
jugate on [a, b+2] and q2(t) ::: qI (t) on [a+ 1, b+ 1], then Ly(t) +q2(t)y(t) = 0 
is disconjugate on [a, b + 2]. 

p~t Theequation 

Ly(t) + q2(t)y(t) = 0 

can be written in the form 

My(t) + k(t)y(t) = 0, 

where My(t) == Ly(t) + qI (t)y(t) = 0 is disconjugate on [a, b + 2] and 

on [a + 1, b + 1]. Hence Ly(t) + q2(t)y(t) = 0 is disconjugate on [a, b + 2] by 
Theorem 6.18. • 

6.6 Oscillation 
In this section we will be concerned with the self-adjoint difference equation 

Ly(t) = Mp(t - l)dy(t - 1)] + q(t)y(t) = 0, 

where p(t) > 0 for integers t ~ a and q(t) is defined for integers t ~ a + 1. We will 
define what it means for this equation to be oscillatory on [a, (0) and give several 
criteria for oscillation. The Riccati equation will be important in this development. 

Definition 6.5. A nontrivial solution y(t) of a second order linear homogeneous 
difference equation is said to be oscillatory on [a, (0) provided that y (t) has infinitely 
many generalized zeros on [a, (0). If a nontrivial solution is not oscillatory, it is said 
to be nonoscillatory. The difference equation Ly(t) = 0 is said to be oscillatory 
on [a, (0) if it has a nontrivial oscillatory solution on [a, (0). If Ly(t) = 0 is not 
oscillatory on [a, (0), we say Ly(t) = 0 is nonoscillatory on [a, (0). 

Note that, by the Sturm separation theorem, if one nontrivial solution has infinitely 
many generalized zeros on [a, (0), then all nontrivial solutions have infinitely many 
generalized zeros on [a, (0). 

In Example 6.7 we saw that the Fibonacci difference equation y(t + 1) - y(t) -

y(t - 1) = 0 has an oscillatory solution y(t) = 0 -1Y and a nonoscillatory 

solution z(t) = (! + 4) t, but the Fibonacci difference equation cannot be put in 
self-adjoint form. 
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Example 6.19. Show that the difference equation 

t + 7 t 2 + 1 
y(t + 1) - t + 5 y(t) - t 2 + 4 y(t - 1) = ° 

has an oscillatory and a nonoscillatory solution. 

Since 

and 

t+7 
lim --- =-1 

t-+oo t + 5 

. t 2 + 1 
hm ---=-1, 

t-+oo t 2 + 4 
we have that the equation is of Poincare type. By Perron's Theorem there are 

1 · () () hth 1· u(t+l) - 1 .j5 1· v(t+l) _ 1 .j5 so utlOns u t , v t suc at lmt-+oo li(i) - 2 - 2' lmt-+oo --v(t) - 2 + 2' 
from which the desired result follows immediately. 

Example 6.20. The difference equation 

y(t + 1) + 9y(t - 1) = ° (6.26) 

is oscillatory on [0, 00). 

The characteristic equation is A 2 + 9 = 0, so the eigenvalues are Al = 3eiTC /2, 

A2 = 3e-iTC /2. It follows that a general solution is 

JT JT 
y(t) = A3t cos -t + B3t sin -to 

2 2 
Hence Eq. (6.26) is oscillatory on [0, 00). 

Example 6.21 shows that we can have a nonoscillatory equation with as many 
generalized zeros as we want. 

Example 6.21. The equation 

y(t + 1) + a(t)y(t) + f3(t)y(t - 1) = 0, 

where 

a(t) = ( 0, 

-2, 

f3(t) = (9, 
1, 

for n ~ 3, is nonoscillatory but not disconjugate on [0, 00). 

Usually we can not actually solve the difference equation in question. We would 
like to develop theorems concerning the coefficients p(t), q(t) that will enable us to 
determine if the equation is oscillatory or nonoscillatory on [a, 00). 
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Theorem 6.20. If p(t) is bounded above on [a, (0) and Ly(t) = 0 is 
nonoscillatory on [a, (0), then either L~a+l q(t) exists as a finite number or 
L~a+! q(t) = -00. . 

Proof. Assume that Ly (t) = 0 is nonoscillatory on [a, (0). Let y (t) be a nontrivial 
solution. Then there is an integer to ~ a + 1 such that y(t) is of one sign on [to -
1, (0). Without loss of generality we can assume that y(t) > 0 on [to -1, (0). Make 
the Riccati substitution 

z(t) = p(t - 1)~y(t - 1) , 
y(t - 1) 

(t ~ to); 

then z(t) + p(t - 1) > 0 in [to, (0) and z(t) satisfies the Riccati equation 

~ t - _ t _ Z2(t) 
z( ) - q() z(t) + p(t - 1) 

on [to, (0). Summing both sides from to to t, we obtain 

t t 2( ) 
z(t + 1) = z(to) - L q(s) - L z(S): ~s _ 1)' (6.27) 

s=to s=to p 

First, assume that L~to z(s)f~(~ 1) < 00. Since p(t) is bounded above on 
[a, (0), there is an m > 0 such that p(t - 1) :s m on [a + 1, (0). But 0 < 
z(t) + p(t - 1) :s z(t) + m implies that 

o < Z2(t) < Z2(t) . 
z(t) + m - z(t) + p(t - 1) 

By the comparison test for convergence of series, L~to z(t~~m converges. But then 

limHoo z(t) = 0, so py Eq. (6.27) L~to q(t) converges to a finite number. 

Finally, consider the case L~to Z(S)f~(~-I) = 00. Since -z(t + 1) < p(t) :s m, 

Eq. (6.27) implies that L~to q(t) = -00. • 

Theorem 6.20 gives us immediately the following two corollaries. 

Corollary 6.10. If p(t) is bounded above on [a, (0) and L~a+! q(t) = 00, then 
Ly(t) = 0 is oscillatory on [a, (0). 

Corollary 6.11. If p(t) is bounded above on [a, (0) and 

t t 

-oo:s lim inf '" q(s) < lim sup '" q(s):s 00, 
t->oo L.., t->oo L.., 

s=a+l s=a+! 

then Ly(t) = 0 is oscillatory on [a, (0). 
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Example 6.22. Show that the difference equation 

1 
t::.2y(t - 1) + -y(t) = 0, 

t 

is oscillatory on [0, 00). 

(t ~ 1) (6.28) 

Here p(t) = 1, which is bounded on [0, 00). Since L~I q(t) = L~I t = 00, 
we have by Corollary 6.10 that Eq. (6.28) is oscillatory on [0, 00). 

Example 6.23. Show that the difference equation 

(t ~ 1) 

is oscillatory on [0, 00). 
This follows from Corollary 6.11 because 

t t 
1 l' . LsI LsI -- = 1m mf (-1) - < lim sup (-1) - = O. 
2 t-+oo 2 t-+oo 2 

s=1 s=1 

Theorem 6.21. If for all to ~ a + 1 there is a tl ~ to such that 

t 

lim sup" q(s) ~ 1, 
t-+oo ~ 

(6.29) 
s=t\ 

then t::.2y(t - 1) + q(t)y(t) = 0 is oscillatory on [a, 00). 

Proof. Assume that t::.2y(t - 1) + q(t)y(t) = 0 is nonoscillatory on [a, 00). Then 
there is an integer to ~ a + 1 and a solution y(t) such that y(t) > 0 for t ~ to - 1. 
Make the Riccati substitution 

t) _ t::.y(t - 1) . 
z( - y(t - 1) , 

then z(t) + p(t - 1) = z(t) + 1 > 0 for t ~ to and 

Z2(t) 
t::.z(t) = -q(t) - z(t) + 1 . (6.30) 

Pick tl ~ to so that Eq. (6.29) holds. Summing both sides ofEq. (6.30) from tl to 
t, we get that 
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Hence 

If L~II+l z(;5~1 = 00, then it is easy to get a contradiction from Eq. (6.31). 
Now assume that 

~ Z2(s) 
~ <00. 

s=II+1 z(s) + 1 

But then limHoo Z(:)~l = 0 and consequently limHoo z(t) = O. By Eq. (6.31), 

-z(t + 1) ~ 
1 

_Z(..:...,:tl:.:.-) _ + L q(s). 
1 + Z(tl) s=11 

Hence 

O~ 

1 
z(tt} . " ( + lIm sup ~ q(s), 

1 + z tl) 1-+00 
s=11 

> 0, 

which is a contradiction. 

Example 6.24. Show that the difference equation 

f:l.2y(t - 1) + q(t)y(t) = 0, 

where 

is oscillatory on [a, 00). 

Since for all to ~ a + 1 there is a tl ~ to such that 

1 

lim sup" q(s) = 1, 
1-+00 ~ 

s=tl 

this difference equation is oscillatory by Theorem 6.21. 
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• 

The following lemma will be used in the proof of Theorem 6.22 and will also be 
used to prove Theorem 8.10. 
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Lemma 6.3. Assume that z(t) is a solution of the Riccati equation Rz(t) = 0 on 
[a + I, b + 2], with z(t) + p(t - I) > 0 on [a + I, b + 2]. If u(t) is defined on 
[a, b + 2], then 

!::. [z(t)u2(t - 1)] = - {q(t)u2(t) - p(t - I)[!::.u(t - 1)]2} (6.32) 

( z(t)u(t) )2 
- - ..jz(t) + p(t - I)!::.u(t - I) 

";z(t) + p(t - I) 

for t in [a + I, b + I]. 

Proof. Let z(t) and u(t) be as in the statement of the lemma, and consider 

!::. (Z(t)U2(t - 1)) 
= u2(t)!::.z(t) + u(t)z(t)!::.u(t - I) + z(t)u(t - I)!::.u(t - I) 

= u2(t) [ -q(t) - z(t) :2;~~ _ I) ] 

+ u(t)z(t)!::.u(t - I) + z(t)u(t - I)!::.u(t - I) 

= _ [q(t)u2(t) _ p(t _ I)[!::.u(t _ 1)]2] _ Z2(t)u2(t) 
z(t) + p(t - I) 

+ u(t)z(t)!::.u(t - I) + z(t)u(t - I)!::.u(t - I) - p(t - I)[!::.u(t - I)f 

[ 2 2] z2(t)u2(t) = - q(t)u (t) - p(t - I)[!::.u(t - I)] - --.:....:...---.:...-=--
z(t) + p(t - 1) 

+ 2u(t)z(t)!::.u(t - I) - (z(t) + p(t - I» [!::.u(t - 1)]2 

= - {q(t)u2(t) - p(t - I)[!::.u(t - l)f} 

( z(t)u(t) )2 
- - ..jz(t) + p(t - I)!::.u(t - I) 

";z(t) + p(t - 1) • 
Theorem 6.22. If L~a -it> = 00 and there is an integer to :::: a + 1 and a 
function u(t) > 0 in [to, 00) such that 

00 

I)q(t)u2(t) - p(t - 1)[!::.u(t - 1)]2} = 00, (6.33) 
t=to 

then Ly(t) = 0 is oscillatory on [a, 00). 

Proof. Assume that Ly(t) = 0 is nonoscillatory on [a, 00). Then there is at} :::: a 
such that Ly(t) = 0 is disconjugate on [tt. 00). By Theorem 6.14 there is a dominant 



6.6. OSCILLATION 271 

solution y(t) and an integer t2 ::: tl such that y(t) > 0 on [t2, 00) and 

00 1 L <00. 
t=t2 p(t)y(t)y(t + 1) 

Let T = max{t2, to} + 1 and set for t ::: T 

p(t - l)dy(t - 1) 
z(t) = y(t _ 1) . 

Then z(t) + p(t - 1) > 0 in [T, 00) and Rz(t) = 0, t ::: T. By Lemma 6.3, 

d [z(t)U2(t -1)] = - {q(t)U2(t) - p(t -1)[du(t _1)]2} 

( z(t)u(t) )2 
- - ../ z(t) + p(t - l)du(t - 1) . 

";z(t) + p(t - 1) 

Summing both sides from T to t, we have that [z(s)u2(s - 1) ]~+I is equal to 

t 

- L{q(s)u2(s) - p(s - 1)[du(s - 1)]2} 

s=T 

~ ( z(s)u(s) )2 
- ~ - ../z(s) + p(s - l)du(s - 1) 

s=T ";z(s) + p(s - 1) 

It follows from Eq. (6.33) that 

lim z(t + l)u2(t) = -00. 
t~oo 

Then there is a To ::: T such that 

Hence 

z(t) < 0 for t ::: To. 

:....p...;,..(t_---:.l)_d.:...y...;,..(t_-_l--:..) < 0 
y(t - 1) 

for t ::: To, 

and so dy(t - 1) < 0 for t ::: To. Since y(t) is decreasing for t ::: To - 1, we have 

00 1 00 1 
L -(t) = y(To)y(To + 1) L (t) en) en + 1) 
t=To p t=To p y 0 y 0 

which is a contradiction. 

00 1 
< y(To)y(To + 1) L (t) (t) (t + 1) 

t=To P Y Y 

< 00, 

• 
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Corollary 6.12. If L~a p~t) 
oscillatory on [a, 00). 

00 and L~a+l q(t) = 00, then Ly(t) = 0 is 

Proof. For u(t) = 1, t :::: a, 

00 00 

L {q(t)u 2 (t) - pet - l)[ilu(t - 1)]2} = L q(t) = 00. 

t=a+l t=a+l 

Hence by Theorem 6.22, Ly(t) = 0 is oscillatory on [a, 00). 

Example 6.25. Show that 

1 
il [(t - l)ily(t - 1)] + -yet) = 0 

t 

is oscillatory on [2, 00). 

Here p(t) = t, q(t) = f. Since 

00 1 00 

L- =00= Lq(t), 
t=2 pet) t=3 

we have by Corollary 6.12 that Eq. (6.34) is oscillatory on [2, 00). 

Example 6.26. Show that 

is oscillatory on [0, 00). 

Let u(t) = st; then ilu(t) = 4 . st. Hence 

00 

L{q(t)u2 (t) - pet - l)[ilu(t - l)f} 
t=1 

00 {( 1 ) t ( 1 ) t-l } = {; 5" s2t -"6 16· s2t-2 

00 t ( 16 (S)t-l) = L S 1 - 5"6 = 00. 
t=1 

By Theorem 6.22, equation Eq. (6.3S) is oscillatory on [0,00). 

• 

(6.34) 

(6.3S) 

We now state without proof an oscillation theorem for a nonlinear difference equa
tion. Oscillation in this case means that every solution on [a, 00) has infinitely many 
generalized zeros. Nonoscillatory means that there is at least one nontrivial solution 
with only a finite number of generalized zeros. 
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Theorem 6.23. If q(t) 2:: 0, t 2:: a + 1, then the Emden-Fowler difference equa-
tion 

(n 2:: 1) 

is oscillatory on [a, 00) if and only if L~a+l tq(t) = 00. 

Example 6.27. Show that the nonlinear difference equation 

(6.36) 

is oscillatory on [0, 00). 

Here n = 1, q(t) = ~, t 2:: 1. Since 

00 00 1 
Ltq(t) = L t = +00, 
t=1 t=1 

it follows from Theorem 6.23 that Eq. (6.36) is oscillatory on [0, 00). 

For results concerning the oscillation of difference equations, the reader is re
ferred to papers in the references by Bykov and Zivogladova [35], Bykov, Zivogla
dova and Sevcov [36], Chen and Erbe [43], [44], Chuanxi, Kuruklis and Ladas [51], 
Derr [60], Erbe and Zhang [76], [77], Gyori and Ladas [101], [102], Hinton and 
Lewis [131], [132], Hooker and Patula [137], [138], [139], Hooker, Kwong, and Pat
ula [135], [136], Ladas [158], [159], [160], Ladas, Philos and Sficas [161], [162], 
Mingarelli [196], Patula [210], [211], Reid [237], Smith and Taylor [245], Szmanda 
[251], [252], and Wouk [262]. Analogues of some of the results in this chapter for 
higher order equations can be found in Cheng [46], [47], Eloe [70]-[73], Eloe and 
Henderson [75], Hankerson and Henderson [110], Hankerson and Peterson [111]
[117], Harris [118], Hartman [120], Hartman and Wintner [122], Henderson [123]
[126], Peil [213], [214], and Peterson [216]-[221]. Generalizations to matrix equa
tions are contained in Ahlbrandt [9], Ahlbrandt and Hooker [10], [12], [13], [14], 
Chen and Erbe [43], Peil and Peterson [215], and Peterson and Ridenhour [222]
[226]. 
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Exercises 

Section 6.1 

6.1 Each of the following equations is in the form of Eq. (6.3). Write them in the 
self-adjoint form of Eq. (6.2). 

(a) 3t y(t + 1) + (et - 4 . 3t - 1 )y(t) + 3t - 1 y(t - 1) = O. 

(b) (cos I~Ot)y(t + 1) + 21 y(t) + (cos 110J )y(t - 1) = O. 

(c) y(t + 1) + 2y(t) + y(t - 1) = O. 

6.2 Write each of the following equations in the self-adjoint form. In (a) and (d) use 
your factorization to solve the equation. 

(a) (t - l)y(t + 1) - ty(t) + y(t - 1) = 0, t ::: 3. 

(b) (t - l)y(t + 1) + (1 - t)y(t) + y(t - 1) = 0, t ::: 3. 

(c) y(t + 1) - 5y(t) + 6y(t - 1) = o. 
(d) y(t + 1) - 2y(t) + y(t - 1) = O. 

6.3 The standard solutions z(J..) = 1;.,.(t) andz(J..) = YA(t) of the Bessel equation 

satisfy the difference equation 

z(J.. + 1) - 2M-1z(J..) + z(J.. - 1) = O. 

Write this equation in self-adjoint form. If u(m) = t-A-mz(J.. + m), then verify that 
u(m) satisfies 

u(m + 2) - 2(J.. + m + l)t-2u(m + 1) + t-2u(m) = O. 

6.4 Find two linearly independent solutions y(t) and z(t) of each of the following: 

(a) y(t + 1) - 5y(t) + 6y(t - 1) = O. 

(b) y(t + 1) - 2y(t) + y(t - 1) = O. 

(c) f:l2y(t - 1) + 2y(t) = O. 

Calculate w[y(t), z(t)] directly and then check your answer using Liouville's for
mula. 

6.S Prove the form of the Lagrange Identity for complex-valued functions. Namely, 
if y(t) and z(t) are complex-valued functions on [a, b + 2], then 

z(t)Ly(t) - yLz(t) = f:l{p(t - l)w[z(t - 1), y(t - I)]} 

for t in [a + 1, b + 1]. 



EXERCISES 

6.6 Find a Polya factorization for each of the following: 
(a) y(t + 1) - 2y(t) + y(t - 1) = O. 
(b) y(t + 1) - 5y(t) + 6y(t - 1) = O. 

(c) y(t + 1) - 4y(t) + 4y(t - 1) = O. 
(d) y(t + 1) - 200y(t) + 10, OOOy(t - 1) = o. 
6.7 Find the Cauchy function y (t, s) for each of the following: 

(a) tJ. [(iY-1 tJ.y(t -1)J + 2 (iY y(t) = O. 

(b) y(t + 1) - 4y(t) + 4y(t - 1) = O. 
(c) tJ.2y (t - 1) + 2y(t) = O. 
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6.S Use the variation of constants formula to solve the following initial value prob
lems: 
(a) tJ.2y (t - 1) = t, y(2) = y(3) = O. 
(b) tJ.2y (t - 1) = 3, y(O) = y(l) = o. 

(c) tJ. [ (i Y-1 tJ.y(t - 1) J + 2 (i Y y(t) = 1, y(O) = y(1) = o. 
(d) tJ.2y (t - 1) = t 2, y(O) = y(1) = O. 

6.9 Solve this initial value problem 

tJ.2y (t - 1) = t, y(O) = 0, y(1) = 1, 

using Corollary 6.3. 

Section 6.2 

6.10 Solve the following difference equations and decide on what intervals these 
difference equations are disconjugate: 

(a) y(t + 1) - 9y(t) + 14y(t - 1) = O. 
(b) y(t + 1) - 2,J2y(t) + 4y(t - 1) = o. 
6.11 Prove the last statement in Theorem 6.5. 

6.12 Show that the existence of a solution y(t) of Ly(t) = 0, with y(t) i= 0 in 
[a, b + 2], does not in general imply that Ly(t) = 0 is disconjugate on [a, b + 2]. 

6.13 Assume that Ly(t) = 0 is disconjugate on [a, b + 2]. Show that if z(t) is a 
solution of the difference inequality Lz(t) ~ 0 on [a, b + 2] and y(t) is a solution of 
Ly(t) = 0 in [a, b + 2] with z(a) = y(a), z(a + 1) = y(a + 1), then y(t) ::: z(t) on 
[a, b + 2]. 

6.14 Show that if there is a solution of Ly(t) = 0 with y(a) = 0, y(t) > 0 in 
[a + 1, b + 2], then Ly(t) = 0 is disconjugate on [a, b + 2]. 
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Section 6.3 

6.15 We say that Ly(t) = 0 is disfocal on [a, b + 2] if there is no nontrivial solution 
y(t) such that y(t) has a generalized zero at tl and ~y(t) has a generalized zero at t2, 
where a ::s tl < t2 ::s b + 1. Show that if Ly(t) = 0 is disfocal on [a, b + 2], then the 
boundary value problem Ly(t) = h(t), y(tl) = A, ~y(t2) = B, a ::s tl < t2 ::s b + 1 
has a unique solution. Show that ~2y(t - 1) = 0 is disfocal on [a, b + 2]. 

6.16 Show that if H(t, s) satisfies these properties: 

(a) H(t, s) is defined for a ::s t ::s b + 2, a + 1 ::s s ::s b + 1. 

(b) LH(t,s) = 8ts fora::s t::s b + 2, a + 1 ::s s ::s b + 1. 

(c) H(a, s) = 0 = ~H(b + 1, s), a + 1 ::s s ::s b + 1. 

then y(t) = L~;!"~+1 H(t, s)h(s) solves the boundary value problem Ly(t) = h(t), 
t in [a + 1, b + 1], y(a) = 0 = ~y(b + 1). 

6.17 Show that if Ly(t) = 0 is disfocal on [a, b + 2], then 

H(t ) - - f.Yl(b+I) YI , { 
f.y(b+1,s) (t) 

,s - f.y(b+1,s) 
y(t, s) - f.Yl(b+I) YI(t), 

t::ss 

s ::s t 

satisfies (a)-(c) in Exercise 6.16 and H(t, s) ::s 0, a ::s t ::s b + 1, a + 1 ::s s ::s b + 1. 

6.18 Show that if Ly(t) = 0 is disfocal on [a, b + 2], then there is a unique function 
H(t, s) satisfying properties (a)-(c) in Exercise 6.16. This function H(t, s) is called 
the Green's function for the boundary value problem Ly(t) = 0, t in [a + 1, b + 1], 
y(a) = 0 = ~y(b + 1). 

6.19 Find the Green's function for the boundary value problem ~2y(t - 1) = 0, 
y(a) = 0 = ~y(b + 1). Show that a - b - 1 ::s H(t, s) ::s 0, a ::s t ::s b + 2, 
a + 1 ::s s ::s b + 1, and -1 ::s ~H (t, s) ::s 0 for a ::s t ::s b + 1, a + 1 ::s s ::s b + 1. 
(See the previous two exercises.) 

6.20 Show that the Green's function G(t, s) for the boundary value problem 

y(a) = 0 = y(b + 2) 

satisfies 

b+2-a 
- < G(t s) < 0 4 - , -

for a ::s t ::s b + 2, a + 1 ::s s ::s b + 1. Further show that 

b+1 2 L IG(t, s)1 ::s (b + ~ - a) 

s=a+1 

for a ::s t ::s b + 2. 
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6.21 Find the Green's function for the boundary value problem 

f). [(~y-' f).y(t -1)J +2 (~y y(t) = 0, 

y(O) = 0 = y(100). 

6.22 Use the appropriate Green's function to solve the boundary value problem 

6.23 Prove Corollary 6.4. 

f).2y(t - 1) = t, 
y(O) = 0 = y(8). 

6.24 Use the appropriate Green's function to solve the boundary value problem 

f). 2y(t - 1) = 10, 

y(O) = 10, y(1O) = 70. 

6.25 Use the appropriate Green's function to solve the boundary value problem 

f).2y(t - 1) = 8, 

y(O) = 0, y(8) = 4. 
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6.26 Use the appropriate Green's function (see Exercise 6.19) to solve the boundary 
value problem 

f). 2y(t - 1) = 2, 

y(O) = 0, f).y(4) = O. 

Section 6.4 

6.27 Show that y(t + 1) - (t + 2)y(t) + 2ty(t - 1) = 0 is disconjugate on [1, 00). 

6.28 Show that Dk (t,) oF 0 in the proof of Theorem 6.11. 

Section 6.5 

6.29 Show that the Riccati equation of this chapter, f).z(t) + q(t) + z(t)f~~~ 1) = 0, 
can be written in the form of the Riccati equation z(t + 1)z(t) + a(t)z(t + 1) + 
{3(t)z(t) + y(t) = 0 of Chapter 3. 

6.30 For each of the following disconjugate equations on [0,00), find a recessive 
solution y, (t) and a dominant solution Y2(t) and verify directly that the conclusions 
of Theorem 6.14 hold for these two solutions. 
(a) y(t + 1) - 1Oy(t) + 25y(t - 1) = O. 

(b) 2y(t + 1) - 5y(t) + 2y(t - 1) = o. 
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6.31 Solve the Riccati equations 

(a) /lz(t) + 4 (l)t + z2(t) = o. 
9 z(t)+(~)t-l 

(b) A() ~ 0 uz t + z(t)+l = . 
(c) /lz(t) + 3( l)t + Z2(t) = o. 

8 z(t)+( k)t 1 

6.32 By setting w(t) = (r - l)p(t - 1), t in [a + 1, b + 2], prove Corollary 6.8 
directly from Theorem 6.16. 

6.33 Use Theorem 6.17 to show that if q(t) ~ 0 on [a + 1, b + 1], then Ly(t) = 0 
is disconjugate on [a, b + 2]. 

6.34 Show that yet + 1) - 3y(t) + (i - sin t)y(t -1) = 0 is disconjugate on [1, 00). 

6.35 Show by use of Corollary 6.9 that 

y(t + 1) + ay(t) + fJy(t - 1) = 0, 

where fJ > 0, is disconjugate on any interval [a, b + 2] if a < 0 and a 2 - 4fJ ::: o. 

Section 6.6 

6.36 Show that the difference equation y(t+ 1) +y(t) -6y(t -1) = 0 has nontrivial 
oscillatory and nonoscillatory solutions. 

6.37 
(a) Show that if {tn } is a sequence of integers that is diverging to infinity and such 

that 
q(tn) ::: p(tn) + p(tn - 1), 

then Ly(t) = 0 is oscillatory on [a, 00). 

(b) Show that the difference equation Il[(!)t-l/ly(t - 1)] + 3(!)t yet) = 0 is 
oscillatory on [0, 00) by use of (a). 

6.38 Show that the following difference equations are oscillatory: 

(a) /l2y(t - 1) + (t+l)l~(t+l)y(t) = 0, (t ::: 2). 

(b) /l2y(t - 1) + Ay(t) = 0, (t ::: 1) (A > 0). 

(c) /l2y(t - 1) + [sin(t + 1) - sint]y(t) = 0, (t ::: 1). 

(d) /l [1~t2/ly(t - 1)] + ty(t) = 0, (t ::: 1). 



Chapter 7 
The Sturm-Liouville Problem 

7.1 Introduction 
In this chapter our main topic is the Sturm-Liouville difference equation 

d[p(t - l)dy(t - 1)] + [q(t) + Ar(t)]y(t) = 0. (7.1) 

Here we assume that p(t) is defined and positive on the set of integers [a, b + 1] = 
{a, a + 1, ... ,b + I}; r(t) is defined and positive on [a + 1, b + 1]; q(t) is defined 
and real valued on [a + 1, b+ 1]; and A is a parameter. At the outset we will consider 
the general linear homogeneous boundary conditions 

Py == ally(a) + a12dy(a) - blly(b + 1) - bl2dy(b + 1) = 0, 

Qy == a2IY(a) + a22dy(a) - b2IY(b + 1) - hz2dy(b + 1) = 0, 

where the a's and b's are real constants. We assume that the boundary condi
tions Py = 0, Qy = ° are not equivalent (that is, the vectors [all, a12, bll, b12], 
[a21, a22, b21, b22] are linearly independent). 

If bll = b12 = ° = a21 = a22, we get the separated boundary conditions 

where we assume that 

ay(a) + {3dy(a) = 0, 

yy(b + 1) + 8dy(b + 1) = 0, 

(7.2) 

(7.3) 

(7.4) 

Definition 7.1. The boundary value problem (7.1)-(7.3), where Eq. (7.4) holds, is 
called a Sturm-Liouville problem. 

Another important special case of the boundary conditions Py = 0, Qy = ° is 
the periodic boundary conditions 

y(a) = y(b + 1), 

dy(a) = dy(b + 1). 

(7.5) 

(7.6) 
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Definition 7.2. The boundary value problem (7.1), (7.5), (7.6), where we assume 
p(a) = p(b + 1), is called a periodic Sturm-Liouville problem. 

Let us begin with some general definitions. 

Definition 7.3. We say that A = AO is an eigenvalue for the boundary value prob
lem (7.1), Py = 0, Qy = 0, provided that this BVP for A = AO has a nontrivial 
solution yo(t). In such a case we say that yo(t) is an eigenfunction corresponding to 
the eigenvalue AO, and we say that the pair (AO, yo(t» is an eigenpair for the BVP 
(7.1), Py = 0, Qy = 0. We say that an eigenvalue AO is simple if there is only 
one linearly independent eigenfunction corresponding to AO. If an eigenvalue is not 
simple, we say that it is a multiple eigenvalue. 

Note that if (AO, yo(t» is an eigenpair for Eq. (7.1), Py = 0, Qy = 0, then 
(AO, kyo(t» for k =1= ° is also an eigenpair for Eq. (7.1), Py = 0, Qy = 0. Later 
we will see that a Sturm-Liouville problem has only simple eigenvalues, whereas a 
periodic Sturm-Liouville problem can have multiple eigenvalues. 

Example 7.1. Find eigenpairs for the Sturm-Liouville problem 

t::,.2y(t - 1) + Ay(t) = 0, 

y(o) = 0, y(4) = 0. 

The characteristic equation for Eq. (7.7) is 

m2 + (A - 2)m + 1 = 0, 

so 
(2 - A) ± J (A - 2)2 - 4 

m=~--~~----~----
2 

(7.7) 

If IA - 21 :::: 2, it can be shown that there are no eigenvalues. Assume that IA - 21 < 
2 and set 

2-A=2cosO. 

Then 
m = cos 0 ± i sin 0 = e±i9. 

Hence a general solution ofEq. (7.7) is 

y(t) = A cosOt + B sinOt. 

From the boundary conditions we have 

y(o) = A = 0, 

y(4) = B sin 40 = 0. 
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Take 

(n = 1,2,3); 

then 

Hence 

n1( 

An =2-2cos4" 

"fi . 1( 
(2 - 2, sm "4t), 2 . 1( ( ,sm"2 t ), 

(n = 1,2,3). 

(2 + "fi, sin 3: t) 

are eigenpairs for this Sturm-Liouville problem. 
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Note in the above example that every eigenvalue is simple and that the number 
of eigenvalues is the same as the number of integers in [a + I, b + I] = [I, 3]. We 
will see later that the number of eigenvalues for such a Sturm-Liouville problem 
is b - a + 1. 

In the remainder of this chapter we will consider only boundary conditions of the 
form Py = 0, Qy = 0, where 

p(b+ l)detA = p(a)detB (7.8) 

and 

Example 7.2. Show for a Sturm-Liouville problem that Eq. (7.8) is satisfied. 

For the Sturm-Liouville problem, 

A = [~ ~J. B = [~ ~l 
Since detA = ° = det B, Eq. (7.8) holds. 

Example 7.3. For the periodic Sturm-Liouville problem, Eq. (7.8) is satisfied. 

For the periodic Sturm-Liouville problem, 

Hence detA = detB = 1. Since p(t) is periodic with period b + I - a, Eq. (7.8) 
holds. 
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7.2 Finite Fourier Analysis 
We now develop the basic results that are needed to define a finite Fourier series in 
terms of eigenfunctions for a Sturm-Liouville problem. 

Definition 7.4. Let y(t), z(t) be complex-valued functions defined on [a+ 1, b+ 1]; 
then we define the inner product (., .) by 

b+I 
(y, z) = L y(t)z(t). 

t=a+I 

It is easy to verify that this inner product satisfies the following: 

(a) (y + z, w) = (y, w) + (z, w). 

(b) (ay, z) = a(y, z). 

(c) (y, z) = (z, y). 

(d) (y, y) > 0 when y is not the trivial function on [a + 1, b + 1]. 

Similarly, ifr(t) > 0 on [a+ 1, b+ 1], we can define an inner product with respect 
to (a weight function) r(t) by 

b+1 

(y, Z)r = L r(t)y(t)z(t). 
t=a+1 

It can be shown that (., ·)r satisfies (a)-(d); in addition, (y, Z)r = (.jry, .jrz). 
Let 

D = {complex-valued functions on [a, b + 2] : Py = 0 = Qy}. 

Definition 7.5. If (Ly, z) ~ (y, Lz) for all y in D, then we say that the boundary 
value problem (7.3), Py = 0 = Qy, is self-adjoint. (Here L is as in Chapter 6-
namely, Ly(t) = ~[p(t - l)~y(t - 1)] + q(t)y(t).) 

Note that Eq. (7.1) can be written in the form 

Ly(t) + Ar(t)y(t) = O. (7.9) 

I Theorem 7.1. If Eq. (7.8) holds, the boundary value problem (7.3) Py = 0 = 
Qy is self-adjoint. ' ' 

Proof. We will prove this theorem only in the special case that our boundary value 
problem is a Sturm-Liouville problem (see Exercise 7.4). Let y and z belong to D. 
By the complex form of the Lagrange Identity (Exercise 6.5), 

{ _ Jb+1 
(Ly, z) = (y, Lz) + p(t)w[z(t), y(t)] a • 
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It suffices to show that y, z in D implies that 

{p(t)w[z(t), Y(t)]}~+l = o. 
We first show that {p(t)w[z(t), y(t)]}t=a = O. 

Since 

ay(a) + {3!::.y(a) = 0, 

az(a) + {3!::.z(a) = 0, 

where a and {3 are not both zero because of Eq. (7.4), 

I
y(a) !::.y(a) I = O. 

z(a) !::.z(a) 
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It follows that {p(t)w[z(t), y(t)]}t=a = O. Similarly, using the boundary condi
tion (7.3), we have that {p(t)w[z(t)y(t)]}t=b+l = 0, and the proof for the Sturm
Liouville problem case is complete. • 

Theorem 7.2. If the boundary value problem (7.1), Py = 0, Qy = 0, is self
adjoint, then all eigenvalues are real. If An, Am are distinct eigenvalues, the cor
responding eigenfunctions Yn (t), Ym (t) are orthogonal with respect to the weight 
function r(t) on [a + 1, b + 1]; that is, (Yn, Ym)r = O. For the Sturm-Liouville 
problem, eigenvalues are simple. 

Proof. Let (An, Yn(t», (Am, Ym(t» be eigenpairs for the boundary value problem 
(7.1), Py = 0, Qy = O. Since we have a self-adjoint boundary value problem and 
Yn, Ym are in D, 

(LYn, Ym) = (Yn, LYm). 

Using Eq. (7.9) with A = An, A = Am, we have 

(-AnrYn, Ym) = (Yn, -AmrYm). 

It follows that 
(An - Im)(Yn, Ym)r = o. 

If m = n, we get An = In, so eigenvalues of self-adjoint boundary value problems 
are real. If An =1= Am, we obtain the orthogonality condition 

(Yn, Ym)r = O. 

Finally, assume that AO is an eigenvalue for the Sturm-Liouville problem (7.1)
(7.3). Assume that Yo(t), zo(t) are eigenfunctions corresponding to the eigenvalue 
AO. Then 

ayo(a) + {3!::.Yo(a) = 0, 
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azo(a) + fJilzo(a) = 0, 

where by Eq. (7.4) a and fJ are not both zero. Hence 

or 

Iyo(a) ilYo(a) I = 0 
zo(a) ilzo(a) 

{w[yo(t), ZO(t)]}t=a = O. 

Since yo(t) and zo(t) are solutions of the same equation, they must be linearly de
pendent. Hence all eigenvalues of a Sturm-Liouville problem are simple. • 

Example 7.4. Show directly that eigenfunctions corresponding to distinct eigen
values of the Sturm-Liouville problem 

il2y(t - 1) + )..y(t) = 0, 

y(O) = 0, y(4) = 0 

satisfy the orthogonality condition guaranteed by Theorem 7.2. 

From Example 7.1 three linearly independent eigenfunctions are Yn(t) = sin n; t, 
I :::: n :::: 3. Here r(t) = 1, so 

} . 1( . 1( 1( 31( 31( 
(Yl, Y2 r = SID 4" SID "2 + sin "2 sin 1( + sin """4 sin 2 

~ ~ 
=2-2=0. 

Similarly, 

Since eigenvalues of a self-adjoint boundary value problem (7.1), Py = 0, Qy = 
0, are real, it can be shown (see Exercise 7.7) that, corresponding to each eigenvalue, 
we can always pick a real eigenfunction. We will use this result in the proof of the 
next theorem. 

Theorem 7.3. If).. is an eigenvalue of the Sturm-Liouville problem (7.1)-(7.3), 
q(t) :::: 0 on [a + 1, b + 1], afJ :::: 0, and yeS 2: 0, then).. 2: O. If, in addition, 
q(t) > 0 at two consecutive integers in [a + 1, b + 1], then).. > O. 

Proof. Let).. be an eigenvalue with the corresponding real eigenfunction y(t) for 
the Sturm-Liouville problem (7.1)-(7.3). 

Consider for a + 1 :::: t :::: b + 1: 

y(t) [Ly(t) + )..r(t)y(t)] = 0, 
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y(t)D. [p(t - 1)D.y(t - I)] + q(t)y2(t) + Ar(t)y2(t) = 0, 

D. {y(t - I) [p(t - 1)D.y(t - I)]} - p(t - I) [D.y(t - 1)f 

+q(t)i(t) + Ar(t)i(t) = o. 
Summing both sides from a + I to b + I, we have 

y(b + I)p(b + 1)D.y(b + I) - y(a)p(a)D.y(a) 

b+l b+l b+l 
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- L p(t - I) [D.y(t - 1)]2 + L q(t)i(t) + A L r(z)i(t) = O. 
t=a+l t=a+l t=a+l 

It follows that 

A(y, y}r ~ y(a)p(a)D.y(a) - y(b + I)p(b + 1)D.y(b + I). (7.10) 

Since y satisfies (7.2), 
ay(a) + fJD.y(a) = o. 

We claim that afJ :s 0 implies that y(a)p(a)D.y(a) ~ O. If afJ = 0, then 
y(a)p(a)D.y(a) = O. Now assume that afJ < 0; then 

y(a)p(a)D.y(a) = _ fJp(a)[D.y(a)]2 ~ O. 
a 

Similarly, we can use yo ~ 0 and Eq. (7.3) to show that 

-y(b + I)p(b + 1)D.y(b + I) ~ o. 
From Eq. (7.10), 

A(y, y}r ~ 0, (7.11) 

so A ~ O. If, in addition, q(t) > 0 at two consecutive integers in [a + I, b + I] then 
the inequality in Eq. (7.10) and hence in Eq. (7.11) is strict. In this case we have 
A>Q • 

Example 7.5. Show that all eigenvalues of the Sturm-Liouville problem 

are positive. 

[ 
(t - 50) 2 I] 

D.2y(t - I) + - 2 + A-2- y(t) = 0, 
t +1 t +1 

y(O) = 0, 

2y(100) + 3D.y(100) = 0 

Here q (t) = - (tt-;~t :s 0 on [I, 100] and is strictly positive at two consecutive 
integers in [1, 100]. Further, afJ = 0 and yo = 6. Hence by Theorem 7.3 all 
eigenvalues are positive. 
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We showed that eigenvalues for a Stunn-Liouville problem are simple. The fol
lowing example shows that there are self-adjoint boundary value problems that have 
multiple eigenvalues. 

Example 7.6. Show that A = 2 is a multiple eigenvalue for the periodic Stunn
Liouville problem 

/:l2y(t - 1) + Ay(t) = 0, 

yeO) = y(4), 

/:ly(O) = /:ly(4). 

For A = 2 a general solution ofEq. (7.12) is 

7r 7r 
yet) = A cos 2:t + B sin 2:t. 

(7.12) 

Note that all these solutions satisfy the boundary conditions. Hence there are 
two linearly independent eigenfunctions corresponding to A = 2, and so A = 2 is 
a mUltiple eigenvalue. 

What follows is another method for finding the eigenvalues for the Stunn-Liouville 
problem (7.1)-(7.3) in the case that a =1= {J, y =1= 8. 

First we write Eq. (7.1) in the fonn 

p(t)y(t + 1) + c(t)y(t) + pet - l)y(t - 1) = -Ar(t)y(t), (7.13) 

where 

c(t) = q(t) - pet) - pet - 1). 

Letting t = a + 1, a + 2, ... ,b + 1 in Eq. (7.13) and using the boundary condi
tions (7.2), (7.3), we obtain N == b - a + 1 equations 

where 

c(a + l)y(a + 1) + pea + l)y(a + 2) = -Ar(a + l)y(a + 1), 

pea + 1)y(a + 1) + c(a + 2)y(a + 2) 

+p(a + l)y(a + 3) = -Ar(a + l)y(a + 2), 

p(b)y(b) + c(b + l)y(b + 1) = -Ar(b + l)y(b + 1), 

c(a + 1) = c(a + 1) + {Jp(a)y(a) , 
{J-a 

c(b + 1) = c(b + 1) + 8p(b + l)y(b + 2) . 
8-y 

(7.14) 
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Note that c(a + 1) = c(a + 1) if fJ = 0 and c(b + 1) = c(b + 1) if 8 = O. 
We write this as the vector matrix equation 

Su = -ARu, 

where u is the column N vector 

u = [y(a + 1), y(a + 2),··· ,y(b + l)f, 

S is the N by N tridiagonal matrix 

c(a + 1) 
p(a + 1) 

S= 0 

o 

p(a + 1) 
c(a + 2) 

and R is the N by N diagonal matrix 

o 
p(a + 2) 

p(b - 1) 
o 

o 
o 

c(b) p(b) 
p(b) c(b + 1) 

R = diag{r(a + 1), r(a + 2), ... ,r(b + I)}. 
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(7.15) 

Because of the equivalence of the problem (7.13), (7.14) with the problem (7.15), 
it follows from matrix theory that the Sturm-Liouville problem (7.13), (7.14) has N 
linearly independent eigenfunctions with all eigenvalues real. 

Let f.J., = -A; then we can write Eq. (7.15) in the form 

R-1Su = f.J.,U. 

It follows that (A, y) is an eigenpair for (7.13), (7.14) if and only if (-A, u), u = 
[y(a + 1), y(a + 2), ... ,y(b + l)f is an eigenpair for 

c(a+l) p(a+l) 0 0 
r~a+l) r(a+l~ 
p a+l) c(a+2 p(a+2) 0 r(a+2) r(a+2) r(a+2) 

R-1S= 0 
c(b) p(b) 
r(b) r(b) 

0 0 p(b) c(b+l) 
r(b+l) r(b+l) 

Example 7.7. Use R-1S to find eigenpairs for the Sturm-Liouville problem 

t::,.2y(t - 1) + Ay(t) = 0, 

y(O) = 0 = y(4). 
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Here p(t - 1) = 1, r(t) = 1, c(t) = -2, N = 3, so 

[
-2 1 

R-1S = 1 -2 
o 1 

The characteristic equation of R-1S is 

~] . 
-2 

(JL + 2)(JL2 + 4JL + 2) = O. 

Hence JL = -2, -2 ± R and consequently 

)"=2, 2 -../2, 2+ ../2. 
The corresponding eigenvectors are 

[1,0, -If, [~'1'~r. [ ../2 -1 ../2]T 
2' '2 

Compare these results to Example 7.1. 

Let N = b - a + 1 be as in the previous section, and let RN be the set of all 
functions y(t) defined on [a + 1, b + 1]. We call y(a + 1), y(a + 2), ... , y(b + 1) 
the components of y(t). Assume that YI (t), ... ,YN(t) are N linearly independent 
eigenfunctions of the Sturm-Liouville problem (7.1)-(7.3), ot t= (3. Given an arbi
trary real-valued function w(t) defined in [a + 1, b + 1], we want to find constants 
CI, ... ,CN such that 

N 

w(t) = L CkYk(t) 

k=l 

for t in [a + 1, b + 1]. Note that 

(w, Yk}r = (tCjYj, Yk) 
J=l r 

because of the orthogonality. 
Hence for 1 ::: k ::: N, 

N 

= LCj(Yj, Yk}r 
j=l 

= Ck(Yk. Yk}r 

(7.16) 

(7.17) 

The series (7.16), where q, 1 ::: k ::: N is given by Eq. (7.17), is called the 
Fourier series of w(t); the coefficients Ck are called the Fourier coefficients of w(t). 
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Example 7.8. Find the Fourier series of w(t) = t 2 - 4t + 3, 1 ::: t ::: 3 with 
respect to the eigenfunctions of the Stllnn-Liouville problem 

!::.2y(t - 1) + Ay(t) = 0, 

Y(O) = ° = y(4). 

By Example 7.1, Yk(t) = sin k:, 1 ::: k ::: 3, are N = 3 linearly independent 
eigenfunctions of this Sturm-Liouville problem. From Eq. (7.17), 

It follows that 

Hence 

for tin [1, 3]. 

(w, Ykh 
Ck=---

(Yk, Ykh 
W(I)Yk(1) + W(2)Yk(2) + W(3)Yk(3) 

= 
Yf(l) + Yf(2) + Yf(3) 

Yk(2) 
= 

Yf(l) + Yf(2) + Yf(3) . 

1 
ct = --, 

2 
C2 =0, 

1 
C3 = 2". 

1 17: 1 317:t 
w(t) = -- sin- + -sin-

2 4 2 4 

7.3 Nonhomogeneous Problem 
In this section we will be concerned with solving the boundary value problem 

Ly(t) + Aor(t)y(t) = f(t), 

ay(a) + {J!::.y(a) = 0, 

yy(b + 1) + ~!::.y(b + 1) = 0, 

(7.18) 

where Eq. (7.4) holds and AO is an eigenValue for the Sturm-Liouville problem (7.1)
(7.3). The main result of this section contains a necessary and sufficient condition 
for this boundary value problem to have a solution. 

Let Yl (t, A), Y2(t, A) be the solutions of Eq. (7.1), satisfying the initial conditions 

Yl(a,A) = 1, 

Y2(a, A) = 0, 

!::.Yl (a, A) = ° 
!::.Y2(a, A) = 1. 

Note that Yl (t, A), Y2(t, A) are linearly independent solutions ofEq. (7.1) and that 

y(t, A) == {JYl(t, A) - aY2(t, A) 
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is a nontrivial solution of Eq. (7.1), satisfying the boundary condition (7.2). Let Q 
be an operator corresponding to the boundary condition (7.3}-that is, 

Qy = yy(b + 1) + 8!l.y(b + 1). 

Set 

g(A) = Qy(t, A) 

= yy(b + I, A) + 8!l.y(b + I, A) 

for -00 < A < 00. Since eigenvalues of the Sturm-Liouville problem (7.1)-(7.3) 
are simple, g(Ao) = ° if and only if AO is an eigenvalue of (7.1)-(7.3). Note that if 
AO is an eigenvalue, 

y(t, AO) = {JYl (t, AO) - aY2 (t, AO) (7.19) 

is a corresponding eigenfunction. 
The following lemma will be needed in the proof of the main existence theorem 

for Eqs. (7.18), (7.2), and (7.3). 

Lemma 7.1. Let Yl (t), Y2(t) be solutions of Ly = 0, satisfying Yl (a) = I, 
!l.Yl(a) = 0, Y2(a) = 0, !l.Y2(a) = I; then the solution of the initial value prob
lem Ly = !, y(a) = 0, !l.y(a) = - pta) (f, Yl) is given by 

t b+l 
y(t) = -Yl (t) L Y2(S)!(S) - Y2(t) L Yl (s)!(s) 

s=a+l p(a) s=t+l p(a) 

for t in [a, b + 2]. 

Proof. By our convention for sums and since Y2(a) = 0, we have that y(a) = 0. 
Note that !l.y(a) = y(a + 1) = - ta) (f, Yl). 

Now assume that a + 1 < t < C + 1 and consider that 

t-l b+l 
y(t - I) = -Yl (t - I) L Y2(S)!(S) - Y2(t - 1) L Yl (s)!(s) . 

s=a+l p(a) s=t p(a) 

Then 

t-l 
!l.y(t - I) = -Yl (t) Y2(t)!(t) - !l.Yl (t - 1) L Y2(S)!(S) 

p(a) s=a+l p(a) 

b+l 
+ Y2(t) Yl (t)!(t) _ !l.Y2(t - I) L Yl(S)!(S). 

p(a) s=t p(a) 
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Hence 

Therefore, 

~ Y2(S)/(S) 
p(t - l)dy(t - 1) = - p(t -. l)dYl (t - 1) ~ 

. s=a+l p(a) 

b+l 
- p(t - l)dY2(t - 1) L Yl (s)/(s). 

s=t p(a) 

d[p(t - l)dy(t - 1)] = -p(t)dYl (t) Y2~~~(t) + p(t)dY2(t) Yl ~~:)(t) 
t-l 

- d[p(t - l)dYl (t - 1)] L Y2(S)/(S) 
s=a+l p(s) 

b+l 
- d[p(t - l)dY2(t - 1)] L Yl (s)/(s) 

s=t p(a) 

= p(t)W[Yl(t), Y2(t)] /(t) _ q(t)y(t). 
p(a) 

291 

By Liouville's formula, p(t)W[Yl (t), Y2(t)] = C, where C is a constant. Letting 
t = a, we get that C = p(a). It follows that 

Ly(t) = /(t), (a + 1 .:s t .:s b + 1). • 
Theorem 7.4. If (Ao, Yo(t» is an eigenpair for the Sturm-Liouville problem 
(7.1)-(7.3), then the boundary value problem 

Ly(t) + Aor(t)y(t) = /(t), 

ay(a) + {Jdy(a) = 0, 

yy(b + 1) + 8dy(b + 1) = 0, 

where Eq. (7.4) holds, has a solution if and only if (f, YO) = o. 

Proof. Let Yl (t) = Yl (t, Ao), Y2(t) = Y2(t, Ao); then, by Lemma 7.1 with Ly(t) = 
o replaced by Ly(t) + Aor(t)y(t) = 0, a general solution ofEq. (7.18) is 

t b+l 

y(t) = ClYl (t) + C2Y2(t) - Yl (t) L Y2(S)/(S) - Y2(t) L Yl (s)/(s) . 
s=a+l p(a) s=t+l p(a) 

Then y(t) satisfies Eqs. (7.2), (7.3) if and only if Cl, C2 satisfy the system of 
equations 

{J 
aCl + {JC2 = p(a) (f, yd, 
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1 
(QYl)C} + (QY2)C2 = p(a) QYl (j, Y2). 

Since AO is an eigenvalue of the Sturm-Liouville problem (7.1)-(7.3), 

(7.20) 

Hence the above system has a solution C}, C2 if and only if the vectors 

A = [ex, {J, p~a) (/, Yl)], 

B = [ QYl, QY2, p;a) QYl (j, Y2)] 

are linearly independent. 
First consider the case ex = O. Then {J ::f:. 0 and, by Eq. (7.20), QYl = 0 and so 

B = (0, QY2, 0). In this case, by Eq. (7.19), {JYl is an eigenfunction corresponding 
to AO. If QY2 = 0, then QYl = QY2 = 0 implies that W[YI (t), Y2(t)] = 0, which 
contradicts the fact that Yl and Y2 are linearly independent. Hence QY2 ::f:. O. But 
then A and B are linearly dependent if and only if (j, {JYl) = 0 (if and only if 
(j, YO) = 0). 

Next consider the case ex ::f:. O. By Eq. (7.20), 

or 

(7.21) 

Hence, in this case, 

B = ~ QYl [ex, {J, p~a) (j, Y2)] . 

Note that QYl ::f:. 0, for if QYl = 0, then by Eq. (7.21) QY2 = 0, and earlier we saw 
that this leads to a contradiction. Thus A and B are linearly dependent if and only if 

But this is true if and only if 

if and only if 

(/, YO) = O. • 
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Example 7.9. Find necessary and sufficient conditions on 1 for the boundary 
value problem 

to have a solution. 

!l.2y(t - 1) + 2y(t) = I(t), 

y(O) = 0, y(4) = 0 

By Example 7.1, (A.O, yo(t)) = (2, sin ~t) is an eigenpair for the corresponding 
homogeneous problem 

!l.2y(t - 1) + 2y(t) = 0, 

y(t) = 0, y(4) == ()'. 

By Theorem 7.4 the nonhomogeneous BVP has a solution if and only if 

(f(t), sin it) = O. 

It follows that the nonhomogeneous boundary value problem has a solution if and 
only if 

1(1) = 1(3). 

Theorem 7.5. The eigenvalues of the Sturm-Liouville problem (7.1)-(7.3) are 
precisely the zeros of g(A.) = yy(b + 1, A.) + 8!l.y(b + 1, A.), -00 < A. < 00. The 
zeros of g(A.) are simple (g(A.o) = 0 implies that g' (A.o) 1= 0). 

Proof. The first statement was proved earlier. We now prove that g(A.) has only 
simple zeros. To this end, set 

d 
z(t,A.) = dA.y(t,A.). 

Since 
ay(a, A.) + {3!l.y(a, A.) = 0, 

we obtain by differentiating with respect to A. that z(t) = z(t, A.) satisfies Eq. (7.2). 
Since 

Ly(t, A.) + A.r(t)y(t, A.) = 0, 

we have in a similar way 

Lz(t) + A.r(t)z(t) = -r(t)y(t, A.). 

Assume that g(A.o) = 0; then A.O is an eigenvalue of (7.1)-(7.3). Assume that 
g' (A.o) = 0; then 

yz(b + 1, A.o) + 8!l.z(b + 1, A.o) = O. 
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We have shown that Z(t, AO) is a solution of the boundary value problem 

Lz(t) + Aor(t)z(t) = -r(t)y(t, AO), 

az(a) + fJllz(a) = 0, 

yz(b + I) + 8llz(b + 1) = O. 

It follows from Theorem 7.4 that 

(r(t)y(t, AO), y(t, AO)} = O. 

But then (y(t, AO), y(t, AO)}r = 0, so y(t, AO) == 0 on [a + I, b + 1], which is a 
contradiction. • 

Theorem 7.6. The Sturm-Liouville problem (7.1), y(a) = 0 = y(b + 2), has 
N = b - a + 1 eigenvalues Al < A2 < ... < AN. If (Ai, Yi(t)) are eigenpairs, 
1 .:s j .:s N, then Yi (t) has j - I generalized zeros in [a + 1, b + 1]. 

Proof. We will give just an outline of this proof. For more details the reader can 
see Fort [83]. Let y(t, A) be the solution of Eq. (7.1), satisfying the initial conditions 
y(a, A) = 0, y(a + 1, A) = 1. The eigenvalues of (7.1), y(a) = 0 = y(b + 2), are 
just the zeros of y(b + 2, A), which are simple by the last theorem. Take A'to be a 
sufficiently large negative number so that 

A'r(t) + q(t) .:s 0 

on [a + 1, b + 1]. Then, by Corollary 6.6, Eq. (7.1) is disconjugate on [a, b + 2]. 
It follows that y(t, A) > 0 in [a + 1, b + 2]. On the other hand, we can see that by 
picking A" to be a sufficiently large positive number, y(t, A") satisfies 

y(t, A")y(t + 1, A") < 0 

for a + 1 .:s t .:s b + 1. Note that y(t, A') has no generalized zeros in [a + 1, b + 2] 
and y(t, A") has N + 1 generalized zeros in [a + 1, b + 2]. The eigenvalues of (7.1), 
y(a) = 0 = y(b + 2), are obtained by letting A vary from A'to A". The values 
y(t, A) for t in [a + 1, b + 2] depend continuously on A. Let Al be the first value 
of A in [A', A"] such that y(b + 2, Ad = O. Because of the important Lemma 6.1, 
y(t, AI) > 0 on [a + 1, b + 1]. Hence an eigenfunction corresponding to Al has zero 
generalized zeros in [a + 1, b + 1]. Increasing A beyond AI, we get the next zero A2 
of y(b + 2, A). It can be shown (Fort[83]) that y(t, A2) has exactly one generalized 
zero in [a + 1, b + 1]. Proceeding in this fashion, we get that if Ai is the jth zero 
of y(b + 2, A) in [A', A"], then y(t, A) has j - 1 generalized zeros in [a + 1, b + 1], 
1 .:s j .:s N. • 

Next we will use Theorem 7.6 to get what is called Rayleigh's inequality. We will 
then give an example to show how Rayleigh's inequality can be used to give upper 
bounds for the smallest eigenvalue of (7.1), y(a) = 0 = y(b + 2). 
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Theorem 7.7. (Rayleigh's inequality) Let Al be the smallest eigenvalue of (7.1), 
y(a) = y(b + 2) = O. Then 

A < L~~;+1 p(t - 1)[~u(t - 1)]2 - L~~~+1 q(t)u2(t) 
1 - ",b+l r(t)u2(t) , 

L...,t=a+l 

where u(t) is any nontrivial real-valued function defined on [a, b+2] with u(a) = 
u(b + 2) = O. Furthermore, equality holds if and only if u(t) is an eigenfunction 
corresponding to AI. 

Proof. Let A = Al and assume that y(t) is an eigenfunction corresponding to A. 
Then, by Theorem 7.6, y(t) has no generalized zeros in [a + I, b+ 1] and hence is of 
constant sign there. Assume that u(t) is a real-valued function defined on [a, b + 2] 
with u(a) = u(b + 2) = 0, and consider for t in [a + 2, b + 1] 

~ [u2(t - I) p(t _ 1)~y(t _ 1)] 
y(t - I) 

u2(t) { u2 (t - I) I = --~ [p(t - I)~y(t - I)] + p(t - I)~y(t - 1)~ 
y(t) y(t - 1) 

u2 (t) = y(t) [-Ar(t)y(t) - q(t)y(t)] 

[
u2(t) u2(t - I)] 

+ p(t - I)[y(t) - y(t - I)] y(t) - y(t _ 1) 

= Ar(t)u2(t) - q(t)u2(t) + p(t - l)u2(t) 

+ p(t - l)u2(t _ 1) _ p(t _ I) y(t)u2(t - 1) _ p(t _ I) y(t - l)u2(t) 
y(t - 1) y(t) 

= -Ar(t)u2(t) - q(t)u2(t) 

+ p(t - 1)[u(t) - u(t - 1)]2 - p(t - I)y(t)y(t - I) - - ---(
U(t) u(t - 1))2 

y(t) y(t - 1) 

Summing both sides from a+ 1 to b+ I (we will only do the case where a+2 ~ b+ I), 
we obtain 
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b+l b+l b+l 

= -A L r(t)u2(t) - L q(t)u2 (t) + L p(t - 1)[~u(t - 1)]2 
t=a+2 t=a+2 t=a+2 

b+l [ (t 1»)]2 - L p(t - l)y(t)y(t - 1) ~ u (t = 1) 
t=a+2 y 

Since y(b + 2) = 0 = u(b + 2), we have 

2 b+l b+l 
u (a + l)p(a + 1)~y(a + 1) = A L r(t)u 2(t) + L q(t)u2(t) 

y(a + 1) 
t=a+2 t=a+2 

b+l 

- L p(t - 1)[~u(t - l)f 
t=a+2 

b+l [ (t 1»)] + L p(t - l)y(t)y(t - 1) ~ u (t = 1) . 
t=a+2 y 

But letting t = a + 1 in Ly(t) + Ar(t)y(t) = 0, we obtain 

p(a + 1)~y(a + 1) = [p(a) - q(a + 1) - Ar(a + 1)]y(a + 1). 

This leads to 

b+l b+2 b+l 

A L r(t)u2 (t) = L p(t - 1)[~u(t - l)f - L q(t)u2(t) 
t=a+l t=a+l t=a+l 

b+l [ (t 1 )]2 - L p(t - l)y(t)y(t - 1) ~ u -
t=a+2 y(t - 1) 

Since y(t) is of one sign on [a + I, b + 1], 

b+l b+2 b+l 

A L r(t)u 2(t)::: L p(t - 1)[~u(t - 1)]2 - L q(t)u2 (t), 
t=a+l t=a+l 

where equality holds if and only if 

~ (U(t - 1») = 0 
y(t - 1) 

t=a+l 

for a + 2 ::: t ::: b + 1. It follows that equality holds in the last inequality if and 
only if u(t) = Cy(t), t is in [a, b + 2], and C =f:. O-that is, if and only if u(t) is an 
eigenfunction corresponding to A. This gives us the conclusion of this theorem. • 
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By the proof of this last theorem, if we want to find a good upper bound for AI, 
we should use our intuition and take u(t) as close to an eigenfunction corresponding 
to A 1 as possible. 

Example 7.10. Find an upper bound for the smallest eigenvalue for the Sturm
Liouville problem 

1:!!.2y(t - 1) + Ay(t) = 0, 

y(O) = 0, y(4) = O. 

Define u(t) on [0,4] by u(O) = 0, u(l) = 0.6, u(2) = 1, u(3) = 0.6, and 
u(4) = O. Then L:i=1 p(t - 1)[l:!!.u(t - 1)]2 = 1.04 and L:i=1 r(t)u2(t) = 1.72. 
Hence by Rayleigh's inequality 

Al ::: 0.604. 

By Example 7.1 the actual value of Al is 0.586 to three decimal places. 
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Exercises 

Section 7.1 

7.1 Find eigenpairs for the Sturm-Liouville problem 

1l2y(t - 1) + Ay(t) = 0, 

y(o) = 0, y(6) = 0. 

7.2 Find a boundary value problem of the form (7.1)-(7.3) that is self-adjoint and 
not a Sturm-Liouville problem or a periodic Sturm-Liouville problem. 

Section 7.2 

7.3 Show that the inner product (., ·)r with respect to the weight function r(t) satis
fies properties (a)-(d) following Definition 7.4. 

7.4 Prove that the periodic Sturm-Liouville problem (7.1), (7.5), (7.6) is self-adjoint. 

7.5 Show that all eigenvalues of the boundary value problem 

are positive. 

7.6 

1l[tlly(t - 1)] + (At - sin2 ~t)y(t) = 0, 

y(2) - 3Ily(2) = 0, lly(50) = ° 

(a) Find eigenpairs for the Sturm-Liouville problem 

1l2y(t - 1) + Ay(t) = 0, 

y(O) = 0, y(3) = 0. 

(b) Show directly that eigenfunctions corresponding to distinct eigenvalues are or-
thogonal as guaranteed by Theorem 7.2. 

7.7 Show that, corresponding to an eigenvalue of a self-adjoint boundary value prob
lem (7.1 )-{7 .3), we can always pick a real eigenfunction. 

7.S Use matrix methods to find eigenpairs for the boundary value problem in Exer
cise 7.6. 

7.9 Use matrix methods to find eigenpairs for the boundary value problem in Exer
cise 7.1. 

7.10 How many eigenvalues does this boundary value problem have: 

1l2y(t - 1) + [A + sint]y(t) = 0, 

y(4) = 0, y(73) = O? 

How many linearly independent eigenfunctions does this boundary value problem 
have? 
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7.11 Find the Fourier series of w(t) = t 2 - 5t + 4 with respect to the eigenfunctions 
of the boundary value problem in Example 7.1. 

7.12 Find the Fourier series of w(t) = (t - 3)2 with respect to the Sturm-Liouville 
problem in Exercise 7.1. 

7.13 Find the Fourier series of w(t) = t 2 - 4t + 3 in terms of the eigenfunctions in 
Exercise 7.6. 

Section 7.3 

7.14 Show that, if Y1 (t), Y2(t) are linearly independent solutions of Ly(t) = 0, then 

t b+1 
Yp(t) = -CY1 (t) LY2(S)!(S) - CY2(t) L Y1 (s)!(s), 

s=1 s=t+1 

where c-1 = p(a) W[Y1, Y2](a), is a particular solution of Ly(t) = !(t). 

7.15 Find a necessary and sufficient condition for this nonhomogeneous boundary 
value problem 

t::.2y(t - 1) + y(t) = !(t), 

y(O) = 0, y(3) = 0 

to have a solution (see Exercise 7.6). 

7.16 What do you get if you cross a hurricane with the Kentucky Derby? 

7.17 Show that, if ()..i, Yi(t» is an eigenpair for (7.1), y(a) = 0, y(b + 2) = 0, then 

L~~;+1 p(t - 1)[t::.Yi(t - 1)]2 - L~~~+1 q(t)yl(t) 
Ai = b+1 2 . 

Lt=a+1 r(t)Yi (t) 

(Hint: mUltiply both sides of LYi(t) + Air(t)Yi(t) = 0 by Yi(t) and sum both sides 
from a + 1 to b + 1.) 

7.18 Show that, if q(t) ::s 0 on [a + 1, b + 1], then all eigenvalues of (7.1), y(a) = 
o = y(b + 2), are positive. 

7.19 Use the Rayleigh inequality with the test function u(t) defined on [0,6] by 
u(O) = 0, u(l) = 0.4, u(2) = 0.7, u(3) = 1, u(4) = 0.7, u(5) = 0.4, u(6) = 0 to 
find an upper bound for the smallest eigenvalue of the Sturm-Liouville problem in 
Exercise 7.1. 

7.20 Use the Rayleigh ineqUality with the test function u(t) defined on [0,3] by 
u(O) = 0, u(l) = 0.9, u(2) = 0.9, u(3) = 0 to find an upper bound for the smallest 
eigenvalue of the Sturm-Liouville problem in Exercise 7.6. Compare your answer to 
the actual value and explain why you got what you did. 
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7.21 Use the Rayleigh inequality with the test function u(t) defined on [0,6] by 
u(O) = 0, u(1) = 2, u(2) = 3, u(3) = 4, u(4) = 3, u(5) = 2, u(6) = 0 to find an 
upper bound for the smallest eigenvalue of the Sturm-Liouville problem 

2t2 +7 
1::!.2y(t - 1) + A 2 y(t) = 0, 

t+lO 
y(O) = 0 = y(6). 



Chapter 8 
Discrete Calculus of Variations 

8.1 Introduction 
We first consider a very simple example. Let Xl, X2, A, and B be numbers with 
Xl < X2. We would like to find the shortest polygonal path joining the points (Xl, A) 
and (X2, B). The horizontal lengths of the line segments of such a path will be given 
by d(t) for t = 1,2,··· ,b + 2, where b + 2 is the number of segments. Then, 
for each function y(t) defined on the integer interval [0, b + 2] with y(O) = A, 
y(b + 2) = B, we obtain a polygonal path (see Fig. 8.1). 

Mathematically speaking, we would like to minimize 

b+2 

L j[d(t)]2 + [~y(t - 1)]2 
t=l 

over all functions y(t) defined on [0, b + 2] with 

y(O) = A, y(b+2) = B. 

Note that the solution to this problem must be a straight line! However, it will serve 
later in this chapter as a nice illustration of the theory of the optimization of sums, 
called the discrete calculus of variations. 

y 

--~--------------------x 

Fig. 8.1 A polygonal path 
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Let US begin by describing one of the main problems. Assume that f(t, u, v) for 
each fixed t in [a, b + 2] is a class C2 function of (u, v). Let V be the set of all 
real-valued functions y defined on [a, b + 2] with y(a) = A, y(b + 2) = B. The 
"simplest variational problem" is to extremize (maximize or minimize) 

b+2 

J[y] = L f (t, y(t), ~y(t - 1)), 
t=a+l 

subject to y belonging to the set V. 
We say that Yo in V minimizes the simplest variation problem if 

J[y] :::: J[yo] 

for all y in V. We say J has a local minimum at Yo provided that there is a 8 > 0 
such that ' 

J[y] :::: J[yo] 

for all y in V with Iy(t) - yo(t)1 < 8, a :s t :s b + 2. If, in addition, J[y] > J[yo] 
for y i= Yo in V with Iy(t) - yo(t)1 < 8, a :s t :s b + 2, then we say J has a proper 
local minimum at Yo. 

8.2 Necessary Conditions 
In this section we develop necessary conditions for the simplest variational problem 
and closely related problems to have a local extremum. 

Let Q be the set of all real-valued functions 'Tl defined on [a, b + 2] such that 
'Tl(a) = 0 = 'Tl(b + 2). Assume that the simplest variational problem has a local 
extremum at yo. Then define 

rp(E) = J[yo(t) + E'Tl(t)], 

where -00 < E < 00 and 'Tl is a fixed element of Q. 
Note that Yo + E'Tl belongs to V for all real numbers E. Since rp has a local ex

tremum at E = 0, we have that 

q/(O) = 0, 

rp" (0) :::: O{:s O} 

in the local minimum {maximum} case. 
Consider that 

b+2 

cp(E) = L f (t, yo(t) + E'Tl(t) , ~yo(t - 1) + E~'Tl(t - 1)). 
t=a+l 

(8.1) 

(8.2) 
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Differentiating with respect to E, we have 

b+2 

q/ (E) = L {/u (t, yo(t) + o/(t), ~Yo(t - 1) + E ~Tf(t - 1» Tf(t) 
t=a+l 

+ Iv (t, yo(t) + ETf(t), ~yo(t - 1) + E~Tf(t - 1» ~Tf(t - I)}. 

From Eq. (8.1) and the fact that "I was arbitrary, 

for all "I in Q, where Jl is defined on Q by 

b+2 

lI[Tf] = L [Iu (t, yo(t), ~yo(t - 1» Tf(t) 
t=a+l 

+ Iv (t, yo(t), ~yo(t - 1» ~Tf(t - 1)]. (8.3) 

Furthermore, 

b+2 
({J" (E) = L {fuu (t, yo(t) + ETf(t), ~Yo(t - 1) + E ~Tf(t - 1» Tf2(t) 

t=a+l 

+ 21uv (t, yo(t) + ETf(t), ~yo(t - 1) + E~Tf(t - 1» Tf(t)~Tf(t - 1) 

+ Ivv (t, yo(t) + ETf(t), ~yo(t - 1) + E ~Tf(t - 1» [~Tf(t - 1)]2}. 

Using Eq. (8.2), we can conclude that 

in the local minimum {maximum} case, where h is defined on Q by 

b+2 

J2[Tf] = L {p(t)Tf2(t) + 2Q(t)Tf(t)~Tf(t - 1) + R(t)[~Tf(t - 1)]2} (8.4) 
t=a+l 

and 

P(t) = luu (t, yo(t), ~yo(t - 1», 

Q(t) = luv (t, yo(t), ~Yo(t - 1), 

R(t) = Ivv (t, yo(t), ~yo(t - 1». 

(8.5) 

(8.6) 

(8.7) 

We call Jl the first variation and h the second variation of J corresponding to yo(t). 
We have proved the following theorem. 
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Theorem 8.1. If the simplest variational problem has a local extremum at yo(t), 

then 

(a) "[17] = 0 for all 17 in Q. 

(b) J2[17] 2: O{:::: O} for all 17 in Q in the minimum {maximum} case, where Jl 
is given by Eq. (8.3) and h is given by Eq. (8.4). 

The following lemma will be very useful in the proofs of Theorems 8.2-8.5. 

Lemma 8.1. Assume that y, 17 are arbitrary functions defined on [a, b + 2] and that 
Jl[17] is given by Eq. (8.3) with yo(t) replaced by y(t). Then 

b+l 

Jl[17] = L {/u (t, y(t), t::.y(t - 1» - t::.lv (t, y(t), t::.y(t - I»} 17(t) 

Proof. 

t=a+l 

- Iv (a + 1, y(a + 1), t::.y(a» 17(a) 

+ { lu (b + 2, y(b + 2), t::.y(b + 1» 

+ Iv (b + 2, y(b + 2), t::.y(b + I»} 17(b + 2). 

b+l 

"[17] = L {fu (t, y(t), t::.y(t - 1» 17(t) 

t=a+l 

+ Iv (t, y(t), t::.y(t - 1» t::.17(t - I)} 

+ lu (b + 2, y(b + 2), t::.y(b + 1» 17(b + 2) 

+ Iv (b + 2, y(b + 2), t::.y(b + 1» t::.17(b + 1). 

Using summation by parts, we have 

b+l 

Jl [17] = L lu (t, y(t), t::.y(t - 1» 17(t) 

t=a+l 

+ {fv (t, y(t), t::.y(t - 1» 17(t - 1)}!ti 
b+l 

- L t::. [fv (t, y(t), t::.y(t - 1))] 17(t) 

t=a+l 

+ lu (b + 2, y(b + 2), t::.y(b + 1» 17(b + 2) 

+ Iv (b + 2, y(b + 2), t::.y(b + 1» [17(b + 2) - 17(b + 1)] , 

which implies the final result. • 
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Theorem 8.2. If the simplest variational problem has a local extremum at YO (t), 
then yo(t) satisfies the Euler-Lagrange equation 

lu (t, y(t), !l.y(t - 1» - !l.lv (t, y(t), !l.y(t - 1» = 0 (8.8) 

for t in [a + 1, b + 1]. Since Yo belongs to 'D, yo(a) = A, yo(b + 2) = B. 

Proof. From Theorem 8.1(a), 1I[7]] = 0 for all 7] in Q, where Jl[7]] is given by 
Eq. (8.3). By Lemma 8.1, with y(t) = yo(t), we have, using 7](a) = 0 = 7](b + 2), 

b+l 

L [fu (t, yo(t), !l.yo(t - 1» - !l.lv (t, yo(t), !l.yo(t - 1»] 7](t) = 0 
t=a+l 

for all 7] in Q. Fix s in [a + 1, b + 1] and let 7](t) = 0, t i= sand 7](s) = 1. Then 

lu (s, yo(s), !l.yo(s - 1» - !l.lv (s, yo(s), !l.yo(s - 1» = o. 

Since s in [a + 1, b + 1] is arbitrary, we get the desired result. • 
Example 8.1. Find the Euler-Lagrange equation for 

100 

J[y] = L {st l(t) - 6t- 1[!l.y(t - 1)]2}. 
t=1 

Here 
I(t, u, v) = stu2 - 6t- 1v2. 

Hence lu (t, y(t), !l.y(t - 1» = St2y(t), Iv (t, y(t), !l.y(t - 1» = _2·6t- 1 !l.y 
(t - 1). It follows that the Euler-Lagrange equation is 

!l.[6t- 1 !l.y(t - 1)] + st y(t) = O. 

Example 8.2. Find the Euler-Lagrange equation for the problem: minimize 

b+2 

J[y] = L J[d(t)]2 + [!l.y(t - 1)]2, 
t=1 

subject to y belonging to V (see the introductory example). 

Here 

so v 
Iv(t,u, v) = 1· 

([d(t)]2 + v2):I 
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The Euler-Lagrange equation is 

It follows that 

or 

I 6y(t - 1) I 
6 1 =0. 

([d(t)]2 + [6y(t - 1)]2)2: 

I 6y(t - 1) I 
([d(t)]2 + [6y(t _ 1)]2)~ = C 

d(t) _ D. 
6y(t - 1) - , 

that is, the slope of all line segments of the polygonal path must be equal to a 
single constant. Thus the polygonal path of shortest length is a straight line, as 
expected. 

In the next two theorems we will eliminate one of the boundary conditions in the 
simplest variational problem. In Theorem 8.3 we eliminate the boundary condition 
atb + 2. 

Theorem 8.3. If 

b+2 

J[y] = L I (t, y(t), 6y(t - 1)), 
t=a+l 

subject to y belonging to VI == {real-valued functions y defined on [a, b + 2] 
such that y(a) = A}, has a local extremum at yo(t), then yo(t) satisfies the Euler
Lagrange equation (8.8) for t in [a + 1, b + 1], yo(a) = A, and yo(t) satisfies the 
transversality condition 

lu (b + 2, y(b + 2), 6y(b + 1)) + Iv (b + 2, y(b + 2), 6y(b + 1)) = o. (8.9' 

Proof. As in the proof of Theorem 8.1(a), Jl [1]] = 0 for all 1] belonging to Ql == 

{real-valued functions 1] defined on [a, b + 2] such that 1](a) = O}. By Lemma 8.1 
with y(t) = yo(t), and using 1](a) = 0, 

b+1 

L {fu (t, yo(t), 6Yo(t - 1)) - 61v (t, yo(t), 6Yo(t - I))} 1](t) 
t=a+l 

+ {fu (b + 2, yo(b + 2), 6yo(b + 1)) 

+ Iv (b + 2, yo(b + 2), 6yo(b + 1))}1](b + 2) 

=0 

for all 1] in Ql. The conclusions of the theorem follow easily. • 
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Next we eliminate the boundary condition at a. 

Theorem 8.4. If 

b+2 

J[y] = L f(t, y(t), 6y(t - 1)), 
t=a+l 

subject to y belonging to V2 := {real-valued functions defined on [a, b + 2] such 
that y(b+2) = B}, has a local extremum at YO, then YO satisfies the Euler-Lagrange 
equation (8.8) for t in [a + 1, b + 1], yo(b + 2) = B, and Yo satisfies the transver
sality condition 

fv(a + 1, y(a + 1), 6y(a)) = O. (8.10) 

Proof. The proof is similar to that of Theorem 8.2. From Lemma 8.1, 

b+l 

L [fu(t, yo(t), 6Yo(t - 1)) - 6fv(t, yo(t) , 6Yo(t - 1))] Tl(t) 
t=a+l 

- fv(a + 1, yo(a + 1), 6Yo(a))Tl(a) = 0 

for all Tl in Q2, where Q2 := {real-valued functions on [a, b+2] such that Tl(b+2) = 
OJ. The conclusions now follow. • 

In a similar way, we have the following theorem. 

Theorem 8.5. If yo(t) is a local extremum for J[y], subject to y in V3 := {real
valued functions defined on [a, b + 2]}, then yo(t) satisfies the Euler-Lagrange 
equation (8.8) for t in [a + 1, b + 1] and the transversality conditions of Eqs. (8.9), 
(8.10). 

Example 8.3. Assume thatJ[y] = I::~ {2 (! Y y2(t) - (i y-l [6y(t-l)]2}, 

subject to y defined on [0, 100] and y(lOO) = 3101 - 3 . 2101 , has a maximum 
at yo(t). Find yo(t). 

Here 

f(t, u, v) = 2 (~y u2 _ (~y-l v2, 

so fu = 4 (i Y u, fv = -2 (! y-l v. It follows that the Euler-Lagrange equation 

is 

6 [ (~y-l 6y(t -1)] + 2 (~y y(t) = O. 
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This equation is the same as 

y(t + 1) - 5y(t) + 6y(t - 1) = o. 

Thus 
yo(t) = A2t + B3t . 

The transversality condition (8.10) gives the boundary condition 

8y(0) = O. 

Hence A2° + 2B3° = 0 implies that A = -2B, and 

yo(t) = B (3t - 2t+1). 

Finally, the boundary condition yo(100) = 3101 - 3 . 2101 gives us that 

B (3 100 - 2101 ) = 3101 - 3.2101 , 

so B = 3 and 

Example 8.4. Assume that 

100 

J[y] = L {3 [8y(t - 1)]2 + 4l(t)} , 
t=1 

subject to y(t) defined on [0, 100] with y(O) = 3, has a minimum at yo(t). Find 
yo(t). 

In this example 
I(t, U, v) = 3v2 +4u2 , 

so lu = 8u and Iv = 6v. It follows that the Euler-Lagrange equation is 

or 

Hence 

382y(t - 1) - 4y(t) = 0 

3y(t + 1) - 10y(t) + 3y(t - 1) = o. 

yo(t) = A (~r + B3t 

Yo(O) = 3 = A + B 
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and 

yO(t)=A(~y +3t+1 _A3t • 

The tranversality condition (S.9) leads to the boundary condition 

4y(100) + 3~y(99) = 0 

or 
7y(100) - 3y(99) = 0, 

so 

_6.3101 
A = 100 

-2(t) -6.3100 
3202 

= 1 + 3201 . 

Finally, 

YO(t) = 1 !2::01 [( ~ y -3t ] + 3t+1. 

The following theorem gives another reason why the self-adjoint second order 
difference equation is important. 

I Theorem 8.6. The Euler-Lagrange equation for the second variation J2 is a self
adjoint second order difference equation. 

Proof. By Eq. (S.4), for Tl in Q, 

b+2 

h[Tl] = L {P(t)Tl2 (t) + 2Q(t)Tl(t)~Tl(t - 1) + R(t)[~Tl(t - l)f} . 
t=a+l 

Note that 

2Q(t)Tl(t)~Tl(t - 1) = Q(t)Tl(t)[Tl(t) - Tl(t - 1)] 

+ Q(t)[Tl(t - 1) + ~Tl(t - 1)]~Tl(t - 1) 
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= Q(t).,l(t) - Q(t).,,(t).,,(t - 1) 

+ Q(t).,,(t - 1)~.,,(t - 1) + Q(t)[~.,,(t - 1)]2 

= Q(t).,,2(t) + Q(t)[~.,,(t - 1)]2 - Q(t).,,2(t - 1). 

12["'] = L {[P(t) + Q(t)].,,2(t) - Q(t).,,2(t - 1) 
t=a+l 

+[R(t) + Q(t)][~.,,(t - l)f} 
b+2 

= L {[P(t) + Q(t) - Q(t + 1)].,,2(t) + [R(t) + Q(t)][~.,,(t - l)f} 
t=a+l 

because .,,(a) = .,,(b + 2) = O. Therefore, 

b+2 

12[.,,] = L {P(t - 1)[~.,,(t - l)f - q(t).,,2(t)} , (8.11) 

where 

t=a+l 

p(t - 1) = R(t) + Q(t), 

q(t) = ~ Q(t) - P(t). 

It follows from Eq. (8.11) that the Euler-Lagrange equation for 12 is 

~ [p(t - 1)~y(t - 1)] + q(t)y(t) = O. 

(8.12) 

(8.13) 

(8.14) 

• 
The self-adjoint equation (8.14), where p(t - 1) is given by Eq. (8.12) and q(t) 

is given by Eq. (8.13), is called the Jacobi equation for 1. 
We will next write 12 as a quadratic form. By Eq. (8.11) 

b+2 

12[.,,] = L {P(t - 1)[~.,,(t - l)f - q(t).,,2(t)} 

t=a+l 

b+2 
= L {p(t - 1).,,2(t) - 2p(t - 1).,,(t).,,(t - 1) 

t=a+l 
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Since 11(a) = 11(b + 2) = 0, 

b+l 

h[11] = - L [C(t)112(t) + 2p(t - 1)11(t)11(t - 1)] , 
t=a+l 

where c(t) is given by Eq. (6.4). It follows that 

h[11] = _uT Su, 

where u = [11(a + 1), 11(a + 2), ... , 11(b + 1)]T and S is as in Chapter 7: 

c(a + 1) p(a + 1) 0 
p(a + 1) c(a + 2) p(a + 2) 

S = 0 p(a + 2) c(a + 3) 

o o 

o 
o 
o 

p(b) c(b + 1) 
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(8.15) 

Theorem 8.7. If the simplest variational problem has a local minimum 
{maximum} at yo(t), then the Legendre necessary condition 

c(t) ::: O{c(t) ::: OJ, (a + 1 ::: t ::: b + 1) (8.16) 

is satisfied. 

Proof. By Theorem 8.1(b) h[11] ::: 0 I::: O} for all 11 in Q in the local minimum 
{maximum} case. Take u = eto-a, where eto-a is the unit column vector in mN, 
N = b - a + 1, a + 1 ::: to::: b + 1, in the to - a direction. Then by Eq. (8.15) 

h[11] = -c(to) ::: Of::: OJ. 

Hence c(to) ::: 0 I::: O} in the local minimum {maximum} case. • 
Theorem 8.8. Assume that z(t) is a solution of the Jacobi equation (8.14) where 
p(t) and q(t) are given by Eqs. (8.12), (8.13) and a ::: ex ::: fJ ::: b + 1. If 

11(t) = IZ(t), (ex + 1 ::: t ::: fJ) 
0, (otherwise). 

it follows that 

h[11] = z(ex)p(ex)z(ex + 1) + z(fJ)p(fJ)z(fJ + 1). 

Proof. By Eq. (8.15) 
h[11] = _uT Su, 
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where in this case u = [0, ... ,0, z(a + I),··· ,z(f3), 0, ... ,O]T. 

Su = 

° 
° p(a)z(a + I) 

c(a + I)z(a + I) + p(a + I)z(a + 2) 
p(a + I)z(a + I) + c(a + 2)z(a + 2) + p(a + 2)z(a + 3) 

p(f3 - 2)z(f3 - 2) + c(f3 - l)z(f3 - I) + p(f3 - l)z(f3) 
p(f3 - I)z(f3 - I) + c(f3)z(f3) 

p(f3)z(f3) 

° 
° 

Since z(t) is a solution ofEq. (8.14), which can be written in the form of Eq. (6.6), 

p(t)z(t + I) + c(t)z(t) + p(t - I)z(t - I) = 0, 

we have that S u is equal to 

[0, ... ,0, p(a)z(a + I), -p(a)z(a), 0, ... , 

... ,0, -p(f3)z(f3 + I), p(f3)z(f3), 0, ... ,of. 

It follows that 

h[1}] = _u T Su 

= z(a + I)p(a)z(a) + z(f3)p(f3)z(f3 + I). • 
8.3 Sufficient Conditions and Disconjugacy 
In Section 8.2 we obtained several necessary conditions for various variational prob
lems to have a local extremum. This section contains some sufficient conditions. In 
the discrete calculus of variations the sufficient conditions are much easier to come 
by than in the continuous calculus of variations. One reason for this is that in the con
tinuous case it is easy to have maxc:sx:sd Iy(x) - z(x)1 small but maxc:sx:sd Iy'(x) -
z'(x)llarge. In the discrete case, if maX[a,b+2]ly(t) - z(t)1 is small, it follows that 
max[a,b+l]l~y(t) - ~z(t)1 is small, too. 

We will see that disconjugacy is closely related to these sufficient conditions. In 
fact, the disconjugacy of Eq. (8.14) is equivalent to a certain quadratic functional 
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being positive definite. This result will enable us to prove several interesting results 
concerning the self-adjoint difference equation (6.1). In particular, we will prove 
some comparison theorems, one of which is a more general Sturm comparison theo
rem than the one given in Chapter 6, as well as some interesting theorems concerning 
necessary conditions for disconjugacy. 

Theorem 8.9. If YO in D satisfies the Euler-Lagrange equation (8.8) and the cor
responding second variation 12 is positive {negative} definite on Q and R(t) + 
Q(t) > 0, then the simplest variational problem has a proper local minimum 
{maximum} at yo(t). If in addition luu, luv, and Ivv are functions of t only, the 
simplest variational problem has a proper (global) minimum {maximum} at yo(t). 

Proof. Assume that yo(t) satisfies the Euler-Lagrange equation (8.8) and that the 
corresponding second variation 12 is positive definite on Q. We will show that J has 
a proper local minimum at yo(t) and in particular that there is 8 > 0 such that if y 
belongs to D, y i= YO with Iy(t) - yo(t) I < 8, t in [a + 1, b + 1], then J[yo] < J[y]. 

Let y belong to D, set T'f = y - YO, and consider 

cp(E) == J[yO + ET'f], 

-00 < E < 00. By Taylor's Theorem 

( 1) = (0) + cp'(O) + cp"(~) 
cp cp 1! 2!' (8.17) 

where ~ belongs to (0, 1). Now 

b+2 

cp' (0) = Jl [T'f] = L {fu (t, yo(t), ~yo(t - 1)) T'f(t) 
t=a+l 

+ Iv (t, yo(t), ~yo(t - 1)) ~T'f(t - I)}. 

Using Lemma 8.1 and T'f(a) = T'f(b + 2) = 0, we have that 

b+1 

cp'(O) = L [Iu (t, yo(t), ~yo(t - 1)) - ~Iv (t, yo(t), ~Yo(t - 1))] T'f(t). 
t=a+l 

However, since yo(t) satisfies the Euler-Lagrange equation (8.8) for a + 1 ~ t ~ 
b + 1, cp'(O) = O. Since cp(O) = J[yo] and cp(l) = J[y], it follows from Eq. (8.17) 
that 

1 
J[y] - J[yo] =2CP"(~). (8.18) 
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Next, we calculate 

b+2 

rp" (g) = L {fuu (t, yo(t) + gq(t), tiyo(t - 1) + g tiq(t - 1» q2(t) 

Here 

t=a+l 

+ 2fuv (t, yo(t) + gq(t), tiyo(t - 1) + g tiq(t - 1» q(t)tiq(t - 1) 

+ fvv (t, yo(t) + gq(t), tiyo(t - 1) + g tiq(t - 1» [tiq(t - l)f} 
= h[q; YO + gq]. 

b+2 

h[q; y] == L {P(t; y)q2(t) + 2Q(t; y)q(t)tiq(t - 1) + R(t; y)[tiq(t - l)f} , 
t=a+l 

where 

P(t; y) = fuu (t, y(t), tiy(t - 1», 

Q(t; y) = fuv (t, y(t), tiy(t - 1», 

R(t; y) = fvv (t, y(t), tiy(t - 1». 

By a derivation similar to that of Eq. (8.11) (see the proof of Theorem 8.6), w~ 
have 

where 

b+2 

h[q; y] = L {P(t - 1; y)[tiq(t - l)f - q(t; y)q2(t)} , 
t=a+l 

p(t - 1; y) = R(t; y) + Q(t; y) 

q(t; y) = tiQ(t; y) - P(t; y). 

Hence h[q; y] is a quadratic form in u = [q(a + 1), ... , q(b + 1)]T, and there is a 
symmetric matrix S(y) (see how S was obtained from h[q] = h[q; YO]) such that 

h[q; y] = _uT S(y)u. 

Since h[q; YO] = -uT S(Yo)u is positive definite, the maximum eigenvalue of S(YO 
satisfies 

AmaxS(yO) < O. 

Now AmaxS(y) is a continuous function of y, so there are constants f.L > 0 and ~ > I 

such that 

AmaxS(y) ~ f.L < 0 (8.19 
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whenever Iy(t) - yo(t) I < 8, a + 1 ~ t ~ b + 1. From Eq. (8.18) 

1 
J[y] - J[yo] = 212[71; YO + g71], 

where g is in (0, 1). Assume Iy(t) - yo(t) I < 8 for a + 1 ~ t ~ b + 1; then 

I(yo(t) + g71(t» - yo(t) I = Igll71(t)1 

= Ig Ily(t) - yo(t)1 < 8 

fora + 1 ~ t ~ b + 1. FromEq. (8.19) 

J2[71; YO + g71] = _uT S(YO + g71)U > 0 

(strict inequality follows since y i= YO implies u i= 0), so by Eq. (8.20) 

J[y] > J[yo] 

when Iy(t) - yo(t) I < 8, y i= YO· 

315 

(8.20) 

The last statement of the theorem follows from the preceding discussion and the 
fact that the matrix S in this case is independent of y. • 

Assume that, as in Chapter 6, p(t) > 0 on [a, b + 1] and q(t) is real-valued on 
[a + 1, b + 1]. Define the quadratic functional Q on Q by 

b+2 

Q[71] = L {p(t - 1)[L\71(t - 1)]2 - q(t)712(t)} . (8.21) 
t=a+l 

Note that 71(b + 2) = 0, so the value of q at b + 2 is arbitrary. We have seen that the 
second variation 12 is ofthis form for appropriate p(t) and q(t). 

I Theorem 8.10. The self-adjoint equation Ly(t) = 0 is disconjugate on [a, b+2] 

if and only if Q is positive definite on Q. 

Proof. Assume that Ly(t) = 0 is disconjugate on [a, b + 2]. By Theorem 6.10 
Ly(t) = 0 has a positive solution y(t) on [a, b + 2]. Make the Riccati substitution 

p(t - 1)L\y(t - 1) 
z(t) = y(t _ 1) , 

t in [a + 1, b + 2]; then by Theorem 6.15 

z(t) + p(t - 1) > 0 

on [a + 1, b + 2] and z(t) satisfies the Riccati equation 

Z2(t) 
L\z(t) +q(t) + () ( 1) = 0 

zt+pt-
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on [a + 1, b + 1]. Let '17 belong to Q and use Eq. (6.32) with u(t) = TJ(t) to obtain 

]
b+3 

Q[TJ] = Z(t)TJ2(t - 1) 
a+l 

b+2 { z(t)TJ(t) }2 + L - ./z(t) + p(t - 1)L\TJ(t - 1) 
t=a+l ";z(t) + p(t - 1) 

(Here one has to check that Eq. (6.32) is correct for t = b + 2.) Since TJ(a) = 
TJ(b + 2) = 0, 

b+2 { z(t)TJ(t) }2 
Q[TJ] = L - ./z(t) + p(t - 1)L\TJ(t - 1) 

t=a+l ";z(t) + p(t - 1) 

::: o. 

Note that Q[TJ] = 0 only if 

z(t)TJ(t) 
Jz(t) + p(t - 1)L\TJ(t - 1) = 

";z(t) + p(t - 1) 

for t in [a + 1, b + 2]. Hence Q[TJ] = 0 only if 

(t) = z(t) + p(t - 1) (t _ 1). 
'17 p(t _ 1) '17 

Since TJ(a) = 0, it follows that TJ(t) == 0 on [a, b + 2]. Hence Q is positive definite 
onQ. 

Conversely, assume that Q is positive definite on Q. Let y(t) be the solution of 
Ly(t) = 0 such that y(a) = 0, y(a + 1) = 1. Define '17 in Q by 

TJ(t) = {y(t), (a + 1 :::: t :::: fJ) 
0, (otherwise). 

for fJ in [a + 1, b + 1]. 
By Theorem 8.8 with 12 = Q, 

Q[TJ] = y(a)p(a)y(a + 1) + y(fJ)p(fJ)y(fJ + 1) 

= y(fJ) p(fJ)y(fJ + 1) > 0, 

as Q is positive definite and '17 =I=- 0 because TJ(a + 1) = y(a + 1) = 1. Since fJ in 
[a + 1, b + 1] is arbitrary, 

y(t) > 0 

on [a + 1, b + 2]. But then Ly(t) = 0 must be disconjugate on [a, b + 2]. • 
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Corollary 8.1. If YO in V satisfies the Euler-Lagrange equation (8.8) and the cor
responding Jacobi equation (8.14) is disconjugate on [a, b + 2], then the simplest 
variational problem has a local minimum at YO. If, in addition, fuu, fuv, and fvv de
pend only on t, then the simplest variational problem has a proper global minimum 
at YO. 

Example 8.5. Show that 

400 (1 )t-l 
J[y] = L 5 [L\y(t - 1)]2, 

t=1 

subject to y defined on [0,400], y(O) = 50, y(400) = 5401 + 45, has a proper 
global minimum at some YO. Find YO. 

Here 

( l)t-l f(t, u, v) = 5 v2 , 

so 

fu = 0, (l)t-l 
fv = 2 5 v, fuu = fuv = 0, ( l)t-l fvv = 2 5 

Note that fuu, fuv, and fvv depend only on t. From Eqs. (8.5)-(8.7), 

P(t) = 0, Q(t) = 0, (
1 )t-l 

R(t) = 2 5 

Hence by Eqs. (8.12) and (8.13), 

(
1 )t-l 

p(t - 1) = 2 5 ' q(t) = O. 

Since q(t) ::: 0 on [1, 399], we have by Corollary 6.7 that the Jacobi equation 

is disconjugate on [0,400]. It follows from Corollary 8.1 that this problem has 
a proper global minimum at some YO. To find YO, note that the Euler-Lagrange 
equation is 
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or 

Il [(~y-l Ily(t -1)] = O. 

Hence 

It follows that 

Finally, 

YO(t) = B5t + C, 

YO (0) = 50 = B + c, 
yo(t) = B5t - B + 50, 

yo(400) = B5400 - B + 50 = 5401 + 45, 

B =5. 

yo(t) = 5t+1 + 45. 

Example 8.6. Show that the answer we got in Example 8.2 is a proper local 
minimum. In Example 8.2 (introductory example) 

Then 

fuu = 0, fuv = 0, 

The Jacobi equation is 

I d2(t) } Il 3 1lT'f(t - 1) = O. 
Hd(t)]2 + [IlYO(t - 1)]2p: 

Since this equation is disconjugate on [a, b+2], by Corollary 8.1 there is a proper 
local minimum at yo(t). 

One can actually show that there is a proper global minimum at YO (t) because in 
this case for any y in V 

b+2 d2(t) 
h[T'f; y] = L 3 [1lT'f(t - l)f 

t=a+l Hd(t)]2 + [Ily(t - 1)]2p: 

~O 

for all T'f and h[T'f; y] = 0 only if T'f = O. By the proof of Theorem 8.9 we get the 
desired result. 
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Theorem 8.11. If Ly(t) = 0 is disconjugate on [a, b + 2], then 

H2 

L {p(t - I)xs(t)xs-(t - 1) + p(t)xs(t)Xs-(t + 1) - q(t)Xs(t)} > 0, 
t=a+l 

where S is a nonempty subset of [a + 1, b + 1], S- = [a, b + 2]\S, and XS is the 
characteristic function on S-that is, xs(t) = 1, t in S, xs(t) = 0, and tin S-. 

Proof. Assume that Ly(t) = 0 is disconjugate on [a, b+2]. Then by Theorem 8.10, 
Q defined by Eq. (8.21) is positive definite on Q. Define T'f on [a, b + 2] by 

T'f(t) = Xs(t). 

Since S C [a + 1, b + 1], T'f(a) = T'f(b + 2) = 0, T'f belongs to Q. Consequently, 
Q[T'f] > O-that is, 

b+2 

L {P(t - 1) [xs(t) - xs(t - l)f - q(t)X§(t)} > O. 
t=a+l 

Then 

b+l 

L p(t - I)xs(t) [Xs(t) - Xs(t - 1)] 
t=a+l 

b+2 b+2 

+ L p(t - I)xs(t - 1) [xs(t - 1) - Xs(t)] - L q(t)xs(t) > 0, 
t=a+2 t=a+l 

so 

b+l 

L p(t - I)xs(t)Xs-(t - 1) 
t=a+l 

b+2 b+l 

+ L p(t - I)xs(t - I)xs-(t) - L q(t)xs(t) > O. 
t=a+2 t=a+l 

The conclusion of the theorem follows. • 
Corollary 8.2. If Ly(t) = 0 is disconjugate on [a, b + 2], then 

b+l 

L q(t) < p(a) + p(b + 1). 
t=a+l 
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Proof. Let S = [a + 1, b + 1] in Theorem 8.11. Then S- = {a, b + 2} and 

b+l 
L (p(t - I)Xs(t)Xs-(t - 1) + p(t)xs(t)Xs-(t + 1) - q(t)Xs(t)} 

t=a+l 

b+l 

= p(a) + p(b + 1) - L q(t) > 0 
t=a+l 

by Theorem 8.11. • 
Corollary 8.3. If Ly(t) = 0 is disconjugate on [a, b + 2], then 

q(t) < p(t) + p(t - 1) 

(same as c(t) < 0) for t in [a + 1, b + 1]. 

Proof. Let S = {to} for some to in [a + 1, b + 1] in Theorem 8.11. Then 

b+l 

L (p(t - l)xs(t)xs-(t - 1) + p(t)Xs(t)Xs-(t + 1) - q(t)Xs(t)} 
t=a+l 

= p(to - 1) + p(to) - q(to) > 0 

by Theorem 8.11. Since to in [a + 1, b + n is arbitrary, the result follows. • 

We are now going to prove comparison theorems for the two equations 

Liy(t) = MPi(t - 1)~y(t - 1)] + qi(t)y(t) = 0, 

i = 1,2, where Pi(t) > 0 in [a, b+ 1], i = 1,2, and qi(t) is defined on [a+ 1, b+ 1], 
i = 1,2. 

Theorem 8.12. (Sturm comparison theorem) Assume that ql (t) ::: q2(t) on 
[a + 1, b + 1] and P2(t) ::: PI (t) > 0 on [a, b + 1]. If Lly(t) = 0 is disconjugate 
on [a, b + 2], then L2y(t) = 0 is disconjugate on [a, b + 2]. 

Proof. Assume that Lly(t) = 0 is disconjugate on [a, b + 2]. Then by Theo
rem 8.10, Q I is positive definite on Q, where 

b+2 

QI [q] == L {PI (t - 1)[~q(t - 1)]2 - ql (t)q2(t) } . 
t=a+l 
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From our assumptions on Pi(t) and qi(t), i = 1,2, we have for TJ in Q 

b+2 

Q2[TJ] == L {P2(t - 1)[~TJ(t - l)f - q2(t)TJ2(t)} 
t=a+l 

b+2 
:::: L {PI (t - 1)[~TJ(t - 1)]2 - ql (t)TJ2(t)} 

t=a+l 
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It follows that Q2 is positive definite on Q. Hence by Theorem 8.10 L2y(t) = 0 is 
disconjugate on [a, b + 2]. • 

Theorem 8.13. If Liy(t) = 0 is disconjugate on [a, b + 2] for i = 1,2, and if 

p(t) = AIPI (t) + A2P2(t), 

q(t) = Alql(t) + A2q2(t)' 

where Al > 0, A2 > 0, then Ly(t) = 0 is disconjugate on [a, b + 2]. 

Proof. Since Liy(t) = 0 is disconjugate on [a, b + 2], i = 1,2, the quadratic 
functionals Qi, i = 1,2 (defined in the previous proof) are positive definite on Q. 
Hence for TJ in Q, 

b+2 
Q[TJ] = L {P(t - 1)[~TJ(t - 1)]2 - q(t)TJ2(t) } 

t=a+l 

b+2 
= L {(AIPI (t - 1) + A2P2(t - 1)) [~TJ(t - 1)]2 

t=a+l 

- (Alql (t) + A2q2(t)) TJ2(t)} 

= AIQdTJ] + A2Q2[TJ]. 

It follows that Q is positive definite on Q, and so by Theorem 8.10 Ly(t) = 0 is 
disconjugate on [a, b + 2]. • 

Theorem 8.14. (Weierstrass summation formula) If y(t) is a solution of the 
boundary value problem Ly(t) = 0, y(a) = A, y(b + 2) = B, TJ is in Q, and 
z = y + TJ, then 

Q[z] = Q[y] + Q[TJ]. 

Proof. Define 
qJ(E) = Q[y + ETJ]. 
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By Taylor's Theorem 

(1) = (0) + ep'(O) + ep"(f;) 
ep ep I! 2! (8.22) 

for some f; in (0, 1). Since 

b+2 

epeE) = L (pet - 1)[~y(t - 1) + E~TJ(t - 1)]2 - q(t)[y(t) + ETJ(t)]2}, 

t=a+l 

it follows that 

b+2 

ep'(O) = 2 L (pet - 1)~y(t - 1)~TJ(t - 1) - q(t)y(t)TJ(t)}. 

t=a+l 

Applying summation by parts, 

ep'(O) = 2p(t - l)~y(t - I)TJ(t - 1) ]~!i 
b+2 

- 2 L Mp(t - 1)~y(t - 1)]TJ(t) 

t=a+l 

b+2 

- 2 L q(t)y(t)TJ(t) 

t=a+l 

=0. 

The second derivative is 

b+2 

ep"(E) = 2 L {P(t - 1) [~TJ(t - 1)]2 - q(t)TJ2(t)} 

t=a+l 

= 2Q[TJ]· 

Since ep(1) = Q[z], ep(O) = Q[y], (8.22) implies that 

Q[z] = Q[y] + Q[TJ]. • 
Corollary 8.4. If yet) is a solution of the boundary value problem Ly(t) = 0, 
yea) = A, y(b + 2) = B, z in 'D and Q is positive definite on Q, then 

Q[z] ~ Q[y], 

where equality holds only if z = y. 
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Proof. Let TJ = z - y; then TJ is in Q and z = y + TJ. By Theorem 8.14 

Q[z] = Q[y] + Q[TJ]. 

Since Q is positive definite on Q, 

Q[z] ::: Q[y]' 

with equality holding if and only if TJ(t) == O. Now y = z if and only if TJ(t) == 0, 
and the result follows. • 

Using Corollary 8.4 and Theorem 6.7, we obtain a final result. 

Corollary 8.5. If Ly(t) = 0 is disconjugate on [a, b + 2], then the problem of 
minimizing 

b+2 

Q[y] = L {p(t - 1)[~y(t - 1)]2 - q(t)i(t)} , 

t=a+l 

subject to y in D, has a proper global minimum at yo(t) , where yo(t) is the solution 
of the boundary value problem Ly(t) = 0, y(a) = A, y(b + 2) = B. 

Many of the results in this chapter are due to Ahlbrandt and Hooker [11]. For 
generalizations of some of these results to the matrix case, see Ahlbrandt and Hooker 
[10], [12], [13], [14], Peil and Peterson [215], and Peterson and Ridenhour [222], 
[224]. 
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Exercises 

Section 8.1 

8.1 Find the f [y] to be minimized in order to minimize the surface area obtained by 
rotating the curve in Fig. 8.1 (y(O) = A > 0, y(b + 2) = B > 0) about the x-axis. 

Section 8.2 

8.2 Find the Euler-Lagrange equation for each of the following: 

(a) fry] = L~~0{4y2(t) + 3[~y(t - 1)]2}. 

(b) fry] = L:~0{y2(t) + 2y(t)~y(t - 1) + 6[~y(t - 1)]2}. 

8.3 In each of the following problems assume that there is a local extremum yo(t). 
Find yo(t). 

(a) fry] = L:~[~y(t - 1)f, yeO) = 2, y(lOO) = 200. 
(b) Same f, yeO) = 2. 
(c) Same f, y(100) = 200. 
(d) Same f, yeO) free, y(lOO) free. 

8.4 By considering L~'!;+I f(t, yet), ~y(t - 1», yea) = A, y(b + 2) = B as a 
function of the b - a + 1 variables yea + 1),··· ,y(b + 1), show that if the values 
yo(a + 1), ... ,yo(b + 1) render this function an extremum, then yo(t) satisfies the 
Euler-Lagrange equation for a + 1 ::: t ::: b + 1. 

8.5 Assume that 

4001(I)t-1 (l)t I fry] = ?;; "8 [~y(t - l)f - 3 "8 i(t) , 

subject to y defined on [0, 400] and yeO) = 0, y(400) = 2402 _4401 , has a minimum 
at yo(t). Find yo(t). 

8.6 Assume that 
100 

fry] = L {i(t) + 2 [~y(t - 1)]2} , 
t=l 

(a) Subject to y defined on [0, 100], has a minimum at yo(t). Find yo(t). Calculate 
f[yo(t)] and explain whether your answer makes sense. 

(b) Subjectto y defined on [0, 100] and yeO) = 1, has a minimum yo(t). Find yo(t). 

8.7 Prove Theorem 8.8 using Eq. (8.11). 
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Section 8.3 

8.8 Use Theorem 8.10 to show that if q(t) ~ 0 in [a + 1, b + 1], then Ly(t) = 0 is 
disconjugate on [a, b + 2]. 

8.9 Show that 

5001(1)t-I (1)t) 
J[y] = {; 6" [~y(t - l)f - 2 6" i(t) , 

subject to y defined on [0,500] with y(O) = 5, y(500) = 10, has a proper global 
minimum at some yo. Find yo. 



Chapter 9 
Boundary Value Problems for 

Nonlinear Equations 

9.1 Introduction 
In this chapter we will consider boundary value problems for nonlinear equations
specifically, 

t::. 2y(t - 1) = 1 (t, y(t)), (t in [a, b + 2]), 

y(a) = A, y(b+2) = B. 

(9.1) 

(9.2) 

Here I(t, y) is a function defined for all t in [a + 1, b+ 1] and all real numbers y. 
Fundamental questions arise for Eqs. (9.1), (9.2). Does a solution exist, is it unique, 
and how can solutions be approximated? 

Suppose that y(t) is a solution of Eqs. (9.1), (9.2). From Corollary 6.4 

b+l 

y(t) = L G(t, s)1 (s, y(s)) + w(t), (9.3) 
s=a+l 

where G(t, s) is the Green's function for 

t::.2y(t - 1) = 0, 

y(a) = 0, y(b + 2) = 0 

and 
B-A 

w(t) = A + b 2 (t - a). + -a 
Let B = {real-valued functions defined on [a, b + 2]} and define T : B ~ B by 

b+l 

Ty(t) = L G(t, s)1 (s, y(s)) + w(t) 
s=a+l 

for t in [a, b + 2]. Then Ty(t) = y(t), that is, y is a "fixed point" of T. Thus 
solutions of Eqs. (9.1), (9.2) are necessarily fixed points of the operator T. Since 
the steps of the analysis are reversible, it is also true that all fixed points of T are 
solutions of (9.1), (9.2). 
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To establish a theorem on the existence of fixed points of T, we need the concept 
of the "norm" of a vector. Let Rn denote the set of ordered n-tuples of real numbers. 
A norm on Rn is a function II . II : Rn --+ R having the following properties: 

(a) IIx II ~ 0 for all x in Rn. 

(b) IIxll = 0 if and only if x = (0,0, ... ,0). 

(c) IIcxll = Iclllxll for all c in R and x in Rn. 

(d) IIx+ylI:::: IIxll+lIyllforallx,yinRn. 

Here are some examples of norms: 

(a) II (Xl, ... , xn) II = (xt + xi + ... + x;) i (euclidean norm). 

(b) II (Xl, ... , xn ) II = maxl~i ~n {IXi I} (maximum norm). 

(c) II (Xl, ... , xn ) II = IXII + ... + IXn I (traffic norm). 

Let II . II be any norm on Rn. A sequence {Xk} in Rn converges to X in Rn if 
limk--+oo IIxk - xII = O. A Cauchy sequence {Xk} in Rn satisfies the following prop
erty: given E > 0, there is an M so that IIXk+1 - Xk II < E for alII ~ 0 whenever 
k ~ M. Actually, it can be shown that these concepts are norm-independent since 
if a sequence is convergent (Cauchy) with respect to one norm, then it is convergent 
(Cauchy) with respect to every norm. In the following theorem, we will make use of 
the fact that every Cauchy sequence is convergent (see Bartle [23]). 

Theorem 9.1. (contraction mapping theorem) Let II . II be a norm for Rn and S 
be a closed subset of Rn. Assume that T : S --+ S is a contraction mapping: there 
is an a, 0:::: a < 1, such that IITx - Tyll :::: allx - yll for all x, yin S. Then T 
has a unique fixed point z in S. Furthermore, if YO is in S and we set Yk = TYk-1 
for k ~ 1 (the "Picard iterates"), then 

ak 
IIYk -zll:::: --IIYI - YO II 

I-a 
(k ~ 1). 

Proof. We will show that {Yk} is a Cauchy sequence. First note that 

For I = 1, 2, ... , 

IIYk+1 - Ykll = IITYk - TYk-11i 

:::: allYk - Yk-lll 

= all TYk-1 - TYk-211 

:::: a2l1Yk_1 - Yk-211 

IIYk+1 - Ykll :::: IIYk+1 - Yk+l-til + ... + IIYk+1 - Ykll 

(9.4) 
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S ak+l-IIIYI - YO II + ... +akilYI - YO II 
S ak(1 + a + a 2 + ... )IIYI - yoll, 

so 

a k 

IIYk+1 - Ykll S 1 _ allYl - yoli. (9.5) 

Now Eq. (9.5) implies that {Yk} is a Cauchy sequence. Then {Yk} converges to 
some z in Rn , and z is in S since S is closed. 

Since T is a contraction, it is continuous on S (see Exercise 9.2). Hence 

T z = T (lim Yk) 
k-+oo 

= lim Yk+I 
k-+oo 

= z, 

so z is a fixed point for T. If w in S is also a fixed point for T, then 

IIz-wll = IITz-Twll sallz-wll· 

Since a < 1, liz - wll = 0, so z = w. We conclude that z is the only fixed point of 
Tin S. 

Finally, Eq. (9.4) is obtained by letting I ---+ 00 in Eq. (9.5). • 

9.2 The Lipschitz Case 
We begin our study of Eqs. (9.1), (9.2) in this section by showing that there is a 
unique solution if I(t, y) satisfies a growth condition with respect to y, known as a 
"Lipschitz condition." 

Definition 9.1. Suppose that there is a constant K :::: 0 so that 

I/(t, y) - I(t, x)1 s Kly - xl 

for all integers t in [a, b + 2] and all x, Y in R. Then we say that 1 satisfies a 
"Lipschitz condition" with respect to Y on [a, b + 2] x R. 

The constant K in Definition 9.1 is called a Lipschitz constant for I. The contrac
tion mapping theorem can now be used to obtain a unique solution for the boundary 
value problem (9.1), (9.2). 
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Theorem 9.2. Assume that f (t, y) satisfies a Lipschitz condition with respect to 
yon [a, b + 2] x R with Lipschitz constant K. If b + 2 - a < ,J8/ K, then (9.1), 
(9.2) has a unique solution. 

Proof. As in Section 9.1, B = {real-valued functions on [a, b + 2]} and T : B -+ 

B is given by 
b+l 

Ty(t) = L G(t, s)f (s, y(s)) + w(t). 
s=a+l 

Note that B is equivalent to Rb-a+3. We will use the maximum norm on B: 

lIyll = max{ly(t)1 : t is in [a, b + 2]}. 

Let's show that T is a contraction mapping on B. Consider that 

b+l 

ITy(t) - Tx(t) I = L G(t, s) [f (s, y(s)) - f (s, x(s))) 
s=a+l 

b+l 

::: L IG(t,s)IKly(s)-x(s)1 
s=a+l 

b+l 

::: K L IG(t, s)llIy - xII 
s=a+l 

(b + 2 - a)2 
:::K 8 lIy-xll 

for t in [a, b + 2] by Exercise 6.20. 
Hence 

IITy - Txll ::: ally - xII, 

where a = K(b+f-a)2 < 1, so T is a contraction mapping and has a unique fixed 
point by Theorem 9.1. It follows from the discussion in Section 9.1 that (9.1), (9.2) 
has a unique solution. • 

Example 9.1. Show that the problem 

/12y(t - 1) = -0.1 cos y(t), 

y(O) = 0 = y(8) 

has a unique solution and find an approximation of the solution. 

For f(y) = -0.1 cos y, f'(y) = 0.1 sin y, and by the Mean Value Theorem 

If(x) - f(y)1 ::: Klx - yl = O.llx - yl 
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for all x, y. Then .J8/ K = .J8O> 8, and Theorem 9.2 is applicable. 
To obtain an approximation of the solution of the boundary value problem, we 

start with the initial guess yo(t) == 0 and compute the next Picard iterate. Now 

where 

Then 

7 

Yl(t) = Tyo(t) = L G(t, s)[-O.1 cosyo(s)] 
s=! 

7 

= - L O.IG(t,s), 
s=1 

{ 
_ (8-s)t 

G(t, s) = _ (8~t)s' 
8 ' 

0::: t ::: s ::: 7, 

1 ::: s ::: t ::: 8. 

t-l 7 

Yl(t) = 0.1 L (8 ~ t)s _ 0.1 L (s ~ 8)t 

s=1 s=t 

8 - t [s~]t t [(s _ 8)~]8 = 0.1-- - - 0.1-
8 2 8 2 

s=1 s=t 

= 0.05t(8 - t), (0 ::: t ::: 8). 

By using a slightly more complicated norm than the maximum norm, we get the 
following generalization of Theorem 9.2. 

Theorem 9.3. Assume that there is a k(t) ::: 0 on [a + 1, b + 1] such that 

I/(t, y) - I(t, x)1 ::: k(t)ly - xl 

for all t in [a+ 1, b+ 1] and x, y in R. If ~2y(t -1)+k(t)y(t) = 0 is disconjugate 
on [a, b + 2], then the boundary value problem (9.1), (9.2) has a unique solution. 

Proof. Since ~2y(t - 1) + k(t)y(t) = 0 is disconjugate on [a, b + 2], we know 
from Theorem 6.10 that there is a positive solution y(t) on [a, b + 2]. Consequently, 
for a less than one and sufficiently near one, the equation ~2u(t - 1) + ~u(t) = 0 
has a positive solution u(t) on [a, b + 2] (see Exercise 9.7). 

Let p(t) be the unique solution of 

~2p(t - 1) = 0, 

p(a) = u(a), p(b + 2) = u(b + 2). 
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Then 

u(t) = I: G(t, s) [ -~k(S)U(S) ] + pet), 
s=a+1 

where G(t, s) is the Green's function for ~2v(t - 1) = 0, v(a) = v(b + 2) = O. 
Since pet) > 0 on [a, b + 2], we have 

b+1 [1 ] 
u(t) > L G(t, s) -~k(s)u(s) 

s=a+1 

on [a, b + 2]. Rearranging the last inequality, 

1 HI 
ex > - L IG(t, s)lk(s)u(s), 

u(t) 

so 

s=a+1 

1 b+1 
ex > max - L IG(t, s)lk(s)u(s). 

[a,b+2] u(t) 
s=a+1 

Now define a norm on B by 

{ IX(t)1 } Ilxll = max --, a ::s t ::s b + 2 . 
[a,H2] u(t) 

Let T : B ~ B be given by 

b+1 

Tx(t) = L G(t, s)! (s, xes)) + wet), 

s=a+1 

where ~2w(t - 1) = 0, w(a) = A, web + 2) = B. Then 

so 

HI 

ITx(t) - Tz(t)l::S L IG(t, s)lk(s)lx(s) - z(s)l, 

s=a+1 

b+1 
ITx(t) - Tz(t)1 ::s _ L IG(t, s)lk(s)u(s) Ix(s) - z(s)1 

u(t) u(t) u(s) 
s=a+1 

1 HI 
::s - L IG(t, s)lk(s)u(s)lIx - zll 

u(t) s=a+1 

::s ex IIx - zll 

for a ::s t ::s b + 2. Hence liT x - T z II ::s ex IIx - z II, and the proof is completed by 
applying the contraction mapping theorem. • 
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Corollary 9.1. Assume that there is a K in (0,4) such that I/(t, y) - I(t, z)1 ~ 
Kly - zl for all t in [a + 1, b + 1], y, z in R. If b + 2 - a < 1f 2 K' then (9.1), 

arccos --z-
(9.2) has a unique solution. 

Proof. According to Theorem 9.3, it suffices to show that ll.2u(t -1) + Ku(t) = 0 
is disconjugate on [a, b + 2]. The characteristic equation for this difference equation 
is m2 + (K - 2)m + 1 = 0, so 

2 - K ± J (K - 2)2 - 4 
m= ------~~--~---

2 

Since 0 < K < 4, we can choose (J in (0, 7r) so that 2 - K = 2 cos (J. Then 
m = ±eiO with () = arccos 2-/ ' and u(t) = sin (J(t - a) is a nontrivial solution with 
u(a) = O. Consequently, ll.2u(t - 1) + Ku(t) = 0 is disconjugate on [a, b + 2] if 
b+2-a <~. • 

Example 9.2. Show that the BVP 

ll.2y(t - 1) = -0.1 cosy(t), 

y(O) = A, y(9) = B 

has a unique solution. 

As in Example 9.1, K = 0.1 is a Lipschitz constant for 1 (y) = -0.1 cos y. 
However, Theorem 9.2 does not apply since J8/K = .J8O < 9. Corollary 9.1 
does provide a unique solution because 

7r 
b + 2 - a = 9 < 5 ~ 9.89. 

arccos 0.9 

The assumption that 1 in Eq. (9.1) satisfies a Lipschitz condition on [a, b + 
2] x R is quite strong and will not be satisfied in most cases. 

Example 9.3. 

ll. 2y(t - 1) = -O.OleY , 

y(a) = 0, y(b + 2) = o. 
Here I(t, y) = -O.OleY does not satisfy a Lipschitz condition for yin R. To 

see this, simply note that, by L'Hospital's rule, 

I(y) - 1(0) -O.OleY + 0.01 
~ -00, = (y ~ (0). 

y-O Y 

The next theorem utilizes the contraction mapping theorem to obtain a unique 
solution in some cases where 1 does not satisfy a Lipschitz condition on R. 
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Theorem 9.4. Assume that there are positive constants N and K so that 
I/(t, y) - I(t, z)1 ::: Kly - zl for t in [a + 1, b + 1] and y, z in [-N, N]. Set 
m = max{l/(t, 0)1 : a + 1 ::: t ::: b + I} and M = max{l/(t, y)1 : a + 1 ::: t ::: 
b + 1, Iyl ::: N}. If ex == K (b+28-a)2 < 1 and either m(b+;-a)2 ::: N (1 - ex) 

or M(b+f-a)2 ::: N, then Eq. (9.1) with homogeneous boundary conditions 
y(a) = y(b+2) = 0 has a unique solution y(t) with ly(t)1 ::: N fora::: t ::: b+2. 

Proof. Let C = (functions y on [a, b + 2] such that y(a) = y(b + 2) = 0 and 
ly(t)1 ::: N, a ::: t ::: b + 2}. Then C is a closed subset of Rb- a+3 . Let II . II be the 
maximum norm. Define T on C by 

b+1 

Ty(t) = L G(t, s)1 (s, y(s» , 
s=a+l 

where G(t, s) is the Green's function for the boundary value problem /}.2u(t - 1) = 
0, u(a) = u(b + 2) = O. 

For y and z in C consider 

b+l 

ITy(t) - Tz(t)1 = L G(t, s) [f (s, y(s» - 1 (s, z(s))) 
s=a+l 

b+l 

::: L IG(t, s)IKly(s) - z(s)1 
s=a+l 

(b + 2 - a)2 
:::K 8 lIy-zll· 

Then IITy - Tzil ::: exlly - zll for y, z in C. 

It remains to show that T : C --+ C. First, assume that m(b+;-a)2 ::: N(1 - ex). 
Then 

b+l 

IT(O)(t)1 = L G(t, s)/(s, 0) 
s=a+l 

m(b+2-a)2 
<-----

8 
::: N(1 - ex) 

for t in [a, b + 2], so IIT(O) II ::: N(1 - ex). For yin C, 

IITyll ::: IIT(y) - T(O)II + IIT(O) II 
::: exlly - 011 + N(1- ex) 
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and we have T : C -+ C in this case. 
Finally, assume that M(b+;-a)2 ~ N. For yin C 

b+1 

ITy(t)1 ~ L IG(t, s)llf (s, y(s)) I 
s=a+1 

M(b +2 -a)2 
< -----'--

8 
~N, 

and IITYII ::=: N, so T : C -+ C in this case also. 
The contraction mapping theorem can be applied to obtain a unique solution of 

Eq. (9.1) in C, and the proof is complete. • 

Example 9.3. (continued) With f = -O.OleY , we have 

If(y) - f(z)1 = O.OleCly - zl 
::=: O.OleNly - zl, 

if Iyl, Izl ::=: N, by the Mean Value Theorem. 
We need 

= 0 01 N (b + 2 - a)2 
cx-.e 8 <1. 

Note that 
M(b + 2 - a)2 N (b + 2 - a)2 

8 = O.Ole 8 ::=: N 

will then be true for N = 1. It follows from Theorem 9.4 that 

!::J. 2y(t - 1) = -O.OleY , 

y(a) = y(b + 2) = 0 

has a unique solution y with ly(t)1 ::=: 1 fora::=: t ::=: b + 2 if (b + 2 - a)2 < 8~. 

9.3 Existence of Solutions 
Since boundary value problems for difference equations often have multiple solu
tions, it is useful to have a collection of results that yield solutions without the impli
cation that the solutions must be unique. The existence theorems of this type to be 
presented in this section will be based on the following version of the Brouwer fixed 
point theorem. 
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Theorem 9.5. (Brouwer fixed point theorem) Let K = {(XI, .•• ,Xn ) : Ci ~ 

Xi ~ di, i = 1,... ,n} and suppose T : K -+ K is continuous. Then T has a 
fixed point in K. 

A proof of Theorem 9.5 can be found in Dunford and Schwartz [67]. See Exercise 
9.10 for the case n = 1. Here is our basic existence theorem. 

Theorem 9.6. Assume for each t in [a + 1, b + 1] that !(t, y) is a continuous 

function of y. If M 2: max{lAI, IBI} and b + 2 - a ~ ;w., where Q = 

max{I!(t, y)1 : a + 1 ~ t ~ b + 1, Iyl ~ 2M}, then (9.1), (9.2) has a solution. 

Proof. Let K = {y : ly(t)1 ~ 2M, a ~ t ~ b + 2}. Note that K is the type of 
subset of Rb- a+3 to which the Brouwer fixed point theorem is applicable. Define T 
onKby 

b+1 

Ty(t) = L G(t, s)! (s, y(s» + w(t), 
s=a+1 

a ~ t ~ b + 2, where G(t, s) is the Green's function for /}.2y(t - 1) = 0, y(a) = 
y(b + 2) = 0 and w is the solution of /}.2w(t - 1) = 0, w(a) = A, w(b + 2) = B. 
It is easily checked that T is continuous on K. 

We now show that T : K -+ K. Let y belong to K and consider that 

b+1 

ITy(t)1 = L G(t, s)! (s, y(s» + w(t) 
s=a+1 

b+1 

~Q L IG(t,s)I+M 
s=a+1 

(b + 2 _a)2 
< 8 Q+M 

~2M, 

a ~ t ~ b + 2. Hence Ty is in K, and the conclusion follows from the Brouwer 
fixed point theorem. • 

Corollary 9.2. If !(t, y) is continuous in y for each t in [a + 1, b + 1] and is 
bounded on [a + 1, b + 1] x R, then (9.1), (9.2) has a solution. 

Proof. Choose P > sup{I!(t, y)1 : a + 1 ~ t ~ b + 1, y in R}. Pick M large 

enough so that b + 2 - a < .fii and I A I, I B I ~ M. For the Q defined in Theorem 
9.6, Q ~ P,so 

{8M 
b+2-a < VQ' 
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and, by Theorem 9.6, (9.1), (9.2) has a solution. • 
A very powerful technique for establishing the existence of one or more solutions 

of a nonlinear boundary value problem is the construction of comparison functions 
that satisfy a relation like Eq. (9.1) with equality replaced by inequality. 

Definition 9.2. A real-valued function a(t) on [a, b + 2] is a "lower solution" 
for (9.1), (9.2) if 

/12a(t - 1) :::: f (t, a(t)) 

for t in [a + 1, b + 1], a(a) :::: A and a(b + 2) :::: B. Similarly, f3(t) is an "upper 
solution" for (9.1), (9.2) if 

/12 f3(t - 1) :::: f (t, f3(t)) 

for t in [a + 1, b + 1], f3(a) :::: A and f3(b + 2) :::: B. 

Theorem 9.7. Assume that f(t, y) is continuous in y for each t in [a + 1, b + 
1], a(t) and f3(t) are lower and upper solutions, respectively, for (9.1), (9.2) and 
a(t) :::: f3(t) on [a, b + 2]. Then (9.1), (9.2) has a solution y(t) with a(t) :::: y(t) :::: 
f3(t) for t in [a, b + 2]. 

Proof. Define F(t, y) for a + 1 :::: t :::: b + 1, y in R, by 

{ 
f (t, f3(t)) + Yl;;~~) if y :::: f3(t), 

F(t, y) = f(t, y) ifa(t) :::: y:::: f3(t), 

f (t, a(t)) + Yl~I~) if y :::: a(t). 

Note that F (t , y) is continuous as a function of y for each t. Furthermore, F is 
bounded and agrees with f when a(t) :::: y :::: f3(t). By Corollary 9.2, the boundary 
value problem 

has a solution, y(t). 

/12 y(t - 1) = F (t, y(t)), 

y(a) = A, y(b + 2) = B 

We claim that y(t) :::: f3(t) for t in [a, b + 2]. If not, y(t) - f3(t) has a positive 
maximum at some to in [a + 1, b + 2]. Consequently, we must have /12 (y - f3)(to-
1) :::: O. On the other hand, 

/12 (y - f3)(to - 1) :::: F (to, y(to)) - f (to, f3(to)) 

= f (to, f3(to» + y~t: ~~o~~) - f (to, f3(to» 
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= y(to) - fJ(to) > 0, 
1 + ly(to)1 

which is a contradiction. It follows that y(t) :s fJ(t) on [a, b + 2]. 
Similarly, a(t) :s y(t) on [a, b + 2] (see Exercise 9.11). Thus y(t) is a solution 

of (9.1), (9.2). • 

Example 9.4. Consider the BVP 

/}.2y(t - 1) = -0.1 cosy(t), 

y(O) = 0 = y(b + 2). 

First, note that a(t) = 0 is a lower solution for this problem since it satisfies 
the boundary conditions and 

/}.2(0) = 0> -0.1 cos(O). 

Next, let fJ(t) = 0.05t(b + 2 - t). Then fJ(O) = fJ(b + 2) = 0 and 

/}.2fJ(t - 1) = 0.05/}.2 [(t - 1)(b + 3 - t)] 

= 0.05(-2) 

= -0.1 

:s -O.lcosfJ(t), 

so fJ(t) is a lower solution. We can conclude that there is a solution y(t) with 

o :s y(t) :s 0.05t(b + 2 - t), (0 :s t :s b + 2). 

Compare this example with Example 9.1. 

Corollary 9.3. Assume that, for each t in [a + 1, b + 1], f(t, y) is continuous 
and nondecreasing in y, -00 < y < 00. Then (9.1), (9.2) has a solution y(t). 
Furthermore, if f(t, y) is strictly increasing in y, the solution is unique. 

Proof. Choose M.:::: max{lf(t, 0)1 : a :s t :s b + 2}. Let u(t) be the solution of 

/}.2u(t - 1) = M, 

u(a) = 0 = u(b + 2). 

Note that u(t) :s 0 on [a, b + 2]. Pick K :::: max{IAI, IBI} and let a(t) = u(t) - K. 
Then 

/}.2a(t - 1) = /}.2u(t - 1) 
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=M 
2: f(t, 0) 

2: f (t, a(t)) 

since f is nondecreasing in Y and a(t) :::: O. Also, a(a) :::: A, a(b + 2) :::: B, so a(t) 
is a lower solution for (9.1), (9.2). 

An upper solution can be similarly constructed. Hence (9.1), (9.2) has a solu
tion, y(t). 

Suppose f(t, y) is strictly increasing in y. Let x(t) be a second solution of (9.1), 
(9.2). Define z(t) = x(t) - y(t). If x(t) is larger than y(t) for some t, then z(t) has 
a positive maximum at some to, so ,1,2z(to - 1) :::: O. However, 

,1,2z(to - 1) = f (to, x (to)) - f (to, y(to)) 

>0 

since x(to) > y(to), and we have a contradiction. Likewise, we can show that y(t) is 
nowhere larger than x(t). As a result, x(t) == y(t), and solutions are unique in this 
case. • 

The following is an immediate consequence of Corollary 9.3. 

Example 9.5. The BVP 

,1,2y(t - 1) = c(t)y + d(t)y3 + e(t), 

y(a) = A, y(b + 2) = B, 

where c(t) 2: 0, d(t) 2: 0 on [a + 1, b + 1], has a solution. The solution is unique 
if c2(t) + d2(t) > 0 for t in [a + 1, b + 1]. 

The next theorem is a generalization of the uniqueness of solutions of initial value 
problems for Eq. (9.1) (see Exercise 9.1). 

Theorem 9.S. Assume that f(t, y) is continuous in y for each t, ,1,2a(t - 1) -
f (t, a(t)) 2: 0 2: ,1,2[J(t - 1) - f (t, [J(t», a(t) :::: [J(t) for t in [a, b + 2], and 
that there is a to, a + 1 :::: to :::: b + 1, where a(to) = [J(to), ,1,a(to) = ,1,[J(to). 
Then a(t) == [J(t) on [a, b + 2] (so it is a solution ofEq. (9.1». 

Proof. Assume that a(t) ;f= [J(t) on [a, b + 2]. Then there is an integer tl where 
[J(tt} < a(tt} and either to + 1 < tl :::: b + 2 or a :::: tl < to. We consider only the 
first case (see Exercise 9.12 for the other case). 

By Theorem 9.7, there are solutions YI (t), Y2(t) ofEq. (9.1) so that Yi(tO) = a(to) 
and a(t) :::: Yi(t) :::: fJ(t) for to :::: t :::: tt. i = 1,2, and Yl(tl) = a(tt}, Y2(tI) = 
fJ(tt}. It follows that YI (to) = Y2(tO), Yl (to + 1) = Y2(tO + 1), but Yl (tl) i= Y2(tt}, 
which violates the uniqueness of solutions of initial value problems for Eq. (9.1). 
This contradiction implies that a(t) == fJ(t) on [a, b + 2]. • 
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The final existence theorem in this section involves the case where f (t, y) satisfies 
a one-sided Lipschitz condition with respect to y. 

Theorem 9.9. Assume that f (t, y) is continuous in y for each t and there is a 
function k(t) defined on [a + 1, b + 1] such that 

f(t, u) - f(t, v) 2: k(t)(u - v) 

for u 2: v, t in [a + 1, b + 1], and 1l.2y(t - 1) = k(t)y(t) is disconjugate on 
[a, b + 2]. Then (9.1), (9.2) has a unique solution. 

Proof. Let y(t, m) be the solution of 

ll. 2y(t - 1) = f (t, y(t)) , 

y(a) = A, y(a + 1) = m. 

Define S = {y(b + 2, m) : m is in R}. By continuity of solutions with respect to 
initial values, S is an interval. We will complete the (existence) proof by showing 
that S is bounded neither above nor below. 

Fix ml > m2 and let w(t) = y(t, ml) - y(t, m2). We show by induction that 
w(t) > Oon [a+ 1, b+2]. First, note that w(a+ 1) = ml -m2 > O. Let to > a + 1 
and assume that w(t) > 0 on [a + 1, to - 1]. For t in [a + 1, to - 1], 

1l.2w(t - 1) = f (t, y(t, ml)) - f (t, y(t, m2)) 

2: k(t)[y(t, m I) - y(t, m2)] 

= k(t)w(t). 

By Theorem 6.6, 
w(t) 2: (ml - m2)u(t) 

on [a, to], where u(t) is the solution of 

1l.2u(t - 1) = k(t)u(t), 

u(a) = 0, u(a + 1) = 1. 

Now the disconjugacy of 1l.2u(t - 1) = k(t)u(t) on [a, b + 2] implies that u(t) > 0 
on [a + 1, b+2], and we have w(to) 2: (ml -m2)u(to) > O. By induction, w(t) > 0 
on [a + 1, b + 2]. In particular, 

w(b + 2) 2: (ml - m2)u(b + 2). 

Keeping m2 fixed and letting m 1 -+ 00, we find that S is not bounded above. Fixing 
m 1 and letting m2 -+ -00, we have that S is not bounded below, so S = R and, as 
a result, (9.1), (9.2) has a solution. 

Uniqueness follows immediately from the fact that ml > m2 implies that y(b + 
2" m}) > y(b + 2, m2). • 
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9.4 Boundary Value Problems for Differential Equations 
Mathematical modeling of problems in the physical sciences relies heavily on the 
use of differential equations together with initial or boundary conditions. In this 
section, we consider briefly the relationship between the boundary value problems 
for difference equations of the last two sections and boundary value problems for 
differential equations of the type 

y" = I(x, y), (0 ~ x ~ p) (9.6) 

yeO) = yep) = O. (9.7) 

The function I is assumed to be continuous in x and y. More general boundary 
value problems are considered by Gaines [88]. 

The following lemma will tell us which difference equations to use to approximate 
solutions of Eq. (9.6). 

Lemma 9.1. Assume that y(x) has a continuous second derivative on [0, pl. Let 
E > O. For n sufficiently large and 1 ~ t ~ n - 1, 

I;~ [Y (~(t + 1)) -2y (~t) + Y (~(t -1))] - y" (~t)1 < E. 

Proof. By Taylor's Theorem, 

2 

y (~(t + 1)) = y (~t) + ~y' (~t) + Jn2 Y"(Cl), 

2 
y (f(t - 1)) = y (ft) - fy' (ft) + L y"(C2), 

n n n n 2n2 

where *t < ct < *(t + 1) and *(t - 1) < C2 < *t. Adding these two equations, 
we have 

y (~(t + 1)) + y (~(t -1)) = 2y (~t) + ~: (y"(Cl); y"(C2)). 

Finally, 

I;~ [Y (~(t + 1)) - 2y (~t) + Y (~(t -1))] - y" (~t)1 
= IY"(Cd; y"(C2) _ y" (~t)1 

~ ~ Iy"(ct) - y" (~t)1 + ~ 1y"(C2) - y" (~t)1 
<E 

for n sufficiently large and 1 < t < n - 1 since y" is uniformly continuous on 
[~p]. • 
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Lemma 9.1 indicates that the second derivative term y" in Eq. (9.6) can be ap

proximated by ;~ [y(~(t + 1» - 2y(~t) + y(~(t - 1))] when n is large. To obtain 

a difference equation of familiar form, we write z(t) for y(~t). The corresponding 
difference equation is then 

p2 (P ) t!th(t - 1) = n2 f ;;t, z(t) (t = 1,··· ,n - 1) (9.8) 

with boundary conditions 

Z(O) = z(n) = O. (9.9) 

We now state a lemma that gives the fundamental relationship between solutions 
of (9.8), (9.9) and (9.6), (9.7). The proof is omitted since it would involve a detour 
into the theory of differential equations (see Gaines [88]). 

Lemma 9.2. Assume that 

(a) There is an no so that (9.8), (9.9) has a solution Zn(t) for n ~ no. 

(b) There are positive constants N and Q so that 

IZn(t)1 :::: N, nl~Zn(t - 1)1 :::: Q 

for 1 :::: t :::: n and n ~ no. 

There is a subsequence {Znk(t)} and a solution y(x) of (9.6), (9.7) so that 

If it is known that (9.6), (9.7) has at most one solution, the original sequence 
{Zn(t)} will converge to y in the sense of Lemma 9.2 (see Exercise 9.16). 

The use of Lemma 9.2 is simplified by the next lemma. 

Lemma 9.3. Let {Zn (t)} be a sequence of solutions of (9.8), (9.9), and assume that 
there is a positive constant N so that IZn(t)1 :::: N for 1 :::: t :::: n - 1 and all n. Then 
there is a positive constant Q so that nl~zn(t - 1)1 :::: Q for 1 :::: t :::: n and all n. 

Proof. Since f is continuous, there is a constant Q so that If(x, y)1 :::: ? for 

0:::: x :::: p and Iyl :::: N. By Eq. (9.3) 

n-l 2 

Zn(t) = L G(t, s) :2 f (~s, Zn(S») , 
8=1 
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where by Example 6.12 

Then 

{ 
- (n-s)t (t:::: s) 

G(t,s) = _(n~nt)S 
(s :::: t). 

IdZn{t - 1)1 = I~ dtG(t - 1, s) =: f (~S, Zn(S») I 
t-I 2 n-I 2 

::::I:S:3If(:S,Zn(S»)I+ I: P (:3- S) iI(~S'Zn(S»)1 
s=1 s~ 

<R[t(t-l) (n-t+l)(n-t)] 
- n3 2 + 2 

< R [n(n - 1) n(n - 1)] 
- n3 2 + 2 

n-l 
= Q-2-· 

n 

We have 
n-l 

n Idzn{t -1)1:::: Q-- :::: Q 
n 

for 1 :::: t :::: n and all n. 

343 

• 
As a first application of these lemmas, we give a version of Theorem 9.4 for 

differential equations. 

Theorem 9.10. Assume that there are constants N and K so that If(x, YI) -
f(X,Y2)1 :::: KIYI - Y21 for 0 :::: x :::: p and YI,Y2 in [-N,N]. Set M = 

K 2 M 2 
max{lf(x, y)1 : 0:::: x :::: p, lyl :::: N}. If ¥- < 1 and ~ :::: N, then BVP (9.6), 
(9.7) has a solution y(x) that is the limit of a sequence of solutions of (9.8), (9.9) 
in the sense of Lemma 9.2. 

Proof. Note that 

and 
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222M 2 
Theorem 9.4 can now be applied to (9.8), (9.9) since Ol = K ~2 ng < 1 and Pn2 ng ::s 
N. For each n, (9.8), (9.9) has a unique solution Zn(t) so that IZn(t)1 ::s N for 
O::s t ::s n. By Lemmas 9.2 and 9.3, there is a subsequence {znd and solution y(x) 
of (9.6), (9.7) so that 

• 
Remark. It can be shown that the solution y(x) given by Theorem 9.10 is unique 
(see Hartman [119]), so in fact the original sequence {Zn} converges to y. 

Our final theorem shows that the existence of continuous lower and upper solu
tions for (9.8), (9.9) implies that (9.6), (9.7) has a solution. 

Theorem 9.11. Suppose Ol(X) and fJ(x) are continuous functions on [0, p] so 
that Ol(X) ::s fJ(x), 0 ::s x ::s p, and Ol(~t) and fJ(~t) are lower and upper solu
tions, respectively, for (9.8), (9.9) if n is sufficiently large. Then (9.6), (9.7) has a 
solution y(x) with Ol(X) ::s y(x) ::s fJ(x), 0 ::s x ::s p, and y(x) is the limit of a 
sequence of solutions of (9.8), (9.9) in the sense of Lemma 9.2. 

Proof. For n sufficiently large, Theorem 9.7 implies that (9.8), (9.9) has a solution 
Zn (t) with Ol( ~t) ::s Zn (t) ::s fJ( ~) for 0 ::s t ::s n. Since Ol and fJ are continuous, 
there is an N so that IZn (t) I ::s N for 0 ::s t ::s n. Using Lemmas 9.2 and 9.3, we 
obtain a solution y(x) of (9.8), (9.9) so that some subsequence {Znk} satisfies 

lim max IZnk(t)-y(Pt)1 =0. 
k-'l-oo Og::onk nk 

It follows that Ol (x) ::s y (x) ::s fJ (x) for 0 ::s x ::s p. • 
Alternatively, we can ask that Ol and fJ be lower and upper solutions, for (9.6), 

(9.7), as defined in the following corollary. 

Corollary 9.4. Assume that Ol and fJ have continuous second derivatives on [0, p], 
Ol(X) ::s fJ(x) for 0 ::s x ::s p, 0l(0) ::s 0, Ol(p) ::s 0, fJ(O) ~ 0, fJ(p) ~ 0, and 

Ol"(X) - I (x, Ol(X)) > 0, 

fJ"(x) - I (x, fJ(x)) < 0 

for 0 ::s x ::s p. Then the conclusion of Theorem 9.11 holds. 

Proof. Let E = - maxo::ox::op{fJ"(x) - I(x, fJ(x))} > O. By Lemma 9.1, 

;:t:.2fJ (~:(t -1)) ~ fJ" (~t) < E, (1 ::s t ::s n - 1) 
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if n is sufficiently large. Then 

n2 /),.2fJ (f(t - 1») - f (ft, fJ(ft») 
p2 n n n 

= ;: /),.2fJ (~(t -1)) - fJ" (~t) + fJ" (~t) - f (~t, fJ(~t») 
< E - E = 0, 

so fJ( ~t) is an upper solution for (9.8), (9.9) if n is sufficiently large. Similarly, 
a( ~t) is a lower solution for (9.8), (9.9) if n is sufficiently large, and the conclusion 
of Theorem 9.11 holds. • 

Example 9.6. The boundary value problem 

y" + ry (1 - ;) = 0, 
yeO) = yep) = 0, 

(9.10) 

(9.11) 

where r, K, and p are positive constants, arises in the study of patches of plankton 
at the surface of the ocean (see Beltrami [25]). 

Note that y (x) = 0 is a solution of the problem, but only positive solutions are 
of interest since y(x) represents the density of plankton at position x inside the 
patch. First, let fJ(x) = K. It is easily checked that fJ(~t) is an upper solution for 
the discrete boundary value problem corresponding to (9.10), (9.11). 

Now let a(x) = a siner;), where a is a positive constant. We want to show 

(under certain conditions) that a(~t) = a sin(~t) is a lower solution for the dis
crete problem when a is small. Clearly, a(O) = a(~n) = O. Using Theorem 2.2, 
we have 

(lr ) p2 (lr ) ( a Sin(ZLt») /),.2a sin -;:;-(t - 1) + n2 ra sin -;:;-t 1 - K n 

(lr) (lr) p2 (lr ) ( aSin(ZLt») = -4a sin2 2n sin -;:;-t + n2 ra sin -;:;-t 1 - K n 

(lr ) [ (lr) p2 ( aSin(ZLt»)] = a sin -;:;-t -4sin2 2n + n2 r 1 - K n . 

(9.12) 

Since () > sin () for () > 0, ~~ > 4 sin2 (:n). Consequently, the expression in 
Eq. (9.12) is at least 
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if rp2 > ]f2 and a is sufficiently small. Thus a(~t) is a lower solution for all n. 
Of course, a(x) < f3(x) is also true for small a. Theorem 9.11 yields a solution 
y(x) of (9.10), (9.11) so that 

a sin (]f;) s y(x) S K 

for 0 S x S p. The condition rp2 > ]f2 means that the patch must have a width 
p of more than Jr in order that the colony of plankton be viable. 
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Exercises 

Section 9.1 

9.1 Show that solutions of initial value problems for Eq. (9.1) are unique and exist 
on [a, b + 2]. 

9.2 Show that if T is a contraction mapping on S, T is continuous on S. 

9.3 Show that if the condition 0 :::: a < 1 in Theorem 9.1 is replaced by 0 :::: a :::: I, 
T need not have a fixed point. 

9.4 Give an example to show that the condition liT x - Ty II < IIx - y II for all x =1= y 
in Rn does not imply the existence of a fixed point for T. 

9.5 Show that Theorem 9.1 is still true with a suitable change in Eq. (9.4) if we 
assume only that T m is a contraction mapping on S for some integer m ~ 1. 

Section 9.2 

9.6 Verify that the maximum norm defined in the proof of Theorem 9.2 is a norm 
on Rb- a+3• 

9.7 Prove that if /l2y(t - 1) + k(t)y(t) = 0 is disconjugate on [a, b + 2], then for 
a near one and less than one the equation /l2u(t - 1) + !fPu(t) = 0 has a positive 
solution on [a, b + 2]. 

9.S For what values of b does this boundary value problem 

/l2y(t _ 1) _ 0.2 
- 1 + y2(t) , 

y(O) = 0 = y(b + 2) 

have a unique solution? 

9.9 Use Theorem 9.4 to show that 

/l2y(t - 1) = 0.l y2(t) + I, 
y(O) = 0 = y(3) 

has a unique solution y(t) with ly(t)1 :::: 2 for 0:::: t :::: 3. 

Section 9.3 

9.10 
(a) Prove Theorem 9.5 in the case n = 1. 

(b) Show that the fixed point in Theorem 9.5 need not be unique. 

9.11 Show that a(t) :::: y(t) on [a, b + 2] in the proof of Theorem 9.7. 
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9.12 Complete the proof of Theorem 9.8 by treating the case a ::::; t\ < to. 

9.13 Show thatthe boundary value problem L\2y (t-l) = eY,y(a) = A,y(b+2) = 
B, has a unique solution for all A, B. 

9.14 Show that this boundary value problem 

L\2y(t - I) = y2(t), 

yeO) = 0, y(lO) = 10 

has a solution yet) so that 0 ::::; yet) ::::; t for 0 ::::; t ::::; 10. 

9.15 Consider the following special case of Example 9.4: 

L\2y(t - I) = -0.1 cos yet), 

yeO) = 0 = y(14). 

Show that there is a solution yet) so that 0.02t(14 - t) ::::; yet) ::::; 0.05t(14 - t) for 
0::::; t ::::; 14. 

Section 9.4 

9.16 Show that, if (9.6), (9.7) has at most one solution, then the original sequence 
{Zn} in Lemma 9.2 converges to the solution of (9.6), (9.7). 

9.17 Assume that f(x, y) is bounded and continuous on [0, p] x R. Show that (9.6), 
(9.7) has a solution y(x). 

9.18 Use Corollary 9.4 to show that this boundary value problem 

y"+y-i+1.I=O, 

yeO) = yen) = 0 

has a solution y(x) such that sinx ::::; y(x) ::::; 1.7 for 0::::; x ::::; n. 



Chapter 10 
Partial Difference Equations 

10.1 Discretization of Partial Differential Equations 
Partial difference equations are difference equations that involve functions of two 
or more independent variables. Several examples appeared earlier in the book (see 
Example 1.5, Exercises 1.10 and 1.11, and Exercise 2.37). They occur frequently in 
combinatorics and in the approximation of solutions of partial differential equations 
by finite difference methods. We will find in the examples that follow that the type 
of initial and boundary conditions needed to produce a unique solution of a partial 
difference equation depends on the form of the equation and on the domain in which 
the equation is to be solved. 

Let us begin by considering the approximation of solutions of the heat equation 

(10.1) 

With u(x, t) denoting the temperature at position x and time t, the heat equation 
models the flow of thermal energy in one space dimension. Actually, there are nu
merous problems in the physical and biological sciences that involve diffusion and 
for which the heat equation gives a useful mathematical description. 

To obtain an appropriate difference equation for Eq. (10.1), let hand k be small 
positive step sizes and define the grid points 

Xi = ih, tj = jk 

for certain integral values of i and j. By Taylor's formula, 

for some Cij between tj and tj + k, so 

aU( ) u(xi,tj+k)-u(Xi,tj) ""k) 
- X· t· = + v( at I, J k (10.2) 
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provided that ~~~ exists and is bounded. Also, 

au 
U(Xi + h, tj) = u(Xj, tj) + ax (Xj, tj)h 

a2u h2 a3u h3 

+ ax2 (Xj, tj)2: + ax 3 (Xj, tj)3T 

a4u h4 
+ ax4 (dij, tj) 4! 

for some dij between Xj and Xj + h if ~:~ exists and is bounded. 
Now add the preceding expression for u(Xj + h, tj) to the analogous expression 

for u(Xj - h, tj) and rearrange to obtain 

a2u U(Xi + h, tj) - 2u(xj, tj) + u(Xj - h, tj) p"\ 2 
ax2 (Xi, tj) = h2 + v(h ). «10.3) 

Then from Eqs. (10.2), (10.3), 

au a2u u(xj,tj+k)-u(xj,tj) 
ai(Xj, tj) - ax2 (Xj, tj) = k 

u(Xj + h, tj) - 2u(xj, tj) + u(Xj - h, tj) 

h2 

Let y(i, j) = u(Xj, tj). The approximating difference equation for Eq. (10.1) is 

( 2k) k y(i, j + 1) = 1 - h2 y(i, j) + h2 (y(i + 1, j) + y(i - 1, j)) . (lOA) 

We see that Eq. (1004) permits us to compute the value of y at (i, j + 1) if the 
values of y at (i, j), (i + 1, j), and (i - 1, j) are known. Any such group of four 
points in the grid is called a computational "molecule" (see Fig. 10.1). 

For example, suppose we wish to solve Eq. (10.1) together with an initial condi-
tion 

U(X,O) = g(x), (-00 < x < 00). 

Let f(i) = g(Xj), where i ranges over the set of all integers. Then for Eq. (lOA) 
we have the initial condition 

y(i,O) = f(i), (i = 0, ±1, ±2, ... ). 

Starting with the molecules with lower base on the i axis, we can compute from 
Eq. (lOA) and the initial values f(i) all the values y(i, O. Similarly, these values 
can be used to compute y(i, 2) for all i. Thus y(i, j) is uniquely determined for all i 
and j = 0, 1, 2, . .. in this manner. 



10.1. DISCRETIZATION OF PARTIAL DIFFERENTIAL EQUATIONS 351 

(ij+1) 

(i-1 j) (i,j) (i+1,j) 

Fig. 10.1 A molecule for the heat equation 

o 2 3 4 5 

Fig. 10.2 Grid points reached from the initial axis 

Next, consider the problem of obtaining a unique solution ofEq. (10.1) in the first 
quadrant {(x, t) : x :::: 0, t :::: OJ. If we know that u(x, 0) = g(x) for x:::: 0, then we 
have the initial values y(i, 0) = f(i) for i = 0, 1,···. Observe that the molecules 
determine y(i, j) only for i :::: j (see Fig. 10.2). To find y(i, j) for j > i we need 
additional information such as the values of y(O, j) for j :::: 1. Thus a unique solution 
ofEq. (10.4) is obtained by iteration if we have the additional condition that u(O, t) 
is prescribed for all t :::: O. In the heat flow problem, this condition corresponds to 
knowing the temperature at x = 0 for all t :::: O. 

A related problem involves a finite space domain-say, 0 :::: x :::: I. We take h = 
~ for some positive integer N and have Xi = i h, i = 0, 1, 2, ... ,N. Now the initial 
values y(i, 0) = f(i) (i = 0, ... , N) determine y(i, j) in a very limited region (see 
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o 2 3 4 5 

Fig. 10.3 Grid points reached without boundary values 

Fig. 10.3). In this case we need the values y(O, j) and y(N, j) for j = 1,2, ... in 
order to find unique values for y(i, j), i = 0, ... , N, j = 0, 1, .. '. 

Specifically, we consider the problem 

au a2u 
at = ax2 ' 

u(x,O) = g(x), 

u(O, t) = u(/, t) = 0, 

(0 < x < /, t > 0) 

(0:::: x :::: /) 

(t > 0), 

where g(O) = g(l) = O. The corresponding discrete problem is 

y(i, j + I) = (1 - 2a)y(i, j) + ex (y(i + 1, j) + y(i - I, j» , 

(i = 1, ... , N - I; j = 0,1, ... ) 

y(i,O) = f(i), (i = 0, ... , N) 

y(O, j) = y(N, j) = 0, (j = 1,2, ... ), 

(10.5) 

(10.6) 

where ex = ;2' h = it, and f(i) = g(ih). Now Eq. (10.6) can be written in matrix 
form by defining the N - 1 by N - I matrix 

1-2a ex 0 0 
ex 1-2a ex 0 

A= 0 ex 1-2a 

ex 
0 0 ex 1-2a 
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and the vectors 

[ 

y(1, j) ] 
y(2,j) 

v(j) = . , 

y(N:'- 1, j) 

Then Eq. (10.6) is equivalent to 

v(j + 1) = Av(j), 

v(O) = vo. 

° f(2) 
[ 

f(1) ] 

v = f(N:- 1) . 

(j = 0,1,···) 

353 

(10.7) 

We have a system of ordinary difference equations with constant coefficients like 
those studied in Chapter 4. Recall that the solution of the initial value problem (10.7) 
is v(j) = Ajvo. 

To analyze Eq. (10.7) further, we will compute the eigenvalues of the matrix A. 
Note that A is symmetric, so it has real eigenvalues and N - 1 independent eigen
vectors. From Section 7.2, we have that the eigenvalues of A are the same as the 
eigenvalues of the Sturm-Liouville problem 

aw(t + 1) + (1 - 2a)w(t) + aw(t - 1) = Aw(t), 

w(O) = 0, w(N) = O. 

A rearrangement of the difference equation yields 

w(t + 1) + (f.L - 2)w(t) + w(t - 1) = 0, 

where f.L = 1 ~A. The eigenvalues can be found as in Example 7.1: 

mr 
f.Ln = 2 - 2 cos Ii 

Thus 

. 2 mr 
= 4 SIll 2N' 

4a. . 2 mr 
An = 1- SIll 2N' 

(n = 1, ... ,N - 1). 

(n=1,"',N-1) 

are the eigenvalues of A. 
Moreover, the discussion in Section 7.2 allows us to compute N - 1 independent 

eigenvectors of A using the eigenfunctions sin n; t, (n = 1"" ,N"- 1), of the 
Sturm-Liouville problem. The resulting matrix of eigenvectors is 

[ 

sinw 
sin2 w 

M= 

sin(N ~ l)w 

sin2W 
sin2.2w 

sin2(N - 1)w 

sin(N - 1)w ] 
Sin2(N: -1)w . 
sin(N - 1)2w 
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Let 

[ 
~l ] = M-1vO. 

bN-I 

From Eq. (4.6), the solution of Eq. (10.7) is given by 

[ 

blA{ 1 
vU)~M : . 

bN-IA~_1 

for j = 0, 1,2, .... 
Does the computed solution v(j) serve as a good approximation to the solution 

of Eq. (10.5)? Note that IAn I < 1 for n = 1, ... , N - 1 if and only if 

k .2N-lrr 1 
h2sm ~2 <"2. (10.8) 

Thus if Eq. (10.8) holds, the solution v(j) goes to zero as j -+ 00. It is easily 
shown (by Fourier analysis, for example) that the solution U of Eq. (10.5) also has 
the property limHOO u(x, t) = 0 for each x in [0, 1]. On the other hand, ifEq. (10.8) 
is violated, in most cases v(j) will not converge to zero as j -+ 00 and thus will 
be a very poor approximation of u(x, t) as t increases. For this reason the present 
method is said to be "conditionally stable." It can be shown that if h\ ~ ! and the 

initial function g is sufficiently smooth, then the v(j) are O(k + h2) approximations 
to the solution of Eq. (10.5) (see Isaacson and Keller [142]). 

An alternate approach for discretizing the heat equation is to approximate ~~ as 
follows: 

where Cjj is between tj and tj - k, so 

au u(Xj,tj)-u(Xj,tj-k) "" -at (Xj , tj) = k + v(k), 

a "backwards difference quotient." Using this formula together with Eq. (10.3) in 
Eq. (10.1), we arrive at the difference equation 

( 2k) k y(i, j - 1) = 1 + h2 y(i, j) - h2 (y(i + 1, j) + y(i - 1, j» , (10.9) 

where y(i, j) = u(Xj, tj) (see Exercise 10.2). Equation (10.9) has molecules of the 
type shown in Fig. 10.4. Thus with this approach the solution of Eq. (10.5) cannot 
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(1-1 J) (IJ) (1+1,j) 

(i,j-1 ) 

Fig. 10.4 A molecule for the implicit method 

be approximated by explicit iteration of Eq. (10.9), and we have what is known as an 
implicit method. 

However, if we define ex, v(j) and v(O) as before and 

1 +2a -ex 0 0 
-ex 1 +2ex -ex 0 

B= 0 -ex 1 +2a 

-ex 
0 0 -ex 1 +2ex 

then Eq. (10.9) plus the auxiliary conditions can be written 

Bv(j) = v(j - 1), 

v(O) = vo. 

Now the eigenvalues of Bare 

(j = 1,2,···) 

.2 mr 
1 +4exsm 2N' (n = 1, ... , N - 1), 

so B is invertible, and we have 

v(j) = B-l v(j - 1), 

v(O) = vo. 

(j = 1,2,···) (10.10) 

The system (10.10) can be solved explicitly as in the earlier method (see Exercise 
10.3). Also, note that the eigenvalues of B- 1 are 

0< 1 ----:2::--- < 1, 
1 +4asin W 

(n = 1, ... ,N - 1). 
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jJP-________ ----. 

(iJ+1 ) 

(1-1~~O+1~ 
(iJ-1) 

I ... i 

Fig.10.5 A molecule/or Laplace's equation 

Consequently, this implicit method is unconditionally stable and can be used to ap
proximate the solution of Eq. (10.5) for all small values of h and k. 

Difference equations that approximate solutions of partial differential equations 
can be obtained in much the same way using Taylor's formula. For example, for 
Laplace's equation 

a2u a2u 
ax2 + ay2 = 0, 

we can derive the difference equation 

2[(~r +1]Z(i,j)=Z(i+1,j)+Z(i-1,j) 

+ (~r (z(i, j + 1) + z(i, j - 1», (10.11) 

where z(i, j) = U(Xi, Yi), Xi = ih and Yj = jk (see Exercise 10.4). Since 
Eq. (10.11) has diamond-shaped molecules such as the one shown in Figure 10.5, 
it turns out that the values of z(i, j) on the boundary of a closed region such as 
the rectangle in Fig. 10.5 must be known in order to compute the values of z(i, j) 
throughout the region. 

10.2 Solutions of Partial Difference Equations 
In Section 10.1, we were able to give an explicit solution for a partial difference 
equation with certain auxiliary conditions by writing it as an initial value problem for 
a system of ordinary difference equations. This approach was possible because of the 
special nature of the problem: the domain of interest was finite in one direction and 
semi-infinite in the other, and the lateral boundary conditions were homogeneous. 
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This section will summarize briefly a number of other special methods for finding 
explicit solutions of linear partial difference equations. To get a general idea of what 
the nature of solutions may be, consider first the linear equation with two terms 

y(i, j) = p(i)y(i + a, j + b). 

For simplicity, we have assumed that the coefficient function p is a function of only 
one variable and p does not vanish. The shifts a and b are arbitrary but fixed integers 
with a =1= o. Let f be an arbitrary function and try a solution of the form 

We get 

so 

y(i, j) = z(i)f(aj - bi). 

z(i)f(aj - bi) = p(i)z(i + a)f (a(j + b) - b(i + a)) 

= p(i)z(i + a)f(aj - bi), 

z(i) = p(i)z(i + a). 

(10.12) 

The last equation can be solved by iteration and has lal independent solutions 
ZI,··· ,Zlal. From Eq. (10.12) and the fact that the equation is homogeneous, we 
have that 

lal 
y(i, j) = L fn(aj - bi)zn(i) 

i=1 

is a solution of the difference equation for any arbitrary functions fl' ... , fial. 

Example 10.1. Solve the equation 

1 
y(i, j) = -:-y(i + 2, j + 1). 

z 

Letting y(i, j) = z(i)f(2j - i), we find that z satisfies 

z(i + 2) = iz(i). 

By iteration, two independent solutions are 

1 2p~(-kl)l! I if i = 2k + 1, 
ZI (i) = 0 - ). 

ifi = 2k, 

. 10 ifi=2k+l, 
Z2(Z) = (k _ 1)!2k- 1 ifi = 2k 

for i = 1, 2, .... Thus the original equation has solutions of the form 

y(i, j) = it (2j - i)Zl (i) + h(2j - i)Z2(i), 

where it and h are arbitrary functions. 
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Equations with three or more terms can be solved via the substitution (10.12) in 
special cases where the shifts satisfy a certain compatibility condition. Consider 

y(i, j) = p(i)y(i + a, j + b) + q(i)y(i + e, j + d). (10.13) 

Again we try y(i, j) = z(i)f(aj - bi): 

z(i)f(aj - bi) = p(i)z(i + a)f(aj - bi) 

+ q(i)z(i + e)f(aj - bi + ad - be). 

The f's will cancel to give an ordinary difference equation if the shifts satisfy the 
condition ad - be = 0. In this case the equation is 

z(i) = p(i)z(i + a) + q(i)z(i + c). 

Example 10.2. Two players P and Q playa game in which at each stage P wins 
a chip from Q with probability p and Q wins a chip from P with probability 
q = 1 - p. The game ends when one player is out of chips. Let y(i, j) denote 
the probability that P wins the game if P starts the game with i chips and Q starts 
with j chips. Find y(i, j) for i, j = 0, 1, .... 

Consider the first stage of the game. There are two mutually exclusive pos
sibilities: either P wins a chip (with probability p) and then has probability 
y(i + 1, j - 1) of winning the game, or P loses a chip and has probability 
y (i - 1, j + 1) of winning. Thus y satisfies 

y(i, j) = py(i + 1, j - 1) + qy(i - 1, j + 1), 

which is of the form of Eq. (10.13) with a = d = 1 and b = e = -1. Since 
ad - be = 0, we substitute y(i, j) = z(i)f(i + j) and find 

z(i) = pz(i + 1) + qz(i - 1). 

This second order equation has characteristic roots A = ~, 1, so z(i) = 1, (~y 
are linearly independent solutions. Then 

y(i, j) = It (i + j) + h(i + j) (; y 
We need two boundary conditions in order to compute It and h. Since P has 

no chance of winning if i = ° and no chance of losing if j = 0, we have 

y(O, j) = 0, y(i, 0) = 1 

for i, j = 1, 2, .... Thus 

ft(j) + h(j) = 0, 
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so 
1 

II (i + j) = - h(i + j) = .+., 
1 - (; r J 

and finally 

y(i, j) = 1.+. [1 _ ( ~ YJ . 
1 - (; r J p 

Check this answer for i = j = I!. Also compare it with Exercise 3.76. 

When the shifts in the partial difference equation (10.13) fail to satisfy the com
patibility condition, it may still be possible to find an exact solution by the operator 
method or by the use of the z-transform (or, equivalently, a generating function). 
We will use both of these methods to solve the same difference equation in the next 
example. 

Example 10.3. Solve 

y(i, j) = y(i - 1, j) + y(i - 1, j - 1). 

To formulate an equivalent operator equation, we introduce the shift operators 

ElY(i, j) = y(i + 1, j), E2y(i, j) = y(i, j + 1). 

The equation now reads 

y(i, j) = (Ell + Ell E2I) y(i, j) 

= Ell (I + E2I) y(i, j). 

If we apply E I to both sides, we get 

y(i + 1, j) = (I + E2I) y(i, j). 

We can regard this last equation as a difference equation with variable i in which 
(l + E2I) acts like a constant since it has no effect on i. By iteration, 

y(i, j) = (I + E2Iy l(j), 

where f is arbitrary. The Binomial Theorem gives 
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= t (:)f(j -n). 
n=O 

Now we will solve the equation using the z-transform. It will be easier to apply 
the results of Section 3.7 if the equation is written with positive shifts: 

y(i + 1, j + 1) = y(i, j + 1) + y(i, j). (10.14) 

Also, we can simplify the calculation by imposing initial conditions at i = 0 and 
j = k-say, 

y(O, j) = 8kj, y(i, k) = i + 1 

for j 2: k, i 2: O. 
Let Y(z, j) denote the z-transform of y(i, j) with respect to i: 

Y( .) _ L:oo y(n, j) 
Z,j - • zn 

n=O 

Applying the z-transform to Eq. (10.14), we have by Theorem 3.14 

zY(z, j + 1) - zy(O, j + 1) = Y(z, j + 1) + Y(z, j). 

The first equation in (10.15) implies that y(O, j + 1) = 0 for j 2: k, so 

1 

By iteration, 

Y(z, j + 1) = --Y(z, j). 
z -1 

1 
Y(z, j) = . k Y(z, k). 

(z - I)J-

From Eq. (10.15) and Table 3.1, 

Y(z,k)=z(i+l)= z 2+-Z-, 
(z - 1) z - 1 

so 
Y( .) _ z z 

z, j - (z _ l)j-k+2 + (z _ l)j-k+l . 

By Exercise 3.118, 

y(i, j) = C -: + 1) + C ~ k) 
( i + 1 ) 

= j-k+l 

is the unique solution ofEqs. (10.14), (10.15). 

(10.15) 
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We can obtain the same answer we got by operator techniques if we note that 
Eq. (10.14) is homogeneous, and consequently sums of solutions of Eq. (10.14) are 
also solutions. Let g be an arbitrary function. Then we have the solution 

j+1 ( i + 1 ) 
y(i, j) = ~, . _ k + 1 g(k) 

k=]-I J 

i+1 (' + 1) 
= L l m g(j - m + 1), 

m=O 

which is equivalent to the previous result. 
In Example 1.5 we showed that the number of ways W(n, k) of obtaining k red 

marbles in n draws with replacement from a sack with r red marbles and g green 
marbles satisfies the equation 

W(n, k) = rW(n - 1, k - 1) + gW(n - 1, k), 

which is more general than the equation in Example 10.3. It can also be solved by 
operator or transform methods (see Exercise 10.9). The exercises contain a number 
of nonhomogeneous equations that can also be solved by these methods. 

The solution of linear partial difference equations with variable coefficients can 
occasionally be carried out using Stirling numbers of the first or second kind. Stirling 
numbers ofthe second kind were introduced in Exercise 2.37. Here we consider only 
Stirling numbers of the first kind. 

We define the Stirling number of the first kind, written [~J, to be the solution 

y(i, j) = [~J of the equation 

y(i + 1, j + 1) = iy(i, j + 1) + y(i, j) (i, j ::: 0), (10.16) 

which satisfies the initial conditions 

y(i,O) = 8iO, y(O, j) = 80j (i, j ::: 0). (10.17) 

By sketching the computational molecules, it is easy to check that (10.16), (10.17) 
has a unique solution y(i, j) for i, j ::: O. Knuth [150] contains a number of formulas 
and tables that provide much useful information about the Stirling numbers. 

Let us compute the z-transform of [~J with respect to j by applying the z

transform to both sides ofEq. (10.16): 

zY(i + 1, z) - zy(i + 1,0) = izY(i, z) + Y(i, z). 
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From Eq. (10.17), y(i + 1,0) = 0 for i ~ 0, so 

1 

Then 

Y(i + 1, z) = (i + - )Y(i, z). 
z 

i-I 1 
Y(i, z) = IT (k + -)Y(O, z). 

k=O z 

Again by Eq. (10.17), Y(O, z) = Z(8oj) = 1, so the z-transform of eJ with respect 

to j is 

([ .J) i-I 1 
Z ~ = }](k+ ~). 

From Definition 2.3, 

so the preceding formula can be written in terms of the factorial function: 

The following example was suggested by Knuth [150]. 

Example 10.4. Suppose i distinct numbers are placed in a hat and drawn out one 
by one at random to find the largest. At each stage the number drawn is compared 
to the largest number found so far. If the number drawn is smaller, we discard 
it; if it is larger we replace the previous largest number by it. Let p(i, j) be the 
probability that exactly j replacements are needed. 

To find an equation for p(i, j) consider the case that the last number drawn is the 
largest. This event occurs with probability t, and the number of replacements in 
this case is one more than the number needed for the remaining i-I numbers. If 
the last number is not the largest (probability = iiI), the number of replacements 
is the same. Thus 

1 i-I 
p(i, j) = -:-p(i - 1, j -1) + -. -p(i - 1, j). 

1 1 
(10.18) 

The initial conditions are chosen to be 

p(l, j) = 8jo, p(i, -1) = 0 (10.19) 
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for i 2: 1, j 2: O. The reader should check that the second equation in (10.19) is 
consistent with Eq. (10.18) and the known values p(i, 0). 

Since we are planning to take the z-transforrn with respect to the second vari
able, we would like the second condition in Eq. (10.19) to be given at zero. Thus 
we make the change of variables 

k = j + 1, y(i, k) = p(i, k - 1). 

Now y satisfies 

y(i + 1, k + 1) = _I_y(i, k) + _i_y(i, k + 1), 
i+l i+l 

y(i,O) = 0, y(l, k) = OO,k-1 

(10.20) 

(10.21) 

for i 2: 1, k 2: O. Now apply the z-transform (with respect to k) to Eq. (10.20): 

i 1 
zY(i + 1, z) = -. -zY(i, z) + -. -1 Y(i, z), 

1+1 1+ 

where we have used Eq. (10.21). Then 

( . + 1) 
Y(i+I,z)= :+~ Y(i,z). 

Iterating, we have 
1 i-I I 

Y(i, z) = :- D(n + - )Y(I, z). 
d z 

n=1 

From Eq. (10.21), Y(I, z) = Z(OO,k-l) = ~, so 

. 1 i-I 1 
Y(l, z) = :- D(n + -). 

d z 
n=O 

It follows that 

y(i,k) = A [~], 
and finally 
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Exercises 

Section 10.1 

10.1 Solve the problem: 

y(i, j + 1) = 1/2y(i, j) + 1/4 (y(i + 1, j) + y(i - 1, j)), 

yeO, j) = y(4, j) = 0, (j ~ 0) 

y(i,O) = siniJr/4, 

for all j ~ 1. 

(i=1,2,3), 

10.2 Derive the difference equation (10.9) for the heat equation. 

10.3 Show how to obtain an explicit solution for the system (10.10). 

10.4 Derive the partial difference equation (10.11) for LaPlace's equation. 

F h . a2u a2u 0 10.5 or t e wave equatIOn [ji2 - ax2 = , 
(a) Derive a difference equation of the form 

y(i, j + 1) = 2(1 - ( 2 )y(i, j) + a 2 (y(i + 1, j) + y(i - 1, j)) - y(i, j - 1). 

(b) Sketch a typical computational molecule for the difference equation in (a). 

Section 10.2 

10.6 Solve the equation y(i, j) = 4y(i + 2, j + 1). 

10.7 Solve the nonhomogeneous equation y(i, j) = 2y(i - 1, j - 1) + 3i . 

10.8 Use the substitution (10.12) to find solutions of 

(a) y(i, j) = 2y(i - 1, j + 3) - y(i - 2, j + 6). 
(b) y(i, j) - 5y(i - 1, j + 1) + 6y(i - 2, j + 2) = 3i. 

10.9 Use the operator method to solve the problem in Example 1.5: 

Wen, k) = rW(n - 1, k - 1) + gWen - 1, k), 

W(n,O) = gn. 

10.10 Using the operator method, show that 

y(i + 1, j) = ay(i, j + 1) + by(k, j) 

(a,b constants) has solution 

y(i, j) = bi t G) (~r f(j + n). 
n=O 

10.11 Suppose that in a certain game P needs i points to win while Q needs j 
points to win. At each stage P wins a point with probability p and Q wins a point 
with probability q = 1 - p. Let y(i, j) be the probability that P wins the game. 
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(a) Show that y(i, j) satisfies 

y(i, j) = py(i - 1, j) + qy(i, j - 1) 

y(O, j) = 1 (j 2: 1), y(i,O) = 0 (i 2: 1). 

(b) Find y(i, j). 

10.12 Solve the equation 

y(i + 1, j + 1) + y(i, j) = 2ij 

by substituting a trial solution y(i, j) = aij + bi + cj + d into the equation, solving 
for a, b, c, and d, and adding this particular solution to the general solution of the 
associated homogeneous equation. 

10.13 Compute the Stirling numbers eJ for 0 ::::; i, j ::::; 5. 

10.14 
(a) Show that 

(b) For i 2: 1, j 2: 0, use the z-transform to solve 

y(i + 1, j + 1) = (i - l)y(i, j + 1) + 2y(i, j), 

y(i,O) = 8i1, y(1, j) = 8)0. 



Appendix 

Many of the calculations in this book can be done with a computer algebra system 
such as Mathematica. We will illustrate below the use of Mathematica, version 3, in 
working examples and exercises that appeared in Chapters 2 and 3, involving sums, 
generating functions, z-transforms, difference equations, and related topics. 

First let's calculate some sums. In order to check the formula in Exercise 2.28, 
we type in the command 

Sum[Cos[a k],{k,l,n-l}] 

Note that the space between the a and the k denotes mUltiplication. Mathematica 
responds with 

-1 + Cos [i - a;] Csc [i] Sin [a;]" 
We may not recognize this answer as the one we are looking for, so we can ask 
Mathematica for a simplified form: 

Simplify [%] 

Now we receive a response that is clearly equivalent to the equation in Exer
cise 2.28: 

~ (-1 - Csc [i] Sin [~(a - 2an) J) " 
As a second example, we ask Mathematica to compute the sum in Exercise 2.36: 

Sum[(-l)-i Binomial[n,i] (l+i)-(-l),{i,O,n}] 

and we receive the correct answer: 

1 
1+n" 

There are times when the response is something completely unexpected, however. 
For example, we try the sum in Example 2.10. To save typing, we first define the 
summand: 



368 

Then we ask for the sum: 

Sum[f[i,n,m,a] ,{i,O,n}] 

We obtain 

Gamma[1 + a] Gamma[-m + n] Sin[m Pi] 

Pi Gamma[1 +a - m +n] 

ApPENDIX 

This is not a very useful form of the answer since it is indeterminant if m is an integer. 
However, Mathematica can give us precise answers if m and n are specified: 

Sum[f[i,3,4,a] ,{i,O,3}] 

This yields 

1 1 
24 (-3 + a)(-2 + a)(-1 + a) - 8(-2 + a)(-1 + a)a(1 + a) 

1 1 
+8( -1 + a)a(1 + a)(2 + a) - 24 a(1 + a)(2 + a)(3 + a). 

Now 

Simplify [%] 

gives us the simple answer 

-a; 

in agreement with Example 2.10. 
Mathematica contains a standard package that uses generating functions to solve 

linear difference equations. We can load it by entering 

< < DiscreteMath'RSolve, 

We can then seek the solution of the difference equation in Example 3.1: 

RSolve[z[t+l]-t z[t]==(t+l)! ,z[t],t] 

The response is 

1 
({z[t] -+ 2t(t + l)(t - I)!)}. 

Note that we did not get the general solution in this case. Nevertheless, we can 
obtain the solution of the initial value problem in Example 3.1 by adding the initial 
condition as a second equation: 
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RSolve[{y[t+l]-t y[t]==(t+l)! ,y[1]==5},y[t] ,t] 

Mathematica answers 

1 
((y[/] ... (-1 + I)! If[1 ~ 1, 2(8 + 1+ 12), Om. 

This formula means that we are to multiply (-1 + t)! by (1/2)(8 + t + t2 ) for t ~ 1, 
which checks with the result of Exercise 3.1. 

Mathematica can also solve systems of linear equations with constant coefficients. 
To solve the system in Exercise 3.41, enter 

RSolve[{u[t+l]-3 u[t]+v[t]==O,-u[t]+v[t+l]-v[t]==O}, 
{u[t] ,v[t]},t] 

Mathematica responds with a form of the correct answer: 

((u[/] ... 2(-1+1) «2 + I) C[1] - I C[2]), 

v[/] ... 2(-1+1) (I (C[1] - C[2]) + 2 C[2]))}. 

Here C[1] and C[2] are arbitrary constants. In some cases, we can find solutions of 
second order equations with variable coefficients. Consider the equation in Exam
ple 3.26: 

RSolve[{(t+2) y[t+2]-(t+3) y[t+l]+2 y[t]==O,y[1]==2 y[O]}, 
y [t] , t] 

The response agrees with the answer we found using generating functions: 

((y[/] ... (21 C[1])/I!)}. 

The same package can be used to compute generating functions. To obtain the 
generating function requested in Exercise 2.39(d), enter 

PowerSum[k 2-k,{x,k}] 

The response is 

2x 
(-1 +2x)2· 

To recover the sequence from the generating function, type 

SeriesTerm[%,{x,O,k}] 

This obtains 

2 If[k ~ 1, r1+kk, 0] 

Mathematica does not seem to know that exp(2tx _x2 ) is the generating function for 
the Hermite polynomials (see Exercise 2.42), but we can compute a specific polyno
mial from the generating function: 
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SeriesTerm[Exp[2 t x-x-2],{x,O,3}] 

This elicits the Hermite polynomial H3(t): 

1 
3(-41 + 1(-2 + 4/2». 

ApPENDIX 

In addition, we can compute a generating function directly from a difference equa
tion: 

GeneratingFunction[{f[n]==f[n-l]+f[n-2], 
f[O]==f[l]==l},f[n],n,x] 

which gives us 

1 
({- -1 +x +x2 )}' 

the generating function for the Fibonacci numbers (Exercise 3.52). 
Mathematica also has a package that enables us to work with z-transforms. The 

following command loads the package: 

«DiscreteMath'ZTransform' 

Now if we want to compute the z-transform in Example 3.35, the dialogue goes 
like this: 

ZTransform[Sin[a k] ,k,z] 

Sin[a] 
z(l + ! _ 2Cos[a) 

z z 

Simplify [%] 

z Sin[a] 
1 + Z2 - 2 z Cos[a] 

We can check the answer by taking the inverse transform: 

InverseZTransform[%,z,k] 

Sin[a k]. 

As a final illustration of the use of Mathematica, we solve the initial value problem 
in Example 3.48. First, apply the z-transform to the difference equation: 
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ZTransform[y[k+l]-2 y[k],k,z] 
==3 ZTransform[KroneckerDelta[k-4],k,z] 

-z y[0]-2 ZTransform[y[k],k,z]+z ZTransform[y[k],k,z] 
==3/z-4 

Now we ask Mathematica to solve for the z-transform of y: 

Solve [%,ZTransform[y[k] ,k,z]] 

-3 - zSy[O] 
{{ZTransform[y[k], k, z] -+ - 4 }} 

(-2+ z)z 

The last step is to replace y[O] by 1 and compute the inverse transform: 

InverseZTransform[(3+z-5)/«z-2) z-4),z,k] 

2k + 3 r5+k DiscreteStep [-5 + k], 
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which we recognize as the correct answer since DiscreteStep is Mathematica's 
name for the unit step function. 



Answers to Selected Problems 

Chapter 1 

[1.1] $909.70, 11.6 years. 

[1.2] 168, 750. 
t 

[1.3] (10,000) 102:. 

[1.4] 1.1 hours. 

[1.8] R(t) = 1t2 + 1t + 1. 

[1.9] ak+2 = (k+lf(k+2)ak, k 2: 1 and odd, ao arbitrary, a2k = 0, k 2: 1. 

[1.13] r(5/2) = 3/4.jir, r(-3/2) = 4/3.jir. 

Chapter 2 

[2.10] No. For example, t1t1 = t2 =f=. t'J.. 

[2.13] (a) y(t) = ~t1 + 13t + C(t). 

(b) y(t) = m + tC(t) + D(t), where C(t + 1) = C(t), D(t + 1) = D(t). 

[2.19] y(t + 1) = y(t) + t, y(t) = 1t'J.. 

[2.21] 

[2.22] 

[2.23] 

[2.36] 

[2.39] 

_ tcos~t-i) + s~nt + C(t). 
2sm i 4sm2 i 

-1t. t-2 -1(t + 1)-1 + C(t). 

(a) 13t (t2 - 3t + 3) + C(t). 

(b) (~)(~) - tetl) + etc}) + C(t). 

(c) mm - te!l) + e!2) + C(t). 

I 
n+I' 

(a) eX. 

(b) cosx. 

(c) -In(1 - 2x), Ixl < 1/2. 
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(d) (l!;x)2' Ixl < 1/2. 

[2.40] Lo(t) = 1, LI(t) = 1 - t, L2(t) = 1 - 2t + !t2, L3(t) = i(6 - I4t + 

3t2 - t 3). 

[2.41] Po(t) = 1, PI (t) = t, P2(t) = ~t2 - !, P3(t) = ~t3 - ~t. 

[2.42] Ho(t) = 1, HI(t) = 2t, H2(t) = -1 +2t2, H3(t) = -2t + 1t3. 

[2.51] i(n - I)n(2n - 1). 

Chapter 3 

[3.2] (a) u(t) = 4. 
(b) u(t) = (3t+4~3t+I)' 

[3.3] (a) u(t) = Ce~t(t-1). 

[3.4] 

[3.5] 

[3.6] 

[3.7] 

[3.12] 

[3.14] 

[3.21] 

[3.23] 

[3.26] 

[3.31] 

Sin:(t-jt) 
(b) u(t) = Ce SID • 

(a) y(t) = A2t - 5. 

(c) y(t) = 5t [!t + C]. 

(b) y(t) = it(t + I)(2t + 1). 

y(t) = e-63t - 1 + L. 
e-3 e-3 

y(t) = (3t+1)\3t+4) (!t2 - !t + C). 

t ~ 9 years, t ~ 14.27 years. 

$81,211.76. 

Yn = 2n - 1. 

First order. 

u(t) = _~2t + ~3t. 
(a) u(t) = Cl6t + C2t6t + C3t26t + C4t36t + Cst46t . 

(b) u(t) = A(-3 + ,J6)t + B(-3 - ,J6l. 

(d) u(t) = A2t + Bt2t + C( -2)t + Dt( -2)t. 

[3.32] (a) u(t) = A sin 1ft + B cos 1ft. 

(b) u(t) = (4.J2)t (A cos ~t + B sin ~t). 

(c) u(t) = A cos !ft + B sin !ft + Ct cos !ft + Dt sin !ft. 
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[3.33] an = 2n + 1, R = 1/2. 

[3.36] (a) y(t) = A(i)t + B(~)t + i12t. 

(b) y(t) = A + Bt + t 2 + ~t3. 
[3.45] y(t) = A2t + H~)2t. 

[3.46] y(t) = A + B6t - !t2 + !st. 

[3.50] y(t) = i3t - ~2t - ~t . 2t. 

[3.58] x(t) = -~(0.7)t + l!(0.2)t. 

y(t) = ~(0.7)t + l§ (0.2)t. 

[3.74] (b) x(lO) = 18,061. 

[3.78] u(t) = A(-I)t + B(-1)l+l L(-I)tf(t + 1). 

[3.79] (a) Un = A(n - I)! + B(n - I)! L ~. 

(b) Un = A + B L e!n(n-l). 

[3.81] 

[3.84] 

[3.88] 

[3.89] 

[3.90] 

[3.91] 

[3.94] 

[3.96] 

[3.98] 

Un = An + B2n - i.n2n + in22n. 

(a) u(t) = (t-l~t-2) + t~l . 
(b) u(t) = A(t + 1)(2) + B(t + 1)(2) L tl2. 

_ A + B "( 13n+1) Un - n!3n n!3n L... n. . 

~n-l (_3)k 
Un = A + B L...k=l -k-· 

2n-1 "n-l 1 
Un = L...k=l (k-l)!2k· 

Un = ~[A2n + B). 

U(t) =aoL~o(-l)kbt(-k). 

(b) () - (l+C) cos tt-(l-C) sin tt d () _ (!I.) + 1 
y t - It t+C . It t ' an y t - cot 4 t . cos 4" sm4" 

y(t) = t(t i)+D· 
[3.99] (b) Yn = A (-l)n B2n. 

I 
[3.100] y(t) = ± etcp. 
[3.101] Yn = sin(A2n). 

[3.110] (b) U(z) = z2-3zcos2 . 
z2-6z cos 2+9 

375 
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(d) Y(z) = Z3+4Z2+Z. 
(z-I)4 

(t) V (z) = - (Zl~~)2 . 

(h) U(z) = zsin(~). 

[3.113] (a) Yk = (_I)k +4k. 

(c) Vk = 2 + 3k. 

(e) Yk = cos(j-k). 

(g) Wk = 38k(2) + 58k(4). 

[3.115] Z(k2) = z2+z Z(k3) _ z3+4z2+z 
(Z-I)3' - (Z-l)4 . 

[3.117] (b) Y(z) = z2z~l. 
[3.119] (a) Yk = 4k - 3k. 

(c) Yk = k5k . 

(e) Yk = 2( -3)k + 4( -3)k-3uk (3). 

[3.120] (a) Yk = 3· 2k - 2· 3k. 

(c) Yk = k . 4k. 

[3.121] (b) Uk = sin fk, Vk = cos fk. 

(d) Uk = k, Vk = k + 2. 

[3.124] (b) !k2 + !k. 
[3.125] (a) Yk = 3. 

(c) Yk = ~5k + Il(-2l. 

[3.126] (b) Yk = ~4k + ~(_2)k. 
[3.128] (a) Yk = lO - ~~~gk. 

(c) Yk = -1~9k. 

Chapter 4 

[4.1] 

u(t + 1) ~ [~ i ~1 ~4] u(t) + [ ~ ] . 
-3 2 -1 t3t 



ANSWERS TO SELECTED PROBLEMS 377 

[4.4] (a) a(A) = {-2, 3}, r(A) = 3. 

(b) a(A) = {-1,8}, r(A) = 8, (-1, [1, -2, O]T), (-1, [0, -2, l]T), 
(8, [2, 1, 2]T) are eigenpairs. 

(c) a(A) = {2 + 3i, 2 - 3i}, r(A) = .JI3. 
(d) a(A) = {-I, -2}, r(A) = 2. 

[4.7] y(t) = 5(-1)t - 6(-2)t. 

[ 
1(_2)t + ~3t _~(_2)t + ~3tJ 

[4.8] (a) ~~(_2)t /~3t ~5(_2)t + !~t . 

(b) [! ~~]. 
!t(t - 1) t 1 

[4.14] (a) Asymptotically stable. 

(b) Not asymptotically stable. 

(c) Asymptotically stable. 

[4.20] (b) The plane U3 = O. 

[4.22] The dimension of the stable subspace is two. 

[4.26] (a) The origin is a center (case 5). 

(b) The origin is a stable spiral (case 7). 

(c) The origin is an unstable spiral (case 6). 

[4.27] (a) A saddle with a single reflection (case 9). 

(b) A saddle with no reflection (case 8). 

[4.28] 

[4.32] 

[4.33] 

[4.35] 

(c) A saddle with double reflection (not considered in the text). 

(a) J = [-~ .~l 

[ -.5 0 J 
(b) J = 0 1.5' 

1 [1 + v'3 v'3 - 1J 
2 v'3-1 1+v'3' 

The Floquet multipliers are .25i, - .25i. All solutions go to zero as t ~ 00. 

(a) u = 0, 3/4. 

(b) u = n: ' n an integer. 
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[4.36] (c) all u =f. 0 are periodic with period 8. 

[4.38] (a) u = 0, 1 are fixed points. If lu(O)1 < 1, then limHoo u(t) = O. If 
lu(O)1 > 1, then limHOO u(t) = 00. 

(b) u = 0,1, -1 are fixed points. If lu(O)1 < 1, then limHoo u(t) = O. If 
u(O) > 1, limHOO u(t) = 00. If u(O) < -1, limHoo u(t) = -00. 

(c) u = -1 is a fixed point. If u(O) > -1, then limHOO u(t) = 00. If 
u(O) < -1, then limHoo u(t) = -00. 

(d) u = ! is a fixed point. Every point is periodic with period 2. 

[4.39] (a) u = 0 is asymptotically stable; u = 1 is unstable. 

(b) u = 0 is asymptotically stable; u = ± I are unstable. 

(c) u = -1 is unstable. 

(d) Theorem 4.17 doesn't apply. u = ! is stable but not asymptotically 
stable. 

[4.40] u = 0 is asymptotically stable. 

u = ± 1 are unstable. 

[4.44] No. 

[4.45] If lUll < _11- and IU21 < _11- and u(O) = [u 1J, then limt~oo u(t) = 
lal n-l 1,81 n-l. U2 

o. 
[4.53] sin2 fs (and many others). 

ChapterS 

[5.6] (b) 10.05, 100.005. 

[5.8] (a) 0.001016. 

[5.9] (a) 0.000064. 

[5.13] 

[5.21] 

[5.22] 

139 

n-1 1 ( I ) L (2k)! = cosh(l) - I + () (2n)! (n -+ 00). 

k=l 

- 51840n 3 • 

u(t) ~ C(~)ttt-~ (t -+ 00). 
e 
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[5.28] (a) If Ixl > 1, then the equation has independent solutions UI, U2 so that 

UI (t + 1) ~ U2(t + 1) ~ 
lim = x + V x 2 - I, lim = x - V x 2 - 1. 

t-*oo U I (t) t-*oo U2 (t) 

[5.40] u(t) - 1 ~ C2-t (u(O) - 1) (t -+ 00). 

[5.44] Iu(t) - II ~ 2-J2(Clu(0) - 11)3' (t -+ 00). 

[5.49] u(t) = .J2t[l + O(lot)] (t -+ 00). 

[5.51] u(t) = /f[l + O(iot)] (t -+ 00). 

Chapter 6 

[6.1] (a) ~(3t-1 ~y(t - 1» + et y(t) = o. 
(b) ~(cos tio~ ~y(t - I» + (2t + cos Ibo + cos tio~ )y(t) = o. 
(c) ~2y(t - 1) + 4y(t) = O. 

[6.2] (a) ~«t - 2)!~y(t - 1» = 0, y(t) = A L~=I (S~I)! + B. 

(b) M(t - 2)!~y(t - 1)] + (t - 2)!y(t) = O. 

(c) M(~)t-I ~y(t - 1)] + 2(~)t y(t) = O. 

(d) ~2y(t - I) = 0, y(t) = A + Bt. 

[6.3] ~2Z(A. - 1) + (2 - 2/,)Z(A.) = O. 

[6.4] (a) w[2t, 3t ] = 6t . 

(b) w[I, t] = 1. 

(c) w[cos }-t, sin }-t] = 1. 

[6.6] (a) ~2y(t - I) = O. 

(c) ~2eg,~:}) = O. 

[6.7] (a)y(t,s)=2s 3t -3s 2t . 

[6.8] (a) y(t) = ~t3 - Il t + 5. 

(c) y(t) = ~6t - 2· 3t + ~ ·2t. 

[6.10] (a) Disconjugate on (-00,00). 

[6.19] 

H(t,s) = ' {
a - t 

a -s, 
t ~ s 

s ~ t. 
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[6.22] y(t) = !t3 - 3ft. 

[6.24] y(t) = 5t2 - 44t + 10. 

[6.30] (a) Yl(t) = 5t , Y2(t) = t5t . 

[6.31] (b) z(t) = 1-i~Dt' z(t) = t· 
[6.36] u(t) = (_3)t is oscillatory. 

v(t) = 2t is nonoscillatory. 

Chapter 7 

[7.1] (2 - .../3, sin zgt), (1, sin ft), (2, sin 2ft) 

(3, sin 2f t), (2 + .../3, sin 5; t). 
[7.6] (a) (1, sin ft), (3, sin 2f t). 

[7.8] (1, [1, 1]T), (3, [1, -4f). 
[7.10] N = b - a + 1 = 68. 

[7.11] w(t) = -i(4 + 3.J2) sin ~t + i(4 - 3.J2) sin 3: t. 
[7.12] w(t) = 1(4 +...(3) sin zgt + J sin 2ft + 1(4 -...(3) sin 5; t. 
[7.15] 1(1) = -/(2). 

[7.16] A Storm-Louisville problem. 

[7.19] .296. 

[7.20] 1, u(t) is an eigenfunction. 

[7.21] .222. 

Chapter 8 

[8.2] (a) t::.2y(t - 1) -1y(t) = O. 

[8.3] (a) y(t) = 2 + 1.98t. 

(c) y(t) = 200. 

[8.5] yo(t) = 2H2 - 4t+1. 

[8.6] (b) yo(t) = 1+~2OI (2201 (i)t + 2t). 

10-5.3500 2t t t [8.9] yo(t) = 2500_3500 ( - 3 ) + 5 . 3 . 
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Chapter 9 

[9.3] Let S be the real numbers and define T on S by T x = x + 1; then IT x -
Tyl ::: alx - yl for all x, y in S with a = 1, but T has no fixed points. 

[9.8] 1 ::: b ::: 6. 

Chapter 10 

[10.1] 

[Y(1,!)] (2+J2)j [.5~ y(2, j) = 1 . 
y(3, j) 4 .5J2 

[10.7] y(i, j) = 2-i f(i - j) + 3i+l, f arbitrary. 

[10.8a] y(i, j) = f(j + 3i) + g(j + 3i)i, f, g arbitrary. 

[10.11b] 

(i ')= i[l+i +i(i+l) 2+ ... + i(i+l) ... (i+ j -2) j-l]. 
y ,j p q 2! q (j - I)! q 

[10.14b] 

( .. ) 2j[i-l] y l,j = j' 
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