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ABSTRACT

In this paper we propose a novel color demosaicing algorithm for noisy data. It is assumed that the data is given
according to the Bayer pattern and corrupted by signal-dependant noise which is common for CCD and CMOS
digital image sensors. Demosaicing algorithms are used to reconstruct missed red, green, and blue values to
produce an RGB image. This is an interpolation problem usually called color filter array interpolation (CFAI).
The conventional approach used in image restoration chains for the noisy raw sensor data exploits denoising and
CFAI as two independent steps. The denoising step comes first and the CFAI is usually designed to perform
on noiseless data. In this paper we propose to integrate the denoising and CFAI into one procedure. Firstly,
we compute initial directional interpolated estimates of noisy color intensities. Afterward, these estimates are
decorrelated and denoised by the special directional anisotropic adaptive filters. This approach is found to be
efficient in order to attenuate both noise and interpolation errors. The exploited denoising technique is based
on the local polynomial approximation (LPA). The adaptivity to data is provided by the multiple hypothesis
testing called the intersection of confidence intervals (ICI) rule which is applied for adaptive selection of varying
scales (window sizes) of LPA. We show the efficiency of the proposed approach in terms of both numerical and
visual evaluation.
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1. INTRODUCTION

In digital imaging systems, the image formation is a complex process. The light passes through the optical
system of the camera and is focused a digital sensor. The sensor is composed of photon-collection sites covered
with a color filter array (CFA). Each site works as a photon-counter to measure the amount of light coming
to it. Color filter arrays are used to sample different spectral components, thus each site registers the amount
of light at a particular spectral range. The sensor produces a digital value for each site which corresponds to
the intensity of the light at that position. This digital output of the sensor is called “raw data”. The Bayer
CFA samples the coming light into Red (R), Green (G), and Blue (B) components! according to a checkerboard
rectangular sampling grid (Fig. 1). It is the most widespread CFA nowadays and, therefore, we focus mainly on
it.

It is known that the raw data from the sensor is corrupted by signal-dependant noise?. Such modeling is
common for charge-coupled device (CCD) and complementary-symmetry/metal-oxide semiconductor (CMOS)
digital image sensors. The most widely encountered models are Poisson, film-grain, multiplicative and speckle
noise. Their common property is the dependence of the variance of noise from the signal?.

The problem is to restore the true observation scene from the noisy sampled data. The conventional approach
used in image restoration chains for raw sensor data exploits successive independent denoising and demosaicing
steps. Denoising aims to remove the noise, and demosaicing performs interpolation of missing colors assuming
that the processed data is noise free.

In general, the approaches used for Bayer pattern! CFAI can be divided in two classes of signal domain
methods: the gradient-based methods*®®7 and the methods based on filtering of difference between luminance
and chrominance channels? 10,1112,



The algorithms of the first group rely on the idea of edge-directed interpolation. The intraplane correlation is
taken into consideration by estimating local gradients. The main assumption is that locally differences between
colors (R—G@) and (B—G@) are nearly constant. At each pixel the gradient is estimated, and the color interpolation
is carried out directionally, based on the estimated gradient.

The directional filtering is the very popular approach for color demosaicing. The directional interpolation
scheme by Hamilton and Adams® is perhaps the one of the most popular. The gradients of blue and red channels
are used as the correction terms in order to interpolate the green channel. The horizontal and vertical derivatives
are calculated and the direction with the smallest derivative is used for interpolation. For interpolation of green
channel the mean of the green samples along the selected interpolation direction is used. Once missing green
pixels are filled, the red and blue samples are interpolated similarly. Similar idea is exploited in works® ”>® which
are different by fusing of vertical and horizontal estimates.

The second group of methods exploits another idea. At the beginning the initial estimates of color channels
are obtained. After that the differences between luminance and chrominance channels are exploited in order to
remove interpolation errors. Let us give a short overview of some of the most well-known methods in this field.

Gunturk et al.? have proposed thresholding in the wavelet domain of directional high frequency components
obtained by the wavelet filter bank decomposition. Hirakawa and Parks in adaptive homogeneity-directed de-
mosaicing algorithm'® proposed processing in the CIELAB color space by evaluation of so-called homogeneity
map. This is done aiming efficient color channel decorrelation. Zhang and Wu'! proposed to find estimates of
difference between luminance and chrominance channels as the result of denoising procedure. In this approach
they introduce the concept of directional ”demosaicing noise” for the interpolation errors and filter it.

In case of treating the original noisy observed data the denoising done first was proven to be more efficient.
Some post-CFAI noise reduction (NR) and pre-CFAI NR techniques are compared in'3. The authors show the
possibility to reduce more noise with the pre-CFAI NR methods than with the post-CFAI NR methods and
propose a new solution for improving the detail preserving properties of the pre-CFAI NR filters like a simple
detail detector. The computational costs can be lower with the pre-CFAI NR methods than with the post-CFAI
NR methods. For instance, a single-channel image is processed before interpolation, while three color channels
should be denoised on a post-CFAI stage. The model of noise plays an important role in image denoising, which
is known before CFAI but not after CFAI. Authors say that also the level of sharpness provided by the post-CFAI
NR methods could be maintained or even improved with the pre-CFAI NR methods!?: 4.

Noting that image interpolation and image denoising are both estimation problems, the paper? proposes a
unified approach to performing demosaicing and image denoising jointly, where the noise is modeled as multi-
plicative Gaussian. The multi-colored demosaicing/denoising problem was simplified to a single-color denoising
problem. A Total Least Squares algorithm was designed to solve this problem. The authors verified that per-
forming demosaicing and denoising jointly is more effective then treating them independently?. Ramanath and
Snyder'® proposed a bilateral filtering based scheme to denoise, sharpen and demosaic the image simultaneously.
We follow this principle and target to design a novel joint demosaicing and denoising approach.

This paper is inspired by the work of Zhang and Wu!! on directional linear minimum mean square-error
estimation (DLMMSE) based CFAI targeted noiseless Bayer-patterned data. The authors proposed to find
estimates of difference between luminance and chrominance channels as the result of directional filtering of
interpolation errors.

Most of denoising techniques are designed for stationary Gaussian distributed noise. However, often this
model does not correspond to reality and the quality of restoration is negatively affected by such mismatch.
More realistic models describe the noise in CCD and CMOS sensors as signal-dependant? 161718 We propose
a denoising technique specially designed for filtering not only Gaussian but also signal-dependant noise. The
approach is based on the adaptive LPA-ICI technique!®. Instead of denoising the R, G, and B, channels inde-
pendently, our technique effectively exploits the high correlation between the three color channels.

Firstly, we compute initial directional interpolated estimates of noisy color intensities. Afterward, these
estimates are decorrelated and denoised by the special directional anisotropic filters. This approach is found to
be efficient in order to attenuate both noise and interpolation errors. The exploited denoising technique is based



Figure 1. Bayer color filter array.

on the LPA. The adaptivity to data is provided by the multiple hypothesis testing called the ICI rule which is
applied for adaptive selection of varying scales (window sizes) of LPA9:20:21,

The proposed technique results in better utilization of data, in better performance and quality of image
restoration, and lower complexity of implementation. These issues are of crucial importance especially for small
mobile devices, where the impact of noise is particularly severe because of the constrained power and hardware.

In this work, noise is treated as an important intrinsic degradation of the data. Nevertheless, a similar
approach can be successfully exploited also for CFAI of noise free data. We refer the reader to our work??, where
we present an adaptation of our method which takes significant advantage from assuming that the data is noise
free.

2. IMAGE FORMATION MODEL

We follow the general Bayer mask image formation model:

Zbayer(ivj) = \Ij{yRGB(iyj)} =+ Ubaye?“(iaj)”(iaj)- (1)
where W{-} is a Bayer sampling operator!:
G(Z’J)» at (Zaj) € XG17
) G(,5), at (4,)) € Xa,,
Pmen®IF =4 R 5), at (9) € X, @
B(%J)? at (Zvj) € XB7

and Zzpayer is the output signal of the sensor, yrer(i,7) = (R(4,5),G(4,5), B(3,5)) is a true color RGB ob-
servation scene, X = {(¢,j): i=1,...,2N, j=1,...,2M} are the spatial coordinates and R, G, and B cor-
respond to the color channels. Further, for the two green channels we will use notations G1(%,J), such that
(i,j) € Xg, = {(i,5): i=1,3,.,2N —1, j = 1,3,..,2M — 1}, and Ga(4,5), such that (i,5) € Xq, =
{(i,7): i=2,4,...,2N, j = 2,4,...,2M}. Spatial coordinates for the red R(%,j) and blue B(i,j) color chan-
nels are denoted X = {(i,5): ¢ =1,3,..,2N -1, j = 2,4,....2M} and Xp = {(i,j): i =2,4,...,2N,
Jj = 1,3,..,2M — 1}, respectively. The term n(i,j) is an independent zero-mean noise with variance equal
to one at every point (4,7). Thus, opeyer(4,j) is the standard deviation of zpgyer(?,7). It is not necessarily
constant with respect to the spatial variable (i, 7).

In this paper, we consider the problem of reconstruction of the true color image yrgp from the noisy sampled
data zpeyer-

3. INITTALIZATION

Firstly we calculate the directional (horizontal and vertical) estimates of green channel at every point (4,7) € X
following the rules of Hamilton-Adams algorithm®. Interpolation of G at R positions is done as follows:

Clinf) = 5(Gl+1,3)+Gli—1,)) + 7 (~Rl —2,9) +2R(.5) ~ RGi+2,7)). 3)
év(iaj) = % (G(laj + 1) + G(’L)J - 1)) + i (_R(Z’] - 2) + QR(’L’]) - R(Z’] + 2)) : (4)



Here h and v stay for horizontal and vertical estimates. Similarly, the initial directional estimates for the red
channel R at green positions G ((4, ) € Xg, or (i,7) € X¢,) are interpolated as:

Balid) = 5 (RG+ 1)+ R~ 1,9) + 1 (~Gli = 2,) +2G(i,) - Gl +2,7)), )
Ruid) = 5(RGj+1)+Rj — 1) + 1 (~Glirj —2) +2G(0.5) - Gli.j +2)). ()

Using the obtained estimates (3),(5) we have at the every horizontal line of R values two sets of values of
green and red: } R R
Gn G G, G Gy
R R, R R, R
Similar calculations are produced for the vertical lines.

Assuming that the color channels are correlated, we decorrelate them using the following standard summation
and differentiation linear operators working in the horizontal direction:

(60) =00 2) (R ) 6 "

and in the vertical direction

( i’i?) ) - ( D4 ) ( g&f : ) . (i) € Xn. (s)

v
g

(309)-(0 2)(RE)) woe g

(3)=(0 W) (RE)) eoex w

We assume for further filtering that the directional differences between the green and red signals AZ)T(i, 7),

For the vertical directions, the corresponding »(i,7) and Ag’r(i, j) are calculated as follows:

and

Agm(i, j) can be presented as the sums of the true values of these differences and the errors including the random
observation noise in (1) and what is called the ”directional demosaicing noise”!!:

Agr(id) = Ag.(6,5) +255"(5,9), (i,5) € Xp U Xa, (11)

AGGd) = Ag(65) +egi (i), (i) € XnU Xa,, (12)
where e2(i, j) and €5, (i, j) are the errors and Al (i, ) and A? (i, j) are the true values of the corresponding
differences.

The same modeling with the additive errors is assumed for sums " (,7) and @gﬁr(i, J):

g,T’
h (i,5) = ®F (i,5)+ep(i, ), (i,5) € XrU Xa,, (13)
oY (i,5) = ®.(i,5) +epl (i), (i,5) € XrU Xa,, (14)

.h

o (i,7) are the errors.

where ®) (i, j) and ®? (i, ) are the true values of the summes and £§;(i, j),

It is seen that (7)-(10) can be computed as a convolution of zpgyer(i,j) with the linear FIR filters with
the masks fo = (—1,2,6,2,—1)/4 and fa = (—1,2,—2,2,—1)/4. For calculations of the variance of the sums

i)]g”m i);r, and differences AZ,T, A;T in (7)-(10) we assume that the random observation noise is dominant in



the errors in (11)-(14). Then the observation noise from (1) gives the following standard deviations for the sums
op @y (13),(14):

g,m

7a, 023 =\ (oRayer @ 73) (23)s () € XU X, (15)

aég7r(i,j) = \/(Ugayer ® (fg>2) (i’j)’ (1’]) € XR U XGz? (16)

where ”"®” denotes the discrete convolution operator, the symbol 77 denotes the transpose operation, and
Opayer (i, J) is a noise standard deviation in (1). The standard deviations for the differences A" ~AY = correp-
sonding to the observation noise are computed as

735,9) = ) (Phuer ® 12 (4.9, () € XU Xes, (1)

08 () = \/ (FRuyer ® (F5)%) (i), (i.5) € Xn U X, (18)

The blue channel B is treated in the same way in order to calculate the directional sums and differences A;”,b,
Av,, ", dv, for (G- B)and (G + B).
4. SPATIALLY ADAPTIVE DENOISING OF DIRECTIONAL ESTIMATES
The spatially adaptive LPA-ICI filtering!?:2%:2! is exploited to denoise Ar AV @Z,T for R color channel,

°) - < 9 g, gy Fgr
and Ag,b, AY @;w @y, for B color channel. In order to introduce this filtering in the form applicable for any

input data assume for a moment that this input noisy data have the form:

2(27]) = y(l,]) + J(i,j)’ﬂ(i,j), (19)

where (i,7) € X, z(4,J) is a noisy observation, y(i,j) is a true signal, n(i, j) is an independent zero-mean noise
with variance equal to one at every point (4,75), and (¢, j) is a standard deviation of z(i,j) at each point.

The LPA is a general tool for linear filter design, in particular for design of the directional filters of the given
polynomial orders on the arguments 7 and j. Let gs ¢ be the impulse response of the 2D directional linear filter
designed by the LPA2!, where 6 is a direction of smoothing and s is a scale parameter (window size of the filter)*.
A set of the image estimates of different scales s and different directions 6 are calculated by the convolution

37579(2‘,].) = (Z @ gs,G)(iaj)v (20)

for s € S = {s1, 82,..., 85}, where s1 < $3 < ... < 7, and 0 € O.

The ICI rule is the algorithm for a proper selection of the scale (close to the optimal value) for every pixel
(i,4)%'. In the ICI rule a sequence of confidence intervals is used

Ds = [375,0 (17]) - FO’QS,Q, @\S,G(i,j) + Fa—g}s‘g] , 8 € S, (21)

where I' > 0 is a threshold parameter for the ICI, the estimates and o_, is the standard deviation of the estimate
YUs,o calculated as

4.0 (6:5) =/ (02 ® g2 ) (i, 1), (22)

where the weights are defined by g, ¢ used in (20).

*The MATLAB code that implements the LPA-ICI techique is available following the link: http://www.cs.tut.fi/
~lasip/.



The rotated directional nonsymmetric kernel g ¢ is used with the angle § which defines the directionality of
the filter, and scale s is a length of the kernel support (or a scale parameter of the kernel) in this direction.

The ICI rule defines the adaptive scale as the largest s of those scales in S which estimate does not differ
significantly from the estimates corresponding to the smaller window sizes. This optimization of s for each of the
directional estimates yields the adaptive scales s () for each direction 6. The union of the supports of 9s+(6),0
is considered as an approximation of the best local vicinity of (4,7) in which the estimation model fits the data.
The final estimate is calculated as a linear combination of the obtained adaptive directional estimates g+ ¢ (4, ) .

The final LPA-ICI estimate ¢(i,j) combined from the directional ones is computed as the weighted mean

-2

o
NV ~ .. Ys+
y(l,]) = E 0co ys*ﬁ(z)])wﬂa W = 2969 : 5 (23)
+.0

2

with the variance o , of §(i,7) computed for simplicity as

—1
2 _ -2
U'Qs‘f',e - (de@ a.fger,g) ' (24)

It is convenient to treat this complex LPA-ICI multidirectional algorithm as an adaptive filter two inputs
z, and o, and a single output . The input-output equation can be written as § = £LZ {z,0} by denoting the
calculations imbedded in this algorithm as an £Z operator.

Applying this LT operator to calculated sums and differences we obtain the followmg denoised estimates of

these difference: Ag " A; ,,, g - © . for R color channel, and A , Av <I>;L p» @y for B color channel. When

all the LPA-ICI estimates Ag_r = EI{AQ O Ah }, gr = EI{CDQ OGh }, where the standard deviations
) ’ g,r ’ ’ g,

Oan >0 are calculated according to (15)-(18), etc., are obtained they can be used to calculate R, G, and B

9,0

color components at every position (4, 7).

5. INTERPOLATION OF G COMPONENT AT R/B POSITIONS AND DENOISING
OF R/B AT R/B POSITIONS

Aggregation of the horizontal and vertical LPA-ICI estimates of the sums and differences in the final estimates
of the sums and difference is produced according to the formula

-2 -2

R o o X

Agr= $A" %A;m (25)
L +o; TA, TOA,

where Ah =LT {Ah O An } ,A” =LT {A” } and 04, , 04 ~are the corresponding standard devia-
g,m Qa

g,r? g 7"7
tions of AZ . A;T calculated as in (24). Aggregation of the horizontal and vertical LPA-ICI estimates & g ‘I’Z,r
in the final estimate @, is performed in analogous way to (25).

When the estimates of the sums and the differences are calculated we invert the formulas (7)-(10) in order
to calculate the signals from these sums and differences. Both interpolation of G at R positions and denoising
of R are performed as follows:

G(i,j) 1/1 1 ®,.,(i,7) .
N = — A7 ’ s s € X s 26
(e ) =2 (0 ) (R0 ) enex )
where G and R are the obtained color estimates.

Similar adaptive LPA-ICI filtering is applied for the B channel with the following reconstruction of the
interpolated and denoised signals according to the formula analugous to (26).



6. DENOISING OF G COLOR

At every point (4,7) € Xg, or (4,7) € X, we have only vertical or horizontal sums and differences. For instance,
it is easy to see from (11)-(14) that at G positions (i,j) € X, we have only horizontal (G1 + Rp), (G1 — Rp),
and vertical (G + B,),(G1 — By) :

_G1+Rh) gr_G]. 3}7,7
g,b_G1+BUJ AJ)—Gl—B

and similarly

¢y, =G2+ Ry, A} = G2~ R,
(Dhb :G2+Bh, Ahb = Gy — By,

A, obtained by

g,r? g,r? gb’ g,b? gra g,r? gb’ g,b>

the LPA-ICI gives the final denoised estimate of green color component as the weighted mean:

at Gy positions. The aggregation of the estimates of ®" Al Av Av

C:; = %(?S,r + ég,r)wg,r + %(?Z,b + ég,b)w;,b’ ('LJ) € XG17 (27)
G =3(Py, + Ay Jwy .+ 5(Pyy + A wy s, (6,5) € Xa,.

This estimate utilizes both R and B spectral components Here, <i>h = EI{ g Tn } , AZ = L’I{ g O&R
Ah

——

v A h
and analogously for @Q v Bgrs Oy s Ag by g by A o.b- The weights wg o Wy, Wy oy Wy, are computed using vari-
ances
h -2 -2 -2 v -2 —2 ~—2 .
we, =0, oY 4o, wh, =0 oLy +05 (1,7) € Xa
g,r q;.h . (I’gm qDZ,b ’ g,b q);b (p};ﬂ‘ (bg,b ’ 9 19
v -2 -2 -2 ) -2 —2 ..
Wor =g, [\ g, F 04 | Wi =050 /|05, T ) (b1) € Xa,,

calculated according to (24).

7. INTERPOLATION OF R/B AT B/R POSITIONS

For the interpolation of R/B colors at B/R positions we propose to use a special shift invariant interpolation
filter giving the estimates by the standard convolution. The filters were designed for the subsampled grid which
corresponds to R/B channel. A variety of polynomial orders and support sizes have been tested. As a result, the
second order polynomial interpolation filter g, has been chosen:

0 0 —0.0313 0 —0.0313 0 0
0 0 0 0 0 0 0
—0.0313 0 03125 0 03125 0 —0.0313
Grp = 0 0 0 0 0 0 0 (28)
~0.0313 0 03125 0 03125 0 —0.0313
0 0 0 0 0 0 0
0 0 —0.0313 0 —0.0313 0 0 |

as the one which provided the best performance. Finally, the interpolation of R/B color at B/R positions is
performed exploiting obtained G values as follows:

R(Z,j) = G(lvj) - (Ag,r @grb)(i»j)7 (17]) € X37 (29)
B(i,j) = G(i,j) — (Agp ® g:0)(5,5), (i,5) € Xr, (30)

where G(i,7) is obtained as in (26) and A, ., A, as in (25).
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6 e R 30.29 26.50 24.56 29.11 31.93 28.48
e G 31.06 27.30 24.79 29.94 32.66 29.15
previterne B 29.60 26.17 24.69 29.34 30.77 28.11
9 i R 30.51 27.24 25.25 29.35 31.96 28.86
e G 31.06 27.97 25.37 30.11 32.60 29.42
prefenme B 30.53 27.39 25.65 30.09 31.93 29.12
et o | B 30.89 27.51 25.40 29.66 32.34 29.16
I G 31.48 28.19 25.39 30.36 33.08 29.70
prefenne B 31.00 27.65 25.75 30.36 32.39 29.43
Proposed R 32.10 27.81 27.64 30.11 33.20 30.18
LPA-ICI based G 32.47 28.70 27.73 30.86 34.15 30.79
interpolation B 32.05 27.91 27.53 30.76 33.36 30.32

Table 1. PSNR values for CFA interpolation of images corrupted by Gaussian noise.

8. INTERPOLATION OF R/B AT G POSITIONS

Analogously to described in Section 7 approach is used for interpolation of R/B colors at G positions ((z,j) €
X¢, UXg,). We use the simplest symmetrical interpolation kernel g:

0 025 0
g=1025 0 025 |,
0 025 0

because the higher order interpolation kernels did not provide a significant improvement in restoration. Then,
the interpolated estimate is computed as follows:

R(i,j) = GGi,j)— (Dgr ® gr) ® 9)(i, ),
B(i,j) = G(i,j) — (Agp ® grp) ® 9)(i, §)-

where G is a denoised estimate (26).

9. SIMULATION RESULTS

In our simulations we use the standard test images with the intensities y(¢, j) belonging to the range [0,1]. In
this paper we consider the following two noise models:

a) Additive stationary white Gaussian noise with the invariant standard deviation o(,j) constant for all
(1,7) € X and for all color intensities G1, G2, R, and B;

b) Signal-dependent Poissonian distributed noise with X2payer(4,7) ~ P(X¥{yrap(?,7)}). This noise can be
written explicitly in the additive form (1) where the standard deviation depends on the image intesity as

o(i,7) = std{zpayer (i, )} = /X¥{yrcn(i,j)}. It is shown in'®17!¥ that such a model can be used for
generic CMOS digital imaging sensors.

In particular, for the presented experiments we used o (4, j) = 0.05 for the Gaussian model (a) and y = 138.89
for the Poissonian model (b).

The LPA-ICT filtering £Z {-} is exploited for the eight directions § € © = {k-27/8: k=0,...,7} with the
scale (window size) values given by the set S = {1,2,4,7,10} . The threshold parameter I" of the ICI rule is fixed
as I' = 1 for filtering the sums and as I' = 1.5 for filtering the differences.
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6 e R 30.07 25.72 25.00 28.17 31.59 28.11
o G 31.01 26.61 25.60 29.07 32.57 28.96
prefiterne B 29.87 25.42 24.93 28.61 30.79 27.92
9 i R 30.42 26.49 26.07 28.53 31.85 28.67
o G 31.13 27.16 26.55 29.33 32.56 29.34
prefenne B 30.77 26.56 26.26 29.30 31.85 28.94
et w | R 30.75 26.67 26.34 28.68 32.11 28.91
o G 31.53 27.45 26.66 29.52 33.02 29.63
prefitere B 31.29 26.81 26.52 29.59 32.49 29.33
Proposed R 31.76 27.17 27.18 29.39 32.59 29.62
LPA-ICI based G 32.36 27.94 27.29 30.13 33.42 30.23
interpolation B 32.08 27.28 27.10 30.15 32.85 29.89

Table 2. PSNR values for CFA interpolation of images corrupted by signal-dependent noise.

The results are shown in Tables 1,2 for five test images of the sizes 512x768. The PSNR criterion is calculated
excluding 15 border pixels in order to eliminate boundary effects. The mean PSNR values calculated over the
five test images are given in the last column ”Mean PSNR” of the table.

The PSNR values for the case of the Gaussian noise are shown in Table 1. The proposed algorithm is
compared versus: Hamilton-Adams ("HA”)%, Alternating Projections (”AP”)?, and the DLMMSE algorithm
("DLMMSE”)!! with the LPA-ICI prefiltering of the noisy data?’. This prefiltering is applied to each color
channel independently as the preprocessing stage. It is seen that in average (the last line of the table) the proposed
integrated denoising and demosaicing technique provides PSNR at least 1 dB better then others algorithms.
The LPA-ICI prefiltering for the Hamilton-Adams, DLMMSE and Alternating Projections algorithm have been
chosen in order to make an objective comparison between the proposed algorithm designed for noisy data and
the considered alternatives known as very good demosaicing algorithms designed for noiseless data.

The PSNR values for restoration of Bayer data corrupted by signal-dependant Poissonian type of noise
are given in Table 2. For comparison we use the same alternative algorithms. For fair comparison we use
the prefiltering of data for these algorithms. As the noise is signal dependent we use for this prefiltering a
special recursive version of the LPA-ICI filtering developed specifically for observations with the signal dependent
noise®2!. In the result in Table 2 four iterations of this recursive prefiltering is used for the prefiltering. It is
seen that from Table 2 that the proposed denoising-interpolation technique provides at least 0.6 dB better
PSNR values that the alternative algorithms with the noise prefiltering. Note, that the proposed algorithm is
non-recursive.

Visual comparison of the results is important for algorithm evaluation. Fig.2,3 illustrate some difficult parts
of the restored Lighthouse test-image. Due to the denoising performed independently for each color channels
the final image visually looks oversmoothed and suffers from color artefacts visible especially at edges (second
and third columuns), even for very advanced CFAI techniques. In combination with aliasing problem (noticeable
at the fence and wall regions of the Lighthouse image) the color artefacts become visible significantly. In the
case of Poissonian noise this problem arises even stronger. It is seen that the proposed technique (right column)
provides significantly better performance also at the regions that contains small details and textures difficult for
restoration.

The LPA-ICI denoising embedded into the interpolation procedure helps to avoid or reduce the mentioned
above problems. As a result numerical ("LPA-ICI” row of Tables 1,2) and visual (Fig.2,3 right column) quality
evaluation shows better performance. The high frequency regions difficult for denoising like the grass region are
preserved significantly better and color artefacts are reduced. As a result the restored image looks more natural.



Figure 2. Restoration of the Lighthouse test image corrupted by Gaussian noise with 0=0.05. Columns are enumerated
from left to right: interpolated noisy image by HA® CFAI; restoration by HA® CFAI with LPA-ICI?® denoising at the
prefiltering step, PSNR=(29.11, 29.94, 29.34); restoration by AP® CFAI with LPA-ICI*° denoising at the prefiltering
step, PSNR=(29.35, 30.11, 30.09); restoration by DLMMSE!' CFAI with LPA-ICT*° denoising at the prefiltering step,
PSNR=(29.66, 30.36, 30.36); proposed LPA-ICI based integrated interpolation and denoising, PSNR=(30.11, 30.86,
30.76).
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