ORTHOGONAL RANGE
SEARCHING(2)

s dualald
9009544

Algorithm SeasrchKdtree(v.R)

Input. The root of (a subtree of) a kd-tree. And a range R.
Output. All point at leaves below v that lie in the range.
1. If vis aleaf
Then Report the point stored at v if it lies in R.
else if region(lc(v)) is fully contained in R
then ReportSubtree(ic(v))
else if region(lc(v)) intersects R
then SeasrchKdtree(Ilc(v) .R)
if region(rc(v)) is fully contained in R
then ReportSubtree(rc(v))
else if region(rc(v)) intersects R
then SeasrchKdtree(rc(v) .R)

© ©®© N o a0 k~ w N

—
o

Lemma 5.4

A query with an axis-parallel rectangle in a kd-tree storing n
points can be performed in O(\n + k) time, where k is the
number of reported points.

Proof

- The time to traverse a subtree and report the points stored in
its leaves is linear in the number of reported points. The total
time required for traversing subtrees in steps 4 and 8 is O(k).

- The number of nodes visited by the query algorithm that are
not in one of the traversed subtrees. Q(n) The number of
regions intersected by any vertical(horizontal) line.

[o(1) if n=1
Q(”)_{ 2+2Q(n/4) ifn>1

the total number of regions intersected by the boundary of a
rectangular query range is bounded by O(Vn).

n/2

n/4

L L(root(T))

Theorem 5.5

A kd-tree for a set P of n points in the plane uses O(n) storage
and can be build in O(n log n) time. A rectangular range query
on the kd-tree takes O(\n + k) time, where k is the number of
reported points.

Kd-tree for 3- or higher-dimensional space

the construction algorithm is very similar to the planer case: at
the root the point set is partitioned based on the first
coordinate of the points. At the children of the root the partition
is based on the second coordinate, at nodes at depth two on
the third coordinate, and so on, until at depth d-1 we partition
on the last coordinate. At depth d we start all over again. The
recursion stops when there is only one point left.

Storage: O(n)
Construction time: O(n log n)
Query time: O(n'-1d + k)

Range trees

Kd-trees have O(Vn + k) query time. The range tree, which has a
better query time O((log n)? + k). The price we have to pay for
this improvement is an increase in storage from O(n) for kd-
trees to O(nlogn) for range trees.

Let’s call the subset of points stored in the leaves of the subtree
rooted at a node v the canonical subset of v (p(v)).

2-dimensional range tree
As in the pervious section, we assume that no two pionts have

the sam x- or y-coordinate.

The main tree is a balanced binary search tree7 build on x-
coordinateof the points in P.

For any internal or leaf node v in7, the canonicla subset p(v)
is stored in a balanced binary search tree 7, _.(v) on the y-
coordinate of the points. The node v stores a pointer to the
root of T (v), which is called the associated structure of v.

A 2-dimensional range tree

root[7]

Primary Level:
BST on
x-coordinates

/

N
P(v) ,y — sorted

/

N
P(v) ,x — sorted

A example of 2-dimensional range tree

| J L J L |
e T e s s T Y e T e T

(3.8)

N e s o e

o0

-1 oo WL
e e e e Twee o e e

[o B ¥ & R CA

Algorithm BUILD2DRANGETREE(P)
Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.

1.

~

Construct the associated structure: Build a binary search tree T,
on the set p, of y-coordinates of the points in P. Store at the leaves
of T,ss0c NOt just the y-coordinate of the points in p, , but the points
themselves.

if P contains only one point

then Create a leaf v storing this point, and make T, the
associated structure of v.

else Split P into two subsets; one subset p,+ contains the points
with x-coordinate less than or equal to X, the median x-
coordinate, and the other subset p,,,, contains the points with x-
coordinate larger than X4

Vi < BUILD2DRANGETREE(p,.)

Viight < BUILD2DRANGETREE(p;;gnt)

Create a node v storing X4, make v, the left child of v, make v,
the right child of v, and make T, the associated structure of v.

return v

Lemma 5.6

A range tree on a set of n points in the plane requires O(n log n)
storage.

Proof

1-dimensional range trees use linear storage it follows that the
associated structures of all nodes at any depth of T together
use O(n) storage. The depth of T is O(log n). The total amount
of storage is O(n log n).

® O
< ’4 CF< 0‘4
Ch T CR T G Ve G 10
. DbO0O0OOo00OoOoOoOooooooc

O(log n)

Construction time

constructing the associated structure in line 1 would take
O(nlogn) time, but we can do better if the points are presorted
on y-coordinate: then the BST can be constructed bottom-up
in linear time. This way the time we spend at a node in the
main tree T is linear in the size of its canonical subset.

- The total construction time is the same as the amount of
storage. Namely O(n log n).

- The presorting takes O(n log n) time.
The total construction time is O(n log n).

— A
>

» o

2-dimensional range query

The query algorithm first selects O(log n) canonical subsets that
together contain the points whose x-coordinate lie in the range
[X : X]. This can be done with the 1-dimensional query
algorithm. Of those subsets, we then report the points whose
y-coordinate lie in the range [y : y'].

split

A

X ~ '

O(log n) canonical sub-trees

Algorithm 2DRANGEQUERY (7.[x:x']x[y:y'])
Input. A 2-dimensional range tree 7 and a range [x:x']x[y:y’].
Output. All points in T that lie in the range.

Vepit < FINDSLPITNODE(7,x,X’)
If vy, is a leaf
then check if the point stored at vg,; must be reported.

else (*follow the path to x and call TDRANGEQUERY on
the subtrees right of the path.*)

V —lc(Vgpit)
While v is not a leaf
do if x <X,
then 1DRANGEQUERY(T___ .(rc(v)), [y:y'])
v —Ic(v)
else v «rc(v)
Check if the point stored at v must be reported.

Similarly, follow the path from rc(vg,;) to x, call
1DRANGEQUERY with the range [y:y)] on the associated
structures of subtrees left of the path, and check if the point
stored at the leaf where the path ends must be reported.

Lemma 5.7

A query with an axis-parallel rectangle in a range tree storing n
points takes O((log n)? + k) time, where k is the number of
reported points.

Proof
- At left and right paths. Total cost O(log n).

Line 8 called at roots of canonical sub-trees, a total of O(log
n) times. The time that Each call takes is:

O(K, * l0g [Tassoc(V))=O(K, + log n) time.

- Total Query Time: O(log n + 3,(K, + log n)) = O(Z K, + log?n) = O(K + log? n)
root(T)

left path—— 4y

.AAKA

X?l l ‘\ * / bl

Iog w Canonlcal sub-trees

—right path

Theorem 5.8

Let P be a set of n points in the plane. A range tree for P uses
O(n log n) storage and can be constructed in O(n log n) time.
By querying this range tree one can report the points in P that
lie in a rectangular query range in O ((log n)? + k) time, where
k is the number of reported points.

Higher-dimensional range tree
P be a set of points in d-dimensional space

P(v;), w— sorted

P(v,), z— sorted

P(v,), y — sorted

P, x — sorted

Higher-dimensional range query
The query algorithm is very similar to the 2-dimensional case.

z z
y y

Theorem 5.9

Let P be a set of n points in d-dimensional space, where d>2. a
range tree for P uses O(n logd' n) storage and it can be
constructed in O(n log®'n) time. One can report the points in
P that lie in a rectangular query range in O(log¢n + k) time,
where Kk is the number of reported points.

root[7]

Primary Level:
BST on the 1st
coordinate

Q;SSOC(V)

(d-1)-dimensional
Range Tree
on coord’s 2..d.

Proof

0 Let Ty4(n) denote the construction time for a range tree on a set
of n points in d-dimensional space.

T,(n)=0(n log n).
= T4(n)=0O(n log n)+O(log n). T4 4(n).
This recurrence solves to O(n log?' n).
0 The bound on the amount of storage follows in the same way.

0 Let Q4(n) denote the time spent in querying a d-dimensional
range tree on n points. not counting the time to report points.

- Qy(n)=0(log®n).

- Qy4(n)=0O(log n)+O(log n). Q4.4(n).

This recurrence easily solves to Q4(n)=0(log?n).
- Add the time needed to report points: O(k)
The total query time is O(log?n + k) .

General sets of points

Until now we imposed the restriction that no two points have
equal x- or y-coordinate.

0 Composite Number Space: (lexicographic order)
(a,b) - (a|b)
(a|b)<(@|b’) < a<a or(a=a’ & b<b’)

ap=(Px,Py) = P =(Pclpy): Pyl Px))
R=[x:XIx[y:y] = R'=[(x]-0):(X"|+00)]x [(y[-0):(y][+wo)]

2 Note: no two points in the composite space have the same
value at any coordinate (unless they are identical points).

Lemma 5.10

Let P be a point and R a rectangular range. Then
peR < p eR.

Proof

The approach of using composite number can also be used in
higher dimensions.

END

