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ABSTRACT
Development of wireless sensor network applications remains
a challenge, due to lack of visibility into the global net-
work state. Debugging instrumentation using printf-like in-
structions affects the execution timing and non-intrusive ap-
proaches, such as JTAG, have not been used beyond a single
node due to their high cost.

This paper presents Minerva, a testbed architecture for
distributed debugging of wireless sensor networks. At the
core of our architecture is a flexible debug board installed at
each node. The board design is driven by cost-efficiency of
the testbed instrumentation and provides access to the on-
chip debug port of the sensor node’s processor. We focus on
three main debugging modalities: (i) non-intrusive network-
wide tracing of the internal state of individual nodes; (ii)
synchronous stopping of the whole network on a breakpoint;
and (iii) distributed assertion checking. We demonstrate
the debugging capabilities of Minerva in use-cases based
on well-known sensor network protocols in a 20-nodes in-
door testbed. Our results indicate that Minerva provides
non-intrusive, network-wide debugging of sensor network ap-
plications at a low cost.

Categories and Subject Descriptors
D2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Design, Experimentation

Keywords
Wireless Sensor Network, Tracing, Debugging, JTAG

1. INTRODUCTION
Wireless sensor networks (WSNs) have become an invalu-

able tool for the observation of physical phenomena at large
scale and with high fidelity. To allow for high data yield
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and continuous operation when deployed in challenging en-
vironments, hardware and software components need to be
highly reliable and well tested. Debugging wireless sensor
networks is known to be a notoriously hard task. There-
fore, a typical development cycle of a sensor network ap-
plication encompasses several iterations of simulations and
experiments on the target hardware. Simulations provide a
simple and scalable way to gain a rough approximation of
the expected execution performance, but are often not capa-
ble of fully capturing the low-level behavior of the hardware
platform. To bridge this gap, a number of wireless sensor
network testbeds were built in the last decade that allow re-
searchers to assess the performance of applications or sensor
network protocols under realistic conditions [2, 3, 7, 15,29].

Sensor network testbeds facilitate an easy access to sensor
nodes through remote programming and monitoring of node
output. However, testbeds provide only limited visibility in
the state of individual sensor nodes, using techniques such
as writing to the serial port or toggling output pins. Deter-
mining the state of a distributed application running across
a number of sensor nodes or the state of an underlying net-
work protocol is a challenge since it requires instantaneous
knowledge about all nodes in the network.

Most microcontrollers used in common sensor node plat-
forms provide an integrated debugging module that can be
accessed by the JTAG interface. Although initially designed
for electrical testing of boards, JTAG evolved into a com-
mon debugging tool used for setting breakpoints, halting
the microcontroller, or stepping through the program code.
Due to the high cost of JTAG adapter hardware and often
proprietary software necessary for JTAG-enabled debuggers,
sensor network testbeds have not harnessed the powerful ca-
pabilities of debug modules at the network scale so far.

In this paper, we introduce Minerva, a distributed trac-
ing and debugging tool for wireless sensor networks. The
key idea is to access the debugging port of sensor nodes
from an observer node co-located with each sensor node in
a testbed. Using the integrated debug hardware has several
benefits over traditional software-based debug approaches.
First, the debug port provides non-intrusive debugging that
is independent of the operating system running on the sensor
node. By accessing the debug port from an external device,
the processor of the sensor node can be halted and resumed.
Importance of non-intrusive access to source code execution
was demonstrated by the Aveksha platform [27]. Aveksha
provides tracing of events and breakpoints for a single node
by co-locating a debug board with the sensor node under test
and stores the trace data locally. Minerva extends this ap-



proach by connecting the debug board to a testbed observer,
which is part of an out-of-band backbone network, e.g., Eth-
ernet. By accessing the debug board from the observer, it
becomes feasible to stop all nodes within the sensor network
simultaneously. Additionally, read and write access to the
internal memory bus of the processor allows for a detailed
insight into the state of sensor nodes while they are running.
By combining the trace information from individual nodes
at a central instance, we get visibility into a network-wide
state of sensor network applications. Minerva further ex-
pands this functionality by providing real-time assertions on
the global state of applications or network protocols. When
a global assertion fails, the network can be halted for closer
inspection, or a memory snapshot can be taken for further
analysis.

This paper makes the following contributions towards de-
bugging of sensor network applications in a testbed setting:

• We present the hardware and software architecture of
Minerva, a novel testbed architecture which allows
network-wide tracing and debugging using the inte-
grated debug port of sensor nodes.

• We describe how Minerva can be used for debugging
WSN applications at the network scale and study its
performance under realistic conditions.

• We introduce testbed support for non-intrusive network-
wide assertion checking.

The rest of this paper is organized as follows: we overview
debugging modalities for WSNs in Section 2 and introduce
the system architecture of Minerva in Section 3. We follow
by an overview of the individual debugging modalities (Sec-
tion 4) and introduce distributed assertions in Section 5. We
present several case studies for debugging network protocols
with TinyOS (Section 6). Finally, we outline related work
in Section 7 and conclude in Section 8.

2. DEBUGGING METHODS
In this section, we provide an overview of debugging meth-

ods available on embedded sensor network platforms, fol-
lowed by a brief overview of the JTAG protocol used for
debug access. Figure 1 compares the debugging modalities
provided by Minerva and other hardware-based testbed ar-
chitectures. Flocklab [15] employs a network of observer
nodes to provide logging of serial output, and GPIO mon-
itoring and actuation. Aveksha [27] provides access to the
node’s debug port using JTAG from a debug board con-
nected to the node. Both Flocklab and Aveksha support
power profiling of applications as a complimentary debug-
ging method.

2.1 Serial Output
The approach most commonly used in testbeds is to use

the node’s serial communication interface (e.g., UART) for
emitting debug packets or printf() output that can be
observed and logged by the testbed. While this approach
of code instrumentation provides a flexible method for ob-
servation of code execution flow, it comes with a signifi-
cant overhead in terms of the execution time. Since serial
ports of microcontrollers integrated on common node plat-
forms operate at relatively slow speeds (e.g. 115 kBaud), the
microcontroller spends a significant amount of clock cycles

preparing and transmitting characters for each printf()
statement. Consequently, code instrumentation for debug-
ging purposes might significantly change the timing of code
execution, which can lead to a modified behavior of the ap-
plication under test.

2.2 Output Pin Monitoring
An alternative approach uses digital output pins of the

microcontroller to indicate certain events by changing the
pin state accordingly. Pin monitoring enables fine-grained
tracing of code execution and limits the overhead of code
instrumentation to a few clock cycles. However, this ap-
proach requires special tools, such as an oscilloscope or logic
analyzers [15], to trace execution at a fine-grained level. In
addition, a single digital output line can only represent bi-
nary information, and thus the number of states that can be
traced simultaneously with logic analyzers is limited.

2.3 Debug Port (JTAG)
The debug port available in many microcontrollers bridges

the gap between external debug device and internal debug
logic of the core. Typically, the debug port (slave) is con-
nected via a debug access protocol (e.g., JTAG) to a de-
bugging tool (master). The debugging process is usually
controlled by a specialized software tool such as the GNU
Debugger (GDB). Depending on the capabilities offered by
the platform, several invasive (breakpoints/watchpoints) or
non-invasive debugging techniques (memory access) are pos-
sible. Furthermore, the debug port may also be used for
programming a new binary image to the microcontroller’s
flash memory.

The debug logic can insert breakpoints at a specific loca-
tion in the code to halt the processor. Once the processor
reaches a breakpoint, code execution stops and the core en-
ters debug mode. While the core is halted, GDB can be
used to single-step through the code and inspect registers
or memory within the system. Breakpoints are an intrusive
way of debugging since the core stops fetching and executing
instructions. Consequently, interrupts signaled by periph-
erals (e.g., timer or radio interrupts) will not be handled,
which might lead to undesired behavior.

Tracing provides a non-intrusive approach to debugging
where certain events or internal state is observed from out-
side without the need for stopping the processor. Depend-
ing on the frequency of events we are interested in, e.g.,
monitoring the value of the program counter (PC), a large
amount of trace data is generated. Triggers can be used
to filter for specific events of interest, for example when a
certain memory address is read or written with a specific
value. However, the bandwidth of the debug port limits the
frequency of events that can be observed.

2.3.1 JTAG Protocol
JTAG is a widely used IEEE standard for accessing debug

ports of microcontrollers. JTAG specifies a four pin inter-
face between the host (master) and the target (slave): test
data out (TDO), test data in (TDI), test clock (TCK), test
mode select (TMS). A device can expose multiple test access
ports (TAP) which are connected in series in a scan chain.
The clock line is driven by the host and data is shifted into
the target (TDI) and shifted out of the target (TDO) with
each clock cycle. The TMS/TCK pins are used to switch
between the different states as defined by the JTAG specifi-



Cortex-M3

Target Observer

Debug Board
+

PandaBoard
Server

Controller

M
in

er
va

Cortex-M3
Atmega1281

MSP430

Flocklab Board
+

Gumstix
Server

F
lo

ck
la

b

POWER

JTAGMSP430
Telos Debug Board
(MSP430 + FPGA)

A
ve

ks
ha

Assertions
+

Halt/resume
JTAG

SERIAL PORT

GPIO

SERIAL PORT

POWER

Memory tracing

Observing execution through printf

Power tracing

Pin tracing/actuation

GPIO

Backend Network

Observing execution through printf

Figure 1: Overview of debugging architectures for wireless sensor networks: Minerva and Flocklab use out-
of-band observers to monitor and control the nodes. Minerva’s testbed controller collects and processes trace
data from observers and is able to synchronously halt/resume the sensor nodes in the testbed. Aveksha
provides JTAG access for tracing and breakpoints but only stores data locally, thus has no consistent global
view of the network at runtime.

cation. Data can be shifted into two registers of the TAP: an
instruction register (IR) and a data register (DR). On each
clock cycle, a new bit is written into the register through
the TDI line, while the existing content is shifted out of the
TAP through the TDO line. While the JTAG protocol pro-
vides a standardized interface to access a TAP, the size and
purpose of the instruction and data registers depend on the
specific implementation of the TAP. Depending on the de-
vice vendor, the specifications how to access the internals of
the debug port might not be publicly available.

3. SYSTEM ARCHITECTURE
Minerva is a hardware-software architecture for distrib-

uted debugging of wireless embedded systems. It combines
target sensor nodes that form the sensor network and a
testbed architecture for control and monitoring. Minerva
has been designed as a debugging tool for indoor or out-
door testbed deployments, where reliable out-of-band net-
work connectivity (e.g. Ethernet) is available and power for
the observer nodes is not constrained. The focus of this
work is on the non-intrusive observation of execution of an
application running on the sensor network through memory
tracing. Therefore, we have not integrated power tracing
as a debug method to our hardware architecture as this is
complimentary to our approach.

At the core of Minerva is an extension board for the
sensor node, which provides access to the debug port of
the node’s embedded processor. Observer nodes are con-
nected to the extension board and continuously monitor sen-
sor nodes. Observers are also connected with a testbed con-
troller over a backbone out-of-band network. A high-level
overview of Minerva’s architecture is shown in Figure 1. In
the following, we provide a detailed discussion of the differ-
ent Minerva components.

3.1 Node Platform
We use the Opal platform in this paper, although the

general ideas proposed here apply to any standard micro-
controller featuring a debug port accessible via a JTAG-like
interface. A node platform needs to provide the following

hardware capabilities in order to be integrated within the
Minerva debugging framework:

• Debug port interface (JTAG/Serial Wire Debug/Spy-
Bi-Wire)

• Register/memory access through debug port

• Breakpoints/watchpoints

Most modern microcontroller architectures provide hard-
ware debugging ports, e.g., ARM Cortex processors or the
Enhanced Emulation Module (EEM) on the MSP430 series.

3.1.1 Opal Platform
The sensor node platform that we used is the Opal plat-

form [10]. It features an Atmel SAM3U microcontroller with
integrated ARM Cortex-M3 core. The SAM3U4E is a pow-
erful processor running at clock frequencies of up to 96 MHz
and providing 256 KBytes of program flash, 50 KBytes of
SRAM, and flexible I/O options (ADC, UART, SPI, I2C,
and USB). Furthermore, Opal has two IEEE 802.15.4 com-
patible radio transceivers (Atmel AT86RF212/AT86RF231)
for wireless communication in the 900 MHz and 2.4 GHz
ISM bands.

3.1.2 Cortex-M3 Debug Interface
The ARM Cortex-M3 core is a 32-bit RISC processor im-

plementing the ARMv7-M architecture. The design of the
processor core can be licensed from ARM by other manufac-
turers for integration in custom products. The debug port
of the Cortex-M3 provides two different interfaces: JTAG
and the Serial Wire interface. Serial Wire is a half-duplex
alternative to JTAG which requires only two pins.

The ARMv7 debug architecture allows us to determine
and modify the state of the processor from the outside. To
this end, the debug adapter connects to the JTAG test access
port (TAP), which provides register access for reading and
writing from/to the internal memory access ports. The Core
Debug Access Port, provides a set of registers to control the
debug operation of the processor. For example, the debugger
can halt, single step or resume the processor by setting the



corresponding command bit in the debug control register.
Furthermore, it can query the processor state to determine
when the core reached a breakpoint. Another nice feature
of the debug interface is the access to the Cortex-M3’s inter-
nal system bus that is provided through the Memory Access
Port. It allows the debugger to access the internal SRAM
and memory-mapped peripherals for read and write opera-
tions. Access to memory through the debug port has a lower
priority than bus access initiated by the processor itself to
avoid conflicts.

3.2 Target Debug Board
Target debug board is the only custom designed hardware

in our testbed. In addition to the access to the debug port,
the board also provides USB access to the serial port of
sensor nodes. The cost of the board is almost the same as
a good quality USB-serial converter that a testbed would
have to use anyways. We designed the board to stack on
top of the Opal sensor nodes using 2 x 60 pins expansion
connectors.

FTDI FT2232H. At the core of the debug board is the
FTDI FT2232H integrated circuit, as illustrated in Figure 2.
It provides two high-speed USB 2.0 endpoints which can be
independently configured for different serial or parallel pro-
tocols. The chip is widely used as a serial to USB converter
on embedded platforms. In our case, Channel B is connected
to the debug port of the Cortex-M3 core, while Channel A
is connected to the serial port (UART) of the Opal node.
We also connected the ERASE and RESET lines of Opal to
the FTDI chip to facilitate reprogramming of the processor.

One special feature of FT2232H is its support of the Multi-
Protocol Synchronous Serial Engine (MPSSE). Special con-
trol commands sent over the USB endpoint of the device
are converted into JTAG sequences on the output lines.
The FTDI chip processes incoming command sequences in a
FIFO manner and sends the response back to the USB host.
While this approach provides great flexibility for different
application scenarios, it relies on software on the host for
driving the I/O operations. However, we are able to achieve
clock frequencies of up to 12 MHz on the JTAG bus.
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USB

Channel B: JTAG

TX
RXChannel A: UART
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Debug 
Port

Core

Memory
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Debug Board Sensor Node

Figure 2: Minerva debug board: FTDI chip con-
verts JTAG instructions sent by the PandaBoard
into physical JTAG signals for SAM3U.

3.3 Target Observer
The observer node communicates between the debug board

attached to a sensor node and the testbed controller.

3.3.1 Hardware Architecture
We use the PandaBoard embedded platform for our ob-

server nodes, which is a low-cost embedded platform based
on the Texas Instruments OMAP 4430 system on a chip.
It features four USB ports, Ethernet, HDMI output and
Wifi/Bluetooth support. We run Ubuntu with Linux kernel

Figure 3: Testbed observer with Opal node and de-
bug board connected to the PandaBoard.

3.4.11 on the PandaBoards. All observer nodes are con-
nected to our campus network infrastructure using Ether-
net and are powered from a wall outlet. Figure 3 depicts
the Opal sensor node connected to the observer node.

3.3.2 Software Architecture
The software on the observer node is built around the

Open On-Chip Debugger (OpenOCD)1, which is an open-
source library for debugging embedded devices that supports
JTAG operations using the FT2232H chip on our debug
board. OpenOCD complements a debugging toolchain by
providing a remote debug target to which GDB can con-
nect. GDB sends control messages to OpenOCD, which then
talks to the debug port of the processor and sends the reply
back to GDB. Although OpenOCD is specific to the ARM
Cortex-M3 architecture, Minerva could use different debug-
ging libraries (e.g., MSPDebug for MSP430 or AVaRICE for
Atmel AVR architectures) for other platforms.

Remote control interface. We implemented a remote
control interface on top of OpenOCD to receive control com-
mands from the testbed controller. The observer listens for
UDP multicast packets addressed to a specific port. We
opted for UDP multicast due to its efficiency and speedy
connection setup. Replies from the observer nodes are sent
back to the testbed controller using UDP unicast packets.
Request for changes in the state of the observers (e.g., node
halted or resumed) are confirmed using an acknowledgment
UDP packet.

Polling. The observer can be instructed to periodically poll
the content of one or multiple addresses in the system mem-
ory of the sensor node to detect changes in the internal state
of the application running on the node. This approach will
be explained in more detail in Section 4. The testbed con-
troller is notified using a UDP unicast packet when a change
is detected.

3.4 Testbed Controller
Testbed operation is controlled by the testbed controller.

It is responsible for setup, start, monitoring, and teardown
of each testbed run. The testbed controller exposes a sim-
ple web based interface, implemented in Python, to upload
a binary image to the nodes in the network. We use the
symbol table of the image to map between global variables
and corresponding addresses in the system memory of the
sensor node.

1http://openocd.sourceforge.net



Scripting of tests. In order to offer full flexibility for con-
trol and monitoring, we provide users with a Python script-
ing interface that allows users to reset, halt, and resume the
nodes within the testbed and to enable or disable tracing
of memory locations. In addition, users specify a callback
method that is called whenever the state of the watched
memory location changes. This allows users to implement
flexible assertions on the state of the network (see Section 5)
or log the timeline of events to a database or file for further
analysis or visualization.

4. DEBUGGING WITH MINERVA
In this section, we describe debugging complex sensor net-

work applications using Minerva. Our approach comple-
ments the existing set of testbed debugging modalities (e.g.,
printf() output, pin monitoring, and power profiling) with:

• Tracing: non-intrusive tracing of a node’s internal
state;

• Control: ability to synchronously halt and resume
the whole testbed;

• Checkpoints: ability to collect snapshots of selected
memory areas of a node; and

• Assertions: support for real-time assertions on the
global network state.

Existing testbeds let the user schedule a test run and offer
the results for download afterwards. Since this approach
allows to identify the occurrence of problems only after the
test has been completed, another series of tests is usually
necessary to narrow down the exact cause.

Debugging a sensor network with Minerva is radically
different from the way existing testbeds work. The real-
time monitoring capabilities of Minerva provide a user (or
a script) with interactive control of the testbed. Therefore,
the cause of potential problems can be assessed immediately
after they occurred.

Furthermore, our approach is agnostic of the operating
system (e.g., Contiki, TinyOS) running on the sensor nodes
since debug operations operate at the machine level rather
than being implemented in additional software modules or
libraries. Therefore, no additional code instrumentation is
needed for debugging. In contrast to invasive debugging
methods such as printf() or logging to flash storage, Min-
erva does not introduce delays or alter the timings of code
execution on the node, since the node state is only accessed
through the debug port of the microcontroller. Thus, our
approach avoids Heisenbugs, which are bugs that disappear
when modifying the program for debugging [31].

In the following, we describe Minerva’s debugging capa-
bilities in more detail.

4.1 Tracing
The debug port of the Cortex-M3 processor enables to

read from the system memory regardless in what state the
processor is. Therefore, in contrast to GDB, which only
allows to inspect the memory when the processor is at a
breakpoint, the observer can periodically poll for changes,
even when the processor is currently running. Thus, trac-
ing is the least intrusive debugging method offered by Min-
erva, since it does not require to stop the processor. The

observer uses address information from the symbol tables of
currently executed binary image to poll for memory changes.
Tracing is initiated using a subscription mechanism where
the testbed controller sends a polling request for a specific
memory address and data length to an observer. Until the
subscription for this address is revoked by the controller,
the observer periodically polls the address for changes. To
minimize the amount of network traffic caused by polling,
the observer only sends a packet for the start value and a
notification whenever the value has changed. The system
clocks of all observers and the testbed controller are syn-
chronized using NTP [18]. An update notification to the
testbed controller is sent as a UDP packet, which includes
the current timestamp, sequence number, memory address,
and the corresponding variable value.

Memory Access. Read access to the memory for trac-
ing requires the memory access port of the debug port to
be configured with the corresponding memory address loca-
tion. Afterwards, the memory access port reads from the
system memory over the internal high-speed bus and writes
the result into the data register of the memory access port
(see Section 3). Consequently, each memory access requires
a certain sequence of JTAG state transitions being initiated
by the FTDI chip connected to the JTAG port.

Hardware support for tracing. The Cortex-M3 debug
architecture offers dedicated hardware support for mem-
ory watchpoints and tracing through the integrated Data
Watchpoint and Trace Unit (DWT). Data watchpoints in
the DWT can be configured using four registers which de-
fine address and data masks. The DWT monitors the system
bus for memory read and write instructions. Upon match,
it sets a flag in the DWT status register and it generates
a trigger as configured: a memory watchpoint exception to
halt the processor, or it generates a packet on the trace
output line. However, the trace output on the SAM3U mi-
crocontroller is shared with the TDO pin used by the JTAG
protocol. Therefore, the serial trace output is not available
while JTAG is active.

Concurrency of memory access. Instruction fetches,
data, and debug access to the system memory space are
performed over the same internal 32-bit bus. However, data
access and instruction fetches by the core have higher pri-
ority than the debug access. Therefore, debugging will not
interfere with regular operation of the core as debug access
has to wait until the higher priority operations are com-
pleted.

4.1.1 Software Support
Memory tracing with Minerva requires information about

the address and data type (e.g., uint8 t, int16 t, uint32 t)
of global variables. This information can be extracted from
the symbol table of the binary image and is independent of
the operating system used.

nesC annotations. We leverage variable attributes pro-
vided by the nesC language [5] as a simple mechanism to
annotate variables of interest in the application source code.
Global variables of a nesc module which are annotated with
the trace attribute will be automatically added to the list
of watched memory locations.

module MyComponentP { ... }
implementation {
uint16_t myState @trace();

}



When compiling a nesc/TinyOS application with the debug
make option, the nesc compiler will dump a list of variables
annotated with the trace attribute to a XML file in the
build directory. This file will be read by the tracing applica-
tion running on the testbed controller to setup variables to
watch for changes. The exact memory location and size of
the corresponding variables can be determined by inspecting
the symbol table in the binary image.

Python interface. Alternatively, Minerva’s Python inter-
face allows to setup watched variables if more flexibility is
required, e.g., when the set of watched variables needs to be
changed dynamically.

from minerva import model, monitor

# load symbol from binary
symbols = model.load_symbols(binary)
myState = symbols["MyComponentP$myState"]

# add watchpoint
monitor.add_watchpoint(myState)

4.1.2 Benchmark Results
We compare the performance of memory tracing with other

code instrumentation methods, namely printf() and GPIO
instrumentation.

JTAG performance. Figure 4 shows a sequence of bus
transfers on the JTAG interface during memory tracing. We
initiate JTAG access from PandaBoard as fast as possible. A
single JTAG access to read 4 bytes from the system memory
takes roughly 26 µs. However, access to the system mem-
ory is initiated by the debug port hardware component and
not through software instructions executed by the proces-
sor. Therefore, the timings of the application code are not
changed by the JTAG access.

It takes the monitoring application on the PandaBoard
around 500 µs to setup a read access, transfer the command
to the FTDI using USB, and process the result. We mea-
sured the time interval between consecutive read operations
on the JTAG interface using a logic analyzer for 26,000 sam-
ples. On average, a read access is initiated every 610.14 µs
with a standard deviation of 78.37 µs. Depending on the
scheduling of the monitoring process by the Linux sched-
uler, the interval may vary, as shown in Figure 5.
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Figure 4: Timeline of JTAG access to the Cortex-
M3 debug port for memory tracing.
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Figure 5: Distribution of the interval between sub-
sequent JTAG access operations to the Cortex-M3
debug port for memory tracing.

Printf output. As we discussed before, code instrumenta-
tion using printf() statements has a significant overhead
for processing and communication. Figure 6 shows a time-
line of events during a single printf() command that is
outputting 4 bytes. Invocation of the printf() method
triggers the underlying C library to process the input pa-
rameters and store the corresponding output string in mem-
ory. Next, characters will be written to the serial line one
by one. The UART peripheral module of the MCU gen-
erates an interrupt after each character transfer has been
completed. This will wake up the MCU and it will write the
next character in the buffer to the UART.
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Figure 6: Overhead of printf() output on Opal.

GPIO instrumentation. The output level of general pur-
pose digital input/output (GPIO) pins of the MCU can be
changed with only a few processor instructions. In fact, the
SAM3U microcontroller requires 2 instructions with a total
of 5 clock cycles to set a GPIO pin. Therefore, it allows
code instrumentation with minimal overhead in terms of ex-
ecution time and at a high frequency of events of interest.
However, it only allows to differentiate between two differ-
ent states, or otherwise, the state of the pin might become
ambiguous.

Comparison and limitations. We summarize our find-
ings in Table 1. Minerva provides high expressiveness with-
out incurring any overhead on the microcontroller as no ad-
ditional code needs to be executed. The latency of memory
tracing determines the maximal frequency of changes to the
monitored variables that can still be detected. For example,
pin tracing is better suited to detect changes which occur at
a very high rate, for example, when instrumenting a local
variable within a for loop of a device driver. However, we
argue that in the case of testbed experiments the focus is
on capturing the node state at a higher level of abstraction,
such as at the network protocol or application layers. Ex-
amples of such variables of interest include routing tables
(e.g., parent node in CTP) or hop counts for network flood-
ing. Therefore, the maximum number of incoming packets
within a time interval gives an upper bound on the rate at
which such variables can change.

Overhead Latency Expressive
(µs per bit) (ms) Capability

Minerva - 0.61 High (Data)
GPIO 0.05 0.001 Low (Bits)
printf 182 1.0 Extended High

(Data+Comments)

Table 1: Memory tracing performance using differ-
ent techniques on Opal platform.



4.2 Start/Stop Debugging
Stopping a sensor node by setting the processor into debug

mode is an intrusive operation that might have a significant
impact on the execution of the application code. For ex-
ample, halting the processor core will prevent execution of
interrupt handlers signaled by internal or external peripher-
als (e.g., timers, radio transceiver, sensor interrupts). The
process of resuming the application after it was stopped at
a breakpoint, therefore, is a challenge. Minerva provides
techniques and operating system hooks to prevent the sys-
tem from entering an undefined state, which has not been
anticipated when the software logic has been developed.

4.2.1 Debug Mode Description
Node-level debug mode. Cortex-M3 processor might en-
ter debug mode for two reasons: (i) when a breakpoint or
memory watchpoint is hit during code execution and (ii)
when the C_HALT bit in the control register of the debug
access port is written. Furthermore, it is also possible that
the application running on the node triggers the processor to
enter debug mode. The control register of the debug access
port is also visible from the system memory space. There-
fore, a node can enter the debug mode from the program
code. However, the debug module has to be enabled before-
hand by writing the C_DEBUGEN bit, which can only be done
through the external debug port.

Network-wide debug mode. Minerva provides a sim-
ple method to synchronously stop a sensor network under
test. Using the backbone network, we employ UDP pack-
ets sent to an IP multicast address in the same subnet to
quickly propagate a stop request from the testbed controller
to all observers. IP Multicast enables one-to-many commu-
nication without the need to replicate packets for each sub-
scriber. Therefore, the jitter between the time of arrival of
a stop request at different observers can be kept as small as
possible. Since UDP communication provides no automatic
retransmission, we send another UDP packet from the ob-
servers to the testbed controller as an acknowledgment when
the node has been stopped. Our experiments show almost
no lost UDP packets, if a local area network is used to con-
nect observers with the controller.

Minerva cannot execute network-wide start/stop debug-
ging in a completely synchronous manner due to the time of
arrival jitter of UDP packets. Specifically, Minerva is not
suitable to debug events that interact with the application
on a microsecond level. However, it is useful for debug-
ging higher level application functionality where millisecond
accuracy is sufficient. Even for the higher level applica-
tion code, Minerva needs to ensure that the whole network
stopped in a consistent state and we discuss this in relation
to distributed assertions later in Section 5.

4.2.2 Timer Consistency
Entering the debug mode immediately stops the processor

clock. However, the master clock which is used as a clock
source for peripherals of the SAM3U microcontroller is kept
running. The SAM3U features a power management con-
troller (PMC), which provides individual control over the
clocks of different peripherals such as timers, UART, SPI,
and others. Therefore, the observer node can disable se-
lected peripherals when the processors enters debug mode
and restore the state of the PMC before the processor is re-
sumed. Since this allows to effectively freeze the hardware

timers of the MCU, the software timer modules in TinyOS
or Contiki will resume their operation afterwards without
missing timer events.

4.2.3 Application Consistency through OS Hooks
Although Minerva is operating system agnostic, adding

additional code components might help to avoid potential
problems when stopping the application running on every
node within the testbed. As a possible future extension,
Minerva could politely ask the application to enter a debug
mode rather than forcing the processor to enter debug mode
immediately and thus potentially compromising the running
application. This can be implemented by indicating a pend-
ing debug request from the testbed by setting a status flag
in the TinyOS or Contiki scheduler. The scheduler will then
execute a special method to transfer the system and pe-
ripherals into a safe state before entering debug mode, for
example by setting the radio or serial port into idle mode.

4.2.4 Benchmark Results
We evaluate the latency of synchronously stopping a net-

work from the testbed controller. The experiment setup
includes three PandaBoards, one taking the role as the con-
troller and the other two are observers. The controller peri-
odically sets an output pin and sends the stop command to
the observers. We record the time interval between the con-
troller sending the command and the exact time when the
processor of the sensor node has been stopped by setting
an output pin of the Cortex-M3 MCU through the debug
port. The measurement results for a total of 52,772 control
packets are shown in Figures 7 and 8. The results show that
the sensor node has been stopped by the observer roughly
1.55 milliseconds after the command has been transferred by
the testbed controller. The jitter between different nodes is
smaller than 0.141 ms with a probability of 95%.

Comparison with network flooding. Using an efficient
network flooding protocol, the node stop command will prop-
agate through the sensor network within a few millisec-
onds for reasonable network diameters (e.g., flooding us-
ing Glossy [4] takes around 2.4 ms on the 8-hop MoteLab
testbed). However, the performance of existing approaches
employing radio packets forwarded within the sensor net-
work might be affected by interference and the radio duty-
cycle of intermediate nodes (e.g., when using low-power lis-
tening). Minerva is leveraging the out-of band network con-
nection between the controller and observers to send com-
mands to halt/resume sensor nodes, which offers high relia-
bility, low latency and allows to stop the network any time
regardless of the low-power state of the node’s radio.

4.3 Memory Checkpoints
Sensornet checkpointing takes a snapshot of the node state

which can then be replayed in a simulation tool. Österlind et
al. [20] implement checkpointing for the Tmote Sky platform
using Contiki. For checkpointing to work, the application
has to be compiled with an additional process that handles
checkpointing requests from the serial port. The state of the
radio, LEDs, timers and RAM is written to the serial port
and can then be transferred into the COOJA simulator.

Minerva supports non-intrusive memory checkpoints with-
out the need for software support in the application. A snap-
shot of the Cortex-M3’s internal SRAM can be taken when
the processor is halted due to a debug request or while it
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Figure 7: Latency for halting the Cortex-M3 pro-
cessor by sending a stop command from the testbed
controller. The measurements include both the la-
tency of the UDP packet and the JTAG access op-
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Figure 8: Jitter between the stopping times of dif-
ferent nodes. The value of the 95th percentile is
0.141 ms as indicated by the dashed line.

is running. Since peripherals are mapped into the system
address space, the state of peripherals can be stored in a
similar way.

4.3.1 Benchmark Results
Reading large blocks of data from the internal SRAM is

fast since the memory access port has to be setup with
the start address only at the beginning. Reading consec-
utive bytes can be done without additional overhead for
setup, which can take several hundred microseconds (see
Section 4.1.2). Table 2 shows the JTAG transfer times for
different block sizes. Using the debug port for direct read
access to the node’s internal memory is considerably faster
than writing the content of memory to the serial port (see
Figure 6).

Size 4 16 64 128 256 512
Time [ms] 0.02 0.10 0.35 0.68 1.34 2.66

Table 2: Duration of a read access to the internal
SRAM for different block sizes.

4.4 Limitations
In this section, we discuss the limitations of our approach

and present how they can be mitigated.

JTAG speed. The polling interval is limited by the round-
trip time required to transfer data and control messages be-
tween the OMAP processor and the FTDI FT2232H chip.
Shifting the JTAG logic from the OMAP processor closer to
the JTAG interface of the Cortex-M3, for example by using
a dedicated FPGA or MCU for control of JTAG operations
will decrease latency and result in a significant increase in
the polling frequency. However, this comes at an increased
complexity and cost.

Cortex-M3 sleep mode. The Cortex-M3 used on the
Opal platform disables the system bus clock when it enters
sleep mode using a WFI (wait for interrupt) or WFE (wait for
event) instruction. Therefore, access to the debug controller
through the JTAG interface is not possible, although the
JTAG port itself is still working. A workaround is to pre-
vent the node from entering sleep mode. Although simple,
this solution is operating-system specific. In TinyOS, we
added a compile flag to the McuSleepC component. When
an application is compiled using the debug make extra, the
TinyOS scheduler stays in idle mode rather than sleep mode.

5. DISTRIBUTED ASSERTIONS
When developing algorithms or protocols for WSNs, it is

often useful to add sanity checks to the code to verify that
certain conditions hold at that time. Code assertions are a
debugging technique for checking source code properties at
runtime. The goal of using assertions is to detect anomalies
in the code execution by checking specific properties (e.g.,
program variables) of the system. Inserting assertions into
the code is often a manual process which requires in-depth
knowledge about the implementation details.

Minerva supports traditional code assertions by the virtue
of having an access to the debug port of all sensor nodes.
In addition, Minerva enables distributed assertion check-
ing on a network-wide scale. In this section, we describe the
semantics of both local and distributed assertions and in-
troduce mechanisms that allow developers to stop the whole
network in a consistent way.

5.1 Local Assertions
Code assertions are a well known technique for reasoning

about program correctness. They indicate the programmer’s
belief that a certain predicate is always true at a specific line
of code. Local code assertions are only valid on a node local
scope and are checked by the processor as the corresponding
line of code is being executed. Failure of a local assertion
can be used to stop the node, so that developers can inspect
conditions that led to the predicate being violated.

The following example of an assertion within the send
method for a time synchronization protocol checks that the
node’s clock is synchronized before transmitting synchro-
nization beacons:

void sendTimeSyncBeacon() {
LOCAL_ASSERT(isSynchronized == TRUE);
...

}

5.1.1 Local Assertion in Minerva
Minerva supports local code assertion on the Cortex-M3

processor in two different ways. First, the assertion handler
can trigger the processor to enter debug mode and halt exe-
cution immediately by writing to the Debug Halting Control
and Status register (DHCSR).

#define LOCAL_ASSERT(COND) assert(COND, __FILE__, __LINE__)

// stop network on failed assertion
void assert(COND, __FILE__, __LINE__) {
if (COND != TRUE) {
DHCSR = 0xA05F000B; // enable debug + halt core

}
}



Second, the program execution continues but the assertion
handler sets a flag for this specific assertion in the memory.
The observer can periodically poll the value of that memory
address and is able to detect the occurrence of an assertion.

uint32_t failed @trace() = 0;

#define LOCAL_ASSERT(COND) assert(COND, __FILE__, __LINE__)
// write variable on failed assertion
void assert(COND, __FILE__, __LINE__) {
if (COND != TRUE) {
failed = __LINE__;

}
}

5.2 Network-wide Distributed Assertions
Local code assertions are predicates associated with a spe-

cific node and a line of code. In contrast, global distributed
assertions are predicates that should always be true amongst
all nodes within the network [14, 16, 23, 24]. Distributed as-
sertions can be specified using values of globally shared vari-
ables in the network and they need to be evaluated when one
of the variables changes. Typical candidates for network-
wide assertions are ad-hoc protocols for time synchroniza-
tion, routing, collection, or dissemination. Predicates for
assertion checking often arise immediately from the design
goals of these protocols. For example, a data collection pro-
tocol should not have routing loops at any time.

Evaluation of distributed assertions in distributed net-
works is a challenge due to the possibility of the state of
the shared variables being inconsistent. If the variables are
changing too frequently, the timestamping accuracy of the
platform may not be sufficient to determine the true order of
these events. Rather than attempting to resolve the incon-
sistency, Minerva collects statistics when a conflicted state
is detected. We build on ideas from the passive distributed
assertions (PDA) for sensor networks [23], but unlike PDA,
Minerva evaluates distributed assertions in real time and
allows developers to inspect the network state when an as-
sertion fails, provided the network can be stopped in a con-
sistent state. Our evaluation in Section 6 shows that Min-
erva infrastructure is fast enough to evaluate distributed
assertions at a granularity of radio packet transmissions.

5.2.1 Distributed Assertion Support in Minerva
The main mechanism that we use is Minerva’s memory

tracing capability introduced in Section 4.1. Distributed
assertions are specified over a set of variables that nodes
share with the testbed controller and they are periodically
evaluated at the testbed controller.

Minerva supports automated tracing of shared variables
through in-line source code annotations as described in Sec-
tion 5.1. Unlike prior work in this area (e.g., PDA [23]),
we do not employ a special preprocessor to allow the defi-
nition of distributed assertions intermixed with the source
code. According to our definition, distributed assertions are
not associated with a specific line of code, but have to be
valid at any point in time. Developers implement a boolean
assertion evaluation function in Python and include it along-
side the tested application or system protocol source code.
This function can use any variables annotated in the sen-
sor node source code and is automatically evaluated by the
testbed controller when a monitored variable changes in the
network. This approach provides full flexibility in imple-
menting assertion checking in a familiar scripting language.

Adding support for declarative languages to specify what
the application should do, rather than how a problem is
detected, would unburden users from writing their own as-
sertions. While our architecture allows to include additional
software modules in the controller, we consider this a possi-
ble future extension of the system.

Minerva also supports stopping the whole network when
a distributed assertion fails. This is implemented using the
start and stop debugging introduced in Section 4.2. When
a distributed assertion fails, the testbed controller sends a
UDP multicast stop-packet to all observer nodes in the net-
work. The controller verifies that all nodes stopped in a
consistent state and signals the user that the network is
ready for inspection. We next illustrate distributed asser-
tions through examples.

Declaring Distributed Assertions. Assertions are de-
clared similarly to memory tracing using nesC language an-
notations (see Section 5.1). The developer specifies all global
assertions using the @GLOBAL_ASSERT() annotation and im-
plements the assertion evaluation as a Python function. The
testbed controller parses these annotations, traces the rel-
evant variables, and calls the Python annotation function
when a variable changes in the network. An example of
annotating a time synchronization module might look like:

module TimeSyncP() @GLOBAL_ASSERT("root_unique") { ... }
implementation {
uint8_t synced @trace();
uint16_t rootId @trace();

}

The user must implement the Python function to eval-
uate the assertion (root_unique) and the controller auto-
generates the necessary glue code that automatically traces
variables and evaluates relevant assertions.

The assertion callback function written in Python is in-
voked when the value of a variable changed on any node.
Furthermore, the model.get() method provides access to
the most recent value of a monitored variable for any node
in the network.

Synchronization Example. We show an example of as-
sertion checking for a centralized time synchronization pro-
tocol. At any time, there should only be a single root node
acting as a reference for clock synchronization. In this sce-
nario, the assertion method in Python looks as follows:

from minerva import model

def root_unique(node, symbol, value):
root_nodes = set()
for node in model.nodes():
if model.get(node, "TimeSyncP$synced"):
root_nodes.add(model.get(node, "TimeSyncP$rootId"))

if len(root_nodes)>1:
fail("multiple root nodes")

Collection Example. Data collection is a basic network
service required in many WSN applications, e.g., to forward
sensor data to a network sink. In order to deliver packets
with high yield and low latency, data packets are forwarded
along a routing topology towards the sink node. For ad-hoc
collection protocols such as CTP [6], intermediate nodes de-
termine the next hop based on link state information using a
path metric (e.g., based on the expected number of transmis-
sions required to deliver the packet to the sink). Minerva
can be used to detect cycles in the routing topology, which
might happen when a node fails or is congested. To this end,



we trace the parent variable in the CollectionP module
and implement the graph_has_cycles() Python callback
function to check for cycles in the network graph.

module CollectionP() @GLOBAL_ASSERT("graph_has_cycles") { ... }
implementation {
uint16_t parent @trace();

}

import graph # graph library

def graph_has_cycles(node, symbol, value):
# update network graph
parentNode = value
if not graph.has_edge(node, parentNode):
# remove old edge
for oldParent in graph.successors(node):
graph.remove_edge(node, oldParent)

# add a new edge
graph.add_edge(node, parentNode)

# detect cycles
if graph.has_cycles():
error("cycles found")

5.2.2 Sources of Error
As mentioned before, the intrinsic timing delays and times-

tamping synchronization errors introduce uncertainty in the
network state at the controller. As a result, the controller
might not be able to determine the sequence of events if they
happen too close to each other or ensure state consistency
of nodes when the whole network stops. For example, the
nodes may change their state while a command to stop the
network is propagated in the communication medium.

There are two main sources of error in Minerva. First,
there is uncertainty associated with the timestamp of the
value change of a shared variable. As discussed in Sec-
tion 4.1, the change is detected through a polling mechanism
at an observer node and is timestamped using NTP syn-
chronization protocol. Figure 9 shows an example where the
value of a monitored variable changed on two nodes within a
short period. The observer detects the change the next time
the variable is polled and sends the new value xi and its cur-
rent timestamp ti to the controller. However, this timestamp
is affected by the accuracy of the NTP time synchronization
protocol used by the observer nodes. The timestamp has an
error of up to TPOLL + TSYNC, where TPOLL is the length of
the polling interval and TSYNC is the maximum time syn-
chronization error of NTP. Thus, it might be possible that
the controller detects the change in variable in the reverse
order than it actually happened on the nodes.

Second, we use UDP packets for communicatation be-
tween observers and the testbed controller. The packets
might be lost and there is a jitter associated with the propa-
gation time of the packet. We use unicast acknowledgements
to recover from the packet loss and denote the longest time
that a UDP packet can travel between an observer and the
controller with TUDP MAX.

5.2.3 Consistency of Distributed Assertions
We first define distributed assertions more formally. The

network state is defined on a set of tracked global variables
xi shared by the nodes. We denote the value of a global
variable at time t as xi(t) = xi. Assertion is a boolean-
valued function defined over a finite set of global variables
values X = {xi} and timestamps T = {ti}:

A : (X,T )→ {true, false},

Variable changed

Node B

Node A

Variable polled Polling delay Timesync error

tB

tA

Figure 9: Example of assertion inconsistency.
The central controller received notifications about
shared variables on Nodes A and B in reverse order,
due to the variable polling and timestamp errors.

where xi is the most recent value of the variable xi and ti
is the timestamp associated with the the most recent value
change of xi (i.e., ∀t ≥ ti : xi(t) = xi).

Timestamping errors. As discussed before, the maximum
error associated with the timestamp ti is TPOLL + TSYNC.
Thus, we can only be sure that an assertion is in a consistent
state if the difference between the two timestamps is larger
than the maximum possible error due to timestamping.

The state of an assertion A(X,T ) is said to be consistent
if

∀i, j : |ti − tj | > TPOLL + TSYNC. (1)

Communication delays. Notifications about a change of
variable xi will not arrive at the same time at the controller
due to varying delays of UDP packets. Therefore, consis-
tency of assertion A(X,T ) can only be evaluated at time t,
such that

∀i : (t− ti) > (TASSERT = TPOLL + TUDP MAX). (2)

Thus, Minerva monitors the system for TASSERT after
having received the first notification and then evaluates all
assertions associated with xi using Eq. (1).

Upon detecting a failed assertion, the controller sends a
UDP packet to stop all nodes immediately to allow for fur-
ther inspection. However, there is a small interval within
that any tracked variable might still change before all nodes
have received the stopping command, as shown in Figure 10.

The state of a stopped network is said to be consistent
with global variables X and T at time t, if

∀i : (t− ti) > (TSTOP = 2 · TUDP MAX). (3)

If any variables change during the wait period, Minerva
records this as a failure to stop the network in a consis-

Assertion 
Consistent

Node B

Node A

Controller

Network Stop
Inconsistent

Stop Network on
Failed Assertion

stop

stop

TASSERT

TSTOP

Figure 10: Despite the assertion being consistent,
the network stopped in an inconsistent state since
Node B detected a variable change after the con-
troller issued the stop command.
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Figure 11: ETX and cycles in the routing graph detected by Minerva when running CTP on an indoor testbed
of 20 Opal nodes. The testbed controller periodically modifies the rate at which packets are generated by
every node. Both the ETX and the number of detected routing loops increases under heavy load.

tent state. Note that we ignore the time for packet retrans-
missions in case an acknowledgement is not received in the
above analysis. However, this is not a problem in practice
as we have seen very few dropped UDP packets in all our
experiments.

6. CASE STUDIES
In this section, we demonstrate the debugging capabilities

of Minerva using two well-known sensor network protocols:
Collection Tree Protocol (CTP) and Flooding Time Syn-
chronization Protocol (FTSP). We built an indoor testbed
with 20 Opal sensor nodes connected to 20 PandaBoard ob-
server nodes spanning two office buildings and 5 hops. The
deployment area is approximately 50 m by 100 m, covering
two different wings in an office building separated by an
outdoor area. All observer nodes are connected to our office
network via Ethernet and the testbed controller is a work-
station machine in one of our labs.

6.1 Detecting Routing Loops in CTP
We run the TinyOS 2.1.2 implementation of CTP [6] in

our testbed and use the RF231 radio transceiver in the 2.4
GHz band on channel 26. After the startup phase, pack-
ets are generated periodically by each node according to
the specified inter-packet interval and forwarded towards the
single sink node using CTP.

Debugging with Minerva. We annotate a number of vari-
ables with @trace in the application layer and in CTP: the
inter-packet interval for the application layer traffic, the cur-
rent parent in the collection tree, the ETX routing metric,
and the number of generated packets, forwarded packets and
received packets (at the sink). We also implement a global
assertion to detect routing loops in the data collection tree
(see collection example in Section 5.2.1).

With these few simple source code annotations, we get ac-
cess to powerful debugging capabilities. Minerva traces the
state of the annotated variables and notifies us when they
change. Furthermore, Minerva also detects routing loops
in CTP and stops the network in a synchronous manner if
a loop is detected. We can also inspect and modify values
of the traced variables in runtime through direct memory
access from the testbed controller. All these features are
non-intrusive and have minimal impact on the execution of
the application code on sensor nodes. No additional radio

packets need to be sent when collecting memory traces as
all debugging operations are using the debug port of the mi-
crocontroller only. Thus, debugging with Minerva does not
change the behavior of CTP by increasing the traffic load.

Setup. We run a number of experiments to evaluate Min-
erva and CTP in different scenarios. Specifically, we vary
the network traffic by periodically changing the send interval
at each node every 60 seconds. We achieve this by directly
modifying the corresponding timer variable in the node’s
memory. The number of packets generated at each node is
doubled in every round from 1 packet per second (pps) up to
32 pps. We log all data that the testbed controller receives
and collect statistics on its performance.

CTP performance. We report packets transmitted per
second, data yield at the sink node, the ETX path met-
ric, and the number of cycles detected by Minerva’s global
assertion check in Figure 11. Increasing the packet trans-
mission rate above 4 pps per node results in the occurrence
of routing cycles and an increase in the ETX values. At
the same time, the data yield, i.e., the number of received
packets vs. the number of generated packets, drops signif-
icantly. Decreasing the number of generated packets will
allow CTP’s yield to recover to the original state. Inter-
estingly, it takes considerably longer for the ETX values
to decrease and the ETX remains at a higher level com-
pared to the values when the routing topology has been
stabilized after startup (t < 100 s). Minerva detects a
significant number of cycles in the collection tree through
distributed assertions during the high packet transmission
intervals. Note that the cycles are only detected for con-
sistent assertions. We provide statistics on the number of
inconsistent assertions and Minerva’s performance in more
general later in this section. Furthermore, we measure the
performance of CTP with different settings for hysteresis
in path selection (PARENT_SWITCH_THRESHOLD) and packet
forwarding time (FORWARD_PACKET_TIME) and report results
in Table 3. We observe that increasing the packet forward
time leads to fewer dropped packets and significantly higher
packet yield. As expected, increasing the hysteresis results
in more stable routes with fewer parent switches.

Comparison with other methods. In contrast to tradi-
tional code instrumentation using printf() and/or GPIO
pins, the memory tracing (node state) and memory update
(packet transmission interval) capabilities of Minerva allow



CTP Settings Packet CTP Pkts. Num. Parent
H T [ms] Yield [%] Dropped [%] Switches

15 7 0.645 0.313 1478.2
15 16 0.740 0.278 389.2
15 32 0.822 0.230 133.2

30 7 0.610 0.316 962.6
30 16 0.773 0.262 189.6
30 32 0.873 0.199 83.0

Table 3: Performance of CTP with different settings
for hysteresis (H) and packet forward time (T).

us to monitor and control the experiment without changing
the code running on the nodes. Instrumenting the binary
image running on the nodes to generate debug output at a
comparable rate and quality would only be feasible at the
cost of adding more debug methods to the code. However,
this would have an effect on the timings of code execution
and could introduce heisenbugs.

6.2 Optimizing Time Synchronization Perfor-
mance

FTSP [17] is a popular time synchronization protocol im-
plemented in TinyOS. The protocol selects one node to main-
tain the global time and all other nodes synchronize with
this node by tracking the offset and skew of their local times
and the global time. The protocol works over multiple hops
by periodically flooding time synchronization packets in a
network-wide manner and is robust to nodes leaving and
entering the network. We demonstrate two debugging capa-
bilities of Minerva using FTSP.

6.2.1 Stop and Start of the Network
Time synchronization protocols are amongst the most chal-

lenging protocols to stop, as their internal consistency de-
pends on a free-running clock. We have configured FTSP
to use a clock source with 1 ms resolution. We periodically
stopped the network for 30 seconds and then restarted it
for 90 seconds. FTSP continued working properly in the
synchronized state as shown in Figure 12.
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Figure 12: Start/stop behavior in a FTSP network.
Vertical bars indicate when the network has been
stopped by Minerva.

6.2.2 Memory Snapshot
FTSP has a number of parameters that impact time syn-

chronization accuracy, convergence time, and the communi-
cation overhead. Often times, parameters are tuned using
a few nodes on a desk and then are left unchanged if the

performance in larger testbeds is satisfactory. For example,
each node in FTSP stores a table with recent (local, global)
time pairs to estimate its local clock skew to the global time.
The regression table size was optimized based on the perfor-
mance of two nodes in a table-top experiment [17].

We instruct Minerva to take a snapshot of the regression
table on all nodes when a new entry is added in the table
and log regression tables from 20 nodes over approximately
1 hour. We then replayed FTSP on the recorded snapshots
using a different threshold for the regression table size. In
ideal conditions, 2 entries should be enough to estimate both
the skew and the offset of the local time. FTSP uses a more
conservative value of 8 entries, to compensate for clock fluc-
tuations and timestamping errors. Our analysis shows that
increasing the size from two to eight improves synchroniza-
tion error by up to 20%, but the benefits of table size above
6 are minor.

The data contained in regression tables of all nodes pro-
vides developers with a snapshot of the recent behavior of
FTSP. Minerva can stop the whole network when a dis-
tributed assertion fails (e.g., the network has more than one
root) and allow developers to trace the error down to an in-
dividual node level. Implementation of similar functionality
using logging or in-band signaling approaches would require
data transfer of 100B per node per regression table change,
incurring significant overheads on the code execution and/or
in-band communication.

6.3 Debugging Performance
In the above experiments, we collected statistics on Min-

erva-related UDP communication and on consistency of the
distributed assertions.

Reliability. We recorded statistics on all transmitted and
received UDP packets between observers and the testbed
controller. In one of our 60 minute experiments, the con-
troller collected almost 2 million update notifications from
the observers. UDP reliability was impressive, we lost only
16 packets over the whole experiment, which gives us a
99.999% packet reliability.

Consistency. We evaluate the consistency of distributed
assertions in the CTP use case. Specifically, the assertion
fails if a loop is found in the data collection tree. As dis-
cussed in Section 5.2.3, Minerva evaluates assertions only
when they are consistent. Specifically, the timestamps as-
sociated with the state variable change need to be at least
TASSERT time apart to prevent timestamping errors from
impacting the network state consistency.
TASSERT time is calculated as a sum of TPOLL time and

TSYNC time. Based on our experiments in Section 4.1.2,
the polling delay can be as high as 1 ms and the NTP was
recently shown to achieve an accuracy of 255 µs in a sim-
ilar setup [15]. Therefore, we take 1.3 ms as the value for
TASSERT. Given the TASSERT error bound, Minerva failed
to evaluate 476 assertions over all CTP experiments due to
the state inconsistency, or about 2% of the total number of
assertions. This shows that Minerva is capable of evalu-
ating distributed assertions in applications where events are
observed at rates as high as radio packet transmission times.

Clearly, timestamping and polling errors have an impact
on the number of assertions that can be evaluated. Thus,
we vary the value of TASSERT between 0 and 100 ms and
collect statistics on the number of inconsistent, consistent
failed, and consistent successful assertions. The results are
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Figure 13: Consistency of global assertion detecting
routing loops in CTP for different values of TASSERT.

shown in Figure 13. As expected, higher time synchroniza-
tion uncertainty increases the likelihood of network state in-
consistencies which results in more inconsistent assertions.
Despite the hysteresis of the parent change that is built into
the CTP protocol [6], the data collection tree is changing fast
enough that the increase of timestamping errors to 100 ms
would result in 70% probability of the network state being
inconsistent. If the observed phenomenon is changing at a
lower rate, however, looser polling and synchronization error
bounds would be sufficient.

Another interesting aspect that we can observe in Fig-
ure 13 is the high rate of collection tree loops that Minerva
detects. Specifically, CTP introduces a loop 80% of the time
when it changes its parent. This is related to the high packet
transmission rate periods that happen several times during
our experiment (see Figure 11). However, the ratio of the
failed assertions decreases as we increase the TASSERT inter-
val. This is expected, as most routing loops only exists for
a short period until other nodes have updated their routes
as well.

7. RELATED WORK
As wireless sensor networks have gained a lot of attention

during the last few years, the research community devel-
oped various tools tailored towards the resource-constrained
nature of network embedded systems. Standard debugging
tools available on PCs (e.g. breakpoints and profiling) are
not available on embedded systems due to lack of resources
(memory, bandwidth). We first give a brief overview of net-
work simulators and model checkers, which are designed to
detect bugs before the application is deployed in a real sensor
network. Testbeds are a common tool to verify the correct
operation of an application or network protocol under real-
istic conditions. Finally, in-network debugging tools allow
for limited inspection into a node’s state when a network
has already been deployed.

Network Simulators. Various simulation tools have been
proposed in the literature, which focus on modeling specific
aspects of sensor networks such as the wireless channels or
the energy consumption. TOSSIM [13] is a simulator for
TinyOS which compiles application code into a binary image
which runs on a PC. Since it replaces low-level components
of TinyOS such as hardware timers, radio chips and the
wireless channel with its own components, it is not suitable
to study low-level hardware interactions such as interrupts.
However, a major advantage of TOSSIM is its scalability,
which make it a useful tool to simulate the behavior of a
sensor network at the protocol level with a large number of

nodes. Castalia [1] is built on top of OMNET++ with an
emphasis on the accurate modeling of the wireless channel
and the behavior of the radio transceiver.

Instruction-level simulators such as Avrora [28] for the
Atmel AVR platform and MSPSim/COOJA [19] for the TI
MSP430 platform both allow for cycle-accurate emulation
of machine code. A major advantage of these simulators is
their ability to run exactly the same binary image as the
target hardware platform. Simulators have the ability to
provide a global view on the state of the sensor network.
The simulated memory space of each node within the sim-
ulation framework can be accessed and monitored for de-
bugging purposes. YETI [9] integrates several parallel GDB
instances within COOJA to allow network-wide breakpoints
and memory inspection. Discrete event based simulators fa-
cilitate to stop a network simultaneously as only the sim-
ulator’s event scheduler has to be stopped, thus effectively
stopping the all nodes simultaneously. Minerva applies the
same concept to a network of real sensor nodes, rather than
instances within a simulator.

Model checking. Model checking systems are often based
on simulation tools to explore the state space of sensor net-
work applications and verify that certain properties are met.
T-Check [14] uses TinyOS with TOSSIM for random walks
within the state space, while KleeNet [24] integrates Con-
tiki with the KLEE symbolic execution framework for model
checking.

Testbeds. Since simulators are often built around simplis-
tic models for low-level hardware events and the wireless
channel, testbeds are indispensable as a final step of testing
before the actual deployment. They feature multiple nodes
of one or several platforms spatially distributed to assess
the changing characteristics of the wireless channel. Popular
examples of WSN testbeds are: MoteLab [29], TWIST [7],
Kansei [3], DSN [2], Flocklab [15]. These testbeds have in
common that they use an out-of-band channel (e.g., USB,
Bluetooth, Ethernet or WiFi) to upload new application
code onto the nodes and to monitor the node’s serial out-
put lines. In addition to the serial output, PowerBench [8]
and Flocklab are able to measure power consumption of the
nodes in the testbed. Flocklab also has the ability to mon-
itor certain GPIO pins of the node for activity and toggle
input pins.

In-band debugging tools. Debugging sensor network is
most challenging when nodes are already deployed in the
field and any external instrumentation tools have been re-
moved. While it is often still possible to connect a cable to
the serial output of a single node, radio packets remain the
only practical way to monitor and interact with the network.
Analysis of performance metrics or routing information can
be used to detect irregularities in the network operation,
e.g., Sympathy [21] or multi-hop network tomography [11].
Passive inspection is using sniffer nodes to overhear radio
traffic [22] and allow for global state analysis [16] and dis-
tributed assertion checking [23].

Trace-based Debugging. Diagnostic tools such as Dust-
miner [12] collect execution traces for offline analysis. Since
network bandwidth is limited and interference with the ex-
isting application’s network traffic should be avoided, com-
pression of traces is necessary [25, 26]. Marionette [30] em-
beds additional remote procedure calls within TinyOS bi-
naries to allow developers to call methods and read/write
variables on the heap from a PC. Clairvoyant [31] is source-



level debugger for sensor networks. It enables standard de-
bugging operations such as memory inspection, watchpoints
and breakpoints. When the code execution on a single node
reaches a breakpoint, the control logic on that node trans-
mits a flooding command to stop all other nodes in the net-
work. Our approach provides similar functionality to stop a
whole network, however, Minerva is non-intrusive since no
debugging components have to be added to the binary run-
ning on the node. Furthermore, all control traffic required
for debugging uses an out-of-band channel in Minerva.

On-chip debugging support. Aveksha [27], similarly
to our solution, builds a stand-alone debug board for the
TelosB platform. It uses a debug extension board consisting
of dedicated FPGA and MCU to interface with the debug
port of the MSP430 microcontroller family. Aveshka is able
to trace memory read/write accesses and periodically poll
the program counter, however, it cannot write or read to the
system memory while the processor is running. In contrast
to Minerva, traces are only stored locally at each debug
board. Consequently, Aveksha cannot provide insight into
the global network state as with Minerva and, therefore, is
not able to check global assertions at runtime.

8. CONCLUSIONS
We presented the design and implementation of Minerva,

a novel debugging tool for wireless sensor network testbeds.
Minerva utilizes capabilities of debug ports integrated in
the microcontroller of sensor node platforms for debugging
at a sensor network level rather than a node level. We pro-
pose a system architecture built around low-cost hardware
components and open source software tools that provides
basic debugging capabilities at a network-wide scale. Users
can read and write the memory of the sensor node at runtime
non-intrusively and halt/resume the network synchronously.

Building upon these novel debugging modalities, we pro-
vide tools to specify distributed assertions, evaluate consis-
tency of the network state, and take periodic snapshots of
the system state. By scripting these functionalities together,
the developers can stop the whole network in a consistent
state, when a violation of a distributed assertion is detected.
While the Minerva architecture is not targeted at debug-
ging time-critical, low-level code, it gives useful insight into
the global network state of sensor network applications.
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